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SUMMARY

This thesis was undertaken with the intention of applying forecasting with time series analysis, in a
manufacturing context. This involved two phases: the updating of existing forecasting techniques,

and the application of these techniques to a manufacturing firm.

The existing techniques, developed mainly by Brown in the 1960's, had to be adapted for computer
application, to allow fast and objective computation of forecasts. This required an investigation into
the derivation of each algebraic model, previously computed by hand, and translating those intuitive
steps into routine ones. Furthermore, the revision of each forecast in the light of new data had to be

dealt with mechanically.

As for the application, the data supplied by the client, a large South African manufacturing firm, did
not permit a successful application. This concerned both the manner in which the data were recorded
(inconsistent time intervals), and the volume of data readily accessible. This then led the thesis in an
unanticipated direction to overcome these difficulties. To do this objectively, it became necessary to
generate test data with known characteristics, then to study how many data were required to recover

those characteristics.

Generating data required an investigation into random number generation, real data consisting of both
true changes as well as a percentage of random fluctuations. A random data series was, therefore,
added to the series with known characteristics. Such characteristics are unknown for genuine data,
such as those supplied by the client. Empirical experimentation with the generated data, led to the
determination of the number of data required to recover coefficients of various complexity. This
number was found to be contrary to the statements made by Brown on this fopic, significantly more

data being required than was previously thought.

Finally, an attempt was made to select an appropriate model for the client’s data, based on the

knowledge gained from investigating generated data.



DECLARATION

This thesis, unless specifically indicated to the contrary in the text, is my own original work. It has
not been submitted for examination to, nor am I registered with, any university other than the
University of Natal, Durban.

A~

Graham Armstrong _ /s

i



LIST OF FIGURES

Figure Page
1.2.1: Constant model, with seemingly random fluctuations 1-2
1.2.2: Linear model 1-3
1.2.3: Curve model 1-3
1.2.4: Seasonal model 1-4
3.3.1: Weight assignment with M=3 3-8
3.3.2: Assignment of weight through time 3-10
3.4.1: Weight assignment with ¢=0.5 (p=0.5) 3-12
3.5.1: Weight assigned by moving and smoothing 3-15
4.4.1: Flow chart for matrix inversion procedure 4-6
5.3.1: Flow chart for SHOWLOOP PAS program 5-5
5.4.1: Graph of a simple wave (6-point) 5-9
6.2.1.1: Pascal triangle for updating constants 6-5
7.4.1: Raw and corrected data for product PPA1 7-7
7.4.2. Autocorrelation function, raw and corrected 7-8
8.5.1: Autocorrelation function for generated random numbers 8-9
8.5.2: Autocorrelation function for Fisher data 8-10
9.2.1.1: Graph of averages with generated random numbers 9-5
9.2.2.1: Graph of trends with generated random factor 9-8
9.2.3.1: Graph of curves with generated random factor 9-12
9.2.4.1: Graph of 5-point season with generated random numbers 9-15

i



LIST OF TABLES

Table Page
2.2.1: Fitting the mode (10) to the data 2-2
2.2.2: Fitting 11 to the data 2-3
2.2.3: Fitting 12 to the data 2-4
2.2.4: Summary of errors when fitting a constant 2-4
2.2.5: Developing a formula for the sum of the squared errors 2-6
2.2.6: Testing the formula with the mode (10) 2-7
2.2.7: Y Err® when fitting a level from 9 to 15 2-7
2.4.1: The rate of change for the given data 2-9
2.4.2: Fitting a trend with a rate of change of 10 to the sample data 2-10
2.4.3: Fitting a trend with a rate of change of 9 2-11
2.4 .4; Fitting a trend with a rate of change of 8 2-11
2.4.5: Fitting the trend where A=3 and B=9 2-12
2.4.6: The sum of the squared errors over an interval t=1,n 2-13
2.4.7: Data to be used for simultaneous equation solution 2-15
2.5.1: The changing rate of change 2-16
3.2.1: Results of the moving average (M=3) 3-3
3.2.2: Comparison of squared errors for M=1 to 5 3-4
3.2.3: Moving average (Avg) of M=1 3-5
3.2.4: Comparison of MAD, MSD and SD for M=1to 5 3-6
3.4.1: The assignment of weight with ¢=0.2, 0.5 and 0.8 (f=1-«) 3-11
3.5.1: The average age for smoothing 3-14
3.5.2: Comparable moving periods and smoothing weights
for the one most recent datum -

3.5.3: Comparing moving to smoothing -
4.3.1: Data used for simultaneous equation solution 4-2
4.3.2: Data matrix 4-3
4.3.3: Data matrices to be multiplied 4-4
4.3.4: Covariance matrix computation 4-5
4.4.1: Covariance matrix and first pivot 4-7
4.4.2: Second pivot and solution 4-8
4.4.3: Data matrix for non-linear data 4-8
4.4 4. Covariance matrix and its inverse 4-9
5.2.1: Traditional order of matrices to be multiplied 5-2
5.2.2: Multiplication after reversing the order of A and B 5-2
5.3.1: Covariance matrix 5-6
5.3.2: Revised covariance matrix 5-6
5.4.1: Curve covariance matrix 5-7
5.4.2: Curve solution matrix 5-7
5.4.3: Wave covariance matrix 5-10
5.5.1: Lagging a data series (25 data) 5-11
5.5.2: Autocorrelation function (%) 5-12

iv



Table

Page

621
6.2.2:
6.2.3:
624
6.5.1;

7.4.1:
7.4.2:

831
832
841:
8.6.1:
8.6.2:
863:
8.6.4:
8.6.5:

92.1:

Generated data (A=100, B=-20, C=3)

The changing rate of change

Generated data seen one day later

3-term model coefficients, depending on start of series
Computation speed and precision trade-off

Picking up the trend
Comparison of autocorrelation functions (Lag=1 to 9)

Random numbers with the different multipliers (modulator 5)
Random numbers for multiplier 2, 11 and 18 (modulator 101)
Results of M=1 relationship

Generated raw data (Multiplier 18)

Transition matrix for 100 generated data, 9 classes of 11
Fisher raw data

Transition matrix for 100 generated data, 9 classes of 10.67
Comparison of transition results with different lags

Group definition by starting point and size

9.2.1.1: 200 generated random data for fitting the average (forward and reverse)
9.2.1.2: 200 Fisher data for fitting the average

9.2.1.3: The results of fitting the average

9.2.2.1: Trend data with generated random element
9.2.2.2: Fisher data for the trend

9.2.2.3: The results of fitting the trend

9.2.3.1: Curve data with generated random numbers
9.2.3.2: Fisher data for the curve

9.2.3.3: The results of fitting the curve

9.2.4.1: Generated random numbers with 5-point wave
9.2.4.2: Fisher random data with S-point wave

9.2.4.3: The results of fitting a 5-point season

9.2.4.4: The results of fitting a 12-point season

93.1
93.2:

Summary of best results for reasonable fitting periods
Data required for good fitting with polynomials

10.3.1: The results of fitting trend data with different degrees of randomness
10.4.1: The results of fitting trend against varied degrees of randomness

11.4.1: Personal Product results
11.4.2: Detergents results

6-2

6-3
6-3
6-12

7-8

8-5
8-7

8-11
8-11
8-13
8-13
8-14

9-2

9-3
9-4
9-6
9-6

9-9

9-9
9-10
9-12
9-13
9-14
9-16
9-17
9-18

10-3
10-4

11-5
11-6



TABLE OF CONTENTS

DECLARATION

LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGEMENTS

CHAPTER 1: What we want and what we know

1.1
12
13
1.4
1.5
1.6
1.7

CHAPTER 2: Algebraic time series models

2.1
22
23
2.4
25
2.6

CHAPTER 3: Revision in the light of new data

3.1
32
33
34
35
3.6

CHAPTER 4: Computational aspects of fitting a given model

4.1
42
43
44
45

Introduction

Forecast models

Keeping forecasts up to date

Applying time series analysis to manufacturing
The quality of data and the forecast

Approach to the thesis

Summary

Introduction

The single most important characteristic
Constant algebraic model

Linear algebraic model

Polynomial algebraic model

Summary

Introduction

The moving average

Consistency of the moving average
From moving to smoothing
Smoothing versus moving
Summary

Introduction

Matrix multiplication in general

Matrix multiplication for the covariance matrix
Solution of the covariance matrix

Summary

Pt e b it fd ek
1
OO0 O\ N ke

DRI
O 00 ri i

vi



CHAPTER 5: Special case of fitting time series . ... ....... ... .................... 5-1

5.1 Introduction 5-1
5.2  Data storage and limitations 5-1
53  Vector generation 5-4
5.4  Fitting higher order models 5-7
5.5  Determining the optimal periodicity 5-10
5.6 Summary 5-13
CHAPTER 6: Revision of higher order models .. .. ........ .. .................... 6-1
6.1  Introduction 6-1
6.2  Updating the trend and higher order models 6-1
6.2.1 Updating higher order polynomials 6-4
6.2.2 Trigonometric models 6-6
6.3 Smoothing the trend 6-7
6.4  Smoothing higher order models 6-9
6.5  Optimal Beta 6-11
6.6 Summary 6-12
CHAPTER 7: Inconsistent inconsistencies of data storage . . . .. ... .. .. .. .. ........ .. 7-1
7.1 Introduction 7-1
7.2 The twelve month year 7-1
7.3  Demand versus sales 7-3
7.4  Manipulating the time unit _ 7-4
7.5  Impact on research methodology 7-9
7.6  Summary 7-9
CHAPTER 8: Generating data with known randomness . . .. ... ... .. .. .. .. .. . .. . .. 8-1
8.1 Introduction 8-1
8.2  Knowing the true process 8-1
8.3  Generating data with a random element 8-3
8.4  Using a moving period of one 8-7
8.5  Testing for periodicity 8-9
8.6  The transition matrix 8-10
8.7  Summary 8-15
CHAPTER 9: Safety in numbers ... ... ... .. ... . . . . . .. .. .. ... ... ... 9-1
9.1  Introduction 9-1
9.2  Retrieving the coefficients 9-1
9.2.1 Constant model 9-3
9.2.2 Linear model ' 9-5
9.2.3 Curve model 9.9
9.2.4 Seasonal model 9-12
93 Conclusions from results 9-17
94 Summary 9-.19

vii



CHAPTER 10: Varying the random element .. ... ........ .. ... ... ... ....... 10-1

10.1 Introduction 10-1
10.2  The size of the random element 10-1
103 Retrieving the coefficients 10-2
10-4  Using a different random series 10-4
10.5 Summary 10-5
CHAPTER 11: The attempted application . ... ... ... .. .. ... ... ... ............ 11-1
11.1  Introduction 11-1
11.2  The highest model 11-1
11.3  Fitting methodology 11-2
11.4 The results 11-4
11.5 Summary 11-7
CHAPTER 12: Recommendations and conclusion ... ... ........................ 12-1
12.1  Introduction 12-1
12.2  The quality of historical data 12-1
12.3  The quantity of historical data 12-2
12.4  Interpreting the forecast 12-2
12.5 Conclusion 12-3
APPENDIX 1: Solving simultaneous equations by the substitution method . . . .. ... .. ... A-1
APPENDIX 2. Listing of Pascal code for SHOWLOOP.PAS .. ..................... A-2
APPENDIX 3: Forecasting: data storage guidelines . ... . .. .. ... ... ... .......... A-4
APPENDIX 4. Restructured time unit . ... ... ... ... ... ... . . . ... ... ... ... A-5
APPENDIX 5. Computation of Fisherdata . .. ... .. .. .. .. .. .................... A-6
APPENDIX 6: Generateddata . . ... ... ... ... ... .. . . . . . .. .. . ... ... ... .. ... A-7
APPENDIX 7: Trend data with reduced random factor . ... ... . ... .. ... . ... ... ... . A-10
APPENDIX 8: Trend data with random element from different multipliers . ... ... ... . . A-13
APPENDIX 9: Data supplied by the client .. .. .. .. . . .. . ... . . .. .. ... ... ... A-16

BIBLIOGRAPHY

viii



ACKNOWLEDGEMENTS

Adolf Diegel, without whose encyclopaedic knowledge and tireless commitment, this thesis
would not have been possible.

John MacDonald, as supervisor, for his assistance in putting the thesis together.

Glen Polly, planning manager at Lever Ponds, and

Bala Chetty, forecasting co-ordinator at Lever Ponds, for making their data available.

“IX



CHAPTER 1

What we want and what we know

1.1  Introduction
Most people, especially businessmen, would like to be able to anticipate future events, such as
demand and prices, yet few can actually see such events beforehand, by literally looking into the

future. All we can see is past data.

Sometimes events which happen today affect those in the future. For example, a change in the‘ gold
price affects the flow of money into South Africa, some time later: there seems to be a definite causa/
relationship between one and the other. More precisely there is a lagged causal relationship, the effect
taking place so many months after the cause, for example, three months. This is useful enough if such
an horizon is adequate. But what if one were interested in events four or six months ahead? One
would first have to know the gold price over the next few months, while projecting for a lag of three
months. As a rule, it is difficult, if not impossible, to anticipate the occurrence of the next causal event
any better than the next effect. Will there be good rain next year, or maybe a flood or drought? How

will the gold price fluctuate in the future?

In answering these questions, one eventually needs to resort to the same methods to forecast

presumed causes, as one does to forecast effects. So one might as well deal with the effects directly.

1.2 Forecast models

We can know only the past. The past is reflected in the data kept by companies. What one is looking
for in these past data are patterns and repetitive processes such as trends and seasons. Once these are
found to have persisted in the past, it is expected that they will continue to repeat themselves in the
future. Such patterns are represented by more and more sophisticat_ed mathematical models. Typical
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models relevant to commercial data are discussed in the following paragraphs.

Often data fluctuate strongly over time. Figure 1.2.1 illustrates such fluctuations in raw data over a
four year period, shown in blue. The variations in the data, at face value, are not regular. In other
words, they go up and down without any obvious pattern. In such a case, the underlying process
could be described as constant, shown in red in Figure 1.2.1. The oscillations can be more or less
pronounced, but to the extent that they are random, one may hardly hope to discover a pattern in

them.

Figure 1.2.1: Constant model, with seemingly random fluctuations
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Equally often, sales data are regularly increasing (or decreasing) over time, as shown in blue in Figure
122, In such a case one may want to study the rate of change in the data over time. To the extent

that it is regular, one calls this a trend line or linear model.
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Figure 1.2.2: Linear model
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Another form of process that may characterise sales data is where the sales may change very rapidly
over time. For example, this can happen when a new product is introduced to the market, again the
raw data are shown in blue in Figure 1.2.3. In these data, the rate of change is itself changing,
becoming more and more pronounced as the product catches on. The question then concerns the rate
of change of the rate of change. It could itself be constant, as shown in red in Figure 1.2.3, or the
rate of change may itself continue to change. Finally, that change in the rate of change may eventually

turn out to be a percentage change (exponential model).

Figure 1.2.3: Curve model
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Still another model often found in sales data, is the seasonal model. As its name implies, it tends to
reflect the seasons of the year, or some other repetitive process. One then uses a trigonometric
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function (sine and cosine) to model the data. This is shown in Figure 1.2.4, where the blue line

represents the raw data, and the red line, the seasonal model.
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Figure 1.2.4: Seasonal model
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The previous graphs represent fundamental models, but in reality, they may be found as such or in

any combination, for example, of a trend and a season.

Just as models can be shown

graphically, so they can be represented by a formula or equation. The

task is to find such a formula for a given set of data, and to consider which model best fits them.

Generally speaking, that model is best which not only fits the past data well, but also needs little

revision as the future unfolds. If it needs very little revision, it can be said to correctly describe the

"true" underlying process, and thus be able to anticipate the behaviour of future data with similar

precision. However, it is unu

sual to find a model which anticipates the behaviour of data precisely.

It then becomes necessary to ensure that the forecasts produced are kept up to date.

1.3

Keeping forecasts up to date

In revising the model from day to day, new data tend to be more important than older ones, as they

reflect what is currently hap

pening in the market, rather than yesterday or last month. One may,
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therefore, want to give recent data comparatively more weight than past data, so as to keep the model

up to date with the unfolding process.

On the other hand, if a forecast requires rapid updating and revision to remain accurate, the model
itself may require revision, the best model being the one that requires the Jeast revision. The errors
or mistakes made in forecasting, for example, the difference between last month’s forecast and last
month’s datum, also should be considered in future forecasts. The good forecast thus tends to include
a small amount of recent data, and the accumulated effects of previous forecasts. However, the

goodness of a forecast is also dependent on the quality and quantity of the data recorded.

1.4  Applying time series analysis to manufacturing
A crucial aspect of data recorded over time, is the length of the interval between observations. This
interval can be practically nil (continuous time series), or of measurable duration (discrete time

series). In the latter case, the interval can be regular or irregular.

Business data in particular, tend to be observed at irregular intervals. Even if the time unit is a
seemingly constant unit, such as a week, some weeks contain fewer sales days than others. This is
even more seriously the case for monthly data, largely the norm in manufacturing firms. Not only are

months of unequal lengths in the calendar (between 28 and 31 days), but also one has various

holidays, weekends, strikes and other days without work.

Another crucial aspect of forecasting in a manufacturing context, is the distinction between sales and
derand data. The two may differ significantly if stock was insufficient to meet current demand.
Obviously, forecasting should be based on demand so that a manufacturer can capture the maximum
number of sales. In fact, it may be difficult to observe true demand, because unfilled demand tends
not to be recorded. Demand data would have to be collected at the point of sale, that is, where the
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consumer asks for goods, rather than from accumulated orders from distribution warehouses. In the
case of a large manufacturing firm, these figures would have to be sourced from the outlets which

they supply. This would involve close cooperation and the synchronisation of database systems.

One can deal with the irregular time intervals by knowing the true gap between successive
observations. For example, monthly or weekly data need to be recorded on the last day of each
respective interval, so that the observations are a reflection of that full time period. The problem is
reduced if observations are made on a daily basis, as shopping days tend to be of more equal
duratiops. As regards the demand versus sales data aspect, one can only be aware of it in assessing

the quality of the forecast, but it is difficult to deal with it quantitatively.

1.5  The quality of data and the forecast
This thesis was commenced with the intention of applying standard forecasting procedures
specifically to a South African manufacturing firm. However, in testing or developing a forecasting
program, a number of difficulties need to be overcome. These can be grouped into two dimensions:
“a general and a specific dimension. The general dimension contains the problems related to

forecasting as a discipline, namely:

o substantiating objective criteria for the selection of an appropriate model to correctly

describe the underlying process;
] the degree to which the model chosen requires revision in the light of new data;

° adapting the model selection and revision procedures to be performed by computers.

The possibly enormous volume of data available, both in the number of products and archived
records, necessitates the intervention of computers because of their speed and accuracy of
computation: after all, one should like a forecast to be ready before the event in question occurs (real
time forecasting). Computers also provide the objectivity that makes routine forecasting possible. In
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turn, this requires forecasting procedures based exclusively on data rather than opinions, and on

mechanical/objective computation, untouched by human hands.

The specific dimension refers to problems related to the way data are recorded for manufacturing

processes. It includes the following:

® the distinction between demand and sales data,
° the irregularity, disorganization and quantity of the data evaluated,
° the inability of these data to reveal their underlying process.

As concerns the quality of the data, they could turn out to be surprisingly disorganised and
insufficient. In such a scenario, even if more complete data were available, they may still not show
which model they reflect. To appreciate this point, one must take account of the fact that real data
usually contain a significant random element. The question then arises how to separate that
randomness from the underlying process. Clearly, it would emerge if one looked at "many" data, but
how many is enough? That question cannot be answered experimentally by working with real data,

since one does not know which underlying process they represent.

However, if one generates, for example, a trend line or seasonal data with known characteristics and
adds a given random element, one then knows beforehand what one is dealing with. In turn, one can
study how many observations must be made to recover those known elements. If a forecasting
program is successful with generated data, with a degree of randomness, then it can be trusted to be
successful with real data. Therefore, the development of a successful forecasting model will entail

working with artificial/generated data as much as with real ones.

Successful forecasting requires a good quality model, but this depends on having good quality data
from which to establish the model. The success of the attempted application of forecasting to a
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manufacturing firm, depends on how well these difficulties can be overcome or dealt with.

1.6  Approach to the thesis

Just as the problems identified can be classed into two categories, so this thesis will consist of two
parts. In dealing with the general problems identified, chapters two to six will include a discussion
of established forecasting techniques, as well as their adaptation to a computer. Chapters seven to
eleven will include the methodology for dealing with the specific problems encountered, and the
attempted application to manufacturing data. Chapter twelve provides recommendations and the

conclusion that can be drawn from the findings in the thesis.

1.7  Summary
This thesis will involve using the power of a modern computer to test established forecasting
techniques against generated data. It will then be attempted to apply these techniques to a South

African manufacturing firm.
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CHAPTER 10

Varying the random element

10.1 Introduction

In the previous chapter, the formula for computing the number of data required by a given model,
was derived from two different random series, each of a constant size. The same random element was
used with different models. The exact exponent and multiplier for computing the number of data
required to successfully retrieve the known coefficients (2" x 15), was therefore derived from these

particular sets of random numbers.

The typical randomness of real observations is not fixed, but depends strongly on a particular type
of product. The random data used varied by +50, that is, they ranged from 1 to 100. It would seem
reasonable to expect that a relatively larger random variation in a given set of data, would make the
true coefficients more difficult to recover. Similarly, by reducing this variation, one would expect to

recover them sooner.

10.2  The size of the random element

Focussing on the trend, it was shown that the true coefficients can be retrieved from 30 observations.
Changing the origin or the strength of the slope, or both, would have the effect of enlarging or
reducing the relative percentage of randomness in that data. However, increasing or decreasing the
size of the random numbers themselves, say by doubling or halving, will have the same effect,
although the new size of the random numbers will be known. Simple experimentation can again

demonstrate the effect this would have on coefficient recovery, knowing the true coefficients and the

size of the random factor.

The data used to test the changed random content can be seen in Appendix 7. These sets contain
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different magnitudes of the same generated random numbers, added to the same simple trend
previously used (origin 450 and slope 10). The random element added to the trend was the same as
in the previous chapter (modulator 18, multiplier 101), but doubled, kept in its original form, divided
by two, and again by two. Any fractions were rounded to the nearest whole number. There are thus

four sets of data for the trend, with random variations of 100, +£50, +25 and +13.

10.3 Retrieving the coefficients

The same fitting procedure as in the previous chapter was used. That is, a group of 15, 30 and 60
data were used to fit the coefficients, from three different starting points in the data, and then forecast
for the next 50 weeks. The residual variance for each group was compared to the residual variance
for using 100 data in fitting, the so-called best fit. The series were not tested in reverse order as
before, because one obtains the same results whether fitting in normal or reverse. The results of fitting

the trend data with a varied random element, are shown in Table 10.3.1.

Astonishingly, the change in the quality of fit with 30 data (shaded in Table 10.3.1), while increasing
and decreasing the size of the random element, was negligible. Indeed, the results were practically
identical for all fits, because the individual results remained in the same proportion, no matter what

the relative size of the random element.
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Table 10.3.1: The results of fitting trend data with different degrees of randomness

Trend (450 + 10 x time)

100 vanation 50 variation 25 variation 13 variation
Grou ) ]
(Start‘)) Sigma % Sigma % Sigma % Sigma %
All 57.7444 100 28.8722 100 | 14.4334 100 7.1984 100
Small 15 data
(1) 159.4153 276 79.7077 276 | 39.6045 274 | 20.5470 285
(21) 256.5852 444 | 128.2926 444 | 63.9842 4431 33.0586 459
(41) 85.0654 147 425327 147 20.6810 143 | 10.7832 150

Average 167.0220 289 83.5110 280 41.4232 287 | 21.4629 298

Medium 30 data

1) 65.5804 113 31.7902 110 | 15.7359 109 8.2019 114
21) 58.9094 102 29.4547 102 | 14.7150 102 7.4885 104
(41) 68.5348 119] 342674 119 17.0468 118 8.5826 119

Average | 643415  111| 318374 110| 158326 110 88091 112
Large 60 data

(1) 614900  107| 307450  106| 153550  106| 7.7193 107
1) 633713  110| 316857  110| 157863  109| 7.9364 110
(41) 57.9458  100| 289729  100| 144840  100| 72175 100

Average 60.9357 106 30.4679 106 | 15.2084 105 7.6244 106

Tests with reducing the slope, origin or both, while keeping the same random series, had the same
negligible affect. Furthermore, random variations as low as +3, still substantiated the results shown
in Table 10.3.1. No matter how the random element was changed, large or small, 30 data were still
required to successfully recover the trend coefficients. This may seem contrary to what was expected
initially, but upon reflection, it stands to reason: the amount of data required to recover a model’s
coefficients depends on the model’s responsiveness, not on the size of the random element it responds

to. In other words, a model as responsive as a trend will be misled by small variations just as easily

as by large ones.

The initial generated random series used in fitting was generated with a multiplier of 18. It was

demonstrated that this series was the "most purely random" of those generated with the modulator
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101 and seed of 1, as shown in Table 8.4.1. But what would the effect be of using a slightly less

random series: less random in that it contains pockets of regular data?

10.4 Using a different random series

Table 8.4.1 listed 12 suitable multipliers, judged on the criterion of having a sigma-coefficient for a
moving period of 1 between -90 percent and -110 percent, £10 percent off the worst -100 percent
relationship, the one without any regularity at all. From this list, four other multipliers (28, 11, 7, 2)
were tested against the trend model (origin 450, slope 10). The raw data are listed in Appendix 8, and

the results are shown in Table 10.4.1.

Table 10.4.1: The results of fitting the trend against varied degrees of randomness

Trend (450 + 10 X time)

Mult 28 (-105%) | Mult 11 (-95%) Mult 7 (-77%) Mult 2 (-4%)
Group )
(Start) Sigma % Sigma % Sigma % Sigma %
All 30.1006 100 | 28.9011 100 28.9377 100 28.2459 100
Small 15 data
(D 82.2538 273 | 30.6692 106 31.8408 110 35.6320 126
(21) 98.8587 328 | 70.2473 243 39.1844 135 39.7000 149
(41) 49.8100 166 | 28.5005 99| 1295482 448 98.6560 347

Average 76.9742 256 | 43.1390 149 66.8578 231 57.9960 205

Medium 30 data

@)) 31.9864 106 [ 47.1790 163 40.2204 139 48.0848 169
@21 32.7391 109 38.1445 132 32.4076 112 38.2836 134

(41) 50.2408 167“_, 38.3821 133 30.4-976 106 _ 46.5028 163
Average | 383221 127 412352 143| 343452 119] 4429

________________________ gier v
Large 60 data
1) 30.2110 1001 428331 148 30.7400 106 59.6575 210
(21) 31.8031 106 | 28.5041 99 355076 123 28.7255 101
(41) 31.0303 103 [ 34.8186 120 29.8163 103 42.0328 148

Average 31.0181 103 353853 122 32.0213 111 43.4719 154

None of these series supports the suggestion that 30 observations (shaded in Table 10.4. 1) suffice
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to retrieve the true trend coefficients. In fact, 60 data are barely enough to retrieve the trend when
a random factor with multipliers 11 or 2 were used, still producing a sigma as large as 35.38 and
43 .47 respectively. This would seem to contradict the previous conclusion. However, one must
remember that these series, although having similar standard deviations, shown in bold, are nof as
random as those generated from a multiplier of 18 (their correlations to M=/ being shown in

parenthesis at the top of each column).

The new series being not as random as the old one, paradoxically enough, does corroborate the
previous conclusion. To understand this, one must remember that trend data are comprised of two
parts: firstly, the true process and, secondly, the random element. Therefore, the more regular the
random element, the more it changes the true process, and vice versa. If the true process was
changed, then the known coefficients used to measure the success of the model, are no longer the
true coefficients. Testing for the retrieval of these coefficients does not give an accurate reflection

of the number of data required for the retrieval of the trend.

All the random data used have an average of 50.5. This means that although the distribution of
numbers may vary from series to series, there are as many numbers above this level as below it, when
all data are considered. Therefore, after 100 observations, the effect of changing the true process is
neutralised because this is the end of the generated random series. The fit when using 100

observations is close to the true coefficients, not because of the quantity of data, but because the

random element has been neutralised over one full cycle.

10.S Summary

The tests conducted confirm the basic conclusion, namely, that the number of data required to
recover a model is exponentially related to the power of that model. This rule applies as long as the
data contain a truly random variation. However, if the so-called random element is not random, but
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contains pockets of regularity, more data may be required. On the other hand, given a certain degree
of randomness, a change in the magnitude of the random element does not affect the number of data

required to obtain a good fit.
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CHAPTER 11

The attempted application

11.1 Introduction

From the previous chapters, two important criteria have been established as prerequisites for accurate

forecasting:
° accurately recorded data with individual time intervals;
° sufficient quantity of data to justify a particular model.

Neither of these prerequisites is met by the data storage practices of the client. This does not bode
well for a successful attempt at forecasting future sales. Nevertheless, some kind of justifiable future
sales level must be forecast somehow, to control inventory and to set production levels. Imperfect
as they are, all that is available are the data as they stand, and one has to make the best of these in the

light of established forecasting techniques and the knowledge gained in this thesis.

What remains is to test the given data by fitting them with their corrected time unit, and restricting

the model used to that which the number of observations can reasonably justify.

11.2  The highest model

The periods for which data were provided were two years for Detergents, that is, 24 monthly
observations, and five years for Personal Products, 51 observations (36 monthly, 15 other). 1deally,
it would seem logical to use half the available data in fitting, and the other half to test this fit. This
also allows enough data for the adequate testing of revision and updating. One would also want the
opportunity to search for seasonality. Given that the data are monthly totals, one year represents a
complete cycle. Because one should have three times the period length to determine the periodicity,
this would require three years of data to include the maximum periodicity of twelve. In general, the

Chapter 11 - Page 1



data available fall short of these basic requirements, but it remains to be seen what can be done.

Expressing the formula for the number of observations required for a certain model in terms of ¢,
computes the highest model that should be attempted relative to the given number of observations

(formula established in section 9.3).

N=15x2"
N/15=2"
log (N/15) =t x Log 2
log N -Log 15=1xlog 2

t=(log N -log 15)/log 2

With a two year period for Detergents, there are 24 observations. The highest model that should
safely be attempted is for a time exponent of (log 24 - log 15) / log 2 = 0.6781. Similarly, for
Personal Products, where there are 51 observations, the highest model that should be tested is where
time has an exponent of (log 51 - log 15) / log 2 = 1.7655. Only the whole numbers are significant
in these calculations, because one is trying to estimate the order of a polynomial. Therefore, the

highest model for Personal Products is the trend, and for Detergents, the average.

11.3 Fitting methodology

The number of data available limits the model that should be attempted. Within this limit though, the
amount of improvement of fit, or the reduction in forecast errors (section 3.2), can justify using a
higher model rather than a lower one. This improvement determines whether the model is to include
more polynomial or wave terms, or even whether faster revision is better. The standard deviation is
a good indicator of how much data can change, and comparing the residual variances of a lower
model and a higher one, as a percentage improvement, shows whether the higher model is better or
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WOrse.

Computing the residual variance of the raw data with the true average for the observations, sets a
base level, the fit of the simplest model with a// the available data. If a more complex model is to be
considered, it should show a positive improvement over using this average. The minimum percentage

for upgrading a simple model to a higher one, needs to be considered.

Small improvements in residual variance now, do not necessarily mean better forecasting later. They
are computed when fitting and testing with pasf data. A small improvement is not worth capturing
because of the associated danger of over-fitting. For the purposes of this study, a 5 percent
improvement will be considered significant, ignoring the models that only produce a few percent

improvement.

In addition to a significant improvement in fitting, the best model is the one that requires the least
revision (section 3.1). A large smoothing factor (alpha) is an indicator that a higher order model
should be attempted. If a higher order model fails to really improve matters (by at least 5 percent),
then one may have to be content with rapid updating because this is less responsive than using a
higher order polynomial model. As far as waves are concerned, those with relatively large amplitudes
are more important because they describe real oscillations rather than small fluctuations. The
minimum amplitude considered significant should be the same as for a higher polynomial model,

because it also involves additional terms in the model. The amplitude should, therefore, be at least

5 percent of the average for the data.

Fitting the data starts with the simple average, and then proceeds to test increasingly larger smoothing
constants. Revision should also improve the forecast by at least 5 percent to be considered significant.
Lastly, the detected waves can be tested. Thereafter, the next order of polynomial is added, and the

Chapter 11 - Page 3



fitting process starts over for this new polynomial. The number of coefficients must not result in over-

fitting, and there must be at least a 5 percent improvement to justify extending the model.

11.4 The results

All of the data received from the client are listed in Appendix 9. Product names have been disguised
at their request. The D or PP in each column indicate whether the product is a Detergent or Personal
Product. Each separate product has a different letter, and each derivative of the same product, still

a separate stock keeping unit, has a different number.

There are 51 observations available for Personal Products, 30 of which will be used for fitting, and
the remaining 21 for testing that fit. The success of a model is judged on its ability to reduce the
residual variance (mean squared deviation), as compared to the variance for the raw data. For
example, the raw data for product PPA1 have a variance of 47435140.5037. However, using a
smoothing weight of alpha equal to 11.7647, the variance of the errors is reduced to 10085847.416.
To compute an improvement, or the reduction in variance, one subtracts this residual variance from
the variance of the raw data. As a percentage improvement, one divides by the variance of the raw
data and multiplies by 100. In other words:
(Variance of raw data - Variance of residuals) + Variance of raw data x 100

= (47435140.5037 - 10085847.4164) + 47435140.5037 x 100 = 78.74%

Those improvements which were negative, meant that that model did not produce more accurate
forecasts than the average for all the data, and so had a higher residual variance than the variance of
the raw data. In this case, the only model that should be used is the simple average, because any

response to the data makes the forecast worse. Indeed, using all the data is better than using only a

section of them.
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The results for fitting the Personal Products data are shown in Table 11.4.1. The blanks, for example,
the periods identified or the size of alpha, meant that the best model did not require any waves or
revision.

Table 11.4.1: Personal Product results

Product | Polynomials Periods Alpha (%) Improvement (%
PPAI 1 11.7647 79
PPA2 1 11.7647 65
PPA3 1 222222 68
PPA4 1 11.7647 58
PPBI1 2 65
PPB2 2 53
PPB3 2 4 11,7647 -7
PPC1 2 3,2 -8
PPC2 1 66.6667 50
PPD1 1 5 11.7647 66

Product group PPA shows a real improvement on the simple average when it is revised, although only
by a small alpha. The use of this model is further substantiated by the solidarity between its different
derivatives (PPA2 and PPA4), although PPA3 required more rapid revision. Therefore, the simple
average with some slight revision in terms of the errors made, is likely to provide a fair estimate of

the future values for this product.

However, product group PPB seems to support a trend, although not as convincingly as group PPA
supports the average. The exception is PPB3, with -7 percent improvement (shown in bold), which
does not support this model, and would be more suited to the simple average for all the data. This
can be understood if one knows that this is in fact a bulk product, which is obviously not bought with

the regularity of the smaller weighing PPB items.

PPC1 shows no improvement on the average for all the data (shown in bold), whereas PPC2 requires
very rapid updating of the average for a significant 50 percent improvement. Although there are 30
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data used in the fitting period, and very rapid revision is required, the trend, even with rapid updating
itself, does not produce an improvement of this magnitude. This suggests that this rapid revision may
only be improving the fit over this particular period, and that the simple average should be used to

forecast for both product PPC1 and PPC2.

PPD1 is the only Personal Product tested that showed an improvement from fitting a wave, that is,
a 5-point wave. The 30 data used in fitting are sufficient to determine this periodicity, however,
bearing in mind that a full cycle for the data is 12 observations or a year, one should be using 36 data
to determine the optimal periodicity. Indeed, using 36 of the available 51 data, eliminates the use of

a 5-point wave. Product PPD1 is thus best forecasted by the average with slight updating.

Table 11.4.2 shows the results when fitting the first 15 of the 24 observations for the Detergents.

These results were then tested on the following 9 observations.

Table 11.4.2: Detergent results

Product | Polynomials Periods  Alpha (%) Improvement (%)
DAl 1 -22
DA2 1 2 -46
DB1 1 0 -85
DC1 1 3 40.0000 19
DC2 1 3 11.7647 10
DC3 1 3 66.6667 20
DC4 1 4 26
DD1 1 5 -24
DD2 1 3 -26
DEI 1 3,2 66.6667 -28
DF1 1 3,2 -50
DF2 1 0 -87
DG1 1 0 11.7647 54
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The results for the Detergents show a picture very different from the Personal Products. Nearly all
the forecasts are worse-off when a higher model than the average was tested. Those with
improvements are shown in bold in Table 11.4.2. Product DC1 shows some improvement, but not
much consistency as concerns the size of the optimal alpha. Furthermore, the periodicity should only
be determined when three full years of data are available. The greatest improvement is shown with

product DG1, with the forecast benefiting greatly from some slight revision (alpha = 11.7647).

The poor results with the Detergents suggest that these data have no real pattern, partly because they
do not, and partly because there are only 24 observations available. Only the average should be used
to make forecasts because there are insufficient data at this point to justify using another model. As
many data as are available must be included in the average, so that it is not prejudiced by recent

fluctuations.

11.5 Summary
Although there are more data available for Personal Products than Detergents (enough to support
a trend), the simple or revised average was the best in all cases except with product group PPB. This

shows that generally, there is no real pattern to the data, and that one should not waste time and

money trying to discover one.

From the results of the Detergents, it is clear that there is insufficient data in hand to determine
whether any true process does exist. Those products which benefit from revision may reveal trends
or seasons if more data were available, but in the absence of such data, one must make use of the

average and revise it where necessary.
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The somewhat disappointing results of investigating the client’s data do have one positive conclusion:
there is no point in pursuing sophisticated forecasting procedures until the data available are of
sufficient quantity and quality. The average (simple or smoothed) can be performed by a simple

computer program, and expenditure on advanced hardware and software can be avoided.
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CHAPTER 2

Algebraic time series models

2.1 Introduction
Forecasting involves recognising the characteristics of the process which resulted in a given set of
data. The frue process characteristics are those that prevailed in the past, and are likely to continue

in the near future. The characteristics of data can be grouped two into categories.

Firstly, those that have a structure, pattern or repetitive tendencies. In this case, discovering these
characteristics will provide objective parameters for forecasting future values.
Secondly, data that have no structure, where there is no recognisable relationship between successive

values: these are called random data.

Random data are characterised by a lack of structure and, therefore, do not allow the forecasting of
specific future values. It is, however, possible to still forecast a range of values, limits which the data
have not exceeded in the past, and are unlikely to exceed in the future. Knowledge of these limits is
more advantageous than not knowing them, but, more importantly, recognising that the data are

random means that time is not wasted searching for structures that are not there,

2.2 The single most important characteristic

When summarising a given set of data, one is looking for characteristics which are more informative
than simply listing the data. Initially, one may only be interested in the single most dominant
characteristic, for example, whether the data are "high" or "low". So which single number provides

a good idea of how the data are behaving as a whole?

One could use any one datum from the current series. Picking the first or last number may seem
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arbitrary, but it is intuitively better than doing nothing at all to plan for the future. However, it is not
obvious why such a choice would be better than any other arbitrary selection, such as one from the

middle of the set, or the most frequent datum.

One objective method, based on simple arithmetic and the data in hand, would be to calculate the
discrepancy between the estimate and each datum, and then the total discrepancy. The lower the total
discrepancy, the more representative the estimate is. This procedure for testing an estimate against
a set of data can be thought of as fitfing, just like trying on new clothes before deciding which looks
best. The discrepancies appear as errors, the mistake made when fitting the estimate to the data. This
procedure will initially be a manual trial and error process, to be expanded into an objective,

mechanised routine.

Fitting can be illustrated with a series of simple data, for example, the series 10 10 10 15 10. As the
first estimate or iz, one might try the mode, or most frequent datum which is obviously 10, but one
could also have chosen the first or last number as it happens. Table 2.2.1 shows how the fit is tested

and how the errors are computed.

Table 2.2.1: Fitting the mode (10) to the data

Time Data Fit Error = Data - Fit Error squared
® (D) () (Ern) (Err’)
| 10 10 10-10=0 0
2 10 10 10-10=0 0
3 10 10 10-10=0 0
4 15 10 15-10=5 25
5 10 10 10-10=0 0
Sum 55 55| 25

The abbreviations in parenthesis, in Table 2.2. 1, such as "t" for "time" and "D" for "Data", will be
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used in later tables instead of the headings. As previously stated, the error is the difference between
the actual data and the fit. Squaring these simple errors, shown in the last column, increases large
errors relatively more than smaller ones, and also eliminates any negatives. This is computed to lead
subsequently to a comparison between the sum of the simple errors and those squared. The last row
in Table 2.2.1 is the sum of each column. There are two sums for the error column. Firstly, the sum
of the simple errors, and secondly, the sum of the absolute errors, placed between bars. The absolute

error is the deviation regardless of whether it is positive or negative.
In the case of the mode, the sums of absolute and simple errors were identical. The fit was perfect
on every day, except day 4, where there was a large error of 5. If a somewhat larger fit were tested

than the previous one, say 11 instead of ten, how would this change the resulting errors?

Table 2.2 2: Fitting 11 to the data

t D F Err Err?
1 10 11 -1 1
2 10 11 -1 1
3 10 11 -1 1
4 15 11 4 16
5 10 11 -1 1

55 03] 20

In Table 2.2.2, the sum of the simple errors has been reduced to 0. This is significant because it shows
that the fit passes through the centre of the data, there being as many positive errors as there are
negative ones. In other words, the fit over-estimated the data as often as it under-estimated them

This was not the case with the previous fit, the mode in Table 2.2.1, with a simple error of 5.

On the other hand, if the sum of the simple errors is zero, this does not mean that there were no
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errors. This suggests that the sum of the simple errors is not in itself, or on its own, a valid criterion
for measuring the goodness of a fit. A second criterion is needed, either the sum of the absolute
errors, or the squared ones. Considering the results of an even larger fit, say 12 instead of 11, will

help clarify how these criteria change as a function of the fit.

Table 2.2 3: Fitting 12 to the data

t D F Err Err’
1 10 12 -2 4
2 10 12 2 4
3 10 12 2 4
4 15 12 3 9
5 10 12 2 4

55 -5 [11] 25

The fit of 12 in Table 2.2.3 results in a smaller simple error of 3 on day 4, versus 4 and 5 previously,
but larger errors on the other days of -2 versus -1 and 0. A summary of the sum of various errors

from fitting 10, 11 and 12 is represented in Table 2.2.4.

Table 2.2.4: Summary of errors when fitting a constant

F Y Abs Err Y Err Y Err?
0 |0 s s
" -
12 11 -5 25

Table 2.2.4 shows that the fit of 11 has the lowest sum of the simple errors () Err), and also the
lowest squared errors (Y Err?), while the fit of 10 has the lowest sum of the absolute errors () Abs

Err). Deciding which fit is the bes? therefore depends on the criterion considered most important.
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With the simple error, a less than perfect fit (for example 11), can still have a total error of zero. This
is because the sum of simple errors ignores the nature of negative and positive errors. In the context
of manufacturing, over supply and under supply of a product do not have the same effect on costs,
yet both are serious and it is the aim of the forecaster to eliminate such wastage. At least the absolute
error considers this, but unfortunately it does not discriminate between large and small errors. As a
rule, large errors are much more costly than small errors, whether they be positive or negative. Large
errors should, therefore, be given higher weighting. Indeed, such weighting can be achieved by

multiplying an error by itself, squaring it.

The sum of the squared errors has two important properties. Firstly, by squaring each error, the
negatives become positive. Secondly, squaring effectively assigns more weight to large errors than
to small ones, with equally negative and positive errors being given the same weight. In principle, all
errors are given some weight. Thus, the least squares criterion, where the best forecast is judged on
its ability to minimise the sum of the squared errors, seems intrinsically meaningful. Moreover,
choosing the squared error criterion over the absolute one, leads to a method of computing the best

fit, the one minimising the squared errors. With the absolute error, the only method is trial and error.
Using tables to establish the sum of the squared errors for a series of data is convincing, but

impractical, even for the simple data used thus far. However, studying the computational processes

behind the sums in the previous tables leads to the least squares method just mentioned.
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Table 2.2.5: Developing a formula for the sum of the squared errors

t D, F
t, D, F
t, D, F
t, D, F
t, D, F
t D, F

From the shaded column in Table 2.2.5, a formula for the sum of the squared errors can be derived
as JErr’ = J(D, - F)’ This can be expanded:

YEr? = Y(D, - F) = YD, - F) (D, - F) = $(D? - 2D, x F + F?)
This can be simplified by using the principle that the sum of a series, each element of which is

multiplied by a constant, is equivalent to the sum of that series, multiplied by the constant. N is the

number of data in the series.

Principle: J(constant % data) = constant x } data, the fit being the constant

Therefore: YD2-2F x YD, + N x F?

There is thus a formula for computing the sum of the squared errors, when a constant level (single
estimate) is fitted to the data. This can be tested against the results achieved in Tables 2.2.1, 2.2.2
and 2.2.3. In order to compute the sum of the squared errors with the new formula, values for the
sum of the data, a.nd the sum of the data squared are required. Table 2.2.1 is repeated in Table 2.2.6,

with an extra column added for data squared, and the sums for the data and data squared.

Chapter 2 - Page 6



Table 2.2.6: Testing the formula with the mode (10)

t D D’ F Err Err?
1 10 100 10 0 0
2 10 100 10 0 0
3 10 100 10 0 0
4 15 225 10 5 25
5 10 100 10 0 0

55 625 05| 25

YEr? =YD2-2F x YD+ N x F2 =625 - 2(10) x 55 + 5 x (10)’

=625-1100+500=1125 - 1100 = 28

The answer of 25 is the same as in Table 2.2.1. The other fits can also be testéd.

Fitof 11: YErr? =625 -2(11) x 55 +5x 121 =20

Fit of 12: YErr® =625 -2(12) x 55+ 5 x 144 =25

These results show that the formula for the sum of the squared errors has been derived correctly
because it gives the same answers as the tables did. Consideration of other fits that both under

estimate and over estimate the data, yields the results in Table 2.2.7.

Table 2.2.7: ¥ Err* when fitting a level from 9 to 15

F 9 10 =1 12 13 14 15
YEr 40 25 3 = 25 40 65 100

It can be seen from Table 2.2.7 that the lowest sum of the squared errors is where a fit of 11 is used.
Based on this criterion, 11 is the best fit for the data. The values for the sum of data and data squared,
computed by hand in Table 2.2.6, can easily be computed routinely from any set of data. Although

one can now compute the sum of the squared errors without using a table, determining the best level
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fit from those tested was done visually in Table 2.2.7.

A formula minimising the sum of the squared errors computes F", the best level or horizontal fit for
the data. This can be done by taking a derivative with respect to F, and then solving for F~. The

formula for a derivative is; X®=n x X™*

Looking at the formula YD? - 2F x D, + N x F?, the first term (YD?) does not affect the fit (F).
It can therefore be excluded when taking the derivative (d) with respect to £

Therefore: d YErr’ =-2YD + 2N x F
dF

To minimise the sum of the squared errors, the derivative is set to zero and solved for F"
-2Y'D, + 2N x F = 0, minimising condition
-Y'D, + N x F = 0, simplified by dividing by 2
N x F = Y D,, unsolved form

F' =Y D/N, solved

Substituting the original data to test the formula for minimising the sum of the squared errors gives:

F*=55/5=11. Indeed, 11 is the best horizontal fit for the data 10 10 10 15 10.

2.3  Constant algebraic model

The formula for F~ is the sum of all the data in the series, divided by the number in the series. In other
words, the simple average or mean is the best single estimate of the data. The average, also termed
the constant algebraic model, principally computes a level midway between the highest and lowest
data in the series. Therefore, the sum of the simple errors will always equal zero, but more
importantly, the sum of the squared errors will be minimised while giving more weight to large errors.

This model provides a methodology for establishing the best horizontal fit objectively and repeatedly.
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It also provides a basis for fitting higher order models.

2.4  Linear algebraic model

The data used to forecast with the constant algebraic model, 10 10 10 15 10, did not change from
one to another with any regularity. The data 10 20 30 50 40 can be seen to be increasing in value with
time, at least for the first few values. The rate of change defines by how much one datum changes
from the previous one. There are negative and positive rates of change, depending on whether the
data are descending or ascending. The rates of change for the data 10 20 30 50 40 are shown in Table

2.4.1.

Table 2.4.1: The rate of change for the given data

t D Rate of change (ROC)
1 10 -
2 20 10
3 30 10
4 50 20
5 40 -10

The rate of change for these data is a constant 10 for r=2 and #=3. The rate of change changes for
t=4 and t=5. There is no rate of change for =1 because there was no previous datum to compare
it to. If a forecast were to be made using the constant algebraic model, the best level would be 30,
but the sum of the squared errors would be 1000. Large errors result on each day except on day 3,
where there is a perfect fit, because the average ensures that the level passes through the middle of
the data. However, the best level ignores the rate of change for these data, and so it does not provide

a good fit. In the face of changing data, a model is required that will keep up with this change. One

could utilise a trend model.
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However, a trend has a constant rate of change, because it is a straight line, and the data have a
changing rate of change. This raises the issue of which of the rates of changes in Table 2.4.1 to select.
One possibility is to use the most common rate of change. A simple method for fitting a trend to data,
is to add the selected rate of change (10) to the average for the data (30) as time progresses, and
subtract it from the average going back in time from the average. The results are shown in Table

2.4.2, the average having been shaded.

Table 2.4.2: Fitting a trend with a rate of change of 10 to the sample data

t D F (ROC=10) Err ~ Er?
1 10 10 0 0
2 20 2 o o
3 30 36 o 0
4 50 40 10 100
5 40 50 -10 100
150 0 ]20] 200

Simply by fitting a trend with an arbitrary rate of change, instead of the average, the sum of the
squared errors has been reduced from 1000 to just 200 in Table 2.4.2. This is because the trend
captures the change that occurs between the first three data perfectly, and some of the change that

occurs in the data later.

However, this may not be the est trend to fit, because the rate of change of the data is not constant.
The average rate of change, is the simple sum of the changes (30, in Table 2.4. 1) divided by the
number of changes (4), which is equal to 7.5. Therefore, on the average the data change from one

day to another by 7.5. As this change is lower than 10, a smaller rate of change may provide a better

fit.
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Table 2.4 3. Fitting a trend with a rate of change of 9

t D F (ROC=9) Err Err

1 10 12 -2 4

2 20 21 -1 o

3 s . 30 g 5

4 50 39 11 121

5 40 48 -8 64
150 0 [22] 190

With a rate of change of 9 in Table 2.4.3, the sum of the squared errors has been reduced to 190.
Although the rate of change is less than that for the first three data, and small errors result, the sum
of the squared errors was reduced from 200 to 190. A trend with an even smaller rate of change may

further reduce the sum of the squared errors.

Table 2.4.4: Fitting a trend with a rate of change of 8

t D F (ROC=8) Err Err’
I 10 14 4 16
2 20 — 2 A
s . .
4 50 38 12 144
5 40 46 6 36

150 0 |24] 200

The even lower rate of change of 8 in Table 2.4.4, has pushed the sum of the squared errors once
again to 200. The reduced error at =3, because of the lower rate of change, is outweighed by the

larger errors incurred on the other days, because of this same lower rate of change. Thus far, the best

fit has been for a rate of change of 9.

Using tables to establish the best rate of change, is an inefficient process. To improve this, one needs
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a formula to compute the sum of the squared errors, as well as the best origin and rate of change, so

as to minimise the sum of the squared errors.

From basic mathematics, any trend can be represented by a formula. It includes the origin and the rate
of change, or the slope multiplied by time, Fit(z) = A + B % t. The origin is the data value at time zero
(t=0). From Table 2.4.3 with a rate of change or slope of 9, the Fit(t=0) or origin is 12 (t=1) minus
9 (slope) which equals 3. Therefore, in the formula for a trend, A=3 and B=9. Instead of fitting the

trend as done in Table 2.4.3, the trend is fitted using this formula in Table 2.4.5.

Table 2.4.5: Fitting the trend where A=3 and B=9

_Origin (A) | Slope(B) | t D | A+Bt _Er?
. 9 0 - .' 3 i
9 1 10 12 4

o 2 20 21 i

9 4 50 39 121

9 5 40 48 64

150 190

The tables are identical, including the sum of the squared errors, except for the data values for t=0,
the origin. From Table 2.4.5, the formula for the squared error is still (Data - Fit)? for each point in

time, except that the fit is not simply F as before for the constant model. Rather, it is the trend

formula, 4 + B x ¢.
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The formula for the squared error for a trend now reads:
Er? = [Data- (A+ B x t)*=(D,- A-B x t)’
This can be expanded: (D,- A-Bt) x (D, - A -Bt)
=D?2- AD, - BtD, - AD, + A* + ABt - BtD, + ABt + Bt?

=D2 - 2AD, - 2BtD, + 2ABt + A* + Bt?

This is the formula for the squared error at any one point in time. It can be expanded to include the
sum of all the squared errors, for time from 1 to n. Table 2.4.6 applies the principle that the sum of
a series multiplied by a constant is, equal to the sum of that series, multiplied by the constant. N is

the number of data.

Table 2.4.6: The sum of the squared errors over an interval t=1,n

t DZ - 2AD, -2BtD, + 2ABt +A? +B¢

1 D,? - 2AD, - 2B(1)D, + 2AB(1) + A2 + B(1)?
2 D,? - 2AD, - 2B(2)D, + 2AB(2) + A% + B(2)?
3 D, - 2AD, - 2B(3)D, + 2AB(3) + A% + B(3)?
4 D,2 - 2AD, - 2B(4)D, + 2AB(4) + A2 + B(4)®
5

From Table 2.4.6, a formula can be derived, to define the sum of the squared errors for any origin

and slope. Moreover, in keeping with the least squares methodology, one can directly minimise the

sum of the squared errors.
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Firstly, taking the derivative of this formula with respect to 4, then to B, yields the formulae for

| origin and slope.

YEm = YD?- 2AYD - 2BYtD + 2ABYt + N x A” + BY t*

d YErr* =-2YD + 2BY t + 2AN d YErr? = -2Y (tD) + 2AY t + 2BY't*
dA dB -

Secondly, to minimise the sum of the squared errors, the derivatives are set equal to zero and

simplified:
d YErr%: -2) D+ 2AN + 2BYt =0 d YErr? -2Y (tD) + 2AYt + 2By t* =0
4 2AN +2BYt=2YD 4 2AYt +2BY (= -2Y (D)
AN+ BYt =YD AY't+ BY £ = Y(tD)

By taking the derivatives for 4 and B from the sum of the squared errors formula in Table 2.4.6, and
setting them to zero, the lowest sum of the squared errors is guaranteed. There are now formulae for

the best origin and slope, 4" and B”.

As a matter of consistency, one can show that in the event that there is no slope (B=0), then the best

fit is A" (because the data follow no particular trend).

A" (B=0): AN+BYt=YD

AxN+0Yt=YD A =Y D/N, the mean, as before.

The trend model is consistent with the constant algebraic model, because in the absence of any slope,

the formulae are the same. The trend simply expands the average model, by including a slope in the
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fit.

In order to determine the best trend fit with the data 10 20 30 50 40, the two equations for A" and
B’ need to be solved simultaneously. The equations are:

AxN+BxYt=YDand Ax Yt+BxYt*=}(txD)
Their solution requires values for J7, ¥'D and J¥’, that is, the sum of time, of the data, and of time

squared. These are computed in Table 2.4.7. N is equal to 5.

Table 2.4.7: Data to be used for simultaneous equation solution

t D txD t*
1 10 10 1
2 20 40 4
3 30 90 9
4 50 200 16
5 40 200 25
15 150 540 55
Substituting from Table 2.4.7: Ax 5+Bx15=150

Ax15+B x55=540

The substitution method for solving simultaneous equations results in the solutions of 4"=3 and
B’=9, the best origin and slope, as shown in Appendix 1. This solution is consistent with the trend
visually estimated from Table 2.4.3. It computes the best trend fit by minimising the sum of the
squared errors for all possible slopes, not just for those selected arbitrarily. These formulae also

greatly improve computational efficiency.

The linear algebraic model is a model that fits the best trend, according to the least squares method,
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for any series of data. This is suited to data having increasing or decreasing tendencies, allowing the
forecast to catch on to this trend. When there is no slope, the best "trend" model reverts back to the
constant algebraic model. This is obvious in cases of random data, where individual data should not
have any relationship to those before and after them. In other words, random data should have a slope
of zero. If they do not, they are either intrinsically not random, or else the sample is too small, one
having fallen upon a pocket of non-randomness or regularity, in a series that might well turn out to

be random in the long run.

2.5  Polynomial algebraic model

The data 4 6 10 16 24 34 have a rate of change which increases with time, that is, the rate of change
itself changes. One can see this when studying the rate of change of the rate of change, as illustrated
in Table 2.5.1. With the data increasing as rapidly as they are, both the average and the trend models
would produce large errors. This is because no matter what level or slope was used, the data are

increasing at an increasing rate and a simple forecast will always fall short.

Table 2.5.1: The changing rate of change

t D ROC ROC of ROC
0 4 - -
1 6 2 -
2 10 4 2
3 16 6 2
4 24 8 2
5 34 10 2

The changing rate of change shown in Table 2.5.1 can be correctly estimated by deriving the formula
from first prihciples, as was done before for the linear model. However, one can also study the

formulae already derived, with a view to finding a system in the progression of terms.
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AxN +BxYt =YD = Ax Y +Bx Yt'=Y(t* x D)

AxYt +Bx Yt?=Y(t x D) = AxYt' +Bx Y=Y (t' x D)

Firstly, time can be consistently written with its proper exponent. Time 7 can be written as time with
an exponent of one, #. Similarly, the sum of the time, J7, can be written as J¥. Time with an
exponent of zero, £, is equal to one, therefore, D multiplied by ° is the same as D. Furthermore, the
sum of time with exponent zero, J¥,is 1 + I + I... N times, so it yields the number of data in the

series, V.

Expanding the power of 7 seems to complicate otherwise simple equations, but in fact brings out the
regularity of the terms. Now that all powers appear explicitly, it is possible to derive by inspection

what the next higher coefficient should look like:

AYt"+ BYt'+
AYt'+  BYt*+

The visual progression adds a new column for C, and a new row starting with time squared. On the
other hand, as a matter of consistency, one reverts to the simple mean if both B and C are zero, that
is, A J¥* = J(1° x D), therefore 4 = J (¥ x D) /J . Similarly, if C is zero, one reverts to the trend
model. But to determine whether the best rate of change of the rate of change should be zero or not,
all three equations must be solved. The equations are ordered with respect to the exponent of time
in the first column. For example, the trend is a first order polynomial, and a trinomial is a second

order polynomial. The average is the special case of a zero order polynomial.

It can thus be seen from the above equations, that the constant algebraic model can be extended to
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the linear algebraic model, which can be extended to the curved algebraic model, which is
extendable to a polynomial of any order. In general, “...one can use any degree polynomial that is

required to represent the process by adding terms in £, £, and so on, up to £*...” (Brown, 1963: 62).

It should be noted that the final rate of change in Table 2.5.1, the ROC of ROC, is a constant of 2.
As mentioned in section 1.2, the actual rate of change could reflect a percentage growth. This process
requires an exponential model to fit it (Brown, 1963: 64). It is, however, more likely to be relevant

to biological processes rather than to manufacturing.

2.6 Summary

The constant, linear and polynomial algebraic models have been shown to be consistent with one
another, and to be easily expanded. One can even achieve a perfect fit with any data by having as
many terms as there are data, which would be a purely mechanical process. Having such a high
degree model, although fitting the data perfectly, does not assist in forecasting future values, but
rather inhibits it because the model continues on its final rate of change. This is called over-fitting,
where a model has too many terms. It may obtain a perfect fit without reflecting the underlying

processes currently happening in the market.

Over-fitting will be dealt with in the next chapter, by revising a model as new data are received, rather

than with simply extending the model to fit them.
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CHAPTER 3

Revision in the light of new data

3.1 Introduction

No matter how simple or complex a given model is, it will continue on its current rate of change as
time goes by. For example, a trend eventually increases to infinity or decreases to zero and beyond,
but it is inconceivable that real data will ever continue to behave in a similar fashion. Increasing the
power of the model can lead to over-fitting, the model only fitting the data that have gone before,
minimising the errors between the model and the data, but without revealing any true process. In
other words, for a model to be good, it is not enough that it simply fits the past. It must also continue
to fit, without major change, new data as they become available. Indeed, the best model is the one

that needs the least revision, not having to be changed with every new datum.

So the main idea of revising is to adapt a model in terms of new data as they occur. This also implies
that, as tixhe goes by, older data become more distant, and therefore, less important to what is
happening today. Keeping old data also requires storage space, and entails the risk of data being lost,
even with good record keeping, through a computer or administration catastrophe. To keep the
forecast up to date and accurate, it must be revised to a certain extent in terms of the latest data, yet

include enough of the old data to establish a good quality model.

3.2  The moving average
To begin with, consider the simplest possible model, the average, and that the most recent three data
are considered significant for a forecast. Only the three latest data would then be summed and divided

by 3, meaning that a moving period (M) of 3 had been selected.

The data3 95792 7 8 8 2 are random numbers taken from Trueman (1981: Appendix E), and can
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be used to illustrate this. The average for these data, with a moving period of 3 (M=3), can be seen

as follows:

Moving average forday4= 3+ 9+ 5 =17+3=57
Moving average for day 5 = 92+ 5+ 7 =21+3=7
Moving average for day 6 = 2 F¥F B9 =21+3=17

Moving average for day 7 = 7+ 9+2 =18+3=6

The first forecast using the moving average can only be made on day 4, when three data are in hand.
On each subsequent day, the three most recent data are summed and divided by 3. The general
principle of the moving average is:

Moving average for day t = D(t-3) + D(1-2) + D(t-1)
moving period

The first of the three data in the average is the oldest, from three days ago (t-3). With each new day,
the oldest datum is dropped and the newest is added, for example, on day 5, 3 is subtracted and 7 is
added. The forecast for tomorrow includes two of the data from the previous day’s average, plus the
datum from today. Each new colour (for example, green) "moves" from the last datum, to the middle,

to the first in the series over the three days.

Alternatively, one can subtract the oldest from the newest datum and divide by the moving period,
then add the previous average:

Moving average for day t = previous average + newest data - oldest data
moving period

Example: Moving average forday6=7+(9-9)+3=7
The formula can also be seen as follows, where dividing by M is the same as multiplying by /M, and

the difference between the oldest and the newest data can be seen as the "change" in the data:

Fit (t) = Average + 1/M (New D, - Old D,,,)) = A + 1/M x "change"

Example: Moving average for day 7=7+1/3 (2-5)=6
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In other words,.a moving average can be interpreted as follows: the forecast for tomorrow is based
firstly, on the average for today, and secondly, on a fraction (1/M) of the newest datum, whilst
removing the same fraction of the oldest datum. This in turn is equivalent to including //M of the

change from the oldest observation to the most recent one.

Thus, as the average moves through time, it incorporates some of the change that occurred in the
data during the moving period. One can again compute the sum of the squared errors as done before
when testing a fit by trial and error. The results of forecasting with A/=3 for the random data can be

seen in Table 3.2.1.

Table 3.2.1: Results of the moving average (M=3)

t D Average | Err Err?
1 3 - - -
2 9 - - -
3 5 - - -
4 7 8.7 13 1.7
5 9 7 2 4
6 2 7 -5 25
7 7 6 1 1
" - 6 - 4
9 8 . 8% 23 53
10 2 77 -5.7 32.5
73.5

The computed average is shaded in Table 3.2.1, after three days have elapsed to accumulate the first
average. The choice of M=3 was selected simply to illustrate the moving average. A total is given

in the last row for the sum of the squared errors.
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A shorter moving period, such as M=2 or 1, or a longer one, M=4 or 5, could be tested to determine
the effect on the sum of the squared errors. All the sums of the squared errors for moving periods
from 1 to 5 are shown in Table 3.2.2. N is the number of data on which the average was tested, that
is, the number of forecasts that were made. The more data included in the average, the less are

available to test the fit. In the last column, the sum of the squared errors is divided by V.

Table 3.2.2: Comparison of squared errors for M=1 to 5

M | N YEr | YEw?/N
1 9 171.0 19.0
2 8 96.8 12.1
3 7 73.5 10.5
4 6 64.2 107
5 o

From Table 3.2.2, M=5 has the lowest sum of the squared errors (shaded). According to the least
squares methodology, M"=5. From Table 2.2 4, the best indicator of goodness of fit was the sum of
the squared errors because it gives more weight to large errors, less weight to small ones, but in
principle, some weight to all errors. In Table 3.2.2, dividing this sum by the number of data used to
test the average (Mean Squared Error) puts the results in perspective. The errors from M=3, M=4
and M=) are about equally large, not immediately obvious from the squared error totals. A moving
period larger than 5 would mean that more than half the data are being used in the average, so there

would not be enough data left to adequately test the forecast.

Looking at the formula for the moving average, Fit (t) = Average + 1/M (New D, - Old D,,,), the
forecast is based on a percentage (1/M) of the change between the newest and the oldest data. As the
length of the moving period is changed, so this percentage changes inversely. For example, a moving

period of 4 means that the forecast includes 25 percent (1/4) of the change, whereas, if the moving
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period is halved to 2, 50 percent of the change (double) is considered. This percentage refers to how
responsive a forecast is with respect to new data. The more responsive the model is, the greater the
effect the newest datum has on the average. The longer the moving period, the less responsive the

model becomes, because a smaller percentage of the change is considered.
If M=1, the forecast for tomorrow is based 100 percent (1/1) on today’s datum. This is a special case
of the moving average because the forecast for tomorrow is the datum from today, as shown in Table

323,

Table 3.2.3: Moving average (Avg) of M=1

t b | Ave | B | B
1 3 _ - _
: i - 6 36
3 N B 16
4 . - ‘
5 9 g 2 4
6 = B 0
7 ! Z > 25
8 g - 1 1
9 i :
10 2 R -6 36
171

Mean Squared Error =171 ~9 =19

Table 3.2.3 has the largest mean of the squared errors for all the moving periods tested. This is not
surprising because responding to random data only leads one off-course, because they are random.
The most responsive forecast should, therefore, be the worst. In this example, it is also to be expected

that the longest moving period would be the best because it is least responsive to random data.
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As before, a methodology is required that will determine A" without computing the sum of the

squared errors for each moving period. For this purpose, three other statistical indicators of error will

be considered which are computed from errors relevant to the number of data available to test the

average. These are:

Mean Absolute Deviation (MAD):  This is the average absolute error, which is the sum of the
absolute errors divided by the number of forecasts made.

Variance (MSD):  Also referred to as the Mean Squared Deviation (previously
the Mean Squared Error), this is the average of the squared
errors, or the sum of the squared errors divided by the
number of forecasts made.

Standard Deviation (SD or 0):  The square root of the Variance (MSD). It is an indicator of
how much individual data vary from the mean.

These definitions can be applied to the example for M=3:

MAD =193+7=2.76  Variance (MSD)=7347+7=105

SD=vMSD =3.24

The MAD, MSD and SD are shown for all the moving periods in Table 3.2.4.

Table 3.2.4: Comparison of MAD, MSD and SD for M=1 to 5

M | MAD MSD SD (o)
1 3.67 19.00 436
2 2.69 12.09 3.48
3 2.76 10.50 324
4 2.88 10.70 327
i 2.68 10.16 318

The moving period of 5, shaded in Table 3.2.4, is best on all counts. According to the Least Squares

Methodology, minimising the sum of the squared errors is a criterion aimed at reducing larger errors

by weighting them more. Squaring makes the sum of the errors too large, but by taking the square

root of the Variance (MSD), the Standard Deviation is brought back to the same order of magnitude
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as the Mean Absolute Deviation, in spite of having weighted larger errors to a greater degree. The
standard deviation (sigma) is, therefore, a valid criterion for judging the accuracy of a particular

forecast, M’ being determined by the lowest sigma (o).

3.3  Consistency of the moving average

There is an intemnal inconsistency with the moving average. In the case of the random data above, the
moving average responded as expected, a longer moving period being best for such data. Similarly,
a shorter period would prove to be best if the average was moved through data with a trend or other

pattern, and it would be comparatively simple to demonstrate this.

However, before engaging in such a project, one should consider whether this is in fact worth doing.
Unfortunately, the moving average is not intrinsically suited to keeping up with the unfolding process,
for two reasons. Firstly, recent data are included and receive some weight, but older data are
excluded and receive no weight from the average. Secondly, data within the actual moving period are

of different ages but they receive equal weight.

The older data within the moving period are still treated with the same importance as the new data,
because all data are divided equally in an average. Each datum in the moving period is given equal
weight, and those outside of the moving period are given no weight at all. The graphical display of

the weight assignment (M=3) by the moving average can be seen in Figure 3.3.1.
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Figure 3.3.1: Weight assignment with M=3
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100 e e e e o e e e e e e A e e i et e = s e
90 e e e o o o o e e e e et A e e+ e — o — ——— ———t
80 e e e e e e e e e e e e T . m s — o —— o —t —— k=t —— — ——
70 e e o o o o o e e o e e+ e e 4 it e e o — ——t ——— ——r —— — ——
60 e i e et e - = et 4+ ¢ —— 1y~ —— 1 —— .
50 e e et e ettt ————————
ol No weight ~ 7~
20 S
10 M
0 t T t t — +

1 2 3 4 5 6 7 8 9 10

(t8) (8) (+-7) (-6) (+-5) (t<4) (t-3) (+-2)  (t-1) )

Time

Figure 3.3.1 shows that 33 percent weight is given to each datum in a moving period of 3, and no
weight is given to data older than those involved in moving the period. Moving assigns weight to data
in the moving period uniformly, and abruptly fails to consider data excluded from this period. It
would seem more reasonable to give more weight to recent data, less weight to distant data but, in

principle, some weight to all data. Ideally, weight would be assigned according to the age of the data,

with older data being of less importance.

To develop a method leading to proportional weights, Brown suggests: “...suppose...there were some
catastrophe in the data-processing centre, which destroyed all historical information...” (1963 100).

How would one replace the information lost in such a scenario? There are three plausible answers:

° omit the past data from forecasts;
° replace lost data with a subjective estimate;
° substitute the current average for the lost data.

Omitting data seems arbitrary, while using subjective methods defeats the idea of forecasting, that
is, objectivity. Or rather, if one were to replace the missing data subjectively, would one not use the
last available average? The formula for the forecast for tomorrow would change such that the ‘Old’
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section of the ‘New - Old’ becomes ‘Average’, the old data having been lost.

Moving: A=A+ 1/M (New - Old) CHANGE from oldest to newest

After loss: A=A+ 1/M (New - Average) ERROR between newest and
previous average

Now, with each new day, the forecast for tomorrow is the forecast for today (as before), plus a
fraction of the difference between today’s forecast and today’s datum. It is no longer the change in

the data from oldest to newest that is considered, but today’s error.

Not only is the new formula meaningful in itself, it is also simpler to compute. All that is required for
tomorrow’s forecast is today’s datum and today’s forecast. This not only provides an objective
assessment of the lost data, but makes the equation much simpler than before: none of the many past
data need be stored at all but only their average, a single value. There is now a new formula in its own

right.

In view of the inconsistencies with moving, it is important to investigate how this new formula assigns
weight to past data. For the purpose of studying this, in the formula 4 = A4 + I/M (D - 4), the weight
1/M will be replaced by w.

Therefore: A=A+wD-A)=A+wD-wA=wD+A(l-w)

Today’s data is weighted by w, while the average is weighted by the complement of w, /-w. In order
to simplify, the weight (w) for today’s data is commonly called alpha («), and its complement, beta
(B). Therefore A = aD, + 3. Figure 3.3.2 shows how this formula assigns weight to past data as they

become older and older, by investigating the weighting of previous averages by £
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Figure 3.3.2: Assignment of weight through time

Today A= aD,, +PA
Yesterday aD,, +BA
Day before aD,, +BA
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Today’s average for tomorrow is calculated from today’s datum (t-0) and yesterday’s average. In
turn, yesterday’s average was calculated from the previous day’s datum (t-1) and average from the
day before (shown in red). So yesterday’s datum is weighted twice: first by £ in multiplying 44 today,
then by & in computing yesterday’s average, D, ;. As one moves back through time the forecast has
been based on the previous day’s datum and average, while the weight assigned to past data

diminishes, £ being a fraction less than 1.

As data become older, so their inclusion in the forecast for today is discounted in proportion to their
age. The weight given to past data diminishes exponentially (p*°), age appearing as an exponent. The
new formula, therefore, assigns weight to past data according to the number of times they have been

used in previous averages.

3.4  From moving to smoothing

Brown calls this new formula smoothing where “...the new smoothed value is equal to the previous
smoothed value plus a fraction o of the difference between the new observation and the previous
smoothed value..” (1963: 101). The weight assigned to each datum is, therefore, a function of how
old the data are, and can be represented by expressing the weight given to past data as:

Weight(Age) = a x 3%, where today’s age is zero.
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Table 3.4.1: The assignment of weight with ¢=0.2, 0.5 and 0.8 (B=1-0)

Age a=0.2 a=0.5 c=0.8
1/5 x (4/5)% | 1/2 < (1/2)* | 4/5 x (1/5)*
0 0.2 0.5 0.8
1 0.16 0.25 0.16
2 0.128 0.125 0.032
3 0.1024 0.0625 0.0064
4 0.08192 0.03125 0.00128
5 0.065536 0.015625 0.000256
6 0.0524288 0.0078125 0.0000512
7 0.0419430 0.0039062 0.0000102
8 0.0335544 0.0019531 0.0000020
9 0.0268435 0.0009765 0.0000004
Sum  0.8926257 0.9990233 0.9999998

In Table 3.4.1, the weight given to each day’s datum is shown, today’s age being equal to zero.

Where more weight is given to recent data, for example, alpha () equal to 0.8, less weight can be

given to past data, although all data do, in principle, receive some weight.

The sum of all weights, shown in the last row, must eventually equal 1 or 100 percent, which is

simply e + [, or all the weight that can be assigned to data. The more weight given to recent data,

the more responsive a forecast is to recent changes in the data. This is obvious with @=0.8 where the

weight assigned to past data quickly diminishes as time passes, and nearly 100 percent of the weight

is assigned in just 9 data. The distribution of weight assignment for #=0.5 can be seen in Figure 3.4.1.
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Figure 3.4.1: Weight assignment with a=0.5 (§=0.5)
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(Source: Brown, 1983: 102)

Figure 3.4.1 shows how "smoothly" smoothing applies weight to past data, where recent data receive
more weight than distant data. Unlike moving, recent data are considered more important and
included to a greater degree in the forecast for tomorrow, an idea truly consistent with the purpose

of weighting data by their age.

3.5 Smoothing versus moving

“...Smoothing produces an average in which past observations are geometrically discounted
according to their age. A moving average weights the A most recent observations each //M, and all
earlier observations have weight zero...” (Brown, 1963: 106). This proportional assignment of weight

by smoothing seems intrinsically more meaningful than with moving. Determining whether this is a

fact, requires a comparison of the two methods.

Before this can be carried out, a way must be found for comparing the magnitude of o and M,
irrespective of their ways of assigning weight (equally or progressively). This can be done by having
the “...same average age of the data...” (Brown, 1963: 108). The average age for data in a moving
period of 5, for example, can be computed by adding eachage 0+ 1 +2+3 +4 = 10, and dividing
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by the number of data in the moving period (Brown, 1963: 107), 10+ 5 =2.

As for computing the average age, one may note that adding the ages of the data in a moving period
involves the sum of an arithmetic series which starts at age zero, today’s datum. The general formula
for the sum of an arithmetic series is (n+1) x n/2, where n is the number of data in the series. It is
one less than the moving period because the series starts at zero.

Sum of ages = (n+1) x n/2 = (4+1) x 4/2 =10
The average age is then computed by the sum divided by the moving period:

Average age = Sum of ages + M

In order to derive a formula for computing the average age, M-/ can be substituted for » in the sum
of a series formula: [(M-1)+1] x M/2. Therefore:

Sum of time = M (M-1 Average =M - 1
2 2

The sum is divided by M to compute the average. The average age is (M-1)/2 = 4/2 =2. On the

average, data in a moving period of 5 are 2 days old.

When the data are equally weighted, the formula (AM-1)/2 is simple enough. However, when the data
are unequally weighted, one must compute the sum of each age, each one multiplied by its weight.

Table 3.5.1 has been compiled for this purpose, with reference to Figure 3.4.1 for the weights

assigned to each datum according to age.
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Table 3.5.1: The average age for smoothing

Age | Weight = a x p*
0 o x B°
1 o x B
2 o x B2
3 o x
4 o x
_aTP Ge0iom)

The term for the sum of all ages multiplied by their weight can be seen as &) kf#*, where k is a series
from zero to infinity. This sum approaches “B/o” (Brown, 1963: 107). For smoothed data, where
F=(1-a), the formula for the average age then simplifies to (7-a)/a. By equating the formulae for the

average ages of moving and smoothing, and solving, one can determine & with a response comparable

to M.
M-1=1-a
2 o
o =2/(M+1)

Therefore, a moving period of 5 will produce results comparable with those produced with a

smoothing constant of & = 2/(5+1) = 2/6 = 33% (1/3). Table 3.5.2 lists a number of moving periods

with their equivalent smoothing constants.
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Table 3.5.2: Comparable moving periods and smoothing weights
for the one most recent datum

M 1/M o

1 1 1

2 0.5 0.67
3 0.33 0.5
4 0.25 0.4
5 0.2 0.33

(Source: Brown, 1963: 108)

The comparison of how differently moving and smoothing assign weight to past data, is most obvious
when seen graphically, shown in Figure 3.5.1. A moving period of 5 is used (¢=0.33), over a period

of ten days (age=0 to 9).

Figure 3.5.1: Weights assigned by moving and smoothing

Percentage (%)

357 B Smoothing
30 +

25 +
20 +
15 4

®Moving

10 +
5 <+

(Source: Brown, 1963: 102)

The random data used in section 3.2,39579278 8 2, will be used in Table 3.5.3 to compare

moving to smoothing, with moving periods of 1 to 5, and their equivalent smoothing constants,

expressed as a percentage.
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Table 3.5.3: Comparing moving to smoothing

Moving ' Smoothing
M Sigma Sigma o (%)
1 436 4.36 100
2 348 | 344 66.67
3 324 | 340 50
4 397 | 349 40
5 3.39 33.33

Sigma for both moving and smoothing are of similar magnitudes, which shows that the average age
formulae were derived correctly. Where M=1 and a=100%, sigma is identical for both moving and
smoothing, because the forecast for tomorrow is the datum from today in both cases. The shaded
areas in Table 3.5.3 highlight where moving was better than smoothing, as indicated by lower values

of sigma.

Moving was slightly better on three occasions, specifically when M was large, that is, less responsive.
However, the data used in Table 3.5.3 are random (taken from Trueman, 1981: Appendix E), and
moving was expected to be relatively less responsive to new data than smoothing (Figure 3.5.1). The
fact that smoothing is worse than moving with random data, paradoxically proves the point, namely
that smoothing is more responsive than moving. Conversely, it can be concluded that either

smoothing is worse than moving, or else the best response is a slow response.

3.6  Summary
The least squares methodology has been extended so that the best forecast can be judged by the
criterion of minimising the standard deviation or sigma. While sigma is of the same magnitude as the

mean absolute deviation, it tends to be somewhat larger, because large errors have been weighted

more heavily than small ones.
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Furthermore, smoothing is better than moving for three reasons:

Firstly, smoothing is inherently consistent, assigning weights proportionally to a datum’s age, whereas
moving assigns weight abruptly;

Secondly, it is more responsive to recent data, less responsive to distant data, but in principle gives
weight to all data;

Thirdly, it is faster to compute, requiring the storage of only the average and one datum.
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CHAPTER 4

Computational aspects of fitting a given model

4.1 Introduction

The application of time series analysis to manufacturing will require the timeous solution of many
complicated calculations, such as those explained in previous chapters. Fitting a model with the
established equations and formulae can hardly be performed by hand, because of the large number
and magnitude of real data. Unfortunately, given the present formulae, these calculations cannot be

performed by a computer either.

For example, although two simple formulae were derived to compute the origin and slope in one step,
simultaneous solution of equations cannot be performed by a computer, if it were to follow the
intuitive so-called "substitution method". Rather, a fast and reliable mechanical procedure is desired
that does not require any intuition. Matrix multiplication provides one method for matching the

mechanical operations a computer can do, with intuitive mathematics.

4.2  Matrix multiplication in general

As for speed and simplicity of computation, one can take advantage of matrix multiplication to obtain
the sums required by the least squares method. This is a standard mathematical method requiring
minimal human intervention, which makes it suitable for the computer. It involves routinely

multiplying the cells in the columns of one matrix by the corresponding cells in the rows of the other.
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For example, given the row and column vectors from two matrices X and Y, the procedure for

multiplication is as follows:

X=4 6 9 57 Y=3

X XY =(4x6)+(6x12)+ (9 x3)+ (5 x 12) + (7 % 6)
= 24 + T2 + 27 + 60 + 42 =225

(Source: Kemeny, Schleifer, Snell and Thompson, 1962: 235)

Each row element in the matrix X is multiplied by the corresponding column element in matrix Y. This
process is repeated for each row and column in the two matrices. Therefore the number of rows and
cells in one matrix must be equal to the number of columns and cells in the other matrix, resulting in

a square product matrix.

4.3  Matrix multiplication for the covariance matrix
Table 2.4.7 is repeated in Table 4.3.1, with a view to matrix orientation. The simple sums required
were those for the time vector, the data vector, the data vector multiplied by the time vector, and the

time vector multiplied by itself. These sums for each row are totalled in the last column.

Table 4.3.1: Data used for simultaneous equation solution

t 1 2 3 4 5 15
D 10 20 30 50 40 150
txD 10 40 90 200 200 540
t> 1 4 9 16 25 55

The sums of 540 and 55 in the lower right part of the table, those involving the product of two rows,
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that is, the sum of the time vector multiplied by the data vector, and the sum of the time vector
multiplied by itself, can be obtained by matrix multiplication. However, paradoxically, the simple

sums of time and data, in the upper part of the table, cannot be computed in this manner.

As they stand, these totals require simple addition, not multiplication. One could of course write a
separate routine for these at the expense of having two routines, one for the simple sums and the
other for those involving the products. However, a/l sums can be obtained by one simple loop if one
remembers that a number remains unchanged if it is multiplied by 1. In other words, by introducing
a "dummy" vector containing only the number 1, the so-called unify vector, a standard multiplication

and summing routine can be used for all the sums required.

By adding the unity vector to the basic data matrix, the simple sums for time and data are computed
by multiplying each vector by the unity vector. Using the simple data 50 40 30 20 10, this is shown
in Table 4.3.2. A "clean" series is used, that is, a straight forward trend, so that the multiplications

can be simply illustrated because one is using perfect data.

Table 4.3 2: Data matrix

Unity 1 1 1 1 1
Cause (time) 1 2 3 4 5

Effect (data) 50 40 30 20 10

Strictly speaking, multiplying the matrix by itself requires it to be rewritten with each row arranged

in a corresponding column, as shown in Table 4.3.3.
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Table 4.3.3: Data matrices to be multiplied

Matrix B
Matrix A - Unity Cause Effect
Unity 1L 1 1 . 1 i 1 50
Cause 1 2 3 4 5 L 2 40
Effect 50 40 30 20 10| f I 3 30
| I 4 20
EE 5 10

Now that the data are arranged in two matrices 4 and B, the standard routine explained in section

4.2 can be applied to obtain all the sums required.

Specifically, multiplying the unity vectors by each other (shaded), yields the number of data, a sum
previously obtained through counting on one’s fingers. Now it is obtained by summing,

Ix1 + Ix1 + IxI + .., N times, which naturally yields N the number of data. This may seem a
complicated method for counting one’s data, but it has the advantage of permitting use of one

standard routine for all the sums required.

This applies similarly to the simple sum of the data. On the other hand, multiplying the time vector
by itself, then the data vector by the time vector, involves the same frue multiplications previously
done by hand. A complete matrix multiplication involves also multiplying the data column by the data

row. This naturally yields D,xD, + D,xD, + D;xD, + ..., the sum of the squared data.

In short, matrix multiplication, including the unity vector, obtains not only all the sums previously
computed by hand, but also the sum of the squared data. This will subsequently be used to compute
the residual variance (the sum of the squared errors), automatically, while solving the simultaneous

equations. This sum was previously computed after the fact, in a separate operation.
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The procedure for counting the number of data, the sum of the unity vectors multiplied by each other,
is shown in red in Table 4.3 4. The results of the other multiplications and additions appear in the

matrix on the far right.

Table 4.3.4; Covariance matrix computation

Unity Cause Effect

1 1 50 Unity Cause Effect

Unity 1 ) 1 1 1 1 2 40 Unity & 15 150

Cause 1 2 3 4 5 x 1 3 30 = Cause 15 55 350

Effect 50 40 30 20 10 1 4 20 Effect 150 350 5500
i 5 10

The matrix finally obtained in Table 4.3.4, is commonly known as the covariance matrix. Its essential
co-variances are those between the cause and effect vectors. The so-called co-variances involving the
unity vector yields the number of data and their sums, while the "co"-variance for the data themselves

yields the variance properly speaking.

4.4 Solution of the covariance matrix
As one used the standard method of matrix multiplication including the unity vector, to obtain the

covariance matrix, so a standard method can be used to solve it. It is called matrix inversion.

This method is explained in Kemeny, Schleifer, Snell and Thompson (1972), by means of a flow
chart. This flow chart is reproduced in Figure 4.4.1, with certain typographical changes. The flow
chart’s z-variable refers to "tableau" or table, here the covariance matrix of n rows and m columns.
Step five has been omitted because it involves labelling the covariance matrix, known in this case to

always be symmetrical, and having the labels Unity, Cause and Effect.
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Figure 4.4.1: Flow chart for matrix inversion procedure

Start.
Set up initial table.

No Does the ith row of
the old table have a nonzero

coefficient f; for 1<j<n?
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the old table such that f;+0.
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. the ith row of the old table by
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v

i 4 | |

For k=i subtract t,, times the
ith row of the old table from
the kth row. Enter the result in
the kth row of the new table.

Replace
ibyi+1

8

Is the number ¢ No

i,n+1

to the right of the line in
the jth row equal to 0?

No

Are there any variables
appearing as labels at the tops of
the columns in the final table?

!

: | 14 12

Stop. Original Stop. There are infinitely Stop. There is a unique |
equations do not many solutions to display solution displayed inq(he
have a solution. i the final table. final tableau.

(Source Kemeny et al, 1972: 193)
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In other words, for symmetrical matrix inversion. ..

1.

Identify the PIVOT, normally the next item on the diagonal. If done, new table contains
identity matrix and solution.

Transfer old table row and column headings to new table.
NEW PIVOT ROW = OLD PIVOT ROW / PIVOT.

In the PIVOT COLUMN of the old table, take the next item other than the PIVOT. Call it
CLEAR. If none, go to 1.

NEW CLEAR ROW = OLD CLEAR ROW - CLEAR x NEW PIVOT ROW.
Go 1o 4.

(Source: Adapted from Diegel, 1987: 3)

These steps can be applied to the covariance matrix for the data 50 40 30 20 10 shown in Table 4.3 4,

repeated in Table 4.4.1, with the results from the first pivot. The superscript nhumbers identify which

of the above six steps is being performed. Note that the data, obviously, have a negative slope of -10,

and that this slope persists perfectly.

Table 4.4.1: Covariance matrix and first pivot

Unity | Cause Effect Unity> | Cause’ | Effect?
Unity 5 15 150 Unity? 1? 3 30°
Cause 15 55 350 Cause’ 0’ 10° | -100°
Effect 150 350 5500 Effect? 0’ -100° 1000°

PIVOT = 5, CLEAR = 15%, 150*

After the second pivot, the solution (inverse) for the covariance matrix can be seen in bold in the right

hand table in Table 4.4.2. The sum of the squared errors, zero, appears below the best origin (60) and

slope (-10) respectively.
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Table 4.4.2: Second pivot and solution

Unity | Cause Effect Unity* | Cause® | Effect’
Unity 1 3 30 Unity’ 1 0° 60°
Cause 0 10 -100 Cause’ 0 1° -10°
Effect 0 -100 1000 Effect’ 0 0’ 0’

PIVOT = 10", CLEAR = -100%, 3*

Intuitively, one can see that the computed slope and origin are correct because the data are so simple:

one has a constant rate of change, so one obtains a perfect fit. The residual variance or sum of the

squared errors is, therefore, zero.

Fitting a trend line to irregular data, for example, 10 20 30 50 40, with 40 and 50 reversed, should

result in an imperfect fit. The data matrix for this multiplication is shown in Table 4.4.3,.

Table 4.4.3: Data matrix of non-linear data

Unity
Cause

Effect

10

20

30 50

40

The multiplication and solution of Table 4.4.3 results in the covariance matrix and its inverse, as

shown in Table 4.4 4.
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Table 4.4.4: Covariance matrix and its inverse
Unity | Cause | Effect Unity | Cause | Effect
Unity 5 15 150 Unity 1 0 3
Cause 15 55 540 | Cause 0 1 9
Effect 150 540 5500 Effect 0 0 190

The origin, slope and residual variance are again shown in bold in Table 4.4.4. The residual variance
is 190, highlighted in bold, which is the same as was computed in Table 2.4.5 by hand, using the same
data. The origin (3) and slope (9), also in bold, are the same as those computed in section 2.4.

Conversely, the residual variance for an imperfect fit is obviously not zero.

4.5  Summary

Matrix multiplication and inversion provides a mechanical and fast method for fitting the best linear
algebraic model to any data, perfect or otherwise. Matrix multiplication requires no human
intervention, only computing power, thus lending itself directly to computer application. It also yields
not only the best fitting coefficients for any set of data, but also the residual variance (the sum of the

squared errors), automatically.
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CHAPTER §

Special case of fitting time series

5.1 Introduction
Chapter 4 explored the fitting of the simple trend line, by means of mechanical computation.
Naturally, the method must be extended to more complex models, including curves and

periodic/trigonometric series, and, in principle, to a practically unlimited number of data.

However, before simply extending matrix multiplication to solve higher order models in a routine
fashion, one should consider the question of data arrangement and storage. In addition, one must

consider certain problems of precision, and obviously, avoid division by zero.

5.2  Data storage and limitations

The standard method of matrix multiplication requires the storage of both matrices, 4 and B, so that
each row can be multiplied by its corresponding column. If these matrices were to include al/ the data
currently available, as is presently required, their size would slow down computations. Indeed, some
programming languages place quite narrow limits on the largest allowable matrix. Complete storage
may be impractical if not impossible, certainly if both 4 and B matrices are stored explicitly.
Therefore, one should like to find a way of overcoming the limitations of programming languages,

whilst being able to change the raw data vector without having to reconstitute the data matrix.

One approach results from studying the sequence of operation, first for the matrices in their original
order (AxB), then after exchanging their positions (BxA). Table 5.2.1 shows the matrices used in the

previous multiplication, where the shaded row in matrix A was multiplied by the shaded column in

matrix B.
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Table 5.2.1: Traditional order of matrices to be multiplied

Matrix B
~ Unity Cause Effect
Unity 1 ety | 1 L0
Cause 1 2 3 4 5 il 2 40
Effect 50 40 30 20 10 1 3 30
. 4 20
1.5 10

Since both matrices are numerically identical, one should obtain the same result after reversing the
order of multiplication. Table 5.2.2 shows multiplication of matrix B (shaded row) by matrix 4

(shaded column).

Table 5.2.2: Multiplication after reversing the order of A and B

Matrix B

 Unity Cause Effect| | Matrix A

e i 5 Unity 1 1 1 1 1
1 2 40 Cause 1. 2 3 4 5
1 3 30 Effect 50 40 30 20 10
1 4 20
1 5 10

Obviously, the results of multiplying matrix B by A (row by column) in Table 5.2.2, are the same as
achieved in Table 5.2.1, and previously in Table 4.3.4. All the multiplications are repeated, although

in a different order.

Swapping the order of multiplication of the matrices may seem trivial, but it has enormous potential
for improving the efficiency of data storage. As each row of matrix B is multiplied by the
corresponding column in matrix 4, only the one current datum, one time value and the unity number
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are involved. Previously, multiplication was conducted on a vector-by-vector approach, which
required the full storage of all the vectors. This is impractical with very many data, such as data from
a manufacturing firm. All that is required now is the current vector, from both data matrices, which

contains the one current datum, current time, and the unity number.

As a second step, one notes that in the special case of time series analysis, the matrices B and 4 are
numerically identical, differing only in their arrangement by column versus row. Therefore, the second
matrix, or the column by which each row is multiplied, can be eliminated by multiplying the first

matrix by itself. In other words, one really needs to store only one matrix, not two.

Inspection of the shaded areas in Table 5.2.2 reveals that at any one time, only one row of the matrix
is operative. That is, one multiplies (1 1 50) by (1 1 50), then (1 2 40) by (1 2 40), each
independently of the other. If only one row is operative, then one need only store this one row. This
means a double advantage:

° unlimited number of data;

° new rows can be added as they become available, without actually storing the

previous ones. Only the sums-to-date are stored in the covariance matrix.

No further storage space is required by introducing new data, because, at any point in time, only
today’s datum, time and unity values are stored. On the other hand, all the totals for the covariance
matrix have to be stored, but the covariance matrix is comparatively small: its size depends on the

number of coefficients, not on the number of data.
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5.3  Vector generation

The unity vector is always 1, so it can be stored as a constant rather than a vector. Time increases
by 1 as each new datum is included in the multiplication for the covariance matrix. So it can be
generated as one goes along, without it having to be stored in a vector at all. In other words, all time-
related data can be generated by the multiplication process itself. New data can be included in the
computation of the covariance matrix because multiplication progresses with time, as opposed to the

vector-by-vector approach in the traditional method.

By simply continuing the multiplication process, increasing time by 1 from day to day, and including
the new data, the matrix multiplication can be extended to any number of data, without having to
store them at all. One may want to store the data for historical/archival purposes, but they need not
be stored for the sake of obtaining the covariance matrix. Only the covariance matrix itself will have

to be stored in its entirety, so that it can be solved.

The program SHOWLOOP .PAS is listed in Appendix 2. It is a Pascal program that shows the loop
for matrix multiplication with, and without, complete matrix storage. The significant section to

compute the covariance table without storing all data, is shown in the form of a flow chart in F igure

53.1.
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Figure 5.3.1: Flow chart for SHOWLOOP.PAS program

4 :
Time =
Time + 1

2
- Current
datum input
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Add to covariance matrix
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data?
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The variable UNITY is set constant to one, and TIME
reset to zero.

TIME is increased by 1 each time the loop is repeated.
The time vector is thus generated by the repetition of
the loop.

The current datum can be read by the computer from
disk or be entered by the user. In either case, only the
current datum is involved at any point in time.

The multiplications added to the totals in the covariance
matrix, are computed with only the current datum being
stored. TIME is generated and UNITY is held constant.

If there are more data to be included in the covariance
matrix, the loop is repeated.

If not, the covariance matrix can be displayed. The
inverse must then be computed, as was shown in Figure
4.4.1, to solve the matrix.

There are now only three items used in the multiplication and summing for the covariance matrix.

Moreover, it is composed of two symmetrical halves, the top-right triangle (shaded) being the same

as the lower-left (also shaded). This is shown in Table 5.3.1 with the identical halves shaded.
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Table 5.3.1: Covariance matrix

Unity | Cause Eﬁ‘ect
Unty | S 15| 150
Cause =l 55 : 350
Effect | 150 350 5500

Calculations thus actually need to be carried out for only one half, and this is then copied to the other,
reducing the number of calculations by half. Looking at the covariance matrix, the unity value in
multiplications and sums can be replaced by time with an exponent of zero (t°=1), and cause with time

to the power of 1 (t'). The covariance matrix from Table 5.3.1 is revised in Table 5.3.2.

Table 5.3.2: Revised covariance matrix

Time® | Time' Data |
Time? s mo s b (e
Time' | 15 55 | 359
Data | 150 @ 350 { 5500

The trend or linear model has two coefficients, that is, the origin and the slope, both of which, along
with the residual variance, are shown in the right hand column of the inverted covariance matrix.
However, referring to section 2.5, a new column is added for every coeflicient to be added to the
formula, and a new row for time, with the corresponding power. Thus far, the example has been
restricted to fitting a trend to a set of simple data. Computing a solution with a curved model, time

squared, for example, will merely require an additional column and row in the covariance matrix.
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5.4  Fitting higher order models

The data 6 10 16 24 34, from Table 2.5.1, were used to explain the fitting of a curve/trinomial. Fitting
these data with matrix/row multiplication, including the value of time squared in the multiplication
with the other operative values, results in the covariance matrix shown in Table 5.4.1. The data used

to compute the matrix, not stored but available as time unfolds, are also shown in Table 5.4.1.

Table 5.4.1; Curve covariance matrix

Time’®  Time* Time’ Data
1 1 1 6 Time’ | Time' | Time? Data
1 2 4 10 Time’ 5 15 55 90
1 3 9 16 Time! 55 225 340
1 4 16 24 Time? 979 1424
1 5 25 34 Data 2124

The inverse of this matrix is shown in Table 5.4.2.

Table 5.4 2: Curve solution matrix

Time® | Time' | Time? Data
Time’ 1 0 0 4
Time' 0 1 0 1
Time? 0 0 0 1
Data 0 0 0 0

The solutionis 4 + 7 x ¢+ 7 x £, with no residual error, shown in bold in Table 5.4.2. Substituting
these coefficients back into the fit proves the accuracy of the solution:
4+1+1=6,4+2+4=10,4+3+9=16, ..

The matrix multiplication methodology can, therefore, be extended to fit any polynomial model by
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simply including the extra value for time in the multiplications. In addition to fitting polynomial
models, periodic or seasonal data can also be fitted, simply by including the corresponding seasonal

terms in the computation.

To illustrate the fitting of seasonal terms, one must first review the components of such a model. A
simple repetitive wave has at least one polynomial coefficient for the level, and one pair of sine and
cosine coefficients to control the wave pattern. Listed below are definitions relevant to the fitting of
repetitive data. More precisely, one of these determines the ups and downs of a wave pattern, the
other one the location of the peaks:

Periodicity:  The distance between two corresponding points on a graph, for example, the two
highest points.

Amplitude:  The distance from the highest to the lowest point on the curve, divided by 2, that is,
the curve’s maximum variation from the mean.

Phase: Location of the peaks (or valleys), that is, the point at which the data change from
increasing to decreasing, or vice-versa.

The sine term determines the amplitude of the peaks, while the cosine term controls the location of
the peaks and troughs, shifting the phasing to the left or to the right. The periodicity of the data is
used in computing both coefficients. A set of 25 data with a simple wave are 11, 21,21, 11, 1, 1, 11,

21,21, 11, 1, 1,.... They can be seen in Figure 5.4.1.
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Figure 5.4.1: Graph of a simple wave (6-point)
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The first peak is located at time 3, in Figure 5.4.1. The periodicity for the data is visually 6, that is,

8.5 - 2.5 = 6, the distance between the location of any two peaks. This means that each wave cycle

spans a time period of 6. The phase angle is calculated from 360 degrees divided by the visually

identified 6-point period. The sine and cosine values are computed from this angle, for example:
sin (360/6 x 4) = -0.866 and cos (360/6 x 4) = -0.5 for t=4.

As the value of time changes, so do the values for sine and cosine depending on whether the wave

is going up or down.

The coefficients of the sine and cosine terms in the model determine by how much the wave goes up
and down, the amplitude, and these must be solved to fit the periodic data. This can be done by
computing a covariance matrix with columns and row for Time®, Sin and Cosine values. The values
required for these multiplications are Time® (1), sine at time ¢ (sin (360/period x t)), cosine at time

t (cos (360 / period x time)), and the current datum. This is shown for the first 4 of 25 data in Table

5.4.3, along with the covariance matrix.
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Table 5.4.3: Wave covariance matrix

Time® Sin  Cosin Data Time® Sin | Cosin Data
1 0.866 0.5 11 Time® 25 0.87 0.5 275
1 0.866 -0.5 21 Sin 12.75 0.43 78 81
1 0 -1 21 Cosin 12.25 -114.5
1 -0.866 -0.5 11 Data 4625

The inverse of the covariance matrix for these data computes the coefficients to be 11, 5.77 and -10,
with a residual error of zero. This means that the data are perfectly fitted by the formula:

11+ 5.77 sin (60 % 1) - 10 cosin (60 % 1)

So, in principle, the same matrix/row multiplications can be used to fit the data, using the Jeast

squares methodology, for periodic models as well as polynomial ones.

In Figure 5.4.1, the amplitude of the wave appéared to be 10, the highest value being 21, less the
mean of 11. However, the curved nature of the graph means that the fitted peak is not the highest
observed value, but slightly higher, the true amplitude being computed by the sine and cosine
coefficients (R and S) in the formula: Amplitude = v"R? + S2 Therefore, ¥7(5.77)° + (-10)*], equals

11.55 and not 10.

5.5  Determining the optimal periodicity

Periodicity can often be visually determined, as in the case of the simple data in Figure 5.4.1. For
genuine data, periods may not be obvious when "looking" at the data. Furthermore, automation and
application to the computer requires a computational routine that is both accurate and objective for
any data and for several periods. Indeed, it must also determine whether a given periodicity is strong

enough to warrant fitting a wave.
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Autocorrelation is a useful tool in determining such a periodicity. It is the correlation of a data series
to itself, "auto" Greek for "self", rather than to some other series or cause. In turn, one determines
the periodicity of the data series by lagging them: this means that in a given set of data, any given day
is compared to the previous day throughout the series, then to one two days previously, and so on.
The data series without any lag, the raw data as they stand, is called the base series, to which other
series are compared. Indeed, a lag of zero relates the data to themselves as they stand, obviously

resulting in an autocorrelation of 100 percent.

By increasing the lag of a series, the phasing is being shifted to the right. This changes the coefficient
of autocorrelation, unless the data are all equal. This particular correlation is computed as the
covariance of the base and lagged series, divided by the variance. The best periodicity, if any, is
determined by the lag with the greatest correlation. The resulting vector of correlations, one for each
lag, is known as the autocorrelation function. The number of lags it takes for the data to fall into

phase, defines the maximum periodicity. Table 5.5.1 shows the data from Figure 5.4.1 lagged by 1

to 6 steps.
Table 5.5.1: Lagging a data series (25 data)

time: 1 2 3 4 5 6 7 8 9 10 11 12
0-lag: 11 21 21 11 1 1 11 21 21 11 1 1
l-lag: 21 21 11 1 1 11 21 21 11 1 1 11
2-lag: 21 11 1 1 11 21 21 11 1 1 11 21
3-lag: 11 1 1 11 21 21 11 1 1 11 21 21
4-lag: 1 1 11 21 21 11 1 1 11 21 21 11
5-lag: 1 11 21 21 11 1 1 11 21 21 11 1
6-lag: 11 21 21 11 1 1 11 21 21 11 1 1
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The correlation coefficient for each lag can be computed by the following formula

Correlation = Covariance = __) [(Base datum - Base average) % (Lag datum - Lag average)]
Variance v [} (Base datum - Base average)’ x Y (Lag datum - Lag average)’]

Table 5.5.2 shows the autocorrelation function for lags 1 to 8.

Table 5.5.2: Autocorrelation function (%)

Lag 0 1 2 3 4

6 7 8

Correlation | 100 SO  -4651  -100 -4931 4672 100 50 -45.16

There is obviously a 100 percent correlation with a lag of 0, because the data are being compared to
themselves. When the data are lagged by 6 steps, there is a perfect (100%) correlation. This means
that the periodicity, within the horizon of 8 days, is 6, and that the data may be fitted by a 6-point

wave. Similarly, the -100 percent correlation shows a valley at point 3, half the periodicity.

The number of lagged data in autocorrelation is important for discovering the correct periodicity. The
end of the first cycle identified by 100 percent correlation (6 steps hence), need not be a repetitive
wave. It may be a wavelike variation in a series. For an underlying wave process to be correctly
identified, the repetitive nature of this first cycle must be established. If a good correlation for a
particular periodicity persists more than twice in the given data, it can be considered repetitive.
Conversely, to assure that the first peak is a true peak and not a chance occurrence, one needs at least
one repetition, or, to be on the safe side, at least two. Therefore, for a periodicity of P, to be able to
compute the location of three peaks P steps apart, one needs a minimum of three times as many data
as the periodicity P. It stands to reason then, that the longest period that can be established, is one
third the number of data. Insufficient data (less than three times the period), can mean that the frue

underlying process may not be discovered.
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Autocorrelation provides a computationally fast and objective method for determining the optimum
period. In turn, secondary periods can be identified once the primary cycle has be removed from the

data.

5.6  Summary

Reversing the multiplication order of the matrices from 4 xB to BxA has shown that only one matrix
row is actually being multiplied at any one time. This means that the entire data matrix need not be
stored to compute the covariance table. Only the current datum must be available in the row to be
squared and summed, while time can be generated according to the power of the model to be fitted,

and according to its periodicity.

This means that a practically unlimited number of polynomials and waves can be considered in fitting
a practically unlimited number of data. In turn, matrix/row multiplication permits efficient utilisation
of the computer, always providing the best fit and overcoming the limitations previously preventing

large scale application.
Autocorrelation allows the computer to "see" computationally the peaks and valleys of a data series,

and by changing its phasing, to determine the optimal periodicity. Again by objective computations,

the sine and cosine coefficients can be calculated without human intervention.
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CHAPTER 6

Revision of higher order models

6.1 Introduction

Section 3.5 proved analytically and with real data, that smoothing is inherently better than moving.
The example in this proof was limited to the revision of the simple average in the light of new data.
However, in principle, all models may need some revision to keep them up to date. On the other
hand, if the best policy seems to be rapid revision, one may rather want to turn to a higher order
model. Brown suggests that “...if you carry out a sequence of trials on some set of actual data and
find that you want to use a smoothing constant that is higher than 0.3, check the validity of using the

constant model...” (1963: 107).

Revision refers to the coefficients of a model being changed to keep up with recent events in the
market. With each new error included in smoothing the average, the forecast level is revised and
changed. In a model with many coefficients, one cannot revise one without considering the effect on

the others. In addition, with higher order models, one has to consider updating as well as revision.

6.2  Updating the trend and higher order models

To begin with, a simple example: if the origin was zero and the coefficient for the slope has been 10
for 5 days, then the forecast for day 6 is 60. If at this point, the slope is to bve revised to 15, the
forecast for day 6 would be the value at day 5 (50), plus the new slope (15), which is 65. However,
if the forecast with the revised slope were made as of day 1, the result would mistakenly be:

Fit (t=6)= A+ B x t or 0 + 6 x (15), which equals 90. To correct this, the old origin of zero must
be updated to 50 and time reset to zero, that is: 50 + / x (15) = 65. The revision of the slope of a

trend (linear model) cannot be done correctly without updating of the origin to “now”.
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To update the formula for the simple trend, Fit = A + B x ¢, the origin 4 becomes Fit (the previous
forecast). The two processes of computing the Fit and then making A4 = Fit, can be simplified by:

A =A + B x t. As the simple trend example demonstrated, the slope B itself is not updated. Once
the origin has been updated, the slope can be revised by yesterday’s error and the next forecast

computed.

Unfortunately, revising higher order models is not so simple. To illustrate this, consider the next
higher model, a curve or trinomial. It has coefficients for the origin, slope and the rate of change of

the rate of change, for example: /00 - 20 x ¢ + 3 x £ This function generates a series, whose first

10 numbers are shown in Table 6.2.1!

Table 6.2.1: Generated data (A=100, B=-20, C=3)

t 1 2 3 4 5 6 7 8 9 10...
D 83 72 67 68 75 88 107 132 163 200..

With the additional term, there is a rate of change of the rate of change, discussed previously in
section 2.5. The negative slope results in the data decreasing for the first 3 days, until the extra term

becomes large enough to off-set this. The rates of change for the data in Table 6.2.1 are shown in

Table 6.2.2.
Table 6.2.2: The changing rate of change
t 1 2 3 4 5 6 7 8 9 10
D 83 72 67 68 75 88 107 132 163 200
ROC - -11 -5 1 7 13 19 25 31 37
ROC - - 6 6 6 6 6 6 6 6

This table, and the other tables in this section and sections 6.2.1 and 6.2.2, as well as certain

quotes, are based on unpublished lecture notes produced by Dr Adolf Diegel (1997), for the
purpose of studying routine updating.
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Unlike for the simple trend, Table 6.2.2 shows that the rate of change is itself changing because of
the extra term in the model. “...As a result, as time advances to "now", updating affects not only the
origin 4, but also the (linear) slope B...”. This can be seen by the change in coefficients when the data

are shifted one day to the left, shown in Table 6.2.3.

Table 6.2 3: Generated data seen one day later

t 0 1 2 3 4 5 6 7 8 9 10...
D 83 72 67 68 15 88 107 132 163 200 243..

With the observation for day 1 now 72 instead of 83, a standard fit would produce the coefficients:
A=83, B=-14 and C=3. The origin shifts to the excluded datum, the slope weakens from -20 to -14,
but the C-coefficient remains constant. The slope weakens because the initial drop from 83 to 72

(-11) is now only 72 to 67 (-5). Table 6.2.4 shows the change in coefficients as up to 6 data are

excluded from the beginning of the series.

Table 6.2.4: 3-term model coefficients, depending on start of series

Start at day Origin A Slope B Time squared C
1 100 -20 3
2 83 -14 3
3 72 -8 3
4 67 -2 3
5 68 4 3
6 75 10 3

The linear slope weakens until day 5, when it becomes positive. Indeed, this is the point where the
data stop decreasing. “... As for the specific change in the linear rate of change, it is +6, clearly 2x 3,

or generally, 2xC, twice the rate of change of the rate of change...”
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In the light of each new datum, the trinomial 4 + B x 1 + C % £ is updated by:
A=A+ Bxt+ Cx £, forecast for time ¢ becomes origin for next forecast
B =B+ 2 x C x ¢, slope is updated by 2 x C x t (twice C becomes the updating interval)

C remains constant

6.2.1 Updating higher order polynomials
Just as the trend and curve were updated, so the same principle of updating can be applied to a
quadratic model. For example, the updating for F() = 200 - 30 x -5 x £ + I x £ turns out to be
as follows:
A=A+ 1xBxt+CxF+Dx?F, origin updated to forecast for time .
B=B+2x(Cxt+ 3xDxF, slope updated in terms of C and D, and .
C=C+ 3 xD xt Cupdated in terms of D, and 1.

D remains constant.

A distinctive pattern seems to be arising for updating polynomial models. The origin is updated by
setting it equal to the forecast for today. The terms other than the origin which affect the rate of
change, are updated with respect to the rates of change that directly affect them. However, each
coeflicient except the last, is multiplied by a constant (shown in red) which seems to represent that
coefficient’s power in the model. That is, 4 is updated by 1 multiplied by B, then B is updated by 2
multiplied by C and 3 multiplied by D. Similarly, C is updated by 3 multiplied by D. Therefore, C is

always multiplied by 2 and D by 3, their powers for time in the model. The last term remains constant.
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However, it can be shown for an even higher model, for example,

F(t) =200-30 x -5 % £-2x¢ + 1%, that the updated constants appear as follows:
A=A+ IxBxt+CxP+DxP+Ext
B=B+2xCxt+3xDxFf+4dxExPF
C=C+3xDxt+6xExF
D=D+4xExt

E is constant.

The constants used in updating the C coefficient, 3 and 6, do not simply reflect the position of the
coefficients and no simple progression is evident. However, instead of arranging the updating

constants side by side (1 2 3 4), one can arrange them in a triangular form, as in Figure 6.2.1.1.

Figure 6.2.1.1: Pascal triangle for updating constants

1
1 1
1\‘>2< A
1 3 3

1
1 g7 g 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Starting in the first row with 1, and the second row with 1 twice, each value in the subsequent rows
is the sum of the two numbers above it, indicated by the black lines in Figure 6.2.1.1. For example,
2 in the third row is / + I, 3 in the fourth row is / + 2, and 4 and 6 in the fifth row is / + 3 and 3
+ 3 respectively, and so the process continues with each new row. This arrangement of numbers is
called a Pascal triangle, and it yields the correct constants for updating. Looking at the second slant
of numbers in red along the side of the triangle (1 2 3 4): these are the constants for updating B. The

third slant (1 3 6) are the constants required for C, those that were problematic because they did not
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follow a linear progression.

Furthermore, the outer sides of the triangle (1 1 1 1. 1), are also the constants used for updating
A and E. Although these numbers are always 1, it shows a complete application of the triangle. This
triangle can be extended through simple summing to compute the updating coefficients for any
polynomial model. Thus the Pascal triangle permits a routine method for updating polynomial models

of any power.

6.2.2 Trigonometric models

A trigonometric model uses sine and cosine, as well as polynomial coefficients to compute a repetitive
wave pattern according to the periodicity detected in the data. At least the average is required to
establish the level from which the wave increases and decreases. A trigonometric model can have as
many polynomial terms as any other model, but the perfectly repetitive form of a sine wave means
that it has no affect on polynomial siopes. The amplitude does increase the origin by the mean of the
wave. As the sine controls the wave amplitude, and the cosine the location in the cycle, both
coefficients need to be updated. Furthermore, because they are so inextricably linked, both need to
be updated, each in terms of the other. This requires the first coefficient to be stored (Save), before

it is updated in the first operation, for use in the second updating operation. This can be seen as

follows:

Save = Fit (sin), store sine coefficient
Fit (sin) = Fit (sin) % t (cos) - Fit (cos) * { (sin), update sine

Fit (cos) = Save x t (sin) + Fit (cos) * t (cos), update cosine

Updating has therefore been extended to include any model, including trigonometric models. Once

the coefficients have been brought up to date, they can be revised.
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6.3 Smoothing the trend

Section 3.3 showed that when the smoothing factor alpha was greater than zero, the current model
is revised in view of the most recent observation, rather than relying completely on the previous
unchanged average. Where rapid updating is best, a more powerful (higher order) model might be
necessary to represent the true process in the data, because forecasting with the current model results

in large errors. That higher model, too, may also benefit from some revision, although not as rapid.

Smoothing the average was a computationally simple procedure requiring two basic steps. These are
computing, firstly, the error for today’s forecast, Error = Datum (today) - Average, and secondly,
the new average for tomorrow:
Average (iomorrow) = Average (today) + Alpha x Error or A = A + Alpha x (D(now) - A).
This procedure can be extended to include the revision of the trend forecast for tomorrow:
Error=D-A-B
A=A+ B+ Error x (I - Beta’) and B = B + Error x Alpha’

(Source: Diegel, 1973: 1)

Two steps are required for the revision of the trend, and they are more complicated than for the
simple average. The first step, as with the average, is that the error must be computed, although the
forecast now consists of the trend formula, 4 + Btz. Secondly, each of the two coefficients 4 and B
must both be updated and smoothed, where previously there was only one coefficient. The coefficient

A is updated by 4 + B, the forecast for yesterday. The slope is not updated because there is no further

rate of change to affect it.

The revision of the trend requires the weighting of both A and B, and not by alpha alone as with the
constant model, but by (1 - Beta’) and Alpha’. Brown (1963: 128-140) shows arithmetically how
these equations are derived and why the weights are these particular values. Double exponential
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smoothing refers to smoothing each of the trend coefficients in such a way that the combined weight

for A and B assigned to the most recent error remains a constant, alpha.

Rewriting the formulae for the trend in vector notation provides a method for calculating the

“...weighting operator appropriate for any model...” (Diegel, 1973: 1). In its present form, the trend

model or fit includes two coefficients and their corresponding values for time:
Ft)=Ax£®+Bx¢

This can be separated into two vectors, one for the coefficients and the other for the values of time:

Fit = (A B) and Time = (£ ). Each cell in the fit vector is multiplied by the corresponding cell in the

time vector to project the forecast for time 7.

The equations previously derived by Brown manually,
A=A+ B+ Error x Wand B =B + Error x X,
contain two parts: updating shown in red, and revision shown in blue. 4 and B are elements of the
fit vector. Therefore, the updated and revised fit can be written as:
Fit = update * fit + error x smooth.

Each coefficient in the fit vector is updated by its corresponding cell in the updating vector,
containing the Pascal triangle constants. Similarly, it can be seen that the forecast error is multiplied
by a smoothing vector, as the error was multiplied by # and then by X. In the case of the trend, the
smoothing vector contains the weights W = (I - Beta’) and X = Alpha’. What remains in order to

expand smoothing to higher order models, is the computation of the correct smoothing vector.
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6.4 Smoothing higher order models

Triple exponential smoothing is the revision of the curve, also discussed in Brown (1963: 140-144),

but vector multiplication can be extended to include this model and indeed any model, without

laborious hand calculations. The fitting vector can be extended at will:
Fo)=Ax£+Bxt+CxF+..Rxsin(360/period x ) + ...

Similarly, the time vector and Pascal triangle can be extended to include the new coefficients, but the

smoothing vector needs to be computed with the particular weights to revise the fit correctly.

When computing the smoothing weights by hand, Brown uses the formula for the sum of an
arithmetic series, where “...the basic operation is to find the sums of the products of successive time
vectors...” (Diegel, 1973: 2). This time vector contains the values for time, for example, days, as if
the forecast was being projected into the future from time zero. This distinctly different time/0]
vector, contains the numbers (1, 2, 3, 4, ...) to multiply with the fitting coefficients, to the power of

the model (exponents) held in the time vector.

Instead of deriving formulae for computing this sum, as done partially by Brown (1963: 140), it can
be done by brute force multiplication and summing with many iterations. This procedure may seem
computationally slow, depending on the number of iterations. Also, that number being limited, the
results are not exactly the same as with an analytic formula. The big advantage, however, is that this
procedure can be performed by a computer, without the storage of any formulae or variables, and,

modern computers being so fast, one can hardly measure the time of computation. Moreover, the

procedure can be extended at will.
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The following extract from a Pascal program computes the sum of the product of the two fime[0]

vectors, the result appearing in the matrix 7, the size of which is controlled by the number of

coefficients in the model:

time[l]:= 1;

for Iterations:= 1 to X do

begin

time[2]:= Iterations:;

for Line:= 1 to NumCoeff do

for Column:= 1 to NumCoeff do

T (Column, Line]:= T {Column, Line]

+ time [Column] * time [Line];

end;

First cell in the time[0] vector set to 1
Repeat multiplication and sum X times

Set next successive time value

Multiply all values in the first vector by all
values in second vector, producing a
symmetrical matrix (NumCoeff x NumCoeff)

Sum all multiplications

This program computes the un-weighted T-Matrix, un-weighted because beta (the weight assigned

to all past observations) is excluded from the calculations for the sum of time. The matrix requires

inversion for its solution.

However, weight being assigned proportional to age in smoothing, one can use the same procedure

to compute the weighted T-Matrix, by including beta (weight) as time progresses. With each

iteration, so the T-Matrix is weighted according to Beta, shown in blue.

weight:= 1;
time[l]:= 1;

{or Beta®}

for Iterations:= 1 to X do
begin
time[2] := Iterations;
for L:= 1 to NC do
for C:= 1 to NC do

T [C,L]:= T [C,L]
weight:= weight * Beta;
end;

+ time [C]

* time [L] * weight;

{ or Betalterations }

The number of lterations, set by X (shown in red), determines how much weight is assigned to past
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data. The weighted T-Matrix also requires inverting, which reveals the weighting coefficients for the

number of coeflicients specified.

6.5  Optimal Beta

The number of Izerations allowed by X determines the extent to which the weight assigned to past
data is discounted exponentially with age. With the analytic method, this is assumed to approach
infinity. As for the computer, it is not practical to push to infinity, but one can take advantage of the
fact that weights assigned to past data diminish exponentially, and quickly reach very small numbers.
Although it never reaches zero, the numbers are so small as to become insignificant. Deciding on the
point where a weight is to be considered insignificant, is a matter of precision and computation time.

Nowadays, computation time is relatively fast, but precision is still important.

The higher the alpha, the less weight can be assigned to past forecasts and therefore, the fewer
iterations required to reach a very low beta. However, if alpha is small, then considerably more
iterations will be required (see Table 3.4.1). If a limit is to be set, it needs to be the minimum weight,

the point where it becomes negligible, and not a maximum number for iterations .X.

As the program listed in section 6.4 reduces weight with each iteration, the loop needs some revision
so that the for Iterations:= 1 to X do begin...end statement becomes a

repeat...until weight < epsilon,
epsilon representing the lowest weight to be attained, that is, a weight so small that it is as if the error
was discounted to infinity. Diegel (1973: 3) suggests a limit of /E-8 (0.00000001), based on a study

of the accuracy and computational speed of the CDC 6400 computer. This is shown in Table 6.5.1.
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Table 6.5.1: Computational speed and precision trade-off

Cut-off Precise digits Relative
point in final result execution time
1 - 4 2 50%

1E - 6 3 75%

1E - 8 6 100%

1E -10 7 125%

(Source: Diegel, 1973: 3)

Computers today permit faster mathematical computation, although the execution time still remains
in the same proportion to accuracy, as shown in this study. Thus, the power of today’s computers
permit computations with a smaller epsilon in the same time as before. However, this improved

accuracy hardly improves the forecast.

6.6  Summary

The calculation of the smoothing vector provides the key for revising a model of any power in the
light of new data. Computationally, the revision routine is simple and can easily be adapted to the
computer. Updating, however, requires the storage of the Pascal triangle. This need not be a major
concern, for a polynomial model with more than six terms is unlikely in a real life situation. Therefore,

only the first six lines of the Pascal triangle, shown in Figure 6.2.1.1, need be stored.
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CHAPTER 7

Inconsistent inconsistencies of data storage

7.1 Introduction

Most companies keep some kind of record of their sales for accounting and taxation purposes.
However, the extent to which these data are conducive to accurate forecasting, depends not only on
the data themselves, but the time interval used to record them. There are no regulations to control

this, apart from the start of the financial year, and so record keeping varies from firm to firm.

First impressions deemed Lever Ponds (Pty) Ltd (Durban) a suitable firm to test the success of
forecasting with time series analysis, because of the computerised nature of their operation, and the
large number and type of products they manufacture. As a matter of conveniénce, from this point on,
the company Lever Ponds (Pty) Ltd will be referred to as the client. The client’s manufacturing is
divided into two sections, namely Personal Products and Detergents. Personal Products are items
such as shampoos, toothpastes and deodorants, whereas Detergents are washing powders, dish-
washing liquids and fabric softeners. In all, their products number close to three hundred. Their
various brands are sold nationally in many stores and supermarket chains, and are bought by a great

number of South Africans. Indeed, products are so many, so varied and changing so fast, that some

computer-based record keeping and forecasting seems inevitable.

7.2 The twelve month year
The general practice of the client, and of many other firms, is to record sales data by calendar months.
However, little consideration is given to months being of unequal length, and the effect that this has.

In fact, every subsequent month, except for July (31) / August (31) and December (31) / January
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(31), has a different length from the previous one. Monthly accumulated sales are, therefore, usually
totals for periods of different lengths. This is most obvious with 28 days in February, and 31 in
March. The significance is that the sales for February could seem to be 11 percent less than those for

March, when in reality the average sales per day could well be constant.

Having recorded a sales datum at the end of the month, that is, on day 31 or 30, means that
mathematically, the datum is the result of 31 or 30 days of trading. This is not in fact true because,
firstly, public holidays, weekends or other reasons for days without trade, means that there were
fewer days of sales. Secondly, each day in a given month may have a different volume of sales, yet
no consideration is given to sales being higher on certain days than on others. Any underlying pattern
occurring, for example, on a weekly basis, is obscured by the large and sometimes unequal time

interval.

In addition to the problems of monthly data, is also the norm that . ..the accounting months are set
up to give thirteen weeks in each quarter, with two months of four weeks each, followed by one with
five weeks...” (Brown,‘ 1963: 73). This means that the values for every third month are the
accumulation of sales for a full week more than the other months, and should be 25 percent larger,
all other things being equal. The interpretation of a 13 week quarter, as distorting as it is, is not

consistent throughout industry. Brown refers to this practice as a 4:4:5 week ratio for each quarter.
The client, although also implementing a similar system, have done so in a 5:4:4 week ratio since

1994. Prior to this, there were eight six-week periods and one four-week period per year. The time

interval is not only irregular, but changes significantly over the period of study from 1992 until 1996.
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As a further note, it is also commonly accepted that there are 52 weeks in a year, but 52 multiplied
by 7 is 364 and not 365, as is the case for a non-leap year. Sales for this missing day would be
included in the following month’s sales, adding one or two extra days to January, depending on

whether the previous year was a leap year or not.

7.3  Demand versus sales

The data themselves are also problematic because sales data, especially when studying manufacturers,
are not the same as actual demand in the market. The figures represent sales to other suppliers and
distributors and not to the actual customers which is the market that one is trying to forecast. A
system that feeds records of point of sale demand should be established to improve the data. It may
be logistically difficult for the client to track every sale in every shop, although a substantial amount

of data should be available from the larger supermarkets.

Unusual sales activity at the distribution and warehouse points of study can result from a number of
events. The announcement of price changes can result in bulk buying by large retailers now, which
would not be typical of the market under constant price conditions. Strikes and mechanical upgrading
can mean periods of no production, or controlled use of stocks from the warehouse to cover this
period of no production. These events can cause random fluctuations in the routine activity of a
particular product. Arbitrary adjustments to correct this are hardly possible because . it will not be

practical to make such detailed investigation of the plausibility of demand records for every item in

the inventory...” (Brown, 1967: 115).

The client records, as weekly totals, the sales for each stock keeping unit from their four national

distribution warehouses. A stock keeping unit is a pack or item as it is sold to retailers, for example,
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sales for a six pack of product X is recorded separately from the same product in a pack of three. It
is necessary to use stock keeping units for forecasting because it prevents one variation of a product
interfering with the demand patterns of another. These weekly data are then accumulated into
monthly sales. Using a twelve-month/four-quarter year is not conducive to accurate forecasting, and

weighting some months more than others is not a true solution to the problem.

Another important factor regarding data storage is how many observations are stored, and available
for forecasting. Old data are seldom destroyed or lost, but are archived and placed in storage and not
looked at again, because of the amount of disk space and computing power required to keep these
outdated records alive. It can then prove difficult and time consuming to extract these data. The
important point is whether there is enough data available to allow the accurate discovery of the true

underlying process.

7.4  Manipulating the time unit

By definition, a discrete time series has a measurable duration between each observation. In order
to attempt to forecast with such a series, a set of guidelines were submitted to the client on how their
data should best be arranged, which is shown in Appendix 3. This stresses the point that recording

the actual date for daily data means than an accurate time vector can be established.

Table 7.4.1 is a practical example of how ignoring missing data affects their fitting. It can be seen that

the datum for day 4 is missing, as is noted in the True time column, because time jumps from 3 to 5.

Chapter 7 - Page 4



lable 7.4.1: Picking up the trend

True Sequential Data | True Error’ | Erroneous Error’
time number fit fit
1 1 10 10 0 8 4
2 20 20 0 21
5 4 50 50 0 47 9
6 5 60 60 0 60 0
0 30

It can be seen visually that the data follow a trend with an origin of zero and slope of 10, even though
the datum 40, for day 4, is missing from the Data column. Logically, there should be a perfect fit, and
it would be obtained if data 50 and 60 were fitted to time 5 and 6, respectively. However, if they were
fitted to the number of the day on which they were recorded, 4 and 5, the origin is -5 and the slope
13. This results in the sum of the squared errors totalling 30, instead of zero, as is the case when
fitting the data with the true time vector. It is obvious how serious this mistake can be, and how easily

it can be avoided, if only one is aware of the need to fit data to their #zime and not their number.

The data from the client were received in hard-copy form, and were totals for the 5:4:4 week months
discussed in section 7.2. In order to establish a time unit for the data, each datum was given a time
value for the number of days (seven) taken to accumulate it. An example of this is shown in Appendix
4 which shows the actual date for the end of each sales period. Note the Gap column, where the first
period in each year is 1 day longer than 5 or 6 weeks, because there are not exactly 52 weeks in a

year. If the previous year was a leap, this gap is 2 days.

From the values in the Gap column, the value of the time unit can be established. The time unit is
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computed from the total time which the observations span, that is, the last date less the first, divided
by the number of periods taken to accumulate this time, which is one less than the number of data.
This is the average gap between each observation. With sequential time, this value is 1; however, with
the time interval for Detergents this value is 30.1739, and with Personal Products, 24.4247. This time

unit is then multiplied by the fit to determine the success of the forecast.

The time unit used is not really the true unit because it has been generated by manipulating the
interval information supplied by the client. Unfortunately, it is the best that can be done with the given
information, and improving on this will require considerable commitment and effort from the

company to change their current practices.

Figure 7.4.1 graphs the affect of both the 5:4:4 quarter year and the change in the time interval, as
compared to a corrected (regular) time unit. In order to visually compare the data for product PPAI
(data listed in Appendix 9), before and after the corrections, it is necessary to plot them on the same
graph. Therefore, the x-axis does not represent time but the observation number. The sales values
themselves have to be changed in accordance with the time taken to accumulate them, because the
x-axis is held constant. As the time unit is not only unequal but uneven, the corrected data were
computed from a weekly average, multiplied by a constant 4-week period. This brings the data back

to the same magnitude of the given observations, but with equal intervals between them.
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Figure 7.4.1: Raw and corrected data for product PPAI
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Observations
There are now more corrected values, (shown in green) than raw data (blue), but this is similar to the
mathematical effect of using the corrected time vector, some observations having taken longer to
accumulate than others. Therefore, when using a smaller yet constant interval period, there are more

data. It can be seen how exaggerated the initial raw observations are, that is, where the period

intervals were 6 weeks long.

In addition to looking at data levels, it is also important to consider the periodicity of the raw data
and the corrected ones. This comparison can be computed using autocorrelation, the results of which
are shown in Table 7.4.2. The peaks and troughs identified are shown in colour. A slight periodicity
of 3 was detected using a time unit of 24.4247 (corrected values), but there was an even less

pronounced periodicity of 4 for a time unit of 1, the data in their original form.

Chapter 7 - Page 7



Table 7.4.2: Comparison of autocorrelation functions (Lag=1 to 9)

Lag 1 2 3 4 5 6 7 8 9
1.0000 24,67 -21.46 -5.41 0.86 -16.76 -16.51 -11.10 -33.78 -10.29
24,4247 -43.13 26.74 32.22 -24.05 16.65 -9.89 -12.10 5.18 -32.51

Not only is the periodicity weaker with the uncorrected values, the peak at lag 4 being very small
(0.86 ( 1%), but the period length was different, 4 as opposed to 3. This can be seen in Figure 7.4.2,
where the autocorrelation function for the corrected values is shown in green, and the uncorrected

in blue.

Figure 7.4.2: Autocorrelation functions, raw and corrected
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Although there is very little periodicity in the data, it is clear that the autocorrelation functions are
quite different as a result of using the restructured time unit. So it is imperative when attempting to

fit the client’s data, that the correct time vector is used.
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7.5  Impact on research methodology

Thus far in this thesis, the general problems related to forecasting have been dealt with. As regards
the specific problems of applying these forecasting techniques to manufacturing, the analysis in this
chapter has shown that because of the poor quality of the client’s data, they will not permit conclusive
research on their own. The inability of the true data to reveal their underlying process, is the final
specific problem identified in section 1.5. To deal with this problem, good quality generated data will
be used to investigate the recovery of the underlying process. The characteristics or processes in
generated data are known by definition, and one can objectively establish how accurate fitting was,
and how many data were required to obtain this fit. The next task, therefore, is to generate data

suitable for experimentation with fitting,

7.6  Summary

“...Garbage in, Garbage out. In other words, an integrated data-processing system is no better than
the data it is given to process...” (Brown, 1963: 23). The quality of the data depends not only on how
precisely the observations were recorded, but also on how often, and whether the time or date was
noted. Observations recorded relative to the lowest time interval, in this case on a daily basis, permit
any other transformation into weekly, monthly, or quarterly periods, or whatever other tallying is

considered normal for accounting, as well as being suited to forecasting.

The data from the client show that not enough consideration is given to establishing a true time
vector. One reason for this is the logistical nightmare of recalibrating existing systems to handle the
recording of data on a daily basis. The mathematical advantages are of course greater accuracy of fit,
and therefore, forecasting. Any compromise between cost and accuracy, should at least insist on

recording the specific number of days taken to accumulate sales.
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CHAPTER 8

Generating data with known randomness

8.1 Introduction

It is intuitively obvious that few data are unlikely to show a clear picture of what is happening in the
market, as it is only a snap-shot of the grand picture. Responding to misleading suggestions can be
worse than not responding at all. For example, data which are random in the long run may have
pockets of similar data in the short run. The average will, therefore, be a more successful model in

the long run, than following a trend discovered in a few recent data.

The more data available, the more support and justification there could be for a higher order model.
The question then arises, how many data are enough? The answer must include drawing the line

between over-fitting and discovering the true underlying process.

8.2  Knowing the true process

The algebraic answer to the number of data required to fit a given model, is one datum for the
average, two data for the trend, or three for a simple curve. However, this is the case only if the few
data analysed do not deviate at all from the true underlying process: they are perfectly representative.
Real data, not being perfect, mean that a model based on too few observations results in large errors.
A strong slope detected may be weakened when considering more data, but otherwise quickly
extrapolates into infinity or down to zero. The more polynomial terms in the model with poorly
chosen coefficients, the higher the power of time and the greater the potential for large errors because

of the higher responsiveness of the model.
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With real data, the number of data required for a given model depends on two factors:
° complexity of the model;

. presence of random variation.

Sales and demand data are seldom perfect because so many factors affect their behaviour that they
may appear random, if they are not inherently random. In the case of manufacturing, such randomness
can be the result of stores offering price cuts on selected items for limited periods, the sales for those
items becoming unusually high. Forecasts based on this period of increased sales or demand would
clearly be dangerously exaggerated. In-store advertising and promotion can play a similar role in
hiding the underlying process one is trying to discover. There are many reasons why people choose
one product over another on a particular day. The result is that data generally contain both true trends

and cycles, as well as an unpredictable element.

The degree to which this element is present depends largely on the type of product. Fashionable
products, such as those manufactured by the client, with many similar competitive products, are likely
to have a large number of buyers with very little product loyalty. People’s attitudes often appear
fickle under such circumstances, and sales are driven largely by advertising campaigns centring on
image enhancement, price reduction, or quality. The frue demand, independent of these promotional

peaks, is difficult to establish, certainly if insufficient data are at hand.

Real data being what they are, it is difficult ever to be certain about their true process, and about
which part is random. This is not so with generated data because the generation formula is known,
and a specific random element can be added. It is then a simple process of experimentation to
discover how many data are needed to accurately recover those known coefficients. The findings will
be applicable to real data, relative to that random/true process ratio, which can itself also be

controlled.
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8.3  Generating data with a random element
Any spreadsheet application can generate a set of data from a given formula, with any degree of
complexity. For example, below are listed four types of models which are likely to be relevant to

business processes. These formulae were used to create sets of 200 data

Average: 50.5 (data range from 1 to 100)

Trend: 450 + 10 x t (origin 450 and slope 10)

Curve: 450 -10 xt+0.1 x t?

Season: 450 + 100 sin 72° x t - 100 cos 72° x t (5-point wave)

These coefficients were selected so that the data would be of comparable magnitude and manageable
for study purposes, that is, all the formulae would produce similar sized numbers, and small enough
to illustrate graphically. For example, the curve extrapolates into very large numbers as compared
to the trend because of the extra time coefficient. Therefore, the curve is restricted by less responsive
coefficients than the trend. In fact, the slope starts off negative and then only increases by 0.1
multiplied by time squared. Random numbers ranging from 1 to 100 were added to these generated
data, because this magnitude of random element is convenient, and sufficient to be graphically visible

in the data over a span of 200 observations.

The random data themselves can be used to test the number of data required to recover the true
average, 50.5. This is advantageous because truly random data should not have any underlying
pattern which would mislead the recovery of the true average from a limited number of observations.
Only if they are truly "random" can the retrieval of the average be successful. To ensure this, both
a random number generation procedure, as well as a random number table from Fisher and Yates
(1974. 134), were used as the sources for random data. Thus, two sets of data were generated for
each of the four models: firstly, those which the Fisher data were added to, and secondly, those using

the generated random numbers.
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The procedure followed by Fisher and Yates in "generating" their random numbers, is shown in
Appendix 5. Their method is, essentially, to take the 15-19th digits of numbers from a logarithm
table, and then to make certain selections from those, “at random”. They do not, however, explain
how that random selection itself was made, “at random”. The Fisher and Yates data will be referred

to as the Fisher data from this point on.

Computer based random number generators, or pseudo random generators, used to create the other
random series, make use of modulo division (remaindering method) to compute numbers. “... They
are not real random numbers in the technical sense, since they are completely determined once the
recurrence relation is defined and the parameters of the generator are specified...” (Winston, 1994:
1125). Such formulae, if properly executed, guarantee that each number occurs exactly once per

cycle. In other words, all numbers are equally likely.

By contrast, real ré.ndom numbers have two characteristics: not only does any number within the
given range have as much chance of recurring as any other number, but also, the sequence of the
numbers does not depend on any repetitive formula. An example would be rolling a die, or spinning
an accurately weighted roulette wheel. Unfortunately, these physical procedures of generating
random numbers are neither practical, nor do they produce numbers of the various magnitudes

required in this context.
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The mathematical process for generating random numbers is:
x,,; = (ax,+ ¢y modulom (i=0,1,2...)

X The initial value of x (x,) is called the seed. The value of x;,, equals the remainder
after dividing (ax; + ¢) by m.

a The constant multiplier affects the sequence of data produced.
c The constant is used to change the mean of the result.
m This is the modulus constant, used to compute the remainder through division. The

range of the output is limited from 1 to m-1.
i The number of iterations, that is, the number of random numbers to be generated.

(Source: Winston, 1994: 1124)

In short, the critical factors are the modulator (m), which controls the length of the series, and the
multiplier (a) which controls what happens in the series. These factors determine the sequence of the
data generated, and implicitly produce a given degree of randomness. For example, Table 8.3.1 shows
random numbers generated between 1 and 4, that is, the modulator is equal to 5. The multiplier varies

from1to7.

Table 8.3.1: Random numbers with different multipliers (modulator 5)

Iteration
Multiplier Seed 1 2 3 4 5 6
1 1 1 1 1 1 1 1
2 (1 2 4 3) 1 2 4
3 (1 3 4 2) 1 3 4
4 1 4 1 4 1 4 1
5 1 0 0 0 0 0 0
6 1 1 1 1 1 1 1
7 (1 2 4 3) 1 2 4

(Source: Diegel, 1974: 2)

The random data generated repeat themselves after the third iteration. The first complete sequences

are shown in parenthesis. It is visually obvious that the multipliers of 1 and 5 do not produce random
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sequences: 1 because a multiplier of 1 cannot change the sequence at all; 5 because when a multiplier
is as large as the modulator, the remainder is inevitably zero. The multiplier of 6 has the same
sequence as the multiplier of 1, and 7 is the same as 2. “... The last value in a complete cycle is the
multiplier generating the same cycle in reverse...” (Diegel, 1974 2). So, from the simple example in

Table 8.3.1, a number of rules for random number generation can be established:

° the multiplier must be greater then 1 and less than the modulator;,
° the modulator must be a prime number;
° a multiplier greater than the modulus generates the same sequence as the multiplier

subtracted from the modulator;
° a given sequence repeats itself once the number of iterations exceeds the modulator.

(Source: Diegel, 1974: 2)

Specific multipliers and modulators can now be chosen in accordance with these rules. This choice
is also dependent on the application in question. The advantage of generating random numbers is
precisely that they can be made to suit the purpose. It was decided provisionally to work with 200
data: 100 forwards and 100 backwards. This would seem sufficient data to permit the accurate
retrieval of the correct coefficients of even the most complicated polynomial model in this
experiment, the curve. By repeating the series backwards one neutralises unwanted processes that

may exist in the forwards part of the series.

To generate a series from 1 to 100, the modulator must be 101. The other critical factor determining
the behaviour of the random series is the multiplier. The first requirement is that the multiplier
"exhaust" the series, that is, it generates a/l numbers between one and one less than the modulator.
For example, with a modulator of 5, multiplier 2 and 3 produced 12 4 3 and 1 3 4 2 respectively. All
numbers are there, but with only four observations, it is difficult to say which series is more random.

Most people would agree that 13 4 2 is more random than 1 2 4 3, the sequence 1 2 4 3 being quite
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regular. This is even clearer in examining various multipliers for a modulator of 101.

Table 8.3.2: Random numbers for multiplier 2, 11 and 18 (modulator 101)
2 4 8 16 32 64 27 54 7 14 28 56 11 22 44 88 75 49 98...
11 20 18 97 57 21 29 16 75 17 86 37 3 33 60 54 89 70 63...

18 21 75 37 60 70 48 56 99 65 59 52 27 82 62 5 90 4 T2...

It is visually obvious that the multiplier of 2 produces a series with a pocket of regular progression
at the outset, shown in red. Furthermore, other pockets of regular data for the multiplier of 2, are
shown in blue and green. This can significantly affect the retrieval of the true coefficients, the random
element having a regularity of its own. On the other hand, the random sequences produced by
different multipliers, 11 and 18 for example, are such that it is not intrinsically obvious which is more
random than another. This requires a more effective measure of randomness than simply looking at

the series.

8.4  Using a moving period of one

In a truly random series, no single datum has any relationship to previous or subsequent ones.
Therefore, because of this lack of pattern in the data, a moving period of 1 would be the worst
possible response to such data. If the forecast approach is “my forecast for tomorrow is what
happened today” (M=1), discussed in section 3.2, one would obtain the highest possible sigma. It
would certainly be higher than the standard deviation of the best forecast for random data, that is, the
mean. Thus in relating o (M=1) to o (all data), one obtains a measure of randomness. Expressed as
a percentage difference, perfectly random data should have a factor of -100 percent. In this example,

all suitable series should have an average of 50.5, that is, every datum between 1 and 100 is present

exactly once.
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Exactly half the 100 possible multipliers produce sequences that are repetitions of previous
multipliers, only in reverse. These can be eliminated from consideration because the order of the
sequence does not effect this application. It is visually obvious that the multipliers 1 and 100 are not

random at all. After this simple process of elimination, one is left with 49 possible multipliers.

The sigma relation of these remaining multipliers with A/=1 leaves 12 between the limits of -90
percent and -110 percent, that is, within +10 percent of the worst possible relationship. There are
numerous sets produced with a relation more negative than -100 percent, up to -300 percent for a
multiplier of 100. However, multipliers falling short of the -100 percent criterion, are as useful as
those exceeding it. Furthermore, the averages for these multipliers do not obtain the required mean
of 50.5 and therefore, do not include all the numbers from 1 to 100, so they should be eliminated

anyway. The multipliers which are validated by their -o relation and average are shown in Table 8.4.1.

Table 8.4.1: Results of M=/ relationship

Multiplier -0 Relation Average

4 -106% 50.50
11 -95% 50.50
12 -90% 50.50
13 -108% 50.50
18 -98% 50.50
28 -105% 50.50
33 -106% 50.50
39 -109% 50.50
44 -91% 50.50
55 -106% 50.50
74 -109% 50.50

The multiplier of 18, show in bold, logically seems to be dest because with -98 percent it is closest
to the -100 percent mark . The relation of M=/ with the Fisher data was -58 percent with an average
of 49.29. Because of the reputation of the authors in this field, their data will be used, although they

do not fare particularly well in this randomness test.
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8.5  Testing for periodicity

In addition to testing so-called random data with A/=/, they can also be related to themselves, to
determine that there is indeed no cyclical pattern in them. Autocorrelation was previously used in
section 5.5 to determine the periodicity of a data series. Because random data should have no
underlying process, they should have no periodicity either. The autocorrelation function for the

random data with a multiplier of 18, can be seen in Figure 8.5.1.

Figure 8.5.1: Autocorrelation function for generated random numbers
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There is a very slight periodicity of 2, indicated by the peaks with lag 2, 4, 6, 10 and 12. These peaks
are so small, that is, the periodicity so slight, that the effect on the randomness of the series is

- negligible. The autocorrelation for the Fisher data is shown in Figure 8.5.2.
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Figure 8.5.2: Autocorrelation function for Fisher data
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Similarly with the Fisher data, there is practically no obvious periodicity. This provides some
justification for its use as a random element in the construction of the generated data, after having

fared relatively poorly with a moving period of one.

8.6  The transition matrix

In addition to the measures of randomness discussed, one may develop a new one by recalling the
characteristics of an ideal random series. This is that events should be "random", unrelated to each
other or independent of one another. As in rolling a die from trial to trial, one number should be as
likely as any other. Numerically, this means that any given number should be followed by any other
number, just as frequently as any other given number. In other words, one can actually count how
often other numbers occur after any given number. More specifically, one can then see how often,
for example, a low number such as 1 is followed by another low number, a higher one, or even a very

high one. Indeed, one can study how the data fransit from one point to the next.

The number of classes used to measure the transition of the data, for example, low, medium or high,
needs to be informative. If there are too many groups, for example as many as there are data, the
results say nothing of the transition distribution. On the other hand, if there are too few groups such
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as low, medium and high, this is not specific enough to be informative. Furthermore, the groups must
be of equal size so that the transition results are not prejudiced towards large groups. The square root
of the number of data gives a fair picture, although one less than this should be used so that there is
a middle group in the case of 100 data. This suggests 9 groups of 11 data for the numbers ranging

from 1 to 100.

The 100 data in Table 8.6.1 are those generated random numbers with a multiplier of 18, and will be

used to construct a transition matrix, shown in Table 8.6.2.

Table 8.6.1: Generated raw data (Multiplier 18)

18 21 75 37 60 70 48 56 99 65 59 52 27 82 62 5 90 4 72 84
98 47 38 78 91 22 93 58 34 6 7 25 46 20 57 16 86 33 89 87
51 9 61 88 69 30 35 24 28 100 83 80 26 64 41 31 53 45 2 36
42 49 74 19 39 96 11 97 29 17 3 54 63 23 10 79 8 43 67 95
94 76 55 81 44 85 15 68 12 14 50 92 40 13 32 71 66 77 73 1

Table 8.6.2: Transition matrix for 100 generated data, 9 classes of 11

1| 12 23 34 45 56 67 78 89 100 | sum
12 | 1 1 1 2 1 1 1 1 2 11
23 2 1 1 1 1 1 2 1 1 11
34 1 1 1 1 2 1 1 2 1 11
45 1 1 2 1 1 2 1 1 1 11
56 1 1 1 2 1 1 1 1 2 11
67 1 2 1 1 1 1 2 1 1 11
78 2 1 1 1 2 1 1 1 1 11
89 1 1 2 1 1 1 1 2 1 11
100 2 1 1 1 1 2 1 1 1 11
Sum | 12 10 11 11 11 11 11 11 11 | 99

1385 sum squares off diagonal 3.7403 sigma for lag 1

The procedure for computing the transition matrix is mechanical and easily adaptable to a computer
scenario. The first datum in the generated series is 18 (Table 8.6.1). The next is 21 , which is classed
in the same group as 18, group 1 of the possible 9, so 1 is added to the total for class 1 (cell [1,1]),

the sum of numbers which remain in that group. The next datum is 75, classed in group 7 (67 to 78),
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so 1is added to cell [1,7], and so the process continues. In a perfectly random series, all the cells in

the matrix would have equal frequencies.

The transition matrix in Table 8.6.2 has a fairly even spread of frequencies for each class, most celis
in the matrix being 1, and the sums of each row and column being almost a perfect 11. There are
some two’s and sums which are uneven (12 and 10), indicated in bold. This is due to the fact that
there are only 9 groups for 100 data, meaning that some transitions will have to contain an extra

entry.

Finally, a sum of squares and sigma off-the-diagonal can be computed to summarise the table. The
sum-squares-off-diagonal is the figure which mathematically computes the evenness of the spread of
transitions. Those transitions which fall on the diagonal from cell [1,1] to cell [9,9], shown in red in
Table 8.6.2, represent transitions that remain in the same group, that is, they are not random but
regular. To measure the "randomness" of transition, one looks at the evenness of distribution of

transition off the diagonal.

The sum-squares-off-diagonal figure is the result of each transition multiplied by its squared position
in the matrix. It is weighted by its distance from the diagonal, that is, by how irregular the data are.
Specifically, the sigma is the sum-squares-off-the-diagonal divided by the number of transitions. Then
the square root is taken to bring it back to the same order of magnitude as the transitions. This gives
a clear picture of evenness, because it shows the average magnitude of the values weigﬁted by their

distance from the diagonal. The larger the sigma, the "wilder" the fluctuations in the data.

At the same time though, the spread of transitions should be even. A perfect transition, where all cells
contain a 1, results in a sum-squares-off-the-diagonal of 1080 and a sigma of 3.6515. This means that,
on the average, the data change between 3 and 4 groups with each transition. Remembering the 9
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groups of 11, perfect data should change by a third with each transition. The generated data are not

far off this mark, with 3.7403, substantiating their randomness.

Table 8.6.3 shows the first 100 of the Fisher raw data, also to be tested for evenness of transition.

Table 8.6.3: Fisher raw data

3 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45
60 11 14 10 95 97 74 24 67 62 42 81 14 57 20 42 53 32 37 32
27 7 36 7 51 24 51 79 89 73 1l6 76 62 27 66 56 50 26 71 7
32 9 79 78 53 13 55 38 58 59 88 97 54 14 10 12 56 85 99 26
96 96 68 27 31 5 3 72 93 15 57 12 10 14 21 88 26 49 81 76

A simple inspection of the data in Table 8.6.3 reveals that there are numerous duplicate values.
Checking these more carefully reveals that the numbers:

3,12, 16, 24,42, 47, 51, 53, 56, 57, 71, 73, 76, 79, 81, 88, 97
appear twice in thé series. The values 7, 10, 27, 32, 36, 62 and 96 appear three times, with 96
appearing twice in a row, shown in bold in Table 8.6.3. The numbers 14 and 26 appear four times
in the series. These data are, therefore, not exhaustive which explains why the average is not 50.5.

The transition matrix for the Fisher data is shown in Table 8.6.4.

Table 8.6 4: Transition matrix for 100 Fisher data, 9 classes of 10.67

3.00] 14 24 35 46 56 67 78 88 99 | Sum
13.67| 3 2 1 1 4 0 1 0 1] 13
24.33 2 1 0 1 1 3 1 2 0 11
35.00 2 1 3 1 1 1 1 0 2 12
45.67 1 0 1 0 1 3 1 1 1 9
56.33 1 2 2 3 1 0 0 3 1 13
67.00 2 1 2 1 2 2 1 1 0 12
77.67 1 2 1 0 0 2 0 1 1 8
88.33 0 1 1 2 1 0 1 1 3 10
99.00 0 1 1 0 2 1 3 1 2 11

Sum]| 12 11 12 9 13 12 9 10 11 | 99

1060 sum squares off diagonal 3.2722 sigma for lag 1

In Table 8.6.4, the limits of the group sizes are slightly different from Table 8.6.2. This is because the
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numbers 1 and 2 do not occur in the series, and the first group therefore starts at 3. It is obvious,
though, how different the spread of transitions is for these data. The size of the numbers in bold
indicate that the Fisher data have more "pockets” of similar data than the generated data. This is
highlighted by how many row- and column-sums differ from 11. The small sum-squares-off-the-
diagonal and sigma further indicate this problem. Specifically, sigma 3.27 compares to 3.74 for the
generated random numbers. This indicates that on the average, any new datum is more likely to be

similar to the one just seen.

The transition matrices in Table 8.6.2 and 8.6.4 are computed for a lag of 1. This means that the
transition of each datum is measured by comparing it to the next one in the series, one step away.
This lag should be increased so that each datum is compared to the one 2 days hence, 3 days hence,
and so on. These comparisons should also have an even frequency distribution. The comparison of

different lags for the generated random data and Fisher can be seen in Table 8.6.5.

Table 8.6.5: Comparison of transition results with different lags

Fisher Generated (Mult 18)

Lag Sum Diag Sqr Sigma Sum Diag Sqr Sigma
1 1060 3.2722 1385 3.7403

2 1247 3.5671 1268 3.5971

3 1552 4,0000 1350 3.7306

4 1596 4.0774 1264 3.6286

5 1388 3.8224 1317 3.7233

6 1368 3.8148% 1215 3.5952

7 1079 3.4062 1432 3.9240

8 1267 3.7110 1275 3.7227

9 1240 3.6914 1851 4.5101
10 1160 3.5901 1198 3.6484
11 1285 3.7998 1208 3.6842
12 1403 3.9929 1092 3.5227
Total 15645 44.7453 15855 45.0272

The totals for each column show that the transition results for the two data series are of comparable
magnitude. Some of the results, shown in bold in Table 8.6.5, are far from perfect, a measure of 4.51

indicating that data differ quite strongly over that interval, while 3.27 means that they are rather
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similar. Yet, on the whole, the results justify the use of these data as a "random" element.

The complete listing of all the generated data for the four models, can be seen in Appendix 6.

8.7  Summary

A comprehensive set of generated data are thus available for experimentation. These data include a
random series of numbers between 1 and 100, which has been justified as "random" through objective
testing. An identical set of data containing the Fisher random numbers is also available. It remains to

discover the number of data it takes to retrieve the known coefficients of various models.
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CHAPTER 9

Safety in numbers

9.1 Introduction

Using the generated data shown in Appendix 6, it will be attempted to determine the number of data
required for accurate fitting of a given model. By fitting a limited number of observations and
forecasting over a certain period, one can compute how successful the fit was. By increasing the
number of data used in fitting, and again forecasting this new fit, the improvement can be related to

the number of observations constdered.

9.2  Retrieving the coefficients

To be even-handed in analysing the fitting process, two different random series were used for each
model (those containing the generated random data, and then those with the Fisher data).
Furthermore, the first 100 of the 200 generated data were divided into three overlapping groups, so
as not to bias the investigation by starting the fitting by chance at a "pocket" of non-random data. The

first group starts at datum 1, the second at datum 21 and the third at datum 41.

Three different size groups were used to fit a given model, then to compare the recovered coefficients
to the true ones. "Small" groups will consider the first 15 data from the three starting points,
"medium" groups will consider double that, the first 30 data from each point, and the "large" groups

double again, 60 data. Thus each group has twice as many data as the previous one.

There are thus nine sets of individual data for each of the four models to be tested. The breakdown

for all these sets is shown in Table 9.2.1.
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Table 9.2.1: Group definition by starting point and size

Starting point | Small group  Medium group  Large group

1 1-15 1-30 1-60
21 21-35 21-50 21-80
41 41 -55 41 -70 41 - 100

A seven day time interval was used between each datum, in keeping with the client’s practice of
weekly data. Coefficients were computed by fitting all the data sets indicated in Table 9.2.1 for the
generated data, and then testing them against the next 50 data, that is, roughly as if one was
computing forecasts for the next year. The standard deviation was computed, and converted to a
percentage of the lowest possible standard deviation, the one obtained when 100 data were used in
fitting (the first complete cycle of the generated random numbers). This percentage indicates how
closely the true coefficients were retrieved, 100 percent being the best possible result (with the

retrieved coefficients identical to the original ones).

The results of fitting each model appear in the separate sections which follow. The results for all the
data refer to the best fit, when using 100 data. The numbers 1, 21 and 41, in parenthesis, indicate the
starting point of each of the three data groups, small, medium and large. Each entire series was tested
both forwards and backwards. By testing the series in normal and reverse orders, one eliminates any
regularity at the beginning or end of a series, which may accidentally improve or worsen the fit.
However, those data which contain the computer generated random numbers have already been
repeated backwards. Therefore, the fitting results for these data should have the same results when

considering the series forwards or backwards.
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9.2.1 Constant model
The average was the first model to be tested. The raw data for testing the average, that is, the
generated random numbers from 1 to 100, with a multiplier of 18 and a modulator of 101, are shown

in Table 9.2.1.1. The dividing line indicates the end of the first 100 data. Thereafter, data are repeated

in reverse.

Table 9.2.1.1: 200 generated random data for fitting the average (forward and reverse)

18 21 75 37 60 70 48 56 99 65 59 52 27 82 62 5 90 4 72 84
98 47 38 78 91 22 93 58 34 6 7 25 46 20 57 16 86 33 89 87
51 9 61 88 69 30 35 24 28 100 83 80 26 64 41 31 53 45 2 36
42 49 74 19 39 96 11 97 29 17 3 54 63 23 10 79 8 43 67 95
94 76 55 81 44 85 15 68 12 14 50 92 40 13 32 71 66 77 73 1

1 73 77 66 71 32 13 40 92 50 14 12 68 15 85 44 81 55 76 94
95 67 43 8 79 10 23 63 54 3 17 29 97 11 96 39 19 74 49 42
36 2 45 53 31 41 64 26 80 83 100 28 24 35 30 69 88 61 9 51
87 89 33 86 16 57 20 46 25 7 6 34 58 93 22 91 78 38 47 98
84 72 4 90 5 62 82 27 52 59 65 99 56 48 70 60 37 75 21 18

Table 9.2.1.2 lists the Fisher random data, used as the second set of data in fitting the average. When
200 data are examined, one notes even more repetitions of certain observations:

1,12, 16, 17, 22, 23, 30, 31, 35, 38, 39, 44, 54, 59, 63, 64, 67, 76, 77, 78, 82
appearing twice in addition to those listed in section 8.6, 96 and 30 appearing twice in successive

observations (shown in bold in Table 9.2.1.2). The numbers 6, 43, and 55 appear three times.

Table 9.2.1.2: 200 Fisher data for fitting the average

3 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45
60 11 14 10 95 97 74 24 67 62 42 81 14 57 20 42 53 32 37 32
27 7 36 7 51 24 51 79 89 73 16 76 62 27 66 56 50 26 71 7
32 9 79 78 53 13 55 38 58 59 88 97 54 14 10 12 56 85 99 26
96 96 68 27 31 5 3 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 9 90 6 18 44 32 53
23 83 1 30 30 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78
87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55§ 6 88
77 4 74 47 67 21 76 33 50 25 83 92 12 6 76 63 1 63 78 59
le 95 55 67 19 98 10 50 71 75 12 86 73 58 7 44 39 52 38 79

The results of fitting the raw data from Tables 9.2.1.1 and 9.2.1.2, appear in Table 9.2.1.3.
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Table 9.2.1.3: The results of fitting the average

Average

Generated data Fisher data
Forwards Backwards Forwards Backwards

Grou . .
(Startl)) Sigma % Sigma % Sigma % Sigma %

All 28.8661 100 288661 100 | 25.9319 100 30.0967 100

Small 15 data .
(1) 294791 103 | 294791 103| 283193 109 95
1) 289914 101 | 289914 101 | 27.4295 91
41) 295951 103 103 | 296549 86

Average
Medium 30 data
(1) 297884 104 29.7884 104 269017 104 27.3895 91
(21) 28.8905 101 28.8905 101 30.3919 117 25.9213 86
(41) 297964 104 29.7964 104 29.6107 114 29.3091 97
Average 29.4918 103% 28.2540 101%
Large 60 data
) 296167 103 29.6167 103 28.6429 111 26.3927 88
(21) 29.7112 104 29.7112 104 29.1505 112 29.6788 99
(41) 288138 101 28.8138 101 25.9236 100 30.1483 100
Average 29.3806 103% 28.3228 101%

Obviously in Table 9.2.1.3, the average standard deviations for both data groups, generated and
Fisher, do not improve as a larger group is used, that is, when the number of data used in fitting is
doubled from 15 to 30, and then to 60 data. In other words, the results are remarkably similar no
matter how many data were used in fitting. Both sets of data actually produced a slightly worse fit

as more data are considered. This suggests that some parts of the series are not quite as "random"

as others.

The fact that increasing the number of data does not improve fitting stands to reason: random is
random, meaning that the data fluctuate from the mean by large amounts as often as they do by small

amounts. Also, if the data are random, these fluctuations should be uniform throughout the series.
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The mean should, therefore, be accurately retrieved from any part of the data, even from a small

section, shaded in Table 9.2.1.3.

The same conclusion is corroborated by Figure 9.2.1.1, with the generated random numbers in black,

and all the averages computed in colour. The green line indicates an average of a small group (1 to

15), the blue of a medium group (21 to 50), and the red of a large group (41 to 100). All the lines are

close to the true average (shown in black), so much so that a zoom square is included in the graph.

Figure 9.2.1.1: Graph of averages with generated random numbers
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9.2.2 Linear model

Time (weekly time unit)

The next two series to be tested, are those for the trend. The generated data for the trend have an

origin of 450 and slope of 10. The first series shown in Table 9.2.2.1 is that which contains the

generated random numbers.
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Table 9.2.2.1: Trend data with generated random element

478 491 555 527 560 580 568 586 639 615 619 622 607 672 662 615
710 634 712 734 758 717 718 768 791 732 813 788 774 756 767 795
826 810 857 826 906 863 929 937 911 879 941 978 969 940 955 954
968 1050 1043 1050 1006 1054 1041 1041 1073 1075 1042 1086 1102 1119 1154 1109
1139 1206 1131 1227 1169 1167 1163 1224 1243 1213 1210 1289 1228 1273 1307 1345
1354 1346 1335 1371 1344 1395 1335 1398 1352 1364 1410 1462 1420 1403 1432 1481
1486 1507 1513 1451 1461 1543 1557 1556 1571 1542 1533 1570 1632 1600 1574 1582
1648 1605 1685 1654 1701 1685 1716 1744 1755 1737 1723 1698 1779 1720 1743 1793
1794 1753 1777 1799 1877 1801 1896 1849 1839 1904 1889 1892 1896 1872 1925 1943
1931 1951 1984 1956 2020 2033 2060 1998 2004 2025 2030 2079 2108 2091 2049 2101
2147 2159 2113 2176 2116 2167 2140 2176 2165 2157 2166 2204 2238 2283 2222 2301
2298 2268 2287 2348 2344 2342 2284 2380 2305 2372 2402 2357 2392 2409 2425 2469
2436 2438 2470 2470 2457 2505 2461 2468

Table 9.2.2.2 shows the second set of data for the trend containing the Fisher random numbers.

[able 9.2.2 2: Fisher data for the trend

463 517 523 563 586 546 616 577 576 611 606 668 643 661 662 643

646 646 720 695 720 681 694 700 795 807 794 754 807 812 802 851
794 847 820 852 873 862 877 882 887 877 916 897 951 934 971 1009
1029 1023 976 1046 1042 1017 1066 1066 1070 1056 1111 1057 1092 1160 1159 1168
1153 1123 1175 1168 1198 1209 1248 1267 1234 1204 1210 1222 1276 1315 1339 1276
1356 1366 1348 1317 1331 1315 1323 1402 1433 1365 1417 1382 1390 1404 1421 1498
1446 1479 1521 1526 1515 1529 1536 1525 1564 1548 1574 1612 1586 1572 1591 1632
1623 1599 1690 1616 1638 1674 1672 1703 1683 1753 1681 1720 1730 1726 1742 1807
1834 1789 1809 1824 1823 1844 1882 1827 1857 1923 1863 1928 1947 1905 1900 1986
1943 1994 1946 1964 2031 2014 2044 2012 1997 2043 2031 2067 2044 2085 2046 2138
2137 2074 2154 2137 2167 2131 2196 2163 2190 2175 2243 2262 2192 2196 2276 2273
2221 2293 2318 2309 2276 2365 2335 2357 2319 2408 2330 2380 2411 2425 2372 2456
2453 2448 2407 2454 2459 2482 2478 2529

The procedure for testing the trend is exactly the same as with the average, and the results are shown
in Table 9.2.2.3. The standard deviations when all the data were used in fitting, are practically
identical to those in Table 9.2.1.3, as indeed the same random element was added to the trend line.
The fact that they are not absolutely identical, shows that the random element itself has ever so slight

a trend, as indeed is practically inevitable, even with a generated series.

The results for fitting the trend to the data containing the generated random element are identical
whether they are fitted forwards or backwards, because of the arrangement of the random element,

as previously discussed.
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Table 9.2.2.3: The results of fitting the trend

Trend (450 + 10 X time)
Generated data Fisher data
Forwards Backwards Forwards Backwards
Grou . .
(Stanl)) Sigma % Sigma % Sigma % Sigma %
All 28.8722 100 28.8722 100 259993 100 30.8608 100
Small 15 data

(1) 79.7077 276 797077 276 91.7918 356 404810 131
(21) 128.2926 444 128.2926 444 27.1432 105 39.0697 127
(41) 42.5327 147 425327 147 106.2492 412 548460 178

Average 835110 289% 59,9302 211%
Medium | 30 data v_

(D - BL7902 7902- 110 27.3590 9.
(21) : 4547 102 302144 116 % 88
(41) 4119 426125 _led | 33845 10

Average ey
Large 60 data

(1) 30.7450 106 30.7450 106 31.2682 120 26.8369 87

2n 31.6857 110 31.6857 110 31.9658 123 29.9654 97
(41) 28.9729 100 289729 100 259715 100 31.5595 102
Average 30.4679 106% 29.5946 104%

It is obvious from a cursory examination of Table 9.2.2.3, that the trend goes hopelessly wrong when
only 15 data are considered. With so few data, the trend may shoof off on a slope wrongly retrieved
from the initial period. In other words, when one deals with only about 15 so-called random numbers,
they almost inevitably carry such a strong trend in themselves that they overpower the true trend. For
example, the results 128.2926 and 106.2492 (shown in bold in Table 9.2.2.3) demonstrate just how
wrong the forecast can be, if by chance, the fitting period and a non-random pocket coincide. Indeed,
the second set of 15 data (21-35) in the generated random data, have an origin of 144.4 and a slope
of -3.44, vastly different from the true origin of 450 and slope of 10. The generated random data are
considerably worse with 15 data than the Fisher data, 83.5110 versus 59.9302 on average, because

of this initial trendiness. It is exaggerated by the small fitting period.
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However, there is an obvious improvement when 30 data are considered, shaded in Table 9.2.2.3.
This means that the fitted slope is quite close to the true slope. This can be seen in Figure 9.2.2.1
which shows the slopes computed for 15 data (green), 30 data (blue), and 60 data (red), all having
been fitted to the generated random numbers from point 1. The slopes are extended at their fitted rate

of change for the next 50 weeks. The true slope of the data is shown in black, but is almost totally

obscured by the fit in red which considers 60 data.

Figure 9.2.2 1: Graph of trends with generated random factor
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There is a slight improvement in the slope retrieved when using 60 data rather than 30, producing an
almost perfect fit. This improvement is so slight that it hardly justifies the extra amount of data, that
is, twice as many. Although the trend is a more responsive model than the average, because of its rate

of change, doubling the number of data from 15 to 30 counters practically all this responsiveness.
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9.2.3 Curve model
The curve, however, is an even more responsive model than the trend because it has two rates of
change. The raw data for the curve with the generated random data are shown in Table 9.2.3.1. The

series is of a very similar magnitude to that shown in Table 9.2.2.1, the data used to test the trend.

Table 9.2.3.1: Curve data with generated random numbers

458 451 496 449 463 464 433 432 467 425 411 396 364 412 385 321
399 306 368 374 382 325 311 346 354 280 346 306 278 246 243 257
275 246 280 236 303 247 301 297 259 215 266 292 272 232 236 224
228 300 283 280 227 266 244 235 258 251 210 246 254 263 291 239
262 322 240 329 265 257 247 302 316 281 273 347 281 321 351 385
390 378 364 397 367 415 352 412 364 374 418 468 425 407 435 483
487 507 513 451 461 543 558 558 574 546 538 576 640 610 586 596
665 625 708 680 730 717 752 784 799 785 776 756 842 788 8le 871
878 843 873 901 986 917 1019 979 976 1048 1041 1052 1064 1048 1110 1137
1134 1163 1205 1186 1260 1283 1320 1268 1285 1317 1333 1393 1433 1427 1397 1461
1519 1543 1510 1586 1539 1603 1589 1638 1641 1647 1670 1722 1771 1831 1785 1879
1891 1876 1911 1988 2000 2014 1973 2086 2028 2112 2159 2131 2184 2219 2253 2315
2301 2322 2373 2392 2398 2465 2441 2468

Table 9.2.3.2 shows the data for the curve using the Fisher random data.

Table 9.2.3.2: Fisher data for the curve

443 477 464 485 489 430 481 423 404 421 398 442 400 401 385 349
335 318 376 335 344 289 287 278 358 355 327 272 311 302 278 313
243 283 243 262 270 246 249 242 235 213 241 211 254 226 252 279
289 273 216 276 263 229 269 260 255 232 279 217 244 304 296 298
276 239 284 270 294 299 332 345 307 272 273 280 329 363 383 316
392 398 377 343 354 335 340 416 445 375 425 388 395 408 424 500
447 479 521 526 515 529 537 527 567 552 579 618 594 582 603 646
640 619 713 642 667 706 708 743 727 801 734 778 793 794 815 885
918 879 905 926 932 960 1005 957 994 1067 1015 1088 1115 1081 1085 1180
1146 1206 1167 1194 1271 1264 1304 1282 1278 1335 1334 1381 1369 1421 1394 1498
1509 1458 1551 1547 1590 1567 1645 1625 1666 1665 1747 1780 1725 1744 1839 1851
1814 1901 1942 1949 1932 2037 2024 2063 2042 2148 2087 2154 2203 2235 2200 2302
2318 2332 2310 2376 2400 2442 2458 2529

These results for fitting these data are shown in Table 9.2.3.3. In this case, the results for fitting the
curve with the generated random element backwards and forwards are not identical. This is because
the curve has a negative slope before it becomes positive, seriously misleading fitting in the forwards
direction. Furthermore, the curve is comparatively far more responsive than the trend. Therefore,

when the coefficients are not accurate, the fit goes even further off course. Only when a large number
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of data are used in fitting, is the forecast likely to have an acceptable degree of accuracy.

Table 9.2.3.3: The results of fitting the curve

Curve (450 - 10 x time + 0.1 X time?)

Generated data Fisher data
Forwards Backwards Forwards Backwards

Group . . . . o

(Start) Sigma % Sigma % Sigma % Sigma Yo
All 29.7077 100 29.6391 100 25.8049 100 31.8276 100

Small 15 data
) 7432700 2502 | 749.5997 2529 552.1503 21401 490.0752 1540
(21) 431.7519 1453 | 4254487 1435 11583648 4489 | 1398761 439
(41) 265.0554 892 | 271.3506 916 737.9029 2860 | 4929411 1549

Average 481.0794 1621% 5952184 2066%

Medium 30 data
1) 2477777 834 | 247.7500 836 27.8872 108 34.7388 109
21) 221.1635 7451 221.1981 746 178.2329 691 49.4260 155
(41) 64.5756 217 64.5459 218 181.4442 703 | 952081 299

Average 177.8351 599% _ 94.489_5 328%

Large ’ - . o e = - :
§)) _5017-4,__12' 171 be 297498 115| 402998 127
21 4. 340317 1151 398260 154} 522140 164
(1) 325687 110 325091 = 110 . 255) 200720 94

Average | WINE B 420545 149%

Even with 30 data in the fitting period, the fit is very poor, because of the responsiveness of the
model, and the changes occurring in the data. Within each group, the results vary considerably,
except in the large group where the results are roughly of the same magnitude. For example, 64.5459
and 27.8872 (shown in bold) are comparatively good fits for only 30 data. This is because a slope is
detected by chance in the fitting period that is not as poor as the same size group in another section

of the data. Unfortunately, it is not possible to know beforehand which section of the series will

closely reflect the true process.
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The curve, being as sensitive as it is, means that any slope in the random data is amplified when
forecasting a curve. The results of fitting a curve are largely dependent on whether or not these small
regularities in the random data were encountered or not within the fitting period, and whether these
regularities are similar to the true process or not. Because of its explosive nature, one has to be quite
sure of the coefficients in the curve model before simply forecasting with it. When looking at 60 data,
there 1s far greater consistency in the results, because the volume of data is sufficient to neutralise the
random element and reveal the true process. Although there are still large errors when considering
the largest group, shaded in Table 9.2.3.3, the reduction in comparison to the other groups is very
large. It is obvious then that the more responsive the model, the more accurate the coefficients must
be to keep the forecast on the right track. In order to retrieve the coefficients accurately, more and

more data are required.

Three of the forecast curves are plotted in Figure 9.2.3.1, the raw data with the generated random
element being shown in black. The fit from the first 15 data is shown in green, the first 30 data in
blue, and the first 60 data in red. Each fit is cast forward for 50 weeks, to demonstrate its accuracy
or inaccuracy. It is obvious how misleading the negative slope in first the 15 data was, the forecast
reaching zero very quickly. It can also be seen that significantly more data are required to obtain a

reasonably accurate estimate, than with the trend, due to the extra polynomial coefficient, time

squared.
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Figure 9.2.3.1: Graph of curves with generated random factor
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9.2.4 Seasonal model

Apart from experimenting with polynomial models, trigonometric models are important where data
are cyclical in tendency, as is to be expected with demand or sales data. Data with a 5-point cycle
were tested to determine the number of data required to successfully retrieve the coefficients for this

type of model. The raw data with the generated random element are shown in Table 9.2.4.1.

Table 9.2.4.1: Generated random numbers with 5-point wave

532 611 547 361 410 584 638 528 423 415 573 642 499 406 412 519
680 476 396 434 612 637 510 402 441 536 683 530 358 356 521 615
518 344 407 530 676 505 413 437 565 599 533 412 419 544 625 496
352 450 597 670 498 388 391 545 643 517 326 386 556 639 546 343
389 610 601 569 353 367 517 644 535 347 360 593 598 515 391 445
608 666 527 405 394 599 605 540 336 364 564 682 512 337 382 585
656 549 397 351 515 663 549 390 421 546 603 512 416 400 528 602
540 339 435 558 671 527 400 444 609 657 D515 332 429 524 613 535
378 353 531 619 569 335 446 553 609 546 373 392 550 592 517 377
381 555 654 498 404 433 614 618 496 359 380 583 678 533 333 401
601 679 505 410 366 571 610 518 349 357 520 624 530 417 372 605
668 510 371 448 598 662 476 414 355 576 672 499 376 409 579 689
528 372 420 574 627 547 345 368

The Fisher random data with a 5-point wave are shown in Table 9.2.4.2.
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Table 9.2 4 2: Fisher random data with 5-point wave

517 637 515 397 436 550 686 519 360 411 560 688 535 395 412 547
616 488 404 395 574 601 486 334 445 611 664 496 391 412 556 671
486 381 370 556 643 504 361 382 541 597 508 331 401 538 641 551
413 423 530 666 534 351 416 570 640 498 395 357 546 680 551 402
403 527 645 510 382 409 602 687 526 338 360 526 646 557 423 376
610 686 540 351 381 519 593 544 417 365 571 602 482 338 371 602
616 521 405 426 569 649 528 359 414 552 644 554 370 372 545 652
515 333 440 520 608 516 356 403 537 673 473 354 380 530 612 549
418 389 563 644 515 378 432 531 627 565 347 428 601 625 492 420
393 598 616 506 415 414 598 632 489 377 381 571 614 527 330 438
591 594 546 371 417 535 666 505 374 375 597 682 484 330 426 577
591 535 402 409 530 685 527 391 369 612 600 522 395 425 526 676
545 382 357 558 629 524 362 429

The results from testing the generated and Fisher data with a 5-point cycle, are shown in Table
9.2.4.3. The results for testing the series containing the generated random element backwards and
forwards are different. This is understandable because 200 data are exactly divisible by the 5-point
wave. This means that the series starts with a peak when fitted forwards, and a valley backwards.

Therefore, one can expect the fitting results to be slightly different.
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Table 9.2.4.3: The results of fitting a 5-point season

Season: S-point (450 + 100 sin (72°) X time - 100 cos (72°) X time)

Generated data Fisher data
Forwards Backwards Forwards Backwards
Grou )
(Starti)) Sigma % Sigma % Sigma % Sigma %
All 28.8685 100 28.8226 100 259186 100 __30.5748 » 100
Small 15 data : _
€8] 308179 30.7675 107 ‘ _ ( 111 | 28.9396 95
1) 291015 291024 344080 - 133 | 282264 92
Average 299653 106%

Medium 30 data
(1) 29.7881 103 29.7685 103 296025 114 27.3831 90
(21) 31.9213 111 31.9628 111 32.4175 125 27.6438 90
(41) 30.1374 104 30.1363 105 29.9947 116 31.5331 103

Average 30.6191 106% 29.7625 105%

Large 60 data
(D 30.8895 107 30.9250 107 29.6748 115 | 26.6889 87
(21) 29.8472 103 29.8483 104 28.6201 110 | 31.1337 102
(41) 302328 105 30.1890 105 26.4525 102 [ 31.0151 101

Average 30.3220 105% 28.9309 102%

The seasonal data are fitted well with only 15 data. This is because the only coefficients to be
determined are those for the average, and for the periodicity. This agrees with Table 9.2.1.3, where
15 data have already been shown to be sufficient to retrieve the average. On the other hand, one can
clearly discover the periodicity, and therefore recover the true sine and cosine coefficients, if the
fitting period includes three full seasons, as shown in section 5.5. If there had been a trend with the
season, one would expect to need at least 30 data to recover this polynomial slope, more than the 15

data required to determine the periodicity alone.

Figure 9.2.4.1 shows graphically how well the cyclical model coefficients were retrieved with only

15 data. The fit is shown in green, and the raw data containing the generated random factor in black.
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Figure 9.2.4.1: Graph of 5-point season with generated random numbers
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If the periodicity happened to be greater than 5, the periodicity and, therefore, the trigonometric
coefficients could not be so successfully retrieved. Although one would expect the average to be
retrieved from only 15 data, the sine and cosine coefficients for a periodicity larger than 5 will require
more data. In particular, a lengthy cycle such as 12 weeks will require at least 36 data to determine
the correct coefficients computationally. However, it is interesting to investigate the results when the
periodicity is known, say 12, and forced on the fit using the different size groups from before. This

example is shown in Table 9.2.4.4.

The results for fitting the data with generated random element forwards and backwards are identical,

whereas they were different for the 5-point wave. With a periodicity of 12, the series starts and ends

with a peak, which results in identical fitting backwards and forwards.
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Table 9.2.4.4: The results of fitting a 12-point season

Season: 12-point (450 + 100 sin (30°) X time - cos (30°) X time)
Generated data Fisher data
Forwards Backwards Forwards Backwards
Group _ _ ,
(Start) Sigma % Sigma % Sigma % Sigma %
All 28.8413 100 28.8413 100 262098 100 | 302051 100
Small : 15 datd : - :
¢} 323456 112 32.3456 296234 111 | 29.9068 99
(21) 348733 121 34 8733 324513 131 | 286192 95
(41) 8654 107 308654 338921 129 200132 96
Average 326048 113% 30.4843 108%
Medium 30 data
(1) 324172 112 324172 112 273742 104 28.6587 95
2D 299444 104 299444 104 32.6700 125 26.2680 87
(41) 327109 113 327109 113 32.0968 123 29.9738 99
Average 31.6908 110% 29.5069 105%
Large 60 data
¢)) 30.0746 104 30.0746 104 297354 114 26.4281 88
21 30.9907 107 30,9907 107 29.1196 111 29.6643 98
(41) 28.8126 100 28.8126 100 26.0708 100 30.1501 100
Average 29.9593 104% 28.5281 101%

All the results are of very similar magnitudes. Certainly, when the periodicity is known, it only takes
15 data to establish the average, as shown before. On the other hand, if the data were to be fitted
without the prior knowledge that they had a 12 week cycle, a fitting period of 60 data (a large group)
would be required to retrieve the correct coeflicients. This is because 12 multiplied by 3 is 36, larger
than the data in a medium size group, but within the size of the large group. The critical factor for
determining the number of data required in this case, is the period length, and not the order of the

polynomial model, because the average can be recovered from even the smallest group.

The amount of data required to discover the true periodicity, and those required for fitting the

polynomial part of the model, are independent and mutually exclusive. If there are insufficient data
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to discover the periodicity, the data cannot be accurately fitted. Similarly, 60 data are required for
the curve, irrespective of the periodicity. If the fitting period does not consider enough data to satisfy

both criteria, the result is a poor fit.

9.3 Conclusions from results

The results of the previous tables can be summarised in Table 9.3.1.

Table 9.3.1: Summary of best results for reasonable fitting periods

Model Polynomial Power | Period Total Number of

name Coefficients | oftime | Length | Coefficients | data required
Average 1 0 0 1 15
Trend 2 1 0 2 30
Curve 3 2 0 3 6
Short season 1 1 5 3 15
Long season 1 1 12 3 60

Some important conclusions can be drawn from the evidence in Table 9.3.1:
° as few as 15 observations are sufficient to establish the average;
° twice as many data are required to fit a trend rather than an average, and twice as
many again to fit a curve rather than a trend,

o a season requires at least three times as many data as its periodicity.

Even with the presence of the random variation, the true average of a given set of data can be
recovered from astonishingly few data. The results of fitting the generated data show that the number
of data needs to be doubled for each extra polynomial term in the model. Also, three times as many
data as the periodicity are required to fit a wave. The limitations when fitting a seasonal model can

be either that the observations do not warrant the use of a high order polynomial model, or there are
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insufficient data to determine the optimal periodicity, or both.

If each new polynomial term requires double the number of data than for the previous model, then

there is an exponential relationship between the two. Based on this relationship between observations

and polynomial terms, Table 9.3.2 shows the extension for models with up to six polynomials, by

doubling the amount of data required with each new term. The data required for the trigonometric

model is similarly related to the number of polynomials contained in the model. However, just as

important is the periodicity and whether it can be correctly discovered from the observations in hand.

Table 9.3.2: Data required for good fitting with polynomials

Polynomials

Highest power of time Number of data

1

2
3
4
5
6

0

[V, N - OS B 8]

15
30

60
120
240
480

This projection suggests that data with a random variation comparable to that used in generating the

test data, can be fitted accurately by having a number of observations as large as 15 times 2, raised

to the power of the desired model. The power of the model is the highest exponent of zime, for

example, two for the curve (t*). This formula is shown below.

Number of data = 2 Poveroftme y 15

Because the number of observations required by a higher order model doubles, the formula for the
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number of data required by a given model is two to the power of that model. From the empirical study
in this chapter, 15 data is the size of the base group from which each subsequent group is doubled.
Therefore, 2 to the power of the model multiplied by 15 will compute the number of data required
to justify using a particular model. For business data, however, it is unlikely that one would want a
model with a power of time higher than 2, because this would then be more adequately fitted by a

logarithmic model. If one were to fit six polynomial coefficients, at least 480 data would be required.

Brown (1967: 119) has a different opinion on this point. ““...If we use too short a historical period,
the random fluctuations in demand may be misleading and yield coefficients that are not very good
for forecasting. If we use too long a historical period, there is a cost of keypunching and processing
a lot of data...As a rule of thumb many statisticians require that the number of observations be at least
five times the number of terms in the model. Since we have to estimate six coefficients, that rule

would suggest thirty observations...”.

From the studies in this chapter, 30 observations is only enough to consider forecasting a trend, that
is, two coefficients (t° and t'). More importantly, the relationship between the required observations
and the model is exponential, and not linear as suggested by Brown. With each higher order model,
the number of observations must be doubled (15 30 60 120 240 480), not multiplied by the number

of terms (5 10 15 20 25 30). As a rule, many more data than five times the number of terms is

required, and specifically, one must also consider the power of the term.

9.4 Summary

The most important point is that an unexpectedly large number of observations are required to
accurately fit a model other than the average. Even though high order models may fit the data well
in the short term, extrapolating them into the future may have disastrous results. Obviously then, the
more data that are available, the less the risk is of using a higher model mistakenly.
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Any company hoping to accurately forecast a trend with their data, will have to keep nearly a year
of weekly data or three years of monthly data. Fifteen observations does not seem like much, for
example, just over two weeks of daily data. However, for those companies that store monthly or

quarterly data, this can mean recording data for many years.

The analysts in this chapter ignored any revision of the forecast in the light of new data because this
serves only to hide inaccurate model coefficients by keeping forecasts in line with the changing
process. When forecasting into the true future though, for example, 50 weeks ahead, there are no
data available to revise the forecast as they have not yet occurred. Also, the object of this study was
to recover the frue characteristics of a given process. Whether they are true can be seen, not by how

well they fit the past, but how they forecast, unadulterated, into the future.
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APPENDIX 1

Solving simultaneous equations by the substitution method

Equation 1: AXxN+Bx Yt=)D
Equation 2: A x Yt +B x t*= Y (t x D)

From Table 2.4.7, N=5, Y D=150, ¥ (tD)=540, Y't=15, Y >=55

Equation 1: 5A+15B =150
Divide by 5 A+ 3B=30

A =30-3B
Equation 2: 15A + 55B = 540
Divide by 5 3A+11B=108

Substitute equation 1 into equation 2: 3(30-3B) + 11B = 100

Multiply by 3: 90-9B +11B =108
Solve for B: 2B =18
: B=9

Substitute solution for equation 2 into equation 1: 5A + 15(9) = 150

Solve for A: 5A =150 -15(9)
A=3
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APPENDIX 2

Listing of Pascal code for SHOWLOOP.PAS

program ShowLoop;
{ GD Armstrong, University of Natal, South Africa: July 1997 }

uses CRT;

const DataMatrix: array [1..3,1..5] of integer = ((1, 1, 1, 1, 1),
(L, 2, 3, 4, 5),
(50,40,30,20,10));

{ DataMatrix is an array used to store Unity, Time and Data vectors, }
{ which is only used to calculate the covariance matrix where data are }

{ stored in this fashion }

procedure DisplayDataMatrix;
{ Displays the data matrix which has been stored in memory }
var Line, Column: integer; { Variables to indicate position in DataMatrix }
begin
ClrScr;
Writeln ('Data matrix stored in memory':30);
for Line:= 1 to 3 do
begin
for Column:= 1 to 5 do Write (DataMatrix [Line, Column]:6);
Writeln
end;
Writeln;
end;

procedure ComputeCovarianceWithDataStorage;
var Currentline, Line, Column: integer;
{ The current line in the data matrix is multiplied by all other lines }
Hold: integer;
begin
Writeln('Covariance matrix: all data stored');
for Currentline:= 1 to 3 do

begin
for Line:= 1 to 3 do
begin
Hold:= 0;
for Column:= 1 to 5 do
Hold:= Hold + DataMatrix [Line, Column]
* DataMatrix[CurrentlLine, Column];
{ Multipy each line by the entire datamatrix )}
Write (Hold:6);
{ Output the results to the screen})
end;
Writeln;
end;
Writeln;
end;
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procedure ComputeCovarianceWithoutDataStorage;

var Unity, Time, Data: integer;

{ Only the current values of the DataMatrix are stored for calculations }
SumTime, SumUnit, SumData: integer;

{ The sums of these values also have to be stored }

begin
Unity:= 1; { Unity vector is constant at one }
Time:= 0; { Time starts a point zero }

SumTime:= 0; SumUnit:= 0; SumbData:= 0;
WriteLn ( Covarlance matrix: only current data storage');
Writeln ('N':6, 'Sum t**2':12, 'Sum D**2':12);

repeat { Loop to compute covariance as data become available }
Time:= Time + 1;
{ Increase time by one with each new datum }
{ Time is therefore generated and not stored }
Read (Data); Gotoxy (Wherex, Wherey-1);
{ Input datum from user. Only one datum is stroed }
SumUnit:= SumUnit + (Unity * Unity);
SumTime:= SumTime + (Time * Time);
SumData:= SumData + (Data * Data);
{ All the sums are computed with current Unit, Time and Datum }
Writeln {(SumUnit:6, SumTime:12, SumData:12);

until (Time = 5);

end;

begin
DisplaybataMatrix;
ComputeCovarianceWithDataStorage;
ComputeCovarianceWithoutDataStorage;
ReadLn;

end.
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10.

APPENDIX 3

Forecasting: data storage guidelines

The data best suited for accurate forecasting are daily data. This is because the number of
working days per month, or per week, changes from one interval to another, and recording
daily data overcomes this cause for inaccuracy. In any case, it is important that the date be
recorded for each observation.

In having a date for each datum, missing data can easily be detected and dealt with. Data may
be missing because of weekends, public holidays, strikes, stay-aways, and so on.

The format decided upon as most convenient and efficient for the time of each observation,
is an integer date. For example, /9970101, where the first four digits are the year (YYYY),
the second two the month, (MM), and the final two, the date in that month (DD).

An observation is required for each stock keeping unit. Thus a six pack of Product X is
recorded independently of the same Product X in a pack of three.

Demand data are better than sales data. Records from the point of sale provide a better
picture of what is happening in the market than records of when new orders were placed.

The observations (demand) should appear after the date of the observation, and on the same
line. This may also be an integer value.

Product identification could be provided by a heading/footing style message. Alternatively,
this must be provided on each row, preceding the date, for example: BLUEPERS6 or
BLUEPERS3. This facilitates a universally useful data base, but will waste space with the
endless repetition of the product identification.

The name of each product is not required and a coded identifier may be substituted. This will
improve the objectivity of the study by not knowing what the data are.

The data can be stored in a ASCII file. The end of a file should be marked with a slash "/ "
as some data bases do not write a proper EOF-signal.

Example of the ASCII file layout (the day of the week appears as a comment only):

Manufacturing Company - Product X: 6 pack

19980121 32 Wednesday
19980122 23 Thursday
19980123 40 Friday
19980126 38 Monday

/

It is clear and documented that the data for the weekend, Saturday (19980124) and Sunday
(19980125), are missing.
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Restructured time unit

Date
19920211
19920324
19920505
19920616
19920728
19920908
19921020
19921201
19921229
19930211
19930325
19930506
19930617
19930729
19930909
19931021
19931202
19831230
19940211
19940325
19940506
19940617
19940729
19940909
19941021
19941202
19941230
19950204
19950304
19950401
19950506
19950603
19950701
19950805
19950902
19950930
19951104
19951202
19951230
19960204
19960303
19960331
19960505
193860602
19960630
19960804
19960901
19960929
19961103
19961201
19961229

APPENDIX 4

Time vector
42
84

126
168
210
252
294
336
364
408
450
492
534
576
618
660
702
730

773

815

857

899

941

983
1025
1067
1095
1131
1159
1187
1222
1250
1278
1313
1341
1369
1404
1432
1460
1496
1524
1552
1587
1615
1643
1678
1706
1734
1769
1797
1825

Weeks

B DDA DO RO AR DBOBRDOBRDBOOBE IR N

Gap

42
42
42
42
42
42
42
28
44
42
42
42
42
42
42
42
28
43
42
42
42
42
42
42
42
28
36
28
28
35
28
28
35
28
28
35
28
28
36
28
28
35
28
28
35
28
28
35
28
28
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APPENDIX 5

Computation of Fisher data

"...These random numbers are constructed from the 15th-19th digits of A.J. Thompson's 20-figure
logarithm tables, parts IV, V, VI, VIII (40000-70000 and 80000-90000). The method of construction
was as follows. Eight pages of 50 rows by 40 columns (afterwards reduced, for convenience in
printing, to six pages of 50 rows by 50 columns) were each divided into 6 panels and 8 rows, there
being thus 50 panels of 320 digits each in all (including two panels formed by the odd rows at the
bottom of each page). To obtain each set of 50 digits a half page of logarithms (logarithms of 50
consecutive 5-figure numbers) was selected at random, and a column of digits (between the 15th and
the 19th) was also selected at random, one digit being assigned to each of the 50 panels. The order
of assignment was downwards on each page, but between each set of 50 digits the pages were
rearranged in a random order..."

"...It will be seen that this method of construction can hardly fail to give a table of numbers which is
the equivalent of a random selection made by an ideal mechanical contrivance. Any slight systematic

element that may occur in parts of the logarithmic table will be effectively obliterated by the method
of distribution of the digits..."

(Fisher and Yates, 1938: 18).
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APPENDIX 6

Generated data

The 7 and 2 in the column headings denote the use of a generated random factor or the Fisher data
respectively. The Avg / numbers are the generated random numbers, modulator 101 and multiplier
18, and the Avg 2 numbers are the Fisher data.

Date Ava 1 Avg 2 Trend 1  Trend 2 Curve 1 Curve 2 5-Wave 1 5-Wave 2 12-Wave 1 12-Wave 2

19940101 18 3 478 463 458 443 532 517 431 416
19940108 21 47 491 517 451 477 611 637 508 534
19940115 75 43 555 523 496 464 547 515 625 593
19940122 37 73 527 563 449 485 361 397 624 660
19940129 60 86 560 586 463 489 410 436 647 673
19940205 70 36 580 546 464 430 584 550 620 586
19840212 48 96 568 616 433 481 638 686 535 583
19940219 56 47 586 577 432 423 528 519 469 460
19940226 9% 36 639 576 467 404 423 360 449 386
19940305 65 61 615 611 425 421 415 411 378 374
19940312 59 46 619 606 411 398 573 560 372 359
19940319 52 98 622 668 396 442 642 688 402 448
19940326 27 63 607 643 364 400 499 535 440 476
19940402 82 71 672 661 412 401 406 395 569 558
19240409 62 62 662 662 385 385 412 412 612 612
19940416 5 33 615 643 321 349 519 547 592 620
19840423 90 26 710 646 399 335 680 6le 677 613
19940430 4 16 634 646 306 318 476 488 554 566
19940507 72 80 712 720 368 376 396 404 559 567
19240514 84 45 734 695 374 335 434 395 497 458
19940521 98 60 758 720 382 344 612 574 448 410
19940528 47 11 717 681 325 289 637 601 360 324
19940604 38 14 718 694 311 287 510 486 351 327
19940611 78 10 768 700 346 278 402 334 428 360
19940618 91 95 781 795 354 358 441 445 504 508
19940625 22 97 732 807 280 355 536 611 509 584
19240702 93 74 813 794 346 327 683 664 643 624
19940709 58 24 788 754 306 272 530 496 645 611
19940716 34 67 774 807 278 311 358 391 621 654
19940723 6 62 756 812 246 302 356 412 556 612
19940730 7 42 767 802 243 278 521 556 494 529
19940806 25 81 795 851 257 313 615 671 438 494
19940813 46 14 826 794 275 243 518 486 396 364
19940820 20 57 810 847 246 283 344 381 333 370
19840827 57 20 857 820 280 243 407 370 370 333
19940903 16 42 826 852 236 262 530 556 366 392
19240910 86 &3 906 873 303 270 676 643 499 466
19940917 33 32 863 862 247 246 505 504 520 519
19940924 89 37 929 877 301 249 413 361 639 587
19941001 87 32 937 882 297 242 437 382 674 619
19941008 51 217 911 887 259 235 565 541 638 614
19941015 9 7 879 877 215 213 599 597 559 557
19941022 61 36 941 916 266 241 533 508 548 523
19941029 88 7 978 897 292 211 412 331 501 420
19941105 [ 51 969 951 272 254 419 401 419 401
19941112 30 24 940 934 232 226 544 538 343 337
19941119 35 51 955 971 236 252 625 641 348 364
19941126 24 79 954 1009 224 279 496 551 374 429
19941203 28 89 968 1029 228 289 352 413 441 502
19941210 100 73 1050 1023 300 273 450 423 587 560
19941217 83 16 1043 976 283 216 597 530 633 566
19941224 80 76 1050 1046 280 276 670 666 667 663
19941231 26 62 1006 1042 227 263 498 534 613 649
199850107 64 27 1054 1017 266 229 388 351 614 577
19950114 41 66 1041 1066 244 269 391 416 528 553
19950121 31 56 1041 1066 235 260 545 570 444 469
19950128 53 50 1073 1070 258 255 643 640 403 400
19950204 45 26 1075 1056 251 232 517 498 358 339
19950211 2 71 1042 1111 210 279 326 395 315 384
19950218 36 7 1086 1057 246 217 386 357 386 357
19850225 42 32 1102 1092 254 244 5506 546 455 445
18950304 ?9 90 1119 1160 262 304 639 680 536 b77
19950311 /4 79 1154 1158 291 296 546 551 624 629
19950318 ig 78 1109 1168 239 298 343 402 606 665
19950325 39 53 1139 1153 262 276 389 403 626 640
19950401 96 13 1206 1123 322 239 610 527 646 563
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Date Avg 1 Avg 2 Trend 1 Trend 2 Curve 1 Curve 2 5-Wave 1 5-Wave 2 12-Wave 1 12-Wave 2
19950408 11 55 1131 1175 240 284 601 645 498 542
19950413 97 38 1227 1168 329 270 569 510 510 451
19950422 29 58 1169 1198 265 294 353 382 379 408
199250429 17 59 1167 1209 257 299 367 409 330 372
19950506 3 88 1163 1248 247 332 517 602 316 401
19950513 54 97 1224 1267 302 345 644 687 404 447
19950520 63 54 1243 1234 316 307 535 526 476 467
19950527 23 14 1213 1204 281 272 347 338 510 501
19950603 10 10 1210 1210 273 273 360 360 560 560
19850610 79 12 1289 1222 347 280 593 526 666 599
19950617 8 56 1228 1276 281 329 598 646 595 643
12950624 43 85 1273 1315 321 363 515 557 593 635
19950701 67 99 1307 1339 351 383 391 423 554 586
19950708 95 26 1345 1276 385 316 445 376 508 439
19950715 94 96 1354 1356 390 392 608 610 444 446
199850722 76 96 1346 1366 378 398 566 686 389 409
19950729 55 68 1335 1348 364 377 527 540 368 381
19950805 81 27 1371 1317 397 343 405 331 431 377
18950812 44 31 1344 RS Lk 367 354 394 381 457 444
19950819 85 5 1395 1315 415 335 599 519 572 492
19950826 15 3 1335 1323 352 340 605 593 565 553
19950902 68 e 1398 1402 412 416 540 544 655 659
19950909 12 53 1352 1433 364 445 336 417 599 680
19950916 14 15 1364 1365 374 375 364 365 564 565
19950923 50 57 1410 1417 418 425 564 57 537 544
12950930 92 12 1462 1382 468 388 682 602 505 425
19951007 40 10 1420 1390 425 395 512 482 390 360
19951014 13 14 1403 1404 407 408 337 338 326 327
19951021 32 21 1432 1421 435 424 382 371 345 334
19851028 71 88 1481 1498 483 500 585 602 421 438
18251104 66 26 1486 1446 487 447 656 616 479 439
19951111 77 49 1507 1479 507 479 549 521 564 536
19951118 73 81 1513 1521 513 521 397 405 623 631
19951125 1 76 1451 1526 451 526 351 426 588 663
19951202 1 55 1461 1515 461 515 515 569 588 642
19951209 73 59 1543 HTH2Y 543 529 663 649 623 6092
19951216 77 56 1557 1536 558 537 549 528 564 543
19951223 66 35 1556 1528 558 527 390 359 479 448
19951230 71 64 1571 1564 574 567 421 414 421 414
19960106 32 38 1542 1548 546 552 546 552 345 351
19960113 13 54 1533 1574 538 579 603 644 326 367
19960120 40 82 1570 1612 576 618 512 554 390 432
19880127 92 46 1632 1586 640 594 416 370 505 459
189560203 50 22 1600 1572 610 582 400 372 537 509
19850210 14 31 1574 1591 586 603 528 545 564 581
19960217 12 62 1582 1632 596 6456 602 652 599 649
19960224 68 43 1648 1623 665 640 540 515 655 630
19960302 15 9 1605 1599 625 619 339 333 565 559
19960309 85 90 1685 1690 708 713 435 440 572 577
19960316 44 6 1654 1616 680 642 558 520 457 419
19960323 81 18 1701 1638 730 667 671 608 431 368
19960330 55 44 1685 1674 717 706 527 516 368 357
19960406 76 32 1716 1672 752 708 400 356 389 345
19260413 94 53 1744 1703 784 743 444 403 444 403
1960420 95 23 1755 1683 799 727 609 537 508 436
19960427 67 83 1737 1753 785 801 657 673 554 570
19960504 43 1 1723 1681 776 734 515 473 593 551
18960511 8 30 1698 1720 756 778 332 354 595 617
192960518 79 30 1779 1730 842 793 429 380 666 617
19960525 10 16 1720 1726 788 794 524 530 560 566
19960601 23 22 1743 1742 816 815 613 612 510 509
19960608 63 77 1793 1807 871 885 535 549 476 490
19960615 54 94 1794 1834 878 918 378 418 404 444
19960622 3 39 1753 1789 843 879 353 389 316 352
19960629 17 49 1777 1809 873 905 531 563 330 362
19960706 29 54 1799 1824 901 926 619 644 379 404
18960713 27 43 1877 1823 986 932 569 515 510 456
}9960720 11 54 1801 1844 917 960 335 378 498 541
19960727 96 82 1896 1882 1019 1005 446 432 646 632
19960803 39 17 1849 1827 979 957 553 531 626 604
19960810 19 37 1839 1857 976 994 609 627 606 624
18960817 74 93 1904 1923 1048 1067 546 565 624 643
18960824 49 23 1889 1863 1041 1015 373 347 536 510
1996083 42 78 1892 1928 1032 1088 392 428 455 491
i2250207 36 87 1896 194z 1064 1115 550 601 386 437
1 960914 2 35 1872 1905 1048 1081 592 G25 315 348
¢9950921 45 20 1925 1900 1110 1085 517 492 358 333
19960928 53 96 1943 1986 1137 1180 377 420 403 446
18961005 31 43 1931 1843 1134 1146 381 393 444 456
19961012 41 84 1951 1994 1163 1206 555 598 528 571
19961019 64 26 1984 1946 1205 1167 654 616 614 576
19961026 26 34 1956 1964 1186 1194 498 506 613 621

Appendix - Page 8



Date Avg 1l Avg 2 Trend 1 Trend 2 Curve 1 Curve 2 5-Wave 1 5-Wave 2 12-Wave 1 12-Wave 2
19961102 80 91 2020 2031 1260 1271 404 415 667 678
19961109 83 64 2033 2014 1283 1264 433 414 633 614
19961116 100 84 2060 2044 1320 1304 614 598 587 571
19961123 28 42 1998 2012 1268 1282 618 632 441 455
19961130 24 17 2004 1997 1285 1278 496 488 374 367
19961207 35 53 2025 2043 1317 1335 359 377 348 366
19961214 30 31 2030 2031 1333 1334 380 381 343 344
19961221 69 57 2079 2067 1393 1381 583 571 419 407
19961228 88 24 2108 2044 1433 1369 678 614 501 437
19970104 61 55 2091 2085 1427 1421 533 527 548 542
19970111 9 6 2049 20456 1397 1394 333 330 559 556
19970118 51 88 2101 2138 1461 1498 401 438 638 675
19970125 87 77 2147 2137 1519 1509 601 591 674 664
19970201 89 4 2159 2074 1543 1458 679 594 639 554
19970208 33 74 2113 2154 1510 1551 505 546 520 561
19970215 86 47 2176 2137 1586 1547 410 371 499 460
19970222 16 67 2116 2167 1539 1590 366 417 366 417
19970301 57 21 2167 2131 1603 1567 571 535 370 334
19970308 20 76 2140 2196 1589 1645 610 666 333 38¢%
19970315 46 33 2176 2163 1638 1625 518 505 3956 383
19970322 25 50 2165 2190 1641 1666 349 374 438 463
19970329 7 25 2157 2175 1647 1665 357 375 494 512
19970405 [ 83 2166 2243 1670 1747 520 597 556 633
19970412 34 92 2204 2262 1722 1780 624 682 621 679
19970419 58 12 2238 2192 1771 1725 530 484 645 599
19970426 93 6 2283 2196 1831 1744 417 330 643 556
19970503 22 76 2222 2276 1785 1839 372 426 509 563
19970510 91 63 2301 2273 1879 1851 503 577 504 476
19970517 78 1 2298 2221 1891 1814 668 591 428 351
19970524 38 63 2268 2293 1876 1901 510 535 351 376
19970531 47 78 2287 2318 1911 1942 371 402 360 391
19970607 98 59 2348 2309 1988 1949 448 408 448 409
19970614 84 16 2344 2276 2000 1932 598 530 497 429
19970621 72 95 2342 2365 2014 2037 662 685 559 582
19970628 4 55 2284 2335 1973 2024 476 527 554 605
19970705 90 &7 2380 2357 2086 2063 414 391 677 654
12970712 5 19 2305 2319 2028 2042 355 369 592 606
19970719 62 98 2372 2408 2112 2148 576 612 612 648
19970726 82 10 24902 2330 2259 2087 672 600 569 497
19970802 27 50 2357 2380 2131 2154 498 522 440 463
19970809 52 71 2392 2411 2184 2203 376 395 402 421
19970816 59 75 2409 2425 2219 2235 408 425 372 388
19970823 65 12 2425 2372 2253 2200 579 526 378 325
198970830 99 86 2469 2456 2815 2302 689 676 449 436
19970906 56 73 2436 2453 2301 2318 528 545 469 486
18970913 48 58 2438 2448 2322 2332 372 382 535 545
18970920 70 7 2470 2407 2373 2310 420 357 620 557
198970927 60 44 2470 2454 2392 2376 374 558 647 631
19¢71004 37 39 2457 2459 2398 2400 627 629 624 626
19971011 75 52 2505 2482 2465 2442 547 524 625 602
19271018 21 38 2461 2478 2441 2458 345 362 508 525
19971025 18 79 2468 2529 2468 2529 368 429 431 492
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APPENDIX 7

Trend data with reduced random factor

The numbers in the column headings represent the multiplication factor used to reduce the relative
size of the random factor in the simple trend with origin 450 and slope 10.

Date Random Trend 2 Trend 1 Trend 0.5 Trend 0.25

19940101 18 496 478 469 465
19940108 21 512 491 481 475
19940115 75 630 555 518 499
19940122 37 564 527 509 499
19940129 60 620 560 530 515
19940205 70 650 580 545 528
19940212 48 616 568 544 532
19940219 56 642 586 558 544
19940226 99 738 639 590 565
19940305 65 680 615 583 566
19940312 59 678 619 590 575
19940319 52 674 622 596 i 583
19940326 27 634 607 594 587
19940402 82 754 672 631 611
19940409 62 724 662 631 616
19940416 5 620 615 613 611
19940423 90 800 710 665 643
19940430 4 638 634 632 631
19940507 72 784 712 676 658
19940514 84 818 734 692 671
19940521 98 856 758 709 685
19940528 47 764 717 694 682
19940604 38 756 718 699 690
19940611 78 846 768 729 710
19940618 91 882 791 746 723
19940625 22 754 732 721 716
19940702 93 906 813 767 743
19940709 58 846 788 759 745
19940716 34 808 774 757 749
19940723 6 762 756 753 752
19940730 7 774 767 764 762
19940806 25 820 795 783 776
19940813 46 872 826 803 792
19940820 20 830 810 800 795
19940827 57 914 857 829 814
19940903 16 842 826 818 814
19940910 86 992 906 863 842
19940917 33 896 863 847 838
19940924 89 1018 929 885 862
19941001 87 1024 937 894 872
19941008 51 962 911 886 873
19941015 9 888 879 875 872
19941022 61 1002 941 911 895
19941029 88 1066 978 934 912
19941105 69 1038 969 935 917
19941112 30 970 940 925 918
19941119 35 990 955 938 929
19941126 24 978 954 942 936
19941203 28 996 968 954 947
19941210 100 1150 1050 1000 975
19941217 83 1126 1043 1002 981
19941224 80 1130 1050 1010 990
19941231 26 1032 1006 993 987
19950107 64 1118 1054 1022 1006
19950114 41 1082 1041 1021 1010
18950121 31 1072 1041 1026 1018
19950128 53 1126 1073 1047 1033
19950204 45 1120 1075 1053 1041
19950211 2 1044 1042 1041 1041
19950218 36 1122 1086 1068 1059
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Date Random Trend 2 Trend 1 Trend 0.5 Trend 0.25
19950225 42 1144 1102 1081 1071
19950304 49 1168 1119 1095 1082
19950311 74 1228 1154 1117 1099
19950318 19 1128 1109 1100 1095
19950325 39 1178 1139 1120 1110
19950401 96 1302 1206 1158 1134
19950408 11 1142 1131 1126 1123
19950415 97 1324 1227 1179 1154
19950422 29 1198 1169 1155 1147
19950429 17 1184 1167 1159 1154
19950506 3 1166 1163 1162 116l
19950513 54 1278 1224 1197 1184
19950520 63 1306 1243 1212 1196
19950527 23 1236 1213 1202 1196
19950603 10 1220 1210 1205 1203
19950610 79 1368 1289 1250 1230
19950617 8 1236 1228 1224 1222
19950624 43 1316 1273 1252 1241
19950701 67 1374 1307 1274 1257
19950708 95 1440 1345 1298 1274
19950715 94 1448 1354 1307 1284
19950722 76 1422 1346 1308 1289
19950729 55 1390 1335 1308 1294
19950805 81 1452 1371 1331 1310
19950812 44 1388 1344 1322 1311
19950819 85 1480 1395 1353 1331
18950826 15 1350 1335 1328 1324
19950902 68 1466 1398 1364 1347
19950909 12 1364 1352 1346 1343
19950916 14 1378 1364 1357 1354
19950923 50 1460 1410 1385 1373
19950930 92 1554 1462 1416 1393
19951007 40 1460 1420 1400 1390
19951014 13 1416 1403 1397 1393
19951021 32 1464 1432 l41le¢ 1408
19951028 71 1552 1481 1446 1428
19951104 66 1552 1486 1453 1437
19951111 77 1584 1507 1469 1449
19951118 73 1586 1513 1477 1458
19851125 1 1452 1451 1451 1450
19951202 1 1462 1461 1461 1460
19951209 73 1616 1543 1507 1488
19951216 77 1634 1557 1519 1499
19951223 66 1622 1556 1523 1507
19951230 71 1642 1571 1536 1518
19960106 32 1574 1542 1526 1518
19960113 13 1546 1533 1527 1523
19860120 40 1610 1570 1550 1540
19960127 92 1724 1632 1586 1563
19960203 50 1650 1600 1575 1563
19960210 14 1588 1574 1567 1564
19960217 12 1594 1582 1576 1573
19960224 68 1716 1648 1614 1597
19960302 15 1620 1605 1598 1594
19960309 85 1770 1685 1643 1621
19960316 44 1698 1654 1632 1621
19960323 81 1782 1701 1661 1640
19960330 55 1740 1685 1658 1644
19960406 76 1792 1716 1678 1659
19960413 94 1838 1744 1697 1674
19960420 95 1850 1755 1708 1684
19960427 67 1804 1737 1704 1687
19960504 43 1766 1723 1702 1691
19960511 8 1706 1698 1694 1692
19960518 79 1858 1779 1740 1720
19960525 10 1730 1720 1715 1713
19960601 23 1766 1743 1732 1726
19960608 63 1856 1793 1762 1746
19960615 54 1848 1794 1767 1754
19960622 3 1756 1753 1752 1751
19960629 17 1794 1777 17689 1764
19960706 29 1828 1799 1785 1777
19960713 97 1974 1877 1829 1804
19960720 11 1812 1801 1796 1793
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Date Random Trend 2 Trend 1 Trend 0.5 Trend 0.25
19960727 96 1992 1896 1848 1824
19860803 39 1888 1849 1830 1820
19960810 19 1858 1839 1830 1825
19960817 74 1978 1904 1867 1849
19960824 49 1938 1889 1865 1852
19960831 42 1934 1892 1871 1861
19960907 36 1932 1896 1878 1869
19960914 2 1874 1872 1871 1871
19960921 45 1970 1925 1903 1891
19960928 53 1996 1943 1917 1903
19961005 31 1962 1931 1916 1908
19961012 41 1992 1951 1931 1920
19961019 64 2048 1984 1952 1936
19961026 26 1982 1956 1943 1937
19961102 80 2100 2020 1980 1960
19961109 83 2116 2033 1992 1971
19961116 100 2160 2060 2010 1985
19961123 28 2026 1998 1984 1977
19961130 24 2028 2004 1992 1986
19961207 35 2060 2025 2008 1999
19961214 30 2060 2030 2015 2008
19961221 69 2148 2079 2045 2027
19961228 88 2196 2108 2064 2042
19970104 61 2152 2091 2061 2045
19970111 9 2058 2049 2045 2042
19970118 51 2152 2101 2076 2063
198970125 87 2234 2147 2104 2082
19970201 89 2248 2159 2115 2092
19970208 33 2146 2113 2097 2088
19970215 86 2262 2176 2133 2112
18970222 i6 2132 2116 2108 2104
19970301 57 2224 2167 2139 2124
19970308 20 2160 2140 2130 2125
19970315 46 2222 2176 2153 2142
19970322 25 2190 2165 2153 21406
19970329 7 2164 2157 2154 2152
19970405 6 2172 2166 2163 2162
19970412 34 2238 2204 2187 2179
19970419 58 2296 2238 2209 2195
19970426 93 2376 2283 2237 2213
19970503 22 2244 2222 2211 2206
19970510 91 2392 2301 2256 2233
19970517 78 2376 2298 2259 2240
19970524 38 2306 2268 2249 2240
19970531 47 2334 2287 2264 2252
19970607 98 2446 2348 2299 2275
199700614 84 2428 2344 2302 2281
19970621 72 2414 2342 2306 2288
19970628 4 2288 2284 2282 2281
19970705 90 2470 2380 2335 2313
19970712 5 2310 2305 2303 2301
19970719 62 2434 2372 2341 2326
19970726 82 2484 2402 2361 2341
19970802 27 2384 2357 2344 2337
19970809 52 2444 2392 2366 2353
19970816 59 2468 2409 2380 2365
19970823 65 2490 2425 2393 2376
19970830 99 2568 2469 2420 2395
19970906 56 2492 2436 2408 2394
19970913 48 2486 2438 2414 2402
19970920 70 2540 2470 2435 2418
19970927 60 2530 2470 2440 2425
19971004 37 2494 2457 2439 2429
19971011 75 2580 2505 2468 2449
19971018 21 2482 2461 2451 2445
19971025 18 2486 2468 2459 2455
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APPENDIX 8

Trend data with random element from different multipliers

The numbers in the headings for each trend (origin 450, slope 10), indicate the multiplier used to
generate the random series, that is, 28, 11, 7 and 2.

Date Trend 28 Trend 11 Trend 7 Trend 2

19940101 488 471 467 462
19940108 547 490 519 474
19940115 515 498 520 488
19940122 561 587 568 506
19940129 569 557 541 532
19940205 523 531 595 574
19940212 581 549 610 547
19940219 622 546 554 584
19940226 591 615 607 547
19940305 564 567 615 564
19940312 649 646 611 588
19940319 638 607 624 626
19940326 666 583 655 591
19940402 675 623 610 612
19940409 657 660 639 644
19940416 691 664 681 698
19940423 666 709 713 695
19940430 706 700 675 679
19940507 647 703 652 738
19940514 745 737 734 745
19940521 694 708 743 749
19940528 713 693 746 747
19940604 773 731 707 733
19940611 769 746 778 695
19940618 791 710 710 710
19940625 733 719 780 730
19940702 758 819 806 760
19940709 784 809 827 810
19940716 838 801 813 799
19940723 767 815 756 767
19940730 832 768 802 794
19940806 867 858 862 838
19940813 870 839 818 815
19940820 886 833 854 860
19940827 862 869 844 839
19940903 829 862 815 888
19940910 847 887 855 875
19940917 879 860 873 839
19940924 899 867 939 858
19941001 886 945 937 886
19941008 959 895 863 932
19941015 915 952 891 913
19941022 928 974 926 966
19941029 921 914 909 961
19941105 960 962 932 941
19941112 974 986 932 992
19941119 995 948 973 983
19941126 1010 935 998 955
19941203 958 995 1012 990
19941210 1050 1050 1050 1050
19941217 1033 1050 1054 1059
19941224 994 1051 1022 1067
19941231 1046 1063 1041 1073
19950107 1020 994 1013 1075
19950114 1032 1044 1060 1069
19950121 1098 10380 1026 1047
19950128 1060 1092 1031 1054
19950204 1039 1115 1107 1077
19950211 1090 1066 1074 1134
19950218 1137 1134 1086 1137
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Date Trend 28 Trend 11 Trend 7 Trend 2
19950225 1072 1075 1110 1133
19950304 1103 1134 1117 1115
19950311 1095 1178 11006 1170
19950318 1106 1158 1171 1169
19950325 1144 1141 1162 1157
19950401 1130 1157 1140 1123
19950408 1175 1132 1128 1146
19950415 1155 1161 1186 1182
19950422 1234 1178 1229 1143
19850429 1156 1164 1167 1156
19950506 1227 1213 1178 1172
19950513 1228 1248 1195 1194
19950520 1188 1230 1254 1228
19950527 1212 1235 1203 1286
19850603 1210 1291 1291 1291
19950610 1288 1302 1241 1291
19950617 1283 1222 1235 1281
19950624 1277 1252 1234 1251
19950701 1243 1280 1268 1282
19950708 1334 1286 1345 1334
19950715 1289 1353 1319 1327
19950722 1274 1283 1279 1303
19950729 1291 1322 1343 1346
19950805 1295 1348 1327 1321
19950812 1339 1332 1357 1362
19950819 1392 1359 1406 1333
19850826 1394 1354 1386 1366
19950902 1382 1401 1388 1422
19950909 1382 1414 1342 1423
19950916 1415 1356 1364 1415
19950923 1362 1426 1458 1389
19950930 1426 1389 1450 1428
19951007 1433 1387 1435 1395
19951014 1460 1467 1472 1420
19951021 1441 1439 1469 1460
19951028 1447 1435 1489 1429
19951104 1446 1493 1468 1458
19951111 1451 1526 1463 1506
19951118 1523 1486 1469 1491
19951125 1451 1451 1451 1451
19951202 1461 1461 1461 1461
19951209 15563 1516 1499 1521
19951216 1501 1576 1513 1556
19951223 1516 1563 1538 1528
19951230 1537 1525 1579 1519
19960106 1551 1549 1579 1570
19960113 1590 1597 1602 1550
19960120 1583 1537 1585 1545
19960127 1596 1559 1620 1598
19960203 1552 1616 1648 1579
19960210 1625 1566 1574 1625
19960217 1612 1644 1572 1653
19960224 1632 1651 1638 1672
19960302 1664 1624 1656 1636
19960309 1682 1649 1696 1623
19960316 1649 1642 1667 1672
19960323 1625 1678 1657 1651
19960330 1641 1672 1693 1696
19960406 1644 1653 1649 1673
19960413 1679 1743 1709 1717
19960420 1744 1696 1755 1744
19960427 1673 1710 1698 1712
19960504 1727 1702 1684 1701
19960511 1753 1692 1705 1751
19960518 1778 1792 1731 1781
19960525 1720 1801 1801 1801
19960601 1742 1765 1733 1816
19960608 1738 1780 1804 1778
19860615 1798 1818 1765 1764
19960622 1817 1803 1768 1762
19960629 1766 1774 1777 1766
19960706 1864 1808 1859 1773
19960713 1805 1811 1836 1832
19960720 1845 1802 1798 1816
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Date Trend 28 Trend 11 Trend 7 Trend 2
19960727 1820 1847 1830 1813
19960803 1854 1851 1872 1867
19960810 1836 1888 1901 1899
19960817 1845 1928 1856 1920
19960824 1873 1904 1887 1885
19960831 1862 1865 1900 1923
19960907 1947 1944 1896 1947
19960914 1920 1896 1904 1964
19960921 1889 1965 1957 1927
19960928 1930 1962 1901 1964
19961005 1988 1980 1916 1937
19961012 1942 1954 1970 1979
19961019 1950 1924 1943 2005
19961026 1996 2013 1991 2023
19961102 1964 2021 1992 2037
19961109 2023 2040 2044 2049
19961116 2060 2060 2060 2060
19961123 1988 2025 2042 2020
19961130 2060 1985 2048 2005
19961207 2065 2018 2043 2053
19961214 2064 2076 2022 2082
19961221 2070 2072 2042 2051
199861228 2051 2044 2039 2091
19970104 2078 2124 2076 2116
19970111 2085 2122 2061 2083
19970118 2149 2085 2053 2122
19970125 2096 2155 2147 2096
19970201 2129 2097 2169 2088
19970208 2129 2110 2123 2089
19970215 2117 2157 2125 2145
19970222 2119 2152 2105 2178
19970301 2172 2179 2154 2149
19970308 2216 2163 2184 2190
19970315 2220 2189 2168 2165
18970322 2237 2228 2232 2208
19970329 2222 2158 2192 2184
19970405 2177 2225 2166 2177
19970412 2268 2231 2243 2229
19970419 2234 2259 2277 2260
19970426 2228 2289 2276 2230
19970503 2223 2209 2270 2220
19970510 2301 2220 2220 2220
19970517 2299 2276 2308 2225
19970524 2323 2281 2257 2283
19970531 2283 2263 2316 2317
19970607 2284 2298 2333 2339
19970614 2355 2347 2344 2355
199870621 2277 2333 2282 2368
19970628 2356 2350 2325 2329
19970705 2336 2379 2383 2365
19970712 2381 2354 2371 2388
19970719 2367 2370 2349 2354
18970726 2405 2353 2340 2342
19970802 2416 2333 2405 2341
19970809 2408 2377 2394 2396
19970816 2439 2436 2401 2378
19970823 2374 2377 2425 2374
19970830 2421 2445 2437 2377
19970906 2472 2396 2404 2434
19970913 2451 2419 2480 2417
19970920 2413 2421 2485 2464
19970927 2479 2467 2451 2442
19971004 2491 2517 2498 2436
19971011 2465 2448 2470 2438
19971018 2517 2460 2489 2444
19971025 2478 2461 2457 2452
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APPENDIX 9

Data supplied by the client

The product names have been removed at the request of the client. Each column heading represents
a different stock keeping unit, although with a coded name. The D or PP in each column indicates
whether the product is a Detergent or Personal Product. Each separate product has a different letter,
and each derivative of the same product, still a separate stock keeping unit, has a different number.

Detergents

Date DAl DA2 DBl DC1 DC2 DPC3 DC4 DDl DD2 DE1 DF1 DF2 DGl
19950204 94 82 122 334 217 393 27 91 65 72 193 185 37
19950304 194 100 124 338 205 333 21 163 87 74 167 192 34
15950401 89 80 139 396 195 388 23 118 73 77 171 216 48
19950506 87 74 113 399 223 450 30 103 81 83 174 240 38
19950603 103 58 112 327 190 335 30 116 53 74 146 195 26
19950701 71 68 95 415 229 463 29 91 51 88 204 184 7
19950805 115 79 125 625 346 621 40 128 79 104 167 257 7
19950902 100 64 119 379 211 416 23 76 61 81 147 231 2
19950930 147 75 154 279 136 332 36 122 61 82 189 294 71
19951104 131 80 158 574 229 611 46 127 77 118 182 263 52
19951202 92 63 114 332 242 36l 53 109 58 102 152 151 34
19951230 77 70 102 374 212 393 23 88 54 92 141 176 38
19960204 81 73 109 389 249 421 44 84 49 122 160 191 34
19960303 101 90 82 480 257 484 38 50 55 105 177 207 31
19960331 118 83 91 410 273 431 43 139 75 101 136 203 34
19960505 163 108 110 437 234 461 34 171 96 134 180 193 40
19960602 64 61 93 359 181 400 28 91 55 120 169 328 40
19960630 42 68 89 444 194 493 22 56 63 117 232 272 41
19960804 109 83 102 622 354 656 47 119 61 95 169 195 46
19960901 90 74 104 404 194 386 30 118 50 123 140 160 37
19960929 110 60 102 440 133 437 28 101 52 94 142 157 41
19961103 151 97 212 691 293 746 49 161 86 145 258 336 63
18961201 111 82 75 402 243 392 40 139 51 84 124 156 32
19961229 89 72 82 290 162 331 36 100 59 94 133 137 42
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Personal Products

Date PPAL PPAZ PPA3 PPA4 PPB1 PPB2 PPB3 PPC1 PPC2 PPD1
19920211 18946 4967 16615 38458 42360 44553 6889 18438 9741 875
19920324 30712 8718 27550 64981 83373 81231 11%3¢ 23122 15943 2183
19920505 21484 6399 23487 54427 67090 59083 8836 24652 14414 1190
19920616 19117 6805 12514 50719 87740 104504 138C9 18285 12566 1533
19920728 18172 5638 20969 44837 103370 127806 17434 19727 9762 1439

19920908 15160 5553 17016 40540 81316 85970 12595 30098 11696 1174
19921020 17385 4746 10455 41896 49015 49949 11363 15721 9328 1939

19921201 22233 7608 18602 53320 48730 54077 9281 27781 14776 1176
19921229 15732 7082 23029 37040 34819 35220 6591 13392 8281 1258
19930211 22326 9484 28547 52198 41741 45278 7331 22640 12343 1181
19930325 35261 16294 38313 93069 91112 90051 12159 31375 13965 2003
19930506 41712 14202 36027 89741 53895 67321 10581 19691 9364 884
19930617 30168 14366 36669 77323 82043 90543 13060 18472 11676 5097
19930729 14312 7920 20979 30999 81580 83516 12402 17719 9754 4908
19930909 22028 11208 26259 48921 67656 77513 12343 21381 11262 4470
19931021 19864 9825 31965 49867 63507 64165 14032 19106 10211 6070
19931202 20214 10735 30209 48396 55794 70767 10623 28322 12266 5951
19931230 15176 8545 21712 35273 24986 31242 5100 7834 5734 4165
19940211 21069 7884 23707 52661 32209 42400 6538 16825 12705 6091
19940325 3741 5705 7109 61793 76499 69610 89850 23240 10382 6464
19940506 8681 3982 41247 71928 77399 89743 13723 16525 10329 4176
19840617 37646 21502 31555 77098 102326 107451 14800 22355 10794 1797
19940729 23582 11757 30682 70104 95501 100461 16355 22177 8750 6123
19940909 13067 6415 24117 35891 91127 95482 14935 17907 7360 6287
19941021 14316 7177 22236 35602 42858 51543 9898 20262 7316 4838
19941202 20768 13023 34377 54486 54651 64669 11499 22297 9368 5606
19941230 12799 5885 21898 22583 32920 33510 6797 16284 6103 4227
19950204 13904 4012 11503 278C0 21490 28425 5708 8332 4256 3526
19950304 17497 6149 15497 39615 39177 41528 4484 13298 5682 5046
19950401 14081 7937 22932 34717 70072 66862 6271 21390 8260 4129
19950506 18169 7341 19696 46517 46537 50503 8123 13393 6518 4458
19950603 11944 6220 11877 22226 72491 67860 8544 13163 5614 3696

18950701 16163 5923 14859 35945 66103 68689 16677 14315 5033 3076
19950805 163%6 7869 22588 40105 56800 64236 11223 13189 6700 4066
19950902 16684 5935 15031 44991 61160 65804 7075 10354 5290 3263
19950930 13953 5875 11524 29260 35658 32630 8105 16216 6154 3509
19951104 23456 8421 19083 50217 46429 53902 11117 19852 8417 5044

199851202 18739 9601 21968 42550 37794 52993 7103 16725 9491 4565
19851230 13139 6408 14781 28644 33763 32044 6509 11962 6635 3709
19960204 11774 4916 13447 29288 24038 29889 6120 11824 4224 3%4¢
19960303 20335 7987 13259 43441 38059 38415 1886 884 1231 3699
19960331 17477 8853 20008 37786 58068 57062 1562 28 1200 4132
19960505 149845 7326 16977 36406 45919 58444 13224 28698 5511 4540
19960602 12338 5452 12362 17339 44162 60493 4709 8834 5826 2578
19960630 12830 5869 19522 27818 47803 61839 10452 16879 7259 4185
19960804 14482 6028 18201 51798 68171 74351 4727 22269 10021 4790
19960901 13583 4488 13965 48887 60189 68111 19 13518 8540 4149
199260929 12957 2542 9973 25923 39620 45484 3931 15508 7921 2998
19961103 17604 9916 20194 43572 77972 83449 15410 23121 11969 7079
19961201 13064 7633 20491 41945 23161 36829 8916 21387 11929 2687
19961229 14988 4389 13542 35171 19681 27574 5783 4507 8366 3784
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