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II. 
 

Abstract 

Forests hold a plethora of ecological functions, that are critical in the maintenance of biodiversity. For instance, the 

mistbelt forests are small and fragmented forest ecosystems, which are dominated by South Africa’s national tree - 

Podocarpus latifolius or the ‘real’ Yellowwood. The Yellowwood trees are regarded as a priority species, because they 

support large communities of plants, birds and mammals, attributing to the maintenance of biodiversity. They also store 

carbon and provide habitat as well as resources for pollinators. Meanwhile, they produce durable, high quality timber 

which is harvested for cultural, medicinal and commercial use. Subsequently, the podocarps have been listed as 

endangered species owing to extensive logging. Current forest species productivity information is urgently required in 

the characterisation of forest condition, especially that of disturbed habitats which support a variety of indigenous 

species and contribute immensely to ecosystem resilience. Leaf area index (LAI) is a widely applied measure of 

photosynthetic capacity and productivity, that may reveal this information.  Meanwhile, local level floral biodiversity and 

productivity is driven by topographic heterogeneity. Micro landscape level processes associated with topography are 

important in the determination of leaf area index, that may be applied as proxy measures of productivity. However, this 

is not well understood, especially for unique forest types such as the Afromontane mistbelt forest. Recently, Geographic 

Information Systems and Remote Sensing, have progressed to assume a pivotal role in the monitoring of vegetation, 

offering increased spatial coverage and modern, automated processing techniques. The applicability of digital elevation 

models such as the Shuttle Radar Topographic Mission, facilitates the retrieval of objective topographic measurements, 

that can be used in the explanation of leaf area. Meanwhile, the onset of “new generation” sensors, such as Sentinel 

2 Multispectral Instrument has provided opportunity for investigating leaf area index, which cannot be achieved using 

traditional field surveys. This progression is supplemented by the application of machine learning algorithms, in the 

modelling of ecological relationships. Applying these algorithms in this regard, has demonstrated strength in managing 

data of high dimensionality, with speed and accurate results. The study therefore set out to characterise the leaf area 

index of the Yellowwood within a southern African mistbelt forest, using Geographic Information Systems and Remote 

Sensing techniques. Specifically, the study evaluated the role of Shuttle Radar Topographic Mission digital elevation 

model derived topographic variables, in the explanation of LAI, using Principal Component Analysis (PCA) and 

regression analysis. It also assessed the utility of Sentinel 2 imagery, in the estimation LAI, using the Random Forest 

(RF) regression ensemble. The stepwise linear regression analysis showed that topographic indices accounted for 

approximately 85 % of leaf area index variance (SEE = 35m2/m2; R2 = 0.85). Optimal topographic variables included 

the mass balance index and sky view factor. These can explain the micro landscape properties relating to ecosystem 

budgets and visible sky. Results also indicated that the backward elimination method optimally predicted the leaf area 

index of Yellowwood trees (RMSE = 0.48; R2 = 0.59). Further, predictors derived from the Red Edge bands were the 

most influential variables in predicting leaf area index. The study demonstrated the applicability of remotely sensed 

data and Geographic Information Systems in the retrieval of forest productivity proxies, such as leaf area index. 
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Chapter One 

General introduction 

 

1.1. Introduction 

Forests hold the largest proportion of global biodiversity (FAO, 2015; Swingland, 2001; UNFCCC, 1997) and account 

for the largest share of terrestrial productivity per unit area (Beer et al., 2010). This productivity is concerned with critical 

ecological functions, including temperature regulation, nutrient cycling and carbon sequestration (Costanza et al., 1997; 

Gibbs et al., 2007; Oliver and Larson, 1996). Forests occupy an estimated 30 % of the total earth surface and are 

responsible for a functioning and healthy biosphere (UNFCCC, 1997). In southern Africa, here are two types of 

indigenous forests - lowland forests, near the eastern seaboard as well as the montane forests which are located in 

patches about 1 200 m above sea level (Mucina et al., 2006).  

In South Africa, indigenous forests occupy an approximated 500 000 hectares, which is no more than 0.04 % of the 

country’s land area (Lawes et al., 2004; Mucina and Rutherford, 2006). The evergreen forest patches associated with 

the Afromontane mistbelt forests, also known as the Yellowwood forests (Moll, 1972) cover less than 5 % of this area 

(Eeley et al., 1999; Eeley et al., 2001). These forests are home to the Podocarpaceae, which is the second largest 

conifer family and is recognised as one of the major genus’s in biogeography studies (Quiroga et al., 2016). They are 

characterised by emergent trees, with large, wide spreading crowns. These trees function as keystone structures within 

the mistbelt forest ecosystem and they create microclimates through shade and provide understory layer growth (Lawes 

et al., 2004). The Yellowwood forests are home to the Red Listed, forest specialist – the Cape Parrot, which is estimated 

to have a population of less than 1000 in the wild. They further support other bird species, including the bush blackcap 

and woodpecker. These tree species are of national pride in South Africa. Specifically, Podocapus latifolius is 

recognised as the National Tree and one of the Champion Trees of South Africa (Department of Agriculture, 2013). 

Subsequently, these tree species are protected under the National Forest Act of 1998. This call was made as 

Yellowwoods were once extensively logged for timber products (Hutchins, 1905; Moll, 1972) such that they were on 

the brink of extinction in certain areas (Adie et al., 2013; Eeley et al., 1999). Yellowwood timber products were 

commonly used for furniture and ornaments, which were displayed in many old buildings. Legally, acquiring 

Yellowwood timber is becoming increasingly costly and difficult to source. As a result, the illegal harvesting of timber 

is becoming more common (Lawes et al., 2004). Local communities also depend on the forest’s resources, for firewood 

to sustain their livelihoods (Eeley et al., 1999; Rudel, 2013), which further threatens the already diminishing tree 

numbers (Lawes et al., 2004). There is, therefore, a pressing need to provide practical and effective mechanisms of 

assessing productivity of the Yellowwood forests in in addition to the preservation of the tree species themselves.  



2. 
 

Leaf area index (LAI) is a recognised vegetation parameter which can reveal information relating to primary production. 

LAI is a quantity of plant canopy, representing the total single sided surface area of the leaves within the canopy (Breda, 

2003; Chen and Black, 1992). Processes such as light interception, photosynthesis and evapotranspiration are 

important input in the determination of primary productivity. Therefore, measuring the LAI of the Yellowwoods will 

provide the information necessary for understanding indigenous forest growth. Also important in this regard is the 

influence of local topographic variability. Topography assumes a pivotal role in forest condition, as it controls local 

hydrological and nutrient conditions, within ecosystems (Jucker et al., 2018). For instance, Alves et al. (2010) showed 

that more permanent topographic variables, such as aspect were more influential in regulating water availability to 

plants. Swetnam et al. (2017) evaluating the influence of topography on montane carbon, noted that average carbon 

loading increased with lower topographic positions and was higher on northern aspects. However, the integration of 

LAI and the landscape morphology has not been extensively explored in understanding species productivity. Limited 

literature merely demonstrates the importance of topography in correcting canopy LAI measurement errors (Jin et al., 

2019). For example, Gonsamo and Pellikka (2008) applied different techniques for slope correction in the prediction of 

canopy LAI. However, there is still a need to assess the influence of topographic controls on the spatial variability of 

LAI, particularly that of keystone tree species, such as the Yellowwoods. This will in turn offer more accurate predictions 

of forest productivity, which is essential for deriving comprehensive monitoring and management strategies for 

conserving dwindling indigenous forests (Turner et al., 2003). 

Previously, the retrieval of information relating to vegetation condition could only be achieved through tedious, labour 

intensive field surveys (Skole and Tucker, 1993). These surveys were unable to capture micro forest details and 

produced low accuracy maps. More recent advances in both the Remote Sensing (RS) and Geographic Information 

Systems (GIS) techniques have facilitated the investigation of biophysical forest attributes such as LAI at increased 

spatial and temporal resolutions (Adie et al., 2013; Aschbacher and Milagro-Pérez, 2012). Earth Observation (EO) 

systems have become predominant reservoirs of spatial data which is required in extensively investigating and 

understanding LAI as a proxy for vegetation productivity. This is because they provide near real time, continuous and 

synoptic datasets which avail information on forest condition. The applicability of digital elevation models (DEM’s) 

facilitates the retrieval of objective landscape level topographic measurements that can be used in understanding 

specific ecosystem functioning proxies, such as leaf area index particularly in threatened forests (Coblentz and Riitters, 

2004; Moore et al., 1991; Spadavecchia et al., 2008). DEM’s are inexpensive data sources, when compared to field 

surveys and offer ease of use. Currently the longest running source of continuous elevation data can be obtained from 

the National Aeronautic Space Agency (NASA) Shuttle Radar Topographic Mission (SRTM). SRTM datasets are now 

freely available through the open access scheme, for all geographical regions with improved quality. DEM’s are 

compatible with GIS, which provides a computing platform for the fast, automated processing of geospatial data. It is, 

therefore, perceived that SRTM derived topographic indices could be used in explaining the spatial variability exhibited 

by the productivity of Yellowwood tree species in the Afromontane forests. 
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Meanwhile, “new generation” sensors supplemented by field measurements have been proven to be important in 

understanding the LAI and productivity of changing forests to a higher degree of certainty (Ahmed et al., 2015; Goetz 

and Dubayah, 2011; Skole and Tucker, 1993). One such example, is the introduction of the Sentinel 2 Multispectral 

Instrument (S2 MSI) satellite series launched by the European Space Agency (ESA) (Aschbacher and Milagro-Pérez, 

2012). The mission was launched to provide novel prospects for the scientific community, intended to complement the 

Satellite Pour l’Observation de la Terre (SPOT) in offering an advanced, improved resolution optical environmental 

observation system (Aschbacher and Milagro-Pérez, 2012; Drusch et al., 2012). The series is one of the more recent 

sensors to offer freely available, improved medium resolution products, that can be used in the retrieval of biophysical 

information (Masek et al., 2015). S2 MSI has additional Red Edge (RE)  bands, specifically suited to retrieve information 

related to various biophysical vegetation productivity components such as chlorophyll content and LAI (Delegido et al., 

2011; Drusch et al., 2012). It is, therefore, necessary to assess the utility of S2 MSI’s RE bands is estimating the LAI 

of Yellowwood tree species as a productivity proxy. 

Applying GIS and RS in concert with simple but robust algorithms in the prediction and mapping of the drivers behind 

the spatial variability of LAI has presented itself as the most appropriate approach to forest productivity characterisation. 

The Principal Component Analysis (PCA) has been prominent in literature for its ability to reduce numerous explanatory 

variables into few manageable latent variables in  vegetation mapping (Cushman et al., 2008; Jucker et al., 2018; 

Mertes, 2002). It is used in studies to reduce dimensionality and determine levels of relatedness among similar 

variables, and group these accordingly (Petrişor et al., 2012) . PCA is particularly important in this study as topographic 

variables are correlated (Spadavecchia et al., 2008) and therefore variables can be summarised before relating them 

to LAI. Meanwhile the Random Forest (RF) regression ensemble has been extensively applied in the estimation of LAI 

owing to its accuracy and fast processing time (Belgiu and Drăguţ, 2016). Relatively few studies in the southern African 

context have sought to characterise emergent tree attributes such as the LAI, of the Yellowwoods using GIS and RS 

applications. It is in this regard that this study sought to predict the LAI of the Podocarps dominated indigenous forest 

using the PCA and RF regression ensemble, in conjunction with SRTM derived topographic indices as well as S2 MSI 

data.  

1.2. Aim and Objectives  

The aim of the study is, therefore, to characterise the LAI of the Yellowwood tree species in a southern African 

Afromontane mistbelt forest, using remotely sensed imagery; the SRTM DEM and the S2 MSI product. To achieve this 

the study 

1.2.1. Evaluated the role of SRTM DEM derived topographic variables, in the explanation of LAI, using PCA and 

stepwise regression analysis.  

1.2.2. Assessed the utility of S2 MSI imagery, in the estimation of LAI, using the RF regression ensemble.  
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1.3. Research Questions  

 

1.3.1. Can the suite of topographic variables derived from the SRTM DEM, significantly explain LAI distribution?  

1.3.2. Which of the topographic metrics selected in the stepwise linear regression, will have a greater role in LAI 

distribution?  

1.3.3. Which of the model builder approaches, derived from the S2 MSI imagery will predict LAI to an acceptable 

level of accuracy?  

1.3.4. To what extent do the RE bands and indices predict LAI?  

 

1.4. Structure of the Thesis  

The thesis presented contains four chapters, two of which may be regarded as standalone manuscripts. The two 

chapters contain similarities as they address the same overarching objective. The chapters are presented as follows: 

Chapter One introduces the thesis, outlining the importance of, and contextualising the characterisation of LAI within 

an indigenous forest, using GIS and RS imagery. The aim, objectives, and research questions of the study, are included 

in this chapter.  

Chapter Two presents the role of topographic variables, using PCA and stepwise linear regression models, in the 

explanation of LAI distribution in the forest.  

Chapter Three evaluates the utility of a S2 MSI derived prediction model and compares different model builder 

approaches, using the RF regression ensemble in the prediction of LAI.   

Chapter Four is a synthesis of Chapters Two and Three. The aim and objectives of the respective chapters are 

reviewed, together with conclusions. The chapter further discusses implications and recommendations for the study.  
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Chapter Two 

The role of topographic variables in explaining leaf area index of the Yellowwood tree species in an 

Afromontane mistbelt forest of southern Africa 

 

Abstract 

Forming a holistic understanding of tropical indigenous forest vegetation dynamics is crucial for effective conservation 

monitoring and management strategies. Local surface topography assumes a pivotal role in the distribution and 

productivity of specialist forest species, such as the Yellowwood tree. Surface topography affects abiotic properties 

relating to soil, hydrology, drainage, and microclimate, that influences vegetation growth and contributes to 

environmental complexity. Meanwhile, the Yellowwoods contribute to the maintenance of biodiversity by providing a 

habitat to many forest species, such as the endangered Cape Parrot (Poicephalus robustus), that are heavily 

dependent on them. In this regard, understanding the influence of topography on the productivity and health condition 

of these trees will provide a framework required in drawing up effective conservation strategies for indigenous forest 

species. Tree properties such as leaf area index, are important indicators of plant condition and productivity, which are 

constrained by local topographic conditions. This study sought to assess the influence of topographic variables on the 

leaf area index of Yellowwood tree species. Principal component analysis and the stepwise linear regression were 

used to assess the influence of Shuttle Radar Topography Mission digital elevation model derived topographic 

variables, on leaf area index. Results of this study showed the catchment area, mass balance, sky view factor, 

convergence index, maximum curvature and aspect (SEE = 35m2/m2 and R2 = .85), explained the spatial variation of 

the observed leaf area index of Yellowwood tree species in the Ingeli State Forest. The findings of this study are a 

fundamental step towards drawing up comprehensive frameworks for inventorying and monitoring indigenous forest 

species. 
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2.1. Introduction  

Information on tree growth, particularly that of endangered species such as the Yellowwood’s (Podocarpae) is pivotal 

to successful indigenous forest management. Topography is an abiotic factor that influences growing conditions for 

plants, which affects the composition and dynamics of ecological communities (Muscarella et al., 2020). Specifically, 

topography influences edaphic (Gessler et al., 2000), thermal and hydrological conditions of local landscapes (Moore 

et al., 1991; Turner, 1989). These factors assume a determinant role in tree growth characteristics such as biomass, 

foliage density and leaf area index (LAI) which maintain the structure and integrity of the forest community. 

Understanding the influence of local topography on tree growth characteristics of keystone species such as the 

indigenous Yellowwood tree species will be a step towards the conservation of many other indigenous forest species.  

Specifically, the four species; Podocarpus latifolius (Real Yellowwood), P. falcatus (Outeniqua Yellowwood), P. henkelii 

(Henkel’s Yellowwood) and P. elongatus (Breede River Yellowwood) play a critical environmental and ecological role 

in threatened indigenous forests (Moll, 1972). They provide a habitat and food to mammals and birds such as the rare 

colobus monkey (Hart et al., 2013; Negash and van Staden, 2003). Birds species, including the Narina Trogon, Bush 

Blackcap and the threatened forest specialist - Cape Parrot amongst others, rely on the trees for nesting sites 

(Wirminghaus et al., 2001). Furthermore, the Podocarpus trees also play an invaluable human and socioeconomic role. 

For instance, P. falcatus offers an odourless, resin-less and fine gained wood, regarded as a high quality timber for 

manufacturing various products such as cupboards (Negash and van Staden, 2003). In South Africa, the regulated 

harvesting of these Podocarpus spp., is permissible through the Department of Water Affairs and Forestry (DAFF) 

which supports smaller, domestic industry which assumes a considerable role in the local economy. The industry has 

an estimated annual worth of R16 million and has created over 500 job opportunities (Abdillahi et al., 2010; Merwe, 

2002). The bark of the trees is used in traditional medicine, and the resin is an ingredient in domestic animal treatments 

(Dold and Cocks, 2001). It is because of their excellent multipurpose that the Yellowwoods have been categorised 

under the most heavily exploited trees (Adie et al., 2013), not only in South Africa, but across the entire African continent 

(Negash and van Staden, 2003). Subsequently, there is a need to develop comprehensive frameworks for inventorying, 

monitoring, and drawing up effective conservation strategies for critical indigenous forest species. For these 

frameworks to be effective, they require specific information on tree growth characteristic’s such as LAI as foundational 

steps. 

The biophysical parameter, LAI is associated with the photosynthetic capacity of vegetation. Leaf area is the total one 

sided surface area  per specified unit (Chen and Black, 1992). It serves a predictive proxy to infer carbon, energy and 

mass exchange (Jonckheere et al., 2004; Jordan, 1969). Forest growth and efficiency, vigor and biomass can also be 

inferred from the index (Waring, 1983) and this has been done in many studies, across varying biogeographical regions, 

and scales (Varvia et al., 2018; Xie et al., 2014). The spatial distribution of leaf area in a forest is the result of complex 

interrelationships between plant types and the environment (Cui et al., 2009; Lan et al., 2011). Thus, understanding 
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the relationship between topographic surface properties and LAI is a critical step towards understanding the plant 

physiological connections within the local environment. This in turn, will offer paramount information for deriving 

comprehensive monitoring and management strategies required in conserving the dwindling indigenous forests (Turner 

et al., 2003). 

Previously, conventional methods were used to understand the influence of situational factors and growth 

characteristics of tree species when drawing up conservation procedures for threatened species. These traditional 

methods include topographic characterisation techniques such as the physical recordings of Geographical Position 

Systems (GPS) locations, differential leveling, computation of locations and conversion into digital formats. However, 

these field surveys are complex and impractical when considering the temporal and spatial scales at which 

topographical and vegetation surveys are to be undertaken (Farr et al., 2007). Field techniques are unable to capture 

the three-dimensional nature of surfaces (Desmet and Govers, 1996; Hurst et al., 2012), rendering plot level 

measurements unrepresentative of the general landscape. In a similar manner, regional scale topographic maps are 

generally of poor quality, especially that of tropical regions (Farr et al., 2007). Therefore, there is a need for more 

accurate spatially, explicit, and versatile methods that could offer vegetation and topographic information at limited 

costs. 

The scientific community has noted improvements in data acquisition techniques brought by the rapid advancement in 

earth observation technologies, making it easy to assess the relationship between topography and vegetation 

characteristics across various scales. Remote Sensing (RS) has enabled the digital quantification of not only the spatial 

variation of topographic features but also that of vegetation growth traits such as LAI. For instance, the Shuttle Radar 

Topography Mission (SRTM) from the National Aeronautics and Space Administration (NASA) produces the highest – 

rated digital elevation model (DEM) data with the oldest archives which are freely accessible with a near-global spatial 

coverage. This data has been widely used to characterise environmental factors such as elevation, drainage patterns 

and terrain morphology in concert with Geographic information systems (GIS)(Del-Toro-Guerrero et al., 2019; Emran 

et al., 2018; Gu and Wylie, 2016; Peng et al., 2020; Riihimäki et al., 2017). For example, Riihimäki et al. (2017) 

assessed the effect of topography on variations in Arctic - Alpine vegetation productivity in the Taihang Mountains of 

China. They noted that topo - climatic variables, specifically elevation and radiation, were the most influential variables 

in the explanation of vegetation productivity. Similarly, Gersie et al. (2019) used digital elevation model derivatives, 

namely the topographic wetness index (TWI) and topographic position classes (TPC's) to characterise the spatial 

distribution of productivity concerned with the shortgrass steppe in Colorado, United States of America (USA). Their 

model illustrated that TPC’s effectively predicted grassland growth and grazing distribution when compared to TWI and 

this was attributed to the growing season, August – October, during which the vegetation grows more rapidly. All these 

works underscore the prospects of topographic variables derived from DEM’s in characterising vegetation growth traits. 

However, most of these studies have used remotely sensed data derived topographic variables in characterising growth 
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traits of mixed vegetation species (Balzotti et al., 2017; Hwang et al., 2011; Yasuhiro et al., 2004). To the best of our 

knowledge, no study has attempted to assess the relationship between topographic variables and species - specific 

vegetation growth parameters, within an Afromontane mistbelt forest. Therefore, it is perceived that topographic 

variables could be applied, to accurately characterise the growth traits of threatened indigenous forest species, in this 

case, the Yellowwoods, Podocarpus spp.  

This study, therefore, presents an investigation into the relative importance of topographic controls in estimating LAI, 

of the endangered Yellowwood species in an indigenous Afromontane mistbelt forest within southern Africa.  

2.2. Materials and Methods  

2.2.1. Study Area  

The research was conducted in the Ingeli State Forest [3029DA WEZA], KwaZulu-Natal, South Africa (Figure 2.1.). 

The forest lies between Harding and Kokstad, on either side of the National Highway, nearing the border of the Eastern 

Cape, about the easternmost corner of the Muziwabantu Municipality. The forest represents one of the largest 

indigenous forest patches, which includes grassland and wetland habitats. The study site includes the largest forest 

patch, called Weza and smaller neighbouring forest fragments, surrounded by grassland and pine plantations. At an 

altitude averaging 1497 m, the forest occurs on dolerite soils, on south facing slopes. These forests are also known as 

Afromontane mistbelt forests, which experience rainfall > 1 000 mm per annum. The characteristically moist forest 

experiences summer mist and bouts of frost (Moll, 1972). The area is dominated by the Yellowwood’s, red elder and 

sneezewood. The Podocarpus species which are dominant in the Ingeli forests are P. henkelii and P. latioflius. The 

forests are appreciated for avian diversity particularly the endangered Cape Parrot, ground thrush and bush blackcap. 
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Figure 2.1. Study area within the Ingeli State Forest, in KwaZulu-Natal, South Africa. 

 

The Yellowwood’s serve as indicators of ecosystem condition, because of their longer-life span, which responds to the 

changing environment. This is especially important as the Ingeli forest represents a semi disturbed ecosystem in long 

standing recovery.  

Henkel’s Yellowwood is the most common tree which is widespread between Mt. Ayliff and Harding. This species is 

very tall and straight stemmed. The bark of this tree is of a grey – brown hue, with characteristically dark green 

pendulous leaves (Figure 2.2 (b). The ‘real’ Yellowwood is common on the rocky, mountainous part of the mistbelt 

forest. Here it is more exposed, and it generally does not grow to be as large as henkel’s Yellowwood. Leaves of this 

tree are narrower and grow longer, and seeds are a blue – grey in colour. While P. falcatus, termed the “big tree” of 

the Knysna forest, grows much faster to that of its counterparts. It can reach just over 40 m in height, with a wide 

spreading crown.  
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(b) 

 

Figure 2.2. Yellowwood tree in the Ingeli State Forest (a). Emergent Podocarpus henekelii, in the Ingeli Forest, (b) 

leaves and a young stem and (c) leaves and a flower. 

 

2.2.2. Data preparation and collection  

 

A field survey was conducted to measure Yellowwood tree attributes at the Ingeli State Forest from September 9 – 11 

2018. Prior to the field work, random sampling locations which were > 20 m apart from each other were generated 

within Google Earth Pro Version 7.3. within the forest patches. These were imported into the handheld Geographic 

Positioning System (GPS) - Trimble XH and used to navigate to the sampling areas. Upon arrival at the sampling areas, 

a purposive sampling technique was employed to identify the Yellowwood trees (Podocarpus latifolius (Real 

Yellowwood), P. falcatus (Outeniqua Yellowwood) and P. henkelii (Henkel’s Yellowwood)). Specifically, emergent 

trees, having larger canopy sizes (> 10 m) were considered in this study to avoid mixed pixels. This was also done to 

decrease the incidence of spatial autocorrelation. The location of each Yellowwood tree was recorded using the GPS. 

(c) 
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LAI, tree height, crown size, as well as diameter at breast height (DBH) were also measured. LAI was measured using 

the LiCor LAI 2200 Plant Canopy Analyser. To estimate LAI, the analyser measures diffuse radiation, calculating the 

interception of blue light in 5 zenith angles, readings from above and below the canopy. The above and below 

measurements were compared by an inversion of the Poisson model equating the transmittances. From this, the portion 

of light absorbed by the canopies was assumed. A total of 60 averaged LAI samples were measured in the forest. GPS 

locations of sampling points were downloaded from the receiver and converted into points within the ArcMap Version 

10.6 application. 

Canopy height was measured using the hypsometer, Vertex III and Transponder T3. The Vertex is a device used in 

the measurement of heights, angle, inclination, distance, and air temperature (Haglöf Sweden AB 2005). Canopy size 

was estimated using user perspective and measurements of the widest and longest points of the canopy. DBH was 

measured using a tape measure, at average chest height – 1.30 m above ground level. For both canopy size and DBH, 

a tape measure was used.  

2.2.3. DEM acquisition and generation of topographic variables 

 

A DEM for the study area was acquired from NASA’s SRTM datasets. The 30 m resolution DEM was subset to the 

study site and topographic metrics were generated using the System for Automated Geoscientific Analysis (SAGA) 

plugin, within QGIS Version 3.8.3. Table 2.1. lists in detail, all the topographic metrics computed and used in this study, 

using the slope, aspect, curvature module within SAGA. Topographic metrics were calculated about the landscape 

level. The generated point map of sampling locations was then used to extract the values of each topographic metric, 

from the DEM. These were then converted into Microsoft Excel format for statistical analysis.  
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Table 2.1. Mean and standard deviations of evaluated topographic variables. 

 

The topographic metrics used in the study represented the range of topographic metrics and micro topographic 

features. These can be grouped into three categories, namely local, nonlocal and collective topographic metrics 

(Florinsky, 2016; Li and McCarty, 2019). Local topographic metrics are specific to a point on the ground, while nonlocal 

topographic metrics are influenced by the relative positioning of specific point on the ground. Collective topographic 

metrics join both the local and nonlocal metrics, combining a specific and relational points on the ground surface 

Variable Description Function Unit Mean Standard 
Deviation 

Direct 
insolation 

Incoming solar radiation Air energy exchange, climate 
formation 

Kw/m2 7.14 0.51 

Elevation Height above sea level Water, insolation, and soil 
properties 

M 
 

1300.48 101.34 

Normalised 
height 

Position between the channel and the 
valley, extension of catchment area 

Water, insolation, and soil 
properties 

m .47 .22 

Standardised 
height 

Normalised height multiplied with 
absolute height, standardised for 
catchment 

Water, insolation, and soil 
properties 

M 624.64 343.60 

Catchment 
area 

Area of run off across land surface Surface overland flow, runoff 
capacity, soil-water properties 

M2 5453.70 2046.05 

Mass 
balance 

Movement of materials/matter through 
environment 

Material accumulation M 105.34 0.23 

General 
curvature 

Plan and profile curvature Slope of drainage basin to 
determine runoff capacity and 
volume 

Degrees/m 500.01 0.01 

Longitudinal 
curvature 

Curvature relating to surface flow Soil erosion, depositional 
processes 

Degrees/m -0.17 0.36 

Maximum 
curvature 

Curvature of the highest value of 
curvature at a specified point on earth’s 
surface 

Water flow capacity, soil erosion, 
deposition 

Degrees/m 0.16 0.18 

Wind effect Above ground air flow Soil moisture m/s 0.86 0.12 

Aspect Slope direction Solar radiation -  3.93 1.34 

Sky view 
factor 

Unobstructed land surface Incoming solar radiation Radian 0.94 0.09 

Convergence 
index 

Positive surface curvature Surface flow direction, relief 
structure 

M 255.55 923.54 

Topographic 
openness 

Width a landscape can be viewed from 
any position 

Indicates lowest and highest 
points of features 

- 1.40 0.11 
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(Florinsky, 2016; Moore et al., 1991; Youfua et al., 2008). Examples of local metrics include slope, aspect and curvature 

related metrics. Catchment area and mass balance are examples of nonlocal metrics and collective metrics, 

respectively. Metrics can also be grouped into degrees of morphological function. For instance, first order topographic 

variables describe the aspect and slope metrics that are derived using only the initial partial derivation from the DEM, 

and second order variables are derived from second order derivatives (Shary, 1995; Youfua et al., 2008). The 

computation of these metrics differs in complexity and can serve as indicators of terrain complexity (Amatulli et al., 

2018; Wilson and Gallant, 2000a). Specifically, normalised height values range from 0 to 1, representing lower to higher 

elevations. Standardised height, is the product of normalised height multiplied by absolute height. Catchment area, 

describes the surface flow contributing to upslope area (Wilson and Gallant, 2000b). Topographic openness indicates 

dominance (positive) or enclosure (negative) at a topographic point.  

2.2.4. Data preparation and PCA model  

The data, all calculated topographic variables, were then imported into SPSS statistical software package Version 25 

for conducting the principal component analysis (PCA). The topographic variables were tested for auto correlation 

using the Durbin Watson Test prior to conducting the PCA analysis. The test statistic was 1.89, which fell within the 

acceptable range of - 1.5 to 2.5 for analysis. Since the data were acceptable for analysis, the PCA was used as a 

dimension reduction procedure. The topographic metrics were reduced and grouped into principal components of 

composite dimensions. This analysis was performed through a specified number of iterations from which similar 

variables were grouped. Using the dimension reduction factor task, the topographic variables were analysed. The steps 

undertaken in the PCA were as follows: 

1. Computation of the correlation matrix.  

2. Extraction of initial components from principal component loading matrix. 

3. Determination of significant loadings, Eigen values > 1. 

 

Influential components were denoted by their high Eigen values (> 1). Eigen values indicate how well suited the 

component (grouped topographic variables) are in the data from other topographical components. Significant loadings 

from each factor were identified based on their tabulated scores.  

2.2.4. Stepwise linear regression analysis  

A stepwise linear regression analysis was performed on extracted components, to determine which of the topographic 

variables were important in the explanation of LAI. A stepwise linear regression was conducted to assess the 

relationship between topographic variables and the variability of the Yellowwood species LAI. The model was run using 

the “exclude cases pairwise” option. This was done to further remove variables that may be used to explain the 

observed LAI to a level comparable to that of another variable. In the stepwise regression topographic variables were 
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removed if they did not contribute a statistically significant level to the model explanation. The stepwise regression 

method also helped to alleviate the issue of multi collinearity. Multi collinearity is problematic as interrelated variables 

– common in topographic features - decrease the level of model accuracy, as the coefficient of determination is then 

spread to describe non-significant variables. Here, the stepping method criteria was set to F ≤ .5 for entry and F ≥ .10 

for removal. Topographic variables used in the stepwise regression, were user defined and from the regression 

inspection.   

2.3. Results 

2.3.1. LAI measurements descriptive statistics 

 

Normality of LAI data, was tested using the Kolmogorov Smirnov test and it was noted that it did not significantly deviate 

from the normal distribution curve (p - value < .005), hence the observations were suitable for the PCA and stepwise 

linear regression analysis. LAI measurements ranged between 0.83 and 4.09 m2/m2 (n = 60, Mean = 2.24 m2/m2) 

(Figure 2.3).  

 

 

 

 

Figure 2.3. Descriptive statistics of observed LAI of the Yellowwoods. 

 

 

 

n = 60 

Mean: 2.24 m2/m2 

Standard Error: 0.11 

Minimum: 0.83 m2/m2 

Maximum: 4.09 m2/m2 

Confidence Level (95 %): 0.21 

F
re

q
u

en
cy

 

0 
   

   
   

5 
   

   
   

10
   

   
   

 1
5 

   
   

   
20

 

0                             1                         2                       3                         4                         5 

Observed LAI m2 /m2 



15. 
 

2.3.2. PCA model 

 

The PCA was conducted using the correlation matrix, with 14 topographic variables. The scree plot (Figure 2.4) shows 

the Eigenvalues and the components/topographic variables. Out of 14 components, 4 were above 1 in terms of their 

Eigen values hence they were considered in this study. Component 1 shows an initial value of 6.29, which then steadily 

declines to 3.75 at Component 2. The linear relationship is maintained, to return an Eigenvalue of 1.26 for Component 

3. Component 4 yielded a value of 1.15. And remaining components taper off to return values < 1.  

 

 
Figure 2.4. Scree plot for Eigenvalues associated with the component. 

Table 2.2 shows the results from the PCA model. The highest acceptable percentage (%) of variance of 88.9 was 

explained by 4 significant components. However, the 100% cumulative variance was attained when 9 components 

were used. Five of these components (Component 5 to 9) least contributed in explaining the topographic variability.  

Table 2.2. Total variance explained for topographic variables, using PCA. 

 

Component 
Initial Eigenvalues Extraction Sums of Squared Loadings 
Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 6.290 44.925   44.925 6.290 44.925 44.925 
2 3.751 26.792   71.717 3.751 26.792 71.717 

3 1.258   8.985   80.702 1.258   8.985 80.702 

4 1.153   8.233   88.935 1.153   8.233 88.935 
5   .718   5.132   94.067    
6   .452   3.230   97.298    

7   .303   2.161   99.459    
8   .058     .412   99.871    
9   .018     .129 100.000    
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Table 2.3 shows the contribution of each topographic variable to each of the extracted 4 components considered in 

this study. Component 1 returned Catchment area and General curvature to see negative values, which is telling of a 

stronger inverse relationship to the topographic data. While the elevation variables; normalised and standardised height 

showed variance contributions above .9. General curvature showed the most significant contribution to Component 2, 

% variance = .924. Component 3 and 4, returned .838 and .555, for aspect and longitudinal curvature, respectively. 

From each of the extracted components only these topographic variables returned values, above .5. These two 

topographic variables were the only ones to report positive directional contributions to model variance, across the 

extracted components. Six topographical variables namely, Cross sectional curvature, direct insolation, general 

curvature, mass balance, normalised height, positive openness, profile curvature and standardised height were noted 

based on their contribution scores in Table 2.3, in explaining the topographical variation in the forest. Topographic 

variables were then used in a stepwise regression to establish a model for estimating the LAI of the Yellowwood tree 

species. 

 
Table 2.3. Total variance explained for topographic variables, from the extracted 4 Components. 

 

 1 2 3 4 

Catchment area  -.684 -.250  .263   .239 

Convergence index .529   .401 -.265 -.265 

Cross - sectional 
curvature  

.757 -.396 -.220   .427 

Elevation .560  .421 -.397  -.259 

Direct insolation .523 -.824 .027  -.173 

General curvature -.300  .924 .156   .087 

Longitudinal curvature .699  .297 .016   .555 

Maximal curvature .528  .626        -.176   .494 

Normalised height .914  .283 .125  -.135 

Positive openness .804 -.562 .068   .121 

Sky view Factor .606 -.787 -.039   .041 

Standardised height .911 .320 .045 -.172 

Wind effect 
.825 .209 .361 -.341 

Aspect 
.405 .140 .838   .081 

 
 

2.3.3. Stepwise linear regression model  

 

The stepwise linear regression analysis results between topographic variables and the LAI of Yellowwood trees are 

displayed on Table 2.4. The 6th model exhibited an optimal relationship between species LAI and topographic variables. 

Specifically, Model 6 exhibited an R2 of 0.85 the least standard error of estimate of 0.35 m2/m2. The most optimal 

topographic variables that constituted this model were Catchment area, Mass Balance, Sky view Factor (SVF), 
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Convergence index, Maximum curvature and Aspect. It can also be observed that the model accuracy increased with 

an increase in the number of topographic variables selected and used in modelling LAI of Yellowwood trees.  

 

Table 2.4. Stepwise regression model summary of selected topographic variables. 

Model R R2 

Adjusted 
R2 

Std. Error of the 
Estimate (SEE) 

1 .581a .338 .318 .69  

2 .777b .604 .579 .54  

3 .860c .740 .715 .44  

4 .887d .786 .757 .41  

5 .908e .824 .794 .38  

6 .922f .850 .818 .35  
 1. Predictors: (Constant), Catchment area 
 2. Predictors: (Constant), Catchment area, Mass Balance 
 3. Predictors: (Constant), Catchment area, Mass Balance, Sky view Factor  
 4. Predictors: (Constant), Catchment area, Mass Balance, Sky view Factor, Convergence index 
 5. Predictors: (Constant), Catchment area, Mass Balance, Sky view Factor, Convergence index, Maximum curvature 
 6. Predictors: (Constant), Catchment area, Mass Balance, Sky view Factor, Convergence index, Maximum 
curvature, Aspect.  
 

The summary of the model selected for explaining the variability of Yellowwood trees’ leaf area is detailed in Table 2.5. 

Based on the t – value, an indicator of variable importance, mass balance, sky view factor and catchment area were 

the most optimal topographic variables that explained the variation of LAI in this study, in order of importance. Majority 

of the variables; Catchment area, Mass Balance, SVF and the Convergence index showed a positive relationship with 

LAI variability. That is with each unit increase in leaf area – a unit increase is observed for the topographic variables. 

Meanwhile, the inverse relationship was observed for maximal curvature and aspect which exhibited negative value 

coefficients.   
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Table. 2.5. Model coefficients of selected topographic variables. 

Unstandardised Coefficients 
Standardised 
Coefficients t Sig. 

 B Std. Error Beta   

(Constant) -3.031 0.925  -3.277 0.003 

Catchment area 0 0 0.401 4.067 0 

Mass Balance 1.612 0.234 0.592 6.893 0 

Sky view Factor 4.941 0.985 0.412 5.018 0 

Convergence index 0.029 0.009 0.322 3.357 0.002 

Maximal curvature -100.433 45.134 -0.227 -2.225 0.034 

Aspect -0.102 0.047 -0.167 -2.177            .038 

 

Therefore, the following model was used to explain the topographic variability of LAI in the study area:  

Observed LAI = -3.031 + 0*Catchment area+ 1.612*Mass Balance + 4.941*SVF + 0.029*Convergence index -

100.433*Maximal curvature - 0.102*Aspect 

2.4. Discussion 

The aim of this study was to evaluate the role of topographic variables in observed LAI within the Ingeli State Forest.  

2.4.1. Influential topographic variables  

Results of this study showed that the spatial variability of Yellowwood tree species LAI in the Ingeli Afromontane 

mistbelt forest could be optimally (SEE = 35m2/m2 and R2 = 0.85) explained by the catchment area, mass balance, SVF 

as topographic variables, in order of importance. Catchment area, which is the area of water flow, supported by a single 

drainage system, was the third influential variable that optimally explained the LAI variability of Yellowwood tree 

species. The optimal influence of the catchment area of the Ingeli forest on the spatial distribution of Yellowwood tree 

species could be attributed to the fact that the catchment area is dominated by large, emergent, indigenous forest trees 

which tend to encourage high infiltration and percolation of precipitation Balzotti et al. (2017). This results in high soil 

moisture content which further facilitates high vegetation species productivity (Pilgrim et al., 1982) and hence high 

foliage densities and LAI.  

Mass balance refers to the movement of material, either transformed or untransformed within the environment. 

Balances such as concentrations of atmospheric constituents, biomass, nutrients accumulation and leaf fall are 

associated with the variation in topography (Weiss, 2001). Topographically, low lying sections of the study area facilitate 

higher concentrations and accumulations of moisture as well as soil nutrients which are washed away from sections 

characterised by high altitude and steep slopes. Subsequently, lower lying areas become more conducive for 

vegetation productivity exhibiting healthier trees, characterised by high foliage densities in relation to steep areas which 

drive the movement of ecosystem resources (Liu et al., 2014). Therefore, due to mass balance, some sections of the 
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Ingeli forest are characterised by high deposition of transformed material such as top soil, soil nutrients and moisture 

facilitating high productivity of the Yellowwood trees with foliage density which varies from sections that are associated 

with the transportation of materials in steep slopes and highly elevated landscapes. Meanwhile, sections characterised 

by high transportation of materials tend to have trees that are relatively limited in terms of productivity, due to the 

reduced nutrient availability and moisture conditions.  

Sky view factor (SVF), represents the proportion of radiation that reaches the ground, slanted at an random angle 

(Watson and Johnson, 1987), was the second influential topographic variable explaining the variability of Yellowwood 

trees species LAI. The factor is a proxy for relief illumination, that is the sky visibility at the relief horizon (Zakšek et al., 

2011). SVF, similarly to aspect, is associated with the amount of radiation that is available for facilitating the vegetation 

photosynthesis related processes. Aspect is comparable to SVF in that these two variables are important in the 

explanation of more localised factors such as air temperature and moisture availability (Gosz and Sharpe, 1989). 

However, results showed that a stronger direction of variation is exhibited for SVF when compared to aspect. And a 

positive relational change is associated with SVF, while a negative variation exists for aspect in relation to LAI (Table 

2.5.). Aspect assumes a downslope direction at a maximum rate of change in value from one point to another, and the 

effect of aspect becomes more pronounced in mountainous areas (Emran et al., 2018; Lakshmi and Yarrakula, 2019) 

as is exhibited in the Ingeli forest. Noting that mean aspect measured for the sampled locations recorded 3.93 radians 

or 225.1724° (Table 2.1.), which is indicative of southwest facing slopes. Southwestern slopes are characteristically 

cooler and are also slower to warm, retaining heat longer (Måren et al., 2015) in the southern hemisphere. The more 

mesic conditions of southwest facing slopes are in line with the Afromontane mistbelt forest type - underpinning the 

moisture component for the environment. In this regard, steady leaf growth, is observed, which is also supportive of 

findings made in a study by Badano et al. (2005). The authors found that aspect was most influential in creating a meso 

climate, in the Mediterranean-type matorral in middle eastern Chile. Further, evergreen vegetation was found to be 

more dominant in shaded parts of the matorral. Therefore, given that the study area is a mistbelt forest type and with 

the knowledge that Podocarpus spp. are characteristically evergreen, the leaf growth concerned with a cooler, moisture 

rich environment creates favourable conditions for leaf growth – as is observed for the LAI observations made in this 

study.  

Areas characterised by high SVF tend to facilitate high vegetation productivity whereas areas with low visibility tend to 

have reduced rates of photosynthetic activities. This is because high SVF is associated with high exposure to incident 

radiation whereas the less SVF values are associated with less exposure to radiation required for photosynthetic 

activities. In this regard, it is not surprising that SVF is one of the factors that explain the LAI variability of Yellowwoods 

tree species in this study. The areas with high visibility will tend to facilitate higher levels of tree productivity, yielding 

high foliage density whereas the less visible areas will have reduced photosynthesis rates resulting in less foliage 

densities due to the regulated photosynthesis rates (Jucker et al., 2018).  

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/aspect.htm
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The regression model further identified the lesser topographic variables, that is maximal curvature. Curvature, similarly, 

to the convergence index is identified as an important input variable in erosion and hydrological models as it is more 

representative of micro surface features (Amatulli et al. 2018). More convex areas are characterised by higher erosion 

and transportation of soil material, which tends to limit productivity of tree species when compared to concave areas. 

Similarly, more moisture accumulates in concave areas facilitating high productivity of vegetation species associated 

with them (Hurst et al., 2012). Deng et al. (2007) considered the relationship between vegetation and topographic 

features in the Santa Monica mountains. Similar to this study, work by Deng et al. (2007) indicated significant 

correlations with profile and plan curvature. This illustrated the importance of curvature in mountains or elevated areas, 

as curvature dictates erosional rates. This is unsurprising as the curvature metrics are dominant in explaining 

environmental factors in areas of high relief (Emran et al., 2018; Kang et al., 2004), as observed for in the forest. The 

Ingeli Forest experiences moderate to steep slopes i.e. from the sampled locations, average elevation was recorded 

at 1300 m (See Table 2.1.). 

It is critical to note that most studies explained variability in forest structure using landscape metrics for large areas, 

which are more generalised and therefore do not capture local variability. By using high resolution topographic DEM’s 

derived from remotely sensed data, this study evaluated micro variability in LAI at finer scales, a process that is critical 

for local scale forest management operations. The results of the study have demonstrated the applicability of GIS, and 

DEM’s in the explanation of the observed LAI distribution of the Ingeli forest Yellowwood trees. The SRTM DEM’s 

exploratory power for emergent tree properties such as, leaf area combined with variable selection techniques are 

therefore appropriate in assessing vegetation condition.  

2.5. Conclusion  

Based on the findings of this study it can be concluded that the topographic metrics particularly, catchment area, mass 

balance and SVF optimally explain the spatial variability of Yellowwood tree species LAI. The results of the study have 

demonstrated the applicability of GIS, and DEM’s in the explanation of observed LAI distribution of the Ingeli forest 

Yellowwood trees. The SRTM DEM’s exploratory power for emergent tree properties such as, leaf area combined with 

variable selection techniques are appropriate in studying vegetation condition. Findings could have applications in 

explaining landscape patterns of LAI in forested environments, in South Africa. The analysis of landscape level 

topography is important in understanding forest structure determinants, for conservation and forest management.  
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Chapter Three 

Estimating leaf area index of the Yellowwood tree in an indigenous southern African forest, using Sentinel 2 

Multispectral Instrument imagery and the Random Forest regression ensemble 

 

Abstract 

Podocarpus (spp.) holds the esteemed biodiversity status, as key forest species in the mistbelt Afromontane forest of 

southern Africa. The podocarps are listed as endangered species owing to extensive logging. The forest species 

support large communities of plants and birds, attributing to the maintenance of biodiversity. Therefore, there is need 

to understand the condition of such keystone species if effective and comprehensive biodiversity conservation 

measures are to be drawn for these dwindling forests. Leaf area index is a crucial eco-physiological parameter applied 

in the evaluation of the growth and productivity of forest trees. The index serves as an indicator of canopy condition 

and photosynthetic capacity; hence it is a suitable proxy for understanding the condition of Yellowwood trees. This 

study therefore sought to estimate the leaf area index of the Yellowwood spp. using Sentinel 2 Multispectral data in 

concert with the Random Forest regression ensemble. Specifically, individual wavebands and vegetation indices were 

used in developing leaf area index prediction models based on two approaches. The multistage approach, categorised 

the predictors according to the generalised order of progression, from standard spectral bands to Red Edge wavebands 

and indices. The second approach involved using a pooled set of predictors, with the backward elimination of poorly 

performing wavebands and vegetation indices. Results showed that the backward elimination method produced a 

better model (R2 = 0.59; RMSE = 0.48) when compared to the multistage approach (R2 = .50; RMSE = .48). 

Furthermore, the most influential predictor variables in both models were Band 5 and NDVI Red Edge 2, both 

characterised by the Red Edge region of the electromagnetic spectrum. Results of this study underscore the prospects 

of Sentinel 2 data i.e. Red Edge wavebands and indices, in characterising the productivity of critical forest species such 

as the Yellowwoods of the Afromontane forest in southern Africa. The findings of this study are a fundamental step 

towards understanding forest health and productivity, required in deriving comprehensive monitoring and management 

strategies in biodiversity conservation. 
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3.1. Introduction  

Afromontane forests, characterised by Yellowwood tree species, are widespread across the African highlands (Yirdaw 

et al., 2015). They are renowned for their distinctive fauna and flora, substantial carbon stocks among a range of 

invaluable socioeconomic and ecological functions. The Yellowwoods are important habitats for nesting species, such 

as the endangered Cape Parrot. The decrease in the population sizes of the podocarps stalls the reproductive capacity 

of these habitat specialists and threatens their population (Hart et al., 2013). However, these Podocarpus forests are 

vulnerable to a host of factors, including habitat destruction mainly due to the fact that they are concentrated around 

areas of high population density, where there is a high prevalence of fire events, crop-farming and plantations (Moll, 

1972). The Yellowwoods have been selectively and extensively logged for fuelwood, construction planks, furniture and, 

in some instances they have been cleared for grazing lands (Abiem et al., 2020; King, 1941; Moll, 1972). This habitat 

destruction has compromised the health and productivity of southern Africa’s Podocarpus forests. Subsequently, the 

longer term monitoring of these forests is crucial and urgently required to devise effective management strategies at 

local and regional scales, as well as in fostering the continuity of the services and bio products they provide (Abiem et 

al., 2020). 

Forest canopies serve as the most apparent indicators of their ecosystem health condition (Jennings et al., 1999), 

which is required in understanding tree to stand level dynamics (Nakamura et al., 2017). Forest canopies are effectively 

the initial point of interface between vegetation and the atmosphere (Ozanne et al., 2003) and are the most apparent 

evidence of stand productivity (Sampson et al., 1998). Therefore, insights into leaf – level biophysical properties will 

further supplement biophysical knowledge, that can be applied to biodiversity conservation measures. Leaves 

inherently hold information about biological processes, such as photosynthesis and energy exchange which influence 

the entire canopy, to provide a more holistic understanding into tree physiology (Ozanne et al., 2003). Canopies are 

inextricably linked to leaf area index (LAI) (Jennings et al., 1999), which is defined as the total of one-sided area of 

green leaf tissue per unit area (Jordan, 1969). Leaf area is an important eco physiological measure of vegetation cover 

which serves as a proxy for foliage cover and may therefore be used in the monitoring of forest growth and productivity 

(Chen et al., 1997; Jordan, 1969). LAI is a widely applied measure in understanding canopy microclimates, water and 

gaseous exchange (Breda 2003) and is included in the 50 essential climate variables (ECV’s) in the Global Climate 

Observing System (GCOS) (GCOS, 2016; Pereira et al., 2013). It further serves as a critical indicator of species 

morphological features. Therefore, investigating the LAI of indigenous, keystone forest species such as the Yellowwood 

could be a step towards the establishment of a comprehensive management and conservation measures.  

Quantifying LAI involves both direct and indirect methods. Direct methods involve in-situ observations of vegetation 

(Chen et al., 1997), and indirect techniques are reliant on distant or remote measurement techniques (Jonckheere et 

al., 2004). Recently, the development of electronic measurement instruments, such as the Plant Canopy Analyser has 

allowed for more accurate and temporally considerate LAI estimates. Despite the high accuracy associated with direct 
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measurement methods, they tend to be labour intensive and often destructive in some instances (Breda, 2003; Liu et 

al., 2015). Physical sampling techniques further hold the risk of being subjective due to the user’s influence, which then 

compromises the data quality. However, Remote Sensing (RS) technologies have advanced to assume an integral 

part of species attribute measurements in biodiversity monitoring studies (Melesse et al., 2007; Wang et al., 2010), 

across a range of spatial and temporal scales (Sabins, 2007; Turner et al., 2003). RS data is objective, affordable and 

synoptic in nature when compared to other datasets (Mutanga et al., 2016). It assumes that species specific spectral 

signatures are linked to the physiochemical properties of vegetation (Sabins, 2007), thus effective in the retrieval of 

LAI using satellite sensors (Curran, 1985; Rees, 2013). In this regard, a relationship could be established between tree 

species attributes as those of the Podocarpus spp. and earth observation data (Jonckheere et al., 2004; Melesse et 

al., 2007; Turner et al., 2003).  

The RS community has seen numerous advancements in earth observation sensor technologies, which have led to 

the launching of ‘’new generation” sensors such as Sentinel series. The series form part of the European Space Agency 

(ESA) programme known as the Global Monitoring for Environment and Security (GMES). Sentinel - 2 Multispectral 

Instrument (S2 MSI) is a small and low-cost mission, acquiring observations over terrestrial and coastal regions, 

through two instruments, with a revisit period of 5 days. This satellite has on board the MSI, with a corresponding 13 

band spectral resolution. Bands have a spatial resolution of 10m, 20m and 60m, across the visible to shortwave infrared 

regions (ESA, 2018), which are suitable for characterising vegetation attributes such as LAI. The S2 MSI is most 

notable for its incorporation of three Red Edge (RE) wavebands, at 705, 740 and 783 nm (Drusch et al., 2012; Zarco-

Tejada et al., 2018) which are specifically suited for mapping vegetation. Towards understanding forested ecosystems, 

the S2 MSI mission further offers a finer spectral resolution which may be suited to stand - level tree studies when 

compared to its predecessors, such as Landsat 7( Korhonen et al. (2017).  

Spectral responses of plant attributes form the underlying basis for vegetation monitoring. Literature shows that the 

relationship between vegetation attributes such as LAI and spectral responses is best understood through the band 

combinations of multispectral remotely sensed data (Turner et al., 2003). Vegetation attributes such as LAI tend to be 

better characterised using vegetation indices (VI’s) because they are insensitive to soil background effects 

(Schumacher et al., 2016). The most used vegetation index is the Normalised Difference Vegetation Index (NDVI) 

developed by Rouse Jr et al. (1974) (Bannari et al., 1995). NDVI combines the red near infrared (NIR) regions of the 

electromagnetic spectrum (EM) and has been shown to be effective in the retrieval of LAI (Croft et al., 2014; Nguy-

Robertson et al., 2012; Xie et al., 2018) . Yet, the index has been noted to saturate for LAI measurements > 3 (Korhonen 

et al., 2017; Mao et al., 2019). The advancement of sensor technologies to “new generation” sensors, such as S2 MSI 

with RE wavebands brought forth narrow band VI’s which are less sensitive to high chlorophyll content and LAI 

measurements (Laurin et al., 2016). These RE VI’s, also known as ‘novel’ VI’s are increasingly being incorporated into 

forest mapping and monitoring studies (Forkuor et al., 2018; Frampton et al., 2013; Verrelst et al., 2015; Xie et al., 
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2014). It is understood that these VI’s could accurately and effectively be applied in predicting and mapping the spatial 

distribution of the Podocarpus species LAI as a step towards developing conservation strategies.   

Accurately modeling the relationship between field measured LAI estimates and satellite derived data is facilitated by 

a range of machine learning algorithms (Lary et al., 2016). In this regard, the most notable algorithm is the Random 

Forest (RF) regression ensemble, which offers flexibility, and performance abilities with limited training data (Karlson 

et al., 2015; Pal, 2005; Zhu et al., 2017). The RF is non – parametric ensemble which is computationally ‘light’ and 

offers ease of access and use, especially for vegetation modelling applications based on RS data (Pal, 2005). It is for 

this reason that the ensemble often outperforms other machine learning models such as artificial neural networks 

(ANN) (Belgiu and Drăguţ, 2016; Karlson et al., 2015; Srinet et al., 2019; Zhu et al., 2017). To achieve the optimal 

prediction model, numerous approaches to data management are applied. For example, the grouping of predictor 

variables according to generalised rules or categories has been noted to exhibit a robust predictive capability in RS 

studies (Lyon et al., 1998; Mac Nally, 2000; Mróz and Sobieraj, 2004). Similarly, the removal of poorly performing 

model predictors through a backward elimination approach (Dube et al., 2017; Lawrence and Ripple, 1998; Mao et al., 

2019; Sutter and Kalivas, 1993) has been noted to be another plausible data management approach (Dube et al., 

2019). In this regard, there is need to evaluate the performance of generalised rules and categorisation of predictor 

variables to accurately model the LAI of the endangered Podocarpus forest species for monitoring and management 

purposes. 

The study, therefore, sought to assess the utility of S2 MSI remotely sensed data in estimating LAI of the Podocarpus 

tree species within an indigenous Afromontane forest. Specifically, this study assessed the effect of the RE derived 

spectral predictors as well as the data management approaches in predicting and mapping LAI of Podocarpus tree 

species.  

3.2. Materials and Methods 

3.2.1. Study Area  

The research was conducted in the Ingeli State Forest [3029DA WEZA], KwaZulu-Natal, South Africa (Figure 3.1). 

The forest lies between the towns of Harding and Kokstad, on either side of the N2 highway, nearing the border of the 

Eastern Cape province in South Africa. It represents one of the largest indigenous forest patches in the country. The 

study site includes the large Weza forest patch and smaller neighbouring forest fragments. At an altitude averaging 

1497 m, the forest occurs on dolerite soils on south facing slopes. The forest experiences rainfall > 1 000 mm per 

annum as well as summer mist and bouts of frost (Moll, 1972). The area is dominated by the Yellowwood tree species, 

specifically, Podocarpus latifolius (Real Yellowwood) and P. henkelii (Henkels Yellowwood), alongside the timbers, red 

elder and sneezewood. The forests are appreciated for avian diversity, noting the endangered Cape Parrot, ground 

thrush and bush blackcap.  
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Figure 3.1. Study area within the Ingeli State Forest, in KwaZulu-Natal, South Africa.  
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Figure 3.2. Yellowwood tree in the Ingeli State Forest (a). Emergent Podocarpus henkelii, in the Ingeli Forest, 

Kokstad, (b) leaves and a young stem and (c) leaves and a flower.  

 

3.2.2. Data preparation and field data collection  

 

A field survey was conducted to measure Yellowwood tree attributes in the Ingeli forests from September 9 – 11, 2018. 

Prior to the field work, forest fragments shape files were generated using Google Earth Pro Version 7.3. and used in a 

GIS platform to compute random sampling locations, which were > 20 m apart from each other. These were then 

imported into the handheld Trimble XH GPS receiver and used to navigate to the sampling areas. Upon arrival at the 

sampling areas, a purposive sampling technique was employed in the identification of the Yellowwood trees 

(Podocarpus latifolius (Real Yellowwood), P. falcatus (Outeniqua Yellowwood) and P. henkelii (Henkel’s Yellowwood)). 

Specifically, trees that exhibited larger canopy sizes were considered in this study to avoid mixed pixels.  The location 

of each Yellowwood tree was recorded using the GPS receiver, in addition to LAI, tree height, crown size, as well as 

diameter at breast height (DBH) were measured. LAI was measured using the LiCor LAI 2200 Plant Canopy Analyser. 

(a) 

(b) 

(c) 
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All canopy measurements were determined under standard clear sky conditions (Varvia et al., 2018). The plant canopy 

analyser measures diffuse radiation, calculating the interception of blue light in 5 zenith angles, from readings from 

above and below the canopy. The above and below measurements were compared by an inversion of the Poisson 

model and transmittances. From this, the portion of absorbed light by the canopies was assumed. DBH and crown size 

were measured using a tape measure. A total of 60 averaged sampling locations were recorded in the Ingeli forest. 

Emergent trees, with large spreading crowns (> 10 m) were identified. This is consistent with the spatial resolution of 

the S2 image, for tree crowns are identifiable. This was also done to decrease the incidence of spatial autocorrelation. 

The GPS locations of sampling points were downloaded from the receiver and converted into points with the ArcMap 

Version 10.6 application.  

3.2.3. S2 MSl data acquisition and pre processing  

 

The S2 MSI product was acquired for September 9, 2018 from the European Space Agency’s (ESA’s) Sentinel 

Scientific Hub. The product was a Level 1C product, consisting of geo-coded top of atmosphere (TOA) reflectance. An 

atmospheric correction was applied, using the Sen2cor module version 2.2.1, within the Sentinel 2 Toolbox (S2TBX), 

Sentinel Application Platform (SNAP), Version 4.0.2. The S2 MSI product was first subset to the extent of the study 

area to reduce the image size and processing time. The image was then converted into a bottom of the atmosphere 

(BOA) Level 2A image. The image was further projected into a Universal Transverse Mercator (UTM) Zone 36S, WGS 

84, in ArcMap Version 10.6. The point data of Yellowwood trees was then overlaid with the pre-processed image to 

extract the spectral signatures. The spectral signatures were then exported into Microsoft Excel files.  
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Table 3.1. Spectral specifications of the S2 MSI product. 

Band Number Function Central Wavelength 

(nm) 

Band Width (nm) 

1 Coastal aerosol 443 27 

2 Blue 490 98 

3 Green 560 45 

4 Red 665 19 

5 Vegetation Red Edge 705 18 

6 Vegetation Red Edge 740 28 

7 Vegetation Red Edge 783 145 

8 Near Infrared 842 115 

8a Vegetation Red Edge 865 33 

9 Water vapour 945 26 

10 Shortwave infrared–

cirrus 

1380 75 

11 Shortwave infrared–

cirrus 

1610 143 

12 Shortwave infrared–

cirrus 

2190 242 

 

3.2.4. Satellite derived predictor variables and modelling 

 

The spectral signatures derived from the preprocessed image were used to compute VI’s in Microsoft Excel. A total of 

50 predictor variables were computed, which were used to estimate the LAI of Yellowwood tree species in this study 

(Table 3.2). VI’s used in the study were selected based on their performance in literature. 

Two data management approaches were used in predicting LAI, that is the four - tiered categorisation for the multistage 

approach and the pooling of all spectral variables for the backward elimination approach. The four - tiered categories 

of predictor variables were namely: Standard Bands, Traditional Vegetation Indices, Modified Vegetation Indices and 

RE bands and indices. Standard bands represent the spectral information that is generally covered by all sensors 

which is in the visible and near infrared sections of the EM, except for the vegetation RE Bands 5, 6, 7 and 8a. Bands 

1,  9, and 10 were not utilised in this study since they are not suitable for vegetation mapping. Traditional VI’s are 
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derived from the red and near infrared regions of the EM and modified VI’s are generally improved computations of 

traditional VI’s. RE or novel bands/indices are those computed inclusive of Bands 5, 6, 7 and 8a (Table 3.2).  

Table 3.2. Evaluated bands and VI’s, in grouped predictor variable categories. 

 

  

Traditional Vegetation 
Indices 

      

Normalised Difference 
Vegetation Index  

NDVI (R842 - R665) / (R842 + R665)  Rouse Jr et al. 
(1974) 

Normalised Pigment 
Chlorophyll Index 

NPCI (R665 - R430)/(R665+R430)  Penuelas et al. 
(1995) 

Green Normalised Vegetation 
Difference  

gNDVI (R780 - R560) / (R780+R560) Gitelson and 
Merzlyak (1996) 

Greenness Index  G R554/R677 Zarco-Tejada et 
al. (2018) 

Gitelson Ratio Green GRg (R842/R560) - 1  Gitelson et al. 
(2003) 

Difference Vegetation Index DVI (R842 - R665) Jordan (1969) 

Enhanced Vegetation Index  EVI 2.5[(R864 - R665) / ((R864) + (6 * R665) - (7.5 * 
R560) + 1))] 

Huete et al. (1994) 

Enhanced Vegetation Index 2 EVI2 (2.5 * (R842 - R665)) / (R842 + 2.4 * R665 +1) Jiang et al. (2008) 

Soil Adjusted Vegetation 
Index 

SAVI ((R842 - R665) / (R842 + R665 + 0.25)) * (1 + 0.25) 
 

Simple Ratio SR R842/R665 Jordan (1969) 

Pigment Specific Simple Ratio 
chlorophyll a 

PSSRa (R864/R665)   Blackburn (1998) 

Pigment Specific Simple Ratio 
chlorophyll b 

PSSRAb (R842/R665)  Blackburn (1998) 

Green Chlorophyll Index  Cl Green R842/R560 - 1  
 

Tassled Cap Vegetation GVI (R443 : R520) - (R520 : R600) - (R630 : R690) + 
(R760 : R900) + (R1560 : R1740)  - (R2080 : R2350) 

Bauer et al. (1994) 

Photosynthetic Vigour Ratio PVR (R560 - R665) / (R560 + R665)  Metternicht (2003) 

Triangular Vegetation Index TVI 0.5 * (120 * (R740 - R560) - 200 * (R665 - R560) 
 

Modified Vegetation Indices        

Modified Normalised 
Vegetation Difference 1 

MNDVI 1 (R755 - R740)/(R755 + R740) Mutanga and 
Skidmore (2004) 

Modified Normalised 
Vegetation Difference 2 

MNDVI 2 (R755 - R740)(R740 – R705 – 2*R445) Sims and Gamon 
(2002) 

Modified Normalised 
Vegetation Difference 3 

MNDVI 3  (R740 - R705)/(R740 + R705 - R445)  Sims and Gamon 
(2002) 
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Soil Vegetation Index MSAVI 
((2*842 + 1 - √(2*842 + 1)^2 - 
8*(R842 - R665)) / 2 

Qi et al. 
(1994) 

Optimsed Soil Adjusted Vegetation Index  OSAVI 
(1 + 0.16) * (R842 - R665) / 
(R842 + R665 + 0.16) 

Rondeaux 
et al. 
(1996) 

Transformed Chlorophyll Absorption in Reflection Index  TCARI 
3 * ((R740 - R705) - 0.2 * (R740 - 
R560) * (R740/R705) 

Haboudane 
et al. 
(2004) 

Modified Chlorophyll Absorption in Reflection Ratio index MCARI 
((R705 - R665) - 0.2 * (R705 - 
R560)) * (R705/R665) 

Daughtry et 
al. (2000) 

Revised MCARI RMCARI 
(((740 - 705) - 0.2 * (740 - 560) * 
(740/705) 

 

TCARI/OSAVI TCARI/OSAVI 
3 * ((R705 - R665) - 0.2 * (R705 - R560) * 
(R705/R665)) / (1 + 0.16) * (R842 - R 665) / 
(R842 + R665+0.16) 

MCARI/OSAVI MCARI/OSAVI 
((R705 - R665) - 0.2 * ( R705 - R 
560))(R705/R665)/(1 + 0.16) * (R842 - R665) / 
(R842 + R665 + 0.16) 

Modified Simple Ratio MSR 
(R842 / R665) -1/ (√842/6665) + 
1) 

 Chen 
(1996) 

Modified Normalised Difference Vegetation Index mND 
((R750 to R900) − (R660 to 
R720)) / ((R750 to R900) + (R660 
to R720) – 2*R445) 

Sims and 
Gamon 
(2002) 

Red Edge Bands/ Indices       

Band 5 705   

Band 6 740   

Band 7 783   

Band 8a 865   

Normalised Difference Vegetation Index Red Edge  NDVI RE (R740 - R705) / (R740 + R705)  
Rouse et 
al. (1974) 

Normalised Difference Red and Red Edge NDVI Red RE 
R864 - ((0.5 * R665) + (0.5 * 
R705)) / R864 + ((0.5 * R665) + 
(0.5 * R705))   

Xie et al. 
(2018) 

Simple Ratio 740, 560 SR 740,560  R740/R560  

Modified Simple Ratio Red and Red Edge  MSR Red RE 
R864/((0.5*R665)+(0.5*R705)) - 1 
/ √864/((0.5*665)+(0.5*705)) + 1 

(Xie et al., 
2018) 

Modified Simple Ratio Red Edge  MSR RE (R864/R665) -1/(√R864/R665) +1  
Xie et al. 
(2018) 

Green Chlorophyll Cl Green RE R864/R705 - 1  
Xie et al. 
(2018) 

CL Red and Red Edge  Cl RED RE R864/0.5 * R665+0.5 * R705  

Red Edge Inflection Point  REIP 
(R705 + 40 * ((Rre - R705) / 
(R740 - R705))) / 100 

Guyot et al. 
(1988) 

Reflectance at the Inflection Point Rre R665 + R783) / 2 
Broge and 
Leblanc 
(2001) 

Inverted Red Edge Chlorophyll Index IRECL (R783 - R665) / (R705/R740) 
Frampton 
et al. 
(2013) 
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Sentinel 2 Red Edge Position S2REP 
R705 + 35 * ((R783 - R665/2) - 
R705)) / (R740 - R705)) 

Frampton 
et al. 
(2013) 

VI 705    
 

VI705 (R705 - R665) / (R705 + R665)  

Standard Bands    

Band 2    

Band 3     

Band 4     

Band 8    

Band 11    

Band 12    
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3.2.5. Predicting leaf area index using the RF regression ensemble 

 

The prediction model was generated using the RF regression ensemble. The analyses were performed within the R – 

environment software package - Rattle, Version 3.5.1. The RF ensemble is a machine learning algorithm that utilises 

the bootstrapping technique to bag data. The in-bag data represented groupings of training data, that are randomly 

selected observations of the spectral bands and VI’s, used to train the trees. Decision trees are produced, with a 

defined number of features. The ‘forest’ is created from the decision trees, to finally return an average of the 

probabilities of the created trees. Probabilities are tested against the decision trees to return a class with the highest 

number of votes. Out-of-bag (OOB) data is used to validate how the model performs, as the validation returns an 

associated OOB error. The ensemble was selected and used in this study because it has demonstrated reliable 

performance, especially in RS applications including vegetation attributes prediction (Ahmed et al., 2014; Belgiu and 

Drăguţ, 2016; Ismail and Mutanga, 2010). The ensemble requires two parameters, Mtry and Ntree. Mtry was standardised 

to 500 observations and Ntree ranged from 1 to 5. Here, identification of important predictor variables from S2 MSI data 

were selected to produce estimates from observed LAI. Training data consisted of 70% (n = 42) of the entire dataset 

while the other 30% (n = 18) was used as validation data. Model accuracies from different predictor variables (spectral 

bands and VIs) were evaluated based on the root mean square error (RMSE) calculated using the following formula:  

𝐑𝐌𝐒𝐄 = √∑
(𝐲𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝𝐋𝐀𝐈−𝐲𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝𝐋𝐀𝐈)𝟐

𝐍
    

To provide a measure of strength between measured and predicted values, adjusted coefficients of determination (R2) 

were determined based on the formula below:  

𝐑𝟐 = 𝟏 −
∑(𝐲𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝𝐋𝐀𝐈−𝐲𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝𝐋𝐀𝐈)𝟐

∑(𝐲𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝𝐋𝐀𝐈− 𝐲𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝𝐋𝐀𝐈)𝟐       

The closer the coefficient of determination is to 1, the better the fit and the more predictive power will be exhibited by 

that model. Level of importance of predictors was also computed and used, as rankings returned from the RF model.  

3.2.7. Approaches for LAI prediction  

 

Predictor variables, spectral bands and VI’s used in the study were categorised. Categorising predictor variables into 

sets as; traditional VI’s, modified VI’s and RE bands and indices facilitated the identification of influential predictors in 

the retrieval of Podocarpus LAI. The categories of predictors were grouped into four categories which are referred to 

as the Multistage Analysis. The variables from the predictor category which exhibited the highest model accuracy was 

selected and used to generate a LAI prediction model. Similarly, in the backward elimination analysis, the dataset 

representative of predictors from all categories were pooled. Here, the least performing predictors were omitted from 

Formula 3.1. 

Formula 3.2. 



33. 
 

the subsequent model generation. This facilitated the identification of fewer, more important predictors that improved 

model estimation accuracy. This is critical as not all predictors are equally important in building the prediction model.  

Table 3.3. The two approaches used in LAI prediction models.  

Multistage Analysis Backward Elimination Analysis 

Standard Bands All spectral variables (pooled) 
Traditional Vegetation Indices  
Modified Vegetation Indices  

Red Edge Bands and Indices  

 

 

Figure 3.3. Systematic diagram of the methods involved in the estimation of LAI. 
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3.3. Results  

3.3.1.  Descriptive Statistics of observed LAI 

 

Yellowwood species LAI measurements ranged between 0.83 and 4.09 (n = 60, Mean = 2.24) (Figure 3.4). The 

conducted Shapiro – Wilk normality test on LAI measurements showed a unimodal distribution following a normal 

distribution curve assumed by the data.  

 

 

 

 

Figure 3.4. Descriptive statistics of observed LAI of the Yellowwoods. 

 

3.3.2. Comparison of S2 MSI spectral bands and vegetation indices in estimating leaf area index 

 

Low to moderate levels of accuracy were returned by the RF multistage models, using the S2 MSI product. Low model 

accuracy was observed for the Modified Vegetation Indices, which returned a RMSE of 0.74 m2/m2 and R2 of 0.35 in 

the categorised data management approach. Similarly, the Traditional Vegetation indices exhibited a RMSE of 0.55 

m2/m2 and a R2 of 0.16. RE bands and indices showed the highest accuracy most optimal model (RMSE = 0.48 m2/m2; 

R2 = 0.50), which also has more numbers of predictors. Lowest model variability was observed for Traditional 

Vegetation indices. While the RE bands and indices maintained the highest model, variability explained. Explained 

variability (%) indicates the cumulative contributions of predictors to the model. 

n = 60 

Mean: 2.24  

Standard Error: 0.11 

Minimum: 0.83  
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Table 3.3. RF model accuracies from the multiage approach. 

 
Predictor variables Number of 

predictor 
variables used 

RMSE 
(m2/m2) 

R2 Explained variability (%) 

Standard Bands 6 0.61 0.23 41.60 

Traditional Vegetation Indices 16 0.55 0.16 33.40 

Modified Vegetation Indices 12 0.74 0.35 46.84 

RE Bands and Indices 16 0.48 0.50 57.08 

 

In comparison, the backward elimination method models showed an improvement and increased model performance 

when more variables were eliminated with each successive stage. From Stage 1, a large proportion of eliminated 

predictors were of the traditional and modified indices (Table 3.4.) A gentle progression in terms of the R2 values was 

observed from Stage 1 to Stage 6. Although Stage 7, returned a slightly lower R2 value that deviated from the 

progression, it exhibited a decrease in terms of the RMSE from 0.60 to 0.54 m2/m2. Stage 8 exhibited the most 

performing model with a R2 of 0.59 and the lowest RMSE recorded in this study equivalent to 0.48 m2/m2 as well as the 

highest percentage of explained model variance of 70%. 

 

Table 3.4. RF model accuracies from the backward elimination approach. 

 
Elimination stage No. of predictor 

variables used 
Eliminated variables R2 RMSE 

(m2/m2) 
% Model variability 

explained 

1 50 NPCI, MNDVI  2, Cl Red RE, SR, MSR, 
PSSRb, GVI 

0.41 0.62 48.82 

2 44 Band 11, Band 3, OSAVI 0.41 0.64 50.91 
3 41 Cl RE, PSSRa, Band 2, VI710, GRg, 

SAVI, REIP, NDVI, MCARI/OSAVI, 
MCARI, Cl Green RE, MSR RE 

0.41 0.63 52.86 

4 29 G, RMCARI, Band 4, PVR, EVI 0.42 0.61 53.23 
5 23 Cl Green, MNDVI 1, Band 8, TVI, DVI, 

MSR RED RE, S2REP, mND, Band 12, 
MSR RE  

0.43 0.64 54.42 

6 15 MSAVI, Cl Green, SR750 0.55 0.60 55.59 
7 12 GNDVI, Rre, IRECL 0.48 0.56 66.92 
8 7 - 0.59 0.48 70.09 

 
 
 
 
3.3.3. The comparison of the multistage and the backward elimination data management approaches 

Figure 3.5.(a) shows the final one-to-one relationship between measured and predicted LAI, derived using the 

variables from the multistage approach. That is, the RE bands and indices which exhibited a RMSE of 0.48 m2/m2 and 



36. 
 

a R2 of 0.50, whereas the final model derived based on the backward elimination method resulted in a R2 of 0.59 and 

a RMSE of 0.48 m2/m2 (Figure 3.5.), comprising predictors from all categories. Correspondingly, the backward 

elimination method also identified RE bands and VI’s as the most optimal predictor variables, in terms of variable 

importance. (Figure 3.5 (b). Of the two model approaches, the backward elimination method was the best prediction 

model, for observed LAI.  
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Figure 3.5. Relationship between the predicted and observed leaf area index and relative variable importance for the data management approaches, (a) 

multistage (categorisation) and (b) backward elimination method, of the best overall prediction models for each case.  
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3.3.3. Mapping the spatial distribution of Podocarpus spp. LAI  

Figure 3.6 illustrates the spatial distribution of LAI in the study area. Predicted LAI values are shown, with varying 

measurements within the Ingeli forest. The largest proportion of LAI values are predicted for the 2.38 – 3.02 range. 

Higher LAI predictions are noted in western, eastern, and southernmost parts of the forest. Lowest LAI values can 

be seen in the middle part of forest, showing no distinctive pattern.  

 

Figure 3.6. LAI map estimated with the backward elimination derived model, for the Podocarpus spp LAI.  

.  

3.4. Discussion 

The main objective of this study was to predict and map the spatial distribution of the Podocarpus tree spp. LAI 

using a model derived using RF and S2 MSI data in an Afromontane mistbelt forest located in South Africa.  

3.4.1. Predicting LAI of Podocarpus spp.  

 

The comparative analysis of data management approaches showed that the backward elimination method 

exhibited better results (RMSE = 0.48 m2/m2; R2 = 0.59) in relation to the multistage approach (RMSE = .50 m2/m2, 

R2 = .48), in estimating LAI of the Podocapus spp. in the Ingeli State Forest. The most influential variables of the 

optimal backward elimination model were RE VI’s and bands. Although, the backward elimination method had 

higher coefficient of determination (59%) than the other method, their RMSE were the same. These findings 

suggest that there is no clear-cut, best variable selection method of estimating LAI of the podocarps in an 

Afromontane forest. Our findings are supported by Mehmood et al. (2012) who concluded that there is no best 

variable selection method when considering the fact that there is likely to be a relation between the method and 

the data characteristics. This assertion is also mirrored through the selection of three similar spectral variables by 

both methods, in this study. Specifically, Band 5, NDVI RE and NDVI Red RE were all selected by these two 

methods - multistage and backward elimination - as optimal variables for predicting and mapping the LAI of 

Podocarpus spp. in this study. The presence of the RE band and indices in both models could also explain their 

similar accuracy illustrated by a RMSE of 0.48 m2/m2. The RE section of the EM spectrum is widely renowned in 
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literature for being insensitive to high foliage density and LAI associated with tropical forests such as the 

Yellowwood forest (Cross et al., 2019; Gitelson et al., 2003). This relationship is explained by the fact that the 

canopy reflectance in the RE region mainly results from multiple scattering between the leaf layers. Hence, the 

shape of the RE section of the EM spectrum is strongly associated with high foliage density and LAI (Sun et al., 

2019). Taking into consideration that the Podocarpus spp. are characterised by glossy evergreen long and narrow, 

pendulous leaves (Mucina et al., 2006; Van Wyk, 2013) as illustrated in Figure 3.2 (b), the distribution of 

Yellowwood tree leaves results in high leaf angle distribution (LAD) and LAI estimates. The high LAI and LAD is 

generally associated with a shift of the RE to longer wavelengths, hence the remarkable influence of both models 

since they are characterised by RE spectral variables. In a related study, Croft et al. (2014) evaluated specific LAI, 

in different leaf types, with a wider range of LAI observations based on the MEdium Resolution Imaging 

Spectrometer (MERIS) data. They noted that the most influential spectral variables were derived from the RE, 

especially for the broader leaf types. 

3.4.2. Comparison of standard bands, traditional and novel vegetation indices in predicting LAI of Podocarpus spp. 

in an Afromontane forest 

 

In the multistage approach to modelling LAI, traditional vegetation indices were outperformed by the standard 

bands by an error magnitude of 0.06. Traditional vegetation indices then outperformed the modified vegetation 

indices by an error magnitude of 0.19 whereas the modified vegetation indices were outperformed by the RE 

vegetation indices to an error magnitude of 0.26. Although outperformance of traditional vegetation indices by 

standard bands was surprising, there are studies such as that of Wang et al. (2018) that have exhibited similar 

findings. Results by Wang et al. (2018)  showed that the spectral bands exhibited an increased level of accuracy, 

when compared to traditional vegetation indices in the retrieval of LAI.  

The smallest RMSE of 0.48 m2/m2 to be recorded in this study exhibited by the standard bands suggests model 

over fitting related issues. The coefficient of determination as well as the variance explained associated with this 

model were very low, implying that the relationship between the predicted and measured datasets was relatively 

poor. VI’s derive strength from two or more sections of the EM in relation to a single standard band. In this regard, 

there is bulk literature that attests to the poor performance of standard spectral bands in relation to vegetation 

indices when characterising vegetation attributes (Cross et al., 2019; Moreno-García et al., 2018; Thenkabail et 

al., 2013). Specifically, VIs circumvent the effect of topography, sun and view angle, soil background as well as 

atmospheric noise while being sensitive to the vegetation spectral characteristics such as high foliage density and 

chlorophyll content (Thenkabail et al., 2011) associated with evergreen tree species such as the Podocarpus spp. 

Despite the model performance improvements associated with vegetation indices, Traditional and Modified 

vegetation indices did not improve the accuracies in estimating LAI of Podocarpus species in this study. This points 

to the fact that the original intent of many of these indices is for general vegetation detection and not suited for 

specific species attributes characterisation. Most of these indices such as GNDVI and OSAVI were developed to 
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surpass saturation issues in areas characterised by dense vegetation (Cross et al., 2019). In a related study, Cross 

et al. (2019) also reported a poor performance of Traditional and Modified VI’s in determining the appropriate 

resolution data and VI’s for tropical forest tree species characterisation. Similarly, Chrysafis et al. (2017) also noted 

no improvement in model accuracies when traditional vegetation indices were used to estimate volume of growing 

stock using S2 MSI data in a Mediterranean forest. 

Meanwhile, the RE bands and indices model outperformed all the other models derived based on the multistage 

variable selection method. As aforementioned, the Pordocarpus tree species are evergreen which implies that they 

generally have chlorophyll content levels other than high foliage density. The RE section of the EM has been 

extensively proven to be sensitive to high chlorophyll content hence the optimal performance of RE VI’s in the 

multistage approach of estimating LAI of the Yellowwoods in this study. Furthermore, it is worth noting that the S2 

MSI RE bands are narrower than other wavebands (Chrysafis et al., 2017; Fernández-Manso et al., 2016; Louis 

et al., 2016). Broader wavebands tend to mask out critical information that is required in characterising vegetation 

attributes. Sensitivity of the RE bands and indices noted in this study could be attributed to their narrow nature 

which makes them more sensitive to the variations of Podocarpus spp. LAI. 

3.5. Conclusion  

The study sought to test the utility of the S2 MSI in the estimation of LAI in the Ingeli State Forest using the RF 

algorithm based on the backward elimination and multistage data analyses. Grounded on the findings of this study 

we conclude: 

1. Sentinel 2 MSI data particularly RE bands and VI’s can be used to accurately predict LAI of Afromontane 

vegetation species such as Podocarpus spp. 

2. The backward elimination method performs better in characterising tree specific vegetation attributes such 

as LAI.  

 

The findings of this study are critical foundational steps for coming up with effective monitoring, management, and 

conservation strategies of the species diverse Afromontane forest of southern Africa. This research further 

supports the applicability of spectrally derived information, in the retrieval of LAI, within unique forest types. 

Furthermore, the findings of this study underscore the use of new multispectral instruments in the conservation of 

the natural resources and capital. 
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Chapter Four 

Synthesis and Conclusions 

4.1. Introduction  

 

Implementing appropriate and meaningful conservation strategies for degraded indigenous forests requires up to 

date, holistic information for those ecosystems. Such unique landscape settings therefore require new age 

methods of surveying such as RS and GIS applications. RS is cost effective, and offers a continuous data source, 

that is incomparable to traditional field surveys. Local surface topography assumes a pivotal role in the distribution 

and productivity of specialist forest species, such as the Yellowwood tree species. However, the relationship 

between emergent tree properties such as LAI and topography is not well understood, and there is much to be 

explored in this regard. Similarly, the predictive capacity of “new generation” satellite remotely sensed data in 

understanding LAI of such unique forest tree species has not been extensively explored. Specifically, the 

Yellowwood trees species; Podocarpus henkelii (Henkel's Yellowwood), Podocarpus latifolius (Real Yellowwood) 

and Podocarpus falcatus (Outeniqua Yellowwood) function as keystone features of the Afromontane forest as they 

are emergents, with large spreading crowns which support many species. For instance, insects, birds and 

mammals depend on the trees for habitat and foraging sites. In this regard, they contribute to the maintenance of 

biodiversity among an assortment of ecological and environmental services. However, the population of these tree 

species as well as their spatial extent is drastically being reduced by human activities. Subsequently, there is a 

need to develop comprehensive frameworks for inventorying, monitoring, and drawing up effective conservation 

strategies for such critical indigenous forest species.  

This study, therefore, aimed to characterise the LAI of the Ingeli Yellowwoods in a southern African mistbelt 

Afromontane forest, using SRTM DEM and the S2 MSI remotely sensed data products. Therefore, the objectives 

of the study were to: 

(i) evaluate the role of SRTM DEM derived topographic variables, in the explanation of LAI, using PCA 

and stepwise regression analysis, and  

(ii) to assess the utility of S2 MSI imagery, in the estimation of LAI, using the RF regression ensemble.  

4.2. The role of topographic variables in explaining leaf area index, of the Yellowwood tree species in an 

Afromontane mistbelt forest of southern Africa 

 

In investigating the relative importance of topographic controls in estimating LAI of the endangered Yellowwood 

species in a recovering indigenous Afromontane mistbelt forest within southern Africa, results of the study showed 

that catchment area, mass balance and SVF and topographic variables (in order of importance)  optimally (SEE = 

35m2/m2 and R2 = 0.85) explained the spatial variation of the observed leaf area index. This underpins the 

applicability of the study for forest management; specifically, the inclusion of topographic indices in understanding 

emergent tree properties.  
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4.3. Estimating leaf area index of the Yellowwood tree in an indigenous, southern African forest, using 

Sentinel 2 Multispectral Instrument imagery and the Random Forest regression ensemble 

 

Freely accessible medium resolution remotely sensed data are important in the retrieval of ecological biophysical 

characteristics, such as leaf area. Specifically, the ability of S2 MSI data, which covers the critical RE section of 

the electromagnetic spectrum for vegetation mapping, was tested in the study. The methodology to achieve this 

included the application of a range of vegetation indices, and the RF regression ensemble. A novel approach was 

used in constructing the LAI prediction model based on individual bands, traditional indices, modified indices and 

RE bands and indices in a multistage approach. This was then compared to the backward elimination approach. 

Yellowwood tree species LAI was optimally predicted (R2 = 0.59) based on the backward elimination prediction 

model using Band 5, MNDVI 3, Band 8, NDVI RE 2 and NDVI RED RE, Band 4 and TCARI. The prediction of LAI 

distribution using S2 MSI imagery demonstrated the applicability of the “new generation” sensor in the monitoring 

of essential biodiversity variables (EBV’s), such as leaf area.   

4.4. Implication to indigenous forest species monitoring and management 

The study is a contribution to the limited body of literature on the effects of topography on tree condition in ecology 

and forestry in southern Africa. The study’s approach to characterising leaf area in terms of topographic controls 

on the keystone Yellowwood tree species highlights the importance of ecosystem resources movement and 

distribution facilitated by topography. This implies that the distribution of ecosystem resources, such as water which 

are highly influenced by terrain affect critical tree properties such as LAI, hence they need to be considered in 

understanding indigenous forest species distribution and management. Similarly, the prediction of forest species-

specific LAI, may be used to produce maps that can be used in the assessment of forest condition, carbon 

assimilation and productivity. The procedures used in this study provide the required insight to conservationists, 

ecologists, land use managers and the broader remote sensing community, in identifying appropriate datasets as 

well as plausible approaches for manipulating RS data to derive spatial information required in monitoring 

Yellowwood tree species productivity. This is important for accurate and up to date indigenous forest monitoring, 

especially in highly disturbed forest environments. Overall the successful application of the SRTM DEM and S2 

MSI imagery, PCA, stepwise linear regression and the RF regression ensemble in characterising the LAI of the 

protected Yellowwood tree species, in an indigenous Afromontane mistbelt forest illustrates the potential of 

remotely sensed data in developing comprehensive frameworks for inventorying, monitoring and devising effective 

conservation strategies for such critical indigenous forest species. 

4.5. Recommendations for future studies 

Integrating the topographic variables with geomorphological, soil and climatic data could supplement the 

understanding of LAI distribution, at a local scale. Climatic data, radiation, and temperature indices could help 

better understand the sky view factor, as the effects of seasonality particularly on temperature works in concert 

with the topographic metrics. This has the potential to explain residual variation, especially considering the unique 
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landscape of the Afromontane forest. Still, it is recommended that the findings of this study be validated with 

existing forest research inventory such as the recently published Cape Parrot and Mistbelt Forest Conservation 

Action Plan.  
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