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ABSTRACT 

The landscape pattern of urban green spaces and vegetation plays a significant role in supplying 

essential benefits and ecological services including sequestering and storing carbon, 

purification of air and water, regulating climate and providing recreational opportunities. 

However, due to the negative impacts of land cover change and rapid rates of urbanization, 

vegetation in an urban landscape typically becomes isolated and highly heterogeneous in space 

and time, relative to non-urban landscapes or natural areas. This research aimed to develop a 

spatially explicit approach based on remotely sensed data to quantify and monitor vegetation 

fragmentation and landscape structure of urban vegetation over time and its related impacts on 

the urban thermal environment using Harare metropolitan city in Zimbabwe as a case study. 

Specifically, multi-temporal Sentinel 2, Landsat 8 and Aster data were used in achieving the 

above objectives.  

 

Results based on the forest fragmentation model showed that the patch vegetation conditions, 

which represents the highest and  severe vegetation fragmentation level, were  dominant  across 

the landscape, followed by edge, transition and perforated, whilst the core  vegetation  covered 

a small portion of the city. The decrease of large, connected and contiguous vegetation to a 

more scattered and  fragmented vegetated patches was common across the city but more 

dominant in the  heavily built-up areas of western, eastern and the southern parts of the city, 

indicating the significant impact of urban development. The small, isolated and scattered 

vegetation patches were associated with low positive and negative spatial autocorrelation of 

Local  Indicators of Spatial Association (LISA)  indices. On the other hand, the more 

homogeneous (clustered) vegetation was associated with high positive spatial autocorrelation 

in the northern part of Harare metropolitan city. Furthermore, the study showed that clustered, 

highly connected vegetation produces stronger cooling effects than dispersed, isolated and 

smaller patches of vegetation. Overall, spatial explicit approach and tools including the forest 

fragmentation model and LISA indices could  play a significant role in landscape ecology with 

significant implications for conservation and restoration efforts  based on the delineation of 

spatially explicit clusters of high or low vegetation cover, core or patch or edge vegetation  

conditions. 
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1.1 Socio-economic and biophysical  importance of urban vegetation 

Urban vegetation in the form of urban parks, trees, forests, grassland, shrubs and lawns at 

different spatial scales is critical for management and conservation purposes due to their 

important social, economic and ecological benefits (Geoghegan et al.1997, Gobster and 

Westphal 2004). Urban vegetation contributes significantly to sustainable development and 

enhancement of quality of life (de la Barrera et al. 2016, Goddard et al. 2010). In particular, 

the landscape pattern of urban vegetation  substantially plays a major  part  in influencing the 

supply of essential ecological goods and services to city dwellers (Akbari et al. 2016, Bolund 

and Hunhammar 1999, Breuste et al.2013, De Groot et al. 2002, Dobbs et al. 2011, Dobbs et 

al. 2014,  Haase et al. 2014, Maimaitiyiming et al.2014, Mitchell et al. 2018, Nowak et al. 2008, 

Xu et al. 2018, Zhang et al. 2015, Zhang et al. 2017). 

 

Large patch sizes compared to small patch sizes of urban vegetation are considered to have 

more biodiversity conservation value (Arifin and Nakagoshi 2011). Carbon densities storage 

and sequestration are significantly related  to the density and  proportion of urban vegetation 

coverage in a landscape (Mitchell et al.2018). Relatively large patches of urban vegetation can 

sequester and increase more carbon storage (Lv et al.2018). Furthermore, urban vegetation 

directly intercepts and reduces air pollutants (Nowak et al. 2006). By providing cooling effects 

through evapotranspiration and shading, urban vegetation effectively reduces urban warming 

in cities, thereby mitigating urban heat islands (Buyantuyev and Wu 2010, Chen et al. 2014, 

Weng et al. 2004, Zhang et al. 2017).   

 

Urban vegetation improves the health and well-being of urban dwellers (Nielsen and Hansen 

2007, Richardson and Mitchell 2010, Tsai et al. 2016; 2018). Urban vegetation have the 

potential in reducing the impact of heat related mortality (Chen et al.2014). Urban green spaces 

are associated with more physical activity and quality of life (Tsai et al 2016; 2018) particularly 

to vulnerable groups, as well as the elderly and children (Korpela et al.2002). In addition, urban 

park spaces can be used as meeting points and places for recreation and relaxation by urban 

dwellers of different ethnic groups, thereby promoting social inclusion (Barbosa et al. 2007, 

Peters et al.2010). Nielsen and Hansen (2007) noted that stress levels are reduced in people 

with access to green areas.  In areas with more urban vegetation in the United Kingdom (U.K), 

urban dwellers were observed to have reduced mental distresses in contrast to geographical 

locations with less coverage of urban vegetation (White et al. 2013). Economically, urban 

vegetation contributes to the assessment of environmental externalities (Jim and Chen 2007). 
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Furthermore, the proximity of urban green spaces have been shown to significantly influence 

housing prices by increasing property values (as measured by hedonic pricing) (Cho et al. 2008, 

Crompton 2005, Tyrväinen 1997).  

 

1.2 Impact of urbanization on vegetation fragmentation and urban climate 

Approximately 2–3% of the Earth’s total surface area is urban (Lambin 2001, Liu 2014), and 

in recent times, urban areas have been given  much research due to the rapid wave of urban 

expansion and urbanization taking place across the world (Liu et al.2016). Currently, most of 

the world’s population is now residing in cities (United Nations 2014). Around 2050, it is 

predicted that about 66% of global population is going to be mainly concentrated in the cities 

of the developing world particularly in Asian (52%) and African cities (21%) where there is a 

rapid population growth (United Nations Population Division 2012, United Nations 2014).  

 

In the last decades, rapid urban expansion and urbanization through the conversion of the 

natural areas into impervious surface has led to the destruction,  habitat loss (forests, shrubland, 

grassland) and fragmentation of open and green spaces (Antrop 2000, Benedict and Mc Mahon 

2002, Dallimer et al. 2011, Fuller and Gaston 2009, Güneralp and Seto 2013, Haddad et al. 

2015, Honu et al. 2009,   McDonald et al. 2008,  McKinney 2008, Turrini and Knop 2015, Seto 

et. al. 2011; 2012). In rapidly growing cities, vegetation fragmentation and an overall reduction 

in green space are a threat to biodiversity and affect the important ecosystem services provided 

by vegetation patches and the value of urban habitats for conservation (Alberti 2010, Gardiner 

et al.2013). For instance, some studies have established that significant decline in avian species 

abundance and biodiversity are associated with loss of connectivity and vegetation 

fragmentation caused by urban expansion (Vallejo et al.2009, Manhães and Loures-Ribeiro 

2005). 

 

Loss and significant reduction in landscape connectivity of vegetation due to the increasing 

inter-patch distance or presence of barriers between vegetation patches in complex urban 

landscapes, may prevent the spread of the species, leading to a lower possibility of 

recolonization of those patches (Garden et al. 2010, Güneralp and Seto 2013, Vergnes et al. 

2012). This also negatively affects the survival of species that depend much on core and intact 

vegetation (Laurance et al. 2002). Small vegetation patches with reduced patch size and longer 

perimeters relative to the core area are prone to greater ecological disturbance than large 

vegetation patches (Laurance et al.1997). 
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Another adverse impact of rapid expansion apart from vegetation fragmentation is the growing 

trend of the urban heat island (UHI) effect (Oke 1987, Voogt and Oke 2003). Over the years, 

the UHI phenomena has been extensively explored  in various disciplines like  urban climate, 

landscape ecology and urban planning (Arnfield 2003, Weng 2009). The UHI phenomena is 

known for raising land surface temperatures (LST) in cities than in the non-urban areas (Oke 

1987, Voogt and Oke 2003). At night, for instance, the high surface temperatures and heat 

released from the impervious surfaces (concrete and asphalt), pavements and urban 

infrastructure increases the frequent occurrence and extent  of heat waves and heat strokes. The 

negative impacts of the UHI phenomena also include higher emissions and concentration of air 

pollution (Lai and Cheng 2009, Sarrat et al. 2006) which consequently cause more deaths 

(Gosling et al.2009) and other heat-related health problems including cardiovascular diseases 

(Clarke 1972, Kovats and Kristie 2006, Whitman et al. 1997,). The intensified UHI phenomena 

can lead to huge demands for water and electricity use (Guhathakurta and Gober 2007) through 

air conditioning to cool buildings, among others (Arnold Jr and Gibbons 1996).  

 

UHI and urban climate change mitigation efforts are critical issues to promote better favourable 

and healthier living conditions. Urban green spaces and vegetation are effective in mitigating 

the negative UHI effects by lowering sensible heat and the amount of radiation absorbed from 

the sun (Akbari and Kolokotsa 2016, Demuzere et al. 2014, Yu et al. 2018b, Weng et al. 2004). 

The cooling effects provided by urban vegetation depends on the spatial  patterns (landscape 

composition and configuration) (Akbari and Kolokotsa 2016, Cao et al. 2010, Connors et 

al.2013, Dugord et al.2014, Maimaitiyiming et al. 2014, , Song et al. 2014, Yu et al. 2018a, 

Zhang et al. 2009, Zheng et al. 2014, Zhou et al. 2011). In light of this, landscape metrics 

developed from landscape ecology concepts are frequently used to investigate the impacts of 

spatial configuration and composition of vegetation patterns on surface temperatures in cities 

(Cao et al. 2010, Connors et al. 2013, Feyisa et al. 2014, Li et al. 2011, Li et al. 2012, Kong et 

al. 2014, Kong et al. 2014a, Kong et al.2014b, Maimaitiyiming et al. 2014, Ward et al.2016, 

Zhang et al. 2009, Zheng et al. 2014, Zhou et al. 2011).  

 

However, it has been observed that landscape metrics have challenges of being interrelated   

with each other and not all landscape pattern indices can convey meaningful information on 

the thermal processes, energy flow and exchanges occurring in a city (Chen et al. 2016). In 

addition, landscape pattern indices uniquely represent the spatial objects and their spatial 
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configurations as discrete patterns rather than as continuous surfaces resulting in a loss of vital 

information (Fan and Myint 2014). Linked to this is the fact that clustered and dispersed 

patterns of urban vegetation and other  land cover categories  cannot  be uniquely captured by 

landscape metrics since they are computed and derived from discrete and categorical land cover 

maps that overlook other continuous variations in spatial objects (Fan and Myint 2014, Fan et 

al. 2015, McGarigal  and Cushman 2005).  

 

Spatial statistics methods like Getis Ord Gi* and Local Moran’s I are spatially explicit and can 

effectively be utilized to address these challenges as they uniquely provide a continuous 

depiction and characterisation of the true spatial heterogeneity at a distinct geographical area 

(Fan et al. 2015, McGarigal  and Cushman 2005, Myint et al. 2015). Local spatial statistics can 

be used to depict how the spatial structure or spatial arrangement of objects are distributed 

spatially whether they are clustered, dispersed or randomly distributed in a given space 

(Goodchild 1986). Fundamental to this issue is the development of effective and accurate 

analytical tools for quantification of landscape pattern of vegetation and its influence on the 

urban thermal environment.  

 

1.3 Remote sensing of vegetation fragmentation and urban climate 

As climate change and rapid urban expansion negatively affect natural landscapes, improved 

and robust methods for characterising the spatial structure of urban vegetation patches across 

a span of different spatial scales are critical in linking important ecological processes and 

patterns. The extent of vegetation fragmentation is such that only the smaller vegetation 

fragments are commonly found across the urban landscape (Fuller et al. 2010, Gaston et al. 

2005). However, one of the major challenges facing landscape ecology at present is to quantify 

the spatial heterogeneity of urban vegetation fragmentation accurately and effectively.  

 

Monitoring vegetation fragmentation requires consistent datasets and a robust methodological 

approach to provide accurate and timely information in a meaningful way to support urban 

planning and design. The advent of remote sensing and quantitative tools in landscape ecology 

is incredibly useful to landscape ecologists. This provides them with a relative task to compute 

categorical maps in the existing software packages (landscape fragmentation tool, 

FRAGSTATS or Patch Analyst) and generate a large number of landscape pattern indices, 

patch and fragmentation metrics statistics. Depending on the type of sensor used, there is now 

remote sensing imagery data of broad and wide span of spatial resolutions: from high/fine (< 
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10m) to medium/moderate (10m–250m) and low/coarse (250m–5km) spatial resolutions 

(Warner et al. 2009). 

 

In urban areas, vegetation fragmentation has generally been mapped based on coarse-resolution 

data (Gong et al. 2013, Miller 2012, Paul and Nagendra 2015, Richards et al. 2017, Rogan et 

al. 2016, Vogelmann 1995). Coarse-resolution data generally have higher temporal resolution 

and cover large areas. However, coarse resolution products have challenges when applied to 

complex urban areas, as they cannot fully capture the fine scale, highly dynamic and spatial 

heterogeneity of vegetation fragmentation resulting in inadequate spatial information for 

management and conservation purposes. High-resolution images such as GeoEye, Worldview, 

QiuckBird, IKONOS, SPOT can capture detailed, more accurate and subtle vegetation cover 

changes. However, high resolution images are costly to acquire and inaccessible to many users, 

thereby limiting their wide use in landscape ecology and conservation science. However, 

coarse resolution data like Landsat can overcome these challenges. Landsat data, are relatively 

easier to acquire because of their free availability and broad spatial coverage. The temporal 

record of archived Landsat data series spans a period of over 40 years (Roy et al. 2008, Roy 

et al. 2014).  

 

At the same time, the thermal infrared (TIR) data are critical in retrieving and deriving remotely 

sensed surface temperature information, helping to understand the dynamics of heat flow, 

energy exchange and thermal processes within and across the landscape. Thermal infrared 

remote sensing has many advantages as it provides spatially continuous, highly consistent and 

attractive data source of the Earth’s surface at broader or multiple scales over meteorological 

ground measurements of air temperatures (Nastran et al. 2019). Various thermal infrared (TIR) 

image data from Advanced Very High Resolution Radiometer (AVHRR) (Streutker 2002), 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Buyantuyev and Wu 2010, Chen 

et al. 2006, Pu et al. 2006, Wang et al. 2007), Landsat TM/ETM+( Li et al. 2011, Weng et al. 

2004) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data 

(Liu and Weng 2008, Lu and Weng 2006), are widely utilised to examine the spatial variability 

patterns of urban surface temperature in urban heat island studies. 

 

Despite these advances, there have been limited usage of thermal infrared data in examining 

urban ecosystems for landscape ecological research (Liu and Weng 2008). This is because TIR 

data is too coarse in spatial resolution that sometimes, spatial heterogeneity is obscured (Liu 
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and Weng 2008). Incorporation of very high resolution imagery in heterogeneous urban 

landscapes allows discriminations of detailed information of urban vegetation and other urban 

land cover classes.  

 

1.4.  Challenges in quantifying vegetation fragmentation  

The existing paradigm in ecological studies for analysing the landscape heterogeneity of 

vegetation patterns and vegetation fragmentation is to use the discrete methods called 

landscape metrics (McGarigal and Marks 1995). In this regard, landscape metrics derived from 

classified satellite images represents a landscape as a collection of discrete or categorical 

patches (relatively homogeneous patches of vegetation) (McGarigal and Marks 1995, Pearson  

2002, Turner 1989, Turner and Gardner 1991). Discrete landscape pattern analysis applies well 

to landscape patterns that show distinct landscape structure and crisp boundaries (Barrell and 

Grant 2013). Furthermore, the discrete approach based on landscapes metrics achieve high 

accuracy in distinguishing crisp, homogenous natural areas than heterogonous landscapes 

(Southworth et al.2004).  

 

However, landscape metrics do not explicitly show specific geographical areas where the 

different types of spatial patterns of vegetation fragmentation are occurring (Dadashpoor et al. 

2019, Gong et al. 2013, Zhang et al.2 020). Furthermore, transition zones or within-patch 

patterns cannot be adequately captured using landscape metrics, consequently failing to detect 

fine or subtle changes that are critical in landscape ecology (Foody and Boyd 1999, Lambin 

1997). The discrete representation of a landscape based on landscape metrics also ignore major 

gradients and oversimplify discontinuities in underlying environment when all pixels of remote 

sensing data are classified and categorized into homogenous units (DeFries et al.2000, Frazer 

and Wang 2011, Foody 2000, McGarigal et al.2009, Palmer et al.2002, Rocchini et al.2010). 

This is because some ecological process may consist of continuous gradients or mosaics of 

different elements. The highlighted challenges limit the accurate mapping of landscape 

heterogeneity of vegetation fragmentation in urban areas using existing landscape metrics. 

 

Over the years, however, a number of continuous metrics and  methods  that detect and compute 

different aspects of a landscape such as tasselled cap transformation indices, vegetation indices, 

topographical wetness, surface roughness and texture in landscape ecology have been 

suggested (McGarigal and Cushman 2005, McGarigal et al. 2009). In addition, continuous 

indices including fractal measures, Fourier decomposition, wavelet measures and spatial 
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autocorrelation indices are well suited to quantify the landscape patterns of vegetation patches 

in an urban area. Local spatial statistics techniques including the Getis-Ord Gi*, local Moran’s 

I and local Geary’s C can detect the existence of pockets of spatial association and distances 

beyond which no discernible association remains (Anselin 1995, Getis and Ord 1992, Getis 

and Ord 1996,  Legendre and Legendre 1998, Ord and Getis 1995, Ord and Getis 2001, Sokal 

et al. 1998).  

 

LISA indices can reveal significant clusters of homogeneous and heterogeneous areas (Nelson 

and Boots 2008, Sokal et al. 1998). Previous studies have utilised LISA indices methods to 

map terrestrial patterns obtained from earth observation data (Wulder and Boots 1998). Despite 

their potential, the utility of continuous models like LISA indices in characterising the spatial 

configurations of vegetation fragmentation in urban landscapes has not been largely explored. 

In the realm of urban ecology and conservation science, the potential of local spatial 

autocorrelation statistics could highlight new opportunities for the delineation of critical hot 

spot areas for conservation purposes. 

 

1.5. Aim 

The objective of this study was to develop spatial explicit methods for quantifying the 

landscape pattern of urban vegetation and its effects on urban surface temperature. To achieve 

this objective, we combined local spatial statistics, forest fragmentation model and landscape 

pattern metrics derived from multi-temporal Sentinel 2, Aster and Landsat series data.  

 

1.6. The specific objectives  

(i) To determine the spatial variability patterns and the long-term changes in vegetation 

fragmentation using forest fragmentation model, landscape metrics and LISA indices. 

(ii) To develop spatial analytical tools to quantify summer and seasonal impacts of the 

spatial configuration and connectivity of vegetation patches on urban warming and 

cooling.  

(iii) To examine the effects of landscape patterns and spatial configurations of urban 

vegetation on urban surface temperature based on sensitivity of spatial resolution of 

different satellite data. 

 

 

1.7.  The scope of this study in the context of landscape ecology 

In both natural and human-dominated landscapes, reducing habitat fragmentation and 

increasing the connectivity of isolated patches is an important goal of landscape ecology to 

improve and link ecological interactions, processes and patterns (McGarigal and Marks 1995, 
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Turner 1990; 2005, Turner et al. 2001, Uuemaa et al. 2009, Wu and Hobbs 2002, Wu 2008). 

Over the years, continuous methods have demonstrated their  effectiveness in several landscape 

ecological application studies (Adeyeri et al. 2017, Fan and Myint 2014, Fan et al. 2015, 

McGarigal et al. 2009, Pearson 2002, Tran et al. 2017). The applications of continuous methods 

including local spatial association (LISA) indices may advance our understanding in 

characterizing spatial heterogeneity of vegetation fragmentation and landscape connectivity in 

urban landscapes and linking to the ecological processes and patterns.  

 

This can be done by exploring different suites of discrete data (e.g. vegetation and non-

vegetation, forest and non-forest) and continuous data and indices (e.g. vegetation indices, 

tasselled cap transformation indices and land surface temperature) derived from image data. A 

similar approach of utilizing LISA indices can be extended to investigate the role of the 

landscape patterns of urban vegetation on surface temperature, which could provide critical 

information on urban cooling and warming trends. 

 

1.8. Description of the study area 

This research work was conducted in the Harare metropolitan city which is situated in the 

northeastern part of Zimbabwe. Harare is Zimbabwe’s largest, administrative, political capital 

city and the centre of industrial production, trade and commerce. The metropolitan city 

incorporates Chitungwiza, Epworth and Ruwa satellites or urban dormitory. Chitungwiza is a 

high-density town situated approximately 25 km south of Harare. Ruwa is situated 22 km 

south-east of Harare and Epworth 12km east of the centre. These satellite or urban dormitory 

settlements  were developed close to the major urban towns in Zimbabwe in the 1970s mainly 

to capture the drift of the working population.  

 

Harare metropolitan city’s surface area  extends over 980 km2 and is situated at an elevation of 

approximately 1500m. The undulating hilly areas are mainly found in the north and northeast 

side where there is concentration of high-income people and low-density and spacious 

residential areas.  The heavy built-up areas, low and middle income residential and industrial 

areas are dominant  in  the south, west and east part of the metropolitan city.  The last national 

census showed that the  population of Harare metropolitan city was approximately 2.1 million 

(ZIMSTAT 2012). Harare metropolitan city was selected as the study area because it  has 

witnessed rapid urban expansion over the years driven by rapid population increase and rural-

urban migration. 
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The rapid urbanization experienced in the city since the independence of the country in 1980 

has caused the conversions of natural areas into different land cover and land use changes. This 

has raised sustainability concerns about the impact of rapid urbanization and urban sprawl on 

vegetation fragmentation, urban ecosystems, environmental quality, loss of biological diversity 

and urban heat island effects. 

 

1.9. Thesis Outline  

This research work is composed of five scientific research papers that have gone through or 

are going through peer review processes in geographic information science and earth 

observation or remote sensing journals. Two of the research papers have been published online, 

and three are under review. Each of these articles is presented as an individual chapter that can 

be considered autonomously, from the entire thesis. In that regard, this means that each of the 

stand-alone or individual chapters consists of its abstract and conclusion, which relate it to the 

subsequent chapter, hence the presence of duplications and overlaps of the various thesis 

sections and chapters. The overlaps, repetition is assumed to be of little consequence when 

considering that these are peer-reviewed scientific articles, which are stand-alone chapters that 

can be read separately, without losing the overall context. The reason was to maintain a 

seamless flow of ideas, principles underpinning the entirety of the current scientific setting 

with each article contributing towards addressing the overall goal of the study. In compiling 

this thesis, the format and content of these peer-reviewed articles were preserved. Ultimately, 

the entire thesis is made up of seven chapters. These chapters can be split into four sections: (i) 

general overview and contextualisation, (ii) spatial patterns of vegetation fragmentation, (iii) 

spatial configurations of vegetation and its impacts on the urban surface temperature (iv) 

summary and synthesis. 

 

          1.9.1 General overview and contextualization  

1.9.1.1. Chapter One  

This is an introductory chapter, which unveils the essence of the study. Specifically, in this 

chapter, the objectives, knowledge gaps, scope and outline of the thesis are provided. 

Furthermore, this chapter contextualizes and illustrates the significance of the methods that 

seek to combine the use of satellite remote sensing, and spatial statistical modelling techniques 

in understanding vegetation fragmentation in an urban landscape and related impacts of the 

spatial configuration of vegetation patterns on urban surface temperatures. Generally, this 
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thesis includes two main parts. The first part proposes to employ the spatial explicit tools in 

evaluating urban vegetation fragmentation and the second part examines the landscape pattern 

and spatial configuration on urban warming and cooling. 

 

        1.9.2. Geographical distribution of remote sensing of vegetation fragmentation 

studies 

1.9.2.1. Chapter Two  

Chapter Two presents results of the systematic literature review over two decades of selected 

studies that utilized remote sensing to examine historic trends and recent advances in 

quantifying the landscape structure of vegetation fragmentation across cities and urban areas 

around the globe. In highlighting the overview and progress, the review explains the nature of 

remote sensing data products, focusing on aspects of key ecological themes covered, 

geographical scale, the spatial distribution of studies, type of ecosystems and habitat studied, 

as well as methodologies used in urban vegetation fragmentation studies. Finally, the review 

also highlights knowledge gaps, challenges and provides future suggestions for increased 

utilization of available datasets in urban vegetation fragmentation.  

 

        1.9. 3  Spatially explicit patterns of vegetation fragmentation  

1.9.3.1. Chapter Three  

Chapter Three examines the utility of spatial explicit methods of local spatial autocorrelation 

indices and forest fragmentation model in analysing vegetation fragmentation in Harare 

metropolitan city based on Sentinel 2 data. Accordingly, the results of integrating remote 

sensing data and local spatial statistics of the Getis-Ord Gi* and the local Moran’s I uniquely 

captured distinct and the subtle spatial variation of vegetation fragmentation which are 

otherwise easily overlooked by traditional methods. This chapter was published in the Journal 

of Applied Remote Sensing (2019). 

 

1.9.3.2. Chapter Four  

Chapter Four provides the analysis of utility of discrete methods of landscape metrics and forest 

fragmentation model and local spatial statistics ( Getis-Ord Gi* and the Local Moran’s I) and 

Tasseled Cap Transformation (TCT) indices in analysing vegetation fragmentation in Harare 

metropolitan city based on long-term multi-temporal resolution Landsat data. The continuous 

indices proposed in this chapter promote the improvement in uniquely capturing the long-term 

spatial-temporal variability patterns of urban vegetation fragmentation, which is an important 
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aspect of urban and landscape ecology. This chapter was published in the International Journal 

of Applied Earth Observation and Geoinformation (2020) Journal. 

 

            1.9.4. Impact of vegetation patterns on urban thermal environment 

 1.9.4.1. Chapter Five  

Chapter Five explores the impact of landscape pattern and spatial configuration of vegetation 

patches on urban warming and cooling over Harare metropolitan city by using thermal infrared 

(TIR) remote sensing data of Aster and Landsat. Various landscape pattern indices and local 

spatial statistics of urban vegetation derived from satellite data were used to compute and 

analyse their impact on urban warming and cooling in a city. A spatial regression model was 

employed to minimize bias estimates caused by the spatial autocorrelation effects in the 

regression modelling of land surface temperatures. The performance of the Spatial Lag model 

was compared to Ordinary Least Squares regression (OLS). This chapter highlighted the 

importance of modelling spatial non-stationarity and optimizing spatial configurations of 

vegetation and its influence on  urban surface temperature for specific location in mitigating 

urban heat island effects. This chapter is still under revision in the GIScience and Remote 

Sensing (2019) Journal. 

 

1.9.4.2. Chapter Six 

Chapter Six sets out by examining the seasonal (spring, winter, autumn and summer) variability 

patterns of land surface temperature on the spatial configuration and connectivity of urban 

vegetation using Landsat 8 data. The research findings in this study highlighted the great 

potential of optimizing the spatial configuration and connectivity of vegetation patches in 

reducing  city surface temperatures with evidence supporting the positive impacts of planning 

highly connected, spatially clustered vegetation patches rather than scattered and dispersed 

ones in all seasons. This chapter is still under revision in the GIScience and Remote Sensing 

(2020). 

                             1.9.5. Summary and synthesis of the thesis 

1.9.5.1. Chapter Seven 

Chapter Seven as the final chapter presents a synthesis of the conclusions deduced and insights 

drawn from the main results of the previous six chapters of this research work and provides a 

concise summary of the main achievements of this thesis. Consequently, this section highlights 

the direction and makes recommendations for further research studies by considering the 

mentioned limitations of this research work. Finally, at the end of the thesis all references used 

and cited in this study are provided as a single reference list.  
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2. REMOTE SENSING AND GEOGRAPHICAL DISTRIBUTION OF LANDSCAPE 

STRUCTURE OF URBAN GREEN SPACES AND VEGETATION 

FRAGMENTATION STUDIES 

 
 

This chapter is based on 
Pedzisai Kowe, Onisimo Mutanga and Timothy Dube, “Advancements in the remote sensing 

of vegetation fragmentation in urban areas  and related landscape structure of urban green 

spaces,” International Journal of Remote Sensing, 2020, under revision 
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Abstract 

The recent global urban expansion has seen a massive decline and loss in the connectivity of 

urban vegetation. In urban areas, some vegetation patches have increasingly become isolated 

and less connected by a matrix composed of impervious surfaces and transportation networks 

like roads. Vegetation fragmentation is a global threat to the remaining urban green spaces and 

has an impact on biodiversity conservation, environmental quality and urban microclimates. 

So far, a lot of work has been done in mapping and monitoring urban green spaces, some using 

conventional methods and of late using remotely sensed data. However, not much is known 

and well documented on developments in researching the remote sensing of vegetation 

fragmentation in urban areas over the last two decades. Thus, the objective of this research 

work is to present a detailed and comprehensive  synthesis on the progress of remote sensing 

in assessing and monitoring landscape structure of urban green spaces and vegetation 

fragmentation. Specifically, scientific literature from the year 2000 to 2020 was reviewed to 

provide state-of-the-art progress on the remote sensing of vegetation fragmentation in urban 

areas. Results indicate that between 2000 and 2020, there was a considerable increase in the 

number of scientific publications on vegetation fragmentation in urban landscapes. The discrete 

landscape pattern indices are the most widely used method. Comparatively, Landsat data was 

widely used due to its suitable spatial and temporal resolution, free availability and the presence 

of historical archival data that spans over 40 years. The most commonly used scale was local 

(a city and/or municipality) followed by regional (more than one municipality in one continent) 

and then global (several selected cities and urban areas across continents). Only two studies 

were conducted at the global level. Further, geographic bias was observed in most of the 

accessed vegetation fragmentation studies. The review showed that vegetation fragmentation 

studies are carried out mostly for cities in China, North America and  Europe while cities in 

most parts of Africa, Asia, Eurasia, Oceania and South America have not been 

comprehensively studied. The study also showed that the majority of cities across the globe 

have experienced severe vegetation fragmentation over the years. This review underscores the 

relevance of scientific findings in urban spatial planning to minimize the loss of urban green 

spaces and to conserve and restore affected areas.  

 

Key words 

Urbanizing landscapes, urban ecology, landscape connectivity and configuration, satellite data, 

landscape metrics, vegetation fragmentation 
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2.1. Introduction 

Urban vegetation is critical in the supply of essential ecological  goods and  services that make 

urban areas more liveable and sustainable especially for urban dwellers (Bolund and  

Hunhammar  1999, McPherson et al. 1997, McPherson  and  Rowntree 1993). In urban areas, 

green vegetation provides cooling effects through evapotranspiration and shading, effectively 

lowering air and surface temperatures, thereby mitigating against the urban warming (Akbari 

et al.2001, Chen et al. 2015, Hamada and Ohta 2010). Urban green spaces and vegetation 

significantly play an essential part in the local carbon cycles through the sequestration of 

greenhouse gases like carbon dioxide (CO2) (Sun et al. 2019). Furthermore, the urban 

vegetation provides wildlife resources including nest and roosting sites for birds, mammals and 

insects and wildlife habitat resources. Larger green spaces have been found to support higher 

species richness (e.g. in birds and mammals) than small green spaces (Shanahan et al. 2014a, 

Marzluff  2005). Socio-economically, urban green spaces contribute towards the improvement 

of human health (Hartig et al. 1996, Nowak and Walton 2005, Parsons et al. 1998, Tsai et al. 

2016).  

 

The world's population is rapidly growing and is estimated  to reach 10 billion by the year 

2050, with 70% of this projected number is expected to dwell in cities (United Nations 2012). 

This will further exert more pressure on the remaining urban green spaces and other natural 

ecosystems, creating numerous environmental and socio-economic problems (Kim and Baik 

2005, Zhao et al. 2006). Vegetation fragmentation due to rapid urbanization threatens 

biodiversity hotspots with a negative impact on native species dispersal (Bierwagen 2007), 

causing a general decline in species richness (Garden et al. 2007) and localized species 

extinctions (Schurr et al.2007). In general, the spatial configuration and composition 

(landscape structure or landscape pattern) of urban vegetation is critical in influencing the 

various benefits and  multiple ecosystem services that are provided to urban inhabitants (Dobbs 

et al. 2014; 2017). 

 

Previous studies have expressed the need for updated information on spatial and temporal 

variability of landscape patterns of vegetation in urban areas (Dobbs et al. 2014; 2017, Hall 

2010, Haung et al. 2018, Kabisch and Haase 2013). Information on landscape patterns and 

vegetation fragmentation patterns can be used as proxy measure for habitat conditions and 

primary productivity status of  ecosystems (Mairota et al 2013, Nagendra et al.2013) . Such 

spatial information is also useful to model parameters required in species and community 
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distribution modelling (Lausch et al. 2016). This can aid in the conservation of biodiversity 

hotspots or rich zones and increase, maintain or restore landscape connectivity in urban areas. 

Of late, this has become important in urban planning for meeting urban greening targets and 

achieving sustainability in cities (Dobbs et al. 2017, Grimm et al. 2008). 

 

Due to the scarcity of appropriate spatial and in-situ field data, the heterogeneous landscape of 

fragmented urban green spaces further complicates the retrieval of this information. Remote 

sensing has since become the core source of ecosystems and landscape ecology information 

for broad-scale applications (Forman 1995). Over the past two decades, the accessibility and 

advent of optical and active remote sensing or earth observation data of various spectral, 

radiometric, spatial and temporal resolutions have increased significantly and constituted a 

very useful data source for urban landscape studies. This data has become important in  

mapping the landscape patterns of urban green spaces including the shape complexity, patch 

size, connectivity, density and aggregation as well as associated changes over time (Dobbs et 

al. 2014; 2019, Leitão and Ahern 2002, Luck and Wu 2002, Patino and Duque 2013, Qian et 

al. 2015, Turner et al. 2007, Uuemaa et al. 2013).   

 

Despite these great strides, an overview of mapping vegetation fragmentation in urban areas 

using remote sensing data has not been documented. Although Frohn (1998) provided a 

systematic review of the application of remote sensing in landscape ecology, the review largely 

concentrated on the quantification of landscape pattern metrics. In light of this, this research 

work provides a systematic review and progress of remote sensing applications in mapping and 

monitoring the spatial structure of urban green spaces and vegetation fragmentation in cities 

and urban areas across the globe. The study highlights key research strides and further identifies 

knowledge gaps and draws conclusions as well as recommendations on possible future research 

directions in this field of study. To achieve this objective, the study first provides the conceptual 

framework and definition of key terms on urban green spaces and vegetation fragmentation. 

2.1.2. Conceptual framework, key concepts and definitions 

2.1.2. 1.  Urban green spaces and vegetation 

In this study, urban green space or urban vegetation refers to the wide range of habitat types 

(forest, woodland, shrubs or shrubland as well as grassland, garden city, urban parks and street 

trees) at different spatial scales (Aronson et al. 2017,Cilliers et al. 2013, Kabisch and Haase 

2013). It therefore encompasses both natural or man-made urban green spaces and vegetation 

found in cities, built-up or urban areas (Kabisch and Haase 2013, Kong et al. 2010).  
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2.1.2.2. Urban vegetation fragmentation 

One major distinction among definitions is to treat fragmentation (forest, vegetation and 

landscape) as both a process and pattern (Alig et al. 2000). Urban vegetation fragmentation can 

be described as the change in spatial or landscape composition and configuration of  vegetation 

patterns  through the process of urbanization (Tsai et al. 2016). It is commonly associated with 

the reduction  of large patch sizes and areas of core, interior vegetation and habitat found in the 

built-up areas. Vegetation fragmentation  partitions large patch sizes and contiguous vegetation 

into smaller, isolated vegetation patches and habitat edges due to expansion of human 

settlements, impervious surfaces and transportation networks like roads and the highways  

(Fernández and Simonetti 2013, McKinney 2008). Jaeger (2000) extended Forman’s (1995a) 

concept of fragmentation and identified six fragmentation processes (perforation, incision, 

dissection, dissipation, shrinkage and attrition) in human‐modified landscapes. The 

fragmentation phases or processes may occur simultaneously contributing to change within a 

landscape. Using the general model of landscape fragmentation proposed by Jaeger (2000), it 

can be applied to identify and understand the types of fragmentation phases or processes that 

have affected or likely to occur on existing vegetation patches in a landscape.  

 

2.2. Methodology 

We analysed scientific literature published in selected major scientific databases like 

international peer-reviewed journals. Literature was retrieved from key scientific engines such 

as the Scopus, Springer, Science Direct, ISI Web of Knowledge, WILEY and Google Scholar 

as well as  from additional cross referencing. Only journal research articles published between 

2000 and 2020 were retrieved by documenting the progress  with the goal  of highlighting 

recent research trends on the application of  remote sensing data in vegetation fragmentation 

in urban areas from this time period as the baseline. Unpublished scientific literature, editorials, 

conference proceedings, book chapters or reviews and letters refereeing previous research 

articles were not included. To refine our search, a variety of key words and combinations were 

used to gather relevant literature in the  major scientific databases. Key words and some terms 

were used and later combined  including: “urban”, “town”, “cities”, “metropolitan”, 

“suburban”, “earth observation”, “satellite data”, “remote sensing”, “fragmentation”, “spatial 

configuration”, “spatial composition”, “Fragstats”, “patch metrics”, “class metrics”, 

“landscape metrics”, “landscape indexes”, “landscape indices”, “landscape structure”, 

“landscape pattern”, “green spaces”, “forests’’, “street trees’’, “green infrastructure”, “parks”, 

“vegetation”, “shrubland”, “grassland”, woodland”, “habitat” among others.  
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This approach allowed us to highlight and  document (1) the satellite  data or image data type 

(e.g.‘ALOS’,‘RapidEye’,‘MODIS’,‘Sentinel’,‘WORLDVIEW’,‘MERIS’,‘SPOT’,‘AVHRR’,

‘IKONOS’, ‘ASTER’, ‘LIDAR’ and ‘RADAR’),  (2) the spatial resolution of the imagery (1m, 

4m, 10m, 15m,  30m, 100m), (3)  the  type of application and analysis of remote sensing data  

(e.g. urban vegetation structure, vegetation fragmentation, connectivity, patch, class and 

landscape level) (4)  the scale of analysis and application  (i.e. metropolitan area, city, urban, 

town, suburban) and (5) the relevant theme or themes covered in the research article by 

focusing on how the spatial-temporal variability aspects of landscape structure of urban green 

spaces and vegetation fragmentation were studied.  

 

We further defined some exclusion criteria, as follows: (i) removing studies that did not use 

remote sensing applications, nor where landscape structure of urban green spaces and 

vegetation fragmentation studies did not involve urban areas; (ii) this approach was applied to 

retrieve only relevant scientific papers and studies that had direct applications of vegetation 

fragmentation in urban areas. There are however, few limitations. This study cannot be 

considered  exhaustive due to  challenges  of accessing relevant scientific literature written in 

other languages. Since we collected and used scientific articles published in the English 

language, we consider it to cover the largest parts of the available literature. 

 

2.3. Results  

2.3.1 General trend in the number of publications 

In total, 103 research articles that incorporated remote sensing technology in examining 

vegetation fragmentation within the urban area during 2000–2020 period were retrieved and 

deemed relevant for the analysis. The literature review showed that more than two-thirds of  

studies examining vegetation fragmentation in urban studies were published between 2009 and 

2020 (Figure 2.1). Not many studies were published between 2000 and 2008 (Figure 2.1). 

Results in Table 2.1 shows that most scientific papers preferred and targeted publishing in 

journals that specialize in urban and landscape ecology (e.g. Urban Ecosystems, Landscape 

and Urban planning, Ecological Indicators, Landscape Research, Landscape and Ecological 

Engineering, Landscape Ecology, Urban Forestry and Urban Greening, etc) along with 

conservation sciences and applications (Ocean and Coastal Management and Forest Ecology 

and Management). These scientific journals have common objectives of publishing scientific 

research papers that advances conservation research and management. Few and selected 
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individual scientific papers were published in GIScience and Earth Observation journals 

(Table.2.1)  

 

Figure 2.1. Number of published papers during 2000–2020 period on the remote sensing of 

vegetation fragmentation within urban areas. 

 

2.3.2 Geographic location of urban vegetation fragmentation studies 

Literature review established that the spatial distribution of the published scientific papers that 

focused on remote sensing of vegetation fragmentation studies in urban areas is geographically 

biased (Figure 2.2). Overall, it was observed that most of  the studies were conducted in cities 

of  China, the United  States of America (USA) and European countries (Figure 2.2).  In Asia, 

two-thirds of the most publications were derived from China. Except China, cities in other 

developing  parts of Africa, South America and Oceania are understudied as they had a very 

limited number of vegetation fragmentation studies. This is a major concern because, urban 

vegetation is under threat due to impacts of land cover transformations and conversions caused 

by rapid urban expansion in these geographical regions. Furthermore, the higher rates of 

predicted urban growth and urbanization tend to occur in huge proportions in biodiversity 

hotspots and in areas that are relatively rich in greater natural primary production (McDonald 

et al. 2013, Seto et al. 2012). 
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Figure 2.2.The geographical location and spatial variability patterns of the number of papers 

investigating vegetation fragmentation within urban areas during 2000–2020 period.  

 

2.3.4. Remote sensing utilization patterns in vegetation fragmentation 

Despite the significant advantages of the high temporal resolution (e.g.1–2 revisits/day) and 

large coverage, no research article was found that used freely available Advanced Very High 

Resolution Radiometer (AVHRR), Medium Resolution Imaging Spectrometer (MERIS) and 

Moderate Resolution Imaging Spectroradiometer (MODIS) datasets. This  raises the concern 

and the feasibility of obtaining free, cloud free images and land cover maps (forest, vegetation, 

grassland, habitat) generated from low spatial resolution data (250m–1000m) that typically 

have low land cover classification accuracy, particularly in heterogeneous urban areas. 

Consequently, comparison of these maps to derive  patch, class and landscape level metrics to 

inform spatial-temporal variability of vegetation fragmentation in large geographic regions 

(e.g. mega cities and metropolitan areas) is challenging.  

 

The review showed that studies analysing vegetation fragmentation in urban areas have relied 

primarily on medium and coarse (≥30m resolution) series of Landsat data (Table 2.1) of 

different time period, accounting for 97% of studies. For instance, in North America, Landsat 

satellite imagery data was used to study vegetation fragmentation in cities and urban areas such 

as Minneapolis and St.Paul metropolitan area in the United States of America (USA) (Ward et 

al.2007), North-western Ontario, Canada (Gluck and Rempel 1996) and York in Canada (Puric-

Mladenovic et al. 2000) (Table 2.1). Over the years, in the USA, some of these studies (Tsai et 

al. 2016;2018) have often used the free availability of the growing national datasets for instance 
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the National Land Cover Database (NLCD) and Global Land Cover Characterization (GLCC) 

which are derived from Landsat satellite images (Wickham et al. 2010). Similar trends exist in 

Asian cities including Shenzhen in China (Gong et al. 2013), Dehli in India (Paul and Nagendra 

2015), Karachi in Pakistan (Qureshi et al. 2010) where Landsat data were commonly used 

(Table 2.1). Landsat images are widely used in vegetation fragmentation studies in urban 

landscapes because they cover large geographic areas and provide a rich archive of  long 

historical range of data.  

 

Few studies that include  Guneroglu et al.(2013), Qian et al.(2015a) and Zhou et al.(2018) used 

high resolution satellite imagery such as the ALOS, SPOT High Resolution Visible (HRV), 

IKONOS and QuickBird. Zhou et al. (2018) used ALOS and SPOT satellite imagery data to 

examine vegetation fragmentation in selected Chinese cities. The utilization of few high 

resolution image data (0.5 m to 10 m) in these studies indicates that highly detailed spatial 

information derived from high resolution data has not been extensively used in urban ecology 

for vegetation fragmentation studies. The  highly detailed spatial information, landscape pattern 

indices and fragmentation metrics derived from high resolution data could be critical in 

providing more accurate detection of vegetation fragmentation. High resolution satellite data 

are also critical in detecting small urban vegetation fragments including stepping stones, 

narrow corridors,  individual street trees and linear patches of vegetation at fine spatial scales 

(Boyle et al.2014, Fisher et al.2016, Gillespie et al.2008).  

 

We found few scientific papers employing a combination of more than two different remote 

sensing data. Such combination of satellite data was used in Delhi in India (Paul and Nagendra 

2015), Hanoi, Vietnam (Uy and Nakagoshi 2007), Santa Barbara, California in the USA 

(Alonzo et al. 2016), Bangalore, India (Nagendra et al.2012), Trabzon and Rize cities in Turkey 

(Guneroglu et al.2013), Mashad, Iran (Rafiee et al.2009) and in  nine major cities in China 

(Zhou et al. 2018). The combination and use of multiple different sources of remote sensing 

data are essential in urban ecology to evaluate whether different image resolution significantly 

influences land cover classification accuracy in general and fragmentation metrics of 

vegetation patches in particular. Acquiring and combining various image datasets is also 

important in detecting rapid temporal change as vegetation fragmentation in urban areas can 

occur quickly. 
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Despite the advantage of providing highly detailed vertical structural information of vegetation, 

more flexibility in timing and mode as compared to optical satellite data, only four studies from 

our sample including Alonzo et al.(2016), Baines et al.(2020), Casalegno et al.(2017) and 

Mitchell et al.(2016) used structural and active remote sensing data. This shows that there is 

still a paucity of active remote sensing studies that can take advantage of the vertical structure 

and landscape connectivity of urban vegetation. The landscape connectivity and vertical 

structure of vegetation are important aspects in urban areas since in most cases they are made 

up of very large numbers of quite small, heterogeneous and isolated vegetation and habitat 

patches. Furthermore, the vertical structure of urban vegetation is important in understanding 

the  patterns of habitat condition and quality which are critical for facilitating the movement of 

organisms in a landscape (Ashcroft et al. 2014, Hinsley et al. 2009).  

 

Most studies on  landscape connectivity of urban vegetation have widely used  data derived 

from optical data. However,  Casalegno et al. (2017) demonstrated  that overreliance on optical 

2D data such as Normalized Difference Vegetation Index (NDVI) can result in disproportionate 

estimates of landscape connectivity of urban vegetation. The 2D (NDVI) derived metrics 

exhibited a less fragmented vegetation pattern than 3D structure obtained from waveform Light 

Detection and Ranging (LIDAR) data (Casalegno et al.2017). Based on LIDAR data, Mitchell 

et al. (2016) showed that the vertical structure of urban vegetation in Brisbane, Australia  at  1‐

km2 and 1ha spatial scales increased where patches of urban vegetation were spatially clumped. 

Based on these results, it therefore implies that managing urban green spaces for biodiversity 

should not mainly concentrate on the amount of tree, green spaces or vegetation cover (2D) 

existing, but also on identifying the vertical complexity of vegetation. Urban green spaces with 

such structural complexity support multiple taxa (Threlfall et al.2016). 

 

The high costs of acquiring structural remote sensing data like LIDAR and Radio Detection 

and Ranging (RADAR) (Selkowitz et al. 2012, Wolter et al. 2009) are a hindrance  in  providing 

citywide, regional or global coverage for  broad scales analysis of vegetation fragmentation. 

There are limited image archives for LIDAR in contrast to traditional sensors like Landsat. 

This makes it difficult for most researchers to carry out the full coverage of cities and extensive 

metropolitan areas and frequent change analysis of urban vegetation structure.  

 

Still there is lack of robust techniques  that can  accurately map the 3D structure of urban 

vegetation and  capture the spatial heterogeneity of urban vegetation at fine spatial scales and 
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grain size (Casalegno et al. 2017). In addition, active remote sensing data like LIDAR presents 

limitations in automating, processing and interpolating  point clouds into raster layers, which 

are time-consuming and prone to misclassification (Zhou 2013) and requires significant input 

from remote sensing experts.  
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Table 2.1. List of selected papers investigation the landscape structure of urban green spaces and vegetation fragmentation in urban areas 

Title of the paper Location (City and country) Region/Continent Satellite data type Published date and 

name of the 

journal Paper 

Methods 

Assessing the drivers shaping global 

patterns of urban vegetation landscape 

structure 

100 cities around the globe located 

on six continents 

World Landsat 5 TM satellite imagery ( 

2006 to 2011). 

Dobbs et al. 2017 

 

Science of the Total 

Environment 

Landscape metrics 

Impacts of population density and wealth 

on the quantity and structure of urban 

green space in tropical Southeast Asia 

111 urban areas that included  (32) 

cities in Indonesia, (27) cities in 

Thailand, (17) cities in the 

Philippines, (16) cities in Malaysia, 

(13) cities in Vietnam, (3) cities in 

Myanmar (1) city in Cambodia, 

Singapore,and Lao 

South east Asian 

cities 

Landsat satellite imagery(2012) 

 

 

(Richards et al. 

2017) 

 

Landscape and 

Urban Planning 

Landscape metrics (PLAND, 

Aggregation Index) 

Forest fragmentation in Massachusetts, 

USA: a town-level assessment using 

Morphological spatial pattern analysis and 

affinity propagation 

Selected of towns across 

Massachusetts (Auburn, Lancaster 

Charlemont, Methuen, Marshfield, 

Hinsdale), United States (USA) 

North America Landsat 5 Thematic Mapper 

imagery (2000)  

(Rogan et al. 2016) 

 
GIScience and 

Remote Sensing 

Morphological Spatial Pattern 

Analysis (MSPA)  

Fragmentation of Florida scrub 

in an urban landscape 

Pinellas County, United States 

(USA) 

North America Landsat images (1999) (Hall et al. 2002) 

 
Urban 

Ecosystems 

Landscape metrics 

Land development pressure on peri-urban 

forests: a case study in the Regional 

Municipality of York 

York, Canada North America The MSS image (1975), Two TM 

(Thematic Mapper) scene of  1985 

and the Landsat Thematic Mapper 

(1988). All images were resampled 

to 25 m resolution 

(Puric-Mladenovic 

et al. 2000) 

 

The Forestry 

Chronicle 

landscape indices  

Land cover transition and fragmentation 

of River Ogba catchment in Benin City, 

Nigeria 

Benin City, Nigeria Africa The Landsat TM image of January 

6, 1988, ETM+ of January 28, 

2002 and Landsat OLI image of 

December 28, 2016. 

(Enaruvbe and 

Atafo 2018) 

Sustainable Cities 

and 

Society 

Number of patches, largest patch 

index, area-weighted shape 

index and mean Euclidean nearest 

neighbour 
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Urban Vegetative Cover Fragmentation in 

the U.S.: Associations with Physical 

Activity and Body mass index (BMI) 

U.S. metropolitan statistical areas 

greater than 1 million in population, 

United States (USA) 

North America National Land Cover Database 

2006 derived from  a 30-m 

resolution  Landsat data 

(Tsai et al., 2016) 

American Journal 

of Preventive 

Medicine 

Percentage of green land cover, 

patch area, patch density, edge 

density, edge contrast index, 

Euclidean distance, and patch 

cohesion index 

Relationships between Characteristics of 

Urban Green Land Cover and Mental 

Health in U.S. Metropolitan Areas 

U.S. metropolitan statistical areas 

greater than 1 million in population, 

United States (USA) 

North America National Land Cover Database 

(NLCD) of 2011, derived from  a 

30-m resolution  Landsat data 

(Tsai et al., 2018) 

 

International 

journal of 

environmental 

research and public 

health 

landscape indices  

 

The Impacts of Atlanta's Urban Sprawl on 

Forest Cover and Fragmentation 

Atlanta metro region,  

United States(USA) 

North America Landsat MSS data (1974 and 

1985) based  have a spatial 

resolution of 60-m pixels and the 

Landsat TM  and ETM data 1991, 

2001, and 2005 layers have 30-m 

resolution 

(Miller, 2012) 

 

Applied Geography 

Number and area of forest 

fragments 

Quantifying and describing urbanizing 

landscapes in the Northeast United 

States. 

Marlborough, Connectict, United 

States(USA) 

North America Landsat (1985 and 1999) (Civco et al. 2002) 

Photogrammetric 

Engineering and 

Remote Sensing 

The forest fragmentation model 

Vegetation change and fragmentation in 

the mega city of Delhi: Mapping 25 years 

of change 

Delhi,India Asia Three Landsat satellite image 

(1980.19986 and 1999) and 2010 

IRS LISS 

S Paul, H Nagendra 

(2015) 

Applied Geography 

The Landscape Fragmentation tool 

(LFT) 

Graying, greening and fragmentation in 

the rapidly expanding Indian city of 

Bangalore 

Bangalore, India Asia Two satellite images, a Landsat 

ETM+November  2000 and  a May 

2007 IRS LISS 3 image 

(Nagendra et al. 

2012) 

Landscape and 

Urban Planning 

The mean proximity index 

Landscape ecological assessment of green 

space fragmentation in Hong Kong 

Hong Kong, Hong Kong Asia Orthophoto maps and land use 

digital maps 

(Tian et al. 2011) 

Urban Forestry & 

Urban Greening 

landscape metrics  

Assessing spatio-temporal changes in 

forest cover and fragmentation under 

urban expansion in Nanjing, eastern 

China, from long-term Landsat 

observations (1987–2017) 

Nanjing, China Asia Landsat 5 Thematic Mapper (TM), 

Landsat 7 Enhanced Thematic 

Mapper Plus (ETM), and Landsat 

8 Operational Land Imager (OLI) 

scenes from 1987 to 2017 except 

images for 1996, 2004, 2008, 

( Zhang et al. 2020) 

 

 

Landscape and 

Urban Planning 

Morphological spatial pattern 

analysis (MSPA) 
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Post-Soviet forest fragmentation and loss 

in the Green Belt around Moscow, Russia 

(1991–2001): a remote sensing 

perspective 

Moscow, Russia Europe Landsat TM (1991 and 2001)  

 

(Boentje and 

Blinnikov 2007) 

Landscape and 

Urban Planning 

landscape metrics (mean patch 

size, Edge density, mean shape 

index and mean nearest neighbour 

Impact of rapid urban expansion on green 

space structure 

Kuala Lumpur (Malaysia), Metro 

Manila (Philippines) and Jakarta 

(Indonesia) 

Asia Landsat-5 Thematic Mapper 

satellite imagery of 1988 and 1999 

for Kuala Lumpur,Jakarta and 

Metro Manila and  Landsat-8 

Enhanced Thematic Mapper 30 m 

resolution images for 2014 

covering the three cities 

(Nor et al. 2017) 

 

Ecological 

Indicators 

 

Landscape metrics 

 

Determining socioeconomic drivers of 

urban forest fragmentation with historical 

remote sensing images 

Shenzhen, China Asia Nine sets of Landsat 

(1973,1979,1986,1991,1995,1998, 

2000,2003, and 2005) 

(Gong et al., 2013) 

Landscape and 

urban planning 

Landscape metrics 

 

Analysis on dynamic development of 

landscape fragmentation for urban forest 

in fast-urbanization regions 

Huizhou, China Asia Landsat TM/ETM+ satellite 

images (1990, 2000 and 2010) 

(Yang et al. 

 2016),Journal of 

South China 

Agricultural 

University 

Landscape metrics 

 

Assessing the Fragmentation of the Green 

Infrastructure in Romanian Cities Using 

Fractal Models and Numerical Taxonomy 

 

14 cities Romanian  Europe The Urban Atlas is providing pan-

European comparable land use and 

land cover data  

(Petrişor et al. 

2016) 

Procedia 

Environmental 

Sciences 

Fractal Models, Numerical 

Taxonomy and landscape metrics 

Urban green infrastructure and urban 

forests: A case study of the Metropolitan 

Area of Milan 

Metropolitan Area of Milan Europe European Programme CORINE 

(Coordination of Information on 

the Environment Land Cover, 

(CLC) land use for the years  

1954, 1980, 1999, 2007, and 2012 

(Sanesi et al. 2017) 

Landscape 

Research  

 

Landscape metrics (Mean patch 

size (ha)Patch density (n/Km2), 

Nearest distance (m)% patch > 15 

ha) 

Ecological connectivity in the three-

dimensional urban green volume using 

waveform airborne LIDAR 

Towns of Milton Keynes, Luton, and 

Bedford, southern England, United 

Kingdom 

Europe Waveform LIDAR and 

hyperspectral data (4 m spatial 

resolution) 

(Casalegno et al. 

2017) 

 

Scientific reports 

Landscape proportion 

Small patch density 

Largest patch index 

Connectivity Index  

Landscape division index 

Green corridors and fragmentation in 

South Eastern Black Sea coastal landscape 

Trabzon and  

Rize, Turkey 

Europe High resolution 

Ikonos and Quickbird 

(Guneroglu et al. 

2013) 

 

CA (Class Area), PL (Class 

Percent of Landscape), NumP 

(Number of Patch), LPI(Largest 

Patch Index), MPS (Mean Patch 
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Ocean and coastal 

management 

Size), AWMSI (Area Weighted 

Mean Shape Index), AWMPFD 

(Area Weighted Mean Patch 

Fractal Dimension) and PD (Patch 

Density) 

Forest and the city: A multivariate analysis 

of peri-urban forest land cover patterns in 

283 European metropolitan areas 

283 metropolitan areas in Europe Europe High-resolution land-use maps  

(2006–2010).Input data sources 

include Earth Observation 

panchromatic images with a 

spatial resolution of 

2.5m;multispectral data  

(Salvati et al. 2017) 

 

Ecological 

Indicators 

85 landscape and class metrics 

 

Landscape structure influences urban 

vegetation vertical structure 

Brisbane, Australia Australia light detection and ranging 

(LiDAR) data of 2009  

(Mitchell et al. 

(2016)) 

 

Urban ecosystems 

Mean patch size, Mean edge/area 

ratio, proportion of tree cover (%), 

Clumpiness metric/spatial 

aggregation. 

Exploring temporal dynamics of urban 

ecosystem services in Latin America: The 

case of Bogota (Colombia) and Santiago 

(Chile 

 

The city of Bogota (Colombia) and 

Santiago (Chile) 

 

Latin 

 

America 

 

Landsat 5 TM data of 1985 

multispectral pixel, 120 m thermal 

pixel (Band 6) 

(Dobbs et al. 2018) 

 

Ecological 

Indicators  

landscape metrics 

Forest fragmentation and landscape 

connectivity change associated with road 

network extension and city expansion: A 

case study in the Lancang River Valley  

Lincang City, southwest Yunnan 

Province, China 

Asia Landsat TM images of (February 

17, 1991) and  (December 11, 

2006) 

(Liu et al., 2014) 

 

 

Ecological 

Indicators 

Number of patches 

(NP),percentage of landscape 

(PLAND),largest patch index 

(LPI),mean shape index 

(SHAPE),mean fractal dimension 

(FRAC),division index 

(DIVISION) 

Connectivity analysis, integral 

index of connectivity 

Changes in the landscape pattern of the La 

Mesa Watershed – The last ecological 

frontier of Metro Manila, Philippines 

Metro Manila, Philippines Asia Landsat images  in 1988, 2002, 

and 2016 

(Estoque et al, 

2018) 

 

Forest Ecology and 

Management 

Percentage of Landscape 

(PLAND),Patch Density, Mean 

Patch Area, Area-Weighted Mean 

Fractal Dimension Index, Mean 

Euclidean Nearest Neighbour 

Distance, Contagion, Landscape 

Shape Index, Shannon’s Diversity 

Index 
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2.3.5 Scale of application 

The spatial scale and unit of analysis remains one of the key issues in urban ecology for 

understanding spatial heterogeneity (Gustafson 1998). The literature review showed that 

remote sensing applications for vegetation fragmentation studies in urban areas have been 

conducted at various spatial scales. The spatial scale of analysis varied from residential or 

suburb, city to a metropolitan area. However, the most common spatial scale was local (a city 

and/or municipality), which was the metropolitan area in a single country. For instance, at the  

individual level of a city, landscape patterns of urban vegetation and vegetation fragmentation 

were quantified for cities such as Shanghai (Li and Liu 2016), Jinan (Kong and Nakagoshi 

2006), Shenzhen (Gong et al. 2013, You 2016), Hong Kong (Tian et al. 2011) all in China, 

Santiago in Chile (de la Darrera et al.2016) and Hanoi, Vietnam (Uy and Nakagoshi 2007) 

based on various satellite images. This shows that although vegetation fragmentation  research 

is receiving much attention around the world, it is much concentrated in larger urban areas at 

the level of individual cities. 

 

Few studies included more than one city in a single country for cross-city comparison purposes. 

These include a study by Casalegno et al. (2017) for towns that included Milton Keynes, Luton, 

and Bedford in southern England, Guneroglu et al. (2013) for Trabzon and Rize cities in 

Turkey, Petrişor et al.(2016) for 14 Romanian Cities and Zhou et al. (2018) for nine Chinese 

cities of Beijing, Shanghai, Nanjing, Hangzhou, Tianjin, Tangshan, Suzhou, Wuxi and 

Changzhou. The systematic cross-city comparison analysis helped to reveal similarities, 

differences or distinct vegetation fragmentation in multiple cities. Guneroglu et al.(2013) 

indicated that the level of vegetation fragmentation was  higher in Trabzon city due to a higher 

urbanization when compared to another city, Rize city in Turkey that had larger green cover 

patches. 

 

There are a few studies of vegetation fragmentation conducted at a regional scale. This 

comprises  a group of cities typically comprising a group of cities of varying demographic and 

economic conditions in one continent for example, South east Asia cities or European cities. 

These studies include Dobbs et al. (2018), Nor et al. (2017), Kabisch and Haase (2013), 

Richards et al. (2017), ,  Salvati et al.(2017) and Tsai et al.(2016; 2018). In Asia, Richards et 

al.(2017) examined the landscape pattern of urban vegetation of 111 Southeast Asian cities 

based on Landsat images. Again in Asia, Nor et al. (2017) studied the landscape structure of 

urban green space for Kuala Lumpur in Malaysia, Manila in the Philippines and Jakarta in 
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Indonesia. In Europe, Kabisch and Haase (2013) analysed the changes of the spatial 

configuration patterns of  urban vegetation in 202 European cities while Salvati et al.(2017) 

examined the landscape structure of urban forest in 283 European metropolitan cities. In the 

USA, Tsai et al.(2016) studied  the fragmentation of  urban vegetation in the USA metropolitan 

areas that had a population size exceeding one million people. The relatively few studies at 

regional scale especially in Africa and South America geographical regions highlights the 

challenge of comparing vegetation fragmentation between cities that have considerable 

differences in their political, climatic and socio-economic conditions. Furthermore, cities from 

tropical regions, especially of  Africa and South America, are usually excluded in these studies 

because of poor quality of satellite imagery related to cloud cover. 

 

The spatiotemporal pattern of vegetation fragmentation across cities of different continents at 

a global scale remains elusive. To date, studies of vegetation fragmentation at global and large 

spatial scale using remote sensing data covering several selected cities and urban areas across 

continents (transnational continents) are still limited except in Dobbs et al (2017) and Liu et al 

(2016). Dobbs et al.(2017) studied the landscape pattern of urban vegetation using Landsat 

images of 100 cities around the world (i.e. Africa, America, Australasia and Europe) that were 

selected from cities and  urban areas with a population size of more than 100.000 inhabitants. 

Furthermore, Liu et al. (2016) studied the dynamics of habitat loss (e.g.forest, grassland etc) 

and fragmentation using both remote sensing image datasets and historical maps based on a 

pool of only 16 large cities around  the globe. This shows that the vegetation fragmentation 

studies in urban areas at a global scale are not comprehensive and conclusive as not all cities 

are  studied. Most cities are not represented due to the challenges of comparing cities with wide 

differences in climate, demographics, economies,  political backgrounds, ages, sizes and  urban 

form (Dobbs et al. 2017). 

 

Furthermore, at a global scale, cities in the geographical regions of  South America and  Africa 

are usually omitted because of cloud cover challenges whereas the studied cities of Europe and 

North America are selected  because of better quality satellite data (Dobbs et al. 2017, Richards 

et al. 2017). For a broad range of cities, city boundaries are also difficult to acquire at large 

scale (Dobbs et al.2017, Schneider and Woodcock 2008). The limited number of urban 

vegetation fragmentation studies at global scale also highlights the challenge of computing and 

processing large image datasets which are labour-intensive and time-consuming given lack of 

appropriate processing tools.  



 

 

31 

 

2.3.6. Major research topics and study themes  

The remote sensing of vegetation fragmentation in urban areas over the last decades, can be 

categorized into two major research areas: (1) spatio-temporal change dynamics and (2), the 

drivers of urban vegetation fragmentation. 

2.3.6.1 Spatial and temporal change dynamics  

The approach generally used for analysing spatial-temporal variability patterns of vegetation 

fragmentation can be outlined in the following stages (i) multitemporal remote sensing data 

acquisition, (ii) image and land cover classification  to retrieve forest, vegetation and land  

cover maps, (iii) overall land classification accuracy assessment of classified data, and (iv) 

calculation of a suite of landscape indices and fragmentation metrics (largest patch area, shape 

complexity, contagion, aggregation) at patch, class and at landscape level. Remote sensing data 

like Landsat’s temporal resolution of 16 days provide a rich context for long term and multi-

temporal vegetation fragmentation change detection studies at local, regional, continental or 

global scales.  

 

Using multi-temporal classified Landsat data, forest types and stands were used to quantify 

fragmentation statistics and monitor spatial-temporal change in York, Canada (Puric-

Mladenovic et al. 2000). The research findings of the study showed that between 1975 and 

1988, forest cover declined by 7%. Furthermore, the forest  cover had been fragmented into 

smaller patches as mean patch size of forest cover declined by 56–87%  for several areas (Puric-

Mladenovic et al. 2000). Civco et al.(2002) quantified change in forest fragmentation in 

Marlborough, Connecticut in the USA between 1985 and 1999 based on landscape metrics 

derived from time series Landsat data. Besides a 7% decline in total forest cover, there was 

also a rapid forest fragmentation, which caused a rise of 89% in the  number of forest patches  

between 1985 and 1999 period (Civco et al.2002).  

 

In Europe, Lofman and Kouki (2003) analysed  temporal changes in the landscape structure of 

private forest holdings in Nurmes, Finland.  The study revealed a more fragmented pattern  of 

private forest holdings between 1941 and 1997. In Asia, studies that used multi-temporal 

remote sensing data to document an increase in vegetation fragmentation over time included 

cities like Mashad, Iran (Rafiee et al. 2009), Bangalore in India (Nagendra et al. 2012) Manila, 

Philippines (Estoque et al. 2018), Jinan, China (Kong and Nakagoshi 2006), Nanjing, China 

(Zhang et al.2020) and  Shenzhen, China (Gong et al. 2013).  
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Not all research papers provided information about where (urban core, urban fringe or 

periphery) in the cities, urban vegetation were most fragmented. However, those that show, 

indicate that urban vegetation was lowly fragmented, slightly changed or remained largely 

unchanged in urban core or city centres (Li et al. 2011, Paul and  Nagendra 2015, Xu et al. 

2011,  Zhou and Wang 2011). The most dramatic changes of spatial structure in vegetation 

peaked on the urban fringe or urban periphery (Nielsen et al. 2017) coinciding with urban 

expansion (Miller 2012, Paul  and  Nagendra 2015). For instance, cities in Latin American have 

been found to have  a pattern similar to the cities found  in the United States of America, where 

most of the changes in the spatial and temporal variability patterns of urban vegetation occur 

mainly at the fringe and near urban cores (Schneider and Woodcock 2008). 

 

2.3.6.2 Driving forces of vegetation fragmentation in urban areas 

Remote sensing imagery data combined with biophysical (elevation, slope, rainfall, climate) 

and socioeconomic data of road density, distance to urban centres, per capita, Gross Domestic 

Product (GDP), education level, neighbourhood age, immigration status, unemployment rate, 

income and population size are widely employed to account for vegetation fragmentation 

dynamics in urban areas (Dobbs et al. 2017, Gong et al. 2013, Liu et al. 2016). Gong et 

al.(2013) used Landsat data from 1973 to 2005, combined remote sensing data with physical 

and socioeconomic drivers to characterize urban forest fragmentation rates in Shenzhen in the 

southern coastal China. The study revealed that 75.9% of socio-economic factors were largely 

responsible for the vegetation fragmentation dynamics  in the city (Gong et al. 2013).  

 

The review of literature also showed that cities with higher population densities (a surrogate 

measure for the degree of urbanization) tended to have more fragmented green spaces, and 

smaller vegetation patches that  have  greater edge effects (Dobbs et al 2014, Dobbs et al.2017, 

Huang et al. 2018, Richards et al. 2017). The highly fragmented nature of vegetation in Chinese 

cities has been associated with high population density. As a result, there will be fewer spaces 

for large and contiguous urban vegetation to thrive due to the encroachment into existing 

natural vegetated areas. This pattern has been observed in most European cities (Fuller and 

Gaston 2009). In agreement with the observation from previous studies, findings of drivers of 

landscape structure patterns of vegetation at a global scale of one hundred cities using satellite 

images for 1990 and 2000 show that vegetation fragmentation in urban areas is positively 

related to population growth and size of the economy (Dobbs et al. 2017). 
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High-income  and rich cities have more urban green spaces than poor and low-income cities 

(Huang et al. 2018, Richards et al. 2017). Unequal social and economic development within 

cities is associated with more fragmented urban vegetation (Dobbs et al. 2017). The 

combination of satellite  imagery data with biophysical and socio-economic data have also 

revealed the adverse impacts of urban sprawl on urban vegetation and natural habitats, causing 

significant vegetation fragmentation in some cities in the USA (Li et al. 2010). Examples of 

these cities are Atlanta in Georgia (Miller 2012) and Maryland in the USA (Irwin and Bockstael 

2007). In Sheffield, the United Kingdom, the influence of the total length of the road network 

on  the coverage of urban vegetation was established (Davies et al. 2008). In Asia, Huang et al. 

(2018) established a similar result where high road density is responsible for vegetation  

fragmentation in some cities, resulting in less urban green space coverage area. Besides the 

socio-economic factors, biophysical and climatic factors are also important. For instance, 

higher terrain roughness was observed to have a positive influence on the extent of tree canopy 

in Cincinnati, in the USA (Berland et al. 2015). By including biophysical and climatic factors, 

a negative relationship between higher precipitation and lower temperature was found to be 

responsible for the greater urban vegetation coverage in some megacities relative to other large 

cities (Huang et al. 2017).  

 

2.3.7 Methodologies used in computing landscape structure of urban green space and 

vegetation fragmentation  

About 98% of the research papers used landscape metrics indices to analyse the landscape 

patterns of urban vegetation and fragmentation at a local, regional and global scale. Landscape 

metrics are quantified and retrieved from the pixel and objected based image classification of 

remotely sensed data into a mosaic of discretely delineated homogenous areas of vegetation 

and habitat classes (grassland, forest) (McGarigal and Marks 1995, McGarigal et al.2002, 

O'neill et al. 1995, Riitters et al.1995). In linking ecological patterns and process (i.e. vegetation 

fragmentation), some of the landscape metrics provide important insights on the spatial 

configuration of urban vegetation and vegetation fragmentation in both space and time.  

 

At a global scale, Dobbs et al. (2017) showed that percentage of land covered by urban green 

space (PLAND) differed considerably, ranging from 10% to 50%. Furthermore, the mean patch 

size of vegetation varied from 0.3 ha to 2 ha (Dobbs et al. 2017).  At a regional scale, Richards 

et al. 2017 indicated that the PLAND in cities of Southeast Asia varied considerably. Tacloban 

in the Philippines was the greenest city in the pool of 111 Southeast Asian cities with 79% 
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green coverage (Richards et al. 2017). Mandalay in Myanmar was found to be the city with the 

lowest green vegetation coverage of 17% (Richards et al. 2017). In Asia, Zhou et al (2018) also 

noted that urban green spaces in nine Chinese cities were dispersed and highly fragmented, 

with a high number of patches. The vegetation patches were smaller than 0.1 ha. Huang et 

al.(2018) indicated that urban green spaces in most Chinese cities are more fragmented because 

of  higher patch density (PD) but to some extent are less isolated (Huang et al 2018, Zhou et 

al.2018).  

 

However, other studies combined landscape metrics derived from classified remotely sensed 

data with gradient analysis (Hepcan 2013, Jiao et al. 2017, Kong and Nakagoshi 2006, Luck 

and Wu 2002,  Paul and Nagendra 2015). Spatio-temporal gradient analysis are computed  to 

determine the changes of ecological processes along a distance gradient from the city centre to 

urban fringes (McDonnell et al.1997, McDonnell and Hahs 2008). Based on the gradient 

analysis, it has been observed that the fragmentation of vegetation generally increased with the 

distance to the urban core due to the urban growth and sprawl (Gao and Yu 2014). 

 

Moving window techniques for vegetation fragmentation analysis like the Landscape 

Fragmentation Tool, the forest fragmentation model and the Morphological Spatial Pattern 

Analysis (MSPA) program have not been widely applied in quantifying vegetation 

fragmentation in urban areas, save for a few studies. The Landscape Fragmentation Tool, when 

compared to image convolution method, can accurately represent fragmentation (Vogt et 

al.2007). The Landscape Fragmentation Tool quantifies varying categories of fragmentation: 

core, inner edge, outer edge and patch. The Landscape Fragmentation Tool was used to 

examine vegetation fragmentation in the city of Delhi in India (Paul and Nagendra 2015). 

However , the Landscape Fragmentation Tool is different from widely used landscape metric 

indices. It cannot handle different edge widths. It assumes that all edges between land cover 

(forest, vegetation)  types are the same. 

 

The forest fragmentation model, although widely used in a natural forest,  has not been widely 

applied in urban landscapes except in Civco et al. (2002) and Kowe et al. (2019; 2020). Unlike 

the widely used landscape metrics, the forest fragmentation model, does not require an arbitrary 

specification of Euclidian or edge distance to spatially explicitly delineate a core area within a 

patch of forest or vegetation. Furthermore, it explicitly quantifies the relative amount of a 

landscape covered by vegetation patches or habitat within a certain window size (eg.5x5 pixels, 
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9x9 pixels, 27x27 pixels and 81x81 pixels).  Depending  on  selected window size, the forest 

fragmentation model works well both at class and landscape level to map the categories 

(interior, perforated, edge, transitional, patch) and extent of vegetation fragmentation. 

However, the quantification of spatial patterns of vegetation patches based on forest 

fragmentation model is sensitive to scale (i.e. the window size) (Dong et al. 2014, Riitters et 

al. 2000; 2002, Riitters  and Wickham 2012). 

 

The MSPA is suitable for  mapping connectivity  between core forest or vegetation patches and 

differentiate interior and exterior forest or vegetation edges in space and  time (Soille and Vogt 

2009, Vogt et al.2007). MSPA has previously been applied in examining forest fragmentation, 

structural connectivity of habitats in natural, vegetated and urban areas (Saura et al. 2011, 

Tannier et al. 2012, Wickham et al. 2010, Zhang et al.2020). Recently in Nanjing, in eastern 

China, Zhang et al.(2020) analysed the link between forest fragmentation and urban expansion 

from time series Landsat data acquired between 1987–2017. Rogan et al.(2016) used MSPA 

for forest fragmentation in town level assessments in Massachusetts in the United States of 

America.  

 

Results of the use of MSPA show that it can be used not only to quantify habitat loss related to 

vegetation fragmentation but also the spatial connectivity of vegetation in a landscape. The 

spatial connectivity of urban green spaces can act as corridors and habitats (forests, grasslands, 

shrubland, woodlands)  that help in conserving biodiversity in urban areas. Edges or boundaries 

of vegetation patches are mapped accurately and easily and delineated using the MSPA. In 

ecology, edges or boundaries of forest or vegetation patches are critical in providing transition 

zones between different elements of landscapes (Cadenasso et al.2003, Forman 1995). 

However, the computation of landscape  patterns of vegetation patches using MSPA is sensitive 

to scale. 

 

2.4. Discussion  

2.4.1 Remote sensing data and spatial resolution issues  

In general, urban areas are highly  heterogeneous and the spatial resolutions may be larger than 

many of the vegetation patches being mapped as the results depend much on the pixel size of 

remote sensing data (Moilanen and Hanski 1998). While medium resolution images like 

Landsat data are very effective and useful in mapping broader patterns of vegetation 

fragmentation, they may fail to capture fine‐grained change patterns (Qian et al.2015b).  
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Smaller patches of urban vegetation are often misclassified and underestimated because of 

mixed pixels from remote sensing products derived from low and medium resolution data 

(Boyle et al. 2014, Qian et al. 2015). Turner (1990) indicated that much information is often 

degraded when image data are resampled to coarser resolution data in comparison to the grain 

size of features.  

 

Compared to high resolution data, coarse resolution remote data do not accurately detect the 

sharp edges of irregular patches (Karl and Maurer 2010, Roth et al.2015). This is a serious 

issue considering that the large proportion of urban vegetation and green spaces in urban 

landscape is complex, irregular and highly fragmented. Over the years, high spatial resolution 

data e.g. QuickBird and IKONOS (4m) (Qian et al. 2015a, Wang et al. 2018) have been 

increasingly explored and could be used to accurately map the landscape patterns and spatial-

temporal dynamics of vegetation coverage at fine and highly detailed spatial scales (Gillespie 

et al. 2008).  

 

It has been observed that there is significant difference in quantitative information of  landscape 

pattern indices, patch and fragmentation metrics derived from medium resolution images 

compared  with those from high resolution data (Buyantuyev et al. 2010,  Feng and Liu 2015, 

Shen et al. 2004, Turner et al. 2001). Zhou et al.(2018) compared moderate Landsat data and 

ALOS and SPOT image data in quantifying the changes in spatio-temporal patterns of urban 

green spaces in nine major Chinese cities. High resolution image data of ALOS and SPOT 

were able to detect changes of small vegetation patches whilst medium resolution data 

(Landsat) failed to detect those changes (Zhou et al.2018). 

 

Unlike the freely available Landsat data, the high spatial resolution imagery remains expensive,  

with a price of approximately US$3,000–5,000 for 10 km2 (Gillespie et al. 2008). The high 

prohibitive access costs of commercial high resolution imagery data, make it costly to generate 

consistent high resolution maps across several cities or urban areas (Forkuor and Cofie 2011). 

Image files of high spatial resolution data tend to be large and cumbersome to store, manipulate 

and process. Data fusion and merging of medium and high remote sensing data with highly 

detailed  LIDAR could be cost-effective in mapping  large cities and urban areas (Chen et al. 

2012,Hudak et al. 2002). 
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2.4.2. General trends and research gaps in published literature  

The relatively small amount of vegetation fragmentation studies done in cities and urban areas 

of  Africa and  Latin  America is likely due to financial resource constraints, language barriers, 

inadequate infrastructure, as well as lack of quantitative and ecological training (Griffiths and 

Dos Santos 2012). Furthermore, urban vegetation are not considered highly valuable in poor 

and less developed  countries (Cilliers 2009). Although some studies (Huang et al. 2018, Irwin 

and Bockstael 2007) have addressed the impacts of rapid urban expansion and urban sprawl on 

vegetation fragmentation (especially forest), how  alternative urban form patterns (i.e. compact 

or clustered and  dispersed or haphazard) contribute to urban green fragmentation is, however, 

not known and has not been adequately addressed. Huang et al.(2018) demonstrated that the 

urban morphological patterns had much influence on the landscape patterns of urban vegetation 

in 262 Chinese cities. Cities that had high road density had less proportion of urban green space 

coverage and vegetation was more fragmented (Huang et al.2018). 

 

2.4.3 Limitations, challenges and recommendations 

This  study was based on research articles  written in English. This could be one of the reasons 

for the uneven geographical distribution of research articles that focused on vegetation 

fragmentation conducted in certain cities, urban areas and geographical regions. Furthermore, 

a review of the literature showed a geographic bias of concentration of studies in cities of the 

developed world. To reduce the geographic biased distribution of urban vegetation 

fragmentation studies, a broader international literature that incorporates scientific research 

articles written and  published in languages other than  English is necessary. Ideally, vegetation 

fragmentation  studies should cover a broad range of geographic regions to provide relevant 

and comprehensive information that support effective conservation of urban vegetation.  

 

Research that is more scientific is required to advance knowledge on vegetation fragmentation 

studies in cities and urban areas of  Africa  and South America as they face some of the greatest 

threats to its remnant vegetation patches and biodiversity hotspots (Güneralp and Seto 2013). 

The understudied cities in parts of Africa and Latin America provide an opportunity to do 

comparative research of vegetation fragmentation due to considerable differences in political, 

climate and social-economic characteristics. More efforts should be directed to further promote 

and facilitate interdisciplinary research, improve the training of local ecologists and 

conservation scientists. The availability of cloud platforms like Google Earth Engine that have 
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high performance makes it possible to compute and process large datasets more efficiently. It 

also provides opportunity to study and analyse vegetation fragmentation at large spatial scales.  

 

There are increasing free and open-source software solutions such as Fragstats software 

(McGarigal et al. 2002), R (R Development Core Team 2013), Landscape Fragmentation Tool 

(Vogt et al. 2007), the forest fragmentation model, Morphological Spatial Pattern Analysis, 

QGIS, Geographic Resources Analysis Support System (GRASS) that are on the rise and more 

relevant in landscape ecology studies. These quantitative methods and programs could play an 

important in urban ecology by accurately retrieving meaningful ecological information about 

the landscape structure and urban vegetation fragmentation. Open access and availability of 

freely available remote sensing data like Sentinel-2 imagery data as well as high resolution, 

unmanned aerial vehicles could  play a significant role in vegetation fragmentation studies 

especially in cities of developing countries where financial constraints do not permit wide city- 

scale studies but only at a  restricted scale. 

 

2.5. Conclusion 

A systematic review of remote sensing of vegetation fragmentation in urban areas at varying 

spatial scales is important for conservation purposes. The increasing number of scientific 

papers, methods and applications related to remote sensing of vegetation fragmentation in 

urban areas highlights a growing research interest in this topic for conservation and biodiversity 

studies. Despite this, the use of these remote sensing datasets has yet to be explored in some 

parts of the world  especially in cities of Latin America and Africa. Urban green spaces and 

vegetation are extremely important for various essential ecosystems services that they  provide 

to urban dwellers. It is reasonable that increased landscape  connectivity of urban green spaces 

that reduces vegetation fragmentation  is important in maintaining biodiversity conservation in 

urban areas.  
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SPATIAL PATTERNS OF VEGETATION FRAGMENTATION  
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3.SPATIAL PATTERNS OF VEGETATION FRAGMENTATION USING 

SPATIALLY EXPLICIT METHODS 

 
 

This chapter is based on: 

Pedzisai Kowe, Onisimo Mutanga, John Odindi, Timothy Dube, “Exploring the spatial patterns 

of vegetation fragmentation using local spatial autocorrelation indices,” Journal of Applied 

Remote Sensing. 13(2), 024523 (2019), doi: 0.1117/1.JRS.13.024523. 
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Abstract 

The spatial heterogeneity of urban vegetation obtained from discrete approaches is sensitive to 

image classification errors. There is also substantial loss of continuous and quantitative 

information when remotely sensed data is subjectively categorized into homogenous patches, 

ignoring important environmental variations in a landscape. Although there is an increasing 

ecological need to use continuous methods to understand the spatial heterogeneity and 

vegetation fragmentation, they remain unexplored. Since local indicators of spatial association 

(LISA) can capture important spatial patterns of clustering and dispersion at a local scale, they 

can capture important ecological patterns and process of vegetation fragmentation. This work 

examines the utility of LISA, which allows exploration of local patterns in spatial data in 

identifying high (hot spots) and low (cold spots) spatial clusters of vegetation patches and 

fragmentation patterns in Harare metropolitan city in Zimbabwe. The LISA indices of Getis 

Ord Gi* and local Moran’s I were computed both on continuous NDVI and discrete land cover 

data of vegetation and non-vegetation of Sentinel 2016 and 2018. Local spatial clustering 

patterns were identified with Z-score values that indicated the significance of each statistic. 

High positive Z-scores were located in the large core, undisturbed, and homogeneous 

vegetation. Negative Z-scores were located in more dispersed and highly fragmented 

vegetation. The results suggest that there are a strong tendencies for large core, undisturbed, 

and homogeneous vegetation patches to be spatially clustered and for small, isolated and sparse 

vegetation patches to be dispersed. The highly fragmented vegetation patches were located in 

the heavily urbanized part of the city. In general, the results of this research work underline the 

relevance of the spatially explicit method of LISA as an important tool for providing spatial 

information in uniquely capturing local spatial clustering and dispersion of urban vegetation 

patches. This can be used to develop policies that support effective conservation and restoration 

strategies. 

 

Keywords: Urban; Vegetation fragmentation; Harare; Local spatial autocorrelation indices;  

Spatial clustering.   
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3.1 Introduction 

Until recently, urbanization was viewed as an insignificant driver of vegetation fragmentation. 

Urbanization causes significant reduction of large core and interior vegetation or habitats into 

smaller and isolated patches (Armsworth et al. 2004, Butler et al. 2004, Liu et al. 2016, 

Saunders et al.2002). Urban vegetation fragmentation consequently endangers the 

sustainability of ecological goods and ecosystem services. Specifically, it can negatively affect 

ecosystem health, biodiversity, water and environmental quality and microclimates (Noss and 

Csuti 1994, Riemann et al. 2004, Saunders et al 1991). Monitoring of vegetation fragmentation 

is therefore important for habitat and biodiversity conservation and management. 

Understanding spatial configuration patterns (e.g. shape, density and size) of vegetation 

fragmentation is also important to minimize ecological disturbances, degradation and 

protecting the remaining urban vegetation patches and green spaces.  

 

Satellite remote sensing is useful in landscape ecology as it provides a relatively easy and 

robust way to generate land cover classifications. It is also valuable in generating  several 

vegetation and land cover maps and fragmentation metric statistics and indices. In light of this, 

landscape metrics derived from classified satellite images that heavily rely on discrete land 

cover and categorical maps have been widely used in ecological studies (McGarigal and Marks 

1995, Turner 1989, Turner and Gardner 1991). Remote sensing data and combined with 

landscape pattern analysis is an essential component  in computing the landscape structure that 

can be associated with underlying ecological patterns and processes. However, linking 

important ecological patterns heavily depends on accurately characterizing spatial 

heterogeneity in a way that is relevant and meaningful.  

 

Traditional landscape pattern analysis represents a landscape as a collection of discrete or 

categorical patches (relatively homogeneous patches of vegetation). Discrete landscape pattern 

analysis applies well to landscape patterns that show distinct landscape structure and 

unambiguous boundaries (Barrell and Grant 2013) and natural vegetation where boundaries 

between vegetation patches are crisp (McGarigal et al.2009). However, discrete landscape 

pattern indices derived from classified remote sensing images can lead to a considerable loss 

of important ecological information (McGarigal et al.2009). This is particularly caused by 

degradation of continuous spatial heterogeneity of ecological information within and among 

patch variability of spatial objects (Foody 2000, Frazier and Wang 2011,Palmer et al.2002, 

Rocchini et al.2010). In heterogeneous urban landscapes and in other human-dominated 
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landscapes, environmental attributes are sometimes inherently continuous, landscape pattern 

indices may therefore poorly represent the true continuous spatial heterogeneity of the 

landscape (McGarigal and Cushman 2005, McGarigal et al. 2009).  

 

The spatial heterogeneity of urban vegetation obtained from discrete cover classes is also 

sensitive to classification errors due to the complexity of urban landscapes. Vegetation patches 

are particularly difficult to delineate in urban landscape because of mixed pixels, where two or 

several classes are present within a single pixel area. Spatial statistics and methods that capture 

continuous rather than discrete spatial variation are receiving increased attention. McGarigal 

and Cushman (2005) developed a gradient model by introducing  surface metrics that quantify 

and represent a continuous heterogeneity of the landscape to address the challenges of discrete 

methods. Other continuous indices including fractal measures, Fourier decomposition, wavelet 

measures (Cushman et al. 2010, McGarigal and Cushman 2005, McGarigal et al.2009) and 

spatial autocorrelation indices (Cliff and Ord 1973; 1981, Goodchild 1986, Moran 1948) have 

been developed and offer considerable scope for continuous analysis of spatial heterogeneity 

and landscape patterns.  

 

Continuous indices of Local Indicators of Spatial Association or Autocorrelation (LISA) 

including Getis-Ord Gi*, local Moran’s I and local Geary’s C can depict pockets of spatial 

association in geographical space. Also, they help to reveal distances beyond which no 

discernible association remains (Anselin 1995, Getis and Ord 1992, Getis and Ord 1996, Ord 

and Getis 1995, Ord and Getis 2001, Sokal et al.1998). Furthermore, LISA is effective in 

revealing geographical areas with significant clusters of similar values called hot spots and 

dissimilar  values  known as cold spots (Nelson and Boots 2008, Sokal et al.1998). Hot spots 

are spatially explicit, in that they are detected at geographic locations and are separated by 

regions of lower density of some phenomenon (Azzalini and Torelli 2007).  

 

LISA indices make use of both the differences between pixel values and the spatial 

arrangement of the data (Read and Lam 2002). In  landscape ecology, LISA indices can be used 

to examine the spatial patterns of vegetation fragmentation without prior knowledge of 

landscape structure and spatial scale and involving discrete land cover classifications to 

generate categorical maps (Southworth et al.2004).  One of the advantages of LISA indices 

over other spatial indices used in landscape ecology such as dominance contagion and 

interspersion is that it can be applied directly to unclassified images without reliance on patch 
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definitions or boundaries (Lam et al. 2002). In urban areas, LISA indices have great potential 

in determining whether vegetation is dispersed, clustered or randomly distributed across the 

landscape. Such determinations are important in risk assessment and urban green conservation 

and management. Furthermore, this has a huge potential to offer many insights into ecological 

patterns and processes at a particular scale or across a range of scale (Tobin 2004, Turner 1990, 

Turner et al. 2003). 

 

Some  studies  have shown interest in utilizing LISA indices for quantifying the spatial 

variability patterns of forest and landscape fragmentation and land cover change (Fan and 

Myint 2014, Levin 2009, Pearson 2002, Roberts et al. 2000,  Southworth et al. 2004 ). Julian 

et al. (2009) for instance used LISA indices based on LiDAR imagery data to identify small 

seasonal wetlands, often masked under forest canopies. Such vital information would have not 

been easily detected solely from a discrete based landscape pattern approach. Pearson (2002) 

used LISA indices to examine the spatial structural variability of northern Australian savannah 

landscape. The landscape appeared to be intact using the traditional classification techniques 

but was, in fact, experiencing a decline in species diversity. Barrell and Grant (2013) used 

LISA indices to detect distinct and significant spatial and temporal dynamics patterns of 

seagrass and landscape structure at multiple spatial scales within a region of continuous spatial 

cover in Atlantic Canada. 

 

Myint (2012) analysed the role of  spatial configurations of green spaces on air temperature  

using Local Moran's I and Getis-Ord Gi*  derived from  Landsat data of  30m spatial resolution. 

Local Moran's 1 accurately and effectively revealed the true heterogeneity and continuous 

representation of the landscape by characterizing dispersed and clustered land cover type 

configurations. Southworth et al.(2004) used LISA indices based on an NDVI data to track 

changes and spatial patterns of forest fragmentation in western Honduras. The large forest 

patch appeared homogeneous when studied using a discrete landscape metrics but LISA indices  

were  able to provide  subtle  changes of  forest fragmentation that took place inside the large 

forest patch within the core of the  protected mountain forest.  

 

Unlike discrete measures, LISA indices remain largely unexplored for understanding 

vegetation fragmentation patterns in urban landscapes. The objective of this research work was 

to examine the capability and utility of local spatial autocorrelation indices as an analytical tool 

for identifying spatial clusters of high (homogenous) and low (heterogeneous) vegetation 
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patches and fragmentation patterns. The homogeneous  vegetation or hotspots will have a high 

probability of being connected, thus favouring the persistence of animal species due to the 

maintenance of metapopulational dynamics. The heterogeneous clusters of vegetation patches 

or cold spots have a high probability of being at risk due to their isolation, attributed to 

anthropogenic influences and urbanization. 

 

3.2 Materials and Methods 

3.2.1. Study area 

This research work was conducted in Harare metropolitan city. It is found in the northeast of 

Zimbabwe. Harare metropolitan city is situated at 17.83° South latitude and 31.05° East 

longitude (Figure 3.1). The city has an surface area covering about  980.6 square kilometres. 

Mukuvisi and Manyame are the major rivers that flow across the southwestern part of the city 

of the city. The topography within the city varies from approximately 1400m to approximately 

1500m in the southern and northern parts, respectively. The city tends to  undulates in the north 

due to the presence of hilly and rocky areas, while it flatters in the south  because of low lying 

surface. The city’s climate supports the growth of natural vegetation of open woodland and 

grassland. The Harare metropolitan city encompasses Harare urban and rural, satellite towns 

of Epworth and Ruwa to the east and Chitungwiza to the south (ZIMSTAT 2012). 

 
Figure 3.1. Geographical location of the study area, Harare metropolitan city in Zimbabwe. 
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Densely built-up and heavy concentration of high-density residential areas are found in the 

western, southern and eastern part of Harare. The low density residential areas and housing 

developments are predominant in the northern portion. The city has protected forest and 

vegetation, botanical gardens and parks in the northern part, despite being a highly built-up and 

urbanized city. These include Haka Game Park, Mukuvisi Woodlands, Harare Kopje, Harare 

botanical gardens and areas surrounding the Harare National Heroes Acre.   

 

3.2.2 Satellite Data  

Sentinel 2 satellite data of October 14, 2016 and October 14, 2018 were utilized to obtain 

detailed urban vegetation. The images were acquired during the dry season, hence dense and 

sparse vegetation cover, bare soils, water and urban areas were evident. There are many data 

sources of higher resolution satellites images, including IKONOS, WorldView, GeoEye, SPOT 

5, QuickBird and OrbView. Although, such higher resolution imagery data are excellent data 

sources for mapping small vegetation patches and highly heterogeneous urban areas, they are, 

however, very costly (Gillespie et al. 2008, Levin et al.2009). Freely available medium 

resolution satellite data with relatively broad swath width like Sentinel 2 are capable of 

providing spatial details compatible with urban mapping.   

 

3.2.3 Land cover classification and accuracy assessment 

The  Sentinel 2 optical bands of blue (490nm), green (560 nm), red (665nm), and near infrared 

(842 nm) bands with a 10m spatial resolution were the selected wavelength bands employed  

in the image classification of the study area. In the preliminary stage before classifying the 

images, we used a decorrelation stretch to enhance the image for more effective visualization. 

We also  used  textural, shape, colour, grain and spatial relationships between image pixels in 

addition to generating spectral signatures information for accurate identification, mapping and 

separability of vegetation and other land cover classes. True and false colour band 

combinations images were also used to improve image interpretation. Initially, training sample 

sites were drawn as polygons in the image and assigned to a specific land cover class of 

bareland, built-up, vegetation, water and grassland. Based on the selected training sample sites, 

a Support Vector Machine (SVM) classifier algorithm in ENVI 5.3 software was then used to 

classify the images.  SVM is a powerful supervised classification and machine learning 

algorithm that is known to outperform most of the conventional classifiers and pattern 

recognition methods such as artificial neural networks (Huang et al. 2002). SVM is also known 
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to generate highly accurate results in heterogeneous landscapes and effectively deals with 

mixed pixels (Huang et al. 2002). 

 

An independent accuracy assessment of the classified Sentinel 2 images of 2016 and 2018 was 

done to validate the land cover classification results. It was performed using an independent 

set of ground verification points that were not used as inputs in the supervised image 

classification. This was done by randomly selecting a large set of 707 random points 

corresponding to the five land cover classes (bareland, built-up, vegetation, water and 

grassland) using recent Google Earth high resolution satellite images of study area. Google 

Earth imagery has frequently been used as reference data for land cover classification 

validation because of the high geometric precision and fine spatial resolution (Potere 2008). 

The overall accuracy of the error matrix (confusion matrix) was computed by dividing the total 

number of correctly classified pixels (sum along the major diagonal) by the total number of 

validation plots, known as percentage correct (Congalton and Green 1999). Kappa coefficients 

were calculated to quantify the overall and categorical accuracies (Congalton et al.1983). Land 

cover map derived from image classification was later reclassified to vegetation and non-

vegetation map for further analysis. 

 

3.2.4 Moving window analysis of vegetation fragmentation  

The forest fragmentation model outlined in Riitters et al.(2000; 2002) was computed to depict 

the degree of vegetation fragmentation components (core/interior, perforation, edge, patch, 

transitional) based on the vegetation and non-vegetation data (vegetation = 1 and non-

vegetation = 0) of 2016 and 2018. This was implemented in QGIS using the SAGA GIS 

Fragmentation (standard) PLUGIN tool. Whereas previous studies like Riitters et al. (2000; 

2002) recommended 5 x 5 pixels for 30m spatial resolution (Landsat data), a moving spatial 

window size of 3 x 3 pixels was deemed appropriate for maintaining a fair and appropriate 

representation of the core or interior vegetation patches in Sentinel 2 data. The forest 

fragmentation model has previously been  used to analyse the forest, vegetation and landscape 

fragmentation based on land cover, forest and vegetation maps of remote sensing products  (Li 

et al. 2010, Wickham et al. 2007). It has been found to be an effective alternative in 

characterizing vegetation fragmentation at diverse scales (Hurd et al. 2001, Riitters et al. 2000 

; 2002,Wade et al. 2003). 
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3.2.5 Local Indicators of spatial autocorrelation (LISA)  

3.2.5.1 Getis-Ord Gi* 

The Hot Spot Analysis (Getis-Ord Gi*) tool in ArcGIS 10.5 software was used to calculate 

Getis Ord Gi* statistic to identify homogeneous (hot spots) and heterogeneous (cold spots) 

locations of vegetation patterns. This was done using the vegetation and non-vegetation map 

as input data. The Getis-Ord Gi* statistic measures the intensity of clustering of high or low 

values in spatial or geographical data relative to its neighbouring values (Getis and Ord 1992). 

The Getis-Ord Gi*  generate  statistically significant Z-scores (standard deviations) when 

values in bin's sum are different than expected, and that differences are too large to be the result 

of random chance. A Z-score above 1.96 or below −1.96 means that there is a statistically 

significant hot spot or a statistically significant cold spot at a significance level of p <0.05 (95% 

confidence interval). A Z-score near zero indicates no apparent spatial clustering. The standard 

formula for Getis-Ord Gi* statistic is  

𝐺𝑖
∗(𝑑) =

 ∑ 𝑤ij
𝑛
𝑗=1 (𝑑)𝑥𝑗−𝑊𝑖

∗𝑥̅

𝑠[𝑊𝑖
∗(𝑛−𝑊𝑖

∗)/(𝑛−1)1/2]
………………………………...…Equation (3.1) 

Where     𝑊𝑖
∗ = ∑ 𝑤𝑖𝑗

𝑛
𝑗=1 (𝑑) , 𝑥̅ and s are mean and standard deviation, respectively. ωij is a 

binary weighting matrix for the adjacent spaces.  

 

3.2.5.2. Local Moran's I  

The utility of local Moran’s I was examined  using  a continuous data of Normalized Difference 

Vegetation Index (NDVI), representing the amount of vegetation coverage. The NDVI which 

was derived from Sentinel 2, is effective in measuring green vegetation cover because of the 

strong absorption in the red band (Band 4) and strong reflection in the near infrared band (Band 

8) of remote sensing image data (Tucker 1979). The NDVI as a continuous measure could 

perform particularly well for this purpose in medium to low vegetation cover areas (Xu et 

al.2012), such as in Harare metropolitan city. We assumed that LISA indices like the local 

Moran’s I computed on a continuous measure of NDVI could provide additional information 

as important indicators of landscape pattern particularly the clustering and fragmentation of 

urban vegetation.  

 

The local Moran’s I is distinct from the Getis statistic in that it computes covariances instead 

of the sums. Homogenous or clustered spatial objects and geographical areas are indicated by 

the local Moran’s I that is significantly higher  than the mean. On the other hand, the dispersed 

or heterogeneous patterns and geographical locations are indicated by a significantly low 
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values of local Moran’s I (Fan and Myint 2014). The local Moran’s I was computed in ENVI 

5.3. Following the methodology of Myint et al.(2015), the obtained  values of local Moran’s I  

were normalized to the range of −1 to 1.  In this case, the local Moran’s I values of -1 

represented heterogeneous patterns, values of 1 represented clustered patterns and values of  0 

indicated random patterns. The standard equation for calculating local Moran’s I is 

𝐼𝑖(𝑑) =
𝑥𝑖−x̅ 

∑ (𝑥𝑖 −x̅)2
𝑖

∑ 𝑤𝑖𝑗 j (𝑑)(𝑥𝑗 − x̅)………………………..Equation (3.2) 

Where xi is the variate value at location I and x̅ is the average value of all the pixels in the 

geographical area. Figure 3.2 illustrates the methodology and the processing steps presented in 

this study.  

 
Figure 3.2. Flowchart of the methodology and the processing steps presented in this study. 

 

 

3.3. Results 

3.3.1. Accuracy of land cover classification  

The land cover classification of the Sentinel 2 of 2016 and 2018 images had a high overall 

accuracy. The overall  accuracy of classified image of 2016 was 85.7% with overall Kappa 

Coefficient of 0.79. The overall classification accuracy of classified image of 2018 was 87% 

and the overall Kappa Coefficient of 0.80 respectively. This is above the 85% and 80% 

classification accuracy thresholds recommended by Thomlinson et al.(1999) and Omran (2012) 

respectively.  

 

3.3.2 Spatial distribution patterns of vegetation fragmentation  

Table 3.1 shows the moving window spatial analysis results of vegetation fragmentation based 

on the forest fragmentation model. The patch category of vegetation pattern, which represents 

the highest level of vegetation fragmentation, was the dominant pattern across the landscape in 

both 2016 and 2018. The patch category of vegetation pattern had many smaller and isolated 

vegetation patches as indicated in Figure 3.3. Most of the patch vegetation patterns were mainly 



 

 

50 

 

concentrated in the southern, eastern and western part of the Harare. On the other hand, the 

core vegetation which represents undisturbed, lowly fragmented vegetation patterns covered a 

small portion of the city as they were dominant in the northern part of Harare.  

 

The perforated pattern, which represents the moderate level of vegetation fragmentation 

showed a slight increase between 2016 and 2018, indicating spatial intrusion of vegetation 

clearing within core vegetated areas.  Perforated pattern was dominant in the northern part of 

the city.  Edge and transitional patterns also showed a slight increase between 2016 and 2018 

(Table 3.1). Transitional patterns were mainly located between edge and patch vegetation 

patterns. Edge and transition fragmented vegetation patterns were also dominant in the northern 

part of the Harare.  

Table 3.1 Moving window analysis results of vegetation fragmentation  

 2016                                        2018  

Fragmentation 

type/pattern 

Total area (ha) (%) Total area (ha) (%) 

Core 982 (1 %) 1738 (1.7 % 

Perforated 3201 (3.3 %) 3950. (4.0%) 

Edge 7543 (7.7 %) 10372 (10.6%) 

Transitional 6976 (7.1 %) 7114. (7.2%) 

Patch 16280 (16.6 %) 15920 (16.2%) 

Non vegetation 63075 (64.3%) 58968 (60.1%) 

 

 

  
Figure 3.3. The spatial distribution of vegetation fragmentation patterns in Harare metropolitan 

city in (a) 2016 and (b) 2018 based on the forest fragmentation model. 

 

3.3.3. Local indicators of spatial autocorrelation (LISA) 

3.3.3.1 Detecting cold spots and hot spots  

The results of the Hot Spot Analysis (Getis-Ord Gi*) are indicated in Table 3.2. Significant hot 

spots and cold spots of vegetation patches are indicated with statistical confidence levels 

ranging from 90% (p< 0.10), 95% (p< 0.05) to 99% (p < 0.01). A high Z-score and small p-
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value indicates a significant hot spot. On the other hand, a low negative Z-score and a small p-

value indicates a significant cold spot. Table 3.2 shows that between 2016 and 2018, there was 

a slight decrease in statistically significant hotspots (99% confidence levels) and an increase in 

cold spots (99% confidence levels). Statistically significant hotspots have significantly high 

positive Z-score (>+1.96 and > +2.58) values as indicated in Figure 3.4. High positive Z-score 

values above 1.96 were mainly concentrated in northern part of Harare metropolitan city, a less 

urbanized but more vegetated area of large and contiguous vegetation patches. 

Table 3.2 Hot Spot Analysis (Getis-Ord Gi*) results in 2016 and 2018 

 

 

2016 

Area(ha) 

2018 

Area(ha) 

 Z-score   P-value 

(Probability) 

Cold spot 1539 2786 < -2.58 p< 0.01 (99%) 

Cold spot 871 1309 < -1.96 p< 0.05 (95%) 

Cold spot  4599 4470 < -1.65 p< 0.10 (90%) 

Not Significant 78068 77571   

Hot spot 345 526 > +1.65 p< 0.10 (90%) 

Hot spot 857 879 > +1.96 p< 0.05 (95%) 

Hot spot 11777 10521 > +2.58 p< 0.01 (99%) 

  

On the hand, statistically significant cold spots  have negative Z-scores (< -1.96 and < -2.58). 

Statistically significant negative Z-scores of Getis-Ord Gi* were mainly concentrated in highly 

fragmented vegetation patches in the southern, eastern and western part of Harare. Generally, 

the southern, eastern and western side of Harare has many isolated and sparse vegetation 

(Figure 3.4). The southern, eastern and western side of  Harare, is more densely urbanized than 

the northern part of the city. In  areas where Getis-Ord Gi* values were  significantly different  

from the surroundings, they were considered as neither hot spots nor cold spots. These were 

identified as not significant in the Hot Spot Analysis because they were non-vegetation. 

  
Figure 3.4. Getis-Ord Gi*  in (a) 2016 and (b) 2018 with categories corresponding to regions 

of different statistical confidence (99%, 95% and 90%). 
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Overall, the findings of Hot Spot Analysis indicated the strong tendency for undisturbed and 

homogeneous vegetation patches to be spatially clustered. The results also suggest that in areas 

experiencing high vegetation fragmentation levels, small, isolated and sparse vegetation 

patches do not spatially cluster but disperse. 

 

3.3.3.2. Detecting high and low clustering patterns of vegetation based on Local Moran's 

I  

The results in Figure 3.5 indicated the presence of spatial clustering pattern and  patchiness of 

high and low vegetated areas respectively. The local Moran’s I was significantly different (p < 

0.05) in 2016 and 2018, with mean value of 0.37 in 2016 and decreased to 0.13 in 2018. In 

both 2016 and 2018, the northern part of Harare metropolitan city was characterized by high 

positive values of local Moran’s I, indicating the concentration  of clustered vegetation  patterns 

due to the presence of high, dense and contiguous vegetation patches as indicated in Figure 3.5 

(a) and  (b).  

 

The western, eastern and the southern part of the city was characterized by low positive and 

negative values of local Moran’s I. Low positive values of local Moran’s I indicate low spatial 

clustering. The negative values of local Moran’s I suggest clustering of dissimilar values 

(Anselin 1995). Close visual interpretation of Figure 3.5 (a)  and  (b) indicate patchiness and 

greater spatial heterogeneity of vegetation  patches in western, eastern and the southern part of 

the city. 

 
Figure 3.5. Local Moran’s I in (a) 2016 and (b) 2018. High positive values of local Moran’s I 

represent a clustered pattern and low positive and negative values represent a dispersed pattern 

of vegetation.  

 

3.3.3.3. The relationships between NDVI and local Moran’s I 

Figure 3.6 illustrates the relationship between vegetation cover (NDVI) and local Moran’s I in 

both 2016 and 2018. In both years, the local Moran’s I was positively correlated with vegetation 



 

 

53 

 

cover. The Pearson correlation coefficient between local Moran’s I and NDVI was (r = 0.44, 

p<0.05) in 2016 and (r= 0.35, p<0.05) in 2018. The relationship between vegetation cover and 

local Moran’s I highlight the importance of continuous vegetation cover data in landscape 

pattern analysis of vegetation fragmentation. It implies that vegetation patches tend to cluster 

when vegetation cover is large and contiguous and vice versa than when it is small, isolated 

and scattered.  

       
Figure 3.6. Scatter plots representing the relationships between vegetation cover (NDVI) and 

local Moran’s I in (a) 2016 and (b) 2018 

 

3.4 Discussion 

The land cover classification of the Sentinel 2 imagery showed high overall accuracy. The 

reasonably high overall accuracy assessment results confirm the observations by Yu et 

al.(2013) that indicate effectiveness of  advanced and robust machine  learning algorithms like 

the support vector machine (SVM) in improving land cover classification accuracy. These 

findings have important implications when analysing vegetation fragmentation, especially in 

the case of heterogeneous and complex urban landscapes where smaller and isolated vegetation 

patches are critical for the movement of individuals and populations of a variety of species.  

 

Vegetation fragmentation pattern in Harare metropolitan city presents a similar trend as 

evidenced in some cities in developing and developed countries, where most of the changes 

result in a decrease of the core vegetation and increase in the patch vegetation areas. Paul and 

Nagendra (2015) found that there was increased fragmentation of green space in the city of 

Delhi, India between 1986 and 1999 as indicated by the decrease in the core vegetation and 

increase in the patch vegetation areas. The city core experienced significant vegetation 

fragmentation over time caused by infrastructural expansion, while peri-urban part of the city 

witnessed a decline  in vegetation fragmentation.  
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Paul and Nagendra (2015) showed that areas under the patch category, representing isolated 

and small patches of vegetation, increased from 72.92 km2 in the year 1986 to 83.03 km2 in the 

year 1999. This trend was partially reversed in 2010 due to afforestation. Further, the increasing 

trend in vegetation fragmentation in Delhi, India also indicated that edges increased from 94.31 

km2 in 1986 to 106.51 km2 in 1999 and then reduced to 93.97 km2 in 2010 (Paul and Nagendra 

2015). Furthermore, studies by Dobbs et al. (2018) in the South American cities of Bogota 

(Colombia) and Santiago (Chile) is in line with earlier work of Schneider and Woodcock 

(2008) which showed that most of the changes in green spaces and vegetation fragmentation 

occurred at the fringe and near city cores in the United States. Nagendra and Gopal (2010) 

found out that fragmentation of green spaces in the city core, for instance in the case of 

Bangalore in India are possibly linked to the clearing of vegetation in connecting corridors 

including roads. 

 

Local spatial statistical  methods of the Getis-Ord Gi* and local Moran’s I indices used in this 

research provided comparable results in revealing spatially explicit areas of clustered and 

dispersed vegetation patches. The results corroborate studies by Coulston and Riitters (2003) 

in identifying distinct clusters of fragmented forests representing extreme indicator values in 

the southeastern United States. The observed spatial patterns of vegetation fragmentation in the 

study area are likely the result of the impact of both social economic and biophysical factors 

across the landscape. However, previous research associated negative spatial autocorrelation 

with high fragmented vegetation patches (Pausas 2006) and disturbances (Biswas et al.2017).  

For instance, the negative spatial clustering (cold spots) is concentrated in areas where the 

vegetation distribution is strongly affected by human activities of high densification of built-

up areas in the southern, eastern and western part of Harare. 

 

The small, isolated and scattered vegetation patches are common in the western, eastern and 

southern side of Harare, in geographical locations mainly affected by anthropogenic 

disturbance. During urbanization, large areas of natural vegetation and habitat are converted 

into impervious surfaces causing core and interior vegetation and habitat loss (Liu et al.2016). 

Jiao et al.(2017) indicated that urbanization had a significant influence on the spatial and 

temporal fragmentation of urban green space in Wuhan metropolitan area in China. In Delhi, 

India, Paul and Nagendra (2015) found that vegetation was highly fragmented in peri-urban 
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areas caused by rapid urban expansion. Biswas et al.(2017) found that disturbance increases 

negative spatial autocorrelation, which was more pronounced in the clear-cut than uncut sites 

in the boreal forest of Alberta, Canada. Swetnam et al.(2015) found that the negatively valued 

Z‐scores of Getis Ord Gi*and the local Moran’s I characterized clustering within the disturbed 

(fire exclusion, high-severity wildfire, logging) areas in semi-arid forests of the southwestern 

USA. 

Conversely, high and positive spatial autocorrelation and clustering are associated with low 

and non-fragmented vegetation patches (Pausas 2006). The strong and positive spatial 

clustering as revealed by local Moran’s I can be attributed to minimum human interference and 

degradation of the vegetation. In our study, high positive spatial clustering is concentrated in 

the large and contiguous vegetation patches in the northern part of the city. Vegetation patches 

in the northern part of the city are mainly found in public and state-protected large parks, 

reserves and monuments that are well managed by various state and national government 

departments. These include Haka Game Park (Cleveland dam vegetation), Mukuvisi 

Woodlands, Harare Kopje, Harare botanical gardens and the vegetation surrounding the Harare 

National Heroes Acre monument.  

 

Our results revealed a moderately positive relationship between NDVI and local spatial 

autocorrelation statistic of local Moran’s I. However, in other studies, significantly higher 

positive correlations coefficients were found between local spatial statistics indices and percent 

tree cover. In the agricultural landscape of Albury-Wodonga area, located on the New South 

Wales in Australia, Levin et al. (2009) found that the Local indicator spatial autocorrelation 

statistics of  Getis-Ord Gi*, Local Moran’s I and Geary C had strong  positive correlation with 

percent tree cover. Getis-Ord Gi* had high correlation of (r =0.98), Local Moran’s I had also 

high correlation coefficient of (r =0.95) and local Geary C had a correlation coefficient (r 

=0.85). It is important to highlight that percent tree cover is highly positively correlated with 

NDVI (Levin et al.2009). High positive correlations of LISA indices and vegetation cover 

(percent tree cover or NDVI) are expected in highly vegetated areas unlike in modified urban 

landscape with low and medium coverage of vegetation patches.  

 

Ecological green networks and corridors, which form continuous connections between habitats 

or urban green spaces including grasslands, woodlands, street trees, gardens have been widely 

used to reduce the negative impact of fragmentation (Benedict and McMahon 2006, Hess and 
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Fischer 2001, Noss 1991, Tian et al. 2011, Tian et al. 2012). Establishing connected green 

networks and corridors in the highly fragmented vegetation areas of southern, eastern and 

western parts of the Harare metropolitan city could help mitigate or reverse the impacts of 

vegetation fragmentation.  

 

Connected green networks and corridors of urban green spaces provide enhanced landscape 

connectivity compared to dispersed and isolated vegetation areas (Jim and Chen 2003). This  

enables natural populations of species and threatened habitats to survive, facilitating the 

interaction and movement of fauna (Hale et al. 2012,Noss 1991, Jim and Chen 2003, Nor et al. 

2017, Rouquette et al. 2013, Saunders and  Hobbs 1991,Tian et al. 2011, Tian et al. 2012, ). 

For example, the 40-meter-wide Long Island Motor Parkway in New York City has been 

associated with an increase of gene flow populations (Munshi-South 2012). Greenways have 

also been recommended as an effective strategy in reducing fragmentation and connecting 

urban vegetation. Examples include greenways in Georgia in the United States of America 

(Dawson 1995), in Canadian cites (Taylor 1995) and urban greening in Singapore (Fábos and 

Ryan 2004). 

 

3.5. Conclusion 

The spatial explicit tools of the moving window analysis of forest fragmentation model and 

continuous indices of LISA employed in this study showed great promise in effectively 

identifying the clustered or dispersed vegetation patches and quantifying the level of vegetation 

fragmentation in a landscape. For example, the moving window analysis results have 

demonstrated that vegetation fragmentation varied between 2016 and 2018, with 3.3% 

perforated in 2016 and 4.0% in 2018. Furthermore, spatial variations trends were also observed 

for other vegetation fragmentation types or patterns (core, patch, transitional and edge). The 

LISA index of Getis-Ord Gi* findings revealed significant hot spots and cold spots of 

vegetation patches in the study area. In future, it is important to demonstrate how the proposed 

spatial explicit analytical tools can be linked with land transformations such as urbanization, 

land cover changes and land degradation analysis. The findings of this study could be used to 

inform policies that support the effective conservation and habitat planning, contributing to the 

restoration programmes and strategies that provide decision support for the management.  
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4. LONG TERM SPATIAL CLUSTERING AND VEGETATION FRAGMENTATION 

IN AN URBAN LANDSCAPE USING MULTI-TEMPORAL LANDSAT DATA 

 
 

This chapter is based on: 

Pedzisai Kowe, Onisimo Mutanga, John Odindi, Timothy Dube, “A quantitative framework 

for analysing long term spatial clustering and vegetation fragmentation in an urban landscape 

using multi-temporal Landsat data”, International Journal of Applied Earth Observation and 

Geoinformation, 2020, https://doi.org/10.1016/j.jag.2020.102057 
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Abstract 

Rapid urbanization threatens urban green spaces and vegetation, demonstrated by a decrease 

in connectivity and higher levels of fragmentation. Understanding historic spatial and temporal 

patterns of such fragmentation is important for habitat and biological conservation, ecosystem 

management and urban planning. Despite their potential value, Local Indicators of Spatial 

Autocorrelation (LISA) measures have not been sufficiently exploited in monitoring the spatial 

and temporal variability in spatial clustering and fragmentation of vegetation patterns in urban 

areas. LISA indices are an important local spatial statistics measures that identifies the presence 

of outliers, zones of similarity (hot spots) and of dissimilarity (cold spots) at proximate 

locations, hence could be used to explicitly capture spatial patterns that are clustered, dispersed 

or random. Landscape metrics, the forest fragmentation model and LISA indices were used to 

examine the temporal variability in clustering and fragmentation patterns of vegetation patches 

in Harare metropolitan city using Landsat series data for 1994, 2001 and 2017. The analysis 

and use of landscape metrics showed an increase in the fragmentation of vegetation patches 

between 1994 to 2017 as shown by the decrease in mean patch size, an increase in the number 

of patches, edge density and shape complexity of vegetation patches. The study further 

demonstrates the utility of LISA indices in identifying key hot spot and cold spots. 

Comparatively, the highly vegetated northern side of Harare was characterised by significantly 

high positive spatial autocorrelation of vegetation patches. Conversely, the more dispersed 

vegetation patches were found in the highly and densely urbanized western, eastern and 

southern side of Harare. This suggests that with increasing vegetation fragmentation, small and 

isolated vegetation patches do not spatially cluster but are dispersed geographically. The 

research findings of the study underline the potential of LISA measures as a valuable spatially 

explicit method for the assessment of spatial clustering and fragmentation of urban vegetation 

patterns.  

 

Keywords: 

Urban vegetation; fragmentation; LISA; spatial clustering; Harare; Landsat 
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4.1. Introduction 

Urban vegetation and green spaces have important socio-economic and ecological values in 

the urban sustainability and for enhancing the well-being of urban dwellers. For instance, urban 

parks, street trees, woodlands, forests, grasslands, playgrounds and green belts provide 

essential services such as aesthetics, recreation and carbon assimilation (Nowak and Crane 

2002). Vegetation cover in urban environments also help to reduce urban surface temperatures, 

purify air and water, sequestrate carbon dioxide, regulates the water cycle and storm water 

drainage. Furthermore, urban vegetation contains diverse plant and animal species, thus acting 

as biodiversity hubs (Zapparoli 1997).  

 

However, most urban vegetation and green spaces are increasingly threatened by rapid 

urbanization and other competing land uses within urban landscapes. One of the major impacts 

of urbanization is the fragmentation of vegetation, natural habitat (forests, woodlands, 

grasslands and open spaces) into smaller, more isolated with increased edge effects causing 

habitat loss (Alberti 2005, Andersson 2006, Güneralp and Seto 2013,Liu et al. 2016a, 

McKinney 2002; 2006, Nagamitsu et al. 2014, Nor et al. 2017, Saunders et al. 1991, Swenson 

and Franklin 2000). The growing amount and an increase in the extent of vegetation 

fragmentation  will adversely increase the costs of species conservation and restoration due to 

loss of movement corridors and connectivity. 

 

Most studies of habitat, vegetation and landscape fragmentation have only been primarily 

applied to natural or rural landscapes and were previously related to metapopulations and the 

dynamics of special animals (Davidson 1998, Li et al. 2009, Tian et al. 2011). In particular, 

understanding vegetation fragmentation in urban landscapes has mainly concentrated on its 

impacts on birds (Nichol et al. 2010) and arthropods (Gibb and Hochuli 2002). The landscape 

patterns of  impervious, land cover features  and urban vegetation patches have been widely 

studied in United States of America (Connors et al.2013, Fan et al. 2015, Zhou et al. 2011, 

Zheng et al. 2014) and Chinese cities (Kong et al. 2014, Li et al. 2012, Maimaitiyiming et al. 

2014) for the purposes of understanding its impact on surface temperatures in urban areas. 

Results show that clustered, clumped and aggregated vegetation patches are effective in 

lowering surface temperatures and therefore enhancing more local cooling effects than 

dispersed and fragmented vegetation patches (Fan et al. 2015, Kong et al. 2014, Li et al. 2012, 

Maimaitiyiming et al. 2014). 
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However, the phenomenon of urban vegetation fragmentation ( Jiao et al. 2017, Paul and 

Nagendra 2015, Tian et al.2011) has recently attracted attention due to the growing concerns 

of habitat and biodiversity loss as well as the need for ecosystem management and urban 

planning. Quantification of the landscape structure and urban vegetation fragmentation patterns 

is required to provide ecological baseline information for understanding how urbanization is 

linked to the supply of essential ecological  services and goods (Mitchell et al. 2013) and to 

facilitate the development of sustainable cities (Grimm et al. 2008). Remotely sensed imagery 

data provide a comprehensive temporal and synoptic way to map and monitor changes in 

fragmentation patterns (Vogelmann 1995). Due to the advantages of global availability, 

repetitive data acquisition and long-term consistency, remotely sensed image data like Landsat 

have become invaluable in landscape ecology studies (Gomez et al.2016). Consequently, 

landscape metrics that heavily rely on discrete land cover and categorical maps (McGarigal 

and Marks 1995, O'Neill et al. 1988, Turner 1989, Turner and  Gardner 1991) derived from 

classified satellite images are widely used. The use of landscape metrics, in particular, provide 

the ability to quantify both the spatial composition and configurations of vegetation patches 

and vegetation fragmentation (McGarigal and Marks 1995). 

 

However, concerns have recently emerged on the challenges of landscape metrics in accurately 

representing spatial heterogeneity in landscape ecology (McGarigal and Cushman 2005). This 

is because landscape metrics are calculated using discrete categorical and land cover maps 

derived from classified images, without considering all other gradual variations in the   

landscape (Fan and Myint 2014, McGarigal and Cushman 2005). Discrete categorical and 

thematic land cover maps are associated with misclassification errors that undermines the 

reliability of landscape pattern indices  (Fan and Myint 2014, Turner et al. 2001). 

Consequently, urban planners and conservation scientist are faced with the task of developing 

appropriate, cost-effective monitoring and assessment tools that provide comprehensive 

patterns of vegetation fragmentation change. In the context of conservation science, the 

possibilities associated with local spatial autocorrelation statistics could present new 

opportunities for the discrimination of important conservation areas (Cliff and Ord 1973, 

Goodchild 1986). 

 

Local measures of spatial autocorrelation focus on identifying distinct spatial clusters and 

detailed local variations patterns in a geographical space and are therefore useful for revealing 

spatial relationships, which might otherwise be undetected (Anselin 1995, Wulder and Boots 
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1998). These include Local Indicators of Spatial Association (LISA) measures like Anselin 

local Moran’s I, Getis and Ord Gi* and local Geary’s C (Anselin 1995, Getis and Ord 1996, 

Ord and Getis 1995, Ord and Getis 2001, Sokal et al. 1998). In particular, LISA may assist 

conservation decisions by identifying homogeneous and heterogeneous clusters of vegetation 

patches. This is due to the potential of LISA in identifying hot spots and cold spots. Hot spots 

are spatially explicit in that they are detected at specific geographic locations (Nelson and 

Boots 2008). Since hot spots are locations and regions of high density that are separated by 

regions of the lower density of some phenomenon (Azzalini and Torelli 2007), it is easy to 

visualize locations of vegetation abundance and scarcity. LISA statistics could also be used to 

convey and uncover emergent trends of changing landscape structure of urban vegetation 

whether the spatial pattern expressed is clustered, dispersed or random. Such information can 

help urban planners to design well-connected greenways and corridors for better conservation 

and urban green infrastructure planning. 

 

The utility of continuous representation of landscape structure is illustrated in several studies 

(Julian et al. 2009, Pearson 2002, Read and Lam 2002, Qi and Wu 1996, Seixas 2000, 

Southworth et al. 2004). LISA statistics have previously been utilised to quantify spatial 

variability patterns of land cover, forest, vegetation and landscape fragmentation change (Fan 

and Myint 2014, Levin 2009, Gao and Li 2011,Pearson 2002, Roberts et al. 2000,  Southworth 

et al. 2004, ). Barrell and Grant (2013) used LISA indices to detect distinct and significant 

spatial and temporal dynamics patterns and landscape structure of seagrass at multiple spatial 

scales. The study was conducted within a region of apparently continuous spatial cover in 

Atlantic Canada. Unlike landscape pattern and geostatistical methods, LISA indices were able 

to detect distinct boundaries particularly in turbid waters and between areas of high and low 

seagrass cover. LeDrew et al. (2004) demonstrated the value of Getis statistic in analysing 

multi-image change in the spatial structure of a coral reef in Fiji and in the Bunaken regions in 

North Sulawesi, Indonesia based on SPOT imagery. 

 

Generally, continuous methods like LISA have largely been applied to understand the 

landscape structure of natural vegetation (Levin 2009,Pearson 2002, Southworth et al. 2004) 

and the landscape patterns of urban vegetation and landscape fragmentation in the cities of the 

developed world (Fan and Myint 2014). Whereas LISA approaches hold much promise for 

analysing landscape patterns of urban vegetation fragmentation, this area remains little 

explored in much of the cities of the developing world of Africa (Banzhaf et al. 2013, Dobbs 
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et al. 2017, Luck et al. 2009). Hence our research objectives were two-fold (1) to develop a 

methodological framework that use a multi-temporal Landsat data to characterize variability to 

better understand spatial configurations of vegetation fragmentation, and (2), to develop 

continuous indices in comparison with traditional discrete landscape metrics in examining their 

ability to understand spatial clustering, connectivity and vegetation fragmentation patterns 

between 1994–2017 in Harare metropolitan city in Zimbabwe.  

 

4.2 Materials and Methods 

4.2.1 Study area 

Harare metropolitan city is situated in the northeastern part of Zimbabwe approximately on 

17.83° latitude and 31.05°longitude (Figure 4.1). The city encompasses Harare urban and rural 

as well as satellite towns of Epworth and Ruwa to the east and Chitungwiza to the south 

(ZIMSTAT 2012). The population of Harare in the year 2012 was 2.1 million (ZIMSTAT, 

2012). The city covers approximately 980.6km2. Two major rivers, Mukuvisi and Manyame 

flow across the southwestern part of the city. The topography within the city varies from 

approximately 1400m to 1500m in the southern and northern parts, respectively. It undulates 

in the north because of the presence of the hilly and rocky areas and flatters in the south. The 

city falls within the subtropical highland climate, which is mild and cool, with relatively longer 

sunshine hours and a mean annual rainfall of 800-1000 mm. It experiences warm summers 

(with an average temperature of 26°C) and cold winters (with an average temperature of 10°C). 

The city’s climate supports the growth of natural vegetation of open woodland and grassland.  

Primarily by roads and large residential lots, commercially built-up areas and small agricultural 

fields (grassland and herbaceous land cover) boarder the wooded forest areas.  

 

The western, southern and eastern portions of the city are largely composed of urban and built 

up areas, with the dominance of high-density residential areas while the northern portion is 

largely vegetated with predominance of low-density residential areas. Harare, despite being a 

highly built-up and urbanized city, it has protected forest and vegetated areas. Haka Game Park, 

Mukuvisi Woodlands, Harare Kopje, Harare botanical gardens and the vegetation surrounding 

the Harare National Heroes Acre monument are state protected. Harare metropolitan city was 

selected for this study because it is in a constant state of change due to rapid urban expansion 

and other land cover transformations, typical of most urban areas in Zimbabwe. The rapid 

urbanization in rapidly developing cities like Harare, Zimbabwe (Wania et al. 2014, Mushore 

et al. 2017) may accelerate patterns of vegetation fragmentation. 
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Figure 4.1. The geographical location of the study area, Harare metropolitan city. 

 

4.2.2. Multi-temporal satellite data 

The freely available Landsat satellite image data were utilised in this research work. The 

images were obtained and downloaded from the Earth Explorer’s United States Geological 

Survey website (http://earthexplorer.usgs.gov/). Landsat satellite image data were chosen 

because of the wide use in urban landscape studies (Van de Voorde et al. 2008, Zhu et al. 2012).  

The Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper (ETM +) and 

Landsat 8 Operational Land Imager (OLI) acquired on the 8 October 1994, 19 October 2001 

and 23 October 2017, respectively were used. The satellite image data utilised in this research 

work are presented in Table 4.1.  

Table 4.1 Satellite image data 

Satellite 

data 

Sensor Spatial Resolution(m) Date of  

Acquisition 

Landsat 5 Thematic Mapper        30 08 October 1994 

Landsat 7 Enhanced Thematic Mapper Plus        30 19 October 2001 

Landsat 8  Operational Land Imager        30 23 October 2017 

 

The period (1994–2017) was appropriate to understand comprehensive and long-term 

fragmentation of urban green spaces due to rapid urban expansion with significant changes in 
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the spatial patterns and extensive loss of green spaces that have occurred over the last two 

decades. More importantly the selected three satellite datasets and years chosen reflects 

different periods of urbanization in the city  In the mid 1990s, the city was still compact and 

growing by occupying agricultural rural areas adjacent to the existing built areas. In the early 

2000 low-density suburban developments appeared and urbanization extended in all directions. 

In recent times, urban growth occurs by infilling vacant or  bareland  and new urban 

developments dispersed in the urban fringe and peri-urban areas.  

 

Further, the Landsat satellite data were acquired in dry and summer season because they were 

cloud free and with more stable atmospheric factors. All images were selected within October 

(dry and summer season) for stability and consistency in vegetation phenological condition. In 

Harare in particular and Zimbabwe in general, October is the warmest month and during this 

period, the differentiation between vegetation cover and bare ground is evident. In particular, 

vegetation coverage versus non-vegetation patches of bareland, vacant land, open spaces, water 

and urban areas are clearly identified and separated during this time. The acquired Landsat 

imagery data were used to extract two types of data (1) vegetation distribution based on 

Normalised Difference Vegetation Index (NDVI) and (2) vegetation and non-vegetation data 

derived from land cover classifications both acquired at a 30 m spatial resolution.  

 

4.2.3. Normalised Difference Vegetation Index 

The Normalised Difference Vegetation Index (NDVI) was quantified using the Near Infrared 

(NIR) and visible Red (R) bands from the Landsat image data. NDVI is an established index 

for estimating vegetation greenness and quantity (Tucker 1979). The values of  NDVI varies 

between -1 and 1. The negative  values of NDVI generally indicate presence of water while 0 

values indicate presence of non-green vegetation. The large positive values of NDVI generally  

signal the increasing proportion and fraction of green vegetation coverage, with values usually 

varying  from 0.5 for sparse vegetative coverage  to 0.7 for dense vegetative coverage (Tucker 

1979). 

 

4.2.4. Vegetation and non-vegetation data 

To derive the vegetation and non-vegetation data, the supervised image classification approach 

was performed to classify the three Landsat images. In the preliminary stage before classifying 

the images, we used a decorrelation stretch to enhance the image for more effective 

visualization. We also  used  textural, shape, colour, grain and spatial relationships between 
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image pixels in addition to generating spectral signatures information for accurate 

identification, mapping and separability of vegetation and other land cover classes. True and 

false colour band combinations images were also used to improve image interpretation. 

Training sample sites were drawn as polygons in the image and assigned to a particular class 

of bareland, built-up area, vegetation, water and grassland. Based on the selected training 

sample sites, a Support Vector Machine (SVM) classifier algorithm in ENVI 5.3 software was 

then used to classify the images. An independent accuracy assessment of the three classified 

Landsat images was done to validate the land cover classification results using independent set 

of ground verification points. 

 

The classification accuracy assessment was obtained using selected random points within each 

land cover class by cross-referencing with the Google Earth imagery of the study area. Google 

Earth imagery has recently become popular as reference data for land cover classification 

validation due to its high geometric precision and fine spatial resolution (Potere 2008). The 

overall accuracy of the error matrix was computed by dividing the total number of correctly 

classified pixels (sum along the major diagonal) by the total number of validation plots, known 

as percentage correct (Congalton and Green 2002). Kappa coefficients were calculated to 

quantify the overall and categorical accuracies (Congalton 1991). The land cover map derived 

from image classification was later reclassified to vegetation and non-vegetation map for 

further analysis. 

 

4.2.3 Discrete approaches  

4.2.3.1 Vegetation fragmentation using landscape metrics 

A binary vegetation and non-vegetation data of 1994, 2001 and 2017 were computed to 

determine the landscape configuration patterns (e.g. size, density, shape complexity) of 

vegetation fragmentation. The selected landscape metrics included the number of patches (NP), 

Mean Patch Size (MPS), Patch size coefficient of variation (PSCV), Area Weighted Mean 

Shape Index (AWMSI), Area Weighted Mean Patch Fractal Dimension Index (AWMPFDI), 

Mean Perimeter Area Ratio (MPAR) and Edge Density (ED). Low fractal dimension is 

associated with clustered patterns while a high fractal dimension indicates a more fragmented 

pattern (Read and Lam 2002). The selected landscape metrics were quantified in Fragstats 4.2, 

widely used pattern analysis software (McGarigal and Marks 1995, McGarigal et al.2002).  
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4.2.3.2 Vegetation fragmentation using the forest fragmentation model  

The forest fragmentation model outlined in Riitters et al. (2000; 2002) was used to generate 

maps depicting vegetation fragmentation patterns (core/interior, perforated, edge, and patch, 

transitional). The vegetation fragmentation was calculated based on a land cover map of 

vegetation and non-vegetated data (vegetation=1 and non vegetated= 0) using SAGA 

Fragmentation (Standard) module in QGIS. The forest fragmentation model has proven to be 

an effective alternative in characterizing fragmentation (forest, vegetation, landscape) at 

diverse spatial scales (Dong et al. 2014, Hurd et al. 2001, Riitters et al. 2002, Wade et al. 2003). 

The calculation of the forest fragmentation model is based on: forest/vegetation area 

density (𝑃𝑓) and forest/vegetation connectivity (𝑃𝑓𝑓)  within a specified  “spatial window size” 

or sliding scale. The two indicators, forest/vegetation area density (𝑃𝑓) and forest /vegetation 

connectivity (𝑃𝑓𝑓) of the forest fragmentation model are computed using the following 

formulas; 

𝑃𝑓 =
𝑁𝑓

𝑁𝑤
…………..………………………………………………………….Equation (4.1) 

 

𝑃𝑓𝑓 =
𝐷𝑓𝑓

𝐷𝑓
…………………………………………..…..…………………...Equation (4.2) 

where Pf is the proportion of vegetation or density pixels in a certain spatial window size (e.g., 

3×3, 5×5, 7×7,  9×9), and is computed by dividing vegetation pixels (NF) in a certain spatial 

window by the total number of pixels (NW) (Dong et al. 2014). (𝑃𝑓𝑓)  is the forest/vegetation 

connectivity is computed by dividing the pixel pair number that includes at least one vegetation 

pixel (Dff) by the pixel pair number that includes two vegetation pixels in cardinal directions 

(Df) (Dong et al.2014). After deriving the vegetation area density (𝑃𝑓) and vegetation 

connectivity index (𝑃𝑓𝑓), each subject vegetation pixel centered within the moving window 

was classified into fragmentation categories (core or interior, perforated, transitional, edge and 

patch) defined in  the forest fragmentation model. The outcome of the moving window analysis 

of the forest fragmentation model is threshold and scale dependent (Riitters et al. 2000; 2002). 

With smaller spatial window sizes, a greater percentage of vegetation in the landscape is 

classified as core or interior than other types and larger window sizes tend to overestimate edge 

and patches patterns. To maintain a fair representation of core or interior vegetation, a moving 

window size of 5 by 5 pixels was used as recommended by Riitters et al. (2000; 2002) in 

analysing the vegetation fragmentation for Landsat’s 30m spatial resolution imagery. 
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4.2.4 Continuous approaches  

Two measures of LISA that included the local Moran’s I index (Anselin 1995) and the Getis–

Ord Gi* index (Getis and Ord 1992) were computed to map the spatial heterogeneity of 

vegetation fragmentation and spatial clustering of vegetation. Tasseled Cap Transformation 

indices of greenness (Tasseled Cap Greenness), brightness (Tasseled Cap Brightness), wetness 

(Tasseled Cap Wetness) and Tasseled Cap Angle (TCA) derived from Landsat data were also 

computed for subsequent analysis and comparisons with LISA indices. 

 

4.2.4.1 Getis-Ord Gi*  

The utility of Getis-Ord Gi* statistic (Getis and Ord 1992, Getis and Ord 1996, Ord and Getis 

1995) was computed on land cover data of vegetation and non-vegetation using the Hot Spot 

Analysis Tool in Environmental Systems Research Institute (ESRI)'s ArcGIS 10.5 Toolbox. 

The Getis-Ord Gi* tells whether locations with high or low attribute values tend to cluster and 

form a hot spot or cold spot. The Getis-Ord Gi* statistic generates Z-scores (standard 

deviations) and P-values (statistical probabilities) that indicate whether attribute values are 

statistically clustered. A Z-score (standard deviation) above 1.96 or below −1.96 indicates that 

there is a statistically significant hot spot or cold spot at a significance level of p < 0.05. The 

larger the Z-score, the more intense the  spatial clustering of values (hot spot) i.e. higher Gi* 

statistic. A low and statistically significant z-score signal the spatial clustering of low values 

(cold spot) i.e. lower Gi* statistic. A Z-score near zero indicates no apparent spatial clustering. 

The standard formula for Getis-Ord Gi* statistic is 

𝐺𝑖
∗(𝑑) =

 ∑ 𝑤ij
𝑛
𝑗=1 (𝑑)𝑥𝑗−𝑊𝑖

∗𝑥̅

𝑠[𝑊𝑖
∗(𝑛−𝑊𝑖

∗)/(𝑛−1)1/2]
……………………..……………..Equation (4.3) 

Where     𝑊𝑖
∗ = ∑ 𝑤𝑖𝑗

𝑛
𝑗=1 (𝑑), 𝑥̅ and s are mean and standard deviation respectively.Where ωij 

is a binary weighting matrix for the adjacent spaces. The Queens Case Contiguity method was 

used to define neighbourhood size in space.  

 

4.2.4.2  Computing low and high spatial clustering of vegetation patterns  

The utility of local Moran’s I (Anselin 1995) was applied to the continuous vegetation index 

data (NDVI image) in ENVI image processing software. The local Moran’s I (Anselin 1995) 

is different from the Getis statistic (Getis and Ord 1992). It computes  the covariances, instead 

of  the sums (Fan and Myint 2014). Following the methodology proposed by Fan and Myint 

(2014), the derived local Moran’s I values were standardized and normalized to the value range 

of −1 to 1. Positive values of local Moran’s I generally indicates a spatial clustering of similar 
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values  around an individual location. On the other hand, the  negative values of local Moran’s 

I implies spatial clustering of dissimilar values and high variability between neighbouring 

pixels around an individual location. Significantly low values of local Moran’s I indicates a 

dispersed pattern or locations (Fan and Myint 2014). The standard formula for local Moran’s I 

is 

𝐼𝑖(𝑑) =
𝑥𝑖 − x̅ 

∑ (𝑥𝑖 − x̅)2
𝑖

∑ 𝑤𝑖𝑗 

j

(𝑑)(𝑥𝑗 − x̅) … … … … . … … … … … . Equation (4.4) 

Where xi represents the variate value at geographical location I and x̅ denotes the average value 

of all the pixels in the geographical location. 

 

4.2.4.3 Tasseled Cap transformation indices 

Following Gómez et al. (2011), the Tasselled Cap indices were used in this study to analyse 

landscape change of vegetation using time series Landsat data. For each image, the Tasseled 

Cap (TCT) transformation was computed into three orthogonal indices of Tasseled Cap 

Greenness (TCG), Tasseled Cap Brightness (TCB) and Tasseled Cap Wetness (TCW) (Crist 

and Cicone 1984, Crist and Kauth 1986, Huang et al. 2002, Kauth  and Thomas 1976). TCG, 

TCB and TCW components were calculated using coefficients as in Crist and Kauth (1986) to 

transform Landsat 5 TM imagery. The procedures of Huang et.al.(2002) were used for 

calculating the Tasseled Cap coefficients for Landsat 7 ETM+. We used the Tasseled Cap 

coefficients provided by Baig and Zhang et.al.(2014) for computing Tasseled Cap 

Transformation (TCT) indices of Landsat 8 data. Landsat Tasseled Cap Transformation (TCT) 

indices have been demonstrated to be reliable, effective and powerful in a wide spectrum of 

environments and landscapes (Healey et al. 2005) and widely used in agriculture, forest and 

landscape ecology (Jin and Sader 2005) and  disturbance mapping projects because of its ability 

to highlight relevant vegetation changes.  

 

4.2.4.4 Tasseled Cap Angle (TCA) 

The TCA ( Powell et al.2010) is determined as the angle formed by Tasseled Cap brightness 

and Tasseled Cap greenness in the vegetation plane. It  was  computed using the derived TCG 

and TCB images for each date. The formula for computing Tasseled Cap Angle is; 

 

TCA=arctan (Tasseled Cap greenness /Tasseled Cap brightness)……….……… (Equation 4.5) 

 

TCA has extensively been utilised as surrogate measure to compute the proportion of 

vegetation to non-vegetation within Landsat pixel data (Gómez et al. 2011, Powell et al. 2010). 
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Higher positive values of TCA are found in geographical areas that are densely occupied by 

vegetation (greenness) compared to bare soil or clear-cuts with less dense vegetation 

characterised by negative values (brightness) (Cohen et al. 1998, White et al. 2011). The 

derivation of TCA image was based on time series of Landsat images (i.e. years). Analysing 

the comparative changes of Tasseled Cap Angle does not require calibration (Gómez et 

al.2011). This is because either increase or decrease in the fraction of vegetation to non-

vegetation results in a consequent change of TCA values (Gómez et al.2011). Figure 4.2 shows 

a flow chart on all major steps undertaken in this study. 

 
Figure 4.2. A flow chart on major steps undertaken in this study. 

 

4.3 Results 

4.3.1. Land cover classification accuracy assessment 

The classification accuracy assessment of vegetation and non-vegetation maps generated from 

the three classified Landsat data was high. To some degree, this can be accredited to the simple 

classification scheme of using few land cover classes and the effectiveness of the use of support 

vector machine classification algorithm in the image classification. The overall classification 

accuracy was 97.65 % in 1994, 97.55 % in 2001 and then 97.14 % in 2017. The Kappa 

Coefficient was 0.96 for the three temporal periods. 

 

4.3.2 Link between vegetation change and fragmentation 

The spatial distribution and variability patterns of vegetation in the city show that it is mainly 

concentrated in the northern part of Harare (Figure 4.3). Between 1994 and 2017, a significant 

decline in vegetation cover was observed. Table 4.2 shows that in 1994, the amount of 
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vegetation cover was approximately 27,190.8 (ha), declined to 26575.5 (ha) in 2001 then 

decreased to 19582.7 (ha) in 2017. 

Table 4.2. Temporal vegetation cover change  

Year Vegetation (ha) Non-vegetation (ha) 

1994 27190.8 70871.5 

2001 26575.5 71486.8 

2017 19582.7 78481.0 

 

Figure 4.3 shows the locations where fragmentation patterns have increased at the expenses of 

core natural vegetation cover. The western, eastern and the southern side of Harare experienced 

a decrease in the size of vegetation cover, indicating heavy disturbances to the existence of 

large vegetation patches (Figure 4.3). 

   
 

 
Figure 4.3. The spatial variability patterns of vegetation and non-vegetated areas in the Harare 

metropolitan city in 1994, 2001 and 2017.  

 

The increasing trend of vegetation fragmentation is illustrated in Figure 4.4 where large, 

connected and more spatially clustered vegetation patches gradually became more scattered, 

dispersed and fragmented over time.  
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Figure 4.4 shows an example of a transition from the large, connected and contiguous 

vegetation to a more scattered and  fragmented state in a selected portion west of the city. Green 

and white areas indicate vegetation and non-vegetation, respectively. 

 

4.3.3 Temporal vegetation fragmentation analysis using landscape metrics 

Table 4.3 shows the results of vegetation fragmentation analysis using landscape metrics. There 

was a clear trend of increasing fragmentation of vegetation during the period 1994–2017. 

Between 1994 and 2017, Harare metropolitan city experienced an increase in the of Number 

of  Patches (NP), Mean Perimeter Area Ratio (MPAR) as well as a decrease in Mean Patch 

Size (MPS).Table 4.3 indicates that the number of patches of vegetation was approximately 

6441 ha in 1994, increased to 6537 ha in 2001 and then increased to 7705 ha in 2017. The mean 

patch size of vegetation patches was 4.2 ha in 1994, slightly decreased to 4.0 ha in 2001 and 

further declined to 2.5 ha in 2017. Patch Size Coefficient of Variation (PSCV) increased 

between 1994 and 2001, reflecting a higher relative variability in size of vegetation patches 

within the study area. However, PSCV in 2001 was higher than in 1994 and 2017. Edge density 

indicated an increasing trend between 1994 and 2017. Table 4.3 indicates that the edge density 

of vegetation was approximately 109.5 (m/ha) in 1994, slightly increased to 111.9 (m/ha) in 

2001 then increased to 117.8 (m/ha) in 2017. 

 

Both AWMSI and AWMPFDI increased between 1994 and 2017 (Table 4.3). AWMSI was 

approximately 15.3 in 1994, increased to 22.8 in 2001 and further increased to an index of  23.5 

in 2017. AWMPFDI showed a similar increasing trend as it was 1.27 in 1994, slightly increased 

to 1.29 in 2001 and then to 1.30 in 2017 (Table 4.3). AWMSI and AWMPFDI values above 1 

indicates irregular and complex shapes of patches of land cover categories like vegetation 

(McGarigal and Marks 2002).  
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Table 4.3 Temporal vegetation fragmentation analysis using landscape metrics 

Landscape Metrics 1994 2001 2017 

Number of patches 6441 6537 7705 

Mean Patch Size (ha) 4.2 4.0 2.5 

Patch size coefficient of variation (%)  2369.3 3738.8 3560.9 

Area-weighted mean shape index 15.33 22.8 23.5 

Area weighted mean fractal dimension index 1.27 1.29 1.30 

Mean Perimeter Area Ratio 967.9 964.1 1010.2 

Edge density (m/ha) 109.5 111.9 117.8 

 

4.3.4 Moving window vegetation fragmentation patterns 

Table 4.4 shows the vegetation fragmentation statistics derived from the quantification of the 

forest fragmentation model. The core vegetation component slightly increased from 1994 to 

2001. However, between 2001 and 2017, there was  decreasing trend of core vegetation. It was 

3709 ha in 2001 and declined to approximately 699 ha in 2017 suggesting the study area was 

losing a relatively higher percentage of core and interior vegetation patches as it becomes more 

fragmented. Lowly fragmented and undisturbed core vegetation areas connect the highest 

number of large and dense vegetation areas with lower inter-patch distances. Between 1994 

and 2017, edge and transitional vegetation component indicated a decreasing trend (Table 4.4). 

Table 4.4. Vegetation fragmentation using forest fragmentation model 

Fragmentation pattern   1994 2001 2017 

Core 3609.18 3709.8 699.48 

Perforated 3129.75 2902.68 4602.96 

Edge 14328.9 14289.93 8660.34 

Transitional 8615.97 7860.51 7212.15 

Patch 18475.65 17802.18 17449.02 

Non vegetation 49902.84 51497.19 59439.69 

 

Figure 4.5 shows that the core vegetation areas were mainly dominant in the northern side of 

Harare. The patch category, which represents the highest level of vegetation fragmentation and 

proportion of poorly and less connected vegetation, dominated the landscape over the 1994–

2017 period as shown in Figure 4.5. Patch vegetation fragmentation patterns have many small, 

scattered and isolated vegetation patches. These are heavily concentrated in the southern, 

eastern and western side of the city. Perforated vegetation conditions show a relatively 

decreasing trend between 1994 and 2001 but increased in 2017.  
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Figure 4.5. The spatial distribution patterns of vegetation fragmentation in Harare metropolitan 

city in (a)1994,  (b) 2001 and (c) 2017 based on the forest fragmentation model. 

 

4.3.5. The spatial patterns of vegetation connectivity  

The vegetation connectivity index derived from the forest fragmentation model showed that 

most vegetation in the study area is not highly connected across the landscape. Vegetation 

connectivity between 1994 and 2017, indicated a general decreasing pattern, reflecting the 

increasing patch isolation of the corresponding vegetation patches. Figure 4.6 shows that areas 

with less connected vegetation are found in the western, southern and eastern part of Harare. 

These are illustrated with lower vegetation connectivity ranges (<0%−30%). Less connected 

vegetation (<0 %−30%) represent the highly fragmented nature of  smaller vegetation patches, 

isolated and scattered across the landscape (Figure 4.6). Therefore, it is reasonable to assume 

that a decrease in vegetation cover and density inevitably leads to fragmentation and less 

connectivity. Areas with moderate to high-connected vegetation are located in the highly 

vegetated northern part of Harare. Moderately and highly connected vegetation have ranges of 

50%–70% and above 70% respectively. Higher vegetation connectivity (i.e. less isolation of 

vegetation patches) have a greater proportion of high, contiguous and mean patch area 

reflecting shorter distances between vegetation patches. 
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Figure 4.6 The spatial variability patterns of vegetation connectivity in 1994, 2001 and 2017. 

 

4.3.6. Temporal variability of Getis Ord Gi*  

The results of the Hot Spot Analysis (Getis-Ord Gi*) are shown in Table 4.5. Significant hot 

spots and cold spots of vegetation patches are indicated with statistical confidence levels 

ranging from 90% (p < 0.10), 95% (p< 0.05) and 99 % (p< 0.01). Table 4.5 shows that between 

1994 and 2017, there were a slight decrease in the statistically significant hotspots and an 

increase in cold spots. The Getis Ord Gi* showed that the spatial clustering of vegetation 

ranged from being dispersed (negative values) to highly clustered (positive values) (Figure 

4.7). The statistically significant hotspots were mainly concentrated in northern part of Harare 

metropolitan city, a more vegetated area of large and contiguous vegetation patches (Figure 

4.7). 

 

The statistically significant negative Z-scores of Getis-Ord Gi* were mainly concentrated in 

the western, eastern and the southern side of Harare (Figure 4.7). Generally, the southern, 

eastern and western side of the city has many isolated and sparse vegetation with highly 

fragmented vegetation patches (Figure 4.7). Furthermore, it is more densely urbanized than the 

vegetated northern part of the city. In areas where Getis-Ord Gi* values were significantly 
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different from the surroundings, they were considered as neither hot spots nor cold spots. They 

were indicated as not significant because they were non-vegetation. 

Table 4.5 Hot Spot Analysis (Getis-Ord Gi*)  

 

Cluster type 

1994 

Area(ha) 

2001 

Area(ha)                           

2017 

Area(ha) 

 Z-score   P-value 

(Probability) 

Cold spot 2563.11 2417.85 2786.91 < -2.58 p< 0.01 (99%) 

Cold spot 6922.58 1210.3 1309.87 < -1.96 p< 0.05 (95%) 

Cold spot  690.068 1155.53 882.384 < -1.65 p< 0.10 (90%) 

Not Significant 68694.6 78102.5 74964.3   

Hot spot 1451.33 298.467 526.142 > +1.65 p< 0.10 (90%) 

Hot spot 1834.7 2672.51 879.644 > +1.96 p< 0.05 (95%) 

Hot spot 15893.5 12168.7 16705 > +2.58 p< 0.01 (99%) 

 

Overall, the findings of Hot Spot Analysis indicated the strong tendency for undisturbed and 

homogeneous vegetation patches to be spatially clustered. The results also suggest that in areas 

with high vegetation fragmentation patterns there are many small, isolated and sparse 

vegetation patches. 

    
 

 
Figure 4.7  Getis-Ord Gi*  in (a)1994, (b) 2001 and (c) 2017 with categories corresponding to 

regions of different statistical confidence (99%, 95% and 90%). Hot spots correspond to 

vegetation patches of large, contiguous or non-fragmented and lowly fragmented vegetation 

patterns. Cold spots correspond to vegetation patches of small, isolated, sparse or highly 

fragmented vegetation patterns. 
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4.3.7. Temporal variability of local Moran’s 1  

The results of local Moran’s I were significantly different (p < 0.05) for the period 1994-2017. 

The mean values of local Moran’s I were (0.39, p < 0.05) in 1994, (0.34, p < 0.05) in 2001 and 

(0.23, p < 0.05) in 2017. The results suggest a slight general decrease in spatial clustering of 

large and dense vegetation to small and scattered vegetation patches. The trend of decreasing 

local Moran’s I dominated the entire landscape but notably in the western, eastern and the 

southern part of the city, which is occupied by dense built-up and residential areas. For this 

reason, lower positive and negative values of local Moran’s I were detected in the western, 

eastern and the southern part of Harare, indicating low spatial clustering due to the presence of 

small and isolated vegetation patches. Areas with high positive values of local Moran’s I were 

located in the highly vegetated northern part of Harare. High and positive values of local 

Moran’s I implied the high spatial clustering of large and homogeneous dense vegetation as 

shown in Figure 4.8. 

  
 

 
Figure 4.8. Local Moran’s I in (a) 1994,  (b) 2001 and (c) 2017. High positive values of local 

Moran’s I represent highly clustered pattern and low positive and negative values represent 

highly dispersed patterns of vegetation.  
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4.3.8. Temporal variability of Tasseled Cap Angle (TCA) 

Table 4.6 shows that the mean values of the TCA had a consistent decreasing trend between 

1994 and 2017. The proportion of vegetation to non-vegetation was high in 1994 than in 

subsequent years. Change detection of TCA between (1994–2017) period indicated that  

vegetation in the landscape was constantly changing, not maintaining a significant amount of 

vegetation to non-vegetation.  

Table 4.6. Descriptive statistics of TCA  

 1994 2001 2017 

Mean 189.56 164.38 160.44 

Standard deviation 83.65 101.54 128.89 

Skewness 0.43 0.85 0.91 

Maximum 762.73 505.81 728.29 

Minimum -634.60 -454.11 -678.14 

 

Of noteworthy is the dynamic change of the high positive TCA values indicative of a dense 

and high proportion of vegetation and of negative TCA values for non-vegetated areas. TCA 

was significantly lower in non-vegetation areas (negative TCA values) than in vegetated areas 

(positive TCA values). Based on the standard deviation and skewness, the lowest dispersion in 

TCA values occurred in 1994. In fact, both the standard deviation and skewness showed an 

increasing trend over the years (2001-2017), which could be an indication of increasing 

vegetation heterogeneity. 

 

4.3.9. Comparative analysis of vegetation connectivity and continuous spectral indices 

The relationships between selected Landsat derived spectral indices and vegetation 

connectivity are shown in Table 4.7. Tasselled Cap Brightness (TCB) was negatively related 

to historic vegetation connectivity between 1994 and 2017. This means that low vegetation 

connectivity is associated with high Tasselled Cap Brightness (TCB) and vice versa. Tasselled 

Cap Brightness (TCB) is particularly sensitive to an alteration in non vegetation areas 

(bareland, rocky outcrops and soil brightness). 

 

The Landsat derived spectral indices of Tasselled Cap Greenness (TCG), Tasselled Cap 

Wetness (TCW), the Tasseled Cap Angle (TCA), NDVI (Normalized Difference Vegetation 

Index), Local Moran’s I were moderately and highly positively related with vegetation 

connectivity for all three image dates. The comparative analysis of vegetation connectivity and 

continuous indices implies that connectivity of vegetation patches tend to increase when 

greenness (expressed by Tasselled Cap Greenness), vegetation cover (expressed by NDVI) is 
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high and clustered (expressed by Local Moran’s I), having a high proportion of vegetation to 

non-vegetation (expressed by TCA). 

Table 4.7. Correlation coefficients between vegetation connectivity, local Moran 1 and 

Landsat spectral indices in 1994, 2001 and 2017 and Landsat spectral indices 

Year  Vegetation 

Connectivity 

TCG TCB TCW TCA Local 

Moran's 

I 

NDVI 

1994 Vegetation 

Connectivity 

1 .623** -.349** .576** .726** .774** .707** 

TCG .623** 1 -.215** .363** .463** .494** .447** 

TCB -.349** -.215** 1 -.219** -.249** -.263** -.252** 

TCW .576** .363** -219** 1 .422** .452** .417** 

TCA .726** .463** -249** .422** 1 .621** .520** 

Local Moran's I .774** .494** -263** .452** .621** 1 .558** 

NDVI .707** .447** -252** .417** .520** .558** 1 

2001 Vegetation 

Connectivity 

1 .675** -.296** .561** .699** .655** .604** 

TCG .675** 1 .183** .383** .505** .481** .381** 

TCB -.296** .183** 1 .171** -192** -.168** .172** 

TCW .561** .383** .171** 1 .396** .372** .311** 

TCA .699** .505** -.192** .396** 1 .489** .390** 

Local Moran's I .655** .481** -.168** .372** .489** 1 .363** 

NDVI .604** .381** .172** .311** .390** .363** 1 

2017 Vegetation 

Connectivity 

1 .593** -.333** .555** .723** .600** .548** 

TCG .593** 1 .179** .332** .464** .394** .295** 

TCB -.333** .179** 1 .203** 217** -.192** -.160** 

TCW .555** .332** .203** 1 .405** .339** .267** 

TCA .723** .464** .217** .405** 1 .472** .370** 

Local Moran's I .600** .394** -.192** .339** .472** 1 .291** 

NDVI .548** .295** .160** .267** .370** .291** 1 

Note: TCA (Tasseled Cap Angle); TCW (Tasseled Cap Wetness); TCG (Tasseled Cap 

Greenness); TCB (Tasseled Cap Brightness); NDVI (Normalized Difference Vegetation 

Index), local Moran’s I. ** Correlation is significant at the 0.01 level (2-tailed).  

 

4.4. Discussion  

This study analysed the long-term vegetation fragmentation and spatial clustering in an urban 

landscape based on the utility of discrete and continuous representation of landscape structure. 

The historical freely available Landsat satellite data enabled the study of vegetation 

fragmentation change in Harare metropolitan city dating from 1994 to 2017. The results of 

landscape metrics and forest fragmentation model demonstrate that the reduction in the core 

vegetation cover decreases the size of the fragments or patches, as well as increasing the 

isolation and the number of small vegetation patches. The results of LISA showed that the 
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vegetation in study area was more spatially clustered before 1994. In later years, especially in 

2017, gradually large and connected vegetation patches became more scattered and 

fragmented. Although there was a general increase in vegetation fragmentation between the 

1994–2017, those changes were not uniform with some areas showing distinct patterns. 

 

In our study, the two LISA indices of Getis-Ord Gi* and Local Moran’s I indicated where the 

more homogeneous (clustered) and heterogeneous (fragmented) areas occur spatially and 

indicate the location of occurrence within the landscape. Both Getis-Ord Gi* and Local 

Moran’s I statistics showed that the homogeneous (clustered) vegetation had high positive 

spatial autocorrelation. Conversely, small, isolated and scattered vegetation patches had low 

positive and negative spatial autocorrelation. LISA was able to show explicitly areas associated 

with specific vegetation clusters. The significant spatial clusters of vegetation (hot spots) and 

the highest proportion of undisturbed stable core vegetation were located in state protected and 

large parks in the northern part of Harare metropolitan city. The findings demonstrated the role 

of public institutions, various state and government departments in maintaining large patches 

of green cover in the core areas as observed in other urban areas including Melbourne (Dobbs 

et al. 2013) and Bangalore (Nagendra et al. 2012). Public green spaces, vegetation in state 

protected large parks and various institutions like Harare City Council, Forestry Commission 

(Ministry of Environment), The National Museums and Monuments of Zimbabwe (NMMZ), 

Environmental Management Agents (EMA), Zimbabwe Parks and Wildlife Management 

Authority (Zimparks). 

 

On the other hand, highly fragmented and heterogeneous patterns of small, isolated and 

scattered vegetation patches detected as cold spots in LISA indices were mainly concentrated 

in the highly and densely built-up western, eastern and southern side of Harare. Over the years, 

there has been a pattern of increased urban sprawl in Harare with open spaces and natural 

vegetation being rapidly converted into built-up areas. The world has also witnessed 

accelerated and high urbanization during the last decades (Liu et al. 2016b), significantly 

causing habitat loss and vegetation fragmentation (Swenson and Franklin 2000). During 

urbanization, large areas of contiguous and natural habitat are converted into built-up and 

impervious surfaces causing habitat (forest, woodland, grassland) loss and fragmentation of the 

large core and interior vegetation into smaller patches (Liu et al. 2016a, Nor et al. 2017). 
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It has been shown in several studies that rapid urban expansion and urbanization leads to 

decrease in patch fragment sizes and increase in the number of patches and a high amount of 

edge habitats (Gong et al. 2013, Grimm et al. 2008, Hall et al. 2002, Hepcan 2013, Jiao et al. 

2017, Liu et al. 2014, Nagendra et al.2012, Paul and Nagendra 2015, Wang and Wang 2009,  

Tian et al. 2011). In Delhi, India's capital city, Paul and Nagendra (2015) observed that 

vegetation was highly fragmented with an increase in the patch and edge area because of rapid 

urban growth. More vegetation fragmentation was severe in the periphery and the peri-urban 

areas. The least fragmented vegetation were found in large parks in the urban core of the city 

(Paul and Nagendra 2015). The increasing vegetation fragmentation has been recognised not 

only in the cities of the developing regions but also in the developed world including USA and 

Europe. In the USA, Hill (1985) examined the forest fragmentation in central New York and 

Rogan et al. (2016) assessed the forest fragmentation in Massachusetts towns. Petrişor et al. 

(2016) documented fragmentation of the urban green spaces in Romanian cities. In Europe, 

widespread urbanisation, land-use change, intensification and other developments have 

resulted in the loss and fragmentation of its green spaces (Mazza et al. 2011). In Asia, Tian et 

al.(2011) examined green space fragmentation in Hong Kong. However, vegetation in less 

developed regions is often more isolated and fragmented because urbanization and economic 

growth are regarded as a higher priority than maintaining urban vegetation (Grimm et al. 2008). 

 

Moving window models of connectivity and fragmentation are valuable in computing patterns 

and degree of vegetation fragmentation at specific geographical locations within the landscape. 

Using the moving window forest fragmentation model, categories and levels of vegetation 

fragmentation are visually and well represented and easily understood. Unlike landscape 

metrics that do not spatially and explicitly show where and how the degree of vegetation 

fragmentation varies across space, the forest fragmentation model as demonstrated in this study 

can spatially show the degree to which that vegetation is fragmented. Furthermore, unlike other 

connectivity methods, the connectivity index (Pff) of vegetation derived from forest 

fragmentation model has an added advantage that it does not require specification of an 

arbitrary edge and Euclidian distance to define a core area within a vegetation patch. It 

explicitly quantify the proportion of a landscape occupied by vegetation patches. Dense and 

intact vegetation will have high vegetation connectivity percentages, while the isolated and 

lower density of vegetation represents low vegetation connectivity percentages.  
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The forest fragmentation model has important implications and significance to conservation 

efforts. Using the forest fragmentation model, one strategy that can be used to identify large 

regions for conservation might be based on the dynamics of the core, interior, edge or 

perforated vegetation conditions. However, the forest fragmentation model has been observed 

to be sensitive to scale (Dong et al. 2014, Millington et al. 2003,Riitters and Wickham 2012 ). 

Usually, the large spatial window size in forest fragmentation model tends to reduce the amount 

of core or interior vegetation areas. It is important therefore for ecologists, environmental 

managers and decision makers to use and apply the forest fragmentation model at an 

appropriate scale depending on the policy under consideration. 

 

Our results revealed a significant positive relationship between Landsat derived indices (Local 

Moran’s I, Tasselled Cap Greenness, Tasselled Cap Wetness, The Tasseled Cap Angle and  

Normalized Difference Vegetation Index) and vegetation connectivity, highlighting that the 

spatial connectivity of vegetation patches tend to be higher and connected when the proportion 

of vegetation cover is large and contiguous. This confirms the hypothesis that vegetation patch 

connectivity increases as patch isolation decreases and vice versa (D’Eon et al. 2002). In 

ecological studies, vegetation connectivity is important for understanding species or 

community diversity and composition and how species are exposed to threats from predators 

or invasive species. 

 

Unlike traditional techniques that could have confounded additional interpretation of change 

in vegetation patterns, tasselled cap transformation components like TCA are uncorrelated and 

contain enhanced biophysical information (Masek et al.2008). The Tasseled Cap derived 

indices used in this study captured important insights relating to both positive and negative 

changes in the fraction of vegetation to non-vegetation between 1994 and 2017. Areas that 

were more densely occupied by vegetation had higher and positive values of TCA than 

geographical locations with less dense vegetation as indicated with negative values of the TCA. 

The TCA highlighted that between 1994–2017, vegetation was highly dynamic, significantly 

not maintaining a high amount of vegetation to non-vegetation. Overall, the combination of 

Landsat spectral indices (TCA, TCW, TCG, TCB, NDVI and local Moran’s I) and its 

relationship with vegetation connectivity showed that vegetation cover  was becoming more  

disperse and less connected after 1994.  
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4.4.1 Implications for the study of vegetation fragmentation and landscape ecology 

One of the challenges in the study of spatial and temporal dynamics of vegetation 

fragmentation is to provide an accurate and effective characterization of spatial heterogeneity 

in a detailed and meaningful way to link important ecological patterns and processes 

(Gustafson 1998). This study took a spatial explicit approach in analysing the long term 

quantification of vegetation fragmentation patterns in the urban landscape. This was done by 

combining landscape metrics, forest fragmentation model, LISA indices and Tasselled Cap 

indices derived from time series Landsat data of continuous NDVI and discrete vegetation and 

non-vegetation data. 

 

Discrete landscape metrics derived from land cover and image classifications are extensively 

used in linking landscape pattern and ecological processes occurring in a landscape (McGarigal 

and Marks 1995, O’Neill et al. 1988, Turner and Gardner 1991). They provide useful 

quantitative and ecological information on aspects of landscape pattern including patch size 

variability, patch shape complexity, density, aggregation, isolation and connectivity 

(Southworth et al. 2004). However, discrete landscape metrics indices were developed to 

understand crisp and homogenous landscapes, for instance, the European and North American 

and agriculture landscapes (Southworth et al. 2004). 

 

Furthermore, it has been repeatedly reported that many landscape metrics widely used in 

landscape ecology are highly correlated with each other (Uuemaa et al. 2009). Discrete 

landscape metrics have challenges in uniquely representing and capturing gradual and 

continuous variation in landscape for example in land cover change  as significant information 

is lost (DeFries et al. 2000, McGarigal et al. 2009). Furthermore, discrete or categorical 

landscape metrics are conceptually simple. Landscape metrics can accurately map broadly 

vegetated and unvegetated areas in natural landscapes. However, they have challenges in 

detecting critical transition zones or within-patch variability patterns (Southworth et al. 2004) 

particularly in urban areas. Vegetation in the urban landscape is highly heterogeneous in space 

and time (Fahrig 2003). Thus, quantitative approaches such as those based on landscape 

fragmentation theories (Fahrig 2003), that map landscape patterns of urban vegetation as rather 

static or homogenous unit may fail to identify relevant long term spatio-temporal patterns 

affecting ecological processes. 
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The advantage of local spatial autocorrelation indices over other approaches of quantifying 

landscape structure is that it allows environmental variation to be distinctly represented in a 

pixel across the image. This is because LISA statistics uniquely utilise both the differences 

between pixel values and spatial arrangement of the image data (Read and Lam 2002). As 

demonstrated in this study, LISA statistics can effectively utilize unclassified raw data like 

remotely sensed NDVI. The advantage of using the continuous raw data is that it eliminates 

the subjective land cover classification process and a lot of uncertainty related to the discrete 

categorization and representation of landscape, especially in heterogeneous urban areas 

because of mixed pixels challenges. 

 

Southworth et al.(2004) demonstrated that local indicators of spatial associations (LISA) 

indices derived from  NDVI data  could capture subtle changes and natural spatial variability 

of  forest patterns in mountainous Celaque National Park in western Honduras. This is in sharp 

contrast to widely used landscape metrics that often overlook fine-scale and detailed spatial 

heterogeneity through categorical map delineation into subjective homogenous areas leading 

to significant uncertainties and errors (Fan et al.2015, Southworth et al.2004). LISA indices 

are generally parametric and provide additional information as they are calculated for each 

pixel in the input image data unlike landscape metrics that tend to use less information 

(Southworth et al. 2004). In our study, LISA statistics of Anselin local Moran’s I and Getis-

Ord Gi* provided a spatial explicit detection of homogeneous and heterogeneous of vegetation 

patterns. From a conservation and restoration perspective, the homogeneous and connected 

vegetation patches have a high probability of favouring the persistence of animal species due 

to the maintenance of metapopulation dynamics. On the other hand, the heterogeneous 

vegetation patches have high probability of being at risk due to their low connectivity and small 

patch size mainly affected by the immense impact of rapid urban expansion. 

 

4.5. Conclusions 

This study quantified long-term spatial clustering and vegetation fragmentation analysis in 

Harare metropolitan city in Zimbabwe and there was evidence that the vegetation cover was 

coalescing into fewer, isolated and smaller vegetation patches. Continuous methods like LISA 

indices provide much detail in image data representing the subtle, within-class variability 

variation and continuous heterogeneity of vegetation fragmentation across the landscape.  

LISA indices may complement the information found in traditional discrete landscape metrics 

in evaluating vegetation fragmentation. Combining the continuous and discrete models of 
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landscape structure of landscape pattern indices, forest fragmentation model, local indicators 

of spatial associations (LISA) and Landsat Tasseled Cap Transformation (TCT), promotes 

future work in improving greater understanding of land transformation patterns and processes 

is an important theme of landscape ecology. 
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CHAPTERS FIVE AND SIX  

 

 

 

LANDSCAPE PATTERN AND SPATIAL CONFIGURATIONS OF 

VEGETATION AND ITS IMPACTS ON THE URBAN SURFACE 

TEMPERATURES 
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5.LINKING LANDSCAPE PATTERN AND SPATIAL CONFIGURATION OF URBAN  

VEGETATION WITH  URBAN WARMING AND COOLING  

This chapter is based on: 

Pedzisai Kowe, Onisimo Mutanga, John Odindi, Timothy Dube, “Effect of landscape pattern 

and spatial configuration of vegetation patches on urban warming and cooling in Harare 

metropolitan city,” GIScience and Remote Sensing, Under revision  
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Abstract 

The spatial configuration of urban vegetation in a landscape has socio-economic and ecological 

implications in the provision of essential ecosystem services and goods, human adaptation to 

climate change, increasing or reducing urban surface temperatures. Until recently, the role of 

spatial configuration of urban vegetation to enhance or mitigate urban heat island has received 

little consideration in urban thermal assessments. This study examines the role of spatial 

configuration and landscape pattern of vegetation on urban warming and cooling in Harare 

metropolitan city, Zimbabwe. The study used Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) data acquired on 03 September 2010, Landsat 8 acquired on 

28 October 2013 and 23 October 2017 and Sentinel 2 acquired on 24 October 2017 to derive 

detailed information on vegetation patches, landscape metrics and land surface temperature 

(LST°C). The spatial configuration of urban vegetation patterns was analysed using landscape 

metrics in Fragstats program. Pearson correlation coefficient was applied to examine the 

relationship between spatial configurations of vegetation patches and land surface temperature. 

A local spatial statistic, Getis Ord Gi* was used to characterize the spatial clustering and 

dispersion of urban vegetation patches. Results of the Getis Ord Gi* showed that clustered or 

aggregated vegetation patterns reduces land surface temperatures more effectively than 

dispersed and fragmented patterns of vegetation. The size, density, shape complexity and 

cohesion of vegetation patches conferred different levels of cooling but Patch Cohesion Index 

had the strongest negative relationship with LST (°C) at three spatial resolutions of 10m 

(Sentinel 2), 15m (ASTER) and 30m (Landsat 8). The relationship between LST (°C) and 

spatial configuration of landscape metrics was better captured and estimated by the Spatial Lag 

Regression model than the Ordinary Least Squares regression. Specifically, the Spatial Lag 

Regression model showed higher R2 values and log-likelihood, lower Schwarz criteria and 

Akaike Information Criterion. The overall information provided important insights on the 

influence of large, well connected, less fragmented urban vegetation patches in the contribution 

of maximum and higher cooling effects, which is critical for urban planning and design 

approaches for mitigating increasing surface temperatures in cities.  

 

 

Keywords: 

Urban warming and cooling; Getis Ord Gi* ; Land surface temperature; vegetation; Landscape 

metrics; Harare 
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5.1 Introduction  

With increasing urbanization, climate change and global warming, urban heat island (UHI) 

effects (Oke 1982, Voogt and Oke 2003) are growing in magnitude across space and time 

(Gabriel and Endlicher 2011, Gill et al.2007, Wang and Akbari 2016). Urban heat island effects 

causes higher surface temperatures  and  increases the number of warm nights in cities than in 

less developed, rural and surrounding areas (Oke 1982). Urban warmth and high surface 

temperatures can reduce annual energy consumption in cold climates (Svensson and Eliasson 

2002), but the reverse is true in warm and tropical cities where summer air conditioning demand 

loads far outweigh potential savings in energy use for heating during winter (Santamouris et 

al. 2001). Intensified UHI can lead to increased demands for water consumption (Guhathakurta 

and Gober 2007), degraded water quality (Arnold Jr and Gibbons 1996) and higher levels of 

air pollutants (Lai and Cheng 2009). UHI worsens the thermal comfort conditions, heat-related 

health problems and welfare of urban dwellers (Tomlinson et al. 2011). The urban heat island 

impacts are severe in summer season, when heat released from the urban infrastructure at night 

increases the duration and intensity of heat waves (Tomlinson et al. 2011).  

 

Urban green spaces (UGSs) and vegetation cover including urban parks, street trees, lawns, 

woodlands,  forests, grasslands, playgrounds and green belts  play a significant part in the urban 

climate discourse (Dobbs et al. 2014, Gill et al. 2007) in mitigating the impacts of the UHI 

phenomena. For instance, in the city of Nanjing in China, Kong et al.(2014) observed a 

significant decrease of land surface temperature (LST) by 0.83°C following a 10% increase in 

forest cover. Urban trees and green spaces through evapotranspiration and shading reduce 

surface temperatures, which may subsequently lower demand for energy required to cool 

buildings during the hot season. The positive influence of urban vegetation in alleviating  urban 

warming has already been established through in situ field measurements, thermal remote 

sensing of land surface temperature (LST) and computer modelling (Farhadi et al. 2019, Lai 

et al. 2019). Over the past ten years, substantial scholarly work have studied the spatial patterns 

of urban vegetation cover on UHI phenomenon (Akbari and Kolokotsa 2016, Aram et al. 2019). 

 

However, current knowledge of the effects of urban vegetation on LST is not comprehensive 

as it ignores the possible influence of landscape pattern and the spatial configuration of 

vegetation patches such as edge density, shape complexity, size, aggregation, connectivity and 

fragmentation on their cooling effect (Masoudi et al. 2019). The results of a  few number of 

previous research work indicate that the landscape pattern and the spatial configuration of 



 

 

89 

 

urban vegetation patches  have significant impacts on LST and can be used to lower the urban 

surface temperatures (Asgarian et al. 2015, Bao et al. 2016, Chen et al. 2014, Connors et al. 

2013, Estoque et al. 2017, Huang and Cadenasso 2016, Kong et al. 2014, Li et al. 2012; 2016; 

2017, Maimaitiyiming et al. 2014, Zhang et al. 2009, Zhibin et al. 2015, Zhou et al.2011). A 

set of landscape metrics have often been employed to quantify the landscape pattern or the 

spatial configuration including patch size, shape complexity, edge density, diversity, and 

connectivity metrics (Connors et al. 2013, Kong et al. 2014, Li et al. 2017, Peng 2016). For 

instance, urban green spaces and vegetation with more irregular and complex shapes were 

previously demonstrated  to  produce higher cooling effects (Asgarian et al.2015, Chen et al. 

2014, Estoque et al.2017, Li et al.2012, Zhang et al.2009, Zhou et al. 2011). Other research 

work have demonstrated that the patch size of urban green space is responsible for higher 

cooling effects in a city (Feyisa et al. 2014, Hamada et al.2013).  

 

Despite the fact that the spatial configuration is strongly influenced by underlying ecological 

processes and patterns, however not all landscape metrics that exhibit landscape configuration 

properties are responsible for the energy flow, exchanges and thermal processes in urban 

thermal environment (Chen et al.2016). In addition, most landscape metrics create serious 

redundancy challenges in interpreting their role in urban thermal studies because they are 

highly correlated with each other (Song et al.2014, Uuemaa et al.2013). There are still some 

uncertainties and inconsistencies regarding the effects of other spatial configuration patterns 

such as connectivity and aggregation of vegetation patches on the resultant cooling and 

warming of the urban environment. For instance, the positive effects of spatial patterns of 

connectivity and aggregation of urban vegetation have been observed in some studies 

(Asgarian et al.2015, Chen et al.2014, Estoque et al.2017, Zhibin et al.2015). On the other 

hand, some studies (Bao et al. 2016, Chen et al. 2014a, Li et al. 2012; 2013, Zhou et al. 2011) 

have reported that landscape connectivity of vegetation is responsible for raising high surface 

temperatures. Therefore, appropriate selection of landscape metrics that uniquely capture heat 

exchanges and thermal processes in an urban area is important in exploring the impact of 

landscape configuration on LST (Chen et al. 2016). 

 

Since most of these landscape metrics indiscriminately categorize land cover category into 

homogenous units, they do not entirely capture the dispersed and clustered patterns of spatial 

objects and overlook other natural variations in a landscape  (Fan and Myint 2014, McGarigal 

and Cushman 2005, McGarigal et al. 2009, Myint et al. 2015). Consequently, most UHI studies 
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do not consider spatial configurations of spatial objects and land cover features as continuous 

surfaces but rather as discrete spatial variation resulting in loss of vital information (Myint et 

al. 2015). The ultimate result has been that effects of spatial autocorrelation of LST  are not 

taken into account in most existing UHI studies (Chen et al. 2006, Li et al. 2011, Zhou et al. 

2011) when conducting bivariate and multiple correlation and regression analysis between LST 

and landscape indices.  

 

To address the limitations associated with discrete landscape metrics, an alternative and 

effective approach is to use continuous methods of local spatial statistics, otherwise called 

Local Indicator of Spatial Association (LISA) indices. Previous studies have indicated that the 

local Moran’s I index is very effective in characterizing the impact of clustered and dispersed 

spatial configurations and composition patterns of vegetation cover (Fan et al. 2015), 

impervious surface area (Wu et al. 2019) and other land cover categories (Myint et al. 2015, 

Zheng et al 2014) on surface temperatures. Compared with local Moran’s I index, the utility of 

Getis-Ord Gi* has largely been ignored and not explored in examining the spatial 

configurations of clustered and dispersed vegetation on UHI studies.  Only recent applications 

of Getis-Ord Gi∗ statistics in UHI studies, have analysed the LST pattern change through time 

to assess the impacts of land use and land cover dynamics and urbanization on UHI effects 

(Tran et al. 2017) and to identify the high concentration of the LST visually across an urban 

landscape (Adeyeri et al. 2017, Tran et al. 2017).  

 

Furthermore, the response or sensitivity of landscape metrics at different spatial resolution on 

LST   relative to the spatial heterogeneity of urban vegetation has not been extensively 

explored. Previous studies have mainly examined these relationships at a single scale as derived 

from  remote sensing and other data sources. The issue of spatial resolution is relevant in urban 

thermal studies as landscape metrics have been shown to be susceptible to scale of the 

observation or analysis (Turner et al. 1989, Wu et al. 2000, Wu et al. 2002) as well as their 

relationships with land surface temperature  (Kong et al. 2014, Li et al. 2013, Song et al. 2014).  

The spatial configurations and landscape patterns of urban vegetation have landscape planning 

and urban heat island implications at different spatial resolution and scales. The land surface 

temperature is significantly influenced by the energy flows and heat exchange between patches 

in diverse landscape (Adams and Smith 2014). Various spatial resolution and scales could 

influence the distribution of energy flows, heat exchanges in the landscape, thus resulting in 
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diverse thermal effects and processes (Berger et al. 2017, Chen et al. 2017, Forman 1995, 

Turner 2005, Zhou et al. 2014).   

 

However, to date, the spatial configuration studies of land cover patterns of urban green 

vegetation on LST  have largely been performed mainly in cities of the United States of 

America (Buyantuyev and Wu 2010, Maimaitiyiming et al. 2014, Myint 2012, Myint et al. 

2013 and 2015) and China (Kong et al. 2014, Li et al. 2012, Zhang et al. 2009, Zhang et 

al.2013). Cities from Africa are largely ignored. The conclusions and implications for  urban 

heat island mitigation drawn from these undertakings may not be conclusive and 

comprehensive mainly due to limitations of the geographical locations, different climate 

conditions and patterns of urban and economic growth levels. Given this background, the 

objective of this study was to examine how landscape pattern and the spatial configuration of 

urban vegetation significantly enhance or mitigate the urban warming in the Harare 

metropolitan city, Zimbabwe. The study further examined the effects and sensitivity of 

different spatial resolutions on the relationship between land surface temperature and the 

spatial configuration of vegetation using spatial regression models.  

 

5.2 Materials and Methods 

5.2.1 Study area 

This research work was conducted in Harare metropolitan city, which is situated in the 

northeastern part of Zimbabwe. It is found at 17.83° latitude and 31.05°longitude (Figure 5.1). 

The city has an area of approximately 980.6 square kilometres. The Harare metropolitan city 

encompasses Harare urban and rural, satellite towns of Epworth and Ruwa to the east and 

Chitungwiza to the south (ZIMSTAT 2012). Harare is Zimbabwe’s economic hub, 

administrative capital and the largest city. The population of Harare in the year 2012 was 2.1 

million (ZIMSTAT 2012). Harare metropolitan city is characterized by mainly low lying areas 

in the southern part and is generally hilly in the northern part. The city falls within the 

subtropical highland climate, which is mild and cool with relatively longer sunshine hours. It 

experiences warm summers (with an average temperature of 26°C) and cold winters (with an 

average temperature of 10°C).  

 

The western, southern and eastern parts portion of the Harare metropolitan city is largely 

composed of urban and built-up areas with the dominance of high-density residential areas. 

The northern portion is largely vegetated with predominance of low-density residential areas. 
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Despite being a highly built-up and urbanized city, there are protected forest and vegetated 

areas in Harare, which include Haka Game Park (Cleveland dam vegetation), Mukuvisi 

Woodlands, Harare Kopje, Harare botanical gardens and the vegetation surrounding the Harare 

National Heroes Acre. 

 

Harare metropolitan city was selected for this study because it has witnessed a rapid urban 

expansion wave during the last decades (Kamusoko et al. 2013) and the trend is expected to 

continue (Mushore et al.2017) mostly replacing open spaces and surrounding natural habitats 

(grassland and remnant forests). Such rapid urban expansion is responsible for the loss of 

vegetation and  consequently generates high urban surface temperatures leading to urban heat 

island effects. 

 
Figure 5.1. The geographical location of the study area, Harare metropolitan city in Zimbabwe. 

 

5.2.2. Satellite data 

The data used in this study consist of four satellite images, an Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER), a Sentinel 2 Multispectral Instrument (MSI) 

and two Landsat 8 data carrying both the Operational Land Imager (OLI) and Thermal Infrared 

Sensor (TIRS) (Table 5.1). The satellite imagery data were freely downloaded from Earth 

Explorer United States Geological Survey website (http://earthexplorer.usgs.gov/). The 
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satellite data were in a dry season because the images were cloud free and with more stable 

atmospheric factors. Only ASTER imagery was acquired in September rather than in October 

due to cloud coverage challenges. Dates of image acquisition were paired closely to help ensure 

consistency in vegetation phenology, comparison of land cover classification and in accurately 

distinguishing vegetation and non vegetation coverages.  

 

The acquired satellite datasets were used to derive detailed vegetation areas, landscape metrics 

and summer daytime land surface temperature (LST ). It is one of the most widely used 

indicator of surface-energy balance (Voogt and Oke 2003) which is sensitive to surface 

characteristics. Land surface temperature data and information derived from the thermal 

infrared imagery have been instrumental in capturing urban heat island effects (Weng et al 

2004). In general, thermal image data have coarser spatial resolution than shorter wavelength 

bands, which can be shortcoming in urban landscape studies in general and UHI studies in 

particular because of the requirement of spatially detailed data. For example, the spatial 

resolution of ASTER and Landsat 8’s thermal bands are 90m and 100m respectively, despite 

both image data having resolutions of 15m and 30 for other multispectral bands, respectively. 

While airborne sensors like Airborne Topographic Laser System (ATLAS) and Airborne 

Hyperspectral Scanner (AHS) can offer a greater and finer spatial and thermal resolution, 

however, airborne data have a disadvantage  of small spatial coverage  at a cost to most end 

users compared to freely available  moderate resolution sensor data.  

 

Similarly, high resolution satellite data were not used in this study as these are also costly and 

not accessible for most users and most of them do not have thermal bands. Although low and 

coarse resolution data like Moderate Resolution Imaging Spectroradiometer (MODIS) on the 

Terra and Aqua satellites and Advanced Very High Resolution Radiometer (AVHRR) are 

readily available, they have limitations in accurately depicting detailed land cover in complex 

urban areas because of challenges of mixed pixels. Low-resolution satellite images like MODIS 

and AVHRR are useful only for coarse-scale urban landscape mapping.  

 Table 5.1 Satellite image data 

Satellite data Spatial resolution (m)  Date of Acquisition 

ASTER  15m(VNIR) and 90m (TIR) 09 September 2010 

Landsat 8  30m(VNIR) and 100m (TIR) 28 October 2013 

Sentinel 2 10m (VNIR)  24 October 2017 

Landsat 8  30m(VNIR) and 100m (TIR) 23 October 2017 

Visible and Near Infrared (VNIR), and the Thermal Infrared (TIR)  
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5.2.3 Urban green areas and vegetation extraction 

The acquired  satellite data were classified into five land cover classes (vegetation, grassland, 

built-up, water, and bareland) based on the supervised image classification approach. The 

powerful Support vector machine learning algorithm in the ENVI 5.3 software image 

processing software was used to classify the images. Later, the classified land cover map was 

reclassified into a binary vegetation and non-vegetation map for subsequent landscape analysis. 

A value of one and zero was assigned to vegetation and non-vegetation pixels, respectively.  

 

A land cover accuracy assessment was performed based on ground reference data derived from 

Google imagery of 2010 (ASTER), 2013 (Landsat 8) and 2017 (Sentinel 2 and Landsat 8). The 

overall accuracy of the error matrix was computed by dividing the total number of correctly 

classified pixels (sum along the major diagonal) by the total number of validation plots, known 

as percentage correct (Congalton and Green 1999). A non-parametric Kappa test was used to 

compute the land cover classification accuracy as it accounts for all the elements in the 

confusion matrix rather than the diagonal elements. The Kappa coefficient was calculated 

following the procedure given by Congalton and Green (1999). 

 

5.2.4 Spatial configuration analysis of urban green vegetation 

Since most landscape metrics are often correlated with one another and they should be 

relatively independent of each other with minimal redundancy, we only selected a suite of 

landscape metrics based on their widespread use in landscape analysis, their easy interpretation 

and their relevance as indicators of ecosystem functioning (McGarigal et al. 2002, Wu 2004, 

Riitters et al. 1995).  After computing several landscape metrics, only five landscape metrics 

indices including Edge density (ED), Mean Patch Size (MPS), Area Weighted Mean Shape 

Index (AWMSI), Area Weighted Mean Patch Fractal Dimension (AWMPFD) and Patch 

Cohesion Index (Table 5.2) were employed in this research work. The landscape metrics were 

quantified based on the binary vegetation and non-vegetation data in the FRAGSTATS 4.2 

software (McGarigal et al. 2002).  

 

The selected and computed landscape metrics indices accounted for divergent and important 

dimensions of the landscape patterns and configurations of size, density, shape, isolation and 

connectivity of urban vegetation patches. A lower Mean Patch Size values are usually 

associated with a more fragmented land cover pattern in a landscape. AWMSI and AWMPFDI 

are simple measures of patch shape complexity. The higher the values of AWMSI and 
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AWMPFDI, the more complex and irregular the patch shape of a land cover category. The 

Patch Cohesion Index assesses the contiguity of the shape and the percentage of physically 

connected patches. Patch Cohesion index (COHESION) varies between 0–100%. Patch 

Cohesion Index is higher when there are  more physically connected pattern of patches in a 

landscape and vice versa (McGarigal et al. 2002). A more detailed description of each 

landscape  metric can be found in (McGarigal et al. 2002).  

Table 5.2: Description of landscape metrics used in the study area. 

Landscape metrics Description 

Mean Patch  Size/Area The average mean surface of patches 

Area-Weighted Mean Shape Index A larger value of SHAPE_AM means the area 

is more complex and irregular in shape 

Area-Weighted Mean Fractal Dimension 

Index 

Fractal dimension: ratio of perimeter per unit 

area. Increases as patches become more 

irregular 

Patch Cohesion Index Increases as the patches of the corresponding 

patch type become less connected. 

Total length of all edge segments in the 

landscape ( green space) per hectare (m/ha) 

 

Edge Density 

 

5.2.5. Computing land surface temperature  

To compute the land surface temperature,  the digital number (DN) of the thermal bands were 

first converted to spectral radiance (w/m2/sr/µm) or Top of Atmosphere (TOA) reflectance 

based on the  radiometric rescaling coefficients (Chander and Markham 2003, Chander et al. 

2009). Next, the derived spectral radiance was then converted to brightness temperature (i.e. 

blackbody temperature) in Kelvin at the sensor by applying the inverse of the Planck radiance 

function using the following formula; 

𝑇𝐵 =
𝐾2

ln ((
𝐾1
𝐿𝜆

)+1)
…………………………………………………..………………...(5.1) 

where 𝑇𝐵 is the at-sensor brightness temperature in degrees Kelvin.𝐿𝜆  is spectral radiance in 

Wm-2sr-1mm-1.  𝐾1and 𝐾2are calibration constant 1 and 2 respectively. For Landsat 8 Band 10, 

K1 value is 774.89 and   K2 value is 1321.08 respectively. For Aster band 13, K1 value is 866.46 

and   K2 value is 1350.06 respectively. The next step was to compute the land surface emissivity 

(ε) following the procedures of Sobrino et al. (2004). 

 

The land surface emissivity (ε) values ranges between 0.97 and 0.99. The land surface 

emissivity (ε) was assigned to be 0.97 at NDVI < 0.2 and 0.99 at NDVI > 0.5 using the 

Normalized Difference Vegetation Index (NDVI) (Tucker 1979) thresholds method proposed 
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by Sobrino et al. (2004). When 0.2 ≤ NDV I ≤ 0.5, the emissivity was calculated by the 

following formula;  

ε = 0.004 * Pv + 0.986…………………………………….………………………………..(5.2) 

where Pv is the Proportion of Vegetation (Carlson and Ripley 1997,  Sobrino et al. 2004). The 

Proportion of Vegetation (Pv) of each pixel was determined from the NDVI using the following 

equation (Carlson and Ripley 1997) 

𝑃𝑣 = (
 𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛  

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
) ²…………………………….……………….…….…...(5.3) 

where NDVImin is the minimum NDVI value (0.2) where pixels are considered as bareland or 

bare soil (non-vegetated areas) and NDVImax is the maximum NDVI value (0.5) where pixels 

are considered as healthy vegetation and dense vegetation. The Normalized Difference 

Vegetation Index (NDVI) (Tucker 1979) which is spectral index of green vegetation cover was 

derived from Aster and Landsat 8 satellite data by using the following equation: 

𝑁𝐷𝑉𝐼 = (
 𝑁𝐼𝑅−𝑅  

𝑁𝐼𝑅+𝑅
)…………………………………….……...…………..…………(5.4) 

Where R and NIR are the red and infrared bands respectively as derived from image data. 

 

Lastly, the emissivity-corrected LST was computed using the following equation (Weng et al. 

2004, Sobrino et al. 2004). 

LST = [
𝑇𝐵

1+(𝜆𝜎𝑇𝐵/(ℎ𝑐))ln𝜀
] − 273.15…………………………………...………….(5.5)   

where LST = land surface temperature, TB = at-satellite brightness temperature, λ = wavelength 

of emitted radiance (λ = 10.8 µm for Landsat TIRS Band 10), σ is Boltzmann constant 

(1.38×10-23J/K),h=Planck’s constant (6.626×10−34Js), c=velocity of light (2.998×10-8m/s). The 

retrieved LST values were later converted from Kelvin temperature to degrees Celsius (°C) by 

subtracting 273.15 from the derived pixel values. An absolute zero, 0 °C equals 273.15 Kelvin 

(K). 

5.2.6 Spatial clustering and dispersion of vegetation based on Getis-Ord Gi* 

Based on NDVI data (Tucker 1979), Getis-Ord Gi* (Getis and Ord 1992, Ord and Getis 1995) 

was calculated in ENVI image processing program to depict the spatial clustering and 

dispersion of vegetation patterns.  This method identifies the presence of hot spots (clustered 

patterns) and cold spots (dispersed patterns) within its neighbouring features over an entire 

geographical area. The Getis-Ord Gi* statistic was calculated  according to following formula; 
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𝐺𝑖
∗(𝑑) =

 ∑ 𝑤ij
𝑛
𝑗=1 (𝑑)𝑥𝑗−𝑊𝑖

∗𝑥̅

𝑠[𝑊𝑖
∗(𝑛−𝑊𝑖

∗)/(𝑛−1)1/2]
…………………………..………………….(5.6) 

 
𝑥̅ and s denotes mean and standard deviation, respectively. 

Basically, Wij is calculated based on the conceptualized spatial relationship and in reference 

to d. Therefore, it is often written as wij (d). Following the methodology of Myint et al. (2015), 

Getis-Ord Gi* values were standardised and normalized to the value range of −1 to 1. Positive 

values of Getis-Ord Gi* statistic represent highly clustered and homogeneous patterns that are, 

on average, greater than the mean. Getis-Ord Gi* of negative values represent highly dispersed 

and heterogeneous patterns that are less than the mean. Getis-Ord Gi* values of zero indicate 

random patterns suggesting no apparent spatial clustering. Getis-Ord Gi* statistic has 

previously been used in rainfall modelling (Liu et al.2019), heat vulnerability assessment (Wolf 

and McGregor 2013), urban criminal  analysis (Craglia et al. 2000), roads incident management 

(Songchitruksa and Zeng 2010), as well as in agriculture (Chopin and Blazy 2013, Rud et al. 

2013).  

 

5.2.7 Statistical analysis  

The normal distribution of each dataset was tested using the Kolmogorov–Smirnov test. The 

Kolmogorov–Smirnov test (K–S test/ KS test) verified that all significant indicators were 

normally distributed, meeting the basic requirements of Pearson's correlation  analysis. 

Therefore, the Pearson’s product-moment correlation coefficient  was used to examine the 

correlation between LST and the selected landscape metrics of vegetation after it was 

discovered that the data were normally distributed based on Kolmogorov–Smirnov test.. LST 

was the dependent variable in our analysis and landscape metrics of Edge density (ED), Mean 

Patch Size (MPS), Area Weighted Mean Shape Index (AWMSI), Area Weighted Mean Patch 

Fractal Dimension (AWMPFD) and Patch Cohesion Index were the independent variables. A 

negative correlation means that the landscape pattern component can reduce LST  and a 

positive correlation means it can increase and enhance LST. The landscape metrics of 

vegetation derived from ASTER image and Landsat 8 were related to the LST  of the same 

images respectively. Since Sentinel 2 does not have thermal bands, the landscape metrics of 

vegetation derived from Sentinel 2 of 2017 were compared to the LST  acquired from Landsat 

8 Thermal Infrared Sensor (TIRS) of  2017. 
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5.2.8. Computation of spatial autocorrelation 

This section will introduce the concepts of spatial regression analysis and Moran’s I index 

(Cliff and Ord 1981, Legendre and Fortin 1989, Moran 1950). The Moran’s I index was used 

to measure the spatial autocorrelation of LST for the ASTER acquired on 09 September 2010 

, the Sentinel 2 acquired on 24 October 2017  and on the Landsat 8 acquired on 23 October 

2017. Moran's I, is widely used to capture the degree of spatial concentration or dispersion for 

the variables over an entire geographical space, which is defined as follows; 

𝑀𝑜𝑟𝑎𝑛′𝑠 𝐼 =
𝑛      ∑𝑖 ∑𝑗 𝑤𝑖𝑗(𝑑)(𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)  

∑𝑖 ∑𝑗𝑤𝑖𝑗                       ∑𝑖(𝑥𝑖− 𝑥̅)2 …….…………...…………..(5.7) 

i and j depict the various locations, xi and xj denotes the values of the variable x of geographical 

location i and j respectively, 𝑥̅  is the mean value of the variable and wij represents a spatial 

weight matrix for measuring spatial proximity (connectivity) between i and j geographical 

areas or locations. The Moran’s 1 is standardized to values ranging from −1 to 1, hence positive 

values of Moran’s I points to significant spatial autocorrelation (0 to ≥ 1) and a tendency of 

more spatial clustering. On the other hand, the negative values of Moran’s I values points a 

tendency of spatial dispersion (0 to ≥ -1). On other hand, a zero signal the absence of spatial 

autocorrelation in a geographical space. 

 

The Moran’s I was conducted using a queen contiguity matrix in defining the neighbouring 

size of LST. The queen contiguity weights criterion is recommended in practice in order to deal 

with potential inaccuracies in the polygon file (such as rounding errors) (Anselin 2003, Anselin 

2006). After discovering significant spatial autocorrelation, we, therefore,  conducted Lagrange 

Multiplier test. This was performed  in the Geoda software package (Anselin 2003, Anselin 

2006) to determine the more appropriate spatial autoregression models specifications: either 

the spatial lag or spatial error that integrate spatial autocorrelation. One of the critical outcomes 

of this study is that the inclusion of any of the spatial autoregression model (spatial lag or 

spatial error) into examining the correlation between LST  and spatial configuration patterns 

of urban vegetation significantly results in a decrease in the Akaike Information Criterion 

(AIC), when comparing the OLS and spatial lag models.  

 

5.2.9  OLS and SLM models analysis 

Two regression models, the Ordinary Least Squares (OLS) (Model 1) and a Spatial Lag model 

SLM (Model 2) were developed to estimate the mean LSTas the dependent variable. The 
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selected landscape indices of Mean Patch Size, Area Weighted Mean Patch Fractal Dimension 

Index, Area Weighted Mean Shape Index and Edge Density were independent variables at 10m, 

15m and 30m spatial resolution. The Ordinary Least Squares (OLS) is described as: 

𝑦 = 𝑋β + ϵ … … … … … … … … … … … … … … … … … … … … … ……..…………(5.8) 

where y denotes the dependent variable, X is the matrix of explanatory variables without an 

intercept term; β is a vector of slopes; and ε is a vector of random error terms. Since most 

geographical variables are spatially autocorrelated, spatial regression models (Spatial Lag 

Model, Spatial Error Model) are more suitable than Ordinary Least Squares (OLS) models for 

analysing the relationships between dependent and independent variable  (Song et al. 2014). In 

particular spatial regression models have stronger explanatory power and lower spatial 

autocorrelations of residuals compared with Ordinary Least Squares (OLS) (Song et al. 2014)..  

Therefore, spatial regression models including the spatial lag model (SLM) are often used. The 

SLM is expressed as follows  

𝑦 = 𝜌Wy + 𝑋β + ϵ … … … … … … … … . . … … … … … … … … … … … … . … … . ..(5.9) 

where 𝜌 is a spatial autocorrelation parameter; and Wy is the spatial weight matrix. 

The OLS and SLM regression models were compared to evaluate their performance and their 

goodness fit in explaining the relationship between LST and explanatory variables of landscape 

metrics. The fitness of the OLS and SLM models were compared using four parameters 

including R2, log likelihood, Akaike Information Criterion (AIC) and Schwarz criteria. The 

higher the R2 value and the log likelihood of the model, the higher the model fitness. On the 

other hand, the lower the AIC and Schwarz criteria indicates a better model fit. The analysis 

was conducted in the GeoDa software. Figure 5.2 illustrates the research methodology 

undertaken in this study.  
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Figure 5.2.  Flowchart of the research methodology and the steps presented in this study. 

 

5.3 Results 

5.3.1 Land cover classification accuracy 

The land cover classification for Harare metropolitan city based on the four satellite imagery 

datasets had a high overall accuracy, which to some degree could be ascribed to the simple land 

cover classification scheme used. The overall accuracy was 96.12% in 2010, 96.13 % in 2013. 

It was 97.14% and 97.32% for Landsat 8 acquired on 23 October 2017 and Sentinel 2 data 
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acquired on 24 October 2017 respectively. On the other hand, the Kappa coefficient was 0.95 

for ASTER data acquired on 09 September 2010 and Landsat 8 acquired on 28 October 2013, 

0.96 for both Landsat 8 acquired on 23 October 2017 and Sentinel 2 data acquired on 24 

October 2017 respectively. This is more than 85%, the minimum level of mapping accuracy 

generally required for most land cover studies that use remote sensing data products (Anderson 

et al.1976). 

 

A significant proportion of vegetation is mainly concentrated in the northern part of the city 

whilst small, scattered vegetation is dominant in the southern, western and eastern part of 

Harare. In 2010, the total area of vegetation comprised 28432.7 hectares (ha) and non-

vegetation was 69625.7 ha. In 2013, the total area of vegetation was approximately 25377.2 ha 

and non-vegetation was around 72687.24 ha. The total area of vegetation was 19582.6 ha and 

non-vegetation was 78480.9 ha on Landsat 8 acquired on 23 October 2017. On the other, the 

total area of vegetation was 25958.6 ha and non-vegetation was 72126.2ha on Sentinel 2 

acquired on 24 October 2017. 

 

5.3.2 Spatial variability pattern of  LST  

The descriptive statistics of LST (°C) derived from Aster and Landsat data in 2010, 2013 and 

2017 are shown in Table 5.3. In 2010, the LST) derived from ASTER data ranged from 18.89°C 

to 45.50°C (Table 5.3). On the other hand, LST derived from Landsat data of 2013 varied from 

22.93°C to 51.05°C. In 2017, LST varied from 23.81°C to 48.5 °C. The mean LST was 35.93°C 

in 2010, increased to 36.71°C in 2013 and then 38.26°C in 2017 indicating the increasing 

warming trend in the study area. In 2010, 2013 and 2017, the significantly low values of LST 

dominated the northern side of the city suggesting the presence of dense vegetation and a cooler 

region (Figure 5.3).  

 Table 5.3. Descriptive statistics of  LST  

Acquisition date *Min (°C) *Max (°C) Mean (°C) *SD 

09/09/2010 (ASTER) 18.89 45.50 35.93 2.96 

28/10/2013 (Landsat data) 22.93 51.05 36.71 3.58 

23/10/2017 (Landsat data) 23.81 48.5 38.26 2.89 

*Min-Minimum, *Max (Maximum), SD* (Standard Deviation). 

 

On the other hand, significantly high values of LST dominate the sparsely vegetated western, 

southern and eastern part of Harare indicating a warmer region. The western, southern and 

eastern side of Harare is a highly urbanised area with a heavy concentration of industries and 
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residential areas, indicating the impact of impervious surfaces in raising higher land surface 

temperature. 

 

 
Figure 5.3. The spatial distribution of (a) LST derived from Aster data acquired on 09 

September 2010 (b) 28 October 2013 and (c) 23 October 2017. Low values of LST are heavily 

concentrated in the northern side of the city and significantly high values of LST in the sparsely 

vegetated western, southern and eastern side of the city. 

 

5.3.3. The correlation between LST and Getis-Ord Gi* of vegetation  

The Pearson correlation coefficients indicated a relatively moderate to a strong negative linear 

correlation  between LSTand Getis-Ord Gi*.The relationships between the Getis-Ord Gi* and 

LSTwas (r = −0.67, p< 0.05) on Aster data of 2010, (r = − 0.60, p< 0.05)  on Landsat data of 

2013, (r = − 0.60, p< 0.05) on Sentinel 2 data of 2017  and (r = − 0.64, p< 0.05) on Landsat 

data of 2017. This suggests that the spatial clustering of vegetation has strong impact in 

decreasing LST and correlate strongly with cooler surface temperatures.  

 

The spatial clustering of vegetation based on Getis Ord Gi* ranged from being dispersed 

(negative values), random (zero) and to highly clustered (positive values) as indicated in Figure 

5.4. The statistically significant high attribute values of Getis Ord Gi* were heavily 

concentrated in the northern part of Harare, indicating that LST was low in geographical 

locations with high and positive clustering of vegetation (Figure 5.4). Conversely, LST was 
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high in areas with low, negative clustering and dispersed vegetation patches in the western, 

southern, and eastern side of Harare (Figure 5.4). Therefore, high LST closely correlate under 

dispersed and isolated vegetation patches. 

 
 

  
Figure 5.4. Getis-Ord Gi* derived from (a) Aster data of 2010  (b) Landsat data of 2013 and  

(c) Landsat data of 2017. High positive values of Getis-Ord Gi*represent a highly clustered 

pattern and low and negative values represent highly dispersed patterns of vegetation. 

 

5.3.4 The relationship between landscapes metrics of vegetation and LST  

The patch size, density, shape complexity and connectivity of vegetation have an important 

influence on LST. Table 5.4 indicates that the landscape metrics of urban vegetation patterns 

had consistently negative relationships with LST (p<0.05), but the magnitude of the correlation 

varied by spatial resolution at 10m (Sentinel 2), 15m (ASTER) and 30m (Landsat 8). The 

AWMPFDI, AWMSI, Edge Density and Mean Patch Size of landscape metrics were less 

correlated with LST  at 30m of Landsat 8 imagery data acquired on 28 October 2013 and 23 

October 2017 than at 10m (Sentinel 2) and 15m (ASTER) spatial resolution. This suggests that 

the negative correlations between LST and landscape metrics of AWMPFDI, AWMSI, Edge 

Density and Mean Patch size were stronger at finer spatial resolution.  
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Table 5.4: Pearson’s correlation coefficients (R-values) showing the degree of associations 

between LST (°C) and landscape metrics 

 COHESION  MPS  ED  AWMSI  WMPFDI 

09/09/2010 ASTER     (15m) -0.65 -0.26 -0.32 -0.37 -0.32 

28/10/2013 (Landsat data) (30m)     -0.68 -0.16 -0.21 -0.07 -0.09 

23/10/2017 (Landsat data) (30m)     -0.69 -0.15 -.0.24 -0.08 -0.11 

24/010/2017 (Sentinel 2) (10m)     -0.61 -0.40 -0.37 -0.49 -0.34 

MPS- Mean Patch Size, AWMPFDI- Area Weighted Mean Patch Fractal Dimension Index, 

AWMSI- Area Weighted Mean Shape Index, ED- Edge Density, COHESION -Patch cohesion 

index. 

 

Although all the landscape metrics had a significant negative correlation with LST, , Patch 

Cohesion index (COHESION) had the most consistently strong correlation with LSTacross all 

three spatial resolutions (10m, 15m and 30m) (p<0.05).  Table 5.4 shows that the Patch 

Cohesion index had relatively higher and stronger correlation at 30m spatial resolution (r=− 

0.69, p<0.05) in 2017 data and (r=− 0.68, p<0.05) in 2013 for Landsat 8 than at 10m (r=−0.61, 

p<0.05) for Sentinel 2 data acquired in 2017 and 15m (r=−0.65, p<0.05) for ASTER data of 

2010 as indicated in (Table 5.4). This suggests that the relationship between LSTand Patch 

Cohesion index increase with subsequent decrease of spatial resolution. Besides, the results of 

the Patch Cohesion index may indicate that highly connected and less isolated vegetation 

patterns do have strong cooling effect and impact in decreasing LST. Higher vegetation 

connectivity (i.e. less isolation of vegetation patches) are associated with a greater proportion 

of high, contiguous vegetation patterns, reflecting shorter distances between the vegetation 

patches and may contribute to lower and minimum LST values (e.g. 18oC, 22 and 23oC) as 

indicated in Figure 5.5. These are illustrated with higher vegetation connectivity ranges (<50%-

70%).  

 

On the other hand, lower vegetation connectivity (higher degree of isolation of vegetation 

patches) contribute to higher and maximum LST values (e.g. 45oC, 48oC and 51oC) as 

illustrated in Figure 5.5. Areas with less connected vegetation are found in the western, 

southern and eastern side of the Harare. These are illustrated with lower vegetation connectivity 

ranges (<0%-30%). Less connected vegetation (<0%-30%) represent the highly fragmented 

nature of vegetation patches that are smaller, isolated and scattered across the landscape.  
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Figure 5.5. Patch cohesion index derived from (a) Aster data of 2010 (b) Landsat data of 2013 

and (c) Landsat data of 2017 illustrating that high vegetation connectivity corresponds to lower 

LST and vice versa.     

 

5.3.5 Spatial autocorrelation of  LST  

Significant spatial autocorrelation of LST  was detected which indicated that similar LST (°C) 

values were closely clustered together in the study area. Table 5.5 indicates that the value of 

Moran's I was 0.21 (p<0.001) for Sentinel 2 data of 2017, 0.18 (p<0.001) for Aster data of 2010 

and 0.27 (p<0.001) for Landsat 8 of 2017 data which meant that there was less than a 0.1% 

chance that the observed spatial clustering pattern in the study was due to random chance. Due 

to the significant spatial autocorrelation of LST  found in the study area, it implied that the 

results of the Ordinary Least Squares model regression model would have been biased without 

the adoption of a spatial regression model. When applied to spatial data with spatial dependence 

(e.g LST), OLS regression models are known for violating the independent observations and 

uncorrelated error assumptions of classical statistical approaches. 

 

5.3.6 Comparisons of OLS and SLM regression models  

Table 5.5 shows the results of Model 1 (Ordinary Least Squares regression) and Model 2 

(Spatial Lag regression) that examined the relationships between mean LST  and spatial 
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configurations of vegetation based on landscape metrics as independent variables at different 

spatial resolutions. The three different spatial resolutions were based on 10m spatial resolution 

(Sentinel 2) acquired on 24 October 2017, 15m spatial resolution (ASTER) acquired on 09 

September 2010 and 30m spatial resolution (Landsat 8) acquired on 23 October 2017. The 

Landsat acquired on 28 October 2013 was not considered. The Model 1(OLS) explained about 

11% (R2 = 0.1058) for Sentinel 2 (10m), 13% (R2 = 0. 1304) for Aster data (15m) and 53% (R2 

= 0.5285) for Landsat 8 data (30m) of the variance in the relationship between landscape 

metrics and mean LST .  

 

On the other hand, Model 2 (SLM) explained 51% (R2 = 0.5076) for Sentinel 2 (10m), 52% 

(R2 = 0.5153) for Aster data (15m) and 64% (R2 = 0.6353) for Landsat 8 data (30m) of the 

variance in the relationship between mean LST  and spatial configuration of vegetation. This 

indicates that more than 50% of the variations in mean LST were estimated and explained by 

the selected landscape metrics in SLM model. In both models, the values of R² increased with 

subsequent decrease of the spatial resolution.  

Table 5.5. Results of Ordinary Least Squares (OLS) and Spatial lag regression model 

(SLM) analysis  
                                     Models 

Model 1: OLS  Model 2: SLM 

Parameter Sentinel 2 (10m)   

  

ASTER 

(15m) 

Landsat 8 

(30m) 

Sentinel 2 

(10m)     

ASTER 

(15m) 

Landsat 8 

(30m) 

R-squared 

(R2)   

0.11    0.13   0.53   0.51  0.52   0.64  

LL -110805 -58143.7 -26092.2 -98932.8 -51344.8 -24594.7 

AIC 221621 116299 52196.4 197880 102704 49203.4 

SC 221674 116348 52241.2 197941 102761 49255.7 

Moran's I  0.21 0.18        0.27          

LL-log likelihood; AIC-Akaike Information Criterion; and SC-Schwarz criterion,  

 

Besides the higher R² values, the results demonstrated in the SLM (Model 2) were characterized 

by higher log likelihood than those in OLS model. Both AIC and Schwarz criteria were smaller 

in SLM model than in OLS model. Based on the four parameters used, the comparison of these 

two models suggests that the SLM was superior and performs better than OLS model for 

investigating the spatial configurations of vegetation on land surface temperature. 
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5.4. Discussion 

This study examined the effect of landscape pattern and spatial configuration of vegetation on 

land surface temperature in Harare metropolitan city. The research findings demonstrated that 

the effect of spatial configuration of vegetation on LST significantly vary with a particular 

landscape metrics used. The results of Pearson’s correlation coefficient of LST with landscape 

metrics suggest that highly connected (Patch cohesion index), irregularly shaped vegetation 

patterns (AWMSI and AWMPFD), patch size (MPS) and green space edge (edge density) 

conditions significantly reduce LST. This corroborates  previous studies that show that the 

landscape metrics of vegetation were significantly correlated with land surface temperature 

(Kong et al. 2014a, Maimaitiyiming et al. 2014, Li et al. 2012, Zhang et al. 2009, Zhou et al. 

2011). This is largely because different landscape patterns and spatial configurations such as 

the patch shape, mean patch size, connectivity and edge density can influence the energy fluxes, 

heat flow and thermal exchanges between vegetation and its nearby locations, triggering 

different warming and cooling effects. 

 

 A negative correlation between land surface temperature and the shape complexity and mean 

patch size of the patches of vegetation was found in Beijing, China (Li et al. 2012). Several 

studies (Asgarian et al.2015, Bao et al. 2016, Kong et al. 2014, Li et al.2012, Zhang et al. 2009, 

Zhou et al.2011) also found that green spaces with more complex shapes could produce higher 

cooling effects. In our study, the negative correlation between the surface temperature and 

shape complexity were relatively higher on AWMSI than AWMPFD. This is not surprising as 

in computing the average shape complexity, the larger patches are weighted more heavily in 

the AWMSI than smaller patches (McGarigal et al.2002). The negative correlations between 

edge density of vegetation patches with LST were observed in the Mediterranean cities of 

Europe (Nastran et al. 2019), Aksu city in China (Maimaitiyiming et al. 2014) and in Baltimore 

in USA (Zhou et al. 2011). Zhou et al (2011) noted that LST  decreased with subsequent 

increase in the fraction of urban vegetation and edge density. 

 

The green vegetation patches are large, more complex and contiguous in the northern part of 

Harare. On the other hand, vegetation patches are fragmented and dispersed in the western, 

southern and eastern side of  Harare. A previous investigation by Mushore et al. (2017) reported 

higher LST  in the sparsely vegetated western, southern and eastern side of the city. Due to 

high thermal load, small green spaces are unlikely to deliver significant cooling effects  (Bao 
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et al. 2016). Conversely, the densely vegetated northern part of Harare had consistently lower 

LST . Large, contiguous vegetation patches greatly offset the warming effects, are more heat 

tolerant and have been found in previous studies to produce stronger cooling effects than that 

of several smaller and isolated vegetation patterns (Li et al. 2012, Maimaitiyiming et al. 2014, 

Zhang et al. 2009). Dugord et al (2014) also reported that larger and aggregated forest patches 

significantly reduced surface temperature in Berlin in Germany.  

 

Based on a Getis-Ord Gi*, our results corroborates with previous studies that indicate that 

clustered patterns of urban vegetation lower surface temperature more effectively (Fan et al. 

2015, Peng et al. 2016) than more fragmented (dispersed) patterns of urban vegetation that 

raise LST as indicated in Li et al. (2012) and  Zhang et al.(2009). Clustered patches of 

vegetation may increase latent heat exchanges through evapotranspiration, thereby lowering 

the sensible heat emitted from the earth surface. Furthermore, clustered vegetation patches may 

provide more shade onto the ground by absorbing solar radiation, significantly reducing LST. 

 

4.1. Effect of spatial resolution on LST and landscape metrics relationship 

The effect and magnitude of landscape metrics of vegetation on LST was significantly  affected 

by the different spatial resolution of the satellite image data, which confirms the previous 

findings (Li et al. 2013). Except of Patch Cohesion index, the correlation coefficients of LST 

with landscape metrics of AWMPFDI, AWMSI, Edge Density and Mean Patch size declined 

significantly with the decrease of spatial resolution becoming stronger at finer spatial resolution 

of 10m (Sentinel 2) and 15m (ASTER) than at 30m (Landsat 8). Finer rather than low satellite 

imagery data are known to effectively extract and retrieve number of small, isolated vegetation 

patches in urban areas. This also explains a non-significant and low correlation coefficient 

between LST and landscape metrics of AWMPFDI, AWMSI, ED, Edge Density and Mean 

Patch size at 30m Landsat 8 imagery data.  

 

On the other hand, several reasons can be attributed for the higher negative correlation between 

LST and Patch Cohesion index at 30m (r=− 0.69) than at 15m (r=− 0.65) and 10m (r=− 0.61) 

resolutions. One of the reasons is that, Patch cohesion index is susceptible to the aggregation 

and clumping of the focal class or patch type (McGarigal et al. 2002). Patch cohesion index 

tends to increase in its spatial distribution as focal class patch type becomes more clumped or 

aggregated consequently creating a more and highly connected patch (Gustafson 1998). Hence, 
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Patch Cohesion index tends to be biased towards larger patches than smaller patches. In low 

and coarse image data such as the 30m (Landsat 8), small patch sizes of vegetation easily 

detected  from the fine and high resolution image data may be identified as single large 

vegetation patch. Patch cohesion index  has been previously found to exhibit less fragmentation  

levels at coarse spatial resolutions (Saura 2004). 

 

4.2. The choice of OLS and SLM models  

LST is spatially autocorrelated because of land surface heat fluxes (Song et al. 2014). Moran I 

showed that there was significant effects of spatial autocorrelation of land surface temperature 

in the study area. This implied that the results of the OLS regression model would have been 

biased without controlling spatial autocorrelation effects, which are often influenced by nearby 

locations. Significant spatial autocorrelation of spatial data such as land surface temperature 

and its relationship with spatial configurations of vegetation have high possibility of  violating 

the basic assumption of independence among spatial data that is required by widely used 

parametric statistical tests. Conventional Pearson correlation and Ordinary least squares 

regression analysis do not consider spatial autocorrelation. 

 

To solve the biases associated with spatial dependence, spatial regression models are often 

employed. This is because spatial regression methods provide more reliable and robust 

prediction of spatial autocorrelation effects in spatial datasets. The comparison of OLS and 

SLM models showed that all the parameters such as R2, log likelihood, AIC and Schwarz 

criteria were better estimated  in the SLM model than in OLS model. These results  confirm 

previous research findings studies that emphasize the utility of spatial regression methods (Li 

et al. 2012, Song et al. 2014) which are necessary when examining the relationships between 

mean land surface temperate and spatial configurations of vegetation.  

 

In both SLM and OLS, our results indicated that Landsat 8 had better model parameter 

estimations and significant reduced statistical bias than the Aster and Sentinel images on the 

effects of landscape patterns of urban vegetation on LST. However, this must be interpreted 

with caution as coarse Landsat 8 data could overestimate the mitigation impacts of landscape 

patterns of urban vegetation on the UHI effect. The spatial resolution of  Landsat data  may not 

be highly detailed enough to predict the landscape patterns of urban vegetation on LST. This 

is because small urban green patches are not easily extracted and recognizable in low and 

medium resolution image data such as the 30m resolution Landsat data, thus leading to 
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underestimation of the amount of urban greenspace (Li et al. 2013, Townsend et al. 2009). 

Many small urban vegetation patches identified from the fine resolution imagery (Sentinel and 

Aster) may be mapped as one single large vegetation patch when using coarse Landsat imagery 

suggesting that clumped or aggregated urban vegetation is better than fragmented vegetation 

in decreasing LST. Although the objective of this research was not to identify a single optimal 

spatial scale or resolution for mapping and examining  the spatial configurations patterns of  

urban vegetation on LST, our results could be expanded.  The use of satellite data with higher 

spatial resolution such as QuickBird, IKONOS, SPOT and World View can be employed to 

gain more reliable parameter estimates and finding the optimal scale and resolutions at which 

the contribution of landscape patterns of urban vegetation on LST to model fitting is maximum 

and that of spatial autocorrelation is minimum. 

5.5. Conclusions and Recommendations 

Understanding the landscape pattern and configuration of green spaces is important in climate 

adaptation and mitigation of the UHI effects in rapidly growing cities and sprawling 

metropolitan regions. Due to continuing fragmentation of green spaces in urban areas, urban 

planners should optimize the landscape patterns and the spatial configurations of urban 

landscapes by aggregating or clustering vegetation. Clustered or clumped vegetation could be 

effective in mitigating urban warming effect and maximizing cooling effects. In general, this 

study demonstrated that the Getis Ord Gi* and landscape metrics can convey meaningful 

information on the spatial configuration of vegetation and its effects on different levels of 

warming and cooling in a landscape. The effects of finer spatial resolution generally had better 

correlation coefficients of spatial configurations of urban vegetation with land surface 

temperature providing important indications of specific spatial resolutions at which maximum 

warming and cooling effects are achieved. Spatial regression methods are effective in dealing 

with spatial dependency and provide robust and reliable prediction of the relationship between 

spatial configuration of urban vegetation and LST at specific locations in alleviating urban heat 

island effects. 
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6.SEASONAL LAND SURFACE TEMPERATURE AND ITS IMPACTS ON 

ECOLOGICAL, SPATIAL CONFIGURATION AND CONNECTIVITY OF URBAN 

VEGETATION PATTERNS  

                       

 

This chapter is based on: 

Pedzisai Kowe, Onisimo Mutanga, John Odindi, Timothy Dube, “Seasonal land surface 

temperature and its impacts on ecological, spatial configuration and connectivity of urban 

vegetation patterns in Harare metropolitan city, Zimbabwe,” GIScience and Remote Sensing, 

under revision 
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Abstract 

The urban heat island (UHI) effect is a growing social-economic and ecological challenge 

affecting among others, urban climate, public health and urban energy demand. Several studies 

have highlighted the value of urban green ecology in mitigating the negative effects arising 

from UHI effects. Whereas the effects of UHI are hugely influenced by seasonal climatic 

variability and vegetation density, the implication of seasonal spatial configurations (clustered 

or dispersed) and connectivity of vegetation have been largely ignored in the UHI literature. In 

this study, we combined landscape metrics, spatial statistics and land surface temperature 

(LST) to quantify the spatial configuration and connectivity of vegetation and its impact on 

seasonal surface temperature in Harare metropolitan city, Zimbabwe. To represent the four 

different seasons (spring, winter, autumn and summer), remotely sensed Landsat 8 data (optical 

and thermal) were acquired between May 2015 to October 2018.  The data were used to retrieve 

urban green spaces, LST and the Patch Cohesion Index (%), a landscape connectivity metric 

to determine the city’s vegetation connectivity. The spatial configuration patterns (dispersed or 

clustered) of vegetation were determined using a continuous local spatial autocorrelation index 

of local Moran’s I. Results showed that UHI intensities were higher during warmer and summer 

months, lower during the cooler spring, winter and autumns months. Local Moran's I of urban 

vegetation showed a strong negative correlation with LST in all seasons, implying that less 

fragmented but clumped or clustered vegetation were more efficient in assimilating and 

reducing urban heat than dispersed patterns. In addition, the negative correlations of Patch 

Cohesion Index (%) with LST in all seasons implied that highly connected vegetation patterns 

are more beneficial in decreasing LST throughout the year. These findings provide valuable 

insight into how the spatial configuration and connectivity of urban vegetation affect urban 

thermal environment across different seasons. The study offers an opportunity for informed 

and effective urban planning and design, useful in urban socio-ecological sustainability and 

climate mitigation. 

 

Keywords:  

Connectivity; Patch Cohesion Index; Seasonal; urban vegetation; land surface temperature; 

Harare,  
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6.1 Introduction 

The rapid urban expansion across the world has led to increasing surface temperatures due to 

conversion of natural vegetated areas to impervious surfaces (Mallick et al.2008). As the 

landscape becomes urbanised, it fragments an area’s natural landscape, reduces its diversity 

and abundance and affects is spatial configuration (i.e. shape complexity, density, aggregation 

and cohesion). Hence, urbanization leads to isolation of vegetation cover and green spaces, 

limiting connectivity of urban greenery. Buildings and impervious surfaces such as buildings, 

roads and pavements have a high thermal conductivity that significantly increases the heat 

storage capacity of cities. Such change leads to significantly warmer and higher temperatures 

than a surrounding rural area, creating an urban heat island effect (UHI)(Oke 1982,Voogt and 

Oke 2003).  

 

The UHI phenomenon affect the daily lives of urban dwellers and sustainability of cities. The 

UHI effects degrades air quality by elevating the  emissions of air pollutants and greenhouse 

gases such as sulphur dioxide (SO2), nitrogen oxide (NOx ), volatile organic compounds (VOCs) 

and carbon dioxide (CO2) whose formation further accelerate surface temperature and heat 

waves (Akbari et al. 2001, Fischer et al. 2007). Furthermore, UHI may compromise human 

health and comfort, trigger heat-related diseases and premature deaths (Anderson and Bell 

2010, Jenerette et al. 2007). UHI also increases electricity consumption (Battista et al.2016) 

and decreases water quality (Heaviside et al.2017, Hester and Bauman 2013). Urban vegetation  

and green spaces have been found to be effective in mitigating UHI effects especially during 

warmer seasons (Chen et al. 2012, Hamada and Ohta 2010, Shashua-Bar and Hoffman 2000, 

Santamouris 2001, Taha 1997). In this regard, previous studies have extensively established an 

inverse correlation between land surface temperature (LST) and the amount of vegetation cover 

based on vegetation indices such as Normalized Difference Vegetation Index (NDVI) (Carlson 

et al.1994,Voogt and Oke 2003). Such studies have also shown that vegetation varies with 

seasons as determined by the onset of growth, maturity, senescence and full dormancy 

phenological cycles (Zhang et al. 2003, Zhang et al. 2015). Such dynamics affect the energy 

fluxes and balance of ecosystems on the landscape, in turn influencing thermal variability 

within an urban landscape.  

 

Although the effects of spatial composition of vegetation on urban land surface temperature 

are well established (Chen et al. 2016, Connors et al. 2013, Kong et al. 2014, Li et al. 2017, 
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Peng et al.2016), previous studies were only limited to the summer season. Hence, there is 

paucity of studies in the literature on how the seasonal effect of spatial configuration of 

vegetation affects surface temperatures in African cities. In fact, studies of the UHI 

phenomenon in African cities have been mainly conducted in few cities and  urban areas 

including eThekwini municipality in South Africa (Odindi et al.2015), Harare in Zimbabwe 

(Mushore et al.2018) and Ibadan in Nigeria (Abegunde and Adedeji 2015). Simwanda et al. 

(2019) recently carried a comparative analysis of UHI in four rapidly growing African cities of 

Lagos (Nigeria), Nairobi (Kenya), Addis Ababa (Ethiopia) and Lusaka (Zambia). However, 

the study did not consider the influence of spatial configuration of vegetation on surface 

temperature but focused on the effects of urban growth and land use and land cover changes 

on UHI. 

 

Landscape metrics have particularly been widely utilized in linking surface temperature to 

spatial configuration (Cao et al. 2010, Connors et al. 2013, Kong et al. 2014, Li et al. 2011; 

2012; 2016; 2017, Peng et al. 2016, Zhang et al. 2009, Zhou et al. 2011). Linking landscape 

metrics to urban thermal responses of vegetation cover is useful in capturing the impact of 

spatial configuration of land surface temperature through its effects on heat and energy 

exchange and flows in a landscape (Connors et al. 2013, Chen et al. 2016, Kong et al. 2014, Li 

et al. 2017 and Peng et al. 2016). For example, Zhibin et al. (2015) found an inverse relationship 

between Largest Patch Index (LPI) of green space and LST. Similarly, green spaces and 

vegetation with more complex shapes have been found to significantly produce higher cooling 

effects (Bao et al. 2016, Li et al. 2012, Li et al. 2013, Zhang et al. 2009,  Zhou et al. 2011). 

 

Although discrete landscape metrics can convey important information on material energy 

flows in a landscape, not all landscape metrics can be related to heat energy exchanges and 

flows in a city (Chen et al.2016). Many landscape metrics are highly correlated with each other, 

consequently producing redundant information, thus making it difficult to make useful 

strategies for urban heat mitigation (Song et al. 2014, Uuemaa et al. 2013, Li and Wu 2004). 

Furthermore, previous research  that focused on the role of landscape connectivity of vegetation 

in regulating surface temperatures are still limited (Zhou et al. 2011). To date, studies on the 

role of landscape connectivity of vegetation have mainly examined the impact of structural 

connectivity on biodiversity (Pascual-Hortal and Saura 2006), that include immigration rates 

and dispersal success (Goodwin 2000).  
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Furthermore, the influence of spatial clustering of urban vegetation on seasonal surface 

temperature remains largely unexplored. Spatial clustering is often computed using a 

continuous local spatial statistics methods like the widely used Local Moran's I (Anselin 1995), 

Getis-Ord Gi* statistic (Getis and Ord 1992, Getis and Ord 1996, Ord and Getis 1995), local 

Geary’s C and Moran’s I (Moran 1950). Local spatial statistics also referred to as Local 

Indicator of Spatial Association (LISA) can identify whether objects in a landscape are 

clustered, dispersed or randomly distributed (Cuzick and Edwards 1990). The Local Moran's I 

can effectively capture the spatial clustered and dispersed patterns of land cover characteristics 

(Fan and Myint 2014). In this study, we combined local Moran’s I and Patch Cohesion index 

to understand how spatial configuration and connectivity of urban vegetation affect urban 

thermal characteristics across different seasons in Harare metropolitan city in Zimbabwe. Such 

information is useful for informing strategies to optimise ecological functioning, regulate 

energy use, facilitate sustainable urban development and mitigate effects UHI and climate 

change. 

 

6.2. Materials and Methods 

6.2.1 Study area 

This research work was carried out in Harare metropolitan city (Latitude 17.83° and Longitude 

31.05°), the political capital and the major centre of industrial production, trade and commerce 

(Figure 6.1) in Zimbabwe. The city has a surface area of about 980.6 square kilometres and 

about 2.1 million people as per the 2012 population census (ZIMSTAT 2012). Harare 

metropolitan city has a flat topography in the southern part and a hilly topography in the 

northern part. The city falls within the subtropical highland climate, which is typically mild 

and cool with relatively longer sunshine hours. It experiences warm and hot summers (average 

temperature of 26°C) and cold winters (average temperature of 10°C). Generally, there are four 

distinct seasons in the city (1) Spring or transitional season from April to May (2), a cool, dry 

winter season from June to July (3), a warm  and dry season from August to October and (4) a 

wet summer season from November to March. 

 

The city’s landscape is heterogeneous and composed of various land cover types. It is 

surrounded by rural agricultural land, forests, wetlands, grasslands, industrial and residential 

areas (Figure 6.1). Harare metropolitan city has witnessed rapid urban expansion over the last 

decades (Kamusoko et al.2013) and the trend is expected to continue (Mushore et al. 2017). 
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Such rapid urbanization will inevitably generate UHI effecting, negatively affecting the 

environmental quality.  

 
Figure 6.1. The geographical location of the study area, Harare metropolitan city. 

 

6.2.2 Satellite data acquisition 

The Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) thermal 

bands of 2018 were used to obtain the city’s detailed urban vegetation cover and land surface 

temperature. Landsat 8 optical bands are the visible, near infrared, short-wavelength infrared 

and cirrus bands, which have a spatial resolution of 30m. The Landsat’s Thermal Infrared 

Sensor (TIRS) has two channels at 100 m (10.6–11.19mm; 11.5–12.51mm). Although Landsat 

sensor data are generally coarse for identification of individual features at fine scale, they are 

the most widely used data source for retrieving urban vegetation and land surface temperature 

(LST) for urban studies. Landsat data have high spatial resolution relative to other widely 

available thermal bands of sensors like 1km Advanced Very-High-Resolution Radiometer 

(AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). It has better 

temporal resolution than the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) thermal data. The available Landsat satellite cloud-free images were 

downloaded from the United States Geological Survey (USGS) website 

(http://earthexplorer.usgs.gov/).  
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Generally, the amount of cloud cover in Harare is high between December and April, therefore, 

the image data selected for this study were from May (spring, mild and cool), June (winter, 

cold and dry), August- September (cool and dry), October (hot and dry) to November (hot and 

wet). These correspond to spring, winter, autumn and summer seasons, respectively (Table 

6.1). We chose and used images of 2018 because there were more seasonal Landsat images 

available than in other calendar years. The non-availability of suitable images between 

December and April 2018 because of either cloud cover was not considered a major problem 

for the study as representative seasons were available. 

Table 6.1. Details of   Landsat 8 (OLI/TIRS) satellite data acquisition 

 Acquisition date Season Season conditions 

Landsat 8 19   May           2018 Spring Mild and cool 

Landsat 8 20   June           2018 Winter Cold and Dry 

Landsat 8 23   August       2018 Autumn Cool and dry 

Landsat 8 24   September  2018 Autumn Cool and dry 

Landsat 8 26   October      2018 Summer Hot and dry 

Landsat 8 11 November    2018 Summer Hot and wet (Rainy) 

 

6.2.3 Computing and retrieving land surface temperature 

Land surface temperature was computed from imagery captured between May 2018 to 

November 2018 using Landsat’s thermal band (Band 10). The normal approach of computing 

land surface temperature from Landsat thermal data involves the conversion of the thermal 

band’s Digital Number(DN) values into spectral radiance associated  with  band 10 according 

to radiometric rescaling coefficients (i.e., calibration coefficients) (Chander and Markham 

2003) using the following equation (6.1). 

𝐿(𝜆) =
(𝐿𝑀𝐴𝑋(𝜆)−𝐿𝑀𝐼𝑁(𝜆))

(𝑄𝑐𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
x (𝑄𝑐𝑎𝑙 − 𝑄𝑐𝑎𝑙𝑚𝑖𝑛) + 𝐿𝑀𝐼𝑁(𝜆)………..……(6.1) 

Where 𝐿(𝜆) is the spectral radiance at the sensor’s aperture in W/(m2sr μm) 

𝑄𝑐𝑎𝑙 is the quantized calibrated pixel value [DN] 

𝑄_𝑐𝑎𝑙𝑚𝑖𝑥 is the minimum quantized calibrated pixel value corresponding to 𝐿𝑀𝐼𝑁(𝜆) [DN] 

𝑄_𝑐𝑎𝑙𝑚𝑎𝑥 is the maximum quantized calibrated pixel value corresponding to 𝐿𝑀𝐴𝑋(𝜆)[DN] 

𝐿𝑀𝐼𝑁(𝜆) the spectral at-sensor radiance scaled to 𝑄_𝑐𝑎𝑙𝑚𝑖𝑥 in W/(m2sr μm) and  

𝐿𝑀𝐴𝑋(𝜆) the spectral at-sensor radiance scaled to 𝑄_𝑐𝑎𝑙𝑚𝑎𝑥 in W/(m2sr μm) 

 

The derived spectral radiance values were then converted to at-sensor or satellite brightness 

temperatures (Chander et al. 2009). Converting at-sensor's spectral radiance to brightness 

temperature is achieved by computing the inverse of the Planck radiance function for 
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temperature, with an assumption that surface emissivity is equal to that of a black body (i.e. 

spectral emissivity is 1). The Planck’s Law is implemented using the following formula; 

𝑇𝐵 =
𝐾2

ln  ((
𝐾1
𝐿𝜆

)+1)
………………………………………..…………....….……………(6.2) 

where 𝑇𝐵 is the at-sensor brightness temperature in degrees Kelvin.𝐿𝜆  is spectral radiance in 

Wm-2sr-1mm-1. The at-sensor temperature uses the pre-launch calibration constants 𝐾1and  𝐾2.  

𝐾1and 𝐾2are calibration constant 1 and 2 respectively. For Landsat 8 band 10, K1
 and  K2 values 

are 774.89 and 1321.08, respectively. The at-satellite brightness temperatures was scaled to 

retrieve land surface temperature values by computing land surface emissivity (𝜀) following 

the method developed by Sobrino et al.(2004;2008) expressed as;  

(𝜀)= εv Pv + εs (1 – Pv) +d𝜀…..………………………………………………….(6.3) 

Where  

εs = soil emissivity  

εv = vegetation emissivity,  

dε = geometrical distribution of natural surfaces (Guha et al.2018). In heterogeneous or 

complex surfaces, the value of  d𝜀 (Equation  6.4) may be 2% and F is a shape factor whose 

mean is 0.55 (Guha et al. 2018; Sobrino et al.2004) 

d𝜀 = (1 – εs) (1 – Pv) Fεv …..…………………………….…………………………...…(6.4) 

Pv is the Proportion of vegetation or fractional vegetation cover. The Pv is derived from the 

Normalized Difference Vegetation Index (NDVI) (Tucker 1979) using a method developed by 

Sobrino et al. (2004; 2008) and Carlson and Ripley (1997). Pv is computed from NDVI values 

following the approach of Carlson and Ripley (1997); 

𝑃𝑣 = (
 𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛  

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
) ²…..……………… ...………………...…………..…..(6.5)  

Where (𝑁𝐷𝑉𝐼𝑚𝑖𝑛) is the minimum NDVI value (0.2) where pixels are considered as bare soil 

(non-vegetated areas) and (𝑁𝐷𝑉𝐼max) is the maximum NDVI value (0.5) where pixels are 

considered as dense vegetation according to Sobrino et al.(2004; 2008). Emissivity (ε) values 

ranges between 0.97 and 0.99. A constant emissivity value of 0.99 is considered when 

(NDVI>NDVIv), i.e. NDVI > 0.5 for fully vegetated pixels in the land surface (PV=1). An 

emissivity value of 0.97 is assumed when NDVI < 0.2 for bare soil (Sobrino et al.2004; 2008). 
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On the other hand, when NDVI >0.2 to <0.5, it indicates a landscape mixed of both bare soil 

and vegetation pixels. The land surface emissivity between NDVI >0.2 to <0.5 is computed by 

applying Equations (3) and (4). From  Equations (3) and (4), consequently, the land surface 

emissivity was computed using the following formula as; 

ε = 0.004 * Pv + 0.986…………………………………….……….…..……...……………(6.6) 

 

An emissivity value of 0.986 corresponds to a correction value of the equation, which is 

designated for pixels with a NDVI of ≥0.5. The land surface emissivity corrected LST values 

were computed as follows; 

LST = [
𝑇𝐵

1+(𝜆𝜎𝑇𝐵/(ℎ𝑐))ln𝜀
] − 273.15…………………………….…….………(6.7) 

 

where LST = land surface temperature, TB = at-satellite brightness temperature, λ = wavelength 

of emitted radiance (λ = 11.5 µm for Landsat TIRS Band (10), σ is Boltzmann constant 

(1.38×10-23J/K), h=Planck’s constant (6.626×10−34Js), c=velocity of light (2.998×10-8m/s), ε is 

the land surface emissivity. The retrieved LST values were later converted from Kelvin 

temperature to degrees Celsius (°C) by subtracting 273.15 from the computed pixel values.  

 

6.2.4. Land cover classification  

Satellite images used in this study were classified into five land cover categories (i.e. 

vegetation, grassland, built-up, water and bareland) based on the supervised image 

classification approach using Support vector machine algorithm in the ENVI 5.3 image 

processing software. To derive the discrete information of vegetation patches, the classified 

land cover map was later reclassified into a binary vegetation and non-vegetation maps for the 

subsequent analysis.  

6.2.5. The landscape connectivity pattern of vegetation 

The structural connectivity, which considers the physical arrangement of the landscape 

elements can be used to describe spatial configuration in a landscape. It determines the fact that 

two adjacent habitat patches of the same type are spatially joined and connected, but 

independent of any attributes of the organism (Collinge and Forman 1998). It can also be used 

to quantify other properties such as the structural connectivity of vegetation at the landscape 

scale (Tzoulas et al.2007). In this study, the Patch Cohesion Index (%) (Schumaker l996) was 

used to measure the vegetation connectivity (i.e. connectivity to other urban green spaces) 

based on the vegetation and non-vegetation map as input data. While structural or landscape 
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connectivity can be evaluated using a wide variety of landscape pattern indices and distance-

based connectivity indices like Mean Euclidean Nearest Neighbour Distance and Proximity 

Index, we selected Patch Cohesion Index because it is a relatively simple to compute and 

interpret. 

 

Patch Cohesion Index can be used to determine how physically connected one patch is to 

corresponding patch types or focal class (McGarigal et al. 2002). Patch cohesion index 

increases as the patch type or focal class becomes more clumped or aggregated, hence, more 

physically connected (McGarigal et al. 2002). Therefore, a higher value of Patch Cohesion 

Index indicates a more physically connected pattern of patches in a landscape and vice versa 

(McGarigal et al. 2002). The Patch Cohesion Index was computed using Fragstats 4.2 software 

(McGarigal et al. 2002). It is quantified as a range from 0 to 100 (McGarigal et al. 2002). Patch 

Cohesion Index is expressed as  

Patch Cohesion Index = (1 −
∑𝑝

∑(𝑝√𝑎)
) (1 −

1

√𝑁
)

−1
……….…………...(6.8) 

6.2.6 Spatial configuration (dispersed and clustered) patterns of vegetation  

The local Moran’s I was used to compute the spatial configuration patterns of vegetation using 

NDVI as input data. The local Moran’s I has been previously found to be effective in 

characterising the spatial configuration pattern (clustered to disperse) of land cover features 

(Fan and Myint 2014). Local Moran’s I can identify the extent to which homogenous and 

heterogeneous observed values of spatial objects cluster around geographical locations. When 

local Moran’s I values are significantly higher than the mean, the spatial objects in a 

geographical location are assumed to be clustered or homogenous. On the other hand, 

significantly low values of local Moran’s I indicates that the spatial objects in a geographical 

location are dispersed (Fan and Myint 2014). Local Moran’s I is computed based on the 

following formula; 

1𝑖(𝑑) =
𝑥𝑖 − x̅ 

∑ (𝑥𝑖 − x̅)2
𝑖

∑ 𝑤𝑖𝑗 

j

(𝑑)(𝑥𝑗 − x̅) … … … … … … … … … … … … … (6.9) 

where xi and xj denotes  the attribute values at locations i and j. x̅  denotes the average attribute 

values of  all the pixels in the geographical area.  Furthermore,  is a spatial weight 

matrix where the diagonal elements are all zero, and the off‐diagonal elements are either one 

or zero, depending on whether the corresponding pixels are neighbour. The neighbourhood is 

defined by the distance d. Therefore, pixels values that are found within a distance of d are 
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presumed to be adjacent. The local Moran's I values were standardized and normalized to the 

range of −1 to 1. In this regard, the positive values of the Local Moran's I represents clustered 

spatial configuration patterns, while the negative values of the local Moran's I indicates 

dispersed  spatial configuration patterns and a value of  zero represents random configurations. 

 

6.2.7. The computation of the urban thermal field variance index (UTFVI) 

The urban thermal field variance index (UTFVI) was used to evaluate the ecological effects of 

UHI for the city in all seasons. The UTFVI (dimensionless) was computed based on the 

following  formula (Liu and Zhang 2011, Zhang 2006). 

UTFVI =
𝑇𝑠−𝑇𝑚𝑒𝑎𝑛

𝑇𝑚𝑒𝑎𝑛
……………………………………………..……………...……(6.10) 

where UTFVI= Urban Thermal Field Variance Index, Ts= LST , represents the land surface 

temperature of a certain area, and Tmean= Mean LST  of the study area. The UTFVI was 

further divided into six different ecological evaluation thresholds levels of  the UHI effect (Liu 

and Zhang 2011, Zhang 2006). The widely used thresholds levels of UTFVI are shown in Table 

6.2 (Zhang 2006). 

Table 6.2. The threshold of ecological evaluation index using urban thermal field variance 

index (UTFVI) (Zhang 2006). 

Urban thermal field variance 

index 

Urban heat island 

Phenomenon 

Ecological evaluation 

Index 

Less than 0 None Excellent 

From 0.000 to 0.005 Weak Good 

From 0.005 to 0.01 Moderate Normal 

From 0.01 to 0.015 Strong Bad 

From 0.015 to 0.02 Stronger Worse 

More than 0.02 Strongest Worst 

 

6.2.8. Computing urban and vegetation indices 

Heterogeneous land cover surfaces are responsible for producing different amount of sensible 

and latent heat resulting in diverse heat exchanges and thermal processes affecting surface 

temperature at varying seasons (Berger et al.2017, Chen et al. 2017). Hence diverse land cover 

categories in the study in different seasons were assumed would have an influence on land 

surface temperature. In this study, spectral indices derived from Landsat image data were used 

to extract information of bareland, impervious surface and vegetation cover (Table 6.3).  
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Table 6.3: Computation of urban and vegetation indices derived from Landsat 8 data 
Index Computation Reference 
Normalized Difference Bareness 
Index (NDBaI) 

 
NDBaI = SWIR1-TIRS1 
                 SWIR1+TIRS1 
 

 
(Zhao and Chen 2005) 

Bare Soil Index (BI) BI = (SWIR1-RED)- (NIR-BLUE) 
         (SWIR1+RED) +(NIR+BLUE) 

 
(Chen et al. 2004) 
 

Urban Index (UI) UI =    SWIR2-NIR 
            SWIR2+NIR 

(Kawamura et al. 1996) 

Normalized Difference Built-up 
Index (NDBI) 

NDBI =   SWIR1-NIR 
                 SWIR1+NIR 

(Zha et al.2003) 
 
 

Normalized Difference 
Vegetation Index (NDVI) 

NDVI= NIR-RED 
             NIR+RED 

 
(Tucker 1979) 
 

Soil-Adjusted Vegetation Index 

(SAVI) 

SAVI= (NIR-RED)     
           (NIR+RED+L) *1+0.5) 

 
(Huete 1988) 

 

Enhanced Vegetation Index 

(EVI) 

 
 
EVI= (NIR-RED) 
          (NIR+C1*RED- C2*BLUE+L) 

 
 
(Liu and Huete 1995) 

 

The spectral indices included the Urban Index (UI) and Normalized Difference Built-up Index 

(NDBI) for quantifying the distribution of built-up, developed area and impervious surface. 

The Bare Soil Index (BI) and Normalized Difference Bareness Index (NDBaI) were used to 

extract bareland or bare soil. The Enhanced Vegetation Index (EVI), Soil-Adjusted Vegetation 

Index (SAVI) and Normalized Difference Vegetation Index (NDVI) were used to extract 

vegetation cover (Table 6.3). High values of vegetation indices indicate areas covered by 

substantial proportions of healthy and dense vegetation. The spectral indices  of  water bodies 

were not included,  since water bodies cover an insignificant part of the study area. The 

computation of the spectral indices is shown in Table 6.3.  

 

6.2.9. Correlation analysis 

The normal distribution of each dataset (LST,Patch Cohesion Index, local Moran's I, urban and 

vegetation indices) was tested using the Kolmogorov–Smirnov test. The Kolmogorov–Smirnov 

test (K–S test/ KS test) confirmed that all significant indicators were normally distributed, 

meeting the basic requirements of Pearson's correlation  analysis. Thus, the Pearson’s product-

moment correlation coefficient was used to quantify the correlation between seasonal LST and 

urban and vegetation indices and the Patch Cohesion Index (%) and local Moran's I of urban 

vegetation. The Pearson correlation coefficient is often used to show the relationships between 

variables and ranges from −1 to 1. A higher absolute value of Pearson correlation coefficient 

indicates a stronger correlation and vice versa. Figure 6.2 illustrate the research methodology 

and the processing steps presented in this study.  
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Figure 6.2. Flowchart of the methodology and the processing steps presented in this study 

 

6.3. Results 

 

6.3.1 Seasonal LST variations  

Table 6.4 shows the descriptive statistics of derived LST from May-November 2018 for Harare 

metropolitan city. The spring season (May) had the lowest LST values for all the descriptive 

statistics. During the spring season, LSTranged from 10.79°C to 33.61°C (Table 6.4). The 

maximum land surface temperature values of 54°C and 56°C were observed in summer season 

(26 October 2018 and 11 November 2018). This indicates that seasonally, UHI intensities are 

higher during the warmer and hot summer months (26 October 2018 and 11 November   2018). 

The LST in autumn (August and September) was lower than in hot and summer seasons 

(October and November). Generally, LST increased in intensity and spatial extent with change 

of season from spring, winter, autumn to summer (Table 6.4 and Figure 6.3). 
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Table 6.4. Descriptive statistics of LST from 19 May 2018 to 11 November 2018  

Acquisition date Season Minimum Maximum Range Mean *Std Dev 

19   May          2018 Spring 10.79 33.61 22.82 22.04 1.75 

20   June          2018 Winter 17.38 35.68 18.3 24.73 2.22 

23   August      2018 Autumn 20.18 45.60 25.42 31.10 2.65 

24   September 2018 Autumn 22.16 46.13 23.97 34.63 2.99 

26   October     2018 Summer 23.32 54.21 30.89 41.22 4.08 

11 November   2018 Summer 25.00 56.86 31.86 43.03 4.42 

*Standard deviation 

 

The largest range of land surface temperature was found in the summer (26 October 2018 and 

11 November 2018)(Table 6.4). It was 30.89°C on 26 October 2018 and 31.86 °C on 11 

November 2018. The lowest range of LST was found in the winter. It was 18.3°C on 20 June  

2018.The spring season (May) and winter month (June) were characterized by the lowest 

spatial variability of LST as shown by low standard deviation (Table 6.4). On the other hand, 

the hot (October) and summer months (November) were characterized by high standard 

deviations (Table 6.4). In all seasons, the highest LST values were mainly found in the highly 

urbanized western, eastern and southern side of Harare that has significant presence of high-

density residential areas. The highly vegetated northern part of the Harare had relatively low 

land surface temperature (Figure 6.3).  
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Figure 6.3. The seasonal patterns of land surface temperature LST in Harare metropolitan city 

between 19 May 2018 to 11 November 2018. The highly vegetated northern part of the city 

has relatively low land surface temperature than the highly built-up areas in the western, 

southern and eastern parts of the city. 

 

6.3.2. Ecological assessment of the city based on UTFVI 

An ecological assessment of Harare metropolitan city based on urban thermal field variance 

index (UTFVI) from 19 May 2018 to 11 November 2018 is shown in Figure 6.4 and Table 6.5.  

In all seasons, the city had a  proportion of two extreme groups of ecological conditions. These 

were the excellent category (UTFVI < 0) and the worst category (UTFVI > 0.020). The largest 

portion (52.8%) of Harare metropolitan city experienced optimal and excellent thermal 

conditions for living (i.e. UTFVI <0) in the spring season (19 May 2018) (Table 6.5). In 

general, the northern part of Harare metropolitan city experiences favourable thermal 

conditions (i.e. UTFVI < 0) due to the abundance of dense vegetation. Excellent thermal 

conditions represent either no or weak urban heat island.  

Table 6.5. The threshold of ecological evaluation index 

 Percentage of area (%) 

Acquisition date    Season Excellent Good Normal Bad Worse Worst 

19   May            2018 Spring 52.80 2.60 2.52 2.45 2.40 37.24 

20   June            2018 Winter 47.06 1.91 1.93 2.00 2.04 45.05 

23   August        2018 Autumn 45.83 2.23 2.30 2.33 2.39 44.92 

24   September  2018 Autumn 43.68 2.23 2.33 2.40 2.46 46.90 

26   October      2018 Summer 43.61 2.15 2.24 2.32 2.36 47.32 

11 November    2018 Summer 45.46 2.04 2.07 2.11 2.17 46.15 

 



 

 

127 

 

  
 

  
 

  
Figure 6.4.Seasonal ecological evaluation index of Harare metropolitan city based on the Urban 

Thermal Field Variance Index (UTFVI). The northern part of Harare metropolitan city 

experiences favourable thermal conditions (i.e. UTFVI < 0) representing either weak or no 

urban heat island. The western, southern and eastern parts of the city experience the worst 

category (UTFVI > 0.020) representing extremely strong heat islands.  

 

However, the worst category (i.e. UTFVI > 0.020), which represent the extremely strong heat 

islands exists in a moderate to a significant portion (37%-47%) of the city for all the seasons 

(Figure 6.4 and Table 6.5). This portion extends from the western, eastern and southern side of 

Harare. In areas with the worst category, most of the land is highly urbanized, with a huge 

concentration of built-up areas intermixed with either bare or vacant land. On the other hand, 
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areas that are characterised by worse category (i.e.UTFVI > 0.01), which indicates very strong 

UHI effects are also located around built-up areas albeit in relatively small proportion (2.0%-

2.5%) being lower in winter (June)  and higher in autumn (September). Areas that experienced 

bad thermal comfort accounts also ranged between 2.0% -2.5%  of  the study area in all seasons. 

The good and the normal thermal conditions (i.e. 0 < UTFVI < 0.010), which represent weak 

to middle (moderate) urban heat islands category are located in small portions surrounding the 

geographical locations  under excellent conditions.  

 

6.3.3. Correlation between LST and urban and vegetation indices 

The correlation analysis between the urban and vegetation indices and LST were significant at 

the 0.05 level in all seasons (Table 6.6). There was a positive relationship between land surface 

temperature and UI, BI, NDBaI and  NDBI spectral indices in all four seasons, suggesting that 

increasing land cover types of bareland and impervious surfaces could raise LST . However, 

the magnitudes of correlation coefficients between LSTand UI were slightly higher compared 

with BI, NDBaI and NDBI (Table 6.6). 

Table 6.6. Pearson correlation coefficients between LST and urban and vegetation indices 

Acquisition date             Season    UI   BI    NDBaI NDBI EVI SAVI NDVI 

19   May          2018 Spring 0.36 0.32 0.29 0.31 -0.31 -0.31 -0.78 

20   June          2018 Winter 0.43 0.40 0.28 0.38 -0.40 -0.40 -0.80 

23   August      2018 Autumn 0.42 0.36 0.19 0.34 -0.40 -0.41 -0.76 

24   September 2018 Autumn 0.46 0.40 0.20 0.41 -0.46 -0.47 -0.78 

26   October     2018 Summer 0.46 0.39 0.23 0.42 -0.44 -0.45 -0.74 

11 November   2018 Summer 0.46 0.36 0.19 0.41 -0.45 -0.45 -0.74 

Urban Index (UI), Bare soil (BI), Normalized Difference Bareness Index (NDBaI), Normalized 

Difference Built-up Index (NDBI), Enhanced Vegetation Index (EVI), Soil-Adjusted 

Vegetation Index (SAVI), Normalized Difference Vegetation Index (NDVI). Correlation was 

significant at the 0.01 level (two-tailed). 

 

There was an inverse relationship between LST and NDVI, EVI and SAVI values in all four 

seasons, suggesting that increases in vegetated cover decreases LST. However, NDVI had a 

much stronger negative correlation with LST (°C) than EVI and SAVI ranging from (R=-0.74) 

in summer (11 November 2018) to (R=-0.81) in winter (20 June 2018) (Table 6.6). 

 

6.3.4. The effect of spatial configuration on LST based on local Moran’s I 

The Pearson correlation coefficients indicated a relatively moderate to strong negative 

correlation between LST and local Moran’s I (Table 6.7). The correlation coefficients ranged 

between R=− 0.69, p <0.05 in spring (19 May 2018) to R=− 0.74, p <0.05 in hot, dry and 

summer (26   October 2018, 11 November 2018). The results suggest that as local Moran's I of 
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vegetation become more clustered, land surface temperature decreases, resulting in cooler 

surface temperatures. The low LST values were heavily concentrated in the highly vegetated 

northern part of the city. Land surface temperature was high in geographical locations with 

dispersed vegetation patches in the western, southern, and eastern side of Harare.  

Table 6.7. Pearson’s correlation between LST and local Moran’s I and Patch Cohesion 

index (COHESION) 

Acquisition date Season local Moran’s I Patch Cohesion index 

(COHESION)  

19   May            2018 Spring -0.69 -0.54 

20   June            2018 Winter -0.74 -0.54 

23   August        2018 Autumn -0.74 -0.47 

24   September  2018 Autumn -0.74 -0.57 

26   October      2018 Summer -0.71 -0.59 

11 November    2018 Summer -0.70 -0.58 

 

6.3.5 The relationship between vegetation connectivity and seasonal LST 

Table 6.7 indicates a moderate negative correlation between LST and Patch Cohesion index 

(%) in all four seasons. The Pearson product-moment correlation coefficient (R) ranged 

between (R= -0.47, p<0.05) in autumn (23 August 2018) to (R=-0.54, p<0.05) in hot, dry 

summer (26 October 2018). This indicates that highly and well-connected vegetation patterns 

have a better cooling effect, hence more beneficial in decreasing high LST  
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Figure 6.5. Patch cohesion index from May 2018 to November 2018 in Harare metropolitan 

city. 

 

Higher vegetation connectivity (i.e. less isolation of vegetation patches) are associated with 

greater proportion of high, contiguous vegetation patterns reflecting shorter distances between 

the vegetation patches and may contribute to low LST values as indicated in Figure 6.5. In all 

seasons, the low LSTvalues were dominant in the northern part of Harare, corresponding to the 

high vegetation connectivity range (<50%-70%). On the other hand, lower vegetation 

connectivity (higher degree of isolation of vegetation patches) contributes to high LST values 

(Figure 6.5). Areas with less connected vegetation are found in the western, southern and 

eastern part of the Harare. These are illustrated with lower vegetation connectivity ranges 

(<0%-30%). Less connected vegetation (<0%-30%) represent the highly fragmented nature of 

vegetation patches that are smaller, isolated and scattered across the landscape. 

 

6.4. Discussion 

6.4.1. Spatial variability and seasonal urban heat island (UHI) patterns 

This study  examined how the spatial configurations and connectivity of urban vegetation affect 

variations of LST across different seasons in Harare metropolitan city in Zimbabwe using 

Landsat 8 data acquired from 18 May 2018 to 11 November 2018. The research findings of the 

study showed that LST intensities in Harare tended to be lower during the cool spring season. 

On the other hand, the LST intensities tended to be higher during the warm, hot summer 

months, which is consistent with most studies (Arnfield 2003) and findings of Mushore et 

al.(2018). Higher LST values have also been recorded in warm and  summer seasons than in 

other seasons in Beijing (Wang et al. 2007, Yang et al. 2010) and in the United States of 

America (Ackerman 1985). 
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The southern, eastern and western parts of Harare metropolitan city experience high LST , 

hence stronger urban heat island (UHI) effects, confirming previous findings by Mushore et 

al.(2017). This is because the southern, eastern and western parts of Harare are more densely 

urbanized than the northern part. The research findings of this study also indicated a positive 

relationship between land surface temperature and UI, BI, NDBaI and NDBI spectral indices 

in all seasons, suggesting that the presence and amount of land cover types of bareland and 

impervious surfaces increases LST  in the study area. A significant positive correlation between 

the LST and an index-based built-up index (IBI) was observed in  Xu (2008).  Another study 

by Odindi et al.(2015) in the eThekwini Municipal Area, South Africa noted that built-up areas 

were heat sources and while urban green spaces were heat sinks indicating that areas with a 

higher proportion of impervious and bare land generate more heat than urban green spaces. 

Highly urbanized  and built-up areas commonly have higher solar energy absorption (lower 

albedo) resulting in higher surface heat storage during the day (Peng et al. 2011)  especially in 

hotter and  summer months (Memon et al.2009, Sun et al.2013, Zhou et al. 2014).  

 

Our results indicated a moderate to strong negative relationship between LST and NDVI, EVI 

and SAVI indices. Similar results showed that the significant negative relationship between 

NDVI and LST in Indianapolis in the United States of America (Wilson et al. 2003), Hong 

Kong in China (Liu and Zhang 2011) and Nanjing (China) (Lu et al.2009). This underlines the 

significant role of vegetation in reducing LST. Vegetation through the evapotranspiration 

process absorb heat energy and releases water vapour, delivering cooling effects to the 

surrounding air. Furthermore, vegetation cover through shading can prevent direct solar 

radiation from heating the surface, thereby helping reduce high surface temperature resulting 

in better thermal comfort and mitigating the UHI effects.  

 

6.4.2 Ecological conditions of the city 

The ecological evaluation for Harare metropolitan city indicated that the northern part of 

Harare was generally cooler than the heat-stressed western, eastern and southern parts of the 

city. The northern part of the city has higher vegetation density than the heavily built-up 

western, eastern and southern side of Harare. Guha et al. (2018) found  almost equal proportion 

of excellent and worst ecological conditions in two cities, Florence and Naples in Italy. The 

UHI  zones (urban areas) were under severe heat stress compared to non-UHI areas (vegetation 

coverage and water bodies) that had excellent thermal conditions. In another study by dos 

Santos et al.(2017), for an ecological evaluation of municipality of  Vila Velha, in Brazil during 
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2008–2011, the urbanized areas of the city for all the dates examined were categorized as 

having worst ecological conditions.  

 

Furthermore, the spatial patterns of the eco-environmental conditions of two Asian cities, 

Beijing of China and Islamabad of Pakistan were compared (Naeem et al.2018). 

Comparatively, the worst eco-environmental conditions were found in urban zones of both 

cities where the proportion of vegetation was very low (Naeem et al. 2018). However, the eco-

environmental conditions were more severe in Beijing, as more than 90% of its total population 

was living under the worst eco-environment conditions, while only 7% of the population was 

enjoying comfortable conditions. In contrast, close to 61% of the total population of Islamabad 

lived under the worst eco-environmental conditions, and close to 24% was living under good 

conditions (Naeem et al.2018). Overall, all these studies show that in densely built-up areas 

with less vegetation, the eco-environmental conditions are worse because of stronger urban 

heat island effects (dos Santos et al.2017, Guha et al.2018, Liu and Zhang 2011, Naeem et 

al.2018).  

 

6.4.3 The relationship between spatial configuration and seasonal LST (oC) 

The research findings of this study indicate a moderate negative correlation between local 

Moran's I and LST  in all seasons, However, a study by Fan et al.(2015) found out that the 

influence of local Moran’s I of green vegetation on LST was higher during summer daytime 

whilst it was weakly correlated to the local Moran’s I  during winter nighttime LST in the 

central part of Phoenix, Arizona in the United States of America. However, our results 

corroborates previous research findings that indicate that dense and clustered urban vegetation 

are more effective in reducing surface temperature than dispersed urban vegetation patterns (Li 

et al. 2012, Peng et al. 2016, Zhang et al. 2009). The impact of clustered vegetation in providing 

cooling effects was found to be significant for both daytime and nighttime surface temperature 

in geographical areas with dry and warm summer climate such as Phoenix and Portland in the 

United States of America (Wang et al.2019). 

 

It can be expected that large and contiguous vegetation patches have higher cooling effects 

through evapotranspiration and shading and thereby lowering the sensible heat released from 

the ground  and efficiently mitigating the UHI effect ( Imhoff et al. 2010, Myint et al. 2013, 

Peng et al. 2011, Zhou et al. 2014 ).  In our study, low surface temperatures were found in the 

highly vegetated northern part of Harare. Such cooler conditions may be of particular 



 

 

133 

 

importance to the well-being of urban dwellers as they can enjoy greater thermal comfort 

conditions provided by higher cooling effects of urban vegetation. Small, isolated vegetation 

patches commonly have a high thermal load and do not deliver significant cooling effects (Bao 

et al. 2016). Furthermore, such areas maintain lower rates of evapotranspiration, hence weaker 

mitigating effect on the UHI effect. Generally, the more densely urbanized western, southern 

and eastern of the Harare metropolitan city has many isolated and sparse vegetation and is more 

densely urbanized than the vegetated northern part of the city. 

 

6.4.4 The relationship between vegetation connectivity and seasonal LST 

Our results showed a moderate negative relationship between Patch Cohesion index and LST 

in all seasons, implying that well-connected urban vegetation patches are effective in reducing 

land surface temperature in all seasons. Similar to our findings, Kim et al.(2016) showed that  

Patch Cohesion index (COHESION) of neighbourhood trees and forests had a negative 

relationship with LST on residential areas in Austin, Texas. The positive effects of higher 

connectivity of vegetation on LST are demonstrated in other studies of Asgarian et al.(2015) 

and Zhibin et al.(2015). Well and higher-connected vegetation patches lower surface 

temperatures and act as heat sinks (Chen et al. 2016, Li et.al. 2017). However, in urban areas, 

vegetation is heterogonous, usually fragmented by human infrastructure, such as settlements, 

transport networks and commercial buildings, leading to low vegetation connectivity and high 

vegetation fragmentation. Lower vegetation connectivity act as heat sources, promoting 

warmer and higher surface temperatures.  

 

However, some contradictory results exist as other studies including Chen et al. 2014a; Li et 

al. 2012; 2013a and Zhou et al. 2011 found that the landscape connectivity of urban green 

spaces elevate LST. Zhou et al.(2011) reported that a clustered pattern of woody vegetation 

quantified using the mean nearest neighbour distance tends to increase land surface 

temperature. The contradictory results can be explained by several factors among them is the 

significant influence of spatial composition (percentage and abundance) on the relationships 

between the spatial patterns of vegetation and land surface temperature. Due to the high 

correlation between mean nearest neighbour distance and the proportion of vegetation (Zhou 

et al. 2011), other connectivity metrics and robust spatial regression models are noteworthy 

exploring to control the confounding effects of spatial composition of vegetation on LST. 
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6.4.5 Implications for urban planning and management  

Urban green spaces and vegetation such as woodland, grass and street trees play a key role in 

reducing urban surface temperatures. Increasing vegetation cover in response to observed 

climate change and global warming by planting more trees could provide shading and 

evapotranspiration; two ecosystem services that can reduce heat loads and lower LST . 

Optimizing the spatial configuration of urban vegetation to seasonal LST  is important for 

urban design and landscape planning. Due to the continuing fragmentation of green spaces in 

urban areas, conservation and restoration efforts should target green vegetation that is 

fragmented and scattered. Our results show that less dispersed or spatially clustered vegetation 

is effective in alleviating urban surface temperatures in all seasons.  

 

Increasing landscape connectivity of urban vegetation to minimize the adverse impacts of 

habitat loss and fragmentation induced by rapid urban expansion is significant in achieving 

sustainability of the city. The negative relationship between land surface temperature and 

vegetation connectivity in all seasons has implications on how to spatially arrange and organize 

urban vegetation patches to reduce the UHI effects in urban areas. Vegetation fragmentation 

can be reduced by creating well-connected urban green spaces networks and corridors instead 

of small, isolated vegetation patches that increase the thermal heat and energy exchange 

between non-vegetated area areas and green areas. Landscape connectivity between urban 

green patches maximizes and increases the cooling effects of the surrounding areas (Doick et 

al. 2014) which are important for the human health and physical well-being of urban dwellers. 

 

6.4.6. Limitations 

Although the findings of this research are conclusive within the scope of the study, some 

limitations deserve further research and extensive analysis. The role of spatial configuration 

and connectivity patterns of urban vegetation on LST  should be further examined to better 

guide urban design and to maximize higher cooling effects in urban areas. Our research 

findings indicate that the spatial configuration (clustered and dispersed) and landscape 

connectivity of vegetation has moderate to a strong negative relationship with LST , regardless 

of the season. We did not find significantly different negative relationships between the local 

Moran’s I and LST in different seasons as reported by Fan et al. (2015). Fan et al.(2015) found 

out that local Moran’s I of urban vegetation was highly and negatively correlated with land 

surface temperature during summer daytime whilst local Moran’s I  had a weak correlation 

with the winter nighttime surface temperature. The divergent results mentioned above have 
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several possible reasons: (1) different methodological approaches that were used such as the 

choice of landscape metrics employed. However not all landscape metrics can produce and 

convey material heat exchange fluxes and thermal processes in a city (2) a small number of 

studies that mainly reported on single cities.  Cities are different in their urban forms 

(monocentric or dispersed), socioeconomic, geographical  settings and regional climatic 

conditions (3) the characteristics of urban vegetation are not equally distributed across cities 

regarding their size, shape and particular land cover category. 

 

6.5. Conclusion 

The objective of this study was to examine the impact of the spatial configuration (clustered or 

dispersed) and connectivity of vegetation patterns on seasonal LST  in Harare metropolitan 

city, Zimbabwe. To achieve this objective, the local Moran’s I and the Patch Cohesion Index 

methods derived from Landsat 8 optical data were combined with Landsat 8 thermal data of 

2018. The research findings showed that the spatial configuration (clustered or dispersed) and 

connectivity of vegetation patches can significantly lower surface temperatures in all four 

seasons of spring, winter, autumn and summer. The research findings demonstrated the 

significant role of landscape connectivity, clumping and aggregation of urban vegetation in 

reducing urban surface temperature. Based on these research findings, we suggest that 

landscape ecologists should optimize the spatial arrangement by clustering, clumping  and 

connecting vegetation patches (woodland and grassland) rather than dispersing, which is 

essential for urban landscape design, urban planning and sustainable development .  
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CHAPTER 7.  SUMMARY AND SYNTHESIS OF THE THESIS 
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7.1. Introduction 

An effective and accurate representation of the landscape structure of urban vegetation and 

vegetation fragmentation is an important goal towards addressing the linkages of the 

fundamental ecological processes and patterns at multiple scales (McGarigal and Marks 1995, 

Turner 1990, Turner et al.2003, Uuemaa et al. 2009, Wang et al.2014, Wu 2008, Wu and Hobbs 

2002). Landscape metrics derived from categorical maps and land cover classifications of  

remote sensing data are the traditional methods and an existing paradigm within which 

landscape structure of urban vegetation  and vegetation fragmentation can be quantified (Qian 

et al. 2015, Wang et al. 2014). However, the challenges of discrete landscape pattern analysis 

or patch mosaic model of indiscriminately categorizing maps into homogenous units are well 

established, making it difficult for landscape ecologists to accurately and effectively quantify 

important spatial heterogeneity patterns (Fan and Myint 2014, McGarigal and Cushman 2005).  

 

Many landscape pattern metrics are highly correlated with each other, capturing similar 

qualities of landscape or spatial patterns, making their use as a measure of habitat fragmentation 

(grassland, forest etc.) challenging (Wang et al. 2014). Due to the challenges of discrete 

landscape pattern analysis, a growing amount of work has been dedicated to evaluating the 

potential of continuous models or gradient models in mapping landscape patterns (Fan and 

Myint 2014,Levin 2009, McGarigal and Cushman 2005, Pearson 2002, Roberts et al. 2000, 

Southworth et al. 2004, ). The continuous methods appear to be one way of effectively 

representing fine scale heterogeneity of vegetation fragmentation in urban areas. To undertake 

this task, the following objectives of the research were considered: 

(i) To examine the spatial patterns of vegetation fragmentation using spatially explicit 

approaches of  the forest fragmentation model and local spatial autocorrelation indices. 

(ii) To quantify the long-term changes in vegetation fragmentation using forest 

fragmentation model, landscape metrics, local spatial association indices (LISA) and 

Tasselled Cap Transformation indices. 

(iii) To develop spatial analytical tools to quantify the impacts of the spatial configuration 

of vegetation patches on urban warming and cooling using the landscape metrics and 

LISA indices.  

(iv) To compare and assess the applicability of  Spatial Lag Regression and Ordinary  Least 

Regression models in examining the impact of spatial configurations of urban 

vegetation on urban warming and cooling.  

(v) To examine spatial resolution sensitivity of different satellite data on the quantitative 

relationship between surface temperatures and spatial configurations of urban 

vegetation. 
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(vi) To examine the seasonal impacts of the ecological, spatial configuration and 

connectivity of urban vegetation on urban thermal environment using the landscape 

metrics and LISA indices. 

 

7.2. Exploring the spatial patterns of vegetation fragmentation  

The literature review in Chapter 2 showed that most of the previous studies conducted over the 

last decades that quantified changes in the spatial patterns of vegetation fragmentation across 

worldwide cities have commonly used Landsat data. The increasing low cost and freely 

availability of Sentinel 2 offering 10m–60m spatial resolution have the capability of providing  

detailed information on patterns of vegetation fragmentation in many cities and may be needed 

for local scale and land management decisions. Chapter 3 examined the vegetation 

fragmentation patterns in Harare metropolitan city by combining the moving window forest 

fragmentation model and  local spatial statistics of Getis-Ord G* and  Local Moran’s I derived 

from Sentinel 2 data of 2016 and 2018.  

 

As demonstrated in Chapter 3, the forest fragmentation model can identify and spatially show 

the level or degree to which vegetation is fragmented (core or interior, perforated, edge, 

transitional, patch). Based on the forest fragmentation model, the results showed that in both 

2016 and 2018, patch category of vegetation pattern, which represents the severe level of 

vegetation fragmentation, was the dominant spatial pattern across the city. This therefore, 

implied that more conservation attention and priorities should be given to patch category of 

vegetation pattern, as they usually consist of many smaller and isolated vegetation patches. 

Most of the patch vegetation patterns were concentrated in heavily built areas of the southern, 

eastern and western side of the city. On the other hand, the core category of vegetation pattern 

which represents undisturbed, lowly fragmented, covered a small portion of the study area as 

they were dominant in the northern part of the Harare. 

 

Another potentially useful feature of the forest fragmentation model is that it works well for 

any discrete and continuous land cover and vegetation data at any scale. Multiple-scale 

approaches are needed because no single scale can apply to all of the landscape that is affected 

by vegetation fragmentation. Unlike other distance and connectivity based methods, for 

instance the proximity index and the Euclidean nearest neighbour distance (ENN), the forest 

fragmentation model has an added advantage that it does not require arbitrary edge and 

Euclidean distance specification to define a core, interior, perforated, transitional and edge area 

within a contiguous vegetation pixel. It explicitly accounts for the amount or proportion of a 
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landscape occupied by vegetation patches and thereby helps to evaluate their significance to 

conservation efforts. The forest fragmentation model could in future become an important 

spatial analytical tool in landscape and urban planning for the conservation of urban green 

spaces. For instance, one strategy to target large vegetated areas for restoration efforts might 

be based on the existence of core or interior vegetation conditions. The forest fragmentation 

model could also be used to assess restoration potential. A restoration strategy to expand the 

area of core or interior vegetation conditions might be to fill in the perforated urban vegetated 

areas.  

 

Chapter 3 went on to further highlight the spatial explicit value of LISA indices of Getis-Ord 

Gi* and Local Moran’s I in revealing where the more homogeneous (clustered) and 

heterogeneous (fragmented) areas of vegetation exist spatially within the city. The small, 

isolated and scattered vegetation patches were associated with low positive and negative spatial 

autocorrelation of LISA indices. The highly fragmented and heterogeneous patterns of small, 

isolated and scattered vegetation patches detected as cold spots in LISA indices were mainly 

concentrated in the highly and densely built-up western, eastern and southern part of the 

Harare. On the other hand, the more homogeneous (clustered) vegetation showed high positive 

spatial autocorrelation of Getis-Ord Gi* and Local Moran’s I statistics. The significant spatial 

clusters of vegetation (hot spots) representing the highest proportion of undisturbed and core 

vegetation, were located in state protected and large parks in the northern side of Harare.  

 

The implication of these results is that local spatial statistics and indices like Getis-Ord G*and 

Anselin Local Moran’s I can be used as spatial explicit tools to statistically characterize the 

local spatial variability patterns indicating whether vegetation is clustered or dispersed and also 

distinctively revealing the extent of vegetation fragmentation across the landscape. The 

approach used in Chapter 3 enabled the continuous (i.e. LISA indices) as well as discrete (forest 

fragmentation model) representations of spatial heterogeneity and vegetation fragmentation in 

an urban landscape.  

 

7.3. Long-term changes in vegetation fragmentation using discrete metrics and 

continuous models  

Based on the spatially explicit methodology of LISA indices and the forest fragmentation 

model, the results in Chapter 3 identified the key geographical locations where conservation 

efforts can be directly targeted on highly fragmented and isolated vegetation patches. Chapter 
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4 sought to develop a generic approach for conceptualizing the landscape structure of 

vegetation patches and capturing long-term changes that may not be abrupt and discrete or 

observable in a landscape. To do this, Chapter 4 uniquely combines discrete (landscape metrics, 

forest fragmentation model) and continuous methods (LISA, Tasselled Cap Transformation) in 

examining their ability to understand spatial clustering, connectivity and vegetation 

fragmentation patterns between 1994–2017 in Harare metropolitan city in Zimbabwe using 

multi-temporal Landsat data. 

 

Despite the sensor's relatively coarse resolution, Chapter 4 indicated that time series Landsat 

imagery data is valuable for assessing the pattern, change and extent of vegetation 

fragmentation over time in an urban landscape highlighting whether vegetation fragmentation 

was increasing or decreasing. The combination of LISA indices (local Moran’s I and Getis Ord 

Gi*), Tasselled Cap Transformation indices, the forest fragmentation model and landscape 

metrics established that vegetation patterns in the study area after 1994 were becoming 

increasingly fragmented and less connected than being clustered (homogeneous). The 2017 

image had fewer numbers of contiguous, highly connected and large vegetation patches than 

all the previous satellite images. Landscape metrics showed that vegetation fragmentation in 

the study area experienced an increase in the number of vegetation patches, a decrease in mean 

patch size, an increase in shape complexity and edge density and increasing isolation between 

habitat vegetation patches. 

 

Unlike landscape metrics, the usefulness of continuous LISA indices corroborated same results 

found in Chapter 3 in providing more information on where the more dispersed (fragmented) 

and clustered vegetated patterns occurred spatially in the study area. The decrease of large, 

connected and contiguous vegetation to a more scattered and  fragmented vegetated patches 

were common across the city but were more dominant in the western, eastern and the southern 

side of  Harare indicating the adverse impact of urban development.  Furthermore, the Landsat 

derived indices of Tasselled Cap Transformation (TCT) indices enabled additional 

interpretation of change that might have been confounded with LISA indices techniques. 

Tasselled Cap Transformation (TCT) indices are uncorrelated and contain enhanced 

biophysical information into known characteristics (vegetation wetness, soil brightness and 

vegetation greenness). The Tasseled Cap Angle (TCA) derived from Tasselled Cap 

Transformation indicated that vegetation cover in the landscape between (1994–2017) was 

constantly changing, significantly not maintaining a higher amount of vegetation to non-
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vegetation coverage. Overall, the combination of spectral indices of  Tasseled Cap Angle, 

Tasseled Cap Wetness, Tasseled Cap Greenness, Tasseled Cap Brightness, NDVI and local 

Moran’s I that were derived from Landsat data when analysed against vegetation connectivity, 

revealed that the landscape pattern of vegetation became more spatially disperse and 

widespread after 1994.  

 

Overall, the spatially explicit approach employed in this research work can be utilised for future 

studies in identifying areas of exceptionally high or low vegetation cover for conservation and 

restoration purposes. The extent of vegetation connectivity and fragmentation are important 

indicators of ecosystem function and landscape integrity. A highly connected and less 

fragmented pattern of vegetation has a higher probability of maintaining their ecological 

functions and balance than small habitat (forest, grassland, woodland) patches. In urbanized 

areas, the green spaces may be smaller than the actual area of habitat due to the great human 

disturbance. Large and contiguous vegetated areas are suitable habitats that can support a large 

population and are more likely to maintain the species persistence (Arifin and Nakagoshi 

2011).  

 

7.4. The impact of spatial configuration of urban vegetation on urban warming and 

cooling  

 

One of the objectives of this study was to use spatial explicit analytical methods to enable 

accurate estimates of spatial configuration (size, density, shape complexity, connectivity, 

clustering and fragmentation) of urban vegetation patterns and evaluate its influence on urban 

warming and cooling. A better understanding of the role of the spatial configuration and 

landscape patterns  of urban vegetation is important in mitigating urban warming effects so that 

cities can have liveable, healthier and comfortable conditions. Using the continuous local 

spatial autocorrelation index of Getis Ord Gi* proposed in Chapter 3 and 4, Chapter 5 sets out 

by examining the influence of spatial configuration of urban vegetation on LST in Harare. 

ASTER ( September 2010), Sentinel 2 (October 2017) and two Landsat-8 OLI/TIRS (October 

2013 and 2017) were used.  

 

The correlation analysis between LST and Getis Ord Gi* of vegetation patterns indicated that 

Getis Ord Gi* had a moderate negative correlation with daytime LST in the dry and summer 

season. This implied that spatially clumped vegetation patterns could decrease surface 
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temperatures more significantly than fragmented patterns of vegetation in dry summer season. 

The five landscape metrics used in this study that included AWMPFDI, AWMSI, Edge 

Density, Mean Patch size and Patch Cohesion index of vegetation also showed a negative 

relationship with LST at three different spatial resolutions (10m, 15m and 30m). The results 

illustrated that vegetation patterns with larger mean patch sizes, edge density, irregular in shape 

and highly connected all contribute to better cooling effects.   

 

It is sometimes impractical to increase patch size, enhance connectivity of green space and to 

install cool roofs across an entire city due to the limited vacant and open spaces, existing land 

use constraints and high pressure of urban developments. Therefore, optimizing spatial 

configuration for mitigating UHI effects is particularly desirable in effectively mitigating urban 

warming in tropical cities during the summer when excessive heat increases thermal discomfort 

and puts a huge demand on water and energy consumption. 

 

7.5. Sensitivity of spatial resolution of satellite data on the quantitative relationships 

between LST and spatial configurations of urban vegetation 

The landscape metrics have been shown to be susceptible to changing grain size and spatial 

scales (Wu et al.2000). A multiscale analysis was carried out in Chapter 5 to reveal the extent 

to which the impacts of landscape patterns of vegetation on urban warming and cooling vary 

across different spatial resolutions of remote sensing data. Results showed that the landscape 

metrics of urban vegetation patterns based on the mean patch size, density, shape complexity 

and connectivity had consistently weak to moderate negative relationships with LST. However, 

the magnitude of the relationship varied with spatial resolution at 10m (Sentinel 2), 15m 

(ASTER) and 30m (Landsat 8).  

 

Except Patch Cohesion index, the results indicated that the negative correlations between land 

surface temperature and landscape metrics indices of AWMPFDI, AWMSI, Edge Density and 

Mean Patch size of vegetation patterns were significant at finer spatial resolution of 10m 

(Sentinel 2) and 15m (ASTER) spatial resolution than at 30m of Landsat 8 imagery. This 

provided important indications of the spatial resolutions at which maximum warming and the 

cooling effect is achieved. This implied that finer spatial resolution is more sensitive to the 

response of changing spatial configurations of vegetation patches on LST as they contained 

more detailed land cover features (e.g., trees, grass) than coarse resolutions.  
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On other hand, the effect of Patch Cohesion index of vegetation on LST increased with the 

subsequent decrease of spatial resolution becoming stronger at 30m of Landsat 8 imagery than 

at 15m (ASTER) and 10m (Sentinel 2). Since this study only used moderate spatial resolutions 

(Sentinel 2, Aster and Landsat) due to data costs challenges, other satellite data with better and 

finer spatial resolution such as QuickBird, GeoEye and WorldView are recommended. They 

should be employed to gain  concise conclusions of their individual effects upon LST (°C). The 

higher spatial resolution permits identification of more detailed land cover classes  such as 

trees, grass, buildings, and paved surfaces.  

 

7.6. Comparison of spatial regression models and ordinary regression models in 

examining the impact of spatial configurations of urban vegetation on urban warming 

and cooling  

Owing to the spatial autocorrelation of LST because of land surface heat fluxes, the underlying 

assumption that the observations of dependent variables are all independent cannot be true as 

it is influenced by its values at nearby locations. Therefore, using traditional and global 

regression methods like the Ordinary least squares regression model (OLS) without 

considering spatial autocorrelation or spatial dependency of the dependent variable like LST, 

can lead to misleading parameter estimates and unreliable significance tests. Chapter 5 

demonstrated that better modelling performances can be achieved when spatial non-stationarity 

(spatial heterogeneity) is highlighted and spatial autocorrelation of land surface temperature 

effects are controlled to promote the practicality of city resilience to adapt to  urban warming 

and heat island effects at a detailed local scale. It was important to model geographical 

phenomena of LST at small, meaningful spatial scale, where reliable quantitative regression 

models can provide effective supporting tools for specific locational decisions. 

 

As demonstrated in chapter 5, results showed that Spatial Lag Model (SLM) was more 

powerful than the OLS regression model in improving the estimation and accuracy of the 

relationships between mean LST and spatial configurations of vegetation. In both OLS and 

SLM models, R² significantly increased with subsequent decrease in spatial resolution. The 

OLS model explained about 11% (R2 = 0.1158) for Sentinel 2 (10m), 13% (R2 = 0. 1304) for 

Aster data (15m) and 53% (R2 = 0.5285) for Landsat 8 data (30m) of the predicted estimate of 

the relationship between mean LST and landscape metrics of vegetation. On the other hand, 

SLM model explained 51% (R2 = 0.5076) for Sentinel 2 (10m), 52% (R2 = 0.5153) for Aster 

data (15m) and 64% (R2 = 0.6353) for Landsat 8 data (30m) of the predicted estimate of the 
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relationship between mean LST and spatial configuration of vegetation. This indicated that the 

SLM model could explain more than 50% of the variance between mean LST and selected 

landscape metrics of vegetation at different spatial resolutions. This also demonstrated that the 

influence of spatial configuration of urban vegetation patterns in reducing UHI effects were 

underestimated in the OLS model. This research complements previous studies that emphasise 

the importance of  using  robust spatial regression methods in examining the spatial 

configurations of vegetation in mitigation the UHI effects. The SLM analysis of spatial 

configuration of urban vegetation patterns can provide detailed, reliable information for 

specific locations for UHI mitigation in urban areas. 

 

7.7 The spatial configurations and connectivity of urban vegetation patterns and their 

impact on seasonal urban surface temperature 

The spatial configuration and connectivity of urban vegetation is an essential factor that affects 

the heat fluxes and exchanges between patches of vegetation and the LST in an urban area. The 

necessity for maintaining and promoting landscape connectivity of vegetation is gaining 

increased acceptance in urban and landscape planning as a key management objective in 

mitigating urban heat islands. Previous research work on the influence of spatial configurations 

of urban vegetation patterns on LST was solely focused on explaining the spatial patterns of  

UHI at a specific time, generally in dry and  summer season as highlighted in Chapter 5.  

 

However, the spatial configurations (clustered and dispersed) and connectivity of urban 

vegetation patterns may affect surface temperatures in urban thermal environments across the 

year or across different seasons (spring, winter, autumn and summer) in different ways and at 

different levels.  Therefore, a comprehensive and cost-effective strategy for improving the 

outdoor urban thermal environment should encompass all seasons (summer, winter, autumn 

and spring). The purpose of Chapter 6 was to build this framework of understanding how the 

spatial configuration (clustered and dispersed) and connectivity of urban green vegetation 

affect the urban thermal environments across different seasons (spring, winter, autumn and 

summer) in Harare metropolitan city using Landsat OLI data measured over the period from 

May 2018 to November 2018.  

 

The spatial configuration of urban vegetation was quantified using local spatial statistic of local 

Moran’s I, while vegetation connectivity was calculated using Patch Cohesion Index (%).  

Correlation analysis based on a Pearson correlation coefficient (r) was applied on both Patch 
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Cohesion Index and local Moran’s I against LST, which was a dependent variable. The local 

spatial statistic method of local Moran’s I is very efficient and useful in providing the 

continuous and true depiction of the spatial arrangement and distribution (random, dispersed 

or clustered) of the landscape that cannot be easily detected by the discrete and widely used 

landscape metrics (Fan et al. 2015). Results in Chapter 6, indicated that landscape configuration 

and connectivity of urban vegetation estimated from both Local Moran's I and Patch Cohesion 

Index (%) had a moderate to strong negative correlation with LST in all seasons (spring, winter, 

autumn and summer).  

 

Overall, the research findings of the relationship both local Moran’s I and Patch Cohesion 

Index against LST  implied that less fragmented but highly clustered and connected vegetation 

are  more effective in reducing urban warming and providing cooling effects  than dispersed 

patterns in all seasons. The overall information provides important insights to policy makers, 

urban planners and designers in considering optimizing different spatial configuration patterns 

of vegetation so that cities can have comfortable living environments in all seasons. In 

particular, urban and landscape planners should  provide highly connected and less fragmented 

urban vegetation patches, optimizing clustering rather than dispersing vegetation focusing on 

specific time and season to derive maximum and higher cooling effects for mitigating 

increasing surface temperatures in cities. In response to observed urbanization and global 

warming and continuing vegetation fragmentation in urban areas, reduced surface temperatures 

in all seasons are important in achieving sustainability objectives.  

 

7.8. Limitations 

In this study, the following limitations were identified; 

 

1. This research did not consider the influence of  urban expansion and other land cover and 

land uses on vegetation fragmentation across space and time. Worldwide, the urban 

expansion and other land cover and land uses (roads and transportation) are a threat to 

vegetation fragmentation. 

 

2. The continuous spatial LISA approach used in this research have shown much promise in 

effectively characterizing the spatial patterns of vegetation from a continuous and gradient 

perspective. However, in this study, we did not examine other continuous methods for 

landscape pattern analysis of vegetation fragmentation and urban warming and cooling. 

 

3. In examining vegetation fragmentation and urban thermal environment across the study 

area, we did not dealt with the impact of varying spatial resolution on the relationship 

between the local spatial statistics (local Moran’s I and Getis Ord GI* statistic) and 
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landscape metrics of vegetation at higher spatial resolutions from satellite images like 

QuickBird, IKONOS and SPOT.  

 

4. The forest fragmentation model used in this research work has been efficient in examining 

and analysing the pattern and degree of vegetation fragmentation. The analysis of 

vegetation fragmentation derived using forest fragmentation model is however much 

affected by the choice of spatial scale (window size). Generally, a large spatial window size 

in the forest fragmentation model may overestimate and underestimate the amount of patch 

and core categories of vegetation areas, respectively. 

 

5. Although we chose and used the most relevant and appropriate landscape pattern indices to 

capture important aspects of spatial configurations of vegetation, the contributions of  other 

landscape indices,  land cover and land use classes are important to consider when studying 

vegetation fragmentation and urban thermal assessments. Generally, not all landscape 

metrics are responsible for the heat exchanges, energy flows and thermal processes in a 

city. 

 

6. This study employed coarse resolution satellite data that included the ASTER, The 

Sentinel-2 and Landsat data which showed promising results in examining vegetation 

fragmentation and urban thermal environment. However, in heterogeneous urban 

landscapes, remote sensing images with medium resolution may fail to depict the highly 

dynamic and changes of vegetation fragmentation and urban thermal environment.  

 

7. In this research work, we only used land surface temperature to characterize the urban 

warming and cooling of the city. When employing the land surface temperature data instead 

of in situ air temperature data to explain landscape patterns of urban vegetation on the urban 

warming and cooling, the correlation between land surface temperature and air temperature 

in a city might be dramatically different in the daytime and nighttime.  

 

8. This research indicated that spatial regression methods are reliable, robust and effective 

tools for characterizing landscape patterns and spatial configuration of urban vegetation on 

LST (°C)  for UHI mitigation to address location specific and spatial autocorrelation issues 

when compared to global regression models like Ordinary Least Squares (OLS). However, 

our results may generalize the role of spatial regression models since this study only tested 

one spatial regression model, the Spatial Lag Model (SLM).  

 

7.9 Recommendations for future studies  

Although the findings of this research work are conclusive within the scope of the study, they 

lay a foundation for further research in this area. Therefore, the  following future research 

directions are recommended based on this study.  

 

1. In future, the impact of urban expansion and other land cover and land uses (roads and 

transportation) on vegetation fragmentation across space and time should be examined. 

Furthermore, future studies could also examine how alternative urban form patterns (i.e. 

clustered or monocentric verses dispersed or polycentric) significantly influence the spatial 

patterns of vegetation fragmentation and urban heat island formation. There are indications 

that different urban form patterns in a landscape  in a city may have important influences 

on landscape patterns of vegetation patches (Huang et al.2018) and urban heat island (Yin 

et al.2018).  
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2. While the local spatial autocorrelation indices themselves are illuminating, in future, other 

continuous spatial indices like fractal measures, image texture methods, Fourier 

decomposition, wavelet transforms should be employed for evaluating vegetation 

fragmentation and urban heat island. 

 

3. In evaluating vegetation fragmentation and urban heat island across  the study area, further 

research is required to analyse the impact of varying grain  size and spatial resolution  on 

the relationship between the local spatial statistics (local Moran’s I and Getis Ord GI* 

statistic) and landscape metrics obtained from  high resolution remote sensing data.  

 

4. In quantifying and analysing the dynamics of landscape connectivity of green vegetation 

and its influence on surface temperature regulation, further studies should explore and 

compare methods used in this study like the forest fragmentation model with other 

connectivity tools like Morphological Spatial Pattern Analysis and landscape pattern 

indices and fragmentation methods like Effective mesh size (Jaeger 2000, Moser et 

al.2007).  

 

5. Future studies,  should explore the influence of spatial configuration and composition of 

other land use and land cover classes (e.g. impervious surfaces and water) on LST    and 

biophysical factors (rainfall, slope, elevation) and socioeconomic factors (income, housing 

value and distance from urban core, population density, Gross Domestic Product, the urban 

form,  vertical structures and building densities). Such an undertaking will aid the 

understanding of urban warming and cooling because of the diverse heat exchanges and 

thermal effects and processes posed by different land cover categories and drivers during 

different times and seasons.  

 

6. The high resolution images such as such as WorldView 1/2/3, IKONOS, Quickbird, 

unmanned aerial vehicles (UAV) or drones, LIDAR, RADAR are much detailed. Such data 

permits computing and analysing vegetation fragmentation and the identification of more 

detailed examination of spatial configurations of diverse land use and land cover classes on 

LST (°C) at finer spatial scales and at an individual city level. Furthermore, airborne data 

like  LIDAR are effective identifying and mapping vegetation in dry seasons, when optical 

data is inefficient for mapping senescent vegetation 

 

7. In situ air temperature  data  across the study area should be collected to calibrate and 

validate the estimation and relationship between land surface temperature and spatial 

configurations of vegetation at different times in the daytime and nighttime. Future studies  

should also explore  the seasonal impact of spatial configurations of vegetation on nighttime 

UHI which would complement the results reported here; making use of land surface 

temperatures derived from thermal imagery data. 

 

8. Future research should explore other spatial regression models like the Spatial Error Model 

(SEM) and Geographically Weighted Regression (GWR) modelconcerning residual spatial 

autocorrelation and  goodness-of-fit in exploring the landscape pattern of urban vegetation 

on LST (°C).  
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9.0 Conclusions  

Spatially explicit methods derived from multispectral remote sensing data of Sentinel 2, Aster 

and Landsat sensors enabled the analysis of pattern, change and extent of vegetation 

fragmentation in an urban landscape and its impact on urban warming and cooling in the study 

area. The results of this research established that vegetation in the study area was increasingly 

becoming fragmented and less connected over time. The findings of this research established 

and concluded: 

 Unlike discrete landscape metrics, the usefulness of continuous LISA indices provided 

more information on the specific geographical location of heterogeneous and clustered 

vegetated areas in the study area. 

 The decrease of large, connected and contiguous vegetation to a more scattered and  

fragmented and small vegetated patches were more pronounced in the dense and 

heavily built-up areas in western, eastern and the southern side of the Harare indicating 

the impact of urban development on  conversions of naturally vegetated areas. 

 The northern part of Harare metropolitan city was comprised primarily of lowly 

fragmented and undisturbed core vegetation patterns. 

 Highly clustered and connected vegetation patch performs better in urban cooling than 

smaller ones in the summer season. 

 The relationship between spatial configuration (size, density, shape complexity and 

cohesion) of urban vegetation and LST was negative across different spatial resolution 

(Aster, Sentinel and Landsat) but conferred different levels of cooling. 

 Except for Patch Cohesion Index,  the responses of correlations between configuration 

metrics and LST to  spatial resolution fell into two categories: (1) the significance of 

correlation decreased as the spatial resolution decreased (coarse) (Landsat 8) (2) the 

significance of correlation increased as the spatial resolution increased (fine)(Sentinel 

2 and Aster). 

 Due to spatial autocorrelation of data like land surface temperature, there is need of 

controlling the effects of the amount of vegetation cover (spatial composition) to avoid 

misleading parameter estimates and unreliable significance test results in regression 

models. 

 SLM is more powerful than the OLS regression model in improving the prediction and 

estimation of the relationship between mean LST and spatial configurations of 

vegetation. 

 

The present study is important in identifying general patterns, trends and extent of vegetation 

fragmentation. It  also enhanced  our understanding of the effects of spatial configuration of 

urban vegetation on urban heat island (UHI). The research provided a useful guide to urban 

planning and landscape design and suggested that optimizing of spatial configuration and 

landscape connectivity patterns of vegetation is an effective and practical measure to reduce 

urban warming effects and maximise cooling effects. At most, the availability of vacant land 

for increasing vegetation cover, the greening of roofs buildings is usually limited, expensive 

and impractical in mitigating the UHI effects. Landscape configurations (size, density, shape 
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complexity and cohesion) of vegetation confer different levels of cooling. The urban  design 

and landscape planning strategies can be enhanced by considering the different spatial 

configuration to obtain maximum and larger cooling effects provided by different landscape 

configurations of vegetation. Overall, the methodological framework outlined here can be 

extended to obtain spatially explicit information on urbanization, land cover changes, land 

degradation in addressing pattern-process interactions in the context of conservation.  
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