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Abstract 

The significance of wastewater remediation before its discharge into the aquatic 

environment cannot be overemphasized.  Adsorption has been proven to be effective for 

the removal of toxic pollutants from industrial effluents and/or wastewater, due to its 

simplicity in operation and the possibility of regenerating sorbents for reuse.  This 

concept was exploited to achieve the effective removal of toxic contaminants from 

simulated wastewater.  Carbon nanotubes, a fascinating member of the carbon family, 

possessing unique physical and chemical properties, have been reported as superior 

adsorbents for wastewater remediation purposes.  Their large specific surface areas and 

porosity, hollow and layered structures, and great mechanical and thermal stability, 

makes them good candidates as sorbents for wastewater treatment and contamination 

control. 

 

This thesis interrogates the efficacy of carbon-structured nanomaterials containing 

multiwalled carbon nanotubes (MWCNTs) as the backbone, for the removal of divalent 

metal ions and organic contaminants from aqueous solutions.  In this work, a novel 

adsorbent was successfully synthesized by incorporating a nitrogen-donor ligand (4-

phenyl-2, 2':6', 2''-terpyridine) onto MWCNTs to afford nitrogen-functionalized MWCNTs 

(MWCNT-ttpy).  The effectiveness of this sorbent towards the removal of divalent metal 

ions (Pb2+, Cd2+, Zn2+, Hg2+ and Cu2+), and organic contaminants (bisphenol A and 

ibuprofen) from aqueous solutions was investigated.  The adsorption uptake of these 

pollutants onto MWCNT-ttpy was compared with that of acid-functionalized MWCNTs 

(MWCNT-COOH) to determine the sorbent with best removal efficiencies.  Further, 

magnetic nanocomposites containing cobalt ferrite nanoparticles and MWCNT-COOH were 

synthesized in varying ratios to investigate their effectiveness for the removal of rhodamine 

B from aqueous solutions.  All nanomaterials synthesized were characterized by means of 

TEM, SEM, TGA, BET, FTIR and Raman spectroscopy before application. 

 

Batch adsorption experiments were conducted to determine the effects of pH, contact 

time, adsorbent dose, initial adsorbate concentration and temperature for each sorption 

process in order to evaluate the best experimental conditions necessary for pollutant 

removal.  The experimental data were fitted into the pseudo-first order, pseudo-second 

order, intraparticle diffusion and Elovich models to determine the dynamics and rate-

determining step of the adsorption processes.  The mechanism of the process was 

investigated by fitting the experimental data into various two- and three-parameter 

isotherms. 
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The application of MWCNT-ttpy for the removal of both heavy metal ions and organic 

pollutants demonstrated much enhanced uptakes than MWCNT-COOH.  The 

incorporation of nitrogen onto MWCNT-COOH significantly improved the affinity 

towards the removal of metal ions, forming strong electrostatic and coordination 

interactions between the active sites on the adsorbent and metal ion cations.  Increasing 

hydrophobicity of MWCNT-ttpy over MWCNT-COOH accounted for the enhanced 

removal of bisphenol A and ibuprofen, since their uptake is primarily decided on by the 

hydrophobic nature of sorbates.  Further, the application of both MWCNT-COOH and 

magnetic carbon nanotube-cobalt ferrites nanocomposites showed good removal 

efficiencies for rhodamine B from aqueous solution, with the best uptake achieved by 

using MWCNT-COOH.  However, the magnetic nanocomposites give an advantage of 

separation under magnetic influence, hence, limiting inconveniences encountered 

during separation.  The kinetics of adsorption were mostly described by the pseudo-

second order and the Elovich models, while the equilibrium data were best described by 

the Langmuir and the Sips isotherm models. 

 

The thermodynamic parameters of adsorption, namely, the change in Gibbs energy 

(∆Gº), change in enthalpy (∆Hº) and change in entropy (∆Sº) were estimated for each 

adsorption process.  The adsorption of all adsorbates were endothermic in nature except 

in the case of ibuprofen and Cd2+ which exhibited an exothermic process.  All adsorption 

processes described in this study were spontaneous, implying the feasibility of the 

sorbents for the removal of targeted pollutants from wastewater. 

 

Desorption studies aimed at regenerating the adsorbents for reuse were successful.  High 

recovery efficiencies between 60-95% were achieved by using eluents such as 0.1 mol 

dm-3 HCl for metal ions, and ethanol and acetone/acetic acid for organic contaminants.  

This process averts the production of secondary pollutants, supporting the reutilization 

of both the adsorbents and the adsorbates.  Thus, all adsorbents used in this study were 

efficiently regenerated by using simple conventional chemicals and can be reused for 

the removal of targeted pollutants from aqueous solutions. 

 

The competitive adsorption of Pb2+, Cd2+, Zn2+ and Cu2+ and the binary adsorption of 

bisphenol A and ibuprofen onto MWCNT-ttpy was also investigated in both single-

solute and multi-component adsorption systems.  The sorption of metal ions onto 

MWCNT-ttpy was in the sequence Cd > Pb > Cu > Zn and Pb > Cu > Cd > Zn in single-

solute and multicomponent systems, respectively, while the removal of ibuprofen was higher 

than that of bisphenol A in a typical binary adsorption system.  For the first time, the 

competitive sorption of organic contaminants (bisphenol A and ibuprofen) in the presence 

of metal ions (Cd2+ and Pb2+) onto nitrogen-functionalized MWCNT was investigated.  The 
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study revealed a cooperative mechanism of adsorption between metal ions and organic 

pollutants in a multicomponent system.  Thus, the novel adsorbent proved effective for the 

removal of metal ions, bisphenol A and ibuprofen in both single-solute and multicomponent 

adsorption systems. 

 

MWCNT-ttpy also proved remarkably effective for removing three heavy metal ions, Pb2+, 

Cu2+ and Zn2+, in three different real-life water samples, obtained from the Umgeni River.  

Removal efficiencies greater than 95% were achieved for all three metal ions. 

 

The modification of MWCNTs to afford both nitrogen-functionalized MWCNTs and cobalt-

ferrite/MWCNT nanocomposites was successful.  These sorbents exhibited excellent 

pollutant removal abilities, attributed to improved textural characteristics of the 

nanomaterials synthesized.  The application of these sorbents for wastewater and industrial 

effluent remediation should be further explored for prudent management of water resources. 
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Chapter 1 

 

Introduction 

 

Water is a substance upon which all known forms of life depend.1,2  It covers about 71% of 

the earth’s surface, with the largest portion contained in seas and oceans.3,4  The availability 

of fresh water to man for domestic purposes is in short supply, resulting in water scarcity 

across the world.  In 2010, a study conducted by the Consulting Engineers SA, envisages 

that South Africa would suffer major water scarcity by 2025 (Fig 1.1).5  Physical factors, 

such as increasing urbanization, population and infrastructure, were highlighted as the main 

reasons behind this impending problem.  The complexities associated with water scarcity 

therefore require prudent management for the continued survival of man and animals. 

 

Fig. 1.1:  Projected water scarcity in the world by 2025.5 

 

Anthropogenic activities involving the introduction of chemical, physical, microbial and 

radioactive substances into aqueous media are responsible for increased pollution, hence, 

exacerbating the scarcity of clean water.6  Wastewaters containing several toxic pollutants 

are regularly generated by industries, and are taken through little or no further treatment 

before their disposal into the environment.  Unfortunately, most pollutants are water-soluble 

and eventually end up in groundwater, rivers, streams and oceans through various natural 

processes.  Water pollution therefore limits the availability of clean water, posing serious 

environmental and health challenges to its dependants and can lead to death and the spread 
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of diseases.  It is estimated that water pollution accounts for more than 14000 deaths daily.7,8  

To avert this problem, a crucial need exists for the remediation of wastewater produced by 

industries in order to alleviate water scarcity and generate freshwater to cater for human 

needs. 

 

This study sought to develop nanomaterials containing carbon nanotubes (CNTs) as 

adsorbents for the purification of contaminated water.  To achieve this, functional groups 

were anchored onto the side/walls of CNTs to increase the activity of tubes towards the 

removal of heavy metal ions and organic contaminants from aqueous solutions.  Magnetic 

nanocomposites were also developed for the removal of dyes from aqueous solution.  This 

chapter describes the problem, and the aim and objectives of this work. 

 

 

1.1 Statement of the problem 

Increased industrialization and urbanization have been highlighted as two primary sources 

of water pollution and mortification of the environment.9  The discharge of waste products 

from industries containing several toxic contaminants into the environment, exposes man, 

biotic and abiotic organisms to various health complications.10  Industrial applications such 

as mining, electroplating, fertilizer and pesticide production, battery manufacturing and 

agricultural spills produce effluents containing high amounts of heavy metal ions such as 

lead, zinc, cadmium, mercury and copper.11 

 

Heavy metals are usually referred to as metallic elements with atomic numbers greater than 

20 and densities above 5 g cm-3.12  These substances are water-soluble, stable, persistent in 

the environment and non-degradable under natural processes.13  Due to these factors, they 

are easily transported by natural means and remain for long periods of time in the 

environment.  Accumulation of these substances in humans may result in reproductive 

disorders, cancer, liver, muscle and bone diseases, and in extreme cases lead to death.11,13  

Some metals such as copper and zinc are essential to both plants and animals, however, they 

are considered toxic when their amounts exceed the threshold limit.14 

 

Similarly, the ingestion of organic compounds such as bisphenol A (BPA) and ibuprofen 

(IBP) result in changes in neurological, developmental and reproductive organs, and may 

lead to diseases such as cancer, birth defects and brain damage.15  Although IBP is a 

pharmaceutical product and one of the most commonly used medicines in the world,16 

indiscriminate ingestion may result in infertility and several reproductive disorders in man.17  

In addition, textile manufacturing, printing and painting industries generate coloured 

effluents, which off-sets biological activities when released into aqueous media.18  A 
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literature review providing insights into the fate and effects of heavy metals and organic 

pollutants is provided in Chapter 2. 

 

It is therefore necessary to develop a simple, effective and efficient technique for the removal 

of pollutants from effluents/wastewater before their discharge into the natural environment.  

In recent times, various techniques such as ion-exchange, chemical precipitation, 

coagulation, osmosis, membrane separation and adsorption, amongst many others, have 

been investigated in order to achieve purification.  These methods will be discussed in 

Chapter 2, together with the advantages and disadvantages associated with each method. 

 

Of these methods, adsorption is considered best and for the removal of toxic pollutants from 

wastewater.10  The technique is simple, obtaining good removal efficiencies for high and 

low adsorbate concentration, and most importantly offers the possibility of adsorbent 

regeneration for reuse.  However, the development of sorbents with multiple functional 

groups to enhance faster or dual removal of pollutants is still a challenge.  Regeneration of 

adsorbents often poses a significant problem, as recovered sorbents lose their efficiencies, 

resulting in low uptake of pollutants.  Since, effluents usually contain multiple pollutants in 

them, there is therefore an urgent need to develop sorbents containing multiple functional 

groups which will aid the simultaneous removal of pollutants from wastewater.  It is also 

imperative to develop sorbents with high adsorption capacities and retain their efficiencies 

after regeneration. 

 

Carbon nanotubes (CNTs), a member of the fullerene structural family, were discovered by 

Iijima in 1991.19  These carbon nanostructured materials were observed to possess tubular 

structures, possessing remarkable mechanical, thermal and optical properties.20  CNTs may 

be classified into single-walled carbon nanotubes (SWCNTs) or multiwalled carbon 

nanotubes (MWCNTs), depending on the number of concentric graphene sheets rolled to 

form them.20  The growing interest in the use of CNTs in environmental sciences, especially 

as superior adsorbents for inorganic and/or organic pollutant removal, stems from the fact 

that they possess high surface areas and porosity, and can be easily tuned to contain expected 

functional groups.  Acidic functionalization of CNTs introduces oxygen-containing groups 

which increases their dispersability in aqueous media.  These groups can serve as active sites 

for the removal of pollutants such as metal ions from aqueous solution.  To increase the 

activity of CNTs, new functional groups such as –NR, –F, –Cl and –SR, can also be 

incorporated onto the walls/sides of the tubes through wet chemistry.  Additionally, 

composites involving CNTs and other nanomaterials can be formed to produce a synergy 

between the involved nanomaterials.  For instance, magnetic carbon nanotubes can be 

developed by forming composites with ferrites so as to have increased magnetism, surface 

area, porosity and active sites. 
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In spite of increasing number of studies on the removal of pollutants by using CNTs, to the 

best of my knowledge, no known study has been investigated on the functionalization of 

CNTs by the use of the nitrogen-donor ligand, 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine.  

This concept will introduce nitrogen-containing functional groups onto the CNT walls to 

achieve increased removal of organic and/or inorganic pollutants from aqueous solutions.  

Also, magnetic carbon nanotubes were synthesized in varying doping ratios of CNTs with 

cobalt ferrite nanoparticles, so as to produce an adsorbent which can be easily removed from 

solution via an external magnetic field.  This concept was adopted to produce magnetic 

MWCNTs for the removal of the dye, rhodamine B (RhB), from aqueous solutions. 

 

 

1.2. Aim and objectives of the study 

The aim of this research was to develop functionalized carbon nanomaterials or 

nanocomposites for the removal of metal ions, bisphenol A, ibuprofen and rhodamine B 

from contaminated water.  This was achieved through the following objectives: 

i. To functionalize commercially obtained pristine-MWCNTs with a mixture of 

concentrated nitric and sulphuric acids. 

ii. To synthesize the ligand, 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine, and 

characterize it by using nuclear magnetic resonance and mass spectrometry, melting 

point measurements and Fourier transform infrared (FTIR) spectrophotometry. 

iii. To synthesize nitrogen-functionalized MWCNTs by using the ligand, 4'-(4-

hydroxyphenyl)-2,2':6',2''-terpyridine. 

iv. To prepare composites of varying doping ratios of acid-functionalized MWCNTs 

with cobalt ferrite nanoparticles. 

v. To characterize all adsorbents by using techniques such as transmission and scanning 

electron microscopy, thermogravimetric analysis (TGA), Brunauer, Emmett and 

Teller (BET) surface area, FTIR and Raman spectroscopy, Boehm titration and 

elemental analysis. 

vi. To carry out batch adsorption processes investigating the influence of pH, contact 

time, adsorbent dose, initial adsorbate concentration and temperature on the 

adsorption of Pb2+, Zn2+, Cu2+, Cd2+, Hg2+, BPA, IBP from aqueous solution using 

acid-modified and nitrogen-functionalized MWCNTs. 

vii. To perform batch adsorption processes investigating the effects of pH, contact time, 

adsorbent dose, initial RhB concentration and temperature on the adsorption of RhB 

from aqueous solution by using cobalt ferrite nanoparticles, acid-functionalized 

MWCNTs, 29%, 50% and 75% cobalt ferrite-MWCNTs nanocomposites. 
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viii. To fit the equilibrium adsorption data into two- and three-parameter isotherm 

models, such as the Langmuir, Freundlich, Temkin, Sips, Toth, Khan, Redlich-

Peterson and Dubinin-Radushkevich models. 

ix. To investigate the mechanisms or dynamics of each adsorption process from kinetics 

models such as the pseudo-first order, pseudo-second order, intraparticle diffusion 

and Elovich models. 

x. To compute the thermodynamic parameters of adsorption, such as change in Gibbs 

energy (∆Gº), change in entropy, (∆Sº) and change in enthalpy (∆Hº) of the sorption 

process. 

xi. To investigate the competitive adsorption involved in the sorption of metal ions such 

as Pb2+, Zn2+, Cu2+ and Cd2+. 

xii. To evaluate the competitive adsorption involved in the sorption of BPA and IBP. 

xiii. To investigate the simultaneous sorption of BPA, IBP and metal ions such as Pb2+ 

and Cd2+. 

xiv. To perform desorption studies on each adsorbent to evaluate the possibility of 

regenerating the adsorbents and the recovering the adsorbates for reuse. 

 

 

1.3. Thesis overview 

This thesis contains eleven chapters, which are briefly described below.  The novel aspect 

of this work include the synthesis of nitrogen-functionalized multiwalled carbon nanotubes 

using 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine as a modifier and its application for the 

removal of heavy metal ions such as Pb2+, Cu2+, Cd2+, Zn2+ and Hg2+ from aqueous solutions 

and the preparation of composites containing carbon nanotubes and cobalt ferrite 

nanoparticles for the removal of rhodamine B from aqueous solution.  Isotherm and kinetics 

studies was also investigated to understand the mechanism of each adsorption process.   

 

This thesis is written in manuscript format and consists of a series of stand-alone chapters.  

Hence, the style of each chapter will be unique to the format where the manuscript has been 

published or in preparation to be submitted.  The thesis, however, should be coherent with 

the objectives as listed previously. 

 

Chapter 1 includes a brief introduction on water pollution and the impending problems that 

arise from the drought of water.  It further highlights the need for the remediation of 

wastewater before they are discharged into the aquatic environment.  A statement of the 

problem, and the aim and objectives of the study are presented in the chapter. 
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Chapter 2 presents a background information and a literature review on the topic of the 

study.  The fate, sources and effects of targeted pollutants (i.e. Pb, Cu, Cd, Zn, Hg, BPA, 

IBP and RhB) are described.  An overview of the methods used for wastewater remediation, 

and a review on the use of carbon nanotubes as adsorbents for water treatment purposes is 

given. 

 

Chapter 3 is a literature review on the removal of perfluorinated compounds from aqueous 

solutions.  The nitrogen-functionalized CNTs were originally designed for the simultaneous 

removal of perfluorinated compounds (PFCs) and heavy metal ions from aqueous solutions.  

However, because of the breakdown of the high performance liquid chromatography-mass 

spectrometry (HPLC-MS), the detection and quantification of PFCs could not be carried out.  

Hence, the material synthesized was tested on heavy metal ions and the organic pollutants, 

bisphenol A and ibuprofen, for which analysis equipment was available.  This chapter 

therefore presents a review on intended future work by applying synthesized nitrogen-

functionalized CNTs for the removal of perfluorinated compounds (PFCs) in aqueous 

solution.  The occurrence, fate, effects and adsorption mechanism of perfluorinated 

compounds onto carbon nanotubes are presented in this chapter. 

 

Chapter 4 presents a detailed study of the preparation of acid- and nitrogen-functionalized 

multiwalled carbon nanotubes.  Characterization of the adsorbents and their application for 

the removal of Cu2+ from aqueous solutions is described.  The kinetics and isotherms of the 

processes were equally provided. 

 

Chapter 5 describes the adsorption process involved for the removal of Pb2+ and Zn2+ from 

aqueous solutions onto acid- and nitrogen-functionalized multiwalled carbon nanotubes.  

The kinetics, isotherm and thermodynamics of the adsorption process are also presented in 

the chapter. 

 

Chapter 6 discusses the behaviour of acid- and nitrogen-functionalized multiwalled carbon 

nanotubes for the adsorption of Cd2+ and Hg2+. 

 

Chapter 7 reports on the competitive adsorption of Pb2+, Cu2+, Cd2+, and Zn2+ from aqueous 

solutions onto nitrogen-functionalized multiwalled carbon nanotubes. 

 

Chapter 8 gives a detailed investigation into the removal of bisphenol A and ibuprofen from 

aqueous solution by adsorption onto acid- and nitrogen-functionalized multiwalled carbon 

nanotubes. 
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Chapter 9 investigates the binary adsorption of bisphenol A and ibuprofen from aqueous 

solution.  The influence of Pb2+ or Cd2+ as examples of heavy metals on the adsorption of 

bisphenol A and ibuprofen is also presented in this chapter. 

 

Chapter 10 discusses the preparation of cobalt-ferrite-multiwalled carbon nanotube 

nanocomposites and their application for the removal of the dye, rhodamine B, from aqueous 

solutions.  This chapter has already been published in a peer-reviewed article (RSC Adv., 

2015, 5, 22724-22739). 

 

Chapter 11 provides some general conclusions arising from the work conducted in this 

study and also suggests plausible avenues for future research. 
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Chapter 2 

 

Background information and literature review 

 

In this study, a novel adsorbent was synthesized by incorporating 4'-(4-hydroxyphenyl)-

2,2':6',2''-terpyridine onto acid-functionalized MWCNTs to afford nitrogen-functionalized 

MWCNTs.  This adsorbent was applied for the removal of heavy metal ions, bisphenol A 

and ibuprofen from aqueous solutions, and its adsorption efficiency compared with acid-

functionalized MWCNTs.  Further, the removal of rhodamine B from aqueous solution was 

investigated by using nanocomposites containing varying ratios of MWCNTs and cobalt 

ferrite nanoparticles.  This chapter provides in-depth information on the sources, fate and 

health effects associated with the exposure of heavy metals (lead, zinc, copper, cadmium 

and mercury), organic contaminants (bisphenol A and ibuprofen) and rhodamine B dye to 

man, aquatic life and the environment.  The remediation of wastewater by using various 

techniques is explored, with particular interest on adsorption.  The adsorption kinetics, 

isotherms and thermodynamics studies of carbon-based nanomaterials to the highlighted 

pollutants was further reviewed.  Desorption of adsorbents for the purpose of regeneration 

and adsorbate recovery for possible reuse was also investigated 

 

2.1. Metal pollutants in water 

The pollution of aqueous media by heavy metal ions is one of the major environmental 

concerns of contemporary society.1,2  In 2007, metals were listed as priority hazardous 

substances by the Agency for Toxic Substances and Disease Control (ATSDR).3,4  This is 

due to their persistence, bioaccumulation and non-biodegradable nature in the 

environment.5,6  Although, the exposure of metals to man, aquatic life and animals has been 

well-documented, efforts to reduce their intrusion into water streams are still yielding very 

few results,1 especially in developing countries such as South Africa.  The contamination of 

natural water (rivers, lakes, oceans and seas) with metal ions has been accelerated by the 

frequent discharge of effluents generated from industries.7-9  Some metals (cadmium, 

chromium, lead and mercury) are considered toxic even at low concentrations,2,7,10 while 

other micronutrients such as iron, copper and zinc are essential at low concentrations,11,12 

but may become harmful with increased exposure.  In this study, the effects and sources of 

five metal ions (lead, cadmium, mercury, copper and zinc) were reviewed, due to the high 

toxicity associated with lead, cadmium and mercury and the health complications 

accompanying increased exposure to copper and zinc by man. 
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2.1.1. Lead 

Lead (Pb) is ranked as the second most toxic substance in the 2013 priority list of hazardous 

compounds,3,13 due to the high level of toxicity associated with its intake.  The maximum 

acceptable concentrations of lead in water (0.01-0.1 mg dm-3),14,15 soil (0.09 mg kg-1)13 and 

air (0.003 mg m-3)13 were established by various environmental agencies in order to enact 

laws against its incessant disposal into the environment.  Unfortunately, its addition as a 

priority contaminant has not limited its usage in construction, radioactive shields, 

petrochemical industries, water pipe lining, metal plating, battery and textile manufacturing.  

Evidence of lead is regularly reported in various samples, such as water,16,17 soil,18 air,19 

electrical equipments,20 and food,21 amongst many others.  The principal point source of 

lead is via the discharge of untreated effluents into water streams, hence, accumulating in 

run-offs and intruding into other media such as the soil, sediments and air.  Lead ingestion 

and accumulation can result in several diseases such as damage to the kidney, liver, central 

nervous system, bones, cancer, mental dysfunction, intelligence inhibitors and in extreme 

cases, may eventually result in death.22-24 

 

The speciation of Pb is controlled by the pH of the aqueous solution.  Pb exists as divalent 

ions in acidic conditions, however, lead hydroxides, such as [Pb(OH)2], [Pb(OH)]+, 

[Pb(OH)3]
-, [Pb3(OH)4]

2+, [Pb2(OH)]3+, [Pb4(OH)4]
4+ and [Pb6(OH)8]

4+, may be formed in 

basic conditions.25,26 

 

2.1.2. Cadmium 

Cadmium (Cd) is a soft, rare, malleable, bluish-white metal, which may be found naturally 

on the earth’s crust and occurs in combination with zinc, lead or copper ores.27,28  Cadmium, 

classified as the seventh most toxic substance,3 gains wide application in industries for 

batteries and alloy manufacturing, refining, mining, electroplating, smelting and paint 

pigment, plastics, fertilizer and pesticide production.29,30  As a consequence of its toxic 

classification, the use of cadmium and its compounds in industries is gradually declining.  

However, high concentrations of cadmium have been reported in water, soil, landfill, food, 

and other media.31  Although cadmium can be released into the atmosphere through natural 

activities such as volcanic eruptions, weathering and erosion, anthropogenic activities such 

as tobacco smoking, mining, fossil fuel burning, incineration of municipal wastes, recycling 

activities, batteries and phosphate fertilizer manufacturing are the major routes through 

which cadmium is released into the environs.28  Contamination of aqueous solutions is 

largely attributed to the release of industrial and agricultural effluents into receiving 

waters.32  Due to its solubility in water, mobility and non-biodegradable nature,32 excessive 

ingestion results in its accumulation in the human body, with a half-life of more than ten 

years,29 thereby resulting in several acute and chronic health issues.  Health complications 
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such as renal dysfunction, anaemia, lung and kidney damage, dizziness, itai-itai disease,ǂ 

numbness, amidst many cardiovascular diseases can occur.28,33  As a result of these effects, 

the US EPA recommends a permissible limit of 5 µg dm-3 in drinking water,13,30,33 in order 

to abate consequences associated with cadmium intake. 

 

Cadmium exists in various soluble forms in water, largely as the divalent cation (Cd2+), 

however, it can also exist in other forms such 1as [Cd(OH)]+, [Cd(OH)2], [Cd2(OH)]3+, 

[Cd(OH)3]
- and [Cd(OH)4]

2- under alkaline conditions.25,26 

 

2.1.3. Mercury 

Mercury (Hg) is a heavy, rare, silvery-white liquid metal, and exists naturally in its sulfide 

form (cinnabar).  Mercury, ranked as the third most toxic substance,3 due to high toxicity 

associated with its intake, is used in refining, rubber processing, fertilizer, paper and pulp 

production, pharmaceuticals, consumer batteries, insecticides, disinfectants, electrical 

appliances and as a catalyst in industries.34  The intrusion of mercury into the aquatic 

environment is largely attributed to effluent discharge from chlor-alkali plants and fossil fuel 

combustion, and add up to wastewater generated from water treatment plants and 

industries.35,36  Ingestion of mercury into the human body results in severe health problems 

such as lung and brain dysfunction, birth defects, disruption of the central nervous system, 

allergic reactions such as skin rashes, headaches, vomiting, diarrhoea, and may lead to death 

on increased exposure.37,38  As a result of these effects, the maximum permissible limit 

established by environmental agencies in drinking water is 0.003 mg dm-3.13,38,39  Efforts 

must be taken to drastically control and reduce the increase of mercury in the aquatic 

environment.  Mercury exists in various soluble forms in water, largely as the divalent cation 

(Hg2+), however, it can also exist in other forms such as [Hg(OH)]+, [Hg(OH)2], [Hg(OH)3]
- 

and [Hg(OH)4]
2- under alkaline conditions.26,40 

 

2.1.4. Copper 

Copper (Cu) is a trace essential element needed by all living organisms for lipid metabolism 

and the proper functioning of the heart and blood vessels.12,41,42  Copper deficiency in 

humans is rare,43 but results in fatigue, anaemia and reduced white blood cells when 

insufficient, especially in children.  In spite of this, excessive amounts may also lead to 

respiratory disorders, kidney, lung and liver failure, nausea, bleeding, gastrointestinal 

complications, Wilson’s disease and may also result in death if ingested in high 

amount.12,42,44  Due to the great thermal strength, corrosion resistance and electrical 

properties possessed by copper, it is usually applied as an insulating material for alloy 

                                                           
ǂName given to Cd poisoning which occurred in Jinzu River basin, Toyama 
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formation and for architectural purposes such as building materials and construction of 

vehicles.  Other applications include chemical manufacturing, mining, metal cleaning, 

electroplating and fertilizer applications12,45 amongst many others.  Hence, its usage is 

considered very important in our society. 

 

Waste discharges from industries contribute significantly to high concentrations of copper 

ions found in aqueous solutions, hence, resulting in its accumulation in natural water.  The 

recommended acceptable limit of copper in drinking water is 1.5 mg dm-3 as suggested by 

the World Health Organization (WHO).12,45  However, higher concentrations are detected in 

environmental samples such as groundwater, sediments, soils and landfills owning to 

increased industrialization.46 

 

Copper exists as free divalent ions in water, however, hydroxide complexes such as 

[Cu(OH)]+, [Cu(OH)2], [Cu(OH)3]
-, [Cu(OH)4]

2-, [Cu2(OH)]+, [Cu3(OH)4]
2+ and 

[Cu2(OH)2]
2+ may be formed depending on the pH of the solution.25,26 

 

2.1.5. Zinc 

Zinc is an essential micronutrient needed for the development of the immune system, cell 

growth and fertility in man.47  Its deficiency in the body results in irritations such as 

vomiting, loss of appetite, diarrhoea, growth retardation and susceptibility to disease 

exposure.  The intake of zinc is required in trace amounts at a maximum acceptable limit of 

5 mg dm-3.48,49  Higher concentrations in the body may lead to health effects such as 

respiratory difficulty, skin irritations, gastrointestinal distress and cancer amongst many 

others.47  Anthropogenic activities, primarily through the discharge of wastewater generated 

from mining, smelter slags, and metallurgical industries, accounts for the route via which 

zinc is introduced into the environment.49  Evidence of zinc has been reported in air, water, 

soil and landfills with highest concentrations near point sources.  The formation of zinc 

hydroxides occur in water at pH > 7 to form different species such as [Zn(OH)]+, [Zn(OH)2], 

[Zn(OH)3]
-, [Zn(OH)4]

2-, [Zn2(OH)]3+ and [Zn4(OH)4]
4+.25,26,48,50 

 

 

2.2. Organic pollutants in water 

In recent times, increasing detection of organic pollutants in water sources presents 

environmentalists with concerns over their sources and effects, and strategies to mitigate 

such contamination.  Organic pollution arises primarily when wastes (liquid or solid) 

produced from industries, water treatment plants, sewage, farming and urban run-offs are 

discharged directly without treatment into water streams.51-53  Several emerging organic 
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pollutants such as endocrine disrupting chemicals (EDC),54 pharmaceuticals (PPCP),55 

halogenated compounds,56,57 and polyaromatic hydrocarbons (PAHs),58 amongst many 

others, have been detected in water sources owing to various anthropogenic activities.  

Organic pollutants are toxic chemicals which persist in the environment for long periods of 

time and bioaccumulate in the food chain.52,53  The presence of these contaminants in water 

poses significant risks to its dependants (man, wildlife, aquatic life) and prevents use for 

domestic purposes. 

 

In this section, bisphenol A (BPA) and ibuprofen (IBP) as examples of EDCs and PPCPs 

respectively, are discussed as emerging contaminants introduced into aqueous solution.  

Their sources, effects and fate in water bodies are also further reviewed. 

 

2.2.1. Bisphenol A 

Bisphenol A is an organic compound used in plastic industries for the manufacture of 

plastics, flame retardants, household electrical equipment and consumer goods.  The 

molecular structure of BPA (4,4’-(propane-2,2-diyl)diphenol), has the chemical formula 

C15H16O2 as shown in Fig 2.1.  BPA has been listed as an endocrine disruptor (EDC)59,60 

based on its ability to mimic hormones, hence resulting in reproductive, hormonal and 

neurological changes in humans and aquatic wildlife.59-61  Erler et al. reported that both 

children and adults are exposed to BPA on a daily basis in the United States of America62 

through intake from plastic containers, dental seals and microwaved food products.63  The 

contamination of water sources with this pollutant is due to the incessant disposal of BPA-

containing products or industrial effluents into water streams, hence, exposing living 

organisms to its accumulation.61,64,65  The intake of this pollutant into the body interferes 

with the transport and secretion of naturally occurring hormones, hence resulting into heart 

and respiratory diseases, male sterility, diabetes, cancer and brain dormancy amongst many 

others.63-65   

 

   

HO

CH3

CH3

OH

 

Fig. 2.1:  Structure of bisphenol A (BPA) [molar mass: 228.29 g mol-1; density: 1.20 g cm-

1; boiling point: 220 °C; melting point: 158 °C; solubility in water: 120-300 mg 

dm-3 (21 °C); acid dissociation constant (pKa): 9.6-10.2].51 
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2.2.2. Ibuprofen 

Ibuprofen is a nonsteroidal anti-inflammatory (NSAID) drug used to relieve pain and 

fever.66-68  It is one of the commonest medicines in the world;66,67 hence, its importance is a 

requisite in modern society.  The molecular structure of IBP (2-(4-isobutylphenyl)propanoic 

acid, with the chemical formula C13H18O2, is shown in Fig 2.2.  The release of IBP into the 

aquatic environment is principally from wastes discharged from humans, veterinary, 

industrial and agricultural applications, wastewater treatment plants and septic tanks.66-69  

The presence of IBP in water presents environmental agencies with the challenge of 

developing strategies for controlling the discharge of wastes generated by using 

pharmaceutical products.  Although, the maximum concentration limits of IBP are not yet 

established, there is a growing concern on its toxicity to aquatic life and humans due to its 

increasing discharge in water.66  Indiscriminate intake of IBP in humans is perceived to 

result in long-term health diseases which might give rise to complications such as hormonal 

and renal dysfunction, gastrointestinal bleeding and liver and heart failures if adequate 

disposal routes are not taken.68,70,71 

 

   

CH3

COOH

H3C

CH3

 

Fig. 2.2:  Structure of ibuprofen (IBP) [molar mass: 206.3 g mol-1; acid dissociation constant 

(pKa): 4.91; water solubility: 21 mg dm-3; density: 1.03 g cm-1; melting point: 76 

°C; boiling point: 157 °C].69 

 

 

2.3. Organic dyes in water 

Dyes are organic compounds which have wide application in textile manufacturing, paper 

and pulp production and paint, plastic, dyeing, cosmetic, tannery and pharmaceutical 

industries.72-74  The widespread use of these compounds presents environmental challenges, 

such as the disposal of coloured effluents generated from these industries.  Unfortunately, 

effluents produced are mostly discharged into various aquatic media, hence generating a 

high intensity of colour in them.74-76  Dyes are toxic due to their biodegradable nature, and 

can therefore persist for long periods of time in the environment.77  The presence of dyes in 

aqueous solutions prevents the transmission of light into water, inhibiting photosynthesis, 

and affecting dependants of such water resources for domestic purposes.72,75  Dyes are 
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considered carcinogenic to human health and can result in other severe ailments such as 

damage to the kidney, liver, brain and central nervous system.75  In the next section, the 

sources and health hazards associated with the intake of rhodamine B (RhB) are reviewed.  

Rhodamine B was used in this work as an example of a typical dye discharged into the 

environment. 

 

2.3.1. Rhodamine B 

Rhodamine B is a water-soluble cationic dye containing a positive ion, either as the 

hydrochloride salt or the zinc chloride complex in its structure.75  The molecular structure 

of RhB is shown in Fig 2.3 and it has a chemical formula of C28H31N2O3Cl.  It is primarily 

used in textile industries for production of cotton, leather, silk and wool.78  The release of 

RhB-contaminated wastewater generated from industries produces coloured cations in 

solution and hinders its use for other domestic purposes.75  RhB is a toxic substance; stable 

to photo- and biological degradation and its intake can result in skin irritations, restlessness, 

dermatitis, gastrointestinal diseases, respiratory complications and cancer in humans.78,79   
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Fig. 2.3:  Structure of rhodamine B (RhB) [molar mass: 479.02 g mol-1; acid dissociation 

constant (pKa): 3.71; solubility in water: 15 g dm-3; density: 1.31 g cm-1 (20 °C); 

melting point: 210-211 °C].80 

 

 

2.4. Technologies for wastewater remediation 

As a result of the stated consequences, the presence of these recalcitrant pollutants in 

aqueous media continues to be of serious environmental concern, generating discussion 

towards the effective remediation of wastewater before disposal into the receiving 

environment.  An urgent need exists for developing effective strategies for pollutant removal 

since most water treatment plants are not designed for the effective removal of some of these 

pollutants. 
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In recent times, various chemical, physical and biological techniques have been proposed to 

achieve degradation/removal of contaminants from wastewater.  The following section 

examines the effectiveness, problems and advantages associated with some of these 

techniques.  

 

2.4.1. Advanced oxidation processes 

This is one of the most commonly used methods for the degradation of the discussed 

pollutants from wastewater.  Advanced oxidation processes (AOPs) involve the generation 

of highly reactive hydroxyl radicals by using chemical methods, aimed at the degradation of 

organic and/or inorganic pollutants in wastewater.81,82  The hydroxyl radical produced reacts 

unselectively with contaminants to initiate pollutant conversion into less harmful 

substances.83  Oxidative processes could be photo-catalytic, photo-oxidation, ozone-based 

(ozonation), photo-Fenton, or chemical precipitation, depending on the substrate producing 

the radical.82,84  Table 2.1 presents some common AOPs used in the remediation of 

wastewater.   

 

Table 2.1:  Common AOPs used in wastewater treatment82 

Photochemical processes Non-photochemical processes 

UV oxidation Ozonation 

UV/H2O2 Fenton 

UV/O3 Ultrasound 

Photo-Fenton Ultrasound/H2O2 

Photo-catalysis Wet-oxidation, e.g. precipitation 

Microwave Electron-beam irradiation 

Sono-chemical Pulsed-plasma 

Vacuum-UV Electrochemical oxidation 

 

Metal ions can be oxidized through abiotic processes and further precipitated as hydroxides 

as illustrated in Eq. 2.1.  For instance, Kosolapov et al. reported the oxidation of ferrous iron 

(Fe2+) in solution into ferric iron (Fe3+), and subsequent conversion of Fe3+ into insoluble 

hydroxides in water.83 

 

Mn+   +    n (OH)- ⇋   M (OH)n  ↓    (2.1) 

 

Similarly, degradation of EDCs such as BPA and IBP can be achieved through oxidative 

processes.  Rosenfeldt et al. reported the degradation of BPA by using radiation photolysis 

and UV/H2O2 processes, obtaining effective pollutant conversion in each case.85  Also, Al 
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Hamedi et al. investigated the photo-oxidation of RhB from wastewater by using UV/H2O2 

light.86  The simplicity of these processes justifies their increasing application for the 

treatment of wastewater, however, disadvantages such as activation of chemical agent by 

UV light, sludge generation, high energy generation, short half-life of ozone, formation of 

toxic by-products and high set-up costs, restricts their usage for wastewater remediation.75 

 

2.4.2. Membrane separation 

This technique adopts the use of a semipermeable membrane for the removal of 

contaminants (bacteria, organics and inorganics) by passing the liquid at high pressure, to 

obtain the purified permeate and the concentrated mixed liquor at the feed side.25,87  

Examples of membrane processes used for water remediation are reverse osmosis (RO), 

electrodialysis, microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF).88,89  RO is 

considered best suited for effluent remediation to achieve water reuse, hence reducing the 

total water consumption.89  Urgun-Demirtas et al. reported the use of RO, MF, UF, and NF 

for mercury removal from wastewater generated from an oil refinery.90  Although, low 

mercury levels were achieved after treatment, limitations such as membrane narrowing and 

pore blockage, low permeate quality, fouling and high operating conditions, were 

highlighted as drawbacks for these processes.90  In a study by Jian et al., poly (vinylidene 

fluoride) membranes were also applied for the removal of both polar and non-polar 

compounds from wastewater.91  Although, membrane separation is cost-effective, its 

application for effluent remediation is constrained by short membrane half-life, fouling, low 

selectivity, liquid viscosity and concentration polarization.87,90 

 

2.4.3. Ion-exchange 

This process involves the exchange of charged ions in solution with ions on the surface of a 

solid.  The use of synthetic resins is usually applied for the removal of both organic and 

inorganic contaminants from wastewater.  A decrease in sludge production and metal ion 

concentration of Cr(III) was reported by Tiravanti et al.92 and Rengaraj et al.93 by using ion-

exchangers.  Metal ions are usually removed by using a cationic exchanger via the 

replacement of hydrogen or sodium atoms on the resin with cations (pollutants) as illustrated 

in Eq. 2.2.25 

H2R    +    Mn+      ⇋ MR    +    2H+     (2.2) 

where R is the resin, and M is the metal ion. 

 

Similarly, anions such as sulfates replace hydroxide or chloride ions in anionic resins as 

demonstrated in Eq. 2.3.25 

SO4
2-    +    R (OH)2    ⇋ SO4R   +   2OH-   (2.3) 



 
  

19 
 

 

Although, ion-exchange processes have been applied for the removal of dyes from 

wastewater, their application is not considered effective based on the fact that exchangers 

cannot remove a wide range of dyes.76  Ion-exchangers are easily recyclable, hence can be 

reused, however, their application is limited due to high cost and inability to remove 

pollutants at high concentration ranges.25,75,76 

 

2.4.4. Aerobic and anaerobic treatment 

This process involves the use of bacteria or microorganisms for the biological degradation 

of contaminants in wastewater.  Aerobic treatment adopts the use of free/molecular oxygen 

by using microorganisms (aerobes), in the presence of air for the conversion of contaminants 

into biomass, carbon dioxide and water.94  On the other hand, anaerobic treatments adopt 

the use of microorganisms (anaerobes), in the absence of air/oxygen for the biological 

degradation of pollutants to generate methane and carbon dioxide.94  Chipasa, in his study, 

investigated the removal of heavy metal ions (Cd, Cu, Pb and Zn) by using anaerobic sludge 

samples.95  Unfortunately, the metal ion content in samples was observed to increase on a 

dry weight basis due to microbial degradation of organic and inorganic compounds in 

sludges.95  However, a considerable decrease in metal ion concentration was reported by da 

Silva Oliveira et al. with an anaerobic sludge.96  The degradation of organic contaminants 

such as BPA, estrone, 17β-estradiol, alkylphenols, phthalates amongst many, have also been 

carried out by using biological treatments.97-100  In spite of its convenience, several 

limitations such as high set-up cost, sludge generation, regeneration of activated sludge, 

breakdown to some harmful compounds such as hydrogen sulfide and inability to completely 

metabolize some pollutants (dyes) under aerobic conditions restricts its use for large-scale 

purposes.75,76,101 

 

 

2.5. Adsorption 

Adsorption is a phenomenon which describes the accumulation of substances (molecules, 

ions or atoms) from a liquid/gas solute onto the surface of a solid.  The solid upon which the 

solute accumulates is referred to as the adsorbent and the substance (solute) which is being 

removed is the adsorbate.  This concept has gained application since the eighteenth century 

for the purification of air containing toxic gases such as H2S.102  For instance, a filter made 

of fiberglass cloth was constructed by Shiratori et al. to remove toxic gases such as ammonia 

and acetaldehyde from air.103  Hence, the application of adsorption for pollutant removal is 

well-documented by various authors. 
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Additionally, this concept can be applied for water reclamation and wastewater treatment 

purposes.  In fact, it is considered as an ideal, superior and effective method for the treatment 

of contaminated wastewater,102 due to the fact that its operation is simple, cost-effective, 

time-saving, and high pollutant removal can be achieved at high and low adsorbate 

concentrations.  Sorbents are also easily handled and may be regenerated for reuse.22,102 

 

2.5.1. Types of adsorption 

Adsorption is primarily described based on the attractive/binding forces which hold the 

adsorbate molecule onto the surface of an adsorbent.  Adsorption is a surface phenomenon 

and the solid-liquid interaction may be held either by van der Waals (weak) or strong binding 

forces; hence, adsorption is classified into two types, namely: 

i. physical adsorption (physisorption), or 

ii. chemical adsorption (chemisorption). 

 

2.5.1.1. Physical adsorption (physisorption) 

This process is characterised by weak Van der Waals forces existing between the adsorbed 

molecule and the adsorbent.  Physisorption is typified by low heats of adsorption (ΔH°) in 

the order of 2.1-20.9 kJ mol-1.104,105  This therefore implies that physical adsorption can be 

easily reversible when heated, since the heat of adsorption is in magnitude similar to the heat 

of condensation.106 

 

2.5.1.2. Chemical adsorption (chemisorption) 

Chemisorption is characterised by strong chemical forces existing between the adsorbed 

molecule and the adsorbent.  The attraction of adsorbate molecules onto the adsorbent is 

selective, since adsorption is site-specific.  Chemical adsorption, therefore, depends largely 

on the chemical properties of the adsorbent and adsorbate, so as to permit the formation of 

a chemical bond via the sharing (covalent bonding) or transfer of electrons (ionic bonding).  

Higher heats of adsorption (ΔH°) in the magnitude of 80-200 kJ mol-1 are noticed for 

chemisorption.104,105  Table 2.2 offers a clear distinction between physisorption and 

chemisorption. 
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Table 2.2:  Differences between physisorption and chemisorption25,107 

Physisorption Chemisorption 

The forces of attraction are weak. The forces of attraction are strong. 

The process is observed at low 

temperatures/heat of adsorption. 

The process is typified by high 

temperatures/heat of adsorption. 

Formation of multi-molecular layers are 

possible. 

Monomolecular layer is formed. 

The process is reversible. The process is irreversible. 

It is non-specific. It is highly specific. 

Activation energy is usually equal to zero. Activation energy is usually small. 

 

It is worthy to note that adsorption processes are affected by the solution pH, adsorbate 

temperature, initial adsorbate concentration, contact time, ionic strength and amount or 

nature of the adsorbent.22,105  Hence, the kinetics, isotherms and thermodynamics of 

adsorption were studied and the most significant aspects are described in 2.6, 2.7 and 2.8, 

respectively, in order to understand the dynamics, mechanism and feasibility of the 

adsorption process. 

 

 

2.6. Adsorption kinetics 

The rate-determining step of adsorption is usually determined by the adsorption kinetics.  

The uptake of adsorbates as a function of time helps in establishing the equilibration time 

and the rate at which sorption of contaminants occur in solution.108  This information aids in 

designing treatment plants for the reclamation of wastewater on a large-scale.  The 

dynamics/mechanism of adsorption is usually investigated by fitting the experimental data 

obtained for adsorption into kinetic models.  Commonly used kinetic models for describing 

solid-liquid adsorption systems are the: pseudo-first order, pseudo-second order, 

intraparticle diffusion and Elovich models.  The adsorption process is usually controlled by 

one or more of the following mechanisms: 

i. diffusion of solute from the bulk solution to the external surface of the adsorbent, 

ii. solute transfer from the bulk solution to the boundary film which surrounds the 

adsorbent surface (film diffusion), 

iii. solute diffusion through the internal pores of the adsorbent (intraparticle diffusion); 

and 

iv. interaction between adsorbate molecules and active sites of the adsorbent to enhance 

the formation of bonds between the adsorbate and adsorbent. 
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In order to minimise error distribution associated with kinetic models in linear forms, Lin et 

al. proposed non-linear forms of models to obtain accurate fitting of data into models.109  

Hence, the experimental data obtained in this study were fitted into the stated models by 

using non-linear least squares (NLLS) analysis to determine the model which best describes 

the kinetics of the adsorption process. 

 

2.6.1. Pseudo-first order model 

The pseudo-first order model was first presented by Lagergren,110 and later reviewed by Ho 

and Mckay,111-113 to describe solid-liquid systems.  The equation is expressed as shown in 

the following equations. 

𝑞𝑡 =  𝑞𝑒𝑞(1 − 𝑒−𝑘1𝑡)      (2.4) 

𝑙𝑛(𝑞𝑒𝑞 −  𝑞𝑡) = 𝑙𝑛𝑞𝑒𝑞 −  𝑘1𝑡     (2.5) 

where qt and qeq are the quantities of adsorbate adsorbed at any time t and at equilibrium, 

respectively (mg g-1); and k1, is the pseudo-first order rate constant (min-1).  A plot of ln (qeq 

- qt) against t gives a straight line, from which k1 and qeq can be calculated from the slope 

and intercept, respectively. 

 

2.6.2. Pseudo-second order model 

The pseudo-second order model is expressed in both non-linear and linear forms as 

illustrated in Eqs. 2.6 and 2.7, respectively.108,109,112 

𝑞𝑡 =  
𝑘2𝑞𝑒𝑞

2 𝑡

1+ 𝑘2𝑞𝑒𝑞𝑡
       (2.6) 

𝑡

𝑞𝑡
=  

1

𝑘2𝑞𝑒𝑞
2 +  (

1

𝑞𝑒𝑞
) 𝑡      (2.7) 

where k2 is the pseudo-second order rate constant (g mg-1 min-1).  A plot of 
𝑡

𝑞𝑡
 vs t should 

give a straight line wherein qeq and k2 can be calculated from the slope and intercept, 

respectively. 

 

2.6.3. Intraparticle diffusion model 

The intraparticle diffusion model was described by Weber and Morris in order to explain the 

diffusion of adsorbates through adsorbent pores and may be estimated as given in Eq. 

2.8.114,115 

  𝑞𝑡 =  𝑘𝑖𝑑  √𝑡 + 𝑙     (2.8) 

where kid is the intraparticle diffusion rate constant (mg g-1 min-0.5) and l, is a constant related 

to the boundary layer thickness (mg g-1).  A plot of qt vs √𝑡 should give a straight line where 

the slope and intercept correspond to the value of kid and l, respectively.  It is generally 

assumed that if the linear plot passes through the origin, the mechanism of the adsorption 
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process is controlled only by intraparticle diffusion.2,116  However, if the linear plot does not 

pass through the origin, the rate-determining step is multi-step, hence, controlled by two or 

more processes.2,116 

 

2.6.4 Elovich model 

Chien and Clayton proposed a modified model to describe the sorption of solutes on highly 

heterogeneous sorbents, which could not be described adequately by the first-order kinetic 

equation.2,117  The application of the model was first used to investigate phosphate release 

and sorption of soils in 1980.117  Its use is currently adapted for the modelling of 

experimental data obtained for aqueous solutions.22,45,118  The Elovich model is expressed as 

illustrated in Eq. (2.9):117 

𝑞𝑡 =  
1

𝛽
𝑙𝑛(𝛼𝛽) + 

1

𝛽
𝑙𝑛 𝑡     (2.9) 

where α (mg g-1 min-1) is the adsorption rate constant; β (g mg-1) is the desorption rate 

constant.  A plot of qt vs ln (t) should give a straight line wherein 
1

𝛽
 and 

1

𝛽
𝑙𝑛(𝛼𝛽) correspond 

to the slope and intercept, respectively. 

 

 

2.7. Adsorption isotherms 

Isotherms describe the equilibrium relationship between the concentration of solute on the 

adsorbent (solid phase) and in the liquid phase.  A plot of the amount of the solute on the 

adsorbent (qeq) versus the equilibrium concentration of solute in solution (Ceq), produces a 

curve to understand the mechanism of the adsorption process.  Isotherms provide 

information on the amount of adsorbent needed to remove a unit mass of solute per gram of 

adsorbent, hence, the ability of the adsorbent to remove the pollutant can be estimated.  

Isotherm models consisting of various two- and three-parameter models have been designed 

to enable the prediction of procedures for contaminant removal in a large-scale scenario. 

 

In this study, eight isotherm models involving two-parameters (Langmuir,119 Freundlich,120 

Temkin,121 and Dubinin-Radushkevich122) and three-parameter (Sips,123 Toth,124 Khan,125 

and Redlich-Peterson126) were tested for the description of the adsorption processes.   

 

2.7.1. Langmuir isotherm 

The Langmuir isotherm is one of the commonest models used for describing the adsorption 

of solutes in solution onto a solid substance.  This isotherm assumes that adsorption takes 

place on a finite number of adsorption sites with the formation of monolayer coverage of 

adsorbates on adsorbents.119  This implies that the adsorption sites are equivalent (i.e. 
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homogeneous) having uniform energies and each site can hold an adsorbate molecule 

without interaction with adjacent molecules.127,128  The Langmuir isotherm is represented as 

given in Eq. (2.10): 

𝑞𝑒𝑞 =  
𝑞𝑚𝐶𝑒𝑞𝑏

1+𝑏𝐶𝑒𝑞
       (2.10) 

 

where qeq is the amount adsorbed per unit mass of adsorbent at equilibrium (mg g-1); Ceq is 

the equilibrium concentration of adsorbate in solution (mg dm-3); qm is the maximum 

monolayer adsorption capacity (mg g-1); and b is the Langmuir isotherm constant (dm3 mg-

1).  A linear form of equation 2.10 can be rewritten as given in Eq. (2.11).128   

𝐶𝑒𝑞

𝑞𝑒𝑞
=  

1

𝑞𝑚𝑎𝑥𝑏
+  

𝐶𝑒𝑞

𝑞𝑚𝑎𝑥
      (2.11) 

 

Hence, a plot of 
𝐶𝑒𝑞

𝑞𝑒𝑞
 against Ceq should give a straight line wherein the slope and intercept 

correspond to 
1

𝑞𝑚𝑎𝑥
 and 

1

𝑞𝑚𝑎𝑥𝑏
, respectively.  The values of b and qmax are related to the 

binding energy of adsorption and the capacity of the adsorbent to remove a unit mass of 

pollutant per mass of sorbent, respectively. 

A dimensionless constant known as the separation factor or equilibrium constant, RL, 

expresses the essential characteristics of the Langmuir isotherm and is defined as represented 

by equation (2.12):129 

𝑅𝐿 =  
1

1+𝑏𝐶𝑖
       (2.12) 

 

where b is the Langmuir isotherm constant (dm3 mg-1) and Ci is the initial concentration of 

adsorbate (mg dm-3).  Adsorption is assumed to be favourable if 0 < RL < 1, unfavourable if 

RL > 1, irreversible if RL = 0 and linear if RL = 1.22,128,130 

 

2.7.2. Freundlich isotherm 

The Freundlich isotherm is an empirical model which assumes that adsorption occurs on 

heterogeneous surfaces of an adsorbent.  Hence, the isotherm describes adsorption for both 

monolayer and multilayer adsorption.  The exponential equation is only applied in the low 

to intermediate adsorbate concentration ranges.104  The Freundlich isotherm is defined as 

given in Eq. (2.13):120 

𝑞𝑒𝑞 =  𝐾𝐹𝐶𝑒𝑞
1/𝑛

       (2.13) 

 

where KF and n represent the Freundlich isotherm constant (mg g-1) and the adsorption 

intensity, respectively.  A linear form of equation (2.13) can be written as given in Eq. 

(2.14):128 
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𝑙𝑜𝑔(𝑞𝑒𝑞) = 𝑙𝑜𝑔(𝐾𝐹) + 
1

𝑛
𝑙𝑜𝑔(𝐶𝑒𝑞)    (2.14) 

 

A plot of 𝑙𝑜𝑔(𝑞𝑒𝑞) against 𝑙𝑜𝑔(𝐶𝑒𝑞) should give a straight line and the values of KF and 
1

𝑛
 

corresponding to the intercept and slope, respectively.  Adsorption is favourable when the 

value of n lies between 1 and 10.45,128  Additionally, the surface of the adsorbent is assumed 

to become more heterogeneous as the value of n approaches zero.131 

 

2.7.3. Temkin isotherm 

The Temkin isotherm assumes that the heat of adsorption decreases linearly with an increase 

in the coverage of the adsorbent surface due to sorbent-sorbate interactions.  It is most 

appropriate for the prediction of gas phase equilibrium; however, its application in solid-

liquid systems has been reported.22,127,131  The Temkin equation is represented by Eq. 

(2.15):121 

𝑞𝑒𝑞 =  
𝑅𝑇

𝑏𝑇
ln (𝐴𝑇𝐶𝑒𝑞)      (2.15) 

 

where bT is the Temkin isotherm constant related to the heat of adsorption (J mol-1), AT is 

the Temkin isotherm equilibrium binding constant (dm3 g-1), R is the universal gas constant 

(8.314 J K-1 mol-1) and T is the absolute temperature in Kelvin.  The linear form of the 

Temkin equation can be written as given in Eq. (2.16):127 

𝑞𝑒𝑞 =  
𝑅𝑇

𝑏𝑇
𝑙𝑛𝐴𝑇 + 

𝑅𝑇

𝑏𝑇
𝑙𝑛𝐶𝑒𝑞     (2.16) 

 

Equation 2.16 can be further represented as given in Eq. (2.17):127 

𝑞𝑒𝑞 = 𝛼 + 𝛽𝑙𝑛𝐶𝑒𝑞      (2.17) 

 

where α = 
𝑅𝑇

𝑏𝑇
𝑙𝑛𝐴𝑇 and β = 

𝑅𝑇

𝑏𝑇
, hence, the values of α and β can be calculated from the 

intercept and slope of the line, respectively. 

 

2.7.4. Dubinin-Radushkevich isotherm 

The Dubinin-Radushkevich (D-R) isotherm is an empirical model used for the adsorption of 

vapours onto microporous adsorbents through the pore filling mechanism.122,131  It is used 

to explain the adsorption mechanism onto heterogeneous surfaces131 with an assumption that 

sorption is multilayer and involves the van der Waals interactions, hence, it can be applied 

for physical adsorption processes.132  The porosity of adsorbents and the free energy of 

adsorption can be evaluated by using the D-R model.131  Equations (2.18) and (2.19) 

represent the D-R model in its non-linear and linear forms, respectively.133 
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𝑞𝑒𝑞 =  𝑞𝑚 exp (−𝐵𝐷 [𝑅𝑇𝑙𝑛 (1 +  
1

𝐶𝑒𝑞
)]

2

)   (2.18) 

𝑙𝑛 𝑞𝑒𝑞 = 𝑙𝑛 𝑞𝑚 −  𝐵𝐷𝜀2     (2.19) 

 

where qeq is the amount of solute adsorbed at equilibrium (mg g-1), qm is the maximum 

adsorption capacity (mg g-1), BD is the D-R constant related to free energy (mol2 kJ-2) and ε 

is the Polanyi potential (J mol-1) and correlated as illustrated in Eq. (2.20):131 

𝜀 = 𝑅𝑇𝑙𝑛 (1 +
1

𝐶𝑒𝑞
)      (2.20) 

 

Hence, if β is substituted for BD in Eq. (2.18), it can be rewritten as  

𝑞𝑒𝑞 =  𝑞𝑚𝑒−𝛽𝜀2
      (2.21) 

 

The values of qm and BD can be calculated from the intercept and slope of the straight line 

obtained by plotting ln qeq versus ε2, while the mean free energy (E) can be calculated from 

Eq. (2.22):131 

𝐸 =  
1

√2𝐵𝐷
       (2.22) 

 

2.7.5. Sips isotherm 

The Sips isotherm is a combination of the Langmuir and Freundlich isotherms for describing 

heterogeneous systems.131  It is used to describe conditions where the Langmuir and 

Freundlich isotherms do not describe the equilibrium data well.  It predicts the Freundlich 

isotherm at low adsorbate concentration, and the monolayer adsorption is predicted at high 

adsorbate concentrations.131  It is worthy of note that the equation parameters are influenced 

by conditions such as the pH, temperature and concentration of adsorbate solution.25,131  The 

Sips equation is defined in its non-linear form as illustrated in Eq. (2.23):123 

𝑞𝑒𝑞 =  
𝑏𝑞𝑚𝐶𝑒𝑞

1/𝑛

1+𝑏𝐶𝑒𝑞
1/𝑛       (2.23) 

 

where qm is the maximum monolayer capacity (mg g-1), b is the Sips equilibrium constant 

(dm3 mg-1), and n is the adsorption intensity.  The adsorption process is Langmuir when n = 

1 and Freundlich when n > 1.134 

 

2.7.6. Toth isotherm 

The Toth isotherm is an empirical equation designed to improve the fit of the data for the 

Langmuir and Freundlich isotherms.  It also describes data appropriately obtained for both 
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low and high adsorbate concentrations, and hence, may be used in explaining heterogeneous 

systems.131  The Toth equation is expressed as represented in Eq. (2.24):124 

𝑞𝑒𝑞 =  
𝑞𝑚𝐶𝑒𝑞

(
1

𝐾𝑇
+ 𝐶𝑒𝑞

𝑛𝑇)

1
𝑛𝑇⁄

      (2.24) 

 

where KT is the Toth isotherm constant (mg g-1); nT, is the dissociation constant (Toth model 

constant).  The value of nT describes the heterogeneity of the adsorption process. 

 

2.7.7. Khan isotherm 

The Khan isotherm was developed as a general model for describing multi-component 

systems in aqueous solutions.125  It is expressed as illustrated in Eq. (2.25):125 

𝑞𝑒𝑞 =  
𝑞𝑚𝑏𝐾𝐶𝑒𝑞

(1+ 𝑏𝐾𝐶𝑒𝑞)
𝑎𝐾      (2.25) 

 

where ak and bk, are the Khan isotherm exponent and constant, respectively. 

 

2.7.8. Redlich-Peterson isotherm 

The Redlich-Peterson (R-P) isotherm is a three-parameter empirical equation, designed to 

explain adsorption systems over a wide concentration range.131  This isotherm can be used 

to explain both homogeneous and heterogeneous surfaces, hence it incorporates both the 

Langmuir and Freundlich isotherm features, similar to the Sips isotherm.104,131  The R-P 

model is represented as given in Eq. (2.26):126 

𝑞𝑒𝑞 =  
𝐾𝑅𝑃𝐶𝑒𝑞

1+ 𝛼𝑅𝑃𝐶𝑒𝑞
𝑔       (2.26) 

 

where KRP (dm3 g-1) and αRP (dm3 mg-1) are the R-P isotherm constants and g is the R-P 

isotherm exponent, which lies between 0 and 1. 

 

 

2.8. Thermodynamic parameters of adsorption 

The concept of thermodynamics is important to understand the energy changes, feasibility 

and mechanism of adsorption.  Additionally, to achieve maximum efficiency, the adsorbate 

temperature is usually varied over a particular range, in order to provide sufficient 

information into the binding forces responsible for adsorption.  An increase in adsorbate 

temperature may lead to an increase in adsorbate uptake via any of these processes: 

i. Reduction of the electrostatic repulsion between the adsorbate and adsorbent surface; 

ii. Increasing mobility of sorbate ions/molecules to active sites, and 
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iii. Activation of the active sites responsible for adsorption, resulting in the creation of 

adsorption sites.135 

Consequently, an increase in adsorbate temperature may also lead to weak binding 

interactions between adsorbates and adsorbents; hence, a decrease in adsorption is observed.  

Sharma and Kaur associated a decreased sorbate uptake with increasing temperature to the 

‘swelling effect’ produced in the internal surface of the adsorbent, thereby resulting in the 

formation of weak binding forces between dye molecules and adsorbent surface.135  Hence, 

increasing adsorbate temperature may enhance adsorption removal or in some cases may 

lead to a decrease in physical adsorptive forces and result in low removal of adsorbates. 

 

Thermodynamic parameters such as the change in entropy, (ΔS°), change in enthalpy, (ΔH°) 

and change in Gibbs energy, (ΔG°), were calculated to examine the spontaneity of the 

adsorption process over a temperature range.  The change in Gibbs energy (ΔG°) is 

calculated as presented in Eq. (2.27): 

 

∆𝐺° = −𝑅𝑇𝑙𝑛 K      (2.27) 

where R is the universal gas constant (8.314 J K-1 mol-1), T is the absolute temperature in 

Kelvin and K is the equilibrium constant, obtained from the product of the Langmuir 

constant, b (dm3 mg-1) and the Langmuir monolayer adsorption capacity, qm (mg g-1), hence 

the value of K is calculated in dm3 g-1.136,137  As proposed by Milonjic et al., the value of K 

must be corrected to be dimensionless, since adsorption is carried out in aqueous solution 

and for ΔG° to be obtained in J mol-1.137  The value of K must therefore be multiplied by 

1000, since 1dm3 = 1000 cm3 or g (density of solution = 1 g cm-3).  Hence, Eqn (2.27) may 

be rewritten as given in Eq. (2.28):25 

 

∆𝐺° = −𝑅𝑇𝑙𝑛 (1000𝐾)      (2.28) 

The change in enthalpy, (ΔH°) and the change in entropy, (ΔS°) can be calculated by using 

the Van’t Hoff equation given in Eq. (2.29):138 

 

𝑙𝑛 𝐾 =  −
∆𝐻°

𝑅𝑇
 +  

∆𝑆°

𝑅
      (2.29) 

A plot of ln K against 1/T should be linear, and the values of ΔH° and ΔS° obtained from the 

slope and intercept of the plot, respectively.  This only holds true over a small temperature 

range to assume ΔH° and ΔS° fits the equation. 

 

The values obtained for ΔH° may be used to determine the nature of an adsorption process.  

Positive ΔH° values indicate an endothermic process and an exothermic nature of adsorption 

is signified by negative ΔH° values.139  The degree of disorderliness in the system and the 

adsorbate molecule affinity to the adsorbent may also be estimated by the value of ΔS°.135  



 
  

29 
 

A positive ΔS° value indicates a high level of disorderliness leading to increased affinity of 

the adsorbate molecule for the adsorbent and vice versa for a negative ΔS°.139  The 

spontaneity and feasibility of the process is usually estimated from ΔG° values.  A negative 

ΔG° signifies a spontaneous process and a positive value is indicative of a non-spontaneous 

process.138 

 

 

2.9. Adsorbents 

Adsorbents are solid materials which have affinities for attracting substances in solution 

(pollutants) onto their surface.  The attraction of pollutants may proceed via electrostatic, 

ion-exchange, hydrophobic, hydrogen or π-π interactions to the active sites on the 

adsorbents.  The affinity for easy interaction largely depends on the chemical properties, 

porosity and surface area of the adsorbent.  In recent times, the application of porous shaped 

carbon nanomaterials has generated increasing interest for wastewater remediation, due to 

the large surface areas possessed by these materials. 

 

In this study, carbon nanotubes (CNTs) were used as the adsorbent for the removal of metal 

ions (Pb, Cu, Zn, Cd, Hg) and organic (BPA, IBP) pollutants from wastewater.  The affinity 

of CNTs towards the removal of these pollutants was enhanced through functionalization.  

This process aided the introduction of functional groups to CNT walls, hence, determining 

the type of interaction involved in the removal of adsorbates from solution.  The application 

of CNT composites was also explored for effective removal of RhB from wastewater.  The 

succeeding sections discuss the properties of the sorbents used in this study, while reviewing 

previous work, with a view to determining the efficacy of these sorbents for the targeted 

pollutants. 

 

 

2.10. Carbon nanotubes 

Carbon nanotubes are members of the fullerene family which were discovered by Iijima in 

1991,140 possessing extraordinary physical, mechanical, chemical, electrical and optical 

properties and thermal stability.141  These materials are composed of finite graphene sheets, 

arranged in an helical manner to consist of needle-like shaped tubes, ranging from one to 

hundred nanometres in diameter.140  The geometric arrangement of carbon atoms determines 

the structure, properties and chirality of CNTs (Fig 2.4).142  CNTs may also be classified as 

single-walled CNTs (SWCNTs), double-walled CNTs (DWCNTs) or multiwalled CNTs 

(MWCNTs), depending on the number of concentric graphene sheets rolled to form them.143  
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SWCNTs, having a simple geometry contain one concentric cylinder, while MWCNTs may 

contain more than two cylinder in their structure.142 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4:  Geometric arrangement of carbon atoms to give three types of CNT based on 

chirality.142 

 

Of the three versatile methods (laser ablation,144 arc-discharge145 and chemical vapour 

deposition (CVD)146) used for CNT synthesis, CVD is commonly applied owing to its 

suitability for mass production, diameter control and vertically aligned tubes formed via this 

method.141  CNTs find great application for the manufacture of semi-conductors,147 energy 

devices,148 catalysts and catalyst supports,149 sensors,150 medicinal purposes151 and recently 

as sorbents for pollutant recovery.22  The sensitivity of CNTs must, however, be enhanced 

through functionalization in order to introduce functional groups which will initiate pollutant 

removal from aqueous solutions.  Hence, various functionalization strategies are discussed 

in the following section, to review methods available for CNT modification. 

 

2.10.1. Functionalization of CNTs 

CNTs usually possess high level of impurities either as amorphous carbon and/or residual 

metal nanoparticles derived from the catalyst used in their synthesis.  These tubes have 

closed ends which make them unreactive and inert to chemical reactions.  Consequently, 

after synthesis, they are first purified and thereafter functionalized.  Purification can be 

achieved by washing/refluxing CNTs in 6 mol dm-3 HCl or HNO3 acid to reduce the inherent 

metal nanoparticles in them.  To improve their reactivity, functionalization is usually carried 

out via both covalent and non-covalent processes, in order to introduce new functional 

groups to their open ends.  Chapter 3 explores these two functionalization strategies and 

examine their ability towards removal of perfluorinated compounds from aqueous solutions. 
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Nevertheless, solution chemistry can be applied through covalent functionalization to attach 

functional groups onto CNT walls to further increase their reactivity for other applications.  

Multiple functional groups such as carboxyl and amino groups were attached to MWCNTs 

by Zhao and his co-workers.152  In their study, 1,4-benzenediamine was used as a modifier 

after acidic functionalization was done.  The properties of the functionalized MWCNTs were 

verified through various characterization techniques, and revealed the successful 

introduction of nitrogen and oxygen atoms, hence, a significant amount of carboxyl and 

amino functional groups were evident on the surface of the tubes.152  Additionally, 

successful immobilization of 8-hydroxyquinoline on MWCNT (8-HQ-MWCNT) was 

reported by Kosa et al.153  The modified CNTs were tested for metal ion removal and an 

improved efficiency was reported for 8-HQ-MWCNT.153  Amine-functionalized MWCNTs 

were synthesized by Wang et al. by the chemical reaction of the corresponding primary and 

secondary amines (cis-myrtanylamine, 2,4-dinitroaniline, 2,6-dinitroaniline, N-decyl-2,4,6-

trinitroaniline and N-(3-morpholinopropyl)-2,4,6-trinitroaniline) with acylated 

MWCNTs.154  The nanotubes produced were suggested to possess properties which could 

make them effective for drug delivery and biosensor applications.154  Addition reactions 

involving diazonium salts and 1,3-dipolar cycloaddition reaction of azomethine ylides with 

MWCNTs were carried out through a microwave-induced method by Brunetti et al., in order 

to introduce multiple functional groups to the walls of tubes.  The synthesized tubes had 

higher reactivity and were also proposed for biomedical applications.155  In a similar vein, 

diol-functionalized MWCNTs were synthesized by Jing et al.156 through the selective 

grafting of polycaprolactone diol on acylated MWCNTs.  This process significantly 

improved MWCNT dispersion, resulting in increased mechanical properties and thermal 

stability, hence, increasing their application for many other purposes.156  To increase 

dispersion in organic solvents and the mechanical properties of MWCNTs, Hill et al. also 

applied poly(styrene-co-p-(4-(4′-vinylphenyl)-3-oxabutanol) as a modifier with MWCNTs 

for esterification reactions.157 

 

Hence, increased reactivity can be achieved through functionalization of MWCNTs with 

organic molecules to suit specific purposes for further usage in many other fields.  The 

application of CNTs for pollutant removal is of interest to environmentalists due to the 

increased surface area and porosity possessed by these materials.  The ease with which new 

functional groups can be attached to CNT walls considerably increases the number of active 

sites, hence increasing the sorption activity between the adsorbent and pollutant.  

Functionalization of MWCNTs by using various chemical agents is therefore becoming an 

alternative means for achieving suitable adsorbents for wastewater remediation. 
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Reports have demonstrated that CNTs (both pristine and functionalized) possess good 

potential for the removal of organic and/or inorganic contaminants from aqueous solution.  

The efficiency of CNTs has been investigated for the removal of toxic metal ions such as 

Pb2+,105,158 Cu2+,159 Cd2+,30,160 Zn2+,50 Mn2+,159 and Hg2+,36 amongst many others, from 

wastewater.  Metal ions may bind to oxygen- and/or nitrogen- functional groups present in 

CNTs via chelation, ion-exchange or electrostatic interactions.  Organic pollutants such as 

polyaromatic hydrocarbons,161 17α-ethinyl estradiol,64,162 trihalomethane,163 2,4,6-

trichlorophenol,164 dioxin,165 phenol,166 aniline,166 BPA167 and IBP168 have also shown good 

sorption ability onto CNTs.  The removal of organic pollutants from aqueous solutions has 

been accounted to hydrophobic or π-π interactions between the adsorbent and 

adsorbates.53,161  Hence, the more hydrophobic an adsorbate is, the better its removal onto 

CNTs.  However, increased removal of contaminants has been reported for functionalized 

tubes over pristine CNTs, due to the increase in active sites on the sorbents.  The uptake of 

contaminants from aqueous solution depends on the pH, adsorbent dose, initial adsorbate 

concentration, contact time and temperature of the adsorbate solution.  Optimum adsorption 

conditions reported in literature were therefore compared for the sorption of Pb2+, Cu2+, 

Cd2+, Hg2+ and Zn2+ onto pristine and functionalized CNTs in Table 2.3.  Increased removal 

of these metal ions was noticed for functionalized CNTs than pristine CNTs (Table 2.3).  

This was accounted to enhancement of electrostatic interactions between metal cations and 

nitrogen/oxygen functional groups incorporated onto CNT walls.  Further, Table 2.4 

compares the optimum conditions achieved for the removal of BPA and IBP onto pristine 

and functionalized CNTs.  From previously published reports, the adsorption of organic 

contaminants was noticed to be more effective by using pristine MWCNTs/SWCNTs than 

functionalized tubes (Table 2.4).  Functionalization of CNTs reduces their hydrophobic 

nature, hence increasing their dispersion in aqueous media.  Increased sorption which was 

observed with pristine tubes could be as a result of improved hydrophobic interaction 

between organic molecules in solution and the surface of CNTs. 

 

Hence, in this study, nitrogen-functionalized tubes were synthesized while incorporating a 

ligand containing π-π bonds onto CNTs surface with the purpose of improving metal ion 

chelation and organic sorption simultaneously.  Chapters 4 to 9 present the single and 

competitive removal of metal ions (Pb2+, Cu2+, Cd2+, Hg2+ and Zn2+) and organic (BPA and 

IBP) pollutants from aqueous solutions by using both oxygen- and nitrogen-functionalized 

MWCNTs.  The optimum experimental conditions were determined and their efficiencies 

for pollutant removal compared to determine the adsorbent with the best sorption uptake for 

each process. 
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2.10.2. CNT/ferrite composites 

Ferrites are ceramic ferromagnetic compounds composed of iron oxides (α-Fe2O3) with one 

or more metallic element.169  They are usually non-conductive, possessing excellent 

magnetic and optical properties, great thermal and corrosion resistance and non-

expensive.169  Ferrites are spinel-shaped, with a general formula of AB2O4, where A and B 

are metal cations, including iron.  Magnetite (Fe3O4) is the commonest, most magnetic 

mineral of the oxides of iron, and its properties have been investigated for various 

applications by environmental, chemical and biological scientists.170 

 

Nanocomposites containing ferrites and CNTs can be fabricated to optimise their potential 

applications.171  The properties of both nanomaterials can be harnessed to obtain composites 

with high surface area and porosity, strong magnetic properties and may contain multiple 

functional groups available for interaction.  Nano-sized magnetic composites are potential 

adsorbents which should be effective for wastewater remediation, since they offer an 

advantage of easy separation of the sorbents under an external magnetic field.172  The activity 

of these composites can also be enhanced since new functional groups can be incorporated 

into them, hence increasing the number of active sites and promoting pollutant removal.  

Thus, CNT-ferrite nanocomposites should serve as good alternatives for wastewater 

remediation.  This was evident from Table 2.4, where an increased sorption of RhB was 

observed compared to its removal by pristine CNTs.  The effectiveness of CNTs to RhB 

removal was largely improved by using composite materials. 

 

Although much work has been conducted on the wastewater remediation by using magnetite 

as adsorbents, the application of other ferrites such as cobalt ferrite has not been investigated.  

In this study, cobalt ferrites (CoFe2O4), MWCNTs and CNT-CoFe2O4 nanocomposites were 

synthesized and their effectiveness for the removal of RhB from aqueous solutions 

investigated.  Chapter 10 also discusses the effect of increasing percentage of CNTs in the 

composites for RhB removal. 
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Table 2.3:  Adsorption conditions for the removal of Pb2+, Cd2+, Hg2+, Cu2+ and Zn2+ onto CNTs 

Modifying agent(s) Species pH Time/min Adsorbent dose/mg [Mn+]/mg dm-3 T/°C Isotherm Kinetics qm/mg g-1 Ref. 

Pristine Pb2+ 9 240 50 2–20 NA F NA 2.960 159
 

HNO3 Pb2+ 9 240 50 2–20 NA F NA 2.960 159
 

HNO3 Pb2+ 9 240 50 2–20 NA F NA 3.110 159
 

HNO3 Pb2+ 3 360 50 2–14 25 L, F NA 1.660 173
 

HNO3 Pb2+ 5 360 50 2–14 25 L, F NA 17.44 173
 

Pristine Pb2+ 5 360 50 2–14 25 L, F NA 1.000 173
 

Ethylenediamine Pb2+ 6.2 90 1 5–100 25 L PSO 40.12 105
 

Diethylenetriamine Pb2+ 6.2 90 1 5–100 25 L PSO 54.27 105
 

8-hydroxyquinoline Pb2+ 7 10 250 0.5 25 NA NA 0.076 153
 

           

Pristine Cu2+ 9 240 50 2–20 NA F NA 3.490 159
 

HNO3 Cu2+ 9 240 50 2–20 NA F NA 3.720 159
 

HNO3 Cu2+ 9 240 50 2–20 NA F NA 3.690 159
 

CNT/SiO2 Cu2+ 6.2 180 20 10–500 25 L PSO 66.58 174
 

HNO3/H2SO4 Cu2+ 4 300 50 1–20 25 L, F PSO 29.69 175
 

HNO3 Cu2+ 8 120 50 2–50 25 L PSO 24.70 176 

           

HNO3 Zn2+ 8 120 50 2–50 25 L PSO 14.70 176 

HNO3 Zn2+ 7 NA 50 101–1200 25 L, F PSO 74.62 177 

NaOCl Zn2+ 7 60 50 10–80 25 L NA 32.68 50 

8-hydroxyquinoline Zn2+ 7 10 250 0.5 25 NA NA 0.075 153 

           

Pristine Cd2+ 5.5 240 50 9.50 25 NA NA 1.10 30 

Pristine Cd2+ 6.0 4 100 67.5 25 L BAT 9.33 160 

H2O2 Cd2+ 5.5 240 50 9.50 25 NA NA 2.60 30 

KMnO4 Cd2+ 5.5 240 50 9.50 25 NA NA 5.10 30 

HNO3 Cd2+ 5.5 240 50 9.50 25 NA NA 11.00 30 
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N-doped CNT Cd2+ 6.0 4 100 67.5 25 L BAT 15.63 160 

           

Thiol-SWCNT Hg2+ 5.0 60 2.5 80 25 L,F PFO 131. 37 

Thiol-MWCNT Hg2+ 6.0 60 40 5-100 25 L PSO 84.66 36 

*NA: Not available, L: Langmuir, F: Freundlich, PSO: pseudo-second order, PFO: pseudo-first order, BAT: Bohart-Adam-Thomas 

 

 

Table 2.4:  Adsorption conditions for the removal of BPA, IBP and RhB onto CNTs 

Modifying agent(s) Species pH Time/min Adsorbent dose/mg [Mn+]/mg dm-3 T/°C Isotherm Kinetics qm/mg g-1 Ref. 

SWCNT BPA 9 60 50 2-50 20 S, L PSO 71 65
 

SWCNT BPA 8.2 240 15 0.23 25 L, F NA 13.39 64
 

Pristine BPA 9 60 50 2-50 20 S, L PSO 111 65
 

Pristine BPA 6 1440 25 10 7 L PSO 60.98 178
 

SOCl2/NH4OH BPA 6 1440 25 10 7 L NA 69.96 178
 

HNO3/H2SO4 BPA NA 10080 125 0.1 - 40 NA L, PMM NA 1.25 162
 

           

SWCNT IBP 7 8640 2 0.05 - 2 23 PMM NA 232 168
 

Pristine IBP 7 8640 2 0.05 - 2 23 PMM NA 81 168
 

HNO3 IBP 7 8640 2 0.05 - 2 23 PMM NA 19 168
 

           

Pristine RhB 7 30 100 10 NA L, T PSO 3.533 79 

MWCNT/Fe2O4 RhB 6 80 3 15 25 L PSO 11.44 179 

MWCNT/Fe2O4 RhB NA 450 NA NA NA L PFO 11.02 180 

*NA: Not available, L: Langmuir, F: Freundlich, PMM: Polanyi Mane model, T: Temkin, PSO: pseudo-second order, PFO: pseudo-first order 
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2.11. Desorption 

Desorption is the process whereby a substance is removed from the surface of an adsorbent.  

The disposal of spent adsorbents generates secondary pollutants which result in another 

environmental problem.  The removal of adsorbates from the sorbent’s surface therefore 

becomes an important step in wastewater remediation.  This step is economical since it permits 

the regeneration of the adsorbent for reuse in another adsorption cycle and the recovery of 

adsorbates.  Desorption is achieved by the alteration of solution pH, displacement of the active 

compound, ion-exchange and solute concentration decrease and in some cases by thermal 

processes. 

 

Thermal and chemical methods are the most prominent methods used for adsorbent recovery.181  

In recent times, various chemical agents such as HCl,15 HNO3,
15 EDTA,182 NaOH,183 H2SO4,

182 

NaCl,182 NH4Cl,184 NH4NO3
184 and ethanol,72,185 amongst many others, have been employed for 

the possible desorption of the adsorbate from the surface of adsorbent.  The choice of agent used 

for desorption depends largely on the chemical properties of the adsorbates.  Acidic solutions 

such as HCl, HNO3 and H2SO4 desorb metal ions through electrostatic/ion-exchange 

interactions, while solvents such as acetone, ethanol may desorb organic contaminants via 

extraction.  Good desorption efficiencies have been reported by these authors, demonstrating 

that adsorbents can be regenerated for reuse. 

 

The desorption efficiency was calculated by using Eq. (2.30): 

% 𝑑𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 =  
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑑

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑
 × 100    (2.30) 

 

 

2.12. Characterization/analytical techniques 

A number of techniques were applied for the characterization of the adsorbents and ligand 

synthesized in this study.  This was done to understand the physical, chemical and surface 

properties of the adsorbents and to elucidate/confirm the structure of the synthesized ligand.  

The influence of CNT functionalization was also investigated by using various techniques to 

understand the interactions/mechanisms involved in the solid-liquid phase.  Similarly, various 

analytical techniques were applied for the detection and quantification of analytes in aqueous 

solution.  The subsequent sections consider the principles which underlie these techniques and 

their application depending on their suitability to obtain the required information. 
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2.12.1. Nuclear magnetic resonance spectrometry 

Nuclear magnetic resonance (NMR) spectrometry is a non-destructive technique generally used 

to predict the structure of an organic compound.  NMR spectroscopy measures the energy 

absorbed or emitted at a specific resonance frequency by the nuclei of a sample, hence enabling 

the monitoring of the nuclei magnetic properties within a molecule.186  The resonance frequency 

of a sample depends on the strength of the magnetic field.  The physical, chemical, electronic 

and structural properties of a molecule can be determined based on the chemical shifts 

(resonance frequency) of the sample.  Proton NMR (1H NMR) and carbon NMR (13C NMR) 

employ the monitoring of the carbon-hydrogen framework in an organic compound, hence 

accounting for protons and carbons present within the molecule of the sample. 

 

2.12.2. Mass spectrometry 

Mass spectrometry is used to determine the molecular mass of compounds, to detect fragmented 

species and possible sites of fragmentation and identify analytes based on their mass-to-charge 

(m/z) ratio.186  This technique employs the bombardment of the atoms in a molecule with 

electrons to obtain highly energetic positively and negatively charged ions (molecular ion).187  

The molecular ion is fragmented and separated based on the m/z ratio of the fragments and these 

are detected in proportion to their abundance.187  A plot of relative abundance versus the m/z 

ratio generates a spectrum, from which information regarding the nature and structure of the 

molecule can be obtained.187  The molecular mass of the compound represents the molecular 

ion, which appears at the highest value of m/z ratio. 

 

2.12.3. Fourier transform infrared spectrophotometry 

This technique involves the direct radiation of infrared (IR) light onto an adsorbent, from which 

some of the light beam is either absorbed or transmitted through the sample.186  A absorption 

peak, analogous to the frequency of vibration between the bonds of the atoms within the sorbent, 

and the bonds between the molecules in the sorbent is obtained and represented on an IR 

spectrum.  The spectrum represents the light output (absorbance/transmittance) as a function of 

frequency.  FTIR is a non-destructive qualitative technique, used to identify the surface 

functional groups which are responsible for sorbate-sorbent interactions in wastewater.188  In 

this study, all sorbents were embedded into KBr pellets to obtain a translucent disc, which was 

then subjected to IR radiation.  The simplicity of this technique makes it an acceptable and 

widely used method for confirmation or identification of functional groups which have been 

attached to the CNT structure. 
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2.12.4. Raman spectroscopy 

This is a non-destructive technique which offers specific information on the structure, purity 

(defects) and crystallinity of an adsorbent.  It employs the monitoring of scattered photons 

generated after the sorbent is radiated with monochromatic light, to study the vibrational and 

rotational modes in the sample.188  The measurement of the intensity of scattered light as a 

function of its frequency produces the Raman spectrum, from which the photon frequency of 

the sample can be obtained.189  The purity and crystalline arrangement of CNTs are evaluated 

based on ratio of the intensity of the D (ID) and G (IG) bands.  The D band (defect/disorder) 

depends on the scattering of photons from a defective site in the sp2 carbon structure of the 

CNTs.190  The band is observed at ≈ 1300–1350 cm-1, depending on the source and defects on 

the sidewalls of CNTs.188  The G-band (graphitic), observed at ≈ 1500-1600 cm-1, is related to 

in-plane vibrations of the C-C bond in the graphene sheets.188,191  The crystallinity and purity of 

the CNTs therefore increases with a lower value of the ID/IG ratio and an increase in defective 

sites is associated with higher ID/IG values. 

 

2.12.5. Thermogravimetric analysis 

The thermal stability, purity, amount of volatile components and quality of the adsorbents can 

be evaluated by using thermogravimetric analysis (TGA).  This technique employs the 

monitoring of the change in mass of a sample (Δm) as a function of temperature whilst the 

sample is being subjected to heating.  A plot of the weight percentage against temperature 

produces the TGA curve, from which information such as decomposition temperature 

(maximum temperature where decomposition occurs), ash content (mass of sample remaining 

after decomposition) and initiation temperature (temperature where decomposition begins) is 

obtained.188  The amount of residual metal nanoparticles, amorphous carbon and carbonaceous 

impurities can also be estimated from the TGA curve, hence providing indications on the purity 

of CNTs. 

 

2.12.6. Imaging and microscopic techniques 

Of key importance in confirming the tubular structure (shape), morphology, and size 

distribution of CNTs, is the application of microscopic techniques such as scanning electron 

microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission 

electron microscopy (HRTEM).  These techniques adopt the production of images by focusing 

a beam of electrons on the sample to induce interactions between CNT atoms and electrons,188 

hence, generating information on the surface morphology and quality of adsorbents.  TEM and 

HRTEM employ high energy electrons to obtain images of higher magnification.  Nanotube 
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outer and inner diameters, effect of functionalization and lattice fringes can be observed from 

images produced at high magnification.188  Microscopic techniques are therefore used in 

studying the structural integrity of nanotubes and monitoring changes associated with defects 

on CNT side-walls 

 

2.12.7. Brunauer, Emmet and Teller analysis 

The Brunauer, Emmet and Teller (BET) method is employed to obtain the specific surface area 

(SSA) of adsorbents through gas adsorption experiments.  Typically the sample is evacuated to 

remove all adsorbed materials and nitrogen at 77 K is used to obtain the adsorption data, which 

is fitted into the BET equation to obtain qm values.  The BET method is based on the evaluation 

of the monolayer adsorption capacity of adsorbents by fitting gas adsorption data to the BET 

equation, to obtain the SSA of a material.  This is an important parameter because it gives 

information on the number or amount of active sites present on the adsorbent.  The pore size 

distribution of the CNTs can also be obtained by using the Barrett-Joyner-Halenda (BJH) 

theory. 

 

2.12.8. Elemental analysis 

Elemental analysis gives information on the percentage composition of elements such as carbon, 

oxygen and nitrogen contained in the adsorbents.  This technique, often referred to as CHNX, 

employs the complete combustion of a sample in oxygen to convert organic and inorganic 

substances into combustible gaseous products such as carbon dioxide, water and nitric acid.193  

As a result of these, the percentage composition of carbon, oxygen and nitrogen is obtained 

from the masses of the combustible products.193  CHN analysis provides quantitative 

information into the purity and chemical/empirical formula of the unknown sample. 

 

2.12.9. Inductively coupled plasma-optical emission spectroscopy 

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) is an analytical technique 

used for the detection of metal ion concentrations in aqueous samples.  The technique adopts 

the use of a plasma (10000 K) to produce excited atoms/ions that emit radiation at wavelengths 

characteristic to each element.  The concentration of the metal in the sample is determined as a 

function of the intensity of light emitted by the element.  The sensitivity and sample throughput 

makes this technique a preferred choice rather than other spectrophotometric methods such as 

atomic absorption spectrophotometry for the determination of metals in aqueous solutions.194 
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2.12.10. Cold vapour atomic absorption spectrophotometry 

As is the case with ICP-OES, atomic absorption spectrometry 195 is a technique employed for 

the determination of elements in solution.  The technique, however, atomises the sample (i.e. 

converts to ground-state free atoms) by using either a flame or a graphite atomizer, to produce 

radiation at specific wavelengths.  The concentration of an element is estimated from the amount 

of light energy absorbed which is proportional to the number of atoms in solution. 

 

Since free mercury atoms can exist at room temperature, a technique which requires the 

atomization of samples without a flame is therefore needed for this element.  The cold vapour 

atomic absorption spectrophotometry (CV-AAS) is a sensitive technique used for the 

determination of total mercury concentrations in aqueous samples.196  The technique employs 

the reduction of mercury to its elemental form by reacting the sample with a strong reducing 

agent such as stannous chloride (SnCl2) or sodium borohydride (NaBH4) in a closed system.  

Volatile free mercury is driven from a closed vessel by introducing an inert gas (argon) into the 

sample.  Atoms are then produced after irradiation by the light source and the concentration of 

mercury estimated from the amount of light energy absorbed by free atoms. 

 

2.12.11. High performance liquid chromatography 

High performance liquid chromatography (HPLC) is an analytical technique, used for the 

separation, identification and quantification of non-volatile organic components from an 

aqueous mixture.  It involves the injection of a small volume of sample into a column packed 

with porous materials (stationary phase), and the individual components are driven by a liquid 

(mobile phase) at high pressure conditions.  The separated components are then transferred to a 

detector (e.g. UV-vis absorbance detector), from which the amount (concentration) of 

components can be quantitatively estimated from an output (chromatogram).  Separation of 

analytes depends on the chemical interaction of the sample with the mobile and stationary 

phases.  Hence, the chemical properties of the components determine the stationary and mobile 

phases to be used for elution. 

 

2.12.12. Boehm titration 

The Boehm titration was developed by Hans Peter Boehm in 1991 to quantify the amount of 

oxygen functional groups present on carbon-based nanomaterials.197,198  Quantitative 

information on the amount of acidic (lactone, carboxyl and phenol) and basic groups present on 

the nanomaterial is estimated by means of an acid-base titration.199  In this method, a strong 

acid (HCl) and base (NaOH) is made to react with bases and acids in the sample, respectively.  
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Typically, a particular amount of material is weighed separately into solutions of 0.05 mol dm-

3 of NaOH, NaHCO3, Na2CO3 and HCl and then agitated on a shaker for a period of time.  The 

solid material is then separated from the solutions and aliquots of the filtrates are back-titrated 

against standardized NaOH/HCl solution.200  It is assumed that NaOH will neutralize 

carboxylic, lactonic and phenolic groups by accepting protons from the Bronsted acids, Na2CO3 

is assumed to neutralize both the lactonic and carboxylic groups, while NaHCO3 will only 

neutralize the carboxylic groups.199,201  The amount of basic sites on the carbon nanomaterial is 

estimated from the quantity of HCl required.  This method is often used to complement results 

obtained from FTIR, in order to explain the functional groups present on carbon nanomaterials.  

 

2.12.13. Point of zero charge 

The point of zero charge (pzc) is the pH at which the electrical charge density of an adsorbent 

is equal to zero.  In adsorption studies, this concept provides information to the ability of an 

adsorbent to either remove a cation or an anion from a solution.  In this method, an adsorbent is 

weighed into plastic vials containing a solution of high ionic strength (NaCl/KCl) and their pH 

varied within 1-10.  The suspensions are then agitated for a period of time and the filtrates are 

collected after agitation.  The pH value of the filtrate is obtained and a plot of pHinitial – pHfinal 

vs. pHinitial will be obtained.  The point of intersection of the curves will give pHPZC of the 

adsorbent.202  Hence, the surface of the adsorbent is negative/anionic when the pH of the 

solution is greater than the pHPZC of the adsorbent, hence, facilitating cationic removal.  

Whereas, the adsorbent’s surface is positive if the solution pH is less than the pHPZC of the 

adsorbent, enhancing anionic exchange. 
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Abstract 

The presence of perfluoroalkyl acids (PFAAs) in aquatic environment is a cause of concern, 

due to increased toxicity associated with their intake by man.  The release of these pollutants to 

receiving water bodies is primarily via the discharge of untreated wastewater and industrial 

effluents.  These activities necessitates the remediation of wastewater containing these 

compounds before discharge.  In this review, the occurrence and fate of PFAAs in water streams 

was revised, with an aim of providing in-depth information to the harmful effects caused by the 

exposure of these pollutants to both man and its environs.  Adsorption, as a viable technique 

was studied for the removal of PFAAs from wastewater and its mechanisms towards their 

removal onto carbon nanotubes (CNTs) were explored.  Further, various functionalization 

strategies were assessed to investigate the increased efficiency of CNTs to PFAA removal.  The 

adsorption capacities of CNTs were then compared with that of other conventional adsorbents. 

 

The sorption of PFAAs onto CNTs demonstrated good removal efficiencies and was found to 

attain equilibrium faster than conventional adsorbents.  This was attributed to inherent 

properties of CNTs such as large surface area/porosity and the ease with which new functional 

groups are introduced to the walls of tubes.  Adsorption mechanism of PFAA was primarily 

enhanced through electrostatic interactions; however, other processes such as hydrogen, 

hydrophobic and ion-exchange have also been reported.  This review aims at providing 

information on the occurrence, fate and interactions involved for the removal of PFAA from 

aqueous solution by using CNTs. 

 

Keywords:  Perfluoroalkyl acids, carbon nanotubes, adsorption, wastewater, mechanism, 

functionalization 
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3.1. Introduction 

The release of perfluorinated compounds (PFCs) into the environment is of major interest to the 

scientific community due to their toxicity, persistence and global distribution (Deng et al., 2013; 

Valsecchi et al., 2013).  These compounds comprise a wide group of chemicals which are used 

as surface coatings for carpets, textiles and cooking utensils owing to their great thermal and 

chemical stability (De Voogt and Saez, 2006; Zhao et al., 2014).  They bio-accumulate in 

wildlife and humans and are persistent in the environment due to strong C-F forces between 

them (Domingo et al., 2012; Kim et al., 2013; Zhao et al., 2014). 

 

PFCs are a broad group of anthropogenic chemicals with each hydrogen atom on the linear alkyl 

chain replaced by a fluorine atom.  The structure is made up of a hydrophobic perfluorinated 

tail of varying carbon lengths (C4 to C16) and a hydrophilic functional group head, thus, making 

them amphiphilic in nature (Du et al., 2014).  PFCs can be divided into two subgroups, namely: 

perfluorinated alkyl substances (PFAS) and perfluoroalkyl acids (PFAA).  PFAS are neutral 

volatile fluorinated compounds, which bind to polymers through acrylate or urethane linkages 

and used in the production of textiles, papers, carpets and other impregnation agents (Domingo 

et al., 2012).  Examples of such compounds include fluorotelomer alcohols (FTOHs), 

perfluoroalkylsulfonamides (FASAs) and sulfonamidoethanols (FASEs).  PFAAs are ionic 

compounds containing carboxylic or sulfonic functional groups in a linear perfluoroalkyl chain 

(Ahrens, 2011).  They are persistent in the environment and bio-accumulate in tissues resulting 

in health complications in man and wildlife.  The commonest examples of PFAAs are 

perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS).  The inclusion of 

PFOS to Annex B of the Stockholm Convention on Persistent Organic Pollutants (POPs) in 

2009, and the proposed elimination of PFOA by the United States of America Environmental 

Protection Agency (USEPA), has not limited its continued application in consumer products 

(Domingo et al., 2012; Jogsten et al., 2012).  The use of PFOS and other related compounds, 

which may degrade into fluorinated compounds, is still on the increase especially in developing 

countries (Domingo et al., 2012; Müller et al., 2012).  Table 3.1 lists some common examples 

of PFAAs, which are generally used in industries for consumer products.  It is worthy of note 

that PFAS degrade into PFAAs through biotic and abiotic processes (Lau et al., 2007; Ahrens, 

2011), hence, the occurrence and fate of PFAAs in the environment becomes of utmost 

importance. 

 

The removal of PFAAs from the environment through simple, effective and efficient 

technologies becomes imperative, since exposure to these contaminants introduces man and its 

environment to various necrotic diseases (Deng et al., 2013; Du et al., 2014; Yu et al., 2014).  
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Adsorption has been considered an effective technology for their removal from wastewater, due 

to its simplicity, cost-effectiveness, high efficiency, high sorption and possibility of 

regeneration of adsorbents for the process of reuse (Ochoa-Herrera and Sierra-Alvarez, 2008; 

Deng et al., 2013; Du et al., 2014).  The development of effective adsorbents with fast sorption 

ability for PFAA removal is therefore of utmost importance.  This review therefore aims at 

providing an insight into the occurrence of PFAAs in aqueous solution, with a view to assessing 

the options for removal by using carbon nanotubes as adsorbents.  The review also discusses 

mechanisms for PFAA removal; providing answers to the following questions: 

 

 Are carbon nanotubes effective for PFAA removal from wastewater? 

 In what ways do the properties of carbon nanotubes provide better sorption ability for 

the removal of PFAAs? 

 Do carbon nanotubes exhibit improved adsorption capacities for PFAAs than other 

adsorbents after functionalization? 

 What mechanisms determine the removal of PFAAs onto CNTs from aqueous solution? 

  



 
  

62 
 

Table 3.1:  Common PFAAs used for industrial and commercial applications 

Compound Acronym Structure Molar 

mass/g mol-1 

Chemical 

formula 

Perfluorobutyl 
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F
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Perfluorodecanoic acid PFDA 
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3.2. Occurrence of PFAAs in the environment 

There are increasing numbers of reports providing evidence of PFAAs and related compounds 

in various environmental media such as in water (Hansen et al., 2002), the marine environment 

(Giesy and Kurunthachalam, 2001; Naile et al., 2013), soils (Davis et al., 2007; Naile et al., 

2013), sediments (Higgins and Luthy, 2006; Naile et al., 2013), landfills and indoor and outdoor 

air (Martin et al., 2002; Naile et al., 2013).  Effects such as developmental, hormonal and 

neurological changes, dysfunction of the liver and kidney and cardiovascular damage (Jogsten 

et al., 2012) are some of the suspected consequences of the intake of PFAAs by humans.  In 

recent times, PFAAs such as PFOS, PFOA and PFHxS have been detected in maternal umbilical 

cords and serum at delivery sites in Korea.  Lee et al., (2013) reported concentrations levels 

between 0.67 and 3.44 ng ml-1 in umbilical cord and between 1.35 and 10.77 ng ml-1 in maternal 

serum.  These results suggests that exposure of pregnant women to these contaminants may 

further introduce the foetus to some birth complications such as decrease in weight, birth length 

and ponderal index.  Similar studies in Vietnam (Rylander et al., 2009), Canada (Monroy et al., 

2008), South Africa (Hanssen et al., 2010), Japan and Korea (Harada et al., 2010) reported 

similar concentration levels in pregnant women.  PFAAs have also been detected in waste 

recycling sites (Kim et al., 2013), popcorn packaging (Martınez-Moral and Tena, 2012), blood 

(Lindh et al., 2012), marine shellfish (Munschy et al., 2013), house dusts (Xu et al., 2013), 

industrial discharges (Dauchy et al., 2012) and foodstuffs (Domingo et al., 2012) to name but a 

few.  In fact Domingo et al., (2012) observed that food processing and packaging may be one 

of many routes through which PFAAs enter into the human body.  It is, however, obvious that 

the phase-out of PFOS which started in 2001 has not abated the usage of PFAAs in various 

manufacturing processes, hence resulting in their detection in various environmental media.  

Unfortunately, water bodies are the major recipients of the discharge of untreated effluents from 

industries, and hence the need to review the occurrence of PFAAs in various aqueous solutions. 

 

3.2.1. PFAA in aqueous solution 

Wastewaters are frequently discharged into the aqueous environment with little or no treatment, 

therefore resulting in the accumulation of contaminants in the environment.  Industrial or 

municipal wastewater treatment plants (WWTP) are considered the major point source by which 

PFAAs are introduced into the environment (Ahrens).  Most PFAA congeners are water-soluble, 

which makes the aquatic environment a possible sink for their disposal.  The relationship 

between discharges from a fluoropolymer manufacturing plant and the contamination of raw 

water resources was investigated by Dauchy et al., (2012).  Ten different PFAAs were detected 

with a total concentration in the range of 0.4 µg dm-3 to 41.4 µg dm-3 in water samples collected 

around the vicinity of a manufacturing plant.  An estimate of 4.5 and 10 tonnes of PFNA and 
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PFHxA, respectively were reported to be discharged into water resources each year (Dauchy et 

al., 2012).  Predominant PFAAs were PFNA, PFOS, PFOA and PFHxA, which were found 

prevalent in groundwater.  Although, reported concentrations were significantly low, increased 

discharge of polluted wastewaters will expose both man and animals to several health 

complications.  The presence of PFAAs in aqueous solution (e.g. groundwater) was attributed 

to the possible degradation of fluorotelomers used for the production of fluorinated copolymers 

and the infiltration of products into the soil discharged from a nearby manufacturing industry 

(Dauchy et al., 2012).  Evidence of PFOS in concentrations less than 4 ng dm-3 was also found 

in tap waters obtained in Japan, close to a sewage treatment plant.  Higher concentrations were 

reported in water supplied from a waterworks station closer to the treatment plant, wherein 

heavy contamination (303-404 ng dm-3) of PFOS was reported (Harada et al., 2003).  In the 

United States of America, Moody and Field, (1999) detected high concentrations of C6-C8 

PFAAs in groundwater with total concentrations between 124 and 7090 ng dm-3 at a naval base 

and air-force station close to a fire-fighting station.  The dominant contaminants were the C8 

precursors which accounted for about 83% to 93% of the total concentration.  The presence of 

these contaminants in groundwater was attributed to the close proximity of the sample sites to 

a fire-fighting station even after 7 to 10 years of inactivity.  An average of about 3 to 8 years is 

the half-life of most PFAAs in the environment (Lee et al., 2013).  A similar study conducted 

by Arias et al. (2015), associated the high concentrations in groundwater to the persistence of 

these contaminants in the environment for long periods of time, and thereby intruding into 

various water resources.  The presence of PFCs in groundwater is therefore a major challenge, 

as humans and animals who consume these contaminants are exposed to several health effects. 

 

The presence of PFAAs and their precursors have also been reported in larger water bodies such 

as rivers, oceans and lakes.  Kim et al., (2013) reported the presence of seventeen different 

PFAAs in various aqueous media, such as rivers, municipal wastewater discharge points, creeks 

and ponds near a disposal and recycling site in Vietnam.  The most abundant contaminants were 

PFOS, PFOA, PFNA and PFUnA in concentration levels of 0.5 to 20 ng dm-3.  Results obtained 

from this study suggest that the contamination of aqueous bodies was associated with recycling 

activities of waste electrical and electronic equipment (WEEE), including household appliances 

such as televisions and computers.  This study confirms that PFAAs are used in electrical and 

electronic equipment, and discharge of spent-equipment could leach contaminants into aqueous 

media.  Furthermore, concentrations of 88 and 77 ng dm-3 were found for PFHpA and PFHxA 

in collected leachates, indicating the possible leaching of contaminants from electrical and 

electronic equipment into other media.  Zhou et al., (2012) detected sixteen PFAAs from surface 

water obtained from the Baiyangdian Lake in North China.  Concentrations of PFAAs were 
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obtained in the range of 0.1 to 56.8 ng dm-3 with PFOA, PFOS and PFBA identified as the 

predominant species.  Reported concentrations were higher than those obtained from Lake 

Ontario, Lake Erie, Lake Chaplain and Lake Shinhwa (Rostkowski et al., 2006; Sinclair et al., 

2006).  The contamination of Lake Baiyangdian was associated with the in-flow from the Pinghe 

and Fuhe Rivers, which receive discharged effluents from paper, textile, leather, insecticide and 

pesticide manufacturing industries (Zhou et al., 2012).  Water samples collected from Lake 

Tangxun in China showed significant high values of PFAAs in the range of 3660 and 4770 ng 

dm-3 (Zhou et al., 2012).  PFBS and PFBA were the most predominant in these samples.  

Increasing concentrations of PFAAs were attributed to the discharge from a fluorochemical 

industry close to the sampling point.  The occurrence of PFAAs was also reported by Zhang et 

al., (2012) in concentrations of about 30.98 ng dm-3 in water samples collected from Dianchi 

Lake in China.  PFOA was the dominant contaminant in a concentration range of 3.41 to 35.44 

ng dm-3 in water samples.  Also, PFOS and PFOA were the most abundant contaminants in 

water samples collected from the Yellow Sea by Naile et al., (2013) in China.  The presence of 

these pollutants in rivers, lakes and oceans presents harmful effects to aquatic life such as crabs, 

gastropods, bivalves and fish, due to the bioaccumulation of PFAAs in the tissue of animals.  

Eighteen PFCs containing carboxylates, sulfonates and sulfonamides were detected in 

wastewater and sludge samples collected from two different wastewater treatment plants in 

Greece (Arvaniti et al., 2012).  These results obtained by Arvaniti et al., (2012) showed the 

presence of PFAAs in collected wastewater and sludge samples.  Concentrations of 75.7 and 

76.0 ng dm-3 were reported in raw and treated wastewater for PFTrDA and PFPeA, respectively, 

with higher values reported in effluents than in influents. 

 

Results from these studies demonstrate that PFAAs are extensively intruding into aqueous 

bodies primarily through discharges from manufacturing industries.  Efforts must be taken in 

order to explore technologies which will effectively treat PFAA-contaminated wastewater 

before its discharge into aquatic environment. 

 

 

3.3. Adsorption 

Treatment of organic contaminants in wastewater treatment facilities continues to be a major 

hurdle since conventional treatment strategies are not efficient for their removal.  Technologies 

such as biological treatment (Zhang et al., 2015), coagulation/flocculation (Altmann et al., 

2015), membrane separation (Ahmad et al., 2012; Madsen et al., 2015), photocatalysis (Pare et 

al., 2011; Rueda-Márquez et al., 2015), advanced oxidation (Jonnalagadda and Shezi, 2009; 

Dachipally and Jonnalagadda, 2011; Rueda-Márquez et al., 2015), electrochemical destruction 
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(Jonnalagadda and Nadupalli, 2004; Brillas and Martínez-Huitle, 2015) and ion exchange 

(Wang et al., 2015) have being applied for the removal of organic pollutants.  In fact, new 

technologies are currently being developed to optimize the removal of organic pollutants from 

wastewater and industrial effluents (Ma et al., 2012).  Adsorption has been considered one of 

the most attractive processes for removal because adsorbents are generally easy to handle, can 

be regenerated by suitable desorption processes, are highly effective, are economical and can 

be used without large apparatus (Yu et al., 2009; Deng et al., 2013; Du et al., 2014; Oyetade et 

al., 2015).  This process has been applied for PFC removal by using adsorbents such as activated 

carbon (Ochoa-Herrera and Sierra-Alvarez, 2008; Yu et al., 2009; Yao et al., 2014), clay (Zhao 

et al., 2014), resin (Yu et al., 2009), chars (Chen et al., 2011), soil (Milinovic et al., 2015), 

sediment (Ahrens et al., 2011), rice husk (Deng et al., 2012), alumina (Arvaniti et al., 2015), 

zeolite (Ochoa-Herrera and Sierra-Alvarez, 2008) and activated sludge (Ochoa-Herrera and 

Sierra-Alvarez, 2008).  The behaviour of some of these conventional adsorbents to PFAA 

removal is further explored. 

 

3.3.1. Activated carbon 

Activated carbon (AC) is one of the commonest adsorbents used for the treatment of 

contaminated water, because of the high surface area and porosity possessed by this material 

(Du et al., 2014).  It consists of graphitic units composed of layers of fused hexagons held 

together by weak van der Waals forces.  It can be made from numerous varieties of raw materials 

such as coal, wood, cotton, peat or coconut shells, which are composed of high percentages of 

carbon.  Adsorption of organic pollutants such as dyes (Namasivayam and Kavitha, 2002), 

polyaromatic hydrocarbons (PAHs) (Walters and Luthy, 1984), phenol (Khan et al., 1997), 

dioxins (Maes et al., 2005) and polychlorinated biphenyls (PCBs) (McDonough et al., 2008) 

have been explored by various forms of ACs especially powdered activated carbon (PAC) and 

granulated activated carbons (GAC).  The application of ACs for PFAA adsorption has 

exhibited significant improvement towards understanding the processes involved in removal.  

Yu et al., (2009) reported an adsorption capacity of 519.19 and 1209 mg g-1 for the removal of 

PFOS and PFOA, respectively, from aqueous solution by using PAC.  Also, Punyapalakul et 

al., (2013) reported good sorption uptakes of 434.8 and 714.3 mg g-1 for the removal of PFOA 

and PFOS respectively by using PAC.  Adsorption capacities of 22.1 and 22.7 mg g-1 were also 

obtained for the sorption of PFOS and PFOA, respectively, by Yao et al., (2014) by using GAC.  

Removal efficiencies between the ranges of 90% to 99% have been reported for the sorption of 

PFOS and PFOA by using PAC and GAC (Qiu et al., 2005; Fujii et al., 2007; Yao et al., 2014).  

These results indicate that the sorption of PFOA and PFOS onto activated carbon has thus far 

proved effective; however, the regeneration of these adsorbents for the process of reutilization 
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remains a major problem.  Adsorbent reuse is almost impossible since spent-AC is not easily 

regenerated by using simple conventional solvents; hence, disposal of secondary pollutants into 

the environment is inevitable.  Also, reports have shown that a high equilibration time is 

required for the sorption of PFOS and PFOA onto ACs.  An equilibration time of 168 h and 12 

h was reported by Yu et al., (2009) for the removal of PFOS/PFOA by using GAC and PAC 

respectively.  This implies that the sorption of PFOA and PFOS onto ACs require long periods 

of time.  These limitations significantly restrict its use for the removal of PFCs from aqueous 

solution; hence the need to develop more efficient adsorbents for removal continues to grow. 

 

3.3.2. Sludge 

The application of sludge for PFAA removal has also been explored due to its availability, low-

cost, and its ability to remove hydrophobic contaminants from wastewater.  Anaerobic granular 

sludge and anaerobic digested sewage sludge (ADS) (Madsen et al., 2015) were used as 

adsorbents for the removal of PFOS from aqueous solution in a study by Ochoa-Herrera and 

Sierra-Alvarez, (2008).  Their results showed that the type/characteristics of sludge used 

significantly influenced the extent of removal of PFOS, since higher removal efficiencies were 

obtained for granulated sludge than ADS.  A similar observation was reported by Kwadijk et 

al., (2013) involving the sorption of PFOS onto sediments.  The sorption of PFOS onto 

sediments was greatly influenced by the organic content of the adsorbents.  Milinovic et al., 

(2015) reported an increase in the sorption of PFOS with increasing organic content in soils.  

Higher adsorption capacities were reported for PFOS sorption than for PFOA and PFBS, due to 

increased hydrophobic interactions between PFOS molecules and organic matter contained in 

soil.  Hence, the adsorption of PFAAs onto adsorbents such as soils, sediments and sludge is 

greatly influenced by the organic matter content rather than the mineral surface of the adsorbents 

(Higgins and Luthy, 2006; Ochoa-Herrera and Sierra-Alvarez, 2008; Kwadijk et al., 2013; 

Zareitalabad et al., 2013; Milinovic et al., 2015). 

 

3.3.3. Resins 

These are porous polymeric materials, designed to trap volatiles and semi-volatiles from 

air/liquid/solid matrices for the purpose of remediation.  Anionic-exchange and non-ionic resins 

have been applied as sorbents for PFAA removal owing to properties such as good surface area 

and ease in regeneration of the adsorbents.  Deng et al., (2010) investigated the behaviour of 

anion-exchange resins for PFOS removal.  Reports indicated that adsorption of PFOS was 

influenced by the polymer matrix, the porosity and functional groups on the adsorbent.  The 

adsorption capacity was highest for polyacrylic resins, followed by porous and gel-type 

polystyrene resins for the removal of PFOS.  This behaviour was explained by Yu et al., (2009) 



 
  

69 
 

wherein inferences were made that PFC molecules could not easily diffuse into the pores of gel-

type resins, hence, explaining the trend in adsorption.  The sorption rate was also largely 

influenced by this factor as polyacrylic resins attained equilibrium faster (48 h) than the 

macroporous or gel-type ones (168 h) (Deng et al., 2010; Yao et al., 2014).  Similarly, anion-

exchange resins were reported to have better sorption uptake to PFOA than non-ionic resins in 

a study by Chularueangaksorn et al., (2013) and Du et al., (2015).  Amine-functionalized resins 

have also been shown to adsorb better than un-functionalized resins, owing to increased 

functional groups contained in the adsorbents (Du et al., 2015).  Adsorption of ionic PFCs onto 

resins is therefore largely influenced by the porosity, functional groups and polymer matrix of 

the adsorbent. 

 

3.3.4. Zeolite 

These are porous aluminosilicate minerals joined together by the sharing of oxygen atoms.  

Zeolites are explored as alternative adsorbents for wastewater purification of organic and 

inorganic pollutants due to their abundance, cost, high surface area and high-cation exchange 

properties (Wang and Peng, 2010).  Their chemistries can be modified such that they contain 

functional groups which permit the removal of organic compounds such as PFAAs.  Ochoa-

Herrera and Sierra-Alvarez, (2008) reported that the extent of PFOS adsorption onto zeolites 

was affected by the increase in the aluminium content of the adsorbents.  Sorption of PFOS was 

significantly enhanced with an increase in siliceous materials of the adsorbents; hence, 

adsorption was reported to be favoured through hydrophobic interactions, since sorption was 

highest for more hydrophobic zeolites.  Punyapalakul et al., (2013) reported a higher sorption 

uptake for the removal of PFOS and PFOA by using PAC rather than zeolites.  This trend was 

attributed to the higher surface area exhibited by PAC and poor accessibility of the adsorbates 

to the internal surface area of zeolites. 

 

Limitations such as the regeneration of adsorbents, slow sorption velocity and difficulty in 

modifying the surfaces of adsorbents, amongst many others, are some of the major drawbacks 

experienced with conventional sorbents (Deng et al., 2013).  To overcome these problems, 

efforts have been tailored towards the removal of PFAAs via nanostructured nanomaterials.  

Adsorption depends on the porosity, surface area and the ease with which modification can be 

achieved to incorporate functional groups which might aid removal.  Carbon-based 

nanomaterials such as carbon nanotubes (CNTs) possess moderately high surface areas/porosity 

and are currently generating interest for organic pollutant removal such as PFAAs.  Their 

properties, structure, modification strategies and behaviour to PFAA removal is further 

investigated to understand the sorption mechanisms involved for removal. 
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3.4. Carbon nanotubes 

Much interest has been developed in the synthesis and application of CNTs since their discovery 

(Oyetade et al., 2015).  CNTs are tubular-shaped macromolecules with diameters ranging 

between 1 and 100 nm and can be grown up to 20 cm in length (Balasubramanian and Burghard, 

2005).  They are allotropes of carbon consisting of one or more layers of graphene arranged in 

a tubular form (Fig 1) (Balasubramanian and Burghard, 2005; Ombaka et al., 2014; Herrero-

Latorre et al., 2015).  They possess extraordinary abilities such as great electrical, structural and 

mechanical properties, which makes them useful for many applications (Kanoun et al., 2014).  

CNTs may be classified as single-walled or multiwalled depending on the number of concentric 

graphene sheets contained in the tube.  Single-walled carbon nanotubes (SWCNTs), double-

walled carbon nanotubes (DWCNTs) and multiwalled carbon nanotube (MWCNT) depending 

on the number of graphene sheets contained in them (Herrero-Latorre et al., 2015).  SWCNTs 

possess diameters ranging between 0.4 and 3 nm, while MWCNTs have diameters reaching 100 

nm (Balasubramanian and Burghard, 2005; Ombaka et al., 2014).  The demand for these 

materials is growing due to their increasing usage in many fields such as nanotechnology 

(Cambré et al., 2015), electronics (Kanoun et al., 2014; Keru et al., 2014), optics (Cambré et 

al., 2015), medicine (McCarthy et al., 1999) and environmental sciences (Hamza et al., 2013; 

Oyetade et al., 2015).  CNTs can be synthesized through chemical vapour deposition (CVD) 

(Bamoharram et al., 2011; Jenkins et al., 2014), laser ablation (Yuge et al., 2014) and electric-

arc discharge (Arora and Sharma, 2014) methods.  Of these methods, CVD is largely employed 

due to the ease in scale-up and diameter reproducibility. 
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Fig. 3.1: Structure of carbon nanotubes rolled into a cylindrical shape (Balasubramanian and 

Burghard, 2005). 

 

 

3.4.1. Functionalization of carbon nanotubes 

Due to strong intrinsic van der Waals attractive forces between CNTs, they have high 

hydrophobicity and inert surfaces, which limits their chemical reactivity and dispersion in 

aqueous or organic solvents.  Various strategies are employed to introduce substituents such as 

carboxyl and hydroxyl groups to allow further chemical modification and improve 

dispersability in aqueous and organic media (Zhang et al., 2009), in order to increase their 

application for other purposes.  Functionalization of CNTs is usually employed through 

covalent and non-covalent strategies to attach functional groups which aid interactions with 

other molecules.  Through these processes, CNT agglomeration can be reduced, such that 

dispersability in both organic and aqueous solution is enhanced.  Also, to reduce residual metal 

nanoparticles and amorphous carbon in pristine CNTs, purification processes involving 

sonication of CNTs in acidic media are usually employed through dissolution (Datsyuk et al.). 

 

3.4.2. Covalent functionalization of CNTs 

Incorporation of hydrophilic substituents, such as carboxyl, carboxylic and hydroxyl groups, 

onto the exterior sidewalls of tubes has been carried out by using various chemical processes.  

Covalent functionalization of MWCNTs was carried out by Wepasnick et al., (2011) by using 
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various chemical agents such as HNO3, KMnO4, HNO3/H2SO4, H2O2, O3 and (NH4)2S2O8 to 

study the surface chemistry of MWCNTs after functionalization by means of different 

characterization techniques.  In their report, they observed that the distribution of oxygen-

containing species were insensitive to the reaction conditions, but changed with oxidant used.  

Aggressive oxidants (HNO3 and KMnO4) produced higher carboxyl groups than oxidants such 

as O3, H2O2 and (NH4)2S2O8, which had higher fractions of hydroxyl and carbonyl groups.  Fig 

2 showed micrographs obtained from the study which revealed the presence of amorphous 

carbon (indicated by arrows) on the pristine MWCNTs (Fig 3.2a), while functionalized 

MWCNTs revealed a decrease in amorphous carbon with a high level of defects on the side 

walls of tubes (indicated with circles) in Figs 2 (b-d).  Dispersion in aqueous solution was also 

enhanced as a result of the functionalization of MWCNTs. 

 

Fig 3.2: TEM images of (a) pristine MWCNT, (b) H2O2 treated MWCNTs, (c) H2SO4/HNO3 

treated MWCNTs and (d) KMnO4 treated MWCNT (Amorphous carbon is indicated 

with arrows and sidewall defects highlighted with circles) (Wepasnick et al., 2011). 

 

The structural integrity of MWCNTs was investigated by Datsyuk et al., (2008) by using acidic 

(nitric acid, piranha solution) and basic (ammonium hydroxide/hydrogen peroxide mixture) 

chemical agents to investigate the influence of oxidation on the surface of tubes.  MWCNTs 

were initially purified with hydrochloric acid to reduce the residual metal nanoparticles, 

followed by oxidative treatment.  Reported results indicated that acidic treatment of MWCNTs 

resulted in major alteration, introducing defects onto the surfaces of tubes.  Aggressive 

oxidations lead to the shortening of long strands of tubes, with a large population of disordered 

sites and introducing new functional groups such as carboxyl and hydroxyl groups to the walls 

of the tubes.  Basic oxidation treatments, however, produced no visible change in the 

morphology of CNTs accompanied with the complete removal of amorphous carbon from the 

surface of tubes.  Dispersion tests revealed better dispersability in aqueous solution after various 

acidic treatments.  This was attributed to the presence of large amounts of oxygen-containing 

functional groups at the defective sites which resulted in better dispersion of CNTs in aqueous 

(a) (b) (c) (d) 
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solution (Zhang et al., 2009).  The chemical agent used for oxidation significantly influenced 

the amount of oxygen-containing functional groups on CNTs (Datsyuk et al., 2008).  These 

results were consistent with the study by Santangelo et al., (2012), wherein oxygen-containing 

functional groups (carboxyl, carbonyl, lactonic, quinone and phenolic) were attached to the 

defective sites of the walls, hence, reducing the hydrophobic state of pristine-MWCNTs and 

also increasing their wettability in solvents. 

 

3.4.3. Non-covalent functionalization of CNTs 

Non-covalent functionalization involves the immobilization of macromolecules to the 

hydrophobic ends of CNTs via either van der Waals forces, π-π bonds, or electrostatic 

interactions (Zhao et al., 2012).  This method of functionalization is usually employed for 

obtaining polymer-CNT matrices (Zhao et al., 2012; Keru et al., 2014) and the endohedral 

functionalization of CNTs (Ombaka et al.).  Although, the structure of CNTs is not altered in 

this process, alignment of CNTs within the matrix becomes a problem such that conductivity is 

hindered and also it influences the activity of CNT-conducting polymers (Zhao et al., 2012).  

These limitations were controlled by Shang et al., (2011) wherein they synthesized  

nanocomposites from MWCNTs and polyurethane with the aid of an ionic liquid.  Properties 

such as the mechanical strength and conductivity of MWCNTs were retained in the 

nanocomposite.  Limitations associated with the alignment and dispersion of CNTs in polymer 

matrix were also averted by using this process.  Carrion et al., (2010) also effectively 

synthesized well-dispersed SWCNT-polymers by using an ionic liquid (1-octyl, 3-

methylimidazolium tetrafluoroborate) and obtained polymers with increased thermal stability, 

thereby increasing the tribological performance of SWCNTs.  Yue et al., (2007) synthesized 

SWCNT/poly (methyl-methacrylate) (PMMA) nanocomposites by means of in-situ 

polymerization in supercritical CO2.  Composite growth and matrix dispersion were facilitated 

by using supercritical CO2, which further enhanced the impregnation of PMMA on SWCNTs. 

 

 

3.5. PFC adsorption onto carbon nanotubes 

The increasing application of CNTs as adsorbents for organic pollutant removal is continuously 

evolving, owing to the specific properties such as large surface areas and pore volumes, which 

are characteristic of CNTs.  Functionalization of CNTs to introduce various functional groups, 

which will serve as adsorption sites, is easy and can be tailored to have properties for PFAA 

removal.  These make them extremely important for use as adsorbents.  Although, not much 

research has been performed in this area, a review of previous studies onto CNTs is presented 

to understand the mechanism and interactions involved in the removal process. 



 
  

74 
 

 

3.5.1. Effect of solution pH 

The removal of PFAAs onto different adsorbents is greatly influenced by the pH of the solution.  

The surface charges on the adsorbent, as well as the speciation of the adsorbate molecules, may 

change depending on the pH of the solution (Oyetade et al., 2015).  The removal efficiency of 

PFOS and PFOA onto CNTs usually decreases with increasing pH; hence, adsorption of PFAA 

is favoured at acidic pH conditions (Yu et al., 2009; Deng et al., 2012; Kwadijk et al., 2013; Li 

et al., 2015).  This is possible since PFAA molecules exists as anions in water (Deng et al., 

2012) and their pKa values are lower than 1, and not greater than 3.5 (Higgins and Luthy, 2006; 

Arvaniti et al., 2012).  Also, removal onto CNTs at basic conditions is generally low, due to 

electrostatic repulsion between the negatively charged adsorbent and anionic PFAA species 

(Deng et al., 2012; Li et al., 2013; Li et al., 2015).  However, at acidic pH conditions, the 

adsorbent surface is positively charged, thus, enhancing ionic interaction between PFAA anions 

and adsorbents (Chen et al., 2011; Deng et al., 2012).  A similar trend is reported for the sorption 

of PFOS and PFOA, with the highest removal efficiency taking place within a pH range of 2 to 

5 (Li et al., 2011; Zhou et al., 2012; Kwadijk et al., 2013; Yao et al., 2014; Li et al., 2015).  The 

sorption of PFAAs onto adsorbents has also been reported to be enhanced in the presence of 

divalent cations such as Ca2+ and Mg2+ (Kwadijk et al., 2013; Du et al., 2014).  Du et al. (2014) 

attributed this effect to the formation of more basic sites on the surface of adsorbents due to the 

presence of these cations, therefore enhancing removal through the formation of a divalent 

cation bridging effect (Du et al., 2014).  Similarly, decreasing PFOS removal was obtained for 

increasing Cl- concentration, due to increased competition for positive sites on the adsorbent 

between PFOS anions and Cl- in solution as demonstrated by Li et al., (2015).  Hence, solution 

pH plays a significant role in the removal of PFAAs from aqueous solution. 

 

3.5.2. Adsorption kinetics 

The adsorption kinetics provide information on the dynamics and rate-determining step of the 

process.  Equilibrium data obtained for removal is often fitted into adsorption models such as 

the pseudo-first order (Ho, 2003; Ho, 2004; Lin and Wang, 2009), pseudo-second order (Ho 

and McKay, 1999; Ho, 2003; Lin and Wang, 2009), Elovich (Chien and Clayton, 1980) and 

intraparticle diffusion models (Demirbas et al., 2004).  Table 3.2 gives the equations of the 

commonest kinetics models used for adsorption.  In general, sorption of PFAAs onto adsorbents 

increases with an increase in contact time until a state where adsorption is limited is reached.  

At this stage, adsorption is said to reach a state of equilibrium. 
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Table 3.2: Kinetics models usually investigated for adsorption studies 

Models Equations* Parameters References 

Pseudo-first order 𝑞𝑡 =  𝑞𝑒𝑞(1 − 𝑒−𝑘1𝑡) qeq, k1 (Ho, 2003; Ho, 2004; Lin 

and Wang, 2009) 

Pseudo-second order 
𝑞𝑡 =  

𝑘2𝑞𝑒𝑞
2 𝑡

1 + 𝑘2𝑞𝑒𝑞𝑡
 

k2, qeq (Ho and McKay, 1999; Ho, 

2003; Lin and Wang, 2009) 

Elovich 
𝑞𝑡 =  

1

𝛽
ln (𝛼𝛽) +  

1

𝛽
ln 𝑡 

α, β (Chien and Clayton, 1980) 

Intraparticle diffusion 𝑞𝑡 =  𝑘𝑖𝑑√𝑡 + 𝑙 kid, l (Demirbas et al., 2004) 

* qt, quantity of adsorbate adsorbed at time t (mg g-1); qeq, quantity of adsorbate adsorbed at equilibrium (mg g-1); 

α, adsorption rate constant (mg g-1 min-1); β, desorption rate constant (g mg-1); k1, pseudo-first order rate constant 

(min-1); k2, pseudo-second order rate constant (g mg-1 min-1); kid, intraparticle diffusion rate constant (mg g-1 

min0.5) ), l, is a constant related to the boundary layer thickness (mg g-1). 

 

The sorption kinetics of six PFAAs (PFOA, PFHxA, PFHxS, PFBS, PFBA and PFOS) on 

SWCNTs and MWCNTs were studied by Deng et al., (2012).  Sorption equilibrium was 

achieved on all adsorbents within 15 h, with faster sorption achieved for PFOS, PFOA and 

PFHxS than other contaminants.  PFOS and PFOA achieved about 95% removal after 5 h, while 

7.5% of PFBA was removed after 48 h.  Chen et al., (2011) reported that sorption equilibrium 

on CNTs for the removal of PFOS was achieved after 2 h.  Similarly, equilibrium was achieved 

after 2 h for the adsorption of PFOS and PFOA on CNTs in a study conducted by Yao et al., 

(2014).  A faster equilibrium was achieved for the sorption of PFOA and PFOS on CNTs than 

on granulated activated carbon (GAC) wherein equilibrium was achieved after 24 h (Yao et al., 

2014; Deng et al., 2015).  In fact Yao et al., (2014) reported that equilibrium was achieved on 

GAC after 168 h.  These results were consistent with data reported by Dai et al., (2013) for 

PFOS removal on carbon nanotube-filled electrospun membranes, wherein equilibrium was also 

achieved after 5 h.  Also, sorption was fastest on modified CNTs than it was on pure membranes.  

This indicates that the sorption properties of pure membranes were better enhanced to favour 

removal of PFOS in aqueous solution (Dai et al., 2013).  Li et al., (2011) also reported faster 

sorption of PFOS onto MWCNTs than other adsorbents such as activated carbon, resin, zeolite 

and sludge.  This suggests that CNTs provides faster sorption for the removal of PFOS and 

PFOA than conventional adsorbents such as activated carbon.  This could be because CNTs 

possess good pore volume/sizes and dimensions/surface area when compared to most 

conventional adsorbents.  In a study by Li et al., (2013), the sorption efficiency of PFOS on 

SWCNTs was predicted by using molecular dynamics simulation (MD).  The results indicate 

that the outer diameters and inner surfaces had considerable influence on the extent of 

adsorption of PFOS onto nanotubes (Li et al., 2013).  Adsorption on mesoporous materials is 

assumed to be faster than macroporous porous adsorbents, hence the porosity and surface area 
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of adsorbents play an important role in determining the extent of sorption on adsorbents 

(Punyapalakul et al., 2013). 

 

Chen et al., (2011) demonstrated that the equilibrium data was better described by the pseudo-

second order model, indicating that sorption was controlled by chemical reaction involving an 

exchange or sharing of electrons between active sites of adsorbents and the adsorbates (Oyetade 

et al., 2015).  This further indicates that adsorption is dependent on the number of active sites 

present on the adsorbents.  Sorption on porous materials is usually controlled by external 

diffusion, boundary layer diffusion and the intraparticle diffusion.  The rate-controlling step was 

determined by use of the intraparticle diffusion model, but intraparticle diffusion was not the 

only sorption-controlling step (Du et al., 2015).  Similar results were reported for carbon 

nanotube-filled electrospun membrane (Dai et al., 2013), MWCNTs (Li et al., 2011; Yao et al., 

2014), activated carbon (Yu et al., 2009), clay (Zhao et al., 2014), resin (Yu et al., 2009) and 

porous silica (Punyapalakul et al., 2013). 

 

3.3.3. Adsorption Isotherms 

An estimate of the adsorption capacity of adsorbents for pollutant removal from aqueous 

solution is given by isotherms.  The equilibrium data obtained for adsorption is usually tested 

against various sorption models involving two-parameter and three-parameter models.  Some 

of the models used for adsorption are the Langmuir (Langmuir, 1918), Freundlich (Freundlich, 

1906), Temkin (Temkin and Pyzhev, 1940), Dubinin-Radushkevich (Dubinin and 

Radushkevich, 1947), Redlich-Peterson (Redlich and Peterson, 1959), Toth (Toth, 1971), Sips 

(Sips, 1948) and Khan (Khan et al., 1996) isotherms.  Of these ones, the frequently used models 

are the Langmuir and Freundlich isotherms.  The Langmuir isotherm assumes that adsorption 

occurs on a monolayer surface; and all adsorption sites are equivalent with no interaction 

between adjacent adsorbate molecules (Langmuir, 1918).  The maximum monolayer adsorption 

capacity (qm) takes place when the adsorption sites are occupied (i.e. when the sites are 

saturated).  The heat of adsorption is assumed to be the same for all sites.  The Freundlich 

isotherm is suitable for heterogeneous surfaces and assumes that adsorption occurs on a 

multilayer surface (Freundlich, 1906).  The Langmuir and Freundlich equations for both models 

are given in equations 3.1 and 3.2, respectively. 

   𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐶𝑒𝑞

1+𝑏𝐶𝑒𝑞
       (3.1) 

   𝑞𝑒𝑞 = 𝐾𝐹𝐶𝑒𝑞
1 𝑛⁄

       (3.2) 
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where qeq is the adsorption capacity (mg g-1); Ceq is the equilibrium concentration of adsorbate 

in solution (mg dm-3); qm is the maximum monolayer capacity (mg g-1); b is the Langmuir 

isotherm constant (dm3 mg-1); KF is the Freundlich isotherm constant (mg g-1)(dm3 mg-1)n; and 

n is the adsorption intensity. 

 

Chen et al., (2011) reported that the sorption processes of PFOS on various MWCNTs were 

better described by the Langmuir and Freundlich isotherms.  Sorption of PFOS on SWCNTs 

was better described by the Freundlich model.  It was reported that the sorption of PFOS onto 

CNTs was 3 to 8 times higher than on other adsorbents such as chars and ash.  Deng et al., 

(2012) also reported the Freundlich model as the best isotherm suited for the description of data 

obtained for PFOA sorption on various CNTs.  The sorption of PFOS onto MWCNTs showed 

similar trends as reported by Dai et al., (2013), Kwadijk et al., (2013) and Li et al., (2011).  This 

indicates that adsorption of PFCs occurs via multilayer adsorption of the adsorbates onto the 

surfaces of CNTs.  The adsorption capacity of CNTs was also noticed to increase with 

increasing surface area (Chen et al., 2011; Deng et al., 2012; Dai et al., 2013).  This further 

elucidates that surface area and pore volumes play a major role in adsorption.  Table 3.3 

summarizes the adsorption capacity of commonly used adsorbents for the removal of PFOS and 

PFOA from aqueous solution.  The adsorption capacity (qm) of CNTs was observed to compare 

favourably with other adsorbents, indicating the possible use of CNTs for PFC removal.  It is 

noticeable that higher adsorption capacities (qm) were reported for the removal of PFOS than 

PFOA on most adsorbents.  Perfluorinated sulfonates (PFSAs) are more hydrophobic, 

possessing lower pKa values, than the corresponding perfluorinated carboxylates (PFCAs) 

(Higgins and Luthy, 2006; Arvaniti et al., 2012) containing the same number of carbon atoms.  

Reports have indicated that this property induces better removal of PFSAs onto oxide surfaces 

of adsorbents, thereby resulting in higher adsorption capacities (qm) (Du et al., 2014). 
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Table 3.3: Comparison of Langmuir monolayer adsorption capacities (qm) for the removal of PFOS and PFOA using various 

adsorbents 

Adsorbents Conditions 
qm/mg g-1 

References 
PFOS PFOA 

Powdered activated carbon 
pH 5.0, 250 mg dm-3, 12 h, 298 K, 100 mg 520.13 277.43 (Yu et al., 2009) 

100 mg dm-3, pH 7, 3 h, 298 K, 67 mg 714.3 434.8 (Punyapalakul et al., 2013) 

Granulated activated carbon 

pH 7.2, 283 K, 150 mg dm-3, 48 h 196.2-236.4 112.1 (Ochoa-Herrera and Sierra-Alvarez, 2008) 

50 mg dm-3, pH 5.0, 24 h, 20 mg, 294 K 22.1 22.7 (Yao et al., 2014) 

pH 5.0, 250 mg dm-3, 168 h, 298 K, 100 mg 185.04 161.49 (Yu et al., 2009) 

Zeolite 
pH 7.2, 283 K, 150 mg dm-3, 48 h 12-114.7 - (Ochoa-Herrera and Sierra-Alvarez, 2008) 

100 mg dm-3, pH 7, 3 h, 298 K, 67 mg 50.9-75.7 15.5-17.9 (Punyapalakul et al., 2013) 

Maize-straw chars pH 7.0, 500 mg dm-3, 298 K, 384 h 164 - (Chen et al., 2011) 

Willow-derived chars pH 7.0, 500 mg dm-3, 298 K, 384 h  91.6 - (Chen et al., 2011) 

Maize-straw origin ash pH 7.0, 500 mg dm-3, 298 K, 48 h 811 - (Chen et al., 2011) 

SWCNT pH 7.0, 100 mg dm-3, 298 K, 2 h 712 - (Chen et al., 2011) 

MWCNT pH 5.0, 50 mg dm-3, 2 h, 20 mg, 294 K 21.3 12.4 (Yao et al., 2014) 

MWCNT pH 7.0, 500 mg dm-3, 298 K, 2 h 656 - (Chen et al., 2011) 

MWCNT pH 7.0, 500 mg dm-3, 298 K, 2 h 514 - (Chen et al., 2011) 

MWCNT pH 7.0, 10 mg, 24 h, 298 K, 50 mg dm-3 - 95.24 (Deng et al., 2012) 
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3.6. Adsorption mechanisms of PFAAs 

The mechanism for the sorption of PFAA onto CNTs may not be straightforward due to the 

properties of the compounds.  They contain a hydrophilic functional head, and both 

hydrophobic and oleophobic C-F chains, which makes their mechanism complicated.  

Several mechanisms, such as electrostatic, hydrophobic, π-π and hydrogen bonding 

interactions, have been proposed for PFAA removal from aqueous solution.  This is due to 

variations in the surface properties of the adsorbents which may be used for adsorption.  

Reports have shown that PFAAs exist as anions in an aquatic environment, possessing very 

low pKa values (Higgins and Luthy, 2006; Arvaniti et al., 2012; Du et al., 2014).  This 

property may induce electrostatic interactions between the PFC anions and positively 

charged surfaces of the adsorbents.  This is one of the commonest reported interactions for 

the removal of PFAAs onto various adsorbents (Zhang et al., 2009; Gao and Chorover, 2012; 

Zareitalabad et al., 2013; Yao et al., 2014; Du et al., 2015; Li et al., 2015).  Oxidized CNTs 

usually possess a point of zero charge (pHPZC) between 3 and 5 (Chen et al., 2011; Hamza 

et al., 2013; Oyetade et al., 2015).  This implies that the surface of CNTs is negatively 

charged at a solution pH greater than pHPZC.  An electrostatic repulsion between anionic 

PFCs and negatively charged surfaces is induced at this stage (Li et al., 2015).  However, 

the surfaces of CNTs are positively charged at lower pH values, enhancing electrostatic 

attraction between PFC anions and adsorbents (Du et al., 2015; Li et al., 2015). 

 

Furthermore, the kinetics data is mostly described by the pseudo-second order model (Yu et 

al., 2009; Chen et al., 2011; Deng et al., 2015; Du et al., 2015), indicating that the 

mechanism for the process is determined by the bimolecular interaction between the 

adsorbent and adsorbate, through the formation of a chemical bond by the sharing or 

exchange of electrons (Hamza et al., 2013; Oyetade et al., 2015).  This therefore elucidates 

that the mechanism for PFAA sorption may be explained via electrostatic interaction. 

 

However, some researchers have proposed that hydrogen bonding may be responsible for 

the adsorption of PFAA anions onto oxygen-containing adsorbents.  Xu et al., (2013) 

associated PFOS removal to hydrogen interactions between the sulfo-group on PFOS and –

OH groups on adsorbents.  They suggested that interactions were enhanced between the 

oxygen atoms contained in PFAA anions, which act as acceptors to initiate hydrogen 

bonding, and functional groups such as –COOH and –OH contained in the adsorbents.  

Hydrogen bonding could also occur through interactions between fluorine atoms on PFAAs 

and –OH groups on the adsorbents (Deng et al., 2012).  This theory was further supported 

by Gao and Chorover, (2012) wherein PFOA and PFOS were also sorbed via hydrogen 

bonding onto oxygen-containing adsorbents.  However, in a study by Zhang et al., (2009) 

they reported that an increase in the number of oxygen groups on MWCNTs may reduce the 
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sorption of organic compounds.  Pristine MWCNTs were observed to have better sorption 

of organic compounds than oxidized MWCNTs due to the formation of water clusters on the 

surface of the tubes.  This was supported by Deng et al., (2012), wherein they noted that 

hydrogen bonding may be impossible with pristine CNTs, since they do not contain 

hydrogen atoms.  In a similar study by Li et al., (2011), PFOA, PFOS and PFOSA were 

adsorbed by using MWCNTs containing different oxygen contents.  They reported a higher 

adsorption capacity for MWCNTs with lower oxygen contents, inferring that hydrogen 

bonding interactions between –OH containing functional groups on the adsorbents and 

PFAA anions do not play a major role in adsorption.  Hence, the mechanisms involved for 

PFAA removal onto oxygen-containing adsorbents is not well understood, and more studies 

need to be carried out for a better understanding of the interactions involved. 

 

Due to the absence of π-π electrons in PFAAs, interactions through π-π bonding are minimal 

(Deng et al., 2012; Du et al., 2014).  However, studies have also shown that PFAA anions 

can adsorb on negatively charged adsorbents via hydrophobic interactions.  Studies have 

shown that CNTs possess strong affinity for removal of organic compounds due to strong π-

π electrons in their structure (Li et al., 2011).  PFAAs possess hydrophobic properties due 

to inherent strong C-F bonds; which facilitate interactions between hydrophobic surfaces of 

adsorbents and its molecule (Punyapalakul et al., 2013).  This phenomenon was supported 

by Deng et al., (2012), wherein PFAA anions were adsorbed onto the negatively charged 

surfaces of CNTs, hence supporting hydrophobic interactions.  They reported a decreased 

adsorption uptake of PFAAs with a decrease in the chain length of molecules (i.e. highest 

adsorption was obtained for adsorbates with higher C-F chain lengths).  This trend was also 

supported by Chen et al., (2011), Du et al., (2015), Li et al., (2011), Milinovic et al., (2015) 

and Yu et al., (2009).  Also, Deng et al., (2012) reported that PFAAs containing sulfonic 

groups were better adsorbed than the corresponding carboxylates with the same chain length 

due to higher hydrophobicity experienced with sulfonic-containing PFAAs.  This hypothesis 

was justified by the studies of Deng et al., (2015), Li et al., (2011), Du et al., (2015), Ahrens 

et al., (2011), and Milinovic et al., (2015), wherein reported adsorption capacities of PFOS 

were higher than PFOA. 

 

The formation of hemi-micelles and micelles on adsorbent surfaces has also been reported 

to affect the extent of PFAA removal (Deng et al., 2012; Du et al., 2014).  More hydrophobic 

PFAAs, such as PFOS and PFOA, form hemi-micelles and micelles by the aggregation of 

C-F chains in water molecules.  The critical micelle concentration (CMC) of PFOA and 

PFOS are 15696 and 4573 mg dm-3 respectively (Chen et al., 2011; Du et al., 2014).  The 

formation of hemi-micelles and micelles through hydrophobic interactions onto the surface 

of adsorbents may hinder the sorption of PFAAs when the adsorbed anion concentration 

reaches the range of 0.01 to 0.001 of their CMC values (Du et al., 2014; Deng et al., 2015).  
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This result in the blocking of the inner pores of the adsorbent and may translate into 

obtaining a lower adsorption uptake of PFAA anions (Deng et al., 2015).  Deng et al., (2015) 

obtained lower Langmuir monolayer adsorption capacities for the sorption of PFOS onto 

activated carbon than the expected equilibrium concentrations.  Similar trends was reported 

by Yu et al., (2009) and they attributed this effect to the higher hydrophobicity of PFOS, 

which may enhance the formation of micelles on the surface of adsorbents, hence resulting 

in lower adsorption capacities. 

 

The formation of hemi-micelles and micelles on the surfaces of adsorbents was also reported 

to enhance the removal of long-chain PFAAs, such as PFOA and PFOS, by Du et al., (2015).  

Increasing adsorption capacities for the sorption of PFOS onto positively charged adsorbents 

were reported by Chen et al., (2011), and attributed to the formation of micelles on the 

surface.  They postulated that aggregation of micelles onto the adsorbent surface enhanced 

the bilayer coverage of micelles with continued increase in PFOS concentration, resulting 

in an increased removal of PFOS by the adsorbent.  Bilayer formation of PFOS onto 

positively charged surfaces of adsorbents therefore enhanced the Langmuir adsorption 

capacities.  Similar results have also been reported by Zhang et al., (2011), Karoyo and 

Wilson, (2013) and Du et al., (2014). 

 

Hence, the mechanism of PFAA adsorption onto the surfaces of adsorbents can proceed via 

any of the discussed processes depending on the surface of the adsorbent.  However, more 

studies need to be carried out in order to sufficiently understand these processes. 

 

 

3.7. Conclusions 

From the assessed reports, evidence exists that PFAAs are emerging pollutants in various 

environmental media.  This is largely attributed to the indiscriminate discharge of untreated 

effluents into various environmental media, with water bodies being the major recipient.  

This poses a serious environmental risk to man and its environs due to the persistence and 

toxicity of these contaminants.  Removal of PFAAs through adsorption was assessed and 

found to have proved very effective. 

 

The use of CNTs as adsorbents for PFAA removal showed better efficiencies than other 

conventional adsorbents due to their inherent properties such as large surface areas and 

moderate porosity available for adsorption.  Although, some conventional adsorbents 

possess higher surface areas than CNTs, the ease of functionalization of CNTs to introduce 

new adsorption sites makes them more effective than conventional adsorbents.  The removal 

of PFAAs by CNTs achieved good adsorption efficiencies, obtaining equilibrium faster than 
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most conventional adsorbents.  The morphology and the ease with which CNTs can be 

modified to possess hydrophobic, hydrophilic or amphiphilic properties further enhances 

their potential as adsorbents for PFAAs.  This demonstrates the effective application of 

CNTs for PFAA removal, with a possibility of regenerating the adsorbent for reuse.  Various 

studies demonstrated that adsorption of PFAAs onto CNTs was via electrostatic, 

hydrophobic, π-π, and hydrogen bonding interactions, hence revealing that the adsorption 

mechanism of PFAAs onto CNTs is quite complicated. 

 

It is clear that more studies need to be carried out for a better understanding of the adsorption 

mechanisms of PFAAs onto CNTS.  Also, further development of novel and innovative 

CNT-based adsorbents for the effective removal of PFAAs from wastewater before its 

disposal into water bodies is required.  
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Abstract 

This study investigated the introduction of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-

Phttpy) onto the surface of multiwalled carbon nanotubes (MWCNTs) to obtain nitrogen-

functionalized MWCNTs (MWCNT-ttpy).  This novel material was characterised and tested 

for its possible use in the remediation of wastewater contaminated with heavy metal ions.  

Its efficacy was compared with that of acid-functionalized MWCNTs (MWCNT-COOH) 

for the removal of the heavy metal ion Cu2+ through adsorption.  The synthesis of HO-Phttpy 

was first synthesized, followed by the functionalization of MWCNT-COOH to afford 

MWCNT-ttpy.  MWCNT-ttpy showed significant textural enhancement, demonstrating an 

increase in surface area and pore volume.  Its application for Cu2+ removal showed a marked 

increase in uptake (qe), i.e. 19.44 to 31.65 mg g-1, compared with MWCNT-COOH.  This is 

attributed to the introduction of more active/chelating sites for adsorption.  The kinetics of 

adsorption was best described by the pseudo-second order model and among the isotherms 

tested, the Langmuir isotherm provided the best fit for the equilibrium data.  Thermodynamic 

studies revealed that the adsorption process was spontaneous and endothermic.  Desorption 

studies demonstrated a better removal efficiency of Cu2+ from MWCNT-ttpy, indicating its 

possible regeneration and the recovery of the Cu2+ adsorbate for reuse.  Thus, MWCNT-ttpy 

shows superior properties for wastewater remediation. 

 

Keywords:  multiwalled carbon nanotubes, adsorption, isotherm, kinetics, thermodynamics, 

copper   
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4.1. Introduction 

Carbon nanotubes (CNTs) are tubular shaped carbon nanomaterials, possessing excellent 

electrical, mechanical and optical properties and thermal stability.1-3  This has led to a 

growing interest for their application in various fields.  They are made up of a hexagonal 

lattice of carbon atoms, consisting of hollow graphite, rolled at specific angles into 

cylinders.4  CNTs are classified into single-walled carbon nanotubes (SWCNTs), double-

walled carbon nanotubes (DWCNTs) and multiwalled carbon nanotubes (MWCNTs), 

depending on the number of concentric sheets contained in the tubes.4,5  They form large 

aggregates with low dispersability in aqueous and organic solutions due to strong van der 

Waals interactions between them.  This necessitates the need for the development of both 

covalent and non-covalent strategies5 for CNT functionalization, in order to introduce 

functional groups which will enhance their application for other purposes.  Covalent 

functionalization is often carried out through the oxidation of CNTs with acids such as HNO3 

and H2SO4, to introduce oxygen-containing groups such as –OH and –COOH onto the walls 

of the tubes.6,7  This approach improves the wettability of CNTs, thereby increasing their 

dispersability in aqueous/organic solutions.  New functional groups, such as –NR, –F, –Cl 

and –SR, can also be incorporated onto the walls/sides of the tubes through solution 

chemistry.6 

 

In recent times, the application of CNTs in various fields such as medicine,8,9 engineering,10 

environmental science,7 energy,11 catalysis and catalyst supports,5 amongst many others, has 

been reported by several authors.  This is largely attributed to their inherent properties such 

as large surface area, pore volume and the ease in introducing new functional groups onto 

their walls.  In spite of these studies, functionalization of CNTs to contain multiple 

functional groups which will further enhance chemical reactions with other molecules is still 

under-researched.1 

 

The tridentate chelating ligand, 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-Phttpy), 

containing three nitrogen atoms is a good contender for the functionalization of MWCNTs, 

in order to introduce nitrogen-containing atoms to the structure of CNTs.  HO-Phttpy has 

profound flexibility to form bridged metal centres by using two or more moieties, 

construction of supramolecular structures and formation of macrocyclic ligands.12  Due to 

the strong affinity of this ligand for transition metal ions, the chelates produced have been 

used in luminescence and chemical sensing devices.13  In spite of the vast amount of work 

on CNTs, to the best of our knowledge, no study has investigated the effect of 

functionalization of oxidized MWCNTs (MWCNT-COOH) with HO-Phttpy for their 

increased activity as adsorbents. 
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One possible area of application of CNTs functionalized with nitrogen-donor ligands is the 

remediation of wastewater contaminated with heavy metal ions.  The influx of toxic 

pollutants, through anthropogenic activities such as industrial and commercial applications, 

into the environment is a major challenge globally.  Among these pollutants are heavy 

metals, which have generated global attention because of their toxicity, bio-accumulation in 

the food chain, inability to degrade to less harmful substances and ability to persist in the 

environment for long periods of time.14  In addition, the speciation of metals may change to 

more toxic forms with time and depending on environmental conditions such as pH. 

 

In this work, the synthesized material was applied for the removal of Cu2+ as an example of 

a typical heavy metal ion discharged into the environment.  The choice of copper was based 

on the fact that copper and its compounds are regularly used in agriculture for fertilizer 

production,15 electronics,16 textiles,17 medicine9 and metal cleaning purposes.18  The 

discharge of copper-contaminated effluents into aquatic environments introduces humans to 

necrotic changes in the liver and kidney, gastrointestinal irritations such as diarrhoea and 

melena, and including a number of capillary diseases; resulting in severe deleterious health 

effects.19,20  Although copper is a known essential metal at low concentrations, an excessive 

amount is considered harmful to both aquatic and human life.21,22  In fact, cases of accidental 

or suicidal poisoning have been reported in India and some western countries as a result of 

the intake of copper compounds.20,22  As a result of the numerous health consequences, a 

variety of techniques such as chemical precipitation,23 ion exchange,24 ultrafiltration,25 

reverse osmosis26 and adsorption27 have been used for Cu2+ removal from municipal 

wastewaters and industrial effluents.  Of these methods, adsorption is considered most 

reliable for its removal from wastewater.27  This approach is simple, efficient, and cost-

effective, with a high potential for recycling the metal ion and the adsorbent.  Thus, the 

removal of Cu2+ from aqueous solution by adsorption has been reported through the use of 

tree fern,28 bagasse,29,30 peanut hull,31 rice husk,32 magnetite,33,34 peat35 and activated 

carbon.36-38  Reports have shown that these adsorbents possess good potential for Cu2+ 

removal; however, drawbacks such as slow sorption and regeneration of adsorbents limits 

their usage.28,30,35  Pristine and functionalized CNTs have also been applied as adsorbents 

for Cu2+ removal.19,27,39,40  However, increased removal efficiency can be achieved by using 

CNT-based nanocomposites as adsorbents.  Composites such as CNT/bagasse,41 

CNT/magnetite,42,43 and CNT/chitosan44 have demonstrated good sorption ability for Cu2+ 

removal.  To further improve the efficiency of CNT-based nanomaterials, nitrogen-

containing ligands can be used as modifiers for CNTs, hence, increasing the number of 

chelating sites available for adsorption on the adsorbent.45 

 

In this communication, we report the synthesis of nitrogen-functionalized MWCNTs 

(MWCNT-ttpy) through the functionalization of acid-functionalized MWCNTs (MWCNT-
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COOH) by incorporating 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-Phttpy) onto their 

structure.  The effectiveness of this material in the adsorption of Cu2+ from aqueous solution 

was examined through a series of batch adsorption processes and compared with that of 

MWCNT-COOH.  The effects of pH, contact time, adsorbent dose, temperature and initial 

Cu2+ concentration were investigated to determine the optimum conditions for the effective 

remediation of Cu2+-polluted wastewater.  In addition, desorption studies were undertaken 

to investigate the potential reuse of the adsorbent and recovery of the adsorbate. 

 

 

4.2. Experimental 

4.2.1. Materials 

Copper metal powder was obtained from Johnson Matthey Chemicals (Pty) Ltd (Gauteng, 

South Africa) while sodium hydroxide (NaOH, 98%) and sodium bicarbonate (NaHCO3, 

99%) were purchased from Merck Chemicals (Pty) Ltd (Gauteng, South Africa).  Sodium 

carbonate (Na2CO3, 99%) was purchased from Associated Chemical Enterprises 

(Johannesburg, South Africa).  Chemicals such as 4-hydroxybenzaldehyde (99%), 2-

acetylpyridine (99%), indium bromide (InBr3, 99%) and solvents such as absolute ethanol, 

N,N'-dimethylformamide (DMF, 99%), dimethyl sulfoxide-d6 (DMSO-d6, 99%) and 

triethylsilane (Et3SiH, 97%) were purchased from Sigma-Aldrich (St Louis, USA).  

Tetrahydrofuran (THF, 99%), chloroform (99%) and thionyl chloride (SOCl2, 99%) were 

purchased from Merck Chemicals (Pty) Ltd (Gauteng, South Africa) while aqueous 

ammonia (25%) was purchased from Associated Chemical Enterprises (Johannesburg, 

South Africa).  Nitric (55%), sulfuric (98%) and hydrochloric acids (32%) were obtained 

from C C Imelmann Ltd (Robertsham, South Africa).  All materials and chemicals were of 

analytical grade and used as received from suppliers without further purification.  MWCNTs 

(purity > 95%) (P-MWCNTs), synthesized by chemical vapour deposition (CVD), were 

obtained from Cheap Tubes Incorporation (Brattleboro, USA). 

 

4.2.2. Characterization 

The ligand, 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine, was characterized by using Fourier 

transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) and mass 

spectrometry, and melting point measurements.  The FTIR spectra were recorded on a Perkin 

Elmer RX 1 spectrophotometer and the melting point was determined by using a Bibby 

Stuart Scientific model SMP3 apparatus.  1H and 13C NMR spectra were obtained from a 

400-MHz Bruker Avance III spectrometer and mass spectra were obtained on a Waters 

Synapt G2 mass spectrometer in electrospray positive mode. 
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Structural characterization of the adsorbents was carried out with a transmission electron 

microscope (TEM) (JEOL, TEM 1010) and a scanning electron microscope (SEM) (JEOL, 

TSM 6100) to visualize the morphology, structure, shape and size distribution of the 

nanomaterials.  Images were captured by means of a Megaview 3 camera and analysed on 

iTEM software.  The surface area of the adsorbents was determined with nitrogen as the flow 

gas by means of a Micromeritics Tristar II 3020 surface area and porosity analyser.  Data 

were captured and analysed by using Tristar II 3020 version 2 software.  Fourier transform 

infrared (FTIR) spectra of the synthesized materials were obtained when the samples were 

embedded into KBr pellets and were recorded on a Perkin Elmer Spectrum RX 1 

spectrophotometer, in order to identify the surface functional groups present on the 

materials.  Raman spectroscopy (DeltaNu Advantage 532TM) measurements were also 

performed to provide information on the purity and crystallinity of the adsorbents.  

Thermogravimetric (TGA) analysis (Q SeriesTM Thermal Analyzer DSC/TGA Q600) was 

performed to determine the thermal stability and fraction of volatile components in the 

samples while the Boehm titration was applied to quantitatively estimate the amount of 

acidic and basic groups present on the adsorbents.  Elemental analysis (ThermoScientific 

Flash 2000) of adsorbents was also carried out to investigate the percentage composition of 

carbon, hydrogen, oxygen and nitrogen present in the samples. 

 

4.2.2.1. Determination of point of zero charge (pHPZC) 

Aliquots of 50 cm3 of 0.01 mol dm-3 NaCl solutions were placed into bottles and adjusted 

with the addition of appropriate amounts of 0.1 mol dm-3 HCl or NaOH to obtain an initial 

pH in the range of 1-10.  A mass of 100 mg of adsorbent was added into each bottle and the 

suspension left to equilibrate on an orbital shaker for 48 h at room temperature.  The 

solutions were filtered and the final pH of the filtrate determined.  A plot of pHinitial – pHfinal 

vs. pHinitial was obtained and the point of intersection of the curves gave the pHPZC of the 

adsorbent.46 

 

4.2.2.2. Boehm titration 

The basic and acidic properties of the adsorbents were quantitatively determined by the 

Boehm titration.  This analysis method gives quantitative information on the amount of total 

basic and acidic groups on the adsorbents.47-49  As reported by Boehm et al.,50 the 

determination of acidic groups (carboxyl, lactonic, phenolic) on the adsorbents was 

performed by weighing 100 mg of each sorbent into a 50 cm3 polypropylene bottle and 

mixed with 20 cm3 of either 0.05 mol dm-3 NaHCO3, NaOH or 0.1 mol dm-3 Na2CO3 

solutions.  The suspensions were agitated in a thermostated water bath at room temperature 

for 24 h.  The resulting solutions were filtered by gravity, and the amount of excess base 

determined quantitatively by back-titration against 0.05 mol dm-3 HCl solution.  For the 
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determination of the basic groups, 100 mg of adsorbents were mixed with 0.05 mol dm-3 

HCl solution and agitated on a thermostated water bath at room temperature for 24 h.  After 

agitation, the suspension was filtered by gravity and the amount of basic groups in the 

adsorbent was determined by titrating the filtrate against 0.05 mol dm-3 NaOH solution.  The 

Boehm titration is based on the assumption that NaOH gives information on the amount of 

carboxylic, lactonic and phenolic groups, Na2CO3, on the carboxylic and lactonic groups, 

NaHCO3, on the carboxylic groups on each adsorbent and HCl gives the amount of basic 

groups on the adsorbent.50  Results were expressed as H+/OHˉ millimoles per gram of 

adsorbent. 

 

4.2.3. Procedure for the synthesis of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine 

(HO-Phttpy) 

The ligand was synthesized as reported by Patel et al.51,52 with some modifications.  2-

Acetylpyridine (2.423 g, 20.0 mmol) was added to 15 cm3 of a 2:1 (v/v) mixture of ethanol 

and water containing 4-hydroxybenzaldehyde (1.221 g, 10.0 mmol).  To the suspension, 

NaOH pellets (1.458 g, 26.0 mmol) and 30 cm3 aqueous NH3 were added and stirred 

continuously at room temperature for 8 h to yield a cream-coloured precipitate.  The 

resulting mixture was filtered, the solid obtained was washed with deionised water (5 × 10 

cm3), followed by absolute ethanol (3 × 5 cm3) to obtain the crude white product (508.8 mg, 

42%).  m.p. 199-201 °C; IR (ATR, cm-1) 3375, 1614, 1588, 1565; 1H NMR (400 MHz, 

DMSO-d6) δ: 6.92 (d, 2H, J=8.6 Hz), 7.49-7.52 (m, 2H), 7.75 (d, 2H J=8.68 Hz), 7.99-8.04 

(m, 2H), 8.67-8.74 (m, 6H); 13C NMR (400 MHz, DMSO-d6) δ: 160.2, 155.4, 155.1, 149.4, 

149.2, 137.3, 128.0, 126.8, 124.3, 120.8, 116.8, 116.4; HR-MS [C21H15N3O] ES:[M + H+] 

m/z Calcd 326.1215, found 326.1293.  Additional spectral information is shown in Appendix 

I (Figs A-1.1 - A-1.3). 

 

4.2.4. Preparation of MWCNT-COOH 

Oxidation of MWCNTs was carried out as reported by Oyetade et al.7 and Santangelo et 

al.53  In brief, pristine MWCNTs (1.5 g) were placed in a round-bottomed flask containing 

100 cm3 of concentrated hydrochloric acid, and stirred for 4 h to remove residual metal 

impurities from the tubes.  The resulting solution was filtered, and the solid washed with 

deionised water until a neutral pH was obtained.  The sample obtained was dried in a vacuum 

oven at 80 °C overnight and stored in a desiccator for future analysis.  The purified 

MWCNTs were then oxidized by using a mixture of sulfuric and nitric acids in a volume 

ratio of 1:3, and refluxed at 80 °C for 12 h.  The resulting solution was diluted with deionised 

water, filtered, and the residue obtained was washed continuously with deionised water until 

a neutral pH was obtained. 
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4.2.5. Preparation of MWCNT-COCl 

MWCNT-COOH (150 mg) were placed in a solution containing 30 cm3 of a 20:1 (v/v) 

mixture of SOCl2 and dry DMF, and then refluxed at 70 °C for 24 h.  The resulting mixture 

was filtered and the solid washed with anhydrous THF (5 × 5 cm3).54  The solid was dried 

in a vacuum oven at 80 °C, and stored under an inert atmosphere of argon for further 

analysis. 

 

4.2.6. Preparation of MWCNT-COOttpy 

MWCNT-COCl (100 mg) were added to HO-Phttpy (100 mg) in a round-bottomed flask 

containing 20 cm3 of dry THF and 2-3 drops of glacial acetic acid.  The mixture was refluxed 

at 64 °C for 24 h under an inert atmosphere of argon.  After cooling to room temperature, 

the resulting suspension was filtered and the product obtained was washed with THF and 

dried in a vacuum oven at 80 °C overnight. 

 

4.2.7. Functionalization of MWCNT-ttpy 

The reduction of MWCNT-COOttpy to obtain an ether was carried out as reported by Sakai 

et al.55  MWCNT-COOttpy (100 mg), InBr3 (10.6 mg, 0.03 mmol) and Et3SiH (380 µL, 2.4 

mmol) were added to a 30 cm3 solution of freshly distilled chloroform, and refluxed at 60 

°C for 1 h under an inert atmosphere of argon.  The suspension was filtered and the solid 

obtained was washed with chloroform, followed by water until a neutral pH was obtained.  

The resulting solid was dried in a vacuum oven at 80 °C overnight and stored in a desiccator 

for future analysis. 

 

4.2.8. Adsorbate preparation 

A standard stock solution of Cu2+ was prepared by dissolving approximately 1.0 g of pure 

copper metal into 50 cm3 of 5 mol dm-3 nitric acid.  The solution was made up to 1000 dm3 

with deionized water.  From this solution, working solutions were prepared by diluting the 

stock solution in accurate proportions to obtain required concentrations. 

 

4.2.9. Sorption experiments 

The adsorption of Cu2+ on prepared adsorbents was investigated by using batch adsorption 

experiments.  All adsorption experiments were conducted in duplicate by using 50 cm3 

polypropylene plastic vials.  Freshly prepared working solutions of 100 mg dm-3 Cu2+ were 

prepared from the stock solution daily.  Adsorption experiments were performed by agitating 

20 cm3 of a known Cu2+ concentration (100 mg dm-3) in a thermostated water bath at a fixed 
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temperature (20 °C) for 24 h with an adsorbent dose of 50 mg.  The pH of the solution was 

adjusted by adding appropriate amounts of 0.1 mol dm-3 NaOH or HNO3 to obtain the 

desired pH.  After the required time interval, the mixtures were filtered and the final 

concentration of Cu2+ in the filtrate was determined by inductively coupled plasma-optical 

emission spectroscopy (ICP-OES) (PerkinElmer Optima 5300 DV).  The operating 

conditions for ICP-OES are given in Appendix I (Table A-1.1).  The effect of pH, amount 

of adsorbent, initial Cu2+ concentration, contact time and temperature was studied in order 

to determine the optimum conditions necessary for Cu2+ removal from aqueous solution.  

The adsorption efficiency (% adsorbed) and adsorption capacity (qe) were calculated by 

using equations 4.1 and 4.2, respectively. 

 

% 𝐴𝑑𝑠𝑜𝑟𝑏𝑒𝑑 =  (
𝐶𝑖− 𝐶𝑒𝑞

𝐶𝑖
) × 100     (4.1) 

𝑞𝑒𝑞 =  (
𝐶𝑖− 𝐶𝑒𝑞

𝑚
) × 𝑉      (4.2) 

 

Ci is the initial Cu2+ concentration (mg dm-3), Ceq is the equilibrium concentration of Cu2+ 

(mg dm-3), qeq is the adsorption capacity (mg g-1), m is the mass of the adsorbent (mg) and V 

is the volume (dm3) of the adsorbate solution used. 

 

4.2.9.1. Kinetics, isotherm and thermodynamic studies 

Kinetics studies were performed by agitating 20 cm3 aliquots of 100 mg dm-3 Cu2+ solution 

with an adsorbent dose of 50 mg.  The mixture was placed in a thermostated water bath at 

20 °C and agitated for different time intervals in the range of 5 to 1440 min.  The pH of the 

solution was conditioned to 5 by using 0.1 mol dm-3 NaOH/HNO3.  After the pre-determined 

time intervals, the samples were filtered by gravity and the equilibrium concentration of 

Cu2+ determined by ICP-OES.  The experimental data obtained were applied to the pseudo-

first order, pseudo-second order, intraparticle diffusion and Elovich kinetics models given 

in Table 4.1. 

 

Table 4.1:  Kinetics models investigated for the adsorption of Cu2+ 

Model Equationa Parameters References 

Pseudo-first order 𝑞𝑡 =  𝑞𝑒𝑞(1 − 𝑒−𝑘1𝑡) qeq, k1 28,56,57 

Pseudo-second order 
𝑞𝑡 =  

𝑘2𝑞𝑒𝑞
2 𝑡

1 + 𝑘2𝑞𝑒𝑞𝑡
 

k2, qeq 28,35,56-58 

Elovich 
𝑞𝑡 =  

1

𝛽
ln(𝛼𝛽) + 

1

𝛽
ln 𝑡 

α, β 59 

Intraparticle diffusion 𝑞𝑡 =  𝑘𝑖𝑑  √𝑡 + 𝑙 kid, l 60 

aqt, quantity of adsorbate adsorbed at time t (mg g-1); qeq, quantity of adsorbate adsorbed at equilibrium (mg g-

1); α, adsorption rate constant (mg g-1 min-1); β, desorption rate constant (g mg-1); k1, pseudo-first order rate 
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constant (min-1); k2, pseudo-second order rate constant (g mg-1 min-1); kid, intraparticle diffusion rate constant 

(mg g-1 min0.5), l, is a constant related to the boundary layer thickness (mg g-1). 

 

Adsorption isotherms were investigated by using varying Cu2+ concentrations, ranging from 

10–100 mg dm-3, at a constant pH of 5.  Aliquots of 20 cm3 were mixed with 50 mg of the 

adsorbents and agitated on a thermostated shaking water bath under varying temperatures of 

293, 303, 313 and 318 K for 24 h.  The solutions were filtered by gravity and the 

concentrations of Cu2+ in the filtrates determined by ICP-OES.  The experimental adsorption 

equilibrium data were analysed by the adsorption isotherm models given in Table 4.2.  

Thermodynamic parameters such as change in Gibbs energy (ΔG°), change in enthalpy 

(ΔH°), and change in entropy (ΔS°) were also calculated over the studied temperature range. 

 

Table 4.2:  Isotherm models investigated for the adsorption of Cu2+ 

Isotherm model Equationa Parameters References 

Langmuir 𝑞𝑒𝑞 =  
𝑞𝑚𝐶𝑒𝑞𝑏

1 + 𝑏𝐶𝑒𝑞

 qm, b 
61 

Freundlich 𝑞𝑒𝑞 =  𝐾𝐹𝐶𝑒𝑞
1/𝑛

 KF, n 62 

Temkin  𝑞𝑒𝑞 =  
𝑅𝑇

𝑏𝑇
ln (𝐴𝑇𝐶𝑒𝑞) bT, AT 

63 

Dubinin-Radushkevich 

 

𝑞𝑒𝑞 =  𝑞𝑚𝑒−𝛽𝜀2
 

𝜀 = 𝑅𝑇𝑙𝑛 (1 +
1

𝐶𝑒𝑞

) 
qm, β 64 

Sips 𝑞𝑒𝑞 =  
𝑏𝑞𝑚𝐶𝑒𝑞

1/𝑛

1 + 𝑏𝐶𝑒𝑞
1/𝑛

 qm, b, n 65 

Toth 
𝑞𝑒𝑞 =  

𝑞𝑚𝐶𝑒𝑞

(
1

𝐾𝑇
+ 𝐶𝑒𝑞

𝑛𝑇)

1
𝑛𝑇⁄

 
qm, KT, nT 

66 

Redlich-Peterson 𝑞𝑒𝑞 =  
𝐾𝑅𝑃𝐶𝑒𝑞

1 + 𝛼𝑅𝑃𝐶𝑒𝑞
𝑔  KRP, aRP, g 67 

Khan 𝑞𝑒𝑞 =  
𝑞𝑚𝑏𝐾𝐶𝑒𝑞

(1 +  𝑏𝐾𝐶𝑒𝑞)
𝑎𝐾

 qm, aK, bK 
68 

aqeq, adsorption capacity (mg g-1); Ceq, equilibrium concentration of adsorbate in solution (mg dm-3); qm, 

maximum monolayer capacity (mg g-1); b, Langmuir isotherm constant (dm3 mg-1); KF, Freundlich isotherm 

constant (mg g-1)(dm3 mg-1)n; n, adsorption intensity; bT, Temkin isotherm constant; AT, Temkin isotherm 

equilibrium binding constant (dm3 g-1); β, Dubinin-Radushkevich isotherm constant (mol2 kJ-2); KT, Toth 

isotherm constant (mg g-1); nT, Toth isotherm constant; KRP, Redlich-Peterson isotherm constant (dm3 g-1); aRP, 

Redlich-Peterson isotherm constant; g, Redlich-Peterson isotherm exponent; ak, Khan isotherm exponent; bk, 

Khan isotherm constant. 

 

4.2.9.2. Desorption experiments 

Desorption studies were carried out by first contacting aliquots of 20 cm3 of Cu2+ solution 

with a concentration of 100 mg dm-3 and an adsorbent dose of 50 mg for 24 h.  The solution 
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was filtered and the loaded-adsorbent obtained was dried in a vacuum oven at 80 °C.  The 

remaining Cu2+ in the filtrate was determined.  A 50 mg mass of the loaded-adsorbent was 

added to a 10 cm3 aliquot of 0.1 mol dm-3 HCl and agitated for 30 min in a thermostated 

water bath at 20 °C.  The concentration of Cu2+ desorbed was then determined by using ICP-

OES. 

 

4.2.10. Data analysis 

The data obtained were fitted to the isotherm and kinetics models by means of the nls 

nonlinear regression routine in the R statistical computing environment.69  The R statistical 

software takes into account the minimization of the sum of squared residuals (SSR) and the 

residual square errors (RSE).  A comparison of all SSR and RSE values was done in order 

to assess the adequacy of the models.  The model chosen was that with the lowest SSR. 

 

 

4.3. Results and discussion 

The ligand and nanomaterials synthesised were characterized by a series of techniques to 

ascertain the authenticity and properties of the adsorbents for Cu2+ removal.  Subsequently, 

the efficiency of the novel material to adsorb Cu2+ was assessed and compared with that of 

acid-functionalized MWCNTs by means of batch adsorption processes. 

 

4.3.1.   Synthesis of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-Phttpy) 

The synthesis of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine was carried out by using a 

“greener” synthetic approach as illustrated in Fig 4.1.  The use of green solvents such as 

ethanol and water at room temperature affords an opportunity of obtaining products in 

moderate yields.  Upon reacting 4-hydroxybenzaldehyde and 2-acetylpyridine in an 

ethanolic solution, a cream-coloured precipitate was formed.  The completion of the reaction 

was monitored by thin layer chromatography (TLC) and FTIR and NMR spectroscopy.  The 

formation of the product was confirmed by the disappearance of the carbonyl absorption 

band at ≈1700 cm-1 and the appearance of sharp peaks at 1634 cm-1 (C=N str), 1250-1335 

cm-1 (C-N str), 712 cm-1 and 634 cm-1 (indicating γ and δ Py-ring in-plane and out-of-plane 

deformation vibrations respectively) in the FTIR spectra (Fig 4.4c).70-72  1H NMR 

spectrometry further confirmed the formation of the product by the disappearance of the 

methyl proton resonance peak (≈2.10 ppm) and the appearance of aromatic proton resonance 

peaks (≈7.5-8.0 ppm) (see Fig A-1.1, Appendix I).  Further verification of the product was 

done by 13C NMR and mass spectroscopy (see Fig A-1.3, Appendix I). 
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Fig 4.1:  Synthesis of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-Phttpy). 

 

4.3.2.  Synthesis of MWCNT-ttpy 

The synthesis of the novel nanomaterial was carried out first by the acylation of MWCNT-

COOH with a mixture of SOCl2 and DMF in a volume ratio of 20:1 as illustrated in Fig 4.2. 

 

                                                           

Fig 4.2:  Acylation of pristine MWCNTs. 

 

Acylated nanotubes (MWCNT-COCl) were further reacted in a mass ratio of 1:1 with HO-

Phttpy to afford esterified MWCNTs (MWCNT-COOttpy).  Reduction of MWCNT-

COOttpy was carried out in distilled CHCl3, by using Et3SiH as a reducing agent and InBr3 

as a catalyst, to afford ether-functionalized CNTs (MWCNT-ttpy).  The route to the 

synthesis of MWCNT-ttpy is shown in Fig 4.3. 

  

COOH

+ 

SOCl2/DMF 

(20:1 v/v) 

EtOH/H2O 

aq. NH3, RT 

HNO3/H2SO4 

(3:1 v/v) 

4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine 4-hydroxybenzaldehyde 2-acetylpyridine 

COCl
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Fig 4.3:  Route to the synthesis of MWCNT-ttpy. 

 

4.3.3. Characterization of adsorbents 

The synthesized products were characterized by FTIR spectroscopy.  Fig 4.4 shows the FTIR 

spectra of (a) P-MWCNT, (b) MWCNT-COOH, (c) HO-Phttpy and (d) MWCNT-ttpy.  For 

pristine MWCNTs (P-MWCNTs), the peaks observed at ≈1498 cm-1 are assigned to C=C 

stretching vibrations (Fig 4.4a) which are representative of graphitic structures characteristic 

of CNTs.1  The peaks observed around ≈3500 and ≈2700 cm-1 are attributed to the presence 

of water molecules and carbon dioxide, respectively.  Acidic functional groups such as 

carboxylic groups were introduced onto the walls of tubes after oxidation, hence a new peak 

at ≈1750 cm-1, assigned to C=O stretching, was noticeable (Fig 4.4b), indicating the presence 

of new groups after oxidation was carried out.39  For HO-Phttpy (Fig 4.4c), peaks at 3050 

cm-1 (aromatic C-H str), 1475-1585 cm-1 (aromatic C=C str), 1634 cm-1 (C=N str), 2890-

2970 cm-1 (CH2 and CH groups), 3500 cm-1 (O-H str), 1250-1335 cm-1 (C-N str), 712 cm-1 

and 634 cm-1 (indicating γ and δ Py-ring in-plane and out-of-plane deformation vibrations 

respectively) were obtained.70-72  Of importance to note is that MWCNT-ttpy (Fig 4.4d) 

showed a similar profile to that of the ligand (Fig 4.4c).  This therefore confirms that the 

successful functionalization of MWCNT-COOH with HO-Phttpy was achieved, since 

functional groups characteristic to the ligand were present for MWCNT-ttpy. 
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Fig 4.4:  FTIR spectra of (a) P-MWCNT, (b) MWCNT-COOH, (c) HO-Phttpy and (d) 

MWCNT-ttpy. 

 

To confirm the shape and structure, and determine the morphology of the synthesized 

adsorbents, images were collected from transmission electron microscopy (TEM) and 

scanning electron microscopy (SEM).  The micrographs shown in Fig 4.5 represent the SEM 

images of (a) P-MWCNT, (b) MWCNT-COOH and (c) MWCNT-ttpy while Fig 4.6 shows 

the TEM images of (a) P-MWCNT, (b) MWCNT-COOH and (c) MWCNT-ttpy.  As shown 

in Figs 4.5a and Fig 4.6a, a large entanglement of tubes was observed for P-MWCNT 

demonstrating a high presence of metal catalyst (shown with arrows) and amorphous carbon 

on the surface of the tubes.  More alignment and less agglomeration was observed for 

MWCNT-COOH (i.e. tubes purified and functionalized with acids) (Fig 4.5b).  This is in 

agreement with the study of Rosca et al.2  Oxidation of CNTs accounts for the shortening of 

tubes, thereby introducing new functional groups, such as carboxylate groups, onto open 

ends of CNTs.  Purification of CNTs removes the metal catalyst and amorphous carbon 

present on the surface of the tubes.1  Also, Fig 4.6c further demonstrates that the tubular 

structure characteristic of MWCNTs was preserved after functionalization with the nitrogen 

ligand was carried out.  A higher interspaced region was also noticed between tubes when 

compared with MWCNT-COOH (Fig 4.5b vs. 4.5c).  The images shown in Fig 6a-b 

demonstrate the straight morphology for P-MWCNTs and MWCNT-COOH, while a 

a

b

c

d

-O-H
-C-H C=C

C
H

2=
C

=O

C-NC=N Py-ring
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curved/bent morphology was obtained for MWCNT-ttpy (Fig 4.6c) due to the introduction 

of the ligand.  Evidence of functionalization was also noted as long strands of CNTs were 

cut to obtain short and open-ended tubes. 

 

 

Fig 4.5:  SEM images of (a) P-MWCNT, (b) MWCNT-COOH and (c) MWCNT-ttpy. 

 

 

Fig 4.6:  TEM images of (a) P-MWCNT, (b) MWCNT-COOH and (c) MWCNT-ttpy. 

 

 

In order to establish the thermal stability, purity and amount of volatile components in the 

synthesized adsorbents, thermogravimetric analysis (TGA) was carried out.  Fig 4.7 

represents the (a) thermograms (TGA) and (b) derivative thermograms (DTG) of P-

MWCNT, MWCNT-COOH and MWCNT-ttpy.  As observed from Fig 4.7a, both P-

MWCNTs and MWCNT-COOH were more thermally stable than MWCNT-ttpy.  A lower 

decomposition temperature was obtained for MWCNT-ttpy than for P-MWCNTs and 

MWCNT-COOH (Fig 4.7a).  This could be attributed to the increase in defects induced by 

the functionalization of MWCNT-COOH.  This result is consistent with data obtained from 

Raman spectroscopy (Table 4.4), which demonstrates that MWCNT-ttpy had a higher ID/IG 
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ratio than either P-MWCNTs or MWCNT-COOH.  A higher ratio was also obtained for 

MWCNT-COOH when compared with P-MWCNTs.  Hence, decreasing crystallinity in 

MWCNT-COOH and MWCNT-ttpy was associated with increasing functionalization, 

which thereby induces an increase in defects on P-MWCNTs, resulting in a larger ID/IG ratio.  

An increase in defective sites also accounts for a decrease in the decomposition temperature 

of MWCNT-COOH and MWCNT-ttpy obtained from TGA.  The thermal stability of 

MWCNTs therefore increased in the order MWCNT-ttpy < MWCNT-COOH < P-

MWCNTs.  These results are consistent with recently published studies by Zhao et al.,1 

Ombaka et al.,73 and Chizari et al.,74 indicating that increasing functionalization results in a 

reduced decomposition temperature and larger ID/IG ratio.  Purification of P-MWCNTs also 

resulted in the decrease of metal catalyst present in MWCNT-COOH (Fig 4.7a) as indicated 

by the residual mass remaining after 620 °C.  Three thermal decomposition stages were 

obtained for MWCNT-ttpy.  The first stage (in circle) showed a mass loss (∆m = 9.88%) in 

the interval of 282-412 °C, suggesting the release of CH4O (9.85%, calcd).  The second 

decomposition step (shown with arrow) demonstrates a mass loss (∆m = 35.84%) in the 

temperature range of 434-555 °C, suggesting the release of C9H6 (35.08%, calcd).  The third 

decomposition step was observed for all three types of CNTs (i.e. P-MWCNTs, MWCNT-

COOH and MWCNT-ttpy), representing the total decomposition of the graphitic structure 

of CNTs. 

 

Fig 4.7:  (a) Thermograms and (b) derivative thermograms of P-MWCNT, MWCNT-COOH 

and MWCNT-ttpy. 

 

Elemental analysis of the adsorbents confirmed the presence of nitrogen atoms attached to 

the ligand on the MWCNT-ttpy.  However, as expected, nitrogen atoms were absent in P-

MWCNTs and MWCNT-COOH (Table 4.3).  Thus, the presence of nitrogen atoms in 

MWCNT-ttpy confirms the successful functionalization of MWCNT-COOH with HO-

Phttpy.  The elemental analysis also showed an increase in the amount of oxygen in the order 

P-MWCNTs < MWCNT-COOH < MWCNT-ttpy.  Acidic functionalization of P-MWCNTs 

(a) Ligand 

MWCNT 

(b) 
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accounts for the increase in the oxygen content of MWCNT-COOH due to the incorporation 

of oxygen-containing functional groups onto the walls of tubes.7  An increase in the oxygen 

content of MWCNT-ttpy is accounted for by the functionalization of MWCNT-COOH, 

which introduces nitrogen and more oxygen atoms onto the tubes.  This result is consistent 

with data obtained from the Boehm titration (Table 4.5) which demonstrates an increase in 

the surface acidic groups of the MWCNTs as the extent of functionalization increases. 

 

Table 4.3:  Elemental analysis of P-MWCNT, MWCNT-COOH and MWCNT-ttpy 

Adsorbents %C %H %O %N 
Relative ratio General formula 

CaHbOcNd C H O N 

P-MWCNT 97.34 - 2.656 - 1.000 - 0.021 - (C48O)n 

MWCNT-COOH 94.20 - 5.880 - 1.000 - 0.047 - (C21O)n 

MWCNT-ttpy 77.40 2.573 13.98 6.053 1.000 0.396 0.136 0.067 (C15H6O2N)n 

 

The surface area of the adsorbents was noticed to increase in the order P-MWCNTs < 

MWCNT-COOH < MWCNT-ttpy (Table 4.4).  The results obtained indicated an increase 

in surface area and pore volume of MWCNT-COOH when compared with P-MWCNT 

(Table 4.4, Entry 2 vs. 1).  This is attributed to the treatment of P-MWCNT, which results 

in cutting of large entanglements of tubes (Fig 4.6a), thereby causing an increase in surface 

area and pore volume as observed in MWCNT-COOH.73  Furthermore, an increase in 

surface area and pore volume of MWCNT-ttpy (Table 4.4, Entry 3 vs. 2) was obtained, due 

to increasing functionalization of MWCNT-COOH.  This result confirms that surface 

area/pore volume of nanomaterials can be increased based on the extent of functionalization.  

All adsorbents were mesoporous in nature since the pore diameters were less than 50 nm.  

Hence, MWCNT-COOH and MWCNT-ttpy possess moderately large surface areas and 

increased pore volume, which might enhance faster and better sorption ability of the 

adsorbents for the removal of Cu2+ from aqueous solutions. 

 

Table 4.4:  Textural characterization of synthesized nanomaterials 

Entry Adsorbents Surface area/m2 g-1 Pore volume/cm3 g-1 Pore diameter/nm ID/IG 

1 P-MWCNT 108.8 0.494 18.44 1.17 

2 MWCNT-COOH 126.8 0.692 22.95 1.19 

3 MWCNT-ttpy 189.2 1.252 27.26 1.31 

 

The nature of the acidic and basic functional groups on the adsorbents was determined by 

the Boehm titration method.48,50  Functionalization of P-MWCNT with acids markedly 

increased the concentration of carboxyl, phenolic and lactonic groups on MWCNT-COOH 

(Table 4.5).  This was consistent with the FTIR spectra (Fig 4.4b) obtained, which revealed 

the appearance of a new peak at ≈1750 cm-1 corresponding to the formation of carboxylic 

groups.  This result conforms with data reported by Biniak et al.,49 wherein an increase in 
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acidic properties was attributed to oxidation of adsorbents with acids.  However, further 

functionalization with the nitrogen ligand decreased the concentration of the carboxyl 

groups but increased the concentrations of phenolic and lactonic groups.  It is also worthy 

of note that an increase in the total number of basic groups of the adsorbents was observed 

as the extent of functionalization increased.  MWCNT-ttpy contained the largest amount of 

basic groups justifying the presence of nitrogen-containing groups on the adsorbent. 

 

Table 4.5:  Surface chemistry of P-MWCNTs, MWCNT-COOH and MWCNT-ttpy 

determined by the Boehm titration method 

Adsorbents Carboxyl/

mmol g-1 

Lactonic/

mmol g-1 

Phenolic/

mmol g-1 

Total acidic 

groups/mmol g-1 

Total basic 

groups/mmol g-1 

pHPZC 

P-MWCNTs 0.136 0.014 0.114 0.264 0.145 5.04 

MWCNT-COOH 0.719 0.104 0.401 1.224 0.226 4.02 

MWCNT-ttpy 0.613 0.165 0.544 1.322 0.752 4.48 

 

 

4.4. Batch adsorption processes 

Sorption processes were carried out to examine the effectiveness and efficiency of 

MWCNT-COOH and MWCNT-ttpy for the removal of Cu2+ from a simulated wastewater.  

The role of various parameters that influence adsorption such as pH, contact time, adsorbent 

dose, temperature and initial adsorbate concentration were investigated to ascertain the ideal 

conditions suited for Cu2+ removal.  Kinetics, isotherm and thermodynamic studies were 

also carried out by using the data obtained. 

 

4.4.1. Effect of pH 

The extent of adsorption of Cu2+ onto the studied adsorbents was investigated at different 

pH values ranging from 1.0 to 10.0.  Removal of Cu2+ from aqueous solution is usually 

influenced by the initial pH of the solution, since it influences the surface charges present 

on the adsorbent and the speciation of the metal ion in solution.75  Fig 4.8b shows the 

speciation of Cu2+ as a function of pH in aqueous solution.  Free Cu2+ exist only at pH values 

≤ 5.  Precipitation of Cu2+ as hydroxy species occurs when the pH of the solution is further 

increased. 

 

A significant increase is noticed for the removal of Cu2+ from aqueous solution as the pH of 

the solution is increased (Fig 4.8a).  The surface charge of the adsorbents is positive at pH 

values less than their pHPZC (Table 4.5), resulting in a low removal of the adsorbate due to 

strong competitive activity between Cu2+ and H+ ions for active sites on the adsorbent.  
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Increasing the pH of the solution led to a decrease in H+, which enabled electrostatic 

attraction of Cu2+ onto the active sites of the adsorbents.  Cationic adsorption is favourable 

at pH values higher than pHPZC;76 hence, sorption of Cu2+ was propitious at pH conditions 

greater than 4.5.  Higher removal efficiencies of Cu2+ were noticeable from pH 3 to 7 when 

MWCNT-ttpy was used as adsorbent.  This is attributed to an increase in the number of 

chelating sites on the adsorbent, which permits strong binding between the nitrogen-donor 

atoms in the adsorbent and Cu2+.  Modification of MWCNT-COOH with HO-Phttpy 

significantly improved the textural properties of MWCNT-COOH, resulting in an increase 

in surface area, pore volume (Table 4.4) and active sites on MWCNT-ttpy (Table 4.5), hence, 

enabling better sorption ability for Cu2+ removal.  Although the data suggest that pH 7 is 

optimal for the removal of Cu2+, further adsorption studies were carried out at a pH value of 

5, in order to limit the effect of precipitation on Cu2+ removal. 

 

Fig 4.8:  (a) Effect of pH on sorption of Cu2+ onto MWCNT-COOH and MWCNT-ttpy, 

[conditions: 20 cm3 of 100 mg dm-3 Cu2+, 24 h equilibration time, 50 mg adsorbent 

dose, agitation speed 150 rpm, temperature 20 °C] and (b) speciation of Cu2+ as a 

function of pH in aqueous solution (as calculated by HySS speciation software).77 

 

4.4.2. Effect of contact time 

The effect of contact time for the adsorption of Cu2+ was examined at varying time intervals, 

between 5 and 1440 min, while keeping the initial Cu2+ concentration (100 mg dm-3), pH 

(5.0) and adsorbent dose (50 mg) constant.  The percentage removal of Cu2+ onto the studied 

adsorbents was noticeably increased with time, attaining equilibrium for MWCNT-COOH 

and MWCNT-ttpy at 180 min and 360 min, respectively (Fig 4.9).  After this stage, the 

percent adsorption was observed to remain steady with little or no further increase.  Initially, 

more active sites are available for adsorption, hence, enabling faster removal.  As the binding 
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sites on the surface of the adsorbents were occupied, further removal of Cu2+ was observed 

to be minimal.  Though adsorption was rapid in both adsorbents, MWCNT-ttpy exhibited 

higher removal efficiency at each time than MWCNT-COOH.  This could be attributed to 

the greater number of chelating sites on MWCNT-ttpy, induced through the 

functionalization of MWCNT-COOH with a nitrogen-containing compound.  In this study, 

the maximum time for agitation was fixed at 24 h to ascertain the complete removal of Cu2+ 

from aqueous solutions under all conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.9:  Effect of contact time for the adsorption of Cu2+ onto MWCNT-COOH and 

MWCNT-ttpy [conditions: 20 cm3 of 100 mg dm-3 Cu2+, 50 mg adsorbent dose, 

pH 5.0, agitation speed 150 rpm, temperature 20 °C]. 

 

4.4.3. Kinetics studies 

Four kinetics models, namely, the pseudo-first order, pseudo-second order, Elovich and 

intraparticle diffusion models were applied to the experimental data in order to determine 

the dynamics and rate-determining step of the adsorption process.  Table 4.1 gives the 

equations of the models used in this study in a non-linear form.  The obtained experimental 

data were fitted into kinetics models by non-linear least square (NLLS) analysis.  Previous 

studies have shown that to eliminate error distributions associated with models in linearized 

forms, NLLS analysis57,78,79 is a preferred choice.  The curves showing a comparison of all 

the kinetics models fitted for the adsorption of Cu2+ onto MWCNT-COOH and MWCNT-

ttpy are shown in Appendix I (Fig A-1.4).  Data illustrating the comparison of all models 

with their associated sum of squared residuals (SSR) and residual square errors (RSE) is 

given in Table 4.6.  It was observed that the data for MWCNT-ttpy best fit the pseudo-

second order model, while that for MWCNT-COOH fit the Elovich model better as reflected 

by the lowest SSR values (Table 4.6).  The pseudo-second order model assumes that the 

rate-limiting step for Cu2+ adsorption may be due to interaction through sharing or exchange 
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of electrons between hydroxyl/nitrogen groups and Cu2+.28,44,58,80  Hence, this indicates that 

the rate of removal of Cu2+ from aqueous solution was determined by a bimolecular 

interaction between the adsorbate and active sites on the adsorbents.  Similar results have 

been reported by Ho and Mckay,80 Popuri et al.,44 Mobasherpour et al.,19 and Yu et al.,81 for 

removal of Cu2+ from aqueous solutions.  The Elovich model is also based on the concept 

of chemisorption58 (i.e. the interaction through sharing or exchange of electrons).  This 

further elucidates that the adsorption of Cu2+ onto both adsorbents proceeds via chemical 

interactions between the active groups on adsorbents and cationic Cu2+. 

 

Adsorption proceeds via one/more of these four stages: (i) The transfer of solute from the 

solution to the surface of the adsorbent, (ii) solute transfer from the bulk solution to the 

boundary film which surrounds the adsorbent surface (film diffusion), (iii) solute transfer 

through the internal pores of the adsorbent (intraparticle diffusion), and (iv) interaction 

between adsorbate molecules with the active sites on the external surface of the adsorbent.  

One of these processes usually determines the rate at which the adsorbate is removed from 

aqueous solutions.  To further elucidate on the diffusion mechanism involved in adsorption, 

experimental data were modelled with the intraparticle diffusion model.  A plot of qt 

against √𝑡 was plotted to obtain a straight line which did not pass through the origin.  This 

indicates that adsorption proceeded through the intraparticle diffusion of Cu2+ to the pores 

of the adsorbent; however, it was not the only rate-controlling step.82-84  Adsorption therefore 

occurred via a multi-step process involving an initial rapid stage, followed by the 

intraparticle diffusion of adsorbates to the pores of adsorbents and then to a slower phase 

which proceeds towards saturation due to low adsorbate concentration.78  Higher kid and l 

values were obtained for MWCNT-ttpy than MWCNT-COOH, showing that adsorption was 

boundary-controlled and indicates better Cu2+ removal for MWCNT-ttpy. 
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Table 4.6:  Kinetics parameters for the adsorption of divalent copper ion from aqueous 

solution 

Model Parameter MWCNT-COOH MWCNT-ttpy 

Pseudo-first order k1/min-1 0.259 0.073 

 qeq/mg g-1 10.06 33.30 

 RSEa 0.741 3.350 

 SSRb 8.242 168.3 

Pseudo-second order k2/g mg-1 min-1 0.044 0.003 

 qeq/mg g-1 10.44 35.25 

 RSE 0.447 1.858 

 SSR 2.994 51.77 

Intraparticle diffusion kid/mg g-1 min-0.5 0.491 1.573 

 l/mg g-1 7.764 14.66 

 RSE 5.639 15.64 

 SSR 508.8 3916 

Elovich α/mg g-1 min-1 5.237 192.7 

 β/g mg-1 1.864 0.287 

 RSE 0.217 2.082 

  SSR 0.705 65.00 

 aRSE - residual square error  bSSR - sum of squared residuals 

 

4.4.4. Effect of adsorbent dose 

The effect of increasing the amount of adsorbent on Cu2+ ion removal was investigated at 

varying adsorbent dosage ranging from 30-400 mg.  An increase in the percentage removal 

of Cu2+ was achieved as the mass of adsorbent increased, until a state of saturation was 

reached, where removal remained steady (Fig 4.10).  This is attributed to the fact that as the 

dose of adsorbent increases, there is an increase in the surface area and number of active 

sites available for adsorption.  A high efficiency of Cu2+ removal was obtained for MWCNT-

ttpy with percentages in the range of 80 to 100% being obtained in contrast to 60% for 

MWCNT-COOH.  This illustrates that complete removal of Cu2+ can be achieved with 

MWCNT-ttpy; hence, it has promising applications for remediating wastewater generated 

from industries.  The increase in the number of metal binding sites on MWCNT-ttpy is 

responsible for the high removal of Cu2+ observed.  An adsorbent dose of 100 mg of 

MWCNT-ttpy achieved 99% removal efficiency, after which a state of equilibrium was 

reached with increase in adsorbent dose due to the limited amount of Cu2+ in solution.  This 

state of equilibrium was achieved with a dose of 300 mg for MWCNT-COOH.  However, it 

is worthy of note that as the dose of adsorbent is increased, the adsorption capacity (qeq) 

decreased for both adsorbents.  This is due to the fact that increasing the adsorbent dose at 

the same concentration and volume of adsorbate solution leads to unsaturation of adsorption 

sites. 
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Fig 4.10:  Effect of adsorbent dose for the adsorption of Cu2+ onto MWCNT-COOH and 

MWCNT-ttpy [conditions: 20 cm3 of 100 mg dm-3 Cu2+, 24 h equilibration time, 

pH 5.0, agitation speed 150 rpm, temperature 20 °C]. 

 

4.4.5. Effect of initial adsorbate concentration 

The influence of increasing the adsorbate concentration was examined for different Cu2+ 

concentrations, ranging from 10-100 mg dm-3, on MWCNT-COOH and MWCNT-ttpy.  A 

decrease in the percentage removal of Cu2+ from 98.2% to 47.6% and 100.0% to 78.9% was 

obtained for MWCNT-COOH and MWCNT-ttpy, respectively.  This could be attributed to 

the greater number of active sites available at lower Cu2+ concentrations, resulting in higher 

removal efficiencies.  However, saturation of active sites occurred at higher concentrations, 

resulting in lower removal efficiencies.  Also, an increase in the amount of Cu2+ removed 

per unit mass from 3.87 to 19.01 mg g-1 and 3.94 to 31.89 mg g-1 was obtained for MWCNT-

COOH and MWCNT-ttpy, respectively.  Higher initial concentrations of Cu2+ enhanced the 

adsorption process, due to an increase in the driving force by overcoming mass transfer 

resistance between the solid-solution interface.75  Similar trends for the removal of Cu2+ 

from aqueous solution as concentration is varied have been reported by Tong et al.,75 

Ekmekyapar et al.,85 and Yu et al.81 

 

4.4.6. Effect of temperature 

Increasing the adsorbate temperature results in an increase in the rate of diffusion across the 

external boundary layer, decreases the viscosity of the solution and increases the internal 

pores of the adsorbents.86  The extent of adsorption was investigated over the temperature 

range of 293-318 K.  An increase in the adsorption capacity (qeq) with an increase in 

temperature was obtained for MWCNT-ttpy (Fig 4.11b), whereas a decrease in qeq was 

obtained with increasing temperature for MWCNT-COOH (Fig 4.11a).  An increase in 
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temperature favours faster mobility of Cu2+, as was the case of MWCNT-ttpy, hence 

resulting in higher qeq values.  Also, higher Cu2+ uptake by MWCNT-ttpy at higher 

temperatures may be attributed to an increase in the porosity and pore volumes of adsorbents, 

hence, enabling the pores for better uptake of adsorbate.7  However, increasing the adsorbate 

temperature also results in a decrease of the physical adsorptive forces responsible for 

adsorption.  This phenomenon was observed for MWCNT-COOH (Fig 4.11a), and resulted 

in a decrease in qeq values as the temperature of the adsorbate increased.  Fig 4.11a also 

showed a significant change in qeq with temperature variation for MWCNT-COOH, whereas 

very little effect was observed for MWCNT-ttpy with change in temperature (Fig 4.11b).  

This illustrates that MWCNT-ttpy will be effective for Cu2+ removal, and could prove 

advantageous regardless of change in temperature.  Also, the application of MWCNT-ttpy 

will be sufficient for the removal of Cu2+ at point source, as effluents are normally 

discharged at above ambient temperatures.  It is also worthy of note that the amount adsorbed 

(qeq) by MWCNT-ttpy was also greater than for MWCNT-COOH at all temperatures. 

 

Fig 4.11:  Effect of varying temperature on the adsorption of Cu2+ by (a) MWCNT-COOH 

and (b) MWCNT-ttpy. 

 

4.4.7. Adsorption isotherms 

Adsorption isotherms are usually used to describe how adsorbate molecules/ions interact 

with the active sites on the surface of the adsorbent and to optimize adsorbent use for large-

scale removal.7  Eight isotherms, including two- and three- parameter models, namely, 

Langmuir, Freundlich, Temkin, Dubinin-Radushevick (D-R), Sips, Toth, Redlich-Peterson 

(R-P) and Khan, were applied to the equilibrium data obtained in this study.  The equations 

for the isotherms are given in Table 4.2.  NLLS analysis was used to fit the data and the 

lowest sum of squared residuals (SSR) gave an indication of the best fit for the equilibrium 

data obtained.  The parameters obtained for the adsorption of Cu2+ onto MWCNT-COOH 

and MWCNT-ttpy are presented in Table 4.7. 

 

(a) (b) 
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Table 4.7 demonstrates that the Freundlich isotherm best describes the experimental data 

obtained for MWCNT-COOH, while the Langmuir isotherm best described the data 

obtained for MWCNT-ttpy.  The curves for the best-fit isotherms for MWCNT-COOH and 

MWCNT-ttpy are shown in Appendix I (Fig A-1.5 – A-1.6).  The Langmuir maximum 

adsorption capacity (qm) varied from 15.50 to 19.44 mg g-1 and 31.65 to 34.13 mg g-1 for 

MWCNT-COOH and MWCNT-ttpy, respectively over the studied temperature range.  Table 

4.7 further indicates a decrease in qm as the temperature of the adsorbate solution was 

increased for MWCNT-COOH, whereas an increase in qm was obtained with increasing 

temperature for MWCNT-ttpy.  The Langmuir adsorption constant, b (Table 4.7), indicating 

the high adsorptive binding power obtained for MWCNT-ttpy, is indicative of good 

adsorptive forces resulting in the enhancement of the binding strength as the temperature is 

increased. 

 

Table 4.7:  Isotherm parameters for the adsorption of Cu2+ onto MWCNT-COOH and 

MWCNT-ttpy 

Isotherm Parameter MWCNT-COOH  MWCNT-ttpy 

   293 K 303 K 313 K 318 K  293 K 303 K 313 K 318 K 

Langmuir qm/mg g-1 19.44 16.87 16.35 15.59  31.65 33.04 34.13 33.97 

 b/dm3 mg-1 0.169 0.184 0.123 0.068  3.243 5.494 9.065 17.25 

 RSEa 1.887 1.386 0.510 0.478  1.966 3.302 3.176 5.670 

 SSRb 28.48 15.37 2.077 1.828  30.91 87.25 80.71 257.2 

Freundlich KF 5.244 4.756 3.876 2.533  20.40 23.88 26.05 28.54 

 n 3.056 3.188 2.964 2.507  5.344 6.641 7.006 8.991 

 RSE 0.604 0.575 0.701 0.585  3.425 4.295 4.589 5.951 

  SSR 2.922 2.644 3.926 2.740  93.84 147.6 168.5 283.3 

aRSE - residual square error  bSSR - sum of squared residuals 

 

The amount of area on the adsorbent covered by Cu2+ can be established by dividing the 

theoretical specific surface area (S) into the BET surface area.  The theoretical surface area 

was calculated by using equation (4.3) as described by Ho et al.87 

 

   𝑆 =  
𝑞𝑚𝑁𝐴𝐴

𝑀
      (4.3) 

 

S is the area covered by the adsorbed Cu2+, NA is Avogadro’s constant, A is the cross-

sectional area of Cu2+ (1.58 × 10-20 m2)87 and M is the molar mass of Cu2+.  The values 

obtained for S at 20 °C for MWCNT-COOH and MWCNT-ttpy were calculated as 2.91 and 

4.74 m2 g-1, respectively.  As given by Table 4.4, the BET surface area of MWCNT-COOH 

and MWCNT-ttpy was 126.8 and 189.2 m2 g-1, respectively.  Hence, the percentage of 

adsorbent surface covered by Cu2+ was calculated as 2.30% and 2.51%, respectively.  

Equally, qm values at 20 °C were compared with the total number of acidic and basic groups 
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in MWCNT-COOH and MWCNT-ttpy determined by the Boehm titration (Table 4.5).  The 

values obtained indicated that 25.0% of acidic groups on MWCNT-COOH and 66.2% of 

basic groups on MWCNT-ttpy were primarily involved in adsorption of Cu2+ onto active 

sites of adsorbents.  These results indicate that chelation of Cu2+ with nitrogen-donor atoms 

in MWCNT-ttpy and electrostatic interactions with oxygen atoms in MWCNT-COOH were 

primarily responsible for interaction in this study.  Hence, adsorption of Cu2+ could be said 

to be enhanced significantly due to the presence of N donor atoms on MWCNT-ttpy. 

 

Also, as suggested by Hamza et al.88 and Soon-An et al.,89 the nature of the adsorption 

process can be estimated depending on the values of the separation factor (RL) as expressed 

in equation (4.4).  Adsorption is assumed to be favourable if 0 < RL < 1, unfavourable if RL 

> 1, irreversible if RL = 0 and linear if RL = 1.88-90 

 

𝑅𝐿 =  
1

1+𝑏𝐶𝑖
       (4.4) 

 

Ci is the initial Cu2+ concentration (mg dm-3) and b is the Langmuir constant obtained from 

Table 4.7 (dm3 mg-1).  All RL values obtained in this study were found to fall between 0 < 

RL < 1, hence adsorption of Cu2+ onto MWCNT-COOH and MWCNT-ttpy indicates a 

favourable adsorption. 

 

The Langmuir isotherm assumes monolayer coverage of adsorbates onto the surface of the 

adsorbent, while the Freundlich isotherm assumes that the surface of adsorbents is 

heterogeneous in nature.7  Since MWCNT-ttpy fits the Langmuir isotherm, it can be inferred 

that the active sites on this adsorbent are equivalent with a uniform surface, hence, the 

adsorbed Cu2+ ions on this adsorbent do not interact with each other, achieving monolayer 

coverage of the adsorbate.  In the case of MWCNT-COOH, the values of the Freundlich 

constant n indicate a favourable adsorption process since values were ≤ 10 (see Table 4.7).75 

 

Table 4.8 shows the results of some previously published studies investigating the sorption 

process of Cu2+ from aqueous solutions onto carbon-structured materials.  These results were 

compared with those obtained in this study.  A significant increase in sorption uptake of 

Cu2+ was obtained by using MWCNT-ttpy in comparison with 8-hydroxyquinoline-

functionalized MWCNTs (8-HQ-MWCNT), also functionalized with a N-donor ligand but 

of lower denticity.  Table 4.8 further demonstrates better uptake of Cu2+ on MWCNT-ttpy 

in comparison with composite adsorbents such as MWCNT/bagasse and MWCNT/Fe2O4.  

Thus, the results reported in this study compare very favourably with data obtained from 

other studies. 
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Table 4.8:  Comparison of Langmuir maximum capacity (qm) for Cu2+ adsorbed onto various 

carbon-structured materials 

 

4.4.8. Thermodynamic parameters of adsorption 

Thermodynamic parameters such as change in enthalpy (ΔH°), change in entropy (ΔS°) and 

change in Gibbs energy (ΔG°), were studied in order to examine the spontaneity of the 

adsorption process at varying temperatures.  An adsorption process is considered feasible 

and spontaneous if negative values for ΔG° are obtained.  The process is endothermic if the 

adsorption capacity (qeq) increased with an increase in temperature and the reverse yields an 

exothermic process. 

 

The change in Gibbs energy of adsorption (ΔG°) is calculated thus (equation 4.5):28 

 

∆𝐺° = −𝑅𝑇𝑙𝑛 K      (4.5) 

 

where ΔG° is the standard Gibbs energy change (J mol-1), R is the universal gas constant 

(8.314 J K-1 mol-1), and T is the absolute temperature in Kelvin.  The value of K was obtained 

from the product of qm and b obtained from the Langmuir plot (Table 4.5).88,92  The value of 

K was corrected to be dimensionless by multiplying by 1000.93 

 

A plot of ln K against 1/T was found to be linear, and the values of ΔH° and ΔS° were 

obtained from the slope and intercept of the plot, respectively, according to the Van’t Hoff 

equation (Eq. 4.6): 

 

𝑙𝑛 𝐾 =  −
∆𝐻°

𝑅𝑇
 +  

∆𝑆°

𝑅
      (4.6) 

 

Table 4.9 presents the thermodynamic parameters for the adsorption of Cu2+ onto MWCNT-

COOH and MWCNT-ttpy.  Negative values were obtained for ΔG°, indicating that the 

process was spontaneous and feasible for both adsorbents.  An increase in negative values 

for ΔG° was obtained as the temperature of the adsorbate solution was increased for 

Adsorbents Conditions qm/mg g-1 References 

P-MWCNTs pH 7.0, Ci 1.0 mg dm-3, 250 mg dose, 120 min, 298 K 0.080 91 

P-MWCNTs pH 7.0, Ci 0.5 mg dm-3, 125 mg dose, 120 min, 298 K 0.398 27 

MWCNT-COOH pH 7.0, Ci 20 mg dm-3, 30 mg dose, 120 min, 293 K 12.34 19 

8-HQ-MWCNT pH 7.0, Ci 1.0 mg dm-3, 250 mg dose, 120 min, 298 K 0.080 91 

MWCNT/bagasse pH 5.5, 100 mg dm-3, 50 mg dose, 360 min, 301 K 15.60 41 

MWCNT/Fe2O4 pH 5.50, 10 mg dm-3, 40 h, 353 K 8.920 43 

MWCNT-COOH pH 5.0, Ci 100 mg dm-3, 50 mg dose, 24 h, 293 K 19.44 This study 

MWCNT-ttpy pH 5.0, Ci 100 mg dm-3, 50 mg dose, 24 h, 293 K 31.65 This study 
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MWCNT-ttpy.  This confirms that increasing the temperature of the adsorbate solution 

resulted in better sorption for the adsorbent.  In contrast, a decrease in the negative values 

of ΔG° was obtained as temperature is increased when MWCNT-COOH was used as 

adsorbent.  An exothermic process of adsorption was obtained with MWCNT-COOH, 

indicated by the negative ΔH° value obtained.  On the other hand, the application of 

MWCNT-ttpy as adsorbent yielded an endothermic process, which is confirmed by the 

positive ΔH° value obtained. 

 

Table 4.9 further shows a positive ΔS° value for MWCNT-ttpy, which indicates an increase 

in the disorderliness at the solid/solution interface resulting in a favourable adsorption 

process.  However, a negative ΔS° was obtained for MWCNT-COOH indicating a decrease 

in disorderliness as the adsorbent interacts with the adsorbate.  Hence, the adsorption process 

for MWCNT-ttpy is entropy-driven, while the process is enthalpy-driven for MWCNT-

COOH.  The values of ΔH° obtained show that the heat evolved/absorbed was greater than 

for physisorption (2.1-20.9 kJ mol-1), but lower than for chemisorption processes (80-200 kJ 

mol-1).7,94  This indicates that the process for the removal of Cu2+ from aqueous solutions by 

using MWCNT-COOH and MWCNT-ttpy was a physico-chemical process,94 indicating that 

adsorption was facilitated by both processes. 

 

Thermodynamic parameters therefore suggest that the application of MWCNT-ttpy will be 

effective for remediating metal-polluted effluents discharged directly from industries. 

 

Table 4.9:  Thermodynamic parameters for the adsorption of Cu2+ onto MWCNT-COOH 

and MWCNT-ttpy 

Adsorbent T/K ΔG°/kJ mol-1 ΔH°/kJ mol-1 ΔS°/J K-1 mol-1 

MWCNT-COOH 293 -19.72   

 303 -20.26   

 313 -19.79 -32.36 -99.19 

 318 -18.42   

MWCNT-ttpy 293 -28.11   

 303 -30.50   

 313 -32.90 50.97 211.9 

  318 -35.11   

 

4.4.9. Desorption studies 

The process of desorption regenerates an adsorbent for reuse, thereby reducing the cost and 

availability of sorbents for adsorption.  This process also limits the introduction of spent 

adsorbents into the environment, thereby limiting the disposal of secondary pollutants.  

Desorption experiments were carried out by agitating a Cu2+-loaded adsorbent with 10 cm3 
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of 0.1 mol dm-3 HCl in a thermostated water bath at 20 °C for 30 min.  The mixture was 

filtered and the final concentration of Cu2+ determined.  Results obtained showed good 

removal capacities of 62% and 73% for MWCNT-COOH and MWCNT-ttpy respectively, 

indicating that these adsorbents can be regenerated and Cu2+ can be recovered for reuse.  

Again, in this respect MWCNT-ttpy performed better, showing better desorption of Cu2+ 

than MWCNT-COOH. 

 

 

4.5. Conclusions 

A novel nanomaterial, synthesized by the use of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine 

as a modifier for acid-functionalized multiwalled carbon nanotubes (MWCNT-COOH), to 

produce nitrogen-functionalized MWCNTs (MWCNT-ttpy), was successfully synthesized.  

The adsorbent proved effective and efficient for the removal of Cu2+ from aqueous solutions, 

obtaining a higher Langmuir monolayer adsorption capacity (qm) of 31.65 mg g-1 than the 

19.44 mg g-1 obtained for MWCNT-COOH.  Also, a higher sorption uptake of Cu2+ was 

exhibited by MWCNT-ttpy when compared with other MWCNT-containing sorbents from 

other studies. 

 

This study revealed that MWCNT-ttpy can be used as an alternative adsorbent for the 

removal of heavy metal ions from municipal wastewater and industrial effluents, due to the 

high efficiency exhibited towards Cu2+ removal from aqueous solution.  The recyclability 

and regeneration of this adsorbent was successful, suggesting that the spent adsorbent and 

Cu2+ can be recovered and made available for reuse. 
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Abstract 

In this study, 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine was applied as a modifier to 

functionalize multiwalled carbon nanotubes to afford nitrogen-functionalized carbon 

nanotubes (MWCNT-ttpy).  The nanomaterial was characterized and their application for 

the removal of Pb2+ and Zn2+ from aqueous solution was investigated through batch 

adsorption processes.  The adsorption efficiency of an acid-functionalized multiwalled 

carbon nanotube (MWCNT-COOH) and MWCNT-ttpy was compared to determine the 

sorbent with the best removal efficiency towards metal ion sorption. 

 

The adsorption capacities (qe) of the adsorbents increased with increasing pH, contact time 

and adsorbent dose.  For both metal ions, better removal was observed with MWCNT-ttpy 

than MWCNT-COOH.  In the case of Pb2+, the Langmuir maximum adsorption capacity 

(qm) increased from 20.60 mg g-1 to 36.23 mg g-1, and for Zn2+, qm increased from 18.51 mg 

g-1 to 32.60 mg g-1, going from MWCNT-COOH to MWCNT-ttpy, respectively.  For both 

adsorbents, qm for Pb2+ was larger than for Zn2+.  The pseudo-second order kinetics model 

fitted both systems well, indicating a bimolecular interaction between the adsorbate cations 

and sorbents.  The adsorption processes were endothermic in nature and spontaneous.  

Desorption studies showed high desorption efficiencies, demonstrating the suitability of the 

adsorbents for reuse. 

 

Thus, nitrogen-functionalized carbon nanotubes show promise as a good reuseable 

adsorbent for the removal of Pb2+ and Zn2+ from industrial effluents and wastewaters. 

 

Keywords:  Lead, zinc, adsorption, kinetics, isotherm, carbon nanotube 
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5.1. Introduction 

Contamination of water resources with heavy metal ions is increasingly attributed to 

industrial and anthropogenic activities.  Wastewater generated from industries, such as 

mining and metallurgy, and chemical manufacturing, contains one or more toxic metal ions 

in high concentrations, requiring further treatment before its disposal [1-3].  If this effluent 

is indiscriminately discharged into water bodies with little or no treatment, it poses a serious 

environmental risk to man and its environs [1,2,4].  Since metal ions persist in the 

environment for long periods of time the treatment of metal-polluted wastewater becomes 

an increasingly difficult task [2,3,5]. 

 

Human exposure to metal ions such as lead, cadmium, copper, nickel, mercury and zinc can 

result in health issues such as dysfunction of the kidney, liver, bones, muscles, central 

nervous system, and in extreme cases may lead to death [1,4,6].  Lead is one of the most 

hazardous metal pollutants and is regarded as poisonous to both man and animals [6].  In 

2010, in the Northern part of Nigeria, 163 people, including 111 children, died as a result of 

exposure to dust contaminated with lead from mining activities [7,8].  Zinc may be 

considered essential, but can give rise to various health complications with increased 

exposure at high concentrations [9,10].  The introduction of zinc to humans through food 

supplements, antiseptics and deodorant formulations is of major concern to nutritionists due 

to various health risks associated with increased exposure to this substance [10].  Studies 

have also shown increased concentrations of Pb2+ and Zn2+ in various media such as water 

[11,12], sediments [13], landfills [14], and electronic waste [15], amongst many others. 

 

Due to these negative effects, the treatment of metal-contaminated wastewater becomes 

imperative through the development of effective and innovative adsorbents.  Adsorption has 

been identified as a fast and easy method of treatment because of its simplicity, cost-

effectiveness, and the ease of regeneration and reutilization of adsorbents [3].  The removal 

of Pb2+ and Zn2+ have been explored by various authors by using sorbents such as rice husk 

[16,17], sugarcane bagasse [3], green seaweed [18], sawdust [19], marine green microalgae 

[20], maize tassels [21], chitosan [22], mesoporous silica [23], activated carbon [24], 

kaolinite [25], calcium alginate beads [26], and SBA-15 [27], amongst many others.  In spite 

of these studies, limitations such as slow sorption and regeneration of adsorbents for reuse 

still pose a challenge.  Thus, the development of effective adsorbents continues to grow with 

a view of treating wastewater contaminated with metal ions and regenerating adsorbents for 

the purpose of reutilization. 

 

The use of carbon nanotubes (CNTs) for pollutant removal has generated great interest in 

recent years and this is due to their inherent properties such as large surface area [4], high 
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thermal and chemical stability [28], ease of introduction of new functional groups, and their 

hollow and porous structures [28].  Due to the hydrophobic nature of CNTs, dispersion in 

aqueous solution is difficult; hence, oxidation of CNTs by wet-chemical methods [1], 

oxygen plasma [29], and photo-oxidation [30] is usually carried out to increase their 

chemical reactivity.  Chemical modification of CNTs with acids reduces their 

hydrophobicity and introduces new groups onto the walls of tubes [4].  The introduction of 

the functional groups onto CNTs increases the selectivity and sensitivity of nanotubes to 

organic [31,32] or inorganic [3,5] pollutants, thus enhancing the removal of adsorbates from 

solution. 

 

The effectiveness of multiwalled carbon nanotubes (MWCNTs) for metal ion removal can 

be improved through surface modification by using various chemical agents [33].  Studies 

have been tailored toward removal of metal ions by the functionalization of MWCNTs to 

increase the number of chelating sites on the sorbent [1-4,33-37].  However, limited studies 

have shown the influence of nitrogen-containing compounds as a modifier on MWCNTs 

and investigated their capacity toward Pb2+ and Zn2+ removal from aqueous solution. 

 

In this study, we report a comparison of the removal of Pb2+ and Zn2+ from simulated 

wastewater by acid-functionalized multiwalled carbon nanotubes (MWCNT-COOH) and 4-

phenyl-2,2':6',2''-terpyridine-functionalized multiwalled carbon nanotubes (MWCNT-ttpy).  

Batch adsorption processes were carried out to investigate the influence of time, pH, 

adsorbent dose, initial metal ion concentration and temperature on the adsorption of Pb2+ 

and Zn2+ from wastewater.  The data obtained were fitted to various isotherm and kinetics 

models in order to elucidate the adsorption mechanisms involved. 

 

 

5.2 Experimental 

5.2.1. Materials and chemicals 

All chemicals used were of analytical grade and used without further purification.  The as-

prepared MWCNTs were purchased from Cheap Tubes Inc. (Brattleboro, USA), and had 

been synthesized through chemical vapour deposition (CVD) with a purity of 95%.  Lead 

and zinc metal powders, tetrahydrofuran, thionyl chloride and sodium hydroxide were 

purchased from Merck (Pty) Ltd (Gauteng, South Africa).  Aqueous ammonia (25%) was 

purchased from Associated Chemical Enterprises (Johannesburg, South Africa) while nitric 

acid (55%), sulfuric acid (98%) and hydrochloric acid (32%), were purchased from C C 

Imelmann Ltd (Robertsham, South Africa).  Other chemicals such as 4-

hydroxybenzaldehyde (99%), 2-acetylpyridine (99%), triethylsilane (Et3SiH, 97%), indium 
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bromide (InBr3, 99%), absolute ethanol and N,N'-dimethylformamide (DMF, 99%), were 

purchased from Sigma-Aldrich (New Germany, South Africa). 

 

5.2.2. Preparation of adsorbents 

MWCNTs which had been oxidized in a 3:1 (v/v) concentrated nitric acid-sulfuric acid 

mixture (MWCNT-COOH) were dispersed in a solution containing a 20:1 (v/v) mixture of 

thionyl chloride and DMF, and refluxed at 70 °C for 24 h [38].  The resulting mixture was 

filtered, and the solid obtained was washed with deionised water until a neutral pH was 

achieved.  These acylated MWCNTs (100 mg) were added to 100 mg of 4-phenyl-2,2':6',2''-

terpyridine (HO-Phttpy) in 20 cm3 of dry tetrahydrofuran (THF) with the addition of 2-5 

drops of glacial acetic acid.  The suspension was refluxed at 64 °C for 24 h under an inert 

atmosphere of argon.  The suspension was filtered and the solid obtained was washed with 

THF and dried in a vacuum oven.  To the obtained sample (100 mg) was added freshly 

distilled chloroform (30 cm3), InBr3 (10.6 mg, 0.03 mmol) and Et3SiH (380 µL, 2.4 mmol).  

The suspension was stirred and refluxed at 60 °C for 1 h under an inert atmosphere of argon.  

The resulting mixture was filtered and the solid was washed with chloroform (3 × 20 cm3), 

followed by deionised water until a neutral pH was obtained.  The synthesis of 4-phenyl-

2,2':6',2''-terpyridine (HO-Phttpy) and the characterization of the adsorbents have been 

reported in our previous work [39].  Oxidized MWCNTs (MWCNT-COOH) and 4-phenyl-

2,2':6',2''-terpyridine-functionalized MWCNTs (MWCNT-ttpy) were stored and prepared 

for use as adsorbents in the treatment of metal-contaminated wastewater. 

 

5.2.3. Metal analysis procedure 

5.2.3.1. Equipment 

A PerkinElmer Optima 5300 DV inductively coupled plasma-optical emission 

spectrophotometer (ICP-OES) was used to measure the initial and final concentrations of 

Pb2+ and Zn2+ in solution.  The operating conditions used are presented in Appendix II (Table 

A-II.1 – A-II.2). 

 

5.2.3.2. Preparation of adsorbate solution 

Stock solutions were prepared by weighing approximately 1 g of Pb or Zn metal powder 

into 50 cm3 of 2 mol dm-3 nitric acid.  The solution was made up to mark in a 1000 dm3 

volumetric flask with deionised water.  Working solutions of Pb2+ and Zn2+ were prepared 

daily from the stock solutions to obtain the desired concentrations. 
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5.2.4. Adsorption experiments 

The optimization of adsorption parameters such as pH, contact time, adsorbent dose, initial 

metal ion concentration and temperature were investigated through batch adsorption 

experiments.  To investigate the influence of pH, 20 cm3 aliquots of 100 mg dm-3 adsorbate 

solution were measured into plastic vials with the addition of 50 mg of adsorbent to each.  

The solutions were then equilibrated for 24 h in a thermostated water-bath at 20 °C.  

Solutions were conditioned to the required pH by the addition of appropriate amounts of 0.1 

mol dm-3 NaOH or HNO3.  After agitation, the solutions were filtered, and the final 

concentrations of Pb2+ or Zn2+ determined by using inductively coupled plasma-optical 

emission spectroscopy (ICP-OES) (Perkin Elmer Optima 5300 DV).  The amount of metal 

ion adsorbed on the adsorbents was determined from the difference between the initial and 

final metal ion concentrations.  The removal efficiency and sorption capacity (qe) of Pb2+ 

and Zn2+ were calculated according to equations 5.1 and 5.2, respectively. 

 

100 ×  % 






 


i

eqi

C

CC
adsorbed       (5.1) 

V ×








 


m

CC
q

eqi

e      (5.2) 

 

where Ci is the initial adsorbate concentration (mg dm-3), Ceq is the equilibrium 

concentration of adsorbate (mg dm-3), qe is the adsorption capacity (mg g-1), m is the mass 

of adsorbent (mg) and V is the volume (dm3) of the adsorbate solution used. 

 

Kinetic studies were investigated by adding 50 mg of adsorbent into a 20 cm3 aliquot of 100 

mg dm-3 adsorbate solution.  Solutions were conditioned to the desired pH with the addition 

of appropriate amounts of 0.1 mol dm-3 NaOH or HNO3.  The suspensions were agitated in 

a thermostated water-bath at 20 °C for varying time intervals over the range of 5 to 1440 

min.  After the pre-determined time intervals, the solutions were filtered and the final 

concentrations of Pb2+ or Zn2+ determined by using ICP-OES.  Four kinetic models, namely, 

the pseudo-first order [40-42], pseudo-second order [41-43], Elovich [44] and intraparticle 

diffusion models [45], were used to describe the equilibrium data obtained.  The equations 

of all models used in this study are illustrated in Table 5.1. 
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Table 5.1:  Kinetics models investigated for the adsorption of Pb2+ and Zn2+ 

Model Equation* Parameters References 

Pseudo-first order 𝑞𝑡 =  𝑞𝑒𝑞(1 − 𝑒−𝑘1𝑡) qeq, k1 [40-42] 

Pseudo-second order 
𝑞𝑡 =  

𝑘2𝑞𝑒𝑞
2 𝑡

1 +  𝑘2𝑞𝑒𝑞𝑡
 

k2, qeq [41-43] 

Elovich 
𝑞𝑡 =  

1

𝛽
ln (𝛼𝛽) + 

1

𝛽
ln 𝑡 

α, β [44] 

Intraparticle diffusion 𝑞𝑡 =  𝑘𝑖𝑑√𝑡 + 𝑙 kid, l [45] 

*qt, quantity of adsorbate adsorbed at time t (mg g-1); qeq, quantity of adsorbate adsorbed at equilibrium (mg g-

1); α, adsorption rate constant (mg g-1 min-1); β, desorption rate constant (g mg-1); k1, pseudo-first order rate 

constant (min-1); k2, pseudo-second order rate constant (g mg-1 min-1); kid, intraparticle diffusion rate constant 

(mg g-1 min0.5), l, is a constant related to the boundary layer thickness. 

 

Isotherm experiments were conducted with a 20 cm3 aliquot of adsorbate solution over a 

concentration range of 10-100 mg dm-3 and an adsorbent dose of 50 mg.  Solutions were 

conditioned to the appropriate pH and agitated in a thermostated water-bath at 20 °C for 24 

h.  The solutions were filtered and the final concentration of metal ion in the filtrates 

determined by using ICP-OES.  The equilibrium data obtained were fitted into various two- 

and three-parameter isotherms.  All isotherm equations used in this study are given in Table 

5.2.  Thermodynamic studies were also investigated over a temperature range of 293-318 K 

and calculations were performed to obtain parameters such as the standard Gibbs energy 

change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) for the 

adsorption process. 
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Table 5.2:  Isotherm models investigated for the adsorption of Pb2+ and Zn2+ 

Isotherm model Equation* Parameters References 

Langmuir 𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐶𝑒𝑞

1 + 𝑏𝐶𝑒𝑞

 qm, b [46] 

Freundlich 𝑞𝑒𝑞 = 𝐾𝐹𝐶𝑒𝑞
1 𝑛⁄

 KF, n [47] 

Temkin 𝑞𝑒𝑞 =
𝑅𝑇

𝑏𝑇

𝑙𝑛(𝐴𝑇𝐶𝑒𝑞) bT, AT [48] 

Dubinin-Radushkevich 

𝑞𝑒𝑞 = 𝑞𝑚𝑒−𝛽𝜀2
 

𝜀 = 𝑅𝑇𝑙𝑛 (1 +
1

𝐶𝑒𝑞

) 
qm, β [49] 

Sips 𝑞𝑒𝑞 =
𝑏𝑞𝑚𝐶𝑒𝑞

1 𝑛⁄

1 + 𝑏𝐶𝑒𝑞
1 𝑛⁄

 qm, b, n [50] 

Toth 
𝑞𝑒𝑞 =

𝑞𝑚𝐶𝑒𝑞

(
1

𝐾𝑇
+ 𝐶𝑒𝑞

𝑛𝑇)
1 𝑛𝑇⁄

 
qm, KT, nT [51] 

Redlich-Peterson 𝑞𝑒𝑞 =
𝐾𝑅𝑃𝐶𝑒𝑞

1 + 𝑎𝑅𝑃𝐶𝑒𝑞
𝑔  KRP, aRP, g [52] 

Khan 𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐾𝐶𝑒𝑞

(1 + 𝑏𝐾𝐶𝑒𝑞)
𝑎𝐾

 qm, aK, bK [53] 

*qeq, adsorption capacity (mg g-1); Ceq, equilibrium concentration of adsorbate in solution (mg dm-3); qm, 

maximum monolayer capacity (mg g-1); b, Langmuir isotherm constant (dm3 mg-1); KF, Freundlich isotherm 

constant (mg g-1)(dm3 mg-1)n; n, adsorption intensity; bT, Temkin isotherm constant; AT, Temkin isotherm 

equilibrium binding constant (dm3 g-1); β, Dubinin-Radushkevich isotherm constant (mol2 kJ-2); KT, Toth 

isotherm constant (mg g-1); nT, Toth isotherm constant; KRP, Redlich-Peterson isotherm constant (dm3 g-1); aRP, 

Redlich-Peterson isotherm constant; g, Redlich-Peterson isotherm exponent; ak, Khan isotherm exponent; bk, 

Khan isotherm constant. 

 

5.2.5 Desorption studies 

To reduce the cost of adsorbents, such that reutilization of sorbent and adsorbate is possible, 

desorption studies were conducted.  To evaluate the desorption of Pb2+ and Zn2+ from the 

adsorbents, the equilibrium concentration was determined from the filtrate collected after 

the adsorption process.  Then 50 mg of metal ion loaded adsorbent was agitated in a 10 cm3 

aliquot of 0.1 mol dm-3 HCl for 1 h.  The suspension was filtered and the adsorbent collected 

were washed with deionised water and dried in a vacuum oven at 80 °C overnight.  The final 

concentrations of Pb2+ or Zn2+ were determined in the collected filtrate by using ICP-OES. 

 

5.2.6. Data analysis 

Isotherm and kinetic models were used to fit the data by means of the nls nonlinear 

regression routine in the R statistical computing environment [54].  The sum of squared 

residuals was used to evaluate the model with the best fit. 
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5.3. Results and Discussion 

5.3.1. Characterization of adsorbents 

The synthesized adsorbents (MWCNT-COOH and MWCNT-ttpy) were characterized and 

have been reported in our previous work [39].  Of notable mention is the increase in the 

surface area of MWCNT-ttpy from 126.8 to 189.2 m2 g-1, relative to MWCNT-COOH.  This 

was attributed to the increase in the introduction of nitrogen-donor atoms onto the surface 

of MWCNT-COOH [39].  An increase in the surface area of MWCNT-COOH was also 

noticeable from 108.8 m2 g-1, as a result in increase in tube cutting due to oxidation.  

Similarly, an increase in their pore volumes after functionalization is an indication that the 

adsorbents should be suitable for the removal of pollutants from wastewater, since this is 

one of the factors on which adsorption depends. 

 

5.3.2. Batch adsorption experiments 

Experiments demonstrating the influence of pH, time, adsorbent dose, initial metal ion 

concentration and temperature were carried out to examine the best conditions necessary for 

Pb2+ and Zn2+ removal.  The sorption abilities of the two types of MWCNTs, namely, acid-

functionalized MWCNTs (MWCNT-COOH) and nitrogen-functionalized MWCNT 

(MWCNT-ttpy), for Pb2+ and Zn2+ removal were compared.  The data were modelled with 

various kinetic and isotherm models in order to characterise the nature of the adsorption 

process involved. 

 

5.3.2.1. Effect of pH 

The influence of pH on the adsorption of Pb2+ and Zn2+ were investigated over a pH range 

of 1-10 by using MWCNT-COOH and MWCNT-ttpy.  Fig. 5.1 shows that the change in pH 

of the adsorbate solution greatly influenced the extent of removal of Pb2+ and Zn2+ from 

aqueous solution.  Fig. 5.1(A) and (B) shows the influence of pH on the adsorption of Pb2+ 

and Zn2+, respectively.  The uptake of Pb2+ and Zn2+ by MWCNT-COOH and MWCNT-

ttpy was low at acidic conditions, however, increased removal efficiencies were obtained as 

the solution pH increased (Fig. 5.1).  A change in solution pH influences the chemical 

behaviour of the adsorbates, the charges on the adsorbents and the speciation of the metal 

ion in solution [35,55]. 

 

At low pH, competition between cationic metal ions and hydrogen ions for the adsorption 

sites increases, due to the increase in hydrogen ions contained in the solution at acidic 

conditions.  The surface of the adsorbents becomes positively charged at this stage, resulting 

in electrostatic repulsion between the metal ions and active sites on the adsorbent.  This 

phenomenon explains why decreased removal efficiencies were obtained for Pb2+ and Zn2+ 

at acidic conditions.  However, increased pH results in a decrease of hydrogen ions, inducing 
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a negatively charged surface onto the adsorbents.  Increased removal of Pb2+ and Zn2+ was 

obtained at basic conditions owing to electrostatic interaction between the cationic metal 

ions and negatively charged surface of the adsorbents.  Similar observations were reported 

for the adsorption of Pb2+ and Zn2+ by Hamza et al. [3], Elham et al. [17], Rao et al. [35] 

and Goyal et al. [56]. 

 

Fig. 5.1:  Effect of pH on the adsorption of (A) Pb2+ and (B) Zn2+ by using MWCNT-COOH 

and MWCNT-ttpy [conditions: 20 cm3 of 100 mg dm-3 Pb2+/Zn2+, 24 h 

equilibration time, 50 mg adsorbent dose, agitation speed 150 rpm, temperature 

20 °C]. 

 

However, a change in pH also affects the speciation of the metal ions in solution.  Fig. 5.2(A) 

and (B) shows the different species for Pb2+ and Zn2+, respectively, that form under different 

pH conditions at a concentration of 100 mg dm-3.  The removal of metal ions is facilitated at 

basic conditions due to precipitation of metal ions in solution as hydroxo species [3].  This 

leads to increased removal efficiencies noticed at basic pH conditions.  Hence, to effectively 

confirm the removal of Pb2+ and Zn2+ by adsorption only, further experiments were 

conducted at pH 4.5 and 5.5, respectively, where only divalent metal ions were prevalent in 

solution. 

  

(A) (B) 
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Fig. 5.2: Speciation of (A) Pb2+ and (B) Zn2+ as a function of pH in aqueous solution.  

Numerical values of log β for the metal hydroxides used in the calculation of the 

speciation curves were obtained from Critical Stability Constants compiled by 

Smith and Martell [57], and plots obtained with the aid of HySS software [58]. 

 

It is also worthy of note that increased removal efficiencies were obtained for both 

adsorbates with MWCNT-ttpy than with MWCNT-COOH at each pH condition (Fig. 5.1).  

This proves that the modification of MWCNT-COOH to introduce nitrogen-donor atoms 

increases the number of chelating sites on MWCNT-ttpy, thereby resulting in an increase in 

metal ion removal.  The application of MWCNT-ttpy, therefore, proved efficient and could 

serve as a good alternative for metal ion sorption in wastewater. 

 

The experimental data for the adsorption of Pb2+ and Zn2+ onto acid- and nitrogen-

functionalized MWCNTs as a function of pH can be found in Appendix II. 

 

5.3.2.2. Effect of contact time 

Fig. 5.3 (A) and (B) shows the influence of varying the contact times on the adsorption of 

Pb2+ and Zn2+, respectively.  The effect of contact time was investigated over a period of 5-

1440 min with the conditions described in Fig. 5.3 by using MWCNT-COOH and MWCNT-

ttpy.  The experiments demonstrate an increase in the removal of Pb2+ and Zn2+ with 

increasing contact time between adsorbents and adsorbates.  A steady increase in removal 

efficiency was obtained for both processes due to the availability of more active sites at the 

initial stage.  As the process continues, adsorption sites become saturated, hence, a state of 

equilibrium where little or no further increase in removal is reached.  Fig. 5.3A shows that 

equilibrium was achieved at 90 min for both adsorbents for the removal of Pb2+.  The 
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adsorption of Pb2+ revealed an efficiency of 56.11% and 86.34% for MWCNT-COOH and 

MWCNT-ttpy, respectively, after an agitation time of 24 h (Fig. 5.3A).  In the case of Zn2+, 

equilibrium was achieved at 300 min and 360 min by using MWCNT-COOH and MWCNT-

ttpy, respectively.  Removal efficiencies of 47.81% and 73.01% for MWCNT-COOH and 

MWCNT-ttpy, respectively, were obtained after 24 h for the adsorption of Zn2+ (Fig. 5.3B).  

Experiments further showed that higher removal efficiencies were obtained for MWCNT-

ttpy than MWCNT-COOH for each period in both adsorption processes.  The efficiency of 

MWCNT-ttpy could be attributed to the increased surface area from 126.8 to 189.2 m2 g-1 

obtained after modification was done, which creates room for more active sites available for 

metal ion adsorption.  Also, modification of MWCNT-COOH with the ligand enabled 

complexation of Pb2+ and Zn2+ with nitrogen-donor groups, thereby, inducing better sorption 

of metal ions onto the active sites of the adsorbent.  Further experiments were allowed to 

equilibrate for 24 h to ensure complete removal of Pb2+ and Zn2+ in solution. 

 

The experimental data for the adsorption of Pb2+ and Zn2+ onto acid- and nitrogen-

functionalized MWCNTs as a function of contact time can be found in Appendix II. 

 

Fig. 5.3:  Effect of contact time on the adsorption of (A) Pb2+ and (B) Zn2+ by using 

MWCNT-COOH and MWCNT-ttpy [conditions: 20 cm3 of 100 mg dm-3 

Pb2+/Zn2+, pH = 4.5 (Pb2+) and pH = 5.5 (Zn2+), 50 mg adsorbent dose, agitation 

speed 150 rpm, temperature 20 °C]. 

 

To investigate the kinetics of Pb2+ and Zn2+ adsorption onto MWCNT-COOH and MWCNT-

ttpy, the equilibrium data obtained were fitted into the pseudo-first order, pseudo-second 

order, Elovich and intraparticle models.  The equations for the models are given in Table 

5.1.  The calculated kinetic parameters obtained from these models are given in Table 5.3.  

The results indicated that the kinetics data obtained for the removal of Pb2+ and Zn2+ were 

better described by the pseudo-second order model.  This inference is based on the fact that 

this model has the lowest sum of squared residuals (SSR) and residual standard error (RSE) 

(A) 
(B) 
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values.  The mechanism for the adsorption of Pb2+ and Zn2+ onto MWCNT-COOH and 

MWCNT-ttpy indicates that sorption proceeds through a bimolecular interaction between 

the cationic metal ions and the active sites of the adsorbents. 

 

Table 5.3:  Kinetic parameters for the adsorption of Pb2+ and Zn2+ on MWCNT-COOH 

and MWCNT-ttpy [conditions: 20 cm3 of 100 mg dm-3 Pb2+/Zn2+, pH = 4.5 

(Pb2+) and pH =5.5 (Zn2+), 50 mg adsorbent dose, agitation speed 150 rpm, 

temperature 20 °C] 

Model Parameter 

Pb2+  Zn2+ 

MWCNT-

COOH 

MWCNT-

ttpy  

MWCNT-

COOH 

MWCNT-

ttpy 

Experimental qmeas/mg g-1 21.62 35.29  18.55 28.93 

Pseudo-first order k1/10-2/min 4.150 5.398  1.554 2.369 

 qeq/mg g-1 20.87 34.00  17.17 26.95 

 RSE* 1.516 1.326  1.132 2.025 

 SSR† 34.48 26.39  19.23 61.49 

Pseudo-second order 

k2/10-3/g mg-1 min-

1 2.956 2.274  1.081 1.178 

 qeq/mg g-1 22.26 36.25  19.06 29.28 

 RSE 1.004 0.938  0.595 1.134 

 SSR 15.12 13.19  5.310 19.29 

Intraparticle 

diffusion kid/mg g-1 min-0.5 0.945 1.560  0.719 1.179 

 l/mg g-1 3.982 3.702  0.717 2.539 

 RSE 8.802 15.35  4.575 9.017 

 SSR 1240 3769  334.8 1300 

Elovich α/mg g-1 min-1 16.54 46.00  1.335 4.559 

 β/g mg-1 0.366 0.239  0.314 0.226 

 RSE 1.985 3.639  1.092 2.029 

  SSR 59.08 198.6  17.89 61.75 

*RSE - residual standard error,  †SSR – sum of squared residuals 

 

To further explain the diffusion mechanism of the adsorption processes, the kinetic results 

were analysed by the intraparticle diffusion model.  Adsorption onto porous materials 

generally proceeds by a multi-step process.  These steps involve four processes, namely, the 

transfer of solute from the solution to the surface of the adsorbent, followed by the solute 

transfer from the bulk solution to the boundary film that surrounds the adsorbent surface 

(film diffusion), then the solute transfer through the internal pores of the adsorbent 

(intraparticle diffusion), and subsequently the interaction between adsorbate molecules with 

the active sites on the external surface of the adsorbent.  In order to determine the processes 

which best explain Pb2+ and Zn2+ sorption; a plot of qe versus √𝑡 was obtained.  Since all 

plots obtained in this study were linear, and do not pass through the origin, it is indicative 
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that the adsorption process was controlled by two or more steps [59,60].  These plots reveal 

that adsorption was initially controlled by transportation of Pb2+ and Zn2+ to the external 

surface of the adsorbents through film diffusion, followed by intraparticle diffusion of 

adsorbates to the internal pores of the adsorbents and a stage where intraparticle diffusion 

slows down due to low adsorbate concentration [61].  These processes explain that the rate-

controlling steps for the adsorption of Pb2+ and Zn2+ were multi-step since plots obtained do 

not pass through the origin.  An increase in the intraparticle diffusion constant (kid) and the 

boundary layer constant (l) was also noticed with MWCNT-ttpy for both cations, indicating 

that the adsorption of Pb2+ and Zn2+ onto MWCNT-COOH and MWCNT-ttpy was 

boundary-controlled. 

 

5.3.2.3. Effect of adsorbent dose 

The influence of varying adsorbent dose on the adsorption of Pb2+ and Zn2+ is shown in Fig. 

5.4 (A) and (B) respectively.  The dose of adsorbent was varied over a range of 30-400 mg 

and equilibrated for 24 h.  The figures show that the concentrations of metal ions in solution 

decrease with increasing amounts of adsorbent.  At a fixed metal ion concentration, increase 

in the adsorbent dose provides increased surface area, resulting in the availability of more 

active sites.  This explains why higher removal efficiencies were obtained for both 

adsorption processes with increasing dosage of MWCNT-COOH and MWCNT-ttpy.  Again, 

the removal efficiency of MWCNT-ttpy was higher than that of MWCNT-COOH in both 

adsorption processes, demonstrating the effectiveness of MWCNT-ttpy for divalent metal 

ion removal. 

 

The experimental data for the adsorption of Pb2+ and Zn2+ onto acid- and nitrogen-

functionalized MWCNTs as a function of adsorbent dose can be found in Appendix II. 
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Fig. 5.4:  Effect of adsorbent dose on the adsorption of (A) Pb2+ and (B) Zn2+ by using 

MWCNT-COOH and MWCNT-ttpy [conditions: 20 cm3 of 100 mg dm-3 

Pb2+/Zn2+, 24 h equilibration time, pH = 4.5 (Pb2+) and pH = 5.5 (Zn2+), agitation 

speed 150 rpm, temperature 20 °C]. 

 

5.3.2.4. Effect of temperature 

The influence of the change in adsorbate temperature was examined over the range of 293-

318 K at varying concentrations of 10-100 mg dm-3.  Figs. 5.5 and 5.6 show this effect for 

the adsorption of Pb2+ and Zn2+ respectively.  The uptake of Pb2+ and Zn2+ onto MWCNT-

COOH and MWCNT-ttpy increases with an increase in adsorbate temperature.  An increase 

in adsorbate temperature may result in decreased solution viscosity and a rise in diffusion 

rate and kinetic energy of the metal ions onto the active sites of the adsorbent [35].  These 

factors also accounts for the activation of the pores/sites of MWCNT-COOH and MWCNT-

ttpy for metal ion removal and therefore induces increased uptake of Pb2+ and Zn2+ at higher 

temperatures.  This trend indicates an endothermic process of adsorption for both metal ions.  

The experiment further reveals the potential application of these adsorbents for the treatment 

of metal-contaminated effluents directly discharged from industries, since effluents are 

normally discharged at temperatures higher than 298 K. 

 

Fig. 5.5 and 5.6 further explain the influence of varying adsorbate concentration of Pb2+ and 

Zn2+, respectively, onto both adsorbents.  Similar trends were noticed for both adsorbate 

solutions with MWCNT-COOH and MWCNT-ttpy.  The figures show an increase in 

adsorption capacity (qe) as the adsorbate concentration increases from 10-100 mg dm-3.  An 

increase in the amount of Pb2+ removed per unit mass (qe) of adsorbent from 3.900 to 20.34 

mg g-1 and from 4.024 to 33.78 mg g-1 was obtained for MWCNT-COOH and MWCNT-

ttpy, respectively, at 293 K (Figs. 5.5A and 5.5B).  Consequently, an increase in Zn2+ uptake 

(qe) from 1.874 to 12.90 mg g-1 and 3.779 to 28.35 mg g-1 was also noticed for MWCNT-

COOH and MWCNT-ttpy, respectively, at 293 K (Figs. 5.6A and 5.6B).  Similar trends 

were noticeable over the same concentration range for other temperatures of 303 K, 313 K 

(A) (B) 
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and 318 K (Figs 5.5-5.6).  This could be associated to the increase in the driving force 

required to overcome the resistance for the active sites on the adsorbents at high metal ions 

concentration.  This in turn produces better uptake of metal ions (qe) onto the adsorbents at 

higher metal ion concentrations.  Hence, increasing metal ion concentration results into 

better sorption onto the adsorbents.  The application of these sorbents could therefore be said 

to be effective even at high metal ion concentrations.  However, MWCNT-ttpy showed a 

better removal efficiency over MWCNT-COOH for both metal ions.  For both adsorbents, 

the removal efficiency of Pb2+ was greater than for Pb2+. 

 

The experimental data for the adsorption of Pb2+ and Zn2+ onto acid- and nitrogen-

functionalized MWCNTs as a function of temperature can be found in Appendix II. 

 

Fig. 5.5:  Effect of varying temperature on the adsorption of Pb2+ (A) MWCNT-COOH and 

(B) MWCNT-ttpy [conditions: 20 cm3 of 10-100 mg dm-3 Pb2+, 24 h equilibration 

time, pH = 4.5, agitation speed 150 rpm, temperature 20-45 °C]. 

 

Fig. 5.6:  Effect of varying temperature on the adsorption of Zn2+ (A) MWCNT-COOH and 

(B) MWCNT-ttpy [conditions: 20 cm3 of 10-100 mg dm-3 Zn2+, 24 h equilibration 

time, pH = 5.5 (Zn2+), agitation speed 150 rpm, temperature 20-45 °C]. 

 

(B) (A) 

(B) (A) 
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5.3.2.5. Isotherm studies 

Isotherms provide information on the effectiveness of adsorbents, the 

mechanisms/interactions involved in adsorption, and the distribution of adsorbate 

molecules/ions in solid and liquid phases.  Two-and three-parameter isotherm models 

consisting of the Freundlich, Langmuir, Temkin, Dubinin-Radushkevich (D-R), Sips, 

Redlich-Peterson (R-P), Khan and Toth models were applied to the experimental data 

obtained for the adsorption of Pb2+ and Zn2+.  The equations of all eight isotherms are given 

in Table 5.3.  Isotherm parameters were obtained by fitting the equilibrium data to the 

models described, and are given in Tables 5.4 and 5.5 for the adsorption of Pb2+ and Zn2+, 

respectively. 

 

Table 5.4:  Isotherm parameters for the adsorption of Pb2+ onto MWCNT-COOH and 

MWCNT-ttpy 

Isotherms Parameters 

MWCNT-COOH  MWCNT-ttpy 

293 K 303 K 313 K 318 K  293 K 303 K 313 K 318 K 

Langmuir qm 20.69 21.49 23.89 26.03  36.23 34.46 34.68 36.31 

 b 0.740 0.921 1.648 1.979  0.907 1.538 6.441 5.809 

 RSE* 0.579 0.420 0.807 1.253  1.637 1.703 4.352 3.837 

 SSR† 2.680 1.411 5.212 12.56  21.43 23.20 151.5 117.8 

Freundlich KF 9.801 10.61 13.98 15.47      

 n 4.740 4.880 5.888 5.660      

 RSE 1.983 2.163 2.822 2.580      

 SSR 31.46 37.42 63.70 53.24      

Sips qm 21.40 21.98 24.34 27.88      

 b 0.726 0.889 1.542 1.505      

 n 1.167 1.121 1.125 1.434      

 RSE 0.511 0.349 0.804 0.953      

 SSR 1.826 0.854 4.519 6.354      

R-P KRP 17.45 22.40 38.91 62.72      

 αRP 0.936 1.146 1.617 2.658      

 β 0.970 0.972 1.002 0.966      

 RSE 0.562 0.353 0.862 1.266      

  SSR 2.211 0.870 5.206 11.22      

*RSE residual standard error,  †SSR – sum of squared residuals 
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Table 5.5:  Isotherm parameters for the adsorption of Zn2+ onto MWCNT-COOH and 

MWCNT-ttpy 

Isotherms Parameters 

MWCNT-COOH  MWCNT-ttpy 

293 K 303 K 313 K 318 K  293 K 303 K 313 K 318 K 

Langmuir qm 18.51 18.42 18.14 18.55  32.60 31.99 34.46 34.45 

 b 0.037 0.051 0.069 0.077  0.226 0.406 0.685 1.157 

 RSE* 0.275 0.293 0.385 0.340  0.504 0.627 0.707 1.166 

 SSR† 0.604 0.689 1.183 0.927  2.030 3.144 3.996 10.89 

Freundlich KF 1.681 2.227 2.835 3.117  8.559 11.04 14.26 16.87 

 n 1.991 2.188 2.418 2.479  2.628 3.054 3.260 3.520 

 RSE 0.636 0.636 0.980 0.746  2.151 2.808 3.402 3.466 

 SSR 3.202 3.239 7.689 4.456  37.03 63.07 92.58 96.08 

Sips qm 18.52 20.45 17.73 21.00  31.60 30.51 32.99 36.08 

 b 0.037 0.058 0.066 0.090  0.222 0.406 0.729 1.020 

 n 1.000 1.131 0.962 1.191  0.938 0.875 0.872 1.128 

 RSE 0.294 0.276 0.408 0.278  0.505 0.498 0.536 1.115 

  SSR 0.604 0.533 1.163 0.541  1.786 1.734 2.007 8.707 

*RSE residual standard error,  †SSR – sum of squared residuals 

 

The results indicate that the equilibrium data obtained for Pb2+ removal by using MWCNT-

COOH and MWCNT-ttpy were best described by the Langmuir model (Table 5.4).  This 

inference is made based on the lowest sum of squared residuals (SSR) and the residual 

standard errors (RSE), both of which are an indication of the model which best fits the 

experimental data.  Of the three-parameter isotherms tested, the Redlich-Peterson and Sips 

models described the equilibrium data for MWCNT-COOH.  The isotherm parameters 

obtained for the adsorption of Zn2+ by using MWCNT-COOH and MWCNT-ttpy are 

presented in Table 5.5.  For the two-parameter models, the Langmuir isotherm best described 

the data for both adsorbents, while for the three-parameter models, the Sips model, which is 

a generalization of the Langmuir and Freundlich isotherms, was best suited for modelling 

the data (Table 5.5). 

 

An increase in the Langmuir maximum adsorption capacity (qm) ranging from 20.69 to 26.03 

mg g-1 for MWCNT-COOH and 36.23 to 36.31 mg g-1 for MWCNT-ttpy was obtained for 

the adsorption of Pb2+ over the studied temperature range.  Similarly, qm values increased 

from 18.51 to 18.55 mg g-1 for MWCNT-COOH and 32.60 to 34.45 mg g-1 for MWCNT-

ttpy for the adsorption of Zn2+.  The binding strength between Pb2+ or Zn2+ and the 

adsorbents can also be estimated from the Langmuir isotherm constant (b).  An increase in 

its value over the temperature range was obtained for both metal ions with MWCNT-COOH 

and MWCNT-ttpy, indicating great binding strength between the adsorbates and the 

adsorbents [3].  Larger values were obtained with MWCNT-ttpy, showing better interaction 

between adsorbates and adsorbents. 
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The Langmuir isotherm was primarily considered best for describing data obtained for the 

adsorption of Pb2+ and Zn2+ onto MWCNT-COOH and MWCNT-ttpy.  This study therefore 

infers that adsorption proceeded through a monolayer coverage of adsorbates on adsorbents; 

possessing identical sites with uniform energy and no interaction between adjacent species.  

The values of qm obtained from this study were compared with those previously reported for 

the removal of Pb2+ and Zn2+ by using multiwalled carbon nanotubes.  Table 5.6 indicates 

that our results compare favourably with those obtained by other workers.  An increase in 

the uptake of metal ions was noticed with functionalized MWCNTs, which generally agree 

with results obtained in this study.  
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Table 5.6:  Comparison of Langmuir maximum capacity (qm) for the adsorption of Pb2+ and Zn2+ onto CNT-containing adsorbents 

Adsorbents Conditions Adsorbate qm/mg g-1 References 

Pristine MWCNT pH 6.2, Ci 5-100 mg dm-3, 200 min, 298 K Pb2+ 2.940 [4] 

Pristine MWCNT pH 5.7, Ci 2-80 mg dm-3, 10 mg, 60 min, 298 K Pb2+ 6.710 [62] 

Oxidized MWCNT pH 6.2, Ci 5-100 mg dm-3, 200 min, 298 K Pb2+ 37.36 [4] 

Oxidized MWCNT pH 5.7, Ci 2-80 mg dm-3, 10 mg, 60 min, 298 K Pb2+ 27.80 [62] 

SWCNT pH 7.0, Ci 10-80 mg dm-3, 12 h, 298 K Zn2+ 28.22 [37] 

Purified CNT pH 7.0, Ci 10-80 mg dm-3, 12 h, 298 K Zn2+ 22.58 [37] 

MWCNT-COOH pH 4.5, Ci 10-100 mg dm-3, 50 mg dose, 24 h, 293 K Pb2+ 20.69 This study 

MWCNT-ttpy pH 4.5, Ci 10-100 mg dm-3, 50 mg dose, 24 h, 293 K Pb2+ 36.23 This study 

MWCNT-COOH pH 5.5, Ci 10-100 mg dm-3, 50 mg dose, 24 h, 293 K Zn2+ 18.51 This study 

MWCNT-ttpy pH 5.5, Ci 10-100 mg dm-3, 50 mg dose, 24 h, 293 K Zn2+ 32.60 This study 
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5.3.2.6. Thermodynamic studies 

To determine the spontaneity and feasibility of the adsorption processes, thermodynamic 

parameters such as enthalpy change (ΔH°), entropy change (ΔS°) and Gibbs energy change 

(ΔG°) were calculated from equations 5.3 and 5.4 [63]: 

 

𝛥𝐺° =  −𝑅𝑇𝑙𝑛 𝐾
      (5.3) 

𝑙𝑛 𝐾 =  −
𝛥𝐻°

𝑅𝑇
 + 

𝛥𝑆°

𝑅
      (5.4) 

 

where K is the distribution adsorption coefficient, calculated from the product of qm and b, 

obtained from the Langmuir plot (Table 5.4-5.5).  The calculated K value was made 

dimensionless by multiplying by 1000 [3,64,65], R is the universal gas constant (8.314 J K-

1 mol-1) and T is the absolute temperature in Kelvin.  A plot of ln K against 1/T was obtained 

and the thermodynamic parameters, ΔH° and ΔS°, were calculated from the slope and 

intercept, respectively [3,64,65]. 

 

Table 5.7 and 5.8 list the thermodynamic parameters obtained for the adsorption of Pb2+ and 

Zn2+, respectively.  Both adsorption processes show negative ΔG° values, which increase as 

the temperature of solution increases.  This trend indicates a spontaneous process which is 

more favourable at high temperatures for removal of Pb2+ and Zn2+.  The ions in solution 

desolvate faster at higher temperatures, inducing faster diffusion of ions to the pores of 

adsorbent, and may be responsible for the more favourable process at higher temperatures 

[4].  Positive ΔH° and ΔS° values were also obtained for both processes with MWCNT-

COOH and MWCNT-ttpy.  ΔH° values indicate that the adsorption process was endothermic 

in nature while positive ΔS° shows an increase in the randomness at the solid-solution 

interface.  It was, however, noticed that larger ΔG°, ΔH° and ΔS° values were obtained for 

MWCNT-ttpy, indicating better sorption of Pb2+ and Zn2+ to active sites of this adsorbent.  

In turn, the adsorption of Pb2+ was greater than for Zn2+ for both adsorbents. 

 

Thermodynamic parameters also provide insights into the mechanism involved in 

adsorption.  An adsorption process is considered physisorption if ΔG° values are between -

20 and 0 kJ mol-1 [4], or ΔH° values are between 2.1 and 20.9 kJ mol-1 [3,66].  The process 

is considered chemisorption if ΔG° values are between -80 to -400 kJ mol-1 [4] and ΔH° 

values are between 80 to 200 kJ mol-1 [3].  The calculated ΔG° and ΔH° values indicate that 

the values obtained were higher than the predicted values for physisorption, but lower than 

for chemisorption.  This shows that the adsorption of Pb2+ and Zn2+ onto MWCNT-COOH 

and MWCNT-ttpy was a physico-chemical process.  In all cases, the adsorption processes 

were entropy-driven. 
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Table 5.7:  Thermodynamic parameters for the adsorption of Pb2+ onto MWCNT-COOH 

and MWCNT-ttpy 

Adsorbent T/K ΔG°/kJ mol-1 ΔH°/kJ mol-1 ΔS°/J K-1 mol-1 

MWCNT-COOH 293 -23.47   

 303 -24.92   

 313 -27.53 38.87 212.0 

 318 -28.68   

MWCNT-ttpy 293 -25.33   

 303 -27.40   

 313 -32.05 65.22 308.1 

 318 -32.41   

 

Table 5.8:  Thermodynamic parameters for the adsorption of Zn2+ onto MWCNT-COOH 

and MWCNT-ttpy 

Adsorbent T/K ΔG°/kJ mol-1 ΔH°/kJ mol-1 ΔS°/J K-1 mol-1 

MWCNT-COOH 293 -15.91   

 303 -17.24   

 313 -18.56 22.80 132.1 

 318 -19.21   

MWCNT-ttpy 293 -21.69   

 303 -23.86   

 313 -26.20 50.57 246.1 

  318 -28.01   

 

5.3.2.7. Desorption 

To avoid the disposal of metal-contaminated adsorbents into the environment, and thereby 

generating secondary wastes, desorption studies were carried out in order to regenerate the 

adsorbents and isolate metal ions for other industrial applications.  The used adsorbents (50 

mg) were weighed and agitated in a 10 cm3 aliquot of 0.1 mol dm-3 HCl for 30 min.  The 

suspensions were filtered after agitation and the concentrations of the desorbed metal ions 

were determined by using ICP-OES. 

 

The percentage desorption from Pb-loaded MWCNT-COOH was found to be 82% and a 

value of 77% was obtained for Pb-loaded MWCNT-ttpy.  Desorption percentages of 72% 

and 76% were obtained for Zn-loaded MWCNT-COOH and MWCNT-ttpy respectively.  

These results indicate that recovery of Pb2+ and Zn2+ from the loaded adsorbent is possible 

and that adsorbents can be recycled. 
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5.4. Conclusions 

The removal of Pb2+ and Zn2+ from aqueous solution was investigated by using acid-

functionalized MWCNT (MWCNT-COOH) and nitrogen-functionalized MWCNT 

(MWCNT-ttpy) through batch adsorption experiments.  The extent of adsorption was 

influenced by changes in the solution pH, adsorbent dose and contact time between the 

adsorbents with the adsorbates.  Adsorption experiments were conducted at a pH of 4.5 and 

5.5 for Pb2+ and Zn2+, respectively. 

 

The study of the kinetics of adsorption revealed that the data for both metal ions was best 

described by the pseudo-second order model, involving a bimolecular interaction between 

the active sites on the adsorbents and the cationic metal ions.  Isotherm studies revealed that 

the Langmuir model best describes the equilibrium data obtained for both processes, 

suggesting monolayer coverage of adsorbates onto the active sites of the adsorbents.  All 

adsorption processes proved to be spontaneous, feasible and endothermic.  Also, the removal 

of Pb2+ and Zn2+ from aqueous solution was found to be entropy-driven. 

 

A better sorption ability for Pb2+ and Zn2+ was achieved with MWCNT-ttpy, owing to the 

increase in surface area and the nature of the complexation sites on the ligand attached to 

the MWCNT adsorbent.  This suggests that the modification of MWCNTs with a nitrogen-

donor ligand such as HO-Phttpy afforded an adsorbent that is both effective and efficient for 

the removal of heavy metal ions from polluted wastewaters.  
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Abstract 

The efficiency of nitrogen-functionalized multiwalled carbon nanotubes (MWCNT-ttpy) for 

the removal of Cd2+ and Hg2+ from aqueous solutions was investigated and compared with 

their uptake on acid-functionalized multiwalled carbon nanotubes (MWCNT-COOH).  

Batch adsorption experiments investigating the influence of pH, contact time, adsorbent 

dose, metal ion concentration and adsorbate temperature were performed to determine the 

best sorption conditions for removal. 

 

The experimental data obtained for both adsorbates were best described by the pseudo-

second order model, indicating a bimolecular chemical interaction between active sites on 

the adsorbents and the metal ion species.  The Langmuir and Sips models best described the 

equilibrium data obtained for both sorbates.  For Cd2+, an uptake (qm) of 10.41 mg g-1 for 

MWCNT-COOH was achieved and 41.51 mg g-1 for MWCNT-ttpy.  An increase in Hg2+
 

uptake was also obtained for MWCNT-ttpy of 36.13 mg g-1 compared with 33.89 mg g-1 for 

MWCNT-COOH.  Hence, MWCNT-ttpy proved to be more effective towards the removal 

of both adsorbates, relative to MWCNT-COOH. 

 

Desorption experiments conducted by using HCl as eluent afforded excellent recovery of 

sorbates and regeneration of sorbents, thus, increasing the chances of reutilization of 

sorbents.  Hence, the application of MWCNT-ttpy as a potential sorbent for effluent and 

wastewater treatment is feasible and should be further explored for water pollution control. 

 

Keywords:  nitrogen-functionalized multiwalled carbon nanotubes, kinetics, isotherm, 

cadmium, mercury 
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6.1. Introduction 

The increase in the contamination of water supplies with toxins, such as heavy metals, has 

intensified in recent times due to the proliferation of urbanization and industrialization [1,2].  

Industrial activities from battery manufacturing, electroplating, tanning and mining, produce 

effluents containing a variety of pollutants, especially metal ions in large amounts.  

Therefore, metal ions are largely distributed into natural waters through the indiscriminate 

discharge of industrial effluents into these water bodies [3,4]. 

 

Heavy metal contamination is one of the most significant environmental challenges and this 

is due to their solubility in water, mobility, accumulation and persistence in the environment 

[4].  Cadmium and mercury are regarded as one of the most poisonous pollutants [4,5], 

whose intake, even at low concentrations, results in several long-term health effects in man, 

wildlife and aquatic life [6].  The pathway through which Cd2+ enters into the environment 

is via the discharge of wastes generated from smelting, alloy production, electroplating, 

batteries, mining and refinery operations [3,7].  An intake of Cd2+ can result in damage of 

the lungs, kidneys, and pancreas, and may also lead to various cardiovascular diseases 

[3,4,8].  Due to its ability to bio-accumulate in man, Cd2+ may persist in the human system 

for a period of 10 years [6,9].  Based on these consequences, 0.005 mg dm-3 and 0.003 mg 

dm-3 were recommended by the United States Environmental Protection Agency (US EPA) 

and the World Health Organization (WHO), respectively, as the maximum permissible 

limits of Cd2+ in drinking water [7,9-11]. 

 

Additionally, the intake of mercury and its associated compounds can lead to several 

developmental and neurological changes in living organisms [12].  Exposure to mercury is 

considered toxic to man, resulting in blood vessel congestion, kidney and lung dysfunction, 

cancerous, teratogenic and mutagenic diseases and, in extreme cases, may lead to death [12-

14].  The release of Hg2+ into the environment is associated with vapours produced from 

volcanic eruptions and weathering of rocks [5], and emissions from coal-burning power 

plants and waste incinerators [15-17].  The most common discharge route of Hg2+ into 

aqueous solutions is the release of wastewater produced from paint, pulp, paper, fertilizer, 

and chlor-alkali manufacturing industries into receiving water streams [5,13].  The mercury 

poisoning reported in Minamata, Japan, was initiated by the release of methylmercury-

contaminated wastewater, produced from an industrial factory into water bodies in 1956 

[5,13,14].  This resulted in the bioaccumulation of mercury in aquatic life.  Its subsequent 

ingestion by man, resulted in acute aftermaths such as coma and death.  To this end, 0.006 

mg dm-3 was recommended by WHO as the maximum permissible limit of Hg2+ in drinking 

water [10,11]. 
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In spite of the restraints on the use of Cd2+ and Hg2+ by the Restriction of Hazardous 

Substance Directives (RoHS) [18], these toxic metals are still employed for applications 

such as electrical and lightening equipment in industries [18] and often used in thermometers 

and manometers in the laboratory.  Hence, the generation of contaminated wastewater 

polluted by these toxins still exists.  The treatment of wastewater is therefore of utmost 

importance before it is discharged into receiving streams.  Several techniques such as 

chemical precipitation [19], electrodeposition [20,21], reverse osmosis [22], coagulation 

[23], ion-exchange [24] and adsorption [1,5] have been employed for heavy metal removal 

from wastewater.  The efficacy of some of these techniques for metal ion removal have been 

poor [3,4,13].  However, adsorption is a promising method for metal ion removal from 

wastewater due to its simplicity, cost-effectiveness and the ability to regenerate spent 

adsorbents for reuse [3,7,9].  Adsorbents are easily handled [25]; hence, the usage of 

sorbents such as activated carbon [26], resins [27], biochars [4], bagasse [28], rice husk [29] 

and clay [8,30], amongst many others has been employed for Cd2+ and Hg2+ removal.  Slow 

sorption processes, low adsorption capacity and inability to regenerate sorbents for reuse are 

some drawbacks attributed to the use of some conventional sorbents [31].  Hence, there is a 

need for the development of a fast, effective and efficient sorbent for the remediation of 

wastewater contaminated with Cd2+ or Hg2+. 

 

A growing research interest in the utilization of shaped carbon nanostructured materials as 

adsorbents has led to the application of multiwalled carbon nanotubes (MWCNTs) for 

pollutant removal in environmental sciences.  MWCNTs possess remarkable physical and 

chemical properties with extraordinary thermal stability, and high porosities and surface 

areas available for adsorption [32,33].  Although MWCNTs are highly hydrophobic in 

nature, their surfaces are easily functionalized to contain a number of functional groups 

which serve as active sites for the removal of targeted pollutants from aqueous solutions.  

MWCNTs have been successfully applied for the removal of a variety of pollutants such as 

perfluorinated compounds [34], polyaromatic compounds [35], dyes [31,36], and phenol 

[37], amongst many.  Metal ions, such as Cd2+ and Hg2+, have also been removed from 

wastewater by using MWCNT-containing adsorbents [2,7,9].  For increased application in 

a practical sense, the adsorption efficiency of MWCNTs needs to be improved to favour the 

effective and efficient removal of Cd2+ and Hg2+ from wastewater. 

 

To overcome this hurdle, 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-Phttpy) was 

employed as a modifier for further functionalization of acid-functionalized MWCNTs 

(MWCNT-COOH).  This process aims to improve the surface area and pore volume of the 

adsorbent, and hence increasing the number of chelating sites available for adsorption.  In 

this work, the effectiveness of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridinyl-functionalized 

MWCNT (MWCNT-ttpy) was tested for the removal of Cd2+ and Hg2+ from aqueous 
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solutions through a series of batch experiments.  The uptake of the two adsorbates onto 

MWCNT-ttpy was compared with the adsorption capacity of MWCNT-COOH.  Also, the 

kinetics and equilibrium isotherms were investigated. 

 

 

6.2 Experimental 

6.2.1. Materials and chemicals 

Cadmium metal powder (99.9%) was obtained from Thomas Baker Chemicals (Pvt) Ltd. 

(Mumbai, India), while mercury(II)nitrate-mono-hydrate (Hg(NO3)2.H2O) and potassium 

chloride (KCl, 99.8%) were obtained from BDH Laboratory Supplies (Poole, England).  

Diphenyl carbazone was purchased from The British Drug Houses Ltd (London, England).  

Sodium hydroxide (NaOH, 98%) was purchased from Merck Chemicals (Pty) Ltd (Gauteng, 

South Africa) while chemicals such as sodium borohydride (99%), 4-hydroxybenzaldehyde 

(99%), 2-acetylpyridine (99%), indium bromide (InBr3, 99%) and solvents such as absolute 

ethanol, N,N'-dimethylformamide (DMF, 99%), dimethyl sulfoxide-d6 (DMSO-d6, 99%) 

and triethylsilane (Et3SiH, 97%) were purchased from Sigma-Aldrich (St Louis, USA).  

Tetrahydrofuran (THF, 99%), chloroform (99%) and thionyl chloride (SOCl2, 99%) were 

purchased from Merck Chemicals (Pty) Ltd (Gauteng, South Africa) while aqueous 

ammonia (25%) was purchased from Associated Chemical Enterprises (Johannesburg, 

South Africa).  Nitric (55%), sulfuric (98%) and hydrochloric acids (32%) were obtained 

from C C Imelmann Ltd (Robertsham, South Africa).  All materials and chemicals were of 

analytical grade and used as received from suppliers without further purification.  Pristine-

MWCNTs (P-MWCNTs) (purity > 95%), synthesized by chemical vapour deposition 

(CVD), were obtained from Cheap Tubes Incorporation (Brattleboro, USA). 

 

6.2.2. Adsorbent preparation 

6.2.2.1. Preparation of oxidized MWCNTs (MWCNT-COOH) 

Oxidation of MWCNTs was carried out as reported by Santangelo et al. [38].  Pristine-

MWCNTs (1.5 g) were placed in a round-bottomed flask containing 100 cm3 of concentrated 

hydrochloric acid, and stirred for 4 h to remove residual metal impurities from the tubes.  

The resulting solution was filtered, and the solid washed with deionised water until a neutral 

pH was obtained.  The sample obtained was dried in a vacuum oven at 80 °C overnight and 

stored in a desiccator for future analysis.  The purified MWCNTs were then oxidized by 

using a mixture of sulfuric and nitric acids in a volume ratio of 1:3, and refluxed at 80 °C 

for 12 h.  The resulting solution was diluted with deionised water, filtered, and the residue 

obtained was washed continuously with deionised water until a neutral pH was obtained. 
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6.2.2.2. Synthesis of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-

Phttpy) 

The ligand was synthesized as reported by Patel et al. [39,40] with some modifications.  2-

Acetylpyridine (2.423 g, 20.0 mmol) was added to 15 cm3 of a 2:1 (v/v) mixture of ethanol 

and water containing 4-hydroxybenzaldehyde (1.221 g, 10.0 mmol).  To the suspension, 

NaOH pellets (1.458 g, 26.0 mmol) and 30 cm3 aqueous NH3 were added and stirred 

continuously at room temperature for 8 h to yield a cream-coloured precipitate.  The 

resulting mixture was filtered, the solid obtained was washed with deionised water (5 × 10 

cm3), followed by absolute ethanol (3 × 5 cm3) to obtain the crude white product (508.8 mg, 

42%).  m.p. 199-201 °C; IR (ATR, cm-1) 3375, 1614, 1588, 1565; 1H NMR (400 MHz, 

DMSO-d6) δ: 6.92 (d, 2H, J=8.6 Hz), 7.49-7.52 (m, 2H), 7.75 (d, 2H J=8.68 Hz), 7.99-8.04 

(m, 2H), 8.67-8.74 (m, 6H); 13C NMR (400 MHz, DMSO-d6) δ: 160.2, 155.4, 155.1, 149.4, 

149.2, 137.3, 128.0, 126.8, 124.3, 120.8, 116.8, 116.4; HR-MS [C21H15N3O] ES:[M + H+] 

m/z Calcd 326.1215, found 326.1293. 

 

6.2.2.3. Preparation of nitrogen-functionalized MWCNTs (MWCNT-

ttpy) 

Oxidized MWCNTs (150 mg) were dispersed in 30 cm3 of a solution containing a 20:1 (v/v) 

mixture of SOCl2 and DMF, and then refluxed at 70 °C for 24 h [41].  The resulting mixture 

was filtered, and the solid obtained was washed with deionised water until a neutral pH was 

achieved.  Acylated MWCNTs (100 mg) were added to 100 mg of HO-Phttpy in 20 cm3 of 

dry tetrahydrofuran (THF) with the addition of 2-5 drops of glacial acetic acid.  The 

suspension was refluxed at 64 °C for 24 h under an inert atmosphere of argon.  The 

suspension was filtered, and the solid obtained was washed with THF and dried in a vacuum 

oven. 

 

The sample obtained (100 mg) was added to freshly distilled chloroform (30 cm3), InBr3 

(10.6 mg 0.03 mmol) and Et3SiH (380 µL, 2.4 mmol).  The suspension was stirred and 

refluxed at 60 °C for 1 h under an inert atmosphere of argon.  The resulting mixture was 

filtered and the solid washed with chloroform, followed by water until a neutral pH was 

obtained.  Evidence of the successful preparation of MWCNT-COOH and MWCNT-ttpy 

was obtained by various characterization techniques such as electron microscopy (scanning 

and transmission), Fourier transform infrared (FTIR) and Raman spectroscopy, 

thermogravimetric analysis, elemental analysis and BET surface area analysis. 
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6.2.3. Metal analysis procedure 

6.2.3.1. Equipment 

A PerkinElmer Optima 5300 DV inductively coupled plasma-optical emission 

spectrophotometer (ICP-OES) was used to measure the initial and final concentrations of 

Cd2+ in solution.  The operating conditions used are presented in Appendix III (Table A-

III.1).  A PerkinElmer AAnalyst 200 atomic absorption spectrometer, equipped with a 

PerkinElmer mercury hydride system (MHS 15) was used for Hg2+ determination by using 

sodium borohydride (NaBH4) as reductant.  The operating conditions for cold vapour atomic 

absorption spectrometer (CVAAS) are listed in Appendix III (Table A-III.2). 

 

6.3.2.2. Preparation of adsorbate solution 

A stock solution of Cd2+ was prepared by dissolving 1 g of cadmium metal in 20 cm3 of 

concentrated HCl acid and 3-5 drops of HNO3 acid.  The solution was then made up to the 

mark in a 1000 cm3 volumetric flask with deionised water.  Working solutions of desired 

concentrations were made by dilution of this stock solution. 

 

A 1.713 g mass of Hg(NO3)2.H2O was dissolved in 10 cm3 of nitric acid and diluted to the 

mark in a 500 cm3 volumetric flask with deionised water.  This solution was standardized 

against potassium chloride by using diphenylcarbazone indicator [42].  A solution of Hg2+ 

with a concentration of 1000 mg dm-3 was prepared by measuring the required volume of 

the Hg(NO3)2.H2O stock solution and diluting to the mark, in a 1000 cm3 volumetric flask 

with deionised water.  Working solutions of Hg2+ were prepared from the 1000 mg dm-3 

Hg(NO3)2.H2O solution by dilution to obtain the desired concentration. 

 

6.2.3.3. Calibration of spectrophotometers 

The inductive coupled plasma-optical emission spectrometer (ICP-OES) and cold vapour 

atomic absorption spectrophotometer (CVAAS) were calibrated for Cd2+ and Hg2+ analysis, 

respectively, by preparing standard solutions of Cd2+/Hg2+ with concentrations within the 

range of 0-100 mg dm-3 at each time of analysis.  Calibration plots were obtained in these 

ranges and the initial and final concentrations of Cd2+/Hg2+ in the samples were estimated 

from these plots. 

 

6.2.4. Batch adsorption studies 

The influence of adsorption parameters, such as pH, contact time, adsorbent dose, initial ion 

concentration and temperature, were investigated through batch adsorption experiments of 

the sorption of Cd2+ and Hg2+ onto MWCNT-COOH and MWCNT-ttpy.  Experiments were 

conducted sequentially to obtain the best experimental conditions for the adsorption of Cd2+ 
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and Hg2+ from aqueous solutions.  Working solutions of Cd2+ and Hg2+ with concentrations 

of 100 mg dm-3 and 50 mg dm-3, respectively, were prepared from the respective stock 

solutions. 

 

Adsorption experiments were conducted by measuring 25 cm3 aliquots of Cd2+ or Hg2+ 

solution into 100 cm3 polypropylene plastic vials, and conditioned to obtain the desired pH 

with the addition of appropriate amounts of 0.1 mol dm-3 NaOH or HNO3 solution.  A mass 

of 50 mg of each adsorbent was added into the solution and agitated in a thermostated water 

bath pre-set at 20 °C for 24 h.  After agitation, the solutions were filtered, and the final 

concentrations of Cd2+ or Hg2+ determined by ICP-OES and CVAAS, respectively.  The 

amount of metal ion adsorbed on each sorbent was estimated from the difference between 

the initial and equilibrium metal ion concentrations.  The adsorption capacity (qe) of Cd2+ 

and Hg2+ was calculated from Eq. 6.1. 

 

V ×






 


m

CC
q

eqi

e      (6.1) 

 

where Ci is the initial adsorbate concentration (mg dm-3), Ceq is the equilibrium 

concentration of adsorbate (mg dm-3), qe is the adsorption capacity (mg g-1), m is the mass 

of adsorbent (mg) and V is the volume (dm3) of the adsorbate solution used.  The percentage 

removal (% adsorbed) of Cd2+ and Hg2+ was calculated according to Eq. 6.2. 

 

100 ×  % 
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6.2.4.1. Kinetics, isotherm and thermodynamic studies 

The equilibration time of the adsorption process for each metal ion was determined by means 

of kinetic experiments.  This was carried out by weighing about 50 mg of each sorbent into 

100 cm3 polypropylene bottles, containing 25 cm3 aliquots of Cd2+ or Hg2+ solution.  The 

solutions were conditioned to obtain the desired pH by adding appropriate amounts of 0.1 

mol dm-3 NaOH or HNO3 solution, and thereafter the bottles were placed in a thermostated 

water bath at 20 °C.  These samples were agitated over a time interval in the range of 5 to 

1440 min.  After the pre-determined time intervals, the samples were filtered by gravity and 

the concentration of Cd2+ or Hg2+ determined by ICP-OES or CVAAS, respectively.  The 

experimental adsorption data obtained were applied to the pseudo-first order, pseudo-second 

order, intraparticle diffusion and Elovich kinetics models as given in Table 6.1. 
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Table 6.1:  Kinetics models used for the adsorption of Cd2+ and Hg2+ 

Model Equation* Parameters References 

Pseudo-first order 𝑞𝑡 =  𝑞𝑒𝑞(1 − 𝑒−𝑘1𝑡) qeq, k1 [43-45] 

Pseudo-second order 
𝑞𝑡 =  

𝑘2𝑞𝑒𝑞
2 𝑡

1 +  𝑘2𝑞𝑒𝑞𝑡
 

k2, qeq [43,45,46] 

Elovich 
𝑞𝑡 =  

1

𝛽
ln (𝛼𝛽) +  

1

𝛽
ln 𝑡 

α, β [47] 

Intraparticle diffusion 𝑞𝑡 =  𝑘𝑖𝑑√𝑡 + 𝑙 kid, l [48] 

*qt, quantity of adsorbate adsorbed at time t (mg g-1); qeq, quantity of adsorbate adsorbed at equilibrium (mg g-

1); α, adsorption rate constant (mg g-1 min-1); β, desorption rate constant (g mg-1); k1, pseudo-first order rate 

constant (min-1); k2, pseudo-second order rate constant (g mg-1 min-1); kid, intraparticle diffusion rate constant 

(mg g-1 min0.5), l, is a constant related to the boundary layer thickness. 

 

Adsorption isotherms were obtained by using varying concentrations of Cd2+ or Hg2+, 

concentrations, ranging from 10–100 mg dm-3, at a constant pH of 5.5 and 6.0, respectively.  

Aliquots of 25 cm3 were mixed with 50 mg of each adsorbent and agitated in a thermostated 

shaking water bath for 24 h.  The effect of temperature on the adsorption of Cd2+ were only 

conducted at varying temperatures of 293, 303, 313 and 318 K, while adsorption 

experiments for Hg2+ investigating the influence of temperature was conducted at 293 and 

303 K, due to the volatility of Hg2+.  The experimental adsorption equilibrium data were 

analysed by various two- or three-parameter isotherm models, such as the Langmuir, 

Freundlich, Temkin, Dubinin-Radushkevich, Sips, Toth, Redlich-Peterson and Khan models 

as given in Table 6.2.  Thermodynamic parameters such as change in Gibbs energy (ΔG°), 

change in enthalpy (ΔH°), and change in entropy (ΔS°) were also calculated over the studied 

temperature ranges. 
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Table 6.2:  Isotherm models used for the adsorption of Cd2+ and Hg2+ 

Isotherm Equation* Parameters References 

Langmuir 𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐶𝑒𝑞

1 + 𝑏𝐶𝑒𝑞

 qm, b [49] 

Freundlich 𝑞𝑒𝑞 = 𝐾𝐹𝐶𝑒𝑞
1 𝑛⁄

 KF, n [50] 

Temkin 𝑞𝑒𝑞 =
𝑅𝑇

𝑏𝑇

𝑙𝑛(𝐴𝑇𝐶𝑒𝑞) bT, AT [51] 

Dubinin-Radushkevich 

𝑞𝑒𝑞 = 𝑞𝑚𝑒−𝛽𝜀2
 

𝜀 = 𝑅𝑇𝑙𝑛 (1 +
1

𝐶𝑒𝑞

) 
qm, β [52] 

Sips 𝑞𝑒𝑞 =
𝑏𝑞𝑚𝐶𝑒𝑞

1 𝑛⁄

1 + 𝑏𝐶𝑒𝑞
1 𝑛⁄

 qm, b, n [53] 

Toth 
𝑞𝑒𝑞 =

𝑞𝑚𝐶𝑒𝑞

(
1

𝐾𝑇
+ 𝐶𝑒𝑞

𝑛𝑇)
1 𝑛𝑇⁄

 
qm, KT, nT [54] 

Redlich-Peterson 𝑞𝑒𝑞 =
𝐾𝑅𝑃𝐶𝑒𝑞

1 + 𝑎𝑅𝑃𝐶𝑒𝑞
𝑔  KRP, aRP, g [55] 

Khan 𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐾𝐶𝑒𝑞

(1 + 𝑏𝐾𝐶𝑒𝑞)
𝑎𝐾

 qm, aK, bK [56] 

*qeq, adsorption capacity (mg g-1); Ceq, equilibrium concentration of adsorbate in solution (mg dm-3); qm, 

maximum monolayer capacity (mg g-1); b, Langmuir isotherm constant (dm3 mg-1); KF, Freundlich isotherm 

constant (mg g-1)(dm3 mg-1)n; n, adsorption intensity; bT, Temkin isotherm constant; AT, Temkin isotherm 

equilibrium binding constant (dm3 g-1); β, Dubinin-Radushkevich isotherm constant (mol2 kJ-2); KT, Toth 

isotherm constant (mg g-1); nT, Toth isotherm constant; KRP, Redlich-Peterson isotherm constant (dm3 g-1); aRP, 

Redlich-Peterson isotherm constant; g, Redlich-Peterson isotherm exponent; ak, Khan isotherm exponent; bk, 

Khan isotherm constant. 

 

6.2.5. Desorption experiments 

After conducting adsorption experiments with a 50 mg dm-3 solution of Cd2+ or Hg2+ by 

using a 50 mg dose of each adsorbent, the loaded adsorbents were separated from the 

suspensions by filtration and the metal ion concentration in the filtrates was determined by 

using the appropriate previously described techniques.  The collected sorbents were washed 

with deionised water to remove unadsorbed metal ions and dried in a vacuum oven at 80 °C.  

Desorption experiments were then conducted by agitating 50 mg of the metal loaded-

adsorbent with 25 cm3 of 0.1 mol dm-3 HCl for 30 min.  The mixture was then filtered and 

the concentration of the desorbed metal ions in the filtrates was determined as described 

before. 
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6.2.6. Data analysis 

The data obtained were fitted to the isotherm and kinetics models by means of the nonlinear 

regression routine (nls) in the R statistical computing environment [57].  The R statistical 

software takes into account the minimization of the sum of squared residuals (SSR) and the 

residual square errors (RSE).  A comparison of all SSR and RSE values was done and the 

adequacy of the models was assessed from the value with the lowest SSR. 

 

 

6.3. Results and discussion 

6.3.1. Characterization of adsorbents 

The characterization of the two adsorbents, MWCNT-COOH and MWCNT-ttpy has been 

previously reported by Oyetade et al [58].  Some pertinent characteristics of the adsorbents 

are presented in Table 6.3 and 6.4.  As can be seen in Table 6.3, the surface area and pore 

volume of MWCNT-ttpy are larger than those obtained for MWCNT-COOH.  Also, 

MWCNT-ttpy contains a larger number of functional groups per unit mass than MWCNT-

COOH (Table 6.4).  These properties demonstrates that both adsorbents may be suitable for 

metal ion sorption from aqueous solutions. 

 

Table 6.3:  Textural characterization of synthesized nanomaterials 

Entry Adsorbents Surface area/m2 g-1 Pore volume/cm3 g-1 Pore diameter/nm 

1 P-MWCNT 108.8 0.494 18.44 

2 MWCNT-COOH 126.8 0.692 22.95 

3 MWCNT-ttpy 189.2 1.252 27.26 

 

Table 6.4:  Surface chemistry of P-MWCNTs, MWCNT-COOH and MWCNT-ttpy 

determined by the Boehm titration method 

Adsorbents Carboxyl/

mmol g-1 

Lactonic/

mmol g-1 

Phenolic/

mmol g-1 

Total acidic 

groups/mmol g-1 

Total basic 

groups/mmol g-1 

P-MWCNTs 0.136 0.014 0.114 0.264 0.145 

MWCNT-COOH 0.719 0.104 0.401 1.224 0.226 

MWCNT-ttpy 0.613 0.165 0.544 1.322 0.752 

 

6.3.2. Batch adsorption experiments 

Batch adsorption experiments were conducted to investigate the optimum conditions for 

Cd2+ and Hg2+ removal from aqueous solutions.  In this section, the influence of pH, contact 

time, adsorbent dose, initial metal ion concentration and adsorbate temperature were 

investigated and their results presented.  Kinetics, isotherm and thermodynamic studies were 
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also investigated to understand the mechanisms involved in the removal of the targeted metal 

ions from aqueous solutions. 

 

6.3.2.1. Effect of pH 

Metal ion adsorption is significantly influenced by the solution pH, since it controls the 

distribution of species, surface charges and also the degree of ionization of the sorbent [5].  

The influence of pH on the sorption of Cd2+ and Hg2+ onto MWCNT-COOH and MWCNT-

ttpy from aqueous solutions was studied over a pH range of 1-10.  Fig 6.1 shows that the 

percent adsorbed for Cd2+ and Hg2+ by both adsorbents increases as the solution pH becomes 

more basic.  The extent of Cd2+ removal by MWCNT-COOH increased steadily from 9.5% 

to 59.0%, while higher removal efficiencies of 22.0% to 99.2% were obtained with 

MWCNT-ttpy over the same pH range (Fig 6.1a).  Similarly, an increase in Hg2+ removal 

onto MWCNT-COOH from 55.8% to 85.9%, and from 83.0% to 88.0% by MWCNT-ttpy, 

was observed with increasing solution pH as shown in Fig 6.1b. 

 

Fig 6.1:  Effect of pH on the adsorption of (a) Cd2+ and (b) Hg2+ by using MWCNT-COOH 

and MWCNT-ttpy [conditions: 25 cm3 of Cd2+/Hg2+ solution, 24 h equilibration 

time, 50 mg adsorbent dose, agitation speed 150 rpm, temperature 20 °C]. 

 

These observations signify that the sorption of Cd2+ and Hg2+ was greatly enhanced by the 

change in solution pH.  A lower removal of adsorbates under acidic conditions can be 

attributed to increasing competition between hydrogen ions and metal cations in solution.  

Also, this phenomenon induces an electrostatic repulsion between the metal cations and 

positive charges on the adsorbent, resulting in a lower removal under acidic conditions.  An 

increase in solution pH reduces the amount of hydrogen ions and increases the number of 

hydroxyl ions in solution.  This process facilitates the sorption of both adsorbates via 

electrostatic attraction between cations and negative charges on the adsorbent.  Similar 

trends were reported by Kadirvelu et al. [5], Shadbad et al. [59], Hadavifar et al. [60], Liang 

et al. [9] and Li et al. [7] involving the sorption of Cd2+ and Hg2+ onto MWCNT-containing 

(a) 

(b) 
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sorbents.  It is also worthy of note that the sorption of Cd2+ and Hg2+ onto MWCNT-ttpy 

was more pronounced than MWCNT-COOH.  This could be due to the affinity of nitrogen-

donor atoms in MWCNT-ttpy preferentially binding to soft metal ions such as Cd2+, and an 

increase in the number of coordination sites available for chelation on the adsorbent.  These 

results are in agreement with the study reported by Hadavifar et al. [60], where amino and 

thiol-functionalized MWCNTs proved more effective for Hg2+ removal than MWCNTs. 

 

The experimental data for the adsorption of Cd2+ and Hg2+ as a function of pH can be found 

in Appendix III. 

 

As shown in Fig 6.2, various species of cadmium such as Cd(OH)+, Cd(OH)2, Cd(OH)3, 

Cd(OH)4 and Cd4(OH)4 can be formed with increasing alkalinity of the solution.  Similarly, 

species such as Hg(OH)2, Hg(OH)3
- and Hg(OH)+ may be formed under alkaline conditions.  

Hence, subsequent experiments were conducted at pH 5.5 and 6.0 for Cd2+ and Hg2+, 

respectively, in order to avoid precipitation of metal ions accompanying adsorption in 

solution.  At both of these pH values, the metal ions exists as free metal ions available for 

adsorption and do not exists as hydrolysed or protonated species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.2:  Speciation of Cd2+ as a function of pH in aqueous solutions.  Numerical values of 

log β for the metal hydroxides used in the calculation of the speciation curves were 

obtained from Critical Stability Constants compiled by Smith and Martell [61], and 

plots obtained with the aid of HySS software [62]. 
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6.3.2.2. Effect of contact time 

To investigate the effect of contact time on the adsorption of Cd2+ and Hg2+ onto MWCNT-

COOH and MWCNT-ttpy, adsorption experiments were agitated over a period of 5-1440 

min.  Fig 6.3 shows the percentage removal of Cd2+ and Hg2+ onto MWCNT-COOH and 

MWCNT-ttpy as a function of time.  The figures reveals that the removal of both adsorbates 

increases with an increase in agitation time.  Fig 6.3a shows that equilibrium for the removal 

of Cd2+ was reached within 360 min by using MWCNT-COOH and within 360 min by 

MWCNT-ttpy.  However, the percentage adsorbed was four times greater for MWCNT-ttpy 

than MWCNT-COOH.  This signifies that MWCNT-ttpy is a better adsorbent for Cd2+ 

removal than MWCNT-COOH.  This could be as a result of the introduction of nitrogen-

donor atoms onto the adsorbent, which possess strong affinity towards cadmium metal ions.  

The soft Cd2+ ions will bind preferentially with the borderline pyridinyl-nitrogen donors in 

MWCNT-ttpy than the harder oxygen donors in MWCNT-COOH. 

 

Similar trends were observed for the removal of Hg2+ onto MWCNT-COOH and MWCNT-

ttpy (Fig 6.3b).  Fig 6.3b shows that equilibrium was achieved at 240 min and 120 min by 

using MWCNT-COOH and MWCNT-ttpy, respectively.  However, the difference in the 

percentage adsorbed by the two adsorbents was not as marked for Hg2+ as it was for Cd2+ 

(Fig 6.3b vs a).   

 

Fig 6.3:  Effect of contact time on the adsorption of (a) Cd2+ and (b) Hg2+ by using MWCNT-

COOH and MWCNT-ttpy [conditions: 25 cm3 of 100 mg dm-3 Cd2+, or 50 mg dm-3 

Hg2+, 50 mg adsorbent dose, pH = 5.5 (Cd2+) and pH = 6.0 (Hg2+), agitation speed 

150 rpm, temperature 20 °C]. 

 

The rate of adsorption was rapid for the removal of Cd2+ and Hg2+ onto MWCNT-ttpy, 

attaining a percent removal efficiency of 70% and 50%, respectively, after 5 min.  The 

removal of adsorbates onto both sorbents, however, begins to slow down after the 

equilibrium time, due to saturation of the active sites on the adsorbents.  Hence, the initial 

(b) 

(a) 
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fast removal can be attributed to the availability of active sites which decreases with increase 

in time.  In this study, in order to ensure effective removal of adsorbates for higher 

concentrations, all experiments were equilibrated for 24 h. 

 

The experimental data for the adsorption of Cd2+ and Hg2+ as a function of contact time can 

be found in Appendix III. 

 

6.3.2.2.1. Kinetic studies 

The mechanism of adsorption was investigated by modelling the kinetic data, to determine 

the rate-controlling step of the process.  These experiments were conducted at fixed initial 

metal ion concentration, pH value, adsorbent dose, adsorbate volume and temperature.  The 

experimental data collected at varying contact time, between 5-1440 min were analysed 

through the kinetics models given in Table 6.3.  A comparison of the stated models was done 

by using the non-linear regression (nls) routine in the R statistical computing software [57].  

Table 6.5 presents the kinetics parameters obtained for both adsorption processes by using 

MWCNT-COOH and MWCNT-ttpy.  The adequacy of the model which best describes the 

adsorption process was chosen based on the lowest values obtained for the sum of squared 

residuals (SSR).   

 

The adsorption of Cd2+ onto MWCNT-COOH and MWCNT-ttpy was better described by 

the Elovich and pseudo-second order models, respectively (Table 6.5).  On the other hand, 

the adsorption of Hg2+ onto both adsorbents was best described by the pseudo-second order 

model.  The pseudo-second order models assumes that adsorption proceeds through a 

bimolecular chemical interaction between the adsorbate ions and the active sites on the 

adsorbents [63].  The adsorption of Hg2+ onto both adsorbents, and the removal of Cd2+ to 

MWCNT-ttpy proceeded through this process.  Hence, these adsorption processes were 

facilitated via bimolecular interactions between nitrogen- or oxygen- donor atoms and the 

metal cations.  The Elovich model, on the other hand, is used to describe chemical sorption 

of gases onto solid surfaces.  The mechanism of Cd2+ removal onto MWCNT-COOH 

therefore proceeded through the diffusion of adsorbate ions from the bulk solution to the 

surface of the adsorbent.  Tofighy et al. [64], Liang et al. [64] and Vukovic et al. [65] also 

reported that Cd2+ removal by CNT-containing sorbents were better described by the 

pseudo-second order model.  However, they did not attempt to use the Elovich model.  Also, 

the removal of Hg2+ produced similar trends as reported by Chen et al. [63], Shadbad et al. 

[59] and Kabbashi et al. [15].  The figures showing the fit of the experimental data for each 

model are shown in Appendix III (Fig A-III.1). 
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Table 6.5:  Kinetic parameters for the adsorption of Cd2+ and Hg2+ on MWCNT-COOH and 

MWCNT-ttpy [conditions: 25 cm3 of 100 mg dm-3 Cd2+ at pH 5.5, or 50 mg dm-

3 Hg2+ at pH 6.0, 50 mg adsorbent dose, agitation speed 150 rpm, temperature 

20 °C] 

Model Parameter 

Cd2+  Hg2+ 

MWCNT-

COOH 

MWCNT-

ttpy  

MWCNT-

COOH 

MWCNT-

ttpy 

Experimental qmeas/mg g-1 9.734 36.72  18.55 22.41 

Pseudo-first order k1/10-2/min 0.150 0.178  0.033 0.156 

 qeq/mg g-1 7.999 38.38  15.21 21.90 

 RSE* 1.071 2.581  0.722 0.729 

 SSR† 17.22 99.94  7.811 7.968 

Pseudo second order k2/10-3/g mg-1 min-1 0.025 0.009  0.003 0.014 

 qeq/mg g-1 8.478 39.73  16.41 22.65 

 RSE 0.781 1.294  0.550 0.292 

 SSR 9.151 25.10  4.539 1.280 

Intraparticle diffusion kid/mg g-1 min-0.5 0.401 1.830  0.677 1.032 

 l/mg g-1 5.603 26.63  1.470 11.30 

 RSE 3.878 21.48  5.949 12.23 

 SSR 240.6 7382  566.3 2394 

Elovich α/mg g-1 min-1 4.169 27.460  4.599 4.534 

 β/g mg-1 0.756 2.074  0.434 8.343 

 RSE 0.190 2.036  1.608 1.514 

  SSR 0.541 62.20  38.80 34.38 

*- residual squared error; †- sum of squared residuals 

 

The mechanism of adsorption can proceed via one or more of the following steps:  (i) the 

transfer of solute from the bulk solution to the surface of the adsorbent, (ii) transfer of the 

solute from the bulk solution to the boundary film which surrounds the adsorbent surface 

(film diffusion), (iii) solute transfer through the internal pores of the adsorbent (intraparticle 

diffusion), and (iv) interaction between adsorbate molecules with the active sites on the 

external surface of the adsorbent.  A plot of qe versus √t gives an explanation into the 

processes controlling the adsorption processes.  It is assumed that the process is multi-step 

controlled if a linear plot is obtained which does not pass through the origin [66,67].  When 

a linear plot which passes through the origin is obtained, adsorption is assumed to proceed 

only by the intraparticle diffusion of adsorbates onto sites of the adsorbent [66].  All linear 

plots obtained in this study did not pass through the origin, indicative that the adsorption of 

Cd2+ and Hg2+ was controlled by a series of steps.  Hence, it could be inferred that the 

removal of Cd2+ and Hg2+ onto MWCNT-COOH and MWCNT-ttpy proceeded through 

intraparticle diffusion, and a number of other steps accompanying adsorption.  Table 6.5 
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further demonstrates higher intraparticle diffusion constants (kid) and boundary layer (l) 

values for MWCNT-ttpy than MWCNT-COOH for both adsorption processes.  These results 

are indicative that adsorption was boundary-controlled, hence, an increase in the uptake of 

adsorbates was noticed with increase in l values.  Similarly, Table 6.5 shows that higher l 

values were obtained for Cd2+ sorption by using both sorbents, compared with their 

corresponding values for Hg2+ sorption.  This implied that both adsorbents had better affinity 

for the removal of Cd2+ than Hg2+. 

 

6.3.2.3. Effect of adsorbent dose 

The influence of increasing adsorbent dose for the adsorption of Cd2+ and Hg2+ onto 

MWCNT-COOH and MWCNT-ttpy from aqueous solutions was investigated over a dosage 

range of 30-400 mg.  Fig 6.4 shows an increase in the removal efficiency of Cd2+ and Hg2+ 

onto MWCNT-COOH and MWCNT-ttpy as the adsorbent mass is increased.  An increase 

in the removal of adsorbates can be attributed to the increase in the surface area and the 

number of active sites on the adsorbent, as a result of increasing the adsorbent dose [60].  

The improved efficiency of MWCNT-ttpy over MWCNT-COOH is seen in Fig 6.4, where 

sorption was greatly enhanced for Cd2+ and Hg2+ removal.  As before, in the case of Cd2+, 

MWCNT-ttpy exhibits a large improvement over MWCNT-COOH.  This can be attributed 

to the fact that both metal ions are soft acids and are expected to form strong covalent bonds 

with borderline bases such as nitrogen. 

 

The experimental data for the adsorption of Cd2+ and Hg2+ as a function of adsorbent dose 

can be found in Appendix III. 

 

Fig 6.4:  Effect of adsorbent dose on the adsorption of (a) Cd2+ and (b) Hg2+ by using 

MWCNT-COOH and MWCNT-ttpy [conditions: 25 cm3 of 100 mg dm-3 Cd2+ , 

or 50 mg dm-3 Hg2+, 24 h equilibration time, pH = 5.5 (Cd2+) and pH = 6.0 (Hg2+), 

agitation speed 150 rpm, temperature 20 °C]. 

 

(a

(b
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6.3.2.4. Effect of initial metal ion concentration 

The influence of the initial metal ion concentration on the adsorption of Cd2+ and Hg2+ onto 

MWCNT-COOH and MWCNT-ttpy was examined over a concentration range of 10-100 

mg dm-3.  As observed in both cases, an increase in the metal ion concentration, resulted in 

a decrease in the percentage removal from 38.2 to 16.8% and 97.7 to 88.0% for Cd2+, and 

90.0 to 62.9% and 98.8 to 81.9% for Hg2+, onto MWCNT-COOH and MWCNT-ttpy, 

respectively.  The observed decrease is due to the presence of more metal ions in solution, 

which limits the number of available adsorption sites [13].  This trend, however, yielded an 

increase in metal ion uptake per unit mass of adsorbent (qe) with increase in concentration 

as shown in Figs 6.5 and 6.6.  This can be attributed to an increasing number of collisions 

between the metal ions and active sorbent sites, resulting in higher occupation of the sites at 

high initial concentrations, and thus high adsorption capacities [13].  As the initial metal ion 

concentration is increased, the uptake of adsorbates is noticed to reach a plateau where no 

further increase takes place.  This plateau is as a result of the complete occupation of the 

active sites at a particular concentration, and little or no further increase can occur.   

 

Fig 6.5:  Effect of temperature on the adsorption of Cd2+ onto (a) MWCNT-COOH and (b) 

MWCNT-ttpy [conditions: 25 cm3 of Cd2+ solution, 24 h equilibration time, 50 mg 

adsorbent dose, pH = 5.5, agitation speed 150 rpm]. 

  

(a) (b) 
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Fig 6.6:  Effect of temperature on the adsorption of Hg2+ onto (a) MWCNT-COOH and (b) 

MWCNT-ttpy [conditions: 25 cm3 of Hg2+ solution, 24 h equilibration time, 50 mg 

adsorbent dose, pH = 6.0, agitation speed 150 rpm]. 

 

Fig 6.5a shows that the sorption of Cd2+ onto MWCNT-COOH was low compared with 

MWCNT-ttpy (Fig 6.5b).  This could be as a result of the low affinity of hard oxygen-donor 

atoms towards soft metals such as cadmium.  The much enhanced uptake of Cd2+ by 

MWCNT-ttpy could be as a result of the presence of nitrogen-donor atoms on the adsorbent, 

which act as chelating sites for the adsorbate.  Fig 6.6 demonstrates that both adsorbents had 

good efficiency towards the removal of Hg2+ over the concentration range studied.  Hence, 

the sorption of Hg2+ could be said to be effective by using either oxygen-or nitrogen-

containing MWCNTs. 

 

The experimental data for the sorption of Cd2+ and Hg2+ onto MWCNT-COOH and 

MWCNT-ttpy as a function of varying initial metal ion concentration can be found in 

Appendix III. 

 

6.3.2.5. Effect of temperature 

The influence of temperature on the adsorption of Cd2+ was studied over a temperature range 

of 20 ºC to 45 ºC.  However, due to volatility losses which could result in environmental 

hazards associated with Hg2+ at increased temperatures, its temperature effects were 

examined only at 20 ºC and 30 ºC.  The sorption of Cd2+ onto both adsorbents was noticed 

to decrease with an increase in temperature (Fig 6.5).  This is attributed to a decrease in the 

physical adsorptive forces (van der Waals) between the metal ion and active sites on the 

adsorbent [13], hence, resulting in a sorption decrease as temperature is increased.  The 

adsorption of Cd2+ onto the adsorbents was therefore exothermic in nature.  In contrast, Fig 

6.6 shows an increase in the removal of Hg2+ as the adsorbate temperature is increased from 

20 ºC to 30 ºC.  This could be due to volatility losses of Hg2+ at increased temperatures, an 

(a) (b) 
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increase in the mobility of Hg2+ towards the adsorbent sites and an increase in the size of the 

adsorbent pores [13].  These results are in agreement with inferences drawn by Hadi et al. 

[13], demonstrating the endothermic nature of adsorption for the removal of Hg2+ from 

aqueous solutions.  The thermodynamic parameters, such as enthalpy change, entropy 

change and change in Gibbs energy for the adsorption of Cd2+ were calculated and are 

presented in Section 6.3.7.  However, thermodynamic parameters for Hg2+ sorption could 

not be calculated due to environmental exposure, which could be associated with increased 

adsorbate temperature, hence, experiments were performed at only two temperatures from 

which inferences cannot be drawn. 

 

6.3.2.6. Isotherm studies 

Equilibrium adsorption isotherms are mathematical expressions used to estimate the 

capacity of an adsorbent towards the removal of a targeted pollutant and describe the 

distribution of species in the solid-liquid phases [6].  Adsorption experiments were 

performed by adding specific amounts of the adsorbents into different aliquots of Cd2+/Hg2+ 

solutions of varying metal ion concentrations ranging from 10-100 mg dm-3 over a 

temperature range of 293-318 K for Cd2+ and 293-303 K for Hg2+.  The equilibrium data 

obtained were fitted into various two- and three-parameter isotherms listed in Table 6.4 and 

the fit of the models to the experimental data were compared to obtain the isotherms that 

best describe the adsorption process.  The adequacy of a model was decided based on the 

lowest values for the sum of squared residuals (SSR) and the residual squared errors (RSE) 

obtained. 

 

Tables 6.6 and 6.7 give the isotherm parameters for models which fit the equilibrium data 

most appropriately for the adsorption of Cd2+ and Hg2+, respectively.  The figures showing 

the fit for these isotherms are presented in Appendix III (Figs A-III.2 – A-III.5).  The 

Langmuir isotherm was the best two-parameter model that could describe the adsorption of 

Cd2+ onto both sorbents (Table 6.6).  The equilibrium data obtained for MWCNT-COOH 

could not be described by any of the three-parameter isotherm models, however, data 

obtained for MWCNT-ttpy were best described by the Redlich-Peterson (R-P) and Sips 

models. 
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Table 6.6:  Isotherm parameters for the adsorption of Cd2+ onto MWCNT-COOH and 

MWCNT-ttpy 

   MWCNT-COOH MWCNT-ttpy 

Isotherms Parameter 293 K 303 K 313 K 318 K  293 K 303 K 313 K 318 K 

Langmuir qm 10.41 7.503 5.804 6.3026  41.51 39.71 38.89 36.94 

 b 0.022 0.022 0.029 0.017  0.558 0.426 0.288 0.250 

 RSE* 0.121 0.120 0.102 0.138  1.110 0.452 1.080 0.618 

 SSRǂ 0.117 0.114 0.084 0.151  9.864 1.631 9.331 3.052 

Freundlich KF 0.631 0.451 0.507 0.280  - - - - 

 n 1.833 1.845 2.091 1.697  - - - - 

 RSE 0.200 0.137 0.187 0.450  - - - - 

 SSR 0.319 0.150 0.279 0.237  - - - - 

Sips qm - - - -  37.36 37.97 34.62 34.31 

 b - - - -  0.635 0.439 0.2745 0.242 

 n - - - -  0.781 0.914 0.7739 0.8627 

 RSE - - - -  0.632 0.315 0.700 0.404 

 SSR - - - -  2.792 0.694 3.429 1.140 

R-P K - - - -  19.01 15.02 8.932 7.671 

 α - - - -  0.316 0.306 0.1292 0.1323 

 β - - - -  1.154 1.0777 1.194 1.144 

 RSE - - - -  0.804 0.224 0.780 0.255 

  SSR - - - -  4.524 0.3503 4.256 0.4549 

*-residual squared errors, ǂ- sum of squared residuals 

 

The data obtained for the sorption of Hg2+ onto both adsorbents over a temperature range of 

293 K to 303 K, were best described by the Langmuir and Freundlich models for the two-

parameter isotherms, and the Sips model for the three-parameter isotherms (Table 6.7).   
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Table 6.7:  Isotherm parameters for the adsorption of Hg2+ onto MWCNT-COOH and 

MWCNT-ttpy 

*-residual squared errors, ǂ- sum of squared residuals 

 

The Langmuir model is used to describe systems with homogeneous adsorbent surfaces 

where it is assumed that the adsorbent surfaces contain a finite number of identical sites with 

uniform energies of adsorption, hence no interactions exist between adjacent adsorbed 

species [6,68].  The Freundlich isotherm, however, describes a system where adsorption 

occurs on multilayer surfaces, containing heterogeneous adsorbent sites.  Hence, since the 

sorption of Cd2+ and Hg2+ onto MWCNT-COOH and MWCNT-ttpy fit better to the 

Langmuir model than the Freundlich model, it could be assumed that all sites were 

equivalent, holding one adsorbate molecule without interactions with adjacent sites [68].  

This model has been chosen as an isotherm of choice by other authors such as Wu et al. [6], 

Perez-Aquilar et al. [2], Kabbashi et al. [15] and Chen et al. [63] for the sorption of Cd2+ 

and Hg2+ from aqueous solutions.  Of the three-parameter isotherms, the Sips model which 

is a combination of the Langmuir and Freundlich model was chosen to best describe both 

systems.  A comparison of the maximum Langmuir adsorption capacity (qm) of MWCNT-

COOH and MWCNT-ttpy demonstrates that both sorbents compare favourably with other 

adsorbents from previous studies (see Table 6.8).  The capacity of MWCNT-ttpy was far 

greater than all other sorbents compared for the removal of Cd2+, while the sorbent also 

shows a favourable uptake of Hg2+ when compared with other related sorbents (Table 6.8).  

This therefore shows that the application of MWCNT-ttpy is suitable, obtaining excellent 

uptakes of Cd2+ and Hg2+ from aqueous solutions.  It is also interesting to note that a better 

   MWCNT-COOH  MWCNT-ttpy 

Isotherms Parameter 293 K 303 K  293 K 303 K 

Langmuir qm 33.89 37.67  36.13 38.86 

 b 0.085 0.146  0.217 0.348 

 RSE* 0.769 0.545  1.234 2.019 

 SSRǂ 4.733 2.376  12.18 32.62 

Freundlich KF 4.965 7.155  9.263 12.82 

 n 2.118 2.162  2.524 2.811 

 RSE 1.384 1.564  1.598 2.702 

 SSR 15.33 19.57  20.44 58.39 

Sips qm 37.00 40.47  46.04 42.14 

 b 0.090 0.147  0.205 0.341 

 n 1.106 1.090  1.37 1.16 

 RSE 0.785 0.521  0.919 2.106 

 SSR 4.312 1.903  5.912 31.05 
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adsorption ability for Cd2+ was obtained in this work for MWCNTs functionalized with a N-

donor ligand (HO-Phttpy) than when nitrogen was doped into MWCNTs [2].  However, only 

slight improvement was noticed when MWCNT-ttpy was applied for Hg2+ removal 

compared with MWCNT-COOH. 

 

Table 6.8:  Comparison of the adsorption capacity of Cd2+ and Hg2+ onto MWCNT-COOH 

and MWCNT-ttpy with that of other sorbents 

Adsorbent Cd2+ Hg2+ References 

MWCNT 5.40 - [69] 

MWCNT(H2SO4)* 8.60 - [69] 

MWCNT(H2SO4/KMnO4) 46.3 - [69] 

MWCNT 1.10 - [7] 

MWCNT(H2O2) 2.60 - [7] 

MWCNT(KMnO4) 11.0 - [7] 

MWCNT(HNO3) 5.10 - [7] 

N-doped MWCNT 9.33 - [2] 

MWCNT 5.62 - [70] 

MWCNT(H2SO4) 20.2 - [70] 

MWCNT(HNO3) 10.9 - [71] 

MWCNT-EDA 25.7 - [65] 

MWCNT - 84.0 [59] 

MWCNT-SH - 16.9 [60] 

MWCNT-SiO2 - 13.3 [72] 

MWCNT - 25.6 [73] 

MWCNT(HNO3) - 27.3 [74] 

MWCNT - 5.47 [74] 

MWCNT - 0.36 [63] 

MWCNT(HNO3) - 0.41 [63] 

MWCNT(H2SO4/KMnO4) - 0.42 [63] 

MWCNT(H2SO4/HNO3) 10.4 33.4 This study 

N-functionalized MWCNT 41.5 36.1 This study 

*Modifying agents in brackets 

 

Additionally, the parameters obtained from the Langmuir model can be used to estimate the 

favourability of the adsorption process.  The constant, separation factor (RL), can be 

calculated as given in Eq. 6.3 [75,76]: 

 

𝑅𝐿 =  
1

1+𝑏𝐶𝑖
      (6.3) 

 

where Ci is the initial Cd2+/Hg2+ concentration (mg dm-3) and b is the Langmuir constant 

obtained from Table 6.6 and 6.7 (dm3 mg-1).  The favourability of the adsorption process can 

be estimated depending on the values of RL.  Adsorption is assumed to be favourable if 0 < 
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RL < 1, unfavourable if RL > 1, irreversible if RL = 0 and linear if RL = 1 [75].  All RL values 

obtained in this study were found to fall between 0 < RL < 1, hence adsorption of Cd2+ and 

Hg2+ onto MWCNT-COOH and MWCNT-ttpy indicated a favourable adsorption.  The 

smaller the RL values, the more favourable the process is.  The calculated values of RL 

obtained for Hg2+ produced lower values compared with those obtained for Cd2+, onto both 

adsorbents.  This may be indicative that the sorption of Hg2+ was more favourable than Cd2+ 

sorption.  The calculated RL values obtained at varying temperatures for the sorption of Cd2+ 

and Hg2+ from aqueous solutions are presented in Appendix III. 

 

6.3.2.7. Thermodynamic parameters of adsorption 

The thermodynamics parameters of adsorption such as the change in entropy (∆Sº), change 

in enthalpy (∆Hº) and change in Gibbs energy (∆Gº) were calculated for the removal of Cd2+ 

from aqueous solutions.  The calculations could not be done for the adsorption of Hg2+ from 

aqueous solutions due to limitations of performing experiments at only two temperatures, 

hence, there was insufficient data to draw inferences.  Thermodynamic parameters are 

calculated to understand the feasibility and spontaneity of the adsorption process.  The 

process is feasible and spontaneous when ∆Gº values are negative.  A positive ∆Hº value 

signifies the process is endothermic and the reverse is an exothermic process. 

 

The change in Gibbs energy is calculated from the expression in Eq. (6.4) [45]: 

 

∆𝐺° = −𝑅𝑇𝑙𝑛 K     (6.4) 

 

where ΔG° is the standard Gibbs energy change (J mol-1), R is the universal gas constant 

(8.314 J K-1 mol-1), and T is the absolute temperature in Kelvin.  The value of K was obtained 

from the product of qm and b obtained from the Langmuir plot (Table 6.6) [77,78].  The 

value of K was corrected to be dimensionless by multiplying by 1000 [79]. 

 

In order to obtain ΔH° and ΔS° values, a linear plot of ln K against 1/T by using the Van’t 

Hoff expression given in Eq. 6.5, was used.  Estimated values of ΔH° and ΔS° were 

calculated from the slope and intercept of the line, respectively. 

 

𝑙𝑛 𝐾 =  −
∆𝐻°

𝑅𝑇
 +  

∆𝑆°

𝑅
     (6.5) 

 

The values obtained, as given in Table 6.9, demonstrate that the sorption of Cd2+ onto 

MWCNT-COOH and MWCNT-ttpy was both feasible and spontaneous, as indicated by the 

negative ΔG° values.  Similarly, negative ΔH° and ΔS° values were obtained for both 

sorbents (Table 6.9), indicating that the sorption of Cd2+ onto MWCNT-COOH and 
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MWCNT-ttpy is exothermic in nature and favourable at lower temperatures.  The values of 

ΔH° obtained show that the heat evolved/absorbed was in the range for a physisorption (2.1-

20.9 kJ mol-1) process [31,80].  This indicates that the process for the removal of Cd2+ from 

aqueous solutions by using MWCNT-COOH was primarily physisorption.  The sorption of 

Cd2+ onto MWCNT-ttpy can be assumed to be physico-chemical process, since ΔH° values 

were higher than the predicted values for a physisorption process [31,80]..  Previous studies 

by Hamza et al. [28], Al Othman et al. [25] and Kumar et al. [29] demonstrated that Cd2+ 

sorption was more favourable at low adsorbate temperature. 

 

 

Table 6.9:  Thermodynamic parameters for the adsorption of Cd2+ onto MWCNT-COOH 

and MWCNT-ttpy 

Adsorbent T/K ΔG°/kJ mol-1 ΔH°/kJ mol-1 ΔS°/J K-1 mol-1 

MWCNT-COOH 293 -13.28   

 303 -12.82   

 313 -13.32 -19.56 -78.96 

 318 -12.39   

MWCNT-ttpy 293 -24.48   

 303 -24.53   

 313 -24.26 -28.74 -71.72 

  318 -24.14   

 

6.3.3. Desorption studies 

To investigate the regeneration of adsorbents for reuse, desorption experiments were 

performed on Cd2+/Hg2+-loaded sorbents.  In this study, 0.1 mol dm-3 HCl was used to desorb 

the metal ions from the adsorbents.  Prior to desorption, the concentration of metal ions on 

the loaded adsorbents was obtained, and subsequently agitated for 30 min in contact with 25 

cm3 of eluent.  The removal of Cd2+ from the adsorbents was effective achieving a 

percentage removal of 74% and 82% from MWCNT-COOH and MWCNT-ttpy, 

respectively.  The removal of Hg2+ from sorbents produced a percentage removal of 92% 

and 81% from MWCNT-COOH and MWCNT-ttpy, respectively.  The choice of eluent was 

based on previous reports by Hamza et al. [28,77], Vukovic et al. [65], Saber-Samandari et 

al. [81], Perez-Aquilar et al. and Srivastava et al. [82] justifying the removal of metal ions 

by using acidic solutions.  The removal of Cd2+ and Hg2+ from MWCNT-COOH and 

MWCNT-ttpy proved efficient by using HCl, hence, isolation of the adsorbate and 

reutilization of the sorbents is a viable option.  The application of the sorbents for the 

removal of metal ions in solution should be economical, preventing the discharge of spent-

sorbents and thereby avoiding the discharge of secondary pollutants into the environment. 
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6.4. Conclusions 

In this study, nitrogen-functionalized multiwalled carbon nanotubes (MWCNT-ttpy) were 

applied for the removal of Cd2+ and Hg2+ from aqueous solutions.  Their efficiency for metal 

ion removal was compared with that of acid-functionalized multiwalled carbon nanotubes 

(MWCNT-COOH), in order to determine which of the two sorbents was more effective. 

 

The results obtained showed that MWCNT-ttpy was much more effective towards Cd2+ and 

marginally more effective for Hg2+ than MWCNT-COOH.  For Cd2+, four-fold increase in 

removal (i.e. 10.41 mg g-1 to 41.51 mg g-1) was achieved by MWCNT-ttpy over MWCNT-

COOH.  Although, the removal efficiencies of both sorbents towards Hg2+ removal were 

similar, an increase in its uptake was obtained for MWCNT-ttpy.  This demonstrates the 

effectiveness of CNTs functionalized with a nitrogen-donor ligand towards the removal of 

divalent metal ions in solution.  The pseudo-second order model described the kinetics data 

most appropriately, indicating a bimolecular chemical interaction between metal cations and 

the active surface of the adsorbents.  Hence, the sorption of Cd2+ and Hg2+ primarily 

interacted with the active sites on the adsorbents via coordinating (dative covalent) bonding. 

 

Of the two-parameter isotherms tested, the Langmuir model best described the sorption of 

both adsorbates, while the Sips model was the best of the three-parameter isotherms for the 

sorption of Cd2+ by MWCNT-ttpy and for Hg2+ with both adsorbents.  An increase in 

temperature resulted in a decrease in the uptake of Cd2+, indicating that adsorption is best at 

low temperatures.  However, the sorption of Hg2+ showed an increase in removal with an 

increase in temperature.  This is indicative that the sorbents are effective for Hg2+ removal 

at high temperatures, and can be applied to effluents discharged at above ambient 

temperatures.  Desorption of both adsorbents from the sorbents also produced good 

efficiencies, indicating that the sorbates and sorbents can be recovered and recycled for 

reuse.  This study therefore demonstrated that MWCNT-ttpy is a good adsorbent for the 

removal of metal ions from solution and its application in industry could be further explored.  
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Abstract 

The adsorption behaviour of nitrogen-functionalized multiwalled carbon nanotubes 

(MWCNT-ttpy) for the removal of the divalent heavy metals Pb2+, Zn2+, Cd2+ and Cu2+ was 

investigated in single- and multi-component adsorption systems.  Batch experiments 

investigating the effect of pH and initial metal ion concentration were undertaken and 

equilibrium data modelled by using the Langmuir isotherm. 

 

This study revealed that metal ion sorption in a competitive system depends largely on 

affinity towards nitrogen, pH and initial concentration of other competitors in solution.  The 

Langmuir maximum adsorption capacities (qm) in a single-solute system were significantly 

higher than those obtained for a competitive system.  The sorption of metal ions followed 

the sequence, Cd > Pb > Cu > Zn, in a single-component system.  This order was attributed 

to the preferential attraction of soft metals onto nitrogen-donor atoms in the adsorbent.  The 

results also demonstrated a sequence, Pb > Cu > Cd > Zn, in a multi-component adsorption 

systems, as a result of increasing hydrated ionic radii.  Hence, the removal of these pollutants 

from real water samples demonstrated good sorptive ability by using MWCNT-ttpy, 

indicating its potential application in real-life scenarios. 

 

 

Keywords:  multiwalled carbon nanotubes, adsorption, heavy metals, isotherm, wastewater 
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7.1. Introduction 

The release of metal-containing substances into natural environments, primarily associated 

with increased industrialization, is of great concern to researchers and control agencies, due 

to their elevated concentrations in the ecosystem [1-4].  Effluents containing metal ions are 

sometimes discharged indiscriminately at high concentrations and are accumulated in soil 

and water systems [2,5,6].  Heavy metals are highly soluble in water, and hence can be easily 

transported in water systems, undergoing various chemical transformations and resulting in 

their accumulation in aquatic life, man and the environment [7].  Contaminated effluents and 

wastewater usually contain a variety of toxic metal ions [7-9].  The adsorption behaviour of 

a metal specie may be significantly influenced as a result of the presence of another in 

solution [10].  This significantly translates into a decrease in the removal of each metal ion 

in solution, due to increased competition of ions to occupy active sites on the adsorbent 

[8,10,11].  Heavy metals such as lead, zinc, cadmium and copper ions are predominantly 

present at high concentrations in discharged effluents [11]; hence, the effect of a metal ion 

in a multicomponent system is of paramount significance in order to understand their 

adsorption behaviour in competitive systems. 

 

Various techniques such as ion-exchange, electrodeposition, coagulation, co-precipitation, 

oxidation, ultrafiltration, reverse osmosis and electro-dialysis have been investigated for the 

removal of heavy metal ions from aqueous solutions [6,12-14], however, their application 

in real-life situations have been limited, due to factors such as high cost and sludge 

generation, and low removal efficiency, amongst many others [5,12].  Adsorption offers an 

easy and simple removal approach to yield excellent efficiencies for high or low adsorbate 

concentrations [6,15], and provides an opportunity for sorbent and sorbate recovery for the 

process of reuse [16,17].  This technique is therefore a preferred choice for metal ion removal 

in aqueous systems [18].  Adsorbents such as bentonite [1,5], peat [9,19], hydroxyapatite 

[10], kaolinite [11], bagasse [7], and activated carbon [8] have been examined for metal ion 

removal in both single- and multi-component ion adsorption systems.  In a multicomponent 

system, the activity of such adsorbents for metal ion removal are surprisingly low and this 

due to reduced active/chelating sites on adsorbents, resulting in minimal uptake of metal 

ions and increased difficulty in sorbent regeneration.  The development of sorbents that 

contain more metal chelators for increased active sites, to enhance better sorption of metal 

ions in multicomponent systems, therefore, continues to be explored. 

 

Multiwalled carbon nanotubes (MWCNTs) are promising nanomaterials explored for 

pollutant removal in environmental sciences, as a result of their excellent physical and 

chemical properties [6,18] and ease in introducing functional groups onto the surface of 

tubes [16].  Functionalization of MWCNTs significantly increases their textural properties, 
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dispersability in aqueous solutions [20,21], while introducing defects to the surface of tubes 

[20].  The presence of defects allows easy design of CNTs to contain functional groups of 

interest, hence, resulting in increasing activity of CNTs for the removal of metal ion 

pollutants.  The introduction of nitrogen-containing functional groups to the side walls of 

CNTs, increases the chelating/active sites on the adsorbent, and may result in enhanced 

uptake of metal ion from aqueous solutions, especially in a multicomponent system. 

 

In this chapter, a nitrogen-tridentate ligand (4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine) was 

used as a modifier to obtain nitrogen-functionalized MWCNTs (MWCNT-ttpy), and their 

effectiveness for the simultaneous removal of divalent metal ions, such as lead, zinc, 

cadmium and copper, in a single- and multi-component system was examined through batch 

experiments.  The removal of the said metal ions under optimized conditions was also 

investigated in real water samples by using MWCNT-ttpy, to examine their efficacy in real-

life scenarios. 

 

 

7.2. Experimental 

7.2.1. Materials and chemicals 

All chemicals used were of analytical grade and used without further purification.  The as-

prepared MWCNTs were purchased from Cheap Tubes Inc. (Brattleboro, USA), synthesized 

by chemical vapour deposition (CVD) with a purity of 95%.  Sodium hydroxide pellets 

(98%), and lead and zinc metal powders were purchased from Merck (Pty) Ltd (Gauteng, 

South Africa) while nitric acid (55%), sulfuric acid (98%) and hydrochloric acid (32%), 

were purchased from C C Imelmann Ltd (Robertsham, South Africa).  Copper metal powder 

was obtained from Johnson Matthey Chemicals Ltd, (Gauteng, South Africa), while 

cadmium metal powder (99.9%) was purchased from Thomas Baker Chemicals (Pvt) Ltd, 

(Mumbai, India). 

  

7.2.2. Adsorbent preparation 

7.2.2.1. Preparation of MWCNT-COOH 

Oxidation of MWCNTs was carried out as reported by Oyetade et al. [16] and Santangelo 

et al. [22].  Pristine MWCNTs (1.5 g) were placed in a round-bottomed flask containing 100 

cm3 of concentrated hydrochloric acid, and stirred for 4 h to remove residual metal impurities 

from the tubes.  The resulting mixture was filtered, and the solid washed with deionised 

water until a neutral pH was obtained.  The sample obtained was dried in a vacuum oven at 

80 °C overnight and stored in a desiccator for future analysis.  The purified MWCNTs were 

then oxidized by using a mixture of sulfuric and nitric acids in a volume ratio of 1:3, and 
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refluxed at 80 °C for 12 h.  The resulting mixture was diluted with deionised water, filtered, 

and the residue obtained was washed continuously with deionised water until a neutral pH 

was obtained. 

 

7.2.2.2. Synthesis of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-

Phttpy) 

The ligand was synthesized as reported by Patel et al. [23,24] with some modifications.  2-

Acetylpyridine (2.423 g, 20.0 mmol) was added to 15 cm3 of a 2:1 (v/v) mixture of ethanol 

and water containing 4-hydroxybenzaldehyde (1.221 g, 10.0 mmol).  To the solution, NaOH 

pellets (1.458 g, 26.0 mmol) and aqueous NH3 (30 cm3) were added and stirred continuously 

at room temperature for 8 h to yield a cream-coloured precipitate.  The resulting mixture 

was filtered, the solid obtained was washed with deionised water (5 × 10 cm3), followed by 

absolute ethanol (3 × 5 cm3) to obtain the crude white product (508.8 mg, 42%).  m.p. 199-

201 °C; IR (ATR, cm-1) 3375, 1614, 1588, 1565; 1H NMR (400 MHz, DMSO-d6) δ: 6.92 

(d, 2H, J=8.6 Hz), 7.49-7.52 (m, 2H), 7.75 (d, 2H J=8.68 Hz), 7.99-8.04 (m, 2H), 8.67-8.74 

(m, 6H); 13C NMR (400 MHz, DMSO-d6) δ: 160.2, 155.4, 155.1, 149.4, 149.2, 137.3, 128.0, 

126.8, 124.3, 120.8, 116.8, 116.4; HR-MS [C21H15N3O] ES:[M + H+] m/z Calcd 326.1215, 

found 326.1293. 

 

7.2.2.3. Preparation of MWCNT-ttpy 

Oxidized MWCNTs (150 mg) were dispersed in 30 cm3 of a solution containing 20:1 (v/v) 

mixture of thionyl chloride and N,N'-dimethyl formamide (DMF) and refluxed at 70 °C for 

24 h [25].  The resulting mixture was filtered, and the solid obtained was washed with 

deionised water until a neutral pH was obtained.  Acylated MWCNTs (100 mg) were added 

to 100 mg of HO-Phttpy in 20 cm3 of dry tetrahydrofuran (THF) with the addition of 2-5 

drops of glacial acetic acid.  The suspension was refluxed at 64 °C for 24 h under an inert 

atmosphere of argon.  The suspension was filtered, the solid obtained was washed with THF 

and dried in a vacuum oven. 

 

To the obtained sample (100 mg), 30 cm3 of freshly distilled chloroform was added into a 

round-bottomed flask with the addition of InBr3 (10.6 mg 0.03 mmol) and Et3SiH (380 µL, 

2.4 mmol).  The suspension was stirred and refluxed at 60 °C for 1 h under an inert 

atmosphere of argon.  The resulting mixture was filtered and the solid washed with 

chloroform, followed by water until a neutral pH was obtained.  Evidence of the successful 

preparation of MWCNT-COOH and MWCNT-ttpy were confirmed by various 

characterization techniques such as electron microscopy (scanning and transmission), 

Fourier transform infrared (FTIR) and Raman spectroscopy, thermogravimetric analysis, 

elemental analysis and BET surface area analysis. 
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7.2.3. Metal analysis procedure 

7.2.3.1. Equipment 

A PerkinElmer Optima 5300 DV inductively coupled plasma-optical emission spectrometer 

(ICP-OES) was used to measure the initial and final concentrations of the metal ions in 

solution.  The operating conditions used are presented in Table 7.1. 

 

Table 7.1:  Operating conditions for ICP-OES used for metal ion determination 

Wavelength (Pb2+) 220.353 nm 

Wavelength (Zn2+) 213.857 nm 

Wavelength (Cd2+) 267.716 nm 

Wavelength (Cu2+) 224.700 nm 

RF power 1300 W 

Plasma gas flow rate 15 dm3 min-1 

Pump 1.5 cm3 min-1 

Auxiliary gas flow rate 0.2 dm3 min-1 

Nebulizer gas flow rate 0.8 dm3 min-1 

Nebulizer pressure  2 bars 

Analyzer type Axial 

Replicates 3 

Sample read delay 60 s 

 

7.2.3.2. Preparation of adsorbate solution 

Separately stock solutions of each of the following, Pb2+, Zn2+, Cd2+ and Cu2+ were prepared 

by weighing an exact known amount of approximately 1 g of each pure metal powder into 

150 cm3 of 2 mol dm-3 nitric acid.  The solutions were made up to mark in 1000 dm3 

volumetric flasks with deionised water.  Working solutions were prepared daily from the 

stock solutions to obtain the desired concentrations. 

 

7.2.3.3. Calibration of ICP-OES spectrometer 

The spectrometer was calibrated by using a mixed standard containing Pb2+, Zn2+, Cd2+ and 

Cu2+ within the concentration range of 0-100 mg dm-3.  Calibration plots were obtained each 

time the instrument was used for the determination of metal ions present in samples. 

 

7.2.4. Batch adsorption studies 

Single ion adsorption experiments were conducted within a metal ion concentration range 

of 10-100 mg dm-3 in 50 cm3 polyethylene bottles, containing 25 cm3 aliquots of Pb2+, Zn2+, 

Cd2+ and Cu2+ and 50 mg dose of adsorbent.  The pH of the suspensions was adjusted to be 
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5.0 by the addition of appropriate amounts of 0.1 mol dm-3 NaOH or HNO3.  The suspensions 

were equilibrated for metal ion adsorption in a thermostated water bath at 20 °C for 24 h.  

After agitation, the suspensions were filtered, and the final concentrations of each metal ion 

determined by using ICP-OES. 

 

The influence of pH on a multicomponent adsorption system was investigated over a pH 

range of 1-10.  About 25 cm3 aliquots of a mixed adsorbate solution containing 50 mg dm-3 

metal ion concentration was conditioned to obtain the desired pH by the addition of 

appropriate amounts of 0.1 mol dm-3 NaOH or HNO3.  The suspensions were equilibrated 

after the addition of 200 mg adsorbent in a thermostated water bath at 20 °C for 24 h.  After 

agitation, the suspensions were filtered, and the final concentrations of each metal ion 

determined by using ICP-OES. 

 

Competitive adsorption experiments were conducted at 20 °C for both equal and varied 

initial metal ion concentrations ranging from 10-50 mg dm-3.  To achieve this, 25 cm3 of a 

solution containing equal or varying concentrations of Pb2+, Zn2+, Cd2+ and Cu2+ was 

conditioned to pH 5.5 with the addition of appropriate amounts of 0.1 mol dm-3 NaOH or 

HNO3.  An adsorbent dose of 200 mg was added to the solution and thereafter the mixture 

was agitated in a thermostated water bath at 20 °C for 24 h.  The suspensions were filtered 

and the final concentrations of the metal ion in the filtrates were determined by using ICP-

OES. 

 

The amount of each metal ion adsorbed on the adsorbent was determined from the difference 

between the initial and equilibrium metal ion concentrations.  The removal efficiency and 

sorption capacity (qe) of metal ions were calculated according to equations 7.1 and 7.2, 

respectively. 
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e       (7.2) 

 

where Ci is the initial adsorbate concentration (mg dm-3), Ceq is the equilibrium 

concentration of adsorbate (mg dm-3), qe is the adsorption capacity (mg g-1), m is the mass 

of adsorbent (mg) and V is the volume (dm3) of the adsorbate solution used. 

 

 

 



 
  

192 
 

7.2.4.1. Isotherms  

The Langmuir adsorption isotherm is used to describe the monolayer adsorption of sorbates 

onto homogeneous sites.  This model was used to describe the equilibrium data obtained for 

the removal of adsorbates in both single- and multi-component systems.  The Langmuir 

isotherm equation is represented in Eq. 7.3 [26]. 

 

𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐶𝑒𝑞

1+𝑏𝐶𝑒𝑞
        (7.3) 

 

where qeq is the amount adsorbed per unit mass of adsorbent at equilibrium (mg g-1), Ceq is 

the equilibrium concentration of adsorbate in solution after adsorption (mg dm-3), qm 

represents the maximum adsorption capacity (mg g-1), and b is the empirical Langmuir 

adsorption constant (dm3 mg-1). 

 

7.2.4.2. Data analysis 

The data obtained were fitted to the isotherm and kinetics models by means of the nonlinear 

regression routine (nls) in the R statistical computing environment [27].  The R statistical 

software takes into account the minimization of the sum of squared residuals (SSR) and the 

residual square errors (RSE).  A comparison of all SSR and RSE values was done and the 

adequacy of the models was assessed from the value with the lowest SSR. 

 

7.2.4.3. Distribution coefficient 

The distribution coefficient (Kd) is applied in order to estimate the affinity of a sorbent 

towards a solute [28-30].  The higher the value, the better is the affinity of the metal ion for 

the sorbent.  The coefficient was calculated as indicated in Eq. 7.4.  

 

𝐾𝑑 =  
𝐶𝑖−𝐶𝑒𝑞

𝐶𝑒𝑞
 ×  

𝑉

𝑚
       (7.4) 

 

where Ci is the initial concentration (mg dm-3), Ceq is the equilibrium concentration (mg dm-

3), m is the adsorbent mass (g), and V is the volume of the solution (dm3). 

 

7.2.5. Analysis of real water samples 

Three water samples were collected from three sites on the Umgeni river: (i) the tributary 

on the confluence of the Umgeni and Msunduzi rivers, (ii) the outflow from the EThekwini 

wastewater treatment plant and (iii) the Blue Lagoon (mouth of Umgeni river).  The initial 

concentrations of Pb2+, Zn2+ and Cu2+ in the sample was determined by using ICP-OES.  An 

aliquot of 25 cm3 of each of the water sample was measured into 50 cm3 polypropylene 
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bottles, conditioned to pH 5, and 50 mg of the adsorbent was added.  The suspensions were 

agitated in a thermostated water bath at 20 °C for 1 h.  After agitation, the suspensions were 

filtered and their supernatants analysed for the final concentrations of metal ions in solution.  

The removal efficiency and adsorption capacity for each metal ion were evaluated according 

to equations 7.1 and 7.2, respectively. 

 

 

7.3. Results and discussion 

The MWCNT-ttpy adsorbent was successfully synthesized and characterized by using 

various techniques.  As reported in our previous work [31], an increase in the textural 

characteristics (surface area and pore volume) of the adsorbent was noticed, due to increase 

in the extent of functionalization, by the incorporation of nitrogen-donor atoms to the surface 

of the tubes.  This process significantly increased the functional groups attached onto 

MWCNTs [31], hence resulting in increased metal sorption. 

 

As a result of the increased activity of nitrogen-functionalized MWCNTs (MWCNT-ttpy) 

towards divalent metal ion removal as observed from our previous studies (Chapters 4, 5 

and 6), the efficiency of the sorbent was examined for metal ion removal in a multi-

component system.  This was done to investigate the behaviour of MWCNT-ttpy in real-life 

scenarios where wastewaters contain a variety of metal ions simultaneously in solution.  This 

section therefore presents results obtained for the sorption of metal ions in a competitive 

multi-component adsorption system.  These results are compared with those obtained in a 

single-component system. 

 

7.3.1. Adsorption of metal ions in single-solute systems 

Adsorption experiments were conducted at pH 5.0 in single-component systems within a 

concentration range of 10-100 mg dm-3.  As described in Fig 7.1, the uptake of metal ions 

(qe) by MWCNT-ttpy increases gradually as the initial concentration of each metal ion 

increases.  This is in accordance with the assumption that an increase in the initial metal ion 

concentration of an adsorbate significantly enhances the driving force required to overcome 

the sorbent-sorbate resistance; consequently resulting in higher qe values [17].   

 

Pearson, in 1968, established a principle underlying the preferential complexation of Lewis 

acids (metal ions) with Lewis bases (nitrogen or oxygen-containing ligands).  Borderline 

(Pb2+, Cu2+ and Zn2+) and soft (Cd2+) metals were reported to be preferentially attracted 

towards oxygen- and nitrogen-containing ligands, respectively [32].  This principle justified 
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the favourable uptake of Cd2+ onto MWCNT-ttpy (Fig 7.1).  Hence, the adsorption of metal 

ions onto MWCNT-ttpy was in the order of Cd > Pb > Cu > Zn (Fig 7.1).   

 

 

 

 

 

 

 

 

 

 

 

Fig 7.1:  Amounts adsorbed of Pb2+, Zn2+, Cd2+ and Cu2+ onto MWCNT-ttpy in a single 

adsorption system [conditions: 20 cm3 of adsorbate solution, 24 h equilibration time, 

pH 5.0, adsorbent dose 50 mg, agitation speed 150 rpm, temperature 20 °C]. 

 

7.3.2. Adsorption of metal ions in multicomponent systems 

7.3.2.1. Effect of pH 

To investigate the influence of pH on the removal of Pb2+, Zn2+, Cd2+ and Cu2+ from aqueous 

solution in a multicomponent system, a 25 cm3 aliquot containing 50 mg dm-3 solution of 

each of the four metal ions was measured into 50 cm3 polyethylene bottles and its pH 

adjusted within the range of 1-10 by adding appropriate amounts of either 0.1 mol dm-3 

NaOH or HNO3 to obtain the desired pH.  A mass of 0.2 g of MWCNT-ttpy was added to 

each solution and agitated in a thermostated water bath at 20 °C for 24 h.  After agitation, 

the suspensions were filtered and the equilibrium concentrations of the remaining metal ions 

in the filtrates was determined by ICP-OES. 

 

As shown in Fig 7.2, the percentage removal of metal ions significantly increased as the 

solutions became more alkaline.  Low removal of adsorbates was noticeable at acidic 

conditions (i.e. pH 1-3) and this is due to competition between hydrogen and metal ions in 

solution.  This significantly reduced the sorption of metal ions onto MWCNT-ttpy.  

Significant removal of Pb2+ and Cu2+ was noticeable between pH 3-7, attaining a percentage 

removal above 90%.  The removal of Cd2+ became noticeable around pH 5-8, while Zn2+ 

removal was only pronounced between pH 7-10.  Hence, the sorption of metal ions onto 

MWCNT-ttpy was enhanced as the solution tends to basic, owing to their chelation with the 

negative charged surface of the adsorbent (Fig 7.2).  A continued increase in solution pH to 

10, resulted in an increase in removal of all metal ions to a maximum of 98%.  This could 
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be due to increasing precipitation accompanying the sorption of metal ions in solution.  

Hence, the removal of the studied metal ions in a competitive system was in the order Pb2+ 

> Cu2+ > Cd2+ > Zn2+.  The observed trend was in agreement with previously reported studies 

by Hamza et al. [7], Chen et al. [10], Srivastava et al. [11] and Sdiri et al [33].  Hence, in 

order to avoid the precipitation of metal ions, the competitive adsorption of Pb2+, Zn2+, Cd2+ 

and Cu2+ was investigated at a pH of 5.5 in this study. 

 

The experimental data for the competitive adsorption of a multicomponent metal ion 

solution onto MWCNT-ttpy as a function of pH can be found in Appendix IV (Table A-IV.1 

– Table A-IV.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.2:  Effect of pH on the competitive adsorption of metal ions on MWCNT-ttpy 

[conditions: 25 cm3 of 50 mg dm-3 of each adsorbate, 24 h equilibration time, 

adsorbent dose 200 mg, agitation speed 150 rpm, temperature 20 °C]. 

 

7.3.2.2. Effect of equal initial metal ion concentration 

The influence of the same initial metal ion concentration in a multicomponent adsorption 

system was examined and the results are presented in Fig 7.3.  In general, the percentage 

removal of adsorbates was noticed to decrease with an increase in the initial concentration 

of the metal ions (Fig 7.3a).  The figure also showed that the sorption of Pb2+ from a 

multicomponent system was highest at all concentrations, and lowest for Zn2+.  Across the 

metal ion concentrations of 10 to 60 mg dm-3, the percentage removal of adsorbates was in 

the order of Pb2+ (76.3% to 89.0%); Cu2+ (71.5% to 84.4%); Cd2+ (63.5% to 78.8%) and 

Zn2+ (18.1% to 40.1%) (Fig 7.3a).  However, Fig 7.3b showed an increase in the uptake of 

the corresponding metal ion with increase in concentration.  The low uptake (qe) of Zn2+ in 

a multicomponent system (Fig 7.3b) could be due to the presence of other competitors, 

which have occupied the active sites of the adsorbent due to their smaller hydrated ionic 
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radii.  As proposed by Chen et al. [10], the removal of divalent metal ions is inversely 

proportional to the hydrated ionic radii of the metal species in solution.  The ionic radii of 

the studied metal ion species is in the order of Pb2+ (4.01 Å) < Cu2+ (4.19 Å) < Cd2+ (4.26 

Å) < Zn2+ (4.30 Å) [7,10].  Also, considering that the pore diameter of MWCNT-ttpy (272.6 

Å) is far greater than the radii of all the metal ions studied, their sorption could be decided 

upon by the size of the metal ion species.  Hence, metal ions with smaller ionic radii might 

have greater access to adsorbent sites, hence accounting for the observed sorption in the 

sequence of Pb > Cu > Cd > Zn.  Therefore, it could be said that the sorption of these metal 

ions obeyed this principle, since their removal was in the same order. 

 

The selectivity of metal ions obtained in this study was mostly in accordance with previously 

reported studies.  A study investigating the competitive sorption of metal ions onto graphene 

oxide by Sitko et al. [34] gave the same trend as that reported in this study.  Chen et al. [10] 

and Li et al. [6] reported the same sequence of Pb > Cu > Cd from a multicomponent system 

onto nano-hydroxyapatite and MWCNTs, respectively.  However, a sequence of Pb > Cu > 

Zn > Cd was reported by Srivastava et al. [11] and Sdiri et al. [35] from a multicomponent 

system onto kaolinite and clay, respectively.  This order was slightly different to that 

reported in this study.  The removal of metal ions from wastewater will therefore principally 

depend on the textural characteristics of the sorbent used. 

 

The experimental data for the competitive adsorption of Pb2+, Zn2+, Cd2+ and Cu2+ in a 

multicomponent system as a function of equal initial metal ion concentration can be found 

in Appendix IV (Table A-IV.5 – Table A-IV.8). 

 

Fig 7.3:  The effect of the same initial metal ion concentration in a multicomponent system 

for the adsorption of Pb2+, Zn2+, Cd2+ and Cu2+.  (a) Percentage uptake (%) and (b) 

amount adsorbed per unit mass (mg g-1) [conditions: 25 cm3 of adsorbate solution, 

pH 5.5, 24 h equilibration time, adsorbent dose 50 mg, agitation speed 150 rpm, 

temperature 20 °C]. 

 

(a) 
(b) 
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7.3.2.3  Effect of varying metal ion concentration 

In a multicomponent adsorption system, the presence of a particular metal ion might 

induce/dissuade the removal of other metal ions in solution.  The preferential removal of 

metal ions depends largely on the properties of the sorbent and the nature of the metal ions 

in solution.  In this section, the influence of the initial concentration of other metal ions on 

the removal of a particular metal in a competitive system was investigated by keeping the 

concentration of a metal ion constant at 20 mg dm-3, while others were varied simultaneously 

between 10-50 mg dm-3. 

 

7.3.2.3.1 Effect of the presence of Cu2+, Cd2+ and Zn2+ on Pb2+ sorption 

The influence of the presence of other metal ions on the sorption of Pb2+ was investigated 

by keeping its concentration at 20 mg dm-3, while the concentration of other species was 

varied within 10-50 mg dm-3. 

 

In general, the sorption of all metal ions, except Cd2+, gradually decreased with an increase 

in the initial metal ion concentration of other competitors.  As shown in Fig 7.4, the 

percentage Pb2+ adsorbed onto MWCNT-ttpy steadily decreased from 78.5% to 47.4% as 

the concentrations of the other species were increased from 10-50 mg dm-3.  Also, the 

percentage removal of Pb2+ was never the highest of the four metal ions considered.  This 

could be associated with the increase in competition for active sites by other competitors, 

hence, resulting in a gradual decrease in Pb2+ removal as the concentrations of the other 

metal species increased.  This trend was also noticeable for the removal of Cu2+ and Zn2+, 

decreasing from 89.6% to 57.15% and 39.11% to 21.43%, respectively.  Interestingly, Cu2+ 

showed the greatest removal percentage at 10 mg dm-3 when Pb2+ was present at 20 mg dm-

3.  However, the presence of Pb2+ in solution had no significant influence on the sorption of 

Cd2+.  This could be attributed to the preferential complexation of Cd2+ to MWCNT-ttpy 

active sites, since soft metals such as Cd2+ have a high affinity for N-containing compounds 

[32].  This preferential adsorption exhibited by Cd2+, is not affected by the presence of other 

competitor ions.  However, the other ions compete for the remaining N- and O-donor sites.  

The sequence and metal ion affinity were in the order of Cd2+ > Pb2+ > Cu2+ > Zn2+ according 

to the Kd values for this sorption (Appendix IV).  This order, according to the Kd values, 

also indicates the affinity of metal ions towards MWCNT active sites [29].  The experimental 

data for this sorption can be seen in Appendix IV (Table A-IV.9 –Table A-IV.12). 
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Fig 7.4:  Competitive removal of Pb2+ at a fixed concentration of 20 mg dm-3 in a mixed 

metal ion solution with concentrations ranging from 10 to 50 mg dm-3.  [conditions: 

adsorbent dose of 200 mg, pH 5.5, agitation time of 24 h, agitation speed of 150 

rpm and temperature at 20 ºC]. 

 

7.3.2.3.2. Effect of the presence of Pb2+, Cd2+ and Zn2+ on Cu2+ sorption 

The influence of other competitors on the sorption of Cu2+ was investigated by keeping its 

concentration constant at 20 mg dm-3, while other metal ion competitors were 

simultaneously varied between 10-50 mg dm-3. 

 

The adsorption of Cu2+ in a competitive system steadily decreased from 91.2% to 42.9% as 

the initial metal ion concentration of other competitors increased from 10-50 mg dm-3 (Fig 

7.5).  This could also be associated with the increase in competition with other metal ion 

species at increased concentrations, resulting in its decreased adsorption.  However, a higher 

Cu2+ percentage was obtained for all concentrations other than 50 mg dm-3.  Similar 

decreasing removal efficiencies were observed for Cd2+ and Zn2+ from 48.3% to 37.9% and 

33.4% to 13.3%, respectively (Fig 7.5).  However, the sorption of Pb2+ was not significantly 

influenced across the concentration range.  It remained within the range of 50-58%, hence, 

10 mg dm-3 50 mg dm-3 40 mg dm-3 30 mg dm-3 20 mg dm-3 
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the affinity of metal ions for complexation with MWCNT-ttpy when keeping the 

concentration of Cu2+ constant was in the order Cu > Pb > Cd > Zn, based on obtained Kd 

values (Appendix IV) [30].  The experimental data for this sorption is presented in Appendix 

IV (Table A-IV-13 – Table A-IV.16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.5:  Competitive removal of Cu2+ at a fixed concentration of 20 mg dm-3 in a mixed 

metal ion solution with concentrations ranging from 10 to 50 mg dm-3.  [conditions: 

adsorbent dose of 200 mg, pH 5.5, agitation time of 24 h, agitation speed of 150 

rpm and temperature at 20 ºC]. 

 

7.3.2.3.3. Effect of the presence of Pb2+, Cu2+ and Zn2+ on Cd2+ sorption 

The sorption of Cd2+ in a competitive system was investigated by keeping its concentration 

constant at 20 mg dm-3, while varying the concentrations of the other metal ions between 

10-50 mg dm-3.  The affinity of Cd2+ onto MWCNT-ttpy was noticeable, even at higher 

concentrations of other competitors, although a decrease in percentage removal was obtained 

at increasing concentrations of the competitors (Fig 7.6).  The percentage removal of Cd2+ 

was highest for all five concentrations.  This was followed by Cu2+, then Pb2+ and the lowest 

removal in all cases was for Zn2+.  This adsorption behaviour of Cd2+ and Cu2+ could be 

attributed to the preferential uptake of both adsorbates by N-donor atoms, hence, forming 

strong chelates between them.  Based on the Kd values obtained, the maximum adsorption 

10 mg dm-3 50 mg dm-3 40 mg dm-3 30 mg dm-3 20 mg dm-3 
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capacity of MWCNT-ttpy follows the sequence Cd > Cu > Pb > Zn (see Table A-IV.17 – 

Table A-IV.20, Appendix IV). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.6:  Competitive removal of Cd2+ at a fixed concentration of 20 mg dm-3 in a mixed 

metal ion solution with concentrations ranging from 10 to 50 mg dm-3.  [conditions: 

adsorbent dose of 200 mg, pH 5.5, agitation time of 24 h, agitation speed of 150 

rpm and temperature at 20 ºC]. 

 

7.3.2.3.4. Effect of the presence of Cu2+, Cd2+ and Pb2+ on Zn2+ sorption 

The influence of varying concentrations of other competitors on the sorption of Zn2+ in a 

multicomponent system was investigated by maintaining its concentration at 20 mg dm-3, 

while others were varied between 10-50 mg dm-3 simultaneously.  Interestingly, the sorption 

of Zn2+ onto MWCNT-ttpy was lowest at all concentrations, obtaining a maximum 

percentage removal of 19.9% at an initial concentration of 10 mg dm-3 for the competitor 

ions (Fig 7.7).  Further increases in the concentrations of the competitors decreased its 

removal to 4.85%, indicating poor removal of Zn2+ in a multicomponent system (Fig 7.7).  

The sorption of Cd2+ remained highest at all concentrations followed by Pb2+ and Cu2+.  

Hence, the sequence of Cd2+ > Pb2+ > Cu2+ > Zn2+ was obtained as a function of Kd values 

(see Table A-IV.21 – Table A-IV.24, Appendix IV).   

  

10 mg dm-3 50 mg dm-3 40 mg dm-3 30 mg dm-3 20 mg dm-3 
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Fig 7.7:  Competitive removal of Zn2+ at a fixed concentration of 20 mg dm-3 in a mixed 

metal ion solution with concentrations ranging from 10 to 50 mg dm-3.  [conditions: 

adsorbent dose of 200 mg, pH 5.5, agitation time of 24 h, agitation speed of 150 

rpm and temperature at 20 ºC]. 

 

7.3.3. Adsorption isotherms 

In order to understand the adsorption mechanism in a multi-component competitive system, 

the equilibrium data for the adsorption of Pb2+, Cd2+, Cu2+ and Zn2+ onto MWCNT-ttpy in 

single- and multi-component systems were both analysed by using the Langmuir model 

given in Eq. 7.3.  The Langmuir parameters are given in Table 7.2, and plots of the Langmuir 

adsorption isotherms for single- and multi-component systems can be found in Appendix IV 

(Fig A-IV.1).  Table 7.2 indicates a significant decrease in the uptake (qm) of each metal in 

a competitive system when compared with values obtained for single adsorption systems.  

This decrease can be associated to the competition for active sites among the metal cations 

in solution, hence, resulting in a decrease of qm values.  From the qm values obtained, the 

affinity of MWCNT-ttpy for metal ions follows the sequence Cd > Pb > Cu > Zn in a single 

sorption system and Pb > Cu > Cd > Zn in a multicomponent adsorption system (Table 7.2).  

As discussed earlier, the sequence obtained corresponds to those previously reported by 

10 mg dm-3 50 mg dm-3 40 mg dm-3 30 mg dm-3 20 mg dm-3 



 
  

202 
 

Sitko et al. [34], Li et al. [6], Chen et al. [10], and Fei et al. [36] in single- and multi-

component adsorption systems. 

 

The adsorption behaviour of a particular metal ion can be influenced by the presence of other 

metal ions in solution for a multicomponent system.  This effect was assessed by Zhu et al. 

[37] to ascertain if the sorption capacity of a metal depends on others in solution.  The ratio 

of the maximum adsorption capacity in a single- and a multi-component system (qm'/qm) was 

calculated to estimate the interfering effects of metal ions present in solution.  They proposed 

that the adsorption process is synergistic if qm'/qm > 1, antagonistic if qm'/qm < 1 and no net 

interaction when qm'/qm = 1 [37].  Table 7.2 indicates that all qm'/qm values obtained in this 

study were less than 1, indicating that the sorption of Pb2+, Cd2+, Cu2+ and Zn2+ were all 

influenced by the presence of other competitors in solution.  Therefore, this antagonistic 

approach further justifies the reduced qm values obtained in a multicomponent system. 

 

Table 7.2:  The Langmuir parameters for the adsorption of Pb2+, Cd2+, Cu2+ and Zn2+ on 

MWCNT-ttpy in a single- and multi-component system 

  Single metal adsorption Competitive adsorption 

Metals qm/mg-1 b/dm3 g-1 SSRa RSEb  qm'/mg -1 b/dm3 g-1 SSRa RSEb qm'/qm 

Pb2+ 36.46 0.889 25.52 1.786  8.574 0.136 0.268 0.259 0.235 

Cd2+ 41.51 0.558 9.864 1.110  6.744 0.100 0.188 0.217 0.162 

Cu2+ 31.58 3.407 34.06 2.063  7.977 0.109 0.452 0.336 0.253 

Zn2+ 28.74 0.224 1.989 0.497  4.398 0.018 0.033 0.091 0.153 

a- Sum of squared residuals, b- residual squared errors 

 

7.3.4. Analysis of real samples 

In order to affirm the selectivity of MWCNT-ttpy and test its efficacy for metal ion removal 

in a real life scenario, water samples were collected from three different points on the 

Umgeni river.  The initial metal ion concentrations found in the water samples is given in 

Table 7.3.  Interestingly, a removal efficiency greater than 95% was obtained for all three 

metal ions in the three water samples (Table 7.3).  Although the initial concentrations of 

Pb2+, Cu2+ and Zn2+ in samples were in measureable amounts (≥ 10 mg dm-3), MWCNT-ttpy 

successfully sequestered these toxic heavy metal ions from the environmental samples.  This 

further authenticates that MWCNT-ttpy and the method of adsorption presented are effective 

and efficient when applied to real samples.  Hence, the application of MWCNT-ttpy should 

be further explored for the remediation of wastewater or effluents discharged from 

industries. 
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Table 7.3:  Analysis of real water samples 

Sample Name Ci Pb Ci Zn Ci Cu Ceq Pb Ceq Zn Ceq Cu % Pb % Zn % Cu 

Tributary 8.137 12.36 3.442 0.058 0.134 0.000 99.29 98.92 100.0 

Blue Lagoon 5.087 6.112 6.114 0.216 0.000 0.005 95.75 100.0 99.92 

Ethwekini 10.34 4.332 8.114 0.123 0.100 0.127 98.81 97.69 98.43 

Ci: initial concentration,  Ceq: equilibrium concentrations  

 

 

7.4. Conclusions 

The sorption of Pb2+, Cd2+, Cu2+ and Zn2+ onto nitrogen-functionalized multiwalled carbon 

nanotubes (MWCNT-ttpy) was investigated in single- and multi-component adsorption 

systems.  Batch experiments investigating the effect of pH and initial metal ion concentration 

were studied on both types of adsorption systems.  The equilibrium adsorption data was 

modelled by the Langmuir isotherm to understand the mechanism involved for each process. 

 

The study revealed that the Langmuir isotherm model describes the experimental data well 

for in both systems, however, lower metal ion uptake (qm) was observed in a competitive 

system compared with a single-solute system.  The sorption of all metal ions onto MWCNT-

ttpy was antagonistic, thereby increasing competition for active sites and lower uptake of 

some metal ions over others.  Hence, the sorption of a particular metal ion was greatly 

influenced by the presence of other competing ions in solution, regardless of their initial 

concentration.  In single-solute systems, the sequence and affinity of MWCNT-ttpy for metal 

ions was in the order of Cd > Pb > Cu > Zn.  However, an order of Pb > Cu > Cd > Zn was 

obtained for multicomponent adsorption.  The sorption of Zn2+ onto the sorbent was lowest 

in both systems, unlike Cd2+ whose affinity was always the greatest, except in the presence 

of constant Cu2+.  Thus, MWCNT-ttpy demonstrated good selectivity for Cd2+, Pb2+ and 

Cu2+, and the removal of Zn2+ was fair in a multicomponent system. 

 

Therefore, this study highlights the potential application of MWCNT-ttpy in wastewater 

treatment especially at high pollutant concentrations, owing to its selectivity towards the 

removal of divalent metal such as Cd2+, Pb2+, Cu2+ and Zn2+ from aquatic environments. 
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Abstract 

This study aims at investigating the efficiency of chemically functionalized multiwalled 

carbon nanotubes (MWCNTs) for the removal of bisphenol A (BPA) and ibuprofen (IBP) 

from aqueous solution by adsorption.  Acid-functionalized MWCNTs (MWCNT-COOH) 

and nitrogen-functionalized MWCNTs (MWCNT-ttpy) were used as adsorbents and their 

adsorption capacities compared for the removal of BPA and IBP.  

 

The results indicate that the kinetics data was better described by the pseudo-second order 

model, indicating a bimolecular interaction between the adsorbates and adsorbents.  

Adsorption of BPA was investigated at pH 7 with equilibrium achieved within 240 min and 

360 min for MWCNT-COOH and MWCNT-ttpy, respectively.  Optimum conditions for the 

adsorption of IBP were obtained at pH 2 and equilibrium for both adsorbents was attained 

within 360 min.  Isotherm studies show that data obtained for both substances best fit the 

Langmuir model except for MWCNT-ttpy, which was better described by the Freundlich 

model for IBP removal.  An increase in the Langmuir monolayer adsorption capacity (qm) 

was obtained for MWCNT-ttpy, indicating improved sorption after functionalization of 

MWCNT-COOH with 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine. 

 

Thermodynamic studies reveal that the removal of BPA and IBP with both adsorbents was 

spontaneous.  The removal of BPA was endothermic whereas that of IBP was an exothermic 

process.  Desorption of the loaded adsorbents showed good removal efficiencies for both 

processes indicating that the sorbents can be regenerated for reuse. This study confirms the 

potential application of MWCNT-COOH and MWCNT-ttpy as possible alternatives for the 

treatment of wastewater polluted with EDCs. 

 

Keywords: Bisphenol A, ibuprofen, adsorption, multiwalled carbon nanotube, isotherm, 

kinetics 
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8.1 Introduction 

Endocrine disrupting chemicals (EDCs) are substances that imitate naturally occurring 

hormones, by occupying hormone receptors in the body to generate overstimulation in 

humans and animals [1].  Intake of these substances into the human body can alter 

developmental, neurological and reproductive systems in man, resulting in several 

deleterious diseases [2,3].  The potential use of these compounds in food production and 

other related applications is of concern to environmentalists due to the toxicity of these 

compounds [3,4].  This work investigates bisphenol A and ibuprofen as two common EDCs 

typically found in wastewaters. 

 

Bisphenol A (BPA) has wide application in the manufacture of plastics, household 

appliances, flame retardants and other commercial products.  The determination of BPA has 

been reported in various environmental media such as in water (>10 mg dm-3) [5] and landfill 

leachates (>17 mg dm-3) [3].  The release of BPA into water stems from leaching of plastics, 

manufacturing processes and disposal of BPA-containing products on landfills after their 

end-of-life.  The intake of this substance result in adverse effects on man, aquatic organisms 

and the environment [6].  Potential effects of BPA on human health include cancer, birth 

defects, brain damage, infertility, obesity, diabetes and immunodeficiency, amongst other 

serious disorders [2,7]. 

 

Ibuprofen (IBP) is one of the most consumed medicines in the world [8] because of its use 

as an analgesic, antipyretic, and non-steroidal anti-inflammatory drug (NSAID) [9,10].  The 

discharge of pharmaceutical toxins into the environment is usually from residues from 

pharmaceutical manufacturing, and human and veterinary waste.  Evidence of IBP has been 

reported in some environmental media such as in water [11,12], soil [13] and landfill 

leachates [12].  The presence of this contaminant is perceived to have a negative influence, 

such as infertility and reproductive disorders [14], on human health if an adequate disposal 

route is not taken.   

 

Unfortunately, typical wastewater treatment facilities are not designed to remove EDCs from 

water, and the concentrations of these compounds build-up in water bodies [15].  Adsorption 

has been shown to be an effective means of removing EDCs [2,15], but, the need exists to 

develop new adsorbents for their effective removal. 

 

Surface functionalization of adsorbents plays a vital role in the removal of EDCs from 

aqueous solutions.  This has resulted in the study of a number of adsorbents with different 

functional groups, with the aim to improve the removal of such organic contaminants from 

aqueous solution.  Adsorption of EDCs, such as BPA and IBP, have been conducted by using 
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activated carbon [9,10], fly ash [16], bio-chars [14], zeolite [15], bio-sorbent [4], and 

sediment [17], amongst many others.  The regeneration of these sorbents and low sorption 

capacities creates a huge challenge in achieving efficient removal of these pollutants [4,15].  

Thus, more investigation is needed to improve the removal efficiencies of the adsorbents 

and to understand the mechanisms which control adsorption. 

 

Multiwalled carbon nanotubes (MWCNTs) have gained wide application for various 

purposes, such as catalyst supports [18], and energy storage devices [19], amongst many 

others.  MWCNTs have emerged as one of the most investigated shaped carbon 

nanomaterials (SCNMs) for the removal of organic contaminants from aqueous solution.  

The ease with which new functional groups are incorporated onto the walls of MWCNTs 

allows their increased use for many applications.  MWCNTs consist of two or more layers 

of graphene sheets rolled into a cylinder, containing carbon atoms interlinked by π-π bonds 

[20].  The presence of these bonds creates possible interaction with organic contaminants 

via π-π interactions.  The removal of organic pollutants such as trichlorophenol [21], 

polychlorinated biphenyls (PCBs) [22], trichlorobenzene [23,24], nitroaromatics [24], 

hexane [24], benzene [24], and polyaromatic hydrocarbons (PAHs) [1], amongst many, have 

been investigated by using CNT-containing nanomaterials.  Reports have demonstrated 

good sorption ability for pollutant removal with a high possibility of regenerating CNTs for 

reuse.  

 

Functionalization of MWCNTs can be achieved by incorporating π-π containing compounds 

onto the walls of tubes, thereby increasing the active sites available for adsorption.  Recently 

published studies revealed further functionalization of MWCNTs with 8- hydroxyquinoline 

[25], 3-aminopropyl [26], dodecylamine [26], triethoxysilane [26], and organic hydrazines 

[27], amongst many others, in order to introduce multiple functional groups onto the walls 

of tubes.  Due to the increase in hydrophobicity of CNTs through modification with organic 

compounds, removal of organic contaminants through π-π interactions can be achieved.  

Adsorption occurs mainly via mechanisms such as electrostatic, hydrophobic, ion-exchange 

and π-π interactions.  Functionalized MWCNTs can interact with pollutant molecules 

through any of these processes, hence making them suitable materials for adsorption. 

 

In our previous work, 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-Phttpy) was 

synthesized and used for the functionalization of acid-oxidized multiwalled carbon 

nanotubes (MWCNT-COOH) to obtain a nitrogen-functionalized MWCNTs (MWCNT-

ttpy).  Herein, we report the use of MWCNT-COOH and MWCNT-ttpy for the removal of 

BPA and IBP as models of common EDC pollutants for the remediation of polluted 

wastewater.  Batch adsorption studies were investigated by varying conditions, such as pH, 
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contact time, adsorbent dose, initial adsorbate concentration and temperature, to examine 

best conditions necessary for effective removal. 

 

 

8.2. Experimental 

8.2.1. Materials and chemicals 

All chemicals and solvents used were of analytical grade and used as received except when 

stated otherwise.  Pristine MWCNTs (>95%) were purchased from Cheap Tubes 

Incorporation (Brattleboro, USA).  Orthophosphoric acid (85%) was purchased from BDH 

Chemicals (Poole, England) while sulfuric (98%), nitric (55%) and hydrochloric acids 

(32%) were obtained from C C Imelmann Ltd (Robertsham, South Africa).  Solvents such 

as thionyl chloride (SoCl2, 99%) and N,N'-dimethylformamide (DMF, 98%) were purchased 

from Merck Chemicals (Pty) Ltd (Gauteng, South Africa) and Sigma-Aldrich (New 

Germany, South Africa), respectively.  High performance liquid chromatography (HPLC) 

grade methanol and acetonitrile were purchased from Sigma-Aldrich (New Germany, South 

Africa).  Chemicals such as bisphenol A (97%), and ibuprofen sodium salt (99%) were 

purchased from Sigma-Aldrich (New Germany, South Africa), while sodium hydroxide 

pellets (98%) were purchased from Merck Chemicals (Pty) Ltd (Gauteng, South Africa). 

 

8.2.2 Synthesis and characterization of adsorbents 

The synthesis of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine was carried out via the method 

described by Patel et al. [28].  Pristine multiwalled carbon nanotubes (P-MWCNTs) were 

purified with hydrochloric acid and later oxidized with a mixture of nitric and sulphuric acid 

in a volume ratio of 3:1.  Purification and oxidation were carried out as described by 

Santangelo et al. [29] and Oyetade et al. [30].  The acid-functionalized MWCNTs 

(MWCNT-COOH) were acylated with a mixture of SOCl2 and DMF in a volume ratio of 

20:1 respectively, and further functionalized with 4'-(4-hydroxyphenyl)-2,2':6',2''-

terpyridine (HO-Phttpy) to obtain nitrogen-functionalized MWCNTs (MWCNT-ttpy).  The 

synthesized adsorbents and ligand were characterized through various techniques.  

Characterization of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine and the synthesized 

adsorbents has been reported in our previous work [31]. 

 

8.2.3. Instrumentation 

The concentrations of BPA and IBP were determined with a UFLC-XR Shimadzu 

Prominence LC chromatographic system (LC-20AD XR) equipped with a vacuum degasser 

(DGU-20A3), autosampler (SIL-20A XR), thermostated column oven (CTO-20A), fraction 

collector (FRC-10A), communications bus module (LBM-20A) and a diode array detector 
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(SPD-M20A).  Separation of analytes was achieved on a Brownlee C18 column of 5 µm 

particle size with dimensions of 150 × 4.6 mm (PerkinElmer, Norwalk, USA). 

 

8.2.3.1 Chromatographic conditions 

The mobile phase for elution of BPA consisted of a mixture of 30:70 (v/v) acetonitrile and 

ultrapure water.  Chromatograms were collected at 230 nm by using a PDA detector, with 

an injection volume of 20 µL at a column temperature of 30 °C and an eluant flow rate of 

1.2 ml min-1.  For IBP, the mobile phase was a mixture of 80:20 (v/v) methanol and 5 mM 

phosphoric acid made in ultrapure water.  Chromatograms were recorded at a wavelength of 

220 nm, with an injection volume of 50 µL at a column temperature of 30 °C and an eluant 

flow rate of 1.0 ml min-1. 

 

8.2.4. Sorbate preparation 

The standards used in this study were of analytical grade and used without further 

purification.  Stock solutions of BPA and IBP were prepared separately by accurately 

weighing 1 g of the pure powders to make a concentration of 1 g dm-3 in methanol.  Working 

solutions of BPA/IBP were prepared daily from the stock solutions in deionised water to 

obtain the desired concentrations.  For quantification purposes, a calibration plot was 

prepared within the range of experimental concentrations used under the same instrumental 

conditions. 

 

8.2.5. Sorption Experiments and detection of BPA and IBP 

All adsorption experiments were performed in duplicate in a thermostated water bath in 50 

cm3 glass bottles.  Single batch experiments were conducted to investigate the effects of pH, 

contact time, adsorbent dose, initial adsorbate concentration and temperature of adsorbate 

solution in order to determine the best experimental conditions for adsorbate removal.  To 

investigate the effect of pH, 25 cm3 aliquots of 50 mg dm-3 adsorbate solutions were 

measured into glass bottles with the addition of 50 mg doses of adsorbent.  The pH of the 

solutions was adjusted by adding the required amount of 0.1 mol dm-3 NaOH or HNO3 to 

obtain the desired pH.  The solutions were then agitated in a thermostated water bath at 25 

°C for 24 h.  After agitation, the resulting solutions were filtered and the filtrates transferred 

into 1.5 cm3 amber vials.  The initial and final concentration of BPA/IBP were determined 

by using HPLC-UV.  The adsorption efficiency and adsorption capacity (qe) were calculated 

from equations 8.1 and 8.2 respectively. 

100 ×  % 
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
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where Ci is the initial BPA/IBP concentration (mg dm-3), Ceq is the equilibrium concentration 

of BPA/IBP (mg dm-3), qe is the adsorption capacity (mg g-1), m is the mass of adsorbent 

(mg) and V is the volume (dm3) of the adsorbate solution used. 

 

Kinetic studies were investigated by agitating 25 cm3 aliquots of 50 mg dm-3 adsorbate 

solutions with a 50 mg dose of adsorbent at varying time intervals between 5-1440 min.  

Solutions were conditioned to the desired pH value and agitated in a thermostated water bath 

at 25 °C.  After the pre-determined time intervals, the solutions were filtered, the filtrates 

collected into vials and the final concentrations of BPA/IBP were determined by using 

HPLC-UV.  The kinetics data obtained were fitted into the pseudo-first order, pseudo-second 

order, Elovich and intraparticle diffusion models.  The equations of all models are given in 

Table 8.1. 

 

Table 8.1:  Kinetics models investigated for the adsorption of BPA and IBP 

Model Equation† Parameters References 

Pseudo-first order 𝑞𝑡 =  𝑞𝑒𝑞(1 − 𝑒−𝑘1𝑡) qeq, k1 [32-34] 

Pseudo-second order 
𝑞𝑡 =  

𝑘2𝑞𝑒𝑞
2 𝑡

1 +  𝑘2𝑞𝑒𝑞𝑡
 

k2, qeq [32,33,35] 

Elovich 
𝑞𝑡 =  

1

𝛽
ln (𝛼𝛽) + 

1

𝛽
ln 𝑡 

α, β [36] 

Intraparticle diffusion 𝑞𝑡 =  𝑘𝑖𝑑√𝑡 + 𝑙 kid, l [37] 

†qt, quantity of adsorbate adsorbed at time t (mg g-1); qeq, quantity of adsorbate adsorbed at equilibrium (mg g-

1); α, adsorption rate constant (mg g-1 min-1); β, desorption rate constant (g mg-1); k1, pseudo-first order rate 

constant (min-1); k2, pseudo-second order rate constant (g mg-1 min-1); kid, intraparticle diffusion rate constant 

(mg g-1 min0.5), l, is a constant related to the boundary layer thickness (mg g-1). 

 

Isotherm studies were investigated with a 25 cm3 aliquot of adsorbate solution over a 

concentration range of 10-100 mg dm-3 and an adsorbent dose of 50 mg.  Solutions were 

conditioned to the appropriate pH and agitated in a thermostated water bath at 25 °C for 24 

h.  The solutions were filtered, the filtrates transferred into vials and the final concentrations 

determined.  The equilibrium data obtained were fitted into various two-and three-parameter 

isotherms.  All isotherm equations used in this study are given in Table 8.2.  Thermodynamic 

studies was also investigated over a temperature range of 298-318 K and parameters such as 

the standard Gibbs energy change (ΔG°), standard enthalpy change (ΔH°), and standard 

entropy change (ΔS°) for the adsorption processes were calculated. 
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Table 8.2:  Isotherm models investigated for the adsorption of BPA and IBP 

Isotherm model Equation† Parameters References 

Langmuir 𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐶𝑒𝑞

1 + 𝑏𝐶𝑒𝑞

 qm, b [38] 

Freundlich 𝑞𝑒𝑞 = 𝐾𝐹𝐶𝑒𝑞
1 𝑛⁄

 KF, n [39] 

Temkin 𝑞𝑒𝑞 =
𝑅𝑇

𝑏𝑇

𝑙𝑛(𝐴𝑇𝐶𝑒𝑞) bT, AT [40] 

Dubinin-Radushkevich 

𝑞𝑒𝑞 = 𝑞𝑚𝑒−𝛽𝜀2
 

𝜀 = 𝑅𝑇𝑙𝑛 (1 +
1

𝐶𝑒𝑞

) 
qm, β [41] 

Sips 𝑞𝑒𝑞 =
𝑏𝑞𝑚𝐶𝑒𝑞

1 𝑛⁄

1 + 𝑏𝐶𝑒𝑞
1 𝑛⁄

 qm, b, n [42] 

Toth 
𝑞𝑒𝑞 =

𝑞𝑚𝐶𝑒𝑞

(
1

𝐾𝑇
+ 𝐶𝑒𝑞

𝑛𝑇)
1 𝑛𝑇⁄

 
qm, KT, nT [43] 

Redlich-Peterson 𝑞𝑒𝑞 =
𝐾𝑅𝑃𝐶𝑒𝑞

1 + 𝑎𝑅𝑃𝐶𝑒𝑞
𝑔  KRP, aRP, g [44] 

Khan 𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐾𝐶𝑒𝑞

(1 + 𝑏𝐾𝐶𝑒𝑞)
𝑎𝐾

 qm, aK, bK [45] 

†qeq, adsorption capacity (mg g-1); Ceq, equilibrium concentration of adsorbate in solution (mg dm-3); qm, 

maximum monolayer capacity (mg g-1); b, Langmuir isotherm constant (dm3 mg-1); KF, Freundlich isotherm 

constant (mg g-1)(dm3 mg-1)n; n, adsorption intensity; bT, Temkin isotherm constant; AT, Temkin isotherm 

equilibrium binding constant (dm3 g-1); β, Dubinin-Radushkevich isotherm constant (mol2 kJ-2); KT, Toth 

isotherm constant (mg g-1); nT, Toth isotherm constant; KRP, Redlich-Peterson isotherm constant (dm3 g-1); aRP, 

Redlich-Peterson isotherm constant; g, Redlich-Peterson isotherm exponent; ak, Khan isotherm exponent; bk, 

Khan isotherm constant. 

 

8.2.6 Desorption studies 

The reutilization of spent adsorbents was investigated through desorption processes by 

agitating a 50 mg BPA/IBP-loaded adsorbent in a 10 cm3 mixture of ethanol and acetic acid 

in a volume ratio of 9:1, respectively, for 1 h [46].  After agitation, the suspensions were 

filtered and the final concentrations of BPA/IBP in the filtrate determined by HPLC-UV. 

 

8.2.7. Data analysis 

The adsorption data were fitted to isotherm and kinetic models by means of the nls nonlinear 

regression routine in the R statistical computing environment [47]. 

 

 

 



 
  

215 
 

8.3. Results and discussion 

The removal of BPA or IBP from simulated wastewater was studied by using MWCNT-

COOH and MWCNT-ttpy.  Results investigating the batch adsorption processes varying 

conditions such as pH, contact time, adsorbent dose, initial adsorbate concentration and 

temperature are presented in the subsequent sections.  The adsorption data were fitted into 

kinetic and isotherm models, while a thermodynamic study was also performed to 

understand the feasibility and spontaneity of the adsorption processes. 

 

8.3.1 Effect of pH 

The influence of pH on the adsorption of BPA and IBP was investigated over a pH range of 

1.0-10.0.  The change in acidity/basicity of the adsorbate solution greatly influenced the 

removal of BPA and IBP (Fig 8.1).  Fig 8.1a shows that both adsorbents were efficient for 

BPA removal at acidic pH.  High removal efficiencies greater than 90% were obtained for 

MWCNT-ttpy, demonstrating better sorption than MWCNT-COOH.  Virtually no change 

was noticed for the removal of BPA on MWCNT-ttpy over a pH range of 1 to 6.  This 

demonstrates that the binding affinity of BPA molecules onto the active sites on MWCNT-

ttpy was not altered under acidic pH conditions [4], revealing that the adsorbent can be 

effective over this pH range.  For MWCNT-COOH, there was a steady drop in removal 

percentage with increase in pH for BPA.  The adsorption of IBP from aqueous solution by 

using MWCNT-COOH and MWCNT-ttpy also exhibited favourable removal efficiencies at 

more acidic pH conditions (Fig 8.1b).  Again, MWCNT-ttpy showed better ability than 

MWCNT-COOH for IBP removal (Fig 8.1b).  However, for IBP, the percentage removal 

decreased for both sorbents as the pH increased. 

 

Fig 8.1: Effect of pH for the adsorption of (a) BPA and (b) IBP onto MWCNT-COOH and 

MWCNT-ttpy [conditions: 25 cm3 of 50 mg dm-3 BPA/IBP, 24 h equilibration 

time, 50 mg adsorbent dose, agitation speed 150 rpm, temperature 25 °C]. 

 

(a) 
(b) 
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The trend noticeable with both adsorbates can be explained based on the surface charges 

present on the adsorbent and the pKa values of BPA and IBP.  The charge densities on the 

adsorbents changes with increasing pH conditions.  The point of zero charge (pHPZC), as 

reported in our previous studies for MWCNT-COOH and MWCNT-ttpy are 4.02 and 4.48, 

respectively [31].  The surface of the adsorbents will thereby exhibit a positive charge in 

acidic solutions.  The reported pKa values of BPA and IBP are 9.6-10.2 [7,48] and 4.91 [49], 

respectively.  De-protonation of these molecules occurs when the pH of the solution is 

greater than the pKa [49,50].  This results in the formation of anions, resulting in a build-up 

of negative ions in solution.  At basic pH conditions, electrostatic repulsion between the 

negatively charged surface of the adsorbent and the anionic forms of BPA and IBP occurs, 

resulting in a decrease of the binding affinity between adsorbent and adsorbate.  Functional 

groups such as hydroxyl and carboxyl on BPA and IBP respectively will also not interact 

with π-containing aromatic rings on the adsorbents [14].  Hence, adsorption through 

hydrophobic interactions is also inhibited.  These phenomena explain the decreased 

efficiency under alkaline conditions for removal of BPA and IBP.  At acidic pH conditions, 

BPA and IBP remain non-dissociated and neutral, and the adsorbent remains positively 

charged.  The adsorbent sites therefore becomes protonated and hydrogen bonding becomes 

feasible since BPA/IBP exists as neutral molecules when pH<pKa [51].  Furthermore, since 

the adsorbents predominantly contain π-electrons which can interact with organic pollutants 

containing aromatic rings, intermolecular forces between BPA/IBP and the sorbents could 

be established through π-π interactions.  These processes explain why adsorption is 

facilitated under acidic conditions.  Adsorption of BPA and IBP in this study was therefore 

attributed primarily to interactions between neutral molecules of BPA and IBP onto the 

active sites of adsorbents via hydrogen and/or π-π interactions.  Similar interactions have 

been reported for BPA [2,3,5,50] and IBP [14,49] in other reported articles.  For effective 

comparison, adsorption experiments were investigated at pH 7 and 2 for removal of BPA 

and IBP, respectively. 

 

8.3.2 Effect of time 

The influence of contact time on the adsorption of BPA and IBP was investigated over a 

period of 5-1440 min at conditions described in Fig 8.2.  The figure shows a gradual increase 

in removal of BPA and IBP as time (t) was varied.  The active sites available for adsorption 

were sufficient initially resulting in a rapid removal of adsorbates.  A state of equilibrium, 

where little or no further increase in adsorption efficiency was reached with increasing time, 

due to saturation of active sites on the adsorbents.  Equilibrium was achieved for BPA within 

240 min and 360 min for MWCNT-COOH and MWCNT-ttpy, respectively (Fig 8.2a).  

Likewise, a state of equilibrium was achieved for IBP within 360 min for both adsorbents 

(Fig 8.2b).  Higher removal efficiencies were obtained for MWCNT-ttpy indicating better 
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sorption of BPA/IBP onto nitrogen-functionalized tubes.  Sorption on MWCNT-ttpy was 

rapid with a removal efficiency of 38% and 64% obtained for BPA and IBP respectively 

after 5 min.  This demonstrates that functionalization of MWCNT-COOH with HO-Phttpy 

significantly improved the sorption ability of MWCNT-ttpy, showing high potential for 

BPA/IBP removal almost immediately on contact with the sorbent.  For further adsorption 

experiments, an agitation time of 24 h was used for both adsorbates to ensure their complete 

removal from solution. 

 

 

 

 

 

 

 

 

 

 

Fig 8.2: Effect of contact time for the adsorption of (a) BPA and (b) IBP onto MWCNT-

COOH and MWCNT-ttpy [conditions: 25 cm3 of 50 mg dm-3 BPA/IBP, pH=7.0 

(BPA) and pH=2.0 (IBP), 50 mg adsorbent dose, agitation speed 150 rpm, 

temperature 25 °C]. 

 

8.3.2.1 Kinetic studies 

The rate/mechanism for the adsorption of BPA and IBP onto the studied adsorbents was 

determined by measuring the change in concentration of the adsorbate as time (t) was varied.  

The data obtained were fitted into four kinetic models, namely, the pseudo-first order, 

pseudo-second order, Elovich and intraparticle diffusion models.  A knowledge of the 

dynamics is paramount to the design of large-scale adsorption technologies for BPA and 

IBP removal.  The non-linear equations, described as a better way of obtaining kinetic 

parameters [4], are presented in Table 8.1.  The kinetic parameters with their respective sum 

of squared residuals (SSR) for each model are given in Table 8.3.  The dependence of the 

model that best fits the experimental data was decided based on the one with the lowest SSR 

value. 

 

The adsorption of BPA onto both adsorbents was better described by the pseudo-second 

order model (Table 8.3).  However, the data obtained for the adsorption of IBP onto 

MWCNT-COOH and MWCNT-ttpy were better represented by pseudo-second order and 

Elovich models, respectively (Table 8.3).  This result is in agreement with Guedidi et al. 

(a) (b) 
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[52] who reported that the adsorption of IBP was better described by the Elovich model at 

acidic conditions.  Also, recently published articles on the adsorption of BPA [3,4,50,53,54] 

revealed that the equilibrium data were better described by the pseudo-second order model.  

The pseudo second-order model is based on the assumption that the rate-limiting step for 

adsorption is through chemical interactions involving the sharing or exchange of electrons 

between the adsorbate and adsorbent [55].  The results obtained in this study further 

elucidate the theory, since adsorption of BPA/IBP onto studied the adsorbents could be 

assumed to proceed through hydrogen and/or π-π interactions.  These processes involve the 

sharing of electrons between π-electron containing atoms in the adsorbents and aromatic-

ring electrons in the adsorbates.  These results, therefore, revealed that the mechanism of 

adsorption for removal of BPA and IBP was through a bimolecular interaction existing 

between the adsorbate and the active sites on the adsorbent. 

 

The increase in the specific surface area (SSA) from 126.8 m2 g-1 to 189.2 m2 g-1 after 

functionalization of MWCNT-COOH is attributed to one of the factors responsible for an 

increase in adsorption capacity (qe) of MWCNT-ttpy obtained for both adsorption processes 

(Table 8.3).  Also, higher adsorption rate constants (ho) obtained for MWCNT-ttpy for both 

processes account for the increase in active sites on the adsorbent, hence achieving higher 

adsorption capacities (qe) [3,54].  The functionalization of MWCNT-COOH with HO-Phttpy 

accounts for an increase in SSA and the number of active sites on the adsorbent, therefore 

enabling better removal of BPA and IBP onto MWCNT-ttpy. 
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Table 8.3: Kinetic parameters for the adsorption of BPA and IBP on MWCNT-COOH and 

MWCNT-ttpy [conditions: 25 cm3 of 50 mg dm-3 BPA/IBP, pH = 7.0 (BPA) and 

pH = 2.0 (IBP), 50 mg adsorbent dose, agitation speed 150 rpm, temperature 25 

°C] 

Model Parameter 

BPA  IBP 

MWCNT-

COOH 

MWCNT-

ttpy  

MWCNT-

COOH 

MWCNT-

ttpy 

Pseudo first-order k1/min - 0.040  0.034 0.279 

 qeq/mg g-1 - 18.79  10.96 18.92 

 SSRa - 20.03  7.162 24.89 

Pseudo second-order k2/10-3/g mg-1 min-1 1.642 3.206  4.226 2.651 

 ho/mg g-1 min-1 0.485 1.286  0.593 1.014 

 qeq/mg g-1 17.18 20.03  11.85 19.56 

 SSR 3.659 20.77  1.292 8.392 

Intraparticle diffusion kid /mg g -1min-0.5 0.672 0.852  0.494 0.921 

 SSR 394.8 975.2  282.3 1831 

Elovich α/mg g-1 min-1 1.783 14.53  3.532 4.998 

 β/g mg-1 0.363 0.406  0.604 1.081 

  SSR 26.36 45.65  13.03 1.485 

a: Sum of squared residuals 

 

8.3.3 Effect of adsorbent dose 

The effect of increasing adsorbent dose was investigated over a mass range of 30-400 mg.  

Fig 8.3 shows that increasing amounts of adsorbent at the same adsorbate concentration 

result in a percentage increase of adsorbates removed from solution.  This is in with the fact 

that increasing the mass of adsorbent for the same adsorbate concentration increases the 

number of active sites available for adsorption [30].  This translates into an increased 

removal of adsorbates, until a point of equilibrium where the concentration of adsorbate 

becomes the limiting factor.  Hence, the removal of BPA and IBP were better enhanced with 

increasing dose, obtaining better efficiencies by using MWCNT-ttpy.  In this study, a mass 

of 50 mg was considered appropriate for adsorption, since effective comparison can be made 

at this dosage. 
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Fig 8.3: Effect of adsorbent dose for the adsorption of (a) BPA and (b) IBP onto MWCNT-

COOH and MWCNT-ttpy [conditions: 25 cm3 of 50 mg dm-3 BPA/IBP, 24 h 

equilibration time, pH = 7.0 (BPA) and pH = 2.0 (IBP), agitation speed 150 rpm, 

temperature 25 °C]. 

 

8.3.4 Effect of temperature 

The temperature dependency of the adsorption of BPA and IBP was investigated at 298, 

303, 313 and 318 K over a concentration range of 10-100 mg dm-3.  Figs 8.4 and 8.5 show 

the influence of increasing temperature on the adsorption of BPA and IBP respectively.  The 

mass transfer and diffusion of molecules onto the active sites on the adsorbents is usually 

enhanced with an increase in adsorbate temperature.  The mobility of BPA molecules to 

active sites on the adsorbent was increased with an increase in temperature.  Hence, an 

increase in temperature resulted in an enhancement of BPA removal (Fig 8.4).  Adsorption 

of BPA revealed a higher qe at each sorbate concentration as the temperature was gradually 

increased for both adsorbents (Fig 8.4).  However, this change was not very marked.  This 

indicates an endothermic process of adsorption was favoured.  The process clearly explains 

that MWCNT-COOH and MWCNT-ttpy could prove effective for the removal of BPA 

regardless of adsorbate temperature, therefore making them suitable for the direct treatment 

of BPA-polluted effluents before its discharge. 

 

Furthermore, increasing the temperature of the adsorbates may also lead to a decrease in 

binding energy between molecules and adsorbent.  Fig 8.5 shows a decrease in adsorption 

capacity (qe) of the adsorbent as the temperature of the adsorbate was increased for IBP 

removal.  In fact a decrease in qe was obtained at each adsorbate concentration for both 

adsorbents, indicating an exothermic process of adsorption.  Adsorption of IBP by using 

MWCNT-COOH and MWCNT-ttpy was therefore favoured at low adsorbate temperature 

as indicated in Fig 8.5. 

(a) (b) 
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Fig 8.4: Effect of temperature for the adsorption of BPA on (a) MWCNT-COOH and (b) 

MWCNT-ttpy [conditions: 25 cm3 of BPA solution, 24 h equilibration time, pH = 

7.0, 50 mg adsorbent dose, agitation speed 150 rpm]. 

 

Fig 8.5: Effect of temperature for the adsorption of IBP on (a) MWCNT-COOH and (b) 

MWCNT-ttpy [conditions: 25 cm3 of IBP solution, 24 h equilibration time, pH = 

2.0, 50 mg adsorbent dose, agitation speed 150 rpm]. 

 

8.3.5 Isotherm studies 

Isotherms are needed in order to develop a design for adsorption involving removal of BPA 

and IBP in a large-scale scenario [2].  The equilibrium data obtained were fitted into eight 

models consisting of two- and three-parameter isotherms.  The non-linear equations of all 

isotherms are given in Table 8.2.  Non-linear least squares (NLLS) analysis was carried out 

on all models, and the choice of isotherm was based on the one with the lowest SSR value.  

Tables 8.4 and 8.5 give the parameters of the isotherms which best describe the equilibrium 

data for the adsorption of BPA and IBP respectively.  Table 8.4 illustrates that the 

equilibrium data obtained for BPA removal by using MWCNT-COOH and MWCNT-ttpy 

was better described by the Langmuir model, showing the lowest SSR values when 

compared with other models.  An increase in the Langmuir maximum adsorption capacity 

(b) (a) 

(a) (b

) 
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(qm) and Freundlich sorption coefficient (KF) was obtained with increasing temperature, 

demonstrating the endothermic nature of BPA sorption on the studied adsorbents.  The 

adsorptive power (b) was also noticed to increase with increasing temperature, indicating 

strong binding interactions between the BPA molecule and the adsorbents [56] (Table 8.4). 

 

The equilibrium data obtained for IBP removal by using MWCNT-COOH and MWCNT-

ttpy best fit the Langmuir and Freundlich isotherms, respectively.  A decrease in qm and KF 

as temperature was increased indicates an exothermic process for removal (Table 8.5).  The 

values obtained for 1/n were also less than 1, indicating a favourable process of adsorption 

was achieved by using MWCNT-ttpy for IBP removal. 

 

The Langmuir model assumes that the interactions between the adsorbate and adsorbent 

occur on a homogeneous monolayer surface and no interactions occur between adjacent 

molecules on the adsorbent [30].  The Freundlich model assumes a heterogeneous surface, 

and is therefore based on a multi-layer principle of adsorption.  Isotherm studies confirmed 

monolayer interactions for the adsorption of BPA and IBP, however, multi-layer interaction 

was demonstrated for IBP removal by using MWCNT-ttpy.  An assessment of the adsorbents 

used in this study was performed by comparing the Langmuir monolayer adsorption 

capacities (qm) with literature values reported for other adsorbents.  Table 8.6 clearly shows 

that although results obtained from some previous reports were higher than those obtained 

in this study, the results obtained were favourably comparable with those reported.  This 

further confirms that MWCNT-COOH and MWCNT-ttpy are promising alternatives for 

remediating EDC-contaminated industrial effluents and wastewater before their discharge 

into water bodies. 

 

 

Table 8.4: Isotherm parameters for the adsorption of BPA [conditions: 25 cm3 of 10-100 

mg dm-3 BPA at different temperatures of 298, 303, 313 and 318 K, 24 h 

equilibration time, pH = 7.0, 50 mg adsorbent dose, agitation speed 150 rpm] 

Isotherms Parameter 

MWCNT-COOH  MWCNT-ttpy 

298 K 303 K 313 K 318 K  298 K 303 K 313 K 318 K 

Langmuir qm 30.88 32.58 33.53 35.60  38.40 38.82 40.95 42.25 

 b 0.235 0.238 0.284 0.287  0.227 0.306 0.323 0.470 

 SSR 7.719 10.24 7.026 6.224  15.01 10.77 16.28 7.996 

Freundlich KF 8.921 9.277 10.17 10.30  9.916 11.29 12.25 14.78 

 n 2.921 2.841 2.880 2.683  2.505 2.573 2.570 2.691 

  SSR 22.99 24.08 25.90 24.45  19.15 17.00 29.40 57.89 

SSR: Sum of squared residuals 
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Table 8.5: Isotherm parameters for the adsorption of IBP [conditions: 25 cm3 of 10-100 mg 

dm-3 IBP at different temperatures of 298, 303, 313 and 318 K, 24 h equilibration 

time, pH = 2.0, 50 mg adsorbent dose, agitation speed 150 rpm] 

Isotherms Parameter 

MWCNT-COOH  MWCNT-ttpy 

298 K 303 K 313 K 318 K  298 K 303 K 313 K 318 K 

Langmuir qm 20.26 20.57 18.89 18.93  34.03 32.79 30.59 32.94 

 b 0.098 0.070 0.076 0.031  0.301 0.256 0.242 0.120 

 SSR 2.144 2.214 2.121 1.912  49.78 33.07 25.33 13.94 

Freundlich KF 4.353 3.343 3.409 1.680  11.98 10.07 9.062 6.589 

 n 2.873 2.495 2.647 2.075  3.435 3.082 3.048 2.502 

  SSR 16.12 8.145 11.06 1.356  8.386 5.917 7.837 24.75 

SSR: Sum of squared residuals 
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Table 8.6:  Comparison of Langmuir maximum capacities (qm) with data obtained from literature 

 
Adsorbents Conditions Adsorbate qm/mg g-1 References 

Zeolite pH 7.0, Ci 20 mg dm-3, 50 mg dose, 298 K BPA 11.20 [57] 

MWCNT pH 6.0, Ci 10 mg dm-3, 25 mg dose, 24 h,300 K BPA 59.17 [58] 

SWCNT pH 8.0 Ci 50 mg dm-3, 50 mg dose, 60 min, 293 K BPA 71.10 [2] 

SWCNT pH 8.2, Ci 50 mg dm-3, 240 min, 298 K BPA 13.39-16.05 [59] 

Activated carbon pH 3.0, Ci 60 mg dm-3, 25 mg, 298 K IBP 28.50 [49] 

Oxidized MWCNT pH 7.0, Ci 2 mg dm-3, 2 mg dose, 296 K IBP 19.40 [8] 

Oxidized MWCNT pH 4.0, Ci 2 mg dm-3, 2 mg dose, 296 K IBP 40.20 [8] 

MWCNT-COOH pH 7.0, Ci 50 mg dm-3, 50 mg dose, 24 h, 298 K BPA 30.88 This study 

MWCNT-ttpy pH 7.0, Ci 50 mg dm-3, 50 mg dose, 24 h, 298 K BPA 38.40 This study 

MWCNT-COOH pH 2.0, Ci 50 mg dm-3, 50 mg dose, 24 h, 298 K IBP 20.06 This study 

MWCNT-ttpy pH 2.0, Ci 50 mg dm-3, 50 mg dose, 24 h, 298 K IBP 34.03 This study 



 
  

225 
 
 

8.3.6 Thermodynamic studies 

Thermodynamic parameters such as the standard Gibbs energy change (ΔG°), standard 

enthalpy change (ΔH°) and standard entropy change (ΔS°) provide in-depth information into 

the feasibility and the internal energy changes [50] experienced during the adsorption 

process.  These parameters were calculated from the temperature-dependent isotherms at 

different temperatures of 298, 303, 313 and 318 K.  The standard Gibbs energy change (ΔG°) 

was calculated by using equation (8.3) [32]: 

 

𝛥𝐺° =  −𝑅𝑇𝑙𝑛 𝐾
     (8.3)

  

where R is the universal gas constant (8.314 J K-1 mol-1), T is the absolute temperature in 

Kelvin, K is the distribution adsorption coefficient and ΔG° is the standard Gibbs energy 

change (J mol-1).  The product of qm and b obtained from Langmuir plot (Table 8.4-8.5) 

gives the calculated value of K [56,60], which was then multiplied by 1000 to obtain a 

dimensionless value [61]. 

 

The standard change in enthalpy (ΔH°) and standard change in entropy (ΔS°) were calculated 

from the intercept and slope obtained from the linear plot of ln K against 1/T, by using the 

Van’t Hoff equation given in eqn 8.4 [30]. 

 

𝑙𝑛 𝐾 =  
−𝛥𝐻°

𝑅𝑇
+  

𝛥𝑆°

𝑅
      (8.4) 

The calculated thermodynamic parameters obtained from equations 8.3 and 8.4 for the 

adsorption of BPA and IBP are presented in Table 8.7 and 8.8 respectively.  The adsorption 

processes of BPA and IBP were spontaneous in nature, obtaining negative values of ΔG° for 

both processes.  An increase in negative values of ΔG° for the adsorption of BPA by using 

MWCNT-COOH and MWCNT-ttpy indicates a spontaneous and favourable process at 

higher adsorbate temperature (Table 8.7).  In contrast, a decrease in ΔG° values with 

increasing temperature for the adsorption of IBP by using MWCNT-COOH and MWCNT-

ttpy indicates removal was favoured at low temperature (Table 8.8) [46].  The standard 

change in enthalpy (ΔH°) obtained showed positive and negative values for adsorption of 

BPA and IBP respectively.  This suggests an endothermic and exothermic nature of removal 

for BPA and IBP respectively.  Positive ΔS° values obtained for BPA indicate an increase 

in the disorder of the solid-solution interface during adsorption, while the negative value of 

ΔS° obtained for IBP with both adsorbents indicates a decrease in the disorder at the solid-

liquid interface [46].  Adsorption of BPA onto both adsorbents was entropy-driven, but 

enthalpy-driven for IBP removal. 
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Inferences on the type of binding between the adsorbent and adsorbate can also be drawn 

from thermodynamic parameters.  The heat evolved during physical adsorption 

(physisorption) is the range of 2.1-20.9 kJ mol-1, while heat of a chemical process 

(chemisorption) is in the range of 80-200 kJ mol-1 [30,56,62].  The study shows that the 

removal of BPA with MWCNT-ttpy was a physico-chemical process since ΔH° were less 

than values predicted for chemisorption but greater than values for physisorption [62]. 

 

Table 8.7:  Thermodynamic parameters for the adsorption of BPA onto MWCNT-COOH 

and MWCNT-ttpy 

Adsorbent T/K ΔG°/kJ mol-1 ΔH°/kJ mol-1 ΔS°/J K-1 mol-1 

MWCNT-COOH 298 -22.02   

 303 -22.56   

 313 -23.84 14.02 120.9 

 318 -24.41   

MWCNT-ttpy 298 -22.48   

 303 -23.64   

 313 -24.70 27.60 168.3 

  318 -26.16   

     

 

Table 8.8:  Thermodynamic parameters for the adsorption of IBP onto MWCNT-COOH 

and MWCNT-ttpy 

Adsorbent T/K ΔG°/kJ mol-1 ΔH°/kJ mol-1 ΔS°/J K-1 mol-1 

MWCNT-COOH 298 -18.81   

 303 -18.32   

 313 -18.92 -38.24 -64.99 

 318 -16.85   

MWCNT-ttpy 298 -22.49   

 303 -22.76   

 313 -23.19 -24.96 -65.18 

  318 -21.90   

 

8.3.7 Desorption studies 

The reuse of adsorbents plays an important role in adsorption to mitigate the direct discharge 

of spent-adsorbents, thereby generating secondary pollutants into the environment.  To 

protect against this, desorption of BPA/IBP on spent-adsorbents was investigated for the 

process of regenerating and reutilization of the adsorbents.  To achieve this, 50 mg 

BPA/IBP-loaded adsorbent was weighed into glass bottles, containing 10 cm3 mixture of 

ethanol and acetic acid, in a volume ratio of 9:1, respectively, and agitated in a thermostated 
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water bath for 1 h [46].  The final concentrations of BPA and IBP were determined by HPLC-

UV, and their desorption efficiencies were evaluated. 

 

The results obtained indicated a fairly good desorption of BPA/IBP from the adsorbents after 

a cycle of agitation.  The desorption percentages achieved were 72.1% and 76.5% of BPA-

loaded onto MWCNT-COOH and MWCNT-ttpy respectively.  Desorption of IBP-loaded 

onto MWCNT-COOH and MWCNT-ttpy afforded 58% and 61.2% removal efficiency 

respectively.  This indicates that the adsorbents can be recycled after some cycles of agitation 

and reused, thus making them efficient for practical industrial applications. 

 

 

8.4. Conclusions 

This study examines the sorption behaviour of BPA and IBP from aqueous solution by using 

acid-functionalized multiwalled carbon nanotubes (MWCNT-COOH) and nitrogen-

functionalized multiwalled carbon nanotubes (MWCNT-ttpy), under certain environmental 

conditions.  The results showed higher adsorption capacities (qe) were obtained for 

MWCNT-ttpy for both adsorption processes when compared with MWCNT-COOH.  The 

increased capacity of MWCNT-ttpy was attributed to the functionalization of MWCNT-

COOH with 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-Phttpy), which improved the 

sorption of BPA and IBP onto the active sites of MWCNT-ttpy.  Adsorption of BPA was 

investigated at pH 7 and equilibrium was achieved within 240 min and 360 min for 

MWCNT-COOH and MWCNT-ttpy, respectively.  Removal of IBP from aqueous solution 

was investigated at pH 2 and equilibrium was achieved for both adsorbents within 360 min.  

The pseudo-second order model best describes the kinetics of adsorption.  Strong 

hydrophobic interactions between phenyl groups in the adsorbates and π-electron containing 

adsorbents were primarily responsible for the removal of BPA and IBP.  The equilibrium 

data obtained for MWCNT-COOH and MWCNT-ttpy were better described by the 

Langmuir model for both processes, except for MWCNT-ttpy which better fits the 

Freundlich model for the adsorption of IBP.  All adsorption processes were feasible and 

spontaneous, with an endothermic nature of adsorption obtained for the removal of BPA 

from aqueous solution.  The removal of IBP demonstrated an exothermic nature of 

adsorption indicating an enthalpy-driven process.  Desorption of BPA/IBP-loaded 

adsorbents afforded good removal efficiencies, indicating possible reutilization of the 

adsorbents for similar processes.  The adsorbents used in this study have proved effective 

for BPA and IBP removal, hence, their potential for the treatment of EDC-contaminated 

wastewater should be further explored. 
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Abstract 

The ability of nitrogen-functionalized multiwalled carbon nanotubes (MWCNT-ttpy) to 

adsorb bisphenol A (BPA) and ibuprofen (IBP) in both single and binary pollutant systems 

was investigated.  In addition, the influence of the presence of heavy metal ions, namely, 

Pb2+ and Cd2+, was also studied in order to investigate the efficacy of MWCNT-ttpy for the 

simultaneous removal of metal ions and organic pollutants in a competitive system. 

 

Adsorption of BPA and IBP was primarily based on the hydrophobic nature of the 

adsorbates.  Hence, the sorption of IBP in both single- and binary systems was higher than 

BPA removal onto MWCNT-ttpy, as a result of its increased hydrophobicity.  The sorption 

of BPA and IBP was enhanced in the presence of Cd2+, however, a decrease in organic 

sorption was noticed in the presence of Pb2+ in solution.  Therefore, the removal of metal 

ions and organic pollutants was cooperative in a competitive multi-component adsorption 

system.  The adsorption equilibrium data was modelled by the Langmuir model, and 

increased uptake of BPA and IBP was obtained in single-solute systems than binary systems. 

 

Hence, the simultaneous sorption of metal ions and organic pollutants from aqueous solution 

was successful by using MWCNT-ttpy, and their application for wastewater remediation 

should be explored. 

 

Keywords:  adsorption, mutiwalled carbon nanotubes, metal ions, bisphenol A, ibuprofen 
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9.1. Introduction 

The presence of emerging contaminants, such as endocrine disrupting chemicals (EDCs) 

and pharmaceuticals and personal care products (PPCPs) in aquatic environment has 

prompted the development of various technologies through which effluents containing them 

can be remediated.  Bisphenol A (BPA), a typical EDC substance, is primarily used for the 

manufacture of plastic products and epoxy resin linings in food and beverage cans [1,2].  

Ibuprofen (IBP), on the other hand, is one of the commonest non-steroidal anti-inflammatory 

drugs (NSAID) used to relieve pain, fever, and treat minor injuries and arthritis in humans 

and also for veterinary applications [3,4].  The reliance on these two substances in both 

manufacturing and pharmaceutical industries generates contaminated effluents which are 

discharged into various aquatic environments [5,6], and if untreated pose serious 

environmental challenges to man and its environs.  An excessive intake of BPA and IBP has 

been associated with their interference with hormonal receptors, resulting in reproductive 

and neurological disorders in man [1,2].  Unfortunately, wastewater treatment facilities are 

not designed to eliminate such emerging pollutants, especially in trace amounts, due to their 

recalcitrant nature [6-8].  Solid and liquid discharges released from industries may contain 

various organic and/or inorganic pollutants in them, and hence, adequate/simple 

technologies must be formulated to ensure the complete removal of such pollutants from 

aqueous solutions. 

 

The adsorption of organic pollutants such as BPA and IBP from aqueous solutions presents 

a colossal challenge to researchers, due to their hydrophobic nature, hence, the development 

of sorbents which will facilitate their removal requires careful planning.  Interaction between 

sorbents and sorbates to ensure effective removal of organic pollutants from aqueous 

solutions must be methodically designed to include functional groups that will promote 

adsorption.  Adsorbents such as activated carbon [9], lignin [10], soils [3], zeolite [11], and 

carbon nanotubes [12], amongst many others, have been synthesized to primarily contain 

hydrophilic functional groups (-OH, -COOH), which may hinder interaction between 

organic pollutants and the sorbent at the sorbate-sorbent interface.  Therefore, the nature of 

an adsorbent plays an important role in deciding the extent of removal of organic pollutants 

from solution.  Hence, the development of suitable sorbents that contain functional groups 

that will enhance hydrophobic and/or π-π interactions between the sorbate and sorbent in 

order to achieve complete removal of such pollutants remains a challenge. 

 

The ease in introducing preferred functional groups to the ends of multiwalled carbon 

nanotubes (MWCNTs) [13] presents researchers with an opportunity of exploring several 

strategies of incorporating active groups onto their walls.  Kosa et al. [13] investigated the 

efficiency of 8-hydroxyquinoline-functionalized MWCNTs towards metal ion removal.  
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Similarly, amine-containing compounds were used as modifiers of MWCNTs by Wang et 

al., [14] Yang et al., [15] and Vukovic et al., [16] while thiol-functionalized MWCNTs were 

synthesized by Hadavifar et al. [17] and Bandaru et al [18].  These modifications were 

undertaken to improve the efficiency of MWCNTs for the removal of targeted pollutants 

from aqueous solutions.  This approach has been reported to enhance the removal of specific 

pollutants from aqueous solutions, owing to an increase in the number of active sites, surface 

area and pore volume of the adsorbents [19].  Although, studies have demonstrated that the 

removal of organic pollutants from aqueous solution is primarily influenced via hydrophobic 

and π-π interactions [12,20-22], the development of sorbents to contain hydrophobic 

functional heads to enhance their increased sorption is still under-researched. 

 

Further, the development of sorbents containing amphiphilic properties, to aid the 

simultaneous removal of both organic and inorganic contaminants from wastewater is 

imperative, since typical wastewaters contain a mixture of such pollutants.  Depending on 

the nature of the active sites on a sorbent, the presence of a contaminant can either induce 

or depress the sorption of another in the same solution.  This necessitated an investigation 

of the removal of BPA and IBP, representing model of EDC and PPCP pollutants, 

respectively, in a competitive adsorption system.  The influence of inorganic pollutants such 

as metal ions on the binary sorption of BPA and IBP was also investigated to understand the 

mechanisms involved in such an adsorption process.  The particular heavy metal ions chosen 

for study were Pb2+ and Cd2+, because of their well-known persistence in the environment 

[23]. 

 

Hence, this chapter examines the adsorption behaviour of nitrogen-functionalized MWCNTs 

by using (4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine) as a modifier, for the competitive 

removal of BPA and IBP from aqueous solutions.  The capacity of the synthesized 

amphiphilic sorbent was also investigated for the removal of divalent metal ions such as lead 

and cadmium in a multicomponent system containing BPA and IBP, through batch 

adsorption processes. 

 

 

9.2. Experimental 

9.2.1. Materials and chemicals 

All chemicals and solvents used were of analytical grade and used as received except when 

stated otherwise.  Pristine MWCNTs (>95%) were purchased from Cheap Tubes Inc. 

(Brattleboro, USA).  Orthophosphoric acid (85%) was purchased from BDH Chemicals 

(Poole, England) while sulfuric (98%), nitric (55%) and hydrochloric acids (32%) were 
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obtained from C C Imelmann Ltd (Robertsham, South Africa).  Solvents such as thionyl 

chloride (99%) and N,N'-dimethylformamide (DMF) (98%) were purchased from Merck 

Chemicals (Pty) Ltd (Gauteng, South Africa) and Sigma-Aldrich (New Germany, South 

Africa), respectively.  High performance liquid chromatography (HPLC) grade methanol 

and acetonitrile were purchased from Sigma-Aldrich (New Germany, South Africa).  

Chemicals such as bisphenol A (97%) and ibuprofen sodium salt (99%) were purchased 

from Sigma-Aldrich (New Germany, South Africa), while sodium hydroxide pellets (98%) 

and lead metal powder were obtained from Merck Chemicals (Pty) Ltd (Gauteng, South 

Africa).  Cadmium metal powder (99%) was purchased from Thomas Baker Chemicals (Pvt) 

Ltd, (Mumbai, India). 

 

9.2.2. Synthesis and characterization of adsorbents 

The synthesis of 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine (HO-Phttpy) was carried out 

via the method described by Patel et al. [24].  The characterization of the synthesized ligand 

was done by using Fourier transform infrared (FTIR), mass and nuclear magnetic resonance 

(NMR) spectroscopy.  Pristine multiwalled carbon nanotubes (P-MWCNTs) were purified 

with hydrochloric acid and later oxidized with a mixture of nitric and sulfuric acids in a 

volume ratio of 3:1.  Purification and oxidation were carried out as described by Santangelo 

et al. [25] and Oyetade et al. [26].  The acid-functionalized MWCNTs (MWCNT-COOH) 

were further acylated by using a mixture of thionyl chloride and DMF in a volume ratio of 

20:1, respectively. The tubes obtained were further functionalized with HO-Phttpy to obtain 

nitrogen-functionalized MWCNTs (MWCNT-ttpy).  The synthesized adsorbents were 

characterized by various techniques, including electron microscopy (scanning and 

transmission), FTIR and Raman spectroscopy, thermogravimetric analysis, elemental 

analysis and BET surface area analysis. 

 

9.2.3. Analysis of adsorbates 

9.2.3.1. Instrumentation 

The concentrations of BPA and IBP were determined with a UFLC-XR Shimadzu 

Prominence LC chromatographic system (LC-20AD XR) equipped with a vacuum degasser 

(DGU-20A3), autosampler (SIL-20A XR), thermostated column oven (CTO-20A), fraction 

collector (FRC-10A), communications bus module (LBM-20A) and a diode array detector 

(SPD-M20A).  Separation of the analytes was effected on a Brownlee C18 column 5 µm 

particle size and dimension of 150 × 4.6 mm (PerkinElmer, Norwalk, USA).  For metal ion 

analysis, a Perkin Elmer Optima 5300 DV inductively coupled plasma-optical emission 
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spectrometer (ICP-OES) was used to measure the initial and final concentrations of metal 

ions in solution. 

 

9.2.3.2. Preparation of standard stock solutions 

Individual stock solutions of 1000 mg dm-3 of BPA and IBP were prepared by dissolving 1 

g of the pure powder in 50 cm3 of methanol.  The solution was then made up to mark in a 

1000 dm3 volumetric flask with deionised water.  Working solutions of desired 

concentrations of BPA/IBP were prepared daily from the stock solution in deionised water.  

Individual stock solutions of Pb2+ and Cd2+ were prepared by dissolving 1 g of the pure metal 

in 2 mol dm-3 nitric acid.  The solution was made up to mark in a 1000 dm3 volumetric flask 

with deionised water.  Working solutions of desired concentrations were prepared from the 

stock solution and the initial concentrations of metal ions determined by using ICP-OES.   

 

 

9.2.3.3. Chromatographic conditions for the quantification of BPA and IBP 

The mobile phase for BPA analysis consisted of a mixture of 30:70 (v/v) acetonitrile and 

ultrapure water.  Chromatograms were collected at 230 nm by using a PDA detector.  The 

injection volume was 20 µL at a column temperature of 30 °C and a mobile phase flow rate 

of 1.2 cm3 min-1.  For IBP, the mobile phase was a mixture of 80:20 (v/v) methanol and 5 

mM phosphoric acid made in ultrapure water.  Chromatograms were recorded at a 

wavelength of 220 nm.  The injection volume was 50 µL at a column temperature of 30 °C 

and an eluant flow rate of 1.0 cm3 min-1.  For quantification purposes, a calibration plot of 

each analyte was prepared within the range of experimental concentrations used under the 

same instrumental conditions. 

 

9.2.3.4. ICP-OES conditions for quantification of metal ions 

The operating conditions for the Perkin Elmer Optima 5300 DV ICP-OES are presented in 

Table 9.1.  The spectrometer was calibrated within the concentration ranges of 0-50 mg dm-

3 and calibration plots were obtained each time the instrument was used for metal ion 

detection. 
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Table 9.1:  Operating conditions for the ICP-OES determination of metal ion concentrations 

Wavelength (Pb2+) 220.353 nm 

Wavelength (Cd2+) 267.716 nm 

RF power 1300 W 

Plasma gas flow rate 15 dm3 min-1 

Pump 1.5 cm3 min-1 

Auxiliary gas flow rate 0.2 dm3 min-1 

Nebulizer gas flow rate 0.8 dm3 min-1 

Nebulizer pressure  2 bars 

Analyzer type Axial 

Replicates 3 

Sample read delay 60 s 

 

9.2.4. Batch adsorption studies 

Adsorption experiments were conducted within a concentration range of 10-100 mg dm-3 in 

50 cm3 glass bottles for single-solute adsorption systems.  A 25 cm3 aliquot of each sorbate 

solution (BPA and IBP) was measured into the glass bottles and the solution adjusted to pH 

2.0 with the addition of appropriate volumes of 0.1 mol dm-3 NaOH or HNO3.  About 50 mg 

of MWCNT-ttpy was weighed into each bottle and the mixtures were agitated in a 

thermostated water bath at 25 ºC for 24 h.  After agitation, the suspensions were filtered and 

the equilibrium concentrations of the adsorbates in the filtrates were determined by using 

HPLC-UV. 

 

In a binary adsorption system, the effect of pH was conducted by measuring 25 cm3 aliquots 

containing 15 mg dm-3 each of a mixed adsorbate solution of BPA and IBP into 50 cm3 glass 

bottles.  The solutions were adjusted to have a pH over the range of 1-10 by adding 

appropriate volumes of 0.1 mol dm-3 NaOH or HNO3.  About 75 mg of the adsorbent 

(MWCNT-ttpy) was added into each solution and the suspensions were agitated in a 

thermostated water bath at 25 ºC for 24 h.  After agitation, the resulting solutions were 

filtered and the filtrates transferred into 1.5 cm3 amber vials.  The initial and equilibrium 

concentrations of BPA and IBP were determined by HPLC-UV.  The percent removal of 

BPA and IBP and the uptake of sorbates onto sorbents (qe) were calculated according to 

equations 9.1 and 9.2, respectively. 
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where Ci is the initial adsorbate concentration (mg dm-3), Ceq is the equilibrium 

concentration of adsorbate (mg dm-3), qe is the adsorption capacity (mg g-1), m is the mass 

of adsorbent (mg) and V is the volume (dm3) of the adsorbate solution used. 

 

9.2.4.1. Isotherms  

To investigate the effect of the presence of a particular adsorbate on the sorption of the other, 

isotherm studies were conducted in a binary system by measuring 25 cm3 aliquots of a mixed 

adsorbate solution at equal concentrations between 5-60 mg dm-3 into glass bottles, and the 

solutions were conditioned to obtain pH 2.  About 100 mg of adsorbent was weighed into 

each bottle and the suspensions agitated in a thermostated water bath at 20 ºC for 24 h.  The 

equilibrium concentrations of each sorbate was determined from the filtrates by using 

HPLC-UV.  A similar process was performed to investigate the sorption of a particular 

sorbate in the presence of the other at varying initial adsorbate concentration.  Additionally, 

the influence of the presence of Pb2+ or Cd2+ was investigated on the adsorption of BPA and 

IBP at both equal and varying initial sorbates concentrations. 

 

The equilibrium data obtained for single and binary adsorption of BPA and IBP were fitted 

to the Langmuir adsorption isotherm model, which describes the monolayer adsorption of 

sorbates onto homogeneous sites.  The Langmuir isotherm equation is given in Eq. 9.3 [27]. 

 

𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐶𝑒𝑞

1+𝑏𝐶𝑒𝑞
        (9.3) 

 

where qeq is the amount adsorbed per unit mass of adsorbent at equilibrium (mg g-1), Ceq is 

the equilibrium concentration of adsorbate in solution after adsorption (mg dm-3), qm 

represents the maximum adsorption capacity (mg g-1), and b is the empirical Langmuir 

adsorption constant (dm3 mg-1). 

 

9.2.4.2. Data analysis 

The data obtained were fitted to the isotherm and kinetics models by means of the nonlinear 

regression routine (nls) in the R statistical computing environment [28].  The R statistical 

software takes into account the minimization of the sum of squared residuals (SSR) and the 

residual square errors (RSE).  A comparison of all SSR and RSE values was done and the 

adequacy of the models was assessed from the value with the lowest SSR. 
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9.2.4.3. Distribution coefficients 

The distribution coefficient (Kd) was applied in order to estimate the affinity of a sorbent 

towards a solute [29-31].  The coefficient was calculated as indicated in Eq. 9.4.  The 

coefficient is indicative of the sorbate affinity for active sites on the adsorbent. 

 

𝐾𝑑 =  
𝐶𝑖−𝐶𝑒𝑞

𝐶𝑒𝑞
 ×  

𝑉

𝑚
      (9.4) 

 

where Ci is the initial concentration (mg dm-3), Ceq is the equilibrium concentration (mg dm-

3), m is the adsorbent mass (g), and V is the volume of the solution (dm3). 

 

 

9.3. Results and discussion 

The characterization of the synthesized adsorbent (MWCNT-ttpy) has been reported in our 

previous work by Oyetade et al. [32].  The improved textural characteristics of this sorbent 

suggests its potential application for the removal of organic pollutants from aqueous 

solutions.  Similarly, elemental analysis confirms the presence of nitrogen-donor atoms on 

the adsorbent [32].  This suggests that MWCNT-ttpy should prove effective for the removal 

of both metal ions and organic pollutants from an aqueous solution, containing both 

contaminants.  Hence, this sorbent was applied for the adsorption of BPA and IBP in both 

single and binary adsorption systems.  The influence of Pb2+ and Cd2+, as models pollutants 

of heavy metals ions, was also investigated in a competitive adsorption system containing 

both BPA and IBP.  The equilibrium adsorption data for all systems was modelled by using 

the Langmuir isotherm model. 

 

9.3.1. Adsorption of BPA and IBP in single adsorption systems 

In a single-solute system, adsorption experiments were conducted at pH 2 within the 

concentration range of 10-100 mg dm-3.  Fig 9.1 shows a similar profile for both the 

adsorption of BPA and IBP onto MWCNT-ttpy.  The uptake of both adsorbates by 

MWCNT-ttpy increased with increasing concentration, due to an increase in the driving 

force required to overcome the resistance between the sorbate-sorbent interface (Fig 9.1) 

[33]. 

 

Although the removal of BPA and IBP onto MWCNT-ttpy were of similar magnitudes to 

one another at all concentrations, a higher uptake of IBP over BPA was noticed in a single-

solute system (Fig 9.1).  This trend can be associated with the somewhat higher partition 

coefficient value of IBP than BPA.  The partition coefficient (P) describes the lipo- or hydro-
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philicity of a substance, by estimating the concentration of a compound in two immiscible 

solvents [34].  Researchers rely on these values to gauge the hydro- or lipo-philicity of a 

molecule in an octanol-water system [34].  The higher the log P values, the greater is the 

hydrophobic nature of the molecule [34].  The partition coefficients of IBP and BPA in an 

octanol-water system are 3.50 [35] and 3.4 [36], respectively.  Although, the difference is 

slight, this phenomenon could be a decider in determining the affinity of sorbates onto 

MWCNT-ttpy, hence, resulting in a somewhat increased removal of IBP than BPA [37].  

This assumption was supported by Jung et al. [37,38], who also suggested that the removal 

of some EDCs and PPCPs onto MWCNTs was determined by the partition coefficient values 

of the molecules.  The sorption of BPA and IBP onto MWCNT-ttpy may therefore be 

associated with hydrogen and/or hydrophobic interactions between the sorbate and sorbents. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9.1:  Amounts of BPA and IBP adsorbed onto MWCNT-ttpy in a single adsorption 

system [conditions: 25 cm3 of 10-100 mg dm-3 adsorbate solution, 24 h 

equilibration time, pH 2.0, adsorbent dose 50 mg, agitation speed 150 rpm, and 

temperature 25 °C]. 

 

9.3.2. Adsorption in binary systems 

9.3.2.1. Effect of pH 

In order to investigate the influence of pH on the adsorption of BPA and IBP onto MWCNT-

ttpy in binary systems, adsorption experiments were conducted within a pH range of 1-10 

by using a mixed adsorbate solution of containing 15 mg dm-3 of each pollutant.  A 75 mg 

dose of MWCNT-ttpy was added into the solution and the mixture was then agitated in a 

thermostated water bath at 25 ºC for 24 h.  The sorption of both adsorbates demonstrated 

similar trends, showing a decrease in the percentage removal of sorbates as the solution pH 

is gradually increased (Fig 9.2).  This trend is determined by the surface charge densities on 
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the adsorbent and the protonation behaviour of the adsorbates over the studied pH range 

[33,38].  Anions of BPA and IBP are formed when the solution pH is greater than the pKa 

values of each molecule [38].  The pKa values of BPA and IBP are 9.6-10.2 [39] and 4.91 

[4], respectively.  The deprotonation of these molecules into anions will therefore occur as 

the solution becomes more alkaline.  The point of zero charge (pHPZC) of MWCNT-ttpy is 

4.48 [32], which will in turn be negatively charged in basic conditions, hence resulting in a 

reduction in π-π and electrostatic interactions between the sorbate molecules and adsorbent 

surfaces [38].  These phenomenon explains the reduced removal efficiencies of BPA and 

IBP onto MWCNT-ttpy under alkaline conditions (Fig 9.2).  The removal of BPA exhibited 

minimal effect towards pH change within the range of 1-7, as a result of the molecule having 

higher pKa value than IBP, however, its sorption was also noticed to decrease as the solution 

pH increased above 8.0 (Fig 9.2). 

 

High adsorbate removal in acidic medium was attributed to the non-dissociation of BPA and 

IBP within the pH range of 1-4 [40], accounting for increased sorption of molecules via 

hydrogen and/or hydrophobic interaction with the adsorbent surface (Fig 9.2).  Jung et al. 

[38], Tsai et al. [33] and Guedidi et al.[40], reported similar trends for the removal of BPA 

and IBP from aqueous solutions.  Hence, pH 2.0 was chosen in this study to investigate the 

multicomponent sorption of BPA and IBP onto MWCNT-ttpy. 

 

The experimental data investigating the binary adsorption of BPA and IBP onto MWCNT-

ttpy in a binary system as a function of pH can be found in Appendix VI (Table A-VI.1 – 

Table A-VI.2). 

 

 

 

 

 

 

 

 

 

 

 

Fig 9.2:  Effect of pH for the binary adsorption of BPA and IBP onto MWCNT-ttpy 

[conditions:  25 cm3 of 15 mg dm-3 adsorbate, 24 h equilibration time, adsorbent 

dose 75 mg, agitation speed 150 rpm and temperature 25 °C]. 



 
  

244 
 
 

 

9.3.2.2. Effect of equal initial concentration 

The influence of adsorbates at equal initial concentration in a binary system was investigated 

within a concentration range of 5-60 mg dm-3.  These experiments were performed in order 

to understand the behaviour of MWCNT-ttpy towards the removal of BPA and IBP in 

synthetic wastewater, assuming both sorbates were present in equal amounts.  Fig 9.3 

presents (a) the percentage adsorbed and (b) the amount of adsorbate removed per unit mass 

(qe) in a binary sorption process containing BPA and IBP at equal initial concentrations.  It 

was observed that the removal of both sorbates onto MWCNT-ttpy gradually decreased over 

the concentration range (Fig 9.3a).  Sorbates were observed to adsorb highest at low initial 

concentrations and decrease with increasing initial adsorbate concentrations (Fig 9.3a).  This 

can be attributed to the availability of active sites for sorption at low adsorbate 

concentrations [33].  However, as the initial adsorbate concentration is increased, the active 

sites on adsorbent become occupied, hence limiting the removal of adsorbates from solution.  

This factor is responsible for the observed trends in the binary sorption of BPA and IBP onto 

MWCNT-ttpy.  It was also noted that the removal of IBP molecules in binary systems was 

higher than that of BPA.  The affinity of IBP for MWCNT-ttpy could be due to the increase 

in hydrophobic state of IBP molecules than BPA, therefore favouring its removal over BPA 

[37].  This observation was also confirmed from Fig 9.3b, which demonstrates a higher 

removal of IBP per unit mass of MWCNT-ttpy than BPA.  The uptake of adsorbates per unit 

mass of adsorbent (qe) was noticed to increase sharply as their concentrations were 

increased.  The amount of IBP adsorbed increased from 1.72 mg g-1 to 8.67 mg g-1, while 

BPA sorption increased from 1.03 mg g-1 to 7.06 mg g-1.  These experiments explicitly prove 

the favourability of MWCNT-ttpy towards the removal of these pollutants in a competitive 

system.  Adsorption of organic pollutants onto MWCNT-ttpy could therefore be said to 

largely depend on the hydrophobic state of the sorbates involved. 

 

The experimental data for the competitive adsorption of BPA and IBP in a binary component 

system as a function of equal initial adsorbate concentration can be found in Appendix VI 

(Table A-VI.3 – Table A-VI.4). 
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Fig 9.3:  The effect of same initial metal ion concentration in a multicomponent system for 

the adsorption of BPA and IBP.  (a) Percentage uptake (%) and (b) amount 

adsorbed per unit mass of adsorbent (mg g-1) [conditions:  25 cm3 of 10-60 mg dm-

3 adsorbate solution, pH 2.0, 24 h equilibration time, adsorbent dose 100 mg, 

agitation speed 150 rpm, temperature 25 °C]. 

 

9.3.2.3. Effect of varying adsorbate concentration 

Effluents and wastewaters contain a variety of contaminants in different concentrations, 

hence necessitating an investigation of the behaviour of MWCNT-ttpy in a real-life scenario 

for the removal of organic pollutants in different concentrations.  This was conducted by 

keeping the concentration of a particular sorbate constant at 20 mg dm-3, while varying the 

initial concentration of the other pollutant between 5-60 mg dm-3.  The presence of metal 

ions such as Pb2+ and Cd2+ was also studied in order to investigate the competitive sorption 

of pollutants in a model sample.  The following section discusses the results for these 

adsorption processes. 

 

9.3.2.3.1. Effect of the presence of BPA on the adsorption of IBP 

The influence of BPA in solution on the adsorption of IBP was investigated by varying the 

initial IBP concentration from 5-60 mg dm-3, while keeping the initial concentration of BPA 

constant at 20 mg dm-3.  Fig 9.4 shows that the competition between both sorbates for active 

sites was primarily based on the initial concentration of the sorbates in solution.  The 

percentage removal of BPA was greater than that of IBP from 5 to 30 mg dm-3, but lower 

than that of IBP from 40-60 mg dm-3 (Fig 9.4).  However, the greatest removal of BPA was 

observed when IBP concentration was 60 mg dm-3, the highest value studied.  Since the log 

P values of both sorbates are quite close to one other [35,36], sorption was based on 

adsorbate amount and not on their hydrophobic state.  These trends were also confirmed by 

the distribution coefficient (Kd) values (Appendix VI), that showed larger Kd values for BPA 

(b) 

(a) 

Ci/mg dm-3 
Ci/mg dm-3 
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at high IBP concentrations.  Thus, the adsorption of BPA and IBP in a binary solution 

exhibits synergistic effects rather than competition.  This may reflect that these two 

adsorbates bind at different sites on the surface of the adsorbent, and therefore do not 

compete for the same sites.  The experimental data investigating the competitive sorption of 

BPA and IBP in a binary component system as a function of varying initial adsorbate 

concentration can be found in Appendix VI (Table A-VI.5 – Table A-VI.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9.4:  Removal of IBP at fixed 20 mg dm-3 BPA concentration in a mixed adsorbate 

solution.  [conditions:  adsorbent dose 100 mg, pH 2.0, agitation time, 24 h, 

agitation speed 150 rpm and temperature 25 ºC]. 

 

9.3.2.3.2. Effect of the presence of IBP on the adsorption of BPA 

The influence of IBP in solution on the sorption of BPA was investigated by varying BPA 

concentration from 5-60 mg dm-3, while keeping the initial concentration of IBP constant at 

20 mg dm-3.  Fig 9.5 shows the preferential removal of IBP over BPA as the concentration 

was varied from 5 to 40 mg dm-3.  Thereafter, the percentage removal for BPA was greater 

than that of IBP because of its presence in greater amount.  The behaviour observed here is 

similar to that observed when BPA was fixed and IBP was varied, indicating synergy rather 

than competition.  This trend was determined by the initial adsorbate concentration in 

solution.  This trend was also supported by the increase in Kd values of IBP over the values 

obtained for IBP.  The experimental data demonstrating this sorption is presented in 

Appendix VI (Table A-VI.7 – Table A-VI.8). 

60 mg dm-3 50 mg dm-3 40 mg dm-3 30 mg dm-3 20 mg dm-3 10 mg dm-3 5 mg dm-3 
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Fig 9.5:  Removal of BPA at fixed 20 mg dm-3 IBP concentration in a mixed adsorbate 

solution.  [conditions:  adsorbent dose 100 mg, pH 2.0, agitation time, 24 h, 

agitation speed 150 rpm and temperature 25 ºC]. 

 

9.3.2.3.3. Effect of the presence of Cd2+ on the adsorption of IBP and BPA 

The influence of the presence of Cd2+ on the adsorption of BPA and IBP was studied by 

varying their concentrations within 5-60 mg dm-3, while keeping the initial Cd2+ 

concentration constant at 20 mg dm-3.  Fig 9.6 shows that the adsorption of Cd2+ was not 

influenced by the presence of BPA and IBP.  The sorption of IBP was, however, higher than 

BPA sorption in the presence of Cd2+ in solution, as was the case in the absence of Cd2+ (see 

Fig 9.3).  This behaviour can be attributed to the preferential sorption of IBP over BPA via 

increased hydrophobic interactions with the surface of MWCNT-ttpy.  The sorption of BPA 

and IBP was not influenced by the presence of Cd2+ in solution, as good removal efficiencies 

(> 70%) were obtained for BPA and IBP.  In fact, they were better than in the absence of 

Cd2+ (Fig 9.6 vs 9.3).  This trend could be attributed to the in situ formation of complexes 

between Cd2+, acting as the central metal cation, and BPA and IBP acting as the ligands 

during adsorption.  The formation of these complexes in solution could facilitate the 

cooperative sorption of all pollutants in solution.  This assumption was supported by 

Bautista-Toledo et al. [41], who reported a cooperative sorption between Cr3+ and BPA 

through a similar process.  The metal ion Cr3+ acted as a metallic cation with BPA as the 

ligand, hence, facilitating sorption of both adsorbates from an aqueous solution [41].  Of 

60 mg dm-3 50 mg dm-3 40 mg dm-3 30 mg dm-3 20 mg dm-3 10 mg dm-3 5 mg dm-3 

Initial concentration of adsorbates/mg dm-3 
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importance, is to note that the sorption of BPA and IBP also decreased gradually as their 

concentrations were increased.  This could be attributed to the increase in the initial 

adsorbate concentration, which limits the available active sites on the adsorbent for removal.  

Hence, the potential application of MWCNT-ttpy as an adsorbent for the removal of 

pollutants such as metal ions and organic compounds in a multicomponent system is 

promising for wastewater remediation in industries and water treatment facilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9.6:  Competitive removal of BPA and IBP at fixed Cd2+ concentration in a mixed 

adsorbate solution.  [conditions:  Cd2+ 20 mg dm-3, BPA/IBP 5 to 60 mg dm-3, 

adsorbent dose 100 mg, pH 2.0, agitation time, 24 h, agitation speed 150 rpm and 

temperature 25 ºC]. 

 

9.3.2.3.4. Effect of the presence of Pb2+ on the adsorption of IBP and BPA 

The influence of Pb2+ on the adsorption of BPA and IBP in a multicomponent adsorption 

system was examined by keeping the Pb2+ concentration constant at 20 mg dm-3, while those 

of other competitors were varied between 5-60 mg dm-3.  Fig 9.7 shows that the removal of 

Pb2+ increased from 93.6% to 98.6%, as the concentrations of the other competitors were 

increased.  Hence, Pb2+ removal onto MWCNT-ttpy was not inhibited as a result of increases 

in the concentrations of BPA and IBP in aqueous solution.  The affinity of MWCNT-ttpy 

towards the removal of Pb2+ even in the presence of contaminants such as BPA and IBP 

60 mg dm-3 50 mg dm-3 40 mg dm-3 30 mg dm-3 20 mg dm-3 10 mg dm-3 5 mg dm-3 

Initial concentration of adsorbates/mg dm-3 
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could be due to the fact that the N-donor atoms on the adsorbent were still available for 

metal ion chelation, hence interference with organic molecules was not pronounced. 

 

However, Fig 9.6 also demonstrates a significant influence on the sorption of BPA and IBP 

due to the presence of Pb2+ in solution.  The sorption of BPA and IBP was significant 

attaining a percentage removal of 84.8% and 88.5%, respectively, at an initial adsorbate 

concentration of 5 mg dm-3 (Fig 9.7).  At increased initial concentrations of BPA and IBP 

(60 mg dm-3), the percentage removal reduced to 29.0% and 31.7%, respectively, and this is 

due to the competition between both adsorbates at increased concentration.  This inference 

was based on the fact that the percentage removal of BPA and IBP was not particularly 

different from one another at every concentration.  Hence, adsorption of BPA and IBP 

molecules was primarily based on competition for active sites on the adsorbent.  On 

comparison with Fig 9.3, it was observed that a decrease in the removal of BPA and IBP 

was observed in the presence of Pb2+.  This behaviour justifies that the sorption of BPA and 

IBP was largely competitive in the presence of Pb2+ in solution. 

 

It is important to note that the sorption of BPA and IBP was enhanced in the presence of 

Cd2+ (Fig 9.6), however, a decrease in their sorption was noticed in the presence of Pb2+.  

This could be attributed to the increasing attraction of Cd2+ over Pb2+ onto nitrogen-donor 

atoms on MWCNT-ttpy, hence, interference with other active sites for organic removal was 

minimised.  MWCNT-ttpy proved effective in the simultaneous removal of both metal ions 

and organic pollutants from aqueous solutions, and could be used for the remediation of 

wastewater and industrial effluents.  The experimental data for this sorption is presented in 

Appendix VI (Table A-VI.9 – Table A-VI.11). 
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Fig 9.7:  Competitive removal of BPA and IBP at fixed Pb2+ concentration in a mixed 

adsorbate solution.  [conditions:  Pb2+ 20 mg dm-3, BPA/IBP 5 to 60 mg dm-3, 

adsorbent dose, 100 mg, pH 2.0, agitation time, 24 h, agitation speed 150 rpm and 

temperature 25 ºC]. 

 

9.3.3 Competitive adsorption isotherms 

The equilibrium data obtained for the adsorption of BPA and IBP in single and binary 

adsorption systems were analysed by using the Langmuir isotherm model as given in Eq. 

9.3.  This model is commonly used to describe single and binary adsorption systems 

involving the removal of large organic compounds from aqueous solutions [42].  The model 

assumes that the surface of the adsorbent is homogeneous, and no interaction exists between 

adjacent adsorbed molecules [42].  The Langmuir parameters obtained for both processes 

are presented in Table 9.2, while the fit of the isotherm model is shown in Appendix VI (Fig 

A-VI.1).  The uptake of BPA and IBP onto MWCNT-ttpy in a binary adsorption system 

(qm') were four-fold less than the amount of BPA and IBP adsorbed in a single-solute system 

(qm) (Table 9.2).  The decrease in uptake values may be associated with the increase in 

competition amongst the adsorbate molecules for active sites on the surface of the adsorbent.  

This assumption was supported by the values obtained from the ratio of adsorption capacities 

in single and binary systems (qm'/qm).  As proposed by Zhu et al. [43], this ratio may be used 

to predict the processes or the sorption pattern between adsorbates for competitive 

adsorption systems.  Adsorbates in a multicomponent system are assumed to interact via the 

following routes: synergistic if qm'/qm > 1, antagonistic if qm'/qm < 1 and no net interaction 

60 mg dm-3 50 mg dm-3 40 mg dm-3 30 mg dm-3 20 mg dm-3 10 mg dm-3 5 mg dm-3 
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when qm'/qm = 1 [43].  Table 7.2 indicates that all qm'/qm values obtained in this study were 

less than 1, indicating that the sorption of BPA and IBP was antagonistic.  This implies that 

adsorption was dependent on the competition amongst adsorbates for active sites on the 

adsorbent and their relative affinities for the adsorbent [42].  This effect was made obvious 

in the binary adsorption system wherein IBP was better adsorbed onto MWCNT-ttpy than 

BPA, possibly due to somewhat higher hydrophobicity (Table 9.2).  The sorption of organic 

compounds onto MWCNT-ttpy will largely depend on the properties of the pollutants 

involved, and hence, how they influence each other in solution. 

 

Table 9.2:  The Langmuir parameters for the adsorption of BPA and IBP in single and binary 

adsorption systems onto MWCNT-ttpy. 

  Single metal adsorption 

  

Binary adsorption  

Adsorbate qm/mg -1 b/dm3 g-1 SSRa RSEb   qm'/mg -1 b/dm3 g-1 SSRa RSEb qm'/qm 

BPA 38.31 0.229 13.77 1.312  8.900 0.096 0.267 0.2311 0.243 

IBP 34.51 0.300 43.23 2.325   9.303 0.254 0.233 0.241 0.258 
a Sum of squared residuals;  b residual squared errors 

 

 

9.4. Conclusions 

In this study, the efficacy of nitrogen-functionalized multiwalled carbon nanotubes 

(MWCNT-ttpy) towards the removal of BPA and IBP in a competitive adsorption process 

was investigated via batch experiments.  The influence of Pb2+ and Cd2+ as model pollutants 

of heavy metals in a multicomponent system containing BPA and IBP was also studied.  The 

equilibrium data obtained were modelled by using the Langmuir adsorption isotherm to 

understand the mechanism involved in the competitive removal of BPA and IBP from 

aqueous solutions. 

 

The results obtained signify that adsorption was decided on by the nature of the adsorbates 

and adsorbent in solution.  In single- and binary adsorption systems, the sorption of IBP onto 

MWCNT-ttpy showed greater removal efficiencies as a result of its somewhat increased 

hydrophobicity over BPA.  The adsorption of BPA and IBP was however influenced by the 

presence of metal ion cations such as Pb2+ and Cd2+.  A cooperative removal process was 

achieved in the multicomponent systems containing metal ions and organic pollutants. 

 

The equilibrium data obtained for the sorption of BPA and IBP in single-solute and binary 

adsorption systems were described by using the Langmuir model.  A higher uptake of both 

sorbates was obtained in single-solute systems than binary adsorption systems.  This was 
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associated with the increase in competition between adsorbate molecules for active sites on 

the adsorbent.  The affinity of sorbate molecules for the surface of MWCNT-ttpy played a 

significant role in deciding their uptake.  Hence, the sorption of BPA and IBP in binary 

systems was antagonistic. 

 

In conclusion, the application of MWCNT-ttpy proved efficient for the removal of BPA and 

IBP in a competitive system.  The sorbent also behaved appropriately well towards the 

removal of both metal ions and organic contaminants simultaneously in solution.  This 

therefore further justifies the application of MWCNT-ttpy for the treatment of effluents and 

wastewater contaminated with a variety of pollutants. 
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Abstract 

The efficiency of adsorption of rhodamine B (RhB) from aqueous solution was investigated 

through a series of batch experiments by using cobalt ferrite nanoparticles (CoFe2O4), acid-

functionalized multiwalled carbon nanotubes (MWCNT-COOH) and carbon nanotube-

cobalt ferrite nanocomposites.  The adsorption capacity was evaluated as a function of pH, 

contact time, adsorbent dose, dye concentration and temperature.  The effect of increasing 

the percentage of MWCNT-COOH in the nanocomposites was also studied.  The adsorption 

capacity was lowest in CoFe2O4 (5.165 mg g-1) and highest with MWCNT-COOH (42.68 

mg g-1).  For the nanocomposites, the adsorption capacity was enhanced with an increase in 

the amount of MWCNT-COOH.  The optimum pH for adsorption was observed at 7 at which 

equilibrium was reached after 360 min.  The kinetics of adsorption was fitted to the pseudo-

first order, pseudo-second order, Elovich and intraparticle diffusion models.  The results 

showed that the pseudo-second order model best described the data as reflected in the lowest 

value for the sum of squared residuals.  Among the various adsorption isotherms tested, the 

Langmuir isotherm provided the best fit to the equilibrium data.  The thermodynamic 

parameters, ΔH°, ΔS° and ΔG°, were obtained over a temperature range of 20-45 °C.  

Adsorption was spontaneous, endothermic and entropy-driven, except for one of the doped 

nanocomposites for which adsorption was exothermic.  A good desorption of RhB from the 

loaded adsorbents was obtained by using either acetone or ethanol with a desorption 

efficiency in the range of 62-95%. 

 

Keywords: Multiwalled carbon nanotubes, cobalt ferrite nanoparticles, nanocomposites, 

adsorption, wastewater, rhodamine B 
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10.1. Introduction 

Treatment of wastewater generated from textile manufacturing, printing and dyeing is a 

major environmental problem due to the presence of dissolved dye materials.  Rhodamine 

B (RhB) is a basic red cationic dye, usually used for commercial and industrial applications.  

The indiscriminate discharge of RhB-contaminated effluents into aqueous media introduces 

man, aquatic life and the environment to potentially harmful effects, ranging from minor 

irritations to major diseases.1-3  Water, which makes up about 70% of the earth’s surface, is 

a principal recipient of the discharge of organic and inorganic pollutants.  Since freshwater 

is a limited resource, the remediation of wastewater before its disposal is of major 

importance.  Several techniques, such as coagulation,4,5 chemical oxidation,6-8 

photochemical,9,10 membrane separation and ion exchange,11 irradiation,12 decolourization 

by white fungi,13 ozonation,14,15 electrochemical destruction16,17 and aerobic/anaerobic 

microbial degradation,2,7 have been proposed for dye remediation in wastewater.  In spite of 

the availability of these methods, steep challenges, such as sludge generation, high usage of 

energy, generation of dissolved oxygen, longer retention time,2 release of aromatic 

compounds, formation of by-products, high operation costs and operation difficulty, are 

characteristic of these processes.1 

 

Adsorption has been considered ideal for the removal of pollutants from the environment 

because it is economically feasible and time-saving with easy operation.  Also, adsorbents 

exhibit high pollutant removal efficiency and are easily regenerated/reused.18  Due to these 

facts, many studies have been tailored towards the removal of pollutants with this technique.  

Materials such as activated carbon,19 bagasse,20 peanut hull,21 charcoal,3 hydrogels,22 clay,23 

organomontmorillonites,24 fly ash,25 red mud,26 kaolinite,27 leaves,28 dimethyl 

terephthalate,29 resin,30 chestnut31 and fruit waste32,33 have been used for the removal of dyes 

from wastewater.  However, limitations such as cost, loss of adsorption efficiency after 

regeneration, slow sorption and inconveniences encountered during separation are 

recognizable facts. 

 

For these reasons, magnetic separation has been used as a preferred method for the removal 

of pollutants because it is easy, suitable for bulk solutions in heterogeneous systems and 

serves as a fast method of separation under external magnetic fields.  Magnetic nanoparticles 

are considered potential adsorbents for aqueous pollutants due to the high surface area34 

possessed by these materials.  Several nanoparticles, such as nickel ferrites,34 maghemite,35 

and magnetite,36 among others, have been proposed for effective removal of dyes in aqueous 

solution. 
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Since the discovery of carbon nanotubes (CNTs),37 they have emerged as an adsorbent of 

interest for the removal of organic and/or inorganic pollutants from the environment.38,39  

CNTs possess tubular nanostructures with unique mechanical, physical, chemical and 

electrical properties,38 and possess large surface areas in addition to their layered 

structures.40  Due to their hydrophobicity, they are usually oxidized with acids to improve 

dispersion in water.  Modification of CNTs to attach acidic groups has been attempted 

through both chemical and physical methods.41  Chemical functionalization with acids 

causes shortening and thinning of tubes, and introduces polar functional groups such as -

COOH and -OH on the tips or side-walls of CNTs.42  This process helps in improving 

electrostatic interaction for removal of organic and/or inorganic pollutants onto CNTs.  The 

use of CNTs as adsorbents for removal of pollutants such as heavy metals,18,43 

polychlorinated biphenyls (PCBs)44 and trihalomethane,39 among many others, has also been 

explored. 

 

Magnetic nanocomposites often allow easy separation of adsorbents from an aqueous phase 

by means of an external magnetic field.34  This process overcomes the limitation of 

separation often encountered when using CNTs. 

 

In this study, we investigated the ability of cobalt ferrite nanoparticles (CoFe2O4) and 

functionalized multiwalled carbon nanotubes (MWCNT-COOH) to adsorb a representative 

dye, RhB, from aqueous solution.  This particular dye was chosen for adsorption due to its 

toxic nature and wide use in industry, and the fact that its behaviour is similar to that of other 

dyes in its class.  In addition, nanocomposites containing varying ratios of MWCNT-COOH 

and CoFe2O4 were synthesized and tested for RhB removal.  The effect of increasing 

percentages of MWCNT-COOH in the nanocomposites was studied to determine the effect 

on the removal efficiency and to understand the processes/interactions involved in dye 

removal.  To the best of our knowledge, no previous study has shown the effect of increasing 

concentrations of CNTs on CoFe2O4 for the removal of anthropogenic dyes.  Batch 

adsorption processes involving the effect of pH, adsorbent dose, contact time, initial dye 

concentration and temperature were investigated to determine the optimum conditions 

necessary for RhB removal from aqueous solution.  Studies on desorption of the dye were 

also performed to assess the durability, reusability and regeneration of the adsorbents. 

 

 

10.2. Experimental 

10.2.1. Chemicals 

Pristine multiwalled carbon nanotubes (MWCNTs) (purity > 95 wt%) synthesized by 

chemical vapour deposition (CVD) were purchased from Cheap Tubes Inc. (Brattleboro, 
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USA).  The length of the MWCNTs ranged from 10 to 20 μm, with an average length of 17 

μm.  Their outer diameters fell between 30 to 50 nm, with an average outer diameter of 39 

nm.  Nitric (55%), sulfuric (98%) and hydrochloric (32%) acids were purchased from C C 

Imelmann Ltd (Robertsham, South Africa).  Rhodamine B was purchased from Coleman & 

Bell Co. (Norwood, USA) while Fe(NO3)3.9H2O, NaOH, and Co(NO3)2.6H2O were 

purchased from Merck Chemicals Ltd (Gauteng, South Africa). 

 

10.2.2. Preparation of cobalt ferrite nanoparticles 

Cobalt ferrite nanoparticles were prepared by the co-precipitation method as reported by 

Maaz et al.45  Solutions of 2 mol dm-3 Fe(NO3)3.9H2O and 1 mol dm-3 Co(NO3)2.6H2O were 

prepared, and 25 cm3 of each solution were mixed and stirred under an inert atmosphere of 

nitrogen for 30 min.  The pH of the resulting solution was then adjusted by the addition of 6 

mol dm-3 NaOH to attain the desired pH range of 10–13.  The mixture was stirred further 

for another 1 h under inert conditions.  The resulting solid was filtered, and washed first with 

ethanol, and then with deionised water until a neutral pH was obtained. 

 

10.2.3. Preparation of functionalized multiwalled carbon nanotubes 

Pristine MWCNTs (1.5 g) were placed in a round-bottomed flask to which 100 cm3 of 

concentrated hydrochloric acid (32%) was added to remove metallic impurities from the 

tubes by dissolution.  The suspension was stirred for 2 h; the tubes were filtered and washed 

with deionised water until a neutral pH was obtained.  The MWCNTs were dried in a vacuum 

oven at 80 °C overnight.  The purified MWCNTs were functionalized by using a mixture of 

concentrated sulfuric and nitric acids in a volume ratio of 1:3 and refluxed at 80 °C for 12 

h.  The resulting solution was diluted with deionised water, filtered and the tubes washed 

with deionised water until a neutral pH was obtained.46 

 

10.2.4. Preparation of composite samples (MWCNT-COOH-CoFe2O4) 

MWCNT-COOH (1.5 g) were placed in 100 cm3 of deionised water and stirred under an 

inert atmosphere of nitrogen for 30 min.  Solutions of 2 mol dm-3 Fe(NO3)3.9H2O and 1 mol 

dm-3 Co(NO3)2.6H2O were prepared and an aliquot of 25 cm3 of each solution was added to 

the CNT suspension.  The mixture was continuously stirred at room temperature for 1 h.  

The suspension was then conditioned to a pH of 10 with the addition of 6 mol dm-3 NaOH 

solution, and allowed to stir at room temperature for another hour.  The mixture was filtered, 

the solid washed with ethanol and subsequently with deionised water until a neutral pH was 

obtained.45  The samples were dried at 80 °C in a vacuum oven overnight.  Nanocomposites 

of varying percentages were prepared and labelled as MWCNT-CoFe2O4-29%, MWCNT-

CoFe2O4-50% and MWCNT-CoFe2O4-75%.  Details of the compositions and sample 

identification are shown in Table 10.1. 
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Table 10.1: Adsorbent composition/identification 

Sample Identifier 

% Composition by mass 

CoFe2O4 MWCNT-COOH 

CoFe2O4 100 0 

29% 71 29 

50% 50 50 

75% 25 75 

MWCNT-COOH 0 100 

 

10.2.5. Characterization of adsorbents 

The specific surface area of the CNTs was determined with nitrogen as the flow gas by means 

of a Micromeritics Tristar II 3020 surface area and porosity analyser.  Data were captured 

and analysed by using Tristar II 3020 version 2 software.  Characterization of synthesized 

materials was done with a transmission electron microscope (TEM) (JEOL, TEM 1010) and 

a high resolution transmission electron microscope (HRTEM) (JEOL, TEM 2100) to 

visualize the morphology, and to determine the shape and mean particle size.  Images were 

captured by means of a Megaview 3 camera and analysed on iTEM software.  Gatan digital 

micrograph software was used in analysing images obtained from HRTEM.  Fourier 

transform infrared (FTIR) spectrometry (Perkin Elmer Spectrum RX 1 spectrometer) was 

used to characterize the surface functionalities on adsorbents by incorporating the materials 

in a KBr disc.  Raman spectroscopy (DeltaNu Advantage 532TM) measurements were 

performed to provide information on the purity and crystallinity of adsorbents. 

 

10.2.5.1. Determination of point of zero charge (pHPZC) 

Aliquots of 50 cm3 of 0.01 mol dm-3 NaCl solutions were measured into bottles and adjusted 

with the addition of appropriate amounts of 0.1 mol dm-3 HCl or NaOH to obtain an initial 

pH in the range of 1-10.  A mass of 100 mg of adsorbent was added into each bottle and the 

suspension left to equilibrate on an orbital shaker for 48 h.  The solutions were filtered and 

the final pH of the filtrates determined.  A plot of pHinitial – pHfinal against pHinitial was 

obtained and the point of intersection of the curves gave the pHPZC of the adsorbent.31 

 

10.2.6. Adsorbate preparation 

The dye (RhB) used in this study was of analytical grade and used without further 

purification.  A calibration curve was obtained from dye solutions ranging from 1 to 7 mg 

dm-3 at a wavelength of maximum absorption (λmax) of 554 nm (Fig A-VII.1, Appendix VII) 

by means of a UV-vis-NIR spectrophotometer (Shimadzu, UV-3600).  The concentration of 

RhB in samples was determined by using the calibration curve prepared.  A stock solution 
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of RhB was prepared by accurately weighing 1 g of the pure powder to make a solution 

containing 1 g dm-3 RhB in deionised water. 

 

10.2.7. Batch adsorption procedure 

Freshly prepared working solutions of RhB were prepared from the stock solution to obtain 

the required concentrations.  The pH values of solutions were adjusted by adding an 

appropriate amount of 0.1 mol dm-3 NaOH or HNO3 to obtain the desired pH.  Adsorption 

studies were carried out by agitating 25 cm3 of a known concentration of RhB solution with 

50 mg of adsorbent at a fixed temperature (20 °C) for 24 h in stoppered glass bottles.  The 

mixtures were filtered by gravity, and the final concentration of RhB in the filtrate was 

determined at 554 nm (λmax of RhB) by means of ultraviolet-visible (UV-vis) 

spectrophotometry.  The effect of pH, adsorbent dose, temperature and initial RhB 

concentration were studied for each adsorbent to determine the optimum conditions 

necessary for adsorption.  The adsorption efficiency (% adsorbed) and adsorption capacity 

(qe) were calculated by using equations 10.1 and 10.2 respectively. 

100 ×  % 

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e     (10.2) 

where Ci is the initial RhB concentration (mg dm-3), Ceq is the equilibrium concentration of 

RhB (mg dm-3), qe is the adsorption capacity (mg g-1), m is the mass (mg) of the adsorbent 

and V is the volume (dm3) of the adsorbate solution used. 

 

10.2.7.1. Kinetics studies 

Kinetics studies were investigated by contacting 25 cm3 of 100 mg dm-3 RhB solution with 

50 mg of adsorbent at pH 7 in stoppered glass bottles.  The solutions were agitated in a 

thermostated shaking water bath at 20 °C for different time intervals in the range of 5-1440 

min.  After the pre-determined time intervals, the samples were filtered and the final 

concentrations of RhB determined spectrophotometrically.  The experimental adsorption 

data were applied to the pseudo-first order, pseudo-second order, intraparticle diffusion and 

Elovich kinetics models given in Table 10.2. 
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Table 10.2: Kinetics models investigated for the adsorption of RhB onto CoFe2O4, 

MWCNT-COOH, and CNT-CoFe2O4 composites 

Model Equation† Parameters References 

Pseudo-first order 𝑞𝑡 =  𝑞𝑒𝑞(1 − 𝑒−𝑘1𝑡) qeq, k1 59, 78, 79 

Pseudo-second order 
𝑞𝑡 =  

𝑘2𝑞𝑒𝑞
2 𝑡

1 + 𝑘2𝑞𝑒𝑞𝑡
 

k2, qeq 60, 78, 79 

Elovich 
𝑞𝑡 =  

1

𝛽
ln (𝛼𝛽) +  

1

𝛽
ln 𝑡 

α, β 62 

Intraparticle diffusion 𝑞𝑡 =  𝑘𝑖𝑑√𝑡  + 𝑙 kid, l 61 

†qt, quantity of adsorbate adsorbed at time t (mg g-1); qeq, quantity of adsorbate adsorbed at equilibrium (mg g-

1); α, adsorption rate constant (mg g-1 min-1); β, desorption rate constant (g mg-1); k1, pseudo-first order rate 

constant (min-1); k2, pseudo-second order rate constant (g mg-1 min-1); kid, intraparticle diffusion rate constant 

(mg g-1 min0.5); l, is a constant related to the boundary layer thickness (mg g-1). 

 

10.2.7.2. Adsorption isotherms 

Solutions of RhB with initial concentrations ranging from 10-100 mg dm-3 were prepared at 

a constant pH of 7.  Aliquots of 25 cm3 were mixed with 50 mg of the adsorbent and agitated 

in a thermostated shaking water bath at 20-45 °C for 24 h in stoppered glass bottles.  The 

solutions were filtered and the concentrations of RhB in the filtrates determined 

spectrophotometrically.  The experimental adsorption equilibrium data were analysed by the 

adsorption models given in Table 10.3. 
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Table 10.3: Isotherm models investigated for the adsorption of RhB onto CoFe2O4, 

MWCNT-COOH, and CNT-CoFe2O4 composites 

Isotherm model Equation† Parameters References 

Langmuir 𝑞𝑒𝑞 =
𝑞m𝑏𝐶𝑒𝑞

1 + 𝑏𝐶𝑒𝑞

 qm, b 
67 

Freundlich 𝑞𝑒𝑞 = 𝐾𝐹𝐶𝑒𝑞
1 𝑛⁄

 KF, n 66 

Temkin 𝑞𝑒𝑞 =
𝑅𝑇

𝑏𝑇

𝑙𝑛(𝐴𝑇𝐶𝑒𝑞) bT, AT 
68 

Dubinin-Radushkevich 

𝑞𝑒𝑞 = 𝑞𝑚𝑒−𝛽𝜀2
 

𝜀 = 𝑅𝑇𝑙𝑛 (1 +
1

𝐶𝑒𝑞

) 
qm, β 69 

Sips 𝑞𝑒𝑞 =
𝑏𝑞𝑚𝐶𝑒𝑞

1 𝑛⁄

1 + 𝑏𝐶𝑒𝑞
1 𝑛⁄

 qm, b, n 70 

Toth 
𝑞𝑒𝑞 =

𝑞𝑚𝐶𝑒𝑞

(
1

𝐾𝑇
+ 𝐶𝑒𝑞

𝑛𝑇)
1 𝑛𝑇⁄

 
qm, KT, nT 

73 

Redlich-Peterson 𝑞𝑒𝑞 =
𝐾𝑅𝑃𝐶𝑒𝑞

1 + 𝑎𝑅𝑃𝐶𝑒𝑞
𝑔  KRP, aRP, g 72 

Khan 𝑞𝑒𝑞 =
𝑞𝑚𝑏𝐾𝐶𝑒𝑞

(1 + 𝑏𝐾𝐶𝑒𝑞)
𝑎𝐾

 qm, aK, bK 
71 

†qeq, adsorption capacity (mg g-1); Ceq, equilibrium concentration of adsorbate in solution (mg dm-3); qm, 

maximum monolayer capacity (mg g-1); b, Langmuir isotherm constant (dm3 mg-1); KF, Freundlich isotherm 

constant (mg g-1)(dm3 mg-1)n; n, adsorption intensity; bT, Temkin isotherm constant; AT, Temkin isotherm 

equilibrium binding constant (dm3 g-1); β, Dubinin-Radushkevich isotherm constant (mol2 kJ-2); Kt, Toth 

isotherm constant (mg g-1); nT, Toth isotherm constant; KRP, Redlich-Peterson isotherm constant (dm3 g-1); aRP, 

Redlich-Peterson isotherm constant; g, Redlich-Peterson isotherm exponent; ak, Khan isotherm exponent; bk, 

Khan isotherm constant. 

 

10.2.7.3. Desorption experiments 

Desorption studies were investigated by first contacting aliquots of 25 cm3 of 100 mg dm-3 

RhB solution with 50 mg of adsorbent.  The solutions were agitated on a thermostated 

shaking water bath at 20 °C for 24 h.  After agitation, the solutions were filtered and the 

equilibrium concentration of RhB in the filtrates was determined.  The RhB-loaded 

adsorbent was dried in a vacuum oven at 80 °C.  The 50 mg of the RhB-loaded adsorbent 

was weighed and subsequently agitated with either a 10 cm3 aliquot of acetone or ethanol 

for 30 min.  The final concentration of RhB desorbed was then obtained from the filtrates 

collected. 

 

10.2.8. Data Analysis 

Experimental data were fitted to the kinetics and isotherm models by means of the nls 

nonlinear regression routine in the R statistical computing environment.47  In the case of all 
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models chosen, an examination of the residuals was performed in order to assess the 

adequacy of the model. 

 

 

10.3. Results and discussion 

The adsorbents synthesized were characterized by a number of different techniques to 

confirm that the materials obtained would be effective for adsorption.  A comparison of the 

efficiency of these adsorbents for RhB removal was investigated at varying conditions by 

means of batch adsorption experiments. 

 

10.3.1. Characterization of adsorbents 

The FTIR study of acid-functionalized CNTs (MWCNT-COOH) confirmed the presence of 

C=C, C=O, CH2, C-O and O-H functional groups, demonstrating the successful introduction 

of O-containing groups on the tubes (Fig. 10.1).  As reported by Buang et al.,48 O-H and 

C=O functional groups are usually produced after oxidation of pristine MWCNTs.  The 

peaks at 3200 cm-1 (O-H stretching mode), 1635-1700 cm-1 (C=O stretching mode), 1452-

1600 cm-1 (C=C stretching mode), and 2200-2500 cm-1 (oxygen containing groups such as 

lactonic and anhydride groups), are evidence of functionalization of MWCNTs.36  These 

peaks remained present in the spectra of the nanocomposites containing MWCNT-COOH.  

Fig. 10.1 further shows the FTIR spectra of the CoFe2O4 nanoparticles and CNT-CoFe2O4 

nanocomposites.  The spectra of the CoFe2O4 nanoparticles were observed to show sharp 

intense peaks at 560 cm-1 which are usually associated with metal-oxygen (Fe(Co)-O) 

stretching vibrations in the ferrite lattice which is in agreement with previously published 

data.36,49,50  These peaks, at about 560 cm-1, remained present in composites, although a shift 

in the Fe(Co)-O peaks to higher wavenumber was noticed.  The shift could be attributed to 

interactions between the ferrites and MWCNT-COOH through O-containing functional 

groups.36  The presence of these peaks demonstrates that nanocomposites containing 

MWCNT-COOH and ferrites were successfully synthesized.  The intensity of the Fe(Co)-O 

stretching vibrations was noticed to decrease as the percentage of MWCNT-COOH 

increased in composites.  This indicates that the percentage of the more abundant material 

determines the intensity of the peaks obtained in the FTIR spectra. 
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Fig. 10.1: FTIR spectra of pristine-MWCNT, MWCNT-COOH, CoFe2O4 and CNT-

CoFe2O4 nanocomposites. 

 

To observe the structure and size distribution of the nanomaterials produced, images were 

collected from TEM and HRTEM.  Fig. 10.2 shows HRTEM images of (a) MWCNT-

COOH, (b) CoFe2O4 nanoparticles and (c) 29% composite, while Fig. 10.3 shows TEM 

images of (a) 29% and (b) 75% nanocomposites at the same magnification.  It was observed 

that the tubular-shaped structure characteristic of MWCNTs was preserved after 

functionalization was carried out (Fig 10.2a), however, functional groups such as –COOH 

are not usually visible on HRTEM micrographs.  Uniform cubic-shaped materials were 

obtained for the CoFe2O4 nanoparticles with a high degree of agglomeration as demonstrated 

with arrows in Fig. 10.2b.  Similarly, a high degree of agglomeration of CoFe2O4 

nanoparticles was noticed on the sides of tubes.  The tubular structure of CNTs was also 
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preserved for all synthesised nanocomposites (see Fig. 10.3).  It was also noticed that the 

amount of agglomerated CoFe2O4 nanoparticles reduces as the percentage of MWCNT-

COOH increases in the composites (Fig 10.3a vs 10.3b).  Similar trends have been reported 

for ferrites51 and magnetic carbon nanotubes49,52 in previous studies.  This therefore 

demonstrates that nanocomposites containing MWCNTs and CoFe2O4 nanoparticles were 

successfully synthesized, since the cubic shape of ferrites and the tubular structures of 

MWCNTs were preserved in the nanocomposites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.2:  HRTEM images of (a) MWCNT-COOH, (b) CoFe2O4 nanoparticles and (c) 29% 

MWCNT-COOH-CoFe2O4 nanocomposites. 
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Fig. 10.3: TEM images of (a) 29% and (b) 75% MWCNT-COOH-CoFe2O4 nanocomposites. 

 

The surface area and porosity of nanomaterials is usually obtained by applying the Brunauer, 

Emmett and Teller (BET) and the Barrett-Joyner-Halenda (BJH) theories respectively.  

CoFe2O4 nanoparticles and CNTs have been reported to have moderately large surface 

areas.34,46,53 and is confirmed in this work as demonstrated in entries 1 and 2 of Table 10.4.  

Oxidation of purified MWCNTs with acids introduces defects and shortening of tubes, 

thereby increasing the surface area of MWCNT-COOH.41,54  The extent of disorder/defects 

and crystallinity of MWCNTs was evaluated with the use of Raman spectroscopy.  The most 

characteristic peaks usually observed are the D band (1350 cm-1) and G band (1580 cm-1).  

The D band (ID) gives information on the disorder-induced modes and defects in the 

graphene sheets at the walls of the tubes, while the G band (IG) gives information on the 

crystalline graphitic arrangement on the MWCNTs.55  The relative intensity ratio of the 

bands (ID/IG) was calculated.  A larger ratio indicates a greater disruption of the sp2 

hybridized atoms to the sp3 hybridized atoms, hence, interpreted as a high 

defect/deformation occurring on the walls/sides of the tubes.54  Raman spectroscopic 

measurements performed on the MWCNTs indicate that the ID/IG ratio increased after 

functionalization with acids (entry 3 vs 2, Table 10.4).  This could be due to the fact that 

oxidation of MWCNTs increases the defects and decreases the graphitic structure of the 

tubes resulting in a larger ID/IG ratio being obtained.41,46,54  An increase in the surface area 

of MWCNT-COOH to 126.8 m2 g-1 was measured after functionalization (entry 3 vs 2 of 

Table 10.4).  A further increase in the surface area of the adsorbents was achieved by 

preparing composites containing varying percentages of CoFe2O4 and MWCNT-COOH.  An 

increase in the surface area of nanocomposites synthesized from MWCNTs and iron 

nanoparticles was similarly reported by Gong et al.56  It was further observed that the BET 

surface area, pore volume and pore diameter of the composites increased with an increase in 

the MWCNT-COOH content (entries 4-6, Table 10.4).  The pore volume of these materials 
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was noticeably increased from 0.40 to 1.16 cm3 g-1 which could further aid in the availability 

of more active sites.  Hence, the materials produced in this study possess moderately large 

surface areas with reasonable pore volumes and should exhibit good adsorption properties. 

 

Table 10.4: Textural characteristics of adsorbents. 

Entry Adsorbent 

Surface 

area/m2 g-1 

Pore 

volume/cm3 g-1 

Pore 

diameter/nm ID/IG pHPZC 

1 CoFe2O4 116.4 0.158 4.568 - 7.00 

2 Pristine-MWCNTs 108.8 0.494 18.44 1.17 5.04 

3 MWCNT-COOH 126.8 0.692 22.95 1.19 4.02 

4 29% 128.1 0.400 10.98 0.22 6.20 

5 50% 140.0 0.544 14.87 0.35 6.16 

6 75% 293.4 1.160 16.89 0.83 4.50 

 

 

10.3.2. Batch adsorption experiments 

The adsorption of RhB by CoFe2O4, MWCNT-COOH and CNT-CoFe2O4 nanocomposites 

was investigated for the efficient remediation of polluted wastewater.  The adsorption 

capacity of the adsorbents was compared to determine the adsorbent with the best efficiency 

for RhB removal.  Factors such as pH, contact time, initial RhB concentration, adsorbent 

dose and temperature were varied in order to attain the optimum conditions for RhB 

adsorption.  Desorption studies for all the adsorbents were also carried out to examine the 

feasibility of regenerating the used adsorbents for further use. 

 

10.3.2.1. Effect of pH 

The pH of a solution can affect the surface charge on a particular adsorbent and the charge 

of the adsorbate.27  The influence of pH on adsorbents was investigated by agitating a known 

concentration of RhB solution for 24 h with an adsorbent dose of 50 mg.  The solutions were 

adjusted to obtain an initial pH value in the range of 1-10.  Fig. 10.4 shows that the 

adsorption of RhB onto all adsorbents was greatly influenced by the pH of the solution.  At 

low pH values, RhB is cationic and therefore adsorption onto the protonated adsorbents was 

minimal; however, an increase in efficiency was noticed as the solution was changed to 

basic.  With increasing pH from 1.0 to 10.0, interactions between RhB and the negatively 

charged surface groups on the adsorbents increased, with optimum conditions obtained at 

pH 6-8 for all adsorbents (Fig 10.4).  At this pH, RhB assumes the quinonoid structure (i.e. 

it exists in the zwitterion form).57  As stated by Salleha et al.,1 cationic adsorption is favoured 

when the pH of the solution is greater than the point of zero charge (pHPZC).  This statement 

concurs with these results since as illustrated in Table 10.4; the pHPZC values measured are 

lower than the optimum pH condition obtained for each adsorbent.  This fact supports that 
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electrostatic interaction between the RhB zwitterion and the negatively charged surface of 

the adsorbents is responsible for adsorption.  However, it is also worthy of note that with 

increasing pH the dissociation of the aromatic carboxylic acid group in RhB will increase as 

will deprotonation of the nitrogen groups, thereby increasing electrostatic repulsion between 

RhB and the negatively charged adsorbents.  Fig 10.4 demonstrates this effect that an 

increase in the basicity of the solution (i.e. pH > 8) results in a decrease in adsorption 

capacity (qe) of the adsorbents.  Similar observations were reported by Annadurai et al.58 

and Zhang et al.20 for RhB removal.  This therefore suggests that adsorption is primarily 

influenced by electrostatic interaction between the RhB zwitterion and the adsorbents; 

however, other factors such as the molecular structure of the adsorbate might also influence 

adsorption. 

 

The experimental data for the adsorption of RhB onto CoFe2O4, 29%, 50% nanocomposites 

and MWCNT-COOH as a function of pH is presented in Appendix VII. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.4: Effect of pH on the adsorption of RhB [conditions: 25 cm3 of 100 mg dm-3 or 50 

mg dm-3 RhB, 24 h equilibration time, 50 mg adsorbent dose, agitation speed 150 

rpm, temperature 20 °C]. 

 

Although, the adsorption capacity was best for the MWCNT-COOH, in the case of the 

nanocomposites it was noticeably increased as the percentage of MWCNT-COOH 

increased.  This could be as a result of the increase in the number of defects (as observed in 

the increasing ID/IG ratio shown in Table 10.4) and the presence of a greater number of 

oxygen-containing functional groups introduced by chemical oxidation of the MWCNTs.  

Both of these create more active sites for electrostatic interaction and hence enhance 

adsorption (Fig. 10.4).  All further adsorption experiments were carried out at a pH value of 
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7, since this value falls within the optimum range for all the adsorbents considered in this 

work. 

 

10.3.2.2. Effect of contact time 

In order to obtain the contact time required to achieve equilibrium, the experimental 

investigation of the adsorption of RhB from aqueous solutions onto CoFe2O4, MWCNT-

COOH and CNT-CoFe2O4 nanocomposites was performed for different time intervals.  Fig. 

10.5 shows that the adsorption capacity (qe) of RhB onto all adsorbents increases as the 

contact time increases.  For all adsorbents, sorption was rapid in the first 360 min owing to 

the fact that more sites were available for adsorption on the adsorbents, creating room for 

fast interaction between the adsorbent and adsorbate.  As the process continues, adsorption 

sites become limited and the rate of adsorption is influenced by the speed at which the 

adsorbates move from the external to the internal sites of the adsorbent particles.  The faster 

it takes to reach equilibrium, the better an adsorbent is.  It is noticed that as the time increases 

(beyond 360 min), adsorption reaches a state of equilibrium, hence, adsorption was seen to 

slow down at this time due to saturation of active sites on the adsorbents.  It could therefore 

be said that the equilibrium time for all adsorbents in this study was achieved at 6 h.  

However, in this study, an equilibration time of 24 h was used to ascertain the complete 

removal of RhB under all conditions.18 

 

The experimental data for the adsorption of RhB onto CoFe2O4, 29%, 50% nanocomposites 

and MWCNT-COOH as a function of contact time is presented in Appendix VII. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.5: Effect of contact time on the adsorption of RhB [conditions: 25 cm3 of 100 mg 

dm-3or 50 mg dm-3 RhB, 50 mg adsorbent dose, pH 7, agitation speed 150 rpm, 

temperature 20 °C]. 
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Fig. 10.5 further demonstrates that for the nanocomposites, the adsorption capacity was 

enhanced as the amount of MWCNT-COOH was increased.  This is clearly explained by the 

fact that as the content of MWCNT-COOH in the composites increases; more negative sites 

are introduced, therefore favouring adsorption. 

 

10.3.2.3. Adsorption kinetics 

The mechanism and rate-determining step of adsorption of RhB onto CoFe2O4, CNT-

CoFe2O4 nanocomposites and MWCNT-COOH was investigated by fitting the Lagergren 

pseudo-first order,59 pseudo-second order,60 intraparticle diffusion61 and Elovich models62 

to the kinetics data.  The equations for these models are given in Table 10.2.  Adsorption 

usually occurs through four processes: diffusion of the adsorbate from the bulk solution onto 

the surface of the adsorbent, the passage of adsorbate through the liquid film attached to the 

surface of the adsorbent (film diffusion), diffusion of adsorbate through the pores of the 

adsorbent (intraparticle diffusion) and interaction of the adsorbate with the active sites on 

the adsorbate.18  The dependence of the model which best fits the experimental data was 

determined based on the model with lowest value for the sum of squared residuals (SSR) 

and the residual standard error (RSE).  Based on these estimates, the kinetics data obtained 

were best described by the pseudo-second order model (Table 10.5).  The model is based on 

the assumption that adsorption occurs through bimolecular interactions involving sharing or 

exchange of electrons between RhB and the adsorbent. 

 

Considering that various mechanisms usually control adsorption kinetics, the intraparticle 

diffusion model was also utilized to explain the rate-limiting step of the process.  A plot of 

qe versus t1/2 is usually indicative of the multistep-controlling processes of adsorption.32  

Adsorption is assumed to proceed only through intraparticle diffusion if a linear plot which 

also passes through the origin is obtained.  It is, however, assumed that the process is 

controlled by two or more steps if a linear plot which does not pass through the origin is 

obtained.63-65  Plots obtained from this study produced linear plots, which do not pass 

through the origin.  Therefore, these results suggest that though adsorption proceeded via 

intraparticle diffusion, it was not the only rate-controlling step for the process.  The plots 

further illustrate that the adsorption of RhB proceeded through transportation of RhB to the 

external surface of the adsorbent by film diffusion, followed by intraparticle diffusion of 

RhB to the pores of the adsorbent, and subsequently intraparticle diffusion slows down due 

to the low RhB concentration.63-65  Thus a multi-step process is involved.  The intraparticle 

diffusion constant (kid) and boundary layer (l) were obtained from the slope and intercept of 

the plots respectively.  Data obtained for kid and l show an increase with the addition of 

MWCNT-COOH to the composites (Table 10.5).  These results demonstrate that adsorption 

was boundary-layer controlled for all adsorption processes.  Increasing amounts of 
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MWCNT-COOH in the adsorbents resulted in an increase in the boundary thickness (l); 

hence resulting in higher adsorption capacities (qe) obtained (Table 10.5). 

 

Table 10.5: Kinetics parameters for adsorption of RhB [Conditions: 25cm3 of 100 mg dm-3 

or 50 mg dm-3 RhB for CoFe2O4, MWCNT-COOH, 29%, 50% and 75% 

MWCNT-CoFe2O4 nanocomposites, pH 7.0, 50 mg of adsorbent, agitation 

speed 150 rpm, temperature 20 °C] 

Model Parameters CoFe2O4 29% 50% 75% MWCNT-COOH 

Experimental qmeas/mg g-1 5.673 19.40 21.08 32.49 49.19 

Pseudo-first order k1/min-1 - - - 0.014 0.017 

 qeq/mg g-1 - - - 31.25 47.23 

 RSEa - - - 0.749 0.693 

 SSRb - - - 55.76 274.0 

Pseudo-second order k2/g mg-1 min-1 3.685 1.472 1.932 0.543 0.507 

 qeq/mg g-1 5.877 19.43 20.86 34.61 51.26 

 RSE 0.093 0.013 0.098 0.438 0.509 

 SSR 0.453 6.870 14.28 25.63 146.2 

Intraparticle diffusion 

kid/ mg g-1 min-

0.5 0.223 0.767 0.859 1.282 1.994 

 l/mg g-1 0.659 0.719 0.893 2.804 7.086 

 RSE 1.447 1.355 1.452 1.654 1.662 

 SSR 33.48 473.7 703.2 1076 3213 

Elovich α/mg g-1 min-1 0.434 1.943 3.798 2.235 5.860 

 β/g mg-1 1.023 0.316 0.319 0.173 0.127 

 RSE 0.287 0.926 1.038 1.432 2.033 

 SSR 1.457 23.58 25.22 86.04 208.1 

aRSE - residual standard error, bSSR - sum of squared residuals  

 

10.3.2.4. Effect of adsorbent dose 

To evaluate the adsorption capacity for RhB, the mass of each adsorbent was varied from 

30 to 400 mg.  An increase in the adsorption capacity (qe) was observed as the mass of 

adsorbent is increased (Fig. 10.6).  In fact, it was observed that 100% removal efficiency 

was achieved for some adsorbents when the dose was increased to 400 mg.  This is due to 

the fact that as the mass of adsorbent is increased, the surface area available for adsorption 

increases, thereby creating more active sites for adsorption.  Table 10.4 demonstrates that 

the pore volume is lowest in CoFe2O4 and increases as more MWCNT-COOH content was 

added to the composites.  The increase in the adsorption capacity (qe) for the same mass of 

adsorbent (Fig. 10.6) could be as a result of the increase in pore volume which enabled 

greater removal of RhB as the MWCNT-COOH content is increased.  Hence, surface area 

and pore volume of adsorbents plays a major role in enhancing the capacity of adsorbents in 

adsorption.  However, adsorption was noticed to reach a constant value where further 
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adsorption becomes negligible with increase in adsorbent mass due to the limited amount of 

RhB available.  Again, the amount of RhB adsorbed was in the same order as the percentage 

content of MWCNT-COOH. 

 

The experimental data for the adsorption of RhB onto CoFe2O4, 29%, 50% nanocomposites 

and MWCNT-COOH as a function of adsorbent dose is presented in Appendix VII. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.6:  Effect of adsorbent dose on the adsorption of RhB [conditions: 25 cm3 of 100 mg 

dm-3 or 50 mg dm-3 RhB, 24 h equilibration time, pH 7, agitation speed 150 rpm, 

temperature 20 °C]. 

 

10.3.2.5. Effect of initial RhB concentration 

To effectively explain the increase in the activities (qe) of each adsorbent, different 

concentration ranges with the same amount of adsorbent were used.  Generally, it was 

observed that as the concentration of adsorbate increases, the adsorption capacity (qe) 

increased for a fixed quantity of adsorbent while the percentage adsorption decreased.  At 

low adsorbate concentrations, more active sites are available on the adsorbent; hence the 

removal efficiency is high.  The increase in adsorption capacity with an increase in the initial 

concentration of adsorbate is as a result of an increase in the driving force due to the 

concentration gradient developed between the bulk solution and the surface of the adsorbent.  

However, at higher concentrations, the active sites of adsorbents become saturated with RhB 

molecules as the process continues.  Hence, this process led to a decrease in the percentage 

adsorption and an increase in the uptake of the adsorbate (qe) by the adsorbents as the 

concentration is increased. 
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10.3.2.6. Effect of temperature 

The adsorption of RhB onto each adsorbent was investigated at 293, 303, 313 and 318 K.  

An increase in the adsorption capacity of RhB was observed with increase in temperature 

from 293 to 318 K for CoFe2O4, and the 29% and 75% composites, and MWCNT-COOH 

(Fig 10.7 a-b, d-e).  This indicates the endothermic nature of the adsorption process.  As the 

temperature increases, the kinetic energy of the RhB molecules increases, resulting in 

enhancement of the rate of adsorption.  Also, an increase in temperature could result in an 

increase in the pore volumes of the adsorbents, enabling an increase in the active sites 

available for adsorption.27,31  However, a marked difference was observed for the composite 

produced with a 50% dosage of MWCNT-COOH in CoFe2O4.  An exothermic adsorption 

process was observed for this adsorbent (see Fig. 10.7c), i.e. the extent of adsorption 

decreased with an increase in temperature. 

The experimental data for the adsorption of RhB onto CoFe2O4, 29%, 50% nanocomposites 

and MWCNT-COOH as a function of temperature is presented in Appendix VII. 
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Fig 10.7: Effect of change in temperature on the adsorption of RhB (a) CoFe2O4, (b) 29%, 

(c) 50%, (d) 75% MWCNT-COOH-CoFe2O4 nanocomposites and (e) MWCNT-

COOH [conditions: 25 cm3 of 100 mg dm-3 or 50 mg dm-3 RhB, 24 h equilibration 

time, pH 7, agitation speed 150 rpm, 50 mg adsorbent dose]. 

  

(b) 

(c) 
(d) 

(e) 

(a) 



 
  

278 
 
 

 

10.3.2.7. Adsorption isotherms 

Isotherm models provide information on the capacity of adsorbents or the amount needed to 

remove a unit mass of pollutant under the same conditions.  Eight models, including various 

two-parameter (Freundlich,66 Langmuir,67 Temkin,68 Dubinin-Radushkevick69) and three-

parameter (Sips,70 Khan,71 Redlich-Peterson,72 Toth73) isotherms, were applied to the 

equilibrium data obtained.  The equations of the tested models are given in Table 10.3.  

Tables 10.6-10.8 give the calculated isotherm parameters for all the models tested.  The 

model which best describes the equilibrium data was chosen based on the lowest SSR value. 

 

Table 10.9 summarizes the parameters of the models which best fit the equilibrium data 

obtained for each adsorbent.  Results obtained indicated that the Langmuir isotherm, which 

assumes monolayer adsorption onto homogeneous surfaces with a finite number of identical 

adsorption sites,67 is the best of the models considered for CoFe2O4, MWCNT-COOH and 

the 50% nanocomposite.  Results further demonstrated that the Langmuir isotherm is the 

best of the two-parameter models considered and the Sips model, which is a combination of 

the Langmuir and Freundlich isotherms,70 is the best of the three-parameter models for 29% 

and 75% MWCNT-CoFe2O4 nanocomposites.  This implies that the uptake of RhB onto the 

active sites of the adsorbents occurs on uniform and equivalent sites, wherein there exists no 

interaction between adjacent adsorbate ions.  The value of b (Table 10.9) gives an indication 

of the binding power (i.e. adsorptive strength) between adsorbent and adsorbates.  An 

increase in adsorptive strength (b) was obtained with increasing amounts of MWCNT-

COOH in the composites (Table 10.9).  This further elucidates that strong interactions were 

formed between RhB and the adsorbents as the content of MWCNT-COOH increases. 
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Table 10.6: Isotherm parameters for the adsorption of RhB onto CoFe2O4 and 29% composite 

Adsorbent Isotherm Parameters 

Temperature/K  

Adsorbent 

Temperature/K 

293 K 303 K 313 K 
318 

K  
293 K 303 K 313 K 318 K 

CoFe2O4       29%     

 Langmuir qm 5.165 5.289 6.102 7.950   21.17 20.24 21.32 20.60 

  b 0.092 0.154 0.134 0.103   0.222 0.652 0.846 2.401 

  RSEa 0.738 0.909 1.004 0.746   1.464 0.849 1.116 0.923 

  SSRb 0.053 0.454 0.642 3.602   10.71 3.608 6.230 5.111 

             

 Freundlich KF 1.120 1.688 1.782 1.981   6.345 9.189 10.25 12.22 

  n 3.080 3.753 3.512 3.207   3.126 4.220 4.341 5.868 

  RSE 0.425 2.302 4.257 10.34   2.570 2.330 2.566 2.472 

  SSR 0.278 0.122 0.436 4.462   33.03 27.15 32.93 36.65 

             

 Temkin bT 2060 - - -   24.58 - - - 

  AT 1.605 - - -   836.9 - - - 

  SSR 2.955 1.552 1.83 6.274   79.31 18.26 23.31 51.69 

             

 D-R qm 4.909 - - -   17.12 - - - 

  n 474.7 - - -   2005 - - - 

  SSR 7.154 5.156 5.544 16.42   203.3 37.96 31.38 122.56 

             

 Sips qm 17.87 19.61 20.85 20.16   17.87 19.61 20.85 20.16 

  b 0.085 0.666 0.885 3.203   0.084 0.666 0.885 3.203 

  n 0.500 0.876 0.909 0.797   0.499 0.876 0.909 0.797 

  RSE 0.383 0.889 1.223 0.908   0.383 0.889 1.223 0.908 
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  SSR 1184 1414 1639 1679   0.586 3.163 5.987 4.119 

             

 Toth qm 0.299 0.2987 0.299 0.856   47.32 - 47.3 0.856 

  
KT -1.269 -1.269 -1.269 

-

0.888   
23.94 - 23.94 -0.888 

  nT 0.604 0.60372 0.604 0.667   1.291 - 1.291 0.667 

  SSR 0.084 - 4.920 0.305   7.236 75.22 156.4 - 

             

 R-P KRP 3.080 11.88 17.11 49.98   3.08 11.88 17.11 49.98 

  αRP 0.039 0.519 0.759 2.444   0.039 0.520 0.760 2.444 

  g 1.382 1.039 1.019 0.997   1.382 1.039 1.019 0.997 

  RSE 1.402 2.062 1.869 0.859   0.923 0.902 1.236 1.011 

  SSR 1062 1395 1634 1715   3.408 3.251 6.115 5.106 

             

 Khan qm 48.60 23.27 23.27 33.00   48.60 23.27 23.27 33.00 

  αK 1.129 1.050 0.523 0.961   1.129 1.050 1.051 0.961 

  bK 0.272 0.523 1.051 2.238   1.213 0.902 0.523 3.032 

  RSE 1.231 0.902 1.992 3.032   0.148 2.479 1.103 0.208 

   SSR 5209 1390 1342 8267   1308 3.255 23.11 1510 

aRSE - residual standard error, bSSR - sum of squared residuals.  
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Table 10.7: Isotherm parameters for the adsorption of RhB onto 50% and 75% nanocomposites 

Adsorbent Isotherm Parameters 

Temperature/K  

Adsorbent 

Temperature/K 

293 K 303 K 313 K 318 K  293 K 303 K 313 K 318 K 

50%        75%     

 Langmuir qm 21.79 24.13 23.90 24.63   35.91 37.67 37.51 38.10 

  b 3.247 1.380 2.760 3.006   0.426 0.552 1.156 1.681 

  RSEa 4.604 4.070 4.666 0.734   1.340 1.671 2.406 2.868 

  SSRb 40.30 126.1 127.6 130.6   14.36 22.34 46.30 65.81 

             

 Freundlich KF 14.69 15.93 17.59 18.38   13.46 15.40 18.91 22.24 

  n 6.613 7.521 9.717 10.50   3.513 3.703 4.536 5.241 

  RSE 4.474 4.167 4.899 0.388   3.945 4.736 5.769 3.890 

  SSR 34.97 134.0 136.1 144.0   124.5 179.5 266.2 121.0 

             

 Temkin bT 2060 - - -   2060 - - - 

  AT 1.605 - - -   1.605 - - - 

  SSR - - - -   4643 5160 5752 - 

             

 D-R qm 21.43 - - -   31.63 - - - 

  β 3143 - - -   1782 - - - 

  SSR 713.6 205.9 143.5 -   395.6 191.3 116.4 363.9 

             

 Sips qm 27.27 19.61 20.85 20.16   34.64 36.51 35.14 40.77 

  b 1.199 0.666 0.885 3.203   0.347 0.517 1.815 1.269 

  n 2.128 0.876 0.909 0.797   0.847 0.803 0.595 1.463 

  RSE - - - -   1.277 1.352 1.686 2.705 

  SSR 153.6 487.1 - -   40.15 13.40 13.50 69.74 
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 Toth qm 0.299 - 0.299 0.856   0.299 - 0.299 0.856 

  KT -1.269 - -1.269 -0.888   -1.269 - -1.269 -0.888 

  nT 0.604 - 0.604 0.667   0.604 - 0.604 0.667 

  SSR - - - -   - - - - 

             

 R-P KRP 183.4 11.88 17.11 49.98   12.55 160.3 17.11 49.98 

  αRP 11.14 0.519 0.7595 2.444   0.258 0.288 0.760 2.444 

  g 0.890 1.039 1.019 0.997   1.091 1.124 1.018 0.997 

  RSE - - - -   1.206 1.277 1.236 1.011 

  SSR 155.9 487.4 - -   10.18 11.42 1526 1427 

             

 Khan qm 11.98 22.13 22.13 33.00   48.60 56.37 56.37 33.00 

  aK 0.885 0.985 3.155 0.961   1.129 1.175 1.175 0.961 

  bK 13.17 3.156 0.985 2.238   0.272 0.305 0.305 2.238 

  RSE - - - -   1.213 1.313 1.659 3.032 

   SSR 156.2 132.4 - -   10.30 12.07 321.0 544.3 

aRSE - residual standard error, bSSR - sum of squared residuals. 
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Table 10.8: Isotherm parameters for the adsorption of RhB onto MWCNT-COOH 

Adsorbent Isotherm Parameters 

Temperature/K 

293 K 303 K 313 K 318 K 

MWCNT-COOH Langmuir qm 42.68 45.80 45.49 51.08 

  b 0.794 1.070 5.000 4.137 

  RSEa 0.779 1.975 2.025 3.632 

  SSRb 4.860 31.21 32.79 105.5 

       

 Freundlich KF 18.89 22.31 31.03 1.922 

  n 3.525 3.531 4.891 3.183 

  RSE 4.638 4.750 6.543 0.388 

  SSR 172.1 180.5 342.5 269.3 

       

 Temkin bT 2060 - - - 

  AT 1.605 - - - 

  SSR 6547 7378 9377 - 

       

 D-R qm 36.32 - - - 

  β 3917 - - - 

  SSR 1094 570.7 356.5 604.6 

       

 Sips qm 41.63 47.24 45.40 20.16 

  b 0.827 0.999 5.098 3.203 

  n 0.920 1.098 0.992 0.797 

  RSE 0.706 2.050 2.164 0.908 

  SSR 3.487 29.41 32.77 4308 

       

 Toth qm 0.299 - 306.8 0.856 

  KT 

-

1.269 - 1286 -0.888 

  nT 0.604 - 3.251 0.667 

  SSR - - 128.6 - 

       

 R-P KRP 29.91 11.88 17.11 154.2 

  αRP 0.606 0.520 0.760 2.471 

  g 1.053 1.037 1.019 1.109 

  RSE 0.578 0.902 1.236 2.955 

  SSR 2.337 3105 4870 61.13 

       

 Khan qm 51.58 51.59 51.59 33.00 

  aK 1.075 1.045 1.045 0.961 

  bK 0.596 0.885 0.885 2.238 

  RSE 0.566 2.083 4.211 3.032 

   SSR 2.240 30.37 1366 1998 

aRSE - residual standard error, bSSR - sum of squared residuals  
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Table 10.9: Summary of the best fit isotherm parameters for the adsorption of RhB onto 

CoFe2O4, MWCNT-COOH, 29%, 50% and 75% MWCNT-CoFe2O4 

nanocomposites 

Adsorbent Isotherm Parameters Temperature/K 

293 K 303 K 313 K 318 K 

CoFe2O4 Langmuir qm 5.165 5.289 6.102 7.950 

  b 0.092 0.154 0.134 0.103 

  RSEa 4.604 4.070 4.666 0.734 

  SSRb 0.053 0.454 0.642 3.602 

       

 Freundlich KF 1.120 1.688 1.782 1.981 

  n 3.080 3.753 3.512 3.207 

  RSE 0.425 2.302 4.257 10.34 

  SSR 0.278 0.122 0.436 4.462 

       

29% Langmuir qm 21.17 20.24 21.32 20.60 

  b 0.222 0.652 0.846 2.401 

  RSE 1.464 0.849 1.116 0.923 

  SSR 10.71 3.608 6.230 5.111 

       

 Sips qm 17.87 19.61 20.85 20.16 

  b 0.084 0.666 0.885 3.203 

  n 0.499 0.876 0.909 0.797 

  RSE 0.383 0.889 1.223 0.908 

  SSR 0.586 3.163 5.987 4.119 

       

50% Langmuir qm 21.79 24.13 23.90 24.63 

  b 3.247 1.380 2.760 3.006 

  RSE 4.604 4.070 4.666 0.734 

  SSR 40.30 126.1 127.6 130.6 

       

 Freundlich KF 14.69 15.93 17.59 18.38 

  n 6.613 7.521 9.717 10.50 

  RSE 4.474 4.167 4.899 0.388 

  SSR 34.97 134.0 136.1 144.0 

       

75% Langmuir qm 35.91 37.67 37.51 38.10 

  b 0.426 0.552 1.156 1.681 

  RSE 1.340 1.671 2.406 2.868 

  SSR 14.36 22.34 46.30 65.81 

       

 Sips qm 34.64 36.51 35.14 40.77 

  b 0.347 0.517 1.815 1.269 

  n 0.847 0.803 0.595 1.463 
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  RSE 1.277 1.352 1.686 2.705 

  SSR 40.15 13.40 13.50 69.74 

MWCNT-

COOH Langmuir qm 42.68 45.80 45.49 51.08 

  b 0.794 1.070 5.000 4.137 

  RSE 0.779 1.975 2.025 3.632 

  SSR 4.86 31.21 32.79 105.5 

aRSE - residual standard error, bSSR - sum of squared residuals. 
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10.3.2.8. Thermodynamic parameters of adsorption 

The quantity adsorbed at each temperature was examined to obtain the thermodynamic 

parameters of adsorption.  The change in Gibbs energy, ΔG°, was calculated from equation 

(10.3):74 

 

𝛥𝐺° =  −𝑅𝑇𝑙𝑛 𝐾      (10.3) 

 

where ΔG° is the standard Gibbs energy change in J mol-1, R is the gas constant (8.314 J K-

1 mol-1), T is the temperature in Kelvin and K was obtained from the product of qm and b 

obtained from the Langmuir plot (Table 10.9).18,75  The value of K was corrected to be 

dimensionless by multiplying by a factor of 1000.76 

 

A linear plot of ln K against 1/T was obtained from which the slope and intercept correspond 

to the value of the change in enthalpy, ΔH°, and change in entropy, ΔS°, respectively, 

according to the Van’t Hoff equation (eqn 10.4):74 

 

𝑙𝑛 𝐾 =  −
𝛥𝐻°

𝑅𝑇
+ 

𝛥𝑆°

𝑅
      (10.4) 

 

Negative values were obtained for ΔG° indicating the spontaneous and feasible nature of the 

adsorption of RhB onto the adsorbents investigated (Table 10.10).  It was also noticed that 

the negative values increase with an increase in temperature indicating better adsorption as 

the temperature is increased.  The ΔS° values for all adsorbents were observed to be positive 

indicating an increase in the degree of disorderliness of the system as temperature is 

increased.  This result demonstrates that adsorption was entropy-driven for all adsorbents in 

this study since an endothermic enthalpy of adsorption was observed for most of the 

adsorbents.  Adsorbates can interact with the surface of an adsorbent through physical 

interaction (physisorption) or chemical sorption (chemisorption).  When the heat of 

adsorption is between 2.1 to 20.9 kJ mol-1, a physisorption process is assumed to occur while 

chemisorption could be said to occur when the heat of adsorption is between 80 to 200 kJ 

mol-1.18,77  However, as noticed from Table 10.10, the values of ΔH° show that for CoFe2O4 

and the 50% nanocomposite, RhB was physisorbed to the surface of the adsorbents while 

for the MWCNT-COOH, 29% and 75% nanocomposites the interaction could be a physio-

chemical process, since the ΔH° values were higher than for a physisorption process, but 

lower than for chemisorption.18,77  This demonstrates that adsorption of RhB onto the 

adsorbents studied could be as a result of interaction of the adsorbent and adsorbate via the 

formation of a strong ionic bond (chemisorption) and interaction through weaker van der 

Waals forces between the adsorbate and adsorbents (physisorption).  It is worthy of note that 
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the 50% dosage nanocomposite displayed an exothermic ΔH°.  This shows that though 

adsorption was spontaneous, the reaction was exothermic in nature and hence for this 

adsorbent, enthalpy was the driving factor. 

 

Table 10.10: Thermodynamic parameters for the adsorption of RhB onto CoFe2O4, 29%, 

50%, 75% composites and MWCNT-COOH 

Adsorbent T/K ΔG°/kJ mol-1 ΔH°/kJ mol-1 ΔS°/J K-1 mol-1 

CoFe2O4 293 -15.01   

 303 -16.88   

 313 -17.45 15.95 106.7 

 318 -17.73   

29% 293 -20.60   

 303 -23.90   

 313 -25.50 65.02 292.3 

 318 -28.58   

50% 293 -27.21   

 303 -25.42   

 313 -27.04 -5.581 70.51 

 318 -29.19   

75% 293 -23.47   

 303 -25.05   

 313 -27.79 44.87 232.3 

 318 -29.26   

MWCNT-COOH 293 -25.41   

 303 -27.21   

 313 -32.10 65.17 307.9 

  318 -32.42   

 

The Langmuir adsorption capacities (qm) of adsorbents were compared with those obtained 

from previously published data (Table 10.11) for the removal of RhB from simulated 

wastewater.  The table illustrates that the uptake (qe) of adsorbents used in this study 

compares favourably with previously obtained data.  An increase in the efficiency of 

adsorbents was achieved with an increase in carbon-based materials which resulted in the 

increase in the adsorption capacities (qm). 
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Table 10.11: Comparison of adsorption capacities of various reported adsorbents for rhodamine B with present study. 

Adsorbents Conditions qm/mg g-1 References 

Pristine MWCNT pH 7.0, Ci 10 mg dm-3, 10 min, 100 mg dose 3.533 80 

Fe3O4/MWCNT-COOH pH 6.0, Ci 15 mg dm-3, 80 min, 3 mg dose, 298 K 11.44 81 

Activated carbon pH 2.3, Ci 40 mg dm-3, 60 min, 8 mg dose, 313 K 4.93 82 

Fe3O4-activated carbon pH 4.0, Ci 20 mg dm-3, 45 min, 30 mg dose, 298 K 47.62 83 

Fe3O4/humic acid pH 6.0, Ci 50 mg dm-3, 15 min, 50 mg dose 161.8 84 

CoFe2O4 pH 7,0, Ci 50 mg dm-3, 360 min, 50 mg dose, 293 K 5.17 This Study 

MWCNT-CoFe2O4 (29%) pH 7,0, Ci 50 mg dm-3, 360 min, 50 mg dose, 293 K 21.17 This Study 

MWCNT-CoFe2O4 (50%) pH 7,0, Ci 50 mg dm-3, 360 min, 50 mg dose, 293 K 21.79 This Study 

MWCNT-CoFe2O4 (75%) pH 7,0, Ci 100 mg dm-3, 360 min, 50 mg dose, 293 K 35.91 This Study 

MWCNT-COOH pH 7,0, Ci 100 mg dm-3, 360 min, 50 mg dose, 293 K 42.68 This Study 
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10.3.3. Desorption Studies 

Desorption studies were carried out to determine the reusability of the adsorbents tested, by 

agitating 50 mg of the RhB-loaded sample with either 10 cm3 of ethanol or acetone.  It is 

important to ascertain whether used adsorbents can be regenerated and made effective for 

reuse.  In this way the discharge of secondary pollutants into the environment is hindered in 

that the spent adsorbents are recycled for reuse and not disposed directly after usage.  The 

adsorbate (in this case the RhB dye) can also be recovered for reuse.  The experimental 

results (Table 10.12) show a good desorption efficiency of RhB by using either ethanol or 

acetone.  Acetone was found to better desorb the dye with efficiencies between 80 and 95%.  

Characterization of the regenerated adsorbents was carried out and the results were found to 

be similar to those obtained with freshly prepared unused adsorbents, therefore confirming 

the reusability.  Hence, all adsorbents used in this study can be regenerated for reuse. 

 

Table 10.12: Percentage desorption of RhB by using acetone or ethanol [Conditions: 10 cm3 

of either acetone or ethanol, 50 mg of RhB-loaded adsorbent, agitation speed 150 rpm, 

equilibration time 30 min, and temperature 20 °C] 

Adsorbents Desorption/% 

Acetone Ethanol 

CoFe2O4 90.60 88.61 

29% 93.20 64.23 

50% 82.46 62.45 

75% 80.41 74.50 

MWCNT-COOH 94.63 82.52 

 

 

10.4. Conclusions 

Adsorption of RhB from aqueous solution was successfully carried out by using CoFe2O4 

nanoparticles, MWCNT-COOH, and CNT-CoFe2O4 nanocomposites.  Characterization of 

the adsorbents confirmed the presence of functional groups available for interaction with 

RhB.  Based on the experimental results obtained, it was observed that the adsorption 

capacity of adsorbents to remove RhB significantly increased from 5.165 to 42.68 mg g-1 

with increasing MWCNT-COOH content.  The highest adsorption capacity was obtained 

with MWCNT-COOH as adsorbent, however, CNT-based nanocomposites showed better 

capacities than CoFe2O4 nanoparticles.  This study therefore demonstrates that the 

incorporation of carbon-based nanomaterials, such as MWCNTs, can improve the textural 

characteristics and adsorption capacity of CoFe2O4, thereby, making them suitable 

adsorbents for wastewater remediation. 
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The maximum removal of RhB from a simulated wastewater was achieved at an optimum 

pH of 7, and equilibrium was reached after 360 min.  The kinetics of adsorption followed 

the pseudo-second order model indicating a bimolecular rate-determining step.  The 

equilibrium data was better described by the Langmuir isotherm model indicating monolayer 

coverage of RhB onto the homogeneous sites of the adsorbents.  An increase in the 

adsorption capacity was achieved as the temperature of the solution was increased except 

for the 50% nanocomposite.  This factor makes these adsorbents useful in the treatment of 

effluents discharged directly from industries since these are typically above ambient 

temperatures.  The adsorption process was thermodynamically spontaneous and entropy-

driven for the adsorbents except for the 50 % nanocomposite.  The adsorbed RhB was 

efficiently desorbed with either ethanol or acetone, but the latter showed the highest 

desorption capacity.  Thus, these adsorbents show potential for reuse and do not create a 

secondary pollutant problem. 

 

We therefore infer that electrostatic interaction between RhB and the adsorbents was 

primarily responsible for adsorption in this study.  The interactions between the adsorbate 

and adsorbents were strong, indicating both physisorption and chemisorption processes.  It 

is worthy of note that though MWCNT-COOH showed the best adsorption capacity, the 

nanocomposites provide an advantage of magnetic separation, which limits problems 

associated with removal of adsorbents from aqueous media.  This study, therefore, 

demonstrates that cobalt ferrite nanoparticles, multiwalled carbon nanotubes, and CNT-

based nanocomposites provide potential applications for the removal of pollutants from the 

environment through adsorption.  Furthermore, the synthesized nanocomposites were found 

to be stable, durable and hence reusable for RhB adsorption. 
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Chapter 11 

 

General conclusions and recommendations 

 

 

The declining level of freshwater on the planet requires immediate need for prudent 

management of water resources.  One of many ways through which this can be achieved is 

to ensure adequate water recycling.  For water reclamation, the removal of toxic pollutants 

from wastewater and industrial effluents is a crucial step to achieving a clean water supply.  

Also, in order to avert deleterious health complications associated with the intake of 

contaminated water, there is an urgent need for the remediation of wastewater before it is 

discharged into water streams.  In spite of the availability of techniques which have been 

applied towards achieving effective and efficient removal of pollutants from wastewater, 

adsorption has been considered best due to its simplicity and the possibility of reutilization 

of sorbents.  In view of this, carbon nanomaterials, containing multiwalled carbon nanotubes 

(MWCNTs), were synthesized and employed for the removal of pollutants such as heavy 

metal ions (Pb2+, Cu2+, Cd2+, Hg2+ and Zn2+), organic substances (bisphenol A and 

ibuprofen) and organic dyes (rhodamine B) from simulated aqueous solutions. 

 

Nitrogen-functionalized multiwalled carbon nanotubes (MWCNT-ttpy) were synthesized by 

attaching a nitrogen donor ligand (4-phenyl-2, 2':6', 2''-terpyridine) to the surface of 

MWCNTs.  This nanomaterial was applied for the removal of the stated heavy metal ions, 

bisphenol A and ibuprofen from aqueous solutions.  The sorption capacity of this novel 

sorbent was compared with that of oxygen-functionalized multiwalled carbon nanotubes 

(MWCNT-COOH), to evaluate the sorbent with the highest removal efficiency.  The 

removal of rhodamine B dye from aqueous solution was investigated by using cobalt ferrite 

nanoparticles, MWCNT-COOH and composites made from both nanomaterials in 

percentages of 29%, 50% and 75%.  The characterization of all adsorbents synthesized was 

performed by using techniques such as TEM, SEM, TGA, BET, FTIR and Raman 

spectroscopy. 

 

The application of MWCNT-COOH and MWCNT-ttpy for the removal of Pb2+, Cd2+, Hg2+, 

Cu2+, Zn2+, bisphenol A and ibuprofen was examined via batch adsorption experiments.  The 

effects of pH, contact time, adsorbent dose, initial adsorbate concentration and temperature 

was investigated for each adsorption process.  Similarly, these parameters were examined 

for the adsorption of rhodamine B dye onto cobalt-ferrite nanoparticles (CoFe2O4), 
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MWCNT-COOH and carbon nanotube-cobalt ferrite nanocomposites in percentages of 

29%, 50% and 75%. 

 

Based on the results obtained from this study, the following conclusions can be drawn: 

1. The synthesis of 4-phenyl-2, 2':6', 2''-terpyridine was successful and confirmed by 

using techniques such as FTIR, NMR and mass spectrometry. 

2. The synthesis and characterization of MWCNT-COOH and MWCNT-ttpy was 

successful.  An increase in the surface area of MWCNT-ttpy from 126.8 m2 g-1 for 

MWCNT-COOH to 189.2 m2 g-1 for MWCNT-ttpy was associated with the increase 

in the extent of functionalization of MWCNTs.  An increase in the pore volume of 

MWCNT-ttpy was also noticeable and both adsorbents were mesoporous in nature.  

The presence of nitrogen in MWCNT-ttpy was verified via elemental analysis, 

thereby confirming the successful introduction of 4-phenyl-2, 2':6', 2''-terpyridine to 

the backbone of MWCNT.  The morphology of MWCNT-COOH and MWCNT-ttpy 

showed straight and curved structures, respectively.  Raman analysis indicated that 

MWCNT-ttpy was more defective, accounting for its reduced thermal stability 

obtained from thermogravimetric analysis.  FTIR spectra confirmed the introduction 

of oxygen- and nitrogen functional groups onto the walls of MWCNT-COOH and 

MWCNT-ttpy, respectively.  These properties suggests that both sorbents could be 

suitable for the removal of metal ions and organic pollutants from wastewater. 

3. Carbon nanotube-cobalt ferrite nanocomposites were successfully synthesized in 

varying percentages of 29%, 50% and 75%.  The textural characterization revealed 

an increase in surface area and pore volume with an increase in the amount of 

MWCNT-COOH in each composite.  Raman analysis also demonstrated an increase 

in the ID/IG ratio, signaling an increase in the amount of defects with an increase in 

MWCNT.  FTIR spectra confirmed the synthesis of the nanomaterials, revealing the 

presence of functional groups which would aid the removal of rhodamine B dye from 

aqueous solutions. 

4. The removal of Cu2+ from aqueous solution by using MWCNT-COOH and 

MWCNT-ttpy was investigated at pH 5.0.  The application of MWCNT-ttpy for Cu2+ 

removal demonstrated a marked increase in the Langmuir adsorption capacity (qm) 

from 19.44 to 31.65 mg g-1 compared with MWCNT-COOH.  The higher uptake of 

Cu2+ by MWCNT-ttpy was associated with the increase in the number of active sites, 

created by the possible chelation of the metal ion to the nitrogen-donor atoms 

contained in the adsorbent.  The kinetics of adsorption was described by the pseudo-

second order model, while the equilibrium data were best fitted by the Langmuir 

isotherm.  Adsorption was spontaneous for both sorbents, exhibiting an endothermic 

nature.  This implied that Cu2+ uptake onto MWCNT-COOH and MWCNT-ttpy 
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increased with an increase in temperature.  Hence, these sorbents can be applied 

directly for the treatment of industrial effluents at point source, since they are usually 

discharged at above ambient temperatures. 

5. The removal of Pb2+ from aqueous solutions by using MWCNT-COOH and 

MWCNT-ttpy was carried out at pH 4.5.  The uptake of Pb2+ increased from 20.60 

mg g-1 to 36.23 mg g-1 with higher sorption capacity noticed for MWCNT-ttpy.  The 

kinetics of adsorption for both sorbents was best described by the pseudo-second 

order model.  The Langmuir model provided the best fit for the equilibrium data 

obtained, while the Redlich-Peterson and Sips model were the best suited of the 

three-parameter isotherms tested.  Adsorption was also spontaneous, feasible and 

endothermic by using both sorbents. 

6. The application of MWCNT-ttpy showed increased potential for the removal of Zn2+ 

compared with MWCNT-COOH.  Equilibrium was reached after 300 min and 360 

min for Zn2+ removal onto MWCNT-COOH and MWCNT-ttpy, respectively.  The 

data was best described by the pseudo-second order kinetics model, while the 

Langmuir and Sips models provided a good fit for the isotherm studies.  Adsorption 

was favourable at high temperatures and spontaneous for the removal of Zn2+ from 

aqueous solutions. 

7. A four-fold increase from 10.41 mg g-1 to 41.51 mg g-1 was obtained for the removal 

of Cd2+ onto MWCNT-ttpy, compared with MWCNT-COOH.  The interaction of 

Cd2+ onto active sites proceeded via a chemical interaction involving the sharing or 

exchange of electrons between the active sites on the adsorbents and the metal cation.  

Hence, adsorption was bimolecular, as supported by the pseudo-second order kinetic 

model.  Of the two-parameter isotherms tested, the Langmuir model best fits the 

equilibrium data, while the Sips model gave a good representation of the three-

parameter isotherms used.  However, better Cd2+ uptake was achieved at low 

temperatures, signifying an exothermic nature of adsorption. 

8. Due to high toxicity associated with Hg2+ inhalation at higher temperatures, its 

removal was only investigated at 20 ºC and 30 ºC.  Nonetheless, increasing adsorbate 

temperature resulted in an increase in the removal of Hg2+ from aqueous solutions.  

The kinetics of adsorption onto MWCNT-COOH and MWCNT-ttpy was best 

described by the pseudo-second order model.  Both sorbents showed great potential 

for Hg2+, obtaining an adsorption capacity (qm) of 33.89 mg g-1 for MWCNT-COOH 

and 36.13 mg g-1 for MWCNT-ttpy at 20 ºC.  These results implied that both sorbents 

are suitable for the treatment of Hg2+-contaminated wastewater or industrial 

effluents. 

9. The application of MWCNT-COOH and MWCNT-ttpy was also explored for the 

removal of two endocrine disruptors (i.e. bisphenol A and ibuprofen) from aqueous 
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solutions.  Adsorption was conducted at an optimum pH of 7.0 and 2.0 for the 

removal of bisphenol A and ibuprofen, respectively.  The kinetics data obtained for 

both sorbates were better described by the pseudo-second order kinetics model.  

Isotherm studies showed that data obtained for both substances best fits the Langmuir 

model.  This implied that the sorption of both substances onto MWCNT-COOH and 

MWCNT-ttpy occurred on a monolayer surface.  Additionally, the application of 

MWCNT-ttpy for bisphenol A and ibuprofen removal, showed increased uptake 

compared with MWCNT-COOH.  This was attributed to the increase in the 

hydrophobic nature of MWCNT-ttpy, demonstrating π-π interaction between the 

adsorbates and the adsorbents.  Adsorption was spontaneous for all processes.  

However, an endothermic and exothermic nature of adsorption was obtained for the 

removal of bisphenol A and ibuprofen, respectively, from aqueous solution. 

10. For both the single-solute and multicomponent adsorption systems, the equilibrium 

data was well described by the Langmuir adsorption isotherm.  However, the 

Langmuir maximum adsorption capacities (qm) in a single-solute system were 

significantly higher than those obtained in a competitive system.  This trend was 

attributed to an increase in competition between metal cations for active sites on the 

MWCNT-ttpy adsorbent.  The sorption of metal ions onto MWCNT-ttpy followed 

the sequence Cd > Pb > Cu > Zn and Pb > Cu > Cd > Zn in a single- and multi-

component adsorption systems, respectively.  In multi-metal systems, the removal of 

a particular metal ion was primarily based on the initial concentration of other 

competitors in solution.  Although, the sorption of metal ions was higher in a single-

solute system, MWCNT-ttpy showed great selectivity for metal ion removal in 

multicomponent adsorption systems.  The effectiveness of MWCNT-ttpy for the 

removal of metal ions was confirmed by using real samples, wherein removal 

efficiencies reached 95%.  These results therefore justifies the potential application 

of MWCNT-ttpy for the treatment of metal-contaminated wastewater or industrial 

effluents. 

11. The co-adsorption of bisphenol A and ibuprofen onto MWCNT-ttpy was 

investigated at an optimum pH 2.0.  The equilibrium data in single-solute and binary 

adsorption systems were described by the Langmuir isotherm model.  The removal 

of both sorbates was primarily based on their hydrophobic nature, hence, the sorption 

of ibuprofen onto MWCNT-ttpy in both systems was higher than that obtained for 

bisphenol A.  The influence of the presence of metal ions such as Cd2+ and Pb2+ was 

investigated on the competitive sorption of bisphenol A and ibuprofen.  Adsorption 

in this system was cooperative, largely depending on the initial concentration of 

competitors, hydrophobic state and affinity of adsorbates for active sites on the 

adsorbent.  Similarly, lower adsorption capacities were obtained in a 
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multicomponent system due to increased competition between sorbates in solution.  

The application of MWCNT-ttpy therefore proved efficient in multicomponent 

systems containing a mixture of different classes of pollutants. 

12. The removal of rhodamine B from aqueous solution was investigated by using cobalt 

ferrite nanoparticles, acid-functionalized multiwalled carbon nanotubes (MWCNT-

COOH) and carbon nanotube-cobalt ferrite nanocomposites.  The optimum pH for 

adsorption was observed at 7 at which equilibrium was reached after 360 min.  The 

adsorption capacity was lowest in CoFe2O4 (5.165 mg g-1) and highest with 

MWCNT-COOH (42.68 mg g-1).  Increasing the content of MWCNT-COOH from 

29% to 75% in composites enhanced the sorption capacity from 21.17 mg g-1 to 35.91 

mg g-1.  The kinetics data obtained for all sorbents were best described by the pseudo-

second order kinetic model.  The Langmuir isotherm provided the best fit to the 

equilibrium data obtained.  The adsorption of rhodamine B was spontaneous, 

endothermic and entropy-driven, except for one of the doped nanocomposites for 

which adsorption was exothermic. 

13. Desorption of all sorbents used in the study exhibited effective removal of sorbates 

from the surface of adsorbents.  This process attempts to regenerate spent-adsorbents 

for reutilization, thereby preventing the discharge of secondary pollutants into the 

environment.  Thus, all sorbents were regenerated by washing with conventional 

solvents and/or acids, and produced good desorption yields between the ranges of 

60% to 94%. 

 

Thus, it can be concluded that nanomaterials based on MWCNTs are effective and 

sufficiently robust for the removal of different classes of pollutant and should be 

further explored. 

 

Based on these results, the following are recommended for future work. 

 An investigation of the effect of varying denticity of the ligand attached to MWCNTs 

for the removal of targeted pollutants from aqueous solutions. 

 An investigation of the application of nitrogen-functionalized multiwalled carbon 

nanotubes in wastewater treatment facilities for the removal of various classes of 

pollutants. 
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Appendix I 

 

Data for Copper(II) 

 

Table A-I.1:  Operating conditions for the PerkinElmer Optima 5300 DV inductively coupled plasma-optical 

emission spectrometer (ICP-OES) for Cu2+ analysis 

Wavelength 224.700 nm 

RF power 1300 W 

Plasma gas flow rate 15 dm3 min-1 

Pump 1.5 cm3 min-1 

Auxiliary gas flow rate 0.2 dm3 min-1 

Nebulizer gas flow rate 0.8 dm3 min-1 

Nebulizer pressure  2 bars 

Analyzer type Axial 

Replicates 3 

Sample read delay 60 s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-I.1:  1H NMR spectrum of HO-Phttpy. 
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Fig A-I.2:  13C NMR spectrum of HO-Phttpy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-I.3:  Mass spectrum of HO-Phttpy. 
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Fig A-I.4:  Comparison of kinetics models fitted to the experimental data for the adsorption of Cu2+ onto (a) 

MWCNT-COOH and (b) MWCNT-ttpy (pseudo-first order             , pseudo-second order            , 

intraparticle diffusion              and Elovich model              ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-I.5:  The Freundlich adsorption isotherm fitted to the experimental data for the adsorption of Cu2+ onto 

MWCNT-COOH at various temperatures (293 K             , 303 K               , 313 K                and 

318 K              ). 
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Fig A-I.6:  The Langmuir adsorption isotherm fitted to the experimental data for the adsorption of Cu2+ onto 

MWCNT-ttpy at various temperatures (293 K                , 303 K                , 313 K                and 

318 K               ). 

 

 

Table A-I.2:  Experimental data for the adsorption of Cu2+ onto MWCNT-COOH as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

1 101.9 94.41 0.0512 0.020 7.350 2.926 

2 101.9 81.58 0.0517 0.020 19.94 7.861 

3 101.9 75.65 0.0512 0.020 25.76 10.25 

4 101.9 69.56 0.0513 0.020 31.74 12.61 

5 101.9 68.19 0.0506 0.020 33.08 13.32 

6 101.9 57.81 0.0508 0.020 43.27 17.36 

7 101.9 1.914 0.0503 0.020 98.12 39.76 

8 101.9 1.832 0.0501 0.020 98.20 39.95 

9 101.9 4.144 0.0514 0.020 95.93 38.04 

10 101.9 2.071 0.0501 0.020 97.97 39.85 
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Table A-I.3:  Experimental data for the adsorption of Cu2+ onto MWCNT-COOH as a function of time 

[conditions: pH 5.0, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 92.36 71.78 0.0511 0.020 22.28 8.055 

10 92.36 70.30 0.0515 0.020 23.88 8.567 

15 92.36 69.77 0.0515 0.020 24.46 8.773 

20 92.36 69.55 0.0509 0.020 24.70 8.963 

30 92.36 69.14 0.0509 0.020 25.14 9.124 

45 92.36 68.74 0.0503 0.020 25.57 9.392 

60 92.36 67.79 0.0513 0.020 26.60 9.579 

75 92.36 67.52 0.0514 0.020 26.89 9.665 

90 92.36 66.85 0.0508 0.020 27.62 10.04 

120 92.36 66.55 0.0502 0.020 27.94 10.28 

180 92.36 65.30 0.0520 0.020 29.30 10.41 

240 92.36 65.20 0.0513 0.020 29.41 10.59 

300 92.36 65.10 0.0509 0.020 29.51 10.71 

360 92.36 64.82 0.0513 0.020 29.82 10.74 

720 92.36 64.78 0.0511 0.020 29.86 10.79 

1080 92.36 64.74 0.0509 0.020 29.90 10.85 

1440 92.36 64.71 0.0508 0.020 29.94 10.89 

 

 

Table A-I.4:  Experimental data for the adsorption of Cu2+ onto MWCNT-COOH as a function of adsorbent 

dose [conditions: pH 5.0, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

103.4 74.69 0.030 0.020 27.77 18.11 

103.4 72.14 0.050 0.020 30.23 12.33 

103.4 67.75 0.075 0.020 34.48 9.494 

103.4 64.30 0.100 0.020 37.81 7.563 

103.4 58.91 0.150 0.020 43.03 5.912 

103.4 55.83 0.200 0.020 46.01 4.684 

103.4 45.05 0.300 0.020 56.43 3.858 

103.4 43.22 0.400 0.020 58.20 2.996 

 

  



 
  

305 
 
 

Table A-I.5: Experimental data for the adsorption of Cu2+ onto MWCNT-COOH as a function of temperature 

[conditions: pH 5.0, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 10.24 0.419 0.0507 0.020 98.21 3.874 

 21.12 1.980 0.0501 0.020 95.70 7.641 

 31.36 6.543 0.0507 0.020 82.72 9.790 

 42.92 13.77 0.0504 0.020 72.88 11.57 

 52.50 19.03 0.0503 0.020 66.94 13.31 

 59.74 23.87 0.0501 0.020 59.78 14.32 

 69.73 30.22 0.0504 0.020 56.44 15.68 

 79.98 36.22 0.0507 0.020 54.70 17.26 

 91.42 43.99 0.0506 0.020 52.70 18.75 

  97.16 49.53 0.0501 0.020 47.63 19.01 

303 K 10.24 0.846 0.0503 0.020 91.74 3.735 

 21.12 2.543 0.0500 0.020 87.96 7.431 

 31.36 8.442 0.0502 0.020 73.08 9.131 

 42.92 15.84 0.0501 0.020 63.09 10.81 

 52.50 21.05 0.0505 0.020 59.90 12.46 

 59.74 26.35 0.0508 0.020 55.89 13.15 

 69.73 33.14 0.0511 0.020 52.47 14.32 

 79.98 40.02 0.0505 0.020 49.96 15.83 

 91.42 50.66 0.0503 0.020 44.59 16.21 

  97.16 55.74 0.0504 0.020 42.63 16.44 

313 K 10.24 1.890 0.0502 0.020 81.54 3.327 

 21.12 4.223 0.0514 0.020 80.00 6.575 

 31.36 9.854 0.0505 0.020 68.58 8.517 

 42.92 16.14 0.0519 0.020 62.40 10.32 

 52.50 22.50 0.0509 0.020 57.14 11.79 

 59.74 28.46 0.0503 0.020 52.36 12.44 

 69.73 36.12 0.0505 0.020 47.75 13.07 

 79.98 44.31 0.0502 0.020 44.60 14.21 

 91.42 54.87 0.0504 0.020 39.98 14.50 

  97.16 60.13 0.0502 0.020 38.11 14.75 

318 K 10.24 2.640 0.0512 0.020 74.22 2.969 

 21.12 6.408 0.0505 0.020 69.66 5.827 

 31.36 12.66 0.0509 0.020 59.63 7.348 

 39.55 18.63 0.0506 0.020 48.74 8.269 

 51.20 26.13 0.0516 0.020 47.75 9.717 

 60.30 32.89 0.0506 0.020 45.88 10.83 

 70.22 40.77 0.0506 0.020 42.60 11.64 

 80.11 47.84 0.0515 0.020 40.35 12.53 

 89.94 57.99 0.0507 0.020 34.95 12.60 



 
  

306 
 
 

 100.2 68.11 0.0504 0.020 33.03 12.73 

 

Table A-I.6:  Experimental data for the adsorption of Cu2+ onto MWCNT-ttpy as a function of pH [conditions: 

contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

1 103 83.44 0.0500 0.020 18.99 7.824 

2 103 79.22 0.0500 0.020 23.09 9.512 

3 103 70.22 0.0502 0.020 31.83 13.06 

4 103 31.44 0.0505 0.020 69.48 28.34 

5 103 17.22 0.0496 0.020 83.28 34.59 

6 103 6.88 0.0495 0.020 93.32 38.84 

7 103 0.998 0.0494 0.020 99.03 41.30 

8 103 0.482 0.0508 0.020 99.53 40.36 

9 103 0.221 0.0498 0.020 99.79 41.28 

10 103 0.000 0.0506 0.020 100.0 40.71 

 

Table A-I.7:  Experimental data for the adsorption of Cu2+ onto MWCNT-ttpy as a function of time 

[conditions: pH 5.0, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 103.0 55.88 0.0511 0.020 45.75 18.44 

10 103.0 50.77 0.0515 0.020 50.71 20.28 

15 103.0 48.12 0.0515 0.020 53.28 21.31 

20 103.0 45.44 0.0509 0.020 55.88 22.62 

30 103.0 38.71 0.0509 0.020 62.42 25.26 

45 103.0 33.14 0.0503 0.020 67.83 27.78 

60 103.0 29.88 0.0502 0.020 70.99 29.13 

75 103.0 22.54 0.0514 0.020 78.12 31.31 

90 103.0 21.44 0.0508 0.020 79.18 32.11 

120 103.0 18.72 0.0502 0.020 81.83 33.58 

180 103.0 16.84 0.0501 0.020 83.65 34.40 

240 103.0 15.72 0.0502 0.020 84.74 34.77 

300 103.0 15.33 0.0501 0.020 85.12 35.00 

360 103.0 14.88 0.0501 0.020 85.55 35.18 

720 103.0 14.11 0.0503 0.020 86.30 35.34 

1080 103.0 13.84 0.050 0.020 86.56 35.66 

1440 103.0 13.11 0.0502 0.020 87.27 35.81 
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Table A-I.8:  Experimental data for the adsorption of Cu2+ onto MWCNT-ttpy as a function of adsorbent dose 

[conditions: pH 5.0, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

103.0 22.11 0.031 0.020 78.53 52.02 

103.0 9.854 0.050 0.020 90.43 37.11 

103.0 4.211 0.075 0.020 95.91 26.20 

103.0 1.410 0.100 0.020 98.63 20.26 

103.0 0.877 0.151 0.020 99.15 13.57 

103.0 0.543 0.200 0.020 99.47 10.27 

103.0 0.321 0.300 0.020 99.69 6.843 

103.0 0.088 0.402 0.020 99.91 5.120 

 

 

Table A-I.9: Experimental data for the adsorption of Cu2+ onto MWCNT-ttpy as a function of temperature 

[conditions: pH 5.0, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 10.24 0.000 0.0507 0.020 100.0 4.039 

 21.12 0.094 0.0501 0.020 99.55 8.394 

 31.36 0.121 0.0507 0.020 99.61 12.32 

 39.55 0.322 0.0504 0.020 99.19 15.57 

 51.20 0.611 0.0503 0.020 98.81 20.11 

 60.30 1.214 0.0501 0.020 97.99 23.59 

 70.22 1.977 0.0504 0.020 97.18 27.08 

 80.11 4.115 0.0507 0.020 94.86 29.98 

 89.94 10.22 0.0506 0.020 88.64 31.51 

  100.2 20.12 0.0501 0.020 79.92 31.97 

303 K 10.24 0.000 0.0503 0.020 100.0 4.072 

 21.12 0.000 0.0500 0.020 100.0 8.448 

 31.36 0.088 0.0502 0.020 99.72 12.46 

 39.55 0.144 0.0501 0.020 99.64 15.73 

 51.20 0.332 0.0500 0.020 99.35 20.35 

 60.30 0.544 0.0502 0.020 99.10 23.81 

 70.22 1.021 0.0502 0.020 98.55 27.57 

 80.11 2.331 0.0505 0.020 97.09 30.80 

 89.94 7.331 0.0501 0.020 91.85 32.98 

  100.2 17.22 0.0500 0.020 82.81 33.19 

313 K 10.24 0.000 0.0502 0.020 100.00 4.080 

 21.12 0.000 0.0514 0.020 100.00 8.218 

 31.36 0.053 0.0505 0.020 99.83 12.40 

 39.55 0.082 0.0519 0.020 91.96 15.21 

 51.20 0.15 0.0509 0.020 97.23 20.06 

 60.30 0.611 0.0503 0.020 99.91 23.73 
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 70.22 1.144 0.0505 0.020 99.92 27.36 

 80.11 1.112 0.0502 0.020 98.77 31.47 

 89.94 5.112 0.0504 0.020 92.79 33.66 

  100.2 13.88 0.0502 0.020 88.84 34.39 

318 K 10.24 0.000 0.0498 0.020 100.0 4.112 

 21.12 0.000 0.0505 0.020 100.0 8.364 

 31.36 0.000 0.0500 0.020 100.0 12.54 

 39.55 0.032 0.0506 0.020 99.92 15.62 

 51.20 0.114 0.0504 0.020 99.78 20.27 

 60.30 0.221 0.0500 0.020 99.63 24.03 

 70.22 0.206 0.0500 0.020 99.71 28.01 

 80.11 0.877 0.0501 0.020 98.91 31.63 

 89.94 3.422 0.0502 0.020 96.20 34.47 

  100.2 12.44 0.0504 0.020 87.58 34.83 

 

Table A-I.10:  Separation factor values (RL) for the adsorption of Cu2+ onto MWCNT-COOH at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

10.24 0.366 0.347 0.443 0.590 

21.12 0.219 0.205 0.278 0.410 

31.36 0.159 0.148 0.206 0.319 

42.92 0.121 0.112 0.159 0.255 

52.50 0.101 0.094 0.134 0.219 

59.74 0.090 0.083 0.120 0.198 

69.73 0.078 0.072 0.104 0.174 

79.98 0.069 0.064 0.092 0.155 

91.42 0.061 0.056 0.082 0.139 

97.16 0.057 0.053 0.077 0.131 

 

Table A-I.11:  Separation factor values (RL) for the adsorption of Cu2+ onto MWCNT-ttpy at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

10.24 0.0292 0.0175 0.0107 0.0056 

21.12 0.0144 0.0085 0.0052 0.0027 

31.36 0.0097 0.0058 0.0035 0.0018 

39.55 0.0077 0.0046 0.0028 0.0015 

51.20 0.0060 0.0035 0.0021 0.0011 

60.30 0.0051 0.0030 0.0018 0.0010 

70.22 0.0044 0.0026 0.0016 0.0008 

80.11 0.0038 0.0023 0.0014 0.0007 

89.94 0.0034 0.0020 0.0012 0.0006 

100.2 0.0031 0.0018 0.0011 0.0006 
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Appendix II 

 

Data for Lead(II) and Zinc(II) 

 

Table A-II.1:  Operating conditions for the ICP-OES spectrometer used for Pb2+ and Zn2+ determination 

Wavelength (Pb2+) 220.353 nm 

Wavelength (Zn2+) 213.857 nm 

RF power 1300 W 

Plasma gas flow rate 15 dm3 min-1 

Pump 1.5 cm3 min-1 

Auxiliary gas flow rate 0.2 dm3 min-1 

Nebulizer gas flow rate 0.8 dm3 min-1 

Nebulizer pressure  2 bars 

Analyzer type Axial 

Replicates 3 

Sample read delay 60 s 

 

 

Table A-II.2:  Experimental data for the adsorption of Pb2+ onto MWCNT-COOH as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 97.63 86.10 0.0511 0.020 11.81 4.513 

2 97.63 73.97 0.0512 0.020 24.23 9.242 

3 97.63 50.15 0.0503 0.020 48.63 18.88 

4 97.63 47.88 0.0506 0.020 50.96 19.66 

5 97.63 30.42 0.0505 0.020 68.84 26.62 

6 97.63 11.85 0.0501 0.020 87.86 34.24 

7 97.63 11.14 0.0500 0.020 88.59 34.60 

8 97.63 8.730 0.0507 0.020 91.06 35.07 

9 97.63 6.130 0.0502 0.020 93.72 36.45 

10 97.63 3.970 0.0508 0.020 95.93 36.87 
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Table A-II.3:  Experimental data for the adsorption of Pb2+ onto MWCNT-COOH as a function of time 

[conditions: pH 4.5, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 96.70 75.20 0.0509 0.020 22.23 8.448 

10 96.70 74.60 0.0504 0.020 22.85 8.770 

15 96.70 70.51 0.0508 0.020 27.08 10.31 

20 96.70 66.54 0.0504 0.020 31.19 11.97 

30 96.70 63.72 0.0505 0.020 34.11 13.06 

45 96.70 55.32 0.0506 0.020 42.79 16.36 

60 96.70 52.40 0.0506 0.020 45.81 17.51 

75 96.70 48.31 0.0508 0.020 50.04 19.05 

90 96.70 45.74 0.0509 0.020 52.70 20.02 

120 96.70 44.88 0.0504 0.020 53.59 20.56 

180 96.70 43.88 0.0506 0.020 54.62 20.88 

240 96.70 43.32 0.0505 0.020 55.20 21.14 

300 96.70 42.98 0.0507 0.020 55.55 21.19 

360 96.70 42.51 0.0506 0.020 56.04 21.42 

720 96.70 42.49 0.0502 0.020 56.06 21.60 

1080 96.70 42.47 0.0502 0.020 56.08 21.61 

1440 96.70 42.44 0.0502 0.020 56.11 21.62 

 

 

Table A-II.4:  Experimental data for the adsorption of Pb2+ onto MWCNT-COOH as a function of adsorbent 

dose [conditions: pH 4.5, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

96.70 61.96 0.030 0.02 35.93 23.16 

96.70 44.11 0.050 0.02 54.38 21.04 

96.70 41.13 0.075 0.02 57.47 14.82 

96.70 36.80 0.100 0.02 61.94 11.98 

96.70 31.48 0.150 0.02 67.45 8.696 

96.70 25.93 0.200 0.02 73.19 7.077 

96.70 13.97 0.300 0.02 85.55 5.515 

96.70 11.09 0.400 0.02 88.53 4.281 
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Table A-II.5:  Experimental data for the adsorption of Pb2+ onto MWCNT-COOH as a function of temperature 

[conditions: pH 4.5, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 10.55 0.211 0.0502 0.020 98.00 4.119 

 21.11 0.922 0.0501 0.020 95.63 8.059 

 30.23 1.434 0.0503 0.020 95.26 11.45 

 38.52 3.442 0.0507 0.020 91.06 13.84 

 49.82 6.991 0.0503 0.020 85.97 17.03 

 60.11 13.05 0.0503 0.020 78.29 18.71 

 70.24 20.86 0.0507 0.020 70.30 19.48 

 80.22 29.44 0.0511 0.020 63.30 19.87 

 90.33 39.11 0.0503 0.020 56.70 20.37 

  100.4 48.33 0.0508 0.020 51.87 20.50 

303 K 10.55 0.188 0.0500 0.020 98.22 4.145 

 21.11 0.612 0.0504 0.020 97.10 8.134 

 30.23 1.322 0.0501 0.020 95.63 11.54 

 38.52 2.337 0.0503 0.020 93.93 14.39 

 49.82 5.662 0.0500 0.020 88.64 17.66 

 60.11 11.23 0.0508 0.020 81.32 19.24 

 70.24 18.44 0.051 0.020 73.75 20.31 

 80.22 27.88 0.0508 0.020 65.25 20.61 

 90.33 36.77 0.0506 0.020 59.29 21.17 

  100.4 45.77 0.0503 0.020 54.42 21.73 

313 K 12.43 0.088 0.0502 0.020 99.29 4.917 

 25.44 0.501 0.0509 0.020 98.03 9.799 

 35.04 0.844 0.0507 0.020 97.59 13.49 

 46.24 1.544 0.0503 0.020 96.66 17.77 

 58.46 4.788 0.0503 0.020 91.81 21.34 

 59.66 5.210 0.0509 0.020 91.27 21.39 

 70.00 11.45 0.0512 0.020 83.64 22.87 

 80.20 20.44 0.0517 0.020 74.51 23.12 

 90.00 30.14 0.0513 0.020 66.51 23.34 

  99.19 39.44 0.0510 0.020 60.24 23.43 

318 K 12.43 0.033 0.0501 0.020 99.73 4.949 

 25.44 0.311 0.0511 0.020 98.78 9.835 

 35.04 0.622 0.0503 0.020 98.22 13.685 

 46.24 1.022 0.0509 0.020 97.79 17.77 

 58.46 3.215 0.0500 0.020 94.50 22.10 

 59.66 3.744 0.0501 0.020 93.72 22.32 

 75.20 11.86 0.0502 0.020 84.23 25.24 

 80.40 15.84 0.0510 0.020 80.30 25.32 

 90.10 22.77 0.0523 0.020 74.73 25.75 
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  99.19 32.44 0.0517 0.020 67.30 25.82 

 

 

Table A-II.6:  Experimental data for the adsorption of Pb2+ onto MWCNT-ttpy as a function of pH [conditions: 

contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 102.6 78.33 0.0500 0.020 23.65 9.708 

2 102.6 54.88 0.0498 0.020 46.51 19.16 

3 102.6 44.12 0.0502 0.020 57.00 23.30 

4 102.6 21.44 0.0500 0.020 79.10 32.46 

5 102.6 15.22 0.0502 0.020 85.17 34.81 

6 102.6 4.906 0.0500 0.020 95.22 39.08 

7 102.6 0.802 0.0500 0.020 99.22 40.72 

8 102.6 0.717 0.0500 0.020 99.30 40.75 

9 102.6 0.823 0.0500 0.020 99.20 40.71 

10 102.6 1.314 0.0501 0.020 98.72 40.43 

 

 

Table A-II.7:  Experimental data for the adsorption of Pb2+ onto MWCNT-ttpy as a function of time 

[conditions: pH 4.5, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 102.6 75.22 0.0501 0.020 26.69 10.930 

10 102.6 66.55 0.0503 0.020 35.14 14.33 

15 102.6 52.22 0.0500 0.020 49.10 20.15 

20 102.6 49.22 0.0505 0.020 52.03 21.14 

30 102.6 33.55 0.0503 0.020 67.30 27.46 

45 102.6 29.12 0.0502 0.020 71.62 29.27 

60 102.6 24.21 0.0501 0.020 76.40 31.29 

75 102.6 22.44 0.0502 0.020 78.13 31.94 

90 102.6 19.88 0.0508 0.020 80.62 32.57 

120 102.6 19.22 0.0502 0.020 81.27 33.22 

180 102.6 17.92 0.0501 0.020 82.53 33.80 

240 102.6 16.46 0.0500 0.020 83.96 34.46 

300 102.6 16.55 0.0498 0.020 83.87 34.56 

360 102.6 16.11 0.0496 0.020 84.30 34.88 

720 102.6 15.02 0.0500 0.020 85.36 35.03 

1080 102.6 14.22 0.0501 0.020 86.14 35.28 

1440 102.6 14.02 0.0502 0.020 86.34 35.29 
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Table A-II.8:  Experimental data for the adsorption of Pb2+ onto MWCNT-ttpy as a function of adsorbent dose 

[conditions: pH 4.5, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

103.4 49.25 0.0312 0.020 52.37 34.71 

103.4 19.22 0.0497 0.020 81.41 33.88 

103.4 17.12 0.0746 0.020 83.45 23.13 

103.4 15.21 0.1005 0.020 85.29 17.55 

103.4 9.887 0.1503 0.020 90.44 12.44 

103.4 8.221 0.2001 0.020 92.05 9.513 

103.4 7.322 0.3001 0.020 92.92 6.403 

103.4 4.221 0.4005 0.020 95.92 4.953 

 

 

Table A-II.9:  Experimental data for the adsorption of Pb2+ onto MWCNT-ttpy as a function of temperature 

[conditions: pH 4.5, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 10.55 0.000 0.0497 0.020 100.00 4.245 

 21.11 0.228 0.0505 0.020 98.92 8.270 

 30.23 0.522 0.0495 0.020 98.27 12.00 

 38.52 0.821 0.0511 0.020 97.87 14.75 

 49.82 1.336 0.050 0.020 97.32 19.39 

 60.11 2.112 0.0512 0.020 96.49 22.66 

 70.24 3.271 0.0498 0.020 95.34 26.90 

 80.22 4.722 0.0498 0.020 94.11 30.32 

 90.33 8.114 0.0508 0.020 91.02 32.37 

  100.4 15.88 0.0498 0.020 84.18 33.95 

303 K 10.55 0.000 0.0499 0.020 100.0 4.228 

 21.11 0.113 0.0511 0.020 99.46 8.218 

 30.23 0.332 0.0504 0.020 98.90 11.86 

 38.52 0.493 0.0498 0.020 98.72 15.27 

 49.82 0.772 0.0501 0.020 98.45 19.58 

 60.11 1.277 0.0496 0.020 97.88 23.72 

 70.24 2.118 0.0500 0.020 96.98 27.25 

 80.22 3.115 0.0508 0.020 96.12 30.36 

 90.33 6.224 0.0500 0.020 93.11 33.64 

  100.4 12.44 0.0502 0.020 87.61 35.05 

313 K 12.43 0.000 0.0499 0.020 100.0 4.982 

 25.44 0.000 0.0502 0.020 100.0 10.14 

 35.04 0.088 0.0502 0.020 99.75 13.93 

 46.24 0.133 0.0500 0.020 99.71 18.44 

 58.46 0.422 0.0500 0.020 99.28 23.22 

 59.66 0.434 0.0501 0.020 99.27 23.64 
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 70.00 0.877 0.0502 0.020 98.75 27.54 

 80.20 1.344 0.0503 0.020 98.32 31.35 

 90.00 3.221 0.0501 0.020 96.42 34.64 

  99.19 10.22 0.0502 0.020 89.70 35.45 

318 K 11.40 0.000 0.0494 0.020 100.00 4.615 

 22.40 0.000 0.0496 0.020 100.00 9.032 

 32.50 0.088 0.0501 0.020 99.73 12.94 

 40.50 0.104 0.0500 0.020 99.74 16.16 

 49.79 0.226 0.0497 0.020 99.55 19.95 

 59.88 0.422 0.0505 0.020 99.30 23.55 

 69.40 0.621 0.0503 0.020 99.11 27.35 

 79.88 1.055 0.0506 0.020 98.68 31.16 

 89.77 2.144 0.0505 0.020 97.61 34.70 

  105.4 13.44 0.0503 0.020 87.25 36.56 

 

Table A-II.10:  Separation factor values (RL) for the adsorption of Pb2+ onto MWCNT-COOH at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

10.55 0.114 0.093 0.054 0.046 

21.11 0.060 0.049 0.028 0.023 

30.23 0.043 0.035 0.020 0.016 

38.52 0.034 0.027 0.016 0.013 

49.82 0.026 0.021 0.012 0.010 

60.11 0.022 0.018 0.010 0.008 

70.24 0.019 0.015 0.009 0.007 

80.22 0.017 0.013 0.008 0.006 

90.33 0.015 0.012 0.007 0.006 

100.4 0.013 0.011 0.006 0.005 

 

Table A-II.11:  Separation factor values (RL) for the adsorption of Pb2+ onto MWCNT-ttpy at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

10.55 0.095 0.058 0.015 0.016 

21.11 0.050 0.030 0.007 0.008 

30.23 0.035 0.021 0.005 0.006 

38.52 0.028 0.017 0.004 0.004 

49.82 0.022 0.013 0.003 0.003 

60.11 0.018 0.011 0.003 0.003 

70.24 0.015 0.009 0.002 0.002 

80.22 0.014 0.008 0.002 0.002 

90.33 0.012 0.007 0.002 0.002 

100.4 0.011 0.006 0.002 0.002 
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Table A-II.12:  Experimental data for the adsorption of Zn2+ onto MWCNT-COOH as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 99.43 81.94 0.0507 0.020 17.59 6.899 

2 99.43 87.27 0.0509 0.020 12.23 4.778 

3 99.43 82.37 0.0503 0.020 17.16 6.783 

4 99.43 70.09 0.0501 0.020 29.51 11.71 

5 99.43 64.88 0.0508 0.020 34.75 13.60 

6 99.43 30.77 0.0505 0.020 69.05 27.19 

7 99.43 3.807 0.0511 0.020 96.17 37.43 

8 99.43 2.430 0.0506 0.020 97.56 38.34 

9 99.43 0.884 0.0503 0.020 99.11 39.18 

10 99.43 0.000 0.0502 0.020 100.00 39.61 

 

Table A-II.13:  Experimental data for the adsorption of Zn2+ onto MWCNT-COOH as a function of time 

[conditions: pH 5.5, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 98.35 89.78 0.0503 0.020 8.714 3.408 

10 98.35 89.34 0.0505 0.020 9.161 3.568 

15 98.35 84.97 0.0501 0.020 13.60 5.341 

20 98.35 84.16 0.0500 0.020 14.43 5.676 

30 98.35 80.23 0.0502 0.020 18.42 7.219 

45 98.35 78.52 0.0503 0.020 20.16 7.885 

60 98.35 72.14 0.0503 0.020 26.65 10.42 

75 98.35 69.52 0.0500 0.020 29.31 11.53 

90 98.35 66.95 0.0504 0.020 31.93 12.46 

120 98.35 64.55 0.0502 0.020 34.37 13.47 

180 98.35 60.11 0.0502 0.020 38.88 15.24 

240 98.35 59.22 0.0501 0.020 39.79 15.62 

300 98.35 57.41 0.0501 0.020 41.63 16.34 

360 98.35 56.14 0.0501 0.020 42.92 16.85 

720 98.35 53.33 0.0501 0.020 45.78 17.97 

1080 98.35 51.88 0.0506 0.020 47.25 18.37 

1440 98.35 51.33 0.0507 0.020 47.81 18.55 
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Table A-II.14:  Experimental data for the adsorption of Zn2+ onto MWCNT-COOH as a function of adsorbent 

dose [conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

98.35 58.94 0.0302 0.020 40.07 26.10 

98.35 54.74 0.0504 0.020 44.34 17.31 

98.35 52.98 0.0757 0.020 46.13 11.99 

98.35 50.49 0.1004 0.020 48.66 9.534 

98.35 46.41 0.1500 0.020 52.81 6.925 

98.35 41.08 0.2005 0.020 58.23 5.713 

98.35 37.59 0.3009 0.020 61.78 4.039 

98.35 37.22 0.4001 0.020 62.16 3.056 

 

Table A-II.15:  Experimental data for the adsorption of Zn2+ onto MWCNT-COOH as a function of 

temperature [conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 7.360 2.674 0.0500 0.020 46.86 1.874 

 21.45 9.221 0.0501 0.020 61.15 4.882 

 29.46 14.19 0.0504 0.020 50.90 6.060 

 41.62 21.77 0.0502 0.020 49.63 7.908 

 52.17 27.89 0.0500 0.020 48.56 9.712 

 60.10 33.63 0.0501 0.020 44.12 10.57 

 70.63 42.14 0.0503 0.020 40.70 11.33 

 78.13 47.88 0.0506 0.020 37.81 11.96 

 88.93 56.77 0.0506 0.020 35.73 12.71 

  99.43 66.91 0.0504 0.020 32.52 12.90 

303 K 7.360 2.133 0.0500 0.020 71.02 2.091 

 21.45 7.432 0.0507 0.020 65.35 5.530 

 29.46 12.39 0.0509 0.020 57.94 6.707 

 41.62 19.13 0.0501 0.020 54.04 8.978 

 52.17 26.24 0.0507 0.020 49.70 10.23 

 60.10 31.45 0.0502 0.020 47.67 11.41 

 70.63 39.22 0.0503 0.020 44.47 12.49 

 78.13 45.46 0.0505 0.020 41.81 12.94 

 88.93 54.15 0.0509 0.020 39.11 13.67 

  99.43 64.43 0.0501 0.020 35.20 13.97 

313 K 7.360 1.995 0.0501 0.020 72.89 2.142 

 21.45 6.992 0.0500 0.020 67.40 5.783 

 29.46 10.02 0.0501 0.020 65.99 7.760 

 41.62 17.44 0.0503 0.020 58.10 9.614 

 52.17 24.88 0.0500 0.020 52.31 10.92 

 60.10 28.96 0.0500 0.020 51.81 12.46 

 70.63 36.78 0.0503 0.020 47.93 13.46 
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 78.13 43.11 0.0502 0.020 44.82 13.95 

 88.93 53.15 0.0502 0.020 40.23 14.25 

  99.43 63.45 0.0502 0.020 36.19 14.33 

318 K 7.360 1.445 0.0505 0.020 80.37 2.343 

 21.45 6.220 0.0502 0.020 71.00 6.068 

 29.46 9.320 0.0502 0.020 68.36 8.024 

 41.62 16.43 0.0504 0.020 60.52 10.00 

 52.17 23.44 0.0505 0.020 55.07 11.38 

 60.10 28.37 0.0500 0.020 52.80 12.69 

 70.63 35.77 0.0505 0.020 49.36 13.81 

 78.13 42.12 0.0504 0.020 46.09 14.29 

 88.93 50.31 0.0513 0.020 43.43 15.06 

  99.43 61.06 0.0506 0.020 38.59 15.17 

 

Table A-II.16:  Experimental data for the adsorption of Zn2+ onto MWCNT-ttpy as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 100.4 72.11 0.0507 0.0200 28.21 11.18 

2 100.4 74.90 0.0509 0.0200 25.43 10.04 

3 100.4 60.34 0.0503 0.0200 39.92 15.94 

4 100.4 58.13 0.0501 0.0200 42.12 16.89 

5 100.4 30.22 0.0508 0.0200 69.91 27.65 

6 100.4 17.22 0.0505 0.0200 82.86 32.96 

7 100.4 2.982 0.0511 0.0200 97.03 38.14 

8 100.4 1.274 0.0506 0.0200 98.73 39.20 

9 100.4 0.433 0.0503 0.0200 99.57 39.76 

10 100.4 0.000 0.0502 0.0200 100.0 40.02 

 

 

Table A-II.17:  Experimental data for the adsorption of Zn2+ onto MWCNT-ttpy as a function of time 

[conditions: pH 5.5, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 100.4 82.33 0.0503 0.020 18.03 7.201 

10 100.4 79.74 0.0505 0.020 20.61 8.198 

15 100.4 74.22 0.0501 0.020 26.11 10.47 

20 100.4 69.44 0.0500 0.020 30.86 12.40 

30 100.4 64.21 0.0502 0.020 36.07 14.43 

45 100.4 59.42 0.0503 0.020 40.84 16.31 

60 100.4 56.74 0.0503 0.020 43.51 17.38 

75 100.4 47.33 0.0500 0.020 52.88 21.24 

90 100.4 43.14 0.0504 0.020 57.05 22.74 

120 100.4 39.22 0.0502 0.020 60.95 24.39 
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180 100.4 37.44 0.0502 0.020 62.72 25.10 

240 100.4 36.11 0.0501 0.020 64.05 25.68 

300 100.4 31.92 0.0501 0.020 68.22 27.35 

360 100.4 31.73 0.0501 0.020 68.41 27.43 

720 100.4 29.22 0.0501 0.020 70.91 28.43 

1080 100.4 28.01 0.0513 0.020 72.11 28.24 

1440 100.4 27.11 0.0507 0.020 73.01 28.93 

 

 

Table A-II.18:  Experimental data for the adsorption of Zn2+ onto MWCNT-ttpy as a function of adsorbent 

dose [conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

100.4 42.55 0.0302 0.020 57.64 38.34 

100.4 28.73 0.0504 0.020 71.40 28.46 

100.4 19.33 0.0757 0.020 80.75 21.43 

100.4 11.52 0.1004 0.020 88.53 17.71 

100.4 9.334 0.1500 0.020 90.71 12.15 

100.4 6.160 0.2005 0.020 93.87 9.404 

100.4 5.324 0.3009 0.020 94.70 6.322 

100.4 2.441 0.4001 0.020 97.57 4.899 

 

 

Table A-II.19:  Experimental data for the adsorption of Zn2+ onto MWCNT-ttpy as a function of temperature 

[conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 10.11 0.553 0.0500 0.020 94.53 3.823 

 20.22 1.442 0.0501 0.020 92.87 7.496 

 29.64 2.334 0.0504 0.020 92.13 10.84 

 39.87 3.665 0.0502 0.020 90.81 14.42 

 50.11 4.884 0.0500 0.020 90.25 18.09 

 59.66 7.442 0.0501 0.020 87.53 20.85 

 70.41 11.44 0.0503 0.020 83.75 23.45 

 80.16 16.33 0.0506 0.020 79.63 25.23 

 90.74 21.55 0.0506 0.020 76.25 27.35 

  99.68 28.55 0.0504 0.020 71.36 28.23 

303 K 10.11 0.411 0.0500 0.020 95.93 3.880 

 20.22 0.830 0.0507 0.020 95.90 7.649 

 29.64 1.442 0.0509 0.020 95.13 11.08 

 39.87 2.113 0.0501 0.020 94.70 15.07 

 50.11 3.118 0.0507 0.020 93.78 18.54 

 59.66 4.772 0.0502 0.020 92.00 21.87 

 70.41 8.220 0.0503 0.020 88.33 24.73 

 80.16 13.55 0.0505 0.020 83.10 26.38 
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 90.74 18.63 0.0509 0.020 79.47 28.33 

  99.68 26.11 0.0501 0.020 73.81 29.37 

313 K 10.11 0.221 0.0501 0.020 97.81 3.948 

 20.22 0.488 0.0500 0.020 97.59 7.893 

 29.64 0.774 0.0501 0.020 97.39 11.52 

 39.87 1.224 0.0503 0.020 96.93 15.37 

 50.11 1.772 0.0500 0.020 96.46 19.34 

 59.66 2.433 0.0500 0.020 95.92 22.89 

 70.41 4.553 0.0503 0.020 93.53 26.19 

 80.16 7.665 0.0502 0.020 90.44 28.88 

 90.74 13.44 0.0502 0.020 85.19 30.80 

  99.68 19.33 0.0502 0.020 80.61 32.01 

318 K 10.11 0.131 0.0505 0.020 98.70 3.952 

 20.22 0.228 0.0502 0.020 98.87 7.965 

 29.64 0.331 0.0502 0.020 98.88 11.68 

 39.87 0.755 0.0504 0.020 98.11 15.52 

 50.11 1.221 0.0505 0.020 97.56 19.36 

 59.66 2.114 0.0500 0.020 96.46 23.02 

 70.41 3.153 0.0505 0.020 95.52 26.64 

 80.16 4.332 0.0504 0.020 94.60 30.09 

 90.74 9.223 0.0513 0.020 89.84 31.78 

  99.68 16.33 0.0506 0.020 83.62 32.94 

 

Table A-II.20:  Separation factor values (RL) for the adsorption of Zn2+ onto MWCNT-COOH at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

7.360 0.786 0.727 0.663 0.638 

21.45 0.558 0.478 0.403 0.377 

29.46 0.478 0.400 0.330 0.306 

41.62 0.394 0.320 0.258 0.238 

52.17 0.341 0.273 0.217 0.199 

60.10 0.310 0.246 0.194 0.178 

70.63 0.277 0.217 0.170 0.155 

78.13 0.257 0.201 0.156 0.143 

88.93 0.233 0.181 0.140 0.127 

99.43 0.214 0.165 0.127 0.116 
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Table A-II.21:  Separation factor values (RL) for the adsorption of Zn2+ onto MWCNT-ttpy at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

10.11 0.304 0.196 0.126 0.079 

20.22 0.180 0.109 0.067 0.041 

29.64 0.130 0.077 0.047 0.028 

39.87 0.100 0.058 0.035 0.021 

50.11 0.081 0.047 0.028 0.017 

59.66 0.069 0.040 0.024 0.014 

70.41 0.059 0.034 0.020 0.012 

80.16 0.052 0.030 0.018 0.011 

90.74 0.046 0.026 0.016 0.009 

99.68 0.043 0.024 0.014 0.009 
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Appendix III 

 

Data for cadmium(II) and mercury(II) 

 

 

    Fig A-III.1:  Comparison of the various kinetic models fitted to the experimental data of Cd2+ (a-b) and 

Hg2+ (c-d) onto MWCNT-COOH and MWCNT-ttpy, respectively (pseudo-first order                , 

pseudo-second order               , intraparticle diffusion                 , Elovich                 ). 

 

 

 

 

Fig A-III.2:  The adsorption isotherms fitted into experimental data for the adsorption of Cd2+ onto MWCNT-

COOH at various temperatures (293 K            ,303 K            313 K             ,318 K           ). 
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Fig A-III.3:  The adsorption isotherms fitted into experimental data for the adsorption of Cd2+ onto MWCNT-

ttpy at various temperatures (293 K             ,303 K            , 313 K             ,318 K            ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-III.4:  The adsorption isotherms fitted into experimental data for the adsorption of Hg2+ onto MWCNT-

COOH at various temperatures (293 K             ,303 K             ,313 K              ,318 K            ). 
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Fig A-III.5:  The adsorption isotherms fitted into experimental data for the adsorption of Hg2+ onto MWCNT-

ttpy at various temperatures (293 K             ,303 K            , 313 K             ,318 K             ). 

 

Table A-III.1:  Operating conditions for the ICP-OES spectrometer used for Cd2+ determination 

Wavelength (Cd2+) 267.716 nm 

RF power 1300 W 

Plasma gas flow rate 15 dm3 min-1 

Pump 1.5 cm3 min-1 

Auxiliary gas flow rate 0.2 dm3 min-1 

Nebulizer gas flow rate 0.8 dm3 min-1 

Nebulizer pressure  2 bars 

Analyzer type Axial 

Replicates 3 

Sample read delay 60 s 

 

Table A-III.2:  Operating conditions for the CVAAS determination of Hg2+ by using NaBH4 as reductant. 

Analytical wavelength 235.6 nm 

Slit width 0.7 nm 

Radiation source Hollow cathode lamp for Hg 

QTA heating No flame 

Prepared measured volume 10 cm3 

Pre-reaction purge time 5 s 

Post reaction purge time 50 s 

Inert gas Argon 

Pressure 250-350 kPa 
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Table A-III.3:  Experimental data for the adsorption of Cd2+ onto MWCNT-COOH as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 102.6 9.730 0.0502 0.020 9.483 3.876 

2 102.6 9.970 0.0500 0.020 9.717 3.988 

3 102.6 12.14 0.0499 0.020 11.83 4.866 

4 102.6 13.39 0.0499 0.020 13.05 5.37 

5 102.6 19.19 0.0509 0.020 18.70 7.54 

6 102.6 22.36 0.0496 0.020 21.79 9.02 

7 102.6 24.47 0.0491 0.020 23.85 9.97 

8 102.6 39.18 0.0494 0.020 38.19 15.86 

9 102.6 52.38 0.0497 0.020 51.05 21.08 

10 102.6 60.49 0.0506 0.020 58.96 23.91 

 

 

Table A-III.4:  Experimental data for the adsorption of Cd2+ onto MWCNT-COOH as a function of time 

[conditions: pH 4.5, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 102.1 87.87 0.0497 0.02 13.94 5.726 

10 102.1 87.32 0.0503 0.02 14.48 5.877 

15 102.1 86.22 0.05 0.02 15.55 6.352 

20 102.1 85.93 0.05 0.02 15.84 6.468 

30 102.1 84.94 0.0506 0.02 16.81 6.783 

45 102.1 84.64 0.0503 0.02 17.10 6.942 

60 102.1 84.35 0.05 0.02 17.38 7.100 

75 102.1 84.15 0.0498 0.02 17.58 7.209 

90 102.1 83.88 0.0498 0.02 17.85 7.32 

120 102.1 83.57 0.0498 0.02 18.15 7.44 

180 102.1 82.39 0.0496 0.02 19.30 7.95 

240 102.1 81.22 0.0501 0.02 20.45 8.34 

300 102.1 80.55 0.0498 0.02 21.11 8.65 

360 102.1 79.81 0.0506 0.02 21.83 8.81 

720 102.1 79.08 0.05 0.02 22.55 9.21 

1080 102.1 78.22 0.0496 0.02 23.39 9.63 

1440 102.1 77.62 0.0503 0.02 23.98 9.73 
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Table A-III.5:  Experimental data for the adsorption of Cd2+ onto MWCNT-COOH as a function of adsorbent 

dose [conditions: pH 4.5, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

102.3 10.80 0.0298 0.02 10.56 7.25 

102.3 12.08 0.0500 0.02 11.81 4.83 

102.3 12.36 0.0754 0.02 12.08 3.28 

102.3 12.49 0.0998 0.02 12.21 2.503 

102.3 12.96 0.1496 0.02 12.67 1.733 

102.3 14.47 0.2001 0.02 14.14 1.446 

102.3 17.76 0.3010 0.02 17.36 1.180 

102.3 21.08 0.4020 0.02 20.61 1.049 

 

 

Table A-III.6: Experimental data for the adsorption of Cd2+ onto MWCNT-COOH as a function of 

temperature [conditions: pH 4.5, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 9.894 6.112 0.0503 0.020 38.23 1.504 

 20.52 14.36 0.0497 0.020 30.02 2.479 

 29.85 21.62 0.0496 0.020 27.57 3.319 

 40.49 29.77 0.0508 0.020 26.48 4.220 

 52.3 40.13 0.0499 0.020 23.27 4.878 

 59.77 46.91 0.0495 0.020 21.52 5.196 

 69.98 55.15 0.0505 0.020 21.19 5.873 

 80.71 65.16 0.0499 0.020 19.27 6.232 

 89.33 72.96 0.0503 0.020 18.33 6.509 

  100.5 83.66 0.0499 0.020 16.76 6.749 

303 K 9.894 6.992 0.0503 0.020 29.02 1.154 

 20.52 15.84 0.0503 0.020 23.40 1.861 

 29.85 23.6 0.0499 0.020 20.83 2.505 

 40.49 32.44 0.0500 0.020 20.13 3.220 

 52.3 43.09 0.0509 0.020 18.42 3.619 

 59.77 50.53 0.0497 0.020 15.40 3.718 

 69.98 59.50 0.0497 0.020 14.97 4.217 

 80.71 69.65 0.0499 0.020 13.83 4.433 

 89.33 77.53 0.0502 0.020 13.11 4.701 

  100.5 88.00 0.0494 0.020 12.50 5.061 

313 K 9.894 7.088 0.0502 0.020 28.06 1.118 

 20.52 16.11 0.0501 0.020 22.05 1.760 

 29.85 24.16 0.0505 0.020 18.97 2.253 

 40.49 33.44 0.0499 0.020 17.63 2.826 

 52.3 44.06 0.0509 0.020 16.48 3.238 

 59.77 50.66 0.0503 0.020 15.18 3.622 
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 69.98 60.55 0.0505 0.020 13.47 3.735 

 80.71 70.96 0.0502 0.020 12.19 3.884 

 89.33 79.17 0.0504 0.020 11.29 4.032 

  100.5 90.21 0.0502 0.020 10.29 4.100 

318 K 9.894 8.224 0.0503 0.020 16.70 0.664 

 20.52 17.34 0.0496 0.020 15.90 1.282 

 29.85 25.37 0.0498 0.020 14.93 1.799 

 40.49 34.41 0.0503 0.020 15.20 2.417 

 52.3 45.03 0.0498 0.020 14.54 2.920 

 59.77 51.88 0.0505 0.020 13.15 3.125 

 69.98 61.43 0.0510 0.020 12.21 3.353 

 80.71 72.05 0.0500 0.020 10.83 3.464 

 89.33 80.53 0.0498 0.020 9.778 3.534 

  100.5 91.16 0.0498 0.020 9.340 3.751 

 

 

Table A-III.7:  Experimental data for the adsorption of Cd2+ onto MWCNT-ttpy as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 102.6 80.51 0.0492 0.020 21.53 8.980 

2 102.6 61.34 0.0500 0.020 40.21 16.50 

3 102.6 34.81 0.0502 0.020 66.07 27.01 

4 102.6 26.14 0.0506 0.020 74.52 30.22 

5 102.6 18.22 0.0506 0.020 82.24 33.35 

6 102.6 5.371 0.0497 0.020 94.77 39.13 

7 102.6 2.864 0.0499 0.020 97.21 39.97 

8 102.6 0.947 0.0494 0.020 99.08 41.16 

9 102.6 1.545 0.0500 0.020 98.49 40.42 

10 102.6 0.808 0.0501 0.020 99.21 40.64 

 

 

Table A-III.8:  Experimental data for the adsorption of Cd2+ onto MWCNT-ttpy as a function of time 

[conditions: pH 4.5, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 102.1 31.31 0.0498 0.02 69.33 28.43 

10 102.1 29.55 0.0498 0.02 71.06 29.14 

15 102.1 26.58 0.0495 0.02 73.97 30.51 

20 102.1 21.51 0.0503 0.02 78.93 32.04 

30 102.1 19.61 0.0502 0.02 80.79 32.86 

45 102.1 15.33 0.0500 0.02 84.99 34.71 

60 102.1 14.830 0.0499 0.02 85.48 34.98 

75 102.1 14.160 0.0496 0.02 86.13 35.46 

90 102.1 13.810 0.0499 0.02 86.47 35.39 
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120 102.1 13.260 0.0500 0.02 87.01 35.54 

180 102.1 12.840 0.0499 0.02 87.42 35.78 

240 102.1 12.360 0.0504 0.02 87.89 35.61 

300 102.1 11.880 0.0505 0.02 88.36 35.73 

360 102.1 11.220 0.0503 0.02 89.01 36.14 

720 102.1 10.640 0.0502 0.02 89.58 36.44 

1080 102.1 10.880 0.0501 0.02 89.34 36.42 

1440 102.1 10.120 0.0501 0.02 90.09 36.72 

 

 

Table A-III.9:  Experimental data for the adsorption of Cd2+ onto MWCNT-ttpy as a function of adsorbent 

dose [conditions: pH 4.5, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

102.3 24.37 0.0303 0.02 76.18 51.44 

102.3 13.110 0.0496 0.02 87.18 35.96 

102.3 5.68 0.0754 0.02 94.45 25.63 

102.3 0.823 0.1029 0.02 99.20 19.72 

102.3 0.611 0.1491 0.02 99.40 13.64 

102.3 0.566 0.2032 0.02 99.45 10.01 

102.3 0.543 0.3002 0.02 99.47 6.779 

102.3 0.193 0.3997 0.02 99.81 5.109 

 

 

Table A-III.10: Experimental data for the adsorption of Cd2+ onto MWCNT-ttpy as a function of temperature 

[conditions: pH 4.5, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 9.894 0.226 0.0501 0.020 97.7 3.859 

 20.52 0.506 0.0499 0.020 97.53 8.022 

 29.85 0.814 0.0502 0.020 97.27 11.57 

 40.49 1.177 0.0501 0.020 97.09 15.69 

 52.30 1.622 0.0493 0.020 96.90 20.56 

 59.77 1.886 0.0508 0.020 96.84 22.79 

 69.98 2.966 0.0499 0.020 95.76 26.86 

 80.71 4.541 0.05 0.020 94.37 30.47 

 89.33 7.234 0.0505 0.020 91.90 32.51 

  100.5 12.03 0.0499 0.020 88.03 35.46 

303 K 9.894 0.273 0.0503 0.020 97.2 3.825 

 20.52 0.614 0.0500 0.020 97.0 7.962 

 29.85 1.007 0.0502 0.020 96.63 11.49 

 40.49 1.512 0.0501 0.020 96.27 15.56 

 52.30 2.441 0.0500 0.020 95.33 19.94 

 59.77 3.044 0.0502 0.020 94.91 22.60 
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 69.98 4.213 0.0502 0.020 93.98 26.20 

 80.71 6.442 0.0505 0.020 92.02 29.41 

 89.33 9.331 0.0501 0.020 89.55 31.94 

  100.5 15.84 0.0500 0.020 84.24 33.86 

313 K 9.894 0.443 0.0504 0.020 94.51 3.750 

 20.52 1.018 0.0497 0.020 97.51 7.848 

 29.85 1.677 0.0502 0.020 93.91 11.22 

 40.49 2.361 0.0504 0.020 95.32 15.13 

 52.30 3.13 0.0503 0.020 98.33 19.55 

 59.77 4.331 0.0493 0.020 92.40 22.49 

 69.98 5.824 0.0497 0.020 91.65 25.82 

 80.71 9.043 0.0505 0.020 89.58 28.38 

 89.33 13.81 0.0503 0.020 83.91 30.03 

  100.5 19.31 0.0499 0.020 81.19 32.54 

318 K 9.894 0.511 0.0497 0.020 94.8 3.776 

 20.52 1.141 0.0499 0.020 94.4 7.767 

 29.85 1.831 0.0504 0.020 93.9 11.12 

 40.49 2.933 0.0491 0.020 92.76 15.30 

 52.30 4.288 0.0506 0.020 91.80 18.98 

 59.77 5.243 0.0502 0.020 91.23 21.72 

 69.98 7.663 0.0496 0.020 89.05 25.13 

 80.71 11.21 0.0506 0.020 86.11 27.47 

 89.33 15.16 0.0504 0.020 83.03 29.43 

  100.5 22.81 0.0510 0.020 77.30 30.47 

 

Table A-III.9:  Separation factor values (RL) for the adsorption of Cd2+ onto MWCNT-COOH at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

9.894 0.819 0.824 0.783 0.855 

20.52 0.685 0.693 0.635 0.739 

29.85 0.599 0.608 0.545 0.661 

40.49 0.524 0.533 0.469 0.589 

52.3 0.461 0.470 0.406 0.526 

59.77 0.428 0.436 0.374 0.493 

69.98 0.389 0.398 0.338 0.454 

80.71 0.356 0.365 0.307 0.419 

89.33 0.333 0.341 0.286 0.394 

100.5 0.308 0.315 0.262 0.366 
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Table A-III.10:  Separation factor values (RL) for the adsorption of Cd2+ onto MWCNT-ttpy at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

9.894 0.1534 0.1918 0.2598 0.2879 

20.52 0.0803 0.1027 0.1447 0.1631 

29.85 0.0566 0.0729 0.1042 0.1182 

40.49 0.0424 0.0548 0.0790 0.0899 

52.30 0.0331 0.0430 0.0623 0.0710 

59.77 0.0291 0.0378 0.0549 0.0627 

69.98 0.0250 0.0325 0.0473 0.0541 

80.71 0.0217 0.0283 0.0412 0.0472 

89.33 0.0197 0.0256 0.0374 0.0429 

100.5 0.0175 0.0228 0.0334 0.0383 

 

Table A-III.13:  Experimental data for the adsorption of Hg2+ onto MWCNT-COOH as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 53.02 23.42 0.0505 0.025 55.83 14.65 

2 53.02 21.11 0.0497 0.025 60.18 16.05 

3 53.02 19.46 0.0508 0.025 63.30 16.52 

4 53.02 16.54 0.0514 0.025 68.80 17.74 

5 53.02 14.22 0.0513 0.025 73.18 18.91 

6 53.02 12.16 0.0514 0.025 77.07 19.87 

7 53.02 9.580 0.0515 0.025 81.93 21.09 

8 53.02 8.681 0.0516 0.025 83.63 21.48 

9 53.02 8.453 0.0500 0.025 84.06 22.28 

10 53.02 7.493 0.0515 0.025 85.87 22.10 

 

Table A-III.14:  Experimental data for the adsorption of Hg2+ onto MWCNT-COOH as a function of time 

[conditions: pH 6.0, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 51.83 42.23 0.0501 0.025 18.52 4.790 

10 51.83 39.18 0.0506 0.025 24.41 6.250 

15 51.83 36.22 0.0512 0.025 30.50 7.720 

20 51.83 30.14 0.0511 0.025 41.85 10.61 

30 51.83 28.24 0.0513 0.025 45.51 11.50 

45 51.83 25.77 0.0499 0.025 50.28 13.06 

60 51.83 20.35 0.0504 0.025 60.74 15.62 

75 51.83 18.14 0.0497 0.025 65.00 16.95 

90 51.83 16.29 0.0498 0.025 68.57 17.84 

120 51.83 15.05 0.0502 0.025 70.96 18.32 

180 51.83 14.88 0.0505 0.025 71.29 18.29 
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240 51.83 13.14 0.0509 0.025 74.65 19.00 

300 51.83 13.03 0.0504 0.025 74.86 19.25 

360 51.83 12.81 0.0505 0.025 75.28 19.32 

720 51.83 12.55 0.0503 0.025 75.79 19.52 

1080 51.83 12.43 0.0502 0.025 76.02 19.62 

1440 51.83 12.22 0.0501 0.025 76.42 19.77 

 

Table A-III.15:  Experimental data for the adsorption of Hg2+ onto MWCNT-COOH as a function of adsorbent 

dose [conditions: pH 6.0, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 
% 

adsorbed 
qe/mg g-1 

53.02 16.80 0.2990 0.025 68.31 3.028 

53.02 12.68 0.0515 0.025 76.08 19.58 

53.02 11.16 0.0762 0.025 78.95 13.73 

53.02 9.841 0.1009 0.025 81.44 10.70 

53.02 9.116 0.1495 0.025 82.81 7.342 

53.02 8.771 0.2005 0.025 83.46 5.527 

53.02 7.173 0.3011 0.025 86.47 3.807 

53.02 6.448 0.4050 0.025 87.84 2.875 

 

Table A-III.16: Experimental data for the adsorption of Hg2+ onto MWCNT-COOH as a function of 

temperature [conditions: pH 6.0, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 9.884 0.988 0.0492 0.025 90.00 3.616 

 20.16 2.744 0.0497 0.025 86.39 7.008 

 29.84 4.889 0.0500 0.025 83.62 9.980 

 40.15 7.981 0.0502 0.025 80.12 12.82 

 50.18 10.84 0.0504 0.025 78.40 15.61 

 60.26 14.31 0.0503 0.025 76.25 18.27 

 69.52 17.33 0.0499 0.025 75.07 20.92 

 81.72 22.54 0.0506 0.025 72.42 23.39 

 90.19 29.31 0.0504 0.025 67.50 24.16 

  100.2 37.18 0.05 0.025 62.88 25.19 

303 K 9.884 0.722 0.0501 0.025 92.7 3.657 

 20.16 1.558 0.0499 0.025 92.3 7.456 

 29.84 2.533 0.0495 0.025 91.51 11.03 

 40.15 4.334 0.0506 0.025 89.21 14.16 

 50.18 6.119 0.0504 0.025 87.81 17.48 

 60.26 8.772 0.0507 0.025 85.44 20.31 

 69.52 11.18 0.0495 0.025 83.92 23.57 

 81.72 15.18 0.0502 0.025 81.42 26.51 

 90.19 19.34 0.0505 0.025 78.56 28.06 

  100.2 25.14 0.0509 0.025 74.90 29.48 
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Table A-III.17:  Experimental data for the adsorption of Hg2+ onto MWCNT-ttpy as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 53.02 9.114 0.0513 0.025 82.81 21.40 

2 53.02 8.696 0.0510 0.025 83.62 21.73 

3 53.02 8.353 0.0500 0.025 84.25 22.33 

4 53.02 7.751 0.0505 0.025 85.38 22.41 

5 53.02 7.534 0.0516 0.025 85.79 22.04 

6 53.02 7.368 0.0504 0.025 86.12 22.65 

7 53.02 6.836 0.0503 0.025 87.13 22.96 

8 53.02 6.748 0.0501 0.025 87.29 23.09 

9 53.02 6.642 0.0497 0.025 87.47 23.33 

10 53.02 6.551 0.0512 0.025 87.64 22.69 

 

Table A-III.18:  Experimental data for the adsorption of Hg2+ onto MWCNT-ttpy as a function of time 

[conditions: pH 6.0, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 51.83 24.84 0.0503 0.025 52.07 13.42 

10 51.83 18.13 0.0501 0.025 65.02 16.82 

15 51.83 14.22 0.0498 0.025 72.56 18.88 

20 51.83 11.96 0.0502 0.025 76.92 19.86 

30 51.83 10.29 0.0509 0.025 80.15 20.40 

45 51.83 9.811 0.0494 0.025 81.07 21.27 

60 51.83 8.126 0.0497 0.025 84.34 21.99 

75 51.83 7.887 0.0499 0.025 84.80 22.02 

90 51.83 7.722 0.0500 0.025 85.10 22.05 

120 51.83 7.493 0.0496 0.025 85.54 22.35 

180 51.83 7.191 0.0505 0.025 86.13 22.10 

240 51.83 6.874 0.0507 0.025 86.74 22.17 

300 51.83 6.871 0.0512 0.025 86.74 21.95 

360 51.83 6.862 0.0504 0.025 86.76 22.31 

720 51.83 6.853 0.0505 0.025 86.78 22.27 

1080 51.83 6.744 0.0501 0.025 86.99 22.50 

1440 51.83 6.732 0.0503 0.025 87.01 22.41 
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Table A-III.19:  Experimental data for the adsorption of Hg2+ onto MWCNT-ttpy as a function of adsorbent 

dose [conditions: pH 6.0, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

53.02 7.729 0.2910 0.025 85.42 3.89 

53.02 6.836 0.0509 0.025 87.11 22.68 

53.02 6.32 0.0751 0.025 88.08 15.55 

53.02 6.22 0.1006 0.025 88.27 11.630 

53.02 6.18 0.1488 0.025 88.34 7.870 

53.02 6.06 0.2003 0.025 88.57 5.861 

53.02 5.92 0.3000 0.025 88.83 3.925 

53.02 5.81 0.4013 0.025 89.04 2.941 

 

Table A-III.20: Experimental data for the adsorption of Hg2+ onto MWCNT-ttpy as a function of temperature 

[conditions: pH 6.0, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 9.884 0.241 0.0503 0.025 97.56 3.834 

 20.16 0.84 0.0497 0.025 95.81 7.773 

 29.84 2.114 0.0496 0.025 92.92 11.180 

 40.15 3.228 0.0508 0.025 91.96 14.536 

 50.18 5.344 0.0499 0.025 89.35 17.970 

 60.26 7.134 0.0495 0.025 88.16 21.465 

 69.52 8.994 0.0505 0.025 87.06 23.971 

 81.72 13.14 0.0499 0.025 83.92 27.487 

 90.19 17.22 0.0503 0.025 80.91 29.014 

  100.16 24.67 0.0499 0.025 75.37 30.257 

303 K 9.884 0 0.0501 0.025 98.84 3.946 

 20.16 0.422 0.0497 0.025 98.69 7.943 

 29.84 1.224 0.0499 0.025 95.39 11.469 

 40.15 2.116 0.0505 0.025 95.09 15.063 

 50.18 3.044 0.0504 0.025 94.27 18.705 

 60.26 4.187 0.0495 0.025 93.46 22.656 

 69.52 5.17 0.0498 0.025 91.92 25.842 

 81.72 7.225 0.0503 0.025 93.12 29.620 

 90.19 12.18 0.0501 0.025 86.68 31.142 

  100.16 18.22 0.0496 0.025 81.94 33.040 
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Table A-III.21:  Separation factor values (RL) for the adsorption of Hg2+ onto MWCNT-COOH at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

9.894 0.0302 0.0181 0.0110 0.0058 

20.52 0.0148 0.0088 0.0053 0.0028 

29.85 0.0102 0.0061 0.0037 0.0019 

40.49 0.0076 0.0045 0.0027 0.0014 

52.30 0.0059 0.0035 0.0021 0.0011 

59.77 0.0051 0.0030 0.0018 0.0010 

69.98 0.0044 0.0026 0.0016 0.0008 

80.71 0.0038 0.0023 0.0014 0.0007 

89.33 0.0034 0.0020 0.0012 0.0006 

100.5 0.0031 0.0018 0.0011 0.0006 

 

Table A-III.22:  Separation factor values (RL) for the adsorption of Hg2+ onto MWCNT-ttpy at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

9.894 0.374 0.355 0.451 0.598 

20.52 0.224 0.209 0.284 0.417 

29.85 0.165 0.154 0.214 0.330 

40.49 0.128 0.118 0.167 0.266 

52.3 0.102 0.094 0.135 0.219 

59.77 0.090 0.083 0.120 0.197 

69.98 0.078 0.072 0.104 0.174 

80.71 0.068 0.063 0.092 0.154 

89.33 0.062 0.057 0.083 0.141 

100.5 0.056 0.051 0.075 0.128 
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Appendix IV 

Data for competitive adsorption of divalent metal ions 

 

 

 

 

 

 

 

 

Fig A-IV.1:  Langmuir adsorption isotherm models fitted for the adsorption of Pb2+, Cd2+, Cu2+ and Zn2+ onto 

MWCNT-ttpy in a multi-component adsorption system (Pb2+                  , Cd2+                   , Cu2+                

and Zn2+               ). 

 

(A) Effect of pH on multicomponent adsorption 

Table A-IV.1:  Experimental data for the competitive adsorption of Pb2+ onto MWCNT-ttpy as a function of 

pH [conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH Mass/g Ci/mg dm-3 Ceq/mg dm-3 Vol./dm3 % adsorbed qe/mg g-1 

1 0.2005 52.69 38.45 0.025 27.03 1.776 

2 0.2001 52.69 33.27 0.025 36.86 2.426 

3 0.2002 52.69 21.88 0.025 58.47 3.847 

4 0.2002 52.69 12.67 0.025 75.95 4.998 

5 0.2004 52.69 6.140 0.025 88.35 5.807 

6 0.1999 52.69 2.745 0.025 94.81 6.247 

7 0.2002 52.69 0.661 0.025 98.75 6.497 

8 0.2002 52.69 0.222 0.025 99.58 6.552 

9 0.2000 52.69 0.134 0.025 99.75 6.570 

10 0.2005 52.69 0.041 0.025 99.92 6.565 

 

Table A-IV.2:  Experimental data for the competitive adsorption of Cu2+ onto MWCNT-ttpy as a function of 

pH [conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH Mass/g Ci/mg dm-3 Ceq/mg dm-3 Vol./dm3 % adsorbed qe/mg g-1 

1 0.2005 50.48 39.82 0.025 21.12 1.329 

2 0.2001 50.48 36.02 0.025 28.65 1.807 

3 0.2002 50.48 24.11 0.025 52.24 3.293 

4 0.2002 50.48 20.72 0.025 58.95 3.716 

5 0.2004 50.48 13.99 0.025 72.29 4.552 

6 0.1999 50.48 10.12 0.025 79.95 5.048 

7 0.2002 50.48 1.284 0.025 97.46 6.143 

8 0.2002 50.48 0.431 0.025 99.15 6.250 

9 0.2000 50.48 0.282 0.025 99.44 6.275 

10 0.2005 50.48 0.114 0.025 99.77 6.280 

  

q
e/

m
g
 g

-1
 

Ceq/mg dm-3 

(b) 
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Table A-IV.3:  Experimental data for the competitive adsorption of Cd2+ onto MWCNT-ttpy as a function of 

pH [conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH Mass/g Ci/mg dm-3 Ceq/mg dm-3 Vol./dm3 % adsorbed qe/mg g-1 

1 0.2005 49.96 40.76 0.025 18.41 1.147 

2 0.2001 49.96 37.88 0.025 24.18 1.509 

3 0.2002 49.96 26.11 0.025 47.74 2.978 

4 0.2002 49.96 21.23 0.025 57.51 3.588 

5 0.2004 49.96 18.24 0.025 63.49 3.957 

6 0.1999 49.96 12.37 0.025 75.24 4.701 

7 0.2002 49.96 6.143 0.025 87.70 5.472 

8 0.2002 49.96 2.334 0.025 95.33 5.947 

9 0.2000 49.96 1.716 0.025 96.57 6.031 

10 0.2005 49.96 0.922 0.025 98.15 6.114 

 

 

Table A-IV.4: Experimental data for the competitive adsorption of Zn2+ onto MWCNT-ttpy as a function of 

pH [conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH Mass/g Ci/mg dm-3 Ceq/mg dm-3 Vol./dm3 % adsorbed qe/mg g-1 

1 0.2005 52.16 41.14 0.025 21.13 1.374 

2 0.2001 52.16 41.57 0.025 20.30 1.323 

3 0.2002 52.16 37.3 0.025 28.49 1.856 

4 0.2002 52.16 35.9 0.025 31.17 2.030 

5 0.2004 52.16 33.25 0.025 36.25 2.359 

6 0.1999 52.16 32.16 0.025 38.34 2.501 

7 0.2002 52.16 16.82 0.025 67.75 4.413 

8 0.2002 52.16 3.546 0.025 93.20 6.071 

9 0.2000 52.16 1.553 0.025 97.02 6.326 

10 0.2005 52.16 1.598 0.025 96.94 6.304 

 

 

(B) Multicomponent adsorption of metal ion species at same concentration 

Table A-IV.5:  Experimental data for the competitive adsorption of Pb2+ onto MWCNT-ttpy in a 

multicomponent system at the same concentration [conditions: pH 5.5, contact time 24 h, 

agitation speed 150 rpm, temperature 20 °C] 

Mass/g Ci/mg dm-3 Ceq/mg dm-3 Vol./dm3 % adsorbed qe/mg g-1 

0.2004 9.992 1.482 0.025 85.17 1.062 

0.2008 20.16 2.22 0.025 88.99 2.234 

0.1997 31.24 4.47 0.025 85.69 3.351 

0.2003 40.22 6.824 0.025 83.03 4.168 

0.2000 49.83 10.74 0.025 78.45 4.886 

0.1992 60.27 14.31 0.025 76.26 5.768 
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Table A-IV.6:  Experimental data for the competitive adsorption of Zn2+ onto MWCNT-ttpy in a 

multicomponent system at the same concentration [conditions: pH 5.5, contact time 24 h, 

agitation speed 150 rpm, temperature 20 °C] 

Mass/g Ci/mg dm-3 Ceq/mg dm-3 Vol./dm3 % adsorbed qe/mg g-1 

0.2004 10.04 6.014 0.025 40.10 0.502 

0.2008 19.98 15.96 0.025 20.12 0.500 

0.1997 30.16 24.69 0.025 18.14 0.685 

0.2003 40.22 32 0.025 20.44 1.026 

0.2000 49.88 39.19 0.025 21.43 1.336 

0.1992 60.24 41.24 0.025 31.54 2.385 

 

Table A-IV.7:  Experimental data for the competitive adsorption of Cu2+ onto MWCNT-ttpy in a 

multicomponent system at the same concentration [conditions: pH 5.5, contact time 24 h, 

agitation speed 150 rpm, temperature 20 °C] 

Mass/g Ci/mg dm-3 Ceq/mg dm-3 Vol./dm3 % adsorbed qe/mg g-1 

0.2004 10.19 1.884 0.025 81.51 1.036 

0.2008 20.42 3.184 0.025 84.41 2.146 

0.1997 28.64 5.336 0.025 81.37 2.917 

0.2003 41.29 8.115 0.025 80.35 4.141 

0.2000 50.04 14.28 0.025 71.46 4.470 

0.1992 60.18 17.24 0.025 71.35 5.389 

 

 

Table A-IV.8: Experimental data for the competitive adsorption of Cd2+ onto MWCNT-ttpy in a 

multicomponent system at the same concentration [conditions: pH 5.5, contact time 24 h, 

agitation speed 150 rpm, temperature 20 °C] 

Mass/g Ci/mg dm-3 Ceq/mg dm-3 Vol./dm3 % adsorbed qe/mg g-1 

0.2004 9.986 2.141 0.025 78.56 0.979 

0.2008 19.88 4.211 0.025 78.82 1.951 

0.1997 30.22 7.184 0.025 76.23 2.884 

0.2003 39.84 10.22 0.025 74.35 3.697 

0.2000 49.72 17.33 0.025 65.14 4.049 

0.1992 58.21 21.26 0.025 63.48 4.637 
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(C) Multicomponent adsorption with one component at a fixed concentration and the others at 

varying initial metal ion concentrations 

(a).  Effect of multicomponent concentration on Pb2+ adsorption from aqueous solutions onto MWCNT-ttpy 

Table A-IV.9:  Effect of initial concentration on multicomponent adsorption of Pb2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

20.14 4.331 0.1997 0.025 78.50 1.979 0.457 

20.66 6.220 0.2008 0.025 69.89 1.798 0.289 

19.88 7.470 0.2011 0.025 62.42 1.543 0.207 

19.74 7.824 0.2004 0.025 60.36 1.487 0.190 

20.42 10.74 0.2000 0.025 47.40 1.210 0.113 

 

Table A-IV.10:  Effect of initial concentration on multicomponent adsorption of Zn2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

9.877 6.014 0.1997 0.025 39.11 0.484 0.080 

19.24 12.44 0.2008 0.025 35.34 0.847 0.068 

30.15 20.44 0.2011 0.025 32.21 1.207 0.059 

41.18 32.00 0.2004 0.025 22.29 1.145 0.036 

49.88 39.19 0.2000 0.025 21.43 1.336 0.034 

 

Table A-IV.11:  Effect of initial concentration on multicomponent adsorption of Cu2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

9.922 1.032 0.1997 0.025 89.60 1.113 1.078 

20.17 6.471 0.2008 0.025 67.92 1.706 0.264 

30.06 12.08 0.2011 0.025 59.81 2.235 0.185 

39.28 16.41 0.2004 0.025 58.22 2.853 0.174 

50.04 21.44 0.2000 0.025 57.15 3.575 0.167 

 

Table A-IV.12:  Effect of initial concentration on multicomponent adsorption of Cd2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

8.766 2.141 0.1997 0.025 75.58 0.829 0.387 

18.19 4.211 0.2008 0.025 76.85 1.740 0.413 

28.24 7.184 0.2011 0.025 74.56 2.618 0.364 

41.16 10.22 0.2004 0.025 75.17 3.860 0.378 

49.72 12.33 0.2000 0.025 75.20 4.674 0.379 
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(b).  Effect of multicomponent concentration on Cu2+ adsorption from aqueous solutions onto MWCNT-ttpy 

Table A-IV.13:  Effect of initial concentration on multicomponent adsorption of Cu2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

18.77 1.655 0.2008 0.025 91.18 2.131 1.288 

19.71 3.145 0.2116 0.025 84.04 1.957 0.622 

20.16 6.144 0.2004 0.025 69.52 1.749 0.285 

20.28 7.886 0.2002 0.025 61.11 1.548 0.196 

21.74 12.41 0.2000 0.025 42.92 1.167 0.094 

 

Table A-IV.14:  Effect of initial concentration on multicomponent adsorption of Pb2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

8.714 3.639 0.2008 0.025 58.24 0.632 0.174 

20.26 9.334 0.2116 0.025 53.93 1.291 0.138 

31.22 14.22 0.2004 0.025 54.45 2.121 0.149 

40.28 19.87 0.2002 0.025 50.67 2.549 0.128 

48.72 24.15 0.2000 0.025 50.43 3.074 0.127 

 

Table A-IV.15:  Effect of initial concentration on multicomponent adsorption of Zn2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

9.182 6.114 0.2008 0.025 33.41 0.382 0.062 

20.44 14.22 0.2116 0.025 30.43 0.735 0.052 

31.26 24.18 0.2004 0.025 22.65 0.883 0.037 

40.27 32.56 0.2002 0.025 19.15 0.963 0.030 

50.11 43.47 0.2000 0.025 13.25 0.831 0.019 

 

Table A-IV.16:  Effect of initial concentration on multicomponent adsorption of Cd2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

10.04 5.188 0.2008 0.025 48.33 0.604 0.116 

21.54 11.22 0.2116 0.025 47.91 1.219 0.109 

30.26 17.16 0.2004 0.025 43.29 1.634 0.095 

39.84 24.18 0.2002 0.025 39.31 1.956 0.081 

50.29 31.22 0.2000 0.025 37.92 2.386 0.076 
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(c).  Effect of multicomponent concentration on Cd2+ adsorption from aqueous solutions onto MWCNT-ttpy 

Table A-IV.17:  Effect of initial concentration on multicomponent adsorption of Cd2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

18.22 0.876 0.2009 0.025 95.19 2.158 2.464 

19.81 1.442 0.2004 0.025 92.72 2.291 1.589 

19.13 1.994 0.2022 0.025 89.58 2.119 1.063 

19.76 5.174 0.2014 0.025 73.82 1.811 0.350 

20.14 5.889 0.199 0.025 70.76 1.792 0.304 

 

Table A-IV.18:  Effect of initial concentration on multicomponent adsorption of Pb2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

9.177 3.188 0.2009 0.025 65.26 0.745 0.234 

20.81 12.37 0.2004 0.025 40.56 1.053 0.085 

30.54 19.52 0.2022 0.025 36.08 1.363 0.070 

38.14 26.47 0.2014 0.025 30.60 1.449 0.055 

50.08 38.21 0.199 0.025 23.70 1.493 0.039 

 

Table A-IV.19:  Effect of initial concentration on multicomponent adsorption of Zn2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

9.882 8.224 0.2009 0.025 16.78 0.206 0.025 

19.24 16.14 0.2004 0.025 16.11 0.387 0.024 

29.27 26.14 0.2022 0.025 10.69 0.387 0.015 

39.26 35.22 0.2014 0.025 10.29 0.501 0.014 

50.21 46.18 0.199 0.025 8.026 0.507 0.011 

 

Table A-IV.20:  Effect of initial concentration on multicomponent adsorption of Cu2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

9.664 1.441 0.2009 0.025 85.09 1.023 0.710 

20.05 5.477 0.2004 0.025 72.68 1.818 0.332 

30.43 9.247 0.2022 0.025 69.61 2.619 0.283 

38.29 18.25 0.2014 0.025 52.34 2.488 0.136 

49.22 26.17 0.199 0.025 46.83 2.899 0.111 
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(d).  Effect of multicomponent concentration on Zn2+ adsorption from aqueous solutions onto MWCNT-ttpy 

Table A-IV.21:  Effect of initial concentration on multicomponent adsorption of Zn2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

20.16 16.14 0.2006 0.025 19.94 0.501 0.031 

20.44 17.26 0.2014 0.025 15.56 0.395 0.023 

20.31 18.27 0.2005 0.025 10.04 0.254 0.014 

19.24 18.15 0.201 0.025 5.665 0.136 0.007 

19.17 18.24 0.206 0.025 4.851 0.113 0.006 

 

Table A-IV.22:  Effect of initial concentration on multicomponent adsorption of Pb2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

9.924 2.041 0.2006 0.025 79.43 0.982 0.481 

20.18 4.221 0.2014 0.025 79.08 1.981 0.469 

30.05 12.38 0.2005 0.025 58.80 2.203 0.178 

40.12 27.29 0.201 0.025 31.98 1.596 0.058 

49.86 31.28 0.206 0.025 37.26 2.255 0.072 

 

Table A-IV.23:  Effect of initial concentration on multicomponent adsorption of Cu2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

10.22 4.044 0.2006 0.025 60.43 0.770 0.190 

19.64 6.148 0.2014 0.025 68.70 1.675 0.272 

30.09 18.21 0.2005 0.025 39.48 1.481 0.081 

41.28 28.72 0.201 0.025 30.43 1.562 0.054 

51.23 31.25 0.206 0.025 39.00 2.425 0.078 

 

Table A-IV.24:  Effect of initial concentration on multicomponent adsorption of Cd2+ onto MWCNT-ttpy 

[conditions: conditions: pH 5.5, contact time 24 h, agitation speed 150 rpm, temperature 20 

°C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

11.16 1.247 0.2006 0.025 88.83 1.235 0.991 

21.28 3.745 0.2014 0.025 82.40 2.177 0.581 

30.12 10.18 0.2005 0.025 66.20 2.486 0.244 

42.29 18.54 0.201 0.025 56.16 2.954 0.159 

51.04 26.81 0.206 0.025 47.47 2.941 0.110 
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Appendix V 

 

Data for Bisphenol (BPA) and Ibuprofen (IBP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-V.1: Calibration graph of BPA 

 

 

Fig A-V.2: Residual plot of BPA 
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Fig A-V.3:  Calibration graph of IBP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-V.4:  Residual plot of IBP 
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The chromatograms of standards and samples for the determination of initial and final concentrations of BPA 

and IBP in aqueous solutions were determined by using the LC method reported. 

 

Fig A-V.5:  Chromatogram for BPA standard 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-V.6:  UV spectrum of BPA 
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Fig A-V.7:  Chromatogram of IBP standard 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-V.8:  UV spectrum of IBP 
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Table A-V.1:  Experimental data for the adsorption of BPA onto MWCNT-COOH as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

1 50.079 0.251 0.0503 0.025 99.50 24.77 

2 50.079 1.618 0.0506 0.025 96.79 23.95 

3 50.079 3.655 0.0504 0.025 92.72 23.03 

4 50.079 6.926 0.0505 0.025 86.19 21.37 

5 50.079 7.366 0.0503 0.025 85.31 21.23 

6 50.079 9.602 0.0509 0.025 80.83 19.88 

7 50.079 12.26 0.0501 0.025 75.51 18.87 

8 50.079 14.69 0.0500 0.025 70.66 17.69 

9 50.079 22.67 0.0493 0.025 54.74 13.90 

10 50.079 23.19 0.0501 0.025 53.70 13.42 

 

Table A-V.2:  Experimental data for the adsorption of BPA onto MWCNT-COOH as a function of time 

[conditions: pH 7.0, agitation speed 150 rpm, temperature 25 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 42.78 35.96 0.0500 0.025 15.95 3.411 

10 42.78 35.74 0.0500 0.025 16.45 3.518 

15 42.78 32.65 0.0500 0.025 23.67 5.064 

20 42.78 30.83 0.0500 0.025 27.94 5.976 

30 42.78 26.32 0.0495 0.025 38.47 8.312 

45 42.78 24.31 0.0501 0.025 43.17 9.215 

60 42.78 22.35 0.0496 0.025 47.77 10.30 

75 42.78 21.23 0.0498 0.025 50.38 10.82 

90 42.78 19.08 0.0508 0.025 55.40 11.66 

120 42.78 17.45 0.0498 0.025 59.22 12.72 

180 42.78 13.26 0.0503 0.025 69.01 14.67 

240 42.78 11.78 0.0508 0.025 72.45 15.25 

300 42.78 11.53 0.0506 0.025 73.04 15.44 

360 42.78 10.95 0.0507 0.025 74.40 15.69 

720 42.78 10.64 0.0498 0.025 75.12 16.13 

1080 42.78 9.715 0.0507 0.025 77.29 16.30 

1440 42.78 9.554 0.0504 0.025 77.67 16.48 
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Table A-V.3:  Experimental data for the adsorption of BPA onto MWCNT-COOH as a function of adsorbent 

dose [conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

45.58 20.66 0.0307 0.025 54.67 20.29 

45.58 12.14 0.0515 0.025 73.37 16.23 

45.58 7.504 0.0754 0.025 83.54 12.62 

45.58 6.060 0.0993 0.025 86.70 9.95 

45.58 2.851 0.1513 0.025 93.75 7.060 

45.58 0.839 0.2009 0.025 98.16 5.567 

45.58 0.205 0.2996 0.025 99.55 3.786 

45.58 0.041 0.4004 0.025 99.91 2.843 

 

Table A-V.4:  Experimental data for the adsorption of BPA onto MWCNT-COOH as a function of temperature 

[conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 8.002 0.303 0.0502 0.025 76.98 3.834 

 17.24 1.211 0.0493 0.025 80.12 8.126 

 26.15 2.419 0.05 0.025 79.10 11.87 

 35.10 4.677 0.0497 0.025 76.07 15.31 

 45.58 7.729 0.0497 0.025 75.69 19.04 

 53.59 10.28 0.0493 0.025 72.19 21.96 

 62.45 14.15 0.0508 0.025 69.00 23.77 

 70.95 18.91 0.05 0.025 65.04 26.02 

 80.21 26.32 0.0501 0.025 59.88 26.89 

  91.44 35.64 0.0505 0.025 55.80 27.62 

303 K 8.002 0.281 0.05 0.025 77.21 3.860 

 17.24 1.009 0.0503 0.025 81.13 8.065 

 26.15 2.346 0.0505 0.025 79.35 11.78 

 35.10 4.081 0.0504 0.025 77.56 15.39 

 45.58 7.052 0.0504 0.025 77.05 19.11 

 53.59 8.877 0.0511 0.025 74.52 21.87 

 62.45 12.08 0.0503 0.025 71.96 25.04 

 70.95 17.36 0.0498 0.025 66.99 26.90 

 80.21 24.76 0.0503 0.025 61.62 27.56 

  91.44 32.04 0.0505 0.025 59.39 29.40 

313 K 8.002 0.263 0.0502 0.025 77.39 3.854 

 17.24 0.887 0.0493 0.025 81.74 8.290 

 26.15 1.891 0.0500 0.025 80.86 12.13 

 35.10 3.400 0.0497 0.025 79.26 15.95 

 45.58 5.959 0.0497 0.025 79.24 19.93 

 53.59 7.783 0.0493 0.025 76.34 23.23 

 62.45 10.70 0.0508 0.025 73.94 25.47 



 
  

347 
 
 

 70.95 16.30 0.0500 0.025 68.31 27.32 

 80.21 21.63 0.0501 0.025 65.09 29.23 

  91.44 29.26 0.0505 0.025 62.18 30.78 

318 K 8.00 0.243 0.0501 0.025 77.59 3.872 

 17.24 0.736 0.0497 0.025 82.49 8.299 

 26.15 1.708 0.0503 0.025 81.47 12.148 

 35.10 2.820 0.0509 0.025 80.71 15.86 

 45.58 4.849 0.0500 0.025 81.45 20.36 

 53.59 7.051 0.0512 0.025 77.56 22.72 

 62.45 10.28 0.0503 0.025 74.54 25.93 

 70.95 13.26 0.0506 0.025 72.11 28.50 

 80.21 17.45 0.0511 0.025 69.74 30.71 

  91.44 25.81 0.0504 0.025 65.63 32.55 

 

Table A-V.5:  Experimental data for the adsorption of BPA onto MWCNT-ttpy as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

1 50.079 0.156 0.0502 0.025 99.69 24.86 

2 50.079 0.000 0.0499 0.025 100.0 25.09 

3 50.079 0.137 0.0501 0.025 99.73 24.92 

4 50.079 0.447 0.0502 0.025 99.11 24.72 

5 50.079 0.490 0.0494 0.025 99.02 25.10 

6 50.079 1.293 0.0505 0.025 97.42 24.15 

7 50.079 1.498 0.0499 0.025 97.01 24.34 

8 50.079 2.554 0.0504 0.025 94.90 23.57 

9 50.079 2.810 0.0509 0.025 94.39 23.22 

10 50.079 4.069 0.0509 0.025 91.88 22.60 
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Table A-V.6:  Experimental data for the adsorption of BPA onto MWCNT-ttpy as a function of time 

[conditions: pH 7.0, agitation speed 150 rpm, temperature 25 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 42.78 26.38 0.0500 0.025 38.34 8.104 

10 42.78 25.44 0.0500 0.025 40.52 8.548 

15 42.78 24.21 0.0500 0.025 43.41 9.435 

20 42.78 23.82 0.0500 0.025 44.32 9.480 

30 42.78 23.69 0.0495 0.025 44.62 9.487 

45 42.78 16.12 0.0501 0.025 62.33 13.25 

60 42.78 10.93 0.0496 0.025 74.46 15.89 

75 42.78 9.661 0.0498 0.025 77.42 16.53 

90 42.78 8.107 0.0508 0.025 81.05 17.34 

120 42.78 5.930 0.0498 0.025 86.14 18.50 

180 42.78 5.550 0.0503 0.025 87.03 18.58 

240 42.78 5.486 0.0508 0.025 87.18 18.43 

300 42.78 4.778 0.0506 0.025 88.83 18.93 

360 42.78 3.659 0.0507 0.025 91.45 19.52 

720 42.78 3.273 0.0498 0.025 92.35 19.79 

1080 42.78 3.114 0.0507 0.025 92.72 19.52 

1440 42.78 2.976 0.0504 0.025 93.04 19.67 

 

Table A-V.7:  Experimental data for the adsorption of BPA onto MWCNT-ttpy as a function of adsorbent 

dose [conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

45.58 6.748 0.0304 0.025 85.19 31.93 

45.58 2.691 0.0504 0.025 94.10 21.27 

45.58 1.696 0.0751 0.025 96.28 14.61 

45.58 1.244 0.1008 0.025 97.27 11.00 

45.58 0.990 0.1508 0.025 97.83 7.392 

45.58 0.792 0.2008 0.025 98.26 5.576 

45.58 0.021 0.3002 0.025 99.95 3.794 

45.58 0.000 0.4001 0.025 100.0 2.848 

 

Table A-V.8:  Experimental data for the adsorption of BPA onto MWCNT-ttpy as a function of temperature 

[conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 8.002 0.205 0.0503 0.025 77.97 3.875 

 17.24 0.937 0.0509 0.025 81.49 8.005 

 26.15 1.692 0.0502 0.025 81.53 12.18 

 35.10 3.732 0.0499 0.025 78.43 15.72 

 45.58 5.054 0.0498 0.025 81.05 20.34 

 53.59 7.104 0.0503 0.025 77.48 23.10 
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 62.45 9.38 0.0504 0.025 75.82 26.33 

 70.95 13.80 0.0501 0.025 71.43 28.52 

 80.21 18.08 0.0501 0.025 69.04 31.01 

  91.44 23.45 0.0512 0.025 67.99 33.20 

303 K 8.002 0.200 0.0504 0.025 78.02 3.870 

 17.24 0.744 0.0504 0.025 82.46 8.181 

 26.15 1.409 0.0497 0.025 82.47 12.45 

 35.10 2.222 0.0501 0.025 82.20 16.41 

 45.58 3.969 0.0505 0.025 83.22 20.60 

 53.59 5.873 0.0502 0.025 79.53 23.76 

 62.45 8.57 0.0503 0.025 76.97 26.78 

 70.95 12.19 0.0498 0.025 73.45 29.50 

 80.21 14.99 0.0505 0.025 72.47 32.29 

  91.44 20.84 0.0501 0.025 70.60 35.23 

313 K 8.002 0.172 0.0509 0.025 78.30 3.846 

 17.24 0.606 0.0510 0.025 83.15 8.152 

 26.15 1.214 0.0496 0.025 83.12 12.57 

 35.10 2.063 0.0504 0.025 82.60 16.39 

 45.58 3.962 0.0503 0.025 83.23 20.68 

 53.59 5.161 0.0503 0.025 80.71 24.07 

 62.45 6.94 0.0500 0.025 79.31 27.76 

 70.95 8.87 0.0501 0.025 77.59 30.98 

 80.21 12.58 0.0498 0.025 75.15 33.95 

  91.44 19.81 0.0498 0.025 71.63 35.96 

318 K 8.002 0.154 0.0502 0.025 78.48 3.908 

 17.24 0.404 0.0493 0.025 84.16 8.535 

 26.15 0.971 0.0500 0.025 83.93 12.59 

 35.10 1.381 0.0497 0.025 84.31 16.96 

 45.58 2.066 0.0497 0.025 87.02 21.89 

 53.59 3.677 0.0493 0.025 83.19 25.31 

 62.45 4.637 0.0508 0.025 82.60 28.45 

 70.95 6.668 0.0500 0.025 80.35 32.14 

 80.21 9.980 0.0501 0.025 78.04 35.05 

  91.44 15.62 0.0505 0.025 75.81 37.53 
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Table A-V.9:  Separation factor values (RL) for the adsorption of BPA onto MWCNT-COOH at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

8.002 0.347 0.344 0.306 0.303 

17.24 0.198 0.196 0.170 0.168 

26.15 0.140 0.138 0.119 0.118 

35.10 0.108 0.107 0.091 0.090 

45.58 0.085 0.084 0.072 0.071 

53.59 0.074 0.073 0.062 0.061 

62.45 0.064 0.063 0.053 0.053 

70.95 0.057 0.056 0.047 0.047 

80.21 0.050 0.050 0.042 0.042 

91.44 0.044 0.044 0.037 0.037 

 

Table A-V.10:  Separation factor values (RL) for the adsorption of BPA onto MWCNT-ttpy at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

8.002 0.355 0.290 0.279 0.210 

17.24 0.204 0.159 0.152 0.110 

26.15 0.144 0.111 0.106 0.075 

35.10 0.112 0.085 0.081 0.057 

45.58 0.088 0.067 0.064 0.045 

53.59 0.076 0.057 0.055 0.038 

62.45 0.066 0.050 0.047 0.033 

70.95 0.058 0.044 0.042 0.029 

80.21 0.052 0.039 0.037 0.026 

91.44 0.046 0.035 0.033 0.023 

 

Table A-V.11:  Experimental data for the adsorption of IBP onto MWCNT-COOH as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 49.08 21.53 0.0499 0.025 56.14 13.80 

2 49.08 23.66 0.0503 0.025 51.79 12.63 

3 49.08 27.40 0.0494 0.025 44.17 10.97 

4 49.08 29.42 0.0502 0.025 40.05 9.789 

5 49.08 30.12 0.0499 0.025 38.63 9.498 

6 49.08 37.46 0.0502 0.025 23.67 5.785 

7 49.08 38.80 0.0508 0.025 20.95 5.059 

8 49.08 41.09 0.0498 0.025 16.27 4.010 

9 49.08 41.72 0.0487 0.025 14.99 3.776 
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Table A-V.12:  Experimental data for the adsorption of IBP onto MWCNT-COOH as a function of time 

[conditions: pH 2.0, agitation speed 150 rpm, temperature 25 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 46.66 40.47 0.0504 0.025 13.28 3.074 

10 46.66 38.46 0.0502 0.025 17.58 4.086 

15 46.66 36.56 0.0500 0.025 21.65 5.051 

20 46.66 33.77 0.0497 0.025 27.63 6.485 

30 46.66 31.58 0.0513 0.025 32.32 7.351 

45 46.66 30.94 0.0506 0.025 33.69 7.767 

60 46.66 29.59 0.0507 0.025 36.58 8.418 

75 46.66 27.06 0.0499 0.025 42.02 9.824 

90 46.66 26.66 0.0498 0.025 42.88 10.04 

120 46.66 26.39 0.0496 0.025 43.45 10.22 

180 46.66 25.79 0.0505 0.025 44.74 10.34 

240 46.66 25.53 0.0498 0.025 45.28 10.61 

300 46.66 25.15 0.0503 0.025 46.10 10.69 

360 46.66 24.38 0.0497 0.025 47.75 11.21 

720 46.66 23.74 0.0503 0.025 49.14 11.40 

1080 46.66 23.36 0.0508 0.025 49.94 11.47 

1440 46.66 22.95 0.0500 0.025 50.82 11.86 

 

Table A-V.13:  Experimental data for the adsorption of IBP onto MWCNT-COOH as a function of adsorbent 

dose [conditions: pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

49.08 29.622 0.0314 0.025 39.64 15.49 

49.08 22.404 0.0503 0.025 54.35 13.26 

49.08 19.449 0.0754 0.025 60.37 9.82 

49.08 12.603 0.1016 0.025 74.32 8.98 

49.08 11.626 0.1511 0.025 76.31 6.197 

49.08 9.555 0.2006 0.025 80.53 4.926 

49.08 6.006 0.3012 0.025 87.76 3.575 

49.08 4.850 0.3992 0.025 90.1 2.770 
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Table A-V.14: Experimental data for the adsorption of IBP onto MWCNT-COOH as a function of temperature 

[conditions: pH 2.0, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 10.17 7.727 0.0506 0.025 75.98 3.818 

 19.14 13.22 0.0497 0.025 69.09 6.651 

 29.88 19.32 0.0500 0.025 64.67 9.662 

 40.13 25.47 0.0508 0.025 63.46 12.53 

 51.23 30.18 0.0507 0.025 58.90 14.88 

 61.24 32.70 0.0500 0.025 53.39 16.35 

 71.66 33.43 0.0501 0.025 46.64 16.68 

 81.45 33.89 0.0501 0.025 41.61 16.91 

 90.22 34.27 0.0505 0.025 37.99 16.97 

  99.56 34.40 0.0498 0.025 34.56 17.27 

303 K 10.17 7.426 0.0506 0.025 73.02 3.669 

 19.14 11.95 0.0497 0.025 62.44 6.011 

 29.88 17.84 0.0500 0.025 59.72 8.922 

 40.13 23.76 0.0508 0.025 59.21 11.69 

 51.23 28.21 0.0507 0.025 55.06 13.91 

 61.24 28.63 0.0500 0.025 46.75 14.31 

 71.66 31.01 0.0501 0.025 43.27 15.47 

 81.45 32.53 0.0495 0.025 39.94 16.43 

 90.22 34.27 0.0505 0.025 37.99 16.97 

  99.56 33.45 0.0498 0.025 33.60 16.79 

313 K 10.17 7.074 0.0506 0.025 69.55 3.495 

 19.14 11.48 0.0497 0.025 59.97 5.774 

 29.88 17.93 0.0500 0.025 60.01 8.965 

 40.13 23.48 0.0508 0.025 58.51 11.55 

 51.23 27.02 0.0507 0.025 52.74 13.32 

 61.24 27.37 0.0500 0.025 44.69 13.68 

 71.66 30.25 0.0501 0.025 42.21 15.09 

 81.45 31.88 0.0500 0.025 39.14 15.94 

 90.22 31.12 0.0505 0.025 34.50 15.41 

  99.56 30.90 0.0498 0.025 31.04 15.51 

318 K 10.17 3.588 0.0502 0.025 35.28 3.574 

 19.14 5.427 0.0502 0.025 28.35 5.405 

 29.88 7.665 0.0501 0.025 25.65 7.650 

 40.13 9.165 0.0503 0.025 22.84 9.111 

 51.23 11.09 0.0502 0.025 21.65 11.05 

 61.24 12.63 0.0505 0.025 20.63 12.51 

 71.66 13.55 0.0496 0.025 18.90 13.65 

 81.45 13.60 0.0498 0.025 16.70 13.65 

 90.22 13.85 0.0501 0.025 15.35 13.82 
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  99.56 14.03 0.0502 0.025 14.09 13.97 

 

Table A-V.15:  Experimental data for the adsorption of IBP onto MWCNT-ttpy as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 %adsorbed qe/mg g-1 

1 49.08 6.385 0.0497 0.025 86.99 21.48 

2 49.08 7.124 0.0499 0.025 85.48 21.02 

3 49.08 6.960 0.0503 0.025 85.82 20.93 

4 49.08 11.05 0.0499 0.025 77.48 19.05 

5 49.08 13.80 0.0505 0.025 71.88 17.46 

6 49.08 20.53 0.0500 0.025 58.18 14.28 

7 49.08 20.76 0.0506 0.025 57.70 13.99 

8 49.08 21.42 0.0505 0.025 56.35 13.69 

9 49.08 33.24 0.0508 0.025 32.27 7.794 

 

Table A-V.16:  Experimental data for the adsorption of IBP onto MWCNT-ttpy as a function of time 

[conditions: pH 2.0, agitation speed 150 rpm, temperature 25 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 46.66 17.17 0.0498 0.025 63.20 14.80 

10 46.66 15.40 0.0503 0.025 67.01 15.54 

15 46.66 15.06 0.0503 0.025 67.73 15.71 

20 46.66 12.91 0.0509 0.025 72.33 16.58 

30 46.66 12.07 0.0505 0.025 74.14 17.13 

45 46.66 10.54 0.0502 0.025 77.41 17.99 

60 46.66 9.801 0.0500 0.025 79.00 18.43 

75 46.66 9.116 0.0504 0.025 80.46 18.63 

90 46.66 8.706 0.0507 0.025 81.34 18.72 

120 46.66 8.396 0.0500 0.025 82.01 19.13 

180 46.66 8.162 0.0502 0.025 82.51 19.17 

240 46.66 7.744 0.0505 0.025 83.40 19.27 

300 46.66 7.144 0.0501 0.025 84.69 19.72 

360 46.66 6.980 0.0503 0.025 85.04 19.72 

720 46.66 5.706 0.0503 0.025 87.77 20.36 

1080 46.66 5.432 0.0503 0.025 88.36 20.49 

1440 46.66 5.243 0.0506 0.025 88.76 20.47 
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Table A-V.17:  Experimental data for the adsorption of IBP onto MWCNT-ttpy as a function of adsorbent 

dose [conditions: pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

49.08 12.414 0.0310 0.025 74.71 29.57 

49.08 5.618 0.0506 0.025 88.55 21.47 

49.08 3.684 0.0756 0.025 92.49 15.01 

49.08 1.965 0.0992 0.025 96.00 11.87 

49.08 1.489 0.1490 0.025 96.97 7.985 

49.08 1.235 0.2018 0.025 97.48 5.927 

49.08 0.586 0.2996 0.025 98.81 4.047 

49.08 0.265 0.4004 0.025 99.5 3.048 

 

Table A-V.18: Experimental data for the adsorption of IBP onto MWCNT-ttpy as a function of temperature 

[conditions: pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

T/K Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

298 K 9.887 9.857 0.0503 0.025 98.57 4.899 

 19.14 18.52 0.0499 0.025 92.59 9.277 

 29.88 27.75 0.0508 0.025 92.51 13.66 

 40.13 35.59 0.0494 0.025 88.98 18.01 

 51.23 44.90 0.0505 0.025 89.81 22.23 

 61.24 50.35 0.0506 0.025 83.91 24.88 

 71.66 56.57 0.0499 0.025 80.82 28.34 

 81.45 61.37 0.0504 0.025 76.71 30.44 

 90.22 62.98 0.0505 0.025 69.97 31.18 

  99.56 64.71 0.0504 0.025 64.71 32.10 

303 K 9.887 9.676 0.0503 0.025 97.87 4.809 

 19.14 18.20 0.0499 0.025 95.11 9.120 

 29.88 27.24 0.0508 0.025 91.16 13.40 

 40.13 34.86 0.0494 0.025 86.87 17.64 

 51.23 43.19 0.0505 0.025 84.31 21.38 

 61.24 49.08 0.0506 0.025 80.15 24.25 

 71.66 52.63 0.0499 0.025 73.45 26.37 

 81.45 58.20 0.0504 0.025 71.45 28.87 

 90.22 61.69 0.0505 0.025 68.37 30.54 

  99.56 62.62 0.0504 0.025 62.90 31.06 

313 K 9.887 9.453 0.0509 0.025 95.61 4.643 

 19.14 18.07 0.0499 0.025 94.41 9.053 

 29.88 26.79 0.0507 0.025 89.64 13.21 

 40.13 34.25 0.0508 0.025 85.35 16.86 

 51.23 41.50 0.0508 0.025 81.00 20.42 

 61.24 46.58 0.0509 0.025 76.05 22.88 

 71.66 51.57 0.0505 0.025 71.97 25.53 
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 81.45 55.89 0.0507 0.025 68.62 27.56 

 90.22 56.41 0.0506 0.025 62.52 27.87 

  99.56 59.42 0.0502 0.025 59.69 29.59 

318 K 9.887 8.978 0.0502 0.025 89.78 4.471 

 19.14 15.95 0.0493 0.025 79.74 8.087 

 29.88 25.00 0.0500 0.025 83.34 12.50 

 40.13 31.52 0.0497 0.025 78.80 15.85 

 51.23 40.24 0.0497 0.025 80.47 20.24 

 61.24 45.83 0.0493 0.025 76.38 23.24 

 71.66 47.37 0.0508 0.025 67.67 23.31 

 81.45 50.82 0.0500 0.025 63.53 25.41 

 90.22 54.33 0.0501 0.025 60.37 27.11 

  99.56 58.37 0.0505 0.025 58.37 28.90 

 

Table A-V.19:  Separation factor values (RL) for the adsorption of IBP onto MWCNT-COOH at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

10.17 0.295 0.292 0.257 0.255 

19.14 0.182 0.180 0.155 0.154 

29.88 0.125 0.123 0.105 0.104 

40.13 0.096 0.095 0.081 0.080 

51.23 0.077 0.076 0.064 0.064 

61.24 0.065 0.064 0.054 0.054 

71.66 0.056 0.055 0.047 0.046 

81.45 0.050 0.049 0.041 0.041 

90.22 0.045 0.044 0.038 0.037 

99.56 0.041 0.040 0.034 0.034 

 

Table A-V.20:  Separation factor values (RL) for the adsorption of IBP onto MWCNT-ttpy at different 

temperatures 

Ci/mg dm-3 298 K 303 K 313 K 318 K 

9.887 0.308 0.248 0.238 0.177 

19.14 0.187 0.146 0.139 0.100 

29.88 0.128 0.099 0.094 0.066 

40.13 0.099 0.075 0.072 0.050 

51.23 0.079 0.060 0.057 0.040 

61.24 0.067 0.051 0.048 0.034 

71.66 0.058 0.044 0.041 0.029 

81.45 0.051 0.039 0.037 0.025 

90.22 0.047 0.035 0.033 0.023 

99.56 0.042 0.032 0.030 0.021 
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Appendix VI 

Data for competitive adsorption of bisphenol A and 

ibuprofen 

 

 

Fig A-VI.1:  Langmuir adsorption isotherm models fitted for the adsorption of BPA and IBP onto MWCNT 

in (a) single system and (b) multicomponent competitive adsorption system (BPA                     and 

IBP                 ). 

 

(A) Effect of pH on binary adsorption systems 

 

Table A-VI.1:  Experimental data for the binary adsorption of BPA onto MWCNT-ttpy as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

pH Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol/dm-3 % ads qe/mg g-1 

1 15.79 10.88 0.0756 0.025 68.92 3.598 

2 15.79 11.47 0.0759 0.025 72.65 3.778 

3 15.79 11.49 0.0750 0.025 72.80 3.831 

4 15.79 11.53 0.0750 0.025 73.04 3.844 

5 15.79 11.93 0.0751 0.025 75.54 3.970 

6 15.79 11.98 0.0756 0.025 75.89 3.962 

7 15.79 11.93 0.0754 0.025 75.54 3.954 

8 15.79 12.26 0.0758 0.025 72.33 3.766 

9 15.79 12.30 0.0756 0.025 69.35 3.621 

10 15.79 13.59 0.0755 0.025 65.73 3.436 

 

 

Table A-VI.2:  Experimental data for the binary adsorption of IBP onto MWCNT-ttpy as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

pH Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol/dm-3 % ads qe/mg g-1 

1 14.20 10.81 0.0756 0.025 81.52 3.573 

2 14.20 11.16 0.0759 0.025 79.01 3.675 

3 14.20 10.95 0.0750 0.025 76.75 3.650 

4 14.20 8.098 0.0750 0.025 60.06 2.699 

5 14.20 7.772 0.0751 0.025 54.02 2.587 

6 14.20 5.644 0.0756 0.025 39.74 1.866 

7 14.20 3.655 0.0754 0.025 25.38 1.212 

(a) 

Ceq/mg dm-3 
Ceq/mg dm-3 

(b) 
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8 14.20 1.795 0.0758 0.025 14.56 0.592 

9 14.20 0.917 0.0756 0.025 8.507 0.303 

10 14.20 0.551 0.0755 0.025 3.882 0.183 

 

(B) Binary adsorption of BPA and IBP at same concentration 

 

Table A-VI.3:  Experimental data for the competitive adsorption of BPA onto MWCNT-ttpy in a 

multicomponent system at the same concentration [conditions: pH 2.0, contact time 24 h, 

agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

5.306 1.139 0.1010 0.025 78.54 1.031 0.906 

12.59 3.473 0.1057 0.025 72.41 2.156 0.621 

21.25 6.218 0.1023 0.025 70.75 3.675 0.591 

30.80 11.99 0.1014 0.025 61.06 4.636 0.387 

41.29 17.12 0.1008 0.025 58.54 5.995 0.350 

50.26 23.29 0.1031 0.025 53.66 6.541 0.281 

63.74 34.90 0.1022 0.025 45.25 7.056 0.202 

 

 

Table A-VI.4:  Experimental data for the competitive adsorption of IBP onto MWCNT-ttpy in a 

multicomponent system at the same concentration [conditions: pH 2.0, contact time 24 h, 

agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

7.632 0.687 0.1010 0.025 91.00 1.719 2.502 

12.91 1.706 0.1057 0.025 86.79 2.650 1.553 

21.52 3.830 0.1023 0.025 82.21 4.324 1.129 

31.56 8.097 0.1014 0.025 74.34 5.785 0.714 

43.06 14.82 0.1008 0.025 65.57 7.002 0.472 

52.56 20.97 0.1031 0.025 60.10 7.66 0.365 

60.39 26.59 0.1022 0.025 55.97 8.27 0.311 

 

 

(C) Binary adsorption with one component at a fixed concentration and the other at varying initial 

metal ion concentrations 

 

(a).  Effect of varying IBP concentration on BPA adsorption from aqueous solutions onto MWCNT-ttpy. 

 

Table A-VI.5:  :  Effect of varying initial IBP concentration on the adsorption of BPA onto MWCNT-ttpy 

[conditions: pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

21.90 6.386 0.1028 0.025 70.84 3.773 0.591 

18.26 6.213 0.1041 0.025 65.99 2.894 0.466 

20.09 4.834 0.1008 0.025 75.94 3.784 0.783 

17.81 3.309 0.1022 0.025 81.42 3.55 1.072 
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16.63 4.952 0.1130 0.025 70.23 2.58 0.522 

23.89 6.840 0.1060 0.025 71.37 4.02 0.588 

16.20 1.213 0.0980 0.025 92.51 3.82 3.152 

 

 

Table A-VI.6:  Effect of varying initial IBP concentration on its adsorption onto MWCNT-ttpy [conditions: 

pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

56.93 39.82 0.1028 0.025 30.05 4.161 0.104 

54.20 36.90 0.1041 0.025 31.93 4.157 0.113 

40.43 16.49 0.1008 0.025 59.20 5.936 0.360 

31.07 8.602 0.1022 0.025 72.31 5.495 0.639 

20.13 4.401 0.1130 0.025 78.14 3.480 0.791 

9.113 1.515 0.1060 0.025 83.38 1.792 1.183 

8.331 0.135 0.0980 0.025 98.39 2.091 15.54 

 

(b).  Effect of varying initial BPA concentration on IBP adsorption from aqueous solutions onto MWCNT-

ttpy. 

Table A-VI.7:  Effect of varying BPA concentration on multicomponent adsorption of IBP onto MWCNT-

ttpy [conditions: pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

21.17 1.004 0.1004 0.025 95.26 5.022 5.001 

19.81 2.117 0.9881 0.025 89.31 0.448 0.211 

20.80 2.289 0.1016 0.025 89.00 4.554 1.990 

23.38 3.202 0.1022 0.025 86.30 4.935 1.541 

21.67 3.794 0.0996 0.025 82.49 4.487 1.183 

21.67 6.254 0.1005 0.025 71.14 3.835 0.613 

23.38 9.709 0.1008 0.025 58.47 3.390 0.349 

 

Table A-VI.8:  Effect of varying initial BPA concentration on its adsorption onto MWCNT-ttpy [conditions: 

pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

55.60 47.52 0.1004 0.025 14.53 2.012 0.042 

47.52 29.55 0.9881 0.025 37.82 0.455 0.015 

40.23 15.46 0.1016 0.025 61.57 6.095 0.394 

31.90 6.864 0.1022 0.025 78.48 6.123 0.892 

21.74 4.313 0.0996 0.025 80.16 4.375 1.014 

8.545 1.425 0.1005 0.025 83.33 1.771 1.243 

4.653 0.929 0.1008 0.025 80.04 0.924 0.994 
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(D) Multicomponent adsorption with metal ion at a fixed concentration and varying BPA and IBP 

initial concentrations 

(a).  Effect of multicomponent concentration on Pb2+ adsorption from aqueous solutions onto MWCNT-ttpy. 

Table A-VI.9:  Effect of same initial Pb2+ concentration on its adsorption onto MWCNT-ttpy [conditions: pH 

2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

19.98 0.998 0.1007 0.025 95.01 4.713 4.722 

20.84 1.334 0.1018 0.025 93.60 4.790 3.591 

18.22 0.884 0.0953 0.025 95.15 4.548 5.145 

20.54 0.788 0.1004 0.025 96.16 4.918 6.242 

19.41 0.614 0.1006 0.025 96.84 4.671 7.607 

22.43 0.522 0.1001 0.025 97.67 5.472 10.48 

22.34 0.318 0.1018 0.025 98.58 5.408 17.01 

 

Table A-VI.10:  Effect of initial Pb2+ concentration on multicomponent adsorption of BPA onto MWCNT-

ttpy pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

4.221 0.640 0.1007 0.025 84.83 0.889 1.388 

8.017 3.422 0.1018 0.025 57.32 1.129 0.330 

23.26 6.019 0.0953 0.025 74.13 4.523 0.752 

30.07 15.61 0.1004 0.025 48.10 3.602 0.231 

41.07 24.14 0.1006 0.025 41.22 4.207 0.174 

45.59 31.05 0.1001 0.025 31.89 3.632 0.117 

57.77 41.03 0.1018 0.025 28.97 4.110 0.100 

 

Table A-VI.11:  Effect of initial Pb2+ concentration on multicomponent adsorption of IBP onto MWCNT-ttpy 

[conditions: pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

5.319 0.61 0.1007 0.025 88.51 1.169 1.912 

9.807 4.90 0.1018 0.025 50.08 1.206 0.246 

22.99 10.82 0.0953 0.025 52.92 3.192 0.295 

32.47 14.35 0.1004 0.025 55.82 4.514 0.315 

43.43 22.24 0.1006 0.025 48.79 5.266 0.237 

47.20 31.62 0.1001 0.025 33.02 3.892 0.123 

56.55 38.64 0.1018 0.025 31.68 4.399 0.114 
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(b).  Effect of multicomponent concentration on Cd2+ adsorption from aqueous solutions onto MWCNT-ttpy. 

Table A-VI.12:  Effect of same initial Cd2+ concentration on its adsorption onto MWCNT-ttpy [conditions: 

pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

18.32 0.224 0.1022 0.025 98.78 4.427 19.76 

17.18 0.652 0.1066 0.025 96.20 3.876 5.945 

23.24 0.535 0.1006 0.025 97.70 5.642 10.55 

21.44 0.721 0.1005 0.025 96.64 5.154 7.148 

19.66 1.334 0.0985 0.025 93.21 4.651 3.487 

19.41 1.386 0.1019 0.025 92.86 4.422 3.19 

21.36 1.491 0.1003 0.025 93.02 4.952 3.32 

 

Table A-VI.13:  Effect of initial Cd2+ concentration on multicomponent adsorption of BPA onto MWCNT-

ttpy [conditions: pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

4.314 1.510 0.1022 0.025 65.00 0.686 0.454 

9.290 3.354 0.1066 0.025 63.90 1.392 0.415 

19.47 6.839 0.1006 0.025 64.88 3.139 0.459 

28.37 12.09 0.1005 0.025 57.37 4.048 0.335 

42.04 15.09 0.0985 0.025 64.10 6.840 0.453 

50.49 17.82 0.1019 0.025 64.71 8.016 0.450 

60.19 23.93 0.1003 0.025 60.25 9.038 0.378 

 

Table A-VI.14:  Effect of initial Cd2+ concentration on multicomponent adsorption of IBP onto MWCNT-ttpy 

[conditions: pH 2.0, contact time 24 h, agitation speed 150 rpm, temperature 25 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Vol./dm3 % ads. qe/mg g-1 Kd 

5.055 0.90 0.1022 0.025 82.17 1.016 1.127 

10.16 2.33 0.1066 0.025 77.03 1.835 0.787 

24.38 6.33 0.1006 0.025 74.04 4.486 0.709 

28.30 7.93 0.1005 0.025 71.97 5.065 0.639 

36.59 9.66 0.0985 0.025 73.61 6.835 0.708 

50.74 15.11 0.1019 0.025 70.22 8.742 0.579 

60.39 17.53 0.1003 0.025 70.97 10.68 0.609 
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Appendix VII 

 

Data for Rhodamine B (RhB) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-VII.1:  Calibration curve of RhB 

 

Fig A-VII.2:  UV spectrum of RhB 
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Table A-VII.1:  Experimental data for the adsorption of RhB onto CoFe2O4 as a function of pH [conditions: 

contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Volume/dm3 Mass/g % adsorbed qe/mg g-1 

1.00 52.22 50.41 0.025 0.050 3.457 0.903 

2.13 52.22 49.90 0.025 0.050 4.444 1.160 

3.16 52.22 47.71 0.025 0.050 8.642 2.256 

4.14 52.22 47.45 0.025 0.050 9.136 2.385 

5.25 52.22 47.19 0.025 0.050 9.630 2.514 

6.00 52.22 45.64 0.025 0.050 12.59 3.288 

7.14 52.22 44.61 0.025 0.050 14.57 3.804 

8.19 52.22 42.93 0.025 0.050 17.78 4.642 

9.23 52.22 45.90 0.025 0.050 12.10 3.159 

10.07 52.22 46.67 0.025 0.050 10.62 2.772 

 

Table A-VII.2:  Experimental data for the adsorption of RhB onto CoFe2O4 as a function of time [conditions:  

pH 7.0, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 50.67 48.99 0.050 0.025 3.308 0.838 

10 50.67 47.96 0.050 0.025 5.344 1.354 

15 50.67 47.58 0.050 0.025 6.107 1.547 

20 50.67 46.54 0.050 0.025 8.142 2.063 

30 50.67 46.16 0.050 0.025 8.906 2.256 

45 50.67 45.13 0.050 0.025 10.94 2.772 

60 50.67 44.09 0.050 0.025 12.98 3.288 

75 50.67 43.71 0.050 0.025 13.74 3.481 

90 50.67 43.32 0.050 0.025 14.50 3.675 

120 50.67 42.55 0.050 0.025 16.03 4.061 

180 50.67 41.52 0.050 0.025 18.07 4.577 

240 50.67 40.74 0.050 0.025 19.59 4.964 

300 50.67 40.23 0.050 0.025 20.61 5.222 

360 50.67 39.84 0.050 0.025 21.37 5.415 

720 50.67 39.58 0.050 0.025 21.88 5.544 

1080 50.67 39.32 0.050 0.025 22.39 5.673 

1440 50.67 39.32 0.050 0.025 22.39 5.673 
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Table A-VII.3:  Experimental data for the adsorption of RhB onto CoFe2O4 as a function of adsorbent dose 

[conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

Ci/mg dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

50.67 38.04 0.030 0.025 24.94 10.53 

50.67 30.04 0.050 0.025 40.71 10.31 

50.67 20.37 0.075 0.025 59.80 10.10 

50.67 12.89 0.100 0.025 74.55 9.444 

50.67 6.271 0.150 0.025 87.62 7.400 

50.67 1.233 0.200 0.025 97.57 6.180 

50.67 0.624 0.300 0.025 98.77 4.171 

50.67 0.505 0.400 0.025 99.00 3.135 

 

Table A-VII.4:  Experimental data for the adsorption of CoFe2O4 as a function of temperature [conditions: pH 

7.0, contact time 24 h, agitation speed 150 rpm] 

T/K Ceq/mg dm-3 Mass/g Conc (Cf) % adsorbed qe/mg g-1 

293 K 10.05 0.050 6.189 38.42 1.931 

 19.88 0.050 14.30 28.09 2.792 

 29.64 0.050 23.13 21.98 3.257 

 40.66 0.050 31.98 21.36 4.342 

 49.66 0.050 41.65 16.14 4.007 

 60.11 0.050 51.57 14.20 4.269 

 69.87 0.050 61.37 12.16 4.249 

303 K 10.05 0.050 4.755 52.69 2.647 

 19.88 0.050 13.47 32.24 3.205 

 29.64 0.050 22.55 23.93 3.546 

 40.66 0.050 31.33 22.94 4.665 

 49.66 0.050 40.48 18.48 4.588 

 60.11 0.050 50.41 16.13 4.849 

 69.87 0.050 60.21 13.82 4.829 

313 K 10.05 0.050 4.502 55.20 2.774 

 19.88 0.050 13.24 33.38 3.318 

 29.64 0.050 21.45 27.62 4.093 

 40.66 0.050 29.65 27.07 5.503 

 49.66 0.050 39.58 20.29 5.039 

 60.11 0.050 49.38 17.85 5.364 

 69.87 0.050 59.05 15.48 5.409 

318 K 10.05 0.050 4.342 56.79 2.854 

 19.88 0.050 12.25 38.36 3.813 

 29.64 0.050 20.15 32.00 4.743 

 40.66 0.050 27.72 31.82 6.470 

 49.66 0.050 36.10 27.30 6.779 

 60.11 0.050 45.64 24.07 7.234 

  69.87 0.050 55.57 20.47 7.150 
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Table A-VII.5:  Experimental data for the adsorption of RhB onto MWCNT-COOH-CoFe2O4 (29%) as a 

function of pH [conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Volume/dm3 Mass/g % adsorbed qe/mg g-1 

1.03 50.41 11.60 0.025 0.050 23.01 5.799 

2.02 50.41 13.53 0.025 0.050 26.85 6.766 

3.15 50.41 16.11 0.025 0.050 31.96 8.056 

4.12 50.41 23.98 0.025 0.050 47.56 11.99 

5.12 50.41 26.55 0.025 0.050 52.68 13.28 

6.00 50.41 31.97 0.025 0.050 63.42 15.99 

7.16 50.41 37.13 0.025 0.050 73.65 18.56 

8.11 50.41 34.68 0.025 0.050 68.79 17.34 

9.00 50.41 33.52 0.025 0.050 66.49 16.76 

10.00 50.41 32.10 0.025 0.050 63.68 16.05 

 

 

 

Table A-VII.6:  Experimental data for the adsorption of RhB onto onto MWCNT-COOH-CoFe2O4 (29%) as 

a function of time [conditions:  pH 7.0, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg/dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 50.41 43.84 0.050 0.025 13.03 3.285 

10 50.41 42.93 0.050 0.025 14.83 3.736 

15 50.41 40.36 0.050 0.025 19.94 5.026 

20 50.41 33.26 0.050 0.025 34.01 8.571 

30 50.41 30.69 0.050 0.025 39.12 9.861 

45 50.41 28.88 0.050 0.025 42.71 10.76 

60 50.41 26.69 0.050 0.025 47.05 11.86 

75 50.41 25.92 0.050 0.025 48.59 12.25 

90 50.41 21.79 0.050 0.025 56.77 14.31 

120 50.41 20.63 0.050 0.025 59.08 14.89 

180 50.41 19.08 0.050 0.025 62.14 15.66 

240 50.41 17.02 0.050 0.025 66.24 16.69 

300 50.41 15.60 0.050 0.025 69.05 17.40 

360 50.41 14.44 0.050 0.025 71.35 17.98 

720 50.41 12.89 0.050 0.025 74.42 18.76 

1080 50.41 12.51 0.050 0.025 75.19 18.95 

1440 50.41 11.60 0.050 0.025 76.98 19.40 
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Table A-VII.7:  Experimental data for the adsorption of RhB onto onto MWCNT-COOH-CoFe2O4 (29%)  as 

a function of adsorbent dose [conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm, 

temperature 20 °C] 

Mass/g Ci/mg dm-3 Ceq/mg dm-3 % adsorbed qe/mg g-1 

0.030 43.45 21.14 51.34 18.59 

0.050 43.45 11.22 74.18 16.12 

0.075 43.45 5.730 86.81 12.57 

0.100 43.45 1.728 96.02 10.43 

0.150 43.45 1.470 96.62 6.997 

0.200 43.45 0.975 97.76 5.309 

0.300 43.45 0.526 98.79 3.577 

0.400 43.45 0.000 100.0 2.716 

 

Table A-VII.8:  Experimental data for the adsorption of onto MWCNT-COOH-CoFe2O4 (29%) as a function 

of temperature [conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Cf/mg dm-3 Mass/g % adsorbed qe/mg g-1 

293 K 10.05 1.939 0.050 80.71 4.055 

 19.88 3.084 0.050 0.123 8.398 

 29.64 5.415 0.050 81.73 12.11 

 40.66 8.638 0.050 78.75 16.01 

 49.66 15.86 0.050 68.07 16.90 

 60.11 25.01 0.050 58.39 17.55 

  69.87 34.55 0.050 50.55 17.66 

303 K 10.05 0.634 0.050 93.69 4.708 

 19.88 1.078 0.050 94.58 9.401 

 29.64 3.244 0.050 89.06 13.20 

 40.66 6.601 0.050 83.76 17.03 

 49.66 12.64 0.050 74.56 18.51 

 60.11 22.95 0.050 61.82 18.58 

  69.87 31.85 0.050 54.42 19.01 

313 K 10.05 0.505 0.050 94.97 4.772 

 19.88 0.732 0.050 96.32 9.574 

 29.64 2.182 0.050 92.64 13.73 

 40.66 5.859 0.050 85.59 17.40 

 49.66 10.06 0.050 79.75 19.80 

 60.11 19.86 0.050 66.97 20.13 

  69.87 29.65 0.050 57.56 20.11 

318 K 10.05 0.165 0.050 98.36 4.942 

 19.88 0.402 0.050 97.98 9.739 

 29.64 0.732 0.050 97.53 14.45 

 40.66 4.621 0.050 88.64 18.02 

 49.66 9.928 0.050 80.01 19.87 

 60.11 19.86 0.050 66.97 20.13 

  69.87 28.24 0.050 59.59 20.82 
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Table A-VII.9:  Experimental data for the adsorption of RhB onto MWCNT-COOH-CoFe2O4 (50%) as a 

function of pH [conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Volume/dm3 Mass/g 

% 

adsorbed qe/mg g-1 

0.97 50.41 39.82 0.025 0.050 20.99 5.291 

2.10 50.41 32.31 0.025 0.050 35.91 9.051 

3.17 50.41 27.85 0.025 0.050 44.75 11.28 

4.00 50.41 23.39 0.025 0.050 53.59 13.51 

5.39 50.41 19.77 0.025 0.050 60.77 15.32 

6.21 50.41 13.65 0.025 0.050 72.93 18.38 

7.20 50.41 5.291 0.025 0.050 89.50 22.56 

8.00 50.41 15.18 0.025 0.050 69.89 17.61 

9.16 50.41 15.73 0.025 0.050 68.78 17.34 

10.0 50.41 17.68 0.025 0.050 64.92 16.36 

 

Table A-VII.10:  Experimental data for the adsorption of RhB onto onto MWCNT-COOH-CoFe2O4 (50%) as 

a function of time [conditions:  pH 7.0, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg/dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 50.41 42.81 0.050 0.025 15.08 3.801 

10 50.41 38.42 0.050 0.025 23.78 5.993 

15 50.41 31.20 0.050 0.025 38.10 9.603 

20 50.41 28.62 0.050 0.025 43.22 10.89 

30 50.41 27.85 0.050 0.025 44.75 11.28 

45 50.41 24.88 0.050 0.025 50.63 12.76 

60 50.41 22.31 0.050 0.025 55.75 14.05 

75 50.41 21.79 0.050 0.025 56.77 14.31 

90 50.41 19.60 0.050 0.025 61.12 15.40 

120 50.41 18.44 0.050 0.025 63.42 15.99 

180 50.41 15.34 0.050 0.025 69.56 17.53 

240 50.41 11.86 0.050 0.025 76.47 19.27 

300 50.41 10.31 0.050 0.025 79.54 20.05 

360 50.41 9.283 0.050 0.025 81.58 20.56 

720 50.41 8.896 0.050 0.025 82.35 20.76 

1080 50.41 8.510 0.050 0.025 83.12 20.95 

1440 50.41 8.252 0.050 0.025 83.63 21.08 
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Table A-VII.11:  Experimental data for the adsorption of RhB onto onto MWCNT-COOH-CoFe2O4 (50%)  

as a function of adsorbent dose [conditions: pH 7.0, contact time 24 h, agitation speed 150 

rpm, temperature 20 °C] 

Mass/g Ci/mg dm-3 Ceq/mg dm-3 % adsorbed qe/mg g-1 

0.030 43.45 15.73 63.80 23.10 

0.050 43.45 3.22 92.58 20.11 

0.075 43.45 2.176 94.99 13.76 

0.100 43.45 0.866 98.01 10.65 

0.150 43.45 0.655 98.49 7.133 

0.200 43.45 0.526 98.79 5.366 

0.300 43.45 0.449 98.97 3.583 

0.400 43.45 0.000 100.0 2.716 

 

Table A-VII.12:  Experimental data for the adsorption of onto MWCNT-COOH-CoFe2O4 (50%) as a function 

of temperature [conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Cf/mg dm-3 Mass/g % adsorbed qe/mg g-1 

293 K 9.996 0.000 0.050 100.0 4.998 

 20.18 0.170 0.050 99.16 10.00 

 30.88 1.145 0.050 96.29 14.87 

 40.11 2.837 0.050 92.93 18.64 

 49.74 6.833 0.050 86.26 21.45 

 60.21 15.73 0.050 73.88 22.24 

  69.88 25.14 0.050 64.02 22.37 

303 K 9.996 0.000 0.050 100.0 4.998 

 20.18 0.000 0.050 100.0 10.09 

 30.88 1.088 0.050 96.48 14.90 

 40.11 2.718 0.050 93.22 18.70 

 49.74 5.544 0.050 88.85 22.10 

 60.21 14.57 0.050 75.80 22.82 

  69.88 23.59 0.050 66.24 23.14 

313 K 9.996 0.000 0.050 100.0 4.998 

 20.18 0.000 0.050 100.0 10.09 

 30.88 0.686 0.050 97.78 15.10 

 40.11 1.155 0.050 97.12 19.48 

 49.74 5.157 0.050 89.63 22.29 

 60.21 13.80 0.050 77.09 23.21 

  69.88 23.34 0.050 66.60 23.27 

318 K 9.996 0.000 0.050 100.0 4.998 

 20.18 0.000 0.050 100.0 10.09 

 30.88 0.629 0.050 97.96 15.13 

 40.11 0.928 0.050 97.69 19.59 

 49.74 3.481 0.050 93.00 23.13 

 60.21 12.38 0.050 79.44 23.92 

  69.88 20.89 0.050 70.11 24.50 
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Table A-VII.13:  Experimental data for the adsorption of RhB onto MWCNT-COOH-CoFe2O4 (75%) as a 

function of pH [conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Volume/dm3 Mass/g % adsorbed qe/mg g-1 

1 103.66 94.64 0.025 0.050 8.71 4.513 

2 103.66 93.09 0.025 0.050 10.20 5.286 

3 103.66 81.87 0.025 0.050 21.02 10.89 

4 103.66 67.30 0.025 0.050 35.07 18.18 

5 103.66 55.83 0.025 0.050 46.14 23.92 

6 103.66 38.55 0.025 0.050 62.81 32.56 

7 103.66 42.806 0.025 0.050 58.71 30.43 

8 103.66 48.74 0.025 0.050 52.99 27.46 

9 103.66 51.83 0.025 0.050 50.00 25.92 

10 103.66 58.79 0.025 0.050 43.28 22.43 

 

Table A-VII.14:  Experimental data for the adsorption of RhB onto onto MWCNT-COOH-CoFe2O4 (75%) as 

a function of time [conditions:  pH 7.0, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg/dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 103.66 90.51 0.050 0.025 12.69 6.576 

10 103.66 89.61 0.050 0.025 13.56 7.027 

15 103.66 88.06 0.050 0.025 15.05 7.800 

20 103.66 84.06 0.050 0.025 18.91 9.80 

30 103.66 81.49 0.050 0.025 21.39 11.09 

45 103.66 71.56 0.050 0.025 30.97 16.05 

60 103.66 68.59 0.050 0.025 33.83 17.53 

75 103.66 64.85 0.050 0.025 37.44 19.40 

90 103.66 61.11 0.050 0.025 41.04 21.27 

120 103.66 57.25 0.050 0.025 44.78 23.21 

180 103.66 50.03 0.050 0.025 51.74 26.82 

240 103.66 45.64 0.050 0.025 55.97 29.01 

300 103.66 42.93 0.050 0.025 58.58 30.36 

360 103.66 39.711 0.050 0.025 61.69 31.98 

720 103.66 39.324 0.050 0.025 62.06 32.17 

1080 103.66 38.938 0.050 0.025 62.44 32.36 

1440 103.66 38.680 0.050 0.025 62.69 32.49 
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Table A-VII.15:  Experimental data for the adsorption of RhB onto onto MWCNT-COOH-CoFe2O4 (75%)  

as a function of adsorbent dose [conditions: pH 7.0, contact time 24 h, agitation speed 150 

rpm, temperature 20 °C] 

Mass/g Ci/mg dm-3 Ceq/mg dm-3 % adsorbed qe/mg g-1 

0.030 43.45 64.21 38.06 34.13 

0.050 43.45 40.48 60.95 31.59 

0.075 43.45 28.881 72.14 24.93 

0.100 43.45 13.538 86.94 22.53 

0.150 43.45 5.090 95.09 16.429 

0.200 43.45 4.033 96.11 12.454 

0.300 43.45 3.471 96.65 8.349 

0.400 43.45 3.363 96.8 6.269 

 

Table A-VII.16:  Experimental data for the adsorption of onto MWCNT-COOH-CoFe2O4 (75%) as a function 

of temperature [conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Cf/mg dm-3 Mass/g % adsorbed qe/mg g-1 

293 K 9.996 0.557 0.050 94.43 4.720 

 20.18 0.707 0.050 96.50 9.737 

 30.88 2.372 0.050 92.32 14.25 

 40.11 3.445 0.050 91.41 18.33 

 49.74 3.718 0.050 92.52 23.01 

 60.21 6.137 0.050 89.81 27.04 

 69.88 8.252 0.050 88.19 30.81 

 80.11 17.02 0.050 78.76 31.55 

 90.04 26.17 0.050 70.93 31.93 

  100.1 35.59 0.050 64.44 32.24 

303 K 9.996 0.444 0.050 95.56 4.776 

 20.18 0.588 0.050 97.09 9.796 

 30.88 1.217 0.050 96.06 14.83 

 40.11 2.171 0.050 94.59 18.97 

 49.74 2.739 0.050 94.49 23.50 

 60.21 3.770 0.050 93.74 28.22 

 69.88 7.349 0.050 89.48 31.27 

 80.11 11.22 0.050 86.00 34.45 

 90.04 21.02 0.050 76.66 34.51 

  100.1 30.04 0.050 69.98 35.01 

313 K 9.996 0.263 0.050 97.37 4.87 

 20.18 0.454 0.050 97.75 9.863 

 30.88 0.572 0.050 98.15 15.15 

 40.11 0.676 0.050 98.32 19.72 

 49.74 1.155 0.050 97.68 24.29 

 60.21 2.120 0.050 96.48 29.05 

 69.88 4.255 0.050 93.91 32.81 

 80.11 9.928 0.050 87.61 35.09 
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 90.04 19.21 0.050 78.66 35.41 

  100.1 28.62 0.050 71.39 35.72 

318 K 9.996 0.000 0.050 100 4.998 

 20.18 0.077 0.050 99.62 10.05 

 30.88 0.552 0.050 98.21 15.16 

 40.11 0.629 0.050 98.43 19.74 

 49.74 1.712 0.050 96.56 24.01 

 60.21 1.604 0.050 97.34 29.30 

 69.88 3.997 0.050 94.28 32.94 

 80.11 8.510 0.050 89.38 35.80 

 90.04 17.79 0.050 80.24 36.12 

  100.1 27.20 0.050 72.81 36.43 

 

 

Table A-VII.17:  Experimental data for the adsorption of RhB onto MWCNT-COOH as a function of pH 

[conditions: contact time 24 h, agitation speed 150 rpm, temperature 20 °C] 

pH  Ci/mg dm-3 Ceq/mg dm-3 Volume/dm3 Mass/g % adsorbed qe/mg g-1 

1 105.72 89.22 0.025 0.050 15.61 8.249 

2 105.72 81.49 0.025 0.050 22.92 12.117 

3 105.72 69.88 0.025 0.050 33.90 17.92 

4 105.72 54.54 0.025 0.050 48.41 25.59 

5 105.72 30.81 0.025 0.050 70.85 37.45 

6 105.72 20.50 0.025 0.050 80.61 42.61 

7 105.72 9.881 0.025 0.050 90.65 47.92 

8 105.72 18.18 0.025 0.050 82.80 43.77 

9 105.72 29.65 0.025 0.050 71.95 38.03 

10 105.72 37.42 0.025 0.050 64.60 34.15 

 

Table A-VII.18:  Experimental data for the adsorption of RhB onto onto MWCNT-COOH as a function of 

time [conditions:  pH 7.0, agitation speed 150 rpm, temperature 20 °C] 

Time/min Ci/mg/dm-3 Ceq/mg dm-3 Mass/g Volume/dm3 % adsorbed qe/mg g-1 

5 105.72 79.94 0.050 0.025 24.39 12.891 

10 105.72 74.78 0.050 0.025 29.27 15.470 

15 105.72 70.91 0.050 0.025 32.92 17.404 

20 105.72 67.04 0.050 0.025 36.58 19.34 

30 105.72 64.08 0.050 0.025 39.39 20.82 

45 105.72 58.41 0.050 0.025 44.75 23.66 

60 105.72 52.35 0.050 0.025 50.49 26.69 

75 105.72 42.93 0.050 0.025 59.39 31.39 

90 105.72 35.46 0.050 0.025 66.46 35.13 

120 105.72 29.27 0.050 0.025 72.32 38.23 

180 105.72 18.44 0.050 0.025 82.56 43.64 

240 105.72 13.41 0.050 0.025 87.32 46.16 

300 105.72 10.83 0.050 0.025 89.76 47.44 

360 105.72 9.154 0.050 0.025 91.34 48.28 
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720 105.72 8.896 0.050 0.025 91.58 48.41 

1080 105.72 7.736 0.050 0.025 92.68 48.99 

1440 105.72 7.349 0.050 0.025 93.05 49.19 

 

Table A-VII.19:  Experimental data for the adsorption of RhB onto onto MWCNT-COOH  as a function of 

adsorbent dose [conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm, temperature 

20 °C] 

Mass/g Ci/mg dm-3 Ceq/mg dm-3 % adsorbed qe/mg g-1 

0.030 96.7 32.62 66.27 53.40 

0.050 96.7 8.25 91.47 44.22 

0.075 96.7 4.255 95.60 30.82 

0.100 96.7 1.872 98.06 23.71 

0.150 96.7 0.464 99.52 16.039 

0.200 96.7 0.258 99.73 12.055 

0.300 96.7 0.222 99.77 8.040 

0.400 96.7 0.000 100.0 6.044 

 

Table A-VII.20:  Experimental data for the adsorption of onto MWCNT-COOH as a function of temperature 

[conditions: pH 7.0, contact time 24 h, agitation speed 150 rpm] 

T/K Ci/mg dm-3 Cf/mg dm-3 Mass/g % adsorbed qe/mg g-1 

293 K 9.996 0.170 0.050 98.30 4.913 

 20.18 0.397 0.050 98.03 9.891 

 30.88 0.650 0.050 97.90 15.12 

 40.11 1.155 0.050 97.12 19.48 

 49.74 1.717 0.050 96.55 24.01 

 60.21 2.372 0.050 96.06 28.92 

 69.88 3.713 0.050 94.69 33.08 

 80.11 7.091 0.050 91.15 36.51 

 90.04 12.51 0.050 86.11 38.77 

  100.1 21.27 0.050 78.74 39.39 

303 K 9.996 0.072 0.050 99.28 4.962 

 20.18 0.175 0.050 99.13 10.00 

 30.88 0.454 0.050 98.53 15.21 

 40.11 0.908 0.050 97.74 19.60 

 49.74 1.212 0.050 97.56 24.26 

 60.21 1.609 0.050 97.33 29.30 

 69.88 2.001 0.050 97.14 33.94 

 80.11 4.513 0.050 94.37 37.80 

 90.04 7.091 0.050 92.12 41.47 

  100.1 15.60 0.050 84.41 42.23 

313 K 12.76 0.046 0.050 99.64 6.36 

 22.82 0.057 0.050 99.75 11.38 

 33.01 0.113 0.050 99.66 16.45 

 43.58 0.196 0.050 99.55 21.69 

 54.41 0.284 0.050 99.48 27.06 
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 65.76 0.397 0.050 99.40 32.68 

 74.27 1.485 0.050 98.00 36.39 

 81.87 1.815 0.050 97.78 40.03 

 91.67 2.708 0.050 97.05 44.48 

  105.7 14.31 0.050 86.46 45.71 

318 K 12.76 0.000 0.050 100.0 6.382 

 22.82 0.093 0.050 99.59 11.36 

 33.01 0.124 0.050 99.63 16.44 

 43.58 0.232 0.050 99.47 21.67 

 54.41 0.294 0.050 99.46 27.06 

 65.76 0.397 0.050 99.40 32.68 

 74.27 0.505 0.050 99.32 36.88 

 81.87 0.572 0.050 99.30 40.65 

 91.67 1.418 0.050 98.45 45.13 

  105.7 12.64 0.050 88.05 46.54 

 


