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ABSTRACT 

Understanding the often-heterogeneous land use land cover (LULC) in urban areas is critical for among 

others environmental monitoring, spatial planning and enforcement. Recently, several earth observation 

satellites have been developed with enhanced spatial resolution that provide for precise and detailed 

representation of image objects. This has generated new demand for enhanced processing capabilities. 

Thus, the need for techniques that incorporate spatial and spectral information in the analysis of urban 

LULC has drawn increasing attention. Enhanced spatial resolution comes with challenges for most pixel 

based classifiers. This include salt and pepper effects that arise from incapability of pixel based 

techniques in considering spatial or contextual information related to the pixel of interest during image 

analysis. These challenges have often contributed to the inaccuracy of heterogeneous LULC 

classification. Object based techniques on the other hand have been proposed to provide effective 

framework for incorporating spatial information in their analysis. However, challenges such as 

over/under segmentation and difficulty or non-robust statistical estimation hamper most object 

techniques in achieving optimum performance. Thus, to achieve optimum LULC classification, the full 

exploitation of both spectral-spatial information is essential. Hence, this study investigated the efficacy 

of Mathematical Morphological (MM) techniques referred to as morphological profiles (MP) in LULC 

classification of a heterogeneous urban landscape. The first objective of the study evaluated two MP 

techniques i.e. concatenation of morphological profiles (CMP) and multi-morphological profiles 

(MMP) in the classification of a heterogeneous urban LULC. Findings from this study indicated that 

both CMP and MMP provided higher accuracies in classifying a heterogeneous urban landscape. 

However, in evaluating their capability in preserving geometrical characteristics such as shape, theme, 

edge and positional similarity of image structures, CMP provided higher accuracies than MMP. This 

was attributed to the use of Principal Component Analysis (PCA) in the construction of MMP that 

resulted in the distorted edges of some of the image objects. However, in comparing the techniques in 

terms of the capability to discriminate image objects, MMP provided higher classification accuracies 

compared to CMP. This can be attributed to the former’s capability to exploit both spectral and spatial 

information from very high spatial resolution imagery. Hence in the second objective, MMP was 

adopted due to its ability to deal with dimensionality problem associated with CMP and its superior 

object discrimination capability. The findings indicated that MMP significantly enhanced ML and SVM 

classification accuracies. Specifically, the use of MMP as a feature vector for SVM and ML 

classification increased LULC distinction of objects with similar spectral signatures in a heterogeneous 

urban landscape. This is due to its capability to provide an effective framework for synthesis of spectral 

and spatial information. Overall the study demonstrated that morphological techniques provides robust 

novel image analysis techniques which can effectively be used for operational classification of a 

heterogeneous urban LULC.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the study  

Understanding the often-heterogeneous land use land cover (LULC) in urban landscapes is 

critical for environmental and spatial planning and enforcement (Blaschke, 2010). Hence, up 

to date LULC information is necessary for optimal and sustainable use of urban landscapes 

(Voltersen et al., 2014, Oleson et al., 2008). Traditionally, methods used for urban LULC 

classification involve enumeration, observation and field surveys. However, these methods are 

often costly, tedious, time consuming and  unsuitable for large spatial extents (Meyer-Roux 

and King, 1992, Bosecker, 1988). The recent advancement in space based remote sensing 

technology provides the capability to acquire high spatial resolution images that provide 

opportunities for detailed and fast data collection and analysis for urban applications that 

require LULC delineation (Hu et al., 2016). In this regard, for timely mapping of urban LULC 

with significant accuracy, various techniques classified into pixel and object based approaches 

have been explored. However, whereas the adoption of pixel based techniques and object based 

approaches has gained popularity, generating good classification accuracies, particularly in 

urban landscapes often characterized by high landscape heterogeneity remains a challenge.    

1.2 Commonly used approaches in urban mapping  

Pixel-based image classification techniques are generally classified into supervised and 

unsupervised techniques; which differ in their statistical assumption made (Carrizosa and 

Morales, 2013, Entezari-Maleki et al., 2009). In unsupervised techniques, no training data or 

prior knowledge of the study area is required to perform the classification i.e. the image is 

divided into a number of classes based on natural groupings of image values (Lillesand et al., 

2014, Puletti et al., 2014). Unsupervised classifiers includes simple classifiers such as iterative 

self-organizing data analysis (ISODATA), K-means (Blanzieri and Melgani, 2008) and 

recently, self-organising maps (SOM) and hierarchical clustering (Goncalves et al., 2008). 

Supervised classifiers on the other hand require training data to perform the classification. 

Supervised classifiers include simple parametric classifiers such as spectral angle mapper, 

maximum likelihood (ML), K-nearest neighbour and advanced classifiers such as artificial 



 
 

2 
 

neural networks (ANN), support vector machines (SVM), decision trees  and hybrid 

classification (e.g. semi-supervised and fusion of supervised and unsupervised learning). 

The limitations related to traditional pixel based techniques can be attributed to two issues; the 

heterogeneous urban landscape and high spatial resolution imagery related to recent sensor 

advancement. Improved spatial information with ground sampling distance (GSD) less than 

2m is inherent in current sensor advancements such as SPOT 6&7, Pleiades and IKONOS. 

Hence, such improved images are likely to have higher within class spectral variability. This 

higher within class spectral variability result in high interclass spectral confusion (Gong et al., 

1991) or “salt and papper” effect, that contribute to the inaccuracy of the classification (Weih 

and Riggan, 2010, Campagnolo and Cerdeira, 2006). Advanced machine learning algorithms 

such as SVM, ANN and decision tree (DT) have been known to generate significant accuracy 

in urban LULC mapping (Duro et al., 2012). Although, these classifiers provide significantly 

higher accuracy, their dependence on statistical information does not allow for exploitation of 

spatial information from current sensor advancements. The inability to exploit spatial or 

contextual information related to the pixel reduces their ability to achieve optimum 

performance in a heterogeneous urban landscape (Lillesand et al., 2014). As an alternative, 

object-based image analysis (OBIA) techniques were developed to exploit contextual 

information inherent in current sensor advancements.  

Object oriented classification is increasingly becoming popular in land cover classification, 

particularly for high spatial resolution dataset. This is due to OBIA techniques’ ability to utilise 

image spatial characteristics such as tone, shape, pattern and context, inherent in recent sensor 

development. Typically, there are two distinct methods that utilize spatial information from an 

image; region based such as Grey Level Co-occurrence Matrix (GLCM) and edge/window 

based technique such as Canny edge and Sobel operator. Commonly, edge-based and region 

based segmentation are used to partition discrete surface spectral characteristics. Edge based 

segmentation on the other hand seeks boundaries by distinguishing areas within the image and 

segments of complete enclosure by edge pixels (Zingman et al., 2012b). Consequently, pixels 

that characterise objects can either form part of the in-segment or constitute a segment as its 

boundary (Geneletti and Gorte, 2003). However, the limitations related to edge based 

techniques is that they are sensitive to noise, are edge based and therefore highly dependent on 

the analysis window which blurs the borders of textured regions (Zingman et al., 2012b, Gong 

et al., 1991).  
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Region based techniques on the other hand group image components by associating or 

dissociating neighbour pixels (Salih et al., 2018). These types of analysis methods work on the 

principle of homogeneity for similarity check such as grey level, colour, texture and shape, 

where neighbouring pixels inside a region poses either similar or dissimilar characteristics to 

the pixels in other regions. However, region based techniques take much more computation, 

determining the correct scale for analysis in advance is often not possible and often results in 

over segmentation. Thus, MM based techniques have been proposed to provide image analysis 

based on both statistical and structural analysis for analysing spatial relationships using all 

three levels i.e pixel, region and object.   

In contrast to other spatial domain based analysis algorithms e.g. grey level co-occurrence 

matrix method (GLCM), simple statistical transformation (SST), texture spectrum (TS) and 

Getis statistics, morphological techniques not only base their analysis using edge based 

techniques, they also provide morphological profile techniques which use pixel similarity rule 

based on the morphological characteristics of connected components. This is similar to region 

growing, but it does not use statistical local properties as in region growing approaches 

(Pesaresi and Benediktsson, 2001). Moreover, the advantage of MM is its ability to process 

spatial information in an image using all three levels of analysis, pixel, region and object based 

(Dalla Mura et al., 2010b). In pixel based image analysis that focus on neighbouring pixel, 

regional scenes and object relations are taken into account (Valero et al., 2010, Benediktsson 

et al., 2003, Dalla Mura et al., 2010b).  

1.3 Morphological image based analysis  

Morphological image analysis techniques, generally referred to as Mathematical Morphology 

(MM), exploit spatial domain in images using various techniques based on set theory to 

estimate and measure many useful geometrical features such as shape, size and connectivity 

(Soille and Pesaresi, 2002, Tsoeleng et al., 2020). These techniques are developed based on 

concatenation of mathematical operations grounded in a set of operations such as union, 

intersection, complementation and translations (Soille and Pesaresi, 2002). These operators 

include erosion, dilation, opening, closing rank filters (including median filters) and top hat 

transforms (Pesaresi and Benediktsson, 2001). They are defined in an abstract structure known 

as infinite lattice (Pesaresi and Benediktsson, 2001), which is an assumption that an image 

consists of structures, which can be handled by set theory. This is unlike other image processing 

algorithms used in remote sensing data analysis.  
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1.3.1 Morphological Profiles and its application  

Morphological techniques are of significant value for processing satellite remotely sensed 

images. They are also useful for a wide variety of image processing tasks such as image 

filtering (Soille and Pesaresi, 2002), feature extraction, segmentation (Navulur, 2006) and 

classification.  The value of mathematical morphological algorithms has been evident in 

various fields such as urban built-up mapping (Benediktsson et al., 2003), road (Soille and 

Grazzini, 2007)) and urban land use land cover classification (Huang et al., 2014). Generally, 

the value of adopting morphological techniques include preservation of edge information, 

shaped-based analysis and computation efficiency (Huang and Wang, 2006).  

Various morphological based techniques have been used in space based satellite remote sensing 

to extract urban land cover features. Specifically, morphological profiles (MPs) and its 

extensions such as extended morphological profiles (EMP), multi-morphological profiles 

(MMP), attribute profile (AP) and extended attribute profile (EAP) have been popular. MP is 

defined by a combination of morphological geodesic opening and closing operation of different 

sizes, of which opening and closing are constructed from sequential combination of erosion 

and dilation (Soille and Pesaresi, 2002). However, analysing an image using MPs often results 

in development of high dimensional vector and can only be used on a single panchromatic 

band, hence does not utilise the spectral information provided by other bands which limits 

discrimination of urban features. Other theoretical and practical problems include difficulties 

in statistical estimation, curse of dimensionality and redundancy in the vector components 

(Fauvel et al., 2008). 

The development of MPs extensions such as EMP and EAP is due to limitations arising from 

the construction of the features vector (MP/AP), which can result in a high-dimensional vector 

where spectral information is not fully exploited. To compute for this problem, feature 

reduction techniques such as principal component analysis techniques and independent 

component analysis are used to provide joint spectral/spatial classifiers referred to as EMP or 

EAP respectively. However, the use of these feature vector reduction algorithms may limit the 

potential of EMP to preserve geometrical characteristics of an image, especially when using 

high spatial resolution imagery in urban areas, where these dimensionality problems are not 

specific. Huang et al. (2014), proposed multi-morphological profiles (MMP) generated by the 

concatenation of various EMPs to increase classification accuracies in urban areas. However, 

the use of MMP is normally based on the concatenation of EMPs generated using image feature 
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reduction techniques such as Principal Component Analysis (PCA), which may limit the levels of 

structural information preservation. 

It is revealed by Fauvel et al. (2008) that advances in morphological profiles have theoretical 

and practical problems such as difficulty in statistical estimation and curse of dimensionality. 

Thus, from a cursory review of literature, optimum classification of a heterogeneous urban 

landscape can be achieved when both spatial and spectral information are effectively exploited 

(Zhang et al., 2013). Thus, pixel based analysis technique, notably simple maximum likelihood 

(ML) and advanced support vector machines (SVM) provide better statistical estimation and 

do not suffer data dimensionality problems, hence may offer prospects of improved 

representation of a heterogeneous urban landscape when used together with MP techniques. 

It is widely acknowledged that advances in sensor technologies, particularly those relating to 

sensor spatial resolution, have negatively impacted the ability of pixel paradigm to classify 

heterogeneous urban landscape. Hence, studies have been conducted that solely focus on the 

comparison of pixel based against object based techniques in classification of a heterogeneous 

urban landscape. These studies have commonly shown that object based techniques provide 

optimum classification compared to pixel classifiers. However, few studies have evaluated how 

object techniques can better be used as feature vectors for pixel based classifiers, since pixel 

based classifiers provide better statistical estimation which effectively offer prospects to 

improve classification of a heterogeneous urban land scape. In this regard, MMP are used to 

evaluate their efficacy in enhancing pixel based classifier’s LULC classification accuracy in a 

heterogeneous urban landscape.   

1.3.2 The problem 

Urban LULC classification information is essential for scientific studies and for a wide variety 

of decision-making. Hence, accurate and reliable techniques/methods used for deriving LULC 

information is essential. Over the years, pixel and object based techniques have been used for 

classification of a heterogeneous urban LULC from remotely sensed imagery. However, 

advancement, such as increased spatial resolution in recent space based remote sensing 

technology provide opportunities for detailed data analysis, as well as challenges for traditional 

pixel based classification techniques used to extract urban LULC information in a 

heterogeneous urban landscape. This is typically because high resolution imagery provide 

increased geometrical analysis and fine representation of objects. Increased geometrical 

information is a challenge for pixel based classifiers because size of pixel may be smaller than 
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the size object analysed, and pixels may not contain a single LULC class, but a mixture of 

classes such as roads, buildings and parking lots, making it difficult to classify a pixel as 

belonging to one class. Moreover, pixel based classifiers use only statistical information and 

cannot exploit scene spatial characteristics such as tone, shape, pattern and context; therefore 

reduces the ability to achieve optimum performance in a heterogeneous urban landscape. 

Typically, techniques that can exploit scene spatial characteristics such as tone, shape, pattern 

and context, other than ‘colour’, as in pixel based approaches, provide effective framework for 

analysing a heterogeneous landscape. Object based approaches such as region based and 

edge/window based techniques have been proposed to exploit spatial information. However, 

edge based techniques blur the borders of textured regions and are sensitive to noise, while 

region based techniques in heterogeneous images take much more computation and use 

statistical local properties, which often leads to over segmentation.  Morphological based image 

analyses provide the potential to address challenges arising from OBIA and pixel based 

analysis using all three levels; pixel, region and object based image analysis. In this regard, we 

investigate the use of MP techniques in the classification of a heterogeneous urban landscape.  

1.4 Aim and Objectives  

The aim of this study was to assess the efficacy of morphological approach in classification of 

land use and land cover. 

Objectives: 

(i) To compare two morphological techniques in the classification of urban land cover.  

(ii) To compare the efficacy of the morphological approach (i.e. the one with the highest 

classification accuracy above) vis-à-vis pixel based classifiers. 

1.5 Research questions  

i) Which morphological based technique provides a better geometrical/structural 

information preservation? 

ii) Can morphological techniques improve the accuracy of pixel based techniques 

when used as feature vector? 

1.6 The study area 

 A subset of very high resolution Pleiades data set covering Boksburg area within the Gauteng 

Province of South Africa was used for the Study (Figure 1.1). The study area presents a 

heterogeneous urban landscape, where households are increasingly placing a huge demand on 
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the city’s economic and social infrastructure. Residential areas range from luxurious and 

wooded suburbs to shanty towns and squatter settlements. Most of the developments are a result 

of urban sprawl. The subset area from the image is mostly residential with heterogeneous size 

and shape due to the presence of large industrial buildings. Shadows can be observed together 

with small ponds and pools within residential areas. Furthermore, the selection of classification 

categories was aimed to the need of analysis of object accuracy for morphological evaluation 

of a heterogeneous LULC. 

 

Figure 0.1: Study area map with a subset of Pleiades dataset.  

 

1.7 Thesis Organization 

Chapter 1: General Introduction 

The chapter provides a general background to Mathematical Morphology, including its 

description, distribution and impacts, the advantages of using remote sensing data and 

algorithms for discriminating urban LULC. An overview of common challenges in remote 

sensing for pixel based classification are also briefly discussed. Additionally, research 

objectives, description of the study area, and the scope of the study are outlined. 
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Chapter 2: Literature Review 

This chapter accounts for studies related to classification of a heterogeneous urban LULC. 

First, the chapter defines land use and land cover and gives a brief summary of traditional 

techniques used for LULC classification, their limitation and value of accurate LULC cover 

classification. It further describes the remote sensing process of capturing information about 

surface features, its development and the value of very high spatial resolution in classifying a 

heterogeneous urban area and the advantages and disadvantages of traditional remote sensing 

techniques. It also gives an account of the fundamental basis of Mathematical Morphological 

techniques used in remote sensing for various application. 

Chapter 3: A comparison of two morphological techniques in the classification of urban 

land cover 

In this chapter, two MP classification approaches are compared and results generated for the 

optimum classifier presented. Here, concatenation of morphological profiles (CMP) and multi-

morphological profiles (MMP) classification are compared in-terms of image geometrical 

characteristics preservation and thematic accuracy. The one with optimum results is used in 

chapter four as a feature vector to enhance exploitation of spatial information for pixel based 

classifiers. 

Chapter 4: Comparison of the performance of the Multi-Morphological Profile’s 

effectiveness in improving urban land cover land use accuracy for Pixel based classifies 

This chapter compares the use of multi-morphological profiles as a feature vector used in pixel 

based classifiers to perform an object based classification. This is done using two pixel based 

classifiers i.e. maximum likelihood and support vector machine. These classifiers are then 

compared with the use of maximum likelihood and support vector machine without the use of 

a feature vector for pixel based classification. The chapter also evaluates how MMP contributes 

to the enhancement in accuracy for both ML and SVM.   

Chapter 5: Synthesis 

This chapter presents a synthesis of the main findings of the study in chapter 3 and 4, discusses 

the relevance of the results, provides the limitations of the study and provide necessary 

recommendations for future studies. 
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CHAPTER 2 

 LITERATURE REVIEW 

2 Introduction 

Continuous evaluation and improvement of remote sensing techniques for urban Land Use 

Land Cover (LULC) classification is essential for better urban mapping, necessary for 

improved decision-making.  Over the years, various methods generally classified as pixel or 

object based approaches have been used for urban LULC classification (Duro et al., 2012, Li 

et al., 2014). However, advancement in sensor technology, particularly image spatial resolution 

presents both opportunities and challenges in classifying heterogeneous urban landscapes. 

Hence, the role of image spatial information in land cover mapping has recently generated a 

lot of interest within the remote sensing community (Wang et al., 2016) . In this chapter, a 

review of state of the art techniques used to incorporate spatial information with emphasis on 

mathematical morphology is provided. 

Urban areas are characterised by a complex mix of built-up and natural areas, generally referred 

to as urban LULC. Land cover describes the type of material or natural features of land (e.g. 

water, sand, vegetation, wetlands and human build structures), while land use refers to 

utilization of land (Barnsley and Barr, 1997). Accurate information on urban LULC is essential 

for urban planning and sustainable urban land-use. Hence, techniques that may optimise urban 

classification are necessary (Taubenböck et al., 2010).   

Studies on techniques used for urban LULC classification using remotely sensed data dates 

back to the nineteen seventies with the launch of Earth Resources Technology Satellite 

(ERST1) (Blaschke et al., 2014). Since then, several earth observation satellites with improved 

spatial, spectral, angular, radiometric and temporal resolution have been developed. Examples 

of well-known earth observation missions include, Landsat TM (Thematic Mapper), SPOT 

HRV (High Resolution Visible), Russian SPIN, Indian IRS, Japanese Earth Resources Satellite 

(JERS). These developments have generated new demands for enhanced processing 

capabilities and stimulated new applications. Specifically, techniques that incorporate spatial 

information have drawn increasing attention in urban LULC mapping.  
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methods generate image objects through image segmentation (Lillesand et al., 2014). 

Segmentation is the separation of one or more regions or objects in an image based on 

discontinuity or similarity using spectral, spatial, textural and contextual information (Myint et 

al., 2011). Two methods which utilise spatial information are edge and region based techniques 

(Gong et al., 1992). Typically, edge based technique uses point and line based detection which 

relies on the size of moving window. In edge based techniques, firstly, a pre-classification 

approach is undertaken where spatial information is used as additional band, secondly, 

classification procedures with logical filters are used to reduce noise in the classification results 

and thirdly contextual classifiers are executed (Wani and Batchelor, 1994). Region based 

techniques considers gray-levels from neighbouring pixels, either by including similar 

neighbouring pixels (region growing), split and merge, or watershed segmentation by thresh-

holding (Gong et al., 1992). Region growing techniques use similarity measures by analysing 

the grey level difference of regions with homogeneous gray-levels, performing analysis of 

texture features for textured regions and shape measures for structures (Liu and Xia, 2010, 

Mueller et al., 2004). Compared to edge based techniques, region based techniques cover more 

pixels than edge based and are better in noisy images where edges are difficult to detect. In this 

regard, most studies have focused on region based approaches such as grey level co-occurrence 

matrix method (Haralick and Shanmugam, 1973, Clausi, 2002), simple statistical 

transformation (SST) (Gong et al., 1992), texture spectrum (TS), Getis statistics (Wulder and 

Boots, 1998, Myint et al., 2011, Myint et al., 2007) and mathematical morphology (Kaur and 

Garg, 2011).  

2.3 Overview of Studies Comparing Pixel Based and Object Based Classifiers 

Various studies (Li et al., 2014, Myint et al., 2011, Yu et al., 2006) have been conducted 

comparing pixel and object based classifiers. Yu et al. (2006), used high spatial resolution 

digital airborne imagery to compare pixel-based classification based on maximum likelihood 

(ML) with an object-based classification. Their study showed that the K-nearest neighbour (K-

NN) object-based classification outperformed the pixel-based ML classification by 17%. Myint 

et al. (2011), tested pixel based and object based techniques in urban LULC classification using 

high spatial resolution imagery. The object based classifier based on nearest neighbour 

provided an overall accuracy of 90.40%, higher than the 67.60% using the commonly used 

maximum likelihood classifier. Qian et al. (2014) compared the performance of four machine 

learning classifiers, with an object based approach instead of using pixel based approach. The 

four classifiers used were support vector machines (SVM), normal Bayes (NB) and regression 
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tree (CART) and K nearest neighbour (KNN) to classify urban land cover from WorlView-2. 

Four land cover types were identified i.e. impervious surfaces, vegetation, water and bare soil. 

Multiresolution segmentation approach embedded in Trimble eCognition was used based on 

the criteria of relative homogeneity. Scale, shape and compactness were customized to define 

the size and shape of segmented objects. SVM and NB were superior to CART and KNN in 

urban land classification. SVM and NB achieved the highest overall classification accuracy of 

96% each, compared to 87% and 86% for CART and KNN, respectively.  

Mhangara and Odindi (2013), tested the feasibility of Haralick texture based classification in 

urban landscapes using multispectral aerial photos. In their study, a spectral based classification 

was also compared to the performance of Haralick texture features for LULC classification. 

Grey-level co-occurrence matrix (GLCM), based on entropy, mean and angular second 

moment texture features were used to discriminate different LULC types. Overall accuracies 

of 89% and 78% were achieved for the two tests respectively.  They concluded that Haralick 

textural features and spectral information offer great potential in mapping urban landscapes, 

often characterised by heterogeneous cover types. Zingman et al. (2012b), tested 

morphological texture contrast operator that allows detection of textural and non-textural 

regions to serve as an effective texture descriptor for unsupervised or supervised segmentation 

of textured regions. The study showed that the morphological texture contrast (MTC) 

descriptor is effective for localization and segmentation of high contrast textured regions. 

Although a single-size structuring element was used, the descriptor provides attractive 

segmentation of different landscapes in satellite or aerial images of half a meter resolution.  

2.4 Mathematical Morphology 

Mathematical morphology (MM) was first formalised by J. Serra and G. Matheron in the 1960s 

and is an extension of Minkowski’s set theory (Soille, 2013). The approach is a non-linear 

method of image analysis, which can estimate and measure many useful geometric features in 

images such as shapes, size and connectivity based on set theory (Maragos et al., 2012, Soille, 

2013, Plaza et al., 2005). Morphology refers to form and structure. In image processing, it is 

used to refer to the shape of a region. MM is applied to process images according to shape 

based on the concept of form and structure of image features. The language of MM is set theory, 

where set represent shapes or objects in an image (Valero et al., 2010, Dalla Mura et al., 2010b, 

Haralick et al., 1987).  
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Erosion and dilation are the two fundamental operations of MM, which essentially form the 

basis for all other morphological transforms (Soille, 2013, Serra and Soille, 2012, Serra and 

Soille, Soille, 2004, Soille and Pesaresi, 2002). Erosion shrinks image features and eliminates 

small objects, while dilation expands image objects (Maragos et al., 2012, Palsson et al., 2010, 

Serra and Soille, 2012). The several other composite relations of MM include opening, closing, 

conditional (geodesic) dilation, hit or miss transform, thinning and thickening and top hat 

transforms (Serra and Soille, 2012, Vincent and Soille, 1991). Morphological opening is 

defined by erosion followed by dilations using the same structuring elements and removes 

small or narrow elements, without affecting large ones (Dong, 1997). Morphological closing 

is described by a combination of dilation followed by erosion, which closes small gaps and 

connects sets (Shih, 2009). Most morphological operations use unique structuring element at 

different scales to describe an object used to probe an image to find similar objects (Soille, 

2013). A structuring element is like a moving window in kernels, which is used to define a set 

of a known shape (e.g, square, line, circle, diamond). Mathematical operations are grounded in 

a set of operations such as union, intersection, complementation and translations (Soille and 

Pesaresi, 2002). These operators are defined in an abstract structure known as infinite lattice 

(Pesaresi and Benediktsson, 2001), which is more of an assumption that an image consists of 

structures, which can be handled by set theory. This is unlike other image processing 

algorithms used in remote sensing data processing, which are based on arithmetic. 

Many of the morphological techniques reported in literature combine strategies of erosion and 

dilation in order to extract features from remotely sensed imagery. Categorizing such 

approaches becomes a challenge. The following section of the review present many of these 

different techniques starting with the fundamental properties of MM. In this section, we give a 

review on the use of various MM techniques in classification of urban LULC. 

2.4.1 Fundamental Properties of Mathematical Morphology 

The basic theory of mathematical morphology and notation of fundamental properties of 

morphological image transforms can also be found in the following literature (Serra and Soille, 

2012, Serra and Soille, Soille, 2013, Soille, 2004, Soille and Pesaresi, 2002, Vincent and Soille, 

1991, Pesaresi and Benediktsson, 2001, Haralick et al., 1987, Serra, 1986). MM techniques are 

commonly applied to binary (black & white, or 0&1) images. However, they are also extended 

to gray-scale images. A lattice theory provides a powerful tool for abstracting and 

understanding a number of morphological concepts and has been proven to be the foundation 

of MM (Maragos et al., 2012). Morphological image processing is based on two concepts of 
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minimum ∧ (infimum) and maximum ∨ (supremum), which are defined by the union (∪) and 

intersection (∩) operators respectively, applied within neighbourhood of every image pixel 

(Soille, 2013, Maragos et al., 2012, Dalla Mura et al., 2011). The only useful morphological 

operators are those which retain the order of images or retain their maximum and minimum 

order relation after transformation. A morphological filter is defined as an operator or 

transformation 𝜓, acting on a complete lattice τ, which preserves the ordering (preserve one of 

the basic lattice features) and is idempotent  (Serra and Vincent, 1992). Hence, complete lattice 

is a mathematical structure that can formalise an ordering relation between image geometries, 

satisfying the laws of transformation 𝜓 defined below  (Serra and Vincent, 1992). A 

transformation 𝜓 is (Cavallaro, 2016, Dalla Mura et al., 2010b): 

 Idempotent, if is independent of the number of times is applied to an image it does not 

alter the results, i.e., ψ (ψ (𝑓) = ψ (𝑓) 

 Increasing, if it does not alter the ordering relation between images. ψ 

 Extensive and Anti-extensive, Extensive if, the output is always “larger” than the input 

and if the reverse holds then is anti-extensive. ( 𝑓 ≤ ψ(𝑓) and 𝑓 ≥ ψ(𝑓) 

 Absorption laws. A transformation is considered an absorption property if two 

transformations, defined by different parameters i,j, are applied to the image, and the 

following relation is verified: ψi ψj = ψj ψi = ψmax(i,j). 

 

The definitions of the laws are defined below using fundamentals of morphological operators, 

i.e. erosion (𝜀𝙱), dilation (𝛿𝙱), opening (𝛾) and closing (𝜑). B in both 𝜀𝙱 and 𝛿𝙱 is a structuring 

element. In this section, we recall the definition of opening and closing, and expand their use 

to include morphological profiles. All definitions are given for binary images; the set elements 

are members of the 2-D integer space Z2. Where each element 𝑓 (x,y) is a coordinate of black 

(or white) pixel in the image. But the results can be generated for the space of gray-scale 

image 𝑓. In the next section morphological application is defined and its extension to grayscale 

image is also explained. 

2.4.2 Binary and Gray-Scale Morphology  

Two-dimensional digital image 𝑓 is usually represented by a matrix of pixels (x, y). It is a 

mapping of the coordinate’s space into a space of pixel values. Let 𝑓 denote a binary image Z2 

and B a binary structuring element (moving window) used to probe structures in 𝑓. 

Morphological erosion of set f by set B (i.e., structuring element) is defined as: 
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𝜀𝙱 𝑓 = {z\ (B) z ⊆ 𝑓}                                                                             (1) 

and  

This means that to perform erosion we translate B by z, if it is completely inside f erosion is 

anti-extensive (shrinks the input image). The basic effect of the operator on binary image is to 

erode the boundaries of regions  

And morphological dilation is defined as: 

𝛿𝙱 𝑓 = {z\ (B) z∩ 𝑓 ≠⊘}                                                                            (2) 

The dilation of 𝑓 by B then is the set of all displacements, z, such that B and 𝑓 overlap by at 

least one element, which grow the structures under investigation. Dilation is extensive (expands 

the input image) 

Using the relation between sets and images described for binary images, we can also give 

formulae for gray scale images. Below erosion 𝜀 and dilation 𝛿 of a digital image 𝑓 with a 

structuring element B: 

𝜀𝙱(𝑓) = min
(i,j)∈𝙱

{ 𝑓(x + i, y + j) + B(i, j)}                                                               (3) 

𝛿𝙱(𝑓) = max
(i,j)∈𝙱

{ 𝑓(x + i, y + t) − B(i, j)}                                                               (4) 

2.4.3 Morphological Filtering 

Filter refers to various meanings in several scientific and technological contexts. In image 

processing, a filter is defined as a technique for modifying or enhancing an image such as to 

emphasize certain features or remove other features (McAndrew, 2004). There are two types 

of filtering techniques used in image processing which are linear and non-linear filters  (Arici 

and Altunbasak, 2006, Bovik, 2009) . Linear filters, namely convolution operators preserve all 

frequencies within a band and eliminates all others, while non-linear filters such as median 

filter removes the impulsive noise, without the blurring effect of linear smoothing. Two most 

important morphological filters are opening and closing; opening is anti-extensive and closing 

is extensive. Morphological filters preserve ordering relation and converge in per iteration. A 

filter denotes an arbitrary processing procedure having signal/image both as an input and an 

output. The sequential combination of erosion and dilation leads to morphological opening and 

closing transformations, respectively (Serra and Vincent, 1992). Morphological filters are 
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basically object-oriented transforms; they focus on the processing of the image on areas with 

shape and size defined by the structural element (SE) (Dalla Mura et al., 2010b). The erosion 

followed by dilation denotes a morphological opening 𝛾, and dilation followed by erosion 

denotes morphological closing 𝜑. Opening generally smooth the contour of an object, breaks 

narrow object as defined below.   

𝛾 (𝑓) = (𝑓𝛩B) ⊕ B                                                                                        (5) 

Similarly closing 𝑓 by B is the dilation of 𝑓 by B followed by erosion of the result by 𝑓 

𝜑 (𝑓) = (𝑓⊕B) 𝛩 B                                                                                        (6) 

2.4.4 Connected Components  

Connected components also referred to as “flat zone” defines a set of connected iso-intensity 

pixels (Dalla Mura et al., 2010b). Connected components probe an image, pixel by pixel in 

order to identify connected regions, i.e. regions of adjacent pixels which share the same set of 

intensity values for binary image. Connected components in gray-level images measure 

connectivity within an image using different measures of connectivity of four or eight in 2D 

images (Soille and Vogt, 2009, Serra and Soille, 2012, Dalla Mura et al., 2010a). Two pixels 

are connected according to a connectivity rule. Common connectivity rules are the four and 

eight connected, where a pixel is said to be adjacent to four or eight of its neighbouring pixels, 

respectively (Serra, 1998). Connected operators are also supremum of opening or infimum of 

closing. 

2.4.5 Morphological Reconstruction  

Morphological reconstruction, often referred to as geodesic operation is a useful method for 

extracting meaningful information about shapes in images. This include extracting marked 

objects, finding dark regions surrounded by bright objects, detecting or removing objects 

touching the image border and many other operations (Gonzalez et al., 2004). Reconstruction 

transformation involves the use of two images and a structural element (instead of a single 

image and structuring element). Transformations are usually applied to binary images, but can 

also be extended to grayscale images, where it extracts the connected components of an image 

which are marked by another image. The marker image illustrates the starting point for the 

transformation and the other image constrains the transformation. A structuring element B 

defines connectivity where either a four or eight connectivity is used. Reconstruction is 

presented using the notion of geodesic distance. Therefore, geodesic erosion and dilation is 



 
 

18 
 

defined below. If 𝘨 is the mask and f is the marker, the geodesic erosion is defined as the 

minimum ordinary erosion that constrains the restraining boundaries. 

𝜀𝙱 (𝑓) = min (𝜀 (𝑓), g)                                                                                        (7) 

𝛿𝙱 (𝑓) = max (𝛿𝙱 (𝑓), g)                                                                                       (8) 

2.4.6 Opening and Closing by Reconstruction  

Interaction of the morphological operations until stability occurs is called reconstruction by 

erosion and reconstruction by dilation. Opening by reconstruction 𝛾∗ of image 𝑓 is the 

combination of erosion 𝜀𝙱 followed by geodesic dilation with 𝛿𝙱1 (SE=B1) iterated until stability 

is reached. If the reverse holds that is reconstruction by dilation 𝜑∗, in this case geodesic 

erosion as 𝜀𝙱1 (SE=B1) is used after dilation until idempotence. Where, in opening by 

reconstruction, erosion typically removes small objects and dilation tends to restore the shape 

of the objects that remain and in closing by reconstruction 𝜑∗. Structures turn to grow at their 

boundaries and geodesic erosion 𝜀𝙱1 will constrain this growth in a way that structures do not 

grow outside the pre-defined boundaries. Therefore, the definition of opening and closing by 

reconstruction for grayscale discrete image 𝑓 is given below.  

𝛾B(𝑓) = 𝛿𝙱 [𝜀𝙱 (𝑓)]                                                                             (9) 

𝜑B(𝑓) = 𝜀𝙱 [𝛿𝙱(𝑓)]                                                                           (10) 

Morphological opening and closing without applying reconstruction transformations lead to 

severe effect, where at times geometrical characteristics of the structures can be distorted or 

completely lost or structure grow at their boundaries, especially when a large structuring 

element is used with respect to structures in the image. Applying reconstruction to an operation 

constrains this growth in a way that structures do not grow outside of some pre-defined 

boundaries. The results obtained with operators by reconstruction are less dependent on the 

shape of the selected structuring element than in the case of morphological opening and closing 

(Dalla Mura et al., 2010b).  

2.4.6.1 Alternating sequential filters 

Alternating sequential filters are morphological transform that process an image using size 

distribution called granulometry by a combination of iterative morphological filters (opening 

and closing) with increasing sizes of structuring element. In the previous section, opening 

removes objects related to the size of the structuring element from an image, so it seems logical 
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to use opening and closing of various sizes to study size distribution of an image. They extract 

the geometrical characteristics of objects by offering a hierarchical structure.  However, in this 

study, alternating sequential filters are not used because operators by reconstruction produce 

more accurate results as compared to alternating sequential filters (Salembier Clairon et al., 

1998). 

2.4.6.2 Attribute filters  

Morphological attribute filters represent an adaptive morphological analysis technique which 

transforms an image by merging its connected components, using a series of attribute 

thickening and thinning operators. These filters are morphological transformations that process 

an image according to criterion (Dalla Mura et al., 2010a). The criterion is evaluated on each 

connected component of the image. If the criterion is verified, then the component is preserved. 

If it is not verified, then component is removed. These filters belong to a family of connected 

components.  

2.5 Studies on MM techniques used in classification of urban land use and land 

cover 

Various morphological based classification techniques have been used in LULC mapping. 

Pesaresi and Benediktsson (2001), proposed the use of morphological profiles (MP) on Very 

High Resolution (VHR) panchromatic band images based on morphological segmentation by 

the derivative of the morphological logical profile. The MP was based on the use of residuals 

from opening and closing by reconstruction using two panchromatic bands with 5 m geometric 

resolution of the Indian Remote Sensing 1C (IRC-1C) data. The approach is different from 

standard morphological segmentation approaches, which are based on edge-detection. The 

approach uses pixel similarity rule based on the morphological characteristics of connected 

components, similar to region growing, but does not use statistical local properties as in region 

growing approaches. Benediktsson et al. (2003) used six classes (large buildings, small 

buildings, broad streets, narrow streets, open areas and residential lawns) in an urban area using 

high-resolution panchromatic band from Indian Remote Sensing 1C (IRS-1C) and IKONOS 

remote sensing data. The morphological opening and closing by reconstruction was applied in 

experiments, where a 17-dimensional morphological profile was created using circular 

morphological structuring element with an increasing diameter and included both discriminant 

analysis feature extraction (DAFE) and decision boundary feature extraction (DBFE) to 

enhance separability. A neural network was used to classify the data. The results indicated that 
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reconstruction approach has a better shape preservation than classical morphological filters. 

The accuracy of the classification was 69.4% and 88% respectively. Palmason et al. (2003b), 

constructed morphological profile (MP) from a base image of the first principal component 

(PC) created from spectral information of a high spatial and spectral resolution DAIS 7915 

data. The MPs were constructed based on a circular structuring element with increasing radius 

and applied the Decision Boundary Feature Extraction (DBFE) and Discriminant Analysis 

Feature Extraction (DAFE) on the morphological profile. The data was classified using neural 

networks, both with and without a feature extraction scheme. The classification accuracy for 

individual classes before and after DBFE from MPs provides significantly higher accuracies of 

87.2% NOFE and 89.9% DBFE, as compared to 87.2% for MP without FE and 80.9% DAFE 

and 89.9% DBFE for the morphological processing of the first PC. Bellens et al. (2008), 

proposed a morphological profile using two structural elements of a disk-shaped and a linear 

structuring element with differing orientations which generated directional profiles. The 

proposed reconstruction approach called partial geodesic reconstruction leads to reaching a 

trade-off between the preservation of the objects geometries and a reduction of the over 

segmentation effect introduced by standard reconstruction. Panchromatic bands from IKONOS 

and Quickbird imagery were used for the analysis, and achieved an increase in overall accuracy 

of 2% and 7%, compared to standard reconstruction approach. Palsson et al. (2010), compared 

land cover classification accuracies of Morphological Profiles (MP) and Derivative of 

Morphological Profiles (DMP). The two MM techniques were tested on panchromatic (PC), 3 

bands+PC, 4 bands+PC of IKONOS data and classified using support vector machine (SVM). 

They also used Intensity Hue Saturation (IHS) and brovey fusion techniques for testing if they 

could increase the accuracy. The DMP gave slightly better results than MP with PC 46. 2%, 3 

bands+PC 58.7%, 4 bands+PC 66.5 % and 67.1%. However, the inclusion of IHS and brovey 

fusion methods did not increase the accuracy with 59.2 % and 59.6 % overall accuracies, 

because the fusion methods are not spectrally consistent.  

Dalla Mura et al. (2009), proposed morphological attribute profiles for performing a multilevel 

analysis based on operators of connected opening and trivia opening, and compared them with 

operators by reconstruction using a VHR panchromatic image for the analysis. AP were 

considered computationally more efficient than operators by reconstruction, due to the fact that 

different attributes used in the transformation lead to different modelling of the spatial 

information contained in scene. This increases the flexibility with respect to filters based on 

structuring elements. These filters are usually constrained to perform an analysis based on the 
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size of the structures. Fauvel et al. (2008) proposed an Extended Morphological Profiles 

(EMPs) based on PC from hyperspectral data Reflective Optics System Imaging Spectrometer 

(ROSIS-03) and used feature extraction (FE) algorithms based on decision boundary FE 

(DBFE) and nonparametric weighted FE (NWFE) to select informative features from spectral 

and spatial domain. Three principal components (PCs) were computed from hyperspectral data, 

and four openings and closings computed for each PC using a circular structuring element (SE) 

with a step wise increment of two. The use of FE improved the classification accuracy as 

compared to MP. EMPs outperformed other classifiers with overall accuracy of 97.69%. 

Cavallaro et al. (2014), compared Attribute Profiles (AP) and Self-Dual Attribute Profiles 

(SDAP) based on attribute area, Standard Deviation (SD) and Moment of Inertia (MI) using 

differing threshold values. The techniques where tested on PAN+MS, MS+AP and MS+SDAP 

from QuickBird satellite and data classified using random forest classifier. The SDAPs provide 

the capability in modelling spatial information within heterogeneous scenes, proving slightly 

high values for classification accuracy of 95.38 % based on area, 92.89 % MI and 94.72 % SD, 

as compared to 94.60% area, 92.64 MI and 93.07 % SD of AP. Huang et al. (2014) proposed a 

new Morphological Profile (MP) based on Multiple Morphological Profiles (MMP) of 

Extended Morphological Profiles (EMPs) and Extended Attribute Profiles(EAPs) using four 

categories to create base image for MPs, (1) Linear transforms based on Fast Independent 

Component Analysis (ICA) and Factor Analysis (FA) for MPs, (2) Nonlinear transforms based 

on kernel-based transforms, Kernel Principal Component’s Analysis (KPCA) and Kernel 

Nonnegative Matrix Factorization (KNMF), (3) Manifold learning based on Locality 

Preserving Projections (LPP) and Neighbourhood-Preserving Embedding (NPE) (4) and used 

a linear support vector machine classifier (LSVM). EAPs gave higher classification accuracy 

as compared to EMPs for university data area. However, the EAPs and EMPs results for Pavia 

Centre Dataset were similar in overall accuracies of  PCA 98.9%, Joint Approximation 

Diagonalization of Eigenmatrices (JADE_ICA) 98.6%, Fast-ICA 98.8, FA 98.2%, KPCA96.8, 

KNMF97.3%, LPP98.0%, NPE96.9%,Multilinear Principal Component Analysis (MPCA) 

98.4% for EAPS and  PCA 97.8%, JADE_ICA 98.0%, Fast-ICA 98.4%, FA97.7%, 

KPCA97.9%, KNMF96.6%, LPP 97.9%,NPE97.3%, MPCA98.2% for EMPs. The MMPs was 

found to enhance the classification accuracy by synthesizing the spectral-spatial information 

extracted from the multicomponent base images. Song et al. (2014), proposed extended multi-

attribute morphological profiles (EMAP), which are an extension of attribute profiles (APs) 

obtained using different types of attributes and stacked together. EMAP offer the potential to 

model structural information in great detail according to different types of attributes. The study 
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was carried out using both multispectral Quick bird and hyperspectral data set Airborne Visible 

Infra-Red Imaging Spectrometer (AVIRIS). A comparison with state-of-the-art classifiers 

showed very promising results for the proposed approach, particularly when a very limited 

number of training samples are available. 

2.6 Conclusion  

The literature review indicates various techniques used for image classification using high 

spatial resolution. The review shows that Morphological profiles based on MPs, DMPs and 

EMPs are very effective in extracting informative spatial features from images using either a 

compact disk or square structuring element, which proved to be effective in modelling size of 

objects in images. The EMPs proposed by Pesaresi and Benediktsson (2001) for application in 

panchromatic images using pixel similarity based on morphological characteristic of connected 

components with a circular SE provided significant accuracy compared to standard MP, which 

are based on edge detection. In the study conducted by Dalla Mura et al. (2010b), authors 

indicated the limitations arising from multi-scale processing of MPs, DMPs and EMPs. 

Although these techniques have proven to be effective in extracting informative spatial features 

from analysis images, the limitation of filters based on structuring element lies in their 

incapability to model other features than the size of the objects. Similar to the use of two SE of 

a circular and a linear structural element for computation of MPs, the drawback still lies on the 

inability to practically investigate the length of orientations within the SE. Therefore, Dalla 

Mura et al. (2009) proposed the attribute profiles (AP), which are based on operators of 

connected opening and trivial opening. The filters represent an adaptive morphological analysis 

technique which implements a series of attribute thickening and thinning operators on 

connected components (Huang et al., 2014). APs provides flexibility in-terms of processing 

image based on many different types of features such as purely geometric, textural, and contrast 

based analysis, using analysis techniques based on area, moment of inertia and the standard 

deviation.  

Huang et al. (2014) compared the performance of different feature extraction methods for the 

generation of base images from hyperspectral imagery and found that both EMP and EAP 

provide similar accuracies when concatenation of either EMP or EAP is used to form multi-

morphological profiles (MMP). However, the use of linear image transforms such as PCA in 

the formation of EMP has an impact on the preservation of structural objects, which may distort 

edges of objects. The reconstruction and connected components approaches have proved to 

have a better shape preservation than classical standard morphological filters based on edge-
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detection. However, when reconstruction and connected components analysis are combined 

with linear image transform, they may lead to distortion on image objects. In this regard, can 

reconstruction approaches without the use of PCA, perform better than reconstruction 

approaches combined with PCA? And secondly, can MM approach, one with the highest 

classification accuracy, provide improved accuracy when compared to conventional pixel and 

object based classification techniques used for urban LULC?  
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CHAPTER 3 

A Comparison of Two Morphological Techniques in the Classification of Urban 

Land Cover 

This chapter is based on: Tsoeleng L. T., Odindi J, and Mhangara, P. (2020). A Comparison 

of Two Morphological Techniques in the Classification of Urban Land Cover. Remote 

Sensing, 2020, 12, 1089; doi:10.3390/rs12071089 

Abstract 

Understanding the often-heterogeneous land cover in urban areas is critical for, among others, 

environmental monitoring, spatial planning, and enforcement. Recently, several earth 

observation satellites have been developed with an enhanced spatial resolution that provides 

for precise and detailed representations of image objects. Morphological image analysis 

techniques provide useful tools for extracting spatial features from high-resolution remotely 

sensed images. This study investigated the efficacy of mathematical morphological (MM) 

techniques in the land cover classification of a heterogeneous urban landscape using very high-

resolution pan-sharpened Pleiades imagery. Specifically, the study evaluated two 

morphological profiles (MP) techniques (i.e., concatenation of morphological profiles (CMPs) 

and multi-morphological profiles (MMPs)) in the classification of a heterogeneous urban land 

cover. The overall accuracies for CMP were 83.14% and 83.19% over the two study areas. 

Similarly, the MMP overall accuracies were 84.42% and 84.08% for the two study sites. The 

study concluded that CMP and MMP can greatly improve the classification of heterogeneous 

landscapes that typify urban areas by effectively representing the structural landscape 

information necessary for discriminating related land cover classes. In general, similar and 

visually acceptable results were produced for land cover classification using either CMP or 

MMP image analysis techniques. 

Keywords: land cover; urban classification; morphological image analysis; morphological 

profiles; satellite imagery; principal components analysis.                                                 

3.1 Introduction 

Understanding the often-heterogeneous land cover in urban areas is critical for environmental 

management, urban spatial planning, and optimal and sustainable use of urban landscapes 

(Blaschke et al., 2014, Oleson et al., 2008, Voltersen et al., 2014). Traditionally, methods used 

for urban land cover classification involve enumeration, observation, and field surveys. 
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However, these methods are often costly, tedious, time-consuming, and unsuitable for large 

spatial extents (Bosecker, 1988, Meyer-Roux and King, 1992). The recent advancement in 

space-borne remote sensing technology provides the capability to quickly acquire high spatial 

resolution images that provide opportunities for detailed analysis for urban applications such 

as the often-challenging urban land cover delineation (Hu et al., 2016). Hence, to increase the 

accuracy of urban landscapes, the recent proliferation of high spatial resolution sensors 

necessitates a further exploration of various techniques commonly classified into pixel and 

object-based approaches.  

Pixel-based image classification techniques have been widely adopted for land cover 

delineation (Carrizosa and Morales, 2013, Entezari-Maleki et al., 2009, Lillesand et al., 2015, 

Puletti et al., 2014, Goncalves et al., 2008, Shalaby and Tateishi, 2007, Mhangara and Odindi, 

2013, Alajlan et al., 2012, Zhang et al., 2010). Most pixel-based classification methods only 

utilize the spectral information in the pixels for classification of land cover. Notably, the 

efficacy of spectrally based pixel-based techniques is limited by landscape heterogeneity 

typified by urban areas and the ever-increasing suite of high spatial resolution imagery 

associated with recent sensor advancement. Improved spatial information with ground 

sampling distance(GSD) less than 2m, for instance, is inherent in current sensor advancements, 

such as SPOT6&7, Pleiades, and IKONOS, and is likely to increase within class spectral 

variability and inter-class spectral confusion, hence lower classification accuracies 

(Campagnolo and Cerdeira, 2018, Gong et al., 1991, Weih and Riggan, 2010). Whereas 

advanced machine learning algorithms such as support vector machine, artificial neural 

network, and decision tree have been known to generate significant accuracy in urban land 

cover mapping (Duro et al., 2012), their dependence on statistical information does not allow 

for exploitation of the rich spatial information that characterize the high spatial resolution 

sensors. According to Lillesand et al. (2015), their inability to exploit spatial or contextual 

information related to the pixel impedes optimum performance in a heterogeneous urban 

landscape. As an alternative, object-based image analysis (OBIA) techniques were developed 

to exploit contextual information inherent in heterogeneous landscapes. The increasing 

popularity of OBIA is attributed to their ability to utilize image spatial characteristics such as 

tone, shape, pattern, and context. Typically, two distinct methods utilize spatial information 

from an image: region-based, such as the Grey Level Co-Occurrence Matrix (GLCM), and 

edge/window-based techniques, such as the Canny edge and Sobel operator. Commonly, edge-

based and region-based segmentation are used to partition discrete surface spectral 
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characteristics. Edge-based segmentation, on the other hand, seeks boundaries by 

distinguishing areas within the image and segments of the complete enclosure by edge pixels 

(Zingman et al., 2012a). Consequently, pixels that characterize objects can either form part of 

the in-segment or constitute a segment as its boundary (Geneletti and Gorte, 2003). However, 

the major limitations related to edge-based techniques are insensitivity to noise and are edge-

based, hence they are highly dependent on the analysis window which blurs the borders of 

textured regions (Gong et al., 1992, Zingman et al., 2012a).  

Morphological image analysis techniques, generally referred to as mathematical morphology 

(MM) (Soille and Pesaresi, 2002), exploit the spatial domain in images using various 

techniques based on set theory to estimate and measure many useful geometrical features such 

as shape, size, and connectivity (Zingman et al., 2012a, Soille and Pesaresi, 2002). These 

techniques are developed based on concatenation of mathematical operations grounded in a set 

of operations such as union, intersection, complementation, and translations (Soille, 2013, 

Soille and Pesaresi, 2002). These operators include erosion, dilation, opening, closing rank 

filters (including median filters), and top hat transforms (Pesaresi and Benediktsson, 2001). 

They are defined in an abstract structure known as an infinite lattice (Pesaresi and 

Benediktsson, 2001), which is an assumption that an image consists of structures which can be 

handled by set theory. Morphological image analysis techniques provide useful tools for 

extracting spatial features from high-resolution remotely sensed images (Oleson et al., 2008, 

Voltersen et al., 2014, Bosecker, 1988, Meyer-Roux and King, 1992). These techniques include 

a family of morphological profiles (MPs) and its advances that include extended morphological 

profiles (EMPs), derivative of morphological profiles (DMPs), multi-morphological profiles 

(MMPs), concatenation of morphological profiles (CMPs), attribute profiles (APs), and 

extended attribute profiles (EAPs) (Bosecker, 1988, Meyer-Roux and King, 1992, Hu et al., 

2016, Carrizosa and Morales, 2013, Entezari-Maleki et al., 2009). These MP techniques 

process images based on many different types of features such as purely geometric, textural, 

and contrast-based analysis (Huang et al., 2014). Morphological-based image analysis has the 

potential to address challenges arising from pixel-based and OBIA by integrating the pixel, 

region, and object-based image analysis (Manandhar et al., 2009, Lizarazo, 2014, Lizarazo and 

Elsner, 2009, MacLean and Congalton, 2012, Foody, 2004). Hence, the objective of this study 

was to test the efficacy of CMP and MMP’s ability to preserve structural information as well 

as discriminate land cover classes in a heterogeneous urban landscape. 
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3.2.  Materials and Methods  

The experiments were carried out using Pleiades datasets over two areas: Boksburg in 

Ekurhuleni and Sunninghill in Johannesburg, both within the Gauteng Province of South Africa 

(Figure 3.1). The two cities constitute the fastest growing urban areas on the African continent, 

mainly attributed to migration from other parts of the country and the continent. The cities are 

characterized by a heterogeneous urban landscape, where households are increasing hence 

placing a huge demand on their economic and social infrastructure. Residential areas range 

from luxurious wooded suburbs to shanty towns and squatter settlements. The two subset 

images used in this study contain the typical urban landscape that include residential and 

industrial buildings, roads, and vegetation. 

 

Figure 3.1. The study areas for the land-cover classification subset: (a) Sunninghill and (b) 

Boksburg. 
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3.2.1 Data set and processing  

Very high-resolution pan-sharpened Pleiades (0.5 m) data were explored for the study. Table 

3.1 shows the details of images acquired for the study. The imagery was acquired on 12 

February and 13 December 2015, covering Boksburg and Sunninghill, respectively. The data 

were procured from Airbus through the South African National Space Agency (SANSA). The 

Pleiades imagery comprises four spectral bands from the visible (430) to the near-infrared 

region (950 nm). The datasets were received already stored in 11 bits per pixel and delivered 

as 16 bits Geo Tiff, hence allowed for increased discrimination of subtle spectral differences 

among objects. The images were received already georeferenced and corrected for off-nadir 

acquisition and terrain effects. The pan-sharpened imagery was used for the analysis. The aerial 

photos obtained from the National Geo Spatial Information (NGI) in South Africa were used 

for validation. Given that the satellite images were acquired in 2015 and the aerial photos were 

captured in 2012, a ground validation was undertaken in 2016 to confirm samples of existing 

land cover classes extracted from the aerial photos and to update samples where inconsistencies 

existed due to land cover change. This approach was used due the unavailability of high-

resolution reference data for 2015.     

Table 3.1. Very high-resolution Pleiades spectral combinations. 

Panchromatic (Pan) Multispectral (MS) Pan-sharpened (PMS) 

0.5 m 2m 0.5 m (fusion) 

Pan: 450m-745nm 

Blue: 430 - 550 nm 

Green: 490 - 610 nm 

Red: 600 - 720 nm 

Near-infrared: 750 -950 nm 

Blue: 430 - 550 nm 

Green: 490 - 610 nm 

Red: 600 - 720 nm 

Near-infrared: 750 -950 nm 

 

The land cover classes were grouped into seven major urban classes: Vegetation (grass), 

Vegetation (trees), Roads, Building, Water, Shadow, and Bare Land (Table 3.2). 

Table 3.2. Land cover classes and their description. 

Land Cover Classes  Cover type  Description 

Bare land Open land Mining activities and/or dumps 

Buildings 
Industrial/commercial and 

settlements 
Urban man-made structures such as buildings  

Roads Tarred roads, tarred open areas  Car parking lots and pavements 

Shadows Shadows 
Shadows from industrial buildings and trees in 

urban areas. 

Grass Grass cover  Crop fields, conservation fields, game fields. 

Shrubs Shrubs/thicket/woody cover and Dense tall tree dominated by forest or shrubs  

Water Wetlands and dams  Natural/man-made ponds 
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3.2.2. Morphological Profiles Methods  

A morphological profiles is composed of repetitive transformation of opening profile ∏𝛾 and 

closing profile ∏𝜑.The morphological opening profile of an image 𝑓 is an array of n openings 

performed on the original image using a series of structuring element (SE) with increasing sizes 

of radius 𝜆, and is defined as:  

∏𝛾 (𝑓) = {∏𝛾𝜆(𝑓), ∀𝜆 ∈ [0, 𝑛]}                                                          

(1) 

Where ∏𝛾𝜆 is the opening by reconstruction with a SE of radius size 𝜆 and 𝑛 is the total number 

of openings. By duality, the morphological closing profile of an image 𝑓 is an array of n closing 

performed on the original image using a series of SE with increasing sizes of radius 𝜆,  

composed by n levels can be indicated by  

∏𝜑 (𝑓) = {∏𝜑𝜆(𝑓), ∀𝜆 ∈ [0, 𝑛]}                                                                      

(2) 

Where ∏𝜑𝜆 is the closing by reconstruction with SE of radius size 𝜆 and 𝑛 is the total number 

of openings. By collating opening profile and closing profile, a morphological profile (MP) is 

realised. 

Opening and closing profile are generated from gray level images using opening and closing 

by reconstruction operators, where 𝜆 represent the radius of disk-shaped or weighned square-

shaped SE of fixed shape with increasing structuring element (SE) which is commonly used in 

literature (Huang et al., 2014, Dalla Mura et al., 2010b). When joining opening and closing 

profile, both of the same size n, a morphological profile is obtained (Dalla Mura et al., 2010b, 

Soille and Pesaresi, 2002). An MP is generally applied to analysis of single band image (e.g. 

panchromatic) and its extension to multispectral images is referred to as Extended 

Morphological Profile (EMP). An EMP is constructed by a series of MPs built on base images 

which contain few bands but represent most of the information that is relevant for 

discrimination purposes (Dalla Mura et al., 2010b, Huang et al., 2014). Therefore, EMPs of 

first principal component (PC) can be formalized by: 

𝐸𝑀𝑃 (𝐼) = {𝑀𝑃𝑃𝐶1(𝐼1), 𝑀𝑃𝑃𝐶1(𝐼2), … , 𝑀𝑃(𝐼𝑛)}                                        (3) 

where 𝐼 comprise a set of the n-dimensional base images derived using principal component. 

Multi-morphological profiles (MMPs) are an extension of EMP obtained using different types 
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of morphological profiles stacked together. The filtering operation implemented in EMPs is 

based on the evaluation of how a given image is computed for every connected component of 

a gray scale image 𝐼 for a given value. 

𝑀𝑀𝑃 (𝐼) = {𝐸𝑀𝑃(𝐼1), 𝐸𝑀𝑃(𝐼2), … , 𝐸𝑀𝑃(𝐼𝑛)}                             (4) 

Where EMP (𝐼1) comprise a set of the n-dimensional base images derived using principal 

component (Huang et al., 2014, Dalla Mura et al., 2010b).  

A morphological profile based on the concatenation of MPs is defined by a combination of 

morphological geodesic opening and closing operations of different sizes. A CMP is 

constructed differently from EMPs and MMPs. Both EMP and MMP analyses rely on PCA 

transformation to reduce dimensionality, and CMPs are based on the analysis of an image 

without the addition of linear or non-linear data dimensionality reduction techniques. The 

concatenation of various MPs without the use of image transform techniques can be defined as 

follows: 

𝐶𝑀𝑃 = {𝑀𝑃 (𝑓1), 𝑀𝑃(𝑓2), … , 𝑀𝑃(𝑓𝑛)}                     

(5) 

where 𝑓 comprise a set of the n-dimensional original base images not filtered by PCA. Both 

CMP and EMP morphological profiles, aimed at multiscale decomposition of satellite imagery 

and scene simplification, were implemented in this study. Principal component analysis (PCA) 

was used for the transformation of multispectral and pan-sharpened Pleiades imagery to 

identify patterns in the data and reduce the dimensionality. A EMP was constructed by a series 

of MPs built on base images which contains few bands but represent most of the information 

which is relevant for discrimination (Meyer-Roux and King, 1992). Principal component 

analysis generates base images by analyzing the covariance matrix of the original multispectral 

images (Meyer-Roux and King, 1992, Goncalves et al., 2008). A MMP is an extension of EMP 

obtained using different types of morphological profiles stacked together. The filtering 

operation implemented in EMPs is based on the evaluation of how a given image is computed 

for every connected component of a greyscale image for a given value. A morphological profile 

based on the concatenation of MPs was defined by a combination of morphological geodesic 

opening and closing operations by reconstruction of different sizes. The implementation of the 

methodology is described in Section 3.2.3 below.  
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3.2.3 Image Processing and Parameter Settings  

The multispectral and pan-sharpened imagery was transformed into a single component using 

algorithm PCA to derive EMPs for each band. The PC was used, because it contains more than 

99% of the total variance of the data set. The analysis for the images was performed using a set 

of MM algorithms developed within the MATLAB environment and classified using the 

maximum likelihood algorithm in the ENVI software. The morphological filters’ opening and 

closing based on reconstruction were calculated using a square structural element, and the same 

analysis was performed using a disk structural element with a radius range from two to nine 

with a step of one pixel. The same analysis was performed using morphological reconstruction 

based on sequential application of differing structural element size but using the same shape, 

either a square or a disk, respectively. The square implementation of the filter was separable 

and incremental, while the circular implementation was incremental. The algorithm for opening 

and closing by reconstruction were used to construct MPs. In both experiments, an 18 

dimensional morphological profile(MP) was created using a disk structuring element and a 

square structuring element for each band. Then, the 18 dimensional 

MPs were transformed into a few image bands using PCA algorithms for multispectral and the 

pan-sharpened data set. To extend the morphological profile to a multispectral and pan-

sharpened image, the first PCA component was used to generate a base image to run EMP on 

the images. The EMP transforms were based on the ordering of connected components that 

best represented each object in the scene. The MMP was constructed based on the 

concatenation of various EMPs (Figure 3.2 B), while the second CMP was constructed based 

on the concatenation of MPs without using PCA. This was compared with MMP based on the 

concatenation of EMPs and maximum likelihood used for classification of the data to generate 

results. 
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Figure 3.2. Pleiades image and classification results (A) Represents Pleiades original 

imagery (B) filtered imagery using MP; (C) CMP classified imagery; (D) MMP classified 

imagery. 

3.2.4 Accuracy assessment 

Firstly, Shape, Thematic, Edge and Position (STEP) similarity matrix and the confusion 

matrices were used to assess the accuracy of the results. Secondly, a confusion matrix was used 

to assess how well the classifiers performed by deriving a series of descriptive-analytical 

statistics (Alajlan et al., 2012). Lastly, to test the performance of the classifiers, a McNemar 

test of comparison was performed.  

 

The accuracy of the classification was assessed based on geometric and thematic accuracy 

using Shape, Thematic, Edge and Position (STEP) similarity matrix as suggested by Lizarazo 

(2014). This was done to determine which technique produced the most accurate similarity 

matrix and structural information preservation of LULC objects. Thematic and geometric 

accuracy assessment was done to validate how both methods perform in preserving the 

structural information of LULC objects without distorting edge information. The reference 

sample units were the same as the segments (i.e. polygons), rather than pixels so that the units 
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are directly comparable to the map segments (Table 3.3). To select a region of interest (ROIs) 

for reference objects, points were randomly extracted from a 0.5 m aerial imagery acquired 

from the South African Chief Directorate: National Geo-Spatial Information. One hundred 

points were randomly generated using QGIS 2.16.1 and spatial objects containing these random 

points digitized (reference polygon) at a scale of 1:600 to increase the level of object shape 

delineation (Figure 1). A field survey was conducted to resolve ambiguities resulting from 

photo-interpretation. 

Table 3.3 Number of samples per class for training and test set for the two data sets. 

Land cover  Points Polygons 

Water 8 3 

Grass 22 15 

Shrubs 19 12 

Shadows 2 2 

Roads 23 18 

Bare land 4 2 

Buildings 22 20 

Total 100 72 

 

The STEP similarity matrix assesses the thematic and geometric accuracy by measuring the 

geometric form, thematic attributes, exterior and interior boundaries, centroids position of 

classified and reference objects using shape, thematic, edge, and positional accuracy 

(Campagnolo and Cerdeira, 2018). The STEP system uses the correspondence between 

sampled and referenced objects which is established by overlaying reference object(s) 

(digitized polygons) and their corresponding classified object(s). When a reference object 

matches one or several classified objects, such a classified object is a correctly classified object 

(CCO). This is considered a shape, theme, edge, and positional similarity to a given reference 

object(s). Otherwise, the classified object is referred to as misclassified object (MCO). In this 

regard, MCO has a shape, thematic, edge, and positional similarity with a reference object 

equal to 0%. 

3.2.5 Comparing classifier performance  

The area weighted error matrix and McNemar test were used to compare accuracy 

measurements received from the STEP similarity matrix and the confusion matrix. The 

accuracy results measured using the STEP similarity matrix were weighted. An area-weighted 

error matrix, as suggested by MacLean and Congalton (2012), takes into account the area rather 

than the count of polygons used in STEP. An area weight error matrix was used instead of the 
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actual area to compensate for unequal probability sampling proposed in the method. In the area 

weight error matrix, the individual cells reflect the weighted area of the reference units that fall 

into such cells, similar to how the overall accuracy is computed in the error matrix (Gong et 

al., 1991). Lastly, the McNemar test was used instead of the commonly used z test on kappa 

coefficient to evaluate/or determine the map with the highest classification results. Kappa 

coefficient was not used for this study, because the reference samples used were the same for 

both CMP and MMP. Therefore, it was not appropriate to use the kappa coefficient, because it 

assumes that independent samples are used in their calculations (Weih and Riggan, 2010). 

3.3. Results  

A STEP similarity matrix was used to determine the potential of MMP and CMP in 

discriminating a heterogeneous urban land cover. Specifically, the study sought to discriminate 

heterogeneous urban land cover types as well as preserving geometrical characteristics of the 

structures. This was done by comparing thematic and geometric properties of classified objects 

on a cell-by-cell basis. Each cell was split into quarters to store in a Morton order the four 

similarity metrics for each classified object which were shape, thematic, edge, and positional 

similarity of the classified objects. The classification accuracies were obtained by considering 

the thematic and geometric properties reported in Tables 3.4–3.7. 

Table 3.4. Overall thematic and geometric accuracy results of (a) CMP and (b) MMP over 

Boksburg. 

Category 
a. CMP  b. MMP 

Shape Theme Edge Position  Shape Theme Edge Position 

Bare Land 0.3028 0.8944 0.0636 -0.5295  0.2788 0.7451 0.0928 -0.373 

Buildings 0.8636 0.8557 0.7441 0.7855  0.2241 0.4781 0.1332 0.1486 

Roads 0.6281 0.4297 0.0516 -2.3204  0.121 0.4602 0.0494 -2.2017 

Shadows 0.2617 0.2735 0.1197 0.2279  0.1065 0.1721 0.0435 0.1435 

Grass 0.132 0.7572 0.1007 -1.9369  0.1289 0.6989 0.0919 -1.5907 

Shrubs 0.2285 0.7046 0.1617 -1.2183  0.2175 0.6818 0.0993 -0.034 

Water 0.7713 0.8348 0.6088 0.7915  0.8212 0.6885 0.5068 0.4236 

Overall accuracy 0.4554 0.6756 0.0917 -0.7934  0.1997 0.5321 0.1224 -0.3911 

  

Table 3.5. Overall thematic and geometric accuracy results of (a) CMP and (b) MMP over 

Sunninghill. 
 

Category 
a. CMP  b. MMP  

Shape Theme Edge  Shape Theme Edge Position 

Bare Land 0,3296 0,9758 0,0402 -0,465  0,2791 0,7467 0,0811 -0,369 

Buildings 0,7467 0,8292 0,8226 0,0713  0,2632 0,5286 0,1622 0,2264 

Roads 0,6518 0,317 0,6316 -1,431  0,1262 0,4492 0,0788 -1,811 

Shadows 0,3543 0,437 0,0036 0,0903  0,1079 0,1733 0,0417 0,1264 

Grass 0,1774 0,7855 0,1246 -5,219  0,1446 0,757 0,1328 -1,735 



 
 

35 
 

Shrubs 0,2112 0,5443 0,0985 -1,145  0,2144 0,6749 0,1189 -0,006 

Water 0,7607 0,0012 0,0000 0,0011  0,3378 0,5116 0,0467 0,4347 

Overall Accuracy 0,4617 0,5557 0,2459 -1,157  0,2105 0,5488 0,0946 -0,448 

Table 3. 6. CMP and MMP classification accuracy results over Boksburg. 

Category 
a. CMP  b. MMP 

PA (%) UA (%)  PA (%) UA (%) 

Water 94,9 98,9  92,6 99,8 

Grass 57,9 89,2  62,7 88,2 

Shrubs 79,9 6,9 
 

81 7,6 

Shadows 40,4 1,4 
 

58,7 1,3 

Roads 69 67,7 
 

72,9 78,5 

Bare Land 84,9 53,3  82,6 51,1 

Buildings 90,3 96,8  91.4 98,5 

OA 83.14   84.42 

CMP and MMP = p>0.05  

Table 3.7. CMP and MMP classification accuracy results over Sunninghill. 

Category 
a. CMP  b. MMP 

PA (%) UA (%)  PA (%) UA (%) 

Water 94,9 98,9  92,4 99,8 

Grass 58,0 89,4  60,1 88,8 

Shrubs 79,9 6,9  7,2 82,1 

Shadows 42,8 1,5   1,4 62,9 

Roads 69,5  68,0   80,8  73,3 

Bare Land 53,5 84,8  50,3  83,4 

Buildings 96,76 90.3  98,5 91,7 

 OA 83.19  84.08 

CMP and MMP = p>0.05  

 

The major visual difference interpreted among the thematic maps produced by CMP and MMP 

algorithms was the amount of thematic misclassified buildings with bare land (Figure 3.3 A, 

C, D). Observation, based on field survey and available aerial imagery, revealed that this area 

is predominantly covered by impervious surfaces, bare land/mining dumps, and eucalyptus 

trees. Small dams also exist in the area. Figure 3.3 C shows that CMP misclassified small water 

bodies with shadows, whereas Figure 3.3 D shows that MMP discriminated small water bodies 

from shadows. However, bare lands/mine dumps were often mixed with buildings in both 

classified maps (Figure 3.3 C, D). Similar results are shown for an alternative study site (Figure 

3.3). 
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Figure 3.3. Pleiades image and classification results (A) Represents Pleiades original 

imagery (B) filtered imagery using MP; (C) CMP classified imagery; (D) MMP classified 

imagery. 

The overall weight error matrix classification accuracies obtained for CMP and MMP to 

evaluate thematic and geometrical characteristics accuracy of objects in the classification of a 

heterogeneous urban land cover are reported in Table 3.4. Thematic and geometrical 

characteristics were evaluated by considering the shape, thematic, edge, and positional 

similarity of classified image features. The overall area weight error matrix results were 

calculated using the STEP similarity matrix. In a STEP similarity matrix, a value of 1 indicates 

a correctly classified object, while a value of 0 indicates a misclassified object (MCO), hence 

it suggests a poor shape, thematic, edge or positional similarity of objects.  

Tables 3.4 and 3.5 show the overall thematic and geometric accuracy for CMP and MMP 

computed on the test set. From the analysis in Tables 3.4 and 3.5, it is evident that CMP 

outperformed MMP in terms of shape, thematic, and edge accuracy for most artificial features. 

However, for natural features or features without clear boundaries, both CMP and MMP 

achieved poor shape, edge, and positional accuracy. In terms of shape accuracy, most artificial 

features, such as buildings/roads and natural features with clear boundaries, such as water, were 
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correctly classified by CMP, achieving high accuracies of 0.86 for buildings, 0.85 for roads, 

and 0.77 for water, compared to MMP reaching poor shape overall accuracies of 0.22 for 

buildings, 0.47 for roads, and 0.68 for water. Similar occurrences for edge and thematic 

accuracy were evident, where artificial features were correctly classified by CMP compared to 

MMP. However, when evaluating accuracy for the natural features or features without clear 

boundaries, such as grassland, trees, and shadows, both techniques indicated a poor shape, 

edge, and positional accuracy. Most low classification accuracy for MMP arise from the 

geometrical accuracy, which indicates poor preservation of features by MP after its extension 

to MMP.  

The second accuracy assessment was performed for each classification map produced in the 

study. To evaluate how well both algorithms correctly classified the thematic categories in a 

heterogeneous urban landscape (i.e., the percentage of correctly classified samples), analysis 

of the categories was performed to evaluate how well both CMP and MMP utilized statistical 

information from the dataset to discriminate land cover classes. Tables 3.6 and 3.7 show 

detailed confusion matrices of classification accuracies for CMP and MMP, respectively. The 

CMP and MMP classification accuracy results over Boksburg and Sunninghill were similar as 

shown in Tables 3.6 and 3.7. Overall, accuracies for CMP were 83.14% and 83.19% for 

Boksburg and Sunninghill, respectively. Similarly, the MMP overall accuracies were 84.42% 

and 84.08% for Boksburg and Sunninghill, respectively. Overall, both CMP and MMP 

performed almost similarly for artificial objects, such as buildings and roads, in terms of overall 

classification accuracy. The accuracy assessment shows the overall accuracies of 83% for CMP 

and 84% for MMP classification. Producer accuracy for water and built-up areas were highest 

in comparison to other classes in both classifiers, where CMP produced 94% and 90% as 

compared to 92% and 91% for MMP. Producer accuracy for shadows and grassland was lower 

for both classifiers, with CMP achieving 40% and 57%, respectively, and MMP achieving 58% 

and 62%, respectively. However, a relative difference existed among the classifiers when 

evaluating the individual classes. Individual class type’s producer accuracy indicated fairly 

high classification accuracy for MMP compared to CMP. A 95% confidence limit revealed a 

wide variability and overlap in overall accuracy reported between CMP and MMP 

classification results. Based on this result, the lowest-performing classification model, CMP, 

was within the range of the best performing MMP. Based on a comparison among predictions 

made with optimized feature transformation techniques based on the use of PCA and without 
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the use of PCA, the McNemar test indicated that the difference between CMP and MMP was 

not statistically significant (p > 0.05). 

3.3.  Discussion  

This study evaluated the performance of two MM techniques, MMP and CMP, based on a 

reconstruction approach. The two techniques were evaluated in terms of their ability to 

distinguish as well as preserve geometrical characteristics of image features in a heterogeneous 

urban landscape. Morphological profiles based on a reconstruction approach and its extension 

have been proven in the literature to provide better shape preservation (Pesaresi and 

Benediktsson, 2001, Huang et al., 2014, Foody, 2004, Huang and Zhang, 2011b, Huang et al., 

2007, Dalla Mura et al., 2010b, Palmason et al., 2003a) and classification techniques for land 

cover classification. The aim of comparing concatenation of morphological profiles by 

reconstruction transform (CMP) against its extension (MMP) in urban land cover classification 

was to determine the effects of image dimensionality reduction techniques, such as PCA, to 

construct MMP geometrical characteristics during urban land cover classification. Specifically, 

the study sought to evaluate characteristics, such as shape, thematic, edge, and positional 

similarity, of image objects from very high-resolution data sets. In general, similar and visually 

acceptable results were produced for land cover classification using either CMP or MMP image 

analysis techniques. By visual comparison, both classifiers achieved a fairly significant 

distinction of heterogeneous urban land cover classes. The MMP provided a better distinction 

of features, especially separating water bodies from shadows as compared to CMP (Figure 3.3). 

The enhanced classification accuracy is due to the development of MMP which synthesizes 

spectra-spatial information extracted from multicomponent base (Huang et al., 2014, Huang 

and Zhang, 2011b, Palmason et al., 2003a, Pesaresi et al., 2013). The MMP is constructed 

based on the use of PCA to decrease the curse of the dimensionality problem in standard 

mathematical profiles which then provide effective separation of the distribution of the classes 

in the transformed multispectral and panchromatic band. The CMP is challenged in analyzing 

multispectral bands or statistical information on the imagery, compared to MMP. However, 

comparing the classifiers in terms of geometrical characteristics preservation and thematic 

accuracy, CMP out-performed MMP in preserving geometrical characteristics during the 

classification of features in a heterogeneous urban landscape. This may be because an MMP is 

constructed from concatenation of EMPs based on PCA. Essentially, PCA is an edge-based 

image dimensional reduction algorithm which may blur object boundaries. Both CMP and 

MMP can be used to accurately classify a heterogeneous urban landscape. However, 
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preservation of geometrical characteristics during classification may be challenging, especially 

for natural boundaries. Objects with natural boundaries may not have crisp edges and are 

usually affected by boundary blur which results in classification error (Lizarazo, 2014, Lizarazo 

and Elsner, 2009, Yurtseven et al., 2019). Hence, classifying artificial boundaries, such as 

buildings, may reach high levels of similarity due to the use of very high-resolution imagery 

and shapes for natural objects that have crisp edges. Previous studies evaluated MM techniques 

based on the comparison of morphological filters using reconstruction transform and standard 

morphological transformation. Similar results have been observed in related studies (Huang et 

al., 2014, Huang and Zhang, 2011a, Huang and Zhang, 2011b, Dalla Mura et al., 2010b, 

Pesaresi et al., 2013) and indicated that morphological profile based on a reconstruction 

approach had better shape preservation than classical morphological filters. However, 

extending MPs to MMPs using PCA for dimensionality reduction may decrease the overall 

capability of MMPs to provide better shape preservation, although it increases its ability to 

analyze statistical information, which has been a curse for MP. Overall, the results indicate that 

the use of MP techniques and its extension based on reconstruction provides better capabilities 

in classifying a heterogonous urban landscape using very high-resolution imagery. The CMP 

and MMP techniques address challenges such as speckle or salt and pepper effects from 

classical remote sensing classification techniques. The results indicate that CMP provides 

better shape preservation than its extension MMP. However, MMP provides better thematic or 

class discrimination capability compared to CMP due to the fact of its ability to synthesize 

spectral–spatial information from current sensor development. The effect of geometrical shape 

preservation from MMP is due to the use of PCA, which is an edge-based technique that blurs 

image objects’ shapes. 

3.4.  Conclusions.  

This study evaluated the efficacy of two morphological techniques, one based on the 

concatenation of MPs(CMP) and the other based on its MMP extension which used PCA to 

reduce the dimensionality reduction problem associated with MP. The CMP produced an 

overall accuracy of 83.14% and 83.19% over the two study areas, while MMP produced 

84.42% and 84.08% over the two study sites. The study also established that the CMP 

technique produced better shape accuracy results for artificial land cover features such as 

buildings/roads and natural features with clear boundaries (e.g., water). This was attested to by 

high accuracies of 0.86 for buildings, 0.85 for roads, and 0.77 for water. In contrast, MMP 

produced relatively poor overall classification accuracies in terms of shape. The MMP overall 
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accuracies for shape were 0.22 for buildings, 0.47 for roads, and 0.68 for water. Similar 

occurrences for edge and thematic accuracy were evident, where artificial features were 

correctly classified by CMP compared MMP. However, when evaluating accuracy for the 

natural features or features without clear boundaries, such as grassland, trees, and shadows, 

both techniques indicated a poor shape, edge, and positional accuracy. Most of the low 

classification accuracy for MMP arose from the geometrical accuracy which indicates poor 

preservation of features by MP after its extension to MMP. The study therefore ascertained that 

that the CMP technique provides an effective tool for analysis of very high spatial resolution 

remotely sensed images that produce better shape preservation compared to MMP. 

The study concludes that CMP and MMP can greatly improve the classification of 

heterogeneous landscape that typify urban areas by effectively representing the structural 

landscape information necessary for discriminating related land cover classes. In general, 

similar and visually acceptable results were produced for land cover classification using either 

CMP or MMP image analysis techniques. 

However, concerning the overall classification accuracy, MMP produced slightly higher 

classification results compared to CMP. Nevertheless, the difference was not statistically 

significant, with a p-value greater than 0.05. In terms of visual inspection from the thematic 

maps, MMP could separate features, such as water from shadows, when compared to CMP. 

Separating water from shadows is commonly a challenge for most remote sensing algorithms. 

Therefore, MMP can effectively be used for classification of a heterogeneous urban land cover. 

In summary, it can be concluded that both CMP and MMP techniques are effective in 

classifying land cover in heterogeneous urban landscape and are particularly effective in 

discriminating spectrally similar land cover classes. 



 
 

41 
 

CHAPTER 4 

Comparing the performance of the Multi-Morphological Profile’s in urban land 

use land use mapping using pixel based classifiers 

This chapter is based on: Tsoeleng L. T., Odindi J, Mhangara, P. and Malahlela, O. (2020). 

Comparing the performance of the Multi-Morphological Profile’s in urban land use land use 

mapping using pixel based classifies. Under preparation. 

Abstract  

Improved spatial and spectral resolution from recent sensor advancements provides 

opportunities for detailed and enhanced accuracies in the classification of a heterogeneous 

urban landscape. The classification of a heterogeneous urban landscape and analysis of high 

spatial resolution images has been a challenge for most pixel based techniques. Object based 

techniques have proved effective in classifying heterogeneous urban landscapes by providing 

an effective framework for analysis of high spatial resolution images. However, challenges 

such as under/over segmentation and non-robust statistical estimation hamper most object 

based techniques in achieving optimum performance for classifying a heterogeneous urban 

landscape. Therefore, it is imperative that effective classification is related to the effective 

utilization of both spatio-spectral characteristics of image objects. Morphological techniques 

especially multi-morphological profiles (MMP) provide an effective framework for analysis of 

both spectral and spatial information from very high resolution satellite imagery by performing 

image analysis based on features such as geometric, texture and contrast. In this chapter, we 

compare the performance of MMP used as a feature vector for Support Vector Machines 

(SVM) and Maximum Likelihood (ML) techniques against the SVM and ML without the use 

of MMP as a feature vector. The results from this chapter indicate that the use of MMP as a 

feature vector for object based classification using ML and SVM produced significantly higher 

classification results with accuracies reaching, 84.8% and 82.2% respectively, compared to 

75.77 and 77.6 for ML and SVM classification without the use of MMP as a feature vector. In 

addition, the overall results for both classifications indicated that MMP has the potential to 

increase classification accuracy of a heterogeneous urban LULC. 

4.1 Introduction 

Improved spatial and spectral resolution from recent sensor advancements provides 

opportunities for detailed and enhanced accuracies in the classification of a heterogeneous 

urban landscape. High spatial and spectral information enhances the identification of small 
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features e,g. narrow streets, buildings, shrubs and grassland in a heterogeneous urban 

landscape. Identification of small image features is essential for detailed classification of a 

heterogeneous urban landscape with improved precision. Various classification methods and 

algorithms exist in remote sensing for LULC classification. Generally, they can be categorized 

as pixel or object based classification approaches  (Duro et al., 2012). However, with many 

advances in the classification methods or algorithms, delineation of heterogeneous urban 

landscapes and analysis of very high spatial resolution data from recently developed sensors 

remains a challenge for most pixel based classification algorithms. To overcome the problem, 

object based techniques have been effectively used in classifying a heterogeneous urban 

landscape by providing an effective framework for analysis of high spatial resolution images 

(Zhang et al., 2010, Myint et al., 2011, Malinverni et al., 2011). However, challenges such as 

under/over segmentation and non-robust statistical estimation hamper most object based 

techniques in achieving optimum performance for classifying a heterogeneous urban landscape 

(Fauvel et al., 2008). Therefore, it is imperative that effective classification of a heterogeneous 

urban landscape is related to the effective utilization of both spatio-spectral characteristics of 

image objects (Zhang et al., 2013). 

Pixel based classifiers such as maximum likelihood (ML) and support vector machine (SVM) 

provide an effective framework for statistical analysis. Hence, increased accuracy in the 

classification of urban LULC is related to effective use of an image’s spatial and spectral 

resolution (Zhang et al., 2013). In this regard, classifiers that can optimally utilise both spatial 

and spectral information in the classification process are important in achieving reliable 

classification results. In this chapter, we propose the use of an object based filtering technique 

using Multi-Morphological Profile as a base image for pixel based classification algorithms 

(SVM and ML). We then compare results generated from the filtered imagery against 

classification of non-filtered imagery (without the use of a feature vector) for pixel based 

classification using SVM and ML. 

Morphological techniques, especially a family of morphological profiles (MP), have been used 

in analysis of urban structures (Palmason et al., 2005). MP provides an effective framework 

for analysis of very high spatial resolution satellite imagery, by performing image analysis 

based on features such as geometric, texture and contrast. However, the limitation of MP is that 

it can only be applied to a single panchromatic band, and cannot fully utilise the multispectral 

channels from most remote sensing images (Tsoeleng et al., 2020). Therefore, MP is not 

sufficient to achieve optimum performance for classification of a heterogeneous urban 
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landscape. Benediktsson et al. (2003), proposed the use extended morphological profiles 

(EMP), which is an extension of MP for application in hyperspectral data to effectively deal 

with the dimensionality problem related to MP. In EMP, the multidimensional data is reduced 

through a principal component analysis (PCA), to few informative dimensions (Huang et al., 

2014). A multi-morphological profile (MMP) is constructed based on the concatenation of 

EMPs. MMP provides an effective framework for analysis of both spectral and spatial 

information from very high resolution satellite imagery by performing image analysis based on 

features such as geometric, texture and contrast. Furthermore, MMP process an input image at 

different scales that include filtering, feature extraction, segmentation and classification. In this 

chapter, MMP is used to determine image structural components by filtering process.  

An image filter is important for modifying or enhancing an image so as to emphasize or remove 

certain features (McAndrew, 2004). The morphological filters are object-oriented transforms 

that focus on processing of the image on areas with shape and size defined by a structural 

element (Dalla Mura et al., 2010b). The MMP filter is based on morphological reconstruction 

transformation, which is useful for extracting meaningful information about shapes in images 

(Gonzalez et al., 2004). The transformation comprises the use of connected components which 

measure connectivity within an image using different measures of four or eight connectivity in 

2D images (Serra, 1998). In this chapter, MMP is used as an object based feature vector to 

provide a base image for classification based on Support Vector Machine (SVM) and 

Maximum Likelihood (ML) algorithm. The results obtained are then compared against SVM 

and ML classification using Pleiades data without the use of an object based feature vector 

(MMP filtered imagery). 

4.2    Methods 

4.2.1  Data description   

A Pleiades sensor pan-sharpened imagery in concert with SVM and ML were used to evaluate 

the effectiveness of MMP as a feature vector in improving LULC classification. A Pleiades 

imagery was captured on 16 February 2015 was used in this study. The datasets are stored at 

11bits per pixel and delivered as 16 bits Geo Tiff, giving it a dynamic range that allows 

increased discrimination of subtle spectral differences between objects. The images were 

received already geo-referenced and corrected from off-nadir acquisition and terrain effects. 

The LULC classes were grouped into seven major urban classes, Vegetation (grass) and 

Vegetation (Trees), Roads, Building, Water, Shadow and Bare ground (Table 4.1).  
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Table 0.1: The distribution of test samples. 

Land cover  Points Polygon 

Water 8 3 

Vegetation (grass) 22 15 

Vegetation (tree) 19 12 

Shadows 2 2 

Roads 23 18 

Bare Land 4 2 

Buildings 22 20 

Total 100 72 

 

4.2.2 Training and validation data   

Training samples were manually digitised in an ENVI software environment. One hundred 

validation data points were randomly sampled in a QGIS environment. This was followed by 

selection of region of interest (ROIs), where spatial objects containing these reference points 

were digitized. The polygons were digitized at a scale of 1:500 to increase the level of shape 

delineation (Figure 4.1). The randomly generated training samples were verified in the field. 

Ambiguities were resolved using a 0.5 m aerial photo acquired from the South African Chief 

Directorate: National Geo-Spatial Information.  

 

Figure 0.1: Study area field sampled reference objects points and polygons for the land-cover 

classification subset. The green points represent sampled points and the red polygons 

represent digitized polygons.  
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4.2.3 Image classification  

A pan-sharpened imagery was used for the classification. The first stage of the analysis 

involved the filtering of a pan-sharpened Pleiades imagery by MMP algorithm in a Matlab 

environment. MMP was used to synthesize the spectral-spatial information extracted from 

multicomponent base image. This is crucial for exploiting spatial information from the sensor 

and to emphasize image structural components (McAndrew, 2004). Reconstruction 

transformation MMP filters were used in this study. After filtering, base imagery were 

classified using ML and SVM. According to Zhang et al. (2013), filtering the imagery using 

MMP exploit image spatial characteristics and classifying the base imagery using ML and 

SVM provides effective statistical estimation to analyse spectral information. The last stage of 

the analysis was to classify the pan-sharpened imagery using the ML and SVM algorithms, 

without the use of MMP filtered imagery. This was done to assess the effectiveness of MMP 

in increasing the accuracy of urban LULC using very high resolution imagery.  

4.2.3.1 Maximum likelihood  

Maximum likelihood classification is a parametric supervised classification method commonly 

used for LULC classification in remote sensing. ML uses two principles for analysing dataset, 

firstly, it assumes that cells in each class samples are normally distributed (Gaussian 

distribution in the datasets) and secondly, it uses Bayes theorem for decision making (Ahmad 

and Quegan, 2012). In this study, the probability threshold was not specified for classification 

based on ML algorithm for MMP base layer and non MMP transformed Pleiades data. The idea 

was to let the classifier use the default parameters to calculate the probability of the transformed 

MMP base image. The advantage of maximum likelihood is that it takes into account the 

covariance within the class distribution and normally distributed data (Guide, 1999). However, 

with non-Gaussian data, the results may be unsatisfactory (Blaschke, 2010).  

4.2.3.2 Support Vector Machine 

Support vector machine is a non-parametric supervised statistical learning technique 

(Mountrakis et al., 2011, Qian et al., 2014). It is a discriminative classifier that minimizes 

misclassification in the dataset by finding a decision boundary/hyperlane that separates data 

into predefined number of classes. In cases where the data or image objects are inseparable, a 

kernel function is used to project the data into high dimensional space features that solve the 

inseparability problem (Wang et al., 2016). Kernel functions commonly used are Gaussian 

radial basis function (RBF), polynomial, linear and sigmoid function (Wang et al., 2016, Chang 

and Lin, 2011, Schölkopf et al., 2002). In this study a radial basis function (RBF) kernel was 
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used for SVM classification on both the MMP filtered Pleaides data set and the non-filtered 

Pleaides data set in ENVI 5.1 software. The default setting was used for gamma parameter 

setting, which is an inverse of the number of bands in the input image.  

4.2.4 Accuracy Assessment  

In order to validate the reliability of each of the four classified LULC maps, statistical 

comparison based on error matrix and McNemar test were executed for each of the four 

generated thematic maps. Two maps were generated using SVM and ML using MMP filtered 

Pleaides dataset, and the other two based on SVM and ML classification maps using non 

filtered Pleaides dataset. McNemar test was used instead of kappa statistics as the training 

reference samples used were the same for all four classified maps. 

4.3. Results  

4.3.1 Visual examination of land cover maps  

Based on visual inspection, figure 4.2 (c) shows that shadows (represented in yellow) were 

misclassified as water bodies within residential areas. In figure 4.2 (d) water bodies (shown in 

blue) were correctly classified. However, figure 4.3 (c) shows that shadows were misclassified 

as smaller water bodies such as pools within residential areas, while in figure 4.3 (d), small 

water bodies within residential areas were misclassified as shadows and buildings misclassified 

as water bodies. By visual inspection, figure 4.3 (d) indicate improved classification of a 

heterogeneous urban LULC.  
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Figure 0.2: Pleiades image and classification results using ML (a) Pleiades RGB imager (b) 

MMP filtered Pleiades imagery (c) Classification based on Maximum likelihood from a non-

filtered image (d) ML classification using imagery filtered using MMP. 

 

The classification of MMP transformed imagery using SVM algorithm (figure 4.3 d) shows an 

error of commission for water bodies classification when compared to classification based 

SVM without the use of filters (figure 4.3 c), while an error of omission was observed for 

buildings when filters were used. However, when classifying bare land, MMP filtered imagery 

produced promising results.  This error of commission and omission for both classifiers can be 

attributed to the kernel function’s inability to provide optimal configuration for the 

classification. Zhu and Blumberg (2002) and Mountrakis et al. (2011) have for instance 

documented the shortcoming of RBF.  
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Figure 0.3: Pleiades image and classification results using ML (a) Pleiades RGB data (b) 

MMP filtered Pleiades dataset (c) Classification based on SVM from non-filtered Pleiades 

data (d) SVM classification using imagery filtered by MMP.  

4.3.2 Accuracy assessment  

Tables 4.2 indicate ML results obtained using non-filtered and ML MMP filtered Pleiades 

image, respectively.  The tables show that the filtered image generated better classification 

accuracy i.e. 84.8% compared to 75.8%. The use of MMP as feature vector enhanced the 

classification accuracy by approximately 9%. A class to class assessment showed a high error 

of omission for water bodies with accuracies ranging from 64.3% for ML classification to 

92.4% from ML classification based on MMP filtered image. However, the performance of 

ML based on MMP filtered Pleiades data and ML classification were similar for built-up, bare 

land and impervious (roads) surfaces.  

 

 

 

 

 



 
 

49 
 

Table 0.2: LULC ML classification using pan-sharpened Pleiades imagery; b. LULC ML 

classification using MMP filtered imagery. 

Category 
ML  MMPML 

PA (%) UA (%)  PA (%) UA (%) 

Water 64.3 100  92.4 99.8 

Grass 45.8 89.9  64.1 89.8 

Shrubs 79.0 5.2  82.3 8.9 

Shadows 48.0 0.4  61.1 1.1 

Roads 63.5 86.1  75.1 76.8 

Bare Land 97.6 39.2  82.8 51.6 

Buildings 92.7 99.4  91.3 98.5 

OA 75.77  84.8  

MMPML and ML = p>0.69   
 

 

Table 4.3 indicates SVM results obtained using MMP non-filtered image and MMP 

base/filtered image. The overall accuracy for SVM classification based on MMP filtered 

imagery was slightly higher (82%), compared to SVM classification (77%) without the 

inclusion of a filtered imagery. In this case, the use of MMP as a feature vector before 

classification enhanced the classification accuracy by approximately 5%. Evaluating individual 

classes, based on respective user and producer accuracy, it is evident that water bodies and 

built-up areas were better classified than shadows and other classes.  

Table 0.3:  LULC classification from pan-sharpened and MMP filtered imagery using SVM. 

Category 
PANSHARPENED SVM                MMP SVM 

PA (%) UA (%)  PA (%) UA (%) 

Water 92.9 98.9  93.6 99.9 

Grass 31.4 90.7  44.4 93.4 

Shrubs 76.6 4.2  74.4 4.7 

Shadows 58.6 1.9  36.0 1.7 

Roads 83.3 58.1  76.1 72.6 

Bare Land 80.9 49.3  90.6 43.4 

Buildings 88.7 98.9  93.1 98.9 

OA (%) 77.6   82.2 

MMP SVM and SVM = p>0.68   
 

The above tables show that the use of MMP as a feature vector for ML and SVM classification 

significantly improved the classification results. However, there was no statistically significant 

difference between the overall classification accuracy of the ML and SVM classification 

method using MMP as a feature vector (p-values > 0.07) (table 4.2 and 4.3). Generally, SVM 
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provided significantly better overall classification accuracy results (77.6%), compared to ML 

(75.8%). However, the results were not statistically significant (p-value> 0.05).  

4.4 Discussion  

This study evaluated the efficacy of MMP as a feature vector in enhancing the LULC 

classification accuracy of pixel based SVM and ML classifiers. These were evaluated in the 

classification of a heterogeneous urban landscape using very high resolution satellite imagery. 

The MMP filtered Pleiades image was used as a base image for SVM and ML classification 

and compared with SVM and ML classification based on non-filtered Pleiades imagery.  

Results demonstrated the value of MMP as a feature vector used as a base image for 

classification. As shown in figure 4.2 (d) and 4.3 (d), both ML and SVM classifications based 

on the use of MMP base image offered more generalized visual appearance compared to ML 

and SVM without the use of MMP as base layer. In evaluating performance, there was a 

significantly higher classification accuracy for SVM and ML classification based on the use of 

MMP as a feature vector than ML and SVM classifications without the use MMP as base 

image. This can be attributed to the fact that MMP exploit image spatial characteristics such as 

size, shape, geometry, and morphology of geospatial objects (Huang et al., 2014). These image 

spatial characteristics are valuable for analysing very high resolution imagery (Blaschke et al., 

2014, Myint et al., 2011, Liu and Xia, 2010, Myint et al., 2007, Benediktsson et al., 2003, 

Fauvel et al., 2012). The use of SVM and ML classification without MMP as base image rely 

on pixel and spectral signature for classification, hence fail to incorporate spatial information 

from high resolution images and results in the mixed pixel problem (Jones and Sirault, 2014, 

Cracknell, 1998, Fisher, 1997). 

Despite the low sample size of the test set and associated wider confidence limits, the McNemar 

test revealed that utilizing MMP as a feature vector did not influence the classification accuracy 

using the SVM and ML classifiers. This finding suggests that to achieve better overall 

classification accuracy, there is no statistical basis for preferring support vector machine over 

maximum likelihood. However, when using MMP as feature vector, SVM out-performs ML. 

Typically, SVM classification takes longer time on image analysis than ML. Hence, the use of 

ML with MMP as base image would be preferred. 

The use of MMP filters in the image helps to extract invariant features, re-arranges the image 

objects into connected groups of the neighbourhood set and removes noise from the image by 

reducing the speckle pixel from an image (Huang et al., 2014). This morphological processing 
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effectively manages the spatial information for pixel based classifiers. When classified using 

SVM or ML, it improves the accuracies in a heterogeneous urban landscape.  

4.5 Conclusion  

This chapter evaluated the capability of MMP algorithm used as a feature vector for ML and 

SVM algorithm for heterogeneous urban LULC classification. Results from the study indicate 

that the use of MMP as a feature vector for object based classification using ML and SVM 

produced significantly higher classification results for urban areas and vegetation, compared 

to ML and SVM classification without the use of MMP as a feature vector. In addition, the 

overall results for both classifications indicated that MMP has the potential to increase 

classification accuracy of a heterogeneous urban LULC. Therefore, MMP can be used 

effectively as a feature vector for pixel based classifiers SVM and ML for urban land use land 

cover classification. 

Important conclusions drawn from this study are: 

1) MMP combined with pixel based classifiers ML and SVM can greatly improve LULC 

classification of a heterogeneous urban land scape and effectively reduce or eliminate 

the mixed pixel problem associated with pixel based classifiers.   

 

2) MMP can be used to improve classification performance by exploiting image spatial 

characteristics such as modelling the spatial context, extraction based on structures of 

image objects and accounting for object level thematic characteristics and relation 

between structures. This provide a better framework for management of spatial 

information for SVM and ML which is essential for discrimination of objects with 

similar spectral signatures. 

 

3) The use of SVM and ML statistical classifiers provide robust statistical analysis 

during the classification which is essential for effective synthesis of spectral 

information.  Therefore, when this is combined with MMP as a feature vector during 

classification, they provide effective synthesis for both spectral-spatial information 

leading to improved accuracy during classification.  

 

In summary, this chapter proposed a novel approach for effective classification of a 

heterogeneous urban landscape from very high resolution imagery. It was found in this chapter 
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that MMP combined with either SVM/ML, provides effective synthesis for both spectral-

spatial classification of a heterogeneous urban landscape. This is crucial for achieving 

significantly higher classification accuracy in a heterogeneous urban landscape. 
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CHAPTER 5 

SYNTHESIS AND CONCLUSION 

5.1 Introduction  

In urban landscapes, classification of the heterogeneous land use and land cover (LULC) has 

remained a challenge. This is mainly attributed to improvement in sensor spatial and spectral 

resolutions, which has generated new demands for enhanced accuracies. Previous findings have 

indicated that increased accuracy in very high resolution imagery comes with increased 

classification challenges such as spatial contiguity, salt and pepper effects and over fitting that 

compromise classification accuracies (Weih and Riggan, 2010, Campagnolo and Cerdeira, 

2006). Thus, due to its ability to analyse image spatial characteristics such as texture and 

context, object based image analysis (OBIA) techniques have been proposed to effectively deal 

with the increased volume of very high spatial resolution data. However, studies that have 

adopted OBIA based techniques have indicated that these techniques experience challenges 

such as over- and under- segmentation and non-robust statistical estimation that hamper 

optimum classification (Zingman et al., 2012a, Fauvel et al., 2008, Gong et al., 1991). 

Therefore, exploration of techniques that incorporate both spectral and spatial information is 

perceptually significant. Specifically, mathematical morphological techniques have been 

proposed and used in remote sensing to provide image analysis based on both spectral and 

spatial relationships using three level image analysis i.e. pixel, region and object based analysis.  

Mathematical morphology (MM) provides various techniques used for image analysis. One 

such technique is the morphological profiles (MP) that involves reconstruction and extensions 

e.g. extended morphological profiles (EMP) and multi-morphological profiles (MMP).  

However, MP’s extension to MMP is based on the use of principal component analysis (PCA) 

technique, which may hamper the ability of MP’s extension to MMP in preserving geometrical 

characteristics such as shape and edges of image objects. Therefore, in the first analysis of the 

study, it evaluated the concatenation of MP’s referred to as concatenation of morphological 

profiles (CMP) against its extension to MMP in preserving structural characteristics as well as 

discrimination capabilities between the two techniques. Secondly, the study evaluated 

effectiveness of MMP’s ability to effectively enhance classification accuracies of support 

vector machine (SVM) and maximum likelihood (ML) in LULC classification of a 

heterogeneous urban landscape.  
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5.2 Challenges and opportunities of morphological profiles techniques in Classifying a 

heterogeneous urban LULC 

Results in chapter 3 show the potential of MM techniques, i.e. CMP and MMP in classifying a 

heterogeneous urban land scape. Specifically, the study demonstrated the capabilities of CMP 

and MMP to effectively manage image spatial resolution. CMP struggles with managing high 

dimensional data such as the application in multispectral bands arising from its curse of data 

dimensionality. The extension MP/CMP to MMP effectively dealt with the issue of the curse 

of data dimensionality by use of PCA. However, evaluation of the classifier’s overall accuracy 

based on preservation of shape, thematic, edge and positional similarity revealed that CMP 

effectively preserved geometrical features of image objects compared to MMP.  

Chapter 3 also assessed the accuracy of the classifiers. The results revealed that both CMP and 

MMP classifications were similar for artificial objects such as buildings and roads. However, 

relative difference existed between the classifiers, with MMP achieving relatively higher 

classification accuracy compared to CMP. When testing both MMP and CMP classifiers using 

McNemar test of significance, it was revealed that the results for the two classifiers were not 

statistically significant. However, due to CMP’s dimensionality reduction problem, MMP was 

used to test the classifier used in chapter 4.    

Important findings regarding the significance of object structural characteristics preservation 

and dimensionality reduction in improving classification accuracy (as highlighted in chapter 3) 

are:   

1. CMP and MMP can greatly improve LULC classification of a heterogeneous urban 

land scape, and effectively represent the structural information for discriminating 

spectrally similar classes.   

 

2. The use of PCA in MMP to effectively manage the curse of data dimensionality from 

MPs may distort image structural objects, therefore, future work should explore other 

data dimensionality reduction techniques. 

 

3. MMP provides effective synthesis of spectra-spatial information extracted from 

multicomponent base images, and effectively represent both structural and spectral 

information for discriminating similar spectral classes of a heterogeneous urban 

landscape. 
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These findings have proved the ability of both CMP and MMP in providing an effective 

framework for analysing very high spatial information from high resolution dataset in a 

heterogeneous urban landscape.  

5.3 Improving urban LULC classification accuracy using MMP as a feature vector for 

SVM and ML classification techniques 

In chapter 4, the study evaluated the efficacy of MMP used as a feature vector/base image in 

improving the LULC classification accuracy of pixel based SVM and ML classifiers. In this 

chapter, MMP was used as a feature vector for ML and SVM classification to perform object 

based classification. This was evaluated against ML and SVM classification without the use of 

MMP as a feature vector to perform a pixel based classification. The results showed that the 

use of MMP as a feature vector significantly improved the classification of a heterogeneous 

urban land cover.  

The results in this study showed that the use of MMP as a feature vector for ML and SVM 

classification significantly improved the classification accuracies compared to non-use of 

MMP as a feature vector. This indicates the influence of MMP in exploiting image spatial 

characteristics of geospatial objects. However, there was no statistically significant difference 

between the overall classification accuracy of the ML and SVM classification method using 

MMP as a feature vector (p-values > 0.07) (table 4.2 and 4.3). Nevertheless, significant 

improvement in the classification results has proved that the use of MMP as a feature vector 

improves the classification of a heterogeneous urban landscape. 

Important conclusions were drawn from this study are: 

1. MMP combined with pixel based classifiers ML and SVM can greatly improve LULC 

classification of a heterogeneous urban land scape and effectively reduce or eliminate 

the mixed pixel problem associated with pixel based classifiers.  

  

2. MMP can be used to increase classification performance by exploiting image spatial 

characteristics such as contextual spatial modelling, extraction based on structures of 

image objects and accounting for thematic characteristics in relation to co-existing 

structures. 
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3. The use of SVM and ML statistical classifiers provide robust statistical analysis during 

the classification, which is essential for effective synthesis of spectral information, 

useful for effectively dealing with non-robust statistical estimation associated MMP. 

 

Results in this section indicated that MMP has the potential in improving classification 

accuracy of pixel based classifiers ML and SVM, hence improved accuracy for LULC 

classification accuracy of a heterogeneous urban landscape.  

5.4  Conclusions and Recommendations 

The aim of this study was to evaluate the efficacy of morphology in the classification of urban 

LULC. The results in this study showed that the use of MMP over CMP could be used to 

improve thematic accuracy and effectively deal with dimensionality problem related to CMP. 

Furthermore, results indicated that the use of MMP as a feature vector for ML and SVM 

classification significantly improved the classification results, compared to use of ML and 

SVM without MMP as a feature vector. However, there was no statistically significant 

difference between the overall classification accuracy of the ML and SVM classification using 

MMP as a feature vector (p-values > 0.07) (table 4.2 and 4.3). The use of MMP as a feature 

vector for the classification in the SVM classifier provided significantly better overall 

classification accuracy (77.6%) than ML (75.8%). However, the results were not statistically 

significant with (p-value> 0.05).  

In summary, the following conclusive remarks were drawn from findings presented in 

chapter 3 and 4: 

- The inherent curse of data dimensionality reduction of morphological profiles (CMP) 

has been identified as a major limitation in literature. Hence, use of MMP has proved 

to be effective in dealing with dimensionality associated with CMP. However, the use 

of PCA as a dimensionality reduction limit MMP’s capability to preserve image 

structural characteristics. Therefore, further research on the use of data dimensionality 

reduction techniques such as Independent component analysis (ICA) in constructing 

MMP is recommended.  

- The use of MMP as a feature vector for SVM and ML classification provided and 

increased LULC distinction of objects with similar spectral signatures in a 

heterogeneous urban landscape. This is due to the capability to provide effective 
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framework for synthesis of spectral and spatial information of very high resolution 

dataset. 

- The use of MMP as a feature vector for SVM and ML classification provided and 

increased LULC distinction of objects with similar spectral signatures in a 

heterogeneous urban landscape. This is due to the capability to provide an effective 

framework for synthesis of spectral and spatial information of very high resolution data 

set.  

- Lastly, region growing methods should be used to select reference sampling units since 

manual selection are subjected to human error. This leads to inaccurate classification 

accuracies, especially when measuring geometrical characteristics based on STEP 

(Shape, Thematic, Edge and Positional accuracy).     
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