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ABSTRACT 
 
 
Satellite cells are muscle stem cells that reside in a niche between the basal lamina and 

sarcolemma of mature muscle fibers. Upon muscle injury, these cells are activated to 

myoblasts that subsequently proliferate, migrate and differentiate into myotubes in order to 

facilitate repair. Extracellular matrix (ECM) and growth factors are known to regulate certain 

aspects of myogenesis however, a comprehensive study of the direct effects of niche ECM 

factors on C2C12 myogenesis has not previously been conducted and forms the core of this 

study.  

 

We first examined the role of hepatocyte growth factor (HGF) on C2C12 myogenesis. HGF 

is known to initiate activation of quiescent satellite cells in the niche and regulate various 

aspects of differentiation. In this study, we determined that HGF has a dose-dependent dual 

role in C2C12 myogenesis. HGF (2 ng/ml) significantly promoted cell division, but reduced 

myogenic commitment and fusion. Conversely, 10 ng/ml HGF reduced proliferative 

capability, but increased differentiation. This is potentially regulated by changes in c-Met 

expression; analysis revealed significantly decreased c-Met expression in differentiating 

cells cultured with 2 ng/ml HGF, but increased expression in proliferating cells with 10 

ng/ml HGF. Furthermore, investigation into the mechanisms by which HGF affects 

myogenesis, revealed that mitogen-activated protein kinase (MAPKs: ERK, JNK or p38K) 

and phosphatidylinositol-3-kinase (PI3K) inhibition abrogated the HGF-stimulated increase 

in cell number. Interestingly, PI3K and p38 kinase facilitated the negative effect of HGF on 

proliferation, while ERK inhibition abrogated the HGF-mediated decrease in differentiation.  

 

Next, we analyzed the effect of the satellite cell niche ECM on C2C12 myogenesis. Collagen 

IV and laminin, the major components of the basal lamina, bind to and interact with satellite 

cells via integrins and other cell surface proteins such as the tetraspanin, CD9. Matrigel 

significantly increased terminal fusion but had no effect on Pax7+ and MyoD+ cell numbers. 

Collagen IV, the second largest constituent of Matrigel, was observed to significantly 

increase MyoD+ cell numbers and terminal fusion without effecting percentage Pax7+ cell 

numbers. Furthermore collagen IV stimulated an increase in CD9 expression on 

differentiating cells, such that cells cultured on collagen IV required higher levels of 

neutralizing anti-CD9 monoclonal antibodies to reduce fusion. These results indicate, for the 
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first time, that the interaction of collagen IV with CD9 is a critical mediator of skeletal 

muscle fusion and that the observed pro-myogenic effect is accompanied, on a molecular 

level, by an increase in the number of committed MyoD positive cells.  

 

Extracellular matrix (ECM) and growth factors are known to have complex interactions that 

may modulate their activity in vivo. Lastly, in an attempt to more closely mimic in vivo 

conditions, murine C2C12 myoblasts were cultured on collagen IV in HGF-supplemented 

media followed by assessment of differentiation and proliferation. Collagen IV was not able 

to negate the negative effect of HGF (2 ng/ml) on fusion but was able to restore normal 

MyHC expression. Due to a collagen IV stimulated increase in CD9 expression in 

differentiating myoblasts, cells cultured on collagen IV required higher levels of neutralizing 

anti-CD9 monoclonal antibodies to reduce fusion; an effect not observed when cells were 

differentiated in the presence of HGF alone. HGF (10 ng/ml) treated samples we unable to 

demonstrate any fusion when CD9 was completely blocked suggesting that CD9 is a crucial 

co-factor in HGF (10 ng/ml)-induced fusion. These results show, for the first time, that 

collagen IV is able to modulate certain aspects of the dual role of HGF on myogenesis.  

 

In summary, we identified a novel dose-dependent dual role of HGF in myogenesis and 

uncovered that these effects are mediated by changes in c-Met expression and downstream 

MAPK and PI3K signalling. We showed, for the first time, that collagen IV is able to 

positively mediate C2C12 differentiation via a CD9-dependent pathway. Lastly, we revealed 

that collagen IV is able to mediate the dose-dependent effects of HGF on C2C12 myogenesis. 
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CHAPTER 1: LITERATURE REVIEW  
 
 

1.1 Introduction: 

 

Myofibers (skeletal muscle cells) are post-mitotic and therefore unable to divide and repair 

damaged muscle themselves (Grounds et al., 2002). However, a cellular repair system is 

present in adult muscle in the form of a stem/progenitor cell known as the satellite cell (De 

Bari et al., 2003).  Satellite cells reside in a niche between the basal lamina and plasma 

membrane of the adjacent myofiber (Mauro, 1961, Grefte et al., 2012). They are positioned 

along the entire length of the muscle fiber and ensure the capability of muscle repair 

regardless of the site of injury (Muir et al., 1965). Morphologically, satellite cells are 

fusiform in shape with a small nucleus and reduced organelle content (Charge and Rudnicki, 

2004). 

 

In healthy, uninjured muscle, satellite cells are metabolically inactive, a state known as 

quiescence. Upon muscle damage, they are activated from quiescence by hepatocyte growth 

factor (HGF) and begin to proliferate (Allen et al., 1995). Activated satellite cells, also 

known as myoblasts, migrate along the basal lamina towards the site of injury where they 

differentiate and facilitate tissue repair (Allen et al., 1995). The precise composition of the 

extracellular matrix (ECM) changes as the cell moves from its niche, along the basal lamina 

and into the wound. The two main protein components of the basal lamina are collagen IV 

and laminin (Boonen and Post, 2008). However, upon entering a fibrotic wound, myoblasts 

come into contact with high levels of collagen I, fibronectin and decorin (Vaz et al., 2012). 

Previous research has highlighted the importance of the ECM and growth factors in 

regulating the activation, commitment, migration and differentiation of myoblasts (Borojevic, 

1999, Goetsch et al., 2011, Grefte et al., 2012, Melo et al., 1996, Osses and Brandan, 2002, 

Schenke-Layland et al., 2007, Vaz, 2009) and a comprehensive assessment of the effects of 

HGF and the niche ECM on myogenesis forms the basis of this study. 
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1.2 Satellite cell characterization: 

 

Satellite cells were first identified by Mauro (1961) in the hind limb muscles of frogs. 

Research by Muir et al. (1965) identified and further characterized these cells in skeletal 

muscle of mice and fruit bats. Electron microscopy allowed the visualization of mammalian 

satellite cells residing in their niche between the basal lamina and plasma membrane of a 

myofiber (Figure 1.1) (Muir et al., 1965). Although satellite cells were suspected to play a 

role in skeletal muscle repair in 1961, conclusive proof of this was only shown some 17 

years later. Snow (1978), using autoradiography, showed that satellite cells were essential for 

the regeneration of muscle in Sprague-Dawley rats. Here, satellite cells autoradiographically 

labeled with tritiated thymidine were transplanted into non-radioactive littermates. Following 

muscle damage, newly repaired myotubes appeared radioactively labeled thus proving that 

the satellite cells had differentiated into myotubes during fiber repair. In this study, activated 

satellite cells were also shown to be capable of myotube formation in vitro confirming their 

stem cell-like nature (Snow, 1978). 

 

Satellite cells are not the only mononucleated cells found in skeletal muscle tissue (Figure 

1.1). Pericytes are contractile cells that regulate capillary flow to the myofiber. They have 

recently been shown to retain a certain level of plasticity allowing them to differentiate into 

muscle cells and fibroblasts, and are able to assist in skeletal muscle regeneration (Dellavalle 

et al., 2007). 
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Figure 1.1: Satellite cell localization. Skeletal muscle is made up of densely packed, parallel myofibers. These 
fibers are multinucleated (containing myonuclei) and are surrounded by pericytes and satellite cells (red arrows 
indicate satellite cells). Blood vessels supply the fiber with nutrients, growth factors and circulating 
inflammatory cells in times of muscle injury. Mesenchymal progenitors and connective tissue cells are also 
found integrated within skeletal muscle tissue (Pannerec et al., 2012).  
 
 

Mesenchymal progenitors are capable of differentiating into a range of cell types, including 

adipocytes and muscle (Uezumi et al., 2010). Within skeletal muscle, they secrete hepatocyte 

growth factor (HGF) which plays a vital role in the activation of satellite cells upon muscle 

injury (Catlow et al., 2003). Connective tissue cells are one of the most abundant cell types 

found embedded in skeletal muscle; they form a sheath of connective tissue around each 

muscle fiber (Rowe, 1981). This not only protects the fiber, but also transfers tension 

between adjacent muscle fibers and supplies a element of elasticity to the muscle bundle 

(Trotter and Purslow, 1992). Unlike myofibers, satellite cells are mononuclear and express 

specific satellite cell proteins such as Pax7 and muscle regulatory factors (MRFs), which 

allow them to be identified in skeletal muscle tissue (Charge and Rudnicki, 2004) 
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1.3 Pax and Myogenic Regulatory Factors (MRFs): 

 

Paired-box (Pax) proteins 3/7 and the myogenic regulatory factors (MRFs) are transcription 

factors specific to muscle cell lineages (Seale et al., 2000). They play distinct, stage-specific 

roles during myogenesis and their use as molecular markers has allowed great insight into 

myogenesis. The expression of these transcription factors at different stages of muscle 

regeneration is outlined in Figure 1.2. 

 

 
Figure 1.2: The progression from quiescent satellite cell to multinucleated myofiber showing the 
expression of transcription factors during this process. Quiescent satellite cells express Pax7 with low levels 
of Myf5. Myoblasts express the transcriptions factors Pax7, MyoD and myogenin. Differentiated myocytes 
down-regulate expression of Pax7, but continue to express MyoD and myogenin. Mature multinucleated muscle 
fibers express transcription factors myogenin and MRF4 as well as the structural protein Myosin Heavy Chain 
(MyHC) (Charge and Rudnicki, 2004, Cornelison and Wold, 1997, Fuchtbauer and Westphal, 1992, Gayraud-
Morel et al., 2007, Le Grand and Rudnicki, 2007, Ustanina et al., 2007, Bentzinger et al., 2012). 
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Pax3 is a major regulator of embryonic muscle development, however, its importance in 

postnatal skeletal muscle growth and repair is overshadowed by Pax7 (Young and Wagers, 

2010). Once activated, proliferating myoblasts increase expression of the paired-box 

transcription factor Pax7 (Le Grand and Rudnicki, 2007). Pax7 is known to play a role in the 

self-renewal pathway that is responsible for maintaining the population of satellite cells in 

muscle. Pax7 is expressed in both quiescent and activated satellite cells, but is down-

regulated prior to differentiation (Relaix et al., 2006). After several proliferative cycles, 

myoblasts exit the cell cycle and enter a state of differentiation which allows subsequent 

fusion and myotube formation (Dhawan and Rando, 2005). If Pax7 expression is not 

downregulated, cells do not differentiate, but rather re-enter a quiescent state. 

 

Following down-regulation of Pax7 in differentiating cells, MyoD expression increases, 

suggesting that Pax7 plays a role in self renewal via direct suppression of MyoD expression 

(Olguin and Olwin, 2004). MyoD expression is accompanied by up-regulation of Myf5, 

myogenin and myosin heavy chain (MyHC) expression, before subsequent fusion into 

multinucleated muscle fibers as reflected in Figure 1.2 (Le Grand and Rudnicki, 2007). 

Through various knockout studies it has been shown that MyoD is a crucial regulatory factor 

of post-natal myogenesis with knockouts unable to effectively differentiate satellite cells. 

Triple knockouts of myogenin, MRF4 and Myf5 also show a complete inability to perform 

successful myogenesis (Gayraud-Morel et al., 2007). This indicates that the regulatory 

factors work in unison to ensure successful myogenesis.  
 

Satellite cells express a number of cell surface proteins including M-cadherin, neural cell 

adhesion molecule (N-CAM), c-Met and CD9 (Table 1.1). c-Met and CD9 are of particular 

relevance to this study as HGF signals through c-Met and collagen IV is known to bind to 

CD9. These surface proteins will be discussed in more detail in the following sections. 
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Table 1.1: Common satellite cell proteins and their functions. 

Markers Expression Function References 

Transcription Factors: 

Pax3 

 

Pax7 

 

 

Q 

 

Q/A 

 

Myogenic specification 

(embryonic) 

Myogenic specification (adult), 

self renewal 

 

(Horst et al., 2006) 

 

(Seale et al., 2000) 

 

MRFs: 

              MyoD 

 

A 

 

Commitment to differentiation 

 

(Cornelison et al., 2000) 

              Myf5 A/D Commitment to differentiation (Ustanina et al., 2007) 

Myogenin 

MRF4 

D 

D 

Differentiation, fusion 

Differentiation, fusion 

(Fuchtbauer and Westphal, 

1992) 

(Bentzinger et al., 2012) 

Cell surface proteins: 

c-Met 

CD9 

 

Q/A 

Q/A 

 

Receptor for HGF 

Role in integrin signaling, fusion 

 

(Cornelison and Wold, 1997) 

(Beauchamp et al., 2000) 

(Tachibana and Hemler, 1999, 

Charrin et al., 2013). 

Structural proteins: 

MyHC 

 

D 

 

Terminal differentiation 

 

(Bader et al., 1982) 

    

Abbreviations: Q: Quiescent; A: Activated; D: Differentiated; NCAM: neural cell adhesion molecule; Pax3/7: 

paired-box transcription factor 3/7; Myf5: myogenic factor 5; MyHC: myosin heavy chain. 

 

C2C12 cells are an immortalized myoblast line used as a research model for myogenesis 

isolated from C3H mice following a crush injury experiment (Yaffe and Saxel, 1977). Upon 

stimulation to differentiate, C2C12 cells are observed to downregulate Pax7, upregulate 

MyoD and begin differentiation (Zammit et al., 2006b). This is followed by the expression 

of the abovementioned MRFs and followed by fusion into actin and myosin positive 

myotubes (Burattini et al., 2004, Olguin et al., 2007). This pattern of expression of 

transcription factors as differentiation progresses closely mirrors that of primary culture 

myoblast differentiation and in vivo myogenesis (Olguin et al., 2007). This outlines the value 

in quantifying C2C12 transcription factor and MRF levels as a primary step in understanding 

specific stages of myogenesis. 
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1.4 Skeletal muscle repair: 

 

Adult skeletal muscle is considered an extremely stable tissue type. Schmalbruch and Lewis 

(2000) estimate that approximately 2% of mononuclei are replaced each week in healthy 

adult mice (Schmalbruch and Lewis, 2000). Skeletal muscle also possesses the ability to 

rapidly regenerate following injury.  

 

Muscle tissue repair can be classified into two distinct stages, namely degradation and 

regeneration. Degeneration begins with necrosis and partial or full autolysis of the fiber 

ensues (Schmalbruch and Lewis, 2000). This degradation releases factors which act as 

chemotactic signals to inflammatory cells in the bloodstream. Neutrophils are present at the 

site of injury within 6 hours of injury followed by macrophages approximately 48 hours 

post-injury (Figure 1.3A) (Tidball, 1995). Although fibroblasts are recruited to the site of 

injury, deposition of large amounts of fibrotic scar tissue is not characteristic for these types 

of injuries (Schmalbruch and Lewis, 2000). The released factors from the damaged muscle 

fiber also stimulate activation of the regeneration process. This is characterized by mitotic 

cell division of satellite cells followed by migration into the injury site and later, fusion of 

myoblasts to existing myofibers or to one another forming new myotubes (Figure 1.3B) 

(Schmalbruch and Lewis, 2000). Late in the regeneration stage, remodeling occurs and 

myotubes increase in size due to hypertrophy. Following complete regeneration, repaired 

myofibers are morphologically indistinguishable from undamaged fibers and exhibit 

complete contractile functionality (Figure 1.3C) (Schmalbruch and Lewis, 2000). 
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Figure 1.3: Normal muscle regeneration. Neutrophils and macrophages enter injury site. Activated myoblasts 
differentiate into multinucleated myotubes and fuse to existing myofibers thereby bridging the injury without 
scar tissue formation. Full muscle repair ensues (Constructed from (Jarvinen et al., 2000, Occleston et al., 2010, 
Tidball and Wehling-Henricks, 2007)). 
 

However, in cases of extremely severe or frequent injury (Figure 1.4A), excessive ECM 

deposition by infiltrating fibroblasts may result in the formation of a fibrotic scar (Figure 

1.4B) (Jarvinen et al., 2000). The fibrotic scar, composed of ECM factors including 

fibronectin and collagen III (which is later remodeled to collagen I), prevents myoblasts from 

fusing and bridging the original muscle fiber (Figure 1.4C) (Tidball and Wehling-Henricks, 

2007). This, in turn, results in a loss of contractile ability (Tidball and Wehling-Henricks, 

2007).  This type of scarring also occurs as a result of repetitive injuries characteristic of 

myopathies such as Duchenne muscular dystrophy, where increasing fibrosis causes 

transdifferentiation of myoblasts into fibroblasts (Grounds, 2014). 
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Figure 1.4: Scar tissue formation following repeated or extremely severe muscle injury. Fibroblasts enter 
the site of injury and deposit ECM proteins such as collagen I and fibronectin. Myotubes then attach to either 
side of the fibrotic scar and fuse with the existing muscle fibers. This results in fibrotic scar tissue formation 
and impeded muscle function (Constructed from (Jarvinen et al., 2000, Occleston et al., 2010, Tidball and 
Wehling-Henricks, 2007)). 
 

1.5 Satellite cell niche:  

 

The stem cell niche is defined as the local microenvironment that supports, maintains and 

regulates stem cell identity and function. In particular, the stem cell niche has been shown to 

regulate self-renewal via a mechanism known as asymmetric cell division (Kuang et al., 

2008). Asymmetric cell division is characterized by mitosis resulting in daughter cells of 

different cellular fates (Morrison and Kimble, 2006) as opposed to symmetric cell division 

which results in identical daughter cells. With regard to myogenesis, asymmetric cell 

division results in one daughter cell that will migrate to the site of injury and differentiate, 
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facilitating regeneration. The other daughter cell will return to the niche and re-enter 

quiescence (Kuang et al., 2007). This process is extremely important in maintaining a 

population of satellite cells within the muscle and thus ensuring its regenerative potential. 

 

The satellite cell niche is found along the surface of muscle fibers between the sarcolemma 

and the basal lamina. The satellite cell is in contact with the muscle fiber, components of the 

basal lamina and the vascular system that supplies the niche (Fuchs et al., 2004). The muscle 

fiber has been shown to supply the satellite cell with mechanical, electrical, and chemical 

signals that play a role in the regulation of its function (Pallafacchina et al., 2010). The basal 

lamina surrounding myofibers consists of various ECM components such as laminin-211, 

collagen IV and various proteoglycans such as syndecans, glypican-1, perlecan, decorin and 

biglycan. These factors contribute to maintaining quiescence of the satellite cells while still 

in their niche (Pallafacchina et al., 2010). The vascular system supplies nutrients and oxygen 

to the muscle fiber. This network supplies extrinsic signals from the circulatory system, 

which along with factors released by macrophages and fibroblasts, regulate the quiescence, 

activation and proliferation of satellite cells (Pallafacchina et al., 2010).  

 

Growth and ECM factors of the satellite cell niche and wound (Table 1.2) regulate the 

process of muscle repair and regeneration (Allen et al., 1995, Amento and Beck, 1991, 

Catlow et al., 2003, De Bari et al., 2003, Ewton et al., 1988, Fuchs et al., 2004, Goetsch et 

al., 2011, Grinnell, 1984, Lehto et al., 1985, Lin et al., 2010, Podleski et al., 1979, Schabort 

et al., 2009, Schenke-Layland et al., 2007, Schonherr et al., 1995, Tatsumi et al., 1998, Vaz, 

2009, von der Mark and Ocalan, 1989, Yao et al., 1996). An understanding of how these 

factors affect myogenesis may provide clues as how to improve the restoration of muscle 

function post-injury.  
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Table 1.2: Comparison of components found within the satellite cell niche and those found in a fibrotic 

wound. 

Component Stem cell niche Fibrotic Wound References 

Fibronectin Not expressed Fibronectin (Dourdin et al., 1997) 

Collagens Col IV, VI  Col I, III (Kjaer, 2004, Friedl et 
al., 1998) 

Laminin Laminin 211, 411, 511 Not expressed (Grounds et al., 2005) 

Proteoglycans Biglycan, Syndecans Decorin, Dermatan 
Sulfates 

(Mochida et al., 2009) 

Growth Factors HGF, TGF-β TGF-β (Amento and Beck, 
1991) (Allen et al., 
1995) 

 

1.6 Extracellular matrix and growth factors in the niche and wound:  

 

The extracellular matrix (ECM) surrounding skeletal muscle was initially thought to act 

solely as a scaffold to support and maintain the structure of the tissue, but has since been 

shown to regulate many cellular processes (Grounds et al., 2005). These include cell survival, 

activation, proliferation, migration and differentiation (Friedl and Brocker, 2000). A vast 

array of proteins, proteoglycans and polysaccharides form the lattice-like meshwork of the 

ECM (Wu et al., 2005). Individual components of the ECM such as laminin, fibronectin, 

collagen I, tenacin and decorin have been shown to influence stem cell activation, migration 

and differentiation in various tissues (Lin et al., 2010, Schenke-Layland et al., 2007, Friedl 

and Brocker, 2000, Wehrle-Haller and Chiquet, 1993). Growth factors control many aspects 

of myogenesis including activation, proliferation, migration, differentiation and fusion of 

myoblasts into myotubes. In this respect, important growth factor families include the 

hepatocyte growth factor (HGF) family, the fibroblast growth factor (FGF) family and the 

transforming growth factor beta (TFG-β) family.  

 

1.6.1 Fibronectin: Fibronectin has been shown to be crucial in embryogenesis with 

fibronectin knockout mice rarely developing beyond day 11 of embryogenesis (George et al., 

1993). This is due to the vital role that fibronectin plays in guiding the migration of various 

cell types during early embryogenesis (Darribere and Schwarzbauer, 2000).  Fibronectin, in 

its insoluble form, is a glycoprotein that forms fibrils as components of the ECM. This 

protein exists in two other forms: cell surface fibronectin oligomers and a soluble dimeric 

form located in the blood (Grinnell, 1984). The insoluble form of fibronectin has been shown 
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to be able to bind various ECM components including collagen and tenacin (Hocking et al., 

2008). Along with tenacin, fibronectin is among the first ECM factors to be produced by 

fibroblasts in severely injured muscle tissue (Grinnell, 1984). Fibronectin forms multimeric 

cross-linked structures with fibrin which act as a scaffold for invading inflammatory cells 

and myoblasts (Dourdin et al., 1997). Fibronectin has been shown to improve the myogenic 

differentiation of C2C12 cells in vitro (Table 1.3) (Garcia et al., 1999, Lin et al., 2010). 

Garcia et al (1999) showed that blocking with monoclonal antibodies against fibronectin 

itself, or the integrin with which it interacts (α5β1), abrogates the observed increase in 

C2C12 differentiation. 

 

1.6.2 Collagens: Collagens are a family of structural proteins known to perform 

numerous functions in vivo. Fibrillar collagens include collagen I, II, III, IV, V, VI and XI 

and are all composed of three polypeptide α-chains which arrange into a triple helix (Ricard-

Blum and Ruggiero, 2005). The basal lamina has been shown to be rich in collagen IV, 

which forms the basic scaffold into which laminin networks are integrated (Timpl and 

Brown, 1996). Collagen IV binds to cell surface receptors knows as integrins as well as 

tetraspanins (Leitinger and Hohenester, 2007). Integrins are the major transmembrane 

receptors involved in cell adhesion to the ECM (Humphries et al., 2006).  

 

Although little is known regarding the effect of collagen IV on myoblast differentiation, 

collagen IV is known to interact with the CD9 receptor (Castro-Sanchez et al., 2010). This 

cell surface glycoprotein is expressed on the surface of C2C12 cells and has been shown to 

be vital in the normal development of skeletal muscle. CD9 expression is upregulated in the 

early stages of C2C12 differentiation and blocking CD9 using monoclonal antibodies 

substantially inhibits and delays conversion of C2C12 cells to elongated myotubes 

(Tachibana and Hemler, 1999, Charrin et al., 2013). This suggests that collagen IV may 

positively regulate myogenesis via CD9. Knockout studies have shown that collagen IV is 

not essential for early embryo development, but is essential for the correct structural 

assembly of various basement membranes during late development (Poschl et al., 2004). At 

day 10.5 to 11.5 lethality occurs in collagen IV null mice due to structural abnormalities in 

the basement membrane between parietal endoderm cells and trophoblast cells known as the 

Reichert’s membrane. Collagen IV has been shown to increase the differentiation of human 

and mouse embryonic stem cell types into mesodermal cell lineages including hematopoietic, 
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endothelial, and smooth muscle cells (Table 1.3) (Ali et al., 1998, Schenke-Layland et al., 

2007, Taru Sharma et al., 2012).  

 

Collagen I is the most abundant collagen subtype within mammalian tissues and is the final 

product of collagen remodeling during scar tissue formation (Ricard-Blum and Ruggiero, 

2005). TGF-β promotes fibrosis by stimulating collagen I deposition by fibroblasts following 

severe muscle injury (Tidball and Wehling-Henricks, 2007). Additionally, the interstitial 

ECM surrounding skeletal muscle fibers has been shown to be rich in collagen I, which 

increases integrin α1β1 expression on fibroblasts (Kjaer, 2004). Increased expression of 

integrin α1β1 causes the clumping of fibroblasts on collagen fibers via a critical GFOGER 

(O denotes hydroxyproline) motif within the collagen’s I domain (Emsley et al., 2000). 

Collagen I also binds to discoidin domain receptor 1 and 2 (DDR1 and DDR2) (Leitinger 

and Hohenester, 2007). DDRs are receptor tyrosine kinases (RTKs) involved in the 

regulation of cell growth, differentiation and metabolism (Mohan et al., 2001). Collagen I 

has been shown to inhibit the differentiation of rat primary culture satellite cells (Table 1.3) 

(Kjaer, 2004, Grefte et al., 2012).  

 

1.6.3 Laminins: Laminins, composed of multiple heterodimers consisting of α, β and 

γ polypeptide chains, are a major protein component of the basal lamina. They are key bridge 

molecules, connecting the myofiber to the basal lamina; their absence results in congenital 

muscle dystrophies (Grounds et al., 2005). These conditions arise as, without the connection 

of the myofiber to the basal lamina, the contractile force generated by the myofiber cannot be 

transferred effectively to the interstitial connective tissue (Grounds et al., 2005). Laminin-

211, found around the sarcolemma of muscle fibers, binds to collagen IV in the basal lamina 

(Grounds et al., 2005). Laminin-111 and laminin-211 (merosin) differ in their alpha domains, 

however laminin-111 has been shown to improve the repair of skeletal muscle in merosin 

deficient mice (Van Ry et al., 2013). This suggests a similar functional nature of these two 

isoforms. Although the effect of laminin deficiency is well documented in congenital 

muscular dystrophies, its effect on myoblast differentiation remains a topic for debate. 

Laminin-111 has been shown by some to increase C2C12 differentiation (Grossi et al., 2007) 

while others have found that laminin had no effect on C2C12 differentiation (Vaz, 2009) 

(Table 1.3).  
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1.6.4 Decorin: Decorin, a proteoglycan, is composed of a leucine-rich core protein 

containing 12 subunits with each subunit containing a 24 amino acid polypeptide (Mochida 

et al., 2009). Decorin plays a vital role in collagen fibrillogenesis by binding to collagen and 

causing a delay in fibril assembly. This results in the reduction of the fibril diameter and 

ensures correct fibril assembly (Mochida et al., 2009). Irregular collagen contours and a 

loosely packed collagen network are the result of decorin scarcity during myogenesis 

(Mochida et al., 2009). Goetsch et al., 2011 found that decorin increases collagen I-

stimulated, but not fibronectin-stimulated migration of mouse myoblasts. Riquelme et al. 

(2001) found that by minimizing the expression of decorin using antisense mRNA, they 

enhanced terminal differentiation of C2C12 cells (Table 1.3). In contrast, recent studies have 

shown decorin to aid in the differentiation of C2C12 cells (Table 1.3) through the 

suppression of myostatin activity (Kishioka et al., 2008). Li et al (2007) showed that decorin 

inhibits transforming growth factor TGF-β1 and can reduce the formation of fibrous scar 

tissue in vivo. This resulted in improved muscle healing after injury using decorin gene 

transfer (Li et al., 2007). The knockout of decorin expression performed by Riquelme et al. 

(2001) may possibly have activated a compensatory mechanism that is responsible for their 

observed improvement in C2C12 terminal differentiation. The findings of Li et al (2007) 

were observed using an animal model as opposed to the C2C12 in vitro model used in the 

two other studies mentioned. These differences in the models used may contribute to the 

observed contrasting results. 

 

 1.6.5 Matrigel: Matrigel, as it is known by its trade name, is an exogenous mixture of 

mainly collagen IV, laminin-111 and various proteoglycans (Hughes et al., 2010). These 

components closely mimic the ECM of the satellite cell niche, providing a valuable tool in 

the study of niche ECM factors. Matrigel is commonly utilized to improve the proliferative 

and myogenic potential of primary isolated myoblasts (Grefte et al., 2012). Grefte et al 

showed that Matrigel did indeed improve the fusion of C2C12 cells in vitro.  Melo et al. 

(1996) demonstrated that the ECM is essential for skeletal muscle differentiation by 

culturing C2C12 myoblasts in the presence or absence of Matrigel. Cells plated in the 

absence of Matrigel were unable to form myotubes by day 3 while those differentiated on 

Matrigel had fused at this time point. Interestingly, when cells were plated in the absence of 

Matrigel, the production of the differentiation-stage specific transcription factor myogenin 

was not prevented, however later muscle-specific gene products such as MyHC were not 

produced by day 3 of differentiation (Melo et al., 1996, Osses and Brandan, 2002). This is 
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compelling evidence that the components of Matrigel speed up C2C12 terminal 

differentiation. 

Table 1.3: The known effects of various ECM and growth factors on stem cell differentiation. 

Component [Concentration] Effect on 

Differentiation 

Cell type References 

Collagen I [1.2 mg/ml] ê Rat primary muscle 

culture 

(Grefte et al., 2012) 

Collagen IV [10 µg/ml] é Various embryonic 

stem cell types, 

neural progenitors  

(Schenke-Layland et al., 
2007, Taru Sharma et al., 
2012, Ali et al., 1998) 

Fibronectin [10 µg/ml,         

5 µg/ml] 

é C2C12 myoblasts, 

Human mesenchymal 

multipotent stem cells 

(Garcia et al., 1999, Lin 
et al., 2010) 

Laminin [10 µg/ml] 

 

[5 µg/ml] 

é   

 

No effect          

C2C12, rat primary 

muscle culture 

(Lin et al., 2010, Grossi 
et al., 2007, Vaz, 2009, 
Foster et al., 1987) 

Decorin Overexpressing 

transfected cells 

Gene Silencing 

(antisense RNA) 

Gene transfer 

é 

 

é 

 

é 

C2C12 myoblasts 

 

C2C12 myoblasts 

 

CD cells 

(Kishioka et al., 2008) 
 
 
(Riquelme et al., 2001) 
 
(Li et al., 2007) 

HGF Overexpressing 

transfected cells 

ê C2, Mouse primary 

muscle culture 

(Yamane et al., 2004, 
Leshem et al., 2000)  

Matrigel 

TGF-β1 

FGF-2 

[1 mg/ml] 

 

[0.1 mg/ml] 

é 

ê 

é 

 

Rat primary culture 

C2C12 myoblasts 

In vivo mouse 

(Grefte et al., 2012) 
(Schabort et al., 2009) 
 
(Armand et al., 2006) 

 

 

1.6.6 HGF: Hepatocyte growth factor (HGF) exists in two forms, pro-HGF and mature HGF. 

Pro-HGF is secreted by mesenchymal cells as a single chain and remains bound in the ECM 

in an inactive form. Upon muscle injury, it is cleaved and activated by a serine protease 

(Catlow et al., 2003). Mature (active) HGF is dimeric and exists as a heavy α-chain (69 kDa) 

and light β-chain (34 kDa) heterodimer. This growth factor is known to play a role in 

development and regeneration of a range of tissues including the endothelium, kidney, lung 

and skeletal muscle (Nakamura and Mizuno, 2010). HGF has been shown to impede the 

differentiation of embryonic mouse tongue cells and increase the proliferation and migration 

of C2C12 myoblasts in vitro (Yamane et al., 2004, Barbero et al., 2001). With regards to 
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skeletal muscle, HGF is of vital importance in the initial stages of muscle regeneration 

(Matsumoto and Nakamura, 1997). 

 

 1.6.6.1 Stability: 

In vivo studies investigating the effect of HGF on liver regeneration have shown that HGF 

has a blood half-life of approximately 3 minutes (Appasamy et al., 1993, Ido et al., 2004, 

Xue et al., 2003). This is mainly due to HGF uptake by the liver and does not suggest that 

HGF is inherently unstable (Appasamy et al., 1993). In fact, two studies have demonstrated 

that HGF is stable at a range of temperatures, pH’s and ionic strengths (Nayeri et al., 2002, 

Nayeri et al., 2004). HGF has however been observed to degrade significantly over a 3 hour 

period when placed in culture flow environments. However, HGF levels remained at over 

90% 3 hours post addition to static media at 37 °C and 5% CO2 (Meneghello et al., 2014).  

 

 1.6.6.2 c-Met receptor: 

The c-Met receptor is a high affinity receptor for HGF. It exists as a 190 kDa transmembrane 

protein composed of an α-chain (50 kDa) and a β-chain (140 kDa) (Tam et al., 2000). Upon 

binding of HGF to the c-Met receptor, Met kinase becomes active (Bottaro et al., 1991). This 

results in 2 tyrosine residues (Tyr1349 and Tyr1356) in the carboxy-terminal tail becoming 

phosphorylated (Figure 1.5). These residues become docking sites for a range of adaptor 

proteins including phosphatidylinositol-3-kinase (PI3K), Grb2-associated adaptor protein 

(Gab1) and growth factor receptor-bound protein 2  (Grb2) (Figure 1.5). These pathways 

proceed to mediate Met-dependent cell proliferation, migration, survival and differentiation 

(Faria et al., 2011). These effects will be further discussed in section 1.6.6.3. Blocking the 

binding of HGF to the c-Met receptor has been shown to prevent the activation of quiescent 

satellite cells in a crush muscle extract experiment, thus confirming the importance of this 

receptor in satellite cell activation (Tatsumi et al., 1998). 

 

Regulation of HGF signalling via c-Met can be achieved by a number of mechanisms. Firstly, 

HGF has been observed to be rapidly internalized and degraded in cells such as hepatocytes, 

and the density of the HGF:c-Met complex on the cell surface is observed to decrease within 

30 minutes of exposure to elevated HGF levels (Naka et al., 1993). c-Met also has a negative 

regulatory site, a tyrosine residue in its juxtamembrane domain which acts by recruiting the 

E3 ubiquitin-protein ligase, casitas B-lineage lymphoma (c-CBL) (Organ and Tsao, 2011). 



 17 

This causes c-Met to be ubiquitinated and thus targeted for proteasome degradation. HGF 

signaling is also regulated by the ability of c-Met to bind a number of protein tyrosine 

phosphatases (PTPs). These phosphatases can control HGF signaling by modifying the 

kinase or binding domains of c-Met (Organ and Tsao, 2011). Lastly, phospholipase Cγ 
(PLCγ) can bind to c-Met and activate protein kinase C (PKC) which acts as a negative 

regulator of c-Met activity (Organ and Tsao, 2011).  
 

 1.6.6.3 Intracellular signaling:  

Growth factor receptor-bound protein 2 (Grb2) and Grb2-associated adaptor protein (Gab1) 

transduce signals through mitogen-activated protein kinases (MAPKs) such as extracellular 

signal-regulated kinases (Erk1 and Erk2), Jun amino-terminal kinases (JNK1, JNK2 and 

JNK3) and p38 (Figure 1.5).  These kinases promote cell proliferation and mediate cell 

migration while signaling through PI3K mediates cell survival and resistance to apoptosis in 

a wide range of cell types (Faria et al., 2011). Proliferation rates are also regulated via 

signalling through SHP2, a tyrosine phosphatase that mediates MAPK activity downstream 

of Grb2 (Li et al., 2009). 

 

The PI3K pathway signals through Akt and has been shown to be important in proliferation, 

differentiation and survival of muscle stem cells (Ceci et al., 2004, Guttridge, 2004). Akt has 

been observed to be vital in the IGF induced increase of myogenin expression in C2C12 cells 

(Xu and Wu, 2000). Inhibition of this pathway by LY294002 a potent, reversible inhibitor of 

phosphoinositide 3-kinases (PI3K), (Maira et al., 2009)(Maira et al., 2009) has been shown 

to interfere with myotube formation and the expression of muscle-specific proteins such as 

MyoD and MyHC (Jiang et al., 1999). 

 

Activation of the ERK pathway by myostatin has been shown to negatively regulate 

myogenesis in C2C12 cells, and this effect can be reversed with the addition of PD98059, a 

potent, selective inhibitor of ERK kinase (Figure 1.5) (Yang et al., 2006). 

 

Activation of the p38 pathway by 5 mM creatine has been shown to increase C2C12 fusion 

and MyHC expression in vitro (Deldicque et al., 2007). Inhibition of p38 by SB205380, a 

highly specific inhibitor of p38 MAPK, has been shown to inhibit sarcomeric myosin 

expression in human embryonal rhabdomyosarcoma cells, indicating a pivotal role for p38 

during myogenesis (Mauro et al., 2002). Inhibition using both PD98059 and SB205380 
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allowed Kook et al., (2008) to determine that mechanical stretch-induced C2C12 

proliferation was not due to an ERK related mechanism but solely due to p38. They also 

showed that 3 uM SB205380 prevented myogenin expression, suggesting that ERK 

activation was essential for efficient C2C12 differentiation. However, inhibition of p38 

increased MyoD expression and myotube formation suggesting that a downregulation of 

activity of this kinase is necessary for myogenesis (Kook et al., 2008).  

 

Activation of jun N-terminal kinase (JNK) has been shown to induce growth arrest and 

differentiation in human embryonal rhabdomyosarcoma cells (Mauro et al., 2002). JNK has 

been suggested to play a role in the inhibition of myogenesis of in L6 and C2 myoblasts via 

the cytoplasmic redistribution of Myf5 (Figure 1.5) (Tam et al., 2000). Inhibition with 

SP600125, a highly specific and potent reversible inhibitor of JNK, has been shown to 

reduce the proliferative potential of primary culture mouse myoblasts (Shi et al., 2013). 

 

Figure 1.5: Schematic representation of c-Met activated signalling in response to HGF. 

 

1.6.7 TGF-β: The transforming growth factor beta (TFG-β) superfamily of proteins 

consists of more than 40 members and includes TGF-β isoforms, bone morphogenetic 
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proteins (BMPs) and growth differentiation factors (GDFs) (Gumienny and Padgett, 2002). 

This group of proteins regulates numerous cellular processes such as growth, cell-cycle 

progression, apoptosis, and differentiation (Vilar et al., 2006). TGF-β2 has been observed to 

suppress myogenic differentiation in the C2 myoblast cell line (Ewton et al., 1988), as well 

as promote proliferation and inhibit myogenic differentiation in the C2C12 myoblast cell line 

(Schabort et al., 2009). However, addition of TGF-β2 to primary myofiber cultures has 

resulted in a reduction of satellite cell numbers indicating the suppression of satellite cell 

proliferation in their natural niche (Bischoff, 1990). Much of the study of the TGF-βs and 

myoblast differentiation has shifted towards myostatin, a potent inhibitor of myogenesis 

(McCroskery et al., 2003).  

 

1.6.8 FGF: Fibroblast growth factor was first identified by its ability to significantly 

promote the proliferation of 3T3 fibroblasts (Armelin, 1973). FGF binds to a tyrosine kinase 

FGF receptor on the surface of cells (Montero et al., 2001). FGF (5 ng/ml) was observed to 

increase the expression of differentiation-specific markers in C2 cells while 25 ng/ml 

induced a reduction in these markers and resulted in impaired cell fusion (Pizette et al., 

1996). FGF has been shown to be important in myogenesis and wound healing (Barrientos et 

al., 2008). Satellite cells express the abovementioned tyrosine kinase FGF receptors, which 

suggests that FGF may play a role in skeletal muscle myogenesis (Armand et al., 2006). 

Indeed, when recombinant FGF is injected into the muscle of injured mice, accelerated 

muscle repair is observed (Armand et al., 2006). These results would suggest a key role for 

FGF in myogenesis, however its specific effect on the myogenic pathway is relatively 

unknown. Interactions between ECM factors and FGF have not yet been examined and may 

yield results that are more aligned with in vivo conditions. 

 

Growth factors are therefore of vital importance in development, maintenance and repair of 

skeletal muscle. They have been shown to interact with specific protein components of the 

ECM and therefore their in vitro combination with ECM factors should more closely mimic 

in vivo conditions. 
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1.7 Extracellular matrix – growth factor interactions: 

 

The study of the effect of extracellular matrix proteins on the behavior of cells has primarily 

been carried out using culture dishes coated with single ECM components. This approach 

has yielded many insightful results and we are beginning the understand the role of single 

ECM components and growth factors in modulating stem cell behavior (Ali et al., 1998, 

Goetsch et al., 2011, Grefte et al., 2012, Grinnell, 1984, Kishioka et al., 2008, Lin et al., 

2010, Podleski et al., 1979, Schenke-Layland et al., 2007, Yao et al., 1996). However, ECM 

components are known to have complex interactions with each other and with growth factors 

and these interactions are integral to the influence that the ECM and growth factors have in 

vivo (Poschl et al., 2004, Schonherr et al., 1995). 

 

ECM combination assays attempt to more closely simulate in vivo conditions by allowing 

these de novo ECM interactions to take place. Combined ECM experiments often show 

synergistic effects of the individual ECM components. For instance, fibronectin and laminin 

have each been shown to increase the differentiation of adult neural stem/progenitor cells 

and their combination enhanced this increase (Cooke et al., 2010). Decorin has also been 

shown to modulate the positive effect that collagen I has on C2C12 migration, but was 

unable to modulate fibronectin-stimulated migration (Goetsch et al., 2011). In vivo studies 

have shown that, in combination with Matrigel, HGF delays C2C12 myotube formation 

when transplanted into nude mice (Barbero et al., 2001). These studies emphasize the 

importance of investigating ECM interactions and not simply single factors in isolation. 

 

There are various mechanisms by which ECM-growth factor interactions can modulate cell 

behavior. The ECM can directly bind a growth factor, resulting in the sequestration of the 

growth factor and prevention of its presentation to its receptor; a mechanism or negative 

regulation (Hynes, 2009). This type of binding can also protect the growth factor from 

degradation and thus acts as a type of growth factor reservoir. In addition, direct binding can 

also facilitate successful presentation of the growth factor to its receptor. An example of this 

type of binding occurs when FGF-2 binds to heparan sulfate (Schultz and Wysocki, 2009). 

Crystal structure analysis revealed that heparan sulfate binds both FGF-2 and its receptor, 

facilitating subsequent signaling (Schlessinger et al., 2000). It has been suggested that in 

addition to this, heparan sulfate also assists in the dimerization of two FGF receptor 

molecules, an important early step in receptor activation (Wilgus, 2012). Integrin-ECM 
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interactions can also lead to growth factor receptor activation, facilitating an indirect 

interaction between the ECM and growth factors. An example of this type of activation is 

when αVβ3 integrin, expressed on endothelial cells, binds to the glycoprotein vitronectin. 

This binding and integrin signaling enhances cellular responsiveness to Vascular Endothelial 

Growth Factor (VEGF) and can result in activation of VEGF receptor 2 (Wilgus, 2012). 

 

Reversible binding of HGF to immobilized collagen IV has been reported and resulted in a 

collagen-HGF complex that was able to induce primary hepatocyte proliferation in a dose-

dependent manner. Further investigation revealed that binding was due to specific peptide 

sequences unique to collagenous proteins suggesting a specific role for collagens in HGF 

bioavailability and activity (Schuppan et al., 1998). However, very little is known about the 

effect of collagen IV in mediating HGF signaling in myoblasts. 

 

The clinical significance of growth factor-ECM interactions has been suggested in the 

treatment of chronic wounds. Growth factor therapy is a promising technology, however, 

challenges with dosage regulation has suggested that an effective delivery system is lacking 

(Briquez et al., 2015). Due to the recently realized importance of the ECM in regulating the 

bioavailability and presentation of growth factors, ECM-inspired delivery systems in the 

form of biodegradable ECM bandages, have been suggested for growth factor therapies. An 

example of such a system involves a biomatrix constructed with heparan sulfate-mimetic 

molecules to sequester heparan-binding growth factors such as FGF-2 (Liu et al., 2007). In 

other studies, growth factor binding sites were identified in a range of ECM factors including 

collagens, fibronectin and vitronectin (Schuppan et al., 1998, Martino and Hubbell, 2010, 

Upton et al., 2008). The binding sites identified on fibronectin were described as “highly 

promiscuous” and bound to a wide range of growth factors including insulin-like growth 

factor binding-protein-3, FGF-2 and VEGF with a high affinity (Martino and Hubbell, 2010). 

Vitronectin was observed to bind IGF and EGF and this complex was observed to accelerate 

wound healing in non-healing ulcers in a human pilot study (Upton et al., 2008). 

 

1.8 3D skeletal muscle generation: 

 

Future applications of 3D tissue generation technique may involve transplantation of 

engineered tissue to patients with muscle damage. One method to construct three-

dimensional skeletal muscle involves the seeding of myoblasts onto a biodegradable scaffold 
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(Huang et al., 2004). The scaffolds used in the successful generation of 3D muscle by Huang 

et al. (2004) resembled sponge and were made up of 50% poly-L-lactic acid and 50% 

polylactic-glycolic acid. The cells attach and grow on the scaffolds to create functional three-

dimensional skeletal tissue (Levenberg et al., 2005).  

 

An early obstacle encountered in the first three-dimensional skeletal muscle models is that 

they were unable to outgrow the limitations of diffusion (Levenberg et al., 2005). In vivo 

muscle development relies on a vascular system to nourish the tissue; this is absent in 

traditional in vitro muscle cultures (Levenberg et al., 2005). However, in 2005, a team of 

researchers created vascularized skeletal muscle in vitro. The team co-incubated myoblasts, 

embryonic fibroblasts and endothelial cells on a scaffold similar to those described earlier 

and observed the de novo formation of simple vascularized muscle tissue (Levenberg et al., 

2005). This development will allow larger muscle to be grown and take researchers one step 

closer to both accurate models for muscle regeneration as well as autologous muscle 

transplants. 

 

The second method of producing 3D tissues, including muscle, is using 3D bioprinters. This 

method may involve either printing a suitable scaffold from a biodegradable material or 

ECM component or by printing cells directly into a supportive gelatinous matrix, cell by cell, 

in progressive 3D layers (Jakab et al., 2010). Once the basic shape of the tissue is achieved, 

the cells are stimulated to terminally differentiate (Norotte et al., 2009). This technique, 

although in its infancy, is rapidly evolving with the advancement in cell and printer 

technology. Tissue generation using 3D bioprinters offers many important advantages to the 

abovementioned scaffold-seed method. There is a far greater degree of control: 3D 

bioprinting allows high-resolution control of cell distribution, density and even the precise 

placement of different cell types (Ventola, 2014). This control could be an extremely 

valuable tool in overcoming the abovementioned challenge to creating vascularized tissues, 

which will be essential if the in vitro production of complex organs is to be realized (Norotte 

et al., 2009). 

 

Research cited in this chapter outlines the ability of the ECM to influence myoblast behavior. 

The use of biologically relevant substrates and growth factor supplements may aid in the 

development of in vitro functional 3D muscle tissue.  
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1.9 Summary, objectives and aims: 

 

In summary, extracellular matrix and growth factors are known to regulate many aspects of 

cell behavior including myogenesis. ECM factors physically interact with growth factors and 

may modify their action and bioavailability in vivo. By examining the influence that ECM 

factors have on growth factor-mediated satellite cell differentiation, we may be able to better 

understand muscle regeneration and the processes that impair or promote it.  

 

The objective of this study was therefore to understand how the extracellular matrix of the 

satellite cell niche regulates the function of HGF in myogenesis. 

 

 

To address this objective we aimed to: 

 

First establish a baseline by investigating: 

A) The effect of HGF on myogenesis. 

B) The effect of collagen IV on myogenesis. 

 

 Second, determined how the ECM regulates the effect of HGF by investigating: 

C) The effect of HGF on myogenesis in the presence of collagen IV. 
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CHAPTER 2 

DOSE-DEPENDENT MODULATION OF MYOGENESIS BY HGF: 

IMPLICATIONS FOR C-MET EXPRESSION AND DOWNSTREAM SIGNALLING 

PATHWAYS 

 
 

Hepatocyte growth factor (HGF) regulates satellite cell activation, proliferation and 

differentiation. We analysed the dose-dependent effects of HGF on myogenesis.  

Murine C2C12 myoblasts were treated with 0, 2 or 10 ng/ml HGF followed by 

assessment of proliferation and differentiation. HGF (2 ng/ml) significantly promoted 

cell division, but reduced myogenic commitment and fusion. Conversely, 10 ng/ml HGF 

reduced proliferative capability, but increased differentiation. c-Met expression 

analysis revealed significantly decreased expression in differentiating cells cultured with 

2 ng/ml HGF, but increased expression in proliferating cells incubated with 10 ng/ml 

HGF. Mitogen-activated protein kinase (MAPKs: ERK, JNK or p38K) and 

phosphatidylinositol-3-kinase (PI3K) inhibition abrogated the HGF-stimulated increase 

in cell number. Interestingly, PI3K and p38 kinase facilitated the negative effect of 

HGF on proliferation, while ERK inhibition abrogated the HGF-mediated decrease in 

differentiation. Dose-dependent effects of HGF are mediated by changes in c-Met 

expression and downstream MAPK and PI3K signalling. 

 

 

Includes data from: 

WALKER, N., KAHAMBA, T., WOUDBERG, N., GOETSCH, K. & NIESLER, C. 2015. 

Dose-dependent modulation of myogenesis by HGF: implications for c-Met expression and 

downstream signalling pathways. Growth Factors, 33, 229-41. 
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2.1 Introduction 

 

During skeletal muscle regeneration, the activation of satellite cells, their subsequent 

expansion and the terminal differentiation of the myoblast population is regulated by growth 

factors, such as fibroblast growth factor (FGF), insulin growth factor-1 (IGF-1), transforming 

growth factor beta (TGF-β) and hepatocyte growth factor (HGF) (Gal-Levi et al., 1998, 

O'Reilly et al., 2008, Yamada et al., 2010, O'Blenes et al., 2010, Miller et al., 2000, Pownall 

and Isaacs, 2010). HGF, a heparin-binding protein, is sequestered in an inactive form in the 

extracellular matrix (ECM) of uninjured muscle fibers (Miller et al., 2000); however, upon 

tissue injury it is cleaved and released to stimulate satellite cell activation (Birchmeier and 

Gherardi, 1998). HGF transduces its effects on satellite cells through specific interaction 

with the c-Met receptor (Humphrey et al., 1995). c-Met is a transmembrane tyrosine kinase 

cell surface receptor consisting of a 145 kDa and 50 kDa β- and α-chain (Sonnenberg et al., 

1993). It has been shown to be essential during satellite cell activation, proliferation, 

migration and differentiation (Organ and Tsao, 2011).  

 

Upon binding of HGF to the c-Met receptor, the kinase becomes active (Bottaro et al., 1991). 

This results in the phosphorylation of two tyrosine residues (Tyr1349 and Tyr1356) in the 

carboxy-terminal tail of c-Met (Figure 1.5). The phosphorylated residues become docking 

sites for a range of adaptor proteins including phosphatidylinositol-3-kinase (PI3K), Grb2-

associated adaptor protein (Gab1) and growth factor receptor-bound protein 2  (Grb2). These 

pathways proceed to mediate c-Met-dependent cell proliferation, migration, survival and 

differentiation (Faria et al., 2011). Grb2 and Gab transduce signals through mitogen-

activated protein kinases (MAPKs) such as extracellular signal-regulated kinases (ERK1 and 

ERK2), Jun amino-terminal kinases (JNK1, JNK2 and JNK3) and p38.  It has also been 

shown that HGF regulates proliferation rates via signalling through SHP2, a protein tyrosine 

phosphatase that mediates MAPK activity; these proliferation rates were dependent on the 

HGF dose utilized (Li et al., 2009, Chazaud, 2010).  MAPKs are thought to be more 

intensively involved in regulating cell proliferation, differentiation and cell migration, while 

signaling through PI3K mediates cell survival and resistance to apoptosis (Faria et al., 2011, 

Lluis et al., 2006, Li et al., 2000, Knight and Kothary, 2011, Keren et al., 2005, Organ and 

Tsao, 2011).  
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Regulation of HGF:c-Met signaling can be achieved by a number of mechanisms. In 

hepatocytes, HGF-bound c-Met receptors are internalized and the c-Met cell surface 

concentration is observed to decrease within 30 minutes of exposure to elevated HGF levels 

(Naka et al., 1993). HGF is subsequently degraded and released by the cell. HGF signaling is 

also regulated by a number of protein tyrosine phosphatases (PTPs), which bind to the 

cytoplasmic domain of c-Met. These phosphatases can control HGF signaling by modifying 

the intracellular kinase activity or binding domains of c-Met (Organ & Tsao 2011). Receptor 

protein tyrosine phosphatase beta (RPTP-β) dephosphorylates Tyr1356, while leukocyte 

common antigen-related molecule (LAR) counteracts Met auto-phosphorylation, which 

inhibits MAPK and PI3K activity. Similarly, CD148 prevents binding of signal transducers 

Gab1 and p120 catenin (Baldanzi and Graziani, 2014). Lastly, phospholipase Cγ (PLCγ) can 

bind to the carboxy-terminal tail of c-Met and activate protein kinase C (PKC), which acts as 

a negative regulator of c-Met activity (Organ and Tsao, 2011). 

 

In vitro, it has been demonstrated that HGF activates rat primary culture satellite cells at 

concentrations as low as 2.5 ng/ml (Tatsumi et al., 1998).  Further studies in primary rat 

skeletal myoblasts and the C2C12 murine cell line have also demonstrated a promotion of 

proliferation in response to HGF at concentrations ranging from 3 ng/ml to 50 ng/ml 

(Anastasi et al., 1997, O'Blenes et al., 2010, Allen et al., 1995). In contrast however, a 

separate study utilising rat satellite cells demonstrated a suppression of proliferation in 

response to HGF at concentrations greater than 10 ng/ml (Yamada et al., 2010). A reduction 

in activation and proliferation was also observed in both chicken skeletal muscle and mouse 

C2 cells in response to addition of exogenous HGF at 20 and 50 ng/ml (Gal-Levi et al., 

1998). These conflicting results suggest potential dose-dependent sensitivity regarding the 

effect of HGF on cellular proliferation.  

 

Skeletal myogenesis is regulated by several myogenic regulatory factors (MRFs) including 

MyoD, Myf-5, MRF-4 and myogenin (Gal-Levi et al., 1998, Halevy and Cantley, 2004). 

MRFs are proteins expressed in cells committed to differentiate; together with Pax7, they are 

implicated in specification of the myogenic lineage (McFarlane et al., 2008, Buckingham et 

al., 2006, Seale et al., 2004). Differentiation studies published to date suggest an inhibitory 

effect of HGF (2.5 – 50 ng/ml) on myoblast differentiation (Gal-Levi et al., 1998, Halevy et 

al., 2004, Zeng et al., 2002, Leshem et al., 2000, Yamane et al., 2004). Accumulating 

evidence implies that HGF may influence myogenesis via its regulation of MyoD, Myf-5 and 
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myogenin (Charge and Rudnicki, 2004, Halevy et al., 2004, Rosen et al., 1990). In addition, 

some studies provide evidence of a role for p27 (a cyclin-dependent kinase) and Twist (a 

basic helix-loop-helix transcription factor) in the mediation of HGF on differentiation 

(Leshem et al., 2000).   

 

HGF therefore plays a central role during skeletal muscle myogenesis; however the effect of 

different doses on cellular activities is unclear and requires further examination. In the 

present study we culture the C2C12 murine cell line to examine the effects of different HGF 

concentrations on proliferation and differentiation. Furthermore, we investigate whether 

dose-dependent sensitivities are related to changes in the total protein expression of the c-

Met receptor and utilise both MAPK and PI3K inhibitors in an attempt to understand the 

signaling mechanisms at play.  
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2.2 Materials and methods 

 

2.2.1 Cell culture 

 

The C2C12 murine cell line was donated by Prof Anna-Mart Engelbrecht (Department of 

Physiological Sciences, University of Stellenbosch, South Africa). Cells were cultured in 

Dulbecco’s Modified Eagle’s Medium (Highveld Biological, CN3193-9) supplemented with 

10% (v/v) Fetal Bovine Serum (Biowest, S181H-500), 2% (v/v) L-glutamine (Lonza, BE17-

605E) and 2% (v/v) Penicillin-Streptomycin (Lonza, DE17-602E). For differentiation studies, 

cells were cultured to a confluence of 70% after which media was changed to differentiation 

media (DMEM supplemented with 2% (v/v) horse serum) (Biowest, S090H-100).  

 

2.2.2 HGF addition 

 

Human HGF (PeproTech, cat.100-39) was used at a final concentration range of 0, 2 and 10 

ng/ml and media changed every 48 hours during differentiation studies. Cells were incubated 

at 37°C in a humidified incubator at 5% CO2. All experiments were carried out under sterile 

conditions in a Class II Biohazard Safety Cabinet. Clustal W alignments were conducted to 

compare the amino acid sequences of HGF used in this study and those found in mice (Mus 

Musculus) (Appendix III). A score of 89.48% similarities was observed. 

 

2.2.3 Inhibitors 

 

PI3K Inhibitor (LY294002, final concentration: 2.5 µM, Santa Cruz, SC-201426), ERK 

inhibitor (PD98059, final concentration: 12.5 µM, Santa Cruz, SC-3532), p38 inhibitor 

(SB205380, final concentration: 5 µM, Santa Cruz, SC-3533) and JNK inhibitor (SP600125, 

final concentration: 5 µM, Santa Cruz, SC-200635) were reconstituted in DMSO (Sigma, 

D2650). Inhibitors were added to growth or differentiation media and replenished every 48 

hours with media change. Final DMSO concentrations never exceeded 0.04% and were not 

found to be toxic to C2C12 cells (Appendix I, Supplementary Figure 1); this is in agreement 

with previous studies where DMSO was shown to be non-toxic in C2C12 cells at 

concentrations up to 0.1% (Moorwood et al., 2011). 
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2.2.4 Cell counts 

 

The cell counts were carried out as previously described (Taylor et al., 2001).  Briefly, 

C2C12 cells were seeded in T25 tissue culture flasks (100 000 cells) containing growth 

media and incubated at 37oC (5% CO2) for 24 hours. HGF (0, 2, 10 ng/ml) was then added 

and cells incubated for a further 24 hours. Thereafter, cells were trypsinized and counted 

using the automated BioRad TC-20 Cell Counter; viability was also assessed using 10 µl 

trypan blue (BioRad, 145-0021).  

 

2.2.5 Immunocytochemistry 

 

Cells were differentiated to day 5 in the presence or absence of HGF (0, 2 or 10 ng/ml), fixed 

in 4% paraformaldehyde containing 0.1% Triton X-100 (Sigma, T9284) for 20 minutes and 

blocked with 5% donkey serum for 1 hour. For Myosin Heavy Chain (MyHC) detection, 

coverslips were incubated with a mouse monoclonal MF20 primary antibody 

(Developmental Studies Hybridoma Bank; dilution 1/200) overnight at 4°C. This was 

followed by 4 x 5 minute PBS wash steps prior to incubation with secondary antibody for 1 

hour at room temperature. The secondary antibody was DyLight 594-conjugated AffiniPure 

donkey anti-mouse lgG secondary antibodies (Jackson ImmunoResearch, CN-715-485-151, 

1/1000 dilution). Hoechst (Sigma, B2267; 10 mg/ml stock; 1/2000 dilution) was added to all 

the cells for detection of nuclei. Moviol was used as mounting agent. All images were 

captured using the Zeiss 710 LSM confocal microscope.  

 

2.2.6 Fusion Index 

 

The fusion index was calculated as described previously (Micheli et al., 2011). Briefly, 

myoblasts were differentiated on coverslips in the presence or absence of HGF (2 ng/ml or 

10 ng/ml) and fixed at day 5. Immunocytochemistry was carried out to detect the expression 

of MyHC in the differentiating cells. Five random fields of view of cells were captured using 

the Zeiss 710 LSM confocal microscope. ImageJ software was utilized to determine 

formation of myotubes. The fusion index was calculated as the number of nuclei within 

MyHC-labeled myotubes (two or more nuclei per myotube) divided by the total number of 

nuclei per field of view, multiplied by 100.  
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2.2.7 Western Blotting 

 

Myoblasts were cultured in either growth or differentiation media in the presence or absence 

of HGF (2 ng/ml or 10 ng/ml). Proliferating cells were harvested at day 0 (in growth media 

for 24 hours), while differentiating cells were harvested at days 1, 2 and 5 of differentiation. 

During differentiation, media (supplemented with or without HGF) was changed every 2 

days. Cell lysates were prepared in 100 µl RIPA buffer (Sigma-Aldrich, R0278) containing 1 

µl Protease Inhibitor Cocktail (PIC) (Sigma-Aldrich, P8340) for 1 hour on ice, followed by 

centrifugation at 12 000 rpm for 5 minutes. Lysates were sonicated using the Ultrasonic 

cleaner (Shalam Laboratory Suppliers) and protein concentrations determined via the 

Bradford Assay (Bradford, 1976). Total protein (30 µg) was loaded onto 12.5% SDS Poly-

acrylamide gel, and following separation, was transferred onto a Nitrocellulose membrane 

(Life Sciences, P/N 66485) using Western Blotting. The membrane was then incubated with 

primary antibodies overnight. Primary antibody dilutions: rabbit anti-c-Met 1:500 

(Invitrogen, 182257); mouse anti-alpha-tubulin 1:1000 (Santa Cruz Biotechnology B-7, sc-

5286); and mouse anti-MyHC 1:1000 (Developmental Hybridoma Bank, MF20-S). 

Secondary antibody dilutions: goat anti-rabbit (Dako PO448) 1:12000 for c-Met detection; 

rabbit anti-mouse (Dako PO260) 1:12000 for myogenin and alpha-tubulin detection and 1:20 

000 for MyHC detection for 1 hour. HRP activity was visualized using Enhanced 

Chemiluminescence (ECL, BioRad, 170-5070) and GeneSys Image Acquisition software 

(Vacutec, South Africa). Densitometric analysis was carried out using the Versa Doc 

Imaging System and Quantity One 2.6 (Bio-Rad). 

 

2.2.8 Statistical Analysis  

 

The results from each experiment were expressed as a Mean ± SEM. The ANOVA statistical 

test was performed on all data followed by the Tukey’s pairwise post hoc test on all 

qualifying data sets. Samples were considered to be statistically significant if they produced 

a p value of less that 0.05. The number of experimental repeats is specified in each figure 

legend. 
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2.3 Results 

 

2.3.1 C2C12 myoblast differentiation is regulated by HGF 

To determine the downstream effect of HGF on terminal myogenic differentiation, we first 

assessed C2C12 myotube fusion and sarcomeric myosin heavy chain (MyHC) expression at 

day 5 of differentiation.  

 

Myotube formation occurred in response to all doses of HGF with the highest levels of 

densely packed, aligned myotubes observed in response to 10 ng/ml HGF (Figure 2.1A). 

Fewer MyHC-expressing myotubes were observed in response to 2 ng/ml HGF, along with 

reduced alignment and reduced MyHC expression (Figure 2.1A). Under control conditions, 

the fusion index for C2C12 was 42% (Figure 2.1B), in line with independently published 

studies (Velica and Bunce, 2011). Treatment with 10 ng/ml HGF significantly (p<0.05) 

increased tube formation by 12%; in contrast 2 ng/ml HGF significantly reduced tube 

formation by 17% in response to 2 ng/ml HGF compared to the control (p<0.002) (Figure 

2.1B). These data was supported by a 30% increase in total MyHC expression in C2C12 

cells treated with 10 ng/ml HGF when compared to control (p<0.05; Figure 2.1C). 

Furthermore, a 20% reduction in MyHC production was observed when C2C12 cells were 

treated with 2 ng/ml HGF during differentiation compared to control (Figure 2.1C). 

 



 32 

 

 

Figure 2.1: C2C12 myoblast fusion and MyHC expression in response to HGF. 
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2.3.2 HGF regulates c-Met receptor expression during myoblast differentiation 

In order to gain insight into the mechanism by which HGF may be mediating its effect on 

myogenesis, we analysed c-Met expression in differentiating C2C12 cells. 

 

A correlation between c-Met expression and HGF concentration was observed. In response 

to 2 ng/ml, c-Met expression was significantly suppressed by 30% at day 1 of differentiation 

(p<0.05; Figure 2.2A). In contrast, cells treated with 10 ng/ml HGF demonstrated a 20% 

increase in c-Met expression at day 1 (p<0.05; Figure 2.2A). The significant decrease in c-

Met expression in response to 2 ng/ml HGF was maintained through day 2 (p<0.005; Figure 

2.2B), whereas the increase in response to 10 ng/ml HGF is lost (p=0.484; Figure 2.2B). By 

day 5 of differentiation, c-Met receptor expression levels had equalised and there was no 

significant difference between control and HGF treated cells (Figure 2.2C). This data 

suggests that the observed dose dependent effect of HGF on myoblast differentiation may be 

mediated, at least in part, by changes in c-Met receptor expression levels. 
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   Figure 2.2: Effect of HGF on c-Met expression in differentiating C2C12 myoblasts. 
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2.3.3 Inhibition of ERK, modulates the dose-dependent effect of HGF on C2C12 myoblast 

differentiation 

Intracellular pathways known to mediate HGF signalling include the MAPK’s as well as 

PI3K. In an effort to begin to clarify the intracellular mechanisms underlying the observed 

dose-dependent response of differentiating myoblasts to HGF, we utilised the PI3K inhibitor 

(LY294002), p38 inhibitor (SB205380), JNK inhibitor (SP600125) and ERK inhibitor 

(PD98059). 

 

LY294002, SB205380 and SP600125, but not PD98059, were observed to reduce C2C12 

differentiation in the presence or absence of HGF (Figure 2.3). Myosin heavy chain (MyHC) 

expression and the presence of fused myotubes were greatly reduced in cells treated with 

these inhibitors regardless of HGF exposure (Figure 2.3). Interestingly, PD98059 was 

observed to abrogate the negative effect of 2 ng/ml HGF on MyHC expression, suggesting 

that the ERK signaling pathway may be responsible, at least in part, for the inhibitory effect 

of HGF on myoblast differentiation.  
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Figure 2.3: The role of MAPK’s and PI3K in mediating the dose-dependent effect of HGF on 

differentiation 
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2.3.4 HGF regulates myoblast proliferation in a dose-dependent manner  

Next we tested whether the dose-dependent effect of HGF was restricted to differentiation, or 

whether HGF also played a key role within the myoblast proliferation cycle. Myoblasts were 

seeded at 100 000 cells per well and cultured in the presence or absence of 2 or 10 ng/ml 

HGF for 24 hours prior to cell counts. Compared with control, C2C12 myoblast numbers 

were significantly increased in response to 2 ng/ml HGF (p<0.05), but decreased following 

incubation with 10 ng/ml HGF (p<0.05) (Figure 2.4A). Cell counts revealed a significant 

21% increase, from 3.9x105 cells to 4.7x105 cells (Figure 2.4A; p<0.05) in response to 2 

ng/ml HGF compared to the untreated control. However, following incubation with 10 ng/ml 

HGF, a significant reduction in C2C12 myoblast numbers was observed (p<0.05) (Figure 

2.4A). Cell counts revealed a significant 40% decrease; from 3.9x105 cells to 2.4x105 cells 

(Figure 4A; p<0.05) in response to 10 ng/ml HGF. Interestingly, cells incubated in the 

presence of HGF (2 ng/ml) showed a small, but significant increase in C2C12 cell viability 

from 84% (control) to 89% (p<0.003; Figure 2.4B). HGF at 10 ng/ml did however not 

significantly affect cell viability when compared to control (84%) (Figure 2.4B). It is 

therefore possible that at least part of the ability of HGF to promote cell growth is due to a 

pro-survival rather than a pro-proliferative mechanism. Analysis of c-Met expression levels 

in proliferating C2C12 cells revealed a significant increase in cells treated with 10 ng/ml 

HGF, but not 2 ng/ml HGF (Figure 4C). This suggests that the anti-proliferative effect of 

HGF could be mediated by an increase in c-Met receptor expression. 
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Figure 2.4: HGF regulates C2C12 myoblast proliferation; C-Met expression and viability of C2C12 cells. 
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2.3.5 ERK and JNK mediate pro-proliferative effects of HGF 

To determine the role of MAPK and PI3K pathways in mediating the effect of HGF on 

proliferation, we next inhibited PI3K, ERK, p38 and JNK signaling pathways while 

incubating proliferating C2C12 cells with 0, 2 or 10 ng/ml HGF. PD98059 and SP600125 

(ERK and JNK inhibitors respectively) significantly reduced the pro-proliferative effect of 2 

ng/ml HGF (p<0.005) such that when treated with 2 ng/ml HGF and either PD98059 (12.5 

µM) or SP600125 (5 µM), the ability of HGF to significantly increase C2C12 cell numbers 

was abolished (Figure 2.5A and B). This suggests that the pro-proliferative effect of 2 ng/ml 

may be facilitated, at least in part, by the ERK and JNK pathways; however, these pathways 

seem to play little role in mediating the anti-proliferative effect of 10 ng/ml HGF in C2C12 

cells. Interestingly, inhibition of the JNK pathway also significantly (p<0.05) reduced cell 

viability in the presence of 2 ng/ml HGF (Figure 2.5D, p<0.05). Therefore, in addition to 

mediating myoblast proliferation, HGF may also act as a pro-survival factor via the JNK 

pathway (Figure 2.5D). 
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Figure 2.5: The role of ERK and JNK in mediating the effect of HGF on cell number. 
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2.3.6 Inhibition of the PI3K and p38 pathways negates the effect of HGF on myoblast 

proliferation 

LY294002 and SB203580 (PI3K and p38 inhibitors respectively) were observed to 

neutralize both the pro- and anti- proliferative effects of HGF (Figure 2.6A and B). 

LY294002 (2.5 µM) and SB203580 (5 µM) significantly reduced the pro-proliferative effect 

of 2 ng/ml HGF (p<0.05) such that, when treated with 2 ng/ml HGF and either LY294002 or 

SB203580, the ability of HGF to significantly increase C2C12 cell numbers was abolished 

(Figure 2.6A and B). LY294002 (2.5 µM) and SB203580 (5 µM) also significantly decreased 

the anti-proliferative effect of 10 ng/ml HGF (Figure 2.6A and B). Under these conditions, 

no significant change in cell viability was observed (Figure 2.6C and D). 
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Figure 2.6: The role of PI3K and p38K in mediating the effect of HGF on cell number. 
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2.4 Discussion 

 

Satellite cell activation, proliferation and subsequent skeletal myoblast differentiation are 

critical for successful myogenesis following muscle injury in adult mammals. In this regard, 

the relationship between growth factors and myogenesis has been extensively investigated in 

vitro using primary culture myoblasts and myogenic cell lines (Nadal-Ginard, 1978, Florini 

et al., 1996, Florini et al., 1991, Coolican et al., 1997, Linkhart et al., 1981, Zanou and 

Gailly, 2013, Jimenez-Amilburu et al., 2013). It is also well established that myogenesis in 

tissue culture is accompanied by an irreversible withdrawal from the cell cycle resulting in 

commitment of post-mitotic myoblasts to fusion and formation of multinucleated myotubes 

(Zammit et al., 2006a). The local concentration of growth factors supplied endogenously (by 

interacting cells) or exogenously (recombinant protein addition) is therefore critical for 

maintaining cells in a proliferative state or, alternatively, inducing differentiation (Florini et 

al., 1991). HGF, a key growth factor during myogenesis, has been shown to regulate satellite 

cell activation, proliferation and differentiation (Anastasi et al., 1997, Gal-Levi et al., 1998, 

Yamada et al., 2010). However, several discrepancies have arisen with regard to the effect of 

particular HGF doses on myogenesis (O'Blenes et al., 2010, Yamada et al., 2010, Anastasi et 

al., 1997, Gal-Levi et al., 1998, Bandow et al., 2004). This may be due to differences in the 

cell species used or in divergent extracellular environments, leading to changes in the type of 

intracellular signalling pathway activated. Furthermore, very few studies have investigated 

the expression of the c-Met receptor in response to HGF during myoblast proliferation and 

differentiation. In the present study we have investigated the effect of HGF on proliferation 

and differentiation in murine C2C12 myoblasts. Furthermore, we determined the expression 

of c-Met in response to HGF under these conditions and then attempted to understand the 

signaling mechanisms at play by selectively inhibiting specific signalling pathways 

downstream of c-Met. 

 

In response to HGF we observed a dose-dependent effect in mouse C2C12 skeletal 

myoblasts. In essence, the lower HGF concentration (2 ng/ml) significantly increased cell 

number (promoting a proliferative response) while decreasing myogenic commitment and 

subsequent differentiation and fusion. In contrast, a five-fold higher concentration of HGF 

(10 ng/ml) had the opposite effect, with a decrease in cell number and an increase MyHC 

expression, resulting in increased fusion. This is the first study to investigate the dose-

dependent effect of HGF on both proliferation and differentiation in mouse skeletal 
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myoblasts and demonstrates a complementary dose-dependent regulatory system coordinated 

by HGF.  

 

The premise that HGF plays a dual role in regulating myogenic proliferation and 

differentiation is not new. HGF has been well documented in activating quiescent satellite 

cells to proliferate and differentiate (Miller et al., 2000, Allen et al., 1995, Tatsumi et al., 

1998). In a study by Yamada et al. (2010), satellite cells were observed to respond to high 

concentrations of HGF (10-500 ng/ml) by increasing myostatin protein expression and 

secretion; this was accompanied by a decreased cell proliferation and MyoD expression in 

primary cultures suggesting a re-entry into a quiescent state. Yamada et al. (2010) 

hypothesize that this re-entry into quiescence could be via the observed increase in myostatin 

expression. This was proposed as neutralising antibodies (against myostatin) allowed cells to 

re-express MyoD and myogenin, even when incubated with higher concentrations of HGF 

(Yamada et al., 2010). In response to lower HGF concentration (2.5 ng/ml), BrdU 

incorporation was observed to increase, suggesting elevated proliferation; interestingly 

myogenin mRNA expression levels were reduced in response to both 2.5 ng/ml and 500 

ng/ml HGF compared with control, suggesting decreased induction of differentiation. In our 

present study, we demonstrate a decrease in myoblast cell number in response to 10 ng/ml 

HGF and a decrease in Myosin Heavy Chain expression in response to 2 ng/ml HGF; this is 

consistent with the observations of Yamada et al. (2010). However, in addition, 10 ng/ml 

HGF was observed to increase terminal differentiation as seen by the increased Myosin 

Heavy Chain expression (day 5). This has not previously been demonstrated.  Gal-Levi et al. 

(1998) observed a decrease in MyHC expression levels with increasing HGF concentrations 

in chicken satellite cells and a myogenic C2 cell line. This is not in agreement with our 

current study, however expression was determined over a 2 day period with HGF 

concentrations of 20 and 50 ng/ml, exceeding our highest HGF dose. It can therefore be 

hypothesized, that a temporal increase in extracellular concentrations of HGF (as would be 

experienced post-injury) is key in the modulation of satellite cell activation and subsequent 

differentiation. Together, these results suggest an intriguing dose-dependent regulatory effect 

of HGF on the balance between quiescence and activation as well as proliferation and 

differentiation. 

 

HGF binds to the c-Met receptor, a membrane-bound, disulfide-linked heterodimer with an 

intracellular tyrosine kinase domain, found on both quiescent and activated satellite cells 
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(Giordano et al., 1989, Cornelison and Wold, 1997). Results by Leshem et al. (2002) have 

shown that coupling of c-Met with Grb2 is required for inhibition of muscle differentiation 

mediated by HGF. This inhibition occurred only when Phosphatidylinositol 3-Kinase (PI3K) 

signalling downstream of c-Met was low, suggesting that increased coupling of PI3K to c-

Met would lead to an up-regulation of muscle regulatory factors, such as MyoD, thereby 

promoting cell differentiation (Leshem et al., 2002, Maina et al., 2001). This supports our 

observed increase in c-Met expression levels at the onset of myogenic commitment (day 1) 

in response to 10 ng/ml HGF. Our findings suggest that subsequent dose-dependent 

regulation of differentiation by HGF is possibly correlated with total c-Met receptor level 

expression with an observed significant drop in c-Met receptor levels in samples incubated 

with 2 ng/ml HGF at day 1 and day 2. Although HGF is the dominant binding factor to c-

Met, there are a multitude of signalling adaptors (Grb2, Gab) and cell surface co-receptors, 

such as CD44, ICAM-1 and several integrin’s, which mediate biological responses unique to 

c-Met (Organ and Tsao, 2011). Studies in epithelial and cancer cells have shown that in this 

way, despite constant c-Met expression levels, HGF can elicit differential effects via 

downstream signalling mediators (Organ et al., 2011, Hammond et al., 2010).  

 

Potential downstream pathways that have been suggested to mediate the dose-dependent 

effect of HGF on myogenesis include PI3K, p38, JNK and ERK (Halevy and Cantley, 2004). 

Furthermore, PI3K activity is required for HGF-induced MAPK activation, adding an 

additional layer of complexity (Halevy and Cantley, 2004). We attempted to glean a better 

understanding of the mechanisms involved in the dose-dependent effect of HGF on C2C12 

proliferation and differentiation by utilizing specific inhibitors against some of the above-

mentioned pathways.  

 

We showed that the addition of LY294002 decreased C2C12 myoblast fusion, irrespective of 

HGF dose. Our findings were supported by Jiang et al (1999) and Sumitani et al (2002) who 

reported LY294002, and resulting inhibition of Akt, interfered with myotube formation and 

the expression of muscle-specific proteins such as MyoD and MyHC (Jiang et al., 1999, Li et 

al., 2000, Sumitani et al., 2002). Furthermore, we showed that addition of 2.5 µM LY294002 

to proliferating C2C12 cells treated with either 2 ng/ml HGF and 10 ng/ml HGF abrogated 

the effect of this growth factor on cell number. This result was expected in part due to the 

known involvement of the PI3K/AKT pathway in myoblast proliferation, survival and 

regulation of apoptosis (Mandl et al., 2007).  
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We observed that the addition of PD98059 reduced the negative effect of 2ng/ml HGF, on 

differentiation, confirming that the ERK signaling pathway may mediate, at least in part, the 

inhibitory effect of HGF on myogenesis (Yang et al., 2006). Our study also showed that 

PD98059 modulated the pro-proliferative effect of 2 ng/ml HGF on C2C12 myoblasts. IGF-1 

has been observed to activate the ERK pathway and lead to increased proliferation of mouse 

primary culture myoblasts (Madhala-Levy et al., 2012). This, together with our results 

strongly suggests that the pro-proliferative effect of 2 ng/ml HGF is regulated, at least in part, 

by the ERK pathway. It has also been demonstrated that PI3K activity is required for HGF-

induced MAPK activation; this adds an additional layer of complexity and may explain why 

LY294002 is able to affect both pro- and anti-proliferative pathways in myoblasts (Halevy 

and Cantley, 2004). 

 

Li et al (2000) had also previously shown that p38 inhibition prevents myogenic 

differentiation (Li et al., 2000). Similarly, our results showed that SB205380 reduced 

myotube formation further supporting the notion that p38 is vital for effective C2C12 

differentiation. However, as with LY294002, the inhibition was independent of HGF. In our 

proliferation studies, SB203580 was able to negate both the positive and negative effects of 

HGF on cell numbers. In support of our findings, Jones et al (2005) found that p38 is vital to 

the activation of primary culture satellite cells and their subsequent proliferation. Inhibition 

of p38 with SB203580 drove MM14 cells towards a quiescent-like state where they exit the 

cell cycle, but fail to differentiate (Jones et al., 2005). These results underscore the 

importance of keeping in mind that changes in cell number are determined by numerous 

contributing factors, not proliferation alone. 

 

We showed that inhibition of JNK with SP600125 abolished the pro-proliferative effect of 2 

ng/ml HGF and prevented C2C12 fusion, regardless of HGF treatment. Interestingly, cell 

viability was reduced when JNK was inhibited with SP600125, further supporting JNKs’ 

well-documented role in cell survival. These results suggest that not only does the inhibition 

of JNK mediate HGF-induced proliferation, but also that this effect is compounded by a 

reduction in cell viability. A schematic representation of our findings is shown in Figure 2.7. 
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Figure 2.7: Schematic representation of our findings. A) 2 ng/ml HGF promotes proliferation in C2C12 
myoblasts through the PI3K, JNK, ERK and p38 pathways. We have shown that inhibition of these pathways 
reverses the pro-proliferative effect of 2 ng/ml HGF on C2C12 cells. B) 10 ng/ml HGF inhibits proliferation in 
C2C12 myoblasts through the PI3K and p38 pathways. We have shown that inhibition of these pathways 
reverses the anti-proliferative effect of 10 ng/ml HGF on C2C12 cells.  C) 2 ng/ml HGF inhibits fusion in 
C2C12 myoblasts. D) 10 ng/ml HGF promotes fusion in C2C12 myoblasts. 
 
In conclusion, our findings support a role for HGF in regulating both myoblast cell number 

and terminal differentiation in a dose-dependent manner (Figure 2.7). However, we further 

suggest that not only does HGF regulate these processes, but that proliferation and 

differentiation in C2C12 mouse myoblasts can be either promoted or inhibited in response to 

changing exogenous HGF concentrations. Changes in c-Met receptor expression were noted 

in response to HGF and the dose-dependent effects of the growth factor on proliferation and 

differentiation could be correlated to expression levels of this receptor. Furthermore, our 

results suggest that P13K and p38 mediate the anti-proliferative effect of the higher dose 

HGF, whereas the ERK signalling pathway is, at least in part, responsible for the negative 

effect of the lower HGF dose on differentiation.  
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CHAPTER 3 

COLLAGEN IV PROMOTES MYOBLAST FUSION IN A CD9-DEPENDENT 

MANNER 

 
 

It is becoming increasingly apparent that the extracellular matrix (ECM) of skeletal 

muscle, in addition to providing structural support, provides regulatory cues to the 

resident satellite cell population and thereby modulates activation and subsequent 

myogenesis. Satellite cells reside between the basal lamina and sarcolemma where they 

interact with matrix factors of their niche. Collagen IV and laminin, the major 

components of the basal lamina, bind to and interact with satellite cells via integrin’s 

and other cell surface proteins. Of particular interest to us is CD9, a tetraspanin 

transmembrane protein expressed on myoblasts and known to interact with collagen IV. 

In the current study we first analyzed the effect of Matrigel (an exogenous mixture of 

factors that simulates the basal lamina ECM), as well as its two main constituents, 

laminin and collagen IV, on fusion. We then analyzed the role of key myogenic 

transcription factors as well CD9 in an effort to understand the mechanism underlying 

the effects observed. Matrigel and collagen IV (the second largest constituent of 

Matrigel), but not laminin, significantly increased terminal fusion of C2C12 myoblasts. 

Collagen IV was observed to significantly increase percentage MyoD+ cells without 

affecting Pax7+ cell numbers. Furthermore collagen IV stimulated an increase in CD9 

expression on differentiating cells such that cells cultured on collagen IV required 

higher levels of neutralizing anti-CD9 monoclonal antibodies to reduce fusion. These 

results identify the interaction of collagen IV with CD9 as a critical mediator of skeletal 

muscle myogenesis.  

 

Includes data from: 

Walker NL and Niesler CU. Collagen IV promotes myoblast fusion in a CD9-dependent 

manner [Contributed all data and analysis of figures in the paper]. Submitted, Matrix 

Biology; 30 November 2015. 
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3.1 Introduction 

 

Satellite cells reside in quiescence in their niche between the basal lamina and the 

sarcolemma of a muscle fiber (Mauro, 1961). The extracellular matrix of the satellite cell 

niche is known to regulate stem cell self-renewal and differentiation in vivo, however, the 

mechanism by which it does so is unclear (Dellatore et al., 2008). The importance of the 

niche ECM in stem cell behavior is outlined by the fact that disruption of its components 

results in defective regeneration in the majority of stem cell types in the body (Jones and 

Wagers, 2008). In addition to providing structural support to the niche, the ECM plays a vital 

role in mediating the availability of growth factors, thereby regulating stem cell quiescence 

and activation (Thomas et al., 2015). The complexity of the in vivo niche makes it difficult to 

fully understand the roles of individual components, therefore individual ECM factor and 

simple combination studies are required. In this study we examine the role of collagen IV, 

the major collagen component of the basal lamina, on myoblast behavior. 

 

Collagen IV is essential for basement membrane stability and serves as the main scaffold 

material of the niche ECM (Poschl et al., 2004). Through molecular interactions with 

integrins, collagen IV is able to influence cell fate in developing and adult tissues 

(Khoshnoodi et al., 2008). Embryoid body formation is the principle step in the 

differentiation of embryonic stem cells and it has been shown that collagen IV (10 µg/ml) 

supports this formation (Taru Sharma et al., 2012). Schenke-Layland et al (2007) 

demonstrated that collagen IV was able to direct early embryonic stem cell differentiation 

towards smooth muscle lineages in both mouse and human embryonic stem cells (Schenke-

Layland et al., 2007). With regard to skeletal muscle, collagen IV is found exclusively in the 

basement membrane (Foidart et al., 1981). Recent studies have shown that collagen IV is 

able to increase migration and viability in insulin like growth factor I (IGF-1) gene 

engineered C2C12 cells (Ito et al., 2015). Collagen IV also significantly increased fusion and 

the number of myotubes displaying striations in samples stimulated to express IGF-1, as well 

as increasing the displacement of electrical pulse stimulated myotubes (Ito et al., 2015). This 

suggests that collagen IV can enhance the contractile ability of myoblasts in vitro. 

 

Laminins are a group of basal lamina proteins and are composed of a heavy α-chain and two 

light chains, β and γ. Laminin-211 (merosin) is the subtype found around the sarcolemma of 

muscle fibers and is known to bind to collagen IV in the basal lamina (Grounds et al., 2005). 
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Laminin-211 deficiency is well documented in congenital muscle dystrophies (Guo et al., 

2003). Laminin-111, which differs from laminin-211 only in its alpha domain, has been 

shown to promote the migration of C2C12 cells in vitro (Yao et al., 1996). However the 

effect of laminin-111 on the differentiation of C2C12 cells remains a topic of debate. Grossi 

et al (2007) utilized a magnetic bead stimulation model whereby beads were coated with 10 

µg/ml laminin-111 and allowed to interact with differentiating C2C12 cells in a magnetic 

field. This method supplied both chemical stimulation via laminin interactions and 

mechanical stimulation via magnetic bead contact. They observed a 1.5 fold increase in 

MyoD and myogenin expression when compared to mechanical stimulation with uncoated 

beads. However, this study revealed that incubation of C2C12 cells on plates coated with 10 

µg/ml laminin-111 without mechanical stimulation did not result in increased myotube 

formation (Grossi et al., 2007). This suggests that, in a 2D environment, signaling through 

the laminin receptor alone is not enough to increase C2C12 differentiation. This is in contrast 

to Foster et al (1987) who showed that laminin-111 enhances skeletal myogenesis when rat 

hindlimb tissue was cultured on plates coated with 10 µg/ml laminin-111. Here, whole 

muscle fibers were isolated and injured, and improved wound healing was observed in vitro. 

It was however concluded that this effect was due to the selective promotion of myoblast 

proliferation by laminin rather than increased myogenic potential of the myoblast population 

(Foster et al., 1987).  

 

Matrigel, an exogenous mixture of proteins secreted by Engelbreth-Holm-Swarm (EHS) 

mouse sarcoma cells, closely mimics the components of the basal lamina. Matrigel is 

commonly utilized to improve the proliferative and myogenic potential of isolated primary 

culture myoblasts. Langen et al (2003) demonstrated that by merely reducing the media 

serum component and culturing C2C12 cells on Matrigel, significantly reduced C2C12 

proliferation and improved myogenesis can be achieved when compared to protocols 

involving the use of horse serum on uncoated plates (Langen et al., 2003). Furthermore, it 

has been shown to improve the fusion of C2C12 myoblasts into myotubes in vitro (Grefte et 

al., 2012). Grefte et al (2012) differentiated primary culture myoblasts isolated from 

Sprague-Dawley rats on 1 mg/ml Matrigel and observed 35% increase in fusion when 

compared to non-treated controls after just three days. Fusion reached 50% by day 5 cultured 

on Matrigel (Grefte et al., 2012).  
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CD9 is a member of the tetraspanin family of transmembrane proteins and is known to bind 

to collagen IV (Tachibana and Hemler, 1999). Tetraspanins, also known as the 

transmembrane 4 superfamily, are believed to act as a molecular scafford with a role in 

binding specific proteins to one another on the cell surface (Hemler, 2005). Blocking of CD9 

using neutralizing monoclonal antibodies has been shown to delay the fusion of C2C12 cells 

into myotubes (Tachibana and Hemler, 1999). Furthermore, Charrin et al (2013) have shown 

that disruption of CD9 expression in knockout mice results in disorganized and abnormal 

muscle regeneration characterized by the formation of large dystrophic muscle fibers 

(Charrin et al., 2013). This suggests that CD9 is vital for the efficient progress of myogenesis. 

 

In the current study we determined whether the pro-myogenic effects of Matrigel can be 

ascribed to either one of its major components, collagen IV or laminin-111. We then 

examined potential mechanisms for the effects observed, notably by analyzing myogenic 

transcription factor and CD9 expression. Our findings suggest a novel role for CD9 in 

mediating the pro-myogenic effects of collagen IV on myoblasts. 
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3.2 Materials and methods: 

 

All reagents were of an analytical grade and obtained from Sigma-Aldrich (USA), unless 

stated otherwise. All cell culture was performed under sterile conditions in a level II 

biological safety cabinet (ESCO Class II BSC). 

 

3.2.1 Cell Culture 

 

The C2C12 murine cell line was purchased from the American Type Culture Collection 

(ATTC, CRL-1772). Cells were cultured in Dulbecco’s Modified Eagle’s Medium (Highveld 

Biological, CN3193-9) supplemented with 10% (v/v) Fetal Bovine Serum (Biowest, S181H-

500), 2% (v/v) L-glutamine (Lonza, BE17-605E) and 2% (v/v) Penicillin-Streptomycin 

(Lonza, DE17-602E). For differentiation studies, cells were cultured to a confluence of 70% 

after which media was changed to differentiation media (DMEM supplemented with 2% 

(v/v) horse serum) (Biowest, S090H-100).  

 

3.2.2 Differentiation 

 

Differentiation media consists of 485 ml DMEM, 10 ml PenStrep (2% v/v) and 5 ml horse 

serum (16050-130; Invitrogen; USA) filter sterilized prior to storage in 50 ml falcon tubes at 

4°C. When cells reached approximately 70% confluence, the media was changed to 

differentiation media. Cells were maintained at 37 °C, 5% CO2 in a humidified incubator.  

 

3.2.3 ECM Coating 

 

T25 culture flasks and 24 well plates containing glass coverslips were coated with 3 ml and 

500 µl respectively with the solutions described below. All plates were incubated at 37 °C 

for 4 hours, before the protein solutions were removed and the plates allowed to air dry 

under U.V. light overnight. Plates and wells are washed with sterile PBS before use and 

stored at 4 °C for no longer than a month.  
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  3.2.3.1 Collagen IV Coating 

Collagen IV solution (Human; 0.3 mg; C6745; Sigma-Aldrich; USA) was diluted to a stock 

solution of 0.1 mg/ml with sterile PBS at 4 °C. This stock was then diluted further to the 

desired concentration range (12.5, 25 and 50 µg/ml) with sterile PBS.  

 

  3.2.3.2 Laminin-111 Coating 

Laminin solution (Mouse; 1 mg; L2020; Sigma-Aldrich; USA) was diluted to a stock 

solution of 0.1 mg/ml with sterile PBS at 4 °C. This stock was then diluted further to the 

desired concentration range (6.25, 12.5 and 25 µg/ml) with sterile PBS.  

 

  3.2.3.3 Matrigel Coating 

A cold 10.1 mg/ml Matrigel solution (CN-354230; BD Biosciences; USA) was diluted to a 

stock concentration of 0.6 mg/ml in double distilled water. This stock was then diluted 

further to the desired concentration range (30, 60 and 120 µg/ml) with sterile PBS. All 

dilutions and coating procedures were done on ice. 

   

A Clustal W alignment was conducted to compare the amino acid sequences of human 

collagen IV used in this study and collagen IV found in mice (Mus Musculus) (Appendix III). 

A score of 79.2899 showed that the amino acid sequence of human collagen IV is highly 

similar to mouse collagen IV. 

 

3.2.4 Immunocytochemistry and Confocal Microscopy 

 

C2C12 cells were plated onto coverslips in a 24 well plate and allowed to reach 70% 

confluence in 500 µl growth media. Wells had previously been coated with the ECM factors 

as described earlier. HGF addition took place with initial plating out and at all media changes 

(day -1, 0 and 3). Differentiating (day 1, day 2 and day 5) cell samples were cultured in 

differentiating media for 24, 48 and 120 hours respectively. Coverslips were subsequently 

washed with PBS and fixed with 4% paraformaldehyde for 15 minutes. They were then 

washed with PBS and blocked using 5% donkey serum. Coverslips were then incubated with 

primary antibodies for 4 hours at room temperature: day 0/1: mouse monoclonal anti-Pax7, 

mouse monoclonal anti-CD9; day 2: rabbit polyclonal anti-MyoD; day 5: mouse monoclonal 

anti-MyHC, mouse monoclonal anti-CD9 (see table 3.1 for optimized dilutions). Coverslips 
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were then washed 4 x 8 minutes with PBS before being incubated with appropriate 

secondary antibody for 40 minutes (Table 3.1). These were washed 3 x 8 minutes with PBS 

before being treated with Hoechst 33342 nuclear stain (Stock: 10 mg/ml; 1/4000; Sigma-

Aldrich; USA). Coverslips were then washed for a further 4 x 8 minutes with PBS before 

being mounted with Moviol and finally visualized using the Zeiss LSM 710 confocal 

microscope. 

Table 3.1: Antibody concentrations (optimized) used in Confocal microscopy 
 Primary antibody Dilution Secondary antibody Dilution 

 

 

 

Confocal Microscopy 

Mouse monoclonal anti-Pax7 

(ab55494; Abcam; UK)  

1/500 Donkey anti-mouse Dylight 488 

 (715-485-151, Jackson ImmunoResearch) 

1/1000 

Rabbit polyclonal anti-MyoD (sc-760, 

Santa Cruz; USA) 

1/100 Donkey anti-rabbit Dylight 488 

  (711-455-152, Jackson ImmunoResearch) 

1/1000 

Mouse monoclonal anti-MyHC (MF-

20; DSHB; USA) 

Mouse monoclonal anti-CD9 (BD 

551808, USA) 

1/400 

 

1/400 

Donkey anti-mouse Dylight 494 

 (715-515-151, Jackson ImmunoResearch) 

Donkey anti-mouse Dylight 488 

 (715-485-151, Jackson ImmunoResearch) 

1/4000 

 

1/1000 

 

3.2.4.1 Assessment of percentage Pax7+ and MyoD+ cells  

 

Cells shown to be expressing nuclear Pax7 or MyoD were counted and determined as a percent 

of total nuclei on proliferating (percentage Pax7+), day 1 (percentage Pax7+) and day 2 

(percentage MyoD+) differentiating cultures. Due to the fact that Pax7 is expressed in 

proliferating myoblasts and down-regulated following induction to differentiate, Pax7 

assessment was not conducted beyond day 1 of differentiation (Zammit et al., 2006b). 

Additionally, MyoD expression was examined at day 2 of differentiation as MyoD expression 

has previously been shown to peak at day 2 of differentiation in C2C12 myoblasts (Panda et al., 

2014). Images were examined using Zen software (Zeiss) allowing visualization of a single 

plane (either Pax7 or nuclear staining) and accurate quantification. Approximately 20 cells per 

image were analysed and a minimum of 5 fields of view (i.e. 100 cells/n), randomly selected, 

were used for n=1. Experiments were repeated n = 6-8 times. 

 

3.2.4.2 Assessment of terminal differentiation via a fusion index  

 

The fusion index was determined via quantitative analysis of confocal images of differentiated 

myotubes (day 5). Images were exported using Zen software (Zeiss) as a single plane with both 

the red channel (MyHC) and the blue channel (Hoechst). This allowed us to count the number 
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of nuclei in fused myotubes (containing 2 or more nuclei). This number was divided by the 

total number of nuclei in the field of view and multiplied by 100. A minimum of 4 fields of 

view, randomly selected, were used for n=1. Experiments were repeated n = 6-8 times. 

 

3.2.5 Protein separation by SDS-PAGE 

 

Lysate sample preparation is outlined in Appendix IV. The Laemmli protocol was used for 

SDS-PAGE (Laemmli, 1970) with several modifications outlined in Appendix IV. The 

BioRad electrophoresis unit (BioRad; Mini-PROTEIN 3 Cell; USA) was utilized for the 

running of all polyacrylamide gels. 10% or 12.5% gels were cast between two glass plates, as 

described in the Appendix IV, and allowed to solidify (~1 hour) before the stacking gel was 

added with a 10 fingered comb to create the lanes for sample loading. Once the stacking gel 

had set (~30 minutes) the comb was gently removed and lanes washed with distilled water. 

Electrode (tank) buffer was poured into the inner and outer electrode compartments before 

the prepared samples were loaded. The samples were prepared by adding an equal volume of 

reducing sample treatment buffer to the sample and boiling the solution for 2 minutes. 

Samples were then stored on ice until loaded. 1 µl bromophenol blue (1437500CB; 

Saarchem; RSA) was added to each sample so that the buffer front could be clearly discerned. 

25 µg of protein per lane was added to the gel as determined by the Bradford Assay 

(Appendix IV). 3 µl of the PeqGold protein marker V (27-2210; Peqlab; Germany) was run 

in at least one lane of each gel for later determination of protein molecular weights. Gels 

were run at 4 °C with 18 mA per gel until the buffer front reached the bottom of the running 

gel. The gel was removed from between the glass plates and either stained with the 

Coomassie G-250 stain or processed for western blot analysis.  

 

3.2.6 Western Blot analysis of CD9 

 

Cells were differentiated on collagen IV coated and non-coated T25 culture flasks for up to 5 

days. Proteins were separated in a 12% SDS-PAGE gel and transferred to nitrocellulose. The 

nitrocellulose was then blocked in 5% (m/v) low fat milk powder (made up in TBST) for 1 

hour. Primary antibody (Mouse monoclonal anti-CD9, BD 551808, USA) was made up in 

TBST was then added to the nitrocellulose for 2 hours. GAPDH (Cell signalling, 2118) was 

used as a loading control. This was followed by wash steps with TBST (4 x 8 minutes). All 
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wash steps were performed with vigorous agitation. HRPO-linked secondary antibody (Rabbit 

anti-mouse IgG, Dako, P016102, USA) made up in TBST was then added for 1 hour. This was 

followed by washing with TBST (6 x 8 minutes).  

 

Enhanced Chemiluminescence (ECL) technique was used for the development of the bands. 

Light film (Kodak BioMax light film; Z370398; Sigma-Aldrich; USA) was utilized. The 

substrate was made by adding peroxide and enhancer solutions in a 1:1 ratio (Immun-Star 

WesternC; 70-5070; Bio-Rad, USA). The substrate (1 ml) was added to the nitrocellulose for 

2 minutes. Prior to development, the developer (Structurix G128; Agfa; 5TBN; Belgium) and 

the fixative (G333c Rapid Fixer; Agfa; EGCQT; Belgium) solutions were made up with 

water in a 1 in 4 dilution and a 1 in 3 dilution, respectively.  

 

3.2.6.1 Densitometry 

 

The bands that developed on the film were analyzed by use of computer software (Image J, 

http://imagej.nih.gov/ij/). Densitometric analysis was selected and the background was 

adjusted so that only the bands were visible for all experiments.  

 

3.2.7 Monoclonal antibody blocking 

 

C2C12 myoblasts (15 000 cells/well) were plated in collagen IV-coated and non-coated 

wells of a flat-bottom 96 well culture plate (Corning, CR/3596) and allowed to reach 70% 

confluence. Media was then replaced with diffferentiation media containing mouse 

monoclonal anti-CD9 (BD 551808, USA; 0, 1/1600, 1/800, 1/1600 dilution) and allowed to 

differentiate for 7 days. Media (containing various dilutions of mAbs) was replaced every 2 

days.  

 

3.2.8 Statistical analysis 

 

The results from each experiment were expressed as a Mean ± SEM. The student’s t-test was 

performed on all data. Samples were considered to be statistically significant if they 

produced a p value of less that 0.05. The number of experimental repeats is specified in each 

figure legend. 
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3.3 Results 

3.3.1 Matrigel increases terminal fusion of C2C12 myoblasts 

Matrigel is a commercially available protein mixture that closely mimics the basal lamina. It 

is composed mainly of laminin-111 and collagen IV that together make up 90% of its total 

mass (Yu and Machesky, 2012). To determine the effects of Matrigel on C2C12 cell terminal 

differentiation, cells were cultured on Matrigel (0, 30, 60 and 120 µg/ml) and the effects on 

fusion determined by confocal microscopy. Matrigel (30 and 60 µg/ml) visibly increased 

differentiation (Figure 3.1A); calculation of percentage fusion at day 5 revealed a significant 

increase from 42 ± 3% (control) to 65 ± 3% (30 µg/ml, p < 0.005) and 66 ± 2% (60 µg/ml, p 

< 0.005) (Figure 3.1B). This confirms the ability of Matrigel to positively modulate terminal 

differentiation. 

 

Figure 3.1: C2C12 myoblast differentiation in response to Matrigel. C2C12 myoblasts were incubated in 
growth media on Matrigel-coated glass coverslips (0, 30, 60 and 120 µg/ml) and allowed to reach 70% 
confluence. Cells were then induced to differentiate for 5 days prior to fixation. A) Representative images of 
differentiated C2C12 cells showing MyHC (red) and nuclei (blue). B) Fusion index calculated as percent 
C2C12 myotube formation at day 5 of differentiation.  Scale bar represents 50 µm. N = 6, all figures represent 
mean ± SEM, * = p < 0.05. 
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3.3.2 C2C12 cells down-regulate Pax7 expression in response to differentiation cues 

Activated, proliferating myoblasts express the paired-box transcription factors Pax7 and 

Pax3, as well as MyoD and myogenin (Le Grand and Rudnicki, 2007). Pax7 is known to 

play a role in the self-renewal pathway, which is responsible for ensuring a constant 

population of satellite cells in the tissue. It is expressed in both quiescent and activated 

satellite cells, but is down-regulated upon differentiation (Relaix et al., 2006). Down-

regulation of Pax7 results in a up-regulation in MyoD as cells begin to align for 

differentiation (Olguin et al., 2007). A subsequent down-regulation of MyoD and up-

regulation of myogenin and MyHC are the final molecular steps in differentiation of satellite 

cells into myotubes (Olguin et al., 2007). By examining the expression of these proteins in a 

population of cells, deductions regarding their progression of differentiation can be made. 

Maintained Pax7 expression has been shown to inhibit differentiation by interfering with the 

expression of critical myogenic transcription factors such as MyoD and myogenin (Olguin et 

al., 2007, Zammit et al., 2006b). In our study, differentiation cues visibly reduced the 

number of Pax7+ cells when compared to proliferating cells (Figure 3.2A). When quantified, 

under proliferative conditions 26 ± 5% of C2C12 myoblasts express nuclear Pax7 (Figure 

3.2B). In response to differentiation media (24h) there was a significant decrease in the 

percentage Pax7+ cells to 12 ± 4% (p < 0.035) (Figure 3.2B). 

 
Figure 3.2: Percentage Pax7+ cells in proliferating versus differentiating C2C12 cells. C2C12 myoblasts were 
plated onto glass coverslips in growth medium and allowed to reach 70% confluence. Cells were then either fixed 
for confocal microscopy or induced to differentiate for 1 day prior to fixation. Nuclear Pax7 expression was 
observed and expressed as a percentage of total cells. A) Representative images of C2C12 cells stained with anti-
Pax7 antibodies under proliferative conditions and after day 1 of differentiation. B) Graph showing percentage 
Pax7+ myoblasts under proliferative conditions and at day 1 of differentiation. Green arrows show Pax7+ cells. 
Red outlined circles represent nuclei. Scale bar represents 20 µm. N = 24, all figures represent Mean ± SEM, * = p 
< 0.05. 
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3.3.3 Matrigel does not affect Pax7 expression in differentiating C2C12 myoblasts 

To determine the effects of Matrigel on differentiating C2C12 Pax7 expression, C2C12 cells 

were cultured on Matrigel (0, 30, 60 and 120 µg/ml) and the effects on Pax7 expression 

determined by confocal microscopy. Pax7 expression appeared similar when Matrigel treated 

samples were compared to untreated controls (Figure 3.3A) and quantification revealed no 

significant changes in percentage Pax7+ cells (Figure 3.3B). Percentage Pax7 levels 

remained between 13 and 18% ± 4% for all treatments. 

 
Figure 3.3: Effect of Matrigel on Pax7 expression of C2C12 myoblasts. C2C12 myoblasts were plated in 
growth media on Matrigel-coated glass coverslips (0, 30, 60 and 120 µg/ml) and allowed to reach 70% confluence. 
Cells were then induced to differentiate for 1 day prior to fixation. A) Representative images of C2C12 cells 
stained with anti-Pax7 antibodies. B) Graph showing percentage Pax7+ myoblasts at day 1 of differentiation. Red 
outlined circles represent nuclei. Green arrow shows Pax7+ cells.  Scale bar represents 20 µm. N = 6, all figures 
represent mean ± SEM. 
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3.3.4 Matrigel does not affect MyoD expression in differentiating C2C12 myoblasts 

To determine the effects of Matrigel on C2C12 commitment to differentiation, C2C12 cells 

were cultured on Matrigel (0, 30, 60 and 120 µg/ml) and the effects on MyoD expression 

determined by confocal microscopy. MyoD expression appeared visibly similar when 

Matrigel treated samples were compared to untreated controls (Figure 3.4A) and 

quantification revealed no significant changes in percentage MyoD + cells (Figure 3.4B). 

MyoD+ cell numbers remained between 45 and 51% ± 16% for all treatments. 

 
Figure 3.4: Effect of Matrigel on myogenic commitment of C2C12 myoblasts.  C2C12 myoblasts were plated 
in growth media on Matrigel-coated glass coverslips (0, 30, 60 and 120 µg/ml) and allowed to reach 70% 
confluence. Cells were then induced to differentiate for 2 days prior to fixation. A) Representative images of 
C2C12 cells stained with anti-MyoD antibodies. B) Graph showing percentage MyoD+ myoblasts at day 2 of 
differentiation. Red outlined circles represent nuclei. Green arrow shows MyoD+ cells.  Scale bar 50 µm. N = 6, 
all figures represent mean ± SEM. 
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3.3.5 Laminin does not affect fusion in differentiating C2C12 myoblasts 

Matrigel’s largest constituent, providing over 60% of its mass, is laminin (Haber et al., 1988). 

To determine whether the effect of Matrigel on terminal differentiation was due to its high 

laminin content, we examined the effects of varying concentrations of laminin-111 (0, 6.25, 

12.5 and 25 µg/ml) on C2C12 myoblasts. Laminin-111 did not visibly increase fusion levels 

(Figure 3.5A). Following quantification, no significant changes were observed in percentage 

fusion when C2C12 cells were cultured on laminin-111 (Figure 3.5B) when compared to 

control. Percentage fusion remained between 40 and 45% ± 10% for all treatments. This 

suggests that the effects observed in response to Matrigel (section 3.3.1) are not attributed to 

laminin-111. 

 

Figure 3.5: The effect of laminin-111 on the differentiation of C2C12 myoblasts. C2C12 myoblasts were 
plated in growth media on laminin-coated glass coverslips (0, 6.25, 12.5 and 25 µg/ml) and allowed to reach 
70% confluence. Cells were then induced to differentiate for 5 days prior to fixation. A) Representative images 
of differentiated C2C12 cells showing MyHC (red) and nuclei (blue). B) Fusion index calculated as percentage 
C2C12 myotube formation at day 5 of differentiation. Scale bar represents 50 µm. N = 6, all figures represent 
mean ± SEM. 
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3.3.6 Collagen IV increases fusion of C2C12 myoblasts 

Matrigel’s second largest constituent, providing approximately 30% of its mass, is collagen IV 

(Haber et al., 1988). To determine the effects of collagen IV, Matrigel’s second largest 

constituent, on fusion, C2C12 cells were differentiated on varying concentrations of collagen 

IV (0, 12.5, 25 and 50 µg/ml) and fusion analysed by confocal microscopy. Collagen IV (25 

µg/ml) visibly increased terminal differentiation at day 5 (Figure 3.6A) which translated to a 

significant increase in fusion from 42% ± 3% to 59 ± 6% (p < 0.05, Figure 3.6B). This 

suggests that the effect of Matrigel on myoblast fusion may be mediated, at least in part, by 

collagen IV. 

 
Figure 3.6: The effect of collagen IV on the differentiation of C2C12 myoblasts. C2C12 myoblasts were 
plated in growth media on collagen IV-coated glass coverslips (0, 12.5, 25 and 50 µg/ml)  and allowed to reach 
70% confluence. Cells were then induced to differentiate for 5 days prior to fixation. A) Representative images 
of differentiated C2C12 cells showing MyHC (red) and nuclei (blue). B) Fusion index calculated as percentage 
C2C12 myotube formation at day 5 of differentiation. Scale bar represents 50 µm. N = 6, all figures represent 
mean ± SEM, * = p < 0.05. 
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3.3.7 Collagen IV does not affect Pax7 expression in differentiating C2C12 myoblasts 

To determine whether the effects of collagen IV on fusion (section 3.3.5) are mediated by 

changes in percentage Pax7+ cells, C2C12 cells were differentiated on varying 

concentrations of collagen IV (0, 12.5, 25 and 50 µg/ml) and analysed by confocal 

microscopy. Pax7 expression appeared similar when collagen IV treated samples were 

compared to uncoated controls (Figure 3.7A) and quantification revealed no significant 

changes in percentage Pax7+ cells (Figure 3.7B). Percentage Pax7 levels remained between 

14 and 17% ± 3% for all treatments observed. 

 
Figure 3.7: Effect of collagen IV on Pax7 expression of C2C12 myoblasts.  C2C12 myoblasts were plated in 
growth media on collagen IV-coated glass coverslips (0, 12.5, 25 and 50 µg/ml) and allowed to reach 70% 
confluence. Cells were then induced to differentiate for 1 day prior to fixation. A) Representative images of 
C2C12 cells stained with anti-Pax7 antibodies. B) Graph showing percentage Pax7+ myoblasts at day 1 of 
differentiation. Red outlined circles represent nuclei. Green arrow shows Pax7+ cells.  Scale bar represents 20 µm. 
N = 6, all figures represent mean ± SEM. 
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3.3.8 Collagen IV increases MyoD expression in differentiating C2C12 myoblasts 

To determine whether the effects of collagen IV on fusion (section 3.3.5 are mediated by 

changes in percentage MyoD+ cells, C2C12 cells were differentiated on collagen IV (0, 12.5, 

25 and 50 µg/ml) and analysed by confocal microscopy. Collagen IV (25 µg/ml) was 

observed to visibly increase the %MyoD+ cells (Figure 3.8A). Quantitative analysis revealed 

that collagen IV (25 µg/ml) significantly increased %MyoD+ cells from 48% ± 7% to 67% ± 

4% MyoD+ cells at day 2 (p < 0.05, Figure 3.8B).  

 
Figure 3.8: Effect of collagen IV on myogenic commitment of C2C12 myoblasts.  C2C12 myoblasts were 
plated in growth media on collagen IV-coated glass coverslips (0, 12.5, 25 and 50 µg/ml) and allowed to reach 
70% confluence. Cells were then induced to differentiate for 2 days prior to fixation. A) Representative images of 
C2C12 cells stained with anti-MyoD antibodies. B) Graph showing percentage MyoD+ myoblasts at day 2 of 
differentiation. Red outlined circles represent nuclei. Green arrow shows MyoD+ cells.  Scale bar 50 µm. N = 6, 
all figures represent mean ± SEM, * = p < 0.05. 
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3.3.9 Collagen IV increases CD9 expression in differentiating C2C12 myoblasts 

In order to gain insight into the mechanism by which collagen IV may be mediating its effect 

on myogenesis, we analysed CD9 expression in differentiating C2C12 cells cultured in the 

presence or absence of 25 µg/ml collagen IV. In response to collagen IV, CD9 expression was 

observed to visibly increase when cells were differentiated at both day 1 and day 5 (Figure 

3.9A) Densitometric analysis of CD9 expression revealed that at day 1 of differentiation, CD9 

expression increased in response to collagen IV by 93% from 100% to 193% relative to control 

(p = 0.073; Figure 3.9B). This increase was maintained and by day 5 of differentiation, CD9 

expression levels were significantly higher in cells cultured on collagen IV (145%) compared 

to control (100%) (p < 0.05; Figure 3.9B).  

 
Figure 3.9: C2C12 CD9 expression in response to collagen IV and differentiation cues.  C2C12 myoblasts 
were plated in growth media on collagen IV-coated plates or glass coverslips (0 and 25 µg/ml) and allowed to 
reach 70% confluence. Cells were then induced to differentiate for 1 or 5 days prior to fixation or lysate 
preparation. A) Representative images of C2C12 cells showing CD9 expression (white arrows) and nuclei. B) 
Graph showing CD9 expression levels (normalized to internal loading control) in C2C12 cells differentiated (day 
1 and day 5) on 0 or 25 µg/ml collagen IV. Alpha-tubulin (55 kDa) was utilized as the loading control. Confocal 
images show CD9 expression and localization. Blots were assessed by ImageJ image analysis software. Scale bar 
represents 20 µm. Data represents mean ± SEM, * = p < 0.05; N=3. 
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3.3.10 CD9 mediates fusion in response to Collagen IV 

To determine whether there is a direct relationship between the observed increased fusion and 

the up-regulated CD9 expression in response to collagen IV, we used monoclonal antibodies to 

block CD9 on differentiating C2C12 cells cultured in the presence and absence of collagen IV. 

Blocking CD9 using a monoclonal anti-CD9 antibody (at 10 µg/ml) has been previously shown 

to inhibit C2C12 fusion in vitro in the absence of collagen IV (Tachibana and Hemler, 1999). 

A range of monoclonal anti-CD9 antibody concentrations was utilized and fusion was analyzed 

at day 7. We observed that, at the highest dilution (1/1600; 0.313 µg/ml), fusion levels were 

similar to the paired control cultured in the absence of anti-CD9 antibody (Figure 3.10A,B). 

However, at a dilution of 1/800 (0.625 µg/ml), fusion in cells cultured in the absence of 

collagen IV was much lower (± 50% decrease) than in those cells differentiated in the presence 

of the matrix factor (Figure 3.10C). At a dilution of 1/400 (1.25 µg/ml), fusion was all but 

absent in cells cultured on plastic, while some fusion was still evident in cells cultured on 

collagen IV (Figure 3.10D). At a dilution of 1/200 (2.5 µg/ml) fusion was completely inhibited 

in collagen IV-coated and non-coated samples (Figure 3.10E). 



 67 

 
Figure 3.10: Collagen IV treated C2C12 myoblasts are more resistant to disruption of differentiation by 
blocking of CD9. C2C12 myoblasts were plated in growth media on 0 or 25 µg/ml collagen IV-coated wells of a 
96 well plate and allowed to reach 70% confluence. Cells were then induced to differentiate for 7 days. A-E: 
Differentiating cells were incubated in the presence of varying dilutions of anti-CD9 monoclonal antibody as 
indicated. Representative images were taken at day 7 using phase contrast microscopy. Scale bar represents 200 
µm. 
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3.4 Discussion 

 

Satellite cells exist in a niche between the sarcolemma and basal lamina of skeletal muscle 

tissue (Grefte et al., 2012, Mauro, 1961). The basal lamina of skeletal muscle is a complex 

mixture of ECM and growth factors, with major components being the proteins laminin and 

collagen IV (Pallafacchina et al., 2010). In this study, we attempted to mimic aspects of the 

satellite cell niche environment by culturing C2C12 cells on exogenous ECM components 

found in the basal lamina. The effect of these factors on differentiation was assessed. 

 

Matrigel significantly increased fusion of C2C12 cells at day 5 of differentiation, with 60 

µg/ml having the greatest effect. This result was expected as Matrigel has previously been 

shown to increase the fusion of myoblasts (Grefte et al., 2012). Matrigel, even in its growth 

factor reduced form, is an extremely complex mixture of proteins and growth factors (Yu and 

Machesky, 2012). In an effort to understand which component was responsible for the effect 

on fusion, we examined the effects of the main constituents of Matrigel, namely laminin (± 

60%) and collagen IV (± 30%), on the differentiation and fusion of C2C12 cells.  

 

Laminin (6.25, 12.5 and 25 µg/ml) did not significantly affect the terminal differentiation of 

C2C12 cells. This is in agreement with results from Grossi et al (2007) and leads us to believe 

that this constituent of the basal lamina does not contribute to the increased fusion seen in 

response to Matrigel. Collagen IV however, at a concentration of 25 µg/ml, was observed to 

significantly increase fusion at day 5 of differentiation. It was also able to significantly increase 

the percentage MyoD+ cells when compared to untreated controls. Matrigel is composed of 

approximately 30% collagen IV, which translates to approximately 20 µg/ml of collagen IV in 

a 60 µg/ml Matrigel solution (Yu and Machesky, 2012). The observed increase in MyoD+ cells 

at day 2 of differentiation suggests an increase in the pool of cells that have committed to 

differentiate. This finding is supported by the recent work of Ito et al (2015) who showed that 

collagen IV significantly promoted fusion and contractibility of C2C12 IGF-1 gene engineered 

myoblasts under electrical stimulation (Ito et al., 2015). Therefore, the pro-myogenic effects of 

Matrigel may, in part, be mediated by collagen IV via a MyoD dependent pathway. The role of 

MyoD in the pathway could be confirmed by performing MyoD knock-down studies using 

RNAi. This would allow us to selectively reduce MyoD expression in the presence of collagen 

IV and quantify the effect of terminal fusion. 
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We next analysed the role of CD9 in mediating the collagen IV-stimulated increase in C2C12 

fusion. The CD9 cell surface glycoprotein is found on C2C12 cells and has been shown to be 

vital in the normal development of skeletal muscle (Tachibana and Hemler, 1999, Charrin et al., 

2013). CD9 expression is also upregulated in the early stages of C2C12 differentiation and 

blocking CD9 using monoclonal antibodies substantially delays conversion of C2C12 cells to 

elongated myotubes (Tachibana and Hemler, 1999, Charrin et al., 2013). Collagen IV could 

possibly be increasing downstream fusion of C2C12 myoblasts via an interaction with the CD9 

cell surface receptor. We therefore analysed the expression of CD9 in differentiating C2C12 

cells cultured on collagen IV. Our results indicate increased CD9 expression in C2C12 cells 

exposed to collagen IV. Although collagen IV has been observed to increase CD9 expression 

and induce cell migration through CD9 in MDA-MB-231 cells in vivo, this has not been 

previously shown in myoblasts (Castro-Sanchez et al., 2010). The observed increase began at 

day 1 of differentiation and was maintained to significant levels by day 5 of differentiation. 

Furthermore, blocking of CD9 using a monoclonal antibody at a concentration of 1.25 µg/ml 

almost completely abrogated differentiation of C2C12 cells in the absence of collagen IV; 

collagen IV-treated samples however showed low levels of fusion in the presence of the same 

concentration of anti-CD9 antibodies. This may be due to an upregulation of cell surface CD9 

when cultured on collagen IV and lack of sufficient anti-CD9 antibodies to block the increased 

number of CD9 receptors, leaving some CD9 molecules free to maintain a differentiation 

potential. This is supported by the observation that, at a higher antibody concentration (Figure 

3.11) (2.5 µg/ml) fusion was completely blocked in cells cultured on collagen IV, whereas at a 

lower concentration (0.625 µg/ml) differentiation was restored to cells differentiated on 

collagen IV coated plates when compared to controls (Figure 3.11). Our findings are supported 

by the study of Tachibana and Hemler (1999); they observed that anti-CD9 antibodies inhibited 

C2C12 cell differentiation. This was not a non-specific effect, as use of an isotype control in 

the study did not similarly decrease differentiation (Tachibana and Hemler, 1999). These 

results support the premise that the increase in differentiation observed when C2C12 myoblasts 

are cultured on Matrigel is due to a collagen IV/CD9-dependent mechanism. It also emphasizes 

the regulatory importance of the basal lamina during skeletal muscle regeneration.    
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Figure 3.11: Schematic representation of CD9 blocking. The upregulation of CD9, when cells are cultured on 
collagen IV coated plates, makes them more “resistant” to blocking with anti-CD9 antibodies. At an antibody 
dilution of 1/1600, both collagen IV and control samples have free CD9 sites; differentiation is therefore observed 
in both. At 1/800 and 1/400, cells cultured on collagen IV have some CD9 sites free and this allows some 
differentiation to proceed. However, in control samples, CD9 expression is not upregulated and all endogenous 
sites are blocked resulting is disrupted differentiation. At a dilution of 1/200, the antibody is in excess and blocks 
all CD9 sites in the presence and absence of collagen IV, resulting in disrupted differentiation.  
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In summary, we have shown, for the first time, that the collagen IV-mediated increase in 

terminal differentiation of myoblasts is mediated, at least in part, by CD9. This suggests that 

extracellular matrix factors do not only signal via integrins and presents an additional 

mechanisms whereby they can communicate with the cells in the satellite cell niche. 
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CHAPTER 4 

COLLAGEN IV MODULATES THE DOSE-DEPENDENT EFFECT OF HGF ON 

C2C12 MYOGENESIS  

 
Extracellular matrix (ECM) and growth factors are known to have complex 

interactions that may modulate their activity in vivo. We have previously shown that 

HGF regulates myogenesis in a dose-dependent manner. Furthermore, we showed that 

components of the basal lamina, such as collagen IV, also regulate myogenesis. In the 

current study we aimed to determine whether collagen IV mediates the dose dependent 

effect of HGF on myogenesis. Murine C2C12 myoblasts were cultured on collagen IV, 

in the presence or absence of HGF, and differentiation and proliferation assessed. 

Collagen IV was not able to negate the negative effect of HGF (2 ng/ml) on fusion, but 

was able to restore normal MyHC expression. Collagen IV did not alter the pro-

myogenic effect of 10 ng/ml HGF. Under proliferative conditions, collagen IV alone was 

unable to affect C2C12 cell numbers, cell viability or CD9 expression. Furthermore, 

collagen IV was observed to be unable to modulate the previously reported dose-

dependent effects of HGF on C2C12 cell numbers. Due to a collagen IV stimulated 

increase in CD9 expression in differentiating myoblasts, cells cultured on collagen IV 

required higher levels of neutralizing anti-CD9 monoclonal antibodies to reduce fusion; 

an effect not observed when cells were differentiated in the presence of HGF alone. In 

HGF (10 ng/ml) treated samples, fusion was completely inhibited when CD9 was 

completely blocked suggesting that CD9 is a crucial co-factor in HGF (10 ng/ml)-

induced fusion. These results show, for the first time, that despite the proliferative 

effect of low concentrations of HGF, collagen IV still promoted myogenic regulatory 

factor expression and early differentiation. The interactive effects of collagen IV and 

HGF are confirmed to be mediated by CD9, but there may be an upper limit to the 

effect on fusion. 
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4.1 Introduction 

 

In vivo, the extracellular stimuli that a satellite cell is exposed to, is a lot more complex than 

our single ECM factor studies can simulate. In healthy, uninjured muscle, the satellite cell 

resides in quiescence in its collagen IV and laminin rich niche between the basal lamina and 

sarcolemma of the muscle fiber (Sanes, 2003). Upon injury, HGF stimulates the satellite cell 

to become active before migrating out of its niche towards the site of injury which is 

characterized by ECM factors such as fibronectin and collagen I. Therefore the cell is in 

constant contact with a multitude of external ECM components and the composition and 

concentration of the satellite cell ECM changes as the cell progresses through myogenesis 

during repair.  

 

In the previous chapters we examined the effects of extracellular matrix proteins such as 

HGF, collagen IV and laminin on C2C12 differentiation and proliferation. We found that 

HGF (2 ng/ml) significantly promoted cell division, but reduced myogenic commitment and 

fusion. Conversely, 10 ng/ml HGF reduced proliferative capability, but increased 

differentiation. We then determined that collagen IV, and not laminin, positively regulated 

differentiation of C2C12 cells; cells cultured on 25 µg/ml collagen IV showed a significant 

increase in fusion at day 5 when compared to cells cultured on uncoated tissue culture plates. 

This was accompanied by an increase in CD9 expression; neutralizing antibody studies 

further suggested a potential role for CD9 in mediating the observed increase in fusion. 

 

ECM and growth factors are known to have complex interactions with each other and with 

growth factors. Combined ECM experiments often show synergistic effects of the individual 

ECM components. For instance, fibronectin and laminin individually have been shown to 

increase the differentiation of adult neural stem cells and their combination enhances this 

increase (Cooke et al., 2010). Decorin has been shown to modulate collagen I, but not 

fibronectin stimulated migration of C2C12 cells in vitro (Goetsch et al., 2011). Furthermore, 

collagen I and decorin were shown to have a physical interaction via separate core protein-

binding domains (Schonherr et al., 1995). Previously, Collagen IV has been shown to 

interact with a range of ECM factors including laminin, fibronectin and decorin and is vital 

for basement membrane stability (Poschl et al., 2004, Aumailley and Timpl, 1986, Charonis 

et al., 1985, Leppert et al., 2000). Interestingly, collagen IV has also been shown to bind 

HGF with a mild affinity (Schuppan et al., 1998). Reversible binding of HGF to immobilized 
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collagen IV has been reported to result in a collagen-HGF complex that is able to induce 

primary hepatocyte proliferation in a dose-dependent manner. Further investigation revealed 

that binding was due to specific peptide sequences unique to collagenous proteins suggesting 

a specific role for collagens in HGF bioavailability and activity (Schuppan et al., 1998). It 

therefore becomes important to investigate combinations of ECM and growth factors to 

mimic the in vivo environment more closely and thereby more fully understand how, 

together, these proteins modulate cell behavior. At this stage, very little is known about the 

effect of collagen IV in mediating HGF signaling in myoblasts. 

 

In this study, the effects of collagen IV on the previously observed dose-dependent effect of 

HGF on C2C12 myogenesis was examined. Terminal differentiation and proliferation were 

evaluated and we attempt to uncover the mechanisms at play by examining transcription 

factor expression and the role of the tetraspanin CD9.  
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4.2 Materials and methods: 

 

All reagents were of an analytical grade and obtained from Sigma-Aldrich (USA), unless 

stated otherwise. All cell culture was performed under sterile conditions in a level II 

biological safety cabinet (ESCO Class II BSC). 

 

4.2.1 Cell Culture 

 

The C2C12 murine cell line was purchased from the American Type Culture Collection 

(ATTC, CRL-1772). Cells were cultured in Dulbecco’s Modified Eagle’s Medium (Highveld 

Biological, CN3193-9) supplemented with 10% (v/v) Fetal Bovine Serum (Biowest, S181H-

500), 2% (v/v) L-glutamine (Lonza, BE17-605E) and 2% (v/v) Penicillin-Streptomycin 

(Lonza, DE17-602E). For differentiation studies, cells were cultured to a confluence of 70% 

after which media was changed to differentiation media (DMEM supplemented with 2% 

(v/v) horse serum) (Biowest, S090H-100).  

 

4.2.2 Differentiation 

 

Differentiation media consists of 485 ml DMEM, 10 ml PenStrep (2% v/v) and 5 ml horse 

serum (16050-130; Invitrogen; USA) filter sterilized prior to storage in 50 ml falcon tubes at 

4°C. When cells reached approximately 70% confluence, the media was changed to 

differentiation media. Cells were maintained at 37 °C, 5% CO2 in a humidified incubator.  

 

4.2.3 ECM Coating and HGF addition 

 

4.2.3.1 Collagen IV Coating  

Collagen IV (Human; 0.3 mg; C6745; Sigma-Aldrich; USA) was diluted to a stock solution 

of 0.1 mg/ml with sterile PBS containing 0.25% acetic acid at 4 °C. T25 culture flasks and 

24 well plates containing glass coverslips were coated with 3 ml and 500 µl of a 25 µg/ml 

collagen IV solution respectively. All plates were incubated at 37 °C for 4 hours, before the 

protein solutions were removed and the plates allowed to air dry under U.V. light overnight. 

Plates and wells are washed with sterile PBS before use and stored at 4 °C for no longer than 

a month.  
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4.2.3.2 HGF addition 

 

Active human HGF (PeproTech, cat.100-39) was used at a final concentration range of 0, 2 

and 10 ng/ml and media changed every 48 hours during differentiation studies. Cells were 

incubated at 37°C in a humidified incubator at 5% CO2. All experiments were carried out 

under sterile conditions in a Class II Biohazard Safety Cabinet.  

  

Clustal W alignments were conducted to compare the amino acid sequences of the ECM and 

growth factors used in this study and those found in mice (Mus Musculus) (Appendix III). 

Scores between 79.2899 and 88.4882 showed that proteins were highly conserved in all 

cases. 

 

4.2.4 Immunocytochemistry and Confocal Microscopy 

 

C2C12 cells were plated onto coverslips in a 24 well plate and allowed to reach 70% 

confluence in 500 µl growth media. Wells had previously been coated with the collagen IV 

as described earlier. HGF addition took place with initial plating out and at all media changes 

(day -1, 0 and 3). Differentiating (day 1, day 2 and day 5) cell samples were cultured in 

differentiating media for 24, 48 and 120 hours respectively. Coverslips were subsequently 

washed with PBS and fixed with 4% paraformaldehyde for 15 minutes. They were then 

washed with PBS and blocked using 5% donkey serum. Coverslips were then incubated with 

primary antibodies for 4 hours at room temperature: day 0: mouse monoclonal anti-CD9; day 

2: rabbit polyclonal anti-MyoD; day 5: mouse monoclonal anti-MyHC, mouse monoclonal 

anti-CD9. Coverslips were then washed 4 x 8 minutes with PBS before being incubated with 

appropriate secondary antibody for 40 minutes (Table 4.1). These were washed 3 x 8 minutes 

with PBS before being treated with Hoechst 33342 nuclear stain (Stock: 10 mg/ml; 1/4000; 

Sigma-Aldrich; USA). Coverslips were then washed for a further 4 x 8 minutes with PBS 

before being mounted with Movial and finally visualized using the Zeiss LSM 710 confocal 

microscope. 
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Table 4.1: Antibody concentrations (optimized) used in Confocal microscopy 
 Primary antibody Dilution Secondary antibody Dilution 

 

 

 

Confocal Microscopy 

Rabbit polyclonal anti-MyoD (sc-760, 

Santa Cruz; USA) 

1/100 Donkey anti-rabbit Dylight 488 

  (711-455-152, Jackson ImmunoResearch) 

1/1000 

Mouse monoclonal anti-MyHC (MF-

20; DSHB; USA) 

Mouse monoclonal anti-CD9 (BD 

551808, USA) 

1/400 

 

1/400 

Donkey anti-mouse Dylight 494 

 (715-515-151, Jackson ImmunoResearch) 

Donkey anti-mouse Dylight 488 

 (715-485-151, Jackson ImmunoResearch) 

1/4000 

 

1/1000 

    

 

4.2.4.1 Assessment of percentage MyoD+ cells  

 

Cells shown to be expressing nuclear MyoD were counted and determined as a percentage of 

total nuclei on day 2 (percentage MyoD+) of differentiation. Images were examined using Zen 

software (Zeiss) allowing visualization of a single plane and accurate quantification. 

Approximately 20 cells per image were analysed and a minimum of 5 fields of view (i.e. 100 

cells/n), randomly selected, were used for n=1. Experiments were repeated n = 6-8 times. 

 

4.2.4.2 Assessment of terminal differentiation via a fusion index  

 

The fusion index was determined via quantitative analysis of confocal images of differentiated 

myotubes (day 5). Images were exported using Zen software (Zeiss) as a single plane with both 

the red channel (MyHC) and the blue channel (Hoechst). This allowed us to count the number 

of nuclei in fused myotubes (containing 2 or more nuclei). This number was divided by the 

total number of nuclei in the field of view and multiplied by 100. A minimum of 4 fields of 

view, randomly selected, were used for n=1. Experiments were repeated n = 6-8 times. 

 

4.2.5 Protein separation by SDS-PAGE 

 

Lysate sample preparation is outlined in Appendix IV. The Laemmli protocol was used for 

SDS-PAGE (Laemmli, 1970) with several modifications outlined in Appendix IV. The 

BioRad electrophoresis unit (BioRad; Mini-PROTEIN 3 Cell; USA) was utilized for the 

running of all polyacrylamide gels. 10% or 12.5% gels were cast between two glass plates, as 

described in the Appendix IV, and allowed to solidify (~1 hour) before the stacking gel was 

added with a 10 fingered comb to create the lanes for sample loading. Once the stacking gel 

had set (~30 minutes) the comb was gently removed and lanes washed with distilled water. 
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Electrode (tank) buffer was poured into the inner and outer electrode compartments before 

the prepared samples were loaded. The samples were prepared by adding an equal volume of 

reducing sample treatment buffer to the sample and boiling the solution for 2 minutes. 

Samples were then stored on ice until loaded. 1 µl bromophenol blue (1437500CB; 

Saarchem; RSA) was added to each sample so that the buffer front could be clearly discerned. 

25 µg of protein per lane was added to the gel as determined by the Bradford Assay 

(Appendix IV). 3 µl of the PeqGold protein marker V (27-2210; Peqlab; Germany) was run 

in at least one lane of each gel for later determination of protein molecular weights. Gels 

were run at 4 °C with 18 mA per gel until the buffer front reached the bottom of the running 

gel. The gel was removed from between the glass plates and either stained with the 

Coomassie G-250 stain or processed for western blot analysis.  

 

4.2.6 Western Blot analysis 

 

Gels were placed within a blotting sandwich made up of the following; a piece of 

nitrocellulose (Hybond-C Extra; Amersham Biosciences; UK) the same size as the gel which 

was place over the gel, two pieces of Whatman No.4 filter paper was placed on either side of 

the gel and nitrocellulose, followed by two pieces of Scotchbrite foam placed on either side 

of the filter paper. The sandwich was placed in a western blot cassette and loaded into the 

western blot apparatus (Omni Page; Cleaver Scientific Ltd; UK) containing blotting buffer. 

The nitrocellulose must be place on the positive side of the apparatus as the proteins in the 

gel are negatively charged. The blot was run in the fridge (4 °C) at 400 mA for 4 hours or 60 

mA for 16 hours (Appendix V).  

 

The nitrocellulose was then removed and the gel placed in Coomassie G-250 stain to 

determine whether total protein transfer had occurred. The nitrocellulose was placed in the 

Ponceau S. stain (2 minutes) and destained with TBST until clear bands were visible. This 

gave an indication of whether the protein transfer was performed correctly and equal loading 

had been achieved. The nitrocellulose was washed a further two times in TBST to remove 

the remaining Ponceau S. stain. The nitrocellulose was then blocked in 5% (m/v) low fat 

milk powder (made up in TBST) for 1 hour. Primary antibody (Table 4.2) made up in TBST 

was then added to the nitrocellulose for 2 hours. This was followed by wash steps with 

TBST (4 x 8 minutes). All wash steps were performed with vigorous agitation. HRPO-linked 
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secondary antibody made up in TBST was then added for 1 hour. This was followed by 

washing with TBST (6 x 8 minutes).  

Table 4.2: Antibody concentrations used in Western blot 
 Primary antibody Dilution Secondary antibody Dilution 

 

 

Western Blot 

    

Mouse monoclonal anti-MyHC (MF-

20; DSHB; USA) 

Mouse monoclonal anti-CD9 (BD 

551808, USA) 

1/400 

 

1/400 

Donkey anti-mouse IgG  

(ab96857, Abcam; UK) 

Donkey anti-mouse IgG  

(ab96857, Abcam; UK) 

1/4000 

 

1/1000 

     

  

Enhanced Chemiluminescence (ECL) technique was used for the development of the bands. 

All steps of ECL which involves the use of the light film (Kodak BioMax light film; 

Z370398; Sigma-Aldrich; USA) were performed in the dark room with no white light 

present. The substrate was made by adding peroxide and enhancer solutions in a 1:1 ratio 

(Immun-Star WesternC; 70-5070; Bio-Rad, USA). The substrate (1 ml) was added to the 

nitrocellulose for 2 minutes. The nitrocellulose was placed between two pieces of transparent 

film and the position of the molecular weight markers were indicated on the transparent film 

for easy identification in the dark room. Prior to development, the developer (Structurix 

G128; Agfa; 5TBN; Belgium) and the fixative (G333c Rapid Fixer; Agfa; EGCQT; 

Belgium) solutions were made up with water in a 1 in 4 dilution and a 1 in 3 dilution, 

respectively. A piece of light film was cut to the same size as the nitrocellulose and placed 

over the nitrocellulose located between the transparency sandwich. The light film was left on 

the nitrocellulose for up to 10 minutes depending on the antibodies being used. The film was 

placed in the developer solution until the bands developed (~5 minutes) and then placed in 

the fixative (2 minutes). Finally, the film was washed with water and allowed to dry.  

 

4.2.6.1 Densitometry 

 

The bands that developed on the film were analyzed by use of computer software (Image J, 

http://imagej.nih.gov/ij/). Densitometric analysis was selected and the background was 

adjusted so that only the bands were visible for all experiments.  
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3.2.7 Monoclonal antibody blocking 

 

C2C12 myoblasts (15 000 cells/well) were plated in collagen IV-coated and non-coated 

wells of a flat-bottom 96 well culture plate (Corning, CR/3596) and allowed to reach 70% 

confluence. Media was then replaced with diffferentiation media containing mouse 

monoclonal anti-CD9 (BD 551808, USA; 0, 1/1600, 1/800, 1/1600 dilution) and allowed to 

differentiate for 7 days. Media (containing various dilutions of mAbs) was replaced every 2 

days.  

 

4.2.8 Statistical analysis 

 

The results from each experiment were expressed as a Mean ± SEM. The student’s t-test was 

performed on all data. Samples were considered to be statistically significant if they 

produced a p value of less that 0.05. The number of experimental repeats is specified in each 

figure legend. 
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4.3 Results 

4.3.1 Collagen IV mediates HGF-modulated C2C12 differentiation 

We previously reported that HGF (2 ng/ml) significantly inhibited fusion and MyHC 

expression in day 5 differentiating C2C12 cells (Section 2.3.1). To determine whether 

collagen IV modifies the effect of HGF on C2C12 fusion and MyHC expression, cells were 

cultured and differentiated on collagen IV (25 µg/ml) coated coverslips (for fusion index 

assessment) or flasks (for Western blotting) in media supplemented with HGF (0, 2 and 10 

ng/ml). In the presence of collagen IV, HGF (2 ng/ml) was observed to still reduce the 

number of fused myotubes, whereas HGF (10 ng/ml) did not elicit the previously reported 

increase in myotube fusion (Figure 4.1A). Calculation of percentage fusion revealed that 2 

ng/ml HGF significantly (p < 0.05) reduced terminal fusion at day 5 in cells cultured on 

collagen IV when compared to the collagen IV coated control (HGF 0 ng/ml) from 50 ± 3% 

to 38 ± 5% (Figure 4.1B). However, the addition of the HGF (10 ng/ml) to collagen IV did 

not significantly increase fusion when compared to collagen IV alone (Figure 4.1B). HGF, at 

either dose was however unable to significantly alter MyHC expression in the presence of 

collagen IV, when compared to cells cultured on collagen IV in the absence of HGF (Figure 

4.1C). This suggests that although collagen IV can restore normal MyHC expression to 

C2C12 cells treated with 2 ng/ml HGF, it is unable to restore normal levels of fusion. 

Furthermore, collagen IV abolished the ability of HGF (10 ng/ml) to promote fusion or 

MyHC expression over and above that of collagen IV on its own (Figure 4.1B, C). 
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Figure 4.1: Collagen IV mediated HGF-mediated myogenesis. 
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4.3.2 Collagen IV prevents the dose-dependent effect of HGF on MyoD expression 

We previously reported (Kahamba, 2013), Walker et al., 2015) that HGF may mediate its 

dose-dependent effect via MyoD. To determine the effect of collagen IV on the HGF-

mediated change in percentage MyoD+ cells, myoblasts were cultured and induced to 

differentiate on collagen IV (25 µg/ml) coated plates in media supplemented with HGF (0, 2 

and 10 ng/ml) for 2 days. HGF at either dose was unable to significantly alter percentage 

MyoD+ cell numbers (HGF 2 ng/ml = 42 ± 6%; HGF 10 ng/ml = 44 ± 7%) in the presence of 

collagen IV, when compared to samples coated on collagen IV alone (46 ± 3%; Figure 4.2A, 

B). These results suggest that collagen IV (25 µg/ml) prevents HGF from significantly 

affecting the percentage MyoD+ in differentiating C2C12 cells.  

 
Figure 4.2: HGF, in the presence of collagen IV, does not modulate percentage MyoD+ C2C12 myoblasts. 
C2C12 myoblasts were plated in HGF supplemented growth media on coated glass coverslips and allowed to 
reach 70% confluence. Cells were then induced to differentiate for 2 days prior to fixation and immunostaining 
for MyoD. A) Representative images showing MyoD+ cells. B) Percentage MyoD+ cells. Red outlined circles 
represent nuclei.  Green arrow shows MyoD+ cells.  Scale bar = 20 µm. Data represents 6 independent 
experimental repeats. Data is presented as mean ± SEM.  
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4.3.3 HGF treated C2C12 cell differentiation is not more resistant to CD9 blocking than 

control samples 

Blocking CD9 using an anti-CD9 monoclonal antibody has been shown to inhibit C2C12 

fusion in vitro (Tachibana and Hemler, 1999). We showed in the previous chapter that C2C12 

cells differentiated on collagen IV increase their CD9 expression and appear more resistant to 

the negative effect of CD9 neutralizing antibodies on fusion. In an effort to understand whether 

CD9 plays a role in mediating the negative effect of collagen IV on HGF (10 ng/ml)-mediated 

differentiation, we cultured cells on collagen IV in the presence or absence of HGF (10 ng/ml) 

as well as HGF (10 ng/ml) alone, and assessed the effect of anti-CD9 antibodies on 

differentiation. At a dilution of 1/1600 (0.313 µg/ml), fusion was similar to control conditions 

(no antibody) in all samples treated (Figure 4.3). However, at a concentration of 1/800 (0.625 

µg/ml), a reduction in fusion was observed in all groups with a greater reduction in HGF 

samples (compared to collagen IV and collagen IV + HGF samples) (Figure 4.3). Interestingly, 

we observed that HGF-mediated fusion was completely abrogated at an antibody dilution of 

1/400 (1.25 µg/ml) in cells cultured in the absence of collagen IV while cellular fusion, albeit 

in very low levels, was observed in the presence collagen IV and collagen IV + HGF samples 

(Figure 4.3).  
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Figure 4.5: HGF treated C2C12 myoblasts are not more resistant to disruption of differentiation by blocking of CD9. 
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4.3.4 Collagen IV does not significantly affect C2C12 myoblast proliferation, viability or 

CD9 expression 

Given the ability of collagen IV to modulate the effects of HGF on differentiation, we next 

tested whether collagen IV also plays a key role in regulating myoblast proliferation. C2C12 

cells (10 x 104 cells/plate) were cultured on collagen IV (0, 25 µg/ml) coated plates and cell 

number and viability assessed after 24 hours. Cell number and viability were not significantly 

affected in response to collagen IV (Figure 4.4A and B). Cell numbers at 24 hours were 24,9 x 

104 under control conditions and 25,3 x 104 when cultured on collagen IV. Confocal analysis 

revealed similar levels of CD9 expression (Figure 4.4C) and although CD9 expression was 

previously observed to increase in differentiating C2C12 cells (Section 3.3.7), no significant 

change in CD9 expression was observed in response to collagen IV under proliferative 

conditions (Figure 4.4D). These results suggest that differentiation cues may be required in 

conjunction with collagen IV exposure for this ECM factor to affect the behavior of C2C12 

cells. 
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Figure 4.3: Effect of collagen IV on C2C12 myoblast cell number, viability and CD9 expression. 
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4.3.5 Collagen IV does not modulate the dose-dependent effect of HGF on proliferation 

To determine whether collagen IV modifies the dose-dependent effect of HGF on C2C12 

cell number, cells were cultured on collagen IV (25 µg/ml) in media supplemented with HGF 

(0, 2 and 10 ng/ml). In the presence of collagen IV, HGF (2 ng/ml) stimulated the 

characteristic increase in proliferation, whereas incubation with HGF (10 ng/ml) caused the 

expected reduction in cell number (Figure 4.5A). Cell counts revealed a significant 29% 

increase from 30 x 104 cells to 46 x 104 cells (Figure 4.5A; p < 0.05) in response to 2 ng/ml 

HGF in combination with 25 µg/ml collagen IV when compared to cell counts conducted on 

samples cultured in the absence of HGF. Following incubation with 10 ng/ml HGF in 

combination with 25 µg/ml collagen IV a significant 37% reduction in cell numbers was 

observed from 30 x 104 cells to 19 x 104 cells (Figure 4.5A; p < 0.05) when compared to cell 

counts conducted on samples cultured in the absence of HGF. The percentage viability was 

also not affected and remained at previously reported (section 2.3.4) levels of approximately 

85-90% (Figure 4.5B). 

 
Figure 4.5: Collagen IV does not alter the dose-dependent effect of HGF on C2C12 proliferation. C2C12 
myoblasts were plated in HGF supplemented growth media in coated flasks and allowed to reach 70% 
confluence. Cell numbers were determined using the BioRad TC-20 cell counter and trypan blue. A) Total cell 
numbers. B) Viable cell numbers. Dashed line represents initial cell number seeded, flasks were seeded with 10 
x 104 cells/flask. Data represents 4 independent experimental repeats. Data is presented as mean ± SEM. 
*p<0.05. 
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4.4 Discussion 

 

We previously reported that HGF (2 ng/ml) inhibited C2C12 MyHC expression and fusion, 

while 10 ng/ml HGF promoted MyHC expression and fusion (Walker et al., 2015). 

Furthermore we subsequently showed that collagen IV, a major component of the basal lamina 

of the satellite cell niche, is able to promote myogenesis (Walker & Niesler, 2015; submitted). 

In the current chapter we determined whether collagen IV can modulate the previously 

reported dose-dependent effects of HGF on C2C12 myoblasts. Our results revealed that 

although collagen IV (25 µg/ml) did not negate the negative effect of HGF (2 ng/ml) on fusion, 

it did restore normal MyHC expression. This leads us to believe that HGF (2 ng/ml) may 

negatively regulate C2C12 differentiation via at least two mechanisms; 1) inhibition of cell-

specific contractile protein expression (reversible by collagen IV) and 2) prevention of the later 

stages of fusion (not reversible by collagen IV exposure). On the other hand, in the presence of 

collagen IV (25 µg/ml), HGF (10 ng/ml) was not able to stimulate an increase in fusion and 

MyHC expression over and above collagen IV levels suggesting that maximum C2C12 in vitro 

fusion has been reached or that HGF and collagen IV mediate their pro-myogenic effects via a 

common pathway.  

 

In order to begin delineating the role of CD9 in mediating collagen IV and HGF-mediated 

differentiation, CD9 neutralizing antibodies were used at a dilution range from 1/400 to 1/1600. 

Following blocking of CD9 using a monoclonal antibody at a dilution of 1/1600, normal fusion 

was observed in all samples treated. However, at a dilution of 1/800, collagen IV-treated 

samples were more “resistant” to the inhibitory effect of the CD9 neutralizing antibodies when 

compared to samples treated with HGF (10 ng/ml) alone. In addition to this, we observed that 

fusion was completely abrogated at a dilution of 1/400 for samples treated with HGF (10 

ng/ml) while fusion, albeit in very low levels, is present in samples treated with collagen IV. 

This may be due to an upregulation of CD9 when cultured on collagen IV and lack of sufficient 

anti-CD9 antibodies to fully block this increase, leaving some CD9 molecules free to maintain 

a differentiation potential. Alternatively, the presence of fusion in collagen IV samples when 

treated with a dilution of 1/400 anti-CD9 antibodies may suggest that although all CD9 sited 

are blocked, collagen IV may also induce C2C12 differentiation via a CD9 independent 

pathway as well as increasing CD9 cell surface expression. In addition to CD9, collagen IV is 

known to bind to cell surface receptors knows as integrins (Leitinger and Hohenester, 2007). 

Integrins are the major transmembrane receptors involved in cell adhesion to the ECM 



 90 

(Humphries et al., 2006). Integrins interact with the ECM and assist in signaling and cell-fate 

determination, and it is through these interactions that the ECM is believed to influence 

myogenesis and could account for the increased increase in fusion (Hynes et al., 2002). This 

however, requires further investigation. 

 

Anti-CD9 antibodies were able to block HGF-stimulated fusion at high dilutions. This suggests 

that the previously documented pro-myogenic effects of HGF on fusion (Walker et al., 2015) 

may be due to a CD9-dependent pathway, however it is necessary to detect the expression of 

CD9 in response to HGF. A lack of increased CD9 expression would explain the inhibition of 

fusion at higher antibody dilutions.  This hypothesis is supported by findings that knocking 

down CD9 expression significantly inhibited the well-documented effects of VEGF and HGF 

on endothelial cell motility and invasion in vitro (Kamisasanuki et al., 2011). Furthermore, in 

vivo studies show that knocking down CD9 expression with siRNA inhibited HGF- and 

VEGF-induced subconjunctival angiogenesis (Kamisasanuki et al., 2011). Other studies 

reinforce a specific requirement for CD9 in HGF signaling; an M.S. study from Michigan State 

University determined that CD9 is required for CD82 suppression of HGF-induced Met 

activation (Spotts, 2010).  

 

In response to collagen IV, C2C12 proliferation and viability were not observed to be 

affected; CD9 expression was also not significantly altered under proliferative conditions. It 

may be worthwhile to analyze CD9 expression levels following 48 hours of proliferative 

culture on collagen IV to determine whether extended incubation is required to stimulate 

changed in CD9 expression levels. HGF has been reported to demonstrate a dose-dependent 

effect on C2C12 proliferation. HGF (2 ng/ml) was observed to significantly increase C2C12 

proliferation with 10 ng/ml HGF having the opposite effect and significantly inhibiting 

differentiation (Walker et al., 2015). Combination studies revealed that collagen IV was 

unable to regulate the previously reported effects of HGF on proliferation of C2C12 

myoblasts. 

 

In summary, we demonstrated that collagen IV, along with being a positive modulator of 

myogenesis, can also mediate the dose-dependent effects of HGF on myogenesis. This 

demonstrates the ability for the ECM to affect the action of growth factors and highlights the 

need to consider ECM-growth factor interactions during in vitro studies. 
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CHAPTER 5: DISCUSSION 

 

 

Undifferentiated C2C12 cells are a mouse myoblast cell line capable of differentiation and 

fusion into myotubes, making them an ideal model for skeletal muscle repair studies in vitro. 

We attempted to examine the effects of a range of ECM and growth factors on various 

aspects of myogenesis.  

 

HGF is a growth factor that has been shown to be vital in the activation of satellite cells during 

early stages of myogenesis. We differentiated C2C12 cells in media supplemented with HGF 

and noted a dose dependent effect of this supplementation. At low concentrations (2 ng/ml) 

differentiation was impaired, but at higher concentrations (10 ng/ml) this effect was the 

opposite and fusion was in fact promoted. However, with regard to proliferation, 2 ng/ml HGF 

significantly increased cell numbers, while 10 ng/ml significantly reduced them when 

compared to untreated controls. This result suggests a dual mechanism of HGF on myoblasts 

during proliferation and differentiation. In an attempt to understand the mechanisms at play, we 

examined the expression levels of the c-Met receptor in response to treatment with HGF. 

Changes in c-Met receptor expression levels were noted in response to HGF and the dose 

dependent effects of the growth factor on proliferation and differentiation could be correlated 

directly to expression levels of this receptor. Grp2 and p85 are two distinct mediators of the 

effect that HGF can have on differentiation. Grp2 signals via the Ras pathway, which reduces 

myoblast differentiation and signaling via the p85 mediator results in signaling via the 

phosphatidylinositol 3-kinase (PI3K) pathway that induces cell differentiation (Leshem et al., 

2002).  Although our results suggest that PI3K and p38 mediate the anti-proliferative effect of 

HGF at higher concentrations, the pro-proliferative mechanism is still unclear and may be 

related to changes in adaptor protein association (such as Grb2) at the cell membrane. 

 

Matrigel, even in its growth-reduced form, is a complex mixture of over 1000 ECM proteins 

and growth factors (Hughes et al., 2010, Kohen et al., 2009). Matrigel was observed to 

increase terminal fusion in C2C12 myoblasts. However, it is difficult to interpret this result, 

as Matrigel is comprised of numerous proteins and growth factors. In an attempt to 

determine which portion of Matrigel was responsible for this result, we differentiated C2C12 

cells on the major components of Matrigel, laminin and collagen IV. We used a subtype of 

laminin, laminin-111 in our studies, which is the major laminin component Matrigel 
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(Neubauer et al., 2009). This laminin does however differ in its alpha domain from the 

laminin found in the skeletal muscle basal lamina, which is laminin-211 (Holmberg and 

Durbeej, 2013). We proceeded with laminin-111 because of its relevance to the earlier 

Matrigel study and due to the fact that laminin interacts with collagen through its beta 

domain, which is identical on both subtypes in this study (Kleinman et al., 1987). We found 

that laminin-111 alone had no effect on C2C12 differentiation. It would however be 

important to investigate laminin-211 in similar studies in the future, as it is the subtype found 

in the basal lamina of skeletal muscle. We then differentiated C2C12 cells on collagen IV, 

the second largest constituent of Matrigel. Here, we observed that collagen IV increased 

fusion similarly to the Matrigel-induced fusion observed. Collagen IV also increased the 

percentage of MyoD+ cells. This suggests that these cells were committed to differentiate and 

that fusion levels may have been more substantially increased by collagen IV over a longer 

time frame. This result led us to believe that the positive effect on fusion displayed by 

Matrigel was, at least in part, due to its second largest constituent, collagen IV.  

 

Collagen IV has been shown to interact with the CD9 receptor; blocking the CD9 receptor on 

C2C12 cells has been shown to reduce their fusion in vitro (Tachibana and Hemler, 1999, 

Charrin et al., 2013). Collagen IV may therefore interact with the CD9 receptor to increase 

myoblast fusion.  Assessment of CD9 expression on C2C12 cells cultured in absence and 

presence of collagen IV exposed a possible mechanism for our findings; CD9 expression is 

elevated at day 1 and day 5 of differentiation in response to collagen IV. Blocking of CD9 

(with monoclonal antibodies raised against CD9) further supported this finding with 

differentiation of C2C12 cells cultured on collagen IV more resistant to the inhibitory effects 

of these neutralizing antibodies. Assessment of MyoD at earlier time points (day 1), as well 

as myogenin, could lead to additional insight into the mechanism at play. Collagen IV was 

not observed to have a significant effect on C2C12 cell number, viability or CD9 expression 

under proliferative conditions. 

 

In an attempt to more closely mimic in vivo conditions, we then supplemented C2C12 cells 

differentiating on collagen IV with HGF.  Interestingly, collagen IV did not prevent lower 

concentrations of HGF (2 ng/ml) from inhibiting differentiation; however it was able to 

restore normal levels of MyHC, suggesting that 2 ng/ml HGF may be inhibiting the final 

stages of fusion, but not the earlier stages characteristic of myogenic progression. This was 

supported by the normal levels of MyoD in samples treated with collagen IV and HGF (day 
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1). Higher concentrations of HGF (10 ng/ml) did not increase collagen IV-induced fusion 

suggesting that these components do not have a synergistic or additive effect on myogenesis. 

 

Blocking of CD9 with monoclonal antibodies raised against CD9 in samples treated with 

HGF (10 ng/ml) and cultured on collagen IV exposed the possibility that collagen IV may be 

producing its pro-myogenic effect on C2C12 cells by numerous mechanisms. This is 

suggested as although fusion was reduced in samples blocked with a dilution of 1/400 anti-

CD9 antibodies, it was not completely abolished. This was in contrast to samples treated 

with HGF (10 ng/ml) where a dilution of 1/400 anti-CD9 antibodies completely abrogated all 

fusion. This suggests that CD9 activity is required for successful HGF signaling, which is in 

agreement with previously published results (Kamisasanuki et al., 2011, Spotts, 2010). 

Analysis of CD9 expression levels in response to HGF is necessary before drawing further 

conclusions. 

 

Interestingly, collagen IV was unable to modulate the dose-dependent effects of HGF on 

proliferation. This may be attributed to the fact that CD9 levels are not significantly elevated 

in proliferating C2C12 cells cultured on collagen IV suggesting a different mechanism at 

play under proliferative conditions. 

 

In summary: 

 

1. HGF has a dose-dependent dual role in myogenesis. Our results suggest that PI3K 

and p38 mediate the anti-proliferative effect of HGF at higher concentrations, 

however the pro-proliferative mechanism of 2 ng/ml HGF is still unclear. 

2. Collagen IV promotes myogenesis in part through an increase in CD9 expression, 

however, multiple mechanisms may be at play. 

3. Collagen IV is able to modulate the negative effect of HGF (2 ng/ml) on C2C12 

MyHC expression, but is unable to restore adequate fusion.  

4. Collagen IV does not to modulate the dose-dependent dual role of HGF on C2C12 

proliferation. 

5. HGF (10 ng/ml) requires active CD9 receptors to successfully promote C2C12 fusion. 
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Future work: 

 

1. Analysis of fusion proteins such as kirrel, nephrin WAVE and nap1 would be 

valuable in understanding the effects of low doses of HGF on fusion (Kestila et al., 

1998, Richardson et al., 2007, Strunkelnberg et al., 2001).  

 

2. Including analysis of the effect of collagen I and fibronectin (major components of 

fibrotic scar tissue found in extreme muscle injury) on myogenesis would further our 

understanding into the role of the ECM in fibrosis and wound repair. 

 

3. Finally, although 2D monolayer cell culture studies provide tremendous insight into 

the role of ECM factors in myogenesis, investigations must be extended to 3D 

bioengineered tissue. This will provide information as to the role of the ECM factors 

on skeletal muscle repair in a system which more closely mimics the in vivo 

environment. 
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APPENDIX I: SUPPLEMENTARY FIGURE 

 

Chapter 2: 

 
Supplementary Figure 1: Effect of Dimethyl Sulfoxide (DMSO) on C2C12 cell viability. Viability of 
proliferating C2C12 myoblasts incubated in growth media containing either 0.04% or 0.01% DMSO was 
assessed at 24h. 100 000 C2C12 myoblasts were initially seeded and analysis performed using the TC20 
automated cell counter (BioRad) for 3 independent experimental repeats, each in duplicate. Data is presented as 
mean ± SEM. 
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APPENDIX II: CONFERENCE ATTENDENCE AND PRESENTATIONS 

 

Postgraduate Research Day, Faculty of Science & Agriculture, UKZN, 2012 

 

EFFECT OF GROWTH AND EXTRACELLULAR MATRIX FACTORS ON 

DIFFERENTIATION OF MYOBLASTS 

 

Nicholas Walker 

208522298@stu.ukzn.ac.za 

School of Life Sciences 

Supervised by Dr Carola Niesler 

 

 

Satellite cells are muscle stem cells that reside between the myolemma and the 

sarcolemma of mature muscle fibers. These cells are the means of cellular muscle 

repair and are activated to myoblasts upon muscle damage to proliferate and 

differentiate into myotubes. Differentiated myotubes fuse to existing muscle fibers with 

in situ necrotic muscle injury allowing full muscle repair. With shear-type injuries 

these myotubes fuse to fibrotic scar tissue in the wound and full muscle regeneration is 

not possible. ECM factors in the satellite cell niche maintain and regulate aspects of 

quiescence, activation, proliferation and differentiation. Following muscle injury, 

growth factors and interstitial extracellular matrix (ECM) factors direct the process of 

muscle regeneration and self-renewal. This process is controlled by a range of 

transcription factors and initiated by the transcription factor Pax7. Hepatocyte growth 

factor (HGF) initiates activation of quiescent satellite cells, but its downstream effect on 

differentiation is unknown. The activated myoblast will come into contact with 

interstitial extracellular matrix factors such as collagens, fibronectin, decorin and 

laminin. The effect of these ECM factors on C2C12 satellite cell activation and 

differentiation is relatively unknown. By differentiating C2C12 murine myoblasts in 

the presence of various ECM and growth factors we were able to assess the effect that 

these factors had on Pax7 nuclear localization and therefore commitment to 

differentiation. This study shows that collagen I and HGF stimulate the commitment to 
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differentiation of satellite cells via Pax7 activation. Decorin was observed to lower 

average Pax7 levels in the nucleus of proliferating and differentiating myoblasts. The 

addition of decorin is shown to negate the ability for collagen I to increase Pax7 nuclear 

localization. In conclusion, ECM factors have the ability to influence myogenesis. The 

use of ECM factors to induce rapid muscle healing in vivo requires further research. 
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Indian Ocean Rim Muscle Colloquium (IORMC) 2013, Singapore 

 

COLLAGEN IV IS PRO-MYOGENIC AND ALSO REGULATES THE DOSE-

DEPENDENT EFFECT OF HGF ON MYOGENESIS.  

 

Nicholas Walker 

208522298@stu.ukzn.ac.za 

School of Life Sciences 

Supervised by Dr Carola Niesler 

 

Extracellular matrix (ECM) and growth factors are known to have complex 

interactions with one another which may modulate their activity in vivo. This supports 

the need to add combinations of ECM and growth factors during in vitro studies to 

more closely mimic in vivo conditions. Murine C2C12 myoblasts were cultured on 

collagen IV in HGF-supplemented media followed by assessment of differentiation and 

proliferation. Collagen IV was not able to negate the negative effect of HGF (2 ng/ml) 

on fusion but was able to restore normal MyHC expression. Collagen IV did not alter 

the pro-myogenic effect of 10 ng/ml HGF. Collagen IV restored normal MyoD 

expression at day 2 of differentiation when cells were exposed to HGF. In proliferative 

conditions, collagen IV alone was unable to effect C2C12 cell numbers, cell viability or 

CD9 expression. Furthermore, collagen IV was observed to be unable to modulate the 

previously reported dose-dependent effects of HGF on C2C12 cell numbers. These 

results show that collagen IV is able to modulate certain aspects of the dual role of HGF 

on myogenesis.  
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The South African Society for Biochemistry and Molecular Biology (SASBMB), Cape 

Town, South Africa, 2014 

 

COLLAGEN IV IS PRO-MYOGENIC AND ALSO REGULATES THE DOSE-

DEPENDENT EFFECT OF HGF ON MYOGENESIS.  

 

Nicholas Walker 

208522298@stu.ukzn.ac.za 

School of Life Sciences 

Supervised by Dr Carola Niesler 

 

Extracellular matrix (ECM) and growth factors are known to have complex 

interactions with one another which may modulate their activity in vivo. This supports 

the need to add combinations of ECM and growth factors during in vitro studies to 

more closely mimic in vivo conditions. Murine C2C12 myoblasts were cultured on 

collagen IV in HGF-supplemented media followed by assessment of differentiation and 

proliferation. Collagen IV was not able to negate the negative effect of HGF (2 ng/ml) 

on fusion but was able to restore normal MyHC expression. Collagen IV did not alter 

the pro-myogenic effect of 10 ng/ml HGF. Collagen IV restored normal MyoD 

expression at day 2 of differentiation when cells were exposed to HGF. In proliferative 

conditions, collagen IV alone was unable to effect C2C12 cell numbers, cell viability or 

CD9 expression. Furthermore, collagen IV was observed to be unable to modulate the 

previously reported dose-dependent effects of HGF on C2C12 cell numbers. These 

results show that collagen IV is able to modulate certain aspects of the dual role of HGF 

on myogenesis.  
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“Stem Cells: From basic research to bioprocessing”, London, UK; 2015 

 

THE EXTRACELLULAR MATRIX MODULATES THE EFFECT OF HGF ON 

MYOGENESIS. 

 

Extracellular matrix (ECM) and growth factors are known to have complex 

interactions with one another which may modulate their activity in vivo. This supports 

the need to add combinations of ECM and growth factors during in vitro studies to 

more closely mimic in vivo conditions. Murine C2C12 myoblasts were cultured on 

collagen IV in HGF-supplemented media followed by assessment of differentiation and 

proliferation. Collagen IV was not able to negate the negative effect of HGF (2 ng/ml) 

on fusion but was able to restore normal MyHC expression. Collagen IV did not alter 

the pro-myogenic effect of 10 ng/ml HGF. Collagen IV restored normal MyoD 

expression at day 2 of differentiation when cells were exposed to HGF. In proliferative 

conditions, collagen IV alone was unable to effect C2C12 cell numbers, cell viability or 

CD9 expression. Furthermore, collagen IV was observed to be unable to modulate the 

previously reported dose-dependent effects of HGF on C2C12 cell numbers. Cells 

cultured on collagen IV were more resistant to the anti-fusion effects of blocking CD9 

with anti-CD9 monoclonal antibodies when compared to those treated with HGF (10 

ng/ml) alone. This suggests that collagen IV may elicit some of its pro-myogenic effects 

by an alternate pathway, parallel to a CD9-dependent mechanism. HGF (10 ng/ml) 

treated samples we unable to demonstrate any fusion when CD9 was completely 

blocked suggesting that CD9 is a crucial co-factor in HGF (10 ng/ml)-induced fusion. 

These results show that collagen IV is able to modulate certain aspects of the dual role 

of HGF on myogenesis.  
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“Stem Cells in Drug Discovery”, Cambridge, UK, 2015 

 

THE EXTRACELLULAR MATRIX MODULATES THE EFFECT OF HGF ON 

MYOGENESIS. 

 

Extracellular matrix (ECM) and growth factors are known to have complex 

interactions with one another which may modulate their activity in vivo. This supports 

the need to add combinations of ECM and growth factors during in vitro studies to 

more closely mimic in vivo conditions. Murine C2C12 myoblasts were cultured on 

collagen IV in HGF-supplemented media followed by assessment of differentiation and 

proliferation. Collagen IV was not able to negate the negative effect of HGF (2 ng/ml) 

on fusion but was able to restore normal MyHC expression. Collagen IV did not alter 

the pro-myogenic effect of 10 ng/ml HGF. Collagen IV restored normal MyoD 

expression at day 2 of differentiation when cells were exposed to HGF. In proliferative 

conditions, collagen IV alone was unable to effect C2C12 cell numbers, cell viability or 

CD9 expression. Furthermore, collagen IV was observed to be unable to modulate the 

previously reported dose-dependent effects of HGF on C2C12 cell numbers. Cells 

cultured on collagen IV were more resistant to the anti-fusion effects of blocking CD9 

with anti-CD9 monoclonal antibodies when compared to those treated with HGF (10 

ng/ml) alone. This suggests that collagen IV may elicit some of its pro-myogenic effects 

by an alternate pathway, parallel to a CD9-dependent mechanism. HGF (10 ng/ml) 

treated samples we unable to demonstrate any fusion when CD9 was completely 

blocked suggesting that CD9 is a crucial co-factor in HGF (10 ng/ml)-induced fusion. 

These results show that collagen IV is able to modulate certain aspects of the dual role 

of HGF on myogenesis.  
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Indian Ocean Rim Muscle Colloquium (IORMC) 2016 

 

DOSE-DEPENDENT MODULATION OF MYOGENESIS BY HGF: 

IMPLICATIONS FOR C-MET EXPRESSION AND DOWNSTREAM SIGNALLING 

PATHWAYS 

 

Nicholas Walker 

208522298@stu.ukzn.ac.za 

School of Life Sciences 

Supervised by Dr Carola Niesler 

 

Introduction 

Hepatocyte growth factor (HGF) regulates satellite cell activation, proliferation and 

differentiation. HGF transduces its effects on satellite cells through specific interaction with 

the c-Met receptor.   

 

Aim 

We analysed the dose-dependent effects of HGF on C2C12 differentiation, proliferation and 

c-Met expression. We also attempted to understand the mechanisms at play by selectively 

inhibiting pathways downstream from c-Met. 

 

Method 

Murine C2C12 myoblasts were treated with 0, 2 or 10 ng/ml HGF followed by assessment of 

differentiation, proliferation and c-Met expression. Specific inhibitors of PI3K, ERK, JNK 

and p38K were utilized to determine pathway specificity. 

 

Results 

HGF (2 ng/ml) significantly promoted cell division, but reduced myogenic commitment and 

fusion. Conversely, 10 ng/ml HGF reduced proliferative capability, but increased 

differentiation. c-Met expression analysis revealed significantly decreased expression in 

differentiating cells cultured with 2 ng/ml HGF, but increased expression in proliferating 

cells with 10 ng/ml HGF. Mitogen-activated protein kinase (MAPKs: ERK, JNK or p38K) 

and phosphatidylinositol-3-kinase (PI3K) inhibition abrogated the HGF-stimulated increase 
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in cell number. Interestingly, PI3K and p38 kinase facilitated the negative effect of HGF on 

proliferation, while ERK inhibition abrogated the HGF-mediated decrease in differentiation.  

 

Conclusion 

Dose-dependent effects of HGF are mediated by changes in c-Met expression and 

downstream MAPK and PI3K signalling. 
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APPENDIX III: CLUSTAL W (1.81) MULTIPLE SEQUENCE ALIGNMENTS 

 

 

A3.1 Collagen IV (Human vs. Mouse) Score 79.2899 

 
CLUSTAL 2.1 Multiple Sequence Alignments   Sequence type explicitly set to Protein 
Sequence format is Pearson Sequence 1: gi|1674441|gb|AAB19039.1|      1690 aa 
Sequence 2: gi|176866126|ref|NP_444415.2|  1691 aa Start of Pairwise alignments 
Aligning...    Sequences (1:2) Aligned. Score: 79.2899 Guide tree file created:   
[clustalw.dnd]  There are 1 groups Start of Multiple Alignment  Aligning... Group 
1: Sequences:   2      Score:28276 Alignment Score 9044  CLUSTAL-Alignment file 
created  [clustalw.aln]   

 
 

 

A3.2 HGF (Human vs. Mouse) Score 89.4882 

 
 
Sequence type explicitly set to Protein Sequence format is Pearson Sequence 1: 
gi|337938|gb|AAA64297.1|   723 aa Sequence 2: gi|632774|gb|AAB31855.1|   728 aa 
Start of Pairwise alignments Aligning...    Sequences (1:2) Aligned. Score: 89.4882 
Guide tree file created:   [clustalw.dnd]  There are 1 groups Start of Multiple 
Alignment  Aligning... Group 1: Sequences:   2      Score:11635 Alignment Score 
4497  CLUSTAL-Alignment file created  [clustalw.aln]   

 
 

A3.3 Laminin 111 vs. Laminin 211 (Mouse) Score 33.8746 
 

CLUSTAL 2.1 Multiple Sequence Alignments   Sequence type explicitly set to Protein 
Sequence format is Pearson Sequence 1: gi|117647249|ref|NP_032507.2|  3118 aa 
Sequence 2: gi|148706391|gb|EDL38338.1|    3079 aa Start of Pairwise alignments 
Aligning...    Sequences (1:2) Aligned. Score: 33.8746 Guide tree file created:   
[clustalw.dnd]  There are 1 groups Start of Multiple Alignment  Aligning... Group 
1: Sequences:   2      Score:24218 Alignment Score 9334  CLUSTAL-Alignment file 
created  [clustalw.aln] 
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APPENDIX IV: LYSATE PREPARATION, PROTEIN DETERMINATION AND 

SDS-PAGE 

 

 

A4.1 Lysate Preparation 

A4.1.1 Reagents 

Protease Inhibitor Cocktail: The cocktail (Sigma, cat.P8340) consists of the following 

enzymes, AEBSF – [4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride], aprotinin, 

bestatin hydrochloride, E-64-[N-(trans-Epoxysuccinyl)-L-leucine 4-guanidinobutylamide], 

leupeptin hemisulfate salt and pepstatin A. The protease inhibitor was aliquoted into 20 µl 

Eppendorfs and stored at -20 °C. 

 

RIPA Buffer (pH 8): The buffer (Sigma, cat.R0278) contains the following, 50 mM Tris-HCl 

with 150 mM sodium chloride, 1% Igepal CA-630 (NP-40), 0.5% sodium deoxycholate, and 

0.1% sodium dodecyl sulfate (SDS). The buffer was stored at 4 °C. 

A4.1.2 Method 

Cells were collected in a 15ml falcon via trypsinization and spun at 100 x g for 5 minutes on 

the bench top centrifuge (MRC; Polychem Supplies). The supernatant was carefully removed 

leaving the cell pellet behind. The cells were resuspended in 1 ml PBS and spun again at the 

same speed. This washing step was repeated three times. All subsequent steps were 

performed on ice. The cells were resuspended in 24 µl of RIPA buffer and 1 µl Protease 

Inhibitor Cocktail. It must be noted that these amounts are for cells from one well of a 6-well 

plate and must be adjusted to suit cell number. The cells were lysed for 1 hour on ice and 

were then sonicated at setting 13 (VirSonic 60, Polychem Supplies) until all cells were 

ruptured. Finally the samples were transferred into Eppendorfs (10µl aliquots) and stored at -

20 °C.   

A4.2 Bradford Assay 

A4.2.1 Reagents 

Coomassie Dye: 0.12 g Coomassie G-250 (Sigma, cat.B-0770) was dissolved in 5.7 ml 

perchloric acid (2% w/v) and made up to 200 ml with distilled water. The reagents were 

dissolved by stirring with a magnetic stirrer and were filtered through Whatman No.1 filter 

paper. The Coomassie dye was stored in a brown glass bottle at room temperature and kept 
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in the dark for up to 6 months. A calibration curve was created using a bovine serum albumin 

(BSA) stock solution (1 mg/ml) ranging from a 5-50% dilution. 

A4.2.2 Method 

5 µl of sample was added to 95 µl PBS buffer in a 2 ml Eppendorfs (Sigma, cat.T-7813) 

along with 900 µl Coomassie dye solution for 2 minutes. This mixture was then transferred 

to a 1 ml plastic micro-cuvette (Optima Scientific, cat.2711110) and read at A595 on a 

spectrometer (Ultrospec II E, LKB Biochrom). Protein concentrations were calculated from a 

linear equation generated from the calibration curve. All samples were run in triplicate to get 

an accurate assessment of protein concentrations.  

 

Bovine serum albumin standards were used to construct a standard curve (Figure A5.1) as 

described by (Cazzolli et al., 2001). 

 
Figure A4.1: Bovine Serum Albumin (BSA) Bradford standard curve. Bovine serum albumin (BSA, Roche, 
10735086001)) was used to construct a standard curve to determine the unknown concentrations of C2C12 cell 
lysates. BSA protein was made up in d.H20 to a concentration of 1 mg/ml that served as a stock solution. A 
desired range (0 – 40 µg) of protein was added to Bradford reagent (900 µl), made to 1 ml with d.H20 in 
Eppendorfs, vortexed and left to develop for 5 minutes. The protein-dye mixtures were transferred into plastic 
cuvettes and absorbance readings taken at 595 nm with a spectrophotometer. A linear regression formula was 
determined (y = 0.0212x + 0.0172) with a correlation coefficient of 0.99795. The regression formula was used 
to determine the protein concentrations of C2C12 lysates. To ensure accuracy, triplicates of each sample were 
tested. 
 

A4.3 SDS-PAGE 

A4.3.1 Reagents 

Acrylamide/Bis-acrylamide monomer stock solution: 73 g acrylamide (30% m/v) and 2 g bis-

acrylamide (2.67% m/v) were dissolved in 250 ml distilled water. The solution was filtered 

through Whatman No.1 filter paper and stored at 4 °C in a brown glass bottle.  

 

y = 0.0212x + 0.0172 
R² = 0.99795 

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

0 5 10 15 20 25 30 35 40 45 

A
bs

 9
59

5n
m

) 

Ovalbumin (ug) 



 107 

4 x running gel buffer (1.5M Tris-HCl, pH 8.8): 72.72 g Tris was dissolved in 400 ml 

distilled water. The pH was titrated to pH 8.8 with HCl. The solution was filtered through 

Whatman No.1 filter paper and stored at 4 °C in a glass bottle.   

 

4 x stacking gel buffer (500mM Tris-HCl, pH 6.8): 3 g Tris was dissolved in 50 ml distilled 

water. The pH was titrated to pH 6.8 with HCl. This solutions pH should be checked weekly. 

The solution was stored in a glass bottle at 4 °C. 

 

SDS stock solution: 5 g SDS (10% m/v) was dissolved in 50 ml distilled water. The solution 

was filtered through Whatman No.1 filter paper and stored in a glass bottle at room 

temperature. 

 

Ammonium persulfate initiator solution: 0.1 g ammonium persulfate (10% m/v) was 

dissolved in 1 ml distilled water. This reagent was made up fresh prior to use. 

 

2X Reducing sample treatment buffer (125mM Tris-HCl, pH 6.8): 2.5 ml of the 4x stacking 

gel buffer, 4 ml SDS stock solution, 2 ml glycerol, and 1 ml of 2-mercaptoethanol were 

made up to 10 ml with distilled water and titrated to pH 6.8. The solution was stored in a 

sealed container at room temperature.  

 

Electrode (tank) buffer (250mM Tris-HCl, pH 8.3): 0.75 g Tris, 3.6 g glycine, and 2.5 ml 

SDS stock solution were made up to 250 ml distilled water and titrated to pH 8.3. The 

solution was stored in a plastic container at 4 °C. 

 

Coomassie G-250 stain: 0.2 g Coomassie G-250, 24 ml phosphoric acid, 50 g aluminum 

sulfate, 100 ml ethanol were made up to 1 liter with distilled water. The solution was filtered 

with Whatman No.1 filter paper and stored in a plastic bottle at room temperature.  
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Table A4.3.1. Preparation of 10% and 12.5% Laemmli running and stacking gels for SDS-PAGE  

Reagents 10% 12.5% Stacking Gel 

Monomer Solution 5 ml 6.25 ml 0.94 ml 

4x Running Gel Buffer 3.75 ml 3.75 ml - 

4x Stacking Gel Buffer - - 1.75 ml 

Distilled Water 6 ml 4.75 ml 4.3 ml 

SDS Stock Solution 150 µl 150 µl 70 µl 

Initiator Solution 75 µl 75 µl 35 µl 

TEMED 7.5 µl 7.5 µl 15 µl 
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APPENDIX V: WESTERN BLOT AND DOT BLOT 

 

 

A5.1 Western Blot 

A5.1.1 Reagents 

 

Blotting buffer: 27.23 g Tris and 64.8 g glycine were dissolved in 3.5 liters distilled water, 

followed by the addition of 900ml methanol. The solution was then made up to a final 

volume of 4.5 liters with distilled water. Prior to use 10% (m/v) SDS was added to the 

solution (i.e. 4.5 ml in 450 ml). Blotting buffer was used for 3 blotting runs before fresh 

blotting buffer was made again. Blotting buffer was stored in the fridge (4°C). 

 

Tris buffer saline-Tween (TBST; 20mM Tris, 200mM NaCl, pH 7.4): 2.42g Tris and 11.69 g 

NaCl were dissolved in 950 ml distilled water. The pH was titrated to pH 7.4 with HCl and 

subsequently made up to 1 liter with distilled water. Finally, 500 µl Tween-20 (Sigma, 

cat.P1379) was added to the solution that was stored in the fridge (4 °C). 

 

Ponceau S. stain: 0.1g Ponceau S. (Fluka, cat.81460) was dissolved in 1 ml acetic acid 

(100%) and made up to a final volume of 100 ml with distilled water. The solution was 

stored in a plastic bottle at room temperature. 

 

A5.2 Dot Blot 

Dot blot analysis was used to determine the optimal dilution of the primary and secondary 

antibodies for western blot analysis. A piece of nitrocellulose was marked into a grid with a 

pencil (Refer to figure 3.3). Note: gloves were worn at all times when dealing with protein 

samples. 1 µl of a protein sample was spotted into each square marked out on the 

nitrocellulose. The whole nitrocellulose piece was then blocked for 30 minutes, with 5% 

(m/v) non-fat milk powder made up in TBST. The nitrocellulose was cut into the marked 

squares that had been labeled with a predetermined antibody dilution range. Each antibody 

will have its own unique dilution range determined from the literature. Each square was 

placed into a separate well of a 12-well plate. The primary antibody dilutions were made up 

in TBST, and 500 µl of the specific dilution was added to each well for 2 hours. This was 

followed by washing steps with TBST (3 x 5 minutes). Secondary antibody dilutions were 
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made up in TBST and added to the well (500 µl) for 1 hour. The wells were then washed 

again with TBST (4 x 5 minutes). ECL was performed on the nitrocellulose squares. The 

dilution range showing optimal binding of both primary and secondary antibodies without 

non-specific binding was selected. 

 

 

 

 

 

 

 

 

Figure A5.2.1: Dot blot layout for primary and secondary antibody optimizations. 
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