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Abstract

In this dissertation, we introduce a self-adaptive hybrid inertial algorithm for approximat-
ing a solution of split feasibility problem which also solves a monotone inclusion problem
and a fixed point problem in p-uniformly convex and uniformly smooth Banach spaces.
We prove a strong convergence theorem for the sequence generated by our algorithm which
does not require a prior knowledge of the norm of the bounded linear operator. Numerical
examples are given to compare the computational performance of our algorithm with other
existing algorithms.
Moreover, we present a new iterative algorithm of inertial form for solving Monotone In-
clusion Problem (MIP) and common Fixed Point Problem (FPP) of a finite family of
demimetric mappings in a real Hilbert space. Motivated by the Armijo line search tech-
nique, we incorporate the inertial technique to accelerate the convergence of the proposed
method. Under standard and mild assumptions of monotonicity and Lipschitz continu-
ity of the MIP associated mappings, we establish the strong convergence of the iterative
algorithm. Some numerical examples are presented to illustrate the performance of our
method as well as comparing it with the non-inertial version and some related methods in
the literature.
Furthermore, we propose a new modified self-adaptive inertial subgradient extragradient
algorithm in which the two projections are made onto some half spaces. Moreover, under
mild conditions, we obtain a strong convergence of the sequence generated by our pro-
posed algorithm for approximating a common solution of variational inequality problems
and common fixed points of a finite family of demicontractive mappings in a real Hilbert
space. The main advantages of our algorithm are: strong convergence result obtained
without prior knowledge of the Lipschitz constant of the the related monotone operator,
the two projections made onto some half-spaces and the inertial technique which speeds
up rate of convergence. Finally, we present an application and a numerical example to
illustrate the usefulness and applicability of our algorithm.
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CHAPTER 1

Introduction

1.1 Background of study

Let E1 and E2 be real Banach spaces, C and Q be nonempty closed convex subsets of E1

and E2 respectively and A : E1 → E2 be a bounded linear operator. The Split Feasibility
Problem (SFP) is defined as follows:

Find x ∈ C such that Ax ∈ Q. (1.1.1)

The concept of the SFP was introduced in finite dimensional Hilbert spaces by Censor
and Elfving [22] in 1994. The problem has recently attracted much attention from several
researchers due to its application in modelling inverse problems which arise from signal
processing, radiotherapy and data compression(see, for example [6, 21, 23, 68, 89, 91]).

Let C be a nonempty closed convex subset of a real Hilbert space H, A : H → H be a
nonlinear operator, ‖ · ‖ and 〈·, ·〉 be the norm and inner product on H respectively. The
Variational Inequality Problem (VIP) is defined as follows:

Find x̄ ∈ C such that 〈Ax̄, x− x̄〉 ≥ 0. (1.1.2)

We denote the solution set of (1.1.2) by VI(C, A). The problem (1.1.2) was proposed in
the early 1960’s by Stampacchia [93] to study some certain problems relating to partial
differential equations. Eventually, applications of VIP was found in several fields such
as optimization, nonlinear programming, mechanics, among others. Consequently, it has
been studied in both finite and infinite dimensional spaces by many authors. Furthermore,
various algorithms such as extragradient method, subgradient extragradient, among others
have been proposed and modified by several authors for solution of VIPs (see, for instance
[55, 25, 72, 73]).
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The Monotone Inclusion Problem (MIP) which is known as an essential generalisation of
VIP is defined as follows :

Find z ∈ H such that 0 ∈ (A+B)z, (1.1.3)

where A : H → H and B : H → 2H are monotone and set-valued maximal monotone
operators respectively. Several methods have been proposed and improved by numerous
researchers for solving MIP (see, for instance [32, 34, 35, 70]).

There are several efficient methods for finding solutions of VIPS and MIPs. The fixed
point method which is one of the most efficient methods for solving VIPs and MIPs, have
been employed by numerous researchers using different techniques.

A point x ∈ H is said to be a fixed point of T if

Tx = x, (1.1.4)

where H is a real Hilbert space, and T : H → H is a nonlinear operator. For a given multi-
valued mapping T : X → 2X , where X is a nonempty set, the point x ∈ X is said to be a
fixed point of T , if x ∈ Tx. We denote the set of fixed points of T by F (T ). The fixed point
theory is one of the most dynamic areas of research which plays significant roles in many
theoretical and applied field of mathematics such as nonlinear analysis. Furthermore, it
has broad applications which can be employed in proving the existence and uniqueness
of solutions of various mathematical problems. Thus, it is known as kernel of modern
nonlinear analysis. As a result of the development of various effective methods employed
by researchers for computing fixed points, the importance of application of fixed point
theory has significantly increased. The uniqueness and existence of a fixed point plays
vital roles in many areas of mathematics. For instance, given an initial value problem{

dx(t)
dt

= f(t, x(t)),

x(t0) = x0.
(1.1.5)

The problem (1.1.5) can be solved by finding the solution of the equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds. (1.1.6)

In order to establish the existence of the solution of nonlinear differential equation (1.1.5),
we consider the operator T : c([a, b])→ c([a, b]) defined by

Tx = x0 +

∫ t

t0

f(s, x(s))ds. (1.1.7)

If x is a solution of the problem (1.1.6), then x is a fixed point of T . Hence, finding a
solution of (1.1.5) is tantamount to finding a fixed point of T .

It is our intention in this dissertation to further develop, generalize and contribute to the
study of fixed point theory to optimization and fixed point problems of nonlinear operators
in Hilbert and Banach spaces.
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1.2 Research motivation

The SFP introduced by Censor and Elfving [22] in 1994 is defined as follows:

Find x∗ ∈ C such that Ax∗ ∈ Q. (1.2.1)

Let H be a real Hilbert space, F be a strictly convex, reflexive smooth Banach space, JF
denotes the duality mapping on F , C and Q be non-empty closed convex subsets of H
and F , respectively. The following algorithm was proposed by Alsulami and Takahashi [4]
in 2015: For any x1 ∈ H,

xn+1 = αnxn + (1− αn)PC(xn − rA∗JF (I − PQ)Axn), n ≥ 1, (1.2.2)

where PC is the orthogonal projection. It was proved that for some a, b ∈ R, if 0 < a ≤
αn ≤ b < 1 and 0 < r‖A‖2 < 2, where 0 < r < ∞ and {αn} ⊂ [0, 1], then {xn} weakly
converges to ω0 = lim

n→∞
PC∩A−1Qxn, where w0 ∈ C ∩ A−1Q. Furthermore, they introduced

the following Halpern’s type iteration in order to obtain strong convergence result. Let
{tn} be a sequence in H such that tn → t ∈ H and x1, t1 ∈ H,{

νn = λntn + (1− λn)PC(xn − rA∗JF (I − PQ)Axn),

xn+1 = αnxn + (1− αn)νn, n ≥ 1,
(1.2.3)

where 0 < r < ∞ and {αn} ⊂ (0, 1). It was proved that the sequence {xn} defined by
(1.2.3) converges strongly to a point ω0 ∈ C ∩A−1Q, for some ω0 = PC∩A−1Qt1, ∀ a, b ∈ R

if 0 < r‖A‖2 < 2, lim
n→∞

λn = 0,
∞∑
n=1

λn =∞, and 0 < a ≤ αn ≤ b < 1.

Recently, Suantai et al. 2019 [94] considered the following modified SFP:

Find x ∈ F (T ) ∩ C such that Ax ∈ Q. (1.2.4)

Clearly, when F (T ) = C, then (1.2.4) reduces to (1.2.1). Under some suitable conditions,
Suantai et al. [94] proved weak and strong convergence theorems using Mann’s iteration
and Halpern’s type iteration process respectively for solving the modified SFP (1.2.4),
where T : C → C is a nonexpansive mapping.

Motivated by the above results, we study the following modified SFP:

Find x ∈ F (T ) ∩ C such that Ax ∈ B−1(0), (1.2.5)

where B : E2 → 2E
∗
2 is a maximal monotone operator. Also, We introduce a self-adaptive

hybrid iterative algorithm for approximating a solution of problem (1.2.5) in p-uniformly
convex and uniformly smooth Banach spaces. Our algorithm is designed such that its
implementation does not require a prior knowledge of the norm of the bounded linear
operator.

Next, we consider the MIP. One of the most famous methods for solving MIP is the
forward-backward splitting method which have been modified and improved by several
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authors (for instance, see [103, 109]). The forward-backward splitting method and Armijo-
line search technique have recently attracted much attention by several authors and has
been modified in various forms to prove the weak convergence of the sequence generated
by it (see [1, 11, 16, 30, 34, 35, 59]).

In order to obtain a strong convergence result, Thong and Cholamjiak [103] proposed
a modified forward-backward splitting method (which we present in Chapter 4 of this
dissertation) for solving the MIP.

Motivated by the above results and the current research interest in this direction, we pro-
pose an inertial algorithm with Armijo-line search technique for approximating solutions
of MIP (where A is a Lipschitz continuous and monotone operator and B is a maximal
monotone operator) and common fixed points of a finite family of demimetric mappings in
real Hilbert spaces. Our algorithm is designed such that its convergence does not require
the prior estimate of the Lipschitz constant of A in the MIP and we obtain a strong con-
vergence theorem for the sequence generated by our algorithm. We further present some
numerical examples to illustrate the performance of our method as well as comparing it
with some related methods in the literature.

Another important problem that we consider in the study is the VIP. Several methods
such as extragradient, subgradient, subgradient-extragradient, among others have been
proposed and developed by many authors (see, for instance [2, 55, 25] and the references
therein) for approximating the solution of VIP. Recently, Thong and Hieu [106] introduced
the following viscosity-type subgradient extragradient algorithm for finding an element
q ∈ F (S) ∩ V I(C,A):

Algorithm 1.2.1.
Let S : H → H be a λ− demicontractive mapping and I − S be demiclosed at zero,
A : H → H be monotone and Lipschitz continuous and f : H → H be a contraction
mapping. Let x1 ∈ H, λ1 > 0 and µ ∈ (0, 1). Compute xn+1 as follows:

Step 1. Calculate
yn = PC(xn − λnAxn).

Step 2. Compute
zn = PTn(xn − λnAyn),

where Tn = {x ∈ H : 〈xn − λnAxn − yn, x− yn〉 ≤ 0}.

Step 3. Compute

xn+1 = αnf(xn) + (1− αn)
[
(1− βn)zn + βnSzn

]
,

and

λn+1 =

{
min{ µ‖xn−yn‖

‖Axn−Ayn‖ , λn}, if Axn − Ayn 6= 0,

λn otherwise.

Set n := n+ 1 and go to Step1.

4



Motivated by the work of Thong and Hieu [106] and the current research interest in
this direction, in this dissertation, we propose a modified inertial viscosity subgradient-
extragradient algorithm with self-adaptive step-size in which each of the two projections
is made onto an half space. Furthermore, we prove that the sequence generated by our
algorithm converges strongly to a common solution of VIP and FPP of a finite family of
multivalued demicontractive mappings. Finally, we present an application and a numerical
example to illustrate the usefulness and applicability of the algorithm.

1.3 Statement of problem

The following are the problems studied in this dissertation.

• Let E1 and E2 be p-uniformly convex and uniformly smooth real Banach spaces, C and
Q be nonempty closed convex subsets of E1 and E2 respectively, E∗1 and E∗2 be the duals of
E1 and E2 respectively, T : C → C be a Bregman weak relatively nonexpansive mapping,
A : E1 → E2 be a bounded linear operator with A∗ : E∗2 → E∗1 , B : E2 → 2E

∗
2 be a

maximal monotone operator. We consider the following problem:

Find x ∈ F (T ) ∩ C such that Ax ∈ B−1(0).

• LetH be a real Hilbert space, C be a nonempty closed convex subset ofH, Si : H → H be
a finite family of demimetric mappings with a constant li, for i = 1, 2, · · · ,m, A : H → H
be Lipschitz continuous and monotone, B : H → 2H be a maximal monotone mapping.
We also consider the following problem:

Find x ∈ Γ = (A+B)−1(0) ∩
m⋂
i=1

F (Si),

where F (Si) denotes the fixed point of Si.

• Let C be a nonempty closed convex subset of a real Hilbert space H, A : C → H
be monotone and Lipschitz continuous, B be maximal monotone, CB(H) be families of
nonempty closed bounded subsets of H, Si : H → CB(H) be a multivalued demicontrac-
tive mapping, for each i = 1, 2, · · · ,m. Finally, we consider the following problem:

Find x ∈ Γ = V I(C,A) ∩
m⋂
i=1

F (Si), (1.3.1)

where F (Si) is a fixed point of Si.

1.4 Objectives

The main objectives of this dissertation are to:

(i) review some useful results on SFP, MIP and VIP,

5



(ii) propose, study and apply self-adapive inertial algorithms for approximating common
solutions of SFP in Banach spaces, MIP and VIP in Hilbert spaces,

(iii) establish strong convergence of the sequences generated by our proposed algorithms,

(iv) study finite family of demimetric mappings and demicontractive mappings in Hilbert
spaces,

(v) apply our results to certain optimization problems,

(vi) give some numerical examples to illustrate the performance of our methods as well
as comparing them with some related methods in the literature.

1.5 Organization of dissertation

Subsequent chapters of this dissertation are organised as follows:

In Chapter 2, we recall some basic definitions and relevant preliminaries that are needed
to establish our main results in this dissertation.

In Chapter 3, we propose and study a self-adaptive hybrid inertial algorithm for approx-
imating solution of split feasibility problems in Banach spaces. Furthermore, we give
numerical examples to show the efficiency of our proposed algorithm.

In Chapter 4, we introduce a new inertial algorithm with Armijo-line search technique for
finding common solutions of monotone inclusion problems and fixed point of a finite family
of demimetric mappings in a real Hilbert space. We prove strong convergence theorem of
the sequence generated by our proposed iterative scheme. Also, we give an application
and numerical examples to illustrate the effectiveness of our iterative algorithm.

In Chapter 5, we propose a new modified viscosity subgradient extragradient algorithm
with inertial extrapolation. We state and prove that the sequence generated by our itera-
tive scheme converges strongly to a common solution of variational inequality problems and
fixed point of a finite family of demicontractive mappings in a real Hilbert space. Finally,
we illustrate the usefulness of our proposed algorithm by giving numerical example.

In Chapter 6, we present the conclusion of our study. Furthermore, we highlighted the
contributions of our study to knowledge and finally discuss some areas of future research.
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CHAPTER 2

Preliminaries

In this chapter, we recall some basic definitions, notions and results that will be required
to establish our main results.

2.1 Hilbert spaces

Definition 2.1.1. Let H be a complex vector space. An inner product on H is a function
〈·, ·〉 : H ×H → C such that(for all x, y, z ∈ H,µ, λ ∈ C):

(i) 〈y, x〉 = 〈x, y〉,

(ii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,

(iii) 〈µx, y〉 = µ〈x, y〉,

(iv) 〈µx+ λy, z〉 = µ〈x, z〉+ λ〈y, z〉.

We observe from (i), (iii) and (iv) that the following properties hold:

(i) 〈x, µy〉 = µ̄〈x, y〉,

(ii) 〈x, µy + λz〉 = µ̄〈x, y〉+ λ̄〈x, z〉.

It is known that if the range of 〈·, ·〉 is R, then the pair (H, 〈·, ·〉) is called a real inner
product space. Also, we note that an inner product on H gives rise to a norm defined as
‖x‖ =

√
〈x, x〉. If the inner product space is complete with respect to this norm (that is

every Cauchy sequence in H converges to a point in H), then it is called a Hilbert space.
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2.1.1 Examples of Hilbert spaces

The following are examples of Hilbert spaces:

(i) Cn with inner product 〈z, w〉 =
∑n

i=1 ziw̄i is a Hilbert space over C,
where z = (z1, z2, · · · , zn) and w = (w1, w2, · · · , wn).

(ii) Rn with inner product 〈x, y〉 =
∑n

i=1 xiyi is a Hilbert space over R,
where x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn).

(iii) L2[a, b] are Hilbert spaces with respect to the inner product

〈f, g〉 =

∫
fḡ,

where the integral is taken over an appropriate domain.

Lemma 2.1.1. (Cauchy-Schwarz inequality) Let (H, 〈·, ·〉) be an inner product space, then

|〈x, y〉| ≤ ‖x‖‖y‖, ∀ x, y ∈ H. (2.1.1)

Definition 2.1.2. Let H be a Hilbert space and C ⊆ H. C is said to be convex if
(1− σ)x+ σy ∈ C for all x, y ∈ C and for all σ ∈ [0, 1].

Remark 2.1.2. An intersection of arbitrary family of convex subsets is convex.

Definition 2.1.3. Let X be convex subset of a Hilbert space H and f : X → R be a
mapping. f is said to be convex if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y),∀λ ∈ [0, 1] and x, y ∈ X. (2.1.2)

Lemma 2.1.3. Let C ⊆ H be convex, then its closure and interior are convex subsets.

2.1.2 Some important nonlinear operators in Hilbert spaces

Definition 2.1.4. Let A : H → H be a nonlinear operator. Then A is

(i) Lipschitz continuous if for all L > 0,

‖Ax− Ay‖ ≤ L‖x− y‖, ∀x, y ∈ H;

if 0 ≤ L < 1, then A is a contraction mapping,

(ii) monotone if
〈Ax− Ay, x− y〉 ≥ 0, ∀x, y ∈ H;

(iii) τ− inverse strongly monotone(τ − ism) if for all τ > 0,

〈Ax− Ay, x− y〉 ≥ τ‖Ax− Ay‖2, ∀x, y ∈ H;
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(iv) β−strongly monotone if for all β > 0,

〈Ax− Ay, x− y〉 ≥ β‖x− y‖2, ∀x, y ∈ H.

Remark 2.1.4. We note that every τ -inverse strongly monotone is monotone and 1
τ
-Lipschitz

continuous.

Definition 2.1.5. A multivalued mapping A : H → 2H is said to be monotone if ∀ u ∈
A(x), v ∈ A(y),

〈x− y, u− v〉 ≥ 0, ∀x, y ∈ H.

Definition 2.1.6. Let G(A) be the graph of A defined by G(A) =
{

(x, u) ∈ H ×H : u ∈
Ax
}

. A multivalued mapping A : H → 2H is maximal if the graph G(A) is not contained
in the graph of any other monotone operator.

Clearly, a multi-valued monotone mapping is said to be maximal if and only if for any
(x, u) ∈ H ×H, (y, v) ∈ G(A), 〈x− y, u− v〉 ≥ 0 implies u ∈ Ax.

Definition 2.1.7. Let H be a real Hilbert space H and A : H → 2H be a multivalued
mapping. Then the effective domain of A, denoted by D(A) is defined as:

D(A) = {x ∈ H : Ax 6= ∅}.

Definition 2.1.8. Let A : H → 2H be a maximal monotone operator. The resolvent
operator of A denoted by JAr is defined by JAr = (I + rA)−1, where r > 0 and I is the
identity operator on H.

It is known that JAr is single-valued, firmly nonexpansive and nonexpansive (see [54]).

Definition 2.1.9. Let H be a real Hilbert space. A mapping A : H → H is called

(i) nonexpansive if
‖Ax− Ay‖ ≤ ‖x− y‖, ∀ x, y ∈ H;

(ii) quasi-nonexpansive if F (A) 6= ∅ such that

‖Ax− Ay‖ ≤ ‖x− y‖, ∀ x ∈ H, y ∈ F (A);

(iii) firmly nonexpansive if

〈Ax− Ay, x− y〉 ≥ ‖Ax− Ay‖, ∀ x, y ∈ H;

(iv) averaged if there exists a constant µ ∈ (0, 1) such that

A := (1− µ)I + µS,

where I is the identity operator and S : H → H is a nonexpansive mapping.
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(v) α-strictly pseudocontractive if there exists a constant α ∈ [0, 1) such that

‖Ax− Ay‖2 ≤ ‖x− y‖2 + α‖(I − A)x− (I − A)y‖2, ∀ x, y ∈ H.
Remark 2.1.5. Obviously, from Definition 2.1.9(v), if α = 0, then A is a nonexpansive
mapping. Furthermore, it is known that firmly nonexpanive mappings are averaged and
averaged mappings are nonexpansive mappings.

Definition 2.1.10. A mapping T : H → H is said to be a demicontractive mapping if
there exists a constant k ∈ [0, 1) and F (T ) 6= ∅ such that

‖Tx− y‖2 ≤ ‖x− y‖2 + k‖x− Tx‖2, ∀ x ∈ H, y ∈ F (T ).

The following is an example of a demicontractive mapping.

Example 2.1.6. Let H be the real line and C = [−1, 1]. Let T : C → C be defined by

Tx =

{
3
5
x sin

(
1
x

)
, if x 6= 0,

0 if x = 0.

It is obvious that F (T ) = {0}. We have for all x ∈ C

‖Tx− 0‖2 =

∥∥∥∥3

5
x sin

(1

x

)∥∥∥∥2

≤
∥∥∥∥3

5
x

∥∥∥∥2

≤ ‖x‖2

≤ ‖x− 0‖2 + k‖Tx− x‖2.

Hence, T is k-demicontractive for all k ∈ [0, 1).

Definition 2.1.11. Let H be a real Hilbert space. A mapping T : H → H is called a
demimetric mapping if there exists a constant k ∈ (−∞, 1) and F (T ) 6= ∅ such that

‖Tx− y‖2 ≤ ‖x− y‖2 + k‖x− Tx‖2, ∀ x ∈ H, y ∈ F (T ).

Next, we give an example of a demimetric mapping.

Example 2.1.7. Let H be a real line and C = [−1, 1]. Let T : H → H be defined on C
by

Tx =

{
x
3
cosx, if x 6= 0,

0, if x = 0.
(2.1.3)

It is clear that F (T ) = {0}, thus, for all x ∈ C, we have

‖Tx− 0‖2 =

∥∥∥∥x3 cosx

∥∥∥∥2

≤
∥∥∥∥x3
∥∥∥∥2

≤ ‖x‖2

≤ ‖x− 0‖2 + k‖Tx− x‖2.

Thus, T is k-demimetric for all k ∈ (−∞, 1).

10



2.2 Metric projection

In this section, we briefly discuss the characterization of the metric projection in Hilbert
spaces. This operator plays vital roles in establishing our results.

Definition 2.2.1. Let H be a Hilbert space and C be a nonempty closed convex subset
of H. If for all x ∈ H, there exists a point y ∈ C such that

‖x− y‖ = inf{‖x− z‖ : z ∈ C}, (2.2.1)

then, we say that y is a metric projection of x onto C and it is denoted by PCx.

Definition 2.2.2. Let C be a nonempty closed convex subset of a real Hilbert space H,
PC be the metric projection onto C. It is known that PC satisfies the following properties:

(i) 〈x− y, PCx− PCy〉 ≥ ||PCx− PCy||2, for every x, y ∈ H;

(ii) for x ∈ H and z ∈ C, z = PCx if and only if

〈x− z, z − y〉 ≥ 0, ∀y ∈ C; (2.2.2)

(iii) for x ∈ H and y ∈ C,

||y − PC(x)||2 + ||x− PC(x)||2 ≤ ||x− y||2. (2.2.3)

2.2.1 Examples of metric projection

The following are examples of a metric projection:

(i) Suppose C is the range of a m× n matrix A with full column rank, then

PCx = A(A∗A)−1A∗x (2.2.4)

is the metric projection onto C, where A∗ is the adjoint of A.

(ii) Let C = [a, b] be a closed rectangle in Rn, where a = (a1, a2, · · · , an)T and b =
(b1, b2, · · · , bn)T . The metric projection with the ith coordinate denoted by (PCx)i is
given by

(PCx)i =


ai, xi < ai,

xi, xi ∈ [ai, bi],

bi, xi > bi,

for 1 ≤ i ≤ n.

(iii) Let C = {y ∈ H : 〈α, y〉 = β} be a hyperplane with α 6= 0, then the metric projection
onto C is given by

PCx = x− 〈α, x〉 − β
‖α‖2

α, ∀ α ∈ R.
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2.3 Geometric properties of Banach spaces

In this section, we give some geometric properties of Banach spaces required in this dis-
sertation. Throughout this section, we denote the dual of the normed linear space E by
E∗.

Definition 2.3.1. Let E be a Banach space. The space of all continuous linear functionals
on E with respect to the operator norm

‖f‖ = sup
‖x‖E=1

|f(x)|, ∀ x ∈ E, (2.3.1)

is called the dual space of E and it is denoted by E∗.

The dual space of E∗ is known as the bidual space of E and it is denoted by E∗∗.

2.3.1 Smooth spaces

Definition 2.3.2. [28] Let E be a normed linear space. E is called smooth if for every
x ∈ E, there exists a unique element x∗ ∈ E∗ such that ‖x∗‖ = 1, ‖x‖ = 1, and 〈x, x∗〉 =
‖x‖.

Definition 2.3.3. [28] Let E be a normed linear space with dim E ≥ 2, then the modulus
of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(τ) = sup

{
‖x− y‖+ ‖x+ y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
= sup

{
‖x− τy‖+ ‖x+ τy‖

2
− 1 : ‖x‖ = 1 = ‖y‖

}
.

Definition 2.3.4. A normed linear space E is said to be uniformly smooth if for any
ε > 0, there exists δ > 0 such that for all x, y ∈ E , ‖x‖ = 1, ‖y‖ ≤ δ then

‖x+ y‖+ ‖x− y‖ < 2 + ε‖y‖.

Proposition 2.3.1. [28] A normed linear space E is uniformly smooth if and only if

lim
τ→0+

ρE(τ)

τ
= 0.

Definition 2.3.5. Let E be a Banach space. E is said to be q-uniformly smooth if there
exists a constant Dq > 0 such that

ρE(τ) ≤ Dqτ
q, for q > 1 and τ > 0.
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2.3.2 Uniformly convex spaces

Definition 2.3.6. [28] A normed linear space E is said to be uniformly convex if for any
ε ∈ (0, 2], there exists a δ(ε) > 0 such that ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε, then

‖x+ y

2
‖ ≤ 1− δ, ∀ x, y ∈ E.

Also, A normed linear space E is said to be uniformly convex if for any ε ∈ (0, 2], there
exists a δ(ε) > 0 such that ‖x‖ = 1, ‖y‖ = 1 and ‖x − y‖ ≥ ε, then ‖x+y

2
‖ ≤ 1 − δ,for all

x, y ∈ E.

Definition 2.3.7. [28] Let E be a normed linear space with dim E ≥ 2, then the modulus
of convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ = ‖y‖ = 1; ε = ‖x− y‖

}
.

Theorem 2.3.2. A normed linear space E is unifomly convex if and only if δE(ε) > 0,
for all ε ∈ (0, 2].

Definition 2.3.8. Let p > 1 be a real number. A normed linear space E is p-uniformly
convex if there exists a constant Cp > 0 such that

δE(ε) ≥ Cpε
p, for any ε ∈ (0, 2].

Definition 2.3.9. [28] A normed linear space E is called strictly convex if for all x, y ∈ E,
x 6= y, with ‖x‖ = ‖y‖ = 1, then

‖σx+ (1− σ)y‖ < 1, ∀ σ ∈ (0, 1).

2.3.3 Reflexive Banach spaces

Definition 2.3.10. Let E∗ be the dual of a Banach space E and E∗∗ be the dual of E∗.
Then there exists a mapping J : E → E∗∗ defined by

J(x) = Ψx ∈ E∗∗, ∀ x ∈ E,

known as a canonical mapping (or canonical embedding), where Ψx : E∗ → R is given by

〈Ψx, g〉 = 〈g, x〉, for every g ∈ E∗.

Hence, 〈J(x), g〉 ≡ 〈g, x〉, for every g ∈ E∗. If the canonical mapping J(x) is an onto
mapping, then E is called reflexive. Hence a reflexive Banach space is the one in which
the canonical mapping is onto.

It is generally known that the canonical mapping has the following properties:

(i) J is isometry i.e. ‖Jx‖ = ‖x‖, ∀ x ∈ E,
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(ii) J is linear.

Remark 2.3.3.

(i) Every uniformly smooth space is smooth.

(ii) E is uniformly smooth if and only if E∗ is uniformly convex.

(iii) Every uniformly convex space is reflexive.

(iv) If the dual space E∗ is reflexive, then E is reflexive.

(v) Every uniformly convex space is strictly convex.

The following remark can be deduced from Remarks 2.3.3(ii), 2.3.3(iv) and 2.3.3(iii).

Remark 2.3.4. Every uniformly smooth space is reflexive.

2.3.4 Some basic notions in Banach spaces

Definition 2.3.11. The sub-differential of a function f is a function δf : E → 2E
∗

defined
by

δf(x) = {x∗ ∈ E∗ : f(y) ≥ f(x) + 〈y − x, x∗〉, ∀ y ∈ E}.

Definition 2.3.12. Let p > 1, the generalized duality mapping JpE : E → 2E
∗

is defined
by

JpE =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1

}
.

If p = 2, we have J2
E = J and it is called the normalized duality mapping on E.

Remark 2.3.5. It is known that when E is uniformly smooth, then JpE is norm to norm
uniformly continuous on bounded subsets of E and E is smooth if and only if JpE is single
valued. Also, when E is reflexive and strictly convex then JpE = (JqE∗)

−1 is one-to-one and
surjective, where JqE∗ is the duality mapping of E∗, for 1 < q ≤ 2 ≤ p and 1

p
+ 1

q
= 1. (see

[28]). Furthermore, it is known that if E is p-uniformly convex and uniformly smooth,
then its dual space E∗ is q-uniformly smooth and uniformly convex.

Definition 2.3.13. The duality mapping JpE is said to be weak-to-weak continuous if

xn ⇀ x⇒ 〈JPExn, y〉 → 〈J
p
Ex, y〉, for any y ∈ E.

It is known that lp(p > 1) has such property, but Lp(p > 2) does not share this property.

Definition 2.3.14. [14] A function f : E → R ∪ {+∞} is said to be

(i) proper if its effective domain D(f) = {x ∈ E : f(x) < +∞} is non-empty,

(ii) convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀ λ ∈ (0, 1), x, y ∈ D(f),

(iii) lower semi-continuous at x0 ∈ D(f), if f(x0) ≤ limx→x0 inf f(x).
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Definition 2.3.15. Let x ∈ int(D(f)), for any y ∈ E, the directional derivative of f at x
denoted by f 0(x, y) is defined by

f 0(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (2.3.2)

If the limit at t→ 0+ in (2.3.2) exists for each y, then the function f is said to be Gâteaux
differentiable at x. In this case f 0(x, y) = 〈∇f(x), y〉, where ∇f(x) is the value of the
gradient of f at x.

Definition 2.3.16. Let f : E → R be a Gâteaux differentiable and convex function. The
Bregman distance denoted as ∆f : domf × domf → [0,+∞) is defined as

∆f (x, y) = f(y)− f(x)− 〈f ′(x), y − x〉, x, y ∈ E. (2.3.3)

Note that ∆f (x, y) ≥ 0 (see [12, 75]). It is worthy to note that the duality mapping JpE is
actually the derivative of the function fp(x) = 1

p
‖x‖p for 2 ≤ p < ∞. Hence, if f = fp in

(2.3.3), the Bregman distance with respect to fp now becomes

∆p(x, y) =
1

q
‖x‖p − 〈JpEx, y〉+

1

p
‖y‖p

=
1

p
(‖y‖p − ‖x‖p) + 〈JpEx, x− y〉

=
1

q
(‖x‖p − ‖y‖p)− 〈JpEx− J

p
Ey, x〉.

It is generally known that the Bregman distance is not a metric as a result of absence of
symmetry, but it possesses some distance-like properties which are stated below:

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + 〈z − y, JpEx− J
p
Ez〉, (2.3.4)

and
∆p(x, y) + ∆p(y, x) = 〈x− y, JpEx− J

p
Ey〉.

The relationship between the metric and Bregman distance in p-uniformly convex space
is as follow:

τ‖x− y‖p ≤ ∆p(x, y) ≤ 〈x− y, JpEx− J
p
Ey〉, (2.3.5)

where τ > 0 is some fixed number.

Definition 2.3.17. Let C be a non-empty closed convex subset of a Banach space E.
The Bregman projection denoted by ΠC is defined as

ΠCx = arg min
y∈C

∆p(y, x), ∀ x ∈ E.

Definition 2.3.18. Let E be a Banach space and let C be a nonempty closed convex
subset of E. Then the metric projection is given by

PCx = arg min
y∈C
‖y − x‖,∀ x ∈ E.
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The Bregman projection is the unique minimizer of the Bregman distance and it is char-
acterized by the following variational inequalities (see [85, 86]):

〈JpE(x)− JpE(ΠCx), z − ΠCx〉 ≤ 0, ∀z ∈ C, (2.3.6)

from which we have

∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), ∀z ∈ C. (2.3.7)

The metric projection which is also the unique minimizer of the norm distance is charac-
terized by the following variational inequality:

〈JpE(x− PCx), z − PCx〉 ≤ 0, ∀z ∈ C. (2.3.8)

Definition 2.3.19. Let E be a p-uniformly convex Banach space. The function Vp :
E × E → [0,∞] associated with fp(x) = 1

p
‖x‖p by

Vp(x, x̄) =
1

p
‖x‖p − 〈x, x̄〉+

1

q
‖x̄‖q, x ∈ E, x̄ ∈ E∗, (2.3.9)

where Vp(x, x̄) ≥ 0. It then follows that

Vp(x, x̄) = ∆p(x, J
q
E∗(x̄)), ∀x ∈ E, x̄ ∈ E∗.

The following inequality was proved by Chuasuk et al [29]:

Vp(x, x̄) + 〈JqE∗(x̄)− x, ȳ〉 ≤ Vp(x, x̄+ ȳ), ∀x ∈ E, x̄, ȳ ∈ E∗.

Furthermore, Vp is convex in the second variable, and thus, for all z ∈ E, {xi}Ni=1, and

{ti}Ni=1 ⊂ (0, 1),
∑N

i=1 ti = 1 we have (see [88])

∆p

(
z, JqE∗

(
N∑
i=1

tiJ
p
E(xi)

))
= Vp

(
z,

(
N∑
i=1

tiJ
p
E(xi)

))
≤

N∑
i=1

ti∆p(z, xi). (2.3.10)

Let C be a non-empty, closed and convex subset of a smooth Banach space E and let
T : C → C be a mapping. A point x∗ ∈ C is called an asymptotic fixed point of T if a
sequence {xn}n∈N exists in C and converges weakly to x∗ such that limn→∞ ‖xn−Txn‖ = 0.

We denote the set of all asymptotic fixed points of T by F̂ (T ). Moreover, a point x∗ ∈ C
is said to be a strong asymptotic fixed point of T if there exists a sequence {xn}n∈N in
C which converges strongly to x∗ such that limn→∞ ‖xn − Txn‖ = 0. We denote the set
of all strong asymptotic fixed points of T by F̃ (T ). It follows from the definitions that
F (T ) ⊂ F̃ (T ) ⊂ F̂ (T ).

Definition 2.3.20. [81] Let C be a nonempty closed convex subset of a Banach space E.
Let T be a mapping such that T : C → E. T is said to be

(i) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for each x, y ∈ C,
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(ii) quasi-nonexpansive if ‖Tx − Ty∗‖ ≤ ‖x − y∗‖ such that F (T ) 6= ∅ , ∀x ∈ C and
y∗ ∈ F (T ).

Definition 2.3.21. [82, 29] Let T : C → E be a mapping. T is said to be

1. Bregman nonexpansive if

∆p(Tx, Ty) ≤ ∆p(x, y), ∀x, y ∈ C,

2. Bregman quasi-nonexpansive if F (T ) 6= ∅ and

∆p(Tx, y
∗) ≤ ∆p(x, y

∗), ∀x ∈ C, y∗ ∈ F (T ),

3. Bregman weak relatively nonexpansive if F̃ (T ) 6= ∅, F̃ (T ) = F (T ) and

∆p(Tx, y
∗) ≤ ∆p(x, y

∗) ∀x ∈ C, y∗ ∈ F (T ),

4. Bregman relatively nonexpansive if F (T ) 6= ∅, F̂ (T ) = F (T ) and

∆p(Tx, y
∗) ≤ ∆p(x, y

∗) ∀x ∈ C, y∗ ∈ F (T ).

From the definitions, it is evident that the class of Bregman quasi-nonexpansive maps
contains the class of Bregman weak relatively nonexpansive maps. The class of Bregman
weak relatively nonexpansive maps contains the class of Bregman relatively nonexpansive
maps.

2.4 Some important nonlinear problems

In this section, we briefly introduce and review some existing results on nonlinear problems
that are studied in this work.

2.4.1 Monotone inclusion problems

Several problems emanating from applied sciences such as filtration theory and quantum
mechanics can be modeled mathematically as an operator equation which can be consid-
ered as the sum of two monotone operators, see for instance [3] and references therein. We
denote the set of solutions of MIP (1.1.3) by Γ, i.e Γ = (A + B)−1(0) and assume Γ 6= ∅.
Problem (1.1.3) and related optimization problems have been studied with various itera-
tive algorithms proposed for approximating their solutions by several authors in Hilbert,
Banach and Hadamard spaces (see, for instance [10, 32, 45, 47, 50, 70, 76, 96, 98, 100, 109]).

Martinez [67] first introduced the Proximal Point Algorithm (PPA) for finding the zero
point of a maximal monotone operator B. The sequence generated by PPA is defined as
follows:

xn+1 = JBrnxn,
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where 0 < rn <∞, JBrn = (I + rnB)−1 is the resolvent operator of B and I is the identity
mapping. This algorithm was eventually modified by Rockafellar [83] to the following PPA
with errors:

xn+1 = JBrnxn + en,

where {en} is an error sequence. It was proved that if en → 0 such that
∞∑
n=1

‖en‖ < +∞,

B−1(0) 6= ∅ and lim inf
n→∞

rn > 0, then the sequence {xn} converges weakly to a solution

of a zero point of B. Moudafi and Théra [70] further introduced the following iterative
algorithm for solving problem (1.1.3):{

xn = JBr vn,

vn+1 = tvn + (1− t)xn − µ(1− t)Axn,
(2.4.1)

where t ∈ (0, 1), r > 0, A is Lipschitz continuous and strongly monotone and B is maximal
monotone. They proved that the sequence {xn} generated by the iterative algorithm
converges weakly to an element in (A+B)−1(0).

More so, Nakajo and Takahashi [74] introduced the following hybrid projection method
and proved a strong convergence theorem for approximating zeros of maximal monotone
operators in Hilbert spaces:

x0 = x ∈ H,
yn = JBrn(xn + fn),

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn + fn − z‖},
Qn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(2.4.2)

for all n ∈ N ∪ {0}, rn ⊂ (0,∞). Furthermore, they proved that xn → z0 = PB−1(0)x0,
(where PB−1(0) is the metric projection on B−1(0) if lim infn→∞ rn > 0 and limn→∞ ‖fn‖ =
0. Moreover, Yuying and Plubtieng [116] improved Algorithm (2.4.2) and introduced a
new hybrid projection method which is defined below, for finding the zero point of MIP.

x0, z0 ∈ C,
yn = αnzn + (1− αn)xn,

zn+1 = Jrn(yn − rnAyn),

Cn = {z ∈ C : ‖zn+1 − z‖2 ≤ αn‖zn − z‖2 + (1− αn)‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(2.4.3)

where n ≥ 0, {αn} and {rn} are sequences of positive real numbers with αn ∈ [0, β] for
some β ∈ [0, 1

2
) and 0 < rn < 2α. It was proved that the sequence {xn} converges to

a point p = P(A+B)−1(0)(x0). They further proved that the sequence {xn} converges to
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p = P(A+B)−1(0)(x0) using the following algorithm known as shrinking projection method:



x0, z0 ∈ C,
yn = αnzn + (1− αn)xn,

zn+1 = JBrn(yn − rnAyn),

Cn+1 = {z ∈ C : ‖zn+1 − z‖2 ≤ αn‖zn − z‖2 + (1− αn)‖xn − z‖2},
xn+1 = PCn+1(x0).

(2.4.4)

Furthermore, the following modified splitting method with Armijo line search technique
was introduced by Tseng [109]:

Algorithm 2.4.1. Let X ⊆ H be a closed convex set, choose x0 arbitrarily in X, given
the current iterate, calculate the next iterate through the rule:

yn = (Id+ rnB)−1(Id− rnA)xn,

where rn is selected as the largest r ∈ {λ, λm, λm2, ...} satisfying the following:

r‖Axn − Ayn‖ ≤ σ‖xn − yn‖, (2.4.5)

where 0 < σ < 1, λ > 0 and 0 < m < 1 are constraints. Set

xn+1 = PX(yn − rn(Axn − Ayn)). (2.4.6)

It was proved that the sequence generated by Algorithm 2.4.1 converges weakly to an
element in the solution of MIP (1.1.3), where B is maximal monotone and A is Lipschitz
continuous.

On the other hand, Alvarez and Attouch [5] proposed the following modified PPA of
inertial form: {

yn = xn + µn(xn − xn−1),

xn+1 = JBλnyn, n ≥ 1,
(2.4.7)

where {µn} ⊂ [0, 1), {λn} is non-decreasing and

∞∑
n=1

µn‖xn − xn−1‖2 <∞, ∀µn <
1

3
. (2.4.8)

It was proved that Algorithm (2.4.7) converges weakly to a zero of B.

Recently, Moudafi and Oliny [71] introduced the following inertial PPA for approximating
the zero point problem of the sum of two monotone operators:{

yn = xn + µn(xn − xn−1),

xn+1 = JBλn(yn − λnAxn), n ≥ 1,
(2.4.9)
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where B : H → 2H is maximal monotone and A is Lipschitz continuous. They proved
that the sequence generated by Algorithm (2.4.9) converges weakly if λn <

2
L

, where L is
the Lipschitz constant of A.

Moreover, the following inertial forward-backward algorithm was introduced by Lorenz
and Pock [59]: {

yn = xn + µn(xn − xn−1),

xn+1 = JBλn(yn − λnAyn), n ≥ 1,
(2.4.10)

where {λn} is a positive real sequence. Algorithm (2.4.10) differs from Algorithm (2.4.9)
since the operator A was evaluated at the inertial extrapolate yn. It was also proved to
converge weakly to a solution of the problem (1.1.3)

It is highly desirable to obtain strong convergence than weak convergence, thus, Thong
and Cholamjiak [103] proposed a new modified forward-backward splitting method (which
will be presented in Chapter 4) to obtain strong convergence.

2.4.2 Variational inequality problems

The VIPs are known to have wide applications in various mathematical problems such
as equilibrium problems, optimization problems, fixed point problems, among others. We
denote the solution set of the VIP (1.1.2) by V I(C,A).

In the early 1960’s, Stampacchia [93] and Fichera [37] introduced the theory of VIP. The
Problem (1.1.2) is a fundamental problem which has a wide range of applications in applied
field of mathematics such as network equilibrium problems, complementary problems,
optimization theory and systems of nonlinear equations (see [38, 47, 48, 50, 53, 97]). Under
suitable conditions, there are generally two main approaches to finding the solutions of
VIP (1.1.2). These are projection method and regularisation method. In this study, we are
concern with the projection method. Recently, several authors have studied and proposed
many iterative algorithms for approximating the solution of VIP and related optimization
problems, (see [24, 25, 26, 27, 49, 52, 96, 98, 99]) and the references therein. The VIP is
widely known to be equivalent to the following fixed point equation:

x∗ = PC(I − µA)x∗, (2.4.11)

for, µ > 0, where PC is the metric projection from H onto C. The iteration formula which
is an extension of the projection gradient method (2.4.11) can be defined as follows :

xn+1 = PC(I − µA)xn, (2.4.12)

where µ ∈
(
0, 2α

L2

)
and A : H → H is α− strongly monotone and L−Lipschitz continuous.

One of the most famous methods for finding the solutions of VIP (1.1.2) is the extra-
gradient method, which was proposed by Korpelevich [55] and it is given as follows:
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Algorithm 2.4.2. (Extragradient Method (EgM))


x0 ∈ C,
yn = PC(xn − µAxn),

xn+1 = PC(xn − µAyn),

(2.4.13)

where µ ∈
(
0, 1

L

)
, A : C → Rn is monotone and L− Lipschitz continuous and C ⊆ Rn is

a closed convex subset. If the solution set VI(C, A) is nonempty, then the sequence {xn}
generated by EgM converges weakly to an element in VI(C, A). In recent years, the EgM
has received great attention by numerous authors who have developed it in various ways
(see for instance [61, 65, 107]). It is obvious that the EgM requires the computation of
two projections from H onto closed convex subset C per iteration. However, projection
onto an arbitrary closed convex set C is often very difficult to compute. In order to
overcome this barrier, some authors have developed several iterative algorithms, some of
these algorithms are given below:

In 2000, Tseng [109] proposed the following iterative scheme:

Algorithm 2.4.3. 
x0 ∈ H,
yn = PC(xn − µAxn),

xn+1 = yn − µ(Ayn − Axn),

(2.4.14)

where A is a monotone and Lipschitz continuous operator and µ ∈
(
0, 1

L

)
. Clearly, Tseng’s

method requires one projection to be computed per iteration and hence has an advantage
in computing projection over extragradient method. Furthermore, Censor et al. [25]
introduced a new method which involves the modification of one of the projections by
replacing it with a projection onto an half space. This method is called the subgradient
extragradient method and is defined as follows:

Algorithm 2.4.4. (The Subgradient Extragradient Method(SEgM))


x0 ∈ H,
yn = PC(xn − µAxn),

Qn = {z ∈ H : 〈xn − µAxn − yn, z − yn〉 ≤ 0},
xn+1 = PQn(xn − µAyn).

(2.4.15)

Censor et al. [25] proved that provided the solution set VI(C, A) is nonempty, the se-
quence {xn} generated by SEgM converges weakly to an element p ∈ V I(C,A), where
p = limn→∞ PV I(C,A)xn. Also, Maingé and Gobinddass [62] obtained a result which relates
to weak convergence algorithm by using only a single projection by means of a projected
reflected gradient-type method [65] and inertial term for finding solution of VIP in a real
Hilbert space.
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Another important problem in fixed point theory is the Fixed Point Problem (FPP),
which is defined as follows:

Find a point x∗ ∈ C such that Sx∗ = x∗, (2.4.16)

where S : C → C is a nonlinear operator. If S is a multivalued mapping, i.e., S : C → 2C ,
then x∗ ∈ C is called a fixed point of S if

x∗ ∈ Sx∗. (2.4.17)

We denote the set of fixed points of S by F (S). In this study, we also focus on finding a
common solution of FPP and VIP (1.1.2), i.e. find a point x̂ such that

x̂ ∈ F (S) ∩ V I(C,A). (2.4.18)

Takahashi and Toyoda [102] studied (2.4.18) and proposed an algorithm given by a se-
quence {xn} generated by the following iterative scheme:

xn+1 = (1− αn)xn + αnSPC(xn − µAxn), (2.4.19)

where S : C → C is a nonexpansive mapping, A : C → H is an inverse strongly monotone
operator and PC is the metric projection onto C. Generally, the major disadvantage with
the algorithm above is that it does not work whenever A is only a Lipschitz continuous
and monotone mapping. In this case, inspired by Korpelevich’s idea of extragradient,
Nadezhkina and Takahashi [73] proposed the following iterative scheme for finding an
element x̂ ∈ F (S) ∩ V I(C,A):


x0 ∈ C,
yn = PC(xn − µnAxn),

xn+1 = (1− αn)xn + αnSPC(xn − µnAyn),

(2.4.20)

where αn ∈ (0, 1), µn ∈
(
0, 1

L

)
and S : C → C is a nonexpansive mapping. It was proved

that the sequence {xn} generated by (2.4.20) converges weakly to x̂ ∈ F (S) ∩ V I(C,A).
Furthermore, Censor et al. [25] studied and proposed the following Subgradient Extragra-
dient Method(SEgM) for finding the common solution of VIP and FPP for nonexpansive
mapping:


x0 ∈ H,
yn = PC(xn − µAxn),

Qn = {z ∈ H : 〈xn − µAxn − yn, z − yn〉 ≤ 0},
xn+1 = αnxn + (1− αn)SPQn(xn − µAyn).

(2.4.21)

They proved that the sequence {xn} generated by (2.4.21) converges weakly to a solution
u∗ ∈ F (S) ∩ V I(C,A).

It is highly desirable and more important to obtain strong convergence of an iterative
algorithm than weak convergence as emphasised by Bauschke and Combettes [13]. Hence,
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authors always work towards developing algorithms which give strong convergence result.

In 2006, Nadezhkina and Takahashi [72] proposed the following iterative algorithm which
is a combination of hybrid type method and extragradient type method:

x0 ∈ C,
yn = PC(xn − µnAxn),

zn = (1− αn)xn + αnSPC(xn − µnAyn),

Cn = {u ∈ C : ‖zn − u‖ ≤ ‖xn − u‖},
Qn = {u ∈ C : 〈xn − u, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0,

(2.4.22)

where αn ∈ (0, 1) and µn ∈
(
0, 1

L

)
. The sequence {xn} was proved to converge strongly to

a solution of (2.4.18).

Motivated by the iterative scheme proposed by Nadezhkina and Takahashi [72], the fol-
lowing iterative algorithm was introduced by Zeng and Yao [117], for finding x̄ ∈ F (S) ∩
V I(C,A):

Algorithm 2.4.5. 
x0 ∈ C,
yn = PC(xn − µnAxn),

xn+1 = αnx0 + (1− αn)SPC(xn − µnAyn),

(2.4.23)

where S : C → C is nonexpansive. It was proved that the sequences {xn} and {yn} con-
verge strongly to a point PF (S)∩V I(C,A)x0 if {µn} and {αn} satisfy the following conditions
:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn =∞;

(ii) {µn} ⊂ (0, 1− σ) for some σ ∈ (0, 1),

provided limn→∞ ‖xn+1 − xn‖ = 0.

An inertial extrapolation was first introduced by Polyak [79] to solve the smooth convex
minimization problem. The inertial method involves a two-step iteration in which the next
iterate is defined by making use of the previous two iterates and this generally increases the
rate of convergence of iterative algorithms. The inertial type algorithm has been studied
and modified in various forms by many authors (see [16, 104, 105]). For example, an
inertial hybrid proximal-extragradient algorithm which is a combination of hybrid proximal
extragradient and inertial type algorithm for a maximal monotone operator was proposed
by Bot and Csetnek [17]. Dong et al. [33] proposed an algorithm which incorporates
inertial term to EgM. This algorithm is known as Inertial Extragradient Method (IEGM)
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and is defined as follows:


x0, x1 ∈ H,
wn = xn + αn(xn − xn−1),

yn = PC(wn − λAwn),

xn+1 = (1− βn)wn + βnPC(wn − λAyn).

(2.4.24)

It was proved under suitable conditions that the sequence {xn} converges weakly to p ∈
V I(C,A).

2.4.3 Split feasibility problems

We denote the set of solution of SFP (1.1.1) by Ω = C ∩ A−1(Q) = {x∗ ∈ C : Ax∗ ∈ Q}.
Several authors have studied and proposed iterative algorithms for solving SFP (1.1.1).

The following popular algorithm, called the CQ algorithm was proposed by Byrne [19] to
approximate the solution of SFP (1.1.1) in real Hilbert spaces:

xn+1 = PC (xn − µA∗(I − PQ)Axn) , ∀n ≥ 1, (2.4.25)

where

µ ∈
(

0,
2

‖A‖2

)
, (2.4.26)

PC and PQ denote the metric projections of H1 onto C and H2 onto Q, respectively. It
was proved that the sequence {xn} generated by (2.4.25) converges weakly to a solution
of SFP provided the step size µ satisfies the condition (2.4.26). As a result of the CQ
algorithm, several iterative algorithms have been introduced for solving SFP in Hilbert
and Banach spaces, (see for example, [101, 43]). The following algorithm was proposed by
Schöpfer et al. [85] for solving SFP in p-uniformly convex real Banach spaces which are
also uniformly smooth:

xn+1 = ΠCJ
q
E∗1

[
JpE1
− µnA∗JpE2

(
Axn − PQ

(
Axn

))]
, (2.4.27)

∀x ∈ E1 n ≥ 1, where Πc and J are the Bregman projection and the duality mapping
respectively.
In 2014, Algorithm 2.4.27 was modified by Wang [110] and studied the following Multiple-
sets Split Feasibility Problem (MSSFP): Find x ∈ E1 satisfying

x ∈
r⋂
i=1

Ci, Ax ∈
r+s⋂
j=r+1

Qj, (2.4.28)

where s and r are two given integers, Ci, i = 1, · · · , r is a nonempty closed convex subset
of E1, and Qj, j = r + 1, ...., r + s is a closed convex subset in E2. Using the idea of [74],
he proved strong convergence of the sequence generated by the following algorithm: for
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any initial guess x0, let xn be defined recursively by
yn = Tnxn

Dn =
{
u ∈ E : ∆p(yn, u) ≤ ∆p(xn, u)

}
En =

{
u ∈ E : 〈xn − u, JpE(x0)− JpE(xn)〉 ≥ 0

}
xn+1 = ΠDn∩En(x0).

(2.4.29)

For each n ∈ N, Tn is defined by

Tn(x) =

{
ΠCi(n)

, 1 ≤ i(n) ≤ r,

JqE∗1 [JpE1
(x)− µnA∗JpE2

(I − PQj(n)
)Ax], r + 1 ≤ i(n) ≤ r + s,

i : N→ I is the cyclic control mapping, i(n) = n mod (r + s) + 1, where µn satisfies

0 < µ ≤ µn ≤
(

q

Cq‖A‖q

) 1
q−1

, (2.4.30)

where Cq is a uniform smoothness constant.

2.5 Some important iterative methods

In this section, we present some notable and important iterative schemes for approximating
the fixed point of nonlinear mappings and optimization problems.

2.5.1 Picard iteration

Lemma 2.5.1. (Banach contraction principle) Let (X, ρ) be a complete metric space,
σ ∈ [0, 1) and S : X → X be a contraction mapping, i.e.

ρ(Sx, Sy) ≤ σρ(x, y), ∀ x, y ∈ X,

then,

(i) there exists a unique fixed point x̄ ∈ X,

(ii) the Picard iteration given by

xn+1 = Sxn, for x0 ∈ X and n = 1, 2, · · · (2.5.1)

converges to x̄ ∈ X.
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2.5.2 Krasnoselskii iteration

Let the Picard iteration formula be replaced by the following sequence:

xn+1 =
(I + S)xn

2
, ∀ n ≥ 0, for x0 ∈ C, (2.5.2)

then, the iterative sequence (2.5.2) converges to the unique fixed point. Generally, suppose
T is a nonexpansive mapping and X is a normed linear space, then the following recursive
formula which is a generalization of (2.5.2) was given by Schaefer [84]:

xn+1 = µSxn + (1− µ)xn, for x0 ∈ C, n ≥ 0, (2.5.3)

where µ ∈ (0, 1). The iterative sequence (2.5.3) is called the Krasnoselskii iteration.
Clearly, if µ = 1, the Krasnoselskii iteration reduces to Picard iteration. Clearly, the
Krasnoselskii iteration corresponds to the Picard iteration for the averaged operator Sµ =
µS + (1− µ)I, where I is the identity operator.

2.5.3 Mann iteration

Another notable iterative scheme for approximating the fixed points of nonlinear mappings
is the Mann iteration. This was introduced by Mann [60] and is given as follows:

xn+1 = γnSxn + (1− γn)xn, for x0 ∈ C, n ≥ 0, (2.5.4)

where {γn} ⊂ (0, 1) satisfies the following:

(i)
∑∞

n=0 γn =∞,

(ii) limn→∞ γn = 0.

Obviously, Mann iteration reduces to Krasnoselskii iteration if γn = µ and aslo reduces to
Picard iteration (2.5.1) if γn = 1.

2.5.4 Ishikawa iteration

Ishikawa [42] modified and developed Mann iteration to an iterative scheme which gener-
ates a sequence {xn} given by

xn+1 = (1− λn)xn + λnS
[
(1− τn)xn + τnSxn

]
, x0 ∈ C, n = 0, 1, 2, · · · , (2.5.5)

where the sequences {τn}∞n=1 and {λn}∞n=1 are in (0, 1) satisfying the following:

(i) limn→∞ τn = 0;

(ii)
∑∞

n=1 λnτn =∞;
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(iii) 0 ≤ λn ≤ τn ≤ 1.

Alternatively, (2.5.5) can be written as:{
yn = (1− τn)xn + τnSxn, xn+1 = (1− λn)xn + λnSyn. (2.5.6)

Thus, it is known as a dual step Mann iteration. We note that when τn = 0, the Ishikawa
iteration scheme (2.5.5) reduces to Mann iteration. Moreover, for a Lipschitz pseudo-
contractive mapping in a Hilbert space, Mann iteration may fail to converge while the
Ishikawa iteration can converge. However, under suitable conditions such as comnpact-
ness of either the operator S or the subset C, it will converge to a fixed point of β-strictly
pseudocontractive maps.

2.5.5 Halpern iteration

An explicit iterative algorithm which generates a sequence through the recursive formula

xn+1 = (1− βn)Sxn + βnv, n ≥ 0, for x0 ∈ C, (2.5.7)

where {βn} is a sequence in (0, 1) and v ∈ C, was introduced by Halpern [40]. This
iterative method, called the Halpern iteration is used for finding the fixed points of a
nonlinear operator S : C → C.

2.5.6 Viscosity iteration

Moudafi [69] introduced viscosity iterative scheme which is defined as follows: Let x0 be
an initial point, define sequence {xt} by

xt =
εt

1 + εt
f(xt) +

1

1 + εt
Sxt, (2.5.8)

such that

(i) limt→+∞

∣∣∣∣ 1
εt
− 1

εt−1

∣∣∣∣ = 0,

(ii)
∑+∞

t=1 εt = +∞,

(iii) limt→+∞ εt = 0,

where {εt} ⊂ (0, 1), f is a contraction mapping and S is a nonexpansive self-mapping. For
all x0, the sequence {xt} converges strongly to x̄ ∈ F (S), which is a unique solution of the
variational inequality

〈(I − f)x̄, x− x̄〉 ≥ 0, ∀ x ∈ F (S). (2.5.9)
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CHAPTER 3

On Inertial Hybrid Algorithm For Solving Split Feasibility Problems

in Banach Spaces

3.1 Introduction

In this chapter, we propose and study a self-adaptive hybrid inertial algorithm for finding
solutions of SFP which also solves MIP and FFP in p-uniformly convex and uniformly
smooth Banach spaces. We prove a strong convergence of the sequence generated by our
proposed algorithm which does not require a prior knowledge of the norm of the bounded
linear operator. We give numerical examples to compare the computational performance
of our algorithm with other existing algorithms.

In 2015, Alsulami and Takahashi [4] proposed the following algorithm for approximating
the solution of SFP (1.1.1): For any x1 ∈ H,

xn+1 = αnxn + (1− αn)PC(xn − rA∗JF (I − PQ)Axn), n ≥ 1. (3.1.1)

It was proved that for some a, b ∈ R if 0 < a ≤ αn ≤ b < 1 and 0 < r‖A‖2 < 2, where
0 < r < ∞ and {αn} ⊂ [0, 1], then {xn} weakly converges to ω0 = lim

n→∞
PC∩A−1Qxn,

where w0 ∈ C ∩ A−1Q, H is a real Hilbert space, F is a strictly convex, reflexive smooth
Banach space, JF denotes the duality mapping on F , C and Q are non-empty closed convex
subsets of H and F respectively. Furthermore, they introduced the following Halpern-type
iteration in order to obtain strong convergence result: Let {tn} be a sequence in H such
that tn → t ∈ H and x1, t1 ∈ H,{

νn = λntn + (1− λn)PC(xn − rA∗JF (I − PQ)Axn),

xn+1 = αnxn + (1− αn)νn, n ≥ 1,
(3.1.2)

where 0 < r < ∞ and {αn} ⊂ (0, 1). It was proved that the sequence {xn} defined by
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(3.1.2) converges strongly to a point ω0 ∈ C ∩A−1Q, for some ω0 = PC∩A−1Qt1, ∀ a, b ∈ R

if, 0 < r‖A‖2 < 2, lim
n→∞

λn = 0,
∞∑
n=1

λn =∞, and 0 < a ≤ αn ≤ b < 1.

Recently, Suantai et al. 2019 [94] considered the following modified SFP:

Find x ∈ F (T ) ∩ C such that Ax ∈ Q. (3.1.3)

Clearly, when F (T ) = C, then (3.1.3) reduces to (1.1.1). Suantai et al. [94] proved the
following weak and strong convergence theorems using Mann’s iteration and Halpern-type
iteration process, respectively for solving SFP and FPP for nonexpansive mappings.

Theorem 3.1.1. Let H be a Hilbert space, F be a strictly convex, reflexive and smooth
Banach space, C and Q be non-empty, closed and convex subsets of H and F , JF be
the duality mapping on F , PQ and PC denote the metric projections of F on Q and H
on C, respectively. Let T : C → C be nonexpansive mapping. Suppose Γ 6= ∅, where
Γ = F (T ) ∩ C ∩ A−1Q, for x1 ∈ C, define {xn} by

xn+1 = αnxn + (1− αn)TPC

(
xn − γn

f(xn)

‖g(xn)‖2 + ‖xn − Txn‖2
g(xn)

)
, (3.1.4)

where g(xn) = A∗JF (I −PQ)Axn, f(xn) = 1
2
‖(I −PQ)Axn‖2, {γn} ⊂ (0, 4), ∀n ∈ N which

satisfies the following conditions:

1. lim infn→∞ γn(4− γn) > 0,

2. 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,

then {xn} weakly converges to ω0 ∈ Γ, where ω0 = lim
n→∞

PΓxn.

Theorem 3.1.2. Let H be a Hilbert space, F be a strictly convex, reflexive and smooth
Banach space, C and Q be non-empty, closed and convex subsets of H and F , JF be
the duality mapping on F , PQ and PC denote the metric projections of F on Q and H
on C respectively. Let T : C → C be nonexpansive mapping. Suppose Γ 6= ∅, where
Γ = F (T ) ∩ C ∩ A−1Q. Let x1 ∈ C, {tn} be a sequence in C such that tn → t, and let
{xn} be a sequence defined by

xn+1 = αnxn + (1−αn)

(
λntn + (1− λn)TPC

(
xn − γn

f(xn)

‖g(xn)‖2 + ‖xn − Txn‖2
g(xn)

))
,

(3.1.5)
where g(xn) = A∗JF (I − PQ)Axn, f(xn) = 1

2
‖(I − PQ)Axn‖2, {γn} ⊂ (0, 4), λn ⊂ (0, 1),

{αn} ⊂ (0, 1), ∀n ∈ N which satisfy the following conditions:

1. lim infn→∞ γn(4− γn) > 0,

2. 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,

3. limn→∞ λn = 0 and
∑∞

n=1 λn =∞,
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then {xn} strongly converges to w0 ∈ Γ.

Motivated by the above results, in this chapter, we study the following modified SFP in
Banach spaces: Let E1 and E2 be p-uniformly convex and uniformly smooth real Banach
spaces, C and Q be non-empty closed convex subsets of E1 and E2 respectively, and
A : E1 → E2 be a bounded linear operator with A∗ : E∗2 → E∗1 . Let T : C → C be a
mapping, and B : E2 → 2E

∗
2 be a maximal monotone operator:

Find x ∈ F (T ) ∩ C such that Ax ∈ B−1(0), (3.1.6)

where B : E2 → 2E
∗
2 is a maximal monotone operator. Obviously, the SFP (3.1.6) is more

general than (1.1.1) and (3.1.3). When B = ∂iQ, a maximal monotone operator and the
subdifferential of the indicator function on Q, then (3.1.6) reduces to (3.1.3).

3.2 Preliminaries

In this section, we recall some basic notions and lemmas which will be useful in establishing
our results in this chapter. We denote the strong and weak convergence of the sequence
{xn} to a point x by xn → x and xn ⇀ x respectively.

Definition 3.2.1. Let C be a nonempty closed convex subset of a real Banach space E
and T : C → E be a mapping. T is said to be Bregman weak relatively nonexpansive if
F̃ (T ) 6= ∅ and F̃ (T ) = F (T ) with

∆p(Tx, y
∗) ≤ ∆p(x, y

∗) ∀x ∈ C, y∗ ∈ F (T ).

We recall that the Bregman distance satisfy the following properties:

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + 〈z − y, JpEx− J
p
Ez〉, (3.2.1)

and
∆p(x, y) + ∆p(y, x) = 〈x− y, JpEx− J

p
Ey〉.

We also recall the following useful relation between metric and Bregman distance in p-
uniformly convex space:

τ‖x− y‖p ≤ ∆p(x, y) ≤ 〈x− y, JpEx− J
p
Ey〉, (3.2.2)

where τ > 0 is some fixed number.

The Bregman projection is the unique minimizer of the Bregman distance and is charac-
terized by the following variational inequalities (see [85, 86]):

〈JpE(x)− JpE(ΠCx), z − ΠCx〉 ≤ 0, ∀z ∈ C, (3.2.3)

from which we have

∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), ∀z ∈ C. (3.2.4)
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The metric projection which is also the unique minimizer of the norm distance is charac-
terized by the following variational inequality:

〈JpE(x− PCx), z − PCx〉 ≤ 0, ∀z ∈ C. (3.2.5)

Definition 3.2.2. Let E be a p-uniformly convex Banach space, the function Vp : E×E →
[0,∞] associated with fp(x) = 1

p
‖x‖p is given by

Vp(x, x̄) =
1

p
‖x‖p − 〈x, x̄〉+

1

q
‖x̄‖q, x ∈ E, x̄ ∈ E∗, (3.2.6)

where Vp(x, x̄) ≥ 0.

It then follows that

Vp(x, x̄) = ∆p(x, J
q
E∗(x̄)), ∀x ∈ E, x̄ ∈ E∗.

Definition 3.2.3. Let E be a smooth, strictly convex and reflexive Banach space, and
A : E → 2E

∗
be a maximal monotone operator. We define a mapping QA

r : E → D(A) by
(see [95])

QA
r (x) = (I + r(JpE)−1A)−1(x), for all x ∈ E and r > 0.

QA
r is called the metric resolvent of A. Obviously, for all r > 0, we have

0 ∈ JpE(QA
r (x)− x) + rAQA

r (x), (3.2.7)

and F (QA
r ) = A−1(0). Furthermore, for all x, y ∈ E and by the monotonicity of A, we can

show that
〈QA

r (x)−QA
r (y), JpE(x−QA

r (x))− JpE(y −QA
r (y))〉 ≥ 0. (3.2.8)

From (3.2.7), we have for all x, y ∈ E

JpE(x−QA
r (x))

r
∈ AQA

r (x), (3.2.9)

and
JpE(y −QA

r (y))

r
∈ AQA

r (y). (3.2.10)

Since A is monotone, then we obtain (3.2.8) from (3.2.9) and (3.2.10). This implies that
for all x ∈ E, t ∈ A−1(0), and whenever A−1(0) 6= ∅, we have

〈QA
r (x)− t, JPE (x−QA

r (x))〉 ≥ 0. (3.2.11)

The following lemmas are also useful in establishing our main results in this chapter.

Lemma 3.2.1. [111] Let x, y ∈ E. If E is a q-uniformly smooth Banach space, then there
exists a Dq > 0 such that

‖x− y‖q ≤ ‖x‖q − q〈y, JqE(x)〉+Dq‖y‖q. (3.2.12)
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Lemma 3.2.2. [57] Let C be a non-empty, closed and convex subset of a reflexive, strictly
convex and smooth Banach space E, x0 ∈ C and x ∈ E, then the following assertions are
equivalent:

1. x0 = ΠC(x);

2. 〈z − x0, J
p
E(x0)− JpE(x) ≥ 0〉, ∀z ∈ C.

Furthermore, for all y ∈ C, we have

∆p(ΠC(x), y) + ∆p(x,ΠC(x)) ≤ ∆p(x, y).

Lemma 3.2.3. [75] Let E be a smooth and uniformly convex real Banach space. Let {xn}
and {yn} be two bounded sequences in E. Then limn→∞∆p(xn, yn) = 0 if and only if

lim
n→∞

‖xn − yn‖ = 0.

Lemma 3.2.4. [111] Let q ≥ 1 and r > 0 be two fixed real numbers, then a Banach space
E is uniformly convex if and only if there exists a continuous, strictly, increasing and
convex function g : R+ → R+, g(0) = 0 such that for all x, y ∈ Br and 0 ≤ α ≤ 1,

‖αx+ (1− α)y‖q ≤ α‖x‖q + (1− α)‖y‖q −Wq(α)g(‖x− y‖), (3.2.13)

where Wq := αq(1− α) + α(1− α)q and Br := {x ∈ E : ‖x‖ ≤ r}.

3.3 Main results

In this section, we present our inertial technique for solving the modified SFP (3.1.6) in
Banach spaces. We also prove a strong convergence result for the sequence generated by
our algorithm.

Algorithm 3.3.1. Let E1, E2 be p-uniformly convex and uniformly smooth real Banach
spaces, C and Q be non-empty closed convex subsets of E1 and E2 respectively, and
A : E1 → E2 be a bounded linear operator with A∗ : E∗2 → E∗1 . Let T : C → C be
a Bregman weak relatively nonexpansive mapping, and B : E2 → 2E

∗
2 be a maximal

monotone operator. Let Γ = F (T ) ∩ C ∩A−1(B−1(0)) 6= ∅. Also, Let {αn} be a sequence
in (0,1) with 0 < lim inf

n→∞
αn ≤ lim sup

n→∞
αn < 1, x0, x1 ∈ C = C1 = H1, {θn} be a real

sequence such that −θ ≤ θn ≤ θ, for some θ > 0 and rn > 0. Assuming the (n− 1)th and
nth iterates have been constructed, we calculate the next iterate (n+ 1)th via the formula

wn = JqE∗1

[
JpE1

(xn) + θn(JpE1
(xn)− JpE1

(xn−1))
]
,

vn = ΠCJ
q
E∗1

[
JpE1

(wn)− µnA∗JpE2
(I −QB

rn)Awn
]
,

un = JqE∗1

[
αnJ

p
E1

(vn) + (1− αn)JpE1
(Tvn)

]
,

Cn = {u ∈ E1 : ∆p(u, un) ≤ ∆p(u,wn)},
Hn = {u ∈ E1 : 〈xn − u, JpE1

(x1)− JpE1
(xn)〉 ≥ 0},

xn+1 = ΠCn∩Hnx1, ∀n ∈ N,

(3.3.1)
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where µn is a positive number satisfying

µq−1
n =


q‖(I−QB

rn
)Awn‖p

Dq‖A∗Jp
E2

(I−QB
rn

)Awn‖q
, if Awn 6= QB

rnAwn,

ε, if Awn = QB
rnAwn,

(3.3.2)

for any ε > 0.

Note that the step size defined in (3.3.2) does not require a prior knowledge or estimate
of the operator norm ‖A‖. This is very important because in practice, it is very difficult
to estimate the norm of bounded linear operators (for simple estimate, see [87]).

Next, we prove some necessary results which will be used to establish our main theorem.

First, we show that the sequence {xn} generated by Algorithm 3.3.1 is well-defined.

Lemma 3.3.2. Let {xn} be generated by (3.3.1), then {xn} is well-defined.

Proof. We need to show that Cn ∩ Hn is a non-empty closed and convex set ∀n ≥ 1. It
is obvious that Hn is closed and convex while Cn is closed. So we show that Cn is also
convex. Observe that

∆p(u, un) ≤ ∆p(u,wn)

is equivalent to

〈JpE1
(wn)− JpE1

(un), u〉 ≤ 1

q
(‖wn‖p − ‖un‖p) .

Hence Cn is a half space and so convex. This implies that Cn ∩Hn is closed and convex
for n ∈ N. Furthermore, we need to show that Cn ∩ Hn is non-empty. It is sufficient to
show that Γ ⊂ Cn ∩Hn. Let x∗ ∈ Γ, then,

∆p(x
∗, un) = ∆p

(
x∗, JqE∗1

[
αnJ

p
E1
vn + (1− αn)JpE1

Tvn
])

≤ αn∆p(x
∗, vn) + (1− α)∆p(x

∗, T vn)

≤ αn∆p(x
∗, vn) + (1− α)∆p(x

∗, vn)

= ∆p(x
∗, vn). (3.3.3)

Also from Lemma 3.2.1 and (3.2.6), we have

∆p(x
∗, vn) = ∆p

(
x∗,ΠCJ

q
E∗1

[
JpE1

(wn)− µnA∗JpE2
(I −QB

rn)Awn
])

≤ ∆p

(
x∗, JqE∗1

[
JpE1

(wn)− µnA∗JpE2
(I −QB

rn)Awn
])

= Vp(x
∗, [JpE1

(wn)− µnA∗JpE2
(I −QB

rn)Awn])

=
‖x∗‖p

p
− 〈x∗, JpE1

wn〉+ 〈x∗, µnA∗JpE2
(I −QB

rn)Awn〉

+
1

q
‖JpE1

wn − µnA∗JpE2
(I −QB

rn)Awn‖q

≤ ‖x∗‖p

p
− 〈x∗, JpE1

wn〉+ µn〈Ax∗, JpE2
(I −QB

rn)Awn〉+
1

q
‖JpE1

wn‖q

− µn〈Awn, JpE2
(I −QB

rn)Awn〉+
Dqµ

q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q
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=
‖x∗‖p

p
− 〈x∗, JpE1

wn〉+
1

q
‖JpE1

wn‖q + µn〈Ax∗ − Awn, JpE2
(I −QB

rn)Awn〉

+
Dqµ

q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

= ∆p(x
∗, wn) + µn〈Ax∗ −QB

rnAwn + QB
rnAwn − Awn, J

p
E2

(I −QB
rn)Awn〉

+
Dqµ

q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

= ∆p(x
∗, wn) + µn〈Ax∗ −QB

rnAwn, J
p
E2

(I −QB
rn)Awn〉

− µn〈Awn −QB
rnAwn, J

p
E2

(I −QB
rn)Awn〉+

Dqµ
q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q.

From (3.2.11), we have

∆p(x
∗, vn) ≤ ∆p(x

∗, wn)− µn〈(I −QB
rn)Awn, J

p
E2

(I −QB
rn)Awn〉

+
Dqµ

q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

= ∆p(x
∗, wn)

− µn

{
‖(I −QB

rn)Awn‖p −
Dqµ

q−1
n

q
‖JpE1

(I −QB
rn)Awn‖q

}
. (3.3.4)

Hence, from (3.3.2), we have

∆p(x
∗, vn) ≤ ∆p(x

∗, wn).

This implies that
∆p(x

∗, un) ≤ ∆p(x
∗, wn).

So Γ ⊂ Cn, for all n ∈ N. Since xn+1 = ΠCn∩Hnx1, then 〈JpE1
x1 − JpE1

xn+1, v − xn+1〉 ≤ 0,
∀v ∈ Cn ∩Hn ⊂ C. In particular, for x∗ ∈ Γ, we have 〈JpE1

x1 − JpE1
xn+1, x

∗ − xn+1〉 ≤ 0.
This implies that Γ ⊂ Hn for all n ∈ N. So we obtain that Γ ⊂ Cn ∩ Hn for all n ∈ N.
Therefore, Cn ∩Hn is non-empty and thus xn+1 = ΠCn∩Hnx1 is well-defined.

Lemma 3.3.3. Let {xn} be a sequence generated by Algorithm 3.3.1. Then

(i) limn→∞ ‖xn+1 − xn‖ = 0,

(ii) limn→∞ ‖xn − wn‖ = 0,

(iii) limn→∞ ‖Tvn − vn‖ = 0,

(iv) limn→∞ ‖xn − vn‖ = 0,

(v) limn→∞ ‖A∗JpE2
(I −QB

rn)Awn‖ = 0.

Proof. (i) Let w ∈ Γ. Since Γ ⊂ Cn ∩Hn, ∀n ≥ 1 and xn+1 = ΠCn∩Hnx1, it follows that

∆p(xn+1, x1) ≤ ∆p(w, x1),∀ n ≥ 1.
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Thus {∆p(xn+1, x1)} is bounded.
We observe that xn+1 ∈ Hn and by (3.2.3), we have

〈xn − xn+1, J
p
E1

(xn)− JpE1
(x1)〉 ≤ 0,

also by (3.2.4), we have

∆p(xn+1, xn) ≤ ∆p(xn+1, x1)−∆p(xn, x1), ∀n ≥ 1, (3.3.5)

which implies that
∆p(xn, x1) ≤ ∆p(xn+1, x1)−∆p(xn+1, xn).

Thus
∆p(xn, x1) ≤ ∆p(xn+1, x1),

therefore, {∆p(xn, x1)} is a bounded monotone nondecreasing sequence.

Hence limn→∞ {∆p(xn, x1)} exists.

From (3.3.5), we have limn→∞∆p(xn+1, xn) = 0. Thus, using Lemma 3.2.3

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3.6)

(ii) Since JpE1
is uniformly continuous on bounded subsets of E1, we have from (3.3.6) that

lim
n→∞

‖JpE1
(xn+1)− JpE1

(xn)‖ = lim
n→∞

‖JpE1
(xn)− JpE1

(xn−1)‖ = 0.

From (3.3.1), we have

wn = JqE∗1

(
JpE1

(xn) + θn(JpE1
(xn)− JpE1

(xn−1))
)
,

then
JpE1

wn = JpE1
xn + θn(JpE1

(xn)− JpE1
(xn−1),

which gives

‖JpE1
(wn)− JpE1

(xn)‖ = |θn|‖JpE1
(xn)− JpE1

(xn−1)‖.

Therefore

lim
n→∞

‖JpE1
(wn)− JpE1

(xn)‖ = 0.

Since JqE∗1 is also uniformly continuous on bounded subsets of E∗1 , then we have

lim
n→∞

‖xn − wn‖ = 0. (3.3.7)

(iii) From (3.3.6) and (3.3.7), we obtain

‖xn+1 − wn‖ = ‖xn+1 − xn + xn − wn‖
≤ ‖xn+1 − xn‖+ ‖xn − wn‖ → 0 as n→∞.
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Note that from the construction of Cn, we have that

∆p(xn+1, un) ≤ ∆p(xn+1, wn)→ 0 as n→∞,

therefore by Lemma 3.2.3, we have

lim
n→∞

‖xn+1 − un‖ = 0.

Again, since ‖xn − un‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − un‖, it then follows that

lim
n→∞

‖xn − un‖ = 0. (3.3.8)

It follows from (3.3.7) and (3.3.8) that

lim
n→∞

||wn − un‖ = 0. (3.3.9)

Using Lemma 3.2.4, we have

∆p(x
∗, un) = ∆p

(
x∗, JqE∗1

[
αnJ

p
E1
vn + (1− αn)JpE1

Tvn
])

= Vp
(
x∗, αnJ

p
E1
vn + (1− αn)JpE1

Tvn
)

=
1

p
‖x∗‖p − 〈x∗, αnJpE1

vn〉 − 〈x∗, (1− αn)JpE1
Tvn〉+

1

q
‖αnJpE1

vn + (1− αn)JpE1
Tvn‖q

≤ 1

p
‖x∗‖p − αn〈x∗, JpE1

vn〉 − (1− αn)〈x∗, JpE1
Tvn〉+

1

q
αn‖vn‖p +

(1− αn)

q
‖Tvn‖p

−Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
(3.3.10)

= αn
1

p
‖x∗‖p + (1− αn)

1

p
‖x∗‖p − αn〈x∗, JpE1

vn〉 − (1− αn)〈x∗, JpE1
Tvn〉

+
1

q
αn‖vn‖p +

(1− αn)

q
‖Tvn‖p −

Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)

= αn

{
1

p
‖x∗‖p − 〈x∗, JpE1

vn〉+
1

q
‖vn‖p

}
+ (1− αn)

{
1

p
‖x∗‖p − 〈x∗, JpE1

Tvn〉+
1

q
‖Tvn‖p

}
−Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
= αn∆p(x

∗, vn) + (1− αn)∆p(x
∗, T vn)− Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
≤ αn∆p(x

∗, vn) + (1− αn)∆p(x
∗, vn)− Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
= ∆p(x

∗, vn)− Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
≤ ∆p(x

∗, wn)− Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
. (3.3.11)
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Hence, from (3.2.1) and (3.2.2), we get

Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
≤ ∆p(x

∗, wn)−∆p(x
∗, un)

= ∆p(un, wn) + 〈un − wn, JpE1
x∗ − JpE1

un〉
≤ 〈un − wn, JpE1

un − JpE1
wn〉+ 〈un − wn, JpE1

x∗ − JpE1
un〉

= 〈un − wn, JpE1
x∗ − JpE1

wn〉. (3.3.12)

From (3.3.9), we have

lim
n→∞

Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
= 0,

which implies
lim
n→∞

g
(
‖JpE1

vn − JpE1
Tvn‖

)
= 0.

By the property of mapping g, we obtain

lim
n→∞

‖JpE1
vn − JpE1

Tvn‖ = 0.

Since JqE∗1 is uniformly continuous on bounded subsets of E∗1 , we have

lim
n→∞

‖Tvn − vn‖ = 0. (3.3.13)

(iv) From Algorithm 3.3.1, we have that,

JPE1
un − JPE1

vn = (1− αn)(JPE1
Tvn − JPE1

vn).

Since 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and from (3.3.13), we have

lim
n→∞

‖JPE1
un − JPE1

vn‖ = 0,

hence
lim
n→∞

‖un − vn‖ = 0.

Since ‖wn − vn‖ ≤ ‖wn − un‖+ ‖un − vn‖, then from (3.3.9) we have

lim
n→∞

‖wn − vn‖ = 0. (3.3.14)

Therefore, from (3.3.7), we have

lim
n→∞

‖vn − xn‖ = 0.
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(v) From (3.3.4), we have

µn

{
‖(I −QB

rn)Awn‖p −
Dqµ

q−1
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

}
≤ ∆p(x

∗, wn)−∆p(x
∗, vn)

= ∆p(vn, wn)

+ 〈vn − wn, JpE1
x∗ − JpE1

vn〉
≤ 〈vn − wn, JpE1

vn − JpE1
wn〉

+ 〈vn − wn, JpE1
x∗ − JpE1

vn〉
= 〈vn − wn, JpE1

x∗ − JpE1
wn〉.

(3.3.15)

It follows from (3.3.14) that

lim
n→∞

(
‖(I −QB

rn)Awn‖p −
Dqµ

q−1
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

)
= 0. (3.3.16)

From the choice of µn in (3.3.2), we have

µq−1
n <

q‖(I −QB
rn)Awn‖p

Dq‖A∗JpE2
(I −QB

rn)Awn‖q
− ε, (3.3.17)

for small ε > 0. This implies that

Dqµ
q−1
n ‖A∗J

p
E2

(I −QB
rn)Awn‖q

q
< ‖(I −QB

rn)Awn‖p −
εDq‖A∗JpE2

(I −QB
rn)Awn‖q

q
.

Then we have

εDq‖A∗JpE2
(I −QB

rn)Awn‖q

q
< ‖(I −QB

rn)Awn‖p −
Dqµ

q−1
n ‖A∗J

p
E2

(I −QB
rn)Awn‖q

q
.

Therefore from (3.3.16), we have

lim
n→∞

εDq

q
‖A∗JpE2

(I −QB
rn)Awn‖q = 0,

hence
lim
n→∞

‖A∗JpE2
(I −QB

rn)Awn‖ = 0. (3.3.18)

Also from (3.3.16), we have that

lim
n→∞

‖(I −QB
rn)Awn‖ = 0. (3.3.19)

Now, we present a strong convergence theorem for solving the SFP (3.1.6) using Algorithm
3.3.1.
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Theorem 3.3.4. Let E1, E2 be p-uniformly convex and uniformly smooth Banach spaces,
C and Q be non-empty closed convex subsets of E1 and E2 respectively, and A : E1 → E2 be
a bounded linear operator with A∗ : E∗2 → E∗1 . Let T : C → C be a Bregman weak relatively
nonexpansive mapping, and B : E2 → 2E

∗
2 be a maximal monotone operator. Suppose

Γ = F (T ) ∩C ∩A−1(B−1(0)) 6= ∅. Then, the sequence {xn} generated by Algorithm 3.3.1
converges strongly to u ∈ Γ, where u = ΠΓx1.

Proof. We have already shown in Lemma 3.3.3(i) that lim
n→∞

∆p(xn, x1) exists. Next, we

show that xn → x̄ ∈ Γ. Let m,n ∈ N, then

∆p(xm, xn) = ∆p(xm,ΠCn−1∩Hn−1x1) ≤ ∆p(xm, x1)−∆p(xn, x1)→ 0.

Therefore by Lemma 3.2.4, we get that ‖xm − xn‖ → 0 as m,n → ∞. Thus {xn} is a
Cauchy sequence in C. Since C is closed and convex, it implies that there exists x̄ ∈ C such
that xn → x̄ as n→∞. Since ‖xn − vn‖ → 0, ‖Tvn − vn‖ → 0 and T is a Bregman weak
relatively nonexpansive mapping, then x̄ ∈ F (T ). More so, since ‖xn − wn‖ → 0, then
wn → x̄ and by the linearity of A, we have Awn → Ax̄. Also from (3.3.19), QB

rnAwn → Ax̄.
Since QB

rn is a resolvent metric of B for rn > 0, then for all n ∈ N, we have

JPE2
(Awn −QB

rnAwn)

rn
∈ BQB

rnAwn.

So for all (s, s∗) ∈ B, we have

0 ≤ 〈s−QB
rnAwn, s

∗ −
JP
E2

(Awn−QB
rn
Awn)

rn
〉.

It follows from (3.3.19) that for all (s, s∗) ∈ B, we have

0 ≤ 〈s− Ax̄, s∗ − 0〉.

Since B is maximal monotone, then it implies that Ax̄ ∈ B−1(0), hence x̄ ∈ A−1(B−10).
Therefore, x̄ ∈ Γ.

Finally, we show that x̄ = ΠΓx1. Suppose there exists ȳ ∈ Γ such that ȳ = ΠΓx1. Then

∆p(ȳ, x1) ≤ ∆p(x̄, x1). (3.3.20)

We have shown in Lemma 3.3.2 that Γ ⊂ Cn ∀n ≥ 1, then ∆p(xn, x1) ≤ ∆p(x̄, x1). By the
lower semi-continuity of the norm, we have

∆p(x̄, x1) =
‖x̄‖p

q
− 〈JpE1

x̄, x1〉+
‖x1‖p

p

≤ lim inf
n→∞

{
‖x̄‖p

q
− 〈JpE1

xn, x1〉+
‖x1‖p

p

}
= lim inf

n→∞
∆p(x̄, x1).

≤ lim sup
n→∞

∆p(x̄, x1) ≤ ∆p(ȳ, x1). (3.3.21)

Combining (3.3.20) and (3.3.21) we have ∆p(ȳ, x1) ≤ ∆p(x̄, x1) ≤ ∆p(ȳ, x1). This implies
x̄ = ȳ and x̄ = ΠΓx1. Hence xn → x̄ = ΠΓx1 ∈ Γ. This completes the proof.
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The following are consequences of our results.

(i) Taking B = ∂iQ which is a maximal monotone operator, then QB
rn = PQ (the metric

projection on Q). Thus, we obtain the following result from Theorem 3.3.4 which improve
the corresponding results of Suantai et al. [94].

Corollary 3.3.5. Let E1, E2 be p-uniformly convex and uniformly smooth real Banach
spaces, C and Q be non-empty closed convex subsets of E1 and E2 respectively, and A :
E1 → E2 be a bounded linear operator with A∗ : E∗2 → E∗1 and let T : C → C be a Bregman
weak relatively nonexpansive mapping. Suppose Γ = SFP ∩F (T ) 6= ∅. Then, the sequence
{xn} generated by the following algorithm converges strongly to u ∈ Γ, where u = ΠΓx1.

Algorithm 3.3.6. Let {αn} be a sequence in (0,1), x1 ∈ C = C1 = Q1, θn be a real
sequence such that −θ ≤ θn ≤ θ , for some θ > 0. Assuming the (n−1)th and nth iterates
have been constructed, we calculate the next iterate (n+ 1)th via the formula

wn = JqE∗1

[
JpE1

(xn) + θn(JpE1
(xn)− JpE1

(xn−1))
]
,

vn = ΠCJ
q
E∗1

[
JpE1

(wn)− µnA∗JpE2
(I − PQ)Awn

]
,

un = JqE∗1

[
αnJ

p
E1

(vn) + (1− αn)JpE1
(Tvn)

]
,

Cn = {u ∈ E1 : ∆p(u, un) ≤ ∆p(u,wn)},
Hn = {u ∈ E1 : 〈xn − u, JpE1

(x1)− JpE1
(xn)〉 ≥ 0},

xn+1 = ΠCn∩Hnx1, ∀n ∈ N,

(3.3.22)

where µn is a positive number satisfying

µq−1
n =

{
q‖(I−PQ)Awn‖p

Dq‖A∗Jp
E2

(I−PQ)Awn‖q , if Awn 6= PQAwn,

ε, if Awn = PQAwn,
(3.3.23)

for any ε > 0.

(ii) Taking E1 = H1 and E2 = H2, where H1 and H2 are real Hilbert spaces, we obtain
the following result which improve the results of Byrne [19].

Corollary 3.3.7. Let H1, H2 be real Hilbert spaces, C and Q be non-empty closed convex
subsets of H1 and H2 respectively, and A : H1 → H2 be a bounded linear operator. Let
T : C → C be a Bregman weak relatively nonexpansive mapping, and B : H2 → 2H2 be
a maximal monotone operator. Suppose Γ = F (T ) ∩ C ∩ A−1(B−1(0)) 6= ∅. Then, the
sequence {xn} generated by the following algorithm converges strongly to u ∈ Γ, where
u = PΓx1.

Algorithm 3.3.8. Let {αn} be a sequence in (0,1), x1 ∈ C = C1 = Q1, θn be a real
sequence such that −θ ≤ θn ≤ θ , for some θ > 0 and λn > 0. Assuming the (n− 1)th and
nth iterates have been constructed, we calculate the next iterate (n+ 1)th via the formula
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wn = xn + θn(xn − xn−1),

vn = PC(wn − µnA∗(I −QB
rn)Awn),

un = αnvn + (1− αn)Tvn,

Cn = {u ∈ H1 : ‖un − u‖2 ≤ ‖wn − u‖2,

Hn = {u ∈ H1 : 〈xn − u, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Hnx1, ∀n ∈ N,

(3.3.24)

where µn is a positive number satisfying

µn =

{
2‖(I−QB

rn
)Awn‖2

‖A∗(I−QB
rn

)Awn‖2
, if Awn 6= QB

rnAwn,

ε, if Awn = QB
rnAwn,

(3.3.25)

for any ε > 0.

3.4 Numerical examples

In this section, we present two numerical examples to illustrate the performance of our
method as well as comparing it with some related methods in the literature.

Example 3.4.1. Let E1 = E2 = Rm and A be a m×m randomly generated matrix. Let
C = {x ∈ Rm : 〈a, x〉 ≥ b}, where a = (1,−5, 4, 0, . . . , 0) ∈ Rm and b = 1. Then

ΠC(x) = PC(x) =
b− 〈a, x〉
‖a‖2

2

a+ x.

Let B : Rm → 2Rm
be defined by B(x) = {2x}, and T = PC . We take θn = 3

7n
, rn = 1

2n
,

and αn = n
5n+1

. Then our Algorithm (3.3.1) becomes

wn = xn + 3
7n

(xn − xn−1),

vn = PC(wn − µnA∗(I −QB
rn)Awn),

un = n
5n+1

vn + 4n+1
5n+1

PC(vn),

Cn = {u ∈ E1 : ‖un − u‖2 ≤ ‖wn − u‖2},
Hn = {u ∈ E1 : 〈xn − u, x1 − xn ≥ 0},
xn+1 = PCn∩Hnx1, ∀n ∈ N,

where µn is chosen as defined by (3.3.2) and QB
rn(Awn) =

(
n
n+1

)
Awn for all n ≥ 1. We

choose various values of m as follows:

Case I: m = 10, Case II: m = 20, Case III: m = 50, Case IV: m = 40,

and use
‖xn+1−xn‖22
‖x2−x1‖22

< 10−6 as the stopping criterion. Thus, we plot the graph of ‖xn+1−xn‖2
2

against number of iteration in each case and compare the computation results of our
algorithm with Algorithm 3.1.1 and 3.1.2 of Alsulami and Takahashi [4]. We found that
Algorithm 3.3.1 performs better in terms of number of iterations and CPU time-taken for
computation than both Algorithms 3.1.1 and 3.1.2. The computation result can be seen
in Figure 3.1 and Table 3.1.
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Example 3.4.2. In this second example, we consider the infinite-dimensional space and
compare our Algorithm 3.3.1 with Algorithms 3.1.4 and 3.1.5 of Suantai et al. [94]. Let

E1 = E2 = E3 = L2([0, 2π]) with norm ||x||2 =
∫ 2π

0
|x(t)|2dt and inner product 〈x, y〉 =∫ 2π

0
x(t)y(t)dt, x, y ∈ E. Suppose C := {x ∈ L2([0, 2π]) :

∫ 2π

0
(t2 + 1)x(t)dt ≤ 1} and

Q := {x ∈ L2([0, 2π]) :
∫ 2π

0
|x(t) − sin(t)|2 ≤ 16} are subsets of E1 and E2 respectively.

Define A : L2([0, 2π]) → L2([0, 2π]) by A(x)(t) =
∫ 2π

0
exp−st x(t)dt for all x ∈ L2([0, 2π])

and let B = ∂iQ, subdifferential of the indicator function on Q, then QrnB = PQ. Let

T (x)(t) =
∫ 2π

0
x(t)dt and choose θn = 1

2(n+1)
and αn = 5n

8n+7
. Then our Algorithm 3.3.1

becomes : 

wn = xn + 1
2(n+1)

(xn − xn−1),

vn = ΠC(wn − µnA∗(I − PQ)Awn),

un = 5n
8n+7

vn + 3n+7
8n+7

T (vn),

Cn = {u ∈ E1 : ∆p(u, un) ≤ ∆p(u,wn)},
Hn = {u ∈ E1 : 〈xn − u, x1 − xn ≥ 0},
xn+1 = PCn∩Hnx1, ∀n ∈ N,

where µn is chosen as defined by (3.3.2) for all n ≥ 1. We choose various values of the
initial point as follows:
Case (i): x1 = 2t exp(5t), x0 = t2

2
,

Case (ii): x1 = t2 cos(2πt), x0 = exp(2t),
Case (iii): x1 = 3

7
sin(4t), x0 = 2t sin(3t),

Case (iv): x1 = 5t cos(2πt), x0 = 2 cos(3πt).

Using ‖xn+1−xn‖2
‖x2−x1‖2 < 10−4 as stopping criterion, we plot the graph of ‖xn+1 − xn‖2 against

number of iteration and compare the computation results of our algorithm with Algorithm
3.1.4 and 3.1.5 of Suantai et al. [94]. We found out that our Algorithm 3.3.1 also perform
better than Algorithm 3.1.4 and 3.1.5 in terms of number of iterations and cpu-time. The
computational results can be seen in Table 3.2 and Figure 3.2.
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Table 3.1: Computation result for Example 3.4.1.
Algorithm
3.3.1

Algorithm
3.1.2

Algorithm
3.1.3

Case I CPU time (sec) 7.7660e− 4 0.0024 0.0027
m = 10 No. of Iter. 10 144 88
Case II CPU time (sec) 7.8468e− 4 0.0013 0.0011
m = 20 No. of Iter. 10 150 91
Case III CPU time (sec) 7.2380e− 4 0.0063 0.0064
m = 50 No. of Iter. 10 155 94
Case IV CPU time (sec) 7.2747e− 4 0.0057 0.0061
m = 100 No. of Iter. 10 159 97

Table 3.2: Computation result for Example 3.4.2.
Algorithm
3.3.1

Algorithm
3.1.4

Algorithm
3.1.5

Case I CPU time (sec) 2.9098 13.5328 3.1893
No. of Iter. 12 34 25

Case II CPU time (sec) 2.0835 18.7739 5.8123
No. of Iter. 10 35 26

Case III CPU time (sec) 2.3470 7.5584 4.4957
No. of Iter. 12 34 25

Case IV CPU time (sec) 2.0908 6.0053 3.0760
No. of Iter. 10 27 20
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Figure 3.1: Example 3.4.1: Top Left Case I; Top Right: Case II; Bottom Left: Case III;
Bottom Right: Case IV.
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CHAPTER 4

Approximation of Common Solutions of Monotone Inclusion and

Fixed Point Problems of Demimetric Mappings in Hilbert Spaces

4.1 Introduction

In this chapter, we study the common solutions of MIP and FPP of a finite family of
demimetric mappings.

The MIP (1.1.3) have been studied by several authors and various iterative algorithms have
been modified and improved (see, for instance [70, 34, 35, 109, 116]). One of the most
famous methods for finding solution of MIP is the forward-backward splitting method
which have been developed in various forms.

The forward-backward splitting method and Armijo-line search technique have recently
attracted much attention by several authors and has been modified in various forms to
prove the weak convergence of the sequence generated by it (see [1, 11, 16, 30, 34, 35, 59])

In [103], Thong and Cholamjiak obtained strong convergence for the following modified
forward-backward splitting method:

Algorithm 4.1.1. Let x0 ∈ H, C be a nonempty closed convex subset of H, λ > 0, τ ∈
(0, 2), σ ∈ (0, 1) and m ∈ (0, 1). Then calculate xn+1 as follows:

Step 1 : Calculate
yn = JBrn(I − rnA)xn,

where JBrn = (I−rnB)−1 and rn is selected to be the largest r ∈ {λ, λm, λm2, .....} satisfying

r〈Axn − Ayn, xn − yn〉 ≤ σ‖xn − yn‖2.

If yn = xn, stop and hence yn is a solution of Γ. Otherwise
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Step 2 : Calculate
zn = xn − τµncn,

where
cn = xn − yn − rn(Axn − Ayn),

and

µn = (1− σ)
‖xn − yn‖2

‖cn‖2
.

Step 3 : Calculate
xn+1 = (1− θn)zn + θnf(xn).

Set n := n+ 1 and go to Step 1

It was proved that the sequence {xn} generated by Algorithm 4.1.1 converges strongly to
an element r of the solution set Γ of the MIP (1.1.3), where r = PΓ ◦ f(r).

Inspired by the above result and in the current research interest in this direction, we pro-
pose an inertial algorithm with Armijo-like search technique for approximating solutions
of MIP (where A is a Lipschitz continuous and monotone operator and B is a maximal
monotone operator) and common fixed points of a finite family of demimetric mappings
in real Hilbert spaces. Our algorithm is designed so that its convergence does not require
the prior estimate of the Lipschitz constant of A in the MIP and we obtain a strong con-
vergence theorem for the sequence generated by our algorithm. We further present some
numerical examples to illustrate the performance of our method as well as comparing it
with some related methods in the literature.

Subsequent sections of this chapter are organised as follows: In Section 4.2, we recall
some basic definitions and lemmas that are relevant in establishing our main results. In
Section 4.3, we prove some lemmas that are useful in establishing the strong convergence of
our proposed algorithm and also prove the strong convergence theorem for the algorithm.
In Section 4.4, we give an application and some numerical examples to illustrate the
performance of our method as well as comparing it with some related methods in the
literature.

4.2 Preliminaries

In this section, we will recall some basic notions and useful lemmas which will be needed
in the sequel.

Definition 4.2.1. A mapping A : H → H is said to be l-demimetric if there exists
l ∈ (−∞, 1) and F (A) 6= ∅ such that

‖Ax− t‖2 ≤ ‖x− t‖2 + l‖x− Ax‖2, ∀x ∈ H, t ∈ F (A).

Definition 4.2.2. Let C be a nonempty closed convex subset of a real Hilbert space H,
the metric projection PC : H → C is defined, for each x ∈ H, as the unique element
PCx ∈ C such that

||x− PCx|| = inf{||x− y|| : y ∈ C}.
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It is known that PC is nonexpansive and has the following properties:

(i) 〈x− y, PCx− PCy〉 ≥ ||PCx− PCy||2, for every x, y ∈ H;

(ii) for x ∈ H and z ∈ C, z = PCx⇔

〈x− z, z − y〉 ≥ 0, ∀y ∈ C; (4.2.1)

(iii) for x ∈ H and y ∈ C,

||y − PC(x)||2 + ||x− PC(x)||2 ≤ ||x− y||2. (4.2.2)

Lemma 4.2.1. [7] Let C be a nonempty closed convex subset of a real Hilbert space H
and A : C → H be a mapping on H, B : H → 2H be a maximal monotone operator. Then
we have

F (JBr (I − rA)) = (A+B)−1(0),∀r > 0,

where F (JBr (I − rA)) is the set of the fixed points of JBr (I − rA).

Lemma 4.2.2. [46, 63] Let {αn} and {δn} be sequences of non-negative real numbers such
that

αn+1 ≤ (1− δn)αn + βn + γn, n ≥ 1,

where {δn} is a sequence in (0, 1) and {βn} is a real sequence. Assume that
∑∞

n=0 γn <∞.
Then the following results hold:

(i) If βn ≤ δnM for some M ≥ 0, then {αn} is a bounded sequence.

(ii) If
∑∞

n=0 δn =∞ and lim supn→∞
βn
δn
≤ 0, then limn→∞ αn = 0.

Lemma 4.2.3. [18] Let A : H → H be a Lipschitz continuous and monotone mapping
and B : H → 2H be a maximal monotone operator. Then A + B is a maximal monotone
mapping.

Lemma 4.2.4. [2] Let H be a real Hilbert space, then the following inequalities hold:

(i) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2, x, y ∈ H,

(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, x, y ∈ H.

Lemma 4.2.5. [99] Let xi ∈ H, (1 ≤ i ≤ m),
∑m

i=1 αi = 1, where {αi} ⊆ (0, 1). Then∥∥∥∥ m∑
i=1

αixi

∥∥∥∥2

=
m∑
i=1

αi‖xi‖2 −
m∑

i=j=1,i 6=j

αiαj‖xi − xj‖2.
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4.3 Main result

In this section, we assume that Γ = (A + B)−1(0) ∩
⋂m
i=1 F (Si) 6= ∅, where A : H → H

is a L-Lipschitz continuous and monotone mapping, B : H → 2H is a maximal monotone
operator and Si : H → H is a finite family of demimetric mappings with constant li for
i = 1, 2, ...m. Let f : H → H be σ contraction with constant σ ∈ (0, 1), D be a bounded
operator with co-efficient ρ > 0, such that 0 < ξ < ρ

σ
and let {αn}, {εn}, {βn,i} be non-

negative sequences such that 0 < a ≤ εn, βn,i, αn ≤ b < 1, and θ ≥ 3. We propose the
following algorithm for approximating the common solutions of MIP and FPP of a finite
family of demimetric mappings in real Hilbert spaces.

Algorithm 4.3.1.
Step 0: Select initial guess x0, x1 ∈ H and set n = 1.
Step 1: Given the (n − 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̃n with θ̃n
defined by

θ̃n =

{
min

{
n−1
n+θ−1

, εn
||xn−xn−1||

}
, if xn 6= xn−1,

n−1
n+θ−1

otherwise.
(4.3.1)

Step 2: Compute
yn = JBrn(wn − rnA(wn)),

where wn = xn + θn(xn − xn−1) and rn is selected to be the largest r ∈ {λ, λp, λp2, . . . }
satisfying

r〈Awn−Ayn, wn−yn〉 ≤ σ‖wn−yn‖2, where λ > 0, p ∈ (0, 1) and σ ∈ (0, 1). (4.3.2)

If yn = wn, then yn ∈ (A+ B)−1(0). In this case, set yn = zn and go to Step 4, otherwise
do Step 3.
Step 3 : Compute

zn = wn − τµncn, ∀ τ ∈ (0, 2),

where
cn = wn − yn − rn(Awn − Ayn),

and

µn = (1− σ)
‖wn − yn‖2

‖cn‖2
.

Step 4 : Compute

xn+1 = αnξf(xn) + (1− αnD)

[
βn,0zn +

m∑
i=1

βn,iSizn

]
.

Set n := n+ 1 and go to Step 1.

Remark 4.3.2: We note that the step size rn defined in Algorithm 4.3.1 is well defined
and min

{
λ, σp

L

}
≤ rn ≤ λ (see [103]).
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The following assumptions will be useful to establish our main result:

(C1) lim
n→∞

αn = 0 and
∞∑
n=0

αn =∞;

(C2) lim inf
n→∞

(βn,0 − l)βn,i > 0 for all i = 1, 2, ....m,where l = max
1≤i≤m

{li};

(C3) εn = o(αn) i.e, lim
n→∞

εn
αn

= 0

(
for example εn =

1

(n+ 1)2
, αn =

1

n+ 1

)
.

Remark 4.3.3: From (4.3.1) and (C3), we have limn→∞ θn‖xn − xn−1‖ = 0 and
limn→∞

θn
αn
‖xn − xn−1‖ = 0.

The following lemmas will be useful to prove the strong convergence of the sequence
generated by our proposed algorithm.

Lemma 4.3.2. Let {xn} be a sequence generated by Algorithm 4.3.1. Then we have

‖zn − t‖2 ≤ ‖wn − t‖2 − 2− τ
τ
‖wn − zn‖2, ∀ t ∈ Γ and n ≥ 0.

Proof. From (4.3.2), we have

〈cn, wn − t〉 = 〈cn, wn − yn〉+ 〈cn, yn − t〉
= 〈wn − yn − rn(Awn − Ayn), wn − yn〉+ 〈wn − yn − rn(Awn − Ayn), yn − t〉
= ‖wn − yn‖2 − 〈rn(Awn − Ayn), wn − yn〉+ 〈wn − yn − rn(Awn − Ayn), yn − t〉
≥ ‖wn − yn‖2 − σ‖wn − yn‖2 + 〈wn − yn − rn(Awn − Ayn), yn − t〉. (4.3.3)

Since yn = JBrn(wn − rnAwn), thus wn − rnAwn ∈ yn − rnByn. Hence

1

rn
(wn − yn − rnAwn) ∈ Byn.

Since 0 ∈ (A + B)t, Ayn + vn ∈ (A + B)yn, then by Lemma 4.2.3, we obtain A + B is a
maximal monotone mapping. Hence, we get

1

rn
〈yn − t, rnAyn + wn − yn − rnAwn〉 ≥ 0.

Which implies that
〈yn − t, wn − yn − rn(Awn − Ayn)〉 ≥ 0. (4.3.4)

Thus, from (4.3.3) and (4.3.4), we have

〈cn, wn − t〉 ≥ (1− σ)‖wn − yn‖2.

Also,

‖zn − t‖2 = ‖wn − τµncn − t‖2

= ‖wn − t‖2 + τ 2‖µncn‖2 − 2τµn〈wn − t, cn〉
≤ ‖wn − t‖2 + τ 2‖µncn‖2 − 2τµn(1− σ)‖wn − yn‖2. (4.3.5)
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From the Algorithm, we have

µn‖cn‖2 = (1− σ)‖wn − yn‖2,

thus
2τµn(1− σ)‖wn − yn‖2 = 2τ‖µncn‖2,

hence, we have

‖zn − t‖2 ≤ ‖wn − t‖2 + τ 2‖µncn‖2 − 2τ‖µncn‖2

= ‖wn − t‖2 − 2− τ
τ
‖τµncn‖2. (4.3.6)

Since zn = wn − τµncn. Hence
wn − zn = τµncn. (4.3.7)

By substituting (4.3.7) in (4.3.6), we have

‖zn − t‖2 ≤ ‖wn − t‖2 − 2− τ
τ
‖wn − zn‖2. (4.3.8)

Lemma 4.3.3. Let {xn} be a sequence generated by Algorithm 4.3.1. Then

‖wn − yn‖2 ≤ 1 + L2λ2

[(1− σ)τ ]2
‖wn − zn‖2.

Proof. Since A is a monotone mapping, then we have

‖cn‖2 ≤ ‖wn − yn − rn(Awn − Ayn)‖2

= ‖wn − yn‖2 + r2
n‖Awn − Ayn‖2 − 2rn〈wn − yn, Awn − Ayn〉

≤ (1 + L2λ2)‖wn − yn‖2,

which implies that
1

(1 + L2λ2)‖wn − yn‖2
≤ 1

‖cn‖2
. (4.3.9)

Hence
1− σ

1 + L2λ2
≤ µn = (1− σ)

‖wn − yn‖2

‖cn‖2
. (4.3.10)

Therefore,

‖wn − yn‖2 =
1

1− σ
µn‖cn‖2 =

1

1− σ
‖τµncn‖2.

1

τ 2
.

1

µn

=
1

1− σ
‖wn − zn‖2.

1

µnτ 2
. (4.3.11)

From (4.3.10) and (4.3.11), we have

‖wn − yn‖2 ≤ 1 + L2λ2

[(1− σ)τ ]2
‖wn − zn‖2. (4.3.12)
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Lemma 4.3.4. The sequence {xn} generated by Algorithm (4.3.1) is bounded.

Proof. Let t ∈ Γ. This implies that JBrn(I − rnA)t = t. Then,

‖wn − t‖ = ‖xn + αn(xn − xn−1)− t‖
≤ ‖xn − t‖+ αn‖xn − xn−1‖. (4.3.13)

Furthermore, let vn = βn,0zn +
∑m

i=1 βn,iSizn and by Lemma 4.2.5, we have

‖vn − t‖2 =

∥∥∥∥βn,0zn +
m∑
i=1

βn,iSizn − t
∥∥∥∥2

≤ βn,0‖zn − t‖2 +
m∑
i=1

βn,i‖Sizn − t‖2 −
m∑
i=1

βn,0βn,i‖zn − Sizn‖2

≤ βn,0‖zn − t‖2 +
m∑
i=1

βn,i(‖zn − t‖2 + li‖zn − Sizn‖2)−
m∑
i=1

βn,0βn,i‖zn − Sizn‖2

≤ βn,0‖zn − t‖2 +
m∑
i=1

βn,i‖zn − t‖2 +
m∑
i=1

βn,il‖zn − Sizn‖2 −
m∑
i=1

βn,0βn,i‖zn − Sizn‖2

= ‖zn − t‖2 −
m∑
i=1

(βn,0 − l)βn,i‖zn − Sizn‖2. (4.3.14)

Then from condition (C2), we have

‖vn − t‖ ≤ ‖zn − t‖. (4.3.15)

Moreover, from (4.3.8), we can obtain

‖zn − t‖ ≤ ‖wn − t‖. (4.3.16)

From (4.3.13), (4.3.15) and (4.3.16), we get

‖xn+1 − t‖ = ‖αnξf(xn) + (1− αnD)vn‖
≤ ‖αn(ξf(xn)−Dt) + (1− αnD)(vn − t)‖
≤ αn‖ξf(xn)−Dt‖+ (1− αnρ)‖vn − t‖
≤ αn

[
‖ξ(f(xn)− f(t)) + (ξf(t)−Dt)‖

]
+ (1− αnρ)‖vn − t‖

≤ αnξσ‖xn − t‖+ αn‖ξf(t)−Dt‖+ (1− αnρ)
[
‖xn − t‖+ θn‖xn − xn−1‖

]
= (1− αn(ρ− ξσ))‖xn − t‖+ αn‖ξf(t)−Dt‖+ (1− αnρ)θn‖xn − xn−1‖

= (1− αn(ρ− ξσ))‖xn − t‖+ (ρ− ξσ)αn

{
‖ξf(t)−Dt‖

ρ− ξσ

+

(
1− αnρ
ρ− ξσ

)
θn
αn
‖xn − xn−1‖

}
.
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It is known that supn≥1

(
1−αnρ
ρ−ξσ

)
βn,0

θn
αn
‖xn − xn−1‖ exists by Remark 3.3. Suppose

M := max

{
‖ξf(t)−Dt‖
‖ρ− ξσ‖

, sup
n≥1

(
1− αnρ
ρ− ξσ

)
θn
αn
‖xn − xn−1‖

}
.

Thus, we have

‖xn+1 − t‖ ≤ (1− αn(ρ− ξσ))‖xn − t‖+ αn(ρ− ξσ)M. (4.3.17)

Hence, by (4.3.17) and Lemma 4.2.2(i), {‖xn− t‖} is bounded and thus {xn} is bounded.

Lemma 4.3.5. Let {xn} be a sequence generated by Algorithm 4.3.1. Let sn = ‖xn− t‖2,

ãn = 2αn(ρ−ξσ)
1−αnξσ

,

bn = 1
2(ρ−ξσ)

(
2〈ξf(t)−Dt, xn+1 − t〉 + αnM1

)
, for some M1 > 0 and cn = θn‖xn−xn−1‖

1−αnξσ
M2,

where

M2 = supn≥1

(
(1− αnρ)2(‖xn − t‖ + ‖xn−1 − t‖) + 2((1− αnρ)2‖xn − xn−1‖

)
and t ∈ Γ.

Then the inequality below holds:

sn+1 ≤ (1− ãn)sn + ãnbn + cn.

Proof. It is already known that

‖wn − t‖2 = ‖xn + θn(xn − xn−1)‖2

= ‖xn − t‖2 + 2θn〈xn − t, xn − xn−1〉+ θ2
n‖xn − xn−1‖2. (4.3.18)

By Lemma 4.2.4(i), we have

2〈xn − t, xn − xn−1〉 = −‖xn−1 − t‖2 + ‖xn − t‖2 + ‖xn − xn−1‖2, (4.3.19)

and substituting (4.3.19) into (4.3.18), we obtain

‖wn − t‖2 = ‖xn − t‖2 + θn(−‖xn−1 − t‖2 + ‖xn − t‖2 + ‖xn − xn−1‖2) + θ2
n‖xn − xn−1‖2

≤ ‖xn − t‖2 + θn(‖xn − t‖2 − ‖xn−1 − t‖2) + 2θn‖xn − xn−1‖2. (4.3.20)

From Lemma 4.2.4(ii), we have

‖xn−1 − t‖2 = ‖αn(ξf(xn)−Dt) + (1− αnD)(vn − t)‖2

≤ (1− αnρ)2‖vn − t‖2 + 2αn〈ξf(xn)−Dt, xn+1 − t〉. (4.3.21)

From (4.3.15), (4.3.16), (4.3.18), we have

‖xn−1 − t‖2 ≤ (1− αnρ)2‖wn − t‖2 + 2αn〈ξf(xn)−Dt, xn+1 − t〉

= (1− αnρ)2

(
‖xn − t‖2 + θn(‖xn − t‖2 − ‖xn−1 − t‖2) + 2θn‖xn − xn−1‖2

)
+ 2αn〈ξf(xn)−Dt, xn+1 − t〉
= (1− αnρ)2‖xn − t‖2 + θn(1− αnρ)2(‖xn − t‖2 − ‖xn−1 − t‖2)

+ 2θn(1− αnρ)2‖xn − xn−1‖2 + 2αn〈ξf(xn)−Dt, xn+1 − t〉
≤ (1− αnρ)2‖xn − t‖2 + θn(1− αnρ)2(‖xn − t‖+ ‖xn−1 − t‖)‖xn − xn−1‖
+ 2θn(1− αnρ)2‖xn − xn−1‖2 + 2αn〈ξf(xn)−Dt, xn+1 − t〉. (4.3.22)
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Furthermore,

2〈ξf(xn)−Dt, xn+1 − t〉 = 2〈ξ(f(xn)− f(t)) + ξf(t)−Dt, xn+1 − t〉
≤ 2ξσ‖xn − t‖.‖xn+1 − t‖+ 2〈ξf(t)−Dt, xn+1 − t〉
≤ ξσ(‖xn − t‖2 + ‖xn+1 − t‖2) + 2〈ξf(t)−Dt, xn+1 − t〉.

(4.3.23)

By substituting (4.3.23) into (4.3.22), we obtain

‖xn+1 − t‖2 ≤
[
(1− αnρ)2 + αnξσ

]
‖xn − t‖2 + θn(1− αnρ)2(‖xn − t‖+ ‖xn−1 − t‖)‖xn − xn−1‖

+ 2θn(1− αnρ)2‖xn − xn−1‖2 + αnξσ‖xn+1 − t‖2 + 2αn〈ξf(t)−Dt, xn+1 − t〉

=
(
1− αn(2ρ− ξσ)

)
‖xn − t‖2 + (αnρ)2‖xn − t‖2 + θn

[
(1− αnρ)2(‖xn − t‖

+ ‖xn−1 − t‖) + 2(1− αnρ)2‖xn − xn−1‖
]
‖xn − xn−1‖+ αnξσ‖xn+1 − t‖2

+ 2αn〈ξf(t)−Dt, xn+1 − t〉

≤
(
1− αn(2ρ− ξσ)

)
‖xn − t‖2 + αnξσ‖xn+1 − t‖2

+ θn

[
(1− αnρ)2(‖xn − t‖+ ‖xn−1 − t‖) + 2(1− αnρ)2‖xn − xn−1‖

]
‖xn − xn−1‖

+ αn
(
2〈ξf(t)−Dt, xn+1 − t〉+ αnM1).

For some M1 ≥ 0. Thus

‖xn+1 − t‖2 ≤
(
1− αn(2ρ− ξσ)

)
1− αnξσ

‖xn − t‖2 +
θn

1− αnξσ
‖xn − xn−1‖M2

+
αn(2〈ξf(t)−Dt, xn+1 − t〉+ αnM1)

1− αnξσ

=

(
1− 2αn(ρ− ξσ)

1− αnξσ

)
‖xn − t‖2 +

θn
1− αnξσ

‖xn − xn−1‖M2

+
2αn(ρ− ξσ)

1− αnξσ
×
(
2〈ξf(t)−Dt, xn+1 − t〉+ αnM1

)
2(ρ− ξσ)

. (4.3.24)

Hence, we obtain the desired result.

Lemma 4.3.6. Let {xn} and {yn} be sequences generated by Algorithm 4.3.1 and {xnk
} ⊂

{xn}. If
lim
n→∞

‖xn − yn‖ = 0

and xnk
⇀ t, then t ∈ Γ = (A+B)−1(0) ∩

⋂m
i=1 F (Si).
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Proof. Let u− Av ∈ Bv and ynk
= (I + rnk

B)−1(I − rnk
A)xnk

. Thus we have

(I − rnk
A)xnk

∈ (I + rnk
B)ynk

,

hence,
1

rnk

(xnk
− ynk

− rnk
Axnk

) ∈ Bynk
.

Since B is maximal monotone, we have

〈u− Av − 1

rnk

(xnk
− ynk

− rnk
Axnk

), v − ynk
〉 ≥ 0,

which implies that

〈u, v − ynk
〉 ≥ 〈Av +

1

rnk

(xnk
− ynk

− rnk
Axnk

), v − ynk
〉

= 〈Av − Axnk
, v − ynk

〉+ 〈 1

rnk

(xnk
− ynk

), v − ynk
〉

= 〈Av − Aynk
, v − ynk

〉+ 〈Aynk
− Axnk

, v − ynk
〉+ 〈 1

rnk

(xnk
− ynk

), v − ynk
〉

≥ 〈Aynk
− Axnk

, v − ynk
〉+ 〈 1

rnk

(xnk
− ynk

), v − ynk
〉.

We note that rn >
σm
L

and limn→∞ ‖xn − yn‖ = 0. Hence we have

〈u, v − t〉 = lim
k→∞
〈u, v − ynk

〉 ≥ 0. (4.3.25)

From (4.3.25) and Lemma 4.2.3, we can conclude that 0 ∈ (A + B)t, which implies
t ∈ Γ.

Theorem 4.3.7. Let C be a nonempty closed convex subset of a real Hilbert space H,
A : C → H be a Lipschitz continuous and monotone mapping and B : H → 2H be a
maximal monotone operator. Let Si : H → H be a finite family of demimetric mappings
with constant l such that l = max{li} and I−Si are demiclosed at zero, for i = 1, 2, ....,m.
Let Γ = (A + B)−1(0) ∩

⋂m
i=1 F (Si) 6= ∅ and f : H → H be a σ contraction , where

σ ∈ (0, 1) and D is a bounded operator with co-efficient ρ > 0 such that 0 < ξ < ρ
σ

. Let
{xn} be generated by Algorithm 4.3.1 and suppose Assumptions (C1), (C2) and (C3) are
satisfied. Then the sequence {xn} converges strongly to a solution t = PΓ(I −D + ξf)(t)
which is also a unique solution of the variational inequality

〈(D − ξf)t, t− x〉 ≤ 0, x ∈ Γ. (4.3.26)

Proof. Let t ∈ Γ and Φn = ||xn − t||2. Suppose there exists n0 ∈ N such that Φn is
monotonically non-increasing for all n ≥ n0. Since Φn is bounded, then it is convergent
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and thus Φn−Φn+1 → 0 as n→∞. From (4.3.14), (4.3.16), (4.3.20) and (4.3.21), we have

‖xn+1 − t‖2 ≤ (1− αnρ)2‖vn − t‖2 + 2αn〈ξf(xn)−Dt, xn+1 − t〉

≤ (1− αnρ)2

{
‖zn − t‖2 −

m∑
i=1

(βn,0 − l)βn,i‖zn − Sizn‖2

}
+ 2αn〈ξf(xn)−Dt, xn+1 − t〉

≤ (1− αnρ)2

{
‖xn − t‖2 + θn(‖xn − t‖2 − ‖xn−1 − t‖2) + 2θn‖xn − xn−1‖2

−
m∑
i=1

(βn,0 − l)βn,i‖zn − Sizn‖2

}
+ 2αn〈ξf(xn)−Dt, xn+1 − t〉.

Thus

(1− αnρ)2

m∑
i=1

(βn,0 − l)βn,i‖zn − Si‖2 ≤ (1− αnρ)2‖xn − t‖2

+ θn(1− αnρ)2(‖xn − t‖2 − ‖xn−1 − t‖2)

+ 2θn(1− αnρ)2‖xn − xn−1‖2 + 2αn〈ξf(xn)−Dt, xn+1 − t〉
− ‖xn+1 − t‖2

≤ Φn − Φn+1 + αnM3 + θn(1− αnρ)2(Φn − Φn−1)

+ 2θn(1− αnρ)2‖xn − xn−1‖2

+ 2αn〈ξf(xn)−Dt, xn+1 − t〉 → 0.

Hence, by condition (C2), we have

lim
n→∞

‖zn − Sizn‖ = 0. (4.3.27)

Furthermore,

‖vn − zn‖ = ‖βn,0zn +
m∑
i=1

βn,iSizn − zn‖

≤ βn,0‖zn − zn‖+
m∑
i=1

βn,i‖Sizn − zn‖ → 0.

This implies that
lim
n→∞

‖vn − zn‖ = 0.

From the definition of wn and Remark 4.3.3, we obtain

‖wn − xn‖ = ‖xn + θn(xn − xn−1)− xn‖
= θn‖xn − xn−1‖ → 0, as n→∞. (4.3.28)
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Furthermore, from Lemma 4.3.2 and (4.3.15), we have

‖xn+1 − t‖2 ≤ (1− αnρ)2‖vn − t‖2 + 2αn〈ξf(xn)−Dt, xn+1 − t〉
≤ (1− αnρ)2‖zn − t‖2 + 2αn〈ξf(xn)−Dt, xn+1 − t〉

≤ (1− αnρ)2

{
‖wn − t‖2 − 2− τ

τ
‖wn − zn‖2

}
+ 2αn〈ξf(xn)−Dt, xn+1 − t〉

≤ (1− αnρ)2

{
‖xn − t‖2 − 2− τ

τ
‖wn − zn‖2 + θn(‖xn − t‖2 − ‖xn−1 − t‖2)

+ 2θn‖xn − xn−1‖2

}
+ 2αn〈ξf(xn)−Dt, xn+1 − t〉.

Hence

(1− αnρ)2 2− τ
τ
‖wn − zn‖2 ≤ Φn − Φn+1 + αnM3 + θn(1− αnρ)2(Φn − Φn−1)

+ 2θn(1− αnρ)2‖xn − xn−1‖2 + 2αn〈ξf(xn)−Dt, xn+1 − t〉 → 0,

for some M3 > 0. Hence
lim
n→∞

||wn − zn|| = 0. (4.3.29)

Therefore from Lemma 4.3.3, we obtain

lim
n→∞

||wn − yn|| = 0. (4.3.30)

Consequently from (4.3.28), we get

lim
n→∞

||xn − yn|| = 0. (4.3.31)

Moreover,

‖xn − zn‖ = ‖xn − wn + wn − zn‖
≤ ‖xn − wn‖+ ‖wn − zn‖ → 0. (4.3.32)

Also,

‖vn − xn‖ = ‖vn − zn + zn − xn‖
≤ ‖vn − zn‖+ ‖zn − xn‖ → 0.

From (C1), we obtain

‖xn+1 − vn‖ = ‖αnξf(xn) + (1− αnD)vn − vn‖
= αn‖ξf(xn)−Dvn‖ → 0.

Thus,

‖xn+1 − xn‖ = ‖xn+1 − vn + vn − xn‖
≤ ‖xn+1 − vn‖+ ‖vn − xn‖ → 0. (4.3.33)
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Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ x̄ ∈ H.
From Lemma 4.3.6 and (4.3.31), we have that x̄ ∈ (A + B)−1(0). Also from (4.3.32), we
see that znk

⇀ x̄, where {znk
} ⊂ {zn}. Since I − Si are demiclosed at zero, it follows from

(4.3.27) that x̄ ∈ F (Si) for i = 1, 2, . . . ,m. Hence x̄ ∈ Γ := (A+B)−1(0) ∩
⋂m
i=1 F (Si).

Next, we show that {xn} converges strongly to x∗, where x∗ = PΓ(I − D + ξf)x∗ is a
unique solution of the variational inequality

〈(D − ξf)x∗, x∗ − xn〉 ≤ 0, x ∈ Γ.

To do this, we prove that lim supn→∞〈(D − ξf)x∗, x∗ − xn〉 ≤ 0. Choose a subsequence
{xnj
} of {xn} such that

lim sup
j→∞

〈(D − ξf)x∗, x∗ − xn〉 = lim
j→∞
〈(D − ξf)x∗, x∗ − xnj

〉.

Since xnj
⇀ x̄, using (4.2.1), we have that

lim sup
j→∞

〈(D − ξf)x∗, x∗ − xn〉 = lim
j→∞
〈(D − ξf)x∗, x∗ − xnj

〉

= 〈(D − ξf)x∗, x∗ − x̄〉
= 〈x∗ − (I − (D − ξf))x∗, x∗ − x̄〉 ≤ 0. (4.3.34)

Now, using Lemma 4.2.2, Lemma 4.3.5 and (4.3.34), we obtain that ||xn−x∗|| → 0, which
implies that {xn} converges strongly to x∗.

Now, suppose {‖xn − t‖2} is not monotonically decreasing. Select some n0 large enough.
Let Ψ : N→ N be defined by

Ψ(n) = max{l ∈ N : l ≤ n : Ψl ≤ Ψl+1}, ∀ n ≥ n0.

Obviously, Ψ is non-decreasing, where Ψ(n)→∞, as n→∞ and

0 ≤ ‖xΨ(n) − t‖ ≤ ‖xΨ(n)+1 − t‖, ∀ n ≥ n0.

Moreover, we have
lim sup
n→∞

〈(D − ξf)t, t− xΨ(n)〉 ≤ 0. (4.3.35)

From (4.3.24), we obtain

‖xΨ(n)+1 − t‖2 ≤
(

1−
2αΨ(n)(ρ− ξσ)

1− αΨ(n)ξσ

)
‖xΨ(n) − t‖2

+
2αΨ(n)(ρ− ξσ)

1− αΨ(n)ξσ
(2〈ξf(t)−Dt, xΨ(n)+1 − t〉+ αΨ(n)M)

+
θΨ(n)M2‖xΨ(n) − xΨ(n)−1‖

1− αΨ(n)ξσ
, (4.3.36)

for some M > 0, where

M2 = sup

(
(1− αΨ(n)ρ)2(‖xΨ(n) − t‖+ ‖xΨ(n)−1 − t‖) + 2(1− αΨ(n)ρ)2‖xΨ(n) − xΨ(n)−1‖

)
.
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Since ‖xΨ(n) − t‖2 ≤ ‖xΨ(n)−1 − t‖2, hence from (4.3.36), we obtain,

0 ≤
(

1−
2αΨ(n)(ρ− ξσ)

1− αΨ(n)ξσ

)
‖xΨ(n) − t‖2 +

2αΨ(n)(ρ− ξσ)

1− αΨ(n)ξσ
(2〈ξf(t)−Dt, xΨ(n)+1 − t〉+ αΨ(n)M)

+
θΨ(n)M2‖xΨ(n) − xΨ(n)−1‖

1− αΨ(n)ξσ
− ‖xΨ(n) − t‖2.

Thus,

2αΨ(n)(ρ− ξσ)

1− αΨ(n)ξσ
‖xΨ(n) − t‖2 ≤

2αΨ(n)(ρ− ξσ)

1− αΨ(n)ξσ
(2〈ξf(t)−Dt, xΨ(n)+1 − t〉+ αΨ(n)M)

+
θΨ(n)M2‖xΨ(n) − xΨ(n)−1‖

1− αΨ(n)ξσ
.

Hence,

‖xΨ(n) − t‖2 ≤ 2〈ξf(t)−Dt, xΨ(n)+1 − t〉+ αΨ(n)M4

+
θΨ(n)M2‖xΨ(n) − xΨ(n)−1‖

2αΨ(n)(ρ− ξσ)
.

Since {xΨ(n)} is bounded and αΨ(n) → 0, as n→∞, therefore from (4.3.35) and Remark
4.3.3, we have

lim
n→∞

‖xΨ(n) − t‖ = 0.

Consequently, for all n ≥ n0, we have

0 ≤ ‖xn − t‖2 ≤ max{‖xΨ(n) − t‖, ‖xΨ(n)+1 − t‖2} = ‖xΨ(n)+1 − t‖2.

Thus, ‖xn − t‖ → 0 as n→∞. This implies that xn → t.

4.4 Application and numerical examples

4.4.1 Application to split feasibility problems

Let H1 and H2 be real Hilbert spaces, C and Q be nonempty, closed and convex subsets
of H1 and H2 respectively. Let L : H1 → H2 be a bounded linear operator. The SFP for
H1 and H2 is defined as finding

x ∈ C such that Lx ∈ Q. (4.4.1)

We denote the solution set of SFP (4.4.1) by Ω. The SFP was first introduced in finite
dimensional Hilbert space by Censor and Elfving [22] and has received much attention
from many researchers due to its application in signal processing, radiotherapy, data com-
pression and many others, (see, for example, [21, 49, 96] and references therein).
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The SFP (4.4.1) is equivalent to the following variational inequality problem [58]: find
x ∈ C such that

〈L∗(I − PQ)Lx, y − x〉 ≥ 0, ∀y ∈ C, (4.4.2)

where PQ is the metric projection from H2 onto Q. It is worthy to mention that the
operator L∗(I − PQ)L is 1

2||L||2 -inverse strongly monotone (ism) and the normal cone NC

at x ∈ C defined by

NC(x) = {y ∈ H1 : 〈y, z − x〉 ≤ 0, ∀z ∈ H1}

is maximal monotone. Equivalently, (4.4.2) can be rewritten as the following inclusion
problem: find x ∈ C such that

0 ∈ (L∗(I − PQ)Lx+NC(x)).

Note that the resolvent JNC = PC is the metric projection from H1 onto C. It is easy to
show that L∗(I − PQ)L is 2||L||2-Lipschitzian. Thus, by setting A = L∗(I − PQ)L and
B = NC in Theorem 4.3.7, we obtain the following result for approximating a common
solution of SFP and common fixed point of a finite family of demimetric mappings in
Hilbert spaces.

Theorem 4.4.1. Let H1 and H2 be real Hilbert spaces, C and Q be nonempty, closed and
convex subsets of H1 and H2 respectively. Let L : H1 → H2 be a bounded linear operator.
For i = 1, 2, . . . ,m, let Si : H1 → H1 be a finite family of li-demimetric mappings with
l = max

1≤i≤m
{li} and I − Si are demiclosed at zero. Suppose

Γ = Ω ∩
m⋂
i=1

F (Si) 6= ∅.

Let f : H1 → H1 be a σ contraction, where σ ∈ (0, 1) and D be a bounded operator with
co-efficient ρ > 0 such that 0 < ξ < ρ

σ
. Assume that Assumptions (C1), (C2) and (C3) are

satisfied, then the sequence {xn} generated by the following algorithm converges strongly
to a solution t = PΓ(I − D + ξf)(t) which is also a unique solution of the variational
inequality

〈(D − ξf)t, t− x〉 ≤ 0, x ∈ Γ. (4.4.3)

Algorithm 4.4.2.
Step 0: Select initial guess x0, x1 ∈ H1 and set n = 1.
Step 1: Given the (n− 1)th and nth iterates, choose θn such that we have 0 ≤ θn ≤ θ̃n,
with θ̃n defined by

θ̃n =

{
min

{
n−1
n+θ−1

, εn
||xn−xn−1||

}
, if xn 6= xn−1,

n−1
n+θ−1

otherwise.
(4.4.4)

Step 2: Compute
yn = PC(wn − rnL∗(I − PQ)Lwn),
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where wn = xn + θn(xn − xn−1) and rn is selected to be the largest r ∈ {λ, λp, λp2, . . . }
satisfying

r〈L∗(I−PQ)Lwn−L∗(I−PQ)Lyn, wn−yn〉 ≤ σ‖wn−yn‖2, where λ > 0, p ∈ (0, 1) and σ ∈ (0, 1).
(4.4.5)

If yn = wn, then yn ∈ Ω. In that case, set yn = zn and go to Step 4, otherwise do Step 3.
Step 3 : Calculate

zn = wn − τµncn, ∀ τ ∈ (0, 2),

where
cn = wn − yn − rn[L∗(I − PQ)Lwn − L∗(I − PQ)Lyn],

and

µn = (1− σ)
‖wn − yn‖2

‖cn‖2
.

Step 4 : Calculate

xn+1 = αnξf(xn) + (1− αnD)

[
βn,0zn +

m∑
i=1

βn,iSi(zn)

]
.

Set n := n+ 1 and go to Step 1.

4.4.2 Numerical examples

In this section, we present some numerical examples to illustrate the performance of our
method as well as comparing it with some related methods in the literature.

Example 4.4.3. Let H = L2([0, 1]) with ‖x‖ =

(∫ 1

0
|x(t)|2dt

) 1
2

and inner product

〈x, y〉 =
∫ 1

0
x(t)y(t)dt ∀x, y ∈ H. We take C = {x ∈ L2([0, 1]) :

∫ 1

0
(t2 + 1)x(t)dt ≤ 1}, we

define A : C → H by Ax = x(t)
2

and B : H → 2H by Bx = {2x} for all x ∈ L2([0, 1]).
Also, for i = 1, 2, . . . , 10, we define Si : L2([0, 1])→ L2([0, 1]) by

Six = −(i+ 1)x.

It is easy to check that F (Si) = {0} and Si is i
i+2

-demimetric for i ∈ N. Clearly, Γ = {0}.
Also, we define f(x) = x

8
, Dx = x, ξ = 1.2, α = 5, αn = 1

9n+12
, βn,i = 3n

5(7n+3)
, βn,0 = n+3

7n+3
,

εn = 1
(5n+1)2

. Using ‖xn+1 − xn‖2 < 10−5 as stopping criterion, we compare our Algorithm

4.3.1 with Algorithm 4.1.1 of [103] using the following starting points and plot the graph
of error (‖xn+1 − xn‖2) against the number of iterations:

Case 1 : x0 = t2 exp(t), x1 = t+ 3

Case 2 : x0 =
t3 + 2t− 1

4
, x1 =

t3 − 1

5
Case 3 : x0 = exp(−t) sin(t), x1 = t+ 3

Case 4 : x0 =
t2

5
, x1 =

t3 + 2t− 1

4
.
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The numerical computations are carried out using MATLAB 2015(a). The numerical
results can be seen in Table 4.1 and Figure 4.1.

Table 4.1: Numerical results.
Alg. 4.3.1
(Algorithm
3.1)

Alg.
4.1.1(Algo-
rithm 2.1)
[103]

Case Ia CPU time
(sec)

1.7306 3.4817

No of Iter. 4 15
Case Ib CPU time

(sec)
1.6187 2.6164

No. of Iter. 3 9
Case Ic CPU time

(sec)
1.7335 3.4591

No of Iter. 4 15
Case Id CPU time

(sec)
1.5895 2.8829

No of Iter. 3 10

Example 4.4.4. Let H = RN , A : RN → RN be defined by A(x) = x
2
, for x ∈ RN and

B : RN → 2RN
be the normal cone at a point x in the unit ball C := {x ∈ H : ||x|| ≤ 1}

defined by
B(x) = NC(x) = {y ∈ H : 〈y, z − x〉 ≤ 0, ∀ z ∈ H}.

Obviously,

PC(x) =

{
x
||x|| , ||x|| > 1,

x, ||x|| ≤ 1.

For i = 1, 2, . . . , 5, we define the mapping Si : H → H by Six = x
2i

which is 0-demimetric

and F (Si) = {0}. Clearly, Γ = (A+B)−1(0)∩
⋂5
i=1 F (Si) = {0}. Let f(x) = x

16
, D(x) = x,

for all x ∈ RN , βn,0 = 2n+1
5n+7

, βn,i = 3n+6
25n+35

for n ∈ N. We choose the parameters α = 3,

λ = 2, p = 0.5, ξ = 1, σ = 0.9, αn = 1
n+1

and εn = 1
(n+1)2

. The initial points x0, x1

are generated randomly by x0 = −2 × rand(N, 1) and x1 = 0.5 × rand(N, 1) where
N = 10, 50, 100, 200. Using ‖xn+1 − xn‖2 < 10−4 as stopping criterion, we compare our
Algorithm 4.3.1 with the non-inertial version by taking θn = 0 in Algorithm 4.3.1. We also
plot the graph of error (‖xn+1 − xn‖2) against the number of iterations. The numerical
result can be found in Figure 4.2 and Table 4.2.
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Figure 4.1: Top left: Case Ia; Top right: Case Ib; Bottom left: Case Ic; Bottom right:
Case Id.

Table 4.2: Computation result for Example 4.4.4.
Algorithm
4.3.1(Algorithm
3.1)

Non-inertial
Alg.

N = 10 No of Iter. 6 13
CPU time (sec) 0.0066 0.0128

N = 50 No of Iter. 6 13
CPU time (sec) 0.0052 0.0156

N = 100 No of Iter. 6 12
CPU time (sec) 0.0147 0.2740

N = 200 No of Iter. 7 10
CPU time (sec) 0.0191 0.3118
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Figure 4.2: Example 4.4.4, Top Left: N = 10; Top Right: N = 50, Bottom Left: N = 100;
Bottom Right: N = 200.
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CHAPTER 5

Approximation of Common Solutions of Variational Inequality and

Fixed Point Problems of Multivalued Demicontractive Mappings in

Hilbert Spaces

5.1 Introduction

In this chapter, we study the common solutions of VIP and FPP of multivalued demicon-
tractive mappings in a real Hilbert space.

Let H be a real Hilbert space, C a nonempty closed convex subset of H, A : H → H
a monotone and L−Lipschitz continuous, and f : H → H a contraction mapping. For
each i = 1, 2, . . . ,m, let Si : H → CB(H) be a multivalued demicontractive mapping with
constant ki. We consider the following problem: Find a unique element t ∈ Γ such that

t = PΓ ◦ f(t), (5.1.1)

where Γ = V I(C,A) ∩
⋂m
i=1 F (Si) 6= ∅ is the solution set.

Furthermore, we propose a modified inertial viscosity subgradient extragradient algorithm
with self-adaptive step-size in which each of the two projections is made onto an half
space. Also, we prove that the sequence generated by our algorithm converges strongly
to a common solution of VIP and FPP of a finite family of multivalued demicontractive
mappings. We present an application and a numerical example to illustrate the efficacy
and applicability of the algorithm.

We organise the remaining sections of this chapter as follows: In Section 5.2, we recall
some basic definitions and give some lemmas that are useful in establishing our main
result. In Section 5.3, we prove some lemmas used to establish the strong convergence
of our proposed algorithm and thereafter we prove a strong convergence theorem for the
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algorithm. Lastly, in Section 5.4 we present an application and numerical example to
illustrate the advantage, performance and behaviour of our method.

5.2 Preliminaries

In this section, we recall some basic notions and useful lemmas that will be needed to
establish our main results in this chapter. Throughout this chapter, C is a nonempty
closed convex subset of a real Hilbert space H. A point x∗ is said to be a weak cluster
point of sequence {xn}, if there exists a subsequence {xnj

} of {xn} which converges weakly
to x∗. We denote the set of all weak cluster point of sequence {xn} by ωw(xn).

Definition 5.2.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
The normal cone to C at x ∈ C is defined as:

Nc(x) =
{
v ∈ H : 〈v, y − x〉 ≤ 0,∀y ∈ C

}
.

Definition 5.2.2. Let D be a nonempty subset of H. D is said to be proximal if there
exists y ∈ D such that

‖x− y‖ = d(x,D), x ∈ H.

Definition 5.2.3. Let CC(H), CB(H) and P (H) be the family of nonempty closed convex
subset of H, nonempty closed bounded subsets of H and nonempty proximal bounded
subsets of H respectively. The Hausdorff metric on CB(H) is defined as follows:

H(A,B) := max
{

sup
x∈A

d(x,B), sup
y∈B

d(y, A)
}
, ∀A,B ∈ CB(H).

Let S : H → 2H be a multivalued mapping. An element x ∈ H is said to be a fixed
point of S if x ∈ Sx. We say that S satisfies the endpoint condition if Sp = {p}, for all
p ∈ F (S). For multivalued mappings Si : H → 2H (i ∈ N) with ∩∞i=1F (Si) 6= ∅, we say Si
satisfies the common endpoint condition if Si(p) = {p} for all i ∈ N, p ∈ ∩∞i=1F (Si).

Definition 5.2.4. Let S : H → CB(H) be a multivalued mapping. S is said to be

(i) nonexpansive if
H(Sx, Sy) ≤ ‖x− y‖, ∀x, y ∈ H,

(ii) quasi-nonexpansive if F (S) 6= ∅ such that

H(Sx, Sp) ≤ ‖x− p‖, ∀x ∈ H, p ∈ F (S),

(iii) α−demicontractive if F (S) 6= ∅ such that

H(Sx, Sp)2 ≤ ‖x− p‖2 + αd(x, Sx)2, ∀x ∈ H, p ∈ F (S), α ∈ [0, 1).
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Clearly, the class of demicontractive mappings includes the class of nonexpansive and
quasi-nonexpansive mappings.

Let S : H → P (H) be a multivalued mapping. The best approximation operator for S
denoted by Ps(x) is defined as

Ps(x) :=
{
y ∈ Sx : ‖x− y‖ = d(x, Sx)

}
.

It is easy to prove that F (S) = F (PS), where PS satisfies the endpoint condition. An ex-
ample of best approximation operator PS which is nonexpansive, where S is not necessarily
a nonexpansive mapping, was given by Song and Cho [92].

Let S : H → CB(H) be a multivalued mapping. The multivalued mapping I − S is said
to be demiclosed at zero if for any sequence {xn} ⊂ H which converges weakly to p and
the sequence {‖xn − un‖} converges strongly to 0, where un ∈ Sxn, then p ∈ F (S).

Lemma 5.2.1. [2, 66] Let H be a real Hilbert space, λ ∈ R, then ∀x, y ∈ H, we have

(i) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2;

(ii) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2;

(iii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;

(iv) ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Lemma 5.2.2. [100] Suppose {an} and {bn} are sequences of nonnegative real numbers,
such that

an+1 ≤ (1− αn)an + αnbn, ∀n ≥ 0,

and the following conditions are satisfied:

(i) {αn} ⊂ (0, 1) and
∑∞

n=0 αn =∞;

(ii) lim supn→∞ bn ≤ 0.

Then limn→∞ an = 0.

Lemma 5.2.3. [56] Let B : H → H be a monotone and L-Lischiptz continuous mapping
on a nonempty closed convex subset C, let {xn} be a sequence in H, and S = PC(I−µA).
If xn ⇀ q and xn − Sxn → 0. then q ∈ V I(C,A) = F (S).

Lemma 5.2.4. [51] Let xi ∈ H, (1 ≤ i ≤ m),
∑m

i=1 αi = 1, where {αi} ⊆ (0, 1). Then

‖
m∑
i=1

αixi‖2 =
m∑
i=1

αi‖xi‖2 −
m∑

i=j=1,i 6=j

αiαj‖xi − xj‖2.

Lemma 5.2.5. [39] Let C be a nonempty closed convex subset of a real Hilbert space H.
Let z ∈ C and x ∈ H. Then

(i) z = PCx if and only if 〈x− z, z − y〉 ≥ 0, ∀ y ∈ C;
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(ii) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2, ∀ y ∈ C;

(iii) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 ∀ y ∈ C.

Lemma 5.2.6. [51] Let {an} be a sequence of real numbers. Let {ani
} be a subsequence

of {an} such that ani
≤ ani+1, ∀ i ∈ N. Let {mk} be an integer defined by

mk = max{j ≤ k : aj < aj+1}. (5.2.1)

Then {mk} is a nondecreasing sequence, where limn→∞mn =∞ and ∀ k ∈ N, we have

ak ≤ amk+1 and amk
≤ amk+1.

Lemma 5.2.7. [107] Suppose T : H → H is β-demicontractive, µ ∈ (0, 1 − β) and
Tµ = (1− µ)I + µT , then for all x ∈ H, we have:

(i) F (T ) is a nonempty closed convex subset of H;

(ii) F (T ) = F (Tµ);

(iii) ‖Tµx− z‖2 ≤ ‖x− z‖2 − 1
µ
(1− β − µ)‖(I − Tµ)x‖2, ∀z ∈ F (T ).

5.3 Main result

In this section, we prove the strong convergence theorem for the sequence generated by
our algorithm. Let H be a real Hilbert space, C a nonempty closed convex subset of H
and A : H → H a monotone and L−Lipschitz continuous. For each i = 1, 2, . . . ,m, let
Si : H → CB(H) be a multivalued demicontractive mapping with constant ki such that
I − Si is demiclosed at zero, Si(p) = {p} for all p ∈ ∩mi=1F (Si), and k = max{ki}. We
denote our solution set by Γ = V I(C,A) ∩

⋂m
i=1 F (Si) 6= ∅. Assume f : H → H is a ρ−

contraction mapping with ρ ∈ (0, 1). Let {βn,i} be sequence of nonnegative real numbers
such that {βn,i} ⊂ (0, 1) and

∑m
i=0 βn,i = 1. The following conditions are needed to

obtain our result:

Condition A :

(A1) lim infn→∞(βn,0 − k)βn,i > 0, ∀ i = 1, 2, · · · ,m.

(A2) λ1 > 0, µ ∈ (0, 1), {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn =∞.

(A3) Let θ ≥ 3 and {εn} be a nonnegative sequence such that 0 < d ≤ εn.

(A4) εn = o(αn), i.e. limn→∞
εn
αn

= 0
(
for example αn = 1

n+1
, εn = 1

(n+1)2

)
.

Condition B :

(B1) Let C be defined by
C = {x ∈ H : h(x) ≤ 0},

where h : H → R is a bounded convex and subdifferentiable function. In addition,
h is bounded on bounded sets.
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(B2) For any x ∈ H, there exists at least one subgradient ξ ∈ δh(x) which can be calcu-
lated, where

δh(x) = {z ∈ H : h(u) ≥ h(x) + 〈u− x, z〉, ∀ u ∈ H}.

Our algorithm is presented as follows:

Algorithm 5.3.1.
Step 0: Select x0, x1 ∈ H, λ1 > 0, µ ∈ (0, 1) and set n = 1.
Step 1: Given the (n − 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̃n with θ̃n
defined by

θ̃n =

{
min

{
n−1
n+θ−1

, εn
||xn−xn−1||

}
, if xn 6= xn−1,

n−1
n+θ−1

otherwise.
(5.3.1)

Step 2 : Compute
wn = xn + θn(xn − xn−1).

Step 3 : Compute
yn = PCn(wn − λnAwn),

where

Cn =
{
w ∈ H : h(wn) + 〈ξn, w − wn〉 ≤ 0

}
,

and ξn ∈ δh(wn). If yn = wn, then set wn = zn and go to Step 5, otherwise go to
Step 4.

Step 4 : Compute
zn = PTn(wn − λnAyn),

where

Tn =
{
w ∈ H : 〈wn − λnAwn − yn, w − yn〉 ≤ 0

}
.

Step 5 : Compute

λn+1 =

{
min

{ µ‖wn−yn‖
‖Awn−Ayn‖ , λn

}
, if Awn − Ayn 6= 0

λn, otherwise.
(5.3.2)

Step 6 : Compute {
vn = βn,0zn +

∑m
i=1 βn,iun,i,

xn+1 = αnf(xn) + (1− αn)vn,

where un,i ∈ Sizn. Set n := n+ 1 and go to Step 1.

Remark 5.3.2. From (5.3.1) and (A4), we have limn→∞ θn‖xn − xn−1‖ = 0 and
limn→∞

θn
αn
‖xn − xn−1‖ = 0.
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Remark 5.3.3. Observe that the sequence {λn} generated by (5.3.2) is monotonically non-
decreasing and (see [113])

lim
n→∞

λn = λ ≥ min

{
λ1,

µ

L

}
.

Lemma 5.3.4. Assume wn = yn = xn and xn ⇀ x∗, then we have x∗ ∈ V I(C,A).

Proof. If wn = yn = xn and xn ⇀ x∗, then we have xn = PC(xn − λnAxn). We need to
show that xn ∈ C. From the definition of Cn in the Algorithm, we have

h(xn) + 〈ξn, xn − xn〉 ≤ 0,

which implies that h(xn) ≤ 0. Thus xn ∈ C. By Lemma 5.2.5(i), we have

〈xn − λnAxn − xn, xn − y〉 ≥ 0, ∀ y ∈ C.
Thus we have

λn〈Axn, y − xn〉 ≥ 0, ∀ y ∈ C. (5.3.3)

By taking the limit in (5.3.3), using the fact that A is monotone and λn → λ, then we
have

〈Ax∗, y − x∗〉 ≥ 0, ∀ y ∈ C.
Thus x∗ ∈ V I(C,A).

Lemma 5.3.5. Let {xn} be a sequence generated by Algorithm 5.3.1, then {xn} is bounded.

Proof. Let t ∈ Γ, then we have

‖wn − t‖ = ‖xn + θn(xn − xn−1)− t‖
≤ ‖xn − t‖+ θn‖xn − xn−1‖

≤ ‖xn − t‖+ αn
θn
αn
‖xn − xn−1‖. (5.3.4)

From Remark 5.3.2, it is known that limn→∞
θn
αn
‖xn − xn−1‖ = 0, then there exists a

constant M1 > 0 such that θn
αn
‖xn−xn−1‖ ≤M1, for all n ≥ 1. Thus from (5.3.4), we have

‖wn − t‖ ≤ ‖xn − t‖+ αnM1. (5.3.5)

Also,

‖zn − t‖2 = ‖PTn(wn − λnAyn)− t‖2

≤ ‖(wn − λnAyn)− t‖2 − ‖(wn − λnAyn)− zn‖2

≤ ‖wn − t‖2 − 2λn〈wn − λnAyn − t, Ayn〉 − ‖wn − zn‖2

+ 2λn〈wn − λnAyn − zn, Ayn〉
= ‖wn − t‖2 + 2λn〈t− zn, Ayn〉 − ‖wn − zn‖2

= ‖wn − t‖2 + 2λn〈t− yn, Ayn − At〉+ 2λn〈t− yn, At〉+ 2λn〈yn − zn, Ayn〉
− ‖wn − zn‖2

≤ ‖wn − t‖2 + 2λn〈yn − zn, Ayn〉 − ‖wn − zn‖2

= ‖wn − t‖2 + 2λn〈yn − zn, Ayn〉 − ‖wn − yn‖2 − 2〈wn − yn, yn − zn〉 − ‖yn − zn‖2

= ‖wn − t‖2 − ‖wn − yn‖2 − ‖yn − zn‖2 + 2〈wn − λnAyn − yn, zn − yn〉.
(5.3.6)
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By applying Cauchy-Schwartz inequality and from the definition of λn+1 and Tn, we obtain

〈wn − λnAyn − yn, zn − yn〉 = 〈wn − λnAwn − yn, zn − yn〉+ 〈λnAwn − λnAyn, zn − yn〉
≤ λn〈Awn − Ayn, zn − yn〉

≤ µ
λn
λn+1

‖wn − yn‖‖zn − yn‖

≤ µ
λn

2λn+1

(‖wn − yn‖2 + ‖zn − yn‖2). (5.3.7)

From (5.3.6) and (5.3.7), we get

‖zn − t‖2 ≤ ‖wn − t‖2 − ‖wn − yn‖2 − ‖yn − zn‖2 + µ
λn
λn+1

(‖wn − yn‖2 + ‖zn − yn‖2)

= ‖wn − t‖2 −
(

1− µ λn
λn+1

)
‖wn − yn‖2 −

(
1− µ λn

λn+1

)
‖yn − zn‖2

= ‖wn − t‖2 −
(

1− µ λn
λn+1

)(
‖wn − yn‖2 + ‖yn − zn‖2

)
. (5.3.8)

Indeed,

lim
n→∞

(
1− µ λn

λn+1

)
= 1− µ > 0. (5.3.9)

Thus, there exists n0 ≥ 0 such that for all n ≥ n0, we have 1 − µ λn
λn+1

> 0. Hence, from

(5.3.8) we have
‖zn − t‖2 ≤ ‖wn − t‖2, (5.3.10)

which implies that
‖zn − t‖ ≤ ‖wn − t‖. (5.3.11)

Also, by applying Lemma 5.2.4, we have

‖vn − t‖2 =

∥∥∥∥βn,0zn +
m∑
i=1

βn,iun,i − t
∥∥∥∥2

≤ βn,0‖zn − t‖2 +
m∑
i=1

βn,i‖un,i − t‖2 −
m∑
i=1

βn,0βn,i‖zn − un,i‖2

= βn,0‖zn − t‖2 +
m∑
i=1

βn,i(un,i, Sit)
2 −

m∑
i=1

βn,0βn,i‖zn − un,i‖2

≤ βn,0‖zn − t‖2 +
m∑
i=1

βn,iH(Sizn, Sit)
2 −

m∑
i=1

βn,0βn,i‖zn − un,i‖2

≤ βn,0‖zn − t‖2 +
m∑
i=1

βn,i

(
‖zn − t‖2 + kid(zn, Sizn)2

)
−

m∑
i=1

βn,0βn,i‖zn − un,i‖2

≤ βn,0‖zn − t‖2 +
m∑
i=1

βn,i‖zn − t‖2 +
m∑
i=1

βn,ik‖zn − un,i‖2 −
m∑
i=1

βn,0βn,i‖zn − un,i‖2
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= ‖zn − t‖2 −
m∑
i=1

(βn,0 − k)βn,i‖zn − un,i‖2. (5.3.12)

Thus, by condition (A1), we have

‖vn − t‖2 ≤ ‖zn − t‖2, (5.3.13)

which implies that
‖vn − t‖ ≤ ‖zn − t‖. (5.3.14)

From (5.3.14), (5.3.11) and (5.3.5), we have for all n ≥ n0

‖xn+1 − t‖ = ‖αnf(xn) + (1− αn)vn − t‖
= ‖αn(f(xn)− t) + (1− αn)(vn − t)‖
≤ αn‖f(xn)− t‖+ (1− αn)‖vn − t‖
≤ αn‖f(xn)− f(t)‖+ αn‖f(t)− t‖+ (1− αn)‖vn − t‖
≤ αnρ‖xn − t‖+ αn‖f(t)− t‖+ (1− αn)‖zn − t‖

≤ αnρ‖xn − t‖+ αn‖f(t)− t‖+ (1− αn)

(
‖xn − t‖+ αnM1

)
= αnρ‖xn − t‖+ αn‖f(t)− t‖+ (1− αn)‖xn − t‖+ αn(1− αn)M1

≤ αnρ‖xn − t‖+ αn‖f(t)− t‖+ (1− αn)‖xn − t‖+ αnM1

≤
[
1− αn(1− ρ)

]
‖xn − t‖+ αn‖f(t)− t‖+ αnM1

=
[
1− αn(1− ρ)

]
‖xn − t‖+ αn(1− ρ)

[
‖f(t)− t‖

1− ρ
+

M1

1− ρ

]
≤ max

{
‖xn − t‖,

‖f(t)− t‖
1− ρ

+
M1

1− ρ

}
...

≤ max

{
‖xn0 − t‖,

‖f(t)− t‖
1− ρ

+
M1

1− ρ

}
.

Thus, the sequence {xn} is bounded, then it follows that {wn}, {yn} and {zn} are bounded.

Theorem 5.3.6. Let H be a real Hilbert space, C a nonempty closed convex subset of H
and A : C → H a monotone and L−Lipschitz continuous mapping. Then the sequence
{xn} generated by Algorithm 5.3.1 converges strongly to t ∈ Γ, where t = PΓ ◦ f(t).

Remark 5.3.7. By Lemma 5.2.7(i), we know that ∩mi=1F (Si) is a closed convex subset and
V I(C,A) is also a closed convex subset. It follows that the solution set Γ is a closed convex
subset. Hence PΓ ◦ f : H → H is a contraction mapping. Thus by Banach contraction
principle, there exists a unique element t ∈ H such that t = PΓ ◦ f(t) and

〈f(t)− t, z − t〉 ≤ 0, ∀z ∈ Γ.

We divide the proof of Theorem 5.3.6 into the following lemmas:
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Lemma 5.3.8. Let {xn} be a sequence generated by Algorithm 5.3.1, then the following
inequality holds:

(1− αn)

(
1− µ λn

λn+1

)
‖wn − yn‖2 + (1− αn)

(
1− µ λn

λn+1

)
‖yn − zn‖2

+ (1− αn)
m∑
i=1

(βn,0 − k)βn,i‖zn − un,i‖2

≤ ‖xn − t‖2 − ‖xn+1 − t‖2 + αnM3.

Proof. From (5.3.5), we have

‖wn − t‖2 ≤
(
‖xn − t‖+ αnM1

)2

= ‖xn − t‖2 + αn
(
2M1‖xn − t‖+ αnM

2
1

)
≤ ‖xn − t‖2 + αnM2, for some M2 > 0. (5.3.15)

By using (5.3.8), (5.3.12), (5.3.15) and Lemma 5.2.1(iv), we obtain

‖xn+1 − t|2 = ‖αnf(xn) + (1− αn)vn − t‖2

= ‖αn(f(xn)− t) + (1− αn)(vn − t)‖2

= αn‖f(xn)− t‖2 + (1− αn)‖vn − t‖2 − αn(1− αn)‖f(xn)− vn‖2

≤ αn‖f(xn)− t‖2 + (1− αn)‖vn − t‖2

≤ αn‖f(xn)− t‖2 + (1− αn)

(
‖zn − t‖2 −

m∑
i=1

(βn,0 − k)βn,i‖zn − un,i‖2

)
≤ αn‖f(xn)− t‖2 + (1− αn)

{
‖wn − t‖2 −

(
1− µ λn

λn+1

)
(‖wn − yn‖2 + ‖yn − zn‖2)

−
m∑
i=1

(βn,0 − k)βn,i‖zn − un,i‖2

}
= αn‖f(xn)− t‖2 + (1− αn)‖wn − t‖2 − (1− αn)

(
1− µ λn

λn+1

)
‖wn − yn‖2

− (1− αn)

(
1− µ λn

λn+1

)
‖yn − zn‖2 − (1− αn)

m∑
i=1

(βn,0 − k)βn,i‖zn − un,i‖2

≤ αn‖f(xn)− t‖2 + ‖wn − t‖2 − (1− αn)

(
1− µ λn

λn+1

)
‖wn − yn‖2

− (1− αn)

(
1− µ λn

λn+1

)
‖yn − zn‖2 − (1− αn)

m∑
i=1

(βn,0 − k)βn,i‖zn − un,i‖2.

This implies that

(1− αn)

(
1− µ λn

λn+1

)
‖wn − yn‖2 + (1− αn)

(
1− µ λn

λn+1

)
‖yn − zn‖2

+ (1− αn)
m∑
i=1

(βn,0 − k)βn,i‖zn − un,i‖2

73



≤ ‖wn − t‖2 − ‖xn+1 − t‖2 + αn‖f(xn)− t‖2

≤ ‖xn − t‖2 − ‖xn+1 − t‖2 + αn(‖f(xn)− t‖2 +M2)

≤ ‖xn − t‖2 − ‖xn+1 − t‖2 + αnM3, (5.3.16)

for some M3 > 0.

Lemma 5.3.9. Let {xn} be a sequence generated by Algorithm 5.3.1, then the following
inequality holds ∀n ≥ n0 :

‖xn+1−t‖2 ≤
(
1−(1−ρ)αn

)
‖xn−t‖2+(1−ρ)αn

[
2

1− ρ
〈f(t)−t, xn+1−t〉+

3M

1− ρ
.
θn
αn
‖xn−xn−1‖

]
.

Proof. By Lemma 5.2.1(i), we have that

‖wn − t‖2 = ‖xn + θn(xn − xn−1)− t‖2

= ‖xn − t‖2 + 2θn〈xn − t, xn − xn−1〉+ θ2
n‖xn − xn−1‖2

≤ ‖xn − t‖2 + 2θn‖xn − t‖‖xn − xn−1‖+ θ2
n‖xn − xn−1‖2. (5.3.17)

From (5.3.13), (5.3.10), (5.3.17) and Lemma 5.2.1(iii), we have

‖xn+1 − t‖2 = ‖αnf(xn) + (1− αn)vn − t‖2

= ‖αn(f(xn)− f(t)) + (1− αn)(vn − t) + αn(f(t)− t)‖2

≤ ‖αn(f(xn)− f(t)) + (1− αn)(vn − t)‖2 + 2αn〈f(t)− t, xn+1 − t〉
≤ αn‖f(xn)− f(t)‖2 + (1− αn)‖vn − t‖2 + 2αn〈f(t)− t, xn+1 − t〉
≤ αnρ

2‖xn − t‖2 + (1− αn)‖vn − t‖2 + 2αn〈f(t)− t, xn+1 − t〉
≤ αnρ‖xn − t‖2 + (1− αn)‖vn − t‖2 + 2αn〈f(t)− t, xn+1 − t〉
≤ αnρ‖xn − t‖2 + (1− αn)‖wn − t‖2 + 2αn〈f(t)− t, xn+1 − t〉
≤ αnρ‖xn − t‖2 + (1− αn)‖xn − t‖2 + (1− αn)2θn‖xn − t‖‖xn − xn−1‖
+ (1− αn)θ2

n‖xn − xn−1‖2 + 2αn〈f(t)− t, xn+1 − t〉
≤
(
1− (1− ρ)αn

)
‖xn − t‖2 + 2θn‖xn − t‖‖xn − xn−1‖+ θ2

n‖xn − xn−1‖2

+ 2αn〈f(t)− t, xn+1 − t〉

=
(
1− (1− ρ)αn

)
‖xn − t‖2 + (1− ρ)αn

2

1− ρ
〈f(t)− t, xn+1 − t〉

+ θn‖xn − xn−1‖
(
2‖xn − t‖+ θn‖xn − xn−1‖

)
≤
(
1− (1− ρ)αn

)
‖xn − t‖2 + (1− ρ)αn

2

1− ρ
〈f(t)− t, xn+1 − t〉

+ 3Mθn‖xn − xn−1‖
≤
(
1− (1− ρ)αn

)
‖xn − t‖2

+ (1− ρ)αn

[
2

1− ρ
〈f(t)− t, xn+1 − t〉+

3M

1− ρ
.
θn
αn
‖xn − xn−1‖

]
, (5.3.18)

where M := supn∈N{‖xn − t‖, θ‖xn − xn−1‖} > 0, ∀n ≥ n0.

Lemma 5.3.10. The sequence {‖xn − t‖2} converges to zero.
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Proof. Case 1: There exists N ∈ N such that ‖xn+1 − t‖2 ≤ ‖xn − t‖2, ∀n ≥ N. This
implies that
limn→∞ ‖xn− t‖2 exists. Then from (5.3.9), (5.3.16) and by conditions (A1) and (A2), we
have

lim
n→∞

‖wn − yn‖ = 0, (5.3.19)

lim
n→∞

‖yn − zn‖ = 0, (5.3.20)

and
lim
n→∞

‖zn − un,i‖ = 0 ∀ i = 1, 2, . . . ,m. (5.3.21)

It then follows from (5.3.19) and (5.3.20) that

lim
n→∞

‖wn − zn‖ = 0. (5.3.22)

Furthermore,

‖vn − zn‖ =

∥∥∥∥βn,0zn +
m∑
i=1

βn,iun,i − zn
∥∥∥∥

≤ βn,0‖zn − zn‖+
m∑
i=1

βn,i‖un,i − zn‖ → 0.

This implies that
lim
n→∞

‖vn − zn‖ = 0. (5.3.23)

Also, from Remark 5.3.2

‖wn − xn‖ = ‖xn + θn(xn − xn−1)− xn‖
= θn‖xn − xn−1‖ → 0,

which implies that
‖wn − xn‖ → 0, as n→∞. (5.3.24)

From (5.3.19) and (5.3.24), we obtain

‖xn − yn‖ ≤ ‖xn − wn‖+ ‖wn − yn‖ → 0.

Hence, we have
‖xn − yn‖ → 0, as n→∞. (5.3.25)

Also, from (5.3.20) and (5.3.25), we have

‖zn − xn‖ ≤ ‖zn − yn‖+ ‖yn − xn‖ → 0.

Hence,
‖zn − xn‖ → 0, as n→∞. (5.3.26)

Moreover, from (5.3.23) and (5.3.26), we have

‖vn − xn‖ ≤ ‖vn − zn‖+ ‖zn − xn‖ → 0.
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Thus,
lim
n→∞

‖vn − xn‖ = 0. (5.3.27)

Next, we need to show that limn→∞ ‖xn+1 − xn‖ = 0. By (5.3.27), we obtain

‖xn+1 − xn‖ = ‖αnf(xn) + (1− αn)vn − xn‖
≤ αn‖f(xn)− xn‖+ (1− αn)‖vn − xn‖
≤ αn‖f(xn)− xn‖+ ‖vn − xn‖ → 0,

which implies that
lim
n→∞

‖xn+1 − xn‖ = 0. (5.3.28)

It is known that the sequence {xn} is bounded. Hence, there exists a subsequence {xnj
}

which converges weakly to z ∈ H such that

lim sup
n→∞

〈f(t)− t, xn − t〉 = lim
j→∞
〈f(t)− t, xnj

− t〉 = 〈f(t)− t, z − t〉. (5.3.29)

Since limn→∞ λn = λ, ‖wn − xn‖ → 0, and ‖wn − yn‖ → 0, then by Lemma 5.2.3, we
obtain z ∈ V I(C,A). Also znj

⇀ z by (5.3.26), then by the demiclosedness of I − S and
(5.3.21), we have that z ∈ F (Si), ∀ i = 1, 2,m, which implies that z ∈ ∩mi=1F (Si). Hence,
it follows that z ∈ Γ. Furthermore, by Remark 5.3.7, we have for all z ∈ Γ,

lim sup
n→∞

〈f(t)− t, xn − t〉 = lim
j→∞
〈f(t)− t, xnj

− t〉 = 〈f(t)− t, z − t〉 ≤ 0. (5.3.30)

Hence by (5.3.28), (5.3.29) and (5.3.30), we obtain

lim sup
n→∞

〈f(t)− t, xn+1 − t〉 ≤ lim sup
n→∞

〈f(t)− t, xn+1 − xn〉+ lim sup
n→∞

〈f(t)− t, xn − t〉

= 〈f(t)− t, z − t〉 ≤ 0. (5.3.31)

By (5.3.18), (5.3.31) and Lemma 5.2.2, we get xn → t.

Case 2: There exists a subsequence {‖xnj
− t‖2} of {‖xn − t‖2} such that ‖xnj

− t‖2 ≤
‖xnj+1 − t‖2, ∀j ∈ N. We have in this case by Lemma 5.2.6, there exists a nondecreasing
sequence {mk} and limk→∞mk =∞ such that

‖xmk
− t‖2 ≤ ‖xmk+1 − t‖2, ‖xk − t‖2 ≤ ‖xmk

− t‖2. (5.3.32)

From (5.3.16), we have

(1− αmk
)

(
1− µ λn

λn+1

)
‖wmk

− ymk
‖2 + (1− αmk

)

(
1− µ λn

λn+1

)
‖ymk

− zmk
‖2

+ (1− αmk
)

m∑
i=1

(βmk,0 − k)βn,i‖zmk
− umk,i‖2 ≤ ‖xmk

− t‖2 − ‖xmk+1 − t‖2 + αmk
M3

≤ αmk
M3.
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From limn→∞ αn = 0 and (5.3.9),we have

lim
k→∞
‖wmk

− ymk
‖ = 0,

lim
k→∞
‖zmk

− umk,i‖ = 0,

and
lim
k→∞
‖ymk

− zmk
‖ = 0.

Following similar argument as in Case 1, we have that ‖xmk
− ymk

‖ → 0, as k →∞ and

lim sup
k→∞

〈f(t)− t, xmk+1 − t〉 ≤ 0. (5.3.33)

From (5.3.18), we have for all k ≥ n0

‖xmk+1 − t‖2 ≤
(
1− (1− ρ)αmk

)
‖xmk

− t‖2

+ (1− ρ)αmk

[
2

1− ρ
〈f(t)− t, xmk+1 − t〉+

3M

1− ρ
.
θmk

αmk

‖xmk
− xmk−1‖

]
.

(5.3.34)

Then, it follows from (5.3.32) and (5.3.34) that

‖xmk+1 − t‖2 ≤
(
1− (1− ρ)αmk

)
‖xmk+1 − t‖2

+ (1− ρ)αmk

[
2

1− ρ
〈f(t)− t, xmk+1 − t〉+

3M

1− ρ
.
θmk

αmk

‖xmk
− xmk−1‖

]
.

(5.3.35)

Thus from (5.3.35), we obtain

‖xmk+1 − t‖2 ≤ 2

1− ρ
〈f(t)− t, xmk+1 − t〉+

3M

1− ρ
.
θmk

αmk

‖xmk
− xmk−1‖.

Hence, by Remark 5.3.2 and (5.3.33), we obtain

lim sup
k→∞

‖xmk+1 − t‖ ≤ 0. (5.3.36)

By (5.3.32) and (5.3.36), we have

lim sup
k→∞

‖xk − t‖ ≤ 0, (5.3.37)

which implies that xk → t. Hence, the proof is complete.

By the properties of the best approximation operator, we obtain the following consequent
result.

Corollary 5.3.11. Let H be a real Hilbert space, C a nonempty closed convex sub-
set of H and A : C → H a monotone and L−Lipschitz continuous mapping. For
each i = 1, 2, . . . ,m, let Si : H → P (H) be a multivalued mapping such that PSi

is
ki−demicontractive with k = max{ki} and suppose I − PSi

is demiclosed at zero. Let
Ω = V I(C,A) ∩

⋂m
i=1 F (PSi

) 6= ∅ be the solution set. Assume f : H → H is a ρ−
contraction mapping such that ρ ∈ (0, 1). Let {xn} be a sequence generated as follows:
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Algorithm 5.3.12.
Step 0: Select x0, x1 ∈ H, λ1 > 0, µ ∈ (0, 1) and set n = 1.
Step 1: Given the (n − 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̃n with θ̃n
defined by

θ̃n =

{
min

{
n−1
n+θ−1

, εn
||xn−xn−1||

}
, if xn 6= xn−1,

n−1
n+θ−1

otherwise.
(5.3.38)

Step 2 : Compute
wn = xn + θn(xn − xn−1).

Step 3 : Compute
yn = PCn(wn − λnAwn)

where

Cn =
{
w ∈ H : h(wn) + 〈ξn, w − wn〉 ≤ 0

}
,

and ξn ∈ δh(wn). If yn = wn, then set wn = zn and go to Step 5, otherwise go to
Step 4.

Step 4 : Compute
zn = PTn(wn − λnAyn),

where

Tn =
{
w ∈ H : 〈wn − λnAwn − yn, w − yn〉 ≤ 0

}
.

Step 5 : Compute

λn+1 =

{
min

{
µ‖wn−yn‖
‖Awn−Ayn‖ , λn

}
, if Awn − Ayn 6= 0

λn, otherwise.
(5.3.39)

Step 6 : Compute {
vn = βn,0zn +

∑m
i=1 βn,iun,i,

xn+1 = αnf(xn) + (1− αn)vn,

where un,i ∈ PSi
(zn). Set n := n+ 1 and go to Step 1.

Let {βn,i} be sequence of nonnegative real numbers such that {βn,i} ⊂ (0, 1) and
∑m

i=0 βn,i =
1. Suppose Condition A and Condition B are satisfied. Then the sequence {xn} generated
by Algorithm 5.3.12 converges strongly to t ∈ Ω, where t = PΩ ◦ f(t).

Proof. Since PSi
satisfies the common endpoint condition and F (Si) = F (PSi

) for each
i = 1, 2, . . . ,m, then the result follows from Theorem 5.3.6.
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5.4 Application and numerical example

5.4.1 Convex minimization problem

In this section, we apply our result to solve Convex Minimisation Problem (CMP). Let C
be a nonempty closed convex subset of a real Hilbert space H. The constrained CMP is
defined as follows:

Find x∗ ∈ C, such that φ(x∗) = min
x∈C

φ(x), (5.4.1)

where φ is a real-valued convex function. The solution set of the Problem (5.4.1) is
denoted by arg minx∈C φ(x). For details on CMP and related optimization problems, see
[1, 8, 9, 45, 46, 78].

Lemma 5.4.1. [108] Let C be a nonempty closed convex subset of a real Hilbert space H
and φ : H → R be a convex function. If φ is differentiable, then z is a solution of the
Problem (5.4.1) if and only if z ∈ V I(C,Oφ).

By applying Theorem 5.3.6 and Lemma 5.4.1, we obtain the following result.

Theorem 5.4.2. Let H be a real Hilbert space and φ : H → R be a differentiable convex
function. Suppose Oφ is α−ism. Let {xn} be a sequence generated by the Algorithm defined
as follows:

Algorithm 5.4.3.
Step 0: Select x0, x1 ∈ H, λ0 > 0 and set n = 1.
Step 1: Given the (n − 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̃n with θ̃n
defined by

θ̃n =

{
min

{
n−1
n+θ−1

, εn
||xn−xn−1||

}
, if xn 6= xn−1,

n−1
n+θ−1

otherwise.
(5.4.2)

Step 2 : Compute
wn = xn + θn(xn − xn−1).

Step 3 : Compute
yn = PCn(wn − λnOφwn),

where
Cn =

{
w ∈ H : h(wn) + 〈ξn, w − wn〉 ≤ 0

}
,

and ξn ∈ δh(wn). If yn = wn, then set wn = zn and go to Step 5, otherwise go to
Step 4.

Step 4 : Compute
zn = PTn(wn − λnOφyn),

where

Tn =
{
w ∈ H : 〈wn − λnOφwn − yn, w − yn〉 ≤ 0

}
.
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Step 5 : Compute

λn+1 =

{
min

{ µ‖wn−yn‖
‖Oφwn−Oφyn‖ , λn

}
, if Oφwn − Oφyn 6= 0

λn, otherwise.
(5.4.3)

Step 6 : Compute {
vn = βn,0zn +

∑m
i=1 βn,iun,i,

xn+1 = αnf(xn) + (1− αn)vn,

where un,i ∈ Sizn and
∑m

i=0 βn,i = 1. Set n := n+ 1 and go to Step 1.

If Conditions A and B are satisfied, then the sequence {xn} generated by Algorithm 5.4.3
converges strongly to x̄ ∈ Γ = arg minx∈C φ(x) ∩

⋂m
i=1 F (Si) 6= ∅, where x̄ = PΓ ◦ f(x̄).

Proof. By setting A = Oφ in Theorem 5.3.6 and applying Lemma 5.4.1, we obtain the
desired result.

5.4.2 Numerical example

In this section, we present a numerical example to illustrate our method.

Example 5.4.4. Let H = `2(R), where `2(R) := {x = (x1, x2, . . . , xn, . . .), xi ∈ R :∑∞
i=1 |xi|2 < ∞}, ‖x‖2 = (

∑∞
i=1 |xi|2)

1
2 ∀ x ∈ `2(R). Let A : H → H be mapping defined

by Ax = 3x for every x ∈ H, C := {x ∈ H : ‖x‖2 ≤ 4} and h(x) = ‖x‖2. It is well known
that

PC(x) =

{
4x
‖x‖2 if ‖x‖2 > 4,

x if ‖x‖2 ≤ 4.

Let Si : `2(R)→ `2(R) be defined for i = 1, 2, · · · , 10 by

Six = {−(i+ 2)

3
x}.

It is easy to check that Si is i−1
i+5

-demicontractive. Obviously, Γ = V I(C,A)∩
⋂
i∈N F (Si) =

{0}, for i = 1, 2, · · · , 10. Let f(x) = x
2
, αn = 1

n+1
, εn = 1

(n+1)2
, θ = 3, µ = 0.6, λ1 =

0.9, βn,0 = n
2n+1

and βn,i = n+1
10(2n+1)

,
i = 1, 2, · · · , 10. We consider the following three different cases as starting points:
Case I: x0 = (3,−3

2
, 3

4
, · · · ) and x1 = (2, 2

5
, 2

25
, · · · ),

Case II: x0 = (−3, 1,−1
3
, · · · ) and x1 = (−1, 1

10
,− 1

100
, · · · ),

Case III: x0 = (2, 1
2
, 1

8
· · · ) and x1 = (3, 1

3
, 1

27
, · · · ),

Case IV: x0 = (1, 1
2
, 1

4
· · · ) and x1 = (−1

5
, 1

15
,− 1

45
, · · · ).

Using MATLAB R2019(b), we compare the performance of Algorithm 5.3.1 with non-
inertial form of Algorithms 5.3.1 and Algorithm 1.2.1. The stopping criterion used for our
computation is |xn+1 − xn|2 < 10−6. We plot the graphs of errors against the number of
iterations in each case. The figures and numerical results are shown in Figure 5.1 and
Table 5.1, respectively.
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Figure 5.1: Top left: Case Ia; Top right: Case Ib; Bottom left: Case Ic; Bottom right:
Case Id.
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Table 5.1: Numerical results.
Alg. 5.3.1 Non-

inertial
Alg. 1.2.1
Thong

Case Ia CPU time
(sec)

0.3464 0.1038 0.0160

No of Iter. 14 14 14
Case Ib CPU time

(sec)
0.1204 0.0834 0.1056

No. of Iter. 14 14 14
Case Ic CPU time

(sec)
0.0747 0.0078 0.0172

No of Iter. 15 15 14
Case Id CPU time

(sec)
0.0138 0.0017 0.0024

No of Iter. 13 13 13
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CHAPTER 6

Conclusion, Contribution to Knowledge and Future Research

6.1 Conclusion

In this dissertation, we proposed and studied iterative schemes for approximating common
solutions of SFP, MIP and FPP in p-uniformly convex Banach spaces which are also
uniformly smooth. We also proposed and studied iterative schemes for approximating
common solutions of MIP, FPP and VIP in real Hilbert spaces. In Chapter 3, we proved
a strong convergence theorem for approximating common solutions of SFP, MIP and FPP
for the class of Bregman weak relatively nonexpansive mapping in p-uniformly convex
Banach spaces which are also uniformly smooth without prior knowledge of the norm of the
bounded linear operator. We gave some numerical examples to illustrate the performance
of our method as well as compared it with some related methods in the literature. In
Chapter 4, we established strong convergence of the sequence generated by our proposed
algorithm for approximating common solutions of MIP and FPP of a finite family of single-
valued demimetric mappings in a real Hilbert space. Our Algorithm is proposed in such a
way that it does not require Lipschitz constant of the associated mapping. Furthermore,
we applied our result to solve SFP and gave some numerical examples to illustrate the
performance of our method as well as comparing it with the non-inertial version and some
related methods in the literature. In Chapter 5, we obtained a strong convergence theorem
for approximating common solutions of VIP and FPP of a finite family of multivalued
demicontractive mappings in a real Hilbert space without prior knowledge of the Lipschitz
constant of the associated monotone operator. We gave an application and a numerical
example to illustrate our algorithm.
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6.2 Contribution to knowledge

(1) Our iterative scheme (3.3.1) generalises and extends some recent results in the litera-
ture. For instance, the results obtained in [4] and [94] are extended to approximation
of common solutions of SFP, MIP and FPP of Bregman weak relatively nonexpansive
mapping in Banach spaces.

(2) In [103], the authors established a strong convergence theorem for solving MIP, while
in Chapter 4 of this dissertation, we stated and proved strong convergence theorem
for approximating solution of MIP and common fixed point of a finite family of
demimetric mappings. Thus, we can deduce from this that our result in Chapter 4
improves and extends the results obtained in [103].

(3) Thong and Hieu [106] proposed some extragradient viscosity-type iterative algo-
rithms for approximating a common solution of VIP and a set of fixed points of
a demicontractive mapping. In Chapter 5, we introduced a modified inertial sub-
gradient extragradient algorithm with self-adaptive step-size for finding a common
solution of VIP and fixed points of a finite family of demicontractive mappings.
Moreover, we obtained a strong convergence result which extends the results of
Thong and Hieu [106].

(4) Three research articles obtained from this dissertation have been submitted to ISI
and Scopus indexed mathematics journals for possible publication.

6.3 Future research

The problems considered and studied in this dissertation offer many opportunities for
future research. The geometric properties of Banach spaces play a key role in the results
obtained in Chapter 3. We hope in the future to investigate more on the geometric
properties of Banach spaces, so that we can extend the results in Chapter 4 and 5 to
Banach spaces. Part of our future research will also be to extend the results obtained in
this dissertation to more useful and important spaces, for example Hadamard spaces.
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