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ABSTRACT 

 

 

This work has focused on deriving inspiration from the social context of nature in having developed 

a new stochastic algorithm called the enhanced Best Performance Algorithm (eBPA). The eBPA aims 

at solving complexed discrete and continuous optimization problems, and is a further development of 

an algorithm introduced in our earlier work called the Best Performance Algorithm (BPA).  

 

As opposed to similar algorithms that drew inspiration from biological and natural elements, the 

eBPA has derived its inspiration from human cognitive decision-making processes such as the 

selection of the best team for game playing.  The eBPA tries to capture the competitive element of an 

individual in trying to achieve the objective of ultimate personal success by way of learning and 

adaption. The eBPA uses this intelligence for efficient, consistent, and robust search, within a 

complexed global search space.  

 

This thesis presents the fundamental principles and foundations on the eBPA. The efficiency and 

robustness of this algorithm is tested on two common discrete optimization problems, namely the 

symmetric Travelling Salesman Problem and the Just-in-Time machine-scheduling problem. The 

algorithm is further applied to solve a newly defined real-world Annual Crop Planning (ACP) 

problem. A new mathematical formulation of the ACP problem, based on the market economic factors 

of the economy of scale and the demand and supply relations, is introduced in this work. This problem 

seeks to determine optimal resource allocations for crop planning in considering irrigation and other 

requirements. Solutions from the ACP problem intend to assist crop planners in making resource 

allocation decisions for the forthcoming crop production year cycle. 

 

The performance of the eBPA on the stated problems was evaluated empirically via simulation 

experiments. The results obtained have been compared to those of other standard metaheuristics with 

the eBPA showing promising and efficient results. The proposed optimization technique thus shows 

strength for contribution in the field of optimization, being a metaheuristic. Furthermore, it opens 

further doors for optimization researchers to seek inspiration in the area of human cognitive decision-

making, in metaheuristic design. 
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Chapter One  

Introduction and Background 

 

1.1   Introduction 

 

Mathematical optimization is the science of determining the optimal solution from amongst a set of 

feasible solutions to a mathematically formulated problem. Essentially, the process involves first 

mathematically formulating the problem, and then to determine optimal or near optimal solutions 

using appropriate optimization techniques. The solutions found relate to the scarce resources that are 

required to be optimized. The process of optimization is usually subjected to certain constraints.  

 

Mathematical optimization is an important tool used in decision making and system analysis. It is 

practically applicable in numerous fields; examples include the fields of Mathematics, Computational 

Science, Operations Research, Engineering, Economics, Physics, and Biology, etc. (Boyd and 

Vandenberghe, 2004). For example, in Microeconomics, the utilization problem addresses the issue 

of how to spend money in a way that will maximize utility. Another example exists in the fields of 

Science and Engineering; it is the problem of determining the minimum energy configuration of 

metallic structures (Snyman, 2005). To formulate an optimization problem, the objective (or 

objectives) of the problem need to be identified, along with the design variables and constraints that 

govern feasible solutions. 

 

An objective function is a measure of the quality of a system in evaluating a solution. For example, 

in crop production the objective in evaluating the design variables may be to maximize the profits 

earned from the sale of the harvests. The design variables are therefore the inputs to the system and 

are the unknowns which need to be optimized. As an example, the design variables in crop production 

could be the area of land allocated for the production of each crop. Feasible solutions are also 

commonly governed by constraints. Constraints are the functions that describe the relationships 

between the different decision variables of the system. For example, in allocating land-area for the 

production of each crop, the quantity allocated cannot lay beyond the minimum and maximum bounds 

allowed. An optimization problem is formally defined as follows (Snyman, 2005): 
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minimize
𝑤.𝑟.𝑡.: 𝑥

𝑓(𝑥)       (1.1) 

subject to: 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2, … , 𝑚     (1.2) 

ℎ𝑗(𝑥) = 0, 𝑗 = 1,2, … , 𝑟     (1.3)  

where:     𝑥 ∈ ℝ𝑛   

 

In equation (1.1), 𝑓 is the objective function, and 𝑥 is a solution which is a representation of the 

design variables. Solution 𝑥 is selected from within a set of feasible solutions which exist within the 

domains of the solution space. 𝑔𝑖(𝑥) represents the inequality constraints, while ℎ𝑗(𝑥) represents the 

equality constraints. This mathematical formulation represents a minimization problem. This problem 

can be made a maximization problem by putting a negative sign in front of 𝑓(𝑥). 

 

The design variables could either be continuous (real-number values), or discrete (integer values). If 

the design variables are continuous, then the problem is referred to as a continuous optimization 

problem. If the design variables are discrete, then the problem is referred to as a discrete or 

combinatorial optimization problem. 

 

The constraints associated with the variables of the system could either be hard or soft constraints 

(Domshlak et al., 2006). Hard constraints are those constraints that cannot be broken. On the other 

hand, soft constraints are negotiable. The objective in determining solutions is to satisfy all hard 

constraints, while satisfying as many soft constraints as possible. If no constraints govern the problem, 

then the problem is referred to as an unconstrained optimization problem. However, if constraints 

govern the problem, then the problem is referred to as a constrained optimization problem. Most real-

world optimization problems are multi-constrained. However, many optimization problems exist 

without constraints.  

 

If the objective function and its constraints are all linear equations then the problem is categorized as 

a Linear Programming problem. If the object function, and/or one or more of the constraints are non-

linear, then this problem is referred to as a Non-linear Programming problem. Similarly, there are 

other types of problem categories that exist; examples include the Geometric and Quadratic 

Programming problems, amongst others (Raju and Kumar, 2007). 
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The objective of the problem could be either single or multi-objective. If the problem has a single 

objective function, then the problem is referred to as a Single-objective Programming problem. 

Similarly, if multiple objective functions exist, then the problem is referred to as a Multi-objective 

Programming Problem. Most real-world optimization problems are multi-objective in nature. 

 

Also, if the optimal solution for the optimization problem can be determined within polynomial time 

complexity (𝑃), then the problem is characterized as being deterministic. With deterministic 

optimization, there are clear relationships between the constructs of the design variables and their 

solution qualities. In other words, the same design variables used to evaluate the objective function, 

within 𝑃, will determine the same result each time. On the other hand, if the optimal solution cannot 

be determined within 𝑃, then the problem is categorized as being a non-deterministic polynomial 

(𝑁𝑃) problem.  

 

1.2  Exact and Heuristic Methods 

 

Exact methods are used to determine the optimal solution to deterministic optimization problems. 

Examples of exact methods include Branch and Bound, Linear Programming, and the Divide and 

Conquer algorithms, amongst others (Adewumi, 2010). These methods determine the optimal 

solution by performing an exhaustive search of the solution space, irrespective of computational time 

complexity (Trevisan, 2011). Examples of problems that are solved to optimality, in using exact 

algorithms, are the decision problems in Linear Programming.   

 

However, for 𝑁𝑃-type optimization problems, heuristic methods are the preferred methods of choice.  

This is because performing an exhaustive search of the solution space is considered impractical if the 

computational time complexity increases exponentially. Therefore, for 𝑁𝑃 type optimization 

problems, computational time complexity is a factor.  Meanwhile, most real-world optimization 

problems are 𝑁𝑃 in nature especially when the search space is large. Examples of 𝑁𝑃-Hard 

optimization problems include the Travelling Salesman Problem (TSP), and the Just-in-Time (JIT) 

scheduling problem, amongst others. For these problems, heuristically determining sub-optimal 

solutions, within 𝑃, is considered acceptable in trading accuracy for reductions in computational time 

complexity (Syam and Al-Harkan, 2010). Heuristic algorithms proceed by employing trial and error 
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techniques in searching for solutions. Examples of heuristic algorithms include tour construction 

heuristics, such as the Nearest Neighbor and Greedy algorithms (Davendra, 2010). 

 

One problem with heuristic algorithms, however, is premature convergence (Rocha and Neves, 1999). 

Premature convergence occurs when an algorithm gets trapped within a local neighborhood region of 

the solution space, in believing it has found the optimal solution, when in fact it has not. To overcome 

this occurrence, research has undergone to develop heuristic algorithms which embed greater levels 

of intelligence in performing the search. Heuristic algorithms that embed greater levels of intelligence 

are referred to as metaheuristic algorithms. Metaheuristic algorithms minimize the risk of premature 

convergence by performing more robust search. Metaheuristic algorithms fall under a category of 

algorithms known as Monte Carlo algorithms (Krauth, 1998). 

 

1.3  Monte Carlo Metaheuristics 

 

Monte Carlo algorithms are computational algorithms which rely on strategies of randomness to 

heuristically determine solutions. They are applicable to optimization problems where numerical 

methods are expected to fail, for example the 𝑁𝑃-Hard optimization problems. For these problems, 

Monte Carlo algorithm determine sub-optimal solutions within 𝑃. 

 

Examples of Monte Carlo metaheuristic algorithms include: the Evolutionary Algorithms such as the 

Genetic Algorithm (GA) (Holland, 1975); Swarm Intelligence algorithms such as the Ant Colony 

Optimization (ACO) (Dorigo, 1992; Dorigo and Gambardella, 1997), the Firefly Algorithm (FA) 

(Yang, 2010), Glowworm Swarm Optimization (GSO) (Krishnand and Ghose, 2009a; Krishnand and 

Ghose, 2009b), and the Cuckoo Search (CS) (Yang, 2010); Local Search algorithms such as 

Simulated Annealing (SA) (Kirkpatrick, 1983; Tan, 2008) and Tabu Search (TS) (Glover, 1989 and 

1990). Descriptions of these algorithms are given in the sub-sections below. 

 

1.3.1 Genetic Algorithm 

 

GA (Holland, 1975) was inspired by natural evolution. With the GA, a population of solutions 

(phenotypes) evolve from one generation to the next in using techniques such as selection, crossover 

and mutation. Selection, crossover and mutation are strategically administered to the chromosomes 
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(genotypes) of the solutions within the population. For discrete optimization problems, the 

chromosomes are binary encoded while for continuous optimization problems, the chromosomes are 

real-value encoded (Monyei, et al, 2014; Eiben and Smith, 2003).  

 

1.3.2 Ant Colony Optimization 

 

ACO (Dorigo, 1992) was inspired by observing the natural behavior of ants in search for food. 

Initially, the ants start off by moving in random directions. Upon finding a food source, the ant will 

lay down a detective substance called pheromone. Pheromone is an evaporable substance. With time, 

the pheromone trail will evaporate. However, if this trail is detected by another ant, this ant will likely 

follow the pheromone trail. If the ant follows this trail, it will lay down more pheromone; the trail 

will strengthen as more pheromone is laid down. Trails with stronger pheromone emissions will be 

more attractive for other ants to follow suit. The food source represents a solution. 

 

1.3.3 Firefly Algorithm 

 

The FA (Yang, 2010) was inspired by observing the natural abilities of fireflies in emitting a light 

source called bioluminescence. Bioluminescence is emitted with the purpose of attracting other 

fireflies for mating. The FA is designed using these three governing rules (Akinyely and Adewumi, 

2014): 

1. Fireflies are attracted towards other fireflies with greater levels of bioluminescence than 

itself. The attraction does not consider the sex of the other fireflies. 

2. The attractiveness of a firefly relates to its brightness. However, with increases in distance, 

the brightness is assumed to diminish. The brightest firefly, from the population, will move 

in a random direction.  

3. The evaluation of the problems objective relates to the brightness of the light emission. 

 

1.3.4 Glowworm Swarm Optimization 

 

GSO is similar to the FA. It was inspired in observing the natural behavior of glow-worms in emitting 

luciferin (Krishnand and Ghose, 2009a). Luciferin is a luminescent property which gets emitted in 

order to attract other glow-worms for the purpose of mating. The greater the level of luciferin emitted, 
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the more attractive the glow-worm would appear to be. A glow-worm will move in the direction of 

another glow-worm, but only if it falls within its range of view.  

 

1.3.5 Cuckoo Search 

 

CS (Yang, 2010) was inspired in observing the natural behavior of some parasitic cuckoo bird species. 

These bird species have the behavior of reproducing eggs and then abandoning them in the nests of 

other host birds. Some birds, upon having realized the intrusion, will throw the alien eggs away. Other 

birds will simply leave their nests, and build other nests elsewhere. In this algorithm, an egg represents 

a solution. The intention of the algorithm is to replace the weaker solutions, in the nest of the host 

bird, with higher quality solutions. CS is designed using these three governing rules: 

1. A cuckoo bird will lay one egg at a time. It will then randomly insert this egg in the nest of 

the host bird. 

2. For the next generation, the nest with the highest quality of solutions will be accepted. 

3. The host bird will detect the intrusion given a constant probabilistic factor of 𝑝𝑎 ∈  [0,1].  

 

1.3.6 Simulated Annealing 

 

SA (Kirkpatrick, 1983) is modeled on the analogy of the atomic composition of metal. At higher 

temperatures, the atomic composition of metal is more volatile. Yet, it will stabilize as the metallic 

structure begins to cool. Stability (or equilibrium) is reached at a temperature close to zero. For the 

annealing process to be successful, the decrease in the rate of temperature must be slow. Volatility 

represents SA’s ability to accept worst solutions. It is represented with probability 𝑃 = 𝑒𝑥𝑝[(𝐶 −

𝐶∗)/𝑇], where 𝐶 is the cost of the current solution, 𝐶∗ is the cost of the candidate solution, and 𝑇 is 

the temperature. At higher temperatures, the probability of accepting worst solutions is greater. This 

allows SA to explore different neighborhood regions of the solution space with more ease. Using this 

strategy, more promising neighborhood regions can be located. However, as the temperature 

decreases, this probability also decreases and there is a transition from exploration to exploitation. 

Greater levels of exploitation presents SA the opportunity to concentrate on those promising 

neighborhood regions found in trying to identify higher quality solutions. The greatest levels of 

exploitation are achieved at very low temperatures, where the probability of accepting worst solutions 

are at its lowest. The strategy of accepting worst solutions is two-fold: new regions are explored, and 
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a doorway is presented to escape local entrapment. With SA, significant research has been done 

around the setting of its parameter values; these values significantly influence the performance of the 

algorithm. The initial temperature (𝑇) importantly controls the transition from exploration to 

exploitation, and the cooling factor (𝛼) importantly controls the rate at which the algorithm converges 

to its final solution. The algorithm for SA is given in Algorithm 1.1. 

 

From Algorithm 1.1, it is seen that SA starts off with equivalent 𝑏𝑒𝑠𝑡 and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solutions. The 

execution of the algorithm starts off at the initial temperature of 𝑇. 𝑇 then reduces by the rate of 𝑇 ×

𝛼, until the final temperature 𝐹 is reached. At each point of decrease in 𝑇, a 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 number 

of iterations is executed. At each of these iterations, local search moves are applied to the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

solution; this will produce a 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. If this 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution improves upon the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

solution, then it will become the next 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution. However, given a certain probability, even 

if the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution does not improve upon the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution, it could still become the next 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution. If the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution has been updated, a check is performed to see if the 𝑏𝑒𝑠𝑡 

solution has been improved upon. If it has, the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution will become the next 𝑏𝑒𝑠𝑡 solution.  

 

Algorithm 1.1: Simulated Annealing  

 

1. Initialize 𝑏𝑒𝑠𝑡 to be the initial tour 

2. Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  𝑏𝑒𝑠𝑡 

3. Evaluate the fitness of 𝑏𝑒𝑠𝑡 =  𝑓_𝑏𝑒𝑠𝑡 

4. Set 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (the fitness of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =  𝑓_𝑏𝑒𝑠𝑡 

5. Initiate starting temperature 𝑇 and final temperature 𝐹 

6. while 𝑇 ≥  𝐹 do 

    6.1. for 𝑖 to 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 do 

           6.1.1. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Solution (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

           6.1.2. 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Fitness(𝑤𝑜𝑟𝑘𝑖𝑛𝑔) 

           6.1.3. if 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better then 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then 

                     6.1.3.1. 𝑢𝑠𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = true 

           6.1.4. else 

                     6.1.4.1. Calculate acceptance probability 𝑃 

                     6.1.4.2. if 𝑃 > random[0,1] then 

                                  6.1.4.2.1. 𝑢𝑠𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = true 

                     6.1.4.3. end if 

           6.1.5. end else 
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           6.1.6. if 𝑢𝑠𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 then 

                     6.1.6.1. 𝑢𝑠𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = false 

     6.1.6.2. 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 

                     6.1.6.3. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 

                     6.1.6.4. if 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 better than 𝑓_𝑏𝑒𝑠𝑡 then 

                                  6.1.6.4.1. 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

                    6.1.6.4.2. 𝑓_𝑏𝑒𝑠𝑡 = 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

                     6.1.6.5. end if 

           6.1.7. end if 

    6.2. end for 

    6.3. Update 𝑇 according to cooling schedule 𝛼 

7. end while 

8. return 𝑏𝑒𝑠𝑡  

 

 

1.3.7 Tabu Search 

 

TS (Glover, 1989) is based on the analogy of something that should not be touched or interfered with. 

This is achieved by maintaining a limited number of recently found best candidate solutions in a list 

called the Tabu List (𝑇𝐿). The 𝑇𝐿 is commonly implemented in a First-In-First-Out (FIFO) way. 

Candidate solutions are determined in searching the neighborhood region of the current solution 𝑥, 

i.e. 𝑁(𝑥). Therefore, the maximum number of candidate solutions considered will be 𝑁(𝑥)  −  |𝑇𝐿|, 

as any solution recorded in the 𝑇𝐿 has a tabu status and will not be interfered with. The decision to 

reject the 𝑇𝐿 solutions minimize the risk of cycling. Thus, TS makes use of memory in intelligently 

directing the search. The algorithm for TS is given in Algorithm 1.2. 

 

Algorithm 1.2: Tabu Search 

 

1. Initialize 𝑏𝑒𝑠𝑡 to be the initial tour 

2. Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  𝑏𝑒𝑠𝑡 

3. Evaluate the fitness of 𝑏𝑒𝑠𝑡 =  𝑓_𝑏𝑒𝑠𝑡 

4. Set 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (the fitness of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =  𝑓_𝑏𝑒𝑠𝑡 

5. Set the size of the Tabu List, i.e. 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑆𝑖𝑧𝑒 

6. Set the size of the Candidate List, i.e. 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡𝑆𝑖𝑧𝑒 

7. Initiate the Tabu List (𝑇𝐿) and the Candidate List (i.e. 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡) 

8. for 𝑖 to 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do  
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    8.1. 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 = Generate_New_Candidate_List(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

    8.2. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Find_Best_Candidate(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡) 

    8.3. 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Determine_Fitness (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

    8.4. if 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 better then 𝑓_𝑏𝑒𝑠𝑡 then 

           8.4.1. 𝑓_𝑏𝑒𝑠𝑡 =  𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

           8.4.2. 𝑏𝑒𝑠𝑡 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

           8.4.3. Update 𝑇𝐿 with 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

    8.5. else 

           8.5.1. if Intensification_Criterion_Met() then 

                     8.5.1.1. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Reset_Current() 

           8.5.2. end if 

    8.6. end if 

9. end for 

10. return 

 

In Algorithm 1.2, a candidate list of solutions (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡) is generated from the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

solution. The best candidate from the 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 is then determined, and will become the new 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution for the next iteration. If this solution improves upon the 𝑏𝑒𝑠𝑡 solution overall, then 

it will become the next 𝑏𝑒𝑠𝑡 solution. If the 𝑏𝑒𝑠𝑡 solution is updated, then it will get inserted into the 

𝑇𝐿. If the intensification criterion has been satisfied, the next 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution will be re-determined 

in using a randomly selected solution from the 𝑇𝐿.  

 

1.3.8 A New Metaheuristic Algorithm 

 

This thesis introduces a new Monte Carlo metaheuristic algorithm in the literature, namely the 

enhanced Best Performance Algorithm. The eBPA stems from its predecessor–the Best Performance 

Algorithm (BPA) which had been proposed earlier by the researcher (Chetty and Adewumi, 2013a). 

Details on both algorithms are provided in chapter two. 

 

1.4  Rational and Motivation 

 

The eBPA has been developed to improve on the BPA in making up for a few gaps identified in the 

latter, especially when applied to discrete optimization problems. Although the BPA performs 

competitively for continuous optimization problems, it performs poorly for discrete optimization 

problems due to an apparent weakness in its exploitative ability (exploration and exploitation will 
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also be discussed in detail in chapter two). Thus, research had been undergone to design a more 

complete metaheuristic algorithm which performs competitively for both discrete and continuous 

optimization problems. The resultant algorithm is the eBPA. The eBPA is an enhancement over its 

predecessor–the BPA. The eBPA has a completely different design to that of the BPA, yet being 

modelled on similar analogical principles.  

 

With the global challenge in the agricultural sector, especially in developing countries, it becomes 

highly imperative for optimization researchers to develop models and methods that help manage 

activities and processes in this sector within the limitations of available resources. Economic 

challenges, coupled with drought and a host of other problems, have impacted negatively on food 

production and consumption. This is why the study on the ACP problem becomes highly essential, 

especially within a developing country context such as South Africa which is recently experiencing 

high levels of water shortage.  

 

Increases in the costs associated with crop production, and the scarcity of natural resources such as 

fresh water supplies and agricultural land, make it essential to seek an optimal way for crop 

production per unit of the resources utilized. The need for more output is directly related to increases 

in the population growth. This has placed greater demands on the agricultural sector for food products. 

From all sectors of the industry, the agricultural sector is the primary supplier of food globally. Yet, 

determining optimized solutions in crop production is no simple task as there are many stochastic 

factors to be considered. This makes determining optimized solutions very challenging for both the 

producers and researchers alike. Therefore, to try and contribute to the solutions of this problem, the 

ACP problem had been introduced. The ACP problem provides solvable yet scalable solutions in 

considering both the stochastic and predictable factors involved with crop production. 

 

Another reason for introducing the ACP problem is due to the fact that the scarcity of fresh water 

supplies is becoming a great concern especially in South Africa. From all sectors of the industry, the 

agricultural sector is placed under increased pressure to use fresh water supplies more conservatively. 

This is due to the fact that it is the most accused of excessive water wastage from all other sectors of 

the industry (Schmitz et al., 2007). Yet, it is important that fresh water supplies to the agricultural 

sector do not deplete below acceptable levels as fresh water is essential for optimized agricultural 

production. Also, it is realized that increases in the costs associated with food products will have 

negative socioeconomic effects on the global society. Of this, the hardest hit will be that of the poor. 
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Therefore, to try and combat these challenges, the ACP problem had been introduced, and is further  

evolved in this thesis. 

 

1.5  Aims and Objectives 

 

The primary aim of this thesis is the presentation of the eBPA, and the new ACP mathematical 

formulation based on market economic factors.  

 

The objectives of presenting the eBPA are as follows: 

1. To pioneer research into the modelling of human behavioral traits in developing a 

metaheuristic algorithm within the AI framework. 

2. To make comparisons with its predecessor, the BPA, for optimization problems. 

3. To present theoretical insight into the technical and strategic differences between the 

algorithmic designs of both the eBPA and the BPA. 

4. To investigate the potentials of the eBPA for 𝑁𝑃-Hard optimization problems.  

The objectives of presenting the ACP problem are as follows: 

1. Formally describe the ACP problem, and its mathematical model. 

2. To seek a better realistic model for the ACP problem that incorporates market economic 

factors along with other constraints which make for an enhancement over the previous 

version of the ACP problem introduced earlier by the author. 

3. To investigate possible solutions to the ACP problem in considering irrigation constraints 

based on a real-life scenario obtainable in South Africa. 

4. To provide benchmark datasets to aid further research in this area. 

 

1.6  Methodology 

 

This thesis studies metaheuristics in investigating three NP-Hard optimization problems, namely the 

ACP problem, instances of sTSP’s, and an instance of the JIT scheduling problem. For the ACP 

problem presented, computational simulations were performed based on the dataset from a case study. 

The dataset, together with the results of all simulations, will serve as a benchmark for further research 
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conducted on this problem. Benchmark datasets available in literature and online were used for the 

TSP and JIT problems.  Statistical analysis and comparisons were done to determine the efficiency 

of the proposed technique over existing methods.   

 

All programs developed in this thesis were written using the Java programming language. It was 

programmed in using the Netbeans® 7.0 Integrated Development Environment. All simulations were 

run on the same platform. The computer used had a Windows® 7 Enterprise operating system, an 

Intel® Celeron® Processor 430, 3GB of RAM and a 500GB hard-drive. 

 

1.7  Scope of the Thesis 

 

This thesis presents the eBPA for global optimization problems. The enhancement of the eBPA over 

the BPA will be discussed. The strength of the proposed algorithm is evaluated on two common 

discrete optimization problems, namely the TSP and JIT machine scheduling problems.  A real-world 

instance of the ACP problem is also formulated, and the eBPA employed to find optimized solutions. 

The results show that the eBPA competes favorably well within the space of both discrete and 

continuous optimization problems.  

 

Being a new metaheuristic algorithm, this thesis constitutes initial investigations into the potentials 

of the eBPA. To test its abilities, the solutions determined by the eBPA, for all problem instances 

investigated, have been compared with that of the well-known TS and SA algorithms. TS and SA 

have been known in literature as efficient and competitive metaheuristics in determining high quality 

solutions to arrays of difficult real-world optimization problems. The comparisons of the eBPA 

against TS and SA is motivated by the fact that the former is designed based on similar underlying 

principles implemented by both these algorithms. 

 

SA is a single-point stochastic and memory-less search technique; it is based primarily on 

randomization. On the other hand, TS is a single-point memory-based search technique which 

performs a search in a more deterministic way. The eBPA lay in-between both of these search 

techniques in that it performs the search stochastically, yet employs adaptive memory strategies to 

influence the direction of the search trajectory. The eBPA thus differs from memory-less search 

algorithms which are modelled primarily on randomization, such as SA, and memory-based search 
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algorithms which are modelled primarily on determinism, such as TS. The eBPA thus embeds 

characteristics of both stochastic and deterministic search strategies. The solutions determined for the 

problems to be investigated will show the abilities of the eBPA in executing an effective, consistent 

and robust search when being compared to that of the TS and SA algorithms.  

 

The ACP problem had also previously been introduced in the literature (Chetty and Adewumi, 2013b; 

2013c; 2013d; and 2014). The problem seeks to determine optimized resource allocations in crop 

planning at irrigation scheme level. The objective is to determine solutions that will maximize the 

total gross profits that could be earned from the sale of the harvests in the forthcoming production 

year. The intent of the problem is to advise crop planners in making resource allocation decisions at 

the land allocation stage of the crop production process. The research presented by Chetty and 

Adewumi (2013b; 2013c; 2013d; and 2014) was an attempt to introduce the ACP problem as an 

optimization problem in the literature. However, this thesis introduces a new mathematical 

formulation for the ACP problem. This ACP problem accommodates for the market economic factors 

of the economy of scale, along with demand and supply relations. Introducing these factors provide 

for more scalable solutions in advising crop planners regarding resource allocations in crop 

production. 

 

1.8  Contributions to Knowledge 

 

In metaheuristic design, the complexity of real-world optimization problems (especially with added 

dimensionality) require algorithms that make smarter decisions during the decision making process 

in problem solving. The objective is to determine higher quality solutions. However, developing such 

algorithms is no easy task as flexibility, simplicity and efficiency need to be balanced in the design.  

 

To achieve these objectives in metaheuristic design, research has strongly leaned towards the 

direction of Artificial Intelligence (AI). AI attempts to simulate the intelligent behavior of biological 

agents (or occurrences) in nature which behave systematically in achieving an overall objective. 

However, although metaheuristic algorithms have been biologically inspired within the AI 

framework, not much research has been done by way of human modelling. Yet, significant research 

on human modelling has been done within the framework of Computational Intelligence (CI). CI 
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relates to soft computing techniques, and include fields such as fuzzy logic systems, artificial neural 

networks, learning theory, evolutionary computing, and probabilistic methods. 

 

Also, an important aspect in real-world mathematical formulation is to model the problem as 

realistically as possible. To achieve this, all decision variables must be considered. However, the 

more decision variables added to the mathematical model in trying to achieve realism, the more 

complexed the mathematical model would appear to be. Reason being, the dimensionality of the 

solution space will increase.  

 

Thus, for mathematical models that require a large number of decision variables, the objective would 

be to represent the most important elements of the problem in trying to achieve realism, without 

making the problem overly complexed to solve. An example of such problems are the decision 

problems in crop planning.  

 

The overall contributions to knowledge are summarized as follows: 

1. The introduction of a new stochastic metaheuristic named the eBPA.  This has been designed 

to  mimic the planned cognitive decision making abilities of an individual, whom attempts to 

achieve the objective of ultimate personal success within the context of a competitive 

environment. An example is a soccer coach seeking to put together the best team amidst a 

large pool of talented players. The eBPA encapsulates the competitive nature of an individual 

through mimicking intelligent ideas of learning and adaption.  

2. Furthermore, the proposed eBPA incorporates features that make it problem-independent, 

simple, efficient, and have a good explorative and exploitative balance.  This makes it a good 

candidate for researchers in the field of optimization to apply the algorithm in solving other 

optimization problems.  

3. The eBPA has been designed based on human modelling.  To the best of the knowledge of 

the author, no other metaheuristic has been spotted in the literature that encapsulates the 

competitive behavior of a human being in the way that the eBPA has, within the AI 

framework. The eBPA therefore has the potential to open doors to further research on the 

incorporation of human modelling in metaheuristic design, within the AI framework. 

4. This work further presents a new model of the ACP real-world problem, with potential 

solutions that can have great imparts on decision making for government, farmers and other 
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interested parties. The incorporation of the market economic factors of the economy of scale 

and the demand and supply relations make the ACP mathematical model more practical in 

the field of crop production. The solution obtained with the proposed metaheuristics are very 

promising, and can serve as the underlying algorithms to drive decision support systems in 

this area especially for developing countries. 

5. Finally, being not too common in literature, the results obtained by the eBPA for the ACP 

problem (and those of the other problems considered) will serve as benchmarks for further 

study. 

 

1.9   Thesis Overview 

 

Chapter two introduces the eBPA. Theoretical analysis is given on the fundamental principles 

underlying the strategic and technical designs of both the eBPA and the BPA. Investigations will be 

performed in highlighting the differences between these metaheuristics for a simple discrete 

optimization problem. 

 

Chapter three will present the new ACP mathematical formulation. This formulation is based on the 

market economic factors of the economy of scale, and the demand and supply relations. To present 

the new mathematical formulation, the ACP problem will be explained. The results show the 

potentials of the BPA and the eBPA algorithms for a continuous optimization problem.  

 

Chapter four further investigates the potentials of the eBPA in testing its abilities to ten benchmark 

test instances of sTSP’s. eBPA’s performances will be compared against that of TS and SA in testing 

the sequences of instructions constituting the algorithmic designs of these algorithms. 

 

Chapter five investigates a particular instance of the JIT scheduling problem. Chapter five takes the 

opportunity to correct the previous mathematical formulation of this particular problem instance. It 

then further investigates the potentials of the eBPA in determining solutions. 

 

Finally, chapter six draws conclusions. It also discusses the possibilities of future research on the 

eBPA. 
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Chapter Two 

Theoretical Analysis of the enhanced Best Performance 

Algorithm 

 

2.1   Introduction 

 

Due to the complexities of optimization problems that exist, developments in computational science 

have led to the introduction of many non-standard optimization algorithms. Non-standard algorithms 

are more flexible in their designs, and are also applicable to a variety of problem settings, in being 

non-problem specific. An additional benefit is that the solutions determined by these algorithms are 

guaranteed within polynomial time horizons, for 𝑁𝑃-Hard type optimization problems.  

 

Typically, for these difficult to solve optimization problems, the classical numerical methods would 

fail to determine the optimal solution within 𝑃 (Kougias and Theodosiou, 2010). Reason being, the 

numerical methods would experience difficulty due to the non-convex nature of the complexed 

solution spaces (Aspremont and Boyd, 2003).  

 

The term “non-convex” implies that a solution space is characterized by multiple local optimum 

points; amongst these, the global optimum point would exist. The appearance of multiple local 

optimum points could be very deceptive in searching for the global optimum point. This deceptivity 

could easily cause an algorithm to prematurely converge to a point that is not the global optimum. 

Algorithms therefore need to be intelligent enough to be able to escape from local entrapment (Rocha 

and Neves, 1999).  

 

There are numerous types of non-convex optimization problems that exist; these include practical 

applications in sectors such as Mathematics, Computational Science, Engineering, Economics, and 

others. To address the challenges of non-convex type optimization problems, many non-standard 

optimization algorithms have been developed. This study provides theoretical insight into one such 

non-standard optimization algorithm.  
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Loosely speaking, “meta” in the word “metaheuristic” means a higher level, and “heuristic” means 

to discover by trial and error (Yang, 2010). Hence, metaheuristic algorithms are more advanced 

heuristic algorithms. These algorithms have commonly been developed using Artificial Intelligence 

techniques. Many algorithms have been developed from observing the natural behavior of biological 

‘agents’ and/or ‘elements’ in nature (Blum and Merkle, 2008).  

 

Examples of behavioral patterns that have been studied include: flocks of birds, schools of fish, 

swarms of wasps, colonies of ants, particles of nature, the atomic composition of objects, and sound 

amongst many others. From these, metaheuristic algorithms that have been developed artificially 

include the GA, SA, TS, Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995; 

Arasomwan and Adewumi, 2013, 2014a, 2014b), the ACO, the FA, the BPA, and more recently the 

eBPA (the eBPA and the BPA are the metaheuristic algorithms that will be discussed in this study). 

 

The intelligence that is packaged in metaheuristic algorithms are intended to effectively and robustly 

search the complex regions of the solution spaces. However, metaheuristic algorithms do not 

guarantee optimal solutions; yet, they do guarantee near-optimal solutions within polynomial time 

horizons for exponentially complexed problems. In this context, near-optimal solutions are 

considered acceptable in trading accuracy for reductions in computational time complexity.   

 

This study presents theoretical analysis on the fundamental design principles of the eBPA. The eBPA 

is an enhancement of its predecessor, the BPA. The eBPA has been developed due to further research 

having been undergone in trying to improve upon the efficiency aspects of the BPA. Although the 

eBPA is conceptually similar to that of the BPA, the underlying strategies of the eBPA are altogether 

different. All-in-all, the eBPA is a new and more intelligently designed metaheuristic.  

 

This chapter formally presents and describes the eBPA. It also highlights the strategic differences in 

the designs of both the BPA and the eBPA. To show the effects of these strategic differences, a 

comprehensive set of experiments will be performed in investigating the performances of these 

algorithms. The intent is also to assist the reader in better understanding the design techniques of the 

eBPA, and to highlight the advantages of employing the eBPA to practical applications.  

 

Conceptually, the eBPA is modeled on the competitive nature of professional athletes, in them 

desiring to improve upon their best known performances. This analogy is similar to a heuristic 
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algorithm that seeks improved solutions. Competitive athletes desire to improve on their best 

performances through learning, strategizing and practice. In comparison, the eBPA seeks higher 

quality solutions, from iteration to iteration, in ‘learning’ from previously visited solutions. Learning 

is implemented through the concept of memory.  

 

Memory techniques in metaheuristic design provide additional benefits over pure memory-less 

techniques (Glover, 1995). The eBPA uses the advantage of implementing memory strategies to direct 

the trajectory of the search, and to penetrate complexed regions of the solution spaces which may 

confine other methods. The eBPA also draws from the strength of stochasticity.  

 

The rest of this chapter is structured as follows; Section 2.2 presents a brief background into local 

search metaheuristic algorithms. Section 2.3 presents the eBPA, and the BPA. It also discusses the 

technical and strategic differences between both these algorithms. Section 2.4 presents further 

analysis on the design principles of the eBPA. Section 2.5 briefly discusses the investigations to 

follow. Section 2.6 presents the results of the experiments performed, which will then be used to 

discuss the differences in the designs of both the algorithms. Finally, section 2.7 draws on the 

conclusions. 

 

2.2   Local Search Metaheuristic Algorithms 

 

Local Search (LS) metaheuristic algorithms determine solutions to computationally difficult 

optimization problems. Basically, they search through a solution space 𝑋, of objective function 𝑓, by 

repeatedly making slight adjustments (or local moves) from one solution 𝑥 to another 𝑥′ (𝑥′ will be 

chosen from a set of candidate solutions associated with 𝑥); the intent is to direct the search towards 

the global optima point. A key element of modern-day metaheuristic algorithms is to accept both 

improved and dis-improved solutions. Accepting dis-improved solutions is a strategic way of 

escaping local entrapment.  

 

A local move is an adjustment to the design variables of solution vector 𝑥. This could include: the 

inversing of binary digits; adding, deleting, or the swapping of elements within the solution vector; 

and real number alterations. The set of candidate solutions associated with solution 𝑥 is called the 
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neighborhood of 𝑥. The neighborhood of 𝑥 is denoted as 𝑁(𝑥). It is defined as follows (Blum and 

Roli, 2003):     

 

Definition 2.1: Let ℕ: 𝑥 → 2𝑥 be a function that assigns to every feasible solution 𝑥 ∈ 𝑋 a subset of 

feasible solutions 𝑗 ∈ ℕ(𝑥) ⊆ 𝑋. ℕ(𝑥) is called the neighborhood of solution 𝑥 if each neighbor 𝑗 ∈

ℕ(𝑥) is in some way close to 𝑥 within the domains of the solution space 𝑋.   

 

The best solution found within the neighborhood structure of 𝑁(𝑥) is called the local optima. Local 

optimum are defined as follows (Hancock, 2005): 

 

Definition 2.2: A local optimum point 𝑥∗ ∈ ℝ exists for some error value 𝜀 > 0 such that for a 

minimization problem 𝑓(𝑥∗) ≤ 𝑓(𝑥), and for a maximization problem 𝑓(𝑥∗) ≥ 𝑓(𝑥). These are 

subjected to |𝑥– 𝑥∗| < 𝜀, ∀ 𝑥 ∈ ℝ. Here, 𝑓 represents the objective function, ℝ represents a solution 

space of real numbers, and |𝑥– 𝑥∗| is the absolute value of the difference between 𝑥 and 𝑥∗.  

 

Within solution space 𝑋, several local optimum points may exist. The best local optimum point from 

this lot is called the global optimum point. Global optimum points are local optimum points, but not 

necessarily vice versa. A global optimum point is defined as follows (Snyman, 2005): 

 

Definition 2.3: A global optimum point 𝑥∗ ∈ ℝ exists for a minimization problem if 𝑓(𝑥∗) ≤ 𝑓(𝑥), 

and for a maximization problem if 𝑓(𝑥∗) ≥ 𝑓(𝑥), ∀ 𝑥 ∈ ℝ. 

 

Local and global optimum points are visually seen in Figure 2.1. 

 

LS metaheuristic algorithms search for local optimum points, in trying to determine the global 

optimum point. Consequently, LS metaheuristic algorithms are considered as improvement 

techniques (Liberti, 2008). An obvious attempt to determine all local optimum points is to perform 

an exhaustive search of the solution space. However, for large to complexed solution spaces, this may 

be impractical. The reason is due to the computational time taken to examine every possible solution; 

ultimately, this may prove to be too expensive. In this scenario, examining subsets of feasible 

solutions, within the neighborhood regions of 𝑁(𝑥), is the alternative. This alternative is 

computationally more acceptable for exponentially complexed optimization problems. The challenge 
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then is to intelligently examine subsets of the most attractive solutions within these neighborhood 

regions, within the bounds of polynomial time complexity.  

 

 

Figure 2.1: The global optimum point is the extreme local optimum point. A local optimum point is the best point 

within a neighborhood region. This image is for a maximization problem. 

 

The techniques employed by metaheuristic algorithms are to strategically refine and explore subsets 

𝑆 ∈ 𝑁(𝑥) in ways that are efficient and computationally feasible. Metaheuristic algorithms thus 

employ a level of intelligence in searching for the best solution 𝑥∗ ∈ 𝑆 ∈ 𝑁(𝑥). In doing, these 

algorithms typically make use of the knowledge acquired from examining other neighboring 

solutions, in trying to determine 𝑥∗.  

 

Hence, the goal of metaheuristic algorithms is to narrow the visited regions to subsets of solutions 

that are more representative of the local optimum points (Glover, 1993). For this reason, metaheuristic 

algorithms are justifiably more advanced than standard heuristic techniques (Yagiura and Ibaraki, 

2001).  

 

In addition to effectively and intelligently guiding the search, metaheuristic algorithms also need to 

be intelligent enough to escape from premature convergence. Premature convergence is when the 

algorithm believes that it has found the global optimum point, when in fact the global optimum point 

is not within the vicinity of the local neighborhood region being searched. 

 

To escape from premature convergence, LS metaheuristic algorithms strategically allow for dis-

improved solutions to be accepted. The dis-improved solutions accepted will also be used to traject 

through the solution space. Accepting dis-improved solutions mean that solution 𝑥′, which is 

determined from solution 𝑥, is accepted, although 𝑓(𝑥′) is worse off than 𝑓(𝑥). This strategy allows 
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for a re-direction of the search path. This re-direction may cause a break out of possible local 

entrapment; it could also lead the search towards other neighborhood regions which could potentially 

contain higher quality solutions.  

 

However, accepting dis-improved solutions is accompanied with a risk; this risk is an effect called 

cycling (Glover, 1990). Cycling occurs when one solution consequently leads to another solution, in 

a repeated cycle. Cycling does not necessarily mean a repetition after one move transition, but could 

also be as a result of some interval of intermediate steps. Metaheuristic algorithms need to be watchful 

for the effect of cycling.  

 

The stopping criterion of metaheuristic algorithms include: 

1. Stop when the optimal solution is found. 

2. Stop when a solution is found that falls within an acceptable degree of error. 

3. Stop when the number of iterations exceed the upper bound. 

4. Stop when a count of the iterations exceed a certain value since the best solution was last 

updated. 

 

Once the stopping criterion is satisfied, the metaheuristic algorithm will return the final result. 

 

2.3   Proposed Metaheuristic Algorithm 

 

This section formally presents the eBPA. The eBPA has been developed using similar design 

principles to that of the BPA; these principles include memory and probability. As mentioned 

previously, the BPA had been introduced in the literature by Chetty and Adewumi (2013a). In that 

article, a detailed description is given on the BPA.  

 

However, it was realized that the BPA has a weakness to discrete optimization problems. Hence, 

further research was conducted to improve on its efficiency. The new metaheuristic developed was 

the eBPA. The eBPA is an improvement over the BPA. It is also a new metaheuristic in having a 

different design to that of BPA.  
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In the next section, the eBPA will be presented. Thereafter, to highlight the differences, both the 

eBPA and the BPA algorithms will be presented side-by-side in Table 2.1. After that, the conceptual 

differences in the design techniques of both algorithms will be discussed. 

 

2.3.1 The enhanced Best Performance Algorithm 

 

The eBPA is modeled on the analogy of professional athletes desiring to improve upon their best 

registered performances within competitive environments. Numerous sporting disciplines exist, 

however the principles are the same in that professional athletes desire to improve upon their skill 

levels with the purpose of trying to supersede their previous best known performances. To start off 

with, all professional athletes develop an interest in the particular sport; they then realize the potential 

to succeed. Thereafter, with constant practice and strategizing, their skill levels increase. This happens 

as a result of learning from trial and error. In using trial and error, refined skills are developed by 

improving upon their strengths and weaknesses of the sport. The ultimate goal of the athlete is to 

develop a level of skill that would result in the athlete giving off a performance that would ultimately 

surpass any previous best performance.  

 

Apart from other learning strategies, an effective strategy could be to maintain an archive of a limited 

number of the best performances delivered by the athlete; for example, video recordings could be 

archived. Video recordings contain the history of the way a previous best performance had been 

delivered. This also includes the technique (or techniques) that was employed, and the result 

determined. Knowledge of this information could be used to motivate the athlete to deliver higher 

quality performances. For example, the information of the worst performance on the list could 

motivate the athlete to at least improve upon this benchmark. Hence, if a performance is delivered 

which improves upon that of the worst performance already registered on the list, then the list could 

be updated by replacing the performance of the worst with that of the improved performance. In this 

way, the archive size will be maintained, but it also so happens that the quality of the worst 

performance on the list is now of a higher benchmark standard. Since this improved performance is 

the latest delivered, the athlete could then continue to work with the technique that was used to deliver 

that improved performance in trying to improve upon strengths and weaknesses.  

 

Given the increased benchmark of the worst performance registered in the archive, the athlete is now 

presented with the challenge of working harder in order to deliver further improved performances. In 
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maintaining the archive, the athlete may want to be challenged further by decreasing the archive size. 

Decreasing the archive size will make it increasingly more difficult for the athlete to register further 

improved performances. 

 

“Technique” or “skill” in this context refers to a solution determined by an optimization technique. 

Also, the “result” of a performance refers to the quality of a solution in it being used to evaluate the 

objective function 𝑓. Therefore, notable similarities can be seen between an athlete delivering 

performances and an optimization technique determining solutions. Based on the analogy of 

professional athletes desiring to improve upon their best archived performances, the eBPA was 

conceptualized. There are six foundational rules governing the design of the eBPA: 

1. An athlete maintains an archive of a collection of a limited number of best performances.  

2. From this collection, the record of the worst performance is identified. This becomes the 

benchmark for the athlete to try and improve upon. 

3. If a new performance is delivered which improves upon (or is at least equivalent to) that of 

the worst performance, then the archive is updated by replacing the current worst 

performance with the new. However, upon performing the update, if it is realized that the 

result of the new performance is identical to that of any other performance in the archive, but 

different in terms of the technique that had been employed, then the new performance will 

replace the one with the identical result. 

4. An athlete will endeavor to improve upon the performance that caused the most recent update 

of the archive.  

5. All performances registered in the archive must be unique in terms of result and technique. 

6. The archive size is strategically reduced until only one performance remains. 

 

To artificially simulate this analogy, the eBPA maintains a limited number of the best solutions found 

by the algorithm in a list called the Performance List (𝑃𝐿). From all solutions, the design variables 

constituting the construction of each solution must be adjacently different; therefore, only unique 

solutions are allowed admittance into the 𝑃𝐿. Dis-allowing duplicate solutions will prevent the 

algorithm from working with previously visited solutions. Also, the best, the worst and (what would 

be called) the working solutions in the 𝑃𝐿 must be indexed. The best and worst solutions are identified 

according to their solution qualities. Henceforth, the best, the worst and the working solutions will be 

referred to by the variables 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔. 
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To try and improve upon the 𝑤𝑜𝑟𝑠𝑡 solution registered in the 𝑃𝐿, local search moves will be applied 

to a copy of the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution; hence, a new solution 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ will be realized. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is 

chosen from a subset of candidate solutions within the neighborhood region of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔. If 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ 

at least improves upon 𝑤𝑜𝑟𝑠𝑡, or is at least equivalent in solution quality, yet unique in terms of its 

design variables, then the 𝑃𝐿 will be updated. If the solution quality of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is different from 

all solutions in the 𝑃𝐿, then the 𝑤𝑜𝑟𝑠𝑡 solution will be replaced by 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′. However, if the 

solution quality of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is identical to that of another solution in the 𝑃𝐿, then 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ will 

replace that particular solution in the 𝑃𝐿; this will ensure that there are no two solutions in the 𝑃𝐿 

with the same solution quality.  

 

Being newly inserted into the 𝑃𝐿, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ will then become the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. Also, if 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ has improved upon 𝑏𝑒𝑠𝑡, it will also be indexed as the new 𝑏𝑒𝑠𝑡 solution. Upon this update, 

the 𝑤𝑜𝑟𝑠𝑡 solution would then need to be re-determined and re-indexed. The solution quality of the 

latest 𝑤𝑜𝑟𝑠𝑡 solution will now become the new benchmark standard to try and improve upon. If an 

update of the 𝑃𝐿 has not been made, then local search moves will continue to be applied to the copy 

of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔.  

 

However, given a certain probabilistic factor, the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution could also be that of 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ even though an update of the 𝑃𝐿 had not been performed. The probabilistic factor 

represents the desire of the athlete to try out a new technique; this will continue indefinitely as 

determined by the probabilistic factor.  

 

These strategies represent the eBPA’s ability to accept both improved and dis-improved 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ 

solutions. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is considered improved if it at least improves upon 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 in the 𝑃𝐿. 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is considered to be a dis-improved solution in two ways: if 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is accepted into the 

𝑃𝐿 yet is not an improvement over 𝑤𝑜𝑟𝑘𝑖𝑛𝑔; if 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is not accepted into the 𝑃𝐿 and the 

probabilistic factor has been satisfied (i.e. this is a wayward solution that falls out of the scope of the 

solutions registered in the 𝑃𝐿). Accepting dis-improved solutions is the eBPA’s strategy of escaping 

premature convergence. Additionally, the admittance criterion shields against cycling.  
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An additional strategy is to dynamically reduce the 𝑃𝐿 size, until a 𝑃𝐿 size of one is achieved. 

Strategically decreasing the 𝑃𝐿 size allows for the admittance criterion to constrain further. Further 

constraining the 𝑃𝐿 size will intensify the search in sifting out higher quality solutions. This strategy 

also eliminates the possibility of cycling for 𝑃𝐿 sizes greater than one.  

 

Also, to strategically try to break out of premature convergence (other than the strategies already 

encapsulated within the eBPA), an option exists to temporarily increase the size of the 𝑃𝐿. However, 

temporarily increasing the 𝑃𝐿 size could open up the possibility of cycling in redirecting the search 

trajectory. The option of temporarily increasing the size of the 𝑃𝐿 is out of the scope of this initial 

research. 

 

After the termination criterion is satisfied, the 𝑏𝑒𝑠𝑡 solution will be returned. This solution is 

representative of the best performance delivered by the athlete. The eBPA is presented in Table 2.1, 

as Algorithm 2.1. In Algorithm 2.1: resize() checks to strategically resize the 𝑃𝐿; is_PL_Populated() 

checks to see if the memory structure has been fully populated, and if not then it will populate it with 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ by calling method populate(…); perform_Update(…) inserts 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ into the memory 

structure and re-indexes the 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions where applicable.  

 

The flowchart diagram of the eBPA is seen in Figure 2.2. Also, Appendix A presents a hypothetical 

illustration of how the eBPA would typically traject through a solution space. The BPA is also 

presented in Table 2.1, as Algorithm 2.2. 
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Table 2.1: The eBPA is presented as Algorithm 2.1, and the BPA is presented as Algorithm 2.2 

Algorithm 2.1: enhanced Best Performance Algorithm Algorithm 2.2: Best Performance Algorithm 

1. Initialize variables: 

    𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 = 0, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 = 0, 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 = 0 

2. Set the size of the Performance List, i.e. 𝑃𝐿_𝑠𝑖𝑧𝑒 

3. Set probability 𝑝𝑎 

4. Set the first solution in the Performance List,  

    i.e. 𝑃𝐿𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 

5. Calculate the fitness value of 𝑃𝐿𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, 

    i.e. 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 

6. Set Boolean variable 𝑡𝑜𝑔𝑔𝑙𝑒 =  𝑡𝑟𝑢𝑒 

7. while not Stopping_Criterion_Met() do 

    7.1. if resize() then 

           7.1.1. resize_PL() 

    7.2. end if 

    7.3. if 𝑡𝑜𝑔𝑔𝑙𝑒 then 

           7.3.1. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔  = Determine_Solution(𝑃𝐿𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥) 

    7.4. else 

           7.4.1. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔  = Determine_Solution(𝑤𝑜𝑟𝑘𝑖𝑛𝑔)   

           7.4.2. 𝑡𝑜𝑔𝑔𝑙𝑒 = true 

    7.5. end if 

    7.6. 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Fitness (𝑤𝑜𝑟𝑘𝑖𝑛𝑔) 

    7.7. if (𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better than or equal to   

               𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥) and is_PL_Populated() then 

           7.7.1. perform_Update(𝑤𝑜𝑟𝑘𝑖𝑛𝑔, 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔) 

    7.8. else  

           7.8.1. if not is_PL_Populated() then 

                     7.8.1.1. populate(𝑤𝑜𝑟𝑘𝑖𝑛𝑔, 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔) 

           7.8.1. end if 

    7.9. end if   

    7.9. if random[0,1] ≤ 𝑝𝑎 then 

           7.9.1. 𝑡𝑜𝑔𝑔𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒 

    7.10. end if 

8. end while 

9. return 𝑃𝐿𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 

1. Set the index variable, 𝑖𝑛𝑑𝑒𝑥 =  0 

2. Set the size of the Performance List , 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 

3. Initialize probability, 𝑝𝑎 

4. Populate the Performance List (𝑃𝐿) with random solutions 

5. Calculate the fitness values of the solutions in 𝑃𝐿, i.e. 

    𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

6. Sort 𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 according to 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

7. Initialize 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 to 𝑃𝐿𝑖𝑛𝑑𝑒𝑥 

8. while not Stopping_Criterion_Met() do  

    8.1. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔  = Perform_Local_Search(𝑤𝑜𝑟𝑘𝑖𝑛𝑔) 

    8.2. 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Evaluate (𝑤𝑜𝑟𝑘𝑖𝑛𝑔) 

    8.3. if 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better then 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒−1 then 

           8.3.1. Update 𝑃𝐿 with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 

           8.3.2. Update 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 with 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 

    8.4. end if 

    8.5. if random[0,1] > 𝑝𝑎then 

           8.4.1. 𝑖𝑛𝑑𝑒𝑥 = Select index, e.g. Random[0,𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒] 

           8.4.2. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = 𝑃𝐿𝑖𝑛𝑑𝑒𝑥 

    8.6. end if 

9. end while 

10. return 𝑃𝐿0  
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Figure 2.2: Flowchart diagram of the eBPA 
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2.3.2 Enhancement over the BPA  

 

This section analyses the conceptual differences in the design techniques of both the BPA and the 

eBPA. The primary differences include the following: 

 Maintenance of the memory structure. 

 Admittance criterion. 

 Search strategy. 

 Size of the memory structure. 

 

2.3.2.1 Maintenance of the Memory Structure 

 

BPA – The BPA starts off with having the memory structure pre-populated with random solutions. 

These solutions are then arranged in a sorted order according to their fitness values; a fitness value 

refers to the quality of a solution. The sorted order is always maintained such that the best solution is 

positioned at the first index in the memory structure, and the worst solution is positioned at the last 

index in the memory structure. Therefore, in executing the algorithm, only one index is required to 

be maintained; this is the index which references the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. Given a certain probability, 

the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution will be randomly selected from the memory structure. Upon the 

termination criterion being satisfied, the solution residing at the first position in the memory structure 

will be returned as the best solution found by the algorithm. 

 

eBPA – The eBPA starts off with a single solution in the memory structure. It then populates the 

memory structure until it becomes fully populated. Throughout the process of getting populated, and 

beyond the point of being fully populated, the 𝑏𝑒𝑠𝑡 and 𝑤𝑜𝑟𝑠𝑡 solutions will be appropriately 

indexed. All newly inserted solutions will always be referenced as the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. Up 

until the point of the memory structure being fully populated, solutions get inserted irrespective of 

their fitness value. However, the aggressive condition of enforcing uniqueness still applies as all 

solutions must differ in fitness and in design variables. If a solution is found to have an identical 

fitness value to that of a solution already registered in the 𝑃𝐿, yet differs in terms of its design 

variables, then the new solution replaces that of the old. This strategy ensures that only unique 

solutions are registered in the 𝑃𝐿. The eBPA does not maintain a sorted order of the memory structure. 

In contrast, it employs indices which references 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 in the list. Once the 
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memory structure is fully populated, the admittance criterion of meeting the minimum benchmark 

requirements will apply. The process of maintaining the memory structure continues until the 

stopping criterion is satisfied. At this point, the 𝑏𝑒𝑠𝑡 solution will be returned.  

 

Maintaining the sorted order and in randomly reselecting the working solution, given a certain 

probability, results in additional computational expense experienced by the BPA. In comparison, the 

eBPA does not maintain a sorted order of the memory structure. Rather, it maintains indices which 

reference the 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions. This strategy is computationally more efficient.  

 

With each update of the memory structure, the BPA replaces the 𝑤𝑜𝑟𝑠𝑡 solution (which is located at 

the last position in the memory structure) with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′. Thereafter, the 𝑃𝐿 needs to be reordered 

in moving 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ to its correct location; this maintains the sorted order of the 𝑃𝐿. With the eBPA, 

the 𝑤𝑜𝑟𝑠𝑡 solution is replaced with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ at the location referenced by the 𝑤𝑜𝑟𝑠𝑡 index. The 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 index is then re-assigned to this location, as 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ will be used as the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 

solution. At this point, a simple check is performed to see if the newly inserted solution is the 𝑏𝑒𝑠𝑡 

solution found. If it is, then this location will be referenced by the 𝑏𝑒𝑠𝑡 index. Thereafter, the location 

of the 𝑤𝑜𝑟𝑠𝑡 solution will be re-determined and also indexed by the 𝑤𝑜𝑟𝑠𝑡 index.   

 

In the cases of both the BPA and the eBPA, the admittance criterion is the screen for admissibility. 

Also, the prevention of duplicate solutions into the memory structures is a level of precaution against 

cycling. 

 

2.3.2.2 Admittance Criterion 

 

BPA – The BPA admittance criterion is that the 𝑤𝑜𝑟𝑠𝑡 solution must be improved upon. Thereafter, 

the BPA enforces uniqueness in ensuring that every solution in the 𝑃𝐿 differs in terms of their fitness 

value and design variables. The advantage of this approach, compared to that of the eBPA, is that this 

restrictiveness requires less processing effort. The disadvantage, however, is that solutions with 

identical fitness values, yet being unique in terms of their design variables, could have led to higher 

quality solutions. 

 

eBPA – The eBPA enforces uniqueness in terms of fitness value and design variables of every 

solution registered in the 𝑃𝐿. However, it differs from the BPA in that it allows for new solutions 
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with identical fitness values to replace those solutions in the memory structure which have the 

identical fitness values. Hence, the minimum criterion for admittance is that the fitness value of 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ must be at least equivalent to that of the 𝑤𝑜𝑟𝑠𝑡. The disadvantage of accepting solutions 

with identical fitness values is that it requires extra processing effort in ensuring uniqueness. 

However, the advantage of this strategy is that it could possibility redirect the search in finding higher 

quality solutions.   

 

2.3.2.3 Search Strategy 

 

BPA – The intent of the BPA, in maintaining a population of solutions, is to try not to lose good 

solutions found along the way; the belief is that one solution from the memory structure will at least 

lead to the global optimum point. The direction of the population itself is controlled by the admittance 

criterion. The admittance criterion only allows solutions that improve upon the 𝑤𝑜𝑟𝑠𝑡 solution to be 

allowed admittance into the memory structure. This will influence the direction of the population. 

The reason why only unique solutions are allowed admittance into the memory structure, with the 

BPA being so restrictive, is that each solution identifies a different area within the searched region. 

In employing a population to perform the search, the BPA is thus stronger in its explorative ability. 

However, it lacks in exploitation as the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution will be randomly selected from the 

𝑃𝐿 given a certain probability.   

 

eBPA – The eBPA search strategy contrasts with the BPA in that a single solution is directed in 

searching for the global optimum point. The direction of the search is primarily controlled by the 

admittance criterion. However, given a certain probability, the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution could be that 

of a dis-improved solution which had not been admitted into the memory structure. The admittance 

criterion plays a critical role in balancing the rate of transition from exploration and exploitation. The 

less restrictive the admittance criterion, the greater the level of exploration would be. Likewise, the 

more restrictive the admittance criterion, the greater the level of exploitation would be.  

 

2.3.2.4 Size of the Memory Structure 

 

The BPA uses a static memory size, as a population of solutions are used to search for the global 

optimum point. In contrast, the eBPA employs dynamic reduction of the memory structure. This 
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strategy is additionally used to tweak the rate of exploitation, and eliminates the possibilities of 

cycling for 𝑃𝐿 sizes greater than one. 

 

2.4   The Strategic Design of the eBPA 

 

The eBPA is designed to use intelligence to seek out solutions effectively and economically. Its core 

design is structured around adaptive memory in maintaining a list of elite solutions.  

 

The memory structure is governed by a set of underlying principles: the dynamic resizing of the 

memory structure; the admittance criterion; and the maintenance of the indices which reference the 

𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions. Another governing principal is the probability factor. The 

probability factor strategically allows dis-improved solutions to redirect the search beyond the point 

of the 𝑤𝑜𝑟𝑠𝑡 solution.  

 

Memory is primarily used as the mechanism to direct the trajectory of a single 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution 

through the solution space. The technique of random search, coupled with adaptive memory, embeds 

a blend of stochastic and deterministic search strategies. The eBPA technique is similar to a memory-

less search technique, such as SA, in that a single solution is used to stochastically drive the search. 

However, the eBPA uses determinism, similar to that of the TS, in that memory is used to decide on 

the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ solution to be used to advance the search. Hence, the eBPA search techniques 

differs from memory-less techniques which are modeled primarily on randomization, and memory-

based techniques which are modeled primarily on being deterministic. Therefore, the eBPA takes 

advantage of both stochastic and deterministic search strategies in balancing the computational time 

spent in locating promising neighborhood regions via exploration, and the time spent identifying the 

most attractive solutions contained within a local neighborhood region via exploitation.  

 

To expound further, more clarity is given on the eBPA memory technique, its search strategies, its 

explorative and exploitative balance, and the strategic resizing of its memory structure. 

 

  



 
 

32 
 

2.4.1 Memory Technique of the eBPA 

 

The fitness value of a solution registered in the memory structure refers to its strength upon having 

been evaluated by objective function 𝑓. Solutions with better fitness values exist closer to the global 

optimum point. The qualities of the fitness values are important in differentiating one solution from 

the next. Importantly, in using the fitness values, the 𝑏𝑒𝑠𝑡 and 𝑤𝑜𝑟𝑠𝑡 solutions can be identified and 

indexed. The index of the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution will always be that of the most recent solution inserted 

into the memory structure. The maintenance of these indices are critical in implementing the search 

strategies of the eBPA. These indices relate to the way the memory structure will adapt as the search 

progresses. The enforced restrictions of the admittance criterion, coupled with the maintenance of 

these indices, is core to the design of the eBPA.  

 

The admittance criterion directly influences the trajectory path of the search, as this feature controls 

the quality of the solutions registered in the memory structure. If 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is allowed admittance, 

and has a higher fitness value compared to that of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔, then a more attractive position within 

the solution space has been identified; this implicitly could also refer to the best solution found. If 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ has a lower fitness value (i.e. a dis-improved solution) compared to that of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔, and 

has been allowed admittance, then a less attractive but acceptable position has been identified in the 

trajectory of the search. This strategy could possibly lead to an alternative route in locating the local 

optimum point; it could also cause a redirection to other neighboring regions in escaping from 

premature convergence. 

 

As the search matures, the quality of the solutions in the memory structure are increasingly refined 

as higher quality solutions get accepted. With improved solutions, the admittance criterion would 

become increasingly restrictive. The increase in the restrictiveness of the admittance criterion controls 

the trading-off between exploration and exploitation.  

 

2.4.2 Search Strategy of the eBPA 

 

The search techniques employed by the eBPA causes a loosely knitted relationship between the 

neighborhood region being searched (i.e. the neighborhood region of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔) and that of the other 

solutions registered in the memory structure. The neighborhood region gets redefined upon 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ 

being accepted, as this will become the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution.  
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However, concerning the trajectory of the search, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ solutions get accepted in two ways: if it 

meets the minimum admittance criterion in being accepted into the memory structure; or, in having 

been chosen given a certain probabilistic factor. If 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is admitted into the memory structure, 

and has a fitness value that is better than that of the 𝑤𝑜𝑟𝑠𝑡 solution, then the next 𝑤𝑜𝑟𝑠𝑡 solution will 

be of an improved quality. If this occurs, the admittance criterion will become more restrictive as the 

minimum criterion of admittance would increase.  

 

Resultantly, this will also cause the local optimum points to become more clearly defined (see 

Appendix A for a clearer explanation). With the admittance criterion becoming increasingly 

restrictive, greater levels of number-crunching would be required to determine further improved 

solutions. Hence, the decisions made by the admittance criterion is strategically used to influence the 

behavior of the search.  

 

Within a neighborhood region itself, the ultimate objective is to locate the local optimum point. 

However, the eBPA uses intelligence in open-mindedly accepting dis-improved solutions; accepting 

dis-improved solutions attempts to redirect the search path. This strategy protects against premature 

convergence in directly attempting to lead away to other neighboring regions. The intent of accepting 

dis-improved solutions is to balance the effort invested in sifting out the local optimum point from 

within a local neighborhood region, and in searching for other promising neighborhood regions via 

exploration. With the neighborhood regions being restructured dynamically, upon updates of the 

memory structure, the possibility of revisiting previously found solutions remains unlikely.  

 

2.4.3 Exploration and Exploitation of the eBPA 

 

Metaheuristic algorithms are characterized by two important yet contrasting search strategies− 

exploration and exploitation (Syam and Al-Harkan, 2010).  

 

Exploration is a global search technique. Its intent is to visit as many neighborhood regions as possible 

within the confines of the solution space. Ideally, exploration needs to be more influential during the 

initial phases of the search.  
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On the other hand, exploitation is a local search technique. Its intent is to search within a local 

neighborhood region in trying to locate the local optimum point. Exploitation needs to be more 

influential during the latter stages of the search, as it aggressively sifts out higher quality solutions.  

 

Striking a balance between exploration and exploitation, throughout the different phases of a search, 

is critical to the success of any metaheuristic algorithm. Also, this balance is of paramount importance 

in implementing effective and economical search. Reason being, there is a fine balance between the 

computational time spent in exploring for the most attractive neighborhood regions, and the 

computational time spent in exploiting within a local neighborhood region for the optimum point. 

 

The eBPA uses adaptive memory to intelligently control the rate of the transition from exploration to 

exploitation. During the initial phases of the search, the admittance criterion is less restrictive as the 

memory structure consists of lower quality solutions; hence, greater levels of exploration is 

experienced. With the fitness of the solutions in the memory structure being improved upon, with 

matured search, the admittance criterion becomes increasing restrictive. This allows for greater levels 

of exploitation to be experienced. Exploitation attempts to incorporate the stronger elements of the 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions into new 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ solutions, while discouraging the weaker elements. In 

performing exploration, the eBPA supposes that strategically accepting dis-improved solutions is 

more beneficial than a good random solution in influencing the trajectory of the search.   

 

2.4.4 Strategic Reduction of the eBPA Memory Structure 

 

The strategic reduction of the eBPA memory structure is critical to its success. It is also considered 

strategically more beneficial than maintaining a static memory structure size. The intelligence of 

strategically reducing the memory structure size will influence greater levels of exploitation as the 

admittance criterion would constrain further. The advantage of further intensifying exploitation is to 

place additional pressure in attempting to identify higher quality solutions.  

 

A recommended strategy is to strategically reduce the memory structure size by one, until a memory 

size of one is reached. Using this technique, every solution admitted into the memory structure will 

be given a chance to act as the 𝑤𝑜𝑟𝑠𝑡 solution. Therefore, every solution will be given a chance to 

influence the trajectory of the search.  

 



 
 

35 
 

The initial size of the memory structure is problem-specific. The results section (i.e. section 2.6) 

below gives an idea of how to set the memory structure size appropriately.    

 

2.5   Experimental Setup 

 

The results section (i.e. section 2.6) essentially investigates the sequences of instructions constituting 

the algorithmic designs of both the BPA and the eBPA. Although the BPA and the eBPA have 

conceptually similar designs, the fundamental differences in their designs cause each algorithm to 

behave and execute differently. To discuss the effects of these differences, we present a 

comprehensive investigation by performing a series of experiments to highlight the differences. 

Regarding the eBPA, further experiments will be performed in examining how differences in its 

parameter settings will affect its performance.  

 

For the experiments, the eil101 symmetric Travelling Salesman problem (sTSP) will be investigated. 

Reason being, this is a discrete optimization problem and will prove the weakness of the BPA. This 

problem, together with a host of others, can be found in the TSPLIB collection made available by 

Gerhard Reinelt online. The TSP problem is a well-studied discrete optimization problem. It is the 

problem of determining the minimal tour which traverses a list of 𝑛 cities in a way in which every 

city is visited exactly once, except for the original city of departure which is the starting and finishing 

point of the salesman (Lin, 1965). The complexity of the TSP is 𝑁𝑃-Hard. 

 

The move mechanism employed, in implementing the eil101 problem, is to swap two randomly 

selected vertices in generating a new tour. This simple move mechanism is sufficient for the purpose 

of this investigation. The purpose is to fairly compare the performances of both algorithms, and to 

discuss their differences. Overall, the performances of both algorithms will indicate the effectiveness 

of the core sequences of instructions constituting their algorithmic designs; this is the purpose of the 

investigation. Their performances will also indicate their abilities to accurately, consistently and 

robustly determine solutions for discrete optimization problems. 

 

In performing the comparison tests, the parameter settings, and the number of runs per experiment, 

for both the eBPA and the BPA, will be identical. This is to ensure fairness for comparative purposes. 

For the comparison investigation on convergence, the eBPA will also be compared against the TS 
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metaheuristic. Here, TS will represent a typical single-point metaheuristic in comparing differences 

with that of the eBPA. Thereafter, two experiments will be performed in investigating the correlation 

between the eBPA parameter values and its performance. 

 

2.6   Results and Discussion 

 

All runs will be performed within a window frame of a limited number of iterations; each run will 

execute for 106 objective function evaluations. Although this particular benchmark problem is 

investigated in this study, it is expected that the algorithms will perform similarly for other types of 

discrete optimization problems. Also, it should be noted that the BPA and the eBPA are general 

purpose metaheuristic algorithms; they are expected to be applied to other types of optimization 

problems of which other metaheuristic algorithms are applicable.  

 

2.6.1 Simulation Experiments 

 

The first fundamental difference is that the BPA uses a population of solutions to collectively move 

towards the global optimum point, whereas the eBPA uses a single 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution for the same 

purpose. The underlying rules governing the designs of both algorithms facilitate these search 

strategies. Amongst these are the rules related to the admittance criterion, and the rules for 

maintaining the memory structures. The execution time used to determine admissibility, and the time 

taken to maintain the memory structures weigh heavily on the overall execution times of the 

algorithms.  

 

2.6.1.1 Experiment 1 

 

Therefore, we start off the first experiment from this perspective: monitor the average execution time 

consumed by each algorithm in performing a single update of its memory structure. To perform this 

experiment, various 𝑃𝐿 sizes will be investigated: 1, 10, 25, 50, 75 and 100. In using different 𝑃𝐿 

sizes, the effects on the average execution times per 𝑃𝐿 update will be monitored.  

 

For each 𝑃𝐿 size, each algorithm was executed 100 times. The probability factor (𝑝𝑎) remained 

constant at 0.2 per algorithm for the duration of this experiment. For the sake of comparability, the 

𝑃𝐿 size for the eBPA remained constant; however, it is expected that with strategic reduction of the 
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𝑃𝐿 size, the execution time of the eBPA would have decreased due to the maintenance of a smaller 

memory structure. The results of the experiment are given in Table 2.2. 

  

Table 2.2: Average execution time, in milliseconds, to perform a single update of the PL memory structure 

𝑃𝐿 Size eBPA BPA 

1 9.55E-09 1.60E-05 

10 6.88E-08 3.95E-05 

25 2.37E-05 6.17E-05 

50 5.98E-06 1.14E-04 

75 4.03E-06 1.72E-04 

100 3.34E-06 1.72E-04 

 

Figure 2.3 displays graphical representations of the statistics given in Table 2.2. Figure 2.3 shows 

that for each 𝑃𝐿 size, the eBPA shows significant gains in average execution time performances, per 

𝑃𝐿 update. Clearly, maintaining the indices which reference the 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions 

show to be significantly more efficient than maintaining the sorted order of the BPA memory 

structure. The eBPA also allows for solutions with duplicate fitness values to be allowed admittance 

into the memory structure; this feature demands additional processing effort in ensuring uniqueness. 

However, despite this additional processing effort, the eBPA still shows to be computationally more 

efficient. In contrast, the BPA gains in execution time by simply rejecting solutions which do not 

have unique fitness values. 

 

 

Figure 2.3: Comparison of average execution times, in milliseconds, to perform a single update of the 𝑃𝐿’s of the 

eBPA and the BPA, for different 𝑃𝐿 sizes 
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2.6.1.2 Experiment 2 

 

For the second experiment, we investigate the number of times each 𝑃𝐿 got updated, within the 

interval of iterations taken to reduce the 𝑃𝐿 size of the eBPA by 1. The reduction strategy employed 

by the eBPA was: reduce the 𝑃𝐿 size by 1 until a 𝑃𝐿 size of 1 is reached, after every 106/𝑃𝐿_𝑠𝑖𝑧𝑒 

number of iterations. For this experiment, a 𝑃𝐿 size of 50 was used; therefore, the reduction was done 

after every 2,000 iterations. To make the comparison with the BPA, the number of times the BPA 

memory structure got updated was also recorded after every segment of 2,000 iterations. For this 

experiment, the probability of 𝑝𝑎 = 0.2 was used per algorithm. Each algorithm had been executed 

once. The comparison of the algorithmic performances are seen graphically in Figure 2.4. 

 

 

Figure 2.4: The number of times each PL had been updated, per segment of 2,000 iterations 

 

From Figure 2.4, it is clearly seen that the eBPA determined a significantly larger number of 𝑃𝐿 

updates, per segment of 2,000 iterations, compared to that of the BPA. The eBPA depicted plot shows 

evidence of its ability to balance exploration and exploitation. The pattern of the plotted slope is seen 

to have a somewhat concaved shape; the slope itself shows the drop in the number of 𝑃𝐿 updates 

throughout the lifespan of the execution. The figure shows that the level of exploration was highest 

during the initial phase of the search, and thereafter reduced as the admittance criterion became more 

difficult to satisfy. The admittance criterion would have become more restrictive with improved 

solutions, and in the strategic reduction of the 𝑃𝐿 size. The increase in the admittance criterion would 

have been accompanied by greater levels of exploitation. Greater levels of exploitation would have 

caused the eBPA to fight harder in determining further improved solutions. The slope illustrates how 

the eBPA balanced its transition from exploration to exploitation. In comparison, the weaknesses of 
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the BPA in its explorative and exploitative abilities have been exposed in observing its inability to 

have determined larger numbers of 𝑃𝐿 updates per segment.  

 

2.6.1.3 Experiment 3 

 

For the third experiment, a head-to-head performance comparison test was investigated. For this 

experiment, the best and average fitness value solutions (i.e. BFV and AFV respectively), as well as 

the average execution time performances have been documented. Tests were performed in using the 

𝑃𝐿 sizes of 1, 10, 25, 50, 75 and 100. For each 𝑃𝐿 size, each algorithm was executed 100 times. 

Again, the 𝑝𝑎 value of 0.2 was used per algorithm for all simulations. The strategic reduction of the 

eBPA 𝑃𝐿 size was the same as was implemented in experiment two above: reduce the 𝑃𝐿 size by 1 

after every 106/𝑃𝐿_𝑠𝑖𝑧𝑒 number of iterations. The statistics of the results are given in Table 2.3. 

 

Table 2.3: The best (BFV) and average (AFV) fitness value solutions, together with the average execution time 

performances (AVG) in milliseconds (ms), per 𝑃𝐿 size 

𝑷𝑳 Size 
 eBPA   BPA  

BFV AFV AVG BFV AFV AVG 

1 837 947 7,149 863 982 8,432 

10 695 726 7,155 876 955 8,227 

25 674 695 8,119 869 953 8,910 

50 686 710 7,841 856 969 8,591 

75 683 720 7,508 865 973 7,836 

100 695 746 7,224 904 975 8,575 

 

From Table 2.3, it is seen that the eBPA delivered superior performances for the fitness value 

solutions (at best and on average), and for the average execution time performances across all 𝑃𝐿 

sizes. Graphical comparisons of the best and average fitness value solutions from Table 2.3, per 𝑃𝐿 

size, are seen in Figures 2.5 till 2.10. 
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Figure 2.5: Best and average fitness values, per 𝑃𝐿 size of 1 

 

Figure 2.6: Best and average fitness values, per 𝑃𝐿 size of 10 

  

 

Figure 2.7: Best and average fitness values, per 𝑃𝐿 size of 25 

 

Figure 2.8: Best and average fitness values, per 𝑃𝐿 size of 50 

 

 

Figure 2.9: Best and average fitness values, per 𝑃𝐿 size of 75 

 

Figure 2.10: Best and average fitness values, per 𝑃𝐿 size of 

100 

 

The graphical comparison of the average execution time performances from Table 2.3 is seen in 

Figure 2.11. 
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Figure 2.11: Average execution time performances, for each 𝑃𝐿 size 

 

For each of the BFV solutions, as documented in Table 2.3 for the different 𝑃𝐿 sizes, Figures 2.12 

and 2.13 depict the behavior of each algorithm in converging to their best solutions. Each slope 

represents the fitness drop over the number of iterations executed. Each figure shows the basic 

behavior of the algorithms for the different 𝑃𝐿 sizes. The fitness values were recorded every 2,000 

iterations. The plotted slopes in Figure 2.12 relate to the performances delivered by the eBPA. The 

plotted slopes in Figure 2.13 relate to the performances delivered by the BPA. 

 

 

Figure 2.12: Convergence of eBPA in having determined its 

best solutions, per PL size 

 

Figure 2.13: Convergence of BPA in having determined its 

best solutions, per PL size 

 

From Figure 2.12, it is seen that all plots started off with the same initial solution. The slope with the 

𝑃𝐿 size of 1 shows an immediate fitness drop, yet it converged quickly beyond the fitness value of 

1,000; it ultimately determined a relatively poor solution. The slope with the 𝑃𝐿 size of 10 also shows 

an immediate fitness drop, yet converged at a slower rate; it determined a much improved solution 

compared to that with the 𝑃𝐿 size of 1. The slope with the 𝑃𝐿 size of 25 shows an even slower fitness 

drop. The slope with the 𝑃𝐿 size of 50 shows an even slower fitness drop, in being compared to that 
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with the 𝑃𝐿 size of 25. Interestingly, as the 𝑃𝐿 sizes increase, the slopes clearly seem to be moving 

away from having a concaved shape towards being linear. The slope with the 𝑃𝐿 size of 75 shows a 

slope which is somewhat linear. The slope with the 𝑃𝐿 size of 100 shows the slowest rate of 

convergence; its slope is clearly convexed.  

 

In observing the slopes for the different 𝑃𝐿 sizes, it is distinctly realized that in order to alter the rate 

of convergence, one would simply need to adjust the 𝑃𝐿 size appropriately. This experiment also 

demonstrates that the setting of the 𝑃𝐿 size for the eBPA is relatively simple. Yet, it is also observed 

that reducing the convergence rate would not necessarily yield better results. However, in observing 

the performances of the 𝑃𝐿 sizes between the ranges of 10 to 100, it is realized that amending the 𝑃𝐿 

sizes within this range does not significantly hinder the overall performance of the eBPA.  

 

From Figure 2.13, it is seen that the BPA slopes show a similar trend in convergences, yet at much 

faster rates. Also, the convergences of the BPA slopes are not as predictable, or balanced, as that of 

the slopes of the eBPA. For example, the slope with the 𝑃𝐿 size of 50 initially weaves with the slope 

having the 𝑃𝐿 size of 25. Thereafter, it converged at a faster rate compared to the slope having the 

𝑃𝐿 size of 25. A similar scenario is seen with the slopes with the 𝑃𝐿 sizes of 100 and 75. Hence, in 

making a comparison to Figure 2.12, the setting of the BPA memory structure size is not as simple 

as that of the eBPA. For the BPA, there is the element of added uncertainty in setting different 𝑃𝐿 

sizes, as it is not completely obvious how the convergence will progress. 

 

To further investigate, we compare the similarities of the convergences with a typical single-point 

metaheuristic algorithm. The algorithm investigated is the TS. TS also implements the benefits of 

memory.  

 

For TS, the Tabu List size of 7 remained constant (Glover, 1986), while tests were performed in using 

the Candidate list sizes of 50, 100, 250, 500, 750 and 1,000. For each 𝐶𝐿 size investigated, 100 runs 

were performed. From the 100 runs, per 𝐶𝐿 size, the convergence of the best solution had been 

recorded, and is graphically depicted in Figure 2.14. Similar to Figures 2.12 and 2.13, Figure 2.14 

likewise represents the fitness drop over the number of iterations executed. As can be seen, TS 

comparatively shows similar behavioral traits to that of the BPA, but not as comparable to that of the 
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eBPA. Its slopes show fast convergences for the different 𝐶𝐿 sizes investigated. They also interweave 

each other in progressing towards their best solutions. 

 

 

Figure 2.14: Convergence of TS in having determined its best solutions, per 𝐶𝐿 size 

 

In comparing the eBPA convergences to that of the BPA and the TS, it is observed that the eBPA has 

performed somewhat similarly to that of the BPA, yet not nearly as comparable to that of TS. Similar 

to TS, for this problem instance, the typical metaheuristic algorithm would likely show the behavioral 

pattern of a quick drop in fitness, and then would dramatically slow down beyond a certain fitness 

point until the slope vertically flattens out. However, it is noted that the rate of convergence would 

also be controlled by the parameter settings of the algorithm. Yet, the behavior of the rate of 

convergence is unlikely to be as obvious as that experienced by the eBPA. This feature distinguishes 

the eBPA from the typical metaheuristic algorithm, and will be very beneficial in its implementation 

to practical applications.  

 

2.6.2 eBPA Parameter Experiments 

 

The next two sets of experiments specifically investigate the correlation between the settings of the 

eBPA parameter values and its performances. Fortunately, the eBPA has only two parameter values: 

the probability factor (𝑝𝑎) and the size of the 𝑃𝐿 (𝑃𝐿_𝑠𝑖𝑧𝑒).  

 

2.6.2.1 Experiment 4 

This experiment investigates the relationship between different probability values and fitness. For 

this experiment, 500 runs were executed in randomly selecting probability values from within the 
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range of 0 ≤ 𝑝𝑎 < 1. For all simulations, the 𝑃𝐿_𝑠𝑖𝑧𝑒 of 100 remained constant. The results 

determined are plotted in Figure 2.15.  

 

In Figure 2.15, each point represents the probability-fitness relation of a single run. Figure 2.16 is a 

zoomed in image of Figure 2.15. From Figures 2.15 and 2.16, it is observed that as probability 

increases, the likelihood of the eBPA determining higher quality solutions decreases. Higher levels 

of probability encourage greater levels of exploration; however, this should not be beyond the point 

of what is ideal to experience that essential balance between exploration and exploitation. The correct 

balance between exploration and exploitation is needed to determine the highest quality of solutions.  

It is evident that smaller probability values best suit the explorative and exploitative balance.  

 

 

Figure 2.15: Correlation between probability and fitness 

 

Figure 2.16: Zoomed in image of Figure 2.15 

 

 

2.6.2.2 Experiment 5 

 

For this experiment, we investigate the relationship between the 𝑃𝐿 size and fitness, and the 𝑃𝐿 size 

and execution time performance. For this experiment, a total of 500 runs had been executed. For each 

run, the 𝑝𝑎 value of 0.2 remained constant while the 𝑃𝐿 size was randomly selected from with the 

range of 1 ≤ 𝑃𝐿_𝑠𝑖𝑧𝑒 ≤ 200. For each run, the 𝑃𝐿 size, fitness and execution time had been 

documented. The results of the 𝑃𝐿 size and fitness correlation is plotted in Figure 2.17. In Figure 

2.17, each point represents the coordinate of the 𝑃𝐿 size and fitness value relation. Figure 2.18 is a 

zoomed in image of Figure 2.17. Likewise, the results for the 𝑃𝐿 size and execution time performance 

correlation is plotted in Figure 2.19. Figure 2.20 is a zoomed in image of Figure 2.19. 
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Figures 2.17 and 2.18 show that the best and most consistent performances fall between the 𝑃𝐿 size 

range of 10 to 100. However, in increasing the 𝑃𝐿 size within this range, the probability of 

determining higher quality solutions marginally decreases. The most competitive solutions arguably 

fall within the 𝑃𝐿 size range of 20 to 50.  

 

 

Figure 2.17: Correlation between 𝑃𝐿 size and fitness 

 

Figure 2.18: Zoomed in image of Figure 2.17 

 

Figures 2.19 and 2.20 show that although some results are scattered (which would also be typical for 

other metaheuristic algorithms), there is evidence to stipulate that increasing the 𝑃𝐿 size will also 

increase the execution time performances. The relation is more clearly seen with the red-dotted trend 

line across the face of Figure 2.20. 

 

 

Figure 2.19: Correlation between 𝑃𝐿 size and execution time 

 

Figure 2.20: Zoomed in image of Figure 2.19 

 

The strength of the eBPA surrounds its core feature which is adaptive memory. The techniques used 

to maintain this memory structure, and the governing principles of admittance surrounding it, appear 

as the key elements for the efficiency of the eBPA.  
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2.7  Conclusion 

 

This study has presented theory and analysis on the eBPA, and has highlighted the underlying 

principles that govern the design of the algorithm. The eBPA had been developed due to further 

research having undergone on the BPA. The eBPA was developed to try and improve upon the 

efficiency aspects of the BPA, particularly for discrete optimization problems. 

 

The objective of this study was to formally present and highlight the benefits of the eBPA. The eBPA 

core design is structured around adaptive memory. Adaptive memory is used as a tool to strategically 

direct the search, and also to penetrate complexed regions of the solution space which may confine 

other methods. The eBPA design embeds characteristics of both stochastic and deterministic search 

strategies. These strategies are used to finely balance its rate from exploration and exploitation. 

 

The conceptual differences in the design techniques of both the BPA and the eBPA have been 

comprehensively analyzed. To compare the differences in the design techniques, a comprehensive set 

of experiments have been performed. The results show the strength of the eBPA in having delivered 

effective and economical search, compared to that of the BPA, for this discrete optimization problem.  

 

The added advantages of the eBPA is its simplistic design; it also only has two parameter values that 

need to be set. The settings of the parameter values have been shown to be quite simplistic.  
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Chapter Three 

The enhanced Best Performance Algorithm for the Annual Crop 

Planning Problem Based on Economic Factors 

3.1  Introduction 

 

At present, the world is faced with great challenges of water and food scarcity. Water scarcity can be 

described as the occurrence when the demands on fresh water exceeds its supply (Schmitz et al., 

2007). The ever increasing world population growth contributes to this problem. As a result, there are 

greater demands of fresh water supply from all sectors of the industry. Major industry consumers of 

fresh water supply are those of the agricultural, domestic and industrial sectors. The more fresh water 

supplies consumed by the other sectors of the industry, the less will be available for agricultural 

consumption. In spite of this present challenge, the agricultural sector–being the most important 

sector in that it is the primary producer of food globally–has been placed under increased pressure to 

use fresh water supplies more conservatively (Schmitz et al., 2007). 

 

Currently, it is estimated that around 70% of all fresh water supplies globally are used up by the 

agricultural sector. Of this, around 90% is estimated to be for consumptive use (Schmitz et al., 2007). 

Thus, if reduced volumes of fresh water is supplied to the agricultural sector, it will threaten the 

sustainability of food production.  

 

In crop production, fresh water supplies are essential in order to realize optimal crop development. 

Optimal crop development is necessary in order to receive maximum yields. Thus, any form of water 

depletion in the crop development process will negatively affect crop growth; this will resultantly 

affect harvests, and ultimately food supplies. Food supply shortages would result in increased food 

prices. Increased food prices would result in increases in the costs of living. Increases in the costs of 

living will have a direct hand in contributing to further socioeconomic problems already faced by the 

world. 

 

To alleviate these challenges, it is imperative that the agricultural sector determine scalable solutions 

to the problem of resource allocations in crop production. Ideally, optimized solutions are required. 
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Interestingly, in spite of the shortages of resources available for crop production, more returns are 

expected per unit of the resources utilized. This is primarily due to the increases in the population 

growth. 

 

As part of the attempt to contribute to the solution, the ACP problem had been previously introduced 

in the literature by Chetty and Adewumi (2013b; 2013c; 2013d; 2014). The ACP problem focuses at 

the level of an irrigation scheme. The scope is resource allocation solutions in food crop production. 

Notably, no optimal solutions are guaranteed in crop production. This is due to the uncertainties of 

several stochastic factors that are associated with the crop production process. The stochastic factors 

include climatic conditions, soil characteristics, market demand and supply conditions, and 

cultivation practices, etc. The ACP problem aims to advise crop planners on making resource 

allocation decisions for the forthcoming year of crop production. The studies initiated by Chetty and 

Adewumi (2013b; 2013c; 2013d; and 2014) were a first attempt to present the ACP problem as an 

optimization problem in the literature.  

 

Interesting studies on crop and irrigation planning, as found in the literature, include those by 

Mohamad and Said (2011), Sunantara and Rimirez (1997), Wardlaw and Bhaktikul (2004), Georgiou 

and Papamichail (2008), Sarker and Ray (2009), Adeyemo and Otieno (2010a), Adeyemo et al. 

(2010b), Pant et al. (2008), Pant et al. (2010), Raju and Kumar (2004) and Reddy and Kumar (2007). 

Descriptions of these articles are also given in the studies by Chetty and Adewumi (2013b; 2013c; 

2013d; and 2014).  

 

This study further expounds on the ACP problem by reformulating the ACP mathematical model. 

The reformulated mathematical model considers two fundamental market economic factors: the 

economy of scale, and the demand and supply relations. The economy of scale, and the demand and 

supply relations have always had a notable presence in crop production. With the economy of scale 

influence, crop production on a larger scale has always been more profitable, as unit costs are lower 

(Faris, 1961). Especially with the advent of farming technologies, such as machinery, fertilizers, 

irrigation practices, etc., the economy of scale influence in crop production has been considerable. 

Almost every aspect of modern crop production favors production on a larger scale. Concerning the 

market demand and supply factors in crop production, the sale of the harvests are done within a 

deregulated marketing environment. Therefore, in an environment where there is no governmental 

control over the market prices, the market prices are determined by demand and supply relations. 
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Therefore, for these reasons, the ACP mathematical model has been enhanced in considering these 

important economic factors required to provide more realistic solutions. 

 

Furthermore, this study sees an opportunity to investigate the potentials of the eBPA and the BPA for 

a continuous optimization problem. The solutions determined by the eBPA and the BPA will be 

compared against each other and those of the TS and SA algorithms. 

 

The rest of this chapter is structured as follows: Section 3.2 gives a detailed insight into the ACP 

problem. Section 3.3 formally presents the problem. Section 3.4 explains the mathematical model 

used to formulate the ACP. Section 3.5 describes the economy of scale, and the demand and supply 

relational factors. These will be mathematically implemented as part of the new ACP mathematical 

model. The new ACP mathematical model is presented in section 3.6. Sections 3.7 and 3.8 

summarizes previous research work done on the ACP for the publications listed. Section 3.9 describes 

the experimental results obtained. Finally, section 3.10 draws on conclusions. 

 

 

3.2   Background to ACP Problem 

 

Crop production is a multi-staged process which includes: crop selection, land allocation, planting, 

crop development, harvesting, crop storage, and the marketing stages (Acquaah, 2004). Ultimately, 

to achieve maximum returns within a production year, effective decisions need to be made at each 

stage of the crop production process. Yet, this is no simple task as several stochastic factors affect the 

crop production process.  

 

Notable stochastic factors include the climatic conditions, soil characteristics, the market demand and 

supply conditions, and cultivation practices, etc. The climatic conditions primarily include 

temperature, humidity, wind-speeds and rainfall (Brouwer and Heibloem, 1986). These importantly 

effect the rates of evaporation from the soil surface back into the earth’s atmosphere. It also influences 

transpiration through the stomata of the crops.  

 

Soil characteristics are those of soil texture, the soil nutrition, the soil moisture content levels, the rate 

of transitivity of water through the soil, etc. (Astera, 2010). The content structure of the soil texture 

influences the soil moisture holding capacity, and the transitivity rate. The soil moisture holding 
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capacity is the volume of water that can be contained within the soil. The transitivity rate is the rate 

at which water is absorbed by the root system of the crop. Soil nutrition is vital for optimal crop 

growth. Furthermore, concerning the cost of the sale of the harvests, the demand and supply 

conditions have a major influence (Whelan and Msefer, 1996).  

 

During the crop selection stage (notably the first), several factors need to be considered in determining 

the most appropriate crops to be cultivated. Firstly, crop selection is location specific. Reason being, 

crops adapt well to the environmental conditions at specific geographical locations (Mustafa et al., 

2011). Also, it is necessary that there be sufficient demand for the crops to be produced in order to be 

counted profitable; it should also be sustainable for the future production.  

 

Upon the crops having been selected, decisions would thereafter need to be made concerning the 

resource allocations amongst the various competing crops required to be produced. Resource 

allocations occur at the land allocation stage of the crop production process. This embeds the scope 

of the ACP problem. 

 

The intent of the ACP problem is to determine resource allocation solutions amongst the various 

competing crops which are required to be produced. The limited resources concerned with the ACP 

problem include land area, irrigated water supply, and the various costs associated with the production 

of each crop. The objective is to maximize the total gross profits that could be earned from the sale 

of the harvests at the end of the forthcoming production year.  

 

The ACP mathematical model considers several important factors in determining scalable solutions: 

the area of agricultural land available for crop production, rainfall estimates, the Crop Water 

Requirements (CWR’s) per crop, the irrigated water supply and its cost, the production costs, the crop 

yields (this is under the assumption of what the yields are expected to be given the previous year’s 

statistics), the producer prices per crop, and the market demand conditions. 

 

The area of land available for crop production can be segmented into different farm-plot types. Farm-

plot types are appropriate for the production of different types of crops. For sequential cropping 

(which is the current scope for ACP problem), the single-crop farm plots are used to produce all the 

crops that grow all year around on the same farm plot. These are called perennial crops. Examples 

include crops such as Lucerne and fruit trees. Perennial crops can be harvested once or several times 
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within the year. The double-crop farm plots are likewise used to produce crops that grow in sequence 

of each other on the same farm plot within the production year. Examples are the summer and winter 

crop groups. For instance, Maize (being a summer crop) is grown in sequence with Wheat (being a 

winter crop) on the same farm plot within a production year in South Africa. Similarly, triple-crop 

farm plots are used to produce three crop groups that grow in sequence of each other on the same 

farm-plot, etc. Sequential cropping is a highly beneficial cultivation practice: it yields higher returns 

per farm plot; it provides additional protection against pests, bacteria and weed development; it adds 

to the nutritional value of the soil, which in turn reduces fertilization and pesticide costs (Charles, 

1986).  

 

Each crop cultivated additionally differs in CWR needs. The CWR need of each crop differ due to 

the diversity in crop characteristics. It also differs due to the fact that the CWR need of the same crop 

grown at different geographical regions may differ due to the differences in the climatic conditions. 

The difference between the CWR need of each crop and precipitation is the volume of irrigated water 

that is required for optimal crop growth throughout its lifespan. 

 

The scheduling of irrigated water for the production of each crop is out of the scope of this study. 

However, the feed of fresh water supply, by either rainfall or irrigation to the crops root system need 

to be well planned throughout the different stages of crop development. For example, a fully grown 

crop would require more supply of water than a newly planted crop. Also, water supplied to the 

surface of the crops root system would need to be in accordance with the moisture content level of 

the soil. The moisture content level should ideally be maintained between wilting point and field 

capacity; field capacity is the maximum water holding capacity of the soil. At any volume greater 

than the field capacity, the crop is susceptible to root damages. Also, at any level below wilting point, 

the crop will no longer be able to absorb water in order to survive (Brouwer and Heibloem, 1986). If 

a crop suffers water stress, such as mild, moderate or severe, it will affect the physiological processes 

of respiration, growth, photosynthesis and reproduction within the plant. Therefore, in order to 

achieve the ideal water balance within the plant for optimal growth and yield, it is essential that the 

soil moisture content be maintained throughout the lifespan of the crop. Herein lies the importance of 

irrigation.  

 

Irrigated water is primarily extracted from ground water reserves such as rivers and lakes. In being 

supplied to the irrigation schemes, it is accompanied by a water charge m-3 of the water utilized. 
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Production costs, coupled with crop yields and producer prices determine the profit earned. This is 

also in accordance with the market demand of the crop. Production costs consist of the fixed and 

variable costs of production. Fixed costs relate to the financial outlay irrespective of production. Fixed 

costs include loan repayments and other types of monthly expenses incurred in order to facilitate the 

crop production process. Variable costs are the costs incurred in the production of a unit of the harvest. 

Variable costs include that of tilling the soil, labour costs, the costs of soil nutrition, pest control, 

irrigated water supply costs, and harvesting costs, etc.  

 

Production costs will differ per crop produced. This is due to crop specific cultivation practices, and 

the cost of it. A simple example is the cost of harvesting a crop by hand, and harvesting a crop using 

machinery. In harvesting using these two different ways, the costs will differ. Cultivation practices 

also affect the crop yields (Dukes et al., 2012). Apart from maintaining the soil moisture content level 

and the nutritional value of the soil, other factors need to be dealt with which will affect the crop 

yield. These include weeds, pests and bacteria which occur during the lifespan of a crop.  

 

In crop planning, the exact estimates of production costs, yields and producer prices cannot be pre-

determined. Rather, statistics from previous years of crop production are used in the ACP 

mathematical model. These statistics will be used to estimate the figures in attempting to quantify 

solutions. Amongst others, these statistics can be determined from published literature and/or 

consultancy services (Kantanantha, 2007). Realistically, the statistics should be location specific. The 

objective in determining solutions is to advise crop planners on how to better prepare for the 

production year ahead. 

 

3.3   Formal Description of ACP 

 

The ACP problem is a crop planning problem at the level of an irrigation scheme. Irrigation Schemes 

are large areas of farming land used for agricultural purposes. Irrigated water supplied to irrigation 

schemes are extracted from natural resources such as dams and rivers. They are supplied to the farm 

plots via canal systems (Grove, 2008). The purpose of irrigated water is to supplement the lack of 

fresh water supply to the crops in order to meet their CWR; this is required for optimal plant 

development. The lack of fresh water supply is as a result of the shortfalls and inconsistencies of 

rainfall.  
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Inconsistent rainfall patterns cause inconsistent soil moisture content levels. If these levels are not 

maintained, it can be detrimental to crop development. Also, due to the differences in climatic 

conditions, from one geographical location to the next, the CWR of the same crop could differentiate 

from one location to the next.  

 

At irrigation schemes, several crops get produced at different time intervals within a production year. 

To maximize benefits, cultivation practices such as multi-cropping and sequential cropping are thus 

exercised. For the ACP problem, sequential cropping is the focus at present.  

 

Sequential cropping is the practice of cultivating different, yet complementary types of crops, in 

sequence of each other on the same farm area within a production year. This is achieved without 

having the planting and harvesting schedules of the crops being in conflict. Thus, the distinguishing 

factor in identifying farming areas are the number of crops that are cultivated on it within the 

production year.  

 

The objective therefore in sequential cropping, given the limited resources available for crop 

production, is to optimize crop production in trying to maximize the total gross profits that could be 

earned. The profits earned are from the sale of the harvests of all the crops produced within the 

production year. This is the objective of the ACP problem.  

 

The gross profits earned are the differences between the producer prices and the production costs of 

the crops. Production costs consist of fixed and variable costs of production. Fixed costs are the 

financial outlays irrespective of crop production. The variable costs are the accumulated costs of crop 

production, per unit of the crop produced.  

 

Due to several types of stochastic factors that are associated with this problem, no mathematical 

model exists that can determine accurate resource allocation solutions in crop production. Rather, in 

trying to accommodate the most important factors of this problem, without making it overly complex 

to solve by introducing too many variables, the ACP mathematical model had been developed. This 

model determines resource allocation solutions in order to assist crop planners in answering some of 

the following questions: 
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1. What is the area of land that should be allocated for producing each crop within the production 

year? 

2. What is the volume of irrigated water that is required per crop for optimal crop development, 

given the land allocation? 

3. What would be the cost of this irrigated water? 

4. What would be the total cost of producing each crop, given the land allocation ? 

5. Given the market demand and supply conditions, what would be the gross profits earned from 

each crop?  

6. What would be the gross profit earned from producing all crops within a production

 year? 

 

Hence, the ACP problem focuses on determining the resource allocation solutions related to land, 

irrigated water supply and the variable costs associated with crop production. It tries to maximize the 

total gross profits that could be earned from the production of all crops produced within a production 

year. The complexity to the problem is attached with determining resource allocation solutions for all 

crops in accommodating their different planting and harvesting schedules within the year. 

 

Solutions for the ACP problem are determined under the following assumptions: 

1. ACP solutions are determined for the land allocation stage of the crop production process. 

2. ACP solutions are determined at the beginning of the production year. 

3. The total area of land available for the production of each crop group is known. For the ACP 

problem at an existing irrigation scheme, it is considered that this area of land remains fixed 

due to sequential cropping practices.  

4. The statistics from previous years of crop production is known. This includes information of 

the crop demand, the producer prices, the costs associated with production, and the yields per 

crop. The demand statistics will be used to estimate the lower and upper bound ranges in 

order to determine realistic solutions in accordance with actual demands. The pattern of the 

producer prices can be used to estimate what would be the producer price for the same 

quantity of goods demanded in the forthcoming production year. Likewise, the same can be 

said for the production costs; for this, it is assumed that the fixed and variable costs can be 

differentiated. Concerning the crop yields, it is acceptable that this statistic remains the same. 
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7.  The cost of irrigated water m-3 and its supply to the irrigation scheme is known. The supply 

of irrigated water to the farming plots are assumed to be normal throughout the production 

year.  

8. The CWR of each crop, at the specific geographical location, is known. 

9. The average volume of precipitation throughout the lifespan of each crop is known.  

10. Crop production throughout the year is assumed to be under favourable conditions. Hence, 

no unforeseen circumstances such as drought, hail, flooding, etc., will interfere with the crop 

production process.  

12. Crops are planted and harvested according to schedule. These dates are assumed not to 

overlap with other crops grown in sequence on the same farming area of land.  

 

For the crop demand ranges, the lower bound should be set such that the minimum market demand is 

satisfied. Likewise, the upper bound should be set such that an excess quantity of harvest is not 

produced, which would result in losses. For optimized irrigated water allocations, precipitation is 

considered. Also, excessive applications of irrigated water to the farming plots result in environmental 

damages. Therefore, to tighten the grip on excessive water wastage, producers are required to pay 

water charges (Grove, 2008). The strain of paying water charges, and the concern over water wastage, 

mean that the producers are required to produce more output per m-3 of irrigated water utilized. 

 

Several objectives as well as soft and hard constraints must be achieved in order to determine feasible 

solutions.  

 

Objectives: 

1. Maximize the total gross profits earned from the production of all crops within the production

 year. 

2. Determine the resource allocation solutions of land, irrigated water supply and production

 costs of all crops produced within the year.  

 

Hard constraints: 

1. Crop groups must be cultivated on their allocated farm plots. For example, perennial crops

 must grow on single-crop farm plots, only two crop groups are allowed to grow in

 sequence of each other on the double crop farm plots, etc. 

2.  Each crop must be allocated a portion of land. 
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3.  The minimum and maximum market demand conditions must be satisfied. 

4.  The total volume of irrigated water allocated to each crop produced must not exceed

 the total volume of irrigated water that can be supplied to the irrigation scheme within a

 production year. 

 

Soft constraints: 

1. Give as much satisfaction to each crop being produced, such as land area and irrigated water

 allocation. 

2. Resource allocations must be done as fairly as possible. 

 

The ACP mathematical model presented in this study implements the market economic factors of the 

economy of scale and the demand and supply relations.  

 

3.4   The Annual Crop Planning Problem as a Space Allocation Problem 

 

The ACP problem has been mathematically modelled as an instance of the Space Allocation Problem 

(SAP). SAP’s are amongst the hardest to solve to optimality in the literature. Interesting examples 

include those investigated at tertiary institutions (Silva, 2003; Adewumi and Ali, 2010), and those 

investigated at the level of supermarkets (Tsai and Wu, 2010; Bai, 2005), amongst others.  

 

SAP’s involve the allocation of a limited area of available space amongst the entities that demand for 

space utilization. In relation to the ACP problem, an entity refers to a crop which competes for land-

area in order to be cultivated. With each entity competing for maximum space utilization, the 

complexity arises in trying to grant as much satisfaction to each entity in trying to optimize the 

collective benefit from the production of all crops. The common error is that the mismanagement of 

the limited area of space will negatively impact on the desired benefits.  

 

Associated with these problem instances are hard and soft constraints. The hard constraints have to 

be satisfied. However, a maximum number of soft constraints should be satisfied if possible. The 

mathematical formulations commonly used to formulate the SAP’s include those of bin-packing, 

assignment modelling, and knapsack modelling (Silva, 2003). For the ACP problem, knapsack 

modeling has been used.   
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3.4.1    Knapsack Model for ACP 

 

The description of a knapsack is a backpack bag with shoulder straps. The ideology of knapsack 

modeling is to assign items, each having an associated weight and profit value, into one or many 

knapsacks without having exceeded the maximum weight holding capacity (or capacities). Therefore, 

the object is to determine a permutation that would maximize the total accumulated profits in 

assigning the items to the knapsack/s. 

 

Different types of knapsack mathematical models do exist in the literature. Examples include the 

binary, fractional, bounded and multiple knapsack models (Nyonyi, 2010). The binary model is 

constrained in allowing for each item to be selected at most once; the fractional model allows for 

fractions of the items to be selected; the bounded model enforces boundary constraints in the selection 

of the items; the multiple knapsack model allows for multiple knapsacks to be filled.  

 

Therefore, knapsack models are differentiated based on the way items are selected. Elements of 

different knapsack models can also be combined together to mathematically formulate a problem. For 

example, a mathematical formulation could require items to be selected in accordance with the binary 

constraint, yet may require multiple knapsacks to be filled. In terms of the ACP problem, elements of 

the binary, bounded, fractional and multiple knapsack models have been combined to mathematically 

formulate the problem. 

 

In reference to the ACP problem, a knapsack refers to the accumulated area of land available for the 

production of each crop group. A crop group is a collection of crops that are produced within the 

same seasonal window, which in-turn are cultivated in sequence with other crop groups grown on the 

same farm-plot. Each knapsack (i.e. the accumulated area of land available for the production of a 

crop group) would require multiple crops to be cultivated on it. These individual crops are the items 

belonging to a knapsack. The weight factor of a crop is the area of land allocated for its production. 

The profit factor of a crop is the profit earned in the sale of the harvest given the area of land allocated 

for its production.  

 

Given the multi-knapsack nature of the ACP problem, the objective is to determine hectare allocation 

solutions, for each crop being produced, such that the knapsack capacities are not exceeded in trying 

to maximize the accumulated profits earned. Multiple constraints exist in order to determine feasible 
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solutions: each crop is allowed to be selected at most once (hence, the binary element); a fraction of 

the maximum allowable area for the production of each crop is to be selected (hence, the fractional 

element); hectare allocations per crop must satisfy the lower and upper bound constraints (hence, the 

bounded element); lastly, since individual crops belong to specific crop groups, allocations need to 

be done for multiple knapsacks (hence, the multiple element). The mathematical formulation of the 

knapsack model used for the ACP problem is given below (Chetty and Adewumi, 2013e). 

 

Suppose there are a total on 𝑚 knapsacks of capacities 𝑘𝑗, where 𝑗 =  1, … , 𝑚. For each knapsack 𝑘𝑗, 

items 𝑥𝑖𝑗 can be selected to fill up 𝑘𝑗, ∀ 𝑖 = 1, … , 𝑛𝑗. Each item 𝑥𝑖𝑗 has an associated weight 𝑤𝑖𝑗 and 

profit 𝑝𝑖𝑗 factor. Item 𝑥𝑖𝑗 is allowed to contribute a fraction 𝑓𝑖𝑗 of itself (i.e. 0 < 𝑓𝑖𝑗 ≤ 1) in being 

selected. For the fraction of item 𝑥𝑖𝑗 selected (i.e. 𝑓𝑖𝑗𝑥𝑖𝑗), the lower bound 𝐿𝑏𝑖𝑗 and upper bound 𝑈𝑏𝑖𝑗 

constraints must be satisfied. The maximum capacity constraint of all knapsacks 𝑘𝑗 must be satisfied, 

and the total capacity of all knapsacks is 𝑇. The knapsack model template used to formulate the ACP 

problem is as follows:   

  

 

Maximize 𝑓(𝑥) = ∑ ∑ 𝑝𝑖𝑗𝑥𝑖𝑗
𝑛𝑗

𝑖
𝑚
𝑗     (3.1) 

   Subject to:  

    ∑ 𝑤𝑖𝑗𝑥𝑖𝑗 ≤ 𝑘𝑗
𝑛𝑗

𝑖=1
,         𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑚  (3.2) 

    𝑥𝑖𝑗 =  {
1                         𝑖𝑓 𝑖𝑡𝑒𝑚 𝑥𝑖𝑗 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑     

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            
 (3.3) 

    0 < 𝑓𝑖𝑗 < 1      (3.4) 

    𝐿𝑏𝑖𝑗 ≤ 𝑓𝑖𝑗𝑥𝑖𝑗 ≤ 𝑈𝑏𝑖𝑗     (3.5) 

 ∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑗 ≤ 𝑇
𝑛𝑗

𝑖
𝑚
𝑗=1      (3.6) 

 

 

 

3.5   Economy of Scale and the Demand and Supply Relations 

 

Economy of scale is described as the reduction in unit cost per item being produced, as the volume 

of output increases (Krugman, 1980). This is well researched in market economics and could occur 

for several reasons. Some of the primary reasons include the fixed costs per unit decrease as the 



 
 

59 
 

volume of items produced increase (for example, the fixed cost of ZAR1 100 is calculated to be 

cheaper per unit in producing 100 units in comparison to 10. The resultant effect of this is increased 

profit earned per unit of the item produced); fixed costs per unit are calculated to be cheaper in 

purchasing materials in larger volumes at discounted prices; the utilization of specialized equipment 

or machinery in manufacture result in more efficiency per unit of production, reducing costs; etc.  

 

Demand and supply relations are also fundamental concepts in market economics. These quantify the 

mathematical relations between the quantity of goods demanded by the buyers, and those that are 

supplied by the producers at a specific market price. This price is referred to as the “equilibrium price” 

(Whelan and Msefer, 1996). Hence, the demand relation refers to the demand of the quantity of goods 

from buyers at an equilibrium price they are willing to pay. Similarly, the supply relation refer to the 

supply of the quantity of goods by producers at an equilibrium price at which they are willing to 

supply at. The demand and supply relations therefore determine the equilibrium price as agreed upon 

by the buyer and seller in the sale of the harvests. In exercising the trade, producers and buyers will 

want to maximize their profits in trading at the best possible price. An illustration of the demand and 

supply relation is given in Figure 3.1 below. 

 

 

 

 

                                                           
1 ZAR stands for Zuid-Afrikaanse Rand. It is the Dutch translation of saying, “South African Rand.” The Rand is the 

currency in South Africa. 
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Figure 3.1: Equilibrium market price as determined by the demand and supply relations 
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In Figure 3.1, 𝑃 represents price and 𝑄 quantity. The equilibrium price is where 𝑃 and 𝑄 intersect. 

This means that quantity 𝑄 will be traded at price 𝑃. As is seen, any price below 𝑃 will increase 

demand, and any price above 𝑃 will decrease demand.  

 

In the reformulation of the ACP mathematical model, both the economy of scale and the 

demand/supply relational factors are considered.  

 

 

3.6 ACP Mathematical Model with Economic Factors for an Existing

 Irrigation Scheme 

 

This section presents the enhancement of the ACP mathematical model. This model includes the 

market economic factors of the economy of scale, and the demand and supply relations. Explanations 

on the foundational ACP mathematical models can be found in Chetty and Adewumi (2013b, 2013c, 

2013d, 2014). The mathematical model in this study relates to that of an existing irrigation scheme. 

 

To implement the economy of scale influence, a ‘fixed cost’ variable is introduced. Hence, production 

costs are now explicitly differentiated as being fixed and variable costs of production. A fixed cost 

factor associated with the production of each crop will encourage a higher quantity of produce as the 

unit cost will decrease. This will result in a higher profit earned per crop. However, this influence is 

challenged by the demand and supply relations, as higher yields beyond the equilibrium point will 

result in lower producer prices; this will equate to less profit earned per unit (and vice versa).  

 

In this model, equilibrium price is represented in terms of hectare allocations. This is achieved by 

making use of either (or both) of the demand or supply relational equations. With gross profits earned 

being dependent on hectare allocations, it is now interesting that hectare allocations and gross profits 

are influenced by the economy of scale and the demand and supply relational factors. This introduces 

added complexity, yet allows for more scalable solutions. 

 

The ACP mathematical model, which includes the market economic factors of the economy of scale 

and the demand and supply relations are as follows: 

 



 
 

61 
 

3.6.1 Mathematical Notations  

 

Indices 

 𝑘 – Plot types. (1 = single-crop plots; 2 = double-crop plots; 3 = triple-crop plots; etc.). 

 𝑖 – Indicative of the crop groups that are grown in sequence of each other on the same farming 

plot of land within the year, on plot type 𝑘 (𝑖 =  1 indicates the 1st crop group; 𝑖 =  2 indicates 

the 2nd crop group; 𝑖 =  3 indicates the 3rd crop group; etc.). 

 𝑗 – Indicative of the individual crops belonging to crop group 𝑖, on plot 𝑘. 

 

Input Parameters   

 𝑙  – Number of different farming plot types. 

 𝑁𝑘 – Number of sequential crop groups cultivated on plot 𝑘. 

 𝑀𝑘𝑖  – Number of individual crops cultivated at stage 𝑖, on plot 𝑘. 

 𝐻𝑘𝑖𝑗 – Hectare allocation of crop 𝑗, at stage 𝑖, on plot 𝑘 as determined from the previous year. 

 𝐿𝑘𝑖 – Total area of land allocated for crop production at stage 𝑖. 

 𝐹𝑅𝑘𝑖𝑗 – Average fraction per hectare of crop 𝑗, at stage 𝑖, on plot 𝑘, which needs to be irrigated 

(1 = 100% coverage, 0 = 0% coverage). 

 𝑅𝑘𝑖𝑗 – Averaged rainfall estimates that fall during the growing months for crop 𝑗, at stage 𝑖, on 

plot 𝑘.  

 𝐶𝑊𝑅𝑘𝑖𝑗 – Crop water requirements of crop 𝑗, at stage 𝑖, on plot 𝑘. 

 𝐴 – Volume of irrigated water that can be supplied per hectare (ha-1). 

 𝑃 – Price of irrigated water m-3. 

 𝑂𝑘𝑖𝑗 – Operational cost ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. This cost excludes the cost of irrigated 

water per crop. 

 𝐹𝑘𝑖𝑗 – Fixed cost of production for crop 𝑗, at stage 𝑖, on plot 𝑘. 

 𝑌𝐷𝑘𝑖𝑗 – The expected yield in tons per hectare (t ha-1) of crop 𝑗, at stage 𝑖, on plot 𝑘. 

 𝑀𝑃𝑘𝑖𝑗 – Producer price per ton of crop produced for crop 𝑗, at stage 𝑖, on plot 𝑘. This is the 

equilibrium price from the previous year of trading, at the hectares allocated. It is determined by 

the demand/supply relation. 
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 𝐿𝑏𝑘𝑖𝑗 – Lower bound of crop 𝑗, at stage 𝑖, on plot 𝑘. This reflects the minimum expected market 

demand in order to meet supply needs. This should to be determined by the producers. 

 𝑈𝑏𝑘𝑖𝑗 – Upper bound of crop 𝑗, at stage 𝑖, on plot 𝑘. This reflects the maximum expected market 

demand. The producers should also determine this. 

 

Calculated Parameters 

 𝑇𝐴 – Total volume of irrigated water that can be supplied to the total area of farming land within 

the year (𝑇𝐴 =  𝑇 ∗  𝐴). 

 𝐼𝑅 𝑘𝑖𝑗 – Volume of irrigated water that should be supplied to crop 𝑗, at stage 𝑖, on plot 𝑘. 

(𝐼𝑅𝑘𝑖𝑗𝑚3  =  (𝐶𝑊𝑅𝑘𝑖𝑗𝑚 – 𝑅𝑘𝑖𝑗𝑚) ∗  10000𝑚2  ∗  𝐹𝑅𝑘𝑖𝑗). 

 𝐶_𝐼𝑅𝑘𝑖𝑗 – The cost of irrigated water ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐶_𝐼𝑅𝑘𝑖𝑗   =  𝐼𝑅𝑘𝑖𝑗  ∗

 𝑃). 

 𝐶𝑘𝑖𝑗 – Variable cost ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐶𝑘𝑖𝑗  =  𝑂𝑘𝑖𝑗  + 𝐶_𝐼𝑅𝑘𝑖𝑗). 

 

Variables 

 𝑋𝑘𝑖𝑗 – Area of land, in hectares, that can be feasibly allocated for the production of crop 𝑗, at 

stage 𝑖, on plot 𝑘.  

 𝐴𝑉𝑘𝑖𝑗 – Average cost ha-1 in considering the fixed and variable costs of production for crop 𝑗, at 

stage 𝑖, on plot 𝑘. (𝐴𝑉𝑘𝑖𝑗  =  (𝑋𝑘𝑖𝑗𝐶𝑘𝑖𝑗 +  𝐹𝑘𝑖𝑗)/𝑋𝑘𝑖𝑗). 

 𝐸𝑃𝑘𝑖𝑗 – Equilibrium price that is substituted by using either the demand or supply relations, which 

has dependency on 𝑋𝑘𝑖𝑗 (e.g. Demand relation: 𝑋𝑘𝑖𝑗(D) = a + b𝐸𝑃𝑘𝑖𝑗; Supply relation: 𝑋𝑘𝑖𝑗(S) = 

c + d𝐸𝑃𝑘𝑖𝑗 where a, b, c and d are constants). 

 

3.6.2 Optimization Model 

 

Objective Function 

Maximize 𝑓 =  

∑ ∑ ∑ 𝑋𝑘𝑖𝑗(𝐸𝑃𝑘𝑖𝑗 ∗ 𝑌𝐷 −  𝐴𝑉𝑘𝑖𝑗)

𝑀𝑘𝑖

𝑗=1

𝑁𝑘

𝑖=1

 

𝑙

𝑘=1
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=    ∑ ∑ ∑ 𝑋𝑘𝑖𝑗(𝐸𝑃𝑘𝑖𝑗 ∗ 𝑌𝐷 −   𝐶𝑘𝑖𝑗) −  𝐹𝑘𝑖𝑗

𝑀𝑘𝑖

𝑗=1

𝑁𝑘

𝑖=1

                                     (3.7)

𝑙

𝑘=1

 

 

Equation 3.7 gives the objective function. The fixed cost variable 𝐹𝑘𝑖𝑗 implements the economy of 

scale influence. The equilibrium price variable 𝐸𝑃𝑘𝑖𝑗 (substituted in terms of hectare allocations, by 

using either of the demand or supply relational equations) are used to implement the market demand 

or supply influence. The constraints to the problem remain the same as found in Chetty and Adewumi 

(2013b, 2014).  

 

Land Allocation Constraints 

 

All solutions must satisfy the lower and upper bounds of each crop. 

 

                                               𝐿𝑏𝑘𝑖𝑗 ≤ 𝑋𝑘𝑖𝑗 ≤ 𝑈𝑏𝑘𝑖𝑗    ∀𝑘, 𝑖, 𝑗                                                  (3.8) 

 

The summation of the land allocated for each crop 𝑗, at stage 𝑖, on plot 𝑘, must not exceed the total 

area of land available for crop production at stage 𝑖, on plot 𝑘. 

 

                                                     ∑ 𝑋𝑘𝑖𝑗 ≤ 𝐿𝑘𝑖    ∀𝑘, 𝑖                                                             (3.9)

𝑀𝑘𝑖

𝑗 

 

 

Irrigated Water Constraints 

 

The summation of the volume of irrigated water allocated to each crop must be less than the total 

volume that can be supplied to the irrigation scheme within the year.  

 

                                             ∑ ∑ ∑ 𝐼𝑅𝑘𝑖𝑗 ≤ 𝑇𝐴                                                                   (3.10)

𝑗𝑖𝑘
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Non-negative Constraints 

 

Arbitrarily, the lower and upper bound settings as well as the gross profits earned per crop must be 

non-negative.  

 

                      𝐿𝑏𝑘𝑖𝑗 , 𝑈𝑏𝑘𝑖𝑗 , (𝐸𝑃𝑘𝑖𝑗 ∗ 𝑌𝐷 −   𝐴𝑉𝑘𝑖𝑗) > 0    ∀𝑘, 𝑖, 𝑗                                          (3.11) 

 

 

3.7  Summary of, “On the Performance of new Local Search Heuristics 

for Annual Crop Planning: Case Study of the Vaalharts Irrigation 

Scheme2” 

 

Having initially introduced the ACP problem for an existing irrigation scheme, in Chetty and 

Adewumi (2013b), this study investigated the potentials of three new LS metaheuristic algorithms in 

determining ACP solutions for the same case study. The three LS metaheuristic algorithms included 

the BPA, the Iterative Best Performance Algorithm (IBPA), and the Largest Absolute Difference 

Algorithm (LADA). These algorithms had been newly introduced in Chetty and Adewumi (2013a). 

To test the merits of the solutions determined by these new metaheuristics, their solutions were 

matched against those of TS and SA. The results concluded that from all metaheuristics, the BPA and 

the IBPA delivered the overall best solutions. The BPA delivered the best fitness solution, and the 

IBPA marginally outperformed the BPA on average. 

 

3.7.1 The Vaalharts Irrigation Scheme Case Study 

 

The case study investigated was that of the Vaalharts Irrigation Scheme (VIS), which is located in 

South Africa. Comprising of approximately 36,950 hectares of prime agricultural land, the VIS is one 

of the largest irrigation schemes found in the world. Figure 3.2 below shows an image of the VIS, as 

                                                           
2 Chetty, S. and Adewumi, A.O. (2014). “On the performance of new local search heuristics for annual crop 

planning: case study of the Vaalharts irrigation scheme”, Journal of Experimental & Theoretical Artificial 

Intelligence, Vol 27, pp. 2. 
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well as the neighboring Taung Irrigation Scheme (TIS). The Figure also shows the locations of the 

Vaal River, and the Taung Dam. 

 

 

Figure 3.2: Satellite image of the Vaalharts Irrigation Scheme, Taung Irrigation Scheme,  

Vaal River and Taung Dam 

 

This geographical region is known for cold and frosty winters, warm summers and irregular rainfall 

patterns. With irregular rainfall patterns, and having a low rainfall average of 440 millimeters (mm) 

annum-1, irrigated water is necessary for optimized crop production at the VIS. Table 3.1 below shows 

the average rainfall patterns as determined over a period of 36 years.   

 

  

Taung Dam 

Taung Irrigation Scheme 

Vaalharts Irrigation Scheme 

Vaal River 
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Table 3.1: Mean rainfall statistics as determined over a 36 year period 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean Rainfall 75.9 63.5 71.8 51.6 19.9 9.5 4.3 8.6 11.3 24.6 45.7 58.0 

 

 

The irrigated water supplied to the farm plots get extracted from the nearby Vaal River. It is supplied 

at a maximum rate of 9,140 m3 ha-1 annum-1. A water charge of 8.77 cents m-3 needs to be paid to the 

Vaalharts Water User Association (WUA).  

 

Table 3.2 shows the statistics of the primary crops grown at the VIS. The table lists the crop names, 

together with their types given in brackets; these crop types are either perennial (p), summer (s) or 

winter (w) crops. The table also gives the hectare allocations per crop (ha’s crop-1), the tons of yield 

per hectare (t ha-1), the Crop Water Requirements (CWR’s), the average rainfall statistics (AR), the 

producer prices per ton of yield (ZAR t-1), the average fraction of irrigated water applied per hectare 

per crop with 𝐹𝑅𝑘𝑖𝑗 ∈ [0,1], the cost of the irrigated water per hectare (𝐶_𝐼𝑅𝑘𝑖𝑗), and the operational 

costs of production per crop (𝑂𝑘𝑖𝑗). From Table 3.2 it is calculated that the total area of land for the 

perennial crops, summer crops and winter crops are 8,300 ha’s, 15,500 ha’s, and 12,200 ha’s 

respectively. 

 

Table 3.2: Dataset for the Vaalharts Irrigation Scheme Case Study 

Crops ha’s crop-1 t ha-1 CWR AR ZAR t-1 𝑭𝑹𝒌𝒊𝒋 𝑪_𝑰𝑹𝒌𝒊𝒋 𝑶𝒌𝒊𝒋 

Pecan Nuts (p) 100 5.0 1,600 444.7 3,500.00 1 1,013.20 5,833.35 

Wine Grapes (p) 300 9.5 850 350.8 2,010.00 1 437.80 6,365.00 

Olives (p) 400 6.0 1,200 444.7 2,500.00 1 662.40 4,999.98 

Lucerne (p) 7,500 16.0 1,445 444.7 1,185.52 1 877.26 6,322.72 

Cotton (s) 2,000 3.5 700 386.4 4,500.00 1 275.03 5,250.00 

Maize (s) 6,500 9.0 979 279.0 1,321.25 1 613.90 3,963.78 

Ground Nuts(s) 7,000 3.0 912 339.5 5,076.00 1 502.08 5,076.00 

Barley (w) 200 6.0 530 58.3 2,083.27 1 413.68 4,166.52 

Wheat (w) 12,000 6.0 650 58.3 2,174.64 1 518.92 4,349.28 

 

The dataset given in Table 3.2 is referenced for further research in this area. It is also the same dataset 

that will be used for the experimental study in the results section (i.e. section 3.9). 
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3.8  Summary of, “Studies in Swarm Intelligence Techniques for Annual 

Crop Planning Problem in a New Irrigation Scheme3” 

 

In this publication, the ACP problems was further enhanced in presenting a mathematical formulation 

for determining solutions at new irrigation schemes. The case study investigated related to the TIS. 

In researching this problem, it was realized that optimized solutions at current agricultural practices 

were important, yet not enough to meet the future demands for food crops.   

The ACP mathematical model for new irrigation schemes differ from the ACP mathematical model 

for existing irrigation schemes in that not only do optimized solutions need to be determined for the 

hectare allocations per crop, but also for the plot types within which these crops get cultivated. This 

added dimensionality adds to the complexity, and makes the problem interesting to solve. 

To determine solutions, three relatively new SI metaheuristic algorithms were investigated. These 

included the CS, FA and the GSO. To benchmark the relative merits of the solutions determined by 

these metaheuristics, the GA was implemented. The results showed that the GSO delivered the best 

fitness solution, although the FA performed the best on average. It was concluded that in a solution 

space of constantly changing dimensions, the FA was the most consistent algorithm. However, the 

FA also proved to be the most costly in terms of execution time performance.  

 

3.8.1 The Taung Irrigation Scheme Case Study 

 

The case study that was investigated related to the TIS, which neighbors the VIS. The TIS consisted 

of a total of 3,764 ha’s of irrigated land, yet another 1,750 ha’s were being allocated for the production 

of 10 different crops for restitution purposes. The irrigated water supplied to the TIS is also supplied 

via the Vaalharts Canal System, although the Taung Dam lay nearby. Irrigated water is supplied to 

the TIS at a quota of 8,417 m3ha-1annum-1. A water charge of 8.77 cents/m3 needs to be paid to the 

Vaalharts Water User Association (WUA). Table 3.3 presents the crops statistics of the dataset used.  

 

                                                           
3 Chetty, S. and Adewumi, A.O. 2013. “Studies in Swarm Intelligence Techniques for Annual Crop Planning 

Problem in a New Irrigation Scheme”, South African Journal of Industrial Engineering, Vol 24, pp. 3. 
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Table 3.3 lists the Crop Water Requirements (CWR’s), the average rainfall statistics (AR), the 

producer prices per ton of yield (ZAR t-1), the expected yield per crop (t ha-1), the average fraction of 

irrigated water applied per hectare per crop with 𝐹𝑅𝑘𝑖𝑗 ∈ [0,1], the cost of the irrigated water per 

hectare (𝐶_𝐼𝑅𝑘𝑖𝑗), and the operational costs of production per crop (𝑂𝑘𝑖𝑗). 

 
Table 3.3: Dataset for the Taung Irrigation Scheme Case Study 

Crops CWR (mm) AR (mm) ZAR t-1 t ha-1 𝑭𝑹𝒌𝒊𝒋 𝑪_𝑰𝑹𝒌𝒊𝒋 𝑶𝒌𝒊𝒋 

Lucerne (p) 1,445 444.7 1,185.52 16.0 1 877.26 6,259.52 

Tomato (s) 1,132 350.8 4,332.00 50.0 1 685.11 71,478.00 

Pumpkin (s) 794 279.0 1,577.09 20.0 1 451.66 10,408.80 

Maize (s) 979 279.0 1,321.25 9.0 1 613.90 3,924.09 

Ground Nut (s) 912 339.5 5,076.00 3.0 1 502.08 5,025.24 

Sunflower (s) 648 314.9 3,739.00 3.0 1 292.13 3,701.61 

Barley (w) 530 58.3 2,083.27 6.0 1 413.68 4,124.88 

Onion (w) 429 177.0 2,397.90 30.0 1 221.00 23,739.30 

Potato (w) 365 152.8 2,463.00 28.0 1 186.10 22,758.12 

Cabbage (w) 350 152.8 1,437.58 50.0 1 172.94 23,720.00 

 

The dataset presented in Table 3.3 is referenced for future research in this area. 

 

3.9 Experimental Results 

 

The dataset used for this experiment is the dataset listed in Table 3.2 under section 3.7.1. This dataset 

relates to the VIS. Table 3.4 gives the lower and upper bound settings, the fixed costs of production 

(𝐹𝑘𝑖𝑗), as well as the demand equations used for the experiment. For the purpose of simulation, 

demand equations were formulated for each crop using the statistics of the equilibrium price ton-1 of 

yield (i.e. the 𝑀𝑃𝑘𝑖𝑗), and the hectares allocated (i.e. the 𝐻𝑘𝑖𝑗). 

 

The parameter settings of metaheuristic algorithms influence their performance per problem instance. 

Therefore, for fair algorithmic comparisons for this problem instance, experiments will be performed 

to determine the appropriate parameter settings for each metaheuristic algorithm. Determining the 

parameter settings will be the first set of experiments. Once the parameter setting for the algorithms 

have been determined, the second set of experiments will be performed for the algorithmic 
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comparisons. The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution at each iteration, for all experiments will be determined as 

follows: randomly select a crop, and thereafter randomly select its hectare allocation. 

 

Table 3.4: Parameter settings per crop 

Crops 𝑳𝒃𝒌𝒊𝒋 𝑼𝒃𝒌𝒊𝒋 
𝑭𝒌𝒊𝒋  

(ZAR) 

𝑬𝑷𝒌𝒊𝒋 

(Demand Eq.) 

Pecan Nuts (p) 50 300 875,000 30*X + 500 

Wine Grapes (p) 100 500 2,864,250 5*X + 510 

Olives (p) 100 800 2,700,000 7*X – 300 

Lucerne (p) 7,000 8,000 948,416 (2/5)*X + 1814.48 

Cotton (s) 1,000 3,000 393,750 2*X + 500 

Maize (s) 5,000 8,000 8,323,875 X/4 - 303.75 

Groundnuts (s) 4,500 9,500 1,522,800 X/2 + 1576 

Barley (w) 100 300 7,249,779.6 10*X + 83.27 

Wheat (w) 10,000 15,000 1,565,740.8 X/6 + 174.64 

 

For problem instances where the optimal solution is known, the objective in comparing algorithmic 

performances is to monitor which algorithm will determine the optimal solution in the shortest 

computational time. Therefore, with this being the intent, the parameter settings would need to be 

adjusted accordingly. Another alternative, in comparing algorithmic performances, is to run 

simulations for a fixed number of iterations. With this approach, the parameter settings would need 

to be adjusted to make the most effective use of the limited computational time available. One 

possible problem with this approach is that if the metaheuristic algorithm shows a clear convergence, 

in leading towards its best solution, this strategy would be ineffective if the termination were to be 

done before this point of convergence. Therefore, for these reasons, the stopping criterion adopted in 

this study is to execute the termination of the algorithms at their points of convergence.  

 

Convergence is the point where further improvements in the solution quality would yield minimal 

benefits compared to the relatively large number of iterations required to yield those minimal benefits. 

Therefore, in this study, convergence will be detected when no further improved best solution is found 

for a large number of iterations. For the experiments to determine the parameter settings, a total of 

30,000 idle iterations will be used to detect convergence. Thereafter, in comparing algorithmic 

performances, a total of 50,000 idle iterations will be used to detect convergence.  
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The experiments run to determine the parameter settings for the probability factor (𝑝𝑎) and the 𝑃𝐿 

size of the eBPA and the BPA can be seen in Figures 3.3 to 3.9 below. In Figure 3.3 and 3.7, the 𝑃𝐿 

size remained fixed at 50, while the 𝑝𝑎 values were randomly selected from within the range of 0 <

𝑝𝑎 ≤ 0.15 for the eBPA, and 0 < 𝑝𝑎 ≤ 0.25 for the BPA. This was per run for a total of 100 runs 

per experiment, in using the same initial solutions. Figure 3.4 is a zoomed in image of Figure 3.3, and 

Figure 3.8 is a zoomed in image of Figure 3.7. The zoomed in images show more clearly the best 

solutions determined.  

 

Figure 3.3 and Figure 3.7 show that with probability factors below 0.0781 and 0.886 respectively, 

many solutions were determined which were found in regions that were far away from those of the 

best solutions found. However, it is seen that in both of these figures that there are no distinguished 

best values for the 𝑝𝑎 values, as competitive solutions can be seen scattered throughout the probability 

ranges. This shows that irrespective of the values of the 𝑝𝑎’s, the eBPA and the BPA would find good 

neighborhood regions with more consistency if the probability factors were to be greater than 0.077 

and 0.885 respectively. The best solution determined for the eBPA, as seen in Figure 3.4, had a 

probability factor of 0.128 (truncated to three decimal places). The best solution determined for the 

BPA, as seen in Figure 3.8, had a probability factor of 0.121 (truncated to three decimal places). 

Therefore, for the rest of the experiments, the probability value of 𝑝𝑎 = 0.128 will be used for the 

eBPA, and the probability value of 𝑝𝑎 = 0.121 will be used for the BPA. 

 

For the experiments run to determine the 𝑃𝐿 size’s of the eBPA and the BPA, the probability value 

of 𝑝𝑎 = 0.128 remained constant for the eBPA, and the probability value of 𝑝𝑎 = 0.121 remainded 

constant for the BPA. The values of the 𝑃𝐿 size’s were then randomly selected from within the range 

of 1 ≤ 𝑃𝐿_𝑠𝑖𝑧𝑒 ≤ 200 for each algorithm per experiment. Again, this was per run for a total of 100 

runs per experiment, in using the same initial solutions. For the eBPA, the results are seen in Figures 

3.5 and 3.6. For the BPA, the results are seen in Figure 3.9. Figure 3.6 is a zoomed in image of Figure 

3.5.  

 

From Figures 3.5 and 3.6, it is seen that the most consistent performances were determined in using 

𝑃𝐿 sizes within the range of 18 to 112 for the eBPA. From Figure 3.9, it is seen that the most consistent 

performances were determined using 𝑃𝐿 sizes greater than 132. However, it is again observed that 

the eBPA and the BPA determined competitive solutions throughout the 𝑃𝐿 size ranges. For the 
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eBPA, the best solution had a 𝑃𝐿 size of 69; this value will be used for the algorithmic performance 

comparison tests. For the BPA, the best solution had a 𝑃𝐿 size of 164; this value will be used for the 

algorithmic performance comparison tests. 

 

With the termination criterion to be set at 𝑥 (i.e. either 30,000 or 50,000) idle iterations, the strategy 

to be used to reduce of the 𝑃𝐿 size for the eBPA, until a size of 1 is reached, will be as follows: If 

half of the termination number of idle iterations have been reached (i.e. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛/2), divide the remaining number of iterations by the current 𝑃𝐿 size 

(i.e. 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =  (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 −  𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)/𝑃𝐿_𝑠𝑖𝑧𝑒). If 

the lower bound plus the reduction criterion (i.e. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 +  𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛) 

equates to the current number of idle iterations then reduce the 𝑃𝐿 size by 1. The reduction of the 𝑃𝐿 

has the dual purpose of increasing exploitation, as well as eliminating the possibilities of cycling for 

𝑃𝐿 sizes greater that one. 

 

 

Figure 3.3: Fitness values determined using randomly selected 

probability factors at a fixed PL size of 50 

 

 

Figure 3.4: Zoomed in image of Figure 3.3 
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Figure 3.5: Fitness values determined using randomly selected 

PL sizes at a fixed probability factor of 0.128 

Figure 3.6: Zoomed in image of Figure 3.5 

 

 

Figure 3.7: Fitness values determined using randomly selected 

probability factors at a fixed PL size of 50 

 

 

Figure 3.8: Zoomed in image of Figure 3.7 

 

Figure 3.9: Fitness values determined using randomly selected PL sizes at a fixed probability factor of 0.121 

 

The experiments run to determine the parameter settings for SA are seen in Figures 3.10 and 3.11 

below. In Figure 3.10, the initial temperature 𝑇 was fixed at 100, while the cooling factor 𝛼 had been 

randomly selected from within the range of 0.95 ≤ 𝛼 < 1. This was done per run for a total of 100 

runs in using the same initial solution. The cooling factor 𝛼 controls the rate of convergence, and 

decreases 𝑇 using the equation 𝑇 = 𝑇 ∗  𝛼. Therefore, the higher the value of 𝛼, the slower the rate 

of convergence, and the more successful the annealing process will be. From Figure 3.10, it is 

observed that the fitness qualities of the solutions were similar in having found similar neighborhood 

regions. The best value of 𝛼 seen is 0.96 (rounded off to two decimal places).   
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The value of 𝛼 = 0.96 remained fixed for the experiment related to Figure 3.11. In this experiment, 

the initial temperature 𝑇 was randomly selected from within the range of 1 ≤ 𝑇 ≤ 500. This was 

done per run for a total of 250 runs in using the same initial solution. More runs were needed to 

determine 𝑇, as 𝑇 importantly controls the transition from exploration to exploitation. The parameter 

settings for SA are more difficult to determine, and would explain the volume of research done on 

SA. From Figure 3.11, it is seen that the best solution for 𝑇 was 226. Together with 𝛼 = 0.96, these 

will be the parameter settings to be used for SA in performing the algorithmic comparison tests. 

 

 

Figure 3.10: Fitness values determined using randomly 

selected cooling factors, at a fixed initial temperature of 50 

 

Figure 3.11: Fitness values determined using randomly 

selected initial temperature values, at a fixed cooling factor of 

0.96 

 

The experiments run to determine the 𝐶𝐿 size for TS is seen in Figures 3.12 and 3.13. Figure 3.13 is 

a zoomed in image of Figure 3.12. For this experiment, a recommended 𝑇𝐿 size of 7 was used (Glover, 

1986). 𝐶𝐿 sizes were randomly selected from within the range of 1 ≤ 𝐶𝐿_𝑠𝑖𝑧𝑒 ≤ 500. This was done 

per run for a total of 100 runs in using the same initial solution.  

 

Figure 3.12 shows that 𝐶𝐿 sizes above 209 determined solutions that had fitness values which were 

far from the best solution found. The best solution found, as seen more closely in Figure 3.13, had a 

𝐶𝐿_𝑠𝑖𝑧𝑒 of 34. Figure 3.13 also shows a cluster of competitive solutions found around the 𝐶𝐿_𝑠𝑖𝑧𝑒 

of 34. This indicates that a size of 34 is a good value to choose. These values are the parameter settings 

that will be used for the TS in performing the algorithmic comparison tests.  
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Figure 3.12: Fitness values determined by randomly selecting 

the CL size values 

 

Figure 3.13: Zoomed in image of Figure 3.12 

 

As can be seen from Figures 3.3, 3.5, 3.7 and 3.9 the parameter settings for the eBPA and the BPA 

did not significantly hinder its performances. This is an interesting observation in being compared to 

an algorithm such as SA which requires more effort to set its parameter values.  

 

For the second experiment, in comparing the algorithmic performances, the parameter settings 

determined from the first set of experiments were used. For this experiment, a total of 50 runs per 

metaheuristic algorithm were executed. The termination criterion was 50,000 idle iterations. For each 

of the 50 runs, per algorithm, the same initial randomly generated solution was passed in as an input 

parameter to each algorithm. The experiments performed, together with these test criterion, were 

sufficient to ensure fair algorithmic comparison tests. From the 50 solutions determined by each 

algorithm, their overall best and average solutions are documented. Their 95% Confidence Interval4 

values are also documented for their fitness values.  

 

 

Table 3.5: Average execution time performances (AVG) in milliseconds (ms) 

Methods AVG (ms) 

BPA 218,093 

eBPA 148,178 

TS 52,367 

SA 33,029 

 

                                                           
4 The Confidence Interval (CI) indicates the reliability of an interval estimate of population parameters. 95% 

CI means to be 95% certain that the population parameters will lie within the interval estimate range.  
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In Table 3.5, the average execution times reflect on the number of best solutions found by each 

metaheuristic algorithm. Reason being, each time the best solution had been improved upon, the 

counter for the idle number of iterations had been reset. As can be observed, the BPA and the eBPA 

best solutions were improved upon significantly more times than TS and SA. However, the BPA did 

find more improved solutions over that of the eBPA. The BPA and the eBPA were thus intelligent in 

finding more promising neighborhood regions within the confines of the solution space. This was 

followed by TS and then SA. 

 

Table 3.6 gives the statistical values of the overall best and average fitness value solutions (i.e. BFV 

and AFV respectively). The 95% CI values are also given, along with the initial solution (IS). The 

fitness value refers to the total gross profit earned.  

 

Table 3.6: Statistics of the best and average fitness values solutions, along with the 95% CI values 

Methods BFV (ZAR) AFV (ZAR) 95% CI 

IS 290,775,157 N/A N/A 

BPA 338,353,400 338,349,798 AFV ± 725 

eBPA 338,351,684 338,345,193 AFV ± 1,203 

TS 338,340,881 337,493,100 AFV ± 261,742 

SA 330,721,884 327,791,514 AFV ± 425,002 

 

It is observed that each algorithm determined best solutions that improved upon the initial solution 

(IS). The BPA marginally determined the best BFV and AFV solutions over the eBPA, and had the 

lowest 95% CI value. This was then followed by the TS and SA algorithms. The BPA BFV solution 

determined a gross profit of ZAR 1,716, ZAR 10,803, ZAR 7,629,800 and ZAR 47,576,527 more 

than that of the eBPA, TS, SA and the IS respectively. Graphical comparisons of the metaheuristic 

statistics as given in Table 3.6 is seen in Figure 3.14 below. The 95% CI values are represented as the 

black interval estimates over the average fitness value towers. 
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Figure 3.14: The best and average fitness values, along with their 95% CI estimates 

 

Visually, it is seen that the differences between the best fitness value performances of the BPA, eBPA 

and TS were minimal. Yet on average, the BPA and the eBPA performed significantly better than TS. 

The BPA has also shown more consistency in having determined the lowest 95% CI estimate. This 

was only a marginal improvement over that of the eBPA. Having determined the best BFV and AFV 

solutions, along with the lowest 95% CI value, concludes that the BPA was the strongest and most 

consistent metaheuristic algorithm for this problem instance. However, the BPA overall performance 

was only marginally better than that of the eBPA for this continuous optimization problem. 

 

The strengths of the BPA and the eBPA are attributed to their techniques employed in maintaining 

the solutions registered in their memory structures. The 𝑃𝐿 structures of both algorithms maintain a 

limited number of the best solutions found, at any given time, while traversing throughout the solution 

space. This maintenance is based on the idea of allowing solutions that meet the minimum criterion 

to be allowed admittance into the 𝑃𝐿 memory structures. The minimum criterion is that the fitness 

value of the worst solution must at least be improved upon with regards to the BPA, or at least be met 

with regards to the eBPA. If the admittance criterion of each algorithm were to be satisfied, then the 

design variables of the new solutions must be unique to be allowed admittance. Updates of the 𝑃𝐿’s 

are then performed by replacing the worst solution in the memory structures with that of the new. 

Thereafter, for the BPA, the sorted order of the memory structure must be maintained. For the eBPA, 

the indices referencing the 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 and 𝑤𝑜𝑟𝑠𝑡 solutions would need to be re-determined. 

These techniques, along with the strategy of their probability factors in attempting to escape local 

entrapment, and the strategic reduction of the 𝑃𝐿 size for the eBPA, have shown to be an effective 

blend in traversing the solution space effectively for this problem instance. 
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Table 3.7: Statistical values of the irrigated water requirements (IWR) and the costs of production (CP) 

Methods IWR (m3) CP (ZAR) 

IS 244,491,000 156,924,202 

BPA 241,997,367 154,799,322 

eBPA 241,997,311 154,799,423 

TS 241,998,185 154,799,348 

SA 242,760,335 154,985,403 

 

Table 3.7 gives the statistical values of the irrigated water requirements (IWR), and that of the costs 

of production (CP). As can be observed, each algorithm determined improved irrigated water 

allocation solutions over that of the IS. Interestingly, the CP values were also lower although the gross 

profit margins were higher.  

 

From all algorithms, the eBPA determined a solution that required the least volume of irrigated water. 

The eBPA determined a solution that required a volume of 2,493,689 m3 less than that of the IS. This 

was followed by the BPA, which required a volume of 2,493,633 m3 less. Thereafter, TS required a 

volume of 2,492,815 m3 less. Finally, SA required a volume of 1,730,665 m3 less. These solutions 

conform to the objective of yielding higher returns per unit of irrigated water consumed. At the quota 

of 9,140 m3ha-1annum-1, these savings would be able to supply irrigated water to an additional 272.83, 

272.82, 272.7 and 189.3 hectares of agricultural land by the eBPA, BPA, TS and SA algorithms 

respectively. A visual representation of the irrigated water allocation solutions is seen in Figure 3.15 

below. 

 

 

Figure 3.15: Irrigated water requirements (IWR) of the initial solution (IS) and that of the metaheuristic solutions 
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Figure 3.16 shows graphical comparisons of the hectare allocation solutions. The BPA, eBPA and the 

TS show to have determined similar solutions. The metaheuristic solutions are also seen to be 

comparable to that of the IS due to the constraints of the lower and upper bound settings. 

 

 

Figure 3.16: Comparison of the hectare allocation solutions per crop 

 

The statistics of the hectare allocations (ha crop-1), IWR, and the CP values of the initial and that of 

the best metaheuristic solutions are seen in Tables 3.8 and 3.9 below.  

 

Table 3.8: Statistics of the initial (IS) and metaheuristic solutions per crop 

Crops Methods ha’s crop-1 IWR (m3) CP (ZAR) 

Pecan Nuts 

IS 100 1,155,300 597,153.143 

BPA 50 577,650 254,826.6 

eBPA 50.003 577,685.304 254,847.493 

TS 50.001 577,662.84 254,834.181 

SA 174.722 2,018,562.036 1,108,738.936 

Wine Grapes 

IS 300 1,497,600 1,849,889.52 

BPA 499.971 2,495,856.1 3,210,253.1 

eBPA 499.995 2,495,977.51 3,210,418.552 

TS 499.751 2,494,757.158 3,208,755.529 

SA 430.796 2,150,534.609 2,739,669.671 

Olives 

IS 400 3,021,200 2,114,959.24 

BPA 750.029 5,664,967.7 4,096,961.8 

eBPA 749.99 5,664,672.134 4,096,740.2 

TS 750.215 5,666,375.011 4,098,016.827 

SA 604.264 4,564,003.826 3,271,581.702 
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Table 3.9: Statistics of the initial (IS) and metaheuristic solutions per crop 

Crops Methods ha’s crop-1 IWR (m3) CP (ZAR) 

Lucerne 

IS 7,500 75,022,500 40,722,449.25 

BPA 7,000 70,021,000 37,122,431 

eBPA 7,000.012 70,021,117.62 37,122,515.7 

TS 7,000.033 70,021,327.18 37,122,666.53 

SA 7,090.218 70,923,452.63 37,772,005.34 

Cotton 

IS 2,000 6,272,000 9,475,054.4 

BPA 3,000 9,407,999.8 15,000,081 

eBPA 2,999.988 9,407,960.899 15,000,012.71 

TS 2,999.828 9,407,459.508 14,999,129.36 

SA 2,987.453 9,368,653.092 14,930,759.94 

Maize 

IS 6,500 45,500,000 23,809,100 

BPA 7,999.995 55,999,965 30,675,552 

eBPA 7,999.944 55,999,604.87 30,675,316.6 

TS 7,999.779 55,998,450.03 30,674,561.4 

SA 7,986.315 55,904,203.44 30,612,928.84 

Ground Nuts 

CP 7,000 40,075,000 32,193,977.5 

BPA 4,500.005 25,762,529 18,248,800 

eBPA 4,500.069 25,762,894.54 18,249,155.67 

TS 4,500.394 25,764,754.36 18,250,967.76 

SA 4,526.232 25,912,678.59 18,395,095.89 

Barley 

IS 200 943,400 791,047.98 

BPA 100 471,700.98 333,026.84 

eBPA 100.001 471,707.002 333,032.689 

TS 100.001 471,703.748 333,029.529 

SA 224.294 1,057,994.541 902,319.617 

Wheat 

IS 12,000 71,004,000 45,370,570.8 

BPA 12,100 71,595,699 45,857,390 

eBPA 12,099.999 71,595,691.22 45,857,383.66 

TS 12,099.999 71,595,695.3 45,857,387.02 

SA 11,975.706 70,860,252.72 45,252,302.99 
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3.10   Conclusion 

 

This study further contributes to the recently introduced ACP problem in the literature. In this study, 

a new mathematical formulation for the ACP problem has been presented. It is based on the market 

economic factors of the economy of scale, and the demand and supply relations.  

 

The objective of the ACP problem is to optimize resource allocation solutions in crop planning. The 

ACP problem was motivated due to the increased concerns of water scarcity, and that of the other 

limited resources available for crop production. In spite of the limited resources made available, more 

output is expected per unit due to increases in food demands. The ACP problem is a relevant problem 

in crop planning, within the agricultural sector. 

 

In determining solutions, the BPA and the eBPA have been investigated. Their solutions were 

compared against those of the TS and SA algorithms. To ensure fairness in performing the algorithmic 

comparisons, experiments were run to determine the appropriate parameter settings for each of the 

metaheuristic algorithms. The termination criterion of each algorithm was a fixed number of idle 

iterations. This represented the point of convergence.  

 

The results show that the techniques employed by the BPA and the eBPA were very effective, for 

this continuous optimization problem. The BPA marginally determine the overall best solutions over 

that of the eBPA.  
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Chapter Four:  

The enhanced Best Performance Algorithm for the 

Travelling Salesman Problem 

 

4.1 Introduction 

 

The Travelling Salesman Problem (TSP) is defined as the problem of finding the minimal tour which 

traverses a list of 𝑛 cities in a way in which every city is visited exactly once, except for the original 

city of departure where the salesman would start and finish. The problem is accounted to Euler in 

1759, who presented a problem of trying to move a knight to every block on a chest board exactly 

once. The problem gained fame in a handbook written by B. F. Voigt in 1832 (Michalewicz, 1994). 

It was afterwards mathematically formulated by mathematicians W. R. Hamilton and Thomas 

Penyngton Kirkman. Detailed descriptions of the mathematical formulations are given in the book 

titled “Graph Theory 1736-1936” (Biggs et al., 1986). 

 

Several classifications of TSP’s exist. The most notable are the symmetric Travelling Salesman 

Problem (sTSP), asymmetric Travelling Salesman Problem (aTSP), and multiple Travelling 

Salesman Problem (mTSP) (Matai et al., 2010). For sTSP’s, the distance traveled from city 𝑖 to city 

𝑗 is the same as the distance travelled from city 𝑗 to city 𝑖. In graph theory, this constitutes a bi-

directional graph. aTSP’s on the other hand are characterized by directed graphs, i.e. the distance 

travelled from city 𝑖 to city 𝑗 will not necessarily be the same as the distance travelled from city 𝑗 to 

city 𝑖. The practical significance of this problem include problems with one-way streets, traffic 

collisions, and the differences between the arrival and departure fees from airports, amongst others. 

mTSP’s are the problems of finding the minimum tour of 𝑚 travelling salesman, who start and finish 

at the same city in having every intermediate city visited exactly once.  

 

This study implements instances of sTSP’s, in investigating the abilities of the eBPA. The TSP is 

defined as follows (Lin, 1965); 
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Given a set of 𝑛 cities, a maximum travelling distance 𝐷, and for every pair of adjacent cities 𝑣𝑖 and 

𝑣𝑗 a travelling distance 𝑑(𝑣𝑖 , 𝑣𝑗) (∀ 𝑖, 𝑗 =  1,2, … , 𝑛). The objective is to find a permutation 𝑃 =

 𝑣𝑝1
, 𝑣𝑝2

, … , 𝑣𝑝𝑛
 that minimizes the travelling distance in satisfying the constraint, 

 

∑ 𝑑(

1≤𝑖<𝑛

𝑣𝑝𝑖,𝑣𝑝𝑖+1
) +  𝑑(𝑣𝑝𝑛,𝑣𝑝1

)  ≤ 𝐷                                          (4.1) 

 

A straightforward approach to the sTSP is to compute all possible permutations in determining the 

optimal tour for an 𝑛 city problem. However, the number of permutations is 𝑛!, with the running time 

being O(𝑛!). The problem is thus exponential, relative to 𝑛. Also, the total number of possible routes 

covering all cities is (n-1)!/2. As a startling example, it would take an estimated time of 5 × 1048 

years to determine the optimal solution for a problem of size 𝑛 = 50, if it were run on a mainframe 

computer executing 100 million instructions per second (Yan et al., 2012). 

 

The TSP is one of the most studied problems in discrete optimization. Mathematicians took particular 

interest in the 1930’s; by the 1960’s, the problem gained increased popularity. Due to the practical 

applicability of TSP’s, and the complexity involved with determining optimal solutions, this problem 

has been significantly researched.  

 

The complexity of the problem was proved by Richard. M. Karp (Karp, 1972). Karp proved the 𝑁𝑃-

Completeness of the Hamiltonian Cycle problem, implicitly proving the 𝑁𝑃-Hardness of the TSP. 

This gave explanation to the apparent difficulty of determining optimal solutions.  

 

Since then, large numbers of exact and approximate algorithms have been developed to determine 

solutions to TSP’s. Nowadays, problem instances of up to 89,500 cities have been solved to 

optimality. Also, problems with cities into the millions have been solved to near-optimality using 

approximation techniques (Johnson and McGeoch, 1997). The TSP is also used as a standard 

benchmark problem in comparing the performances of optimization techniques, which is the purpose 

of this study.  

 

The rest of this chapter is structured as follows. Section 4.2 describes examples of real-world 

applications of TSP’s. Section 4.3 give descriptions of previous research work. Section 4.4 lists the 
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ten benchmark test instances to be implemented. Section 4.5 gives an overview of the investigation 

to follow. Section 4.6 presents and discusses the experimental results. Finally, section 4.7 draws 

conclusions and outlines possible future work. 

 

4.2  TSP Applications 

 

The TSP problem has practical significance in the real-world. This accounts for the interest in the 

problem. To-date, several commercial TSP solver applications have been developed. These solvers 

play significant roles in the industry, were time and cost factors are important. One of the biggest 

applications of the TSP is in transportation. A simple example of this is the scheduling of stacker 

cranes in warehouses. Brief descriptions of other real-world applications are given below. 

 

4.2.1 NASA Starlight Space Interferometer Program 

 

A team of engineers at Hernandez Engineering in Houston, and at Brigham Young University, studied 

the problem of trying to optimize the sequence of celestial objects to be imaged. The objective was 

to minimize the usage of fuel, in performing targeting and imaging maneuvers for the pair of satellites 

involved in the mission. In this problem, celestial objects were represented as cities, and distance was 

the quantity of fuel needed to reposition the two satellites from one image to the next (Bailey et al., 

2001). 

 

4.2.2 Circuit Board Problems 

 

In the circuit board problem, a machine operating on a circuit board would need to be programmed 

in a way to complete a set of tasks at different co-ordinate positions on the board. After completing 

the set of tasks, the machine would returned to its starting position before another board is set for 

another set of tasks to be completed.  

 

One example of this is the circuit board construction and board cutting problem. Here, a set of cut 

and add operations are performed on a circuit board at different co-ordinate positions, before another 

board is set for a similar set of operations to be performed. The problem of optimizing the time taken 

to perform these operations, at different co-ordinate positions, is a TSP (Matai et al., 2010).  



 
 

84 
 

 

Another related circuit board problem is the drilling of holes on a circuit board. On a circuit board, 

several holes would need to be drilled at different co-ordinate positions and of different diameters. 

Holes of the same diameter can be drilled together in one task. After the task is completed, the head 

of the machine is reset for drilling the next set of holes of a different diameter. This problem was 

modeled as a series of TSP’s. Here, for each different diameter, cities represented the co-ordinate 

positions of each hole to be drilled, and the distance between these co-ordinate positions was the time 

taken to move from one hole to the next (Grötschel et al., 1991).  

 

4.2.3 Nozzle Guide Vane Placement Problem 

 

When the turbine engine of an aircraft is overhauled, a detailed inspection can be performed upon 

dis-assembling the engine. Of particular interest is the turbine section of the engine which contains 

nozzle-guide vanes (or simply vanes) that accelerate, deflects and distributes the flow of gas that 

drives the turbine motor. The more efficient the distribution of gas about the circumference of the 

turbine motor, the more efficient will be its performance. The benefits of uniform gas distribution 

include reduced engine vibrations and reduced fuel consumption. The problem is that due to very 

high temperatures, and the velocities of the gas flow, the vanes would wear out and would need to be 

refurbished or replaced. Each vane has individual characteristics for the distribution of the gas, which 

is affixed about the circumference of the turbine engine. Therefore, upon replacing the damaged vanes 

(with either new or refurbished vanes, which may or may not be identical), the operator is faced with 

the challenge of sequencing the set of vanes about the circumference of the nozzle in an attempt to 

attain uniformity in the gas flow. The problem of the correct placements of the vanes have been 

modeled as a TSP (Plante et al., 1987).   

 

4.2.4 Order Picking Problem 

 

This problem is associated with collecting a list of items which are stored at a warehouse. Upon 

receiving an order, the warehouse dispatches a vehicle to collect the list of stored items. The objective 

of the problem is to minimize the distance travelled by the vehicle in collecting all items. In relation 

to the TSP, the location of an item is represented as a city, and distance is the distance travelled 

between items. The problem of finding the shortest route is thus a TSP (Ratliff and Rosenthal, 1983).  
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4.3 Algorithmic Approaches and Previous Research 

 

The two main factors in choosing an algorithm to solve a TSP is execution time and the quality of a 

tour. Due to the exponential time complexity involved with TSP’s, exact algorithms are preferable 

for smaller instances which can be solved within polynomial time complexity (𝑃). However, for larger 

instances, where the optimal solution cannot be determined within 𝑃, heuristic methods are 

preferable. Common heuristics for TSP’s include the tour construction and tour improvement 

heuristics (Hjertenes, 2002). 

 

Tour construction methods seek to construct a valid TSP tour from an unordered list of cities. The 

algorithm stops when a solution is found, and does not attempt to improve upon it. These algorithms 

run relatively fast and are believed to determine solutions within 10%-15% of the optimal solution. 

Ideally, they are used as inputs to local search heuristic algorithms. Popular tour construction 

algorithms include the Nearest Neighbor (NN), Greedy, Clarke Wright and Christofides algorithms 

(Davendra, 2010). 

 

Tour improvement algorithms start off with a completed tour; it is preferable if the completed tour 

were to be generated by a tour construction heuristic. It then attempts to improve on this solution by 

searching the neighborhood regions of the solution space in trying to find improved solutions. It stops 

when the optimal solution has been found, or when the stopping criteria is satisfied. Several local 

search approximation algorithms have been studied for the TSP. The most successful include: 2-opt, 

3-opt, 𝜆-ops and Lin-Kernighan (LK) (Davendra, 2010). 𝜆-opt algorithms involve iteratively 

removing 𝜆 edges, and replacing these with different edges in reconnecting the tour. The objective is 

to find shorter tours without cycles. LK is a 𝜆-opt heuristic which dynamically determines suitable 

values for 𝜆, per iteration. Most 𝜆-opt moves can be performed as sequential moves. The simplest 

non-sequential move is the 4-opt move, which is called the double-bridge move (Lin and Kernighan, 

1973). 

 

Metaheuristic algorithms differ from pure heuristic algorithms by accepting dis-improved solutions 

in escaping local entrapment (Glover, 1990). The intelligence of accepting dis-improved solutions 

could lead the search to other neighboring regions, which may possibly contain higher quality 
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solutions. Several metaheuristic algorithms have been investigated for TSP’s. Common examples 

include: the GA, Evolutionary Algorithms (EA’s), TS, SA, ACO, PSO and the FA.   

 

Dorigo and Gambardella (1997) investigated the effectiveness of applying an artificial Ant Colony 

System (ACS) to instances of sTSP’s and aTSP’s. Test instances ranged from 30 to 577 cities. The 

ACS results were compared against the results of SA, NN, Self-Organization Map (SOM), 

Evolutionary Programming (EP), GA and a hybridization of SA and GA which is called the 

Annealing-Genetic Algorithm (AG). Results showed that in using the 3-opt technique, ACS 

determined results as good as or even better than that of the other methods.  

 

Tsai et al. (2004) presented an evolutionary algorithm called Heterogeneous selection Evolutionary 

Algorithm (HeSEA) for solving large instances of TSP’s. HeSEA was developed integrating Edge 

Assembly Crossover (EAX) and LK through family competition and heterogeneous pairing selection. 

HeSEA was tested on 16 large instances of TSP’s ranging from 318 to 13,509 cities. The results of 

HeSEA was compared against six other algorithms including SA, ACO, the Voronoi-crossover 

Genetic Algorithm (VGA), the Compact Genetic Algorithm (CGA), Iterated LK (ILK) and TS 

hybridized with LK called TLK. Results showed that HeSEA performed very competitively, and 

executed faster in being compared to the other algorithms.  

 

Kumbharana and Pandey (2013) investigated the FA for six instances of TSP’s ranging from 10 to 51 

cities. FA was compared against ACO, GA and SA in determining solutions. Results showed that FA 

outperformed the other algorithms in determining the best solutions for all six test instances 

investigated.  

 

Louis and Tang (1999) presented and interactive GA by implementing a divide and conquer technique 

for determining solutions to instances of TSP’s. The divide and conquer technique had been 

investigated due to the standard GA being computationally expensive for this problem. The technique 

was used to divide the problem into smaller sub-problems, being solved separately, and then 

recombined later to determine a final solution. The study showed that this technique significantly 

reduced computation time compared to the standard GA. It also determined high quality solutions for 

TSP’s ranging from 51 to 1084 cities.  
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Tasgetiren et al. (2007) presented a Discrete Particle Swarm Optimization (DPSO) algorithm for 

determining solutions to sTSP instances ranging from 51 to 442 cities. Results were compared against 

four heuristics, one exact and one metaheuristic algorithm. The heuristic algorithms included the GI 

heuristic, NN, FST-Lagrangian and FST-Root. The exact algorithm was the Branch and Cut 

procedure (B&C). The metaheuristic algorithm was GA. Results showed that DPSO, GA and FST-

Root determined the best performances. 

 

Yan et al. (2012) presented a new PSO algorithm for minimizing the possibility of local entrapment. 

The investigation was performed due to the weakness of population based metaheuristic algorithms 

such as PSO and GA getting stuck in local optima. Ten sTSP’s were investigated. Results showed 

that PSO performed more efficiently compared to GA in determining the best results for all test 

instances. 

 

Miki et al. (2003) presented a new SA algorithm which determined the maximum temperature setting 

dynamically rather than using a static maximum temperature setting. This study was motivated due 

to the difficulty of setting the maximum temperature parameter value for SA. This temperature, 

together with the minimum temperature parameter value, importantly controls the acceptance 

criterion in accepting dis-improved solutions. The algorithm presented, which was called the 

Adaptive Simulated Annealing (ASA) algorithm, was tested in performing investigations on ten 

TSP’s which ranged from 59 to 280 cities. The results showed that ASA was an effective technique 

in considerably speeding up execution time performances without losing result quality in being 

compared to that of the standard SA algorithm.  

 

Yao (1992) presented a SA algorithm which dynamically reduced the neighborhood sizes in relation 

to the temperature decreases, in determining solutions. The study was motivated due to SA generally 

consuming much computational time in determining good solutions for difficult optimization 

problems. The study was to investigate dynamic reduction of neighborhood sizes, in comparing 

computational time to that of the standard SA algorithm. The results showed that the SA with dynamic 

neighborhood size reductions outperformed the standard SA algorithm with fixed neighborhood sizes, 

in execution time performance and result qualities, for the test instances of TSP’s.  

 

Malek et al. (1989) investigated the abilities of SA and TS in serial and parallel simulation settings, 

for seven instances of TSP’s. The problem instances ranged from 25 to 100 cities. The results showed 
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that TS consistently outperformed SA in the parallel environment in comparing execution time and 

tour-length solutions.  

 

Tsubakitani and Evans (1998) researched determining appropriate Tabu List (𝑇𝐿) sizes for TSP 

instances. Test instances ranging from 20 to 100 cities were investigated. The conclusion was that 𝑇𝐿 

sizes should be small enough to encourage exploitation, yet large enough to escape local entrapment. 

A comparison of different 𝑇𝐿 sizes were investigated. The results showed that smaller 𝑇𝐿 sizes have 

an advantage over larger 𝑇𝐿 sizes during earlier stages of the search. 

 

4.4  Benchmark Test Instances 

 

A popular library of TSP benchmark test instances is the TSPLIB collection which has been made 

available online by Gerhard Reinelt. This collection is freely accessible.  

 

The TSPLIB collection consists of several classes of benchmark datasets. These include: sTSP’s, 

Hamiltonian Cycle Problem’s (HCP’s), aTSP’s, Sequential Ordering Problem’s (SOP’s) and 

Capacitated Vehicle Routing Problem’s (CVRP’s). Many of these problems are based on examples 

from printed circuit boards, VLSI applications, as well as the actual geographical locations of various 

cities. For majority of these test instances the optimal tour-length is known, and in some cases the 

optimal tour is also given. Therefore, based on different problem classifications, various levels of 

complexity per problem, and the fact that the optimal tour-lengths are given for many test instances, 

this collection has become popular amongst researchers in being used to compare performances of 

optimization techniques. The largest test instance in this collection consists of 85,900 cities. 

 

This study investigates ten sTSP benchmark test instances from this collection. The problem 

instances, along with their characteristics, is given in Table 4.1. For each problem instance, the name, 

the number of vertices, the distance calculation type, and the optimal tour-lengths are given. 

  

The distance between the adjacent vertices of these test instances are calculated on a Euclidean 2D-

(EUC_2D) plane. The distance 𝑑𝑖𝑗 between adjacent vertices 𝑖 and 𝑗 is therefore computed to be; 

 

 𝑑𝑖𝑗 = 𝑟𝑜𝑢𝑛𝑑√(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

                  (4.2) 
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In equation (4.2), 𝑟𝑜𝑢𝑛𝑑 is a function that rounds to the nearest integer. 

 

Table 4.1: Symmetric Travelling Salesman Problem test instances, and their characteristics 

No. sTSP No. of Vertices Type Optimal Tour-Length 

1 ch130 130 EUC_2D 6,110 

2 ch150 150 EUC_2D 6,528 

3 rat195 195 EUC_2D 2,323 

4 tsp225 225 EUC_2D 3,916 

5 a280 280 EUC_2D 2,579 

6 lin318 318 EUC_2D 42,029 

7 pcb442 442 EUC_2D 50,778 

8 d493 493 EUC_2D 35,002 

9 rat575 575 EUC_2D 6,773 

10 d657 657 EUC_2D 48,912 

  

 

4.5 Discussion 

 

The eBPA, TS and SA algorithms are all single-point metaheuristic algorithms. However, the 

differences in the fundamentals of their designs will cause each algorithm to traject differently 

throughout the solution spaces.  

 

SA is a memory-less search technique; it stochastically moves throughout the solution space primarily 

based on randomization. TS is a memory-based search technique; it uses the advantage of memory to 

intelligently select the next solution from within a local neighborhood region in advancing the search. 

On the other hand, the eBPA takes advantage of the benefits of both randomization and memorization 

in proceeding with the search. Thus, the eBPA lay in-between the memory-less and stochastic search 

techniques such as the SA, and the memory-based search techniques such as the TS. Based on this 

truth, together with investigations into the potentials of the eBPA being yet in the initial stages, the 

eBPA will be compared against TS and SA for the test instances given in Table 4.1.  

 

Generally, in employing metaheuristic algorithms to solve optimization problems, the parameter 

settings of the algorithm would need to be set appropriately. However, the versatility and strength of 
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an algorithm can also be seen in its ability to determine solutions for multiple problem instances in 

using the same parameter settings. Algorithms that are more versatile may be particularly beneficial 

in scenarios where the parameter settings of the algorithm cannot be tweaked; for example, the 

applications that run in a fully automated mode. The investigation done in this study is performed 

from this perspective: use the same parameter settings for each metaheuristic algorithm investigated, 

in solving multiple instances of the sTSP’s.  

 

The problem instances differ in complexity, and range from 130 to 657 cities/vertices. This will 

provide sufficient challenges to the algorithms for testing purposes. Each algorithm will be tested in 

their abilities to determine solutions in using the same parameter settings. The strength of the solutions 

determined by the eBPA will shed light on its abilities, in being compared to TS and SA. More 

importantly, insight will be given on the eBPA ability to balance exploration, during the initial phases 

of the search, and exploitation, during the final phases of the search. 

 

4.6  Results and Discussion 

 

The BPA will not be investigated in this chapter due to its weakness to discrete optimization 

problems; this has been demonstrated in chapter two. In chapter two, it was proved that the BPA 

performed very poor for a discrete optimization problem, even for a relatively simple instance of the 

sTSP. For the following investigation on the sTSP’s, only the eBPA, TS and SA metaheuristic 

algorithms will be investigated.   

 

To solve the problem instances, we first employ the Nearest Neighbor (NN) tour construction 

heuristic. This heuristic is used to provide the initial solution to each metaheuristic algorithm, per 

problem instance. The NN heuristic is straightforward: it is implemented by starting off at the first 

city, and thereafter it moves to the nearest adjacent unvisited city. The NN tour-length solutions are 

given in Table 4.2. A tour-length solution is also referred to as the fitness value. 
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Table 4.2: Nearest Neighbor tour-length solutions for each problem instance 

No. sTSP Nearest Neighbor Tour-Length 

1 ch130 7,579 

2 ch150 8,191 

3 rat195 2,752 

4 tsp225 5,030 

5 a280 3,157 

6 lin318 54,019 

7 pcb442 61,979 

8 d493 41,665 

9 rat575 8,605 

10 d657 61,627 

 

In executing the metaheuristic algorithms, the solution at each iteration is determined by selecting the 

best of six moves. The best move is the one that will result in the lowest fitness value. The six moves 

employed are as follows: 

 

1. 2-opt – The 2-opt move removes two edges from a complete tour. It then reconnects the tour by 

introducing two new edges, which join the opposite ends of the removed edges. An illustration is 

given in Figure 4.1. 

 

Figure 4.1: 2-opt: (a) shows the completed tour; (b) shows that edges (1, 2) and (7, 8) have been removed, 

while two new edges (1, 7) and (2, 8) have been introduced in reconnecting the tour 

 

2. 3-opt – The 3-opt move is similar to the 2-opt, except that with 3-opt three edges are removed 

instead of two. It is implemented as two sequential 2-opt moves; this results in two solutions. An 

illustration is given in Figure 4.2. 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

12 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

12 

(a) (b) 



 
 

92 
 

 

Figure 4.2: 3-opt: From initial solution (a), solutions (b) and (c) are determined by performing the first 2-

opt move, in removing edges (1, 2) and (7, 8). Thereafter, to determine solution (b), edge (4, 5) is removed 

while keeping the removed edge (1, 2) constant in performing the second 2-opt move. Similarly, to 

determine solution (c), edge (10, 11) is removed while keeping the removed edge (7, 8) constant in 

performing the second 2-opt move 

 

3. Double-bridge – The double-bridge move is a non-sequentially move (unlike 3-opt), which is 

implemented by randomly dividing the completed tour into four segments; the tour is then 

reconnected in the reverse order. An illustration is given in Figure 4.3. 

 

Figure 4.3: Double-bridge move: (a) shows the completed tour; (b) shows that edges (1, 2), (4, 5), (7, 8) 

and (10, 11) have been removed. The tour is then reconnected by introducing edges (1, 8), (10, 5), (7, 2) 

and (4, 11) 

 

4. Random swap – This move is implemented by randomly selecting two vertices from a complete 

tour, and then swapping them. An illustration is given in Figure 4.4. 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

12 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

12 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

12 

(b) (a) (c) 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

12 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

12 

(a) (b) 



 
 

93 
 

 

Figure 4.4: Random swap move: (a) shows the completed tour; (b) shows that vertices 2 and 8 have been 

swapped 

 

5. Vertex reposition – This move is implemented by repositioning a randomly selected vertex at 

a randomly selected position in the tour. An illustration is given in Figure 4.5. 

 

Figure 4.5: Vertex reposition move: (a) shows the completed tour; (b) shows that vertex 8 has been 

repositioned at location 2 
 

 

The parameter settings for the algorithms will be as follows: 

a) The parameter settings of SA will be according to the recommendations from the literature 

(Soubeiga, 2003): The initial temperate (𝑇) will be set at 50% of the fitness of the initial 

solution, while the cooling rate alpha (𝛼) will be set at 85%.  

b) Likewise, the 𝑇𝐿 size of TS will be set at 7 (Glover, 1986; Malek et al., 1989). To determine 

the 𝐶𝐿 size for TS, we make use of the test instance pr439 from the TSPLIB collection; pr439 

is also a sTSP which has its distance calculated on the Euclidean 2D-plane. Determining the 

𝐶𝐿 size for TS, and the parameter settings for the eBPA will be the first set of experiments. 
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c) Since this is the first research on the eBPA for multiple problem instances on the TSP 

problem, we make use of the pr439 problem to determine its parameter settings. The 

parameter settings are for the probability factor (𝑝𝑎) and the 𝑃𝐿 size.  

Once the set of experiments are run to determine the remaining parameter settings, all parameter 

settings will remain constant for the second set of experiments. The second set of experiments will 

be to compare the performances of the algorithms in using the same parameter settings, for the 

multiple sTSP instances to be investigated. 

 

For the first and second sets of experiments, the stopping criterion will be to terminate the execution 

at the point of convergence. In this study, convergence will be detected when no further improvements 

have been made to be 𝑏𝑒𝑠𝑡 solution for a large number of iterations. For the first set of experiments 

(i.e. to determine the parameter settings) convergence will be set at 3% of idle iterations. For the 

second set of experiments (i.e. in making algorithmic comparisons) convergence will be set at 5% of 

idle iterations. The termination criterion will apply provided that a minimum of 106 iterations have 

been executed. For example, if 106 iterations have executed, and the total number of consecutive idle 

iterations is 50,000 (assuming we are referring to the second set of experiments), then the algorithms 

will detect convergence and will terminate.  

 

For the first set of experiments, each algorithm will be run 50 times to determine each parameter 

value in using the pr439 problem. For the second set of experiments, each algorithm will be run 30 

times per problem instance. 30 runs are sufficient in considering the large computational times 

required; for example, for the u724 vertices problem the estimated execution time would have been 

around 30 hours. 

 

In using this termination criterion, the strategy to be used to reduce the 𝑃𝐿 size of the eBPA, until a 

size of 1 is reached, is as follows: Calculate the total number of idle iterations required to detect 

termination (i.e. 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =  𝑥% (𝑤ℎ𝑒𝑟𝑒 𝑥 =  3% 𝑜𝑟 5%) ∗

 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠). If half of the termination criterion has been reached (i.e. 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛/2), divide the remaining number of iterations (i.e. 

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 −  𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) by the current 𝑃𝐿 size 

(i.e. 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =  (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 −  𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)/𝑃𝐿_𝑠𝑖𝑧𝑒). If 
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the minimum condition plus the reduction criterion equates to the current number of idle iterations 

then reduce the 𝑃𝐿 size by 1.  

 

The experiment run to determine the 𝐶𝐿 size for TS is seen in Figure 4.6. The 𝐶𝐿 size’s were randomly 

selected from within the range of 1 ≤ 𝐶𝐿_𝑠𝑖𝑧𝑒 ≤ 1,000. This 𝐶𝐿 size range was considered due to 

the NN solutions being used as the input to each algorithm per problem instance. For this reason, 

greater levels of exploitation were required and thus a larger 𝐶𝐿 size range was considered. For the 

50 runs, the 𝑇𝐿 size remained constant at size 7. Figure 4.6 shows that 𝐶𝐿 size’s below 200 determined 

weaker solutions, and that the most competitive solutions fell within the range of 400 to 1000. The 

best solution seen had a 𝐶𝐿 size value of 723. The 𝐶𝐿 size value of 723 will be the parameter value 

to be used for the second set of experiments. 

 

 

Figure 4.6: Fitness values determined by randomly selecting the CL size values 

 

The experiments run to determine the probability factor (𝑝𝑎) and the 𝑃𝐿 size values for the eBPA is 

seen in Figures 4.7 and 4.8. In Figure 4.7, the 𝑃𝐿 size remained fixed at 50, while 𝑝𝑎 was randomly 

selected from within the range of 0 < 𝑝𝑎 ≤ 0.15. From Figure 4.7 it can be seen that, for the 50 runs, 

the solutions are scattered throughout the entire probability range and roughly within the same height 

of the fitness range. There is no specific value for the 𝑝𝑎 that is best suited for this problem instance 

in favoring more competitive solutions. The best solution seen had a 𝑝𝑎 value of 0.045 (truncated to 

three decimal places). This will be the value used for the rest of the experiments.  

 

For the experiment run to determine the 𝑃𝐿 size (as seen in Figure 4.8), the value of 𝑝𝑎 = 0.045 

remained constant, while the value of the 𝑃𝐿 size was randomly selected from within the range of 

1 ≤ 𝑃𝐿_𝑠𝑖𝑧𝑒 ≤ 200. From the 50 runs, it can be seen that values greater than 130 determined the 
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poorest solutions. The solutions determined in having used the values between that ranges of 50 to 

130 determined competitive solutions; however, these solutions also show evidence of having 

determined slightly weaker solutions. The most consistent and competitive cluster of solutions can 

be seen within the value range of 4 to 31. The best solution determined had a 𝑃𝐿 size value of 10. 

This value, together with 𝑝𝑎 = 0.045, are the parameter values that will be used for the eBPA in the 

second set of experiments. 

 

 

Figure 4.7: Fitness values determined using randomly 

selected probability factors, at a fixed PL size of 50 

 

Figure 4.8: Fitness values determined using randomly 

selected PL sizes, at a fixed probability factor of 0.045 

 

For the second set of experiments, the parameter values of all algorithms remained constant for all 

the problem instances implemented. For each problem instance, each algorithm was run 30 times. As 

mentioned previously, 30 runs per algorithm was sufficient due to the large computational times 

consumed per run. For each algorithm per problem instance, their best and average fitness value 

solutions (i.e. BFV and AFV respectively) have been documented. For the average fitness values, 

their 95% CI values are also given. The statistical results of the runs are given in Table 4.3.  
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Table 4.3: Best, average and 95% Confidence Interval fitness values, for each algorithm per problem instance 

sTSP 
eBPA TS SA 

BFV AFV 95% CI BFV AFV 95% CI BFV AFV 95% CI 

ch130 6,144 6,261 AVG ± 26 6,208 6,305 AVG ± 57 6,124 6,228 AVG ± 24 

ch150 6,563 6,643 AVG ± 23 6,563 6,664 AVG ± 23 6,543 6,683 AVG ± 30 

rat195 2,330 2,359 AVG ± 2 2,356 2,375 AVG ± 4 2,379 2,429 AVG ± 10 

tsp225 3,971 4,011 AVG ± 8 3,988 4,034 AVG ± 8 3,993 4,064 AVG ± 14 

a280 2,637 2,677 AVG ± 7 2,654 2,705 AVG ± 7 2,638 2,726 AVG ± 13 

lin318 43,233 43,685 AVG ± 126 43,492 44,310 AVG ± 156 43,485 44,340 AVG ± 197 

pcb442 51,519 52,400 AVG ± 146 52,257 53,071 AVG ± 161 52,584 54,148 AVG ± 263 

d493 35,862 36,235 AVG ± 78 36,565 35,977 AVG ± 95 36,422 37,136 AVG ± 145 

rat575 6,955 7,062 AVG ± 18 7,024 7,093 AVG ± 14 7,206 7,290 AVG ± 20 

d657 50,475 51,048 AVG ± 107 50,564 51,492 AVG ± 141 51,699 53,076 AVG ± 189 

 

From Table 4.3, it is observed that the eBPA determined the best BFV solutions for all problem 

instances, except for ch130 and ch150. For ch130, SA performed the best overall. For ch150, SA 

determined the best BFV solution, yet the eBPA determined the best AFV solution. For all other 

problem instances, the eBPA determined the best BFV and AFV solutions, together with the lowest 

95% CI values. Visual representations of the statistics given in Table 4.3 are seen in Figures 4.9 to 

4.18. For the AFV solution towers, the 95% CI values are represented as the black interval estimates 

at the top. 

 

For convenience, these figures also display the optimal solutions. The purpose of these experiments 

were to test the sequences of instructions constituting the algorithmic designs of each metaheuristic 

algorithm. It was also to test the abilities of each metaheuristic in using the same parameter settings 

across multiple problem instances. Therefore, the executions were not to explicitly seek out the 

optimal solution, yet to terminate at the point of convergence in monitoring the algorithmic 

performances.  
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Figure 4.9: The best and average fitness values, along with 

their 95% CI estimates for ch130 

 

 

Figure 4.10: The best and average fitness values, along with 

their 95% CI estimates for ch150 

 

 

Figure 4.11: The best and average fitness values, along with 

their 95% CI estimates for rat195 

 

 

Figure 4.12: The best and average fitness values, along with 

their 95% CI estimates for tsp225 

 

 

Figure 4.13: The best and average fitness values, along with 

their 95% CI estimates for a280 

 

 

Figure 4.14: The best and average fitness values, along with 

their 95% CI estimates for lin318 
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Figure 4.15: The best and average fitness values, along with 

their 95% CI estimates for pcb442 

 

Figure 4.16: The best and average fitness values, along with 

their 95% CI estimates for d493 

 

 

Figure 4.17: The best and average fitness values, along with 

their 95% CI estimates for rat575 

 

Figure 4.18: The best and average fitness values, along with 

their 95% CI estimates for d657 
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complexity and challenged the algorithms in their abilities to balance their transitions from 
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exploitation is critical in determining quality solutions. In having determined the best solutions, 

except for ch130 and the best BFV solution for ch150, it is noted that the eBPA intelligently found 

promising neighborhood regions more consistently and sifted out higher quality solutions from within 

those neighborhood regions. 

 

The strength of the eBPA is attributed to its ability to influence the trajectory of the search 

stochastically, and by way of adaptive memory. The admittance criterion of the eBPA memory 
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meets the minimum requirements (please refer to section 2.3.1). The newly inserted solution will then 

become the next solution to be used to direct the search. Implicitly, any solution inserted into the 𝑃𝐿 

could possibly be the next 𝑏𝑒𝑠𝑡 solution. With every insert into the 𝑃𝐿, the admissible criterion will 

constrain further as the quality of the 𝑤𝑜𝑟𝑠𝑡 solution will improve. This makes admittance into the 

memory structure more difficult, and this controls the transition from exploration to exploitation. 

Exploitation is further enhanced by reducing the 𝑃𝐿 size. This also serves as a purpose for eliminating 

cycling for 𝑃𝐿 sizes greater than one.   

 

4.7  Conclusion 

 

The TSP is largely studied in discrete optimization. Its complexity is 𝑁𝑃-Hard. This study 

investigates the abilities of the eBPA, TS and SA in determining solutions to ten sTSP test instances.  

 

The metaheuristic algorithms were compared in their abilities to determine their best and average 

tour-length solutions, along with their 95% CI solutions per problem instance. The complexities of 

the problem instances differed in ranging from 130 to 657 vertices. These problem instances provided 

sufficient challenges to the algorithms for testing purposes.  

 

The results show the competitiveness of the eBPA in determining solutions across multiple problem 

instances in using the same parameter settings, along with eBPA’s competitiveness for discrete 

optimization problem. 

 

  



 
 

101 
 

Chapter Five:  

The enhanced Best Performance Algorithm on the Just-

in-Time Scheduling Problem 

 

5.1   Introduction 

 

Scheduling problems altogether constitute a large and important field of study. It involves the 

allocation of production (or operational) resources with the intent of optimizing business objectives. 

Business objectives may include reduced operational costs, reduced production times, increased 

customer satisfaction, increased profits, etc., in optimizing production processes or service delivery.  

 

Several categorizations of scheduling problems are found in the literature (Brucker, 2007; Adewumi 

et al., 2009).  However, of particular interest in this study is the problem of Just-in-Time (JIT) 

scheduling (Adamu and Adewumi, 2013a & 2014). 

 

JIT scheduling, as described by Taiichi Ohno (commonly referred to as the father of JIT) is when, “in 

a flow process, the right parts needed in assembly reach the assembly line at the time they are needed 

and only in the amount needed,” (Fateha et al., 2012). Ohno perfected JIT principles at the Toyota 

manufacturing plants in Japan while being vice-president of manufacturing. At the time, Toyota 

created high quality vehicles at relatively low costs, compared to its competitors. This was in spite of 

the disadvantage of having a lack of natural resources in the country. The success of implementing 

JIT techniques in manufacturing gave Toyota a prominent position within the automobile sector.  

 

Observing Toyota’s success, many organizations on a global scale have adopted and implemented 

JIT techniques with relative successes. Proper implementations of JIT techniques have resulted in 

documentation emphasizing improved product qualities, improved service deliveries, improved 

customer satisfaction, improved employer and employee relations, decreased production costs, 

reduced levels of inventory, and increased profit turnover (Kootanaee, et al., 2013).  

 

Organizations have further benefited in remaining competitive within an industry by offering 

products and/or services without negotiating on quality at competitive costs. These factors constitute 
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important business objectives, as organizations remain competitive on the basis of cost, quality and 

service delivery (Kumar, 2008). 

 

The JIT scheduling problem is largely studied in the sectors of engineering, manufacturing and 

service delivery (Brucker, 2007). The objective is the optimized delivery of business resources that 

meet demand, rather than manufacturing or supplying less, or in surplus. JIT scheduling objectives 

are summarized as follows (Singh and Gard, 2011); 

1. Competitiveness – Companies strive to remain competitive in offering products and services at 

relatively low costs.  

2. Efficient processes of production – The more efficient the production processes, the more 

successful the company. 

3. Improved quality of products – Production of smaller quantities allow for better assessment 

checks. This results in improved product quality.  

4. Minimal wastage – This will reduce costs. It will also save time and effort.  

5. Reduced inventory – This will minimize investments, as excess inventory will not be held. 

6. Efficient space utilization – Fewer inventories means more space available.  

7. Improved customer satisfaction – The on-time delivery of quality products and services at 

competitive rates earn customer satisfaction. 

8. Improved supplier relations – Supplier relations get strengthened in having organized delivery of 

goods and services as required. 

 

The JIT scheduling problems are 𝑁𝑃-Hard (Adamu and Adewumi, 2012; Adamu and Adewumi, 

2013a&b). This study investigates a JIT scheduling problem and determines solutions using the 

eBPA, TS and SA. The objective of this study is to test the abilities of the eBPA in determining 

solutions. The eBPA solutions will be compared against those of the TS and SA algorithms. Once 

again, this study is the first on the eBPA for a scheduling problem. 

 

The rest of this chapter is structured as follows. Section 5.2 gives descriptions of previous research 

work. Section 5.3 briefly discusses the investigation to follow. Section 5.4 describes and presents the 

JIT scheduling problem. Section 5.5 presents and discusses the experimental results obtained. Finally, 

section 5.6 draws on conclusions. 
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5.2  Related works 

 

Previous studies on JIT scheduling problems have investigated both the single and multiple machine 

scenarios. Many optimization techniques have been investigated in determining solutions. They 

include both the exact and heuristic algorithms.  

 

Ronconi and Kawamura (2010) investigated a single machine JIT scheduling problem with restrictive 

common due dates. The objective was the minimization of the earliness and tardiness penalties. The 

study proposed a Branch and Bound algorithm which used lower bounds and pruning rules in 

exploiting properties of the problem in determining solutions. The algorithm was investigated using 

280 jobs. These jobs were characterized by different due dates. The proposed algorithm showed to be 

effective in outperforming the CPLEX optimization software.  

 

Monette et al. (2009) studied a JIT Job-Shop scheduling problem. Jobs were characterized by 

earliness and tardiness penalties with respect to their due dates. The objective was the minimization 

of the earliness and tardiness penalties. The study presented a Constrained Programming algorithm. 

This was a filtering algorithm based on machine relaxation. The study investigated a large range of 

benchmark test instances. 72 problems were studied in total. The algorithm showed to be very 

effective in determining 29 of the best-known solutions from the problems studied.  

 

Dereniowski and Kubiak (2010) studied a JIT multi-slot scheduling problem. In this problem, 

processing time was divided into time slots rather than a single due date for the jobs. The intent of 

the study was to determine a minimization for the schedule makespan. The study presented algorithms 

for both the single and parallel machine problem instances.  

 

Suer et al. (2012) studied a single machine scheduling problem with non-zero ready times. Jobs were 

assumed to have arrived at different times, with the arrival times being known in advance. The 

objective was determining the job sequences in minimizing tardiness. For the problem setting, 

preemption was not allowed. The study investigated the GA, and compared its solutions to known 

optimal solutions for small to large size problems. Results showed that GA determined optimal 

solutions for smaller instances, and near-optimal solutions for larger instances.  
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Laarhoven et al. (1992) investigated the SA algorithm in finding the minimum makespan in large 

instances of job-shop scheduling problems. The results showed that SA found shorter makespan than 

tailored deterministic algorithms at the expense of greater execution times. The conclusion was that 

the disadvantage of expensive computation times was compensated by the simplicity of the algorithm 

and the higher quality solutions determined.  

 

Sidhoum et al. (2004) studied a JIT scheduling problem in a parallel machine environment. Jobs were 

characterized by distinct due dates, and earliness and tardiness penalties. The research was motivated 

due to the difficulty of determining lower bounds for JIT scheduling problems in the single and 

parallel machine environments. A simple heuristic algorithm was presented. Results showed that the 

differences between the lower and upper bound values for the single and parallel machine 

environments were around 1% for the problem instances investigated.  

 

McMullen (1998) investigated the use of TS to a mix-model production scheduling problem at an 

assembly line. The objective of the algorithm was to best determine an assembly schedule based on 

the part-usage rates and the number of setups involved in the process. The problem objective was to 

determine an assembly sequence that optimized the assembly process. Results showed that the 

multiple-objective problem of minimizing part-usage and setup time could be valuable from a 

managerial perspective.  

 

Naso et al. (2007) investigated a hybridized algorithm constructed using GA and a constructive 

heuristic for a JIT delivery problem in supply chain management. The problem setting is that of a 

ready-mixed concrete delivery service, in trying to best coordinate the supply of concrete from 

producers to customer’s on-time. Apart from problem complexity, strict time constraints had forbid 

the early or tardy delivery of ready-mixed concrete. The problems objective was scheduled delivery 

that maximized profit, in minimizing risk. The case study presented used actual industrial data. The 

hybridized algorithm was compared to that of four other constructive heuristics. Results showed that 

the hybridized algorithm determined superior solutions to that of the constructive heuristics. 
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5.3   Problem Description and Mathematical Formulation 

 

The allocation of company resources to meet business demands are critical to the success of an 

organization. Therefore, in JIT problem formulation, the untimely scheduling of business resources 

that miss expected due dates are accompanied by penalty factors called earliness and tardiness 

penalties.  

 

An earliness penalty is incurred when a job (which implies a service rendered or an item being 

produced) is scheduled in business before its expected time. As an example, the implication of an 

earliness penalty relates to the cost of holding inventory before its expected time. Also, a tardiness 

penalty is incurred when a job is expected to complete after its expected due-date. As an example, 

this could imply customer dissatisfaction.  

 

The due date of a job refers to either a specific point in time or an interval specified by a window 

frame of time. The jobs due date is important. It relates to the demand of products or services at 

predetermined times. The inability of organizations to provide on-time delivery of products and/or 

services sets the stage for competitiveness in industry.  

 

In a perfect scheduling environment, resources will be made available as required. Realistically 

however, the limited availability of resources and the differences in demands result in resources 

becoming available before or after expected due dates. Hence, the problem with JIT scheduling relates 

to either minimizing the earliness penalty, minimizing the tardiness penalty, or both in scheduling 

resources (Brucker, 2007). Optimizing a JIT schedule is difficult due to the conflicting objectives.  

 

Most JIT investigations have studied the scheduling of 𝑛 jobs on a single machine where the due 

dates are specific points in time. This research studies a JIT problem of scheduling 𝑛 jobs on 𝑚 

parallel machines where the due dates are window frames of time. The single machine scenario is 

easier to model and solve, although in industry the possibility of bottlenecking exists. Surprisingly, 

far fewer papers have surfaced on JIT problems for scheduling jobs on multiple and parallel machines. 

 

The mathematical model presented in this study is that given in Adamu and Abass (2010). This study 

takes the opportunity of correcting the original mathematical formulation by removing irrelevant 
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constraints and reformulating the objective function in terms of the schedule. Also, although the 

formulation is a maximization model, the original study presented solutions for a minimization model. 

These inconsistencies present the opportunity for this problem to be restudied. 

 

In the mathematical formulation given below, the left and right hand sides of a window interval of 

time represents the earliest start time 𝑎𝑗 (were the job becomes available for processing) and the latest 

due date 𝑑𝑗 (were the job must be completed). The jobs are scheduled starting from time zero. The 

problems objective is the maximization of the total weight of all on-time jobs. 𝑤𝑗 is the weight of a 

job. This relates to the importance of job 𝑥𝑖𝑗 being delivered on-time. This problem assumes 

equivalent earliness and tardiness penalties. These penalty factors are not considered in the objective 

function. The mathematical formulation is as follows.  

Indices:  

 i – Indicative of each machine, i.e., 𝑖 =  1, . . , 𝑚. 

 j – Indicative of each job, i.e., 𝑗 =  1, . . , 𝑛. 

 

Parameters: 

 𝑎𝑗 – Represents the left hand side of the due window of job 𝑗. This is the earliest start time of job 

𝑗. 

 𝑑𝑗 – Represents the right hand side of the due window of job 𝑗. This is the expected completion 

time of job 𝑗. 

 𝑝𝑗 – Represents the processing time of each job 𝑗. 

 𝑡𝑖𝑗 – Represents the actual start time of job 𝑗 on machine 𝑖. 

 𝐶𝑖𝑗(𝑆) – Given a schedule 𝑆, 𝐶𝑖𝑗(𝑆) represents the completion time of job 𝑗 on machine 𝑖, i.e., 

𝐶𝑖𝑗(𝑆) = 𝑡𝑖𝑗 + 𝑝𝑗. Hence, job 𝑗 is said to be early if 𝐶𝑖𝑗(𝑆) < 𝑎𝑗 , tardy if 𝐶𝑖𝑗(𝑆) > 𝑑𝑗 else on-

time if 𝑎𝑗 ≤ 𝐶𝑖𝑗(𝑆) ≤ 𝑑𝑗. 

 𝑤𝑗 – Weight of job 𝑗. 

 

Variables: 

 𝑥𝑖𝑗(𝑆) – Representative if job 𝑗 is allocated on machine 𝑖, in schedule 𝑆. 

Objective Function: 
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Maximize 𝑓 = ∑ ∑ 𝑤𝑗𝑥𝑖𝑗(𝑆)

𝑛

𝑗=1

𝑚

𝑖=1

                                                        (5.1) 

Subject to constraints; 

𝑎𝑗 ≤ {𝑚𝑎𝑥𝑘=1
𝑗

{𝐶𝑖(𝑘−1)(𝑆), 𝑎𝑗 − 𝑝𝑗} + 𝑝𝑗}𝑥𝑖𝑗 ≤ 𝑑𝑗, ∀𝑖 = 1, . . , 𝑚; ∀𝑗 = 1, . . , 𝑛                     (5.2) 

 

∑ 𝑥𝑖𝑗 ≤ 1, ∀𝑗 = 1, . . , 𝑛
𝑚

𝑖=1
                                                       (5.3) 

           

𝑥𝑖𝑗 = {
1,          𝑖𝑓𝑓 𝑎𝑗 ≤ 𝐶𝑖𝑗(𝑆) ≤ 𝑑𝑗

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
,          ∀𝑖 = 1, . . , 𝑚; ∀𝑗 = 1, . . , 𝑛                 (5.4) 

 

Equation 5.1 represents the total weight of all on-time jobs. Equation 5.2 ensures that if job 𝑗 is 

scheduled on machine 𝑖, it will start and complete processing between its earliest start time 𝑎𝑗 and 

latest finishing time 𝑑𝑗. Equation 5.3 ensures that job 𝑗 will be assigned to at most one machine 𝑖. 

Equation 5.4 represents a job being either on-time, early or tardy, with 1 representing on-time and 0 

otherwise. 

 

The problem assumptions are as follows; 

1. Setup time is included in processing time. Hence, preemption is not allowed. When job 𝑗 − 1 

is completed, there is no delay in starting job 𝑗 on machine 𝑖.  

2. There is no delay in machine processing. When job 𝑗 starts, it is expected to be completed as 

represented by processing time 𝑝𝑗. 

3. Only one job can be processed at any given time on machine 𝑖. 

 

5.4   Results and Discussion 

 

The JIT scheduling problem is a discrete optimization problem. For this reason, only the eBPA, TS 

and SA metaheuristics are investigated (again, the eBPA had been developed due to the weakness of 

the BPA for discrete optimization problems, as was demonstrated in chapter two). 
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In chapter’s three and four, termination of the algorithms occurred at a point of convergence. 

Convergence had been detected when a specific number of idle iterations had been reached. However, 

in this investigation, we implement termination after a fixed number of iterations. With this approach, 

the parameter settings of the algorithms need to be set appropriately to make the most effective use 

of the limited computational time available. For this reason, the parameter settings of the algorithms 

have been set to exercise greater levels of exploitation, as was determined after a number of 

experimental tests. 

 

Simulations were run using sets of jobs 𝑛 ∈ {500, 1500, 2500}, tested on sets of machines 𝑚 ∈

{2, 5, 10, 15, 20}. For each job 𝑗 = 1, . . , 𝑛, its processing time 𝑝𝑗 was randomly determined to fall 

within the interval (1,99). To set the starting and completion times 𝑎𝑗 and 𝑑𝑗 for job 𝑗 two “Traffic 

Congestion Ratio” variables 𝑘1 and 𝑘2 was randomly selected from set 𝑉 ∈ {1, 5, 10, 20}. Using 𝑘1, 

𝑎𝑗 was randomly generated to fall within the interval (0, 𝑛 ⁄ 𝑚𝑘1). Using 𝑘2, 𝑑𝑗 was randomly 

generated to fall within the interval (𝑎𝑗 + 𝑝𝑗 , 𝑎𝑗 + 𝑝𝑗 + 𝑛 ⁄ 𝑚𝑘2).  

 

To test the algorithms fairly, a set of 𝑛 jobs was initially generated and passed in as the input parameter 

to each of the algorithms. This was then used to test the algorithms on a particular machine 𝑚. 

Therefore, each algorithm used the same job set in testing on a particular machine. This ensured the 

results were determined fairly for comparative purposes. To determine average performance results, 

each algorithm was run 30 times for each pair of job-machine combination. 30 runs were sufficient 

considering the expensive computational times of the metaheuristic algorithms. From the 30 runs, per 

job-machine combination, the best solution (BFV) of each algorithm will be compared. The BFV is 

the highest total weight of all on-time jobs from the 30 runs, per job-machine combination per 

algorithm. Comparisons of the average solution performances will also be documented. This is for 

their average fitness value (AFV) solutions and their average execution time (AVG) performances. 

 

To further test the algorithms fairly, their parameter settings were set such that each metaheuristic 

algorithm executed for exactly 106 objective function evaluations, per run. The parameter settings 

were set as follows; 

 eBPA – The 𝑃𝐿 size was set at 5. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 106. 𝑝𝑎 was set at 0.005. 

 TS – The 𝑇𝐿 size was set at 7. The 𝐶𝐿 size was set at 102. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 104.  
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 SA – The 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 was set at 103.  𝑇 was set at 115. 𝐹 was set at 0.005. 𝛼 was set at 

0.99. 

 

The findings of the simulations are documented below. 

 

Table 5.1: Statistics of the Best Fitness Values (BFV) and Average Fitness Values (AFV) for the class of 500 jobs 

No. of 

Jobs 
Methods Fitness Values 

No. of Machines 

2 5 10 15 20 

500 

eBPA 
BFV/ 

AFV 

391.34/ 

379.34 

441.74/ 

427.02 

546.84/ 

526.58 

601.23/ 

581.25 

683.79/ 

665.76 

TS 
BFV/ 

AFV 

325.91/ 

317.44 

382.02/ 

371.01 

462.70/ 

453.36 

519.78/ 

511.09 

584.56/ 

575.07 

SA 
BFV/ 

AFV 

388.70/ 

370.75 

441.10/ 

431.32 

532.90/ 

519.58 

593.44/ 

583.35 

680.78/ 

667.15 

 

Table 5.1 gives the statistical values of the BFV and AFV fitness values of each algorithm, per 

machine set, for the class of 500 jobs. The best BFV and AFV solutions, per machine set, is 

highlighted in bold font for clarity purposes.  

 

From Table 5.1 it is seen that the eBPA determined the overall BFV solutions for all machine sets. 

On average, the eBPA determined the overall AFV solutions for machine sets 2 and 10. SA 

determined the overall AFV solutions for machine sets 5, 15 and 20. However, it is seen that these 

solutions are only marginally superior to the eBPA solutions. TS has shown to be the weakest of the 

algorithms.  

 

Graphical comparisons of the algorithms best and average fitness value solutions, as determined from 

Table 5.1, are seen in Figures 5.1 and 5.2 below. 
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Figure 5.1: BFV comparisons for the class of 500 jobs 

 

Figure 5.2: AFV comparisons for the class of 500 jobs 

 

Table 5.2: The average execution times in milliseconds per machine set, for the class of 500 jobs 

No. of 

Jobs 
Methods 

Average Execution Time (ms) for each Machine Set 

2 5 10 15 20 

500 

eBPA 8,394 15,637 26,763 38,338 47,594 

TS 8,568 15,667 27,622 37,804 47,773 

SA 8,829 15,710 27,502 38,756 49,541 

 

Table 5.2 gives the statistical values of the average execution times in milliseconds (ms) for the 

algorithms, per machine set, for the class of 500 jobs. Although it is observed that the average 

execution times of the algorithms are fairly similar, the eBPA executed the fastest for machine sets 

2, 5, 10 and 20. TS executed the fastest for machine set 15.  

 

The relatively fast execution times of the eBPA relate to its small 𝑃𝐿 size, which strategically 

decreased as the algorithm iterated. This caused the admittance criterion to become increasingly 

restrictive in allowing for greater exploitation by accepting fewer solutions to update the memory 

structure. This allowed the eBPA to identify stronger solutions and explains its relatively fast 

execution times. A graphical comparison of the statistics given in Table 5.2 is seen in Figure 5.3.  
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Figure 5.3: Average execution times per metaheuristic per machine set, for the class of 500 jobs 

 

For the class of 500 jobs, it is concluded that the eBPA was the strongest algorithm.  

 

Table 5.3 gives the statistical values for the overall BFV and AFV solutions per machine set, for the 

class of 1,500 jobs. From Table 5.3 it is observed that the eBPA determined the overall BFV solutions 

for all machine sets, except machine set 10. It also determined the overall AFV solutions for all 

machine sets. SA determined the overall BFV solutions for machine set 10. SA again determined 

superior solutions over TS.   

 

Table 5.3: Statistics of the Best Fitness Values (BFV) and Average Fitness Values (AFV) for the class of 1,500 jobs 

No. of 

Jobs 
Methods Fitness Values 

No. of Machines 

2 5 10 15 20 

1,500 

eBPA 
BFV/ 

AFV 

696.21/ 

653.63 

841.96/ 

778.05 

896.90/ 

877.80 

952.07/ 

905.63 

1,066.63/ 

1,022.07 

TS 
BFV/ 

AFV 

549.57/ 

531.71 

679.26/ 

664.42 

777.44/ 

756.31 

793.86/ 

782.26 

908.43/ 

884.27 

SA 
BFV/ 

AFV 

654.36/ 

632.47 

811.42/ 

776.90 

909.04/ 

867.83 

941.62/ 

898.14 

1,041.08/ 

999.64 

 

Graphical comparisons of the algorithms best and average fitness value solutions, as determined from 

Table 5.3, are seen in Figures 5.4 and 5.5 below. 
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Figure 5.4: BFV comparisons for the class of 1,500 jobs 

 

Figure 5.5: AFV comparisons for the class of 1,500 jobs 

 

Table 5.4 below gives the statistics of the average execution times for the metaheuristic algorithms, 

per machine set, for the class of 1,500 jobs. It is observed that the average execution times were much 

more competitive for this class of jobs. The eBPA performed faster on average for machine sets 2, 10 

and 20. TS performed the fastest for machine set 5, and SA performed the fastest for machine set 15. 

Graphical comparisons of the execution time performances are seen in Figure 5.6.  

 

Table 5.4: The average execution times in milliseconds per machine set, for the class of 1,500 jobs 

No. of 

Jobs 
Methods 

Average Execution Time (ms) for each Machine Set 

2 5 10 15 20 

1,500 

eBPA 27,180 49,508 87,321 117,160 149,333 

TS 27,964 49,216 88,229 117,477 150,678 

SA 28,184 49,281 88,037 116,585 150,116 

 

 

Figure 5.6: Average execution times per metaheuristic per machine set, for the class of 1,500 jobs 

 

For the class of 1,500 jobs it is also concluded that the eBPA was the strongest algorithm. 

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

eBPA TS SA

Fi
tn

es
s 

V
al

u
e

Best Fitness Values per Algorithm

2 Machines 5  Machines

10  Machines 15 Machines

20  Machines

500

550

600

650

700

750

800

850

900

950

1000

1050

eBPA TS SA

Fi
tn

es
s 

V
al

u
e

Average Fitness Values per Algorithm

2 Machines 5  Machines

10  Machines 15 Machines

20  Machines

20000

40000

60000

80000

100000

120000

140000

160000

eBPA TS SA

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

Average Execution Times per Metaheuristic

2 Machines 5  Machines 10  Machines 15 Machines 20  Machines



 
 

113 
 

Table 5.5: Statistics of the Best Fitness Values (BFV) and Average Fitness Values (AFV) for the class of 2,500 jobs 

No. of 

Jobs 
Methods 

Fitness 

Values 

No. of Machines 

2 5 10 15 20 

2,500 

eBPA 
BFV/ 

AFV 

993.52/ 

960.94 

1,100.46/ 

1,066.45 

1,109.63/ 

1,054.93 

1,249.22/ 

1,197.17 

1,307.02/ 

1,267.87 

TS 
BFV/ 

AFV 

799.60/ 

789.21 

948.02/ 

919.61 

951.80/ 

930.43 

1,071.70/ 

1,057.45 

1,150.72/ 

1,130.19 

SA 
BFV/ 

AFV 

1,003.11/ 

962.44 

1,105.59/ 

1,039.86 

1,085.21/ 

1,039.86 

1,234.31/ 

1,182.19 

1,309.06/ 

1,267.89 

 

Table 5.5 gives the statistical values of the BFV and AFV solutions for each algorithm per machine 

set for the class of 2,500 jobs. From Table 5.5 it is seen that the eBPA determine better BFV and AFV 

solutions for machine sets 10 and 15, while SA determined better BFV and AFV solutions for 

machine sets 2 and 20. For machine set 5, the eBPA determined a better AFV solution and SA 

determined a better BFV solution. 

 

Graphical comparisons of the algorithms best and average fitness value solutions, as determined from 

Table 5.5, are seen in Figures 5.7 and 5.8 below. 

 

 

Figure 5.7: BFV comparisons for the class of 2,500 jobs 

 

Figure 5.8: AFV comparisons for the class of 2,500 jobs 

 

Table 5.6 below gives the statistics of the average execution times for the metaheuristic algorithms, 

per machine, set for the class of 2,500 jobs. It is observed that for this class, TS executed the fastest 

for machine set 2, SA executed the fastest for machine set 5, and the eBPA executed the fastest for 

machine sets 10, 15 and 20. Graphical comparisons of the execution time performances are seen in 

Figure 5.9.  
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Table 5.6: The average execution times in milliseconds per machine set, for the class of 2,500 jobs 

No. of 

Jobs 
Methods 

Average Execution Time (ms) for each Machine Set 

2 5 10 15 20 

2,500 

eBPA 44,534.00 80,756.00 139,053.00 195,479.00 260,926.00 

TS 44,461.00 81,128.00 141,250.00 209,198.00 285,553.00 

SA 45,055.00 80,646.00 139,213.00 196,093.00 272,481.00 

 

 

 

Figure 5.9: Average execution times per metaheuristic per machine set, for the class of 2,500 jobs 

 

For the class of 2,500 jobs, both the eBPA and SA performed similarly in determining an equivalent 

number of best solutions. However, the eBPA executed the fastest for most machine sets. 

 

Although standard implementations of the algorithms were compared, the results documented are 

significant in that the techniques employed by the eBPA have shown to be very competitive compared 

to that of TS and SA for this discrete optimization problem.  

 

The strength of the eBPA lay in its memory structure and the techniques used in allowing the solutions 

contained within to direct the search. Solutions registered in the 𝑃𝐿 would have identified attractive 

points within the neighborhood regions of the solution space. However, it uses the information of the 

worst solution in the list as a strategic point to move the search forward. The memory structure adapts 

dynamically in accepting solutions that satisfy the admittance criterion. It uses each solution inserted 

into the 𝑃𝐿 as the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. This strategy allows the eBPA to use a population of 

solutions to direct the search rather than using the population as a network to exploit a neighborhood 

region.  
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As the search iterates, and the worst solution in the 𝑃𝐿 is improved upon, the admittance criterion 

becomes more restrictive in allowing for greater levels of exploitation. Exploitation is further 

increased with the 𝑃𝐿 dynamically reducing in size by cutting away the worst solutions in a strategic 

manner. This constrains the admittance criterion further, and allows the eBPA to exploit quality 

solutions as the 𝑃𝐿 narrows in size. The solutions accepted into the 𝑃𝐿 does not need to be the best 

overall. However, along the way the best solution will be found. An added advantage of the eBPA is 

its simplistic design and the few parameter settings required. 

 

5.5   Conclusion 

 

The problem of JIT scheduling is an important study. The objective is to determine operational 

processes that would allocate limited business resources efficiently in optimizing business objectives. 

Business objectives may include the optimization of operational costs, operational times, inventory 

storage, customer and supplier relations, profits margins, etc.  

 

In this study, the JIT problem of allocating a large number of jobs required to be processed on 𝑚 

parallel machines was investigated. A job represents a business resource required to be made available 

during a specific window interval of time. An example may be the delivery of vehicles to customers 

that require rented vehicles within a specific time frame. The objective was therefore to determine a 

schedule that would maximize the total weighed number of all on-time jobs that could be scheduled. 

The JIT problem is 𝑁𝑃-Hard. 

 

To determine solutions, the eBPA, TS and SA algorithms were investigated. The algorithms were 

compared in their abilities to determine their best and average fitness value solutions. The fitness 

value referred to the weight of all on-time jobs scheduled per job-machine pair. The algorithms were 

also compared in terms of their average execution times performances. The results showed that the 

eBPA performed very competitively in being compared to both TS and SA. 
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Chapter Six:  

Conclusions and Future Research 

 

 

6.1. Summary of Research Work 

 

Faced with the challenges of limited availabilities of natural resources such as land, irrigated water 

supplies and financial investments, in crop production, the ACP problem had been developed. The 

ACP problem seeks to determine optimized solutions for these limited resources.  

 

The first ACP mathematical model was introduced in Chetty and Adewumi (2013b). The 

mathematical model related to that of an existing irrigation scheme. In this study, SI techniques were 

investigated.  These included the CS, FA, GSO and the GA algorithms. This study was significant in 

that it was the first on the CS, FA and GSO for a crop planning problem. Thereafter, the ACP problem 

was further evolved in considering new irrigation schemes (Chetty and Adewumi, 2013c). In that 

study, the same SI metaheuristic techniques were investigated. 

 

Thereafter, the research efforts took a turn in having investigated LS metaheuristic algorithms. The 

algorithms investigated were that of TS and SA. It was at this point that it was realized that there were 

apparent weaknesses in the strategic designs of both of these metaheuristics.  

 

With TS, it was realized that although it employed the benefits of memory strategies, it lacked slightly 

in its stochastic ability. On the other hand, although SA is pure stochastic, its disadvantage is that it 

does not employ memory strategies. Hence, SA loses valuable solutions found during its search. 

These realizations motivated for the development of a new metaheuristic, which was the BPA (Chetty 

and Adewumi, 2013a). Hence, the BPA was an attempt to bridge the strengths of both the memory 

ability of TS and the stochastic ability of SA. In Chetty and Adewumi (2013a), a large benchmark 

collection of unconstrained continuous optimization functions were investigated for comparative 

study. 
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To further test the abilities of the BPA, both ACP problems at existing and new irrigation schemes 

were investigated in Chetty and Adewumi (2014) and in Chetty and Adewumi (2013d) respectively. 

Yet again, there problems were instances of continuous optimization. To test the completeness of the 

algorithm, discrete optimization problems needed to be investigated.  

 

The discrete optimization problem chosen to be investigated was that of the sTSP; herein lay the 

stumbling block. In BPA’s applications to instances of sTSP’s, it was realized that the BPA had 

performed very poorly relative to both TS and SA. Further analysis revealed that the reason for the 

poor performances were due to stronger levels of explorative abilities, and weaknesses in exploitation. 

The imbalance of these contrasting objectives had proven to be very costly for this discrete 

optimization problem (and for discrete optimization in general). 

 

Therefore, to try and correct this performance aspect, the eBPA had been developed. As mentioned 

in chapter two, although these algorithms are modeled on similar analogical principles, their 

algorithmic designs are different. The eBPA is now a truer representation of the merge between the 

strengths of both SA and TS, in that, it is a single-point metaheuristic algorithm, which is similar to 

that of SA, and it directs the trajectory of the search by intelligently employing memory strategies, 

similar to that of TS. The strategies implemented by the eBPA has proven to be very effective in 

determining competitive solutions to both continuous and discrete optimization problems. Additional 

advantages of the eBPA include its simplistic design, its flexibility in being non-problem dependant, 

its consistency in balancing its transition from exploration to exploitation, and its effectiveness in 

determining high quality solutions. Overall, the eBPA is very robust. 

 

6.2 Conclusions 

 

This thesis has presented the eBPA, which is a new Monte Carlo LS metaheuristic algorithm. The 

eBPA trajects through a solution space stochastically, yet uses intelligence by way of its 

implementation of adaptive memory.  

 

The strategies implemented by the eBPA are intended to penetrate complexed regions of the solution 

space. It determines high quality solutions to difficult optimization problems, within polynomial time 

complexity, and at low computational costs. The strength of the eBPA is reflected in its ability to 

balance its transition from exploration to exploitation. 
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Exploration is a global search strategy. It attempts to locate promising neighborhood regions within 

the domains of the solution space. Exploration is primarily influential during the initial phases of the 

search. On the other hand, exploitation is a local search strategy. It attempts to identify the local 

optimum point from within a local neighborhood region. Exploitation is primarily influential during 

the latter stages of the search. A fine balance between these two contrasting objectives is critical to 

the success of any metaheuristic algorithm.  

 

The eBPA stems from its predecessor–the BPA. Further research was undergone to try and improve 

upon the efficiency aspects of the BPA (specifically for discrete optimization). In this thesis, a 

comprehensive analysis has been performed in discussing the conceptual differences in the technical 

and strategic designs of both the BPA and the eBPA. The results, in having performed the 

investigations, have shown the superiority of the eBPA over the BPA for discrete optimization 

problems.  

 

Yet, in their applications to the ACP problem, which is a continuous optimization problem, both 

algorithms had performed very competitively. To further test the efficiency aspects of the eBPA, this 

algorithm had been implemented in determining solutions to ten benchmark instances of the sTSP’s, 

and to an instance of the JIT scheduling problem. Both these problems types were discrete 

optimization problems. The ACP problem, sTSP, and the JIT scheduling problem are all 𝑁𝑃-Hard 

optimization problems.  

 

For the ACP problem, sTSP, and the JIT scheduling problem, the comparisons were made against 

that of TS and SA. TS and SA were the algorithms investigated due to both the eBPA and the BPA 

embedding characteristics of both of these metaheuristics. However, the eBPA is a truer blend of the 

embedded strengths, which has been proven by way of its excellent balance in its transition from 

exploration to exploitation, which is critical to the success of any metaheuristic algorithm.  Formally, 

the eBPA differs from memory-less search algorithms, which are modelled primarily on 

randomization, and memory-based search algorithms, which are modelled primarily on determinism.  

 

In this thesis a new mathematical formulation for the ACP problem has also been presented. The 

mathematical formulation considers for the market economic factors of the economy of scale, and the 

demand and supply relations.  
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Market economics have always had a noticeable presence in crop production. With the economy of 

scale influence, crop production on a larger scale has always been more profitable, as unit costs are 

lower. However, since the sale of the finished products are sold within deregulated marketing 

environments, the demand and supply relational factors also needed to be incorporated. The inclusion 

of these market economic factors make for a more interesting problem, yet is necessary for realistic 

solutions. 

 

6.3.  Future Research 

 

The eBPA has been developed as an AI algorithm, in having modeled a competitive element of an 

individual. Although metaheuristic algorithms in AI have been designed in primarily modelling 

biological agents (or occurrences) in nature, scarce research have surfaced on modelling human 

cognitive behaviors and thinking within the AI framework. This thesis has opened doors in realizing 

the potentials of modeling human characteristics in metaheuristic design, within the AI framework.  

 

The possibilities are numerous in investigating human behaviors and thinking at both personal and 

group levels, especially in trying to capture the competitive nature of individuals in their attempts to 

achieve maximum successes. Intelligence is also related to the way human’s reason in decision 

making; this is another important reason for modelling human beings in the design of metaheuristic 

algorithms. 

 

The eBPA should also be applied in investigating other types of optimization problems. 

Hybridizations of this algorithm is also possible. Another alternative is to research the possibility of 

temporarily increasing the memory structure size of the eBPA, in attempting to escape from local 

entrapments.  
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APPENDIX A 

To explain the strategic search techniques employed by the eBPA, a hypothetical example will be 

used in performing the illustration. This example will broadly represents an optimization problem. 

Assuming that the optimization function 𝑓(𝑥) is a maximization problem, the objective will be to 

determine the optimal solution vector 𝑥∗ ∈ 𝑋; 𝑋 represents the solution space of feasible solutions. 

This solution space is constrained by linear and non-linear equations 𝑔(𝑥) {≤, =, ≥} 0. The intent of 

this illustration is to discuss the possible steps taken by the eBPA in locating the global optimum 

point.  

 

Figure A.1 graphically illustrates the problem. The search space is seen to have three local optimum 

points; these are located at points 𝑓(𝑥𝑐), 𝑓(𝑥𝑔) and 𝑓(𝑥𝑗) respectively. The solution vectors used to 

determine these points are 𝑥𝑐, 𝑥𝑔 and 𝑥𝑗 respectively. The global optimum point is situated at point 

𝑓(𝑥𝑗). The neighborhood regions underlining these local optimum points are 𝑁1, 𝑁2 and 𝑁3 

respectively. Falling within these neighborhood regions, are solution points which will be to explain 

the trajectory of the search. Amongst these is 𝑓(𝑥𝑎). This point will be the point of departure.  

 

 

Figure A.1:  Illustration of a hypothetical optimization problem having three local optimum points 
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The parameter settings of the eBPA will be as follows: the Performance List size (𝑃𝐿_𝑠𝑖𝑧𝑒) will be 

3, the probability factor (𝑝𝑎) will be set at 0.05, and the 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 for which to execute will 

be set at 30.  

 

The 𝑃𝐿 size will be strategically reduced by 1 every 𝑟𝑒𝑑𝑢𝑐𝑒𝑃𝐿 number of iterations; let’s assume 

that 𝑟𝑒𝑑𝑢𝑐𝑒𝑃𝐿 = 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑃𝐿_𝑠𝑖𝑧𝑒. To trace through the steps of the algorithm, we 

maintain a table consisting of the decision variables. The table updates will monitor the variable state 

changes, in tracing through the search from its initial point of departure at point 𝑓(𝑥𝑎) to its optimum 

point 𝑓(𝑥𝑗). For consistency, the first iteration will be indexed at 0. 

 

Table A.1 shows the initial values of the decision variables, at iteration 0. 𝑃𝐿0 is initialized to 𝑥𝑎, and 

𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠0 is initialized to 𝑓(𝑥𝑎). We assume solution vector 𝑥𝑎 had been randomly generated. 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 is set to 𝑥𝑎, all indices point to index 0, and 𝑡𝑜𝑔𝑔𝑙𝑒 is initialized to be true. 

 

Table A.1: Variables state changes at iteration 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2 shows the sequences of events for iterations 1 and 2. The decision variable updates are 

seen in Table A.2. Arc 1, in Figure A.2 (which relates to iteration 1), shows a transition from point 

𝑓(𝑥𝑎) to point 𝑓(𝑥𝑏). This transition had been determined by implementing a move on solution vector 

𝑥𝑎; this determined solution vector 𝑥𝑏. Solution vector 𝑥𝑏, and its fitness value 𝑓(𝑥𝑏), got inserted 

 
Iteration 

0 

Performance List 

size 
𝑃𝐿_𝑠𝑖𝑧𝑒 3 

 

Working 

Solutions 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑥𝑎 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ - 

 

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

lists 

0 𝑥𝑎 | 𝑓(𝑥𝑎) 

1 - 

2 - 

 

Solution Indices 

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0 

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 

 

Toggle Variable 𝑡𝑜𝑔𝑔𝑙𝑒 true 
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into the Performance List’s at index 1. As the Performance List’s are not fully populated as yet, the 

admittance criterion of the worst solution does not come into play. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 immediately 

points to the newly inserted solution, and now has the value of 1. Since point 𝑓(𝑥𝑏) has improved 

upon point 𝑓(𝑥𝑎), 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 has now been set to 1. The 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 remains at 0. 

  

At this point, a random number in the range of [0,1] is generated and compared against 𝑝𝑎. Assuming 

that the probability condition did not get met, 𝑡𝑜𝑔𝑔𝑙𝑒 remains true. However, in these particular cases, 

even if 𝑡𝑜𝑔𝑔𝑙𝑒 were to be set to false, it would make no difference. Reason being, the updated 

working solution 𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ is the same solution which just got inserted into the memory structure. 

Therefore, this solution would be the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. 

 

Arc 2, in Figure A.2 shows a transition from point 𝑓(𝑥𝑏) to point 𝑓(𝑥𝑑); this occurred as a move was 

implemented on solution vector 𝑥𝑏. This move transition relates to iteration 2. With index 2 in the 

Performance List’s being unpopulated, the solution vector 𝑥𝑑, and its corresponding fitness value 

𝑓(𝑥𝑑), got inserted at this index. As can be seen, solution vector 𝑥𝑑 is a dis-improved move; it falls 

below the point of 𝑓(𝑥𝑏). Being a dis-improved move, the 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 remains unchanged. The 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 has now been updated to be 2. The 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 remains unchanged, as 𝑓(𝑥𝑑) is still 

an improved point over 𝑓(𝑥𝑎).  

 

At this point, with the Performance List’s being fully populated, the admittance criterion of the worst 

solution will come into play. This is seen as a horizontal line across point 𝑓(𝑥𝑎). The level set by this 

horizontal line is the minimum requirement of acceptance across the entire search space 𝑋 (i.e. any 

solution determined below this level will immediately be rejected). Assuming the probability 

condition remained unsatisfied, 𝑡𝑜𝑔𝑔𝑙𝑒 remains true. 
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Figure A.2: Sequences of moves for iterations 1 and 2 

 

 

Table A.2: Variables state changes for iterations 0 to 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3 shows a move transition from point 𝑓(𝑥𝑑) to point 𝑓(𝑥𝑐). This is indicated by arc 3. 𝑓(𝑥𝑐) 

is the local optimum point of neighborhood structure 𝑁1. Point 𝑓(𝑥𝑐) improves upon the fitness as 

indicated by the 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥  (i.e. 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 = 𝑓(𝑥𝑎)). Therefore, solution vector 𝑥𝑐, 

and its fitness value 𝑓(𝑥𝑐), has now been inserted at index 0 into the Performance List’s. As an update 
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Solution Indices 

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 1 1 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0 1 2 

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 0 0 
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of the memory structure has just been realized, the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 immediately points to index 0. 

Since point 𝑓(𝑥𝑐) has improved upon point 𝑓(𝑥𝑏), the 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 has also been assigned to index 0. 

At this step, 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 needs to be re-determined; it resultantly had been assigned to index 2. 

Hence, the horizontal lower-bound of admittance just got elevated to point 𝑓(𝑥𝑑). Assuming the 

probability condition remained unsatisfied, 𝑡𝑜𝑔𝑔𝑙𝑒 remains true. The variable updates are seen in 

Table A.3, under iteration 3. 

 

Figure A.3: Sequences of moves for iteration 3 

 

Table A.3: Variables state changes for iterations 0 to 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Iterations 

0 1 2 3 

Performance List 

size 
𝑃𝐿_𝑠𝑖𝑧𝑒 3 3 3 3 

 

Working 

Solutions 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑥𝑎 𝑥𝑎 𝑥𝑏 𝑥𝑑 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ - 𝑥𝑏 𝑥𝑑 𝑥𝑐 

 

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

lists 

0 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑐 | 𝑓(𝑥𝑐) 

1 - 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) 

2 - - 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑑  | 𝑓(𝑥𝑑) 

 

Solution Indices 

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 1 1 0 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0 1 2 0 

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 0 0 2 
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Assuming no improved moves were determined at iterations 4, 5 and 6, Figure A.4 shows move 

transitions in breaking out of a possible cycle. This is indicated by arcs 4 and 5, and relates to iterations 

7 and 8 respectively. Iterations 7 and 8 are documented in Table A.4. A cycle could occur if solution 

𝑥𝑐 continuously determined a dis-improved move to solution 𝑥𝑒, which then returned back to 𝑥𝑐. The 

move from point 𝑓(𝑥𝑐) to point 𝑓(𝑥𝑒) is indicated by arc 4. This move has occurred at iteration 7. At 

this iteration, we see that the probability condition 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] < 𝑝𝑎 has now been satisfied. 

Immediately, 𝑡𝑜𝑔𝑔𝑙𝑒 is set to false. This means that 𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ will become the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 

solution, at iteration 8. The acceptance of this move shows a transition from neighborhood region 𝑁1 

to neighborhood region 𝑁2.  

 

Arc 5, at iteration 8, shows an improved move made from point 𝑓(𝑥𝑒) to point 𝑓(𝑥𝑓). 𝑓(𝑥𝑓) improves 

upon the worst point 𝑓(𝑥𝑑), therefore an update of the Performance List’s are required. The insert is 

performed at index 2. The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 and 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 (as 𝑓(𝑥𝑓) is the best point found so far) 

get re-assigned to point to index 2. The 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 gets re-assigned to point to index 1. With the 

probability condition being unsatisfied, 𝑡𝑜𝑔𝑔𝑙𝑒 remains true; 𝑡𝑜𝑔𝑔𝑙𝑒 had been reset to true at the 

point of having determined 𝑥𝑓. 

 

 

Figure A.4: Illustrating state transitions in breaking out of a possible cycle 
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Table A.4: Variables state changes for iterations 0 to 8 

 

 

Iterations 9 and 10, as seen in Table A.5 show no improvement. However, at iteration 10, the resize() 

condition gets satisfied. To perform the resize, solution swaps are required. Here, the solutions 

referred to by the 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 (i.e. index 1) need to be swapped with the solutions referred to by the 

last index (i.e. index 2), in the Performance List’s. As the solutions referred to by index 2 is the 

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, these indices get re-assigned to point to index 1. The 𝑃𝐿_𝑠𝑖𝑧𝑒 then 

gets reduced by 1; it now has the size of 2. At this point the 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 gets re-determined, and 

points to index 0 which refers to point 𝑓(𝑥𝑐). The horizontal line correspondingly elevates to the level 

at point 𝑓(𝑥𝑐). This is seen in Figure A.5. This strategy further restricts the admittance criterion, 

making it more difficult for a memory structure to be updated. 

 

 
Iterations 

0 1 2 3 … 7 8 

𝑃𝐿 size 
Performance 

List size 
3 3 3 3 … 3 3 

 

Working 

Solutions 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑥𝑎 𝑥𝑎 𝑥𝑏 𝑥𝑑 … 𝑥𝑐 𝑥𝑒 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ - 𝑥𝑏 𝑥𝑑 𝑥𝑐 … 𝑥𝑒 𝑥𝑓 

 

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

lists 

0 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑐 | 𝑓(𝑥𝑐) … 𝑥𝑐 | 𝑓(𝑥𝑐) 𝑥𝑐 | 𝑓(𝑥𝑐) 

1 - 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) … 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) 

2 - - 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑑 | 𝑓(𝑥𝑑) … 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑓 | 𝑓(𝑥𝑓) 

 

Solution Indices 

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 1 1 0 … 0 2 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0 1 2 0 … 0 2 

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 0 0 2 … 2 1 
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Figure A.5: Illustration of how the admittance criterion further restricts when the 𝑃𝐿 reduces in size 

 

Table A.5: Variables state changes for iterations 0 to 10 

 

 

In Figure A.6, arc 6 shows an improved move transition from point 𝑓(𝑥𝑓) to point 𝑓(𝑥𝑔); this occurs 

at iteration 16. The variable state changes are seen in Table A.6. Point 𝑓(𝑥𝑔) improves upon point 

𝑓(𝑥𝑐), therefore the Performance List’s get updated at index 0. The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 and 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 

(as point 𝑓(𝑥𝑔) is now the best solution determined so far) are assigned to point to index 0. The 

 
Iterations 

0 1 2 3 … 7 8 9 10 

𝑃𝐿 size 
Performance 

List size 
3 3 3 3 … 3 3 3 2 

 

Working 

Solutions 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑥𝑎 𝑥𝑎 𝑥𝑏 𝑥𝑑 … 𝑥𝑐 𝑥𝑒 𝑥𝑓 𝑥𝑓 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ - 𝑥𝑏 𝑥𝑑 𝑥𝑐 … 𝑥𝑒 𝑥𝑓 𝑥𝑓′ 𝑥𝑓′ 

 

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

lists 

0 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑐 | 𝑓(𝑥𝑐) … 𝑥𝑐 | 𝑓(𝑥𝑐) 𝑥𝑐 | 𝑓(𝑥𝑐) 𝑥𝑐 | 𝑓(𝑥𝑐) 𝑥𝑐 | 𝑓(𝑥𝑐) 

1 - 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) … 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑓 | 𝑓(𝑥𝑓) 

2 - - 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑑 | 𝑓(𝑥𝑑) … 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑓 | 𝑓(𝑥𝑓) 𝑥𝑓 | 𝑓(𝑥𝑓) 𝑥𝑏  | 𝑓(𝑥𝑏) 

 

Solution Indices 

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 1 1 0 … 0 2 2 1 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0 1 2 0 … 0 2 2 1 

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 0 0 2 … 2 1 1 0 
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𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 is re-determined and now points to index 1. Point 𝑓(𝑥𝑔) is the local optimum point of 

the neighborhood region 𝑁2. With the horizontal line moving up to point 𝑓(𝑥𝑓), the admittance 

criterion constrains even further. Assuming that the probability condition did not get satisfied, 𝑡𝑜𝑔𝑔𝑙𝑒 

remains unchanged. A point of interest is that no solution from the neighborhood region 𝑁1 will be 

accepted, as the point 𝑓(𝑥𝑓) supersedes the local optimum point 𝑓(𝑥𝑐).  

 

At iteration 20, no improved solution gets registered. However, the resize() condition has now been 

satisfied. At this step, the solutions pointed to be the 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 (i.e. index 1) need to be swapped 

with the solutions at the last index (i.e. index 1). Since both indices are the same, no swap is required. 

Therefore, the 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 remain the same. The 𝑃𝐿_𝑠𝑖𝑧𝑒 is then reduced by 

1; it now has the size of 1. The 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 gets re-determined, and now points to index 0. With the 

quality of the worst solution having been increased, the admittance criterion restricts yet further. This 

is indicated by the horizontal line being elevated to point 𝑓(𝑥𝑔). We assume 𝑡𝑜𝑔𝑔𝑙𝑒 remains 

unchanged.  

 

The restriction of the admittance criterion forces the search to break beyond the local optimum point 

𝑓(𝑥𝑔), of neighborhood region 𝑁2, to point 𝑓(𝑥ℎ), of neighborhood region 𝑁3. The transition is seen 

by arc 7 at iteration 23. Solution 𝑥ℎ, and its fitness value 𝑓(𝑥ℎ), get inserted into the Performance 

List’s at index 0. The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 remains at 0. 𝑡𝑜𝑔𝑔𝑙𝑒 remains 

true.  

 

At iteration 24, a move is applied to solution vector 𝑥ℎ; this determined an improved solution 𝑥𝑖. This 

is seen by arc 8, which points to location 𝑓(𝑥𝑖). The Performance List’s get appropriately updated. 

The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥, 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and 𝑡𝑜𝑔𝑔𝑙𝑒 remain unchanged.  

 

At iteration 29, greater levels of exploitation are experienced. This pushes the trajectory of the search 

to global optimum point 𝑓(𝑥𝑗). 𝑥𝑗 and 𝑓(𝑥𝑗) get inserted into the Performance List’s. At the end of 

this iteration, the termination criterion is satisfied. At this point, solution vector 𝑥𝑗 is returned as the 

final solution. 
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Figure A.6: Illustration of steps leading to the global optimum point 

 

 

Table A.6: Variables state changes for iterations 0 to 29 

 

 

 

 

 

 
Iterations 

… 16 … 20 … 23 24 … 29 

𝑃𝐿 size 
Performance 

List size 
… 2 … 1 … 1 1 … 1 

 

Working 

Solutions 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 … 𝑥𝑓 … 𝑥𝑔 … 𝑥𝑔 𝑥ℎ … 𝑥𝑖 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ … 𝑥𝑔 … 𝑥𝑔′ … 𝑥ℎ 𝑥𝑖 … 𝑥𝑗 

 

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

lists 

0 … 𝑥𝑔 | 𝑓(𝑥𝑔) … 𝑥𝑔 | 𝑓(𝑥𝑔) … 𝑥ℎ | 𝑓(𝑥ℎ) 𝑥𝑖  | 𝑓(𝑥𝑖) … 𝑥𝑗  | 𝑓(𝑥𝑗) 

1 … 𝑥𝑓 | 𝑓(𝑥𝑓) … 𝑥𝑓 | 𝑓(𝑥𝑓) … 𝑥𝑓 | 𝑓(𝑥𝑓) 𝑥𝑓 | 𝑓(𝑥𝑓) … 𝑥𝑓 | 𝑓(𝑥𝑓) 

2 … 𝑥𝑏  | 𝑓(𝑥𝑏) … 𝑥𝑏  | 𝑓(𝑥𝑏) … 𝑥𝑏  | 𝑓(𝑥𝑏) 𝑥𝑏  | 𝑓(𝑥𝑏) … 𝑥𝑏  | 𝑓(𝑥𝑏) 

 

Solution Indices 

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 … 0 … 0 … 0 0 … 0 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 … 0 … 0 … 0 0 … 0 

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 … 1 … 0 … 0 0 … 0 

 

Toggle Variable 𝑡𝑜𝑔𝑔𝑙𝑒 … true … true … true true … true 


