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ABSTRACT 

Infectious Diseases remains a major cause of morbidity and mortality globally and are 

exacerbated by the ongoing crisis of antibiotic resistance. Vancomycin (VCM) is an 

antibiotic used for the treatment of serious infections that do not respond well to other 

antibiotics; however, resistance to VCM has also developed. Nano drug delivery systems are 

being widely explored to overcome the challenges with existing antibiotic dosage forms to 

treat bacterial infections. Lipid-Polymer Nanoparticles (LPNs) display unique advantages of 

both liposomes and polymeric nanoparticles while excluding some of their limitations. This is 

a hybrid particulate system, as it has the structural integrity of the polymeric particles and the 

biomimetic properties of the liposome. LPNs have several advantages that make them a 

superior drug delivery system compared to conventional antibiotics. As an emerging 

nanoparticulate delivery system, there is limited data on antibiotic loaded LPNs in the 

literature, especially with regard to formulation optimisation and enhancement of critical 

performance properties. The use of helper lipids and polymers in LPNs have further not been 

investigated for their potential to simultaneously improve drug encapsulation, antibacterial 

activity and drug release profiles. The aim of this study was therefore to explore a new lipid-

polymer combination in the formulation development of an antibiotic loaded LPN using 

VCM as a drug, as well as to co-encapsulate helper polymers and lipids in order to 

simultaneously enhance important properties, such as drug encapsulation, antibacterial 

activity and drug release profiles. In addition to in vitro characterisation, extensive in silico 

modelling was undertaken to obtain a molecular understanding of the effect of the helper 

polymers and lipid on the VCM loaded LPNs. 

 

LPNs were prepared using vancomycin (VCM), glyceryl triplamitate and Eudragit RS100 as 

the drug, lipid and polymer respectively. Oleic acid (OA), Chitosan (CHT) and Sodium alginate 

(ALG) were explored as helper excipients in the formulation. LPNs were prepared by a 

modified hot homogenisation method followed by ultrasonication. The LPNs were 

characterised in terms of size, PDI, zeta potential, encapsulation efficiency, morphology, in 

vitro drug release and kinetics, in vitro antibacterial activity, thermal profile, crystallinity as 

well as structural configuration using molecular modelling.  

Rod-shaped LPNs with suitable size (202.5 ± 3.81 to 250.9 ± 9.04), PDI (0.251 ± 0.01 to 0.386 

± 0.02) and zeta potential (-32.8 ± 4.54 to +17.4 ± 2.84) were successfully prepared. Drug 

encapsulation efficiency (%EE) increased from 27.8% to 41.5%, 54.3% and 69.3% with the 
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addition of OA, CHT and ALG respectively. Drug release data showed that VCM-CHT had 

the slowest drug release of 36.1 ± 5.35%, while VCM-ALG had the fastest drug release rate of 

54.4 ± 3.24% at the end of 24 h, with all formulations indicating a sustained release profile. 

The EE and drug release data was further corroborated by in silico and release kinetics data. 

The drug release kinetics data indicated that the drug release demonstrates controlled release 

with polymer swelling with water absorption and polymer chain relaxation. In silico studies 

showed that the binding free energy of the complexes correlated with the EE and drug release 

data. In vitro antibacterial studies of all formulations exhibited better activity against bare VCM 

and sustained activity up to day 5 against both S.aureus and MRSA, with VCM-OA and VCM-

CHT showing better activity against MRSA. VCM-OA LPNs showed the best activity with an 

MIC value of 1.2µg/ml against MRSA on day 2. Gel electrophoresis confirmed the in vitro 

antibacterial activity as it showed degradation of the bacterial proteins of all the formulations. 

The formulations were stable at both room temperature and 4°C over a period of 3 months.  

 

Therefore, the developed VCN LPN formulation proves to be a promising nanoantibiotic 

system for the delivery of VCM.  It serves as a platform for further formulation and 

development to improve its properties as a drug delivery system. This study will contribute to 

the improvement in patient therapy and disease outcomes, creation of new knowledge on LPN 

drug delivery systems for antibiotics and generate interest for future research to be conducted. 

 

Key words: lipid-polymer, antibiotic, nanotechnology, antibacterial, in silico, co-

encapsulation, in vitro. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Introduction 

This chapter outlines the background to the study, indicates the problem being addressed and 

the resulting aim and objectives. It explores on the current status of infectious diseases, the 

limitations associated with antibiotic therapy, and the novelty and significance of the study. It 

concludes with the structure and content of the remaining objectives.    

 

1.2 Background  

Infectious diseases are causing millions of deaths a year around the world, especially in 

developing regions (Bhutta et al., 2014). Deaths due to infectious diseases in low-income 

countries account for 40% and continue to rise in the absence of effective treatment options 

(World Health organisation. World health report 2002). Although the use of antibiotics has 

decreased morbidity and mortality rates, several limitations related to their use have 

compromised their ability to treat infectious diseases (Huh and Kwon, 2011; Walsh, 2000; 

Wood et al., 1996). 

 

There are several disadvantages associated with the currently available conventional dosage 

forms of antibiotics. These include inadequate antibiotic concentration at the target infection 

site, increased frequency of administration (Baker-Austin et al., 2006; Kardas, 2002), and 

others such as low water-solubility, cytotoxicity to healthy tissues, fast degradation and 

clearance in the bloodstream (Zhang et al., 2010). In addition, extensive use and misuse has 

led to the most prominent problem of antimicrobial resistance.  

 

Antimicrobial drug resistance has had a major impact on mortality rates worldwide and is 

now recognised as a major burden in healthcare settings (De Kraker et al., 2011; Livermore, 

2009). Together with a decline in research and development of new antibiotics, this resistance 

has the potential to cause a threat similar to that of the pre-antibiotic era. As a result, the 

major advances made in modern medicine that rely on antibiotics, such as surgery, organ 

transplantation and cancer chemotherapy, are at risk (Cars et al., 2011). Statistics show that 

an estimated 19 000 deaths per year in the U.S. are caused by methicillin-resistant 

Staphylococcus aureus (MRSA), which can only be treated by vancomycin (VCM). VCM is 

a glycopeptide antibiotic used in the treatment and prophylaxis of serious infections caused 

by Gram positive bacteria, such as S. aureus, that do not respond well to other antibiotics 



Introduction  Chapter 1 

 
3 

(Zakeri-Milani et al., 2013). VCM resistance and the rising prevalence of MRSA increases 

the possibility of VCM resistant S.aureus (VRSA), which is just as deadly as MRSA but 

harder to treat (Klevens et al., 2007; Weigel et al., 2003). MRSA, S.aureus and VRSA are 

organisms of current concern in developing and developed countries (Zaidi et al., 2005).  

 

Nanotechnology is being explored as a promising alternative to current dosage forms of 

antibiotics for immunization, drug design and delivery, controlling cross infections and 

overcoming resistance (Zhu et al., 2014). Nano-systems can facilitate targeted delivery of the 

antibiotic at a specific infection site, provide sustained release profiles (Huh and Kwon, 

2011) and inherently overcome existing drug resistance mechanisms (Pelgrift and Friedman, 

2013). Nano-drug delivery systems can increase the efficacy of antibiotics by improving their 

solubility and pulmonary accumulation, reducing dosing frequency and side effects, and 

improving intracellular delivery that allows a higher concentration of a drug at the site of 

action (Garcia-Contreras et al., 2007; Pandey and Khuller, 2005).  

 

According to Zhu et al., there are at least 10 nanoparticle-based products on the market to 

diagnose infections, antibiotic drug delivery and medical devices (Zhu et al., 2014). 

Nanoparticles that have been explored to effectively deliver antibiotics include liposomes, 

solid lipid nanoparticles (SLNs), polymeric nanoparticles and dendrimers (Huh and Kwon, 

2011). The antimicrobial properties of nanoparticles can be attributed to their high surface to 

volume ratio that allows for drug penetration by attacking the bacterial cell wall, their 

distinctive chemico-physical properties, the versatility of their formulation, and their 

biocompatibility with tissues and cells (Panyam and Labhasetwar, 2003; Weir et al., 2008).   

Compared to other medical conditions, such as cardiovascular disease and cancer, nano-drug 

delivery systems for antibiotic therapy is still in its infancy (Huh and Kwon, 2011). 

Therefore, to overcome the limitations with current antibiotic dosage forms and combat the 

ongoing crisis of bacterial resistance, applying nanotechnology to deliver antibiotics is of 

utmost importance (Ranghar et al., 2014).  

 

Lipid-based nanocarriers, such as liposomes (Gregoriadis, 1995), SLNs (Pinto-Alphandary et 

al., 2000), nanostructured lipid carriers (Li et al., 2006) and lipid drug conjugates (Sharma 

and Sharma, 1997) are an attractive dosage form due to their submicron sized particles and 

solid state of physiological lipid carriers (Cavalli et al., 2002). Liposomes have advantageous 

properties, such as biocompatibility, biodegradability, non-immunogenicity, flexibility 
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(Gregoriadis, 1995), the ability to closely interact with host cells, and to deliver both water 

and oil soluble drugs (Pinto-Alphandary et al., 2000). However, their drawbacks, such as low 

drug loading capacity, high initial burst kinetics, drug leakage during storage, batch to batch 

reproducibility issues, and manufacturing and scale up issues, need serious attention 

(Gregoriadis, 1995; Lee et al., 2007; Li et al., 2006; Sharma and Sharma, 1997).  

 

Polymeric nanoparticles are also a widely used nano-drug delivery system due to their high 

structural integrity, storage stability, sustained release and ease of preparation (Peer et al., 

2007). The rigidity of the polymer matrix in a polymeric nanoparticle makes them more 

stable than liposomes (Pinto-Alphandary et al., 2000). However, some of their limitations are: 

poor encapsulation of water soluble drugs due to leakage from the nanoparticles during the 

emulsification process in the preparation (Cheow and Hadinoto, 2010); polymer cytotoxicity 

and degradation; use of toxic organic solvents and scale-up issues (Allemann et al., 1993; 

Pinto Reis et al., 2006).   

 

To overcome the limitations associated with both liposomes and polymeric nanoparticles, a 

relatively new nano-drug delivery system, popularly termed the lipid-polymer hybrid 

nanoparticles (LPNs), has been developed (Zhang et al., 2008). LPNs display unique 

advantages of both the liposomes and polymeric nanoparticles, while excluding some of their 

limitations. The LPN is a hybrid nano particulate system, as it has the structural integrity of 

the polymeric particles and the biomimetic properties of the liposome (Hadinoto et al., 2013). 

The LPNs consist of: i) a biodegradable polymeric core suitable for carrying poorly water-

soluble drugs and releasing them at a controlled rate; ii) a hydrophilic shell that allows 

particles to evade recognition by the immune system, thereby increasing the half-life of the 

drug; and (iii) a lipid monolayer that prevents carried agents from freely diffusing out of the 

nanoparticles and reduces the water penetration rate into the nanoparticles, which slows the 

drug release from the nanoparticles (Zhang et al., 2008). LPNs have the advantages of high 

structural integrity, stability, sustained release from the polymer core, high biocompatibility 

and bioavailability, tuneable size and surface charge, high drug loading and targeted drug 

delivery (Chan et al., 2009; Zhang et al., 2008).  

 

To the best of our knowledge, despite numerous advantages offered by LPNs, their utilization 

in the delivery of antibiotics is very limited, with only five papers reported in the literature to 

date. The delivery of three fluoroqinolone antibiotics (levofloxacin, ofloxacin, ciprofloxacin), 
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as well as calcein (Cheow et al., 2011; Cheow and Hadinoto, 2011, 2012; Wang et al., 2012) 

and clindamycin phosphate (Abbaspour et al., 2013) have been studied using LPNs (Mandal 

et al., 2013). Furthermore, the most explored polymer for antibiotic loaded LPN synthesis is 

Poly Lactic-co-Glycolic Acid (PLGA) (Cheow et al., 2011; Cheow and Hadinoto, 2011, 

2012; Wang et al., 2012), with sodium alginate (ALG) and dextran sulphate having been 

reported in one paper (Abbaspour et al., 2013), while the lipids that have been investigated 

include stearic acid, lecithin and phospahtidylcholine (PC) (Abbaspour et al., 2013; Cheow et 

al., 2011; Cheow and Hadinoto, 2010, 2012; Wang et al., 2012).  

 

The limited antibiotic LPN studies have highlighted the need for formulation optimisation 

and characterization of LPNs by exploring other polymers and lipids with potent antibiotics, 

such as VCM. Identifying strategies to simultaneously enhance the critical properties of drug 

entrapment, antibacterial activity against sensitive and resistant strains, and controlled release 

profiles has also not been previously reported for any antibiotic LPN system. The 

development of antibiotic LPNs by co-encapsulating multiple lipids and polymers within its 

configuration could be an effective approach for simultaneously enhancing the above 

properties, and remains to be explored.  
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1.3 Aims and Objectives  

The aim of this study was to formulate and evaluate novel vancomycin loaded lipid-polymer 

nanoparticles to enhance antibiotic therapy. 

 

In order to achieve this aim, the objectives of the study were to: 

1. Prepare VCM loaded LPNs containing a new lipid-polymer combination of Eudragit 

RS100 as the polymer and Glyceryl tripalmitate as the lipid. 

2. Simultaneously enhance the encapsulation efficiency and antibacterial activity of the 

nanoparticles by incorporation of various co-excipients such as oleic acid, chitosan and 

sodium alginate. 

3. Evaluate the lipid-polymer nanoparticles in terms of particle size, surface charge, 

morphology, drug release, antimicrobial activity, thermal behaviour and crystallinity 

and corroborate the data with in silico modelling. 
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1.4 Novelty  

The research conducted in this study is novel for the following reasons: 

 This study uses a new lipid and polymer combination, which has not been reported 

previously for any antibiotic LPN system, and comprises of Eudragit RS100 as the 

polymer, glyceryl triplamitate as the lipid and hydrophilic VCM as the drug. This 

LPN system could be explored for other antibiotic drugs. It is anticipated that this 

study will identify novel formulation strategies to optimally encapsulate hydrophilic 

drugs into LPNs. 

 A recent review article on lipid-polymer hybrid nanoparticles reported that the only 

antibiotics that have been explored for lipid-polymer nanoparticles was that of 

flouroquinolone antibiotics (Mandal et al., 2013). Vancomycin, which is a 

glycopeptide antibiotic, is used to treat serious infections that do not respond well to 

first line antibiotics. However, resistance to vancomycin is steadily increasing, and it 

is believed that incorporating vancomycin into novel nanoparticle systems will 

overcome the resistance issues and many of the drug delivery problems. 

 To date, no studies have reported on the co-encapsulation of various excipients to 

simultaneously increase antibacterial activity, drug release and encapsulation 

efficiency of lipid-polymer nanoparticles. This study will be the first to report on this 

proposed method and will serve as a platform for incorporating a number of drugs to 

treat a variety of diseases.  
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1.5 Significance  

Formulating vancomycin loaded lipid-polymer hybrid nanoparticles is a novel antibiotic drug 

delivery system that can enhance the antibiotic efficacy and overcome the limitations 

associated with the drug. The potential benefits of the proposed formulation in this study 

include the following: 

 Vancomycin resistance is a major problem in antibiotic therapy, and by formulating 

the drug into a novel drug delivery system, such as lipid-polymer hybrid 

nanoparticles, it can enhance the efficacy of the drug, contribute to a decrease in 

antibiotic resistance and increase the therapeutic efficacy of the drug. Cost effective 

dosage forms can be developed to treat a range of diseases caused by bacterial 

infections, thereby improving patient treatment, disease outcomes and the economy of 

the country. 

 This type of drug delivery system can benefit a wide variety of diseases, such as 

cancer, HIV/AIDS, cardiovascular conditions, and will enable many other drug 

delivery routes to be explored. Progress in nanotechnology and the development of 

this particular system could lend itself to enhancing many drug therapies.  

 The co-encapsulation of different excipients proposed in this study could potentiate 

the antibacterial activity as well as the encapsulation of drugs, thereby enhancing the 

efficacy of the drug and decreasing manufacturing costs. 

 In silico and in vitro kinetics studies can corroborate the results obtained and explain 

the mechanism by which the LPN formulation can achieve enhanced properties, such 

as encapsulation efficiency, drug release and antibacterial activity. Therefore, new 

knowledge about the mechanism in which these co-excipients interact with the 

formulation excipients can be generated. 

 As data on antibacterial studies of antibiotic loaded LPNs is limited, with only one 

report on biofilm susceptibility testing (Cheow et al., 2011), the antibacterial data 

generated in this study could serve as a basis for future LPN formulations with other 

antibiotics. 
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1.6 Overview of Dissertation 

The research is presented in the following chapters: 

CHAPTER 2. Literature Review: This chapter focuses on the status of infectious diseases, 

current antibiotic therapy and the strategies that are used to overcome limitations. It 

focuses on nanotechnology and in particular, nano-drug delivery systems for 

antibiotic therapy. The emphasis is on lipid-polymer nanoparticles (LPNs) for 

antibiotic therapy and the various preparation methods and characterisation 

techniques. Finally, vancomycin as a model antibiotic is described. 

CHAPTER 3. Submitted manuscript: This chapter is a first author article that was 

submitted in an ISI international journal. It is presented in the required format of the 

journal and is a report on novel work. It describes the formulation of novel 

vancomycin loaded LPNs that show enhanced antibacterial activity, drug release and 

encapsulation efficiency with the addition of helper excipients. 

CHAPTER 4. Co-author review paper: This chapter is a co-author review paper published 

in an ISI international journal. It reviews the different nano-drug delivery systems 

that have been reported for antibiotic therapy. 

CHAPTER 5. Conclusions: This chapter describes the conclusions reached in achieving 

the study aim, outlines the significance of the findings and makes recommendations 

for further research into antibiotic loaded LPNs. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

This chapter provides a summary of the literature and concepts on infectious diseases and 

nano-antibiotic drug delivery systems. It focuses on the emergence of bacterial resistance, as 

well as the currently available antibiotic therapy and its limitations. An overview of 

nanotechnology is presented, as well as the different types of nano-drug delivery systems that 

are used in antibiotic therapy, with the focus being on Lipid-Polymer Hybrid nanoparticles 

(LPNs). In addition, the various methods of preparation and characterization techniques are 

outlined for LPN formulation. Lastly, the rationale for the use of vancomycin as a model drug 

is outlined.  
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2.2 Introduction to Infectious diseases  

Infectious diseases caused by a microorganism such as bacteria can spread from one person 

to another, either directly or indirectly (World health Organisation. Infectious diseases). The 

World Health Organisation reports that infectious diseases, a large proportion which are of 

bacterial origin, continue to be one of the leading causes of morbidity and mortality 

worldwide (World Health Organisation. The top 10 causes of death). They are a serious 

health problem in developing and developed countries, and are causing millions of avoidable 

and premature deaths a year, especially in developing regions (Bell et al., 2013). In 2002, 

deaths due to infectious diseases in developing countries account for 40% and are still on the 

rise (World health Organisation. World health report). Statistics show that of the 6.3 million 

children who died in Africa in 2013, 51.8% did so of infections, mainly pneumonia, diarrhoea 

and malaria (Liu et al., 2015).  

 

One of the major causes of the rising incidence of infectious diseases is the increasing 

occurrence and spread of bacterial resistance. The problem of antimicrobial resistance is 

particularly pressing in Africa, including South Africa, due to its considerable burden of 

infectious diseases and the high cost of the newer antibiotics to replace the older, ineffective 

ones. The leading causes of death and disease in many developing countries are gastro-

intestinal, respiratory, sexually transmitted and hospital-acquired infections, many of which 

no longer respond to the currently available antibiotics (Kalhapure et al., 2014b; Winters and 

Gelband, 2011). Issues such as global trade, international travel, poverty and war, as well as 

emerging and re-emerging infectious diseases, has exacerbated the growing problem of 

infectious diseases (Kalhapure et al., 2014b). In addition, infections are now playing a key 

role in the incidence and underlying cause/risk factor of non-communicable diseases, such as 

asthma, cancers, cardiovascular disease and gastrointestinal diseases (Ogoina and 

Onyemelukwe, 2009). A global view of infectious diseases is depicted in Figure 1 below.  
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Figure 1. A global view of infectious diseases. Adapted from Clinipace Infographics: A 

global view of infectious diseases.  

 

The existence of bacteria can be dated back more than 3 billion years and during this time 

they have come into contact with a wide range of naturally occurring antibiotics, which has 

resulted in them developing several antibiotic resistance mechanisms in order to survive. 

Resistance can be due to the innate property of the bacteria or a result of gene mutation. 

(Wood et al., 1996). The main mechanisms of bacterial resistance are: i) inactivation of the 

drug, ii) modification of the site of action, iii) modification of the permeability of the cell 

wall, and iv) overproduction of the target enzyme (Opal et al., 2000; Sefton, 2002; Walsh, 

2000; Williams, 1996), these mechanisms being depicted in Figure 2. 
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Figure 2. Mechanisms of resistance to antibacterial agents. Adapted from Coates et al. (Coates et al., 

2002) 
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2.3 Current antibiotic therapy and limitations 

The definition of an antimicrobial is a substance that can kill or deter the growth of bacteria, 

and since the advent of antimicrobial drugs in the 1960s, many infectious diseases have been 

cured (Coates et al., 2002). The current progress and health gains of clinical medicine would 

not be possible without the use of antibiotics. Organ transplants, surgery and cancer 

chemotherapy are just some of the medical procedures that would not be possible without 

preventing and treating bacterial infections. (Cars et al., 2011) 

 

An antimicrobial agent works by targeting the components of bacterial metabolism, thereby 

inactivating the bacteria (Mandell et al., 2009). Some antibiotics have a broad spectrum of 

activity and inhibit a wide range of Gram-positive and Gram-negative bacteria, such as 

ampicillin, while others are only active against a narrow spectrum of bacteria, such as 

penicillin. Antibiotics also differ in their mechanism of action against bacteria. Some 

antimicrobials are bacteriostatic and inhibit cell growth, whereas others are bactericidal and 

kill bacteria. The use of a combination of antibiotics can therefore lead to increased activity, 

compared to each antibiotic being used alone (Coates et al., 2002; Walker, 1996).  

 

Antibiotic use began in the late 1940s with the discovery and production of penicillin, and 

was a great success and since then even newer and stronger antibiotics have been developed 

over the years (Taubes, 2008). The benefits of antibiotics has proven to be life changing with 

regards to the survival rates of children, improving productivity in the workplace and 

longevity (Piddock, 2012).  There are several conventional dosage forms of antibiotics that 

include oral tablets, liquid suspensions and intravenous injections, all of which have a 

number of limitations associated with their use. The limitations associated with current drug 

therapy include inadequate concentration at the target site, poor patient compliance and 

increased frequency of administration. In addition, widespread use and misuse of antibiotics 

have led to the most severe limitation, antibiotic drug resistance.  

 

Despite  the emergence of resistance, very few new drugs have been developed (Taubes, 

2008), with the fast pace of bacterial resistance having far exceeded the rate of drug 

development (Huh and Kwon, 2011). Even the most potent antibiotics have been invalidated 

by the increasing rates of bacterial resistance, which results in higher mortality rates as well 

as increased health care costs (Brooks and Brooks, 2014). According to Fishback et al., since 
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the early 1960s, only four classes of new antibiotics that have entered the market, as the rest 

are dominated by modifications of antibiotics that were discovered half a century ago 

(Fischbach and Walsh, 2009). There has been a loss of interest in developing new antibiotics 

by pharmaceutical companies, which have focussed on chronic medications that are taken for 

much longer than the standard week-long antibiotic does, thereby generating greater revenue 

for them, and for which they can charge much higher prices (Nathan, 2004; von Nussbaum et 

al., 2006). 

 

Poor patient compliance and increased dosing frequency is a major limitation associated with 

the use of antibiotics. Kardas reported that missed doses, change in the frequency of dosing 

and time interval delays are some of the major problems that are recognised with regard to 

patient compliance (Kardas, 2002). Besides the development of resistance, adverse side 

effects, such as toxicity due to high dosing of antibiotics, are also a limitation of current 

antibiotic therapy (Baker-Austin et al., 2006). Treatment of chronic conditions, such as cystic 

fibrosis and chronic obstructive pulmonary disease, are therefore hard to treat due to the high 

frequency dosing regimen (Beaulac et al., 1996). Antimicrobial drugs are also hard to 

administer due to their low water-solubility, fast degradation and clearance in the blood 

stream and cytotoxicity to healthy issues, (Zhang et al., 2010a).  

 

Antimicrobial resistance can be defined as the phenomenon where pathogenic 

microorganisms multiply beyond the critical mass in the presence of antibiotics, resulting in 

treatment of the infection being compromised (Zhang et al., 2006). Antimicrobial agents have 

caused a significant decrease in morbidity and mortality rates globally, however, resistance to 

antibiotics has been reaching an alarming level worldwide, invalidating major antimicrobials 

that are currently used in treating infectious diseases (Brooks and Brooks, 2014; Huh and 

Kwon, 2011; Kalhapure et al., 2014b). Society and technological developments have caused a 

shift towards the unrestrained spread of resistance. This shift over the decades that led to the 

globalisation of antimicrobial resistance can be attributed to local and international travel, 

trade immigration and adoption (Stenhem et al., 2010).  

 

The indiscriminate, inappropriate and incomplete use of antibiotics is also a major cause of 

antibiotic resistance. This is a result of antibiotics being available ‘over the counter’, given 

unnecessarily, failure to comply with the regimen, and patients not completing the course. 

(Hinman, 1998). Resistance in turn has an effect on morbidity and mortality, the cost of 
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treatment, the spread of disease and the duration of illness (Laxminarayan, 2010). The 

resistance phenomenon has caused a serious decline in research and development of new 

antibiotics, and is a threat of the pre-antibiotic era. As a result, major advances made in 

modern medicine are at risk, such as surgery, organ transplants and cancer chemotherapy 

(Cars et al., 2011). 

 

Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus species, Acinetobacter 

species, Pseudomonas species, and Klebsiella  are some of the bacteria associated with a high 

incidence of infection, and which also have developed resistance to treatment by many 

antibiotics (Falagas and Karveli, 2006). Statistics show that an estimate of 19 000 deaths per 

year in the USA are caused by methicillin-resistant Staphylococcus aureus (MRSA), which 

can only be treated by vancomycin. However, vancomycin resistance has developed, as has 

the prevalence of MRSA increased the possibility of vancomycin resistant S.aureus (VRSA), 

which is just as deadly as MRSA but harder to treat (Klevens et al., 2007; Weigel et al., 

2003). The mechanisms of resistance of these drug resistant bacteria can be explained further 

in Table 1. 

 

Table 1. Mechanism of resistance of drug resistant bacteria. Adapted from Ranghar et al. 

(Ranghar et al., 2014). 

Bacterial 

Microorganism 

Drug use to treat 

infection 

Mechanism of drug resistance 

Gonocci Quinolone Mutation in target site 

Enterococcus Sulfonamide 

Vancomycin 

Changes in the target site 

Overproduction of the target site 
Development of alternate growth requirement 

Enterobacteriaceae 

(e.g. E.coli) 

β- lactams 

(carbapenem) 

Drug degrading enzyme 

Streptococcus 
Pneumoniae 

Macrolide Active efflux, drug efflux pump 

Pseudomonas 

aeruginosa 

Multiple drugs Several factors including loss of porin, drug 

efflux pump and drug modifying enzyme 

Staphylococcus Aureus β- lactam 
(methicillin) 

 

Vancomycin 

Production of an extra enzyme that avoids 
binding 

Thickening of cell wall changes in target 

 

Nosocomial infections will affect the ability of hospitals to prevent deaths and will affect 

cures globally, with MRSA, S. aureus and VRSA being organisms of current concern in 

developing and developed countries (Zaidi et al., 2005). Major antibiotics used to treat 
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MRSA infections are presented in Table 2. The failure of an antibiotic to treat a resistant 

infection will result in the recurrence of the infection, which will need to be treated by second 

line drugs that are often more costly. The second line drug regimens are also more 

complicated in terms of dosing, side effects and need more medical attention. The patients 

who have resistant infections are likely to have a longer duration of illness and in some cases 

do not recover. These patients are also infectious for a longer duration and carry pathogens to 

others (Carmeli et al., 2002; Corea et al., 2003). According to Zaidi et al. 70% of hospital 

acquired neonatal infections could not be treated by WHO’s first line drug regimen, due to 

the development of resistance (Zaidi et al., 2005). 

 

Several measures that need to be taken to overcome antimicrobial resistance, such as early 

detection of resistance, prevention and control measures to curb the spread of infections, 

improved patient and healthcare education, awareness regarding the correct use of antibiotics, 

and developing new and novel antibiotics for effective drug therapy (Paphitou, 2013). 

However, over the past 20 years, the number of new drugs being introduced into the market 

has decreased by less than half the previous period (Ranghar et al., 2014), resulting  in an 

increased need for antibiotics with new technology to improve their efficacy and safety, and 

to avoid resistance (Huh and Kwon, 2011). 

 
 

 

Table 2 Major antibiotics for treatment of infections caused by MRSA. Adapted from J.G 

Bartlett (Bartlett, 2006). 

 

 CLASS YEAR ROUTE INDICATION DOSE (ADULT) MAJOR ADVERSE 

EFFECTS 

Vancomycin Glycopeptide 1956 IV Pneumonia 
Bacteremia 
Bone/joint 

endocarditis 

1g q12h Red man syndrome 

Quinupristin-
dalfopristin 

Streptogramin 1999 IV Skin/soft tissue 7.5mg/kg q8-
12h 

Arthralgias/myalgias 
Injection site 

reactions 

Linezolid Oxazolidinone 2000 IV,PO Pneumonia 
Skin/soft tissue 

600mg q12h Marrow suppression 

Daptomycin Cyclic lipopetide 2003 IV Skin/soft tissue 4mg/kg QD Myopathy 
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2.4 Approaches to overcome limitations with current antibiotic drugs 

Statistics in the USA have shown that in 2002, more than 70% of bacteria that caused 

hospital acquired infections were resistant to at least one common antimicrobial (Zhang et al., 

2010a). According to the British National Formulary, there are 63 antibiotics available to 

treat bacterial infections, of which half are structurally related and are directed to only a few 

biochemical targets in the bacterial cell (Taylor et al., 2002).  

 

Pharmaceutical companies and researchers have explored various avenues in order develop 

new and novel drugs to combat the rise of resistance. For example, studies have shown that 

the frequency of infections in children has been significantly reduced by the Haemophilus 

influenza B vaccine (Peltola, 2000). However, treating certain infections by vaccination has 

proven to be more difficult and it is unlikely that their use will reduce the need to treat 

infections with antimicrobials (Coates et al., 2002). Other approaches that have gained 

interest are the discovery of naturally occurring antimicrobial peptides, as well as a new route 

for discovering natural products from soil (MacNeil et al., 2001). Another method of 

eradicating resistance is the synthesis of derivatives from existing antibiotics in the hope that 

some will be effective against resistant strains (Knowles, 1997). Pharmaceutical companies 

have adopted this short-term response by structurally altering existing molecules and testing 

them to see if they can overcome bacterial resistance (Bax et al., 2000). For example, 

antibiotics such as penicillin, cephalosporins or carbapenems are all chemically modified 

natural compounds (Hajipour et al., 2012). New targets for antimicrobial agents must be 

explored to avoid resistance, such as proteins, which are essential for bacteria to survive 

(McDevitt and Rosenberg, 2001). Although the modified compounds of existing antibiotics 

prolong the life span of each family of antibiotics for a number of decades, these resources 

will eventually run out. Novel compounds derived from bacteriophages, genomics, non-

multiplying bacteria and non-culturable bacteria are also being explored as part of the current 

antibiotic therapy development initiatives (Coates and Hu, 2007). 

 

Synthesising new antibiotics is therefore not an option due to the likelihood of resistance 

developing to these antibiotics. In order to control infections by VRE, VRSA, MRSA and 

other multi-drug resistant bacteria, the search for natural product derived antibiotics are 

therefore an option (Hemaiswarya et al., 2008), as are novel drug delivery systems that 

improve the delivery of existing antibiotics. Kim et al. also reported an approach using 
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selective photothermal therapy for in vivo antimicrobial treatment using a pulsed laser that 

causes physical damage to antimicrobial resistant strains (Kim et al., 2007).  With progress 

made as a result of screening over 40 microbial genomes, as well as advances in screening 

technology and combinatorial synthesis, the future is set for the discovery of new antibiotics 

(Taylor et al., 2002). Future developments of antibiotics need to focus on inventing drugs 

with improved efficacy, that prevent resistance and protect the natural host microbiome 

(Brooks and Brooks, 2014). Future research and development needs to focus on smart cutting 

edge technology and innovative drug delivery systems that will improve the safety and 

efficacy as well as avoiding resistance  of existing antibiotics (Hindi et al., 2009; Turos et al., 

2007). 
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2.5 Nanotechnology and its emergence to overcome limitations with     

antibiotics 

Nanotechnology has been referred to as the science and engineering that result in the design, 

synthesis, characterisation and application of nanometer scale materials and devices (Emerich 

and Thanos, 2003; Sahoo and Labhasetwar, 2003), and is regarded as the future of drug 

technology. Nanostructures are materials that have a size in the 1-100nm range, with the 

physical and chemical properties of these molecular scale structures being controlled through 

the design methodology (Safari and Zarnegar, 2014). Among the wide variety of nanosized 

drug delivery systems that are being explored are liposomes, polymeric nanoparticles, solid 

lipid nanoparticles, nanosuspensions, nanospheres, nanocapsules, nanotubes, nanowires, 

nanoemulsions, micellar systems and dendrimers (Kalhapure et al., 2014b; Karunaratne, 

2007; Zhang et al., 2010a). These drug delivery systems have been explored to overcome a 

number of limitations in the diagnosis, treatment, prevention and immunization of a variety 

of diseases (Andrade et al., 2013).  The unique physiochemical properties of nanomaterials, 

such as large surface area to mass ratio,  small size, their high reactivity and their ability to be 

structurally and functionally be modified make them superior to traditional therapeutic and 

diagnostic agents (Zhang et al., 2007; Zhang et al., 2010a). 

 

Nanotechnology can address many areas of the conventional drug delivery systems by 

improving water-soluble drug delivery, enable drug combinations and the transfer of large 

macromolecules to intracellular cites, target drug delivery, lower toxicity, provide more 

convenient routes of administration and sustained release, reduce health costs, and improve 

drugs therapeutic efficacy (Kalhapure et al., 2014b; Safari and Zarnegar, 2014). It has been 

widely explored with protein, peptides and nucleic acid drugs (Moghimi et al., 2001; Panyam 

and Labhasetwar, 2003) and to treat a variety of diseases, such as cancer, AIDS and 

hypertension (Gerson et al., 2014; Kalhapure and Akamanchi, 2012; Park, 2002). Many drug 

formulations cannot be taken orally because of their poor bioavailability, which can be 

addressed by nanotechnology due to their  smaller particle size (El-Shabouri, 2002; Hu et al., 

2004). Over the years, nanotechnology has shown to be effective in diseases such as 

Alzheimer’s , diabetes, asthma, cancer, pain, allergy, and general infections (Brannon-Peppas 

and Blanchette, 2012; Kawasaki and Player, 2005), with more than two dozen therapeutic 

products have been approved for clinical use (Wagner et al., 2006).  
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Nanotechnology delivery systems have been explored as a promising alternative to current 

antibiotics in immunization, design and delivery of antibiotics, controlling cross infections 

and overcoming resistance (Brooks and Brooks, 2014; Zhu et al., 2014). Due to the continued 

emergence of bacterial resistance, nanotechnology is urgently needed in the field of 

antibiotics to combat this ongoing crisis (Blecher et al., 2011). When compared to other 

conditions, such as cardiovascular disease and cancer, nanodrug delivery systems for 

antibiotic therapy is still in the early stages (Huh and Kwon, 2011; Kalhapure et al., 2014b). 

These novel drug delivery systems allows for fast, accurate and cost effective treatment of 

infectious diseases, and offers a promising alternative to current antibiotic drugs (Jain, 2007; 

Taylor et al., 2002). The advantages of nanodrug delivery systems for antibiotic drug delivery 

include enhanced solubility and cellular internalisation, targeted delivery, decreased side 

effects, uniform tissue distribution, sustained release and increased patient compliance 

(Mansour et al., 2009; Sosnik et al., 2010). In addition, these nanosystems are able to 

overcome resistance mechanisms and create synergistic activity themselves (Zhang et al., 

2010a).  

 

The immense advantages of nanodrug delivery systems has caused an increased interest in 

this type of drug delivery, as is evident from the literature (Kalhapure et al., 2014b). 

Nanodrug delivery systems can therefore overcome limitations with many conventional 

antibiotics and can combat the global concern of bacterial resistance. During the next few 

years, nanotechnology will continue to grow and improve drug delivery, especially in the 

field of antibiotics. 
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2.6 Nano-drug delivery systems for antibiotic therapy 

Nanomedicine has created an increase in the therapeutic efficacy of many drugs as well as in 

technological and medical breakthroughs (Couvreur, 2013). The use of nanotechnology in 

antibiotic therapy has proven to have many benefits, and the field continues to grow. There 

are several nano-delivery systems for antibiotics that include liposomes, solid lipid 

nanoparticles (SLNs), polymeric nanoparticles (PNPs), dendrimers, lipid polymer hybrid 

nanoparticles (LPNs), nanoemulsions, micellar systems, carbon nanotubes, nanosheets and 

nanorods (Kalhapure et al., 2014b). 

 

2.6.1 Overview of nano-drug delivery systems and their advantages for 

antibiotic therapy 

Nano-drug delivery systems are a promising alternative to conventional antibiotics, as their 

mechanisms of antibacterial activity are very different and they allow for targeted drug 

delivery and reduce bacterial resistance (Blecher et al., 2011; Seil and Webster, 2012). 

According to Zhu et al., there are at least 10 nano-based products on the market to diagnose 

infections, enable antibiotic drug delivery and medical devices (Zhu et al., 2014). A variety of 

antimicrobial agents can be incorporated into a number of different nanosystems. This 

includes lipophilic and water soluble antibiotics that exhibit improved solubility, a sustained 

release profile and targeted delivery when incorporated into a nanosystem (Abeylath and 

Turos, 2008; Allaker and Ren, 2008). The antimicrobial properties of nano-drug delivery 

systems can be attributed to their high surface to volume ratio that allows for drug penetration 

by attacking the bacterial cell wall, to their distinctive chemico-physical properties, their 

versatility of the formulation, and their biocompatibility with tissues and cells (Panyam and 

Labhasetwar, 2003; Weir et al., 2008). For example, Muhling et al. reported that bacteria that 

occur naturally did not develop bacterial resistance to metal nanoparticles (Mühling et al., 

2009). The small size of these nanosystems also enable them to penetrate bacterial cells 

effectively and disrupt cell membranes, with a positive zeta potential allowing for 

electrostatic attraction of the negatively charged bacterial surfaces to the nanoparticles, 

enabling successful penetration (Seil and Webster, 2012). 

 

The materials that make up a nanosystem and their size determine the effectiveness of the 

formulation, while the bactericidal and bacteriostatic effect of the system can predict the dose 

that is needed to inhibit bacterial growth (Seil and Webster, 2012). Nano-drug delivery 
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systems have also been proven to eradicate biofilms and intracellular microbes, these being 

the most common reason for chronic infections that cannot be treated with conventional 

antibiotic therapy (Zhu et al., 2014). The unique properties of antimicrobial nanoparticles 

allow them to attack a variety of biological pathways found in a range of bacteria that make 

the number of mutations necessary for them to overcome resistance very difficult. 

Nanoantibiotics can also be prepared and administered in cost effective ways through various 

routes with lower frequency of administration that make them stable enough for prolonged 

shelf life and long-term storage (Weir et al., 2008). They can also ensure protection from 

severe and harsh conditions, such as high heat sterilization, which would normally inactivate 

conventional antibiotics (Mansour et al., 2009; Sosnik et al., 2010). The mechanism of action 

of nanoantibiotics against bacterial cells is depicted in figure 2.3.  

 

The most popular nano drug delivery systems that are being explored for antibiotic therapy 

include liposomes, polymeric nanoparticles, solid lipid nanoparticles, lipid-polymer 

nanoparticles, dendrimers, nanoemulsions, polymeric micelles, nanohybrids, carbon 

nanotubes, nanohorns and nanorods. These 10 main nanosystems for antibiotics are presented 

in Table 2.3. Extensive studies on these nanoantibiotic systems have shown enhanced activity 

against both sensitive and resistant bacterial strains. In addition, these nanosytems have 

shown enhanced solubility, drug entrapment, stability, targeted delivery, sustained drug 

release, penetration of the BBB and enhanced antibiotic therapy. Nanoparticles in particular 

are proving to be a superior drug delivery system in antibiotic therapy due to their exclusive 

physiochemical properties, such as controllable small size, large surface area to mass ratio, 

interactions with the bacteria and host cells, as well as its versatility in structure and function 

(Zhang et al., 2008; Zhang et al., 2010a).  

 

Many challenges are associated with treating infections, and nanoparticles can assist in 

overcoming these limitations such as toxic side effects, decreased uptake and increased efflux 

of the drug, formation of biofilms and intracellular microbial infections. The targeted delivery 

of antibiotics to these infection sites, which creates increased efficacy and reduced side 

effects, can be attained by modifying the surface of the ligands or by microenvironment 

responsiveness (Huh and Kwon, 2011; Zhang et al., 2010a; Zhu et al., 2014). Nanoantibiotics 

are therefore a promising drug delivery system, and research indicates that the number of 

commercially available nano-therapeutics has significantly increased and will continue to 

rise, especially in the emerging field of nanoantibiotics. 
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TYPE OF 

NANOSYSTEM 

STRUCTURE ADVANTAGES IN 

ANTIBIOTIC THERAPY 

REFERENCES 

Liposomes 

 

- They promote targeted 
delivery 

- Reduce toxicity 
- Improve pharmacokinetics 
- Enhance antibiotic activity 
- Effective against a wide 

range of microorganisms 
- Sustained release 

(http://www.chemgui
deforcie.co.uk/section
113/learningb; 
Kalhapure et al., 
2014b; Schiffelers et 
al., 2001) 

Polymeric 
nanoparticles 

 

- Structural stability 
- Sharper size distribution of 

particles 
- Tuneable size, surface 

charge and drug release 
- Overcomes resistance 
- Modification of functional 

groups 

(https://labofnano.gm
u.edu/research/; 
Zhang et al., 2010a) 

Solid lipid 
nanoparticles 

 

- Enhanced Stability 
- High entrapment 
- Protection of drugs against 

degradation 
- Ease of scale up 
- Sustained release 
- Prolonged antibacterial 

activity 

(Fadwa Odeh, 2014; 
Jain and Banerjee, 
2008; MuÈller et al., 
2000) 

Lipid-polymer 
nanoparticles 

 

- Improved stability 
- Enhanced encapsulation 
- Targeted delivery 
- Sustained release 
- Prolonged antibacterial 

activity 
- Tuneable size and surface 

charge 

(Hadinoto et al., 2013; 
Mandal et al., 2013; 
Wang et al., 2012a) 

Dendrimers 

 

- Targeted intracellular 
delivery 

- Tuneable inner cavities 
- Enhanced solubility 
- Sustained drug release 
- Increased antimicrobial 

activity 
- Biocompatibility 

(Agarwal et al., 2008; 
Cagin et al., 2000; 
Felczak et al., 2013; 
Kalhapure et al., 
2014b) 
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Nanoemulsions 

 

- Biodegradability 
- Biocompatibility 
- Ease of preparation 
- Enhanced stability 
- Enhanced 

bactericidal activity 
- Sustained release 

(http://soft-
matter.seas.harvard.edu/
index.php/Emulsions; 
Kalhapure et al., 2014b; 
Santos-Magalhães et al., 
2000) 

Polymeric micelles 

 

- High kinetic and 
thermodynamic 
stability 

- Sustained release 
- Absorption 

promoter 
- Effective inhibition 

of bacterial growth 

(Liu et al., 2013; 
Torchilin, 2001; Yuan et 
al., 2012) 

Carbon nanotubes 

 

- Good antimicrobial 
activity 

- Good chemical 
stability 

(http://www.composites
world.com/articles/the-
key-to-cnts-
functionalization; Kang et 
al., 2007) 

Nanohorns 

 

- Controlled release 
- Improved 

dispersability of 
carrier system  

(Guldi, 2007; Kalhapure 
et al., 2014b; Xu et al., 
2008) 

Nanorods 

 

- Sustained release 
- Antimicrobial 

activity against a 
variety of bacteria 

- Increased surface 
area 

- Suitable hardness 

(http://www.spectroscop
ynow.com/details/ezine/
sepspec26509ezine/Gold
-nanorods-Non-toxic-
coating-aids-anticancer-
agents; Joshy et al., 
2011; Kalhapure et al., 
2014b) 

 

Table 3. The 10 main nano-drug delivery systems explored for antibiotic therapy. 
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Figure 3. Mechanism of action of nanoantibiotics against bacterial cells. Adapted from Huh 

and Kwon (Huh and Kwon, 2011). 
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2.6.3 Disadvantages of nano-drug delivery systems used in antibiotic therapy 

While nano-drug delivery systems are potentially life-changing, there are concerns over some 

of the limitations of nanocarriers, such as their size, charge of particles, purity of the 

formulation, solubility of substances, in vitro and in vivo stability, antigenicity and 

biocompatibility issues. These formulation issues can cause an increase in the costs of 

synthesizing the systems and of manufacturing (Blecher et al., 2011). Although the harm of 

nanosystems to humans is questionable, there is a concern over their toxicity to human 

tissues, due to their capability to infiltrate vital organs as a result of the inclusion of specific 

materials, such as heavy metals, which can be harmful (Kim et al., 2010). 

 

The use of nanoantibiotics for clinical purposes has some challenges that need to be 

addressed before they can be approved, including the interactions of the drug delivery system 

with cells, organs and tissues of the body, which will determine the route of administration 

that can deliver the desired therapeutic effect (Sandhiya et al., 2009; Suri et al., 2007). For 

example, the literature has shown that nanoparticles given intravenously can collect in the 

colon, bone marrow, spleen, lungs and lymphatics (Hagens et al., 2007), while inhaled 

nanoparticles can reach the systemic circulation and spread to such organs including the brain 

(El-Ansary and Al-Daihan, 2008; Poma and Di Giorgio, 2008). This is facilitated by the 

small size of the nanoparticles that enable it to be efficiently taken up by the cells, which 

allows transocytosis into the blood and lymphatic circulation via the endothelial and 

epithelial cells (Rabea et al., 2003). 

 

Hu et al. reported that the toxicity of antimicrobial nanosystems on the central nervous 

system to be inconclusive, while other non-antibiotic nanomaterials have shown toxicity, 

which means that it can therefore not be ruled out (Hu and Gao, 2010). It has been reported 

that nanosystems have toxic  effects on the circulatory system by causing fluctuation in the 

heart rate (Chalupa et al., 2004) and on the reproductive system resulting in spermatotoxicity, 

and a rise in the detachment of the seminiferous epithelium  (El-Ansary and Al-Daihan, 2008; 

Yoshida et al., 2010). Emerging technologies, together with toxicogenomics, could rectify 

some of the limitations associated with nanomaterials by revealing the mechanisms of 

toxicity (Poma and Di Giorgio, 2008). The advantages and disadvantages of antimicrobial 

nanosystems over free antibiotics is explained further in Table 4. Although the literature 

suggests that more toxicity studies on nanosystems need to be conducted, the potential 
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benefits of this emerging technology far outweighs its disadvantages, and should not hinder 

the discovery of these new types of nano-drug delivery systems.  

 

Antimicrobial nanosytems Free antibiotics 

Advantages Disadvantages Advantages Disadvantages 

Targeted Delivery 

Lower side effects 

Low antimicrobial 
resistance 

Increase in half- 

life of drug 

Controlled drug 
release 

Increased solubility 

Wide therapeutic 
index 

Improved solubility 

Low 
immunosuppressi

on 

Low cost 

Accumulation of 

nanomaterials in 

tissues and organs 
High systemic 

exposure to drugs 

administered 

locally 
Nanotoxicity 

Lack of 

characterisation 
techniques 

Absence of 

nanomaterials in 

the whole body 
Absence of 

nanotoxixity 

Well established 

characterisation 
techniques 

Low systemic 

exposure to drugs 
administered 

locally 

High side effects 

High antimicrobial 

resistance 
Short half-life 

Usual 

pharmacokinetics 

of free drugs 
Narrow therapeutic 

index 

Poor solubility of 
some drugs 

Fast elimination 

 

Table 4 Advantages and disadvantages of antimicrobial nanosystems over free antibiotics. 

Adapted from Huh and Kwon (Huh and Kwon, 2011) 
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2.6.4 Types of nano-drug delivery systems for antibiotic therapy 

As mentioned above, several main nano-drug delivery systems have been explored for 

antibiotic therapy and include liposomes, solid lipid nanoparticles, polymeric nanoparticles, 

lipid polymer nanoparticles, nanoemulsions, dendrimers, micellar systems, nanorods, carbon 

nanotubes and nanohorns. However, for the purpose of this study, lipid and polymer based 

nano-drug delivery systems are described, as they constitute the main components of the 

lipid-polymer hybrid nanoparticle that was synthesized and characterised in this study.  

 

2.6.4.1 Solid Lipid Nanoparticles (SLNs) 

Solid lipid nanoparticles (SLNs) were first discovered in the early 90’s and are described as 

colloidal carriers that range in size between 50 to 1000nm (MuÈller et al., 2000). They are 

more advantageous than other colloidal carriers such as emulsions, liposomes and polymeric 

nanoparticles due to their small size, large surface area, higher drug loading capacity and 

better phase interaction at the interface (Li et al., 2009; Üner and Yener, 2007). SLNs have 

unique properties that enable them to have good biocompatibility, greater body or tissue 

tolerance, increased bioavailability, encapsulation of both hydrophobic and hydrophilic 

drugs, be administered via various routes and be manufactured on a large scale (Mehnert and 

Mäder, 2001; Panyam and Labhasetwar, 2003). In addition, the use of biodegradable 

materials in the synthesis of SLNs allows for controlled release of formulations at the site of 

action, which in turn reduces the frequency of administration (Vasir et al., 2003).  

 

Other colloidal nanoparticles have several negative attributes, such as the cost of expensive 

polymers and phospholipids in the production of polymeric nanoparticles and liposomes, 

leakage of water soluble drugs, and poor storage and stability (Brewer et al., 2011; 

Soppimath et al., 2001). SLNs are different from liposomes as they do not possess a bilayer 

structure and are amorphous in nature. The particles consist of a solid lipid core that is made 

stable by the addition of surfactants (Mehnert and Mäder, 2001). According to the literature, 

antibiotics that have been incorporated into SLNs include Tilmicosin (Wang et al., 2012b), 

Gatifloxacin (Kalam et al., 2010), Amikacin (Ghaffari et al., 2011), Nisin (Prombutara et al., 

2012), Vancomycin (Kalhapure et al., 2014a), Enrofloxacin (Xie et al., 2011), Tobramycin 

(Cavalli et al., 2000) and Norfloxacin (Wang et al., 2012d).  
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SLNs have been formulated for many routes of administration, such as parenteral, topical, 

oral and pulmonary routes (Bargoni et al., 2001; Videira et al., 2002). SLNs adhere to the 

surface of the skin and form a hydrophobic film that increases the contact time of the drug 

with the skin, which in turn allows for greater absorption (Müller et al., 2008; Souto et al., 

2004). Jain et al. reported that the release of ciprofloxacin was controlled via local delivery 

for both ocular and skin infections (Jain and Banerjee, 2008). Cavalli et al. reported that the 

pharmacokinetics of tobramycin loaded SLNs were improved in several ways, including by 

intravenous administration, during which low amounts were taken up by the kidneys and a 

high lung concentration was noted (Cavalli et al., 2000). Studies have shown that compared 

to other drug classes, there have been much fewer antibiotic drug loaded SLNs (Kalhapure et 

al., 2014a). Inhalable SLNs are more stable, can encapsulate a high quantity of drug, and 

reduce the risk of absorbing residual organic solvents (MuÈller et al., 2000). Many SLN 

formulations can be given via various administration routes, such as parenteral, topical, oral, 

ocular and pulmonary (Bargoni et al., 2001; Videira et al., 2002).  

 

The two most common methods used to prepare SLNs are high pressure homogenisation and 

the micro-emulsion technique (Kalhapure et al., 2014b). However, many less popular 

methods are used in industry, such as ultrasound and solvent based techniques,  as they are 

more cost effective (Silva et al., 2011). Several excipients have been studied in SLN 

formation and include lipids such as stearic acid (Cavalli et al., 1999), Compritol 888 ATO 

(Schwarz and Mehnert, 1997), palmitic acid (Stancampiano et al., 2006) and glyceryl 

monostearate (Luo et al., 2006). Surfactants that have been studied in the formulation of 

SLNs include poloxamer 188, 182, 407, 908 (Göppert and Müller, 2005; Müller et al., 1996), 

Tween 20, 80 (Zhang et al., 2010b) and Solutol HS15 (Vighi et al., 2007). Despite its success 

as a drug delivery system, SLNs have limited use in antibiotic therapy due to the nature of the 

hydrophobic lipids used, which poorly entrap the hydrophilic antibiotics (Kalhapure et al., 

2014b). Xie et al. have found that ion pairing the SLN with a fatty acid can improve the 

encapsulation efficiency of enrofloxacin (Xie et al., 2011), with a similar study being 

conducted by Kalhapure et al. who reported that the encapsulation and antibacterial activit ies 

of vancomycin loaded SLNs were increased by incorporating linoleic acid as an ion pairing 

agent (Kalhapure et al., 2014a).  
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2.6.4.2 Polymeric Nanoparticles (PNPs) 

Polymeric nanoparticles range in size from 10 to 1000nm, and consist of biodegradable 

polymers and co-polymers (Kuo and Chen, 2006). They are superior to liposomes as they are 

able to improve the drug loading and stability of the nanoparticle (Abed and Couvreur, 2014). 

The nanoparticles have a core-shell structure that consists of a dense polymer matrix for drug 

entrapment, and a shell comprising of a hydrophilic polymer, such as PEG or PVP, that offers 

steric stability and stealth properties to the nanoparticle, which makes them good candidates 

for drug delivery applications (Costantino and Boraschi, 2012; Discher and Eisenberg, 2002). 

Drugs can be entrapped either within the particles, adsorbed on the surface, or chemically 

linked on the surface of the particle (Parveen et al., 2012; Zensi et al., 2009). Different types 

of polymers are used to synthesise nanoparticles, and include natural polymers such as 

albumin, gelatin, chitosan, alginate and haemoglobin (Kim et al., 2014), as well as synthetic 

polymers such as polyamides, poly(alkyl-cyanoacrylates), poly(amino acids), poly(ortho 

esters) and poly(esters) (Jain, 2000). Poly lactic co-glycolic acid (PLGA) is a popular 

polymer used to synthesise nanoparticles, and is widely used as it has the ability to 

breakdown the molecules that are normally removed from the body via normal metabolic 

pathways (Lü et al., 2009). 

 

Their advantages include biocompatibility, biodegradability, high drug payload, zero-order 

pharmacokinetic profile and a steady drug level  at the site of delivery (Hughes, 2005). 

Polymeric nanoparticles have been explored for a variety of diseases, such as cancer 

(Verderio et al., 2014), diabetes (Vijayan et al., 2013), HIV and AIDS (Zhang et al., 

2011),and most importantly, it seems to be the most widely studied nano drug delivery 

system for antibiotic drug delivery. There are two significant polymeric nanoparticles that 

have been studied to deliver antibiotics, namely linear polymers and ampiphilic block co-

polymers (Huh and Kwon, 2011). PNPs have been widely used to deliver a variety of 

antibiotics and to treat various infectious diseases. For example, gentamycin entrapped in 

PLA/PLGA nanoparticles has shown good antibacterial activity against the Brucella infection 

(Prior et al., 2000). In addition, penicillin was entrapped in polyacrylate nanoparticles and 

was able to retain its full antibacterial activity against MRSA (Abeylath and Turos, 2008).  

 

PLGA nanoparticles have also been successfully synthesized to deliver ciprofloxacin (Dillen 

et al., 2004), azithromycin and rifampicin, and has enhanced the delivery of these drugs (Toti 

et al., 2011). 
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The delivery of antibiotics via PNPs has many advantages, such as stability in biological 

fluids and harsh conditions of preparation, tuneable size, zeta potential and drug release, and 

adaptable surface functionalization for the conjugation of drugs (Abeylath and Turos, 2008; 

Santos-Magalhães and Mosqueira, 2010; Zhang et al., 2010a). However, their major 

drawback of poor encapsulation efficiencies, especially with water soluble drugs (Kalhapure 

et al., 2014b), as well as their formulation, drug loading, scale up, and toxicology issues, need 

to be resolved (Abed and Couvreur, 2014). The methods of preparation of the PNPs include 

polymerization of the monomers and dispersion of the polymers (Soppimath et al., 2001).  

 

The field of PNPs has endless opportunities, and there is a need for novel polymers that are 

biocompatible and biodegradable, as the natural and synthetic polymers have already been 

researched extensively in this field. In addition, in vivo studies for newly developed PNPs 

needs to be undertaken (Kalhapure et al., 2014b).  

 

2.6.4.3 Liposomes 

Liposomes are vesicles ranging from the nano to micro size, and comprise of a phospholipid 

bilayer with an aqueous core (Huh and Kwon, 2011). Liposomes were first sought out as drug 

delivery systems due to their vesicular structure and the presence of the lipid bilayers that are 

able to interact with living cells via endocytosis, adsorption, fusion and lipid exchange 

(Gregoriadis, 2006; Vemuri and Rhodes, 1995). Liposomes can be categorised into 3 classes 

based on the number of lamella : small unilamellar vesicles (SUVs) or oligolamellar (OLVs); 

large unilamellar vesicles (LUVs) and multilamellar vesicles (MLVs) (Pinto-Alphandary et 

al., 2000). The drug can be incorporated either in the aqueous spaces if it is a water soluble 

drug, or the lipid membrane if the drug is lipid soluble (Pinto-Alphandary et al., 2000). 

Liposomes have been studied as a vehicle of drug delivery for enzymes, proteins and drugs, 

and are used in treating a variety of diseases (Torchilin, 2005). For example, liposomal 

formulations containing the anticancer drug doxorubicin and antifungal amphotericin B are 

available on the market (Allen and Martin, 2004; Bakker-Woudenberg et al., 1995).  

 

The most commonly used lipid in the preparation of liposomes is phosphatidylcholine, which 

contains fatty acyl chains (Du Plessis et al., 1996), while the methods of preparation include 

thin film hydration (Bangham, 1978), reversed phase evaporation (Szoka and 

Papahadjopoulos, 1978), solvent injection methods (Stano et al., 2004) and detergent analysis 

(Zumbuehl and Weder, 1981). Liposomes are most widely used to treat bacterial infections, 
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as their bilayer structure allows them to readily fuse with the infectious bacteria (Zhang et al., 

2010a). They are able to incorporate both hydrophilic and hydrophobic drugs either in the 

lipid shell or the aqueous core (Lasic, 1998; Sosnik et al., 2010), and appear to be one of the 

first drug delivery systems explored for improving antibiotic drug delivery (Kalhapure et al., 

2014b).  

 

The advantages of liposomes as drug delivery systems include decreased toxicity, improved 

pharmacokinetics and bio-distribution, targeted selectivity, higher activity against 

intracellular pathogens and enhanced activity against extracellular pathogens in particular in 

overcoming drug resistance in bacteria (Pinto-Alphandary et al., 2000). However, their 

disadvantages include short-term stability, drug leakage, low encapsulation, high cost, scale 

up issues and sterility (Pinto-Alphandary et al., 2000). The use of liposomes as drug delivery 

systems has been studied, and has proven to significantly extend the half-life of the drug 

amikacin as well as alter the distribution of the drug in tissues (Gangadharam et al., 1991). It 

has also been successful in treating Mycobacterium avium infected mice by liposomal 

streptomycin (Fielding et al., 1998), prolonged blood circulation and improved localisation at 

the infection site of liposomal gentamicin and ceftazidime (Bakker-Woudenberg et al., 1995), 

and increased antibacterial activity against MRSA via vancomycin and teicoplanin 

encapsulated liposomes (Onyeji et al., 1994).  

 

Liposome research has already advanced to such a level that it is now possible to modify the 

surface of a liposome and attach other agents or nanoparticles to obtain targeted delivery 

(Kalhapure et al., 2014b). However, over the last few years, the use of liposomes as a drug 

delivery system has declined as there is already an extensive amount of literature on the 

synthesis and the application of liposomes, as well as about some of its disadvantages that are 

now being overcome by novel nano-drug delivery systems.    
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2.6.5 Lipid-Polymer Hybrid nanoparticle (LPNs) 

The following section describes LPNs and their advantages and disadvantages in various 

nano-drug systems and more specifically their use as drug delivery systems for antibiotics. 

 

2.6.5.1 Lipid polymer hybrid nanoparticles for nano-drug systems 

Lipid-based nanocarriers, such as solid lipid nanoparticles, are an attractive alternative 

dosage form due to their submicron sized particles and solid state of physiological lipid 

carriers. Many hydrophilic and hydrophobic drugs have been incorporated into SLNs, such as 

nifedipine, diazepam, doxorubicin, paclitaxel, tobramycin and timolol, to name a few, and 

their administration via different routes has been investigated. However, their drawbacks 

namely high initial burst kinetics, low drug loading capacity and drug leakage during storage, 

need serious attention (Cavalli et al., 2002; Li et al., 2006). 

 

There is a need for new and novel nanocarrier systems that can enhance the effect of drugs, 

with increasing benefits being made to merge the benefits of the two most predominant 

nanocarriers, these being liposomes and polymeric nanoparticles (Cheow and Hadinoto, 

2011). Both these classes have advantages and limitations in terms of their biological and 

physiochemical properties (Mandal et al., 2013). Liposomes, which are biocompatible, 

biodegradable, non-toxic or mildly toxic and flexible (Gregoriadis, 1995), are suitable as drug 

delivery vehicles due to their ability to closely interact with host cells, and delivering both 

water and oil soluble drugs (Pinto-Alphandary et al., 2000). However, although they are 

highly biocompatible, they lack structural integrity, and have several limitations in terms of 

physical and chemical stability, batch-to-batch reproducibility, sterilisation and drug 

entrapment (Sharma and Sharma, 1997). In the case of polymeric nanoparticles, the rigidity 

of the polymer matrix makes them more stable than liposomes (Pinto-Alphandary et al., 

2000), and they are advantageous in terms of their tissue penetrating ability, small particle 

size, variety in preparation methods, greater stability in biologic fluids, and versatile drug 

loading and release profiles (Panyam and Labhasetwar, 2003; Pinto Reis et al., 2006). The 

disadvantages are that they poorly encapsulate water soluble drugs due to their leakage of the 

drug from the nanoparticles during the emulsification process in preparation (Cheow and 

Hadinoto, 2010), as well as their polymer cytotoxicity, polymer degradation and scale up 

issues (Pinto Reis et al., 2006).   
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Therefore, lipid-polymer hybrid nanoparticles have been introduced to overcome some of the 

limitations associated with liposomes and polymeric nanoparticles. Hybrid nanoparticles 

consist of: (i) a biodegradable polymeric core, which is suitable for carrying poorly water-

soluble drugs and releasing them at a controlled rate; (ii) a hydrophilic shell that allows 

particles to evade recognition by the immune system and increases the half-life of the 

particles; and (iii) a lipid monolayer that prevents the carried agents from freely diffusing out 

of the nanoparticles and reducing the water penetration rate into the nanoparticles, which 

slows drug release from the nanoparticles (Zhang et al., 2008). The structure of the LPN is 

depicted in Figure 4. 

 

The use of lipid-polymer hybrid nanoparticles has been widely explored in treating cancer, as 

they are able to deliver multiple drugs at the same time from a single platform (Mandal et al., 

2013). They have also been prepared for targeted delivery of antibiotics to the bacterial 

biofilm-infested lungs of patients suffering from chronic lung infections (Pauwels and Rabe, 

2004). Hybrid nanoparticles have demonstrated tuneable size and surface charge, high drug 

loading yield, sustained drug release profile, good stability in the serum and cellular targeting 

ability, and their easy synthesis method make them favourable for further scale up. These 

advantages make lipid-polymer hybrid nanoparticles a promising drug delivery platform for 

further investigation. (Zhang et al., 2008). 

 

Figure 4. Structure of LPN comprising of the lipid shell and polymer core which show 

characteristics of both liposomes and polymeric nanoparticles. Adapted from Hadinoto et al. 

(Hadinoto et al., 2013) 



Literature Review  Chapter 2 

 
41 

2.6.5.2 Lipid polymer hybrid nanoparticles for nano-antibiotics 

Nano drug delivery systems are being widely explored to overcome the challenges with 

existing antibiotics to treat bacterial infections (Hadinoto et al., 2013). Lipid-Polymer 

Nanoparticles (LPNs) display distinctive advantages of both liposomes and polymeric 

nanoparticles, while excluding some of their limitations. This is a hybrid particulate system 

as it has the structural integrity of the polymeric particles and the biomimetic properties of 

the liposome (Hadinoto et al., 2013).  

 

The field of lipid polymer hybrid antibiotic based nanoparticles is in its infancy compared to 

cancer, cardiovascular and other diseases. To the best of our knowledge, despite numerous 

advantages offered by LPNs, their utilization in the delivery of antibiotics is very limited, 

with only five papers reported in the literature so far. The delivery of three fluoroqinolone 

antibiotics (levofloxacin, ofloxacin, ciprofloxacin), as well as calcein (Cheow et al., 2011; 

Cheow and Hadinoto, 2011, 2012; Wang et al., 2012c) and clindamycin phosphate 

(Abbaspour et al., 2013) has been studied using LPNs (Mandal et al., 2013). Furthermore, the 

polymer that has been explored the most for antibiotic loaded LPN synthesis is Poly Lactic-

co-Glycolic Acid (PLGA) (Cheow et al., 2011; Cheow and Hadinoto, 2011, 2012; Wang et 

al., 2012c), with sodium alginate (ALG) and dextran sulphate being studied in one paper 

(Abbaspour et al., 2013), while the lipids that have been investigated include stearic acid, 

lecithin and phospahtidylcholine (PC) (Abbaspour et al., 2013; Cheow et al., 2011; Cheow 

and Hadinoto, 2010, 2012; Wang et al., 2012c). The studies done with antibiotic loaded LPNs 

show that there is need for formulation optimisation and characterization of LPNs by 

exploring other polymers and lipids with other potent antibiotics to achieve high drug 

entrapment, enhanced antibacterial activity against sensitive and resistant strains, controlled 

release and improved stability. Resistance to antibiotics warrants the need for developing new 

and novel antibiotics, hence the formulation of nanoparticles as a drug delivery system, in 

particularl, lipid-polymer nanoparticles promises to be an exciting and advantageous 

alternative to the conventional antibiotics. Table 5 summarises all the antibiotic loaded LPNs 

that have been studied to date. 
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ANTIBIOTICS 

  
  

NATURE 

  
  

EXCIPIENT 

  
  

MAIN FINDINGS 

  
  

CHARACTERIS

ATION 

STUDIES 

  
  

REF 

Levofloxacin 
Ciprofloxacin 
Ofloxacin 

Tobramycin 

Hydrophobic 

Hydrophilic 

Hydrophobic 

Hydrophilic 

Poly (lactic-

co-glycolic 

acid) 

(PLGA) 
Phosphatidy

lcholine 

(PC) 

 

 Ionicity of the drug and lipid is 

important with regards to nanoparticle 

preparation 

 Drug lipophilicity and aqueous 

solubility affects drug loading and 

drug release, more lipohillic drug has 

higher drug loading and sustained 

release profile 

 Hybrid nanoparticles are larger in 

size, zeta potential, encapsulation and 

drug loading compared to its non-

hybrid counterpart. 

 Hybrid nanoparticles are unstable in 

salt solution so TPGS stabiliser is 

incorporated into the formulation 

 Sizes between 120nm and 420nm 

with the highest encapsulation of 25% 

with Ofloxacin. 

 Particle Size 

 Zeta 

Potential 

 Entrapment 

Efficiency 

 Drug 

Loading 

 In-vitro drug 

release 

 Scanning 

Electron 

Microscopy 

(SEM) 

(Cheow 

and 

Hadinoto, 

2011) 

Levofloxcin Hydrophobic PLGA and 

Lecithin 
 Hybrid nanoparticles exhibited a size 

of ≈420 ± 30 nm with zeta potential in 

the range of (–) 25–30 mV, 

encapsulation efficiency of  ≈19% and 

drug loading of  ≈2.0% (w/w). 

 Spray drying produced dimpled hollow 

spherical nano-aggregates whereas 

spray freeze drying produced large 

spherical porous nano-aggregates 

 PVA is better than manitol in 

facilitating nano-aggregate 

reconstitution 

 Nano-aggregates produced by SFD is 

superior to those produced by SD. 

 Particle Size 

and 

Distribution 
 Zeta Potential  
 Entrapment 

Efficiency 
 Drug Loading 
 Powder 

characterisatio

ns 

(Wang et al., 

2012c) 

Levofloxacin 
Ciprofloxacin 
Ofloxacin 

Calcein 

Hydrophobic 

Hydrophilic 

Hydrophobic 

Hydrophilic 

PLGA, 

rhamnolipid 

and PC  

 Particle size ranged from 280nm -

400nm with a zeta potential range of 

(-) 30mV – (+) 10mV and a drug 

loading of 0.5 – 2.3 (% w/w). 

 Encapsulation ranged from 5% to 

55% depending on the BCS 

(biopharmaceutical classification 

system) of the drug.   

 A rhamnolipid triggered release is 

observed with calcein however not 

with BCS class I drugs due to their 

high lipid membrane permeability. 

 The rhamnolipid triggered release 

capability of hybrid nanoparticles will 

enable targeted drug release in the 

vicinity of biofilm colonies therefore 

improved antibacterial efficacy is 

expected which will be studies further. 

 Particle Size 
 Zeta Potential 
 Entrapment 

Efficiency 
 In-vitro drug 

Release 
 SEM 

(Cheow 

and 

Hadinoto, 

2012) 
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Levofloxacin Hydrophobic PLGA and 

PC 

 Particle size of hybrid nanoparticles 

ranged from 240nm to 420nm with a 

zeta potential of ≈ 26mV, 

encapsulation efficiency ranging from 

19% - 21% and drug loading of 2.3 – 

2.4 (%w/w). 

 Hybrid nanoparticles exhibit a higher 

antibacterial efficacy against 

P.aeruginosa biofilm cells, however 

not against planktonic cells. 

 Possibly the presence of lipid may 

have enhanced the antibiotic diffusion 

into the biofilm matrix resulting in 

more effective biofilm cell eradication. 

Other possibilities relating to the 

hybrid nanoparticles have been ruled 

out. 

 Particle Size 

and Zeta 

Potential 
 Entrapment 

Efficiency 
 Drug loading 
 In vitro 

release 

studies 
 SEM 
 Biofilm 

susceptibility 

testing 

(Cheow et 

al., 2011) 

Clindamycin 

phosphate  
Hydrophilic Dextran 

sulphate, 

sodium 

alginate and 
stearic  acid 
 

 Particles ranged from 400nm – 

900nm. 

 Particle size was not affected by 

polymer type or the amount of drug, 

polymer and surfactant. 

 Polymer dextran sulphate had higher 

degree loading and drug release than 

sodium alginate. 

 Particle size  
 Entrapment 

Efficiency 
 Drug loading 
 In vitro drug 

release 

studies 
 SEM 

(Abbaspour 

et al., 2013) 

 

Table 5. Summary of studies done on antibiotic loaded LPNs 
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2.6.5.3 Preparation of Lipid polymer hybrid nanoparticles 

The two most commonly used methods for preparation of LPNs are the two step method and 

the single-step method. 

Two step method 

This method involves preparing the core and lipid shell separately, which are then combined 

(Zhang and Zhang, 2010). This approach involves  formation of the polymer core by 

emulsification (Sengupta et al., 2005), high pressure homogenisation  (De Miguel et al., 

2000), or nanoprecipitation (Zhang et al., 2008). Thereafter, the lipid vesicles are prepared by 

sonication or extrusion method (Zhang and Granick, 2006). The polymeric nanoparticles and 

the cationic lipid vesicles are combined and drawn together via electrostatic interactions 

(Troutier et al., 2005b). Several methods can be used to combine the lipid vesicles with the 

polymeric core, such as simple vortexing, needle extrusion or high pressure homogenisation 

(Zhang and Zhang, 2010). There are various factors that can affect the final size of an LPN, 

such as the method used to prepare the lipid vesicles, the method of combining the lipid 

vesicle and the PNP, the surface charge of the lipid vesicles, the strength and pH of the 

buffers used, the temperature and incubation period, as well as the vesicle to particle ratio 

(Troutier et al., 2005a; Troutier and Ladavière, 2007). By using this method, LPNs with the 

desired size, drug loading and release characteristics can be prepared, as it allows for the 

these variables to be controlled (Sengupta et al., 2005; Troutier et al., 2005a).   

 

There have been various reports in the literature about this two-step method (Hasan et al., 

2011; Sengupta et al., 2005; Willem, 2012). However, there are several limitations associated 

with the use of this method such as the low encapsulation efficiency of the drug in the 

incubation step, as the molecules of the drug may leak from the core before being coated by 

the lipid layer (Cheow and Hadinoto, 2011). In addition, the complexity of the technical 

processes involved and the process of preparing the polymeric core and lipid vesicles 

separately are challenges that need to be overcome (Mandal et al., 2012).  

 

Single-step method 

To overcome the problems associated with the two-step method, a simple single step 

approach has been developed that combines the dual steps that are associated with the two-

step method (Hadinoto et al., 2013). The one-step method does not require the lipid vesicles 

and polymer core to be synthesized separately. The LPNS are synthesized by self-assembly 
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after mixing the lipid and polymer solutions. The most critical factor involved in preparing 

the LPNs is the amount of lipid that is required to successfully coat the polymer core (Mandal 

et al., 2012). Self-assembly of these hybrid nanoparticles is achieved by nanoprecipitation or 

emulsification-solvent-evaporation method (Mandal et al., 2012). 

 

Emulsification-solvent-evaporation (ESE) method 

The two approaches of the ESE method are the single and double emulsification methods. 

The single emulsification method is used when the drug to be encapsulated is soluble in a 

solvent that is water-immiscible. This process involves adding the oil phase, which contains 

the polymer and drug, to the aqueous phase containing the lipid under stirring or 

ultrasonication to form an oil in water emulsion (o/w). The lipid can alternatively be added to 

the oil phase. The oil phase is then evaporated and self-assembly of the lipid around the 

polymer core occurs forming an LPN (Bershteyn et al., 2008; Cheow and Hadinoto, 2011; 

Hadinoto et al., 2013). For example, this method of preparation has been used in the literature 

for preparing flouroquinolone antibiotics (Cheow and Hadinoto, 2011), paclitaxel (Liu et al., 

2010), doxorubicin (Chu et al., 2011) and DNA containing LPNs (Li et al., 2010). In contrast, 

the double ESE method can be used when the drug to be encapsulated cannot be dissolved 

together with the polymer in any organic solvent. The drug is therefore dissolved in the 

aqueous phase and thereafter emulsified with the oil phase. The oil phase will contain the 

polymer and the lipid. This emulsion is further emulsified for the second time with the 

aqueous phase (w/o/w) and after evaporation of the oil phase the LPNs are formed (Cheow 

and Hadinoto, 2011). The double ESE method has been reported for DNA (Zhong et al., 

2010), siRNA (Shi et al., 2011) and some flouroquinolone antibiotics (Cheow and Hadinoto, 

2011).  

 

It should be noted that the majority of studies have used the single ESE method to prepare 

LPNS, with the double ESE method only being introduced recently. To prepare LPNs by the 

ESE method, certain factors that need to be considered, such as the lipid to polymer ratio and 

the  drug, polymer and lipid interactions with each other, which determines the amount of 

drug encapsulated in the LPNs (Hadinoto et al., 2013). 

 

Nanoprecipitation method 

This method involves dissolving the polymer and hydrophobic drug in a water miscible 

organic solvent, such as acetone or acetonitrile, and the resultant solution being added 
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dropwise to the aqueous phase containing the lipid. The mixture is vortexed, homogenised 

and then sonicated to produce suitable nanoparticles (Hadinoto et al., 2013). The factors that 

need to be optimised to formulate LPNs via this method are particle size, zeta potential, PDI, 

lipid to polymer ratio and viscosity of the polymer (Maurer et al., 2001; Prabaharan et al., 

2009; Wang et al., 2010). This method of preparation of LPNs has been widely used to 

encapsulate substances such as docetaxel (Zhang et al., 2008), paclitaxel (Chan et al., 2010) 

and DNA (Yang et al., 2012) to name a few. However, it has been noted that the ESE method 

is more popular and preferred over the nanoprecipitation method, as it creates nanoparticles 

with higher encapsulation efficiency (Hadinoto et al., 2013). Therefore, although the 

nanoprecipitation method has proven to be effective and capable of large scale manufacture, 

there are still limitations, such as low encapsulation due to leakage of the drug in the aqueous 

phase (Cheow and Hadinoto, 2011).  
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2.6.5.4 Characterisation of Lipid polymer hybrid nanoparticles 

The main methods reported so far to characterize the LPNs, in terms of their physiochemical 

properties, have included size, zeta potential and morphology. Particle size is of significance 

to assess the systemic circulation of the nanoparticles as well as their capability to accumulate 

at sites of infection (Zhang and Zhang, 2010). Dynamic light scattering (DLS) is a fast and 

uncomplicated method to determine the size and distribution of nanoparticles. The zeta 

potential of the nanoparticle is a measure of the electrokinetic potential between the surface 

of the particle and the bulk solution (Alexis et al., 2008). The zeta potential will determine 

both the in vitro and in vivo stability of the nanoparticles, and can also be measured using 

DLS. The morphology of the nanoparticles can be determined either by Scanning electron 

microscopy (SEM) or Transmission electron microscopy (TEM), and is used to measure the 

physical dimensions and structure of the particle (Zhang and Zhang, 2010). The above 

methods have been reported in the literature, specifically with LPNs (Cheow and Hadinoto, 

2010, 2011, 2012; Wong et al., 2006). 

 

To determine the amount of drug encapsulated in the LPN, as well as drug loading, the drug 

concentration is measured using a UV sperctrophotometer or alternatively, can be measured 

by using High pressure liquid chromatography (HPLC). Drug release from the LPN is 

performed using the dialysis method, with samples being collected at a series of time 

intervals and measured using HPLC or UV method. Details of these methods used can be 

found in the literature (Cheow and Hadinoto, 2011; Venkateswarlu and Manjunath, 2004; 

Wong et al., 2006). In order to corroborate the results obtained for drug release and 

encapsulation efficiency, analysis of drug release kinetics and mechanism, as well as 

molecular modelling, can be performed, which have not been reported before for antibiotic 

loaded LPNs. 

 

With LPNs loaded with antibiotics, the in vitro antibacterial activity can be measured. To 

determine the antibacterial activity, the minimum inhibitory concentration (MIC) is 

measured, this method having been used extensively in the literature (Kalhapure et al., 2014a; 

Qi et al., 2004; Suleman et al., 2015), however, it has not been reported for LPNs. The only 

method of antibacterial testing was biofilm susceptibility testing reported by Cheow et al. for 

LPNs (Cheow and Hadinoto, 2012). Another method that can be used to confirm the 

antibacterial activity data of the nanoparticles is gel electrophoresis. This method has not 
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been reported before for LPNs, but it has been studied for other systems, as reported in the 

literature (Sitohy et al., 2012). In this method, damage to the cell wall of S.aureus and MRSA 

can be determined by a breakdown of the bacterial cell wall proteins, and has been previously 

discussed in the literature (Sitohy et al., 2012). 

 

In addition to the above studies, X-Ray Diffraction (XRD) and differential scanning 

calorimetry (DSC) can be used to determine the changes in crystallinty and thermal 

behaviour of the drug and excipients used in the formulation. These methods have not been 

reported for LPNs but have been reported for other nanoparticles (Das et al., 2012; Motwani 

et al., 2008). 
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2.7 Vancomycin as a model drug for antibiotic therapy 

 Vancomycin is a glycopeptide antibiotic used in the treatment and prophylaxis of serious 

infections caused by gram positive bacteria, such as Staphylococcus aureus, that do not 

respond well to other antibiotics (Zakeri-Milani et al., 2012). It acts by preventing the critical 

steps in the biosynthesis of peptidoglycan and the assembly of NAMNAG-polypeptide into 

the growing peptidoglycan chain (Chakraborty et al., 2010). Owing to its large size and 

hydrophilic nature, it diffuses poorly across the gastrointestinal mucosa, and therefore 

requires intravenous administration for systemic therapy as it is not absorbed from the 

intestine (Chakraborty et al., 2010; Pogue et al., 2009; Rao et al., 2011). However, resistance 

to vancomycin is steadily increasing (Huh and Kwon, 2011), and it is therefore contended 

that the incorporation of vancomycin into novel nanoparticle systems will overcome the 

resistance issues and the many drug delivery problems associated with it.  

 

Vancomycin HCl has a molecular formula of C66H75Cl2N9024HCL with a molecular weight of 

1485.71 g/mol, and its chemical structure is shown in Figure 5 below. Vancomycin has been 

incorporated into other nanosystems, such as gold nanoparticles (Gu et al., 2003), liposomes 

(Onyeji et al., 1994), polymeric nanoparticles (Zakeri-Milani et al., 2013), solid lipid 

nanoparticles (Kalhapure et al., 2014a), dendrimers (Choi et al., 2012) and nanoemulsions 

(Palamoor and Jablonski, 2014), however, it has not been reported in an LPN system. 

 

Many factors need to be considered during the development of vancomycin HCl in a LPN 

drug delivery system, such as the solubility of the drug, melting point, the ultraviolet 

absorption, as well as its pharmacological properties.  

 

 

Figure 5. Chemical structure of vancomycin HCl 
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2.8 Conclusion 

This chapter has highlighted the current state of infectious diseases, the available drug 

therapies and their limitations, as well as the strategies to overcome these limitations, 

including the use of nano drug delivery systems, in particular Lipid polymer hybrid 

nanoparticles (LPNs). The review has shown the potential advantages of nano drug delivery 

systems in treating infectious diseases and the lack of data available on antibiotic loaded 

LPNs. Therefore, extensive formulation and characterisation of LPNs has to be undertaken to 

contribute to this developing field. Vancomycin is identified as the model drug, as drug 

resistance has caused a major problem worldwide and it is used as the last line drug in 

treating serious infections. It is hydrophilic in nature and has a short half-life making it the 

ideal candidate for a controlled delivery system such as LPNs. 
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CHAPTER 3. SUBMITTED MANUSCRIPT 

3.1 Introduction 

The following paper was submitted to Materials, Science and Engineering C (Impact factor: 

3.088) which is an international ISI peer reviewed journal and reports on original research: 

Ms. N. Seedat contributed to the design of the project, modification and optimisation of 
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mathematical modelling in terms of the in vitro release kinetics data. The remaining authors 
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This chapter is presented in the required format of the journal and is the final revised version. 
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ABSTRACT 

Nano drug delivery systems are being widely explored to overcome the challenges with 

existing antibiotics to treat bacterial infections [1]. Lipid-Polymer Nanoparticles (LPNs) 

display unique advantages of both liposomes and polymeric nanoparticles while excluding 

some of their limitations, particularly the structural integrity of the polymeric particles and 

the biomimetic properties of the liposome [1]. The use of helper lipids and polymers in LPNs 

have not been investigated, but have shown potential in other nano-drug delivery systems to 

improve drug encapsulation, antibacterial activity and drug release. Therefore, LPNs using 

co-excipients were prepared using vancomycin (VCM), glyceryl triplamitate and Eudragit 

RS100 as the drug, lipid and polymer respectively. Oleic acid (OA), Chitosan (CHT) and 

Sodium alginate (ALG) were explored as co-excipients. Results indicated rod-shaped LPNs 

with suitable size, PDI and zeta potential, while encapsulation efficiency (%EE) increased 

from 27.8% to 41.5%, 54.3% and 69.3% with the addition of OA, CHT and ALG 

respectively. Drug release indicated that VCM-CHT had the best performance in sustained 

drug release of 36.1 ± 5.35% after 24h. The EE and drug release was further corroborated by 

in silico and release kinetics data. In vitro antibacterial studies of all formulations exhibited 

better activity against bare VCM and sustained activity up to day 5 against both S.aureus and 

MRSA, with VCM-OA and VCM-CHT showing better activity against MRSA. Therefore, 

this LPN proves to be a promising system for delivery of VCM as well as other antibiotics. 

 

Keywords:  

Vancomycin, Lipid- polymer; nanoparticle, MRSA, antibacterial, in silico 
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1. INTRODUCTION 

The ongoing crisis of infectious diseases caused by a range of bacteria has resulted in an 

exponential increase in deaths globally [2]. Although the use of antibiotics decreased 

morbidity and mortality rates, antimicrobial resistance (AMR) is causing a serious issue in 

treating infectious diseases [3-5]and is now recognised as a major burden in healthcare 

settings [6, 7]. The AMR and a serious decline in research and development of new 

antibiotics, have caused a threat similar to that of the pre-antibiotic era. As a result, the major 

advances made in modern medicine such as surgery, organ transplantation and cancer 

chemotherapy are at risk of being compromised [8].  

Statistics show that an estimated 19 000 deaths per year in the U.S. are caused by methicillin-

resistant Staphylococcus aureus (MRSA), which can only be treated by vancomycin (VCM), 

a glycopeptide antibiotic. However, VCM resistance has developed, and the rising prevalence 

of MRSA increases the possibility of VCM resistant S. aureus (VRSA), which is just as 

deadly as MRSA but more difficult to treat [9, 10]. MRSA, S. aureus and VRSA are 

organisms of current concern in developing regions as well as in developed countries [11].  

In addition to antibiotic resistance there are several disadvantages associated with 

conventional dosage forms of antibiotics. These include inadequate antibiotic concentration at 

target infection site, increased frequency of administration [12, 13], low water-solubility, 

cytotoxicity, and fast degradation and clearance in the bloodstream [14]. These disadvantages 

can be overcome by the use of nano drug delivery systems by improving antibiotics’ 

solubility, pulmonary accumulation, intracellular delivery, concentration at the target site, 

release profile, and reducing dosing frequency and side effects [3, 15, 16]. In addition, nano 

delivery systems have inherent ability to overcome existing drug resistance mechanisms [16]. 
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There are at least 10 nanoparticle-based products on the market for infection diagnosis, 

antibiotic drug delivery and medical devices [17]. Nanoparticles that have been explored for 

effective antibiotic delivery include liposomes, solid lipid nanoparticles (SLNs), polymeric 

nanoparticles and dendrimers [3]. The antimicrobial properties of nanoparticles can be 

attributed to their high surface to volume ratio allowing for drug penetration in the bacterial 

cell wall, distinctive chemico-physical properties, versatility of the formulation and 

biocompatibility with tissues and cells [18, 19].   Compared to other medical conditions, such 

as cardiovascular disease and cancer, nano-drug delivery systems for antibiotic therapy is still 

in its infancy [3]. Therefore, to combat the ongoing crisis of AMR, applying nanotechnology 

to deliver antibiotics is of the utmost importance [20].  

Lipid-based nanocarriers, such as liposomes [21], SLNs [22], nanostructured lipid carriers 

[23] and lipid drug conjugates [24] are an attractive dosage form due to their submicron sized 

particles and solid state of physiological lipid carriers [25]. To overcome the limitations such 

as low drug loading capacity, high initial burst kinetics, drug leakage during storage, batch to 

batch reproducibility issues, poor encapsulation of water soluble drugs, polymer cytotoxicity 

and degradation, use of toxic organic solvents, and scale up issues associated with both 

liposomes and polymeric nanoparticles, a relatively new nano-drug delivery system popularly 

termed  lipid-polymer hybrid nanoparticles (LPNs) has been developed [26]. The LPN, which 

is a hybrid nano particulate system with structural integrity of the polymeric particles and the 

biomimetic properties of the liposome displays unique advantages of both nanoparticles while 

excluding some of their limitations  [1]. LPNs have the advantages of high structural 

integrity, stability, sustained release from the polymer core, high biocompatibility and 

bioavailability, tuneable size and surface charge, high drug loading and targeted drug delivery 

[26, 27]. Despite numerous advantages offered by LPNs, their utilization in the delivery of 

antibiotics is very limited, with only five papers being reported thus far in the literature. The 
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delivery of three fluoroqinolone antibiotics (levofloxacin, ofloxacin, ciprofloxacin), calcein 

[28-31] and clindamycin phosphate [32] has been studied to date using LPNs [33]. 

Furthermore, the polymer that has been explored the most for antibiotic loaded LPN synthesis 

is Poly Lactic-co-Glycolic Acid (PLGA) [28-31], with sodium alginate (ALG) and dextran 

sulphate being studied in one paper [32], and lipids that have been investigated include stearic 

acid, lecithin and phospahtidylcholine (PC) [29-32, 34]. The limited antibiotic LPN studies 

highlight the need for formulation optimisation and characterization of LPNs by exploring 

other polymers and lipids with other potent antibiotics, such as VCM. The identification of 

strategies to simultaneously enhance the critical properties of drug entrapment, antibacterial 

activity against sensitive and resistant strains and controlled release profiles has not been 

previously reported for any antibiotic LPN system. The development of antibiotic LPNs by 

co-encapsulation of multiple lipids and polymers within its configuration could be an 

effective approach for simultaneously enhancing the above properties and remains to be 

explored. The aim of this study was therefore to explore a new lipid-polymer combination in 

the formulation development of an antibiotic loaded LPN using VCM as a drug, as well as to 

co-encapsulate helper polymers and lipids in order to simultaneously enhance important 

properties, such as drug encapsulation, antibacterial activity and drug release profiles. In 

addition to in vitro characterisation, extensive in silico modelling was undertaken to obtain a 

molecular understanding of the effect of the helper polymers and lipid on the VCM loaded 

LPNs. 
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2. MATERIALS  

Glyceryl tripalmitate (GTP), oleic acid (OA), Solutol HS15 (Kolliphor HS15), ALG, CHT 

(medium molecular weight), and dialysis membrane (MWCO 12271) were purchased from 

Sigma-Aldrich (USA). Eudragit RS100 was generously provided by Evonik Industries 

(Germany), while Vancomycin hydrochloride (VCM) was purchased from Sinobright Import 

and Export Co., LTD (China). Nutrient Broth, Mueller-Hinton Broth (MHB) and Mueller-

Hinton Agar (MHA) were obtained from Biolab (Midrand, South Africa). The bacterial 

cultures used were S. aureus ATCC 25923 and methicillin-resistant S. aureus (MRSA) (S. 

aureus Rosenbach ATCC BAA 1683). Purified water used throughout the studies was 

produced in the laboratory with a Milli-Q purification system (Millipore corp., USA). All 

other chemicals and solvents were of analytical grade and used without further purification. 

 

3. METHODS 

3.1. Preparation of LPNs 

Both drug loaded and drug free LPNs were produced by hot high pressure homogenisation 

followed by ultrasonication [35]. Briefly, GTP (0.5g) (oil phase) was heated at 80° C, and a 

solution of the Eudragit RS100 (1% w/v) and surfactant Solutol HS15 (1% w/v) in 80% (v/v) 

ethanol were heated separately to 80 °C and added to the lipid. The mixture was homogenised 

for approximately 45 min until the solvent evaporated, and distilled water was added to adjust 

the volume to 25 ml and then homogenised at 6000 rpm for 10 min with an Ultra Turrax T-25 

homogenizer (IKA Labortechnik, Germany). The resultant emulsion was immediately 

subjected to high intensity probe sonication at 30% amplitude for 30 min using the Omni 

sonic ruptor 400 Ultrasonic Homogenizer (Kennesaw, GA 30144, USA) at the same 

temperature, and cooled immediately to 20 °C. The final volume of LPN dispersion was 

maintained at 25 ml. For drug loaded LPN, VCM (20mg) was added to the polymer and 
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surfactant solution, and the same procedure was followed. For co-encapsulation with OA and 

helper polymers, the OA (1:10 drug to fatty acid molar ratio), CHT (0.5:1 helper polymer to 

polymer ratio) and ALG (0.5:1 helper polymer to polymer ratio) were mixed with the drug, 

polymer and surfactant solution, and then added to the melted lipid. The procedure that 

followed thereafter was the same as above.  

3.2. Characterisation 

3.2.1. Particle size, Polydispersity Index (PDI) and zeta potential(ZP) 

The particle size, PDI and ZP were determined by using photon correlation spectroscopy 

(PCS) (Nano ZS Zetasizer, Malvern Instruments Corp, UK) at 25° C in polystyrene cuvettes 

with a path length of 10 mm. Measurements were performed by diluting 40 μl of 

nanoparticle suspension to 10 ml milli-Q water. All measurements were performed in 

triplicate. 

3.2.2.  Determination of Encapsulation Efficiency (% EE) and drug loading capacity (LC) 

To determine the concentration of VCM in the LPNs, an ultrafiltration method using 

Amicon® Ultra-4, centrifugal filter tubes (Millipore Corp., USA) of 10 kDa molecular 

weight cut-off was used [36]. Briefly, the 25 ml LPN suspension was made up to 100 ml 

volume with milli-Q water. Thereafter, 1 ml of this diluted suspension was placed into a 

centrifugal filter tube and centrifuged at 500 x g at 25° C for 15 min, 200 μl of filtrate was 

withdrawn and diluted to 10 ml with distilled water, and the amount of free drug was 

detected by a validated High Pressure Liquid Chromatography (HPLC) (Shimadzu, Japan) 

method at 230 nm. The mobile phase consisting of ammonium dihydrogen phosphate and 

acetonitrile (92/8 v/v) was pumped through Hichrome Nucleosil 120-5C18 column (15cm x 

4.0mm internal diameter) at a flow rate of 1 ml/min. The injection volume was 20µl [37]. 

The regression equation and linearity (r2) were y = 39924x – 132005 and 0.9972 

respectively.  
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The % EE and % LC was calculated using the following equations [35]: 

EE (%) =        (Equation 1) 

LC (%) =        (Equation 2) 

Where ‘Mi’ is the initial mass of VCM used, ‘Mfree VCM’ is the mass of free VCM 

detected in the filtrate after ultrafiltration, ‘Mdrug in LPN’ is the mass of VCM in the 

formulation and ‘M (LPN)’ is the mass of the LPN formulation. 

3.2.3. Morphology  

The morphology of the LPNs was examined using a Scanning Electron Microscope (SEM) 

technique. A few drops of the LPN suspension were placed on a cover slip placed on carbon 

tape, dried thoroughly and sputter coated by gold. The image was captured by field-

emission gun SEM (ZEISS FEGSEM Ultra Plus, Germany) at an accelerated voltage of 5 

kV for the drug free and VCM LPNs, and 10 kV for the VCM-CHT LPNs. 

3.3. In vitro drug release studies 

Drug release studies were performed using a dialysis-bag method under a sink condition at 

37° C in an incubator at 100 rpm. A dialysis bag containing a dilution of 1 ml LPN 

suspension and 1ml PBS (pH 7.4) was placed in a 50 ml capacity bottle containing 40 ml 

PBS (pH 7.4) as the release medium. To determine the amount of drug diffused through the 

dialysis tube, 2 ml of the release medium was withdrawn at predetermined time intervals 

and equal volumes of PBS was added to maintain sink conditions. The amount of drug 

released at each time interval was measured by HPLC (Shimadzu, Japan) at 280 nm as 

described above in 3.2.2. The measurement was performed in triplicate. The regression 

equation and linearity (r2) were y = 39924x – 132005 and 0.9972 respectively. 
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 In vitro drug release kinetics and mechanism 

The in vitro drug release data of VCM, VCM-OA, VCM-CHT and VCM-ALG LPNs were 

analysed to determine the drug release kinetics by using various mathematical models 

shown below [38]. 

 

a) Kinetic models 

     Zero-order model    :  Q = k.t + Q0  (Equation 3) 

 

     First-order model    :  Q = Q0 e
kt  (Equation 4) 

 

b) Higuchi model    :  Q = k.t1/2  (Equation 5) 

 

c) Hixson–Crowell model   :  Q1/3 =kt+Q0
1/3  (Equation 6) 

 

d) Weibull model    :  Q = 1exp [−(t)b/a] (Equation 7) 

 

e) Korsmeyer–Peppas model  :  Q = k.tn  (Equation 8) 

 

where: 

Q   represents the amount of drug released in time t,  

Q0 is the start value of Q,  

k   is the rate constant,  

a   is the time constant, and b is the shape parameter, 

n   is the diffusional exponent, an indicative of drug release mechanism. 

 

To understand the release kinetics (best fit model) and dissolution enhancement (model 

independent parameter), the drug release data were used to calculate the squared 

correlation coefficient (R2) and mean dissolution time (MDT) using KinetDS 3.0 Rev. 

2010 software [39].  Furthermore, the Korsmeyer–Peppas model was employed in the in 
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vitro drug release behaviour analysis of LPNs to distinguish between competing release 

mechanisms (Table 1) [40-42]. 

 

Table 1. Exponent n of the Korsmeyer-Peppas model and drug release mechanism from LPN 

controlled delivery system. 

Entry  n Value  Drug release mechanism  

1  Less than 0.43  Fickian release (diffusion-controlled release)  

2  0.43 to 0.85  non-Fickian release (anomalous transport)  

3  0.85 to  1.00  case-II transport (relaxation-controlled release)  

4  More than 1  Super case-II transport mechanism (Swelling and 

polymer chain relaxation controlled release) 

 

 

3.4. In vitro antibacterial activity 

The minimum inhibitory concentration (MIC) values for drug free and VCM loaded LPN 

formulations (VCM-LPNs) were determined against S. aureus and MRSA using a broth 

dilution method. Dilutions of VCM-LPNs, VCM-OA-LPNs, VCM-CHT LPNs and VCM-

ALG LPNs were prepared in MHB and incubated with the bacterial cultures at 37° C. 

Thereafter, at specified time intervals, 10 µl was spotted on MHA plates and incubated for 

24 h at 37° C to determine the MIC values.  Experiments were performed in triplicate and 

drug free LPNs, and the different excipients alone were used as controls.  

In order to determine the effects of the helper excipients in combination with VCM on 

antibacterial activity, the fractional inhibitory concentration (FIC) values were determined. 

The FIC can be described as the method used to quantify the MIC results using the FIC 

index, as described by the European Committee for Antimicrobial Susceptibility Testing 

(EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases 

(ESCMID) [43]. The equations used to calculate the ƩFIC is shown below:  
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For two antibacterials A and B alone and in combination: 

   FICA =      (Equation 9) 

   FICB =      (Equation 10) 

ƩFIC = FICA + FICB      (Equation 11) 

The FIC index is shown in Table 2. Indifference can be described as the combination of 

drug LPN and excipient is equal to that of the most active compound. An additive effect is 

when the effect of combining drug LPN and the excipient is equal to the sum of effects of 

the individual components. Synergistic action is present if the effect of the combination of 

drug LPN and excipient exceeds the additive effect of the individual components. 

Table 2. FIC Index  

Index Result 

≤ 0.5 Synergy 

>0.5-1 Additive 

>1 to <2 Indifference 

≥ 2 Antagonism 

 

3.5. Gel Electrophoresis 

To determine the cell membrane damage to S.aureus and MRSA, the SDS-Page study 

similar to that reported in the literature [44] of the bacterial proteins, was carried out after 

the bacterial cells were incubated and treated with the VCM, VCM-OA, VCM-CHT and 

VCM-ALG LPNs. Briefly, S.aureus and MRSA cultures were grown overnight and 

incubated at 37° C. Thereafter, 200 µl of the grown bacterial suspension (1 x 109 CFU/ml) 

was inoculated into 10 ml of freshly prepared MHB and incubated for 24 h at 37° C. The 

bacterial cells were then separated by centrifugation at 8000 rpm for 5 min and then re-

suspended in 10 ml of sterile saline solution (8.5g NaCl/L). Thereafter, 400 µl of LPN 
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sample was added to the sterile suspensions of S.aureus and MRSA respectively. 

Untreated suspensions of S.aureus and MRSA were used as controls. An aliquot of 50 μl 

of the bacterial suspension was heated at 100 oC for 10 min after combining with 25 μl of 

the sample buffer pH-6.8 (1 M Tris–HCl, 50% glycerol, 10% SDS, 10% β-

mercaptoethanol, 0.1% Bromophenol blue). Thereafter, for the stacking and resolving gel, 

this treated aliquot was loaded in 3 and 12% SDS-PAGE respectively. After running at 10 

mA and 20 mA on the stacking gel and resolving gel respectively, protein bands were 

visualized on the gels by Coomassie Brilliant Blue R250. 

3.6. X-ray Diffraction (XRD) 

The XRD patterns of the excipients alone, as well as VCM, VCM-OA, VCM-CHT and 

VCM-ALG LPNs, were obtained using a Bruker D8 Advance Diffractometer (Germany) 

equipped with a graphite monochromator operated at 40 kV and 40 mA. The radiation 

source was a CuKα X-ray source with λ = 1.5406 Å. Data was collected at a step of 0.021° 

and at a scanning speed of 0.454 ° s-1, while the 2θ range covered was between 10 ° to 90°. 

 

3.7. Differential Scanning Calorimetry (DSC) 

The thermal profile of the excipients alone as well as VCM, VCM-OA, VCM-CHT and 

VCM-ALG LPNs was determined by DSC (Shimadzu DSC-60, Japan). Briefly, 2 mg of 

the sample was placed in an aluminium pan and sealed using a crimper, which was heated 

to 300° C at a constant rate of 10° C/min under the constant nitrogen flow of 20 ml/min.  

3.8. Stability Studies 

In the present investigation, the standard protocol in terms of storage conditions and 

physical parameters evaluated for stability evaluation of lipid nanoparticles was followed 

[45-49].  Samples were stored at 4 °C and room temperature for 3 months. Physical 

appearance, particle size, PDI, and ZP were evaluated.  
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3.9. Molecular Modelling 

The 3D model for the drug VCM was developed from its stable crystal structure 

coordinates (PDB ID: 1SHO), as reported in the Protein Data Bank (PDB) [50]. The 3D 

structure of the polymer Eudragit RS100 (EUD) was constructed using ChemBio3D Ultra 

in its syndiotactic stereochemistry. The structure of CHT (CSID:64870) was obtained from 

the chemspider database [51], while the structures of sodium alginate (ALG) 

(CID:6850754), OA (CID:445639) and GTP (CID:11147) were obtained from the 

PUBCHEM database [52-54]. All the structures were optimized to their lowest energy 

conformations using Universal Force Field (UFF) [55]. Binding affinity studies were 

performed on various complexes of the drug-polymer systems to comprehend the % EE 

and drug release profiles demonstrated by the various formulations. 

The Flexible binding simulation study was performed using ArgusLab 4.0.1 [56]. The 

Argus Lab molecular modelling program 4.0.1, installed on a local windows operating 

system (Windows 7), was used to calculate the binding free energy of optimal polymer-

drug/drug-auxiliary agent/polymer-drug-helper agent/polymer-drug-helper agent-lipid 

complexes. A Genetic algorithm (GA) based binding energy calculation protocol was 

followed using the scoring method Ascore from the ArgusLab 4.0.1 suite [56]. Ascore is 

based on the decomposition of the total host–guest binding free energy (Equation 4), in 

terms of the van der Waals interaction, the hydrophobic effect, the hydrogen bonding, the 

hydrogen bonding involving charged donor and/or acceptor groups, the deformation effect, 

the effects of the translational, and rotational entropy loss in the binding process, 

respectively [56]. 

∆Gbind = ∆Gvdw + ∆Ghydrophobic + ∆GH-bond + ∆GH-bond (chg) + ∆Gdeformation + ∆G0  (Equation 12) 
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Each binding calculation was repeated five times to get the best results. A complex of one 

polymer molecule with drug/helper agent/lipid was assembled by screening several 

configurations, and the energy-minimization was repeated to generate the final models, as 

described in Table 3. Complete geometrical optimization was conducted using UFF in 

vacuum, and by employing the steepest descent method until a RMS (root mean squared) 

gradient of 0.001 kcal/mol was reached [55]. A maximum of 150 poses for the molecular 

complexes were allowed to be analysed. Accelrys Discovery Studio Visualizer 63 [57] was 

used to visualize the interactions in the complex structures. 

Table 3: The studied molecular models and their representation 

Model Description 

EUD -VCM  Binding of vancomycin with the polymer eudragit 

VCM-CHT  Binding of vancomycin with the helper polymer chitosan 

VCM-ALG  Binding of vancomycin with the helper polymer alginate 

VCM-OA Complex formation between vancomycin and oleic acid 

EUD-VCM-CHT  Binding of vancomycin to chitosan-eudragit complex 

EUD-VCM-ALG Binding of vancomycin to alginate-eudragit complex 

EUD-VCM-OA Binding of vancomycin to oleic acid-eudragit complex 

EUD-VCM-GTP Binding of vancomycin to glyceryl tripalmitate-eudragit 

complex 

EUD-VCM-CHT-

GTP  

Binding of glyceryl tripalmitate with the vancomycin attached 

chitosan-eudragit complex to form the final lipid-polymer-drug 

assembly. 

EUD-VCM-ALG-

GTP 

Binding of glyceryl tripalmitate with the vancomycin attached 

alginate-eudragit complex to form the final lipid-polymer-drug 

assembly. 

EUD-VCM-OA-GTP Binding of glyceryl tripalmitate with the vancomycin attached 

oleic acid-eudragit complex to form the final lipid-polymer-

drug assembly. 
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3.10. Statistical analysis 

The results obtained were expressed as a mean ± SD and analysis of the data was performed 

using GraphPad Prism®5 (Graphpad Software Inc, USA). One way ANOVA (Kruskal-

Wallis test) followed by a t-test (non-parametric Mann Whitney test) were performed, and 

the difference was considered statistically significant when p < 0.05.  

4. RESULTS 

4.1 Particle size, PDI, ZP, % EE, LC and morphology of LPNs 

The mean diameter, ZP, EE and LC of VCM, VCM-OA, VCM-CHT and VCM-ALG LPNs 

are presented in Table 4. The data shows that particle size varied from 202.5 ± 3.81 to 250.9 ± 

9.04, with the highest particle size being the VCM-CHT LPNs. The PDI, ZP and EE 

increased with the addition of the helper excipients, except in the case of VCM-OA LPNs, 

where both the PDI and ZP decreased. The EE increased significantly from 27.8% to 41.5% 

(p = 0.0048), 54.3% (p = 0.0048) and 69.3% (p = 0.0048) with the addition of OA, CHT and 

ALG respectively. SEM images of LPNs showed particles that were rod shaped, discrete and 

homogeneous (Figure 1). There were no distinct morphological differences in the various 

formulations, and the particle sizes were slightly smaller than those obtained using the 

zetasizer. A similar trend in morphology was exhibited by all the LPN formulations, with 

only the drug free, VCM and VCM-CHT LPN images being shown below. One-way 

ANOVA of particle size, PDI, ZP and EE showed statistical significance, with p values of 

0.0004, 0.0013, 0.0005 and 0.0156 respectively. 
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Table 4. LPN formulations characterisation in terms of size, PDI, Zeta potential and EE (n 

=3). 

LPN Particle Size 

(d.nm) 

PDI ZP (mV) EE (%) LC 

(%) 

Drug Free  214.1 ± 6.86 0.251 ± 0.01 +28.9 ± 1.98 ------------- --------- 

VCM 216.4 ± 9.98 0.284 ± 0.03 +29.7 ± 4.91 27.8 ± 1.84 0.74 

VCM-OA  202.5 ± 3.81* 0.261 ± 0.02 +17.4 ± 2.84* 41.5 ± 2.89* 1.05 

VCM-CHT 250.9 ± 9.04* 0.296 ± 0.04 +30.6 ± 1.38 54.3 ± 0.44* 1.24 

VCM-ALG 205.2 ± 9.86* 0.386 ± 0.02* -32.8 ± 4.54* 69.3 ± 0.71* 1.58 

*p<0.05 when compared to VCM LPN 

 

 

Figure 1. SEM images of (a) VCM –LPNs, (b) VCM-CHT LPN and (c) LPN (drug free). 

 

 



Submitted Manuscript  Chapter 3 

 
95 

4.2. In vitro drug release studies 

Figure 2 illustrates the drug release profiles of bare VCM as well as VCM, VCM-OA, VCM –

CHT and VCM-ALG LPNs over 24 hours. The results indicate that all formulations showed a 

sustained release profile when compared to the release rate of bare VCM (100% after 7 hours). 

The data shows that VCM-CHT had the slowest drug release of 36.1 ± 5.35 %, while VCM-

ALG had the fastest drug release rate of 54.4 ± 3.24 % at the end of 24 h. 

 

Figure 2. Drug release profiles of different LPN formulations containing VCM (n=2). 

In vitro drug release kinetics and mechanism 

The in vitro drug release data from various LPNs was evaluated kinetically using a number of 

mathematical models such as zero order, first order, Hixson–Crowell, Weibull, Higuchi, and 

Korsmeyer–Peppas. The correlation coefficient (R2), Root mean square error (RMSE) and 

Akaike's information criterion (AIC) values of these models were determined using KinetDS 

3.0 Rev. 2010 software to understand the best fit model for VCM release from LPNs. The 

results of the curve fitting into various mathematical models are given in Table 5. The 

calculated highest R2 value for VCM, VCM-OA, VCM-CHT, and VCM-ALG LPNs were 

0.947, 0.977, 0.922 and 0.9463 respectively. The lowest RMSE values determined for VCM, 
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VCM-OA, VCM-CHT, and VCM-ALG LPNs were 1.735, 2.962, 3.134 and 2.930 whereas 

lowest AIC values were 48.74, 38.04, 49.87 and 48.54 respectively.  

 The value of the release exponent (n) and rate constant (k) derived from Korsmeyer Peppas 

equation were in between 1.136 – 1.267 and 1.036 – 1.6959 respectively (Table-5). The mean 

dissolution time (MDT) values calculated for 50% VCM release from VCM, VCM-OA, 

VCM-CHT, and VCM-ALG LPNs were 9.482, 14.422, 14.050, and 9.213 hours respectively 

(Table 6). 

Table 5. Results of curve fitting of the in vitro VCM release data from the various LPN 

formulations. 

Sr. 
No 

Name of release 
model 

VCM-LPN (A) VCM-OA LPN (B) VCM-CHT LPN (C) VCM-ALG LPN (D) 

R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC 

1 Zero order 0.9197 4.348 56.520 0.9772 1.735 38.040 0.9220 2.962 48.740 0.9262 42.990 56.190 

2 First order 0.5587 27.829 93.540 0.6777 15.632 82.010 0.6013 16.179 82.700 0.5583 27.700 93.450 

3 Higuchi 0.2963 12.877 78.140 0.2566 9.900 72.880 0.3204 8.752 70.410 0.3254 13.000 78.320 

4 Korsmeyer-Peppas 0.9394 3.662 52.980 0.8940 2.247 43.210 0.8800 4.098 55.240 0.9373 35.250 52.220 

5 Weibull  0.9474 3.134 49.870 0.8955 2.254 43.280 0.8838 3.150 50.020 0.9463 2.930 48.540 

6 Hixson-Crowell  0.7019 10.648 74.330 0.8169 5.657 61.690 0.7233 6.877 65.590 0.7043 10.740 74.510 

 

Table 6. Calculated MDT values for various LPN formulations using the Korsmeyer-Peppas 

model. 

Code LPNs Korsmeyer-Peppas MDT50% 

K n 

A VCM  1.486 1.267 09.482 

B VCM-OA  1.036 1.152 14.422 

C VCM-CHT 1.221 1.136 14.050 

D VCM-ALG  1.659 1.240 09.213 

 

4.3. In vitro antibacterial studies 

The MIC values for the different formulations, as well as the controls are presented in Table 7. 

All the formulations showed better activity than bare VCM, and exhibited sustained activity 

over a period of five days. Interestingly, the formulations VCM-OA and VCM-CHT LPNs 
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showed better activity against MRSA compared to S. aureus. VCM-OA LPNs showed the best 

activity with an MIC value of 1.2 µg/ml against MRSA on day 2. The calculated ƩFIC values 

are given in Table 8. 

Table 7. In vitro antibacterial activity of LPN formulations containing VCM for 5 days.   

 MIC (µg/ml) 

Formulation DAY 1 DAY 2 DAY 3 DAY 4 DAY 5 

 S.aureus MRSA S.aureus MRSA S.aureus MRSA S.aureus MRSA S.aureus MRSA 

Bare VCM 15.6 18.5 300 NA 400 NA 400 NA 400 NA 
VCM LPN 14.06 18.75 15.62 12.5 NA NA NA NA NA NA 
OA 400 400 200 200 400 400 400 400 NA NA 
VCM-OA 
LPNs 

18.75 3.9 6.6 1.2 37.5 12.5 62.5 12.5 62.5 12.5 

CHT 400 400 37.5 37.5 NA NA NA NA NA NA 
VCM -CHT 
LPNs 

9.4 4.7 9.4 6.25 12.5 37.5 NA 37.5 NA 150 

ALG NA NA NA NA NA NA NA NA NA NA 
VCM-ALG 
LPNs  

6.25 14.1 3.5 9.4 4.7 18.75 18.75 18.75 NA 18.75 

 

Table 8. ƩFIC for in vitro antimicrobial activity of VCM-OA and VCM-CHT LPNs on Day 

1. VCM-ALG ƩFIC could not be calculated as ALG did not show any antimicrobial activity. 

Sample ƩFIC Results 

 S.aureus MRSA S.aureus MRSA 

VCM-OA LPN 1.247 0.211 Indifference Synergy 

VCM-CHT LPN 0.626 0.266 Additive Synergy 

 

4.4. Gel Electrophoresis 

Degradation of the bacterial cell wall proteins after treatment with an antibacterial agent can 

be detected by using gel electrophoresis technique [58]. The effect of the different LPN 

formulations on S.aureus and MRSA cell proteins was therefore studied using this technique, 

with the results being depicted in Figure 3. The results of all the S.aureus treated LPNs after 

24 h showed the presence of faded protein bands when compared to the strong and clear 

bands in the S.aureus control. The VCM-CHT LPN showed the greatest difference, with an 
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almost complete absence of the proteins of different molecular weights present in the control. 

Similarly, with the LPN treated MRSA samples, there was a visible difference between the 

molecular proteins present in the control and the bacterial cells treated with the various LPN 

formulations, as the bands appeared lighter than the control sample. 

 

Figure 3. SDS Page patterns of (1) S.aureus control, (2) VCM LPN treated S.aureus, (3) 

VCM-OA treated S.aureus, (4) VCM-CHT treated S.aureus, (5) VCM-ALG treated S.aureus, 

(6) MRSA control, (7) VCM LPN treated MRSA, (8) VCM-OA treated MRSA, (9) VCM-

CHT treated MRSA and (10) VCM-ALG treated MRSA. (M = Marker). 

4.5. X-Ray Diffraction 

The diffractograms were in good agreement with the results of the DSC thermal analysis 

(Figure 4). GTP was in the crystalline state with the strong diffractions, while Eudragit 

RS100, VCM and ALG showed an amorphous state with no diffractions. CHT showed a 

relatively small diffraction, which is characteristic of a partial crystalline polymer [59]. The 

x-ray diffraction pattern of GTP gave noticeable peaks around 2θ values of 24 o, 26.5 o, 30.5 o 

and 40o which can be correlated to 100, 110 and 111 diffraction planes. Chitosan exhibited 

two distinct crystalline peaks at 2θ-scattered angles of 10o from (020) planes and 20o from 
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(110) planes which is consistent with previous results [60, 61]. VCM, VCM-OA, VCM CHT 

and VCM ALG LPNs showed mainly a reflection of the crystalline GTP, with different 

intensities in the diffractions.  

 

Figure 4. Overlaid XRD crystallographs of (1) GTP, (2) Eudragit RS100, (3) VCM, (4) VCM 

LPN, (5) VCM-OA LPN, (6) CHT, (7) VCM-CHT LPN, (8) ALG and (9) VCM-ALG LPN. 

4.6.  Differential Scanning Calorimetry 

The DSC study was performed to investigate the melting and crystallization behaviour of 

materials in LPN, with the thermograms obtained from DSC being depicted in Figure 5. The 

thermal behaviour of all different excipients, as well as the formulations with and without 

helper excipients were studied. Any influential or sudden change in the drug, polymer, helper 

excipients or lipid thermal behaviour can suggest possible interactions [62]. The endothermic 

peak of VCM can be observed at 110.77° C, ALG showed a prominent endothermic peak at 
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132.58° C and chitosan showed a peak at 165.08° C. There was no noticeable endotherm in 

Eudragit RS100 over the studied temperature range. The lipid GTP exhibited a sharp 

endothermic peak at 73.31 °C, while the peak was observed at 65.43, 64.06, 69.64, 68.4 and 

66.58 °C in VCM LPNs, VCM-CHT LPNs, VCM-OA LPNs, VCM-ALG LPNs and drug free 

LPNs respectively. Additional broad endothermic peaks at 203.8 oC and 135.95 oC were 

observed for VCM-CHT and VCM-OA respectively.  

The VCM-OA LPNs showed an additional broad peak at 135.9 °C, and VCM ALG LPN 

showed a shift in the endothermic ALG peak from 132.58 °C to 118.91 °C.  

 

Figure 5. Overlaid DSC thermograms of (a) VCM, (b) ALG, (c) CHT, (d) Eudragit RS100, 

(e) GTP, (f) VCM LPNs, (g) VCM-CHT LPNs, (h) VCM-OA LPNs, (i) VCM-ALG LPNs 

and (j) drug free LPNs. 

4.7. Stability Studies 

Stability studies were performed on aqueous dispersions of the LPN formulations over a 

period of three months at 4 °C and room temperature and the results are depicted in Tables 9-

13. The results show that all formulations were stable at both 4° C and room temperature. 
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Table 9. Effect of temperature and storage period on drug free LPNs (n=3). 

 SIZE (d.nm) PDI  ZP (mV) 
 4 °C RT 4 ° C RT 4 ° C RT 
Day 1 214.1 ± 6.86 214.1 ± 6.86 0.251 ± 0.01 0.251 ± 0.01 28.9 ± 1.98 28.9 ± 1.98 
1 month 208.9 ± 1.35 223.0 ± 1.55 0.262 ± 0.01 0.260 ± 0.01 22.8 ± 3.25 26.2 ± 1.11 
2 months 210.2 ± 4.07 219.3 ± 6.01 0.258 ± 0.01 0.252 ± 0.03 23.4 ± 0.71 29.8 ± 3.82 
3 months 211.8 ± 4.12 218.6 ± 6.15 0.260 ± 0.01 0.256 ± 0.01 21.9 ± 1.70 25.7 ± 1.20 
 

Table 10. Effect of temperature and storage period on VCM LPN (n=3). 

 SIZE (d.nm) PDI  ZP (mV) 
 4 ° C RT 4 ° C RT 4 ° C RT 

Day 1 192.3 ± 6.29 192.3 ± 6.29 0.267 ± 0.01 0.267 ± 0.01 24.8 ± 1.83 24.8 ± 1.83 
1 month 182.6 ± 2.05 185.4 ± 0.28 0.259 ± 0.02 0.239 ± 0.02 22.03 ± 3.18 24.2 ± 0.07 
2 months 187.1 ± 0.35 183.9 ± 1.98 0.299 ± 0.04 0.289 ± 0.03 25.56 ± 0.99 28.8 ± 2.40 
3 months 187.4 ± 0.71 186.3 ± 3.65 0.260 ± 0.02 0.385 ± 0.01 22.6 ± 4.52 26.2 ± 1.18 
 

Table 11. Effect of temperature and storage period on VCM-OA LPN (n=3). 

 SIZE (d.nm) PDI  ZP (mV) 
 4 ° C RT 4 ° C RT 4 ° C RT 

Day 1 186.7 ± 4.17 186.7 ± 4.17 0.271 ± 0.03 0.271 ± 0.03 24.8 ± 1.41 24.8 ± 1.41 
1 month 179.5 ± 1.84 183.6 ± 1.87 0.241 ± 0.01 0.262 ± 0.01 24.3 ± 5.44 23.9 ± 1.82 
2 months 178.6 ± 4.28 180.3 ± 2.68 0.262 ± 0.01 0.268 ± 0.01 28.1 ± 6.15 24.5 ± 1.58 
3 months 173.4 ± 3.74 184.3 ± 3.13 0.257 ± 0.01 0.272 ± 0.04 22.0 ± 3.82 22.1 ± 1.62 
 

Table 12. Effect of temperature and storage period on VCM-CHT LPN (n=3). 

 SIZE (d.nm) PDI  ZP (mV) 
 4 °c RT 4 °C RT 4 °C RT 

Day 1 228.9 ± 9.04 228.9 ± 9.04 0.296 ± 0.04 0.296 ± 0.04 45.8 ± 1.38 45.8 ± 1.38 
1 month 225.6 ± 1.84 212.5 ± 3.23 0.300 ±0.01 0.287 ± 0.01 42.9 ± 0.35 42.5 ± 2.48 
2 months 230.8 ± 1.34 216.8 ± 2.33 0.292 ± 0.01 0.285 ± 0.01 41.8 ± 7.99 41.8 ± 7.99 
3 months 217.7 ± 4.24 215.7 ± 2.62 0.289 ± 0.01 0.291 ± 0.01 46.3 ± 2.26 42.8 ± 2.13 
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Table 13. Effect of temperature and storage period on VCM-ALG LPN (n=3). 

 SIZE (d.nm) PDI  ZP (mV) 
 4 ° C RT 4 °C RT 4 ° C  RT 

Day 1 212.4 ± 9.76 212.4 ± 9.76 0.391 ± 0.01 0.391 ± 0.01 -33.7 ± 2.76 -33.7 ± 2.76 
1 month 220.7 ± 7.57 213.1 ± 0.57 0.396 ± 0.01 0.385 ± 0.01 -31.3 ± 4.60 -38.4 ± 4.10 
2 months 218.8 ± 4.67 212.1 ±5.38 0.391 ± 0.03 0.390 ± 0.01 -38.7 ± 0.28 -33.6 ±2.05 

3 months 222.8 ± 5.02 215.5 ± 3.38 0.399 ± 0.01 0.388 ± 0.01 -32.9 ± 2.19 -35.4 ± 2.00 
 

4.8. Molecular Modelling 

In silico binding studies were performed to explore the binding themes, affinities and drug 

release profile of the studied complexes.  Binding free energies at each stage of complex 

formation were calculated, and molecular stability was estimated by comparing the free 

energy of binding. A negative binding score indicated that the complex formation is more 

favourable [63]. Molecular complexes with their binding score value and potential 

intermolecular forces are shown in Table 14, and the 3D models are depicted in Figures 6-9.  

Table 14. Binding Energy data for the various VCM-Polymer assemblies. 

Complex Binding Energy 

(Kcal/mol) 

Binding forces Number of 

Hydrogen Bonds 

VCM-CHT -0.57 ES 1 

VCM-ALG -3.32 ES 5 

VCM-OA -2.9 VdW 0 

EUD-VCM-CHT -2.53 ES & VdW 4 

EUD-VCM-ALG -2.62 ES & VdW 3 

EUD-VCM-OA*  - None  - 

EUD-VCM-GTP -3.09 ES & VdW 0 

EUD-CHT-VCM-GTP -4.11 ES & VdW 4 + 2 ES  

EUD-ALG-VCM-GTP -3.23 ES & VdW 2 

OA-VCM-GTP -3.48 ES & VdW 0 

* No stable configuration was obtained. ES- Electrostatic and VdW- Van der Waals force 
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Figure 6: 3D representation of VCM (stick model) binding with the polymer EUD (solid 

surface model) 

 

Figure 7. 3D representation of VCM (stick model) interacting with OA (ball and stick model) 

via Van der Waals interactions (a) and interaction of VCM (stick model with transparent violet 

surface) with GPT (CPK model) bound OA (ball and stick model) via hydrogen bond 

formation (b) 
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Figure 8. 3D representation of pentamolecular assembly showing Van der Waals interactions 

between a VCM (stick model) molecule and EUD (solid surface model), hydrogen bonds 

between CHT and another VCM (stick model) molecule and close electro static contacts 

between GTP (CPK model) and CHT (a). Close view of electro static interactions between 

CHT (ball and stick model) and EUD (stick model), CHT (ball and stick model) and VCM 

(stick model) and CHT (ball and stick model) and GTP (line model) (b). 
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Figure 9. 3D representation of tetramolecular assembly of ALG (line model with red surface) 

with EUD (solid surface model) and VCM (stick model) showing three electro static contacts 

(a). 3D representation of pentamolecular assembly of ALG (line model with violet surface) 

with EUD (solid surface model) and VCM (stick model) showing two electro static contacts 

with GTP (CPK model) (b). 

 

5. DISCUSSION 

5.1 Particle size, PDI, ZP, EE, DL and morphology of LPNs  

The results obtained (Table 4) were consistent with other LPNs that have been reported, and 

are within the range and indicate particles that are stable [28, 30, 64]. The data shows that 

with the addition of OA, the particle size, PDI and ZP decreased slightly, but the EE 

increased from 27.8% to 41.5%. The increase in entrapment efficiency may be due to the 

complex that could have formed between the GTP bound OA and VCM [45], which can be 

confirmed by the molecular modelling in 5.8. With the addition of CHT, the size, PDI, ZP 

and LC increased, while the EE increased by almost three fold, as CHT is able to easily form 

nanoparticles in an aqueous medium and therefore encapsulate drug molecules [65]. The 

increase in EE is due to the complex that is formed between VCM and CHT and can be 

further explained in section 5.8. The increase in size of CHT co-encapsulated LPNs may 
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confirm the incorporation of the helper polymer in LPNs [66]. In addition, a positive zeta 

potential of VCM-CHT can be attributed to the addition of CHT. It has been reported that the 

presence of CHT as a helper polymer will increase the size of the nanoparticles because CHT 

molecules will adhere and get adsorbed onto the surface of the particles [66, 67]. CHT has 

also been proven to increase drug bioavailability and has superior biocompatibility [68].  The 

negative charge of VCM-ALG can corroborate the addition of ALG [66]. The use of ALG as 

a helper polymer resulted in the formulation with the highest % EE (69.3 %) (p=0.0048) of 

VCM (Table 3), with an increase in the PDI, ZP and LC. This increase in EE with ALG could 

be attributed to the ionic interaction of  the anionic ALG with the cationic VCM, which in 

turn increases the encapsulation efficiency [65]. ALG has also been reported to improve the 

encapsulation efficiency of hydrophilic drugs [69]. From the results obtained, it can be 

confirmed that the addition of helper excipients is beneficial in increasing the encapsulation 

efficiency of hydrophilic VCM into LPNs. 

The SEM studies revealed the presence of rod shaped, homogenous and discrete particles, 

which differs from the spherical LPNs reported in the literature [28, 30, 64]. However, rod 

shaped nanoparticles have been reported for other nano systems, such as nanocrystals, 

elemental nanoparticles and silver nanoparticles [70-73]. The size of various VCM LPNs by 

DLS measurement was 212-226 nm, compared to the SEM size measurement of 190-205nm. 

The drug free LPNs similarly had a size measurement of 210-219nm by DLS compared to 

those obtained by SEM of 180-200 nm. In the case of VCM-CHT LPNs, the size obtained by 

DLS was 237-261 nm, while those obtained by SEM were 100-150 nm, this being  a similar 

difference in size measurements to that observed in the literature [74, 75]. The size measured 

by SEM may be smaller than those obtained by DLS, as the SEM describes the size of the 

particles in a dried state, and DLS measures it in a hydrated state. The particle size measured 

by DLS therefore had a larger hydrodynamic diameter and a larger size value [75]. In 
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addition, it must be noted that for the size measurement of non-spherical particles the 

diameter needs to be redefined, as a rod shaped particle may have two different length scales, 

therefore, depending on the orientation of the particle, one length scale may be dominating 

the other [76].  

It has been reported that the conditions and method of preparation will determine the shape of 

nanoparticles produced [77]. However, there is limited data available on the exact mechanism 

in which a rod shaped nanoparticle forms. An example of the effect of shape can be 

demonstrated in  cancer studies, where it has been reported that the size, shape and chemistry 

of the nanoparticles will influence the concentration that can be accumulated maximally in 

the tumour [78]. Therefore, the manipulation of shape serves to be an important tool and can 

be beneficial in treating a wide variety of diseases. In terms of antibacterial activity, it has 

been reported that the size and shape of the nanoparticles plays an important role in its 

interaction with the bacteria. Rod-shaped nanoparticles have a larger surface area that can 

come into contact with the bacterial cell wall compared to spherical nanoparticles, hence 

potentiating a greater interaction between the nanoparticle and the bacterial cell wall [79]. A 

recent study by Sadeghi et al. showed the effect of different nano silver shapes on the 

antibacterial activity, and it was found that the antibacterial activity is dependent on the 

surface area of the nanoparticle. Rod shaped nanoparticles had a greater contact surface area 

than spherical nanoparticles with the bacterial cell wall, and hence exhibited increased 

antibacterial activity [72]. The plausible mechanism of action by which a rod shaped particle 

interacts with a bacterial cell involves the interaction of long axis of the rod shape with the 

receptors at the bacterial cell and subsequent uptake inside the cell [78]. Therefore, the shape 

and size of LPNs needs to be further developed and analysed in future studies in order to 

understand exactly how they are formed, and to improve their interaction with bacterial cells.  
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5.2. In vitro drug release studies 

The drug release profiles (Figure 2) of all formulations showed sustained drug release from the 

LPNs when compared to bare VCM. In previous studies with antibiotic loaded LPNs, >80% of 

the drug was released after 24 h [28, 30, 34]. In contrast, all the developed VCM loaded LPNs 

showed a more sustained release profile with up to only 50% drug being released after a 

period of 24 h. This sustained release profile can be attributed to the inclusion of the helper 

excipients, which permits the controlled release of drug from the nanoparticles [32, 45, 80] . 

Co-encapsulation with CHT as a helper polymer allowed for more slow release ( 36.1 %) of 

the drug, as the CHT layer serves as an additional barrier to release  VCM [81]. Similar results 

were reported by Dudhani et al. where, after 24 h, only 32% of drug was released from 

catechin encapsulated CHT nanoparticles [82]. We postulate that the addition of a co-polymer 

will provide a more rigid polymer matrix that will only permit a small amount of drug to 

diffuse out of the polymer core at regular time intervals as well as the lipid shell, which 

controls the release of the drug out of the nanoparticle. The addition of ALG to the LPN 

showed a faster release rate of 54.4% after 24 h compared to the other formulations, while 

VCM-ALG still showed sustained release. Similarly, the addition of the hydrophilic polymer 

ALG can result in sustained drug release, as the ionic polymer can enable the drug to partition 

in the lipid phase, which can create a more controlled release [32]. The release of VCM from 

VCM-OA LPNs was similar to that observed for the CHT containing LPNs (40.3%). The 

prolonged release is characteristic of unsaturated long chain fatty acids such as OA. The long 

carbon chain length of OA facilitates a slower release of the drug, due to the enhanced 

lipophilicity that results in better drug retaining capacity [83, 84]. In order to understand the 

release of VCM from the different formulations, analysis of the drug release kinetics and 

mechanism is explained below.  
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Analysis of Drug release kinetics and mechanism 

VCM release from VCM and VCM-ALG LPNs followed the Weibul model with the 

respective higher R2value (0.9474 and 0.9463), whereas VCM-OA and VCM-CHT LPNs 

follow the zero order model with higher R2 value (0.9772 and 0.9220 respectively) as the best 

fit models over a period of 24 h. In addition, it was observed that Korsmeyer-Peppas 

(R2 0.880 – 0.9394) model was found to be closer to the best-fit Weibul and zero-order 

models. The best fitting Weibul and zero order models were confirmed by comparing the 

calculated RMSE and AIC values for each applied models. The minimum RMSE and AIC 

values for Weibul and zero order models ranged from 2.930 - 3.134; 1.735 - 2.9620 and 48.54 

– 49.87; 38.04 - 48.74 respectively. The best fit of Weibul and zero-order models indicate that 

the drug release from LPNs followed controlled-release pattern [85, 86].  

The value of the release exponent (n) determined from in vitro VCM release data of LPNs 

ranged from 1.136 – 1.267 (Table 6), indicating super case-II transport mechanism for drug 

release. This indicates that the drug release demonstrates controlled release with polymer 

swelling with water absorption  and polymer chain relaxation [85].  

The model independent parameter mean dissolution time (MDT) is the arithmetic mean value 

of dissolution profile, and provides an accurate drug release rate. A lower MDT value 

indicates a faster dissolution rate [87, 88]. The MDT50% values were calculated from in vitro 

drug release data (Table 6). The LPNs without helper lipid (VCM LPN, MDT50% = 9.482) 

and with ALG (VCM-ALG, MDT50% = 9.213) showed faster release than LPNs with OA 

(VCM-OA, MDT50% = 14.422) and CHT (VCM-CHT, MDT50% = 14.050) (Fig 2).  

These findings are in good agreement with the k value (Table 6), determined according to the 

Korsmeyer-Peppas model, as LPNs with higher k values indicate faster release rate [89].  
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5.3. In vitro antibacterial studies 

The MIC values for all the LPN formulations and the excipients alone are indicated in Table 

8. The data on antibacterial studies of antibiotic loaded LPNs is limited, with only one report 

on biofilm susceptibility testing [29], therefore antibacterial data given in this study could 

serve as a basis for future antibiotic LPN work and can validate the potential effects of 

incorporating an existing antibiotic, such as VCM in a LPN delivery system. VCM itself had 

good activity against S. aureus and MRSA on day 1 (15.6 µg/ml and 18.5 µg/ml 

respectively), however, the activity decreased drastically from day two onwards for S. aureus 

and showed no activity against MRSA. In comparison, VCM LPNs showed better activity 

against S. aureus and MRSA up to day 2 (15.62 µg/ml and 12.5 µg/ml respectively). This 

shows that the LPN delivery system itself potentiated antibacterial activity. This could be due 

to the correlation of controlled release of the drug from the LPN shown in Figure 2, as the 

drug is entrapped in the polymer core, which allows for controlled release, hence sustained 

antibacterial activity. VCM LPNs only showed activity up to day 2, while the other 

formulations showed sustained antibacterial activity up to day 5, indicating the effect of the 

different helper excipients on the antibacterial activity. The formulation that showed the best 

antibacterial activity was VCM OA LPNs, with a MIC of 1.2 µg/ml against MRSA on day 2. 

VCM inhibits the biosynthesis of peptidoglycan and the assembly of NAM-NAG-polypeptide 

into the peptidoglycan chain [75]. OA is an unsaturated fatty acid that showed antibacterial 

activity up to day 4 in our study (400 µg/ml against S. aureus and MRSA). Unsaturated fatty 

acids such as OA are more active against Gram positive bacteria, and a correlation exists 

between the number of carbon atoms and antibacterial activity [90]. OA, having 18 carbon 

atoms, acts by inhibiting the bacterial cell attachment, and therefore has a natural protective 

effect against primary adhesion [91]. In combination with the VCM in the LPN, the 

antibacterial activity is potentiated, which could be due to the combination of antibacterial 

effects of the VCM and OA that acts by different mechanisms of action [45]. Similarly, CHT 
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itself showed antibacterial activity against S.aureus and MRSA up to day 2 (37.5 µg/ml). 

Chitosan has been reported to increase membrane permeability and cause leakage of cellular 

proteins, as well as inhibit the activity of enzymes [92, 93]. In combination with the LPN, the 

antibacterial effect was potentiated as explained above. Therefore, the development of 

resistance with VCM-OA and VCM-CHT LPNs could be difficult, as it will require a number 

of different mechanisms in the same bacterial cell at the same time [45]. The ƩFIC values in 

Table 8 indicate that the addition of OA to the formulation caused a synergistic action against 

MRSA, while CHT addition created an additive effect against S. aureus and a synergistic 

effect against MRSA. ALG showed no antibacterial activity itself, however, in combination 

with the LPN, it increased activity against both S.aureus and MRSA and showed sustained 

activity. We postulate that the sodium alginate creates a very tight gel polymer matrix that 

controls the release of VCM, and that the lipid shell sustains the diffusion of the drug out of 

the nanoparticle, hence a sustained release as explained in the mechanisms of drug release in 

section 5.2. Interestingly, VCM-OA and VCM-CHT LPNs showed better activity against 

MRSA than S.aureus, which could be attributed to the differences in the structure and 

composition of the bacteria. It has been reported that the most widely used mechanism of 

bacterial resistance in S. aureus is the growth of a modified penicillin binding protein (PBP), 

termed PBP 2a, found in MRSA [94, 95]. The outermost layer of Gram positive bacteria is 

peptidoglycan, and can be synthesised by membrane bound enzymes PBP [94]. In MRSA, the 

PBP 2a is intrinsically resistant to the inhibition by ß-lactams, and will remain active even 

when an antibiotic that would normally inhibit PBP enzymes is present. This will cause a 

change in  the role of PBP enzymes in the cell wall synthesis, thereby allowing the growth in 

the presence of ß-lactam inhibitors, such as methicillin [94, 96]. The increase in activity of 

VCM-OA and VCM-CHT LPNs observed against MRSA could be due to the higher valency 

of the VCM-OA and VCM-CHT nanoparticle, which could result in better binding of PBP 2a 
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of MRSA than PBP of S. aureus [96]. We postulate that the VCM OA and VCM chitosan 

binding to the PBP 2a might be greater compared to PBP enzyme, thereby resulting in more 

activity against MRSA. A paper by Choi et al. explains the mechanistic method in which 

vancomycin-conjugated G5 PAMAM dendrimers act against S.aureus and MRSA [97], 

however, there is no data available on novel drug delivery systems against S. aureus and 

MRSA. Therefore, further studies using molecular modelling and other methods need to be 

carried out in order to confirm this hypothesis and explain the interaction of LPNs with the 

bacterial cell wall.  

 

5.4. Gel Electrophoresis 

Based on the results shown in Figure 3, it can be seen that S. aureus and MRSA LPN treated 

bacterial cells showed a difference in appearance in the bands of all molecular weight proteins 

when compared to the control. This indicates the disruption of the bacterial cell, and suggests 

that the LPN formulations were able to permeate bacterial cell membranes by reducing the 

content of cellular soluble proteins [58] with  VCM-CHT as the most active formulation. 

5.5. X-Ray Diffraction 

XRD is an important method used to detect any changes in the crystalline nature of the drug 

[98]. The results in Figure 4 indicate that all the formulations showed the peaks of the lipid 

with a change in the intensities of the peaks, suggesting that the crystalline lipid changed 

slightly after the formation of nanoparticles [47]. Raw VCM was in an amorphous state, as 

seen from the absence of diffraction peaks and a broad spectrum, and therefore no changes in 

the drug were observed in the LPN formulations [99].  

5.6. Differential Scanning Calorimetry (DSC) 

The thermograms obtained from the DSC (Figure 5) showed the presence of a GTP peak in 

VCM LPNs, which was indicative of presence of the lipid in the LPN.  The absence of the 
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VCM peak revealed that the drug was entrapped within the LPN [100], and was in the 

amorphous state. The amorphous form is expected to have increased surface area, high energy, 

solubility, dissolution rate and bioavailability [101, 102]. CHT showed an endothermic peak at 

165.08 °C and this was due to the influence of strong inter- and intra- molecular hydrogen 

bonds. This strong intermolecular hydrogen bonds is characteristic of the insoluble nature of 

the polymer in water [103].  The shift in endothermic peak of plain GTP from 73 oC to 66 oC 

in LPNs could be due to increase in surface area and a reduction in particle size which lead to 

a decrease in melting enthalpy [48, 104]. The loading of VCM and helper lipid and polymers 

did not affect the melting behaviour of GTP. The VCM-OA LPN exhibited an endotherm at 

135.95° C, which could be due to the product of ionic interaction between the carboxylic acid 

function of OA and amine function of VCM.  VCM-ALG LPN showed a second peak at 

118.91° C, which is characteristic of the peak that is shown in the ALG thermogram with a 

slight shift. Although, there were no broad endothermic peaks at higher temperature in the 

individual components, VCM-OA and VCM-CHT LPNs did show these peaks.  These 

additional broad endothermic peaks might have appeared due to the phase transition of drug-

polymer system (VCM-EUD in case of VCM-OA LPNs and VCM-CHT-EUD in case of 

VCM-CHT LPNs). However, the phase behaviour of a drug-polymer combination can be 

extremely complicated since the drug can be present in any of the polymeric forms such as 

crystalline, partially amorphous or completely amorphous form [105].  Therefore, in addition 

to phase transition [105] one of the possibilities could be co-crystallization of different 

ingredients of the formulation in the presence of ethanol used in the manufacturing process. 

The co-crystalline forms have been reported to have different melting behaviours than their 

individual components [106, 107]. Similar kind of peaks at a higher temperature were 

observed in DSC thermograms of co-crystals of low density polyethylene and high density 

polyethylene [108]. 
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5.7. Stability studies 

Stability studies at a developmental stage of formulation development provides data which 

may be of value to determine shelf-life, storage conditions and container closure system of a 

proposed new product. It therefore provides preliminary data for confirming the potential of 

the product to eventually meet full stability requirements as per regulatory approval 

requirements [109, 110]. No change in the physical appearance and colour as well as absence 

of agglomeration was observed in all the developed formulations (VCM, VCM-CHT, VCM-

OA and VCM-ALG LPNs) upon storage at 4 oC and room temperature. Further no significant 

differences (p > 0.05) in size, PDI and ZP was observed at all the time periods tested (0-90 

days) at specified storage conditions. These results confirmed the stability of developed LPNs 

under the prescribed conditions. 

5.8 Molecular Modelling 

To correlate the complexes stability with their EE and the drug release, the intermolecular 

interactions governing the formation of lipid-polymer-drug assemblies were analysed. The EE 

and drug release were correlated with the binding free energy of the complexes based on 

hydrogen bonding, electrostatic and Van der waals forces. 

VCM LPNs 

The binding pose of VCM with EUD implies that the drug preferably binds with the polymer 

by means of Van der Waals forces, as no hydrogen bonds are seen between EUD and VCM 

(Figure 6). Due to the weak intermolecular forces, the molecular complex could be easily 

dissociated, and hence the drug is released instantly, as observed in the drug release kinetics 

study (Figure 2) 
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VCM-OA LPNs 

As a bimolecular complex, OA is completely trapped by Van der Waal’s forces inside the 

hydrophobic pocket of VCM, as its structure is relatively smaller (Figure 7a). This prevents 

further conjugation of OA with EUD to form trimolecular complex and hence, no stable 

configuration was obtained for the EUD-VCM-OA complex. This suggests that OA-VCM 

conjugate may not be compatible inside the polymer network. However, the GTP bound OA 

was able to bind with VCM by forming a hydrogen bond between its carboxyl group and 

carbonyl oxygen of the glycopeptide residue of VCM molecule (Figure 7b). This indicates that 

VCM might be encapsulated preferably inside the fatty acid network in the presence of OA, 

resulting in increased encapsulation of VCM in VCM-OA LPNs. As per the drug release 

kinetics the VCM, release was slower in OA system, which might be due to entropy driven 

aggregation of lipid encapsulated VCM in aqueous medium that could direct the system to 

release the drug at slower rate. Furthermore, the high free binding energy for the OA system 

(∆Gbind = -3.48 Kcal/mol) compared to ALG (∆Gbind = -3.23 Kcal/mol) and native EUD 

systems (∆Gbind = -3.09 Kcal/mol) imparts more stability for the complex, and releases the drug 

at slower rate.   

VCM-CHT LPN 

CHT and ALG are able to interact with EUD by hydrogen bonding, and additionally 

incorporate VCM molecule for subsequent binding. The simultaneous binding of CHT/ALG 

with EUD and VCM explains higher entrapment of VCM in the polymer network. Overall, 

VCM-EUD complex can thus entrap more VCM molecules in the presence of helper polymers 

and form a stable supramolecular complex, as seen in Figure 8. The encapsulation efficiency of 

EUD is therefore increased by the supramolecular linking of the helper polymers. Comparison 

of binding affinities among the helper polymer complexes revealed that CHT binding mode is 

relatively tighter than ALG due to greater number of electrostatic bonds in the tetra and 
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pentamolecular complexes. The carbonyl oxygen of EUD methacrylate functional group 

accepts two hydrogen bonds instantaneously from N-acetyl functional group (dA---H = 2.44913 

Ao) and hydroxyl group (dA---H = 2.48363 Ao) of CHT. Supported by this bifurcated hydrogen 

bond, the EUD bound CHT further binds to VCM molecule by forming two hydrogen bonds 

with carbonyl (dA---H = 2.376 Ao) and amine (dA---H = 2.950 Ao) functional groups in the 

glycopeptide chain of VCM. The binding of GTP with the above tetramolecular complex is 

facilitated by two close electrostatic interactions that are observed among the carbonyl 

functional group of the GTP and the glycosidic oxygen atoms of the CHT (do---o = 2.85554 and 

3.0012 Ao). Thus, with a total of six electrostatic intermolecular bonds, CHT in the 

pentamolecular complex (∆Gbind = -4.11 Kcal/mol) is more stable and supports controlled break 

down of the complex, which ultimately results in sustained drug release.  

VCM-ALG LPN 

A very strong affinity for VCM with ALG in the absence of EUD and GTP was found. 

Howver, as a tetramolecular complex, the binding affinity of ALG with VCM is altered due to 

the conformational change brought by the EUD interaction.  In the tetramolecular complex 

(Figure 9a), ALG binds to VCM by forming a hydrogen bond (dA---H = 2.12685 Ao) between 

carbonyl functional group in the glycopeptide chain of VCM and the hydroxyl group of ALG. 

A strong hydrogen bond (dA---H = 2.17854 Ao) between the carbonyl oxygen of EUD 

methacrylate functional group and hydroxyl functional group of ALG was observed. A weak 

hydrogen bond (dA---H = 3.12807 Ao) was also observed between the carboxylate group of ALG 

and the carbonyl oxygen of EUD methacrylate function. Interestingly, this weak hydrogen 

bond is not seen in the pentamolecular complex (Figure 9b). The altered binding affinity due to 

conformational changes and a reduction in hydrogen bonds produced a less stable ALG system 

at high level molecular complexes. Though the ALG facilitates the EE as similar to CHT, the 

lower free energy of binding for the ALG system (∆Gbind = -3.23 Kcal/mol) at high molecular 
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level allows the components to dissociate faster than CHT, and hence the drug is released much 

faster than that of CHT and OA system. No major difference in drug release rate was observed 

among ALG and the native EUD system, as the helper polymer is not tightly entangled with the 

EUD. The loose binding of ALG with EUD allows ALG to interact more freely with solvent 

medium and releases the drug at much faster rate. 

 

6. CONCLUSION 

LPNs with suitable size, PDI and ZP were successfully formulated to deliver the antibiotic 

VCM. Furthermore, critical properties of the LPN system such as drug encapsulation, drug 

release and antibacterial activity, was further enhanced by the addition of the helper lipid OA 

and helper polymers, CHT and ALG. Compared to VCM LPNs, the LPN systems with the 

addition of helper lipid and polymers, exhibited a controlled release profile, higher drug 

encapsulation, sustained and enhanced antibacterial activity against both sensitive and resistant 

strains of bacteria. The EE and drug release was corroborated by the release kinetics data. In 

addition, in silico modelling also revealed an understanding of the EE and drug release of the 

VCM LPN systems. This LPN system demonstrates the potential for future studies 

incorporating other antibiotics, as well as further formulation development to improve its 

properties as a drug delivery system.  
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ABSTRACT: Formulation scientists are recognizing nanoengineered drug delivery systems as an effective strategy to overcome limitations
associated with antibiotic drug therapy. Antibiotics encapsulated into nanodelivery systems will contribute to improved management
of patients with various infectious diseases and to overcoming the serious global burden of antibiotic resistance. An extensive review
of several antibiotic-loaded nanocarriers that have been formulated to target drugs to infectious sites, achieve controlled drug release
profiles, and address formulation challenges, such as low-drug entrapment efficiencies, poor solubility and stability is presented in
this paper. The physicochemical properties and the in vitro/in vivo performances of various antibiotic-loaded delivery systems, such as
polymeric nanoparticles, micelles, dendrimers, liposomes, solid lipid nanoparticles, lipid–polymer hybrid nanoparticles, nanohybirds,
nanofibers/scaffolds, nanosheets, nanoplexes, and nanotubes/horn/rods and nanoemulsions, are highlighted and evaluated. Future studies
that will be essential to optimize formulation and commercialization of these antibiotic-loaded nanosystems are also identified. The review
presented emphasizes the significant formulation progress achieved and potential that novel nanoengineered antibiotic drug delivery
systems have for enhancing the treatment of patients with a range of infections. C© 2014 Wiley Periodicals, Inc. and the American
Pharmacists Association J Pharm Sci
Keywords: infectious diseases; nanoantibiotics; antibiotic resistance; nanodrug delivery systems; nanotechnology; polymeric drug carrier;
polymeric drug delivery systems; controlled release; targeted drug delivery

INTRODUCTION

Infectious diseases continue to be one of the main reasons for
death globally for both adults and children, and is recognized as
a signiÞcant public health challenge.1 Africa and South Africa
in particular have a high burden of infectious diseases, includ-
ing speciÞcally a large portion that is of bacterial origin. As a re-
sult of this, gastrointestinal, respiratory, sexually transmitted,
and hospital acquired infections are leading causes of death in
the developing world.2 In addition, emerging and re-emerging
infectious diseases,3 together with issues such as the grow-
ing global trade and international travel and the probability
of bioterrorist attacks in several countries, have compounded
the seriousness of infectious diseases. Importantly, there is a
recent growing acknowledgement that infections also play an
important role in facilitating the occurrence of noncommunica-
ble diseases. For example, diseases such as certain cardiovas-
cular disorders, cancers, asthma, and gastrointestinal diseases
have been reported to be linked to infectious diseases (includ-
ing bacterial infections) as an underlying cause/risk factor.4

The consequent adverse economic, social, and political impact
of the global burden of infectious diseases therefore warrants
novel and effective treatment strategies to overcome these
challenges.

The advent of antibiotics, which was initiated with the in-
troduction of penicillin more than 70 years ago and the more
advanced compounds in later years, revolutionized the treat-
ment of infectious diseases, and contributed signiÞcantly to
decreasing the associated morbidity and mortality.3 Antibiotics

Correspondence to: Thirumala Govender (Telephone: +27-31-260-7358;
Fax: +27-31-260-7792; E-mail: govenderth@ukzn.ac.za)

Journal of Pharmaceutical Sciences
C© 2014 Wiley Periodicals, Inc. and the American Pharmacists Association

are considered pivotal in virtually all critical therapeutic areas,
for example, general surgery including organ transplant proce-
dures, treatment of premature babies, and chemotherapy in
cancer patients cannot be achieved without effectively treating
and preventing bacterial infections.5 However, there are nu-
merous limitations associated with the current antibiotic drug
therapies. Several available dosage forms of antibiotics are
compromised by inadequate drug concentrations at target in-
fection sites, severe side effects, increased frequency of admin-
istration, and poor patient compliance that compromise drug
therapy.3,6 These limitations, together with the widespread
use and abuse of antibiotics, have led to their most serious
limitation, resistance to bacterial microorganisms. Microbial
resistance nulliÞes the use of even the most potent antibi-
otics, which leads to patient suffering and/or mortality be-
cause of infection control failure and escalated health care
costs.3 Among these resistant pathogens, methicillin-resistant
Staphylococcus aureus (MRSA),7 vancomycin-resistant Entero-
coccus (VRE),8 vancomycin-resistant S. aureus (VRSA),9 and
penicillin-resistant Streptococcus pneumonia10 have become
major clinical threats. The antibiotic resistance crisis has also
been further aggravated by pan drug-resistant and extensively
drug-resistant organisms to antibiotics, which has reached
alarming levels globally.5,11

According to a recent report released by the WHO on April
30, 2014, antibiotic resistance can no longer be regarded as an
issue for the future but rather a current crisis that requires ur-
gent interventions.12 Although new antibiotics are being inves-
tigated to overcome antibiotic resistance, a steady and gradual
decline in the introduction of new drugs have been reported
by the US Food and Drug Administration (FDA).13 This is be-
cause of exorbitant costs and lengthy times for eventual regu-
latory approval of new compounds, as well as low returns on
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investment, which compounds the current crisis.14 Two sys-
temic antibacterial agents were approved for use in humans by
the US FDA from 2008 to 2012, compared with 16 approved
from 1983 to 1987.15 It is clear that the pace of drug develop-
ment and registration has not been timeously responsive to the
rapid development of resistance by microbial pathogens. This
escalating emergence of antibiotic resistance to currently used
antibiotics and decline in introduction of new antibiotic drugs
is clearly a threat to human health globally. The search for new
and effective strategies to enhance drug therapy with current
antibiotics is therefore recognized globally as a major focus area
of research priority.

The signiÞcant beneÞts of using nanotechnology for
treating various diseases such as cancer,16Ð19 AIDS,20Ð24

inßammation,25Ð27 and hypertension28Ð30 by improving the solu-
bility, bioavailability, efÞcacy, and speciÞcity of drugs are widely
documented in the literature. Nanotechnology, which refers to
the design, production, and application of nanosized materials,
is regarded as a new paradigm for optimizing the outcomes in
infectious diseases treatment.3

Novel nanosized drug delivery systems could be a promis-
ing strategy to overcome the current challenges associated
with antibiotic therapy because of their unique physicochem-
ical properties. These include their large ratio of surface area
to mass, small size, and unique interactions with microor-
ganisms and cells of the host, as well as their ability to be
structurally and functionally modiÞed.31,32 The advantages
of a nanosized antibiotic drug delivery system include tar-
geted delivery, relatively uniform distribution in the iden-
tiÞed tissue, enhanced cellular internalization and solubil-
ity, sustained drug release and minimized side effects, and
improved patient compliance.33,34 Furthermore, nanosystems
themselves have been found to inherently overcome existing
speciÞc drug-resistance mechanisms by microbes.35 In addi-
tion, the codelivery of multiple antibiotics into these nanosys-
tems that are capable of having antimicrobial activity and
overcoming resistance mechanisms themselves can promote
synergistic activities and resistance overcoming effects.31 These
advantages are recognized as major contributors to over-
coming bacterial resistance associated with poor delivery of
antibiotics.36

Nanodrug delivery systems therefore offer an advanced and
superior approach to overcoming several limitations associated
with antibiotic drug therapy, including the serious global threat
of antibiotic resistance. Compared with cancer and cardiovas-
cular disease conditions, use of nanodrug delivery systems for
speciÞcally encapsulating and delivering antibiotic drugs is still
in its infancy.3 Because of its potential advantages, there has
been a surge of data in the literature on a range of differently
engineered antibiotics-loaded nanodrug delivery systems. A pe-
rusal of the literature highlights the need for a review paper
that speciÞcally focuses on the various reported nanodrug deliv-
ery systems to date that have been used for antibiotics. A com-
prehensive review of the various nanoengineered drug delivery
systems that have emerged for antibiotic drugs is presented.
The paper will therefore identify the technological progress that
has been achieved regarding the development of these delivery
systems and their potential for addressing the various formula-
tion and therapeutic challenges with current antibiotic therapy.
Future studies that need to be conducted for optimization and
commercialization of these antibiotic-loaded nanosystems will
be identiÞed.

NANOENGINEERED ANTIBIOTIC DELIVERY SYSTEMS

The development of nanomedicines has facilitated an increase
in the therapeutic index of many components. With changes
in size from tens of micrometers to tens or hundreds of
nanometers having been a signiÞcant technological and med-
ical breakthrough.37 A comprehensive literature search on
several databases from 1960 to 2014 identiÞed a range of
nanodelivery systems for antibiotics that include liposomes,
polymeric nanoparticles (PNPs), solid lipid nanoparticles
(SLNs), lipid polymer hybrid nanoparticles (LPHNs), den-
drimers, nanoemulsions (NEs), micellar systems, nanos-
tructures made of pure carbon [carbon nanotubes (CNTs),
nanosheets, and nanorods], nanohybrids, and others. As the
10 main nanodelivery systems that are used for antibiotic de-
livery, these will be discussed and evaluated in detail.

Liposomes

Liposomes, the Þrst closed bilayer systems, were described in
1965 and were soon proposed as drug delivery systems38 using
natural or synthetic lipids. Phosphatidylcholine (PC), which is
a neutral phospholipid that contains fatty acyl chains, is one
of the most commonly used lipids in liposome preparation. Ad-
justment of membrane rigidity and stability can be achieved
by incorporating cholesterol into the preparation.39 The two
main classes of liposomes are multilamellar vesicles that com-
prise multiple phospholipid bilayer membranes, and unilamel-
lar vesicles (ULVs) comprising a single lipid bilayer. ULVs can
be further divided into large ULVs and small ULVs.40 Since
their inception, the most commonly applied methods used for
preparing liposomes include thin-Þlm hydration,41 reversed-
phase evaporation,42 solvent injection techniques,43,44 and de-
tergent dialysis.45 Materials used for preparation, classiÞca-
tion, and different techniques for the preparation of liposomes
can be found elsewhere in the literature.40,46Ð57

Liposomes, consisting of phospholipid bilayers, are spherical
lipid vesicles that can provide an improvement in the solubility
of compounds and promote fusion with biological membranes
and the subsequent release of their entrapped compounds into
the target site.58Ð60 In addition, it is possible to incorporate
both hydrophilic and hydrophobic antimicrobial drugs in the
aqueous core and in phospholipid bilayer, respectively.33,61 Li-
posomes appear to be the earliest reported nanodrug delivery
systems studied for antibiotic delivery in the literature, and
clearly provided a platform for conceptualizing and developing
other antibiotic nanodelivery systems. They have emerged as
nanodelivery vehicles for antibacterial therapy, speciÞcally as
they promote targeted delivery to the infection site, improve
pharmacokinetics, reduce toxicity, and enhance antibacterial
activity of antibiotics.62

Historically, the use of liposomes for antibiotic entrapment
can be traced back to the early 1970s, after which this Þeld
has expanded signiÞcantly to include various antibiotics in li-
posomes to effectively treat infections. A summary of various
reported liposomal systems for antibiotic therapy with their ra-
tionale for formulation development is provided chronologically
in Table 1. This overview clearly shows that liposomes have
diverse applications for addressing various challenges with an-
tibiotic therapy. Their potential for treating numerous disease
conditions, being effective against a wide range of microorgan-
isms, reducing toxicity, enhancing stability, and achieving sus-
tained drug release and activity have been conÞrmed. More
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recent studies are focusing on exploiting the beneÞts of surface
modiÞcation and responsive drug delivery to further enhance
the effectiveness of liposomal systems. Some of these studies
are brießy discussed further.

One of the Þrst applications for liposomes in antibiotic drug
delivery is reported for Þlipin, a polyene macrolide antibiotic
known for its haemolytic activity.63 It should however be noted
that the liposomes in this study were not explored as a carrier,
but rather as a model to test the sterol receptor hypothesis
of polyene action. Similarly, a few years later, liposomes were
also used as a model to investigate the intestinal absorption
mechanisms of several antibiotics.66 Although not used as a de-
livery system itself, liposomes have proved useful in providing
the necessary information for optimizing therapy with polyene
macrolide antibiotics.

The potential of liposomes as an antibiotic carrier proba-
bly began with Gregoriadis.64 He entrapped potassium ben-
zyl penicillin in liposomes composed of egg lecithin, choles-
terol, phosphatidic acid, dipalmitoyl lecithin, and stearylamine
to overcome the failure of penicillin to penetrate cells of the
reticuloendothelial system (RES). These in vivo studies with
rats showed lysozymal localization of penicillin-entrapped li-
posomes into the liver and spleen.64 This early study did not
focus on antibacterial activity against microorganisms, as re-
searchers at that stage were attempting to prove its targeting
potential. The intracellular residence of bacteria may compli-
cate effective treatment of bacterial infections. In subsequent
studies, other research expanded this area, and reported specif-
ically on intracellular killing of various classes of sensitive
and resistant bacteria by liposomal formulations using drugs
such as dihydrostreptomycin,65 cephalothin,67 penicillin-G,68

vancomycin, and teicoplanin.70 In addition to intracellular tar-
geting, liposomes have been studied for topical applications,
with reports indicating that topical infections of soft tissues by
Pseudomonas aeruginosa can be effectively treated by liposo-
mal tobramycinÐsilver sulfadiazine.69

Several other liposome-based antimicrobial drug delivery
systems have also been recently developed for various applica-
tions and for reducing antibiotic toxicity,58 and have found ap-
plications in vaccine technology. Zhao et al.83 genetically linked
the urease linear epitope with cholera toxin B subunit to obtain
a novel fusion peptide CtUBE and expressed it in Escherichia
coli, and formulated an oral liposome vaccine against H. pylori.
The sizes of the liposomes were between 100 and 500 nm, and
almost 71.4% CtUBE was entrapped in liposomes. The study
demonstrated that after oral immunization, liposomal CtUBE
was able to protect BALB/c mice from H. pylori infections.83 An-
other unique study emphasized the diverse applications of li-
posomal antibiotic formulations. Surface coating of polystyrene
by cationic rifampicin-loaded liposomes was performed in or-
der to develop an antimicrobial barrier on a polymer surface
to be exploited for medical uses.80 The rifampicin-loaded lipo-
somes as an antimicrobial barrier reduced bacterial growth on
polystyrene, with activity being dependent on the charge of
the liposomes with the polystyrene surface. Effective activity
against various organisms for other disease conditions, such as
gentamicin liposomes79 and meropenem liposomes78 against P.
aeruginosa, ampicillin liposomes against Micrococcus luteus,72

and penicillin liposomes against S. aureus76 have also been re-
ported.

Another research goal by liposomal researchers has been
to achieve prolonged release and/or enhanced activity of an-

tibiotics. In early studies, Omri and Ravaoarinoro71 entrapped
various antibiotics (amikacin, netilmicin, and tobramycin) into
liposomes. Although netilmicin had lower liposomal encap-
sulation efÞciencies than tobramycin and amikacin, it had
reduced minimum inhibitory concentrations (MICs) against
Gram-positive and Gram-negative bacteria compared with free
drug, whereas liposomal tobramycin and amikacin antibac-
terial activity was not improved as compared with the free
solution. In this study, only encapsulation efÞciencies and
antimicrobial activities were reported. Being initial liposo-
mal antibiotic formulation studies in this Þeld, other critical
data such as size, polydispersity index, surface charge, mor-
phology, and stability were not reported, unlike more recent
papers where this is essential. Prolonged and/or enhanced
activity has also been reported for liposomal formulations,
such as gentamycin,73 amikacin,74 oßoxacin,75 penicillin-G,76

meropenem,78 and gentamicin79 against a wide range of mi-
croorganisms. The prolonged antibacterial activity has been at-
tributed to the sustained release of drugs from liposomes, which
have also been shown to enhance the stability of antibiotics. For
example, it has been shown that free ampicillin lost 50% initial
activity after 5 weeks of storage at 4◦C, whereas some of the
liposomal ampicillin formulations lost only 17% activity.72 On
the basis of the differences between liposomal formulations, it
would be useful in future to investigate how variables such as
drug encapsulation efÞciencies and lipid content affect stability
as well as antimicrobial activity.

Liposome size and surface charge can be modiÞed and op-
timized depending on its therapeutic application.84 Liposomes
encompassing surface modiÞcation with materials such as gly-
colipids or sialic acid have been prepared.85 Thus, cationic or
anionic liposomes can be prepared by using cationic or anionic
ingredients in the liposomal formulations. In one such study, to
establish a new antibiotic therapeutic approach against chronic
staphylococcal osteomyelitis infections presenting in rabbits,
two antibiotics, namely, ciproßoxacin and vancomycin were en-
capsulated alone and in combination in liposomes. The study
was undertaken to: (1) lower nephrotoxicity, (2) overcome poor
antibiotic accumulation in bone tissue, (3) completely sterilize
bone tissue by combination therapy, and (4) most importantly
to facilitate optimal liposomeÐbacterium interaction via eval-
uation of cationic, anionic, and neutral liposomes.77 The re-
sults showed a greater percentage of drugs being entrapped in
charged liposomes than neutral, and among all the three formu-
lations, enhanced antibacterial activity against S. aureus was
observed for cationic liposomal formulation. This proved the
concept that interaction between the cationic liposomes and
negatively charged bacterial cell surface can occur.77,86 Reduc-
tion in nephrotoxicity was also reported with animal studies
using rabbits.

Another active area of research is surface modiÞcation of
liposomes, which is used for various purposes, such as sta-
bilizing liposomes against fusion87 and controlling liposome
blood clearance.88 The incorporation of poly-(ethylene glycol)
(PEG) in the liposome composition represented a major step in
the development of liposomes with increased circulation and
half-life.85 Pneumonia caused by MRSA is difÞcult to treat
with vancomycin because of low lung tissue and intracellular
penetration of vancomycin, leading to MRSA evading phago-
cytic killing. Muppidi et al.81 proved that MRSA pneumonia
can be effectively treated by using PEGylated liposomal van-
comycin as compared with conventional and non-PEGylated
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Figure 1. Schematic principle of bacterial toxin-triggered antibiotic release from gold nanoparticle-stabilized liposomes to treat toxin-secreting
bacteria. Reproduced from Pornpattananangkul et al.82 with permission from American Chemical Society.

preparations. This was possible because of the ability of PEGy-
lated liposomal vancomycin to signiÞcantly extend circulation
time in the blood, and increase lung, liver, and spleen deposi-
tion while also reducing accumulation in the kidney tissue. It
has been suggested that administration of PEGylated liposo-
mal vancomycin may enhance the effective treatment of MRSA
pneumonia and simultaneously reduce the nephrotoxicity risk.
This study was purely an in vivo study, and the promising
results with these surface modiÞcation studies should be fol-
lowed up with formulation optimization and characterization
investigations to conÞrm stability and activity. It would also
be interesting to investigate how the PEGylation affects an-
tibacterial activity in terms of interaction with bacterial cell
membranes.

In a recent paper, surface modiÞcation of liposomal surface
was explored not only for altering distribution, but also for
achieving triggered drug release at an infection site. A new
approach to differentially release vancomycin to the site of
infection to inhibit the growth of S. aureus for topical treat-
ment of skin bacterial infections was developed by attaching
chitosan-modiÞed gold nanoparticles (AuChi) onto the surface
of negatively charged liposomes.82 This strategy was based on
the fact that few bacteria release a toxin, and this toxin can be
used to activate drug release from AuChi-stabilized liposomes.
In nature, S. aureus secretes alpha haemolysin ("-toxin) as a
water-soluble 34 kDa protein monomer.89 A heptameric struc-
ture with a central 2 nm size pore is formed when the "-toxin
spontaneously incorporates into the lipid membranes and self-
oligomerizes. This pore permits the passive diffusion of small
molecules of up to 3 kDa through the membranes.90,91 Figure 1
illustrates the principle involved in the selective release of van-
comycin at the site of infection.82 The mechanism involves bind-
ing of AuChi to the negatively charged surface of liposomes via
electrostatic attractions, which stabilizes liposomes by prevent-
ing fusion with one another and also prevents unwanted drug
leakage. When the stabilized liposomes have reached the vicin-
ity of S. aureus, the "-toxin secreted by bacteria inserts into the

liposome membrane and forms pores that allow the encapsu-
lated vancomycin to be released. The vancomycin that has been
released close to the bacteria will then be allowed to exert its
rapid and local antibacterial activity.

Incubation studies with MRSA conÞrmed 48% and 100%
release within 0.5 and 24 h, respectively, and no drug
release in the absence of MRSA. Vancomycin release in the
presence of MRSA therefore conÞrmed the drug release in the
presence of the bacterial toxin only. The study did not report
release data on unmodiÞed vancomycin liposomes, which could
have provided additional supportive conÞrmation of the princi-
ple of triggered release with the AuChi modiÞcation. Antibac-
terial studies showed that the AuChi vancomycin liposomes
inhibited microbial growth to the same level as vancomycin li-
posomes. Therefore, the triggered release only on exposure to
the toxin with retention of antibacterial activity was considered
an improved approach for enhancing therapy with vancomycin.
This approach will certainly provide a new paradigm for the
treatment of infections, by speciÞcally releasing antibiotics at
infection target sites while minimizing possible nontarget ad-
verse effects.82

The overview in Table 1 indicates a decrease in the last few
years of the use of liposomes for antibiotic delivery. This could
be because of the already extensive body of literature avail-
able for its application in other disease states, as well as to
some disadvantages that are being overcome by newer tech-
nologically advanced systems, as discussed later in this paper.
In the present scenario, liposome nanotechnology has neverthe-
less advanced to such an extent that it is possible to modify their
surface, attach other nanoparticles (NPs) or targeting moieties
on their surface in order to obtain site-speciÞc/targeted deliv-
ery and to control the release of antibiotics. Ongoing research
regarding the delivery of antibiotics via liposomes using ad-
vanced nanotechnological aspects will certainly be fruitful if
some challenges such as stability (in vitro and in vivo) are ad-
dressed, which will expedite several potential liposome-based
antibiotic clinical products in the 21st century.

Kalhapure et al., JOURNAL OF PHARMACEUTICAL SCIENCES DOI 10.1002/jps.24298



REVIEW 7

Polymeric Nanoparticles

Polymeric nanoparticles are solid colloidal particles, ranging in
size from 1 to 1000 nm. They comprise several biocompatible
polymeric matrices in which the therapeutic moiety is either
entrapped, adsorbed, or covalently attached.92 Because of their
polymeric composition, PNPs may have greater stability than
liposomes in biological ßuids and under storage.93 The main
aim of preparing NPs using polymers is to increase therapeutic
beneÞts, minimize side effects of conventional drugs, and to
efÞciently deliver drug to a target site.94,95 Natural polymers,
such as chitosan, gelatin, and alginate as well as synthetic
polymers, such as poly(lactic-co-glycolic)acid (PLGA), poly-n-
(cyanoacrylate), and polycaprolactone (PCL) are widely used to
fabricate PNPs.96

Poor therapeutic efÞcacy because of rapid clearance by RES,
the initial drawback of PNPs, has been overcome using strate-
gies such as modiÞcation with hydrophilic excipients.97 PNPs
have been widely studied for various disease states, such
as inßammatory bowel diseases,98 cancer,99 hypertension and
angina,100 airway inßammatory diseases,101 diabetes,102 and
AIDS.103 Although nanotechnology for antibiotics is still in its
infancy, PNPs appear to be one of the most extensively stud-
ied nanosystems for antibiotic delivery. Their unique charac-
teristics for antibiotic delivery include: (1) structural stability;
(2) possibility of synthesis with a sharper size distribution;
(3) precise tuning of properties such as particle size, surface
charge, and drug release proÞles via selection of appropriate
polymers, surfactants, and organic solvents during prepara-
tion; and (4) the option of modifying the functional groups
at the surface of PNPs by either drug moieties or targeting
ligands.104 The active moiety can be encapsulated, entrapped,
dissolved, or attached to a polymeric matrix to generate either
NPs, nanospheres, or nanocapsules depending on the method of
preparation employed. Dispersion of preformed polymers and
polymerization of the monomers have been mainly used for the
preparation of NPs.105 Other methods of PNP preparation can
be found elsewhere.106Ð108

Polymeric nanoparticles have been explored for delivering
a wide range of antibiotics for the treatment of diverse infec-
tions caused by different bacteria and have shown enhanced
therapeutic efÞcacy. Table 2 depicts a chronological summary
of antibiotic-loaded PNP systems reported in the literature.
The polymers and antibiotics used, method of PNPs prepara-
tion, characterization study performed, and the main Þndings
achieved are extracted, summarized, and presented. As can
be seen in Table 3, in initial studies, polyalkylcyanoacrylates
(PACA) were the materials of choice for preparing antibiotic-
loaded PNPs.109Ð111 To address the problem of resistance of
intracellular infections to chemotherapy because of low in-
tracellular uptake of commonly used antibiotics or their
decreased activity at the acidic pH of lysosomes,110 several
studies have been conducted to deliver antibiotic intracellularly
using PNPs. In early studies, ampicillin was bound to polyiso-
hexylcyanoacrylate (PIHCA) to form PNPs, with an average
size of 187 ± 13 nm for intracellular targeting of antibiotic. In
vivo studies in experimentally infected C57BL/6 mice revealed
that the therapeutic index of ampicillin against Salmonella ty-
phimurium was increased by 120-fold when bound to PIHCA
NPs.109 Furthermore, in in vivo studies on PIHCA, bound ampi-
cillin PNPs showed that 0.8 mg of ampicillin incorporated into
NPs had a greater therapeutic effect as compared with 48 mg

of free ampicillin against S. typhimurium. Furthermore, the
ampicillin NPs were rapidly taken up by the liver and spleen,
leading to a subsequent higher concentration of the drug in
these organs.110

Formulation development of polyethylcyanoacrylate (PECA)
NPs containing peßoxacin and oßoxacin quinolone antibiotics
using the incorporation or adsorption method was reported
by Fresta et al.111 These PECA NPs exhibited twofold to 50-
fold more antimicrobial activity against P. aeruginosa, S. au-
reus, E. coli, and Enterococcus faecalis, with in vivo proof
that the delivery system was preferentially captured by the
mononuclear phagocyte system. In another experiment using
PACA, ciproßoxacin-loaded polyethylbutylcyanoacrylate (PE-
BCA) nanoparticlulate formulation with adequate drug loading
and release properties was developed by an emulsion polymer-
ization technique. It should be noted that MIC or minimum
bactericidal concentration (MBC) against S. Typhimurium was
not changed by the binding of ciproßoxacin to PEBCA NPs.
MIC and MBC values were same (0.062 and 0.5 :g/mL, respec-
tively), irrespective of the form used.112 Several years later in
2007, N-thiolated and acrylated $-lactam antibiotics were also
loaded onto polyacrylate nanoparticles by conjugation onto its
framework to protect it from the $-lactamase enzyme.117,118 NP
formulations of N-acrylated $-lactam antibiotic were found to
be more potent compared with NP formulations of N-thiolated
one. It should be noted that these early studies were mainly
focused on studying the antimicrobial activity (in vitro and in
vivo) of antibiotic-loaded PACA NPs, with few attempts only at
formulation optimization, in depth characterization of PNPs,
and surface modiÞcation for targeted delivery.

Table 2 also reveals a recent decrease in the use of PACAs
for synthesizing PNPs. As from the 21st century scientists
are clearly switching to more biocompatible and biodegrad-
able natural and synthetic polymers, such as PLGA, chitosan,
lecithin, and PCL. Furthermore, the synthesis of novel biocom-
patible and biodegradable materials to formulate nanosystems
for infection control is also an emerging research area in the
literature,132Ð134 and polymers with multifunctional properties
for antibiotic delivery is no exception to this trend. These stud-
ies are described in the section hereunder.

Poly(lactic-co-glycolic)acid appears to be one of the most
widely studied polymers for antibiotic delivery. Initially, Dillen
et al.114 attempted the formulation development of ciproßoxacin
PLGA NPs using a factorial design to study the effect of differ-
ent parameters on particle size, zeta potential, drug entrap-
ment, and release. Their Þndings showed that homogeniza-
tion had a marked effect on particle size, release rate, and
entrapment efÞciency. Homogenization decreased the particle
size and drug release, but also increased the drug entrapment
efÞciencies. In this study, antibacterial activity of the PNPs
was found to be comparable to free drugs against P. aerug-
inosa and S. aureus.114 However, it should be noted that al-
though 100% of the drug was not released after 24 h, it never-
theless had equivalent activity. These researchers recognized
that PLGA, being negative, might have low interactions with
the anionic mucus for ocular infections. They then extended
this study and incorporated cationic polymers into this PLGA
formulation. In a subsequent study, they investigated the ef-
fect of including cationic polymers, namely, Eudragit R© RS100 or
RL100 on physicochemical properties, the release proÞle, and
antibacterial activity of ciproßoxacin-loaded PLGA-containing
PNPs.115 They found that the zeta potential of all formulations
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Table 3. Summary of SLNs Investigated for Antibiotic Delivery

Antibacterial Zeta Potential Targeted
Lipid Agent Size (nm) (mV) Microorganism Main Findings Reference

Stearic acid Tobramycin 85 ± 5 −20.3 None Gastrointestinal absorption
of tobramycin, prolonged
circulation time than
i.v.-administered
tobramycin solution.

Ref. 170

Stearic acid Tobramycin 85 ± 5 −20.3 None Increased passive transport
of tobramycin incorporated
in SLN to cross the BBB.

Ref. 171

Stearic acid Ciproßoxacin 73 ± 2 to 98 ± 44 −28 ± 1 None Prolonged antibiotic release
in a controlled manner.

Ref. 172

Tetradecanoic
acid

Enroßoxacin 116.7 ± 15.5 −29.03 ± 0.64 S. aureus Sustained and prolonged
drug release, increased
bioavailability, and
extended mean residence
time in combination with
fatty acid.

Ref. 173

Palmitic acid 111 ± 7.2 −31.57 ± 3.76
Stearic acid 217.3 ± 20.1 −40.03 ± 0.67
Hydrogenated

castor oil
Tilmicosin 343 ± 26 −7.9 ± 0.4 S. aureus Sustained drug release,

sustained and enhanced
antibacterial activity, and
decreased degree of
inßammation.

Ref. 174

Stearic acid Norßoxacin 250 ± 5 −31.1 ± 1.85 E. coli Sustained drug release and
enhanced antibacterial
activity.

Ref. 175

Compritol 888 R©

ATO
Vancomycin 102.7 ± 1.01 −38.8 ± 2.1 S. aureus, MRSA Ion pairing of vancomycin

with antibacterial fatty
acid (linoleic acid)
enhanced encapsulation
efÞciency and
antibacterial activity of
vancomycin in SLNs.

Ref. 135

containing Eudragit was positive and sustained release of
ciproßoxacin was achieved. All formulations were comparable
to the free drug solution, conÞrming no loss of activity on encap-
sulation into a sustained-release formulation. It was also noted
that drugs in this formulation were less active in killing S. au-
reus compared with P. aeruginosa. To understand the activity
demonstrated, a further paper with ßow cytometry studies on
these PNPs presented the Þnding that Eudragit NPs showed
more bacterial adhesion with test organisms (P. aeruginosa and
S. aureus) compared with PLGA-only NPs, and can thus reside
for prolonged time in anionic mucus membrane to effectively
manage infections.116 This opened a new research area of tar-
geted delivery of antibiotics based on surface charge difference
between bacteria and PNP formulation. The Þndings of this
study also emphasized the importance of polymer choice, not
only for NP formation, but also for antibacterial activity.

Poly(lactic-co-glycolic)acid NPs containing ciproßoxacin with
particle sizes of 100Ð300 nm were also formulated and eval-
uated for their antibacterial potential (in vitro and in vivo)
against pathogenic E. coli by Jeong et al.119 These NPs dis-
played lower in vitro antibacterial activity as compared with
free ciproßoxacin and was attributed to their sustained drug
release proÞles. Ciproßoxacin was released from NPs over a
period of 14 days. However, in vivo antibacterial activity of NPs
was greater than the free drug, showing the superiority of the

formulation. Although these authors did not explain the differ-
ences in in vitro and in vivo behavior of the PNPs against the
free solution, this may clearly be because of the fact that the in
vitro studies were carried out after 24 h and for a single time
period only, whereas in the in vivo study, mice were sacriÞced
after 3 days.119 This suggests that sustained-release antibiotic
formulations should undertake in vitro activity studies over
a prolonged period, as has been performed is several studies
for nanoantibiotic formulations other than PNPs.135,136 In other
studies, NPs formulated using PLGA polymer have been shown
to enhance the delivery of azithromycin and rifampicin to intra-
cellular chlamydial infections caused by chlamydia trachoma-
tis and chlamydia pneumonia.124 Using detailed micrometric,
crystallographic (Fourier transform infrared, X-ray diffraction,
and differential scanning calorimetry), mathematical modeling
of drug release data, and in situ permeability evaluations, an
improvement in intestinal permeability of vancomycin in male
Wistar rats was observed by delivering it via PLGA NPs.130 The
researchers attributed this Þnding from less than 500 nm size
NPs to the large surface area, improved paracellular passage,
and their endocytic uptake.

Poor incorporation efÞciencies of the drug into NPs are
a well-recognized challenge, especially with water soluble
drugs. To this end, several groups working with PLGA
polymers have investigated varying approaches to enhance
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Figure 2. Schematic representation of the designed surface charge-switching PNPs-mediated drug targeting to bacterial cell walls. Reproduced
from Radovic-Moreno et al.128 with permission from American Chemical Society.

encapsulation efÞciencies.120Ð122,127,137 Cheow and Hadinoto,122

in their study with levoßoxacin, modiÞed the standard NP
preparation techniques, single- and double-emulsiÞcation sol-
vent evaporation, and nanoprecipitation. They found that en-
capsulation efÞciency of highly water-soluble drugs in PLGA
NPs can be enhanced by these modiÞed methods by taking lev-
oßoxacin as a model drug.122 The inclusion of lecithin into the
aqueous phase, and modifying the water miscibility level of the
oil phase, were found to be particularly useful. In another study,
the drug and polymer ratio was particularly investigated to pre-
pare azithromycin PLGA NPs for optimum encapsulation and
biological properties. A drug to polymer ratio of 1:3 was found
to be optimal in enhancing encapsulation efÞciency to 78.5%.
The optimized formulation was more effective against S. typhi
by displaying equivalent antibacterial effect at 1/8th the con-
centration of the free drug,121 As combining PCL with PLGA
was found to increase the doxycycline entrapment efÞciency,
selecting appropriate polymeric core composition can be a use-
ful strategy for enhancing drug encapsulation. A PLGAÐPCL
ratio of 80:20 was found to be optimal to increase entrapment
efÞciency to 32% from 25% at a PLGAÐPCL ratio of 60:40. Alter-
ing the aqueous phase pH from 7.4 to 4 additionally increased
entrapment to 70%.120 A study by Ungaro et al.,127 who formu-
lated a PLGA NP dry powder formulation as a pulmonary de-
livery system or tobramycin, also highlighted the importance
of ÒhelperÓ hydrophilic polymers, for example, chitosan, algi-
nate, and polyvinyl alcohol (PVA) for achieving optimal drug
entrapment, size, and release proÞles.

A recent development in the Þeld of PLGA NPs for antibi-
otic delivery has been its modiÞcation to synthesize a polymer
that is particularly responsive to infection sites. Vancomycin-
encapsulated, pH-responsive, surface charge-switching PLGA-
b-poly(L-histidine)-b-poly(ethylene glycol) (PLGA-PLH-PEG)
NPs have been synthesized (mean size = 196.0 ± 7.8 nm). A lack
of interaction of NPs with bacteria at pH 7.4 and at acidic pH
strong afÞnity of NPs toward bacteria was observed. PLH gets

protonated because of the acidic pH at the infection site and
activates a surface charge-switching mechanism that leads to
binding of the NPs to the negatively charged bacteria (Fig. 2).128

This was conÞrmed by NP-binding studies using confocal imag-
ing and ßow cytometry. Studies demonstrated pH-sensitive NP
binding to bacteria, that is, a 3.5 ± 0.2- to 5.8 ± 0.1-fold in-
crease in bacterial binding at pH 6.0 as compared with 7.4
was reported. It was also observed that upon reduction in pH,
the PLGA-PLH-PEG NPs switched their surface charge from
a negative zeta potential at pH 7.4 (−3.9 ± 0.4 mV) to a posi-
tive one. They also showed that the surface charge transition
occurred, as early as pH 7.0 (2.3 ± 1.0). The results obtained
using PLGA-PLH-PEG NPs are promising, and pave the way
for synthesizing other responsive PLGA-based polymers. These
studies have therefore clearly conÞrmed PLGA as a suitable
material for antibiotic-loaded PNP formulations.

Among the natural polymers, chitosan has attracted consid-
erable interest for the use against microbial growth because of
its antimicrobial and antifungal activity.138Ð140 Its antimicrobial
action may be because of efÞcient binding to negatively charged
bacterial cell walls that destabilizes the cell envelope altering
permeability, followed by attachment to DNA and inhibition
of its replication.141 Several approaches have been used to
exploit chitosan as a polymer for antibiotic delivery. Folic acid
tagged noncytotoxic chitosan NPs have been employed as Tro-
jan horses to target vancomycin into the bacterial cell by
synthesizing a new carboxymethyl chitosan-2,2′-
(ethylenedioxy)-bis-(ethylamine)-folic acid (CMC-EDBE-FA)
polymer. This experiment was performed to address the
problem associated with VRSA treatment, which is a serious
issue in medical practice.123 FA, an essential nutrient re-
quired for nucleotide synthesis for bacteria helps to transport
the NPs loaded with drug through endocytosis, across the
plasma membrane, and into the cytoplasm.142,143 The prepared
nanoconjugated vancomycin decreased both the MIC and MBC
values of VRSA to a signiÞcant level (Fig. 3).
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Figure 3. (a) Minimum inhibitory concentration and (b) MBC of vancomycin (vanco) and nanoconjugated vancomycin (NV) against vancomycin
susceptible and resistant S. aureus (VSSA and VRSA). Reproduced from Chakraborty et al.123 with permission from IOP Publishing.

Figure 4. Scanning electron microscope images showing strategy and
observation for eradicating H. pylori by amoxicillin-loaded genipin-
FCS/Hep NPs. Reproduced from Lin et al.129 with permission from
Elsevier Science Ltd.

Using ionic cross-gelation technique, biocompatible, 200 nm-
sized tetracycline (TC) encapsulated O-carboxymethyl chitosan
NPs have also been prepared to eradicate intracellular S. au-
reus infections effectively.126 Recently, amoxicillin entrapped
genipin cross-linked fucoseÐchitosan/heparin NPs (genipinÐ
FCS/Hep NPs) in the size range of 150Ð210 nm have been
shown to eradicate H. pylori, a Gram-negative microorganism
causing gastric infections. Via in-depth studies on this multi-
functional responsive polymeric PNP including encapsulation,
release, in vitro cellular uptake and confocal laser scanning
microscopy, in vitro growth inhibition, in vivo animal studies,
histology and immunochemistry, and ßuorescent bacteria bind-
ing, this formulation was shown to decrease drug release at
gastric acids and increased release at an H. Pylori survival sit-
uation (Fig. 4). In addition, a more complete H. pylori clearance
effect and ability in decreasing gastric inßammation associated
with H. pylori was reported.129

Other polymers have also been randomly used in the litera-
ture to encapsulate antibiotics, and are highlighted hereunder.
As NPs may accumulate in hair follicle openings, drug delivery
through this mechanism, with the use of NPs, is gaining more
importance. Roxithromycin NPs (size 300 nm), using PCL as

a polymer, were prepared using an emulsion solvent evapora-
tion method and were embedded in pluronic-lecithin organogel
(PLO). In vitro human skin penetration studies revealed that it
is possible to preferentially target the pilosebaceous unit with
the polymeric NPs, whereas the PLO formulation did not pro-
mote follicular penetration more efÞciently than suspension of
NPs.131 Therefore, antibiotic-loaded PNPs can now also be en-
trapped into a gel for facilitating transdermal delivery.

The synthesis of pH-sensitive functionalized NPs by ring-
opening metathesis copolymerization (ROMP) has also been
disclosed by Pichavant et al.125 For this purpose, a pH-sensitive
"-norbornenyl-poly(ethylene oxide) macromonomer was used
to synthesize different polymeric derivatives. The plurifunc-
tionalization of NPs containing prodrugs and reactive chem-
ical groups as carboxylic acids was explored in the study
using macromonomer route. Gentamycin was linked via a pH-
sensitive imine bond to a polymer, and the NPs prepared us-
ing ROMP were found to be noncytotoxic by neutral red and
MTT assays. The MIC measurements performed at different
pH values (4Ð7) on S. epidermidis revealed that for gentamycin-
functionalized macromonomer, there was no signiÞcant inhibi-
tion of growth at pH 7, whereas a decrease at conditions of pH 4
and 5 was observed.125 For targeted delivery, lectin-conjugated
gliadin NPs speciÞcally binding to carbohydrate receptors on H.
pylori cell walls with release of the antimicrobial agents into
the bacteria were found to have an inhibitory effect twofold
higher than gliadin NPs.113

Thus, the section on PNPs can be summarized as: Þrst, PNPs
are extensively studied nanodelivery systems for antibiotics
and have advantages over liposomes; second, it is possible to
achieve site-speciÞc and targeted delivery of antibiotics by sur-
face modiÞcation of PNPs with targeting moieties, and by us-
ing pH-responsive materials for synthesis or by formation of
covalent bonds, which can be degraded at acidic environment
at infection site. Third, the Þeld of antibiotic PNPs seems to
be growing, and there are opportunities for scientists to de-
velop novel-biocompatible and biodegradable-responsive poly-
mers for antibiotic PNPs formulation, as conventionally used
natural and synthetic polymers have been exploited extensively
and have some limitations. Lastly, the literature indicates that
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Table 4. Antibacterial Activity of VCM-HCl, VCM-LA2, VCM-HCl SLNs, and VCM-LA2 SLNs

Formulation MIC (:g/mL)a

Bacteria S. Aureus MRSA

Time (h) 18 36 54 72 18 36 54 72

Blank SLNs NA NA NA NA NA NA NA NA
VCM-HCl 15.62 NA NA NA 3.91 NA NA NA
VCM-LA2 218.75 437.5 109.35 218.75 1750 850 1750 1750
VCM-HCl SLNs 15.62 250 500 NA 15.62 500 500 NA
VCM-LA2 SLNs 62.5 31.25 31.25 31.25 15.62 15.62 15.62 15.62

an = 3.
NA, no activity.
Reproduced from Kalhapure et al.135 with permission from Elsevier Science Ltd.

most of the antibacterial studies are carried out in vitro and
therefore, in future, there is a need to focus studies on in vivo
performance of reported and newly developed antibiotic PNPs.

Solid Lipid Nanoparticles

Solid lipid nanoparticles, introduced in the early 1990s, have
gained signiÞcant popularity as an alternative drug delivery
colloidal system144 because of their advantages. These include
using biocompatible materials, being easy to scale up prepara-
tion techniques, stability during storage,145,146 high entrapment
of lipophilic drugs into their lipophilic core,147,148 protection of
labile drugs against degradation,149Ð152 improved body/tissue
tolerance, and less stringent regulatory requirements because
of utilization of physiologically acceptable lipids.145,146 SLNs
typically have mean diameters ranging in size from 50 to
1000 nm148 and can be delivered by almost all routes for var-
ious disease conditions.153 Avoiding organic solvents and the
feasibility of production on a larger scale are two main advan-
tages of SLNs. They are uniquely attractive in that they dis-
play the advantages of conventional NPs while simultaneously
eliminating some of their reported drawbacks, such as the high
cost of polymers and phospholipids used for producing PNPs
and liposomes, the need to maintain drug bioactivity through-
out the conjugation scheme if the drug is being conjugated to
PNPs,154 rapid leakage of water-soluble drugs, and poor storage
stability.105

A high melting point lipid composition forms the core of
SLNs. The core remains in the solid state at room and body
temperature and is coated with amphiphilic surfactants that
form the outer shell.148 Many solid lipids, such as stearic acid,155

palmitic acid,156 glycerol behenate (Compritol 888 ATO),157 and
glyceryl monostearate158 have been used in preparing SLNs.
Similarly, various surfactants, such as poloxamer 188, 182,
407, 908,159Ð161 tween 20, 80,162,163 and solutol HS 15164 have
been reported to stabilize the SLN formulation. Recently, novel
surfactants, such as polyhydroxy surfactants165 and an oleic
acid based bicephalous dianionic surfactant,166 have also been
found as potential stabilizers for SLN preparations. A compre-
hensive list of lipids and surfactants used in SLN formulation
development can be found elsewhere in the literature.167,168

High-pressure homogenization and microemulsion technique
are the two main techniques employed for the production of
SLNs. However, many other methods such as the ultrasound
and solvent-based techniques have been used to promote cost-
effective and simpler ways of production.169

Although SLNs have shown great therapeutic potential
for delivering drugs with diverse pharmacological activities,
the development history of their antibiotic delivery system is
shorter. A literature search for this paper revealed that there
are fewer SLN-based antibiotic delivery systems compared with
other drug classes.135 SLN-based antibiotic formulations with
their properties (size and zeta potential), microorganism/s used
to assess antibacterial activity, and main outcomes of the study
are summarized chronologically in Table 4. The data indicate
that SLNs are being exploited for overcoming absorption in-
hibitors, facilitating transport across membrane barriers, mod-
ifying drug release proÞles, increasing bioavailability, and en-
hancing and prolonging antibacterial activity.

Tobramycin, which is administered via the oral route, is used
against P. aeruginosa infections.176 Its poor absorption rate is
because of active exportation of the drug from the cells via
P-glycoproteins (P-gp) and ATP-dependent drug efßux pumps.
This poor intestinal absorption was overcome by formulating
tobramycin-loaded SLNs, which signiÞcantly suppressed the
P-gp efßux pump by penetrating the intestinal linings through
endocytosis rather than passive diffusion. SLNs removed from
drug efßux pumps released the drug inside the cells after being
internalized through endocytosis. Achievements of tobramycin-
loaded SLNs were modiÞed pharmacokinetics, low amounts
taken up by the kidneys and high lung concentration following
intravenous administration by the duodenal and intravenous
route.170 They reported that aminoglycosides have low perme-
ability across the bloodÐbrain barrier (BBB) when adminis-
tered via the parenteral route. In a subsequent paper, these au-
thors showed that in tissue distribution studies, no tobramycin
could be detected in the brain after an i.v. solution, whereas it
was detected in the brain, with SLN indicating passage through
the BBB.171 This important study with an antibiotic, although
not having antibacterial activity studies, conÞrmed the use of
SLNs to overcome the P-gp efßux pump and pass through the
BBB when loaded with an antibiotic.

Other studies have conÞrmed their abilities to provide sus-
tained drug release and prolonged antibacterial activity. Jain
and Banerjee172 developed a SLN-based single dose nanode-
livery system for ciproßoxacin that provided a prolonged re-
lease of the antibiotic in a controlled manner. Their study
revealed that SLNs of ciproßoxacin were more promising
than other ciproßoxacin nanodelivery systems that have been
formulated.172 Similarly, enhancement of in vitro and in vivo
antimicrobial activity of tilmicosin against S. aureus was
achieved by encapsulating it into SLNs that were formulated
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using hydrogenated castor oil.174 This research group also pre-
pared norßoxacin-loaded SLNs as a novel formulation and stud-
ied different aspects of the formulation such as stability, in vitro
release, in vitro antibacterial activity, and in vivo efÞcacy in
mice against E. coli. SLNs were found to be stable for up to
9 months at 4◦C, and the drug release was slower, lasting for
48 h. Although the SLN formulation was initially less effec-
tive within 24 h, it was interestingly much more effective than
the bare norßoxacin during in vitro antibacterial evaluations at
all other time points up to 144 h, conÞrming sustained drug re-
lease. For in vivo therapeutic efÞcacy, treatment was performed
2 h postintraperitoneal infection of mice with E. coli. Enhanced
efÞcacy was observed for SLNs, which was indicated by de-
creased bacteria in the spleen and kidney homogenates and a
high proportion of survivors, which was probably because of the
high bioavailability of drugs.175

The role of fatty acids in enhancing SLN preparations with
antibiotics is being increasingly recognized. Saturated carbon
fatty acids are commonly used as a lipid matrix to prepare
SLNs. As they vary in terms of carbon chain length and prop-
erties, Xie and coworkers173 investigated the inßuence of fatty
acids on the properties and pharmacokinetics of enroßoxacin-
loaded SLNs. It was found that stearic acid produced SLNs with
the highest encapsulation and had a greater zeta potential but
larger particle size and polydispersity index than palmitic acid
and tetradecanoic acid. Although in in vitro studies the three
developed formulations exhibited similar antibacterial activity
as that of native enroßoxacin, in in vivo studies, it was found
that the bioavailability of tetradecanoic, palmitic, and stearic
acid SLNs increased 6.79-, 3.56-, and 2.39-fold, whereas the
mean residence time of the drug was extended from 10.60 to
180.36, 46.26, and 19.09 h, respectively.173 This study therefore
highlighted the signiÞcant effects of the fatty acid properties as
the lipid matrix on the performance of SLNs. In a more recent
study, our group exploited the diverse advantages of fatty acids
by including them as a counter ion to form an ion pair with
vancomycin, instead of being the lipid core itself, as was per-
formed in the previous study. A Compritol-based SLN formu-
lation (VCM-LA2 SLNs) of vancomycin and linoleic acid using
an ion pairing mechanism135 was prepared. Our goal was to de-
velop a nanoantibiotic system acting by multiple simultaneous
mechanisms of actions, as it would be difÞcult for bacteria to
develop resistance to such a system, this requiring multiple si-
multaneous mutations in the same microbial cell.35,177 Linoleic
acid served two purposes in the formulation; (1) it acted as a
contra ion for vancomycin to form an ion pair, and (2) being an
antibacterial, it served as a nondrug antibacterial agent in the
formulation. The particle size and polydispersity index of the
formulated VCM-LA2 SLNs were 102.7 ± 1.01 nm and 0.225 ±
0.02, respectively. Zeta potential was −38.8 ± 2.1 mV, conÞrm-
ing the high stability of VCM-LA2 SLNs. The study revealed
greater encapsulation of vancomycin in SLNs, and enhanced
and extended period of antibacterial activity of the novel formu-
lation against MRSA and S. aureus. Encapsulation efÞciencies
were 16.81 ± 3.64 and 70.73 ± 5.96 for vancomycin SLN and the
developed VCM-LA2 SLNs, respectively. Although at the initial
18 h testing time, bare vancomycin showed highest activity (low
MIC) against both S. Aureus and MRSA (15.62 and 3.91 :g/mL,
respectively), at subsequent time intervals (36, 54, and 72 h),
VCM-LA2 SLNs was the only active formulation against both
the strains exhibiting MICs of 31.25 and 15.62 :g/mL, respec-
tively, against S. aureus and MRSA (Table 5).135 The strategy

of coencapsulation of a fatty acid with an antibiotic in SLNs
therefore proved successful in enhancing activity against sen-
sitive and resistant strains. Investigating the effect of other
fatty acids of different carbon chain lengths on drug loading
and antibacterial activity, as well as on molecular modeling to
explain their association with the SLN, will be an interesting
study to guide their selection for future optimal formulations.

Although SLNs are emerging as a lipidic delivery system of
choice for nanodrug delivery, this review shows that despite its
advantages, this nanodelivery system has not been exploited
to a great extent for antibiotics. One of the reasons might be
the hydrophilic nature of most antibiotics used clinically, which
will have low entrapment efÞciency and loading capacity in the
hydrophobic lipids. Recent studies do indicate that this problem
could be surpassed by the use of techniques such as ion pairing
and/or conjugation mechanisms. Detailed characterization us-
ing techniques such as atomic force microscopy, confocal laser
scanning microscopy, and ßow cytometry to elucidate the mech-
anisms involved in antibacterial activity with these systems
should also be considered.

Lipid–Polymer Hybrid Nanoparticles

Liposomes and PNPs appear to be the most explored nanopar-
ticulate system for antibiotics thus far. To overcome some of
the reported limitations associated with these systems though,
LPHNs have been more recently introduced.32 LPHNs are novel
integrated systems in which the structural and architectural
advantages of a polymer core and the biomimetic properties
of lipids are combined to generate a delivery system that is
superior. LPHNs are therefore solid, nanosized particles com-
posed of at least two components: lipid and polymer.178 In a
well-designed LPHN, the polymeric core serves to entrap either
water- or oil-soluble drugs and to provide a robust structure,
whereas the external lipid coat serves as a biocompatible shield.
The latter also functions as a template for surface modiÞcation
and further acts as a barrier to minimize the burst release of
water-soluble drugs.179

A number of methods have been reported to produce
LPHNs, namely, multiple step procedure involving coincuba-
tion of separately prepared NPs and lipid vesicles180,181; a
single-step nanoprecipitation technique32,182; a method using
emulsiÞcation with lipids replacing traditional surfactants183;
a sonication method182; and a double-emulsiÞcation-solvent-
evaporation technique.184 A recent review on LPHNs provides
details on materials and methods used for preparing, identi-
fying the physicochemical characteristics, immunocompatibil-
ity, and their applications in drug delivery. LPHNs have to
date been studied most extensively for delivering anticancer
drugs.178 It is only recently since 2011 that these LPHNs pos-
sessing characteristics of both liposomes and PNPs being ex-
plored for their beneÞts in antibiotic delivery.

Table 5 provides a summary of research undertaken so far
on the preparation of antibiotic-loaded LPHNs, with four of
the Þve papers emanate from the same research group. In the
earliest reported antibiotic-loaded LPHN study, three ßuoro-
quinolone antibiotics, ciproßoxacin, levoßoxacin, and oßoxacin
were entrapped in LPHNs using PLGA as a polymer and
PC as a lipid component by a double-emulsiÞcation-solvent-
evaporation method in pursuit of developing nanodrug de-
livery system for treating pulmonary infections. The study
also explored the factors affecting encapsulation efÞciency and
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Table 5. Summary of Studies Undertaken to Date with LPHNs and Antibiotics

Nature of Polymer and
Antibiotic Antibiotic Lipid Main Findings Characterization Studies Reference

Levoßoxacin
Oßoxacin
Ciproßoxacin
Tobramycin

Hydrophobic
Hydrophobic
Hydrophilic
Hydrophilic

PLGA and PC � Ionicity of the drug and lipid is important
with regard to LPHNs preparation.

� Drug lipophilicity and aqueous solubility
affect drug loading and drug release; more
lipophilic drug has higher drug loading and
sustained release proÞle.

� LPHNs are larger in size, zeta potential,
encapsulation, and drug loading compared
with its nonhybrid counterpart.

� Incorporation of D-"-tocopheryl polyethylene
glycol 1000 succinate stabilized the
formulation.

� Sizes between 120 and 420 nm with the
highest encapsulation of 25% with oßoxacin.

� Particle size
� Zeta potential
� Entrapment efÞciency
� Drug loading
� In vitro drug release
� SEM

Ref. 179

Levoßoxacin Hydrophobic PLGA and PC � Particle size of LPHNs ranged from 240 to
420 nm with a zeta potential of
approximately 26 mV, encapsulation
efÞciency ranging from 19% to 21% and drug
loading of 2.3%Ð2.4% (w/w).

� LPHNs exhibited a higher antibacterial
efÞcacy against P. aeruginosa bioÞlm cells,
however, not against planktonic cells.

� Possibly, the presence of lipid may have
enhanced the antibiotic diffusion into the
bioÞlm matrix resulting in more effective
bioÞlm cell eradication.

� Particle size and
zeta potential

� Entrapment efÞciency
� Drug loading
� In vitro release studies
� SEM
� BioÞlm susceptibility

testing

Ref. 184

Levoßoxacin
Ciproßoxacin
Oßoxacin
Calcein

Hydrophobic
Hydrophilic
Hydrophobic
Hydrophilic

PLGA,
rhamnolipid
and PC

� Particle size ranged from 280 to 400 nm with
a zeta potential range of (−)30 Ð (+)10 mV
and a drug loading of 0.5%Ð2.3% (w/w)

� Encapsulation ranged from 5% to 55%
depending on the BCS class of the drug.

� A rhamnolipid-triggered release was
observed with calcein, however, not with BCS
class I drugs because of their high lipid
membrane permeability.

� The rhamnolipid-triggered release capability
of LPHNs will enable targeted drug release in
the vicinity of bioÞlm colonies and therefore
improved antibacterial efÞcacy is expected.

� Particle size
� Zeta potential
� Entrapment efÞciency
� In vitro drug release
� SEM

Ref. 185

Levoßoxacin Hydrophobic PLGA and lecithin � LPHNs exhibited a size of ≈420 ± 30 nm
with zeta potential in the range of (−) 25Ð30
mV, encapsulation efÞciency of ≈19% and
drug loading of ≈2.0% (w/w).

� Spray drying produced dimpled hollow
spherical nano-aggregates whereas spray
freeze drying produced large spherical porous
nano-aggregates.

� PVA was better than mannitol in facilitating
nano-aggregate reconstitution.

� Nano-aggregates produced by spray freeze
drying were superior to those produced by
spray drying.

� Particle Size and
distribution

� Zeta potential
� Entrapment efÞciency
� Drug loading
� Powder

characterizations

Ref. 186

Clindamycin
phosphate

Hydrophilic Stearic acid,
dextran sulfate
and sodium
alginate

� LPHNs ranged from 400 to 900 nm.
� Particle size was not affected by polymer type

or the amount of drug, polymer, and
surfactant.

� Polymer dextran sulfate had higher degree
loading and drug release than sodium
alginate.

� Particle size and
distribution

� Entrapment EfÞciency
� Drug loading
� In vitro drug release

studies
� SEM

Ref. 187
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stability of LPHNs.179 This paper clearly formed the foundation
for subsequent antibiotic-loaded LPHN systems, as it high-
lighted the importance of lipid and drug ionicity for forming
the NPs and drug lipophilicity, as well as aqueous solubility
on drug entrapment and release proÞles. The poor stability of
the LPHNs in this study was overcome by the addition of d-"-
tocopheryl PEG 1000 succinate as a solubilizer. The low drug
encapsulation and inadequate stability reported in this paper
reßect the challenges with this delivery system during their
preparation. Strategies such as choice of solvents, pH of aque-
ous phase, and counter ion complexation can be considered for
enhancing drug incorporation, whereas other hydrophilic sub-
stances can be considered to modify the surface to promote
stability during storage and in vivo. Having established criti-
cal factors for successfully forming LPHNs, these authors then
proceeded to investigate the antibioÞlm efÞcacy of the LPHNs
against P. aeruginosa preparing LPHNs containing PLGA, PC,
and levoßoxacin. LPHNs, both in suspension and powder form,
displayed higher antimicrobial activity against 1-day-old P.
aeruginosa bioÞlm cells than nonhybrid NPs, but were less ef-
fective against planktonic cells.184 To further enhance the per-
formance of these LPHNs as antibioÞlm drug carriers, the tar-
get release of the encapsulated drug at bioÞlm colonies needed
to be demonstrated. In another study, they investigated the
trigger release properties of the LPHNs in response to rham-
nolipids that are present in bioÞlm colonies of P. aeruginosa by
using various biopharmaceutical classiÞcation system (BCS)
antibiotic drugs as a model.185 In the absence of the triggering
agent (rhamnolipid), both levoßoxacin and oßoxacin (BCS class
I model drugs) were readily released from the LPHNs at rapid
rates. The percentage of levoßoxacin and oßoxacin released in
6 h were 70% and 90%, respectively. These fast release rates
were attributed to their free solubility in water and high lipid
membrane permeabilities, conÞrming that the presence of the
lipid coat did not deter their outward diffusion. In the ab-
sence of the triggering agent, calcein (BCS class III model
drug) was eventually released, but only in minimal amount
from the LPHNs, which was indicated by a 20% release of the
encapsulated calcein after 2.5 h. This initial calcein release
was likely because of the dissolution of nonencapsulated cal-
cein present on the NP surfaces. Upon the addition of rhamno-
lipid, calcein was immediately released, with almost 60% being
released within the Þrst 5 min. This study therefore showed
that rhamnolipid-triggered release may enable targeted release
in the vicinity of bioÞlm colonies. Although previous studies
mainly focused on formulation variables, the focus of another
paper by this group was on optimizing manufacturing tech-
nologies for these LPHNs. They compared spray-drying (hol-
low dimpled spherical nanoaggregates) and spray freeze-drying
(large spherical porous nanoaggregates) techniques to produce
inhalable dry powder forms of LPHNs. It was found that both
methods were able to produce inhalable dry powders of the
LPHNs in the form of microscale aggregates.186 Nanoaggre-
gates produced by the spray freeze-drying technique was supe-
rior to those produced by spray drying.

The most recent paper by Abbaspour et al.187 used sodium
alginate and dextran sulfate as polymers and stearic acid as the
lipid to prepare clindamycin-loaded LPHNs. They used a mul-
tilevel factorial design to Þnd a mathematical relationship be-
tween the amount of polymers and the amount of surfactants on
drug-loading efÞciencies. They attributed higher drug-loading
efÞciencies with dextran sulfate, rather than to sodium alginate

to ionic interactions between the anion in dextran sulfate and
the cationic clindamycin. Although it is clearly useful to use
an experimental design, this study could have been strength-
ened if the generated mathematical model had been validated.
Furthermore, although the authors indicate the undertaking
of scanning electron microscope (SEM) analysis of the LPHNs,
which conÞrmed their morphology, no SEM images were pro-
vided in the paper.

These studies with antibiotic-loaded LPHNs clearly con-
Þrm their potential as an effective nanosystem for antibiotics.
Table 5 shows that to date, PLGAs have been mainly used as
the polymer, with the basic characterization in terms of size,
polydispersity index, in vitro release, and surface morphology
having been studied. Only antibacterial activity for bioÞlm sus-
ceptibility testing has been assessed. In-depth physicochemi-
cal/mechanical characterization studies, including in vitro and
in vivo bacterial activities against a range of organisms, are
therefore essential for formulation optimization. The reported
advantages of this delivery system necessitate investigating
various classes of antibiotics with different polymers and lipids
to identify optimal formulation excipients. In addition to an-
tibioÞlm therapy, other applications that can be studied include
antibacterial activity against sensitive and resistant bacterial
strains for infections as well as macrophages infection studies.
Mechanistic studies to understand the complex self-assembly
of the drug, lipid, and polymer into these LPHN constructs will
also be useful. These studies, together with tuning the lipid
and polymer composition and employing surface strategies, will
certainly result in LPHNs emerging as novel effective hybrid
nanodelivery systems. This will provide new platform for de-
veloping nanoantibiotics with enhanced performance in terms
of high drug (both hydrophilic and lipophilic) loading, targeted
delivery, as well as sustained and prolonged activity.

Dendrimeric Nanostructures

Dendrimers are homogenous, well-deÞned monodisperse
structures. They consists of tree-like structures in nano-
sized form and are radially symmetric molecules.188 These
monodisperse nanosized polymers are shaped like the head
of a tree, and exploit two traits, that is, globular structure
and polyvalency, which is found in many naturally occur-
ring systems.189Ð194 Tomalia et al.195 disclosed the synthesis
of Þrst family of dendrimers, known as poly(amido amine)
(PAMAM), resulting in PAMAM becoming one of the most
popular dendrimers. Since their disclosure, a variety of den-
drimers have been synthesized and evaluated for various
applications in chemistry, nanotechnology, biomedicine, and
pharmaceutical sciences.17,196Ð201 Depending on the chemical
moieties and types of linkages present, dendrimers are classi-
Þed into four types: glycodendrimers,202 peptide dendrimers,203

janus dendrimers,204,205 and metallodendrimers.206 Dendrimers
have gained increasing interest among drug delivery sci-
entists because of their nanosize, globular shape, deriva-
tizable peripheral functionality, multivalency, tunable inner
cavities, and physicochemical properties that resemble those
of biomolecules. Their applications in drug delivery technology
include: as vehicles,207 solubility enhancers for poorly soluble
drugs,208 controlled release,209 targeted delivery,210,211 prodrug
preparation,212Ð214 HIV prophylaxis,215 gene therapy,216,217 as
vaccines,218 in diagnostics,219 and as drugs.220
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Table 6. Dendrimers with Their Role in Antibiotic Drug Delivery

Dendrimer Drug Role of Dendrimer Reference

PAMAM Nadißoxacin and prulißoxacin Drug carrier to enhance solubility without
affecting antibacterial activity.

Ref. 224

PPO-PAMAM Triclosan Micellar carrier with high drug loading and
controlled release for hydrophobic drug.

Ref. 225

PAMAM Sulfamethoxazole Solubility enhancer to obtain increased
antimicrobial activity with sustained release.

Ref. 226

PAMAM Erythromycin Conjugation with a drug to act as a carrier for
sustained and targeted intracellular delivery
in periprosthetic inßammation.

Ref. 227

PAMAM Azithromycin Conjugation with a drug to act as a carrier for
efÞcient intracellular delivery to address
chlamydia infections.

Ref. 228

PAMAM Erythromycin and tobramycin No speciÞc role. Study was conducted to
investigate effect of dendrimers on
antibacterial activity of two drugs with
different solubility proÞle.

Ref. 229

PAMAM Silver sulfadiazine Solubility enhancer forming a NP system with
enhanced antimicrobial properties for the
topical treatment of burn-wound infections.

Ref. 230

PAMAM Vancomycin Scaffold for vancomycin to form drugÐdendrimer
conjugate with high-binding avidity to
bacterial cell wall.

Ref. 231

PPI Nadißoxacin Coadministration with antibiotic for
enhancement of antibacterial activity.

Ref. 232

PPI Ciproßoxacin Coadministration with antibiotic for reducing
the required dose of drug for antibacterial
activity.

Ref. 233

HPO hexadentate-based
dendrimeric chelators

Norßoxacin Combination agent with antibiotic for
synergistic bactericidal effect.

Ref. 234

The literature reveals that dendrimers themselves have
been found to be effective antibacterials, which prompted many
scientists to focus on synthesizing antibacterial dendrimers.
The details of these antibacterial dendrimers are out of the
scope of this review and can be found elsewhere.221Ð223 The fol-
lowing sections, therefore, only highlights the use of dendrimers
to enhance the properties of antibiotics via nanostructures.
Table 6 is a chronological summary of studies where den-
drimeric materials have been used to prepare antibiotic-loaded
nanostructures. These antibiotic-loaded dendrimeric nanos-
tructures have been exploited for enhancing drug solubility
and antibacterial activity, for prolonging sustained drug re-
lease, and to prepare various nanostructures, such as micelles
and conjugates, for antibiotic delivery.

Because of poor aqueous solubility of quinolone antibacte-
rials, there are difÞculties in formulating their liquid dosage
forms, consequently restricting their use in topical formula-
tions. To overcome this problem, Cheng et al.224 investigated
the potential of G3-G5 PAMAM dendrimers as biocompati-
ble carriers for an improvement in the aqueous solubility of
nadißoxacin and prulißoxacin. They observed that the sol-
ubility of quinolones was greater in higher generation den-
drimers than in lower ones. Encapsulation/complexation of
quinolones into/with dendrimers resulted in excellent solubil-
ity enhancement and a similar antibacterial activity as that of
pure drugs.224 Similarly, sulfamethoxazole, which causes prob-
lems in its clinical applications because of its poor solubility,
has been investigated for its solubility, in vitro drug release, and
antibacterial activity using PAMAM dendrimers with ethylene-
diamine core.226 The results of this investigation revealed that

there was a 40-fold solubility increase in G3 PAMAM dendrimer
solutions (10 mg/mL) as compared with the solubility in double-
distilled water. The release of drug from dendrimer was also
sustained, with the dendrimer drug being more potent against
E. coli than free sulfamethoxazole (almost fourfold to eightfold
increase in antibacterial activity).226 A recent study indicated
that PAMAM dendrimer complexes with silver sulfadiazine, a
poorly soluble drug, and silver could be employed to achieve a
bottom-up approach to synthesize and enhance the solubility of
highly soluble silver sulfadiazine NPs and create a nanosystem
with enhanced antimicrobial properties.230

The amphiphilic linear dendritic block copolymer composed
of poly(propylene oxide) (hydrophobic core), and PAMAM den-
drimer (outer corona), was prepared and triclosan, a hydropho-
bic drug, encapsulated in layer-by-layer Þlms formed from mi-
celles of the dendritic polymer showed release times over a
period of several weeks. Furthermore, a Kirby Bauer test on
S. aureus conÞrmed that the released drug was still active to
ensure growth inhibition of S. aureus.225

Targeted intracellular delivery has also been a goal for den-
drimeric nanostructures of antibiotics, with erythromycin, a
macrolide antibiotic, being conjugated with bifunctional PA-
MAM dendrimer (G4-OH-Link-NH2), which resulted in its sus-
tained release. This study further focused on intracellular deliv-
ery studies for erythromycin as an anti-inßammatory agent to
manage periprosthetic inßammation. It has been also observed
that the synthesized conjugate retained its antibacterial activ-
ity, its antibacterial activity being similar to free erythromycin
against S. aureus at different concentrations.227 The lack of
detailed studies on antibacterial activity of conjugate was
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addressed in 2011 by Mishra et al.,228 who synthesized conju-
gate of azithromycin, a macrolide antibiotic, with G4-PAMAM
dendrimer, to obtain dendrimerÐdrug conjugate nanodevice
for treating Chlamydia trachomatis infections. This study ex-
plored the potential of G4 PAMAM dendrimers as intracellu-
lar drug delivery vehicles into chlamydial inclusions. Approx-
imately 90% of the drug was released from the azithromycinÐ
PAMAM conjugate over a 16 h period and azithromycin read-
ily entered the Chlamydia-infected HEp-2 cells and inclusions.
When added at the time of infection, the conjugate was signif-
icantly superior to free drugs in the prevention of productive
infections in cells. In addition, the conjugate was found to be
better in decreasing the size and number of inclusions after
adding the conjugate at either 24 or 48 h post infection. This
study emphasized the Þnding that even if the organism is in
the persistent form, dendrimers can efÞciently deliver drugs to
growing intracellular C. trachomatis.228

Recent Þndings suggest that even coadministration of an-
tibiotic with a dendrimer results in lowering the dose of
drug required for antibacterial action.232,233 This was proved
by coadministering nadißoxacin232 and ciproßoxacin233 with
G4 PPI dendrimer. G4 PPI dendrimers and their maltose-
modiÞed derivatives exhibited enhanced antibacterial activ-
ity of nadißoxacin against Gram-negative E. coli ATCC 25922,
P. aeruginosa ATCC, 15442 and Proteus hauseri ATCC 13315
without any harmful effect on eukaryotic cells.232 Similarly,
coadministration of ciproßoxacin with PPI dendrimers resulted
in a formulation with improved antibacterial properties of a
ciproßoxacin at lower concentrations against Gram-positive S.
aureus ATCC 6538 and Gram-negative E. coli ATCC 25922.
These Þndings are signiÞcant because of drug resistance as a
result of the extensive use of antibiotics.233 However, a study
on the effect of G2 and G3 PAMAM dendrimers on the antibac-
terial activity of poorly water-soluble erythromycin and freely
water-soluble tobramycin disclosed that though solubility of
erythromycin was increased by seven to eightfold in PAMAM
dendrimers, there was only a minimal effect on its antimicro-
bial activity.229 A twofold and fourfold decrease in MBC val-
ues of erythromycin was observed for hydroxyl-terminated and
amine-terminated G3 PAMAM, respectively. Furthermore, it
was found that there was no inßuence of PAMAM on the antimi-
crobial activity of tobramycin. Antibacterial activity studies in
this investigation were performed on S. aureus ATCC 29213,
E. faecalis ATCC 29212, E. coli ATCC 25922, P. aeruginosa
ATCC 27853, Klebsiella pneumonia ATCC 700603, E. cloacae
ATCC 700323, Acinetobacter baumannii LMG 1025, and clin-
ical strains of S. aureus and E. Faecalis. 229 The differences
among these studies show the inßuence of dendrimer type in
terms of core, branching element, and dendrimer generation on
antibiotic activity.

A dendrimer was recently used to conjugate vancomycin to
increase the drug cell wall avidity,231 this being active against
Gram-positive bacteria because of its strong attraction to a cell
wall precursor terminated with a (D)-Ala-(D)-Ala peptide residue
(Ala-alanine).235Ð237 However, it is not active against VRE, as
it displays a weak afÞnity for the (D)-Ala-(D)-Lac (Lac-lactate)
residue present on its surface.238 Vancomycin-conjugated G5
PAMAM dendrimer series have been synthesized and their
avidity to (D)-Ala-(D)-Ala or (D)-Ala-(D)-Lac cell wall precursor
was established using surface plasmon resonance studies. The
nanoconjugates exhibited signiÞcant enhancement in avidity
in the tested cell wall models. As compared with free van-

comycin, the nanoconjugate showed a greater increase in bind-
ing by four to Þve orders of magnitude. As a synthetic polymer,
NP, with a size of 5.4 nm G5 PAMAM dendrimer, served as
a platform for conjugating multiple copies of vancomycin on
its structure, resulting in high-avidity binding on the bacterial
surface. Iron oxide magnetic nanodevices were prepared using
the conjugates with high afÞnity to the bacterial surface to
investigate the possibility of combining the bacteria-targeting
strategy with the speed and convenience delivered by magnetic
isolation technology. These dendrimer-covered iron oxide mag-
netic NPs demonstrated a more rapid sequesteration of bacte-
rial cell walls compared with iron oxide NPs. The study proved
the concept that bacteria-targeted dendrimers might be used
for fabrication of magnetic NPs, with the resulting formulation
opening a convenient route for bacterial magnetic isolation and
enumeration.231

Most recently, synergistic in vitro bactericidal effect against
Gram-positive (B. subtilis and S. aureus) and Gram-negative
(E. coli and P. aeruginosa) bacteria has been reported for nor-
ßoxacin in combination with 3-hydroxypyridin-4-one (HPO)
hexadentate-based dendrimeric chelator. Owing to their large
molecular weight, dendrimeric chelators penetrate membranes
slowly and have the beneÞt of low toxicity compared to smaller
molecules. The authors therefore proposed that a combined for-
mulation of HPO hexadentate-based dendrimeric chelator and
quinolone antibiotic can have medical potential, principally in
treating external infections including wounds and ulcers.234

The studies on dendrimer-mediated nanodelivery of an-
tibiotics are limited, although drugs from several therapeu-
tic categories have been studied for their delivery, either by
conjugation, entrapment, or encapsulation to enhance their
performance in terms of release pattern, solubility, and phar-
macological action. This lack in dendrimer-mediated delivery
of antibiotics may be attributed to the fact that the research
focused mainly on inventing new dendrimers with their an-
tibacterial activity. Although it is interesting to obtain novel
dendritic antibacterial dendrimers that may evolve as poten-
tial drug candidates in future, it should be noted that US
FDA approval of these new chemical entities as antibiotics is
a long process. In the present situation, there is an urgent
need developing novel nanoformulations using currently exist-
ing biocompatible dendrimers and antibiotic drugs in order to
combat emerging resistant strains. The review also revealed
that PAMAMs are the mostly studied dendrimers for antibi-
otic delivery, and that most of the studies have focused on in
vitro antibacterial activity. Therefore, other novel biocompat-
ible dendrimers that have already been reported in the lit-
erature should also be exploited for effective nanodelivery of
antibiotics, and more emphasis should be given to in vivo per-
formances of these nanosystems in order to introduce a den-
drimeric nanoantibiotic in clinical trials.

Nanoemulsions

Nanoemulsions can be described as heterogeneous sys-
tems comprising dispersed oil droplets stabilized by sur-
factant molecules in an aqueous media. Their nanome-
ter size makes them kinetically stable during storage
over long-term periods.239,240 NEs display many attractive
biological and pharmaceutical characteristics including
biodegradability, biocompatibility, ease of preparation, and
physical stability.241 Because of their interesting properties,
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recently, increasing attention has been focused on NE-based
drug delivery systems.242 NEs can be effectively produced
by high-pressure homogenization,243 microßuidization,244

ultrasonication,245 and phase inversion.246

Nanoemulsions containing antibiotics have been investi-
gated by several researchers for their bactericidal activity, with
Penicillin G containing injectable NE being developed and stud-
ied for its properties.241 NE has been proven to be a stable
formulation for intravenous delivering rifampicin.247 A water-
in-oil emulsion technique has been established for preparing
NE particles of chitosan/heparin with better encapsulation of
amoxicillin. The formulated amoxicillin NE showed controlled
release and localization at intracellular spaces and in the cell
cytoplasm to the site of H. pylori infections, with a signiÞcant
increase in the growth inhibition.248 An oil-in-water submicron
emulsion, with globule size of 278 ± 12 nm and prepared by
incorporating hydrophobic ion-pair complexes of ciproßoxacin
with sodium deoxycholate in the core, showed high entrapment
efÞciency, noncytotoxicity to J774 macrophage cells, and en-
hancement in antimicrobial efÞcacy against E. coli, S. aureus,
and P. aeruginosa in vitro.249 Studies so far have focused on
the role of NEs to enhance antibiotic activity, indicating that
their applications as a delivery system to site-speciÞc delivery,
sustained, and prolonged release could be further exploited. Be-
sides these, NEs that have been formulated using different oils
and are devoid of any antibiotic drug have also been found to
be effective antibacterials, for example, peppermint oil NE,250

cinnamon oil NE,245 eucalyptus oil NE.251 Overall, results of
these studies suggest that antibacterial activity of bio-based
oils could be enhanced by dispensing them into nano form.

Polymeric Micelles

Self-assembling colloidal systems possessing a core/shell struc-
ture (size < 200 nm) formed by assembly of block or graft am-
phiphilic block copolymers are known as polymeric micelles
(PMs)252,253 and are frequently based on copolymers having
an AB diblock structure.254,255 The hydrophobic core facilitates
the solubilization of hydrophobic drugs via hydrogen bond-
ing and/or hydrophobic interaction and the hydrophilic shell
remains exposed to the external environment. This kind of
arrangement helps in protecting the bioactive against degra-
dation and also facilitates escape from the RES, thereby ex-
hibiting prolonged systemic circulation.256,257

A few studies have been reported so far for antibiotic deliv-
ery via PMs. In one such report, cloxacillin sodium, an anionic
drug, was incorporated into a protonated polyvinyl pyridine
(PVP) block of polystyrene-b-2-vinyl pyridine-b-ethylene oxide
(PS-PVP-PEO) micelles. The experiment was designed to in-
vestigate the possibility of the micelle being an antibiotic drug
carrier. This study used zeta potential measurements, dynamic
light scattering, and ßuorescence spectroscopy speciÞcally, and
proved that cloxacillin could be efÞciently incorporated into
69 nm-sized micelles prepared from PS-PVP-PEO because of
electrostatic interaction between the protonated PVP block and
anionic drug.258 Although the release kinetics were identiÞed,
this study would have been strengthened by including at least
transmission electron microscope image to conÞrm the appear-
ance and morphology of the micelles, drug encapsulation ef-
Þciencies, as well as antibacterial activity, as encapsulation
of the drug molecule was not unexpected. PMs appear to be
very promising ocular drug delivery systems because of their

properties, such as high kinetic and thermodynamic stability,
sustained drug release proÞles, and the ability to act as an
absorption promoter in order to enhance drug permeability
across ocular epithelia.253,259 Considering this fact, ocular de-
livery of netilmicin sulfate was studied by three copolymers
of polyhydroxyethyl aspartamide. In vitro permeability studies
with primary cultured rabbit conjuctival and corneal epithelial
cells demonstrated that micelles of two of the polymers pro-
vided greater drug permeation across the latter compared with
a simple drug solution or suspension.260 DifÞculty in transport-
ing antibiotics through the BBB has also been overcome by
PMs prepared from cholesterol-conjugated PEG and anchored
with transcript or activator TAT peptide (TAT-PEG-b-Col).
The ciproßoxacin-loaded TAT-PEG-b-Col micelles smaller than
180 nm showed sustained antibacterial activity against B. Sub-
tilis and E. Coli, and in vivo animal tests conÞrmed that the
formulation can pass the BBB. This study therefore highlighted
the applicability of these micelles for developing nanodelivery
systems to treat brain infections.261 The extensive in vitro and
in vivo characterization of this PM formulation, in terms of
size, zeta potential, morphology, in vitro release, antibacterial
activity, cellular uptake, cytoxicity, and in vivo animal studies
with male rats, is in contrast to the inadequately characterized
system of PS-PVP-PEO micelles258 mentioned earlier.

Increasing attention is being focused on polymers that are
inherently antimicrobial because of their wide applications in
the health care of both humans and animals.262Ð265 The advan-
tages of antimicrobial polymers are their effective inhibition of
bacterial growth without the low-molecular-weight toxic chem-
icals being released to the environment,265 as well as no re-
sistance development by common bacterial strains such as E.
coli and S. aureus.266 This has stimulated researchers to de-
velop PMs devoid of any drug as antibacterial agents, such
as PMs containing quaternary ammonium compound poly[2-
(tert-butylamino)ethyl methacrylate] (PTBAEMA or PTA).267

On the basis of these Þndings about PTA, Yuan et al.265

reported synthesis of two triblock antibacterial polymers
consisting of poly(ethylene oxide (PEO)-PCL 1 and PTA (PEO-
b-PCL-b-PTA) 2 polymers. PEO was used to enhance the
biocompatibilty and colloidal stability of the self-assembled mi-
celles in aqueous solution, whereas PTA was used for interact-
ing with the microbial cell wall/membrane. Both these poly-
mers were able to form micelles in THF/water, with a mean
diameter of 18 ± 3 nm for polymer 1 and 25 ± 4 nm for poly-
mer 2. The MBC for polymer 1 was 0.30 mM and 0.15 mM
against E. Coli and S. aureus, respectively, whereas for poly-
mer 2, it was reported to be 0.20 mM and 0.08 mM in micellar
form.265 Thus, it can be concluded that these PEO-b-PCL-b-
PTA polymers can be used as promising sterilizing agents or
as antimicrobial drugs in future. The promising properties of
the drug-loaded and drug-free antimicrobial PMs highlighted
in this section indicates an opportunity for researchers to en-
capsulate current antibiotic drugs into the antimicrobial PMs
to achieve a multifunctional delivery system with synergistic
antibiotic effects.

CNTs, Nanohorns, and Nanorods

Carbon nanotubes, nanohorns, and nanorods have also
been reported as nanosystems for antibiotics. Cylindrical
nanostructures of pure carbon atoms covalently bonded in a
hexagonal array are called CNTs,268 produced either by arc
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discharge, chemical vapor deposition, or laser ablation meth-
ods. The details on the methods of CNT production can be
found elsewhere.269 CNTs with a single pipe (1Ð5 nm diame-
ter) are single-walled CNTs (SWCNTs), and those having many
nested tubes (lengths from 100 nm to micrometers) are known
as multiwalled CNTs (MWCNTs).270 Both SWCNTs and MWC-
NTs possess antimicrobial activity, with the former exhibiting
much stronger antimicrobial properties271 than the latter. Al-
though ease of functionalization together with its good chemical
stability makes SWCNTs additionally attractive as antimicro-
bial biomaterials,272 its synthesis cost are high.273 Qi et al.,274 in
an attempt to exploit the lower costs with MWCNT and to over-
come its reduced antibacterial activity, used covalent immobi-
lization of cefalexin on MWCNTs via PEG as a linker to enhance
the antimicrobial and antiadhesive characteristics of MWCNTs
against S. aureus and B. Subtilis (Gram positive), and E. Coli
and P. aeruginosa (Gram negative). Confocal laser scanning mi-
croscopy studies of attached MWCNTs and MWCNT cefalexin
revealed that most of the P. aeruginosa and S. aureus cells were
stained with propidium iodide dye (dead cells) on MWCNT ce-
falexin deposited Þlm, and with SYTO 9 dye (live cells) on the
MWCNT deposited Þlm. This Þnding revealed that MWCNT ce-
falexin deposited Þlm has superior antimicrobial property than
the drug-free MWCNTs deposited Þlm.274

Kang et al.271 prepared low metal content, narrowly dis-
tributed and highly puriÞed SWCNT with strong antibacterial
activity. As with the study by Qi et al.,274 such a SWCNT system
could be used for encapsulating an antibiotic drug for enhanced
activity. Aslan et al.272 reported an interesting strategy to over-
come the high cost and limited range of material properties with
SWCNTs. They investigated the concept of combining SWCNTs
(as a minority component) with a biomedical polymer, that is,
PLGA, to obtain a material that would be antimicrobial and
provide a broad range of structural, mechanical, and degra-
dation properties. The SWCNTÐPLGA polymer was found to
be far superior in antibacterial activity than the PLGA only.
The possibility of antibiotic loading into biomedical polymers
containing SWCNT being an effective strategy for a superior
antimicrobial nonintegrated implant needs to be investigated
further.

Although antimicrobial activity of CNTs has been reported,
cytotoxicity associated with them is a major concern, as re-
ported by a number of studies.275Ð277 Future studies with drug-
free and drug-loaded CNTs should therefore also focus on ap-
proaches to overcome the cytoxicity of these promising delivery
systems.

Nanohorns are similar to fullerenes and SWCNTs, and con-
sist of a seamlessly closed one-atom-thick wall of carbon that
separates the exterior from the hollow interior. The body of
a nanohorn is more or less tubular, with an irregularly vary-
ing diameter along its length. Representative nanohorn diam-
eters are between 2 and 5 nm with one end being cone-shaped,
the Òhorn,Ó whereas the opposite end is ßat or rounded.278Ð280

Unlike nanotubes, nanohorns assembling into cylindrical bun-
dles with their long axes parallel to each other form spherical
aggregates.278Ð281 A new type of graphene tubules with a diam-
eter of 2Ð5 nm and a length of 40Ð50 nm is known as a single
wall nanohorn (SWNH). A spherical aggregate with a narrow
diameter distribution of 80Ð100 nm is formed by an assembly
of approximately 2000 SWNHs.280 The potential of nanohorns
in drug delivery has been demonstrated.281Ð283 SWNH aggre-
gates have been reported as potential promising drug carriers

Figure 5. Transmission electron microscopy images of (a) SWNHox
(scale bar = 20 nm) and (b) VCMÐSWNHox (scale bar = 10 nm). Re-
produced from Xu et al.284 with permission from Elsevier Science Ltd.

having some advantages over other carriers. Oxidized SWNH
(SWNHox) have been reported for providing controlled release
of vancomycin hydrochloride (Fig. 5) to address the problems
associated with the drug, such as severe side effects while
blood concentration is too high. Controlled release was ob-
tained by exploring the beneÞt of interaction between van-
comycin hydrochloride and SWNHox. Additionally, to improve
the dispersibility of this carrier system in aqueous systems, the
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hydrophobic surface of SWNHox was modiÞed by phospholipid
PEG.284

Nanorods are rod-shaped NPs, with different kinds hav-
ing been reported in the literature depending on the material
used, for example, silver,285 zinc oxide,286 stannous oxide,287

barium carbonate,288 and gold,289 the latter being an attractive
vehicle for drug delivery applications.290Ð292 Nanorods of lan-
thanum hydroxyapatite have been used for sustained amoxi-
cillin release, speciÞcally those that showed antimicrobial ac-
tivity against bacillus, pseudomonas, E. coli, and S. aureus.
In addition to the antimicrobial and drug release studies, this
nanorod system was extensively characterized for its physical
properties. The increased surface area and suitable hardness,
crystallinity, and crystallite size led the authors to propose this
nanorod system as potential implants in the biomedical Þeld.293

Nanohybrids

Bioactive molecules incorporated in layered double hydroxide
(LDH) forming nanohybrids (NHs) have gained attention in
drug delivery, being normally referred to as hydrotalcites or
anionic clays.294 LDHs represent a family of synthetic or nat-
ural materials designated by the formula [M (1-x)

II Mx
III(OH)2]

[An−]x/n. 2H2O, where MII and MIII are divalent and trivalent
metal, respectively, and An− is the interlayer anion.295 The Þrst
delivery system based on magnesiumÐaluminum LDHs was
reported in 2005.296 LDHs form successive positively charged
metal hydroxide layers and negatively charged anionic layers.
Amid the various properties, the anion-exchange property of
LDHs provides a simple method enabling replacement of the
interlayer anion, thus permitting the synthesis of a various lay-
ered materials.297 Using this ion-exchange reaction, bioactives
have been incorporated/intercalated into LDHs to generate
NHs with a slow release of the active.298,299 Intercalation of two
hydrophobic drugs, namely, gramicidin and amphotericin B and
two hydrophilic drugs, namely, ampicillin and nalidixic acid,
with LDHs was studied using a simple ion-exchange reaction.
All four drugs intercalated successfully and the release studies
showed that the synthesized NHs can function as controlled-
release drug delivery systems for various antibiotics.294 A new
polymeric composite material has been prepared and charac-
terized by incorporating chloramphenicol succinate-NH into
a biocompatible, biodegradable polymer matrix, PCL. In the
NH consisting of a LDH of MgÐAl hydrotalcite type, simple
ion-exchange reaction was used to replace the nitrate anions
present in the host galleries with chloramphenicol succinate
anions. The objective of the study was to develop a controlled-
release formulation for topical application.298 From the unique
biphasic release proÞles of chloramphenicol, the authors con-
cluded that the structural design of this hybrid offers several
ways to modify drug release properties. These consist of the
ionic force present in the outside solution, drug concentration
inside the inorganic lamellae, inorganic component concentra-
tions into the polymer matrix, type of polymeric matrix, and
the sample form and thickness. LDH NHs intercalated with
amoxicillin by coprecipitation method have also been encapsu-
lated into PCL electrospun Þbers. This NH-integrated system
provided sustained release of the drug, although initial rapid
release was found.300 This study highlights the applicability
of this NH system to be integrated into other novel delivery
systems for further enhancing drug therapy.

The decoration of MWCNTs with metal NPs, such as Fe3O4,

results in the formation of MWCNTs NHs. This exercise of
decorating MWCNTs with metal NPs is executed to overcome
toxic effects and dispersibility problems associated with MWC-
NTs, and confer unique features to the NH system. They
have a proliÞc effect on microbicidal and bioÞlm inhibition ac-
tivity, biocompatibility, and drug targeting.301 Hyperbranched
polyurethane (HBPU) is a well-known wound healing material
and potent drug carrier.301,302 Its application, along with Fe3O4Ð
MWCNT NH to form Fe3O4ÐMWCNT NH/HBPU nanocom-
posites (NNCs), has been explored in the development of ef-
fective wound healing material. In vitro antibacterial activ-
ity of gentamicin sulfate-loaded NNCs against K. pneumonia
and S. aureus MTCC96, using the agar well diffusion method,
showed best performance along with good hemo compatibility
and nonimmunogenicity because of controlled-release proÞles.
In vivo wound healing experiments performed on albino mice
showed signiÞcant acceleration in wound healing process. Fur-
thermore, the ßuid handling capacity and moisture vapor per-
meability of these NNCs suggested its immense potential to
provide an optimal moist environment to accelerate the wound
healing process. The Þndings of this study prove that this novel
Fe3O4ÐMWCNT NH/HBPU NNC is a potential wound healing
material with the ability to deliver antibiotics to the wound
site.301 The incorporation of antibiotics either into NHs alone,
intercalated with NHs for coencapsulation into Þbers, or loaded
into NNCs comprising metal-coated CNT NHs and wound heal-
ing material, is evident of the diverse potential of NHs for an-
tibiotic delivery.

Other Nanosystems for Antibiotic Delivery

In addition to the aforementioned more widely published
nanoantibiotic systems, researchers have reported on a num-
ber of other nanodelivery systems for antibiotics, which are
reviewed below.

Nanofibers

NanoÞbers are deÞned as Þbers with a diameter of 100 nm
or less, but in general, all Þbers with a diameter below 1 :m
are considered as nanoÞbers.303 NanoÞbers are being studied
for wound healing purposes in antibacterial therapy. Electro-
spun nanoÞbers have shown great ability for wound dressing
as a result of properties, such as their high-surface area that
enables them to effectively absorb exudates and adjust the
wound moisture.304

Electrospun drug-loaded nanoÞbrous membranes are advan-
tageous over conventional nanoÞbers. Electrospun sandwitch-
structured PLGA/collagen nanoÞbrous membranes containing
vancomycin and gentamicin were found to be effective wound
dressing materials.305 These authors successfully conÞrmed the
antibacterial efÞcacy, cytocompatibility, and sustained drug re-
lease properties of these antibiotic-loaded nanoÞbers. Kataria
et al.306 recently reported the development of ciproßoxacin-
loaded transdermal patch prepared from PVA and sodium
alginate (NaAlg) electrospun composite nanoÞbers for local
delivery of antibiotic. In their experiments, they prepared
PVA, PVAÐNaAlg, ciproßoxacinÐloaded PVA, and ciproßoxacin-
loaded PVAÐNaAlg nanoÞbers, and performed comparative
studies in terms of morphology, drug release, and in vivo wound
healing efÞcacy. All nanoÞbers with average diameter in the
range of 300Ð400 nm showed nonwoven mat-like structures
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and smooth surfaces. In in vitro drug release experiments, the
drug release from PVAÐNaAlg nanoÞbers was slower compared
with PVA nanoÞbers. Furthermore, higher hydroxyproline con-
tent in animal studies with ciproßoxacin-loaded PVAÐNaAlg
nanoÞbers indicated their superior wound healing capability
compared with the drug-loaded PVA nanoÞbers, and in less
time.306 This study opens the opportunity of nanoÞbrous trans-
dermal patches as an alternative and superior delivery system
for local delivery of antibiotics and even other classes of drugs.

Nanofibrous Scaffolds

Regeneration of natural bone tissue or the creation of biolog-
ical substitutes for defective bone tissues is possible through
the use of scaffolds.307 NanoÞbrous scaffolds, as the termi-
nology suggests, refers to scaffolds composed of nanoÞbers.
The advantages of a nanoÞbrous scaffold are its high surface-
to-volume ratio, high porosity, changeable pore-size distri-
bution, and similarity to the natural extracellular matrix
in terms of morphology.308 NanoÞbrous scaffolds fall under
the category of polymer-based drug carriers that are of syn-
thetic origin, are biodegradable,309 and are mainly used for
tissue engineering purposes.310 The advantages of electro-
spun nanoÞbrous scaffolds can be summarized as: (1) they
can be used as carriers for both hydrophilic and lipophilic
drugs, (2) Þne control over the drug release proÞle can be
achieved by controlling the scaffoldÕs porosity, morphology
and composition, and (3) it is possible to achieve site-speciÞc
delivery into the body for any number of drugs from the
scaffold.309 As a result of these advantages, nanoÞbrous scaf-
folds are being studied for delivering antibiotics such as (1)
novel nanoÞbrous scaffolds of doxicycline to obtain high lo-
cal bioavailability, low systemic side effects, and controlled
delivery to treat dental, periodontal and bone infections311;
(2) gentamicin-loaded novel PLGA/lecithin scaffolds for bone-
repairing therapeutics312; (3) PLGA-based nanoÞbrous scaf-
folds with lidocaine, an anesthetic and mupirocin, an antibiotic
having controlled-release mechanism for wound dressing313;
and (4) cefoxitin sodium-incorporated PLGA-based nanoÞbrous
scaffolds with sustained drug release for preventing postsur-
gical adhesion and infections.309 Although one of the earliest
antibiotic-loaded nanoÞbrous scaffold appears to have been re-
ported 10 years ago in 2004, there have been very few studies
since then addressing the necessity of surgery for implantation.

Nanosheets

Recent developments in nanotechnology have made it possible
to fabricate quasi, two-dimensional, freestanding polymeric ul-
trathin Þlms (polymer nanosheets or simply nanosheets) with
remarkable properties, such as high ßexibility, minimum sur-
face roughness, and noncovalent adhesive properties.314Ð319 The
polysaccharide nanosheet forms a stable platform for facilitat-
ing drug loading, with nanosheets loaded with TC for treating
gastrointestinal defects, such as gastric peritonitis and other
surgical defects, having been reported in the literature.319 TC
was compressed between polyvinyl acetate (PVAc) and polysac-
charide nanosheet to form a PVAcÐTC nanosheet of 177 nm
thickness. In vivo studies on mice revealed that therapy with
the PVAcÐTC nanosheet signiÞcantly increased survival rate
of mice after cecal puncture, and an increase in intraperitoneal
bacterial and leukocyte count was also suppressed.319 In a sep-
arate paper, these authors found the same nanosheet to be

an effective nanoantibiotic system to treat full-thickness burn
wound infections by P. aeruginosa in vivo.320 It would have
been interesting for the researchers to have included bioad-
hesivity and textural analysis, as optimal bioadhesion and
mechanical properties are critical aspects of this delivery sys-
tem. These are preliminary studies on nanosheets, and formu-
lation optimization and characterization appear to be in its
infancy.

Nanoplexes

Nanoplexes are complexes of a drug and oppositely charged
polyelectrolyte forming stable amorphous NPs, and are manu-
factured by mixing two aqueous salt solutions, one containing
the former and the other the latter.321 Cheow and Hadinoto321

recognized that the amphiphilicity and solubility in acid or ba-
sic solutions of antibiotics can be exploited for preparing antibi-
otic NPs via a process known as self-assembly amphiphilieÐ
polyelectrolyte complexation. Higher drug-loading capabili-
ties can therefore be achieved compared with conventional
NPs. The authors synthesized drugÐpolyelectrolyte complexes
(nanoplexes) of oßoxacin and levoßoxacin by self-assembly com-
plexation within dextran sulfate with an antibiotic loading of
60%Ð80% (w/w) and sizes less than 400 nm. The optimal prepa-
ration conditions based on its size, stability, and drug loading
by varying the pH, polyelectrolyte charge ratio, drug, and salt
concentration were identiÞed. These nanoplexes were exam-
ined in vitro against P. aeruginosa planktonic cells and the
activities were found to be comparable to native antibiotics.
The main advantages of these nanoplexes were salt-promoted
drug release and rapid antibiotic release, rendering it suitable
for antibioÞlm treatment, which needs high doses of antibi-
otic in order to eliminate the appearance of antibiotic-resistant
strains.322 Nanoplexes certainly have promising potential for
diverse applications and growth as it can facilitate high drug
encapsulation, unlike polymeric and liposomal nanosystems,
offers greener and simpler methods of preparation for vari-
ous antibiotics, and the charged surface makes them readily
functionalized.

CONCLUSIONS AND FUTURE PERSPECTIVES

Factors such as poor targeting of antibiotics to infection sites,
increased dosing frequencies and side effects, the spread
of resistance to currently used antibiotic medicines, slow
development rate of newer antibacterials, and the possibility of
resistance to future new antimicrobial drugs all highlight the
need to follow novel approaches for managing microbial infec-
tions. In the last four to Þve decades, considerable research
has been undertaken on nanodelivery systems, resulting in
revolutionary changes to drug delivery technology for various
disease conditions. More recently, an explosion of interest in
the use of nanotechnology to overcome the signiÞcant chal-
lenges associated with antibiotic drug therapy is evident in the
literature.

This review indicated that a range of diverse nanoengineered
drug delivery systems, such as liposomes, PNPs, SLNs, den-
drimers, NEs, LPHNs, PMs, CNTs, nanorods, nanohorns, NHs,
nanoÞbers, nanoÞbrous scaffolds, nanosheets, and nanoplexes
are being investigated for antibiotic delivery. Studies on these
antibiotic-loaded nanosystems have conÞrmed enhanced activ-
ity against sensitive and resistant bacteria. The ability of these
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nanosystems to improve solubility, stability, and drug entrap-
ment provides sustained drug release, target infection sites,
penetrate the BBB, improve antibioÞlm therapy, and overcome
bacterial resistance have been amply demonstrated. It is also
clear that researchers are moving toward antibiotic nanosys-
tems with multifunctional properties and multiple mechanisms
of action to enhance antimicrobial action and prevent drug
resistance.

Although signiÞcant progress has been achieved in the Þeld
of nanoantibiotics, much remains to be accomplished to op-
timize these systems for eventual regulatory approval and
commercialization. This review has speciÞcally identiÞed a
number of areas that need to be investigated and prioritized.
Formulation optimization technologies and in-depth physico-
chemical/mechanical characterization for newly emerging and
promising antibiotic nanosystems, such as LPHNs, PMs, SLNs,
nanorods/plexes/sheets, and dendrimers need to be prioritized,
as these are less investigated in the literature compared with li-
posomes and PNPs. Several lipid- and polymer-based nanosys-
tems can be enhanced by identifying and synthesizing new
lipidic and polymeric materials with responsive properties to
promote targeting to infection sites. For example, lipids and
polymers responsive to speciÞc pH, bacterial toxin, and enzy-
matic changes at infection sites can be considered. Identifying
these novel materials will widen the pool of superior materials
for developing nanoantibiotics. The coencapsulation of antibi-
otics with other antibiotics, as well as nondrug antimicrobial
agents, offers the opportunity of developing nanosystems with
multiple mechanisms of action against bacteria that can en-
hance activity and also overcome resistance mechanisms. A
goal should therefore be nanosystems comprising responsive
antimicrobial materials with multiple antimicrobial agents.
Such a multidimensional integrative nanodelivery system will
give rise to a generation of smart nanoantibiotics. There is also
a lack of data that offers a mechanistic and molecular under-
standing of these nanosystems in terms of their antimicrobial
activity against various organisms, drug entrapment, and drug
release properties. Such studies will guide formulation scien-
tists in designing optimal antimicrobial materials and nanosys-
tems. More formulation studies also need to focus on in vivo
antimicrobial investigations for both widely and less studied
antibiotic nanosystems. Scale-up and strategies and studies on
these systems should also be a focus.

It is evident that a multidisciplinary collaborative relation-
ship among researchers in academia and the pharmaceutical
industry will be essential to successfully develop smart nanoan-
tibiotics, which are clearly showing potential for saving millions
of lives globally from serious life-threatening infections by mi-
croorganisms.
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CHAPTER 5. CONCLUSION 

5.1 General Conclusions 

Infectious diseases are a growing concern globally, with the limitations of current antibiotic 

dosage forms and the increasing problem of antibiotic resistance having resulted in rising 

morbidity and mortality deaths rates worldwide. Novel nano drug delivery systems that offer 

an alternative strategy to deliver antibiotics are being explored to overcome the limitations 

associated with existing dosage forms of antibiotics. Lipid polymer hybrid nanoparticles 

(LPNs) are a relatively new type of nano drug delivery system with several advantages that 

make them suitable for antibiotics. However, to date, there is limited data available on LPN 

loaded antibiotics and formulation optimisation needs to be studied, as they have not been 

extensively investigated or characterised in the field of antibiotics. 

 

The aim of this study was therefore to formulate and evaluate novel vancomycin loaded lipid-

polymer nanoparticles to enhance antibiotic therapy. The objectives of this study were therefore 

to i) to prepare VCM loaded LPNs containing a new lipid-polymer combination of Eudragit 

RS100 as the polymer and Glyceryl tripalmitate as the lipid., ii) to simultaneously enhance the 

encapsulation efficiency and antibacterial activity of the nanoparticles by incorporation of 

various co-excipients such as oleic acid, chitosan and sodium alginate and iii) to evaluate the 

lipid-polymer nanoparticles in terms of particle size, surface charge, morphology, drug release, 

antimicrobial activity, thermal behaviour and crystallinity and corroborate the data with in 

silico modelling. 

 

The main conclusions generated from the research data are summarised below: 

 The first step was to screen different lipids, polymers and surfactants that would 

ultimately constitute the best LPN in terms of particle size, PDI, zeta potential and 

encapsulation efficiency. LPNs were successfully prepared by hot homogenisation 

method followed by ultrasonication. To achieve the best results, the variables in the 

method of preparation used was also changed to optimise the formulation. The optimal 

formulation comprised of Glycerly tripalmitate (0.5g) as the lipid, Eudragit RS100 

(0.25g) as the polymer, and Solutol HS 15 (1%w/v) as the surfactant, and was reached 

at a homogenisation speed of 6000 rpm for 10 minutes followed by ultrasonication at 

30% amplitude for 30 minutes. This formulation achieved a sutiable particle size of 

214.1 ± 6.86 nm, PDI of 0.251 ± 0.01 and zeta potential of +28.9 ± 1.98 mV.  
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 The next step of the process was to add the drug vancomycin (VCM), and to determine 

the optimal amount to be used in the formulation. Different concentrations of drug were 

used with 0.02g being the optimal quantity. In addition, the lipid to polymer ratio was 

an important variable to achieve the highest encapsulation efficiency, with an optimal 

ratio of 2:1 being determined. The combination of optimal drug and lipid to polymer 

ratio revealed rod shaped particles with a size of 216.4 ± 9.98 nm, a PDI of 0.284 ± 

0.03, a zeta potential of +29.7 ± 4.91 mV, encapsulation efficiency of 27.8 ± 1.84% and 

drug release of 52.3 % after 24 hours.  

 The final step was to incorporate different helper excipients to enhance critical 

properties such as the encapsulation efficiency, drug release and antibacterial activity. 

Two polymers, chitosan (CHT) and sodium alginate (ALG), and one fatty acid, oleic 

acid (OA), were studied as helper excipients. The results showed that the EE increased 

from 27.8% to 41.5%, 54.3% and 69.3% with the addition of OA, CHT and ALG 

respectively. Drug release data showed that VCM-CHT had the slowest drug release of 

36.1 ± 5.35%, while VCM-ALG had the fastest drug release rate of 54.4 ± 3.24% at the 

end of 24 h, with all formulations indicating a sustained release profile. In vitro 

antibacterial studies of all formulations exhibited better activity against bare VCM, and 

sustained their activity up to day 5 against both S.aureus and MRSA, with VCM-OA 

and VCM-CHT specifically showing better activity against MRSA. VCM-OA LPNs 

showed the best activity with an MIC value of 1.2µg/ml against MRSA on day 2. All 

formulations were evaluated in terms of particle size, PDI, zeta potential, EE, 

morphology, drug release, antibacterial activity, X-ray diffraction studies (XRD), 

differential scanning calorimetry (DSC) and stability studies. XRD showed an 

amorphous state of the drug, and no changes in crystallinity of the drug was observed 

in the LPN formulation. The DSC results revealed that the VCM was entrapped within 

the LPN, as depicted from the absence of the VCM peak in the LPN formulation. 

Stability studies indicated that all formulations were stable at both 4°C and room 

temperature for 3 months. 

 The in vitro release kinetics and in silico studies were performed to corroborate the in 

vitro data obtained. The in silico results explained the binding complexes between the 

VCM, the polymer and the helper excipients, which justified the increase in entrapment 

of the LPNs and the sustained drug release. The in vitro release kinetics data also 

supported the controlled release of the drug from all formulations. These studies 
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provided a mechanistic understanding of the molecular interactions involved in the 

LPN formation, and corroborated the EE and drug release data which indicated the 

highest entrapment of 69.3% and the fastest release of 54.4% with the addition of 

alginate.   

 

The findings in this study serve as a basis for future antibiotic loaded LPNs in the field of novel 

drug delivery systems. The above data confirms the potential of the newly developed VCM 

LPN as a promising nanoantibioic. The strategies developed in this study for formulating and 

optimising will be useful to other scientists, and further studies in this developing field will 

require new approaches to achieve the best results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusion  Chapter 5 

 
171 

5.2 Significance of the findings in the study 

The formulation of vancomycin in an LPN formulation was designed to overcome the 

limitations associated with the drug and to enhance the antibiotic efficacy. The significant 

findings of the study are as follows: 

New drug delivery system for Vancomycin  

 A novel nano-drug delivery system not yet reported for vancomycin was developed in 

this study, and widens its pool of available nano-drug delivery systems that can be 

explored for further development. 

Improvement in patient therapy and disease outcomes 

 A nano-drug delivery system of vancomycin with sustained drug release and enhanced 

antibacterial activity against both sensitive and resistant strains was developed. It has 

the potential for improving patient therapy and disease outcomes by targeting effective 

doses to infection sites, reducing dosing frequency, decreasing side effects and 

enhancing antibacterial performance. The above contributes to optimal outcomes of 

various disease conditions that are due to antibiotic infections. 

Creation of new knowledge on LPN drug delivery systems for antibiotic therapy 

 This study utilised in silico and in vitro kinetics study, and explained mechanistically 

the interaction of the excipients and co-excipients that achieved enhanced properties, 

such as encapsulation efficiency, drug release and antibacterial activity. New 

knowledge explaining the mechanism in which different excipients interact to dictate 

drug release and encapsulation efficiency was generated.  

 In addition, new characterisation studies on antibiotic loaded LPNs, such as 

antibacterial activity, gel electrophoresis, XRD and DSC were performed in this study, 

and provided knowledge on their in vitro performance and structural properties, thereby 

serving as a basis for future LPN studies. 

Impact of this study on future research 

 The findings of this study can stimulate further research with LPNs. For example, from 

the unique rod shaped particle generated, it would be interesting to study the effect of 

nanoparticle shape on antibacterial activity. The effective use of co-excipients can 

stimulate research into the systems and identify novel materials not yet reported to 

enhance encapsulation efficiency, drug release and antibacterial activity. 

 The differences in antibacterial activity between the formulations can be further studied 

using additional characterisation methods to show the effect that the co-excipients have 
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on the system that enhance it. In addition, further molecular modelling studies would 

be interesting to explain the effect of the different formulations against sensitive and 

resistant strains. 
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5.3 Recommendations  

This study has provided the basis for antibiotic loaded LPN formulations into a suitable nano 

drug delivery system. Further studies are essential to improve and enhance the delivery of 

antibiotics via LPNs such as: 

 The next phase of this study would be to incorporate two or more of the helper 

excipients in the LPN, and to analyse the effects that it could potentially show by 

working together and possibly creating a further enhancement in the antibacterial 

activity, drug encapsulation and drug release.  

 Additional characterisation studies can be conducted, such as morphological changes 

in the bacterial cell wall after treatment with the LPNs, more extensive in vitro 

antibacterial studies against gram positive and gram negative bacteria, and additional 

molecular modelling studies to understand the mechanism of LPN antibacterial activity 

against S.aureus and MRSA.  

 In vivo studies using both animals and human subjects could be performed to test the 

formulation. This will provide information regarding the bioavailability and the 

pharamacokinetic properties that will be valuable for formulation modification.  

 A large scale production method could be established in order to make the formulation 

feasible in the pharmaceutical industry. While large scale production has been 

established with microparticles, a protocol for nanoparticles needs to be established.  

 Antibiotics other than vancomycin can be incorporated into the LPN and tested against 

different organisms in order to assess its advantages over a wide range of antibiotics. 
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