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Abstract

The study of longitudinal data plays an integral role in medicine, epidemiology, social sci-

ence, biomedical and health sciences research where repeated measurements are obtained

over time for each individual. Generally, the interest is in the dependence of the outcome

variable on the covariates. The analysis of the data from longitudinal studies requires spe-

cial techniques, which take into account the fact that the repeated measurements within one

individual are correlated. In review of this work, we explore modern developments in the

area of linear and nonlinear generalized mixed-effects regression models and various alter-

natives including generalized estimating equations for analysis of longitudinal data and cor-

respondence analysis (CA). Methods are described for continuous and normally distributed

as well as categorical variables. We apply this theory to the analysis of complete longitudi-

nal data from National Institute of Environment Health Sciences (NIEHS) focusing on the

relationship between blood lead levels (PbB) and some associated covariates. The results

show that Placebo-treated children had a gradual (occuring) decrease in blood lead level.

Succimer-treated children had an abrupt (unexpected) drop in blood lead level, followed by

rebound. The average mean blood lead level of the succimer-treated children after initiation

of treatment was 19.14 µg/dL lower than that of placebo-treated children. After randomiza-

tion, blood lead levels had fallen by similar amounts in both chelated and placebo children,

despite the immediate drops in the chelated group; there was no association between change

in blood lead level and change in cognitive test score. Blood lead levels continued to fall.

Keywords: Longitudinal data, Linear mixed models, generalized linear models, random

effects, correlated data, correspondence analysis.
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Chapter 1

Introduction

1.1 Introduction

A longitudinal study refers to an investigation where participant outcomes and possible

treatments or exposures are collected at multiple follow-up times. This is also often referred

to as repeated measurements data (Davis, 2002; Fitzmaurice et al., 2004). Longitudinal data

analysis is defined as the analysis of the data resulting from the observations of subjects

which are repeatedly measured over a series of time-points (Verbeke and Molenberghs, 2000;

Diggle et al., 2002). The purpose of conducting longitudinal study is to study the change of

a response over time.

Analyzing longitudinal data involves characterizing the time trends within subjects and vari-

ability or heterogeneity between subjects in the data. The data will always comprise the re-

sponse, the time covariate among other covariates and the indicator of the subject on which

the measurement has been made. If other covariates are recorded, for example whether the

subject is in a treatment group or the control group, we may wish to relate the within- and

between-subject trends to such covariates (Verbeke and Molenberghs, 2000; Diggle et al.,

2002). Between- subject effects are those whose values change only from subject to subject

and remain the same for all observations on a single subject, for example the treatment (i.e

drug or placebo) and gender effects (i.e male or female). Within-subject effects are those

whose values may differ from measurement to measurement, for example the level of CD4

count from one time period to the next one in a clinical study (Hedeker and Gibbons, 2006).

According to West et al. (2007), a random factor is a variable with levels that can be thought

of as being randomly sampled from a population of levels being studied and a fixed fac-

tor is a variable for which the investigator has included all levels that are of interest in the

1



study. Random effects are random values associated with the levels of a random factor whilst

fixed effects describe the relationships between the dependent variable and predictor vari-

ables (i.e., fixed factors or continuous covariates) for an entire population of units of analysis

(West et al., 2007).

The study of random effect models with normal or non-normal distribution for the ran-

dom effects has application in many areas of medical science or clinical studies (Verbeke and

Molenberghs, 2000; West et al., 2007). Repeated measurements are very frequent in almost

all scientific fields where statistical models are used. We give a few examples: in agriculture

- crop yields in different fields over different years; in biology - growth curves i.e sequential

measurements of size taken at regular intervals on the same height, for example of longitu-

dinal data found in Potthoff and Roy (1964); in education - student progress under various

learning conditions; in insurance - evolving relationships between premiums and claims for

different firms; and in medicine - successive periods of illness and recovery under different

treatment regimes.

According to Diggle et al. (2002), the main advantage of longitudinal studies over cross sec-

tional studies is that longitudinal studies can separate aging from cohort effects Hedeker

and Gibbons (2006) give an example where it can separate aging effects (i.e. changes over

time within individuals) from cohort effects (i.e. differences between subjects at baseline).

Longitudinal studies can distinguish changes over time within individuals from differences

among individuals in their baseline levels or covariates while the cross sectional studies

cannot do so. The changes within individuals over time is known as age effects while the

difference among people in their baseline covariates is known as cohort. In the cross sec-

tional data only a single response is available for each experimental unit. We now consider

some advantages and challenges associated with longitudinal studies.

1.1.1 Types of Longitudinal Studies

Firstly, panel studies allow the researcher to find out why changes in the population are oc-

curring, since they use the same sample of people every time, for example with a household

panel survey, when individuals are followed and observed within their household and in-

formation is collected. Secondly, time series analysis, where a single variable is measured

at different time points, for example quarterly for several years. Thirdly, repeated cross sec-

tions, which is the most common type of study in longitudinal survey studies. This involves

whole survey with the same variable measured repeatedly at different time points and co-
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hort data sets, where individuals are followed over time and a certain event of interest occurs

or until the end of study. Finally, an event history data sets, which is also known as survival

data analysis.

1.1.2 Advantages of Longitudinal Studies

The advantages are taken from the ideas of Hedeker and Gibbons (2006). We give some

advantages of longitudinal study analysis:

1. The study provides information about individual change.

2. With same number and pattern of individuals in the study, more efficient estimators

than cross-sectional design can be obtained.

3. The study economizes on subjects thus it reduces on costs

4. The between-subject variation is excluded from error.

5. The study can separate changes over time within individuals from difference between

subjects at baseline or separates aging effects from cohort effects.

6. The subjects can serve as their own control in that the outcome variable can be mea-

sured under both control and experimental conditions for each subject.

1.1.3 Challenges of Longitudinal Studies

A longitudinal study just like any study, has challenges. According to Hedeker and Gibbons

(2006), there are several challenges under longitudinal study analysis. These include:

1. Time-varying covariates: here the designs offer the opportunity to associate changes

in exposure with changes in the response of interest however the direction of causality

can be complicated by feedback between the outcome and the exposure. Examples of

such covariates are age, smoking status, cumulative exposure to some risk factor and

treatment in certain studies.

2. Participant follow-up: there is a risk of bias due to incomplete follow-up or drop-out

of the study participants. Sometimes this is called attrition.

3. Analysis of correlated data: statistical analysis requires methods that can properly ac-

count for the intra-subject correlation of response measurements. The inferences such

as statistical tests or confidence intervals can be detrimental or invalid if the correlation

is ignored.
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According to Davis (2002), there are two main difficulties in the analysis of data from re-

peated measures studies. First, the analysis is complicated by the dependence among re-

peated observations made on the same experimental unit. Second, the investigator often

cannot control the circumstances for obtaining measurements, so that the data may be un-

balanced or partially incomplete. For example, in a longitudinal study, the response from a

subject may be missing at one or more of the time points due to factors that are related or

unrelated to the outcome of interest. In our study of regression type models for longitudinal

data, we focused on situations where the response was continuous and reasonably assumed

to be normally distributed, and also the model relating mean response to time and possibly

other covariates is linear in parameters that characterize the relationship. This means in one

way or the other the analysis of longitudinal data strategies deal with missing data if there

are any.

1.2 Analysis for Longitudinal Data

Currently researchers agree (Hedeker and Gibbons, 2006; Verbeke and Molenberghs, 2000;

Diggle et al., 2002; Fitzmaurice et al., 2004) that there are several different features of longitu-

dinal studies that must be considered when selecting an appropriate longitudinal analysis.

Response Variable

The response variable might be continuous and assumed to be normal or non-normal dis-

tributed and might be categorical where the response variable might be ordinal, dichoto-

mous, nominal or counts. The mixed-effects linear model is popularly used for continuous

and normally distributed response variables. But if the response is discrete and therefore

does not have a normal distribution (e.g., a count), then one can consider a mixed-effects

model like Poisson regression model. Mixed effects models can also be considered for the

categorical responses, such as binary (yes or no), ordinal ( e.g., sad, neutral, happy), or nom-

inal (republican, democrat, independent). Non-linear mixed effect models can also be used

for non-linear changes over time such as in the case of growth data, pharmarkokinetics, and

disease dynamics models.

Number of subjects N

In the analysis based on a large sample of unbalanced longitudinal data, we consider the

models like generalized mixed-effects regression models which is suitable for analysis and

may not be suitable for small number of subjects N (e.g., N < 50).

Number of observations per subjects ni
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i ni = 2 for all subjects

The data can be analyzed using changing score analysis or ANCOVA in the methods

for cross-sectional data.

ii ni = n for all subjects

If the data is assumed to be balanced, then ANOVA or MANOVA for repeated mea-

sures or mixed effects models can be used in the analysis.

iii ni varies

In the case where ni varies from subject to subject, then methods like generalized

mixed-effects regression models are required in the analysis. The reason for GLMMs is

not variable ni. The model can be used both if ni = n and variable ni.

Number and Types of Covariates

i Single sample

In this case, the interest is in characterizing the rate of change in the population over

time. Here, we can use a random-effects regression model in the analysis, since the

parameters are treated as random effects and allowed to vary from subject to subject.

ii Multiple samples

The model consists of one or more categorical covariates that contrast the various treat-

ment conditions in the design. Here, categorical covariates can also be included in a

model characterizing the rate of change, e.g. gender, to see if the rate of change differs

between males and females.

iii Regression

The analysis may have both continuous and categorical covariates, such as age, sex,

and race.

iv Time-varying covariates

When the covariates take on time-specific values i.e., time-varying covariates, then lon-

gitudinal data methods are best suited to handle such covariates.

Type of Variance-Covariance Structure -V (yi)

In this case we are dealing with different model specifications that lead to homogeneous
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or heterogeneous variances and homogeneous or heterogeneous covariances of the repeated

measurements over time. In modeling the variance-covariance structure of the data, residual

autocorrelation among the responses plays an important role in the analysis. The statistical

model will be used for handling the analysis.

1.2.1 Methodology for Analyzing Longitudinal Data

In this section we review the methodology for the analysis of repeated measurements. Ac-

cording to the current literature including Verbeke and Molenberghs, (2000); Diggle et al.,

(2002); West et al., (2007) and others, the general approaches for analyzing longitudinal data

include:

1. Analysis of variance (ANOVA) for repeated measures

2. Multivariate analysis of variance (MANOVA) for repeated measures

3. Mixed effects regression models

4. Covariance pattern models

5. Generalized Linear models (GLM)

a) Generalized estimating equation (GEE)

b) Generalized linear mixed model (GLMM)

c) Hierarchical generalized linear model (HGLM)

6. Growth curve and Latent variable models

7. Multilevel models

Linear (and nonlinear) mixed effects models are useful for analyzing longitudinal data, pro-

viding a simple and effective way to incorporate within-subject and between-subject varia-

tion and the correlation structure of longitudinal data (Nguyen et al., 2008). The advantage

of this methodology is that it accommodates the complexities of longitudinal data sets (Fitz-

maurice et al., 2004). The inclusion of random effects in models for longitudinal data helps

to capture the inherent correlation in the data. The use of linear mixed model methodol-

ogy for the analysis of repeated measurements is becoming increasingly common due to the

development of widely available software.
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1.2.2 Statistical Software

The purpose of the current study is to review and summarize the random effect models for

normal non-normal distributions for the analysis of longitudinal data and also understand

the implementation of such models using the SAS software. The software used in the current

study will be SAS (Version 9.3). Most of the analyses are carried out using PROC MIXED in

SAS supplemented by PROC GENMOD, PROC LOGISTIC, PROC NLMIXED and PROC

GLIMMIX in SAS for fitting non-normal data.

1.3 Objective of the Study

The primary object of the study is to review and apply advanced statistical methods to anal-

yse correlated Gaussian and non-Gaussian longitudinal data using appropriate models for

the outcomes or outcome variable. The specific objectives of the study were:

1. To review statistical methods used in the analysis of the longitudinal Gaussian non-

Gaussian data.

2. To understand how to fit the model and interpret the parameter estimates, especially

in terms of odds and odd ratios.

3. To understand the relative merits and demerits of the statistical software used in ana-

lyzing longitudinal data.
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Chapter 2

Exploratory Data Analysis (EDA)

The exploratory data analysis (EDA) approach is used to summarize the main characteristics

of the data in the form of graphs and tabulations without using a statistical model. For this

data, analysis is done with a complete data set in SAS version 9.3.

2.1 Data Description

The current data was a published data set which was reported in treatment of lead-exposed

children (TLC) by Rhoads (2000). In the current study we followed the subsample (N=100)

of data on Blood Lead Levels from the Treatment of Lead-Exposed Children (TLC) Trial.

The Treatment of Lead-Exposed Children (TLC) trial was a placebo-controlled, randomized

study of succimer (a chelating agent) in children with blood lead levels of 20-44 micro-

grams/dL. These data consist of four repeated measurements of blood lead levels obtained

at baseline (or week 0), week 1, week 4, and week 6 on 100 children who were randomly as-

signed to chelation treatment with succimer or placebo. The data is a clinical trial where the

outcome of interest is continuous. The TLC clinical trial compared the effect of lead chela-

tion with succimer to place therapy. The model of the data includes both categorical and

continuous covariates.

2.2 Descriptive Statistics

The summary statistics for the number of children in the study at each time point in both

groups is given in Table 2.1 and Table 2.2 where we look at measures of central tendency. In

the statistical table the average lead level for children in the active treatment is 19.139 and

that for children in the actual number s placebo group is 24.662. Another measure is the me-
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dian which divides a data into half when the data set is ordered in descending or ascending

order and is used to explain the skewness of the distribution of the data. In Table 2.1 and

Table 2.2 the skewness statistic in both groups are positive implying right skewed. In both

groups the kurtosis is not equal to zero and it is positive therefore the degree and direction

of asymmetry of the distribution is non-normal and it is positively skewed.

There are several different measures of variation that we look at, such as the range, interquar-

tile range, variance and standard deviation. In Table 2.1 and Table 2.2, the variance and

standard deviation shows that in active group the observations are more spread out than in

placebo since the standard deviation is higher than the one in placebo group and the spread

of variables is much high in active than in the placebo group the range in active group is

high. On each scale, the statistics show that there is a strong variation between group and

treatment. The spread of the data is much higher in the active group since the interquar-

tile range is greater than in placebo group. We see that the range of active group is 2 times

greater as that of placebo group. Table 2.2 shows that the interquartile ranges for the active

group is approximately 2 times as that of placebo group. This is based on the middle 50% of

the data and ignores the extremes at either end of the data.

The result in the Table 2.3 indicates that there was statistical significant association between

the location parameter. Based on the test statistic, the p− value < 0.001 for each test.

Figure 2.1 shows the estimated means and estimated individual trends. The plot seems to

indicate individual to individual variability in both the intercept and slope which should be

investigated at the modeling analysis stage.

Figure 2.2 shows a boxplot of lead levels across time for the active group that has a significant

effect on blood level with respect to both location and variation. The plot shows a decreasing

in the mean lead levels between baseline and week 1 then increasing starts again between

weeks 1 and 6. Figure 2.3 shows a decrease in the mean lead levels between baseline and

week 6.

Figure 2.4 show that the evolution of scatter plots with increasing blood lead levels from

the diagonal suggests that the correlation remains more or less constant. There seem to be

outliers in the data. In addition the histograms at each week of measurement show a fairly

consistent non-normal distribution.
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Table 2.1: Analysis of Blood lead levels measured grouped by Treatment

Treatment = P (Placebo)

Moments

N 200 Sum Weights 200

Mean 24.662 Sum Observations 4932.400

Std Deviation 5.526 Variance 30.539

Skewness 0.708 Kurtosis 0.357

Uncorrected SS 127720.220 Corrected SS 6077.371

Coeff Variation 22.407 Std Error Mean 0.390

Basic Statistical Measures

Location Variability

Mean 24.662 Std Deviation 5.526

Median 23.900 Variance 30.539

Mode 21.100 Range 29.800

Interquartile Range 7.250

Table 2.2: Analysis of Blood lead levels grouped by Treatment

Treatment = A (Active)

Moments

N 196 Sum Weights 196

Mean 19.139 Sum Observations 3751.300

Std Deviation 9.135 Variance 83.459

Skewness 0.635 Kurtosis 2.002

Uncorrected SS 88071.710 Corrected SS 16274.508

Coeff Variation 47.732 Std Error Mean 0.652

Basic Statistical Measures

Location Variability

Mean 19.139 Std Deviation 9.135

Median 9.135 Variance 83.459

Mode 0.635 Range 61.100

Interquartile Range 12.250

10



Table 2.3: Test for location
Test Statistic P-value

Student’s t t 63.112 Pr >= |t| < .0001

Sign M 100 Pr >= |M| < .0001

Signed Rank S 10050 Pr >= |S| < .0001

Figure 2.1: TCL data: Estimated means (solid line) and estimated individual trends (dotted

line)
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Figure 2.2: Box Plot for Blood Lead Level Measurements Across Weeks.

Figure 2.3: Box Plot for Blood Lead Level Measurements Across Weeks.
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Figure 2.4: Blood Lead Level Level Measurements Across Weeks

2.3 Summary

In analysis of repeated observations we first carry out an exploratory analysis by creating

tables and graphs to see if there is a change, and doing a simple linear regression analysis.

Graphs of the average response over time are very helpful. And we can tell if the trends be-

tween two groups are the same, if there are between-subject and within-subject effects, if the

change in the response is linear or not, and if the variance increases as the study progresses.

From the graphs one can see that there is significant within and between subject effects, the

variance is increasing, and there is a nonlinear positive change within the average response.

The graphs also showed that the mean response is not the same within the week groups.
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Chapter 3

Theory of Linear Mixed Effect Models

(LMMs)

3.1 Introduction

In this chapter we present the theory behind linear mixed models. This is done because the

model choice in our study involves repeated measures over time. Our main objective for

this study is to find the relationship between blood lead level measurements across week

and selected covariates. This chapter describes the statistical models used in the subsequent

chapters. It also describes how the parameters were estimated. According to West et al.

(2007), linear mixed model (LMM) is a parametric linear model for clustered, longitudinal,

or repeated-measures data that provides the relationships between a continuous dependent

variable and various predictor variables. The LMM includes both fixed-effect parameters as-

sociated with continuous or categorical covariates and random effects associated with ran-

dom factors. The linear combination of fixed and random effects gives the linear mixed

model. Fixed-effect parameters describe the relationships of the covariates to the dependent

variable for an entire population and random effects describe the heterogeneity between sub-

jects and clusters. Consequently, random effects are directly used in modeling the random

variation in the dependent variable at different levels of the data. According to Howell (2010)

mixed model plays an important role in statistical analysis and gives some advantages over

traditional analyzes. We consider some advantages of mixed model delineated by Howell

(2010) and Duchateu et al. (1998).

1. The mixed model does not assume the covariance structures in the model but it shows

flexible specification of the covariance structure among repeated measure and it allows
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the model to select it own set of covariance.

2. It also allows the prediction of random effects of interest by best linear unbiased pre-

diction.

3. Linear mixed model can be extended to higher level models that implies repeated ob-

servations within individuals within cluster (Littell, 2006).

4. Mixed models can also be extended as Generalized mixed models to non-Normal out-

comes.

3.2 Model Description

3.2.1 Linear Model

According to Davis (2002), we let y = (y1, . . . ,yn)
′

be an n×1 vector of independent observa-

tions. The linear model is given by

y = Xβ+ ε (3.1)

where β is a p× 1 vector of unknown parameters, X is an n× p model matrix and ε =

(ε1, . . . ,εn)
′

is an n× 1 vector of independent errors. The components of an error (ε) are

assumed to be normally distributed with mean 0 and constant variance σ2. This model can

be extended to linear mixed model by including random effects which will be shown in the

next section.

3.2.2 Linear Mixed Model

Linear mixed model procedures extend the general linear model so that the data is allowed

to display correlation and non constant variability. Linear mixed effects models contain both

fixed and random effects. They allow the analysis of between-subject and within-subject

sources of variation in the longitudinal or clustered data (Fitzmaurice et al., 2004). The LMM

for longitudinal data that was introduced by Harville (1977, 1976) and Laird and Ware (1982)

can be written as

yi = Xiβ+Ziui + εi (3.2)

with i = 1 . . .N individuals. The notation Yi is an N×1 response vector for the ith individual,

such that Yi j denotes the jth( j = 1,2, . . . ,n) observation made at time ti j for the individual, Xi is

the model matrix for the fixed effects for observations in individual i, Zi is the model matrix

for the random effects for observations in individual i, Ui is the random effect coefficient
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vector for individual i, β is the fixed effect coefficient, N is the number of subjects and εi is

the error for observations in individual i (Laird and Ware, 1982). The random components

of the model are vectors u and ε are assumed to be normally distributed with mean 0 and

variance G and Ri respectively. The precise distributional assumptions about the random

effects and errors are: εi = (εi1, . . . ,εini)
′ ∼ N(0,Ri), where Ri is the covariance matrix of error

vector εi for observations in individual i and Ui ∼ N(0,G), where G denotes the covariance

matrix of random effects Ui. It is also assumed that U1, . . . ,Un,ε1, . . . ,εn are independent or

uncorrelated (Verbeke and Molenberghs, 2000). The elements in G and Ri are known as

variance components and can be written as:[
Ui

εi

]
∼ N

([
0

0

]
,

[
G 0

0 Ri

])
(3.3)

According to Verbeke and Molenberghs (2000), if we assume that ε1, . . . ,εn are independent

then, it follows that Ri = σ2I where I is the identity matrix. An important distinction in the

linear mixed effects model is between the conditional and marginal means Yi . The condi-

tional or subject-specific mean of Yi is given by

E(Yi|ui) = Xiβ+Ziui

and the conditional covariance of Yi given ui is

Var(Yi|ui) =Var(εi)

= Ri

(3.4)

Thus

Yi|ui ∼ N(Xiβ+Ziui,Ri)

while the marginal mean of Yi when averaged over the distribution of random effects ui is

E(Yi) = E(E(Yi|ui))

= E(Xiβ+Ziui)

= Xiβ+ZiE(ui)

= Xiβ

(3.5)

and the marginal covariance of Yi averaged over the distribution of ui is

Var(yi) =Vi = E[Var(Yi|ui)]+Var[E(Yi|ui)]

= E(Ri)+Var(Xiβ+Ziui)

= Ri +ZiGZ
′
i

= ZiGZ
′
i +Ri

(3.6)
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Thus

yi ∼ N(Xiβ,ZiGZ
′
i +Ri)

It can be shown that the observations yi and random effects ui have joint multivariate normal

distribution (
yi

ui

)
∼ N

[(
Xiβ

0

)
,

(
ZGZ

′
+Ri ZG

GZ
′

G

)]
(3.7)

From these results, it can be shown that the mean of the posterior distribution of ui given yi

yields the formula for the empirical Bayes estimates of the random effects. Now, the mean

of the posterior distribution of ui given yi is

ûi = [Z
′
i(σ

2Ini)
−1Zi +G−1]−1Z

′
i(σ

2Ini)
−1(yi−Xiβ)

= (Z
′
iZi +σ

2
Σ
−1
u )−1Z

′
i(yi−Xiβ)

(3.8)

with the variance-covariance matrix as

Σu|yi = [Z
′
i(σ

2Ini)
−1Zi +G−1]−1 (3.9)

It should be noted that intrinsically the marginal model allows negative variance compo-

nents provided Vi is positive semi-definite while in the conditional model negative compo-

nents does not make sense. The previous studies have shown that Gaussian theory estima-

tion procedures for linear mixed models which consists of the maximum likelihood (ML)

and the restricted maximum likelihood (REML) are some of the methods that can be used to

deal with such challenges.

3.3 Estimation Methods

In this section we address the estimation problem for fixed effects, random effects and vari-

ance components in linear mixed models. According to Jiang (2007) the most often used

methods of estimation in Gaussian mixed models are maximum likelihood (ML) and re-

stricted maximum likelihood (REML). In our case we discuss these two estimation methods

including inference on population parameters.

3.3.1 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation was introduced by Fisher (1925). The aim of this method

is to construct an estimator for an unknown parameters by maximizing the likelihood. This
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approach arises when we consider the estimation of β and α simultaneously by maximizing

the joint likelihood distributed given by

LML(θ,y) =−
1
2

{
log |V |+(y−X β̂)−1V−1(y−X β̂)

}
(3.10)

the MLE σ2 is equal

σ̂
2
ML =

N

∑
i=1

(yi−Xiβ̂)
′
(yi−Xiβ̂)

N
(3.11)

and it can be shown that σ̂2
ML is a biased downward for σ2 because

E(σ̂2
ML−σ

2) =−σ2

N
, where N,σ2 > 0

Thus σ̂2
ML is an underestimate of σ2.

3.3.2 Estimation of Fixed Effects Parameters

Let β denote the vector of fixed effects coefficients and α denote the vector of all variance

components in G and Ri. It then follows that the variance covariance matrix Vi of Yi is α de-

pendent. Thus we can let θ = (β
′
,α
′
) denote the vector of all parameters in the marginal

model. According to Verbeke and Molenberghs (2000) the estimates for αML and βML can be

obtained from maximizing LML(θ) with respect to θ that is with respect to α and β respec-

tively. The marginal likelihood function is written as:

LML(θ) =
n

∏
i=1

{
(2Π)−

ni
2 |Vi(α)|−

1
2 exp

(
−1

2
(y−Xiβ)

′
V−1

i (α)(y−Xiβ)

)}
(3.12)

given the above assumptions hold. Where Vi(α) is the matrix of variance components and if

α is known, the MLE of β is given by

β̂(α) =
(
∑X

′
iWiXi

)−1(
∑X

′
iWiyi

)
(3.13)

where Wi =V−1
i (α). According to Fitzmaurice et al. (2004), the estimator of β that minimizes

this expression is known as generalized least squares (GLS) estimator of β denoted by β̂. It

can be shown that

E(β̂) = β

provided E(yi) is correctly modeled and

Var(β̂) =
(
∑X

′
iWiXi

)−1(
∑X

′
iWivar(yi)∑WiXi

)(
∑X

′
iWiXi

)−1

=
(
∑X

′
iWiXi

)−1 (3.14)

18



provided Var(yi) is truly given by Vi. When α is not known but if an estimate α̂ is available we

can set V̂i = Ŵ−1 and estimate β by using the expression with Wi replaced with by Ŵi (Verbeke

and Molenberghs, 2000).

3.3.3 Estimation of Variance Components under MLE

Fisher (1925) introduced the general method for estimating variance components, or parti-

tioning random variation into components from different sources, for balanced data. Hartley

and Rao (1967) showed that the estimates of variance components could be obtained by us-

ing maximum likelihood methods, (Searle et al., 1992) using the equations resulting from the

matrix representation of a mixed model. However, the estimates of the variance components

were biased downward as previous stated because this method assumes that fixed effects

are known and not estimated from data (West et al., 2007). Consider a mixed linear model

for one trait, represented by (3.2). The Least Squared equations are[
X ′X X ′Z

Z′X Z′Z

][
b̂

û

]
=

[
X ′y

Z′Y

]
(3.15)

Absorbing the fixed effects reduces the equations to

Z′MZû = Z′My

with

M = I−X ′(X
′
X)−1X ′

when the inverse of (X ′X) does not exist, a generalized inverse can be used in its place

(Meyer, 1989). By (Henderson, 1953) method 3 of ”fitting constants”, the estimates of vari-

ance components are then:

σ̂
2
e =

(y′y− û′Z′y− b̂′X ′y)
N− r(X)− r(Z)+1

σ̂
2
u =

(uZMy− (r(Z)− i)σ̂2
e)

tr(Z′MZ)

with r(X) and r(Z) denoting the column rank of X and Z, respectively, N the number of ob-

servations, and tr the trace operator. In this method any covariances between levels of u are

ignored. An extension of method 3 to account for relationships between u has been consid-

ered by Sorensen and Kennedy (1984).
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According to Searle et al. (1992), For estimating the variance covariance components that

make up the element of V . When u and ε are taken as having zero covariance that are from

V = ZG
′
Z +R and with V non singular , VV−1 = I and supposing that V is a square matrix

having elements that are not functionally related.

∂V−1

∂θ
=−V−1

(
∂V
∂θ

)
V−1 (3.16)

and
∂

∂θ
log |V |= tr

(
V−1 ∂V

∂θ

)
(3.17)

where elements of V are considered as function of θ. Using this result, we arrange the vari-

ance covariance components that occur in V as a vector θv
h=1 where v is the total number of

different components. Then to find the variance components estimates, we maximize the

equation given by

`θh =
∂`

∂θh
− 1

2
tr
(

V−1 ∂v
∂θ

)
+

1
2
(Y −Xβ)

′
V−1(Y −Xβ) (3.18)

and by equating to zero

tr
[
V̂−1

(
∂v

∂θh|θ=θ̂

)]
= (Y −X β̂)

′
V̂−1

(
∂v

∂θh|θ=θ̂

)
(Y −X β̂) (3.19)

where
(

∂v
∂θh|θ=θ̂

)
is
(

∂v
∂θh

)
written with θ̂ in place of θ with X β̂ = X(X

′
V̂−1X)−X

′
V−1 and we

define P as

P =V−1−V−1X(X
′
V̂−1X)−X

′
V−1

that is

V̂−1(Y −X β̂) = P̂y

and we get the ML estimation equation as

tr
[
V̂−1

(
∂v

∂θh|θ=θ̂

)]
= y

′
P̂
(

∂v
∂θh|θ=θ̂

)
P̂y (3.20)

To find the estimates of variance components, we consider the derivatives of ML equation

in terms of G and R. We distinguish θg and θr as elements of θ occurs in Var(u) = G and

Var(ε) = R, respectively. Then

∂V
∂θg

= Z
(

∂G
∂θg

)
Z
′

(3.21)

and
∂V
∂θr

=
∂G
∂θr

(3.22)
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Hence the ML equations become

tr
[
V̂−1

(
∂G

∂θh|θ=θ̂

)]
= y

′
P̂
(

∂G
∂θh|θ=θ̂

)
P̂y (3.23)

for each parameter θg of G, and

tr
[
V̂−1 ∂R

∂θh|θ=θ̂

]
= y

′
P̂
(

∂R
∂θh|θ=θ̂

)
P̂y (3.24)

for each parameter θr of R.

An alternative form of the maximum likelihood method known as REML estimation is fre-

quently used to eliminate the bias in the ML estimates of the covariance parameters. We

discuss REML estimation in next subsection.

3.3.4 Background on Restricted Maximum Likelihood (REML) Estimation

According to Searle et al. (1992), REML was first developed by Anderson and Bancroft (1952)

and thereafter Russell and Bradley (1958) extend some ideas for balanced data. Patterson and

Thompson (1971, 1974) were the first to introduce restricted maximum likelihood (REML)

estimation as a method of estimating variance components without assuming that fixed ef-

fects are known in a general linear model with unbalanced data. It was developed because

maximum likelihood estimation of the variance components does not account for the loss of

degrees of freedom used in estimating the fixed parameters. The REML method includes an

adjustment for degree of freedom used in estimating effects from the general linear mixed

model. Verbyla and Cullis (1990) applied REML in a longitudinal data analysis by modeling

variance components in the model.

Restricted Maximum Likelihood (REML) Estimation

Applying maximum likelihood to the linearly transformed response data vector is known as

restricted maximum likelihood (REML). The transformation is done in such a way that the

fixed effects is not contained in the vector of linearly transformed data. It was developed to

avoid the biased variance components estimates that are produced by ML estimation. REML

estimation applies maximum likelihood estimation technique to the likelihood function as-

sociated with a set of error contrasts rather than to that associated with original observations.

This accounts for the loss of degrees of freedom resulting from estimation of the fixed effects

and gives less biased estimates of the variance components. An error contrast is a linear
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combination a
′
y of the elements of y such that E(a

′
y) = 0 for any β i.e if a

′
x = 0

′
p. If we let

S = In−Px (3.25)

where

Px = X(X
′
X)−1X

′

is the orthogonal projection matrix onto the column space of X . The expected value of Sy is

E(Sy) = (In−Px)Xβ

= Xβ−Xβ

= 0n

(3.26)

Each element of Sy is an error contrast. S is n× n and its rank is n× p. The set of error con-

trasts contains at most n− p linearly independent error contrasts, where the error contrasts

a
′
1y · · ·a′ky are linearly independent if the vector of a1 · · ·ak are linearly independent. Let A

be an n× (n− p) matrix such that A
′
A = In−p and AA

′
= n−Px. We can show that w = A

′
y is

a vector of n-p linearly independent error contrast. The REML approach applies maximum

likelihood estimation techniques to w = A
′
y rather than to y. Under assumed model

y∼ N(Xβ,ZDZ
′
+R) (3.27)

Then

w∼ N(0n−p,AVA
′
) (3.28)

The log-likelihood function LREML(θ,y) associated with any vector of n-p linearly indepen-

dent error contrasts is

LREML(θ,y) =−
1
2

{
log |V |+ log |X ′V−1X |+(y−X β̂)−1V−1(y−X β̂)

}
(3.29)

where

β̂ = (X
′
V−1X)−1X

′
V−1y

In comparison the log-likelihood function for y is

LML(θ,y) =−
1
2

{
log |V |+(y−X β̂)−1V−1(y−X β̂)

}
(3.30)

The only difference is that LREML(θ,y) has the additional term

−1
2

log |X ′V−1X |
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The estimator θ̂ is an REML estimator of θ if LREML(θ,y) attains its maximum value at θ = θ̂

ˆ
σ2

REML =
(y−X β̂)−1(y−X β̂)

n− p

In general, the problem of obtaining an REML estimate of θ requires iterative methods of

maximizing the nonlinear function LREML(θ,y) subject to the constraint θεΩ, where Ω is the

set of θ values for which var(y) is positive-definite. An algorithm such as a Newton-Raphson

and the method of Fisher scoring can be used.

3.3.5 Estimation of Fixed Effects Parameters under REML Estimation

The approach to inference is based on estimators obtained from maximizing the marginal

likelihood function

L(θ) =
n

∏
i=1

{
(2Π)−

ni
2 |Vi|−

1
2 × exp(−1

2
(y−Xiβ)

′
V−1

i (y−Xiβ))

}
(3.31)

with respect to θ, where θ = (β;α). When REML estimation is used, we obtained the gener-

alized least squares estimation of β which is given by

β̂ =

[
n

∑
i=1

X
′
i V̂iXi

]−1 n

∑
i=1

(
X
′
i V̂iyi

)
(3.32)

where V̂i is the REML estimates of Vi

3.3.6 Estimation of Variance Components under REML Estimation

Meyer (1989) states available methods used to get REML estimates, which can be divided in

the following groups:

1. Methods using first derivatives of the likelihood function.

2. Methods using first and second derivatives of the likelihood function.

3. Derivative free methods.

For models with more random factors it is more difficult to find the maximum and it is also

more difficult to construct derivatives. In categories 1 and 2, the derivatives can be calculated

exact but in most methods approximations are used.

REML using derivatives

Methods use both first and second derivatives. The REML applications were based on the so-

called Expectation-Maximization (EM) algorithm. This requires, implicitly, first derivatives
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of the likelihood to be evaluated. The resulting estimators then have the form of quadratics in

the vector of random effects solutions, obtained by BLUP for the assumed values of variances

to be estimated, which are equated to their expectations. For the mixed model equations:[
X ′X X ′Z

Z′X Z′Z + α̂A−1

][
b̂

â

]
=

[
X ′y

Z′Y

]
(3.33)

Note that α̂ is a function of the variance parameters that need to be estimated. Therefore,

initially a prior (starting) value of α is used. The REML estimates of variance components

using the EM algorithm can be obtained as:

σ̂
2
e =

(y′y− b̂′X ′y− û′Z′y)
N− r(X)

σ̂
2
u =

û′A−1u+ tr(A−1C)σ̂2
e)

q

where N is the number of observations, q is the number of random genetic effect levels and

C the part of the inverse of the mixed model equations that corresponds with the random

effects and a denote the vector of addictive effects.

REML using the Average Information algorithm

First we discuss more formally first and second derivatives of the likelihood function. Then,

the mechanism of an AI algorithm will be presented. The partial derivatives of ln |V | in

equation 3.12 with respect to the variance of random effects, σ2
i (e.g. i = a and e) can be

obtained from matrix theory (Searle, 1982). In estimating the variance from REML we make a

transformation from ML to REML by making some replacements (Searle et al., 1992), namely:

y by K
′
y, Z by K

′
Z, X by K

′
X = 0, and V by K

′
VK and P is replaced by (K

′
V K)−1 and P̂ =

K(K
′
V K)−1K

′

With all the above replacements in the ML equation the REML equation becomes

tr
[

Z
′
K(K

′
V̂ K)−1K

′
Z
(

∂G
∂θh|θ=θ̂

)]
= y

′
K(K

′
V̂ K)−1K

′
Z
(

∂G
∂θh|θ=θ̂

)
Z
′
K(K

′
V̂ K)−1K

′
y (3.34)

and

tr
[
(K

′
V̂ K)−1K

′
(

∂R
∂θh|θ=θ̂

)
K
]
= y

′
K(K

′
V̂ K)−1K

′
(

∂R
∂θh|θ=θ̂

)
K(K

′
V K)−1K

′
y (3.35)

which is reduced for each parameter θg in G to
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tr
[

Z
′
P̂Z

∂G
∂θh|θ=θ̂

]
= y

′
P̂Z
(

∂G
∂θh|θ=θ̂

)
ZP̂y (3.36)

for each parameter θr in R to

tr
[

P̂
∂R

∂θh|θ=θ̂

]
= y

′
P̂
(

∂R
∂θh|θ=θ̂

)
P̂y (3.37)

We note that in both ML and REML equations, there right hand side are the same.

3.3.7 Estimation (or Prediction) of Random Effects Parameters

Statistical models that include random effects are commonly used to analyze longitudinal

and clustered data. These models are often used to derive predicted values of the random

effects. In the prediction of random effects we look at the conditional expectations of the ran-

dom effects given the observed response values, yi, in Yi. According to Verbeke and Molen-

berghs (2000) and Fitzmaurice et al. (2004), let û be the predictor for u. The best predictor for

u is the conditional mean of ui given the vector of response yi and it is given by

ũ = E(ui|yi)

We consider the model shown below for each individual i :

yi = Xiβ+Ziui + εi (3.38)

If the Cov(ui,yi) = GZ
′

where yi is the response vector and ui vector of the individual specific

parameters, then we have the joint multivariate normal distribution

(
yi

ui

)
∼ N

[(
Xiβ

0

)
,

(
ZGZ

′
+σ2Ini ZG

GZ
′

G

)]
(3.39)

Thus, the best predictor of ui is the conditional mean of ui given the vector of response yi

Ûi = E(ui|yi) = E(ui)+GZ
′
V−1(yi−Xiβ)

= GZ
′
V−1(yi−Xiβ)

(3.40)

since E(ui) = 0

If β is unknown, we use it estimate (β̂) and find that

E(ui|yi) = GZ
′
V−1(yi−Xiβ̂)

= GZ
′
(V−1−V−1X(

′
V−1X)−1X

′
V−1)y

= GZ
′
Py

(3.41)
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and the variance of ũ is given by

Var(ũ) = GZ
′
PZG

where

P =V−1−V−1X(
′
V−1X)−1X

′
V−1

Then the distribution of ũ

ũ∼ N(0,GZ
′
PZG)

This is known as the best linear unbiased predictor (BLUP). This predictor of ui depends

upon the unknown covariance among the yi. When the unknown covariance parameters are

replaced by their REML or ML estimates, the resulting

E(ui|yi) = ĜZ
′
V̂−1(yi−Xiβ̂)

is referred to as the empirical BLUP. Given the empirical BLUP û, we can obtain the ıth sub-

jects predicted response profile as follows

ŷi = Xiβ̂+Ziûi

3.4 Inference for the Fixed Parameters

As previously stated, the vector β of fixed effects that was introduced by Laird and Ware

(1982) is estimated by

β̂ =
(
∑X

′
iWiXi

)−1
∑X

′
iWiyi

In which the unknown vector α of variance components is replaced by its ML or REML esti-

mates. Under the marginal model above and conditional on α and β̂ follows a multivariate

normal distribution with mean vector β and with variance-covariance matrix

Var(β̂) =
(
∑X

′
iWiXi

)−1(
∑X

′
iWivar(yi)∑WiXi

)(
∑X

′
iWiXi

)−1

=
(
∑X

′
iWiXi

)−1 (3.42)

where Wi equals to V−1
i and assuming that Var(yi) =Vi.
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3.4.1 Approximate Wald Test

According to Verbeke and Molenberghs (2000), this follows from likelihood theory under

some conditions of the distribution of the ML and REML estimator α̂ can be approximated

by a normal distribution with mean vector α and with covariance matrix which is given by

the inverse of the fisher information matrix. Hence, the approximate standard errors for the

estimates of variance components in α can be calculated from inverting minus the matrix of

second-order partial derivatives of the log-likelihood function of ML or REML with respect

to α. Using the asymptotic normality of the parameter estimates, approximate Wald tests

and approximate Wald confidence intervals can be obtained for fixed effects

Now we consider important hypotheses about β of Equation 3.32. For each parameters β j

in β, j = 1; · · · ; p, we can test the hypothesis H0 : β j = 0 against Ha : β j 6= 0 using an approx-

imate Wald statistics test as well as an associated confidence interval, by approximating the

distribution of

Z =
β̂ j−β j

s.e(β̂ j)
(3.43)

by a standard multivariate normal distribution (Verbeke and Molenberghs, 2000). Suppose

that L is a single row vector then LCov(β̂)L
′
is a single value and its square roots provides an

estimates of the standard error for Lβ̂. Thus an approximate 95% confidence interval is given

by

Lβ̂±1.96
√

Lcov(β̂)L′ (3.44)

To test our estimates using Wald test, we consider the assumption that β̂ is asymptomatically

normal with mean β and covariance matrix, for any known matrix L, then for the hypothesis

H0 : Lβ = 0 vs HA : Lβ 6= 0

Then Wald statistic is given by

Z =
Lβ̂√

LCov(β̂)L′
(3.45)

and compare with standard normal distribution. If Z is a standard normal random variable,

then Z2 has a χ2 distribution with 1 df. Thus, the test statistic is

W = (Lβ̂)(LCov(β̂)L
′
)(Lβ̂)

27



and is compared to χ2 with 1 df. Now suppose that L has r rows, then the test is given by

W = (Lβ̂)(LCov(β̂)L
′
)(Lβ̂) (3.46)

which has a χ2 distribution with r df (Verbeke and Molenberghs, 2000).

3.5 Inference for the Random Effects

In this section the problem of making the inference on the random effects ui is discussed.

In particular the idea of empirical Bayes and best linear unbiased predictors (BLUP) will be

given attention (Verbeke and Molenberghs, 2000; Davis 2002; and Fitzmaurice et al., 2004).

The concept of shrinkage estimators will be derived and the normality assumption for ran-

dom effects discussed.

3.5.1 Empirical Bayes (EB) Inference

Consider the linear mixed model

yi = Xiβ+Ziui + εi (3.47)

where ui ∼ N(0,G), ε ∼ N(0,Ri) and the ui and εi are independent. The random effects ui

reflects how the evolution for the ith subject deviates from the expected evolution Xiβ. Esti-

mation of the random effects ui is helpful for detecting the outlying profile from the expected

profile. Under hierarchical model assumptions, inference of random effects is important. The

Hierarchized model can be specified as

Yi|ui ∼ N(Xiβ+Ziui,Ri)

and ui ∼ N(0,G) implying that

E(Yi|ui) = Xiβ+Ziui

Since ui is a random parameters, then we consider Bayesian approaches where the prior

distribution of random parameter is ui ∼ N(0,G). Thus using the Bayes rule we can express

the posterior distribution of the ui given Yi = yi as

f (ui|yi) =
f (yi|ui) f (ui)∫

f (yi|ui) f (ui)dui
(3.48)

since we know the distribution of ui and the conditional distribution yi j|ui, we can show the

posterior distribution of ui is given by
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ui|yi j ∼ N(GZ
′
iWi(yi−Xiβ),ξi)

for some matrix ξi after some algebraic manipulation. Thus we can use the posterior mean

of ui as an estimate of ui that is

ûi = E(ui|yi)

=
∫

f (ui|yi)dui

= GZ
′
iWi(α)(yi−Xiβ̂)

(3.49)

and the variance is given by

Var(ûi) = GZ
′
iWi−WiXi

(
∑X

′
iWiXi

)−1
X
′
iWiZiG (3.50)

however inference on ui should take into account the variability in ui, the inference for ui is

usually based on

Var(ûi−ui) = G−Var(ûi)

= G−GZ
′
PZG

(3.51)

Thus for inference purposes once the correlated variance in the equation above is found,

Wald test can be constructed to test hypothesis about ûi(θ). Parameters in θ are replaced

by their ML and REML estimates, obtained after fitting the marginal model. The estimates

ûi = ûi(θ) is called the empirical Bayes estimates of ui. Approximate t and F tests can be con-

structed in similar ways to test for fixed effects to take account for the variability introduced

by replacing θ by θ̂.

3.5.2 Best Linear Unbiased Prediction (BLUP) of Random Effect

The resulting predictor is a best linear unbiased predictor and if β is unknown we use β̂ to

get

E(ui|yi) = GZ
′
V−1(yi−Xiβ̂)

= GZ
′
(V−1−V−1X(

′
V−1X)−1X

′
V−1)y = GZ

′
Py

(3.52)

and the variance of ũ is given by

Var(ũ) = GZ
′
PZG
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where

P =V−1−V−1X(
′
V−1X)−1X

′
V−1

The BLUPs are unbiased in a sense of population

E(ûi) = E(ui) = 0

but conditionally biased towards zero

E(ûi|u) = GZ
′
PZu

The variance of the predictor is

var(ûi) = GZ
′
PZG

but the variation is usually considered in terms of the prediction error variance

var(ûi−ui) = G−GZ
′
PZG

which measures variation in terms of distance from the unobserved true value.

Note that the ıth subjects predicted response profile is as follows

ŷi = Xiβ̂+Ziûi

= Xiβ̂+ZiGZ
′
V−1

i (yi−Xiβ̂)

= R̂iΣ̂
−1
i Xiβ̂+(Ini− R̂iΣ̂

−1
i )yi

(3.53)

That is, the ith subject’s predicted response profile is a weighted combination of the population-

averaged mean response profile, Xiβ̂ , and the ith subject’s observed response profile Yi. Ac-

cording to Fitzmaurice et al. (2004), the subject’s predicted response profile is shrunk to-

wards the population-averaged mean response profile. The amount of shrinkage depends

on the relative magnitude of Ri and Σi. We note that Ri characterizes the within-subject vari-

ability, while Σi incorporates both within subject and between-subject sources of variabil-

ity. Thus, when Ri is large, and the within-subject variability is greater than the between-

subject variability, more weight is given to Xiβ̂, the population-averaged mean response pro-

file. When the between-subject variability is greater than the within-subject variability, more

weight is given to the ith subject’s observed data Yi.

30



3.6 Inference for the Variance Components

The mean structure is usually of primary interest in the inference, however inference for the

covariance structure could be of the interest for some good reasons. Covariance modeling is

useful for interpretation of the random variation in the data and it is absolutely necessary to

obtain valid model-based inference for parameters in the mean structure of the model. A test

for variance component helps in proving or establishing whether we do need the inclusion

of random effects or not. It also important to note that in an over-parameterized model the

covariance structure leads to inefficient inference and a potentially poor assessment of stan-

dard errors for estimates of the mean response profile, whereas a too restrictive specification

invalidates inference about the mean structure when the assumed covariance structure does

not hold (Verbeke and Molenberghs, 2000).

3.6.1 Approximate Wald Test

Using the asymptotic normality of the parameter estimates, approximate Wald tests and ap-

proximate Wald confidence intervals can be obtained similarly as for fixed effects in Section

3.4.1.

3.6.2 The Likelihood Ratio Test (LR)

In this case we are interested in comparing two nested models which are the full model and

the reduced model. The reduced model is a special case of full model and the reduced model

is simpler than the full model. The reduced model is nested within the full model. The LR

test can be derived by comparing their maximized log-likelihood, say ˆ̀f ull and ˆ̀reduced , where

the LR test statistic is given by

LR =−2`nλn = 2( ˆ̀f ull− ˆ̀reduced) (3.54)

and comparing the statistical test to a χ2 distribution with degree of freedom equal to the

difference between the number of parameter in the full and reduced models. The larger the

difference between the ˆ̀f ull and ˆ̀reduced the stronger the evidence that the reduced model is

not sufficient. We note that the valid LR test can still be obtained under REML since the error

contrasts U are the same in both cases, namely H0 and Ha as long as the comparison is under

the same mean structure.
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3.7 Random Coefficient Models

A random coefficients model is a special case of the linear mixed model for longitudinal data

(Brown and Prescott, 2006) and will be discussed below. The random effects are the covari-

ates effect that vary among subjects. These effects are subject-specific and hence are random

since each subject is randomly drawn from the population (Hedeker and Gibbons, 2006). In

the analysis of random coefficients, there are three question of interest in assessing a model.

First, is it a good model? Second, is a more complex model better? Finally, what contribu-

tion does individual predictors make to the model?, In order to assess models, the different

model fit statistics would be examined. As an example of random coefficients models, we

consider the longitudinal data used by Diggle et al. (2002) consisting of weight measure-

ments of 48 pigs on 9 successive weeks. Pigs were identified by the variable id. The overall

weight measurements vary from pig to pig. We treat them as random samples from a larger

population and model the between-pig variability as a random effect.

3.7.1 Random Intercept Model

We follow the description of Laird and Ware (1982), Longford (1995) and Verbeke and Molen-

berghs (2000). The random intercepts model is a model in which intercepts are allowed to

vary; the scores on the dependent variable for each individual observation are predicted by

the intercept that varies across groups. This model assumes that the slopes are fixed. The

model provides information about intraclass correlation coefficient which is helpful in de-

termining whether multilevel models are required in the first place (West et al., (2007)). The

random intercept model is given by:

Yi j = β0 +β1ti j +ui + εi j (3.55)

where i = 1,2, . . . ,N, ui ∼ N(0,σ2
u) is the random subject effect, εi j ∼ N(0,σ2

ε) are within sub-

ject measurement errors. ui and εi j are assumed to be independent of each other. Where

β represents the mean changes over time in the population of interest, ui represents the ith

individual deviation from the population mean intercept after the effects of covariates have

been accounted for. From the equation above we can get the mean response over time for

the ith individual. The conditional mean of Yi j given the subject specific effect ui is is given by

E(Yi j|ui) = XT
i j β+ui and the marginal mean is given by E(Yi j) = XT

i j β. The marginal response
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variance for each response is given by

Var(Yi j) =Var(XT
i j β+ui + εi j)

=Var(ui + εi j)

= σ
2
u +σ

2
ε

(3.56)

and the marginal covariance between any two pair of responses (Yi j and Yik) is given by:

Cov(Yi j,Yik) =Cov(XT
i j β+ui + εi j,XT

ik β+ui + εik)

=Cov(ui + εi j,ui + εik)

=Cov(ui,ui) = σ
2
u

(3.57)

Therefore

Corr(Yi j,Yik) =
Cov(Yi j,Yik)√

Var(Yi j)Var(Yik)

=
σ2

u

σ2
u +σ2

ε

= ρ

(3.58)

Since the random intercept model implies a compound symmetry assumption for the vari-

ance and covariance of the longitudinal data we assume that the variance is constant over

time, say σ2 and Corr(yi j;yik) = ρ for all j and k, then the compound structure is given by

Corr(yi j,yik) = σ
2


1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


with the constraint that ρ ≥ 0. An example of random intercept model is taken from an

example in section 3.7 above, we specified random intercept term at the pig level. We thus

wish to fit the model

Weighti j = β0 +β1weeki j +u j + εi j (3.59)

For all i = 1 · · ·9 and j = 1 · · ·48 pigs. The fixed part of the model, β0 +β1weeki j, simply states

that we want one overall regression line representing the population average. The random

effect u j occurs at the pig level (id).
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3.7.2 Random Slopes Model

A random slopes model is a model in which slopes are allowed to vary and furthermore the

slopes are different across groups. This model assumes that intercepts are fixed. The model

is given by:

Yi j = β0 +β1ti j +u1iti j + εi j (3.60)

where j =, · · · ,n. Since we assume normality in model, the Var(u1i) = σ2
1 and Cov(u0i,u1i) = 0

since there is no intercepts. We extend the above example to allow for a random slope on

week yields the model

Weighti j = β0 +β1weeki j +u1 jweeki j + εi j (3.61)

3.7.3 Random Intercepts and Slopes Model

A model that includes both random intercepts and slopes is likely the most realistic type

of model, although it is also more complex. In this model, both intercepts and slopes are

allowed to vary across groups, and meanings are different in different contexts. Consider

the model:

Yi j = β0 +β1ti j +u0i +u1iti j + εi j (3.62)

or

Yi j = X
′
i jβ+Z

′
i jui + εi j (3.63)

where j = 1, · · · ,n, X
′
i j = (1 ti j), Z

′
i j = (1 ti j), u0i ∼ N(0,b11) and u1i ∼ N(0,b22) are random in-

tercept and the random slope respectively. Cov(u1i,u2i) = b12 are within subject measurement

errors. Note that ui = (u1i,u2i)
′

and β = (β1,β2)
′
. Since we assume the normality in model

then ui ∼ MV N(0,Σi), we then consider the covariance among the components of Yi in this

linear mixed effects model with randomly varying intercepts and slope. Let a Var(u0i) = σ2
0,

Var(u1i) = σ2
1 and Cov(u0i,u1i) = σ01. The random effects uio and ui1 are assumed to have

bivariate normal distribution [
ui0

ui1

]
∼ N

([
0

0

]
,

[
σ2

00 σ01

σ01 σ2
11

])
(3.64)

Then from the model (3.60) above, β0 + uio is the intercept for subject i which implies uoi

means the deviation of the intercept of the subject i from population intercept βo and also

β1 + ui1 is the slope for the subject i therefore ui1 is the deviation of the slope of the subject

i from the population slope β1. According to Fitzmaurice et al. (2004), the unique elements
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of the (2×2) covariance matrix G =Cov(ui) we in addition assume that Ri =Cov(εi) = σ2Ini.

The conditional mean of Yi j given the subject specific effect ui is given by:

E(Y|ui) = β1 +β2ti j +u0i +u1iti j

and the marginal mean and the variance of Yi j is therefore given by:

E(Yi j) = β1 +β2ti j

and

Var(yi j) =Var(u0i)+2ti jCov(u0i,u1i)+ t2
i jVar(u1i)+Var(εi j)

= σ
2
1 +2σ01ti j +σ

2
1t2

i j +σ
2

(3.65)

respectively. Thus the variance under this model will vary over time and it is not constant

over time and σ2 is a variance within subject. The covariance can be shown that:

Cov(Yi j,Yik) = E(Yi jYik)−E(Yi j)E(Yik)

= σ
2
0 + ti jσ10 + tikσ01 + ti jtikσ

2
1

= σ
2
0 +(ti j + tik)σ01 + ti jtikσ

2
1

(3.66)

Thus:

Corr(Yi j,Yik) =
σ2

0 +(ti j + tik)σ01 + ti jtikσ2
1√

Var(Yi j)Var(Yik)
(3.67)

and the correlation is not constant over time. The example of random intercept and slope

model from example in 3.7, by extending the example to allow for a random intercept and

slope on week yields the model

Weighti j = β0 +β1weeki j +u0 j +u1 jweeki j + εi j (3.68)

3.8 Types of Correlation/Covariance Structures

In the statistical analysis models for multivariate model for repeated measures is that the

assessments for each individual are assumed to be correlated over time. The main difference

between a univariate regression for independent observations and a multivariate model for

repeated measures is that the results for each individual are bound to be correlated over time.

Then we present some number of covariance structures that can be assumed to account for
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such correlation. A summary of some covariance structures that can be used are listed in the

Table below.

Table 3.1: Summary of covariance structures

Structure Description No. of parameters {i, j}th elements

VC Variance components q σi j = σ2
k

AR(1) First order autoregressive 2 σi j = σ2ρi− j

CS Compound symmetry 2 σi j = σ2
1 +σ2I

Toep Toeplitz m σi j = σ|i− j|+1

UN Unstructured m(m+1)/2 σi j = σi j

SP(POW) Power spatial 2 σ2ρdi j

SP(EXP) Exponential spatial 2 σ2 exp(−di j
ρ
)

SP(GAU) Gaussian spatial 2 σ2 exp(−d2
i j

ρ2 )

Independence Structure

It assumes repeated measures are uncorrelated and the corresponding covariance structure

for four observations per subject is given by:

σ
2


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


Autoregressive Order One (AR(1))

The problem of unequal correlation can be solved by using several approaches such as the

AR(1) covariance structure. The correlation between m time units apart is ρm, 0 < ρ < 1. The

greater the power or distance (m), the smaller the magnitude of the covariance will be. Thus

the further the measurements are apart, the lower their correlation. This covariance structure

depends on two parameters q = 2 and the covariance for two points i.e. j and j
′
equals

σ j j′ = σ
2
ρ
| j− j

′ |

where ρ is the AR(1) parameter and σ2 is the error variance thus the covariance structure is

given by:

σ
2


1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
...

. . .
...

ρn−1 ρn−2 · · · 1


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Compound Symmetry

This structure assumes the covariances are homogeneous. The correlation between two sep-

arate measurements is assumed to be constant no matter how far apart the measurements

are. This is unrealistic in longitudinal data problem in the sense that observations closer to

each other are more correlated than the ones which are further apart. It is expressed as:

σ
2


1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


Unstructured

This is the most flexible since it assumes all the variance and covariances are different. This

lets the data dictate what they should be and requires the estimate of many parameters, but

the more data that are used to assess the covariance structure the less data are left to estimate

the parameters of linear models. The analysis that uses an UN matrix will be less powerful

than analysis that uses the proper structures. It is expressed as:
σ2

11 σ12 · · · σ1n

σ21 σ2
22 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
nn


Toeplitz

The Toeplitz structure is similar to AR(1) in that all measurements at same distance have

the same correlation. But there is no assumption of exponential decay. The AR(1) is a special

case of the Toeplitz and AR(1) can be estimated with single parameter and then exponentiate

with the distance. The Toeplitz model has as many parameters due to distance. Toeplitz and

AR(1) are reasonable choices for equally spaced observations. The covariance matrix is given

by:

σ
2


1 ρ1 · · · ρn−1

ρ1 1 · · · ρn−2
...

...
. . .

...

ρn−1 ρn−2 · · · 1


The Exponential Spatial Covariance Structure
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This covariance structure is expressed as:

σ
2


1 exp(−d12

ρ
) · · · exp(−d1n

ρ
)

exp(−d21
ρ
) 1 · · · exp(−d2n

ρ
)

...
...

. . .
...

exp(−dn1
ρ
) exp(−dn2

ρ
) · · · 1


The Power Spatial Covariance Structure

For this case, correlations decline with increasing spacing between points. It is expressed as:

σ
2


1 ρdi12 · · · ρ

di1(n−1)

ρdi21 1 · · · ρ
di2(n−2)

...
...

. . .
...

ρ
di(n−1)1 ρ

di(n−2)2 · · · 1


The Gaussian Spatial Covariance Structure

For Gaussian spatial covariance structure correlation declines with increasing distance be-

tween points. It is expressed as:

σ
2


1 exp(−d2

12
ρ2 ) · · · exp(−d2

1n
ρ2 )

exp(−d2
21

ρ2 ) 1 · · · exp(−d2
2n

ρ2 )
...

...
. . .

...

exp(−d2
n1

ρ2 ) exp(−d2
n2

ρ2 ) · · · 1


In all spatial covariance structure di jk is the distance between Jth and kth observations within

subject i and 0 < ρ < 1. The major advantage of the spatial type structures over the AR

structure which assumes equal spaced observation is that they make use of actual distance

between observations which allows the modeller to be in a position to deal with unequally

spaced observations within and between observations. Toeplitz and the autoregressive or-

der allow observations that are far apart to be less strongly correlated and the correlation

between two observations is a function of the separation between the observations (Verbeke

and Molenberghs, 2009).

3.8.1 Model Selection

The following criteria can be used to compare the goodness-of-fit of two models. The AIC is

useful for non-nested models. If two models are nested then LR is used. The Akaike’s infor-

mation criteria (AIC) was introduced by Akaike (1974) and Schwarz criteria (SC) (also known

as Bayesian information criteria (BIC) was introduced by Schwarz et al. (1978). According to
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Vittinghoff et al. (2005) these methods are used to adjust the likelihood ratio statistic −2logL

which measures the deviation of the maximal possible model. The adjustment is necessary

because the −2logL will always decrease as a new explanatory variable enters the model

even if it is insignificant (Moeti, 2010). The AIC is given by

AIC =−2logL+2p

where p is the number of parameters in the model. Another criteria which adjusts the−2logL

statistic for the number of parameters is SC or BIC and is given by

SC =−2logL+ p log(n)

where p is as explained above and n is the overall sample size. According to Al-Marshadi

(2011) there are two more model selection criteria that will be considered in the study. These

are bias-correlated Akaike’s Information Criterion (AICC) by Hurvich and Tsai (1989) and is

given by

AICC =−2`+2p(logn+1)

and Hannan and Quinn Information Criterion (HQIC) by Hannan and Quinn (1979) and is

given by

HQIC =−2`+2p log logn

In our study we are interested to compare the four information criteria in terms of their abil-

ity to identify the true structure model order with and without the help of other approaches.

The smaller the value of the criteria, the better the goodness-of-fit of the model (Caley and

Hone, 2002; Anderson et al., 1994).

3.9 Checking Model Assumptions (Diagnostics)

According to West et al. (2007) it is important to carry out model diagnostics to check

whether distributional assumptions for the residuals are satisfied and whether the fit of the

model is sensitive to unusual observations. Model diagnostics should be part of the model

building process throughout the analysis of a clustered or longitudinal data set (West et al.,

2007). According to Zewotir and Galpin (2005) we propose and investigate a number of diag-

nostics for variance components ratios, fixed effects parameters, prediction of the response

variable and of random effects and the likelihood function. In this case, we focus on the

definitions of a selected set of terms related to residual and influence diagnostics in LMMs.
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3.9.1 Residual Diagnostics

A residual is the difference between an observed quantity and its estimated or predicted

value. In the context of standard linear model is used to decide whether a given set of resid-

uals plotted against predicted values presents a random pattern or not. The residual versus

fitted plots are used to verify model assumptions and to detect outliers and potentially in-

fluential observations. According to West et al (2007) and Schabenberger (2005) residual

should be assessed for normality, constant variance and outliers. In the LMMs we consider

marginal residual (rm), conditional residual (rc) and their studentized version as described in

the following subsections.

Marginal and Conditional Residuals

A marginal residual is the difference between the observed data and the estimated marginal

mean. The name marginal comes from the fact that X
′
i β̂ is the estimated marginal mean of yi.

The equation is given by

rmi = yi−X
′
i β̂ (3.69)

A conditional residual is the difference between the observed value and the conditional pre-

dicted value of the dependent variable. The equation for the vector of conditional residuals

for a given individual i in a two-level longitudinal data set is written as follows

rci = ε̂i = yi−X
′
i β̂−Z

′
i ûi (3.70)

The name conditional residual comes from the fact that X
′
i β̂+Z

′
i ûi is the conditional mean of

yi. Residuals are used to examine model assumptions and to detect outliers and potentially

influential data point. According to Schabenberger (2005) and West et al. (2007), the raw

residuals rmi and rci are usually not well suited for verifying these purposes. Even if the true

model residuals or errors are uncorrelated and have equal variance, the residuals will tend

to be correlated and their variance will differ. To account for the unequal variance of the

residuals, various studentizations are applied.

Standard and Studentized Residuals

According to Schabenberger (2005) and West et al. (2007) a random variable is said to be stan-

dardized if the difference from its mean is scaled by standard deviation. Unfortunately, the

true standard deviations are rarely known in practice, so scaling is done by using estimated

standard deviations instead. The residual have mean zero but their variance is unknown

as it depends on the true values of θ. Standardization is thus not possible in practice. The
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method of scaling residuals to divide them by the estimated standard deviation of the de-

pendent variable is resulting to Person residuals. If the estimate is independent of the ith

observation , the process is called external studentizations because this is accomplished by

excluding the ith observation when computing the estimate of its standard error. If the ob-

servation contributes to the standard error computation then residual is said to be internally

studentized (West et al., 2007). Rather than divide each individual residual by the variance

of an observation, we can also consider the vector of residuals and the estimated variance

V (θ̂). Let Ĉ denote a matrix such that ĈĈ
′
= V (θ̂). Then the scaled residual rc = Ĉ−1rm have

zero mean and are approximately uncorrelated. They are not exactly uncorrelated because

Ĉ is an estimated matrix and V is not the variance of rm. Scaled residuals can be useful to di-

agnose to ascertain whether the covariance structure of the mixed model has been specified

correctly. Table 3.2 summarizes the available residuals.

Table 3.2: Summarizes available residuals

Types of Residual Marginal Conditional

Raw rmi = yi−X
′
i β̂ rci = ε̂i = yi−X

′
i β̂−Z

′
i ûi

Studentized rstudent
mi

=
rmi√
ˆvar[rmi ]

rstudent
ci

=
rci√
ˆvar[rci ]

Pearson rperson
mi =

rmi√
ˆvar[Yi]

rperson
ci =

rci√
ˆvar[Yi|u]

Scaled Ĉ−1rm

3.9.2 Influence Diagnostics

Influence diagnostics are formal techniques that allow one to identify observations that heav-

ily influence estimates of the parameters in either β or θ. The idea of influence diagnostics

for a given observation is to quantify the effect of omission of those observation from the

data on the results of the analysis of the entire data set. The key to the implementations of

influence diagnostics in the mixed procedure is the attempt to quantifying influence where

possible by drawing on the basic definitions of the various statistics in the classical linear

model. The basic procedure for quantifying influence is:

1. Fit the model to the data and obtain estimates of all parameters

2. Remove one or more data points from the analysis and compute updated estimates of

model parameters
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3. Based on full- and reduced-data estimates, contrast quantities on interest to determine

how the absence of the observations changes the analysis.

Overall Influence

According to Schabenberger (2005) an overall influence statistic measures the change in the

objective function being minimized. In linear mixed models fitted by maximum likelihood

(ML) and restricted maximum likelihood (REML), an overall influence measure is the likeli-

hood distance which is also referred to as the likelihood displacement. The idea is to com-

pute the full data parameter estimates ψ̂ and estimates based on the reduced data ψ̂u. The

likelihood and restricted distances are obtained as

LD(u) = 2{`(ψ̂)− `(ψ̂(u))}

RLD(u) = 2{`R(ψ̂)− `R(ψ̂(u))}

The likelihood distance gives the amount by which the log-likelihood of the full data changes

if one was to evaluate it at the reduced parameter model.

Change In Parameter Estimates

According to Schabenberger (2005) and West et al. (2007), the main difference between the

Cook’s distance and the MDFFITS statistic is that the MDFFITS statistic uses an externalized

estimate of the variance of the parameter estimates which is based on recalculated covariance

estimates using the reduced data while Cook’s distance does not. The theory of Cook’s

distance was first introduced by Cook (1977). For the fixed effects, the two statistics are

D(β) = (β̂− β̂(u))
′

ˆvar(β̂)−1(β̂− β̂(u))/rank(X)

MDFFIT S = (β̂− β̂(u))
′

ˆvar( ˆβ(u))
−1(β̂− β̂(u))/rank(X)

If the covariance parameters are updated during the influence analysis, similar statistics can

be computed for θ̂. However, the D(θ) and MDFFITS(θ) statistics does not involve division

by a matrix rank.

Change In Precision of Estimates

The effect on the precision of estimates is separate from effect on the point estimates. If the

influence on the precision of the estimates is large, the MIXED procedure computes functions

of the trace and determinants of the variance matrices based on the full data and the reduced

data estimates
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COV T RACE(β) = |trace( ˆvar[β̂]−1 ˆvar[β(u)])− rank(X)|

COV RAT IO(β) =
detns( ˆvar[β(u)])

detns( ˆvar[β])

where detns(M) denotes the determinant of nonsingular part of matrix M. If the influence

analysis updates the covariance parameters, MIXED procedure computes similar statistics

for θ :

COV T RACE(θ) = |trace( ˆvar[θ̂]−1 ˆvar[θ(u)])−q|

COV RAT IO(θ) =
detns( ˆvar[θ(u)])

detns( ˆvar[θ])

where q denotes the rank of var(θ̂). The variance matrix that is used in the computation of

COVTRACE and COVRATIO for covariance parameters is obtained from the inverse Hes-

sian matrix.

Change In Precision of Estimates

The PRESS residual is the difference between the observed value and the predicted (marginal)

mean, where the predicted value is obtained without the observations in equation. The equa-

tion is given by

ε̂i(u) = yi−X
′
i β̂(u)

If we compute the influence of individual observations using PROC MIXED in SAS the pro-

cedure gives these PRESS residual. When removing sets of observations, the MIXED proce-

dure computes the PRESS statistics. This statistic is the sum of the squared PRESS residuals

in a deletion set

PRESS(u) = ∑iεu ε̂i(u)

The PRESS of observations of fitted values can be measured by the DFFITS statistic. A DF-

FITS measures the change in predicted values due to removal of a single data point. When

this change is standardized by the externally estimated standard error of the predicted value

in the full data and we obtain the DFFITS statistic is obtain as:

DFFIT S = (ŷi− ŷi(u))/ese(ŷi)
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Table 3.3: The table below summarizes the available influences in LMMs (Source: West et al.

2007, p. 45)
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3.10 Application of the Linear Mixed Models

We are going to apply the method of linear mixed models to the Treatment of Lead-Exposed

Children (TLC) data which is described in Chapter 2. The covariates used in the analysis

are treatment and week. The application of the linear mixed models was done under PROC

MIXED in SAS 9.3. SAS PROC MIXED is a very powerful procedure for a wide variety of

statistical analysis, including repeated measures analysis of variance. PROC MIXED uses

the maximum likelihood (ML) or restricted/residual maximum likelihood (REML) method.

PROC MIXED defines random effects as truly random. The MIXED procedure fits a variety

of mixed linear models to data and allows us to use these fitted models to make statistical

inferences about the data. The mixed linear model provides us with the flexibility of mod-

eling the variances and covariances as well as not only the means of our data. Once we fit a

model of the data, we use the model to draw statistical inferences via both the fixed-effects

and covariance parameters. PROC MIXED computes several different statistics suitable for

generating hypothesis tests and confidence intervals. The validity of these statistics depends

upon the estimates and variance-covariance model we select, so it is important to choose the

model carefully. The output from PROC MIXED helps us assess the model and compare it

with others to check the best fitting model. Using PROC MIXED, we fit a model for blood

lead level measured in micro-grams/dL over time which includes subject-specific intercepts

and slope as random effects and allows both the mean intercept and mean slope (fixed ef-

fects) to differ by group. The statistically mixed model can be stated as

yi j = β0 +β1groupi +β2timei j +β3groupi ∗ timei j +u1i +u2itimei j + εi j (3.71)

where yi j is the blood lead level for subject i at time j, timei j is the time of measurement of

yi j takes values 0,1,4,6. β0,β1,β2,β3 are the fixed effects parameters: intercept, group main

effect, time main effect and interaction between group and time. u1i is the random effect

of intercept for subject i and u2i is the random effect of slope for subject i. We assume that

(u1i,u2i)
′ ∼ N(0,G) where G is the variance-covariance matrix with Var(u1i) = G11, Var(u2i) =

G21, Cov(u1i,u2i) = G12 = G21 elements. We can write the model in matrix notation as

y = Xβ+Zu+ ε (3.72)

where y in our case is the 4× 1 vector of repeated measurements , β is the 2× 1 vector of

fixed effects and X is the associated 4× 2 full column rank, u is the 2× 1 vector of random

effects, Z is the associated 4×2 design matrix and ε is the 4×1 vector of residual.
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The commands to fit the model in SAS code for marginal model for linear mixed model

/* Marginal models for all structures under both methods ML and REML*/

proc mixed data=tlc method=reml covtest asycov;

class id group;

model y = group time group*time / s influence(iter=5 effect=id est);

repeated / type=un subject=id r rcorr;

run;

The CLASS statement names the classification variables to be used in the analysis. The

MODEL statement is required and it specifies the response (dependent) variable versus the

explanatory (independent) variables. The REPEATED statement in PROCMIXED is used to

specify covariance structures for repeated measurements on subjects. The OPTION method

in the PROC MIXED statement specifies the estimation method. The restricted maximum

likelihood is obtained with the option method=REML and the maximum likelihood estima-

tor is obtained with the option method=MLE. The statement TYPE specifies the covariance

structure of R.

Table 3.4 below is from the fitted marginal model under both ML and REML estimates under

different structures. The best model was the one with the smallest AIC from the selection

criteria in both methods. From Table 3.4 below the best model can be found.

Table 3.4: Model selection criteria with different structures under ML and REML
Model Cov Parameters Maximum Likelihood (ML) Restricted Maximum Likelihood (REML)

Structure No. AIC AICC BIC AIC AICC BIC

UN 10 2556.5 2557.6 2592.8 2551.0 2551.6 2577.0

Toep 4 2634.8 2635.1 2655.5 2628.0 2628.1 2638.3

CS 2 2655.3 2655.6 2670.9 2648.0 2648.0 2653.2

AR(1) 2 2667.4 2667.6 2682.9 2659.3 2659.3 2664.4

VC 1 2724.2 2724.4 2737.2 2717.4 2717.4 2720.0

Spatial Exp 2 2724.1 2724.4 2739.7 2716.2 2716.2 2721.4

Spatial Gau 2 2724.2 2724.4 2737.2 2717.4 2717.4 2720.0

Spatial Pow 2 2726.0 2726.2 2741.6 2719.3 2719.4 2724.5

The best fit model is the one which has the smallest AIC value for the selection criteria under

both methods i.e ML and REML in the table. In Table 3.4 the best fitting model is one with

unstructured (UN) structure with AIC = 2556.5 and AIC = 2551.0 under both ML and REML
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respectively.

Table 3.5: Estimates of covariance parameters under MLE

Cov Parm Subject Estimates Std Error Z Value Pr > |t|
UN(1,1) id 27.8491 5.1217 5.44 < .0001

UN(2,1) id 6.3200 7.1322 0.89 0.3756

UN(2,2) id 92.9266 18.6132 4.99 < .0001

UN(3,1) id 11.5757 5.3765 2.15 0.0313

UN(3,2) id 67.3710 15.6973 4.29 < .0001

UN(3,3) id 67.6960 13.9068 4.87 < .0001

UN(4,1) id 21.8049 5.1205 4.26 < .0001

UN(4,2) id 29.5423 12.1716 2.43 0.0152

UN(4,3) id 30.5275 9.2265 3.31 0.0009

UN(4,4) id 58.0263 8.2492 7.03 < .0001

Table 3.5 shows the preceding table lists the 10 estimated covariance parameters in order. The

parameter estimates are labeled according to their location in the block in covariance param-

eter column and all of these estimates are associated with individual (children) as a subject

effects. The standard error column approximates standard errors of the covariance param-

eters obtained from the inverse Hessian matrix. The standard errors leads to approximate

Wald Z-statistics which are compared with the standard normal distribution. The results of

the tests indicate that all parameters are significantly different from 0 except that cov parm

UN(2,1) with p-value = 0.3756 is not significantly different from zero.

Table 3.6: Estimates of Fixed Effects under MLE
Effect Group Estimates Std Error DF t Value Pr > |t|

Intercept 26.0321 0.6873 97 37.88 < .0001

Group A -1.8837 0.9769 97 -1.93 0.0568

Week -0.3669 0.1207 97 -3.04 0.0030

Group ×Week A -0.1830 0.1715 97 -1.07 0.2885

Table 3.6 shows the preceding table lists the solution vector for the fixed effects. The esti-

mate of the placebo treatments’ intercept is 26.03, while that for active is 26.03-1.88 = 24.15.

Similarly, the estimate for the placebo treatments’ slope is -0.37 while that for the active is -

0.37-0.18= -0.55. Thus the placebo group starting point is larger than that for the active group

treatment, but their blood lead level growth rate is about three times that of the placebo.
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Table 3.7: Tests of Fixed Effects under LME
Effect Num DF Den DF F Value Pr > F

Group 1 97 3.72 0.0568

Week 1 97 28.58 < .0001

Group ×Week 1 97 1.14 0.2885

Table 3.7 ”Tests of Fixed Effects” displays Type III tests for all fixed effects. In this case, the

Group×Week test reveals difference between the slopes that is statistically not significant at

the 5% level, the p-value (0.2934) is the same as the p-value in the ”Group×WeekA” row in

the ”Solution for Fixed Effects” table, and that F-statistic (1.12) is the square of the t−statistic

(-1.06). Similar connections are evident among the other rows in these two tables. The Week

test is the one for an overall blood lead level curve accounting for possible heterogeneous

slopes and it is highly significant. Finally, the Group row tests the null hypothesis of a com-

mon intercept and this hypothesis cannot be rejected from these data since is not significantly

different from zero and p-value (0.0593)> 0.05.

Table 3.8: Estimates of covariance parameters under REML

Cov Parm Subject Estimates Std Error Z Value Pr > |t|
UN(1,1) id 28.3333 5.2183 5.43 < .0001

UN(2,1) id 6.8046 7.2304 0.94 0.3756

UN(2,2) id 93.4266 18.7663 4.98 < .0001

UN(3,1) id 12.0421 5.4776 2.20 0.0313

UN(3,2) id 67.8974 15.8520 4.28 < .0001

UN(3,3) id 68.3841 14.0668 4.86 < .0001

UN(4,1) id 22.2573 5.2365 4.25 < .0001

UN(4,2) id 30.0842 12.3221 2.44 0.0152

UN(4,3) id 31.3216 9.3864 3.34 0.0009

UN(4,4) id 58.9868 8.4417 6.99 < .0001

Table 3.8 shows a similar results interpretation to Table 3.5 except that the estimates values

are much higher than estimates under ML estimates.
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Table 3.9: Estimates of Fixed Effects under REML
Effect Group Estimates Std Error DF t Value Pr > |t|

Intercept 26.0322 0.6943 97 37.49 < .0001

Group A -1.8830 0.9869 97 37.49 0.0593

Week -0.3669 0.1219 97 -3.01 0.0033

Group ×Week A -0.1831 0.1733 97 -1.06 0.2934

Table 3.9 shows the preceding table lists the solution vector for the fixed effects. The esti-

mate of the placebo treatments’ intercept is 26.03, while that for active is 26.03-1.88 = 24.15.

Similarly, the estimate for the placebo treatments’ slope is -0.37 while that for the active is -

0.37-0.18= -0.55. Thus the placebo group starting point is larger than that for the active group

treatment, but their blood lead level rate is about three times of the placebo.

Table 3.10: Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F

Group 1 97 3.64 0.0593

Week 1 97 28.01 < .0001

Group ×Week 1 97 1.12 0.2934

Table 3.10 shows similar results interpretation to Table 3.7 except that the estimates values

are approximately the same under ML and REML estimates.
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INFLUENCE ANALYSIS FOR REPEATED MEASURES

Figure 3.1: Restricted Likelihood Distance

As judged by the restricted likelihood distance, subject 40 clearly has most influence on the

overall analysis followed by subject 67.
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Figure 3.2: Influence Diagnostics

Figure 3.2 displays Cook’s D and CovRatio statistics for the fixed effects and covariance

parameters. The subject 40 has a considerable effect on the estimates of variances and co-

variances. This subject also affects the precision of the covariance parameter estimates more

than any other subject; CovRatio is near 0. The observation who exerts the greatest influence

on fixed effect is subject 40; this subject affects the variance-covariance matrix of the fixed

effects more than other subjects and has small CovRatio.
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Figure 3.3: Fixed Effects Delete Estimates

Figure 3.3 shows the graphs on the left hand side of the panel represent the intercept and

slope estimate for placebo; the graphs on the right hand side represent the difference in

intercept and slope between active and placebo. The difference in these parameters between

active and placebo is altered or improved by the removal of any child. Subject 40 changes

fixed effects substantially or appreciably.
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Figure 3.4: Covariance Parameter Delete Estimates

Figure 3.5: Covariance Parameter Delete Estimates

The covariance parameter deletion estimates in Output show several important features.
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Subject 54 has great impact on the six covariance parameters. Removing this child from the

analysis increases the variance of the random intercept and slope. The repeated measure-

ments of child display an up and down behavior.

3.10.1 Application of the Random coefficient model

The commands to fit the model in SAS code for random intercept model are

/* To fit a random intercept model for all structures under both methods ML and REML*/

proc mixed data=tlc method=ml;

class id group;

model y = group time group*time / s;

random intercept / type=un sub=id g;

run;

The RANDOM statement defines the random effects constituting the u vector in the mixed

model. The purpose of the RANDOM statement is to define the Z matrix of the mixed model.

The statement TYPE specifies the covariance structure of G.

Table 3.11: Model selection criteria with different structures under ML and REML
Model Cov Parameters Maximum Likelihood (ML) Restricted Maximum Likelihood (REML)

Structure No. AIC AICC BIC AIC AICC BIC

UN 2 2655.3 2655.6 2670.9 2648.0 2648.0 2653.2

Toep 2 2655.3 2655.6 2670.9 2648.0 2648.0 2653.2

CS 3 2681.6 2681.8 2697.1 2674.2 2674.2 2679.4

AR(1) 3 2681.6 2681.8 2697.1 2674.2 2674.2 2679.4

VC 3 2655.3 2655.6 2670.9 2648.0 2648.0 2653.2

Spatial Exp 2 2657.3 2657.6 2675.5 2650.0 2650.0 2657.7

Spatial Gau 3 2697.9 2698.2 2716.1 2690.5 2690.6 2698.3

Spatial Pow 3 2681.6 2681.8 2697.1 2679.4 2674.2 2674.2

The best fit model is the one which has the smallest AIC value for the selection criteria under

both methods i.e ML and REML in the table. In Table 3.11 the best fitting model is one with

toeplitz (toep), unstructured (UN) and variance component (VC) structure with AIC = 2556.5

and AIC = 2551.0 under both ML and REML respectively. In this case we will fit model with

UN or toep because it gives us same results.
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Table 3.12: Estimates of Parameter Estimates under REML
Cov Parm Subject Estimates Standard error Z value Pr > Z

Variance id 21.7622 4.3470 5.01 < .0001

Residual 33.7271 2.7677 12.19 < .0001

Covariance parameter estimates

Table 3.12 shows the covariance parameter estimates. This can be thought of as the corre-

lation between the observations within the group. σ2
week represents the variability between

children: σ2
week = 21.7622 and is highly significant different from zero.

σ2
residual represents the variability within children: σ2

residual = 33.7271 and is also highly sig-

nificant.

In our case, the observations from different children are independent and observations from

the same child are correlated. The total variability, correcting for group differences is decom-

posed as within-cluster variability and between cluster variability is equal to

σ2 = σ2
week +σ2

residual = 21.7622+33.7271 = 55.4895

The overall correlation between repeated measurements is given by

ICC =
σ2

week
σ2

week+σ2
residual

= 21.7622
21.7622+33.7271 = 0.392

The between-child variability accounts for 39% of all variability. The week factor explains

39% of the total variability after the correction for group, or indicating that 39% of the vari-

ation in the data is accounted for by allowing the intercept and the slope to vary across

individuals.

Table 3.13: Estimates of Fixed Effects under LME
Effect Group Estimates Std Error DF t Value Pr > |t|

Intercept 25.6854 0.9100 97 28.23 < .0001

Group A -5.3184 1.2935 295 -4.11 < .0001

Week -0.3721 0.1722 295 -2.15 0.0315

Group ×Week A -0.07391 0.2448 295 -0.30 0.7629

Table 3.13 show the preceding table lists the solution vector for the fixed effects. The esti-

mate of the placebo treatments’ intercept is 26.03, while that for active is 25.69-5.32 = 20.37.
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Similarly, the estimate for the placebo treatments’ slope is -0.37 while that for the active is -

0.37-0.07= -0.44. Thus the placebo group starting point is larger than that for the active group

treatment, but their blood lead level rate is approximately the same as that of the placebo.

Table 3.14: Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F

Group 1 295 16.91 < .0001

Week 1 295 11.17 0.0009

Group ×Week 1 295 0.09 0.7629

Table 3.14 shows the result of ”Type 3 Tests of Fixed Effects” for all fixed effects. There is

a strong evidence of a relationship between the baseline covariates group placebo and the

subsequent responses. The p-value is < .0001 which is highly significant. The week effect is

highly significant and concludes that there is evidence since the p-value is 0.0009. There is

no evidence of Group×week interaction and the p-value is 0.7629; that shows that the effects

are not significantly different from zero. Their changes in the response variable treatment

over time are the same for all drug treatments.

Table 3.15: Estimates of Covariance Parameter under REML
Cov Parm Subject Estimates Standard error Z value Pr > Z

Variance id 22.3276 4.4799 4.98 < .0001

Residual 33.9557 2.7959 12.14 < .0001

Covariance parameter estimates

Table 3.15 presents the covariance parameter estimates. These are estimates for random ef-

fects portion of the model. In this case, we find that the estimated value of σ2
week = 22.3276

the week variance component that represents the variability between children and σ2
residual

represents the variability within children: σ2
residual = 33.9557. The variance component for

children is highly significant between children variation and the residual variance is also

significant at 5% level of significance. The total variation is equal to

σ2 = σ2
week +σ2

residual = 22.3276+33.9557 = 56.2838

The observations from the same child are correlated; the overall correlation between repeated

measurements is given by
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ICC =
σ2

week
σ2

week+σ2
residual

= 22.3276
22.3276+33.9557 = 0.397≈ 40%

The between-child variability accounts for 40% of all variability. The week factor explains

40% of the total variability after the correction for group.

Table 3.16: Estimates of Fixed Effects under REML
Effect Group Estimates Std Error DF t Value Pr > |t|

Intercept 25.6854 0.9176 97 27.99 < .0001

Group A -5.3184 1.3044 295 -4.08 < .0001

Week -0.3721 0.1728 295 -2.15 0.0321

Group ×Week A -0.07391 0.2456 295 -0.30 0.7637

Table 3.16 show the preceding table lists the solution vector for the fixed effects. The esti-

mate of the placebo treatments’ intercept is 25.69, while that for active is 25.69-5.32 = 20.37.

Similarly, the estimate for the placebo treatments’ slope is -0.37 while that for the active is -

0.37-0.07= -0.44. Thus the placebo group starting point is larger than that for the active group

treatment, but their blood lead level rate is about the same as that of the placebo.

Table 3.17: Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F

Group 1 295 16.63 < .0001

Week 1 295 11.10 0.0010

Group ×Week 1 295 0.09 0.7637

The results in Table 3.17 show that there is strong evidence of a relationship between the

baseline covariates group placebo and the subsequent responses. The p-value is < .0001

which is highly significant. The week effect is highly significant and concludes that there is

evidence since the p-value is 0.0010. There is no evidence of Group×week interaction and

the p-value is 0.2934 that shows that the effect is not significantly different from zero. Their

changes in the response variable treatment over time are the same for all drug treatments.

3.10.2 Application of the Random Intercept and Slope Model

The commands to fit the model in SAS code for random intercept and random slope model

are /* To fit a random intercept and slope model for all structures under both methods ML and

REML*/

proc mixed data=tlc method=ml;
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class id group;

model y = group time group*time / s;

random intercept time / type=un sub=id g gc v vcorr;

run;

Table 3.18: Model selection criteria with different structures under ML and REML
Model Cov Parameters Maximum Likelihood (ML) Restricted Maximum Likelihood (REML)

Structure No. AIC AICC BIC AIC AICC BIC

UN 2 2643.4 2643.7 2661.5 2636.3 2636.3 2644.1

Toep 2 2655.3 2655.6 2670.9 2648.0 2648.0 2653.2

CS 3 2681.6 2681.8 2697.1 2674.2 2674.2 2679.4

AR(1) 3 2681.6 2681.8 2697.1 2674.2 2674.2 2679.4

VC 3 2655.3 2655.6 2670.9 2648.0 2648.0 2653.2

Spatial Exp 3 2657.3 2657.6 2675.5 2650.0 2650.0 2657.7

Spatial Gau 3 2697.9 2698.2 2716.1 2690.5 2690.6 2698.3

Spatial Pow 3 2681.6 2681.8 2697.1 2679.4 2674.2 2674.2

Table 3.19: Estimated Correlation Matrix
Row Col1 Col2 Col3 Col4

1 1.0000 0.1323 0.2736 0.5444

2 0.1323 1.0000 0.8495 0.4053

3 0.2736 0.8495 1.0000 0.4932

4 0.5444 0.4053 0.4932 1.0000

Table 3.20: Estimates of Fixed Effects
Effect Group Estimates Std Error DF t Value Pr > |t|

Intercept 25.6854 0.7375 97 34.83 < .0001

Group A -5.3184 1.0482 198 -5.07 < .0001

Week -0.3721 0.1728 97 -2.15 0.0337

Group ×Week A -0.07391 0.2456 198 -0.30 0.7638

Table 3.20 shows the preceding table lists the solution vector for the fixed effects. The esti-

mate of the placebo treatments’ intercept is 25.69, while that for active is 25.69-5.32 = 20.37.

Similarly, the estimate for the placebo treatments’ slope is -0.37 while that for the active is -

0.37-0.07= -0.44. Thus the placebo group starting point is larger than that for the active group

treatment, but their blood lead level rate is about the same as that of the placebo.
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Table 3.21: Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F

Group 1 198 25.74 < .0001

Week 1 97 11.10 0.0012

Group ×Week 1 198 0.09 0.7638

The results from the Type III F statistic corresponding to Group ×Week in output indicates

there is no evidence to believe that the slopes are equal (p-value = 0.7638); therefore, we

assume that a common slope model is sufficient to describe the data. In the test of null

hypothesis, we found that there is no evidence that the slopes are equal to zero (p-value =

0.7638). The slope effects are not significantly different from zero.

3.11 Summary

The proposed methodology copes with the difficulty of the analysis of longitudinal data.

Thereby, we dealt with theoretical and computational aspects which are substantially chal-

lenging in the linear regression setting. In the analysis of linear mixed effect models, we as-

sume the continuous response because LMM is not suitable for modelling a binary response.

We fitted LMM using SAS procedure MIXED and we used model selection criteria to choose

best model with the best covariance structure. We fitted different models such as linear

mixed model and as well for random effects structure (i.e. random intercept, and random

intercept and slope model). After comparing models, we choose linear mixed model with

unstructured covariance structure as our best fitted model since it has a small AIC which

estimates the quality of each model relative to each of the other models. We found that lin-

ear mixed effects models are flexible methods for modelling continuous longitudinal data

and the major advantage of linear mixed model is that it accommodates the complexities of

typical longitudinal data sets and can provide information on individual approach as well as

population approach and can handle missing data. If the longitudinal response is discrete,

then we have more than one way to extend generalized linear models to longitudinal setting;

this is discussed in the following chapter.
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Chapter 4

Models for Discrete Correlated

Longitudinal Data

The data set is a longitudinal study measuring the prevalence of the Respiratory Syncytial

Virus (RSV) in children. The study of the data is obtained when a response is measured

repeatedly on a set of units. The data set is a part of the study carried out by the Kenyan

Medical Research Institute and the Welcome Trust in Kilifi, Kenya. The data set presents

a form of completeness which has to be properly accounted for in order to carry out an

appropriate analysis of this data which leads to correct conclusions. The data set has 320

individuals (children) that were recruited in the study and all were measured and recorded.

For each child, the following information was collected with the variable names in brackets.

These were: the number of visits (visit); the time between visits (dt); the sampling types,

active sampling if the field worker went to visit the child and passive if the child was brought

to the clinic to be sampled (actpass); the age in months of the child at the visit (age); the

response variable of whether the child is infected or uninfected (rsv); and the prevalence of

the virus in the blood (prev) which is a continuous variable. The aim of the study was to

understand the dynamics of the disease in children. The paper by Mwambi et al. (2011) gave

an approach to estimate the force of infection for the disease. However this is not the focus

of the current work.
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Table 4.1: Table of variables
Variable Levels and coding

id 1, . . . ,320

rsv 1=uninfected, 2=infected

dt 0, . . . ,181

visit 1, . . . ,144

actpass 1=active sampling, 2=passive sampling

age 0, . . . ,12 months

prev a continuous variable ranging from min=0.0 to max=0.047516

Table 4.1 shows that the measured status of a rsv (infected or uninfected) in an individual

is a binary response outcome of non-Gaussian variable. The generalized linear model in a

longitudinal setting seems the best option to deal with such a data set. In this work we fo-

cus on the data derived from repeated measurements from the same individual. Thus the

assumption of independent measurements cannot be used because observations within an

individual are correlated or dependent. The chapter discusses the theory of generalized lin-

ear models (GLMs) to accommodate responses that follow non-Gaussian data distributions

by first introducing components of a GLM and the exponential family. We also consider lo-

gistic regression which is a special case of GLM. Since the standard of GLM assumes that

the observations are uncorrelated then the extensions have been developed to allow for cor-

relation between observations, as occurs in longitudinal studies and clustered designs. The

case of correlated non-Gaussian longitudinal data is then discussed using generalized esti-

mating equations (GEEs) as in Liang and Zeger (1986). GEEs applies to marginal models

for longitudinal binary data. An important aspect of this approach is the specification of a

working correlation structure. The working correlation structure represents the correlation

believed to be present among responses within subjects and as such is incorporated into the

random component of the model (Lalonde et al., 2013). The application of this model is done

under different correlation structures to RSV data using the SAS software and the results are

discussed.

4.1 Generalized Linear Models (GLMs)

Generalized linear models (GLMs) are an extension of classical linear models to model non-

normal response variables. The generalized linear model (GLM) was first introduced by

Nelder and Wedderburn (1972). Generalized linear models extend classical regression anal-

61



ysis for independent normally distributed random variables with constant variance to other

types of the response variables. These models are suitable when the response variable is

non-normal distributed along with exploratory variables that are categorical (Davis, 2002).

The application of generalized linear models was further extended by introducing quasilike-

lihood by Wedderburn (1974). The GLM approach is most often used in common analysis

because provides a theoretical framework for many commonly used statistical models and

simplifies the tool of those different models in statistical software, since essentially the same

algorithm can be used for estimation, inference and assessing the model sufficiently for all

generalized linear models (Venables and Ripley, 2002). The parameters are estimated by

using the maximum likelihood methods (McCullagh and Nelder, 1989). As stated previ-

ously, GLMs extend the range of application of linear statistical models by accommodating

response variables with non-normal distributions such as the Poisson distribution, the Bino-

mial distribution, the Bernoulli distribution, the Gamma distribution and other distributions.

If the response variable is assumed to be nonlinear then the link function which is one of the

components of the GLM is used as the response variable.

4.2 The Exponential Family

In this section we describe the generalized linear model as formulated by Nelder and Web-

berburn (1972) and discuss estimation of the parameters and tests of hypotheses. We assume

that the observations come from a distribution in the exponential family with probability

density function

f (yi) = exp
{

yiθi−b(θi)

ai(φ)
+ c(yi,φ)

}
(4.1)

where θi and φ are parameters and ai(φ), b(θi) and c(yi,φ) are known functions. According to

other researchers and authors, the function ai(φ) has the form

ai(φ) =
φ

w
(4.2)

where w is a known prior weight, usually 1. The parameters θi and φ are essentially location

and scale parameters. The function b(θi) is called the cumulant function which is helpful

in generating the mean and variance. We show below how b(θi) is used to find mean and

variance.
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The mean and variance of Y can be derived by using this equation∫
f (y;θ,φ)dy = 1 (4.3)

By taking the first and second derivative with respect to θ from both sides of above equation,

This leads us to the two equations of the form∫
(y−b′(θi)) f (y;θ,φ)dy = 0 (4.4)

and ∫ [1
φ
(y−b′(θi))

2−b′′(θi)

]
f (y;θ,φ)dy = 0 (4.5)

By solving this equation for µ=E(y) and Var(y)=E[(y−µ)2] respectively, we get the solutions

E(y) = b′(θi) and Var(y) = φV (µ), where V (µ) = b′′(θi)

We note that in general mean and variance are dependent since

Var(y) = φb′′[b′−1(µi)]

= φV (µ)
(4.6)

The function V (µ) is called the variance function. The function b′−1(.) which express θ as

a function of µ is the link function and b′(.) is the inverse link function. There are several

distributions which belong to this structure and for classification purposes we briefly relate

the above formulation to the Normal, Poisson, Bernoulli and Binomial distributions which

all fall under the exponential family of distributions.

For example, suppose that y is normally distributed with mean µ and variance σ2. Then

distribution is given by

f (y;µ,σ2) =
1

(2Πσ2)
1
2

exp
(
− 1

2σ2 (y−µ)2
)

= exp

{
log

(
1

(2πσ2)
1
2

)
exp
(
− 1

2σ2 (y−µ)2
)}

= exp

{
yµ− µ2

2
2σ2 − 1

2
log(2πσ

2)− y2

2σ2

} (4.7)

where θ = µ, b(θ) = θ2

2 , φ = σ2 and C(y,φ) =−1
2 log(2πσ2)− y2

2σ2

Therefore, the mean and variance is given by

E(y) = b′(θ) = µ
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and

Var(y) = φVar(µ) = σ
2

which is independent on µ. The variance function is V (µ) = 1, and the dispersion parameter

is φ = σ2.

For a Poisson distribution with mean µ. Then distribution is given by

f (y,µ) =
exp(−µ)µy

y!

= exp{y logµ−µ− logy!}
(4.8)

where θ = logµ, b(θ) = exp(θ), φ = 1 and C(y,φ) = logy!

The mean and variance is given by

E(y) = b′(θ) = µ

and

Var(y) = φVar(µ) = µ

which depends on µ. In this case, the variance function is V (µ) = µ and the dispersion pa-

rameter is φ = 1.

For Bernoulli distribution with mean π. Then distribution is given by

f (y,µ) = π
y(1−π)1−y

= exp{y logπ+(1− y) log(1−π)}

= exp
{

y log
(

π

1−π

)
+ log(1−π)

} (4.9)

which is also in the form of an exponential family where θ = log π

(1−π) , φ = 1, and

b(θ) =− log(1−π) = log(1+ exp(θ)), since π = exp(θ)
(1+exp(θ)) .

Then the mean and variance is given by:

E(y) = b′(θ) = π

and

Var(y) = φVar(µ) = π(1−π)

which is dependent on µ. In this case, the variance function is V (µ) = π(1−π) and the disper-

sion parameter is φ = 1.
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For binomial distribution with parameters n and π (i.e y∼ Bin(n,π)). In this case,

f (y;µ,σ2) =

(
n
y

)
π

y(1−π)n−y

= exp
{

log
((

n
y

)
π

y(1−π)n−y
)}

= exp
{

y log
(

π

1−π

)
+n log(1−π)+ log

(
n
y

)} (4.10)

θ = log( π

1−π
), φ = 1 and b(θ) = n log(1+ exp(θ)). Therefore

E(Y ) = b′(θ) = n
(

exp(θ)
1+ exp(θ)

)
= nπ

and

Var(Y ) = φb′′(θ) = n
(

exp(θ)
(1+ exp(θ))2

)
= nπ(1−π)

In this case, the variance function is V (µ) = nπ(1−π) and the dispersion parameter is φ = 1.

4.2.1 Components of a GLM

The generalized linear regression model is characterized by the following features:

• A random component: this component identifies the response, yi and assumes a distri-

bution that follows the exponential family. It is given by:

f (yi) = exp
{

yiθi−b(θi)

ai(φ)
+ c(yi,φ)

}
(4.11)

• Systematic component: this specifies the explanatory or predictor variables. The co-

variates xi is combined linearly with the coefficients to form the linear predictor

η = Xβ (4.12)

where the ith row of X is given by xi = (1,xi1, . . . ,xip)
′

with xi j, i = 1 · · ·n equal to the

value of jth explanatory variable or predictor j = 1 · · · p and the β = (β0, . . . ,β1,βp)
′

is a

regression coefficient.

• Link component: this specifies the relationship between the mean of the random and

systematic components: the linear predictor Xiβ = ηi is a function of the mean param-

eter µi via a link function, g(µi).
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ηi = g(µi)

= x
′
iβ

(4.13)

According to Davis (2002) and McCulloch and Neuhaus (2001), the g(µi) must be monotonic

and a differentiable function such that

ηi = g(µi)

Thus

g(µi) = ∑
j

β jxi j , i = 1, . . . ,N

relating the linear predictor to the mean response follows

µ = g−1(ηi) = E(y)

We model a function of the mean as a combination of linear predictors. This function g(.) is

monotone which means as the systematic part gets larger, µ gets larger too and again when

the systematic part gets smaller, µ gets smaller too. The relationship between E(y) and the

systematic part can be nonlinear. Table 4.2 shows the summary of canonical link.

Table 4.2: Summary of canonical link

Distribution Natural Parameter Canonical link

Normal µ Identity

Poisson log(µ) Log

Bernoulli log( µ
1−µ) Logit

Gamma 1
µ Inverse

Binomial log( µ
1−µ) Logit

We demonstrate examples of the GLM family now. Example 4.2.1.1: Let Y be normal dis-

tributed with mean µ. Then the density function of the normal distribution is

f (y;µ,σ2) =
1

(2πσ2)
1
2

exp
(
− 1

2σ2 (y−µ)2
)

66



The above density function follows the exponential family and it can be written as

f (y;µ,σ2) =
1

(2πσ2)
1
2

exp
(
− 1

2σ2 (y−µ)2
)

= exp

{
log

(
1

(2πσ2)
1
2

)
exp
(
− 1

2σ2 (y−µ)2
)}

= exp

{
yµ− µ2

2
2σ2 − 1

2
log(2πσ

2)− y2

2σ2

} (4.14)

where θ = µ, b(θ) = θ2

2 , φ = σ2 and C(y,φ) =−1
2 log(2πσ2)− y2

2σ2 . The canonical link is the den-

sity.

Example 4.2.1.2: Let Y be Poisson distributed with mean µ. Then the density function of the

Poisson distribution is

f (y,µ) =
exp(−µ)µy

y!

= exp{y logµ−µ− logy!}
(4.15)

where θ = log(µ), b(θ) = exp(θ), φ = 1 and C(y,φ) = logy!

Then the canonical link is log link.

Example 4.2.1.3: Let Y be Bernoulli distributed with mean π. Then the density function of

the Bernoulli distribution is

f (y,µ) = π
y(1−π)1−y

= exp{y logπ+(1− y) log(1−π)}

= exp
{

y log
π

(1−π)
+ log(1−π)

} (4.16)

which is also in the form of an exponential family where θ = log( π

1−π
), φ = 1, C(y,φ) = 0 and

b(θ) =− log(1−π) = log(1+ exp(θ)), since π = exp(θ)
1+exp(θ) , and the canonical link is logit link.

4.2.2 Estimation of the Model Parameters

The concept of generalized linear models (GLMs) unifies different approaches to explaining

variation in data in terms of a linear combination of covariates (Agresti, 2002). The GLM

model which consists of a single response variable and the predictor variable is a member of
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the exponential family distribution. Generalized linear modeling transforms the relationship

between the linear predictor and the mean response, such that a nonlinear relationship can

be modeled as a linear. This admits a model specification allowing for continuous or discrete

responses and allows a description of the variance as a function of the mean response. The

GLM family members are linearized by mean of a link function and are fitted using ML

technique with the help of iterative algorithms. A single algorithm can be used to estimate

the parameters of an exponential family GLM using maximum likelihood. The likelihood

L(β,φ) is given by

L(β,φ) =
N

∏
i=1

f (yi;β,φ) =
N

∏
i=1

exp
{

yiθi−b(θi)

φ
+C(yi,φ)

}
(4.17)

The estimation of the parameters in β is done by maximizing the log-likelihood defined as

`(β,φ) =
N

∑
i=1

log f (yi;β,φ) =
N

∑
i=1

{
yiθi−b(θi)

φ
+C(yi,φ)

}
(4.18)

which assumes independent exponential family responses yi. To find the MLE of β j, we

differentiate `(β,φ) with respect to β j which is given us

∂`

∂β j
=

(
∂`

∂θ

)(
∂θ

∂µ

)(
∂µ
∂η

)(
∂µ
∂β j

)
(4.19)

The first factor in equation (4.21) is

∂`

∂θ
=

y−b′(θ)
φ

, where µ = b′(θ), (4.20)

The second factor is

∂θ

∂µ
=

1
b′′(θ)

, where V (µ) = b′′(θ) (4.21)

The third factor ∂µ
∂η

will depend on the link function, where η = X
′
β. The last factor is

∂µ
∂β j

= xi j (4.22)

where xi j is the jth element of the covariate vector xi = x for the ith observation. Then by

substituting equation (4.20, 4.21 and 4.22) into equation 4.19 and equating to zero, we have

∂`

∂β
=

N

∑
i=1

(yi−µi)

V (µ)

(
µi

∂β

)
xi j = 0 (4.23)

Then the MLE of the parameter vector β is obtained based on solving the estimating equa-

tions above. The estimation of β depends on the density function only through the mean
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and variance function V (µi). The score equations can be solved by using the iterative algo-

rithm such as Newton-Raphson, Fisher scoring and re-weighted least square (RWLS). The

ML estimation for β is carried out via Newton-Raphson,

β
(t+1) = β

(t)+
(
`′′(β(t))

)−1
`′
(

β
(t)
)
, (4.24)

where ` is the log-likelihood function for the entire sample yi, . . . ,yN . We let `, `′ and `′′ denote

the contribution of the observations yi to the log-likelihood and its derivatives. The Fisher

scoring iterative equation is given by

β
(t+1) = β

(t)+
[
−E(`′′(β(t)))

]−1
`′
(

β
(t)
)
, (4.25)

where the expected Hessian matrix becomes

−E(`′′(β(t))) = H(t) = X
′
WX and W = Diag

{
Var(yi)

(
∂ηi

∂µi

)2
}−1

An iterative of Fisher scoring is then

β
(t+1) = β

(t)+[X
′
WX ]−1X

′
A(y−µ) (4.26)

where W is a diagonal matrix with main diagonal elements and A = W
(

∂η

∂µ

)
, then we note

that A and W are related. Note that ∂η

∂µ = Diag
(

∂ηi
∂µi

)
. This lead us to Reweighted least square

iterative equation which is given by

β
(t+1) = [X

′
WX ]−1X

′
Wz, (4.27)

where

z = η+

(
∂η

∂µ

)
(y−µ)

= (z1, . . . ,zN)
′
,

(4.28)

where zi = ηi +
(

∂ηi
∂µi

)
(yi−µi) and is called the adjusted dependent variate or we can call it a

linearized form of link function g evaluated at y.

Fisher scoring method is similar to the Newton-Raphson method but the difference is that

Fisher scoring uses the expected value of matrix called expected information while the Newton-

Raphson method uses the matrix itself or the observed information.
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4.2.3 Simplication for canonical links

According to Agresti (2002), by using results of the canonical link of the likelihood equations

with the

ηi = ∑β jxi j (4.29)

for this model
∂µi

∂ηi
=

∂b′(θ)
∂θi

= b′′(θ) (4.30)

Then recall that b′′(θ) is the variance function

∂`

∂β j
=

n

∑
i=1

yi−µi

φ

1
Vi

Vi xi j =
n

∑
i=1

yi−µi

φ
(4.31)

with the canonical link the second derivatives of the log-likelihood have components

∂2`

∂β j∂βk
=−

xi j

φ

(
∂µi

∂βk

)
(4.32)

This does not depend on the observation yi for i = 1 · · ·n, so

∂2`

∂β2 = E
(

∂2`

∂β2

)
(4.33)

Therefore under the canonical link H = − j and the Newton-Raphson and Fisher scoring

algorithms are identical since φ is constant for all observations in the likelihood estimating

equation are
n

∑
i=1

yixi j =
n

∑
i=1

µixi j, for j = 1, . . . , p (4.34)

These equations equate the sufficient statistics for the model parameters to their expected

values (Agresti, 2002).

4.3 Inference of Parameter Estimates

Our primary interest is to test general hypothesis about the vector of parameters β

Ho : Lβ = 0 vs Ha : Lβ 6= 0

since β̂ is the MLE of β, it follows that Lβ̂ is the MLE of Lβ. Therefore

Lβ̂∼ N(Lβ, LVar(β)L′)

where L is a known constants of dimension say m× p. The hypotheses on single or groups

of parameters can be tested in different ways in GLMs. There are three commonly used

statistics for inference which is such as Wald test, Likelihood ratio test and Score test.
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4.3.1 Wald Test

The Wald test statistic is commonly used to test the significance about the regression coeffi-

cients for each independent variable. The test hypothesis is given by

Ho : Lβ = 0 vs Ha : Lβ 6= 0

and the Wald test statistics is given by

W = (Lβ̂−Lβ)
′
[LVar(β̂)L′]−1(Lβ̂−Lβ)

and under Ho is asymptotically distributed as χ2 with d. f equal to rank(L). Note that the

Var(β̂) = (∑N
i=1 X

′
iWiXi)

−1

where Wi = diag(wi) and wi =
{

var(µi)[g′(µi)]
2
}−1

4.3.2 Likelihood Ratio Test

The likelihood ratio test is a widely used procedure for testing hypothesis involving nested

models. This is a test for two nested models. There is a full fitted model and a reduced model

that omits some variables. It reject the null hypothesis when the maximum likelihood under

null hypothesis is significantly smaller than the likelihood under alternative hypothesis.

LRT =−2ln
[

L(reduced model)
L( f ull model)

]
∼ χ

2
f−r (4.35)

The full model has f variables and the subset has R variables and so the test value is com-

pared against a χ2 with f − r degrees of freedom.

4.3.3 Score Test

According to Liang (1999) we assume that the Y
′
i s are independent and represent a sample

from the population, the likelihood function for β and φ is simply proportional to

L(β,φ)∝
N

∏
i=1

f (yi;β,φ)

=
N

∏
i=1

exp
{

yiθi−b(θi)

φ
+C(yi,φ)

} (4.36)

where ηi = g(µi) = X
′
i β

The log-likelihood function is

`(β,φ) =
N

∑
i=1

log f (yi;β,φ) =
N

∑
i=1

{
yiθi−b(θi)

φ
+C(yi,φ)

}
(4.37)
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The score function is given by

U =
∂`

∂θ
=

n

∑
i=1

yi−b′(θi)

φ
, where µ = b′(θi),

and the score vector is given by

U =
∂`

∂θ

=
n

∑
i=1

(yi−µi)

φ

∂θi

∂β

=
n

∑
i=1

(yi−µi)

φ

G′(ηi)

V (µi)
xi

(4.38)

and the information matrix is given by

I =Var(U)

= E(UU ′)

=
n

∑
i=1

G′(ηi)
2

V (µi)
xix

′
i

(4.39)

Then the score vector is distributed as

U ∼MV Np(0, I)

so that

Q =UI−1U ′ ∼ χ
2(p)

4.4 Goodness of Fit in GLM

4.4.1 Deviance

Here we want to estimate Y by µ̂ and we expect that in n data points we can estimates n

parameters. The deviance function is a very useful method for comparing the two models

when one model has parameters that are a subset of another. The deviance is equal to twice

the difference between log-likelihood for reduced and full models or fitted and saturated

models. The theoretical definition of deviance is given by

D = 2{`(y,y)− `(µ̂,y)} (4.40)

72



This has an asymptotical χ2 distribution with degrees of freedom N− p, where p is the num-

ber of parameters in the reduced models. In the hypothesis testing, a test using the deviance

is equivalent to a likelihood ratio test. Let us find out the deviance of the difference distri-

butional equations. Let µ̂i denote the MLE of µi under the model of interest and let µ̃i = yi

denote the MLE under the saturated model (McCullagh and Nelder, 1989). From the first

principles of exponential family, the examples are:

Example 4.4.1.1: Deviance for a Binomial model

D(y, û) = 2∑

[
yi log

(
yi

ni

)
+(ni− yi) log

(
ni− yi

ni

)
− yi log

(
µ̂i

ni

)
− (ni− yi) log

(
ni− µ̂i

ni

)]
= 2∑

[
yi log

(
yi

µ̂i

)
+(ni− yi) log

(
ni− yi

ni− µ̂i

)]
(4.41)

Example 4.4.1.2: Deviance for a Poisson model

D(y, û) = 2∑ [yi log(yi)− yi− log(yi!)− yi log(µ̂i)+ µ̂i + log(yi!)]

= 2∑

[
yi log

(
yi

µ̂i

)
− (yi− µ̂i)

] (4.42)

Example 4.4.1.3: Deviance for a Normal model

D(y, û) = 2∑

{
yi(yi− µ̂i)−

1
2

y2
i +

1
2

µ̂2
i

}
= 2∑

{
1
2

y2
i − yiµ̂2

i +
1
2

µ̂2
i

}
= ∑(yi− µ̂i)

2

(4.43)

Example 4.4.1.4: Deviance for a Bernoulli model

D(y, û) = 2∑ [yi log(yi)+(1− yi) log(1− yi)− yi log(µ̂i)− (1− yi) log(1− µ̂i)]

= 2∑

[
yi log

(
yi

µ̂i

)
+(1− yi) log

(
1− yi

1− µ̂i

)] (4.44)

4.5 Estimation of the Scale Parameter

When we assumed that the scale parameter is unknown, an estimate is obtained by using

the following methods:
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• The deviance method

φ̂ = D
N−p

where N is the number of sample cases (number of rows in the data set we are model-

ing) and p is number of parameters.

• Pearson χ2

For example

– Normal: χ2 = SSE = (yi− µ̂)2/Var(µ̂)

– Poisson: χ2 = (yi− µ̂)2/µ̂

– Binomial: χ2 = (yi− µ̂)2/[µ̂(1− µ̂)]

If the model is correct then

φ̂ =
χ2

N− p

In the following distributions we give φ :

– Normal: SSE/(N− p)≈ σ2 = φ

– Poisson: χ2/(N− p)≈ 1 = φ

– Binomial: χ2/(N− p)≈ 1 = φ

If the model holds, then χ2/(N− p) is a consistent estimate for σ2 in the asymptotical

sequence N→ ∞ for fixed ni’s.

• The method of moments or MLE

In this section, the method of moments agrees with MLE where the estimate is

φ̂ = Var(yi)
Var(µ̂) =

∑(yi−µ̂)2

(n−p)Var(µ̂)

and p is the number of parameters estimated.

4.6 Distribution of the Scaled Deviance

The likelihood ratio criterion (LRC) compare two models in the exponential family and has

the form

−2logλ = 2
n

∑
i=1

yi(θ̃i− θ̂i)−b(θ̃i)+b(θ̂i)

φ
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Then we can write the likelihood ratio criterion as follows

−2logλ =
D(y, µ̂)

φ

Note that D(y, µ̂) does not depend on unknown parameters and it is called deviance. From

the equation above, we note that LRC is the deviance divided by the scale parameter φ and

we can call this the scaled deviance.

4.7 Theory of Generalized Estimating Equations (GEEs)

4.7.1 Introduction

Correlated data are very common in the longitudinal data setting. The most common ap-

plications include longitudinal and clustered data. Generalized estimating equations (GEEs)

are a suitable and general approach to analyse in these kinds of correlated data. GEE was

introduced by Liang and Zeger (1986) as a method of estimation regression model param-

eters dealing with correlated data. The GEE method, an extension of the quasi-likelihood

(QL) approach, is being increasingly used to analyze longitudinal and other clustered data,

especially when the outcome measure of interest is discrete (i.e binary or count data) rather

than continuous (Hanley et al., 2003). This approach generalized the estimation method of

quasi-likelihood of Wedderburn (1974) to the correlated data (Yan et al., 2007). An alterna-

tive generalization was proposed by Lee and Nelder (2001). The GEE approach focuses on

models for the mean of the correlated observations within clusters without fully specifying

the joint distribution of the observations (Yan et al., 2007).

4.7.2 Advantages of GEE

The GEE, like any other model, has some advantages. The main advantage of GEE lies

in the unbiased estimation of population-averaged regression coefficients dispate possible

misspecification of the correlation structure. According to Lipsitz et al. (1994) GEE provides

some benefits over other models:

• Accounts for within-subject/within-clustered correlation.

• Allows for missing data.

• It has a range of correlation structures.

• Allows for time-varying covariates.
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• Allows for infrequently or irregularly-timed or mistimed measurements.

GEEs have consistent and asymptotically normal solutions even with misspecification of

the correlation structure. It avoids the need for multivariate distribution by only assuming

a functional form for the marginal distribution at each time point (i.e yi j). The covariance

structure is treated as a nuisance. GEE cases are assumed to be dependent within subjects

and independent between subjects. The correlation matrix that represents the within-subject

dependencies is estimated as part of the model.

4.8 Assumption of GEEs

• The responses are Y1,Y2, ...,Yn are correlated or clustered, i.e., cases are NOT indepen-

dent.

• It uses quasi-likelihood estimation rather than maximum likelihood estimation (MLE)

or ordinary least squares (OLS) to estimate the parameters.

• The homogeneity of variance does NOT need to be satisfied

• Covariates can be the power terms or some other nonlinear transformations of the

original independent variables and it can have interaction terms.

• Errors are correlated.

• It has a covariance specification

• Missing data in Weighted GEE (for handling missing at random (MAR) dropouts) and

GEE missing complete at random (MCAR) dropouts)

4.9 Specification Needed for GEEs

According to Liang and Zeger (1986), Guo (2011) and Yan et al. (2007) the Generalized

Estimating Equations procedure extends the generalized linear model to allow for analy-

sis of repeated measurements or other correlated observations, such as clustered data and

the setting is as follows: one each of i = 1, . . . ,N subjects, there are made ni measurements

yi = (y1i, . . . ,yini). The independent is assumed to be the measurements on the different sub-

jects. Measurements on the same subject are allowed to be correlated. The model specifica-

tion of a GEE requires three elements. The model formulation is similar to that of a GLM but
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full specification of the joint distribution is not required and thus no likelihood function

g(µi) = xT
i β (4.45)

Systematic part: This relates the expectation E(yi j) = µi j to the linear predictor via the link

function.

g(µi j) = ηi j = xT
i β (4.46)

Random part: This specifies how the variance Var(yi j) is related to the mean E(yi j) by speci-

fying a variance function Var(µi j) such that Var(yi j) = φVar(µi j)

The correlation part: This is the part which differentiates the GEE model from the GLM.

We need to apply a correlation structure for observation on the same unit. This is done by

specifying a working correlation matrix.

According to Owusu-Darko et al. (2014) correlated data are modeled using the same link

function and linear predictor setup (systematic component) as the independence case. The

random component is described by the same variance functions as in the independence case

but the covariance structure of the correlated measurements must also be modeled. Let the

vector of measurements on the ith subject be Yi = [Yi1,Yi2, · · · ,Yini ]
′

with corresponding vector

of means µi = [µi1,µi2, · · · ,µini ]
′

and let Vi be an estimate of the covariance matrix of Yi j. The

unknown regression coefficient vector β is of primary interest. The GEE for estimating β is

an extension of the independence estimating equation to correlated data and is given by

∑
i

D
′
iV
−1
i (yi−µi) = 0 (4.47)

where Di = Di(β) =
∂µi
∂β

and Vi is the working covariance matrix of Yi. Vi can be expressed in

terms of a working correlation matrix R(α)

Vi = A
1
2
i R(α)A

1
2
i /φ (4.48)

where Ai is a diagonal matrix with element Var(yi j =V (µi j) specified as function of the means

µi j, α is some unknown parameters. The parameter α can be estimated through method

of moments or another set of estimating equations (Prentice, 1988) . Let D and V denote

conforming matrices constructed for Di and Vi defined above. Then according to Liang and

Zeger (1986) the asymptotical covariance for the p covariates is given by a p× p matrix

Vβ = lim
n→∞

n(DT V−1D)−1DTV−1(y−µ)(y−µ)TV−1D(DTV−1D)−1 (4.49)
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where µ̂ = g−1η̂ with η̂ being η̂ evaluated at convergence.

4.9.1 Iteratively Reweighted Least Squares Algorithm

According to Liang and Zeger (1986) the solution is obtained by alternating between estima-

tion of φ, β and α using method of moments estimators for φ and α. Thus in summary the

IRWLS proceeds as follows:

• Step 1: Assuming R = I and φ = 1, provide initial estimate of β with GLM algorithm.

• Step 2: Estimate φ and α

• Step 3: Use an updated φ and α to estimate β

• Return to step 2 and 3 until convergence.

According to Liang and Zeger (1986) at a given iteration the correlation parameters α and

scale parameter φ can be estimated from the current Person residuals defined by

r̂i j =
yi j−µi j√
Var(µi j)

where µi j depends upon the current value β. We can estimate φ by

φ̂ =
k

∑
i=1

ni

∑
j=i

r̂i j

N− p
(4.50)

where N = ∑ni. This is the longitudinal analogue of the familiar Person statistic (McCullagh,

1983; Liang and Zeger, 1986). Given φ̂, a method of moments estimator for the parameter α

is

α̂ = φ̂

N

∑
i=1

N

∑
j> j′

r̂i j r̂i j′

∑
N
i=1

1
2 ni(ni−1)− p

(4.51)

4.9.2 Newton-Iteration

To solve the system of equation using the Newton-iteration method, there are some steps

which must be followed. Then the fitting algorithm becomes:

1. Compute an initial estimate of β from a GLM (i.e by assuming independence)

2. Compute an estimate R(α) of the working correlation on the basis of the current Person

residuals and the current estimate of β

3. Compute an estimate of the variance as
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Vi = φA
1
2
i R(α)A

1
2
i

4. Compute an updated estimate of β based on the Newton-step

β j+1 = β j +

[
∑

i

∂µ′i
∂β

V−1
i

∂µi

∂β

]−1[
∑

i

∂µ′i
∂β

V−1
i (yi−µi(β))

]
(4.52)

This should iterate through step 2−4 until convergence. Note that φ need not be estimated

until the last iteration. The GEE estimate β̂ of β is often very similar to the estimates obtained

if observations were treated as being independent. In other words, the estimate β̂ for GEE

is often very similar to the estimates obtained by fitting a QL-method to the data Yan et al.

(2007)

4.10 Estimation

Parameter Estimation: The controls in this group allow you to specify estimation methods

and to provide initial values for the parameter estimates.

4.10.1 Estimation of Regression Coefficients β̂

We estimate β by solving the generalized estimating equations (GEE). The GEE estimator

of β is the solution of 4.47 where α̂ is a consistent estimator α and Di =
∂µi
∂β

(Hedeker and

Gibbons, 2006). For example normal case, µi = Xiβ, Di = Xi and Var(α̂) = φR(α̂)i which yields

for solving β̂

∑
i

X
′
i [Ri(α̂)Xi]

−1(yi−Xiβ) = 0 (4.53)

Therefore

β̂ =

[
∑

i
X
′
i [R(α̂)i]

−1Xi

]−1[
∑

i
X
′
i [R(α̂)i]

−1yi

]
(4.54)

This is similar to weighted least-squares (WLS) estimator and is more generally used because

solution only depends on the mean and variance of y, these are quasi-likelihood estimates

(Hardin and Hilbe, 2003). According to Liang and Zeger (1986) this is asymptotically normal-

ity if the variance function V (µ) is incorrectly specified and the working correlation matrix R

is not the true correlation matrix.
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4.10.2 Estimating the Covariance of β̂

In order to perform hypothesis tests and construct confidence intervals, we are interested to

obtain standard errors associated with the estimated regression coefficients. These standard

errors are obtained as the square root of the diagonal elements of the matrix V (β̂). The GEE

provides two versions of these:

1. Robust or ”empirical” or sandwich estimator

The estimator

V (β̂) = M−1
0 M1M−1

0 (4.55)

where

M0 = ∑i
∂µ̂
′
i

∂β
V̂−1

i
∂µ̂i
∂β

and

M1 = ∑i
∂µ̂
′
i

∂β
V̂−1

i (yi− µ̂i)(yi− µ̂i)
′
V̂−1

i
∂µ̂i
∂β

is called the empirical or robust estimator of the covariance matrix of β̂. According to

Owusu-Darko et al. (2014) it has the characteristic of being a consistent estimator of the

covariance matrix of β̂ even if the working correlation matrix is misspecified. We notice

that if V̂i = (yi− µ̂i)(yi− µ̂i)
′

then the two estimator equations are equal. This occurs

only if the true correlation structure is correctly modeled. In most cases, the robust

or ”sandwich” estimator provides a consistent estimator of V (β̂) even if the working

correlation structure Ri(α) is not the true correlation of yi (Hedeker and Gibbons, 2006

and Owusu-Darko et al., 2014).

2. Naive or ”model-based” estimator

This is the ”GEE-version” of the inverse of the Fisher information often used in GLMs

as an estimator of the covariance estimates of the maximum likelihood estimator (MLE)

of β̂. This is given by

V (β̂) = M−1
0 (4.56)

For Di = Xi then V (β̂) becomes

V (β̂) =

[
N

∑
i=1

XiV̂−1
i Xi

]−1

(4.57)

Here Cov(β̂)m is a consistent estimator of the covariance matrix of β̂ if the mean model

and the working correlation matrix are correctly specified.
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4.11 Working Correlation Matrix

In GEE modeling one has to specify the working correlation matrix in estimating the covari-

ance of the estimates. According to Owusu-Darko et al. (2014) the specification of the work-

ing correlation matrix accounts for the form of the within-subject correlation of responses

on dependent variables. One of the aims of this work is to find out whether using differ-

ent working correlation matrices for estimation would substantially affect the estimates and

standard errors with respect to model-based and empirical-based estimator. The working

correlation R(α) matrix is

Vi = A
1
2
i R(α)A

1
2
i /φ (4.58)

where R(α) is a ni× ni matrix of correlation coefficients, number is between -1 and 1. The

parameter α is a tunable parameter on which R(α) depends. The R(α) is assumed to depend

on a set of parameters α. The over dispersion parameter φ is assumed to be known. If it is

unknown it is included as a parameter to be estimated from the data using some methods as

mentioned above. The α is estimated in terms of Person residuals given by

êi j =
yi j− µ̂i j√

V (µ̂i j)
(4.59)

subject to the structure of the assumed correlation. There are several specific choices of the

form of the working matrix R(α) to model the correlations of the individual responses.

Independent (RIN)

Corr(yi j,yik) =

1 j=k

0 j 6= k
RIN =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


Exchangeable (REX )

Corr(yi j,yik) =

1 j=k

α j 6= k
REXCH =


1 α · · · α

α 1 · · · α

...
...

. . .
...

α α · · · 1


81



Autoregressive (RAR−1)

Corr(yi j,yik) = α
k for t = 0,1, . . . ,ni− j RAR−1 =


1 α · · · αn−1

α 1 · · · αn−2

...
...

. . .
...

αn−1 αn−2 · · · 1



Toeplitz (RTOEP)

Corr(yi j,yik) =

1 j=k

α j = 1,2, . . . ,ni− t
RTOEP =


1 α1 · · · αn−1

α1 1 · · · αn−2
...

...
. . .

...

αρn−1 αn−2 · · · 1


Unstructured (RUN)

Corr(yi j,yik) =

1 j=k

α jk j 6= k
RUN =


1 α12 · · · α1n

α21 1 · · · α2n
...

...
. . .

...

αn1 αn2 · · · 1


4.12 Inference

Now our interest is to test the hypothesis concerning the elements of β. We consider the

hypothesis of the form

H0 : Lβ = d (4.60)

where L is a r× p matrix of constants imposing ` linearly independent constants on the ele-

ments of β and d is a r× 1 vector of constants. Since β̂ is asymptotically normal, then with

the large sample approximation

Lβ̂∼ N(Lβ̂,LV̂βLT ) (4.61)

the Wald χ2 test statistics is given by

χ
2 = (Lβ̂−d)(LV̂βLT )−1(Lβ̂−d) (4.62)

that has an asymptotic χ2
` distribution if H0 is true.
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4.13 Model Fit Analysis under the QIC Statistics

According to Hanley et al. (2003), the Akaike information criterion (AIC) is a goodness-of-fit

measure for likelihood based models. It is defined as

AIC =−2L+2p (4.63)

where L is the log likelihood and p is the number of parameters in the model. Since GEE is a

non-likelihood based model, we do not have a likelihood function in context. However we

may have quasi-likelihood. We propose to replace the likelihood by the quasi-likelihood Q

under the working independent model (Pan, 2001). An extension of AIC is QIC, the quasi-

likelihood under the independent model information criteria. This measure is more appro-

priate for GEE which is a quasi-likelihood method. Like the AIC, the smaller the QIC the

better. The QIC is defined as

QIC(R) =−2Q(g−1(xβR))+2trace(A−1
I VMS,R) (4.64)

where −2Q(g−1(xβR)) is the value of the quasi-likelihood calculated with the proposed cor-

relation structure R and g−1(xβR) = µ̂ where g−1 is the inverse link function for the model, a

logit for this model. We define AI as the variance matrix under the independent model and

we define VSM,R as the sandwich estimate of variance under the hypothesized correlation

structure R.

4.14 Application of GEEs

The aim of this section is to analyze RSV data using application of Generalized Estimating

Equations (GEE) models under various working correlation assumptions. From our analy-

sis, we check the test of model-based and empirical-based standard error estimates on co-

efficients estimation and parameter estimates of the study based on our GEE assumption

model. The application was carried out using SAS PROC GENMOD which is an implanted

procedure in SAS suited to fitting both GLM and their extensions to GEEs allowing for the

specification of the quasi-likelihood and the correlation structure for correlated data.

4.14.1 Statistical Model

The statistical defining of data is refer to the paper by Mwambi et al. (2011)
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rsvi j =

1, uninfected for subject i

2, otherwise
and

actpassi1 =

1, active sampling for subject i

2, otherwise

From the Table 4.3 the statistical model can be written as:

log(E(yi j)) = β0 +β1act passi1 +β2agei j +β3dti j (4.65)

where β1 is the main effect of an act pass, β2 is the main effect of an age effect, β3 is the main

effect of dt effect and β4 is the main effect of visit effect.

The commands to fit the model in SAS code for GEE model are

proc genmod data=spha descending;

class id;

model rsvpos=actpass age dt /dist=bin link=logit;

Repeated sub=id/type=cs covb corrw modelse;

run;

The GENMOD procedure can fit models to correlated responses by the GEE method and it

uses maximum likelihood methods. The options in the REPEATED statement specify the

correlation structure as well as convergence criteria. The CORR option is probably the most

important option in the REPEATED statement. It is used to specify the ”working correlation

matrix” and the SUBJECT option identifies the cluster. MODELSE statement displays an

analysis of parameter estimates table using model-based standard errors. The ”Analysis of

Parameter Estimates” table based on empirical standard errors is displayed by using default

in SAS.

4.14.2 Hypothesis Tests

We can test for H0 : β1 = β2 = β3 = 0 in (4.65) to investigate whether there is a significant

association between the pattern of change of the responses and actpass.
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4.14.3 Output in SAS and Interpretation

Table 4.3: Estimated Coefficients, Standard Errors and P-Values : GEE Models
Model INDEPENDENCE EXCHANGEABLE AR(1) TOEPLITZ

Parameter Estimates Std Error Estimates Std Error Estimates Std Error Estimates Std Error

Intercept −1.8674∗ 0.575 (0.585) −1.8146∗ 0.581 (0.581) −1.9215∗ 0.565 (0.595) −1.9214∗ 0.565 (0.594)

actpass −2.2382∗ 0.454 (0.544) −2.2308∗ 0.438 (0.548) −2.2115∗ 0.445 (0.544) −2.2129∗ 0.445 (0.544)

age 0.3889 0.174 (0.206) 0.3486 0.188 (0.213) 0.3935 0.174 (0.212) 0.3936 0.174 (0.211)

dt -0.0111 0.029 (0.028) -0.0098 0.029 (0.028) -0.0101 0.029 (0.028) -0.0100 0.029 (0.028)
Note: * Shows a parameter estimate that has significant effects at 5% level of significance.

(.) Shows model-based standard error estimates (std err).

Table 4.3 gives the analyzes of GEE parameter estimation for the main effect based on our

four assumptions (independent, autocorrelation, Toeplitz and exchangeable) with their re-

spective model-based and empirical-based standard error estimates. It could be concluded

from the table that the parameter estimates for the variables (actpass, age and dt) are ap-

proximately the same for both empirical and model-based parameter estimates for all the

assumptions excluding exchangeable. However, the standard errors for the robust and naive

cases are marginally different. This may indicate that the true correlation structure for the

GEE is not correctly modeled using the independence, autocorrelation and Toeplitz model

assumption.

The parameter estimation for actpass is highly significant but has the highest standard er-

rors values for both empirical and model-based estimations. The estimation of the model

age parameter was seen to be statistically significant at α = 0.05 significance level for all

the assumptions under empirical-based estimates but was statistically insignificant under

model-based estimates. The parameter estimation for dt was statistically not significant at

α = 0.05 significance level for all assumptions in both model estimates.

A vital observation of the standard errors for model-based and empirical-based estimation

is marginally different and relatively small for all our assumptions except the exchangeable

GEE model. The parameter estimates for empirical and model based in the GEE exchange-

able model are the same. The standard error estimate for empirical and model-based are

approximately the same. The parameter intercept is significant. The estimated standard er-

ror estimates for robust or sandwich estimators of the model for all parameters estimates are

equal. We notice that if

V̂i = (yi− µ̂i)(yi− µ̂i)
′
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then the model-based and empirical-based standard errors estimates are equal. This occurs

only if the true correlation structure is correctly modeled. In our case, comparing the anal-

ysis of exchangeable GEE model with the other working correlation assumptions discussed

above, we choose the exchangeable GEE model as the best fit for our analysis.

4.14.4 Summary

Generalized estimating equations (GEEs) are a suitable and general approach to analysis in

these kinds of correlated data. The GEE method is an extension of the quasi-likelihood (QL)

approach and is being increasingly used to analyze longitudinal and other clustered data,

especially when the outcome measure of interest is discrete (i.e. binary or count data) rather

than continuous. The GEE method is known to provide consistent regression parameter

estimates regardless of the choice of working correction structure, provided
√

n consistent

nuisance parameters are used. However, it is essential to use the appropriate working cor-

relation structure in small samples, since it improves the statistical efficiency of β̂. The GEE

works best if the number of observations per subject is small and the number of subjects is

large and also works best if it is in longitudinal that the measurements are taken at the same

time for all subjects. GEE is not good for high unbalanced data sets. It allows for a flexible

relationship to be modeled between the response and any model covariates. It also allows

for correlation within the counts, which is very important when considering variance regres-

sion. Coefficient ˆβGEE is asymptotically correct if the underlying regression mean is model is

correct. Suppose the mean is correctly specified and, the variance and correlation structure

are incorrect but GEE model still provides consistent estimates of the parameters, and even if

assumed correlation model is incorrect the consistent estimates of the valid standard errors

can be obtained with the sandwich covariance estimator. That is the main advantage of GEE

models. The GEE is an easy methodology to use, it runs well in SAS and produces population

estimates directly. In SAS, it uses PROC GENMOD procedure to fit model. PROC GENMOD

is a powerful tool to conduct GLM as well as the extension to GEE where correlated outcome

data were taken into account.
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Chapter 5

Generalized Linear Mixed Models

(GLMMs)

5.1 Introduction

According to Pan and Lin (2005), Generalized linear mixed models (GLMMs) as proposed

by Breslow and Clayton (1993) are obtained from the extension of generalized linear mod-

els (GLMs) that was proposed by McCullagh and Nelder (1989) by including random ef-

fects into the linear predictors and include the well-known linear mixed models (LMMs)

for normal responses (Laird and Ware, 1982) as a special case. The applications are use-

ful in various disciplines such as the analysis of clustered data including longitudinal data

or repeated measures. According to Feddag and Mesbah (2006), GLMMs are extension of

GLMs that accommodate correlated and over-dispersed data by adding random effects to

the linear predictor. These models are useful when the interest of the analyst lies in the in-

dividual response profiles rather than the marginal mean E(yi j). These models are useful

for modeling the dependence among response variables existing in longitudinal or repeated

measures studies, for accommodating overdispersion among binomial or Poisson responses,

and for producing shrinkage estimators in multiparameter problems, such as the construc-

tion of maps of small area disease rates (Breslow and Clayton, 1993). The estimates of the

parameters are obtained by maximum likelihood or restricted maximum likelihood. Breslow

and Clayton (1993) used the approximations in the penalized quasi-likelihood (PQL) and

the marginal quasi-likelihood (MQL) approach to find the regression parameter estimates

and the variance components. The other methods are Markov Chain Monte Carlo (MCMC),

Bayesian approach, and Maximum stimulated likelihood (MLS). In our case we will focus

on Laplace approximation which is a combination of multivariate Taylor series expansion
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and Laplace approximation that is fast, computationally accurate and gives a likelihood for

likelihood ratio tests.

5.2 Generalized Linear Mixed Models

The generalized linear mixed models combine the linear mixed models described in Chapter

3 with the generalized linear models introduced in Chapter 4. According to Gbur et al.

(2012), the GLMMs is an extension of generalized linear model which includes the random

effects into the linear predictor. In general, let Y be response variable whose conditional

distribution given the random effects belongs to the exponential family or can be written

as quasi-likelihood (Gbur et al., 2012). Given a vector ui of random effect for cluster i, it is

assumed that all responses Yi j are independent with density function that is given by

f (yi j|u,θi j,φ) = exp
{

yi jθi j−b(θi j)

φ
+ c(yi j,φ)

}
(5.1)

in which θi j is now modeled as

θi j = x
′
i jβ+Z

′
i jui (5.2)

and ui is assumed that

ui ∼ N(0,D)

where θi and φ are parameters and b(θi) and c(yi,φ) are known functions. Let x1, . . . ,xp be

the set of explanatory variable for fixed effects and u1, . . . ,uq be the set of random effects. The

linear predictor of the model for the observation given the random effects is given by

ηi j = g(E[Yj|u1, . . . ,uq])

= β0 +
p

∑
i=1

βixi j +
q

∑
k=1

Zk juk, j = 1, . . . ,n
(5.3)

where β0 is the overall mean, βi is the ith fixed effects coefficient, xi j is the ith fixed effects

explanatory variable on the jth observations, Zk j is the binary indicator variable for the effect

of the kth random effects, uk on the jth observation and g(.) is the link function relating the

condition mean of the response to the predictor. In matrix form, the linear predictor can be

written as

η = g(E[Y |u])

= Xβ+Zu
(5.4)
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where Y is the n×1 vector of response, X is the n× (p+1) fixed effects design matrix, β is the

(p+1)×1 vector of fixed effects coefficients, Z is the n×q design matrix for random effects

and u is the q×1 vector of random effects.

The expectation of the GLMMs are

E (Y |u) = g−1(Xβ+Zu) = g−1(η) (5.5)

The conditional variance is given by

V (Y |u) = R = φV
1
2 PV

1
2 (5.6)

where P is a working correlation matrix, V
1
2 is a diagonal matrix with the square root of the

variance function on diagonal and φ is a scale parameter. The relationship between the linear

predictor and the vector of observations is modeled as

(Y |u)∼ (g−1(η),R)

This means that the conditional of y given u has mean g−1(η) and variance R. According

to Gbur et al. (2012), if P is the identity matrix, then the R is an n× n covariance matrix.

The random effects u are assumed to be a multivariate normally distributed mean zero and

variance G i.e u∼MV N(0,G)

E(u) = 0 and Var(u) = G

5.3 Likelihood Function of GLMMs

According to Verbeke and Molenberghs (2005) and Schelldorfer et al. (2012), we let fi j(yi j|ui,β,φ))

denote the conditional density function of Yi j and ui and the marginal distribution of Yi j is

given by

fi(yi,β,ui,φ) =
∫ ni

∏
j=1

fi j(yi j|ui,β,φ)) f (ui,G)dui (5.7)

89



where f (ui,G) is the density of u ∼ (0,G) distribution. According to Moudud (2009) the

distribution of random effects depends on unknown parameter is given by

L(β,G,φ,y) =
n

∏
i=1

f (yi|G,β,φ)du

=
n

∏
i=1

∫ ni

∏
j=1

f (yi j|G,β,φ) f (ui,G)dui

(5.8)

The likelihood function of GLMMs is from the idea of marginal likelihood function from

LMMs which is an integral of the joint density function. The likelihood function of a GLMM

is given by the following expansion

L(β,θ,φ) =
∫ n

∏
i=1

[
exp
{

yiθi−b(θi)

φ
+C(yi,φ)

}]
1

(2π)
q
2

exp
{
−1

2
||u||22

}
du

=
1

(2π)
q
2

∫ {
exp

(
n

∑
i=1

yiθi−b(θi)

φ
+C(yi,φ)

)
− 1

2
||u||22

}
du

(5.9)

where ||u||22 = (u− û)
′
Q(û)(u− û). According to Verbeke and Molenberghs (2005) and Jiang

(2007) the integral of equation (5.8) cannot be worked out analytically under non-normal

linear mixed model but numerical approximations are required.

5.4 Estimation and Inference in GLMMs

The estimation of the parameters is obtained by maximum likelihood or restricted maximum

likelihood (REML). Breslow and Clayton (1993) used the approximations in the marginal

quasi-likelihood (MQL) approach to find the regression parameter estimates and the vari-

ance components are estimated by REML or the profiled maximum likelihood. They also

used the penalized quasi-likelihood (PQL); this is based on first-order Taylor expansions

around the maximum of current estimates of the random effects via the first-order Laplace

approximation of the integrals. These approaches produce biased estimates for both the re-

gression and variance components parameters (Feddag and Mesbah, 2006). Breslow and Lin

(1995) provide the correction factor for the estimates of the variance component derived from

the second-order Laplace approximations and extend this bias correction to the GLMMs with

multivariate random effects. The several approximation methods that were carried out by

former studies such as Guass-Hermite quadrature, Laplace approximation, Penalized quasi-

likelihood and Marginal quasi-likelihood are used to find the estimates.
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5.5 Laplace Approximation

The Laplace’s method is an alternative approach of the approximation of integral. Sun (2011)

and Breslow and Lin (1995) used the fifth-order Laplace approximation to estimate random

effects with a single random effect per cluster and Raudenbush et al. (2000) extend this idea to

high order approximation and multiple dependent random effects per cluster. The integrals

in L(β,D,φ) can be written in the form

I =
∫

eQ(b)du (5.10)

and the second-order Taylor expansion of Q(b) about b̂ is given by

Q(b)≈ Q(b̂)+
1
2
(b− b̂)

′
Q′′(b̂)(b− b̂) (5.11)

where the first-order term of the Taylor expansion disappears since the expansion is done

about b̂ and Q′′(b̂) = −`′′(β,D,φ)|b=b̂ is a Hessian of the log-likelihood evaluated at b̂. Then

by using the approximation in the Laplace approximation, the quadratic term leads us to

I ≈ (2π)
q
2 |Q′′(b̂)|−

1
2 eQ(b̂) (5.12)

and the marginal log-likelihood becomes

`(θ,y) = log
∫

exp
(
`(θ, b̂,y)− 1

2
(b− b̂)

′
Q′′(b̂)(b− b̂)

)
db

= `(θ, b̂,y)− 1
2

log

∣∣∣∣∣Q′′(b̂)2π

∣∣∣∣∣
(5.13)

This gives good approximation if we have many repeated measures per subject.

5.6 Approximation of the Data

According to Verbeke and Molenberghs (2005), we re-write GLMM as

Yi j = µi j + εi j

= h(x
′
i jβ̂+ z

′
i jb̂i)+ εi j

(5.14)

where h(.) is the inverse link function and the error terms have the variance equal to

V (Yi j|bi) = φv(µi j)
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and where v(.) is usually the variance function of mean in an exponential family in general-

ized linear model. The several methods of the tools for the approximation of the data that

was proposed by Breslow and Clayton (1993) and other current studies will be discussed in

these section. The two commonly used methods that will be discussed are penalized quasi-

likelihood and marginal quasi-likelihood

5.6.1 Penalized Quasi-Likelihood (PQL)

The penalized quasi-likelihood (QPL) is used for the estimation of the parameters under

maximum likelihood (ML) or restricted maximum likelihood (REML). According to Breslow

and Clayton (1993), the PQL approximation is one of the approaches used to find the the

regression parameter estimates and the variance components are estimated by the REML or

the profiled maximum likelihood. PQL is based on Taylor expansions around the maximum

of current estimates of the random effects via the Laplace approximation of the integrals. In

our case the linear Taylor expansion is about β and b̂i and the model is given by

Yi j ≈ h(x
′
i jβ̂+ z

′
i jb̂i)+h′(x

′
i jβ̂+ z

′
i jb̂i)x

′
i j(β− β̂)+h′(x

′
i jβ̂+ z

′
i jb̂i)z

′
i j(bi− b̂i)+ εi j

= µ̂i j +V (µ̂i j)x
′
i j(β− β̂)+V (µ̂i j)z

′
i j(bi− b̂i)+ εi j

(5.15)

In vector notation we re-write the expansion as

Yi = µ̂i +Vix
′
i(β− β̂)+Viz

′
i(bi− b̂i)+ εi (5.16)

and by re-ordering terms gives us

Y ∗i ≡+V−1
i (Yi− µ̂i+)xiβ̂+ zib̂i

≈ xiβ̂+ zib̂i + ε
∗
i

(5.17)

which is an approximate LMM with pseudo responses Y ∗i and where ε∗i = V̂−1εi. According

to Verbeke and Molenberghs (2005) model fitting proceeds by iterating between updating the

pseudo responses and fitting the model approximate model in the equation Y ∗ similar to a

linear mixed model until convergence. This approach produces biased estimates for both the

regression and variance components parameters (Feddag and Mesbah, 2006). Breslow and

Lin (1995) provide the correction factor for the estimates of the variance component derived

from the second-order Laplace approximation and extend this bias correction to the GLMM

with multivariate random effects.
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5.6.2 Marginal Quasi-Likelihood (MQL)

The marginal quasi-likelihood (MQL) approach is also used to find the regression parameter

estimates and the variance components are estimated by REML or the profiled maximum

likelihood (Breslow and Clayton, 1993). This approach also uses the Laplace approximation

but the MQL linear Taylor expansion via around β and b̂i = 0 and the model is given by

Yi j ≈ h(x
′
i jβ̂)+h′(x

′
i jβ̂)x

′
i j(β− β̂)+h′(x

′
i jβ̂)z

′
i j(bi− b̂i)+ εi j

= µ̂i j +V (µ̂i j)x
′
i j(β− β̂)+V (µ̂i j)z

′
i j(bi)+ εi j

(5.18)

In vector notation we re-write the expansion as

Yi ≈ µ̂i +Vix
′
i(β− β̂)+Viz

′
ibi + εi (5.19)

and by re-ordering terms gives us

Y ∗i ≡+V−1
i (Yi− µ̂i+)xiβ̂

≈ xiβ̂+ zib̂i + ε
∗
i

(5.20)

According to Verbeke and Molenberghs (2005) this is similar to PQL; the model fitting pro-

ceeds by iterating between updating the pseudo responses and fitting the model approxi-

mate model in the equation Y ∗ similar to a linear mixed model until convergence.

5.6.3 Marginal Quasi-Likelihood (MQL) versus Penalized Quasi-Likelihood (PQL)

According to Molenberghs and Verbeke (2005) the differences and the relationship between

MQL and PQL are as follows:

• With higher-order Taylor expansion, both approximations approach produce improve-

ment estimates

• With increasing or large number (ni) of measurements per subject

1. MQL provides biased estimates, while

2. PQL provides the consistent estimates values.

• With few repeated measurements per cluster both produced bad results for binary out-

comes.

• MQL only performs reasonably well if random effects variance is very small.
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5.7 Approximation of the Integral

According to Verbeke and Molenberghs (2005), the likelihood contribution of every subject

is of the form ∫
f (x)φ(x)dx (5.21)

where φ(x) is the density of the multivariate normal distribution. According to McCulloch

(1997) and Sun (2011), the Gaussian quadrature methods replace the integral by a weighted

sum and the integration is in the form∫
∞

−∞

f (x)exp(−x2)dx (5.22)

which is approximately
m

∑
i=1

wi f (xi) (5.23)

where m is the order of the approximation, the nodes xi are solutions to the mth order Her-

mite polynomial and wi are well chosen weights. According to Verbeke and Molenberghs

(2005), the approximation will be more accurate if we have higher m. In case of Gaussian

quadrature the nodes and weights are fixed independent f (x)φ(x) and in case of adaptive

Gaussian quadrature the nodes and weights are adapted to the support of f (x)φ(x) (Verbeke

and Molenberghs, 2005).

5.8 Inference

We showed that GLMMs can be estimated by fitting the pseudo-data by linear mixed models.

Thus we can use the same techniques of inference discussed in the previous chapter to find

the inference of GLMMs since we will be fitting pseudo data for GLMMs using the same

estimation methods used for linear mixed models.

5.9 Application to the Treatment of Lead-Exposed Children (TLC)

Data

The background for this data is given in Chapter 2. We analyze the TLC data using gener-

alized linear mixed models, because the data are frequency counts. Interest lies in testing

whether the intensities of occurrences are significantly different between the two treatment

groups. The covariates used in the analysis are treatment and week the same as in Chapter

3. The GLIMMIX procedure fits statistical models to data with correlations or non-constant
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variability and where the response is not necessarily normally distributed. These models are

known as generalized linear mixed models (GLMM). This model is like linear mixed mod-

els, as it assumes the random effects to be normally distributed. The GLIMMIX procedure

select the distribution of the response variable conditional on normally distributed random

effects and the data can have any distribution in the exponential family. The exponential

family contains many of the fundamental discrete and continuous distributions. For exam-

ple, the binary, binomial, Poisson, and negative binomial distributions are discrete members

of this family while the normal, beta, gamma, and chi-square distributions are examples of

the continuous distributions in this family. The GLIMMIX procedure allows us to specify

a generalized linear mixed model and to perform estimation and inference in such models.

PROC GLIMMIX will be used in SAS 9.3 to fit the model. The syntax is similar to that of

the MIXED procedure and includes CLASS, MODEL and RANDOM statements. In the case

of fitting GLMMs, we compare three types of fitted models of GLMM, namely the random

intercept model, random slope model and random intercept and slope model so that we will

understand how to fit GLMMs. The review of SAS for random effects modeling focuses on

the GLIMMIX. Table 5.1 shows the GLMM results when we consider the random intercept

using the PQL and MQL methods.

The commands to fit the model in SAS code for penalized quasi-likelihood (PQL) for GLMM

with random effect.

proc glimmix data=tlc method=RSPL;

class id group;

model y = group time group*time / dist=poisson link=log solution;

random intercept / type=un sub=id;

run;

The MODEL statement is required in every model. The option method in the PROC GLIM-

MIX statement specifies the estimation method. The PQL is obtained with the option method=RSPL

and the MQL is obtained with the option method=RMPL. The default is method=RSPL.

Both Table 5.1 and 5.2 result for fixed effects parameter estimates for fitting random intercept

model in both MQL and PQL methods shows that group and time effects were significantly

different at 5% significance level. The results also show that the interaction effects between

group and time were not significantly different at 5% significance level. Table 5.3 shows
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the result of the random intercept model for the estimated variance component and resid-

ual variance estimate. The result for fitting the random intercept model using both PQL

and MQL methods with unstructured covariance structure indicates the two variance com-

ponents namely the random intercept and the measurement error variances are estimated

as 0.04416 and 1.7687 with standard errors given by 0.009454 and 0.1455 respectively in the

PQL approximation while under MQL approximation the estimates are 0.0475 and 1.7661

with standard errors given by 0.01005 and 0.1461 respectively. We note that the random in-

tercept variance component is underestimated under PQL approximation compared MQL

approximation.

Table 5.1: Parameter estimates, standard errors and p-values for fixed effects under random

intercept model

PQL MQL

Parameter Estimates SE P-value Estimates SE P-value

Intercept 3.2360 0.041 < .0001 3.2463 0.041 < .0001

group -0.2413 0.061 < .0001 -0.2315 0.061 0.0002

time -0.01515 0.008 0.0584 -0.01515 0.008 0.0582

time*group -0.00830 0.012 0.4949 -0.00830 0.012 0.4946

Table 5.2: Tests of Fixed Effects for the random intercept model

PQL MQL

Effect F-value P-value F-value P-value

group 15.92 < .0001 14.20 0.0002

time 10.10 0.0016 10.11 0.0016

time*group 0.47 0.4949 0.47 0.4946

Table 5.3: Estimates variance component for random intercept model under PQL and MQL

PQL MQL

Structure

Cov Parm Estimates Std Error Estimates Std Error

UN(1,1) 0.04416 0.009454 0.04757 0.01005

Residual (VC) 1.7687 0.1455 1.7661 0.1461

In the case of random slope model, similar analysis was done. Table 5.4 shows the results of

the analysis of fixed effects under random slope models using the unstructured covariance
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structure and shows the solution of fixed effects that was a parameter estimates measuring

the covariates effects. Table 5.4 shows the result for fixed effects parameter estimates for fit-

ting random slope model in both MQL and PQL methods and indicates that the group effect

was significantly different at 5% significance level. The results also show that the time and

interaction effects between group and time were not significant at 5% level of significance

level. Table 5.5 shows the Type III analysis for fixed effects. The result for Type III analysis

for the random slope model for both MQL and PQL methods result shows that group and

time effects were significantly different at 5% significance level. The results also show that

the interaction effect between group and time was not significantly different at 5% level of

significance level. Table 5.6 shows the results of an estimation of variance of components

namely random slope model and measurement error. The two components of variance of

random slope and measurement error variance were estimated as 0.002315 and 2.0121 with

standard errors given by 0.000610 and 0.1649 respectively under the PQL approximation. In

the MQL approximation of the estimates were 0.002543 and 2.0955 with corresponding stan-

dard errors given by 0.000683 and 0.1742. Also in the random slope model we note that the

variance component is underestimated under PQL approximation as compared to the MQL

approximation.

Table 5.4: Parameter estimates, standard errors and p-values for fixed effects under random

slope model

PQL MQL

Parameter Estimates SE P-value Estimates SE P-value

Intercept 3.2474 0.03034 < .0001 3.2463 0.03097 < .0001

group -0.2298 0.04594 < .0001 -0.2315 0.04690 < .0001

time -0.01737 0.01091 0.1146 -0.01515 0.01123 0.1806

time*group -0.01164 0.01622 0.4737 -0.00830 0.01666 0.6187

Table 5.5: Tests of Fixed Effects for the random slope model

PQL MQL

Effect F-value P-value F-value P-value

group 25.03 < .0001 24.38 < .0001

time 8.18 0.0052 5.37 0.0226

time*group 0.51 0.4737 0.25 0.6187
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Table 5.6: Estimates of variance component for random slope model under PQL and MQL

PQL MQL

Structure

Cov Parm Estimates Std Error Estimates Std Error

UN(1,1) 0.002315 0.000610 0.002543 0.000683

Residual (VC) 2.0121 0.1649 2.0955 0.1742

In the final analysis of the TLC data was made to model both random intercept and slope.

The model was fitted without the interaction between group and time under MQL methods

because the analyses were not converged when this interaction were included in the model.

The convergence was only possible under different covariance structure for variance com-

ponents and MQL approximation when the interaction between group and time was not

included in the model. The results show that when we fit both the random intercept and

slope in the same model, we find that the PQL method does perform better than the MQL

under some number of covariance structures. Table 5.7 and Table 5.8 show the results for

the fixed effects analysis that allow both a random intercept and slope also show that the

group and time effects were significantly different at 5% significance level under both PQL

and MQL methods. The interaction was not significant at 5% significance level under PQL

and under MQL methods does not appear on the result since the model does not converge.

Table 5.7: Parameter estimates, standard errors and p-values for fixed effects under random

intercept and slope model

PQL MQL

Parameter Estimates SE P-value Estimates SE P-value

Intercept 3.2458 0.03090 < .0001 3.2441 0.03061 < .0001

group -0.2407 0.04627 < .0001 -0.2297 0.04601 < .0001

time -0.01967 0.007989 0.0156 0.01873 0.005973 0.0023

time*group -0.01060 0.01215 0.3841 . . .

Table 5.8: Test of fixed effects for the random intercept and slope model

PQL MQL

Effect F-value P-value F-value P-value

group 27.07 < .0001 24.92 < .0001

time 16.90 < .0001 9.83 0.0023

time*group 0.76 0.3841 . .
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Table 5.9: Estimates of variance component for random slope model under PQL and MQL

PQL MQL

Structure

Cov Parm Estimates Std Error Estimates Std Error

UN(1,1) 0.007326 0.008382 0.007284 0.008399

UN(2,1) 0.008570 0.001704 0.01030 0.002076

UN(2,2) 2.57E-19 . 5.87E-19 .

Residual (VC) 1.7732 0.1463 1.7425 0.1438

From the unstructured covariance structure specification for both PQL and MQL methods

respectively, we note that the elements of the matrix D =Var(ui) is estimated as

D̂ =

(
0.007326 0.008570

0.008570 2.57E−19

)
and D̂ =

(
0.007284 0.01030

0.01030 5.87E−19

)

which indicates a positive correlation between random intercept and slope. From the table

we find that the within-subject error variance (Residual, 1.7732 and 1.7425) is big relative to

the between-subject variance of the intercepts (the UN(1,1) term, which is V ar(b1i) = G11 =

0.007326 and 0.007284) in both PQL and MQL methods respectively.

5.10 Estimation via NLMIXED

We focus on the use of PROC NLMIXED procedure to fit GLIMMIX to longitudinal data.

PROC NLMIXED in SAS is a very flexible procedure for fitting non-linear mixed effects mod-

els. PROC NLMIXED directly maximizes an approximate integrated likelihood via numer-

ical quadrature. PROC NLMIXED has an option for a number of quadrature points using

during evaluation of integrals, e.g. QPOINTS=30 specifies that 30 quadrature points are to

be used for each random effects.

The commands to fit the model in SAS code for GLMM with SAS code (NLMIXED) with

random effect.

/*NLMIXED: Adaptive Gaussian Quadrature

proc nlmixed data=tlc qpoints=20 maxiter=100 technique=newrap cov ecov;

parms beta0=1.6 beta1=0.0 beta2=0.4 beta3=0.5 sigma=3.9;

eta=beta0 + beta1*time +beta2*group +beta3*time*group+b1;

mu=exp(eta);
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MODEL y POISSON(mu);

random b1 NORMAL (0,sigma**2) SUBJECT=id;

run;

and the commands to fit the model for GLMM with Gaussian quadrature

/*NLMIXED: Gaussian Quadrature

proc nlmixed data=tlc qpoints=20 noad maxiter=100 technique=newrap cov ecov;

parms beta0=1.6 beta1=0.0 beta2=0.4 beta3=0.5 sigma=3.9;

eta=beta0 + beta1*time +beta2*group +beta3*time*group+b1;

mu=exp(eta);

MODEL y POISSON(mu);

random b1 NORMAL (0,sigma**2) SUBJECT=id;

run;

The default method in PROC NLMIXED for computing this integral is adaptive Gaussian

quadrature. The NOAD option in the PROC NLMIXED statement requests nonadaptive

Gaussian quadrature. The QPOINTS=n > 0 statement specifies the number of quadrature

points to be used during evaluation of integrals. The PARMS statement identifies the un-

known parameters and their starting values. The MODEL statement defines the dependent

variable and its conditional distribution given the random effects. Here a Poisson conditional

distribution is specified with mean µ. The RANDOM statement defines the single random

effect to be b1, and specifies that it follows a normal distribution with mean 0 and variance

sigma∗∗2.

The result for fitting the model using PROC NLMIXED Gaussian quadrature and adaptive

Gaussian quadrature assuming random intercept model is given in Table 5.10.
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Table 5.10: Estimates for Gaussian quadrature and Adaptive Gaussian quadrature
Gaussian quadrature

Q-Points Q=10 Q=30 Q=50

Parameter Estimates SE Pr > |t| Estimates SE Pr > |t| Estimates SE Pr > |t|
β0 3.2279 0.03895 < .0001 3.2262 0.03838 < .0001 3.2279 0.03895 < .0001

β1 -0.01515 0.005994 0.0131 -0.01515 0.005994 0.0131 -0.01515 0.005994 0.0131

β2 -0.2481 0.05655 < .0001 -0.2470 0.05655 < .0001 -0.2481 0.05655 < .0001

β3 -0.00830 0.009133 0.3657 -0.00830 0.009133 0.3657 -0.00830 0.009133 0.3657

σ 0.2295 0.02017 < .0001 0.2301 0.01952 < .0001 0.2295 0.02017 < .0001

−2` 2745.2 2745.1 2745.2

Adaptive Gaussian quadrature

Q-Points Q=10 Q=30 Q=50

Parameter Estimates SE Pr > |t| Estimates SE Pr > |t| Estimates SE Pr > |t|
β0 3.2279 0.03895 < .0001 3.2279 0.03895 < .0001 3.2279 0.03895 < .0001

β1 -0.01515 0.005994 0.0131 -0.01515 0.005994 0.0131 -0.01515 0.005994 0.0131

β2 -0.2481 0.05655 < .0001 -0.2481 0.05655 < .0001 -0.2481 0.05655 < .0001

β3 -0.00830 0.009133 0.3657 -0.00830 0.009133 0.3657 -0.00830 0.009133 0.3657

σ 0.2295 0.02017 < .0001 0.2295 0.02017 < .0001 0.2295 0.02017 < .0001

−2` 2745.2 2745.2 2745.2

The result in Table 5.10 indicates that there is no difference in parameter estimates of Gaus-

sian quadrature and adaptive Gaussian quadrature. This takes into consideration in each

log-likelihood corresponds to the maximum of the approximation to the model involving

the log-likelihood corresponding to different quadrature points are not necessarily compa-

rable. This means that difference in log-likelihood value reflects the difference in the quality

of numerical approximation and thus higher log-likelihood value does not necessarily cor-

respond to better approximation which happens when we choose a large value of QPOINTS

to increase the accuracy of the numerical integration algorithm. The standard errors are ap-

proximately much closer as those obtained using GLIMMIX procedure in the random inter-

cept in Table 5.1. The adaptive Gaussian quadrature methods give estimates much closer to

the quasi-likelihood approximation under GLIMMIX than the Gaussian quadrature points.

The standard errors under adaptive Gaussian quadrature and Gaussian quadrature remain

the same as the number of quadrature point increases.

5.11 Summary

Generalized linear mixed model extends the concept approach represented by the linear

mixed effect model. It assumes natural heterogeneity across individuals in subsets of the re-
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gression coefficients. The focus of GLMMs is on inference about individuals. The regression

parameters (β) have subject-specific interpretations in terms of change in the transformed

mean response for a specific individual. Generalized linear mixed models have been im-

plemented in the SAS procedures PROC GLIMMIX and PROC NLMIXED. Both procedures

approach parameter estimation as an optimization problem, which solves for an approxima-

tion of the marginal log-likelihood. PROC NLMIXED accomplishes this using an integral

approximation through Gaussian, whereas PROC GLIMMIX relies on approximation of lin-

ear nixed models. PROC NLMIXED directly maximizes an approximate integrated likeli-

hood via numerical quadrature. The present study show that the likelihood approximation

may not be accurate if too few quadrature points are used. The results show that using

different Q can lead to considerable differences in estimates and standard errors. For exam-

ple, using non-adaptive quadrature Q=3, we found no difference in the week effect between

both group (β = −0.152, SE=0.059, p-value=0.081). Using adaptive quadrature with Q=50,

we found a non-significant interaction between the week and group (β = −0.008, SE=0.009,

p-value=0.3657).
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Chapter 6

Theory of Correspondence Analysis

(CA)

6.1 Historical Background of Correspondence Analysis

According to Zhou (2008) correspondence analysis (CA) is a universally popular data anal-

ysis method. In France, CA was developed under the strong influence of Jean-Paul Benzecri

and in Japan it was developed under Chikio Hayashi. The name correspondence analysis is

a translation of the French analyse des correspondances. According to Zhou (2008) and Doey

and Kurta (2011) it has had many other names, including optimal scaling, reciprocal aver-

aging, optimal scoring, and appropriate scoring in the United States; quantification method

in Japan; homogeneity analysis in the Netherlands; dual scaling in Canada; and scalogram

analysis in Israel.These names are thought to stem from the fact that CA has been used to an-

alyze different questions and has therefore been given a different name each time to answer

a different question. CA is described in more detail in French by Benzecri (1973) and Lebart

et al. (1977). In Japanese, the subject is described in Kobayashi (1981) and Komazawa and

Hayashi (1982). In English, CA is described in Ludovic et al. (1984), Greenacre (1984), and

Greenacre and Hastie (1987) just to name a few. The variation of development and applica-

tion of CA ranges from various fields, such as biometry, psychometrics, linguistics, health

care and science (Zhou, 2008). Therefore, CA can be considered as a very flexible method of

data analysis in all situations where an exploratory or more in-depth analysis of categorical

data is required.
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6.2 Introduction

Mazzarol and Soutar (2008) state that correspondence analysis is an exploratory data analytic

technique designed to analyze simple two-way and multi-way tables containing some mea-

sure of correspondence in the rows and columns. The results give information that is similar

in nature to those produced by Factor Analysis techniques and they allow one to explore the

structure of categorical variables included in the table. The most common kind of table of this

type is the two-way frequency cross-tabulation table. Correspondence analysis is a statistical

technique that provides a graphical representation of cross tabulations or contingency tables.

De Leeuw and Mair (2007) propose that contingency tables arise at any time it is possible to

assign events into two or more different sets of categories, such as product and location for

purchases in market research or symptom and treatment in medical testing. Correspondence

analysis has become most popular in fields such as ecology where data is collected on the

bunch of various animal species in specific sampling units and also in market research be-

cause researches in this area frequently collect categorical data due to the simplicity of this

collection method (Ter Braak, 1986). Correspondence analysis was initially recommended as

an inductive method for analyzing semantic data and was considered as a standard, unifying

and integrated analysis framework (Murtagh, 2005). CA is used to analyze research ques-

tions across many fields (Greenacre, 1993). CA can be used as an exploratory data technique

for categorical data since ecologists have been able to transform these complicated tables into

straightforward graphical displays. Ecologist data is multidimensional thus making visual-

ization of more than two dimensions difficult and CA is analyzes this form of data because

of its ability to extract the most important dimensions, allowing simplification of the data

matrix (Doey and Kurta, 2011). Murtagh (2005) gives two explanations that contribute to its

success:

• The idea of distributional equivalence allows a table of positive values to be given

a mathematical structure that compensates as far as possible for randomness in the

choice of weighting and subdivision of categories.

• The great number of data analysis available for working in very different application

fields is able to merge processing frameworks in a single software package.

Greenacre (1984) states that correspondence analysis has several features that distinguish it

from other techniques of data analysis. An important feature of correspondence analysis is

the multivariate treatment of the data through simultaneous consideration of multiple cate-

gorical variables. The nature of multivariate of correspondence analysis can unveil relation-

ships that would not be detected in a series of pair wise comparisons of variables. Another
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important feature is the graphical display of row and column points in biplots which can

help in detecting structural relationships among the variable categories and objects. Finally,

correspondence analysis has highly flexible data requirements. The strict data requirement

is a rectangular data matrix with non-negative entries. Correspondence analysis is most

effective if the following conditions are satisfied:

• The data matrix is large enough, so that optical inspection or simple statistical analysis

cannot unveil its structure.

• The variables are homogeneous, so that calculating the statistical distances between

the rows or columns will makes sense.

• The data matrix is a rational unstructured, i.e., its structure is either unknown or poorly

understood.

• Normalization procedures in CA can be used to determine whether and how similarity

of the row and column variables, as well as the relationship between them, can be

interpreted in terms of row and column coordinates and the origin of the plot (Nilsson,

2011).

A well-defined advantage of correspondence analysis over other methods generating joint

graphical displays is that it produces two double or dual displays whose row and column

geometries have similar interpretations, facilitating analysis and detection of relationships.

According to Zhou (2008) and Nilsson (2011) this technique is similar to principal component

analysis, but it is better suited for analyzing categorical data. Principal component analysis,

on the other hand, is better suited for continuous data (Lebart et al., 1984). Another difference

between the two techniques is how the data matrix is decomposed. While the total Chi-

square value is decomposed in CA, total variance is decomposed in principal component

analysis (Zhou, 2008). In short, CA involves mapping a Chi-square distance into a particular

Euclidean distance. When these converted points are plotted, as the distance between two

points get closer, the similarities between their profiles increase (De Leeuw and Mair, 2007

and Zhou, 2008). The aim is to have different but complementary analytic tools to facilitate

interpretation of the data (Murtagh, 2005). The primary goal for CA is to transform a table

of numerical information into a graphical display, in which each row and each column is

represented as a point.

6.3 Advantages of Correspondence Analysis

Some of the advantages include:
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• CA can simplify complex data from a potentially large table into a simpler display of

categorical variables while presenting all of the valuable information in the data set.

Correspondence analysis is useful when other statistical techniques cannot be used to

analyze data because of certain assumptions that are met due to its flexible data re-

quirements. An example from Doey and Kurta (2011) is that when a Likert scale is

used to collect data and the spaces between descriptors, i.e. ”never”, ”sometimes” and

”often” are not necessary equivalent, then CA is a useful technique because it focuses

mainly on how variables correspond to another and whether there is a significant dif-

ference between these variables.

• Another benefit of CA is that when one wishes to analyze continuous data with CA,

the data can be categorized and subsequently analyzed as discrete data because CA

demonstrates how variables are associated by the approximate distance of points to

one another on the biplot and not simply that they are associated.

• CA reveals relationships that would not be identified using other non-multivariate sta-

tistical techniques such as performing pairwise comparisons yet CA represents data

using two dual displays which are the display for the row data and display for the

column data.

• CA is also good way to examine data validity and facilitates the treatment of outliers.

6.4 Assumption of Correspondence Analysis

Doey and Kurta (2011) state that when we disobey the following assumptions, we can make

the conclusions drawn about the association among variables imprecise and the biplot a less

variable guide for analyzing the data

• The homogeneity of variance across row and column variable must be met which as-

sumes that the statistical properties are similar across rows and columns. For example,

there must not be any empty variables

• CA assumes that the data being analyzed is discrete however the original continuous

variables can be categorized into discrete variables.

• The data should be made up of more than three categories otherwise if CA is used to

analyze only two or three categories this analysis is unlikely to be more informative

than the original table.
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• All values in the frequency table must be non-negative so that distances between the

points on the biplot are always positive.

We also note that CA does not make distributional assumptions.

6.5 Notation

By using the ideas of Zhou (2008) and Nilsson (2011), we let F be a matrix of frequencies with

size (I× J) and with elements ( fi j). F is a matrix composed of non-negative values with row

and column sums which are non-zero and this matrix has rank q. The correspondence matrix

P with size (I×J) is defined as a matrix where all elements in F are divided with grand total

n, which is P = 1
n F. Furthermore, let the vectors of row and column sums be denoted as r

and c, which can also be expressed a centroids of row and column clouds in their respective

spaces r and c, with row centroid defined as c = R
′
r and column centroid as c = C

′
c. Let 1

be a rows vector of ones and I be an identity matrix, each of appropriate order. Denote a

matrix-valued function that creates a diagonal matrix from a vector by diag(.). Define,

• N = 1′F1 as the sum of all elements in F;

• P = 1
n F as the matrix of relative frequencies (the correspondence matrix);

• r = P1 as the vector of row marginal proportions (row masses);

• Dr = diag(r) as the diagonal matrix of row masses;

• Dc = diag(c) as the diagonal matrix of column masses;

• R = D−1
r P

′
as the row profile; and

• C
′
= D−1

c P
′
as the column profile.

The scalar n is the sum of all elements in F . The matrix P is a matrix of relative frequencies.

The vector r contains row marginal proportions or row masses. The vector c contains column

marginal proportions or column masses. The matrices Dr and Dc are diagonal matrices of

marginals. The rows of R contain the row profiles. The elements of each row of R sum to

one. Each (i,j) element of R contains the observed probability of being in column j given

membership in row i. Similarly, the columns of C contain the column profiles.
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6.6 Basic Concepts and Definitions

There are certain fundamental concepts in correspondence analysis which are described

below:

6.6.1 Primitive Matrix

The data matrix or contingency table N(I,J) is called the primitive matrix or primitive table.

The elements of this matrix are ni j.

6.6.2 Row-profile and Column-profile Tables

According to De Leeuw and Mair (2007), Greenacre (1984) and Beh (2004) in interpreting

a contingency tables, we compute the conditional frequencies so that it can make sense to

compare the actual frequencies in each cell. Each row and each column has a different num-

ber of respondents, called the base of respondents. It is necessary to reduce either the rows

or columns to the same base for comparison. Let us consider a contingency table of N(I,J)

with I rows (i = 1,2, . . . , I) and J columns ( j = 1,2, . . . ,J) having frequencies nil . Marginal

frequencies are denoted by ni+ and n+ j

ni+ = ∑
j

ni j and n+ j = ∑
j

ni j (6.1)

The total frequency is given by

n = ∑
j
∑

i
ni j (6.2)

6.6.3 Row Profiles

Let f j|i denote the conditional frequencies associated to row profiles. The profile of each row

i is a vector of conditional densities is given by

f j|i =

ni j
n

ni+
n

=
ni j

ni+
j = 1,2, · · · ,J (6.3)

The matrix of row profile of the complete set may be denoted by (I× J) matrix R

6.6.4 Column Profiles

Let fi| j denote the conditional frequencies associated to column profiles. The profile of each

column j is a vector of conditional densities given by
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Table 6.1: Matrix of Row Profiles
Rows Columns Row Mass

1 2 · · · j

1 n11/n1+ n12/n1+ · · ·n1 j/n1+ 1

2 n21/n2+ n22/n2+ · · ·n2 j/n2+ 1
...

...
...

...
...

I ni1/ni+ ni2/ni+ · · ·ni j/ni+ 1

Columns Mass n+1/n++ n+2/n++ · · ·n+ j/n++ 1

f j|i =

ni j
n

n+ j
n

=
ni j

n+ j
i = 1,2, · · · , I (6.4)

The matrix of column profile of the complete set may be denoted by (I× J) matrix C

Table 6.2: Matrix of Column Profiles
Rows Columns Row Mass

1 2 · · · j

1 n+1/n+1 n12/n+2 · · ·n1 j/n+ j n+1/n++

2 n+1/n+1 n22/n+2 · · ·n2 j/n+ j n+2/n++

...
...

...
...

...

I ni1/n+1 ni2/n+2 · · ·ni j/n+ j n+i/n++

Columns Mass 1 1 · · · 1 1

Average row profile

r̄ = n+ j/N ( j = 1,2, · · · ,J) (6.5)

Average column profile

c̄ = ni+/N (i = 1,2, · · · , I) (6.6)

6.6.5 Masses or Weights

Another fundamental concept in correspondence analysis is the concept of mass. This con-

cept is also based on rows and column of the contingency table. According to Dufour (2008)

and Greenacre (2002) the mass is the proportion of the whole table that is in the category rep-

resented by the row or column. Mass is the ratio of the row or column count to the total table

count. The mass of the ith row which can be denoted as mri is equal to marginal frequency of
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the ith row divided by the grand total. Therefore

mri = n+i/n (6.7)

Similarly, the mass of the jth column which can be denoted as mc j is equal to marginal fre-

quency of the jth row divided by the grand total. Therefore

mc j = n j+/n (6.8)

6.6.6 Distances

According to Greenacre (2007) and Mazzarol and Soutar (2008) a variant of Euclidean dis-

tance is called the weighted Euclidean distance which is used to measure and so that de-

sign the distances between profile points. In this case the weighting assigns to differential

weighting of the dimension of the space and not to the weighting of the profiles. The distance

between two rows i and i′ is given by

d2(i, i
′
) =

J

∑
j−1

1
n+ j

(
ni j

ni+
−

ni j

ni′+

)2

(6.9)

and the distance between two column j and j
′
is given by

d2( j, j
′
) =

I

∑
i−1

1
ni+

(
ni j

n+ j
−

ni j

n j′+

)2

(6.10)

Thus the distance that is obtained is called the Chi-squared distance. This differs from the

Euclidean distance in that each squared is weighted by the inverse of the frequency corre-

sponding to each term. According to Greenacre (2007) the analysis of each squared by the

expected frequency is called variance standardizing and commits for the large variance in

high frequencies and the smaller variance in low frequencies. If there is no standardization

achieved then the differences between larger populations would contribute to be large and

thus manage the distance calculation while the differences between the smaller proportions

would lead to be submerged. The weighting factors are used to equalize these differences.

The fundamental reason for choosing the Chi-square distance is that it satisfies the principle

of distributional equivalence Mazzarol and Soutar (2008) expressed as follows:

• If two rows i and i
′

of N(I,J) are proportioned and if they are replaced by only one

which is the sum column by column then the distance between columns does not

change in N(J).
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• If two columns j and j
′
of N(I,J) are proportioned and if they are replaced by only one

which is the sum row by row then the distance between columns does not change in

N(I).

6.7 Inertia

According to Mazzocchi (2008) inertia is a measure of association between two categorical

variables based on the Chi-squared statistic. In correspondence analysis the proportion of

inertia interpreted by each of the dimensions can be observed as a measure of goodness-of-

fit because the capability of correspondence analysis depends on the degree of association

between row and column. According to De Leeuw and Mair (2007) the term inertia is taken

from the term ”moment of inertia” in mechanics where the physical object has a center of

gravity and every particle of an object has a certain mass (m) and distance (d) from the center

of gravity. Then the moment of inertia of an object is the quantity md2 that are summed in all

the particles that create the object

moments o f inertia = ∑md2 (6.11)

This theory has an equivalence or correspondence in correspondence analysis. In correspon-

dence analysis there is a set of elements of profile points with masses adding up to 1 and

these points have the average profile and distance between profile points. Each profile con-

tributes to the inertia of the whole set of elements. The inertia is the sum of squares of the

singular values or the sum of the eigenvalues and is given by

inertia = ∑
k=1

α
2
k = ∑

k=1
λ

2
k (6.12)

The inertia of a profile point is computed by the following formulas:

For the ith row profile

inertia = mi ∑
j

(ri j− r̄ j)
2

r̄ j
(6.13)

where ri j is the ratio of n
ni+

and r̄ j is n j
n and for the jth column profile

inertia = m j ∑
i

(ci j− c̄i)
2

c̄i
(6.14)

The total inertia of the contingency table is given by
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Total inertia = ∑
i

∑
j

(pi j− ric j)
2

ric j
(6.15)

which is the Chi-square statistic that is divided by n. Total inertia measure the overall associa-

tion between row and column and it also equals to the sum of the eigenvalues. It corresponds

to the Chi-square value divided by the number of observations (Mazzocchi, 2008).

6.7.1 Link between CA and the Chi-square Statistic

According to Dufour (2008) if we let It be the total inertia and χ2 be the value of Chi-square

statistic calculated from the contingency table then total inertia is given by

It =
χ2

n
where χ

2 = ∑
(observedi j− expectedi j)

2

expectedi j
= ∑

(oi j− ei j)
2

ei j
(6.16)

where Oi j is the count of row i and column j of the table, Ei j is the value expected under the

assumption of row-by-column independence, and n is the total table count.

6.7.2 Contributions of Points to Principal Point Inertias

The contributions of the row and columns points to the inertia on the k-th dimension are the

inertia components:

for row i :
ri f 2

ik
λk

= riφ
2
ik (6.17)

and

for column j :
c jg2

jk

λk
= ciγ

2
jk (6.18)

where fik =
√

λkφik and gik =
√

λkγik the relationship between principal and standard coor-

dinates that are exactly the coordinates proposed for the standard correspondence analysis

biplot which shows that the squared lengths of these coordinates are the contributions to the

principal axes (Mazzarol and Soutar, 2008).

6.7.3 Contributions of Principal Axes to Point Inertias

The contributions of the dimensions to the inertia of the i− th and j−th column points

for row i :
f 2
ik

∑k f 2
ik

and for column j :
g2

jk

∑k g2
ik

(6.19)

where the denominators are the squared χ2-distances between the corresponding profile

point and the average profile. The summary statistics of the row and column points includes
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mass, contribution to inertia, inertia and squared cosines which is a summary statistics for

all subsection of section 6.6. The formulas to compute these statistics are given in the Table

6.3 below.

Table 6.3: Row and Column Summary Statistics

Summary Statistic Formula

Row mass r

Column mass c

Row partial contribution to inertia D−1
c sq(A)

Row partial contribution to inertia D−1
c sq(B)

Column inertia ( 1
T )D

−1
r sq(ADu)1

Column inertia ( 1
T )D

−1
r sq(BDu)1

Row squared cosine diag[sq(ADu)1]−1sq(ADu)

Column squared cosine diag[sq(BDu)1]−1sq(BDu)

According to Zhou (2008) and Nilsson (2011) one of the most important advantages of CA is

to represent the high dimensional categorical data set into a low dimensional space. The plot

consists of two overlaid plots, one for row points and the other for the column points. The

row and column points are row and column profile respectively, which is rescaled so that dis-

tance between profiles can be displayed as ordinary Euclidean distance, then orthogonally

rotated to a principal axes orientation. Thus, once the rescaled row and column coordinates

have been calculated by the formulas in Table 6.3, they can often scatter plotted in a two

dimensional space. The squared singular value, which is the square of the diagonal entries

of the Du matrix, are plotted versus each dimension index in the fit plot. The residual versus

the centered frequencies may also be plotted if necessary (Zhou, 2008). The centered data

are calculated by the formula P− rc
′

which subtracts the expected relative frequencies from

these centered frequencies by

(P− rc
′
)−AmDm

u Bm

where m refers to the fact that only m of the dimensions are involved in the calculation.

Note that distance between row points or distance between column points have meaning,

however, distance between row and column points are not well interpretable (Zhou, 2008).
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6.8 Basic Computational Algorithm

According to Nilsson (2011) a central theme in correspondence analysis is singular value de-

composition (SVD) which revolves around the concept of dimension reduction of a data set.

The aim of CA is to find a low dimensional approximation of the data set to represent the row

and column profiles that the dimension should be min{I,J}−1. According to Zhou (2008) the

required row and column coordinates generated from CA are based on the generalized SVD

of the relative frequency matrix P,

P = ADuB
′

where

• A is an (n×q) the eigenvectors (matrix whose columns are the left generalized singular

vectors)

• Du is a q×q diagonal matrix of generalized singular values

• B is an m×q matrix whose column are the right generalized singular vectors

• A
′
D−1

r A = B
′
D−1

r B = I

According to Zhou (2008) there is a insignificant part of the generalized SVD of P consisting

of a singular value of 1 and associated left and right singular vectors, which is discarded

before any results are displayed. The remaining left and right singular vector defines the

orthogonal principal axes of the column and row points respectively. In practice, the gener-

alized SVD is computed indirectly by performing an ordinary SVD, where the ordinary SVD

of any matrix Q is given by

Q =UDuV
′

under the following relation or constraint U
′
U =V

′
V = I. Therefore, the following steps can

be performed in order to compute the generalized SVD of the correspondence matrix P,

Step 1: Calculate the matrix S standarized residual

S = D
− 1

2
r (P− rcT )D

− 1
2

c (6.20)

where Dr = diag(r) and Dc = diag(c) are diagonal matrices of row and column masses re-

spectively, P = {pi j} is a correspondence analysis, r = {ri} and c = {c j} are row and column

masses whose elements add up to one in each case. The row and column masses respectively

is given by
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ri =
J

∑
j=1

pi j and c j =
I

∑
i=1

pi j (6.21)

and using standard matrix notation, we write row and column masses respectively as

r = P1 and c = PT 1 (6.22)

and the correspondence analysis is given by

P =
1
n

N (6.23)

where N denote the (I×J) data matrix with positive row and column sums and the elements

of P is given by

P = {pi j} where pi j =
ni j

n
(6.24)

Step 2: Compute the ordinary SVD of S:

S =UDuV T where UTU =V TV = I (6.25)

where Dα is the diagonal matrix of positive singular values in descending order α1 ≥ α2 ≥
α3 ≥ α4 ≥ ·· · , U and V are the left and right singular vectors respectively.

Step 3: Standard coordinates A of rows and B of columns, respectively:

A = D
− 1

2
r U and B = D

− 1
2

c V (6.26)

Step 4: Principal coordinates F of rows and F of columns, respectively:

F = D
− 1

2
r UDu = ADu and G = D

− 1
2

c UDu = BDu (6.27)

Step 5: Principal inertias λk:

λk = α
2
k , k = 1,2, . . . ,K whereK = min{I−1,J−1} (6.28)

Then P = ADuB
′
is the generalized SVD.
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6.9 Interpretation of Correspondence Analysis

Mazzarol and Soutar (2008) and Doey and Kurta (2011) state that the interpretation of the

results of correspondence analysis involves the interpretation of numerical results and fac-

tor graphics flexible by CA. The former implies selection of significant axes and significant

points.

6.9.1 Selection of Significant Axes

Mazzarol and Soutar (2008) state that in the selection of significant axes we consider only

two types of factor axes which are first order factor axes and second order factor axes. The

first order factor axes are considered on the basis of contribution to the total inertia while

the second order factor axes are considered on basis of contributions to the unusualness or

eccentricity which is cos2 ϕ.

First order factor axes

Let M be the number of significant axes that can decisive by any of the following rules:

• Sum of the inertia explained by the first M axes exceeds a certain edge, mostly 80% of

the inertia

• Single out all the axes whose eigenvalues exceed 1
[min(I−1,J−1)]

Second order factor axes

According to Mazzarol and Soutar (2008) once the first factor axes has been selected then the

second order factor axes are selected as follows. We first let M
′
be the rank of a factor axis for

point i of N(I) or j for N(J) exists such that

cos2
ϕ(i)≥ k or cos2

ϕ( j)≥ k (6.29)

where k is normally equal to 0.25

Hence, the number of axes that are selected for interpretation is equal to M+M
′

6.10 Application of CA

The application of CA was applied to Respiratory Syncytial Virus data (RSV). The RSV data

was described in Chapter 4. The analysis was done in SAS. The CORRESP procedure was
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used to perform the CA to find a low-dimensional graphical representation of the matrices

of Respiratory Syncytial Virus data. ODS GRAPHICS procedure is used to plot the row and

column points where the row points are row profiles which are rescaled so that the distance

between profiles can be displayed as ordinary Euclidean distances and then orthogonally

related to a principal axes orientation. Similar process is done to the column points. A

distance between row points or column points indicates the correspondence between them.

The approximate relationship between child age and prevalence of virus in blood in two-

dimensional space can be represented through both quantitative and geometric ways.

The commands to fit the model in SAS code for Correspondence Analysis are

ods graphics on;

* Perform Simple Correspondence Analysis;

proc corresp all data=spha outc=Coor;

tables age, prev;

run;

ods graphics off;

Table 6.4 indicates that there is no significant association between child age and prevalence

of virus in blood because of either the constantly small change of Percentage of Chi-square

decomposition or the constantly increasing cumulative chi-square decomposition.

Table 6.5 shows the tables that summarize the CA for the row variable (child age). The

”Row Coordinates” table displays the coordinates of the child age in the joint plot. The row

coordinates shows that in the first dimension, all the child age except age7 and 8 make little

contribution to the total inertia. This may be caused by the low marginal frequency which

can be considered as one reason that makes this points deviate from others. The ”Summary

Statistic” table displays various statistics including quality and mass of the presentation. The

category with low quality is age1 (0.009) and is not well presented by the two principal co-

ordinates. The categories with high quality are age7, 8 and 11. The quality statistic is equal

to the sum of the square cosines, which are displayed in Table 6.5. The square cosines are

the square of the cosines of the angles between each axis and a vector from the origin to the

point. Thus, points with a square cosine near 1 are located near a principal coordinate axis

and so have high quality. In our analysis, age11 has high quality. The ”Partial Contribution

to Inertia” table indicates how much of the total inertia is accounted for by each category in

each dimension. This table corresponds to the spread of the points in the joint plot in the
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horizontal and vertical dimensions. In the principal coordinate, age10 and age2 contributes

the most. In the second principal coordinate, age7 contribute the most. The age7-9 seems to

contribute nothing in principal coordinates.

Table 6.7 shows the tables summarize the CA for the column variable (prevalence). The

analysis of the column is similar. The column coordinates clearly show that all the preva-

lence of virus except prev(0.005208) make small contribution to the total inertia since their

coordinates are all approximately zero. The marginal frequency of prev(0.005208) may also

be the reason for it’s deviation. The ”Summary Statistics” table with quality of the repre-

sentation statistic has the same interpretation as in Table 6.6. The ”Partial Contributions to

Inertia” table which indicates how much of the inertia is accounted for by each category in

each dimension and the ”Squared Cosine” table also has a similar interpretation as in Table

6.6.

Table 6.4: Inertia and Chi-Square Decomposition of CA for Child Age vs Prevalence of Virus

in Blood
Inertia and Chi-Square Decomposition

Singular Value Principal Inertia Chi-Square Percent Cumulative Percent −−−+
4 −−−−+

8 −−−−+
12 −−−−+

16 −−−−+
20 −−−

1.00000 1.00000 899.00 16.87 16.87 *********************

0.96854 0.93808 843.33 15.83 32.70 ********************

0.93956 0.88277 793.61 14.90 47.60 *******************

0.85920 0.73822 663.66 12.46 60.06 ****************

0.83061 0.68991 620.23 11.64 71.70 ***************

0.73235 0.53634 482.17 9.05 80.75 ***********

0.68639 0.47113 423.55 7.95 88.70 **********

0.64562 0.41683 374.73 7.03 95.73 *********

0.50306 0.25306 227.51 4.27 100.00 *****

Total 5.92634 5327.78 100.00

Degrees of Freedom = 99

Row Profiles

0.00788 0.02385 0.002513 0.003188 0.005208 0.018182 0.021523 0.025424 0.041276 0.047516

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 0.50000 0.00000

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.27778 0.72222 0.00000

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.10067 0.88591 0.01342 0.00000

4 0.14935 0.00000 0.00000 0.00000 0.00000 0.00000 0.79221 0.05844 0.00000 0.00000

5 0.78107 0.00000 0.00000 0.17160 0.00000 0.00000 0.04734 0.00000 0.00000 0.00000

6 0.03333 0.00000 0.00000 0.92222 0.04444 0.00000 0.00000 0.00000 0.00000 0.00000

7 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000

8 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000

9 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

10 0.00000 0.00000 0.66102 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.33898

11 0.00000 0.3333 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.66667

12 0.00000 0.90164 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.09836
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Column Profiles

0.00788 0.02385 0.002513 0.003188 0.005208 0.018182 0.021523 0.025424 0.041276 0.047516

1 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.01235 0.00000

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.17544 0.96296 0.00000

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.10345 0.77193 0.02469 0.00000

4 0.14557 0.00000 0.00000 0.00000 0.00000 0.00000 0.84138 0.05263 0.00000 0.00000

5 0.83544 0.00000 0.00000 0.25893 0.00000 0.00000 0.05517 0.00000 0.00000 0.00000

6 0.01899 0.00000 0.00000 0.74107 0.08889 0.00000 0.00000 0.00000 0.00000 0.00000

7 0.00000 0.00000 0.00000 0.00000 0.88889 0.00000 0.00000 0.00000 0.00000 0.00000

8 0.00000 0.00000 0.00000 0.00000 0.02222 0.00000 0.00000 0.00000 0.00000 0.00000

9 0.00000 0.00000 0.18750 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

10 0.00000 0.00000 0.81250 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.31250

11 0.00000 0.25676 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.59375

12 0.00000 0.74324 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.09375

Table 6.5: Row and Column Profile of CA for Child Age vs Prevalence of Virus in Blood
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Table 6.6: Child Age Results of CA for Child Age vs Prevalence of Virus in Blood

Row Coordinates

Dim1 Dim2

1 -0.5108 -1.3325

2 -0.5108 -1.1718

3 -0.5108 -0.9138

4 -0.5108 -0.2089

5 -0.5108 0.4379

6 -0.5108 0.9929

7 -0.5108 3.2729

8 -0.5108 3.2729

9 1.9579 0.0000

10 1.9579 0.0000

11 1.9579 0.0000

12 1.9579 0.0000

Summary Statistics for the Row Points

Quality Mass Inertia

1 0.0090 0.0022 0.0850

2 0.3146 0.1201 0.1053

3 0.3435 0.1657 0.0892

4 0.1003 0.1713 0.0878

5 0.1663 0.1880 0.0863

6 0.2123 0.1001 0.0992

7 0.5782 0.0445 0.1425

8 0.5782 0.0011 0.0036

9 0.2162 0.0100 0.0299

10 0.4357 0.0656 0.0974

11 0.5814 0.0634 0.0705

12 0.4253 0.0679 0.1032

Partial Contributions to Inertia

for the Row Points

Dim1 Dim2

1 0.0006 0.0042

2 0.0313 0.1759

3 0.0432 0.1475

4 0.0447 0.0080

5 0.0490 0.0384

6 0.0261 0.1052

7 0.0116 0.5081

8 0.0003 0.0127

9 0.0384 0.0000

10 0.2516 0.0000

11 0.2430 0.0000

12 0.2601 0.0000

Squared Cosines for the Row

Points

1 0.0012 0.0078

2 0.0502 0.2643

3 0.0818 0.2617

4 0.0859 0.0144

5 0.0959 0.0705

6 0.0444 0.1679

7 0.0137 0.5645

8 0.0137 0.5645

9 0.2162 0.0000

10 0.4357 0.0000

11 0.5814 0.0000

12 0.4253 0.0000
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Table 6.7: Prevalence Results of CA for Child Age vs Prevalence of Virus in Blood

Column Coordinates

Dim1 Dim2

0.00788 -0.5108 0.3658

0.02385 1.9579 0.0000

0.002513 1.9579 0.0000

0.001388 -0.5108 0.8768

0.005208 -0.5108 3.1700

0.018182 -0.5108 -1.3757

0.021523 -0.5108 -0.2541

0.025424 -0.5108 -0.9519

0.041276 -0.5108 -1.2054

0.047516 1.9579 0.0000

Summary Statistics for the Column Points

Quality Mass Inertia

0.00788 0.1390 0.1758 0.0842

0.02385 0.4686 0.0823 0.1136

0.002513 0.3049 0.0534 0.1133

0.001388 0.2126 0.1246 0.1018

0.005208 0.5966 0.0501 0.1460

0.018182 0.0048 0.0011 0.0842

0.021523 0.1013 0.1613 0.0875

0.025424 0.4070 0.1902 0.0920

0.041276 0.2524 0.0901 0.1032

0.047516 0.6205 0.0712 0.0742

Partial Contributions to Inertia

for the Column Points

Dim1 Dim2

0.00788 0.0458 0.0251

0.02385 0.3155 0.0000

0.002513 0.2047 0.0000

0.001388 0.0325 0.1021

0.005208 0.0131 0.5362

0.018182 0.0003 0.0022

0.021523 0.0421 0.0111

0.025424 0.0496 0.1837

0.041276 0.0235 0.1395

0.047516 0.2729 0.0000

Squared Cosines for the Column

Points

0.00788 0.0919 0.0471

0.02385 0.4686 0.0000

0.002513 0.3049 0.0000

0.001388 0.0539 0.1587

0.005208 0.0151 0.5815

0.018182 0.0006 0.0042

0.021523 0.0812 0.0201

0.025424 0.0910 0.3160

0.041276 0.0384 0.2139

0.047516 0.6205 0.0000
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Table 6.8: Contingency Table of Child Age vs Prevalence of Virus in Blood
Contingency Table

0.00788 0.02385 0.002513 0.003188 0.005208 0.018182 0.021523 0.025424 0.041276 0.047516 Sum

1 0 0 0 0 0 1 0 0 1 0 2

2 0 0 0 0 0 0 0 30 78 0 108

3 0 0 0 0 0 0 15 132 2 0 149

4 23 0 0 0 0 0 122 9 0 0 154

5 132 0 0 29 0 0 8 0 0 0 169

6 3 0 0 83 4 0 0 0 0 0 90

7 0 0 0 0 40 0 0 0 0 0 40

8 0 0 0 0 1 0 0 0 0 0 1

9 0 0 9 0 0 0 0 0 0 0 9

10 0 0 39 0 0 0 0 0 0 20 59

11 0 19 0 0 0 0 0 0 0 38 57

12 0 55 0 0 0 0 0 0 0 6 61

Sum 158 74 48 112 45 1 145 171 81 64 889

Table 6.8 provides the contingency table of the row point which stands for child age versus

the column point which stands for the prevalence of virus in blood. Notice that for each cell

in the right-hand column, SUM is the total number of one child age, regardless of the other

ages and prevalence. Similarly, each cell of the bottom SUM is the total number of child

age occurred to prevalence virus, regardless of other prevalence of virus and child ages.

Therefore, it is unsuitable to compare the quantitative difference of child age or prevalence

of virus simply from this table generated from one specific sample.

Table 6.9: Contribution to the Total Chi-Square Statistic of Child Age vs Prevalence of virus

in Blood
Contribution to the Total Chi-Square Statistic

0.00788 0.02385 0.002513 0.003188 0.005208 0.018182 0.021523 0.025424 0.041276 0.047516 Sum

1 0.35 0.16 0.11 0.25 0.10 447.50 0.32 0.38 3.73 0.14 453.05

2 18.98 8.89 5.77 13.45 5.41 0.12 17.42 4.35 478.96 7.69 561.04

3 26.19 12.26 7.96 18.56 7.46 0.17 3.39 379.13 9.72 10.61 475.45

4 0.61 12.68 8.22 19.19 7.71 0.17 380.06 14.06 13.88 10.96 467.54

5 352.33 13.91 9.02 3.00 8.46 0.19 13.61 32.15 15.23 12.03 459.92

6 10.39 7.41 4.81 459.62 0.06 0.10 14.52 17.12 8.11 6.41 528.53

7 7.03 3.29 2.14 4.98 721.11 0.04 6.45 7.61 3.60 2.85 759.11

8 0.18 0.08 0.05 0.12 18.03 0.00 0.16 0.19 0.09 0.07 18.98

9 1.58 0.74 151.04 1.12 0.45 0.01 1.45 1.71 0.81 0.64 159.56

10 10.37 4.86 407.98 7.35 2.95 0.07 9.52 11.22 5.32 59.43 519.06

11 10.02 43.63 3.04 7.10 2.85 0.06 9.19 10.84 5.14 283.91 375.80

12 10.72 497.47 3.26 7.60 3.05 0.07 9.84 11.60 5.50 0.63 549.74

Sum 448.74 605.39 603.39 542.35 777.64 448.50 465.94 490.36 550.08 395.38 5327.78
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Table 6.9 displays the contributions to the total Chi-square statistic for each child age and

prevalence of virus. The last column summarizes the contributions for child age, where age7

contributes the most, a fact clear from configuration plot. Similarly, the last row summarizes

the contributions for prevalence of virus where prev(0.005208) makes the largest contribu-

tion.

Figure 6.1: CA Plot of Child Age vs Prevalence of Virus in Blood

Fig 6.1 shows the CA Plot of Child Age vs Prevalence of Virus in Blood. To interpret the plot,

we start by interpreting the row points separately from the column points. The prevalences

of virus are all far from the centroid and they lie along one dimension. They make relatively

large contributions to the chi-square statistic and the inertia of one dimension. The horizontal

dimension seems to be largely determined by prev(0.00788) versus prev(0.047516) points. In

the row points, the age12 points is near the centroid and has a small coordinates on one

dimension that is near zero. The horizontal dimension seems to be largely determined by

age4 and age10 points. The two interpretations of one dimension shows the association with

123



age4 has prev(0.00788) virus in blood and with age10 has prev(0.047516) virus in blood. This

means that in young age the child has small prevalence of virus in blood. Distances between

row and column points are not defined. The plot shows more children in age4 than we would

expect if the rows and columns were independent have prev(0.00788) and more children

who are in age10 than we would expect if the rows and columns were independent have

prev(0.047516). The plot of correspondence analysis can be complex. This means that the

data points may appear close to each other but, in fact are placed far apart on the slantwise

dimension. That is, the first principal axis reflects 16.87% of the total inertia while for the

second axis it is 15.83%. In total, the two-dimensional correspondence plot of Figure 6.1

graphically depicts 31.7% of the association between the variables.

6.11 Summary

In summary, according to Sourial et al. (2010) Correspondence Analysis can be a very helpful

tool to display the relationships among categorical variables and generate hypotheses for

future analysis, and it is easily implemented with most statistical software. Because CA

explores the clustering among categorical variable responses, it can discover how responses

within and between variables are related; knowledge that may not otherwise be discovered

through a pairwise analysis. We believe that correspondence analysis is an underutilized

technique which can play a compatible role in analyzing epidemiological data and therefore

deserves greater consideration in this field.
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Chapter 7

Discussion and Future Directions

Models for the analysis of longitudinal data are omnipresent these days throughout empiri-

cal research. Indeed, models and analysis techniques for longitudinal data, be it for Gaussian

or non-Gaussian outcomes are arising up in biometry, epidemiology, medical statistics and

survey applications. The models are attractive for the intuition behind their formulation. The

inferential apparatus are well developed and methods have been implemented in standard

software packages. In this work, we have represented basic methodology for Gaussian and

non-Gaussian longitudinal data including the linear and generalized linear mixed model,

generalized estimating equations and CA. We also placed a strong emphasis on the use of

these methods in conjunction with an outcome. Furthermore, we have indicated how mod-

els for longitudinal data are playing a role in research.

Mixed models provide a general framework for the analysis of continuous and discrete re-

peated measurements, based on linear and non-linear models. In general, parameters in

mixed models do not immediately yield population-based inferences. Mixed models spec-

ify the full distribution of Yi. Mixed models are more sensitive to model misspecification

than most models for cross-sectional data. Generalized linear models provide a framework

for relating response and predictor variables by extending traditional linear model theory

to nonlinear data. This is very important in many areas of epidemiologic research where

outcomes are dichotomous or otherwise not normally distributed. Generalized estimating

equations (GEEs) and generalized linear mixed models (GLLMs) offer a way to analyse such

data with reasonable statistical efficiency.

Linear mixed effect model rely on assumptions of multivariate normality and likelihood-

based inferences for both the fixed and random effects are relatively straightforward. In

contrast, when the longitudinal response is discrete, we have seen that there is more than
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one way to extend generalized linear mixed models to the longitudinal setting. This led to

the development of marginal and conditional models for non-Gaussian longitudinal data. In

our case there was no conditional models. In general, we have seen that likelihood-based ap-

proaches are somewhat more difficult to formulate in the non-Gaussian data setting than it is

the case with continuous responses. This has led to various avenues of research where more

tractable approximations have been developed (e.g. MQL and PQL methods) and where

likelihood-based approaches have been abandoned altogether in favour of semi-parametric

methods (e.g. GEE approaches).

Our review of the developments of regression models for longitudinal data has focused ex-

clusively on extensions of generalized linear mixed models. Limitations of space have pre-

cluded a discussion of non-linear models (i.e., models where the relationship between the

mean and covariates is non-linear in the regression parameters) for longitudinal data. The

GEE method is semi-parametric, in that the estimating equations are derived without fully

specifying the joint distribution of the vector of repeated measures. This is a very appealing

feature of the GEE approach, especially for the analysis of discrete longitudinal data, because

for the latter case the total number of parameters in the saturated model for the joint distribu-

tion of the vector of responses grows exponentially with the number of repeated measures.

Although an appealing feature of the GEE approach is its robustness to misspecification

of the within-subject association; there are settings where it can be appealing to model the

covariance. The implementations of GEE in standard statistical software packages provide

only very limited options for modelling the covariance. In particular, there are few choices of

models for the ”working covariance” when the data are highly unbalanced and irregularly

spaced in time. This is in contrast to models for continuous responses (e.g. general linear

models and linear mixed-effects models), where there are a broad class of models for the

covariance. Future work is needed in both the formulation and implementation of flexible

models for the working covariance in GEE methods.

The present study demonstrates the application of TLC and RSV data analyses using SAS.

We first describe the basic modelling framework and demonstrate how various models fit to

longitudinal data via SAS. The results presented suggest that the best approach probably is

by fitting linear curves for the relevant data sets as a regression of response on time. The re-

sult in linear mixed model, random intercept, and random intercept and slope model shows

that the week (time) effect is significant at 5%. Clearly blood lead level is linearly related
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to week. The fixed parameter associated with group is not significant. This indicates that

on average neither placebo nor active drug differ significantly concerning their initial blood

lead level. Also the interaction parameter is not significant; suggesting that average of active

drug increases faster over time than placebo blood lead level. Since the group variable was

found to be insignificant it was removed from the model. It should be noted that the sample

size used was relatively small. Therefore it would be of benefit to investigate this on a larger

sample and increasing observation period. Increasing the observation period and sample

size will probably is the best route for future studies.

The results of the model selection show that the correlation matrix resembled an unstruc-

tured (UN) in all fitted models. In the analysis of GEE, the results of the model parameter

estimates were approximately the same, but the standard errors varied GEE model varies

within and across the parameters. A parameter estimate for the ACTPASS effect was sta-

tistical significant at 5% level of significance. We conclude that there are differences in the

responses of child depending on whether they are visited by fieldworker or they are brought

to the clinic. We noticed that the effects of Age and DT did not show a significant contribu-

tion towards child response. The parameter estimate for empirical and model based on the

GEE model with exchangeable covariance structure are the same. For our data the model

with exchangeability covariance structure is chosen. These models perform poorly when

there many observations from a handful of subjects. From our findings, we recommend

that ACTPASS should be strengthened since the contrast effect of their average performance

with PREV decreases over time. In the analysis of GLMM, the results from GLIMMIX and

NLMIXED were similar which should give us more confidence in both. The results from

GLMMs and NLMIXED models indicate that the group and age effects are significant at 5%

significance level while the interaction between group and age shows non-significance dif-

ferences in both procedures.

As we discussed earlier that CA is an exploratory method of data analysis which does not

only quantify multivariate categorical data but yields a graphical representation of the in-

ner structure of the data. The application of CA as a graphical method of data analysis is

almost unlimited, but Lebart et al. (1984) and Zhou (2008) suggest that there are conditions

that should be satisfied if CA is to be most effective. Firstly, the data matrix must be large

enough that visual inspection or simple statistics analysis can reveal its structure. Secondly,

the variables must be homogeneous so that it makes sense to calculate a statistical distance
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between rows and columns and so that distances can be interpreted meaningfully. Lastly, the

data matrix must be amorphous a priori. CA is a statistical technique that is specifically de-

signed to explore relationships within and between two or more categorical variables. It can

be used to analyse binary data without distributional assumptions. CA provides a unique

graphical display thatcan be used to show how the variable response categories are related.

While we believe that CA is a very useful technique, its limitation is that distances between

row and column points are not mathematically defined. Another limitation of CA is that all

of the relevant variables are included in the analysis. If a key variable is overlooked in the

design stage of the research, then the final scaling solutions is impoverished or weakened.

The possible future research includes:

1. Expanding the applicability of and improving the estimation method for linear mixed

models.

2. Extending the theory of correspondence analysis to multiple correspondence analyses.

3. The development of statistical technique to handle complex survey design and analysis

of correlated data with measurement error in response from longitudinal survey.

4. We can also consider the penalized generalized estimating equations for analysing lon-

gitudinal data with high-dimensional covariates.
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