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Abstract

The measurement of the crystal size distribution is a key prerequisite in optimising

the growth of sugar crystals in crystalisation pans or for quality control of the final

product. Traditionally, crystal size measurements are carried out by inspection or

using mechanical sieves. Apart from being time consuming, these techniques can

only provide limited quantitative information. For this reason, a more quantitative

automatic system is required. In our project, software routines for the automated

measurement of crystal size using classical image analysis techniques were developed.

A digital imaging technique involves automatically analyzing a captured image of a

representative sample of ~ 100 crystals for the automated measurement of crystal size

has been developed. The main problem of crystals size measurements using image

processing is the lack of an efficient algorithm to identify and separate overlapping

and touching crystals which otherwise compromise the accuracy of size measurement.

This problem of overlapping and touching crystals was addressed in two ways. First,

5 algorithms which identify and separate overlapping and touching crystals, using

mathematical morphology as a tool, were evaluated. The accuracy of the algorithms

depends on the technique used to mark every crystal in the image. Secondly, another

algorithm which used convexity measures of the crystals based on area and perime­

ter, to identify and reject overlapping and touching crystals, have been developed.

Finally, the two crystal sizing algorithms, the one applies ultimate erosion followed

by a distance transformation and the second uses convexity measures to identify over­

lapping crystals, were compared with well established mechanical sieving technique.

Using samples obtained from a sugar refinery, the parameters of interest, including

mean aperture (MA) and coefficient of variance (CV), were calculated and compared

with those obtained from the sieving method. The imaging technique is faster, more

reliable than sieving and can be used to measure the full crystal size distributions of

both massecuite and dry product.
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Chapter 1

Introduction

Improved industrial process control promotes the quality of the output from a fac­

tory, which in turn guarantees the production of a shipment that has the required

specification. Process control can be used in a sugar factory to ensure the quality of

the final sugar product that meets certain specifications.

Sugar production undergoes a series of steps beginning from the sugar cane that

arrives at the factory to the centrifuge where the sugar crystals are separated from

the molasses. As described in Section 1.2.2, the pan system is the most crucial part

of the sugar milling process as this is where the crystallization takes place.

The crystallization process is usually monitored using varieties of indirect techniques

such as conductivity of the massecuite, boiling point elevation, stirrer torque and

radio frequency measurements in addition to visual inspection. The results from

such indirect measurements are evaluated and the necessary decisions are then made

by the operators, who then make adjustment to the pressure, temperature, pH etc.

This optimization is often compromised by operator fatigue. and error. An auto­

mated system would not be subjected to these problems and would also allow for

online feedback control.

The control of the growth of the sugar crystals is one area where the automated

optimization would be of benefit to the sugar industry. Due to the fact that the

quality of the sugar and the crystal growth rate depends on the crystal size distri­

bution, research is required to design and build a system that measures the crystal
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parameters such as the mean aperture (MA), coefficient of variance (CV), mean

length, width, and aspect ratio (length/width).

In this work a computerized approach for measuring these crystal size parameters

was investigated. The study demonstrated the possibility of designing an imaging

system that can automatically measure crystal size parameters quantitatively, ob­

jectively and repeatedly without operator intervention.

1.1 Justification

Agro-processing is vital in developing countries, like Ethiopia, whose economy is

highly dependent on agriculture. Processing agricultural products at different levels

generate more income than unprocessed ones. With the introduction of improved

agro-processing, it is possible to reduce the cost of production, which in turn maxi­

mizes the returns. Research on agro-processing technology mainly involves control of

the quality of the product and so improves the efficiency of the production process.

In the sugar industry, the quality of the yield is highly dependent on the quality of

the raw material supplied to the factory. It is also equally dependent on the produc­

tion processes at the factory.

To enhance their competitiveness in the international market, sugar-exporting coun­

tries, including Ethiopia, adhere to a set of standards that ensures a high standard

of the exported sugar product. In these countries sugar mill owners can only de­

liver their product to the corporation (or recognized export promotion agency of the

country) if they abide by these standards. Customers worldwide depend on both a

reliable quality and supply of raw sugar, which always meets specific requirements.

To maximize income from sugar export and maintain competitiveness in the world

market on a sustainable basis it is, therefore, necessary to conduct milling technology

research to control the quality and improve the efficiency of the raw sugar production

process. One important aspect of sugar crystal production is the need to optimize and

monitor the crystal growth rate in the crystallization pans. Monitoring the process

at the seeding stage of crystallization is required to establish if there is an adequate
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population of sugar grains at the beginning of the process. Secondly it is required

to establish whether or not the size distribution is bimodal which indicates the pres­

ence of false seeding which will compromise the overall crystal growth rate. Once a

problem is detected, the necessary process control conditions (eg. pressure, temper­

ature, or water content etc.) need to be adjusted in order to guarantee the adequate

quality of the final product fixed by commercial specifications (i.e. adequate size

and homogeneous grains). This study demonstrated that the measurement of sugar

crystal size measurement can be efficiently achieved using crystal image-processing

techniques.

1.2 Description of the Processes Involved in Sugar

Production

In order to better understand the processes undertaken in a sugar factory, in January

2005, 3 factories (including Metehara, Wonji and Fincha) were visited in Ethiopia.

Figure 1.1 shows an overview of sugar production processes at the sugar industry.

[I

II
t'1;m

Molas;se,s

Figure 1.1. Schematic of the various stages in processing sugar cane through to the production of
the final product.
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1.2.1 Sugar Cane Juice Extraction and Clarification

After the sugar cane arrives at the factory, it is weighted at the weight bridge. The

cane is then prepared by the shredder for the removal of juice by the extraction

station. The extraction process done by series of mills which crash the cane to

separate the juice (containing the sugar) from the fibrous part of the cane plant.

The fibrous plant material left after the juice is removed is called bagasse. To help

in the extraction of juice, water is applied to the bagasse between each crushing mill

to wash out the extra sugar. The juice is then clarified. The clarification process

removes dirt and other impurities from the juice by settling them in a clarifier. The

impurities are then drawn off, washed and dried on a rotary vacuum filter to recover

any sugar in the impurities. The clarified juice is then sent to the evaporation stage.

Here most of the water is removed from the clear juice in a series of evaporators or

effets, The syrup from the evaporator stage then goes to the pan stage.

1.2.2 Crystallization Process

The juice entering the evaporator stage has basically the same composition as the

raw juice extracted from the sugar cane except for the mud removed by the clarifier.

The evaporator (or effets) job is to evaporate most of the water present in the clar­

ified juice and thus concentrate it. The material output of this is called syrup. In

the crystallization pan stage, crystal sugar is produced from syrup.

The crystallization is carried out in large tanks or pans under a partial vacuum

where the sugar crystals are grown from the syrup. This process involves first load­

ing the pan with sub-saturated syrup, which is then heated under partial vacuum

until conditions of oversaturation are reached. The sugar powder is then fed in as

seed crystals, which grow during the boiling process. Monitoring the process at the

seeding stage of crystallization is required to establish if there is an adequate popula­

tion of sugar grains at the beginning of the process, secondly it is required to establish

whether the size distribution is bimodal indicating presence of false seeding which

will compromise the overall crystal growth rate. Once a problem is detected, the

necessary process control conditions (e.g. pressure, temperature, or water content

etc.) need to be adjusted. This task is needed in order to guarantee the adequate

quality of the final product fixed by commercial specifications (i.e. adequate size and

homogeneous grains).
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1.2.3 Fugal Stations

The fugal stations or centrifuges are used to separate sugar crystals from the sur­

rounding molasses by spinning. The massecuite is fed into a basket which is lined

with a pierced metal screen backed by gauge. The holes on the screen contain the

sugar but allow the molasses to pass through and escape. High grade fugals, grade

A or B massecuite, separate shipment sugar from the A or B molasses which are

subsequently returned to the appropriate tanks. 10\v grade fugals separate crystals

and molasses in the low grade C massecuite in the crystallization pan.

1.3 Review of Crystal Size Measurement Tech-
.

mques

As described in Chapter 2, in the literature, there are a number of reported direct

and indirect techniques that have been used to monitor the growth of sugar crys­

tals in the crystallization pan in addition to visual inspection. Some offline indirect

techniques used the pH of the massecuite, conductivity of the liquor, boiling point

elevation and etc. These indirect techniques were unable to quantify the size of the

crystals in terms of their MA and CV instead they were used to determine solid

content (sugar crystals in this case) in the massecuite.

Direct techniques on the other hand referred to those methods which could directly

measure crystal size in terms of crystal size parameters (i.e. MA and CV). Direct

crystal size measurement techniques include sieving of the dry sugar, laser diffrac­

tions of solid suspensions in the solution and crystal imaging methods.

Apart from being used to monitor crystal growth, indirect techniques had some

disadvantages. Indirect techniques did not give quantitative information and the

analysis was carried out in time intensive manner. Moreover they were subjective

and thus prone to errors.

Among direct techniques, sieving method for dry sugar size measurement was well es­

tablished. Due to the fact that only a few sieve mesh sizes were used sieving method

could only provide limited information.
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As also described in Chapter 2, previous workers have used a laser diffraction tech­

nique with a laser light source and typically 32 - semi-circular silicon detectors to

measure the size of crystals. The silicon detectors collected the laser light diffracted

by the solid suspensions in the solution. Because a relatively small number of semi­

circular detectors were used, this limits the amount of detail information that could

be extracted about the crystal size distribution. Moreover laser light sources are

expensive.

To overcome some of these limitations, a computerized crystals image processing

approach has been evaluated. This study demonstrates that, this method can give a

quantitative, objective and reproducible size measurement. The study, furthermore,

indicates the possibility of improved control of crystal growth during crystallization

stages and online measurement for rapid analysis of samples.

The main problem in the crystal image processing is the lack of an efficient algo­

rithm to separate overlapping and touching crystals which compromises the accuracy

of size measurements. To address this problem, algorithms are developed to iden­

tify and either separate or reject overlapping and touching crystals. As described

in Chapter 4, mathematical morphology has been used as a tool to mark and sepa­

rate overlapping and touching crystals. However, this tool cannot 100% separate the

touching and overlapping crystals, and moreover, it suffers from the problem of over

segmentation. To alleviate this problem another algorithm is evaluated to identify

and reject touching and overlapping crystals. The study shows that by classifying

the crystals using their convexity measures (based on their perimeter and area) it

is possible to reject overlapping and touching crystals with a high degree of accuracy.

The ultimate goal of this project is, therefore, to develop and test computerized

sugar crystal imaging system that can measure the crystal size parameter MA and

CV. The system is compared with the well established sieving method.

6



Objectives

1. Implement algorithms to analyze images of dry sugar crystals and obtain pa­

rameters which describe their sizes such as MA and CV

2. To evaluate different algorithms developed to optimise the accuracy of the size

measurements

3. To compare the algorithms with each other and with a manual method which

involved clicking the border of the individual crystals using the computer mouse

and with the well established sieving technique

1.4 Overview

The 25 sugar samples used in this study were supplied by the Hullet Sugar Refinery

based in Durban, South Africa. The MA and CV of the samples were measured

using sieving technique at the Hullet Refinery and Sugar Milling Research Institute

(SMRI) also based in Durban, South Africa.

Images of the 25 sugar samples were captured using a high resolution CCD camera

attached to a microscope. The crystals were deliberately spread on the microscope

slide in such a way that they represented all the configurations (such as individual,

touching and overlapping) that might be expected to be observed if the images were

taken in the production environment. The images were then saved using bmp for­

mat and subsequent image analysis was carried out using a PC with a 1.5 GHz Intel

Celeron Processor.

A detailed literature review, explaining different sugar crystal sizing techniques, is

given in Chapter 2. As described in Chapter 2, these techniques were categorized as

being either imaging or non-imaging and their respective advantages and disadvan­

tages were also discussed. This chapter also contains results of the analysis, using

artificially generated data, to compare the four (Powers, Rens, rrRSB and Butler

methods) ICUMSA 1 recommended crystal sizing models.

1International Commission for Uniform Methods of Sugar Analysis
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Mathematical morphology (also called the mathematics of shapes) is defined in terms

of non linear operators which characterize the shape of an object. In Chapter 3, defi­

nitions, implementations, and examples of morphological operations used in Chapter

4, are presented. Mathematical morphology is used as a tool in this study to mark

individual crystals, to fill the curve, detect crystals edges, and to find watershed lines.

The main problem in crystal size measurement using crystals image processing is

the lack of an efficient algorithm to separate touching and overlapping crystals. 5

algorithms, based on marker controlled watershed segmentation to identify and sep­

arate overlapping and touching crystals have been evaluated. Chapter 4 describes

the results of these algorithms and the percentage error is calculated with respect

to a manual measurement which involves clicking the border of the crystals using

the computer mouse. The algorithm which combines ultimate erosion with distance

transformation (UE+DT) as a marker was found to exhibit the lowest percentage

error. This UE+DT algorithm was then used to calculate the crystal size parameters

(MA and CV).

Marker controlled watershed segmentation was not 100% accurate. The accuracy

of the algorithms depended on how well the crystals were marked. If the crystals

were marked by multiples of markers, there was the problem of oversegmentation. To

alleviate such problems another algorithm that identified and rejected overlapping

and touching crystals were evaluated. This algorithm classifies the crystals using

their convexity measures based on their area and perimeter. A detail description

is presented in Chapter 5. A manual choice of the threshold values of convexity

measures based on area and perimeter to classify crystals as overlapping and non­

overlapping was used. Although this manual selection gave reasonably acceptable

results, subsequent attempts were made to calculate the threshold values objectively.

In Chapter 6 two classification algorithms viz. Artificial Neural Network (ANN)

and Support Vector Machines (SVM) were used to classify the crystals as overlap­

ping and non-overlapping crystals.
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Chapter 7 focuses on comparing the two image based algorithms which were de­

veloped in Chapters 4 and 5 with well established sieving technique. The crystal size

parameters calculated using manual clicking borders of the crystals were also com­

pared with mechanical sieving method. The results presented in Chapter 7 demon­

strate that it is possible to develop computerized image based system to characterize

crystal size parameters and which gives results comparable to the sieving technique.

Finally, a summary of the whole study including conclusions, recommendation and

limitations, is given in Chapter 8.
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Chapter 2

Literature Review

2.1 Introduction

The principal objective of sugar manufacturing operations is to ensure a consistent

and acceptable product quality is achieved at the lowest cost. High sugar yields in

conjunction with good mother liquor exhaustion during crystallization are important

requirements to achieve this target. As a consequence, process control is of major

importance. The critical components that need to be monitored during the crystal­

isation process are the supersaturation of mother liquors and the crystal content of

the massecuite. The search to optimise production has lead to numerous measure­

ment methods to control crystals growth in the sugar industry. This chapter gives a

detailed description about ICUMSA1 recommended methods for grain size analysis

and then presents sieving and different non-sieving methods that have been used to

monitor sugar boiling.

2.2 Grain Size Analysis

2.2.1 Powers Method

One of the first size characterisation methods to be used in the sugar industry was

developed by Philip Lyle and first published by Powers (Powers, 1948). This method

assumed particle size distribution to follow a normal probability distribution function

which is fully represented by the mean of the distribution (p,) and its standard

1International Commission for Uniform Methods of Sugar Analysis
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deviation (0-)' Due to the nature of the normal distribution function, the mean,

median and mode of the distribution function all coincide. Furthermore, the standard

deviation of a normal distribution may be calculated using the relationship:

a- = d84 - d16 x 100%
2

(2.1)

where d84 is the screen size through which 84.13% of the particles would pass (fl,+a-)

and d16 is the screen size through which 15.87% of the particle would pass (j1. - a).

The Powers method exploits these characteristics for the analysis of grain sizes by

characterising the particle size distribution using two parameters, namely the mean

aperture (MA) and coefficient of variance (CV). MA is the median-size-by-mass of

the distribution. This is the aperture size of a screen which would retain 50% by

mass of the particles, while allowing 50% by mass of the particles to pass through.

For the normal probablity distribution, MA is also equivalent to the mean-size-by­

mass of the particles. But this coincidental equivalence does not necessarily hold for

non-normal distributions. The CV of the distribution is defined by the equation;

ev = d84 - d16 x 100%
2MA

(2.2)

which, for a normal distribution only, can be described as a standard deviation

divided by the mean particle size by mass, expressed as a percentage. Practically,

MA is defined as median-size-by-mass. In some article (Dalziel et al., 1999), however,

MA is confused with mean-size-by-mass. This confusion arose when mean-size-by­

mass was used for non-normal distribution whose mean and median were not the

same.

The Powers method can be implemented by first plotting, on arithmetical probability

paper, the cumulative mass retained on the probability axis .against sieve aperture

size on the linear axis and then by drawing the best fit straight line through the

plotted points. MA and CV can be calculated by reading, from the graph, the

apertures retaining 50% (d50 ) , 15.87% (d16 ) and 84.13% (d84 ) .

2.2.2 Rens method

The Rens method (Rens, 1978) and (ICUMSA, 1994) uses an empirical equation,

to describe the crystal size distribution, and to convert the cumulative percentage
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by mass retained by different aperture sizes to a linear relationship. For each sieve

aperture size, d, the cumulative percentage by mass retained, y, is converted to a

corresponding linear value, z, using the following empirical function:

-34.5 [ 1.l1ln 5; _exp-O.18Y]

Z= 0
34.5 [ 1.l4!ln 2L _ exp-O.18(lOO-Yl]

V lOO-y

For 10% < y < 50%

For y = 50%

For 50% < y < 90%

(2.3)

The formula is only applied to values of y greater than 10% and less than 90% and,

over this range, there is approximately a linear relationship between Z and y. The

relation between d and the corresponding z values calculated is then determined by

fitting a straight line which approximate the data points. The aperture size (d) is

then related to z as:

d = a + kz (2.4)

where a and k are constants obtained from the regression analysis. The aperture

retaining 50% of the sugar, d50 , is obtained when y = 50% and therefore z = 0, i.e.

d50 = MA = a

If d16 is the aperture size that retains 16% of the sugar, then

(2.5)

(2.6)

Since d16 is the sieve size through which 16% of the particle would pass, d16 can then

be given as:

(2.7)

Using Equation 2.6 and Equation 2.7 and remembering that eF = ;;A' the follow­

ing relationship can be achieved:

eF = kZ16

MA
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2.2.3 The RRSB Method

This procedure is named after the authors (Rosin, Rammler, Sperling and Bennett)

of a pioneering papers (Rosin et al., 1933) and (Bennet, 1936) and is based on an

exponential function to describe the crystal size distribution. The equation for RRSB

is based on exponential and is given by:

D(d) = 1 - R(d) = 1 _ exp [_ (:') n] (2.9)

After taking the natural logarithm of equation 2.9 twice, the equation transforms to:

nln(d) - nln(d')

nln(d) + C

(2.10)

where D(d) is the cumulative mass fraction passed as function of crystal equiva­

lent diameter in gjg, R(d) cumulative mass fraction retained as function of crystal

equivalent diameter in gjg, d crystal equivalent diameter in mm, d' sieve aperture in

mm corresponds to D = 0.632, and ti slope of RRSB function. The RRSB graph is

constructed by plotting In (In (1 _~ (d) ) ) against ti In(d). Sugar with a grain size

distribution that follows the RRSB function will be a straight line. The distribution

is characterised by the gradient, n, of the line and the aperture d'. Where n is a

measure of grain uniformity and d' is the sieve aperture that will pass 63.2% of the

sample. In practice, first the cumulative mass fraction transmitted, D, is calculated

for each sieve used in the crystal size analysis and then the values of D are plotted

on the ordinate scale against sieve aperture, d, on the abscissa of the RRSB graph.

The distribution function is then approximated by a straight line from which nand

d' can be read. Pezzi and Maurandi (1993) established a mathematical relationships

between Powers' (MA and CV) and RRSB's (d' and n). MA is related to nand d'

as:

iVIA = d' X (In 2)~
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and the relationship between CV and n is given as:

1 1

CV = [In (100/15.87)];; - [In 1(100/84.13)]"
2 x (In2);;

2.2.4 Butler Method

(2.12)

The Butler method (Butler, 1974) calculates the MA and CV directly from the

percentage of fraction retained by each sieve used in the particle size analysis. The

method assumes that the mean particle size of each percentage fraction is equal to

the average of the sieve aperture retaining the fraction and the preceding aperture.

In this way a size is attributed to each fraction and MA is calculated by taking

the weighted mean of all fractions. CV is calculated by using the usual statistical

relationship. MA and CV are then given by:

L(R(di ) X d~')

MA = i L(R(d
i

) )

i

CV = 3D x 100
MA

(2.13)

(2.14)

where R(di ) is the percentage retained, d~' is the mean crystal size defined as the

average of the sieve aperture of the retaining fraction and the aperture of the sieve

L{R(d;)X(MA-d;')2}

immediately above and 3D = ; L:(R(d;)) . The value of d~' for the upper-
;

most sieve and the base is calculated using the next largest and smallest sieve in the

series respectively.

2.2.5 Comparison of Grain Size Methods usmg Artificial

Data

ICUMSA (ICUMSA, 1994) suggests that it is possible to calculate MA and CV using

one of the following four techniques namely i) Powers ii) Rens iii) RRSB iv) Butler.

According to ICUMSA the choice is left to the user. It is, however, a good idea

to test the accuracy of crystal sizing methods using artificial data. The comparison

was conducted using two artificially generated data sets, one of which had a normal
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distribution with a skewness equal to 0.10 and the second one skewed to the right

with 1.2 skewness value.
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Figure 2.1. The frequency of occurance for artificial data used to test methods of grain size analysis.
It is a normal distribution with j.L = 1000j.LID, a = 262j.LID and skewness = 0.10

Figure 2.1 shows the frequency graph for normally distributed artificial data, with

an arithmetic mean of f1 = 1000f1m and (7 = 262f1m, used to evaluate grain size

analysis methods. The cumulative percentage by mass for mass distribution (based

on crystals volume) was computed assuming that the crystals were cubic in shape.

This assumption might be acceptable if there was a need to investigate grain size

analysis methods for an ideal situation like this. Parameters of interest including

MA and CV were calculated. Table 2.1 shows MA and CV calculated using the

grain size methods. MA was calculated within 1184.7 ± 2.9f1m while CV was within

20.5 ± 0.3%. The highest spread in CV resulted from powers method which gave

the largest value in CV. To test the sensitivity of the grain size analysis methods,

MA and CV were calculated for the skewed artificial data whose distribution graph

shown in Figure 2.2.

Table 2.2 summarized the MA and CV calculated for the non-normal distribution.

MA was estimated within 1703.9±39.3f1m which exhibited higher spread than normal

distribution while CV was calculated to be 32.6 ± 1.0% also shown higher standard

deviation. In both distributions MA was more spread than CV. In general the

standard deviation of both MA and CV increased when the distribution was non­

normal. The next section focuses on how and why the Rens method can be used to

calculate the crystal size parameters from crystals images.
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Table 2.1. Summary of MA and CV calculated using grain size analysis methods for normal artificial
data.

Methods MA (/Lm) CV (%)
Powers 1184.7 20.9
RRBS 1188.8 20.1
Rens 1182.3 20.6

Butlers 1182.9 20.4

G'UL--580""""..--:-10Cl0:':~:---1-:::':580""'~---:2QO::':C:-n- -:2='so=a=-3f='[[=!Q- .=3sr=]O- -:-:'400a
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Figure 2.2. The frequency distribution for artificial data used to test methods of grain size analysis.
It is a non-normal distribution with f.t = lO00f.tm, a = 262f.tm and skewness = 1.2

2.3 Calculating MA and CV from Crystal Images

The question is how is it possible to estimate MA and CV using classical image

processing algorithms? The volume distribution is related to the projected area and

the number of crystals i.e. Vex: N A3!2 (Dalziel et al., 1999). Using this relation one

can estimate the cumulative percentage by mass retained in each bin. As pointed

in Section 2.2.5, either of those four crystal sizing methods can be used to calculate

MA and CV. As discussed in Section 2.2.1, the Powers method assumes that the dis­

tribution is normal. This assumption is not always true. RRSB and Rens methods

were developed to suit both normal and non-normal distributions (ICUMSA, 1994).

Comparative study in Section 2.2.5, using normal and non-normal artificial data,

on crystal sizing methods indicated that MA and CV calculated by using Rens and

RRSB agreed within the tolerance set by SMRI. After assessing the techniques cur­

rently used in South Africa, Peacock (2000) recommended RRSB as a standard.
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Table 2.2. Summary of MA and CV calculated using grain size analysis methods for skewed artificial
data.

Methods MA (J-Lm) CV (%)
Powers 1686.9 33.1
RRBS 1691.0 31.7
Rens 1675.6 31.8

Butlers 1762.1 33.8

After a comparative study of the crystal size parameters estimated using Rens and

RRSB methods, Schoonees (2002) confirmed that the average differences between the

two calculations falls within the tolerance set by SMRI, which is ±0.03mm for MA

and ±2% for CV and recommended the use of the Ren's method. In this work, Rens

method was employed for 2 reasons. The sieve analysis was done, at SMRI, using

the Rens distribution and the same analysis could be followed to calculate crystal

size parameters from crystal images. The second reason was that Rens and RRSB

crystal sizing methods calculated MA and CV, for two artificial data, confirmed that

their differences lie within tolerance set by SMRI.

2.3.1 Summary of Size Distribution

Powers (Powers, 1948) defined MA and CV as the median-size-by-mass and the cor­

responding standard deviation as the percentage of median-size-by-mass respectively.

It was, however, pointed out by Peacock (2000) that there was confusion about the

actual definition of MA and CV. This confusion arose when mean-size-by-mass was

used for non-normal distributions whose mean and median were not the same. He,

therefore, recommended that MA and CV should be calculated as mean-size-by-mass

and its standard deviation as the percentage of mean-size-by-mass respectively. He

further recommended that mean-size-by-number and its standard deviation as the

percentage of mean-size-by-number should also be reported in addition to MA and

CV. His recommendations are based on two major requirements of the sugar industry

with regard to grain size analysis:

• The results of the analysis should be directly comparable with historical data,

so that the previous knowledge gained by the industry is not lost.
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• The result should be useful for further engineering calculation.

Peacock (2000) explained that historically, grain size analysis had been calculated us­

ing MA and CV, as originally defined by Powers (Powers, 1948). It is thus important

that any future grain size analysis method should yield equivalent parameters. He

further pointed out that MA and CV are not ideal for future engineering calculation

as modeling of crystallization makes use of the mean-size-by-number and associated

standard distribution to describe grain size distribution. Therefore he recommended

that all four parameters (l\/IA, CV, mean-size-by-number and standard deviation)

should be reported for grain size distributions.

2.4 Grain Size Analysis Using Sieve

The sieve method for determining the size properties of raw and refined sugars is

well established internationally for quality assessment (Miller and Beath, 2000). As

described by a SASTA 2 document Anon (2005), the apparatus for the raw sugar

sieving method comprises a sample divider or riffle, a top pan balance (which can

measure mass with an accuracy of ±0.01 g), woven wire cloth sieves (1700, 1180,

1000, 850, 600, 500, and 350 p,m) and a mechanical shaker. The procedure involves

sub-sampling until a sub-sample of about 100 g is obtained. The sieving procedure

involves first weighting each sieve and the base pan and assembling the sieves in

descending order of aperture size. The measured sub-sample is then transferred to

the top sieve and shaken for 15 minutes. The values of the retained masses are

converted to mean aperture (MA) and coefficient of variation (CV) using a calcula­

tion that assumes a model size distribution mentioned in Section 2.3. Significantly,

although 7 sieve sizes are recommended in a SASTA document, in other produc­

tion environments (e.g. in refineries) a smaller number of sieves (e.g. 3) are used.

This can be acceptable, provided the size distribution has a consistent shape. This

method has several advantages and disadvantages. It is a relatively straightforward

technique that can be implemented in a production environment and requires only

low technology equipment to give acceptable reproducibility and accuracy. It does,

however, require a large sample and a relatively long preparation and measurement

time. The major disadvantage of the sieving method is that the size distribution is

2South African Sugar Technologist Association
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characterised by a relatively small number of parameters, since typically from 1 to 8

sieves are used. This prevents the detailed determination of the size distribution. It

is, therefore, difficult to accurately characterise a crystal population, using a small

number of sieves, if the sugar contains, for example, a large percentage of conglom­

erates or agglomerates, or has a high 'fines' component due to crystal breakage.

2.5 Alternative Crystal Size Control Techniques

Generally, non-sieving crystal sizing techniques can be categorised into two major

categories, i.e. image and non-image based. Imaging refers to those techniques which

involve acquiring and analysing images of the crystals.

2.5.1 Image Based Techniques

In South Africa, the idea of using an image based system for crystal sizing, dates

back to early 1990's. Schumann and Thakur (1993) reported the possibility of using

a video camera attached to a personal computer (PC) fitted with a frame grabber

card in the sugar industry. The intention was primarily to replace expensive use of

polaroid film to record sugar crystal images. The possibility of using imaging tech­

niques to automate the measurements of size distribution was also mentioned. Their

imaging system used a black and white CCD camera with an image size of 6.4mm

x 4.8mm and a standard 25mm lens length whose magnification could be altered

using an extension tube. Crystal images were analyzed using Image Pro Plus (IPP)

package. Although it was not explained how, it was said that the IPP could be used

to preprocess and threshold images and also to calculate area, perimeter and count

the number of crystals in the image. One of the disadvantages in using the IPP

software was that, it couldn't separate a touching and overlapping crystals. These

touching and overlapping crystals were therefore treated as a single crystal without

being separated. The paper proposed the use of feature such as roundness to iden­

tify and reject overlapping crystals. It also proposed a mechanical solution which

involved dropping crystals in a sticky medium to separate crystals before imaging

them. The results were not analysed in terms of MA and CV and size distributions

were not given.

Palenzuela and Cruz (1996) have classified sugar crystal images based on spectral
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analysis using neural networks. The spectral shape parameters (spectrum maximum,

high energy bandwidth, total spectral energy) were used as inputs to a neural net­

work to classify the images in terms of the crystal homogeneity, size distribution,

etc. The results of the classification were purely qualitative, indicating the presence

or absence of the above-mentioned situations. There was, thus, no numerical value

given to quantify the size of the crystals in the image.

Dalziel et al. (1999) introduced a classical image analysis based system for crystal

sizing. An image based algorithm first sorted the objects according to their grey

scale values. Depending on their roundness, unwanted objects, including clusters

of crystals, side-on crystals and bubbles were ignored. The problem of touching

and overlapping crystals was addressed semi-automatically using a splitting func­

tion. However, not all overlapping and touching crystals could be separated using

the same function and, in these cases, their boundaries were traced manually. Var­

ious properties of the region including area, perimeter, maximum linear dimension,

aspect ratio, and roundness were estimated. Other parameters such as the volume

equivalent size and projected area were calculated and used to compute the crystal

size distribution. MA and CV were calculated using the imaging system and sieve

technique for three dry sugar samples taken from sugar mills. There was, however,

no ground truth to confirm the accuracy of those values. An interesting result shown

in the paper was that the ratio of L (the diameter of a sphere that has the same

volume as the crystal) to VA (square root of projected area) for Australian sugar was

constant, i.e.~ = 0.97 ± 0.01. This ratio was used to convert a two-dimensional

projected area size into its three-dimensional volume equivalent size.

Crystal sizing, using masscuite image, at pan stage was reported by Ingram and

Steindl (2001). It was the continuation of the work done by Dalziel et al. (1999).

Their system comprised a digital camera, personal computer, an image processing

software package (Image Pro Plus 4.1) and microscope slides. The crystal image was

first converted into a grayscale image and this was followed by background subtrac­

tion to remove the effect of uneven lighting of the sample. Morphological opening

was used to clean up specks and small protrusions on the crystal edges. After a

series of pre processing operations, the image was thresholded to separate the fore­

ground from the background. To split lightly touching crystals, 'limited watershed

splitting' operation was applied. 'Limited watershed splitting' was described as a
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specified number of morphological erosion operations to separate a touching crys­

tals and the same number of dilation operations to enlarge the objects back to their

original size but without allowing any of the objects that were split by erosion to

be rejoined. Touching crystals and conglomerates were also identified and rejected

using a criteria defined by area/(length x width) < 0.7. The separated crystals were

analyzed and their size, in terms of their volume equivalent (Lv), projected area (A)

and their equivalent sieve size (L s ) were calculated. L; and L, were calculated for

each crystal from A ~ using an empirical formula. Finally, mean size-by-number and

mean size-by-mass, CV and density functions were calculated for both L; and L, size

distributions. These calculated values were not compared to any standard methods

to confirm their accuracy.

Peacock (1998) suggested the possible application of neural networks in the sugar

industry for process control and subsequently, Mhlongo and Alport (2002) developed

a crystal sizing technique using an artificial neural network after first performing a

wavelet analysis of crystal images. The wavelet coefficients were used as inputs to a

MUlti-Layer Perceptron (MLP). An analysis of the percentage error in crystal size in­

dicated that Daubechies wavelet coefficient performed better than the Haar, Symlet

and Coiflet wavelets. Test results on 144 pan images showed a fairly good correlation

between predicted mean size and actual mean size, with a mean percentage error of

9%. Predicted mean size and actual mean size for crystal images obtained from a

laboratory crystaloscope immersed in a glycerin solution showed a mean percentage

error of 12.9%.

2.5.2 Non-Image Based Techniques

There are a number of non-imaging methods for controlling crystal growth using laser

diffraction, conductivity measure, viscosity measurement. The first control devices

were based on boiling point elevation, refractometric index and conductivity (Theisen

and Diringer, 2000). The conductivity method measured the concentration and the

motion of the ions in the solution and therefore was greatly affected by changes in

the purity and the temperature of the mother liquor during the crystallization. The

boiling point elevation control methods on the other hand needed pressure to be

constant in the pan. Small changes in pressure in the pan can affect the boiling

point of the liquor. Furthermore boiling elevation cannot be used for the whole boil-
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ing. Therefore, most sugar factories defined the end of the boiling indirectly by the

current consumption of the stirrer. An increase in the viscosity of the massecuite is

caused by high solid content of the boiling (sugar in this case) which in turn increased

the power consumption of the stirrer. This increase in power consumption was used

as an indicator to terminate the boiling process.

The refractometer was the only optical instrument which measured the concentration

of the solution by the angle of refraction of the light. However, refractometers also

have certain disadvantages. The concentration measurement only took place on the

prism of the instrument which was extremely small compared with the volume of the

pan. Therefore the refractometer measurement might not be representative of the

total volume to be controlled (Theisen and Diringer, 2000).

A crystal growth monitoring system using laser diffraction was developed by Brown

et al. (1991). The system used a laser source (lmW or 5mW He/Ne laser), Fourier

transform lenses and a photo-sensitive detector. A parallel beam of Helium-Neon

laser light was diffracted by crystals in the sample and then collected by a silicon

detector. The detector was in the form of 32 semi-circular rings which were arranged

at different distances from the center of the detector. The smallest crystals diffracted

light the most and their light intensity and energy contribution was collected by the

outer rings. The largest crystals contribute a diffracted light signal which was col­

lected on the inner rings, near the center of the detector. A computer program used

to calculate the mixture of particle sizes and concentrations which corresponds to

the measured light intensities. The system calculated the crystal size distribution

and the mean size. The system was not compared to any standard sugar size mea­

suring method to confirm its accuracy. Furthermore the system had a limitation in

terms of sample size which needed the volume of crystal suspension to be 1% of the

total volume otherwise it obscured the laser light beam passing through the crystal

suspension. The system was designed to calculate sugar crystal size assuming that

the crystals were spherical. Due to the fact that the crystals canbe any shape, this

assumption for shape of crystals will introduce an error.

Theisen and Diringer (2000) reported a pan control system based on a microwave

transmission measurement. The system operated by transmitting microwaves through
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the media to be analyzed. The effective microwave field was generated in between

the two transmitting and receiving antennas which were integrated with sensors. As

a result of interactions, the microwaves were absorbed, reflected and scattered by the

media to be measured. The overall absorption, reflection and scattering caused a re­

duction of the microwave energy and therefore an attenuation of the microwave field

in between the sensors. Additionally, the phase velocity of the spreading microwave

was changed according to the dielectric field which was built up by the media. The

change in the wave phase velocity of microwaves was practically a shift of the phase

of the wave. Both effects were based on the special dielectric properties of water. In

the liquid phase, water has extremely high dipole strengths. During the transmis­

sion, these poles were polarized and set into vibration by the microwave field. The

vibrations caused an intermolecular friction correlating with the energy reduction in

the microwave field. Due to the fact that water has high dipole strength comparing

with other solids in the solution, the energy reduction in the microwave correlated

with the water content. This correlation was the basis for the indirect determination

of dry substance content of the mixture of solids and water. This reduction in the

field strength was described by the real and complex dielectric constant of the media.

By determining values which were linked to the dielectric constant, the attenuation

and phase shift were calculated. This in turn indicated the water content of the

media. This system was used to measure the concentration of the massecuite that

helped to determine the seeding point. However, it could not quantify the crystal

sizes and was indirect measurement technique.

Miller and Beath (2000) presented a comparison of crystal sizes measured using

laser diffraction and the traditional sieve technique. This measurement used crystals

dispersed in a suitable suspending fluid such as methanol, or suspended in a parent

growth solution and pumped through a flow cell from either a pilot scale apparatus

or a factory pan. Sieves of sizes 420, 600, 850, 1000 and 1200 m were used. The

results showed a linear relationship between MA using the sieving technique, and

the volume median diameter (assuming that the crystals were spherical) using laser

diffraction. Other crystals properties such as the specific surface area and surface

area mean diameter were calculated for samples from four sugar mills and compared

with the sieve technique. It was, however, observed that linear regression analysis

for these parameters showed poor correlations and large standard errors.
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Schultz and Edye (2000) introduced an online device for the measurement of crys­

tal content of massecuite. The system was developed using low resolution nuclear

magnetic resonance (NMR) instrumentation and was based on measuring the con­

tribution of the solid and liquid parts of the massecuite to the decay of the NMR

signal. It was designed to provide the time history of the crystal content in the pans.

A knowledge of the crystal content for a given crystallisation pan helped the con­

troller to take corrective action to optimise the pan capacity. The system, however,

provided no direct measured value for the size of crystal, but only a graph of the

percentage of crystal content as a function of time. Moreover, no comparison was

made to verify the accuracy of the actual crystal content percentage.

Sugar crystallization process control over the whole range of boiling beginning from

charging to end of the process, based on viscosity, was developed by Tzschatzsch

et al. (2003). The system was an in-line torsional oscillating viscometer which used

an oscillating sphere. The system used an oscillating sphere, magnetic coils, amplifier

of variable gain, rectifier and an amplitude monitoring circuit. The sensing element

was a stainless steel sphere immersed in the sample medium. Viscosity was deter­

mined by measuring the power required to maintain torsional vibrations of the sphere

at constant amplitude. The functional dependence between the power required to

maintain the oscillation of the sphere (sensor) at constant amplitude and dynamic

viscoelastic was used to calculate viscosity of the boiling at different stages. The vis­

cosity profile indicated the time history of the process from which the seeding point

and the end of the process could be determined. The other important parameter in

sugar process control is crystal content. Crystal content can be calculated indirectly

from viscosity using an empirical formula and compared with the one calculated us­

ing radiometry and shown good correlation. It was recommended the combination

of supersaturation (represented by viscosity) and dry solid content (represented as

crystal content) could be a reliable tool to monitor the boiling in sugar industry.

This system was, as far as the knowledge of the author concerned, the only one that

could measure both supersaturation and crystal content. It, however, didn't calcu­

late crystal size parameters. Moreover crystal content was calculated indirectly from

supersaturation (viscosity) measurement.
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An acoustic system for monitoring dry solid content (sucrose crystal) in cooling

crystallization pans was developed by Bubnik et al. (2003). This ultrasonic measur­

ing device could measure the concentration or the density of liquids as well as phase

alteration or reactions. The system used the fact that the velocity of sound through

a medium depends on the concentration and hence the density. The system com­

prised ultrasonic probes, the controller and LCD display and could indicate whether

the boil (massecuite) reached the required brix (density) or not. The knowledge of

concentration helped the controller to monitor the process and define the seeding

and end points of the process. The system was not compared to either any standard

system for accuracy or crystal size.

Other non imaging methods based on conductivity and fussy logic systems were

used (Doss, 1983) and (Sharma et al., 2003) respectively. Conductivity of sugar, in

the solid phase, as a measure of quality was presented by Prasad and Singh (1999).

Due to the fact that the conductivity depends on the associated impurity contents

of sugar, it was used to measure the quality of dry sugar. Seven sugar samples of

different impurity level were used and their statistical T-test indicated that their cor­

responding conductivity measures were significantly different from each other. Each

samples had a unique conductivity value that was used to measure the quality. This

method could not provide information about the size of the sugar.

2.6 MA and CV as Process Control

In the sugar industry, a number of non-imaging process control techniques, based

on boiling point elevation, conductivity, viscosity of the boil is use to optimise the

crystalisation process. Crystal imaging and sieving technique can also be used to

measure crystal size parameters. Most of the recent non-imaging pan monitoring

techniques used supersaturation and crystal contents of the boil. Controlling the su­

persaturation of the mother liquor is crucial at the beginning of the boil to determine

the seeding point. If the supersaturation of the boil is not monitored properly, then

it is possible to get conglomeration and fine crystal formation which are undesirable.

An uncontrolled rise in supersaturation of the massecuite toward the end of the prod­

uct inhibits the circulation of crystals in the pan and hence leads to conglomeration.
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So most of the methods on process control, in sugar industry, therefore, used su­

persaturation to monitor the pan. Merle (2004) recommended the combination of

supersaturation and crystal content to optimize the whole process in sugar industry.

One question that may be asked where our work on process controls in terms of

MA and CV can be used. Process control in terms of yields' MA and CV are not

yet available (Merle, 2004) although researchers are still working on it (Ingram and

Steindl, 2001) and (Dalziel et al., 1999). To the knowledge of the author no article

has been encountered about process control using MA and CV. However, MA and

CV have been used for dry sugar as a measure of quality. The answer to the ques­

tion can be accurate measurement of crystal size parameters (MA and CV) using the

cheapest and user friendly methods and combining this technique with the current

indirect monitoring methods may provide more reliable control on the process. The

use of digital imaging can therefore be taken as a low cost option for crystal size

measurement. In the next Chapters (4 and 5), crystal sizing algorithms using crystal

images are presented. In Chapter 3 the tools used to develop the algorithms are

reviewed.
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Chapter 3

Mathematical Morphology

3.1 Introduction

Mathematical morphology is a methodology for the quantitative analysis of special

structures which was pioneered by G. Matheron and J. Serra at the Paris School of

Mines, France, in 1960s (Serra, 1982). Its mathematical origin stems from set theory,

topology, lattice algebra, random functions, and stochastic geometry. It is based on

the algebra of non-linear operators operating on object shape. In many ways the

method of processing resembles the linear algebraic system of convolution.

Mathematical morphology has variety of applications including image enhancement,

image restoration, image segmentation, edge detection, curve filling, skeletonization

and shape analysis. It can also be applied to texture analysis, feature detection,

image compression, noise reduction, etc. Many problems in the fields of geosciences,

material sciences, biomedical imaging, industrial applications, identification and se­

curity control and document processing have been tackled using mathematical mor­

phology. In geosciences, it was used for the extraction of linear structures in satellite

images of the earth surfaces (Destival, 1986), length and diameter estimation of man­

made mineral fibers have been studied in the field of material sciences (Talbot, 1996)

and (Talbot et al., 1996). Size measurements, in material sciences, required the devel­

opment of an efficient methodology for separating connected fibers or crossing fibers

in scanned electron microscope images (SEM). One of its applications in the field of

biomedical imaging is the automatic recognition of cancerous cells using morpholog­

ical openings by reconstruction and ultimate eroded sets (Thiran and Macq, 1996).
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The processing of 2D electrophoresis gels using top-hat operation for normalizing the

background and the union openings for removing the vertical and horizontal streaks

is described in (Skolnick, 1986). Morphology operations have also been used to sup­

press uneven background illumination and detect defects such as spills, scratches,

and cracks to inspect metal strip in industrial applications (Laitinen et al., 1990).

Its application has been used in document processing to extract morphological fea­

tures of print characters (Liang et al., 1994) and to extract morphological features

for face recognition (Gordon and Vincent, 1992).

Due to the fact that mathematical morphology has also been applied in this work

to characterize sugar crystal size distribution and to automatically measure MA

and CV, it is necessary to discuss some of morphological operations. This chapter

introduces definitions, implementations and examples of morphological operations.

Although all definitions of mathematical morphology are applicable to gray level

images, the focus of this chapter is on binary morphological operators as they are

preferentially used in this work.

3.2 Neighbouring Pixels

An image can be considered to consist of a 2-dimensional array of square pixels

arranged in a square grid. Figure 3.1 shows a black pixel, P, surrounded by a

number of neighborhood pixels. P has 8 neighbors which can be classified into two

groups i.e. those that have an edge in common with P and those that only have a

point in common. The former group which are shaded grey in Figure 3.1 are called

the 4-neighbors of P whereas the totality of neighbors is called the 8-neighborhood of

P. Thus, all 4-neighbor pixels are also 8-neighbor pixels but some 8-neighbor pixels

are not 4-neighbor.

3.2.1 Connectivity of Connected Components

One of the most important concepts in image processing is the notion of connectivity.

For a square grid, let Q be a set of pixels (connected component). Q is called 4­

connected (or a 4-connected component) if for every pair of pixels Pi, Pi in Q, there

exists a sequence of pixels Pi, ... , Pi such that 1) the sequence of pixels is contained
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Figure 3.1. A pixel P in the square grid and its 4-neighborhood.

in Q and 2) every pair of pixels adjacent in the sequence are 4-neighbors of each

other. Similarly, Q is 8-connected (or an 8-connected component) if for every pair of

pixels Pi, Pj in Q there exists a sequence of pixels Pi, ... , Pj such that 1) the sequence

of pixels is contained in Q and 2) every pair of pixels adjacent in the sequence are

8-neighbors of each other.

3.2.2 Structural Element (SE)

A structural element (also called kernel) is a small set of pixels used to probe the

image under study. It is typically translated to each pixel position in the image based

on the origin. An origin must be defined for each SE so as to allow its positioning at a

given pixel. The center pixel of the structuring element identifies the pixel of interest

or the pixel being processed. In practice, the sizes and shapes of SE's are adopted to

the image patterns being processed. There are varieties of SE's that differ in terms

of their shape and size. In this work due to the fact that the 2D image of well formed

crystals look rectangular in shape, a rectangular shaped structural element was used

for the development of the crystal sizing algorithms. Typical examples of structuring

elements are shown in the Figure 3.2.
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Figure 3.2. Typical examples of st ruct ural elements centered at 'c' .

3.3 Basic Morphological Operators

3.3.1 Erosion

Erosion and dilation are the two fundamental morphological operators because all

other operators are based on the combinations of these two processes. Although the

notion is th e same, different litera ture defines these operators differently. According

to (Serra, 1982), who is one of t he pioneers in the field, the eroded set of F is defined

as the locus of cente rs of SE(K) includ ed in the set F. This transformation looks like

Minkowski subtraction . An image F eroded by a SE K is defined as:

E(F,K) = F e K = U ({a - b I ti EF})
b€k

(3.1)

Erosion transformation can be regarded as shrinking operat ion. A typical example

of the erosion operation for a binary image is illustrat ed in Figure 3.3. As the result

of th is transformation some pixels of th e foreground in th e original image become

th e par t of th e background. Only th e set foreground pixels, that fit th e center of

the structural element and all other pixels of st ructural element contained in the

foreground remain i.e. not eroded. As shown in the example when the size of

st ructural element and the foreground in the original image ate equal, only center of

th e foreground pixels remain (not eroded).

3.3.2 Dilation

Dilat ion is th e dual opera tor of erosion. Th e dilation of a set F , by a structuring

element K, is defined as the locus of points x such that K hits F when its origin

coincides with x . It is also called Minkowski addition. An image F dilat ed by a SE
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Figure 3.3. Example of erosion transformation using 3 x 3 structural element center at 'c'.

K is given as:

D(F, K) = F tf} K = U({a + b I a E F})
bek

(3.2)

The dilation operation can be regarded as an expansion operation. It is the reverse

transformation to erosion operation. In the Figure 3.4, as result of this operation,

some background pixels are transformed to foreground pixels. During transformation

if one of the SE hits the foreground pixels, the pixel that coincide with the the center

of SE will be counted as the foreground pixel. In this manner, depending on the size

and the shape of the SE, the background pixels that surround the foreground can be

transformed to the foreground pixels.

Figure 3.4. Effect of dilation transformation using 3 x 3 structural element center at 'c'.

3.3.3 Properties of Erosion and Dilation

Erosion and dilation are complementary transformations. This means that after the

erosion of an image, the original image can be recovered by applying dilation with

the same structuring element. For an image F and structural element K defined in

universal set U with F S;;; U and K S;;; U, FEB K = (FC e K)C where FC = U\F.

Erosions and dilations are invariant to translations i.e. ((Fx tf) K) = (F tf) K)x or
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(Fx e K) = (F e K)x)' They also preserve the order relationships between images,

that is, they are increasing transformations (i.e. if A ~ B, then (A e K) ~ (B e K)

or (A EEl K) ~ (B EEl K)).

3.4 Morphological Opening and Closing

3.4.1 Opening

The erosion of an image removes all structures that cannot contain the SE and also

shrinks all the other ones. The search for an operator recovering most structures

lost by the erosion leads to the definition of morphological opening operator. The

principle is based on dilating the image previously eroded using the same structuring

element. In general not all structures are recovered. For example, objects completely

destroyed by the erosion are not recovered at all. Once an image has been eroded,

there exists in general no inverse transformation to get the original back. The idea

behind the morphological opening is to dilate the eroded image to recover as much

of the original image as possible. An image F, opened by an SE K, is defined as the

erosion by SE followed by the dilation with the transpose SE K i.e.

o (F, K) = F a K = ((Fe K) EEl K) (3.3)

Morphological opening removes all connected components whose sizes are smaller

than the size of the structural element. In the Figure 3.5 there are two connected

components whose sizes are smaller than the size of SE. The operation of morpho­

logical opening removes those two connected components. The central 3x3 pixel

connected component which has a size equal or bigger than the SE remains un­

changed.

3.4.2 Morphological Closing

The idea behind the morphological closing is to build an operator tending to recover

the initial shape of the image structures that have been dilated. This is achieved by

eroding the dilated image. An image F closed by an SE K is defined as the dilation

with a SE K followed by the erosion with the transposed structuring element K i.e.
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Figure 3.5. Example of opening transformation using 3 x 3 structural element center at 'c'.

C(F, K) = F. K = ((F tf) K) 8 K) (3.4)

The effect of closing operation fills the small holes which are smaller than the struc­

turing element. The background pixels that cannot be covered by SE transformed

to the object pixels as shown in the Figure 3.6.

Figure 3.u. Effect of closing transformation using 3 x 3 structural element center at 'c'.

3.4.3 Properties of Opening and Closing

An opening operation removes the object pixels that cannot be covered by the SE

translations that fit the image objects. The closing has the opposite behavior be­

cause it adds the background pixels to foreground that cannot be covered by the

SE translations that fit the background of the image. In other words, opening and

closing are dual transformations i.e ((F. K) = (Fe 0 Kl). The second property

is that opening is anti extensive transformation as some of the pixels are removed

and closing is extensive transformation (some pixels are added to foreground). Both

opening and closing are increasing transformations. This means they preserve order

relationships between images i.e. if A S;;; B, then (A. K) S;;; (B. K). Moreover,
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successive applicat ions of openings and closings do not further modify the image i.e

((F . K) = (F . K) • K). This property referred as th e idempotent transforma­

tion. The idempotence property is often regarded as an important property for a

filter because it ensures that the image will not be further modified by iterat ing the

transformation.

3.5 Recursive Erosion

The recursive erosion transformation of a binary image is based on the successive

morphological erosion of the image. In some literature it is also called the generalized

distance t ransform (Chen and Haralick, 1996). Given a binary image F, the erosion

transform of F with respect to a structuring element K produces a gray scale image

where the gray level of each pixel x E F is the generalized distance of x to the image
i

background, i.e. the largest positive integer i such that x E F e K. The generalized

distance at a pixel x indicates the maximum number of consecutive erosions of F by

K such that x is still contained in the eroded image foreground. Mathematically it

is represe nted as:

i { F if i = 0 }
F e K = i - l .

(F e K) e K if i ~ 1
(3.5)

When performing recursive erosions of an object, components are progressively

shrunk until they completely disappear. Figure 3.7 shows an example of successive

erosion. Wit h transformation, the object pixels were eroded until all the connected

components have disappeared. It is useful for distance transform and segmentation.

ar~a*Jmage~

~j
SE{KI'

RElF.Klt

RElF.Kj3 ·

Figure 3.7. Recursive erosion transformation
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3.6 Ultimate Erosion

The ultimate erosion of a binary image is defined as a set of connected components

corresponds to the union of the regional maxima of the transformed image using

recursive erosion. The regional maxima of the transformed binary image (which is

gray scale image) is a connected set of pixels with an associated value of distance from

the background pixel such that every neighboring pixel has a smaller greyscale value.

In short the ultimate erosion of the object results in a region having an innermost

connected components.

3.7 Distance Transformation

The distance transformation (DT) is used to convert a digital binary image that

consists of an object (foreground) and non-object (background) pixel into another

image in which each object pixel has a value corresponding to the minimum distance

from the background (Frank and Yi-Ta, 2004). Three distance function metrics are

often used in digital image processing. If there exist two points p = (x, y) and

q = (u, v) in digital image, the distance function is defined as follows:

• City-block distance: dip, q) = Ix - ul + Iy - vi

• Chessboard distance: d(p, q) = max(lx - ul, Iy - vi)

• Euclidean distance: d(p, q) = V(x - U)2 + (y - v)2

The distance transformation is only applied to binary images. The result of the

transform is a gray level image showing the distance to the closest boundary from each

point. It is achieved using recursive erosions with a suitable SE until all foreground

regions of the image have been eroded away. Each object pixel is labeled with the

number of erosions that had been performed before it disappeared which indicates

its distance from the background. Figure 3.8 shows a simple image and its distance

transform using different distance metrics.
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o
Figure 3.8. Distance transformation using the three distance metrics

3.8 Watershed Segmentation

The concept of a 'watershed line' was best explained by Vincent and Soille (1991)

by referencing the 'great divide' in the USA which separates the catchment basins of

Atlantic and Pacific oceans. Because of the divide, a drop of water falling one side of

this line flows down until it reaches the Atlantic ocean, whereas a drop falling on the

other side flows down to the Pacific ocean. The dividing line is called the watershed

line. The two regions it separates are known as the catchment basins while the two

oceans are the minima.

In the field of image processing, assuming that grey tone image as a topographic

relief, the intensity of the pixel corresponds to the elevation at that point. This

analogy helps to represent grey scale image with its minima, catchment basins and

watershed lined. Several algorithms have been proposed to extract the watershed

line that separates two or more minima. Details of their descriptions can be found

in (Vincent and Soille, 1991). Comparative study of these algorithms indicates that

the one based on immersion is accurate, fast and needs relatively low memory size.

Since this immersion model will be used to segment the sugar crystals in the images,

its algorithmic defnition, adopted from (Vincent and Soille, 1991); is presented below.

Let F be a grey value image with F(p) represents pixel value at p and hmin and

hm ax being the minimum and maximum greyscale value of F. Define a recursion

with a grey level h increasing from hmin to hm ax , in which the basins associated with

the minima of F are successively expanded. Let X h denote the union of the set of
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basins computed at level h. A connected component of the threshold set Th+1 at

level h + 1 can be either a new minimum, or an extension of a basin in X h . If it is

the extension of basins in X h , the influence zone for each basin is calculated. The

influence zone is called a catchment of basin and is defined as the set of pixels, at

level h + 1, closer to one of the minima than to any other at the same level, with in

the set X h+1. The result gives X h+1. Mathematically:

p I F(p) = hmin = Th m in

Minh+1UIZT(h+l)(Xh), h e [hmin,hmax)

(3.6)

where M inh+l is a minimum at level h + 1 and I ZTCh+l) is the influence zone of X h
at level h + 1. The watershed W(F) of F is the complement of X h m a", :

W(F) = F\Xh m a", (3.7)

An example of watershed transformation with immersion using a simple 3 x 3 image

is shown in Figure 3.9. The letters A and B represent the minima and W is used to

denote the watershed pixels.
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J B B

J B B

A W' B

(d) tt= 2

J 1.- 1.

J 1 L

A t B
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B B B

W B B

A W B

(e)h =3

Figure 3.9. Watershed transformation

According to the immersion algorithm, it is the case that at level h + 1 all non-basin

pixels (i.e. all pixels in Th+l except those in X h ) are potential candidates to get

assigned to a catchment basin in step h + 1. Therefore, pixels with a grey value less

than or equal to h which are not yet part of a basin after processing level h, are

merged with some basin at the higher level h + 1. Pixels, which in a given iteration
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are equidistant with at least two nearest basins, may be provisionally labeled as

'watershed pixels' by assigning them the label W. However, in the next iteration

this label may change again. A definitive labeling as a watershed pixel can only

happen after all levels have been processed. In the figure there are two minima

(zeros), so there will be two basins whose pixels are labeled A and B in Figure 3.9 (b

- e). This shows what will happen as the immersion algorithm is applied to the grey

scale image to extract the watershed lines.

3.9 Summary

Crystal size measurements require an accurate segmentation of the border of the

crystals. Marker controlled watershed segmentation are used to trace the boundaries.

As it will be described in Chapter 4, distance transforms, ultimate erosion, local

maxima, and their combination are used to mark crystals before the application of

the watershed segmentation.
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Chapter 4

Algorithms for Crystal Size

Measurements

4.1 Introduction

In sugar production the optimal control of sugar crystal growth during the crystalli­

sation stages is essential for producing sugar crystals having the required size specifi­

cation. As discussed in Chapter 2, the process is usually monitored using a variety of

indirect measurement techniques such as conductivity, boiling point elevation, stir­

rer torque and radio frequency measurements in addition to visual inspection. The

results from such indirect measurements are judged and the necessary decisions are

made by the operators, who then make adjustment to the pressure, temperature,

pH etc. This optimisation is often compromised by operator fatigue and error. An

automated system would not be subjected to these problems and would also allow

for on-line feedback control. This might be achieved by developing software rou­

tines for the automated measurement of crystal size using classical image analysis

techniques. In this Chapter, 5 algorithms have been evaluated to automatically de­

termine the size distribution from images of crystal samples captured by a digital

camera attached to a microscope. The algorithms measure crystal size parameters

(MA and CV) in addition to the size distributions. The accuracy mainly depends on

how well the crystals are segmented from the background in the crystal images. All

5 algorithms required watershed segmentation which was used to segment individual

crystals, touching and overlapping crystals. The segmentation accuracy of the algo­

rithm was found to depend on the pre watershed transformation operations used to
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mark the crystals. The algorithms are compared with each other and with manual

clicking techniques which is used as a ground truth.

The chapter is organized as follows. First all algorithms will be described and com­

pared with the clicking method to evaluate their accuracy. The algorithm which

combines ultimate erosion with distance transform (UE+DT) has shown better ac­

curacy and is further discussed and evaluated. The chapter ends with a discussion

and a conclusion.

4.2 Imaging Hardware and Acquisition

The imaging system comprises a high resolution CCD camera attached to microscope.

The 8x magnified microscope images were captured and digitized to give a 576 x 768

pixel color image at a resolution of 24 bits. The pixel separation, for 8 magnification,

corresponded to 8.85J.tm in the horizontal and 16.49J.tm in the vertical directions. For

the purpose of this work, 25 dry sugar samples obtained from the Hullets refinery,

in Durban South Africa, were used. Crystals were randomly spread on a microscope

slide and images (each containing about 100 crystals) were captured. These images

contained crystals having a variety of spatial configurations such as clustering, over­

lapping or just touching. The crystals were purposely not separated to ensure that

the images represented typical configurations that could be encountered if the images

were taken from the crystallization pan in a production environment. The analysis

was performed using MATLAB which is a high-level technical computing language

and uses interactive environment for algorithm development, data visualization, data

analysis, and numeric computation (MATLAB, 6.5). It can be used in a wide range of

applications, including signal and image processing, communications, control design,

test and measurement, financial modeling and analysis, and computational biology.

It can also be integrated with other languages and applications.

4.3 Applying Watershed Segmentation

As described in Chapter 3, watershed segmentation is a morphological algorithm

which permits the detection of crest lines in images (Beucher, 1992). Considering

the grey-tone image as a topographic surface, with greyscale of each pixel being
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associated with the height, water falling on it will flow down the walls of the catch­

ments basin corresponding to each minimum value of the greyscale. The points

where the water can flow down either one of the two sides form the crest lines which

are to be detected. An efficient implementation based on immersion simulation has

been presented by Vincent and Soille (1991). This approach may be described as

follows. If a hole is drilled in each minimum and filled, progressively with water,

the watersheds would correspond to the line of the points where water coming from

two different basins would meet. The concept of immersion can be implemented by

making use of a hierarchal queue, with priorities defined by the grey level of image

points. Points are recursively inserted and extracted from the queue, in an order

defined by their grey levels. In this way, the lowest grey levels are processed be­

fore the highest ones. Watershed transformation was efficiently applied to segment

electrophoresis gel (Beucher and Lantuejoul, 1979), binary image of coffee beans

(Vincent and Beucher, 1989) and in biological studies of clustered nuclei (Norberto

et al., 1997). In order to be able to apply this algorithm to detect lines dividing

clustered objects, two prerequisites are required:

1. The original image has to be transformed into a different image, where fol­

lowing the topographical 'crest lines' correspond to the original image object

boundaries and their inner and outer parts to 'valleys', and

2. Singular markers are defined on every valley of the transformed image as start­

ing points of the flooding process.

An incorrect choice of the image transformation usually leads to incorrect segmenta­

tion, and failure in assigning a single marker to each valley of the transformed image

leads to over segmentation. A number of different marking techniques were evalu­

ated with the objective of identifying individual single crystals uniquely. In the next

sections we present various marking techniques that have been used to transform the

image before the application of watershed segmentation.

4.4 Image Processing Algorithms

The flow diagram in Figure 4.1 depicts the steps used to segment the crystal images.

The acquired RGB color image was converted to a grey level image by averaging the
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intensity levels in each of the R, G, B channels. This was followed by histogram equal­

ization to spread the pixel values to all possible grey levels (i.e. 0 - 225). An automatic
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Figure 4.1. Flow diagram showing the steps used to segment the crystal images. The acquired
image is binarized using Otsu's thresholding method and then marked using DE, DT, FB or a
combination of those techniques. Finally watershed flooding is applied to determine the crest lines
which separate the objects from each other and from the background.

thresholding function was applied to binarize the greyscale images. The threshold

value was computed using a method described by Otsu (1979) which is based on

calculating and comparing the between class variances and finally by choosing the

one which gives the maximum between class variance. This segments the foreground

from the background except for some foreground pixels which are misclassified as

background. Misclassified foreground pixels cause holes on the object. Filling the

holes using morphological operators binarize the image with the objects that have a

pixel intensity of 1 and a background value of O. All the above steps are common for

all five algorithms developed. They differ from each other with the type of markers

used to mark the crystals. The three markers (i.e distance transformation, ultimate
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erosion and regional maxima) and their combinations were evaluated to uniquely

identify individual crystal.

4.4.1 Foreground and Background Marker

A local maxima is used to mark the foreground. This is achieved by combining gray

scale morphological erosion and dilation with gray scale reconstruction to maintain

the original size of the crystals. By performing morphological erosion followed by

dilation (morphological opening) all the connected components which do not contain

the size of the structural element are filtered out whilst at the same time preserving

the other components. The morphological dilation, which is the first operation of

morphological opening, in the greyscale assign the pixel under question with the

biggest intensity value of its neighborhood. The pixel intensity in the resulting

image have the value greater than or equal to its value in the original image. The

morphological erosion in the greyscale assigns the pixel under study with the smallest

intensity value of the neighboring pixels. The overall effect of morphological opening

in gray level image removes 'dark' spots which results in a brighter image. The local

maxima of the resulting bright image used to mark the crystals. In SOme images

the background as well as the crystals were marked. This is undesirable because the

application of the watershed algorithm on those images introduces a region which

does not correspond to a crystal. Figure 4.2 shows example for a part of background

segmented as an object. Therefore, marking only the crystals is crucial for accurate

segmentation.

4.4.2 Ultimate Erosion as a Marker

The ultimate erosion (DE) algorithm uses the last connected components to mark

the crystals (Serra, 1982). The last connected component is obtained by repeatedly

eroding the binary image using a structural element but stopping one step before

the whole object disappears. In some cases, however, more than one marker per

crystal can be produced. Direct application of watershed transformation will cause

the problem of oversegementation. Figure 4.3 shown a crystal marked by several

markers and the resulting oversegmented crystal when watershed segmentation was

applied. This problem was partially addressed by dilating the markers to join them.
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Figure 4.2. Example of background segmented as a foreground . This is the result of mismarking
background as a foreground.

For some crystals, however, as the result of ultimate erosion t heir last connected

compo nents were so far apart from each other that a single morphological dilation

could not join them and hence these crystals were oversegmented when watershed

segmentation was applied. T his is undesirable and this effect was minimized by

combining this technique with DT and FB as described in Sect ion 4.4.4.

4.4.3 Distance Transform as a Marker

T he distance transform (DT) method has been used in biological st udies to mark

clustered nuclei (Norberto et al., 1997). Distance funct ion of binary image assigns

every pixel with its distance to the background, i.e. to the closest pixel with value 0

assum ing the foreground is 1. It can segment round shaped objects efficiently because

the cente r of the objec t is the only point, equidistance from the background, marked

as the maxima. Non convex objects are marked by more than one maxima which

results in oversegmentation. This can introduce erroneous .data when estimating

some properti es of a region such as its area. Combining this transformation with

other (DE for example) improves the segmentation.

4.4.4 Combining Markers

In some crystals, using the above techniques individually can produce crystals with

more than one marker. As shown in Figure 4.3, this leads to an oversegmentation of

the crystals when the watershed algorithm is appl ied. To minimize such occurrences,
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Figure 4.3. Example of a crystal image marked by several markers and the resulting image when
watershed segmentation was applied

it is necessary to mark each object with only one marker. The above techniques were

combined to attempt to ensure that there was only one marker for each crystal and

to avoid mis-marking the background. It was found 'that the best combination was

when ultimate erosion algorithm was combined with both the distance transform and

background and foreground marker i.e. FB+UE and UE+DT.

Finally watershed function was applied to determine the crest lines which separate

the objects from each other and from the background. Figure 4.4 indicates how well

these algorithms segment a sample crystal. When the ultimate erosion was combined

with distance transform (UE+DT), this gave the best segmentation, since the contour

most closely coincides with the visible border. Foreground and background (FB),

ultimate erosion (UE) and their combination(FB+UE), however, underestimated

the sample crystal. Although distance transform (DT) gave good segmentation for

this particular crystal; there was a problem of oversegmentation for some crystals

which were marked more than a single marker. Evaluation of these algorithms, as

described in Section 4.6, UE+DT showed better performance because it was better

in marking crystal with a single marker.
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Figure 4.4. These areexarnples to illustrate how well the algorithms segment a sample crystal (a)
from the background. The distance transform gives the best result when combined with ultimate
erosion. The individual algorithmsFB (b), UE(c) and DT (d) in addition (FB+UE) underestimates
the area of the crystal.
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4.5 Manual Clicking

One possible method to score the accuracy of a segmentation process is to manually

determine the boundaries of all the crystals and compare these results with those

obtained by the automatic algorithms. A clicker software program was written to

allow the individual boundary of crystals to be manually traced using the mouse

cursor. A complete contour was found by clicking on the corner pixels of the crystals.

By so doing the individual crystals, touching and overlapping crystals were segmented

from the background and from each other. The manually segmented crystals were

further analyzed to calculate the area, length, and width of each crystal. Although

the use of this program was tedious it was considered to offer the best ground truth

against which the automatic algorithms could be benchmarked.

4.6 Accuracy of the Segmentation Algorithm

The MA and CV of 25 sugar samples, calculated from crystals image, were compared

with the manually clicked technique to evaluate the accuracy of the segmentation

algorithm for each of the 25 crystal images. Three algorithms for segmenting the

crystal images have been evaluated. These include the foreground and background

marker (FB), ultimate erosion (UE) and the distance transform (DT) methods. In

addition, efforts were made to evaluate various combinations of these algorithms to

enhance the accuracy. A measure of the accuracy can be defined as the average

percentage error, e

[
L:

N 0..=.91]c(%) = i=lN Ci x 100% (4.1)

where Pi is the predicted MA or CV of the i-th image using one or a combination of

the three algorithms, C, is the MA or CV of the i-th image determined by manually

clicking and N is the number of images. Equation 4.1 can be used to quantify the %
error in measuring either MA or CV and the corresponding errors will be designated

cMA and cCy respectively. Table 1 shows the values of CMA for the different algo­

rithms. The error achieved by applying UE+DT is cMA = 5.45% and is significantly

better than that achieved by the other options. Because the combination of ultimate

erosion and the distance transform (UE+DT) produced the smallest mean error, it

was used for the rest of the analysis. Figure 4.5 indicates the number of crystals
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Table 4.1. Average percentage error in mean aperture MA, calculated after applying the segmen­
tation algorithms BF, UE and DT and the two combinations BF+UE and UE+DT.

segmented using manual clicking and the UE+DT algorithm and Figure 4.6 shows

the percentage error. In most of the images, the number of crystals segmented by

UE+DT is fewer than manual. One reason for this was that fragmented small crys­

tals were removed by the morphological operators. Also in some images the crystals

touching the edge of the image were excluded by the segmentation algorithms, whilst

some of them were included when the crystals were manually clicked. However, it

could be argued that if some crystals are randomly removed from the images by the

automatic algorithm, then the distribution would not be affected very much, and

so it is still meaningful to compare the MA and CV obtained by the segmentation

algorithms and the clicker program.
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Figure 4.5. The number of crystals segmented using UE+DT (dot) and manually (star)for each of
the crystal images. In most images the number of crystals identified by the algorithm is less than
the manual method since the algorithm rejected small fragmented crystals.

An image (image #23) was randomly chosen from 25 crystal images and analyzed

to evaluate the accuracy of the UE+DT in terms of the area of the crystals. Figure

4.7 shows crystal contours segmented by UE+DT overplotted on the original image.

Crystals touching the edge of the image were rejected by the segmentation algorithm.

Although this reduce the number of crystals segmented, it was desirable to clean all

the crystals touching the border of the image. If the crystals touching the border of
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Figure 4.6. Percentage error in the number of crystals segmented using UE+DT and manually. In
most images the number of crystals segmented by UE+DT is lower than manual .

Figure 4.7. Crystal contours overplotted on the original image (image #23) after segmented using
UE+DT. Crystals touching the edge of the image and small sized crystals were rejected (shown by
the arrows) .
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the image were included in the analysis, they would introduce erroneous data. The

reason for this is that the area of the crystals touching the border of the crystals can

not be calculated accurately. To alleviate this problem, these crystals will either be

removed or ignored during the analysis. Figure 4.7 shows example of such border

crystals. Figure 4.7 also shows other ignored examples where crystals which were fully

within the image but joined with other crystals which were themselves touching the

border. Furthermore crystals whose size was smaller than the size of the structural

elements used in the algorithm were also not considered. By ignoring these catagories

of crystals, discrepancy between the number of crystals segmented by the automatic

and clicking methods was removed. One can capture a number of images from

the same sample to get as many number (say 1000 crystals) of crystals required to

calculate crystal size parameters. In this particular image 90 crystals were segmented.
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Figure 4.8. Scatter plot for the area of crystals analyzed in an image. The abscissa is area calculated
manually and the ordinate represents the area calculated using UE+DT. The line is the least
square fitted curve with the coefficient of 0.94 and -19. Generally the segmenting algorithm slightly
underestimates the area of the crystals. Few outliers are circled.

To evaluate the performance of the UE+DT algorithm, the area of each crystal

calculated using UE+DT compared with the area calculated manually. Figure 4.8

shows a scatter plot for the area computed manually and segmentation algorithm

after removing the crystals that are not considered by UE+DT. The least square

fitted. curve with the regression coefficients of 0.94 and -19 approximate the data.

A strong correlation, with a correlation coefficient R = 0.9932, was observed. The

fact that there are not many outliers observed in the plot is evidence that the area

of the crystals is being accurately estimated using the segmentation algorithm. The

percentage difference in the area computed using UE+DT and manually is depicted
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Figure 4.9. Scatter plot of the percentage error in the area computed using UE+DT and manually
for each of the crystals in in image # 23. For most crystals UE+DT underestimates their area with
an average percentage of error approximately 10.

in Figure 4.9. In most incidences the segmentation algorithm underestimates the

area with CArea ~ 10. Figure 4.10 and Figure 4.11 are frequency of distribution for

the crystals whose area were calculated using UE+DT and manually respectively.
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Figure 4.10. Frequency distribution for the crystals (in image #23) whose area calculated manually
after excluding the crystals that were not segmented by UE+DT.

The distribution has roughly the same values of skewness with 2.00 for manually

clicking and 2.14 for the UE+DT. Figure 4.12 shows a scatter plot for the mean size

defined as the mean of the square root (VA) of the area for 25 images calculated

manually and using UE+DT. The best fitted straight line have a linear regression co-
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Figure 4.11. Frequency distribution for the crystals (in image #23) whose area calculated using
UE+DT.
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Figure 4.12. Scatter plot of the mean size defined as the mean of the square root of the area (VA)
of the crystals calculated for each of the 25 images.
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Figure 4.13. Scatter plot for the mean area calculated for all the crystals in each of 25 images. On
the vertical axis is the mean area predicted using UE+DT and on the horizontal axis is the mean
area calculated manually by clicking the individual crystal in each image.

efficients of 0.84 and 89 with fairly good correlation of value R = 0.9050. Figure 4.13

shows the predicted mean area versus the mean area calculated using manually click­

ing from crystal images. The scatter plot is shown together with the best fit straight

line and the corresponding linear regression coefficients. The best fit straight line

has a slope of 0.83 and has an offset of 77. There are few outliers which are circled.

Upon closer investigation of those images it was found that they either contained

a number of overlapping or fragmented crystals which were included in the manual

clicking but rejected by the algorithm. The mean cArea, was 9.63%. This is lower

than the result of 12.9% reported by Mhlongo and Alport (2002). However a more

meaningful comparison of these two algorithms would require them to be tested 011

the same sets of images. MA for the crystal size distribution, shown in Figure 4.14,

was estimated using the Rens method. To find MA from the images, the crystals

area was computed using UE+DT and this was converted to a mass distribution (as­

suming all crystals have the same density) and the cumulative percentage by mass

was calculated. The mass distribution was computed for 30 equally spaced bin sizes.

Fairly good correlation (R = 0.9286) was observed with regression coefficients of 0.92

and 61.
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Figure 4.14. Scatter plot of MA for each of the 25 crystal images. The values on the vertical axis
were calculated using UE+DT and the horizontal values were calculated by manually clicking the
individual crystals. The best-fit straight line has coefficients of 0.92 and 61.
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Figure 4.15. Scatter plot for CV. The vertical axis shows the predicted value and the horizontal
axis is calculated manually from the crystal images.
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However, as shown in Figure 4.15, CV is poorly estimated and there is a much larger

scatter of the points. Thus, it appears that the crystals that are being removed by the

DT+ UE algorithm is affecting the shape of the distribution function. To verify this,

the crystal size distributions for the randomly chosen image (image #23) calculated

by UE+DT and manual techniques were compared for their shape. Comparing

Figure 4.16 and 4.17, it is evident that the shape of the distributions is not the

same. It can also be seen that the distribution calculated manually skewed to the

right, indicating that more small sized crystals were considered that were not by

UE+DT.

Both size distribution are non-normal. As described in Chapter 2, Rens distribution

works better for such distribution. Applying Rens method CV was calculated to

be 41% for the UE+DT and 37% manually. The percentage error in CV for all 25

images is shown in Figure 4.18. The mean absolute error in CV ECV ~ 12%.

25

.-40iJ 5GU 800 1000 1200 1400 1500 18JO
Crystal size in ~Lr()

Figure 4.16. Frequency of occurance for crystal size, defined as vIA, distribution calculated manu­
ally.

4.7 Discussion and Conclusion

The results of an automated classical image processing technique has been developed

to estimate the crystal size parameters MA and CV as a possible alternative to the

usual sieving technique that is used in the production environment. Although a

number of segmentation algorithms were evaluated, it was found that a combination

of ultimate erosion and the distance transform, (UE+DT), was the most accurate in

finding the crystal boundaries.
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Figure 4.18. Percentage error in CV calculated using UE+DT and manual. The average absolute
error of 12 %.
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Watershed segmentation was employed to segment clustered, just touching and over­

lapping crystals. Using dry crystal samples obtained from a refinery, the MA and CV

were calculated for each of 25 sample images using the Rens method. These results

were compared with those obtained by manually clicking on the crystal boundaries.

Figure 4.8 shows a scatter plot for the area of crystals calculated for image #23.

Although the area of the crystals calculated using UE+DT and manual clicking

method exhibited a strong correlation (R = 0.9932), the slope of the graph was not

1:1. In most cases the automatic algorithm underestimated the area of the crystals.

The problem of oversegmentation which resulted from marking crystals with more

than one marker can account for the differences between the areas calculated by the

algorithm and manual methods. Such discrepancies in the area, however, were also

observed for crystals that were marked using a single marker. This is attributed to

the lack of an efficient algorithm to trace the exact boundary of the objects (fore­

ground) in an image with low contrast. In the UE+DT algorithm, the images were

contrast stretched to ensure that all the greyscale levels were used. The results shown

in Figure 4.8 were found using images with low contrast and hence exhibited very

little greyscale differences between the foreground and background. This problem

was caused by the image capture technique which involved using transmitted light.

The images could also be captured using reflected light by spreading the crystals on

a dark background. This would have the effect of increasing the contrast and hence

enable the crystal boundries to be traced more accurately. The discrepancies in Fig­

ure 4.12 and 4.13 are also attributed to the problems the algorithm experienced in

tracing the boundaries of low contrast images. This problem also limited the accu­

racy of crystals size parameter calculated in the subsequent analysis. Despite this

MA showed fairly good correlation with an average percentage error of CMA ~ 6%.

This result is slightly better than the earlier one reported by Mhlongo and Alport

(2002) using wavelets and neural networks. However there was more scatter in the

CV results possibly indicating that the crystals that were eliminated by the UE+DT

algorithm this because they were either at the edge of the image, or too fragmented

some overlapping crystals were oversegmented was having an effect on the crystal

size distribution.

By taking multiples of crystal images of each sample can increase the total number

of crystals analyzed in each sample. Overlapping crystals can be identified using a
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curvature measure and opt imizing the morphological operators can retain fragmented

crystals.

Chapter 5 will present a technique which identi fies and rejects overlapping crystals

based on their convexity measures. This method could preserve fragmented crystals

that would be otherwise eroded when the wate rshed algorithm was applied.
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Chapter 5

Use of Convexity to Remove Overlapping

Crystals

5.1 Introduction

In Chapter 4, 5 algorithms were evaluated for crystal sizing. Sugar crystals were

segmented and separated first by marking and then using the watershed transfor­

mation. It was demonstrated that the combination of ultimate erosion and distance

transformation (UE+DT) performed better than the other methods. In this chap­

ter, another algorithm is developed and evaluated. Due to the fact that there is a

difference in shape between overlapping and non overlapping crystals, this technique

used two convexity measures.

Shape is a crucial feature in many areas of image analysis, including for example, the

particle shape analysis of coarse aggregate (Kwan et al., 1999) and in the pharmaceu­

tical industry for the automatic inspection of tablets (Derganc et al., 2003). It has

also been used to detect elliptical objects in remote sensing (Zhu and Wang, 2004).

In addition to the basic descriptors of shape including compactness, circularity, and

rectangularity (Sonka et al., 1998), the convexity of polygons is also considered as

one of basic descriptors of shape as described by Zunic and Rosin (2004). Convexity

measure has been used for a variety of applications, including for instance shape

decomposition (Latecki and Lakamper, 1999). The concept of shape decomposition

based on convexity measure was used to improve the measurement of the crystal size

distribution. In this study, the convexity measure was used to identify and exclude
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occluded sugar crystals in the captured image. This technique reduces erroneous

data that could be introduced if overlapping crystals were included in the subse­

quent size measurements and determination of the crystal size distribution.

After short introduction about contour tracing, convex hull algorithm used in this

work will be described. The two common measures of convexity based on perimeter

and area are used to classify the sugar crystals as overlapping or non overlapping. The

classification accuracy was also evaluated using the Receiver Operating Characteris­

tics CUrve (ROC). MA and CV were then calculated using this improved technique

and were compared with the same parameters calculated using the manual method.

5.2 Contour Tracing

One method of finding and analyzing the contour of a connected component in an

image is to scan it until a border pixel of a component is found and subsequently

to trace the boundary until the entire boundary is obtained. Such a procedure is

referred to as contour tracing. There is no standard formal definition given to the

boundary of a connected component. Generally the boundary of the object is that

which seems reasonable to humans and algorithms are judged according to how well

they agree with human perception. However a border finding algorithm can be pre­

cisely implemented by defining 'border' points which are intimately related to the

boundary. A connected component of a black pixel P, in Figure 3.1, is a 4-border

point if at least one of its 4-neighbors is white. It is an 8-border point if at least

one of its 8-neighbors is white. The boundary tracing algorithm implemented in this

work is adopted from Sonka et al. (1998). The algorithm scans the image until it

finds the first object pixel, depending on the kind of neighborhood required, then

searches for the boundary pixel of the object in the counter clockwise direction.

The Boundary Tracing Algorithm
The boundary tracing algorithm can be defined by the following steps:

1. Search the image from top left until a pixel of a new region is found. This

pixel Po has the minimum column value of all pixels of that region having the

minimum row value. Pixel Po is a starting pixel of that region's border. Define
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a variable dir which stores the direction of the previous move along the border

from the previous border element to the current boarder element. Assign

(a) dir = 3 if the detected border has 4 - connectivity (Figure 5.la).

(b) dir = 7 if the detected border has 8 - connectivity (Figure 5.1b).

2. Search the 3x 3 neighborhood of th e current pixel in an anti-clockwise direction.

Begin the neighborhood search in the pixel positioned in the direction:

(a) (dir + 3) mod 4 (Figure 5.lc).

(b) (dir + 7) mod 8 if dir is even (Figure 5.ld) .

(dir + 6) mod 8 if dir is odd (Figure 5.le) .

The first pixel found with the same value as the current pixel is a new

boundary element Pn . Update the dir value.

3. If the current boundary element Pn is equal to the second border element PI ,

and if the previous border element Pn- l is equal to Po, stop. Otherwise repeat

step 2.

(c)

Figure 5.1. Boundary tracing: (a) direction notation for 4-connectivity; (b) direction notation for
8-connectivity; (c) pixel neighborhood search sequence in 4-connectivity; (d) ,(e) search sequence in
8-connectivity; (f) boundary tracing in 8-connectivity (dashed lines show pixels tested during the
border tracing)
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5.3 Convex Hull

A convex hull is a concept used to describ e the topological properti es of an object.

The convex hull is th e smallest region which contains the object such tha t any two

points of the region can be connect ed by a st ra ight line, all poin ts of which belong

to the region. For example consider an object whose shape resembles the one shown

in Figur e 5.2. Imagine a thin rubber band pull ed around the object, then the shape

of th e rubber band provides the convex hull of the object (Sonka et al., 1998).

9"

Figure 5.2. An example region (shaded grey) together with it s convex hull (region bounded by
dashed line) which is formed by a rubber band if it were to be placed around the region. Beginning
at a point PI on th e boundary, and moving in an ant i-clockwise direction the next point on the
convex hull, Pq is found when the angle formed by th e vector PI Pq is a minimum. Thi s process is
then repeated.

Algo rithm to construct the convex hull of a region

1. Find all pixels of a region with minimum row coordinate, among th em, find

th e pixel PI , with the minimum column coordina te . Assign Pk = Pl.

2. Search the region boundary in an anti-clockwise direction and compute the

orientat ion angle <Pn for every boundary point Pn whichlies aft er the point Pk

(in th e direct ion of boundary search) as in Figure 5.2. <Pn is the angle the

vector (formed by joining pixel Pk to pixel Pn ) makes with the x axis. The

point Pq sat isfying the condi tion <Pq = min( <Pn) is an element (vertex) of the

region convex hull.

3. Assign Pk = Pq

4. Repeat steps 2 and 3 until Pk = Pl.
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5.4 Convexity Measure

Two common parameters that have been used to characterise the convexity of a

shape are based on the area and perimeter of the object. Area based convexity, CA,

is defined for a given shape S as the ratio of the area of the region to the area of the

corresponding convex hull, i.e

A(S)
CA(S) = A(CH(S)) (5.1)

(5.2)

where A(5) and A(CH(5)) are the area of the shape and its convex hull respectively.

The second measure Ce, depends on the perimeter of the shape and its convex hull,

and is defined as
C (5) = P(CH(S))

p P(S)

where P(S) and P(CH(S)) are the perimeter of the shape and its convex hull re­

spectively. Both convexity measures have a number of desirable properties. They

are:

1. in the range 0 to 1.

2. equal 1 if and only if the shape is convex.

3. invariant under similarity transformations.

4. There are shapes whose convexity measure is arbitrarily close to O.

We will now describe how these two convexity measures have been used to exclude

occluded crystals in captured images of sugar samples. The performance of two class

classification of crystals has been evaluated using the Receiver Operating Charac­

teristics (ROC) curve generated by varying the threshold values of the convexity

measures. The value of the area under the curve (AUC) is then used to categorize a

classifier as either random or nonrandom (Fawcett, 2006).
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5.5 Evaluation of the Two Class Classifiers Using

the ROC Curve

The ROC curve has long been used in signal detection theory. Originally it was

conceived during World War II to assess the capabilities of radar systems in distin­

guishing random interference (noise) from actual targets (Swets et al., 2000). ROC

has been employed in medical decision making, diagnosis and in particular imag­

ing. Bradley (1997) showed how ROC curves and particularly AUe could be used

for evaluating the quality of dichotomizers. There does not appear to be any other

literature describing the use of ROC to evaluate techniques to measure the crystal

size distribution in the sugar industry. One can use ROC curves as an effective way

to evaluate performance of a classifier to separate overlapping and non overlapping

crystals based on their convexity measure.

5.5.1 AUe as a Performance Measure

The test of a classification scheme requires the knowledge of the correct and incor­

rect classifications from each class. This information. is then normally displayed in

a confusion matrix, also called contingency table. A confusion matrix is a table

showing the difference between the actual and predicted classes using a particular

discriminating function as shown in the Table 5.1. In Table 5.1, Tp and Tn are the

Table 5.1. Confusion Matrix

Actual Predicted
Non overlapping Overlapping

Non overlapping t; Fp Cn

Overlapping r; t; Cp

Rn Rp

number (or %) of actual non overlapping and overlapping crystals respectively, Fp

and Fn are the numbers (or %) of misclassified overlapping and non overlapping re­

spectively. The row totals, Cn and Cp are the number of actual non overlapping and

overlapping crystals, and the column totals, Rn and Rp, are the number of predicted

non overlapping and overlapping crystals. If N is the total number of crystals then
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(5.3)

N = Gn + Gp = Rn + Rp • The actual non overlapping rate (also called hit rate and

recall) of a classifier is estimated as

TPR = Tp

Gp

The misclassified overlapping rate (also called false alarm rate) of the classifier is

Additional terms associated with ROC curves are the

sensitivity = T P R

and

(5.4)

(5.5)

1:
specificity = ci = 1 - F PR (5.6)

All of these measures of performance are valid only for one particular operating point,

which is normally chosen so as to minimize the error probability. Often, however, the

area under the operating characteristics curve is used to measure the performance of

the two class classifier. The ROC curves are the plots of T P R versus F P R as the

decision threshold is varied (Bradley, 1997). The AUG can be computed by applying

trapezoidal rule using the following equation:

AUG = IJFPRi - FPR(i-l») x TPR(i-l)+
i

(5.7)

The perfect classifier, which traverses the point TPR = TNR = 1, has AUG = 1,

while a classifier with ROC curve along the line of the 'uselessness', refers to the

diagonal of ROC curve, has AUG = 0.5. The latter result is referred to as a random

classifier (Fawcett, 2006).
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5.6 Segmentation and Calculating Convexity

5.6.1 Segmentation of Crystals

All 25 crystal images, used in Chapter 4, were analysed to test the performance of

the convexity technique. The imaging system contained a CCD camera attached to

the microscope as explained in chapter 4. The crystals in the image were deliber­

ately made to have different spacial configuration such as touching, overlapping and

non overlapping to mimic what could have been if the image was taken in the pro­

duction environment. The images were processed to segment the crystals from the

background using the technique explained in Chapter 4 Section 4.4. This involved

converting the images to their grey level equivalent and then thresholding. Once the

images had been segmented the discriminated crystals were measured and analyzed.

The parameters that were measured included their length, width, area, perimeter in

addition to the convexity measure CA and Cpo CA and Cp were then used to identify

and reject overlapping crystals. Figure 5.3 shows a flow diagram of the algorithm.
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Figure 5.3. Flow diagram showing the steps used to segment the crystal images using the convexity
measures. The acquired image was binarized using Otsu's thresholding method and morphological
operators and then the areas and perimeters of the connected component and convex hull were
calculated. Finally the convexity measures, based on the areas and perimeters, were calculated and
threshold values were applied to identify and reject overlapping crystals.
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5.6.2 Calculation of Convexity Measures

The contour tracing algorithm described in Section 5.2 was used and Figure 5.4 shows

an example of the boundary pixels overplotted on a segmented images. However some

problems arose when trying to find boundary pixels for connected crystal shapes. For

two just touching connected components, where there were a few pixels joining them,

the algorithm traced only one of them and rejected the other if 4 connectivity was

used . There was no such problem for 8 connectivity. This was expected because

for two just touching crystals if they are not connected in 4 neighborhood, they

must be connected in 8 neighborhood as 4 connectivity is a subset of 8 connectivity.

Ignoring this limitation for the moment , the contours were then used to calculate

Figure 5.4. An example crystal image showing the individual crystals, together with their individual
contours. This example also shows that some crystals could be ignored by the algorithm when they
were joined by a few pixels.

the convex hulls of the region for each of the shapes as shown in Figure 5.5 using the

convex hull algorithm described in Section 5.3. However, it was also observed that

two independent neighboring connected components could have convex hulls that

overlapped. Figure 5.6 illustrates a number of such examples. This is undesirable

when one tries to calculate areas and perimeters. To alleviate these two problems,

the area and perimeter of each crystal were calculated immediately after its convex

hull had been found. The other problem that was observed was that a small convex

hull can be completely contained within a larger one. This was also undesirable

as some of the connected components disappeared when all the convex hulls of the

objects were joined. Such problems were again addressed by calculating their area

and perimeter immediately after finding the convex hull.
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Figure 5.5. Convex hull of a connected component in blue color over plotted segmented image and
traced contour in red.

Figure 5.6. Examples of two independent neighboring connected components whose convex hulls
overlapped. Red marks the boundaries and blue th eir convex hulls.
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Once the perimeter and the area of the regions and their corresponding convex hull

were calculated, the convexity measures, CA and Cp , could be obtained.

5.6.3 Classification and Choice of Thresholds

If a common threshold value was chosen for CA and Cp , then this produced a decrease

(increase) in the number of non overlapping (overlapping) crystals as the threshold

value increased as shown in Figure 5.7. This data was obtained from a randomly

chosen image which contained 80 crystals (15 overlapping and 65 non overlapping)

counted manually. For this particular image it was found that for the convexity

values between 0 and 0.55 all the crystals were classified as non overlapping even

though there were some overlapping crystals. The problem lies how to find the

optimal threshold value which will most accurately separate the crystals into the

two (overlapping and non overlapping) classes.
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Generally, it would be necessary to find some function of CA and Cp which would

optimally discriminate between these two classes (overlapping and non overlapping)

of crystals, however, in this application it was found that a single common threshold

value was sufficient. From Figure 5.8 it would be seen that a threshold value of CA f"V

0.85 or Cp f"V 0.85 will correctly separate most of the crystals into the two classes. In
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Figure 5.8. Scatter plot for convexity measures CA and Cpo Overlapping crystals are marked as
'+' and non overlapping crystals are marked '0'.

Chapter 6, a more objective technique for optimising the choice of threshold value,

using Artificial Neural Network (ANN) and Support Vector Machines (SVM), is

presented. It was, however, found that the choice of a common threshold value of

CA = Cp = 0.85 gave an acceptable confusion matrix results. Table 5.2 shows the

confusion matrix using convexity threshold values of CA = Cp = 0.85 for all the

2175 (1866 non overlapping and 309 overlapping crystals counted manually) crystals

in the 25 images. Only a relatively few 21% or (67 out of 309) overlapping crystals

were misclassified as non overlapping crystal. Figure 5.9(a and b) show the resulting

Table 5.2. Confusion matrix using convexity threshold values of CA = Cp = 0.85 for all the 2175
crystals in the 25 images.

Actual Predicted
Non overlapping Overlapping

Non overlapping (%) 100 0
Overlapping (%) 21 79

15 overlapping and 65 non overlapping crystals respectively when this convexity

threshold applied to an image #11. For this example only 1 crystal was misclassified

as being non overlapping.
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Figure 5.9. The above images show an example of the result of a classifier of applying a convexity
threshold value of CA, 'cP = 0.85 to typical crystal image resulting in 15 overlapping crystals in
(a) and 65 non overlapping crystals in (b).
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5.6.4 Classifier Accuracy using AUC

As mentioned in Section 5.5, the ROC curve is defined as a plot of T PR against FP R

and was generated by varying the threshold value for the convexity measures. For

each threshold value, varying between 0 and 1 in steps of 0.025, the corresponding

T P Rand F P R were calculated and the ROC curve was plotted. Figure 5.10 shows

the ROC curve generated for the 25 crystal images used in this work. To draw the

curve, first the number of overlapping and non overlapping crystals in the image were

counted. This was taken to be the total actual non overlapping and overlapping which

was used to evaluate the two classes. For each threshold the confusion matrix and

hence the corresponding performance metrics were computed. AUe was computed

using Equation 5.7 and found to be 0.99 which indicated that the classification was

successfully discriminating between the two classes. This result suggested that the

classifier could be confidently applied to identify and reject overlapping crystals in

the crystal image.
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Figure 5.10. The ROC curve for a classification of the crystals into overlapping and non overlapping
classes using different threshold values of the convexity measures CA and Cp according to their
convexity measure. The dotted plot represents the values computed for each confusion matrix with
a line joins the points. The solid straight line represents the line of 'uselessness' which would result
for no separation into classes.
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5.6.5 Calculation of MA and CV

After removing the overlapping crystals, MA and CV were computed and compared

with same parameters calculated by manually tracing the crystal borders using the

mouse cursor. The Rens method was used to calculate crystal size parameter from

the cumulative percentage by mass. Figure 5.11 shows the predicted mean size (af-
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Figure 5.11. Scatter plot of mean size VA calculated for the 25 images. On the vertical axis is the
mean size predicted after using convexity measure to automatically exclude overlapping crystals
and the horizontal axis shows the mean size calculated by manually clicking around the individual
crystals.

ter applying convexity based algorithm) versus the mean size obtained by manual

tracing the boundaries. The scatter plot is shown together with the best line and

the corresponding linear regression coefficients. The best fit straight line has a slope

of 0.89, a small offset of 38 and a high correlation coefficient of 0.91. However there

are few outliers. Upon closer investigation of those images it was found that they

contained a number of overlapping crystals which were included in the manual click­

ing but rejected by the algorithm. This reduces the number of crystals remained in

the image for further analysis. However, the problem can be alleviated by analyzing

multiples of images from the same sugar sample.
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Figure 5.12. Scatter plot of MA for the 25 crystal images. The values on the vertical axis were
calculated after removing overlapping crystals based on the convexity threshold and the horizontal
values were calculated by manually clicking the individual crystals. The best-fit straight line has
coefficients of 0.92 and 141.
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Figure 5.13. Scatter plot of CV for the 25 images. The values on the vertical axis were calculated
after removing overlapping crystals based on the convexity threshold and the horizontal values were
calculated by manually clicking the individual crystals.
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To find MA, as described in Section 5.6.5, from the images, after applying convex­

ity threshold, the crystal areas were computed and this was converted to a mass

distribution and then to the percentage of crystals retained (cumulative). MA was

then computed by applying Rens method for each crystal image. Referring to Figure

5.12 fairly good correlation, with R = 0.93, was observed. The best-fit straight

line has coefficients of 0.92 and 141. The ClvIA was 7.75%. The scatter plot for

CV, shown in the Figure 5.13, has a relatively low correlation coefficient, R = 0.69,

nevertheless was larger than the previous value of R = 0.4 found using ultimate ero­

sion and distance transformation (UE+DT) (Argaw et al., 2006). The mean error

in CV, ccv ;:::; 9.73%, calculated using convexity based algorithm is lower than ccv

calculated using UE+DT (ccv ;:::; 12%).

5.7 Discussion and Conclusion

An improved technique to determine MA and CV of sugar crystal size distributions

using area and perimeter convexity measures to identify and reject overlapping crys­

tals has been developed. The remaining non overlapping crystals were analyzed and

the MA and CV were calculated. These parameters were measured for all 25 crystal

images and compared with same parameters calculated using manual clicking on a

captured image. Fairly good correlation, (R = 0.93), has been obtained for MA and

with a mean error of ClvIA = 7.75%. A summary of the mean errors and correlation

Table 5.3. Summary of % errors and correlation coefficients for MA and CV after applying convexity
based algorithm

C(%) R
MA 7.75 0.93
CV 9.73 0.69

coefficients for the convexity technique is shown in Table 5.3. Both MA and CV are

calculated with an error of < 10%. MA has a high correlation coefficient of 0.93

while CV has lower value. This low correlation coefficient of R = 0.69 for CV needs

to be more thoroughly investigated in order to validate the model that is being used.

As shown in the confusion matrix (Table 5.2) 21% of the overlapping crystals were
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misc1assified as non overlapping. Although this only represented 67 out of 309 over­

laping crystals, this could contribute to the errors. In chapter 6 c1assifiation results

of crystals as overlapping and non overlapping using objective techniques viz ANN

and SVM are presented.
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Chapter 6

Application of ANNs and SVMs to

Classify Crystals as Overlapping and

Non-overlapping

6.1 Introduction

Overlapping and touching crystals compromise the accuracy of techniques to deter­

mine the size of sugar crystals using image processing. To improve the accuracy

of crystals size measurement using crystals image processing, it is necessary that

overlapping and touching crystals are identified and either excluded or separated. In

Chapter 4, 5 algorithms, based on marker controlled watershed segmentation to sep­

arate crystals, were evaluated. However, these algorithms could not produce 100%

separation of individual crystals resulting in some overlapping and touching crystals.

It was also pointed out that convexity measures could be used to exclude overlapping

and touching crystals. It was shown that a manual choice of the threshold value of

convexity based on their area and perimeter was reasonably successful in classifying

overlapping or non overlapping crystals. However, in order to explore whether more

sophisticated techniques could improve the classification accuracy, two classification

algorithms viz. Artificial Neural Networks (ANNs) and Support Vectors Machine

(SVM) were evaluated. Both classifiers are characterized as non-parametric where a

prior knowledge of the distribution of the data set is not required. Two convexity

features, based on the individual crystal area and perimeter were used as input to

the classifiers. The desired values of -1 for overlapping and 1 for non-overlapping,

were assigned to the outputs. During training, in both cases, the RMS error for
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weights and biases was set to 0.01. 60% of the data set was used for training and

the remaining unseen 40% was used to test the network. The test data set contained

1941 non-overlapping and 311 overlapping crystals. In the next section the results

obtained using these two classifiers (ANN and SVM) will be presented.

6.2 Artificial Neural Networks

Artificial Neural Networks have been successfully employed to solve a variety of

computer vision problems. There are a number of different ANNs that use different

configurations of their processing elements and training or learning rules. These rules

specify an initial set of weights and indicate how weight should be modified during

the learning process to improve network performance. The theory and representation

of the various network types are motivated by the functionality and representation of

biological neural networks. In this sense, processing units are usually referred to as

neurons, while interconnections are called synaptic connections. Although different

neural modes are known, all have the following basic components in common (Ritter

and Wilson, 1996):

1. A finite set of neurons 0.1,0.2, ... an with each neuron having a specific neural

value at time t, which will be denoted by ai(t).

2. A finite set of neural connections W = W ij, where Wij denotes the strength of

the connection of neuron a; with neuron aj'

3. A propagation rule Ti(t) = I:.'J=1 ai(t)Wij.

4. An activation function I, which takes T as an input and produces the next state

of the neuron a.;(t + 1) = f h (t) - (}) where () is a threshold. f can be a hard

limiter, threshold logic, or sigmoidal function, which introduces nonlinearity

into the network.

6.3 Multilayer Perceptrons (MLPs)

Multilayer Perceptrons (MLPs) are one of the most successful types of ANNs. Typi­

cally the network consists of a set of processing units that constitute the input layer,

79



one or more hidden layers , and an output layer. The input signal propagates through

the network in a forward dir ection, on a layer-by-layer basis. Figure 6.1 illustrates

the configuration of the MLP. A node in a hidden layer is connected to every node

in the layer above and below it. In Figure 6.1 weight W i j connects input node Xi to

hidden node hj and weight Vjk connects hj to output node Ok •

Oulp ul nodes. 0 •..

Hidden nodes h.

Input nodes x,

Figure 6.1. Two layers perceptron

Classification begins by presenting a pattern to the input nodes Xi, 1 ~ i ~ l .

The data flow in one direction through th e perceptron until the output nodes Ok ,

1 ~ k ~ n, are reached . Output nodes will have a value of either -lor 1. Thus,

the perceptron is capable of partitioning its pattern space into 2n classes. The steps

that govern the data flow through the perceptron during classification are (Ritter

and Wilson, 1996):

1. Present the pattern p = [PI ,P2 . • . pzJ E R l to the perceptron, that is, set Xl = Pl

for Xi, 1 ~ i ~ t.

2. Compute the values of the hidden-layer nodes as it is illustrated in Figure 6.2,

l

hi = tanh(Woj +L WijXi) 1 ~ j ~ m
i =1

3. Calculate the values of the output nodes according to

m

Ok = thresholduc; + L Vlkhj) 1 ~ k ~ ti

1=1
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4. The class C = [CI' C2 .•. en] that the perceptron assigns to the pattern p must

be a binary vector. So Ok must be the threshold at some level T and depends

on the application.

5. Repeat steps 1, 2, 3 and 4 for each pattern that is to be classified.

Multilayer perceptrons are highly nonlinear interconnected structures and are, there­

fore, ideal candidates for both nonlinear function approximation and nonlinear clas­

sification task. It has been applied to a variety of problems in image processing,

including optical character recognition (Sackinger et al., 1992) and medical diagnosis

((Dhawan et al., 1996)and (Dhawan and Leroyer, 1988)).

Pi

Figure 6.2. Propagation rule and activation function for the MLT network

6.4 Supervised Classification Results using N eu­

ral Network

A commercial Neurosolution V3.0 (Neurosolution, V 3.0), equipped with a computa­

tional component that can be used as pattern classifier using extracted features, was

used. ANNs of the feedforward type, or MLPs, have been applied because they have

been found to be excellent functional mappers for problems that can be formulated as

requiring an input-output map. A MLP, with one hidden layer, was employed. The

detailed of the architecture may be represented by Figure 6.1. In our case, the con­

vexity measures based on area and perimeter were used as the two inputs. The hidden

layer contains 4 processing elements and they return hj = tanh(Wj o+ 2::;=1 CijWj i).

Where W j i and W j o are weights and biases of the hidden layer which were modi­

fied automatically during training. Finally the output of processing element returns
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either 1 or -1 determined by Ok = thresholdtvs, + l::J=ll1kjhjk), where lIkj and lIko

are the weight and bias of the output processing element respectively. The following

values for the weights and the biases were found after training using 3378 (441 over­

lapping and 2937 non-overlapping) crystals representing 60% of the data set:

-1.4412 -0.6594 0.3472

-0.8301 -4.7285
Wj o =

4.3145
Wj i =

-2.0455 -0.5245
,

1.2725

0.9384 1.2539 0.9737

lIkj= (0.7660 -1.8131 -1.0736 0.6137), lIko= (0.1942)

The two inputs are:

c ~ (~;)
Thus,

= tanh

-1.4412 X CA - 0.6594 x Cp + 0.3472

-0.8301 x CA - 4.7285 x Cp + 4.3145

-2.0455 x CA - 0.5245 x Cp + 1.2725

0.9384 x CA + 1.2539 x Op + 0.9737

The ANN output is calculated in a number of steps. First, the output from the

previous (hidden) layer is multiplied by the matrix lIkj and lIko is added. This is

then thresholded Ok = thresholdu-r, + l::J=ll1kjhjk), which will have values of -1 or

1. The confusion matrix for the test dataset is shown in Table 6.1. The percentages

are shown in brackets

Table 6.1. Confusion matrix calculated using ANN

Predicted Actual
Non overlapping Overlapping

Non overlapping 1830(94.28%) 14(4.5%)
Overlapping 111(5.72%) 297(95.5%)

Total 1941(100%) 311 (100%)
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It is seen that most (94.28%) of the non-overlapping and (95.5%) overlapping crystals

were correctly classified.

6.5 Support Vector Machine

Suppor:t vector machines (SVM) have originated from statistical learning theory in

the middle of the 1990's (Mangasarian, 2000). The construction of SVMs has been

described in Cristianini and Shawe-Taylor (2000). In this section, a brief introduction

on how to construct an SVM is presented. Consider a binary classification problem,

where the given data set is partitioned into two classes with a linear hyperplane

separating them. Assume that the training dataset consists of k training samples

represented by (Xl, Yl)," . (Xk, Yk), where Xi E RN is an N-dimensional data vector

with each sample belonging to either of the two classes labeled as Yi E -1, +1.

The goal of SVMs is to find a linear decision function defined by f(x) = ui.x + b,

where w E RN determines the orientation of a discriminating hyperplane, and b E

R is a bias. The hyperplanes for the two classes are, therefore, represented by

Yi(w.x + b) ~ 1. Due to noise or mixture of classes during the selection of training

data, variables ~i > 0, called slack variables, are introduced to cater for the effects of

misclassification. The hyperplanes for the two classes become Yi(w.x+b) ~ l-~i' The

optimal hyperplane (i.e., f(x) = 0) is located where the margin between two classes

of interest is maximized and the error is minimized. It can be obtained by solving the

following constrained optimization problem (Cristianini and Shawe-Taylor, 2000),

1 k

Minimize: -IIWI1 2 + II L ~i
2 ;=1

Subject to: y;(Wx + b) ~ 1 - ~ for i = 1,2,... ,k (6.3)

The constant II > 0 is called the penalty value or a regularization parameter. It

defines the trade-off between the number of misclassifications in the training data

and the maximization of the margin. In practice, II is selected by trial and error. The

constrained optimization problem, in the equation above, is solved by the method of

Lagrange multipliers. The equivalent (or the dual) optimization problem becomes,
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k 1 k k

Maximize: ""a' - - """"a·a·y·y·(x· x·)~ . Z:: t 2 L..t Z:: t J t J t· J
i=l i=l j=l

k

Subject to :L aiYi = 0 and 0::; ai ::; u, for i = 1, 2, ... , k
i=l

(6.4)

where ai > 0 are the Lagrange multipliers. The solution of the optimization problem

in the equation above is obtained in terms of the Lagrange multipliers, ai. According

to the Karush-Kuhn-Tucker optimality condition, some of the multipliers will be zero.

The multipliers that have nonzero values are called the support vectors. The results

from an optimizer, called an optimal solution, are a set a = (aI, ..., ak)' The value of

Wand b are calculated from w = "E~=l YiaiXi and b = HW.X+l + W,X_l], where X+l

and X-I are the support vectors of class labels +1 and -1 respectively. The decision

rule is then applied to classify the dataset into two classes i.e +1 and -1.

f(x) = sign(w.x + b) (6.5)

6.6 Supervised Classification Results using Sup­

port Vector Machines

SVMs classify points by assigning them to one of two disjoint half spaces. The

Lagrangian Support Vector Machines (LSVM) used in this classification work have

been described by Mangasarian and Musicant (2000). The following values for the

weight and bias were found after training:

W = (4.370 10.851) and b = (13.331)

The equation of the discriminating line (J(x) = sign(w.x + b)) for the SVM in terms

of the features, CA and Cp , may be written as:

4.370 X CA + 10.851 x C» + 13.331 = 0
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Table 6.2 shows the confusion matrix of the classification result using SVMs. For

the purpose of comparison, the same data set used for ANN was also used for the

SVM analysis.

Table 6.2. Confusion matrix calculated using SVM

Predicted Actual
Non overlapping Overlapping

Non overlapping 1917(98.76%) 46(14.79%)
Overlapping 24 (1.24%) 265 (85.21%)

Total 1941 (100%) 311 (100%)

It is seen that most (98.76%) of the non-overlapping and (85.21%) overlapping crys­

tals were correctly identified.

6.7 Conclusions

ANN and SVM were used to classify crystals as overlapping and non overlapping

using crystals convexity measures. The confusion matrix calculated for MLP showed

that many overlapping crystals (4.5% of overlapping crystals) were misc1assified as

non-overlapping crystals while relatively higher (5.72% non-overlapping crystals)

were misclassified as overlapping crystals. The classification results using SVM show

that 46 out of 311 (14.8%) were misclassified overlapping crystals. Relatively few

1.2% non-overlapping crystals were misclassified as overlapping crystals. The per­

centage of misclassified overlapping crystals by SVM was higher than the percentage

of misclassified overlapping crystals by MLP. In both cases, fairly acceptable percent­

age of misclassification of non-overlapping crystals as overlapping was obtained. The

confusion matrix showed that SVM gave relatively lower percentage of misclassified

non overlapping crystals.
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Chapter 7

Comparison of Crystal Sizing Algorithms

and Sieving Technique

7.1 Introduction

Traditionally, crystal size measurements are carried out by inspection or by using me­

chanical sieves. Apart from being time consuming, these techniques can only provide

limited quantitative information. To address these problems, a digital image pro­

cessing (DIP) technique, which involves automatically analyzing a captured image

of a representative sample of ~ 100 crystals has been developed. Two crystal sizing

algorithms, that were described in Chapter 4 and Chapter 5, have been compared

with the sieving method. The first applies ultimate erosion followed by a distance

transformation (UE+DT), which performed better than the other algorithms dis­

cussed in Chapter 4, and the second uses convexity measures to remove overlapping

crystals. Using two samples obtained from a sugar refinery, the parameters of inter­

est, including mean aperture (MA) and coefficient of variance (CV), were calculated

and compared with those obtained from the sieving method. The imaging technique

is faster, more reliable than sieving and can be used to measure the full crystal size

distributions of both massequite and dry product.
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7.2 Crystal Size Distribution Analysis using Me­

chanical Sieve

Generally, mechanical sieving is the most commonly used method to determine sugar

crystal size parameters in a production environment. Basically, the sieving operation

attempts to divide a fixed mass of sugar into fract ions, each of which has crystals that

lie within specified size limits. This size separation is accomplished using a number

of sieves that are pan shaped and have stainless steel mesh bottoms with decreasing

aperture sizes. As detailed in Chapter 2, before the sieving starts, the sieves are first

stacked with the smallest mesh size at the bottom and the largest one at the top . A

pan is placed underneath to collect the sugar crystals which pass through all sieves.

Figure 7.1. Example of sieves used for crystal sizing. They are four sieves and a pan at the bottom.

Figure 7.1 shows an example of such a set of sieves used for crystal size measurement

in the sugar industry. To perform sieving, the sugar sample is placed in the top

sieve which has the largest mesh size, covered, and then shaken for 15 minutes in a

mechanical shaker. During shaking, the crystals pass through sieves of successively

smaller size until they are retained on a sieve that is too small for the m to pass

through. After sieving, the quantity of each fract ion of crystals remaining in the
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individual sieve pans is measured by weighing. The size of the crystals that pass

through a particular mesh is not always smaller than the size of the sieve. Due

to the elongated shape of the crystals, it is possible that crystals, which are much

longer than the aperture size, can pass through the mesh as shown in Figure 7.2.

The crystals passing through a sieve can actually have one dimension larger than

the size of the sieve aperture. In this case the sieve size is a measure of the smaller

dimensions of the crystals.

Aperture

----_ .. _----

\
\,... ... ,

.... _- .... _-----

.... - ... _--- .. _-.,..-

--

.... _--

Length of the

crystal

Figure 7.2. Example of elongated crystal passing a square sieve whose size is smaller than the
length of the crystal.In this case crystal size is the measure of the other sides of the crystals.

The other possibility is that, some crystals can be oriented diagonally when they

pass through the sieve aperture as shown in Figure 7.3. In this case the length of a

particle passing through a sieve can be greater than the sieve size, although it has

to be smaller than the diagonal length of the sieve aperture.

The result of the sieve analysis can be used to estimate the crystal size parame­

ters (MA and CV) using either a look-up-table based on the mass fraction retained

or using empirical equations (such as the Rens method) based on the cumulative

percentage by mass.
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Sieve Size

___L~ c~
Length

Figure 7.3. Example to show a crystal whose length is bigger than a sieve size can pass through
the square sieve aperture.

7.3 Using Digital Image Processing

The image analysis technique for crystal sizing requires a high quality crystal pic­

ture which is well focused, uniformly illuminated and has large number of pixels.

The imaging system used to take the pictures of the sugar samples consisted of a

CCD camera attached to a microscope. The microscope had a magnification of 8x

and the field of view was measured using a calibrating micrometer stage. Having

acquired images of the samples, two independent automatic segmenting algorithms

(i.e. UE+DT (Argaw et al., 2006) and the algorithm based on convexity measures)

were applied. From the extracted crystals, the following morphological parameters

were measured: area, perimeter, length, width and convexity. The area was defined

as the projected area of the crystal in its stable position. This involves counting the

number of the pixels inside the closed boundary of the crystal image and converting

the pixel count to an area using the scale factor determined by the size calibration.

The length and width were determined from the dimensions of the smallest bounding

box as shown in Figure 7.3. The results were then saved as a text file for statistical

analysis.

7.4 DIP and Mechanical Sieving Methods

Two different sugar samples (Sample #1 and #2) were obtained from the Hullets

Refinery in Durban, South Africa. These were analyzed using the sieving technique

at SMRI and Bullets and compared with the analysis using DIP methods. Since the

89



Figure 7.4. One possible oper ational definition of the length and width of a crystal can be based
on the dimensions of a bounding box.

resul ts from these two t echniques will be compa red, it is const ructive to consider the

differences between these two techniques.

1. In mechani cal sieving, the sugar ret ain ed on each sieve and the pan is measured

by weighing the mass and th ese ar e th en used to plot the cumula t ive percent age

by mass curve. In DIP, however , the volume or mass of the sugar is not

measured . Because the acquired image is only a two dimensional proje ction of

th e crystal, th e depth of the crystal is not measured . Thus , usin g DIP, only th e

area of each of th e crystals is dir ectly obtained and this is presented in terms

of the cumulat ive percentage by mass.

2. In mechanical sieving, du e t o the relatively small number of sieve sizes used ,

the size distribution of the crystal sample is determined by a fairly small num­

ber of data points. Thus, subtleti es of the shape of t he distribution func tion

are not well described. However , since th e size of the individual crystals are

measured dir ectl y using DIP, the crystal sizes can be sorted into any number

of bins (provided that enough crys tals are measured) and hence the cumulative

distribution fun ction can in principle be describ ed by a much larger number of

data points.

The DIP resul ts can be compar ed to the sieving results by convert ing th e area ,

ob tain ed from DIP, to mass using a couple of techni ques. Dalziel et al. (1999)

calculated volume from the area as A!. An alte rnative technique used by Mora

et al. (1998) for cement par ticl es makes the assumption that the par ticles are taken

from the same sample and hence have more or less the same shape characterist ics.

The crystal depth is then assumed to be related its wid th by:

depth =p x width
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for some constant, /3. The Volume of the crystal may then be calculated as:

Volume area x depth

/3 x area x width (7.2)

This relationship between volume and area was also used to characterise the size and

shape of coarse aggregate for concrete (Kwan et al., 1999) and (Mora and Kwan,

2000). The cumulative percentage by mass then turns out to be independent of /3
and the crystal density p and may be incrementally calculated for each of the bins

as:

p x /3 XL:f=l area x breadth

p x /3 XL:f=l area x breadth

L:f=l area x breadth

L:f=l area x breadth
(7.3)

where the summation in the denominator is for all crystals while the summation in the

numerator is for the crystals whose size is smaller than that particular value. Having

the area converted to mass, the results obtained by DIP can then be compared to

those obtained using sieving. The results from two automatic image based algorithms

were compared with the result from mechanical sieving analysis.

7.4.1 Comparing with UE+DT Algorithm

The cumulative percentage by mass curves for sieving and UE+DT were compared

with a direct determination of individual crystal size by clicking on the crystal bound­

aries as shown in Figure 7.5. Although there is a fair discrepancy between these

curves, it is instructive to calculate the corresponding values. of MA and CV using

the Rens method and compare them with those obtained by directly clicking on the

crystals. These results are shown in Table 7.1. Since there does not appear to be

any reason why the clicking technique does not accurately describe the sugar crystal

size distribution, we must treat this curve as ground truth. Comparing sieving with

clicking method, large percentage differences in MA and CV were obtained. The per­

centage difference calculated for CV, using UE+DT, was reasonably low although

MA was calculated with bigger percentage. It is clear that the three cumulative
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Figure 7.5. cumulative percentage by mass curves for SMRl sieving results (black), UE+DT (blue)
and clicking (red).

percentage by mass curves shown in Figure 7.5 do not agree with each other. Firstly,

as illustrated in Figure 7.2 and 7.3, it is possible for the sieving method to give a dis­

tribution, which has smaller crystal sizes than the directly measured clicking method.

This is consistent with the effect that, on average, it is possible for crystals which

have dimensions larger than the mesh aperture size to pass through the sieve. Sec­

ondly, the cumulative percentage by mass curve in Figure 7.5 found using UE+DT

also indicates a size distribution that is smaller than that obtained by the clicking

method. Careful examination of the segmentation results achieved by UE+DT indi­

cated that some of overlapping crystals were being over segmented by the algorithm.

This resulted from marking the crystal with multiples marker. In order to eliminate

this effect, another algorithm based on the convexity of each crystal was used to first

identify and reject overlapping crystals. Th is algorithm used.convexity measures of

the crystal based on perimeter and area to identify and remove overlapping crystals.

The resulting cumulative frequency curves then coincided very closely with the click­

ing curves as discussed in Section 7.4~2.

The implications of this discrepancy between the sieving and clicking results are

not yet fully understood. Since sieving is routinely and consistently used in the

sugar industry, it is possible that the sieving results can nevertheless be useful in
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Tab le 7.1. Summary of MA and CV and their %error calculated using sieving and UE+DT for two
samples labeled n = 1, 2. The % errors for MA and CV are calculated with respect to the values
obtained by the direct clicking method.

Methods n MA(J-lm) Error (%) CV (%) Error (%)
1 504 38 41 20

SMRI Sieve 2 505 42 45 36
1 553 32 50 47

Hullets Sieve 2 602 31 35 2.9
1 678 16 34 0

UE+DT 2 726 16 35 6
1 815 - 34 -

Clicking 2 871 - 33 -

opt imizing growth in the crystalisation pans and in maintaining a uniform exit prod­

uct. It would certainly be an advantage to use the automatic UE+DT algorithm

in the production environment . Since the sieving method is well established and is

widely used in the sugar indust ry, we could choose to multiply the crystal masses by

a shift factor, S, that will shift the UE+DT cumulative percentage by mass curve to

coincide with the sieve. The value of the shifting factor was calcu lated by searching

for a value of S that gave best correlation between the cumulative percentage by

mass curves calculated by sieving and UE+DT algorithm. Figure 7.6 shows plot of

correlation coefficient calculated after shift ing the UE+DT curve by different shift­

ing facto rs ranging from S = 0.4 to 1 for a sample image. Since the shift factor, S,

determined in this way for the two samples were so close to each other (0.60 and

0.625), an average value of S = 0.61 was chosen and this then gave a good agreement

between the sieving and UE+DT curves as shown in Figure 7.7. A summary of

the MA and CV values calculated, after shifting the cumulative percentage by mass

curve by a shift factor of S = 0.61, is shown in Table 7.3.
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Figure 7.7. cumulative percentage by mass curves obtained by using UE+DT (before and after
shifting using S = 0.61) and sieving. Good agreement between the sieving and shifted UE+DT is
observed.
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7.4.2 Comparing with Convexity Based Algorithm

The same technique could then also be applied to the convexity algorithm that works

by excluding the overlapping crystals based on their convexity values. Figure 7.8

shows the cumulative percentage by mass curves calculated using convexity measure,

sieve analysis and manual clicking for the two samples. Comparing the convexity

based algorithm curve with manual method, they are close to each other indicating

that the convexity algorithm can calculate crystal size better than UE+DT. These

curves, however, are consistently smaller than the curve generated using the sieve

analysis. MA and CV calculated using Rens method is shown in Table 7.2.

Table 7.2. Summary of MA and CV and their % error calculated using Sieving and convexity
method for two samples labeled n = 1, 2. The % errors for MA and CV are calculated with respect
to the values obtained by direct clicking method.

Methods n MA(p,m) Error (%) CV (%) Error (%)
1 760 7 37 9

Convexity 2 793 9 37 12
1 815 - 34 -

Clicking 2 871 - 33 -

After shifting the curves, although in this case a value of S = 0.55 was required, the

values of MA and CV could then be calculated by applying the Rens method. Figure

7.9 shows the curves obtained using convexity measure and sieving before and after

size correction for two sugar samples. As expected the S factor was smaller than the

factor used to correct the curves generated by UE+DT. Comparing with convexity

method, UE+DT underestimates the crystal size. The effect of over segmentation

of some overlapping crystals by UE+DT may account for this. Finally crystal size

parameters were calculated using both algorithms after the shifting and compared

with the same parameters calculated using sieving. Table 7.3 indicates the values

of MA and CV and their percentage error, as compared with SMRI sieving results,

found after shifting the cumulative percentage by mass curves with their respective

shifting factors.
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Figure 7.8. The graph of cumulative percentage by mass verses crystal size calculated using con­
vexity measure, sieve analysis and manual clicking for two samples (a and b). The red star is for
convexity method, blue for the clicking and black star for the sieve. Only few data points can be
obtained for the sieving method, which is one of its limitations.
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vexity measure, sieve analysis (a and b). The red star is for shifted convexity method, blue for the
original convexity and black star for the sieve.
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Table 7.3. Summary of MA and CV calculated using sieving and automatic algorithms for two
samples. A shifting factor S = 0.61 was used for UE+DT while S = 0.55 was used for convexity
algorithm.

Methods n MA(t-Lm ) Error(%) CV (%) Error(%)
1 504 - 41 -

SMRI Sieve 2 505 - 45 -
1 553 9.7 50 21.9

Hullets Sieve 2 602 19.2 35 22.2
1 515 2.2 35 14.6

UE+DT 2 516 2.2 37 17.7
1 524 3.9 34 17.0

Convexity 2 513 1.6 36 20

Comparing with sieving method, both automatic algorithms calculated MA with an

accuracy of 1-4 %. There was a bigger percentage error in CV.

7.5 Discussion

The possibility to measure sugar crystal size parameters (MA and CV) using digital

image processing was introduced. Two crystal sizing algorithms (UE+DT and Con­

vexity based algorithm) were developed and compared with sieving technique that

is being currently used in sugar industry. They were also compared with clicking

method which could be used as a benchmark. In sieving technique MA and CV were

computed using the cummulative percentage of the mass of the crystals retained on

the respective sieve size. Due to the fact that the volume of the crystals could not be

determined from the projected crystals image, the area of the crystals was converted

into a volume (mass) to compute cumulative percentage by mass. This conversion

of area to mass helped to compare the image based methods with the sieve analysis.

The curves generated in this way were not exactly match to each other (Figure

7.5 and Figure 7.8) and caused the resulting MA and CV to be large on average

by 28% and 26% respectively for UE+DT and 35% and 16% respectively for the

convexity algorithm. There could be many reasons for this to happen. As illustrated

in Figure 7.2 and 7.3 the size of the crystals that passed through a sieve could be

bigger than the size of a sieve appertue. The cumulative percentage by mass curve
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found using the clicking method was also shown bigger shift from UE+DT (Figure

7.5) although it was so close to the curve generated using convexity based algorithm

(Figure 7.8). The effect of oversegmentation of some overlapping crystals by UE+DT

could be a reason for such big shift. Better matching curves were generated using

convexity algorithm.

Once the cumulative percentage by mass curves generated, the size parameters could

be calculated. If the problem of such differences in cumulative percentage by mass

curves generated using sieve analysis and imaging methods were not corrected, MA

and CV calculated using sieve analysis and imaging methods would have big per­

centage error. So there was a need to shift the curves using the shifting factor(S).

Shifting factor (S) was calculated for fine sugar samples whose value lied between

0.60 to 0.625 for UE+DT and 0.54 to 0.56 for the convexity algorithm. Shifting

the curves by S has shown good agreement with the curves generated using sieving

(Figure 7.7 and 7.9). Estimation of size parameters, after shifting the cumulative

percentage by mass curves, can result in the value which is reasonably comparable

with the same parameters measured using sieving techniques.

In fact MA and CV measured for the samples, using sieving technique, at Bullet

and SMRI have shown big differences, as shown in Table 7.1 and 7.2. The question

is which can be taken as the standard? For imaging techniques clicking could be used

as the benchmark as it manually measure the size parameters from crystal images.

Comparing with clicking, the percentage differences in MA and CV, calculated using

the automatic algorithms are smaller than sieving techniques as shown in Table 7.1

and 7.2. These figures are higher for CV than MA. In the case of sieving few number

of data points (less than or equal to 4) are used to calculate MA and CV using Rens

method. In some samples the number of data points can be reduced to 2 if some of

the data points fall outside the upper and the lower limits set in Rens method i.e.

90% and 10%. This in turn affects the values of MA and CV. ThIS is one of the lim­

itations of sieving method. The automatic algorithms, however, generate continuous

curve which is not susceptible to such conditions of Rens method.

The other advantage of DIP methods is that because it can calculate the length
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of the crystals, the elongation of the sugar sample can also be determined (as the

mean ratio of length to width). Unlike sieving method, DIP can give detailed size

information as it can directly measure the size of the individual crystals. Neverthe­

less DIP has disadvantage in limiting the number of overlapping crystals. It is even

more difficult when one tries to measure very fine sugar crystal.

7. 6 Conclusions

Two automatic digital image processing algorithms (UE+DT and the convexity al­

gorithm) have been developed to obtain the crystal size parameters MA and CV

from captured images of crystal samples. These results have been compared with

those obtained by sieving which is the standard technique used in the sugar industry

and by a direct determination that involved manually tracing the crystal borders.

Interestingly, the MA and CV obtained from sieving are found to be smaller than the

direct method. To some extent, this has been explained by noting that large crys­

tals that have a dimension that is larger than the sieve aperture can pass through a

smaller sieve. The oversegmenting problem associated with the UE+DT technique

has been resolved by instead using an algorithm based on convexity. Finally, it has

been demonstrated that if the DIP cumulative percentage by mass curves are mul­

tiplied by an average shift factor (8 = 0.61 for UE+DT and 8 = 0.55 for Convexity

method), MA values very close to those calculated by the sieve technique can be

obtained.
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Chapter 8

Summary and Conclusions

8.1 Summary

In the sugar industry process control is used to insure that the final exit product

which meets the required quality control standards. The various processes are usu­

ally monitored using a variety of indirect measurement techniques (as described in

Chapter 2) such as conductivity, boiling point elevation, stirrer torque and radio fre­

quency measurements in addition to visual inspection. The results from suchindirect

measurements are judged and the necessary decisions are made by the operators, who

they make adjustment to the pressure, temperature, pH etc. This optimization is

often compromised by operator fatigue and error. An automated system would not

be subjected to these problems and would also allow for online feedback control.

In this study a computerized method has been developed to measure sugar crystal

size parameters (MA and CV) directly from images of the dry sugar exit product.

A number of algorithms have been evaluated to improve the accuracy of the results.

Overlapping and touching crystals were found to compromise the accuracy of the

techniques. The first approach attempted to develop an algorithm which could seg­

ment and separate overlapping and touching crystals. As described in Chapter 4,

five algorithms, using marker controlled watershed segmentation, were investigated.

These algorithms were compared with each other and with a manual method which

involved clicking the boundaries of individual crystals using the computer mouse.

This manual clicking method was used as a benchmark to evaluate the accuracy of

the algorithms. Although a number of segmenting algorithms were examined, it was
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found that a combination of ultimate erosion and the distance transform (UE+DT)

was the most accurate in finding the correct crystal boundaries (as described in

Chapter 4). Using dry crystal samples obtained from the Hullets Refinery South

Africa, Durban, the MA and CV were calculated for each of 25 sample images using

the Rens method after applying the UE+DT algorithm. MA and CV were calculated

for the whole 25 crystal images used in this study with a mean percentage error 6%

and 12% respectively.

The second approach, involved using a measure of convexity to identify and re­

move touching and overlapping crystals. As described in Chapter 5, two convexity

measures based on the area and perimeter of the object were used. The algorithm

first segmented the crystals from the background and then classified the object into

two classes. The class with no overlapping or few overlapping crystals was then fur­

ther processed to calculate the mean aperture (MA) and coefficient of variance (CV)

using the Rens method. MA and CV were compared with the manual clicking which

was assumed to be ground truth. This comparison gave relative errors of 7.75% and

9.73% for MA and CV respectively. Compared with UE+DT, the convexity tech­

nique gave MA with the higher percentage errors, but CV was predicted with lower

percentage errors.

As described in Chapter 6, two different classification algorithms, SVM and ANN,

were used to classify crystals as non-overlapping and overlapping. The convexity of

the crystals based on their area and perimeter were used as input features. The clas­

sification accuracy of 94.3% and 98.8%, for non overlapping crystals, were achieved

by ANN and SVM respectively.

In Chapter 7, the two best performing algorithms (UE+DT and convexity based

algorithm) were compared with the commonly used mechanical sieving method. Us­

ing samples obtained from Hullets Refinery, the parameters of interest, including

mean aperture (MA) and coefficient of variance (CV), were calculated and compared

with those obtained using the sieving method. The results demonstrated that imag­

ing technique was faster, more reliable than sieving and could be used to measure

the full crystal size distributions.
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8.2 Limitations and Recommendations

One of the problems in this study was crystals image which contains many overlap­

ping and touching crystals and few number of separated (individual) crystals. The

use of convexity to remove overlapping crystals resulted in a small number of indi­

vidual crystals remaining in the image for analysis. Thus it would be necessary to

increase the number of analysed images to ensure that a representative population

was obtained. This problem could also be addressed by limiting the number of over­

lapping crystals in the images using a vibration or other technique to spread out the

crystals.

In the algorithms that employed marker controlled watershed segmentation, a fixed

size and shape of structural element was used. Due to the fact that the sugar crystal

can have different size and shape, using a fixed big size structural elements erodes all

the small crystals. It is possible that the remaining crystals in the image might not

then constitute a representative sample. This in turn will affect the accuracy of the

measurement of the crystal size parameters. This problem could be alleviated using

an adaptive structural element which would modify its size and shape according to

the size and shape of the crystals in the sample.

8.3 Conclusions

Automatic, computerized methods have been developed to measure sugar crystal size

parameters directly from images of dry crystals which give objective, quantitative

and reproducible values. Overlapping and touching crystals were problematic and

negatively affected the accuracy of the algorithms. These problems were addressed

using two different approaches. The first approach used marker controlled watershed

segmentation (as described in Chapter 4). Depending on the kind of markers used,

five algorithms were evaluated. These algorithms were compared with each other

and with the manual clicking method (used as ground truth) that directly traced

the boundary of the individual crystals using the computer mouse. The accuracy

of the segmentation algorithms depended on the technique used to mark the crystal

in the image. The parameters of interest included the mean aperture (MA) and

coefficient of variance (CV). Comparing MA and CV calculated using the automatic
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algorithms with same parameters calculated using manual clicking (used as ground

truth), UE+DT (one of the automatic algorithm) exhibited the lowest percentage

error (6% and 12% respectively).

The mean aperture (MA) and coefficient of variance (CV) were also calculated using

the automatic algorithm based on convexity and compared with same parameters

calculated by manual clicking (used as ground truth) and both agreed with mean

percentage errors less than 10%.

The two algorithms (UE+DT and convexity based) were compared with the sieving

method which is the standard technique used in the sugar industry. Using two sugar

samples obtained from the Hullet Refinery, South Africa, the size parameters (MA

and CV) were calculated from a captured crystal images. Interestingly, the MA and

CV obtained from sieving are found to be smaller than the direct method. To some

extent, this has been explained by noting that large crystals that have a dimension

that is larger than the sieve aperture can pass through a smaller sieve. Finally, it

had been demonstrated (in Chapter 5) that if the DIP cumulative percentage by

mass curves were multiplied by a common shift factor, values very similar to those

calculated by the sieve technique can be obtained.

Generally, the study demonstrated the feasibility of an alternative method for crys­

tals size measurement directly from crystal images captured using digital camera.

Although dry sugar samples were used in the study; in principle the algorithms can

also be used to calculate the size of crystals in the massecuite.

8.4 Future Work

In this study, automatic algorithms for sugar crystal size measurement direct from

crystal images were evaluated. Images were captured by spreading the crystal sam­

ple on the microscope slide using transmitted illumination. The images could also

be captured using reflected light. Spreading the sugar sample on the dark container

could increase the contrast between the object and the background. This in turn

would improve the accuracy of the segmentation algorithms.
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Testing of these algorithms at the industry stage using sugar crystals image taken

direct from the crystallization pan will be our future work.
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