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ABSTRACT 

The expansion of urbanisation and industrialisation, particularly in developing nations, 

has driven a concomitant increase in the generation of solid waste. Currently, the only 

feasible manner to manage and dispose of solid waste is through landfilling. However, 

landfilling can form wastewater, termed leachate, via the percolation of water through 

the landfill. Leachate composition tends to be highly toxic and variable with discharge 

into the natural environment potentially leading to detrimental ecological impacts. 

Therefore, the treatment of leachate prior to discharge is an imperative practice. A 

variety of treatment techniques are available but the use of biological treatment is 

prevalent due to its reliability and cost-effectiveness. The primary aim of the research 

undertaken was to determine the efficacy of utilising the microalgae Chlorella sp. as the 

primary and secondary treatment of hazardous landfill leachate. Primary treatment was 

defined as treating leachate recently derived from landfill, thereby possessing high 

ammoniacal-nitrogen (NH3-N) and Chemical Oxygen Demand (COD) concentrations. 

Secondary treatment was defined as treating pre-treated leachate that possessed a high 

nitrate (NO3
-) and lower COD concentration.  The amelioration of leachate was 

temporally monitored via the abatement of NH3-N, NO3
-, COD and 5-day Biochemical 

Oxygen Demand (BOD5). Chlorophyll-a (chl-a) was measured to determine Chlorella 

biomass dynamics. Chemical analyses were undertaken for 10%, 25%, 50% and 85% 

diluted treatment and controls. Toxicity tests were conducted subsequent to secondary 

treatment batch tests.  Both treatments effectively abated their respective nitrogenous 

compounds to below discharge limits with significant correlations between the 

nitrogenous compounds and chl-a. The efficacy of abating organic compounds 

demonstrated substantial variability between dilution treatments and treatment types. 

COD experiment termination concentration (ETC) for the primary treatment did not 

decline to below discharge limits, with COD levels increasing in the 10% and 50% 

treatments possibly due to extracellular polysaccharide expulsion by the microalgae. 

However, the 25% and 85% secondary treatments demonstrated ETCs below discharge 

limits. Toxicity tests revealed no significant differences between controls and 

treatments. In conclusion, only secondary treatment by Chlorella sp. is effective in 

treating leachate in terms of nitrogenous and organic compounds and further research 

should focus on multi-species treatment.  
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1. INTRODUCTION 
Solid waste production is inevitable as a result of current human activity (Vergara, 

2012). Apart from the expected increase in Municipal Solid Waste (MSW) production 

due to urbanization (Renou et al., 2008), the composition is becoming extraordinarily 

complex owing to plastics and electronics use spreading (Vergara, 2012). More than 1 

billion tons of MSW are discarded globally with an expected increase to over 2 billion 

tons by the year 2025 (Vergara, 2012). Waste characteristics tend to vary between 

cities, with industrialized cities discarding waste in the form of recyclable products and 

electronics and cities in developing countries discarding biodegradable waste (Vergara, 

2012). Industrialized cities also tend to produce more waste. Composition of waste does 

not only vary between cities but also within a city over time. Within a relatively short 

temporal scale, waste properties tends to differ seasonally over the span of a year but 

over a longer time scale changes in waste depend on cultural trends and technological 

advancement (Vergara, 2012). 

The main imperatives for solid waste management are to protect human health and the 

natural environment. Incompetent waste management could lead to public health issues 

such as attracting disease vectors (eg. rodents and mosquitoes) and production of toxic 

chemicals (Vergara, 2012). Solid waste management is a form of land use and thereby 

causes habitat destruction. However, management is vital to prevent pollution and 

therefore toxic chemicals from spreading into more pristine areas. There are several 

waste management techniques that could be utilized but all methods employed 

ultimately require a final disposal system (Vergara, 2012). Currently waste complexity 

is the reason for reusing and recycling complicatedness. 

The solid waste can be discarded in an open dump, placed in a landfill or incenerated. 

The global trend for the management of solid waste is landfilling (Warith, 2003; Renou 

et al., 2008). This is due to controlled landfilling currently possessing the most 

economical feasibility as well as being environmentally sensitive (Renou et al., 2008; 

Umar et al., 2010). This is because the technique allows waste to decompose under 

controlled conditions to a relatively inert substance (Renou et al., 2008). 

Landfill leachate is created by the penetration of water, either as precipitation, runoff or 

groundwater, into the landfill (Kjeldsen et al., 2002). Products or by-products of 

physico-chemical and biological processes occurring within the waste dissolve into the 

water creating a toxic solution (Baderna, 2011). The constituents of the leachate can 
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vary between sites depending on the waste contained within the landfill, the age of the 

landfill and the technology employed (Baderna, 2011; Kjeldsen et al., 2002). Leachate 

composition may vary within a single landfill due to varying stages of waste 

degradation present (Kjeldsen et al., 2002). There are a range of toxic compounds 

present within the leachate including inorganic salts, xenobiotics, dissolved organic 

matter and heavy metals (Baderna, 2011). Hence, if leachate is able to enter ground or 

surface water, there could be negative consequences for human and ecological health. 

The toxic compounds of the leachate will adversely affect the health of aquatic 

organisms; particularly fish (Baderna, 2011). As fish are at the higher trophic levels of 

aquatic food webs there may be serious intoxication to organisms that consume fish 

including humans. 

In order to protect the natural environment, possess re-usable water and protect human 

health it is critical to treat landfill leachate. There are several methods employed to treat 

landfill leachate and the method used is dependent on its composition (Renou et al., 

2008; Abbas et al., 2009). Biological treatment is generally widespread as it has proven 

to be one of the most successful treatments in abating pollutants and is cost-effective 

(Renou et al., 2008). 

Biological treatment that involves the utilisation of micro-organisms to ameliorate 

wastewater streams has become a necessary practice. Currently, there is much focus on 

the use of microalgae for the phycoremediation of effluent due to their metabolism 

(Vilchez et al., 1997). Microalgae are able to assimilate inorganic nitrogen compounds 

and would be vital in removal of these compounds in wastewater. They would also 

assist in removing phosphorous and decreasing dissolved organic matter (Tam & 

Wong, 1996). Advantages of using microalgae over macrophytes in phycoremediation 

are a drastic decrease of surface area required, economic feasibility, minimal sludge 

formation, sequestration of greenhouse gases, low energy requirements and the 

production of potentially useful biomass (Packer, 2009). 

Microalgae are regularly used as a tertiary treatment for wastewater (Tam & Wong, 

1996). A limiting issue for the use of microalgae for the secondary treatment of effluent 

is the high concentration of ammonia and urea present (Tam & Wong, 1996). 

Abeliovich and Azov (1976) have demonstrated that high concentrations of ammonia 

are toxic to photosynthetic organisms. The microalgae that were researched by 

Abeliovich and Azov (1976) were Scenedesmus obliquus, Anacystis nidulans, Chlorella 

pyrenoidosa and Plectonema boryanum. These species are typical of oxidation ponds 
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and it was demonstrated that high levels of un-ionized ammonia inhibited 

photosynthesis. It may inhibit photosynthesis either because of an absence of an 

electron acceptor or the penetrating ammonia increases the pH of the cell to an 

inhibitory level (Abeliovich & Azov, 1976). They had proposed that it was probably the 

latter as the pH maximum limit for undisturbed photosynthesis was 7.9 and that 

ammonium is known not to be able to penetrate microalgal cells.  

Most species of Chlorella Beijerinck 1890 are somewhat tolerant to pollution and will 

rapidly colonise an aquatic body rich in nitrogen, phosphorous and organic matter (Tam 

& Wong, 1996). Chlorella belong to the class Trebouxiophyceae with a morphology of 

spherical, subspherical or ellipsoid (Bock, 2011). They can be found singly or in 

colonies with a maximum of 64 individuals with mucilage present or absent (Bock, 

2011).  The chloroplast is single, parietal with pyrenoid present and surrounded by 

starch grains (Bock, 2011). Reproduction is by autospores with zoospores not being 

produced (Bock, 2011). Autospores are released through disruption of mother cell wall 

(Bock, 2011). The daughter cell can attach to remnants of mother cell and form 

colonies with mucilage envelopes (Bock, 2011). They can have planktonic, edaphic or 

endosymbiotic lifestyles (Bock, 2011). 

Tam & Wong (1996) have indicated that Chlorella growth patterns grown under 

different nitrogen sources are similar and therefore Chlorella able to utilise both nitrate 

and NH3-N as a nutrient source. Chlorella growth is possible in high concentration 

NH3-N but it was observed that maximal cell density was much lower than low NH3-N 

concentration Tam & Wong (1996). A more recent study by Termini et al. (2011) 

demonstrated that there was continuous removal of NH3-N in both indoor and outdoor 

photo-bioreactors. There was an ammonium removal of 90% with the outdoor 

configuration and 99.9% in the indoor one (Termini et al., 2011).  An advantage of 

using microalgae for the treatment of wastewater is the coupled biomass production for 

energy (Sturm & Lamer, 2011). Contrasting with other biofuel stocks, microalgae do 

not threaten food security, can grow non-arable land and do not necessitate vast 

quantities of water (Sturm & Lamer, 2011). For this technology to be applied on a large 

scale a total energy surplus must be obtained (Sturm & Lamer, 2011). Biofuel 

production has proven to be energetically favourable for open pond reactors exploiting 

wastewater as a source of nutrients (Sturm & Lamer, 2011). If lipid yields of 

microalgae are low, direct combustion of the dry algal biomass can be used as a source 

of energy. 
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Reports on the utilisation of algae for the treatment of municipal wastewater are 

available (Craggs et al., 1997; Olguin, 2003; Zimmo et al., 2004; Rawat et al., 2011). 

However, knowledge and development on the use of microalgae for the treatment of 

landfill leachate is largely lacking. Therefore, the comprehensive aim of this study was 

to determine the efficacy of using the microalgae Chlorella sp. in the phycoremediation 

of hazardous landfill leachate. 

This was achieved through three objectives:  

a) Determining the efficacy of utilising Chlorella sp. in the primary treatment of 

hazardous landfill leachate.  

b) Determining the efficacy of utilising Chlorella sp. in the secondary treatment of 

hazardous landfill leachate. In this scenario the leachate underwent primary 

treatment in an SBR and therefore possessed no NH3-N but possessed a relatively 

large concentration of NO3
-. 

c) Using these two experiments to conclude the feasibility of using Chlorella sp. for 

the treatment of landfill leachate. 

  



 

18 

 

2. LITERATURE REVIEW 

2.1 Solid Waste and Landfilling 

Solid waste is defined as material that is discarded from residential, commercial and 

industrial sources that ceased to have value to the possessor (Williams, 2005; 

McDougall, et al., 2001). However, the definition of waste may change in the way that 

it is treated. It holds no value for refuse workers hauling it to be disposed of but it holds 

great value for waste pickers (Assaad, 1996). Currently the global solid waste 

generation is approximately 1 billion tonnes per annum (Themelis and Zhang, 2010; 

Vergara, 2012). This is probably expected to increase due to the continuance of 

industrial and urban growth globally (Renou et al., 2008). Most urbanisation growth is 

taking place in small and medium sized cities in low-income countries (Cohen, 2004). 

According to Myers and Kent (2003) these nations host approximately a billion new 

consumers expending on cars, electricity, meat and other consumable goods. There are 

two major consequences from this amplified consumption viz. the increase of utilising 

natural resources and  more waste being produced (Vergara, 2012) 

Poor waste management can have detrimental effects on the environment at varying 

scales (Vergara, 2012). The open dumping of wastes can pollute nearby aquatic 

ecosystems and can adversely affect human health by attracting disease vectors and 

exposing people to any deleterious waste products (McDougall et al., 2001). Solid 

waste also affects the air by emitting poisonous gases as well as greenhouse gases 

(GHG’s) (Vergara, 2012). Waste management only contributes a small degree of GHG 

emissions nevertheless it is capable of acting as either a source or a sink (Bogner et al., 

2007). Waste tends to affect poor people more than the middle and higher income 

group as they are likely to reside closer to waste and they are more probable to be 

waste-workers (Vergara, 2012).  

The management of solid waste requires land-use change and therefore potentially 

destroys natural habitat but the emission of toxic chemical by-products will have a 

heightened effect on fauna and flora (Vergara, 2012). This is especially so if they 

dumped openly or burnt. This can be avoided by implementing environmentally 

sensitive methods (Read et al., 1997). These techniques involve minimization, 

recycling, composting and waste to energy (Read et al., 1997). The global trend for the 

management of industrial and urban solid waste is landfilling (Warith, 2003; Renou et 

al., 2008). This is due to controlled landfilling currently possessing the most 

economical feasibility as well as being environmentally sensitive (Renou et al., 2008; 
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Umar et al., 2010). This is because the technique allows waste to decompose under 

controlled conditions to a relatively inert substance (Renou et al., 2008). 
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Figure 2.1 Solid Waste Pathway (adapted from Centre for Ecological Sciences, 2015) 
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2.2 Landfill as a Bioreactor 

“The traditional MSW landfill has undergone a transformation from a basic contained 

dump site, to highly engineered facilities with sophisticated containment systems, 

environmental monitoring, improved operational practices, and increased regulation” 

(Reinhart et al., 2002).  

Landfills are the foremost disposal technique for municipal solid waste and are the most 

commonly employed waste management system on a global scale (Warith, 2003). 

According to Warith (2003) landfills have functioned as the final waste recipients for 

“municipal refuse, industrial or agricultural residues, wastewater sludge, incinerator 

ash, recycle discards, and/or treated hazardous wastes”. In a conventional landfill the 

waste is spread out, compacted into a cell and covered with a thin layer of soil (Warith, 

2003). Once the maximum height is achieved the waste is enclosed with a layer of clay 

(Warith, 2003). The problem with running a conventional landfill is that the waste takes 

several decades to fully decompose and liner failure is possible in the future causing 

groundwater contamination (Rosenberg, 2000; Warith, 2003). 

The possible release of pollutants has transformed the methods of waste management 

by operating landfills as bioreactors. An engineered bioreactor landfill exploits 

microbiological processes to stabilize the waste in a landfill within 5 to 10 years 

(Warith, 2003). This stabilization ensures that potential pollutant parameters are not 

subjected to dramatic increases due to partial confinement failures (Warith, 2003). The 

major difference between a traditional MSW landfill and a bioreactor landfill is the 

addition of moisture either in the form of water (Reinhart et al., 2002) or the 

recirculation of leachate (Warith, 2003). This addition of moisture stimulates the 

biodegradation of waste and enhances the rate of waste breakdown when compared to a 

traditional landfill. This method allows for a rapid stabilisation period i.e. from decades 

to 2-3 years (Reinhart et al., 2002) thus reducing chances as a potential source of 

pollution. Managing a landfill in this manner also allows for the optimisation of landfill 

gas capture, increased landfill capacity as well as opportunities for alternate leachate 

treatment (Reinhart et al., 2002). 

2.2.1 Aerobic Bioreactor 

Aerobic respiration has a higher energy yield than anaerobic respiration therefore 

aerobes have a higher growth rate than anaerobes (Warith, 2003). Aerobe activity thus 

rapidly accelerates the degradation of waste and full degradation can be achieved at 

around 2 years.   Environmental conditions in the landfill are optimized for the growth 
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of aerobes in order that they breakdown waste and this achieved by injecting air into the 

landfill (Warith, 2003).  

2.2.2 Anaerobic Bioreactor 

The anaerobic landfill reactor utilizes anaerobic micro-organisms to degrade the waste 

(Warith, 2003). In order for optimum anaerobic activity to be achieved moisture content 

in the waste mass must be 35-40% (Warith, 2003). However the typical moisture 

content of a landfill is 10-20% but this can be compensated by the addition of moisture 

into the landfill. Anaerobic activity consequently produces methane and carbon dioxide 

that can be collected (Warith, 2003). 

2.2.3 Aerobic-Anaerobic Bioreactor 

The landfill is engineered and operated such that it possesses attributes of both the 

aerobic and anaerobic bioreactors. The uppermost portion of waste is aerated while the 

bottom portion receives the liquid, both being transported by horizontal wells (Warith, 

2003). The intention of this design is to cause rapid breakdown in readily degradable 

waste in the aerobic stage and to reduce organic acids in the anaerobic stage (Warith, 

2003). 

2.2.4 Facultative Bioreactor 

The facultative bioreactor utilizes anaerobic micro-organisms and it also possesses a 

mechanism that treats the high level of ammonia produced when liquids are added to 

the landfill (Warith, 2003). Ammonia (NH3) is converted to Nitrate (NO3
-) by the 

process of nitrification and the NO3
- converted to Nitrogen (N2) in the absence of 

oxygen.  Liquid has to be added in order for the landfill to contain an elevated moisture 

content and consequently function at an optimum level (Warith, 2003).  The process 

described above is a brief summary of the Nitrogen cycle which is discussed in further 

detail below. 

2.3 Nitrogen Cycle 

The Nitrogen Cycle is defined as the environmental flow of Nitrogen and its inter-

conversion with its compounds (Figure 2.2). Nitrogen gas (N2) is the most stable form 

and is a reservoir from which N-compounds are produced (Galloway, 2003). Nitrogen 

fixation is a process wherein N2 is reduced to Ammonia (NH3) or Ammonium (NH4
+) 

and is performed by biological activity (Galloway, 2003). Ammonia and NH4
+ are two 

species that can be grouped as inorganic reduced nitrogen and collectively termed 

ammoniacal nitrogen (NH3-N). Ammonia is the main species emitted into the 
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atmosphere and is caused by the decomposition of organic matter by heterotrophic 

micro-organisms (Galloway, 2003). This process is termed Ammonification and is the 

conversion of reduced organic nitrogen to reduced inorganic nitrogen (Galloway, 2003, 

Figure 2.2).  The two inorganic reduced nitrogen species can be consumed by 

biological organisms and incorporated into their biomass. This process is termed 

Ammonia assimilation (Galloway, 2003, Figure 2.2).  

 

  

NH3 

A
m

m
onification 

NH4
+ Oxidation 

 

NO2
- Reduction 

N
O

2-  O
xi

da
tio

n 

Atmosphere 

Soil or Water 
N2 

N2O 

N

O 
NO2

- NH4
+ 

NO3
- N(org) 

A
ss

im
ila

tio
n 

N
O

3 - R
eduction 

 

Figure 2.2 A summary of the Nitrogen Cycle (adapted from Galloway, 2003) 
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Specialised micro-organisms (chemoautotrophs) are able to obtain energy from NH4+ 

oxidation (Galloway, 2003). This process called Nitrification causes NH4
+ to be 

converted to NO3
- by a series of chemical reactions. There are two groups of micro-

organisms that are involved in this aerobic process (Galloway, 2003). The first group 

oxidizes NH4
+ to NO2

- (e.g. Nitrosomonas), thereafter another group oxidizes NO2
- to 

NO3
- (e.g. Nitrobacter) (Galloway, 2003). The NO3- end-product of nitrification is an 

important source of nitrogen for many organisms. This uptake of NO3- and 

incorporation into biomass to form organic nitrogen compounds is termed Assimilatory 

nitrate reduction (Galloway, 2003).  

Under anaerobic conditions where there is organic matter and NO3
- available, the 

process of Denitrification can occur. The denitrification process is defined as the 

reduction of nitrates (NO3
-) to nitrogen gas (N2), via the intermediates nitrite (NO2

-), 

nitric oxide (NO) and nitrous oxide (N2O) (Trois et al., 2010).Micro-organisms use the 

NO3
- as an oxidant to obtain energy from the organic matter (Galloway, 2003). 

Nitrogen is used as an electron acceptor in the place of oxygen. Dissimalatory nitrate 

reduction is a respiratory process whereby nitrates (instead of oxygen as in aerobic 

respiration) serve as the terminal electron acceptor. 

2.4 Landfill Design 

Incorporated into the design of the landfill is an impermeable barrier to prevent 

contamination of groundwater (Reinhart et al., 2002). These liners prevent waste from 

entering the surrounding environment but prevent degradation of the waste (Reinhart 

and Al-Yousfi, 1996; Reinhart et al., 2002). Liners used are a clay layer, a geo-

membrane or both (Katsumi et al., 2001). The liners have a limited lifespan and once 

worn away the waste is then exposed to the environment. This waste that is not yet 

degraded and was dormant is now as hazardous to the environment as it was when 

initially landfilled (Reinhart et al., 2002).  

The two principal channels for the escape of leachate are leakage through holes and 

molecular diffusion through the membrane (Katsumi et al., 2001). Holes in the geo-

membrane layer are caused by faults in the seams, punctures by sharp objects, tension 

caused by the mass of the waste and material failure (Katsumi et al., 2001). Clay liners 

have low hydraulic conductivity and are generally unsaturated as long as they are 

placed above the water table (Katsumi et al., 2001). A composite liner i.e. liner that 

incorporates a geo-membrane and a clay layer, typically possesses leachate leakage 

appreciably less than a single layer. This is because the geo-membrane reduces the area 
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through which leakage can occur and the clay liner below minimises leakage due to 

geo-membrane defects (Katsumi et al., 2001).  

Once the landfill has reached its maximum disposal capacity it is imperative that it is 

capped in order to enclose the waste. The crucial purpose of the cap is to prevent or 

restrain precipitation from entering the landfill thereby controlling leachate generation 

(Simon and Müller, 2004). The cap also prevents the emission of landfill gas into the 

atmosphere and wind transport of waste and odour (Simon and Müller, 2004). There are 

several capping systems available but the standard capping method is a plastic geo-

membrane in contact with a clay layer (Simon and Müller, 2004). The geo-membrane 

comprises of both, a hydrophobic and hydrophilic material, and any faults in it are 

sealed with the clay layer (Simon and Müller, 2004). 

2.5 Formation of Leachate 

One of the key issues associated with landfilling of waste is the release of wastewater 

referred to as leachate. According to Renou et al. (2008) leachate is defined as “the 

aqueous effluent generated as a consequence of rainwater percolation through wastes, 

biochemical processes in waste’s cells and the inherent water content of wastes 

themselves.” Leachate contains heavy metals, xenobiotics, organic and inorganic 

compounds and can cause major environmental predicaments such as ground- and 

surface water contamination (Kjeldsen et al., 2002).  

Comparisons of different landfills have indicated a wide variation in leachate 

composition (Kulikowska and Klimiuk, 2008). A contributing factor to this occurrence 

is the age of the landfill (Kurniawan et al., 2006; Renou et al., 2008), because the age 

of the landfill influences the degradation state of the waste (Baderna et al., 2011). The 

older a landfill is the greater the stability of the waste (Renou et al., 2008). Therefore 

the leachate composition and characteristics can vary within an individual landfill itself, 

depending on the differences in the waste age (Baderna et al., 2011; Table 2.1). Climate 

is a dynamic phenomenon that also considerably effects leachate production, as it 

affects volume through precipitation and losses through evaporation (Renou et al., 

2008).  
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Table 2.1 Landfill leachate composition (Qasim and Chiang, 1994) 

Constituent Unit New Landfill 

(younger than 2 
years) 

Old Landfill 

(older than 2 
years) 

5-day Biochemical Oxygen Demand mg/L 2 – 30 000 100 – 200  

Total Organic Carbon mg/L 1500 – 20 000 80 – 160  

Chemical Oxygen Demand mg/L 3000 – 60 000 100 – 500  

Total Suspended Solids mg/L 200 – 2000  100 – 400  

Organic Nitrogen mg/L 10 – 800  80 – 120  

Ammonia  mg/L 10 – 800  20 – 40  

Nitrate  mg/L 5 – 40  5 – 10  

Total Phosphorus mg/L 5 – 100  5 – 10  

Ortho-Phosphates mg/L 4 – 80  4 – 8  

Alkalinity mg/L 1000 – 10 000 2 – 1000  

pH pH 
units 

4.5 – 7.5  6.6 – 7.5  

Total hardness as CaCO3 mg/L 300 – 10 000 200 – 500  

Calcium mg/L 200 – 3000  100 – 400  

Magnesium mg/L 50 – 1500  50 – 200  

Potassium mg/L 200 – 1000    50 – 400  

Sodium mg/L 200 – 2500  100 – 200   

Chloride mg/L 200 – 3000  100 – 400  

Sulfate mg/L 50 – 1000  20 – 50  

Total Iron mg/L 50 – 1200  20 – 200  
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2.6 Leachate Toxicity and Impact on Natural Ecosystems 

2.6.1 Background 

Landfill leachate is a water-based solution that contains a diversity of pollutants 

including heavy metals, inorganic ions and xenobiotics (Table 2.1). Therefore, it may 

be harmful to living organisms including humans (Baderna et al., 2011). Leachate can 

induce cognitive and behavioural abnormalities, neurotoxicity and DNA damage. 

Exposure to leachate causes oxidative damage to particular organs via lipid 

peroxidation and changes in antioxidant status (Baderna et al., 2011). Studies on the 

effect of mice have indicated that leachate causes increased frequency in micronuclei, 

chromosomal aberrations and alteration in sperm morphology (Baderna et al., 2011). 

Talorete et al. (2008) tested the in vitro effects of raw leachate on MCF-7, a human 

breast cancer cell. The leachate instigates oxidative stress on the cells causing DNA 

damage. The normal sequence of cell cycles, including mitosis, is blocked and if the 

cells are unable to undergo DNA repair, cell death eventually occurs.  

Baderna et al. (2011) conducted a study wherein industrial waste landfill leachate 

characteristics were monitored over a period of 11 years and in vitro assays conducted 

to test the hepatotoxicity of leachate. It was observed that raw leachate significantly 

inhibited cell multiplying at small doses (greater than 2.5% v/v). The study also 

determined that it was the hydrophilic compounds in the leachate were responsible for 

the inhibition and not the organic components. Cell viability was also monitored and it 

was observed that within 24 hours no significant inhibition occurs, however after 72 

hours cell viability had declined with concentrations greater than 5% v/v. 

An important compound detected at high concentrations is Bisphenol A (BPA). BPA is 

classified as a high production volume compound that is used for the production of 

polycarbonate plastics and epoxy resins (Baderna, 2011). It is known to cause adverse 

health effects  in animals and humans particularly during early development periods. 

Furthermore, exposure to levels lower than those required for acute toxicity have 

proven to result in endocrine-related affects in an array of aquatic ectotherms (Baderna 

et al., 2011). 

Although the physico-chemical properties and pollutants present in leachate have the 

potential to be toxic, there are specific physico-chemical properties and compounds that 

are of primary concern as they: 
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 Are present in relatively large concentrations; 

 Negatively affect the physiological functioning of living organisms; and 

 Negatively influence physico-chemical characteristics of natural ecosystems, 

thereby negatively impacting ecosystem functioning. 

These leachate constituents are discussed in further detail below. 

2.6.2 Nitrogenous Compounds  

NH3-N is an important reducing agent in landfill leachate and partakes in complex 

redox reactions (Baderna et al., 2011). The two aqueous forms of NH3-N are the 

ammonium ion (NH4
+) and ammonia (NH3) and their relative abundance depends on 

temperature and pH (Figure 2.3).  

                           

 

Figure 2.3 The effect of pH on ammoniacal-nitrogen relative concentration 
(Huckstedt, 1973) 

 

When equilibrium is shifted to the right at low temperatures and pH < 7, NH4
+ 

dominates and conversely when equilibrium is shifted to the left at high temperatures 

and pH > 7 NH3 dominates. 

Due to its long-term persistence NH3-N plays a significant role in human and ecological 

toxicity and is regarded as the main cause of acute toxicity from landfill leachate 

exposure (Baderna et al., 2011). Depending on other constituents and physico-chemical 

properties of the leachate, NH3-N toxicity could be altered causing increased or 
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decreased toxicity of the leachate as a whole (Byrne et al., 2008). These parameters 

include total dissolved solids, heavy metals, dissolved oxygen, and carbon dioxide 

(DWS, 1996). Unionized ammonia (NH3) is more toxic to organisms and inhibits cell 

metabolism and decreases O2 permeability through cell membranes (DWS, 1996). The 

acute toxic effects of NH3 to fish include “loss of equilibrium, hyper-excitability, an 

increased breathing rate, an increased cardiac output and oxygen intake, and in extreme 

cases convulsions, coma and death” (DWS, 1996). “Chronic effects include a reduction 

in hatching success, reduction in growth rate and morphological development, and 

pathological changes in tissue of gills, liver and kidneys” (DWS, 1996). 

NH3-N is eventually converted to nitrate under aerobic conditions. Nitrate is highly 

soluble, chemically stable and persists in polluted waters (Pisano, 2007). The symptoms 

of excessive nitrate intake include abdominal pains, diarrhea, vomiting, hypertension, 

increased infant mortality, central nervous system birth defects, diabetes, spontaneous 

abortions, respiratory tract infections, and changes to the immune system (Lohumi et 

al., 2004). The toxic activity of nitrate itself is termed primary toxicity. 

Secondary toxicity is the noxious action of nitrite that was formed from the reduction of 

nitrate by intestinal bacteria. Methemoglobin (MetHb) is formed when nitrite oxidizes 

the ferrous iron in haemoglobin (Hb) to the ferric form. MetHb cannot bind to oxygen 

and ultimately leads to a condition called methemoglobinemia (Kross et al., 1992). 

Methemoglobinemia is characterised by cerebral anoxia, cyanosis and stupor (Samatya 

et al.., 2006). Symptoms include an unusual greyish skin color and irritability (Samatya 

et al.., 2006). Furthermore, excessive crying in children with moderate MetHb levels 

and drowsiness and lethargy at higher levels has been recorded (Samatya et al.., 2006). 

Reactions between nitrite and secondary or tertiary amines in an acidic medium may 

lead to the formation of N-nitroso compounds, several of which are carcinogenic, 

mutagenic and teratogenic (Pisano, 2007). This is termed tertiary toxicity. 

In addition, excessive nitrate loads may potentially alter ecosystem characteristics and 

functioning. The excessive presence of nitrates in surface waters drive eutrophication, 

wherein primary producers occur in nuisance abundances (DWS, 1996). These blooms 

may consist of species that are toxic to man and other biota (DWS, 1996). 

2.6.3 Organic Carbon Compounds 

The oxidisable organic matter present within leachate can possibly negatively impact 

any receiving aquatic ecosystem (DWS, 1996). When the organic matter is discharged 
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into the receiving water body, it serves as a source of nutrients for microbes and results 

in the rapid increase in microbial metabolism. Consequently, there is a rapid decline in 

the concentration of Dissolved Oxygen (DO) (DWS, 1996). Therefore, untreated or 

improperly treated leachate discharged into the natural environment will have negative 

consequences for biota as DO is required for respiration. 

2.7 Treatment of Landfill Leachate 

The Department of Water and Sanitation (DWS), previously known as the Department 

of Water Affairs (DWA), is regarded as the custodian of South Africa’s water resources 

and their policy dictates that aquatic ecosystems remain ecologically healthy and are 

utilised in a sustainable manner. To ensure the ecological health of aquatic ecosystems 

is maintained, they need to possess an array of specific ecological properties including 

optimum water quality. The term water quality as defined by DWS (1996) is the 

“physical, chemical, biological and aesthetic properties of water that determine its 

fitness for a variety of uses and for the protection of the health and integrity of aquatic 

ecosystems.” 

According to the DWS policy “pollutants which pose the greatest threat to the 

environment, because of their toxicity, extent of bio-accumulation and persistence, a 

precautionary approach aimed at minimizing or preventing inputs to the water 

environment should be adopted." Consequently, effluent including landfill leachate 

must be pre-treated before it is discharged into water courses. 

One of the management objectives of DWS is ensuring that no adverse effects are 

brought about by the introduction of pollutants into the aquatic system and is achieved 

by the Target Water Quality Range (TWQR). It is derived from a range of quantitative 

and qualitative criteria. It is set group of concentrations and levels that will not impair 

the health of ecosystems and will form a guideline to what degree water quality may be 

altered (DWS, 1996). The Government Gazette No. 20526 8 October 1999 indicates the 

established limits for several parameters pertaining to the discharge of effluent into a 

water resource through a conduit. The concentration of constituents permitted for 

discharge into natural water systems are indicated in Table 2.2 below. 
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Table 2.2 Established General Limit and Special Values for the discharge of wastewater 
(DWS, 1999) 

Parameter Unit General Limit Special Limit 

Faecal Coliforms  Per 100 
mL 

1000 0 

Chemical Oxygen Demand  mg/L 75 30 

Ammoniacal nitrogen mg/L 3 2 

Nitrate/Nitrite mg/L 15 1.5 

Free Chlorine mg/L 0.25 0 

Suspended Solids mg/L  25 10 

Conductivity mS/m 70 – 150 above 
intake 

50 – 100 above 
intake 

Ortho-Phosphate mg/L  10 1 – 2.5  

Fluoride mg/L  1 1 

Soap, oil or grease mg/L  2.5 0 

Dissolved Arsenic mg/L  0.02 0.01 

Dissolved Cadmium mg/L  0.005 0.001 

Dissolved Chromium mg/L  0.05 0.02 

Dissolved Copper mg/L  0.01 0.002 

Dissolved Cyanide mg/L  0.02 0.01 

Dissolved Iron mg/L  0.3 0.3 

Dissolved Lead mg/L  0.01 0.006 

Dissolved Manganese mg/L  0.1 0.1 

Dissolved Selenium mg/L  0.02 0.02 

Dissolved Zinc mg/L  0.1 0.04 

Mercury and Mercury 
Compounds 

mg/L  0.005 0.001 

Boron mg/L  1 0.5 
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The complexity of leachate makes it problematical to make general recommendations 

for its treatment (Renou et al., 2008; Abbas et al., 2009). Due to this wide variation in 

leachate characteristics treatment methods employed must be flexible (Abbas et al., 

2009). There are several methods employed to treat landfill leachate and the method 
used is dependent on the composition of the leachate (Renou et al., 2008; Abbas et al., 

2009). 

2.7.1 Leachate Transfer 

2.7.1.1 Combined Treatment 

A common practice was to combine landfill leachate with municipal sewage and treat 

the combined wastewater in the municipal sewage treatment plant (Renou et al., 2008). 

The leachate is pumped out from the bottom of the landfill and stored in basins where it 

is later transported to the treatment plant (Warith, 2003). This method has received 

wide criticism due the presence of heavy metals and organic inhibitory compounds that 

may reduce treatment efficiency thus increasing pollutant concentration in the effluent 

(Cecen and Aktas, 2004). In a study by Diamodopoulos (1997) it was demonstrated that 

the ratio of 9:1 for sewage and leachate respectively yielded nearly 95% Biochemical 

Oxygen Demand (BOD) and 50% Nitrogen removals at the end of the daily cycle. 

2.7.1.2 Recycling 

Recycling the leachate back through the landfill has been widely used as it is currently 

the most economically feasible (Renou et al., 2008). Recirculating the leachate 

increases the moisture content of the landfill and supplies assorted nutrients thus 

promoting microbial activity (Warith, 2003). Chugh et al. (1998) demonstrated that 

there was significant lowering of COD and methane production using this method. This 

was observed when the recycled volume was 30% of the initial waste volume. An 

immense advantage is that the stabilisation process time is reduced from decades to 2-3 

years (Reinhart and Al-Yousfi, 1996). This method also assists in the removal of 

sulphides and hydroxides thus decreasing the concentration on heavy metals in the 

leachate (Reinhart and Al-Yousfi, 1996). The passage of the recycled leachate back 

through the solid waste augments contact between micro-organisms and the leachate 

thus optimising microbial treatment of the leachate (Reinhart and Al-Yousfi, 1996). 

There are several methods that are employed in order to facilitate the recirculation of 

leachate. The leachate can be applied directly to the waste as it is being landfilled. The 

disadvantages of this technique are odour problems, health risk due to contact with the 
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leachate and off-site migration (Warith, 2003). The leachate can be spray irrigated onto 

the surface of the landfill to ensure that the leachate comes into contact with more of 

the solid waste than with direct application (Warith, 2003). Another advantage is that 

some of the leachate volume is lost due evaporation (Warith, 2003). Surface application 

of leachate involves either ponding or spreading the leachate (Warith, 2003). A larger 

amount of land is required for this and ponds have to be monitored for any leaks 

(Warith, 2003). In order to avoid these problems, subsurface methods can be applied. 

This is achieved by constructing vertical recharge wells and horizontal drains within the 

solid waste (Warith, 2003). This method reduces the risk of atmospheric exposure. 

2.7.2 Physical/Chemical Treatment 

“When treating stabilised (fewer biodegradables) leachate, physico-chemical treatments 

have been found to be suitable as a refining step for biologically treated leachate, in 

order to remove organic refractory substances” (Renou et al., 2008).  

2.7.2.1 Coagulation and Flocculation  

Coagulation and flocculation can be used to treat aged and therefore stabilised landfill 

leachate (Silva et al., 2004). These coagulants destabilize any colloidal particles within 

a solution thus facilitating the settling of the particles out of solution. Flocculation 

follows the coagulation step and serves to increase the particle size, thus further 

assisting the settling of particles (Renou et al.., 2008). Aluminium sulfate, ferrous 

sulfate, ferric chloride and ferric chloro-sulfate are commonly used as coagulants 

(Amokrane et al., 2009). This method is commonly employed as either a pre-treatment 

and/ or final polishing step in order to remove non-biodegradable matter (Amokrane et 

al., 2009). Addition of flocculants together with coagulants may enhance the floc-

settling rate (Amokrane et al., 2009). There are disadvantages to this method these 

include consistent production of sludge volume and an increase in the concentration of 

aluminium or iron in the liquid phase (Silva et al., 2004).  

2.7.2.2 Chemical Precipitation 

Landfill leachate typically has a high concentration of ammonia present as NH4
+ 

(Renou et al., 2008). Li et al. (1999) indicated that increasing NH4
+ significantly 

affected a conventional activated sludge process. The Chemical Oxygen Demand 

(COD) removal declined from 95 to 79%, when the concentration of NH4
+ increased 

from 50 to 800 mg/L (Li et al., 1999). Li et al. (1999) precipitated ammonium ions as 

Magnesium Ammonium Phosphate (MAP) with the addition of MgCl2.6H2O and 

Na2HPO4·12H2O with an Mg/NH4
+/PO43- ratio of 1/1/1 at a pH of 8.5–9. Chemical 
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treatment is used in leachate treatment to remove high concentrations of NH4
+ (Renou et 

al., 2008). 

2.7.2.3 Adsorption 

The use of activated carbon columns for the adsorption of pollutants from leachate is 

more efficient in removing COD from landfill leachate than the chemical precipitation 

method (Morawa et al., 1995; Fettig et al., 1996). The combined use of activated 

carbon with biological treatment effectively treats landfill leachate (Morawa et al., 

1995). Employing this technique ensures that the leachate is suitable for biological 

treatment by lowering non-biodegradable organics, inert COD and colour (Renou et al., 

2008). 

2.7.2.4 Air Stripping 

This is currently the most common method utilised to remove excess levels of ammonia 

(Renou et al., 2008). For efficient processing there must be a high pH (Gotvajn et al., 

2009) and the contaminated gas phase must be treated with either H2SO4 or HCl (Renou 

et al., 2008). Marttinen et al. (2002) reported an 89% ammonia decline at pH 11 and 

20°C within a 24 hour retention time. Ammonia stripping is a first-order reaction 

therefore the mass transfer rate from liquid to gas depends on the initial concentration 

of ammonia (Marttinen et al., 2002). A foremost concern with this process is the release 

of ammonia into the atmosphere if the ammonia cannot be absorbed by H2SO4 or HCl 

(Renou et al., 2008). According to Ozturk et al. (2003) air stripping is the most 

economically viable alternative for high ammonium removal.  

2.7.3 Membrane Processes 

The main membrane processes used in landfill leachate treatment are reverse osmosis 

(RO), ultrafiltration (UF), nanofiltration (NF) and microfiltration (MF) (Renau et al., 

2008). The key issue with using pressure-driven membrane processes for leachate 

treatment is membrane fouling (Renou et al., 2008). This requires large-scale pre-

treatment and intensive cleaning of the membranes, resulting in a shortened life span of 

the membrane itself and thus impedes treatment efficiency (Renou et al., 2008). 

Another drawback is the production of a large volume of concentrate that has to be 

further treated and discharged. 

2.7.4 Biological Treatment 

According to Vilchez et al. (1997) “bioremoval is defined as the accumulation and 

concentration of pollutants from aqueous solutions by the use of biological materials, 
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thus allowing the recovery and/or environmentally acceptable disposal of the 

pollutants”. Biological treatment is prevalent due to the technique being simple, reliable 

and cost-effective (Renou et al., 2008). Micro-organisms degrade organic compounds 

into sludge and CO2 or CO2 and CH4, under aerobic or anaerobic conditions, 

respectively (Lema et al., 1988). Biological treatment is especially effective in 

eradicating organic and nitrogenous matter from young leachate where the COD/BOD 

ratio is high (Renou et al., 2008). Biological treatment has been found to be ideal for 

the treatment of young leachate with regards to the elimination or diminution of NH3-N, 

COD and heavy metals (Renou et al., 2008). 

2.7.4.1 Aerobic Treatment 

Aerobic Treatment allows for the partial abatement of organic pollutants and for the 

ammonium nitrogen nitrification (Renou et al., 2008). Aerated lagoons have been 

identified as an effective and economically feasible treatment for the removal of 

pathogens and pollutants from wastewater (Renou et al., 2008). They are generally used 

in wastewater treatment particularly in developing countries (Renou et al., 2008). 

Maehlum (1995) indicated that over 70% of N, P, and Fe was removed from leachate 

using anaerobic-aerobic lagoons and constructed wetlands. However lagooning may not 

be an effective method for the treatment of leachate. This is due to the dependence on 

the temperature on microbial activity and with strict requirements for leachate 

discarding it may not be effectual (Zaloum and Abbott, 1997). 

Activated sludge processes are used for the treatment for municipal wastewater and 

could be used for the co-treatment of wastewater and landfill leachate. However this 

method has proven to be ineffective due to various reasons (Renou et al., 2008). A 

longer aeration time is required for treatment and there is meagre sludge settling 

(Loukidou and Zouboulis, 2001). The method requires substantial energy and there is 

unwarranted sludge formation (Hoilijoki, 2000).  

The sequencing batch reactor (SBR) system is ideal for the nitrification-denitrification 

process. It allows for concurrent nitrification and organic carbon oxidation 

(Diamadopoulos et al., 1997). Process techniques demonstrated by Diamadopoulos et 

al. (1997) has resulted in the wide application of a SBR system for the treatment of 

leachate. This system has proved to remove up to 75% COD and Lo (1996) has 

reported a removal of 99% NH4
+ during the aerobic treatment of domestic leachates in a 

SBR with a 20–40 days  residence time. An advantage of the SBR system is that it has 
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an outsized process flexibility which is critical for the treatment of landfill leachate, 

which itself is highly variable (Renou et al., 2008). 

Jokela et al. (2002) investigated the efficiency of using trickle filters for the treatment 

of landfill leachate. The advantage of using this type of biofilter is the relatively low 

cost of filter media (Jokela et al., 2002). Jokela et al. (2002) had found that there was 

over 90% nitrification of the leachate under laboratory conditions and in situ pilot 

aerobic crushed brick filters. “MBBR (Moving-bed biofilm) reactor process is based on 

the use of suspended porous polymeric carriers, kept in continuous movement in the 

aeration tank, while the active biomass grows as a biofilm on the surfaces of them” 

(Renou et al., 2008). This method is also termed as a fluidised bed reactor. This method 

allows for superior microbial biomass growth and there is less sensitivity to toxic 

chemicals (Loukidou and Zouboulis, 2001). MBBRs also eliminate the need for long 

sludge-settling periods. Loukidou and Zouboulis (2001) had achieved a maximum of 

90% NH4
+ reduction and 81% COD reduction. 

2.7.4.2 Anaerobic Treatment 

The anaerobic digestion process allows for the treatment of high strength organic 

effluents. As opposed to aerobic treatment anaerobic digestion conserves energy and 

produces very few solids but does so at low reaction rates (Renou et al., 2008). SBRs 

operated under anaerobic conditions are able to accomplish solid capture and organic 

lowering in one vessel and thus eliminates the need for a clarifier (Renou et al., 2008). 

By running the leachate through an aerobic reactor methanogenesis and denitrification 

occurs, thus enhancing nitrification in a proceeding aerobic reactor (Renou et al., 2008). 

An aerobic-anaerobic system is recommended to bring down organic and nitrogen 

matter simultaneously (Renou et al., 2008). 

The Up-flow Anaerobic Sludge Blanket (UASB) reactor has prominent treatment 

efficiency and a short hydraulic retention time (Lin et al., 2000). When a volume of 

high organic loading rate is introduced into the system, it exhibits superior 

performances when compared to other anaerobic treatments (Garcia et al., 1996). 

The anaerobic filter is a high rate system that maintains biomass as a biofilm on a 

support (Nedweld and Reynolds, 1996). Henry et al. (1987) demonstrated that 

anaerobic filter could reduce the COD by 90%, at loading rates varying from 1.26 to 

1.45 kg COD/m3/day, and is applicable for different landfill ages. Total biogas 

production ranged between 400 and 500 L gas per kg COD destroyed with a methane 
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content between 75 and 85%. The hybrid bed filter involves an up-flow sludge blanket 

and an anaerobic filter above it (Renou et al., 2008). This type of filter is a gas-solid 

separator (Renou et al., 2008). It enhances the retention of solids without causing 

channelling or short-circuiting (Renou et al., 2008). For the treatment of older leachate 

a carbon-assisted fluidised bed reactor is more effective than the conventional one such 

as activated sludge and fixed film processes (Imai et al., 1993). 

2.7.4.3  Microalgae Treatment 

The high concentration of inorganic nitrogen compounds from ever increasing human 

and animal waste in wastewater streams are of considerable concern as they affect the 

quality of the water for domestic and industrial use (Vilchez et al., 1997). Therefore the 

use of micro-organisms to eliminate heavy metals and toxic chemicals from wastewater 

has become an imperative practice (Vilchez et al., 1997). Currently there is much 

interest in the biotechnological use of microalgae due to characteristics of their 

metabolism (Vilchez et al., 1997). The removal of inorganic nutrients from wastewater 

by microalgae has been widely reported (Craggs et al., 1997; Oswald and Gotaas, 1957; 

Vilchez et al., 1997 and Zimmo et al., 2004). Microalgae systems are able to efficiently 

remove nitrogen and phosphorous compounds and thus aid in alleviating eutrophication 

issues (Vilchez et al., 1997). Microalgae are photoautotrophs meaning that they utilise 

sunlight energy to manufacture their own nutritive sources through a process called 

photosynthesis; this is described in further detail below. There are several advantages 

for using a microalgae treatment system. The energy source required is sunlight so is 

widely available and highly cost-effective. Due to the ability of microalgae to 

assimilate inorganic nitrogen compounds into biomass the resultant quantity of biomass 

can be used for livestock feed and the production of high added-value compounds and 

fine chemicals (Vilchez et al., 1997). The use of microalgae for the removal or 

biotransformation of pollutants with simultaneous biomass production is termed 

phycoremediation (Olguin, 2003). 

High Rate Algal Ponds (HRAPs) were developed as an alternative for the removal of 

pathogens, BOD and suspended solids (Rawat et al., 2011). HRAPs are shallow (30–

100 cm) include a large paddle wheel vane pump to create a channel velocity sufficient 

for gentle mixing. Unlike anaerobic ponds which must be several meters deep, HRAPs 

have to be shallow to ensure that there is maximum light penetration (Rawat et al., 

2011). They are able to operate at a hydraulic retention time of 4 – 10 days (Rawat et 

al., 2011). The paddle wheel ensures that there is mixing to enable exposure of the 
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microalgae to sunlight and to keep them in suspension. HRAPs are the most cost 

effective treatment for liquid waste management (Rawat et al., 2011). Open raceway 

pond systems used for the treatment of wastewater are economically feasible but 

biomass concentrations remain low as they are poorly mixed and cannot sustain an 

optically dark zone (Chisti, 2007) and are not as effective as the cascade design of 

HRAPs which ensures prolonged mixing and extended retention times. 

Photobioreactors (PBR) are able to permit the maintenance of microalgae that produce 

a large biomass (Chisti, 2007). The most common design is the tubular PBR as it is a 

continuous system (Chisti, 2007). The tubes can be arranged either vertically or 

horizontally so as to allow for maximum solar capture (Chisti, 2007). Tubular 

photobioreactors are not suitable for large scale phycoremediation, however. 

A problem with maintaining microalgae in suspension is solids handling and the 

difficulty in harvesting for biotechnological uses. Cell immobilization techniques have 

been developed to overcome these tribulations (Moreno-Garrido, 2007). It was reported 

that Chlamydomonas reinhardtii cells that were immobilised were more resistant to 

nitrite toxicity as well as the ammonium-dependent inhibition of nitrite assimilation and 

the system is more stable with regards to cell viability (Vilchez et al., 1997).  Some 

microalgae have the tendency to adhere themselves to surfaces and grow on them 

(Moreno-Garrido, 2007). This characteristic allows for microalgae to become attached 

to carriers (Moreno-Garrido, 2007). This natural attachment is referred to as passive 

immobilization (Moreno-Garrido, 2007). Adsorbent materials can be natural or 

synthetic. Currently efforts have focused on the use of loofa sponges for a carrier 

material (Moreno-Garrido, 2007). Loofa sponges are the fibrous support of the fruits of 

the genus Luffa. This carrier is noted to be cheap, strong, inert and stable in the long 

term (Moreno-Garrido, 2007). Synthetic materials such as polyvinyl and polyurethane 

can also be used for immobilizing microalgae (Moreno-Garrido, 2007).  

Active immobilisation can be undertaken by the use of flocculants or gel entrapment. 

Flocculant agents were initially used for the removal of microalgae from a liquid 

medium (Moreno-Garrido, 2007). The most widely utilised is chitosan. Chitosan is a 

linear polysaccharide obtained from the alkaline deacetylation of chitin (Moreno-

Garrido, 2007). The most widely used technique for active immobilization is gel 

entrapment. “Gel entrapment can be performed by the use of synthetic polymers 

(acrylamide, photocrosslinkable resins, polyurethanes), proteins (gelatine, collagen or 

egg white) or natural polysaccharides (agars, carrageenans or alginates)” (Moreno-
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Garrido, 2007). When the main purpose of the microalgae is for removal of pollutants it 

is more viable for the microalgae to be adsorbed than entrapped (Moreno-Garrido, 

2007). A packed bed is more suitable for this purpose than a fluidized reactor because 

in the latter collisions of particles bring about the desorption of cells (Moreno-Garrido, 

2007). Immobilized microalgae are not efficient at removing low levels of nutrients due 

to the limitation of diffusion through the carrier matrix (Moreno-Garrido, 2007). 

Thankur and Kumar (1999) undertook a study on a halotolerant algal species, 

Dunaliella salina. Thankur and Kumar (1999) reported that immobilized D. salina 

always removed more nutrients than free cells. After 36 h, the levels of removed NO3
-, 

NH4
+ and PO4

3- were 62%, 42% and 65% of initial concentrations, respectively 

(Thankur and Kumar, 1999). This was further supported by Fierro et al. (2008) that 

reported improved rates of nitrate and phosphate removal. Therefore, the 

immobilization of microalgae may be useful in treatment processes under relatively 

high nutrient conditions. 

Reports on the use of microalgae for the treatment of municipal wastewater are 

available (Craggs et al., 1997; Olguin, 2003; Zimmo et al., 2004; Rawat et al., 2011). 

However there are few studies on the use of microalgae for the treatment of MSW 

landfill leachate. The feasibility of using microalgal phycoremediation for leachate is 

not clear especially under high NH3-N conditions. A study by Lin et al. (2007) 

indicated that high-concentration leachate inhibited algal growth and was probably 

attributed to the high level of NH3-N. Although the typical nitrogen source of algae is 

NO3
- (Vilchez et al, 1997), Lin et al. (2007) recorded a positive correlation between 

algal growth and NH3-N consumption. Initially nitrate is taken up using energy by a 

specific permease enzyme followed by reduction of nirate to ammonium (Vilchez et al, 

1997). This requires no ATP but 8 electrons and is catalyzed by nitrate reductase and 

nitrite reductase (Vilchez et al, 1997). Finally the ammonium is incorporated into 

carbon skeletons such as the α-amino group of L-glutamate. Therefore, it may be 

possible and energetically favorable to bypass the nitrate uptake step and utilise NH3-N 

directy. In addition to the treatment of nitrogenous waste, significant quantities of 

ortho-phosphate and COD were removed by the microalgae (Lin et al., 2007). 

The relative removal rates of these characteristics were higher in the more dilute 

leachate (Lin et al., 2007). Furthermore, it was concluded that phytotoxicity of the 

leachate was lowered after algal growth, indicated with a seed germination toxicity test 

using Brassica chinensis seeds (Lin et al., 2007). 
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2.8 Photosynthesis in Microalgae 

This chapter describes the process of photosynthesis and the information, unless 

otherwise referenced, has been sourced from Chemistry for Biologists (2015). 

Photosynthesis can be defined as the coordinated series of biological reactions that 

converts light energy, via the absorption of photons, and inorganic carbon into stable 

organic compounds (Rubio et al., 2002). Photosynthesis in a microalgal cell occurs 

only in the photosynthetic unit (PSU), which is a portion of the thylakoidal membrane 

of the chloroplast (Rubio et al., 2002; Figure 2.4). Typically associated with 

chloroplasts is the pigment termed chlorophyll. Chlorophyll is a complex molecule that 

consists of a lipid-soluble hydrocarbon tail joined by an ester bond to a flat hydrophilic 

head with a magnesium centre. There are several modifications of chlorophyll that 

occur amongst photosynthetic organisms but all possess Chlorophyll a. Accessory 

pigments absorb energy that Chlorophyll a does not. 

 

Figure 2.4 The structure of the chloroplast present in photosynthetic organisms (image 
source – Chemistry for Biologists, 2015) 

Photosynthesis is regarded as a two-stage process: i) the light-dependent reactions; and 

ii) the light-independent reactions.  

2.8.1 Light-dependent reactions (Light Phase) 

During the Light Phase a resting PSU becomes activated by the non-enzymatic 

absorption of a photon (Rubio et al., 2002). Electrons present within the chlorophyll 
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gain energy and are transferred to a primary electron receptor. The chlorophyll is 

therefore oxidised and possesses a positive charge. The positively charged chlorophyll 

ion then takes a pair of electrons from a neighbouring electron donor such as water. 

An electron transfer system carries the two electrons to and fro across the thylakoid 

membrane. The energy to drive these processes comes from two photosystems: 

 Photosystem II (PSII) (P680); and 

 Photosystem I (PSI) (P700). 

Sufficient energy is released during electron transfer to enable Adenine Tri-Phosphate 

(ATP) to be made from Adenine Di-Phosphate (ADP) and phosphate. ATP is formed 

from the electrochemical gradient created by the pumping of Hydrogen ions (H+) across 

the thylakoid membrane into the thylakoid compartment, due to the energy provided by 

the movement of electrons through the transport chain. Diffusion of the H+ drives 

production of ATP. The electrons then react with a carrier molecule Nicotinamide 

Adenine Dinucleotide Phosphate (NADP), changing it to NADPH. 

The photoionisation of chlorophyll and the eventual synthesis of ATP and NADPH are 

termed as Non-cyclic Phosphorylation or the Z-scheme. The components of the Z-

scheme are found in the thylakoid membrane of the chloroplast. 

2.8.2 Light-independent reactions (Dark Phase) 

During the Dark Phase Carbon Dioxide (CO2) from the water is taken up by the algae 

and is modified by the addition of H+ to form carbohydrates in a process termed carbon 

fixation. The energy required for this process is supplied by the Light Phase of 

photosynthesis. CO2 combines with a five-carbon sugar, Ribulose1,5Bi-Phosphate 

(RuBP) to form a six-carbon carbohydrate which is unstable, and therefore breaks down 

to form two Glycerate 3-Phosphate (GP) molecules. The GP molecules are 

phosphorylated by ATP into glycerate di-phosphate molecules. These are subsequently 

reduced by NADPH into two molecules of Glyceraldehyde 3-phosphate (GALP). One 

GALP molecule is the initial end product of photosynthesis and the other froms RuBP 

through a series of chemical reactions.  
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3. METHODS 

3.1 Study Site 

The Bulbul Drive landfill is situated near Havenside/Silverglen adjacent to the 

Doringspruit River, approximately 15 km from the Durban CBD located in the 

eThekwini Municipal area (GreenEng, 2011). The landfill is a hazardous (H:h) landfill 

and was constructed in accordance with the Minimum Requirements for Landfill 

devised by the Department of Water and Sanitation (DWS) previously known as 

Department of Water Affairs and Forestry (DWS) (GreenEng, 2011). 

 

Figure 3.1 Location of the Bulbul Drive landfill 

The landfill site was decommissioned from 2011 and had contained approximately 2.5 

to 3 million m3 of waste on the verge of its closure (GreenEng, 2011). Although the 

Leachate collection point 
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landfill does not receive waste, it currently produces approximately 100 m3 leachate per 

day. The leachate is transported off site and disposed of at the eThekwini 

Municipality’s sea outfall. Disposal of the leachate is only allowed with pretreatment 

using Hydrogen Peroxide (H2O2) (GreenEng, 2011).  

3.2 Chlorella sp. Cultures 

Chlorella sp. cultures were obtained from the Centre for Algal Biotechnology at the 

Mangosuthu University of Technology, South Africa. Chlorella cultures were 

maintained on the BG-11 artificial medium. 

Table 3.1 BG-11 algal growth medium chemical ingredients and their respective 
concentration  

Chemical Ingredient Concentration (mg/L) 

NaNO3 1500 

K2HPO4.3H2O 40 

MgSO4.7H2O 75 

CaCl2.2H2O 36 

C6H8O7 6 

C6H8O7.xFe.xNH3 6 

C10H16N2O8 1 

Na2CO3 20 

Trace Metal Solution 1 ml/L  

 

Table 3.2 BG-11 algal growth medium trace metal ingredients and their respective 
concentration 

Chemical Ingredient Concentration (g/L) 

H3BO3 2.86 

MnCl2.4H2O 1.81 

ZnSO4.7H2O 0.222 

NaMoO4.5H2O 0.390 

CuSO4.5H2O 0.079 

Co(NO3)2.6H2O 0.0494 
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Chlorella cultures obtained from the Centre for Algal Biotechnology were up-scaled to 

a 10 L glass reactor vessel. The reactor was provided with a light: dark ratio of 16:8 

hours daily. Lighting consisted of two “Dual Pro T5 High Output (HO) Fluorescent 

Light” manufactured by ODYSSEA®. Each unit possesses two 24W HO fluorescent 

lights with a single reflector behind both lights. One light is a 10 000 K daylight T5 and 

the other is an Actinic T5. In one of the ODYSSEA® units the Actinic T5 was replaced 

with a Sylvania Aquastar 10 000 K T5 fluorescent light. The reactor was continuously 

aerated with a SONIC® 108 air pump with an attached diffuser. 

 

Figure 3.2 Chlorella sp. seed culture maintained in a 10 L reaction vessel with BG-11 as the 
nutrient source 

3.3 Batch Tests 

The batch tests were the in vivo experiments that were undertaken to determine the 

efficacy of using the microalgae Chlorella sp. as either a primary or secondary 

treatment for hazardous landfill leachate. 

3.3.1 Primary Treatment Batch Test 

This batch test was undertaken to determine the feasibility of utilising Chlorella sp for 

the primary treatment of hazardous landfill leachate. The basis of this experiment was 

to determine if Chlorella would utilise the NH3-N and organic carbon as a nutrient 

source thereby treating the leachate.  

Batch tests were conducted using 1 L conical flasks (Figure 3.3). The flasks were acid 

washed with 1 M Nitric Acid (HNO3) and autoclaved prior to use. All treatment 

cultures and controls were performed in triplicate. Treatment cultures were continually 



 

44 

 

shaken at 110 rpm (Eaton, 2005) and irradiated at a light: dark ratio of 16:8 hours 

(Figure 3.3). Lighting consisted of two “Dual Pro T5 High Output (HO) Fluorescent 

Light” manufactured by ODYSSEA® placed on either side of the shaker. Each unit 

possesses two 24W HO fluorescent lights with a single reflector behind both lights 

(Figure 3.3). The Actinic T5 was replaced with a Sylvania Aquastar 10 000 K T5 

fluorescent light in each of the units. 

  

Figure 3.3 Conical flask batch test on a shaker with T5 lights off (left) and on (right) 

The batch test treatments were undertaken at leachate dilutions of 10%, 25%, 50% and 

85%. The dilution was made using distilled water (dH2O) and 150 mL Chlorella seed 

culture. Refer to Table 3.3 for constituent volumes used. In conjunction, controls 

containing identical dilutions of raw leachate containing no microalgae were 

maintained and tested in order to determine any significant differences in the physico-

chemical parameters (Table 3.3).  

Table 3.3 Summary of constituent volumes for primary treatment batch tests  

 Dilution Leachate Volume (mL) dH2O (mL) Algae Inoculation (mL) 

Tr
ea

tm
en

t 

10% 100 750 150 

25% 250 600 150 

50% 500 350 150 

85% 850 - 150 

C
on

tro
l 

10% 100 900 - 

25% 250 750 - 

50% 500 500 - 

85% 850 150 - 
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In order to undertake physico-chemical analysis, a volume of 20 mL was extracted from 

each test culture and filtered using a cellulose nitrate filter paper with a particle 

retention size 0.45 µm (GEMA MEDICAL) to remove algae. This was to ensure no 

erroneous values when testing the leachate. The batch test was carried out until the 

NH3/NH4
+ value had reached 0 mg/L or the Chlorella population in the leachate culture 

had been decimated. 

3.3.2 Secondary Treatment Batch Tests 

This experiment was used to determine the efficacy of Chlorella in the secondary 

treatment of hazardous landfill leachate. The basis of this experiment was to determine 

if Chlorella would consume NOx and thereby “polishing” the treated leachate. 

Batch tests were conducted using 1 L conical flasks. The flasks were acid washed with 

1 M Nitric acid (HNO3) and autoclaved prior to use. The batch test was operated at a 

series dilution of 10%, 25%, 50% and 85%. The dilution was made using distilled water 

(dH2O) and 150 mL Chlorella seed culture. In conjunction, controls containing 

identical dilutions of raw leachate containing no microalgae were maintained and tested 

in order to determine any significant differences in the physico-chemical parameters.  

Table 3.4 Summary of constituent volumes for secondary treatment batch tests 

 Dilution Leachate Volume (mL) dH2O (mL) Algae Inoculation (mL) 

Tr
ea

tm
en

t 

10% 100 750 150 

25% 250 600 150 

50% 500 350 150 

85% 850 - 150 

C
on

tro
l 

10% 100 900 - 

25% 250 750 - 

50% 500 500 - 

85% 850 150 - 

 

All treatment cultures and controls were performed in triplicate. Treatment cultures 

were continually shaken at 110 rpm (Eaton, 2005) and irradiated at a light: dark ratio of 

16:8 hours (Figure 3.3). Lighting consisted of two “Dual Pro T5 High Output (HO) 

Fluorescent Light” manufactured by ODYSSEA® placed on either side of the shaker. 
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Each unit possesses two 24W HO fluorescent lights with a single reflector behind both 

lights (Figure 3.3). The Actinic T5 was replaced with a Sylvania Aquastar 10 000 K T5 

fluorescent light in each of the units. 

In order to undertake physico-chemical analysis, a volume of 20 mL was extracted from 

each test culture and filtered using a cellulose nitrate filter paper with a particle 

retention size 0.45 µm (GEMA MEDICAL) to remove algae. This was to ensure no 

erroneous values when testing the leachate. The batch test was carried out until the 

NO3
- value had reached 0 mg/L or the Chlorella population in the leachate culture had 

been decimated. 

3.4 Characterisation Analyses 

Although hazardous landfill leachate possesses an array of pollutants, 4 were of 

primary concern given their high potential for human toxicity and driving 

environmental degradation. In addition, three of these parameters are listed in the 

established DWS discharge limits (Table 2.2). Accordingly, the principle parameters 

analysed for the batch tests consisted of: 

 Ammoniacal nitrogen (NH3-N);  

 Nitrate (NO3
-); 

 Chemical Oxygen Demand (COD); and 

 5-day Biochemical Oxygen Demand (BOD5). 

3.4.1 Ammoniacal Nitrogen  

Ammoniacal nitrogen was analysed daily utilising the Titrimetric method as described 

in Eaton (2005). The following reagents were prepared for the analysis as follows: 

a) Mixed Indicator Solution – 200 mg methyl red indicator was dissolved in 100 

mL 95% ethanol. 100 mg methylene blue was dissolved in 50 mL 95% ethanol. 

The solutions were then combined. 

b) Boric Acid (H3BO3) Indicator – 20 g H3BO3 was dissolved in distilled water 

and 10 mL mixed indicator solution was added. This mixture was subsequently 

diluted to 1 L. 

c) Hydrochloric Acid (HCl) Titrant – A 0.1 N HCl solution was prepared using 

the ampoules manufactured by Merck (Art. No. SAAR3063170YA). 

Prior to analysis samples were distilled by means of a behr distillation unit from United 

Scientific (Pty) Ltd (Figure 3.4). In the distillation apparatus a borosilicate glass flask 
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was attached to a vertical condenser into which the sample was placed and the outlet tip 

submerged into the receiving solution (Eaton, 2005). In order to ensure that NH3-N 

completely distills out of the sample solution 6N Sodium Hydroxide (NaOH) is 

automatically added by the distiller unit. The distillate was collected in a 250 mL 

Erlenmeyer flask containing 50 mL H3BO3 indicator solution. At least 200 mL of 

distillate was collected. The indicator solution including distillate was titrated with 0.1 

N HCl on a magnetic stirrer until the color of the solution turned pale lavender (Eaton, 

2005, Figures 3.4 – 3.5). The acid was titrated with a Jencons Scientific digitrate. 

The quantity of NH3-N was determined by using the following equation;  

CNH3-N = 14 * NHCl * VHCl                                                                   (Equation 3-1)                                                                                             

 

This equated to mass (mg) per sample volume. This was then converted to mg/L. 

 

Figure 3.4 The behr distillation unit with the borosilicate flask into which the sample was 
placed (A) and the Erlenmeyer flask containing the H3BO3 indicator solution (B) 

A B 
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Figure 3.5 Boric Acid indicator solution pre-distillation (A) and post-distillation (B) 

 

 

Figure 3.6 Jencons digitrate used to titrate 0.1 N HCl with magnetic stirrer at bottom 

3.4.2 Nitrate  

The procedure for analysing NO3
- was the same as described for NH3-N with the 

exception that 50 mg Magnesium Oxide (MgO) and 100 mg Devarda’s alloy was added 

to the sample prior to distillation.  

A B 

A B 
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3.4.3 Chemical Oxygen Demand 

Chemical Oxygen Demand (COD) is a frequently used measurement of pollutants in 

water or wastewater samples (Eaton, 2005). “COD is defined as the amount of a 

specified oxidant that reacts with the sample under controlled conditions” (Eaton, 

2005). The quantity of oxygen demanded is equivalent to the quantity of oxidant 

consumed (Eaton, 2005). 

In order to determine COD of samples the Closed Reflux Colorimetric Method was 

used as Closed Reflux methods are necessary for the analysis of samples with COD 

values greater than 50 mg O2/L (Eaton, 2005). In addition this method is more 

economical in terms of reagents used and generates minimal quantities of hazardous 

waste (Eaton, 2005). In this method the dichromate (Cr2O7
2-) ion is used as the oxidant.  

The following reagents were prepared as described in Eaton (2005): 

a) Digestion solution – 10.216 g K2Cr2O7 was dried for 2 hours at 150C and was 

added to 167 mL concentrated sulfuric acid (H2SO4) and 33.3 g mercuric 

sulfate (HgSO4). This was dissolved in 500 mL distilled water, cooled to room 

temperature and then diluted to 1L. 

b) Sulfuric acid reagent – 25.3 g silver sulfate (Ag2SO4) was dissolved into 2.5 L 

H2SO4 for 24 hours. 

c) Potassium Hydrogen Phthalate (KHP) solution – A mass of KHP was crushed 

and dried at 110C. 425 mg was dissolved into distilled water and a total 

volume of 1 L was prepared. 

Suitable volumes of sample, digestion solution and H2SO4 reagent were measured into 

COD tubes manufactured by HACH. Samples were diluted with distilled water in the 

event of excessive COD levels. The KHP solution was used as the standard (Eaton, 

2005). COD tubes were then placed in a HACH COD reactor for 2 hours (Figure 3.7). 

After digestion samples were cooled and absorbance was read at 600 nm (Eaton, 2005) 

using a HACH DR/2000 spectrophotometer (Figure 3.8). A digested blank was used to 

determine the blank for the COD and to ensure good quality analytical reagents. A 

calibration curve was prepared and values of sample COD were consequently 

determined. COD analysis of cultures was performed weekly. 
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Figure 3.7 The HACH COD reactor (left) and the HACH DR/2000 spectrophotometer (right) 

 

3.4.4 Biochemical Oxygen Demand 

Biochemical Oxygen Demand (BOD) is an index of biodegradable organics present in 

water and wastewater (Eaton, 2005). The technique measures the oxygen (O2) 

consumed during a finite incubation period for the breakdown of organic matter (Eaton, 

2005). The manometric method as described by Robertz (2006) was utilised for this 

study. The system was purchased from AQUALYTIC.  

According to Robertz (2006) this method is very reliable for routine analysis and there 

are several advantages when compared to the dilution method. Samples do not have to 

be diluted, there is a much wider measurement range and there is less work involved 

(Robertz, 2006). 

The principle of the measurement as explicated by Robertz (2006) is as follows. The O2 

in the water or wastewater sample is converted into carbon dioxide (CO2) which is 

subsequently removed by potassium hydroxide (KOH). Therefore a drop in pressure 

occurs in the BOD reaction flask. This pressure change is measured by electronic 

pressure sensors and this drop in pressure is proportional to the amount of oxygen 

consumed.  

The BODn test is widely used to determine the efficiency of treatment processes (Eaton, 

2005) and therefore, BOD5 (i.e. measured over 5 days) was utilised to evaluate the 

effectiveness of using Chlorella as an organics remover. 

Samples were filtered with 0.45 µm filter paper in order to prevent contamination and 

errors from Chlorella. A sample volume of 56 ml was placed in the BOD flask, as this 
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volume is recommended for the range of 0-2000 mg/L BOD (Robertz, 2006). In order 

to prevent nitrification which also consumes O2 thereby causing erroneous results, 3 

drops of N-allylthiourea (ATH) were added to samples. In order to ensure thorough gas 

exchange a magnetic stirring rod which would agitate the sample, was added into the 

flask. A dry grease free gasket was placed into the neck of the flask and filled with 5 

drops of KOH solution (Robertz, 2006). The vessel was subsequently sealed with a 

BOD-sensor (Robertz, 2006). The sample was then placed in an incubator maintained at 

20°C (incubation temperature) for 5 days. The temperature had to remain at the 

incubation temperature within the range of + 1°C in order to prevent errors of up to 

10% per 1°C (Robertz, 2006). BOD5 analysis was performed on samples prior to and 

after inoculation with Chlorella. 

  

Figure 3.8 The BOD-sensor, gasket and flask (left) and samples in BOD flasks placed in 
incubator (right). 

 

3.5 Ancillary Data 

3.5.1 pH 

Although pH is not listed in the DWS discharge limits (Table 2.2) it was monitored 

daily because the pH of a solution influences the activity of other chemical compounds 

within a given solution (DWS, 1996). In addition, the monitoring of pH was vital as 

fluctuations can occur due to photosynthesis by the microalgae (Taub, 2009). The 

fluctuations of pH are due to the uptake of CO2 leading to a reduced level of carbonic 

acid and thereby increasing the pH (Lin et al., 2007).  
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Furthermore, the assimilation of NO3
- increases alkalinity and pH via the production of 

hydroxyl (OH-) production (Goldman and Brewer, 1980).  

Therefore, pH was analysed to enable comprehension of the monitored parameter 

dynamics as well as to serve as an indirect indicator of NO3
-uptake. The pH of 

treatment cultures were analysed daily using a Thermo Scientific pH meter. 

3.6 Chlorophyll-a Assay 

In order to assess Chlorella survivability and growth rate during the batch tests, the 

chlorophyll a (chl-a) content of treatments were examined daily. Chl-a can be used as a 

proxy for biomass as there is a direct relationship between them (Henriques et al., 

2007). A volume of 10 mL was drawn from a culture and placed in a 50 mL centrifuge 

tube. The tubes containing the cultures were centrifuged at 3000 rpm for 15 minutes 

(Henriques et al., 2007; Parvin et al., 2007). The supernatant was discarded and the 

pellet was re-suspended in 5 mL of 95% ethanol. Ethanol was used as the solvent due to 

its efficiency and superiority when compared to other solvents (Downes et al., 1993; 

Lan et al., 2011). The suspension was then boiled for 15 minutes (Downes et al., 1993). 

After boiling, the suspension was centrifuged at 4000 rpm for 5 minutes (Henriques et 

al., 2007). The supernatant was removed and its absorbance was read at 650 nm and 

665 nm using a HACH DR/2000 spectrophotometer. Absorbance readings were applied 

to the equation below to obtain readings in µg/mL (Arai et al., 2008):  

Chlorophyll-a = (16.5 x A665) – (8.3 x A650)                                       (Equation 3-2)  

The constants 16.5 and 8.3 refer to the specific absorption coefficients for the 

absorbance of Chl-a at 665 nm and 650 nm respectively. The specific absorption 

coefficient refers to the factor that measures the absorbance of light per unit of path 

length and per unit of mass concentration.                                       
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Figure 3.9 Centrifuge tubes containing microalgae treatment cultures (left) and centrifuge 
with chlorophyll-a supernatant obtained after dissolving with boiling ethanol and 
centrifuging at 4000 rpm for 5 minutes (right) 

3.7 Toxicity Tests 

Phytotoxicity tests were undertaken for the secondary treatment batch test to determine 

if Chlorella is effective in reducing leachate toxicity. Radish (Raphanus sativus) seeds 

(STARKE AYRES brand) were used, as it is a commonly used species for 

phytotoxicity tests (Lin, 2007). In order to ensure viability of the seeds, a pre-study 

using distilled water was performed. A percentage germination of 100% indicates seed 

viability for use in the tests. In addition, this test was used to determine the maximum 

number of days to operate the toxicity tests, by virtue of the number of days required 

for all the seeds to germinate. 

Three replicates of 15 seeds were placed in a 90 mm diameter, 15 mm high petri dish 

lined with two filter papers (Whatman® Cat No. 1001110). Before the seeds were 

placed on the filter paper, 5 mL of the leachate to be tested was added (Mosse, 2010). 

The number of seeds germinated was recorded daily for 7 days as indicated by the pre-

test. Germination was defined as the presence of a radicle > 5 mm in length (Mosse, 

2010). The total percentage germinated and mean time to germinate (MTG) was 

determined. MTG was calculated as indicated in Brenchley (1998):  

MTG = Σ (n X d)/ N                                                                                     (Equation 3-3)                                                                                               

n = the number of seeds germinated between scoring intervals. 

d = the incubation period in days at that time point.  

N = the total number of seeds germinated in the treatment. 
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Figure 3.10 Clockwise from top – Radish (Raphanus sativus) seeds placed in petri dish prior to 
incubation; R. sativus seeds in petri dish during incubation and germinated R. 
sativus seeds showing emerging radicle 

 

3.8 Statistical Analysis 

Statistical analysis was undertaken using the software R™ Version 3.1.2. A range of 

univariate analyses were utilised to comprehend and confirm results and these are 

discussed in further detail in the following sections. Prior to all analyses a Shapiro-

Wilcox test was undertaken to determine if the data were parametric or non-parametric.  

3.8.1 Primary Treatment Statistical Analysis 

To determine if there were significant differences between the treatment and control 

COD concentration upon experiment termination, i.e. Experiment Termination 

Concentration (ETC), Mann-Whitney U tests were undertaken. In addition, 

independent-samples t-tests were undertaken to determine if there were significant 

differences between BOD5 concentrations and pH between the treatment and control at 

the termination of the batch test. 

Emerging radicle 
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However, statistical analysis could not be applied to testing for significant differences 

between NH3-N concentrations due to no variance in the treatments at termination of 

the experiment. 

A Spearman Rank Correlation was utilised to determine if there was a significant 

relationship between the physico-chemical parameters and chl-a recorded. This 

particular correlation was used as data proved to be non-parametric even after 

transformations.  It is important to note that unlike regression analysis, correlations do 

not indicate a cause and effect relationship but rather existence of a relationship 

between two variables. Therefore, the analysis informed on the presence and strength of 

a relationship as well as percentage of parameter variability explained by one variable 

on the other. 

Subsequently, a slope analysis was undertaken to determine the rate of parameter 

change between microalgal treatments and controls. To achieve this, parameter values 

of the treatment and control plotted against time. Where it was required to achieve 

linearity, data was log10 transformed. This was undertaken only for principle parameters 

that were both, determined to be significantly different between control and treatment at 

the experiment termination and were significantly correlated to chl-a. 

3.8.2 Secondary Treatment Statistical Analysis 

Independent-samples t-tests were undertaken to determine if there were significant 

differences between the physico-chemical parameters of the treatment and control upon 

termination of the batch test. 

A Spearman Rank Correlation was utilised to determine if there was a significant 

relationship between the physico-chemical parameters recorded and chl-a. This 

particular correlation was used as data proved to be non-parametric even after 

transformations. 

A slope analysis was undertaken to determine and compare the rate of parameter 

change between microalgal treatments and controls. To achieve this, parameter values 

of the treatment and control plotted against time. Where it was required to achieve 

linearity, data was log10 transformed. This was undertaken only for principle parameters 

that were both, determined to be significantly different between control and treatment at 

the experiment termination and were significantly correlated to chl-a. 
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Statistical analysis undertaken for the toxicity tests to compare the percentage of seeds 

germinated and the MTG initially comprised of a Mann-Whitney U test to determine if 

there were significant differences between the treatments and controls. Subsequently, a 

Kruskal Wallis test was undertaken to determine if there were significant differences 

between treatments, with a Tukey post-hoc test to indicate between which two samples 

the significant difference occurs.  

4.  RESULTS 
This section reports on the results obtained from the Primary Treatment Batch Test and 

Secondary Treatment Batch Test. Accordingly, these are separated into two sections; 

the Primary Treatment Batch Test and Secondary Treatment Batch Test. In addition, a 

third section will compare the Primary and Secondary Treatment batch test. 

4.1 Primary Treatment Batch Test 

4.1.1 Ammoniacal Nitrogen 

The batch test indicated a simultaneous decrease in NH3-N concentrations between the 

treatment and control flasks. NH3-N (Figure 4.1). All treatments had reduced NH3-N 

concentration to 0 mg/L after 20 days except the 10% treatment, wherein the 

concentration was reduced to 0 mg/L after 15 days (Figure 4.1). However, none of the 

controls had their NH3-N concentrations reduced to 0 mg/L (Figure 4.1). The 85% 

control possessed the highest ETC of NH3-N, with an average of 42.0 ± 6.4 mg/L, 

whereas the 10% control possessed the lowest concentration after 20 days with an 

average of 4.2 ± 0.6 mg/L. 

The Spearman Rank correlation indicated that there was a significant (p < 0.05) 

relationship between NH3-N and chl-a concentrations for all treatments, and that the 

relationship was inversely proportional (Table 4.1). Accordingly, when chl-a 

concentration increases NH3-N levels decrease (Figure 4.2). The highest co-efficient of 

variations (R2) was the 25% treatment at 0.92. This denotes that one measurable 

accounted for approximately 92% of the variability in the other, respectively. However, 

the lowest co-efficient of variation was 0.14 in the 50% treatment. Figure 4.2 illustrates 

the inconstant relationship between the two variables for the 50% and 85% treatment. 
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Figure 4.1 Temporal dynamics of ammoniacal nitrogen concentration (mg/L) for treatments and controls during the primary treatment 
batch test. The vertical lines indicate standard deviation 
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Table 4.1 Statistical summary of Spearman Rank Correlation analysis between ammoniacal 
nitrogen and chlorophyll-a during the primary treatment batch test 

 Treatment 

Statistic 10%  25%  50%  85%  

p 0.001 0.001 0.03 0.02 

r -0.93 -0.96 -0.38 -0.40 

R
2 0.86 0.92 0.14 0.16 

 

 

Figure 4.2 Scatterplot to illustrate the relationship between chlorophyll-a (µg/mL) and 
ammoniacal nitrogen (mg/L) for all treatments during the primary treatment 
batch test 

 

The slope analysis revealed that the gradients (m) were consistently higher in the 

treatment than in the control (Figure 4.3). In terms of the treatments, the highest 

gradient recorded was for the 85% treatment with -0.1389, while the lowest gradient 

recorded was for the 25% treatment with -0.1153 (Figure 4.3). Regarding the controls, 

the 85% control had possessed the highest gradient of -0.0753 and the 10% control the 

lowest with -0.0717 (Figure 4.3).  
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 Figure 4.3 Comparison of average log10 ammoniacal nitrogen trendlines of treatments and controls during the primary treatment batch test. 
The solid and dash line illustrate the trend in data for the treatment and control respectively 
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4.1.2 Chemical Oxygen Demand 

The temporal dynamics of COD was demonstrated to be variable within and amongst 

the treatments and controls (Figure 4.4). The 25% and 85% treatments had exhibited 

COD ETCs lower than the control (Figure 4.4). Conversely, the 10% and 50% 

treatments exhibited COD values higher than the control at experiment termination 

(Figure 4.4). Furthermore, for all treatments and controls there was an increase in the 

COD level after day 7 (Figure 4.4). 

The highest  ETC difference between control and treatment was the 25% treatment, 

which possessed an average COD concentration of 288.22 ± 89.33 mg O2/L. This was a 

447.9 mg O2/L difference between itself and the control (Figure 4.4). However, the 

difference between the medians of all treatments and controls proved to be insignificant 

(p > 0.05) indicating that there was no significant difference between the COD levels of 

the control and treatment on day 20 (Table 4.2).  

The correlation analysis indicated that only the 85% treatment exhibited a significant (p 

< 0.05) relationship between COD and chl-a (Table 4.3). It was demonstrated that an 

increase in chl-a resulted in a concomitant decrease in COD, with a co-efficient of 

variation of 0.69 (Table 4.3; Figure 4.5). 
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Figure 4.4 Temporal dynamics of average COD concentration (mg O2/L) for treatments and controls during the primary treatment 
batch test. Vertical bars indicate standard deviation from the mean 
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Table 4.2 Summary of probability (p) values obtained from Mann-Whitney U analysis 
between COD concentrations of the treatment and control at the termination of 
the primary treatment batch test 

 Treatment 

10% 25% 50% 85% 
C

on
tr

ol
 

10%  0.06    

25%  0.07   

50%    0.08  

85%     0.38 

 

Table 4.3 Statistical summary of Spearman Rank Correlation analysis between 
COD and chlorophyll-a during the primary treatment batch test 

 Treatment 

Statistic 10%  25%  50%  85%  

p 0.05 0.06 0.26 0.001 

r 0.57 -0.56 -0.35 -0.83 

R
2
 0.32 0.31 0.12 0.69 

 

 

Figure 4.5 Scatterplot to illustrate the relationship between chlorophyll-a (µg/mL) and COD 
(mg O2/L) for all treatments during the primary treatment batch test 
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4.1.3 Biochemical Oxygen Demand 

During the primary treatment batch test BOD5 levels had decreased in all treatments 

and controls (Figure 4.6). In terms of the treatments, the lowest recorded ETC was 

exhibited by the 10% treatment with 77±1 mg O2/L, whereas the highest recorded 

BOD5 ETC was the 85% treatment, possessing a BOD5 value of 191±11 mg O2/L 

(Figure 4.6).  

In terms of the control, a similar result was recorded with the 10% and 85% treatment 

possessing the lowest and highest recorded BOD5 levels, respectively. The values 

recorded for the 10% and 85% controls were 155±6 and 781±11 mg O2/L respectively 

(Figure 4.6). 

The independent t-test analysis indicated significant differences (p < 0.05) in BOD5 

levels between each set of treatment and control at experiment termination on day 20 

(Table 4.4). The control BOD5 levels were therefore significantly higher than the 

treatment levels (Figure 4.6). 

The spearman rank correlation demonstrated that there were significant relationships 

between BOD5 levels and chl-a for the 10%, 25% and 50% treatments (Table 4.5). 

Furthermore, the highest recorded co-efficient of variation was 0.79 for the 10% 

treatment (Table 4.5).  Figure 4.7  illustrates the relationship between BOD5 and chl-a. 

The slope analysis revealed that the gradients of the trendlines were consistently higher 

for the treatment than the control. The highest gradient recorded was the 50% treatment 

with a value of -9.7167 (Figure 4.8). The lowest treatment gradient recorded was the 

10% treatment with a value of -3.8167. Overall in terms of the BOD5 analysis, the 

lowest gradient recorded was the 25% control at -1.2167 (Figure 4.8). 
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Figure 4.6 Temporal dynamics of average BOD5 (mg O2/L) concentrations for treatments and controls during the primary treatment 
batch test. Vertical bars indicate standard deviation from the mean 
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Table 4.4 Summary of probability (p) values obtained from the independent samples t-test 
between BOD5 of the treatment and control at the termination of the primary 
batch test 

  Treatment 

  10% 25% 50% 85% 

C
on

tr
ol

 

10%  0.001    

25%  0.001   

50%    0.001  

85%     0.001 

 

Table 4.5 Statistical summary of Spearman Rank Correlation analysis between BOD5 and 
chlorophyll-a during the primary treatment batch test 

 Treatment 

Statistic 10%  25%  50%  85%  

p 0.02 0.02 0.02 0.08 

R -0.89 -0.88 -0.88 -0.76 

R
2
 0.79 0.77 0.77 0.58 

 

 Figure 4.7 Scatterplot to illustrate the relationship between chlorophyll-a (µg/mL) and BOD5 
  (mg O2 /L) for all treatments during the primary treatment batch test 
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Figure 4.8 Comparison of average BOD5 trendlines of treatments and controls 
during the primary treatment batch test. The solid and dash line illustrate 
the trend in data for the treatment and control respectively 
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4.1.4 pH 

 
The pH levels recorded for the treatments and control during the batch test 

demonstrated a simultaneous increase from the onset of the experiment to the 

termination (Figure 4.9). However, it was recorded that there was a general decline in 

the first seven days of the experiment (Figure 4.9). Furthermore, the 10% treatment 

exhibited a considerable decline in pH on day 1 with a recorded pH of 6.41 ± 0.34. The 

highest recorded pH was the 85% treatment at the onset of the experiment at a pH of 

9.95 ± 0.06 (Figure 4.9). In terms of the treatments, the lowest recorded pH at the 

termination point was the 25% treatment with a level of 9.08 ± 0.12 (Figure 4.9).  

Although the treatments and controls exhibited simultaneous increases, the independent 

samples t-test indicated that the 25% control possessed a significantly higher pH than 

its associated treatment at experiment termination (Table 4.6).  

It was determined that pH was significantly correlated to chl-a concentration for the 

10% and 25% treatment (Table 4.7). The positive rho (R) values indicate that when chl-

a concentration increased, there was a concomitant increase in pH (Table 4.7; Figure 

4.10). 
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Table 4.6 Summary of probability (p) values obtained from the independent samples t-test 
between pH of the treatment and control at the termination of the primary 
treatment batch test 

  Treatment 

  10% 25% 50% 85% 

C
on

tr
ol

 

10%  1    

25%  0.03   

50%     0.54 

85%     0.07 

 
 

Table 4.7 Statistical summary of Spearman Rank Correlation analysis between pH and 
chlorophyll-a during the primary treatment batch test 

 

 Treatment 

Statistic 10%  25%  50%  85%  

p 0.001 0.001 0.14 0.10 

R 0.88 0.74 0.25 0.29 

R
2
 0.77 0.55 0.06 0.08 

 

 

Figure 4.10 Scatterplot to illustrate the relationship between chlorophyll-a (µg/mL) and pH 
for all treatments during the primary treatment batch test 
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4.2 Secondary Treatment Batch Test 

4.2.1 Nitrate 

The batch test demonstrated a decline in the NO3
- concentration for all treatments 

(Figure 4.11). Contrariwise, the controls exhibited no discernible decline in NO3
- 

concentrations (Figure 4.11). The lowest recorded NO3
- ETC was exhibited by the 10% 

treatment at 9.4 ±0.1 (Figure 4.11). Furthermore, the treatment that exhibited the 

highest ETC was the 25% treatment that possessed a concentration of 10.0 mg/L 

(Figure 4.11). 

Nitrate concentrations were determined to be significantly different (p < 0.05) between 

treatments and controls at the termination of the batch test (Table 4.8). Therefore, final 

nitrate concentrations for all treatments were significantly lower than their respective 

controls (Table 4.8). 

Spearman rank correlations indicated a significant relationship between NO3
- and chl-a 

for all treatments (Table 4.9). In addition, the two variables are inversely related 

denoting that when one parameter increases, there is an associated decrease in the other 

(Table 4.9). The highest co-efficient of variation was possessed by the 50% treatment 

(R2 = 0.89) (Table 4.9). Figure 4.12 illustrates the relationship between chl-a 

concentration and NO3
- concentration for all treatments. In addition, it can be noted 

from Figure 4.12 that the 85% treatment possessed the highest concentration of chl-a, 

while the 10% treatment possessed the lowest concentration of chl-a. 

The slope analysis indicated that there was great variability in the rate of NO3
- 

concentration decline (Figure 4.13). The highest gradient and therefore rate of change, 

was exhibited by the 85% treatment with a gradient of -121.69 (Figure 4.13). In 

contrast, the lowest rate of change amongst the treatments was exhibited by the 10% 

treatment with a gradient of -11.135 (Figure 4.13). Furthermore, all treatment trendlines 

possessed substantially higher gradients than their respective controls. 
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Figure 4.11 Temporal dynamics of nitrate concentrations (mg/L) for treatment and controls during the secondary treatment batch test. 
Vertical lines indicate standard deviation 
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Table 4.8 Summary of probability (p) values obtained from independent samples t-test 
analysis between nitrate concentrations of the treatment and control at the 
termination of the secondary treatment batch test 

 Treatment 

10% 25% 50% 85% 
C

on
tr

ol
 

10%  0.001    

25%  0.001   

50%    0.001  

85%     0.001 

 

Table 4.9 Statistical summary of Spearman Rank Correlation analysis between nitrate and 
chlorophyll-a during the secondary treatment batch test 

 Treatment 

Statistic 10%  25%  50%  85%  

p 0.001 0.001 0.001 0.001 

R -0.87 -0.91 -0.93 -0.80 

R
2
 0.76 0.83 0.86 0.64 

 

 

Figure 4.12 Scatterplot to illustrate the relationship between chlorophyll-a (µg/mL) and 
 nitrate (mg/L) for all treatments during the secondary treatment batch test 
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Figure 4.13 Comparison of average nitrate trendlines of treatments and controls during the secondary treatment batch test. The solid and 
dash line illustrate the trend in data for the treatment and control respectively 
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4.2.2 Chemical Oxygen Demand 

COD concentrations for the secondary treatment batch test demonstrated temporal declines for 

both the treatments and controls (Figure 4.14). The lowest recorded average COD ETC was 

exhibited by the 10% treatment at 18.95 ±0.34 mg O2/L (Figure 4.14). In terms of the 

treatments, the 50% treatment possessed the highest COD level at 105.26 ±2.61 mg O2/L 

(Figure 4.14). 

The independent samples t-test indicated that there were significant differences between 

treatments and controls at experiment termination (Table 4.10). This denotes that treatments 

possessed significantly lower COD levels than the controls (Table 4.10).  

The spearman rank correlation analysis indicated that there was only a significant (p < 0.05) 

relationship between chl-a and COD for the 50% treatment (Table 4.11). The correlation 

denotes that for the treatment the two variables were inversely related (Table 4.11). 

Furthermore, any changes in either variable are accounted for approximately 88% by the other 

(Table 4.11).  
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Vertical lines indicate standard deviation 

C 

A B 

D 



 

76 

 

Table 4.10 Summary of probability (p) values obtained from independent samples t-test 
analysis between COD concentrations of the treatment and control at the 
termination of the secondary treatment batch test 

 Treatment 

10% 25% 50% 85% 
C

on
tr

ol
 

10%  0.001    

25%  0.001   

50%    0.001  

85%     0.001 

 

Table 4.11 Statistical summary of Spearman Rank Correlation analysis between COD and 
chlorophyll-a during the secondary treatment batch test 

 Treatment 

Statistic 10%  25%  50%  85%  

p 0.1228 0.08 0.005 0.08 

R -0.70 -0.76 -0.94 -0.76 

R
2
 0.49 0.58 0.88 0.58 

 

 

Figure 4.15 Scatterplot to illustrate the relationship between chlorophyll-a (µg/mL) and 
 COD (mg O2 /L) for all treatments during the secondary treatment batch test 
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Figure 4.16 Comparison of average COD trendline of the 50% treatment and control during 
the secondary treatment batch test. The  solid and dash line illustrate the trend 
in data for the treatment and control respectively 

4.2.3 Biochemical Oxygen Demand 

BOD5 levels for the secondary treatment batch tests demonstrated temporal declines 

(Figure 4.17). Upon experiment termination the lowest and highest recorded BOD5 

level was exhibited by the 10% and 85% treatments, respectively (Figure 4.17). The 

10% and 85% treatments possessed an average ETC of 17 ±1 and 232 ±6 mg O2/L, 

respectively (Figure 4.17). In addition, the independent samples t-test indicated 

significant differences between control and treatments ETC (Table 4.12). 

Spearman rank correlations indicated significant (p < 0.05) a relationship between 

BOD5 and chl-a for all treatments except the 25% treatment (Table 4.13). The highest 

co-efficient of variation was displayed by the 10% treatment (R2 = 0.88) (Table 4.13). 

Figure 4.18 illustrates the relationship between chl-a and BOD5. 

The slope analysis indicates that from amongst the treatments the highest gradient was 

exhibited by the 85% treatment (-19.493), whereas in contrast the 10% treatment 

possessed the lowest gradient (-1.9967) (Figure 4.19). However, overall the 85% 

control possessed the lowest gradient (-0.4467) (Figure 4.19). 
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Figure 4.17 Temporal dynamics of BOD5 concentrations (mg O2 /L) for treatment and controls during the secondary treatment batch test. 
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Table 4.12 Summary of probability (p) values obtained from independent samples t-test 
analysis between BOD5 concentrations of the treatment and control at the 
termination of the secondary treatment batch test 

 Treatment 

10% 25% 50% 85% 
C

on
tr

ol
 

10%  0.002    

25%  0.001   

50%    0.001  

85%     0.001 

 

Table 4.13 Statistical summary of Spearman Rank Correlation analysis between BOD5 and 
chlorophyll-a during the secondary treatment batch test 

 Treatment 

Statistic 10% 25% 50% 85% 

p 0.005 0.08 0.02 0.02 

R -0.94 -0.76 -0.88 -0.88 

R
2
 0.88 0.58 0.77 0.77 

 

 

Figure 4.18 Scatterplot to illustrate the relationship between chlorophyll-a (µg/mL) and 
 BOD5 (mg O2 /L) for all treatments during the secondary treatment batch test 
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Figure 4.19 Comparison of average BOD5 trendlines of treatments and controls during 
the secondary treatment batch test. The  solid and dash line illustrate the 
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4.2.4 pH 

pH levels for the secondary treatment batch test demonstrated substantial temporal 

variability (Figure 4.20). Furthermore, there was a general increase for both treatments 

and controls for the duration of the experiment (Figure 4.20).  However, there was a 

recorded decrease in average pH for the controls on day 2 with a subsequent average 

increase on day 3 (Figure 4.20).  

The independent samples t-test indicated that there were only significant differences (p 

< 0.05) between the 85% treatment and control upon termination of the experiment 

(Table 4.14). The treatment possessed an average pH of 10.81 ±0.14, while the control 

possessed an average pH of 9.75 ±0.16 (Figure 4.20).  

The spearman rank correlation indicated that there were significant relationships 

between pH and chl-a concentration for all treatments apart from the 85% treatment 

(Table 4.15). The highest co-efficient of variation was exhibited by the 10% treatment 

(R2 = 0.90) whereas the lowest was possessed by the 25% treatment ((R2 = 0.90) (Table 

4.15). Figure 4.21 illustrates the relationship between pH and chl-a.  
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Table 4.14 Summary of probability (p) values obtained from independent samples t-test 
analysis between pH of the treatment and control at the termination of the 
secondary treatment batch test 

 Treatment 

10% 25% 50% 85% 
C

on
tr

ol
 

10%  0.46    

25%  0.46   

50%    0.42  

85%     0.001 

 

Table 4.15 Statistical summary of Spearman Rank Correlation analysis between pH and 
chlorophyll-a during the secondary treatment batch test 

 Treatment 

Statistic 10%  25%  50%  85%  

p 0.001 0.01 0.01 0.49 

R 0.95 0.47 0.48 0.14 

R
2
 0.90 0.22 0.23 0.02 

 

 

Figure 4.21 Scatterplot to illustrate the relationship between chlorophyll-a (µg/mL) and 
 pH for all treatments during the secondary treatment batch test 
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4.2.5 Toxicity Test 

Toxicity tests demonstrated substantial variability in the percentage of seeds germinated 

for treatments (Table 4.16). In terms of the treatments, the highest percentage of seeds 

germinated was recorded for the 10% treatment at an average of 96±4% while the 

lowest was recorded for the 85% treatment (Table 4.16). Overall, the lowest percentage 

of seeds germinated was recorded for the 85% control at an average of 18 ±3%. In 

addition, there were notable differences in the percentage of seeds germinated between 

the treatments and their respective controls (Table 4.16).   

The Mann Whitney U test indicated that there were no significant differences between 

the median values of percentage of seeds germinated for treatments and controls (Table 

4.17). However, the Kruskal Wallis analysis indicated a significant difference (p < 

0.05) between median values of the percentage of seeds germinated for the 10% and 

85% treatments (Table 4.18). 

  

Table 4.16 Summary of the percentage of Radish (Raphanus sativus) seeds germinated in 
 toxicity tests for the treatments and controls 

10% 25% 50% 85% 

Control Treatment Control Treatment Control Treatment Control Treatment 

25±5 96±4 22±3 44±8 18±3 58±4 18±3 29±4 

 

Table 4.17 Summary of probability (p) values obtained from the Mann Whitney U test 
between treatments and controls for the percentage of Radish (Raphanus sativus) 
seeds germinated in toxicity tests  

 Treatment 

10% 25% 50% 85% 

C
on

tr
ol

 

10%  0.08    

25%  0.07   

50%    0.07  

85%     0.07 
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Table 4.18 Summary of probability (p) values obtained from the Kruskal Wallis Test test 
between the percentage of Radish (Raphanus sativus) seeds germinated in toxicity 
tests for the treatments  

Treatment 

 10% 25% 50% 

25% 0.20   

50%  0.70   

85%  0.01 0.70 0.20 

 

With regards to the treatments, the lowest MTG was recorded for the 10% treatment at 

at an average of 2.11 ±0.77 days, whereas the highest recorded MTG was the 85% 

treatment at an average of 4.15 ±0.86 days (Table 4.19). Overall the highest average 

MTG recorded was exhibited by the 85% control at an average of 4.44±1.26 days 

(Table 4.19). 

However, the Mann Whitney U test indicated that there were no significant differences 

between the median values of MTG for treatments and controls (Table 4.20). 

Furthermore, the Kruskal Wallis analysis indicated that there were no significant 

differences between the treatment MTG (Table 4.21). 

 

Table 4.19 Summary of the mean germination time in days for Radish (Raphanus 

 sativus)  seeds in toxicity tests for the treatments and controls 

10% 25% 50% 85% 

Control Treatment Control Treatment Control Treatment Control Treatment 

4.22±0.51 2.11±0.77 4.29±0.40 3.51±0.46 4.29±0.36 4.13±0.67 4.44±1.26 4.15±0.86 
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Table 4.20 Summary of probability (p) values obtained from the Mann Whitney U test 
between treatments and controls for the mean germination time of Radish 
(Raphanus sativus) seeds germinated in toxicity tests  

 Treatment 

10% 25% 50% 85% 
C

on
tr

ol
 

10%  0.10    

25%  0.12   

50%    1  

85%     1 

 

Table 4.21 Summary of probability (p) values obtained from the Kruskal Wallis Test test 
between treatments for the mean germination time of Radish (Raphanus sativus) 
seeds germinated in toxicity tests  

Treatment 

 10% 25% 50% 

25% 0.32   

50%  0.81 0.91  

85%  0.17 0.99 0.99 
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4.3 Comparison between Primary Treatment and Secondary Treatment 

The primary and secondary treatment batch tests had reduced their respective 

nitrogenous pollutants to below the discharge limits (Table 4.22). All primary 

treatments reduced NH3-N by 100% as the Experiment Termination Concentration 

(ETC) were 0 mg/L (Table 4.22). Based on average values this was achieved in 15 days 

for the 10% treatment and 20 days for the 25%, 50% and 85% treatment. 

Based on average values, nitrate levels below discharge limits was achieved in 8 days 

for the 10% treatment, 10 days for the 25% treatment and 9 days for the 50% and 85% 

treatment. The highest recorded reduction in NO3
- concentration was achieved by the 

85% secondary treatment with a 99% reduction (Table 4.22). The lowest reduction in 

NO3
- concentration was exhibited by the 10% treatment (Table 4.22).  

Pertaining to COD, only the 25% and 85% secondary treatments achieved final 

concentrations below the discharge limits (Table 4.22). The highest percentage 

reduction in COD level was achieved by the 85% secondary treatment, whereas the 

lowest percentage reduction was demonstrated by the 85% primary treatment (Table 

4.22). Furthermore, the 85% primary treatment and the 85% secondary treatment 

exhibited the highest and lowest COD ETC, respectively (Table 4.22). Conversely, the 

50% primary treatment demonstrated the highest increase in COD, with a 46% increase. 

The 10% primary treatment had also exhibited an increase in COD (Table 4.22).   

All treatments demonstrated a reduction in BOD5 levels upon termination of the 

respective experiments (Table 4.22). The lowest BOD5 ETC was possessed by the 10% 

secondary treatment, whilst the highest was possessed by the 85% primary treatment 

(Table 4.22). However, the former exhibited the lowest reduction in BOD5 levels. 

Furthermore, the largest reduction was achieved by the 50% secondary treatment with a 

91% reduction (Table 4.22).  
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Table 4.22 Summary of principle parameter records for the primary treatment and secondary treatment batch tests. Average values of Experiment 
 Termination Concentration (ETC) and the Percentage Change (PC) from the initial concentration are indicated. Positive PC values indicate an 
increase in parameter concentration and negative PC values indicate a decrease in parameter concentration. 

Parameter 

(General value discharge limits) 

Primary Treatment Secondary Treatment 

10% 25% 50% 85% 10% 25% 50% 85% 

ETC PC  ETC PC ETC PC ETC PC ETC PC ETC PC ETC PC ETC PC 

NH3-N (mg/L) 

(3 mg/L) 
0.0 -100 0.0 -100 0.0 -100 0.0 -100 - - - - - - - - 

NO3
- (mg/L) 

(15 mg/L) 
- - - - - - - - 9.4 -91 10 -96 9.9 -98 9.8 -99 

COD (mg O2/L) 

(75 mg O2/L) 
361.03 14 288.82 -35 2454.97 46 2805.68 -21 207.44 -91 55.19 -89 105.26 -93 54.02 -97 

BOD5 (mg O2/L) 

(N/A) 
77.0 -50 84.0 -57 187.0 -51 191.0 -76 2.0 -90 5.0 -90 11.0 -91 42 -82 
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5. DISCUSSION AND CONCLUSION 

5.1 Primary Treatment Batch Test 

Ammoniacal-nitrogen concentrations for the treatments and controls declined 

throughout the batch test. The primary cause of decline in NH3-N in the control was 

possibly ammonia oxidation by microbes. However, the decline and eventual absence 

of NH3-N in the treatments was possibly due to the combination of ammonia oxidation 

by microbes and ammonia assimilation by Chlorella. This was indicated by the 

significance of the correlations that indicated a decline of NH3-N was associated with 

an increase in Chlorella.  In addition, the higher gradient of NH3-N for all the 

treatments, when compared to their respective controls, alludes to assimilation by 

Chlorella as a driver of NH3-N abatement in the treatments. This is further supported 

by the relatively high co-efficient of variations for the 10% and 25% treatments.  

In order to confidently determine if Chlorella were the principle cause of NH3-N 

decline, an experiment wherein the leachate would be sterilised through autoclaving 

and the experiment conducted in an enclosed photo-bioreactor would have to been 

undertaken. However, this does not mimic the actual nature of leachate where 

constituents include a microbial population. 

The duration of NH3-N abatement varied amongst the treatments with the 10% 

treatment exhibiting the lowest time. The longer duration of the higher concentration 

treatments are likely due to the toxicity of high levels of ammonia to Chlorella (Lin et 

al., 2000). Once the microalgae are inoculated into the leachate with a relatively high 

concentration of ammonia from the seed culture, Chlorella would require an 

acclimatisation period, hence requiring a longer duration for the assimilation of NH3-N 

into metabolic pathways (Lin et al., 2000). 

The rates of NH3-N abatement varied between treatments with the 85% treatment 

possessing the highest rate of decline. This was possibly attributed to the presence of 

microalgae within the treatment assimilating the NH3-N. However, the co-efficient of 

variation indicates that the relatively high rate of NH3-N decline is more likely 

attributed to other factors including microbial metabolic activity within the leachate.  

The rate of decline in the other treatments, while higher than their respective controls, 

may be lower than the 85% treatment due to their diluted nature. The dilution procedure 

may reduce microbe populations within the diluted treatments and therefore not achieve 
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the rate of NH3-N removal. However, the dilution reduces the NH3-N concentration to 

levels that the algae can tolerate and thus the algae are possibly the primary removers of 

NH3-N. The 10% possessed the lowest concentration of NH3-N at the onset of the batch 

test and is possibly the reason that NH3-N was not recorded on day 15, whilst all other 

treatments possessed NH3-N.  

Regarding COD, none of the treatments had achieved an ETC level below discharge 

limits. Furthermore, statistical analysis revealed that there were no significant 

differences (p > 0.05) between the treatment and controls. This suggests that primary 

treatment by Chlorella sp. is not effective in abating COD levels to discharge limits. 

However, the spearman rank correlation analysis indicated a significant relationship 

between Chlorella and COD for the 85% treatment. The possible reason is that as water 

quality improved, indicated by the decrease in COD, Chlorella sp. are able to tolerate 

the leachate conditions and thus grow.  

In the cases where the treatments COD concentration had exceeded the control, this 

may have resulted from the excretion of organic compounds from the algae themselves. 

According to Helebust (1965) although microalgae tend to excrete 3%-6% of their 

assimilated carbon during the logarithmic growth phase, approximately 17%-38% is 

exuded at the end of a bloom. Furthermore, higher rates of carbon compound excretion 

occur during periods of stress such as nutrient depletion (Hulatt and Thomas, 2011).  

Therefore, there was the possibility that after growth phase in the 10% and 50% 

treatments there was excrement of carbon, thereby increasing COD levels. In addition, 

cell lysis and Programmed Cell Death (PCD) may account for the increase in COD 

levels. These phenomena may have caused the increase in COD levels recorded after 7 

days. Consequently, the utilisation of microalgae for the abatement of carbon 

compounds in the primary treatment of leachate is ineffective. However, this does not 

indicate that COD should not be measured when microalgae are used as the primary 

treatment, as it is an important leachate quality determinand considering the potential 

impact on the receiving environment, but it suggests that removal of algae prior to a 

population crash due to PCD is required. 

BOD5 levels had decreased in all treatments and controls with the treatments possessing 

significantly (p < 0.05) lower concentrations. Furthermore, significant relationships 

were present between Chlorella sp. and BOD5 levels for the 10%, 25% and 50% 

treatment. This denotes that Chlorella were possibly effective in improving the BOD5 

of the leachate when diluted to these levels. This was expected as many species in the 
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genus Chlorella are able to shift between CO2 and organic compounds as a carbon 

source due to their ability to undergo heterotrophic growth (Samejima and Myers, 

1958; Perez-Garcia, 2011). Under conditions favourable for photosynthesis, Chlorella 

undergo autotrophic growth wherein CO2 is converted to carbohydrates and O2 

produced. All organisms including microalgae utilise the same metabolic pathways for 

respiration, with the consumption of oxygen and the production of carbon dioxide 

(Perez-Garcia, 2011). In microalgae that are able to undergo heterotrophic growth, 

including Chlorella, dark respiration occurs during periods with no available light for 

photosynthesis and the carbon source is other available organic compounds rather than 

CO2 (Samejima and Myers, 1958; Perez-Garcia, 2011). Consequently, the growth of 

Chlorella sp. would have abated organic compounds during heterotrophic growth. 

The 50% treatment possessed the highest rate of BOD5 reduction with the spearman 

rank correlation suggesting that Chlorella accounting for approximately 77% of the 

variability in BOD5. However, similar co-efficients of variation were recorded for the 

10% and 25% treatments that possessed lower rates of BOD5 decline. This suggests that 

the extent of assimilation by Chlorella is similar for all treatments, but the lower 

dilution in the 50% treatment implies that it possessed additional microbes that aided in 

decreasing BOD5 levels at a higher rate. 

pH levels increased from the baseline value during the duration of the batch test. This 

was possibly attributed to the uptake of CO2 leading to a reduced formation of carbonic 

acid thereby increasing pH (Lin et al., 2007). However, correlation analysis indicated a 

significant relationship between pH and chl-a for the 10% and 25% treatments. 

Therefore in these treatments microalgae growth are the principle influencers of pH. 

The pH was possibly further influenced by the consumption of acidic organic 

compounds such as carboxylic acids by micro-organisms (Kjeldsen et al. 2002). 

Furthermore, this was possibly the reason for the increase in pH for the controls and 

50% and 85% treatment. 

The decline in pH for the initial seven days of the batch test may be attributed to the 

uptake of ammonium (Shi et al., 2000). Considering that pH plays a vital role in 

biochemical processes within organisms (DWS, 1996), the reduction in pH possibly 

had toxic affects to the microalgae, particularly in the 10% treatment (Shi et al., 2000). 

This further explains the increase in COD after the initial 7 days. The rapid decline in 

the 10% treatment was possibly due to a lack of buffering capacity of the diluted 

leachate.  
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The shifting of the leachate from an acidic medium to a basic medium has important 

implications for the treatment of landfill leachate. Acidic mediums tend to increase the 

toxicity and bioavailability of metals including silver, aluminium, cadmium, cobalt 

copper, mercury, manganese, lead and zinc (DWS, 1996). Therefore, increasing the pH 

to a basic medium will reduce the toxicity of the leachate. Conversely, high pH values 

increase the toxicity of NH3-N as unionised NH3 is the dominant form (DWS, 1996).  

5.2 Secondary Treatment Batch Test 

The secondary treatment batch test exhibited declines in NO3
- for all treatments in 

contrast to the control that exhibited no discernible decrease. Furthermore, all 

treatments recorded ETC of NO3
- below the established DWS discharge limits. ETC for 

NO3
- in treatments were significantly (p < 0.05) lower than ETC for controls. Taking 

into consideration that NO3
- is the primary source of nitrogen for microalgae (Vilchez et 

al., 1997), the results indicate that Chlorella sp. accounted for the decline in NO3
- in the 

treatments. This is further supported by significance and co-efficient of variations 

determined by the spearman rank correlation. 

The highest and lowest rate of NO3
- decline was recorded in the 85% and 10% 

treatments, respectively. This may be attributed to the biomass of Chlorella sp. within 

the treatments. In general, when microalgae are exposed to nutrient limited conditions, 

they demonstrate reduced photosynthetic activity and biomass growth (Hao et al., 

2012). Conversely, higher nutrient concentrations are able to support relatively higher 

algal abundances (Shi et al., 2000). Therefore, the higher concentration of NO3
- in the 

85% treatment denotes that it had the potential to support a higher abundance of 

Chlorella sp. when compared to the 10% treatment. Hence, the higher abundance of 

Chlorella was able to assimilate the NO3
- at a relatively higher rate. Contrariwise, the 

relatively low NO3
- concentration in the 10% treatment signifies that it was unable to 

support an algal abundance on par with the 85% treatment.  Accordingly, the relatively 

lower abundance of Chlorella assimilates NO3
- at a relatively lower rate when 

compared to the 85% rate. 

Secondary treatments exhibited temporal declines in COD levels with treatments 

possessing significantly lower levels than the controls. However, there was only a 

significant relationship between COD and chl-a concentrations for the 50% treatment. 

Therefore, the decline in COD may be accounted for by the growing population of 

Chlorella sp. assimilating the carbon compounds that were present in the leachate. 
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However, the treatment was ineffective in reducing levels to below established 

discharge limits. 

The lack of a significant relationship between Chlorella and COD for the other 

treatments, allude to the possibility of amelioration by microbial metabolism as the 

principal driver in COD abatement. The possible cause for the disparity between 

treatments may be attributed to a factor not analysed that demonstrates the variability 

between the treatments.  

The BOD5 levels for the secondary treatment declined during the batch test period, with 

significant differences recorded in ETC between experiments and their respective 

controls. Furthermore, significant negative correlations were recorded between BOD5 

and chl-a. This postulates that Chlorella sp. assimilated organic compounds 

significantly reducing BOD5 levels. This was congruent with the primary treatment and 

indicates the uptake of organic carbon compounds by Chlorella sp. (Samejima and 

Myers, 1958).  

The highest co-efficient of variation was demonstrated by the 10% treatment. This 

postulates that the algae primarily accounted for the decline in BOD5 for the 10% 

treatment and may have been a result of the dilution process. Dilution of the leachate 

may have resulted in a diminution of microbial populations, thereby reducing 

competition for organic compound assimilation. In addition, the highest rate of decline 

recorded was for the 85% treatment and was possibly because the treatment possessed 

the highest recorded biomass of Chlorella. The relatively high biomass of Chlorella 

and possible microbial population present suggests the potential high rate of 

amelioration.  

The pH of the secondary treatments increased during the period of the batch test. This is 

possibly caused by the uptake of carbon dioxide by Chlorella sp. (Hullard and Thomas, 

2011). In addition, the removal of nitrate increases pH due to the production of 

hydroxyl ions (Goldman and Brewer, 1980), postulating from the relatively high rate of 

NO3
- and CO2 uptake by Chlorella. The 85% treatment possessed the highest levels of 

pH and was determined to be significantly different from the control, but was not 

significantly correlated to chl-a. The increase in pH was possibly influenced by the 

utilisation of acidic organic compounds by microbes (Kjeldsen et al. 2002). The shift 

from an acidic to a basic medium has further implications for the treatment of landfill 

leachate as discussed above. 
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Toxicity tests revealed substantial variability between the toxicity of the leachate 

subsequent to secondary treatment with Chlorella sp. The 10% treatment possessed the 

highest percentage of seeds germinated and the lowest mean time to germinate 

indicating that it was the least toxic from all treatments and controls. Statistical analysis 

indicated that the percentage of seeds germinated for the 10% treatment was 

significantly lower than the 85% treatment. This was possibly caused by the dilution of 

the 10% treatment possessing lower concentrations of potential toxins than the 85% 

treatment. 

However, the lack of significant differences between treatments and controls allude to 

the presence of a toxin or toxins that were not abated through Chlorella sp. metabolic 

pathways, particularly in consideration of the variability of leachate toxin composition 

(Kjeldsen et al., 2010). 

5.3 Conclusion 

The discharge of landfill leachate to the natural environment is one of the foremost 

ecological impacts pertaining to the disposal of solid waste (Kjeldsen et al., 2010). This 

is especially considering that possible negative physiological effects that may be 

observed in aquatic organisms even under a 1:1 000 dilution scenario (Baderna et al., 

2011). Therefore, the treatment of landfill leachate prior to release is an imperative 

practice. Accordingly, the experiments undertaken, tested the utilisation of the 

microalgae Chlorella sp. as the primary and secondary treatment of landfill leachate, 

particularly focusing on the amelioration of nitrogenous compounds.  

The results from batch tests indicated that Chlorella, although effective at reducing 

NH3-N in the primary treatment process, was temporally inefficient when compared to 

other treatment options. In addition, Chlorella sp. was not effective in lowering COD to 

below discharge limits when utilised as the primary treatment and has the potential to 

exacerbate COD levels of the leachate through the release of carbon compounds from 

stressed microalgae as well as PCD. Furthermore, Lin et al. (2000) has reported on the 

toxicity of the relatively high NH3-N concentrations associated with leachate on 

microalgae. Therefore, the use of Chlorella sp. as the primary treatment of leachate is 

considered unfeasible.  

However, the use of Chlorella sp. as the secondary treatment of leachate demonstrates 

positive results. Chlorella sp. is able to effectively reduce NO3
- to below discharge 

limits and may assist in the decrease of organic chemical compounds. In addition, the 
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shifting of leachate to a basic medium lowers the bioavailability of certain heavy 

metals. However, it was noted that toxicity of leachate was not significantly reduced 

although an improvement in the quality of the leachate was recorded.  

In conclusion, it is recommended that Chlorella sp. should not be utilised as the 

primary treatment of landfill leachate and that further studies should focus on utilising 

microalgae species as the secondary or tertiary treatment options. Furthermore, studies 

should not focus on monocultures of species but rather using an array of taxa as 

particular taxonomic groups may favour the growth of other species that are able to 

improve leachate quality (de-Bashan et al., 2004). de-Bashan et al. (2004) 

demonstrated that a co-immobilised treatment system with microalgae and microalgae-

growth promoting bacteria enhanced the uptake of nitrogen and phosphorus from 

wastewater. In addition, further leachate phycoremediation studies should also include 

testing the efficacy of a treatment system possessing a diversity of functional growth 

forms. This is suggested as different taxonomic groups possess different metabolic 

pathways and nutrient requirements and uptake capabilities (Vilchez et al., 1997; 

Wallentinus, 1984). Therefore, a hetero-cultural treatment system may enable the 

amelioration of leachate through the metabolism of the suite of compounds present in 

the leachate. 
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