

i

The enhanced Best Performance Algorithm for

Global Optimization with Applications

by

Mervin Chetty

200270501

Submitted in fulfilment of the academic requirements for the degree of

Doctor of Philosophy

(Computer Science)

at the

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal

Durban, South Africa

November 2016

ii

UNIVERSITY OF KWAZULU-NATAL

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION

The research described in this thesis was performed at the University of KwaZulu-Natal

under the supervision of Prof. A. O. Adewumi. I hereby declare that all materials

incorporated in this thesis is my own original work except where acknowledgement is made

by name or in the form of a reference. The work contained herein has not been submitted in

part or whole for a degree at any other university.

Signed:

Mervin Chetty

Date: November 2016

As the candidate’s supervisor, I have approved the thesis for submission

Signed:

 Prof. A. O. Adewumi

Date: November 2016

iii

UNIVERSITY OF KWAZULU-NATAL

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION – PLAGIARISM

I, ___ declare that

1. The research reported in this thesis, except where otherwise indicated, is my original

research.

2. This thesis has not been submitted for any degree or examination at any other

University.

3. This thesis does not contain other persons’ data, pictures, graphs or other information,

unless specifically acknowledged as being sourced from other persons.

4. This thesis does not contain other persons’ writing, unless specifically acknowledged

as being sourced from other researchers. Where other written sources have been

quoted, then:

a. Their words have been re-written but the general information attributed to them

has been referenced

b. Where their exact words have been used, then their writing has been placed in

italics and inside quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from the

Internet, unless specifically acknowledged, and the source being detailed in the thesis

and in the References sections.

Signed:

Mervin Chetty

iv

DEDICATION

To my family,

and to the children of our next generation.

v

ACKNOWLEDGEMENTS

Without my belief in God, and in the Lord Jesus Christ, this thesis would not have been

possible. This thesis is a testimony of the goodness of God in my life. To God I am grateful

for the completion of this thesis.

I am very grateful to my supervisor Prof. Aderemi O. Adewumi. Thank you for all you have

done for me, and for all opportunities given. God bless you!

I am grateful to my mother Shirley; you are honored this day.

I am grateful to my aunty Asothi, who has stood with us through the difficult times.

I am grateful my late brother-in-law Devan and sister Deloshni. Devan would have been

proud of this achievement.

I acknowledge my cousin Gansen and his wife Linda for their selfless deed at the very

beginning.

I also thank my employer I.T. Dynamics for the financial assistance. I have been blessed

being a part of this organization.

The financial assistance of the National Research Foundation (DAAD-NRF) towards this

research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those

of the authors and are not necessarily to be attributed to the DAAD-NRF.

vi

ABSTRACT

This work has focused on deriving inspiration from the social context of nature in having developed

a new stochastic algorithm called the enhanced Best Performance Algorithm (eBPA). The eBPA aims

at solving complexed discrete and continuous optimization problems, and is a further development of

an algorithm introduced in our earlier work called the Best Performance Algorithm (BPA).

As opposed to similar algorithms that drew inspiration from biological and natural elements, the

eBPA has derived its inspiration from human cognitive decision-making processes such as the

selection of the best team for game playing. The eBPA tries to capture the competitive element of an

individual in trying to achieve the objective of ultimate personal success by way of learning and

adaption. The eBPA uses this intelligence for efficient, consistent, and robust search, within a

complexed global search space.

This thesis presents the fundamental principles and foundations on the eBPA. The efficiency and

robustness of this algorithm is tested on two common discrete optimization problems, namely the

symmetric Travelling Salesman Problem and the Just-in-Time machine-scheduling problem. The

algorithm is further applied to solve a newly defined real-world Annual Crop Planning (ACP)

problem. A new mathematical formulation of the ACP problem, based on the market economic factors

of the economy of scale and the demand and supply relations, is introduced in this work. This problem

seeks to determine optimal resource allocations for crop planning in considering irrigation and other

requirements. Solutions from the ACP problem intend to assist crop planners in making resource

allocation decisions for the forthcoming crop production year cycle.

The performance of the eBPA on the stated problems was evaluated empirically via simulation

experiments. The results obtained have been compared to those of other standard metaheuristics with

the eBPA showing promising and efficient results. The proposed optimization technique thus shows

strength for contribution in the field of optimization, being a metaheuristic. Furthermore, it opens

further doors for optimization researchers to seek inspiration in the area of human cognitive decision-

making, in metaheuristic design.

vii

 TABLE OF CONTENTS

 Page

Title page i

Declaration ii

Declaration – Plagiarism iii

Dedication iv

Acknowledgement v

Abstract vi

Table of Contents vii

List of Figures xi

List of Tables xvi

Abbreviations xviii

Outcome of Research Work (Publications) xx

Chapter One: Introduction and Background

1.1. Introduction 1

1.2. Exact and Heuristic Methods 3

1.3. Monte Carlo Metaheuristics 4

1.3.1 The Genetic Algorithm 4

1.3.2 Ant Colony Optimization 5

1.3.3 Firefly Algorithm 5

1.3.4 Glowworm Swarm Optimization 5

1.3.5 Cuckoo Search 6

1.3.6 Simulated Annealing 6

1.3.7 Tabu Search 8

1.3.8 A new Metaheuristic Algorithm 9

1.4. Rational and Motivation 9

1.5. Aims and Objectives 11

1.6. Methodology 11

1.7. Scope of Thesis 12

1.8. Contributions to Knowledge 13

1.9. Thesis Overview 15

viii

Chapter Two: Theoretical Analysis of the Enhanced Best Performance Algorithm

2.1 Introduction 16

2.2 Local Search Metaheuristic Algorithms 18

2.3 Proposed Metaheuristic Algorithm 21

2.3.1 The enhanced Best Performance Algorithm 22

2.3.2 Enhancement over the BPA 28

2.3.2.1 Maintenance of the Memory Structure 28

2.3.2.2 Admittance Criterion 29

2.3.2.3 Search Strategy 30

2.3.2.4 Size of the Memory Structure 30

2.4 The Strategic Design of the eBPA 31

2.4.1 Memory Technique of the eBPA 32

2.4.2 Search Strategy of the eBPA 32

2.4.3 Exploration and Exploitation of the eBPA 33

2.4.4 Strategic Reduction of the eBPA Memory Structure 34

2.5 Experimental Setup 35

2.6 Results and Discussion 36

2.6.1 Simulation Experiments 36

2.6.1.1 Experiment 1 36

2.6.1.2 Experiment 2 38

2.6.1.3 Experiment 3 39

2.6.2 eBPA Parameter Experiments 43

2.6.2.1 Experiment 4 43

2.6.2.2 Experiment 5 44

2.7 Conclusion 46

Chapter Three: The Enhanced Best Performance Algorithm for the Annual Crop

Planning Problem Based on Economic Factors

3.1 Introduction 47

3.2 Background to ACP Problem 49

3.3 Formal Description of ACP 52

3.4 The Annual Crop Planning Problem as a Space Allocation Problem 56

3.4.1 Knapsack Model for ACP 57

3.5 Economy of Scale and the Demand and Supply Relations 58

3.6 ACP Mathematical Model with Economic Factors for an Existing Irrigation Scheme 60

3.6.1 Mathematical Notations 61

ix

3.6.2 Optimization Model 62

3.7 Summary of, “On the Performance of new Local Search Heuristics for

Annual Crop Planning: Case Study of the Vaalharts Irrigation Scheme” 64

 3.7.1 The Vaalharts Irrigation Scheme Case Study 64

3.8 Summary of, “Studies in Swarm Intelligence Techniques for Annual Crop Planning

Problem in a New Irrigation Scheme” 67

 3.8.1 The Taung Irrigation Scheme Case Study 67

3.9 Experimental Results 68

3.10 Conclusion 80

Chapter Four: The Enhanced Best Performance Algorithm for the Travelling

Salesman Problem

4.1 Introduction 81

4.2 TSP Applications 83

4.2.1 NASA Starlight space interferometer program 83

4.2.2 Circuit Board Problem 83

4.2.3 Nozzle Guide Vane Placement Problem 84

4.2.4 Order Picking Problem 84

4.3 Algorithmic Approaches and Previous Research 85

4.4 Benchmark Test Instances 88

4.5 Discussion 89

4.6 Results and Discussion 90

4.7 Conclusion 100

Chapter Five: The Enhanced Best Performance Algorithm on the Just-In-Time

Scheduling Problem

5.1 Introduction 101

5.2 Related works 103

5.3 Problem Description and Mathematical Formulation 105

5.4 Results and Discussion 107

5.5 Conclusion 115

Chapter Six: Conclusions and Future Research

6.1 Summary of Research Work 116

6.2 Conclusions 117

x

6.3 Future Research 119

REFERENCES 120

APPENDICES

 APPENDIX A 132

xi

LIST OF FIGURES

Figure 2.1: The global optimum point is the extreme local optimum point.

A local optimum point is the best point within a neighborhood region.

This image is for a maximization problem 20

Figure 2.2: Flowchart diagram of eBPA 27

Figure 2.3: Comparison of average execution times, in milliseconds, to perform

a single update of the PL’s of the eBPA and BPA, for different PL sizes 37

Figure 2.4: The number of times each PL had been updated,

per segment of 2,000 iterations 38

Figure 2.5: Best and average fitness values, per PL size of 1 40

Figure 2.6: Best and average fitness values, per PL size of 10 40

Figure 2.7: Best and average fitness values, per PL size of 25 40

Figure 2.8: Best and average fitness values, per PL size of 50 40

Figure 2.9: Best and average fitness values, per PL size of 75 40

Figure 2.10: Best and average fitness values, per PL size of 100 40

Figure 2.11: Average execution time performances, for each PL size 41

Figure 2.12: Convergence of eBPA in having determined its best solutions, per PL size 41

Figure 2.13: Convergence of BPA in having determined its best solutions, per PL size 41

Figure 2.14: Convergence of TS in having determined its best solutions, per CL size 43

Figure 2.15: Correlation between probability and fitness 44

Figure 2.16: Zoomed in image of Figure 2.15 44

Figure 2.17: Correlation between PL size and fitness 45

Figure 2.18: Zoomed in image of Figure 2.17 45

Figure 2.19: Correlation between PL size and execution time 45

xii

Figure 2.20: Zoomed in image of Figure 2.19 45

Figure 3.1: Equilibrium market price as determined by the demand and supply relations 59

Figure 3.2: Satellite image of the Vaalharts Irrigation Scheme, Taung Irrigation Scheme,

Vaal River and Taung Dam 65

Figure 3.3: Fitness values determined using randomly selected probability factors,

 at a fixed Performance List size of 50 71

Figure 3.4: Zoomed in image of Figure 3.3 71

Figure 3.5: Fitness values determined using randomly selected Performance

List sizes at a fixed probability factor of 0.128 72

Figure 3.6: Zoomed in image of Figure 3.5 72

Figure 3.7: Fitness values determined using randomly selected cooling factors,

at a fixed initial temperature of 50 72

Figure 3.8: Zoomed in image of Figure 3.7 72

Figure 3.9: Fitness values determined using randomly selected PL sizes at a fixed

probability factor of 0.121 72

Figure 3.10: Fitness values determined using randomly selected cooling factors,

at a fixed initial temperature of 50 73

Figure 3.11: Fitness values determined using randomly selected initial temperature values,

at a fixed cooling factor of 0.96 73

Figure 3.12: Fitness values determined by randomly selecting the CL size values 74

Figure 3.13: Zoomed in image of Figure 3.12 74

Figure 3.14: The best and average fitness values, along with their 95% CI estimates 76

Figure 3.15: Irrigated water requirements (IWR) of the initial solution (IS)

and that of the metaheuristic solutions 77

Figure 3.16: Comparison of the hectare allocation solutions per crop 78

Figure 4.1: 2-opt: (a) shows the complete tour; (b) shows that edges (1, 2)

xiii

and (7, 8) have been removed, while two new edges (1, 7)

and (2, 8) have been introduced in reconnecting the tour 91

Figure 4.2: 3-opt: From initial solution (a), solutions (b) and (c) are

determined by performing the first 2-opt move, in removing

edges (1, 2) and (7, 8). Thereafter, to determine solution (b),

edge (4, 5) is removed while keeping the removed edge (1, 2)

constant in performing the second 2-opt move. Similarly, to

determine solution (c), edge (10, 11) is removed while keeping

the removed edge (7, 8) constant in performing the second 2-opt move 92

Figure 4.3: Double-bridge move: (a) shows the complete tour; (b) shows that

edges (1, 2), (4, 5), (7, 8) and (10, 11) have been removed. The tour is

then reconnected by introducing edges (1, 8), (10, 5), (7, 2) and (4, 11) 92

Figure 4.4: Random swap move: (a) shows the complete tour; (b) shows that

vertices 2 and 8 have been swapped 93

Figure 4.5: Vertex reposition move: (a) shows the complete tour; (b) shows

that vertex 8 has been repositioned at location 2 93

Figure 4.6: Fitness values determined by randomly selecting the 𝐶𝐿 size values 95

Figure 4.7: Fitness values determined using randomly selected probability factors,

at a fixed 𝑃𝐿 size of 50 96

Figure 4.8: Fitness values determined using randomly selected 𝑃𝐿 sizes,

at a fixed probability factor of 0.045 96

Figure 4.9: The best and average fitness values, along with their 95% CI estimates

for ch130 98

Figure 4.10: The best and average fitness values, along with their 95% CI

estimates for ch150 98

Figure 4.11: The best and average fitness values, along with their 95% CI estimates

for rat195 98

Figure 4.12: The best and average fitness values, along with their 95% CI

estimates for tsp225 98

xiv

Figure 4.13: The best and average fitness values, along with their 95% CI

estimates for a280 98

Figure 4.14: The best and average fitness values, along with their 95% CI

estimates for lin318 98

Figure 4.15: The best and average fitness values, along with their 95% CI

estimates for pcb442 99

Figure 4.16: The best and average fitness values, along with their 95% CI estimates

for d493 99

Figure 4.17: The best and average fitness values, along with their 95% CI

estimates for rat575 99

Figure 4.18: The best and average fitness values, along with their 95% CI

estimates for d657 99

Figure 5.1: BFV comparisons for the class of 500 jobs 110

Figure 5.2: AFV comparisons for the class of 500 jobs 110

Figure 5.3: Average execution times per metaheuristic per machine set,

for the class of 500 jobs 111

Figure 5.4: BFV comparisons for the class of 1,500 jobs 112

Figure 5.5: AFV comparisons for the class of 1,500 jobs 112

Figure 5.6: Average execution times per metaheuristic per machine set,

for the class of 1,500 jobs 112

Figure 5.7: BFV comparisons for the class of 2,500 jobs 113

Figure 5.8: AFV comparisons for the class of 2,500 jobs 113

Figure 5.9: Average execution times per metaheuristic per machine set,

for the class of 2,500 jobs 114

Figure A.1: Illustration of a hypothetical optimization problem having three

local optimum points 132

Figure A.2: Sequences of moves for iterations 1 and 2 135

xv

Figure A.3: Sequences of moves for iteration 3 136

Figure A.4: Illustrating state transitions in breaking out of a possible cycle 137

Figure A.5: Illustration of how the admittance criterion further restricts when

the 𝑃𝐿 reduces in size 139

Figure A.6: Illustration of steps leading to the global optimum point 141

xvi

LIST OF TABLES

Table 2.1: The eBPA is presented as Algorithm 2.1, and the BPA is

presented as Algorithm 2.2 26

Table 2.2: Average execution time, in milliseconds, to perform a single

update of the 𝑃𝐿 memory structure 37

Table 2.3: The best (BFV) and average (AFV) fitness value solutions, together

with the average execution time performances (AVG),

in milliseconds (ms), per 𝑃𝐿 size 39

Table 3.1: Mean rainfall statistics as determined over a 36 year period. 66

Table 3.2: Dataset for the Vaalharts Irrigation Scheme Case Study 66

Table 3.3: Dataset for the Taung Irrigation Scheme Case Study 68

Table 3.4: Parameter settings per crop 69

Table 3.5: Average execution time performances (AVG) in milliseconds (ms) 74

Table 3.6: Statistics of the best and average fitness values solutions,

along with the 95% CI values 75

Table 3.7: Statistical values of the irrigated water requirements (IWR) and the

costs of production (CP) 77

Table 3.8: Statistics of the initial (IS) and metaheuristic solutions per crop 78

Table 3.9: Statistics of the initial (IS) and metaheuristic solutions per crop 79

Table 4.1: Symmetric Travelling Salesman Problem test instances,

and their characteristics 89

Table 4.2: Nearest Neighbor tour-length solutions for each problem instance 91

Table 4.3: Best, average and 95% Confidence Interval fitness values,

for each algorithm per problem instance 97

Table 5.1: Statistics of the Best Fitness Values (BFV) and Average Fitness

xvii

Values (AFV) for the class of 500 jobs 109

Table 5.2: The average execution times in milliseconds per machine set,

for the class of 500 jobs 110

Table 5.3: Statistics of the Best Fitness Values (BFV) and Average Fitness

Values (AFV) for the class of 1,500 jobs 111

Table 5.4: The average execution times in milliseconds per machine set,

for the class of 1,500 jobs 112

Table 5.5: Statistics of the Best Fitness Values (BFV) and Average Fitness

Values (AFV) for the class of 2,500 jobs 113

Table 5.6: The average execution times in milliseconds per machine set,

for the class of 2,500 jobs 114

Table A.1: Variables state changes at iteration 0 133

Table A.2: Variables state changes for iterations 0 to 2 135

Table A.3: Variables state changes for iterations 0 to 3 136

Table A.4: Variables state changes for iterations 0 to 8 138

Table A.5: Variables state changes for iterations 0 to 10 139

Table A.6: Variables state changes for iterations 0 to 29 141

xviii

ABBREVIATIONS

Nomenclature Definitions

ACO Ant Colony Optimization

ACP Annual Crop Planning

AFV Average Fitness Value

AI Artificial Intelligence

AVG Average

BFV Best Fitness Value

BPA Best Performance Algorithm

CI Confidence Interval

CL Candidate List

CP Cost of Production

CS Cuckoo Search

CWR Crop Water Requirement

eBPA enhanced Best Performance Algorithm

FA Firefly Algorithm

GA Genetic Algorithm

GSO Glowworm Swarm Optimization

IS Initial Solution

IWR Irrigated Water Requirement

JIT Just-in-Time

LS Local Search

NN Nearest Neighbor

NP Non-deterministic Polynomial time

P Polynomial

PL Performance List

PSO Particle Swarm Optimization

SA Simulated Annealing

xix

SAP Space Allocation Problem

TL Tabu List

TS Tabu Search

TSP Travelling Salesman Problem

VCP Variable Costs of Production

VIS Vaalharts Irrigation Scheme

xx

OUTCOME OF RESEARCH WORK

(PUBLICATIONS)

Article Accepted or Published in accredited Peer-reviewed Journals

1. Chetty, S. and Adewumi, A. O. (2013). “Studies in Swarm Intelligence Techniques for

Annual Crop Planning Problem in a New Irrigation Scheme”, South African Journal of

Industrial Engineering, Vol. 24(3), pp. 205-226.

2. Chetty, S. and Adewumi, A. O. (2014). “On the Performance of New Local Search

Heuristics for Annual Crop Planning: Case Study of the Vaalharts Irrigation Scheme”,

Journal of Experimental & Theoretical Artificial Intelligence, Vol. 27(2), pp. 159-179.

3. Chetty, S. and Adewumi, A. O. (2015). “A Study on the Enhanced Best Performance

Algorithm for the Just-In-Time Scheduling Problem,” Discrete Dynamics in Nature and

Society, Vol. 2015, pp. 1-12.

4. Chetty, S. and Adewumi, A. O. (2017). “The enhanced Best Performance Algorithm for

the Travelling Salesman Problem”, Contemporary Engineering Sciences, Vol. 10(3), pp.

129-144.

Articles under consideration for Peer-reviewed Journals

5. Chetty, S. and Adewumi, A. O. “Theoretical Analysis on the enhanced Best Performance

Algorithm”, to be submitted the International Journal of Applied Mathematics and

Computer Science.

xxi

6. Chetty, S. and Adewumi, A.O. “Investigation on the enhanced Best Performance

Algorithm for the Annual Crop Planning Problem Based on Economic Factors”,

submitted to PLOS ONE Journal (revised version submitted).

1

Chapter One

Introduction and Background

1.1 Introduction

Mathematical optimization is the science of determining the optimal solution from amongst a set of

feasible solutions to a mathematically formulated problem. Essentially, the process involves first

mathematically formulating the problem, and then to determine optimal or near optimal solutions

using appropriate optimization techniques. The solutions found relate to the scarce resources that are

required to be optimized. The process of optimization is usually subjected to certain constraints.

Mathematical optimization is an important tool used in decision making and system analysis. It is

practically applicable in numerous fields; examples include the fields of Mathematics, Computational

Science, Operations Research, Engineering, Economics, Physics, and Biology, etc. (Boyd and

Vandenberghe, 2004). For example, in Microeconomics, the utilization problem addresses the issue

of how to spend money in a way that will maximize utility. Another example exists in the fields of

Science and Engineering; it is the problem of determining the minimum energy configuration of

metallic structures (Snyman, 2005). To formulate an optimization problem, the objective (or

objectives) of the problem need to be identified, along with the design variables and constraints that

govern feasible solutions.

An objective function is a measure of the quality of a system in evaluating a solution. For example,

in crop production the objective in evaluating the design variables may be to maximize the profits

earned from the sale of the harvests. The design variables are therefore the inputs to the system and

are the unknowns which need to be optimized. As an example, the design variables in crop production

could be the area of land allocated for the production of each crop. Feasible solutions are also

commonly governed by constraints. Constraints are the functions that describe the relationships

between the different decision variables of the system. For example, in allocating land-area for the

production of each crop, the quantity allocated cannot lay beyond the minimum and maximum bounds

allowed. An optimization problem is formally defined as follows (Snyman, 2005):

2

minimize
𝑤.𝑟.𝑡.: 𝑥

𝑓(𝑥) (1.1)

subject to: 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2, … , 𝑚 (1.2)

ℎ𝑗(𝑥) = 0, 𝑗 = 1,2, … , 𝑟 (1.3)

where: 𝑥 ∈ ℝ𝑛

In equation (1.1), 𝑓 is the objective function, and 𝑥 is a solution which is a representation of the

design variables. Solution 𝑥 is selected from within a set of feasible solutions which exist within the

domains of the solution space. 𝑔𝑖(𝑥) represents the inequality constraints, while ℎ𝑗(𝑥) represents the

equality constraints. This mathematical formulation represents a minimization problem. This problem

can be made a maximization problem by putting a negative sign in front of 𝑓(𝑥).

The design variables could either be continuous (real-number values), or discrete (integer values). If

the design variables are continuous, then the problem is referred to as a continuous optimization

problem. If the design variables are discrete, then the problem is referred to as a discrete or

combinatorial optimization problem.

The constraints associated with the variables of the system could either be hard or soft constraints

(Domshlak et al., 2006). Hard constraints are those constraints that cannot be broken. On the other

hand, soft constraints are negotiable. The objective in determining solutions is to satisfy all hard

constraints, while satisfying as many soft constraints as possible. If no constraints govern the problem,

then the problem is referred to as an unconstrained optimization problem. However, if constraints

govern the problem, then the problem is referred to as a constrained optimization problem. Most real-

world optimization problems are multi-constrained. However, many optimization problems exist

without constraints.

If the objective function and its constraints are all linear equations then the problem is categorized as

a Linear Programming problem. If the object function, and/or one or more of the constraints are non-

linear, then this problem is referred to as a Non-linear Programming problem. Similarly, there are

other types of problem categories that exist; examples include the Geometric and Quadratic

Programming problems, amongst others (Raju and Kumar, 2007).

3

The objective of the problem could be either single or multi-objective. If the problem has a single

objective function, then the problem is referred to as a Single-objective Programming problem.

Similarly, if multiple objective functions exist, then the problem is referred to as a Multi-objective

Programming Problem. Most real-world optimization problems are multi-objective in nature.

Also, if the optimal solution for the optimization problem can be determined within polynomial time

complexity (𝑃), then the problem is characterized as being deterministic. With deterministic

optimization, there are clear relationships between the constructs of the design variables and their

solution qualities. In other words, the same design variables used to evaluate the objective function,

within 𝑃, will determine the same result each time. On the other hand, if the optimal solution cannot

be determined within 𝑃, then the problem is categorized as being a non-deterministic polynomial

(𝑁𝑃) problem.

1.2 Exact and Heuristic Methods

Exact methods are used to determine the optimal solution to deterministic optimization problems.

Examples of exact methods include Branch and Bound, Linear Programming, and the Divide and

Conquer algorithms, amongst others (Adewumi, 2010). These methods determine the optimal

solution by performing an exhaustive search of the solution space, irrespective of computational time

complexity (Trevisan, 2011). Examples of problems that are solved to optimality, in using exact

algorithms, are the decision problems in Linear Programming.

However, for 𝑁𝑃-type optimization problems, heuristic methods are the preferred methods of choice.

This is because performing an exhaustive search of the solution space is considered impractical if the

computational time complexity increases exponentially. Therefore, for 𝑁𝑃 type optimization

problems, computational time complexity is a factor. Meanwhile, most real-world optimization

problems are 𝑁𝑃 in nature especially when the search space is large. Examples of 𝑁𝑃-Hard

optimization problems include the Travelling Salesman Problem (TSP), and the Just-in-Time (JIT)

scheduling problem, amongst others. For these problems, heuristically determining sub-optimal

solutions, within 𝑃, is considered acceptable in trading accuracy for reductions in computational time

complexity (Syam and Al-Harkan, 2010). Heuristic algorithms proceed by employing trial and error

4

techniques in searching for solutions. Examples of heuristic algorithms include tour construction

heuristics, such as the Nearest Neighbor and Greedy algorithms (Davendra, 2010).

One problem with heuristic algorithms, however, is premature convergence (Rocha and Neves, 1999).

Premature convergence occurs when an algorithm gets trapped within a local neighborhood region of

the solution space, in believing it has found the optimal solution, when in fact it has not. To overcome

this occurrence, research has undergone to develop heuristic algorithms which embed greater levels

of intelligence in performing the search. Heuristic algorithms that embed greater levels of intelligence

are referred to as metaheuristic algorithms. Metaheuristic algorithms minimize the risk of premature

convergence by performing more robust search. Metaheuristic algorithms fall under a category of

algorithms known as Monte Carlo algorithms (Krauth, 1998).

1.3 Monte Carlo Metaheuristics

Monte Carlo algorithms are computational algorithms which rely on strategies of randomness to

heuristically determine solutions. They are applicable to optimization problems where numerical

methods are expected to fail, for example the 𝑁𝑃-Hard optimization problems. For these problems,

Monte Carlo algorithm determine sub-optimal solutions within 𝑃.

Examples of Monte Carlo metaheuristic algorithms include: the Evolutionary Algorithms such as the

Genetic Algorithm (GA) (Holland, 1975); Swarm Intelligence algorithms such as the Ant Colony

Optimization (ACO) (Dorigo, 1992; Dorigo and Gambardella, 1997), the Firefly Algorithm (FA)

(Yang, 2010), Glowworm Swarm Optimization (GSO) (Krishnand and Ghose, 2009a; Krishnand and

Ghose, 2009b), and the Cuckoo Search (CS) (Yang, 2010); Local Search algorithms such as

Simulated Annealing (SA) (Kirkpatrick, 1983; Tan, 2008) and Tabu Search (TS) (Glover, 1989 and

1990). Descriptions of these algorithms are given in the sub-sections below.

1.3.1 Genetic Algorithm

GA (Holland, 1975) was inspired by natural evolution. With the GA, a population of solutions

(phenotypes) evolve from one generation to the next in using techniques such as selection, crossover

and mutation. Selection, crossover and mutation are strategically administered to the chromosomes

5

(genotypes) of the solutions within the population. For discrete optimization problems, the

chromosomes are binary encoded while for continuous optimization problems, the chromosomes are

real-value encoded (Monyei, et al, 2014; Eiben and Smith, 2003).

1.3.2 Ant Colony Optimization

ACO (Dorigo, 1992) was inspired by observing the natural behavior of ants in search for food.

Initially, the ants start off by moving in random directions. Upon finding a food source, the ant will

lay down a detective substance called pheromone. Pheromone is an evaporable substance. With time,

the pheromone trail will evaporate. However, if this trail is detected by another ant, this ant will likely

follow the pheromone trail. If the ant follows this trail, it will lay down more pheromone; the trail

will strengthen as more pheromone is laid down. Trails with stronger pheromone emissions will be

more attractive for other ants to follow suit. The food source represents a solution.

1.3.3 Firefly Algorithm

The FA (Yang, 2010) was inspired by observing the natural abilities of fireflies in emitting a light

source called bioluminescence. Bioluminescence is emitted with the purpose of attracting other

fireflies for mating. The FA is designed using these three governing rules (Akinyely and Adewumi,

2014):

1. Fireflies are attracted towards other fireflies with greater levels of bioluminescence than

itself. The attraction does not consider the sex of the other fireflies.

2. The attractiveness of a firefly relates to its brightness. However, with increases in distance,

the brightness is assumed to diminish. The brightest firefly, from the population, will move

in a random direction.

3. The evaluation of the problems objective relates to the brightness of the light emission.

1.3.4 Glowworm Swarm Optimization

GSO is similar to the FA. It was inspired in observing the natural behavior of glow-worms in emitting

luciferin (Krishnand and Ghose, 2009a). Luciferin is a luminescent property which gets emitted in

order to attract other glow-worms for the purpose of mating. The greater the level of luciferin emitted,

6

the more attractive the glow-worm would appear to be. A glow-worm will move in the direction of

another glow-worm, but only if it falls within its range of view.

1.3.5 Cuckoo Search

CS (Yang, 2010) was inspired in observing the natural behavior of some parasitic cuckoo bird species.

These bird species have the behavior of reproducing eggs and then abandoning them in the nests of

other host birds. Some birds, upon having realized the intrusion, will throw the alien eggs away. Other

birds will simply leave their nests, and build other nests elsewhere. In this algorithm, an egg represents

a solution. The intention of the algorithm is to replace the weaker solutions, in the nest of the host

bird, with higher quality solutions. CS is designed using these three governing rules:

1. A cuckoo bird will lay one egg at a time. It will then randomly insert this egg in the nest of

the host bird.

2. For the next generation, the nest with the highest quality of solutions will be accepted.

3. The host bird will detect the intrusion given a constant probabilistic factor of 𝑝𝑎 ∈ [0,1].

1.3.6 Simulated Annealing

SA (Kirkpatrick, 1983) is modeled on the analogy of the atomic composition of metal. At higher

temperatures, the atomic composition of metal is more volatile. Yet, it will stabilize as the metallic

structure begins to cool. Stability (or equilibrium) is reached at a temperature close to zero. For the

annealing process to be successful, the decrease in the rate of temperature must be slow. Volatility

represents SA’s ability to accept worst solutions. It is represented with probability 𝑃 = 𝑒𝑥𝑝[(𝐶 −

𝐶∗)/𝑇], where 𝐶 is the cost of the current solution, 𝐶∗ is the cost of the candidate solution, and 𝑇 is

the temperature. At higher temperatures, the probability of accepting worst solutions is greater. This

allows SA to explore different neighborhood regions of the solution space with more ease. Using this

strategy, more promising neighborhood regions can be located. However, as the temperature

decreases, this probability also decreases and there is a transition from exploration to exploitation.

Greater levels of exploitation presents SA the opportunity to concentrate on those promising

neighborhood regions found in trying to identify higher quality solutions. The greatest levels of

exploitation are achieved at very low temperatures, where the probability of accepting worst solutions

are at its lowest. The strategy of accepting worst solutions is two-fold: new regions are explored, and

7

a doorway is presented to escape local entrapment. With SA, significant research has been done

around the setting of its parameter values; these values significantly influence the performance of the

algorithm. The initial temperature (𝑇) importantly controls the transition from exploration to

exploitation, and the cooling factor (𝛼) importantly controls the rate at which the algorithm converges

to its final solution. The algorithm for SA is given in Algorithm 1.1.

From Algorithm 1.1, it is seen that SA starts off with equivalent 𝑏𝑒𝑠𝑡 and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solutions. The

execution of the algorithm starts off at the initial temperature of 𝑇. 𝑇 then reduces by the rate of 𝑇 ×

𝛼, until the final temperature 𝐹 is reached. At each point of decrease in 𝑇, a 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 number

of iterations is executed. At each of these iterations, local search moves are applied to the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

solution; this will produce a 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. If this 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution improves upon the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

solution, then it will become the next 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution. However, given a certain probability, even

if the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution does not improve upon the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution, it could still become the next

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution. If the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution has been updated, a check is performed to see if the 𝑏𝑒𝑠𝑡

solution has been improved upon. If it has, the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution will become the next 𝑏𝑒𝑠𝑡 solution.

Algorithm 1.1: Simulated Annealing

1. Initialize 𝑏𝑒𝑠𝑡 to be the initial tour

2. Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑏𝑒𝑠𝑡

3. Evaluate the fitness of 𝑏𝑒𝑠𝑡 = 𝑓_𝑏𝑒𝑠𝑡

4. Set 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (the fitness of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑓_𝑏𝑒𝑠𝑡

5. Initiate starting temperature 𝑇 and final temperature 𝐹

6. while 𝑇 ≥ 𝐹 do

 6.1. for 𝑖 to 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 do

 6.1.1. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Solution (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

 6.1.2. 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Fitness(𝑤𝑜𝑟𝑘𝑖𝑛𝑔)

 6.1.3. if 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better then 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then

 6.1.3.1. 𝑢𝑠𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = true

 6.1.4. else

 6.1.4.1. Calculate acceptance probability 𝑃

 6.1.4.2. if 𝑃 > random[0,1] then

 6.1.4.2.1. 𝑢𝑠𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = true

 6.1.4.3. end if

 6.1.5. end else

8

 6.1.6. if 𝑢𝑠𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 then

 6.1.6.1. 𝑢𝑠𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = false

 6.1.6.2. 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔

 6.1.6.3. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

 6.1.6.4. if 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 better than 𝑓_𝑏𝑒𝑠𝑡 then

 6.1.6.4.1. 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 6.1.6.4.2. 𝑓_𝑏𝑒𝑠𝑡 = 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 6.1.6.5. end if

 6.1.7. end if

 6.2. end for

 6.3. Update 𝑇 according to cooling schedule 𝛼

7. end while

8. return 𝑏𝑒𝑠𝑡

1.3.7 Tabu Search

TS (Glover, 1989) is based on the analogy of something that should not be touched or interfered with.

This is achieved by maintaining a limited number of recently found best candidate solutions in a list

called the Tabu List (𝑇𝐿). The 𝑇𝐿 is commonly implemented in a First-In-First-Out (FIFO) way.

Candidate solutions are determined in searching the neighborhood region of the current solution 𝑥,

i.e. 𝑁(𝑥). Therefore, the maximum number of candidate solutions considered will be 𝑁(𝑥) − |𝑇𝐿|,

as any solution recorded in the 𝑇𝐿 has a tabu status and will not be interfered with. The decision to

reject the 𝑇𝐿 solutions minimize the risk of cycling. Thus, TS makes use of memory in intelligently

directing the search. The algorithm for TS is given in Algorithm 1.2.

Algorithm 1.2: Tabu Search

1. Initialize 𝑏𝑒𝑠𝑡 to be the initial tour

2. Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑏𝑒𝑠𝑡

3. Evaluate the fitness of 𝑏𝑒𝑠𝑡 = 𝑓_𝑏𝑒𝑠𝑡

4. Set 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (the fitness of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑓_𝑏𝑒𝑠𝑡

5. Set the size of the Tabu List, i.e. 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑆𝑖𝑧𝑒

6. Set the size of the Candidate List, i.e. 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡𝑆𝑖𝑧𝑒

7. Initiate the Tabu List (𝑇𝐿) and the Candidate List (i.e. 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡)

8. for 𝑖 to 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

9

 8.1. 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 = Generate_New_Candidate_List(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

 8.2. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Find_Best_Candidate(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡)

 8.3. 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Determine_Fitness (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

 8.4. if 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 better then 𝑓_𝑏𝑒𝑠𝑡 then

 8.4.1. 𝑓_𝑏𝑒𝑠𝑡 = 𝑓_𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 8.4.2. 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 8.4.3. Update 𝑇𝐿 with 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 8.5. else

 8.5.1. if Intensification_Criterion_Met() then

 8.5.1.1. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Reset_Current()

 8.5.2. end if

 8.6. end if

9. end for

10. return

In Algorithm 1.2, a candidate list of solutions (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡) is generated from the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

solution. The best candidate from the 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 is then determined, and will become the new

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution for the next iteration. If this solution improves upon the 𝑏𝑒𝑠𝑡 solution overall, then

it will become the next 𝑏𝑒𝑠𝑡 solution. If the 𝑏𝑒𝑠𝑡 solution is updated, then it will get inserted into the

𝑇𝐿. If the intensification criterion has been satisfied, the next 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 solution will be re-determined

in using a randomly selected solution from the 𝑇𝐿.

1.3.8 A New Metaheuristic Algorithm

This thesis introduces a new Monte Carlo metaheuristic algorithm in the literature, namely the

enhanced Best Performance Algorithm. The eBPA stems from its predecessor–the Best Performance

Algorithm (BPA) which had been proposed earlier by the researcher (Chetty and Adewumi, 2013a).

Details on both algorithms are provided in chapter two.

1.4 Rational and Motivation

The eBPA has been developed to improve on the BPA in making up for a few gaps identified in the

latter, especially when applied to discrete optimization problems. Although the BPA performs

competitively for continuous optimization problems, it performs poorly for discrete optimization

problems due to an apparent weakness in its exploitative ability (exploration and exploitation will

10

also be discussed in detail in chapter two). Thus, research had been undergone to design a more

complete metaheuristic algorithm which performs competitively for both discrete and continuous

optimization problems. The resultant algorithm is the eBPA. The eBPA is an enhancement over its

predecessor–the BPA. The eBPA has a completely different design to that of the BPA, yet being

modelled on similar analogical principles.

With the global challenge in the agricultural sector, especially in developing countries, it becomes

highly imperative for optimization researchers to develop models and methods that help manage

activities and processes in this sector within the limitations of available resources. Economic

challenges, coupled with drought and a host of other problems, have impacted negatively on food

production and consumption. This is why the study on the ACP problem becomes highly essential,

especially within a developing country context such as South Africa which is recently experiencing

high levels of water shortage.

Increases in the costs associated with crop production, and the scarcity of natural resources such as

fresh water supplies and agricultural land, make it essential to seek an optimal way for crop

production per unit of the resources utilized. The need for more output is directly related to increases

in the population growth. This has placed greater demands on the agricultural sector for food products.

From all sectors of the industry, the agricultural sector is the primary supplier of food globally. Yet,

determining optimized solutions in crop production is no simple task as there are many stochastic

factors to be considered. This makes determining optimized solutions very challenging for both the

producers and researchers alike. Therefore, to try and contribute to the solutions of this problem, the

ACP problem had been introduced. The ACP problem provides solvable yet scalable solutions in

considering both the stochastic and predictable factors involved with crop production.

Another reason for introducing the ACP problem is due to the fact that the scarcity of fresh water

supplies is becoming a great concern especially in South Africa. From all sectors of the industry, the

agricultural sector is placed under increased pressure to use fresh water supplies more conservatively.

This is due to the fact that it is the most accused of excessive water wastage from all other sectors of

the industry (Schmitz et al., 2007). Yet, it is important that fresh water supplies to the agricultural

sector do not deplete below acceptable levels as fresh water is essential for optimized agricultural

production. Also, it is realized that increases in the costs associated with food products will have

negative socioeconomic effects on the global society. Of this, the hardest hit will be that of the poor.

11

Therefore, to try and combat these challenges, the ACP problem had been introduced, and is further

evolved in this thesis.

1.5 Aims and Objectives

The primary aim of this thesis is the presentation of the eBPA, and the new ACP mathematical

formulation based on market economic factors.

The objectives of presenting the eBPA are as follows:

1. To pioneer research into the modelling of human behavioral traits in developing a

metaheuristic algorithm within the AI framework.

2. To make comparisons with its predecessor, the BPA, for optimization problems.

3. To present theoretical insight into the technical and strategic differences between the

algorithmic designs of both the eBPA and the BPA.

4. To investigate the potentials of the eBPA for 𝑁𝑃-Hard optimization problems.

The objectives of presenting the ACP problem are as follows:

1. Formally describe the ACP problem, and its mathematical model.

2. To seek a better realistic model for the ACP problem that incorporates market economic

factors along with other constraints which make for an enhancement over the previous

version of the ACP problem introduced earlier by the author.

3. To investigate possible solutions to the ACP problem in considering irrigation constraints

based on a real-life scenario obtainable in South Africa.

4. To provide benchmark datasets to aid further research in this area.

1.6 Methodology

This thesis studies metaheuristics in investigating three NP-Hard optimization problems, namely the

ACP problem, instances of sTSP’s, and an instance of the JIT scheduling problem. For the ACP

problem presented, computational simulations were performed based on the dataset from a case study.

The dataset, together with the results of all simulations, will serve as a benchmark for further research

12

conducted on this problem. Benchmark datasets available in literature and online were used for the

TSP and JIT problems. Statistical analysis and comparisons were done to determine the efficiency

of the proposed technique over existing methods.

All programs developed in this thesis were written using the Java programming language. It was

programmed in using the Netbeans® 7.0 Integrated Development Environment. All simulations were

run on the same platform. The computer used had a Windows® 7 Enterprise operating system, an

Intel® Celeron® Processor 430, 3GB of RAM and a 500GB hard-drive.

1.7 Scope of the Thesis

This thesis presents the eBPA for global optimization problems. The enhancement of the eBPA over

the BPA will be discussed. The strength of the proposed algorithm is evaluated on two common

discrete optimization problems, namely the TSP and JIT machine scheduling problems. A real-world

instance of the ACP problem is also formulated, and the eBPA employed to find optimized solutions.

The results show that the eBPA competes favorably well within the space of both discrete and

continuous optimization problems.

Being a new metaheuristic algorithm, this thesis constitutes initial investigations into the potentials

of the eBPA. To test its abilities, the solutions determined by the eBPA, for all problem instances

investigated, have been compared with that of the well-known TS and SA algorithms. TS and SA

have been known in literature as efficient and competitive metaheuristics in determining high quality

solutions to arrays of difficult real-world optimization problems. The comparisons of the eBPA

against TS and SA is motivated by the fact that the former is designed based on similar underlying

principles implemented by both these algorithms.

SA is a single-point stochastic and memory-less search technique; it is based primarily on

randomization. On the other hand, TS is a single-point memory-based search technique which

performs a search in a more deterministic way. The eBPA lay in-between both of these search

techniques in that it performs the search stochastically, yet employs adaptive memory strategies to

influence the direction of the search trajectory. The eBPA thus differs from memory-less search

algorithms which are modelled primarily on randomization, such as SA, and memory-based search

13

algorithms which are modelled primarily on determinism, such as TS. The eBPA thus embeds

characteristics of both stochastic and deterministic search strategies. The solutions determined for the

problems to be investigated will show the abilities of the eBPA in executing an effective, consistent

and robust search when being compared to that of the TS and SA algorithms.

The ACP problem had also previously been introduced in the literature (Chetty and Adewumi, 2013b;

2013c; 2013d; and 2014). The problem seeks to determine optimized resource allocations in crop

planning at irrigation scheme level. The objective is to determine solutions that will maximize the

total gross profits that could be earned from the sale of the harvests in the forthcoming production

year. The intent of the problem is to advise crop planners in making resource allocation decisions at

the land allocation stage of the crop production process. The research presented by Chetty and

Adewumi (2013b; 2013c; 2013d; and 2014) was an attempt to introduce the ACP problem as an

optimization problem in the literature. However, this thesis introduces a new mathematical

formulation for the ACP problem. This ACP problem accommodates for the market economic factors

of the economy of scale, along with demand and supply relations. Introducing these factors provide

for more scalable solutions in advising crop planners regarding resource allocations in crop

production.

1.8 Contributions to Knowledge

In metaheuristic design, the complexity of real-world optimization problems (especially with added

dimensionality) require algorithms that make smarter decisions during the decision making process

in problem solving. The objective is to determine higher quality solutions. However, developing such

algorithms is no easy task as flexibility, simplicity and efficiency need to be balanced in the design.

To achieve these objectives in metaheuristic design, research has strongly leaned towards the

direction of Artificial Intelligence (AI). AI attempts to simulate the intelligent behavior of biological

agents (or occurrences) in nature which behave systematically in achieving an overall objective.

However, although metaheuristic algorithms have been biologically inspired within the AI

framework, not much research has been done by way of human modelling. Yet, significant research

on human modelling has been done within the framework of Computational Intelligence (CI). CI

14

relates to soft computing techniques, and include fields such as fuzzy logic systems, artificial neural

networks, learning theory, evolutionary computing, and probabilistic methods.

Also, an important aspect in real-world mathematical formulation is to model the problem as

realistically as possible. To achieve this, all decision variables must be considered. However, the

more decision variables added to the mathematical model in trying to achieve realism, the more

complexed the mathematical model would appear to be. Reason being, the dimensionality of the

solution space will increase.

Thus, for mathematical models that require a large number of decision variables, the objective would

be to represent the most important elements of the problem in trying to achieve realism, without

making the problem overly complexed to solve. An example of such problems are the decision

problems in crop planning.

The overall contributions to knowledge are summarized as follows:

1. The introduction of a new stochastic metaheuristic named the eBPA. This has been designed

to mimic the planned cognitive decision making abilities of an individual, whom attempts to

achieve the objective of ultimate personal success within the context of a competitive

environment. An example is a soccer coach seeking to put together the best team amidst a

large pool of talented players. The eBPA encapsulates the competitive nature of an individual

through mimicking intelligent ideas of learning and adaption.

2. Furthermore, the proposed eBPA incorporates features that make it problem-independent,

simple, efficient, and have a good explorative and exploitative balance. This makes it a good

candidate for researchers in the field of optimization to apply the algorithm in solving other

optimization problems.

3. The eBPA has been designed based on human modelling. To the best of the knowledge of

the author, no other metaheuristic has been spotted in the literature that encapsulates the

competitive behavior of a human being in the way that the eBPA has, within the AI

framework. The eBPA therefore has the potential to open doors to further research on the

incorporation of human modelling in metaheuristic design, within the AI framework.

4. This work further presents a new model of the ACP real-world problem, with potential

solutions that can have great imparts on decision making for government, farmers and other

15

interested parties. The incorporation of the market economic factors of the economy of scale

and the demand and supply relations make the ACP mathematical model more practical in

the field of crop production. The solution obtained with the proposed metaheuristics are very

promising, and can serve as the underlying algorithms to drive decision support systems in

this area especially for developing countries.

5. Finally, being not too common in literature, the results obtained by the eBPA for the ACP

problem (and those of the other problems considered) will serve as benchmarks for further

study.

1.9 Thesis Overview

Chapter two introduces the eBPA. Theoretical analysis is given on the fundamental principles

underlying the strategic and technical designs of both the eBPA and the BPA. Investigations will be

performed in highlighting the differences between these metaheuristics for a simple discrete

optimization problem.

Chapter three will present the new ACP mathematical formulation. This formulation is based on the

market economic factors of the economy of scale, and the demand and supply relations. To present

the new mathematical formulation, the ACP problem will be explained. The results show the

potentials of the BPA and the eBPA algorithms for a continuous optimization problem.

Chapter four further investigates the potentials of the eBPA in testing its abilities to ten benchmark

test instances of sTSP’s. eBPA’s performances will be compared against that of TS and SA in testing

the sequences of instructions constituting the algorithmic designs of these algorithms.

Chapter five investigates a particular instance of the JIT scheduling problem. Chapter five takes the

opportunity to correct the previous mathematical formulation of this particular problem instance. It

then further investigates the potentials of the eBPA in determining solutions.

Finally, chapter six draws conclusions. It also discusses the possibilities of future research on the

eBPA.

16

Chapter Two

Theoretical Analysis of the enhanced Best Performance

Algorithm

2.1 Introduction

Due to the complexities of optimization problems that exist, developments in computational science

have led to the introduction of many non-standard optimization algorithms. Non-standard algorithms

are more flexible in their designs, and are also applicable to a variety of problem settings, in being

non-problem specific. An additional benefit is that the solutions determined by these algorithms are

guaranteed within polynomial time horizons, for 𝑁𝑃-Hard type optimization problems.

Typically, for these difficult to solve optimization problems, the classical numerical methods would

fail to determine the optimal solution within 𝑃 (Kougias and Theodosiou, 2010). Reason being, the

numerical methods would experience difficulty due to the non-convex nature of the complexed

solution spaces (Aspremont and Boyd, 2003).

The term “non-convex” implies that a solution space is characterized by multiple local optimum

points; amongst these, the global optimum point would exist. The appearance of multiple local

optimum points could be very deceptive in searching for the global optimum point. This deceptivity

could easily cause an algorithm to prematurely converge to a point that is not the global optimum.

Algorithms therefore need to be intelligent enough to be able to escape from local entrapment (Rocha

and Neves, 1999).

There are numerous types of non-convex optimization problems that exist; these include practical

applications in sectors such as Mathematics, Computational Science, Engineering, Economics, and

others. To address the challenges of non-convex type optimization problems, many non-standard

optimization algorithms have been developed. This study provides theoretical insight into one such

non-standard optimization algorithm.

17

Loosely speaking, “meta” in the word “metaheuristic” means a higher level, and “heuristic” means

to discover by trial and error (Yang, 2010). Hence, metaheuristic algorithms are more advanced

heuristic algorithms. These algorithms have commonly been developed using Artificial Intelligence

techniques. Many algorithms have been developed from observing the natural behavior of biological

‘agents’ and/or ‘elements’ in nature (Blum and Merkle, 2008).

Examples of behavioral patterns that have been studied include: flocks of birds, schools of fish,

swarms of wasps, colonies of ants, particles of nature, the atomic composition of objects, and sound

amongst many others. From these, metaheuristic algorithms that have been developed artificially

include the GA, SA, TS, Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995;

Arasomwan and Adewumi, 2013, 2014a, 2014b), the ACO, the FA, the BPA, and more recently the

eBPA (the eBPA and the BPA are the metaheuristic algorithms that will be discussed in this study).

The intelligence that is packaged in metaheuristic algorithms are intended to effectively and robustly

search the complex regions of the solution spaces. However, metaheuristic algorithms do not

guarantee optimal solutions; yet, they do guarantee near-optimal solutions within polynomial time

horizons for exponentially complexed problems. In this context, near-optimal solutions are

considered acceptable in trading accuracy for reductions in computational time complexity.

This study presents theoretical analysis on the fundamental design principles of the eBPA. The eBPA

is an enhancement of its predecessor, the BPA. The eBPA has been developed due to further research

having been undergone in trying to improve upon the efficiency aspects of the BPA. Although the

eBPA is conceptually similar to that of the BPA, the underlying strategies of the eBPA are altogether

different. All-in-all, the eBPA is a new and more intelligently designed metaheuristic.

This chapter formally presents and describes the eBPA. It also highlights the strategic differences in

the designs of both the BPA and the eBPA. To show the effects of these strategic differences, a

comprehensive set of experiments will be performed in investigating the performances of these

algorithms. The intent is also to assist the reader in better understanding the design techniques of the

eBPA, and to highlight the advantages of employing the eBPA to practical applications.

Conceptually, the eBPA is modeled on the competitive nature of professional athletes, in them

desiring to improve upon their best known performances. This analogy is similar to a heuristic

18

algorithm that seeks improved solutions. Competitive athletes desire to improve on their best

performances through learning, strategizing and practice. In comparison, the eBPA seeks higher

quality solutions, from iteration to iteration, in ‘learning’ from previously visited solutions. Learning

is implemented through the concept of memory.

Memory techniques in metaheuristic design provide additional benefits over pure memory-less

techniques (Glover, 1995). The eBPA uses the advantage of implementing memory strategies to direct

the trajectory of the search, and to penetrate complexed regions of the solution spaces which may

confine other methods. The eBPA also draws from the strength of stochasticity.

The rest of this chapter is structured as follows; Section 2.2 presents a brief background into local

search metaheuristic algorithms. Section 2.3 presents the eBPA, and the BPA. It also discusses the

technical and strategic differences between both these algorithms. Section 2.4 presents further

analysis on the design principles of the eBPA. Section 2.5 briefly discusses the investigations to

follow. Section 2.6 presents the results of the experiments performed, which will then be used to

discuss the differences in the designs of both the algorithms. Finally, section 2.7 draws on the

conclusions.

2.2 Local Search Metaheuristic Algorithms

Local Search (LS) metaheuristic algorithms determine solutions to computationally difficult

optimization problems. Basically, they search through a solution space 𝑋, of objective function 𝑓, by

repeatedly making slight adjustments (or local moves) from one solution 𝑥 to another 𝑥′ (𝑥′ will be

chosen from a set of candidate solutions associated with 𝑥); the intent is to direct the search towards

the global optima point. A key element of modern-day metaheuristic algorithms is to accept both

improved and dis-improved solutions. Accepting dis-improved solutions is a strategic way of

escaping local entrapment.

A local move is an adjustment to the design variables of solution vector 𝑥. This could include: the

inversing of binary digits; adding, deleting, or the swapping of elements within the solution vector;

and real number alterations. The set of candidate solutions associated with solution 𝑥 is called the

19

neighborhood of 𝑥. The neighborhood of 𝑥 is denoted as 𝑁(𝑥). It is defined as follows (Blum and

Roli, 2003):

Definition 2.1: Let ℕ: 𝑥 → 2𝑥 be a function that assigns to every feasible solution 𝑥 ∈ 𝑋 a subset of

feasible solutions 𝑗 ∈ ℕ(𝑥) ⊆ 𝑋. ℕ(𝑥) is called the neighborhood of solution 𝑥 if each neighbor 𝑗 ∈

ℕ(𝑥) is in some way close to 𝑥 within the domains of the solution space 𝑋.

The best solution found within the neighborhood structure of 𝑁(𝑥) is called the local optima. Local

optimum are defined as follows (Hancock, 2005):

Definition 2.2: A local optimum point 𝑥∗ ∈ ℝ exists for some error value 𝜀 > 0 such that for a

minimization problem 𝑓(𝑥∗) ≤ 𝑓(𝑥), and for a maximization problem 𝑓(𝑥∗) ≥ 𝑓(𝑥). These are

subjected to |𝑥– 𝑥∗| < 𝜀, ∀ 𝑥 ∈ ℝ. Here, 𝑓 represents the objective function, ℝ represents a solution

space of real numbers, and |𝑥– 𝑥∗| is the absolute value of the difference between 𝑥 and 𝑥∗.

Within solution space 𝑋, several local optimum points may exist. The best local optimum point from

this lot is called the global optimum point. Global optimum points are local optimum points, but not

necessarily vice versa. A global optimum point is defined as follows (Snyman, 2005):

Definition 2.3: A global optimum point 𝑥∗ ∈ ℝ exists for a minimization problem if 𝑓(𝑥∗) ≤ 𝑓(𝑥),

and for a maximization problem if 𝑓(𝑥∗) ≥ 𝑓(𝑥), ∀ 𝑥 ∈ ℝ.

Local and global optimum points are visually seen in Figure 2.1.

LS metaheuristic algorithms search for local optimum points, in trying to determine the global

optimum point. Consequently, LS metaheuristic algorithms are considered as improvement

techniques (Liberti, 2008). An obvious attempt to determine all local optimum points is to perform

an exhaustive search of the solution space. However, for large to complexed solution spaces, this may

be impractical. The reason is due to the computational time taken to examine every possible solution;

ultimately, this may prove to be too expensive. In this scenario, examining subsets of feasible

solutions, within the neighborhood regions of 𝑁(𝑥), is the alternative. This alternative is

computationally more acceptable for exponentially complexed optimization problems. The challenge

20

then is to intelligently examine subsets of the most attractive solutions within these neighborhood

regions, within the bounds of polynomial time complexity.

Figure 2.1: The global optimum point is the extreme local optimum point. A local optimum point is the best point

within a neighborhood region. This image is for a maximization problem.

The techniques employed by metaheuristic algorithms are to strategically refine and explore subsets

𝑆 ∈ 𝑁(𝑥) in ways that are efficient and computationally feasible. Metaheuristic algorithms thus

employ a level of intelligence in searching for the best solution 𝑥∗ ∈ 𝑆 ∈ 𝑁(𝑥). In doing, these

algorithms typically make use of the knowledge acquired from examining other neighboring

solutions, in trying to determine 𝑥∗.

Hence, the goal of metaheuristic algorithms is to narrow the visited regions to subsets of solutions

that are more representative of the local optimum points (Glover, 1993). For this reason, metaheuristic

algorithms are justifiably more advanced than standard heuristic techniques (Yagiura and Ibaraki,

2001).

In addition to effectively and intelligently guiding the search, metaheuristic algorithms also need to

be intelligent enough to escape from premature convergence. Premature convergence is when the

algorithm believes that it has found the global optimum point, when in fact the global optimum point

is not within the vicinity of the local neighborhood region being searched.

To escape from premature convergence, LS metaheuristic algorithms strategically allow for dis-

improved solutions to be accepted. The dis-improved solutions accepted will also be used to traject

through the solution space. Accepting dis-improved solutions mean that solution 𝑥′, which is

determined from solution 𝑥, is accepted, although 𝑓(𝑥′) is worse off than 𝑓(𝑥). This strategy allows

21

for a re-direction of the search path. This re-direction may cause a break out of possible local

entrapment; it could also lead the search towards other neighborhood regions which could potentially

contain higher quality solutions.

However, accepting dis-improved solutions is accompanied with a risk; this risk is an effect called

cycling (Glover, 1990). Cycling occurs when one solution consequently leads to another solution, in

a repeated cycle. Cycling does not necessarily mean a repetition after one move transition, but could

also be as a result of some interval of intermediate steps. Metaheuristic algorithms need to be watchful

for the effect of cycling.

The stopping criterion of metaheuristic algorithms include:

1. Stop when the optimal solution is found.

2. Stop when a solution is found that falls within an acceptable degree of error.

3. Stop when the number of iterations exceed the upper bound.

4. Stop when a count of the iterations exceed a certain value since the best solution was last

updated.

Once the stopping criterion is satisfied, the metaheuristic algorithm will return the final result.

2.3 Proposed Metaheuristic Algorithm

This section formally presents the eBPA. The eBPA has been developed using similar design

principles to that of the BPA; these principles include memory and probability. As mentioned

previously, the BPA had been introduced in the literature by Chetty and Adewumi (2013a). In that

article, a detailed description is given on the BPA.

However, it was realized that the BPA has a weakness to discrete optimization problems. Hence,

further research was conducted to improve on its efficiency. The new metaheuristic developed was

the eBPA. The eBPA is an improvement over the BPA. It is also a new metaheuristic in having a

different design to that of BPA.

22

In the next section, the eBPA will be presented. Thereafter, to highlight the differences, both the

eBPA and the BPA algorithms will be presented side-by-side in Table 2.1. After that, the conceptual

differences in the design techniques of both algorithms will be discussed.

2.3.1 The enhanced Best Performance Algorithm

The eBPA is modeled on the analogy of professional athletes desiring to improve upon their best

registered performances within competitive environments. Numerous sporting disciplines exist,

however the principles are the same in that professional athletes desire to improve upon their skill

levels with the purpose of trying to supersede their previous best known performances. To start off

with, all professional athletes develop an interest in the particular sport; they then realize the potential

to succeed. Thereafter, with constant practice and strategizing, their skill levels increase. This happens

as a result of learning from trial and error. In using trial and error, refined skills are developed by

improving upon their strengths and weaknesses of the sport. The ultimate goal of the athlete is to

develop a level of skill that would result in the athlete giving off a performance that would ultimately

surpass any previous best performance.

Apart from other learning strategies, an effective strategy could be to maintain an archive of a limited

number of the best performances delivered by the athlete; for example, video recordings could be

archived. Video recordings contain the history of the way a previous best performance had been

delivered. This also includes the technique (or techniques) that was employed, and the result

determined. Knowledge of this information could be used to motivate the athlete to deliver higher

quality performances. For example, the information of the worst performance on the list could

motivate the athlete to at least improve upon this benchmark. Hence, if a performance is delivered

which improves upon that of the worst performance already registered on the list, then the list could

be updated by replacing the performance of the worst with that of the improved performance. In this

way, the archive size will be maintained, but it also so happens that the quality of the worst

performance on the list is now of a higher benchmark standard. Since this improved performance is

the latest delivered, the athlete could then continue to work with the technique that was used to deliver

that improved performance in trying to improve upon strengths and weaknesses.

Given the increased benchmark of the worst performance registered in the archive, the athlete is now

presented with the challenge of working harder in order to deliver further improved performances. In

23

maintaining the archive, the athlete may want to be challenged further by decreasing the archive size.

Decreasing the archive size will make it increasingly more difficult for the athlete to register further

improved performances.

“Technique” or “skill” in this context refers to a solution determined by an optimization technique.

Also, the “result” of a performance refers to the quality of a solution in it being used to evaluate the

objective function 𝑓. Therefore, notable similarities can be seen between an athlete delivering

performances and an optimization technique determining solutions. Based on the analogy of

professional athletes desiring to improve upon their best archived performances, the eBPA was

conceptualized. There are six foundational rules governing the design of the eBPA:

1. An athlete maintains an archive of a collection of a limited number of best performances.

2. From this collection, the record of the worst performance is identified. This becomes the

benchmark for the athlete to try and improve upon.

3. If a new performance is delivered which improves upon (or is at least equivalent to) that of

the worst performance, then the archive is updated by replacing the current worst

performance with the new. However, upon performing the update, if it is realized that the

result of the new performance is identical to that of any other performance in the archive, but

different in terms of the technique that had been employed, then the new performance will

replace the one with the identical result.

4. An athlete will endeavor to improve upon the performance that caused the most recent update

of the archive.

5. All performances registered in the archive must be unique in terms of result and technique.

6. The archive size is strategically reduced until only one performance remains.

To artificially simulate this analogy, the eBPA maintains a limited number of the best solutions found

by the algorithm in a list called the Performance List (𝑃𝐿). From all solutions, the design variables

constituting the construction of each solution must be adjacently different; therefore, only unique

solutions are allowed admittance into the 𝑃𝐿. Dis-allowing duplicate solutions will prevent the

algorithm from working with previously visited solutions. Also, the best, the worst and (what would

be called) the working solutions in the 𝑃𝐿 must be indexed. The best and worst solutions are identified

according to their solution qualities. Henceforth, the best, the worst and the working solutions will be

referred to by the variables 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔.

24

To try and improve upon the 𝑤𝑜𝑟𝑠𝑡 solution registered in the 𝑃𝐿, local search moves will be applied

to a copy of the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution; hence, a new solution 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ will be realized. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is

chosen from a subset of candidate solutions within the neighborhood region of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔. If 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′

at least improves upon 𝑤𝑜𝑟𝑠𝑡, or is at least equivalent in solution quality, yet unique in terms of its

design variables, then the 𝑃𝐿 will be updated. If the solution quality of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is different from

all solutions in the 𝑃𝐿, then the 𝑤𝑜𝑟𝑠𝑡 solution will be replaced by 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′. However, if the

solution quality of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is identical to that of another solution in the 𝑃𝐿, then 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ will

replace that particular solution in the 𝑃𝐿; this will ensure that there are no two solutions in the 𝑃𝐿

with the same solution quality.

Being newly inserted into the 𝑃𝐿, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ will then become the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. Also, if

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ has improved upon 𝑏𝑒𝑠𝑡, it will also be indexed as the new 𝑏𝑒𝑠𝑡 solution. Upon this update,

the 𝑤𝑜𝑟𝑠𝑡 solution would then need to be re-determined and re-indexed. The solution quality of the

latest 𝑤𝑜𝑟𝑠𝑡 solution will now become the new benchmark standard to try and improve upon. If an

update of the 𝑃𝐿 has not been made, then local search moves will continue to be applied to the copy

of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔.

However, given a certain probabilistic factor, the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution could also be that of

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ even though an update of the 𝑃𝐿 had not been performed. The probabilistic factor

represents the desire of the athlete to try out a new technique; this will continue indefinitely as

determined by the probabilistic factor.

These strategies represent the eBPA’s ability to accept both improved and dis-improved 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′

solutions. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is considered improved if it at least improves upon 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 in the 𝑃𝐿.

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is considered to be a dis-improved solution in two ways: if 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is accepted into the

𝑃𝐿 yet is not an improvement over 𝑤𝑜𝑟𝑘𝑖𝑛𝑔; if 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is not accepted into the 𝑃𝐿 and the

probabilistic factor has been satisfied (i.e. this is a wayward solution that falls out of the scope of the

solutions registered in the 𝑃𝐿). Accepting dis-improved solutions is the eBPA’s strategy of escaping

premature convergence. Additionally, the admittance criterion shields against cycling.

25

An additional strategy is to dynamically reduce the 𝑃𝐿 size, until a 𝑃𝐿 size of one is achieved.

Strategically decreasing the 𝑃𝐿 size allows for the admittance criterion to constrain further. Further

constraining the 𝑃𝐿 size will intensify the search in sifting out higher quality solutions. This strategy

also eliminates the possibility of cycling for 𝑃𝐿 sizes greater than one.

Also, to strategically try to break out of premature convergence (other than the strategies already

encapsulated within the eBPA), an option exists to temporarily increase the size of the 𝑃𝐿. However,

temporarily increasing the 𝑃𝐿 size could open up the possibility of cycling in redirecting the search

trajectory. The option of temporarily increasing the size of the 𝑃𝐿 is out of the scope of this initial

research.

After the termination criterion is satisfied, the 𝑏𝑒𝑠𝑡 solution will be returned. This solution is

representative of the best performance delivered by the athlete. The eBPA is presented in Table 2.1,

as Algorithm 2.1. In Algorithm 2.1: resize() checks to strategically resize the 𝑃𝐿; is_PL_Populated()

checks to see if the memory structure has been fully populated, and if not then it will populate it with

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ by calling method populate(…); perform_Update(…) inserts 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ into the memory

structure and re-indexes the 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions where applicable.

The flowchart diagram of the eBPA is seen in Figure 2.2. Also, Appendix A presents a hypothetical

illustration of how the eBPA would typically traject through a solution space. The BPA is also

presented in Table 2.1, as Algorithm 2.2.

26

Table 2.1: The eBPA is presented as Algorithm 2.1, and the BPA is presented as Algorithm 2.2

Algorithm 2.1: enhanced Best Performance Algorithm Algorithm 2.2: Best Performance Algorithm

1. Initialize variables:

 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 = 0, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 = 0, 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 = 0

2. Set the size of the Performance List, i.e. 𝑃𝐿_𝑠𝑖𝑧𝑒

3. Set probability 𝑝𝑎

4. Set the first solution in the Performance List,

 i.e. 𝑃𝐿𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥

5. Calculate the fitness value of 𝑃𝐿𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥,

 i.e. 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥

6. Set Boolean variable 𝑡𝑜𝑔𝑔𝑙𝑒 = 𝑡𝑟𝑢𝑒

7. while not Stopping_Criterion_Met() do

 7.1. if resize() then

 7.1.1. resize_PL()

 7.2. end if

 7.3. if 𝑡𝑜𝑔𝑔𝑙𝑒 then

 7.3.1. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Solution(𝑃𝐿𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥)

 7.4. else

 7.4.1. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Solution(𝑤𝑜𝑟𝑘𝑖𝑛𝑔)

 7.4.2. 𝑡𝑜𝑔𝑔𝑙𝑒 = true

 7.5. end if

 7.6. 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Fitness (𝑤𝑜𝑟𝑘𝑖𝑛𝑔)

 7.7. if (𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better than or equal to

 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥) and is_PL_Populated() then

 7.7.1. perform_Update(𝑤𝑜𝑟𝑘𝑖𝑛𝑔, 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔)

 7.8. else

 7.8.1. if not is_PL_Populated() then

 7.8.1.1. populate(𝑤𝑜𝑟𝑘𝑖𝑛𝑔, 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔)

 7.8.1. end if

 7.9. end if

 7.9. if random[0,1] ≤ 𝑝𝑎 then

 7.9.1. 𝑡𝑜𝑔𝑔𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒

 7.10. end if

8. end while

9. return 𝑃𝐿𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥

1. Set the index variable, 𝑖𝑛𝑑𝑒𝑥 = 0

2. Set the size of the Performance List , 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒

3. Initialize probability, 𝑝𝑎

4. Populate the Performance List (𝑃𝐿) with random solutions

5. Calculate the fitness values of the solutions in 𝑃𝐿, i.e.

 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠

6. Sort 𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 according to 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠

7. Initialize 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 to 𝑃𝐿𝑖𝑛𝑑𝑒𝑥

8. while not Stopping_Criterion_Met() do

 8.1. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Perform_Local_Search(𝑤𝑜𝑟𝑘𝑖𝑛𝑔)

 8.2. 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Evaluate (𝑤𝑜𝑟𝑘𝑖𝑛𝑔)

 8.3. if 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better then 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒−1 then

 8.3.1. Update 𝑃𝐿 with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

 8.3.2. Update 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 with 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔

 8.4. end if

 8.5. if random[0,1] > 𝑝𝑎then

 8.4.1. 𝑖𝑛𝑑𝑒𝑥 = Select index, e.g. Random[0,𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒]

 8.4.2. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = 𝑃𝐿𝑖𝑛𝑑𝑒𝑥

 8.6. end if

9. end while

10. return 𝑃𝐿0

27

Figure 2.2: Flowchart diagram of the eBPA

False

True

True

False

True

False

True

𝑡𝑜𝑔𝑔𝑙𝑒
𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Solution(𝑤𝑜𝑟𝑘𝑖𝑛𝑔)

Set 𝑡𝑜𝑔𝑔𝑙𝑒 back to true

True

False

False

False

True

Set 𝑡𝑜𝑔𝑔𝑙𝑒 to false

START

Set:

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 = 0,

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 = 0,
𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 = 0,

𝑝𝑎 (e.g. 𝑝𝑎 = 0.05),

𝑃𝐿_𝑠𝑖𝑧𝑒 (e.g. = 50),

𝑡𝑜𝑔𝑔𝑙𝑒 = true

Initialize 𝑃𝐿 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 and calculate its fitness 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥

Stopping criterion met?

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Determine_Solution(𝑃𝐿𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥)

Calculate the fitness value of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔, i.e. 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔

Update 𝑃𝐿𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

Update 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥with 𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔

Reset 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and when appropriate 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥

𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better than or equal to
𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and is_PL_Populated?

Random[0,1] ≤ 𝑝𝑎?

Return 𝑃𝐿𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥

Resize 𝑃𝐿 Size?

Strategically resize the 𝑃𝐿 size

Populate 𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠

with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 and

𝑓_𝑤𝑜𝑟𝑘𝑖𝑛𝑔 respectively

 is_PL_Populated?

28

2.3.2 Enhancement over the BPA

This section analyses the conceptual differences in the design techniques of both the BPA and the

eBPA. The primary differences include the following:

 Maintenance of the memory structure.

 Admittance criterion.

 Search strategy.

 Size of the memory structure.

2.3.2.1 Maintenance of the Memory Structure

BPA – The BPA starts off with having the memory structure pre-populated with random solutions.

These solutions are then arranged in a sorted order according to their fitness values; a fitness value

refers to the quality of a solution. The sorted order is always maintained such that the best solution is

positioned at the first index in the memory structure, and the worst solution is positioned at the last

index in the memory structure. Therefore, in executing the algorithm, only one index is required to

be maintained; this is the index which references the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. Given a certain probability,

the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution will be randomly selected from the memory structure. Upon the

termination criterion being satisfied, the solution residing at the first position in the memory structure

will be returned as the best solution found by the algorithm.

eBPA – The eBPA starts off with a single solution in the memory structure. It then populates the

memory structure until it becomes fully populated. Throughout the process of getting populated, and

beyond the point of being fully populated, the 𝑏𝑒𝑠𝑡 and 𝑤𝑜𝑟𝑠𝑡 solutions will be appropriately

indexed. All newly inserted solutions will always be referenced as the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. Up

until the point of the memory structure being fully populated, solutions get inserted irrespective of

their fitness value. However, the aggressive condition of enforcing uniqueness still applies as all

solutions must differ in fitness and in design variables. If a solution is found to have an identical

fitness value to that of a solution already registered in the 𝑃𝐿, yet differs in terms of its design

variables, then the new solution replaces that of the old. This strategy ensures that only unique

solutions are registered in the 𝑃𝐿. The eBPA does not maintain a sorted order of the memory structure.

In contrast, it employs indices which references 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 in the list. Once the

29

memory structure is fully populated, the admittance criterion of meeting the minimum benchmark

requirements will apply. The process of maintaining the memory structure continues until the

stopping criterion is satisfied. At this point, the 𝑏𝑒𝑠𝑡 solution will be returned.

Maintaining the sorted order and in randomly reselecting the working solution, given a certain

probability, results in additional computational expense experienced by the BPA. In comparison, the

eBPA does not maintain a sorted order of the memory structure. Rather, it maintains indices which

reference the 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions. This strategy is computationally more efficient.

With each update of the memory structure, the BPA replaces the 𝑤𝑜𝑟𝑠𝑡 solution (which is located at

the last position in the memory structure) with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′. Thereafter, the 𝑃𝐿 needs to be reordered

in moving 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ to its correct location; this maintains the sorted order of the 𝑃𝐿. With the eBPA,

the 𝑤𝑜𝑟𝑠𝑡 solution is replaced with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ at the location referenced by the 𝑤𝑜𝑟𝑠𝑡 index. The

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 index is then re-assigned to this location, as 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ will be used as the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

solution. At this point, a simple check is performed to see if the newly inserted solution is the 𝑏𝑒𝑠𝑡

solution found. If it is, then this location will be referenced by the 𝑏𝑒𝑠𝑡 index. Thereafter, the location

of the 𝑤𝑜𝑟𝑠𝑡 solution will be re-determined and also indexed by the 𝑤𝑜𝑟𝑠𝑡 index.

In the cases of both the BPA and the eBPA, the admittance criterion is the screen for admissibility.

Also, the prevention of duplicate solutions into the memory structures is a level of precaution against

cycling.

2.3.2.2 Admittance Criterion

BPA – The BPA admittance criterion is that the 𝑤𝑜𝑟𝑠𝑡 solution must be improved upon. Thereafter,

the BPA enforces uniqueness in ensuring that every solution in the 𝑃𝐿 differs in terms of their fitness

value and design variables. The advantage of this approach, compared to that of the eBPA, is that this

restrictiveness requires less processing effort. The disadvantage, however, is that solutions with

identical fitness values, yet being unique in terms of their design variables, could have led to higher

quality solutions.

eBPA – The eBPA enforces uniqueness in terms of fitness value and design variables of every

solution registered in the 𝑃𝐿. However, it differs from the BPA in that it allows for new solutions

30

with identical fitness values to replace those solutions in the memory structure which have the

identical fitness values. Hence, the minimum criterion for admittance is that the fitness value of

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ must be at least equivalent to that of the 𝑤𝑜𝑟𝑠𝑡. The disadvantage of accepting solutions

with identical fitness values is that it requires extra processing effort in ensuring uniqueness.

However, the advantage of this strategy is that it could possibility redirect the search in finding higher

quality solutions.

2.3.2.3 Search Strategy

BPA – The intent of the BPA, in maintaining a population of solutions, is to try not to lose good

solutions found along the way; the belief is that one solution from the memory structure will at least

lead to the global optimum point. The direction of the population itself is controlled by the admittance

criterion. The admittance criterion only allows solutions that improve upon the 𝑤𝑜𝑟𝑠𝑡 solution to be

allowed admittance into the memory structure. This will influence the direction of the population.

The reason why only unique solutions are allowed admittance into the memory structure, with the

BPA being so restrictive, is that each solution identifies a different area within the searched region.

In employing a population to perform the search, the BPA is thus stronger in its explorative ability.

However, it lacks in exploitation as the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution will be randomly selected from the

𝑃𝐿 given a certain probability.

eBPA – The eBPA search strategy contrasts with the BPA in that a single solution is directed in

searching for the global optimum point. The direction of the search is primarily controlled by the

admittance criterion. However, given a certain probability, the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution could be that

of a dis-improved solution which had not been admitted into the memory structure. The admittance

criterion plays a critical role in balancing the rate of transition from exploration and exploitation. The

less restrictive the admittance criterion, the greater the level of exploration would be. Likewise, the

more restrictive the admittance criterion, the greater the level of exploitation would be.

2.3.2.4 Size of the Memory Structure

The BPA uses a static memory size, as a population of solutions are used to search for the global

optimum point. In contrast, the eBPA employs dynamic reduction of the memory structure. This

31

strategy is additionally used to tweak the rate of exploitation, and eliminates the possibilities of

cycling for 𝑃𝐿 sizes greater than one.

2.4 The Strategic Design of the eBPA

The eBPA is designed to use intelligence to seek out solutions effectively and economically. Its core

design is structured around adaptive memory in maintaining a list of elite solutions.

The memory structure is governed by a set of underlying principles: the dynamic resizing of the

memory structure; the admittance criterion; and the maintenance of the indices which reference the

𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions. Another governing principal is the probability factor. The

probability factor strategically allows dis-improved solutions to redirect the search beyond the point

of the 𝑤𝑜𝑟𝑠𝑡 solution.

Memory is primarily used as the mechanism to direct the trajectory of a single 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution

through the solution space. The technique of random search, coupled with adaptive memory, embeds

a blend of stochastic and deterministic search strategies. The eBPA technique is similar to a memory-

less search technique, such as SA, in that a single solution is used to stochastically drive the search.

However, the eBPA uses determinism, similar to that of the TS, in that memory is used to decide on

the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ solution to be used to advance the search. Hence, the eBPA search techniques

differs from memory-less techniques which are modeled primarily on randomization, and memory-

based techniques which are modeled primarily on being deterministic. Therefore, the eBPA takes

advantage of both stochastic and deterministic search strategies in balancing the computational time

spent in locating promising neighborhood regions via exploration, and the time spent identifying the

most attractive solutions contained within a local neighborhood region via exploitation.

To expound further, more clarity is given on the eBPA memory technique, its search strategies, its

explorative and exploitative balance, and the strategic resizing of its memory structure.

32

2.4.1 Memory Technique of the eBPA

The fitness value of a solution registered in the memory structure refers to its strength upon having

been evaluated by objective function 𝑓. Solutions with better fitness values exist closer to the global

optimum point. The qualities of the fitness values are important in differentiating one solution from

the next. Importantly, in using the fitness values, the 𝑏𝑒𝑠𝑡 and 𝑤𝑜𝑟𝑠𝑡 solutions can be identified and

indexed. The index of the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution will always be that of the most recent solution inserted

into the memory structure. The maintenance of these indices are critical in implementing the search

strategies of the eBPA. These indices relate to the way the memory structure will adapt as the search

progresses. The enforced restrictions of the admittance criterion, coupled with the maintenance of

these indices, is core to the design of the eBPA.

The admittance criterion directly influences the trajectory path of the search, as this feature controls

the quality of the solutions registered in the memory structure. If 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is allowed admittance,

and has a higher fitness value compared to that of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔, then a more attractive position within

the solution space has been identified; this implicitly could also refer to the best solution found. If

𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ has a lower fitness value (i.e. a dis-improved solution) compared to that of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔, and

has been allowed admittance, then a less attractive but acceptable position has been identified in the

trajectory of the search. This strategy could possibly lead to an alternative route in locating the local

optimum point; it could also cause a redirection to other neighboring regions in escaping from

premature convergence.

As the search matures, the quality of the solutions in the memory structure are increasingly refined

as higher quality solutions get accepted. With improved solutions, the admittance criterion would

become increasingly restrictive. The increase in the restrictiveness of the admittance criterion controls

the trading-off between exploration and exploitation.

2.4.2 Search Strategy of the eBPA

The search techniques employed by the eBPA causes a loosely knitted relationship between the

neighborhood region being searched (i.e. the neighborhood region of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔) and that of the other

solutions registered in the memory structure. The neighborhood region gets redefined upon 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′

being accepted, as this will become the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution.

33

However, concerning the trajectory of the search, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ solutions get accepted in two ways: if it

meets the minimum admittance criterion in being accepted into the memory structure; or, in having

been chosen given a certain probabilistic factor. If 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ is admitted into the memory structure,

and has a fitness value that is better than that of the 𝑤𝑜𝑟𝑠𝑡 solution, then the next 𝑤𝑜𝑟𝑠𝑡 solution will

be of an improved quality. If this occurs, the admittance criterion will become more restrictive as the

minimum criterion of admittance would increase.

Resultantly, this will also cause the local optimum points to become more clearly defined (see

Appendix A for a clearer explanation). With the admittance criterion becoming increasingly

restrictive, greater levels of number-crunching would be required to determine further improved

solutions. Hence, the decisions made by the admittance criterion is strategically used to influence the

behavior of the search.

Within a neighborhood region itself, the ultimate objective is to locate the local optimum point.

However, the eBPA uses intelligence in open-mindedly accepting dis-improved solutions; accepting

dis-improved solutions attempts to redirect the search path. This strategy protects against premature

convergence in directly attempting to lead away to other neighboring regions. The intent of accepting

dis-improved solutions is to balance the effort invested in sifting out the local optimum point from

within a local neighborhood region, and in searching for other promising neighborhood regions via

exploration. With the neighborhood regions being restructured dynamically, upon updates of the

memory structure, the possibility of revisiting previously found solutions remains unlikely.

2.4.3 Exploration and Exploitation of the eBPA

Metaheuristic algorithms are characterized by two important yet contrasting search strategies−

exploration and exploitation (Syam and Al-Harkan, 2010).

Exploration is a global search technique. Its intent is to visit as many neighborhood regions as possible

within the confines of the solution space. Ideally, exploration needs to be more influential during the

initial phases of the search.

34

On the other hand, exploitation is a local search technique. Its intent is to search within a local

neighborhood region in trying to locate the local optimum point. Exploitation needs to be more

influential during the latter stages of the search, as it aggressively sifts out higher quality solutions.

Striking a balance between exploration and exploitation, throughout the different phases of a search,

is critical to the success of any metaheuristic algorithm. Also, this balance is of paramount importance

in implementing effective and economical search. Reason being, there is a fine balance between the

computational time spent in exploring for the most attractive neighborhood regions, and the

computational time spent in exploiting within a local neighborhood region for the optimum point.

The eBPA uses adaptive memory to intelligently control the rate of the transition from exploration to

exploitation. During the initial phases of the search, the admittance criterion is less restrictive as the

memory structure consists of lower quality solutions; hence, greater levels of exploration is

experienced. With the fitness of the solutions in the memory structure being improved upon, with

matured search, the admittance criterion becomes increasing restrictive. This allows for greater levels

of exploitation to be experienced. Exploitation attempts to incorporate the stronger elements of the

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions into new 𝑤𝑜𝑟𝑘𝑖𝑛𝑔′ solutions, while discouraging the weaker elements. In

performing exploration, the eBPA supposes that strategically accepting dis-improved solutions is

more beneficial than a good random solution in influencing the trajectory of the search.

2.4.4 Strategic Reduction of the eBPA Memory Structure

The strategic reduction of the eBPA memory structure is critical to its success. It is also considered

strategically more beneficial than maintaining a static memory structure size. The intelligence of

strategically reducing the memory structure size will influence greater levels of exploitation as the

admittance criterion would constrain further. The advantage of further intensifying exploitation is to

place additional pressure in attempting to identify higher quality solutions.

A recommended strategy is to strategically reduce the memory structure size by one, until a memory

size of one is reached. Using this technique, every solution admitted into the memory structure will

be given a chance to act as the 𝑤𝑜𝑟𝑠𝑡 solution. Therefore, every solution will be given a chance to

influence the trajectory of the search.

35

The initial size of the memory structure is problem-specific. The results section (i.e. section 2.6)

below gives an idea of how to set the memory structure size appropriately.

2.5 Experimental Setup

The results section (i.e. section 2.6) essentially investigates the sequences of instructions constituting

the algorithmic designs of both the BPA and the eBPA. Although the BPA and the eBPA have

conceptually similar designs, the fundamental differences in their designs cause each algorithm to

behave and execute differently. To discuss the effects of these differences, we present a

comprehensive investigation by performing a series of experiments to highlight the differences.

Regarding the eBPA, further experiments will be performed in examining how differences in its

parameter settings will affect its performance.

For the experiments, the eil101 symmetric Travelling Salesman problem (sTSP) will be investigated.

Reason being, this is a discrete optimization problem and will prove the weakness of the BPA. This

problem, together with a host of others, can be found in the TSPLIB collection made available by

Gerhard Reinelt online. The TSP problem is a well-studied discrete optimization problem. It is the

problem of determining the minimal tour which traverses a list of 𝑛 cities in a way in which every

city is visited exactly once, except for the original city of departure which is the starting and finishing

point of the salesman (Lin, 1965). The complexity of the TSP is 𝑁𝑃-Hard.

The move mechanism employed, in implementing the eil101 problem, is to swap two randomly

selected vertices in generating a new tour. This simple move mechanism is sufficient for the purpose

of this investigation. The purpose is to fairly compare the performances of both algorithms, and to

discuss their differences. Overall, the performances of both algorithms will indicate the effectiveness

of the core sequences of instructions constituting their algorithmic designs; this is the purpose of the

investigation. Their performances will also indicate their abilities to accurately, consistently and

robustly determine solutions for discrete optimization problems.

In performing the comparison tests, the parameter settings, and the number of runs per experiment,

for both the eBPA and the BPA, will be identical. This is to ensure fairness for comparative purposes.

For the comparison investigation on convergence, the eBPA will also be compared against the TS

36

metaheuristic. Here, TS will represent a typical single-point metaheuristic in comparing differences

with that of the eBPA. Thereafter, two experiments will be performed in investigating the correlation

between the eBPA parameter values and its performance.

2.6 Results and Discussion

All runs will be performed within a window frame of a limited number of iterations; each run will

execute for 106 objective function evaluations. Although this particular benchmark problem is

investigated in this study, it is expected that the algorithms will perform similarly for other types of

discrete optimization problems. Also, it should be noted that the BPA and the eBPA are general

purpose metaheuristic algorithms; they are expected to be applied to other types of optimization

problems of which other metaheuristic algorithms are applicable.

2.6.1 Simulation Experiments

The first fundamental difference is that the BPA uses a population of solutions to collectively move

towards the global optimum point, whereas the eBPA uses a single 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution for the same

purpose. The underlying rules governing the designs of both algorithms facilitate these search

strategies. Amongst these are the rules related to the admittance criterion, and the rules for

maintaining the memory structures. The execution time used to determine admissibility, and the time

taken to maintain the memory structures weigh heavily on the overall execution times of the

algorithms.

2.6.1.1 Experiment 1

Therefore, we start off the first experiment from this perspective: monitor the average execution time

consumed by each algorithm in performing a single update of its memory structure. To perform this

experiment, various 𝑃𝐿 sizes will be investigated: 1, 10, 25, 50, 75 and 100. In using different 𝑃𝐿

sizes, the effects on the average execution times per 𝑃𝐿 update will be monitored.

For each 𝑃𝐿 size, each algorithm was executed 100 times. The probability factor (𝑝𝑎) remained

constant at 0.2 per algorithm for the duration of this experiment. For the sake of comparability, the

𝑃𝐿 size for the eBPA remained constant; however, it is expected that with strategic reduction of the

37

𝑃𝐿 size, the execution time of the eBPA would have decreased due to the maintenance of a smaller

memory structure. The results of the experiment are given in Table 2.2.

Table 2.2: Average execution time, in milliseconds, to perform a single update of the PL memory structure

𝑃𝐿 Size eBPA BPA

1 9.55E-09 1.60E-05

10 6.88E-08 3.95E-05

25 2.37E-05 6.17E-05

50 5.98E-06 1.14E-04

75 4.03E-06 1.72E-04

100 3.34E-06 1.72E-04

Figure 2.3 displays graphical representations of the statistics given in Table 2.2. Figure 2.3 shows

that for each 𝑃𝐿 size, the eBPA shows significant gains in average execution time performances, per

𝑃𝐿 update. Clearly, maintaining the indices which reference the 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solutions

show to be significantly more efficient than maintaining the sorted order of the BPA memory

structure. The eBPA also allows for solutions with duplicate fitness values to be allowed admittance

into the memory structure; this feature demands additional processing effort in ensuring uniqueness.

However, despite this additional processing effort, the eBPA still shows to be computationally more

efficient. In contrast, the BPA gains in execution time by simply rejecting solutions which do not

have unique fitness values.

Figure 2.3: Comparison of average execution times, in milliseconds, to perform a single update of the 𝑃𝐿’s of the

eBPA and the BPA, for different 𝑃𝐿 sizes

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

1 10 25 50 75 100A
vg

 E
xe

cu
ti

o
n

 T
im

e
to

 P
e

rf
o

rm
 a

n
 U

p
d

at
e

o
f

th
e

P
L

(m
s)

Performance List Size

Avg Execution Time to Perform an Update of the PL, for
Different PL Sizes eBPA BPA

38

2.6.1.2 Experiment 2

For the second experiment, we investigate the number of times each 𝑃𝐿 got updated, within the

interval of iterations taken to reduce the 𝑃𝐿 size of the eBPA by 1. The reduction strategy employed

by the eBPA was: reduce the 𝑃𝐿 size by 1 until a 𝑃𝐿 size of 1 is reached, after every 106/𝑃𝐿_𝑠𝑖𝑧𝑒

number of iterations. For this experiment, a 𝑃𝐿 size of 50 was used; therefore, the reduction was done

after every 2,000 iterations. To make the comparison with the BPA, the number of times the BPA

memory structure got updated was also recorded after every segment of 2,000 iterations. For this

experiment, the probability of 𝑝𝑎 = 0.2 was used per algorithm. Each algorithm had been executed

once. The comparison of the algorithmic performances are seen graphically in Figure 2.4.

Figure 2.4: The number of times each PL had been updated, per segment of 2,000 iterations

From Figure 2.4, it is clearly seen that the eBPA determined a significantly larger number of 𝑃𝐿

updates, per segment of 2,000 iterations, compared to that of the BPA. The eBPA depicted plot shows

evidence of its ability to balance exploration and exploitation. The pattern of the plotted slope is seen

to have a somewhat concaved shape; the slope itself shows the drop in the number of 𝑃𝐿 updates

throughout the lifespan of the execution. The figure shows that the level of exploration was highest

during the initial phase of the search, and thereafter reduced as the admittance criterion became more

difficult to satisfy. The admittance criterion would have become more restrictive with improved

solutions, and in the strategic reduction of the 𝑃𝐿 size. The increase in the admittance criterion would

have been accompanied by greater levels of exploitation. Greater levels of exploitation would have

caused the eBPA to fight harder in determining further improved solutions. The slope illustrates how

the eBPA balanced its transition from exploration to exploitation. In comparison, the weaknesses of

0

500

1000

1500

2000

2500

3000

3500

1 6 11 16 21 26 31 36 41 46

N
o

. o
f

P
L

U
p

d
at

es

Iterations (Scaled 1: 2,000)

No. of Times each PL had been Updated per 2,000
Iterations

BPA
eBPA

39

the BPA in its explorative and exploitative abilities have been exposed in observing its inability to

have determined larger numbers of 𝑃𝐿 updates per segment.

2.6.1.3 Experiment 3

For the third experiment, a head-to-head performance comparison test was investigated. For this

experiment, the best and average fitness value solutions (i.e. BFV and AFV respectively), as well as

the average execution time performances have been documented. Tests were performed in using the

𝑃𝐿 sizes of 1, 10, 25, 50, 75 and 100. For each 𝑃𝐿 size, each algorithm was executed 100 times.

Again, the 𝑝𝑎 value of 0.2 was used per algorithm for all simulations. The strategic reduction of the

eBPA 𝑃𝐿 size was the same as was implemented in experiment two above: reduce the 𝑃𝐿 size by 1

after every 106/𝑃𝐿_𝑠𝑖𝑧𝑒 number of iterations. The statistics of the results are given in Table 2.3.

Table 2.3: The best (BFV) and average (AFV) fitness value solutions, together with the average execution time

performances (AVG) in milliseconds (ms), per 𝑃𝐿 size

𝑷𝑳 Size
 eBPA BPA

BFV AFV AVG BFV AFV AVG

1 837 947 7,149 863 982 8,432

10 695 726 7,155 876 955 8,227

25 674 695 8,119 869 953 8,910

50 686 710 7,841 856 969 8,591

75 683 720 7,508 865 973 7,836

100 695 746 7,224 904 975 8,575

From Table 2.3, it is seen that the eBPA delivered superior performances for the fitness value

solutions (at best and on average), and for the average execution time performances across all 𝑃𝐿

sizes. Graphical comparisons of the best and average fitness value solutions from Table 2.3, per 𝑃𝐿

size, are seen in Figures 2.5 till 2.10.

40

Figure 2.5: Best and average fitness values, per 𝑃𝐿 size of 1

Figure 2.6: Best and average fitness values, per 𝑃𝐿 size of 10

Figure 2.7: Best and average fitness values, per 𝑃𝐿 size of 25

Figure 2.8: Best and average fitness values, per 𝑃𝐿 size of 50

Figure 2.9: Best and average fitness values, per 𝑃𝐿 size of 75

Figure 2.10: Best and average fitness values, per 𝑃𝐿 size of

100

The graphical comparison of the average execution time performances from Table 2.3 is seen in

Figure 2.11.

800

850

900

950

1000

eBPA BPA

Fi
tn

es
s

V
al

u
e

PL Size = 1: Best and Average Fitness Values

BFV AFV

600

650

700

750

800

850

900

950

1000

eBPA BPA

Fi
tn

es
s

V
al

u
e

PL Size = 10: Best and Average Fitness Values

BFV AFV

600

650

700

750

800

850

900

950

1000

eBPA BPA

Fi
tn

es
s

V
al

u
e

PL Size = 25: Best and Average Fitness Values

BFV AFV

600

650

700

750

800

850

900

950

1000

eBPA BPA

Fi
tn

es
s

V
al

u
e

PL Size = 50: Best and Average Fitness Values

BFV AFV

600

650

700

750

800

850

900

950

1000

eBPA BPA

Fi
tn

es
s

V
al

u
e

PL Size = 75: Best and Average Fitness Values

BFV AFV

600

650

700

750

800

850

900

950

1000

eBPA BPA

Fi
tn

es
s

V
al

u
e

PL Size = 100: Best and Average Fitness Values
BFV AFV

41

Figure 2.11: Average execution time performances, for each 𝑃𝐿 size

For each of the BFV solutions, as documented in Table 2.3 for the different 𝑃𝐿 sizes, Figures 2.12

and 2.13 depict the behavior of each algorithm in converging to their best solutions. Each slope

represents the fitness drop over the number of iterations executed. Each figure shows the basic

behavior of the algorithms for the different 𝑃𝐿 sizes. The fitness values were recorded every 2,000

iterations. The plotted slopes in Figure 2.12 relate to the performances delivered by the eBPA. The

plotted slopes in Figure 2.13 relate to the performances delivered by the BPA.

Figure 2.12: Convergence of eBPA in having determined its

best solutions, per PL size

Figure 2.13: Convergence of BPA in having determined its

best solutions, per PL size

From Figure 2.12, it is seen that all plots started off with the same initial solution. The slope with the

𝑃𝐿 size of 1 shows an immediate fitness drop, yet it converged quickly beyond the fitness value of

1,000; it ultimately determined a relatively poor solution. The slope with the 𝑃𝐿 size of 10 also shows

an immediate fitness drop, yet converged at a slower rate; it determined a much improved solution

compared to that with the 𝑃𝐿 size of 1. The slope with the 𝑃𝐿 size of 25 shows an even slower fitness

drop. The slope with the 𝑃𝐿 size of 50 shows an even slower fitness drop, in being compared to that

7000

7500

8000

8500

9000

1 10 25 50 75 100

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Avg. Execution Time Performances for the Different PL
Sizes eBPA BPA

600

800

1000

1200

1400

1600

1800

2000

1 51 101 151 201 251 301 351 401 451

Fi
tn

es
s

V
al

u
e

Iterations (Scaled 1: 2,000)

eBPA: Fitness Values VS Iterations for eil101

PL_size = 1
PL_size = 10
PL_size = 25
PL_size = 50
PL_size = 75
PL_size = 100

800

900

1000

1100

1200

1300

1400

1500

1600

1 51 101 151 201 251 301 351 401 451

Fi
tn

es
s

V
al

u
e

Iterations (Scaled 1: 2,000)

BPA: Fitness Values VS Iterations for eil101

PL_size = 1

PL_size = 10

PL_size = 25

PL_size = 50

PL_size = 75

PL_size = 100

42

with the 𝑃𝐿 size of 25. Interestingly, as the 𝑃𝐿 sizes increase, the slopes clearly seem to be moving

away from having a concaved shape towards being linear. The slope with the 𝑃𝐿 size of 75 shows a

slope which is somewhat linear. The slope with the 𝑃𝐿 size of 100 shows the slowest rate of

convergence; its slope is clearly convexed.

In observing the slopes for the different 𝑃𝐿 sizes, it is distinctly realized that in order to alter the rate

of convergence, one would simply need to adjust the 𝑃𝐿 size appropriately. This experiment also

demonstrates that the setting of the 𝑃𝐿 size for the eBPA is relatively simple. Yet, it is also observed

that reducing the convergence rate would not necessarily yield better results. However, in observing

the performances of the 𝑃𝐿 sizes between the ranges of 10 to 100, it is realized that amending the 𝑃𝐿

sizes within this range does not significantly hinder the overall performance of the eBPA.

From Figure 2.13, it is seen that the BPA slopes show a similar trend in convergences, yet at much

faster rates. Also, the convergences of the BPA slopes are not as predictable, or balanced, as that of

the slopes of the eBPA. For example, the slope with the 𝑃𝐿 size of 50 initially weaves with the slope

having the 𝑃𝐿 size of 25. Thereafter, it converged at a faster rate compared to the slope having the

𝑃𝐿 size of 25. A similar scenario is seen with the slopes with the 𝑃𝐿 sizes of 100 and 75. Hence, in

making a comparison to Figure 2.12, the setting of the BPA memory structure size is not as simple

as that of the eBPA. For the BPA, there is the element of added uncertainty in setting different 𝑃𝐿

sizes, as it is not completely obvious how the convergence will progress.

To further investigate, we compare the similarities of the convergences with a typical single-point

metaheuristic algorithm. The algorithm investigated is the TS. TS also implements the benefits of

memory.

For TS, the Tabu List size of 7 remained constant (Glover, 1986), while tests were performed in using

the Candidate list sizes of 50, 100, 250, 500, 750 and 1,000. For each 𝐶𝐿 size investigated, 100 runs

were performed. From the 100 runs, per 𝐶𝐿 size, the convergence of the best solution had been

recorded, and is graphically depicted in Figure 2.14. Similar to Figures 2.12 and 2.13, Figure 2.14

likewise represents the fitness drop over the number of iterations executed. As can be seen, TS

comparatively shows similar behavioral traits to that of the BPA, but not as comparable to that of the

43

eBPA. Its slopes show fast convergences for the different 𝐶𝐿 sizes investigated. They also interweave

each other in progressing towards their best solutions.

Figure 2.14: Convergence of TS in having determined its best solutions, per 𝐶𝐿 size

In comparing the eBPA convergences to that of the BPA and the TS, it is observed that the eBPA has

performed somewhat similarly to that of the BPA, yet not nearly as comparable to that of TS. Similar

to TS, for this problem instance, the typical metaheuristic algorithm would likely show the behavioral

pattern of a quick drop in fitness, and then would dramatically slow down beyond a certain fitness

point until the slope vertically flattens out. However, it is noted that the rate of convergence would

also be controlled by the parameter settings of the algorithm. Yet, the behavior of the rate of

convergence is unlikely to be as obvious as that experienced by the eBPA. This feature distinguishes

the eBPA from the typical metaheuristic algorithm, and will be very beneficial in its implementation

to practical applications.

2.6.2 eBPA Parameter Experiments

The next two sets of experiments specifically investigate the correlation between the settings of the

eBPA parameter values and its performances. Fortunately, the eBPA has only two parameter values:

the probability factor (𝑝𝑎) and the size of the 𝑃𝐿 (𝑃𝐿_𝑠𝑖𝑧𝑒).

2.6.2.1 Experiment 4

This experiment investigates the relationship between different probability values and fitness. For

this experiment, 500 runs were executed in randomly selecting probability values from within the

700

800

900

1000

1100

1200

1300

1400

1500

1 51 101 151 201 251 301 351 401 451

Fi
tn

es
s

V
al

u
e

Iterations (Scaled 1: 2,000)

TS: Fitness Values VS Iterations for eil101

CL_size = 50

CL_size = 100

CL_size = 250

CL_size = 500

CL_size = 750

CL_size = 1,000

44

range of 0 ≤ 𝑝𝑎 < 1. For all simulations, the 𝑃𝐿_𝑠𝑖𝑧𝑒 of 100 remained constant. The results

determined are plotted in Figure 2.15.

In Figure 2.15, each point represents the probability-fitness relation of a single run. Figure 2.16 is a

zoomed in image of Figure 2.15. From Figures 2.15 and 2.16, it is observed that as probability

increases, the likelihood of the eBPA determining higher quality solutions decreases. Higher levels

of probability encourage greater levels of exploration; however, this should not be beyond the point

of what is ideal to experience that essential balance between exploration and exploitation. The correct

balance between exploration and exploitation is needed to determine the highest quality of solutions.

It is evident that smaller probability values best suit the explorative and exploitative balance.

Figure 2.15: Correlation between probability and fitness

Figure 2.16: Zoomed in image of Figure 2.15

2.6.2.2 Experiment 5

For this experiment, we investigate the relationship between the 𝑃𝐿 size and fitness, and the 𝑃𝐿 size

and execution time performance. For this experiment, a total of 500 runs had been executed. For each

run, the 𝑝𝑎 value of 0.2 remained constant while the 𝑃𝐿 size was randomly selected from with the

range of 1 ≤ 𝑃𝐿_𝑠𝑖𝑧𝑒 ≤ 200. For each run, the 𝑃𝐿 size, fitness and execution time had been

documented. The results of the 𝑃𝐿 size and fitness correlation is plotted in Figure 2.17. In Figure

2.17, each point represents the coordinate of the 𝑃𝐿 size and fitness value relation. Figure 2.18 is a

zoomed in image of Figure 2.17. Likewise, the results for the 𝑃𝐿 size and execution time performance

correlation is plotted in Figure 2.19. Figure 2.20 is a zoomed in image of Figure 2.19.

600

800

1000

1200

1400

1600

1800

2000

2200

0 0.2 0.4 0.6 0.8 1

Fi
tn

es
s

V
al

u
e

Probability

eil101: Fitness Values of Variable Probability at a Fixed
Performance List Size 𝑃𝐿_𝑠𝑖𝑧𝑒 = 100

650

700

750

800

850

900

950

1000

1050

1100

0 0.2 0.4 0.6 0.8 1

Fi
tn

es
s

V
al

u
e

Probability

eil101: Fitness Values of Variable Probability at a Fixed
Performance List Size (Zoomed) 𝑃𝐿_𝑠𝑖𝑧𝑒 = 100

45

Figures 2.17 and 2.18 show that the best and most consistent performances fall between the 𝑃𝐿 size

range of 10 to 100. However, in increasing the 𝑃𝐿 size within this range, the probability of

determining higher quality solutions marginally decreases. The most competitive solutions arguably

fall within the 𝑃𝐿 size range of 20 to 50.

Figure 2.17: Correlation between 𝑃𝐿 size and fitness

Figure 2.18: Zoomed in image of Figure 2.17

Figures 2.19 and 2.20 show that although some results are scattered (which would also be typical for

other metaheuristic algorithms), there is evidence to stipulate that increasing the 𝑃𝐿 size will also

increase the execution time performances. The relation is more clearly seen with the red-dotted trend

line across the face of Figure 2.20.

Figure 2.19: Correlation between 𝑃𝐿 size and execution time

Figure 2.20: Zoomed in image of Figure 2.19

The strength of the eBPA surrounds its core feature which is adaptive memory. The techniques used

to maintain this memory structure, and the governing principles of admittance surrounding it, appear

as the key elements for the efficiency of the eBPA.

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160 180 200

Fi
tn

es
s

V
al

u
e

Performance List Size

eil101: Fitness VS Performance List Size

600

650

700

750

800

850

900

950

1000

0 10 20 30 40 50 60 70 80 90 100

Fi
tn

es
s

V
al

u
e

Performance List Size

eil101: Fitness VS Performance List Size (zoomed)

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Performance List Size

eil101: Execution Time VS Performance List Size

7000

7050

7100

7150

7200

7250

7300

7350

7400

7450

7500

0 25 50 75 100 125 150 175 200

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Performance List Size

eil101: Execution Time VS Performance List Size (zoomed)

46

2.7 Conclusion

This study has presented theory and analysis on the eBPA, and has highlighted the underlying

principles that govern the design of the algorithm. The eBPA had been developed due to further

research having undergone on the BPA. The eBPA was developed to try and improve upon the

efficiency aspects of the BPA, particularly for discrete optimization problems.

The objective of this study was to formally present and highlight the benefits of the eBPA. The eBPA

core design is structured around adaptive memory. Adaptive memory is used as a tool to strategically

direct the search, and also to penetrate complexed regions of the solution space which may confine

other methods. The eBPA design embeds characteristics of both stochastic and deterministic search

strategies. These strategies are used to finely balance its rate from exploration and exploitation.

The conceptual differences in the design techniques of both the BPA and the eBPA have been

comprehensively analyzed. To compare the differences in the design techniques, a comprehensive set

of experiments have been performed. The results show the strength of the eBPA in having delivered

effective and economical search, compared to that of the BPA, for this discrete optimization problem.

The added advantages of the eBPA is its simplistic design; it also only has two parameter values that

need to be set. The settings of the parameter values have been shown to be quite simplistic.

47

Chapter Three

The enhanced Best Performance Algorithm for the Annual Crop

Planning Problem Based on Economic Factors

3.1 Introduction

At present, the world is faced with great challenges of water and food scarcity. Water scarcity can be

described as the occurrence when the demands on fresh water exceeds its supply (Schmitz et al.,

2007). The ever increasing world population growth contributes to this problem. As a result, there are

greater demands of fresh water supply from all sectors of the industry. Major industry consumers of

fresh water supply are those of the agricultural, domestic and industrial sectors. The more fresh water

supplies consumed by the other sectors of the industry, the less will be available for agricultural

consumption. In spite of this present challenge, the agricultural sector–being the most important

sector in that it is the primary producer of food globally–has been placed under increased pressure to

use fresh water supplies more conservatively (Schmitz et al., 2007).

Currently, it is estimated that around 70% of all fresh water supplies globally are used up by the

agricultural sector. Of this, around 90% is estimated to be for consumptive use (Schmitz et al., 2007).

Thus, if reduced volumes of fresh water is supplied to the agricultural sector, it will threaten the

sustainability of food production.

In crop production, fresh water supplies are essential in order to realize optimal crop development.

Optimal crop development is necessary in order to receive maximum yields. Thus, any form of water

depletion in the crop development process will negatively affect crop growth; this will resultantly

affect harvests, and ultimately food supplies. Food supply shortages would result in increased food

prices. Increased food prices would result in increases in the costs of living. Increases in the costs of

living will have a direct hand in contributing to further socioeconomic problems already faced by the

world.

To alleviate these challenges, it is imperative that the agricultural sector determine scalable solutions

to the problem of resource allocations in crop production. Ideally, optimized solutions are required.

48

Interestingly, in spite of the shortages of resources available for crop production, more returns are

expected per unit of the resources utilized. This is primarily due to the increases in the population

growth.

As part of the attempt to contribute to the solution, the ACP problem had been previously introduced

in the literature by Chetty and Adewumi (2013b; 2013c; 2013d; 2014). The ACP problem focuses at

the level of an irrigation scheme. The scope is resource allocation solutions in food crop production.

Notably, no optimal solutions are guaranteed in crop production. This is due to the uncertainties of

several stochastic factors that are associated with the crop production process. The stochastic factors

include climatic conditions, soil characteristics, market demand and supply conditions, and

cultivation practices, etc. The ACP problem aims to advise crop planners on making resource

allocation decisions for the forthcoming year of crop production. The studies initiated by Chetty and

Adewumi (2013b; 2013c; 2013d; and 2014) were a first attempt to present the ACP problem as an

optimization problem in the literature.

Interesting studies on crop and irrigation planning, as found in the literature, include those by

Mohamad and Said (2011), Sunantara and Rimirez (1997), Wardlaw and Bhaktikul (2004), Georgiou

and Papamichail (2008), Sarker and Ray (2009), Adeyemo and Otieno (2010a), Adeyemo et al.

(2010b), Pant et al. (2008), Pant et al. (2010), Raju and Kumar (2004) and Reddy and Kumar (2007).

Descriptions of these articles are also given in the studies by Chetty and Adewumi (2013b; 2013c;

2013d; and 2014).

This study further expounds on the ACP problem by reformulating the ACP mathematical model.

The reformulated mathematical model considers two fundamental market economic factors: the

economy of scale, and the demand and supply relations. The economy of scale, and the demand and

supply relations have always had a notable presence in crop production. With the economy of scale

influence, crop production on a larger scale has always been more profitable, as unit costs are lower

(Faris, 1961). Especially with the advent of farming technologies, such as machinery, fertilizers,

irrigation practices, etc., the economy of scale influence in crop production has been considerable.

Almost every aspect of modern crop production favors production on a larger scale. Concerning the

market demand and supply factors in crop production, the sale of the harvests are done within a

deregulated marketing environment. Therefore, in an environment where there is no governmental

control over the market prices, the market prices are determined by demand and supply relations.

49

Therefore, for these reasons, the ACP mathematical model has been enhanced in considering these

important economic factors required to provide more realistic solutions.

Furthermore, this study sees an opportunity to investigate the potentials of the eBPA and the BPA for

a continuous optimization problem. The solutions determined by the eBPA and the BPA will be

compared against each other and those of the TS and SA algorithms.

The rest of this chapter is structured as follows: Section 3.2 gives a detailed insight into the ACP

problem. Section 3.3 formally presents the problem. Section 3.4 explains the mathematical model

used to formulate the ACP. Section 3.5 describes the economy of scale, and the demand and supply

relational factors. These will be mathematically implemented as part of the new ACP mathematical

model. The new ACP mathematical model is presented in section 3.6. Sections 3.7 and 3.8

summarizes previous research work done on the ACP for the publications listed. Section 3.9 describes

the experimental results obtained. Finally, section 3.10 draws on conclusions.

3.2 Background to ACP Problem

Crop production is a multi-staged process which includes: crop selection, land allocation, planting,

crop development, harvesting, crop storage, and the marketing stages (Acquaah, 2004). Ultimately,

to achieve maximum returns within a production year, effective decisions need to be made at each

stage of the crop production process. Yet, this is no simple task as several stochastic factors affect the

crop production process.

Notable stochastic factors include the climatic conditions, soil characteristics, the market demand and

supply conditions, and cultivation practices, etc. The climatic conditions primarily include

temperature, humidity, wind-speeds and rainfall (Brouwer and Heibloem, 1986). These importantly

effect the rates of evaporation from the soil surface back into the earth’s atmosphere. It also influences

transpiration through the stomata of the crops.

Soil characteristics are those of soil texture, the soil nutrition, the soil moisture content levels, the rate

of transitivity of water through the soil, etc. (Astera, 2010). The content structure of the soil texture

influences the soil moisture holding capacity, and the transitivity rate. The soil moisture holding

50

capacity is the volume of water that can be contained within the soil. The transitivity rate is the rate

at which water is absorbed by the root system of the crop. Soil nutrition is vital for optimal crop

growth. Furthermore, concerning the cost of the sale of the harvests, the demand and supply

conditions have a major influence (Whelan and Msefer, 1996).

During the crop selection stage (notably the first), several factors need to be considered in determining

the most appropriate crops to be cultivated. Firstly, crop selection is location specific. Reason being,

crops adapt well to the environmental conditions at specific geographical locations (Mustafa et al.,

2011). Also, it is necessary that there be sufficient demand for the crops to be produced in order to be

counted profitable; it should also be sustainable for the future production.

Upon the crops having been selected, decisions would thereafter need to be made concerning the

resource allocations amongst the various competing crops required to be produced. Resource

allocations occur at the land allocation stage of the crop production process. This embeds the scope

of the ACP problem.

The intent of the ACP problem is to determine resource allocation solutions amongst the various

competing crops which are required to be produced. The limited resources concerned with the ACP

problem include land area, irrigated water supply, and the various costs associated with the production

of each crop. The objective is to maximize the total gross profits that could be earned from the sale

of the harvests at the end of the forthcoming production year.

The ACP mathematical model considers several important factors in determining scalable solutions:

the area of agricultural land available for crop production, rainfall estimates, the Crop Water

Requirements (CWR’s) per crop, the irrigated water supply and its cost, the production costs, the crop

yields (this is under the assumption of what the yields are expected to be given the previous year’s

statistics), the producer prices per crop, and the market demand conditions.

The area of land available for crop production can be segmented into different farm-plot types. Farm-

plot types are appropriate for the production of different types of crops. For sequential cropping

(which is the current scope for ACP problem), the single-crop farm plots are used to produce all the

crops that grow all year around on the same farm plot. These are called perennial crops. Examples

include crops such as Lucerne and fruit trees. Perennial crops can be harvested once or several times

51

within the year. The double-crop farm plots are likewise used to produce crops that grow in sequence

of each other on the same farm plot within the production year. Examples are the summer and winter

crop groups. For instance, Maize (being a summer crop) is grown in sequence with Wheat (being a

winter crop) on the same farm plot within a production year in South Africa. Similarly, triple-crop

farm plots are used to produce three crop groups that grow in sequence of each other on the same

farm-plot, etc. Sequential cropping is a highly beneficial cultivation practice: it yields higher returns

per farm plot; it provides additional protection against pests, bacteria and weed development; it adds

to the nutritional value of the soil, which in turn reduces fertilization and pesticide costs (Charles,

1986).

Each crop cultivated additionally differs in CWR needs. The CWR need of each crop differ due to

the diversity in crop characteristics. It also differs due to the fact that the CWR need of the same crop

grown at different geographical regions may differ due to the differences in the climatic conditions.

The difference between the CWR need of each crop and precipitation is the volume of irrigated water

that is required for optimal crop growth throughout its lifespan.

The scheduling of irrigated water for the production of each crop is out of the scope of this study.

However, the feed of fresh water supply, by either rainfall or irrigation to the crops root system need

to be well planned throughout the different stages of crop development. For example, a fully grown

crop would require more supply of water than a newly planted crop. Also, water supplied to the

surface of the crops root system would need to be in accordance with the moisture content level of

the soil. The moisture content level should ideally be maintained between wilting point and field

capacity; field capacity is the maximum water holding capacity of the soil. At any volume greater

than the field capacity, the crop is susceptible to root damages. Also, at any level below wilting point,

the crop will no longer be able to absorb water in order to survive (Brouwer and Heibloem, 1986). If

a crop suffers water stress, such as mild, moderate or severe, it will affect the physiological processes

of respiration, growth, photosynthesis and reproduction within the plant. Therefore, in order to

achieve the ideal water balance within the plant for optimal growth and yield, it is essential that the

soil moisture content be maintained throughout the lifespan of the crop. Herein lies the importance of

irrigation.

Irrigated water is primarily extracted from ground water reserves such as rivers and lakes. In being

supplied to the irrigation schemes, it is accompanied by a water charge m-3 of the water utilized.

52

Production costs, coupled with crop yields and producer prices determine the profit earned. This is

also in accordance with the market demand of the crop. Production costs consist of the fixed and

variable costs of production. Fixed costs relate to the financial outlay irrespective of production. Fixed

costs include loan repayments and other types of monthly expenses incurred in order to facilitate the

crop production process. Variable costs are the costs incurred in the production of a unit of the harvest.

Variable costs include that of tilling the soil, labour costs, the costs of soil nutrition, pest control,

irrigated water supply costs, and harvesting costs, etc.

Production costs will differ per crop produced. This is due to crop specific cultivation practices, and

the cost of it. A simple example is the cost of harvesting a crop by hand, and harvesting a crop using

machinery. In harvesting using these two different ways, the costs will differ. Cultivation practices

also affect the crop yields (Dukes et al., 2012). Apart from maintaining the soil moisture content level

and the nutritional value of the soil, other factors need to be dealt with which will affect the crop

yield. These include weeds, pests and bacteria which occur during the lifespan of a crop.

In crop planning, the exact estimates of production costs, yields and producer prices cannot be pre-

determined. Rather, statistics from previous years of crop production are used in the ACP

mathematical model. These statistics will be used to estimate the figures in attempting to quantify

solutions. Amongst others, these statistics can be determined from published literature and/or

consultancy services (Kantanantha, 2007). Realistically, the statistics should be location specific. The

objective in determining solutions is to advise crop planners on how to better prepare for the

production year ahead.

3.3 Formal Description of ACP

The ACP problem is a crop planning problem at the level of an irrigation scheme. Irrigation Schemes

are large areas of farming land used for agricultural purposes. Irrigated water supplied to irrigation

schemes are extracted from natural resources such as dams and rivers. They are supplied to the farm

plots via canal systems (Grove, 2008). The purpose of irrigated water is to supplement the lack of

fresh water supply to the crops in order to meet their CWR; this is required for optimal plant

development. The lack of fresh water supply is as a result of the shortfalls and inconsistencies of

rainfall.

53

Inconsistent rainfall patterns cause inconsistent soil moisture content levels. If these levels are not

maintained, it can be detrimental to crop development. Also, due to the differences in climatic

conditions, from one geographical location to the next, the CWR of the same crop could differentiate

from one location to the next.

At irrigation schemes, several crops get produced at different time intervals within a production year.

To maximize benefits, cultivation practices such as multi-cropping and sequential cropping are thus

exercised. For the ACP problem, sequential cropping is the focus at present.

Sequential cropping is the practice of cultivating different, yet complementary types of crops, in

sequence of each other on the same farm area within a production year. This is achieved without

having the planting and harvesting schedules of the crops being in conflict. Thus, the distinguishing

factor in identifying farming areas are the number of crops that are cultivated on it within the

production year.

The objective therefore in sequential cropping, given the limited resources available for crop

production, is to optimize crop production in trying to maximize the total gross profits that could be

earned. The profits earned are from the sale of the harvests of all the crops produced within the

production year. This is the objective of the ACP problem.

The gross profits earned are the differences between the producer prices and the production costs of

the crops. Production costs consist of fixed and variable costs of production. Fixed costs are the

financial outlays irrespective of crop production. The variable costs are the accumulated costs of crop

production, per unit of the crop produced.

Due to several types of stochastic factors that are associated with this problem, no mathematical

model exists that can determine accurate resource allocation solutions in crop production. Rather, in

trying to accommodate the most important factors of this problem, without making it overly complex

to solve by introducing too many variables, the ACP mathematical model had been developed. This

model determines resource allocation solutions in order to assist crop planners in answering some of

the following questions:

54

1. What is the area of land that should be allocated for producing each crop within the production

year?

2. What is the volume of irrigated water that is required per crop for optimal crop development,

given the land allocation?

3. What would be the cost of this irrigated water?

4. What would be the total cost of producing each crop, given the land allocation ?

5. Given the market demand and supply conditions, what would be the gross profits earned from

each crop?

6. What would be the gross profit earned from producing all crops within a production

 year?

Hence, the ACP problem focuses on determining the resource allocation solutions related to land,

irrigated water supply and the variable costs associated with crop production. It tries to maximize the

total gross profits that could be earned from the production of all crops produced within a production

year. The complexity to the problem is attached with determining resource allocation solutions for all

crops in accommodating their different planting and harvesting schedules within the year.

Solutions for the ACP problem are determined under the following assumptions:

1. ACP solutions are determined for the land allocation stage of the crop production process.

2. ACP solutions are determined at the beginning of the production year.

3. The total area of land available for the production of each crop group is known. For the ACP

problem at an existing irrigation scheme, it is considered that this area of land remains fixed

due to sequential cropping practices.

4. The statistics from previous years of crop production is known. This includes information of

the crop demand, the producer prices, the costs associated with production, and the yields per

crop. The demand statistics will be used to estimate the lower and upper bound ranges in

order to determine realistic solutions in accordance with actual demands. The pattern of the

producer prices can be used to estimate what would be the producer price for the same

quantity of goods demanded in the forthcoming production year. Likewise, the same can be

said for the production costs; for this, it is assumed that the fixed and variable costs can be

differentiated. Concerning the crop yields, it is acceptable that this statistic remains the same.

55

7. The cost of irrigated water m-3 and its supply to the irrigation scheme is known. The supply

of irrigated water to the farming plots are assumed to be normal throughout the production

year.

8. The CWR of each crop, at the specific geographical location, is known.

9. The average volume of precipitation throughout the lifespan of each crop is known.

10. Crop production throughout the year is assumed to be under favourable conditions. Hence,

no unforeseen circumstances such as drought, hail, flooding, etc., will interfere with the crop

production process.

12. Crops are planted and harvested according to schedule. These dates are assumed not to

overlap with other crops grown in sequence on the same farming area of land.

For the crop demand ranges, the lower bound should be set such that the minimum market demand is

satisfied. Likewise, the upper bound should be set such that an excess quantity of harvest is not

produced, which would result in losses. For optimized irrigated water allocations, precipitation is

considered. Also, excessive applications of irrigated water to the farming plots result in environmental

damages. Therefore, to tighten the grip on excessive water wastage, producers are required to pay

water charges (Grove, 2008). The strain of paying water charges, and the concern over water wastage,

mean that the producers are required to produce more output per m-3 of irrigated water utilized.

Several objectives as well as soft and hard constraints must be achieved in order to determine feasible

solutions.

Objectives:

1. Maximize the total gross profits earned from the production of all crops within the production

 year.

2. Determine the resource allocation solutions of land, irrigated water supply and production

 costs of all crops produced within the year.

Hard constraints:

1. Crop groups must be cultivated on their allocated farm plots. For example, perennial crops

 must grow on single-crop farm plots, only two crop groups are allowed to grow in

 sequence of each other on the double crop farm plots, etc.

2. Each crop must be allocated a portion of land.

56

3. The minimum and maximum market demand conditions must be satisfied.

4. The total volume of irrigated water allocated to each crop produced must not exceed

 the total volume of irrigated water that can be supplied to the irrigation scheme within a

 production year.

Soft constraints:

1. Give as much satisfaction to each crop being produced, such as land area and irrigated water

 allocation.

2. Resource allocations must be done as fairly as possible.

The ACP mathematical model presented in this study implements the market economic factors of the

economy of scale and the demand and supply relations.

3.4 The Annual Crop Planning Problem as a Space Allocation Problem

The ACP problem has been mathematically modelled as an instance of the Space Allocation Problem

(SAP). SAP’s are amongst the hardest to solve to optimality in the literature. Interesting examples

include those investigated at tertiary institutions (Silva, 2003; Adewumi and Ali, 2010), and those

investigated at the level of supermarkets (Tsai and Wu, 2010; Bai, 2005), amongst others.

SAP’s involve the allocation of a limited area of available space amongst the entities that demand for

space utilization. In relation to the ACP problem, an entity refers to a crop which competes for land-

area in order to be cultivated. With each entity competing for maximum space utilization, the

complexity arises in trying to grant as much satisfaction to each entity in trying to optimize the

collective benefit from the production of all crops. The common error is that the mismanagement of

the limited area of space will negatively impact on the desired benefits.

Associated with these problem instances are hard and soft constraints. The hard constraints have to

be satisfied. However, a maximum number of soft constraints should be satisfied if possible. The

mathematical formulations commonly used to formulate the SAP’s include those of bin-packing,

assignment modelling, and knapsack modelling (Silva, 2003). For the ACP problem, knapsack

modeling has been used.

57

3.4.1 Knapsack Model for ACP

The description of a knapsack is a backpack bag with shoulder straps. The ideology of knapsack

modeling is to assign items, each having an associated weight and profit value, into one or many

knapsacks without having exceeded the maximum weight holding capacity (or capacities). Therefore,

the object is to determine a permutation that would maximize the total accumulated profits in

assigning the items to the knapsack/s.

Different types of knapsack mathematical models do exist in the literature. Examples include the

binary, fractional, bounded and multiple knapsack models (Nyonyi, 2010). The binary model is

constrained in allowing for each item to be selected at most once; the fractional model allows for

fractions of the items to be selected; the bounded model enforces boundary constraints in the selection

of the items; the multiple knapsack model allows for multiple knapsacks to be filled.

Therefore, knapsack models are differentiated based on the way items are selected. Elements of

different knapsack models can also be combined together to mathematically formulate a problem. For

example, a mathematical formulation could require items to be selected in accordance with the binary

constraint, yet may require multiple knapsacks to be filled. In terms of the ACP problem, elements of

the binary, bounded, fractional and multiple knapsack models have been combined to mathematically

formulate the problem.

In reference to the ACP problem, a knapsack refers to the accumulated area of land available for the

production of each crop group. A crop group is a collection of crops that are produced within the

same seasonal window, which in-turn are cultivated in sequence with other crop groups grown on the

same farm-plot. Each knapsack (i.e. the accumulated area of land available for the production of a

crop group) would require multiple crops to be cultivated on it. These individual crops are the items

belonging to a knapsack. The weight factor of a crop is the area of land allocated for its production.

The profit factor of a crop is the profit earned in the sale of the harvest given the area of land allocated

for its production.

Given the multi-knapsack nature of the ACP problem, the objective is to determine hectare allocation

solutions, for each crop being produced, such that the knapsack capacities are not exceeded in trying

to maximize the accumulated profits earned. Multiple constraints exist in order to determine feasible

58

solutions: each crop is allowed to be selected at most once (hence, the binary element); a fraction of

the maximum allowable area for the production of each crop is to be selected (hence, the fractional

element); hectare allocations per crop must satisfy the lower and upper bound constraints (hence, the

bounded element); lastly, since individual crops belong to specific crop groups, allocations need to

be done for multiple knapsacks (hence, the multiple element). The mathematical formulation of the

knapsack model used for the ACP problem is given below (Chetty and Adewumi, 2013e).

Suppose there are a total on 𝑚 knapsacks of capacities 𝑘𝑗, where 𝑗 = 1, … , 𝑚. For each knapsack 𝑘𝑗,

items 𝑥𝑖𝑗 can be selected to fill up 𝑘𝑗, ∀ 𝑖 = 1, … , 𝑛𝑗. Each item 𝑥𝑖𝑗 has an associated weight 𝑤𝑖𝑗 and

profit 𝑝𝑖𝑗 factor. Item 𝑥𝑖𝑗 is allowed to contribute a fraction 𝑓𝑖𝑗 of itself (i.e. 0 < 𝑓𝑖𝑗 ≤ 1) in being

selected. For the fraction of item 𝑥𝑖𝑗 selected (i.e. 𝑓𝑖𝑗𝑥𝑖𝑗), the lower bound 𝐿𝑏𝑖𝑗 and upper bound 𝑈𝑏𝑖𝑗

constraints must be satisfied. The maximum capacity constraint of all knapsacks 𝑘𝑗 must be satisfied,

and the total capacity of all knapsacks is 𝑇. The knapsack model template used to formulate the ACP

problem is as follows:

Maximize 𝑓(𝑥) = ∑ ∑ 𝑝𝑖𝑗𝑥𝑖𝑗
𝑛𝑗

𝑖
𝑚
𝑗 (3.1)

 Subject to:

 ∑ 𝑤𝑖𝑗𝑥𝑖𝑗 ≤ 𝑘𝑗
𝑛𝑗

𝑖=1
, 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑚 (3.2)

 𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑖𝑡𝑒𝑚 𝑥𝑖𝑗 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.3)

 0 < 𝑓𝑖𝑗 < 1 (3.4)

 𝐿𝑏𝑖𝑗 ≤ 𝑓𝑖𝑗𝑥𝑖𝑗 ≤ 𝑈𝑏𝑖𝑗 (3.5)

 ∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑗 ≤ 𝑇
𝑛𝑗

𝑖
𝑚
𝑗=1 (3.6)

3.5 Economy of Scale and the Demand and Supply Relations

Economy of scale is described as the reduction in unit cost per item being produced, as the volume

of output increases (Krugman, 1980). This is well researched in market economics and could occur

for several reasons. Some of the primary reasons include the fixed costs per unit decrease as the

59

volume of items produced increase (for example, the fixed cost of ZAR1 100 is calculated to be

cheaper per unit in producing 100 units in comparison to 10. The resultant effect of this is increased

profit earned per unit of the item produced); fixed costs per unit are calculated to be cheaper in

purchasing materials in larger volumes at discounted prices; the utilization of specialized equipment

or machinery in manufacture result in more efficiency per unit of production, reducing costs; etc.

Demand and supply relations are also fundamental concepts in market economics. These quantify the

mathematical relations between the quantity of goods demanded by the buyers, and those that are

supplied by the producers at a specific market price. This price is referred to as the “equilibrium price”

(Whelan and Msefer, 1996). Hence, the demand relation refers to the demand of the quantity of goods

from buyers at an equilibrium price they are willing to pay. Similarly, the supply relation refer to the

supply of the quantity of goods by producers at an equilibrium price at which they are willing to

supply at. The demand and supply relations therefore determine the equilibrium price as agreed upon

by the buyer and seller in the sale of the harvests. In exercising the trade, producers and buyers will

want to maximize their profits in trading at the best possible price. An illustration of the demand and

supply relation is given in Figure 3.1 below.

1 ZAR stands for Zuid-Afrikaanse Rand. It is the Dutch translation of saying, “South African Rand.” The Rand is the

currency in South Africa.

Supply

Demand

𝑸

𝑷

P
ri

ce

Quantity

Equilibrium Price

Figure 3.1: Equilibrium market price as determined by the demand and supply relations

60

In Figure 3.1, 𝑃 represents price and 𝑄 quantity. The equilibrium price is where 𝑃 and 𝑄 intersect.

This means that quantity 𝑄 will be traded at price 𝑃. As is seen, any price below 𝑃 will increase

demand, and any price above 𝑃 will decrease demand.

In the reformulation of the ACP mathematical model, both the economy of scale and the

demand/supply relational factors are considered.

3.6 ACP Mathematical Model with Economic Factors for an Existing

 Irrigation Scheme

This section presents the enhancement of the ACP mathematical model. This model includes the

market economic factors of the economy of scale, and the demand and supply relations. Explanations

on the foundational ACP mathematical models can be found in Chetty and Adewumi (2013b, 2013c,

2013d, 2014). The mathematical model in this study relates to that of an existing irrigation scheme.

To implement the economy of scale influence, a ‘fixed cost’ variable is introduced. Hence, production

costs are now explicitly differentiated as being fixed and variable costs of production. A fixed cost

factor associated with the production of each crop will encourage a higher quantity of produce as the

unit cost will decrease. This will result in a higher profit earned per crop. However, this influence is

challenged by the demand and supply relations, as higher yields beyond the equilibrium point will

result in lower producer prices; this will equate to less profit earned per unit (and vice versa).

In this model, equilibrium price is represented in terms of hectare allocations. This is achieved by

making use of either (or both) of the demand or supply relational equations. With gross profits earned

being dependent on hectare allocations, it is now interesting that hectare allocations and gross profits

are influenced by the economy of scale and the demand and supply relational factors. This introduces

added complexity, yet allows for more scalable solutions.

The ACP mathematical model, which includes the market economic factors of the economy of scale

and the demand and supply relations are as follows:

61

3.6.1 Mathematical Notations

Indices

 𝑘 – Plot types. (1 = single-crop plots; 2 = double-crop plots; 3 = triple-crop plots; etc.).

 𝑖 – Indicative of the crop groups that are grown in sequence of each other on the same farming

plot of land within the year, on plot type 𝑘 (𝑖 = 1 indicates the 1st crop group; 𝑖 = 2 indicates

the 2nd crop group; 𝑖 = 3 indicates the 3rd crop group; etc.).

 𝑗 – Indicative of the individual crops belonging to crop group 𝑖, on plot 𝑘.

Input Parameters

 𝑙 – Number of different farming plot types.

 𝑁𝑘 – Number of sequential crop groups cultivated on plot 𝑘.

 𝑀𝑘𝑖 – Number of individual crops cultivated at stage 𝑖, on plot 𝑘.

 𝐻𝑘𝑖𝑗 – Hectare allocation of crop 𝑗, at stage 𝑖, on plot 𝑘 as determined from the previous year.

 𝐿𝑘𝑖 – Total area of land allocated for crop production at stage 𝑖.

 𝐹𝑅𝑘𝑖𝑗 – Average fraction per hectare of crop 𝑗, at stage 𝑖, on plot 𝑘, which needs to be irrigated

(1 = 100% coverage, 0 = 0% coverage).

 𝑅𝑘𝑖𝑗 – Averaged rainfall estimates that fall during the growing months for crop 𝑗, at stage 𝑖, on

plot 𝑘.

 𝐶𝑊𝑅𝑘𝑖𝑗 – Crop water requirements of crop 𝑗, at stage 𝑖, on plot 𝑘.

 𝐴 – Volume of irrigated water that can be supplied per hectare (ha-1).

 𝑃 – Price of irrigated water m-3.

 𝑂𝑘𝑖𝑗 – Operational cost ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. This cost excludes the cost of irrigated

water per crop.

 𝐹𝑘𝑖𝑗 – Fixed cost of production for crop 𝑗, at stage 𝑖, on plot 𝑘.

 𝑌𝐷𝑘𝑖𝑗 – The expected yield in tons per hectare (t ha-1) of crop 𝑗, at stage 𝑖, on plot 𝑘.

 𝑀𝑃𝑘𝑖𝑗 – Producer price per ton of crop produced for crop 𝑗, at stage 𝑖, on plot 𝑘. This is the

equilibrium price from the previous year of trading, at the hectares allocated. It is determined by

the demand/supply relation.

62

 𝐿𝑏𝑘𝑖𝑗 – Lower bound of crop 𝑗, at stage 𝑖, on plot 𝑘. This reflects the minimum expected market

demand in order to meet supply needs. This should to be determined by the producers.

 𝑈𝑏𝑘𝑖𝑗 – Upper bound of crop 𝑗, at stage 𝑖, on plot 𝑘. This reflects the maximum expected market

demand. The producers should also determine this.

Calculated Parameters

 𝑇𝐴 – Total volume of irrigated water that can be supplied to the total area of farming land within

the year (𝑇𝐴 = 𝑇 ∗ 𝐴).

 𝐼𝑅 𝑘𝑖𝑗 – Volume of irrigated water that should be supplied to crop 𝑗, at stage 𝑖, on plot 𝑘.

(𝐼𝑅𝑘𝑖𝑗𝑚3 = (𝐶𝑊𝑅𝑘𝑖𝑗𝑚 – 𝑅𝑘𝑖𝑗𝑚) ∗ 10000𝑚2 ∗ 𝐹𝑅𝑘𝑖𝑗).

 𝐶_𝐼𝑅𝑘𝑖𝑗 – The cost of irrigated water ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐶_𝐼𝑅𝑘𝑖𝑗 = 𝐼𝑅𝑘𝑖𝑗 ∗

 𝑃).

 𝐶𝑘𝑖𝑗 – Variable cost ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐶𝑘𝑖𝑗 = 𝑂𝑘𝑖𝑗 + 𝐶_𝐼𝑅𝑘𝑖𝑗).

Variables

 𝑋𝑘𝑖𝑗 – Area of land, in hectares, that can be feasibly allocated for the production of crop 𝑗, at

stage 𝑖, on plot 𝑘.

 𝐴𝑉𝑘𝑖𝑗 – Average cost ha-1 in considering the fixed and variable costs of production for crop 𝑗, at

stage 𝑖, on plot 𝑘. (𝐴𝑉𝑘𝑖𝑗 = (𝑋𝑘𝑖𝑗𝐶𝑘𝑖𝑗 + 𝐹𝑘𝑖𝑗)/𝑋𝑘𝑖𝑗).

 𝐸𝑃𝑘𝑖𝑗 – Equilibrium price that is substituted by using either the demand or supply relations, which

has dependency on 𝑋𝑘𝑖𝑗 (e.g. Demand relation: 𝑋𝑘𝑖𝑗(D) = a + b𝐸𝑃𝑘𝑖𝑗; Supply relation: 𝑋𝑘𝑖𝑗(S) =

c + d𝐸𝑃𝑘𝑖𝑗 where a, b, c and d are constants).

3.6.2 Optimization Model

Objective Function

Maximize 𝑓 =

∑ ∑ ∑ 𝑋𝑘𝑖𝑗(𝐸𝑃𝑘𝑖𝑗 ∗ 𝑌𝐷 − 𝐴𝑉𝑘𝑖𝑗)

𝑀𝑘𝑖

𝑗=1

𝑁𝑘

𝑖=1

𝑙

𝑘=1

63

= ∑ ∑ ∑ 𝑋𝑘𝑖𝑗(𝐸𝑃𝑘𝑖𝑗 ∗ 𝑌𝐷 − 𝐶𝑘𝑖𝑗) − 𝐹𝑘𝑖𝑗

𝑀𝑘𝑖

𝑗=1

𝑁𝑘

𝑖=1

 (3.7)

𝑙

𝑘=1

Equation 3.7 gives the objective function. The fixed cost variable 𝐹𝑘𝑖𝑗 implements the economy of

scale influence. The equilibrium price variable 𝐸𝑃𝑘𝑖𝑗 (substituted in terms of hectare allocations, by

using either of the demand or supply relational equations) are used to implement the market demand

or supply influence. The constraints to the problem remain the same as found in Chetty and Adewumi

(2013b, 2014).

Land Allocation Constraints

All solutions must satisfy the lower and upper bounds of each crop.

 𝐿𝑏𝑘𝑖𝑗 ≤ 𝑋𝑘𝑖𝑗 ≤ 𝑈𝑏𝑘𝑖𝑗 ∀𝑘, 𝑖, 𝑗 (3.8)

The summation of the land allocated for each crop 𝑗, at stage 𝑖, on plot 𝑘, must not exceed the total

area of land available for crop production at stage 𝑖, on plot 𝑘.

 ∑ 𝑋𝑘𝑖𝑗 ≤ 𝐿𝑘𝑖 ∀𝑘, 𝑖 (3.9)

𝑀𝑘𝑖

𝑗

Irrigated Water Constraints

The summation of the volume of irrigated water allocated to each crop must be less than the total

volume that can be supplied to the irrigation scheme within the year.

 ∑ ∑ ∑ 𝐼𝑅𝑘𝑖𝑗 ≤ 𝑇𝐴 (3.10)

𝑗𝑖𝑘

64

Non-negative Constraints

Arbitrarily, the lower and upper bound settings as well as the gross profits earned per crop must be

non-negative.

 𝐿𝑏𝑘𝑖𝑗 , 𝑈𝑏𝑘𝑖𝑗 , (𝐸𝑃𝑘𝑖𝑗 ∗ 𝑌𝐷 − 𝐴𝑉𝑘𝑖𝑗) > 0 ∀𝑘, 𝑖, 𝑗 (3.11)

3.7 Summary of, “On the Performance of new Local Search Heuristics

for Annual Crop Planning: Case Study of the Vaalharts Irrigation

Scheme2”

Having initially introduced the ACP problem for an existing irrigation scheme, in Chetty and

Adewumi (2013b), this study investigated the potentials of three new LS metaheuristic algorithms in

determining ACP solutions for the same case study. The three LS metaheuristic algorithms included

the BPA, the Iterative Best Performance Algorithm (IBPA), and the Largest Absolute Difference

Algorithm (LADA). These algorithms had been newly introduced in Chetty and Adewumi (2013a).

To test the merits of the solutions determined by these new metaheuristics, their solutions were

matched against those of TS and SA. The results concluded that from all metaheuristics, the BPA and

the IBPA delivered the overall best solutions. The BPA delivered the best fitness solution, and the

IBPA marginally outperformed the BPA on average.

3.7.1 The Vaalharts Irrigation Scheme Case Study

The case study investigated was that of the Vaalharts Irrigation Scheme (VIS), which is located in

South Africa. Comprising of approximately 36,950 hectares of prime agricultural land, the VIS is one

of the largest irrigation schemes found in the world. Figure 3.2 below shows an image of the VIS, as

2 Chetty, S. and Adewumi, A.O. (2014). “On the performance of new local search heuristics for annual crop

planning: case study of the Vaalharts irrigation scheme”, Journal of Experimental & Theoretical Artificial

Intelligence, Vol 27, pp. 2.

65

well as the neighboring Taung Irrigation Scheme (TIS). The Figure also shows the locations of the

Vaal River, and the Taung Dam.

Figure 3.2: Satellite image of the Vaalharts Irrigation Scheme, Taung Irrigation Scheme,

Vaal River and Taung Dam

This geographical region is known for cold and frosty winters, warm summers and irregular rainfall

patterns. With irregular rainfall patterns, and having a low rainfall average of 440 millimeters (mm)

annum-1, irrigated water is necessary for optimized crop production at the VIS. Table 3.1 below shows

the average rainfall patterns as determined over a period of 36 years.

Taung Dam

Taung Irrigation Scheme

Vaalharts Irrigation Scheme

Vaal River

66

Table 3.1: Mean rainfall statistics as determined over a 36 year period

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean Rainfall 75.9 63.5 71.8 51.6 19.9 9.5 4.3 8.6 11.3 24.6 45.7 58.0

The irrigated water supplied to the farm plots get extracted from the nearby Vaal River. It is supplied

at a maximum rate of 9,140 m3 ha-1 annum-1. A water charge of 8.77 cents m-3 needs to be paid to the

Vaalharts Water User Association (WUA).

Table 3.2 shows the statistics of the primary crops grown at the VIS. The table lists the crop names,

together with their types given in brackets; these crop types are either perennial (p), summer (s) or

winter (w) crops. The table also gives the hectare allocations per crop (ha’s crop-1), the tons of yield

per hectare (t ha-1), the Crop Water Requirements (CWR’s), the average rainfall statistics (AR), the

producer prices per ton of yield (ZAR t-1), the average fraction of irrigated water applied per hectare

per crop with 𝐹𝑅𝑘𝑖𝑗 ∈ [0,1], the cost of the irrigated water per hectare (𝐶_𝐼𝑅𝑘𝑖𝑗), and the operational

costs of production per crop (𝑂𝑘𝑖𝑗). From Table 3.2 it is calculated that the total area of land for the

perennial crops, summer crops and winter crops are 8,300 ha’s, 15,500 ha’s, and 12,200 ha’s

respectively.

Table 3.2: Dataset for the Vaalharts Irrigation Scheme Case Study

Crops ha’s crop-1 t ha-1 CWR AR ZAR t-1 𝑭𝑹𝒌𝒊𝒋 𝑪_𝑰𝑹𝒌𝒊𝒋 𝑶𝒌𝒊𝒋

Pecan Nuts (p) 100 5.0 1,600 444.7 3,500.00 1 1,013.20 5,833.35

Wine Grapes (p) 300 9.5 850 350.8 2,010.00 1 437.80 6,365.00

Olives (p) 400 6.0 1,200 444.7 2,500.00 1 662.40 4,999.98

Lucerne (p) 7,500 16.0 1,445 444.7 1,185.52 1 877.26 6,322.72

Cotton (s) 2,000 3.5 700 386.4 4,500.00 1 275.03 5,250.00

Maize (s) 6,500 9.0 979 279.0 1,321.25 1 613.90 3,963.78

Ground Nuts(s) 7,000 3.0 912 339.5 5,076.00 1 502.08 5,076.00

Barley (w) 200 6.0 530 58.3 2,083.27 1 413.68 4,166.52

Wheat (w) 12,000 6.0 650 58.3 2,174.64 1 518.92 4,349.28

The dataset given in Table 3.2 is referenced for further research in this area. It is also the same dataset

that will be used for the experimental study in the results section (i.e. section 3.9).

67

3.8 Summary of, “Studies in Swarm Intelligence Techniques for Annual

Crop Planning Problem in a New Irrigation Scheme3”

In this publication, the ACP problems was further enhanced in presenting a mathematical formulation

for determining solutions at new irrigation schemes. The case study investigated related to the TIS.

In researching this problem, it was realized that optimized solutions at current agricultural practices

were important, yet not enough to meet the future demands for food crops.

The ACP mathematical model for new irrigation schemes differ from the ACP mathematical model

for existing irrigation schemes in that not only do optimized solutions need to be determined for the

hectare allocations per crop, but also for the plot types within which these crops get cultivated. This

added dimensionality adds to the complexity, and makes the problem interesting to solve.

To determine solutions, three relatively new SI metaheuristic algorithms were investigated. These

included the CS, FA and the GSO. To benchmark the relative merits of the solutions determined by

these metaheuristics, the GA was implemented. The results showed that the GSO delivered the best

fitness solution, although the FA performed the best on average. It was concluded that in a solution

space of constantly changing dimensions, the FA was the most consistent algorithm. However, the

FA also proved to be the most costly in terms of execution time performance.

3.8.1 The Taung Irrigation Scheme Case Study

The case study that was investigated related to the TIS, which neighbors the VIS. The TIS consisted

of a total of 3,764 ha’s of irrigated land, yet another 1,750 ha’s were being allocated for the production

of 10 different crops for restitution purposes. The irrigated water supplied to the TIS is also supplied

via the Vaalharts Canal System, although the Taung Dam lay nearby. Irrigated water is supplied to

the TIS at a quota of 8,417 m3ha-1annum-1. A water charge of 8.77 cents/m3 needs to be paid to the

Vaalharts Water User Association (WUA). Table 3.3 presents the crops statistics of the dataset used.

3 Chetty, S. and Adewumi, A.O. 2013. “Studies in Swarm Intelligence Techniques for Annual Crop Planning

Problem in a New Irrigation Scheme”, South African Journal of Industrial Engineering, Vol 24, pp. 3.

68

Table 3.3 lists the Crop Water Requirements (CWR’s), the average rainfall statistics (AR), the

producer prices per ton of yield (ZAR t-1), the expected yield per crop (t ha-1), the average fraction of

irrigated water applied per hectare per crop with 𝐹𝑅𝑘𝑖𝑗 ∈ [0,1], the cost of the irrigated water per

hectare (𝐶_𝐼𝑅𝑘𝑖𝑗), and the operational costs of production per crop (𝑂𝑘𝑖𝑗).

Table 3.3: Dataset for the Taung Irrigation Scheme Case Study

Crops CWR (mm) AR (mm) ZAR t-1 t ha-1 𝑭𝑹𝒌𝒊𝒋 𝑪_𝑰𝑹𝒌𝒊𝒋 𝑶𝒌𝒊𝒋

Lucerne (p) 1,445 444.7 1,185.52 16.0 1 877.26 6,259.52

Tomato (s) 1,132 350.8 4,332.00 50.0 1 685.11 71,478.00

Pumpkin (s) 794 279.0 1,577.09 20.0 1 451.66 10,408.80

Maize (s) 979 279.0 1,321.25 9.0 1 613.90 3,924.09

Ground Nut (s) 912 339.5 5,076.00 3.0 1 502.08 5,025.24

Sunflower (s) 648 314.9 3,739.00 3.0 1 292.13 3,701.61

Barley (w) 530 58.3 2,083.27 6.0 1 413.68 4,124.88

Onion (w) 429 177.0 2,397.90 30.0 1 221.00 23,739.30

Potato (w) 365 152.8 2,463.00 28.0 1 186.10 22,758.12

Cabbage (w) 350 152.8 1,437.58 50.0 1 172.94 23,720.00

The dataset presented in Table 3.3 is referenced for future research in this area.

3.9 Experimental Results

The dataset used for this experiment is the dataset listed in Table 3.2 under section 3.7.1. This dataset

relates to the VIS. Table 3.4 gives the lower and upper bound settings, the fixed costs of production

(𝐹𝑘𝑖𝑗), as well as the demand equations used for the experiment. For the purpose of simulation,

demand equations were formulated for each crop using the statistics of the equilibrium price ton-1 of

yield (i.e. the 𝑀𝑃𝑘𝑖𝑗), and the hectares allocated (i.e. the 𝐻𝑘𝑖𝑗).

The parameter settings of metaheuristic algorithms influence their performance per problem instance.

Therefore, for fair algorithmic comparisons for this problem instance, experiments will be performed

to determine the appropriate parameter settings for each metaheuristic algorithm. Determining the

parameter settings will be the first set of experiments. Once the parameter setting for the algorithms

have been determined, the second set of experiments will be performed for the algorithmic

69

comparisons. The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution at each iteration, for all experiments will be determined as

follows: randomly select a crop, and thereafter randomly select its hectare allocation.

Table 3.4: Parameter settings per crop

Crops 𝑳𝒃𝒌𝒊𝒋 𝑼𝒃𝒌𝒊𝒋
𝑭𝒌𝒊𝒋

(ZAR)

𝑬𝑷𝒌𝒊𝒋

(Demand Eq.)

Pecan Nuts (p) 50 300 875,000 30*X + 500

Wine Grapes (p) 100 500 2,864,250 5*X + 510

Olives (p) 100 800 2,700,000 7*X – 300

Lucerne (p) 7,000 8,000 948,416 (2/5)*X + 1814.48

Cotton (s) 1,000 3,000 393,750 2*X + 500

Maize (s) 5,000 8,000 8,323,875 X/4 - 303.75

Groundnuts (s) 4,500 9,500 1,522,800 X/2 + 1576

Barley (w) 100 300 7,249,779.6 10*X + 83.27

Wheat (w) 10,000 15,000 1,565,740.8 X/6 + 174.64

For problem instances where the optimal solution is known, the objective in comparing algorithmic

performances is to monitor which algorithm will determine the optimal solution in the shortest

computational time. Therefore, with this being the intent, the parameter settings would need to be

adjusted accordingly. Another alternative, in comparing algorithmic performances, is to run

simulations for a fixed number of iterations. With this approach, the parameter settings would need

to be adjusted to make the most effective use of the limited computational time available. One

possible problem with this approach is that if the metaheuristic algorithm shows a clear convergence,

in leading towards its best solution, this strategy would be ineffective if the termination were to be

done before this point of convergence. Therefore, for these reasons, the stopping criterion adopted in

this study is to execute the termination of the algorithms at their points of convergence.

Convergence is the point where further improvements in the solution quality would yield minimal

benefits compared to the relatively large number of iterations required to yield those minimal benefits.

Therefore, in this study, convergence will be detected when no further improved best solution is found

for a large number of iterations. For the experiments to determine the parameter settings, a total of

30,000 idle iterations will be used to detect convergence. Thereafter, in comparing algorithmic

performances, a total of 50,000 idle iterations will be used to detect convergence.

70

The experiments run to determine the parameter settings for the probability factor (𝑝𝑎) and the 𝑃𝐿

size of the eBPA and the BPA can be seen in Figures 3.3 to 3.9 below. In Figure 3.3 and 3.7, the 𝑃𝐿

size remained fixed at 50, while the 𝑝𝑎 values were randomly selected from within the range of 0 <

𝑝𝑎 ≤ 0.15 for the eBPA, and 0 < 𝑝𝑎 ≤ 0.25 for the BPA. This was per run for a total of 100 runs

per experiment, in using the same initial solutions. Figure 3.4 is a zoomed in image of Figure 3.3, and

Figure 3.8 is a zoomed in image of Figure 3.7. The zoomed in images show more clearly the best

solutions determined.

Figure 3.3 and Figure 3.7 show that with probability factors below 0.0781 and 0.886 respectively,

many solutions were determined which were found in regions that were far away from those of the

best solutions found. However, it is seen that in both of these figures that there are no distinguished

best values for the 𝑝𝑎 values, as competitive solutions can be seen scattered throughout the probability

ranges. This shows that irrespective of the values of the 𝑝𝑎’s, the eBPA and the BPA would find good

neighborhood regions with more consistency if the probability factors were to be greater than 0.077

and 0.885 respectively. The best solution determined for the eBPA, as seen in Figure 3.4, had a

probability factor of 0.128 (truncated to three decimal places). The best solution determined for the

BPA, as seen in Figure 3.8, had a probability factor of 0.121 (truncated to three decimal places).

Therefore, for the rest of the experiments, the probability value of 𝑝𝑎 = 0.128 will be used for the

eBPA, and the probability value of 𝑝𝑎 = 0.121 will be used for the BPA.

For the experiments run to determine the 𝑃𝐿 size’s of the eBPA and the BPA, the probability value

of 𝑝𝑎 = 0.128 remained constant for the eBPA, and the probability value of 𝑝𝑎 = 0.121 remainded

constant for the BPA. The values of the 𝑃𝐿 size’s were then randomly selected from within the range

of 1 ≤ 𝑃𝐿_𝑠𝑖𝑧𝑒 ≤ 200 for each algorithm per experiment. Again, this was per run for a total of 100

runs per experiment, in using the same initial solutions. For the eBPA, the results are seen in Figures

3.5 and 3.6. For the BPA, the results are seen in Figure 3.9. Figure 3.6 is a zoomed in image of Figure

3.5.

From Figures 3.5 and 3.6, it is seen that the most consistent performances were determined in using

𝑃𝐿 sizes within the range of 18 to 112 for the eBPA. From Figure 3.9, it is seen that the most consistent

performances were determined using 𝑃𝐿 sizes greater than 132. However, it is again observed that

the eBPA and the BPA determined competitive solutions throughout the 𝑃𝐿 size ranges. For the

71

eBPA, the best solution had a 𝑃𝐿 size of 69; this value will be used for the algorithmic performance

comparison tests. For the BPA, the best solution had a 𝑃𝐿 size of 164; this value will be used for the

algorithmic performance comparison tests.

With the termination criterion to be set at 𝑥 (i.e. either 30,000 or 50,000) idle iterations, the strategy

to be used to reduce of the 𝑃𝐿 size for the eBPA, until a size of 1 is reached, will be as follows: If

half of the termination number of idle iterations have been reached (i.e. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛/2), divide the remaining number of iterations by the current 𝑃𝐿 size

(i.e. 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)/𝑃𝐿_𝑠𝑖𝑧𝑒). If

the lower bound plus the reduction criterion (i.e. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛)

equates to the current number of idle iterations then reduce the 𝑃𝐿 size by 1. The reduction of the 𝑃𝐿

has the dual purpose of increasing exploitation, as well as eliminating the possibilities of cycling for

𝑃𝐿 sizes greater that one.

Figure 3.3: Fitness values determined using randomly selected

probability factors at a fixed PL size of 50

Figure 3.4: Zoomed in image of Figure 3.3

0.077090105,
336788740

335500000

336000000

336500000

337000000

337500000

338000000

338500000

0 0.05 0.1 0.15

Fi
tn

es
s

V
al

u
e

(Z
A

R
)

Probability

eBPA: Fitness Values of Variable Probability at a Fixed
Performance List Size

PL_s𝑖𝑧𝑒 = 50

0.128687418,
338347584

338260000

338270000

338280000

338290000

338300000

338310000

338320000

338330000

338340000

338350000

338360000

0 0.05 0.1 0.15

Fi
tn

es
s

V
al

u
e

(Z
A

R
)

Probability

eBPA: Fitness Values of Variable Probability at a Fixed
Performance List Size (zoomed)

PL_s𝑖𝑧𝑒 = 50

113, 336794815

336600000

336800000

337000000

337200000

337400000

337600000

337800000

338000000

338200000

338400000

338600000

0 50 100 150 200

Fi
tn

es
s

V
al

u
e

(Z
A

R
)

Performance List Size

eBPA: Fitness Values of Variable Performance List Sizes at
Fixed Probability 𝑝𝑎= 0.128

17, 338211637

69, 338350015

338140000

338190000

338240000

338290000

338340000

338390000

0 50 100 150 200

Fi
tn

es
s

V
al

u
e

(Z
A

R
)

Performance List Size

eBPA: Fitness Values of Variable Performance List Sizes at
Fixed Probability (zoomed) 𝑝𝑎= 0.128

72

Figure 3.5: Fitness values determined using randomly selected

PL sizes at a fixed probability factor of 0.128

Figure 3.6: Zoomed in image of Figure 3.5

Figure 3.7: Fitness values determined using randomly selected

probability factors at a fixed PL size of 50

Figure 3.8: Zoomed in image of Figure 3.7

Figure 3.9: Fitness values determined using randomly selected PL sizes at a fixed probability factor of 0.121

The experiments run to determine the parameter settings for SA are seen in Figures 3.10 and 3.11

below. In Figure 3.10, the initial temperature 𝑇 was fixed at 100, while the cooling factor 𝛼 had been

randomly selected from within the range of 0.95 ≤ 𝛼 < 1. This was done per run for a total of 100

runs in using the same initial solution. The cooling factor 𝛼 controls the rate of convergence, and

decreases 𝑇 using the equation 𝑇 = 𝑇 ∗ 𝛼. Therefore, the higher the value of 𝛼, the slower the rate

of convergence, and the more successful the annealing process will be. From Figure 3.10, it is

observed that the fitness qualities of the solutions were similar in having found similar neighborhood

regions. The best value of 𝛼 seen is 0.96 (rounded off to two decimal places).

0.088578039,
336824492

336500000

336700000

336900000

337100000

337300000

337500000

337700000

337900000

338100000

338300000

338500000

0 0.05 0.1 0.15 0.2 0.25

Fi
tn

es
s

V
al

u
e

(Z
A

R
)

Probability

BPA: Fitness Values of Variable Probability at a Fixed
Performance List Size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 = 50 0.121826845,

338352926

338310000

338315000

338320000

338325000

338330000

338335000

338340000

338345000

338350000

338355000

338360000

0 0.05 0.1 0.15 0.2 0.25

Fi
tn

es
s

V
al

u
e

(Z
A

R
)

Probability

BPA: Fitness Values of Variable Probability at a Fixed
Performance List Size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 = 50

164, 338352973

132, 338327097

338305000

338310000

338315000

338320000

338325000

338330000

338335000

338340000

338345000

338350000

338355000

338360000

0 50 100 150 200

Fi
tn

es
s

V
al

u
e

(Z
A

R
)

Performance List Size

BPA: Fitness Values of Variable Performance List Sizes at
Fixed Probability 𝑝𝑎= 0.121

73

The value of 𝛼 = 0.96 remained fixed for the experiment related to Figure 3.11. In this experiment,

the initial temperature 𝑇 was randomly selected from within the range of 1 ≤ 𝑇 ≤ 500. This was

done per run for a total of 250 runs in using the same initial solution. More runs were needed to

determine 𝑇, as 𝑇 importantly controls the transition from exploration to exploitation. The parameter

settings for SA are more difficult to determine, and would explain the volume of research done on

SA. From Figure 3.11, it is seen that the best solution for 𝑇 was 226. Together with 𝛼 = 0.96, these

will be the parameter settings to be used for SA in performing the algorithmic comparison tests.

Figure 3.10: Fitness values determined using randomly

selected cooling factors, at a fixed initial temperature of 50

Figure 3.11: Fitness values determined using randomly

selected initial temperature values, at a fixed cooling factor of

0.96

The experiments run to determine the 𝐶𝐿 size for TS is seen in Figures 3.12 and 3.13. Figure 3.13 is

a zoomed in image of Figure 3.12. For this experiment, a recommended 𝑇𝐿 size of 7 was used (Glover,

1986). 𝐶𝐿 sizes were randomly selected from within the range of 1 ≤ 𝐶𝐿_𝑠𝑖𝑧𝑒 ≤ 500. This was done

per run for a total of 100 runs in using the same initial solution.

Figure 3.12 shows that 𝐶𝐿 sizes above 209 determined solutions that had fitness values which were

far from the best solution found. The best solution found, as seen more closely in Figure 3.13, had a

𝐶𝐿_𝑠𝑖𝑧𝑒 of 34. Figure 3.13 also shows a cluster of competitive solutions found around the 𝐶𝐿_𝑠𝑖𝑧𝑒

of 34. This indicates that a size of 34 is a good value to choose. These values are the parameter settings

that will be used for the TS in performing the algorithmic comparison tests.

0.960611544,
330918255

320000000

322000000

324000000

326000000

328000000

330000000

332000000

0.95 0.96 0.97 0.98 0.99 1

Fi
tn

es
s

V
al

u
es

 (
ZA

R
)

Cooling Factor

Fitness Values of Variable Cooling Factors at a Fixed Initial
Temperature 𝑇 = 100

226,
332777168

320000000

322000000

324000000

326000000

328000000

330000000

332000000

334000000

0 100 200 300 400 500

Fi
tn

es
s

V
al

u
es

 (
ZA

R
)

Initial Temperature

Fitness Values of Variable Initial Temperatures at a Fixed
Cooling Factor 𝛼 = 0.96

74

Figure 3.12: Fitness values determined by randomly selecting

the CL size values

Figure 3.13: Zoomed in image of Figure 3.12

As can be seen from Figures 3.3, 3.5, 3.7 and 3.9 the parameter settings for the eBPA and the BPA

did not significantly hinder its performances. This is an interesting observation in being compared to

an algorithm such as SA which requires more effort to set its parameter values.

For the second experiment, in comparing the algorithmic performances, the parameter settings

determined from the first set of experiments were used. For this experiment, a total of 50 runs per

metaheuristic algorithm were executed. The termination criterion was 50,000 idle iterations. For each

of the 50 runs, per algorithm, the same initial randomly generated solution was passed in as an input

parameter to each algorithm. The experiments performed, together with these test criterion, were

sufficient to ensure fair algorithmic comparison tests. From the 50 solutions determined by each

algorithm, their overall best and average solutions are documented. Their 95% Confidence Interval4

values are also documented for their fitness values.

Table 3.5: Average execution time performances (AVG) in milliseconds (ms)

Methods AVG (ms)

BPA 218,093

eBPA 148,178

TS 52,367

SA 33,029

4 The Confidence Interval (CI) indicates the reliability of an interval estimate of population parameters. 95%

CI means to be 95% certain that the population parameters will lie within the interval estimate range.

210, 318741732

34, 338327841

315000000

320000000

325000000

330000000

335000000

340000000

0 100 200 300 400 500

Fi
tn

es
s

V
al

u
e

(Z
A

R
)

Candidate List Size

Fitness Values of Variable Candidate List Sizes

𝑇𝐿_𝑠𝑖𝑧𝑒 = 7 34, 338327841

335500000

336000000

336500000

337000000

337500000

338000000

338500000

0 100 200 300 400 500

Fi
tn

es
s

V
al

u
e

(Z
A

R
)

Candidate List Size

Fitness Values of Variable Candidate List Sizes (zoomed)

𝑇𝐿_𝑠𝑖𝑧𝑒 = 7

75

In Table 3.5, the average execution times reflect on the number of best solutions found by each

metaheuristic algorithm. Reason being, each time the best solution had been improved upon, the

counter for the idle number of iterations had been reset. As can be observed, the BPA and the eBPA

best solutions were improved upon significantly more times than TS and SA. However, the BPA did

find more improved solutions over that of the eBPA. The BPA and the eBPA were thus intelligent in

finding more promising neighborhood regions within the confines of the solution space. This was

followed by TS and then SA.

Table 3.6 gives the statistical values of the overall best and average fitness value solutions (i.e. BFV

and AFV respectively). The 95% CI values are also given, along with the initial solution (IS). The

fitness value refers to the total gross profit earned.

Table 3.6: Statistics of the best and average fitness values solutions, along with the 95% CI values

Methods BFV (ZAR) AFV (ZAR) 95% CI

IS 290,775,157 N/A N/A

BPA 338,353,400 338,349,798 AFV ± 725

eBPA 338,351,684 338,345,193 AFV ± 1,203

TS 338,340,881 337,493,100 AFV ± 261,742

SA 330,721,884 327,791,514 AFV ± 425,002

It is observed that each algorithm determined best solutions that improved upon the initial solution

(IS). The BPA marginally determined the best BFV and AFV solutions over the eBPA, and had the

lowest 95% CI value. This was then followed by the TS and SA algorithms. The BPA BFV solution

determined a gross profit of ZAR 1,716, ZAR 10,803, ZAR 7,629,800 and ZAR 47,576,527 more

than that of the eBPA, TS, SA and the IS respectively. Graphical comparisons of the metaheuristic

statistics as given in Table 3.6 is seen in Figure 3.14 below. The 95% CI values are represented as the

black interval estimates over the average fitness value towers.

76

Figure 3.14: The best and average fitness values, along with their 95% CI estimates

Visually, it is seen that the differences between the best fitness value performances of the BPA, eBPA

and TS were minimal. Yet on average, the BPA and the eBPA performed significantly better than TS.

The BPA has also shown more consistency in having determined the lowest 95% CI estimate. This

was only a marginal improvement over that of the eBPA. Having determined the best BFV and AFV

solutions, along with the lowest 95% CI value, concludes that the BPA was the strongest and most

consistent metaheuristic algorithm for this problem instance. However, the BPA overall performance

was only marginally better than that of the eBPA for this continuous optimization problem.

The strengths of the BPA and the eBPA are attributed to their techniques employed in maintaining

the solutions registered in their memory structures. The 𝑃𝐿 structures of both algorithms maintain a

limited number of the best solutions found, at any given time, while traversing throughout the solution

space. This maintenance is based on the idea of allowing solutions that meet the minimum criterion

to be allowed admittance into the 𝑃𝐿 memory structures. The minimum criterion is that the fitness

value of the worst solution must at least be improved upon with regards to the BPA, or at least be met

with regards to the eBPA. If the admittance criterion of each algorithm were to be satisfied, then the

design variables of the new solutions must be unique to be allowed admittance. Updates of the 𝑃𝐿’s

are then performed by replacing the worst solution in the memory structures with that of the new.

Thereafter, for the BPA, the sorted order of the memory structure must be maintained. For the eBPA,

the indices referencing the 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 and 𝑤𝑜𝑟𝑠𝑡 solutions would need to be re-determined.

These techniques, along with the strategy of their probability factors in attempting to escape local

entrapment, and the strategic reduction of the 𝑃𝐿 size for the eBPA, have shown to be an effective

blend in traversing the solution space effectively for this problem instance.

0.326

0.328

0.33

0.332

0.334

0.336

0.338

0.34

BPA eBPA TS SA

Fi
tn

es
s

V
al

u
es

 (
ZA

R
/B

ill
io

n
)

Best and Average Fitness Values with 95% CI

BFV AFV

77

Table 3.7: Statistical values of the irrigated water requirements (IWR) and the costs of production (CP)

Methods IWR (m3) CP (ZAR)

IS 244,491,000 156,924,202

BPA 241,997,367 154,799,322

eBPA 241,997,311 154,799,423

TS 241,998,185 154,799,348

SA 242,760,335 154,985,403

Table 3.7 gives the statistical values of the irrigated water requirements (IWR), and that of the costs

of production (CP). As can be observed, each algorithm determined improved irrigated water

allocation solutions over that of the IS. Interestingly, the CP values were also lower although the gross

profit margins were higher.

From all algorithms, the eBPA determined a solution that required the least volume of irrigated water.

The eBPA determined a solution that required a volume of 2,493,689 m3 less than that of the IS. This

was followed by the BPA, which required a volume of 2,493,633 m3 less. Thereafter, TS required a

volume of 2,492,815 m3 less. Finally, SA required a volume of 1,730,665 m3 less. These solutions

conform to the objective of yielding higher returns per unit of irrigated water consumed. At the quota

of 9,140 m3ha-1annum-1, these savings would be able to supply irrigated water to an additional 272.83,

272.82, 272.7 and 189.3 hectares of agricultural land by the eBPA, BPA, TS and SA algorithms

respectively. A visual representation of the irrigated water allocation solutions is seen in Figure 3.15

below.

Figure 3.15: Irrigated water requirements (IWR) of the initial solution (IS) and that of the metaheuristic solutions

0.2415

0.242

0.2425

0.243

0.2435

0.244

0.2445

IS BPA eBPA TS SA

V
o

lu
m

e
(m

3/
B

ill
io

n
)

Irrigated Water Requirements

78

Figure 3.16 shows graphical comparisons of the hectare allocation solutions. The BPA, eBPA and the

TS show to have determined similar solutions. The metaheuristic solutions are also seen to be

comparable to that of the IS due to the constraints of the lower and upper bound settings.

Figure 3.16: Comparison of the hectare allocation solutions per crop

The statistics of the hectare allocations (ha crop-1), IWR, and the CP values of the initial and that of

the best metaheuristic solutions are seen in Tables 3.8 and 3.9 below.

Table 3.8: Statistics of the initial (IS) and metaheuristic solutions per crop

Crops Methods ha’s crop-1 IWR (m3) CP (ZAR)

Pecan Nuts

IS 100 1,155,300 597,153.143

BPA 50 577,650 254,826.6

eBPA 50.003 577,685.304 254,847.493

TS 50.001 577,662.84 254,834.181

SA 174.722 2,018,562.036 1,108,738.936

Wine Grapes

IS 300 1,497,600 1,849,889.52

BPA 499.971 2,495,856.1 3,210,253.1

eBPA 499.995 2,495,977.51 3,210,418.552

TS 499.751 2,494,757.158 3,208,755.529

SA 430.796 2,150,534.609 2,739,669.671

Olives

IS 400 3,021,200 2,114,959.24

BPA 750.029 5,664,967.7 4,096,961.8

eBPA 749.99 5,664,672.134 4,096,740.2

TS 750.215 5,666,375.011 4,098,016.827

SA 604.264 4,564,003.826 3,271,581.702

0

2000

4000

6000

8000

10000

12000

H
ec

ta
re

s

Seasonal Land Allocations Per Crop Type

IS BPA eBPA TS SA

79

Table 3.9: Statistics of the initial (IS) and metaheuristic solutions per crop

Crops Methods ha’s crop-1 IWR (m3) CP (ZAR)

Lucerne

IS 7,500 75,022,500 40,722,449.25

BPA 7,000 70,021,000 37,122,431

eBPA 7,000.012 70,021,117.62 37,122,515.7

TS 7,000.033 70,021,327.18 37,122,666.53

SA 7,090.218 70,923,452.63 37,772,005.34

Cotton

IS 2,000 6,272,000 9,475,054.4

BPA 3,000 9,407,999.8 15,000,081

eBPA 2,999.988 9,407,960.899 15,000,012.71

TS 2,999.828 9,407,459.508 14,999,129.36

SA 2,987.453 9,368,653.092 14,930,759.94

Maize

IS 6,500 45,500,000 23,809,100

BPA 7,999.995 55,999,965 30,675,552

eBPA 7,999.944 55,999,604.87 30,675,316.6

TS 7,999.779 55,998,450.03 30,674,561.4

SA 7,986.315 55,904,203.44 30,612,928.84

Ground Nuts

CP 7,000 40,075,000 32,193,977.5

BPA 4,500.005 25,762,529 18,248,800

eBPA 4,500.069 25,762,894.54 18,249,155.67

TS 4,500.394 25,764,754.36 18,250,967.76

SA 4,526.232 25,912,678.59 18,395,095.89

Barley

IS 200 943,400 791,047.98

BPA 100 471,700.98 333,026.84

eBPA 100.001 471,707.002 333,032.689

TS 100.001 471,703.748 333,029.529

SA 224.294 1,057,994.541 902,319.617

Wheat

IS 12,000 71,004,000 45,370,570.8

BPA 12,100 71,595,699 45,857,390

eBPA 12,099.999 71,595,691.22 45,857,383.66

TS 12,099.999 71,595,695.3 45,857,387.02

SA 11,975.706 70,860,252.72 45,252,302.99

80

3.10 Conclusion

This study further contributes to the recently introduced ACP problem in the literature. In this study,

a new mathematical formulation for the ACP problem has been presented. It is based on the market

economic factors of the economy of scale, and the demand and supply relations.

The objective of the ACP problem is to optimize resource allocation solutions in crop planning. The

ACP problem was motivated due to the increased concerns of water scarcity, and that of the other

limited resources available for crop production. In spite of the limited resources made available, more

output is expected per unit due to increases in food demands. The ACP problem is a relevant problem

in crop planning, within the agricultural sector.

In determining solutions, the BPA and the eBPA have been investigated. Their solutions were

compared against those of the TS and SA algorithms. To ensure fairness in performing the algorithmic

comparisons, experiments were run to determine the appropriate parameter settings for each of the

metaheuristic algorithms. The termination criterion of each algorithm was a fixed number of idle

iterations. This represented the point of convergence.

The results show that the techniques employed by the BPA and the eBPA were very effective, for

this continuous optimization problem. The BPA marginally determine the overall best solutions over

that of the eBPA.

81

Chapter Four:

The enhanced Best Performance Algorithm for the

Travelling Salesman Problem

4.1 Introduction

The Travelling Salesman Problem (TSP) is defined as the problem of finding the minimal tour which

traverses a list of 𝑛 cities in a way in which every city is visited exactly once, except for the original

city of departure where the salesman would start and finish. The problem is accounted to Euler in

1759, who presented a problem of trying to move a knight to every block on a chest board exactly

once. The problem gained fame in a handbook written by B. F. Voigt in 1832 (Michalewicz, 1994).

It was afterwards mathematically formulated by mathematicians W. R. Hamilton and Thomas

Penyngton Kirkman. Detailed descriptions of the mathematical formulations are given in the book

titled “Graph Theory 1736-1936” (Biggs et al., 1986).

Several classifications of TSP’s exist. The most notable are the symmetric Travelling Salesman

Problem (sTSP), asymmetric Travelling Salesman Problem (aTSP), and multiple Travelling

Salesman Problem (mTSP) (Matai et al., 2010). For sTSP’s, the distance traveled from city 𝑖 to city

𝑗 is the same as the distance travelled from city 𝑗 to city 𝑖. In graph theory, this constitutes a bi-

directional graph. aTSP’s on the other hand are characterized by directed graphs, i.e. the distance

travelled from city 𝑖 to city 𝑗 will not necessarily be the same as the distance travelled from city 𝑗 to

city 𝑖. The practical significance of this problem include problems with one-way streets, traffic

collisions, and the differences between the arrival and departure fees from airports, amongst others.

mTSP’s are the problems of finding the minimum tour of 𝑚 travelling salesman, who start and finish

at the same city in having every intermediate city visited exactly once.

This study implements instances of sTSP’s, in investigating the abilities of the eBPA. The TSP is

defined as follows (Lin, 1965);

82

Given a set of 𝑛 cities, a maximum travelling distance 𝐷, and for every pair of adjacent cities 𝑣𝑖 and

𝑣𝑗 a travelling distance 𝑑(𝑣𝑖 , 𝑣𝑗) (∀ 𝑖, 𝑗 = 1,2, … , 𝑛). The objective is to find a permutation 𝑃 =

 𝑣𝑝1
, 𝑣𝑝2

, … , 𝑣𝑝𝑛
 that minimizes the travelling distance in satisfying the constraint,

∑ 𝑑(

1≤𝑖<𝑛

𝑣𝑝𝑖,𝑣𝑝𝑖+1
) + 𝑑(𝑣𝑝𝑛,𝑣𝑝1

) ≤ 𝐷 (4.1)

A straightforward approach to the sTSP is to compute all possible permutations in determining the

optimal tour for an 𝑛 city problem. However, the number of permutations is 𝑛!, with the running time

being O(𝑛!). The problem is thus exponential, relative to 𝑛. Also, the total number of possible routes

covering all cities is (n-1)!/2. As a startling example, it would take an estimated time of 5 × 1048

years to determine the optimal solution for a problem of size 𝑛 = 50, if it were run on a mainframe

computer executing 100 million instructions per second (Yan et al., 2012).

The TSP is one of the most studied problems in discrete optimization. Mathematicians took particular

interest in the 1930’s; by the 1960’s, the problem gained increased popularity. Due to the practical

applicability of TSP’s, and the complexity involved with determining optimal solutions, this problem

has been significantly researched.

The complexity of the problem was proved by Richard. M. Karp (Karp, 1972). Karp proved the 𝑁𝑃-

Completeness of the Hamiltonian Cycle problem, implicitly proving the 𝑁𝑃-Hardness of the TSP.

This gave explanation to the apparent difficulty of determining optimal solutions.

Since then, large numbers of exact and approximate algorithms have been developed to determine

solutions to TSP’s. Nowadays, problem instances of up to 89,500 cities have been solved to

optimality. Also, problems with cities into the millions have been solved to near-optimality using

approximation techniques (Johnson and McGeoch, 1997). The TSP is also used as a standard

benchmark problem in comparing the performances of optimization techniques, which is the purpose

of this study.

The rest of this chapter is structured as follows. Section 4.2 describes examples of real-world

applications of TSP’s. Section 4.3 give descriptions of previous research work. Section 4.4 lists the

83

ten benchmark test instances to be implemented. Section 4.5 gives an overview of the investigation

to follow. Section 4.6 presents and discusses the experimental results. Finally, section 4.7 draws

conclusions and outlines possible future work.

4.2 TSP Applications

The TSP problem has practical significance in the real-world. This accounts for the interest in the

problem. To-date, several commercial TSP solver applications have been developed. These solvers

play significant roles in the industry, were time and cost factors are important. One of the biggest

applications of the TSP is in transportation. A simple example of this is the scheduling of stacker

cranes in warehouses. Brief descriptions of other real-world applications are given below.

4.2.1 NASA Starlight Space Interferometer Program

A team of engineers at Hernandez Engineering in Houston, and at Brigham Young University, studied

the problem of trying to optimize the sequence of celestial objects to be imaged. The objective was

to minimize the usage of fuel, in performing targeting and imaging maneuvers for the pair of satellites

involved in the mission. In this problem, celestial objects were represented as cities, and distance was

the quantity of fuel needed to reposition the two satellites from one image to the next (Bailey et al.,

2001).

4.2.2 Circuit Board Problems

In the circuit board problem, a machine operating on a circuit board would need to be programmed

in a way to complete a set of tasks at different co-ordinate positions on the board. After completing

the set of tasks, the machine would returned to its starting position before another board is set for

another set of tasks to be completed.

One example of this is the circuit board construction and board cutting problem. Here, a set of cut

and add operations are performed on a circuit board at different co-ordinate positions, before another

board is set for a similar set of operations to be performed. The problem of optimizing the time taken

to perform these operations, at different co-ordinate positions, is a TSP (Matai et al., 2010).

84

Another related circuit board problem is the drilling of holes on a circuit board. On a circuit board,

several holes would need to be drilled at different co-ordinate positions and of different diameters.

Holes of the same diameter can be drilled together in one task. After the task is completed, the head

of the machine is reset for drilling the next set of holes of a different diameter. This problem was

modeled as a series of TSP’s. Here, for each different diameter, cities represented the co-ordinate

positions of each hole to be drilled, and the distance between these co-ordinate positions was the time

taken to move from one hole to the next (Grötschel et al., 1991).

4.2.3 Nozzle Guide Vane Placement Problem

When the turbine engine of an aircraft is overhauled, a detailed inspection can be performed upon

dis-assembling the engine. Of particular interest is the turbine section of the engine which contains

nozzle-guide vanes (or simply vanes) that accelerate, deflects and distributes the flow of gas that

drives the turbine motor. The more efficient the distribution of gas about the circumference of the

turbine motor, the more efficient will be its performance. The benefits of uniform gas distribution

include reduced engine vibrations and reduced fuel consumption. The problem is that due to very

high temperatures, and the velocities of the gas flow, the vanes would wear out and would need to be

refurbished or replaced. Each vane has individual characteristics for the distribution of the gas, which

is affixed about the circumference of the turbine engine. Therefore, upon replacing the damaged vanes

(with either new or refurbished vanes, which may or may not be identical), the operator is faced with

the challenge of sequencing the set of vanes about the circumference of the nozzle in an attempt to

attain uniformity in the gas flow. The problem of the correct placements of the vanes have been

modeled as a TSP (Plante et al., 1987).

4.2.4 Order Picking Problem

This problem is associated with collecting a list of items which are stored at a warehouse. Upon

receiving an order, the warehouse dispatches a vehicle to collect the list of stored items. The objective

of the problem is to minimize the distance travelled by the vehicle in collecting all items. In relation

to the TSP, the location of an item is represented as a city, and distance is the distance travelled

between items. The problem of finding the shortest route is thus a TSP (Ratliff and Rosenthal, 1983).

85

4.3 Algorithmic Approaches and Previous Research

The two main factors in choosing an algorithm to solve a TSP is execution time and the quality of a

tour. Due to the exponential time complexity involved with TSP’s, exact algorithms are preferable

for smaller instances which can be solved within polynomial time complexity (𝑃). However, for larger

instances, where the optimal solution cannot be determined within 𝑃, heuristic methods are

preferable. Common heuristics for TSP’s include the tour construction and tour improvement

heuristics (Hjertenes, 2002).

Tour construction methods seek to construct a valid TSP tour from an unordered list of cities. The

algorithm stops when a solution is found, and does not attempt to improve upon it. These algorithms

run relatively fast and are believed to determine solutions within 10%-15% of the optimal solution.

Ideally, they are used as inputs to local search heuristic algorithms. Popular tour construction

algorithms include the Nearest Neighbor (NN), Greedy, Clarke Wright and Christofides algorithms

(Davendra, 2010).

Tour improvement algorithms start off with a completed tour; it is preferable if the completed tour

were to be generated by a tour construction heuristic. It then attempts to improve on this solution by

searching the neighborhood regions of the solution space in trying to find improved solutions. It stops

when the optimal solution has been found, or when the stopping criteria is satisfied. Several local

search approximation algorithms have been studied for the TSP. The most successful include: 2-opt,

3-opt, 𝜆-ops and Lin-Kernighan (LK) (Davendra, 2010). 𝜆-opt algorithms involve iteratively

removing 𝜆 edges, and replacing these with different edges in reconnecting the tour. The objective is

to find shorter tours without cycles. LK is a 𝜆-opt heuristic which dynamically determines suitable

values for 𝜆, per iteration. Most 𝜆-opt moves can be performed as sequential moves. The simplest

non-sequential move is the 4-opt move, which is called the double-bridge move (Lin and Kernighan,

1973).

Metaheuristic algorithms differ from pure heuristic algorithms by accepting dis-improved solutions

in escaping local entrapment (Glover, 1990). The intelligence of accepting dis-improved solutions

could lead the search to other neighboring regions, which may possibly contain higher quality

86

solutions. Several metaheuristic algorithms have been investigated for TSP’s. Common examples

include: the GA, Evolutionary Algorithms (EA’s), TS, SA, ACO, PSO and the FA.

Dorigo and Gambardella (1997) investigated the effectiveness of applying an artificial Ant Colony

System (ACS) to instances of sTSP’s and aTSP’s. Test instances ranged from 30 to 577 cities. The

ACS results were compared against the results of SA, NN, Self-Organization Map (SOM),

Evolutionary Programming (EP), GA and a hybridization of SA and GA which is called the

Annealing-Genetic Algorithm (AG). Results showed that in using the 3-opt technique, ACS

determined results as good as or even better than that of the other methods.

Tsai et al. (2004) presented an evolutionary algorithm called Heterogeneous selection Evolutionary

Algorithm (HeSEA) for solving large instances of TSP’s. HeSEA was developed integrating Edge

Assembly Crossover (EAX) and LK through family competition and heterogeneous pairing selection.

HeSEA was tested on 16 large instances of TSP’s ranging from 318 to 13,509 cities. The results of

HeSEA was compared against six other algorithms including SA, ACO, the Voronoi-crossover

Genetic Algorithm (VGA), the Compact Genetic Algorithm (CGA), Iterated LK (ILK) and TS

hybridized with LK called TLK. Results showed that HeSEA performed very competitively, and

executed faster in being compared to the other algorithms.

Kumbharana and Pandey (2013) investigated the FA for six instances of TSP’s ranging from 10 to 51

cities. FA was compared against ACO, GA and SA in determining solutions. Results showed that FA

outperformed the other algorithms in determining the best solutions for all six test instances

investigated.

Louis and Tang (1999) presented and interactive GA by implementing a divide and conquer technique

for determining solutions to instances of TSP’s. The divide and conquer technique had been

investigated due to the standard GA being computationally expensive for this problem. The technique

was used to divide the problem into smaller sub-problems, being solved separately, and then

recombined later to determine a final solution. The study showed that this technique significantly

reduced computation time compared to the standard GA. It also determined high quality solutions for

TSP’s ranging from 51 to 1084 cities.

87

Tasgetiren et al. (2007) presented a Discrete Particle Swarm Optimization (DPSO) algorithm for

determining solutions to sTSP instances ranging from 51 to 442 cities. Results were compared against

four heuristics, one exact and one metaheuristic algorithm. The heuristic algorithms included the GI

heuristic, NN, FST-Lagrangian and FST-Root. The exact algorithm was the Branch and Cut

procedure (B&C). The metaheuristic algorithm was GA. Results showed that DPSO, GA and FST-

Root determined the best performances.

Yan et al. (2012) presented a new PSO algorithm for minimizing the possibility of local entrapment.

The investigation was performed due to the weakness of population based metaheuristic algorithms

such as PSO and GA getting stuck in local optima. Ten sTSP’s were investigated. Results showed

that PSO performed more efficiently compared to GA in determining the best results for all test

instances.

Miki et al. (2003) presented a new SA algorithm which determined the maximum temperature setting

dynamically rather than using a static maximum temperature setting. This study was motivated due

to the difficulty of setting the maximum temperature parameter value for SA. This temperature,

together with the minimum temperature parameter value, importantly controls the acceptance

criterion in accepting dis-improved solutions. The algorithm presented, which was called the

Adaptive Simulated Annealing (ASA) algorithm, was tested in performing investigations on ten

TSP’s which ranged from 59 to 280 cities. The results showed that ASA was an effective technique

in considerably speeding up execution time performances without losing result quality in being

compared to that of the standard SA algorithm.

Yao (1992) presented a SA algorithm which dynamically reduced the neighborhood sizes in relation

to the temperature decreases, in determining solutions. The study was motivated due to SA generally

consuming much computational time in determining good solutions for difficult optimization

problems. The study was to investigate dynamic reduction of neighborhood sizes, in comparing

computational time to that of the standard SA algorithm. The results showed that the SA with dynamic

neighborhood size reductions outperformed the standard SA algorithm with fixed neighborhood sizes,

in execution time performance and result qualities, for the test instances of TSP’s.

Malek et al. (1989) investigated the abilities of SA and TS in serial and parallel simulation settings,

for seven instances of TSP’s. The problem instances ranged from 25 to 100 cities. The results showed

88

that TS consistently outperformed SA in the parallel environment in comparing execution time and

tour-length solutions.

Tsubakitani and Evans (1998) researched determining appropriate Tabu List (𝑇𝐿) sizes for TSP

instances. Test instances ranging from 20 to 100 cities were investigated. The conclusion was that 𝑇𝐿

sizes should be small enough to encourage exploitation, yet large enough to escape local entrapment.

A comparison of different 𝑇𝐿 sizes were investigated. The results showed that smaller 𝑇𝐿 sizes have

an advantage over larger 𝑇𝐿 sizes during earlier stages of the search.

4.4 Benchmark Test Instances

A popular library of TSP benchmark test instances is the TSPLIB collection which has been made

available online by Gerhard Reinelt. This collection is freely accessible.

The TSPLIB collection consists of several classes of benchmark datasets. These include: sTSP’s,

Hamiltonian Cycle Problem’s (HCP’s), aTSP’s, Sequential Ordering Problem’s (SOP’s) and

Capacitated Vehicle Routing Problem’s (CVRP’s). Many of these problems are based on examples

from printed circuit boards, VLSI applications, as well as the actual geographical locations of various

cities. For majority of these test instances the optimal tour-length is known, and in some cases the

optimal tour is also given. Therefore, based on different problem classifications, various levels of

complexity per problem, and the fact that the optimal tour-lengths are given for many test instances,

this collection has become popular amongst researchers in being used to compare performances of

optimization techniques. The largest test instance in this collection consists of 85,900 cities.

This study investigates ten sTSP benchmark test instances from this collection. The problem

instances, along with their characteristics, is given in Table 4.1. For each problem instance, the name,

the number of vertices, the distance calculation type, and the optimal tour-lengths are given.

The distance between the adjacent vertices of these test instances are calculated on a Euclidean 2D-

(EUC_2D) plane. The distance 𝑑𝑖𝑗 between adjacent vertices 𝑖 and 𝑗 is therefore computed to be;

 𝑑𝑖𝑗 = 𝑟𝑜𝑢𝑛𝑑√(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

 (4.2)

89

In equation (4.2), 𝑟𝑜𝑢𝑛𝑑 is a function that rounds to the nearest integer.

Table 4.1: Symmetric Travelling Salesman Problem test instances, and their characteristics

No. sTSP No. of Vertices Type Optimal Tour-Length

1 ch130 130 EUC_2D 6,110

2 ch150 150 EUC_2D 6,528

3 rat195 195 EUC_2D 2,323

4 tsp225 225 EUC_2D 3,916

5 a280 280 EUC_2D 2,579

6 lin318 318 EUC_2D 42,029

7 pcb442 442 EUC_2D 50,778

8 d493 493 EUC_2D 35,002

9 rat575 575 EUC_2D 6,773

10 d657 657 EUC_2D 48,912

4.5 Discussion

The eBPA, TS and SA algorithms are all single-point metaheuristic algorithms. However, the

differences in the fundamentals of their designs will cause each algorithm to traject differently

throughout the solution spaces.

SA is a memory-less search technique; it stochastically moves throughout the solution space primarily

based on randomization. TS is a memory-based search technique; it uses the advantage of memory to

intelligently select the next solution from within a local neighborhood region in advancing the search.

On the other hand, the eBPA takes advantage of the benefits of both randomization and memorization

in proceeding with the search. Thus, the eBPA lay in-between the memory-less and stochastic search

techniques such as the SA, and the memory-based search techniques such as the TS. Based on this

truth, together with investigations into the potentials of the eBPA being yet in the initial stages, the

eBPA will be compared against TS and SA for the test instances given in Table 4.1.

Generally, in employing metaheuristic algorithms to solve optimization problems, the parameter

settings of the algorithm would need to be set appropriately. However, the versatility and strength of

90

an algorithm can also be seen in its ability to determine solutions for multiple problem instances in

using the same parameter settings. Algorithms that are more versatile may be particularly beneficial

in scenarios where the parameter settings of the algorithm cannot be tweaked; for example, the

applications that run in a fully automated mode. The investigation done in this study is performed

from this perspective: use the same parameter settings for each metaheuristic algorithm investigated,

in solving multiple instances of the sTSP’s.

The problem instances differ in complexity, and range from 130 to 657 cities/vertices. This will

provide sufficient challenges to the algorithms for testing purposes. Each algorithm will be tested in

their abilities to determine solutions in using the same parameter settings. The strength of the solutions

determined by the eBPA will shed light on its abilities, in being compared to TS and SA. More

importantly, insight will be given on the eBPA ability to balance exploration, during the initial phases

of the search, and exploitation, during the final phases of the search.

4.6 Results and Discussion

The BPA will not be investigated in this chapter due to its weakness to discrete optimization

problems; this has been demonstrated in chapter two. In chapter two, it was proved that the BPA

performed very poor for a discrete optimization problem, even for a relatively simple instance of the

sTSP. For the following investigation on the sTSP’s, only the eBPA, TS and SA metaheuristic

algorithms will be investigated.

To solve the problem instances, we first employ the Nearest Neighbor (NN) tour construction

heuristic. This heuristic is used to provide the initial solution to each metaheuristic algorithm, per

problem instance. The NN heuristic is straightforward: it is implemented by starting off at the first

city, and thereafter it moves to the nearest adjacent unvisited city. The NN tour-length solutions are

given in Table 4.2. A tour-length solution is also referred to as the fitness value.

91

Table 4.2: Nearest Neighbor tour-length solutions for each problem instance

No. sTSP Nearest Neighbor Tour-Length

1 ch130 7,579

2 ch150 8,191

3 rat195 2,752

4 tsp225 5,030

5 a280 3,157

6 lin318 54,019

7 pcb442 61,979

8 d493 41,665

9 rat575 8,605

10 d657 61,627

In executing the metaheuristic algorithms, the solution at each iteration is determined by selecting the

best of six moves. The best move is the one that will result in the lowest fitness value. The six moves

employed are as follows:

1. 2-opt – The 2-opt move removes two edges from a complete tour. It then reconnects the tour by

introducing two new edges, which join the opposite ends of the removed edges. An illustration is

given in Figure 4.1.

Figure 4.1: 2-opt: (a) shows the completed tour; (b) shows that edges (1, 2) and (7, 8) have been removed,

while two new edges (1, 7) and (2, 8) have been introduced in reconnecting the tour

2. 3-opt – The 3-opt move is similar to the 2-opt, except that with 3-opt three edges are removed

instead of two. It is implemented as two sequential 2-opt moves; this results in two solutions. An

illustration is given in Figure 4.2.

1 2

3

4

5

6

7 8

9

10

11

12

1 2

3

4

5

6

7 8

9

10

11

12

(a) (b)

92

Figure 4.2: 3-opt: From initial solution (a), solutions (b) and (c) are determined by performing the first 2-

opt move, in removing edges (1, 2) and (7, 8). Thereafter, to determine solution (b), edge (4, 5) is removed

while keeping the removed edge (1, 2) constant in performing the second 2-opt move. Similarly, to

determine solution (c), edge (10, 11) is removed while keeping the removed edge (7, 8) constant in

performing the second 2-opt move

3. Double-bridge – The double-bridge move is a non-sequentially move (unlike 3-opt), which is

implemented by randomly dividing the completed tour into four segments; the tour is then

reconnected in the reverse order. An illustration is given in Figure 4.3.

Figure 4.3: Double-bridge move: (a) shows the completed tour; (b) shows that edges (1, 2), (4, 5), (7, 8)

and (10, 11) have been removed. The tour is then reconnected by introducing edges (1, 8), (10, 5), (7, 2)

and (4, 11)

4. Random swap – This move is implemented by randomly selecting two vertices from a complete

tour, and then swapping them. An illustration is given in Figure 4.4.

1 2

3

4

5

6

7 8

9

10

11

12

1 2

3

4

5

6

7 8

9

10

11

12

1 2

3

4

5

6

7 8

9

10

11

12

(b) (a) (c)

1 2

3

4

5

6

7 8

9

10

11

12

1 2

3

4

5

6

7 8

9

10

11

12

(a) (b)

93

Figure 4.4: Random swap move: (a) shows the completed tour; (b) shows that vertices 2 and 8 have been

swapped

5. Vertex reposition – This move is implemented by repositioning a randomly selected vertex at

a randomly selected position in the tour. An illustration is given in Figure 4.5.

Figure 4.5: Vertex reposition move: (a) shows the completed tour; (b) shows that vertex 8 has been

repositioned at location 2

The parameter settings for the algorithms will be as follows:

a) The parameter settings of SA will be according to the recommendations from the literature

(Soubeiga, 2003): The initial temperate (𝑇) will be set at 50% of the fitness of the initial

solution, while the cooling rate alpha (𝛼) will be set at 85%.

b) Likewise, the 𝑇𝐿 size of TS will be set at 7 (Glover, 1986; Malek et al., 1989). To determine

the 𝐶𝐿 size for TS, we make use of the test instance pr439 from the TSPLIB collection; pr439

is also a sTSP which has its distance calculated on the Euclidean 2D-plane. Determining the

𝐶𝐿 size for TS, and the parameter settings for the eBPA will be the first set of experiments.

(a)

1 2

3

4

5

6

7 8

9

10

11

12

1 8

3

4

5

6

7 2

9

10

11

12

(b)

1 2

3

4

5

6

7 8

9

10

11

12

1 8

2

3

4

5

6 7

9

10

11

12

(a) (b)

94

c) Since this is the first research on the eBPA for multiple problem instances on the TSP

problem, we make use of the pr439 problem to determine its parameter settings. The

parameter settings are for the probability factor (𝑝𝑎) and the 𝑃𝐿 size.

Once the set of experiments are run to determine the remaining parameter settings, all parameter

settings will remain constant for the second set of experiments. The second set of experiments will

be to compare the performances of the algorithms in using the same parameter settings, for the

multiple sTSP instances to be investigated.

For the first and second sets of experiments, the stopping criterion will be to terminate the execution

at the point of convergence. In this study, convergence will be detected when no further improvements

have been made to be 𝑏𝑒𝑠𝑡 solution for a large number of iterations. For the first set of experiments

(i.e. to determine the parameter settings) convergence will be set at 3% of idle iterations. For the

second set of experiments (i.e. in making algorithmic comparisons) convergence will be set at 5% of

idle iterations. The termination criterion will apply provided that a minimum of 106 iterations have

been executed. For example, if 106 iterations have executed, and the total number of consecutive idle

iterations is 50,000 (assuming we are referring to the second set of experiments), then the algorithms

will detect convergence and will terminate.

For the first set of experiments, each algorithm will be run 50 times to determine each parameter

value in using the pr439 problem. For the second set of experiments, each algorithm will be run 30

times per problem instance. 30 runs are sufficient in considering the large computational times

required; for example, for the u724 vertices problem the estimated execution time would have been

around 30 hours.

In using this termination criterion, the strategy to be used to reduce the 𝑃𝐿 size of the eBPA, until a

size of 1 is reached, is as follows: Calculate the total number of idle iterations required to detect

termination (i.e. 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑥% (𝑤ℎ𝑒𝑟𝑒 𝑥 = 3% 𝑜𝑟 5%) ∗

 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠). If half of the termination criterion has been reached (i.e.

𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛/2), divide the remaining number of iterations (i.e.

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) by the current 𝑃𝐿 size

(i.e. 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)/𝑃𝐿_𝑠𝑖𝑧𝑒). If

95

the minimum condition plus the reduction criterion equates to the current number of idle iterations

then reduce the 𝑃𝐿 size by 1.

The experiment run to determine the 𝐶𝐿 size for TS is seen in Figure 4.6. The 𝐶𝐿 size’s were randomly

selected from within the range of 1 ≤ 𝐶𝐿_𝑠𝑖𝑧𝑒 ≤ 1,000. This 𝐶𝐿 size range was considered due to

the NN solutions being used as the input to each algorithm per problem instance. For this reason,

greater levels of exploitation were required and thus a larger 𝐶𝐿 size range was considered. For the

50 runs, the 𝑇𝐿 size remained constant at size 7. Figure 4.6 shows that 𝐶𝐿 size’s below 200 determined

weaker solutions, and that the most competitive solutions fell within the range of 400 to 1000. The

best solution seen had a 𝐶𝐿 size value of 723. The 𝐶𝐿 size value of 723 will be the parameter value

to be used for the second set of experiments.

Figure 4.6: Fitness values determined by randomly selecting the CL size values

The experiments run to determine the probability factor (𝑝𝑎) and the 𝑃𝐿 size values for the eBPA is

seen in Figures 4.7 and 4.8. In Figure 4.7, the 𝑃𝐿 size remained fixed at 50, while 𝑝𝑎 was randomly

selected from within the range of 0 < 𝑝𝑎 ≤ 0.15. From Figure 4.7 it can be seen that, for the 50 runs,

the solutions are scattered throughout the entire probability range and roughly within the same height

of the fitness range. There is no specific value for the 𝑝𝑎 that is best suited for this problem instance

in favoring more competitive solutions. The best solution seen had a 𝑝𝑎 value of 0.045 (truncated to

three decimal places). This will be the value used for the rest of the experiments.

For the experiment run to determine the 𝑃𝐿 size (as seen in Figure 4.8), the value of 𝑝𝑎 = 0.045

remained constant, while the value of the 𝑃𝐿 size was randomly selected from within the range of

1 ≤ 𝑃𝐿_𝑠𝑖𝑧𝑒 ≤ 200. From the 50 runs, it can be seen that values greater than 130 determined the

723, 109446

105000

110000

115000

120000

125000

130000

135000

0 200 400 600 800 1000

Fi
tn

es
s

V
al

u
e

Candidate List Size

pr439: Fitness Values of Variable Candidate List Sizes

𝑇𝐿 𝑠𝑖𝑧𝑒 = 7

96

poorest solutions. The solutions determined in having used the values between that ranges of 50 to

130 determined competitive solutions; however, these solutions also show evidence of having

determined slightly weaker solutions. The most consistent and competitive cluster of solutions can

be seen within the value range of 4 to 31. The best solution determined had a 𝑃𝐿 size value of 10.

This value, together with 𝑝𝑎 = 0.045, are the parameter values that will be used for the eBPA in the

second set of experiments.

Figure 4.7: Fitness values determined using randomly

selected probability factors, at a fixed PL size of 50

Figure 4.8: Fitness values determined using randomly

selected PL sizes, at a fixed probability factor of 0.045

For the second set of experiments, the parameter values of all algorithms remained constant for all

the problem instances implemented. For each problem instance, each algorithm was run 30 times. As

mentioned previously, 30 runs per algorithm was sufficient due to the large computational times

consumed per run. For each algorithm per problem instance, their best and average fitness value

solutions (i.e. BFV and AFV respectively) have been documented. For the average fitness values,

their 95% CI values are also given. The statistical results of the runs are given in Table 4.3.

0.045876253,
111160

110000

111000

112000

113000

114000

115000

116000

117000

0 0.03 0.06 0.09 0.12 0.15

Fi
tn

es
s

V
al

u
e

Probability

pr439: Fitness Values of Variable Probability at a Fixed
Performance List Size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 = 50

10, 111530

130, 114530

110000

112000

114000

116000

118000

120000

122000

124000

126000

128000

0 50 100 150 200

Fi
tn

es
s

V
al

u
e

Performance List Size

pr439: Fitness Values of Variable Performance List Sizes at
Fixed Probability 𝑝𝑎 = 0.045

97

Table 4.3: Best, average and 95% Confidence Interval fitness values, for each algorithm per problem instance

sTSP
eBPA TS SA

BFV AFV 95% CI BFV AFV 95% CI BFV AFV 95% CI

ch130 6,144 6,261 AVG ± 26 6,208 6,305 AVG ± 57 6,124 6,228 AVG ± 24

ch150 6,563 6,643 AVG ± 23 6,563 6,664 AVG ± 23 6,543 6,683 AVG ± 30

rat195 2,330 2,359 AVG ± 2 2,356 2,375 AVG ± 4 2,379 2,429 AVG ± 10

tsp225 3,971 4,011 AVG ± 8 3,988 4,034 AVG ± 8 3,993 4,064 AVG ± 14

a280 2,637 2,677 AVG ± 7 2,654 2,705 AVG ± 7 2,638 2,726 AVG ± 13

lin318 43,233 43,685 AVG ± 126 43,492 44,310 AVG ± 156 43,485 44,340 AVG ± 197

pcb442 51,519 52,400 AVG ± 146 52,257 53,071 AVG ± 161 52,584 54,148 AVG ± 263

d493 35,862 36,235 AVG ± 78 36,565 35,977 AVG ± 95 36,422 37,136 AVG ± 145

rat575 6,955 7,062 AVG ± 18 7,024 7,093 AVG ± 14 7,206 7,290 AVG ± 20

d657 50,475 51,048 AVG ± 107 50,564 51,492 AVG ± 141 51,699 53,076 AVG ± 189

From Table 4.3, it is observed that the eBPA determined the best BFV solutions for all problem

instances, except for ch130 and ch150. For ch130, SA performed the best overall. For ch150, SA

determined the best BFV solution, yet the eBPA determined the best AFV solution. For all other

problem instances, the eBPA determined the best BFV and AFV solutions, together with the lowest

95% CI values. Visual representations of the statistics given in Table 4.3 are seen in Figures 4.9 to

4.18. For the AFV solution towers, the 95% CI values are represented as the black interval estimates

at the top.

For convenience, these figures also display the optimal solutions. The purpose of these experiments

were to test the sequences of instructions constituting the algorithmic designs of each metaheuristic

algorithm. It was also to test the abilities of each metaheuristic in using the same parameter settings

across multiple problem instances. Therefore, the executions were not to explicitly seek out the

optimal solution, yet to terminate at the point of convergence in monitoring the algorithmic

performances.

98

Figure 4.9: The best and average fitness values, along with

their 95% CI estimates for ch130

Figure 4.10: The best and average fitness values, along with

their 95% CI estimates for ch150

Figure 4.11: The best and average fitness values, along with

their 95% CI estimates for rat195

Figure 4.12: The best and average fitness values, along with

their 95% CI estimates for tsp225

Figure 4.13: The best and average fitness values, along with

their 95% CI estimates for a280

Figure 4.14: The best and average fitness values, along with

their 95% CI estimates for lin318

6100

6150

6200

6250

6300

6350

6400

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

ch130: Best and Average Fitness Values with 95% CI

BFV AFV

6500

6550

6600

6650

6700

6750

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

ch150: Best and Average Fitness Values with 95% CI

BFV AFV

2300

2320

2340

2360

2380

2400

2420

2440

2460

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

rat195: Best and Average Fitness Values with 95% CI

BFV AFV

3900

3950

4000

4050

4100

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

tsp225: Best and Average Fitness Values with 95% CI

BFV AFV

2550

2600

2650

2700

2750

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

a280: Best and Average Fitness Values with 95% CI

BFV AFV

41500

42000

42500

43000

43500

44000

44500

45000

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

lin318: Best and Average Fitness Values with 95% CI

BFV AFV

99

Figure 4.15: The best and average fitness values, along with

their 95% CI estimates for pcb442

Figure 4.16: The best and average fitness values, along with

their 95% CI estimates for d493

Figure 4.17: The best and average fitness values, along with

their 95% CI estimates for rat575

Figure 4.18: The best and average fitness values, along with

their 95% CI estimates for d657

The experiments show the ability of the eBPA in determining competitive solutions across multiple

problem instances, in using the same parameter settings. Each problem instance differed in

complexity and challenged the algorithms in their abilities to balance their transitions from

exploration to exploitation, per problem instance. Finding this balance between exploration and

exploitation is critical in determining quality solutions. In having determined the best solutions,

except for ch130 and the best BFV solution for ch150, it is noted that the eBPA intelligently found

promising neighborhood regions more consistently and sifted out higher quality solutions from within

those neighborhood regions.

The strength of the eBPA is attributed to its ability to influence the trajectory of the search

stochastically, and by way of adaptive memory. The admittance criterion of the eBPA memory

structure allows for a 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution to get inserted into the 𝑃𝐿 memory structure provided that it

50000

51000

52000

53000

54000

55000

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

pcb442: Best and Average Fitness Values with 95% CI

BFV AFV

34500

35000

35500

36000

36500

37000

37500

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

d493: Best and Average Fitness Values with 95% CI

BFV AFV

6700

6800

6900

7000

7100

7200

7300

7400

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

rat575: Best and Average Fitness Values with 95% CI

BFV AFV

48000

49000

50000

51000

52000

53000

54000

Optimal eBPA TS SA

Fi
tn

es
s

V
al

u
e

d657: Best and Average Fitness Values with 95% CI

BFV AFV

100

meets the minimum requirements (please refer to section 2.3.1). The newly inserted solution will then

become the next solution to be used to direct the search. Implicitly, any solution inserted into the 𝑃𝐿

could possibly be the next 𝑏𝑒𝑠𝑡 solution. With every insert into the 𝑃𝐿, the admissible criterion will

constrain further as the quality of the 𝑤𝑜𝑟𝑠𝑡 solution will improve. This makes admittance into the

memory structure more difficult, and this controls the transition from exploration to exploitation.

Exploitation is further enhanced by reducing the 𝑃𝐿 size. This also serves as a purpose for eliminating

cycling for 𝑃𝐿 sizes greater than one.

4.7 Conclusion

The TSP is largely studied in discrete optimization. Its complexity is 𝑁𝑃-Hard. This study

investigates the abilities of the eBPA, TS and SA in determining solutions to ten sTSP test instances.

The metaheuristic algorithms were compared in their abilities to determine their best and average

tour-length solutions, along with their 95% CI solutions per problem instance. The complexities of

the problem instances differed in ranging from 130 to 657 vertices. These problem instances provided

sufficient challenges to the algorithms for testing purposes.

The results show the competitiveness of the eBPA in determining solutions across multiple problem

instances in using the same parameter settings, along with eBPA’s competitiveness for discrete

optimization problem.

101

Chapter Five:

The enhanced Best Performance Algorithm on the Just-

in-Time Scheduling Problem

5.1 Introduction

Scheduling problems altogether constitute a large and important field of study. It involves the

allocation of production (or operational) resources with the intent of optimizing business objectives.

Business objectives may include reduced operational costs, reduced production times, increased

customer satisfaction, increased profits, etc., in optimizing production processes or service delivery.

Several categorizations of scheduling problems are found in the literature (Brucker, 2007; Adewumi

et al., 2009). However, of particular interest in this study is the problem of Just-in-Time (JIT)

scheduling (Adamu and Adewumi, 2013a & 2014).

JIT scheduling, as described by Taiichi Ohno (commonly referred to as the father of JIT) is when, “in

a flow process, the right parts needed in assembly reach the assembly line at the time they are needed

and only in the amount needed,” (Fateha et al., 2012). Ohno perfected JIT principles at the Toyota

manufacturing plants in Japan while being vice-president of manufacturing. At the time, Toyota

created high quality vehicles at relatively low costs, compared to its competitors. This was in spite of

the disadvantage of having a lack of natural resources in the country. The success of implementing

JIT techniques in manufacturing gave Toyota a prominent position within the automobile sector.

Observing Toyota’s success, many organizations on a global scale have adopted and implemented

JIT techniques with relative successes. Proper implementations of JIT techniques have resulted in

documentation emphasizing improved product qualities, improved service deliveries, improved

customer satisfaction, improved employer and employee relations, decreased production costs,

reduced levels of inventory, and increased profit turnover (Kootanaee, et al., 2013).

Organizations have further benefited in remaining competitive within an industry by offering

products and/or services without negotiating on quality at competitive costs. These factors constitute

102

important business objectives, as organizations remain competitive on the basis of cost, quality and

service delivery (Kumar, 2008).

The JIT scheduling problem is largely studied in the sectors of engineering, manufacturing and

service delivery (Brucker, 2007). The objective is the optimized delivery of business resources that

meet demand, rather than manufacturing or supplying less, or in surplus. JIT scheduling objectives

are summarized as follows (Singh and Gard, 2011);

1. Competitiveness – Companies strive to remain competitive in offering products and services at

relatively low costs.

2. Efficient processes of production – The more efficient the production processes, the more

successful the company.

3. Improved quality of products – Production of smaller quantities allow for better assessment

checks. This results in improved product quality.

4. Minimal wastage – This will reduce costs. It will also save time and effort.

5. Reduced inventory – This will minimize investments, as excess inventory will not be held.

6. Efficient space utilization – Fewer inventories means more space available.

7. Improved customer satisfaction – The on-time delivery of quality products and services at

competitive rates earn customer satisfaction.

8. Improved supplier relations – Supplier relations get strengthened in having organized delivery of

goods and services as required.

The JIT scheduling problems are 𝑁𝑃-Hard (Adamu and Adewumi, 2012; Adamu and Adewumi,

2013a&b). This study investigates a JIT scheduling problem and determines solutions using the

eBPA, TS and SA. The objective of this study is to test the abilities of the eBPA in determining

solutions. The eBPA solutions will be compared against those of the TS and SA algorithms. Once

again, this study is the first on the eBPA for a scheduling problem.

The rest of this chapter is structured as follows. Section 5.2 gives descriptions of previous research

work. Section 5.3 briefly discusses the investigation to follow. Section 5.4 describes and presents the

JIT scheduling problem. Section 5.5 presents and discusses the experimental results obtained. Finally,

section 5.6 draws on conclusions.

103

5.2 Related works

Previous studies on JIT scheduling problems have investigated both the single and multiple machine

scenarios. Many optimization techniques have been investigated in determining solutions. They

include both the exact and heuristic algorithms.

Ronconi and Kawamura (2010) investigated a single machine JIT scheduling problem with restrictive

common due dates. The objective was the minimization of the earliness and tardiness penalties. The

study proposed a Branch and Bound algorithm which used lower bounds and pruning rules in

exploiting properties of the problem in determining solutions. The algorithm was investigated using

280 jobs. These jobs were characterized by different due dates. The proposed algorithm showed to be

effective in outperforming the CPLEX optimization software.

Monette et al. (2009) studied a JIT Job-Shop scheduling problem. Jobs were characterized by

earliness and tardiness penalties with respect to their due dates. The objective was the minimization

of the earliness and tardiness penalties. The study presented a Constrained Programming algorithm.

This was a filtering algorithm based on machine relaxation. The study investigated a large range of

benchmark test instances. 72 problems were studied in total. The algorithm showed to be very

effective in determining 29 of the best-known solutions from the problems studied.

Dereniowski and Kubiak (2010) studied a JIT multi-slot scheduling problem. In this problem,

processing time was divided into time slots rather than a single due date for the jobs. The intent of

the study was to determine a minimization for the schedule makespan. The study presented algorithms

for both the single and parallel machine problem instances.

Suer et al. (2012) studied a single machine scheduling problem with non-zero ready times. Jobs were

assumed to have arrived at different times, with the arrival times being known in advance. The

objective was determining the job sequences in minimizing tardiness. For the problem setting,

preemption was not allowed. The study investigated the GA, and compared its solutions to known

optimal solutions for small to large size problems. Results showed that GA determined optimal

solutions for smaller instances, and near-optimal solutions for larger instances.

104

Laarhoven et al. (1992) investigated the SA algorithm in finding the minimum makespan in large

instances of job-shop scheduling problems. The results showed that SA found shorter makespan than

tailored deterministic algorithms at the expense of greater execution times. The conclusion was that

the disadvantage of expensive computation times was compensated by the simplicity of the algorithm

and the higher quality solutions determined.

Sidhoum et al. (2004) studied a JIT scheduling problem in a parallel machine environment. Jobs were

characterized by distinct due dates, and earliness and tardiness penalties. The research was motivated

due to the difficulty of determining lower bounds for JIT scheduling problems in the single and

parallel machine environments. A simple heuristic algorithm was presented. Results showed that the

differences between the lower and upper bound values for the single and parallel machine

environments were around 1% for the problem instances investigated.

McMullen (1998) investigated the use of TS to a mix-model production scheduling problem at an

assembly line. The objective of the algorithm was to best determine an assembly schedule based on

the part-usage rates and the number of setups involved in the process. The problem objective was to

determine an assembly sequence that optimized the assembly process. Results showed that the

multiple-objective problem of minimizing part-usage and setup time could be valuable from a

managerial perspective.

Naso et al. (2007) investigated a hybridized algorithm constructed using GA and a constructive

heuristic for a JIT delivery problem in supply chain management. The problem setting is that of a

ready-mixed concrete delivery service, in trying to best coordinate the supply of concrete from

producers to customer’s on-time. Apart from problem complexity, strict time constraints had forbid

the early or tardy delivery of ready-mixed concrete. The problems objective was scheduled delivery

that maximized profit, in minimizing risk. The case study presented used actual industrial data. The

hybridized algorithm was compared to that of four other constructive heuristics. Results showed that

the hybridized algorithm determined superior solutions to that of the constructive heuristics.

105

5.3 Problem Description and Mathematical Formulation

The allocation of company resources to meet business demands are critical to the success of an

organization. Therefore, in JIT problem formulation, the untimely scheduling of business resources

that miss expected due dates are accompanied by penalty factors called earliness and tardiness

penalties.

An earliness penalty is incurred when a job (which implies a service rendered or an item being

produced) is scheduled in business before its expected time. As an example, the implication of an

earliness penalty relates to the cost of holding inventory before its expected time. Also, a tardiness

penalty is incurred when a job is expected to complete after its expected due-date. As an example,

this could imply customer dissatisfaction.

The due date of a job refers to either a specific point in time or an interval specified by a window

frame of time. The jobs due date is important. It relates to the demand of products or services at

predetermined times. The inability of organizations to provide on-time delivery of products and/or

services sets the stage for competitiveness in industry.

In a perfect scheduling environment, resources will be made available as required. Realistically

however, the limited availability of resources and the differences in demands result in resources

becoming available before or after expected due dates. Hence, the problem with JIT scheduling relates

to either minimizing the earliness penalty, minimizing the tardiness penalty, or both in scheduling

resources (Brucker, 2007). Optimizing a JIT schedule is difficult due to the conflicting objectives.

Most JIT investigations have studied the scheduling of 𝑛 jobs on a single machine where the due

dates are specific points in time. This research studies a JIT problem of scheduling 𝑛 jobs on 𝑚

parallel machines where the due dates are window frames of time. The single machine scenario is

easier to model and solve, although in industry the possibility of bottlenecking exists. Surprisingly,

far fewer papers have surfaced on JIT problems for scheduling jobs on multiple and parallel machines.

The mathematical model presented in this study is that given in Adamu and Abass (2010). This study

takes the opportunity of correcting the original mathematical formulation by removing irrelevant

106

constraints and reformulating the objective function in terms of the schedule. Also, although the

formulation is a maximization model, the original study presented solutions for a minimization model.

These inconsistencies present the opportunity for this problem to be restudied.

In the mathematical formulation given below, the left and right hand sides of a window interval of

time represents the earliest start time 𝑎𝑗 (were the job becomes available for processing) and the latest

due date 𝑑𝑗 (were the job must be completed). The jobs are scheduled starting from time zero. The

problems objective is the maximization of the total weight of all on-time jobs. 𝑤𝑗 is the weight of a

job. This relates to the importance of job 𝑥𝑖𝑗 being delivered on-time. This problem assumes

equivalent earliness and tardiness penalties. These penalty factors are not considered in the objective

function. The mathematical formulation is as follows.

Indices:

 i – Indicative of each machine, i.e., 𝑖 = 1, . . , 𝑚.

 j – Indicative of each job, i.e., 𝑗 = 1, . . , 𝑛.

Parameters:

 𝑎𝑗 – Represents the left hand side of the due window of job 𝑗. This is the earliest start time of job

𝑗.

 𝑑𝑗 – Represents the right hand side of the due window of job 𝑗. This is the expected completion

time of job 𝑗.

 𝑝𝑗 – Represents the processing time of each job 𝑗.

 𝑡𝑖𝑗 – Represents the actual start time of job 𝑗 on machine 𝑖.

 𝐶𝑖𝑗(𝑆) – Given a schedule 𝑆, 𝐶𝑖𝑗(𝑆) represents the completion time of job 𝑗 on machine 𝑖, i.e.,

𝐶𝑖𝑗(𝑆) = 𝑡𝑖𝑗 + 𝑝𝑗. Hence, job 𝑗 is said to be early if 𝐶𝑖𝑗(𝑆) < 𝑎𝑗 , tardy if 𝐶𝑖𝑗(𝑆) > 𝑑𝑗 else on-

time if 𝑎𝑗 ≤ 𝐶𝑖𝑗(𝑆) ≤ 𝑑𝑗.

 𝑤𝑗 – Weight of job 𝑗.

Variables:

 𝑥𝑖𝑗(𝑆) – Representative if job 𝑗 is allocated on machine 𝑖, in schedule 𝑆.

Objective Function:

107

Maximize 𝑓 = ∑ ∑ 𝑤𝑗𝑥𝑖𝑗(𝑆)

𝑛

𝑗=1

𝑚

𝑖=1

 (5.1)

Subject to constraints;

𝑎𝑗 ≤ {𝑚𝑎𝑥𝑘=1
𝑗

{𝐶𝑖(𝑘−1)(𝑆), 𝑎𝑗 − 𝑝𝑗} + 𝑝𝑗}𝑥𝑖𝑗 ≤ 𝑑𝑗, ∀𝑖 = 1, . . , 𝑚; ∀𝑗 = 1, . . , 𝑛 (5.2)

∑ 𝑥𝑖𝑗 ≤ 1, ∀𝑗 = 1, . . , 𝑛
𝑚

𝑖=1
 (5.3)

𝑥𝑖𝑗 = {
1, 𝑖𝑓𝑓 𝑎𝑗 ≤ 𝐶𝑖𝑗(𝑆) ≤ 𝑑𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, ∀𝑖 = 1, . . , 𝑚; ∀𝑗 = 1, . . , 𝑛 (5.4)

Equation 5.1 represents the total weight of all on-time jobs. Equation 5.2 ensures that if job 𝑗 is

scheduled on machine 𝑖, it will start and complete processing between its earliest start time 𝑎𝑗 and

latest finishing time 𝑑𝑗. Equation 5.3 ensures that job 𝑗 will be assigned to at most one machine 𝑖.

Equation 5.4 represents a job being either on-time, early or tardy, with 1 representing on-time and 0

otherwise.

The problem assumptions are as follows;

1. Setup time is included in processing time. Hence, preemption is not allowed. When job 𝑗 − 1

is completed, there is no delay in starting job 𝑗 on machine 𝑖.

2. There is no delay in machine processing. When job 𝑗 starts, it is expected to be completed as

represented by processing time 𝑝𝑗.

3. Only one job can be processed at any given time on machine 𝑖.

5.4 Results and Discussion

The JIT scheduling problem is a discrete optimization problem. For this reason, only the eBPA, TS

and SA metaheuristics are investigated (again, the eBPA had been developed due to the weakness of

the BPA for discrete optimization problems, as was demonstrated in chapter two).

108

In chapter’s three and four, termination of the algorithms occurred at a point of convergence.

Convergence had been detected when a specific number of idle iterations had been reached. However,

in this investigation, we implement termination after a fixed number of iterations. With this approach,

the parameter settings of the algorithms need to be set appropriately to make the most effective use

of the limited computational time available. For this reason, the parameter settings of the algorithms

have been set to exercise greater levels of exploitation, as was determined after a number of

experimental tests.

Simulations were run using sets of jobs 𝑛 ∈ {500, 1500, 2500}, tested on sets of machines 𝑚 ∈

{2, 5, 10, 15, 20}. For each job 𝑗 = 1, . . , 𝑛, its processing time 𝑝𝑗 was randomly determined to fall

within the interval (1,99). To set the starting and completion times 𝑎𝑗 and 𝑑𝑗 for job 𝑗 two “Traffic

Congestion Ratio” variables 𝑘1 and 𝑘2 was randomly selected from set 𝑉 ∈ {1, 5, 10, 20}. Using 𝑘1,

𝑎𝑗 was randomly generated to fall within the interval (0, 𝑛 ⁄ 𝑚𝑘1). Using 𝑘2, 𝑑𝑗 was randomly

generated to fall within the interval (𝑎𝑗 + 𝑝𝑗 , 𝑎𝑗 + 𝑝𝑗 + 𝑛 ⁄ 𝑚𝑘2).

To test the algorithms fairly, a set of 𝑛 jobs was initially generated and passed in as the input parameter

to each of the algorithms. This was then used to test the algorithms on a particular machine 𝑚.

Therefore, each algorithm used the same job set in testing on a particular machine. This ensured the

results were determined fairly for comparative purposes. To determine average performance results,

each algorithm was run 30 times for each pair of job-machine combination. 30 runs were sufficient

considering the expensive computational times of the metaheuristic algorithms. From the 30 runs, per

job-machine combination, the best solution (BFV) of each algorithm will be compared. The BFV is

the highest total weight of all on-time jobs from the 30 runs, per job-machine combination per

algorithm. Comparisons of the average solution performances will also be documented. This is for

their average fitness value (AFV) solutions and their average execution time (AVG) performances.

To further test the algorithms fairly, their parameter settings were set such that each metaheuristic

algorithm executed for exactly 106 objective function evaluations, per run. The parameter settings

were set as follows;

 eBPA – The 𝑃𝐿 size was set at 5. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 106. 𝑝𝑎 was set at 0.005.

 TS – The 𝑇𝐿 size was set at 7. The 𝐶𝐿 size was set at 102. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 104.

109

 SA – The 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 was set at 103. 𝑇 was set at 115. 𝐹 was set at 0.005. 𝛼 was set at

0.99.

The findings of the simulations are documented below.

Table 5.1: Statistics of the Best Fitness Values (BFV) and Average Fitness Values (AFV) for the class of 500 jobs

No. of

Jobs
Methods Fitness Values

No. of Machines

2 5 10 15 20

500

eBPA
BFV/

AFV

391.34/

379.34

441.74/

427.02

546.84/

526.58

601.23/

581.25

683.79/

665.76

TS
BFV/

AFV

325.91/

317.44

382.02/

371.01

462.70/

453.36

519.78/

511.09

584.56/

575.07

SA
BFV/

AFV

388.70/

370.75

441.10/

431.32

532.90/

519.58

593.44/

583.35

680.78/

667.15

Table 5.1 gives the statistical values of the BFV and AFV fitness values of each algorithm, per

machine set, for the class of 500 jobs. The best BFV and AFV solutions, per machine set, is

highlighted in bold font for clarity purposes.

From Table 5.1 it is seen that the eBPA determined the overall BFV solutions for all machine sets.

On average, the eBPA determined the overall AFV solutions for machine sets 2 and 10. SA

determined the overall AFV solutions for machine sets 5, 15 and 20. However, it is seen that these

solutions are only marginally superior to the eBPA solutions. TS has shown to be the weakest of the

algorithms.

Graphical comparisons of the algorithms best and average fitness value solutions, as determined from

Table 5.1, are seen in Figures 5.1 and 5.2 below.

110

Figure 5.1: BFV comparisons for the class of 500 jobs

Figure 5.2: AFV comparisons for the class of 500 jobs

Table 5.2: The average execution times in milliseconds per machine set, for the class of 500 jobs

No. of

Jobs
Methods

Average Execution Time (ms) for each Machine Set

2 5 10 15 20

500

eBPA 8,394 15,637 26,763 38,338 47,594

TS 8,568 15,667 27,622 37,804 47,773

SA 8,829 15,710 27,502 38,756 49,541

Table 5.2 gives the statistical values of the average execution times in milliseconds (ms) for the

algorithms, per machine set, for the class of 500 jobs. Although it is observed that the average

execution times of the algorithms are fairly similar, the eBPA executed the fastest for machine sets

2, 5, 10 and 20. TS executed the fastest for machine set 15.

The relatively fast execution times of the eBPA relate to its small 𝑃𝐿 size, which strategically

decreased as the algorithm iterated. This caused the admittance criterion to become increasingly

restrictive in allowing for greater exploitation by accepting fewer solutions to update the memory

structure. This allowed the eBPA to identify stronger solutions and explains its relatively fast

execution times. A graphical comparison of the statistics given in Table 5.2 is seen in Figure 5.3.

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

eBPA TS SA

Fi
tn

es
s

V
al

u
e

Best Fitness Values per Algorithm

2 Machines 5 Machines

10 Machines 15 Machines

20 Machines

300

350

400

450

500

550

600

650

700

eBPA TS SA

Fi
tn

es
s

V
al

u
e

Average Fitness Values per Algorithm

2 Machines 5 Machines

10 Machines 15 Machines

20 Machines

111

Figure 5.3: Average execution times per metaheuristic per machine set, for the class of 500 jobs

For the class of 500 jobs, it is concluded that the eBPA was the strongest algorithm.

Table 5.3 gives the statistical values for the overall BFV and AFV solutions per machine set, for the

class of 1,500 jobs. From Table 5.3 it is observed that the eBPA determined the overall BFV solutions

for all machine sets, except machine set 10. It also determined the overall AFV solutions for all

machine sets. SA determined the overall BFV solutions for machine set 10. SA again determined

superior solutions over TS.

Table 5.3: Statistics of the Best Fitness Values (BFV) and Average Fitness Values (AFV) for the class of 1,500 jobs

No. of

Jobs
Methods Fitness Values

No. of Machines

2 5 10 15 20

1,500

eBPA
BFV/

AFV

696.21/

653.63

841.96/

778.05

896.90/

877.80

952.07/

905.63

1,066.63/

1,022.07

TS
BFV/

AFV

549.57/

531.71

679.26/

664.42

777.44/

756.31

793.86/

782.26

908.43/

884.27

SA
BFV/

AFV

654.36/

632.47

811.42/

776.90

909.04/

867.83

941.62/

898.14

1,041.08/

999.64

Graphical comparisons of the algorithms best and average fitness value solutions, as determined from

Table 5.3, are seen in Figures 5.4 and 5.5 below.

8000

13000

18000

23000

28000

33000

38000

43000

48000

53000

eBPA TS SA

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Average Execution Times per Metaheuristic

2 Machines 5 Machines 10 Machines 15 Machines 20 Machines

112

Figure 5.4: BFV comparisons for the class of 1,500 jobs

Figure 5.5: AFV comparisons for the class of 1,500 jobs

Table 5.4 below gives the statistics of the average execution times for the metaheuristic algorithms,

per machine set, for the class of 1,500 jobs. It is observed that the average execution times were much

more competitive for this class of jobs. The eBPA performed faster on average for machine sets 2, 10

and 20. TS performed the fastest for machine set 5, and SA performed the fastest for machine set 15.

Graphical comparisons of the execution time performances are seen in Figure 5.6.

Table 5.4: The average execution times in milliseconds per machine set, for the class of 1,500 jobs

No. of

Jobs
Methods

Average Execution Time (ms) for each Machine Set

2 5 10 15 20

1,500

eBPA 27,180 49,508 87,321 117,160 149,333

TS 27,964 49,216 88,229 117,477 150,678

SA 28,184 49,281 88,037 116,585 150,116

Figure 5.6: Average execution times per metaheuristic per machine set, for the class of 1,500 jobs

For the class of 1,500 jobs it is also concluded that the eBPA was the strongest algorithm.

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

eBPA TS SA

Fi
tn

es
s

V
al

u
e

Best Fitness Values per Algorithm

2 Machines 5 Machines

10 Machines 15 Machines

20 Machines

500

550

600

650

700

750

800

850

900

950

1000

1050

eBPA TS SA

Fi
tn

es
s

V
al

u
e

Average Fitness Values per Algorithm

2 Machines 5 Machines

10 Machines 15 Machines

20 Machines

20000

40000

60000

80000

100000

120000

140000

160000

eBPA TS SA

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Average Execution Times per Metaheuristic

2 Machines 5 Machines 10 Machines 15 Machines 20 Machines

113

Table 5.5: Statistics of the Best Fitness Values (BFV) and Average Fitness Values (AFV) for the class of 2,500 jobs

No. of

Jobs
Methods

Fitness

Values

No. of Machines

2 5 10 15 20

2,500

eBPA
BFV/

AFV

993.52/

960.94

1,100.46/

1,066.45

1,109.63/

1,054.93

1,249.22/

1,197.17

1,307.02/

1,267.87

TS
BFV/

AFV

799.60/

789.21

948.02/

919.61

951.80/

930.43

1,071.70/

1,057.45

1,150.72/

1,130.19

SA
BFV/

AFV

1,003.11/

962.44

1,105.59/

1,039.86

1,085.21/

1,039.86

1,234.31/

1,182.19

1,309.06/

1,267.89

Table 5.5 gives the statistical values of the BFV and AFV solutions for each algorithm per machine

set for the class of 2,500 jobs. From Table 5.5 it is seen that the eBPA determine better BFV and AFV

solutions for machine sets 10 and 15, while SA determined better BFV and AFV solutions for

machine sets 2 and 20. For machine set 5, the eBPA determined a better AFV solution and SA

determined a better BFV solution.

Graphical comparisons of the algorithms best and average fitness value solutions, as determined from

Table 5.5, are seen in Figures 5.7 and 5.8 below.

Figure 5.7: BFV comparisons for the class of 2,500 jobs

Figure 5.8: AFV comparisons for the class of 2,500 jobs

Table 5.6 below gives the statistics of the average execution times for the metaheuristic algorithms,

per machine, set for the class of 2,500 jobs. It is observed that for this class, TS executed the fastest

for machine set 2, SA executed the fastest for machine set 5, and the eBPA executed the fastest for

machine sets 10, 15 and 20. Graphical comparisons of the execution time performances are seen in

Figure 5.9.

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

eBPA TS SA

Fi
tn

es
s

V
al

u
e

Best Fitness Values per Algorithm

2 Machines 5 Machines

10 Machines 15 Machines

20 Machines

700

800

900

1000

1100

1200

1300

eBPA TS SA

Fi
tn

es
s

V
al

u
e

Average Fitness Values per Algorithm

2 Machines 5 Machines

10 Machines 15 Machines

20 Machines

114

Table 5.6: The average execution times in milliseconds per machine set, for the class of 2,500 jobs

No. of

Jobs
Methods

Average Execution Time (ms) for each Machine Set

2 5 10 15 20

2,500

eBPA 44,534.00 80,756.00 139,053.00 195,479.00 260,926.00

TS 44,461.00 81,128.00 141,250.00 209,198.00 285,553.00

SA 45,055.00 80,646.00 139,213.00 196,093.00 272,481.00

Figure 5.9: Average execution times per metaheuristic per machine set, for the class of 2,500 jobs

For the class of 2,500 jobs, both the eBPA and SA performed similarly in determining an equivalent

number of best solutions. However, the eBPA executed the fastest for most machine sets.

Although standard implementations of the algorithms were compared, the results documented are

significant in that the techniques employed by the eBPA have shown to be very competitive compared

to that of TS and SA for this discrete optimization problem.

The strength of the eBPA lay in its memory structure and the techniques used in allowing the solutions

contained within to direct the search. Solutions registered in the 𝑃𝐿 would have identified attractive

points within the neighborhood regions of the solution space. However, it uses the information of the

worst solution in the list as a strategic point to move the search forward. The memory structure adapts

dynamically in accepting solutions that satisfy the admittance criterion. It uses each solution inserted

into the 𝑃𝐿 as the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution. This strategy allows the eBPA to use a population of

solutions to direct the search rather than using the population as a network to exploit a neighborhood

region.

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

275000

300000

eBPA TS SA

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Average Execution Times per Metaheuristic

2 Machines 5 Machines 10 Machines 15 Machines 20 Machines

115

As the search iterates, and the worst solution in the 𝑃𝐿 is improved upon, the admittance criterion

becomes more restrictive in allowing for greater levels of exploitation. Exploitation is further

increased with the 𝑃𝐿 dynamically reducing in size by cutting away the worst solutions in a strategic

manner. This constrains the admittance criterion further, and allows the eBPA to exploit quality

solutions as the 𝑃𝐿 narrows in size. The solutions accepted into the 𝑃𝐿 does not need to be the best

overall. However, along the way the best solution will be found. An added advantage of the eBPA is

its simplistic design and the few parameter settings required.

5.5 Conclusion

The problem of JIT scheduling is an important study. The objective is to determine operational

processes that would allocate limited business resources efficiently in optimizing business objectives.

Business objectives may include the optimization of operational costs, operational times, inventory

storage, customer and supplier relations, profits margins, etc.

In this study, the JIT problem of allocating a large number of jobs required to be processed on 𝑚

parallel machines was investigated. A job represents a business resource required to be made available

during a specific window interval of time. An example may be the delivery of vehicles to customers

that require rented vehicles within a specific time frame. The objective was therefore to determine a

schedule that would maximize the total weighed number of all on-time jobs that could be scheduled.

The JIT problem is 𝑁𝑃-Hard.

To determine solutions, the eBPA, TS and SA algorithms were investigated. The algorithms were

compared in their abilities to determine their best and average fitness value solutions. The fitness

value referred to the weight of all on-time jobs scheduled per job-machine pair. The algorithms were

also compared in terms of their average execution times performances. The results showed that the

eBPA performed very competitively in being compared to both TS and SA.

116

Chapter Six:

Conclusions and Future Research

6.1. Summary of Research Work

Faced with the challenges of limited availabilities of natural resources such as land, irrigated water

supplies and financial investments, in crop production, the ACP problem had been developed. The

ACP problem seeks to determine optimized solutions for these limited resources.

The first ACP mathematical model was introduced in Chetty and Adewumi (2013b). The

mathematical model related to that of an existing irrigation scheme. In this study, SI techniques were

investigated. These included the CS, FA, GSO and the GA algorithms. This study was significant in

that it was the first on the CS, FA and GSO for a crop planning problem. Thereafter, the ACP problem

was further evolved in considering new irrigation schemes (Chetty and Adewumi, 2013c). In that

study, the same SI metaheuristic techniques were investigated.

Thereafter, the research efforts took a turn in having investigated LS metaheuristic algorithms. The

algorithms investigated were that of TS and SA. It was at this point that it was realized that there were

apparent weaknesses in the strategic designs of both of these metaheuristics.

With TS, it was realized that although it employed the benefits of memory strategies, it lacked slightly

in its stochastic ability. On the other hand, although SA is pure stochastic, its disadvantage is that it

does not employ memory strategies. Hence, SA loses valuable solutions found during its search.

These realizations motivated for the development of a new metaheuristic, which was the BPA (Chetty

and Adewumi, 2013a). Hence, the BPA was an attempt to bridge the strengths of both the memory

ability of TS and the stochastic ability of SA. In Chetty and Adewumi (2013a), a large benchmark

collection of unconstrained continuous optimization functions were investigated for comparative

study.

117

To further test the abilities of the BPA, both ACP problems at existing and new irrigation schemes

were investigated in Chetty and Adewumi (2014) and in Chetty and Adewumi (2013d) respectively.

Yet again, there problems were instances of continuous optimization. To test the completeness of the

algorithm, discrete optimization problems needed to be investigated.

The discrete optimization problem chosen to be investigated was that of the sTSP; herein lay the

stumbling block. In BPA’s applications to instances of sTSP’s, it was realized that the BPA had

performed very poorly relative to both TS and SA. Further analysis revealed that the reason for the

poor performances were due to stronger levels of explorative abilities, and weaknesses in exploitation.

The imbalance of these contrasting objectives had proven to be very costly for this discrete

optimization problem (and for discrete optimization in general).

Therefore, to try and correct this performance aspect, the eBPA had been developed. As mentioned

in chapter two, although these algorithms are modeled on similar analogical principles, their

algorithmic designs are different. The eBPA is now a truer representation of the merge between the

strengths of both SA and TS, in that, it is a single-point metaheuristic algorithm, which is similar to

that of SA, and it directs the trajectory of the search by intelligently employing memory strategies,

similar to that of TS. The strategies implemented by the eBPA has proven to be very effective in

determining competitive solutions to both continuous and discrete optimization problems. Additional

advantages of the eBPA include its simplistic design, its flexibility in being non-problem dependant,

its consistency in balancing its transition from exploration to exploitation, and its effectiveness in

determining high quality solutions. Overall, the eBPA is very robust.

6.2 Conclusions

This thesis has presented the eBPA, which is a new Monte Carlo LS metaheuristic algorithm. The

eBPA trajects through a solution space stochastically, yet uses intelligence by way of its

implementation of adaptive memory.

The strategies implemented by the eBPA are intended to penetrate complexed regions of the solution

space. It determines high quality solutions to difficult optimization problems, within polynomial time

complexity, and at low computational costs. The strength of the eBPA is reflected in its ability to

balance its transition from exploration to exploitation.

118

Exploration is a global search strategy. It attempts to locate promising neighborhood regions within

the domains of the solution space. Exploration is primarily influential during the initial phases of the

search. On the other hand, exploitation is a local search strategy. It attempts to identify the local

optimum point from within a local neighborhood region. Exploitation is primarily influential during

the latter stages of the search. A fine balance between these two contrasting objectives is critical to

the success of any metaheuristic algorithm.

The eBPA stems from its predecessor–the BPA. Further research was undergone to try and improve

upon the efficiency aspects of the BPA (specifically for discrete optimization). In this thesis, a

comprehensive analysis has been performed in discussing the conceptual differences in the technical

and strategic designs of both the BPA and the eBPA. The results, in having performed the

investigations, have shown the superiority of the eBPA over the BPA for discrete optimization

problems.

Yet, in their applications to the ACP problem, which is a continuous optimization problem, both

algorithms had performed very competitively. To further test the efficiency aspects of the eBPA, this

algorithm had been implemented in determining solutions to ten benchmark instances of the sTSP’s,

and to an instance of the JIT scheduling problem. Both these problems types were discrete

optimization problems. The ACP problem, sTSP, and the JIT scheduling problem are all 𝑁𝑃-Hard

optimization problems.

For the ACP problem, sTSP, and the JIT scheduling problem, the comparisons were made against

that of TS and SA. TS and SA were the algorithms investigated due to both the eBPA and the BPA

embedding characteristics of both of these metaheuristics. However, the eBPA is a truer blend of the

embedded strengths, which has been proven by way of its excellent balance in its transition from

exploration to exploitation, which is critical to the success of any metaheuristic algorithm. Formally,

the eBPA differs from memory-less search algorithms, which are modelled primarily on

randomization, and memory-based search algorithms, which are modelled primarily on determinism.

In this thesis a new mathematical formulation for the ACP problem has also been presented. The

mathematical formulation considers for the market economic factors of the economy of scale, and the

demand and supply relations.

119

Market economics have always had a noticeable presence in crop production. With the economy of

scale influence, crop production on a larger scale has always been more profitable, as unit costs are

lower. However, since the sale of the finished products are sold within deregulated marketing

environments, the demand and supply relational factors also needed to be incorporated. The inclusion

of these market economic factors make for a more interesting problem, yet is necessary for realistic

solutions.

6.3. Future Research

The eBPA has been developed as an AI algorithm, in having modeled a competitive element of an

individual. Although metaheuristic algorithms in AI have been designed in primarily modelling

biological agents (or occurrences) in nature, scarce research have surfaced on modelling human

cognitive behaviors and thinking within the AI framework. This thesis has opened doors in realizing

the potentials of modeling human characteristics in metaheuristic design, within the AI framework.

The possibilities are numerous in investigating human behaviors and thinking at both personal and

group levels, especially in trying to capture the competitive nature of individuals in their attempts to

achieve maximum successes. Intelligence is also related to the way human’s reason in decision

making; this is another important reason for modelling human beings in the design of metaheuristic

algorithms.

The eBPA should also be applied in investigating other types of optimization problems.

Hybridizations of this algorithm is also possible. Another alternative is to research the possibility of

temporarily increasing the memory structure size of the eBPA, in attempting to escape from local

entrapments.

120

REFERENCES

Acquaah, G. (2004). “Principles of crop production: theory, techniques, and technology,” 2nd

 Edition, Prentice Hall.

Adamu, M. O. and Abass, O. (2010). “Parallel Machine Scheduling To Maximize The

 Weighted Number Of Just-In Time Jobs,” Journal of Applied Science and

 Technology (JAST), Vol. 15 (1&2), pp. 27-34.

Adamu, M. O. and Adewumi, O. A. (2012). “Metaheuristics for scheduling on parallel

 machine to minimize weighted number of early and tardy jobs,” International

 Journal of Physical Sciences, Vol. 7(10), pp. 1641-1652.

Adamu, M. O. and Adewumi, A. O. (2013a). “A comparative study of meta-heuristics for

 identical parallel machines”, Journal of Engineering and Technology Research, Vol.

 5(7), pp. 207-216.

Adamu, M. O. and Adewumi, A. O. (2013b). “Unweighted Parallel Machine Scheduling: A

 Meta-Heuristic Approach”, Proceedings of International Conference in Electrical and

 Electronics Engineering, Istanbul, Turkey, 65-72.

Adamu, M. O. and Adewumi, A. O. (2014). “A survey of single machine scheduling to

 minimize weighted number of tardy jobs”, Journal of Industrial and Management

 Optimization, 10(1), 219-241.

Adewumi, A. O. (2010). “Some improved genetic-algorithms based heuristics for global

optimization with innovative applications”, Ph.D. thesis, School of Computational and

Applied Mathematics, University of Witwatersrand, Johannesburg, South Africa.

Adewumi, A. O. and Ali, M. M. (2010). “A multi-level genetic algorithm for a multi-stage

 space allocation problem”. Mathematical and Computer Modelling, Vol. 51(1–2),

 pp. 109-126.

http://www.google.co.za/search?tbo=p&tbm=bks&q=inauthor:%22George+Acquaah%22
http://scholar.google.co.za/scholar?oi=bibs&hl=en&cluster=2351824020466112285&btnI=1
http://scholar.google.co.za/scholar?oi=bibs&hl=en&cluster=2351824020466112285&btnI=1

121

Adewumi, A. O., Sawyerr, B. A. and Ali, M. M. (2009) "A heuristic solution to the university

 timetabling problem", Engineering Computations, Vol. 26(8), pp.972 – 984

Adeyemo, J. and Otieno, F. (2010a). “Maximum irrigation benefit using multi-objective

differential evolution algorithm (MDEA),” Int. J. of Sustainable Development, Vol.

1(2), pp. 39-44.

Adeyemo, J., Bux, F. and Otieno, F. (2010b). “Differential evolution algorithm for crop

planning: Single and multi-objective optimization model,” Int. J. of the Physical

Sciences, Vol. 5(10), pp. 1592-1599.

Akinyelu, A. A. and Adewumi, A. O. (2014). “Classification of Phishing Email Using

Random Forest Machine Learning Technique,” Journal of Applied Mathematics,

vol. 2014, Article ID 425731, 6 pages.

Arasomwan, M. A. and Adewumi, A. O (2013). “On adaptive chaotic inertia weights in

particle swarm optimization”, Proceedings of the 4th IEEE Symposium Series on

Computational Intelligence (SSCI '13), Singapore, pp. 72–79.

Arasomwan, M. A. and Adewumi, A. O. (2014). “Improved Particle Swarm Optimization

with a Collective Local Unimodal Search for Continuous Optimization

Problems,” The Scientific World Journal, vol. 2014, Article ID 798129, 23 pages.

Arasomwan, M. A. and Adewumi, A. O. (2014). “An Investigation into the Performance of

Particle Swarm Optimization with Various Chaotic Maps”, Mathematical Problems

in Engineering, Vol. 2014, Article ID 178959, 17 pages.

Astera, M. (2010). “The Ideal Soil: A Handbook for the New Agriculture,” 1st edition,

ISBN # 978-0-9844876-3-9.

Aspremont, A. and Boyd, S. (2003). “Relaxations and Randomized Methods for Nonconvex

QCQPs,” EE392o Class Notes, Stanford University.

Bai, R. (2005). “An investigation of novel approaches for optimising retail shelf space

 allocation,” Ph.D. thesis, University of Nottingham.

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/187-7031334-8672119?_encoding=UTF8&field-author=Michael%20Astera&ie=UTF8&search-alias=books&sort=relevancerank

122

Bailey, A. C., McLain, W. T. and Beard, W. R. (2001). “Fuel-Saving Strategies for Dual

 Spacecraft Interferometry Missions,” Journal of the Astronatical Sciences, Vol.

 49(3), pp. 469-488.

Biggs, N. L., Lloyd, E., Keith, W. and Robin, W. (1986). “Graph Theory 1736-1936”,

 Clarendon Press, Oxford,ISBN 978-0-19-853916-2.

Blum, C. and Merkle, D. (2008). “Swarm Intelligence: Introduction and Applications

 (Natural Computing Series),” Springer-Verlag. ISBN: 978-3-540-74088-9.

Blum, C and Roli, A. (2003). “Metaheuristics in Combinatorial Optimization: Overview and

Conceptual Comparison,” ACM Computing Surveys, Vol. 35(3), pp. 268-308.

Boyd, S and Vandenberghe, L. (2004). “Convex Optimization,” Cambridge University Press,

 UK.

Brouwer, C. and Heibloem, M. (1986). “Irrigation Water Management: Irrigation Water

 Needs,” FAO Land and Water Development Division, [Online] Available:

 http://www.fao.org/docrep/s2022e/s2022e00.htm.

Brucker, P. (2007), “Scheduling Algorithms,” 5th ed., Springer, ISBN 978-3-540-69515-8.

Charles, A. F. (1986). “Multiple cropping systems,” Technology and Engineering,

 Macmillan Pub. Co.

Chetty, S. and Adewumi, A. O. (2013a), “Three New Stochastic Local Search Algorithms

 for Continuous Optimization Problems,” Computational Optimization and

 Applications, Vol. 56(3), pp. 675-721.

Chetty, S. and Adewumi, A. O. (2013b). “Comparison Study of Swarm Intelligence

Techniques for the Annual Crop Planning Problem,” IEEE Transactions on

Evolutionary Computing, Vol. 18(2), pp. 258-268.

Chetty, S. and Adewumi, A. O. (2013c). “Studies in Swarm Intelligence Techniques for

Annual Crop Planning Problem in a New Irrigation Scheme,” South African Journal

123

Of Industrial Engineering, Vol. 24(3), pp. 205–226.

Chetty, S. and Adewumi, A. O. (2013d). “Three New Stochastic Local Search Metaheuristics

 for the Annual Crop Planning Problem Based on a New Irrigation Scheme,” Journal

 of Applied Mathematics, Vol. 2013.

Chetty, S. (2013e). “Studies in Heuristics for the Annual Crop Planning Problem,” MSc

 Thesis, University of KwaZulu-Natal.

Chetty, S. and Adewumi, A. O. (2014). “On the performance of new local search heuristics

for annual crop planning: case study of the Vaalharts irrigation scheme,” Journal

Of Experimental and Theoretical Artificial Intelligence, Vol. 27(2), pp. 159–179.

Chetty, S. and Adewumi, A. O. (2015). “A Study on the Enhanced Best Performance

Algorithm for the Just-In-Time Scheduling Problem,” Discrete Dynamics in

Nature and Society, Vol. 2015.

Davendra, D. (2010). “Traveling Salesman Problem, Theory and Applications,” InTech,

 ISBN 978-953-307-426-9.

Dereniowski, D. and Kubiak, W. (2010), “Makespan Minimization of Multi-Slot Just-In

 Time Scheduling on Single and Parallel Machines,” Journal of Scheduling, Vol.

 13(5), pp. 479-492.

Domshlak, C. Prestwich, S. Rossi, F. Venable, K. B. and Walsh, T. (2006). “Hard and soft

 constraints for reasoning about qualitative conditional preferences,” J. of Heuristics,

 Vol. 12(4-5), pp. 263-285.

Dorigo, M. (1992). “Optimization, Learning and Natural Algorithms,” Ph.D. thesis,

 Politecnico di Milano, Italie.

Dorigo, M. and Gambardella, L. M. (1997). “Ant Colony System: A Cooperative Learning

 Approach to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary

 Computation, Vol. 1(1), pp. 53–66.

124

Dukes, M. D. Zotarelli, L. Liu, G. D. and Simonne, E. H. (2012). “Chapter 3. Principles and

 Practices of Irrigation Management for Vegetables,” Univ. of Florida.

Eiben, A. E. and Smith, J. E. (2003). “Introduction to evolutionary computing,” 1st Edition,

 Springer, Natural Computing Series.

Faris, J. E. (1961). “Economies of Scale in Crop Production,” American Journal of

 Agricultural Economics, Vol. 43(5), pp. 1219-1226.

Fateha, A. A. N., Nafrizuan, M. Y. and Razlan, A. (2012). “Review on Elements of JIT

 Implementation,” In International Conference on Automotive, Mechanical and

 Materials Engineering (ICAMME'2012) Penang, Malaysia.

Hancock, H. (2005). “Theory of Maxima and Minima,” Scholarly Publishing Office,

 University of Michigan Library.

Holland, J. H. (1975). “Adaptation in Natural and Artificial Systems,” University of

 Michigan Press, Ann Arbor, MI.

Georgiou, P. E., Papamichail, D. M. (2008). “Optimization model of an irrigation reservoir

 for water allocation and crop planning under various weather conditions,” Irrigation

 Science, Vol. 26(6), pp. 487–504.

Glover, F. (1986). “Future Paths for Integer Programming and Links to Artificial

 Intelligence,” Computers and Operations Research, Vol.13, pp. 533–549.

Glover, F. (1989). “Tabu Search - Part 1,” ORSA Journal on Computing, Vol. 1(2), pp. 190

 206.

Glover, F. (1990). “Tabu Search - Part 2,” ORSA Journal on Computing, Vol. 2(1), pp. 4

 32.

Glover, F. (1993). “A User's Guide to Tabu Search*,” Annals of Operations Research, Vol

 41, pp. 3-28.

http://www.google.co.za/search?tbo=p&tbm=bks&q=inauthor:%22Harris+Hancock%22

125

Glover, F. (1995), “Tabu Search Fundamentals and Uses,” Graduate School of Business,

 University of Colorado, Condensed version published in; Mathematical

 Programming: State of the Art, pp. 64-92.

Grove, B. (2008). “Stochastic efficiency optimisation analysis of alternative agricultural

 water use strategies in Vaalharts over the long- and short-run,” Ph.D. thesis, Univ.

 of the Free State, Bloemfontein, South Africa.

Grötschel, M., Jünger, M. and Reinelt, G. (1991). “Optimal Control of Plotting and Drilling

 Machines: A Case Study,” Mathematical Methods of Operations Research, Vol.

 35(1), pp. 61-84.

Hjertenes, M. O. (2002). “A Multilevel Scheme for the Travelling Salesman Problem,”

 University of Bergen.

Johnson, S. D. and McGeoch, A. L. (1997). “The Traveling Salesman Problem: A Case Study

 in Local Optimization,” Local Search in Combinatorial Optimization, Vol. 1, pp. 215

 310.

Kantanantha, N. (2007). “Crop decision planning under yield and price uncertainties,” Ph.D.

 thesis, Georgia Institute of Technology.

Karp, R. M. (1972). “Reducibility among Combinatorial Problems,” Complexity of

 Computer Computations: Proc. of a Symp. on the Complexity of Computer

 Computations, The IBM Research Symposia Series, New York: Plenum Press, pp.

 85-103.

Kennedy, J. and Eberhart, R. (1995). “Particle Swarm Optimization,” Proceedings of IEEE

 International Conference On Neural Networks, Vol. 4. pp. 1942–1948.

Kirkpatrick, S. Gelatt, C. D. and Vecchi, M. P. (1983). “Optimization by Simulated

 Annealing,” Science, Vol. 220, pp.671–680.

http://www.jstor.org/view/00224812/di985185/98p0832i/0

126

Kootanaee, A. J., Babu, K. N. and Talari, H. F. (2013). “Just-in-Time Manufacturing System:

 From Introduction to Implement,” International Journal of Economics, Business and

 Finance, Vol. 1(2), pp. 7–25.

Kougias, I. and Theodosiou, N. (2010). “A New Music-Inspired Harmony Based

 Optimization Algorithm. Theory and Applications,” International Conference on

 Protection and Restoration of the Environment, X Corfu, Greece.

Krauth, W. (1998). “Introduction to Monte Carlo Algorithms,” Advances in Computer

 Simulation, Lecture Notes in Physics, Springer Verlag.

Krishnand, K. N. and Ghose, D. (2009a). “Glowworm Swarm Optimisation for Simultaneous

 Capture of Multiple Local Optima of Multimodal Functions,” Swarm Intelligence,

 Vol. 3, pp. 87-124.

Krishnand, K. N. and Ghose, D. (2009b). “Glowworm Swarm Optimisation: A New Method

for Optimizing Multimodal Functions,” International J. of Computational

Intelligence Studies, Vol. 1(1), pp. 93-119.

Krugman, P. (1980), “Scale Economies, Product Differentiation, and the Pattern of Trade”,

 American Economic Review, Vol. 70, pp. 950-959.

Kumar, S., Ranga, V., Chopra, R. and Sehrawat, M. S. (2008). “Scope of JIT Management

 in Indian Service Industries,” International Conference on Intelligent Systems and

 Networks (ISN-2008).

Kumbharana, S. N. and Pandey, G. M. (2013). “Solving Travelling Salesman Problem using

 Firefly Algorithm,” International Journal for Research in Science & Advanced

 Technologies, Vol. 2(2), pp. 53-57.

Laarhoven, P. J. M., Aarts, E. H. L. and Lenstra, J. K. (1992). “Job Shop Scheduling by

 Simulated Annealing,” Operations Research, Vol. 40(1), pp. 113-125.

Liberti, L. (2008). “Introduction to Global Optimization,” Technical Report, LIX, ´Ecole

 Polytechnique, Palaiseau F-91128, France.

127

Lin, S. (1965). “Computer Solutions of the Traveling Salesman Problem,” Bell System

 Technical Journal, Vol. 44, pp. 2245-2269.

Lin, S. and Kernighan, B. W. (1973). “An effective heuristic algorithm for the travelling

 salesman problem,” Operations Research, Vol. 21(2), pp. 498-516.

Louis, S. J. and Tang, R. (1999). “Interactive Genetic Algorithms for the Travelling Salesman

 Problem,” Proceedings of the Genetic and Evolutionary Computation Conference,

 Orlando, Florida, Vol. 1, pp. 1043-1048.

Maisela, R. J. (2007). “Realizing agricultural potential in land reform: the case of Vaalharts

 Irrigation Scheme in the Northern Cape Province,” M. Phil mini-thesis, Univ. of the

 Western Cape, Cape Town, South Africa.

Malek, M., Guruswamy, M. and Pandya, M. (1989). “Serial and Parallel Simulated

 Annealing and Tabu Search Algorithms for the Traveling Salesman Problem,”

 Annals of Operations Research, Vol. 21, pp. 59-84.

Matai, R., Singh, S. and Mittal, L. M. (2010). “Traveling Salesman Problem: an Overview

 of Applications, Formulations, and Solution Approaches,” Traveling Salesman

 Problem, Theory and Applications, InTech, ISBN 978-953-307-426-9.

McMullen, P. R. (1998), “JIT Sequencing for Mixed-Model Assembly Lines with Setups

 using Tabu Search,” Production Planning & Control (1998), Vol. 9(5), pp. 504-510.

Michalewicz, Z. (1994). “Genetic Algorithms + Data Structures = Evolution Programs,”

 Springer-Verlag, 2nd Edition, ISBN 3-540-58090-5.

Miki, M. Hiroyasu, T. and Jitta, T. (2003). “Adaptive Simulated Annealing for Maximum

 Temperature,” Proc. of the 2003 IEEE International Conference on Systems, Man &

 Cybernetics (SMC 2003), pp. 20-25.

Mohamad, N. H., Said, F. (2011). “A mathematical programming approach to crop mix

 problem,” African J. of Agricultural Research, Vol. 6(1), pp. 191-197.

128

Monette, J. N., Deville, Y. and Hentenryck, P. V (2009), “Just-In-Time Scheduling with

 Constraint Programming,” in Proceedings of 19th International Conference on

 Automated Planning and Scheduling (ICAPS 2009), September 19-23, 2009,

 Thessaloniki, Greece.

Monyei, C. G., Adewumi, A. O., and Obolo, M. O. (2014). “Oil Well Characterization and

Artificial Gas Lift Optimization Using Neural Networks Combined with Genetic

Algorithm,” Discrete Dynamics in Nature and Society, Vol. 2014, Article ID 289239,

10 pages.

Mustafa, A. A., Singh, M., Sahoo, R. N., Ahmed, N., Khanna, M., Sarangi, A. and Mishra,

 A. K. (2011). “Land Suitability Analysis for Different Crops: A Multi Criteria

 Decision Making Approach using Remote Sensing and GIS,” Researcher, Vol. 3(12).

Naso, D., Surico, M., Turchiano, B. and Kaymak, U. (2007). “Genetic Algorithms for Supply

 Chain Scheduling: A Case Study in the Distribution of Ready-mixed Concrete,”

 European Journal of Operational Research, Vol. 177(3), pp. 2069-2099.

Nyonyi, Y. (2010). “Modeling of hostel space allocation,” African Institute for Mathematical

 Sciences (AIMS).

Oelofse, S. and Strydom, W. (2010). “A CSIR perspective on water in South Africa – 2010,”

 CSIR Natural Resources and the Environment.

Pant, M., Thangaraj, R., Rani, D., Abraham, A. and Srivastava, D. K. (2008). “Estimation

using differential evolution for optimal crop plan in Hybrid Artificial Intelligence

Systems,” Lecture Notes in Computer Science, Vol. 5271, pp. 289–297.

Pant, M., Thangaraj, R., Rani, D., Abraham, A. and Srivastava, D. K. (2010). “Estimation

of optimal crop plan using nature inspired metaheuristics,” World J. of Modelling and

Simulation, Vol. 6(2), pp. 97–109.

129

Plante, R. D., Lowe, T. J. and Chandrasekaran, R. (1987). “The Product Matrix Traveling

 Salesman Problem: An Application and Solution Heuristics,” Operations Research,

 Vol. 35, pp. 772-783.

Raju, K. S. and Kumar, D. N. (2004). “Irrigation planning using genetic algorithms,” Water

Resources Management, Vol. 18(2), pp. 163–176.

Ratliff, H. D. and Rosenthal, A. S. (1983). “Order-Picking in a Rectangular Warehouse: A

 Solvable Case for the Travelling Salesman Problem,” Operations Research, Vol. 31,

 pp. 507-521.

Reddy, M. J. and Kumar, D. N. (2007). “Optimal reservoir operation for irrigation of multiple

crops using elitist-mutated particle swarm optimization,” Hydrological Sciences J.

Vol. 52(4), pp. 686–701.

Rocha, M. and Neves, J. (1999). “Preventing Premature Convergence to Local Optima in

 Genetic Algorithms via Random Offspring Generation,” Multiple Approaches to

 Intelligent Systems, Lecture Notes in Computer Science, Vol. 1611, pp. 127-136.

Ronconi, D. P. and Kawamura, M. S. (2010), “The single machine earliness and tardiness

 scheduling problem: lower bounds and a branch-and-bound algorithm”,

 Computational and Applied Mathematics, Vol. 29(2), pp. 107-124.

Sarker, R. and Ray, T. (2009). “An improved evolutionary algorithm for solving multi-

objective crop planning models,” Computers and Electronics in Agriculture, Vol.

68(2), pp. 191–199.

Schmitz, G. H. Schütze, N. and Wöhling, T. (2007). “Irrigation control: towards a new

 solution of an old problem,” Vol. 5 of IHP/HWRP-Berichte, International

 Hydrological Programme (IHP) of UNESCO and The Hydrology and Water

 Resources Programme (HWRP) of WMO, Koblenz, Germany.

Sidhoum, S. K., Solis, Y. R. and Sourd, F. (2004). “Lower Bounds for the Earliness

 Tardiness Scheduling Problem on Single and Parallel Machines,” Laboratoire LIP

http://link.springer.com/search?facet-author=%22Miguel+Rocha%22
http://link.springer.com/book/10.1007/b72302
http://link.springer.com/book/10.1007/b72302

130

Silva, J. D. L. (2003). “Metaheuristic and multiobjective approaches for space allocation,”

 Ph.D. Thesis. University of Nottingham.

Singh, S. and Garg, D. (2011). “JIT System: Concepts, Benefits and Motivation in Indian

 Industries,” International Journal of Management & Business Studies (IJMBS), Vol.

 1(1), pp. 26-30.

Snyman, J. (2005). “Practical Mathematical Optimization: An Introduction to Basic

 Optimization Theory and Classical and New Gradient-Based Algorithms (Applied

 Optimization),” Vol. 97, Springer Science and Buisness Media Inc., ISBN: 0-387

 24348-8.

Sunantara, J. D., Ramirez, J. A. (1997). “Optimal stochastic multicrop seasonal and

 intraseasonal irrigation control,” J. of Water Resources Planning and Management,

 Vol. 123(1), pp. 39-48.

Soubeiga, E. (2003). “Development and application to hyperheuristics to personal

scheduling,” Ph.D. Thesis, University of Nottingham.

Syam, P, W and Al-Harkan, M. I. (2010). “Comparison of Three Meta Heurisics to

 Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines,” World

 Academy of Science, Engineering and Technology, Vol. 62, pp. 825-832.

Tan, C. M. (2008). “Simulated Annealing”, In-Tech Publisher, ISBN-13:978-953-7619-07

 7.

Tasgetiren, F. M., Suganthan, P. N. and Pan, Q. K. (2007). “A Discrete Particle Swarm

 Optimization Algorithm for the Generalized Traveling Salesman Problem,”

 Genetic and Evolutionary Computation Conference (GECCO) 2007, pp. 158-167.

Trevisan, L. (2011). “Combinatorial Optimization: Exact and Approximate Algorithms,”

 Stanford University.

Tsai, C. Y. and Wu, M. C. (2010). “Applying a Two-Stage Simulated Annealing Algorithm

http://www.google.co.za/search?tbo=p&tbm=bks&q=inauthor:%22Jan+Snyman%22

131

for Shelf Space Allocation Problems,” Proceedings of the World Congress on

 Engineering 2010, London, U.K., Vol. 3.

Tsai, H. K., Yang, J. M., Tsai, Y. F. and Kao, C. Y. (2004). “An Evolutionary Algorithm for

 Large Traveling Salesman Problems,” IEEE Transactions on Systems, Man, and

 Cybernetics - Part B: Cybernetics, Vol. 34(4), pp. 1718-1729.

Tsubakitani. S. and Evans, J. R. (1998). “Optimizing Tabu List Size for the Travelling

 Salesman Problem,” Computers Operational Research, Vol. 25, pp. 91-97.

Wardlaw, R., Bhaktikul, K. (2004). “Application of genetic algorithms for irrigation water

 scheduling,” Irrigation and Drainage, Vol. 53(4), pp. 397–414.

Whelan, J. and Msefer, K. (1996). “Economic Supply & Demand,” MIT System Dynamics

 in Education Project.

Yagiura, M. and Ibaraki, T. (2001) “On Metaheuristic Algorithms for Combinatorial

 Optimization Problems,” Systems and Computers in Japan, Vol. 32(3), pp 33–55.

Yan, X., Zhang, C., Luo, W., Li, W., Chen, W. and Liu, H. (2012). “Solve Traveling

 Salesman Problem Using Particle Swarm Optimization Algorithm,” IJCSI

 International Journal of Computer Science Issues, Vol. 9(6), pp. 264-271.

Yang, X. S. (2010). “Nature-Inspired metaheuristic algorithms,” 2nd Edition, Luniver Press,

 United Kingdom.

Yao, X. (1992). “Dynamic Neighbourhood Size in Simulated Annealing,” International Joint

 Conference on Neural Networks (IJCNN ‘92), Vol. 1, pp. 411-416.

132

APPENDIX A

To explain the strategic search techniques employed by the eBPA, a hypothetical example will be

used in performing the illustration. This example will broadly represents an optimization problem.

Assuming that the optimization function 𝑓(𝑥) is a maximization problem, the objective will be to

determine the optimal solution vector 𝑥∗ ∈ 𝑋; 𝑋 represents the solution space of feasible solutions.

This solution space is constrained by linear and non-linear equations 𝑔(𝑥) {≤, =, ≥} 0. The intent of

this illustration is to discuss the possible steps taken by the eBPA in locating the global optimum

point.

Figure A.1 graphically illustrates the problem. The search space is seen to have three local optimum

points; these are located at points 𝑓(𝑥𝑐), 𝑓(𝑥𝑔) and 𝑓(𝑥𝑗) respectively. The solution vectors used to

determine these points are 𝑥𝑐, 𝑥𝑔 and 𝑥𝑗 respectively. The global optimum point is situated at point

𝑓(𝑥𝑗). The neighborhood regions underlining these local optimum points are 𝑁1, 𝑁2 and 𝑁3

respectively. Falling within these neighborhood regions, are solution points which will be to explain

the trajectory of the search. Amongst these is 𝑓(𝑥𝑎). This point will be the point of departure.

Figure A.1: Illustration of a hypothetical optimization problem having three local optimum points

133

The parameter settings of the eBPA will be as follows: the Performance List size (𝑃𝐿_𝑠𝑖𝑧𝑒) will be

3, the probability factor (𝑝𝑎) will be set at 0.05, and the 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 for which to execute will

be set at 30.

The 𝑃𝐿 size will be strategically reduced by 1 every 𝑟𝑒𝑑𝑢𝑐𝑒𝑃𝐿 number of iterations; let’s assume

that 𝑟𝑒𝑑𝑢𝑐𝑒𝑃𝐿 = 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑃𝐿_𝑠𝑖𝑧𝑒. To trace through the steps of the algorithm, we

maintain a table consisting of the decision variables. The table updates will monitor the variable state

changes, in tracing through the search from its initial point of departure at point 𝑓(𝑥𝑎) to its optimum

point 𝑓(𝑥𝑗). For consistency, the first iteration will be indexed at 0.

Table A.1 shows the initial values of the decision variables, at iteration 0. 𝑃𝐿0 is initialized to 𝑥𝑎, and

𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠0 is initialized to 𝑓(𝑥𝑎). We assume solution vector 𝑥𝑎 had been randomly generated.

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 is set to 𝑥𝑎, all indices point to index 0, and 𝑡𝑜𝑔𝑔𝑙𝑒 is initialized to be true.

Table A.1: Variables state changes at iteration 0

Figure A.2 shows the sequences of events for iterations 1 and 2. The decision variable updates are

seen in Table A.2. Arc 1, in Figure A.2 (which relates to iteration 1), shows a transition from point

𝑓(𝑥𝑎) to point 𝑓(𝑥𝑏). This transition had been determined by implementing a move on solution vector

𝑥𝑎; this determined solution vector 𝑥𝑏. Solution vector 𝑥𝑏, and its fitness value 𝑓(𝑥𝑏), got inserted

Iteration

0

Performance List

size
𝑃𝐿_𝑠𝑖𝑧𝑒 3

Working

Solutions

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑥𝑎

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ -

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠

lists

0 𝑥𝑎 | 𝑓(𝑥𝑎)

1 -

2 -

Solution Indices

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0

Toggle Variable 𝑡𝑜𝑔𝑔𝑙𝑒 true

134

into the Performance List’s at index 1. As the Performance List’s are not fully populated as yet, the

admittance criterion of the worst solution does not come into play. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 immediately

points to the newly inserted solution, and now has the value of 1. Since point 𝑓(𝑥𝑏) has improved

upon point 𝑓(𝑥𝑎), 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 has now been set to 1. The 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 remains at 0.

At this point, a random number in the range of [0,1] is generated and compared against 𝑝𝑎. Assuming

that the probability condition did not get met, 𝑡𝑜𝑔𝑔𝑙𝑒 remains true. However, in these particular cases,

even if 𝑡𝑜𝑔𝑔𝑙𝑒 were to be set to false, it would make no difference. Reason being, the updated

working solution 𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ is the same solution which just got inserted into the memory structure.

Therefore, this solution would be the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution.

Arc 2, in Figure A.2 shows a transition from point 𝑓(𝑥𝑏) to point 𝑓(𝑥𝑑); this occurred as a move was

implemented on solution vector 𝑥𝑏. This move transition relates to iteration 2. With index 2 in the

Performance List’s being unpopulated, the solution vector 𝑥𝑑, and its corresponding fitness value

𝑓(𝑥𝑑), got inserted at this index. As can be seen, solution vector 𝑥𝑑 is a dis-improved move; it falls

below the point of 𝑓(𝑥𝑏). Being a dis-improved move, the 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 remains unchanged. The

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 has now been updated to be 2. The 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 remains unchanged, as 𝑓(𝑥𝑑) is still

an improved point over 𝑓(𝑥𝑎).

At this point, with the Performance List’s being fully populated, the admittance criterion of the worst

solution will come into play. This is seen as a horizontal line across point 𝑓(𝑥𝑎). The level set by this

horizontal line is the minimum requirement of acceptance across the entire search space 𝑋 (i.e. any

solution determined below this level will immediately be rejected). Assuming the probability

condition remained unsatisfied, 𝑡𝑜𝑔𝑔𝑙𝑒 remains true.

135

Figure A.2: Sequences of moves for iterations 1 and 2

Table A.2: Variables state changes for iterations 0 to 2

Figure A.3 shows a move transition from point 𝑓(𝑥𝑑) to point 𝑓(𝑥𝑐). This is indicated by arc 3. 𝑓(𝑥𝑐)

is the local optimum point of neighborhood structure 𝑁1. Point 𝑓(𝑥𝑐) improves upon the fitness as

indicated by the 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 (i.e. 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 = 𝑓(𝑥𝑎)). Therefore, solution vector 𝑥𝑐,

and its fitness value 𝑓(𝑥𝑐), has now been inserted at index 0 into the Performance List’s. As an update

Iterations

0 1 2

Performance List

size
𝑃𝐿_𝑠𝑖𝑧𝑒 3 3 3

Working

Solutions

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑥𝑎 𝑥𝑎 𝑥𝑏

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ - 𝑥𝑏 𝑥𝑑

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠

lists

0 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎)

1 - 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏)

2 - - 𝑥𝑑 | 𝑓(𝑥𝑑)

Solution Indices

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 1 1

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0 1 2

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 0 0

Toggle Variable 𝑡𝑜𝑔𝑔𝑙𝑒 true true true

136

of the memory structure has just been realized, the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 immediately points to index 0.

Since point 𝑓(𝑥𝑐) has improved upon point 𝑓(𝑥𝑏), the 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 has also been assigned to index 0.

At this step, 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 needs to be re-determined; it resultantly had been assigned to index 2.

Hence, the horizontal lower-bound of admittance just got elevated to point 𝑓(𝑥𝑑). Assuming the

probability condition remained unsatisfied, 𝑡𝑜𝑔𝑔𝑙𝑒 remains true. The variable updates are seen in

Table A.3, under iteration 3.

Figure A.3: Sequences of moves for iteration 3

Table A.3: Variables state changes for iterations 0 to 3

Iterations

0 1 2 3

Performance List

size
𝑃𝐿_𝑠𝑖𝑧𝑒 3 3 3 3

Working

Solutions

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑥𝑎 𝑥𝑎 𝑥𝑏 𝑥𝑑

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ - 𝑥𝑏 𝑥𝑑 𝑥𝑐

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠

lists

0 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑐 | 𝑓(𝑥𝑐)

1 - 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏)

2 - - 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑑 | 𝑓(𝑥𝑑)

Solution Indices

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 1 1 0

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0 1 2 0

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 0 0 2

Toggle Variable 𝑡𝑜𝑔𝑔𝑙𝑒 true true true true

137

Assuming no improved moves were determined at iterations 4, 5 and 6, Figure A.4 shows move

transitions in breaking out of a possible cycle. This is indicated by arcs 4 and 5, and relates to iterations

7 and 8 respectively. Iterations 7 and 8 are documented in Table A.4. A cycle could occur if solution

𝑥𝑐 continuously determined a dis-improved move to solution 𝑥𝑒, which then returned back to 𝑥𝑐. The

move from point 𝑓(𝑥𝑐) to point 𝑓(𝑥𝑒) is indicated by arc 4. This move has occurred at iteration 7. At

this iteration, we see that the probability condition 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] < 𝑝𝑎 has now been satisfied.

Immediately, 𝑡𝑜𝑔𝑔𝑙𝑒 is set to false. This means that 𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ will become the next 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

solution, at iteration 8. The acceptance of this move shows a transition from neighborhood region 𝑁1

to neighborhood region 𝑁2.

Arc 5, at iteration 8, shows an improved move made from point 𝑓(𝑥𝑒) to point 𝑓(𝑥𝑓). 𝑓(𝑥𝑓) improves

upon the worst point 𝑓(𝑥𝑑), therefore an update of the Performance List’s are required. The insert is

performed at index 2. The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 and 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 (as 𝑓(𝑥𝑓) is the best point found so far)

get re-assigned to point to index 2. The 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 gets re-assigned to point to index 1. With the

probability condition being unsatisfied, 𝑡𝑜𝑔𝑔𝑙𝑒 remains true; 𝑡𝑜𝑔𝑔𝑙𝑒 had been reset to true at the

point of having determined 𝑥𝑓.

Figure A.4: Illustrating state transitions in breaking out of a possible cycle

138

Table A.4: Variables state changes for iterations 0 to 8

Iterations 9 and 10, as seen in Table A.5 show no improvement. However, at iteration 10, the resize()

condition gets satisfied. To perform the resize, solution swaps are required. Here, the solutions

referred to by the 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 (i.e. index 1) need to be swapped with the solutions referred to by the

last index (i.e. index 2), in the Performance List’s. As the solutions referred to by index 2 is the

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, these indices get re-assigned to point to index 1. The 𝑃𝐿_𝑠𝑖𝑧𝑒 then

gets reduced by 1; it now has the size of 2. At this point the 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 gets re-determined, and

points to index 0 which refers to point 𝑓(𝑥𝑐). The horizontal line correspondingly elevates to the level

at point 𝑓(𝑥𝑐). This is seen in Figure A.5. This strategy further restricts the admittance criterion,

making it more difficult for a memory structure to be updated.

Iterations

0 1 2 3 … 7 8

𝑃𝐿 size
Performance

List size
3 3 3 3 … 3 3

Working

Solutions

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑥𝑎 𝑥𝑎 𝑥𝑏 𝑥𝑑 … 𝑥𝑐 𝑥𝑒

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ - 𝑥𝑏 𝑥𝑑 𝑥𝑐 … 𝑥𝑒 𝑥𝑓

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠

lists

0 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑐 | 𝑓(𝑥𝑐) … 𝑥𝑐 | 𝑓(𝑥𝑐) 𝑥𝑐 | 𝑓(𝑥𝑐)

1 - 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏) … 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏)

2 - - 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑑 | 𝑓(𝑥𝑑) … 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑓 | 𝑓(𝑥𝑓)

Solution Indices

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 1 1 0 … 0 2

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0 1 2 0 … 0 2

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 0 0 2 … 2 1

Toggle Variable 𝑡𝑜𝑔𝑔𝑙𝑒 true true true true … false true

139

Figure A.5: Illustration of how the admittance criterion further restricts when the 𝑃𝐿 reduces in size

Table A.5: Variables state changes for iterations 0 to 10

In Figure A.6, arc 6 shows an improved move transition from point 𝑓(𝑥𝑓) to point 𝑓(𝑥𝑔); this occurs

at iteration 16. The variable state changes are seen in Table A.6. Point 𝑓(𝑥𝑔) improves upon point

𝑓(𝑥𝑐), therefore the Performance List’s get updated at index 0. The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 and 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥

(as point 𝑓(𝑥𝑔) is now the best solution determined so far) are assigned to point to index 0. The

Iterations

0 1 2 3 … 7 8 9 10

𝑃𝐿 size
Performance

List size
3 3 3 3 … 3 3 3 2

Working

Solutions

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑥𝑎 𝑥𝑎 𝑥𝑏 𝑥𝑑 … 𝑥𝑐 𝑥𝑒 𝑥𝑓 𝑥𝑓

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ - 𝑥𝑏 𝑥𝑑 𝑥𝑐 … 𝑥𝑒 𝑥𝑓 𝑥𝑓′ 𝑥𝑓′

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠

lists

0 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑎 | 𝑓(𝑥𝑎) 𝑥𝑐 | 𝑓(𝑥𝑐) … 𝑥𝑐 | 𝑓(𝑥𝑐) 𝑥𝑐 | 𝑓(𝑥𝑐) 𝑥𝑐 | 𝑓(𝑥𝑐) 𝑥𝑐 | 𝑓(𝑥𝑐)

1 - 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏) … 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑓 | 𝑓(𝑥𝑓)

2 - - 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑑 | 𝑓(𝑥𝑑) … 𝑥𝑑 | 𝑓(𝑥𝑑) 𝑥𝑓 | 𝑓(𝑥𝑓) 𝑥𝑓 | 𝑓(𝑥𝑓) 𝑥𝑏 | 𝑓(𝑥𝑏)

Solution Indices

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 1 1 0 … 0 2 2 1

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 0 1 2 0 … 0 2 2 1

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 0 0 0 2 … 2 1 1 0

Toggle Variable 𝑡𝑜𝑔𝑔𝑙𝑒 true true true true … false true true true

140

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 is re-determined and now points to index 1. Point 𝑓(𝑥𝑔) is the local optimum point of

the neighborhood region 𝑁2. With the horizontal line moving up to point 𝑓(𝑥𝑓), the admittance

criterion constrains even further. Assuming that the probability condition did not get satisfied, 𝑡𝑜𝑔𝑔𝑙𝑒

remains unchanged. A point of interest is that no solution from the neighborhood region 𝑁1 will be

accepted, as the point 𝑓(𝑥𝑓) supersedes the local optimum point 𝑓(𝑥𝑐).

At iteration 20, no improved solution gets registered. However, the resize() condition has now been

satisfied. At this step, the solutions pointed to be the 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 (i.e. index 1) need to be swapped

with the solutions at the last index (i.e. index 1). Since both indices are the same, no swap is required.

Therefore, the 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and the 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 remain the same. The 𝑃𝐿_𝑠𝑖𝑧𝑒 is then reduced by

1; it now has the size of 1. The 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 gets re-determined, and now points to index 0. With the

quality of the worst solution having been increased, the admittance criterion restricts yet further. This

is indicated by the horizontal line being elevated to point 𝑓(𝑥𝑔). We assume 𝑡𝑜𝑔𝑔𝑙𝑒 remains

unchanged.

The restriction of the admittance criterion forces the search to break beyond the local optimum point

𝑓(𝑥𝑔), of neighborhood region 𝑁2, to point 𝑓(𝑥ℎ), of neighborhood region 𝑁3. The transition is seen

by arc 7 at iteration 23. Solution 𝑥ℎ, and its fitness value 𝑓(𝑥ℎ), get inserted into the Performance

List’s at index 0. The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 remains at 0. 𝑡𝑜𝑔𝑔𝑙𝑒 remains

true.

At iteration 24, a move is applied to solution vector 𝑥ℎ; this determined an improved solution 𝑥𝑖. This

is seen by arc 8, which points to location 𝑓(𝑥𝑖). The Performance List’s get appropriately updated.

The 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥, 𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 and 𝑡𝑜𝑔𝑔𝑙𝑒 remain unchanged.

At iteration 29, greater levels of exploitation are experienced. This pushes the trajectory of the search

to global optimum point 𝑓(𝑥𝑗). 𝑥𝑗 and 𝑓(𝑥𝑗) get inserted into the Performance List’s. At the end of

this iteration, the termination criterion is satisfied. At this point, solution vector 𝑥𝑗 is returned as the

final solution.

141

Figure A.6: Illustration of steps leading to the global optimum point

Table A.6: Variables state changes for iterations 0 to 29

Iterations

… 16 … 20 … 23 24 … 29

𝑃𝐿 size
Performance

List size
… 2 … 1 … 1 1 … 1

Working

Solutions

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 … 𝑥𝑓 … 𝑥𝑔 … 𝑥𝑔 𝑥ℎ … 𝑥𝑖

𝑤𝑜𝑟𝑘𝑖𝑛𝑔∗ … 𝑥𝑔 … 𝑥𝑔′ … 𝑥ℎ 𝑥𝑖 … 𝑥𝑗

The

𝑃𝐿 and 𝑃𝐿_𝐹𝑖𝑡𝑛𝑒𝑠𝑠

lists

0 … 𝑥𝑔 | 𝑓(𝑥𝑔) … 𝑥𝑔 | 𝑓(𝑥𝑔) … 𝑥ℎ | 𝑓(𝑥ℎ) 𝑥𝑖 | 𝑓(𝑥𝑖) … 𝑥𝑗 | 𝑓(𝑥𝑗)

1 … 𝑥𝑓 | 𝑓(𝑥𝑓) … 𝑥𝑓 | 𝑓(𝑥𝑓) … 𝑥𝑓 | 𝑓(𝑥𝑓) 𝑥𝑓 | 𝑓(𝑥𝑓) … 𝑥𝑓 | 𝑓(𝑥𝑓)

2 … 𝑥𝑏 | 𝑓(𝑥𝑏) … 𝑥𝑏 | 𝑓(𝑥𝑏) … 𝑥𝑏 | 𝑓(𝑥𝑏) 𝑥𝑏 | 𝑓(𝑥𝑏) … 𝑥𝑏 | 𝑓(𝑥𝑏)

Solution Indices

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 … 0 … 0 … 0 0 … 0

𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 … 0 … 0 … 0 0 … 0

𝑤𝑜𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 … 1 … 0 … 0 0 … 0

Toggle Variable 𝑡𝑜𝑔𝑔𝑙𝑒 … true … true … true true … true

