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Thesis abstract 

Maize grain contains high levels of phytic acid which chelates iron, zinc and other 

micronutrients as it passes through the digestive systems of monogastric consumers reducing 

their bioavailability. Breeding for low phytic acid (LPA) content to improve micronutrient 

bioavailability is hampered by a tedious and destructive colorimetric method on the grain, low 

yields compared to the wild-types and reduced seed germination and vigour of LPA mutants. 

Breeding for LPA therefore should also incorporate breeding for improved germination and 

vigour in the mutants. Molecular markers to speed up the selection process and studies on 

gene action and combining ability for germination, vigour and yield parameters of the LPA 

mutants in combinations with other different maize germplasm will speed up breeding for this 

trait. The objectives of this study were: to develop a molecular marker linked to the lpa1-1 gene 

and apply this marker for foreground selection in a backcross breeding programme and to use 

amplified fragment length polymorphism (AFLP) markers for background selection to recover 

the recurrent parent genome to speed up the backcrossing process; to study gene action and 

combining ability for seed germination, vigour and yield from  diallel crosses involving LPA 

mutants, QPM and normal endosperm maize inbred lines by replicated laboratory seed tests ( 

standard germination test and accelerated aging test) and field evaluations in South Africa and 

Zimbabwe. 

A co-dominant single nucleotide polymorphism (SNP) marker which detects the transition base 

change of C/T nucleotides was developed from the gene sequence to identify the lpa1-1 trait. 

The 150 bp lpa1-1 SNP marker was validated by forward and reverse DNA sequencing of 

the parental amplification products which confirmed the C to T base change resulting in the 

LPA phenotype. The lpa1-1 SNP marker was used for foreground selection in 250 BC2F1 

progenies of CM 32 (LPA) x P 16 as the recurrent parent. This SNP marker was used to 

genotype the lines into homozygous dominant (wild type) and homozygous recessive (LPA) 

genotypes by their melting profiles and heterozygous genotypes by the normalised 

difference plots using high resolution melt (HRM) analysis. Seventeen heterozygous and 11 

homozygous recessive lines were identified for background selection by fingerprinting with 

AFLP markers to determine the amount of recurrent parent (P 16) genome present. There 

were six EcoRI/MseI primer combinations tested with 277 data points scored (84% 

polymorphism rate). The amount of recurrent parent (P 16) genome recovered ranged from 

62% to 92% with 13 lines showing greater than 83% of the recurrent parent genome. 

The effects of diallel crosses generated between four LPA, three QPM and three normal 

endosperm maize lines were determined for seed germination and vigour using the standard 

germination and accelerated aging seed tests under laboratory conditions in accordance 
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with the procedures of the International Seed Testing Association. The specific combining 

ability (SCA) effects and general combining ability (GCA) effects were significant for the 

seed germination and vigour traits, indicating that genes with non-additive and additive 

effects were important in controlling these traits. However, the SCA effects were greater than 

GCA effects suggesting that genes with non-additive effects were predominant. The LPA 

parents showed reduced vigour compared to the normal and QPM inbred lines under both 

conditions, with LPA lines CM 31 and CM 32 showing stress tolerance. There were some 

combinations involving LPA lines, such as LPA x normal, LPA x QPM and LPA x LPA that 

retained high vigour and high germination rates under accelerated aging conditions, 

suggesting that they could be stress-tolerant..  

A 10 x 10 diallel involving four LPA, three QPM and three Nm inbred lines was evaluated in 

replicated trials across six environments. Results show that both additive and non-additive 

gene effects were significant for resistance to northern corn leaf blight (NCLB), grey leaf spot 

(GLS) and Phaeosphaeria leaf spot (PLS) diseases. The additive gene effects were 

predominant for the yield and associated secondary traits such as days to mid-pollen shed 

(DMP), days to mid-silking (DMS), ear per plant (EPP) and grain moisture content (GMC) 

and grain yield. The LPA lines were early flowering and had quick grain dry down rate but all 

showed undesirable negative and significant GCA effects for yield. The yield of the LPA x 

LPA, LPA x Nm and LPA x QPM group of crosses was lower than the check hybrids by 

about 32 to 67% showing the need for yield improvement of the LPA combinations.  

An eight x eight diallel involving two LPA and six normal endosperm lines was evaluated 

over two seasons in five locations with two replications for grain yield components and foliar 

diseases. There was significant additive and non-additive gene action for both seed 

germination and vigour traits with predominance of non-additive gene effects. Both additive 

and non-additive gene effects were significant for yield and associated traits such as 

anthesis dates and number of ears per plant. However, the additive gene action was 

predominant for yield and associated traits. Generally the LPA lines and their combinations 

showed lower germination and vigour. The LPA line, CM 32 showed stress tolerance under 

accelerated aging conditions. There were three LPA x Nm crosses that showed 

improvements to the means of seed germination and vigour and yield traits. Results 

indicated that there was not any significant correlation between yield and seed germination 

and between yield and vigour.  Yield was, however, significantly and positively correlated 

with anthesis dates and GMC, indicating that higher yield was associated with longer 

growing cycles.  
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This study was able to successfully develop and apply the lpa1-1 SNP marker for foreground 

selection and AFLP markers for background selection in a backcross breeding programme. 

Problems of low seed germination, seedling vigour and grain yield of LPA lines and their 

combinations were confirmed. However results also indicated some potential of combining 

the LPA and QPM traits in a single cultivar. In general, procedures such as reciprocal 

recurrent selection, that emphasise both GCA and SCA effects would be recommended to 

improve  seed germination, seedling vigour and yield in developing varieties with LPA trait.  
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Introduction to thesis 

Importance of maize 

Maize is the third most important food crop, after rice and wheat, in the world (Hoisington 

and Melchinger, 2005) and in Africa it is the second most important food crop after cassava 

(africancrops.net). The demand for maize is increasing as it is becoming more favoured as a 

major food and feed source due to its higher productivity, lower labour demands, easy 

processing, ease of digestibility and cheaper cost than other cereals. It is a valuable crop as 

every part of the plant has economic value to produce a large variety of food and non-food 

products. Maize is an important source of carbohydrate, protein, iron, vitamin B and 

minerals. It is the focus of many commercial plant breeding and biotechnology companies 

worldwide (Hoisington and Melchinger, 2005). 

In Africa, 95% of maize is grown by small to medium scale farmers who cultivate 10ha or 

less with low yields, which barely exceed 1 t ha-1. There are a number of constraints for 

maize grown by small scale farmers in Africa, including foliar diseases, drought, late 

maturity, limited use of fertilisers, declining soil fertility, Striga infestation, stem-borer attack, 

decreased protein content and lack of appropriate varieties.   

Globally there are 1.09 billion people that are hungry and undernourished, of which 265 

million are in Africa (FAO, 2009). This can be attributed to the global economic crisis which 

had the most adverse effects on the poorer people of the world. This has resulted in them 

eating fewer and less nutritious meals, reduction of their income spent on health and 

education expenses and selling assets to manage higher food prices, lower incomes and 

increasing unemployment (FAO, 2009). This is having further major detrimental effects on 

people in the developing world who subsist only on cereal crops for their daily nutritional 

requirements. The per capita consumption of maize is 147 calories per day per person in the 

world (FAO, 2009) and it is highest in eastern and southern Africa. There is a need to 

improve yield and nutritional aspects of staple crops such as maize to help alleviate hunger 

and malnourishment in the world.  

Breeding for LPA in maize 

Maize has high levels of phytic acid which is the main phosphorus-containing compound 

(75%) found in mature seed (Raboy, 1997). It is an anti-nutritional compound as it chelates 

essential minerals such as iron, zinc, potassium, magnesium and calcium as it passes 

through the digestive system of humans and other monogastric consumers. There is a 

considerable amount of evidence to support the fact that dietary phytate has a negative 
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effect on the bioavailability of dietary minerals in humans as the substitution of low phytic 

acid (LPA) grain in a maize based diet is associated with a substantial increase in zinc 

(Adams et al., 2002; Hambidge et al., 2004), iron (Mendoza et al., 1998, 2001; Hurrell et al., 

2003), calcium (Hambidge et al., 2005) and magnesium (Bohn et al., 2004) absorption. This 

leads to increasing cases of iron and zinc deficiencies especially in communities that subsist 

on maize as their major daily food. Iron deficiency is considered to be the most common and 

widespread nutritional disorder in the world and zinc deficiency is estimated to affect billions 

of people (WHO, 2009). This research therefore aims to breed for LPA trait in the adapted 

tropical maize varieties to alleviate nutritional problems in sub-Saharan countries where 

maize is the major staple food. 

Quality protein maize (QPM) lines were originally developed in late 1990s at CIMMYT, 

Mexico and  contain higher levels of lysine (4.2 g/100 g protein) and tryptophan (0.9 g/100 g 

protein) compared to normal maize levels of lysine (2.6 g/100 g protein) and tryptophan 

(0.4g/100g protein) (Vivek et al., 2008). There are calls to breed the LPA trait into QPM 

maize to boost nutrient content in a single variety. However, there are concerns that stacking 

the QPM and LPA traits in a single variety would lead to serious problems of low 

germination, low seedling vigour, and reduced grain yield with implications on food security 

especially in the smallholder sector where yield levels are already very low. Problems of low 

seedling vigour have already been reported in QPM (Modi and Asanzi, 2008). In addition, 

low grain yield potential and kernel weight were long ago reported to be associated with 

QPM (Poehlman and Sleper, 1995; Akande and Lamidi, 2006). However, there are counter 

reports that the QPM gene (opaque2 gene) introduced into hybrids produced with the same 

yield potential as the wild-type hybrids (Gupta et al., 2009) showing potential to improve 

yield. Therefore, it is prudent to test the levels of seed germination, yield and seedling vigour 

in crosses involving QPM, LPA and normal endosperm maize. The information would be 

crucial to the breeding programmes that seek to combine the QPM and LPA traits in a single 

variety.  

There have been a number of maize inbred lines containing lower levels of phytic acid 

produced using ethylmethane sulphonate-induced (EMS) mutagenesis (Raboy, 2000). 

These maize LPA mutants are distinguished according to differences in inositol and inositol 

phosphate content. The maize lpa1-1 mutant lines used in this study show a reduction in 

phytic acid accompanied by inorganic phosphate (Raboy, 2000). The gene from lpa1-1 has 

been cloned and encodes a multidrug resistance associated protein (MRP) ATP-binding 

cassette (ABC) transporter (Shi et al., 2007). The lpa1-1 mutation shows 66% reduction in 

phytic acid P (Raboy, 2000) and has been mapped onto the chromosome 1 distal region and 
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reported to be due to a single recessive mutation (Raboy et al., 2000). The LPA phenotype 

is thought to be due to a change of amino acids alanine to valine as a result of a cytosine to 

thymine base change (Shi et al., 2007) which can be classified as a transition single 

nucleotide polymorphism (SNP).  

Unfortunately, these LPA lines show reduced germination and vigour (Pilu et al., 2003; Doria 

et al., 2009) as well as yield reductions (Ertl et al., 1998; Raboy et al., 2000). Seed quality is 

usually associated with germination and purity but seed vigour also needs to be included. 

Vigour is a concept that describes several characteristics of the seed such as rate and 

uniformity of germination and growth, tolerance to environmental stresses after sowing and 

retention of performance after storage (Hrstková et al., 2006). The low germination rates of 

LPA material are a serious concern during commercial seed production, and could result in 

serious yield reduction in the small-holder farmers if LPA varieties are deployed without 

addressing the problem of germination and vigour. It needs to be addressed to ensure that 

material with LPA trait is commercially viable. There is a need to determine germination and 

vigour levels of crosses between LPA lines and normal tropical (Nm) and quality protein 

maize (QPM), especially the LPA with QPM crosses for improvement of the nutritional 

aspects of maize.   

Gene action study 

In breeding programmes, the selection of parents and the determination of general and 

specific combining ability and gene action are important. To eliminate undesirable inbred 

lines and select the most desirable ones to constitute various hybrid combinations, the 

general and specific combining ability of the inbred lines and their crosses needs to be 

established. Strategies for breeding varieties with high plant vigour, high germination and 

yield are required.  Information regarding the combining ability of these lines for yield and 

associated traits is useful in devising an appropriate breeding strategy to improve these 

traits. The LPA lines that are in a temperate background and show earliness in flowering, 

maturity and quick dry down of the grain at harvest are also desired in tropical environments. 

These advantageous traits need to be retained as well as the LPA trait during breeding to 

introgress into tropical material. The temperate germplasm is able to contribute genes for 

ultra-early flowering and early physiological maturity. Ultra-early germplasm is desired in 

managing drought as these varieties will flower and mature before the onset of drought 

which is favourable for farmers. Therefore the gene action determining these traits including 

anthesis dates, yield and resistance to foliar diseases in cross combinations that involve 

LPA, QPM and NM inbreds should be established. 
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Application of molecular markers to aid breeding for LPA in maize 

The conventional method of detection for phytic acid is a destructive colorimetric assay of 

mature seed (Chen et al., 1956). This method is long and comprises of an overnight 

incubation as well as requiring several hours of manual labour preparation for the assay 

(Lorenz et al., 2007). There is therefore a need for a non-destructive method of detecting the 

lpa1-1 trait, particularly one that is reliable, quicker and less labour intensive. A solution to 

this would be a molecular marker that is able to detect the different LPA genotypes from 

vegetative tissue. Also to ensure wide-spread applicability of the marker in plant breeding 

programmes, it needs to be amenable to high throughput methods and more cost-effective 

than the conventional assay.  

Markers are used routinely to track loci and genome regions in crop plants in many breeding 

programmes (Landridge and Chalmers, 2005). There are many markers and different types 

of markers available for maize which are used to map genes and traits of interest 

(Hoisington and Melchinger, 2005). Molecular markers can be used for detection of 

traits/phenotypes that are difficult to assess or for recessive genes. In the case of phytic 

acid, the trait is both difficult to phenotype as well as being a single recessive mutation; 

hence molecular markers can be applied to identify the lpa1-1 trait with increased reliability 

and accuracy. Marker-assisted selection methods particularly those based on PCR are 

advantageous due to their objectivity and small amounts of sample tissue and results in 

accurate analysis of large numbers of individual plants early in the breeding programme.  

Single nucleotide polymorphism (SNP) markers can occur naturally or through induced 

mutation techniques. The SNPs markers are stable, occur at high frequency in the genome 

and are of higher inheritance than most other markers. Marker techniques are usually based 

on detecting DNA sequence variation, with SNP markers detecting a single base change, 

insertion or deletion of many bases. SNP markers occur at varying frequencies depending 

on the species and the genome region being considered. There have been studies on maize 

with reports on varying frequencies of SNP occurrence (Gupta et al., 2001; Tenaillon et al., 

2001; Ching et al., 2002; Barker and Edwards, 2009).  

SNP marker development provides access to affordable and high-throughput genotype 

determination assays and automated data analyses that breeders require for MAS to be 

accepted (Mohler and Singrün, 2005). The choice of detection methods for SNP genotyping 

depend on many factors, including cost, throughput, equipment needed, difficulty of assay 

development and potential for multiplexing (Rafalski, 2002). SNPs are not commonly used in 

the plant sciences due to the high cost of developing SNPs detection assays, especially the 
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re-sequencing of DNA samples and the requirements for expensive instruments and 

complex procedures to detect SNPs (Batley et al., 2003; Kim and Misra, 2007). HRM is the 

most inexpensive, simple and rapid of the technologies to detect SNPs (Gundry et al., 2003; 

Wittwer et al., 2003). 

High resolution melt analysis (HRM) is an innovative approach for the simultaneous 

detection and differentiation of PCR products after PCR amplification. The PCR products are 

differentiated from each other by melting curve profiles (Ririe et al., 1997) which allows 

heterozygous and homozygous genotypes to be identified (Gundry et al., 2003, Wittwer et 

al., 2003; Reed and Wittwer, 2004; Montgomery et al., 2007). The melting curve is due to the 

plotting of fluorescence as a function of time as the thermal cycler heats through the 

dissociation temperature of the product (Ririe et al., 1997). The fluorescence data is 

converted into melting curves by plotting the derivative of fluorescence with respect to 

temperature (dF/dt) over the temperature range in degrees Celsius. The shape and position 

of the melting curve are due to the GC/AT ratio, length and sequence and can be used to 

differentiate PCR products separated by less than 2°C in melting temperature (Ririe et al., 

1997). HRM analysis can differentiate PCR products of the same length but differ in GC/AT 

ratio and or GC content by having different melting curves, which is not possible in gel 

electrophoresis. Homozygous genotypes can be distinguished by shift in melting curves due 

to the difference in melting temperature (Tm) between the genotypes, while heterozygotes 

are distinguished by the altered curve shape not by Tm (Park et al., 2009, Graham et al., 

2005).  

The advantage of HRM analysis is the elimination of post-PCR gel based or sequencing 

analyses, thereby reducing costs, time and labour (Ririe et al., 1997; Zhou et al., 2005). It is 

possible to combine HRM analysis with PCR amplification in one closed tube reaction 

(Montgomery et al., 2007) depending on the type of equipment. Intercalating fluorescence 

dyes (Worm et al., 2001; Liew et al., 2004; Zhou et al., 2004, 2005; Montgomery et al., 2007; 

Park et al., 2009) or fluorescence-labelled primers (Gundry et al., 2003) can be used with 

this method. This advanced technology has been widely used in human genetics and is 

gaining more uses in animal and plant genetic studies especially in cases of SNP studies.  

Markers can also be applied in backcross breeding programmes where loci are tracked to 

eliminate specific genetic defects in elite germplasm, for the introgression of recessive traits 

and in the selection of lines with a genome composition closest to the recurrent parent. In a 

backcross programme, markers can be used for indirect selection for favourable allele 

(Tanksley, 1983) and selection against the undesired genetic background of the donor 

genotype (Tanksley, 1989). For the introgression of a recessive trait (as for lpa1-1) in a 



6 
 

backcross breeding programme, there needs to be progeny tests at each generation to 

identify the homozygous and heterozygous genotypes to fix the heterozygous alleles. These 

progeny tests can be avoided until the last generation by the use of markers to track the trait 

of interest (Frisch, 2005).  Background selection can reduce the number of generations 

required for gene introgression from six to three (Frisch et al., 1999) thereby increasing the 

efficiency of the plant breeding programme. Although there are various options for molecular 

tools for background selection, including high density SNP genotyping and whole genome 

selection using other markers such as SSRs, due to the large costs associated with SNP 

genotyping and the availability and easy of assay, AFLPs were chosen for this study.  

Summary of the research focus  

Maize has high levels of phytic acid which inhibits absorption of essential minerals during 

digestion in monogastric consumers. This is especially detrimental for consumers that are 

dependent on a maize-based diet with little or no other food supplements. Temperate low 

phytic acid lines have been developed that contain lower levels of phytic acid but also show 

reduced seed germination and vigour and low yield.  

The conventional method of determining phytic acid levels is a destructive colorimetric assay 

of the mature seed. This assay is not useful in breeding programmes where segregating 

material is being developed. The use of molecular markers can be highly effective in 

reducing the time required for extensive field screening, thereby aiding plant breeders in the 

selection processes of the breeding programme. The level of phytic acid can only be 

determined in the seed, whereas a molecular marker can potentially detect the level in leaf 

or vegetative material.  Therefore, the application of molecular markers linked to lpa1-1 gene 

to detect the level of phytic acid would prove to be very useful in reducing the time required 

in breeding programmes for low phytic acid. The use of markers for background selection to 

recover the recurrent parent genome in the breeding programme will aid in decreasing the 

amount of generations required for introgression of the trait of interest.  

Due to the reduced germination, vigour and yield shown by LPA material, this study will 

estimate the genetic variance components by testing seed germination, vigour, and yield and 

associated traits. Also the knowledge of gene action, general and specific combining ability 

are important for selection of inbred lines and crosses between LPA, QPM and normal 

endosperm maize lines to adopt an effective breeding strategy for improvement of seed 

germination, vigour, and yield and associated traits.    
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Research objectives 

This study addressed the following research objectives: 

 To develop a SNP molecular marker for use at the early vegetative stage of the plant 

for the detection of the lpa1-1 gene and to validate the SNP marker nucleotide 

change,   

 to determine the amount of recurrent parent (P 16) genome present in each of the 

BC2F1 line,  using the  lpa1-1 SNP marker for foreground selection, and  AFLP 

molecular markers for background selection;  

 To determine the type of gene action which controls  seed germination, seedling 

vigour,  grain yield,  and resistance to foliar diseases in LPA x Normal and LPA x 

QPM maize crosses; 

 To determine the level of grain yield, germination and vigour in hybrid combinations 

involving LPA and QPM maize inbred lines.  

Research hypotheses 

The following hypotheses were tested: 

 The combination of LPA and QPM material in a single variety would result in 

compromised seed germination and vigour, as well as reduced grain yield; and  

 The SNP molecular marker can be used to track the lpa1-1 gene in a LPA x normal 

endosperm maize breeding population and molecular markers would be effective for 

use in background selection to recover the recurrent parent genome;   

 Seed germination, seedling vigour and grain yield are controlled by genes with 

additive effects hence section procedure can be used to improve these traits in maize 

varieties. 

Thesis structure 

The above objectives and hypotheses were tested and reported in Chapters 2-6:  

Chapter 1 Literature Review; Chapter 2 Development of a SNP marker for detection of the 

low phytic acid (lpa1-1) gene for use in maize breeding; Chapter 3 Marker-assisted selection 

for low phytic acid (lpa1-1) with SNP marker and AFLPs for background selection in a maize 

backcross breeding programme; Chapter 4 Seed germination and vigour analysis in diallel 

crosses among normal endosperm; low phytic acid (LPA) and quality protein maize (QPM) 

inbred lines under normal and accelerated aging conditions; Chapter 5 Combining ability 
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between temperate low phytic acid (LPA) and tropical normal endosperm inbred lines for 

seed vigour and grain yield components; Chapter 6 Grain yield and associated traits analysis 

in diallel crosses among normal endosperm, low phytic acid (LPA) and quality protein maize 

(QPM) inbred lines; Chapter 7 Overview  

This thesis has been written in a chapter format and therefore there are overlaps either in 

context or literature citations. 
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Chapter One 

Literature Review 
 

Introduction 

This chapter provides a context for the research by a) reviewing theory and literature on 

phytic acid, seed vigour and germination, molecular markers and marker-assisted backcross 

selection (MABC), b) reviewing literature on effects of phytic acid, maize low phytic acid 

mutant (lpa1-1), amplified fragment length polymorphisms (AFLPs), single nucleotide 

polymorphisms (SNPs), high-resolution melt (HRM) analysis, foreground and background 

selection using markers in backcross breeding, and c) defining key technical terms of this 

study. Phytic acid is found in many cereal grains and inhibits absorption of essential minerals 

for monogastric consumers. Low phytic acid (LPA) mutant lines show reduced yield, field 

emergence, germination and vigour. The LPA trait needs to be introgressed into tropical 

material. Knowledge of the combining ability of maize inbreds is useful in devising an 

appropriate breeding strategy. A survey of the literature indicates that there is limited 

information regarding combining ability of lpa1-1 lines, especially for seed germination and 

vigour.  

 

Phytic acid 

In the seed, phytate plays several roles including maturation, initiation of dormancy, 

providing a protected source of phosphorus and a source of cations for use during 

germination. Dietary phytate can have a negative global impact by contributing to mineral 

depletion and deficiency in populations who rely on whole grains and legume-based 

products as staple foods (Brown and Solomons, 1991). The advantages, however, are that it 

functions as an antioxidant and anticancer agent as well as having other beneficial effects on 

health. While phytic acid does show some beneficial effects, the limitations that have been 

shown in the uptake of minerals is a serious concern and needs to be addressed in order to 

increase the nutritional content of staple crops especially in the developing world. Studies 

should be aimed to achieve a significant decrease but not elimination of existing levels of 

phytic acid, if this happens, it would result in an increased uptake of the vital minerals and 

iron, thereby retaining the beneficial properties of phytic acid.  
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Definition and Importance 

Phytic acid (Figure 1.1) is the amount and form of major phosphorus containing compound 

found in seeds. It is an anti-nutritional component found in many cereals and legumes. It is 

also a naturally occurring component of plant fibre.  

 

 

 

 

 

 

 

 

Figure 1.1: Structure of phytic acid (InsP6) (Chen and Li, 2003) 

 

In mature seeds, 75% of the total phosphorus is found as phytic acid (Raboy, 1997), which 

represents a significant amount of all phosphorus removed from the soil by grain and legume 

crops. Phytate is a mixed cation salt of phytic acid (myo-inositol hexakis phosphoric acid). 

The three most important plant micronutrients that form phytate are P, K and Mg. It is able to 

bind with K+ and Mg2+ and can also bind with Ca2+, Mn2+, Zn2+, Ba2+ and Fe3+. Once the 

phytic acid is digested, it binds to other seed-derived minerals, as well as other endogenous 

minerals that are present in the digestive tract, thereby inhibiting absorption of these 

minerals (Raboy, 2000).  

One of the major nutritional problems in plant-based-diets of low income countries in the 

developing world is iron deficiency, mainly caused by poor iron content, low bioavailability of 

iron, or both (Brown and Solomons, 1991). Food components such as phytate, tannins and 

selected dietary fibres, which bind iron in the intestinal lumen, can impair iron absorption. 

Phytate has probably the greatest effect on iron status as there are a large variety of plants 

with high phytate content, which limits absorption of iron (Mendoza et al., 2001). Dry cereal 

grains account for 77% of total phytic acid stored every year with maize seed producing 4.8 

million metric tonnes of phytic acid annually around the world (Lott et al., 2000). Phytic acid 

occurs mostly in the embryonic tissues (O‟Dell et al., 1972) as well as other seed tissues 

such as the endosperm (Raboy, 2000).  
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Synthesis Pathway 

The biosynthetic pathway to phytic acid is complex and can be summarized as consisting of 

two parts: myo-inositol (Ins) supply and the subsequent Ins polyphosphate synthesis (Figure 

1.2C). The sole synthetic source of the Ins ring (Figure 1.2B) is the enzyme Ins (3) P1 

synthase (MIPS), that converts Glc-6-P to Ins (3) P1. Phytic acid synthesis may also proceed 

in part via pathways typically associated with second messenger metabolism that involve 

phosphatidylinositol (PtdIns) phosphate intermediates and Ins (1,4,5) P3 (Figure 1.2C). 

Depending on the position of mutations in the complex pathway, different LPA mutants with 

reduced levels of phytic acid have been found (Raboy et al., 2000; Pilu et al., 2003) (Table 

1.1). The lpa1-1 gene has been completely sequenced and comprises 11 exons and 

encodes MRP4, a multidrug resistance protein (MRP) ATP-binding cassette (ABC) 

transporter (Shi et al., 2007). This transporter is expressed in embryos and to a lesser extent 

in immature endosperm, germinating seed and vegetative tissues (Shi et al., 2007).   

 

Figure 1.2: Biosynthetic pathways to phytic acid (Raboy et al., 2000) 

 
A: Structure of phytic acid; B: Structure of Ins; C: Biochemical pathways –  
(1) D-Ins(3)-P1 synthase; (2) D-Ins 3-phosphatase; (3) D-Ins 3-kinase; (4) Ins P- or polyp kinases; (5) 
Ins (1,3,4,5,6) P5 2-kinase or phytic acid-ADP phosphotransferase; (6) PtdIns synthase; (7) PtdIns 
and PtdIns P kinases, followed by PtdIns P-specific phospholipase, and Ins P kinases; (8) D-Ins 
(1,2,3,4,5,6) P6 3-phosphatase; (9) D-Ins (1,2,4,5,6) P5 3-kinase; (10) D-Ins (1,2,3,4,5,6) P6 5-
phosphatase; (11) D-Ins (1,2,3,4,6) P5 5-kinase; (12) pyrophosphate-forming Ins P6 kinases; (13) 
pyrophosphate-containing Ins PolyP-ADP phosphotransferases (Raboy et al., 2000).  



14 
 

Impact on humans, animals and environment 

There has been considerable progress in plant genetics leading to the identification and 

successful breeding of grains and legumes that are homozygous for allelic variants at a 

single gene that alters the phytate content of the grain or legume (Raboy et al., 2000; Larson 

et al., 2000; Adams et al., 2002, Hambidge et al., 2004; Dorsch et al., 2003). In maize, the 

low phytate alleles have been identified and this can be used to facilitate measurements of 

the long term effects of dietary reduction on minerals‟ (zinc and iron) bioavailability in 

individuals with a high phytate diet (Adams et al., 2002).   

A low bioavailability of iron can result in iron deficiency, causing one of the major nutritional 

problems in the developing world. Phytate is able to bind iron in the intestinal lumen and 

inhibit iron absorption from many plant foods that have high phytate content. A possible 

solution to this problem is the use of low phytate crops that have been produced using 

genetic mutations that interfere with phytate synthesis. A long term strategy for reducing iron 

deficiency would include food fortification. A major drawback of phytic acid is its ability to 

bind some essential mineral nutrients in the digestive tract and can result in these minerals 

being excreted. This results in mineral deficiencies in humans and animals and can also lead 

to eutrophication of waterways. 

There have been numerous studies comparing the effects of a LPA diet on humans (Agte et 

al., 1999; Mendoza et al., 2001; Adams et al., 2002; Hurrell et al., 2002, 2003; Ekholm et al., 

2003; Davidsson et al., 2004; Hambigde et al., 2004). There is a considerable amount of 

evidence to support the fact the dietary phytate has a negative effect on the bioavailability of 

dietary zinc in humans. The fractional absorption of zinc was compared in meals prepared 

from LPA maize to its matched wild type hybrid with a “normal” phytic acid content. It was 

concluded that substitution of LPA grain in a maize based diet is associated with a 

substantial increase in zinc absorption (Adams et al., 2002). Hambigde et al. (2004) 

determined the relationship between fractional absorption of zinc and the phytate content 

and phytate:zinc molar ratios using maize tortillas prepared from hybrids containing different 

phytate contents. A negative relationship (P < 0.001) between fractional absorption of zinc 

and both dietary phytate and phytate: zinc molar ratio was found. It was therefore concluded 

that fractional absorption of zinc from maize tortillas is positively related to the extent of 

phytate reduction achieved with low-phytate hybrids. Zinc absorption was significantly 

greater after dephytinisation of soybean protein isolate (Davidsson et al., 2004).   

Phytate probably has the greatest effect on iron status due to the fact that most plant foods 

have high phytate contents that can severely inhibit iron absorption. Absorption of phytic acid 
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can be increased by the addition of fortificants or by the degradation or removal of phytic 

acid. There are different types of fortificants available and need to be assessed together with 

the type of diet, efficiency of dietary iron absorption and fortificant, and associated cost 

factors and sensory properties. Ekholm et al. (2003) compared three chelating agents, citric 

acid, malic acid and glucose. It was found that citric acid was the most efficient and that 

degradation reduced the influence of phytic acid. Mendoza et al. (2001) found that there was 

no significant effect on phytate content on iron absorption. However, iron was absorbed 

more efficiently when sodium iron EDTA was used as a fortificant, rather than ferrous 

sulphate, regardless of the type of maize (low phytate maize compared to unmodified wild 

type maize) (Mendoza et al., 2001).  

Phytic acid degradation can be achieved during home cooking and by industrial processing. 

Iron absorption was compared from industrially manufactured and home-cooked cereal 

foods by Hurrell et al. (2002). There was little or no difference in iron absorption observed, 

although amylase pre-treatment showed an increase in iron absorption. It was also 

concluded that iron absorption is only increased by those cooking procedures such as bread 

making, which extensively degrades phytic acid, or amylase pre-treatment, which 

substantially liquefies cereal porridges. Hurrell et al. (2003) measured the effect of phytic 

acid degradation on iron absorption from cereal porridges (rice, wheat, maize and sorghum). 

It was concluded that phytate degradation improved iron absorption from cereal porridges 

prepared with water and not with milk, except high-tannin sorghum. By using ion exchange 

chromatography to study the phytate degradation of 272 different traditional cooked meals, it 

was found that Indian vegetarian meals have higher total phytate content (1-2 g/kg diet) than 

Western and other Asian countries (Agte et al., 1999).  

Phosphorus is an essential nutrient found in animal feed. It is critical for growth, reproduction 

and the formation and maintenance of the skeletal system. Between 60 to 80% of 

phosphorus in maize is found as phytic acid and is largely unavailable to monogastric 

animals such as pigs and poultry. Phytic acid has very little bioavailability for monogastric 

animals due to their lack of phytase activity. A possible solution is the isolation of cereal 

mutants accumulating less phytic P and more free phosphate in the seed. A result of high 

phosphorus excretion by monogastric animals is the environmental pollution of water and 

soils. 

Studies have been conducted to determine the effect and availability of phytic acid to pigs 

(Spencer et al., 2000a,b; Veum et al., 2001), chicks (Douglas et al., 2000; Li et al., 2000; 

Yan et al., 2000; Peter and Baker, 2002), turkeys (Yan et al., 2003) and rabbits (Marounek et 

al., 2003). In particular, there were studies that used maize containing the lpa1-1 mutant 
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(Spencer et al., 2000a,b; Li et al., 2000). In animal feeding studies using low phytate maize, 

there was an increase of 2-5 times the amount of bioavailable phosphorus observed 

(Douglas et al., 2000; Li et al., 2000; Spencer et al., 2000a, b; Yan et al., 2000, 2003; Veum 

et al., 2001; Peter and Baker, 2002). It was found in rabbits that although inorganic 

phosphates hinder phytic acid hydrolysis, generally they were able to digest phytic acid fairly 

efficiently. Also, the addition of exogenous phytase to rabbit feeds could increase phytic acid 

hydrolysis in the upper part of the digestive tract and eliminate the need for inorganic 

phosphate supplements (Marounek et al., 2003). Pigs that were fed low phytate maize, 

genetically modified maize naturally high in digestible phosphorus excreted less phosphorus, 

thereby reducing the potential for pollution from the swine industry. Veum et al. (2001) 

confirmed the increased availability of phosphorus in low phytate maize as compared to 

normal maize in a study with pigs. The reduction in phytic acid did not compromise the 

nutritional value of the low phytate maize, and confirmed the reduction of phosphorus 

excretion by feeding low phytate maize to pigs. Another benefit that was observed in the 

study was an increase in bone strength due to the replacement of normal maize with low 

phytate maize, with soybean meal as a supplement. The processing of low phytate maize in 

the manufacture of animal feed is exactly the same as normal maize. 

These low phytate crops would be best suited for environments that are in sensitive areas of 

high soil test phosphorus levels and that are prone to serious soil erosion losses and or high 

concentrations of swine or poultry feeding operations. They can also be used to improve 

environmental sustainability when used in livestock farming. By improving nutrient 

digestibility, low phytate crops can help reduce unwanted phosphorus in livestock manure, 

which is a potential threat to water quality (Ertl et al., 1998; Veum et al., 2001).  

 

Low phytate crops 

Induced mutagenesis has become an important tool in locating genes on chromosomes, for 

studying gene structure, expression and regulation, and for exploring genomes, and for the 

plant breeders, using these radiation-induced mutations for changing plant traits. Over the 

last seventy years, there have been more than 2250 varieties (60% from 1985 onwards) that 

have been released derived either as direct mutants (70%) or from their progenies. Most of 

the varieties (75%) are in crops and the remainder in ornamental and decorative plants. 

Mutation-derived varieties have been released in 175 crop and plant species, with some 

having a major economic impact (Ahloowalia et al., 2004).  
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The main objective of mutation-based breeding is to upgrade the well-adapted plant varieties 

by altering one or two major traits, although selection of the desired genotype is important 

irrespective of the procedure used to create variation. The development of molecular probes 

offers an opportunity to select the desired mutants. Therefore, mutation induction, molecular 

marking of useful and selected mutations, sequencing of the mutated genes and the 

development of molecular probes can be vital in the continued and expanded use of induced 

mutations, mutants and cultivars in mutation breeding programmes.   

Induced mutations can also play an important role in the creation of crop cultivars with traits 

such as enhanced uptake of specific minerals, deeper rooting system, tolerance to drought 

and salinity, and resistances to diseases and pests as a major component of the 

environmentally sustainable agriculture (Ahloowalia et al., 2004).  

Low phytic acid mutants have been generated by chemical and physical mutagenesis in 

different crop species, such as maize (Raboy, 2000; Pilu et al., 2003; Shi et al., 2003, 2005, 

2007), rice (Larson et al., 2000; Liu et al., 2007; Kim et al., 2008), soybean (Wilcox et al. 

2000; Hitz et al., 2002; Yuan et al., 2007), wheat (Guttieri et al., 2004), beans (Campion et 

al., 2009) and barley (Larson et al., 1998; Rasmussen and Hatzack, 1998). The low phytate 

barley variety called Herald was released in 2006 (Bregitzer et al., 2007). These mutants 

have substantial reductions in seed phytic acid P with molar-equivalent increases in 

inorganic P. These LPA mutants offer potential genetic resources to address the nutritional 

and environmental issues caused by poor availability of P in maize (Ertl et al., 1998). These 

mutations do not affect the plant‟s ability to take up phosphorus and transport it to the 

developing seed. However, the mutations block the ability of a seed to synthesize 

phosphorus into phytic acid phosphorus (Raboy, 2002). Therefore, LPA mutants have higher 

amount of nutritionally available phosphorus and offer potential benefits in the sustainability 

of lands used to grow crops, the improved mineral nutrition of humans and animals, and 

reduction in pollution of waterways.  

 

Low phytate maize and lpa1-1 mutation 

Raboy (2000) was involved in isolating more than 20 independent LPA mutants from maize 

(Table 1.1), barley and rice. Seeds homozygous for an LPA mutant contain normal levels of 

seed total phosphorus but greatly reduced levels of phytic acid phosphorus. Substantial 

variation in the concentration of seed phytic acid was typically observed. However under 

standard production conditions, the crops showed that the proportion of seed total 

phosphorus and phytic acid phosphorus remained at constant levels. Mutants were therefore 
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selected whose seeds contained normal levels of total phosphorus with greatly reduced 

levels of phytic acid phosphorus (Raboy, 2000).  

Low phytate maize has a phosphorus utilization of 96% versus standard maize of about 30% 

(Raboy, 2000). The first step to obtain maize LPA mutants was to generate a population of 

ethylmethane sulphonate-induced (EMS) mutants, followed by screening for mutants whose 

seed contain substantial reductions in phytic acid phosphorus. The level of phytic acid 

phosphorus was reduced and matched by an equal increase in inorganic phosphorus. The 

LPA seeds have inorganic phosphorus representing 50% of the total seed phosphorus 

(Raboy, 2000).  

This trait is being introduced into a variety of maize types, including yellow and white, and 

temperate and tropical types (Raboy, 2000). An important part of the breeding programme is 

to include breeding for adequate and stable yield in an LPA background in a wide variety of 

environments. It is essential that seeds homozygous for the mutation germinate well and 

produce adequately productive plants (Ertl et al., 1998). Low phytic acid mutants were used 

to determine the effect of different myo-inositol on raffinose family oligosaccharides, due to 

these seeds requiring less myo-inositol for the synthesis of phytic acid and may therefore 

contain elevated levels of myo-inositol (Karner et al., 2004). 

The maize LPA mutants produced by Raboy (2000) are distinguished according to 

differences in inositol and inositol phosphate content. The maize lpa1-1 mutants show a 

reduction in phytic acid accompanied by inorganic phosphate, lpa2 mutants show significant 

increases in inositol phosphate intermediates, lpa3 mutants accumulate inorganic phosphate 

and myo-inositol but not inositol phosphate intermediates and lpa241 show increased 

inorganic phosphate and decrease of phytic acid (Raboy et al., 2000; Pilu et al., 2003; Shi et 

al., 2005). The genes from lpa1-1, lpa2 and lpa3 have all been cloned (Shi et al., 2003, 

2005, 2007). The lpa1-1 gene encodes a multidrug resistance associated protein (MRP) 

ATP-binding cassette (ABC) transporter (Shi et al., 2007) while lpa2 gene encodes an 

inositol phosphate kinase (IPK) belonging to the Ins (1, 3, 4) P3 5/6 kinase gene family (Shi 

et al., 2003), lpa3 gene encodes a myo-inositol kinase (MIK) gene (Shi et al., 2005). The 

LPA mutant line, lpa241 is allelic to lpa1-1 (Pilu et al., 2005) and shows a decrease in 

expression of the first enzyme of phytic acid pathway, myo-inositol-3-phosphate synthase 

(MIPS) (Pilu et al., 2003). 

The two mutants of maize (lpa1-1, lpa2) have been mapped onto the maize chromosome 

map (Figure 1.3). The lpa1-1 mutants have 1.1 mg/g total inositol P (23% of total P) and 3.1 

mg/g Pi (66% of total P) compared to the normal maize of 3.4 mg/g total inositol P (76% of 

total P) and 0.3 mg/g Pi (7% of total P) (Raboy et al., 2000). The lpa1-1 gene was chosen to 
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introgress the LPA trait into tropical adapted maize line (P16) due to its high percentage of 

reduction of phytic acid (66%), available gene sequence and the exact type and position of 

the mutation identified. However, due to its recessive nature of the lpa1-1 trait, marker-

assisted selection is required to detect the various genotypes. 

It was found that lpa1-1 is a good candidate for use in breeding. These inbred lines were 

used to produce at least 14 pairs of near-isogenic hybrids, which were used for studies on 

the effect of lpa1-1 on germination, yield, and other agronomic characteristics (Ertl et al., 

1998). Different studies have found different agronomic results for the LPA mutants. Ertl et 

al. (1998) found that there was little or no difference in germination, stand establishment, 

stalk lodging, plant height, ear height, flowering date, or “stay green” score observed 

between normal (non-mutant) and mutant isolines of a given hybrid.  

Other studies have found reductions for the LPA lines. The yields of the maize LPA lines 

were found to have been reduced to between 5 and 15% compared to the highest yielding 

commercial varieties (Raboy, 2000). On average, a 6% yield loss was observed in the lpa1-1 

hybrids as compared with the normal hybrids (Ertl et al., 1998). The maize lpa1-1 mutant 

lines have shown yield reductions compared to the WT parent (Ertl et al., 1998), which is 

also observed in lpa1 barley mutants (Bregitzer and Raboy, 2006). In rice, the LPA 

mutations were found to most likely be the causative factor of grain yield reduction (12.5-

25.6%) (Zhao et al., 2008). The wheat LPA mutants had delayed development and reduced 

grain yield (8-25%) partly due to reduced kernel size in a high yielding environment (Guttieri 

et al., 2006).  

The use of LPA mutants in plant breeding has been limited due to non-germination of 

genotypes with homozygous lpa1 alleles (Raboy, 2000), reduced seed weight of lpa1-1 

(Raboy et al., 2000), and the lower vegetative growth rate and impaired seed development 

due to the lpa241 mutation (Pilu et al., 2005). These LPA mutants have inferior agronomic 

and seed viability than their wild-type (WT) parents, leading to yield reduction (Raboy et al., 

2000) due to reduced seed weights and low vegetative growth.  

The lpa1-1 mutation shows 66% reduction in phytic acid P (Raboy, 2000). Genetic mapping 

has shown the mutant phenotype and the INS (3) P1 synthase (MIPS) gene found in the 

phytic acid biosynthetic pathway to map to the same chromosomal region in maize. The 

MIPS genomic sequence showed 10 exons and 9 introns, with the reduction in MIPS gene 

activity and LPA content due to a mutation affecting the promoter or transcriptional factor 

controlling MIPS expression (Shukla et al., 2004). The lpa1-1 gene has been mapped onto 

the chromosome 1 distal region and reported to be due to a single recessive mutation 
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(Raboy et al., 2000). The gene was completely sequenced (5149 bp) and the lpa1-1 

phenotype reported to be due to a change of amino acids alanine to valine as a result of a 

cytosine to thymine base change. The amino acid is conserved in MRP proteins and located 

in the second ATP-binding domain and is likely to account for the lpa1-1 phenotype (Shi et 

al., 2007).  

 

 

Figure 1.3: Chromosome mapping of maize lpa1-1 and lpa2-1 

A: Approximate map positions of lpa loci and markers on chromosome 1S and their 

relation to two chromosome 1S B-A translocations. Approximate distance (cM) of lpa1 to 

umc157 and lpa2 to umc 167. B and C, RFLP mapping of lpa loci using bulked 

segregant analyses. A genotypic bulk DNA was prepared to represent the three lpa1 or 

lpa2 F2-mapping population segregant classes: +/+, homozygous normal, +/-, 

heterozygous, -/-, homozygous mutant. DNA was isolated from each of the individuals 

representing each class and combined so that each individual contributed equally to the 

bulk. Bulk DNA was digested with EcoRV, fractionated, and probed with the indicated 

RFLP marker. P and E are the parental Pioneer Hi-Bred inbred and Early-ACR alleles, 

respectively (Raboy et al., 2000). 
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Table 1.1: Summary of LPA mutants in maize 

Name of 

mutation 
Type of mutation  

Seed 

phytic acid 

Total inositol 

P (mg/g)  

(% of total P) 

Inorganic P 

(mg/g)  

(% of total P) 

Position of mutation and effect  

on pathway 

Reference 

wild type  
75-80% of 

total P 
3.4 (76%) 0.3 (7%)  

Raboy et 

al., 2000 

lpa1-1 
single EMS pollen 

grain 

66% 

reduction 
1.1 (23%) 3.1 (66%) 

distal region of 1S affecting Ins supply 

part 

lpa2-1 
seed specific 

spontaneous effect 

50% 

reduction 
2.6 (57%) 1.3 (28%) 

proximal half of 1S affecting Ins 

phosphate metabolism part, mutation of 

ins P kinase gene 

lpa3 n/a* 
50% 

reduction 
1.3 (n/a*) 0.7 (n/a*)  near the adh1 locus on chromosome 1 

Shi et al., 

2005 

lpa241 
chemical 

mutagenesis- EMS 

90% 

reduction 
0.4 (9%) 3.3 (72%) 

distal region of 1S (bin 1.02) affecting 

MIPS1S gene coding for 1st enzyme in 

PA pathway 

Pilu et al., 

2003 

n/a*: not available
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Methods of assessment 

Phytate can be isolated and measured by many methods, including ferric precipitation, paper 

chromatography, thin layer chromatography, gel chromatography, gas liquid 

chromatography, ion exchange chromatography and 31P-NMR. Some methods are unable to 

distinguish phytic acid from other inositol phosphates. This can lead to inaccurate 

assessments of total levels of phytate. A method that can be used to measure % total P is 

dry ashing followed by a molybdate blue spectrophotometric assay (Lott et al, 2000).   

Phytate salt forms one to several per cent of the dry weight of many seeds and in many 

cases accounts for 50-80% of the total P in seeds. It is found in most plant tissues. It is more 

reliable to use estimates obtained from field grown plants as they contain a lower P 

concentration as compared to greenhouse plants. Other factors such as type of cultivar, soil 

conditions, fertilizer application, moisture and climatic factors also play a role in the variation 

of phytic acid and P concentrations. 

Normal seeds have consistently low levels of inorganic phosphorus at maturity, typically < 

0.5 mg P/g, whereas LPA seeds typically contain > 1.0 mg/g. This high inorganic 

phosphorus (HIP) phenotype of LPA seeds provides the basis for a quick, sensitive, 

inexpensive and straightforward test for the trait (Figure 1.4). The procedure is as follows: 

single seeds are individually crushed and extracted overnight in 0.4 M HCl (10v/w). Ten µl of 

extract is then assayed for inorganic phosphorus in microtitre plate‟s wells. Reagent 

inorganic phosphorus is used as colorimetric standards. Reagent inorganic phosphorus is 

added to five standard wells to give: 0.0 µg P; 0.15 µg P; 0.46 µg P; 0.93 µg P; and 1.39 µg 

P (Chen et al., 1956). Using this method, normal seeds usually produce colour development 

less than 0.46 µg P; whereas LPA seeds usually produce colour development greater than 

0.46 µg P (Raboy, 2002). Traditional backcrossing breeding methods have been used the 

HIP test to identify LPA mutants. 

Since phytic acid is mainly found in the embryo of mature seed (O‟Dell et al., 1972), the 

method of detection has been a colorimetric assay of the crushed seed which effectively 

destroys the seed (Chen et al., 1956). This method is detrimental in breeding programmes 

especially in cases of segregating material when screening for the LPA trait as once the 

seed has been crushed for the assay; it cannot be used to generate a seedling. The 

colorimetric method is long (overnight incubation), has low repeatability and requires 11-12 

hours of human labour to analyse 100 samples of which the majority is manual preparation 

of samples into plates (Lorenz et al., 2007). There is therefore a need for a non-destructive 

method of detecting the lpa1-1 trait, particularly one that is reliable, quicker, less labour 

intensive and that can be amenable to high throughput methods. An alternative assay which 
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is more reliable and less labour intensive is required to determine the presence of the LPA 

trait. Selection efficiency in breeding programmes would be greatly increased if the leaf or 

vegetative stages can be used for the assay instead of the mature seed. An ideal solution 

would be a co-dominant molecular marker that is able to distinguish between both 

heterozygous and homozygous individuals in the breeding programme.   

 

 

 

 

Figure 1.4: An assay for the HIP phenotypes of LPA seed 

 

Shown are tests of 20 single seeds sampled from ears of maize that were either wild-type 

(columns 1 and 2), homozygous lpa1-1 (columns 3 and 4), segregating for lpa1-1 (columns 5 

and 6), homozygous lpa2-1 (columns 7 and 8) or segregating for lpa2-1 (columns 9 and 10). 

The five standard wells represent 1) 0.0 µg P; 2) 0.15 µg P; 3) 0.46 µg P; 4) 0.93 µg P; and 

5) 1.39 µg P (Raboy, 2002). 
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Molecular marker technology 

Due to the advent of a wide range of analytical tools for deoxyribonucleic acid (DNA) 

analysis, there are various types of molecular markers available to plant breeders, 

geneticists, and germplasm scientists. Molecular markers are well established tools in plant 

breeding and genetics that improve the efficiency and sophistication of breeding. They have 

played a key role in improving the understanding of the genome organization, structure and 

behaviour for many major crops.  

There are three marker types: morphological (traits), biochemical (seed storage proteins and 

isozymes), and molecular or DNA-based polymorphisms that can be used to establish 

linkages with traits of economic importance. Polymerase chain reaction (PCR) based 

molecular markers have the greatest application for marker-assisted selection (MAS) (Kelly 

and Miklas, 1999). There are three classes of molecular markers: the first generation 

markers include random amplified polymorphic DNA (RAPDs), restriction fragment length 

polymorphisms (RFLPs) and their modifications; second generation markers include SSRs, 

AFLPs and their modifications while the third generation markers include single nucleotide 

polymorphisms (SNPs) and expressed sequence tags (ESTs) (Gupta et al., 2001). ESTs 

have been used in functional genomics studies while SNPs are the new generation of 

molecular markers that can be used for MAS in plants.  

Markers have been identified, such as amplified fragment length polymorphisms (AFLPs) 

that combine restriction fragment length polymorphisms (RFLP) and random amplified 

polymorphic DNA (RAPD) technologies (Vos et al., 1995), and single nucleotide 

polymorphisms (SNPs). These newer markers have gained popularity in higher plants 

through comparative mapping and DNA fingerprinting applications (Mohan et al., 1997; 

Staub et al., 1996). Scientists saw the potential for these highly abundant markers and used 

them extensively to expand the genetic linkage maps for most commodities. Many of these 

maps had previously been limited to either morphological traits or protein markers (Bassett, 

1991; Gepts, 1988). Maps proved valuable in positioning traits in relation to each other but 

were limited in the traits segregating in the mapping population (Kelly and Miklas, 1999). 

Molecular markers that have a wide coverage of the genome and that are highly polymorphic 

are preferred. Markers are based on detecting sequence variation in DNA and AFLP 

markers in particular target the repetitive regions of the genome. The choice of marker 

system to use often depends on the species, objective of the work, genetic resolution and 

financial and technological resources available. They differ in information content, number of 

scorable polymorphisms per reaction, and degree of automation (Mohler and Schwarz, 

2005).  
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Amplified Fragment Length Polymorphisms (AFLPs) 

AFLPs are a universal, multi-locus marker technique that can be applied to genomes of any 

source or complexity. It is a reproducible and reliable technique within and among mapping 

populations (Mohler and Schwarz, 2005). No prior sequence information is required and 

highly informative fingerprints are produced due to the large number of bands produced per 

primer combination. AFLP is an ingenious combination of RFLPs and PCR designed by Vos 

et al. (1995). It has become very popular and is a powerful approach to identify DNA 

polymorphisms. AFLP marker bands are mainly dominant but in some cases co-dominance 

can be detected.  

Applications of the AFLP technique include assessing genetic variation, assigning inbred 

lines into heterotic groups, fingerprinting lines, predicting single cross hybrid performance, 

identifying QTLs/genes for disease resistance, grain yield and grain-associated traits, 

phosphorus efficiency, drought tolerance and other important traits of maize. It is a reliable 

and effective method with a variety of applications in maize and other food crops.   

AFLPs have been used extensively to assess genetic diversity in maize (Ajmone-Marsan et 

al., 1998; Pejic et al., 1998; Lübberstedt et al., 2000; Heckenberger et al., 2003; Adawy et 

al., 2004; Beyene et al., 2005, 2006; Legesse et al., 2007; Hartings et al., 2008) and other 

crops such as soybean (Maughan et al., 1996; Powell et al., 1996; VanToai et al., 1996 ), 

potato (McGregor et al., 2000; Spooner et al., 2005), barley (Russell et al., 1997; Varshey et 

al., 2007), wheat (Bohn et al., 1999; Maccaferri et al.,  2007), rice (Saini et al., 2004; Jeung 

et al., 2005), groundnuts (Herselman, 2003), sugarcane (Lima et al., 2002), lentils (Sharma 

et al., 1996) and black pepper (Joy et al., 2007).  

The AFLP technique was successful in detecting genetic diversity in all studies with high 

levels of polymorphism, effective multiplex ratio, marker index and genotype index being 

observed. The technique was useful in assigning inbreds into heterotic groups, revealing 

pedigree relationships among lines, showing relationships between morphological and or 

phenotypic traits and AFLP marker data. It was concluded that SNP markers are better 

suited for characterizing and conserving genebank materials with AFLP markers being more 

suitable for diversity analysis, fingerprinting (Varshey et al., 2007), cultivar identification, 

phylogenetic studies (Joy et al.,2007). In general AFLP markers are the most appropriate for 

various aspects of germplasm analysis (Lübberstedt et al., 2000).  

Due to the advancements in genome research, molecular markers are being used to predict 

hybrid performance in crop breeding programmes. This method allows the maize breeder to 

predict combinations of lines that would result in high-yielding single cross hybrids. There 
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have been various studies on maize that have used AFLPs and found the genetic distances 

based on AFLP data were significantly correlated with F1 yield and was also significantly 

correlated with specific combining ability (Wu, 2000). Other studies on maize on the 

relationship between hybrid performance and AFLP-based genetic distances found AFLPs to 

be practical to predict hybrid performance but with varying rates of correlations with different 

traits (Ajmone-Marsan et al., 1998; Schrag et al., 2006, 2007; Legesse et al., 2008). Linkage 

disequilibrium was compared in elite maize lines using AFLP and SSR markers and found 

both marker types suitable for genome wide association mapping, however the ratio of linked 

to unlinked loci pairs in linkage disequilibrium was higher for AFLPs than SSRs, with the 

recommendation of AFLPs for use in populations with a long history of recombination (Stich 

et al., 2006).  

A study on advanced backcross QTL analysis to improve hybrid yield identified and 

manipulated useful QTLs in heterotic inbreds of maize using AFLP markers (Ho et al., 2002). 

There have been studies on maize identifying QTLs to improve phosphorus efficiency (Chen 

et al., 2008;2009), drought (Sari-Gorla  et al., 1999) and grain yield and grain related traits 

(Ajmone-Marsan et al., 2001). AFLP markers have been used to generate high density maps 

in maize (Castiglioni et al., 1999, Vuylsteke et al., 1999) and to map genes/QTLS linked to 

important maize diseases such as southern corn leaf blight (Cai et al., 2003, Chen  et al., 

2004), grey leaf spot (Lehmensiek  et al., 2001) and sugarcane mosaic virus (Yuan et al., 

2004). Marker-assisted selection and map-based cloning of S cytoplasmic male sterility in 

maize has been successful using AFLP markers (Tie et al., 2006, Zhang et al., 2006). AFLP 

markers were successfully linked to all individual mutant alleles from ten mutations resulting 

in the appearance of defective, miniature or collapsed endosperm effects in maize seeds 

(Pasini et al., 2008).  

There are many studies on DNA fingerprinting of inbred lines in maize and other crops; 

however there are few studies on the use of AFLPs in backcross plant breeding programmes 

to determine the percentage of recurrent parent genome. These studies were on crops such 

as cotton (Zhong et al., 2002); rice (Chen et al., 2000, 2001; Zhou et al., 2003; Gopalkrishan 

et al., 2008); soybean (VanToai et al., 1996) and beans (Mũnoz et al., 2004).  

A study on the reproducibility of RAPDs, SSRs and AFLPs found the AFLP technique 

difficult to perform initially but with greater familiarity this problem was resolved and the 

AFLP profiles showed extremely high reproducibility (Jones et al., 1997). Statistical analysis 

of AFLPs can be of two kinds: band-based methods (direct study of band 

presences/absences in AFLP profiles) or allele frequency-based methods (application is 

contingent on estimation of allele frequencies within populations, therefore population-

centered) (Bonin et al., 2007).  
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There are numerous advantages of AFLPs including versatility as PCR with random primers. 

No prior sequence information is required, high stringency is applied during PCR to ensure 

robustness and high reproducibility, a limited set of AFLP primers can yield a large set of 

primer combinations, each with its own unique set of amplified fragments, the multiplex ratio 

is high and can be increased by altering the length of the 3‟-nucleotide extensions and/or 

choice of enzyme. These advantages make AFLPs a very useful tool for numerous 

molecular applications. The pattern complexity can be in the range of 20 and 60 bands per 

primer combination in the fragment range of 50 to 500 bp, depending on the species. There 

are some disadvantages that include dominance of markers, clustering of markers 

(depending on the restriction enzyme choice), limited levels of polymorphisms in some 

species, and the requirement for good quality and high amounts of DNA as compared to 

other markers. This is very species-dependent as some species are highly polymorphic 

while others are not depending on the size of the genetic bases in these species.  

For screening large breeding populations with AFLP markers at low cost, there needs to be 

a conversion of AFLP markers into sequence specific PCR markers (eg. SCAR markers) 

(Dussle et al., 2002). The AFLP technique was chosen for this study as it is reliable and is 

highly reproducible across laboratories. It also detects a higher number of polymorphisms in 

one reaction compared to the other DNA based techniques. No prior knowledge of sequence 

of the organism needs to be known before the technique is attempted. The technique was 

chosen due to the availability of the equipment and technology, cost benefits and familiarity 

of the technique.    

 

Single nucleotide polymorphisms (SNPs) 

Single nucleotide polymorphisms (SNPs) are defined as single base pair positions in 

genomic DNA at which different sequence alternatives (alleles) exist in normal individuals in 

some population(s), wherein the least frequent allele has an abundance of 1% or greater 

(Brookes, 1999). They occur naturally on the genome or can arise due to induced mutation 

techniques. These markers are stable, abundant in the genome, can have gel and non-gel 

based assays and have a higher inheritance than other markers.  

There are two types of SNPs: substitution of one nucleotide for another 

(transitions/transversions) or an insertion/deletion (indel) of a nucleotide. A transition is a 

change of pyrimidine to pyrimidine (C/T) or purine to purine (G/A) bases, while transversions 

can be pyrimidine to purine (C/G, A/T, C/A or T/G) base change (Batley et al., 2003). It can 

either directly contribute to a phenotype or due to linkage disequilibrium can be associated 
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with a phenotype. The natural SNPs can be used as simple genetic markers due to their 

polymorphisms and they can occur as flanking markers or within the gene of interest 

depending on their position on the genome. Due to the high level of polymorphism found in 

many plant species, it is conservatively estimated in maize there are 20 million 

polymorphisms for analysis (Rafalski, 2002a) therefore this marker technology holds great 

promise for MAS and plant breeding.  

SNPs markers are biallelic and occur throughout the genome in all coding and non coding 

regions, and are at a higher density in the genome than microsatellites (Batley et al., 2003) 

and are present in most animal and plant marker systems (Gupta et al., 2001). They are 

direct markers as their sequence information shows exactly the allelic nature of the individual 

due to a high level of intraspecific nucleotide diversity. Ideally, it would be optimal to have 

several (two to four) SNPs located close to the gene/trait of interest to completely define 

haplotypes. However if the SNP is targeting the exact nucleotide change that causes the 

trait, it is a direct marker. SNPs have been used extensively both in animal genetics (Vignal 

et al., 2002) and in human genetics (Picoult-Newberg et al., 1999).  

SNP discovery can be relatively easy due to the availability of many genes and expressed 

sequence tag (EST) sequences. In humans, the EST database was used to discover SNPs 

that are biologically useful and that can be used for the diagnosis of diseases (Picoult-

Newberg et al., 1999). Previously, SNPs were detected using RFLPs or creating restriction 

sites through PCR primer design, oligonucleotide probing or direct sequencing (Schork et al., 

2000). The assays for SNPs that do not require DNA separation by size can be easily 

automated and are easier to locate in single copy regions of the genome (Rafalski, 2002a). 

Due to its binary nature and stability, SNP markers are amendable to automated high-

throughput genotyping and are therefore an attractive tool for MAS in plant breeding 

programmes. SNP genotypes are determined by the basic method of Sanger 

dideoxysequencing and this can miss SNPs when the DNA template is heterozygous, 

therefore time-consuming and expensive (Mohler and Schwarz, 2005). Newer technologies 

with high throughput-methods lead to lower cost and higher volume, repeatability and 

accuracy, like high resolution melt analysis (HRM), micro-arrays and high density SNP 

genotyping, leading to future increased use and applicability of SNPs as molecular markers.  

A study to compare SNPs to SSRs using 58 inbred lines and four hybrids of maize resulted 

in SNPs showing lower level of missing data, higher repeatability and an estimated lower 

cost of <$0.25/sample data point (five to ten times lower than SSRs) than SSRs (Jones et 

al., 2007). However in a larger study by Hamblin et al. (2007) to determine diversity and 

relatedness of maize showed SSRs having better clustering and more resolution in 

measuring genetic distance than SNPs. This could be attributed to SNPs being biallelic and 
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having a maximum heterozygosity of 0.5 while SSRs has multiple alleles and their maximum 

heterozygosity can approach 1.0. SSRs are better utilised for applications such as 

germplasm identification where the multiallellic nature is an advantage (Rafalski, 2002b). A 

study on barley comparing AFLPs, SSRs and SNPs that found SNP markers are best suited 

for the characterisation and conservation of genetic material while the AFLP and SSR 

markers are better for diversity analysis and fingerprinting (Varshey et al., 2007).   

SNPs are widely used in genetic epidemiology studies in humans to study complex traits and 

diseases (Schork et al., 2000) due to over one million SNPs being catalogued (Rafalski, 

2002a) In plants, there has been a few extensive studies with their uses being genome 

mapping, high resolution genetic mapping of traits and association studies. A study by 

Barker and Edwards (2009) on the comparison of SNPs over the major cereal crops of the 

world included wheat, barley, maize, sorghum and rice found as the ploidy of the cereal 

became more complex, the number of SNPs per kb increased, which was shown by wheat 

showing the highest number of 16.5 SNPs/kb (Barker and Edwards, 2009). There are 

reports on SNP markers associated with economic value genes in rice (waxy gene 

controlling amylose content, dwarfing gene), onion (male sterility), soybean (cyst nematode 

resistance), and SNPs for cultivar identification and diversity evaluation in barley, tree 

species, wheat and maize (Gupta et al., 2001)    

Multiple nucleotide changes and various lengths of insertions/deletions have been identified 

in maize due to the high frequency of polymorphism which can be used potentially as 

genetic markers. There are reports of 8.9 SNPs/kb which covered 41.3% of the genome 

(Barker and Edwards, 2009), 1 SNP per 104 bp on chromosome 1 between two randomly 

sampled sequences (Tenaillon et al., 2001) and 1 SNP per 124 bp (coding regions), 1 SNP 

per 31 bp (non coding regions) in 36 inbred lines using 18 maize genes (Ching et al., 2002) 

and 1 SNP per 70 bp and 1 indel per 160 bp (Gupta et al., 2001). Single nucleotide changes 

occur on average every 60.8 bp and most of these changes that occur in the protein coding 

regions are silent, with only five of eighteen changes resulting in an amino acid substitution 

(Ching et al., 2002). Batley et al. (2003) developed a computer-based method using over 

102 551 maize ESTs to identify 14 832 candidate SNP polymorphisms of which 13 122 were 

nucleotide substitutions and 264 SNPs from 27 loci were validated. There are a number of 

public databases for SNPs available, Panzea is selectively for maize SNPs (Zhao et al., 

2006) with a geographical map tool to visualise distribution of SNPs, SSRs and isozyme 

alleles as well as a graphical view of the placement of Panzea markers and genes/loci on 

genetic and physical maps (Canaran et al., 2008). There is also AutoSNPdb database 

available for crops such as rice, barley and Brassica (Duran et al., 2008).            
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Although indirect SNP assays are used widely in plant breeding, direct SNP assays are rare. 

The direct SNP assay is useful when the trait is a result of either a transition or transversion 

change. In these cases the direct SNP is the ideal marker as it targets the exact position of 

the polymorphism causing the change of the trait. In a study on mining for maize SNPs using 

EST sequences it was found there were 6 640/13122 (51%) transitions of which 3277/6640 

(49%) were C/T transitions (Batley et al., 2003) showing the relative high frequency of C/T 

transition changes. It was reported that there is a relative increase in the proportion of 

transitions over transversions (Batley et al., 2003) with a ten fold increase in frequency of C 

to T mutation than average transitions found after methylation (Coulondre et al., 1978).  

The lpa1-1 gene is due to a single recessive mutation (Raboy et al., 2000) with an alanine to 

valine amino acid change identified to be probably responsible the LPA phenotype (Shi et 

al., 2007). This amino acid change results in a C/T nucleotide base change, therefore 

making a SNP marker is an ideal marker for detecting this type of mutation. There have 

been direct SNP markers (C/T transition type) used in rice studies to identify the fragrance 

gene (fgr) (Jin et al., 2003), semi-dwarfing gene (sd-1) (Sasaki et al., 2002) and blast 

resistance gene (Bryan et al., 2000).  

 

High resolution melt (HRM) analysis 

High resolution melt analysis (HRM) provides an innovative approach for the simultaneous 

detection and differentiation of PCR products by melt curve analysis after PCR amplification. 

This technique has been used for SNP and SSR markers with promising results. SNPs are 

most easily detected since the result is limited to only one or two bases at a given position. 

These markers can usually be identified by hybridization to probes or direct DNA 

sequencing. However sequencing requires multiple steps after PCR, i.e. cycle sequencing 

and gel electrophoresis. However to simplify the process of SNP detection, an automated 

method is required that would not require PCR product separation on gels or columns.  

HRM analysis can be performed immediately following PCR amplification so that PCR 

product analysis can be performed in one closed tube reaction depending on the instrument 

used. The use of intercalating fluorescence dyes or fluorescence-labelled primers is 

necessary with no added purification steps after PCR. This advanced technology has been 

widely used in human genetics and is gaining more uses in animal and plant genetic studies 

especially in cases of SNP studies. It eliminates the post-PCR analyses such as gel-based 

or sequencing analyses, thereby increasing the efficiency of marker system as well as 

reducing costs, time and labour. PCR products are differentiated from each other by melting 
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curve profiles. The factors determining the melting curve profile include mostly the GC 

content, and the length and sequence of the product (Ririe et al., 1997). A major advantage 

of HRM over gel electrophoresis is the differentiation of PCR products of the same length but 

differ in GC/AT ratio and or GC content having different melting curves. The position and 

width of the melting curves are affected by dye concentration and temperature transition 

rates (Ririe et al., 1997).  

Fluorescence emittance of the dsDNA dyes is measured during an increase in temperature 

at specific intervals and product denaturation is observed as a rapid loss of fluorescence 

near the denaturation temperature. The fluorescence data is converted into melting curves 

by plotting the derivative of fluorescence with respect to temperature (dF/dt) over the 

temperature range in degrees Celsius. PCR products melt at varied temperatures with 

characteristic melt curves thus allowing product differentiation. This technology is able to 

differentiate between alleles of homozygote recessive, homozygote dominant and 

heterozygotes. Homozygous genotypes can be distinguished by shift in melting curves due 

to the difference in melting temperature (Tm) between the genotypes, while heterozygotes 

are distinguished by the altered curve shape not by Tm (Park et al., 2009; Graham et al., 

2005). Fluorescent-labelled primers were also able to distinguish between homozygotes and 

heterozygotes during HRM analysis (Gundry et al., 2003).  

HRM has been used successfully to identifying SNPs in various crops including potato (Yuan 

et al., 2008), almonds (Wu et al., 2008; 2009), apple (Chagne et al., 2008), barley 

(Lehmensiek et al., 2008), lupin (Croxford et al., 2008; Lopez et al., 2008), grapevine and 

olives (Mackay et al., 2008), tomato (van Deynze et al., 2007), capsicum/pepper (Park et al., 

2009) and for the detection and quantification of mitochondrial RNA editing in Arabidopsis 

(Chateigner-Boutin and Small, 2007; Takenaka and Brennicke, 2009).  

A comparison study on nine different instruments and two dyes found the greatest variance 

with plate HRM instruments and both dyes, LCGreen and SYBR Green were effective for 

genotyping (Hermann et al., 2006). The Corbett Rotorgene is specifically designed for HRM 

analysis and shows the least variation (Park et al., 2009). A high throughput study with SNPs 

in almond analysed 500 samples within eight hours including data analysis instead of three 

days with gel-based markers, thereby proving HRM analysis to be an efficient and 

cost-effective approach for SNP detection and analysis (Wu et al., 2009). Gel 

electrophoresis for SSRs markers can be problematic in the interpretation of stutter bands 

often produced by SSRs as well as being time consuming. Studies using HRM analysis with 

SSRs in grapevine and olive cultivars showed clear differentiation melting profiles with high 

reproducibility leading to reduced time to results for varietal certification (Mackay et al., 
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2008) as well as in Origanum (Mader et al., 2008) confirming HRM is faster, more 

cost-effective and sensitive than standard protocols for SSRs analysis.  

 

Marker-assisted selection 

Marker–assisted selection (MAS) has been a plant-breeding tool since it was proposed by 

Sax in 1923 (Arus and Moreno-Gonalez, 1993). Marker-assisted selection (MAS) is the use 

of molecular markers in the selection process in plant breeding programmes and has been 

shown to be cost effective (Abalo et al., 2009). These markers need to be closely linked to 

the target gene/locus and should be polymorphic for the breeding material used in the 

programme for them to be effective and reliable. Markers can be used for the introgression of 

recessive traits and for the selection of lines resembling the recurrent parent genome.  

Successful plant breeding requires selecting many traits with complex inheritance. Desirable 

quantitative traits usually have both genetic and environmental components (Dudley, 1993), 

and separation of these components to achieve maximum efficiency in breeding programmes 

is necessary (Gebhardt and Salamini, 1992). Breeders originally depended on markers that 

had a morphological effect on the plant because these were the only markers available. 

However, most morphological marker types do not fit the description of a “good” marker 

because they have either dominance effects, late expression, exist in epistatic relationships, 

or have deleterious effects on the plant (Tanksley, 1983). The most recent markers are the 

SNPs, which appear useful for mapping, manipulation, and study of diseases in humans 

(Landegren et al., 1998), and will likely have comparable application in plant genomics 

(Cregan et al., 1998). 

The development of molecular markers has great potential for increasing breeding efficiency 

due to many of the marker systems having large numbers of polymorphisms. Alternate alleles 

rarely have deleterious effects at the molecular or whole plant level and they are often co-

dominant, allowing all genotypes to be distinguished in each generation. They rarely 

segregate in epistatic ratios. Scoring of molecular markers does not depend on gene 

expression and is not affected by the environment. The use of markers also reduces time and 

space necessary to evaluate plant populations. Molecular markers allow more efficient 

selection and offer a mechanism to eliminate undesirable traits associated with hybridizing 

diverse genotypes. A linkage map with many markers, especially when the genome is 

saturated with markers, can be used to locate genes of interest (Stalker and Mozingo, 2001). 

Quantitative and recessive traits appear to have the most potential uses for MAS, because 

environmental effects confound selection for them. Since the cost to evaluate these complex 
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traits with low to moderate heritability is high, MAS would be more likely to show the greatest 

gain. Due to complex inheritance, low heritability, and confounding environmental effects, 

markers associated with quantative trait loci (QTL) have been difficult to find and once found 

have exhibited limited usefulness across a range of genetic backgrounds or environments. 

Efforts to utilize MAS for the improvement of quantitative traits have been limited, but may 

improve as better quantitative data is generated and denser linkage maps become available 

from map co-integration across laboratories (Freyre et al., 1998).  

A review of MAS breeding on maize in Africa by Stevens (2008) found many research 

studies identifying QTLs for drought resistance, resistance to biotic stresses (sugar-cane 

mosaic virus, maize streak virus, grey leaf spot, stem borers, Striga) and micronutrient 

enhancement breeding (Vitamin A, iron and zinc). However the failure to use these markers 

is due to the variable effectiveness of the markers in predicting the desired phenotype, the 

low accuracy of QTL studies, and a lack of transferability across diverse germplasm and 

insufficient validation of markers. There is therefore a need to develop molecular markers 

that can overcome these limitations and be used to their full potential in breeding 

programmes.  

For a practical plant breeding programme, a marker should have the following properties: co-

dominance, reliability, quick, easy to use and cost-effective compared to traditional 

screening methods for the trait of interest.  

 

The use of markers in backcross breeding programmes 

Marker-assisted backcrossing (MABC) is an established tool in plant breeding. The main aim 

in MABC is the introgression of a trait of interest into the genetic background of a recipient 

genotype by recurrent backcrossing. The other aim is to recover the recurrent parent 

genome as rapidly and completely as possible. The use of markers to monitor the parental 

origin of alleles throughout the genome in MABC with restriction fragment length 

polymorphism (RFLP) markers was originally proposed by Tanksley et al. (1989) and was 

later called background selection (Hospital and Charcosset, 1997).  

There are two goals of background selection: to reduce the proportion of the donor genome 

on the carrier chromosome of the target allele and to reduce the donor genome on the non-

carrier chromosomes. Linkage drag is reduced by the selection of individuals that carry the 

target allele and are homozygous for the recurrent parent alleles at tightly linked marker loci 

(Frisch et al., 1999). The use of background selection for a single gene has been widely 

investigated (Hospital et al., 1992; Abalo et al., 2009) and has now been used in maize for 
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two genes simultaneously (Frisch and Melchinger, 2001) and QTLs (Hospital and 

Charcosset, 1997; Bouchez et al., 2002). Marker-assays can be advantageous in backcross 

breeding programme for both background and foreground selection (Hospital and 

Charcosset, 1997). Background selection can reduce the number of generations required for 

gene introgression from six to three (Frisch et al., 1999). In recurrent backcrossing for 

recessive genes, if markers are not used, there is a need for progeny tests in each 

backcross generation to determine heterozygosity. The use of markers eliminates the need 

for progeny tests at each generation and needs to be only performed at the end of the 

backcross programme (Frisch, 2005).  

The main objective of a backcross breeding programme is the reduction of the donor parent 

genome by 50% at each generation of backcrossing while retaining the trait of interest from 

the donor parent. There is, however, variation present in each backcross generation around 

the mean. Markers can be used to select for the donor trait as well as recombinant 

individuals that have genome composition closer (75%) to the recurrent parent. MAS is used 

to reduce the time and number of backcross generations required to achieve this goal. A 

major constraint has been the number of polymorphic markers required to cover the entire 

genome to effectively determine the amount of recurrent parent genome present. 

The advantages of DNA markers in backcross (BC) breeding include the indirect selection of 

desirable gene(s) from donor parents; selection for regions of recurrent parent genome 

unlinked to the introgressed region and the reduction of linkage drag of unwanted donor 

parent genome near the introgressed region(s). These advantages provide a means of 

reducing the number of generations required for the recovery of the converted recurrent 

parent, which is confirmed by simulation studies and empirical reports (Lee, 1995).  

The utility of MAS for achieving and improving genetic gain through BC breeding depends on 

the current and potential role of the breeding method. MAS is expected to result in greater 

rates of genetic gain during early generations of selection, with gain at later generations by 

traditional selection expected to surpass or approach that of MAS. BC breeding has been 

widely used for the introduction of monogenic characters and to a lesser extent for polygenic 

traits. According to Lee (1995) the efficiency of MAS for polygenic traits can be enhanced 

and more efficient than traditional selection under the following conditions: (1) the trait(s) 

under selection has low heritability; (2) tight linkage between the QTL and markers (<5 cM); 

(3) in earlier generations of selection prior to fixation of alleles at or near marker loci and 

recombinational erosion of marker-QTL associations; and (4) larger sample sizes for 

mapping and selection of QTL are used to improve estimates of QTL effects and to avoid 

rapid fixation of alleles, respectively.  
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Studies on the backcross introgression of traits have shown that markers can be used 

efficiently where the aim is to introgress a small part of the donor genome and 

simultaneously recover as much of the recurrent parent genome as quickly as possible 

(Hospital et al., 1992; Visscher, 1996). It is recommended to use two to eleven markers per 

chromosome (Visscher, 1996) to select against the donor genome and recover the recurrent 

parent genome by two generations less than random selection of individuals with the 

introgressed gene (Hospital et al., 1992). Frisch et al. (1999) recommended a four-stage 

selection approach with the first generations selection on the introgressed trait while Hospital 

et al. (1992) showed a single generation background selection is most efficient in the last 

backcross generation.   

Moreau et al. (2004) compared the efficiency of MAS and conventional phenotypic selection 

for index selection combining grain yield and grain moisture at harvest on maize. It was 

found that genetic gain was significant for both methods; however the difference between 

phenotypic selection and combined MAS was not significant especially considering the low 

heritability of the trait. It was found that the method of marker only selection was efficient in 

fixing favourable QTL alleles in the initial population. 

A study carried out on the cost effectiveness of conventional and MAS methods for the 

identification of plants with a mutant recessive form of the opaque2 gene in maize in 

CIMMYT (Dreher et al., 2003) produced four important insights that need to be considered 

when screening methods are to be selected. These are: (1) for any breeding project, a 

detailed budget analysis is needed to determine the cost effectiveness of MAS relative to 

conventional selection, (2) direct comparisons of unit costs are required but factors other 

than costs also are important in the choice of screening methods, (3) the choice between the 

methods is complicated as they are not always direct substitutes, and (4) spreadsheet-based 

budgeting tools with empirical data from actual breeding programmes can be used to 

increase efficiency of existing protocols and make informative decisions about future 

technology choices. Morris et al. (2003) compared MAS to conventional selection in a 

backcross programme showed conventional breeding schemes are less expensive and 

MAS-based breeding schemes can be completed in less time.  

The choice to apply MAS in a breeding programme is dependent on a variety of factors. A 

detailed analysis of the field and laboratory costs would be required. The cost effectiveness 

of DNA markers depends on four parameters that can vary significantly: (1) the relative cost 

of phenotypic versus genotypic screening, (2) the time saving achieved using MAS, (3) the 

size and temporal distribution of benefits associated with the accelerated release of 

improved germplasm, and (4) the availability of operating capital to the breeding programme 

(Hoisington and Melchinger, 2005).   
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For traits that have recessive genes and/or have difficult or expensive methods of 

assessment of the trait, MAS can be especially useful in a breeding programme. In the case 

of low phytic acid gene (lpa1-1), it has both; a single recessive gene and a destructive 

colorimetric assay using mature seed. This method is not only time consuming and low 

repeatability but is not useful in breeding programmes to screening segregating material as it 

destroys the seed after the assay. A molecular marker that is able to identify the low phytic 

acid trait (lpa1-1) in early vegetative stages would be highly useful as it would eliminate the 

use of the colorimetric assay as well as increasing the efficiency and decrease time required 

for screening of the lpa1-1 gene. The marker can be tested on DNA isolated from leaf 

material making detection of the trait quick and easy.   

  

Seed germination and vigour  

Selections in maize breeding programmes to improve crop productivity and nutritional quality 

are usually based on yield and disease resistance selections. There is little selection on the 

seed quality characteristics which is critical in early performance and growth of these crops. 

Seed quality is usually associated with germination and purity but seed vigour also needs to 

be included. The ISTA (International Seed Testing Association) defines seed vigour as “an 

index of the extent of the physiological deterioration and/or mechanical integrity of a high 

germinating seed lot which governs its ability to perform in a wide range of environments”. 

Vigour is a concept that describes several characteristics of the seed such as rate and 

uniformity of germination and growth, tolerance to environmental stresses after sowing and 

retention of performance after storage (Hrstková et al., 2006).  

The use of LPA mutants in plant breeding has been limited due to non-germination of 

genotypes with homozygous lpa1 alleles (Raboy, 2000), reduced seed weight of lpa1-1 

(Raboy et al., 2000), and the lower vegetative growth rate and impaired seed development 

due to the lpa241 mutation (Pilu et al., 2005). These LPA mutants have inferior agronomic 

and seed viability than their wild-type (WT) parents, leading to yield reduction (Raboy et al., 

2000) due to reduced seed weights and low vegetative growth.  

There are no previous germination and vigour studies on the lpa1-1 mutant lines, however 

there are two studies on the lpa241 mutant which is allelic to lpa1-1 (Pilu et al., 2005) and 

shows 90% reduction in seed phytic acid (Pilu et al., 2003). In the study with LPA mutant 

(lpa241) a 30% decrease in germination rate was observed when compared to the wild type 

(Pilu et al., 2003). Another germination study of the same LPA mutant line (lpa241) was 

tested and shown to have 72±15% germination under standard conditions which decreased 
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to 45±14% germination under accelerated aging conditions (Doria et al., 2009). A negative 

correlation between yield and phytate was found when comparing 50 different maize lines 

with a suggestion that selection of larger kernel size should have a diluted concentration of 

phytate since 90% of phytate is found within the germ (Lorenz et al., 2007). The lpa241 

mutant has negative pleiotropic effects which are related to embryo development and size, 

germination rate, seedling growth rate and ear size (Pilu et al., 2005). A study on rice found 

all rice LPA mutants showed reduced seed viability (Zhao et al., 2008). 

The LPA mutant lines also show significantly lower field emergence than their WT parents in 

rice (Zhao et al., 2008), wheat (Oltmans et al., 2005) and soybean (Meis et al., 2003). This 

could be as a result of seed maturation in tropical environments with high temperatures at 

which the LPA genotypes have low stress tolerance, which results in reduction of 

germination and emergence (Raboy, 2007).  Low field emergence is an important issue for 

LPA once lines have been developed and need to be adopted for commercial production as 

field emergence and not germination is important for seedling establishment.      

 

Germination tests 

Seed tests can be used to evaluate physical quality, genetic purity, viability and vigour. The 

most common seed test is the germination test which measures seed viability under ideal 

conditions. The germination tests are used to determine the maximum germination potential 

of seed for comparison to other seed lots and also to estimate the field planting value. The 

results are reported as percentage of germination of normal seedlings. Depending on the 

crop, different substrates are used for germination (ISTA, 1999).  

The emphasis on seed germination as part of seedling morphology has little relationship with 

rapidity of growth which is a prime criterion of the potential for successful stand 

establishment. The germination percentage is the sum of strong and weak seedlings and the 

disadvantage of inclusion of the weak seedlings is that they seldom perform adequately 

under environmental stresses associated with field emergence. Germination is considered to 

be scale-less as the seed is either germinal or it is not, with no distinction between weak and 

strong seedlings. The seedlings that are considered to be germinal can show a wide range 

of variation in field performance, from weak to robust.  

The germination test is well standardised and uses favourable conditions to ensure 

uniformity in test results. It establishes the maximum plant-producing ability of the seed lot. 

Under optimum conditions, it is able to accurately predict field performance of the seed lot 

and tends to overestimate field emergence values in suboptimal conditions. The germination 

test does not detect many seed weaknesses, thereby increasing the need for vigour testing 
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to act as quality control tool and marketing aid. Seed vigour testing has been developed to 

overcome these discrepancies.  

  

Vigour tests 

Seed viability and vigour are two characteristics of seeds that determine their value and 

utility of seeds. There are many different factors that determine and influence seedling 

germination and vigour. An important factor of seed quality is seed genetics and this plays a 

critical role in germination and seedling vigour. To attain good stand of a crop, it is necessary 

to have a high emergence percentage followed by high seedling vigour (Fakorede and Ojo, 

1981). Maize has problems in maintaining high germination standards for certified seeds 

(80% parental lines, 90% hybrids), especially for low vigour parental lines (Basu et al., 

2004).   

The vigour test is a more sensitive index of seed quality than the germination test as it is 

closely correlated with seed performance in the field under some conditions than the 

germination test. Vigour testing has become common practice especially for maize and 

soybeans to routinely market high quality seed and ensure the seed will perform well across 

a wide range of soil types and environmental conditions. There are various essential 

characteristics of a vigour test that make it useful, such as being inexpensively priced and 

requiring minimum investment in labour, equipment and supplies. Also required are a rapid 

testing period to minimize analyst time and germinator space with simple testing procedures 

without special training or experienced personnel. The test is objective with a quantitative or 

numerical index of quality to avoid subjective interpretations by analysts with high 

correlations of test results with field performance and test results should be reproducible 

between laboratories (McDonald, 1980). 

Different vigour tests measure different aspects of seed quality under different soil 

conditions; therefore a combination of several vigour tests is able to provide information on 

the quality of a seed lot as well as its potential field performance (Byrum and Copeland, 

1995). Seed storage under high relative humidity and/or high temperature and damage by 

insects are primary causes of poor seed quality. The two most commonly used vigour tests 

are the cold test and the accelerated aging test. The accelerated aging test is a vigour test 

that involves artificial aging of the seed, which causes integral membrane lipid peroxidation 

in the seeds (Basavarajappa et al., 1991). In maize, accelerated aging causes associations 

between the starch granules, protein matrix and cell walls, leading to decreased solubility 

and functionality of starch and protein in aged grain due to protein oxidation (McDonough et 

al., 2004). The accelerated aging test was developed by Delouche and Baskin (1973) to 
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assess the quality and storability of seed lots. These tests are also effective in evaluating 

seed vigour and germinative responses to accelerated aging are highly correlated with plant 

growth and development including yield (Delouche and Baskin, 1973).  

The accelerated aging test was developed to predict seed storability (Delouche and Baskin, 

1973). The test has been used extensively in maize to compare different types of vigour 

tests for prediction of field performance (Lovato et al., 2005; Noli et al., 2008), to determine 

relationship between total phenolics content and germination ability (Barla-Szabo et al., 

1990; Sredojević et al., 2004), to improve vigour by using aerosol-smoke (Sparg et al., 

2006), to assess seed quality (Santipracha et al., 1997; Munamava et al., 2004); seedling 

vigour (Fakorede and Ojo, 1981) and to assess seed storability (Basu et al., 2004). The 

vigour and viability of maize inbred lines is reduced by aging due to non-inheritable 

degenerative changes (Revilla et al., 2009).  In warmer tropical climates, the accelerated 

aging test has been used as an indicator of seed vigour. After the aging process, high vigour 

seeds are expected to show high rates of germination while low vigour seeds would show 

significant decrease in germination rate.  

Studies on diallel crosses in maize, canola and rice have found seed germination and vigour 

traits to be under both additive and non-additive gene action with predominant non-additive 

gene effects (Barla-Szabo et al., 1990; Akram et al., 2007; Chapi et al., 2008). There has 

been predominantly non-additive gene action found for germination percentage, seedling dry 

weight, average root length, average shoot length and vigour index (Barla-Szabo et al., 

1990; Akram et al., 2007; Chapi et al., 2008) while other studies on soybean and sugar beet 

have found mainly additive gene action (Cho and Scott, 2000; Sadeghian and Khodaii, 1998) 

for these traits.  

The general combining ability (GCA) effects of germination percentage, fresh weight and dry 

weight of seedlings were used to select lines as better females and males in the seed vigour 

study on maize (Barla-Szabo et al., 1990). GCA and specific combining ability (SCA) effects 

were used to select the best parent and cross for improving seedling traits in canola (Chapi 

et al., 2008). Combining ability analysis was used to select the best parents and crosses for 

improving seed vigour, variability and field emergence potential for sorghum (Kannababu et 

al., 2005). Sadeghian and Khodaii. (1998) suggested that seed traits are as important as 

root traits for development of varieties. In soybean, due to significant GCA effects for seed 

vigour, it was concluded that levels of seed vigour can be improved through breeding (Cho 

and Scott, 2000). 
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Summary 

Phytic acid is an anti-nutritional compound found in mature maize grain. It chelates important 

minerals as it passes through the digestive system of monogastric consumers. There have 

been maize lines produced with lower levels of phytic acid, however these lines exhibit lower 

seed germination and vigour and yield. There is considerable evidence that diets with lower 

phytic acid grain show improved absorption of the essential minerals. However there is 

limited information of the seed germination, seedling vigour and yield performance of LPA 

lines compared to other maize lines. There is therefore a need to improve the seed 

germination and vigour as well as the yield of these LPA lines by using appropriate breeding 

strategies.  

QPM maize lines were included in this study as there are calls to breed the LPA trait into 

QPM maize to improve the nutrient content of maize in a single variety. Due to low 

germination, low seedling vigour, and reduced grain yield shown by LPA and QPM lines, 

there are concerns that stacking the QPM and LPA traits in a single variety would lead to 

serious agronomic problems. The knowledge of the gene action controlling these traits is an 

important part of the selection of an appropriate breeding strategy. Also the knowledge of the 

combining ability of LPA, QPM and normal endosperm maize lines will aid in the selection of 

suitable lines and possible good crosses for improvement of these traits.  

The level of phytic acid in grain is usually detected by a destructive colorimetric assay. There 

is a need for an improved assay for detecting phytic acid that is quicker and more reliable 

than the colorimetric assay. Molecular markers are non-destructive and can be used on leaf 

material to detect traits of interest. They are quicker and more reliable than the conventional 

assay for phytic assay. In backcross breeding programmes, markers can be used to track 

traits of interest as well as to recover the recurrent parent genome present in BC lines.     
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Chapter Two 

Development of a SNP marker for detection of the low phytic acid 

(lpa1-1) gene for use during maize breeding 

 

Abstract 

 

Reduced phytic acid in maize grain can increase the bioavailability of micronutrients to 

monogastric consumers. Breeding for low phytic acid (LPA) is hampered by a tedious and 

destructive colorimetric assay for phytic acid content in the mature dry grain. The aim of this 

study was to develop a molecular marker able to identify the low phytic acid (lpa1-1) trait that 

can be used at the early vegetative stage of the plant for evaluation of the phytic acid level 

present during breeding. The lpa1-1 allele is known to result from a single amino acid change 

Ala to Val which we deduced must result from a C:T transition at position 1432 of the wild type 

sequence. PCR primers were designed to amplify across this region and the nature of the 

SNP was confirmed as a transition base change of C to T nucleotide causing the amino acid 

change. The parental inbred lines (one normal/wild type and one LPA) and the F1 generation 

(heterozygote) were used to test and optimise the SNP marker. They all produced a PCR 

product of 150 bp which was then subjected to high resolution melt (HRM) analysis which 

was able to differentiate between the parental lines due to their definitive melting profiles. 

The melting profiles of the parental lines differed by 0.5°C in the high resolution melt 

analysis. The lpa1-1 SNP marker was able to successfully differentiate between 

homozygous dominant (normal/wild type), homozygous recessive (LPA) genotypes by their 

melting profiles and heterozygote genotypes by normalised difference plots. To test the SNP 

marker-assay for high-throughput suitability, the costs of HRM analysis were compared to 

DNA sequencing and DNA extraction method. Similar melt profiles of DNA extracted with a 

DNA extraction kit (high quality) and DNA extracted with a crude extraction method were 

obtained, which showed that the low cost crude extraction was as efficient as the high quality 

extraction in distinguishing between the parental lines.  The costs of DNA sequencing was 

compared to the costs of SNP marker amplification and HRM analysis. The SNP marker with 

HRM analysis was 8% of the cost of PCR amplification and DNA sequencing. The 

development of the SNP marker will avoid the use of the destructive colorimetric method of 

assessment for phytic acid content in maize grain. This will make breeding for low phytic 

acid content in maize efficient and fast. 

Keywords: low phytic acid, SNP marker, HRM analysis 
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Introduction 

 

Phytic acid is the amount and form of the major phosphorus (P) containing compound found 

in seeds. It is an anti-nutritional component found in many cereals and legumes. It is also a 

naturally occurring component of plant fibre. In maize, 90% of total seed P is in the form of 

phytic acid (O‟Dell et al., 1972). Phytic acid chelates essential minerals such as iron, zinc, 

potassium, magnesium and calcium as it passes through the digestive system of humans 

and other monogastric animals. This leads to increasing iron and zinc deficiencies in 

communities that subsist on maize as their daily food requirements. Iron deficiency is 

considered to be the most common and widespread nutritional disorder in the world and the 

condition is exacerbated by infectious diseases in developing countries where it affects 

mainly women and children (FAO, 2009). Zinc deficiency is estimated to affect billions of 

people. According to WHO statistics, zinc deficiency is rated the fifth most important health 

risk factor in developing countries and eleventh worldwide, with 60% of the population in 

developing countries affected (WHO, 2009).  

Maize inbred lines containing lower levels of phytic acid have been produced using 

ethylmethane sulphonate-induced (EMS) mutagenesis (Raboy, 2000). These maize LPA 

mutants are distinguished according to differences in inositol and inositol phosphate content. 

The maize lpa1-1 mutants show a reduction in phytic acid accompanied by inorganic 

phosphate, lpa2 mutants show significant increases in inositol phosphate intermediates and 

lpa3 mutants accumulate inorganic phosphate and myo-inositol but not inositol phosphate 

intermediates. The genes from lpa1-1, lpa2 and lpa3 have all been cloned (Shi et al., 2003, 

2005, 2007). The lpa1-1 gene encodes a multidrug resistance associated protein (MRP) 

ATP-binding cassette (ABC) transporter (Shi et al., 2007) while lpa2 gene encodes an 

inositol phosphate kinase (IPK) belonging to the Ins (1, 3, 4) P3 5/6 kinase gene family (Shi 

et al., 2003) and lpa3 gene encodes a myo-inositol kinase (MIK) gene (Shi et al., 2005). 

There have been studies comparing the effects of a LPA diet on humans (Agte et al., 1999; 

Mendoza et al., 1998, 2001; Adams et al., 2002; Hurrell et al., 2002, 2003 Ekholm et al., 

2003; Bohn et al., 2004; Davidsson et al., 2004; Hambigde et al., 2004, 2005). There is a 

considerable amount of evidence to support the fact the dietary phytate has a negative effect 

on the bioavailability of dietary minerals in humans as the substitution of LPA grain in a 

maize based diet is associated with a substantial increase in zinc (Adams et al., 2002; 

Hambidge et al., 2004), iron (Mendoza et al., 1998, 2001; Hurrell et al., 2003), calcium 

(Hambidge et al., 2005) and magnesium (Bohn et al., 2004) absorption.  
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Phytic acid has very little bioavailability for monogastric animals due to their lack of phytase 

activity. A possible solution to the high PA content in cereals is the isolation of mutants 

accumulating less phytic P and more free phosphate in the seed. A result of high 

phosphorus excretion by monogastric animals is the environmental pollution of water and 

soils. Studies have been conducted to determine the effect and availability of phytic acid to 

pigs (Spencer et al., 2000a,b; Veum et al., 2001), chicks (Douglas et al., 2000; Li et al., 

2000; Yan et al., 2000; Peter and Baker, 2002), turkeys (Yan et al., 2003) and rabbits 

(Marounek et al., 2003). In particular, there were studies that used maize containing the 

lpa1-1 allele (Spencer et al., 2000a, b; Li et al., 2000). In animal feeding studies using low 

phytate maize, there was an increase of 2-5 times the amount of bioavailable phosphorus 

observed (Douglas et al., 2000; Li et al., 2000; Spencer et al., 2000a, b; Yan et al., 2000, 

2003; Veum et al., 2001; Peter and Baker, 2002). It was found in rabbits that although 

inorganic phosphates hinder phytic acid hydrolysis, generally they were able to digest phytic 

acid fairly efficiently. Also, the addition of exogenous phytase to rabbit feeds could increase 

phytic acid hydrolysis in the upper part of the digestive tract and eliminate the need for 

inorganic phosphate supplements (Marounek et al., 2003). 

The lpa1-1 mutants have 1.1 mg/g total inositol P (23% of total P) and 3.1 mg/g Pi (66% of 

total P) compared to the normal maize of 3.4 mg/g total inositol P (76% of total P) and 0.3 

mg/g Pi (7% of total P) (Raboy et al., 2000). The lpa1-1 mutation shows 66% reduction in 

phytic acid P (Raboy, 2000). The lpa1-1 gene has been mapped onto the chromosome 1 

distal region and reported to be due to a single recessive mutation (Raboy et al., 2000). The 

gene was completely sequenced (5149 bp) and the lpa1-1 phenotype reported to be 

probably due to a change of amino acids alanine to valine (Shi et al., 2007). There are 

numerous examples of transitions mutations and SNPs to identify them. Some examples in 

rice include the fragrance gene (fgr) (Jin et al., 2003), semi-dwarfing gene (sd-1) (Sasaki et 

al., 2002) and blast resistance (Bryan et al., 2000).  There have been other LPA mutant lines 

showing similar amino acid changes which result in lower phytic acid content (Kim et al., 

2008; Xu et al., 2009).  

While molecular markers have been used to detect LPA mutants in rice (Zhao et al., 2008), 

soybean (Saghai-Maroof et al., 2009; Scaboo et al., 2009) and barley (Larson et al., 1998; 

Roslinsky et al., 2007), there have been no SNP markers and or HRM analysis used for 

detection of LPA mutants in maize. In rice, the lpa1-1 mutation is due to a single base pair 

substitution and a cleavage amplified polymorphic sequence marker (LPA1-CAPS) was 

developed using Xsp I as the restriction enzyme. The lpa1-2 mutation of rice was detected 

using an insertion/deletion marker (LPA1-InDel) which detects a 1475 bp fragment deletion 

(Zhao et al., 2008). In barley, there was a co-dominant sequence tagged site-polymerase 
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chain reaction (STS-PCR) marker (aMSU21) that co-segregated with lpa1-1 with a 200 bp 

deletion (Larson et al., 1998). However this marker was found to be non-polymorphic among 

2-rowed breeding materials and a repulsion phase sequence-characterised amplified region 

(SCAR) marker was developed that was positioned ~16cM away from the lpa1-1 gene 

(Roslinsky et al., 2007). This study also found an inter-simple sequence repeat (ISSR) 

marker found approximately 14.7cM away from lpa3-1 and requiring enzyme digestion with 

Cla I for detection of the gene (Roslinsky et al., 2007). In soybean, a single nucleotide 

mutation from A to T, resulting in substitution of a stop codon for an Arg residue was 

detected in the MRP gene on the LPA mutant, which was detected by sequencing after PCR 

(Saghai-Maroof et al., 2009). Micro-satellite or simple sequence repeat (SSR) markers have 

been found to be linked to QTLs for phytate concentration in soybean (Scaboo et al., 2009). 

These markers have been detected after PCR by either agarose gel-electrophoresis or DNA 

sequencing.    

Since phytic acid is mainly found in the germ of the mature seed (O‟Dell et al., 1972), the 

method of detection has been a colorimetric assay of the crushed seed which effectively 

destroys the seed (Chen et al., 1956). This method is detrimental in breeding programmes 

especially in cases of segregating material when screening for the LPA trait as once the 

seed has been crushed for the assay; it cannot be used to generate a seedling. The 

colorimetric method is long, has low repeatability and requires 11-12 hours of human labour 

to analyse 100 samples of which the majority is preparation of samples into plates, as well 

as having an overnight incubation (Lorenz et al., 2007). There is therefore a need for a non-

destructive method of detecting the lpa1-1 trait, particularly one that is reliable, quick, less 

labour intensive and that can be amendable to high throughput methods. Molecular markers 

can be used for detection of traits that are difficult to assess/phenotype or for recessive 

genes. In the case of phytic acid, the trait is both difficult to phenotype as well as being a 

single recessive mutation; hence molecular markers can be applied to identify the lpa1-1 trait 

with increased reliability and accuracy. Marker-assisted selection (MAS) methods particularly 

those based on PCR are advantageous due to their objectivity and small amounts of sample 

tissue and results in accurate analysis of large numbers of individual plants early in the 

breeding programme.  

SNPs are third generation markers defined as single base pair positions changes in genomic 

DNA at which different sequence alternatives (alleles) exist in normal individuals in some 

population(s), wherein the least frequent allele has an abundance of 1% or greater (Brookes, 

1999). There are two types of SNPs; substitution of one nucleotide for another (transitions / 

transversions) or an insertion/deletion (indel) of a nucleotide. A transition is a change of C/T 

or G/A, while transversions can be C/G, A/T/ C/A or T/G (Batley et al., 2003). There is a 
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relative increase in the proportion of transitions over transversions (Batley et al., 2003). A 

ten-fold increase in frequency of C to T mutation than average transitions was found after 

methylation (Coulondre et al., 1978). These direct markers are very useful as their sequence 

information shows exactly the allelic nature of the individual due to a high level of 

intraspecific nucleotide diversity.   

SNP markers can occur naturally or through induced mutation techniques and are stable 

with high frequency in the genome and a higher inheritance than most other markers. In 

maize, SNP polymorphisms has been conservatively estimated at 20 million polymorphisms 

(Rafalski, 2002), thereby showing the value of using SNPs in MAS and plant breeding. The 

maize SNP studies covered 41.3% of the genome and found SNP occurrence rate of 8.9 

SNPs/kb (Barker and Edwards, 2009), 1 SNP per 104 bp on chromosome 1 (Tenaillon et al., 

2001) and 1 SNP per 124 bp (coding regions), 1 SNP per 31 bp (non-coding regions) (Ching 

et al., 2002) and 1 SNP per 70 bp and 1 indel per 160 bp (Gupta et al., 2001). A study on 36 

maize inbred lines focusing on 18 genes found single nucleotide changes occur on average 

every 60.8 bp and most of these changes that occur in the protein coding regions are silent, 

with only five of eighteen changes resulting in an amino acid substitution (Ching et al., 2002). 

These markers can have either gel and non-gel based assays for detection.  

A limitation of SNP marker application to high-throughput is the method of detection of the 

sequence variation which usually involves sequencing the product. The sequencing of PCR 

products is costly and time consuming as well as the DNA sequencer being an expensive 

piece of equipment not widely available to most plant breeding programmes. High resolution 

melt (HRM) analysis is a post-PCR technology that under correct conditions, distinguish 

PCR amplicons on the basis of their melt profiles in the presence of an appropriate dye or 

probe. Instruments are available that perform stand-alone HRM or combine PCR followed by 

HRM in a single closed-tube analysis. This offers a more suitable solution with the added 

benefit of the equipment being easily obtainable and space efficient. The HRM analysis 

technology has the advantages of low cost, high volume, repeatability and accuracy of 

markers.    

During HRM, fluorescence emittance of the dsDNA dyes is measured during an increase in 

temperature at specific intervals and product denaturation is observed as a rapid loss of 

fluorescence near the denaturation temperature. The fluorescence data is converted into 

melting curves by plotting the derivative of fluorescence with respect to temperature (dF/dt) 

over the temperature range in degrees Celsius. This technology is able to differentiate 

between alleles of homozygote recessive, homozygote dominant and heterozygotes. A 

major advantage of HRM over gel electrophoresis is the differentiation of PCR products of 

the same length but having different sequence having different melting curves. It eliminates 
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the post-PCR analyses such as gel-based or sequencing analyses, thereby increasing 

efficiency of marker detection assay as well as reducing costs, time and labour. The factors 

determining the melting curve profiles include GC content, length and sequence of the 

product (Ririe et al., 1997). The Rotor-Gene 6000 real time rotary analyser (Corbett 

Research, Australia) is able to perform the HRM analysis immediately after PCR 

amplification.  

HRM technology has been widely used in human genetics and is gaining more uses in 

animal and plant genetic studies especially in cases of SNP studies. It has been used 

successfully in identifying SNPs in various crops including potato (Yuan et al., 2008), in 

almonds (Wu et al., 2008, Wu et al., 2009), apple (Chagne et al., 2008), barley (Lehmensiek 

et al., 2008), lupin (Croxford et al., 2008, Lopez et al., 2008), grapevine and olives (Mackay 

et al., 2008), tomato (van Deynze et al., 2007), Capsicum/pepper (Park et al., 2009) and 

detection and quantification of mitochondrial RNA editing in Arabidopsis (Chateigner-Boutin 

and Small, 2007, Takenaka and Brennicke, 2009).  

The objectives of this study were to develop a SNP molecular marker/s for use at the early 

vegetative stages of the plant for evaluation of the lpa1-1 gene present during breeding; to 

compare effect of high quality DNA extraction and crude extraction methods on the melting 

curves of the parental lines; and compare the cost of the HRM analysis to the conventional 

method of DNA sequencing for detection of the SNP marker. The sequence of the amplified 

PCR products was determined to validate the lpa1-1 nucleotide change.  

 

Materials and Methods 

 

Germplasm 

Two inbred maize lines were used in this study. The normal (wild type) tropical locally 

adapted line was P16 (CZL 00023) and the temperate lpa1-1 source was CM32 (JUG 248 

LPA1-1). The LPA source (CM32 – JUG 248 LPA1-1) was obtained from Dr V. Raboy (Iowa, 

U.S.A.) at the request of Prof P.T. Tongoona and P16 was obtained from CIMMYT maize 

germplasm collection. The heterozygote sample was the F1 cross between P 16 and CM 32 

inbred lines.  

DNA extraction 

Leaf material was sampled and ground in liquid nitrogen for high quality genomic DNA 

extraction using Wizard genomic DNA purification kit (Promega, Whitehead Scientific, Cape 
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Town, South Africa). Various crude extraction methods were tested in this study but a 

modification of the Edwards et al. (1991) method was selected. In the crude extraction 

method, leaf samples for PCR analysis were collected using the lid of a sterile 1.5 ml 

microcentrifuge tube to punch out a disc of leaf material into the tube. The tissue was 

macerated with extraction buffer (200 mM Tris HCl pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5 

% (w/v) SDS) and vortexed for a few seconds. The sample was heated for 10 mins at 65°C 

and centrifuged for 2 mins. The supernatant was removed, an equal volume of ice-cold 

isopropanol added and mixed before incubation at -20°C for 30 mins. The sample was 

centrifuged for 5 mins at 4°C and the pellet dried before re-suspending in 20 µl of TE (100 

mM Tris-HCl, 1 mM EDTA, pH 8) buffer overnight. The DNA extracted using the genomic 

DNA extraction kit was visualised by screening on a 1% (w/v) agarose gel in TAE buffer      

 

Primer design 

The wild type lpa1-1 gene was sequenced by Shi et al. (2007) who stated that the lpa1-1 

mutation is a result of an alanine to valine amino acids change at position 1432 and it was 

from this statement that it was inferred that there was a C to T transition occurrence. The 

wild type sequence of lpa1-1 is available on National Centre for Biotechnology Information 

(NCBI) database (accession number: NM_001112590). Based on the nucleotide sequence, 

the amino acid sequence was used to identify the position of the lpa1-1 mutation. The nine 

PCR primers were designed using the Primer3 programme (Rozen and Skaletsky, 2000) to 

flank the lpa1-1 mutation position and had a predicted size range of 91 bp to 148 bp. The 

primers were purchased from Integrated DNA Technologies (Whitehead Scientific, Cape 

Town, South Africa). The primers were tested and optimized for annealing temperature.  

 

PCR and HRM analysis 

The Rotor-Gene 6000 real time rotary analyser (Corbett Research, Australia) was used for 

the PCR amplification and HRM analysis. PCR amplifications were performed in 20 µl 

reaction volumes consisting of 15 ng of genomic DNA template, Quantace SensiMixdT for 

the PCR reaction components (Celtic Diagnostics, Cape Town), 1 x SYBR Green I dye and 

200 nM of forward and reverse primers. The PCR amplification was initiated with 10 min hold 

at 95C as an initial denaturation step, followed by 40 cycles of 95C for 10 sec, 55C for 15 

sec, 72C for 20 sec. A negative control was added in each set of PCR reactions with no 

DNA included to ensure non-contamination of PCR reagents. HRM analysis was performed 

automatically after the PCR and programmed to ramp temperature from 72C to 95°C, 

raised by 0.1 degree/step after the final extension step.  The Rotor-Gene 6000 real time 
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rotary analyser created the melting curves and the Rotor-Gene 6000 real time rotary 

analyser software version 1.7 was used to discriminate genotypes (Corbett Research, 

Australia). PCR products were screened initially for confirmation by electrophoresis in a 

1.5 % (m/v) agarose gel in 1 x TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) and 

visualized under UV light after staining with ethidium bromide (0.5 g ml-1). The optimization 

of the HRM method included the temperature range, checking for reliability between samples 

and between different runs and the ability to distinguish between homozygous dominant 

(WT), homozygous recessive (LPA) and the heterozygous genotypes. 

 

Validation of lpa1-1 SNP marker 

The presence and identity of the lpa1-1 SNP was confirmed and validated by forward and 

reverse sequencing the PCR products of the parental inbred lines (Inqaba Biotech, Pretoria, 

South Africa). Due to the small size of the product, the PCR product was first cloned into a 

vector and then sequenced to ensure the sequencing of the entire product. Sequence 

alignment was performed using the programme ClustalX (Ramu et al., 2003).  

 

Comparison of DNA extraction methods 

Two DNA extraction methods were compared to determine the efficiency of the marker in 

detecting the different genotypes. The leaf material was ground in liquid nitrogen and the 

Wizard genomic DNA purification kit (Promega, Whitehead Scientific, Cape Town, South 

Africa) was used for the high quality DNA extraction. The crude extraction method was a 

modification of the Edwards et al. (1991) method using fresh leaf sample punch. The melt 

profiles of the parental lines were compared with high quality and crude extractions of 

genomic DNA to determine effectiveness of the lpa1-1 SNP marker. 

 

Comparison of costs of HRM analysis and sequencing 

The costs of DNA sequencing were compared among different laboratories across South 

Africa to the cost of running the lpa1-1 SNP marker on the Rotorgene 6000 with HRM 

analysis. The costing of the SNP marker with HRM analysis in a 20 µl PCR reaction included 

costs for DNA extraction, PCR reagents, SYBR green dye and PCR tube. The cost of a 

standard sequencing of one sample was used.  
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Results and Discussion 

The parental inbreds were able to amplify a 150 bp PCR product at an annealing 

temperature of 55°C (Forward 5'- ATA ACT GGA GCG TGG GAC AG-3' and reverse 5'-CTG 

CGG ATG ATC TTT TGG AT-3').  The PCR optimisation used high quality genomic DNA of 

the maize inbred parental lines. There were nine PCR primer pairs tested in the initial 

optimisation for the lpa1-1 SNP marker. The annealing temperature ranged from 50°C to 

65°C, with the optimum annealing temperature at 55°C selected. The selection of the most 

suitable forward and reverse primers for the lpa1-1 SNP marker was based on the most 

stable and reliable melt profiles as well as the largest melting temperature differences 

between the parental lines. It was hypothesized that shorter PCR products would show 

larger melting temperature differences between the parental inbred lines due to the ratio of 

similarity between the base sequences. However the shorter PCR products did not show 

significantly larger temperature shifts.  

The raw data of the melt profiles is seen in Figure 2.1 showing the change of fluorescence 

over the increasing temperature range. The data was transformed (dF/dT) to give melting 

profiles of the parental lines and heterozygote PCR amplification products (Figure 2.2). Both 

parental lines were unmistakably distinguished from each other in the melt profiles by 0.5°C 

melt temperature difference (Figure 2.2). The wild type inbred line had a melting temperature 

of 83.05°C, lpa1-1 inbred line 83.53°C and the heterozygote 82.80°C. The heterozygote 

profile was more clearly distinguishable in the difference plots and this was used to define 

the heterozygous genotypes.  

In this study, the 150 bp product from the parental lines was clearly differentiated with the 

HRM analysis. It has been shown with HRM analysis,  there is good (100%) sensitivity for 

PCR products of 300 bp or less in identifying heterozygotes and homozygote genotypes 

however this has decreased to 96.1% sensitivity and 99.4% specificity for 400 to 1000 bp 

products (Reed and Wittwer, 2004). This is due to the fact that as the product length 

increases, the difference between the melting curves decreases, thereby leading to errors in 

detection of the particular allele.  

The differences between the parental inbred PCR products can be more clearly visualised 

and quantified by using the difference plots of normalised curves than the melting curve 

analysis. This is due to the difference between the melting temperatures of the parental line 

PCR products being very small or there being only one or a few bases that differ between 

the amplified products. A difference plot highlights the differences between individual curves 

relative to one of the sample melting curves plotted as a baseline. They can be used to 

differentiate between the homozygous and heterozygous genotypes more clearly than the 
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melting curves, especially in cases where the melting differences are very small. Figure 2.3 

shows a difference plot in which CM 32 (red) and heterozygote (green) were normalised to 

the P16 (black) melt curve. The heterozygote curve weaves into the LPA curve, but this is 

seen more clearly in Figure 2.4 where samples are normalised to LPA and P16 is now 

positive with the heterozygote both positive and negative. The distinctive shape of the 

heterozygote is used to differentiate heterozygous from homozygous genotypes. 

The PCR product of the heterozygote in this study was differentiated from the parental line 

PCR products due to its characteristic shape in the difference plots which was also found in 

other studies. The shape of the PCR amplicon for the heterozygotes is a characteristic 

“wave” shape in the difference plots, confirmed by the difference between genotypes visible 

in difference plots due to unique trace patterns (Wittwer et al., 2003). Difference plots were 

able to successfully distinguish between homozygotes and heterozygotes in a F2 population 

in pepper using Pp201 SNP marker (Park et al., 2009) and allowed more distinct separation 

of grapevine varieties for DNA fingerprinting (Mackay et al., 2008) than melting curve 

analysis alone. DNA melting analysis can also be used to detect heterozygotes as in the 

case of the PCR amplicon from the exon of the human N-methyl-D-aspartate receptor gene 

(NR1) that had an alanine to valine amino acid change due to C to T base change (Lipsky et 

al.,2001).  
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Figure 2.1: Change in fluorescence over increasing temperature range of P16, CM32 and heterozygote PCR amplification products  
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Figure 2.2: Melt profile of P16, CM32 and heterozygote PCR amplification products from HRM analysis 
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Figure 2.3: Difference plot of CM32 and heterozygote PCR amplification products with P16 normalized  

 



65 
 

 

Figure 2.4: Difference plot of P16 and heterozygote PCR amplification products with CM32 normalized  
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The lpa1-1 SNP marker was validated by forward and reverse DNA sequencing. Due to the 

small size of the PCR amplicon, it was cloned before sequencing. The sequences were 

aligned using the programme ClustalX (Ramu et al., 2003) and were identical with only the 

single base change from C (wild type) to T (LPA) (Figure 2.5).  

 

P16             CAAAAATTTTGGTACTCGATGAGGCGACAGCATCTGTCGACACAGCAACAGACAATCTTA 

Reference       CAAAAATTTTGGTACTCGATGAGGCGACAGCATCTGTCGACACAGCAACAGACAATCTTA 

CM-32           CAAAAATTTTGGTACTCGATGAGGCGACAGTATCTGTCGACACAGCAACAGACAATCTTA 

                ****************************** ***************************** 

 

Figure 2.5: Partial sequence alignment of P16 (wild type), reference (wild type) and CM32 

(lpa1-1) showing the C to T nucleotide base change. The reference sample was the wild 

type of the lpa1-1 sequence published on NCBI (accession number of NM_001112590). 

 

The effect of high quality and crude extraction of genomic DNA was compared by the 

melting profiles obtained with the lpa1-1 SNP marker. The melt profiles of the parental lines 

obtained from amplification with high quality genomic DNA showed very little difference from 

the melt profiles amplified with genomic DNA isolated with the crude extraction (Figure 2.6). 

The melting curves were very similar and the melting temperatures of P16 differed by 0.07°C 

and CM32 by 0.04°C. This proved that the crude extraction of genomic DNA was just as 

effective as the high quality genomic DNA extraction. The crude extraction method was more 

cost-effective as well and especially in cases of large sample volumes this is an added 

benefit.  

The cost of the SNP marker with HRM analysis was approximately R5.50/sample with no 

additional post-PCR analysis costs as the Rotor-Gene 6000 is essentially maintenance-free. 

The cost of DNA sequencing however includes DNA extraction and PCR amplification as for 

the SNP marker with the additional cost of sequencing. The prices per sample for DNA 

sequencing a PCR product varied from R130 (University of Cape Town), R125 (University of 

Witwatersrand), R75 (Inqaba Biotech, Pretoria) to R60 (Central Analytical Facility, University 

of Stellenbosch) (prices accessed on internet websites on 15 November 2009). Therefore 

the cost of using the lpa1-1 SNP marker with HRM (R5.50) is only 8% of the cost of DNA 

sequencing (R5.50 + R60). This is significantly lower than the DNA sequencing cost per 

sample even at the most cost effective laboratory. Additional factors to be taken into account 

are the labour and time required for “cleaning” the PCR product before DNA sequencing can 

occur, with the HRM analysis requiring much shorter time and less labour than DNA 

sequencing. All these factors validates the use of HRM analysis for lpa1-1 SNP detection 

due to its lower cost (8%), the shorter time required for the HRM and less labour intensive 

than DNA sequencing.    
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Figure 2.6: Melt profiles of high quality DNA extraction compared with crude DNA extraction of P16 and CM32 
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In plant breeding where there are large volumes of samples, screening methods that are quicker, 

less labour intensive and more cost effective than traditional screening methods are often sought. 

The characteristics that a molecular marker requires for use in plant breeding programmes include 

reliability, low technical skill and short turn-around time with most markers meeting one or some of 

these criteria. This often poses a challenge for molecular biotechnologists and limits the 

application of molecular markers in plant breeding programmes.  

However in the case of SNP markers, this gap is slowly being bridged. These markers are widely 

distributed in the genomes and with the added technology of HRM analysis, SNPs can be used to 

successfully detect and distinguish between homozygous and heterozygous genotypes as well as 

being quick, reliable and very simple to use markers. 

There have been other LPA mutant lines identified with SNP markers developed from similar 

amino acid changes which result in lower phytic acid content. These include LPA rice mutants 

isolated by Kim et al. (2008) and Xu et al. (2009). The rice mutant Lpa N15-186 is due to a single 

recessive gene with a single base pair change from the wild type (C to T transition) in the first 

exon of the gene resulting in a nonsense mutation. It is a mutant allele of the rice myo-inositol 

kinase (OsMIK) gene and shows 75% reduction in phytic acid P and was mapped to chromosome 

3, showing a similar phenotype to maize lpa3 mutant (Kim et al., 2008). Another two rice LPA 

lines (homozygous lethal and homozygous non-lethal mutants) were identified that carried two 

allelic mutations of the rice orthologue (OsMRP5) of the maize lpa1-1 gene (ZmMRP4) (Xu et al., 

2009). There was a C to T transition in the 6th exon of XS-lpa2-1 which although caused a change 

of Proline to Serine amino acid but had a limited effect on the function of the protein as it does not 

change the tertiary structure of the protein. However, the other allelic mutation has a 5 bp deletion 

in the 1st exon of XS-lpa2-2, has a significant change as there is a frame shift mutation that 

introduces a premature stop codon after the deletion site in the first ABC-domain (Xu et al., 2009).  

The use of HRM analysis has been very limited in plants and in the case of the rice SNP (XS-

lpa2-1 and XS-lpa2-2) phytic acid levels were detected with the colorimetric assay and the gene 

sequence identified with PCR and RT-PCR (Xu et al., 2009). The SNP marker linked to the 

fragrance gene in rice also shows a C to T transition resulting in the change of phenotype; 

however the SNP is detected by DNA sequencing of a 491 bp PCR product (Jin et al., 2003). In 

this study, the maize lpa1-1 SNP is also due to a C to T transition which results in the change of 

the phenotype to LPA, however the HRM analysis is able to successfully identify all the different 

forms of the alleles of lpa1-1 gene. The potential to use HRM analysis for the rice SNP markers is 

thereby possible. Therefore, this study is novel and unique in the use of HRM analysis to 

successfully detect the lpa1-1 SNP genotypes without the use of the colorimetric assay and DNA 

sequencing of PCR products.  
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Conclusions 

The lpa1-1 SNP marker was able to successfully differentiate the two inbred maize lines by the 

differences in melt profiles due to HRM analysis. The SNP marker was able to detect a single 

nucleotide base pair change (C to T) that causes the lpa1-1 phenotype. The lpa1-1 SNP marker is 

a co-dominant marker that is able to distinguish between homozygous dominant, homozygous 

recessive and heterozygous alleles of the lpa1-1 trait. The inbred maize lines melting curves 

showed 0.5°C difference in melting temperature and the difference plots were used to 

characterise the different genotypes, especially the heterozygotes. The crude DNA extraction was 

as effective as high quality DNA extraction method for melt curve analysis. The SNP marker was 

validated by DNA sequencing with the C to T transition clearly shown. Breeding for lpa1-1 has 

been hampered due to the fact that lpa1-1 is single recessive gene, however with the lpa1-1 SNP 

marker this can now be overcome and the gene can be easily tracked. The destructive 

colorimetric assay is no longer required for the assessment for phytic acid content in maize grain 

and can be replaced by the lpa1-1 SNP marker that is stable, reliable and can be used on the 

early vegetative tissue of the plant instead of mature seed. The cost of the lpa1-1 SNP marker 

with HRM analysis is 8% of the cost of DNA sequencing which is the conventional method of 

detecting SNP genotypes. A faster, reliable and cost effective SNP marker with HRM analysis for 

lpa1-1 gene detection was developed for maize breeding programmes, leading to more efficient 

breeding for lower phytic acid in maize.  
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Chapter Three 

Marker-assisted selection for low phytic acid (lpa1-1) with SNP marker 

and AFLPs for background selection in a maize backcross breeding 

programme 

 

Abstract 

Phytic acid is difficult to assess in a maize breeding programme due to a tedious colorimetric 

assay. A co-dominant single nucleotide polymorphism (SNP) marker with high resolution melt 

(HRM) analysis was used to detect the low phytic acid (lpa1-1) gene in a BC2F1 population. 

Background selection for the recovery of the recurrent parent was by using six AFLP EcoRI/MseI 

primer combinations. A BC1F1 population was developed from a locally adapted tropical normal 

inbred line (P 16) and CM 32 was the lpa1-1 donor. The initial screening of 250 BC2F1 lines with 

the lpa1-1 SNP marker with HRM analysis was able to select 11 homozygous recessive and 17 

heterozygote genotypes for the lpa1-1 mutation. The R2 values for the SNP analysis for the 

heterozygotes showed a higher range of 90.95% to 99.59% than the lpa1-1 homozygous 

recessives which ranged from 82.81% to 99.58%. These selected BC2F1 lines were fingerprinted 

with six AFLP EcoRI/MseI primer combinations to determine the amount of recurrent parent 

genome present. There were 277 AFLP markers scored on the two parental lines and 28 BC2F1 

lines with a mean of 46.2 markers/primer combination with 234 (84%) polymorphic and 43 (16%) 

non-polymorphic markers. All the BC2F1 selected lines were clearly differentiated from each other 

and the parental controls in the dendrogram based on the DICE coefficient of similarity with a 

similarity range from 62.12% to 92.15%.  There were 13 BC2F1 lines (six heterozygotes and seven 

homozygous recessive) that showed the highest percentage of similarity to the recurrent parent 

(92.15% - 83.33%). The use of marker-assisted selection for foreground and background 

selection greatly increased the efficiency of detection of the homozygous recessive (99.58%) and 

heterozygous (99.59%) genotypes as well as improving the recovery of the recurrent parent 

(92.15%) in BC2F1 generation of the maize backcross breeding programme.  

Keywords: Low phytic acid, SNP marker, AFLPs, marker-assisted backcrossing 
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Introduction 

Phytic acid is an antinutritional compound found in seeds of cereals and legumes. It chelates 

essential minerals such as iron, zinc, magnesium, calcium and potassium as it passes through the 

digestive system of monogastric consumers such as humans and pigs. It is also a store of 

phosphorus therefore should not be eliminated completely. There are temperate maize lines that 

contain lower levels of phytic acid but these are not adapted to tropical and subtropical conditions. 

There are four low phytic acid (LPA) mutants (lpa1-1, lpa2, lpa3, lpa241) developed with different 

amounts of phytic acid reductions (Raboy, 2000; Pilu et al., 2003). The lpa1-1 mutation shows 

66% reduction in phytic acid phosphorus and was generated by ethylmethane sulphonate-induced 

(EMS) pollen grain mutation (Raboy, 2000). The lpa1-1 gene has been mapped onto chromosome 

1 distal region and reported to be due to a single recessive mutation (Raboy et al., 2000). Shi et 

al. (2007) sequenced the lpa1-1 gene (5149 bp) and reported the lpa1-1 phenotype to be probably 

due to a alanine to valine change of amino acids. This lpa1-1 gene was chosen to introgress the 

LPA trait into tropical adapted maize line (P16) due to its high percentage of reduction of phytic 

acid (66%), available gene sequence and the exact type and position of the mutation identified. 

However, due to its recessive nature, foreground marker-assisted selection with a single 

nucleotide polymorphism (SNP) marker was used to detect the lpa1-1 gene in segregating 

backcross breeding material with high resolution melt (HRM) analysis to detect the various 

genotypes. Background marker-assisted selection was done to fingerprint the homozygous 

recessive and heterozygous genotypes with AFLPs to determine the amount of recurrent parent 

genome present.  

Marker-assisted selection (MAS) entails the use of molecular markers in the selection process in 

plant breeding programmes and has been shown to be cost effective (Abalo et al., 2009). These 

markers need to be closely linked to the target gene/locus and should be polymorphic for the 

breeding material used in the programme for them to be effective and reliable. Markers can be 

used for the introgression of recessive traits and for the selection of lines resembling the recurrent 

parent genome. Marker-assisted backcrossing (MABC) is an established tool in plant breeding. 

The main aim in MABC is the introgression of a trait of interest into the genetic background of a 

recipient genotype by recurrent backcrossing. The other aim is to recover the recurrent parent 

genome as rapidly and completely as possible. The use of markers to monitor the parental origin 

of alleles throughout the genome in MABC with restriction fragment length polymorphism (RFLP) 

markers was originally proposed by Tanksley et al. (1989) and was later called background 

selection (Hospital and Charcosset, 1997). There are two goals of background selection: to 

reduce the proportion of the donor genome on the carrier chromosome of the target allele and to 

reduce the donor genome on the non-carrier chromosomes. Linkage drag is reduced by the 
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selection of individuals that carry the target allele and are homozygous for the recurrent parent 

alleles at tightly linked marker loci (Frisch et al., 1999). The use of background selection for a 

single gene has been widely investigated (Hospital et al., 1992; Abalo et al., 2009) and has now 

been used in maize for two genes simultaneously (Frisch and Melchinger, 2001) and QTLs 

(Hospital and Charcosset, 1997; Bouchez et al., 2002). Marker-assays can be advantageous in 

backcross breeding programme for both background and foreground selection (Hospital and 

Charcosset, 1997).  

Molecular markers that have a wide coverage of the genome and are highly polymorphic are 

preferred. Markers are based on detecting sequence variation in deoxyribonucleic acid (DNA) and 

amplified fragment length polymorphism (AFLP) markers in particular target the repetitive regions 

of the genome. The choice of marker system to use often depends on the species, objective of the 

work, genetic resolution and financial and technological resources available. They differ in 

information content, number of scorable polymorphisms per reaction, and degree of automation. 

Molecular markers are well established tools in plant breeding and genetics that improve the 

efficiency and sophistication of breeding. They have played a key role in improving the 

understanding of the genome organization, structure and behaviour for many major crops.  

Since the late 1990s, SNPs have been used more as a marker system in plants (Gupta et al., 

2001; Rafalski, 2002b; Barker and Edwards, 2009). This marker is characterised by a single base 

substitution at a particular position, a type of polymorphism that is also recognised by the 

restriction fragment length polymorphism (RFLP) technique if the SNP occurs in a restriction 

enzyme recognition site (Brookes, 1999). The SNPs are regarded as the prototype of the third 

generation molecular markers (Gupta et al., 2001). They are biallelic, abundant in genomes, have 

relatively low mutation rates, have even distribution in the genome, and are relatively easy to 

detect. The SNP density is generally higher in intergenic and intronic regions compared to that of 

exons (Brookes, 1999, Rafalski, 2002a). SNP markers are a consequence of either transition or 

transversion events (Batley et al., 2003). There are eight possibilities for transversions but only 

four for transitions. If the mutation affects the first or second codon position within a protein coding 

region, the encoded amino acid is often substituted by a different one and such mutations are 

called nonsynonymous.  These are called diagnostic SNPs and may be associated with certain 

diseases in humans and certain agronomic traits in plants (such as the lpa1-1 SNP). However, the 

mutation is termed synonymous or silent if the amino acid sequence of the protein remains 

unchanged (Batley et al., 2003).  

The choice of detection methods for SNP genotyping depend on many factors, including cost, 

throughput, equipment needed, difficulty of assay development and potential for multiplexing 

(Rafalski, 2002b). SNPs are the fastest and cheapest marker system available for map-based 
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cloning (Scheible et al., 2005). SNPs are not commonly used in the plant sciences due to the high 

cost of developing SNPs detection assays, especially the re-sequencing of DNA samples and the 

requirements for expensive instruments and complex procedures to detect SNPs (Batley et al., 

2003; Kim and Misra, 2007). However with the advancement in technology leading to specific low 

density SNP chips and other affordable technologies, such as high resolution melt analysis 

(HRM), SNPs will be used more in DNA fingerprinting, genomic mapping and linkage analysis in 

the plant sciences (Gupta et al., 2001, Rafalski, 2002b, Barker and Edwards, 2009). HRM is the 

most inexpensive, simple and rapid of these technologies to detect SNPs (Gundry et al., 2003; 

Wittwer et al., 2003). 

In HRM analysis, the polymerase chain reaction (PCR) amplification and melt analysis can be in 

one closed tube reaction (Montgomery et al., 2007) depending on the type of equipment used with 

the aid of intercalating fluorescence dyes (Worm et al., 2001; Liew et al., 2004; Zhou et al., 2004, 

2005; Montgomery et al., 2007; Park et al., 2009) or fluorescence-labelled primers (Gundry et al., 

2003). The PCR products are differentiated from each other by melting curve profiles (Ririe et al., 

1997) with heterozygous and homozygous genotypes identified (Gundry et al., 2003, Wittwer et 

al., 2003; Reed and Wittwer, 2004; Montgomery et al., 2007). The melting curve is generated by 

plotting fluorescence as a function of time as the thermal cycler heats through the dissociation 

temperature of the product (Ririe et al., 1997). The shape and position of the melting curve are 

due to the GC/AT ratio, length and sequence and can be used to differentiate PCR products 

separated by less than 2°C in melting temperature (Ririe et al., 1997). There is no post-PCR 

analyses (Ririe et al., 1997; Montgomery et al., 2007) required therefore, increasing the efficiency 

of marker detection system. There is reduction of costs, time and labour in the HRM analysis 

(Ririe et al., 1997; Zhou et al., 2005). 

The main objective of a backcross breeding programme is the reduction of the donor parent 

genome by 50% at each generation of backcrossing while retaining the trait of interest from the 

donor parent. There is, however, variation present in each backcross generation around the 

mean. Markers can be used to select for the donor trait as well as recombinant individuals that 

have genome composition closer (75%) to the recurrent parent. MAS is used to reduce the time 

and number of backcross generations required to achieve this goal. A major constraint has been 

the number of polymorphic markers required to cover the entire genome to effectively determine 

the amount of recurrent parent genome present. 

AFLPs are a universal, multi-locus marker technique that can be applied to genomes of any 

source or complexity. It is a reproducible and reliable technique within and among mapping 

populations.  No prior sequence information is required and highly informative fingerprints are 

produced due to the large number of bands produced per primer combination. AFLP is an 
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ingenious combination of RFLPs and PCR designed by Vos et al. (1995). It has become very 

popular and is a powerful approach to identify DNA polymorphisms. AFLP marker bands are 

mainly dominant but in some cases co-dominance can be detected.  

AFLPs have been used extensively to assess genetic diversity in maize (Ajmone-Marsan et al., 

1998; Pejic et al., 1998; Lübberstedt et al., 2000; Heckenberger et al., 2003; Adawy et al., 2004; 

Beyene et al., 2005; Beyene et al., 2006; Legesse et al., 2007; Hartings et al., 2008) and other 

crops such as soybean (Maughan et al., 1996; Powell et al., 1996; VanToai et al., 1996 ), potato 

(McGregor et al., 2000; Spooner et al., 2005), barley (Russell et al., 1997; Varshey et al., 2007), 

wheat (Bohn et al., 1999; Maccaferri et al.,  2007), rice (Saini et al., 2004; Jeung et al., 2005), 

groundnuts (Herselman, 2003), sugarcane (Lima et al., 2002), lentils (Sharma et al., 1996) and 

black pepper (Joy et al., 2007). The AFLP technique was successful in detecting genetic diversity 

in all studies with high levels of polymorphism, effective multiplex ratio, marker index and 

genotype index observed. The technique was useful in assigning inbreds into heterotic groups, 

revealing pedigree relationships among lines, showing relationships between morphological and 

or phenotypic traits and AFLP marker data. It was concluded that SNP markers are better suited 

for characterizing and conserving genebank materials with AFLP markers being more suitable for 

diversity analysis, fingerprinting (Varshey et al., 2007), cultivar identification, phylogenetic studies 

(Joy et al., 2007) and generally AFLP markers seem to be the most appropriate for various 

aspects of germplasm analysis (Lübberstedt et al., 2000).  

There are many studies on DNA fingerprinting of inbred lines in maize and other crops; however 

there are few studies on the use of AFLPs in backcross plant breeding programmes to determine 

the percentage of recurrent parent genome. These studies were on crops such as cotton (Zhong 

et al., 2002); rice (Chen et al., 2000, 2001; Zhou et al., 2003; Gopalkrishan et al., 2008); soybean 

(VanToai et al., 1996) and beans (Mũnoz et al., 2004).  

There are numerous advantages of AFLPs including versatility as PCR with random primers. A 

high stringency is applied during PCR to ensure robustness and high reproducibility and limited 

set of AFLP primers can yield a large set of primer combinations, each with its own unique set of 

amplified fragments, the multiplex ratio is high and can be increased by altering the length of the 

3‟-nucleotide extensions and/or choice of enzyme. These advantages make AFLPs a very 

resourceful tool for numerous molecular applications. The pattern complexity can be in the range 

of 20 and 60 bands per primer combination in the fragment range of 50 to 500 bp, depending on 

the species. There are some disadvantages that include dominance of markers, clustering of 

markers (depending on the restriction enzyme choice), limited levels of polymorphisms in some 

species, and the requirement for good quality and high amounts of DNA as compared to other 
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markers. This is species-dependant as some species are highly polymorphic while others are not 

depending on the size of the genetic bases in these species.  

A review of MAS breeding on maize in Africa by Stevens (2008) found many research studies 

identifying QTLs for drought resistance, resistance to biotic stresses (sugar-cane mosaic virus, 

maize streak virus, grey leaf spot, stem borers, Striga) and micronutrient enhancement breeding 

(Vitamin A, iron and zinc). However there is failure to use these markers due to the variable 

effectiveness of the markers in predicting the desired phenotype, the low accuracy of QTL studies, 

and a lack of transferability across diverse germplasm and insufficient validation of markers. 

There is therefore a need to develop molecular markers that can overcome these limitations and 

be used to their full potential in breeding programmes.  

For a practical plant breeding programme, a marker should have the following properties: co-

dominance, reliability, rapidity, ease of use and cost effectiveness compared to traditional 

screening methods for the trait of interest. The lpa1-1 SNP marker is able to meet most of these 

criteria as it is co-dominant, reproducible, low technical need and is much more cost effective than 

the colorimetric assay for phytic acid determination.  

Due to the maize LPA mutants which carry  the lpa1-1 gene,  showing low vigour and slow growth 

(Pilu et al., 2003)  there is a need to introgress this trait into tropical inbred maize lines that have 

higher seed germination, vigour and local adapability. However the LPA lines show variation for 

vigour and therefore selection for vigour should be an important criterion in a backcross breeding 

programme. Due to the recessive nature of the lpa1-1 gene and the tedious destructive 

colorimetric detection assay, the backcross breeding programme would be longer and more 

tedious. A backcross breeding programme was developed to introgress the lpa1-1 gene into a 

wild type tropical and subtropical adapted maize inbred line using molecular markers for 

foreground and background selection.  

The objectives of this study were to use the lpa1-1 SNP marker to detect homozygous recessive 

and heterozygote individual genotypes from the BC2F1 population using HRM analysis; and use 

AFLP markers to determine the amount of recurrent parent genome (P16) present in each BC2F1 

line.  
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Materials and Methods 

Germplasm 

Two inbred maize lines were used in the backcross breeding programme to introgress the lpa1-1 

gene into tropical and subtropical adapted germplasm. The normal (wild type) tropical locally 

adapted line P 16 (CZL 00023) and the temperate lpa1-1 source CM 32 (JUG 248 LPA1-1) were 

used in this study. The LPA inbred line was obtained from Dr V. Raboy (Iowa, U.S.A.) and normal 

inbred line from the CIMMYT germplasm. The normal line was crossed with the LPA line to 

produce the F1 generation. The F1 was backcrossed to the recurrent parent (P 16) to produce the 

BC1F1 generation. The BC1F1 generation was planted in pots in the greenhouse and backcrossed 

to the recurrent parent with no selection for the lpa1-1 gene to generate BC2F1 generation.  

 

Crude DNA extraction 

Two hundred and fifty BC2F1 progeny were grown in pots in a greenhouse and leaves were 

sampled for crude DNA extraction. A crude DNA extraction method of Edwards et al. (1991) was 

used to extract DNA for the lpa1-1 SNP marker screening. Leaf samples for PCR analysis were 

collected using the lid of a sterile 1.5 ml microcentrifuge tube to punch out a disc of leaf material 

into the tube. The tissue was macerated with extraction buffer (200 mM Tris HCl pH 7.5, 250 mM 

NaCl, 25 mM EDTA, 0.5 % (w/v) SDS) and vortexed for a few seconds. The sample was heated 

for 10 mins at 65°C and centrifuged for 2 mins at 12 000 x g. The supernatant was removed, an 

equal volume of ice-cold isopropanol added and mixed before incubation at -20°C for 30 mins. 

The sample was centrifuged for 5 mins at 4°C at 12 000 x g and the pellet dried before re-

suspending in 20 µl of TE (100mM Tris-HCl, 1mM EDTA, pH 8) buffer overnight.  

 

PCR and HRM analysis 

The Rotor-Gene 6000 real-time rotary analyser (Corbett Research, Australia) was used for the 

PCR amplification and HRM analysis. The PCR amplifications were performed in 20 µl reaction 

volumes consisting of approximately 15 ng of genomic DNA template, SensiMixdT for the PCR 

reaction components (Celtic Diagnostics, Cape Town), 1 x SYBR Green I dye and 200 nM of 

forward and reverse PCR primers. The PCR amplification was initiated with a 10 min hold at 95C 

as an initial denaturation step, followed by 40 cycles of 95C for 10 sec, 55C for 15 sec, 72C for 

20 sec. A negative control was added in each set of PCR reactions with no DNA included to 

ensure non-contamination of PCR reagents. The HRM analysis was performed automatically after 
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the PCR and programmed to ramp temperature from 72C to 95°C, raised by 0.1 degree/step 

after the final extension step.  The Rotor-Gene 6000 real time rotary analyser created the melting 

curves and Rotor-Gene 6000 software version 1.7 was used to discriminate genotypes by 

difference plots (Corbett Research, Australia).  

 

Classification of BC2 lines 

The samples classified as heterozygous or homozygous recessive genotypes after analysis with 

the lpa1-1 SNP marker by the R2 values from the difference plots. The parental line, P 16 was 

used as the wild type standard genotype, CM 32 as the LPA recessive standard genotype and the 

F1 cross between the two parental lines as the heterozygote genotype. The R2 values were set at 

a threshold of 80%. Lines were selected for fingerprinting with AFLPs to determine the amount of 

recurrent parent present if their R2 values ≥ 80% for heterozygous and homozygous recessive 

genotypes. Their leaf material was sampled and ground in liquid nitrogen for high quality genomic 

DNA extraction using Wizard genomic DNA purification kit (Promega, Whitehead Scientific, Cape 

Town, South Africa) as higher quality DNA is required for AFLP analysis. The DNA was screened 

on a 1% (w/v) agarose gel in 1 x TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) and 

visualized under UV light after staining with ethidium bromide (0.5 g ml-1).  

 

AFLP process 

The three main steps in the AFLP process included template preparation (restriction digestion of 

genomic DNA and ligation of oligonucleotide adaptors), fragment amplification (preselective and 

selective amplification) and identification of amplified products by capillary electrophoresis. The 

AFLP reactions were performed using the AFLP plant kit modules according to the manufacturer‟s 

recommendations (Applied Biosystems, South Africa).  

Genomic DNA was double digested by two restriction enzymes, EcoRI (rare cutter) and MseI 

(frequent cutter). Double-stranded oligonucleotide adapters, with overhangs compatible to either 

5´- or 3´-end generated fragments produced during the restriction digestion, were ligated to the 

DNA fragments. The ligated DNA fragments were pre-amplified by PCR using primers 

complementary to the adapter and restriction site sequence with only one additional selective 

nucleotide at their 3´-end (Eco-A, Mse-C). Ten microlitres of the pre-amplification reaction was 

screened by electrophoresis on a 1.5 % agarose gel (w/v) in 1 x TAE buffer (40 mM Tris-acetate, 

1 mM EDTA, pH 8.0) and visualized under UV light after staining with ethidium bromide 
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(0.5 g ml-1), to ensure quality and quantity of pre-amplification products. Selective amplification 

was performed with the use of selective primers with three nucleotides for EcoRI and MseI 

specific primers (Table 3.1) as per cycling conditions of the manufacturer. The amplified fragments 

of the parental profiles were initially screened on the Rotor-Gene 6000 (Corbett Research). The 

10 primer combinations showing greatest differences between the parents were used for 

fingerprinting the BC lines. The pre-amplification and amplification PCR reactions for the BC2 lines 

and parents were performed in tubes and 96 well microtitre plates (Applied Biosystems, South 

Africa) on GeneAmp PCR system 2700 (Applied Biosystems, South Africa) according to 

manufacturer‟s instructions.  

The amplified samples were sent to the Central Analytical Facility at the University of Stellenbosch 

(Stellenbosch, Cape Town, South Africa) for analysis of products on the 3100 DNA sequencer. A 

ROX 500 (Applied Biosystems, South Africa) size standard was included in each sample for sizing 

of fragments amplified. The F filter set was used with a 36 cm capillary for the screening of the 

amplified products on the 3100 DNA sequencer.  

 

Data analysis  

There were only eight primer combinations selected for scoring due to incomplete data and poor 

amplification of the other two primer combinations. The eight Eco/Mse primer combinations 

selected run files were viewed using Peak Scanner software v1.0 (Applied Biosystems, freeware, 

www.appliedbiosystems.com) and raw data tables of the product sizes exported to Microsoft 

Excel for manual scoring. The parental amplification reactions were repeated in each sequencer 

run and only consistent bands were selected for scoring the individual BC2 lines. Bands were 

conservatively manually scored in the size range of 100 to 500 bp.  

Similarity matrices and dendrograms were generated for each primer combination separately and 

the combined data for the six primer combinations. For the similarity matrices construction, bands 

were scored as present (1) or absent (0). The fragment data was converted to binary data by 

generating a binary matrix (0,1) using the AFLP banding patterns of each individual. The NTSYS 

v2.1 software programme (Numerical Taxonomy and Multivariate Analysis for personal 

computers, Exeter Software, Setauket, NY, U.S.A.) was used to evaluate the genetic similarities 

between the maize BC2F1 lines and the parental lines (P 16 and CM 32). Pair-wise comparisons 

were made between the genotypes based on DICE (Dice, 1945) similarity coefficient. The 

resultant distance matrix data was used to construct a dendrogram using the agglomerative 

hierarchical un-weighted pair-group method with an arithmetic average (UPGMA) sub-programme 

of NYSTS (Rohlf, 1998).  
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Table 3.1: Sequences of adapters and primers used for the AFLP process and SNP analysis 

Name Type Sequence (5´-3´) 

EcoRI-AAG Primer+3 GACTGCGTACCAATTCAAG 

EcoRI-ACG Primer+3 
GACTGCGTACCAATTCACG 

EcoRI-ACC Primer+3 
GACTGCGTACCAATTCACC 

EcoRI-ACA Primer+3 
GACTGCGTACCAATTCACA 

MseI-CAA Primer+3 
GATGAGTCCTGAGTAACAA 

MseI-CAC Primer+3 
GATGAGTCCTGAGTAACAC 

MseI-CAG Primer+3 
GATGAGTCCTGAGTAACAG 

MseI-CAT Primer+3 
GATGAGTCCTGAGTAACAT 

EcoRI-A Pre-amplification 
AGACTGCGTACCAATTCA 

MseI-C Pre-amplification 
GACGATGAGTCCTGAGTAAC 

EcoRI Adapter 
5’-CTCGTAGACTGCGTACC 

      CATCTGACGCATGGTTAA-5’ 

MseI Adapter 
5’-GACGATGAGTCCTGAG 

       TACTCAGGACTCAT-5’ 

lpa1-1 SNP fwd Forward primer 
5’-ATAACTGGAGCGTGGGACAG-3’ 

lpa1-1 SNP rev Reverse primer 
5’-CTGCGGATGATCTTTTGGAT-3’ 
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Results and Discussion 

 

There were 250 BC2F1 plants screened and 28 plants were selected that carried at least one copy 

of the lpa1-1 gene and were therefore selected for fingerprint analysis with AFLPs. The Rotor-

Gene 6000 software v1.7 was able to compute R2 values based on the HRM analysis. The lpa1-1 

SNP marker is co-dominant and could therefore be used to detect homozygous dominant (wild 

type/normal), homozygous recessive (LPA) due to the melting profiles and heterozygous 

genotypes by difference plots using HRM analysis (Figure 3.1 and 3.2).  

Figure 3.1 shows the melt curves of the parental inbred lines, heterozygote and three BC2F1 lines 

which are difficult to classify the BC2F1 lines into homozygous dominant, homozygous recessive 

and heterozygous genotypes due to the small melting temperature difference (0.5°C) between the 

parental lines. However in Figure 3.2 the difference plot graph with LPA normalized is more 

informative as the shape of the BC2F1 lines are more clearly defined with BC2F1 line 260 very 

closely resembling the CM 32 baseline, and BC2F1 lines 246 and 257 resembling the heterozygote 

curve shape. There were 11 homozygous recessive (LPA) and 17 heterozygote genotypes 

identified with the lpa1-1 SNP marker according to their R2 values and curve shape in difference 

plots. The heterozygotes showed a higher range of R2 values of the lpa1-1 SNP marker from 

90.95% to 99.59% than the LPA recessives which ranged from 82.81% to 99.58% (Table 3.2). 

The HRM technology has been successfully used in other studies to detect homozygous and 

heterozygous genotypes based on melt curves and difference plots (Gundry et al., 2003, Wittwer 

et al., 2003; Reed and Wittwer, 2004; Montgomery et al., 2007).  
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Figure 3.1: Melt profiles of parental lines, heterozygote and three of the selected BC2F1 lines (260, 257, 246) 
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Figure 3.2: Difference plots of P 16, heterozygote and three of the selected BC2F1 lines with CM 32 (LPA) normalized 
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Table 3.2: R2 values of SNP marker analysis and similarity percentage to recurrent parent for 

selected 28 BC2F1 individuals with six EcoRI/MseI primer combinations of AFLP analysis 

BC2F1 Line Genotype R
2
 (SNP) Similarity %  

(recurrent parent P 16) 

119 Heterozygote 91.04 92.15 

257 Heterozygote 99.55 90.65 

235 LPA recessive 92.95 90.32 

258 Heterozygote 96.55 89.80 

246 Heterozygote 91.81 87.14 

215 LPA recessive 90.15 86.54 

264 LPA recessive 82.81 86.13 

253 Heterozygote 96.04 85.79 

117 LPA recessive 95.08 84.26 

256 LPA recessive 97.20 83.94 

136 LPA recessive 89.31 83.76 

158 LPA recessive 93.12 83.37 

271 Heterozygote 96.96 83.33 

286 Heterozygote 93.77 82.07 

176 Heterozygote 98.99 81.66 

260 LPA recessive 99.58 81.05 

138 LPA recessive 92.92 80.27 

142 Heterozygote 91.89 80.09 

252 LPA recessive 94.63 79.91 

92 Heterozygote 91.31 79.82 

242 Heterozygote 95.90 79.65 

249 LPA recessive 92.88 79.19 

78 Heterozygote 93.62 75.69 

164 Heterozygote 99.59 73.73 

145 Heterozygote 95.94 73.66 

75 Heterozygote 98.60 72.90 

265 Heterozygote 94.12 67.96 

150 Heterozygote 90.95 62.12 



88 
 

In the initial AFLP screening of primer combinations on the two parental lines of the 

backcross breeding programme, there were ten EcoRI/MseI primer combinations screened. 

Only eight EcoRI/MseI primer combinations were selected for the 28 BC2F1 lines and the two 

parental lines of the backcross breeding programme. Due to incomplete data and poor 

amplification the other two primer combinations were not included in the combined data set. 

Each individual primer combination was analysed separately and a dendrogram based on 

the similarity values obtained. Two primer combinations were excluded from the combined 

data due to very high similarity percentage values between P 16 and CM 32 (Eco-AAG Mse-

CAT and Eco-ACC Mse-CAC).These two combinations showed lower similarity vales for the 

BC lines than the donor parent. The data for six primer combinations were combined into 

one data set and analysed as the combined data set.  

For the individual primer combinations, similarity values were obtained for each of the 28 

BC2F1 lines and CM 32 (Table 3.3). The primer combination Eco-ACA Mse-CAT showed BC 

line 75 as zero percent similarity to the recurrent parent due to absence of similar bands 

between P 16 and 75. The amplification reaction of BC line 75 was repeated with the same 

results. It could be explained by the primer combination targeting an area that was not 

similar to the recurrent parent. Another possible explanation could be as a result of 

out-crossing that occured in this line. Also with this primer combination, there were two other 

BC lines that showed 100% similarity to the recurrent parent, having amplified exactly the 

same bands as the recurrent parent. Dendrograms were constructed for each of the primer 

combinations (Appendixes 1-8) with similarity matrices (Appendixes 9-16).  

For the combined data, there was a total of 277 data points/bands scored with 43 (16%) 

non-polymorphic and 234 (84%) polymorphic bands scored between the parental lines of the 

backcross breeding programme (Table 3.4). The number of bands scored in each primer 

combination ranged from 34 (Eco-ACA Mse-CAT) to 59 (Eco-AGG Mse-CAT). The primer 

combinations, Eco-ACA Mse-CAA and Eco-ACA Mse-CAC showed the highest percentage 

of polymorphic bands (94%) with Eco-ACG Mse-CAA (90%) and Eco-ACG Mse-CAA (90%) 

and Eco-ACA Mse-CAT (88%) also showing high polymorphic rates. The primer 

combinations had a range of 6-28% of non-polymorphic bands and range of 72-94% of 

polymorphic bands. Positive polymorphic bands are defined as only present in the recurrent 

parent (P 16) (coupling markers) and negative polymorphic bands are present in the donor 

parent (CM 32). There were a total of 224 (81%) positive polymorphic bands in the combined 

data with 10 (4%) negative polymorphic bands (Table 3.4). All the primer combinations 

showed high positive polymorphic band percentages (>91%) showing the recurrent parent 

was highly polymorphic and generally amplified more fragments/bands compared to the 

donor parent.  
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There are numerous genetic diversity studies with AFLP markers on maize using different 

enzyme primer combinations showing differing polymorphic rates, average number of 

markers per primer combination and the range of number of markers amplified in each 

primer combination. The AFLP polymorphism rate differs due to the number for primer 

combinations used, number of polymorphic bands produced and the genetic background 

and number of inbred maize lines used. Examples of results using different EcoRI/MseI 

primer combinations and bands produced include 284 polymorphic bands with 10 primer 

pairs (Hartings et al., 2008), 621 (59.8%) polymorphic bands with 16 primer combinations 

(Wu, 2000), 209 polymorphic bands (41.8%) with six primer combinations (Ajmone-Marsan 

et al., 1998), 261 polymorphic bands (83%) with four primer combinations (Lübberstedt et 

al., 2000), 232 polymorphic bands with six primer combinations (Pejic et al., 1998) and 408 

(81.7%) polymorphic  bands with seven primer combinations (Legesse et al., 2007). This 

study found 84% polymorphic bands with only six primer combinations tested which is 

relatively high considering only two inbred lines were compared. The type of restriction 

enzyme influences the polymorphism rate as EcoRI restriction sites are randomly located 

over the chromosome while PstI is clustered at the methylation-specific sites and therefore 

PstI primer combinations show a lower polymorphism ratio (Lübberstedt et al., 2000).  

Both polymorphic and non-polymorphic bands were selected for data points to determine the 

amount of similarity between the parental lines. The lpa1-1 source CM 32 showed a baseline 

similarity of 26.33% to P16, the recurrent parent with the combined data (Appendix 17). This 

is to be expected as they both are maize inbred lines although from different pedigrees and 

adaptation (tropical and temperate).  

All the BC2F1 selected lines were clearly differentiated from each other and the parental 

controls in the combined data dendrogram based on the DICE coefficient of similarity (Figure 

3.3). The combined similarity matrix (Appendix 17) generated by NTSYS was able to 

successfully differentiate between all 28 BC2F1 lines and donor parental line based on the 

similarity values to the recurrent parent. The similarity percentage values for the 

heterozygotes ranged from 62.12% to 92.15%, with the LPA homozygous recessives from 

79.19% to 90.32% (Table 3.2). The BC lines were very similar to the recurrent parent and no 

groups were identified in the dendrogram due to the close clustering seen between the lines 

and parental lines.  

A graphical representation of the selected BC2F1 lines R2 values for the SNP analysis (HRM) 

and similarity percentage values (DICE coefficient) are shown in Figure 3.4.
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Table 3.3: Similarity percentage values to the recurrent parent for the individual EcoRI/MseI selective nucleotide primer combinations used for AFLP 
analysis of the 28 BC2F1 maize lines and CM 32 

Line EcoRI-AGG  

MseI-CAA 

EcoRI-AGG  

MseI-CAT 

EcoRI-AAG  

MseI-CAT 

EcoRI-ACA  

MseI-CAA 

EcoRI-ACA  

MseI-CAC 

EcoRI-ACA  

MseI-CAT 

EcoRI-ACC  

MseI-CAC 

EcoRI-ACG  

MseI-CAA 

CM32 28.26 27.12 70.49 5.56 6.00 11.76 37.50 7.69 

75 84.78 67.80 54.10 55.56 42.00 0.00 58.33 78.85 

78 76.09 69.49 60.66 58.33 50.00 55.88 66.67 57.69 

92 71.74 74.58 62.30 52.78 60.00 55.88 75.00 78.85 

117 80.43 71.19 67.21 63.89 60.00 88.24 79.17 78.85 

119 97.83 88.14 75.41 72.22 74.00 94.12 62.50 88.46 

136 80.43 76.27 47.54 61.11 54.00 88.24 87.50 76.92 

138 84.78 69.49 55.74 50.00 50.00 82.35 79.17 71.15 

142 69.57 72.88 50.82 66.67 54.00 76.47 70.83 69.23 

145 63.04 54.24 47.54 55.56 50.00 79.41 62.50 59.62 

150 30.43 52.54 47.54 47.22 34.00 58.82 50.00 53.85 

158 78.26 72.88 62.30 58.33 58.00 94.12 50.00 75.00 

164 63.04 57.63 37.70 47.22 56.00 73.53 37.50 57.69 

176 78.26 71.19 57.38 63.89 48.00 85.29 66.67 75.00 

215 84.78 77.97 59.02 75.00 64.00 97.06 75.00 67.31 

235 91.30 76.27 63.93 69.44 74.00 94.12 79.17 92.31 

242 84.78 76.27 54.10 47.22 28.00 97.06 70.83 71.15 

246 86.96 74.58 49.18 77.78 66.00 100.00 75.00 69.23 

249 78.26 64.41 65.57 58.33 50.00 91.18 79.17 63.46 

252 78.26 71.19 62.30 58.33 50.00 79.41 70.83 65.38 

253 82.61 77.97 62.30 55.56 0.00 91.18 79.17 71.15 

256 78.26 77.97 4.92 61.11 64.00 91.18 79.17 67.31 

257 93.48 81.36 4.92 72.22 66.00 100.00 83.33 90.38 

258 97.83 77.97 4.92 61.11 72.00 97.06 83.33 86.54 

260 80.43 76.27 4.92 61.11 40.00 97.06 45.83 63.46 

264 86.96 76.27 4.92 69.44 64.00 79.41 54.17 80.77 

265 78.26 54.24 34.43 41.67 24.00 58.82 4.17 57.69 

271 91.30 69.49 67.21 63.89 48.00 94.12 4.17 71.15 

286 80.43 77.97 62.30 50.00 54.00 85.29 79.17 71.15 
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Table 3.4: Levels of polymorphism and non-polymorphism among six EcoRI/MseI selective nucleotide primer combinations used for AFLP 

analysis of the maize BC2F1 lines 

 

Primer 

combination 

Scored 

amplicon 

No. 

Non-polymorphic 

amplicon 

No. (%) 

Polymorphic 

amplicon 

No. (%) 

Positive 

polymorphic 

amplicon No. (%) 

Negative 

polymorphic 

amplicon No. (%) 

EcoRI-AGG MseI-CAT 59 16 (27%) 43 (73%) 39 (91%) 4 (9%) 

EcoRI-AGG MseI-CAA 46 13 (28%) 33 (72%) 32 (97%) 1 (3%) 

EcoRI-ACG MseI-CAA 52 5 (10%) 47 (90%) 45 (96%) 2 (4%) 

EcoRI-ACA MseI-CAT 34 4 (12%) 30 (88%) 30 (100%) 0 (0%) 

EcoRI-ACA MseI-CAA 36 2 (6%) 34 (94%) 33 (97%) 1 (3%) 

EcoRI-ACA MseI-CAC 50 3 (6%) 47 (94%) 45 (96%) 2 (4%) 

Overall Total 277 43 (16%) 234 (84%) 224 (81%) 10 (4%) 

Overall Mean 46.2 7.2 39.0 37.3 1.7 
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Figure 3.3: Dendrogram of fingerprinting 28 BC2F1 maize lines and the two parental lines (P 16 and CM 32) based on six primer combinations 

of EcoRI/MseI AFLP data  
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For the combined data of all six primer combinations, there were 13 BC2F1 lines; seven LPA 

recessives [235 (90.32%), 215 (86.54%), 264 (86.13%), 117 (84.26%), 256 (83.94%), 136 

(83.76%). 158 (83.37%)] and six heterozygous lines [119 (92.15%), 257 (90.65%), 258 

(89.80), 246 (87.14%), 253 (85.79%), 271 (83.33%)] showing the highest similarity 

percentages therefore containing the highest percentage of the recurrent parent genome 

and can be selected for further improvement in the breeding programme.  

According to the clustering on the dendrogram, CM 32 was closely related to three BC2F1 

lines; 150 (50%), 265 (44%) and 75 (38%) (Appendix 17) therefore these lines have the 

lowest percentage of recurrent parent genome. Due to the high level of similiarity between 

the BC2F1 lines, it was not possible to group the lines in the combined data dendrogram 

(Figure 3.4). This is due to the BC2F1 generation which would have a high percentage of the 

recurrent parent genome (expected 87.5%) by this stage.   

Studies on rice using AFLPs for background selection in the BC1F1 generation produced 364 

polymorphic bands to obtain 81.4% of the recurrent parent genome (Jeung et al., 2005), 

while a BC3F2 population had 98.8% recurrent parent recovery with 129 polymorphic bands 

(Chen et al., 2001), and selection in the BC3F1 generation resulted in 84.2 to 100% recovery 

of the recurrent parent with 118 polymorphic bands (Zhou et al., 2003). In this study for 

introgression of the lpa1-1 gene into the recurrent parent, selection was in the BC2F1 

generation with 234 polymorphic bands resulting in a maximum recovery of 92.15% of the 

recurrent parent genome. This was higher than the expected BC2 recovery of 87.5% in the 

BC2 generation.  

Selection of suitable BC2F1 lines would be in the range of high R2 SNP values with high 

similarity percentage values. The choice of heterozygous or homozygous recessive lines 

would also be part of the selection process, with homozygous recessive lines being 

preferred due to both alleles of the lpa1-1 gene being present and fixed. All 28 BC2F1 lines 

will have to undergo further testing under field conditions to determine yield potential, 

adaptability to local environmental conditions and disease assessment. A recommendation 

for other MAS studies would be to perform foreground selection in the BC1 generation and 

both foreground and background selection in the BC2 generation. Due to the high 

percentage of recurrent parent recovered in the BC2 generation, there is no need for a 

further backcross generation. A promising candidate for MAS for LPA mutant detection is the 

use of SNP markers accompanied by a high throughput analysis method such as HRM 

analysis. This will lead to an improved effective breeding programme enhanced with MAS to 

transfer genes of interest and accelerate the recovery of the elite parent genome in 

backcrossing breeding programmes.       
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Figure 3.4: Graph of R2 (SNP analysis) and similarity percentage to the recurrent parent (P 16) for 28 BC2F1 lines (Heterozygous genotypes are 

depicted with red diamonds and LPA recessives genotypes as blue diamonds)   
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Conclusions 

The backcross breeding programme to introgress the lpa1-1 gene into tropical and subtropical 

adapted inbred line (P 16) was successful with both foreground and background selection 

phases with molecular markers. The foreground selection for the lpa1-1 gene was efficient and 

rapid with the lpa1-1 SNP marker with HRM analysis for detection of the different alleles of the 

gene. Due to the co-dominant nature of the lpa1-1 SNP, it was able to correctly identify the 

homozygous dominant (wild type), homozygous recessive (LPA) and heterozygote lines of the 

BC2F1 population. The marker-assay with the SNP marker and HRM proved to be effective and 

would be less time-consuming than the traditional approach. There were 250 BC2F1 lines 

screened for the lpa1-1 gene with 11 homozygous recessive (LPA) and 17 heterozygous lines 

being selected for background selection using AFLP markers. The AFLP technique used six 

EcoRI/MseI primer combinations to produce 84% of polymorphic bands between the parental 

inbred lines. The percentage of recurrent parent genome recovered ranged from 62.12% to 

92.15%. There were 13 lines showing >83% of which four lines show >87.5% of the recurrent 

parent genome and are recommended for further advancement and field assessment. A further 

improvement would be to select in the BC1 generation with the lpa1-1 SNP marker and then 

perform both foreground and background selection using AFLPs in the BC2 generation.  
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Appendix 1: Dendrogram of AFLP primer combination EcoRI-ACA MseI-CAT 
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Appendix 2: Dendrogram of AFLP primer combination EcoRI-ACC MseI-CAC 
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Appendix 3: Dendrogram of AFLP primer combination EcoRI-AAG MseI-CAT 
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Appendix 4: Dendrogram of AFLP primer combination EcoRI-ACA MseI-CAA 
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Appendix 5: Dendrogram of AFLP primer combination EcoRI-ACA MseI-CAC 
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Appendix 6: Dendrogram of AFLP primer combination EcoRI-AGG MseI-CAT 
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Appendix 7: Dendrogram of AFLP primer combination EcoRI-AGG MseI-CAA 
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Appendix 8: Dendrogram of AFLP primer combination EcoRI-ACG MseI-CAA 
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Appendix 9: Similarity matrix of AFLP primer combination EcoRI-AGG MseI-CAA 

 
P16 CM32 75 78 92 117 119 136 138 142 145 150 158 164 176 215 235 242 246 249 252 253 256 257 258 260 264 265 271 286 

P16 1.00 
                             

CM32 0.28 1.00 
                            

75 0.85 0.43 1.00 
                           

78 0.76 0.52 0.83 1.00 
                          

92 0.72 0.57 0.83 0.87 1.00 
                         

117 0.80 0.43 0.83 0.78 0.87 1.00 
                        

119 0.98 0.30 0.83 0.78 0.74 0.78 1.00 
                       

136 0.80 0.43 0.83 0.74 0.83 0.87 0.78 1.00 
                      

138 0.85 0.43 0.87 0.83 0.87 0.91 0.83 0.91 1.00 
                     

142 0.70 0.59 0.76 0.80 0.85 0.85 0.67 0.80 0.80 1.00 
                    

145 0.63 0.65 0.78 0.87 0.91 0.78 0.65 0.78 0.78 0.89 1.00 
                   

150 0.30 0.98 0.41 0.50 0.54 0.46 0.33 0.46 0.46 0.61 0.63 1.00 
                  

158 0.78 0.50 0.80 0.76 0.85 0.85 0.80 0.85 0.89 0.78 0.85 0.52 1.00 
                 

164 0.63 0.65 0.78 0.83 0.91 0.78 0.65 0.78 0.78 0.89 0.96 0.63 0.85 1.00 
                

176 0.78 0.50 0.85 0.85 0.89 0.89 0.76 0.85 0.89 0.91 0.85 0.52 0.78 0.85 1.00 
               

215 0.85 0.39 0.78 0.78 0.83 0.91 0.83 0.78 0.83 0.76 0.74 0.37 0.76 0.74 0.80 1.00 
              

235 0.91 0.37 0.89 0.76 0.80 0.89 0.89 0.89 0.93 0.78 0.72 0.39 0.83 0.72 0.87 0.85 1.00 
             

242 0.85 0.43 0.83 0.78 0.74 0.83 0.83 0.78 0.87 0.76 0.70 0.46 0.76 0.70 0.85 0.78 0.85 1.00 
            

246 0.87 0.41 0.85 0.89 0.85 0.80 0.89 0.80 0.89 0.70 0.76 0.39 0.83 0.76 0.78 0.85 0.83 0.85 1.00 
           

249 0.78 0.50 0.85 0.85 0.93 0.89 0.80 0.85 0.93 0.83 0.85 0.52 0.91 0.85 0.87 0.80 0.87 0.80 0.87 1.00 
          

252 0.78 0.50 0.85 0.85 0.89 0.89 0.80 0.85 0.93 0.78 0.85 0.52 0.91 0.85 0.87 0.80 0.87 0.80 0.87 0.91 1.00 
         

253 0.83 0.46 0.85 0.76 0.85 0.80 0.80 0.93 0.89 0.83 0.80 0.48 0.83 0.80 0.87 0.76 0.91 0.76 0.78 0.87 0.83 1.00 
        

256 0.78 0.50 0.85 0.80 0.89 0.85 0.80 0.80 0.89 0.78 0.85 0.52 0.91 0.85 0.83 0.80 0.83 0.80 0.87 0.96 0.91 0.83 1.00 
       

257 0.93 0.35 0.87 0.78 0.78 0.87 0.91 0.87 0.91 0.76 0.70 0.37 0.80 0.70 0.85 0.87 0.93 0.87 0.89 0.85 0.85 0.85 0.85 1.00 
      

258 0.98 0.30 0.87 0.78 0.74 0.83 0.96 0.83 0.87 0.72 0.65 0.33 0.76 0.65 0.80 0.87 0.93 0.87 0.89 0.80 0.80 0.85 0.80 0.96 1.00 
     

260 0.80 0.48 0.83 0.83 0.83 0.87 0.78 0.83 0.91 0.80 0.83 0.50 0.85 0.83 0.89 0.83 0.85 0.87 0.85 0.85 0.93 0.80 0.89 0.87 0.83 1.00 
    

264 0.87 0.41 0.89 0.80 0.85 0.93 0.85 0.89 0.98 0.83 0.76 0.43 0.87 0.76 0.91 0.85 0.96 0.89 0.87 0.91 0.91 0.87 0.87 0.93 0.89 0.89 1.00 
   

265 0.78 0.50 0.89 0.76 0.80 0.85 0.76 0.80 0.85 0.83 0.80 0.52 0.83 0.80 0.87 0.76 0.87 0.80 0.74 0.87 0.83 0.83 0.87 0.85 0.80 0.85 0.87 1.00 
  

271 0.91 0.37 0.85 0.76 0.76 0.80 0.89 0.80 0.89 0.70 0.72 0.39 0.87 0.72 0.78 0.80 0.87 0.85 0.87 0.83 0.87 0.83 0.87 0.85 0.89 0.89 0.87 0.78 1.00 
 

286 0.80 0.48 0.87 0.91 0.91 0.87 0.83 0.78 0.87 0.80 0.83 0.46 0.80 0.83 0.89 0.87 0.85 0.78 0.89 0.89 0.89 0.80 0.85 0.87 0.83 0.83 0.89 0.80 0.76 1.00 
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Appendix 10: Similarity matrix of AFLP primer combination EcoRI-AGG MseI-CAT 

 
P16 CM32 75 78 92 117 119 136 138 142 145 150 158 164 176 215 235 242 246 249 252 253 256 257 258 260 264 265 271 286 

P16 1.00 
                             

CM32 0.27 1.00 
                            

75 0.68 0.53 1.00 
                           

78 0.69 0.51 0.78 1.00 
                          

92 0.75 0.49 0.86 0.81 1.00 
                         

117 0.71 0.49 0.73 0.71 0.76 1.00 
                        

119 0.88 0.39 0.76 0.81 0.80 0.73 1.00 
                       

136 0.76 0.51 0.78 0.73 0.81 0.78 0.85 1.00 
                      

138 0.69 0.54 0.68 0.73 0.75 0.78 0.75 0.80 1.00 
                     

142 0.73 0.51 0.75 0.80 0.81 0.68 0.81 0.83 0.76 1.00 
                    

145 0.54 0.69 0.73 0.75 0.73 0.63 0.63 0.71 0.68 0.78 1.00 
                   

150 0.53 0.68 0.78 0.76 0.78 0.68 0.61 0.73 0.73 0.76 0.81 1.00 
                  

158 0.73 0.51 0.75 0.80 0.75 0.71 0.85 0.86 0.76 0.80 0.68 0.69 1.00 
                 

164 0.58 0.59 0.76 0.78 0.73 0.69 0.69 0.64 0.68 0.68 0.66 0.78 0.68 1.00 
                

176 0.71 0.46 0.80 0.78 0.83 0.73 0.83 0.85 0.81 0.81 0.63 0.75 0.81 0.76 1.00 
               

215 0.78 0.49 0.73 0.81 0.80 0.76 0.86 0.85 0.78 0.78 0.69 0.68 0.85 0.69 0.86 1.00 
              

235 0.76 0.47 0.81 0.80 0.81 0.75 0.85 0.80 0.73 0.69 0.64 0.73 0.80 0.75 0.81 0.81 1.00 
             

242 0.76 0.51 0.78 0.76 0.78 0.75 0.88 0.86 0.76 0.76 0.64 0.66 0.86 0.68 0.81 0.81 0.83 1.00 
            

246 0.75 0.49 0.80 0.75 0.83 0.76 0.80 0.85 0.71 0.75 0.69 0.71 0.78 0.73 0.83 0.83 0.81 0.81 1.00 
           

249 0.64 0.56 0.76 0.85 0.76 0.73 0.76 0.78 0.78 0.81 0.73 0.75 0.81 0.80 0.76 0.73 0.71 0.81 0.73 1.00 
          

252 0.71 0.56 0.73 0.75 0.73 0.80 0.83 0.85 0.78 0.75 0.66 0.71 0.88 0.69 0.76 0.83 0.81 0.88 0.76 0.76 1.00 
         

253 0.78 0.46 0.80 0.81 0.80 0.73 0.90 0.88 0.78 0.81 0.66 0.71 0.85 0.76 0.90 0.86 0.85 0.88 0.86 0.83 0.80 1.00 
        

256 0.78 0.49 0.73 0.85 0.76 0.80 0.86 0.81 0.85 0.75 0.66 0.68 0.78 0.73 0.80 0.83 0.85 0.85 0.76 0.83 0.80 0.86 1.00 
       

257 0.81 0.42 0.83 0.81 0.80 0.69 0.93 0.85 0.78 0.81 0.66 0.68 0.85 0.69 0.86 0.83 0.88 0.88 0.80 0.76 0.80 0.93 0.86 1.00 
      

258 0.78 0.49 0.83 0.81 0.90 0.76 0.90 0.88 0.81 0.81 0.73 0.71 0.81 0.73 0.83 0.83 0.85 0.88 0.83 0.83 0.80 0.90 0.86 0.90 1.00 
     

260 0.76 0.47 0.78 0.73 0.81 0.71 0.85 0.83 0.76 0.73 0.61 0.69 0.83 0.71 0.85 0.78 0.90 0.86 0.81 0.75 0.78 0.88 0.81 0.88 0.88 1.00 
    

264 0.76 0.44 0.81 0.83 0.81 0.78 0.88 0.86 0.80 0.80 0.64 0.69 0.86 0.78 0.92 0.85 0.80 0.90 0.85 0.85 0.81 0.92 0.85 0.88 0.88 0.83 1.00 
   

265 0.54 0.63 0.80 0.81 0.76 0.63 0.66 0.68 0.71 0.75 0.76 0.81 0.75 0.83 0.76 0.69 0.75 0.68 0.66 0.83 0.66 0.73 0.73 0.73 0.73 0.71 0.75 1.00 
  

271 0.69 0.51 0.75 0.83 0.71 0.68 0.81 0.80 0.73 0.80 0.64 0.73 0.80 0.75 0.85 0.81 0.80 0.80 0.75 0.78 0.75 0.88 0.85 0.85 0.78 0.80 0.83 0.71 1.00 
 

286 0.78 0.49 0.76 0.81 0.76 0.80 0.83 0.81 0.71 0.71 0.66 0.68 0.81 0.73 0.76 0.86 0.85 0.88 0.83 0.80 0.86 0.86 0.83 0.80 0.83 0.78 0.85 0.66 0.78 1.00 

 



110 
 

Appendix 11: Similarity matrix of AFLP primer combination EcoRI-AAG MseI-CAT 

 
P16 CM32 75 78 92 117 119 136 138 142 145 150 158 164 176 215 235 242 246 249 252 253 256 257 258 260 264 265 271 286 

P16 1.00 
                             

CM32 0.70 1.00 
                            

75 0.54 0.64 1.00 
                           

78 0.61 0.77 0.67 1.00 
                          

92 0.62 0.72 0.79 0.75 1.00 
                         

117 0.67 0.84 0.70 0.84 0.72 1.00 
                        

119 0.75 0.79 0.72 0.75 0.80 0.75 1.00 
                       

136 0.48 0.67 0.80 0.67 0.72 0.67 0.66 1.00 
                      

138 0.56 0.75 0.72 0.82 0.74 0.79 0.67 0.75 1.00 
                     

142 0.51 0.67 0.87 0.70 0.75 0.67 0.69 0.84 0.82 1.00 
                    

145 0.48 0.74 0.70 0.74 0.69 0.70 0.59 0.80 0.85 0.77 1.00 
                   

150 0.48 0.67 0.80 0.67 0.69 0.67 0.62 0.84 0.82 0.87 0.84 1.00 
                  

158 0.62 0.85 0.69 0.79 0.74 0.85 0.70 0.72 0.74 0.69 0.72 0.72 1.00 
                 

164 0.38 0.54 0.77 0.54 0.66 0.54 0.56 0.74 0.62 0.80 0.70 0.77 0.59 1.00 
                

176 0.57 0.77 0.84 0.74 0.82 0.74 0.75 0.90 0.79 0.87 0.77 0.84 0.79 0.74 1.00 
               

215 0.59 0.75 0.72 0.72 0.74 0.72 0.70 0.75 0.77 0.75 0.75 0.75 0.77 0.62 0.82 1.00 
              

235 0.64 0.87 0.77 0.80 0.79 0.87 0.79 0.74 0.75 0.70 0.70 0.70 0.85 0.64 0.80 0.72 1.00 
             

242 0.54 0.80 0.70 0.77 0.69 0.77 0.62 0.80 0.82 0.74 0.84 0.74 0.82 0.64 0.80 0.75 0.77 1.00 
            

246 0.49 0.69 0.69 0.66 0.64 0.66 0.64 0.79 0.74 0.69 0.72 0.75 0.70 0.62 0.75 0.70 0.69 0.79 1.00 
           

249 0.66 0.82 0.79 0.75 0.84 0.82 0.77 0.79 0.77 0.75 0.72 0.75 0.84 0.66 0.85 0.80 0.89 0.75 0.70 1.00 
          

252 0.62 0.79 0.72 0.72 0.77 0.75 0.70 0.75 0.80 0.75 0.75 0.75 0.77 0.56 0.79 0.77 0.72 0.85 0.80 0.80 1.00 
         

253 0.62 0.72 0.72 0.75 0.77 0.75 0.87 0.75 0.67 0.72 0.62 0.72 0.70 0.66 0.82 0.74 0.79 0.62 0.67 0.77 0.67 1.00 
        

256 0.05 0.25 0.48 0.34 0.39 0.28 0.23 0.51 0.43 0.51 0.51 0.51 0.33 0.67 0.41 0.36 0.31 0.44 0.46 0.33 0.36 0.33 1.00 
       

257 0.05 0.25 0.48 0.34 0.39 0.28 0.23 0.51 0.43 0.51 0.51 0.51 0.33 0.67 0.41 0.36 0.31 0.44 0.46 0.33 0.36 0.33 1.00 1.00 
      

258 0.05 0.25 0.48 0.34 0.39 0.28 0.23 0.51 0.43 0.51 0.51 0.51 0.33 0.67 0.41 0.36 0.31 0.44 0.46 0.33 0.36 0.33 1.00 1.00 1.00 
     

260 0.05 0.25 0.48 0.34 0.39 0.28 0.23 0.51 0.43 0.51 0.51 0.51 0.33 0.67 0.41 0.36 0.31 0.44 0.46 0.33 0.36 0.33 1.00 1.00 1.00 1.00 
    

264 0.05 0.25 0.48 0.34 0.39 0.28 0.23 0.51 0.43 0.51 0.51 0.51 0.33 0.67 0.41 0.36 0.31 0.44 0.46 0.33 0.36 0.33 1.00 1.00 1.00 1.00 1.00 
   

265 0.34 0.51 0.74 0.57 0.56 0.61 0.52 0.74 0.72 0.77 0.74 0.80 0.59 0.80 0.67 0.59 0.57 0.67 0.72 0.59 0.62 0.59 0.67 0.67 0.67 0.67 0.67 1.00 
  

271 0.67 0.74 0.80 0.74 0.79 0.70 0.82 0.77 0.69 0.77 0.61 0.74 0.75 0.64 0.80 0.72 0.80 0.67 0.72 0.79 0.75 0.82 0.34 0.34 0.34 0.34 0.34 0.61 1.00 
 

286 0.62 0.72 0.72 0.69 0.70 0.66 0.64 0.69 0.77 0.75 0.75 0.82 0.74 0.59 0.75 0.70 0.72 0.69 0.70 0.70 0.74 0.64 0.36 0.36 0.36 0.36 0.36 0.62 0.72 1.00 
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Appendix 12: Similarity matrix of AFLP primer combination EcoRI-ACA MseI-CAA 

 
P16 CM32 75 78 92 117 119 136 138 142 145 150 158 164 176 215 235 242 246 249 252 253 256 257 258 260 264 265 271 286 

P16 1.00 
                             

CM32 0.06 1.00 
                            

75 0.56 0.50 1.00 
                           

78 0.58 0.47 0.86 1.00 
                          

92 0.53 0.53 0.92 0.78 1.00 
                         

117 0.64 0.42 0.81 0.78 0.72 1.00 
                        

119 0.72 0.33 0.78 0.81 0.75 0.81 1.00 
                       

136 0.61 0.44 0.72 0.81 0.75 0.81 0.83 1.00 
                      

138 0.50 0.56 0.78 0.86 0.69 0.86 0.72 0.83 1.00 
                     

142 0.67 0.39 0.83 0.86 0.81 0.75 0.83 0.83 0.78 1.00 
                    

145 0.56 0.50 0.89 0.92 0.86 0.81 0.78 0.83 0.83 0.83 1.00 
                   

150 0.47 0.58 0.75 0.83 0.72 0.78 0.69 0.86 0.86 0.75 0.86 1.00 
                  

158 0.58 0.47 0.75 0.78 0.67 0.78 0.75 0.75 0.81 0.81 0.81 0.78 1.00 
                 

164 0.47 0.53 0.75 0.78 0.78 0.72 0.69 0.75 0.75 0.75 0.81 0.78 0.61 1.00 
                

176 0.64 0.42 0.69 0.72 0.67 0.72 0.69 0.81 0.69 0.75 0.75 0.78 0.67 0.72 1.00 
               

215 0.75 0.31 0.81 0.83 0.72 0.83 0.86 0.75 0.75 0.75 0.81 0.72 0.67 0.72 0.78 1.00 
              

235 0.69 0.36 0.75 0.72 0.72 0.78 0.86 0.69 0.64 0.75 0.69 0.56 0.67 0.61 0.61 0.78 1.00 
             

242 0.47 0.53 0.81 0.78 0.78 0.78 0.64 0.75 0.86 0.75 0.81 0.78 0.67 0.83 0.72 0.72 0.67 1.00 
            

246 0.78 0.28 0.72 0.75 0.75 0.69 0.89 0.78 0.61 0.83 0.78 0.64 0.69 0.69 0.69 0.81 0.81 0.64 1.00 
           

249 0.58 0.47 0.81 0.78 0.83 0.72 0.69 0.81 0.81 0.75 0.86 0.78 0.72 0.72 0.67 0.72 0.67 0.83 0.69 1.00 
          

252 0.58 0.47 0.75 0.72 0.78 0.78 0.75 0.75 0.69 0.75 0.81 0.72 0.78 0.72 0.72 0.72 0.78 0.72 0.75 0.78 1.00 
         

253 0.56 0.50 0.83 0.86 0.75 0.86 0.78 0.78 0.89 0.83 0.83 0.75 0.75 0.86 0.75 0.81 0.75 0.86 0.72 0.75 0.81 1.00 
        

256 0.61 0.44 0.67 0.75 0.64 0.75 0.67 0.72 0.78 0.67 0.72 0.75 0.69 0.75 0.81 0.81 0.64 0.81 0.67 0.75 0.81 0.83 1.00 
       

257 0.72 0.33 0.78 0.81 0.75 0.75 0.94 0.78 0.67 0.83 0.78 0.64 0.69 0.69 0.69 0.86 0.92 0.64 0.89 0.69 0.81 0.78 0.67 1.00 
      

258 0.61 0.44 0.78 0.81 0.81 0.64 0.83 0.72 0.67 0.83 0.72 0.64 0.64 0.69 0.64 0.75 0.86 0.69 0.78 0.69 0.69 0.72 0.61 0.89 1.00 
     

260 0.61 0.44 0.72 0.75 0.64 0.69 0.67 0.72 0.78 0.83 0.72 0.75 0.75 0.69 0.75 0.69 0.64 0.75 0.72 0.69 0.69 0.78 0.72 0.72 0.72 1.00 
    

264 0.69 0.36 0.75 0.72 0.72 0.72 0.81 0.69 0.64 0.81 0.69 0.56 0.72 0.61 0.61 0.72 0.89 0.67 0.86 0.67 0.78 0.75 0.64 0.86 0.81 0.75 1.00 
   

265 0.42 0.64 0.86 0.78 0.83 0.72 0.69 0.75 0.75 0.75 0.81 0.83 0.67 0.78 0.67 0.67 0.67 0.78 0.64 0.72 0.72 0.75 0.64 0.69 0.75 0.69 0.67 1.00 
  

271 0.64 0.42 0.81 0.83 0.72 0.78 0.75 0.75 0.81 0.81 0.81 0.78 0.67 0.72 0.78 0.89 0.72 0.78 0.69 0.72 0.72 0.81 0.75 0.81 0.81 0.81 0.67 0.78 1.00 
 

286 0.50 0.56 0.72 0.81 0.75 0.69 0.67 0.72 0.83 0.72 0.83 0.75 0.69 0.81 0.64 0.69 0.64 0.81 0.72 0.75 0.69 0.83 0.72 0.67 0.72 0.72 0.64 0.69 0.75 1.00 
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Appendix 13: Similarity matrix of AFLP primer combination EcoRI-ACA MseI-CAC 

 

P16 CM32 75 78 92 117 119 136 138 142 145 150 158 164 176 215 235 242 246 249 252 253 256 257 258 260 264 265 271 286 

P16 1.00 

                             
CM32 0.06 1.00 

                            
75 0.42 0.60 1.00 

                           
78 0.50 0.56 0.84 1.00 

                          
92 0.60 0.46 0.78 0.90 1.00 

                         
117 0.60 0.46 0.66 0.78 0.80 1.00 

                        
119 0.74 0.32 0.64 0.68 0.78 0.86 1.00 

                       
136 0.54 0.52 0.76 0.84 0.86 0.70 0.72 1.00 

                      
138 0.50 0.56 0.80 0.92 0.82 0.70 0.68 0.84 1.00 

                     
142 0.54 0.52 0.80 0.84 0.78 0.66 0.68 0.84 0.80 1.00 

                    
145 0.50 0.56 0.88 0.88 0.86 0.74 0.72 0.84 0.80 0.88 1.00 

                   
150 0.34 0.68 0.92 0.80 0.70 0.66 0.60 0.76 0.76 0.76 0.84 1.00 

                  
158 0.58 0.48 0.76 0.84 0.78 0.74 0.72 0.76 0.80 0.84 0.84 0.72 1.00 

                 
164 0.56 0.50 0.74 0.74 0.80 0.76 0.74 0.78 0.66 0.74 0.74 0.74 0.58 1.00 

                
176 0.48 0.54 0.70 0.70 0.72 0.64 0.66 0.74 0.62 0.66 0.66 0.78 0.62 0.76 1.00 

               
215 0.64 0.42 0.58 0.66 0.72 0.84 0.82 0.70 0.62 0.70 0.66 0.58 0.70 0.76 0.60 1.00 

              
235 0.74 0.32 0.68 0.76 0.86 0.82 0.88 0.76 0.68 0.72 0.76 0.60 0.80 0.74 0.70 0.78 1.00 

             
242 0.28 0.74 0.86 0.74 0.64 0.60 0.54 0.74 0.70 0.74 0.78 0.90 0.66 0.72 0.72 0.56 0.54 1.00 

            
246 0.66 0.40 0.76 0.84 0.94 0.74 0.80 0.88 0.80 0.80 0.84 0.68 0.76 0.78 0.74 0.70 0.84 0.62 1.00 

           
249 0.50 0.56 0.84 0.92 0.86 0.78 0.72 0.88 0.84 0.84 0.92 0.80 0.76 0.82 0.70 0.70 0.76 0.78 0.84 1.00 

          
252 0.50 0.56 0.84 0.88 0.82 0.82 0.72 0.80 0.80 0.80 0.84 0.80 0.72 0.82 0.70 0.70 0.76 0.74 0.80 0.88 1.00 

         
253 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

        
256 0.64 0.42 0.66 0.82 0.76 0.72 0.70 0.74 0.82 0.70 0.70 0.62 0.82 0.60 0.60 0.68 0.74 0.56 0.78 0.74 0.74 0.00 1.00 

       
257 0.66 0.40 0.72 0.80 0.86 0.74 0.80 0.80 0.76 0.80 0.80 0.64 0.76 0.74 0.74 0.70 0.84 0.58 0.88 0.80 0.76 0.00 0.70 1.00 

      
258 0.72 0.34 0.66 0.78 0.84 0.84 0.90 0.82 0.74 0.74 0.74 0.62 0.74 0.76 0.72 0.80 0.90 0.56 0.86 0.78 0.78 0.00 0.72 0.86 1.00 

     
260 0.40 0.66 0.90 0.86 0.76 0.72 0.66 0.78 0.78 0.82 0.90 0.94 0.78 0.80 0.76 0.64 0.66 0.88 0.74 0.86 0.86 0.00 0.68 0.70 0.68 1.00 

    
264 0.64 0.42 0.70 0.82 0.80 0.72 0.78 0.86 0.78 0.82 0.82 0.70 0.78 0.72 0.72 0.72 0.82 0.64 0.86 0.82 0.78 0.00 0.76 0.78 0.88 0.76 1.00 

   
265 0.24 0.78 0.82 0.74 0.64 0.60 0.50 0.70 0.74 0.70 0.74 0.86 0.66 0.68 0.68 0.56 0.50 0.84 0.58 0.74 0.70 0.00 0.60 0.54 0.52 0.84 0.60 1.00 

  
271 0.48 0.58 0.78 0.82 0.76 0.84 0.70 0.70 0.74 0.74 0.74 0.74 0.74 0.80 0.72 0.72 0.74 0.72 0.70 0.82 0.86 0.00 0.68 0.70 0.72 0.80 0.68 0.72 1.00 

 
286 0.54 0.52 0.84 0.84 0.78 0.70 0.68 0.76 0.80 0.84 0.84 0.76 0.84 0.66 0.70 0.62 0.72 0.70 0.84 0.80 0.84 0.00 0.74 0.80 0.74 0.82 0.78 0.66 0.78 1.00 
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Appendix 14: Similarity matrix of AFLP primer combination EcoRI-ACA MseI-CAT 

 
P16 CM32 75 78 92 117 119 136 138 142 145 150 158 164 176 215 235 242 246 249 252 253 256 257 258 260 264 265 271 286 

P16 1.00 

                             CM32 0.12 1.00 

                            75 0.00 0.88 1.00 

                           78 0.56 0.56 0.44 1.00 

                          92 0.56 0.56 0.44 0.82 1.00 

                         117 0.88 0.24 0.12 0.68 0.56 1.00 

                        119 0.94 0.18 0.06 0.62 0.56 0.94 1.00 

                       136 0.88 0.24 0.12 0.68 0.62 0.88 0.88 1.00 

                      138 0.82 0.29 0.18 0.68 0.56 0.88 0.88 0.82 1.00 

                     142 0.76 0.35 0.24 0.74 0.68 0.76 0.76 0.71 0.65 1.00 

                    145 0.79 0.32 0.21 0.65 0.71 0.79 0.79 0.74 0.74 0.74 1.00 

                   150 0.59 0.53 0.41 0.85 0.74 0.71 0.65 0.65 0.76 0.71 0.68 1.00 

                  158 0.94 0.18 0.06 0.62 0.62 0.88 0.94 0.88 0.88 0.76 0.79 0.65 1.00 

                 164 0.74 0.38 0.26 0.82 0.76 0.79 0.79 0.68 0.74 0.85 0.76 0.79 0.79 1.00 

                176 0.85 0.26 0.15 0.71 0.59 0.91 0.91 0.85 0.85 0.79 0.76 0.74 0.85 0.82 1.00 

               215 0.97 0.15 0.03 0.59 0.59 0.91 0.97 0.91 0.85 0.79 0.82 0.62 0.97 0.76 0.88 1.00 

              235 0.94 0.18 0.06 0.62 0.56 0.88 0.94 0.82 0.82 0.76 0.74 0.59 0.88 0.79 0.85 0.91 1.00 

             242 0.97 0.15 0.03 0.59 0.53 0.91 0.97 0.85 0.85 0.74 0.76 0.62 0.91 0.76 0.88 0.94 0.97 1.00 

            246 1.00 0.12 0.00 0.56 0.56 0.88 0.94 0.88 0.82 0.76 0.79 0.59 0.94 0.74 0.85 0.97 0.94 0.97 1.00 

           249 0.91 0.21 0.09 0.65 0.59 0.91 0.97 0.91 0.85 0.74 0.76 0.68 0.91 0.76 0.88 0.94 0.91 0.94 0.91 1.00 

          252 0.79 0.32 0.21 0.76 0.71 0.85 0.85 0.74 0.79 0.79 0.82 0.74 0.85 0.94 0.82 0.82 0.85 0.82 0.79 0.82 1.00 

         253 0.91 0.21 0.09 0.65 0.53 0.91 0.91 0.85 0.85 0.68 0.76 0.68 0.85 0.76 0.88 0.88 0.91 0.94 0.91 0.88 0.82 1.00 

        256 0.91 0.21 0.09 0.65 0.59 0.91 0.91 0.91 0.91 0.74 0.76 0.68 0.97 0.76 0.88 0.94 0.85 0.88 0.91 0.88 0.82 0.88 1.00 

       257 1.00 0.12 0.00 0.56 0.56 0.88 0.94 0.88 0.82 0.76 0.79 0.59 0.94 0.74 0.85 0.97 0.94 0.97 1.00 0.91 0.79 0.91 0.91 1.00 

      258 0.97 0.15 0.03 0.59 0.53 0.91 0.97 0.85 0.85 0.74 0.76 0.62 0.91 0.76 0.88 0.94 0.97 1.00 0.97 0.94 0.82 0.94 0.88 0.97 1.00 

     260 0.97 0.15 0.03 0.59 0.53 0.91 0.97 0.85 0.85 0.74 0.76 0.62 0.91 0.76 0.88 0.94 0.97 1.00 0.97 0.94 0.82 0.94 0.88 0.97 1.00 1.00 

    264 0.79 0.32 0.21 0.65 0.59 0.79 0.85 0.74 0.85 0.74 0.76 0.68 0.85 0.82 0.76 0.82 0.85 0.82 0.79 0.82 0.88 0.82 0.82 0.79 0.82 0.82 1.00 

   265 0.59 0.53 0.41 0.85 0.68 0.71 0.65 0.65 0.59 0.76 0.68 0.71 0.59 0.79 0.74 0.62 0.65 0.62 0.59 0.62 0.74 0.68 0.62 0.59 0.62 0.62 0.62 1.00 

  271 0.94 0.18 0.06 0.62 0.56 0.94 1.00 0.88 0.88 0.76 0.79 0.65 0.94 0.79 0.91 0.97 0.94 0.97 0.94 0.97 0.85 0.91 0.91 0.94 0.97 0.97 0.85 0.65 1.00 

 286 0.85 0.26 0.15 0.71 0.65 0.85 0.91 0.79 0.85 0.74 0.76 0.68 0.91 0.88 0.82 0.88 0.91 0.88 0.85 0.88 0.94 0.88 0.88 0.85 0.88 0.88 0.94 0.68 0.91 1.00 
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Appendix 15: Similarity matrix of AFLP primer combination EcoRI-ACC MseI-CAC 

 
P16 CM32 75 78 92 117 119 136 138 142 145 150 158 164 176 215 235 242 246 249 252 253 256 257 258 260 264 265 271 286 

P16 1.00 

                             CM32 0.38 1.00 

                            75 0.58 0.71 1.00 

                           78 0.67 0.46 0.67 1.00 

                          92 0.75 0.63 0.83 0.67 1.00 

                         117 0.79 0.58 0.71 0.71 0.88 1.00 

                        119 0.63 0.67 0.71 0.79 0.71 0.75 1.00 

                       136 0.88 0.50 0.71 0.79 0.88 0.92 0.75 1.00 

                      138 0.79 0.50 0.71 0.71 0.79 0.83 0.75 0.83 1.00 

                     142 0.71 0.58 0.88 0.63 0.88 0.75 0.58 0.75 0.67 1.00 

                    145 0.63 0.67 0.88 0.63 0.88 0.75 0.58 0.75 0.67 0.92 1.00 

                   150 0.50 0.71 0.92 0.75 0.75 0.63 0.79 0.63 0.63 0.79 0.79 1.00 

                  158 0.50 0.63 0.75 0.83 0.67 0.63 0.79 0.63 0.63 0.63 0.63 0.83 1.00 

                 164 0.38 0.58 0.71 0.63 0.63 0.50 0.67 0.50 0.50 0.58 0.58 0.79 0.79 1.00 

                176 0.67 0.54 0.67 0.83 0.67 0.71 0.88 0.79 0.79 0.54 0.54 0.75 0.75 0.63 1.00 

               215 0.75 0.63 0.67 0.67 0.83 0.96 0.79 0.88 0.79 0.71 0.71 0.58 0.58 0.46 0.67 1.00 

              235 0.79 0.58 0.71 0.88 0.79 0.83 0.83 0.92 0.83 0.67 0.67 0.71 0.71 0.58 0.88 0.79 1.00 

             242 0.71 0.67 0.54 0.71 0.71 0.83 0.75 0.83 0.67 0.58 0.58 0.54 0.63 0.50 0.71 0.88 0.83 1.00 

            246 0.75 0.63 0.75 0.83 0.83 0.88 0.88 0.88 0.88 0.71 0.71 0.75 0.75 0.63 0.83 0.83 0.96 0.79 1.00 

           249 0.79 0.50 0.71 0.88 0.79 0.83 0.75 0.92 0.75 0.75 0.75 0.71 0.71 0.58 0.79 0.79 0.92 0.83 0.88 1.00 

          252 0.71 0.67 0.79 0.71 0.88 0.83 0.83 0.83 0.83 0.75 0.75 0.71 0.63 0.58 0.71 0.88 0.83 0.75 0.88 0.75 1.00 

         253 0.79 0.58 0.71 0.79 0.88 0.92 0.83 0.92 0.83 0.75 0.75 0.71 0.71 0.58 0.79 0.88 0.92 0.83 0.96 0.92 0.83 1.00 

        256 0.79 0.58 0.63 0.79 0.79 0.92 0.75 0.92 0.75 0.67 0.67 0.63 0.63 0.50 0.79 0.88 0.92 0.92 0.88 0.92 0.75 0.92 1.00 

       257 0.83 0.54 0.67 0.83 0.83 0.88 0.79 0.96 0.79 0.71 0.71 0.67 0.67 0.54 0.83 0.83 0.96 0.88 0.92 0.96 0.79 0.96 0.96 1.00 

      258 0.83 0.54 0.67 0.83 0.83 0.88 0.79 0.96 0.79 0.71 0.71 0.67 0.67 0.54 0.83 0.83 0.96 0.88 0.92 0.96 0.79 0.96 0.96 1.00 1.00 

     260 0.46 0.75 0.88 0.54 0.71 0.58 0.67 0.58 0.58 0.75 0.75 0.79 0.63 0.67 0.54 0.63 0.58 0.50 0.63 0.58 0.75 0.58 0.50 0.54 0.54 1.00 

    264 0.54 0.67 0.88 0.79 0.79 0.67 0.67 0.67 0.67 0.83 0.83 0.88 0.79 0.67 0.63 0.63 0.75 0.58 0.79 0.75 0.75 0.75 0.67 0.71 0.71 0.75 1.00 

   265 0.04 0.58 0.46 0.29 0.29 0.25 0.33 0.17 0.25 0.33 0.42 0.46 0.46 0.58 0.29 0.29 0.17 0.25 0.21 0.17 0.33 0.17 0.17 0.13 0.13 0.58 0.42 1.00 

  271 0.04 0.58 0.46 0.29 0.29 0.25 0.33 0.17 0.25 0.33 0.42 0.46 0.46 0.58 0.29 0.29 0.17 0.25 0.21 0.17 0.33 0.17 0.17 0.13 0.13 0.58 0.42 1.00 1.00 

 286 0.79 0.58 0.71 0.79 0.88 0.92 0.83 0.92 0.83 0.75 0.75 0.71 0.71 0.58 0.79 0.88 0.92 0.83 0.96 0.92 0.83 1.00 0.92 0.96 0.96 0.58 0.75 0.17 0.17 1.00 
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Appendix 16: Similarity matrix of AFLP primer combination EcoRI-ACC MseI-CAC 

 P16 CM32 75 78 92 117 119 136 138 142 145 150 158 164 176 215 235 242 246 249 252 253 256 257 258 260 264 265 271 286 

P16 1.00 

                             
CM32 0.08 1.00 

                            
75 0.79 0.29 1.00 

                           
78 0.58 0.50 0.79 1.00 

                          
92 0.79 0.29 0.77 0.75 1.00 

                         
117 0.79 0.29 0.73 0.67 0.73 1.00 

                        
119 0.88 0.19 0.87 0.69 0.79 0.83 1.00 

                       
136 0.77 0.31 0.75 0.73 0.83 0.75 0.81 1.00 

                      
138 0.71 0.37 0.69 0.75 0.73 0.81 0.75 0.75 1.00 

                     
142 0.69 0.38 0.87 0.81 0.79 0.71 0.77 0.85 0.71 1.00 

                    
145 0.60 0.44 0.73 0.75 0.65 0.62 0.67 0.67 0.77 0.79 1.00 

                   
150 0.54 0.54 0.71 0.81 0.67 0.67 0.65 0.69 0.75 0.77 0.75 1.00 

                  
158 0.75 0.33 0.77 0.75 0.73 0.81 0.83 0.83 0.81 0.79 0.69 0.79 1.00 

                 
164 0.58 0.50 0.79 0.81 0.71 0.63 0.69 0.77 0.60 0.85 0.71 0.81 0.67 1.00 

                
176 0.75 0.33 0.81 0.79 0.81 0.73 0.83 0.83 0.77 0.75 0.77 0.75 0.81 0.75 1.00 

               
215 0.67 0.37 0.69 0.67 0.65 0.77 0.75 0.79 0.69 0.67 0.65 0.71 0.85 0.71 0.73 1.00 

              
235 0.92 0.15 0.83 0.62 0.83 0.79 0.92 0.81 0.71 0.73 0.63 0.62 0.79 0.62 0.79 0.71 1.00 

             
242 0.71 0.37 0.77 0.75 0.77 0.77 0.79 0.87 0.73 0.79 0.73 0.71 0.81 0.79 0.85 0.81 0.75 1.00 

            
246 0.69 0.38 0.75 0.81 0.83 0.83 0.77 0.85 0.67 0.81 0.63 0.77 0.79 0.81 0.83 0.79 0.73 0.87 1.00 

           
249 0.63 0.40 0.73 0.79 0.73 0.81 0.75 0.83 0.73 0.79 0.73 0.75 0.81 0.75 0.85 0.81 0.67 0.85 0.90 1.00 

          
252 0.65 0.42 0.79 0.73 0.67 0.75 0.77 0.77 0.67 0.73 0.63 0.77 0.71 0.81 0.75 0.79 0.69 0.83 0.85 0.79 1.00 

         
253 0.71 0.37 0.88 0.83 0.73 0.73 0.83 0.83 0.65 0.87 0.73 0.75 0.77 0.87 0.85 0.73 0.75 0.85 0.87 0.85 0.83 1.00 

        
256 0.67 0.37 0.69 0.67 0.73 0.77 0.71 0.79 0.85 0.71 0.73 0.71 0.77 0.63 0.69 0.85 0.71 0.77 0.71 0.73 0.75 0.62 1.00 

       
257 0.90 0.17 0.81 0.63 0.77 0.81 0.94 0.79 0.77 0.71 0.65 0.60 0.77 0.63 0.81 0.69 0.90 0.77 0.71 0.69 0.71 0.77 0.69 1.00 

      
258 0.87 0.21 0.81 0.71 0.92 0.77 0.87 0.83 0.69 0.79 0.69 0.63 0.77 0.71 0.85 0.73 0.90 0.81 0.83 0.73 0.71 0.77 0.73 0.85 1.00 

     
260 0.63 0.40 0.73 0.79 0.77 0.73 0.75 0.79 0.65 0.75 0.69 0.79 0.77 0.83 0.85 0.81 0.67 0.85 0.90 0.92 0.83 0.85 0.69 0.69 0.77 1.00 

    
264 0.81 0.27 0.87 0.77 0.87 0.79 0.88 0.85 0.75 0.81 0.75 0.69 0.79 0.77 0.94 0.71 0.85 0.90 0.85 0.83 0.77 0.87 0.71 0.87 0.90 0.83 1.00 

   
265 0.58 0.50 0.75 0.81 0.75 0.67 0.65 0.65 0.67 0.81 0.79 0.77 0.67 0.77 0.67 0.56 0.62 0.71 0.73 0.67 0.65 0.75 0.60 0.60 0.67 0.67 0.73 1.00 

  
271 0.71 0.37 0.77 0.75 0.77 0.69 0.79 0.87 0.69 0.75 0.65 0.75 0.85 0.75 0.85 0.81 0.75 0.77 0.83 0.81 0.79 0.81 0.73 0.73 0.77 0.81 0.79 0.63 1.00 

 
286 0.71 0.33 0.85 0.79 0.65 0.77 0.83 0.75 0.73 0.75 0.69 0.75 0.77 0.75 0.81 0.77 0.75 0.77 0.79 0.85 0.83 0.85 0.73 0.77 0.69 0.85 0.79 0.63 0.77 1.00 
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Appendix 17: Similarity matrix for combination of six AFLP EcoRI/MseI primer combinations 

 
P16 CM32 75 78 92 117 119 136 138 142 145 150 158 164 176 215 235 242 246 249 252 253 256 257 258 260 264 265 271 286 

P16 1.00 
                             

CM32 0.26 1.00 
                            

75 0.73 0.38 1.00 
                           

78 0.76 0.40 0.81 1.00 
                          

92 0.80 0.38 0.82 0.86 1.00 
                         

117 0.84 0.35 0.75 0.80 0.82 1.00 
                        

119 0.92 0.31 0.78 0.82 0.83 0.88 1.00 
                       

136 0.84 0.36 0.76 0.82 0.85 0.86 0.88 1.00 
                      

138 0.80 0.37 0.75 0.84 0.81 0.87 0.84 0.87 1.00 
                     

142 0.80 0.36 0.78 0.85 0.84 0.80 0.83 0.87 0.81 1.00 
                    

145 0.74 0.41 0.76 0.83 0.83 0.78 0.79 0.82 0.81 0.85 1.00 
                   

150 0.62 0.50 0.70 0.77 0.73 0.71 0.68 0.74 0.75 0.76 0.78 1.00 
                  

158 0.83 0.35 0.75 0.82 0.81 0.85 0.88 0.88 0.87 0.85 0.82 0.74 1.00 
                 

164 0.74 0.41 0.75 0.83 0.83 0.79 0.80 0.80 0.76 0.83 0.80 0.77 0.77 1.00 
                

176 0.82 0.35 0.76 0.82 0.83 0.83 0.86 0.87 0.83 0.84 0.79 0.76 0.83 0.83 1.00 
               

215 0.87 0.35 0.73 0.81 0.81 0.89 0.90 0.86 0.83 0.82 0.79 0.69 0.86 0.80 0.85 1.00 
              

235 0.90 0.33 0.79 0.80 0.85 0.88 0.93 0.87 0.83 0.82 0.78 0.68 0.87 0.79 0.85 0.88 1.00 
             

242 0.80 0.38 0.77 0.80 0.79 0.83 0.85 0.87 0.84 0.82 0.78 0.73 0.84 0.80 0.86 0.84 0.84 1.00 
            

246 0.87 0.34 0.77 0.84 0.87 0.86 0.90 0.89 0.83 0.84 0.81 0.71 0.86 0.82 0.86 0.88 0.89 0.86 1.00 
           

249 0.79 0.36 0.76 0.85 0.84 0.86 0.85 0.88 0.86 0.84 0.84 0.74 0.87 0.83 0.84 0.84 0.84 0.87 0.88 1.00 
          

252 0.80 0.41 0.78 0.83 0.83 0.87 0.86 0.86 0.84 0.82 0.81 0.75 0.86 0.84 0.83 0.85 0.86 0.86 0.87 0.87 1.00 
         

253 0.86 0.37 0.80 0.85 0.82 0.86 0.90 0.91 0.86 0.87 0.81 0.74 0.87 0.86 0.90 0.87 0.90 0.90 0.89 0.89 0.87 1.00 
        

256 0.84 0.36 0.73 0.82 0.81 0.86 0.86 0.86 0.89 0.80 0.80 0.71 0.87 0.78 0.83 0.88 0.85 0.84 0.85 0.86 0.86 0.86 1.00 
       

257 0.91 0.31 0.79 0.82 0.84 0.86 0.95 0.89 0.86 0.85 0.80 0.68 0.87 0.79 0.87 0.88 0.94 0.85 0.90 0.85 0.86 0.91 0.86 1.00 
      

258 0.90 0.33 0.78 0.83 0.87 0.86 0.94 0.89 0.85 0.84 0.79 0.68 0.85 0.80 0.86 0.88 0.94 0.86 0.91 0.86 0.85 0.90 0.85 0.94 1.00 
     

260 0.81 0.38 0.76 0.82 0.81 0.84 0.85 0.86 0.84 0.83 0.80 0.76 0.87 0.82 0.88 0.85 0.86 0.90 0.88 0.88 0.87 0.90 0.84 0.87 0.87 1.00 
    

264 0.86 0.34 0.80 0.84 0.85 0.86 0.90 0.88 0.86 0.86 0.80 0.70 0.87 0.81 0.88 0.86 0.91 0.87 0.90 0.87 0.88 0.90 0.85 0.91 0.92 0.87 1.00 
   

265 0.68 0.44 0.79 0.82 0.78 0.75 0.74 0.76 0.77 0.80 0.79 0.75 0.76 0.80 0.78 0.73 0.76 0.78 0.74 0.79 0.76 0.81 0.74 0.75 0.76 0.78 0.77 1.00 
  

271 0.83 0.36 0.77 0.83 0.80 0.85 0.88 0.86 0.84 0.82 0.78 0.73 0.87 0.82 0.87 0.88 0.87 0.86 0.86 0.87 0.86 0.90 0.86 0.87 0.88 0.89 0.85 0.77 1.00 
 

286 0.82 0.38 0.79 0.86 0.82 0.85 0.86 0.84 0.85 0.82 0.82 0.73 0.86 0.82 0.84 0.85 0.86 0.86 0.88 0.87 0.89 0.90 0.85 0.86 0.85 0.87 0.87 0.74 0.85 1.00 
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Chapter Four 

Seed germination and vigour analysis in diallel crosses among 

normal endosperm (Nm), low phytic acid (LPA) and quality protein 

maize (QPM) inbred lines under normal and accelerated aging 

conditions 

Abstract 

Seed germination and vigour are important traits especially for low phytic acid (LPA) and 

quality protein maize (QPM). A 10 x 10 half diallel was made between four temperate LPA, 

three tropical QPM and three tropical normal inbred lines. The seeds were subjected to the 

standard germination test and the accelerated aging test to assess germination and vigour. 

The seed traits were germination percentage, seedling dry weight, average root length, 

average shoot length and vigour index. The entry, GCA and SCA effects were significant 

(P≤0.001) for all traits tested under normal and accelerated aging conditions; therefore both 

additive and non-additive gene action was significant. In general, the SCA effects were 

superior to GCA effects for all traits under both test conditions, indicating that genes with 

non-additive effects were predominant. The LPA lines generally showed lower germination 

(70 - 27%) and vigour under accelerated aging conditions whilst the QPM lines performance 

was comparable to the tropical normal lines. The lines CM 31, QPM 7, P 12 and T 2 showed 

positive and mostly significant GCA effects and are recommended as sources for breeding 

for improved vigour and germination. There were nine crosses that showed positive SCA 

effects for all the traits across both environments, including one QPM x Nm, two LPA x QPM, 

two LPA x LPA and four LPA x Nm crosses. There were some lines identified as stress-

tolerant due to increased/positive GCA effects and some crosses having increased/positive 

SCA effects under accelerated aging conditions. The LPA lines had the highest reduction 

under accelerated aging conditions for germination percentage (61%), dry weight (52%), 

average root length (23%), average shoot length (47%) and vigour index (34%). The QPM 

and normal inbred lines showed no differences for germination percentage and vigour index, 

increases in dry weight and average root length and slight decrease for average shoot length 

under accelerated aging conditions.  

 

Keywords: LPA, QPM, germination, vigour, accelerated aging test 
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Introduction 

Selections in maize breeding programmes to improve crop productivity and nutritional quality 

are usually based on yield and disease resistance. There is little selection on the seed 

quality characteristics which is critical in early performance and growth of these crops. Seed 

quality is usually associated with germination and purity but seed vigour also needs to be 

included. The ISTA (International Seed Testing Association) defines seed vigour as “an 

index of the extent of the physiological deterioration and/or mechanical integrity of a high 

germinating seed lot which governs its ability to perform in a wide range of environments”. 

Vigour is a concept that describes several characteristics of the seed such as rate and 

uniformity of germination and growth, tolerance to environmental stresses after sowing and 

retention of performance after storage (Hrstková et al., 2006).  

Phytic acid is an antinutritional factor found in seeds but has the potential to contribute to 

seed performance. It has been recently shown that phytic acid acts as an anti-oxidant by 

acting as protection against oxidative accelerated aging during the seed‟s life span (Doria et 

al., 2009). In maize there have been low phytic acid (LPA) mutants developed with reduced 

amounts of phytic acid (Raboy, 2000). These lpa1-1 mutants have 1.1 mg/g total inositol P 

(23% of total P) and 3.1 mg/g Pi (66% of total P) compared to the normal maize of 3.4 mg/g 

total inositol P (76% of total P) and 0.3 mg/g Pi (7% of total P) (Raboy et al., 2000). The 

yields of these lines have also been reduced to between 5 and 15% of the highest yielding 

commercial varieties (Raboy, 2000). There is no previous germination and vigour studies on 

the lpa1-1 mutation lines, however there are two studies on the lpa241 mutant line (90% 

reduction in seed phytic acid) (Pilu et al., 2003). In a study with a LPA mutant (lpa241), a 

30% decrease in germination rate was observed when compared to the wild type (Pilu et al., 

2003). Another germination study of the same LPA mutant line (lpa241) was tested and 

shown to have 72±15% germination under standard conditions which decreased to 45±14% 

germination under accelerated aging conditions (Doria et al., 2009). A study on 50 different 

maize lines found a negative correlation between yield and phytate with a suggestion that 

selection for decreased whole-kernel phytate may result in lines with large kernel size that 

should have a diluted concentration of phytate (Lorenz et al., 2007). 

Quality protein maize (QPM) has higher amounts of the amino acids, lysine and tryptophan 

than normal maize but show reduced grain yield, increased susceptibility to ear rot, soft 

floury endosperm and poor dry-milling properties. Normal maize compared to QPM maize 

has higher levels of phytate-phosphorus and inorganic phosphate with lower levels of myo-

inositol leading to higher germination and vigour of normal maize (Modi and Asanzi, 2008). 

There were negative correlations found between grain yield and phytate (-0.47), lysine (-
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0.25) and tryptophan (-0.25) suggesting that development of high yielding lines with low 

phytate was possible (Lorenz et al., 2007).  

Seed tests can be used to evaluate physical quality, genetic purity, viability and vigour. The 

most common seed test is the germination test which measures seed viability under ideal 

conditions. Vigour testing has become common practice especially for maize and soybeans 

to routinely market high quality seed. The vigour test is a more sensitive index of seed 

quality than the germination test as it is closely correlated with seed performance in the field 

under some conditions than the germination test. There are various essential characteristics 

of a vigour test that make it useful, such as being inexpensively priced and requiring 

minimum investment in labour, equipment and supplies. Also required are a rapid testing 

period to minimize analyst time and germinator space with simple testing procedures without 

special training or experienced personnel. The test has numerous advantages including 

being objective with a quantitative or numerical index of quality, thus avoiding subjective 

interpretations by analysts,  high correlations of test results with field performance and 

reproducible test results between laboratories (McDonald, 1980). 

Different vigour tests measure different aspects of seed quality under different soil 

conditions; therefore a combination of several vigour tests is able to provide information on 

the quality of a seed lot as well as its potential field performance (Byrum and Copeland, 

1995). The two most commonly used vigour tests are the cold test and the accelerated aging 

test. The accelerated aging test is a vigour test that involves artificial aging of the seed at 

high temperatures, with the cause due to integral membrane lipid peroxidation in the seeds 

(Basavarajappa et al., 1991). In maize, accelerated aging causes associations between the 

starch granules, protein matrix and cell walls, leading to decreased solubility and 

functionality of starch and protein in aged grain due to protein oxidation (McDonough et al., 

2004). The accelerated aging test was developed by Delouche and Baskin (1973) to assess 

the quality and storability of seed lots. These tests are also effective in evaluating seed 

vigour and germinative responses to accelerated aging and are highly correlated with plant 

growth and development including yield (Delouche and Baskin, 1973).  

The accelerated aging test has been used extensively in maize to compare different types of 

vigour tests for prediction of field performance (Lovato et al., 2005; Noli et al., 2008), to 

determine relationship between total phenolics content and germination ability (Barla-Szabo 

et al., 1990; Sredojević et al., 2004), to improve vigour by using aerosol-smoke (Sparg et al., 

2006), to assess seed quality (Santipracha et al., 1997; Munamava et al., 2004); seedling 

vigour (Fakorede and Ojo, 1981) and to assess seed storability (Basu et al., 2004). In 

warmer tropical climates, the accelerated aging test has been used as an indicator of seed 
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vigour. After the aging process, high vigour seeds are expected to show high rates of 

germination while low vigour seeds would show significant decrease in germination rate.  

The standard germination test is used to determine viability of the seed, whereas the 

accelerated aging test is used to determine the vigour by using different parameters such as 

root length, shoot length and dry weight of the seedling. Seed vigour is not only dependent 

on the size of kernel but the speed of germination is an important factor. The size of the 

kernel is an estimate of the amount of nutrients available to the seed during germination. 

However, even if the seed has large kernel size but has low speed of germination, it can be 

classified as low vigour. Seedling parameters such as the root length (indicator of potential 

to develop an adequate root system to access nutrients), shoot length (indicator of the 

competition ability to outgrow weeds in the field), and the dry weight of a seedling 

(effectiveness of the seed in producing biomass) are used to assess speed of germination 

and vigour.       

Knowledge of the combining ability of maize inbreds is useful in devising an appropriate 

breeding strategy. A survey of the literature indicates that there is limited information 

regarding combining ability between LPA and QPM lines, especially for seed germination 

and vigour.  

The objectives of this study were to: 

 determine the gene action controlling inheritance of early vigour and germination and 

combining ability of tropical normal endosperm, temperate low phytate and tropical 

QPM germplasm for germination percentage, seedling dry weight, average shoot 

length, average root length and vigour index traits, and  

 determine the germination capacity of LPA, QPM and normal lines.  

 

Materials and Methods 

 

Germplasm 

There were four temperate lpa1-1 lines, three tropical QPM lines and three tropical normal 

(Nm) inbred maize lines used in this study (Table 4.1). There were 45 F1 crosses generated 

from a 10 x 10 half diallel mating design with no reciprocals and selfs. Two LPA x tropical 

normal crosses had insufficient seed set and were excluded from the seed testing. The F1 

hybrids were advanced to the F2 generation in pots in the greenhouse. The F2 seed was 

used for the seed tests as well as the parental inbred lines. Due to the recessive nature of 

the mutation, in the F2 generation only 25% of the total number of seeds tested would show 
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the homozygous recessive genotype (1:2:1 ratio). The exact pedigrees of the LPA lines are 

not available however all the LPA lines used in this study were obtained from Dr V. Raboy 

(Iowa, U.S.A.) and contain the lpa1-1 gene. 

 

Table 4.1: Pedigrees of inbred lines used in diallel mating design 

#: Actual pedigree information not available 

The parental lines used in this study were different for adaptation type and the seed 

size/weight was also different (see 100-seed weight in Table 4.1). The parental inbred lines 

were divided into three groups: temperate LPA, tropical QPM and tropical normal 

endosperm. There were six groups of crosses generated between the three groups of 

parental lines: LPA x LPA, LPA x Nm, LPA x QPM, QPM x QPM, Nm x Nm and QPM x Nm. 

The means of each group was calculated and compared between the different groups. The 

groups were defined as: LPA group with 1.1 mg/g total inositol P (23% of total P) and 3.1 

mg/g Pi (66% of total P), tropical normal and QPM group with 3.4 mg/g total inositol P (76% 

of total P) and 0.3 mg/g Pi (7% of total P) (Raboy et al., 2000). 

 

Standard seed testing 

The standard germination test used was the between-paper method. The seed sample was 

randomly sampled for two replicates of 50 seeds each. The germination bed used was rolled 

paper towel of size 54 cm x 30 cm (Anchor Paper, Agricol (Pty) Ltd, South Africa) (ISTA, 

Line Pedigree Endosperm type Adaptation 100-seed weight (g) 

CM 31 TS3 LPA1-1 lpa1-1 temperate 20.26 

CM 32 JUG 248 LPA1-1 lpa1-1 temperate 15.01 

CM 33 Ex-UDSA# lpa1-1 temperate 23.88 

CM 34 CO63 LPA1-1 lpa1-1 temperate 27.29 

QPM 3 CML 176 QPM tropical 26.90 

QPM 6 CZL 01006 QPM tropical 34.65 

QPM 7 
OBATANPA-

SRC1F3#-MALE 
QPM tropical 34.03 

P 12 CZL 00008 Normal tropical 42.26 

T 2 PN7-2B Normal tropical 32.02 

T 3 PN8-B Normal tropical 29.75 
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1999). Each sheet had 50 seeds (1 replication) placed equidistant on the upper half of the 

moistened paper towel with the radical end of the seed pointed toward the bottom end of the 

paper and the embryo end side up. Paper towels were folded in the middle to cover the 

seeds completely. The paper towels were rolled up and placed upright individually in 

polythene bags in a germination chamber. Approximately 2-3 cm distance was maintained 

between the seeds to reduce mutual influence and bacterial infection. The containers were 

labelled with the date, seed name and replicate number and were covered appropriately to 

prevent evaporation. The containers were placed into germination chambers (Labcon growth 

chamber). The between-paper method used a temperature 25±1°C and the seed 

germination measurements taken after seven days. During the period of seed germination, 

the chamber was checked daily to ensure suitable conditions for germination and the paper 

towel was maintained at the appropriate moisture and temperature for seven days before 

evaluation and counting. Seeds were visually assessed according to the International Seed 

Testing Association rules for percentage germination (ISTA, 1999).  

 

Accelerated aging test  

The 100 maize seeds were placed in a petri-dish with moistened filter paper. The seeds 

were incubated in closed petri-dishes in the germination chamber at 42°C (~100% RH) for 

96 hours with regular checking to ensure sufficient moisture in the petri dish was maintained 

(ISTA, 1999). At the end of the aging period, the seeds were evaluated as per standard 

germination test, with two replications of 50 seeds each. The seeds were rated as normal 

and abnormal seedlings and dead seeds. A normal seedling has well developed root and 

shoot systems. An abnormal seedling has any abnormality in their root or shoots system. 

Seeds which were neither hard, fresh or have produced seedlings were classified as dead 

seeds (ISTA, 1999).    

 

Data collection and analysis 

All dead and defective seedlings were counted. The germinated seedlings were counted and 

weighed. The percentage germination was calculated as follows: (# of normal seedlings / # 

of seeds in sample) x 100. The percentage germinated, dead and abnormal was calculated 

for all the F2 seeds tested. At the counting stage, 25 normal seedlings in each replicate were 

selected at random and the length of the root measured in millimetres and mean values 

calculated. The 25 normal seedlings that were selected for the root length measurement in 

each replicate was again used for shoot measurements (mm) and mean values were 

calculated. These values were used to calculate a vigour index. The vigour index of 1-week 
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old seedlings was calculated as VI = [(shoot length (mm) + root length (mm)] x percentage 

germination (Dhindwal et al., 1991). The fresh weight of the germinated seedlings were 

taken at the counting stage and the seedling mass was subjected to 80°C for 24 hours to dry 

before the seedling dry weight was measured. General analysis of variance was performed 

for all data using the SAS programme version 9.1 (SAS Institute, 2002). Combining ability 

estimates were calculated for each seedling trait using the Diallel-SAS05 programme (Zhang 

et al., 2005) in SAS.  

 

Results 

Gene action  

Under standard germination conditions, the entry, GCA and SCA effects were significant 

(P≤0.001) for all the seed traits of germination percentage, seedling dry weight, average root 

length, average shoot length and vigour index (Table 4.2). A similar trend was observed 

under the accelerated aging conditions (Table 4.2).  

The ratio of GCA/SCA sum of squares was in favour of SCA for all traits under both 

environments, showing predominance of non-additive gene action (Table 4.3). However, the 

GCA percentage was still high; therefore there is also additive gene action present for all the 

traits. 

 

Combining ability 

 General combining ability 

For all seed germination and vigour traits tested, positive GCA effects were desired. There 

were four lines (CM 31, QPM 7, P 12 and T 2) that showed positive GCA effects for 

germination percentage and seedling dry weight. Positive GCA effects were also shown by 

five lines (QPM 3, QPM 6, QPM 7, P 12, T 2) for the average root length, four lines (CM 31, 

QPM 6, QPM 7, P 12) for the average shoot length and four parental lines (QPM 6, QPM 7, 

P 12, T 2) for the vigour index (Table 4.3). The LPA lines showed varied GCA effects for all 

the traits with CM 31 generally showing positive GCA effects for all traits with significance for 

germination percentage and seedling dry weight (P≤0.001), and CM 32 and CM 33 having 

negative GCA effects for all traits with significance for CM33 for all traits (P≤0.001). However 

under accelerated aging conditions, CM 32 performed slightly better with positive GCA 

effects for average root length, average shoot length and vigour index. A similar trend was 
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displayed by CM 33 and CM 34 as again they showed negative GCA effects for all traits 

under accelerated aging conditions (Table 4.3).  

QPM 7 was the best performing QPM line with significant and positive GCA effects for all 

traits under both environments (Table 4.3). The tropical normal lines also performed 

differently for all traits with P 12 and T 2 generally having positive GCA effects for all traits 

with significance at the P≤0.001 level for germination percentage and seedling dry weight for 

both conditions (Table 4.3). The tropical normal line T 3 generally had negative GCA effects 

for all traits under both conditions. From these trends, the inbred lines CM 31, QPM 7, P 12 

and T 2 can be recommended as suitable parental lines to increase germination and vigour 

in the LPA lines.   

 

Specific combining ability effects 

Positive SCA effects were desired for all the seed germination and vigour traits. Generally 

the LPA x LPA crosses showed negative or reduced SCA effects under standard and 

accelerated aging conditions (CM 31 x CM 32, CM 32 x CM 33, CM 33 x CM 34). However 

there were a few LPA x LPA crosses that had positive or increased SCA effects under 

accelerated aging conditions (CM 31 x CM 33, CM 32 x CM 34). The QPM x QPM crosses 

showed different responses with QPM 3 x QPM 6 showing positive SCA effects for most of 

the traits under both standard and accelerated aging conditions; while QPM 3 x QPM 7 had 

negative SCA effects for most traits. Two of the three Nm x Nm crosses showed negative 

SCA values with only T 2 x T 3 showing positive SCA effects (Table 4.4).  

There were five crosses that had positive SCA values for germination percentage, seedling 

dry weight and average root length under both standard and accelerated aging conditions 

(CM 34 x T 2, QPM 3 x QPM 6, QPM 3 x T 3, QPM 6 x T2 and QPM 7 x T3)  (Table 4.4). For 

the average shoot length and vigour index there were five crosses with positive SCA effects 

(CM 31 x QPM 3, CM 31 x QPM 6, CM 31 x T2, CM 32 x QPM 3 and CM 32 x QPM 6) under 

both environments (Table 4.4). There were some crosses that had negative SCA effects 

under standard conditions but these crosses showed positive SCA effects under accelerated 

aging conditions (CM 31 x QPM 7, CM 31 x T 2, CM 34 x P 12, CM 34 x T 2, QPM 3 x QPM 

6, QPM 3 x T 3, QPM 7 x T 3) thereby showing good tolerance to accelerated aging 

conditions. There were nine crosses that had positive SCA values for all the seed traits 

under both standard and accelerated aging conditions and were considered to be good 

combinations (CM 31 x CM 33, CM 32 x CM 34, CM 32 x T 3, CM 33 x QPM 7, CM 33 x 

P 12, CM 33 x T 2, CM 33 x T 3, CM 34 x QPM 3, QPM 6 x P 12).  
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Table 4.2: Mean square for seed traits of a 10 parent diallel evaluated under standard germination conditions (Std) and accelerated aging 

conditions (AA) 

Source df Germination % Seedling dry weight Avg root length  Avg shoot length  Vigour Index 

  Std AA Std AA Std AA Std AA Std AA 

Rep 1 613.6 1.1 8.5 0.8 5038.5 1605.3 5291.5 392.3 27865.4 6469.7 

Entry 44 1372.4** 1651.9** 29.3** 33.8** 1650.4** 3436.2** 1302.6** 2043.9** 6187.6** 10099.8** 

GCA 9 2216.0** 2693.9** 42.2** 50.4** 3222.9** 7491.9** 2465.72** 2859.5** 12128.6** 17445.7** 

SCA 35 1155.5** 1383.9** 26.0** 29.5** 1246.0** 5.8** 1003.5** 1834.2** 4659.9** 8210.8** 

Error 44 21.27 41.1 0.6 0.9 343.1 415.1 272.6 407.4 849.2 1208.0 

 

Table 4.3: Percent contribution of GCA and SCA sum of squares to entry sum of squares and GCA effects for seed traits under standard 

germination (Std) and accelerated aging conditions (AA) 

 
Endosperm  

type 
Germination % 

Seedling dry 
weight (g) 

Root Length  
(mm) 

Shoot Length 
(mm) 

Vigour index 

  Std AA Std AA Std AA Std AA Std AA 

Percent contribution of GCA and SCA sum of squares to entry sum of squares 
GCA  33 33 29 31 40 45 39 29 40 35 
SCA  67 67 71 69 60 55 61 71 60 65 

GCA effects 
CM 31 LPA 6.65** 4.65 0.71* 0.29 0.45 -1.21 6.00 5.26 0.41 -4.00 
CM 32 LPA -2.65 0.71 -0.66 -0.28 -8.44 2.18 -9.24 2.83 -11.27 3.47 
CM 33 LPA -25.96** -26.23** -3.05** -3.31** -32.76** -46.37** -26.10** -22.96** -58.93** -64.04** 
CM 34 LPA 0.23 -1.73 -0.35 -0.45 0.75 -17.25 -3.90 -19.50** 1.33 -28.70 
QPM 3 QPM -3.03 -4.16 -1.19** -1.10** 2.03 12.22 -2.84 3.51 -3.66 11.43 
QPM 6 QPM -2.28 -3.66 -0.58 -0.39 1.68 -8.30 13.22 5.37 10.98 -2.07 
QPM 7 QPM 18.04** 21.21** 1.88** 2.41** 23.76** 20.69** 16.60** 12.00 48.47** 37.75** 
P 12 Nm 8.04** 9.59** 1.57** 2.12** 8.28 21.17** 10.08 14.34 16.96 31.38* 
T 2 Nm 8.10** 10.53** 2.29** 1.95** 5.19 24.62** -0.90 11.30 12.69 40.60** 
T 3 Nm -7.15** -10.91** -0.62 -1.25** -0.93 -7.75 -2.93 -12.14 -16.98 -25.81 

** P≤0.001  
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Table 4.4: SCA effects of crosses under standard germination conditions and accelerated aging conditions for germination percentage, 

seedling dry weight, average root length, average shoot length and vigour index traits 

Pedigree Classification Germination % Seedling Dry Weight (g) Root Length (mm)  Shoot Length (mm) Vigour Index 

  Std AA Std AA Std AA Std AA Std AA 

CM 31XCM 32 LPA x LPA 15.13** 4.16 3.02** 2.51** 4.98 -6.73 4.10 -4.81 19.90 -21.22 

CM 31X CM 33 LPA x LPA 35.44** 40.60** 5.51** 6.48** 25.85 44.17 3.11 33.58 48.04 89.23** 

CM 31XCM 34 LPA x LPA 12.26** 12.10 1.86* 2.17 6.14 -26.00 23.61 -20.43 48.45 -39.79 

CM 31XQPM 3 LPA x QPM -0.49 -0.47 -2.05** -1.98 6.36 11.44 0.60 18.61 8.34 44.96 

CM 31XQPM 6 LPA x QPM 6.76 13.03 1.89 2.86** 5.51 0.70 18.74 3.40 32.96 10.24 

CM 31XQPM 7 LPA x QPM -23.56** -24.34** -3.02** -4.44** -7.52 -9.09 -37.24 -4.63 -72.89** -42.08 

CM 31XP 12 LPA x Nm -14.56** -14.22 -1.14 -2.10 -6.04 -15.72 -12.17 -15.91 -18.90 -27.38 

CM 31XT 2 LPA x Nm -5.62 -1.15 -1.53 -0.98 -19.25 9.48 -9.24 12.62 -27.07 28.31 

CM 31XT 3 LPA x Nm -25.37** -29.72** -4.53** -4.52** -16.04 -8.25 8.49 -22.44 -38.83 -42.27 

CM 32X CM 33 LPA x LPA -48.24** -44.47** -6.17** -5.49** -69.71** -78.57** -71.26** -87.79** -127.68** -149.69** 

CM 32XCM 34 LPA x LPA 21.57** 26.03** 2.47** 3.44** 4.68 37.16 12.24 23.40 18.18 66.30 

CM 32XQPM 3 LPA x QPM 14.82** 8.47 0.32 0.19 -1.90 2.15 6.73 25.19 2.96 9.27 

CM 32XQPM 6 LPA x QPM -16.43** -10.03 -2.55** -2.76** 9.85 22.47 12.97 19.54 6.62 12.97 

CM 32XQPM 7 LPA x QPM 1.76 8.10 -0.65 0.29 -20.93 -6.08 5.99 4.35 -21.15 15.14 

CM 32XP 12 LPA x Nm -5.24 -10.28 0.23 -1.52 2.85 -19.11 3.07 -13.48 -7.22 -34.85 

CM 32XT 2 LPA x Nm -8.31 -6.22 -0.36 -0.01 30.08 23.14 11.74 6.50 34.25 24.12 

CM 32XT 3 LPA x Nm 24.94** 24.22** 3.69** 3.35** 40.10 25.56 14.42 27.09 74.13 77.96 

CM 33XCM 34 LPA x LPA -38.12** -40.03** -5.28** -5.08** -25.60 -48.65** -33.50 -30.46 -69.24** -74.75 

CM 33XQPM 3 LPA x QPM -23.87** -29.59** -2.99** -3.43** -21.97 -53.11** -22.35 -49.32** -45.96 -94.88** 

CM 33XQPM 6 LPA x QPM -34.62** -35.09** -4.70** -4.74** -4.12 -31.94 18.08 -7.18 -0.59 -29.67 

CM 33XQPM 7 LPA x QPM 21.07** 18.03** 2.75** 2.81** 4.50 32.92 16.65 36.39 23.11 56.01 

CM 33XP 12 LPA x Nm 35.07** 30.66** 3.95** 3.25** 45.88** 54.24** 36.13 42.15 90.09** 93.58** 

CM 33XT 2 LPA x Nm 36.01** 39.72** 5.79** 4.17** 25.51 48.44** 20.65 36.84 55.18 92.87** 

CM 33XT 3 LPA x Nm 17.26** 20.16** 1.14 2.03 19.68 32.50 32.48 25.78 27.06 17.29 

CM 34XQPM 3 LPA x QPM 11.94** 20.91** 3.01** 4.31 44.96** 45.57 28.20 11.87 66.08 55.39 

CM 34XQPM 6 LPA x QPM 7.19 -7.59 -0.11 -2.15 22.36 2.34 2.48 8.86 18.43 -6.64 
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Pedigree Classification Germination % Seedling Dry Weight (g) Root Length (mm)  Shoot Length (mm) Vigour Index 

  Std AA Std AA Std AA Std AA Std AA 

CM 34XQPM 7 LPA x QPM 0.88 0.53 0.79 -0.70 3.98 9.80 10.15 -3.77 10.65 -7.62 

CM 34XP 12 LPA x Nm 8.88 11.16 -0.05 0.44 -13.69 2.77 -10.27 22.59 -15.55 34.47 

CM 34XT 2 LPA x Nm 10.82 14.22 2.38** 2.71** 3.55 16.67 -6.50 12.73 -3.09 33.97 

CM 34XT 3 LPA x Nm -35.43** -37.34** -5.07** -5.14** -46.39** -39.66 -26.42 -24.78 -73.92** -61.34 

QPM 3XQPM 6 QPM x QPM 18.44** 24.84** 2.24** 2.65** -9.46 28.68 -19.42 33.70 -15.58 64.38 

QPM 3XQPM 7 QPM x QPM -4.87 0.97 -0.47 -0.15 15.21 11.49 -3.75 -4.53 7.64 15.98 

QPM 3XP 12 QPM x Nm -3.87 -5.90 0.79 -0.86 -21.36 -1.20 15.92 4.79 -21.20 -13.02 

QPM 3XT 2 QPM x Nm -45.43** -57.34** -7.87** -8.39 -31.38 -69.50** -4.20 -53.13** -55.72 -139.48** 

QPM 3XT 3 QPM x Nm 33.32** 38.10** 7.03** 7.66** 19.54 24.47 -1.72 12.81 53.44 57.41 

QPM 6XQPM 7 QPM x QPM 5.38 6.47 1.32 1.19 -13.14 -9.75 -13.62 -16.03 -16.03 -23.36 

QPM 6XP 12 QPM x Nm 12.38** 18.10** 1.28 2.98** -4.01 27.17 2.46 11.83 16.11 50.58 

QPM 6XT 2 QPM x Nm 13.32** 19.16** 1.47 3.70** 6.12 8.52 -9.42 -9.78 4.97 8.58 

QPM 6XT 3 QPM x Nm -12.43** -28.90** -0.84 -3.74** -13.11 -48.21** -12.28 -44.35 -46.90 -87.08** 

QPM 7XP 12 QPM x Nm -5.93 -15.78* -1.38 0.43 17.91 -28.27 1.98 -39.75 26.84 -55.62 

QPM 7XT 2 QPM x Nm -6.99 -10.72 -1.14 -1.30 -1.36 -15.22 21.80 4.99 17.83 -13.98 

QPM 7XT 3 QPM x Nm 12.26** 16.72* 1.81* 1.86 1.36 14.20 -1.97 22.97 24.01 55.54 

P 12XT 2 Nm x Nm -2.99 -4.09 0.41 -0.51 -14.83 -20.40 -24.47 -12.95 -38.77 -32.32 

P 12XT 3  Nm x Nm -23.74** -9.65 -4.08** -2.11 -6.71 0.52 -12.64 0.74 -31.41 -15.43 

T 2XT 3 Nm x Nm 9.19 6.41 0.85 0.61 1.57 -1.13 -0.37 2.17 12.42 -2.07 

 

* P≤0.005, ** P≤0.001  
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There were two LPA x LPA and two LPA x QPM crosses that were included in this selection 

which is promising for LPA and QPM breeding programmes. These crosses showed good 

tolerance to accelerated aging by retaining or showing increased SCA effects. These 

crosses should be also included in the selection process of the breeding programme to 

improve germination and vigour in these different endosperm backgrounds.  

Performance of parent inbred lines and classes  

Tables 4.5 and 4.6 show the response of the 10 parental lines under standard and 

accelerated aging environments for the seed traits tested. The germination and vigour seed 

tests on the parental lines showed distinct differences between the different classes of 

endosperm classification between the LPA and the QPM and Normal groups. The 

germination and vigour of LPA lines were generally lower than the QPM and normal lines for 

all seed traits. The LPA lines had the highest reduction under accelerated aging conditions 

for germination percentage (61%), seedling dry weight (52%), average root length (23%), 

average shoot length (47%) and vigour index (34%). The QPM and normal inbred lines 

showed no differences for germination percentage and vigour index, increased for seedling 

dry weight and average root length and slight decrease for average shoot length under 

accelerated aging conditions.  

The LPA group generally showed lower values for each trait than the overall mean. Under 

conditions of the accelerated aging test, all the LPA lines performed below the overall mean 

of all seed traits tested. The LPA lines showed the greatest percentage reduction under 

accelerated aging conditions for germination percentage and seedling dry weight traits. 

Lines P 12 and QPM 7 showed higher germination percentages, retained or increased dry 

weight, increased root length and increased vigour index under accelerated aging conditions 

compared to standard germination conditions. The lines QPM 6, QPM 7, P 12 and T 2 all 

showed increases in vigour index values under accelerated aging conditions than standard 

germination conditions which can be used as an indicator of stress tolerance.  

Figures 4.1 to 4.5 show the mean values for each group under each seed trait tested. The 

LPA lines generally showed a decrease in values from the standard to accelerated aging 

conditions for all traits. All the LPA lines showed negative percentage reductions for 

germination percentage (44-80%), seedling dry weight (36-76%), average root length (1-

52%), average shoot length (15-79%) and vigour index (4-67%) traits when placed under 

accelerated aging conditions. The number of abnormal and dead seedlings increased 

significantly for LPA lines when placed under accelerated aging conditions (Appendix 18). 

Only the LPA line, CM 32 showed very little reductions for average root length (1%) and 

vigour index (4%) traits under accelerated aging conditions compared to the other LPA lines.  
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In Figure 4.1, the average for the groups, LPA, QPM and Normal for germination percentage 

are shown with the LPA lines having the largest decrease in values from the standard to 

accelerated aging conditions (70% - 27%). The Normal and QPM group of lines showed 

almost unchanged germination percentage values under accelerated aging conditions. The 

graph for seedling dry weight (Figure 4.2) showed the Normal and QPM groups having 

increased values under accelerated aging conditions, while the LPA group showed 

decreased seedling dry weight (52% reduction). For average root length and vigour index 

traits, the QPM group remained the same while the Normal group showed a slight increase 

with the LPA group showing 23% reduction for average root length and 34% reduction for 

vigour index (Figure 4.3 and 4.5). However, for average shoot length the QPM group 

average decreased under accelerated aging conditions while the Normal group remained 

almost unchanged and the LPA group showed 47% reduction (Figure 4.4).    

Figure 4.1: Averages of three groups of parental lines for germination percentage under 

standard germination (Std) and accelerated aging (AA) test conditions 

 

Figure 4.2: Averages of three groups of parental lines for seedling dry weight under standard 

germination (Std) and accelerated aging (AA) test conditions 
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Figure 4.3: Averages of three groups of parental lines for average root length under standard 

germination (Std) and accelerated aging (AA) test conditions 

 

 

Figure 4.4: Averages of three groups of parental lines for average shoot length under 

standard germination (Std) and accelerated aging (AA) test conditions 

 

Figure 4.5: Averages of three groups of parental lines for the vigour index trait under 

standard germination (Std) and accelerated aging (AA) test conditions 
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Table 4.5: Mean values of 10 parental inbred lines under standard germination (Std) and accelerated aging (AA) for germination percentage, 

seedling dry weight (g) and average root length (mm) traits 

Entry Germination % Seedling dry weight (g) Average Root Length (mm) 

 Std AA 
% 

reduction
+
 

Std AA 
% 

reduction
+
 

Std AA 
% 

reduction
+
 

LPA group mean 69.75 27.00 61% 6.49 3.09 52% 89.53 62.95 23% 

CM 31 69.00 16.00 77% 5.35 1.30 76% 54.90 26.55 52% 

CM 32 68.00 32.00 53% 8.60 5.50 36% 68.95 68.25 1% 

CM 33 88.00 49.00 44% 7.95 4.55 43% 118.75 77.45 35% 

CM 34 54.00 11.00 80% 4.05 1.00 75% 115.50 79.55 31% 

          

QPM group mean 93.67 89.67 4% 8.68 9.65 -11% 137.87 141.15 -2% 

QPM 3 93.00 85.00 9% 7.90 7.70 3% 167.30 130.00 22% 

QPM 6 91.00 84.00 8% 8.55 9.80 -15% 117.30 145.10 -24% 

QPM 7 97.00 100.00 -3% 9.60 11.45 -19% 129.00 148.35 -15% 

          

Tropical normal group mean 84.00 86.00 -2% 8.82 9.18 -4% 117.45 131.47 -12% 

P 12 89.00 98.00 -10% 10.80 10.80 0% 91.95 133.45 -45% 

T 2 68.00 66.00 3% 6.65 7.05 -6% 138.55 146.25 -6% 

T 3 95.00 94.00 1% 9.00 9.70 -8% 121.85 114.70 6% 

          

P value <0.0001 <0.0001  <0.0001 <0.0001  0.0033 0.016  

P value (ENV*Entry)          

Overall Mean 81.20 63.50  7.85 6.89  112.41 106.70  

CV (%) 5.45 9.55  6.69 9.24  15.29 18.38  

R
2
 (%) 95.92 98.46  96.78 98.58  88.20 90.16  

+ =100 - (standard germination – accelerated aging)
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Table 4.6: Mean values of 10 parental inbred lines under standard germination (Std) and accelerated aging (AA) for average shoot length 

and vigour index traits 

Entry Average Shoot Length (mm) Vigour Index 

 Std AA 
% 

reduction
+
 

Std AA 
% 

reduction
+
 

LPA group mean 90.48 48.23 47% 156.32 102.79 34% 

CM 31 96.90 20.75 79% 129.02 43.09 67% 

CM 32 68.05 58.05 15% 115.73 110.98 4% 

CM 33 112.90 69.60 38% 222.89 135.44 39% 

CM 34 84.05 44.50 47% 157.63 121.63 23% 

       

QPM group mean 127.60 109.02 15% 255.28 245.71 4% 

QPM 3 104.70 64.40 38% 266.59 180.99 32% 

QPM 6 139.65 131.85 6% 234.64 276.96 -18% 

QPM 7 138.45 130.80 6% 264.62 279.18 -6% 

       

Tropical normal group mean 106.83 100.50 6% 209.31 222.87 -6% 

P 12 114.25 109.10 5% 189.71 222.74 -17% 

T 2 110.00 98.55 10% 228.66 237.28 -4% 

T 3 96.25 93.85 2% 209.57 208.60 0% 

       

P value 0.0003 <0.0001  0.0021 0.0005  

P value (ENV*Entry)       

Overall Mean 106.52 82.15  201.90 181.69  

CV (%) 7.85 14.60  12.90 17.30  

R
2
 (%) 93.87 94.99  89.23 92.50  

+ =100-(standard germination – accelerated aging)
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Performance of crosses and groups of crosses 

The seeds of the cross CM 31 x CM 33 showed no germination (Table 4.7 and 4.8) due to 

high numbers of abnormal (97%) and dead (3%) seedlings under standard germination 

conditions which increased to 100% abnormal seedlings under accelerated aging conditions 

(data not shown). This LPA x LPA cross is clearly carrying detrimental genes for germination 

and vigour and is not suitable for further consideration in the breeding programme. There 

were 10 crosses that performed below the overall germination percentage mean across both 

environments. These included two LPA x LPA, two LPA x QPM, three LPA x Nm, two QPM x 

Nm and one Nm x Nm cross. The CV value for seedling dry weight under standard 

conditions was high (95.11%) (Table 4.7). 

The crosses were grouped into six groups based on the type of the parental lines and their 

group averages calculated for each seed trait. All the groups except QPM x QPM showed 

decreases in germination percentages under accelerated aging conditions, with the QPM x 

QPM groups having the highest germination percentage overall. The LPA x LPA groups 

showed the lowest germination percentage (Figure 4.6).  

For seedling dry weight trait, the QPM x QPM and LPA x LPA groups did not show much 

change under the different conditions, with QPM x Nm, LPA x Nm, LPA x QPM and Nm x 

Nm groups having slight decreases under accelerated aging conditions (Figure 4.7). The two 

groups of LPA x LPA and LPA x QPM showed similar values under standard and 

accelerated aging conditions for the average root length trait showing stability under 

accelerated aging conditions. In all the other groups (LPA x Nm, Nm x Nm, QPM x Nm, QPM 

x QPM) a higher average root length value was obtained under accelerated aging conditions 

than standard conditions, thereby showing a positive response and adaptation to stress 

conditions (Figure 4.8) compared to other above-ground parameters measured in this study. 

For the average shoot length only the LPA x Nm group showed increased average values 

under accelerated aging conditions, while the QPM x Nm group decreased under 

accelerated aging conditions. The other four groups had similar values under both conditions 

showing stability under accelerated aging conditions (Figure 4.9). The LPA x LPA group had 

decreased vigour index values under accelerated aging conditions and LPA x QPM group 

showed no change under the different aging conditions. The LPA x Nm, QPM x Nm, Nm x 

Nm and QPM x QPM groups all showed slight increased vigour index values under 

accelerated aging conditions (Figure 4.10).    
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Table 4.7: Means for F2 seeds generated under standard germination (Std) and accelerated aging (AA) conditions for germination percentage, 

seedling dry weight (g) and average root length (mm) traits 

Pedigree Classification Germination % Seedling dry weight (g) Average Root Length (mm) 

    Std AA Std AA Std AA 

CM 31 x CM 32 LPA x LPA 96.00 79.5 12.95 11.60 107.90 117.00 

CM 32 x CM 33 LPA x LPA 0.00 0.00 0.00 0.00 0.00 0.00 

CM 32 x CM 34 LPA x LPA 96.00 95.00 11.35 11.80 107.90 144.85 

CM 31 x CM 33 LPA x LPA 93.00 89.00 13.05 12.55 104.45 119.35 

CM 31 x CM 34 LPA x LPA 96.00 85.00 12.10 11.10 118.25 78.30 

CM 34 x CM 33 LPA x LPA 13.00 2.00 1.20 0.61 53.30 16.62 

LPA x LPA 
 

65.67 58.42 8.44 7.94 81.97 79.35 

CM 32 x T 3 LPA x Nm 92.00 84.00 12.30 10.90 141.65 142.75 

CM 33 x P 12 LPA x Nm 94.00 84.00 12.35 11.15 132.30 151.80 

CM 33 x T 2 LPA x Nm 95.00 94.00 14.90 11.90 108.85 149.45 

CM 34 x P 12 LPA x Nm 94.00 89.00 11.05 11.20 106.25 129.45 

CM 34 x T 2 LPA x Nm 96.00 93.00 14.20 13.30 120.40 146.80 

CM 34 x T 3 LPA x Nm 34.50 20.00 3.85 2.25 64.35 58.10 

T 2 x CM 32 LPA x Nm 74.00 75.00 11.15 10.75 137.75 172.70 

CM 31 x T 2 LPA x Nm 86.00 84.00 11.35 10.35 97.30 155.65 

T 3 x CM 33 LPA x Nm 61.00 53.00 7.35 6.55 96.90 101.15 

CM 31 x T 3 LPA x Nm 51.00 34.00 5.45 3.60 94.40 105.55 

LPA x Nm 
 

77.75 71.00 10.40 9.20 110.02 131.34 

CM 32 x QPM 6 LPA x QPM 86.00 75.00 8.35 7.9 102.60 139.30 

CM 32 x QPM 7 LPA x QPM 55.50 57.00 6.10 5.65 114.00 139.10 

CM 33 x QPM 3 LPA x QPM 24.00 10.00 2.65 1.25 58.20 35.50 

CM 33 x QPM 7 LPA x QPM 90.00 83.00 11.45 11.00 106.40 130.00 

CM 34 x QPM 6 LPA x QPM 82.00 57.00 8.85 6.10 135.70 99.55 

CM 34 x QPM 7 LPA x QPM 96.00 90.00 12.20 10.35 139.40 136.00 

CM 31 x QPM 3 LPA x QPM 80.00 70.00 7.35 6.30 119.75 145.20 

QPM 3 x CM 34 LPA x QPM 86.00 85.00 11.35 11.85 158.65 163.30 

QPM 6 x CM 33 LPA x QPM 14.00 5.00 1.55 0.65 75.70 36.15 

CM 31 x QPM 6 LPA x QPM 88.00 84.00 11.90 11.85 118.55 113.95 
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Pedigree Classification Germination % Seedling dry weight (g) Average Root Length (mm) 

    Std AA Std AA Std AA 

QPM 7 x CM 31 LPA x QPM 78.00 71.50 9.45 7.35 127.60 133.15 

QPM 7 x CM 32 LPA x QPM 94.00 100.00 10.45 11.50 105.30 139.55 

LPA x QPM 
 

72.79 65.63 8.47 7.65 113.49 117.56 

T 2 x P 12 Nm x Nm 90.00 86.00 14.15 12.65 109.55 148.15 

T 3 x P 12 Nm x Nm 54.00 59.00 6.75 7.85 111.55 136.70 

T 3 x T 2 Nm x Nm 87.00 76.00 12.40 10.40 116.75 138.50 

Nm x Nm 
 

77.00 73.67 11.10 10.30 112.62 141.12 

QPM 3 x P 12 QPM x Nm 78.00 69.50 11.05 9.25 99.85 154.95 

QPM 3 x T 2 QPM x Nm 36.50 19.00 3.10 1.55 86.75 90.10 

QPM 6 x P 12 QPM x Nm 95.00 94.00 12.15 13.80 116.85 162.80 

QPM 7 x P 12 QPM x Nm 97.00 85.00 11.95 14.05 160.85 136.35 

QPM 7 x T 2 QPM x Nm 96.00 91.00 12.90 12.15 138.50 152.85 

T 2 x QPM 6 QPM x Nm 96.00 96.00 13.06 14.35 124.90 147.60 

T 3 x QPM 3 QPM x Nm 100.00 93.00 15.10 14.40 131.55 151.70 

T 3 x QPM 6 QPM x Nm 55.00 26.50 7.85 3.70 98.55 58.50 

T 3 x QPM 7 QPM x Nm 100.00 97.00 12.95 12.10 135.10 149.90 

QPM x Nm 
 

83.72 74.56 11.12 10.59 121.43 133.86 

QPM 3 x QPM 6 QPM x QPM 90.00 87.00 10.35 10.25 105.15 155.35 

QPM 3 x QPM 7 QPM x QPM 87.00 88.00 10.10 10.25 151.90 167.15 

QPM 6 x QPM 7 QPM x QPM 98.00 94.00 12.50 12.30 123.20 125.40 

QPM x QPM 
 

91.67 89.67 10.98 10.93 126.75 149.30 

        
Overall Mean   77.12 69.98 11.02 9.40 113.63 126.99 

P value   <0.0001 <0.0001 0.1142 <0.0001 0.0002 <0.0001 

P value (ENV*Entry)   
      

CV (%)   6.08 9.38 95.11 10.30 16.82 16.74 

R
2
 (%)   98.53 97.57 60.15 97.05 78.31 85.46 
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Table 4.8: Means for F2 seeds generated under standard germination (Std) and accelerated aging (AA) conditions for average shoot length (mm) 
and vigour index traits 

Pedigree Classification Average Shoot Length (mm) Vigour Index 

  
 

Std AA Std AA 

CM 31 x CM 32 LPA x LPA 107.45 111.20 206.93 188.51 

CM 32 x CM 33 LPA x LPA 0.00 0.00 0.00 0.00 

CM 32 x CM 34 LPA x LPA 105.70 114.65 206.12 251.33 

CM 31 x CM 33 LPA x LPA 89.60 123.80 187.40 231.45 

CM 31 x CM 34 LPA x LPA 132.30 73.25 248.07 137.77 

CM 34 x CM 33 LPA x LPA 43.10 68.56 71.04 42.77 

LPA x LPA 
 

79.69 81.91 153.26 141.97 

CM 32 x T 3 LPA x Nm 108.85 125.70 243.76 265.88 

CM 33 x P 12 LPA x Nm 126.70 141.45 246.00 271.18 

CM 33 x T 2 LPA x Nm 100.25 133.10 206.83 279.69 

CM 34 x P 12 LPA x Nm 102.50 125.35 200.63 247.41 

CM 34 x T 2 LPA x Nm 95.30 112.45 208.82 256.14 

CM 34 x T 3 LPA x Nm 73.35 51.50 108.32 94.41 

T 2 x CM 32 LPA x Nm 108.20 128.55 233.55 278.45 

CM 31 x T 2 LPA x Nm 102.45 137.10 183.92 275.18 

T 3 x CM 33 LPA x Nm 110.05 98.60 149.03 137.70 

CM 31 x T 3 LPA x Nm 118.15 78.60 142.48 138.19 

LPA x Nm 
 

104.58 113.24 192.33 224.42 

CM32 x QPM6 LPA x QPM 101.25 139.45 185.91 234.43 

CM32 x QPM7 LPA x QPM 123.55 135.65 204.21 224.63 

CM33 x QPM3 LPA x QPM 55.30 39.15 89.33 62.77 

CM33 x QPM7 LPA x QPM 113.75 133.35 210.53 239.98 

CM34 x QPM6 LPA x QPM 118.40 102.65 228.63 172.85 

CM34 x QPM7 LPA x QPM 129.45 96.65 258.33 211.69 

CM31 x QPM3 LPA x QPM 110.35 135.30 202.98 262.65 

QPM3 x CM34 LPA x QPM 128.05 103.80 261.64 248.38 

QPM6 x CM33 LPA x QPM 111.80 83.15 149.35 114.48 

CM31 x QPM6 LPA x QPM 144.55 121.95 242.24 214.43 
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 Pedigree Classification Average Shoot Length (mm) Vigour Index 

  
 

Std AA Std AA 

QPM 7 x CM 31 LPA x QPM 91.95 120.55 173.88 201.94 

QPM 7 x CM 32 LPA x QPM 119.95 127.10 213.93 266.62 

LPA x QPM 
 

112.36 111.56 201.75 204.57 

T 2 x P 12 Nm x Nm 91.30 120.60 188.77 249.93 

T 3 x P 12 Nm x Nm 101.10 110.85 166.46 200.4 

T 3 x T 2 Nm x Nm 102.40 109.25 206.01 222.99 

Nm x Nm 
 

98.27 113.57 187.08 224.44 

QPM 3 x P 12 QPM x Nm 129.75 130.55 189.98 240.05 

QPM 3 x T 2 QPM x Nm 98.65 69.60 151.20 122.82 

QPM 6 x P 12 QPM x Nm 132.35 139.45 241.94 290.15 

QPM 7 x P 12 QPM x Nm 135.25 94.50 290.16 223.78 

QPM 7 x T 2 QPM x Nm 144.10 136.20 276.88 274.64 

T 2 x QPM 6 QPM x Nm 160.25 114.80 120.08 257.37 

T 3 x QPM 3 QPM x Nm 99.10 112.10 230.68 253.29 

T 3 x QPM 6 QPM x Nm 104.60 56.80 144.99 95.30 

T 3 x QPM 7 QPM x Nm 118.30 130.75 253.38 277.75 

QPM x Nm 
 

124.71 109.42 211.03 226.13 

QPM 3 x QPM 6 QPM x QPM 97.55 150.50 189.63 283.99 

QPM 3 x QPM 7 QPM x QPM 116.60 118.90 250.33 275.42 

QPM 6 x QPM 7 QPM x QPM 122.80 109.25 241.31 222.59 

QPM x QPM 
 

112.32 126.22 227.09 260.67 

      

Overall Mean 
 

110.51 111.64 196.35 210.26 

P value 
 

0.0107 <0.0001 <0.0001 <0.0001 

P value (Env*Entry) 
     

CV (%) 
 

19.37 17.74 18.78 16.87 

R
2
 (%) 

 
70.14 78.23 84.94 89.51 
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Figure 4.6: Averages of five groups of crosses for the germination percentage under normal 

germination (Std) and accelerated aging (AA) test conditions 

 

Figure 4.7: Averages of five groups of crosses for the seedling dry weight trait under normal 

germination (Std) and accelerated aging (AA) test conditions 

 

Figure 4.8: Averages of five groups of crosses for the average root length under normal 

germination (Std) and accelerated aging (AA) test conditions 
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Figure 4.9: Averages of five groups of crosses for the average shoot length under normal 

germination (Std) and accelerated aging (AA) test conditions 

 

Figure 4.10: Averages of five groups of crosses for the vigour index under normal 

germination (Std) and accelerated aging (AA) test conditions 
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effects were significant for all the seed traits tested (P≤0.001). The lines that show significant 

GCA effects can be selected to be used in the breeding programme. The ratio of GCA/SCA 

sum of squares was in favour of SCA for all traits under both environments, showing 

0

20

40

60

80

100

120

LPA x LPA LPA x Nm LPA x QPM Nm x Nm QPM x Nm QPM x QPM

S
h

o
o

t 
le

n
g

th
 (

m
m

)
Average Shoot Length (mm)

Std 

AA

0

50

100

150

200

LPA x LPA LPA x Nm LPA x QPM Nm x Nm QPM x Nm QPM x QPM

V
ig

o
u

r 
in

d
e
x

Vigour Index

Std 

AA



140 
 

predominance of non-additive gene action present. However, the GCA percentage was still 

high; therefore there is also additive gene action present for all the traits. There are other 

studies that have also found that both additive and non-additive gene action was present 

with non-additive gene effects more important (Barla-Szabo et al., 1990; Akram et al., 2007; 

Chapi et al., 2008) as in this study.   

The LPA line, CM 31 showed positive GCA effects for germination percentage, dry weight 

and average shoot length under both standard and accelerated aging conditions, however 

CM 32 only showed positive GCA effects under accelerated aging conditions for average 

root length, average shoot length and vigour index thereby showing stress tolerance. Line 

QPM 7 had positive and significant GCA effects for all traits under both conditions. The 

normal tropical lines, P 12 and T 2 were the best performing normal lines with positive GCA 

effects for most of the traits. Therefore the following lines can be recommended for use in 

breeding programme to improve germination and vigour; CM 31, CM 32, QPM 7, P 12 and 

T 2.   

The QPM and normal lines were most efficient in accumulating dry matter content by having 

retained or increased dry weight under accelerated aging conditions. Lines QPM 6 and QPM 

7 were also able to increase the root length under accelerated aging showing stress 

tolerance. The shoot length was decreased for all lines during accelerated aging, however 

QPM 6, QPM 7, P 12 and T 3 showed the least reductions (<6%) while showing stress 

tolerance. Due to the significance of SCA effects, these can be exploited for hybrid 

production.  

There were nine crosses with positive SCA effects for all traits under both standard and 

accelerated aging conditions and are considered to be stress tolerant (CM 31 x CM 33, CM 

32 x CM 34, CM 32 x T 3, CM 33 x QPM 7, CM 33 x P 12, CM 33 x T 2, CM 33 x T 3, CM 34 

x QPM 3, QPM 6 x P 12). There were two LPA x LPA and two LPA x QPM crosses that were 

included in this selection. These crosses showed stress tolerance to accelerated aging by 

retaining or showing increased positive SCA effects. There were some crosses that had 

negative SCA effects under standard conditions but these showed positive SCA effects 

under accelerated aging conditions (CM 31 x QPM 7, CM 31 x T 2, CM 34 x P 12, CM 34 x T 

2, QPM 3 x QPM 6, QPM 3 x T 3, QPM 7 x T 3) showing stress tolerance to accelerated 

aging conditions. Due to the predominance of SCA effects for seed germination and vigour 

traits, breeding methods that exploit SCA effects can be used, e.g. recurrent selection for 

specific combining ability. Inbred lines can be developed which show SCA effects when 

combined with other inbreds.  
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The reason is not clear why there is higher seedling vigour after accelerated aging 

conditions and needs further testing. It is only the inherently vigorous seeds which were 

capable of producing healthy and normal seedlings under these conditions. The low vigour 

seeds were able to germinate but were unable to grow in adverse accelerated aging 

conditions and weak seedlings were produced. This was also found in a study with maize 

under accelerated aging conditions (Basu et al., 2004). 

The LPA lines exhibited lower germination and vigour in general especially under 

accelerated aging conditions. The germination percentage under normal conditions was 

between 54-88% which was reduced to 11-49% under accelerated aging conditions. The 

germination percentage of these lines needs to be improved to >90% for use in certified 

seed production. In the study comparing the maize LPA mutant (lpa241) with its wild type, 

under standard germination conditions, the mutant also showed lower germination than the 

wild type which decreased further after the accelerated aging test with 38% more loss in the 

mutant than the wild type (9%) (Doria et al., 2009). Line CM 32 showed very little reduction 

in average root length (1%) and vigour index (4%) under accelerated aging conditions, 

showing high stress tolerance for these traits. Studies on maize with the accelerated aging 

test showed different reductions with 94.7% under standard conditions to 36.3% (Noli et al., 

2008), 87.6% to 76.3% (Byrum and Copeland, 1995) and 91.9% to 84% (Lovato et al., 

2005). The varying results are due to the genotype effectiveness to the stress provided by 

the accelerated aging test, probably due to their genetically determined vigour traits 

(Gutierrrez et al., 1993). The shape of the seed is also found to influence germination and 

vigour in maize where round seeds germinated faster than flat seeds (Tekrony et al., 2005).  

The findings in this study are that generally all traits showed reductions under accelerated 

aging conditions which was also found in other studies in maize where the traits, seedling 

length and dry weight were shown to have a greater response to accelerated aging than 

standard germination (Santipracha et al., 1997; Basu et al., 2004). In this study the 

accelerated aging test was able to measure a wide range of seed vigour (0-100%) and this 

was also found by Tekrony et al. (2005) with a range from 0% to 93%. The correlation 

between phytate-P content and seed vigour was confirmed with finding that the higher the 

phytate-P content, the higher the seed vigour (Modi and Asanzi, 2008). Revilla et al. (2009) 

found inbreds having heavier kernels would be better seed producing parents for hybrids 

with better early vigour and earlier flowering dates.  

The QPM lines performed well compared to the normal tropical lines showing significant 

improvement in QPM breeding for vigour over the last few years. The line QPM 7 was very 

stress tolerant for all traits except average shoot length, showing increased values under 
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accelerated aging conditions. Line QPM 6 also exhibited stress tolerance by having 

increased values for germination percentage, seedling dry weight, average root length and 

vigour index under accelerated aging conditions. The tropical normal line, P 12 showed 

increased values for germination percentage, average root length and vigour index with no 

change for seedling dry weight under accelerated aging conditions. These lines showed high 

stress tolerance and should be used in breeding programmes.    

The average root length trait of the six groups of crosses (LPA x QPM, LPA x Nm, Nm x Nm, 

QPM x Nm and QPM x QPM) showed higher average root lengths under AA conditions 

compared to standard germination conditions. Other studies have found similar results in 

different crops (Chun et al., 2005; Kausar and Shahzad, 2006; Radhouane, 2007; Khan et 

al., 2010). This could be as a result of the plant being able to access more nutrients and 

resources quickly by having longer root lengths to overcome the stress factors. Further 

research is needed to determine the exact causes of this observation. The germination 

percentage, average root length, average shoot length and vigour index of the LPA x QPM 

class of crosses was higher than the LPA x LPA class under both standard and accelerated 

aging conditions. It seems there are some interactions in increasing the germination 

percentage with the combination of LPA and QPM adaptations, with the SCA effects for all 

these traits significant at the 1% level. This is very promising in breeding for improved 

nutrition for lower phytic acid and increased levels of lysine and tryptophan in maize.  

A survey of literature did not yield any information regarding previous studies of combining 

ability between LPA and QPM for germination and vigour. There are no other breeding 

programmes that have both LPA and QPM material except in Brazil, making this a novel 

study for breeding with LPA and QPM. There is a general opinion that the combination 

between LPA and QPM has serious problems due to low germination and vigour exhibited 

by both classes. However our results do not support this opinion. The LPA x QPM crosses 

showed higher average shoot length and vigour index and similar average root length 

compared to Nm x Nm class.   

 

Conclusions 

 

The following conclusions could be drawn from this study: 

 Both additive and non-additive gene action was significant for both germination and 

vigour index and its component traits under normal and accelerated aging conditions, 

with specific combining ability (SCA) effects generally superior to general combining 
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ability (GCA) effects for all traits, indicating that genes with non-additive effects were 

more important for both germination and vigour traits. Due to both additive and non-

additive gene action; lines can be selected for breeding that have good combining 

ability for these traits. Also due to the predominance of non-additive gene effects; this 

material can also be useful in a breeding programme to develop hybrids.  

 The LPA line, CM 31 displayed the desired positive GCA effects under standard and 

accelerated aging conditions and CM 32 showing increased SCA values under 

accelerated aging conditions thereby showing stress tolerance. Hence it would be 

useful source of breeding material for improved germination and vigour in other LPA 

germplasm. 

 QPM 7 was the only QPM line that had positive GCA effects for all the traits under 

both standard and accelerated aging conditions showing stress tolerance.  

 There were nine crosses that performed well under both standard and accelerated 

aging conditions which included, one QPM x Nm, two LPA x QPM, two LPA x LPA 

and four LPA x Nm crosses thereby showing stress tolerance for seed germination 

and vigour traits. Breeding methods which exploit SCA effects can be used to 

improve these traits, such as recurrent selection for specific combining ability. 

 The LPA lines and their hybrid combinations exhibited low germination (14-39%) with 

the QPM lines and normal tropical lines showing high germination rates under both 

experimental conditions; therefore they were more viable and more stress tolerant 

than the LPA lines. 
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Appendix 18: Means of germination, abnormal and dead percentages of 10 

parental lines under standard (Std) and accelerated aging (AA) conditions 

Entry Germination % Abnormal % Dead % 

 Std AA Std AA Std AA 

CM 31 69.00 16.00 16.00 74.00 15.00 10.00 

CM 32 68.00 32.00 16.00 55.50 16.00 12.50 

CM 33 88.00 49.00 8.00 43.00 4.00 8.00 

CM 34 54.00 11.00 25.00 87.00 21.00 2.00 

QPM 3 93.00 85.00 5.00 6.00 2.00 7.00 

QPM 6 91.00 84.00 0.00 9.00 9.00 0.00 

QPM 7 97.00 100.00 2.00 0.00 1.00 0.00 

P 12 89.00 98.00 3.00 2.00 8.00 9.00 

T 2 68.00 66.00 24.00 31.00 8.00 3.00 

T 3 95.00 94.00 1.00 6.00 4.00 0.00 

P value <0.0001 <0.0001 <0.0001 <0.0001 0.0040 0.2616 

Overall  mean 81.20 63.50 10.00 31.35 8.80 5.15 

CV (%) 5.45 9.55 22.11 11.07 40.23 103.41 

R2 (%) 95.92 98.46 97..41 99.42 87.99 61.47 
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Chapter Five 

Combining ability between temperate low phytic acid (LPA) and 

tropical normal endosperm inbred lines for seed vigour and grain 

yield components 

Abstract 

Maize is one of the most important cereal crops in the world but has high levels of phytic 

acid which inhibits the absorption of essential minerals such as iron and zinc. There have 

been low phytic acid (LPA) mutants identified with reduced levels of phytic acid but also 

having reduced levels of seed germination, vigour and yield. The gene action and combining 

abilities were determined from an eight parent diallel, including two low phytate lines and six 

normal tropical endosperm inbred lines. Field evaluation of the F1 hybrids was over two 

seasons, with two replications at five locations. The standard and accelerated aging tests 

were conducted using F2 seeds for assessment of seed vigour. The traits tested were 

germination percentage, seedling dry weight, average root length, average shoot length, 

vigour index, yield, mid-pollen shed (DMP) and silk emergence (DMS) dates, grain moisture 

content (%) and ears plant-1 traits. There was significant additive and non-additive gene 

action for both germination and vigour index and its component traits under normal and 

stress conditions. The SCA effects were generally superior to GCA effects for all seed vigour 

traits, indicating that genes with non-additive effects were predominant for both germination 

and vigour. Generally the LPA lines and their hybrid combinations had lower germination 

and vigour under both experimental conditions than the normal tropical lines and their hybrid 

combinations. The LPA line, CM 32 showed increased GCA values under stress conditions 

for germination and seedling dry weight thereby showing stress tolerance. The normal lines, 

Kenyan, P 1, P 5 and P 7 had positive GCA effects for all seed germination and vigour traits 

under both standard and stress conditions. There were eight crosses that performed well for 

the seed germination and vigour traits under both standard and stress conditions which 

included two LPA x Nm and six Nm x Nm crosses that are stress tolerant. The traits, DMS, 

DMP, Yield and EPP had both additive and non-additive gene action being important with 

only additive gene action being present for GMC. The ratio of GCA/SCA sum of squares was 

in favour of GCA showing predominance of additive gene action present for all yield and 

associated traits. Both the LPA lines showed negative GCA effects for all yield and 

associated traits, with the normal lines; Kenyan, P 1, P 5 and P 6 having positive GCA 

effects for all yield and associated traits. There were three LPA x Nm crosses that showed 

improvements to the means of germination and vigour and yield traits (CM 32 x Kenyan, P 6 
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x CM 32, CM 32 x T 4). The cross CM 32 x P 6 showed negative SCA effects for DMS and 

GMC, positive SCA effects for yield, EPP, germination percentage, average root length, 

average shoot length and vigour index.  Due to predominance of additive gene action, 

breeding strategies that exploit GCA effects should be used, such as selection of lines with 

positive and high GCA effects. There were positive correlations between the seed 

germination and vigour traits, with yield being significantly correlated to DMS, DMP and 

GMC implying high yield is associated with longer growing cycles.  

Keywords: low phytic acid, GCA, SCA, germination, vigour, accelerated aging test, yield 

 

Introduction 

Maize is one of the most important cereal crops as it is the most widely grown crop in the 

world. It is a primary staple food in many developing countries especially in Africa, providing 

food for both humans and animals. Maize breeders are therefore always striving to improve 

the yield and nutritional quality of this crop. Maize has high levels of phytic acid which 

inhibits the absorption of essential minerals such as iron and zinc in monogastric consumers 

and this has a negative impact on the nutritional status of maize-based diets in sub-Saharan 

Africa.  

It has been reported that deficiencies in micronutrients are due to more than two billion 

people consuming less diverse diets than 30 years ago, especially iron, zinc, selenium, 

iodine and vitamin A (Genc et al., 2005). Iron deficiency is one of the major nutritional 

problems in cereal based-diets of low income countries in the developing world mainly 

caused by poor iron content, low bioavailability of iron, or both (Brown and Solomons, 1991). 

Iron and zinc deficiencies in developing countries are estimated to affect 40-45% of school 

age children who are anaemic, of which about 50% is due to iron deficiency (Zimmerman 

and Hurrell, 2002). Food components such as phytates, tannins and selected dietary fibres, 

which bind iron in the intestinal lumen, can impair iron absorption. Phytate has probably the 

greatest effect on iron status as there are a large variety of plants with high phytate content, 

thereby limiting absorption of iron (Mendoza et al., 2001). A sustainable, cost-effective 

alternative to conventional supplementation is to breed staple crops with an enhanced 

fortification with micronutrients (Genc et al., 2005).    

Phytic acid is the major phosphorus containing compound found in seeds. In mature seeds, 

75% of the total phosphorus is found as phytic acid (Raboy, 1997), which represents a 

significant amount of all phosphorus removed from the soil by grain and legume crops. It is a 

strong chelator of positively charged mineral cations such as calcium, iron and zinc. Once 
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the phytic acid is ingested, it can also bind to other seed-derived minerals, as well as other 

endogenous minerals that are present in the digestive tract (Raboy, 2000).  

Dietary phytate can have a negative global impact by contributing to mineral depletion and 

deficiency in populations that rely on whole grains and legume based products as staple 

foods (Brown and Solomons, 1991). The limitations  in the uptake of minerals due to phytic 

acid is a serious concern and needs to be addressed in order to increase the nutritional 

content of staple crops especially in the developing world. Present breeding studies aim to 

achieve a significant decrease (50%) and not elimination of existing levels of phytic acid, 

resulting in an increased uptake of the vital minerals and iron. A recent study has confirmed 

the antioxidant properties of phytic acid (Doria et al., 2009).  

Progress in plant genetics has led to the identification and successful breeding of grains and 

legumes that are homozygous for allelic variants at a single gene that alters the phytate 

content of the legume or grain. Low phytic acid (LPA) mutants controlled by a single 

recessive mutation have been identified in maize (Raboy et al., 2000; Pilu et al., 2003) and 

rice (Larson et al., 2000). Wild type maize has a total inositol P content of 3.4 mg/g with the 

LPA mutants showing lower levels, i.e. lpa1-1 has 1.1 mg/g (Raboy et al., 2000). The whole 

grain concentrations of potassium (K), magnesium (Mg), iron (Fe), zinc (Zn) and manganese 

(Mn) were found to be comparable or higher in lpa1-1 grains compared to wild type grains, 

with calcium (Ca) being lower in lpa1-1 mutants (Lin et al., 2005). These low phytic acid 

mutants of maize have also been shown to have normal levels of seed total phosphorus but 

reduced levels of phytic acid phosphorus.  

The use of LPA mutants in plant breeding has been limited due to non-germination of 

genotypes with homozygous lpa1 alleles (Raboy, 2000), reduced seed weight of lpa1-1 

(Raboy et al., 2000), and the lower vegetative growth rate and impaired seed development 

due to the lpa241 mutation (Pilu et al., 2005). These LPA mutants have inferior agronomic 

and seed viability than their wild-type (WT) parents, leading to yield reduction (Raboy et al., 

2000) due to reduced seed weights and low vegetative growth. The yields of the maize LPA 

lines have been reduced to between 5 and 15% compared to the highest yielding 

commercial varieties (Raboy, 2000). The maize lpa1-1 mutant lines have shown yield 

reductions compared to the WT parent (Ertl et al., 1998), also observed in lpa1 barley 

mutants (Bregitzer and Raboy, 2006). In rice, the LPA mutations were found to most likely 

be the causative factor of grain yield reduction (12.5-25.6%) (Zhao et al., 2008). The wheat 

LPA mutants had delayed development and reduced grain yield (8-25%) partly due to 

reduced kernel size in a high yielding environment (Guttieri et al., 2006).  
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It has been observed that LPA mutants can show 30% decrease in germination rate when 

compared to the wild type (Pilu et al., 2003). There is no previous germination and vigour 

studies on the lpa1-1 mutation lines. The lpa241 mutant is allelic to lpa1-1 (Pilu et al., 2005) 

with 30% decrease in germination rate compared to the WT (Pilu et al., 2003) and 72±15% 

germination under standard conditions which decreased to 45±14% germination under 

accelerated aging conditions (Doria et al., 2009). The lpa241 mutant has negative pleiotropic 

effects which are related to embryo development and size, germination rate, seedling growth 

rate and ear size (Pilu et al., 2005). A study on rice found all LPA mutants showed reduced 

seed viability (Zhao et al., 2008). 

The LPA mutant lines also show significantly lower field emergence than their WT parents in 

rice (Zhao et al., 2008), wheat (Oltmans et al., 2005) and soybean (Meis et al., 2003). This 

could be as a result of seed maturation in tropical environments at high temperatures to 

which the LPA genotypes have low stress tolerance, thereby reducing germination and 

emergence (Raboy, 2007).  Low field emergence is an important issue for LPA genotypes 

once lines have been developed and need to be adopted for commercial production. Field 

emergence and not germination is important for seedling establishment.      

Seed viability and vigour are two characteristics of seeds that determine their value and 

utility of seeds. There are many different factors that determine and influence seedling 

germination and vigour. The vigour of a seed can be determined by using different 

parameters such as root length, shoot length and dry weight of the seedling. Seed vigour is 

not only dependent on the size of kernel but also on the speed of germination which is an 

important factor. The size of the kernel is an estimate of the amount of nutrients available to 

the seed during germination. However, even if the seed has large kernel size but has low 

speed of germination, it can be classified as low vigourous. Seedling parameters such as the 

root length (indicator of potential to develop an adequate root system to access nutrients), 

shoot length (indicator of the competition ability to outgrow weeds in the field), and the dry 

weight of a seedling (effectiveness of the seed in producing biomass) are used to assess 

speed of germination and vigour. Seedling dry weight is the overall indicator of growth where 

the more vigourous seeds are expected to accumulate biomass faster than their less 

vigourous counterparts. To attain good stand of a crop, it is necessary to have a high 

emergence percentage followed by high seedling vigour (Fakorede and Ojo, 1981). Maize 

has problems in maintaining high germination standards for certified seeds (80% parental 

lines, 90% hybrids), especially for low vigour parental lines (Basu et al., 2004).   

The vigour test is a more sensitive index of seed quality than the germination test. Vigour 

testing has become common practice and ensures the seed will perform well across a wide 
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range of soil types and environmental conditions. The two most commonly used are the cold 

test and the accelerated aging test. The germination test is considered to be well 

standardized but does not detect many seed weaknesses, thereby increasing the need for 

vigour testing to act as quality control tool and marketing aid. Different vigour tests measure 

different aspects of seed quality under different soil conditions; therefore a combination of 

several vigour tests is able to provide information on the quality of a seed lot as well as its 

potential field performance (Byrum and Copeland, 1995).  Seed storage under high relative 

humidity and/or high temperature and damage by insects are primary causes of poor seed 

quality.  

The accelerated aging test was developed to predict seed storability (Delouche and Baskins, 

1973). In maize it has been used to determine relative field emergence (Lovato et al., 2005; 

Noli et al., 2008), assess seed quality (Santipracha et al., 1997; Munamava et al., 2004); 

seedling vigour (Fakorede and Ojo, 1981), as well as assess seed storability (Basu et al., 

2004). The vigour and viability of maize inbred lines is reduced by aging due to non-

inheritable degenerative changes (Revilla et al., 2009).   

In addition to contributing to breeding for LPA in tropical materials, the temperate lines can 

be used to introgress earliness in tropical materials. The lpa1-1 gene results in low 

germination and vigour, with LPA lines showing low yield potential and are highly susceptible 

to drought and stress. As a result this germplasm is difficult to maintain and cannot be 

sustained in commercial production. As a result the LPA germplasm can be used to 

introgress this LPA trait into tropical and mid-altitude genetic backgrounds. The temperate 

germplasm is also able to contribute genes for ultra-early flowering and early physiological 

maturity, which is lacking in tropical germplasm. Ultra-early germplasm is desired in 

managing drought as these varieties will flower and mature before the onset of drought.  

Diallel crosses are widely used as mating designs to study the genetic properties of inbred 

lines in plant breeding programmes, by providing information on the average performance of 

the individual inbred lines in crosses to select lines to hybridise. Griffing (1956) defines the 

diallel cross in terms of genotypic values where the sum of general combining abilities 

(GCAs) for the two gametes is the breeding value of the cross (i,j). The specific combining 

ability (SCA) represents the dominance deviation value if epistatic deviation is excluded. It is 

important to estimate combining abilities as the choice of an efficient breeding method 

depends on the major component of genetic variation present.  In terms of genetic variance, 

GCA represents additive and additive x additive epistatic gene action, and SCA the non-

additive types of variances, mainly dominance and epistasis. Selection is more effective with 

traits with a high additive genetic variance than high dominance variance, as dominance is 



151 
 

due to intralocus gene interaction (Muraya et al., 2006).  In maize, diallel mating designs 

have been widely used for different traits such as seed vigour and germination (Barla-Szabo 

et al., 1990), heterosis (Xingming et al., 2001; Muraya et al., 2006; Abdel-Moneam et al., 

2009), yield and associated traits (Malik et al., 2004; Ünay et al., 2004; Glover et al., 2005; 

Akbar et al., 2008; Bello and Olaoye, 2009; Vivek et al., 2009), disease resistance (da Silva 

and Moro, 2004) and aflatoxin accumulation (Gardner et al., 2007) to estimate GCA and 

SCA effects.     

In breeding programme, the selection of parents and the determination of general and 

specific combining ability and gene action are important. To eliminate undesirable inbred 

lines and select the most desirable ones to constitute various hybrid combinations, the 

general and specific combining ability of the inbred lines and their crosses needs to be 

available. The problem of reduced plant vigour in the temperate LPA mutants needs to be 

overcome. The amount of vigour is often difficult to assess, but knowledge of the linkage 

between LPA and vigour can aid in developing a selection strategy. 

The objectives of this study were to: 

 determine the gene action and combining abilities controlling inheritance of early vigour 

and germination, yield, days to mid-pollen shed (DMP), days to silk emergence (DMS), 

ears per plant (EPP) and grain moisture content (GMC) in crosses involving tropical 

normal endosperm and temperate low phytate germplasm, 

 determine correlations between the seed germination and vigour traits and yield and 

associated traits.  

 

Materials and Methods 

Germplasm 

There were two temperate lpa1-1 (LPA) lines and six tropical normal (Nm) inbred maize lines 

used in this study (Table 5.1). The LPA lines were obtained from Dr V. Raboy (Iowa, U.S.A.) 

and all contain the lpa1-1 gene. There were 28 F1 crosses generated from an eight x eight 

half diallel mating design with no reciprocals and selfs. The F1 hybrids were advanced to the 

F2 generation by selfing in pots in the greenhouse. The F2 seeds were used for seed 

germination and vigour testing. The F1 hybrids were evaluated for yield and associated 

components.   
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The parental inbred lines were divided into two groups: temperate LPA and tropical Nm. The 

means of each group was calculated and compared between the different groups. There 

were three groups of crosses generated between the two groups of parental lines: LPA x 

LPA, LPA x Nm, Nm x Nm. The means of each group was calculated and compared 

between the different groups. The groups were defined as: LPA group has 1.1 mg/g total 

inositol P (23% of total P) and 3.1 mg/g Pi (66% of total P), tropical normal has 3.4 mg/g total 

inositol P (76% of total P) and 0.3 mg/g Pi (7% of total P) (Raboy et al., 2000). 

Table 5.1: Pedigrees of inbred lines used in diallel mating design 

 

 

Standard seed testing 

The standard germination test used was the between-paper method. The seed sample was 

randomly sampled for two replicates of 50 seeds each. The germination bed used was rolled 

paper towel of size 54 cm x 30 cm (Anchor Paper, Agricol (Pty) Ltd, South Africa) (ISTA, 

1999). Each sheet had 50 seeds (1 replication) placed equidistant on the upper half of the 

moistened paper towel with the radical end of the seed pointed toward the bottom end of the 

paper and the embryo end side up. Paper towels were folded in the middle to cover the 

seeds completely. The paper towels were rolled up and placed upright individually in 

polythene bags in a germination chamber. Approximately 2-3 cm distance was maintained 

between the seeds to reduce mutual influence and bacterial infection. The containers were 

labelled with the date, seed name and replicate number and were covered appropriately to 

prevent evaporation. The containers were placed into germination chambers (Labcon growth 

chamber). The between-paper method used a temperature 25±1°C and the seed 

germination measurements taken after seven days. During the period of seed germination, 

Line Pedigree Endosperm type Adaptation 

CM 32 JUG 248 LPA1-1 lpa1-1 temperate  

CM 35 
Ex-USDA- not 
available 

lpa1-1 temperate  

Kenyan Not available normal tropical  

P 1 CML 202 normal tropical  

P 5 CZL 99027 normal tropical  

P 6  CZL 99028 normal tropical  

P 7 CZL 99029/CML 444 normal tropical  

T 4 Not available  normal tropical  
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the chamber was checked daily to ensure suitable conditions for germination and the paper 

towel was maintained at the appropriate moisture and temperature for seven days before 

evaluation and counting. Seeds were visually assessed according to the International Seed 

Testing Association rules for percentage germination (ISTA, 1999).  

Accelerated aging test  

The 100 maize seeds were placed in a petri-dish with moistened filter paper. The seeds 

were incubated in closed petri-dishes in the germination chamber at 42°C (~100% RH) for 

96 hours with regular checking to ensure sufficient moisture in the petri dish was maintained 

(ISTA, 1999). At the end of the aging period, the seeds were evaluated as per standard 

germination test, with two replications of 50 seeds each. The seeds were rated as normal 

and abnormal seedlings and dead seeds. A normal seedling has well developed root and 

shoot systems. An abnormal seedling has any abnormality in their root or shoots system. 

Seeds which were neither hard, fresh or have produced seedlings were classified as dead 

seeds (ISTA, 1999).    

Data collection and analysis 

All dead and defective seedlings were counted. The germinated seedlings were counted and 

weighed. The percentage germination was calculated as follows: (# of normal seedlings / # 

of seeds in sample) x 100. The percentage germinated, dead and abnormal was calculated 

for all the F2 seeds tested. At the counting stage, 25 normal seedlings in each replicate were 

selected at random and the length of the root measured and mean values calculated. The 25 

normal seedlings that were selected for the root length measurement in each replicate was 

again used for shoot measurements and mean values were calculated. These values were 

used to calculate a vigour index. The vigour index of 1-week old seedlings was calculated as 

VI = [(shoot length (mm) + root length (mm)] x percentage germination (Dhindwal et al., 

1991). The fresh weight of the germinated seedlings were taken at the counting stage and 

the seedling mass was subjected to 80°C for 24 hours to dry before the seedling dry weight 

was measured. General analysis of variance was performed for all data using the SAS 

programme version 9.1 (SAS Institute, 2002). Combining ability estimates were calculated 

for each seedling trait using the Diallel-SAS05 programme (Zhang et al., 2005) in SAS.  

Experimental design and analysis 

The F1 hybrids were evaluated for grain yield and associated components at the Cedara 

Agricultural Institute (Cedara) (1076 masl; 29°31‟ S, 30°17‟ E), Baynesfield Research Farm 

(758 masl; 29°46‟ S, 30°21‟ E) in South Africa and Rattray Arnold Research Station (RARS) 
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(1341 masl, 17°40‟ S, 31°13‟ E) and Kadoma Research Centre (KRC) (1149 masl; 18°19‟ S, 

29°17‟ E) in Zimbabwe. Twenty-eight F1 hybrids were evaluated with 12 commercial hybrids 

(checks) in two seasons at five locations. The trial was replicated twice in a randomized 

block design, with the experimental unit being one row for each entry, 75 cm apart and plant 

to plant distance of 25 cm. In the 2007/2008 season planting was at Cedara and in the 

2008/2009 season at Cedara, Baynesfield, RARS and KRC. Standard cultural practices, 

fertilization and weed control were accomplished according to normal field practices. The 

hybrid checks (PAN) were obtained from Pannar Seed Co (Greytown, South Africa) and 

AGRI from Afgri (Pietermaritzburg, South Africa). 

Yield (t ha-1) of shelled grain (adjusted to 12.5% H2O) was measured on the whole row 

basis, and relative yield for each hybrid was calculated as a percentage of the mean of the 

checks (Relative yield) and a percentage of the early maturing check (PAN6114) as relative 

yield (early).  Mid-pollen shed (DMP) and silk emergence (DMS) dates were estimated as 

number of days from planting to when 50% of the plants were shedding pollen and had silks 

emerged, respectively. Prolificacy or number of ears plant-1 (EPP) was determined as the 

number of ears averaged over number of plants plot-1. Grain moisture content (GMC) was 

measured at harvest (Dickey-John moisture meter) using shelled grain. General analysis of 

variance was performed for all hybrid data including check hybrids using the SAS 

programme version 9.1 (SAS Institute, 2002). Combining ability estimates were calculated 

for each yield and associated traits using the Diallel-SAS05 programme (Zhang et al., 2005) 

in SAS. Pearson‟s correlation analysis was performed with the PROC CORR procedure in 

SAS programme version 9.1 (SAS Institute, 2002).  

 

Results 

Gene action  

Under both standard germination and accelerated aging conditions, the entry, GCA and SCA 

effects were significant (P≤0.001) for all the seed traits of germination percentage, seedling 

dry weight, average root length, average shoot length and vigour index (Table 5.2). 

For yield and associated traits, the environment and entry effects were significant (P≤0.001). 

The GCA, Environment*Entry and GCA*Environment effects were significant (P≤0.001) for 

DMS, DMP and yield. EPP had significant GCA, SCA and GCA*Environment effects 

(P≤0.005). GMC showed significant effects at the 1% level for GCA*Environment and 

SCA*Environment effects and at the 5% level for GCA effects. Both DMS and DMP had 

significant SCA effects at the 1% level with yield at the 5% level (Table 5.3).  
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The ratio of GCA/SCA sum of squares was in favour of SCA for all seed germination and 

vigour traits under both environments, showing predominance of non-additive gene action 

(Table 5.4). The ratio of GCA/SCA sum of squares was in favour of GCA for yield and 

associated traits, showing predominance of additive gene action (Table 5.5).  

 

Combining ability 

General combining ability  

Positive GCA effects were desired for all seed germination and vigour traits as well as yield 

and EPP traits. For DMS, DMP and GMC, negative GCA effects were required. Line CM 32 

showed positive GCA effects under standard conditions for all seed germination and vigour 

traits except dry weight (Table 5.4). There were negative GCA effects for average root length 

and vigour index under accelerated aging conditions. However for germination percentage 

and seedling dry weight, the GCA effects increased under accelerated aging conditions, 

showing stress tolerance for these two traits. Line CM 35 showed negative GCA effects for 

all seed germination and vigour traits under both conditions except for average shoot length.   

Both P 6 and T 4 showed negative GCA effects for all seed germination and vigour traits 

under both conditions. The inbred lines Kenyan and P 1 showed positive and increased GCA 

effects for germination percentage, seedling dry weight and average root length. Line P 1 

showed a negative GCA effect under standard conditions which increased to positive under 

accelerated aging conditions for average shoot length and vigour index.  Line Kenyan had 

similar GCA effects under both conditions for average shoot length and vigour index. Lines 

P 5 and P 7 showed decreased GCA effects for germination percentage and seedling dry 

weight under accelerated aging conditions, however the lines showed positive increased 

GCA effects for average root length, average shoot length and vigour index.     

The LPA lines showed negative GCA effects for all yield and associated traits, especially 

CM 32 with both negative and significant GCA effects for all traits (Table 5.5). Line CM 35 

showed lower negative SCA effects for all traits and same SCA effect for GMC. The normal 

lines generally showed positive GCA effects with the exceptions of negative GCA effects of 

P 7 for EPP and T4 for yield and GMC traits. The lines, Kenyan, P1, P5 and P6 had positive 

GCA effects for all yield and associated traits. Line P 7 showed positive GCA effects for all 

yield and associated traits except GMC. Line T 4 showed negative GCA effects for yield and 

GMC.   
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Table 5.2: Mean square for seed traits of an eight parent diallel evaluated under standard germination conditions (Std) and accelerated aging 

conditions (AA) 

Source df 
Germination  

percentage 

Seedling dry  

Weight (g) 

Average Root  

Length (mm) 

Average Shoot  

Length (mm) 

Vigour  

Index 

  Std AA Std AA Std AA Std AA Std AA 

Rep 1 50.16 30.02 0.12 0.00 172.90 3542.52 174.31 1917.63 1282.95 7687.38 

Entry 27 1237.82** 1516.89** 30.51** 39.68** 2063.75** 3648.89** 1808.98** 1936.69** 7949.09** 10809.00** 

GCA 7 1300.07** 2037.97** 43.02** 61.75** 2330.36** 3845.89** 2169.78** 2623.74** 10720.05** 13028.12** 

SCA 20 1216.04** 1334.51** 26.13** 31.95** 1970.43** 3579.94** 1682.71** 1696.22** 6979.26** 10032.323** 

Error 27 114.68 84.54 2.26 1.83 397.48 500.87 208.65 320.87 872.11 1041.77 

 

Table 5.3: Mean square for days to silk emergence (DMS), days to mid-pollen shed (DMP), yield (t ha-1), number of ears per plant (EPP) and 
grain moisture content (GMC) traits of an eight parent diallel evaluated in 5 locations over two seasons 

Source df DMS (d) DMP (d) YIELD (t ha
-1

) EPP GMC (%) 

Env 4 4140.41** 5212.49** 597.01** 0.18** 739.99** 

Rep(Env) 5 1.80 1.74 8.69 0.006 1.40 

Entry 27 278.01** 262.71** 56.74** 0.12** 17.20** 

GCA 7 1009.18** 955.38** 184.83** 0.41* 66.89* 

SCA 20 22.10** 20.27** 11.92* 0.08* 4.40 

Env x Entry 108 14.38** 16.21** 8.17** 0.02 3.88** 

GCA x Env 28 38.49** 45.82** 15.43** 0.04* 7.12** 

SCA x Env 80 5.94 5.84 5.63 0.02 3.50 

Error 135 4.54 4.30 4.04 0.01 2.06 

** P≤0.001, * P≤0.005  
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Table 5.4: Percent contribution of GCA and SCA sum of squares to entry sum of squares and GCA effects for seed traits under standard 
germination (Std) and accelerated aging conditions (AA) 

 
Endosperm 

Classification 

Germination  

percentage 

Seedling dry  

weight (g) 

Average Root 

 Length (mm) 

Average Shoot  

Length (mm) 
Vigour Index 

  Std AA Std AA Std AA Std AA Std AA 

Percent contribution of GCA and SCA sum of squares to entry sum of squares 

GCA  27 35 37 40 29 27 31 35 35 31 

SCA  73 65 63 60 71 73 69 65 65 69 

GCA effects for seed testing traits 

CM 32 LPA 1.23 2.50 -0.04 0.09 15.43 -1.36 10.67 3.96 18.23 -4.01 

CM 35 LPA -2.58 -3.88 -0.95 -0.98 -8.32 -1.37 1.54 3.63 -16.23 -6.97 

Kenyan Nm 4.98 11.75** 0.80 1.51** 4.92 9.79 10.55 10.88 23.71 22.24 

P 1 Nm 3.36 12.44** 1.81** 2.99** 0.19 17.53 -4.62 4.57 -8.47 19.44 

P 5 Nm 4.36 3.00 0.25 -0.23 6.72 11.75 6.62 11.84 26.13 32.52* 

P 6 Nm -3.70 -2.38 -0.10 0.28 -15.16 -11.07 -17.98** -17.90** -26.71** -27.93 

P 7 Nm 8.73* 4.13 1.10 0.62 8.31 9.70 2.98 6.48 15.00 20.44 

T 4 Nm -16.39** -27.56** -2.87** -4.28** -12.10 -34.97** -9.75 -23.46** -31.65** -55.72** 

** P≤0.001, * P≤0.005
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Table 5.5: Percent contribution of GCA and SCA sum of squares to entry sum of squares and GCA effects for days to silk emergence (DMS), 

days to mid-pollen shed (DMP), yield (t ha-1), number of ears per plant (EPP) and grain moisture content (%) (GMC) traits 

 

** P≤0.001, * P≤0.005 

 
Endosperm 

Classification 
DMS (d) DMP (d) YIELD (t ha-1) EPP GMC (%) 

Percent contribution of GCA and SCA sum of squares to entry sum of squares 

GCA  94 94 84 65 78 

SCA  6 6 16 35 12 

GCA effects for grain yield and associated traits 

CM 32 LPA -7.7** -7.6* -2.7** -0.1** -1.4** 

CM 35 LPA -5.1** -4.9 -1.2** 0.0 -1.4** 

Kenyan Nm 1.6* 1.7 1.2** 0.1 0.4 

P 1 Nm 2.3** 2.2 0.9** 0.1 0.7 

P 5 Nm 2.8** 2.8 0.1 0.0 0.9* 

P 6 Nm 1.4* 1.4 0.3 0.0 0.9* 

P 7 Nm 3.6** 3.4 1.6** -0.1 0.8 

T 4 Nm 1.0 1.1 -0.3 0.1** -0.9* 
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Specific combining ability effects 

Positive SCA effects were desired for all seed germination and vigour traits as well as yield 

and EPP traits. For DMS, DMP and GMC, negative SCA effects were required. The LPA x 

LPA cross showed increased SCA effects for all traits with negative SCA effects for seedling 

dry weight, average shoot length and vigour index under standard conditions which became 

positive under accelerated aging conditions (Table 5.6).  

There were two LPA x Nm crosses that showed positive SCA effects under both conditions 

(CM 32 x P 7; CM 35 x P 1) and these effects increased under stress conditions. One LPA x 

Nm cross had positive SCA effects under standard conditions, but became negative SCA 

effects under accelerated aging conditions (CM 32 x P 5). The cross CM 32 x P 6 showed 

positive increased SCA effects for germination percentage and average shoot length, with 

positive decreased effects for average root length and vigour index. The cross CM 35 x T 4 

showed increased SCA effects for all traits although average root length and vigour index 

had negative SCA effects under standard conditions. Generally there were eight LPA x Nm 

crosses and nine Nm x Nm crosses that showed negative SCA effects for all traits under 

both conditions.  

There were four Nm x Nm crosses that had positive and increased SCA effects for both 

conditions (Kenyan x P 5; Kenyan x P 6; Kenyan x P 7; P 1 x P 5). Two crosses (P 5 x P 7; 

P 7 x T 4) had positive SCA effects for all traits under both non-stress and stress conditions.      

The LPA x LPA cross showed significant positive SCA effects for DMS and DMP but 

negative SCA effects for yield, EPP and GMC (Table 5.7). In the LPA x Nm group, there 

were eight crosses with positive SCA effects for yield (CM 32 x Kenyan; CM 32 x P 5, CM 32 

x P 6, CM 32 x Kenyan, CM 35 x Kenyan, CM 35 x P 5, CM 35 x P 6, CM 35 x P 7). Four of 

these crosses also had negative SCA effects for DMS and GMC (CM 32 x P 5; CM 32 x P 6; 

CM 35 x P 6; CM 35 x P7). The normal group of crosses all showed positive SCA effects for 

DMP, with seven crosses having positive SCA effects for yield (P 1 x P 5, P 1 x P 7, P 1 x T 

4, P 5 x T 4, P 6 x P 7, P 7 x Kenyan, T 4 x Kenyan). The crosses P1 x P5, P1 x T4 and P 6 

x P 7 showed the highest SCA effects for yield. The crosses, P 1 x T 4 and T 4 x Kenyan 

showed negative SCA effects for DMS, DMP and GMC and positive SCA effects for yield 

and EPP.  

The LPA x Nm crosses showing positive SCA effects for germination and vigour traits also 

had negative SCA effects for yield. The cross CM 32 x P 6 showed negative SCA effects for 

DMS and GMC, positive SCA effects for yield, EPP, germination percentage, average root 

length, average shoot length and vigour index.  



160 
 

Table 5.6: SCA effects of crosses under standard germination conditions and accelerated aging conditions for germination percentage, 
seedling dry weight and average root length, average shoot length and vigour index traits 

Pedigree 
Endosperm  

Classification 

Germination  

percentage 

Seedling dry  

Weight (g) 

Average Root  

Length (mm) 

Average Shoot  

Length (mm) 

Vigour 

 Index 

  Std AA Std AA Std AA Std AA Std AA 

CM 32 x CM 35 LPA x LPA 0.20 3.19 -0.13 0.37 10.32 17.05 -8.36 4.87 -8.35 4.70 

CM 32 x Kenyan LPA x Nm -6.86 -17.44 0.07 -1.52 -16.96 -25.84 -11.47 -10.61 -48.23 -49.73 

CM 32 x P 1 LPA x Nm -14.73 -23.63** -2.04 -4.14** -12.17 -22.16 -23.38 -16.10 -60.53 -50.07 

CM 32 x P 5 LPA x Nm 9.27 -1.19 1.12 -0.18 5.97 -7.24 26.14 -3.46 23.44 -23.35 

CM 32 x P 6 LPA x Nm 5.33 5.69 -0.33 -0.09 8.72 5.65 13.90 16.10 15.47 9.60 

CM 32 x P 7 LPA x Nm 7.89 20.69** 1.77 3.57** 6.73 36.40 13.60 31.28 50.54 90.02* 

CM 32 x T 4 LPA x Nm -63.88** -63.94** -6.77** -7.83** -27.52 -43.74 23.12 -12.58 -49.14 -73.01 

CM 35 x Kenyan LPA x Nm -10.05 -10.56 -2.28 -2.40 -17.17 -22.44 10.65 -13.79 -1.95 -28.46 

CM 35 x P 1 LPA x Nm 10.08 22.75** 3.12 5.32** 32.90 40.43 15.01 21.70 38.92 55.88 

CM 35 x P 5 LPA x Nm -21.92 -39.81** -3.28 -4.96** -15.72 -60.38 -18.64 -39.42 -48.49 -83.98 

CM 35 x P 6 LPA x Nm -13.36 -14.44 -2.67 -2.82 -19.68 -30.60 -6.70 -7.59 -24.85 -30.99 

CM 35 x P 7 LPA x Nm -22.30 -31.94** -3.12 -4.26** -15.56 -43.68 -19.33 -26.12 -54.85 -75.88 

CM 35 x T 4 LPA x Nm 1.31 12.69 2.43 4.35 -27.90 17.30 8.47 22.14 -45.80 19.98 

Kenyan x P 1 Nm x Nm -15.48 -28.88** -2.53 -4.27** -9.85 -55.12 9.44 -26.72 -30.22 -82.13 

Kenyan x P 5 Nm x Nm 10.52 11.56 3.17 3.05* 12.93 21.95 13.29 26.52 13.25 18.67 

Kenyan x P 6  Nm x Nm 32.58** 31.94** 4.48** 5.14** 37.63 51.93 13.07 17.55 65.96 84.25 

Kenyan x P 7 Nm x Nm 20.14 20.44 2.18 2.25 1.83 29.05 20.17 20.53 39.30 59.13 

Kenyan x T 4 Nm x Nm -50.63** -24.69 -2.53 -0.76 -77.49 -67.24 -34.11 -67.00** -104.34 -146.42** 

P 1 x P 5 Nm x Nm 30.14** 31.88** 6.02** 5.82** 1.00 36.77 18.69 23.47 49.83 76.70 

P 1 x P 6 Nm x Nm -8.80 -6.75 -2.73 -2.44 11.48 -3.53 13.33 0.62 3.38 -9.35 

P 1 x P 7 Nm x Nm -16.23 -5.25 0.02 1.22 -28.76 -21.21 -31.58 -20.44 -69.05 -54.35 

P 1 x T 4 Nm x Nm -43.25** -31.00 -4.47 -3.53 -61.90 -24.30 -41.34 -9.39 -128.64 -63.89 

P 5 x P 6 Nm x Nm -61.80** -53.31** -8.17*** -7.42** -91.70** -92.05** -88.96** -69.52** -160.99** -148.82** 

P 5 x P 7 Nm x Nm 14.77 13.19 3.08 1.99 45.92 57.45 30.40 35.08 92.27** 99.23** 

P 5 x T 4 Nm x Nm -35.25 -40.94** 0.03 -0.91 -26.35 -40.13 -1.40 -10.26 -72.02 -69.53 

P 6 x P 7 Nm x Nm -5.17 -0.44 -1.17 -1.07 -5.06 -4.87 2.47 0.75 -22.91 -27.54 

P 6 x T 4 Nm x Nm -37.31* -48.81** -8.78** -10.74** -39.36 -65.85 -38.19 -41.62 -107.94 -114.08 

P 7 x T 4 Nm x Nm 22.13 41.19** 0.47 2.50 90.50** 31.93 60.73* 19.92 116.35 57.66 

** P≤0.001, * P≤0.005 
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Table 5.7: SCA effects of crosses for days to silk emergence (DMS), days to mid-pollen shed (DMP), yield (t ha-1), number of ears per plant 
(EPP) and grain moisture content (GMC) traits 

Pedigree Classification DMS(d) DMP (d) YIELD (t ha
-1

) EPP GMC (%) 

CM 32 x CM 35 LPA x LPA 3.59** 12.50** -0.46 -0.12 -2.05 

CM 32 x Kenyan LPA x Nm 0.51 5.90** 1.14 -0.01 -0.54 

CM 32 x P 1 LPA x Nm -1.26 5.40** -1.40 -0.12 -1.49 

CM 32 x P 5 LPA x Nm -0.49 4.80* 0.47 -0.01 -1.52 

CM 32 x P 6 LPA x Nm -1.89 6.20** 0.60 0.08 -1.36 

CM 32 x P 7 LPA x Nm -1.39 4.20* -1.00 -0.08 0.15 

CM 32 x T 4 LPA x Nm 1.11 6.50** 0.71 0.04 -1.87 

CM 35 x Kenyan LPA x Nm 0.06 3.20* 0.22 -0.13* -1.66 

CM 35 x P 1 LPA x Nm 0.09 2.70* -0.50 -0.06 -0.10 

CM 35 x P 5 LPA x Nm 0.46 2.10 0.14 0.05 -0.49 

CM 35 x P 6 LPA x Nm -0.24 3.50* 0.70 -0.03 -0.97 

CM 35 x P 7 LPA x Nm -1.94 1.50 0.70 0.05 -1.78 

CM 35 x T 4 LPA x Nm -1.84 3.80* -0.86 -0.12 -1.56 

P 1 x Kenyan Nm x Nm 0.01 -3.90* -0.95 -0.17* 1.68 

P 1 x P 5 Nm x Nm 1.01 -5.00** 1.51 -0.06 1.89 

P 1 x P 6 Nm x Nm 0.31 -3.60* -0.23 -0.06 1.86 

P 1 x P 7 Nm x Nm 0.81 -5.60** 0.68 -0.04 1.09 

P 1 x T 4 Nm x Nm -0.79 -3.30* 0.98 0.16* -0.47 

P 5 x Kenyan Nm x Nm -0.43 -4.50** -0.23 -0.14* 1.34 

P 5 x P 6 Nm x Nm 0.57 -4.20* -0.97 0.01 2.17 

P 5 x P 7 Nm x Nm -1.63 -6.20** -0.65 0.06 1.87 

P 5 x T 4 Nm x Nm 0.97 -3.90* 0.13 -0.12 -0.07 

P 6 x Kenyan Nm x Nm -0.43 -3.10 -0.08 -0.10 1.33 

P 6 x P 7 Nm x Nm 1.27 -4.80** 0.90 0.07 2.11 

P 6 x T 4 Nm x Nm 0.87 -2.50 -0.56 0.00 0.26 

P 7 x Kenyan Nm x Nm 1.77 -5.10** 0.06 0.02 1.63 

P 7 x T 4 Nm x Nm 1.27 -4.50** -0.50 0.06 -0.14 

T 4 x Kenyan Nm x Nm -1.13 -2.20 0.17 0.15* -1.34 

** P≤0.001, * P≤0.005 
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Performance of parent inbred lines and classes  

Generally the LPA lines showed the greatest reduction under stress conditions for 

germination percentage and seedling dry weight (Table 5.8). Line CM 35 had a lower 

percentage of abnormal seedlings compared to CM 32, but the same percentage of dead 

seedlings under standard conditions (Appendix 19). However under accelerated conditions, 

CM 32 showed lower percentages of abnormal seedlings to CM 35, with similar percentages 

for dead seedlings (Appendix 19). CM 32 showed lower reductions for average root length, 

average shoot length and vigour index than CM 35.  

The normal lines, P 7 and T 4 showed increased values for all traits except average shoot 

length under stress conditions (Table 5.8 and 5.9). The LPA group showed distinct 

decreased values for all traits under accelerated conditions (Figure 5.1 to 5.5). The Normal 

group of lines showed slight decreased values for germination percentage, average shoot 

length and vigour index, with increased values for seedling dry weight and average root 

length under stress conditions. The Nm x Nm group of lines only showed slightly higher 

average root lengths and seedling dry weight under accelerated aging than the standard 

germination conditions compared to the LPA group of lines which showed a major decrease 

under accelerated aging conditions. Under accelerated aging conditions, germination 

percentage and seedling dry weight were significant (P≤0.001).  

 

 

 

Figure 5.1: Averages of low phytic acid (LPA) and normal (Nm) groups of parental lines for 

germination percentage under standard germination and accelerated aging test conditions 
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Figure 5.2: Averages of low phytic acid (LPA) and normal (Nm) groups of parental lines for 

seedling dry weight under standard germination and accelerated aging test conditions 

 

 

Figure 5.3: Averages of low phytic acid (LPA) and normal (Nm) groups of parental lines for 

average root length under standard germination and accelerated aging test conditions 

 

Figure 5.4: Averages of low phytic acid (LPA) and normal (Nm) groups of parental lines for 

average shoot length under standard germination and accelerated aging test conditions 
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Figure 5.5: Averages of low phytic acid (LPA) and normal (Nm) groups of parental lines for 

the vigour index trait under standard germination and accelerated aging test conditions 

 

Performance of crosses  

The one LPA x LPA cross generally showed a decrease under accelerated aging conditions 

for all traits (Table 5.10). In the LPA x Nm group, there were six crosses with less than 50% 

germination percentage under standard conditions. There were three crosses with >73% 

germination (P 6 x CM 32; CM 32 x T 4; CM 32 x P 1) under both conditions.  The cross P 1 

x CM 35 showed very low germination under standard conditions which was further reduced 

under stress conditions. The crosses of P 6 x CM 35 and P 7 x CM 32 showed an increase 

in germination under accelerated aging conditions although it was still low. For seedling dry 

weight, there were three crosses that showed an increase under accelerated aging 

conditions (P 6 x CM 35; P 7 x CM 32; CM 32 x P 1). There were six crosses showing an 

increase for average root length under accelerated aging conditions (P 5 x CM 35; P 6 x CM 

32; P 6 x CM 35; P 7 x CM 32; P 7 x CM 35; CM 32 x P 1). There were no crosses in the 

LPA x Nm group that showed increases for average shoot length under accelerated aging 

conditions. For the vigour index, there were six crosses with high and or increasing means 

under accelerated aging conditions (P 5 x CM 35; P 6 x CM 32; P 7 x CM 32; P 7 x CM 35; 

CM 32 x P 1; CM 32 x T 4).  

In the Nm x Nm group, there were crosses that showed increased or retained germination, 

seedling dry weight and average root length under stress conditions (P 5 x P 7; P 6 x 

Kenyan; T 4 x P 7). There was one cross (T4 x Kenyan) that showed zero percent 

germination as it produced 100% abnormal seedlings under both standard and stress 

conditions (Appendix 20). The normal line T 4 also showed high negative and mostly 

significant GCA effects for all traits under both conditions (Table 5.4).  
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There were two crosses that showed very high germination percentage (>94%) with 

corresponding positive and high SCA effects for all other traits (P 6 x Kenyan; T 4 x P 7). 

There were significant P values at the 1% level for all seed vigour traits under both 

conditions except average root length under standard conditions. The following four crosses 

had very good means for all seed traits and can be recommended from the LPA x Nm group 

(P 6 x CM 32; P 7 x CM 32; CM 32 x P 1; CM 32 x T 4). For yield and its associated traits, 

the LPA x LPA cross performed lower for all traits compared to the LPA x Nm and Nm x Nm 

groups of crosses (Table 5.11). The relative yield was only 34% of the early maturing check 

(PAN 6114) and 29% of the mean of all the hybrid checks. The LPA x LPA cross had earlier 

flowering dates, lower ears per plant, lowest yield and low grain moisture content than other 

crosses. The check hybrid, PAN 6114 was selected as an early check due to its low DMS 

and DMP as well as low GMC. The LPA x Nm crosses were generally slightly higher than 

the LPA x LPA cross for all traits but lower than the Nm x Nm crosses and the check hybrids. 

The cross CM 32 x P 6 showed early flowering dates with increased yield compared to the 

LPA x LPA cross.  

In the LPA x Nm group, there were four crosses (CM 35 x P 7, CM 35 x Kenyan, CM 35 x 

P 6, CM 32 x Kenyan) that performed above the yield of the early check, with only one cross 

performing better than the relative average yield of all the checks (CM 35 x P 7). In the Nm x 

Nm group, all the crosses performed the same or better than the early check (99-164%). 

There were only two hybrid checks that performed lower than the early check (2-8%). The 

entry and environment*entry effects were significant for all traits (P≤0.001) except for EPP. 

 

Phenotypic Correlations 

There were significant positive correlations between the seed germination and vigour traits 

(P≤0.001) except between seedling dry weight (AA) and average root length (Standard) 

which was positive but not significant (Table 5.12). All the yield and associated traits had 

positive correlations between them. DMS showed positive correlations with yield and other 

associated traits but was only significant for DMP, GMC and yield (P≤0.001). DMP showed 

similar trend with significant correlations with GMC and yield. GMC showed significant and 

positive correlation with yield (P≤0.001). The correlations between the seed vigour traits and 

yield traits were mostly low negative and low positive values. There was a very high 

correlation between DMS and DMP (1.00).      
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Table 5.8: Means of eight parental inbred lines under standard germination (Std) and accelerated aging (AA) for germination percentage, 

seedling dry weight (g) and average root length (mm) traits 

 

 

 

 

 

 

 

 

 

 

 

+ =100 - (standard germination – accelerated aging)  

Entry Germination percentage Seedling dry weight (g) Average Root Length (mm) 

 Std AA % reduction+ Std AA % reduction+ Std AA % reduction+ 

LPA group mean 72.00 17.50  8.63 2.98  86.35 46.63  

CM 32 68.00 32.00 53% 8.60 5.50 36% 68.95 68.25 1% 

CM 35 76.00 3.00 96% 8.65 0.45 95% 103.75 25.00 76% 

Nm group mean 92.00 90.33  11.09 11.65  133.06 138.30  

Kenyan 98.00 91.00 7% 17.50 17.65 -1% 118.80 138.90 -17% 

P 1 95.00 96.00 -1% 11.10 12.45 -12% 143.45 108.60 24% 

P 5 84.00 74.00 12% 9.10 7.60 16% 109.90 129.80 -18% 

P 6 81.00 85.00 -5% 8.35 9.65 -16% 144.50 144.80 0% 

P 7 97.00 98.00 -1% 12.95 14.35 -11% 134.15 151.00 -13% 

T 4 97.00 98.00 -1% 7.55 8.20 -9% 147.55 156.70 -6% 

          

Overall Mean 87.00 72.13  10.48 9.48  121.38 115.38  

P value 0.0017 <0.0001  0.0003 <0.0001  0.1016 0.0403  

CV (%) 5.21 9.26  9.74 7.77  18.85 27.93  

R2 (%) 92.91 98.27  95.59 99.07  74.31 81.14  
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Table 5.9: Means of eight parental inbred lines under standard germination (Std) and accelerated aging (AA) for average shoot length (mm) 

and vigour index traits 

Entry Average Shoot Length (mm) Vigour Index 

 Std AA % reduction+ Std AA % reduction+ 

LPA group mean 76.00 50.40  135.87 85.98  

CM 32 68.05 58.05 15% 115.73 110.98 4% 

CM 35 83.95 42.75 49% 156.00 60.98 61% 

Nm group mean 112.23 100.44  235.40 228.53  

Kenyan 109.90 81.65 26% 224.09 206.85 8% 

P 1 104.90 78.75 25% 236.42 182.12 23% 

P 5 112.85 101.95 10% 201.79 199.67 1% 

P 6 110.90 124.10 -12% 242.10 261.05 -8% 

P 7 111.00 98.15 12% 242.78 246.71 -2% 

T 4   123.80 118.05 5% 265.20 274.80 -4% 

       

Overall Mean 103.17 87.93  210.51 192.89  

P value 0.0148 0.0017  0.0314 0.0165  

CV (%) 10.06 12.75  15.89 22.58  

R2 (%) 88.96 92.93  82.85 86.09  

+ =100 - (standard germination – accelerated aging) 
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Table 5.10: Means for F2 seeds generated under standard germination (Std) and accelerated aging (AA) conditions for germination percentage, 
seedling dry weight (g) and average root length (mm) traits 

Pedigree Classification 
Germination 
percentage 

Seedling dry  
weight (g) 

Average Root 
Length (mm) 

Average Shoot 
Length (mm) 

Vigour Index 

  Std AA Std AA Std AA Std AA Std AA 

CM 32 x CM 35 LPA x LPA 65.00 41.50 5.10 3.10 139.05 55.50 116.05 48.00 185.44 92.48 
P 5 x CM 32 LPA x Nm 45.00 21.00 5.05 2.75 84.55 56.05 85.50 59.60 105.49 81.82 
P 5 x CM 35 LPA x Nm 71.50 63.00 9.60 8.65 78.20 113.50 110.05 97.00 140.57 170.89 
P 6 x CM 32 LPA x Nm 95.00 89.00 12.10 11.75 115.20 139.90 134.00 113.50 239.57 246.04 
P 6 x CM 35 LPA x Nm 9.00 21.00 2.15 6.34 50.00 59.25 56.50 41.41 82.40 36.68 
P 7 x CM 32 LPA x Nm 57.00 64.00 10.95 12.20 79.85 97.40 67.10 66.20 99.04 129.76 
P 7 x CM 35 LPA x Nm 34.00 27.00 3.80 3.55 60.00 74.20 64.50 60.75 90.96 107.66 
T 4 x M 35 LPA x Nm 41.00 26.50 4.45 3.25 102.40 69.85 106.05 72.50 135.39 117.04 
Kenyan x CM 32 LPA x Nm 61.00 54.00 7.85 7.20 88.25 85.15 87.80 64.90 126.94 109.21 
Kenyan x CM 35 LPA x Nm 48.00 17.00 5.95 2.35 82.50 49.15 79.95 34.45 111.21 64.97 
CM 32 x P 1 LPA x Nm 79.00 80.00 10.85 11.65 130.60 136.10 127.60 117.30 245.33 250.68 
CM 32 x T 4 LPA x Nm 89.00 73.00 12.45 9.75 161.10 170.30 140.35 128.95 294.96 296.42 
P 1 x CM 35 LPA x Nm 13.50 2.00 1.50 0.64 88.40 56.15 107.60 73.41 137.41 57.40 
LPA x Nm  53.58 44.79 7.23 6.67 93.42 92.25 97.25 77.50 150.77 139.05 

P 1 x P 5 Nm x Nm 60.00 54.50 6.90 6.85 117.55 105.70 104.15 88.05 155.22 137.95 
P 5 x P 7 Nm x Nm 72.00 84.00 12.00 14.70 124.90 148.00 112.25 105.50 175.79 212.58 
P 5 x T 4 Nm x Nm 41.00 12.00 4.05 1.20 82.85 41.35 89.85 51.65 122.99 85.80 
P 5 x Kenyan Nm x Nm 41.50 32.00 4.30 3.85 56.95 48.30 77.15 53.70 93.77 78.35 
P 6 x P 1 Nm x Nm 60.50 49.50 8.85 7.45 103.50 73.95 110.10 79.80 155.27 112.73 
P 6 x P 7 Nm x Nm 54.00 48.00 8.10 7.60 95.40 63.55 115.70 64.30 146.59 103.78 
P 6 x Kenyan Nm x Nm 95.00 94.00 13.20 14.30 127.55 142.05 105.95 86.10 224.53 222.79 
P 7 x Kenyan Nm x Nm 52.00 56.00 7.00 8.20 96.65 94.30 91.05 62.85 129.77 126.39 
P 1 x P 7 Nm x Nm 51.00 44.00 7.75 6.30 103.55 85.35 83.00 68.00 110.79 109.59 
T 4 x P 6 Nm x Nm 81.00 79.00 12.25 11.70 124.70 134.85 130.80 124.80 224.06 217.66 
T 4 x P 7 Nm x Nm 99.00 100.00 16.10 15.95 108.05 157.45 121.00 115.45 229.06 272.88 
T 4 x Kenyan Nm x Nm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
P 1 x T 4 Nm x Nm 76.00 57.00 9.35 7.05 128.25 94.55 143.75 87.95 229.37 149.38 
P 1 x Kenyan Nm x Nm 64.00 58.50 7.55 7.65 109.15 84.60 106.90 77.75 168.55 121.90 
P 5 x P 6 Nm x Nm 53.50 50.00 5.60 5.50 79.55 77.35 123.05 76.30 167.09 131.04 
Nm x Nm  60.03 54.57 8.20 7.89 97.24 90.09 100.98 76.15 155.52 138.85 
            
P value  <0.0001 <0.0001 <0.0001 <0.0001 0.0014 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Overall Mean  57.45 49.91 7.81 7.61 100.69 94.71 103.62 79.49 154.58 137.28 
CV (%)  18.64 18.42 19.59 14.46 20.17 22.55 14.20 19.39 19.10 23.51 

R
2
 (%)  91.53 94.72 92.61 96.79 77.21 86.69 83.42 85.52 90.17 91.42 
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Table 5.11: Means of F1 hybrids and hybrid checks for grain yield and secondary traits evaluated over five locations over two seasons with 

relative yield to mean of checks and early check (PAN6114) 

Pedigree Classification DMS DMP EPP GMC Yield 
Relative yield to mean 

of checks (%) 
Relative yield to 
early check (%) 

CM 32 x CM 35 LPA x LPA 61.00 62.80 0.81 14.52 2.01 29% 34% 

CM 35 x P 7 LPA x Nm 66.80 68.10 0.98 14.79 7.47 107% 128% 

CM 35 x Kenyan LPA x Nm 66.80 68.80 1.00 14.91 6.59 94% 113% 

CM 35 x P 6 LPA x Nm 66.30 67.70 1.00 15.60 6.17 88% 106% 

CM 32 x Kenyan LPA x Nm 64.60 66.20 1.02 16.03 6.01 86% 103% 

CM 35 x P 1 LPA x Nm 67.50 69.40 1.07 16.47 5.57 79% 95% 

CM 35 x P 5 LPA x Nm 68.40 69.90 1.08 16.08 5.41 77% 93% 

CM 32 x P 6 LPA x Nm 62.00 64.70 1.01 15.21 4.57 65% 78% 

CM 32 x P 7 LPA x Nm 64.70 66.20 0.75 16.71 4.27 61% 73% 

CM 32 x P 5 LPA x Nm 64.80 65.70 0.92 15.05 4.24 60% 73% 

CM 32 x T 4 LPA x Nm 64.60 65.90 1.07 14.70 4.08 58% 70% 

CM 35 x T 4  LPA x Nm 64.30 65.80 1.01 15.01 4.01 57% 69% 

CM 32 x P 1 LPA x Nm 63.50 65.10 0.91 15.08 3.17 45% 54% 

 

LPA x Nm 65.36 66.96 0.99 15.47 5.13 
  

P 1 x P 7 Nm x Nm 76.90 78.30 0.99 17.65 9.55 136% 164% 

P 7 x Kenyan Nm x Nm 77.20 78.40 1.05 18.19 9.23 132% 158% 

P 6 x P 7 Nm x Nm 76.50 77.10 1.00 18.67 9.17 131% 157% 

P 1 x P 5 Nm x Nm 76.30 77.60 1.07 18.45 8.88 127% 152% 

P 1 x T 4 Nm x Nm 72.70 74.50 1.39 16.10 7.95 113% 136% 

P 6 x Kenyan Nm x Nm 72.80 74.00 1.03 17.89 7.79 111% 133% 

P 1 x Kenyan Nm x Nm 74.10 75.50 1.06 18.24 7.52 107% 129% 

P 5 x Kenyan Nm x Nm 74.20 75.60 0.99 17.90 7.44 106% 127% 

T 4 x Kenyan Nm x Nm 71.70 73.60 1.38 15.23 7.44 106% 127% 

P 5 x P 7 Nm x Nm 75.00 76.90 0.99 18.43 7.42 106% 127% 
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Pedigree Classification DMS DMP EPP GMC Yield 
Relative yield to mean 

of checks (%) 
Relative yield to 
early check (%) 

P 1 x P 6 Nm x Nm 74.20 74.60 1.07 18.42 7.34 105% 126% 

P 7 x T 4 Nm x Nm 76.10 77.40 1.09 16.43 7.17 102% 123% 

P 5 x T 4 Nm x Nm 75.00 76.20 1.01 16.50 6.30 90% 108% 

P 6 x T 4 Nm x Nm 73.50 75.40 1.13 16.83 5.81 83% 99% 

P 5 x P 6 Nm x Nm 75.00 76.80 1.04 18.73 5.80 83% 99% 

 

Nm x Nm 74.75 76.13 1.09 17.58 7.65 
  

PAN6227 
 

69.20 70.80 1.40 16.60 8.76 125% 150% 

PAN7M-97 
 

72.10 74.80 1.17 18.28 8.74 125% 150% 

AGRI 
 

72.50 74.10 1.03 17.15 8.23 117% 141% 

PAN8M-95 
 

75.10 78.40 0.93 19.25 7.53 107% 129% 

PAN77 
 

73.60 74.30 1.10 17.56 7.39 105% 127% 

PAN6777 
 

71.20 72.70 1.12 18.16 7.35 105% 126% 

PAN67 
 

73.30 74.80 1.08 18.38 6.80 97% 116% 

PAN6757 
 

70.90 72.20 1.13 18.02 6.22 89% 107% 

PAN6611 
 

72.40 68.50 1.28 16.33 6.16 88% 105% 

PAN6114 
 

64.80 65.70 0.98 14.00 5.84 83% 100% 

PAN6017 
 

70.10 72.30 1.08 14.89 5.71 81% 98% 

PAN6243 
 

73.50 74.80 1.26 16.34 5.39 77% 92% 

 

Hybrid Checks 71.56 72.78 1.13 17.08 7.01 
  

  
       

P value (entry) 
 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
  

P value (env*entry) 
 

<0.0001 <0.0001 0.0031 <0.0001 <0.0001 
  

Overall Mean 
 

70.63 72.04 1.06 16.72 6.56 
  

CV (%) 
 

2.83 4.93 13.99 9.02 24.41 
  

R
2
 (%) 

 

97.55 94.08 76.49 92.58 86.77 
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Table 5.12: Pearson‟s phenotypic correlation coefficients for germination percentage (Germ %), seedling dry weight (g) (DW), average root 

length (mm) (ARL), average shoot length (ASL) and vigour index (VI) seed traits under standard (Std) and accelerated aging conditions (AA) 

and days to silk emergence (DMS), mid-pollen shed (DMP), yield (t ha-1), number of ears per plant (EPP) and grain moisture content (GMC) 

traits 

 

Germ %  

Std 

Germ %  

AA 

DW 

Std 

DW 

AA 

ARL 

Std 

ARL 

AA 

ASL 

Std 

ASL 

AA 

VI 

Std 

VI 

AA DMS DMP EPP GMC Yield 

Germ % Std 1.00               

Germ % AA 0.92** 1.00              

DW Std 0.93** 0.95** 1.00             

DW AA 0.80** 0.95* 0.92** 1.00            

ARLStd 0.79** 0.66* 0.68** 0.54 1.00           

ARL AA 0.86** 0.92** 0.90** 0.89** 0.73** 1.00          

ASL Std 0.76** 0.63* 0.63* 0.48 0.86** 0.67** 1.00         

ASLAA 0.81** 0.81** 0.82** 0.75** 0.76** 0.92** 0.82** 1.00        

VI Std 0.86** 0.77** 0.77** 0.64* 0.89** 0.82** 0.91** 0.87** 1.00       

VI AA 0.90** 0.90** 0.90** 0.83** 0.73** 0.96** 0.72** 0.92** 0.88** 1.00      

DMS 0.02 0.11 0.10 0.14 -0.07 0.00 0.00 0.01 -0.08 -0.03 1.00     

DMP 0.03 0.12 0.11 0.15 -0.07 0.01 0.01 0.02 -0.07 -0.02 1.00** 1.00    

EPP -0.09 -0.09 -0.08 -0.13 -0.18 -0.08 -0.04 -0.02 0.01 -0.05 0.39 0.42 1.00   

GMC 0.11 0.25 0.17 0.28 0.06 0.09 0.14 0.11 -0.01 0.01 0.82** 0.82** 0.06 1.00  

Yield -0.12 -0.01 -0.02 0.04 -0.22 -0.09 -0.21 -0.17 -0.26 -0.19 0.84** 0.84** 0.44 0.67* 1.00 

** P≤0.001, * P≤0.005 
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Discussion 

In this study there was predominately non-additive gene action present for germination 

percentage, seedling dry weight, average root length, average shoot length and vigour index 

which was the same findings of other germination and vigour studies (Barla-Szabo et al., 

1990; Akram et al., 2007; Chapi et al., 2008) while other studies on other crops have found 

mainly additive gene action (Cho and Scott, 2000; Sadeghian and Khodaii, 1998) for these 

traits. Due to significant environment and entry effects for all yield and associated traits and 

GCA x Environment interactions for all traits, some hybrids were performing differently in the 

environments suggesting the need to validate these hybrids performance over many 

locations over more seasons. Due to the predominance of non-additive gene action, superior 

SCA effects can be exploited for hybrid production.  

This study found significant GCA and SCA effects for DMS, DMP (P≤0.001), EPP (P≤0.005) 

and yield (P≤0.001, P≤0.005) therefore both additive and non-additive gene action was 

present for these traits. GMC only showed significant GCA effects (P≤0.005) and therefore 

only additive gene action was present for this trait. Other studies on maize have found DMP 

and DMS to be additive gene action (Glover et al., 2005; Bello and Olaoye, 2009) which 

confirms the results found in this study. Malik et al. (2004) found significant GCA effects for 

EPP (P≤0.001) and less significant SCA effects (P≤0.05) suggesting that there is both 

additive and non-additive gene action with predominance of additive gene effects. However 

in this study, EPP was found to have significant GCA and SCA effects (P≤0.001) showing 

both additive and non-additive gene action for this trait. GMC was found to be under additive 

gene action also found by Malik et al. (2004). The traits DMS, DMP, EPP and yield can be 

improved by either selection of lines with superior GCA effects or selection of crosses that 

show superior SCA effects. Due to GMC having only additive gene action, the breeding 

strategy would be the selection of lines with positive and high GCA effects.   

This study also found yield to be under both additive and non-additive gene action, however 

there was predominance of additive gene action which was also found by studies on maize 

(Muraya et al., 2006; Ahsan et al., 2007; Derera et al., 2008; Vivek et al., 2009). Other 

studies on maize have found both additive and non-additive gene action present for this yield 

(Malik et al., 2004; Ünay et al., 2004; Glover et al., 2005; Muraya et al., 2006; Ahsan et al., 

2007; Akbar et al., 2008; Derera et al., 2008; Bello and Olaoye, 2009; Vivek et al., 2009). For 

maize under stress conditions such as drought and high temperatures, yield showed 

significant GCA effects indicating predominance of additive gene action (Derera et al., 2007; 

Akbar et al., 2008).      
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The LPA line, CM 32 showed stress tolerance for germination percentage and seedling dry 

weight. Kenyan, P 1, P 5 and P 7 had almost all positive GCA effects for all traits under both 

standard and accelerated aging conditions; hence these four normal tropical lines and one 

LPA line can be used as sources in breeding for improved germination and vigour. There 

were two LPA x Nm crosses that showed positive SCA effects under both conditions (CM 32 

x P 7; CM 35 x P 1) and these effects increased under accelerated aging conditions. These 

two crosses show stress tolerance and can be used for the development of inbred lines by 

using breeding strategies that exploit SCA effects, e.g. recurrent selection for specific 

combining ability. The LPA x LPA cross showed increased SCA effects for all traits with 

negative SCA effects for seedling dry weight, average shoot length and vigour index under 

standard conditions which became positive under accelerated aging conditions, showing 

some degree of stress tolerance.  

Generally the LPA lines showed the greatest reduction under accelerated aging conditions 

for germination percentage and seedling dry weight. Only the Nm group of lines showed a 

slight increase in average root length and seedling dry weight under accelerated ageing 

conditions. Similar observations were reported for maize (Chun et al., 2005; Kausar and 

Shahzad, 2006), pearl millet (Radhouane, 2007) and wheat (Khan et al., 2010). These lines 

could be showing an adaptative response to the stress conditions. However, further studies 

are required to determine the exact cause of this observation. Other studies have also found 

that the speed of germination, seedling length and dry weight had greatest response to 

accelerated aging than standard germination (Santipracha et al., 1997; Basu et al., 2004) as 

seen with the LPA lines in this study. The soybean LPA mutants showed reduced field 

emergence than the WT with the emergence of lines significantly influenced by the 

environment in which the seed was produced for planting (Meis et al., 2003).     

Both these LPA lines showed negative GCA effects for all yield and associated traits, and 

can not be recommended for improvement of yield and associated traits. The normal lines 

Kenyan, P1, P5 and P6 had positive GCA effects for all yield and associated traits and can 

be recommended for breeding for improved yield and associated traits. The LPA x LPA 

cross showed significant and positive SCA effects for DMS and DMP with negative SCA 

effects for yield, EPP and GMC and can be used to improve flowering dates. In the LPA x 

Nm group, there were eight crosses with positive SCA effects for yield (CM 32 x Kenyan; CM 

32 x P 5, CM 32 x P 6, CM 32 x Kenyan, CM 35 x Kenyan, CM 35 x P 5, CM 35 x P 6, 

CM 35 x P 7). Four of these crosses also had negative SCA effects for DMS and GMC 

(CM 32 x P 5; CM 32 x P 6; CM 35 x P 6; CM 35 x P7) that can be used in breeding 

programmes by selecting inbred lines with positive and high GCA effects. 
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The selection of negative SCA effects for DMS and DMP imply selection for early flowering 

and negative SCA effects for GMC imply quick drying of the grain and therefore lower 

moisture content in the grain at harvest. In the group of Nm x Nm crosses,  P 1 x T 4 and T 4 

x Kenyan and showed negative SCA effects for DMS, DMP and GMC and positive SCA 

effects for yield and EPP and show SCA effects for earlier flowering dates, quick dry down of 

grain, improvement of yield and increased prolificy of ears. The breeding strategy would be 

the selection of lines with positive and high GCA effects.   

The cross CM 32 x P 6 showed the desired negative SCA effects for DMS and GMC, 

positive SCA effects for yield, EPP, germination percentage, average root length, average 

shoot length and vigour index and should be included in breeding programme to improve 

yield and seed germination and vigour while retaining earliness and quick dry down of grain. 

Breeding strategies that exploit GCA effects and SCA effects should be used such as 

selection of lines with positive and high GCA effects and recurrent selection for specific 

combining ability.    

It was observed that there was one cross (T4 x Kenyan) that showed zero percent 

germination as it produced 100% abnormal seedlings under both standard and stress 

conditions (Appendix 20). The one parental line T 4 showed high negative and mostly 

significant GCA effects for all traits under both conditions (Table 3). There seems to be some 

negative interaction between T 4 and Kenyan lines resulting in germination of abnormal 

seedlings.       

Generally the LPA lines showed the greatest reduction of means of germination and vigour 

traits under accelerated aging conditions. The germination of the LPA lines are very inferior 

compared to the threshold for certified seed (>90%) and needs to be significantly improved. 

While there have been no accelerated aging tests on the lpa1-1 mutant lines, there have 

been two studies on LPA mutant line lpa241 which is allelic to lpa1-1 (Pilu et al., 2005) for 

germination and vigour that confirm the lower germination rate. Pilu et al. (2003) found 30% 

decrease in germination rate while Doria et al. (2009) found 72±15% germination under 

standard conditions (26% reduction compared to WT). The accelerated aging test was able 

to further emphasize the low vigour of the LPA line by finding the germination percentage 

decreased to 45±14% (38% reduction compared to the wild type of 9%) (Doria et al., 2009). 

It was also found in this study that lpa241 seed had higher moisture content than the wild 

type and this resulted in faster aging of the LPA seed, which may explain the differences in 

germination capabilities between lpa241 and wild type seed (Doria et al., 2009).  
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The accelerated aging test has been shown to have varying reductions (84% to 36.3%) of 

germination in maize inbred lines (Byrum and Copeland, 1995; Lovato et al., 2005; Noli et 

al., 2008). The varying results could be due to the genotype efficiency to the stress test, 

probably due to their genetically determined vigour traits (Gutièrrrez et al., 1993). However 

this test seems to effective for determining seed vigour of maize, rice and soybean LPA lines 

(Meis et al., 2003; Spear and Fehr, 2007; Zhao et al., 2008; Doria et al., 2009). Studies on 

soybean LPA lines found the accelerated aging test effective in identifying lines with inferior 

field emergence (Spear and Fehr, 2007) and also effective in differentiating the field 

emergence potential of soybean LPA lines (Meis et al., 2003). The aging tests evaluated 

storability of the rice LPA mutants and found that the LPA mutants lost their ability to 

germinate faster than their WT parents, therefore there should be special requirements for 

LPA seed storage (Zhao et al., 2008).  

This study found larger yield reduction for the LPA x LPA cross (relative yield of 34% of the 

early check (PAN 6114) and 29% of the mean of all the hybrid checks) than previously 

reported. Previous studies on yield assessment on maize LPA lines showed a reduction of 5 

and 15% compared to the highest yielding commercial varieties (Raboy, 2000) while in rice 

grain yield was reduced to 12.5-25.6% (Zhao et al., 2008) and wheat LPA mutants had 

reduced grain yield of between 8-25% (Guttieri et al., 2006). This LPA x LPA cross however 

showed earlier flowering dates, high ears per plant, lowest yield and low grain moisture 

content than other crosses. The LPA x Nm cross CM 32 x P 6 showed early flowering dates 

with increased yield compared to the LPA x LPA cross and the breeding strategy would be 

the selection of lines with positive and high GCA effects due to the additive effects of DMS, 

DMP and yield.   

There were three LPA x Nm crosses identified in this study that showed relatively high 

means for both the seed germination and vigour traits and the yield and associated traits. 

The cross CM 32 x Kenyan had 103% relative yield to the early check with 61% germination 

under standard conditions which decreased to 54% under accelerated aging conditions but 

retained seedling dry weight and average root length and slight decreases for average shoot 

length and vigour index under accelerated aging conditions. There were two crosses that 

had high percentages of the relative yield of the early check with high germination 

percentages (P 6 x CM 32: 95% standard, 89% AA, 78% relative yield of early check; CM 32 

x T 4: 89% standard, 73% AA, 70% relative yield of early check). These two LPA x Nm 

crosses show improvements to the means of the seed germination and vigour and yield 

traits compared to the LPA x LPA cross. These crosses can be used to improve seed 

germination and vigour as well as yield using recurrent selection for specific combining 
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ability in a breeding programme by developing lines which show SCA effects when 

combined with other inbreds.    

There were significant positive correlations between the seed germination and vigour traits 

and between the yield and associated traits. The high correlation between DMS and DMP 

(1.00) implies that only of one of these traits can be used to predict both traits. The high and 

significant correlations of yield with DMS, DMP and GMC imply that high yield is associated 

with longer growing cycles. In this study positive correlations were found between yield and 

EPP (Yousuf and Saleem, 2001; Broccoli and Byrak, 2004; Derera et al., 2007), DMS and 

GMC (Odiyi, 2007), DMP and DMS with EPP (Yousuf and Saleem, 2001) yield with DMP 

(Samanci, 1996; Yousuf and Saleem, 2001) and DMS with yield (Yousuf and Saleem, 2001) 

which correlates with the findings of other studies on maize.  

This study confirmed the lower germination and vigour of the LPA lines compared to normal 

inbred lines. The advantages of the temperate LPA lines were also shown i.e. early flowering 

and low moisture content at harvest. Due to their low yield capacity, these LPA lines cannot 

be used directly in the tropical environment due to their temperate adaptability. The flowering 

of the crosses with LPA parent was earlier than crosses with Nm and QPM parents. The 

LPA x LPA cross also showed the lowest grain yield compared to LPA x Nm and Nm x Nm 

crosses, confirming the low yield capacity of LPA x LPA. The LPA x LPA crosses also 

exhibited the lowest GMC, thereby confirming their quick dry down of the grain at harvest. 

There were some promising LPA x Nm crosses identified with high germination and vigour 

traits as well as high yield and associated traits. Due to the predominance of SCA effects for 

seed germination and vigour traits, breeding methods that exploit SCA effects can be used, 

e.g. recurrent selection for specific combining ability. Inbred lines can be developed which 

show SCA effects when combined with other inbreds. This will aid in breeding for improved 

germination and yield with retaining the earliness and quick dry down of grain at harvest of 

the temperate material.  

 

Conclusions 

The following conclusions could be drawn from this study: 

 Both additive and non-additive gene effects were significant with SCA effects 

generally superior to GCA effects, indicating that genes with non-additive effects 

were more important for both seed germination and vigour.  
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 For days to mid-silking (DMS), days to mid-pollen shed (DMP), yield and ears per 

plant (EPP) traits, there were both additive and non-additive gene action present, 

with additive gene action present for grain moisture content (GMC), with 

predominance of additive gene action present for all yield and associated traits.  

 For traits showing predominant additive gene action; lines can be selected for 

breeding that have for good combining ability for these traits and for traits showing 

predominance of non-additive gene effects; this material can also be useful in a 

breeding programme to develop hybrids. 

 The LPA line, CM 32 showed increased SCA values under accelerated aging 

conditions for germination and seedling dry weight thereby indicating stress 

tolerance, while normal lines, Kenyan, P 1, P 5 and P 7 had positive GCA effects for 

all seed germination and vigour traits hence they would be useful sources of 

breeding for improved germination and vigour. 

 In the LPA x Nm group, there were four crosses with the desired positive SCA effects 

for yield and negative SCA effects for DMS and GMC (CM 32 x P 5; CM 32 x P 6; 

CM 35 x P 6; CM 35 x P7), and three LPA x Nm crosses that showed improvements 

to the means of germination and vigour and yield traits (CM 32 x Kenyan, P 6 x CM 

32, CM 32 x T 4). The inbred lines can be selected for breeding due to the additive 

gene action of yield and associated traits. Also due to the non-additive gene action of 

the seed germination and vigour traits, inbred lines can be developed that show SCA 

effects when combined with other inbreds. 

 There were positive correlations between the seed germination and vigour traits, with 

yield positively and significantly correlated to DMS, DMP and GMC therefore high 

yield was associated with long growing cycles.  
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Appendix 19: Means of germination, abnormal and dead percentages of eight 

parental lines under standard (Std) and accelerated aging (AA) conditions 

Entry Standard conditions Accelerated aging conditions 

 

Germination  

% 

Abnormal 

% 

Dead  

% 

Germination  

% 

Abnormal 

% 

Dead  

% 

CM 32 68.00 16.00 16.00 32.00 55.50 12.50 

CM 35 76.00 7.00 17.00 3.00 87.00 10.00 

Kenyan 98.00 0.00 2.00 91.00 1.00 8.00 

P 1 95.00 0.00 5.00 96.00 1.00 3.00 

P 5 84.00 6.00 10.00 74.00 12.00 14.00 

P 6 81.00 14.00 5.00 85.00 12.00 3.00 

P 7 97.00 2.00 1.00 98.00 1.00 1.00 

T 4 97.00 1.00 2.00 98.00 2.00 0.00 

       

P value 0.0017 0.0001 0.0289 <0.0001 <0.0001 0.0689 

Overall 

Mean 
87.00 5.75 7.25 72.13 21.44 6.44 

CV (%) 5.21 29.40 57.11 9.26 18.78 65.23 

R
2
 (%) 92.91 96.62 82.93 98.27 99.23 78.34 
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Appendix 20: Mean values for germination, abnormal and dead percentages 
under standard (Std) and accelerated aging (AA) conditions for crosses 
between low phytic acid and normal inbred lines 
 Standard conditions Accelerated aging conditions 

Pedigree 
Germination  

% 

Abnormal  

% 

Dead  

% 

Germination  

% 

Abnormal  

% 

Dead  

% 

P 1 x P 5 60.00 10.00 30.00 54.50 17.50 28.00 

P 5 x P 7 72.00 2.00 26.00 84.00 0.00 16.00 

P 5 x T 4 41.00 31.00 28.50 12.00 80.00 8.00 

P 5 x Kenyan 41.50 28.50 30.50 32.00 45.00 23.00 

P 5 x CM 32 45.00 17.00 38.00 21.00 50.00 29.00 

P 5 x CM 35 71.50 3.00 25.00 63.00 18.00 19.00 

P 6 x P 1 60.50 12.00 27.00 49.50 23.50 26.50 

P 6 x P 7 54.00 14.00 32.00 48.00 32.00 20.00 

P 6 x Kenyan 95.00 1.00 4.00 94.00 4.00 2.00 

P 6 x CM 32 95.00 1.00 4.00 89.00 8.00 3.00 

P 6 x CM 35 9.00 69.00 22.00 21.00 62.00 17.00 

P 7 x Kenyan 52.00 18.00 30.50 56.00 24.00 20.00 

P 7 x CM 32 57.00 8.00 35.00 64.00 15.00 21.00 

P 7 x CM 35 34.00 38.00 28.00 27.00 53.00 20.00 

P 1 x P 7 51.00 10.00 39.00 44.00 29.00 27.00 

T 4 x P 6 81.00 7.00 12.00 79.00 5.00 16.00 

T 4 x P 7 99.00 1.00 0.00 100.00 0.00 0.00 

T 4 x Kenyan 0.00 100.00 0.00 0.00 100.00 0.00 

T 4 x CM 35 41.00 25.00 34.00 26.50 56.00 17.50 

P 1 x T 4 76.00 8.00 16.00 57.00 24.00 19.00 

Kenyan x CM 32 61.00 12.00 27.00 54.00 19.00 27.00 

Kenyan x CM 35 48.00 21.00 31.00 17.00 57.00 26.00 

CM 32 x P 1 79.00 16.00 5.00 80.00 19.00 1.00 

CM 32 x T 4 89.00 9.00 2.00 73.00 26.00 1.00 

CM 32 x CM 35 65.00 7.00 28.00 41.50 47.00 11.50 

P 1 x Kenyan 64.00 14.00 22.00 58.50 16.00 25.50 

P 1 x CM 35 13.50 57.50 29.00 2.00 82.00 16.00 

P 5 x P 6 53.50 27.50 19.00 50.00 35.00 15.00 

       

P value <0.0001 <0.0001 
0.000

2 
<0.0001 <0.0001 0.0013 

Overall  mean 57.45 20.27 22.30 49.91 33.82 16.25 

CV (%) 18.64 31.43 37.21 18.42 34.64 45.09 

R
2
 (%) 91.53 96.15 80.92 94.72 90.81 76.91 
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Chapter Six 

Grain yield and associated traits analysis in diallel crosses among 

normal endosperm, low phytic acid (LPA) and quality protein maize 

(QPM) inbred lines  

Abstract 

Maize is a staple crop in many countries in the world. Due to its food security importance, 

not only does the yield need to be improved, but also the nutritional status of the crop. Maize 

contains high levels of phytic acid and low levels of amino acids lysine and tryptophan. 

Monogastric consumers such as humans and pigs have the problem of phytic acid inhibiting 

absorption of essential minerals and not being able to produce the amino acids, lysine and 

tryptophan. There are low phytic acid (LPA) mutant lines which contain 66% reduction in 

phytic acid (lpa1-1) and quality protein maize (QPM) lines which contain twice the amount of 

lysine and tryptophan found in normal lines. A 10 x 10 half diallel was made between four 

temperate LPA, three tropical QPM and three tropical normal inbred lines. The F1 hybrids 

were evaluated over two seasons and six locations for field evaluation. There were both 

additive and non-additive gene action effects for NCLB, GLS and PLS and for DMS, DMP, 

EPP, GMC and yield, there is predominance of additive gene action. The LPA lines were 

early flowering and having quick dry down but all showed negative and significant GCA 

effects for yield. The QPM and normal lines all showed positive GCA effects for yield. There 

were five crosses that showed desired negative SCA effects for DMS, DMP and GMC, 

negative SCA effects for at least one of the three diseases and positive SCA effects for EPP 

and yield (CM 31 x T 3; CM 33 x T2; CM 31 x QPM 6; CM 33 x QPM 7; T 2 x T 3). The cross 

CM 31 x T 3 also showed negative SCA effects for all three diseases and was the most 

resistant of the crosses. The yield of the LPA x LPA, LPA x Nm and LPA x QPM group of 

crosses is much lower than the check hybrids (-67% to -32%) showing the need for yield 

improvement of the LPA combinations, with comparable yields for the QPM and Nm groups 

to the check hybrids. The groups with LPA combinations showed the highest EPP ratio and 

lowest GMC compared to the other groups and checks, retaining the earliness and quick dry 

down of grain at harvest of the LPA temperate background. The LPA x LPA, LPA x Nm and 

LPA x QPM groups did not show much difference in disease scores to GLS and PLS 

compared to the other groups, however there was slightly more susceptibility to NCLB 

compared to the other groups. Phenotypic correlations showed a very high and significant 

positive correlation between DMS and DMP showing the ability to only use of these traits for 

selection and it would be an accurate indicator of the other trait. Yield was negatively 
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correlated with all three diseases showing that increased incidence of diseases lead to 

decreased yield. Yield was positively associated with later maturity, higher ear prolific ratio 

and higher GMC therefore higher yield is associated with longer growing cycles.  

Keywords:  grain yield, low phytic acid, quality protein maize  

 

Introduction 

Maize is a subsistence crop in many parts of the world. There are millions of people, 

especially in rural communities that are dependent on maize as a staple crop with little or no 

other supplements. Due to its food security importance, not only does the yield need to be 

improved, but also the nutritional status of the crop. Maize contains high levels of phytic acid 

which inhibits absorption of essential minerals (iron, zinc, calcium, potassium and 

magnesium) in monogastric consumers. Much of the phosphorus (P) in the grain is in the 

form of phytates, complex of phytic acid and other minerals (Raboy, 1997) of which >80% of 

phytates are found in the germ with the remainder in the aleurone (Raboy et al., 2001). 

Monogastric consumers and animals do not have the enzyme phytase and therefore cannot 

degrade phytate P (Ertl et al., 1998). Their diets have to be supplemented with either P or 

the enzyme phytase to degrade phytic acid. Thus diets high in phytic acid may lead to 

nutrient deficiencies (Brown and Solomons, 1991).  

The leading source of P pollution from agricultural sources is animal waste which is applied 

as manure/fertilizer to the soil to enhance fertility for crops. In some cases, the P application 

can exceed the crop‟s ability to take up the added P, and this can result in an accumulation 

of P in the soil, resulting in run-off and leaching into surface waters (Ertl et al., 1997). The 

reduction of phytic acid in grains can help improve the bio-availability of essential minerals to 

monogastric consumers and also reduce the excretion of P by animals and thereby help 

reduce environmental pollution by P.    

In the maize lpa1-1 mutants show a 66% reduction in phytic acid P (Raboy, 2000). There is 

1.1 mg/g total inositol P (23% of total P) and 3.1 mg/g Pi (66% of total P) in the lpa1-1 

mutant compared to the normal maize of 3.4 mg/g total inositol P (76% of total P) and 0.3 

mg/g Pi (7% of total P) (Raboy et al., 2000). The yields of these lines have also been 

reduced to between 5 and 15% of the highest yielding commercial varieties (Raboy, 2000). 

These LPA mutants have inferior agronomic and seed viability than their wild-type (WT) 

parents, leading to yield reduction (Ertl et al., 1998; Raboy et al., 2000) due to reduced seed 

weights and low vegetative growth. The reduced yield shown by maize lpa1-1 mutant lines 
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has also been observed in other LPA mutants in barley (Bregitzer and Raboy, 2006), rice 

(Zhao et al., 2008) and wheat (Guttieri et al., 2006).  

Quality protein maize (QPM) lines contain higher levels of lysine (4.2 g/100 g protein) and 

tryptophan (0.9 g/100 g protein) compared to normal maize levels of lysine (2.6 g/100 g 

protein) and tryptophan (0.4g/100g protein) (Vivek et al., 2008), however these lines have 

low germination and yield. A study comparing normal and QPM maize found normal maize 

has higher levels of phytate P and inorganic P and lower myo-inositol levels compared to 

QPM maize (Modi and Asanzi, 2008). High myo-inositol concentrations indicate poor phytate 

synthesis associated with poor seed performance. The yield of eight QPM maize lines was 

found to be relatively low with 3.53 to 4.00 t ha-1 in 2003/2004 (Akande and Lamidi, 2006). 

There have been QPM cultivars developed for adaptation to sub-Saharan Africa conditions 

with comparable yields to the normal lines (Krivanek et al., 2007). There have also been 

early maturing QPM hybrid varieties developed with the same yield potential (Gupta et al., 

2009).   

The foliar diseases northern corn leaf blight (NCLB), grey leaf spot (GLS) and 

Phaeosphaeria leaf spot (PLS) commonly occur and regularly cause yield losses. Successful 

maize cultivars need to be able to produce high yield under pressure from these diseases.  

The objectives of this study were to: 

 determine the gene action controlling inheritance of yield, days to mid-pollen shed 

(DMP), silk-emergence days (DMS), ears per plant (EPP), grain moisture content 

(GMC), and resistance to northern corn leaf blight (NCLB), grey leaf spot (GLS) and 

Phaeosphaeria leaf spot (PLS) diseases in crosses involving tropical normal 

endosperm, temperate low phytate and tropical QPM germplasm, and 

 to test combining ability of LPA, QPM and normal tropical inbred lines for yield, DMP, 

DMS, EPP, GMC, NCLB, GLS and PLS disease traits, and 

 determine phenotypic correlations between yield, DMP, DMS, EPP, GMC, and 

resistance to NCLB, GLS and PLS diseases. 

 

Materials and Methods 

Germplasm 

There were four temperate lpa1-1 lines, three tropical QPM lines and three tropical normal 

endosperm (Nm) inbred maize lines used in this study (Table 6.1). The pedigree information 

for the LPA lines is not available but the inbred lines were obtained from Dr V. Raboy (Iowa. 
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U.S.A.). There were 45 F1 crosses generated from a 10 x 10 half diallel mating design with 

no reciprocals and selfs.  

Table 6.1: Pedigrees of inbred lines used in diallel mating design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parental inbred lines were divided into three groups: temperate LPA, tropical QPM and 

tropical normal endosperm. There were six groups of crosses generated between the three 

groups of parental lines: LPA x LPA, LPA x Nm, LPA x QPM, QPM x QPM, Nm x Nm and 

QPM x Nm. The means of each group was calculated and compared between the different 

groups. The groups were defined as: LPA group has 1.1 mg/g total inositol P (23% of total P) 

and 3.1 mg/g Pi (66% of total P), tropical normal and QPM group has 3.4 mg/g total inositol 

P (76% of total P) and 0.3 mg/g Pi (7% of total P) (Raboy et al., 2000). 

 

Experimental design and analysis 

The F1 hybrids were evaluated for grain yield and associated components at the Cedara 

Agricultural Institute (Cedara) (1076 masl; 29°31‟ S, 30°17‟ E), Baynesfield Research Farm 

(758 masl; 29°46‟ S, 30°21‟ E) in South Africa and Rattray Arnold Research Station (RARS) 

(1341 masl, 17°40‟ S, 31°13‟ E) and Kadoma Research Centre (KRC) (1149 masl; 18°19‟ S, 

Line Pedigree Endosperm type Adaptation 

CM 31 TS3 LPA1-1 lpa1-1 temperate 

CM 32 JUG 248 LPA1-1 lpa1-1 temperate 

CM 33 
Ex-USDA-actual 
pedigree unavailable 

lpa1-1 temperate 

CM 34 CO63 LPA1-1 lpa1-1 temperate 

QPM 3 CML 176 QPM tropical 

QPM 6 CZL 01006 QPM tropical 

QPM 7  
OBATANPA-SRC1F3#-
MALE 

QPM tropical 

P 12 CZL 00008 Normal tropical 

T 2 PN7-2B Normal tropical 

T 3 PN8-B Normal tropical 
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29°17‟ E) in Zimbabwe. Forty-five F1 hybrids were evaluated with five commercial hybrids 

(checks) in two seasons at six locations. The trial was replicated twice in a randomized 

complete block design, with the experimental unit being one row for each entry, 75 cm apart 

and plant to plant distance of 25 cm. In the 2007/2008 season planting was at Cedara (early 

and late planting) and in the 2008/2009 season at Cedara, Baynesfield, RARS and KRC. 

Standard cultural practices, fertilization and weed control were accomplished according to 

normal field practices. The hybrid checks (PAN) were obtained from Pannar Seed Co 

(Greytown, South Africa), AGRI from Afgri (Pietermaritzburg, South Africa) and N3/MP72 

from Prof P. Tongoona (ACCI, Pietermaritzburg, South Africa). 

Yield (t ha-1) of shelled grain (adjusted to 12.5% H2O) was measured on the whole row 

basis, and relative yield for each hybrid was calculated as a percentage of the mean of the 

checks (Relative yield) and a percentage of the early maturing check (PAN 6114) as relative 

yield (early).  Days to mid-pollen shed (DMP) and silk emergence (DMS) dates were 

estimated as number of days from planting to when 50% of the plants were shedding pollen 

and had silks emerged, respectively. Prolificacy or number of ears plant-1 (EPP) was 

determined as the number of ears averaged over number of plants plot-1. Grain moisture 

content (GMC) was measured using shelled grain at harvest (Dickey-John moisture meter). 

Disease severity was assessed at grain hard dough stages using a rating scale of 1 

(resistant) to 9 (susceptible).  NCLB was present in all six of the locations used, however 

GLS and PLS was only present in five of the locations and absent from KRC, Zimbabwe.  

General analysis of variance was performed for all hybrid data including check hybrids using 

the SAS programme version 9.1 (SAS Institute, 2002). Combining ability estimates were 

calculated for yield and associated traits using the Diallel-SAS05 programme (Zhang et al., 

2005) in SAS. Pearson‟s correlation analysis was performed with the PROC CORR 

procedure in SAS programme version 9.1 (SAS Institute, 2002).  

 

Results 

Gene action 

The environment and entry effects were significant for all traits (P≤0.001), except for entry 

effects for EPP (P≤0.005) (Table 6.2 and 6.3). Both GCA and SCA effects were significant 

for DMS, DMP, Yield, NCLB, GLS and PLS (P≤0.001). EPP showed significant GCA effects 

at the 1% level and SCA effects at the 5% level. Only GCA effects were significant for GMC 

(P≤0.001). 
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The environment*entry, GCA*environment and SCA*environment interactions were 

significant for all traits (P≤0.001) with lower significance for environment*entry effects of EPP 

and SCA*environment effects of GLS (P≤0.005).  

For DMS, DMP, EPP, GMC and yield, the ratio of GCA and SCA sum of squares to the entry 

sum of squares was in favour of GCA, showing predominance of additive gene action for 

these traits (Table 6.4). The ratio of GCA and SCA sum of squares to the entry sum of 

squares was in favour of both GCA and SCA for NCLB, GLS and PLS disease traits, 

showing both additive and non-additive gene action that were significant.  

 

Combining ability 

General combining ability effects 

Positive GCA effects for grain yield and EPP were desired and negative GCA effects for 

DMS, DMP and GMC traits. The LPA lines showed negative GCA effects for DMS, DMP, 

EPP, GMC and yield (Table 6.4). There were positive GCA effects for the disease traits 

except for PLS with CM 31 and CM 33.  

The QPM and normal lines all showed positive GCA effects for yield with the highest and 

significant GCA effects shown by QPM 3 and T3 (P≤0.001). Generally there were positive 

GCA effects for the QPM and normal lines for DMS, DMP, EPP and GMC except negative 

GCA effects for DMS by QPM 6 and GMC by T 3. QPM 7, T 2 and T 3 showed negative 

GCA effects for GLS, PLS and NCLB. There were negative GCA effects by QPM 6 for only 

PLS and NCLB, P12 for GLS and QPM 3 for NCLB.   

To improve grain yield and EPP traits, QPM 3, T 2, QPM 6 and QPM 7 can be 

recommended. Lines QPM 7, T 2 and T 3 all showed negative GCA effects for all three 

diseases and can be recommended for disease resistance breeding. Line T 3 was the only 

normal endosperm line showing negative GCA effect for GMC and can be recommended for 

breeding for quick dry down rate of grain at harvest. For breeding for earliness, QPM 6 can 

be used as it showed negative GCA effects for DMS. Depending on the aim of the breeding 

programme, various suitable inbred lines can be selected for improvement of the trait of 

interest.  
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Table 6.2: Mean square for days to silk emergence (DMS), days to mid-pollen shed (DMP), number of ears per plant (EPP), grain moisture 
content (GMC) and grain yield (t ha-1) traits of an 10 parent diallel evaluated in six locations over two seasons 

Source df DMS DMP EPP GMC YIELD 

Env 5 7886.74** 6515.56** 8.11** 1131.08** 380.14** 

Rep(Env) 6 4.90 6.92 2.05 4.10 7.28 

Entry 44 154.49** 169.55** 1.48* 17.53** 38.50** 

GCA 9 619.71** 710.32** 1.10** 66.13** 156.88** 

SCA 35 34.86** 32.81** 2.51* 4.47 7.94** 

Env x Entry 220 9.70** 8.51** 2.07** 3.99** 4.00** 

GCA x Env 45 17.59** 15.01** 0.06 6.32** 6.96** 

SCA x Env 175 7.67** 2.72** 0.03 1.78** 3.62** 

Error 264 2.56 2.51 0.72 2.33 1.93 

 
Table 6.3: Mean square for grey leaf spot (GLS), Phaeosphaeria leaf spot (PLS) and northern corn leaf blight (NCLB) diseases of 10 parent 
diallel  

Source 
df GLS PLS df NCLB 

Env 4 244.65** 201.03** 5 243.09** 

Rep(Env) 5 1.64 4.42** 6 1.76 

Entry 44 2.50** 2.93** 44 3.05** 

GCA 9 6.64** 7.71** 9 6.79** 

SCA 35 1.44 1.70* 35 2.08** 

Env x Entry 176 1.49** 2.01** 220 2.17** 

GCA x Env 36 2.24** 2.86** 45 4.94** 

SCA x Env 140 1.29* 1.80** 175 1.46** 

Error 220 0.75 0.72 264 0.67 

** P≤0.001, * P≤0.005 



190 
 

Table 6.4: Percent contribution of GCA and SCA sum of squares to entry sum of squares and GCA effects for days to silk emergence (DMS), 

days to mid-pollen shed (DMP), number of ears per plant (EPP), grain moisture content (GMC), grain yield (t ha-1), grey leaf spot (GLS), 

Phaeosphaeria leaf spot (PLS) and northern corn leaf blight (NCLB) diseases traits 

 
Endosperm  

classification 
DMS DMP EPP GMC Yield GLS PLS NCLB 

Percent contribution of GCA and SCA sum of squares to entry sum of squares 

GCA  82 85 76 79 83 54 54 46 

SCA  18 15 24 21 17 46 46 54 

GCA effects 

CM 31 LPA -3.66** -3.92** -0.09** -0.63 -1.77** 0.26 -0.01 0.50 

CM 32 LPA -2.93 -2.96* -0.07 -0.87 -1.01** 0.07 0.09 0.10 

CM 33 LPA -0.01 -0.76 -0.06 -0.62 -0.66 0.18 -0.12 0.00 

CM 34 LPA -3.17* -3.60** -0.10** -1.19 -1.98** 0.31 0.46 0.36 

QPM 3 QPM 2.41 2.46 0.27** 0.19 1.64** 0.21 0.38 -0.31 

QPM 6 QPM -0.16 0.86 0.02 0.77 0.42 0.04 -0.06 -0.01 

QPM 7 QPM 1.41 2.03 0.01 1.05 0.43 -0.25 -0.38 -0.16 

P 12 Nm 3.23* 3.32** -0.01 0.89 0.86 -0.03 0.27 0.03 

T 2 Nm 2.81 2.49 0.07 0.77 0.68 -0.12 -0.12 -0.19 

T 3 Nm 0.06 0.08 -0.04 -0.36 1.40** -0.66* -0.51 -0.31 

** P≤0.001, * P≤0.005 
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Specific combining ability effects 

There were five crosses that showed negative SCA effects for DMS, DMP and GMC, 

negative SCA effects for at least one of the three diseases and positive SCA effects for EPP 

and yield (Table 6.5). CM 31 x T 3 also showed negative SCA effects for resistance scores 

to all three diseases. CM 33 x T2 showed negative SCA effect for NCLB and CM 31 x QPM 

6 showed negative SCA effects for GLS and NCLB. CM 33 x QPM 7 showed negative SCA 

effects for PLS and T 2 x T 3 showed negative SCA effect for GLS. There were five crosses 

that showed negative SCA effects for resistance scores to all three diseases (CM 31 x CM 

32; CM 31 x T 3; CM 33 x QPM 3; P 12 x T 3; QPM 3 x T 2).  

In the LPA x LPA group of crosses, there were three crosses that showed positive SCA 

effects for yield and EPP (CM 31 x CM 32; CM 31 x CM 34; CM 32 x CM 33) with varying 

reactions to the diseases. Of the six LPA x LPA crosses, four of them showed negative SCA 

effects for DMS and or DMP.  

There were four LPA x Nm crosses with positive SCA effects for yield (CM 31 x T 3; CM 33 x 

P 12; CM 33 x T 2; CM 34 x T 3). CM 31 x T3 showed negative SCA effects for DMS, GMC 

and reaction to all three diseases. CM 33 x P 12 showed negative SCA effects for PLS only, 

while CM 33 x T 2 showed negative SCA effects for DMS, DMP, GMC and NCLB and 

positive SCA effects for EPP. CM 34 x T 3 showed positive SCA effects for EPP and 

negative SCA effects for GMC and NCLB. There were seven LPA x Nm crosses that showed 

negative SCA effects for DMS and or DMP.  

In the LPA x QPM group of crosses, there were seven crosses with positive SCA effects for 

yield (CM 31 x QPM 6; CM 31 x QPM 7; CM 32 x QPM 6; CM 33 x QPM 3; CM 33 x QPM 7; 

CM 34 x QPM 3; CM 34 x QPM 7). There were eight crosses with negative SCA effects for 

GMC and DMS and or DMP. CM 31 x QPM 6 showed negative SCA effects for DMS, DMP, 

GMC, GLS and NCLB and positive SCA effects for EPP and yield. CM 32 x QPM 6 showed 

negative SCA effects for DMS, DMP, GLS and PLS and positive SCA effects for EPP and 

yield. CM 33 x QPM 3 showed positive SCA effects for EPP and negative SCA effects for all 

three diseases. CM 33 x QPM 7 showed negative SCA effects for DMS, DMP, GMC and 

PLS and positive SCA effects for EPP and yield. CM 34 x QPM 7 showed negative SCA 

effects for DMS, GMC, GLS and NCLB and positive SCA effects for EPP and yield. 

In the Nm x Nm group of crosses, P12 x T 3 showed positive SCA effects for yield, EPP and 

negative SCA effects for GMC, GLS, PLS and NCLB. T 2 x T3 showed positive SCA effects 

for EPP and yield and negative SCA effects for DMS, DMP, GMC and GLS. 
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There were four QPM x Nm crosses that showed positive SCA effects for yield. P 12 x 

QPM 3 showed negative SCA effects for DMS, DMP, GLS and PLS. QPM 3 x T 2 showed 

positive SCA effects for EPP and yield and negative SCA effects for GMC, GLS, PLS and 

NCLB. P 12 x QPM 6 showed positive SCA effects for EPP and yield and negative SCA 

effect for NCLB. QPM 6 x T 3 showed negative SCA effects for GMC and NCLB and positive 

SCA effect for yield.  

There was only one QPM x QPM cross with desired positive SCA effect for yield (QPM 3 x 

QPM 7) with negative SCA effects for DMS, DMP, GLS and PLS.   

 

Performance of crosses and groups of crosses  

The LPA x LPA group of crosses were the lowest yielding, earliest flowering dates, highest 

prolificacy ratio and lowest grain moisture content at harvest (Table 6.6).CM 31 x CM 33 

showed the highest EPP ratio although showed very low yield (2.17 t ha-1). The LPA x Nm 

group of crosses showed early flowering with higher yield than the LPA x LPA group of 

crosses. There were two LPA x Nm crosses that showed early flowering with almost twice 

the yield of the LPA x LPA group (CM 32 x T 2; CM 32 x T 3). The high yielding LPA x Nm 

crosses (>6 t ha-1) showed medium maturity flowering dates.  

In the LPA x QPM group of crosses, there were eight crosses that showed early flowering 

with increased yield (CM 31 x QPM 3; CM 31 x QPM 6; CM 32 x QPM 3; CM 32 x QPM 6; 

CM 32 x QPM 7; CM 33 x QPM 7; CM 34 x QPM 6; CM 34 x QPM 7). The LPA x QPM cross 

with the highest yield (7.87 t ha-1) had 74 DMS and 72 DMP, almost 14 days after the 

earliest LPA x LPA cross.  

The Nm x Nm crosses was very high yielding (7.5-8.6 t ha-1) with medium flowering dates. 

The Nm x QPM and QPM x QPM groups showed very high yield (6.2-9.3 t ha-1) with high 

GMC, medium flowering dates and ~1ear/plant. The highest check hybrid was N3/MP72 with 

grain yield of 10.32 t ha-1 with late flowering dates. EPP showed a high CV value (69.98%) 

(Table 6.6). 

Generally the LPA x LPA, LPA x QPM and LPA x Nm crosses showed similar disease 

resistance scores for GLS and PLS and slightly higher disease scores for NCLB to the other 

types of crosses (Table 6.7). 
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Table 6.5: SCA effects of crosses for days to silk emergence (DMS), mid-pollen shed (DMP), number of ears per plant (EPP), grain moisture 

content (GMC), grain yield (t ha-1), grey leaf spot (GLS), Phaeosphaeria leaf spot (PLS) and northern corn leaf blight (NCLB) diseases traits 

Pedigree Classification DMS DMP EPP GMC Yield GLS PLS NCLB 

CM 31 x CM 32 LPA x LPA 5.33 5.42 0.15 1.24 1.58 -0.30 -0.03 -0.70 

CM 31 x CM 33 LPA x LPA -3.42 -3.52 -0.12 -0.43 -1.49 0.09 -0.11 0.15 

CM 31 x CM 34 LPA x LPA 0.32 -0.11 0.01 -0.15 0.05 -0.33 -0.49 0.04 

CM 32 x CM 33 LPA x LPA 2.02 2.02 0.02 0.30 0.82 0.18 0.19 -0.20 

CM 32 x CM 34 LPA x LPA -0.82 -1.23 -0.06 0.85 -0.41 0.15 -0.59 0.27 

CM 33 x CM 34 LPA x LPA -0.32 0.49 0.01 0.19 -0.91 -0.16 0.23 0.29 

CM 31 x P 12 LPA x Nm -1.41 -1.44 -0.08 -1.08 -0.12 0.20 -0.30 0.79 

CM 31 x T 2 LPA x Nm -1.07 -0.61 -0.07 1.03 -1.04 0.49 -0.31 0.34 

CM 31 x T 3 LPA x Nm -1.07 -0.45 0.00 -0.15 0.24 -0.37 -0.03 -0.38 

CM 32 x P 12 LPA x Nm 0.53 0.68 0.06 -0.35 -0.04 0.39 0.10 -0.07 

CM 32 x T 2 LPA x Nm -1.89 -2.15 -0.06 -1.33 -0.13 -0.32 0.39 -0.26 

CM 32 x T 3 LPA x Nm 0.03 -0.08 -0.02 0.20 -1.10 -0.38 -0.13 0.52 

CM 33 x P 12 LPA x Nm 0.53 0.90 -0.04 0.04 0.12 0.18 -0.09 -0.63 

CM 33 x T 2 LPA x Nm -0.14 -0.51 0.06 -0.39 0.97 0.17 0.20 -0.24 

CM 33 x T 3 LPA x Nm 1.28 0.81 0.04 0.70 -0.51 -0.10 -0.01 0.12 

CM 34 x P 12 LPA x Nm -0.81 -0.51 0.09 0.00 -0.29 0.15 -0.26 0.51 

CM 34 x T 2 LPA x Nm 0.52 0.99 0.05 -0.19 -0.42 0.44 0.13 0.14 

CM 34 x T 3 LPA x Nm 0.27 0.23 0.04 -0.08 0.80 0.38 0.01 -0.16 

CM 31 x QPM 3 LPA x QPM -0.50 -0.24 -0.05 -0.28 -0.97 0.07 0.19 0.54 

CM 31 x QPM 6 LPA x QPM -1.44 -1.98 0.05 -0.66 0.82 -0.17 0.63 -0.25 

CM 31 x QPM 7 LPA x QPM 3.25 2.93 0.12 0.48 0.92 0.32 0.45 -0.52 

CM 32 x QPM 3 LPA x QPM -2.23 -2.03 -0.07 -0.86 -0.79 0.05 0.39 0.18 

CM 32 x QPM 6 LPA x QPM -0.42 -0.52 0.04 0.61 0.34 -0.28 -0.48 0.23 
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Pedigree Classification DMS DMP EPP GMC Yield GLS PLS NCLB 

CM 32 x QPM 7 LPA x QPM -2.56 -2.11 -0.06 -0.66 -0.25 0.50 0.15 0.04 

CM 33 x QPM 3 LPA x QPM 1.27 1.43 0.11 0.31 0.96 -0.46 -0.40 -0.21 

CM 33 x QPM 6 LPA x QPM -0.25 -0.22 -0.09 -0.09 -0.57 0.00 0.34 0.41 

CM 33 x QPM 7 LPA x QPM -0.98 -1.39 0.02 -0.63 0.60 0.09 -0.34 0.31 

CM 34 x QPM 3 LPA x QPM 2.01 0.85 -0.08 0.01 0.45 -0.28 0.43 -0.74 

CM 34 x QPM 6 LPA x QPM -0.93 -0.72 -0.08 -0.16 -0.58 -0.22 0.36 0.30 

CM 34 x QPM 7 LPA x QPM -0.24 0.03 0.02 -0.47 1.30 -0.13 0.19 -0.64 

P 12 x T 2 Nm x Nm 1.29 0.99 -0.03 0.59 -0.18 -0.22 0.61 -0.02 

P 12 x T 3 Nm x Nm 0.54 0.48 0.02 -0.41 0.09 -0.48 -0.40 -0.24 

T 2 x T 3  Nm x Nm -1.21 -1.11 0.06 -0.38 0.37 -0.20 0.39 0.39 

P 12 x QPM 3 QPM x Nm -2.14 -1.65 -0.04 0.80 0.04 -0.65 -0.29 0.26 

QPM 3 x T 2 QPM x Nm 1.36 1.35 0.19 -0.11 0.83 -0.06 -0.30 -0.19 

QPM 3 x T 3 QPM x Nm 0.03 0.17 0.00 -0.42 -0.11 1.18 0.29 0.09 

P 12 x QPM 6 QPM x Nm 0.51 0.53 0.11 0.20 1.15 0.32 0.75 -0.28 

QPM 6 x T 2 QPM x Nm 0.84 1.28 -0.11 0.40 -0.16 0.00 -0.86 -0.40 

QPM 6 x T 3 QPM x Nm 0.68 0.27 -0.07 -0.16 0.67 0.34 -0.58 -0.37 

P 12 x QPM 7 QPM x Nm 0.95 0.03 -0.09 0.21 -0.76 0.10 -0.13 -0.31 

QPM 7 x T 2 QPM x Nm 0.28 -0.22 -0.09 0.39 -0.24 -0.31 -0.24 0.25 

QPM 7 x T 3 QPM x Nm -0.55 -0.32 -0.07 0.69 -0.44 -0.37 0.45 0.03 

QPM 3 x QPM 6 QPM x QPM 0.67 0.23 -0.03 0.20 -0.49 0.18 0.04 -0.20 

QPM 3 x QPM 7 QPM x QPM -0.48 -0.11 -0.02 0.34 0.07 -0.03 -0.34 0.28 

QPM 6 x QPM 7 QPM x QPM 0.33 1.15 0.18 -0.34 -1.19 -0.17 -0.20 0.57 



195 
 

Table 6.6: Means of F1 hybrids and hybrid checks for days to silk emergence (DMS), days to mid-pollen shed (DMP), number of ears per 

plant (EPP), grain moisture content (GMC) and grain yield (t ha-1) traits with relative yield to mean of checks and early check (PAN6114) 

Pedigree Classification DMS DMP EPP # GMC % Yield 
Relative yield to mean 

of checks (%) 
Relative yield to early 

check (%) 

CM 31 x CM 32 LPA x LPA 72.00 69.00 1.07 15.75 2.11 25% 35% 

CM 31 x CM 33 LPA x LPA 61.67 59.08 1.98 14.90 2.17 26% 36% 

CM 31 x CM 34 LPA x LPA 62.25 59.67 1.67 14.61 2.45 29% 41% 

CM 33 x CM 34 LPA x LPA 65.25 63.42 1.78 14.96 2.49 30% 42% 

CM 32 x CM 34 LPA x LPA 61.83 59.50 1.83 15.37 2.68 32% 45% 

CM 32 x CM 33 LPA x LPA 73.00 69.50 0.96 15.15 4.51 54% 75% 

LPA x LPA 
 

66.00 63.36 1.55 15.12 2.74 33% 46% 

CM 32 x P 12 LPA x Nm 74.50 72.00 1.07 14.50 1.45 17% 24% 

CM 34 x T 2 LPA x Nm 75.00 70.50 1.10 15.84 3.28 39% 55% 

CM 31 x T 2 LPA x Nm 66.83 65.25 1.86 17.75 4.07 49% 68% 

CM 31 x P 12 LPA x Nm 72.00 67.00 0.90 15.32 4.28 51% 71% 

CM 34 x P 12 LPA x Nm 68.00 66.50 1.08 16.28 4.45 53% 74% 

CM 31 x T 3 LPA x Nm 64.08 63.00 0.97 15.44 4.85 58% 81% 

CM 32 x T 3 LPA x Nm 65.92 64.33 1.01 15.54 5.27 63% 88% 

CM 32 x T 2 LPA x Nm 66.75 64.67 1.37 15.15 5.75 69% 96% 

CM 34 x T 3 LPA x Nm 71.50 67.00 0.97 14.62 6.13 73% 102% 

CM 33 x T 3 LPA x Nm 70.08 67.42 0.85 16.30 6.23 74% 104% 

CM 33 x P 12 LPA x Nm 72.50 70.75 1.59 16.89 6.35 76% 106% 

CM 33 x T 2 LPA x Nm 71.42 68.50 1.10 16.34 6.97 83% 116% 

LPA x Nm 
 

69.88 67.24 1.16 15.83 4.92 59% 82% 

CM 34 x QPM 6 LPA x QPM 64.50 63.83 1.40 16.00 3.88 46% 65% 

CM 31 x QPM 7 LPA x QPM 83.00 79.50 1.12 19.25 4.48 54% 75% 

CM 33 x QPM 6 LPA x QPM 68.33 67.17 0.94 16.64 4.88 58% 81% 

CM 31 x QPM 3 LPA x QPM 67.00 65.58 2.75 15.86 5.21 62% 87% 

CM 32 x QPM 7 LPA x QPM 64.67 64.25 1.00 16.10 5.50 66% 92% 

CM 31 x QPM 6  LPA x QPM 63.50 62.25 1.27 16.07 5.74 69% 96% 

CM 32 x QPM 3 LPA x QPM 66.00 64.75 1.29 15.04 5.84 70% 97% 

CM 34 x QPM 7 LPA x QPM 66.75 65.75 1.04 15.98 5.90 70% 98% 

CM 32 x QPM 6 LPA x QPM 65.25 64.67 0.92 17.09 5.97 71% 100% 

CM 33 x QPM 7 LPA x QPM 69.17 67.17 1.00 16.38 6.62 79% 110% 

CM 34 x QPM 3 LPA x QPM 70.00 67.00 1.04 15.59 6.77 81% 113% 
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Pedigree Classification DMS DMP EPP # GMC % Yield 

Relative Yield to mean 
of checks 

Relative Yield to 
early checks  

CM 33 x QPM 3 LPA x QPM 74.00 72.00 1.39 16.44 7.87 94% 131% 

LPA x QPM 
 

68.51 66.99 1.26 16.37 5.72 68% 95% 

P 12 x T 2 Nm x Nm 76.08 74.08 0.97 18.83 7.56 90% 126% 

T 2 x T 3 Nm x Nm 73.00 69.50 1.17 16.61 8.20 98% 137% 

P 12 x T 3 Nm x Nm 74.00 71.50 1.06 16.72 8.60 103% 143% 

Nm x Nm 
 

74.36 71.69 1.07 17.39 8.12 97% 135% 

P 12 x QPM 7 Nm x QPM 74.33 72.67 0.91 18.73 6.19 74% 103% 

QPM 6 x T 2 Nm x QPM 72.25 71.92 0.89 18.53 6.96 83% 116% 

QPM 7 x T 2 Nm x QPM 73.25 71.58 1.03 18.8 7.19 86% 120% 

QPM 7 x T 3 Nm x QPM 69.67 69.08 0.94 17.79 7.91 95% 132% 

P 12 x QPM 3 Nm x QPM 72.25 71.42 1.12 18.47 8.21 98% 137% 

QPM 6 x T 3 Nm x QPM 69.33 68.50 0.82 16.83 8.41 100% 140% 

P 12 x QPM 6 Nm x QPM 72.33 72.00 1.02 18.44 8.94 107% 149% 

QPM 3 x T 3 Nm x QPM 71.25 70.00 1.05 15.99 8.97 107% 150% 

QPM 3 x T 2 Nm x QPM 75.33 73.58 1.41 17.43 9.34 112% 156% 

Nm x QPM 
 

72.22 71.19 1.02 17.89 8.01 96% 134% 

QPM 6 x QPM 7 QPM x QPM 70.33 71.33 1.18 18.07 6.12 73% 102% 

QPM 3 x QPM 6 QPM x QPM 71.67 70.83 1.15 17.74 7.51 90% 125% 

QPM 3 x QPM 7 QPM x QPM 72.08 71.67 1.13 18.17 8.35 100% 139% 

QPM x QPM 
 

71.36 71.28 1.15 17.99 7.33 88% 122% 

PAN6114   73.50 69.00 1.01 15.15 6.00 72% 100% 

PAN6757   84.50 75.00 1.08 17.82 6.83 82% 114% 

PAN6243   83.00 81.00 1.37 15.33 7.81 93% 130% 

PAN6611   75.83 74.42 1.26 16.56 8.38 100% 140% 

PAN6777   75.33 73.17 0.94 17.55 8.47 101% 141% 

PAN67   82.00 81.50 1.24 17.21 9.52 114% 159% 

PAN6227   73.50 71.67 1.21 16.18 9.60 115% 160% 

N3/MP72   84.00 79.00 1.05 16.63 10.32 123% 172% 

Hybrid Checks 
 

78.96 75.60 1.15 16.55 8.37 100% 140% 

P value (entry) 
 

<0.0001 <0.0001 0.00 <0.0001 <0.0001   

P value(env*entry) 
 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001   

Overall Mean 
 

69.17 67.69 1.21 16.57 6.32   

CV (%) 
 

2.48 2.47 69.98 9.2 23.98   

R
2
 (%)   98.40 98.26 75.01 91.9 89.61   
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Table 6.7: Disease resistance scores of F1 hybrids and hybrid checks for grey leaf spot 

(GLS), Phaeosphaeria leaf spot (PLS) and northern corn leaf blight (NCLB) diseases traits 

Pedigree Classification GLS PLS NCLB 

CM 31 x CM 32 LPA x LPA 3.40 3.40 4.83 

CM 31 x CM 33 LPA x LPA 3.90 3.10 5.58 

CM 31 x CM 34 LPA x LPA 3.60 3.30 5.83 

CM 33 x CM 34 LPA x LPA 3.70 3.90 5.58 

CM 32 x CM 34 LPA x LPA 3.90 3.30 5.67 

CM 32 x CM 33 LPA x LPA 3.80 3.50 4.83 

LPA x LPA 

 

3.72 3.42 5.39 

CM 32 x P 12 LPA x Nm 3.70 4.20 4.92 

CM 34 x T 2 LPA x Nm 4.00 3.80 5.25 

CM 31 x T 2 LPA x Nm 4.00 2.90 5.58 

CM 31 x P 12 LPA x Nm 3.90 3.90 5.67 

CM 34 x P 12 LPA x Nm 3.60 4.60 4.25 

CM 31 x T 3 LPA x Nm 2.60 2.80 4.75 

CM 32 x T 3 LPA x Nm 2.40 2.80 5.25 

CM 32 x T 2 LPA x Nm 3.00 3.70 4.58 

CM 34 x T 3 LPA x Nm 3.40 3.30 4.83 

CM 33 x T 3 LPA x Nm 2.80 2.70 4.75 

CM 33 x P 12 LPA x Nm 3.30 3.20 4.42 

CM 33 x T 2 LPA x Nm 3.60 3.30 4.50 

LPA x Nm 

 

3.36 3.43 4.90 

CM 34 x QPM 6 LPA x QPM 3.30 3.60 4.50 

CM 31 x QPM 7  LPA x QPM 3.80 3.30 6.25 

CM 33 x QPM 6 LPA x QPM 3.40 2.50 5.08 

CM 31 x QPM 3 LPA x QPM 3.50 3.90 5.17 

CM 32 x QPM 7 LPA x QPM 3.80 3.80 5.00 

CM 31 x QPM 6   LPA x QPM 3.70 3.40 4.75 

CM 32 x QPM 3  LPA x QPM 3.20 2.90 5.25 

CM 34 x QPM 7 LPA x QPM 3.80 3.80 5.83 

CM 32 x QPM 6 LPA x QPM 3.70 3.20 4.92 

CM 33 x QPM 7 LPA x QPM 3.70 3.40 4.33 

CM 34 x QPM 3 LPA x QPM 3.50 4.10 5.58 

CM 33 x QPM 3 LPA x QPM 3.60 3.50 5.33 

LPA x QPM 

 

3.58 3.45 5.17 

P 12 x T 2 Nm x Nm 3.40 3.30 4.25 

T 2 x T 3 Nm x Nm 2.40 3.10 4.83 

P 12 x T 3 Nm x Nm 4.10 3.50 4.42 

Nm x Nm 

 

3.30 3.30 4.50 

P 12 x QPM 7 Nm x QPM 2.90 3.70 4.92 

QPM 6 x T 2 Nm x QPM 2.70 2.60 4.83 

QPM 7 x T 2 Nm x QPM 3.00 4.10 4.75 

QPM 7 x T 3 Nm x QPM 2.20 2.70 4.42 

P 12 x QPM 3 Nm x QPM 3.80 3.70 4.42 

QPM 6 x T 3 Nm x QPM 2.10 2.90 4.50 

P 12 x QPM 6 Nm x QPM 3.30 3.00 4.75 

QPM 3 x T 3 Nm x QPM 3.10 2.20 4.25 
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Figure 6.1 shows the DMS and DMP for the six groups of crosses and check hybrids. The 

LPA x LPA, LPA x Nm and LPA x QPM groups retains earliness and is lower than the check 

hybrids. The Nm x Nm, Nm x QPM and QPM x QPM groups of crosses show a later 

maturity. In Figure 6.2, the yield of the LPA x LPA, LPA x Nm and LPA x QPM group of 

crosses is clearly much lower than the check hybrids (-67% to -32%). The QPM x QPM 

group only has 12% less than the check hybrids while the Nm x Nm and Nm x QPM groups 

have very little reduction in yield (-3% to -4%). The LPA x LPA, LPA x Nm and LPA x QPM 

groups showed the highest EPP ratio and lowest GMC compared to the other groups and 

checks (Figure 6.3 and 6.4). The LPA x LPA, LPA x Nm and LPA x QPM groups did not 

show much difference in disease scores for GLS and PLS compared to the other groups, 

however there was slightly more susceptibility to NCLB compared to the other groups (Table 

6.7 and Figure 6.5). 

Pedigree Classification GLS PLS NCLB 

QPM 3 x T 2 Nm x QPM 3.30 2.30 4.33 

Nm x QPM 

 

2.93 3.02 4.57 

QPM 6 x QPM 7 QPM x QPM 3.20 3.10 4.50 

QPM 3 x QPM 6 QPM x QPM 3.00 2.70 5.33 

QPM 3 x QPM 7 QPM x QPM 3.70 4.30 4.67 

QPM x QPM 

 

3.30 3.37 4.83 

PAN6114   4.33 3.50 4.50 

PAN6757   3.88 2.97 5.10 

PAN6243   4.33 3.67 2.63 

PAN6611   3.80 3.20 5.25 

PAN6777   2.50 5.33 5.00 

PAN67   4.50 2.67 3.38 

PAN6227   2.50 4.08 4.67 

N3/MP72   4.50 1.67 2.63 

Hybrid Checks 

 

3.79 3.39 4.15 

  

   

P value (entry) 

 

<0.0001 <0.0001 <0.0001 

P value (env*entry) 

 

<0.0001 <0.0001 <0.0001 

Overall Mean 

 

3.37 3.34 4.94 

CV (%) 

 

25.66 25.48 16.58 

R2 (%)   89.18 89.15 91.22 
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Figure 6.1: Average DMS and DMP (days) for the six classes of hybrids and the check 

hybrids 

 

 

 

Figure 6.2: Average yield (t ha-1) for the six classes of hybrids and the check hybrids 
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Figure 6.3: Average ears per plant (EPP) for the six classes of hybrids and the check hybrids 

 

Figure 6.4: Average grain moisture content (%) for the six classes of hybrids and the check 

hybrids 

 

Figure 6.5: Average disease rating scores for NCLB, GLS and PLS for the six classes of 
hybrids and the check hybrids 
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Phenotypic correlations 

There was a very high and significant positive correlation (P≤0.001) between DMS and DMP 

(Table 6.8). DMS showed negative correlations with EPP, GLS and NCLB. DMS was 

positively correlated with yield and significantly correlated with GMC (P≤0.005). DMP was 

positively and significantly correlated with GMC (P≤0.001) and yield (P≤0.005).  

There were negative correlations between DMP and EPP, GLS, PLS and NCLB. EPP 

showed negative correlations with GMC and yield and positive correlations with GLS, PLS 

and NCLB disease resistance scores. GMC was positively and significantly correlated with 

yield (P≤0.001) and negatively correlated with GLS, PLS and NCLB. Yield was negatively 

correlated with all three disease scores. GLS was positively correlated with PLS and NCLB 

and PLS was positively correlated with NCLB scores.   

 

Table 6.8: Pearson‟s phenotypic correlation coefficients among days to silk emergence 

(DMS), days to mid-pollen shed (DMP), number of ears per plant (EPP), grain moisture 

content (GMC), grain yield (t ha-1), grey leaf spot (GLS), Phaeosphaeria leaf spot (PLS) and 

northern corn leaf blight (NCLB) diseases traits 

 
DMS DMP EPP 

GMC 

(%) 

YIELD 

(t ha-1) 

GLS PLS NCLB 

 Scores 

DMS 1.00        

DMP 0.96** 1.00       

EPP -0.39 -0.40 1.00      

GMC 0.54* 0.69** -0.25 1.00     

YIELD 0.38 0.50* -0.35 0.56** 1.00    

GLS -0.01 -0.1 0.30 -0.18 -0.38 1.00   

PLS 0.03 -0.03 0.10 -0.15 -0.31 0.47 1.00  

NCLB -0.16 -0.27 0.32 -0.24 -0.53 0.33 0.12 1.00 

** P≤0.001, * P≤0.005 
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Discussion 

There was both additive and non-additive gene action for DMS, DMP, Yield, NCLB, GLS and 

PLS as indicated by significant GCA and SCA effects respectively. EPP showed significant 

GCA effects with lower significant SCA effects, therefore showing both additive and non-

additive gene action with predominance of additive gene action. Due to only GCA effects 

being significant for GMC, only additive gene action was predominant. In a study on maize 

inbred lines, the traits of EPP yield, DMS and GMC showed the same GCA and SCA effects 

significance trends (Malik et al., 2004). For DMS, DMP, EPP, GMC and yield, the ratio of 

GCA and SCA sum of squares to the entry sum of squares was in favour of GCA, showing 

predominance of additive gene action for these traits. Yield was found to be under both 

additive and non-additive gene action with predominance of genetic additive effects. This 

was also found by other studies on maize (Malik et al., 2004; Muraya et al., 2006; Ahsan et 

al., 2007; Derera et al., 2007; Vivek et al., 2009). EPP, DMS and DMP were found to be 

under predominant additive genetic effects and GMC only under genetic additive effects, 

which are consistent with a previous study (Malik et al., 2004).  

In this study, GLS resistance was found to only show significant GCA effects; however the 

ratio of GCA and SCA sum of squares to the entry sum of squares was in favour of both 

GCA and SCA for GLS resistance, therefore showing additive gene action with some non-

additive genetic effects also involved. This was also shown by other studies on GLS 

resistance (Derera et al., 2008; Vivek et al., 2009). PLS resistance showed more significant 

GCA effects than SCA effects but the ratio of SCA sum of squares to the entry sum of 

squares was in favour of both GCA and SCA, therefore both additive and non-additive gene 

actions are responsible for PLS resistance with more additive gene action. Other studies on 

PLS resistance also found the disease to be under additive gene action (da Silva and Moro, 

2004; Vivek et al., 2009). In this study, NCLB resistance was found to be under both additive 

and non-additive gene action while other studies have found mainly additive gene action 

(Vivek et al., 2009). 

For disease resistance traits, under mostly genetic additive effects that are responsible for 

the source of variation for resistance to this disease, emphasis should be placed on the 

mean performance of the line in hybrid combinations during selection for breeding 

programme to advance resistance to the disease.  

The environment*entry, GCA*environment and SCA*environment interactions were 

significant for all traits with lower significance for environment*entry effects of EPP and 

SCA*environment effects of GLS, showing the need to validate results over different 

locations and seasons due to the hybrids behaving differently in some environments. Other 
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studies have found grain yield to have significant environments*entry interactions (Broccoli 

and Burak, 2004; Glover et al., 2005; Derera et al., 2007; Derera et al., 2008; Vivek et al., 

2009) and significant GCA*environment and SCA*environment interactions (Derera et al., 

2007; Vivek et al., 2009). Significant GCA*environment interactions were found for EPP, 

DMS and DMP (Derera et al., 2007).   

The significance of environment*entry and GCA*environment effects for diseases implies 

inbred lines resistant to disease in one location may have different reactions to the same 

disease in another location, such as for NCLB, GLS  and PLS. The significant 

SCA*environment interactions imply hybrids had different resistant reactions in any location, 

such as for NCLB and PLS and to a lesser significance for GLS. Similar results were found 

with GLS showing significant environment*entry, GCA*environment and SCA*environment 

interactions and PLS and NCLB showing only significant environment*entry and 

GCA*environment interactions (Vivek et al., 2009). However in a study on PLS resistance, 

the GCA*environment interaction was found to be not significant (da Silva and Moro, 2004).  

GLS scores for location*male GCA effects were significant as well as genotype*environment 

interactions (Derera et al., 2008). 

Selection of inbred lines based on GCA effects would require negative GCA effects for DMS, 

DMP (early flowering), GMC (quick dry down of grain at harvest) and all three diseases 

(disease resistance). Positive GCA effects for increasing yield and ear prolificacy would be 

desired. The LPA lines showed negative GCA effects for DMS, DMP, GMC and yield. 

Although these lines were early flowering and having quick dry down of grain, all showed 

negative and significant GCA effects for yield except CM 33 which only showed the least 

negative GCA effect for yield. These LPA lines require improvement for yield. The LPA lines, 

CM 31 and CM 33 also showed negative GCA effects for disease resistance scores and can 

be recommended for use to improve flowering, quick dry down of grain and PLS resistance.  

The QPM and normal lines all showed positive GCA effects for yield with the highest and 

significant GCA effects shown by QPM 3 and T3. As in this study, there were positive GCA 

effects found for yield of three QPM lines and positive and negative GCA effects for DMS, 

GMC and EPP (Malik et al., 2004). In a study with ten QPM inbreds, variable GCA effects 

were found for yield (Xingming et al., 2001). To improve yield and EPP traits, QPM 3, T 2, 

QPM 6 and QPM 7 can be recommended. QPM 7, T 2 and T 3 all showed negative GCA 

effects for all three diseases and can be recommended for disease resistance breeding. T 3 

was the only line showing negative GCA effect for GMC and can be recommended for 

breeding for quick dry down of grain at harvest. For breeding for earliness, QPM 6 can be 

used as it showed negative GCA effect for DMP. Depending on the aims of the breeding 
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programme, the inbred lines can be selected for earliness, quick dry down, ear prolificacy, 

yield improvement and resistance to foliar diseases.  

The QPM lines in this study showed both positive and negative GCA effects for DMS and 

positive GCA effects for DMP, EPP, GMC and yield. Similar GCA effects were found with 

studies on QPM lines with high and positive GCA effects for DMP, EPP and yield with some 

negative and positive GCA effects for GMC (Xingming et al., 2001; Malik et al., 2004). High 

yield was observed with the QPM x QPM crosses (Xingming et al., 2001) as observed in this 

study as well.  

There were five crosses that showed desired negative SCA effects for DMS, DMP and GMC, 

negative SCA effects for at least one of the three diseases and positive SCA effects for EPP 

and yield (CM 31 x T 3; CM 33 x T2; CM 31 x QPM 6; CM 33 x QPM 7; T 2 x T 3) including 

two LPA x Nm, two LPA x QPM and one Nm x Nm cross. The cross CM 31 x T 3 also 

showed negative SCA effects for all three diseases and was the most suitable of the 

crosses. CM 33 x T2 showed negative SCA effect for NCLB and CM 31 x QPM 6 showed 

negative SCA effects for GLS and NCLB. CM 33 x QPM 7 showed negative SCA effects for 

PLS and T 2 x T 3 showed negative SCA effect for GLS. There were five crosses that 

showed negative SCA effects for all three diseases (CM 31 x CM 32; CM 31 x T 3; CM 33 x 

QPM 3; P 12 x T 3; QPM 3 x T 2) with different SCA effects for yield. Due to the additive 

nature of yield and associated traits, the breeding strategy would be the selection of lines 

with positive and high GCA effects.   

For the DMS and DMP traits of the six groups of crosses and check hybrids, the LPA x LPA, 

LPA x Nm and LPA x QPM groups retains the earliness and is lower than the check hybrids. 

The Nm x Nm, Nm x QPM and QPM x QPM groups of crosses show a later maturity. 

Although the LPA lines are prolific, the LPA x LPA group of crosses showed the lowest yield 

due to the small size of the cobs and the early flowering due to non-adaptability to the 

environment. The crosses between the LPA parental lines were smaller in size and therefore 

cannot maintain a large cob size and weight. The yield of the LPA x LPA, LPA x Nm and 

LPA x QPM group of crosses is clearly much lower than the check hybrids (-67% to -32%) 

showing the need for yield improvement of the LPA combinations. The yield of the LPA 

combinations need to be increased to the levels of the check hybrids before it can be used in 

commercial production. The QPM x QPM group only has 12% less than the check hybrids 

while the Nm x Nm and Nm x QPM groups have very little reduction in yield (-3% to -4%), 

thereby showing their adaptability to the environmental conditions.  

The groups with LPA combinations showed the highest EPP ratio and lowest GMC 

compared to the other groups and checks, retaining the earliness and quick dry down of 

grain at harvest of the LPA temperate background. The traits of earliness and low moisture 
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content at harvest are advantageous traits from the temperate background that can be very 

useful in tropical material. Although the LPA lines are more prolific but due to yield being 

related to lateness or long growing season, the LPA combinations groups have low biomass 

due to their earliness. The LPA x LPA, LPA x Nm and LPA x QPM groups did not show 

much difference in disease scores to GLS and PLS compared to the other groups, however 

there was slightly more susceptibility to NCLB compared to the other groups. This is 

encouraging as it shows the LPA combinations do not have a higher susceptibility to these 

diseases compared to the Nm and QPM groups of crosses. These diseases are endemic to 

southern Africa and therefore the disease reaction of these hybrids is useful in evaluating 

adaptability to tropical growing conditions.  

Due to the very high and significant positive correlation between DMS and DMP, only one of 

these traits can be used to predict for anthesis dates for selection as it would be an accurate 

indicator of the other trait. Yield was negatively correlated with all three disease resistance 

scores showing that increased incidence of diseases decreased yield. Yield was positively 

associated with later maturity, higher ear prolific ratio and higher GMC therefore higher yield 

is associated with longer growing cycles. Yield was found to be positively correlated with 

EPP (Yousuf and Saleem, 2001; Broccoli and Byrak, 2004; Derera et al., 2007) which 

correlates with the findings of this study. DMP was found to be negatively correlated with 

DMS in a study on maize (Yousuf and Saleem, 2001), DMS negatively correlated with yield 

(Muraya et al., 2006; Odiyi, 2007) and yield negatively correlated with GMC (Odiyi, 2007) 

which does not compare with the findings of this study. However there have been postive 

correlations between DMS and GMC (Odiyi, 2007), DMP and DMS with EPP (Yousuf and 

Saleem, 2001) yield with DMP (Samanci, 1996; Yousuf and Saleem, 2001) and DMS with 

yield (Yousuf and Saleem, 2001) which correlates with the findings of this study.  

 

Conclusions 

The following conclusions can be drawn from this study: 

 Both additive and non-additive gene action were significant for hybrid reaction to 

northern corn leaf blight (NCLB), grey leaf spot (GLS) and Phaeosphaeria leaf spot 

(PLS) diseases therefore recurrent selection methods that exploit both GCA and SCA 

effects can be used while additive gene action was predominant for DMS, DMP, 

EPP, GMC and yield, therefore selection of lines can be used to improve these traits. 

 The LPA lines were early flowering and having quick dry down rate but all showed 

negative and significant GCA effects for yield with CM 33 showing the least negative 

GCA effect for yield, hence they contributed to low yield in hybrids. The LPA lines, 



206 
 

CM 31 and CM 33 also showed negative GCA effects for PLS disease resistance 

scores and can be recommended for use to improve early flowering, quick dry down 

rate of grain and PLS disease resistance. 

 The QPM and normal lines all showed positive GCA effects for yield, hence they 

contributed to high yield in hybrids. Due to negative GCA effects for all three disease 

resistance score, QPM 7, T 2 and T 3 can be recommended for disease resistance 

breeding with yield improvement.    

 There were four crosses involving LPA lines that showed the desired negative SCA 

effects for DMS, DMP and GMC, negative SCA effects for at least one of the three 

diseases and positive SCA effects for EPP and yield (CM 31 x T 3; CM 33 x T2; CM 

31 x QPM 6; CM 33 x QPM 7). Due to the additive gene action for yield and 

associated traits, the selection of lines with positive and high GCA effects would be 

the appropriate breeding strategy.   

 The yield of the LPA x LPA, LPA x Nm and LPA x QPM groups of crosses was much 

lower than that the check hybrids (-67% to -32%) showing the need for yield 

improvement of the LPA hybrid combinations.   

 The LPA x LPA, LPA x Nm and LPA x QPM groups of crosses did not show much 

difference in disease resistance scores to GLS and PLS compared to the other 

groups, however they were slightly more susceptible to NCLB compared to the other 

groups, showing comparable levels of disease resistance to the Nm and QPM groups 

of crosses.   

 

References 

Ahsan, M., Hussnain, H., Saleem, M., Malik, T.A. and M. Aslam. 2007. Gene action and progeny 
performance for various traits in maize. Pak J Agric Sci 44:608-613. 
  
Akande, S.R. and G.O. Lamidi. 2006. Performance of quality protein maize varieties and disease 
reaction in the derived-savanna agro-ecology of south-west Nigeria. Afr J Biotech 5:1744-1748. 

Bregitzer, P. and V. Raboy. 2006. Effects of four independent low-phytate mutations on barley 
agronomic performance. Crop Sci 46:1318-1322. 

Broccoli, A.M. and R. Burak. 2004. Effect of genotype x environment interactions in popcorn maize 
yield and grain quality. Span J Agric Res 2:85-91. 

Brown, K.H. and N.W. Solomons, 1991. Nutritional problems of developing countries. Infect Dis Clin 
NAm 5: 297-317. 

da Silva, H. and J.R. Moro. 2004. Diallel analysis of maize resistance to Phaeosphaeria maydis. Sci 

Agric (Pracicaba, Braz) 61:36-42.  

Derera, J., Tongoona, P., Vivek, B.S. and M.D. Laing. 2007. Gene action controlling grain yield and 
secondary traits in southern African maize hybrids under drought and non-drought environments. 
Euphytica 162:411-422. 



207 
 

Derera, J., Tongoona, P., Pixley, K.V., Vivek, B., Laing, M.D. and N.C. van Rij. 2008. Gene action 
controlling gray leaf spot resistance in southern African maize germplasm. Crop Sci 48:93-98. 

Ertl, D.S., Young, K.A. and V.Raboy. 1998. Plant genetic approaches to phosphorus management in 
agricultural production. Jnl Exp Qual 27:299-304. 

Glover, M.A., Willmot, D.B., Darrah, L.L., Hibbard, B.E. and X. Zhu. 2005. Diallel analysis of 
agronomic traits using Chinese and U.S. maize germplasm. Crop Sci 45:1096-1102.  

Gupta, H.S., Agrawal, P.K., Mahajan, V., Bisht, G.S., Kumar, A.,Verma, P., Srivastava, A., Saha, S., 
Babu, R., Pant, M.C. and V.P. Mani. 2009. Quality protein maize for nutritional security: rapid 
development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230-
237.  

Guttieri, M.J., Peterson, K.M. and E.J. Souza. 2006. Agronomic performance of low phytic acid wheat. 
Crop Sci 46:2623-2629. 

Krivanek, A.F., de Groote, H., Gunaratna, N.S., Diallo, A.O. and D. Friesen. 2007. Breeding and 
disseminating quality protein maize (QPM) for Africa. Afr J Biotech 6:312-324.  

Malik, S.I., Malik, H.N., Minhas, N.M. and M.Munir. 2004. General and specific combining ability 
studies in maize diallel crosses. Int  J Agr Biol 6:856-859. 

Modi, A.T. and N.M. Asanzi. 2008. Seed performance of maize in response to phosphorus application 
and growth temperature is related to phytate-phosphorus occurrence. Crop Sci 48: 286-297.  

Muraya, M.M., Ndirangu, C.M. and E.O. Omolo. 2006. Heterosis and combining ability in diallel 
crosses involving maize (Zea mays) S1 lines. Aust J Exp Agr 46:387-394. 

Odiyi, A.C. 2007. Relationships between stem borer resistance traits and grain yield reduction in 
maize: correlations, path analysis and correlated response to selection. Agric J 2:337-342. 

Raboy, V. 1997. Accumulation and storage of phosphate and minerals. In: Larkins, B.A. & I.K. Vasil, 
eds. Cellular and molecular biology of plant seed development. Kluwer Academic Publishers, 
Dordrecht, Netherlands, and Boston, Mass, USA: p441-77.  

Raboy, V., Gerbasi, P.F., Young, K.A., Stoneberg, S.D., Pickett, S.G., Bauman, A.T., Murthy, P.P.N., 
Sheridan W.F. and D.S. Ertl. 2000. Origin and seed phenotype of maize low phytic acid 1-1 and low 
phytic acid 2-1. Plant Physiol 124:355-368. 

Raboy, V., Young, K.A., Dorsch, J.A. and A. Cook. 2001. Genetics and breeding of seed phosphorus 
and phytic acid. J Plant Physiol 158:489-497. 

Samanci, B. 1996. Phenotypic correlations between maize inbreds and their single cross hybrids in 
short season areas. Euphytica 89:291-296. 

SAS Institute Inc. (2002). Software release 9.3. Cary, NC: SAS Institute inc. 

Vivek, B.S., Krivanek, A.F., Palacios-Rojas, N., Twumasi-Afriyie, S. and A.O. Diallo. 2008. Breeding 
Quality Protein Maize (QPM): Protocols for developing QPM cultivars. Mexico, D.F.:CIMMYT. 

Vivek, B.S., Odongo, O., Njuguna, J., Imanywoha, J., Bigirwa, G., Diallo, A. and K. Pixley. 2009. 
Diallel analysis of grain yield and resistance to seven diseases of 12 African maize (Zea mays L.) 
inbred lines. Euphytica DOI:10.1007/s10681-009-9993-5.  

Xingming, F., Jing, T., Bihua, H. and L. Feng. 2001. Analyses of combining ability and heterotic 
groups of yellow grain quality protein maize inbreds. Seventh Eastern and Southern Africa Regional 
Maize Conference, 11-15

th
 February 2001, 143-148. 

Yousuf, M. and M. Saleem. 2001. Correlation analysis of S1 families of maize for grain yield and its 
components. Int J Agric Biol 3:387-388. 



208 
 

Zhang, Y., Kang, M.S. and K.R. Lamkey. 2005. Diallel-SAS05: A comprehensive program for 
Griffing‟s and Gardner-Eberhart analyses. Agron J 97:1097-1106. 

Zhao, H-J., Lui, Q-L., Fu, H-W., Xu, X-H., Wu, D-X. and Q-Y. Shu. 2008. Effect of non-lethal low 
phytic acid mutations on grain yield and seed viability in rice. Field Crop Res 108:206-211. 

  



209 
 

Chapter Seven 

Overview 

Introduction  

 

This chapter provides an overview of the study, re-stating the main research objectives. It 

summarizes the main findings. Limitations, challenges and implications of the findings and 

directions for future research (recommendations) are outlined. 

The study had the following general objectives: 

 to develop a molecular marker for use at the early vegetative stage of the plant for 

the detection of the lpa1-1 gene and to validate the single nucleotide polymorphism 

(SNP) marker nucleotide change,   

 to determine the amount of recurrent parent (P 16) genome present in each of the 

BC2F1 lines using lpa1-1 SNP marker for foreground selection and amplified fragment 

length (AFLP) markers for background selection,   

 to determine the gene action controlling seed germination, seedling vigour grain yield 

and resistance to foliar diseases in low phytic acid (LPA) x normal (Nm) and LPA x 

quality protein maize (QPM) crosses; and  

 to determine the level of grain yield, seed germination and vigour in hybrid crosses 

involving LPA, Nm and QPM maize inbred lines. 

 

Summary of the major findings 

 

Development of a SNP marker for detection of the low phytic acid (lpa1-1) gene for 

use during maize breeding 

 A SNP marker was developed and optimised that amplified a 150 bp PCR product for 

both the parental lines at an annealing temperature of 55°C.  

 HRM analysis of an amplicon containing the lpa1-1 SNP marker could successfully 

differentiate the two inbred maize lines on the basis of their melt profiles. The SNP 

marker was validated by forward and reverse DNA sequencing and the single 

nucleotide base pair change (C to T) was clearly seen between the two parental 

amplicon sequences.  
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 The lpa1-1 SNP marker is a co-dominant marker that can be used to distinguish 

between homozygous dominant, homozygous recessive and heterozygous alleles of 

the lpa1-1 trait based on melting curves and difference plots. 

 The cost of the lpa1-1 SNP marker with HRM analysis was 8% of the cost of DNA 

sequencing which is the conventional method of detecting SNP genotypes.  

 Crude DNA extraction was as effective as high quality DNA extraction method for 

melt curve analysis.  

 

Marker-assisted selection for low phytic acid (lpa1-1) with SNP marker and AFLPs for 

background selection in a maize backcross breeding programme 

 There were 250 BC2F1 lines, generated from the cross P 16 x CM 32 with P 16 as the 

recurrent parent, screened with the lpa1-1 SNP marker in the foreground selection 

and 11 homozygous recessive (LPA) and 17 heterozygous lines identified and 

selected for background selection using AFLP markers. 

 The AFLP technique was highly polymorphic with only six EcoRI/MseI primer 

combinations producing 84% polymorphic bands between the parental inbred lines.  

 The percentage of recurrent parent genome recovered ranged from 62.12% to 

92.15%, with 13 lines showing >83% of the recurrent parent genome and are 

recommended for further advancement and field assessment.  

 

Seed germination and vigour analysis in diallel crosses among normal endosperm, 

low phytic acid (LPA) and quality protein maize (QPM) inbred lines under normal and 

accelerated aging conditions 

 Both additive and non-additive gene action was significant for both germination and 

vigour index and its component traits under normal and accelerated aging conditions, 

with specific combining ability (SCA) effects generally superior to general combining 

ability (GCA) effects for all traits, indicating that genes with non-additive effects were 

more important for both germination and vigour traits. Due to both additive and non-

additive gene action; lines can be selected for breeding that have for good combining 

ability for these traits. Also due to the predominance of non-additive gene effects; this 

material can also be useful in a breeding programme to develop hybrids.  

 The LPA line, CM 31 displayed the desired positive GCA effects under standard and 

accelerated aging conditions and CM 32 showing increased SCA values under 

accelerated aging conditions thereby showing stress tolerance. Hence it would be 
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useful source of breeding material for improved germination and vigour in other LPA 

germplasm. 

 QPM 7 was the only QPM line that had positive GCA effects for all the traits under 

both standard and accelerated aging conditions showing stress tolerance.  

 There were nine crosses that performed well under both standard and accelerated 

aging conditions which included, one QPM x Nm, two LPA x QPM, two LPA x LPA 

and four LPA x Nm crosses thereby showing stress tolerance for seed germination 

and vigour traits. Breeding methods which exploit SCA effects can be used to 

improve these traits, such as recurrent selection for specific combining ability. 

 The LPA lines and their hybrid combinations exhibited low germination (14-39%) with 

the QPM lines and normal tropical lines showing high germination rates under both 

experimental conditions; therefore they were more viable and more stress tolerant 

than the LPA lines. 

 

Combining ability between temperate low phytic acid (LPA) and tropical normal 

endosperm inbred lines for seed vigour and grain yield components 

 Both additive and non-additive gene effects were significant with SCA effects 

generally superior to GCA effects, indicating that genes with non-additive effects 

were more important for both seed germination and vigour.  

 For days to mid-silking (DMS), days to mid-pollen shed (DMP), yield and ears per 

plant (EPP) traits, there were both additive and non-additive gene action present, 

with additive gene action present for grain moisture content (GMC), with 

predominance of additive gene action present for all yield and associated traits.  

 For traits showing predominant additive gene action; lines can be selected for 

breeding that have for good combining ability for these traits and for traits showing 

predominance of non-additive gene effects; this material can also be useful in a 

breeding programme to develop hybrids. 

 The LPA line, CM 32 showed increased SCA values under accelerated aging 

conditions for germination and seedling dry weight thereby indicating stress 

tolerance, while normal lines, Kenyan, P 1, P 5 and P 7 had positive GCA effects for 

all seed germination and vigour traits hence they would be useful sources of 

breeding for improved germination and vigour. 

 In the LPA x Nm group, there were four crosses with the desired positive SCA effects 

for yield and negative SCA effects for DMS and GMC (CM 32 x P 5; CM 32 x P 6; 

CM 35 x P 6; CM 35 x P7), and three LPA x Nm crosses that showed improvements 

to the means of germination and vigour and yield traits (CM 32 x Kenyan, P 6 x CM 
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32, CM 32 x T 4). The inbred lines can be selected for breeding due to the additive 

gene action of yield and associated traits. Also due to the non-additive gene action of 

the seed germination and vigour traits, inbred lines can be developed that show SCA 

effects when combined with other inbreds. 

 There were positive correlations between the seed germination and vigour traits, with 

yield positively and significantly correlated to DMS, DMP and GMC therefore high 

yield was associated with long growing cycles.  

 

Grain yield and associated traits analysis in diallel crosses among normal 

endosperm, low phytic acid (LPA) and quality protein maize (QPM) inbred lines  

 Both additive and non-additive gene action were significant for hybrid reaction to 

northern corn leaf blight (NCLB), grey leaf spot (GLS) and Phaeosphaeria leaf spot 

(PLS) diseases therefore recurrent selection methods that exploit both GCA and SCA 

effects can be used while additive gene action was predominant for DMS, DMP, 

EPP, GMC and yield, therefore selection of lines can be used to improve these traits. 

 The LPA lines were early flowering and having quick dry down rate but all showed 

negative and significant GCA effects for yield with CM 33 showing the least negative 

GCA effect for yield, hence they contributed to low yield in hybrids. The LPA lines, 

CM 31 and CM 33 also showed negative GCA effects for PLS disease resistance 

scores and can be recommended for use to improve early flowering, quick dry down 

rate of grain and PLS disease resistance. 

 The QPM and normal lines all showed positive GCA effects for yield, hence they 

contributed to high yield in hybrids. Due to negative GCA effects for all three disease 

resistance score, QPM 7, T 2 and T 3 can be recommended for disease resistance 

breeding with yield improvement.    

 There were four crosses involving LPA lines that showed the desired negative SCA 

effects for DMS, DMP and GMC, negative SCA effects for at least one of the three 

diseases and positive SCA effects for EPP and yield (CM 31 x T 3; CM 33 x T2; CM 

31 x QPM 6; CM 33 x QPM 7). Due to the additive gene action for yield and 

associated traits, the selection of lines with positive and high GCA effects would be 

the appropriate breeding strategy.   

 The yield of the LPA x LPA, LPA x Nm and LPA x QPM groups of crosses was much 

lower than that the check hybrids (-67% to -32%) showing the need for yield 

improvement of the LPA hybrid combinations.   

 The LPA x LPA, LPA x Nm and LPA x QPM groups of crosses did not show much 

difference in disease resistance scores to GLS and PLS compared to the other 

groups, however they were slightly more susceptible to NCLB compared to the other 
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groups, showing comparable levels of disease resistance to the Nm and QPM groups 

of crosses.   

 

Breeding implications  

The results have the following implications for breeding: 

 A co-dominant lpa1-1 SNP marker was developed and optimised for detection of LPA 

genotypes. The marker was validated by DNA sequencing. It is the first SNP marker 

available for LPA genotypes detection with HRM analysis. It is non-destructive, quicker, 

reliable and cost-effective than the conventional method of detecting phytic acid (Chen et 

al., 1956) and can be used to screen segregating material in a breeding programme.  

 There was both successful foreground selection with lpa1-1 SNP marker and 

background selection with AFLPs markers in backcross breeding programme. There 

were 28 BC2 lines identified as homozygous recessive and heterozygous for the lpa1-1 

SNP marker and were characterised for amount of recurrent parent genome using AFLP 

markers. These lines can be tested under field conditions as there is sufficient recovery 

of the recurrent parent genome. The lines which were homozygous recessive for the 

LPA trait would be considered as sources for breeding LPA hybrids for deployment in 

tropical environments. 

 The germination and vigour traits were found to be under both additive and non-additive 

gene action with higher SCA effects than GCA effects therefore genes with non-additive 

effects were more important for these traits. The appropriate breeding strategy for these 

traits would be development of hybrids, or to use reciprocal recurrent selection 

procedures that emphasise both GCA and SCA effects. 

 Yield and associated traits were found to be under additive gene action and therefore the 

appropriate breeding strategy would be to emphasise selection of inbreds with high GCA 

effects for yield. These lines can be used to develop hybrids and synthetic open-

pollinated varieties. 

 The control of resistance to diseases (NCLB, PLS, GLS) were found to be both additive 

and non-additive gene action, therefore reciprocal recurrent selection strategy can be 

employed.  

 The LPA lines and their combinations showed very low germination and low yield, 

thereby confirming the poor agronomic and vigour performance of the LPA germplasm. 

The LPA lines showed variation for the vigour traits, with CM 31 and CM 32 showing 

stress tolerance for germination and vigour. However the LPA lines showed early 

flowering and quick grain dry down rate which are desired traits. 
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 The QPM and normal lines all showed high germination and yield, showing the 

improvement of breeding of QPM material. The late flowering and late drying trends 

shown by these lines are not desired by farmers as this would mean a late harvest of 

maize. 

 Yield was negatively correlated with all three foliar diseases, indicating that the increased 

disease incidence reduced grain yield of the varieties and hence varieties with resistance 

to GLS, PLS and NCLB should be developed. Yield was positively correlated with later 

maturity, higher ear prolific ratio and higher GMC therefore higher yield is associated 

with longer growing cycles. There needs to be a compromise between yield and maturity, 

therefore maybe have medium maturity material with slightly lower yield. Also can 

possibly incorporate LPA trait into late maturity varieties, which provides improved 

germination and vigour required by LPA material.  

 This is the first study on LPA x QPM crosses and there were some promising crosses 

identified that show the possibility of developing material with both traits at the same time 

using a selection index for both traits. Further field evaluations for agronomic 

performance and laboratory tests need to be done to ascertain both the LPA and QPM 

trait presence, quantity of phytic acid, lysine and tryptophan and overall performance of 

these crosses.  

 

Breeding challenges 

The challenges faced by breeding for low phytic acid in maize varieties are: 

 Breeding for low phytic acid is hampered by low germination and reduced vigour with 

field evaluation of LPA hybrids showing very low yield compared to normal and QPM 

hybrids. Due to LPA crosses being not high yielding, recurrent selection can be used due 

to the recessive nature of the LPA trait. However this breeding approach requires a 

selfing cycle to fix lines with recessive gene or identify the lines with the recessive gene. 

The use of the marker to identify heterozygous genotypes can greatly reduce number of 

generations need to introduce the LPA trait into other high yielding germplasm.  

 There are often problems with drought for small scale farmers in Africa. The earliness 

and quick dry down rate of the grain are valuable traits of the temperate material that can 

be introduced into the adapted tropical material to alleviate this problem.  

 There were concerns about the effect of DNA concentration on SNP marker with HRM 

analysis for detection. However, due to the same method of DNA extraction and the 

same starting amount of leaf material was used for DNA extraction of all 250 BC2F1 lines; 

this was not a problem in this study.  
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 The SNP marker with HRM analysis is highly effective but to be adopted into a breeding 

programme, there needs to be adaptation to high-throughput methods and decreased 

costs. This can be addressed by optimizing the marker reaction to lower PCR volumes. 

Also FTA cards can be tested as an alternative to the DNA extraction. Another area of 

optimization is testing if chipping the seed embryo for DNA extraction would be effective 

in detecting the different genotypes.   

 In the backcross breeding programme, markers were successfully used for both 

foreground and background selection. The lpa1-1 SNP marker was ideally co-dominant 

thereby allowing identification of all three types of genotypes. There were some concerns 

about the polymorphism rate of AFLP markers, sufficient differentiation of the BC2F1 lines 

and method of detection of the markers. However, the AFLP markers were very effective 

in identifying lines containing greater amounts of recurrent parent genome expected in 

BC2 generation with only six primer combinations and a high polymorphic rate. A DNA 

sequencer was used in this study for detection of AFLP markers, which is not available 

at all institutions, however polyacrylamide gels can also be used to detect AFLP 

markers. This study showed the effectiveness and potential of using MAS to track trait of 

interest and reduce the number of generations in a maize backcross breeding 

programme.   

 

 

Directions for future research 

The lpa1-1 SNP marker can be refined to a high-throughput marker assay by testing embryo 

chipping and FTA elute cards as an alternative to the DNA extraction. The method of embryo 

chipping  enables the germination of the seed thereby reducing the need for large numbers 

of plants needing to be planted, but the issues of reduced germination due to infection of the 

seed through the chip on the seed needs to be addressed. However, fungicides can be used 

to reduce infection of the seeds used for embryo chipping. The process has been well 

documented and published for maize (Gao et al., 2008).  

FTA cards from which DNA can be directly eluted are available and these can be tested as 

an alternative to DNA extraction methods. The cost-effectiveness of these FTA cards would 

need to be determined. Due to the high cost of the PCR mix used for the lpa1-1 SNP 

marker, lower volumes of PCR reaction mix can be tested to decrease costs, thereby making 

the SNP assay affordable and quick.  

Field trials of 28 BC2F1 lines should be conducted over different seasons and locations to 

determine adaptability and yield potential. The homozygous recessive lines with high 

percentage of recurrent parent should be carefully considered as the LPA trait is already 
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fixed. These lines will be tested for adaptation as lines per se or in hybrid combination. The 

agronomic performance of these lines needs to be determined under field conditions to 

determine adaptability and yield performance. Another validation of the low phytic acid 

content would be to subject these selected lines to the colorimetric assay to confirm the 

actual levels of phytic acid.  

Field trials of the F1 hybrids were promising because there were some crosses that showed 

both good germination and vigour traits and good yield and associated traits, especially LPA 

x QPM hybrids. These can be further advanced for improvement of germination and vigour 

and yield by either selection of inbred lines or development of hybrids depending on the 

gene action of the traits. The SNP marker can be used to identify or track LPA genotypes in 

the breeding material.  

Due to the information on the gene action of the seed germination, vigour and yield traits, 

suitable lines with high GCA effects can be selected for improvement of traits under additive 

gene action. For traits under predominantly non-additive gene action, inbred lines can be 

developed that show SCA effects when combined with other inbreds. For traits under both 

additive and non-additive gene action, reciprocal recurrent selection procedures that 

emphasise both GCA and SCA effects can be used. 
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