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Abstract

In this thesis we present new families of exact solutions to the Einstein and Einstein-

Maxwell �eld equations which are relevant in the description of highly compact stellar

objects. We �rst impose a linear equation of state to generate exact solutions in

terms of elementary functions which contain earlier quark models, including those

of Thirukkanesh and Maharaj (Class. Quantum Grav. 25, 235001 (2008)) and

Mafa Takisa and Maharaj (Astrophys. Space Sci. 354, 463 (2013)). Secondly, we

�nd exact solutions in terms of elementary functions, Bessel and modi�ed Bessel

functions through the Finch and Skea geometry which satisfy all criteria for physical

acceptability. From these models we regain the uncharged model of Finch and Skea

(Class. Quantum Grav. 6, 467 (1989)) and the charged model of Hansraj and

Maharaj (Int. J. Mod. Phys. D 15, 1311 (2006)) as particular cases. Thirdly, we �nd

new exact stellar models by imposing a symmetry condition on spacetime, namely

a conformal Killing vector. We �nd solutions to the �eld equations with the help of

the gravitational potentials related explicitly by the conformal vector established by

Manjonjo et al (Eur. Phys. J. Plus 132, 62 (2017)). For each approach, we select

a particular model to study the physical features and then masses and radii with

accurate ranges consistent with observed numerical values of compact objects such

as SAX J1808.4-3658, LMC X-4, SMC X-1, EXO 1785, Cen X-3, 4U1820-30, PSR

J1903+327, Vela X-1 and PSR J1614-2230 are generated. The physical features in

all cases are studied comprehensively, and we show that our solutions are stable, well

behaved and have realistic physical features.
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Chapter 1

Introduction

At the beginning of the 20th century, Einstein initiated the general theory of

relativity as an extension of special relativity to describe gravity in a new approach.

The essence of this new way is to show that the relative acceleration of particles is

not viewed as a consequence of gravitational forces but emanates rather from the

geometry of the spacetime in which the particles are moving. It was emphasized by

Davies (1989) that general relativity involves the theoretical predictions which are

consistent with observational results in astrophysics. The relationship between the

spacetime geometry describing the motion of matter and the density of matter-energy

is based on the Einstein and Einstein-Maxwell �eld equations. Exact solutions to the

Einstein �eld equations made it possible to discover many properties of compact ob-

jects and their structures in relativistic astrophysics. Schwarzschild (1916a, 1916b)

proposed the �rst solutions of Einstein �eld equations describing the exterior and

interior gravitational �eld of the compact stellar models. In an extension, Reissner

(1916) and Nördstrom (1918) found an exterior solution for a static spherically sym-

metric charged star, known as Reissner-Nördstrom exterior metric. The investigation

of Kerr (1963) for an uncharged body in rotating motion, led to an exterior solution

where mass and angular momentum e�ects have been taken in account. The Kerr-

Newman exterior solution is the extension of the Kerr metric, also found by Newman
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and Janis (1965), for a rotating stellar body in the presence of an electric �eld.

In the investigation of Delgaty and Lake (1998), several exact solutions to Ein-

stein equations were subjected to tests based on the following criteria: non-singularity

at the centre, regularity and monotonic decrease of the energy density and isotropic

pressure inside the star, vanishing of the pressure at the surface and causality condi-

tion. An additional condition was imposed to the speed of sound to be monotonically

decreasing. There are only few families of exact solutions that satisfy all physical

criteria. The Finch and Skea (1989) solution has completely satis�ed all the physical

requirements set out. The exact solution generated by Finch and Skea (1989) for

the interior of a 4−dimensional perfect �uid sphere is consistent for an exact rela-

tivistic model of a superdense star. The Finch and Skea model provides a simple

ansatz which was used by many investigators. Hansraj and Maharaj (2006) have

extended this model to incorporate the electric �eld in the �eld equations. Pandya

et al (2015) found a new class of solutions where it is assumed that the interior of

the static spherically symmetric spacetime is anisotropic. The complete generalisa-

tion of the model admitting anisotropy in the presence of charge was investigated by

Maharaj et al (2016).

In the work of Delgaty and Lake (1998), the isotropy in the pressure is one of

the elementary criteria for physical acceptability that a relatistic star has to satisfy.

Substantial investigations have been devoted to understand the properties of stellar

interior matter in order to produce realistic stellar models. The high energy density

and strong gravitational potentials in the interior of compact stars seem to be at the

root of a physical phenomenon generating the radial and tangential pressures. It was

shown by a number of investigators that the critical mass, critical surface redshift

and stability of highly compact bodies are substantialy a�ected by anisotropic mat-

ter. The work of Bowers and Liang (1974) created a new way in the question related

to the possible role of anisotropic equations of state for relativistic stellar bodies by

incorporing the factor of anisotropy in the equation of hydrostatic equilibrium. The

presence of the nuclear interactions in stellar interior of the symmetric static rela-
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tivistic con�gurations are anisotropic. Ruderman (1972) shows that this is possible

when the energy density reaches high values. In the recent past a number of authors

have investigated solutions to the Einstein �eld equations with anisotropic matter,

in particular we have Bowers and Liang (1974), Dev and Gleiser (2002, 2003), Her-

rera et al (1979), Herrera and Santos (1995), Heintzmann and Hillebrandt (1975),

Maharaj and Maartens (1989) and Mak and Harko (2002, 2003). The presence of

the electromagnetic �eld also a�ects the physical features of a stellar model. Some

recent studies involving a nonzero electric �eld are given by Bonnor (1965), Picanço

and Malheiro (2007), Picanço et al (2004), Ray et al (2003), Hansraj and Maharaj

(2006), Thirukkanesh and Maharaj (2008), Mafa Takisa and Maharaj (2013a, 2013b),

Kileba Matondo and Maharaj (2013), Maurya and Gupta (2014) and Gupta et al

(2011).

The understanding of the behaviour of compact bodies in relativistic astrophysics

comes under exact solutions to the Einstein-Maxwell system of equations. These

exact solutions result from some assumption on the spacetime and matter. The

existence of a symmetry in the spacetime manifolds represents a good approach

to �nding a solution. An example of a symmetry is a conformal Killing vector.

Conformal motions in static spherically symmetric spastimes have been a major

work of Maartens et al (1995, 1996). The work of Tupper et al (2012) gives a

complete classi�cation of all spherically symmetric spacetimes in terms of conformal

motions through decomposition into 2+2 reducible spacetimes. If a conformal Killing

vector exists then some conditions are imposed on the gravitational potentials which

gives an opportunity to solve the Einstein �eld equations. Herrera et al (1984) were

the �rst to show that conformal symmetry presents a major interest in relativistic

astrophysics to model dense stars.

In this thesis, we intend to �nd new classes of exact solutions to the Einstein

and Einstein-Maxwell �eld equations which are physically reasonable in di�erent

approaches. We impose �rst a linear equation of state on the matter distribution.

Secondly, from the Finch and Skea ansatz, a new family of exact solutions with

3



a barotropic equation of state can be generated. Thirdly, the explicit relationship

between the gravitational potentials in the presence of conformal symmetry simpli�es

the Einstein �eld equations to be solved. In order to achieve this objective, this thesis

is organised as follows:

• Chapter 1: Introduction.

• Chapter 2: In this chapter, we generate new exact solutions to the Einstein-

Maxwell �eld equations which are relevant in the description of highly compact

stellar objects. The relativistic star is charged and anisotropic with a quark

equation of state. Exact solutions of the �eld equations are found in terms

of elementary functions. Here, we regain earlier quark models with uncharged

and charged matter distributions. A physical analysis shows that the matter

distributions are well behaved and regular throughout the stellar structure. A

range of stellar masses are generated for particular parameter values in the

electric �eld. In particular the observed mass for a binary pulsar is regained.

• Chapter 3: Several new families of exact solution to the Einstein-Maxwell sys-

tem of di�erential equations are generated for anisotropic charged matter. We

consider the Finch and Skea spacetime geometry which satis�es all criteria for

physical acceptability. The exact solutions is expressed in terms of elementary

functions, Bessel functions and modi�ed Bessel functions. When a parameter is

restricted to be an integer then the special functions reduce to simple elemen-

tary functions. The uncharged model of Finch and Skea (1989) and the charged

model of Hansraj and Maharaj (2006) are regained as special cases. The so-

lutions obtained admit a barotropic equation of state. A graphical analysis

indicates that the matter and electric quantities are well behaved.

• Chapter 4: In this chapter we use a particular solution of the generalised Finch

and Skea model of Maharaj et al (2016) to study the mass and radius. We

generate masses and radii for three cases: charged anisotropic, charged isotropic

and uncharged isotropic distributions for observed compact objects. Physical
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features of the model show the non-negligible in�uence of charge and anisotropy

on the mass and radius within the stellar objects. The model parameters values

are �xed based on physical requirements and stability conditions of compact

stars. We show that the model is consistent with the observed masses of selected

pulsars PSR J1614-2230, PSR J1903+0327, 4U 1820-30, Cen X-3, EXO 1785-

248 and LMC X-4. The investigation reveals that the Finch and Skea geometry

is physically relevant for the study of observed compact stars.

• Chapter 5: Here, we study exact models for anisotropic gravitating stars with

conformal symmetry. The gravitational potentials are related explicitly by the

conformal vector. We use this relationship between the metric potentials to

generate new classes of exact solutions to the �eld equations. We identify a

particular model to study the physical features and demonstrate that the model

is well behaved. In particular the criteria for stability are satis�ed. We regain

masses, radii and surface redshifts for the compact objects PSR J1614-2230

and SAX J1808.4-3658.

• Chapter 6: We investigate the behaviour of a charged isotropic model with

conformal symmetry. The relationship between the gravitational potentials

arising from the conformal condition is used to generate a new class of exact

solutions to the Einstein-Maxwell equations. A speci�c form of the electric

�eld intensity and the metric potential is required to avoid a singularity at

the centre. We can �nd simple elementary functions for the matter variables

and the potentials with relativistic pro�les. The causality conditions, stability

conditions and energy conditions are satis�ed. Masses, radii, cental densities

and surface redshifts are generated, and the values are consistent with the

compact stars 4U 1538-52 and PSR J1614-2230.

• Chapter 7: Conclusion.
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Chapter 2

New charged anisotropic compact

stars

2.1 Introduction

To obtain an understanding of the gravitational dynamics of a general relativistic

star it is necessary to solve the Einstein-Maxwell equations. The matter distribution

may be anisotropic in the presence of an electromagnetic �eld. On physical grounds

we should include an equation of state relating the radial pressure to the energy

density in a barotropic distribution. In this way we can model relativistic com-

pact objects including dark energy stars, quark stars, gravastars, neutron stars and

ultradense matter. For some recent models investigating the properties of charged

anisotropic stars see the treatments of Feroze and Siddiqui (2014), Thirukkanesh and

Ragel (2014), Maurya and Gupta (2014), Maurya et al (2015), Pandya et al (2015),

Bhar et al (2015) and Murad (2016).

These exact solutions of the Einstein-Maxwell system are essential for describ-

ing astrophysical processes. Our study in this chapter is related to describing the

stellar interior with a spherically symmetric anisotropic charged matter distribution.

We impose a quark equation of state on the model. The physical features of quark
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stars have been recently investigated by Malaver (2014), Mafa Takisa et al (2014b),

Sunzu et al (2014) and Paul et al (2011). The investigations of Sharma et al (2001)

show that the redshift, luminosity and maximum mass of a compact body are af-

fected by the electric �eld and anisotropy. The works of Mak and Harko (2004),

Komathiraj and Maharaj (2007a, 2007b) and Maharaj and Komathiraj (2007) show

the signi�cant role of the electromagnetic �eld in describing the gravitational be-

haviour of compact stars composed of quark matter. The role of anisotropy has been

highlighted by Dev and Gleiser (2002, 2003). By making a speci�c choice of the elec-

tric �eld, Hansraj and Maharaj (2006) obtained solutions with isotropic pressures to

the Einstein-Maxwell system. These solutions satisfy a barotropic equation of state

and contain the Finch and Skea (1989) model. Charged anisotropic models with

a linear equation of state were found by Thirukkanesh and Maharaj (2008). Mafa

Takisa and Maharaj (2013a) utilised a linear equation of state to generate regular

solutions of anisotropic spherically symmetric charged distributions which can be

related to observed astronomical objects.

The main objective of this chapter is to generate a new class of exact solu-

tions to the Einstein-Maxwell system of equations that is physically acceptable. We

generalise the solution to the Einstein-Maxwell system, with no singularity in the

charge distribution at the centre, obtained by Mafa Takisa and Maharaj (2013a) by

generating a new class of exact solutions. The physical features such as the gravita-

tional potentials, electric �eld intensity, charge distribution and matter distribution

are well behaved. These new exact solutions describe a charged relativistic sphere

with anisotropic pressures and a linear quark equation of state. In �2.2, we give

the expression of the line element modelling the interior of relativistic star which

allows us to rewrite the Einstein-Maxwell equations in terms of new variables. In

�2.3, we present the basic assumptions for the physical models. We make a choice

for one of the gravitational potentials and the electric �eld intensity which allow us

to integrate the �eld equations. Three new classes of exact solutions to the Einstein-

Maxwell �eld equations, in terms of elementary functions, are determined in �2.3.
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The �rst class is unphysical and the other two classes satisfy the physical criteria.

In �2.4, we demonstrate how our exact solutions regain the uncharged anisotropic

solution found by Thirukkanesh and Maharaj (2008), and the charged anisotropic

solution found by Mafa Takisa and Maharaj (2013a). In �2.5, we study the physical

features of our models and present graphs for the energy density, radial pressure,

electric �eld intensity, charge density and mass. The graphs indicate that the matter

and electromagnetic quantities are well behaved. In �2.6, we generate stellar masses

and show that our charged general relativistic solutions can be related to observed

astronomical objects.

2.2 Field equations

The line element for static spherically symmetric spacetime, modelling the interior

of the relativistic star, has the form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (2.1)

The functions λ(r) and ν(r) correspond to the gravitational potentials. The energy

momentum tensor T has the general form

Tab = diag(−ρ− 1

2
E2, pr −

1

2
E2, pt +

1

2
E2, pt +

1

2
E2), (2.2)

where the quantities ρ, pr, pt and E are respectively, energy density, radial pressure,

tangential pressure and electric �eld intensity. Then the Einstein-Maxwell system of

equations can be written in the form

1

r2
[
r(1− e−2λ)

]′
= ρ+

1

2
E2, (2.3a)

− 1

r2
(1− e−2λ) +

2ν ′

r
e−2λ = pr −

1

2
E2, (2.3b)

e−2λ
(
ν ′′ + ν ′2 +

ν ′

r
− ν ′λ′ − λ′

r

)
= pt +

1

2
E2, (2.3c)

1

r2
e−λ(r2E)′ = σ, (2.3d)
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in terms of coordinate r. An equivalent form of the Einstein-Maxwell �eld equations

is obtained if we introduce the transformation

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (2.4)

where A and C are constants. This transformation was �rst used by Durgapal and

Bannerji (1983). The line element (2.1) then has the form

ds2 = −A2y2(x)dt2 +
1

4CxZ(x)
dx2 +

x

C

(
dθ2 + sin2 θdφ2

)
, (2.5)

in terms of the variable x. The �eld equations (2.3) become

ρ

C
= −2Ż +

1− Z
x
− E2

2C
, (2.6a)

pr
C

= 4Z
ẏ

y
+
Z − 1

x
+

E2

2C
, (2.6b)

pt
C

= 4xZ
ÿ

y
+ (4Z + 2xŻ)

ẏ

y
+ Ż − E2

2C
, (2.6c)

σ2

C
=

4Z

x
(xĖ + E)2. (2.6d)

The mass of a gravitating object, within the stellar radius, is important for compar-

ison with observations. The mass contained within a radius x of the sphere is given

by the expression

M(x) =
1

4C3/2

∫ x

0

√
ωρ(ω) dω. (2.7)

This expression is sometimes called the mass function. For a physically realistic rela-

tivistic star, we expect that the matter distribution should obey a barotropic equation

of state of the form pr = pr(ρ). For a charged anisotropic matter distribution we

consider the linear relationship

pr = αρ− β, (2.8)

where α and β are constants. The constant β = αρs where ρs is the surface density

of the star.

Then the Einstein-Maxwell equations governing the gravitational interactions of

a charged anisotropic body, with a linear equation of state, can be written as

ρ

C
=

1− Z
x
− 2Ż − E2

2C
, (2.9a)
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pr = αρ− β, (2.9b)

pt = pr + ∆, (2.9c)

∆ = 4CxZ
ÿ

y
+ 2C

(
xŻ +

4Z

1 + α

)
ẏ

y
+

(
1 + 5α

1 + α

)
CŻ

−C(1− Z)

x
+

2β

1 + α
, (2.9d)

E2

2C
=

1− Z
x
−
(

1

1 + α

)(
2αŻ + 4Z

ẏ

y
+
β

C

)
, (2.9e)

σ2

C
=

4Z

x
(xĖ + E)2. (2.9f)

The quantity ∆ = pt − pr is de�ned as the measure of anisotropy and vanishes

for isotropic pressures. The system of equations (2.9) is nonlinear consisting of six

equations with eight independent variables y, Z, ρ, pr, pt, E, σ and ∆. We need

to select two of the variables involved in the integration process to solve the system

(2.9).

2.3 Physical models

To generate a new class of solutions to the Einstein-Maxwell system requires a choice

for one of the gravitational potentials and the electric �eld intensity. In our approach

we make the particular choice

Z =
1 + (a− b)x

1 + ax
, (2.10a)

E2

C
=

la3x3 + sa2x2 + k(3 + ax)

(1 + ax)2
, (2.10b)

where a, b, s, k, l are real constants. It is important to note that we keep the same

form for the gravitational potential �rst used by Thirukkanesh and Maharaj (2008).

The function Z is �nite at the centre x = 0 and regular in the interior. The function

for the electrical �eld E is a generalised form that contains previous studies as special

cases. The function E is �nite at the centre and well behaved in the stellar interior.

When l = s = 0 we regain the models of Thirukkanesh and Maharaj (2008). If

l = 0 then the exact models of Mafa Takisa and Maharaj (2013a) are obtained. For
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particular choices of the parameters a and b we regain other earlier models: charged

Hansraj and Maharaj (2006) stars (a = b = 1), charged Maharaj and Komathiraj

(2007) stars (a = 1), uncharged Finch and Skea (1989) stars (a = b = 1), uncharged

Durgapal and Bannerji (1983) neutron stars (a = 1, b = 3/2), and uncharged Tikekar

(1990) superdense stars (a = 7, b = 8). The function E is �nite at the centre and

well behaved in the stellar interior.

From (2.10a), (2.10b) and (2.9e) we obtain the �rst order equation

ẏ

y
=

4αb− (1 + α)(la3x3 + sa2x2 + k(3 + ax))

8(1 + ax) [1 + (a− b)x]

− β(1 + ax)

4C [1 + (a− b)x]
+

(1 + α)b

4 [1 + (a− b)x]
. (2.11)

It is necessary to integrate (2.11) to complete the model of a charged gravitating

sphere. It is convenient to categorise our solutions in terms of the constant b. We

consider, in turn, the following three cases: b = 0, b = a, b 6= a.

2.3.1 The case b = 0

When b = 0, (2.11) assumes the simple form

ẏ

y
=

(1 + α)(la3x3 + sa2x2 + k(3 + ax))

−8 (1 + ax)2
− β

4C
. (2.12)

This gives after integration the solution

y = D (1 + ax)(−(3l+k−2s))(1+α)/(8a) exp [F (x)] , (2.13)

where D is a constant of integration and

F (x) =
(1 + α)

16(1 + ax)

[
4k − 2asx(2 + ax) + l(3 + 9ax+ 3a2x2 − a3x3)

]
−βx

4C
. (2.14)

The energy density ρ = − E2

2
generated by the potential y in (2.13) is negative and

the model is unphysical.
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2.3.2 The case b = a

When b = a, the di�erential equation (2.11) yields the form

ẏ

y
=

4αa− (1 + α)(la3x3 + sa2x2 + k(3 + ax))

8(1 + ax)

−β(1 + ax)

4C
+

(1 + α)a

4
. (2.15)

This equation has solution

y = D (1 + ax)(4αa−(s+2k)(1+α)+l(1+α))/(8a) exp [G(x)] , (2.16)

where D is a constant of integration and the function G(x) is given by

G(x) = − x3

16C
[2C(s− k)(1 + α)− a(C(sx− 4)(1 + α) + 2βx)− 4β]

− l(1 + α)

48ac

(
11 + 6ax− 3a2x2 + 2a3x3

)
. (2.17)

Then the complete solution to the Einstein-Maxwell �eld equations (2.9) can be

written as

e2λ = 1 + ax, (2.18a)

e2ν = A2D2 (1 + ax)(4αa−(s+2k)(1+α)+l(1+α))/(4a) exp [2G(x)] , (2.18b)

ρ

C
=
−la3x3 − sa2x2 + (2a− k)(3 + ax)

2(1 + ax)2
, (2.18c)

pr = αρ− β, (2.18d)

pt = pr + ∆, (2.18e)

∆ =
1

16C(1 + ax)3
[
C2(k2x(3 + ax)2(1 + α)2 + a2x(a4l2x6(1 + α)2

+2a3lx4(−2 + sx)(1 + α)2 − 4(−3 + (8− 9α)α + 4sx(2 + α))

−4ax(2lx(5 + 3α)− 2(2 + 3α(1 + α)) + sx(6 + α(5 + 3α)))

+a2x2((−2 + sx)2(1 + α)2 − 4lx(8 + α(7 + 3α))))

+2k(−24 + ax(a3lx4(1 + α)2 + a2x2(−2 + 3lx+ sx)(1 + α)2

−2(12 + α(5 + 9α)) + ax(3sx(1 + α)2 − 2(7 + 9α + 6α2)))))

+4Cx(1 + ax)2(3k(1 + α) + a3lx3(1 + α)
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+a2x(−2 + sx)(1 + α) + a(−4− 6α + kx(1 + α)))β

+4x(1 + ax)4β2
]
, (2.18f)

E2

C
=

la3x3 + sa2x2 + k(3 + ax)

(1 + ax)2
, (2.18g)

σ2

C
=

C [k(6 + ax(3 + ax)) + a2x2(2s(2 + ax) + alx(5 + 3ax))]
2

x(k(3 + ax) + a2x2(s+ alx))(1 + ax)5
. (2.18h)

The energy density ρ generated by the potential y in (2.16) is nonnegative. The

solution (2.18) is an exact solution of the Einstein-Maxwell system when a = b.

We can compute the mass function explicitly from (2.7). In this case we can

write the mass function in terms of x by

M(x) =
1

8C3/2

[
l (−6a3x3 + 14a2x2 − 70ax− 105)x1/2

15a(1 + ax)

−5(6a(k − 2a)x)x1/2

15a(1 + ax)
− s(−15− 10ax+ 2a2x2)x1/2

15a(1 + ax)

+

(
7l − 5s

a3/2

)
arctan(

√
ax)

]
. (2.19)

We can regain the mass functions of Thirukkanesh and Maharaj (2008) (l = s = 0)

and Mafa Takisa and Maharaj (2013a) (l = 0) from (2.20) as particular cases in the

presence of charge. Note that their models necessarily contain an inverse tangent

function. In our model when

l =
5

7
s, (2.20)

the inverse tangent function is not present in the expression for M(x).

2.3.3 The case b 6= a

The most interesting case is when b 6= a. When b 6= a, the solution of (2.11) can be

written in the form

y = D(1 + ax)m [1 + (a− b)x]n exp [F (x)] , (2.21)

where D is a constant of integration. The constants m, n and the function F (x) are

given by

n =
1

8Cb(a− b)2
[
a2C((s+ 2K)(1 + α)− 4bα)
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+abC(2b(1 + 5α)− 5k(1 + α))

+b2(3Ck(1 + α)− 2bC(1 + 3x) + 2β)
]
− a3l(1 + α)

8b
,

m =
4bα− (s+ 2k)(1 + α) + l(1 + α)

8b
,

F (x) = − ax

16C(a− b)2
[(2C(1 + α)(s(a− b) + l(b− 2a)))

+(4(a− b)β + aCl(1 + α)(a− b)x)] .

Then we can write the exact solution for the system (2.9) as

e2λ =
1 + ax

1 + (a− b)x
, (2.22a)

e2ν = A2D2[1 + (a− b)x]2n(1 + ax)2m

× exp

[
−ax(2C(1 + α)(s(a− b) + l(b− 2a)))

8C(a− b)2

−ax(4(a− b)β + aCl(1 + α)(a− b)x)

8C(a− b)2

]
, (2.22b)

ρ

C
= −(k − 2b)(3 + ax) + a2x2(s+ alx)

2(1 + ax)2
, (2.22c)

pr = αρ− β, (2.22d)

pt = pr + ∆, (2.22e)

∆ =
Ck

8(1 + ax)3(1 + (a− b)x)

[
−24 + x(a4lx4(1 + α)2

−6b(2 + α)(−1 + 3α)x+ a3x3(4(−1 + α) + (3l + s)(1 + α)2x)

+a2x2(3sx(1 + α)2 + 8(−2 + 3α)− 2bx(−1 + α(4 + α)))

+2ax(2(−9 + 5α) + bx(1− 3α(7 + 2α)))]

+
Cx

16(1 + ax)3(1 + (a− b)x)

×
[
4b2(3 + ax(4 + ax) + 12α + 6αax(5 + ax) + (3 + ax)2α2)

+a4s2x4(1 + α)2 − 8a3lx2(5 + 3α) + a4lx3(a2lx3(1 + α)2

−32(2 + α)− 8ax(3 + α)) + 2a2sx(−8(2 + α) + ax(−8(3 + α)

+ax(−8 + alx2(1 + α)2)))− 4ab(20α + 24αax)

−4a2bsx2(−6 + α + 3α2 + ax(−1 + α)(3 + α))

−4a3bx2(4α + lx(−8 + α(−1 + 3α) + ax(−5 + α2)))
]

+
βx

4(1 + ax)(1 + (a− b)x)

[
(1 + α)(k(3 + ax) + a2x2(s+ alx))
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−2b(2 + 3α + ax(1 + α))] +
x(1 + ax)β2

C(1 + (a− b)x)

+
k2x(3 + ax)2(1 + α)2

16(1 + ax)3(1 + (a− b)x)
, (2.22f)

E2

C
=

la3x3 + sa2x2 + k(3 + ax)

(1 + ax)2
, (2.22g)

σ2

C
=

(1 + (a− b)x)

x(1 + ax)5(k(3 + ax) + a2x2(s+ alx))

×
[
k(6 + ax(3 + ax)) + a2x2(2s(2 + ax) + alx(5 + 3ax))

]2
. (2.22h)

As for the case a = b, the energy density ρ generated from (2.21) is nonnegative.

This exact solution of the Einstein-Maxwell equations is similar in structure to that

when a = b in �2.3.2. However note that (2.22) is a new exact solution written

completely in terms of elementary functions.

For this solution the mass function is given by

M(x) =
1

8C3/2

[
l (−6a3x3 + 14a2x2 − 70ax− 105)x1/2

15a(1 + ax)

−5(6a(k − 2b)x)x1/2

15a(1 + ax)
− s(−15− 10ax+ 2a2x2)x1/2

15a(1 + ax)

+

(
7l − 5s

a3/2

)
arctan(

√
ax)

]
. (2.23)

This expression contains previously studied mass functions in the presence of charge.

As in the previous case note that when

l =
5

7
s, (2.24)

the inverse tangent function is absent in the expression for M(x).

2.4 Known solutions

When we set s = l = 0 in (2.10b), then the gravitational potentials become

e2λ =
1 + ax

1 + (a− b)x
, (2.25a)

e2ν = A2D2[1 + (a− b)x]2n(1 + ax)2m exp

[
− αβx

2C(a− b)

]
, (2.25b)

15



where the constants m and n are given by

m =
4αb− 2k(1 + α)

8b
,

n =
1

8bC(a− b)2
[
b2 (3kC(1 + α)− 2bC(1 + 3α) + 2β)

−abC (5k(1 + α)− 2b(1 + 5α)) + a2C (2k(1 + α)− 4αb)
]
.

This case corresponds to a charged anisotropic sphere with a linear equation of state.

This particular model was �rst found by Thirukkanesh and Maharaj (2008).

If we set l = 0 in (2.10b) then the term la3x3 in the electric �eld is no longer

present. The model's metric potentials then become

e2λ =
1 + ax

1 + (a− b)x
, (2.26a)

e2ν = A2D2[1 + (a− b)x]2n(1 + ax)2m exp

[
−ax[Cs(1 + α) + 2β]

4C(a− b)

]
,(2.26b)

where the constants m and n are equivalent to

m =
4αb− (s+ 2k)(1 + α)

8b
,

n =
1

8bC(a− b)2
[
b2 (3kC(1 + α)− 2bC(1 + 3α) + 2β)

−abC (5k(1 + α)− 2b(1 + 5α)) + a2C ((s+ 2k)(1 + α)− 4αb)
]
.

This case describes a model of a charged anisotropic sphere with a barotropic linear

equation of state. The charged solution (2.26) was �rst found by Mafa Takisa and

Maharaj (2013a). Our new class of solutions is therefore a generalisation of previously

known models. It arises because of the additional term with the constant l added in

the electric �eld intensity.

2.5 Physical features

In this chapter, we have presented a new general model of a relativistic astrophysical

star, and integrated a di�erential equation of �rst order from the Maxwell-Einstein

system of �eld equations. We can show that this solution is physically reasonable.
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We utilise the exact solution obtained in �2.3.3 when a 6= b for a graphical analysis.

The software package Mathematica (Wolfram 2010) was used to generate plots for the

matter variables. We made the choices a = 2, b = 2.5, α = 0.33, β = 0.198, C = 1,

l = 1.5, s = 2.5, k = 0 for the various parameters. We have made choices of the

parameters similar to that in the analysis of Mafa Takisa and Maharaj (2013a) so that

we can be consistent with their analysis. We generated the following graphical plots:

Fig. 2.1 shows that the energy density ρ is positive, �nite and strictly decreasing;

The radial pressure pr in Fig. 2.2, expressed in terms of ρ in accordance with the

equation of state follows a similar evolution as the density energy; In Fig. 2.3 we

observe the electric �eld E initially decreases and then increases after reaching a

minimum. The charge density σ is a regular and decreasing function in Fig. 2.4

and, in Fig. 2.5, the mass function M is continuous, �nite and strictly increasing. In

the graphs plotted the dashed line corresponds to the case l = 0, and the solid line

corresponds to the case l 6= 0, s 6= 0. The overall pro�les of the matter variables ρ,

pr, E, σ and M in our investigation are similar to those generated by Mafa Takisa

and Maharaj (2013a) when l = 0. However in the presence of the additional term

in the electric �eld, including the parameter l 6= 0, we observe that there is some

change in the gradients of the respective pro�les. The density ρ, radial pressure pr

and mass M , have lower values when l 6= 0. The electric �eld and charge density

have higher values when l 6= 0. The e�ect of parameter l is consequently to enhance

and strengthen the e�ect of the electromagnetic �eld in the relativistic star.

2.6 Stellar masses

In this section we generate stellar masses which are consistent with the results of

Sharma and Maharaj (2007), Thirukkanesh and Maharaj (2008), and Mafa Takisa

and Maharaj (2013a). Therefore the solutions found in this chapter may be applied

to realistic stellar astronomical bodies. We use the transformation
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ã = aR2, b̃ = bR2, β̃ = βR2,

k̃ = kR2, s̃ = sR2, l̃ = lR2. (2.27)

This is the same transformation, intended to include the additional parameter l, that

was de�ned by Mafa Takisa and Maharaj (2013a). When l = 0 in (2.27) we obtain

previous results. With the transformation (2.27) and setting C = 1, we can write

the energy density (2.22c) and the mass function (2.23) as

ρ =
(2b̃− k̃)(3 + ãy)− s̃ã2y2 − l̃ã3y3

2R2(1 + ãy)2
, (2.28a)

M =
l̃r(−6ã3y3 + 14ã2y2 − 70ãy − 105)

120ã(1 + ãy)

+
r3(−3k̃ + 6b̃+ 5s̃)

12R2(1 + ãy)
+
s̃r(15− 2ã2y2)

24ã(1 + ãy)

+
R(7l̃ − 5s̃)

8a3/2
arctan(

√
ãy), (2.28b)

where y = r2

R2 .

If we set l̃ = 0, s̃ 6= 0, k̃ 6= 0, with E 6= 0, then (2.28) yields

ρ =
(2b̃− k̃)(3 + ãy)− s̃ã2y2

2R2(1 + ãy)2
, (2.29a)

M =
r3(−3k̃ + 6b̃+ 5s̃)

12R2(1 + ãy)
+
s̃r(15− 2ã2y2)

24ã(1 + ãy)

− 5s̃R

8a3/2
arctan(

√
ãy). (2.29b)

These expressions above are related to the solutions in �2.4 when l = 0, found by

Mafa Takisa and Maharaj (2013a). If we set l̃ = 0, s̃ = 0, k̃ 6= 0 with E 6= 0, we

obtain

ρ =
(2b̃− k̃)(3 + ãy)

2R2(1 + ãy)2
, (2.30a)

M =
r3(2b̃− k̃)

4R2(1 + ãy)
, (2.30b)
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which is related to the solutions in �2.4 when s = l = 0 found by Thirukkanesh and

Maharaj (2008). If we set l̃ = 0, s̃ = 0, k̃ = 0 with E = 0, we obtain

ρ =
b̃(3 + ãy)

R2(1 + ãy)2
, (2.31a)

M =
b̃r3

2R2(1 + ãy)
, (2.31b)

which are the solutions attributed to Sharma and Maharaj (2007).

We have produced a variety of stellar masses for particular choices of the param-

eters ã and b̃. These are presented in the following tables: Table 2.1 (Stellar masses

with l = 0, s = 0), Table 2.2 (Stellar masses with l = 0, s 6= 0), Table 2.3 (Stellar

masses with l 6= 0, s 6= 0) and Table 2.4 (Comparative masses). We have set r = 7.07

km and R = 43.245 km which are the values used by Deyet al (1998, 1999). For the

electric �eld we have set k̃ = 37.403, s̃ = 0.137 and l̃ = 0.111.

For l = 0, s = 0 and k = 0 our model reduces to an uncharged stellar body as

that in Sharma and Maharaj (2007) in terms of the masses generated. When l = 0,

s = 0 and k 6= 0, the masses obtained are similar to those found by Thirukkanesh

and Maharaj (2008) for a charged relativistic star model. Note that for l = 0,

s 6= 0 and k 6= 0 we �nd a charged relativistic stellar body and the stellar masses

are consistent with the values generated by Mafa Takisa and Maharaj (2013a). To

distinguish between the various cases in the presence of the electrical �eld we let

k 6= 0, l = 0, s = 0 in Table 2.1, k 6= 0, l = 0, s 6= 0 in Table 2.2 and k 6= 0,

l 6= 0, s 6= 0 in Table 2.3. We have also included the case for k = 0, in all tables,

so that we can compare with uncharged masses. In Table 2.4 we gather all results

and provide a comparative table. It is interesting to observe the e�ect of the electric

�eld on the masses generated. The introduction of the new parameter l does not

appear to appreciably change the mass for the parameter values chosen; a di�erent

set of parameters can produce a di�erent pro�le for the mass. In particular observe

that the parameter values b̃ = 54.34 and ã = 53.340 correspond to the analysis of

Dey et al. (1998, 1999) for an equation of state with strange matter. The values

obtained are consistent with results of observed masses for the X-ray binary pulsar
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SAX J1808.4-3658. Consequently our new charged general relativistic solutions of

the Einstein-Maxwell system are of astrophysical importance.
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Figure 2.1 � Energy density.

Figure 2.2 � Radial pressure.
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Figure 2.3 � Electric �eld intensity.

Figure 2.4 � Charge density.
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Figure 2.5 � Mass function.
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Table 2.1 � Stellar masses with l = 0, s = 0

M(M⊙) M(M⊙)

b̃ ã k = s = l = 0 l = 0, s = 0

E = 0 E 6= 0

30 23.681 1.175 0.4426

40 36.346 1.298 0.6911

50 48.307 1.396 0.8738

54.34 53.340 1.434 0.9399

60 59.788 1.478 1.0169

70 70.920 1.547 1.1333

80 81.786 1.607 1.2308

90 92.442 1.659 1.3141

100 102.929 1.706 1.3864
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Table 2.2 � Stellar masses with l = 0, s 6= 0

M(M⊙) M(M⊙)

b̃ ã k = s = l = 0 l = 0, s 6= 0

E = 0 E 6= 0

30 23.681 1.175 0.4425

40 36.346 1.298 0.6909

50 48.307 1.396 0.8736

54.34 53.340 1.434 0.9396

60 59.788 1.478 1.0165

70 70.920 1.547 1.1329

80 81.786 1.607 1.2303

90 92.442 1.659 1.3136

100 102.929 1.706 1.3860
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Table 2.3 � Stellar masses with l 6= 0, s 6= 0

M(M⊙) M(M⊙)

b̃ ã k = s = l = 0 l 6= 0, s 6= 0

E = 0 E 6= 0

30 23.681 1.176 0.4424

40 36.346 1.298 0.6907

50 48.307 1.396 0.8733

54.34 53.340 1.434 0.9393

60 59.788 1.478 1.0162

70 70.920 1.547 1.1324

80 81.786 1.607 1.2297

90 92.442 1.659 1.3129

100 102.929 1.706 1.3850
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Table 2.4 � Comparative masses

M(M⊙) M(M⊙) M(M⊙) M(M⊙)

b̃ ã k = s = l = 0 l = 0, s = 0 l = 0, s 6= 0 (l 6= 0, s 6= 0)

E = 0 E 6= 0 E 6= 0 E 6= 0

30 23.681 1.175 0.4426 0.4425 0.4424

40 36.346 1.298 0.6911 0.6909 0.6907

50 48.307 1.396 0.8738 0.8736 0.8733

54.34 53.340 1.434 0.9399 0.9396 0.9393

60 59.788 1.478 1.0169 1.0165 1.0162

70 70.920 1.547 1.1333 1.1329 1.1324

80 81.786 1.607 1.2308 1.2303 1.2297

90 92.442 1.659 1.3141 1.3136 1.3129

100 102.929 1.706 1.3864 1.3860 1.3850

27



Chapter 3

Family of Finch and Skea relativistic

stars

3.1 Introduction

The Einstein-Maxwell system of equations has generated much interest recently.

Exact solutions may be used to describe the dynamics of charged anisotropic matter

in a relativistic stellar setting. The modelling of highly compact objects such as dark

energy stars, gravastars, ultradense stars and neutron stars then becomes possible

in general relativity. Stars with anisotropic pressures and an electric �eld have been

studied by Maurya and Gupta (2014), Maurya et al (2015), Pandya et al (2015),

Bhar et al (2015) , Fatema and Murad (2013), Murad and Fatema (2013) and Murad

(2016). Solutions with an equation of state may be related to observed astronomical

objects as shown by Maharaj and Mafa Takisa (2012), Mafa Takisa et al (2014a,

2014b) and Sunzu et al (2014a, 2014b).

In spite of numerous exact solutions that have been found with a static spherically

symmetric �eld only a few families of models are known which satisfy all the criteria

for a physically acceptable relativistic star. An ansatz that does lead to a physically

valid model is that of Finch and Skea (1989) with uncharged matter. Charged
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Finch-Skea stars were found by Hansraj and Maharaj (2006); these models are given

in terms of Bessel functions and obey a barotropic equation of state. Tikekar and

Jotania (2007) found a two parameter family of solutions describing strange stars and

other compact distributions of matter in equilibrium. Stars with a quadratic equation

of state with the Finch-Skea geometry were analysed by Sharma and Ratanpal (2013).

This category of stars was extended by Pandya et al (2015) for a generalized form

of the gravitational potential. Kalam et al (2014) proposed quintessence stars with

both dark energy and anisotropic pressures. Strange stars admitting a Chaplygin

equation of state were investigated by Bhar (2015). The Finch and Skea (1989)

geometry has been studied in matter distributions with lower and higher dimensions.

Banerjee et al (2013) produced a class of interior solutions, corresponding to the

BTZ exterior spacetime (Banados et al 1992 ), in 2 + 1 dimensions. Bhar et al

(2015) also produced anisotropic stars in 2 + 1 dimensions and a quark equation of

state. In higher dimensions the Finch-Skea metrics, and generalisations, also arise

as shown by Patel et al (1997) and Chilambwe and Hansraj (2015). It is interesting

to observe that the Finch-Skea spacetimes also arise in the 5-dimensional Einstein-

Gauss-Bonnet modi�ed theory of gravity in Hansraj et al (2015). This suggests

that the Finch-Skea geometry may play an important role in more general Lovelock

polynomials with a Lagrangian containing higher order terms.

The above references highlight the importance of the Finch and Skea (1989) po-

tentials in many di�erent physical applications. We therefore perform a systematic

study of the Einstein-Maxwell equations with the Finch-Skea geometry in the pres-

ence of anisotropy and charge as it satis�es all physical requirements for a general

relativistic stellar con�guration and is widely used in the modelling process. Han-

sraj and Maharaj (2006) found the charged analogue of the Finch-Skea star. In this

chapter we extend the Hansraj and Maharaj approach by adding anisotropy to the

�eld equations. We generate the master gravitational equation in �3.2 which is ob-

tained with the help of the Einstein-Maxwell system. We make a particular choice

for one of the gravitational potentials, the electric �eld intensity and the anisotropic
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term. Three classes of solution are possible depending on the quantity a2 − α. In

�3.3 we treat the case where a2 − α = 0. In �3.4 we consider the case a2 − α > 0

and we set a = −1, 1, 3. For these values of a we �nd new classes of exact solu-

tion to the Einstein-Maxwell system in terms of elementary functions. In �3.5 our

study concerns the case a2 − α < 0. As in the previous section we make the choices

a = −1, 1, 3 and new classes of exact solutions to the Einstein-Maxwell system are

obtained in terms of elementary functions. The equation of state is established in

�3.6 for a particular model. The other classes of models also admit an equation of

state. The physical analysis of the charged anisotropic model is presented in �3.7

with graphs generated for particular parameter values for the electric �eld.

3.2 The model

The line element has the form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (3.1)

where ν(r) and λ(r) are the potentials for a static spherical �eld. We now introduce

the transformation

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (3.2)

where A and C are constants. This transformation was �rst used by Durgapal and

Bannerji (1983). The line element (3.1) then has the form

ds2 = −A2y2(x)dt2 +
1

4CxZ(x)
dx2 +

x

C

(
dθ2 + sin2 θdφ2

)
, (3.3)

in terms of the variable x. The Einstein-Maxwell �eld equations become

ρ

C
= −2Ż +

1− Z
x
− E2

2C
, (3.4a)

pr
C

= 4Z
ẏ

y
+
Z − 1

x
+

E2

2C
, (3.4b)

pt
C

= 4xZ
ÿ

y
+ (4Z + 2xŻ)

ẏ

y
+ Ż − E2

2C
, (3.4c)
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σ2

C
=

4Z

x
(xĖ + E)2, (3.4d)

in terms of the new variables. In the above ρ is the energy density, pr is the radial

pressure, pt is the tangential pressure, E is the electric �eld and σ is the charge

density. The conservation equation is

dpr
dx

= −1

x

[
pr − pt + x(ρ+ pr)

dν

dx

]
+
E

x

d

dx
(xE). (3.5)

The mass of the graviting object contained within a radius x of the sphere is

M(x) =
1

4C3/2

∫ x

0

√
ωρ(ω) dω. (3.6)

This quantity is sometimes called the mass function and is important for comparison

with observations.

For a physically realistic relativistic star, we expect that the matter distribu-

tion should obey a barotropic equation of state. For a charged anisotropic matter

distribution we consider the relationship

pr = pr(ρ), (3.7)

where α and β are constants. From (3.4b) and (3.4c) we can write

4xZ
ÿ

y
+ 2xŻ

ẏ

y
+ Ż − Z − 1

x
− E2

C
=

∆

C
, (3.8)

where ∆ = pt − pr is the measure of anisotropy. We can solve the Einstein-Maxwell

�eld equations by choosing speci�c forms for the gravitational potential Z, the electric

�eld intensity E and anisotropy ∆ which are physically reasonable. Therefore we

make the choices

Z =
1

1 + ax
, (3.9a)

E2

C
=

(α− β)x

(1 + ax)2
, (3.9b)

∆

C
=

βx

(1 + ax)2
, (3.9c)

where a, α, β are real constants. The electric �eld E depends on the real parameters

α and β. The form (3.9b) is physically reasonable since E2 remains regular and
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positive throughout the sphere if α > β. In addition the �eld intensity E becomes

zero at the stellar centre and attains a maximum value of E =
√

(α− β)C/(4a) when

r = 1/
√
aC. The anisotropy ∆ is a decreasing function after reaching a maximum

and will have small values close to the stellar boundary. Substitution of (3.9) into

(3.8) gives

4(1 + ax)ÿ − 2aẏ + (a2 − α)y = 0, (3.10)

which is the master equation.

There are three categories of solutions in terms of di�erent values of the param-

eter α. The three cases correspond to

a2 − α = 0, a2 − α > 0, a2 − α < 0, (3.11)

which generates new models.

3.3 The case a2 − α = 0

With a2 − α = 0, equation (3.10) becomes

4(1 + ax)ÿ − 2aẏ = 0. (3.12)

Equation (3.12) is integrated to give

y(x) =
(2 + 2ax)3/2

3a
c1 + c2, (3.13)

where c1 and c2 are constants.

The complete solution of the Einstein-Maxwell system is then given by

e2λ = 1 + ax, (3.14a)

e2ν = A2

[
(2 + 2ax)3/2

3a
c1 + c2

]2
, (3.14b)

ρ

C
=

6a+ 2a2x+ (−α + β)x

2(1 + ax)2
, (3.14c)

pr
C

=
a

1 + ax
+

(α− β)x

2(1 + ax)2
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+
24ac1

4c1(1 + ax)2 + 3ac2
√

2(1 + ax)
, (3.14d)

pt
C

=
−2a+ (−α + β)x

2(1 + ax)2

+
12
√

2ac1

3ac2
√

1 + ax+ 2
√

2c1(1 + ax)2
, (3.14e)

E2

C
=

(α− β)x

(1 + ax)2
, (3.14f)

σ2

C
=

C(α− β)(3 + ax)2

(1 + ax)5
. (3.14g)

The line element for this solution (3.14) is given by

ds2 = −A2

[
(2 + 2ax)3/2

3a
c1 + c2

]2
dt2

+
1 + ax

4Cx
dx2 +

x

C
(dθ2 + sin θ2dφ2). (3.15)

It is interesting to note that when α = β then the electric �eld vanishes and we

obtain an uncharged anisotropic model.

3.4 The case a2 − α > 0

When a2−α > 0 then (3.10) has a more complicated form. However we can transform

it to a standard Bessel equation. We can simplify (3.10) with the transformation

V = (1 + ax)
1
2 , (3.16a)

y = Y (1 + ax)
2+a
4 . (3.16b)

Then (3.10) becomes

V 2d
2Y

dV 2
+ V

dY

dV
+

(
(a2 − α)V 2 −

(
2 + a

2

)2
)
Y = 0, (3.17)

where V = y2/(2+a)Y −2/(2+a). Now we use the transformation

w = (a2 − α)1/2V, (3.18)
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to obtain

w2d
2Y

dw2
+ w

dY

dw
+

(
w2 −

(
a+ 2

2

)2
)
Y = 0, (3.19)

which is a Bessel equation of order a+2
2
. In general the solution of (3.19) is a series.

The general solution is a sum of linearly independent Bessel functions Ja+2
2

(w), of

the �rst kind, and Y−a+2
2

(w), of the second kind, so that

Y (w) = b1Ja+2
2

(w) + b2Y−a+2
2

(w), (3.20)

and b1, b2 are arbitrary constants.

The form of the solution in (3.20) is di�cult to use in the modelling process. For

speci�c values of a, when a
2

+ 1 is a half-integer, it is possible to write the general

solution of (3.20) as a sum of products of Legendre polynomials and trigonometric

functions so that elementary functions arise. The solution has a simpler representa-

tion when a is an integer. If a = −1, 1, 3, ... then the solution (3.20) can be written

as Bessel functions of half-integer order J 1
2
, J− 1

2
, J 3

2
, J− 3

2
, J 5

2
, J− 5

2
,... (see Watson

(1996)). We show that this is possible for the cases a = −1, a = 1, a = 3.

3.4.1 Model I: a = −1

For a = −1, the solution (3.20) can be written as

Y (w) = b1J 1
2
(w) + b2J− 1

2
(w), (3.21)

where

J 1
2
(w) =

√
2

πw
sin(w), (3.22a)

J− 1
2
(w) = −

√
2

πw
cos(w). (3.22b)

Then the general solution of (3.10) is given by

y(x) = (1− α)−1/4
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×
[
c1 sin

(√
(1− α)(1− x)

)
+ c2 cos

(√
(1− α)(1− x)

)]
, (3.23)

where c1 =
√

2
π
b1 and c2 = −

√
2
π
b2 are new constants. The complete exact solution

of the Einstein-Maxwell system has the form

e2λ = 1− x, (3.24a)

e2ν = (1− α)−1/2A2

×
[
c1 sin

(√
(1− α)(1− x)

)
+ c2 cos

(√
(1− α)(1− x)

)]2
, (3.24b)

ρ

C
=
−6 + x(2 + β − α)

2(1− x)2
, (3.24c)

pr
C

= −
[
2(1− α)

(
c1 − c2 tan

(√
(1− α)(1− x)

))]
×
[
c2(1− x) + c1(1− x) tan

(√
(1− α)(1− x)

)]−1
×
[√

(1− α)(1− x)
]−1

+
1

1− x
+

(α− β)x

2(1− x)2
, (3.24d)

pt
C

=
[
4c1(−1 + α) + c2

√
(1− α)(1− x) (2 + x(−2 + α + β))

+
(
c1
√

(1− α)(1− x)(2 + x(−2 + α + β)) + 4c2(1− α)
)

× tan
(√

(1− α)(1− x)
)] [

2
√

(1− α)(1− x)

×
(
c2(1− x)2 + c1(1− x)2 tan

(√
(1− α)(1− x)

))]−1
, (3.24e)

E2

C
=

(α− β)x

(1− x)2
, (3.24f)

σ2

C
=

C(α− β)(−3 + x)2

(1− x)5
. (3.24g)

This is a new solution to the Einstein-Maxwell system. The line element for this

case is

ds2 = −(α− 1)−1/2A2

×
[
c1 sin

(√
(1− α)(1− x)

)
+ c2 cos

(√
(1− α)(1− x)

)]2
dt2

+
1− x
4Cx

dx2 +
x

C

(
dθ2 + sin2 θdφ2

)
. (3.25)
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3.4.2 Model II: a = 1

When a = 1, (3.20) is of the form

Y (w) = b1J 3
2
(w) + b2J− 3

2
(w), (3.26)

where

J 3
2
(w) =

√
2

πw

[
sin(w)

w
− cos(w)

]
, (3.27a)

J− 3
2
(w) = −

√
2

πw

[
cos(w)

w
+ sin(w)

]
. (3.27b)

Then the general solution to (3.10) is

y(x) = (1− α)−3/4

×
[
c2 cos

(√
(1− α)(1 + x)

)
+ c1 sin

(√
(1− α)(1 + x)

)
−c1

√
(1− α)(1 + x) cos

(√
(1− α)(1 + x)

)
+c2
√

(1− α)(1 + x) sin
(√

(1− α)(1 + x)
)]
, (3.28)

where we introduced the constants c1 =
√

2
π
b1 and c2 = −

√
2
π
b2. This form of

solution is similar to previous studies. With the help of the general solution (3.28),

we can write the complete exact charged anisotropic solution of the Einstein-Maxwell

system as

e2λ = 1 + x, (3.29a)

e2ν = (1− α)−3/2A2
[
c2
√

(1− α)(1 + x) sin
(√

(1− α)(1 + x)
)

−c1
√

(1− α)(1 + x) cos
(√

(1− α)(1 + x)
)

+c2 cos
(√

(1− α)(1 + x)
)

+ c1 sin
(√

(1− α)(1 + x)
)]2

, (3.29b)

ρ

C
=

6 + x(2 + β − α)

2(1 + x)2
, (3.29c)

pr
C

=
1

2(1 + x)2

[(
c1

tan(
√

(1− α)(1 + x))
− c2

)
×(2 + (2− α + β)x)

√
(1− α)(1 + x)
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+ (2− 4α + (2− 3α− β)x)

(
c1 +

c2

tan(
√

(1− α)(1 + x))

)]

×

[
c2 − c1(

√
(1− α)(1 + x))

tan(
√

(1− α)(1 + x))
+ c1 + c2

√
(1− α)(1 + x)

]−1
, (3.29d)

pt
C

=
1

2(1 + x)2

[
c1(2 + (2 + α− β)x)

√
(1− α)(1 + x)

tan(
√

(1− α)(1 + x))

+c2(−2 + (−2− α + β)x)
√

(1− α)(1 + x)

+ (2− 4α + (2− 3α + β)x)

(
c1 +

c2

tan(
√

(1− α)(1 + x))

)]

×

[
c2 − c1(

√
(1− α)(1 + x))

tan(
√

(1− α)(1 + x))
+ c1 + c2

√
(1− α)(1 + x)

]−1
, (3.29e)

E2

C
=

(α− β)x

(1 + x)2
, (3.29f)

σ2

C
=

C(3 + x)2(α− β)

(1 + x)5
. (3.29g)

The system (3.29) gives the exact solution of the Einstein-Maxwell system expressed

in terms of elementary functions. This is a new solution. We can consider the result

(3.29) as a generalisation of the Hansraj and Maharaj (2006) model; when β = 0 the

pressures are isotropic and we regain their model. When α = 0 and β = 0 then we

have an uncharged isotropic star which was the model �rst found by Finch and Skea

(1989). We can write the line element in terms of the coordinate x as

ds2 = −(1− α)−3/2A2
[
c2
√

(1− α)(1 + x) sin
(√

(1− α)(1 + x)
)

−c1
√

(1− α)(1 + x) cos
(√

(1− α)(1 + x)
)

+c2 cos
(√

(1− α)(1 + x)
)

+ c1 sin
(√

(1− α)(1 + x)
)]2

dt2

+
1 + x

4Cx
dx2 +

x

C
(dθ2 + sin2 θdφ2). (3.30)

The metric (3.30) may be interpreted as the anisotropic, charged generalisation of

the Finch and Skea (1989) solution.
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3.4.3 Model III: a = 3

When a = 3, (3.20) is of the form

Y (w) = b1J 5
2
(w) + b2J− 5

2
(w), (3.31)

where

J 5
2
(w) =

√
2

πw

(
3 sinw

w2
− 3 cosw

w
− sinw

)
, (3.32a)

J− 5
2
(w) =

√
2

πw

(
−3 cosw

w2
− 3 sinw

w
+ cosw

)
. (3.32b)

Then the general solution to (3.10) is

y(x) = (9− α)−5/4
[
−3c1

√
(9− α)(1 + 3x) cos

√
(9− α)(1 + 3x)

+ (c2(9− α)(1 + 3x)− 3c2) cos
√

(9− α)(1 + 3x)

−3c2
√

(9− α)(1 + 3x) sin
√

(9− α)(1 + 3x)

+ (3c1 − c1(9− α)(1 + 3x)) sin
√

(9− α)(1 + 3x)
]
, (3.33)

where we have de�ned c1 = a
√

2
π
and c2 = b

√
2
π
as new constants. The complete

exact solution to the Einstein-Maxwell system for this case is thus given by

e2λ = 1 + 3x, (3.34a)

e2ν = A2(9− α)−5/2
[
−3c1

√
(9− α)(1 + 3x) cos

√
(9− α)(1 + 3x)

+ (c2(9− α)(1 + 3x)− 3c2) cos
√

(9− α)(1 + 3x)

−3c2
√

(9− α)(1 + 3x) sin
√

(9− α)(1 + 3x)

+ (3c1 − c1(9− α)(1 + 3x)) sin
√

(9− α)(1 + 3x)
]2
, (3.34b)

ρ

C
=

18 + (18− α + β)x

2(1 + 3x)2
, (3.34c)

pr
C

= 6 (9− α) (1 + 3x)−1
[
−c2 − c1

√
(9− α)(1 + 3x)

+(c1 − c2
√

(9− α)(1 + 3x)) tan(
√

(9− α)(1 + 3x))
]

×
[
−3c1

√
(9− α)(1 + 3x) + c2((9− α)(1 + 3x)− 3)

−3c2
√

(9− α)(1 + 3x) tan(
√

(9− α)(1 + 3x))
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+ (3c1 − c1(9− α)(1 + 3x)) tan(
√

(9− α)(1 + 3x))
]−1

−6 + (18− α + β)x

12(9− α)(1 + 3x)
, (3.34d)

pt
C

= 6 (9− α) (1 + 3x)−1
[
−c2 − c1

√
(9− α)(1 + 3x)

+(c1 − c2
√

(9− α)(1 + 3x)) tan(
√

(9− α)(1 + 3x))
]

×
[
−3c1

√
(9− α)(1 + 3x) + c2((9− α)(1 + 3x)− 3)

−3c2
√

(9− α)(1 + 3x) tan(
√

(9− α)(1 + 3x))

+ (3c1 − c1(9− α)(1 + 3x)) tan(
√

(9− α)(1 + 3x))
]−1

−6 + (18− α− β)x

12(9− α)(1 + 3x)
, (3.34e)

E2

C
=

(α− β)x

(1 + 3x)2
, (3.34f)

σ2

C
=

9C(α− β)(1 + x)2

(1 + 3x)5
. (3.34g)

This is a new category of exact models for a charged, anisotropic matter distri-

bution. The line element is given by

ds2 = −A2(9− α)−5/2
[
−3c1

√
(9− α)(1 + 3x) cos

√
(9− α)(1 + 3x)

+ (c2(9− α)(1 + 3x)− 3c2) cos
√

(9− α)(1 + 3x)

−3c2
√

(9− α)(1 + 3x) sin
√

(9− α)(1 + 3x)

+ (3c1 − c1(9− α)(1 + 3x)) sin
√

(9− α)(1 + 3x)
]2
dt2

+
1 + 3x

4Cx
dx2 +

x

C
(dθ2 + sin2 θdφ2). (3.35)

3.5 The case a2 − α < 0

We now consider the case a2 − α < 0 and write the di�erential equation (3.10) as

4(1 + ax)ÿ − 2aẏ − (α− a2)y = 0. (3.36)

Keeping the same transformation (3.16) of �3.4, the equation (3.36) takes the form

V 2d
2Y

dV 2
+ V

dY

dV
−

(
(α− a2)V 2 +

(
2 + a

2

)2
)
Y = 0, (3.37)
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where V = y2/(2+a)Y −2/(2+a). We cannot use the variable w of �3.4 as a2 − α < 0. It

is important to use a new variable w̃. By taking

w̃ = (α− a2)
1
2V, (3.38)

equation (3.36) becomes

w̃2d
2Y

dw̃2
+ w̃

dY

dw̃
−

(
w̃2 +

(
2 + a

2

)2
)
Y = 0. (3.39)

Equation (3.39) is the modi�ed Bessel di�erential equation of order 2+a
2
. The general

solution of (3.39) is a sum of linearly independent modi�ed Bessel functions given by

Y (w̃) = b1Ia+2
2

(w̃) + b2K−a+2
2

(w̃), (3.40)

where b1, b2 are arbitrary constants. The quantities Ia+2
2

(w̃), K−a+2
2

(w̃) are called

modi�ed Bessel functions of the �rst and second kind respectively. The form of the

solution of (3.40) is complicated but can be written in terms of elementary functions

when a
2
+1 is a half-integer. For these parameter values the solution is usually written

in terms of hyperbolic functions. For a = −1, 1, 3, ... the solution of (3.39) can be

written with the help of modi�ed Bessel functions of half-integer order I 1
2
, I− 1

2
, I 3

2
,

I− 3
2
, I 5

2
, I− 5

2
,... We now consider the cases where a = −1, a = 1 and a = 3.

3.5.1 Model I: a = −1

When a = −1 the solution (3.40) takes the form

Y (w̃) = b1I 1
2
(w̃) + b2I− 1

2
(w̃), (3.41)

where

I 1
2
(w̃) =

√
2

πw̃
sinh(w̃), (3.42a)

I− 1
2
(w̃) =

√
2

πw̃
cosh(w̃). (3.42b)

Then the general solution of (3.36) is given by

y(x) = (α− 1)−
1
4
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×
[
c1 sinh(

√
(α− 1)(1− x)) + c2 cosh(

√
(α− 1)(1− x))

]
, (3.43)

where c1 =
√

2
π
b1 and c2 =

√
2
π
b2 are new constants. Then the complete exact

solution of the Einstein-Maxwell system is

e2λ = 1− x, (3.44a)

e2ν = (α− 1)−
1
2A2

×
[
c1 sinh(

√
(α− 1)(1− x)) + c2 cosh(

√
(α− 1)(1− x))

]2
, (3.44b)

ρ

C
=
−6 + x(2 + β − α)

2(1− x)2
, (3.44c)

pr
C

=
1

1− x
+

(α− β)x

2(1− x)2

+(1− x)−1
[
2(1− α)(c1 + c2 tanh(

√
(α− 1)(1− x)))

]
×
[√

(α− 1)(1− x)(c2 + c1 tanh(
√

(α− 1)(1− x)))
]−1

, (3.44d)

pt
C

=
[
+c2
√

(α− 1)(1− x)(2 + x(−2 + α + β))− 4c1(−1 + α)

+(c1
√

(α− 1)(1− x)(2 + x(−2 + α + β))

−4c2(−1 + α)) tanh(
√

(α− 1)(1− x))
]

(1− x)−2

×
[
2
√

(α− 1)(1− x)(c2 + c1 tanh(
√

(α− 1)(1− x)))
]−1

, (3.44e)

E2

C
=

(α− β)x

(1− x)2
, (3.44f)

σ2

C
=

C(α− β)(−3 + x)2

(1− x)5
. (3.44g)

This is a new solution to the Einstein-Maxwell system in terms of hyperbolic

functions. The line element for this case is

ds2 = −(α− 1)−
1
2A2

×
[
c1 sinh(

√
(α− 1)(1− x)) + c2 cosh(

√
(α− 1)(1− x))

]2
dt2

+
1− x
4Cx

dx2 +
x

C
(dθ2 + sin2 θdφ2). (3.45)
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3.5.2 Model II: a = 1

For a = 1 the solution (3.40) becomes

Y (w̃) = b1I 3
2
(w̃) + b2I− 3

2
(w̃), (3.46)

where the modi�ed Bessel functions are given by

I 3
2
(w̃) =

√
2

πw̃

[
−sinh(w̃)

w̃
+ cosh(w̃)

]
, (3.47a)

I− 3
2
(w̃) =

√
2

πw̃

[
−cosh(w̃)

w̃
+ sinh(w̃)

]
, (3.47b)

Then the general solution of the equation (3.36) takes the form

y(x) = (α− 1)−
3
4

[
c1
√

(α− 1)(1 + x) sinh
(√

(α− 1)(1 + x)
)

−c2 sinh
(√

(α− 1)(1 + x)
)
− c1 cosh

(√
(α− 1)(1 + x)

)
+c2
√

(α− 1)(1 + x) cosh
(√

(α− 1)(1 + x)
)]
, (3.48)

where c1 = b2

√
2
π
and c2 = b1

√
2
π
are new constants. The complete exact solution

to the Einstein-Maxwell system for this case can be written as

e2λ = 1 + x, (3.49a)

e2ν = (α− 1)−
3
2

[
c1
√

(α− 1)(1 + x) sinh
(√

(α− 1)(1 + x)
)

−c2 sinh
(√

(α− 1)(1 + x)
)
− c1 cosh

(√
(α− 1)(1 + x)

)
+c2
√

(α− 1)(1 + x) cosh
(√

(α− 1)(1 + x)
)]2

, (3.49b)

ρ

C
=

6− (α− 1)x+ (1 + β)x

2(1 + x)2
, (3.49c)

pr
C

=
1

2(1 + x)2

[
c2
√

(α− 1)(1 + x)(2 + x(2− α + β))

−c1(−2 + 4α + x(−2 + 3α + β))

+
(
c1
√

(α− 1)(1 + x)(2 + x(2− α + β))

−c2(−2 + 4α + x(−2 + 3α + β))) tanh
(√

(α− 1)(1 + x)
)]

×
[
c1 − c2

√
(α− 1)(1 + x)

+
(
c2 − c1

√
(α− 1)(1 + x)

)
tanh

(√
(α− 1)(1 + x)

)]−1
, (3.49d)
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pt
C

=
1

2(1 + x)2

[
−c2

√
(α− 1)(1 + x) (−2 + x(−2 + α + β))

+c1 (2− 4α + x(2− 3α + β))

+c1

(
c2
c1

(2− 4α + x(2− 3α + β))

+
√

(α− 1)(1 + x)(x(2− α− β) + 2)
)

× tanh
(√

(α− 1)(1 + x)
)]

×
[
c1 − c2

√
(α− 1)(1 + x) + c2 tanh

(√
(α− 1)(1 + x)

)
−c1

√
(α− 1)(1 + x) tanh

(√
(α− 1)(1 + x)

)]−1
, (3.49e)

E2

C
=

(α− 1)x+ (1− β)x

(1 + ax)2
, (3.49f)

σ2

C
=

C((1− β) + (α− 1))(3 + ax)2

(1 + ax)5
. (3.49g)

Equations (3.49) represent a new solution in terms of hyperbolic functions. This

result is a generalisation of the corresponding metric of Hansraj and Maharaj (2006);

when β = 0 the anisotropy vanishes and we regain their model. The line element

takes the form

ds2 = −(α− 1)−
3
2

[
c1
√

(α− 1)(1 + x) sinh
(√

(α− 1)(1 + x)
)

−c2 sinh
(√

(α− 1)(1 + x)
)
− c1 cosh

(√
(α− 1)(1 + x)

)
+c2
√

(α− 1)(1 + x) cosh
(√

(α− 1)(1 + x)
)]2

dt2

+
1 + x

4Cx
dx2 +

x

C
(dθ2 + sin2 θdφ2). (3.50)

3.5.3 Model III: a = 3

When a = 3 we can write the solution (3.40) as

Y (w̃) = b1I 5
2
(w̃) + b2I− 5

2
(w̃), (3.51)

where b1 , b2 are constants and I 5
2
, I− 5

2
are modi�ed Bessel functions which may be

expressed in terms of hyperbolic functions as

I 5
2
(w̃) =

√
2

πw̃

(
3 sinh(w̃)

w̃2
− 3 cosh(w̃)

w̃
+ sinh(w̃)

)
, (3.52a)
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I− 5
2
(w̃) =

√
2

πw̃

(
3 cosh(w̃)

w̃2
− 3 sinh(w̃)

w
+ cosh(w̃)

)
. (3.52b)

Then the general solution to the di�erential equation in this case may be written as

y(x) = (α− 9)−5/4

× [((3 + (α− 9)(1 + 3x))c1 − 3c2T (x)) sinh(T (x))

+((3 + (α− 9)(1 + 3x))c2 − 3c1T (x)) cosh(T (x))] , (3.53)

where c1 = b1

√
2
π
and c2 = b2

√
2
π
are new constants. The complete solution to the

Einstein-Maxwell equations is given by

e2λ = 1 + 3x, (3.54a)

e2ν = A2(α− 9)−5/2

× [((3 + (α− 9)(1 + 3x))c1 − 3c2T (x)) sinh(T (x))

+((3 + (α− 9)(1 + 3x))c2 − 3c1T (x)) cosh(T (x))]2 , (3.54b)

ρ

C
=

18 + (18− α + β)x

2(1 + 3x)2
, (3.54c)

pr
C

=
−6 + (−18 + α− β)x

2(1 + 3x)2
[12(1 + 3x)(α− 9)(−c2 + c1T (x)

+(−c1 + c1T (x)) tanh(T (x)))]

×
[
2(1 + 3x)2(−3c1T (x) + c2(3 + (α− 9)(1 + 3x))

+(−3c2T (x) + c1(3 + (α− 9)(1 + 3x))) tanh(T (x)))]−1 , (3.54d)

pt
C

=
[
−(3c1 (T (x))2 (−30 + 4α + x(−54 + 7α− β))

+c2T (x)(−18(−8 + α) + x(−6(−297 + β)

+α(−354 + 17α + β) + 3x(α− 9)(−162 + 17α + β))))

−(3c2(α− 9)(1 + 3x)(−30 + 4α + x(−54 + 7α− β))

+c1T (x)(−18(−8 + α) + x(−6(−297 + β)

+α(−354 + 17α + β) + 3x(α− 9)(−162 + 17α + β))))

× tanh(T (x))]

×
[
2(1 + 3x)2T (x) (3c1T (x)− c2(−6 + 3x(α− 9) + α)

+(3c2T (x)− c1(−6 + 3x(α− 9) + α)) tanh(T (x)))]−1 , (3.54e)
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E2

C
=

(9− (9− α)− β)x

(1 + 3x)2
, (3.54f)

σ2

C
=

9C (9− (9− α)− β) (1 + x)2

(1 + 3x)5
, (3.54g)

where we have set T (x) ≡
√

(α− 9)(1 + 3x).

We have found another class of new solutions which allows for more complex

behaviour in the potentials than the earlier cases. For our new solution to the

Einstein-Maxwell system given by equations (3.54), the line element has the form

ds2 = −A2(α− 9)−5/2

× [((3 + (α− 9)(1 + 3x))c1 − 3c2T (x)) sinh(T (x))

+((3 + (α− 9)(1 + 3x))c2 − 3c1T (x)) cosh(T (x))]2 dt2

+
1 + 3x

4Cx
dx2 +

x

C
(dθ2 + sin2 θdφ2). (3.55)

3.6 Equation of state

An equation of state relating the radial pressure pr to the energy density ρ is a

desirable physical feature in a relativistic stellar model. The expressions for the

radial pressure pr are complicated but all the models found in this chapter admit an

equation of state. We illustrate this for the model found in �3.4.2. From equation

(3.29c) in �3.4.2 we can establish the expression

x2 +
4ρ− C(2 + β − α)

2ρ
x+

ρ− 3C

ρ
= 0. (3.56)

To solve this equation, with distinct real roots, we impose the following condition,

where the discriminant of the quadratic equation (3.56) is positive. We have that(
C

2ρ
(2 + β − α)

)2

+
2C

ρ
(4− β + α) > 0. (3.57)

Hence the variable x is written in terms of ρ as

x =
1

2

√(
C

2ρ
(2 + β − α)

)2

+
2C

ρ
(4− β + α)
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−
[
1− C

4ρ
(2 + β − α)

]
. (3.58)

Then from (3.29d) we can write pr as a function of ρ. Therefore, we have an equation

of state of the form

pr
C

= [−c2 (−2 + 4α + (−2 + 3α + β)(−1 + F (ρ)))

+c1(2 + (2− α + β)(−1 + F (ρ)))
√

(1− α)F (ρ)

−(c1(−2 + 4α + (−2 + 3α + β)(−1 + F (ρ)))

+c2(2 + (2− α + β)(−1

+F (ρ)))
√

(1− α)F (ρ)) tan(
√

(1− α)F (ρ))
]

×
[
2(F (ρ))2(c2 − c1

√
(1− α)F (ρ) + (c1

+c2
√

(1− α)F (ρ)) tan(
√

(1− α)F (ρ)))
]−1

, (3.59)

where we have set

F (ρ) =
1

2

√(
C

2ρ
(2− α + β)

)2

+
2C

ρ
(4 + α− β) +

C

4ρ
(2− α + β).

Consequently the model in �3.4.2 has an equation of state of the general form

pr = pr(ρ), (3.60)

which is barotropic.

Another quantity of physical interest is the speed of sound dpr
dρ
. With the help

of (3.59) and (3.29), the expression for the speed of sound in terms of the radial

coordinate r becomes

dpr
dρ

=
2 + α− β + (2− α + β)cr2

−10− α + β + cr2(−2− α + β)

−
[

1

−10− α + β + cr2(−2− α + β)

]
×
[
(−1 + α)(1 + cr2)(2(−2 + cr2(−1 + α) + α)(1 + γ2)

+2(−1 + γ2) cos(2Ω(r)) + 6γΩ(r) cos(2Ω(r))

+(−3Ω(r) sin(2Ω(r)) + γ(−4 + 3γΩ(r))) sin(2Ω(r)))]
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× [(−1 + γΩ(r)) cos(Ω(r))− (Ω(r) + γ) sin(Ω(r))]−2 , (3.61)

where γ = c1
c2

is a constant and Ω(r) =
√

(1− α)(1 + cr2) . This expression is com-

plicated but it is interesting to note that it is possible to �nd an analytic expression

for the speed of sound. Graphical plots can be generated for dpr
dρ

as we show in the

next section.

3.7 Physical models

Some brief comments about the physical features of the new solutions to the Einstein-

Maxwell system are made in this section. In this chapter, we have presented several

new models for a relativistic astrophysical star. The underlying equation was the

Bessel di�erential equation which governs the solution of the Maxwell-Einstein sys-

tem of �eld equations. The solutions found have matter variables which are regular

and well behaved in the interior of the star. As an example we showed in this section

that the exact solutions found in �3.4.2 are physically reasonable. The matter vari-

ables are plotted graphically. The software package Mathematica (Wolfram 2010)

was used for the plots with the choice of parameters a = 1, c1 = 6.685, α = 0.59,

γ = −89.87631, C = 1, β = 0.175, c2 = −0.07438.

For a physically realistic relativistic star the equation of state is complex and

depends on parameters such as the temperature, the number fraction of a speci�c

particle interior species and strong entropy gradients. As a simplifying assumption

for a charged anisotropic matter distribution we assume the barotropic relationship.

The expressions for the matter and geometrical variables are in terms of Bessel

functions which makes it di�cult to study the behaviour of the physical features. We

can obtain simpler forms for these quantities by expanding them in terms of Taylor

series up to order r2. This makes it possible to investigate the physical behaviour

for small values of r. We obtain the quantities:

e2λ = 1 + r2, (3.62a)
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e2ν = 1 + 2.90788r2, (3.62b)

ρ

C
= 3− 5.2075r2, (3.62c)

pr
C

= 5.81673− 14.2278r2, (3.62d)

pt
C

= 5.81673− 14.0528r2, (3.62e)

E2

C
= 0.415r2, (3.62f)

σ2

C
= 3.735− 16.185r2. (3.62g)

It is clear from the above that the gravitational potentials and matter variables are

�nite and regular at the centre and in the spacetime region close to the centre. Note

that our models in general are not asymptotically �at in the �nite interior of the

star; however the interior does match to the asymptotically �at vacuum exterior. To

take into account the physical units and dimensional homogeneity in plotted matter

variables, we make the following scaling: x = r2, r2 = r̃2/R2, ρ = ρ̃R2, pr = p̃rR
2,

pt = p̃tR
2, E = ẼR2, σ = σ̃R2, where R has the dimension of length. The numerical

value R = 3.75 km has been chosen so that all the matter variables are well behaved.

The quantities ρ̃, p̃r, p̃t, Ẽ and σ̃ are the physically relevant quantities. For example

the star density is of order 3.0 × 1015 gcm−3. This is greater than the nuclear

saturation density but it is in the range of quark stars with a linear equation of state

(see for example Mafa Takisa et al (2014b)). The physical star radius is r̃ which

is approximately 8.43 km. Note that di�erent choices of the parameter values may

produce other physical pro�les.

The following plots were generated:

• Figure 3.1: Energy density.

• Figure 3.2: Radial and Tangential pressure.

• Figure 3.3: Electric �eld.

• Figure 3.4: Charge density.

• Figure 3.5: Mass function.
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• Figure 3.6: Equations of state.

• Figure 3.7: Speed of sound.

Figure 3.1 shows that the energy density ρ is positive, �nite and strictly decreasing.

In Figure 3.2 we see that both the tangential and radial pressures are positive and

monotonically decreasing functions. In Figure 3.3 the electric �eld is positive and

monotonically increasing and attains a maximum value when r̃ = R. The evolution

of the charge density in Figure 3.4 is a decreasing function which is continuous.

The mass function is an increasing function with increasing radius in Figure 3.5. We

observe that the anisotropy does not a�ect appreciably the behaviour of the mass and

for these three cases. We plotted the equation of state for di�erent parameter values

in Figure 3.6. We �nd that the anisotropy parameter β in�uences the evolution

of the equation of state. In Figure 3.7 the speed of sound satis�es the causality

principle 0 ≤ dpr
dρ
≤ 1 and the speed of sound is less than the speed of light. The

plots generated indicate that models found in this chapter are physically reasonable.

A detailed study of the physical features such as the luminosity and the relationship

to observed astronomical objects will be carried out in future work.
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Figure 3.1 � Energy density

Figure 3.2 � Radial and tangential pressures
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Figure 3.3 � Electric �eld intensity

Figure 3.4 � Charge density
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Figure 3.5 � Mass function

Figure 3.6 � Equations of state.
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Figure 3.7 � Speed of sound.
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Chapter 4

Prediction of stellar masses with

Finch and Skea geometry

4.1 Introduction

The Einstein-Maxwell system of equations plays an important role in several appli-

cations in relativistic astrophysics. All astrophysical isolated systems (like the case

of normal as well as compact stars) are generally considered to be charge neutral.

However, global charge neutrality for extended systems is not easily attainable, and

a sun-like star can hold up to 200 Coulomb of charge (Glendenning 2000). For the

case of a highly dense compact star, the situation is much more complicated, and

it has been shown in several models in the literature, that a highly dense compact

star in general relativity can hold a large amount of charge. Now, an electric �eld,

if present in the system, plays a crucial role in describing the equilibrium of the

compact star, and this charge may even halt gravitational collapse as �rst shown

by Bonnor (1965). The relevant requirement in relativistic astrophysics is to build

stable equilibrium solutions of the Einstein-Maxwell system of equations, and to pro-

duce models of di�erent stellar objects with strong gravitational �elds by choosing

relevant matter distributions. Models constructed in this way might be useful in
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studying the physical characteristics of compact stellar bodies such as gravastars,

neutron stars, quark stars, etc.

The studies of Ruderman (1972) and Canuto (1974), amongst others, have

demonstrated that anisotropy may develop inside highly dense compact stellar ob-

jects. The conditions under which anisotropy might occur throughout the star, in-

cluding the presence of the electromagnetic �eld or type 3A super�uid, have been

investigated by Bowers and Liang (1917). Several anisotropic models have been in-

vestigated by Maurya and Gupta (2014), Maurya et al (2015), Pandya et al (2015),

Bhar et al (2014), Murad (2013), Maharaj and Mafa Takisa (2012), Mafa Takisa et

al (2014a, 2014b), Sunzu et al (2014a, 2014b) and Kileba Matondo and Maharaj

(2016). Finch and Skea (1989) found a compact stellar model which was later shown

to obey all the physical requirements for a realistic star as given by Delgaty and Lake

(1998). Hence, many investigators have studied the Finch and Skea (1989) ansatz

in di�erent astrophysical contexts including Hansraj and Maharaj (2006), Tikekar

and Jotania (2007) and Banerjee et al (2013). Recently the generalised Finch and

Skea model with both anisotropy and the electric �eld was found by Maharaj et

al (2016). This generalised model is regular and matter variables are well behaved

with a barotropic equation of state. Therefore this model might be relevant in the

description of the interior of a static charged anisotropic star.

In the recent past, there has been substantial improvement in observations of

compact stars. The main challenge that remains is to determine with su�cient ac-

curacy, the radius of these compact stars, primarily because their position is so far

away. These recent probes with improved measurement techniques (e.g., the Shapiro

delay method, to name one) and observational precisions reveal accurate measure-

ment of the mass of some compact stars. Simultaneously, many theoretical teams

have also tried to establish the accurate estimation of the radii of these new found

masses for those stars. The combined e�ect of improved observational information of

the mass and the theoretically predicted radius about such compact stellar objects

have generated much interest about the internal matter content and accordingly the
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spacetime geometry. Our treatment in this chapter shows that the Finch and Skea

geometry produces masses and radii consistent with observations.

The investigation of Maharaj et al (2016) shows that the Finch and Skea geom-

etry may be generalised to include charge and anisotropy. In this chapter we use a

particular solution in the charged anisotropic model in Maharaj et al (2016) to in-

vestigate the physical features and show that this model is consistent with observed

compact stars. We aim to �nd the maximum masses and the radii of the selected

pulsars PSR J1416-2230, PSR J1903+0327, 4U 1820-30, Cen X-3, EXO 1785-248

and LMC X-4. In �4.2, the Einstein-Maxwell �eld equations and the Maharaj et al

(2016) solution are presented. Physical requirements for acceptability for a stellar

model in general relativity is presented in �4.3. We generate in �4.4, masses and

radii, for particular parameter values, for charged anisotropic, charged isotropic and

uncharged isotropic cases. These results are presented in Table 4.1, Table 4.2 and

Table 4.3. Graphical plots of the physical quantities for two pulsars PSR J1614-2230

and LMC X-4 are displayed in �4.4. A detailed discussion of the masses and radii

and their relationship to observed objects is given.

4.2 The model

In this section we choose a static gravitational �eld described by the following line

element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (4.1)

where ν(r) and λ(r) are the potentials for the static spherical �eld. The energy

momentum tensor therefore has the general form

Tab = diag

(
−ρ− 1

2
E2, pr −

1

2
E2, pt +

1

2
E2, pt +

1

2
E2

)
, (4.2)

with the quantities ρ, pr, pt and E being respectively, the energy density, the radial

pressure, the tangential pressure and the electric �eld intensity. Taking 8πG
C4 = 1, the
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Einstein-Maxwell �eld equations for charged anisotropic matter are given by

1

r2
[
r(1− e−2λ)

]′
= ρ+

1

2
E2, (4.3)

− 1

r2
(1− e−2λ) +

2ν ′

r
e−2λ = pr −

1

2
E2, (4.4)

e−2λ
(
ν ′′ + ν ′2 +

ν ′

r
− ν ′λ′ − λ′

r

)
= pt +

1

2
E2, (4.5)

σ =
1

r2
e−λ(r2E)′, (4.6)

where primes represent di�erentiation with respect to r and σ the proper charge

density. The mass of a charged stellar object contained within a radius r of the

relativistic sphere is

M(r) =
1

2

∫ r

0

(ρunch(ω) + E2)ω
2
dω, (4.7)

where ρunch(ω) is the energy density for uncharged case. An equivalent form of

(4.3)-(4.6) can be obtain by using Durgapal and Bannerji (1983) transformation

x = Cr2, Z = e−2λ(r), A2y2(x) = e2ν(r), (4.8)

with A and C are constants. The Einstein-Maxwell �eld equations then become

ρ

C
= −2Ż +

1− Z
x
− E2

2C
, (4.9)

pr
C

= 4Z
ẏ

y
+
Z − 1

x
+

E2

2C
, (4.10)

pt
C

= 4xZ
ÿ

y
+ (4Z + 2xŻ)

ẏ

y
+ Ż − E2

2C
, (4.11)

σ2

C
=

4Z

x
(xĖ + E)2, (4.12)

It is necessary to select an exact solution of (4.3)-(4.6) to perform a physical analysis.

Here we use a particular solution that arises in the models found by Maharaj et al

(2016). The reason for this choice is that the gravitational potentials are regular

in the interior, the matter variables have realistic pro�les and a barotropic equa-

tion of state exists. In addition, this class of models contains the Finch and Skea
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(1989) spacetime which has been shown to be consistent in the description of current

observed astronomical bodies in several treatments. The relevant exact Einstein-

Maxwell solution is given by

e2λ = 1 + Cr2, (4.13a)

e2ν = (1− α)−3/2A2 [c2 cos (F (r))− c1F (r) cos (F (r))

+c2F (r) sin (F (r)) + c1 sin (F (r))]2 , (4.13b)

ρ

C
=

6 + Cr2(2 + β − α)

2(1 + Cr2)2
, (4.13c)

pr
C

=

[
2(1 + Cr2)2 (c2 − c1(F (r)))

tan(F (r))
+ 2(1 + Cr2)2 (c1 + c2F (r))

]−1
×
[
c1 (2 + (2− α + β)Cr2)F (r)

tan(F (r))

−c2
(
2 + (2− α + β)Cr2

)
F (r)

−c1
(
−2 + 4α + (−2 + 3α + β)r2

)
−c2 (−2 + 4α + (−2 + 3α + β)Cr2)

tan(F (r))

]
, (4.13d)

pt
C

=
1

2

[
c1(2 + (2 + α− β)Cr2)F (r)

tan(F (r))

+c1
(
2− 4α + (2− 3α + β)Cr2

)
+c2(−2 + (−2− α + β)Cr2)F (r)

+
c2 (2− 4α + (2− 3α + β)Cr2)

tan(F (r))

]
×
[

(1 + r2)2(c2 − c1(F (r)))

tan(F (r))
+ (1 + Cr2)2 (c1 + c2F (r))

]−1
, (4.13e)

E2

C
=

(α− β)Cr2

(1 + Cr2)2
, (4.13f)

σ2

C
=

C(3 + Cr2)2(α− β)

(1 + Cr2)5
. (4.13g)

In addition, we have F (r) =
√

(1− α)(1 + Cr2) and, α and β are constants related

to the electric �eld and anisotropy. We note that this exact model is given in terms

of simple elementary functions which facilitates the physical analysis.
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4.3 Physical requirements

For physical acceptability the model should comply with the following requirements

throughout the star:

(i) The gravitational potentials and the matter variables should be well de�ned at

the centre and regular throughout the star,

(ii) The energy density ρ at the centre of the star should be �nite and decreasing

in the interior
(
dρ
dr
≤ 0
)
,

(iii) The radial pressure pr and the tangential pressure pt must be positive, the

speed of sound must be smaller than the speed of light
(
dpr
dρ
≤ 1
)
and the

gradient of the pressure must be negative,
(
dpr
dr
≤ 0
)
inside the stellar body,

(iv) At the stellar surface the radial pressure should vanish,

(v) The energy conditions: ρ+ pr ≥ 0, ρ+ pt ≥ 0 and ρ− pr − 2pt ≥ 0 within the

star,

(vi) For stability the adiabatic index Γ =
ρ+ pr
pr

dpr
dρ

>
4

3
, and

(vii) The metric functions e2λ and e2ν should match smoothly to the Reissner-

Nordström exterior metric

e2ν(R) = 1− 2M

R
+
Q2

R2
, (4.14)

e2λ(R) =

(
1− 2M

R
+
Q2

R2

)−1
, (4.15)

at the surface of the sphere.

4.4 Physical analysis

To take into account the physical units and dimensional homogeneity in the matter

variables, and also to compare with the results of previous investigations, we make
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the following transformations:

r̃ = rL2, ρ = ρ̃L2, pr = p̃rL2, pt = p̃tL2,

where L is a parameter with dimension of length.

We analysed the behaviour of the model by taking the central density in the

range of 1.5731 × 1014 gcm−3 ≤ ρ̃c ≤ 1.7825 × 1015 gcm−3, which corresponds to

the range of parameters 0.11870 ≤ C ≤ 1.39500. Starting from the lower bound

density ρ̃c = 1.5731 × 1014 gcm−3 and C = 0.11870, we obtain the �xed value of

the parameter L = 2.674 km, and the mass M of PSR 1614-2230 and radius R is

generated. The parameter value L = 2.674 km is �xed but the parameter C and

the central density ρ̃c allowed to vary to generate speci�c stellar masses M and

radii R for the rest of the pulsars, PSR J1614-2230, PSR J1903+0327, 4U 1820-30,

Cen X-3, EXO 1785-248 and LMC X-4. We are concerned here with the uncharged

isotropic case. The parameters used in the uncharged isotropic case have generated

results which are consistent with the observational data. Consequently, we use these

values to study charged isotropic and charged anisotropic bodies. We consider the

electric charge E to be of the order of E = 4.91959 × 1020 V m−1 used in the work

of Mafa Takisa et al (2014b), which corresponds to the values of α = 0.59 and

β = 0.175, so that we can generate speci�c numerical stellar masses M and radii

R for the objects PSR J1614-2230, PSR J1903+0327, 4U 1820-30, Cen X-3, EXO

1785-248 and LMC X-4 for charged isotropic and charged anisotropic bodies. We

also calculate the surface redshift Zs. We �nd the values for the stellar radius R

to be in the range 5.33-13.83 km, and the mass is in the range 1.04-1.97 M�. The

values of masses, radii, central densities and surface redshifts are given in Table 4.1

which corresponds to the charged anisotropic case. For the charged isotropic case

the values are listed in Table 4.2. Finally in Table 4.3 the corresponding values

for the isotropic case are provided. We note that similar values for the mass were

obtained by Gangopadhyay et al (2013), and some other values were presented in the

investigations Mafa Takisa et al (2014b), with a linear equation of state, and Mafa

Takisa et al (2014a), with a quadratic equation of state. An interested reader, keen to
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acquire a detailed knowledge of the observations of the above compact stellar objects,

is referred to Gangopadhyay et al (2013) and the references therein. Our analysis

here is more general as the equation of state is a general barotropic relationship.

We have also provided the mass-radius M
R

(compacti�cation factor) relationship for

the six stellar pulsars in all tables. We note that the compacti�cation factor is in

the range of M
R
∼ 1

10
to 1

4
which corresponds to neutron stars and ultra-compact

stars as pointed out by Mafa Takisa and Maharaj (2013a). The Buchdahl (1959)

requirement of M
R
< 4

9
for the all three cases is satis�ed. The Andréasson (2009)

requirement for charged cases
√
M ≤

√
R
3

+
√

R
9

+ E2R3

3
in Table 4.2 and 4.3 are

satis�ed. Also the Buchdahl (1959) requirement of M
R
< 4

9
for uncharged case is

satis�ed too. The surface redshift Zs can be measured from the X-ray spectrum which

gives the compactness of the star. We observe that the surface redshift decreases with

increase of radius for all six pulsars. The surface redshift Zs is in the interval 0.4-0.5,

and this range is approximately close to the values 0.36-0.49, found by Rahaman et

al (2015); note also that these redshift values are in good agreement with the studies

of Böhmer and Harko (2007) and Rahaman et al (2012). Also, we can highlight the

condition of the upper bound (Buchdahl 1959), equivalent to Zs ≤ 2 for a realistic

compact object has been met, and therefore our model is physically acceptable. Our

redshift range values are also consistent with strange stellar objects which have a

compacti�cation factor higher than neutron stars with the upper bound Zs ≤ 0.9 as

pointed out by Lindblom (1984).

By keeping the value of the mass constant and comparing the charged isotropic

case to the uncharged isotropic case, the radius decreases relative to the uncharged

isotropic case; this e�ect is expected since the new �eld is repulsive aiding the pressure

to sustain the star against gravitational collapse. Also we notice that the charged

anisotropic case has a bigger radius compared to the charged isotropic case. This

feature likely arises as the e�ect of the anisotropy squeezes the sphere tangentially,

which leads to increase of the radius of the star.

In order to compare the nature of the matter variables throughout the distri-
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bution, we choose two particular stars: PSR J1614-2230 (M = 1.97 M�) bounds

our upper limit and LMC X-4 (M = 1.04 M�) bounds our lower limit. Keeping

all parameters unchanged and allowing the constants C, α and β to vary, we have

shown the variations of density, pressures, anisotropy, mass, energy conditions, and

speed of sound of both pulsars for the threes cases: charged anisotropic, charged

isotropic and uncharged isotropic cases in Fig. 4.1, Fig. 4.2, and Fig. 4.3. The

various physical variables throughout the compact stellar bodies are regular and well

behaved. The energy density for the uncharged isotropic case is always greater than

the energy density in charged anisotropic and the charged isotropic cases. Comparing

between Fig. 4.1a and Fig. 4.2a we observe that the central energy density of LMC

X-4 (M = 1.04 M�) has a value greater than the energy density of PSR J1614-2230

(M = 1.97 M�). Similar behaviour have been reported in the investigations of Singh

et al (2016) and Sharma and Ratanpal (2013). We notice that the tangential and

radial pressures in Figs. 4.1c, 4.1d, 4.2c, and 4.2d are radially decreasing outwards.

In Figs 4.1e and 4.2e, the gradient of radial pressure is plotted. The gradient of radial

pressure is decreasing, reaches a minimum and then increases towards the boundary

as required. The behaviour of the anisotropy for both pulsars is displayed in Figs.

4.1f and 4.2f; it initially increases, reaches a maximum and then decreases. The

anisotropy has lesser values for the PSR J1614-2230 when compared with the object

MLC X-4. The speed of sound, as shown in Fig. 4.3a, is less than the speed of light,

thus satisfying the condition of causality. The terms denoting the energy conditions,

i.e., ρ̃+ p̃r, ρ̃+ p̃t and r̃− p̃r − 2p̃t versus radius for both pulsars are plotted in Figs.

4.1h and 4.2h. It can be observed that these quantities remain positive throughout

the compact sphere and the energy conditions are satis�ed. The pro�le of the adia-

batic index Γ within the stellar matter is shown in Fig. 4.3c. It clearly shows that

the variation of Γ throughout the star remains greater that
4

3
, which complies with

the condition for stability of a relativistic stellar model.

It is interesting to note from our plots, that the presence of charge has apparently

decreased the size of the star (comparing the Figs. 4.1g and 4.2g). However, natural
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perception indicates that the presence of similar charges inside a compact stellar

system will generate a repulsive force, thus bloating the size of the star. A careful

observation of our results reveals that for a given constant central density (which

de�nes the ultimate morphology of the star) the size of the star has actually increased

due to the presence of charge. However our solutions allow for the presence of lower

values of the central density for the uncharged case, thus making the size of the star

large for the uncharged star, than the charged case. This essentially means that the

presence of charge has allowed for a steeper equation of state of matter inside the

star. This can be seen in the Figs. 4.1a and 4.2a for the density, and correspondingly

in the Figs. 4.1g and 4.2g for the mass.
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(a) Energy density

(b) Tangential and radial pressure

Figure 4.1 � Figures for PSR J1614 - 2230
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(c) Radial pressure

(d) Tangential pressure

Figure 4.1 � Figures for PSR J1614 - 2230
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(e) Gradient of radial pressure

(f) Anisotropy

Figure 4.1 � Figures for PSR J1614 - 2230
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(g) Mass
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(h) Energy conditions

Figure 4.1 � Figures for PSR J1614 - 2230
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(a) Energy density

(b) Tangential and radial pressure

Figure 4.2 � Figures for LMC X-4.
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(c) Radial pressure

(d) Tangential pressure

Figure 4.2 � Figures for LMC X-4.
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(e) Gradient of radial pressure

(f) Anisotropy

Figure 4.2 � Figures for LMC X-4.
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(g) Mass
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(h) Energy conditions

Figure 4.2 � Figures for LMC X-4.
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(a) Square of speeds of sound

(b) The quantity |v2t − v2r |

Figure 4.3 � Figures for PSRJ1614-2230 and LMC X-4.
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(c) Adiabatic index

(d) Matching at the boundary for LMC X-4 for charged anisotropic case

Figure 4.3 � Figures for PSRJ1614-2230 and LMC X-4.
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Chapter 5

Relativistic stars with conformal

symmetry

5.1 Introduction

A conformal symmetry in spacetime places restrictions on the gravitational poten-

tials. This happens because in the presence of a conformal Killing vector, null

geodesics are mapped to null geodesics; the change in the metric is proportional

to the metric as it is Lie dragged along a congruence of curves. A conformal symme-

try generates conserved quantities for photons. Several researchers have studied the

Einstein equations for neutral matter and the Einstein-Maxwell equations for charged

matter with a conformal symmetry. Exact solutions generated in this way are useful

in relativistic astrophysics and may be used to model dense stars. Most studies in

conformal motions have been completed in spherically symmetric spacetimes because

of potential applications in cosmology and astrophysics.

Conformal motions in static spherically symmetric spacetimes have been ex-

tensively studied by Maartens et al (1995, 1996) and Tupper et al (2012). It has

been pointed out that static spherical geometries do admit conformal symmetries

which are nonstatic. A recent comprehensive treatment of conformal symmetries
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in astrophysics, utilizing the Weyl tensor for conformally �at and non-conformally

�at metrics, was completed by Manjonjo et al (2017). Several authors have used

conformal symmetries to model compact objects in a general relativistic setting.

Herrera et al (1984) and Herrera and Ponce (1985a, 1985b, 1985c), Maartens and

Maharaj (1990) and Mak and Harko (2004) have modelled charged imperfect �uids in

the presence of a conformal symmetry. New classes of compact stars with conformal

symmetry and a linear equation of state were found by Esculpi and Aloma (2010).

Rahaman et al (2017) and Shee et al (2016) studied anisotropic stars with a non-

static conformal vector and a speci�c spacetime geometry. Clearly the assumption of

a conformal symmetry has been useful in generating realistic astrophysical models.

In generating a stellar model, an equation of state should be imposed on the star

based on physical considerations. However in our approach we have speci�ed one

of the gravitational potentials to yield an exact solution to the Einstein �eld equa-

tions with anisotropic matter distributions. This is an alternative approach using

the gravitational metric rather than the equation of state arising from the micro-

physics. Our approach leads to an exact model with reasonable physical features.

The presence of anisotropic pressure a�ects the values of the stellar mass, luminos-

ity and other physical quantities. The investigations of Herrera and Santos (1997)

indicate that local anisotropic pressure provides stability to the stellar sphere. It

was showed by Dev and Gleiser (2002) that the structure and physical properties

of stellar bodies are a�ected in the presence of anisotropy. The mass and surface

redshift may vary depending on the nature of the anisotropic pressure. Gleiser and

Dev (2004) demonstrated for smaller adiabatic indices associated with anisotropy

that the stellar sphere becomes more stable when compared with isotropic pres-

sure. Ruderman (1972) showed that in the high density range of order 1015gcm−3,

where the nuclear interactions are relativistic, the distribution of matter is likely to

be anisotropic. The presence of anisotropy has an important e�ect on the physical

properties, stability and con�guration of stellar matter distributions. It is interesting

to observe that an equation of state may arise in particular models, involving the
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radial pressure, by assuming special forms of the metrics in the spacetime geome-

try. Mafa Takisa and Maharaj (2013b) showed that solutions are possible with a

quadratic equation of state relating the radial pressure to the energy density. Varela

et al (2010) established a general approach indicating the role played by an equa-

tion of state in the process of dealing with anisotropic matter. Linear relationships

involving radial pressure and the energy density exist in anisotropic stellar models

of Mafa Takisa et al (2014a), Sunzu et al (2014a, 2014b) and Kileba Matondo and

Maharaj (2016). Recently, a new approach with anisotropic pressure has been in-

vestigated with the Finch and Skea geometry by Maharaj et al (2016) and Kileba

Matondo et al (2017).

Anisotropic pressure plays a prominent role in many processes in relativistic as-

trophysics. Weber (1999) has showed that the variation of the magnetic �eld intensity

during the post main sequence of development of neutron stars, enables the matter

distribution to produce pressure anisotropy. Several phenomena have been presented

previously to describe the existence of anisotropic pressure inside the star. Kippen-

hahn and Weigert (1990) argue that the presence of anisotropic pressure within a

stellar object is likely due to the presence of a solid core or the stellar �uid is a

type-3A super�uid. Within the stellar object, pressure anisotropy could have arisen

from several phase transitions and pion condensation as showed by Sokolov (1980)

and Sawyer (1972). Sawyer and Scalapino (1973) have shown that when elementary

particles such as pions condense, the anisotropic pressure has to be taken into ac-

count to describe a pion condensed phase con�guration from the geometry of the

π−1 modes. Bowers and Liang (1974) have studied the role played by the presence

of anisotropy to describe stellar objects in relativistic astrophysics, and the e�ects

arising on the physical quantities such as the compactness factor, redshift, mass and

radius. Ivanov (2002) pointed out the link between the anisotropy and the redshift,

and obtained higher surface redshifts when the strong energy condition and the dom-

inant energy condition are satis�ed. For stellar objects with high densities greater

than nuclear matter density, it is required that the Tolman-Oppenheimer-Volkov
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equation describing the equilibrium condition for charged �uid elements subject to

gravitational, electric and hydrostatic forces, to be modi�ed because of another in-

teraction force due to the pressure anisotropy within the star. It was suggested by

Usov (2004) that the existence of strong electric �eld could be generated by the

presence of anisotropy. Sharma and Maharaj (2007) shown that in the presence of

pressure anisotropy, compact stellar objects can be generated with a linear equation

of state which can be applied to strange stars with quark matter. Recently, a class

of static spherically symmetric objects with high anisotropic pressure in Tolman VII

spacetime has been investigated by Bhar et al (2015). A model for compact star

with large pressure anisotropy which sati�es all physical requirements and causality

conditions has been produced by Thirukkanesh and Ragel (2014).

The usual approach in the modelling process is to restrict the conformal sym-

metry or assume a functional form for the metric functions. This approach is ad

hoc. Manjonjo et al (2017) have shown that the existence of a conformal Killing

vector implies a relationship relating the gravitational potentials. This provides a

systematic method of generating solutions of the Einstein and Einstein-Maxwell sys-

tems of �eld equations. We use the relationship of Manjonjo et al (2017) to �nd

new classes of exact solutions with an anisotropic matter distribution in terms of

simple elementary functions and study their physical features. We show that the

exact solutions obtained are physically reasonable and may be related to observed

astrophysical objects.

Solutions of dense relativistic stars found with conformal symmetry often have

a singularity at the stellar centre. We seek exact solutions of the Einstein �eld

equations which are regular at the centre. We select forms of the metric functions

that enable the conformal relation of Manjonjo et al (2017) to be integrated. This

helps to eliminate the singularity at the centre. In �5.2 the Einstein �eld equations

are given. In �5.3 we give the conformal relationship between the potentials derived

in Manjonjo et al (2017). Polynomial forms for one of the potentials enable the

conformal relation to be integrated. Three classes of metrics which are regular at
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the centre are found in �5.4, �5.5 and �5.6. In �5.7, we use the metric potentials,

obtained in �5.4, to generate an exact solution to Einstein �eld equations. In �5.8,

we study the physical features of the model. The matter variables and other physical

quantities are also plotted for a particular choice of parameter values.

5.2 Field equations

The gravitational �eld in spherically symmetric spacetimes, modelling the interior of

a static relativistic star, is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (5.1)

The expressions λ(r) and ν(r) are arbitrary functions and represent gravity. The

tensor T corresponds to energy momentum and has the general form

Tab = diag (−ρ, pr, pt, pt) , (5.2)

where the quantities ρ, pr, pt and E are the energy density, radial pressure and tan-

gential pressure respectively. Then the Einstein system of equations can be written

in the form

1

r2
[
r(1− e−2λ)

]′
= 8πρ, (5.3a)

− 1

r2
(1− e−2λ) +

2ν ′

r
e−2λ = 8πpr, (5.3b)

e−2λ
(
ν ′′ + ν ′2 +

ν ′

r
− ν ′λ′ − λ′

r

)
= 8πpt, (5.3c)

in terms of the coordinate r. Primes denote di�erentiation with respect to r. We are

using units in which G = c = 1.

The Durgapal and Bannerji (1983) form of the Einstein �eld equations is ob-

tained if we introduce the transformation

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (5.4)
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where A and C are constants. In terms of the new variables the line element (5.1)

has the form

ds2 = −A2y2(x)dt2 +
1

4CxZ(x)
dx2 +

x

C

(
dθ2 + sin2 θdφ2

)
. (5.5)

The �eld equations (5.3) become

8πρ

C
= −2Ż +

1− Z
x

, (5.6a)

8πpr
C

= 4Z
ẏ

y
+
Z − 1

x
, (5.6b)

8πpt
C

= 4xZ
ÿ

y
+ (4Z + 2xŻ)

ẏ

y
+ Ż, (5.6c)

which is an equivalent form. The mass contained within a radius x of the spherical

star is given by the expression

M(x) =
2π

C3/2

∫ x

0

√
ωρ(ω) dω, (5.7)

which is sometimes called the mass function.

5.3 Physical models

The �eld equations are highly nonlinear. If the spacetime manifold admits a sym-

metry then this often leads to simpli�cation and an exact solution. For a conformal

Killing vector to exist we have the requirement

LXgab = 2ψgab, (5.8)

on the metric tensor �eld gab. Here LX is the Lie derivative along the integral curves

of the vector �eld X and ψ(xa) is the conformal factor. The condition (5.8) places

restrictions on the quantities associated with the spacetime curvature. In particular

for the Ricci tensor Rab and the Ricci scalar R we obtain respectively

LXRab = 2ψ;ab − gab2ψ, (5.9a)

LXR = −2ψR− 62ψ, (5.9b)
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where 2ψ = gabψ;ab. Then the Einstein �eld equations Rab − 1
2
Rgab = 8πTab place

restrictions on the matter variables in the presence of the conformal symmetry. The

explicit conditions on the matter variables are given by Maartens et al (1986) and

Coley and Tupper (1990).

It is required to make a choice for the gravitational potentials to generate a new

class of solution to the Einstein system of equations. A variety of choices can be

made that lead to physical models. Here we use the fact that the line element (5.1)

admits conformal symmetries. If a conformal symmetry exists then the potentials ν

and λ are related by

eν = ãr cosh

(
b

∫
eλ

r
dr + c

)
, (5.10)

where ã, b, c are constants. The result (5.10) was established by Manjonjo et

al (2017). Combining (5.10) and the transformations (5.4), the relationship between

y and Z can be written as

y = a
√
x cosh

(
b

2

∫
dx

x
√
Z

+ c

)
, (5.11)

where a = ã/A
√
C is a real constant. Particular choices of the gravitational potential

Z allow us to integrate (5.11) and �nd exact solutions to the Einstein system of

equations.

There have been several exact solutions with anisotropy and conformal symmetry

that have been found including the recent works of Shee et al (2016) and Rahaman

et al (2017). Here we show that other classes of exact models are admitted by the

�eld equations with this geometric feature. The advantage of our approach is that

the gravitational potentials have a simple form: the function Z(x) can be written as

a polynomial which helps to simplify the physical analysis. We consider the three

polynomial functions:

(a) Case I: Z = [(1 + dx)(1 + ex)]2

(b) Case II: Z = (1 + ex+ dx2)2

(c) Case III: Z = [(1 + nx)(1 + ex+ dx2)]2
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The coe�cients and degree of the polynomial in Z(x) have been chosen so that

integration is possible to yield elementary functions in (5.11). It is important to

observe that the above choices for the function Z are physically reasonable. The

forms for Z are all regular at the centre of the star and well behaved in the interior.

They yield stellar models with desirable features which correspond to stellar objects

as we show in �5.8. Many other forms of Z have been selected in the past as indicated

in the works of Kiess (2012), Fatema and Murad (2013) and Murad (2016). Our

polynomial forms for Z are new, make exact integration of the �eld equations possible

and yield stars which are physically reasonable. The integration of the �eld equations

is considered in the subsequent sections. It turns out that there are forms for the

second gravitational potential y(x) which are also regular at the centre. Regularity

at the centre is a desirable feature in a stellar model. Many of the exact solutions

with conformal symmetry that have been found in the past exhibit singularities at

the stellar centre for the potentials.

5.4 Class I metrics

In this case, we assume that the gravitational potential has the form

Z = [(1 + dx)(1 + ex)]2 . (5.12)

Using the gravitational potential (5.12), the integration in (5.11) can be performed

depending on the value of d− e. When d 6= e we obtain

y(x) =
a
√
x

2K

[
K2x

b
2 (1 + dx)

−bd
2(d−e) (1 + ex)

eb
2(d−e)

+x−
b
2 (1 + ex)

−be
2(d−e) (1 + dx)

bd
2(d−e)

]
, (5.13)

where K is new constant. When d = e, the potential Z is

Z = (1 + ex)4 , (5.14)

and (5.11) yields

y(x) =
a
√
x

2K

[
K2

(
− bex

1 + ex

) b
2

exp

(
b

2(1 + ex)

)
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+

(
−1 + ex

bex

) b
2

exp

(
− b

2(1 + ex)

)]
. (5.15)

We observe from (5.13) and (5.15) that when b = −1 the potential y is regular at the

centre x = 0. We present the metric potentials in Table 5.1 for d− e = 1
2
, d− e >< 1

2

and d = e in terms of both variables x and r.

5.5 Class II solutions

In this case, we consider the gravitational potential in the form

Z =
(
1 + ex+ dx2

)2
. (5.16)

The integration in (5.11) is possible depending on the value of e2−4d. It is convenient

to introduce the new parameters

α =
e−
√
e2 − 4d

2d
, (5.17a)

β =
e+
√
e2 − 4d

2d
, (5.17b)

in terms of e and d. When e2 − 4d < 0 then complex quantities arise which we

neglect. We take e2 − 4d > 0. With e2 > 4d we get

y(x) =
a
√
x

2K

[
K2x

b
2αβ (α + x)

b
2α(α−β) (β + x)−

b
2β(α−β)

+x−
b

2αβ (α + x)−
b

2α(α−β) (β + x)
b

2β(α−β)

]
, (5.18)

where K is a new constant. We note from (5.18) that with b = −αβ, the sphere is

regular at the centre. When e2 − 4d = 0 the potential Z becomes

Z =
(

1 + 2
√
dx+ dx2

)2
, (5.19)

and (5.11) gives the function

y(x) =
a

2K

[
K2x

b+1
2

(1 +
√
dx)

b
2

exp

(
b

2(1 +
√
dx)

)
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+
(1 +

√
dx)

b
2

x
b−1
2

exp

(
− b

2(1 +
√
dx)

)]
. (5.20)

In this situation (5.20) is regular at the centre when b = −1. We present the metric

potentials in Table 5.2 for e2 − 4d = 0 and e2 − 4d > 0 for both variables x and r.

5.6 Class III solutions

For this case we take the gravitational potential in the form

Z =
[
(1 + nx)(1 + ex+ dx2)

]2
. (5.21)

Then the integration in (5.11) can be done depending on the value of e2 − 4d. We

take

α =
e−
√
e2 − 4d

2d
, (5.22a)

β =
e+
√
e2 − 4d

2d
, (5.22b)

as the new parameters expressed in terms of e and d. When e2 − 4d < 0 we obtain

complex quantities, therefore this case is neglected in our study. With e2 − 4d > 0

we have

y(x) =
a
√
x

2K

[
K2x

b
2αβ (β + x)

b
2β(α−β)(nβ−1)

(1 + nx)
n2b

2(nα−1)(nβ−1) (α + x)
b

2α(nα−1)(α−β)

+
(1 + nx)

n2b
2(nα−1)(nβ−1) (α + x)

b
2α(nα−1)(α−β)

x
b

2αβ (β + x)−
b

2β(α−β)(nβ−1)

 , (5.23)

where K is a new constant. It is convenient to know from (5.23) that with b = −αβ

the potential is regular at the centre. For e2−4d = 0, the potential Z takes the form

Z =
[
(1 + nx)(1 + 2

√
dx+ dx2)

]2
, (5.24)

and (5.11) becomes

y(x) =
a

2K

K2x
b+1
2 (1 +

√
dx)

b(2n
√
d−d)

2(
√
d−n)2

(1 + nx)
bn2

2(
√
d−n)2

exp (E)
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+
(1 + nx)

bn2

2(
√
d−n)2

x
b−1
2 (1 +

√
dx)

b(2n
√
d−d)

2(
√
d−n)2

exp (E)

 , (5.25)

where E = b
√
d

2(
√
d−n)(1+

√
dx)

. So then, (5.25) is regular at the centre when we set b = −1.

We present the metric potentials in Table 5.3 for e2 − 4d = 0 and e2 − 4d > 0 for

both variables x and r.
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2
(α

+
C
r
2
)

β
(n
α
−
1
)(
α
−
β
)

4
K

2
(β

+
C
r
2
)

α
(α
−
β
)(
1
−
n
β
)

×

 K2 (
1
+
n
C
r
2
)

α
β
n
2

2
(n
α
−
1
)(
n
β
−
1
)

(β
+
C
r
2
)

α
(α
−
β
)(
n
β
−
1
)

+
C
r
2
(1

+
n
C
r
2
)

−
α
β
n
2

2
(n
α
−
1
)(
n
β
−
1
)

(α
+
C
r
2
)

β
(n
α
−
1
)(
α
−
β
)

 2

Z
=

(1
+
n
x

)2

×
(1

+
ex

+
d
x
2
)2

e2
λ

=
(1

+
n
C
r2

)−
2

×
(1

+
eC
r2

+
d
C

2
r4

)−
2
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5.7 Exact solutions

We have generated a number of metrics in terms of elementary functions in �5.4-�5.6.

These metrics may be used to give the solution of the Einstein �eld equations for

all geometrical and matter variables. We illustrate this with an example taken from

�5.4. We use Case Ib from Table 5.1 with d− e < 1
2
. Then the potentials and matter

quantities can be written in terms of the coordinate r:

e2λ =
1

[(1 + dCr2) (1 + eCr2)]2
, (5.26a)

e2ν =
a2A2

4K2

×

[
K2

(
(1 + dCr2)d

(1 + eCr2)e

) 1
2(d−e)

+ Cr2
(

(1 + eCr2)e

(1 + dCr2)d

) 1
2(d−e)

]2
, (5.26b)

8πρ

C
= −d2Cr2(1 + eCr2)(5 + 9eCr2)

−2d(1 + eCr2)(3 + 7eCr2)− e(6 + 5eCr2), (5.26c)

8πpr
C

= d2e2C3r6 + 2dC2r4
(
de+ e2

)
+ Cr2

(
d2 + 4de+ e2

)
+2(d+ e) +

[
2(1 + dCr2)(1 + eCr2)

k2(1 + dCr2)
d
d−e + Cr2(1 + eCr2)

e
d−e

]
×
[
(1 + eCr2)

e
d−e (2 + (d+ e+ deCr2)Cr2)

+k2(d+ e+ deCr2)(1 + dCr2)
d
d−e

]
, (5.26d)

8πpt
C

= d2(1 + eCr2)(5 + 9eCr2)Cr2

+2d(1 + eCr2)(4 + 7eCr2) + e(8 + 5eCr2)

+
[
4(1 + dCr2)

d
e−d (1 + eCr2)

e
d−e − 4dk2(1 + eCr2)− 4ek2

]
×

[
1

Cr2(1 + dCr2)
d
e−d (1 + eCr2)

e
d−e + k2

]
, (5.26e)

in terms of elementary functions.

It is now possible to generate several physical quantities associated with the

exact model (5.26). We can compute the mass function explicitly from (5.7). Then
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the total mass of the anisotropic star within the radius r has the form

M(r) = −1

6
Cr3

[
6(d+ e) + 5

(
d2 + 4de+ e2

)
Cr2

+14de(d+ e)C2r4 + 9d2e2C3r6
]
. (5.27)

The compactness factor is de�ned as

µ =
M(r)

r
. (5.28)

For this model it is given by

µ(r) = −1

6
Cr2

[
6(d+ e) + 5

(
d2 + 4de+ e2

)
Cr2

+14de(d+ e)C2r4 + 9d2e2C3r6
]
. (5.29)

The surface redshift function corresponding to the compactness mass µ is given by

Zs = (1− 2µ)
1
2 − 1. (5.30)

Using (5.29), we obtain

Zs =
√

3
[
3 +

(
9d2e2C3r6 + 14de(d+ e)C2r4

)
Cr2

+
(
6(d+ e) + 5(d2 + 4de+ e2)Cr2

)
Cr2

]− 1
2 − 1. (5.31)

It is possible to study the stability of the gravitating sphere in di�erent ways.

Firstly we can use the conservation matter related to the Tolman-Oppenheimer-

Volko� (TOV) equation which describes the equilibrium condition for an anisotropic

�uid in the form
dpr
dr

= −(ρ+ pr)
dν

dr
+

2

r
(pt − pr). (5.32)

We introduce the terms for the gravitational force Fg = −(ρ + pr)
dν
dr
, hydrostatic

force Fh = −dpr
dr

and anisotropic force Fa = 2
r
(pt − pr). Then the TOV equation can

be expressed as

Fg + Fh + Fa = 0. (5.33)

In our model

Fa =
C2r

2π

(
d2 + 4de+ e2 + 4de(d+ e)Cr2 + 3d2e2C2r4

)
, (5.34)
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Fg =
C2r

4π

−( 2 (1 + eCr2)
e
d−e

k2(1 + dCr2)
d
d−e + Cr2(1 + eCr2)

e
d−e

)2

+d2(1 + eCr2)(1 + 3eCr2) + e2 + 2de(3 + 2eCr2)

− 4deK2

Cr2 (1 + dCr2)
d
e−d (1 + eCr2)

e
d−e +K2

]
, (5.35)

Fh =
C2r

4π

( 2 (1 + eCr2)
e
d−e

K2(1 + dCr2)
d
d−e + Cr2(1 + eCr2)

e
d−e

)2

−3d2
(
1 + eCr2

) (
1 + 3eCr2

)
− 3e2 − 2de(7 + 6eCr2)

+
4deK2

Cr2 (1 + dCr2)
d
e−d (1 + eCr2)

e
d−e +K2

]
, (5.36)

and the anisotropic star is in equilibrium. Secondly the stability is related to the

adiabatic condition

Γ =
ρ+ pr
pr

dpr
dρ

>
4

3
. (5.37)

To maintain stability this condition has to be satis�ed according to Herrera (1992).

Thirdly the condition ∣∣vr2 − vt2∣∣ < 1, (5.38)

has to be satis�ed to prevent cracking and overturning of the object.

5.8 Physical features

In this section we show that the particular solution to the Einstein �eld equations

generated in �5.7 satis�es the physical requirements. To account for the physical

units and dimensional homogeneity in the dynamical and geometrical variables it

is convenient to rescale constants. Since the constants d and e are expressed in

dimension length−2, and K in dimension length−1, we use the transformation

d̃ = R2d, ẽ = R2e, K̃ = RK,

where R is the parameter of geometry with dimension of length. The geometrical

and matter variables are given in (5.26). A simpler form is obtained by considering
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a Taylor expansion. For the particular choices of parameter values C = 0.00051,

d̃ = −0.2, ẽ = −0.1, A = 5.3737, K̃ = 1.1778, a = 2 we get forms for the exact

solution to the Einstein system by expanding them in terms up to order r2 such that

e2λ ≈ 1 + 0.01226r2, (5.39a)

e2ν ≈ 1 + 0.02332r2, (5.39b)

8πρ

C
≈ 0.03677− 0.27× 10−3r2, (5.39c)

8πpr
C

≈ 0.03439− 0.72× 10−3r2, (5.39d)

8πpt
C

≈ 0.03439− 0.61× 10−3r2. (5.39e)

These quantities show clearly that the gravitational potentials and matter variables

are �nite and regular at the centre and in the region nearby the centre. Our model

is not singular in the interior of the star. The behaviour of the model may be

studied with the help of this particular choice of parameter values used above. It is

important to observe that we can generate stars from the exact solution (5.26) which

are physically reasonable. For particular choices of the parameters we generate the

central density ρc, radius r, mass M and compactness factor M
r
for the stars SAX

J1808.4-3658, EXO 1785, Cen X-3, 4U1820-30, PSR J1903+327, Vela X-1 and PSR

J1614-2230 in Table 5.4. We �nd that these values fall in the observed range. To

analyse the behaviour of the matter variables and their stability throughout the star,

we make a choice of two stars: PSR J1614-2230 and SAX J1808.4-3658. The choice

of these two stellar bodies is motivated by the order of magnitude of their masses:

the two masses correspond to the highest and lowest masses in Table 5.4. We keep

the same values d̃ = −0.2 and ẽ = −0.1 while C, R and K̃ are free, to generate

numerical values of masses, radii and central density.

The metric potentials e2ν and e2λ are plotted in Fig. 5.1 for PSR J1614-2230

and SAX J1808.4-3658 and the pro�les are regular at the centre and continuous

everywhere inside the star. The pro�les of the energy density ρ for PSR J1614-2230

and SAX J1808.4-3658 are plotted in Fig. 5.2, and show that the density function is
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regular at the centre and monotonically decreasing with the radius. In Fig. 5.3 the

radial and tangential pressures pr and pt are shown respectively for PSR J1614-2230

and SAX J1808.4-3658. They are positive, decreasing continuously inside the star.

The radial pressure vanishes at r = 10.79 km for PSR J1614-2230 and r = 7.68 km

for SAX J1808.4-3658. At the centre we observe that pr = pt which ensures stability

of the star. Similar pro�les for the pressure can be observed in the works of Bhar

et al (2015) and Thirukkanesh and Ragel (2014). The variation of anisotropy ∆

is presented in Fig. 5.4. The pro�les indicate for both bodies that the anisotropic

pressure increases from the centre to the surface where it has a �nite value. In our

model the maximum values of the pressure anisotropy are 0.37 × 1036dyne/cm2 for

PSR J1614-2230 and 0.11 × 1036dyne/cm2 for SAX J1808.4-3658 which are lower

compared to the maximum value found by Thirukkanesh and Ragel (2014) given as

2.0978× 1048dyne/cm2. A lower bound on the anisotropy is a desirable feature.

In Fig. 5.5 it is shown that the radial and tangential speeds of sound are greater

than 0 and less than 1 for both stars PSR J1614-2230 and SAX J1808.4-3658. It is

important to denote that the speed of sound is monotonically decreasing away from

the centre and causality is maintained. It is clear that the null energy condition,

the weak energy condition and the strong energy condition for PSR J1614-2230 and

SAX J1808.4-3658 respectively are satis�ed everywhere in the star. This is illustrated

in Fig. 5.6. The variation of compactness factor and surface redshift are plotted in

Fig. 5.7 and Fig. 5.8 respectively. The values of the compactness factor are consistent

with real stars in Fig. 5.7. The redshift function is increasing with increase of µ as

shown in Fig. 5.8. The Buchdahl (1959) limit 2M(r)
r

< 8
9
is satis�ed and numerically,

we have 2M
r

= 0.5396 for PSR J1614-2230 and 2M
r

= 0.3476 for SAX J1808.4-3658.

The surface redshift turns out to be Zs = 0.4739 for PSR J1614-2230 and Zs = 0.2381

for SAX J1808.4-3658 respectively, which are compatible with observations.

Fig. 5.9 refers to the cracking of the star as proposed by Herrera (1992) for

stability. We observe that 0 < vr
2 − vt2 < 1 and −1 < vt

2 − vr2 < 0. We plotted

the adiabatic index Γ in Fig. 5.10. As we can observe, everywhere inside these two
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compact stars Γ is greater than 4/3. We also investigated the stability of the model

through TOV equation which describes the equilibrium condition for an anisotropic

�uid subject to the gravitational, hydrostatic and anisotropic forces given in (5.33).

Then Fig. 5.11 shows that the gravitational force is balanced by the joint action of

hydrostatic and anisotropic forces for PSR J1614-2230 and SAX J1808.4-3658. Hence

all three stability criteria are satis�ed. In Fig. 5.12 we have plotted the variation of

the mass versus radius for stellar objects PSR J1614-2230 and SAX J1808.4-3658. In

both cases the mass function is a increasing quantity with increasing radius. In the

�rst �gure we �nd that the upper bound on the mass is 1.971 M⊙, and for the second

�gure the upper bound is 0.903 M⊙. These �gures are consistent with observations

and with our results in Table 5.4.
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.1 � Variation of metric potentials versus the radius

97



(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.2 � Variation of energy density versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.3 � Variation of tangential and radial pressures versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.4 � Variation of anisotropy versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.5 � Variation of speed of sound versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.6 � Variation of energy conditions versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.7 � Variation of compactness factor versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.8 � Variation of surface redshift function versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.9 � Variation of the quantity |vr2 − vt2| versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.10 � Variation of adiabatic index versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.11 � Variation of the forces versus the radius
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(a) PSRJ1614−2230

(b) SAX J1808.4−3658

Figure 5.12 � Variation of the mass versus the radius

108



T
ab
le
5.
4
�
C
en
tr
al

d
en
si
ty
,
ra
d
iu
s,
m
as
s
an
d
co
m
p
ac
ti
�
ca
ti
on

fa
ct
or

fo
r
d̃

=
−

0.
2
an
d
ẽ
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Chapter 6

Charged isotropic model with

conformal symmetry

6.1 Introduction

The Einstein-Maxwell system of �eld equations is a coupled nonlinear system of ordi-

nary di�erential equations describing a localised distribution of charged gravitating

matter. Solutions of this system are of importance in relativistic astrophysics and

may be used to describe quark stars, gravastars, core envelope models, neutron stars

and superdense compact objects. Models constructed from solutions of the Einstein-

Maxwell equations are useful in describing physical features including the mass and

luminosity. In recent times several models of relativistic stars have been found with

anisotropic pressures. Some examples of anisotropic compact stars found recently

are those of Bhar et al (2017), Ivanov (2017) and Maurya et al (2018). However it is

also important to study compact stars with isotropic pressures as this is considered

to be the equilibrium state of gravitating matter. Some examples of isotropic stars

with an electromagnetic �eld are given by Thirukkanesh and Maharaj (2006), Ko-

mathiraj and Maharaj (2007b), Maharaj and Komathiraj (2007) and Thirukkanesh

and Maharaj (2009). A physical analysis indicates that isotropic models may be used
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to describe compact charged spheres. Other comprehensive investigations of charged

isotropic spheres are contained in the works of Ivanov (2002), Kiess (2012), Murad

and Fatema (2013), Fatema and Murad (2013), and Murad (2016). Of particular

physical interest are exact metrics in spherical symmetry that satisfy boundary con-

ditions and admit the limit of vanishing charge. In this way we can theoretically

predict important properties of compact stars which are di�cult to study otherwise.

Geometric conditions may be imposed on the spacetime manifold to produce a

relativistic stellar model. An example of a geometric condition is the embedding of

spacetime into a higher dimensional Euclidean space leading to an exact solution. A

model of such a spherically symmetric charged compact star is given by Maurya et al

(2017). Another geometric condition is the presence of a conformal symmetry on the

manifold. Conformal symmetries generate constants of the motion and restrict the

behaviour of the gravitational �eld. The geometrical structure of conformal sym-

metries have been studied in static spherical spacetimes by Maartens et al (1995,

1996) and Tupper et al (2012). Using the Weyl tensor Manjonjo et al (2017, 2018)

showed that, in the presence of a conformal Killing vector, there is an explicit func-

tional relationship between the metric functions. This relationship holds in general

and provides an avenue to integrate the �eld equations. Mafa Takisa et al (2017)

utilised this relationship to model a compact star, with anisotropic pressures, �nding

mass-radius limits and red shifts consistent with observational constraints. Other

recent models of compact spheres which are conformally invariant are provided by

Esculpi and Aloma (2010), Rahaman et al (2017), Shee et al (2016) and Deb et al

(2017). Our objective is to extend these studies to the physically important case of

isotropic pressures. This means that we have to additionally integrate the condition

of pressure isotropy, a nonlinear di�erential equation.

In this chapter we assume the relationship between the metric functions, arising

from a conformal symmetry, established by Manjonjo et al (2018). The matter

distribution is charged with isotropic pressures. Then it is possible to integrate the

Einstein-Maxwell system of equations in terms of elementary functions. In this way
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we present new charged isotropic solutions for a compact star invariant under a

conformal symmetry in spherical spacetimes. In �6.2 we present details of Einstein-

Maxwell �eld equations and the relationship between the metric functions. The

section �6.3 provides a di�erential equation, arising from the conformal symmetry,

linking the gravitational potential to the electric �eld which is used to generate the

exact solution to the Einstein-Maxwell system. Physical acceptability conditions

and various physical quantities associated with the exact solution are discussed in

detail in �6.4. Values for masses, radii, central densities, compactness parameters and

redshifts are generated for the objects 4U 1538-52 and PSR J1614-2230. Additionally,

the geometrical and matter variables are plotted for 4U 1538-52 and PSR J1614-2230

and their physical properties discussed.

6.2 The model

The gravitational �eld in spherically symmetric spacetimes, modelling the interior of

a compact relativistic star, is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (6.1)

The metric quantities e2ν(r) and e2λ(r) are arbitrary functions and represent gravity.

The tensor T corresponds to energy momentum and has the general form

Tab = diag

(
−ρ− 1

2
E2, p− 1

2
E2, p+

1

2
E2, p+

1

2
E2

)
, (6.2)

where the quantities ρ, p and E are the energy density, isotropic pressure and electric

�eld intensity respectively. Then the Einstein-Maxwell system of equations can be

written in the form

1

r2
[
r(1− e−2λ)

]′
= ρ+

1

2
E2, (6.3a)

− 1

r2
(1− e−2λ) +

2ν ′

r
e−2λ = p− 1

2
E2, (6.3b)

e−2λ
(
ν ′′ + ν ′2 +

ν ′

r
− ν ′λ′ − λ′

r

)
= p+

1

2
E2, (6.3c)
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σ2 =
1

r2
(r2E)′e−λ, (6.3d)

in terms of the coordinate r. Primes denote di�erentiation with respect to r and σ

is the proper charge density. We are using units in which 4πG = c = 1.

The Durgapal and Bannerji (1983) form of the �eld equations is obtained if we

introduce the transformation

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (6.4)

where A and C are constants. In terms of the new variables, the line element (6.1)

has the representation

ds2 = −A2y2(x)dt2 +
1

4CxZ(x)
dx2 +

x

C

(
dθ2 + sin2 θdφ2

)
. (6.5)

Then the Einstein-Maxwell �eld equations (6.3) can be expressed as

1− Z
x
− 2Ż =

ρ

C
+
E2

2C
, (6.6a)

4Z
ẏ

y
+
Z − 1

x
=

p

C
− E2

2C
, (6.6b)

4Zx2ÿ + 2Żx2ẏ +

(
Żx− Z + 1− E2x

C

)
y = 0, (6.6c)

σ2

C
=

4Z

x
(xĖ + E)2, (6.6d)

which is an equivalent form. The mass function M(x) contained within a radius x

of the spherical star is given by the expression

M(x) =
1

C3/4

∫ x

0

√
ω
(
ρ(ω) + E2

)
dω, (6.7)

which contains a contribution from the electric �eld. It is possible to generate a new

class of exact solutions to the Einstein-Maxwell system (6.6) by choosing speci�c

forms for the gravitational potential Z and the �eld electric intensity E which are

physically reasonable. We assume that the line element (6.1) admits conformal sym-

metries. The existence of a conformal symmetry leads to a particular relationship

between the gravitational potentials as established by Manjonjo et al (2018). We
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have the conformal condition

y = Ax
1
2 exp

(
1

2

√
−(1 + k)

∫
dx

xZ
1
2

)
+Bx

1
2 exp

(
−1

2

√
−(1 + k)

∫
dx

xZ
1
2

)
, (6.8)

where A, B are arbitrary constants. The parameter k is related to the Weyl tensor;

k = 0 gives a conformally �at spacetime and k 6= 0 generates a non-conformally �at

spacetime.

6.3 Integration

Equation (6.6c) is complicated but takes a simple form when a conformal symmetry

is present. With the conformal condition (6.8), the generalized condition of pressure

isotropy (6.6c) becomes

2xŻ − 2Z = x
E2

C
+ k. (6.9)

It is necessary to integrate (6.9) and obtain functional forms for Z and E. There

are several choices of Z and E that integrate equation (6.9). However there is a

limited class of functions which generate a physically reasonable stellar model. We

have isolated a family of solutions in terms of elementary functions which have the

required physical characteristics. The family of solutions integrating (6.9) is given

by

E2

C
=

2(d− b) [3d− b+ d(b+ d)x]x

(1 + dx)3
, (6.10a)

Z =
(1 + bx)2

(1 + dx)2
, (6.10b)

where b and d are constants. To avoid the singularity at the centre we must take

k = −2. The form of E is vanishing at x = 0, remains bounded in the interior, and

is physically reasonable for a wide range of parameter values b and d. The rational

form of Z is regular at the centre and remains continuous throughout the star.
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Then the exact solution to the Einstein-Maxwell system can be written as

e2λ =
(1 + dx)2

(1 + bx)2
, (6.11a)

e2ν = A2
[
Ax(dx+ 1)

b−d
2d +B(dx+ 1)−

b−d
2d

]2
, (6.11b)

ρ

C
=

6 (b(d− b)x− b+ d)

(dx+ 1)3
, (6.11c)

p

C
= 2(bx+ 1)

[
bBd(d− b)x2 + bB(d− b)x

+(dx+ 1)b/d
(
Ab(b+ d)x2 + 4Abx+ 2A

)]
×
[
Ax(dx+ 1)b/d +Bdx+B

]−1
(dx+ 1)−3 , (6.11d)

E2

C
=

2x(d− b)(dx(b+ d)− b+ 3d)

(dx+ 1)3
, (6.11e)

σ2

C
= 2C(d− b)(bx+ 1)2

[
d2(b+ d)x2 + 4d(b+ d)x+ 3(3d− b)

]2
×
[
(dx+ 1)7 (d(b+ d)x+ 3d− b)

]−1
, (6.11f)

in terms of the variable x.

6.4 A stellar model

The solutions found in this chapter may be used to model a relativistic star. In

this section, we investigate the applicability of the charged isotropic model and the

relationship to observational data. We made choices for the parameter values A, B,

b and d as given in Table 6.1. Six stars have been selected in Table 6.1 namely 4U

1538-52, LMC X-4, SMC X-1, EXO 1785-248, Vela X-1 and PSR J1614-2230. We

�nd that our solutions produce masses and radii consistent with earlier investigations.

For a more detailed physical analysis we consider the two stars PSR J1614-2230 and

4U 1538-52 which have the highest and lowest mass respectively.

The pro�les of the metric potentials for PSR J1614-2230 and 4U 1538-52 in

Fig. 6.1 show that they are free from singularities, regular at the centre and mono-

tonically increasing with the radius inside the star (e−2λ(0) = 1, e2ν(0) = A2B2). The
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behaviour of the metric functions are consistent with the requirements of Lake (2003)

for a physically acceptable model. The variation of the energy density is plotted

against the radius in Fig. 6.2. The graphs indicates that the energy densities are

positive with a maximum value at the centre and decrease continuously through-

out the the star (dρ
dr
≤ 0). The corresponding values of the central density are

ρc = 1.822 × 1015gcm−3 and ρc = 10.33 × 1014gcm−3 for PSR J1614-2230 and 4U

1538-52 respectively. The variation of the isotropic pressure is presented in Fig. 6.3;

We can see that the pressure is a monotonically decreasing function of r and van-

ishes at the boundary of the star (p(R) = 0). At the centre the pressure is �nite

(p(0) = 4AC
B
, dp
dr

(0) = 0) and on the interval 0 ≤ r ≤ R, the gradient of isotropic

pressure dp
dr
< 0. The radii of the stars are R = 9.49 km for PSR J1614-2230 and

R = 7.81 km for 4U 1538-52. In Fig. 6.4, we observe that the electric �eld is pos-

itive and an increasing function with increasing radius. At the centre, E(0) = 0

and reaches a maximum value at the surface of the star. The magnitude of the

surface electric �eld intensity is E(R) = 8.01× 1020Vcm−1 for PSR J1614-2230 and

E(R) = 3.94 × 1020Vcm−1 for 4U 1538-52. Fig. 6.5 shows that the proper charge

density is �nite at r = 0, regular in the interior, and evolves as a decreasing function

throughout both stellar spheres PSR J1614-2230 and 4U 1538-52. The total mass of

the charged isotropic model is obtained by substituting the expressions (6.11c) and

(6.11e) into (6.7) and integrating. Thus we get

M(r) =
C1/4(d− b)
(Cdr2 + 1)2

[
8C5/2(b+ d)r5 +

C3/2(15b+ 13d)

d
r3

+
3C1/2(3b+ d)

d2
r − 3 (Cdr2 + 1)

2
(3b+ d)

d5/2
tan−1

(√
Cdr

)]
. (6.12)

In Fig. 6.6, the mass function is plotted against the radius and the pro�le indicates

an increasing function with increase of radius. We have calculated in Table 6.1,

numerical values for six objects, and there is consistency for the stars 4U 1538-52

and PSR J1614-2230, which are consistent with the observed data. According to

Buchdahl (1959), the ratio of mass to the radius for an isotropic compact star should

satisfy the inequality 2M/R < 8/9. The compactness factor µ(r) = M(r)/r can be
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computed as

µ =
C1/4(d− b)
r(Cdr2 + 1)2

[
8C5/2(b+ d)r5 +

C3/2(15b+ 13d)

d
r3

+
3C1/2(3b+ d)

d2
r − 3 (Cdr2 + 1)

2
(3b+ d)

d5/2
tan−1

(√
Cdr

)]
. (6.13)

The compactness factor is plotted in Fig. 6.7 and the pro�les reveal an increasing

function of r. Table 6.2 gives the values µ = 0.2077(< 4/9) and µ = 0.1115(< 4/9) for

PSR J1614-2230 and 4U 1538-52 which are consistent with the condition of Buchdahl

(1959). Böhmer and Harko (2007) established the inequality for a charged compact

star for the lower bound of compactness factor

Q2

R2

(
18R2 +Q2

12R2 +Q2

)
≤ 2M

R
. (6.14)

Subsequently Andréasson (2009) showed that, for a charged sphere, the model must

satisfy the following inequality

√
M ≤

√
R

3
+

√
R

9
+
Q2

3R
. (6.15)

From (6.14) and (6.15) we obtain the range of lower and upper mass for a stellar

model in the presence of charge

Q2

2R

(
18R2 +Q2

12R2 +Q2

)
≤M ≤

[√
R

3
+

√
R

9
+
Q2

3R

]2
. (6.16)

In this way we can obtain from (6.16) the following ranges: 0.02226 ≤ M = 1.97 ≤

4.2375 for PSR J1614-2230 and 0.72 × 10−3 ≤ M = 0.87 ≤ 3.471 for 4U 1538-52,

which are consistent with the condition (6.16) for a stable con�guration. In terms

of the compactness factor, the gravitational redshift Z = (1 − 2µ)−1/2 − 1 can be

written as

Z = −1 +

[
1− 8

C11/4(d2 − b2)r4

(Cdr2 + 1)2
− C7/4(d− b)(15b+ 13d)r2

d (Cdr2 + 1)2

−
3 4
√
C (3b2 − 2bd− d2) arctan

(√
dCr

)
d5/2r

−3
C3/4(d− b)(3b+ d)

d2 (Cdr2 + 1)2

]− 1
2

. (6.17)
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The redshift function is increasing everywhere inside the star as can be seen in

Fig. 6.8. For PSR J1614-2230, the surface redshift Zs = 0.6083, and Zs = 0.2216

for 4U 1538-52. These redshift values are consistent with the upper limit (Zs ≤

0.9) proposed by Lindblom (1984) for strange stars. These values also satisfy the

requirement (Zs ≤ 2) proposed by Buchdahl (1959). The value Zs = 0.6083 for PSR

J1614-2230 is in good agreement when compared to the result Zs = 0.596 obtained

by Kileba Matondo et al (2017) for the same pulsar in the case of charged isotropic

stars.

For physical acceptability, the causality condition must be satis�ed: the speed

of sound should be smaller than the speed of light (0 ≤ vs
2 = dp

dρ
≤ 1) through-

out the stellar con�guration. For our charged isotropic model, Fig. 6.9 shows that

the speed of sound remains less than the speed of light inside the star and de-

creases with increase of r. Bondi (1964) showed for an isotropic neutron star, the

adiabatic index should satisfy the condition Γ = ρ+p
p

dp
dρ

> 4
3
. The variation of Γ

has been plotted against the radius for PSR J1614-2230 and 4U 1538-52, and the

pro�les in Fig. 6.10 show that this requirement for stability is satis�ed. The Tolman-

Oppenheimer-Volko� (TOV) equation of hydrostatic equilibrium for an isotropic

charged �uid is given by

dp

dr
= −(ρ+ p)

dν

dr
+
E

r2
d

dr
(r2E). (6.18)

We introduce the terms for the gravitational force Fg = −(ρ + pr)
dν
dr
, hydrostatic

force Fh = −dpr
dr

and electric force Fe = E
r2

d
dr

(r2E). Then the TOV equation takes

the form

Fg + Fh + Fa = 0, (6.19)

whose explicit expressions terms are

Fg = −2C2r(1 + bCr2)
(
Cdr2 + 1

)−6 (
ACr2

(
Cdr2 + 1

) b−d
d +B

)−2
×
[
B (b− d)

(
Cdr2 + 1

)
− A

(
Cdr2 + 1

)b/d (
Cr2(b+ d) + 2

)]
×
[
B (b− d)

(
bCr2 + 3

) (
Cdr2 + 1

)
− 2A

(
Cdr2 + 1

) b
d
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−ACr2
(
Cdr2 + 1

) b
d
(
bCr2(b+ d) + b+ 3d

)]
, (6.20a)

Fh = 4C2r
(
Cdr2 + 1

)−4 [A2b2C4dr8(b+ d)

(Cdr2 + 1)−
2b
d

+2A2bC3r6
(
−b2 + 4bd+ d2

) (
Cdr2 + 1

) 2b
d

+A2
(
bC2r4(17d− 5b) + 8Cdr2 + 2

) (
Cdr2 + 1

) 2b
d

−b2B2(b− d)
(
Cdr2 + 1

)2 ((
Cdr2 − 2

)
Cr2 + 2Cdr2 − 1

)
−2ABbC2 (b(Cr2(b+ d) + 4) + 2d) + 8AB(2bCr4 + 1)

(b− d)−1 (Cdr2 + 1)−
b+d
d

]

×
(
Cdr2 + 1

)−2 (
ACr2

(
Cdr2 + 1

) b−d
d +B

)−2
, (6.20b)

Fe =
2C2r(d− b)
(Cdr2 + 1)4

[
C2d2r4(b+ d) + 4Cdr2(b+ d)− 3b+ 9d

]
. (6.20c)

The stability of the model has been examinated in Fig. 6.11 with the help of the

TOV equation describing the equilibrium condition. The gravitational force Fg is

counterbalanced by the contribution of hydrostatic force Fh and electric force Fe as

we observe in Fig. 6.11. The energy condition (ρ + p) is reported in Fig. 6.12, and

the pro�le presents a decreasing function of r and remains positive inside the star

for both PSR J1614-2230 and 4U 1538-52.
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.1 � Variation of metric potentials versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.2 � Variation of energy density versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.3 � Variation of the pressure versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.4 � Variation of electric �eld versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.5 � Variation of the charge density versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.6 � Variation of the mass versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.7 � Variation of compactness factor versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.8 � Variation of gravitational redshift versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.9 � Variation of speed of sound versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.10 � Variation of adiabatic index versus the radius
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(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.11 � Variation of the forces versus the radius

130



(a) PSRJ1614−2230

(b) 4U 1538−52

Figure 6.12 � Variation of the energy condition versus the radius
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Chapter 7

Conclusion

The main objectives of this thesis was to generate new families of exact solutions

to the Einstein and Einstein-Maxwell �eld equations which may be used to describe

relativistic compact stars. We studied static spherically symmetric spacetimes with

a linear equation of state and matter distributions with a Finch and Skea geometry

including an electric �eld and pressure anisotropy. It was showed that new solutions

are physically reasonable and earlier models are regained. We also demonstrated that

the presence of a conformal symmetry leads to a new solution to the �eld equations.

The physical analysis is detailed, matter variables are plotted, and masses and radii

are generated for speci�c stars.

We now present an overview of the principal results obtained during the course

of this research:

• In chapter 2, our purpose was to generate new class of exact solutions to the

Einstein-Maxwell system. We made the following assumptions:

Z =
1 + (a− b)x

1 + ax
,

E2

C
=

la3x3 + sa2x2 + k(3 + ax)

(1 + ax)2
.

The new class of solutions to the Einstein-Maxwell system of equations obtained

in this chapter is physically reasonable in an astrophysical context and serves
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to model relativistic stars. We have demonstrated this by graphically analysing

the matter variables, and also generating various tables for the mass function

for di�erent values of the parameters in the electric �eld. Our general class

of solutions contain the earlier models of Mafa Takisa and Maharaj (2013)

and Thirukkanesh and Maharaj (2008) in the presence of charge. The models

of Dey et al (1998, 1999) and Sharma and Maharaj (2007) are regained in

the appropriate limit for vanishing charge. The stellar masses generated are

consistent with earlier investigations, and we regain the stellar mass of the

object SAX J1808.4-3658 as 1.434M�. Our new family of solutions is a further

indication of the richness of the Einstein-Maxwell system of equations and

their link to astrophysical applications; we studied the physical features and

plotted the matter and electrical variables. A comparative table of masses for

uncharged and charged matter was established which corresponds to observed

astronomical objects. The parameter l does not appear to appreciably change

the mass for the parameter values chosen but a di�erent set of parameters can

give a di�erent pro�le for the mass.

• In chapter 3, we comprehensively studied anisotropic and charged matter with

a Finch and Skea geometry. The Einstein-Maxwell system led to the di�erential

equation

4(1 + ax)ÿ − 2aẏ + (a2 − α)y = 0,

which is the master equation governing the evolution of the model. Several

families of solution are possible to the master equation in our generalized ap-

proach. Exact solutions are possible in terms of elementary functions, Bessel

functions and modi�ed Bessel functions. When a parameter becomes an integer

it is possible to represent the Bessel and modi�ed Bessel functions in terms of

elementary functions. This is demonstrated for the Bessel functions J 1
2
, J− 1

2
,

J 3
2
, J− 3

2
, J 5

2
, J− 5

2
and the modi�ed Bessel functions I 1

2
, I− 1

2
, I 3

2
, I− 3

2
, I 5

2
, I− 5

2
.

In this way an in�nite family of exact solutions to the master equation can

be generated in terms of elementary functions. Solutions found previously are
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contained in our analysis. In particular we regain the Finch and Skea (1989)

solution for uncharged matter and the Hansraj and Maharaj (2006) solution in

the presence of electromagnetic �eld. We show that the solutions found admit

a barotropic equation of state so that the radial pressure can be written as

a function of energy density. A graphical analysis indicates that the matter

variables are well behaved and regular in the interior. In particular the speed

of sound is less than the speed of light.

• In chapter 4, we have studied an exact solution in the class found by Maharaj

et al (2016). This solution may be considered as a charged anisotropic gener-

alisation of the Finch and Skea model. The Finch and Skea model has been

widely studied and shown to satisfy all physical requirements. A detailed phys-

ical analysis of the objects PSR J1614-2230 and LMC X-4 was performed with

charge and anisotropy present in this chapter. The variation of the constant

parameter C allowed us to determine the upper maximum mass and the lower

minimum mass of charged anisotropic �uid spheres. A numerical investigation

showed that the model obtained can describe charged anisotropic �uid spheres

with maximum mass 1.97 M� and radius 10.90 km which corresponds to the

pulsar PSR J1614-2230 having a central energy density 4.035 × 1014 g cm−3.

The uncharged case leads to a maximum mass of 1.97 M� with the radius of

13.83km and a central density 1.57 × 1014 g cm−3. These values are approxi-

mately similar to the results found by Andréasson (2009) with mass 1.9701 M�

and radius 13.71km. It is noticed that the compacti�cation factor M
R

of these

compact stellar bodies is in the range of neutron and ultracompact stars. The

uncharged stars have compacti�cation factors lower than the charged cases,

which again, contrary to the common perception, should be the other way

round. We have also studied other physical aspects of the model. The sur-

face redshift comes out to be in the range of ±0.42 for the uncharged isotropic

case, and ±0.57 for the charged isotropic case. These redshift values are con-

sistent with neutron and strange stars. It is observed that the Andréasson and

136



Buchdahl conditions related to the maximum allowable mass-radius ratio (com-

pacti�cation factor) limit are satis�ed. All the energy conditions are shown to

meet the physical requirements. The stability of the model has been checked

and we have shown, via Fig. 4.3c, that Γ =
ρ+ pr
pr

dpr
dρ

>
4

3
is satis�ed. More-

over, the speed of sound is consistent with the causality condition and remains

positive throughout the �uid sphere in the pulsars. Hence we can conclude that

such a model may be utilised to construct a relevant model of a superdense

star for charged anisotropic, charged isotropic and uncharged isotropic matter

distributions.

• In chapter 5, we used the relationship between the potentials e2λ(r) and e2ν(r)

found by Manjonjo et al (2017) to generate three new classes of exact solutions

to the Einstein �eld equations with an anisotropic �uid source. The relationship

between the potentials arises from the conformal condition

LXgab = 2ψgab,

where ψ(xa) is the conformal factor. The gravitational potentials are regular

in the centre. A particular exact solution was selected for a detailed physical

analysis. We showed that this solution produces values for the central den-

sity, radius, mass and compacti�cation factor consistent with the stars SAX

J1808.3−3658, EXO 1785, Cen X-3, 4U 1820-30, PSR J1903+327, Vela X-1

and PSR J1614−2230. The stars PSR J1614−2230 and SAX J1808.4−3658

were chosen for further study as they correspond to the highest and small-

est stellar masses in Table 5.4. We �nd that for PSR J1614−2230 the cen-

tral density is ρc = 1.97 × 1015gcm−3 and for SAX J1808.4−3658 the value is

ρc = 1.27 × 1015gcm−3. Such high density regime pushes the matter from the

nuclear density to the quark matter density. This reinforces the idea of having

a quark matter core inside a neutron star, i.e., a hybrid star or a purely strange

quark star. In fact, some previous attempts have been made to classify these

object as strange quark stars including the work of Gangopadhyay et al (2013).
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Our present study on gravitating bodies using conformal symmetry reinforces

these claims. The stellar radius for PSR J1614−2230 is rs = 10.79 km and

for SAX J1808.4−3658 the radius is rs = 7.68 km. Our analysis of the fea-

tures show clearly that the physical criteria of a realistic star are satis�ed for

our model. For PSRJ1614−2230 we have 2M
r

= 0.5396 < 8
9
and for SAX

J1808.4−3658 we have the condition 2M
r

= 0.3476 < 8
9
, which satisfy the Buch-

dahl (1959) limit. Therefore we have showed that the conformal condition of

Manjonjo et al (2017) can be integrated to lead to new solutions and they

produce models of realistic stars.

• The objective of chapter 6 was to show that the existence of a conformal sym-

metry helps to �nd a new solution of the �eld equations which can then be

characterised geometrically. It is desirable on physical grounds for the matter

distribution to have isotropic pressures which is the assumption of this chapter.

this physical constraint leads to a new mathematical equation

2xŻ − 2Z = x
E2

C
+ k,

which is the condition of pressure isotropy. We have found a new class of

exact solutions to the Einstein-Maxwell system for a charged isotropic star

satisfying the generalized condition of pressure isotropy with an electric �eld.

The model is regular at the centre and well behaved in the stellar interior. We

showed that for particular parameter values we can regain stellar masses and

radii for six observable astronomical objects. A detailed physical analysis was

carried out for the stars PSR J1614-2230 and 4U 1538-52. We showed that

the matter variables have relatistic pro�les and the compactness parameter

satis�es the Buchdahl limit. The values for masses, radii and redshifts lie in the

observable range. The model satis�es causality conditions, stability conditions

and energy conditions. Therefore we have demonstrated that a stellar model,

with conformal symmetry and isotropic pressures, satisfying the criteria for

physical acceptability exists in general relativity.
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