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Abstract

The research is based on financial time series modelling with special ap-

plication to modelling inflation data for South Africa. In particular the

theory of time series is explored and applied to the inflation data span-

ning from January 1994 to December 2008. The data was obtained from

the South African Reserve Bank.

Two families of time series models namely, the autoregressive integrated

moving average (ARIMA) (with extension to seasonal ARIMA (SARIMA))

models and the autoregressive conditional heteroscedastic (ARCH) (with

their extensions to generalized ARCH, (GARCH)) models were fitted to

the data. Time series model building strategies as postulated by Box-

Jenkins (1976) are explored in detail from a theoretical and practical

stand point. The stages in the model building namely, identification,

estimation and checking are explained explicitly and applied to the data.

A best fitting model for each family of models was selected based on

how well the model captures the variations in the data (goodness of fit).

The goodness of fit is assessed via the Akaike information criteria (AIC),

Bayesian information criteria (BIC) and the coefficient of determination,

R2.

A seasonal ARIMA model, SARIMA(1,1,0)×(0,1,1)s was chosen to be the

best fitting from the ARIMA family of models, while the GARCH(1,1)

was chosen to be the best fitting from the ARCH-GARCH models. The

selected models were used to compute two year forecasts for inflation

using time series forecasting methods. The accuracy of the forecast were

assessed via the forecast confidence width. Then comparisons of the
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two selected models was carried out based on the goodness of fit and

the forecasting power of the two models. It was established that the

GARCH(1,1) model was superior to the SARIMA(1,1,0)×(0,1,1) model

according to both criteria. This was especially so because the data was

characterized by changing mean and variance, a characteristic that makes

ARIMA modelling less appropriate than the ARCH-GARCH modelling.

Analysis and write-up were done using SAS version 9.1 and latex re-

spectively. Presentation and explanations of results were aided by the

use of graphs and tables.
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Chapter 1

Introduction

Inflation modelling is one of the most important research area in mon-

etary planning. To start with we state a quote from Kohn, (2005):

“Nothing is more important to the conduct of monetary policy than

understanding and predicting inflation. Achieving and maintaining price

stability will be more efficient and effective the better we understand

the causes of inflation and the dynamics of how it evolves”. Monetary

policy-makers worldwide are more interested in containing and reducing

inflation through price stability. Moreover, so long as inflation expec-

tations are well anchored, we can tolerate limited changes in inflation,

but we need to know that a rise or fall is not the beginning of a more

extended trend. Consequently, we focus closely on the reasons for any

changes in inflation and their implications for the outlook.

Financial modelling defined as ‘creation of representation of reality’ is

one way of trying to understand the underlying dynamics of inflation

and how it evolves (www.statisticalforecasting.com). Models for finance

and economics are heavily influenced by time, through both time reso-

1



lution and time horizon. The concept of resolution signifies how densely

data are recorded varying from seconds to years and time horizon looks

at the length of time the data spans. Financial analysis usually involves a

study of price movement, usually given over time (financial time series),

hence financial modelling focuses on building mathematical and statis-

tical models to capture the price movements and the variations in the

prices over time.

Inflation is usually defined as a sustained rise in a broadly based index

of commodity prices over some period of time, (Bomberger and Maki-

nen, 1979). The essential ingredients of the definition are that the rise

in prices takes place in a broad group of goods and services, not in one

or two commodities, and that the increase continues for a rather lengthy

period rather than for one or two quarters. When the price level rises,

each unit of currency buys fewer goods and services; consequently, infla-

tion is also an erosion in the purchasing power of money, that is a loss

of real value in the internal medium of exchange and unit of account in

the economy (Stokes, 2009).

The most common way of measuring inflation is by reference to con-

sumer price index (CPI), which is an annualized percentage change that

measures the changes in prices of a basket of goods and services pur-

chased by a representative set of households. In South Africa the CPI

is calculated by the Statistics South Africa under the auspices of the

Ministry of Finance. The CPI is a dynamic figure obtained by measur-

ing the price movements of numerous goods and services consumed by

a typical South African household on a monthly basis. Specific weights

2



are assigned to categories of expenditure based on consumer spending

statistics. The different types of expenditure are grouped together in a

basket and the high volume spending items carry the most weight and

therefore have the most material impact on the calculated index.

The main shortfall of using CPI is that, it’s a narrow measure of inflation

and does not take into account other goods and services such as those

used for intermediate consumption or the prices of capital products. An

alternative measure is the gross domestic product (GDP) deflator, which

is derived from the GDP measured in current prices and GDP measured

in constant prices, that is prices in the base year. This is a weighted

average of the prices of:

• goods and services consumed by households

• expenditure by government on goods, services and salaries

• fixed capital assets

• changes in inventories

• exports of goods and services

• imports of goods and services

Inflation dynamics and evolution can be studied using a stochastic mod-

elling approach that captures the time dependent structure embedded in

the time series of inflation as a stochastic process. ARIMA/Box Jenk-

ins models are important in complementing financial modelling by de-

scribing the component structure of statistical time series especially to

many financial time series that show seasonal behavior, random changes
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and trends (non-stationary) time series. Stochastic volatility models, au-

toregressive conditional heteroscedastic (ARCH) and generalized ARCH

(GARCH) models are also other approaches used to capture and model

the volatility behaviour of financial time series.

Monetary policy in South Africa went through several regime and other

changes in the past quarter century (approximately since 1980). The

country’s (through the South African Reserve Bank (SARB)) recent

adoption of the explicit inflation targeting and protection of the internal

and external value of the Rand increase the need for good forecasting

models of inflation and models for understanding the monetary trans-

mission mechanism (Aron and Muellbauer, 2004). Currently, monetary

policy in South Africa is aimed at reducing inflation and improving in-

ternational competitiveness. An understanding of the forces driving and

perpetuating inflation in South Africa should shed some light on the Re-

serve Bank’s control over the inflation process and the relative efficacy

of alternative monetary policy frameworks and instruments, (Akinboade

et al., 2001).

During the 1990s the SARB pursued an unofficial (implicit) inflation

target regime. This did not strictly give a target range for inflation, but

rather advocated for a floating or flexible way of controlling inflation.

Although, compared to the 1990s, the explicit inflation targeting regime

might have been marginally more successful in keeping inflation at lower

levels, the inflation targeting system still displays limited success in keep-

ing inflation within target range, (Burger and Marinkov, 2008). This is

apparent when considering that since the implementation of inflation
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targeting, the CPI exceeded its 6% upper bound in 29 of the 72 months

between January 2002 (the first month of the first year that inflation had

to be within its target range) and December 2007.

It is against this background that this research focuses on understand-

ing the dynamics of the underlying inflation generating mechanism as a

stochastic process. Mboweni, (2007) the former governor of the South

African Reserve Bank applauded the ARIMA models in predicting in-

flation saying they are momentum-type models with no underlying eco-

nomic theory. Meyler, Kenny and Quinn (1998) also used ARIMA models

to forecast Irish inflation. The three placed emphasis on forecast perfor-

mance based on minimizing ‘out of sample forecast errors’ rather than on

maximizing ‘in-sample goodness of fit’. Muhammed et al., (2005) found

out that on the basis of both in-sample and out-of- sample forecast it can

be concluded that their model has sufficient predictive powers to forecast

inflation in Pakistan. Engle, (1982) used the ARCH processes to model

inflation rates recognizing that the uncertainty inherent in inflation tends

to change with time. Talke (2003) in his MSc research also applied ARCH

models to modelling volatility in time series data. In his work Talke,

(2003) applied the ARCH methods to changes in exchange rates of the

South African rand against the US dollar, Swiss and the British pound.

Rangan and Josine, (2009) used cosine-squared cepstrum to provide ev-

idence that inflation in South Africa has become more volatile since the

first quarter of 2000, when the country moved into an inflation targeting

regime, than it would have been had the SARB continued with the more

eclectic monetary policy approach pursued in the pre-target era. The

current application will be based on the South African inflation data and
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its associated variations and volatility over time.

1.1 Significance of the study

It is generally accepted that over the medium to long term, inflation is a

monetary phenomenon, that is, it is entirely determined by the monetary

policy. Over shorter horizons, however, various micro-economic shocks,

including variations in economic activity have a bearing on the infla-

tion. Therefore, a profound understanding of the inflation-generating

process, in particular, the speed of inflation adjustment in response to

such shocks is of crucial importance for a central bank whose policy is ori-

ented towards price stability. The best way to study and understand the

underlying phenomenon of the inflation process is to construct practical

statistical models that account for the variation and volatility in the pro-

cess. Policies to contain inflation are necessary for transition economies

to grow and firms to restructure. Furthermore, a change in inflation is

a response to intertwined change in macro-economic fundamentals such

as prices, wages, money supply and exchange rates. In particular, by en-

hancing the transparency of the monetary policy, the inflation targeting

regime is expected to provide a better anchor for inflation expectations

and hence lead to favourable impacts on price-setting and wage-setting

behaviour in the economy. Containment of inflation is useful to an open

and small economy such as South Africa for a variety of reasons, among

which are:

• to provide important information about the likely impact of shocks

on the economy over time especially for the purpose of setting the

monetary policy.
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• to assist in the identification of the underlying pressures in the

economy.

• to shed some light on the performance of the monetary policy under

different policy regimes.

1.2 Objectives of study

The main objectives of our study are to:

• use time series analysis to study and understand the variations

and volatility in inflation trend as a stochastic process in South

Africa after 1994. Specifically, we shall use the time series idea that

observations that are close together in time are more correlated or

similar than observations that are far apart.

• develop time series models (ARIMA and ARCH models) that will

be used to explain the time dependent structure embedded in the

inflation process. This will be achieved by studying and under-

standing the underlying causes or mechanisms of the variation and

volatility in the series.

• compare the models to find the best fit model using time series

model selection techniques.

• demonstrate how to use the model selected to compute forecasts of

future inflation rate.

The thesis is arranged in the following way: Chapters 2 and 3 focus on

general theory of Box-Jenkins ARIMA models. Specifically, the theory
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on identification of different models, model estimation, model checking

and validation and forecasting are explained in detail in these chapters.

Chapter 4 looks at the theory of the ARCH-GARCH models. The con-

cept of heteroscedasticity and how the models are constructed is given

in detail. Chapter 5 deals with the application of the two family of mod-

els, that is, the ARIMA and the ARCH-GARCH, to the inflation rate

data. Steps in identifying the models, estimating the model parameters

and validating the selected models are well followed. Model validation

is done using residual analysis. Analysis is done using SAS version 9.1

procedures. Chapter 6 focuses on comparing the selected ARIMA and

selected ARCH models using the best fit criteria and their forecasting

power from both a theoretical and practical point of view. Conclusions,

recommendations and areas of further research are also presented in this

chapter.
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Chapter 2

ARIMA modelling

2.1 Introduction

A time series is a series or sequence of data points measured typically

at successive times. These data points are commonly equally spaced

in time (Chatfield, 2004). It should be noted that time series analysis

and longitudinal data analysis are fundamentally different although they

share some common properties, (Diggle et al., 2002). In the latter, a

sample of individuals (N) are recruited into a study e.g a clinical trial,

then repeated measurements (n) are taken on the same subjects. Thus

in this case, we have many short time series generated by each individ-

ual. In time series we have one long series of observations such as in the

current study. Time series analysis comprises methods that attempt to

understand such time series, often to understand the underlying gener-

ation process of the data points and construct a mathematical formula,

(or a model) to represent the process. The constructed model is used to

forecast future events based on known past events, that is, to forecast

future data points before they are realized. Prediction on the other hand
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is concerned with using a time series model to obtain data points within

a realized time period.

A time series model will usually or should reflect the fact that obser-

vations close together in time domain are more correlated than observa-

tions further apart. When modelling variations in the level of a process

realized over time, there are three main classes of models that are of

importance. These are:

• Autoregressive (AR) structure which is defined as a stochastic pro-

cess that assumes that the current data can be described by a

weighted sum of its previous values and an error term.

• Moving average (MA) model defined as a type of finite impulse re-

sponse filter process used to analyze a set of data points by creating

a series of averages of different subsets of the full data set.

• Finally, an integrated time series is obtained by taking difference

of successive observations.

As already mentioned earlier, time series modelling falls under a wider

class of processes called stochastic processes. These are processes in

which there is an indeterminacy in the future evolution of the process

described by probability distributions. This means that even if the initial

conditions (or starting point) is known, there are many possible paths

that the process might take, but some paths are more probable and

plausible than others. An observed time series is just one example of

the infinite set of time series which can be treated as a simple case of a

stochastic process and the infinite set is sometimes called an ensemble.
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A useful way of describing a stochastic process is to give the moments of

the process particularly the first and second moments, that is the mean

and the autocovariance function (ACVF). Let {yt} be a random variable

that is time dependent, and thus yt will denote the observed time series.

The mean function µt is defined for all t by µt = E[yt]. The variance

function σ2
t is defined for all t by σ2

t = E[(yt − µt)
2]. Furthermore the

autocovariance function (ACVF) denoted by γ(t1, t2) is the covariance

between yt1 and yt2 given by

γ(t1, t2) = E[(yt1 − µ(t1))(yt2 − µ(t2))].

The variance function is a special case of the ACVF when t1 = t2. When

analyzing time series data an assumption of stationarity is usually made

and this is defined and described in section (2.2) below.

2.2 Stationary process

A time series process is said to be strictly stationary if the joint distri-

bution of yt1 , ..., ytk is the same as the joint distribution of yt1+τ , ..., ytk+τ

for all t1, ..., tk, τ . That is, shifting the time origin by τ has no effect on

the joint distribution which must therefore depend only on the intervals

between the two set of points given by τ which is called the lag. A time

series process is also called weak (or second order) stationary when the

requirements of strict stationarity are only applied to two pairs of ran-

dom variables from the time series. Formerly, a time series process is said

to be second stationarity if the first and second order density function

satisfies:

fy(y1 : t1) = fy(y1 : t1 + τ) (2.1)
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and

fy(y1, y2 : t1t2) = fy(y1, y2 : t1 + τ, t2 + τ) (2.2)

for all t1,t2 and τ .

If k = 1, strict stationarity implies that the marginal distribution of

yt is the same for all t so that provided the first two moments are finite,

we have µt = µ and σ2
t = σ2 which do not depend on the value of t.

Furthermore if k = 2 the joint distribution of yt1 and yt2 depends only

on the time difference t2 − t1 = τ , implying strict stationarity. Thus the

ACVF γ(t1, t2) also depends only on γ(t2 − t1) since γ(t1, t2) is given by

γ(τ) = E[yt − µ][y(t+τ) − µ]

= Cov[yt, yt+τ ]

= γ(τ) (2.3)

which is called the autocovariance coefficient at lag τ . The autocorrela-

tion function (ACF) is defined by

ρ(τ) = γ(τ)
γ(0)

which is a measure of the correlation between yt and yt+τ and it is an

important function for identifying the order of an ARMA model as will

be discussed in chapter 3. A process is said to satisfy second order

stationarity if its mean is constant and its ACVF depends only on the

lag, so that

E[yt] = µ
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Cov[yt, yt+τ ] = γ(τ)

If τ = 0, then the mean and the variance are constant, implying strict

stationarity. Application of Box-Jenkins ARIMA modelling assumes the

series is stationary. In the event that the series exhibits nonstationarity,

appropriate transformations, as given in detail in section (2.5), have to

be applied to make the series stationary. Alternatively, other approaches

such as smoothing, in the form of for example exponential smoothing

may also be used to transform the data. We present the properties of

the ACF of a stationary stochastic process.

2.2.1 The ACF and its properties

Suppose a stationary stochastic process {yt} has mean µ and variance

σ2, then the ACF at lag τ is defined as

Cov(yt, yt+τ )

V ar(yt)
=

γ(τ)

γ(0)

= ρ(τ) (2.4)

Note ρ(τ) = 1 if τ = 0. The plot of the ACF over time is used to identify

the order and degree of nonstationarity of an ARIMA model.

Property 1

The ACF is an even function of its lag, that is,

ρ(τ) = ρ(−τ)

=
Cov(yt−τ , yt)

V ar(yt−τ )
(2.5)
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This means that correlation between yt and yt+τ is the same as that

between yt and yt−τ

Property 2

|ρ(τ)| ≤ 1, that is, the ACF lies between -1 and +1

Combining the two results gives |ρ(τ)| ≤ 1 as required.

Property 3

The ACF does not uniquely determine the underlying model. Although a

given stochastic process has a unique covariance structure, the converse

is not in general true. That is a unique covariance structure is not a

guarantee for the existence of a stochastic process. It is generally possible

to find many normal and non-normal processes with the same ACF. As

a consequence, in model identification, invertibility (see section 2.3.3)

must be ensured in order to uniquely identify a given model. For proofs

of properties 1, 2 and 3 see Chatfield (2004) page 36.

2.3 Some basic useful models

This section describes a series of different types of stochastic processes,

from simple to complex in a building block fashion that may be appro-

priate when setting up a model for a time series. The basis or criteria

for identifying a model is the ACF and the PACF.
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2.3.1 Purely random process

A time series is said to be purely random if it consist of a sequence

of random variables, εt which are mutually independent and identically

distributed with constant mean and variance σ2
ε . From this definition

it follows that the process has constant mean and variance, and the

independent assumption means that

γ(k) = Cov(εt, εt+k) =

 σ2
ε if k = 0;

0 if k = ±1,±2, ...

and therefore the autocorrelations are given by

ρ(k) =

 1 if k = 0;

0 if k = ±1,±2, ...

Because the mean and the variance do not depend on time, the pro-

cess is said to be second order stationarity. Further, the independence

assumption implies that the process is strictly stationary.

2.3.2 Random Walk

Suppose we now define εt as an independent random process with mean

µ and the variance σ2
ε . Then a process {yt} is said to be a random walk

if

yt = yt−1 + εt. (2.6)

Such a process is usually assumed to start at zero when t = 0 so that

y1 = ε1 and in general

yt =
∑t

i=1 εi
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Thus we deduce that E(yt) = tµ and V ar(yt) = tσ2
ε . The process is non-

stationary because the mean and variance depends on time t. However

the first order difference of a random walk given by

∆yt = yt − yt−1 = εt (2.7)

forms a purely random process, which is stationary. The best known

examples of time series which behave like random walks are share prices

on successive days, that is, share price on day t is equal to price on day

t− 1 plus random error.

2.3.3 Moving Average (MA) process

Suppose that εt is a purely random process with mean zero and variance

σ2
ε , then a process {yt} is said to be a moving average process of order q,

(MA(q)) if

yt = εt + β1εt−1 + ... + βqεt−q (2.8)

where the β′is are constants. It immediately follows that

E[yt] = 0

V ar(yt) = σ2
ε

∑q
i=0 β2

i

since ε’s are independent. The εs are scaled so that β0=1. We also have

γ(k) = Cov(yt, yt+k)

= Cov(β0εt + ... + βqεt−q, β0εt+k + ... + βqεt+k−q) (2.9)
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γ(k) =


0 if |k| > q;

σ2
ε

∑q−k
i=0 βiβi+k if k = 0, 1, 2, ..., q;

γ(−k) if −q < k < 0

As γ(k) does not depend on t and the mean is a constant, the process

satisfies second order stationarity for all values of the βi. The ACF of

the MA(q) process is given by

ρ(k) =



1 if k = 0;∑q−k
i=0 βiβi+k∑q

i=0 β2
i

if k = 0, 1, 2, ..., q;

ρ(−k) if −q < k < 0;

0 if k > q.

Note that the ACF cuts off at lag q which is a special feature of MA

processes, and in particular, the MA(1) process with q = 1 has an ACF

given by

ρ(k) =


1 if k = 0;

β1

1+β2
1

if k = ±1;

0 otherwise.

A restriction is always imposed on the βi to ensure that the process

satisfies a condition called invertibility. This condition may be explained

by use of an example. Consider the following first order MA processes

A : yt = εt + θεt−1

B : yt = εt +
1

θ
εt−1 (2.10)
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It can be shown that the two processes are different but have the same

ACF, that is θ
1+θ2 . Thus we cannot identify uniquely an MA process

from a given ACF. If we invert models A and B in equation (2.10) by

expressing εt in terms of yt, yt−1, ... we get

A : εt = yt − θyt−1 + θ2yt−2 − ...

B : εt = yt −
1

θ
yt−1 +

1

θ2
yt−2 − ... (2.11)

If |θ| < 1 the series of the coefficients of yt−j for model A in equation

(2.11) converges whereas that of B does not. Thus generally a process

{yt} is said to be invertible if the random disturbance at time t, sometimes

called the innovation can be expressed as a convergent sum of past and

present values of yt in the form

∑∞
j=0 Πjyt−j

where
∑∞

j=0 |Πj| < ∞, that is the process can be written in the form of

an autoregressive (AR) process, possibly of infinity order but whose co-

efficient form a convergent sum. The AR process is described in section

(2.3.4) below. The imposition of the invertible condition ensures there is

a unique MA process for a given ACF.

The invertibility condition for an MA process of any order is best ex-

pressed by using a backward shift operator denoted by B which is defined

by

Bjyt = yt−j for all j. For example an MA process of order q, that is an

MA(q), given by
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yt = εt + β1εt−1 + ... + βqεt−q (2.12)

can be written using the shift operator as

yt = (β0 + β1B + β2B
2 + ... + βqB

q)εt

= ΘBεt (2.13)

where ΘB is a polynomial of order q in B. It can be shown that an MA(q)

process is invertible if the roots of the equation

ΘB = β0 + β1B + β2B
2 + ... + βqB

q = 0 (2.14)

all lie outside the unit circle, where we regard B as a complex variable

and not as an operator.

2.3.4 Autoregressive (AR) process

Suppose that εt is a purely random process with mean zero and variance

σ2
ε , then a process {yt} is said to be an AR process of order p, that is,

AR(p) if

yt = α1yt−1 + ... + αpyt−p + εt (2.15)

If we let

Ht = {yt−1, ..., yt−p},

then we can express the AR(p) model as a conditional mean given by

E(yt|Ht) = α1yt−1 + ... + αpyt−p, (2.16)

where Ht is the history at time t. It is like a multiple regression model,

where yt is regressed on past values of itself which explains the prefix

‘auto’.
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First order AR process

The process {yt} in equation (2.15) is said to be an AR process of order

1 if it is given by

yt = αyt−1 + εt (2.17)

which is sometimes called the Markov first order property of the AR. Here

the history at time t is given by Ht = {yt−1}. By successive substitution

we may write

yt = α(αyt−2 + εt−1 + εt)

= α2(αyt−3 + εt−2) + αεt−1 + εt (2.18)

and hence eventually we find that yt may be expressed as an infinite-order

MA process in the form

yt = εt + αεt−1 + α2εt−2 + ... (2.19)

where βi = αi provided −1 < α < 1 to ensure convergence. Thus there

is a link between an MA and AR processes. To show the link easily we

can use the backward shift operator B, on equation (2.17) and obtain

(1− αB)yt = εt (2.20)

implying

yt =
εt

1− αB

= (1 + αB + α2B2 + ...)εt

= εt + αεt−1 + α2εt−2 + ... (2.21)

20



When it is expressed in this format, it is easy to see that

E(yt) = 0

and the variance is given by

V ar(yt) = σ2
ε(1 + α2 + α4 + ...)

=
σ2

ε

1− α2

= σ2
y . (2.22)

Thus the variance is finite provided that |α| < 1 which is the convergence

condition of the infinite MA series given in equation (2.19). Thus since

E(yt) = 0 the ACVF is given by

γk = E[ytyt+k]

= E[(
∑

αiεt−i)(
∑

αjεt+k−j)]

= σ2
ε

∞∑
i=0

αiαk+i

=
αkσ2

ε

1− α2

= αkσ2
y .

It can easily be shown that γk = γ−k since γk does not depend on t.

Thus an AR process of order 1 is second-order stationary provided that

|α| < 1, and the ACF is then given by
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ρ(k) = αk, for k = 0, 1, 2, ...

General AR process

Now consider the general AR(p) process stated in equation (2.15). Then

an AR process of any finite order can be written as an MA process of

infinite order by successive shift operator. Recall that an AR(p) process

is given by

yt = α1yt−1 + α2yt−2 + ... + αpyt−p + εt (2.23)

Using the backward shift operator approach we have

(1− α1B− ...− αpB
p)yt = εt (2.24)

or that

yt =
εt

1− α1B− ...− αpB
p

= (1 + β1B + β2B
2 + ...)εt. (2.25)

Thus the finite AR(p) process can be expressed as an MA process of

infinite order and it implies that E(yt) = 0. The variance is finite provided

that
∑

β2
i converges. The ACVF is given by

γ(k) = σ2
ε

∑∞
i=0 βiβi+k

where β0 = 1. This is a necessary but not sufficient condition for station-

arity. We can in principle find the ACVF of the general order AR process

using the above procedure, but βi may be algebraically hard to find. The

alternative simpler way is to assume the process stated in equation (2.23)

is stationary. Next multiply through by yt−k and take expectations and
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divide by σ2
y assuming the variance of yt is finite. Then using the fact

that ρk = ρ−k for all k we find

ytyt−k = yt−k[α1yt−1 + .... + αpyt−p + εt] (2.26)

.

Thus

E[ytyt−k] = α1E[yt−1yt−k] + ... + αpE[yt−pyt−k] (2.27)

hence

γ(k) = α1γ(k − 1) + ... + αpγ(k − p) (2.28)

.

Thus

γ(k)

σ2
y

= α1
γ(k − 1)

σ2
y

+ ... + αp
γ(k − p)

σ2
y

(2.29)

,

which implies

ρ(k) = α1ρ(k − 1) + ... + αpρ(k − p) (2.30)

.

Equations (2.28) and (2.30) are called the Yule Walker Equations. These

are a set of difference equations and have the general solution (given for

ρk)

ρ(k) = A1π
|k|
1 + ... + Apπ

|k|
p ,

where πi are the roots of the so called auxiliary equation

yp − α1y
p−1 − ...− αp = 0.

The constants Ai are chosen to satisfy the initial conditions depending

on ρ(0) = 1 which means that
∑

Ai = 1. The Yulle-Walker equations

are fully explained in Kendall and Ord, (1990).
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2.3.5 Mixed AR and MA (ARMA) models

ARIMA models are meant to borrow from the strength of both the AR

and MA process. Thus these models are formed by combining both the

AR and MA structures to model the stochastic process {yt}. A model

containing p AR terms and q MA terms is said to be an ARMA process

of order (p, q). This hybrid model is therefore given by

yt = α1yt−1 + ... + αpyt−p + εt + β1εt−1 + ... + βqεt−q (2.31)

Using the backward shift operator B equation (2.31) can be written as

φ(B)yt = θ(B)εt (2.32)

where

φ(B)yt = yt − α1yt−1 − α2yt−2 − ...− αpyt−p (2.33)

and

θ(B)εt = εt + β1εt−1 + ... + βqεt−q (2.34)

thus φ(B) and θ(B) are polynomials of order p and q respectively, such

that

φ(B) = 1− α1B− ...− αpB
p

and

θ(B) = 1 + β1B + ... + βqB
q.

The constraints required on the model parameters to render the processes

stationary and invertible are the same as for a pure AR or pure MA

processes. That is the values of αi, which guarantee stationarity, are such
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that the roots of φ(B) = 0 lie outside the unit circle, while the values of

βi, which guarantee invertibility, are such that the roots of θ(B) = 0 lie

outside the unit circle. The importance of the ARMA formulation lies in

the fact that a stationary time series may often be adequately modelled

by an ARMA model requiring much fewer parameters than a pure MA

or AR process by itself. Thus such a formulation can potentially lead to

a more parsimonious model than the respective separate formulations.

The principle of parsimony prefers a model with as few parameters as

possible, but which gives an adequate representation of the data being

studied.

2.3.6 Integrated ARMA (or ARIMA) models

In practice most time series are non-stationary. In order to fit and ex-

ploit the nice properties of a stationary model, it is necessary to remove

non-stationary sources of variation. If the observed time series is non-

stationary in the mean, then we can difference the series. Thus for this

reason let ∆ denotes the 1-step difference operator. If yt is replaced

by ∆dyt where d = 1, 2, ... then we have a model capable of describing

certain types of non-stationary series. In this case d is the order of differ-

encing. The resultant model is called an ‘integrated’ model because the

stationary model that is fitted to the differenced data has to be summed

or ‘integrated’ to provide a model for the original non-stationary data.

Let

Wt = ∆dyt = (1−B)dyt.

Then the general form of the ARIMA model process is given by

Wt = α1Wt−1 + ... + αpWt−p + εt + β1εt−1 + ... + βqεt−q (2.35)
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.

Equation (2.35) may be written in the form

φ(B)Wt = θ(B)εt

or

φ(B)(1−B)dyt = θ(B)εt

where the shift polynomials φ(B) and θ(B) are as defined in equations

(2.33) and (2.34) respectively. The model for Wt, which describes the dth

order difference of Yt is said to be an ARIMA process of order (p, d, q). In

practice the first differencing is often found to be adequate to make the

series stationary, and so the value of d is often taken to be one. ARIMA

models can be generalized to include seasonal terms as will be described

in detail in section 2.4.

2.4 Seasonal ARIMA (SARIMA models)

Many practical time series contain a seasonal periodic component which

repeats every, say s observations, in which case s denotes the seasonal

period. For example with monthly observations, with s = 12, we may

expect time series yt to depend on values at annual lags such as yt−12,

yt−24 and on more recent non-seasonal values such as yt−1 and yt−2. A

seasonal ARIMA model can be defined as

αp(B)φP (Bs)Xt = βq(B)θQ(Bs)εt, (2.36)

where B denotes the backward shift operator, αp, φP , βq θQ are poly-

nomials of order p, P , q, Q respectively, εt is a purely random process

and
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Xt = ∆d∆D
s yt

denotes the differenced series. Model (2.36) is called SARIMA model of

order (p, d, q)× (P, D, Q)s. D denotes the order of seasonal differencing,

P denotes the order of seasonal AR process, Q denotes the order of

seasonal MA process and s the seasonality. The differenced series {Xt} is

formed from the original series {yt} by appropriate differencing to remove

non-stationarity terms. d is used to remove trend by simple differencing

while seasonal differencing ∆s is used to remove seasonality. For example

if d = D = 1 and s = 12, then

Xt = ∆∆12yt = ∆12yt −∆12yt−1

= yt − yt−12 − (yt−1 − yt−13). (2.37)

Now consider the seasonal AR term φP (Bs) and suppose P = 1, then

φ1(B
s) will be of the form (1−c×Bs) where c denotes a constant, which

simply means that Xt will depend on Xt−s, since BsXt = Xt−s. Similarly,

seasonal MA term of order one means that Xt will depend on εt−s. As an

example, consider a SARIMA model of order (1, 0, 0) × (0, 1, 1)12 where

s = 12. Here we have a non-seasonal AR term, one seasonal MA term

and one seasonal differencing. Thus we can write this as

(1− αB)Xt = (1 + βB12)εt (2.38)

,

where Xt = ∆12yt and α and β are constant parameters. Equation (2.38)

implies that

(1− αB)∆12yt = (1 + βB12)εt
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or

∆12yt − α∆12yt−1 = εt + βεt−12

or

yt − yt−12 − α(yt−1 − yt−13) = εt + βεt−12

and finally we have

yt = yt−12 + α(yt−1 − yt−13) + εt + βεt−12 (2.39)

so that {yt} depends on yt−1, yt−12 and yt−13 as well as the innovations

at time (t − 12). When fitting a seasonal model to data, the first task

is to determine values of d and D which reduce the series to stationarity

and the seasonality. Suitable values of p, P , q and Q are determined by

looking at the ACF and partial ACF of the differenced series which aids

in choosing an appropriate SARIMA model.

2.5 Transformations

As stated earlier most applied time series are nonstationary, that is, they

have nonconstant mean or varying second moments such as the variance.

In order to achieve stationarity, the time series can undergo some differ-

encing as described above or it can also be transformed through trans-

formations such as logarithm and square-root transformations. Although

some time series are nonstationary due to some equilibrium forces, differ-

ent parts of these series behave very much alike except for their difference

in their mean levels. These are called homogeneous nonstationary series,

(Box et al). These models can be made stationary by taking suitable
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differencing of the general series. In other words the series Yt is nonsta-

tionary but its dth order differenced series (1−B)dYt for some integer

d ≥ 1, is stationary. If dth order differenced series follows a white noise

phenomenon, we have, Yt = Yt−1 + εt and the conditional mean function

is

µt = Yt−1 (2.40)

since E(εt) = 0 which is subject to the stochastic disturbance at time (t−

1). In other words, the mean level of the process Yt in (1−B)dYt for d ≥ 1

changes through time stochastically and we characterize the process as

having a stochastic trend. A process that is nonstationary in the mean is

more likely to be nonstationary in the variance and autocovariance also.

If the variance and covariance are nonconstant, that is, say

V ar(Yt) = cf(µt)

for some positive constants c and function f , the question is, how do we

find a function T so that the transformed series T (Yt) has a constant

variance? To illustrate the method we approximate the desired function

by a first order Taylor series expansion about the point µt as follows. Let

T (Yt) ' T (µt) + T ′(µt)(Yt − µt), (2.41)

where T ′(µt) is the first derivative of T (Yt) evaluated at µt.

Now taking the variance on both sides leads to

V ar[T (Yt)] = [T ′(µt)]
2V ar(Yt)

= c[T ′(µt)]
2f(µt). (2.42)
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The derivation given in equation (2.42) is infact the delta method ap-

proximation to var[T (Yt)]. Thus in order that the variance of T (Yt) be

constant we conclude that the variance stabilizing transformation T (Yt)

must be chosen so that

T ′(µt) =
1√

f(µt)
(2.43)

since then var[T (Yt)] = c in equation (2.42) and which also implies that

T (µt) =

∫
1√

f(µt)
dµt (2.44)

.

For example, if the standard deviation of a series is proportional to the

mean so that

var(Yt) = c2µ2
t (2.45)

then

T (µt) =

∫
1

µt

dµt = ln(µt). (2.46)

Hence a logarithmic transformation of the series ln(µt) will give a con-

stant variance. If the variance of the series is proportional to the mean

so that

var(Yt) = cµt (2.47)

then

T (µt) =

∫
1
√

µt

dµt

= 2
√

µt. (2.48)
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Thus a square root transformation of the series
√

µt will give a constant

variance. If the standard deviation of the series is proportional to the

square of the level so that

var(Yt) = c2µ4
t (2.49)

then

T (µt) =

∫
1√
µ4

t

dµt

= − 1

µt

. (2.50)

a desired transformation that gives a constant variance will be the recip-

rocal 1
µt

. More generally, to stabilize the variance, we can use the power

transformation which is more flexible given by

T (Yt) = Y
(λ)
t

= f(Yt, λ)

=
Y λ

t − 1

λ
(2.51)

introduced by Box and Cox (1964) and λ is called the transformation

parameter. In table (2.1) we give some commonly used values of λ and

their corresponding transformations. The beauty of the power link model

is that, a range of values of λ can be explored in order to find the most

optimal one. The main reason to consider the Box-Cox transformation

family is to analyze the data in a more normal scale. Such a scale typically

leads to models that are simpler and easier to interpret, with possibly well
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Table 2.1: Different values of λ and their corresponding transformations

value-of λ Transformation

−1.0 1
εt

−0.5 1√
εt

0.0 lnεt

0.5
√

εt

1.0 εt

behaved residuals and clearer inference. It should however be noted that

if the time series data is known to come from non-Gaussian distribution

then a time series model accounting for non-Gaussian data can be used,

Zeger and Qaqish, (1988); Zeger and Liang ,(1991); Peng and Dominic,

(2008)
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Chapter 3

Model identification,

estimation, checking and

forecasting

3.1 Introduction

Time series analysis comes with a number of ways in which to build a

suitable model for a given time series, however for this thesis the three

stage approach proposed by Box, et al) is adopted. The two postulated

the following three step process namely:

• model identification (or model specification)

• model estimation (or model fitting)

• model checking (or model verification/diagnostic checking).

This chapter focuses on explaining these steps in detail.
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3.2 Model selection

This stage involves identifying the appropriate ARIMA model by deter-

mining what the appropriate orders of the AR, MA and Integrated parts

are. Model identification is also aided by examining the time plot of the

series, which include the construction of the correlogram (autocorrelation

function), the partial and inverse autocorrelation functions. In the pres-

ence of several competing models, use of model selection criteria becomes

necessary. Such criteria include the Akaike’s Information Criteria (AIC)

(with its modification to AICc, Bayesian Information Criteria (BIC) and

Schwartz’s Bayesian Criteria (SBC) are used to choose the most appro-

priate model. The formal expressions for the above criteria in terms of

the log-likelihood are:

• AIC = -2ln(likelihood) + 2r

• AICc = -2ln(likelihood) + 2rN
N−r−1

• BIC = -2ln(likelihood) + (r + rlnN)

• SBC = -2ln(likelihood) + rlnN

where r denotes the number of parameters and N denotes the number

of observations. The AICc is a modified form of AIC to correct for small

sample data and the BIC is a modified SBC with an extra penalty of r in

addition to rlnN . In considering the statistics given above, there is need

to strike a balance between the need for a parsimonious model, which

uses as few parameters as possible but maintains its usefulness and a

model that is too simple and overlooks the important effects. The model

selection criteria are revisited and described fully in section (3.6) below.
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3.3 Model estimation

Model estimation involves estimating the parameters for the selected

model using the computational methods suggested by Box and Jenk-

ins. These are the maximum likelihood method (ML), the unconditional

least squares, and the conditional least squares. In this thesis the least

squares method is discussed fully and is applied. An ARMA(p, q) model

contains three different kinds of parameters: the p-AR parameters, the

q-MA parameters and the variance of the error term εt to be estimated.

This gives a total of p + q + 1 parameters to be estimated from the sta-

tionary time series. Sometimes it is necessary to include a constant term

in which case there will be a total of p+q+2 parameters to be estimated.

We will consider how to estimate these separately.

3.3.1 Estimating parameters of AR processes

Suppose we define the AR(p) process where each term is corrected to the

mean µ as follows

yt − µ = α1(yt−1 − µ) + ... + αp(yt−p − µ) + εt. (3.1)

Given N observations y1, ..., yN , the parameters µ, α1, ..., αp may be esti-

mated using least squares method by minimizing the sums of squares

S =
N∑

t=p+1

{(yt − µ− α1(yt−1 − µ)− ...− αp(yt−p − µ)}2 (3.2)

with respect to µ, α1, ..., αp. If the εt process is normal, then the least

square estimates are also maximum likelihood estimates. In the first

order case with p = 1, and according to Chatfield, (2004), it can be

established that
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µ̂ =
ȳ2 − α̂1ȳ1

1− α̂1

(3.3)

and

α̂1 =

∑N
t=1(yt − µ̂)(yt−1 − µ̂)∑N

t=1(yt − µ̂)2
(3.4)

where ȳ1 and ȳ2 are the means of the first and last N − 1 observations

in the series. By taking ȳ1 ' ȳ2 ' ȳ so we can approximate µ̂ = ȳ.

Substituting µ̂ = ȳ into equation (3.4) we obtain

α̂1 =

∑N−1
t=1 (yt − ȳ)(yt+1 − ȳ)∑N

t=1(yt − ȳ)2
. (3.5)

This is exactly the estimator that would arise if we treat the AR equation

Yt − ȳ = α1(yt−1 − ȳ) + εt (3.6)

as an ordinary regression with yt−1 − ȳ as the independent variable. As

in Chatfield, (2004), it can be shown that equation (3.5) can be regarded

as an approximation of α1

α̂1 = γ̂1

γ̂0
= ρ1.

This approximate estimate for α1 is also appealing since ρ̂1 is an estimator

of ρ1 and ρ1 = α1 for a first order AR process as shown in section (2.3.4).

For a second order AR process where p = 2 similar approximations to

those given above can be given as, (Chatfield, 2004):

µ̂ = ȳ

α̂1 = γ̂1(1−γ̂2)
(1−γ̂1)

α̂2 =
γ̂2−γ̂2

1

1−γ̂2
1
.
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The coefficient ρ̂2 is called the sample autocorrelation coefficient of order

two as it measures the excess correlations two steps apart not accounted

for by the autocorrelation at lag 1 namely ρ1. Higher order AR processes

may also be fitted in a similar way by taking µ̂ = ȳ and substituting the

sample autocorrelation coefficients into the first p Yulle Walker equations,

as given in section (2.3.4), and solving for {α̂1, ..., α̂p}. In matrix form

these equations are given as:

Rα̂ = r

where α̂T = (α̂1, ..., α̂p), rT = (γ̂1, ..., γ̂p) and

R =



1 γ̂1 γ̂2 · · · γ̂p−1

γ̂1 1 γ̂1 · · · γ̂p−2

γ̂2 γ̂1 1 · · · γ̂p−3

...
...

...
. . .

...

γ̂p−1 γ̂p−2 γ̂p−3 · · · 1


is a p× p matrix. For large N the estimated values given are very close

to the exact least squares estimates.

3.3.2 Estimating parameters of an MA process

Estimation of parameters of MA processes is more challenging than the

AR processes because, as stated in Chatfield, (2004), efficient explicit

estimators cannot be easily found. Some form of numerical iterations

must be employed. First consider the first-order MA process

yt = µ + εt + β1εt−1 (3.7)
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where µ and β1 are constant parameters and εt denotes a purely random

process. Our aim would be to write the residual sum of squares
∑

ε2
t

solely in terms of the observed yt and parameters µ and β1 and differen-

tiate with respect to µ and β1 and hence find the least squares estimates.

Unfortunately as in Chatfield, (2004), this cannot be done. Therefore

explicit least square estimates cannot be found, nor is it wise to simply

equate sample and theoretical first order autocovariance

γ̂1 =
β̂1

1 + β̂2
1

(3.8)

and choose the solution β̂1 such that |β̂1| > 1, since it can be shown that

this gives rise to an inefficient estimator. Alternatively starting values

for µ and β1 such as µ = ȳ and the value of β1 given by the solution

of equation (3.8) can be obtained. Then we can calculate corresponding

residual sum of squares using equation (3.7) recursively in the form

εt = yt − µ− β1εt−1.

Taking ε0 = 0 we calculate ε1 = y1 − µ and ε2 = y2 − µ − β1y1 and

so on until εN = yN − µ − β1εN−1. Then the residual sum of squares∑N
t=1 ε2

t is calculated conditional on the given values of the parameters

and ε0 = 0. This procedure is repeated for other neighbouring values

of µ and β1 so that the residual sum of squares
∑

ε2
t is computed on

a grid of points in the (µ, β1) plane. Values of µ and β1 that minimize∑
ε2

t can be determined by inspection. This procedure gives the least

squares estimates which are also maximum likelihood estimates condi-

tional on ε0 = 0 provided that εt is normally distributed. For higher

order processes a similar type of an iterative procedure to that described

above could be used. For instance with a second-order MA process one
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would guess starting values of µ, β1 and β2, then compute the residuals

recursively using

εt = yt − µ− β1εt−1 − β2εt−2

and compute
∑

ε2
t . Other values of µ, β1 and β2 can be tried perhaps

on a grid of point until a minimum value of
∑

ε2
t is found.

3.3.3 Estimating the parameters of an ARMA pro-

cess

Suppose a model with both AR and MA components, that is, an ARMA

process is thought to explain the data. The estimation procedure is

similar to those for an MA process in that an iterative procedure has to

be used as explained above. The residual sum of squares can be calculated

at every point on a suitable grid of the parameter values, and the values,

which give the minimum sum of squares, may then be assessed. Consider,

as an example, the ARMA(1,1) process given by

yt − µ = α1(yt−1 − µ) + εt + β1εt−1 (3.9)

Given observations up to time t, {y1, ..., yt} we can guess starting values

for µ, α1 and β1, set ε0 = 0 and y0 = µ and then calculate the residuals

recursively by

ε1 = y1 − µ

ε2 = y2 − µ− α1(y1 − µ)− β1ε1

...

εt = yt − µ− α1(yt−1 − µ)− β1εt−1.
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The residuals sum of squares
∑t

i=1 ε2
i for i = 1, 2, ..., t may then be calcu-

lated. Then other values of µ, α1 and β1, may be tried until the minimum

residual sum of squares is found. The conditional least squares estimates,

as pointed out by Ansley and Newbold, (1986) and also Chatfield, (2004),

provide very accurate estimates if the series is ‘long’. The procedure for

estimating an ARMA process also applies to ARIMA model parame-

ter estimation. As earlier stated in an ARIMA process, stationarity is

achieved by differencing, hence the reason for referring to the series as

integrated. As was pointed out in section (2.3.6) ARIMA models can

also be generalized to accommodate seasonal terms. This generalization

leads to a class of models called seasonal ARIMA (SARIMA) which are

discussed in section (2.4) in chapter 2.

3.4 Model checking

When a model has been fitted to a time series, it is advisable to check

that the model really does provide an adequate description of the data.

As with most statistical models, this is usually done by looking at the

residuals, which are defined by

residual=observation-fitted value

For a univariate time series model, the fitted value is the one-step-ahead

forecast, as defined in section (3.7) below, so that the residual is the

one-step-ahead forecast error. For example, for the AR(1) model, with

yt = αyt−1 + εt where α is estimated by least squares, the fitted value at

time t is ŷt−1 so that the residual corresponding to the observed value yt

is

40



εt = yt − αyt−1.

Note that E(yt|yt−1) = αyt−1 since E(εt) = 0. If a model fits the data

well, then we expect the residuals to be random and close to zero. Thus

model validation usually consists of plotting residuals in various ways to

see whether this is the case. The following steps are usually performed

to assess the extent of model adequacy.

• Plot residuals against time and look for unusual values, or for any

increasing (decreasing) dispersion which may suggest the need to

transform the data.

• Examine the appropriate t-ratio parameter estimates to see whether

any terms should be dropped from the model.

• Examine the correlograms derived from the residuals to determine

whether additional terms are required.

• Check whether the selected model (after differencing) is stationary

and invertible.

• Check the overall fit of the model (although this is less often done

than in regression analysis)

Residual analysis can also involve formal tests in the form of the Box-

Pierce-Ljung test and information criteria as given in sections (3.5) and

(3.6) respectively below.

3.5 The Box-Pierce-Ljung test

It is necessary to check the model for adequacy before it is used for

forecasting. The Box-Pierce-Ljung test is one of the widely used lack-of-
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fit test, that is, the appropriateness of the fitted model. It was developed

by Box and Pierce (1970) and modified by Ljung and Box (1978). They

suggested a ‘portmanteau’ test to test the null hypothesis

H0 : ρ1 = ρ2 = ρ3 = .... = ρk = 0

against the alternative hypothesis

H1 : not all ρj = 0

where ρj is the ACF at lag j = 1, 2, ..., k. Based on the residual correlo-

gram, they suggested the statistic

Q = Q(k) = n(n + 2)
k∑

j=1

r2
j

n− j
. (3.10)

where n denotes the length of the series after any differencing and rj

denote the residuals. Box and Pierce (1970) showed that under H0, Q

is asymptotically distributed as chi-squared with (k − p − q) degrees of

freedom, where p and q are the order of the AR and MA processes in the

hybrid ARIMA model given in equation (2.31) in chapter 2.

3.6 Information criteria

This is a tool used to compare two or more competing, but not neces-

sarily nested, models (with different number of parameters) using their

likelihood functions (LF ). For instance if model 1, with k1 parameters

with LF = L1 is correct and is compared with model 2, which has an ad-

ditional (k2− k1) parameters and its LF = L2, it is well known fact that

minus twice the log-likelihood ratio asymptotically follows a chi-squared

distribution with (k2 − k1) degrees of freedom. Thus for large samples
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E[−2ln(L1/L2)] = k2 − k1. (3.11)

This led to Akaike (1974) to propose an information criteria (AIC), to

deal with models not necessarily nested, of the form

AIC = −2ln(L) + k,

where k denotes the number of parameters in the model. The model with

the smallest AIC is deemed best in the sense of minimizing the forecast

mean square error (FMSE). However, it was pointed out by Schwartz

(1978) that AIC is not a consistent criterion in that it does not select

the true model with probability approaching 1 as n → ∞. To overcome

this problem, Schwartz proposed a Bayesian information criterion (BIC)

given by:

BIC = −2ln(L) + kln(n),

where n is the length of the time series or the sample size. After an

estimated model has been validated, forecasting future values of the series

can be considered. This is the subject of discussion in section 3.7 below.

3.7 Forecasting

One of the main objectives of this study and for time series analysis in

general is to use the constructed model to compute forecasts. In time

series, forecasting is a mathematical way of estimating future values of a

series using present and historical values of the series. Suppose we have

an observed time series y1, y2, ..., yt, then the basic problem is to estimate

future values such as yt+l, for l = 1, 2, ..., where the integer l is called the

lead time or forecasting horizon. The forecast of yt+l made at time t for l

43



steps ahead is typically denoted by ŷt(l). The method used in forecasting

depends on the purpose to which the forecast are intended for:

• we may require a forecast which is to be the basis of our own action

for instance sales, that is, to what our sales would be, say in light

of a marketing strategy.

• forecasts for general purpose, say, population forecast, growth rates,

disease rates, inflation rates, etc.

Furthermore, the time frame for forecasting may be divided into three

horizons, short term, medium term and long term. There are several

forecasting techniques applicable for time series. Some key forecasting

techniques are discussed in the sections below.

3.7.1 Simple exponential smoothing

This is a method that relies on simple updating equations to calculate

forecasts assuming the data is non-seasonal and showing no systematic

trend. Given a non-seasonal time series y1, y2, ..., yt with no systematic

trend, a one-step-ahead forecast yt+1 can be forecasted by means of a

weighted sum of past and present observations given by

ŷt(1) = c0yt + c1yt−1 + c2yt−2 + ... (3.12)

where {ci} are the weights. Clearly it is more sensible to give more weight

to recent observations. A good example are the geometric weights which

decrease by a constant ratio for every unit increase in the lag. The

weights are required to sum to one, thus one can take

ci = α(1− α)i, for i = 0, 1, 2, ...
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where α is a constant such that 0 < α < 1, (Chatfield, 2004). Equation

(3.12) becomes

ŷt(1) = αyt+α(1−α)yt−1+α(1−α)2yt−2+...+α(1−α)iyt−i+...(3.13)

Equation (3.13) implies infinite number of past observations, however

in practice there will only be a finite number. Equation (3.13) can be

rewritten in a recurrence form as

ŷt(1) = αyt + (1− α)[αyt−1 + α(1− α)yt−2 + ...]

= αyt + (1− α)ŷt−1(1). (3.14)

If we set ŷ1(1) = y1, then equation (3.14) can be used recursively to

compute subsequent forecasts. Equation (3.14) implies that forecasts can

be updated using only the latest observation and the previous forecast.

This process is called simple exponential smoothing (SES), (exponential

in the sense that the geometric weights lie on an exponential curve)

(Chatfield, 2004). SES is optimal if the underlying model for the time

series is given by

yt = µ + α
∑
i<t

εi + εt. (3.15)

where {ε} denotes a purely random process. Values of the smoothing

constant α between 0.1 and 0.3 are commonly used and produce forecasts

that depend on a large number of past observations. Values of α close to

one give forecasts that depend much on recent observations. If we write

equation (3.14) in its error correction form we get
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ŷt(1) = α[yt − ŷt−1(1)] + ŷt−1(1)

= αet + ŷt−1(1) (3.16)

where et = yt − ŷt−1(1) is the prediction error at time t hence using

different values of α, we can obtain different sums of squares of one-step

ahead forecasts as
∑t

i=2 e2
i where if

ŷ1(1) = y1

then

e2 = y2 − ŷ1(1)

and

ŷ2(1) = αe2 + ŷ1(1)

then

e3 = y3 − ŷ2(1)

and so on until

et = yt − ŷt−1(1).

A value of α that minimize
∑t

i=2 e2
i is selected either by inspection or by

an algorithmic numerical procedure, and that will be the value deemed

to give the best forecasts.
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3.7.2 The Holt and Holt-Winters forecasting proce-

dures

The simple exponential smoothing procedure discussed above works well

when dealing with non-seasonal time series with no trend, however in

practice time series data is usually seasonal and contains trend variation.

Holt’s two parameter exponential smoothing is used to obtain forecasts

in non-seasonal data with trend. When data is seasonal and has trend, a

version called Holt-Winters three parameter procedure can be used. The

idea in these procedures is to generalize the equations for the SES by

introducing trend and seasonal terms, which are updated by exponential

smoothing. The one-step-ahead forecast from the SES can be thought

of as an estimate of the local mean level of the series, and SES can be

regarded as a way of updating the local level of the series, say Lt. For

this, equation (3.14) can be written as

Lt = αyt + (1− α)Lt−1. (3.17)

Suppose we now wish to include a trend term, say Tt, which is the ex-

pected increase or decrease per unit time period in the current level.

A reasonable pair of equations for updating the values of Lt and Tt in

recurrence form are the following

Lt = αyt + (1− α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1) + (1− γ)Tt−1

where α and γ are smoothing parameters generally chosen to lie in the

range (0,1). Then the l-step-ahead forecast for non-seasonal data with

trend at time t can now be stated as
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ŷt(l) = (Lt + lTt) for l = 1, 2, ...

To cope with seasonality the above procedure can be generalized by in-

cluding an additional term namely It which denotes a seasonal index. The

interpretation of It depends on whether seasonality is multiplicative or

additive. If additive, a deseasonalized value is yt−It and if multiplicative,

it is yt

It
. Since all three quantities Lt, Tt and It need to be estimated, we

need at least three equations with three smoothing parameters say α, γ

and δ all chosen in the range (0,1). Suppose the observations are monthly,

and that the seasonal variation is multiplicative. Then the (recurrence

form) equations for updating Lt, Tt and It when a new observation yt

becomes available are

Lt = α
( yt

It−12

)
+ (1− α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1) + (1− γ)Tt−1

It = δ
( yt

Lt

)
+ (1− δ)It−12 (3.18)

and the l-step-ahead forecast from time t are then

yt(l) = (Lt + lTt)It−12+l for l = 1, 2, ..., 12,

where l spans over 12 time intervals if the series is made up of monthly

observations. There are similar formulae for additive seasonal cases and

where the seasonality is of the length s, rather than 12 as for monthly

observations. After forecasts have been computed, it is of paramount

importance to assess the accuracy of the forecasts. Section 3.8 below

explains the methods of assessing the forecast accuracy.
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3.8 Forecast accuracy

Suppose we have a known model such as

yt = µt + εt (3.19)

where µt is a known function of past y values, and εt is independent of

µt. It is apparent that a suitable forecast for yt is µt and that the forecast

error after yt is observed is εt = yt−µt. The performance of a forecasting

model at a single point in time does not tell us much about the overall

quality of the method rather it is the long-run average properties of the

εt that will be informative. Precisely, we may record the errors at time

periods t = n+1, n+2, ..., n+m and examine the corresponding observed

forecast errors εn+1, εn+2, ..., εn+m. Assuming the εt are independent and

identically distributed, with mean zero and standard deviation σ we con-

sider the forecast mean square error (FMSE)

FMSE = FMSE(µt) = E[(yt − µt)
2] = E(ε2

t )

which may be estimated by

ˆFMSE =
∑m

i=1

e2
n+i

m

Given the assumption that the {et} are iid it follows that FMSE = σ2,

but under more general conditions

FMSE(µ̂t) = E[(yt − µ̂t)
2]

= E[(yt − µt)
2] + E[(µt − µ̂t)

2] (3.20)

where µ̂t is the estimator for µt based upon the estimated parameter

values. The above decomposition follows from the independence of the

error terms. Other measures of forecast performance include
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• Forecast Mean Absolute Error (FMAE) given by

FMAE = E[|yt − µt|] = E(|εt|)

• Forecast Mean Absolute Percentage Error (FMAPE) given by

FMAPE = E[|yt − µt|/yt]100%

provided yt takes on positive values.

The discussion so far presented relies only on sampling errors. However

in practice other sources of errors can also be considered, prompting the

use or consideration of the best linear predictors as an alternative.

3.8.1 Best Linear Predictors

Now assume that the process has a known ARIMA form and the question

of interest is about what is the best forecast achievable given the model

can be expressed in terms of random shocks as

yt =
∞∑

j=0

Ψjεt+k−j (3.21)

where Ψj is the jth parameter. The information we have available is

equivalent to finding [εt, εt−1, ....] so that any linear predictor for k steps

ahead at time t is

mt(k) =
∞∑

j=0

ηj+kεt−j. (3.22)

We now determine the best linear predictor using FMSE as the criterion.

The FMSE is
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FMSE[mt(k)] = E[yt+k −mt(k)]2

= E

[ k−1∑
j=0

Ψjεt+k−j +
∞∑

j=k

(Ψj − ηj)εt+k−j

]2

.(3.23)

Since the εt are independent with zero mean and variance σ2, this reduces

to

FMSE[mt(k)] = σ2
[ k−1∑

j=0

Ψ2 +
∑
j=k

(Ψj − ηj)
2
]
. (3.24)

This shows that FMSE is minimized when Ψj = ηj, j ≥ k, that is, the

best linear predictor is

yt(k) =
∑∞

j=k Ψjεt+k−j

with

FMSE(k) = σ2
∑k−1

j=0 Ψ2
j .

A 100(1 − α)% prediction interval for yt+k can be set up assuming the

errors to be normally distributed as

yt(k)± zα/2(FMSE)
1
2 ,

where z denotes the z value in the normal probability table. An al-

ternative determination of the best linear predictor is to consider the

minimization of

E[(yt+k − µt+k)
2|Dt]

where Dt = [yt, yt−1, ..., εt, εt−1, ...] denotes the available information at

time t implying that
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µt+k = E(yt+k|Dt)

= yt(k). (3.25)

Since the ARIMA models are linear in y and ε, it follows that for any

ARIMA(p, d, q) scheme

yt(k) =
∑p

j=1 φjE(yt+k−j|Dt)−
∑q

j=0 θjE(et+k−j|Dt).

For any past values with s < 0

E(yt+s|Dt) = yt+s

and

E(εt+s|Dt) = εt+s,

whereas for s > 0

E(yt+s|Dt) = yt(s)

and

E(εt+s|Dt) = 0.
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Chapter 4

Conditional

Heteroscedasticity:

ARCH-GARCH models

4.1 Introduction

So far the modelling of the time series considered has assumed time-

invariant or constant variance. However in real life financial data, vari-

ance may change with time (a phenomenon defined as heteroscedasticity),

hence there is a need for models that accommodate this possible varia-

tion in variance. The autoregressive conditional heteroscedastic (ARCH)

models, with its extension to generalized ARCH, (GARCH) models as

introduced by Engle (1982) and Bollerslev (1986) respectively, accom-

modates the dynamics of conditional heteroscedasticity. This is done by

relating the error variance to the previous errors in the case of ARCH. In

the case of GARCH, the previous conditional variances are included. Het-
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eroscedasticity affects the accuracy of forecast confidence limits and thus

has to be handled properly by constructing appropriate non-constant

variance models. To test for heteroscedasticity, the portmanteau test

statistic and the Engle’s lagrange multiplier tests have been proposed

and frequently in use. The ARCH-GARCH modelling considers the con-

ditional error variance as a function of the past realization of the series.

Campbell et al., (1997) argued that it is both logically inconsistent and

statistically inefficient to use and model volatility measures that are based

on the assumption of constant variance over some period when the re-

sulting series moves or progress through time. In the case of financial

data for example, large and small errors occur in clusters, which implies

that large returns are followed by more large returns and small returns

by further small returns. In the context of the current study this is equiv-

alent to saying periods of high inflation are usually followed by further

periods of high inflation, while low inflation is likely to be followed by

much low inflation. The theory of the ARCH models and the GARCH

models are explained in detail in sections 4.2 and 4.3 below respectively.

4.2 ARCH(q) model

Let {yt} be the mean-corrected return or rate of inflation, εt be the

Gaussian white noise with zero mean and unit variance and Ht be the

information set at time t given by Ht = {y1, y2, ..., yt−1}, then the process

{yt} is ARCH(q) (Engle, 1982) if

yt = σtεt (4.1)

where
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E(yt|Ht) = 0 (4.2)

V (yt|Ht) = σ2
t = α0 +

q∑
i=1

αiy
2
t−i (4.3)

and the error term εt is such that

E(εt|Ht) = 0 (4.4)

V (εt|Ht) = 1. (4.5)

Equations (4.4) and (4.5) show that the error term εt is a conditionally

standardized martingale difference defined as follows: A stochastic series

{yt} is a martingale difference if its expectation with respect to past

values of another stochastic series Xi is zero. That is

E(yt+i|Xi, Xi−1, ...) = 0

for i = 1, 2, .... In this type of the model the impact of the past on

the present volatility is assumed to be a quadratic function of lagged

innovations. The coefficients (α0, α1, ..., αq) can consistently be estimated

by regressing y2
t on y2

t−1, y
2
t−2, ..., y

2
t−q. To ensure non-negative volatility

we require α0 ≥ 0, αi ≥ 0 for all i = 1, ..., q.

4.2.1 ARCH(1) model

The ARCH(1) model is a particular case of the general ARCH(q) model

and is defined as follows: Let {yt} be the mean-corrected return and εt

be a Gaussian white noise with mean zero and unit variance. If Ht is the

information set available at time t then the process {yt} is ARCH(1) if

q = 1 given by

yt = σtεt (4.6)
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and the conditional variance σ2
t is given by

σ2
t = α0 + α1y

2
t−1 (4.7)

where α0 and α1 are unknown parameters. Thus under the normality

assumption of εt the process can be stated conditionally in terms of

Ht similar to the variance σ2
t as given above. To ensure non-negativity

condition for the conditional variance the constraints α0 ≥ 0 and α1 ≥ 0

must be satisfied. Equations (4.6) and (4.7) suggest that a large past

squared mean-corrected return implies a large conditional variance σ2
t

resulting in yt being large in absolute value. The ARCH(1) is a special

case of ARCH(q), therefore what applies for ARCH(q) also applies for

ARCH(1).

4.2.2 Estimation of the ARCH(1) and the ARCH(q)

models

Based on the assumption of normality made on the εt the method of

maximum likelihood estimation is adopted. Let y1, y2, ..., yt be a realiza-

tion from an ARCH(1) process, then the likelihood of the data can be

written as a product of the conditionals as

f(y1, y2, ..., yt)|θ) = f(yt|yt−1)f(yt−1|yt−2)...f(y2|y1)f(y1|θ) (4.8)

where θ=(α0, α1)
′. It is more practical to condition on y1 since the form

f(y1|θ) is difficult to obtain. Usually y1 is assumed known and equal to

its observed value. This allows us to use the conditional likelihood given

by

f(y1, y2, ..., yt|θ; y1) = f(yt|yt−1)f(yt−1|yt−2)...f(y2|y1)f(y1|θ; y1)(4.9)
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Since yt|Ht ∼ N(0, σ2
t ) it follows that

f(yt|Ht) =
1√
2πσ2

t

exp

[
−y2

t

2σ2
t

]
(4.10)

where σ2
t = α0 + α1y

2
t−1. The conditional log-likelihood is expressed as

l = lc(α0, α1|y1)

= lnf(y2, ...yt|y1; θ)

= −1

2

t∑
i=2

ln(2πσ2
i )−

1

2

t∑
i=2

y2
i

σ2
i

(4.11)

The maximum likelihood estimates are obtained by maximizing this func-

tion with respect to α0 and α1, (Tsay, 2002). Note that the function is

nonlinear in these parameters and thus its maximization must be done

using appropriate nonlinear optimization routine. Let a process [yt]
T
t=1

be a series generated by an ARCH(1) process, where T is the sample size.

Conditioning on the initial observation, the joint density function can be

written as

f(y) =
T∏

t=2

f(yt|Ht). (4.12)

To find the conditional maximum likelihood estimates of α0 and α1, first

one needs the derivatives of the the conditional log-likelihood with respect

to α0 and α1 given by

∂lt
∂α0

=
1

2(σ2
t )

(y2
t

σ2
t

− 1
) ∂lt

∂α0

=
1

2σ2
t

(y2
t

σ2
t

− 1
) ∂lt

∂σ2
t

× ∂σ2
t

∂α0

(4.13)
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and

∂lt
∂α1

=
1

2(σ2
t )

(y2
t

σ2
t

− 1
) ∂lt

∂α1

=
1

2σ2
t

(y2
t

σ2
t

− 1
) ∂lt

∂σ2
t

× ∂σ2
t

∂α1

. (4.14)

More generally the partial derivative of l is

∂l

∂θ
=

T∑
t=2

∂lt
∂σ2

t

∂σ2
t

∂θ

= −1

2

T∑
t=2

(
1

σ2
t

− y2
t

σ4
t

)  1

y2
t−1


=

1

2

T∑
t=2

(
y2

t

σ2
t

− 1

)
1

σ2
t

 1

y2
t−1

 (4.15)

recalling that σ2
t = α0 + α1y

2
t−1. Since

∂2σ2
t

∂θ∂θ′
= 0, the Hessian is given by

∂2l

∂θ∂θ′
=

T∑
t=2

∂2lt
∂σ4

t

∂σ2
t

∂θ

∂σ2
t

∂θ′

= −1

2

T∑
t=2

(
y2

t

(σ2
t )

3
+

(
y2

t

σ2
t

− 1

)
1

σ4
t

)  1 y2
t

y2
t y4

t .


The Fisher information matrix denoted by g is defined to be the negative

of the expected value of the Hessian, that is,

g = −E[ ∂2l
∂θ∂θ′

]

since
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Eyt|Ht

(
y2

t

σ2
t
− 1) 1

σ4
t

 1 y2
t−1

y2
t−1 y4

t−1

 = 0

and

Eyt|Ht{
y2

t

(σ2
t )3
} =

Eyt|Ht
(y2

t )

(σ2
t )3

.

It then follows that

g = 1
2

∑T
t=2

1
σ4

t

 1 y2
t−1

y2
t−1 y4

t−1


as in Engle, (1982). Non-linear optimization routines are iterative, thus

if θi denotes the parameter estimates after the ith iterations, then θi+1

has the form

θi+1 = θi + λM−1{ ∂l
∂θ
}

where λ is a step-length chosen to maximize the likelihood function in the

direction ∂l
∂θ

. For Newton Raphson based routines λ = 1 and M = ∂2l
∂θ∂θ′

and for the Fisher scoring method λ = 1 and M = g (Mills,1994 and

Engle, 1982).

4.2.3 Forecasting with the ARCH model

As stated in section 3.7 on ARIMA modelling, forecasting is one of the

main aims of developing a time series model. The ARCH models also

provide good estimates of the series before it is realized. We now provide

the theory of forecasting with the ARCH models in detail. Let y1, y2, ..., yt

be an observed time series, then the l-step ahead forecast, for l = 1, 2, ...,

at the origin t, denoted as yt(l), is taken to be the minimum mean squared

error predictor, that is, yt(l) minimizes
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E(yt+l − f(y))2

where f(y) is a function of the observations, then

yt(l) = E[yt+l|y1, ..., yt]

(Tsay, 2002). However for the ARCH(1) model

yt(l) = E[yt+l|y1, ..., yt] = 0

as seen in section 4.1. The forecasts for the yt series provide no much

helpful information. It is therefore important to consider the squared

returns y2
t given as

y2
t = E[y2

t+l|y2
1, ..., y

2
t ]

(Shephard, 1996). Hence the 1-step ahead forecast for y2
t is given by

y2
t (1) = α̂0 + α̂1y

2
t

which is equivalent to

σ2
t (1) = E(σ2

t+1|yt)

= α̂0 + α̂1y
2
t

where α̂0 and α̂1 are the conditional maximum likelihood estimates of α0

and α1. Similarly a 2-step ahead forecast for y2
t is given by

y2
t (2) = E[y2

t+2|yt]

= E[σ2
t+2|yt]
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= α̂0 + α̂1E(y2
t+1|yt)

= α̂0 + α̂1(α̂0 + α̂1y
2
t )

= α̂0(1 + α̂1) + α̂2
1y

2
t

= σ2
t (2).

In general the l-step ahead forecast for the y2
t is given by

y2
t (l) = E(y2

t+l|yt)

= α̂0(1 + α̂1 + α̂2
1 + ... + α̂l−1

1 ) + α̂l
1y

2
t

= σ2
t (l).

The obvious possible problem in using the ARCH formulation is that the

approach can lead to a highly parametric model if the lag q is large. This

necessitated the introduction of the GARCH model as an extension to

the ARCH model. Section 4.3 below gives an account of the theory of

the GARCH modelling.

4.3 The GARCH model

Generalized ARCH (GARCH), as developed by Bollerslev (1986), is an

extension of the ARCH model similar to the extension of an AR to ARMA

process. When modelling using ARCH, there might be need for a large

value for the lag q, hence a large number of parameters. This may result

in a model with a large number of parameters, violating the principle of

parsimony and this can present difficulties when using the model to ad-

equately describe the data. An ARMA model may have less parameters
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than an AR model, similarly a GARCH model may contain fewer param-

eters as compared to an ARCH model, thus a GARCH model may be pre-

ferred to an ARCH model. There are a variety of extensions of the ARCH

family of models that include the exponential GARCH (EGARCH), the

integrated GARCH (IGARCH). These are not discussed in this study.

For an interested reader the thesis by Talke (2003) is a good source of

such information. We now consider the GARCH(1,1) model a particular

case of the GARCH(p, q) modelling.

4.3.1 GARCH(1,1) model

Under GARCH(1,1), the conditional variance depends not only on the

previous returns, but also on the previous conditional variance. The

GARCH(1,1) can formally be defined as follows: Let {yt} be the mean

corrected return, εt be a Gaussian white noise with mean zero and unit

variance. Let also Ht be the information set or history at time t given

by Ht = {y1, ..., yt−1} as in the ARCH model, then the process {yt} is

GARCH(1,1) if

yt = σtεt (4.16)

and

σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1 (4.17)

.

The restrictions α0 > 0, α1 ≥ 0, and β1 ≥ 0 are imposed in order for

the variance σ2
t to be positive. Clearly equations (4.16) and (4.17) show

that large past mean-corrected squared returns y2
t−1 or past conditional

variances σ2
t−1 give rise to large values of σ2

t (Tsay, 2002). The conditional

62



mean E(yt|Ht) = 0 implying that {yt} is a martingale difference, thus

E(yt) = 0 and {yt} is an uncorrelated series. At this point it is important

to point out that the information set is now strictly given by

[y1; σ
2
1, ..., yt−1; σ

2
t−1].

Further ARCH(1) can also be defined as GARCH(0,1). Taking vt =

y2
t − σ2

t , we can express

y2
t = σ2

t + vt

= α0 + α1y
2
t−1 + β1(y

2
t−1 − vt−1) + vt

= α0 + (α1 + β1)y
2
t−1 + vt − β1vt−1. (4.18)

As in ARCH(1) model E(vt|Ht) = 0 and vt is another martingale dif-

ference, meaning, E(vt) = 0 and Cov(vt, vt−k) = 0 for k ≥ 1 and vt is

serially uncorrelated. From equation (4.16)

E(y2
t ) = α0 + (α1 + β1)E(y2

t−1)

=
α0

1− (α1 + β1)

provided |α1 + β1| < 1.

4.3.2 Estimation of the GARCH(1,1) model

Estimation of the parameters of the GARCH(1,1) model is performed in

the same way as in the ARCH(1) model. However, since the conditional

variance of the GARCH(1,1) model depends also on the past conditional
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variance, an initial value of the past conditional variance σ2
1 is needed.

The unconditional variance of yt can be taken as an initial value for this

variance, that is, σ2
1 can be taken to be α0

1−α1−β1
. Sometimes the sample

variance of the return series can be taken to be the initial value. As in

the ARCH modelling the maximum likelihood estimates are obtained by

maximizing the conditional log-likelihood given by

lnf(y2, ..., yt, σ2, ..., σt|y1, σ
2
1, θ) = −1

2

t∑
t=2

ln(2πσ2)− 1

2

t∑
t=2

y2
t

σ2
t

(4.19)

where θ = (α0, α1, β1)
′. The gradient, the Hessian and the optimization

procedure are the same as the ARCH(1) modelling except that σ2
t has a

different formulation.

4.3.3 GARCH(p, q)

The GARCH(p, q) is an generalization of GARCH(1,1) with p as the

autoregressive lag and q is the moving average lag. Formally a process

{yt} is GARCH(p, q) if

yt = σtεt

σ2
t = α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjσ
2
t−j

= α0 + α(B)y2
t + β(B)σ2

t (4.20)

where εt is Gaussian white noise while α(B) and β(B) are polynomials

in the backshift operator given by

α(B) = α1B + ... + αqB
q
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and

β(B) = β1B + ... + βpB
p

with the restrictions α0 > 0, αi ≥ 0 and βj ≥ 0 for i = 1, 2, ..., q and

j = 1, 2, ..., p being imposed in order to have the conditional variance

remaining positive. Equation (4.20) can be expressed as

(1− β(B))σ2
t = α0 + α(B)y2

t .

Note that GARCH(0,q) model is the same as an ARCH(q) model and

that for p = q = 0 we have a GARCH(0,0) model, which is simple, white

noise.

Similar to the ARCH(q) model, the conditional mean of {yt} is zero,

that is E(yt|Ht) = 0 and hence the series {yt} is a martingale difference

and observing E(yt) = 0 implies the series {yt} is uncorrelated Gourier-

oux, et.al (1997). Assuming the GARCH(p, q) process is second order

stationary, that is,

V ar(yt) = E(y2
t )

= E(σ2
t ε

2
t )

= E(σ2
t E(ε2

t |yt−1))

= E(α0 + α(B)y2
t + β(B)σ2

t )

= α0 + α(B)E(y2
t ) + β(B)E(σ2

t )

=
α0

1−
∑q

i=1 αi −
∑P

j=1 βj

(4.21)

The autocovariance of a GARCH(p, q) model for k ≥ 1 where k is the

lag is
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E(ytyt−k) = 0

since yt is a martingale difference Gourieroux, et.al (1997). Thus the

GARCH(p, q) model does not show autocorrelation in the return series

{yt}. However the squared returns show autocorrelation even though the

returns are not correlated. Considering writing y2
t in terms of vt = y2

t −σ2
t

yields

y2
t = σ2

t + vt

= α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βj(y
2
t−j − vt−j) + vt

= α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjy
2
t−j −

p∑
j=1

βjvt−j + vt. (4.22)

Now let m = max(p, q), then

y2
t = α0 +

m∑
i=1

(αi + βi)y
2
t−i −

p∑
j=1

βjvt−j + vt (4.23)

where αi = 0 for i > q and βj = 0 for i > p. Thus the equation of y2
t

has an ARMA(m, p) representation. In order to find the GARCH(p, q)

process, we consider solving for α0 in equation (4.21) and let the variance

of yt be σ2
ε which yields

α0 = σ2
ε(1−

q∑
i=1

αi −
p∑

j=1

βj) (4.24)

and substituting the value of α0 in equation (4.24) into equation (4.23)

gives
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y2
t = σ2

ε [1−
m∑

i=1

(αi + βj)] +
m∑

i=1

(αi + βi)y
2
t−i −

p∑
j=1

βjvt−j + vt

= σ2
ε +

m∑
i=1

(αi + βi)(y
2
t−i − σ2

ε)−
p∑

j=1

βjvt−j + vt. (4.25)

Therefore

y2
t − σ2

ε =
m∑

i=1

(αi + βi)(y
2
t−i − σ2

ε)−
p∑

j=1

βjvt−j + vt (4.26)

.

Multiplying both sides by (y2
t−k − σ2

ε) yields

(y2
t−k − σ2

ε)(y
2
t − σ2

ε) =
m∑

i=1

(αi + βi)(y
2
t−i − σ2

ε)(y
2
t−k − σ2

ε)

−
p∑

j=1

βjvt−j(y
2
t−k − σ2

ε) + vt(y
2
t−k − σ2

ε)

and taking expectations

E[(y2
t−k − σ2

ε)(y
2
t − σ2

ε ] = E[
m∑

i=1

(αi + βi)(y
2
t−i − σ2

ε)(y
2
t−k − σ2

ε)]

− E[

p∑
j=1

βjvt−j(y
2
t−k − σ2

ε)] + E[vt(y
2
t−k − σ2

ε)].

But

E[vt(y
2
t−k − σ2

ε)] = E[(y2
t−k − σ2

ε)E(vt|yt)] = 0

since vt is a martingale difference and also

E[βjvt−j(y
2
t−k − σ2

ε)] = E[(y2
t−k − σ2

ε)E(vt−j|yt−k)] = 0 (4.27)
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for k < j. Thus the autocovariance of the squared returns for the

GARCH(p, q) model is given by

Cov(y2
t , y

2
t−k) = E[

m∑
i=1

(αi + βi)(y
2
t−k − σ2

ε)(y
2
t−k − σ2

ε)]

=
m∑

i=1

(αi + βi)Cov(y2
t , y

2
t−k+i). (4.28)

Dividing both sides by var(y2
t ) gives the autocorrelation function at lag

k as

ρk =
m∑

i=1

(αi + βi)ρk−i (4.29)

for k ≥ p + 1. This result is analogous to the Yule-Walker equations

for an AR process. Thus the autocorrelation function (ACF) and the

partial ACF (PACF) of the squared returns in a GARCH(p, q) process

has the same pattern as those of an ARMA(m, p) process. As in ARMA

modelling the ACF and the PACF are useful in identifying the orders

p and q of the GARCH(p, q) process. The ACF are also important for

checking model adequacy, in which case, the ACF’s of residuals should be

indicative of a white noise process if the model is adequate. Thus the first

p autocorrelations depend on the parameters α1, α2, ..., αp; β1, β2, ..., βq,

but given ρp, ..., ρp+1−m, the expression in (4.29) determines uniquely the

autocorrelations at higher lags, (Bollerslev, 1986). Thus letting φmm

denotes the mth partial autocorrelation for y2
t , then

ρk =
∑m

i=1 φmiρk−i, k = 1, ...,m

By equation (4.29) φmm cuts off after lag q for an ARCH(q) process such

that φmm 6= 0 for k ≤ q and φmm = 0 for k > q. This is identical to the
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PACF for an AR(q) process and decays exponentially (Bollerslev, 1986).

After identifying the orders p and q, we now can estimate the parameters

(α1, α2, ..., αp; β1, β2, ..., βq) of the GARCH(p, q) model as explained in

section (4.3.4) below.

4.3.4 Estimation of GARCH(p, q) model

The maximum likelihood estimation is also applicable in estimating the

parameters of the model. As in the GARCH(1,1) model estimation,

initial values of both the squared returns and past conditional variances

are needed in estimating the parameters of the model. As suggested by

Bollerslev, (1986) and Tsay, (2002), the unconditional variance given in

equation (4.21) or the past sample variance of the returns for the past

variances may be used as initial values. Therefore assuming y1, ..., yq and

σ2
1, ..., σ

2
p are known, the conditional maximum likelihood estimates can

be obtained by maximizing the conditional log-likelihood given by

l = lnf(yq+1, ..., yt, σ
2
p+1, ..., σ

2
t |θ, y1, ..., yq, σ

2
1, ..., σ

2
p)

= −1

2

T∑
t=m+1

ln(2πσ2
t )−

1

2

T∑
t=m+1

y2
t

σ2
t

with θ = (α0, ..., αq, β1, ..., βp) and m = max(p, q)

4.4 Model checking

Goodness of fit of the ARCH-GARCH model are based on residuals

and more specifically on the standardized residuals (Talke, 2003). The

residuals are assumed to be independently and identically distributed
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following either a normal or a standardized t-distribution (Tsay, 2002)

and (Gourieroux, 1997). Plots of the residuals such as the histogram,

the normal probability plot and the time plot of residuals can be used.

If the model fits the data well the histogram of residuals should be

approximately symmetric. The normal probability plot should be a

straight line while the time plot should exhibit random variation (http :

//en.wikipedia.org/wiki/Q−Q− plot). The ACF and the PACF of the

standardized residuals are used for checking the adequacy of the condi-

tional variance model. The lagrange multiplier and the Ljung Box Q-test

(given in section 3.5) are used to check the validity of the ARCH effects

in the data. Having established that our model fits the data well, we can

now use the fitted model to compute forecasts just the same way as in

the ARIMA modelling.

4.4.1 Forecasting with GARCH(p, q) models

As we have outlined, the GARCH and the ARMA models are similar,

such that forecasting using the GARCH model is the same as using the

ARMA model. Thus the conditional variance of {yt} is obtained simply

by taking the conditional expectation of the squared mean corrected re-

turns. Assuming a forecasting origin of T , then the 1-step ahead volatility

forecast is given by

y2
t (1) = E[y2

t+1|yt]

= α0 +
m∑

i=1

(αi + βi)E(y2
t+1−i|yt)−

p∑
i=1

βi(vt+1−i|yt)
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where y2
t , ..., y

2
t+1−m, σ2

t , ..., σ
2
t+1−p are assumed known at time t and the

true parameter values αi and βi for i = 1, ...,m are replaced by their esti-

mates. Furthermore, the l-step ahead forecast of the conditional variance

in a GARCH(p, q) model is given by

σ2
t (l) = E(y2

t+l|yt)

= α0 +
m∑

i=1

(αi + βi)E(y2
t+l−i|yt)−

p∑
i=1

βi(vt+l−i|yt)

where E(y2
t+l−i|yt) for i < l can be given recursively as

E(y2
t+l−i|yt) = y2

t+l−i for i ≥ l

E(vt+l−i|yt) = 0 for i < l

E(vt+l−i|yt) = vt+l−i for i ≥ l.

We now consider the techniques that are used for selecting the best fitting

model in light of two or more competing models based on the likelihood

ratios.

4.5 Model selection criteria

There are many model selection procedures or criteria for deciding amongst

the competing ARCH-GARCH models. However the most common are

the AIC defined (as in section 3.2) by

AIC=-2(loglikelihood)+2(number of parameter)

or provided the sample is large the SBC given as
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SBC=-2(log-likelihood)+(number of parameter)[log(number of

observations)]

. A desirable model is one that minimizes the AIC or the SBC. The other

criteria is the R2 associated with the model which is the proportion of

variability in a data set that is accounted for by the statistical model.

However, as Harvey, (1991) indicated that R2 has a limitation in that a

model that can pick out the trend reasonably well will have an R2 close

to unit. In this study the R2 is used alongside the AIC and the SBC to

be on the safer side. In general a model selected by two different criteria

mentioned above may differ and thus it should be emphasized that the

selection of an ARCH-GARCH model depends on the selection criteria

used (Talke, 2003).

4.6 Forecasting Performance

As pointed out in section 3.7, forecasting is one of the most important

objectives of time series modelling, thus one of the criteria for selecting

the best model can be based or centered on the best forecasting model.

Forecast in this context means the estimates of the conditional variances

obtained from the models. There are several measures for assessing the

predictive accuracy of an ARCH-GARCH model. Among these are the

mean square error (MSE). The MSE is defined as the average of the

squared difference between the actual variance and volatility forecast

σ2
t . In the absence of the observed true variance the squared time series

observations y2
t is used. The MSE is thus given by

MSE = 1
T

∑T
t=1(y

2
t − σ̂2

t )
2
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where σ̂2
t for t = 1, ..., T is the estimated conditional variance obtained

from fitting ARCH-GARCH model. The MSE is criticized, as in Tsay,

(2002), in that, although the y2
t is a consistent estimator of σ2

t , it is

nevertheless noisy, therefore unstable. Among the alternative measures

are the mean absolute error (MAE) by Lopez, (1999) defined by

MAE = 1
T

∑T
t=1 |y2

t − σ̂2
t |

and the MSE of the log of the squared error defined by

MSLE =
1

T

T∑
t=1

(ln(y2
t )− ln(σ̂2

t ))
2 (4.30)

The advantage of the MSE of the log of the squared error is that it

penalizes inaccurate variance forecasts more heavily when the squared

innovations y2
t is low.
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Chapter 5

Application of ARIMA and

ARCH-GARCH models

5.1 Introduction

Having explored the theory of ARIMA and ARCH-GARCH models in the

preceding chapters, this chapter is dedicated to fitting the two families of

models to the South African inflation rate data which we obtained curtesy

of the South African Central Bank. A description of the data is given in

section (5.2) below and application of ARIMA and ARCH-GARCH are

given in section 5.3 and in section (5.4) respectively. Analysis was done

using the following SAS version 9.1 procedures: ARIMA, AUTOREG,

REG and FORECASTING procedures.

5.2 Data description

As mentioned in section (5.1) above, the data was obtained from the

South African Reserve Bank. These are monthly inflation rates spanning
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from January 1994 to December 2008, which covers the post-apartheid

period. We defined the rate of inflation as the dynamic percentage rate

of change of prices of an economic (representative) basket of goods and

services of a typical South African household over time. That is, the

dynamic rate of decrease in the purchasing power of money. In South

Africa, the inflation rate is calculated as an index number termed the

Consumer Price Index (CPI). The CPI is a yardstick of the increase in

the general level of prices in the economy. The total SA CPI basket

consists of about 1500 different goods and services which are classified

into more than 40 groups and subgroups for which separate indices are

calculated. Statistics South Africa construct the CPI according to the

following five steps:

• the selection of goods and services to be included in the basket

• the assignment of weights to each good or service to indicate its

relative importance in the basket,

• the choice of a base year for calculating the CPI,

• the choice of a formula for calculating the CPI,

• the collection of prices each month to calculate the value of the CPI

for that month.

The inflation rate is obtained by calculating the monthly percentage

change of average prices from one period to the next. The formula for

calculating the inflation can be formally defined as follows. Let Pt be the

current average price level of an economic basket of goods and services

and Pt−1 be the average price level of the basket a year ago, then the

inflation rate It at time t is calculated as:
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Table 5.1: Covariances and Correlations at each lag

Lag 0 1 2 3 4 5 6 7 8 9 10 11 12

Covariance 22.4 21.6 21.3 20.7 20.0 19.3 18.6 18.0 17.4 16.6 16.0 15.4 14.7

correlation 1 .96 .95 .92 .89 .86 .83 .80 .77 .74 .71 .68 .65

It = Pt−Pt−1

Pt−1
× 100%.

The rate is usually given in annualized terms. That is, a 10% inflation

rate means prices are increasing at a rate of 10% per year at time t. This

precisely is the reason why we used the term ‘dynamic’ in our definition

to emphasize the time dependence in the inflation rate calculation.

5.3 Application of the ARIMA modelling

Figure (5.1) shows the time plot of the inflation rate in South Africa

from January 1994 to December 2008. The plot shows that the series is

characterized by a nonconstant mean and unstable variance over time.

It also shows a slight decreasing trend in the years between 1994 and

2004 followed by a steady rise from 2004 to 2008. The sinusoidal pattern

suggests the presence of seasonality which is one of the components in

a time series and we wish to account for it in modelling. The autocor-

relations given in Table (5.1) show large correlations at large lags. The

trend, seasonality effects, the nonconstant mean and unstable variance

together with the large autocorrelations are indicative of nonstationarity

as was defined in section (2.2). The immediate challenge here is that the

Box-Jenkins technique which we wish to apply in this section assumes
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Figure 5.1: Time Plot of Inflation in South Africa

stationarity, hence to apply this technique, there is need to transform

the data to make it stationary by for example taking transformations as

explained in section (2.5) in order to stabilize the variance and achieve

constant mean.

The first transformation we considered is the ordinary differencing and

seasonal differencing as explained in sections (2.5) and (2.4). Figure (5.2)
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Table 5.2: Covariances and Correlations of first differencing of inflation at

each lag

Lag 0 1 2 3 4 5 6 7 8 9 10 11 12

Covariance 1.6 -.5 .3 0 .1 0 0 -.1 .1 0 -.1 .1 -1.0

correlation 1 -.3 .2 0 0 0 0 -.1 .1 0 -.05 .1 -.4

Table 5.3: Optimal order of differencing

order-of-differencing Non First Second Third

standard-deviation 4.734 1.271 1.459 1.816

gives the plot of the differenced (both ordinary and seasonal) series, and

the plot shows near constant mean and stable variance. This shows dif-

ferencing is necessary to make the series stationary. Table (5.3) gives the

order of differencing together with the associated standard deviations.

Box-Jenkins rule of thumb states that the optimum order of differencing

is the one with the smallest standard deviation, hence in our case the

optimum order of differencing is one with standard deviation of 1.271

which corresponds to order one. The autocorrelations and covariance

for the first ordinary and seasonal differencing of inflation is given in Ta-

ble (5.2). The autocorrelations tails-off fast with oscillating positive and

negative values which is overwhelming evidence of stationarity.

The next transformation considered is the log transformation, as ex-

plained again in section (2.5). The time plot of the logarithm transfor-

mations is given in figure (5.3). The plot shows the mean and the variance

still changing markedly with time, which is indicative of nonstationarity.

78



Figure 5.2: Plot of ordinary and seasonally difference of the inflation

Figure 5.3: Logarithms of Inflation
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Hence log transformation seems inappropriate for stabilizing the variance

of the series. An alternative transformation is the square root transfor-

Figure 5.4: Square root of Inflation

mation. A time plot of the square root transformation of the inflation is

given in figure (5.4). The plot also exhibit marked change in mean and

variance with time, not very different from the untransformed series and

the log-transformed series. Thus square root transformation also proves

inadequate in transforming the data to stationarity.

Therefore looking at the transformations taken, the differencing seems

to give the most stable variance and near constant mean. Thus in our

subsequent analyses the differenced series is going to be considered or

used. Nonetheless the plots of the log and the square root are provided

for comparison purposes only. Now that we have adopted differencing

as a means to achieve stationarity the next step is to employ the Box
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Table 5.4: Model identification criteria

Model ACF PACF

AR(1) decays exponentially single spike

MA(1) single spike decays exponentially

AR(p) decays exponentially with damped oscillations p spikes

MA(q) q spikes decays exponentially with damped oscillations

ARMA(p, q) decay exponentially and damped oscillations both decay exponentially

Jenkins modelling techniques to identify an appropriate model that fits

the inflation series. Thus section (5.3.1) below is dedicated to model

identification.

5.3.1 Model Identification

Autocorrelations functions and partial autocorrelations functions dis-

cussed in section (2.1) are the sample statistics utilized in identifying

an appropriate ARMA model. Model identification procedures allow us

to build up a model systematically taking into account the main features

exhibited in the sample ACF and sample PACF. Table (5.4) gives the

criteria for model identification given by Kendall and Ord, (1990.) A

close look at the ACF plot in figure (5.5) obtained from the series up

to lag 12, it can be seen that there is evidence of exponential decay and

damped oscillations. This may suggest the presence of both AR and MA

parameters, hence an ARMA process with both ordinary and seasonal

terms can be considered. There is a large spike at lag 12 which suggest a
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seasonal parameters. Thus in our analyses, one of the model to be fitted

is the ARMA model to Xt where Xt = ∆∆12yt. The identification pro-

cess was done using the ARIMA procedure in SAS version 9.1. We fit a

number of models as suggested by the ACF and PACF selection criteria

and choose the best model using the criteria explained in section 5.1
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Figure 5.5: ACF of the ordinary and seasonally differenced series

5.3.2 Selection of the best fit ARIMA model

In light of a number of competing models, the criteria used to select the

best fit model to the data are the AIC, SBC, and the significant tests of

the individual parameters as explained in section 3.2. A parsimonious

model (one with fewer parameters) and a lower AIC and SBC is the best
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fit model. Our aim is to obtain the values of p, q, d, P,Q and D of the

SARIMA model, where P and Q represents the seasonal AR and MA

orders respectively and D represents the order of seasonal differencing.

The analysis was also done in SAS using proc ARIMA. As a rule of

thumb, any lag with an ACF or PACF coefficient whose magnitude is not

within 2√
N

where N is the size of the series is taken to be significantly

different from zero, (Chatfield, 2004). With reference to Table (5.2),

the significant spikes were found to be at lag 0, 1 and 12 and also 24

(not provided in the table). A large spike at lag 12 and a small spike

at lag 24 may indicate a seasonal MA term. After several trial and

error we established that the intercept is insignificant thus the models

suggested will not have the constant term. The parameter estimates,

standard errors and the significant test probabilities given in Table (5.5)

are obtained from SAS ARIMA procedure. The values that gave a model

of best fit are, p = 1, q = 0, P = 0, Q = 1, d = 1 and D = 1

with s = 12 since we have monthly data. Therefore we have seasonal

ARIMA(1, 1, 0) × (0, 1, 1)12 model. Taking Xt = ∆∆12Yt the general

form of the model as suggested by the results in Table (5.5) is:

(1− α1B)Yt = (1 + β1B
12)εt

where α1 = 0.528, β1 = 0.998, (B)Yt = Yt−1 and (B12)εt = εt−12 implying

that

(1− 0.528B)Yt = (1 + 0.998B12)εt

∆∆12Yt = 0.528∆∆12Yt + εt + 0.998εt−12

∆12Yt −∆12Yt−1 = 0.528(∆12Yt −∆12Yt−1) + εt +
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Table 5.5: Parameter estimates for an SARIMA(1, 1, 0)× (0, 1, 1)12

parameter AR(p=1) MA(Q=1)

Estimate 0.52763 0.99814

Standard error 0.06948 0.01169

P (> |t|) < 0.0001 < 0.0001

0.998εt−12

yt − Yt−12 − Yt−1 + Yt−13 = 0.528[Yt − Yt−12 − Yt−1 + Yt−13]

+εt + 0.998εt−12

0.472(Yt − Yt−1 − Yt−12 + Yt−13) = εt + 0.998εt−12

Ŷt = Yt−1 + Yt−12 − Yt−13 + 2.12εt

+2.11εt−12 (5.1)

The standard errors are used to assess the accuracy of the estimates, the

smaller the better. The model fit statistics used to asses how well the

model fit the data are the AIC and SBC. The corresponding values are

AIC = 411.3 and SBC = 423.7. Table (5.6) gives the correlations of

the parameter estimates. The values of the correlations between model

parameters are low showing that they do not explain the same variation

in the model. The parameters are estimated by using the least squares

method in proc ARIMA statement in SAS version 9.1.

The second model to be considered was the ARIMA(0,1,1), also without

the intercept since it was found to be insignificant. Here p = P = Q = 0

and d = q = 1. The model is given by:
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Table 5.6: Correlations of parameter estimates

parameter AR(p=1) MA(Q=1)

AR(p=1) 1 0.215

MA(Q=1) 0.215 1

Table 5.7: Parameter estimates for an ARIMA(0,1,1)

Parameter estimate standard error t-value P (> |t|)

q = 1 -0.37972 0.07192 -5.28 < 0.0001

∆∆12Yt = β1εt−1 + εt

Yt − Yt−1 − Yt−12 − Yt−13 = β1εt−1

Ŷt = Yt−1 + Yt−12 + Yt−13 + β1εt−1 (5.2)

The parameter estimates from SAS ARIMA procedure are given in Table

(5.7) giving rise to the model

ŷt = yt−1 − 0.37972εt−1 (5.3)

∆∆12yt = −0.37972εt−1 + εt

yt−1(1) = yt−1 + yt−12 + yt−13 − 0.37972εt−1

The corresponding fit statistics are: AIC = 423.7 and SBC = 454.9.

Thus the ARIMA(0,1,1) has bigger AIC and SBC values than the sea-

sonal ARIMA(1, 1, 0) × (0, 1, 1)12 indicating that the seasonal model is
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Table 5.8: Parameter estimates for an ARIMA(2,1,1)

Parameter estimate standard error t-value P (> |t|)

α1 0.63095 0.66828 0.30 0.3464

α2 0.01553 0.34496 0.94 0.9641

β1 0.19586 0.66338 0.05 0.7682

superior to the MA model (Kendall and Ord, 1990). A corresponding sea-

sonal ARIMA(0, 1, 1) × (0, 1, 0)12 was also seen not to fit the data well.

Another candidate model tested was the ARIMA(2,1,1). Here p = 2,

d = q = 1 and P = Q = D = 1 implying no seasonal differencing. The

proc ARIMA analysis show a nonsignificant intercept. Thus the model

we finally fit is given by

∆∆12yt = α1yt−1 + α2yt−2 + β1εt−1

yt − yt−1 = α1yt−1 + α2yt−2 + β1εt−1

ŷt = (α1 + 1)yt−1 + α2yt−2 + α1εt−1 (5.4)

The Parameter estimates as given by the SAS ARIMA procedure are

given in Table (5.8). The suggested model is:

ŷt = 1.6309yt−1 + 0.01553yt−2 + 0.19586εt−1.

Significant tests via p-values show that all the parameters are nonsignif-

icant. The fit statistics are: AIC = 504.6 and SBC = 581.6 which

are also greater than the seasonal ARIMA(1, 1, 0)× (0, 1, 0)12 model sug-

gesting that the SARIMA(2, 1, 1) × (0, 1, 0) is less appropriate than the

86



Table 5.9: Comparison of selected models

model estimate P (> |t|) AIC SBC

ARIMA(1,1,0) β1 = 0.4904 < 0.0001 421.3 443.4

SARIMA(1,1,0)× (0,1,1)12 α1 = 0.528 < 0.0001 411.3 423.7

SARIMA(1,1,0)× (0,1,1)12 β12 = 0.998 < 0.0001 411.3 423.7

SARIMA (0, 1, 1)× (0, 1, 0)12 α1 = −0.37972 < 0.0001 423.7 454.9

SARIMA (2, 1, 1)× (0, 1, 0)12 β1 = 0.63095 0.3464 504.6 581.6

SARIMA (2, 1, 1)× (0, 1, 0)12 β2 = 0.01553 0.9641 504.6 581.6

SARIMA (2, 1, 1)× (0, 1, 0)12 α1 = 0.19586 0.7682 504.6 581.6

SARIMA (1, 1, 1)× (0, 1, 0)12 β1 = 0.6602 0.1315 430.2 463.8

SARIMA (1, 1, 1)× (0, 1, 0)12 α1 = 0.2244 < 0.0001 430.2 463.8

SARIMA (0, 1, 12)× (0, 1, 0)12 α1 = −0.19282 0.0017 499.1 509.8

SARIMA( 0, 1, 12)× (0, 1, 0)12 α12 = 0.61162 < 0.0001 499.1 508.9

seasonal ARIMA(1, 1, 0)× (0, 1, 0)12 model. Note also that the parame-

ters α1, α2 and β1 under SARIMA(2, 1, 1)× (0, 1, 0)12 are nonsignificant.

At this point in time, it is established that, amongst all the identified

models, the SARIMA(1, 1, 0)× (0, 1, 1)12 proves the best fit model. Sec-

tion 5.3.3 below provides a comprehensive comparison of the identified

models.

5.3.3 A comparison of the fitted ARIMA models

Table (5.9) shows the competing ARIMA models together with the cor-

responding estimates, standard errors, significant probabilities, AIC and
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SBC for each parameter. The SARIMA(1, 1, 0)×(0, 1, 1) has the smallest

AIC=411.3 and SBC=423.7 and both of the parameters are significant.

Therefore this model is selected to be the best fit of all the models fit-

ted. All the other models have greater AIC and SBC, therefore they

were provided only for comparison purposes. The interpretation of the

selected model is that, holding all other factors constant, this month’s

inflation rate is a linear function of the previous monthly inflation rate

and that of the twelve and thirteenth months earlier and some innovation

terms. The term with lag 12 looks plausible since it was found that there

is a significant seasonal variation in concordance with monthly collected

data. Having constructed our model, the next task is to assess how well

the model fits the data. This is done through residual analysis or model

checking as explained in section (3.4).

5.3.4 Diagnostic checking of the seasonal ARIMA(1, 1, 0)×

(0, 1, 1)12 model

Residuals from a model that fits the data well should be white noise,

that is, they should have mean zero, uncorrelated and portray unsys-

tematic uniformly random variability over time, (Chatfield, 1989). Table

(5.10) gives the results of the autocorrelation check for residuals at the

respective lags. The table shows that none of the chi-square-statistics are

statistically significant implying that there is no important information

that is left in the residuals. The ARIMA procedure in SAS version 9.1

also gives the Q statistic for the Box-Pierce-Ljung test to check for the

lack of fit as explained in section (3.5). The Q statistics at all lags were

found to be non-significant indicating absence of autocorrelation in the
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Table 5.10: Autocorrelation check for residuals for the SARIMA model

lag χ2 statistics df Pr> χ2

6 1.80 2 0.4070

12 13.70 8 0.0898

18 17.36 14 0.2374

24 27.50 20 0.1217

30 32.38 26 0.1809

Table 5.11: Time plot of residuals from the SARIMA model

residuals, further supporting evidence that the model selected fits the

data well. Figure (5.11) gives the time plot of the residuals. From the

plot, the residuals look randomly distributed around zero and exhibit no

clear pattern. The pattern of residuals exhibited in figure (5.11) together

with the Q-statistics give overwhelming evidence that the residuals are

independent implying the model fits the data well. The residuals can

also be checked for normality by looking at the histogram of the residu-

als. If the residuals are near normally distributed, the histogram should

be symmetric and bell-shaped. Figure (5.6) gives the histogram of the

residuals, which is almost symmetric. Now that we have identified and

estimated a model that fits the data, the next step is to use the model

to forecast future values of the series, which ideally is the principle goal

of time series modelling and analysis.
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Figure 5.6: Histogram of residuals from the SARIMA model

5.3.5 Forecasting with the ARIMA model

One of the objectives of this thesis is to use the constructed model to

attempt forecasting future inflation rate before they are realized, which is
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thus the main focus of this section. The forecasting techniques discussed

in section (3.7) are employed as procedures for obtaining the forecasts.

Analysis is done using SAS proc ARIMA and proc FORECAST. The

Holt-Winters forecasting procedure that was discussed in section (3.7.2)

is used since it has the capacity to cope with both trend and seasonality.

The seasonal ARIMA(1, 1, 0)× (0, 1, 1)12 model given above was used to

generate the forecast for inflation given in table (5.12) for the years 2009

and 2010. The lower and upper 95% confidence limits are used to graph-

ically assess how good the forecasts are. This implies that the forecasts

are expected to lie within the confidence limits with 95% confidence. As

expected, the further into the future a forecast is the less precise it is,

hence the wider the confidence limits. The forecasts are also given on

a plot together with the confidence limits as shown in figure (5.7). The

confidence limits look wide indicating that the model has low forecast-

ing power although it fits the data well. The models which account for

possible heteroscedasticity are now evaluated.

5.4 Application of the ARCH-GARCH mod-

elling

We now cosider applying the ARCH-GARCH modelling to the inflation

rate data. First consider the time plot of inflation rate given in figure

(5.1). As discussed in section (5.3) the plot shows changing mean and

changing variance with time, implying nonstationarity. The changing

variance nature of the data is also known as heteroscedasticity. As was

explained in detail in section (4.1), ARCH models describe the variance
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Table 5.12: Two year forecasts of inflation obtained from the SARIMA

model

Date Forecast Std. error Lower 95% CL Upper 95% CL Interval width

Jan -2009 8.7 0.8 7.1 10.3 3.2

Feb -2009 8.1 1.4 5.4 10.8 5.4

Mar-2009 8.2 1.9 4.5 11.9 7.4

Apr-2009 8.7 2.3 4.2 13.3 9.1

May-2009 8.8 2.7 3.4 14.2 10.7

Jun-2009 9.0 3.1 3.0 15.1 12.1

Jul-2009 9.3 3.4 2.6 16.1 13.4

Aug-2009 9.1 3.7 1.8 16.4 14.6

Sep-2009 9.3 4.0 1.4 17.1 15.7

Oct-2009 9.4 4.3 1.1 17.8 16.7

Nov-2009 9.8 4.5 1.0 18.7 17.7

Dec-2009 9.6 4.7 0.3 18.9 18.6

Jan -2010 9.6 5.0 -0.2 19.5 19.8

Feb -2010 9.9 5.3 -0.6 20.4 21.0

Mar-2010 10.5 5.6 -0.6 21.6 22.2

Apr-2010 11.0 5.9 -0.6 22.6 23.3

May-2010 11.5 6.2 -0.7 23.6 24.4

Jun-2010 11.9 6.5 -0.8 24.6 25.5

Jul-2010 12.8 6.7 -0.4 26.1 26.5

Aug-2010 13.0 7.0 -0.7 26.7 27.5

Sep-2010 12.6 7.2 -1.6 26.8 28.4

Oct-2010 11.9 7.5 -2.7 26.6 29.3

Nov-2010 11.8 7.7 -3.3 26.9 30.2

Dec-2010 10.1 7.9 -5.4 25.7 31.1
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Figure 5.7: Plot of inflation together with forecasts from SARIMA model

and 95% confidence interval

of the current error term as a function of the variances of the previ-

ous time periods’ error terms. ARCH-GARCH modelling accommodates

heteroscedasticity, hence there is no need for taking transformations as a

pre-requisite for stationarity. Before applying the ARCH-GARCH mod-

elling a formal test for heteroscedasticity was carried out in order to

establish the presence of ARCH effect in the data. This was done using

the Lagrange multiplier (LM) test and the Q-test as explained in section

(4.1). SAS AUTOREG procedure in SAS version 9.1 was used to perform

the tests. The null hypothesis of homoscedasticity, the opposite of het-

eroscedasticity was tested and Table (5.13) gives the results of the SAS

AUTOREG procedure for the Q-test and Lagrange Multiplier (LM) test

for heteroscedasticity. All the p-values show that the Q-values and the

LM-values at all lags are significant giving overwhelming evidence of pres-
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Table 5.13: Test for heteroscedasticity

Lag Q-value (P > Q) CL LM P >LM

1 158.6532 < 0.0001 156.2002 < 0.0001

2 276.9920 < 0.0001 162.0527 < 0.0001

3 354.5199 < 0.0001 162.2445 < 0.0001

4 398.8997 < 0.0001 162.3780 < 0.0001

5 420.4065 < 0.0001 162.4967 < 0.0001

6 428.4414 < 0.0001 162.5365 < 0.0001

7 430.6922 < 0.0001 163.0859 < 0.0001

8 431.1828 < 0.0001 163.1714 < 0.0001

9 431.3162 < 0.0001 163.1794 < 0.0001

10 431.4116 < 0.0001 163.1812 < 0.0001

11 431.5616 < 0.0001 163.1917 < 0.0001

12 431.9856 < 0.0001 163.3124 < 0.0001

ence of heteroscedasticity in the data, hence ARCH-GARCH modelling

was deemed appropriate. According to Engle, (1982) any autocorrela-

tions in the series have to be removed before an ARCH-GARCH model

is constructed. This was done by regressing the squares of the series yt

on its past squared values y2
t , y

2
t−1, ... with the number of lags determined

by the form of the ACF and the PACF. The ACF suggested an AR(2)

process, thus an AR(2) model was used resulting in all autocorrelations

being removed. Hence we consider fitting the ARCH-GARCH models to

the data.
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5.4.1 Selection of the best fitting ARCH-GARCH

model

The strategy used in selecting the appropriate model from competing

models is based on the AIC, SBC, R2, MSE and on the significance tests

for each parameter as discussed in section (4.5). SAS proc AUTOREG

was used to perform trial and error to determine the best fitting model.

The GARCH model with AR errors is given by

yt = σtεt (5.5)

where

σ2
t = α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjσ
2
t−j. (5.6)

The order of the parameters are determined by studying the ACF and

the PACF in the same way as was done in the ARIMA modelling. The

method used to estimate the parameters is the maximum likelihood

method. Table (5.14) gives the suggested models with their respective

fit statistics. As was seen in section (3.2), the idea is to have a parsimo-

nious model that captures as much variation in the data as is possible.

Therefore in table (5.14), the smaller the AIC, SBC and the MSE and

the larger the R2 the better. The model given in bold was judged to

be the most appropriate according to the criteria above. Therefore we

adopted the model

yt = σtεt (5.7)

for

σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1. (5.8)
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Table 5.14: Comparison of suggested ARCH-GARCH models with inter-

cepts

Model AIC SBC MSE R2

GARCH(0, 1) 403.498 419.463 0.540 0.8926

GARCH(1,1) 357.555 376.713 0.404 0.957

GARCH(0, 2) 358.355 377.706 0.393 0.928

GARCH(1, 2) 359.532 381.912 0.540 0.943

GARCH(2, 0) 357.555 376.713 0.404 0.957

GARCH(2, 1) 369.781 392.144 0.393 0.951

GARCH(2, 2) 373.912 402.705 0.393 0.951

Before the parameters are estimated, the same set of models are consid-

ered but without the intercept. Table (5.15) gives the models together

with selection criteria. Although there is an improvement in the R2,

the large AIC’s, BIC’s and the MSE’s makes these models unfavorable.

Most of the parameter estimates for these models were also found to be

nonsignificant. Therefore the GARCH(1,1) in table (5.14) is chosen to

be the most appropriate, hence we proceed to estimate the associated

model parameters.

5.4.2 Estimating parameters of the GARCH(1,1)

The first step is to estimate α0, α1 and β1 as explained in detail in section

(4.3.4). SAS proc AUTOREG was used to obtain these estimates spec-

ifying the maximum likelihood estimation as the method in the model

statement. Table (5.16) gives the parameter estimates, the standard er-
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Table 5.15: Comparison of suggested ARCH-GARCH models without

intercepts

Model AIC SBC MSE R2

GARCH(0, 1) 487.98 503.945 1.10 0.9795

GARCH(1, 1) 486.1 505.26 1.09 0.9797

GARCH(0, 2) 485.02 504.18 1.11 0.9794

GARCH(1, 2) 513.58 532.7 1.06 0.9803

GARCH(2, 0) 587.98 503.9 1.11 0.9795

GARCH(2, 1) 494.6 516.9 1.11 0.9793

GARCH(2, 2) 515.58 541.1 1.15 0.9785

rors and p-values. It can be seen from the table that all the parameter

estimates are statistically significant, that is, different from zero. The

standard errors are quiet small suggesting quite precise estimates. The

AR terms are provided since an AR(2) model was fitted in order to re-

move autocorrelations present in the original series. Table (5.16) suggests

that equations (5.7) and (5.8) can now be written as

yt = σtεt

where

σ2
t = α0 + α1y

2
t + β1σ

2
t−1

= 0.3605 + 0.1141y2
t + 0.6247y2

t . (5.9)

Having estimated our parameters, the next step is to check how well the

model fits the data. As with ARIMA modelling, this was done through
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Table 5.16: Parameter estimates for GARCH(1,1)

Parameter Estimate Standard-error t-values Pr > |t|

intercept 9.7780 1.8768 5.21 < 0.0001

AR(1) -1.5065 0.0726 -20.75 < 0.0001

AR(2) 0.5492 0.0703 7.81 < 0.0001

α0 0.3605 0.0436 8.27 < 0.0001

α1 0.1141 0.1013 7.13 0.0259

β1 0.6247 0.1389 4.50 < 0.0001

residual analysis.

5.4.3 Diagnostic checking of the GARCH(1,1) model

As was explained in detail in section (4.4) model checking is done through

analyzing the residuals from the fitted model. If the model fits the data

well, the residuals are expected to be random, independent and identi-

cally distributed following the normal distribution. The time plot of the

residuals given in figure (5.8) is used to check whether the residuals are

random. The normality check is also done by analyzing the histogram

of residuals and the normal probability plot. Figure (5.9) gives the his-

togram of the residuals from the GARCH(1,1) model. The histogram

shows almost a symmetric bell-shaped distribution which is indicative of

the residuals following a normal distribution. The slight negative skew-

ness is expected since the residuals may also come from student’s t distri-

bution. The negative skewness tendency is also supported by the negative

large residuals in figure (5.8). The normality check of the residuals can
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Figure 5.8: Time plot of residuals from GARCH(1,1)

Figure 5.9: Histogram of residuals from GARCH(1,1)
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also be done by the normal probability plot. As was seen in section (4.4),

if the residuals come from the normal distribution the plot should be a

straight line. Figure (5.10) gives the probability plot of the residuals.

The plot shows a near straight line suggesting that the residuals follow

an approximately normal distribution but a student t distribution cannot

be ruled out. Therefore we proceed to use the model to forecast future

values of the inflation series.

Figure 5.10: Normal probability plot of residuals from the GARCH(1,1)

5.4.4 Forecasting with the GARCH(1,1) model

As explained in section (5.3.5), forecasting is one of our main objectives

of constructing a time series model and also of this research. A model

that fits the data well is bound to give good forecasts. Figure (5.11) gives

the time plot of inflation together with the 95% confidence interval and
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the two year forecasts, that is, from January 2009 up to and including

December 2010. The 95% confidence intervals provide a measure of ac-

curacy in the forecasts. The wider a confidence interval, the less accurate

the forecasts are. The confidence widths are much narrower than those

based on the SARIMA model indicating that the ARCH-GARCH model

has a reasonably strong forecasting power. The forecasts can also be

Figure 5.11: Time plot of inflation, 95% confidence intervals and two

year forecasts from GARCH(1,1)

represented in a table as in the ARIMA case and hence table (5.17) gives

the forecasts. From the table it can easily be seen that the widths of

the confidence interval increase the further a forecast is into the future.

Having identified, estimated and validated a model from each family of

models, the subject of discussion of chapter 6 below is to give compar-

isons of the models based on their goodness of fit and forecasting power.
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Table 5.17: Two year forecasts of inflation obtained from the

GARCH(1,1) model

Date Forecast Lower 95% CL Upper 95% CL Interval width

Jan-2009 8.2 4.3 12.0 7.7

Feb-2009 8.8 2.6 11.1 8.5

Mar-2009 5.7 1.0 10.4 9.4

Apr-2009 4.8 -0.3 9.9 10.3

May-2009 4.0 -1.6 9.6 11.2

Jun-2009 2.9 -3.1 9.0 12.1

Jul-2009 2.3 -4.2 8.7 12.9

Aug-2009 1.9 -5.0 8.8 13.7

Sep-2009 1.7 -5.4 8.9 14.3

Oct-2009 1.6 -5.7 9.0 14.8

Nov-2009 1.9 -5.7 9.5 15.2

Dec-2009 2.2 -5.5 10.0 15.5

Jan-2010 2.7 -5.2 10.5 15.6

Feb-2010 3.1 -4.7 11.0 15.7

Mar-2010 3.5 -4.3 11.5 15.8

Apr-2010 4.0 -3.9 11.9 15.8

May-2010 4.4 -3.4 12.4 15.9

Jun-2010 4.8 -3.0 12.8 15.9

Jul-2010 5.2 -2.8 13.2 15.9

Aug-2010 5.4 -2.6 13.4 16.0

Sep-2010 5.6 -2.4 13.6 16.0

Oct-2010 5.6 -2.4 13.7 16.1

Nov-2010 5.6 -2.5 13.7 16.1

Dec-2010 5.4 -2.6 13.6 16.2
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Chapter 6

Comparisons of the ARIMA

and ARCH-GARCH models

and conclusions

6.1 Introduction

The ARIMA and ARCH-GARCH modelling are both time series mod-

elling procedures. However, the two have various differences. The aim

of this chapter is to give a comparison of the two families of models,

both from a theoretical and practical point of view. The comparisons

are presented in the form of an account of the steps in the development

of the thesis in brief since the theories and characteristics of each of the

family of models were given in detail in the preceding chapters. As was

explained in chapter 4, the main differences come about due to the as-

sumptions and characteristics of the models, particularly the assumption

of constant variance. We now present the comparisons in the theory and
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the results as brought about by the findings in the research.

6.2 Comparisons of the ARIMA and ARCH-

GARCH models

The main objective of the research was to understand the theory of time

series analysis (in particular the ARIMA and ARCH-GARCH modelling)

and apply the models to modelling rate of inflation in South Africa, and

compute forecasts using the models. This involved discussing the stages

in the model formulations of the models, exploring the Box-Jenkins three

stage model formulation (that is identification, estimation and checking)

technique applied to both the ARIMA and the ARCH-GARCH families

of models. The theory behind each stage was explained in depth. As

we explained in chapter 3, the tools used in the identification stage (for

identifying the parameters of the models) are the plots and tables of the

autocorrelations. In particular the plots and tables of the ACF (correlo-

gram) were used. Where two or more models are identified, criteria based

on likelihood functions such as the AIC and SBC were used to select the

best fitting model.

The theory of the methods used for estimating the parameters of the

models are given in chapter 3 and are applied in chapter 5. The methods

are the least squares method and the maximum likelihood method under

the normality assumption. Plots of residuals from the estimated models

and significance test via the p-values are used to validate the goodness of

fit of the estimated models. As explained in the chapters 3 and 5 resid-
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uals from a model that fit the data well should not contain significantly

important information that could be used to explain the variation in the

data. An account of the theory of forecasting and forecasting methods

was outlined for both family of models. Particular emphasis was given,

as in section (3.7), on methods that accommodate the different compo-

nents of the time series. These methods are the Holt and Holt-Winters

forecasting methods which capture trend and seasonality. The methods

of evaluating the accuracy of the forecasts from the estimated models

were given in section (3.8).

The two family of models were applied to the South African inflation

rate data. Every stage of the developments (that is the identification,

estimation and checking) of the models was explained in detail in chap-

ter 5. Plots and tables of the results analyzed using SAS version 9.1

procedures were given to enhance the explanations, however some plots

were produced in Excel. An analysis of the inflation rate data showed

that the data is characterized by changing mean level and unstable vari-

ance, with a dominant trend and seasonal variation. This prompted us

to fit ARIMA models with both trend and seasonal terms in order to

capture these variations. ARCH-GARCH models were also established

to be plausible as they accommodate the time-varying variance nature

of the data, hence a GARCH(1,1) model was fit to the data. The best

fitting ARIMA and ARCH-GARCH models are SARIMA(1,1,0)×(0,1,1)

and GARCH(1,1) respectively.

Analysis of the ARIMA and ARCH-GARCH family of models to the

inflation rate series has shown that the ARCH-GARCH modelling is su-
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Table 6.1: AIC and BIC for SARIMA(1, 1, 0) × (0, 1, 1)12 and

GARCH(1,1)

Statistic SARIMA(1,1,0)×(0,1,1) GARCH(1,1)

AIC 411.03 351.5

BIC 423.7 376.7

perior than the ARIMA modelling although the two capture almost the

same variation in the series. The Box-Jenkins ARIMA model is simple

to construct but it has a shortfall of losing some observations through

ordinary and seasonal differencing. The ARCH-GARCH models have a

demerit of having very little theory available hence they are difficult to

construct. With reference to sections (5.3.2) and (5.4.1), table (6.1) can

be constructed to summarize the difference in how well the two models

fit the data using the AIC and the BIC criteria. The GARCH model has

smaller AIC and BIC which is indicative it explains the variation in the

data better than the seasonal ARIMA model.

The models were both used to compute two year forecasts for the infla-

tion series. The forecasts from the seasonal ARIMA and GARCH models

are given in tables (5.12) and (5.17) respectively together with their re-

spective 95% confidence intervals (CI) for each forecast value. As was

explained in sections (5.3.5) and (5.4.4), the confidence intervals give the

forecasting accuracy of the models. The narrower the confidence inter-

val the better the forecasts, (Granger and Newbold,1986 and Granger,

1989). The CI’s from the ARIMA model are narrower than the CI’s

from the GARCH model in the early months of the forecasting period
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and became wider the further into the future a forecast is. This probably

indicate that the ARIMA model is better for short term forecasting than

the GARCH model. However figures 5.7 and 5.11 clearly indicate that

projecting into the future is better under the GARCH than ARIMA, the

later having relatively wider confidence limits than the former.

6.3 Conclusions

The study has presented us with an opportunity to have an extensive

understanding of the theory of time series analysis and its application

to a real life situation. Stages in the model building strategy have been

fully explored and utilized. It is clear from the study that the South

African inflation rate series is characterized by both trend and seasonal

variations. Hence a model that captures these variations is appropriate.

Although the ARIMA model captured these variations, the need to trans-

form the data to stationarity makes the model rely on rigid assumptions

resulting in the GARCH model being superior. The GARCH model

fits the data well, however further studies can be considered as exten-

sions and improvements to the GARCH model. These are the inte-

grated GARCH (IGARCH), the exponential GARCH (EGARCH) and

the stochastic volatility models. Although the application in this re-

search is based on inflation (financial) data, other areas of application

include environmental and pollution data (Peng and Dominici, 2008),

health research in the context of longitudinal data (Diggle et al., 2002;

Molenberghs and Verbeke, 2005), geostatistics and agriculture just to

mention a few. Future work will include extending the methodology to
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include data which is not necessarily Gaussian to cater for time series in

the form of counts and other types.
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