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ABSTRACT 

 

The estimation of total evaporation plays a vital role in water resources monitoring and 

management, especially in water-limited environments. In South Africa, the increasing water 

demand, due to population growth and economic development, threatens the long-term water 

supply. This, therefore, underscores the need to account for water by different consumers, for 

well-informed management, allocation and future planning. Currently, there are different 

methods (i.e. ground-based and remote sensing-based methods), which have been developed 

and implemented to quantify total evaporation at different spatial and temporal scales. 

However, previous studies have shown that ground-based methods are inadequate for 

understanding the spatial variations of total evaporation, within a heterogeneous landscape; 

they only represent a small area, when compared to remotely sensed methods. The advent of 

remote sensing therefore provides an invaluable opportunity for the spatial characterization of 

total evaporation at different spatial scales. 

  

This study is primarily aimed at estimating variations of total evaporation across a 

heterogeneous catchment in KwaZulu-Natal, South Africa, using remote sensing data. The 

first part provides an overview of total evaporation, its importance within the water balance 

and consequently in the management of water resources. It also covers various methods 

developed to estimate total evaporation, highlighting their applications, limitations, and 

finally, the need for further research. 

 

Secondly, the study determines the effect of sensor spatial resolution in estimating variations 

of total evaporation within a heterogeneous uMngeni Catchment. Total evaporation estimates 

were derived, using multispectral 30 m Landsat 8 and 1000 m MODIS, based on the Surface 

Energy Balance (SEBS) model. The results have shown that different sensors, with varying 

spatial resolutions, have different abilities in representing variations of total evaporation at 

catchment scale. It was found that Landsat-based estimates were significantly different (p < 

0.05) from MODIS. 

 

The study finally estimates spatial variations of total evaporation from Landsat 8 and MODIS 

datasets for the uMngeni Catchment. It was found that the Landsat 8 dataset has greater 

potential for the detection of spatial variations of total evaporation, when compared to the 
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MODIS dataset. For instance, MODIS-based daily total evaporation estimates did not show 

any significant difference across different land cover types (One way ANOVA; F1.924 = 

1.412, p= 0.186), when compared to the 30 m Landsat 8, which yielded significantly different 

estimates between different land cover types (One way ANOVA; F1.993= 5.185, p < 0.001). 

The validation results further indicate that Landsat-based estimates were more comparable to 

ground-based eddy covariance measurements (R2 = 0.72, with a RMSE of 32.34 mm per 

month (30.30% of the mean)). In contrast, MODIS performed poorly (R2 = 0.44), with a 

RMSE of 93.63 mm per month (87.74% of the mean). In addition, land cover-based estimates 

have shown that, not only does the land cover type have an effect on total evaporation, but 

also the land cover characteristics, such as areal extent and patchiness. 

 

Overall, findings from this study underscore the importance of the sensor type, especially 

spatial resolution, and land cover type characteristics, such as areal extent and patchiness, in 

accurately and reliably estimating total evaporation at a catchment scale. It is also evident 

from the study that the spatial and temporal variations in SEBS inputs (e.g., LAI, NDVI and 

FVC) and energy fluxes (e.g., Rn) calculated by SEBS for the two sensors can affect the 

spatial and temporal variations in total evaporation estimates. For instance, spatial variations 

in total evaporation reflected similar spatial variations in Rn. Areas with high NDVI, FVC 

and LAI (which denotes dense vegetation cover) tend to have higher total evaporation 

estimates, compared to areas with lower vegetation cover. In addition, the MODIS sensor at 

1000 m spatial resolution showed lower estimates of SEBS inputs with less variability across 

the catchment. This resulted in lower total evaporation estimates, with less variability, 

compared to the 30 m Landsat 8. 

 

In addition, with regard to inputs derived from remote sensing, it was found that the spatial 

variations in total evaporation are not determined by individual variables (e.g., LST), but are 

influenced by a combination of many biophysical variables, such as LAI, FVC and NDVI. 

These findings lay a foundation for a better approach to estimate total evaporation using 

remote sensing for use in the management and allocation of water. 
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1. GENERAL INTRODUCTION 

 

Water availability has been recognized as a global issue and needs to be consistently 

quantified to support sustainable use (Doll et al., 2003). Despite the importance of water, the 

world is far from being water secure, with demand already outstripping supply in many 

regions (Oki and Kanae, 2006; Zhuwakinyu, 2012). In addition, climate change is posing a 

threat to global water resources and the projected increase in temperature is most likely to 

impact the availability of already limited water resources (Doll et al., 2003). In southern 

Africa, water is increasingly becoming scarce, due to population growth and development 

(Lange et al., 2007; Zhuwakinyu, 2012). In South Africa, the growing demand for water, 

coupled with the mostly arid nature of the country has, in some cases, resulted in demand 

exceeding natural availability (Molobela and Sinha, 2011). Consequently, in more than 50% 

of the 19 Water Management Areas (WMAs), demand exceeds supply (DWAF, 2004). The 

water disclosure South Africa report (Zhuwakinyu, 2012), predicted that some of the 

country’s most economically important catchment areas will be affected (Zhuwakinyu, 2012), 

notably the Luvhuvhu, Upper Breede and uMngeni Catchments (Summerton et al., 2010; 

Warburton et al., 2012). In addition, the Strategic Water Partners Network (SWPN) estimates 

that water demand in South Africa will rise by 52% in the next three decades, while water 

supply will deteriorate (Zhuwakinyu, 2012). This will increase the competition for water 

resources within different economic sectors. Therefore, there is a need for sustainable water 

resource management practices, without jeopardizing economic growth and development. 

 

In order to manage water resources, water accounting plays a fundamental role. Molden 

(1997) describes water accounting as a method that analyses water consumption, depletion 

and production within a catchment. This method uses the water balance approach (Molden et 

al., 2001). Consequently, different water balance components are measured for the analysis 

of water use, depletion and productivity. The hydrological cycle comprises various 

components, such as precipitation, runoff, storage and total evaporation. Total evaporation, 

which is also widely known as evapotranspiration, is one of the key components (second 

largest after precipitation) in a water balance (Maeda et al., 2011). Total evaporation is one of 

the processes by which water is depleted from a catchment (Molden and Sakthivadivel, 

1999), hence it has an effect on water availability. The accurate spatial and temporal 

estimation of total evaporation is required for water resources monitoring, management and 
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planning. In addition, Ershadi et al. (2013) also emphasize that there have been on-going 

efforts in the hydrological and related sciences to accurately estimate total evaporation. More 

specifically, Jarmain et al. (2009a) highlighted that, in a semi-arid and water-scarce country 

like South Africa, which has a large number of consumers of water, it is important to estimate 

total evaporation with a high degree of accuracy. This becomes fundamental in order to save, 

secure and guarantee the distribution of water to different consumers in a more sustainable 

manner. Moreover, water quality is increasingly deteriorating, which may negatively impact 

on the supply of water (Jarmain et al., 2009b). Different methods have therefore been 

developed to quantify total evaporation at various spatial and temporal scales, based on 

meteorological observations, micro-meteorological techniques, such as the eddy covariance 

system and A-Pan, as well as remote sensing. 

 

Although different methods have been developed, the choice of a method depends on the 

availability of the method or model, data requirements and reliability, as well as its accuracy 

in mapping the spatial variability of total evaporation. The ground-based methods of 

estimating total evaporation, although accurate, are impractical for large-scale 

implementation (Drexler et al., 2004; Li et al., 2009). They are useful for the verification of 

total evaporation by specific land cover types, but cannot represent the spatial variations of 

total evaporation (Gibson et al., 2013; Lott and Hunt, 2001). Remote sensing techniques 

therefore, offer robust, instantaneous and efficient spatial and temporal data useful for the 

large-scale estimation of total evaporation for the improved management of water resources 

(Li et al., 2009; Ruhoff et al., 2012). 

 

Although remote sensing products provide a reliable method of estimating total evaporation, 

the ability of satellite sensors to detect spatial variations of total evaporation within a 

catchment characterized by various land cover types and climatic conditions requires further 

investigation. Total evaporation varies spatially and temporally, due to the variations of land 

cover characteristics and climatic conditions. Understanding the performance of remote 

sensing datasets and their ability to discriminate spatial variations of total evaporation across 

a catchment provides an integrated approach for the better management and allocation of 

water. There is also a need to determine the effect of different land cover types and their 

contributions to total evaporation within a catchment, for the long-term sustainability of 

water and its allocation to various consumers within different sectors. It is in the light of this, 
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that the present study aims to understand spatial variations of total evaporation within a 

catchment characterized by various land cover types and climatic conditions, using 

multispectral remote sensing data. 

 

1.1 Aims and Objectives 

 

The main aim of this research was to estimate the spatial variations of total evaporation, using 

remotely sensed data across the uMngeni Catchment in KwaZulu-Natal, South Africa. More 

specifically the objectives were to: 

i. determine the effect of varying sensor spatial resolutions (i.e. 30-m Landsat 8 and 

1000-m MODIS data) on estimating variations of total evaporation for the 

heterogeneous uMngeni Catchment, and  

ii. determine the spatial variations of total evaporation estimates, using multispectral 

remote sensing data and the effect of varying land cover characteristics in estimating 

total evaporation within the uMngeni Catchment. 

 

1.2 Thesis Outline 

 

The structure of this dissertation is presented in six chapters as shown in Figure 1.1. Chapter 

One provides an introduction to the study, as well as highlighting the main aim of the study. 

 

Chapter Two contains a detailed review of literature on total evaporation estimation. This 

highlights the various methods of estimating total evaporation, as well as their strengths and 

weaknesses in the management of water resources. Remote sensing-based approaches for the 

accurate monitoring of total evaporation and their various challenges are discussed in detail 

and possible solutions are also suggested. 

 

Chapter Three highlights the general overview of the methodological approach, including 

data used during the study. It also contains some of the interim results, which are further 

given in details in chapters Four and Five. 
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Chapter Four is the first publishable paper, in which the effect of varying sensor spatial 

resolution on the remote sensing estimates of total evaporation in the uMngeni Catchment is 

investigated. This determines if there are any significant differences in total evaporation 

estimates between two different sensors with varying spatial resolutions across the catchment. 

 

Chapter Five constitutes the second publishable paper, which further investigates spatial 

variations of total evaporation estimates, using multispectral remote sensing data, within the 

uMngeni Catchment. The study specifically investigates the spatial variations of total 

evaporation estimates from two different sensors, as well as determining the effect of land 

cover characteristics in estimating seasonal and annual total evaporation across the 

catchment. 

 

Finally, Chapter Six provides a synthesis of the study. This constitutes a summary of major 

findings and conclusions derived from the preceding chapters. The Chapter also presents the 

limitations of the study and some relevant recommendations for future studies on the 

applications of remote sensing for estimating total evaporation.  

 

As encouraged by UKZN, this dissertation has been structured as a set of papers, preceded by 

a general introduction chapter, overview of methodology and followed by a synthesis chapter. 

Hence, there may be repetition in some sections, since chapters constitute stand-alone papers, 

which are intended for submission to different journals for publication. 
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2. REVIEW OF METHODS FOR ESTIMATING TOTAL 

EVAPORATION 

 

Abstract 

Different approaches have been developed, to understand variations of total evaporation at 

various spatial and temporal scales. However, it has been observed that estimates using 

ground-based meteorological and micro-meteorological methods are inadequate for 

representing large-scale spatial variations of total evaporation. Remote sensing offers timely, 

up-to-date and relatively accurate spatial estimates of total evaporation for the sustainable and 

effective management of water resources. This paper, discusses the different approaches that 

have been used for assessing total evaporation, highlighting their strengths and weaknesses. 

Research gaps in the estimation of total evaporation, using remote sensing, as well as possible 

future research, were also highlighted. 

 

Key words: Total evaporation, remote sensing, energy balance models, water resources 

management,  

 

2.1 Introduction 

In this study, total evaporation is defined according to Savenije (2004) as a summation of 

evaporation from different surfaces, including interception (I), transpiration (T), surface 

evaporation (Es) and open water bodies (Eo). Savenije (2004) argues that the widely-used 

term evapotranspiration should be avoided, as it is an outdated term for a combination of 

evaporation processes from different surfaces. McMahon et al. (2012) agree that the term is 

misleading, considering the significant contribution of evaporation from interception to actual 

evaporation from vegetated surfaces, especially in warm climatic regions. They further define 

evaporation as an aggregation of all processes through which water is transferred as vapor 

from different surfaces, such as soil moisture, vegetation and open water bodies (McMahon 

et al., 2012). Total evaporation varies with space and time and for different land cover types, 

due to the spatial and temporal variations in climatic conditions and landscape characteristics 

(Mutiga et al., 2010). Climatic conditions incorporate rainfall, solar radiation, temperature, 

wind speed and humidity, while the landscape encompasses vegetation, soil and topographic 
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characteristics (Zhang et al., 2004). Therefore, different methods have been developed to 

estimate total evaporation at various spatial and temporal scales. 

 

It is the aim of this chapter to briefly review various methods of estimating total evaporation 

and discuss their general strengths and weaknesses for improved and well-informed 

management of water resources. In addition, the remote sensing-based approaches for 

estimating total evaporation are discussed in detail. Various challenges associated with using 

remote sensing to map and monitor total evaporation, are highlighted and possible solutions 

are suggested. 

 

2.2 Estimating Total Evaporation 

 

Different methods have been developed and implemented to estimate total evaporation, 

including meteorological ground-based point data, field measurements and spatially explicit 

remotely sensed data. Total evaporation is estimated either directly, when it is quantified by 

an instrument, or indirectly, when it is derived by means of its relationship with other 

parameters, as well as using reference total evaporation (Rana and Katerji, 2000). Depending 

on data availability and the purpose of estimating total evaporation, different methods can be 

used. Nevertheless, some methods are more suitable than others in terms of accuracy, 

availability and cost, while others are suitable for a particular given space and time-scale. 

Direct measurements of total evaporation are rarely available and estimates are often derived 

from reference evaporation estimates (Chen et al., 2005; Sumner and Jacobs, 2005). 

 

2.2.1 Meteorological methods 

 

Meteorological methods are based on a point measurement of meteorological conditions to 

estimate reference evaporation, which can be used to derive total evaporation (Sumner and 

Jacobs, 2005). Reference evaporation is described by Chen et al. (2005) as the atmospheric 

demand for water from vegetation and soil, without the influence of vegetation characteristics 

or soil management. McMahon et al. (2012) define reference evaporation as the loss of water 

from a prescribed reference surface, where water is abundantly available and soil factors have 

no effect. It includes evaporation from vegetated surfaces, such as grass or alfalfa, and 

measurements from free water, such as an evaporation pan or the British standard tank (S-
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tank). Therefore, the potential evaporation from a grassed surface, pan or tank provides a 

reference for the estimation of total evaporation for other surfaces. A summary of some of the 

widely-used methods to estimate reference evaporation is shown in Table 2.1. 

 

Table 2.1 Summary of the data requirements by different meteorological-based methods 

Method Meteorological variables required Other Parameters 

Blaney- Criddle (1962) 

(Fooladmand, 2011 ; Lee et 

al., 2004; Xu and Singh, 2002) 

Daily temperature, wind speed, relative 

humidity, sunshine hours 

___ 

Hargreaves-Samani (1985) 

(Lu et al., 2005) 

Daily temperature, radiation Latitude, day of the year 

Kimberly-Penman (1982) 

(Praveen et al., 2011; Weiß 

and Menzel, 2008) 

Daily temperature, radiation, wind 

speed, atmospheric pressure 

___ 

Makkink (1957) 

(Lu et al., 2005) 

Mean daily temperature, radiation ___ 

Penman-Monteith 

(Allen et al., 1998; Monteith, 

1965; Penman, 1948) 

Daily temperature, radiation, wind 

speed, atmospheric pressure, relative 

humidity 

Vegetation characteristics, 

Calibration constant 

Priestley-Taylor (1972) 

(Alexandris et al., 2008; 

Kalma et al., 2008) 

Mean daily temperature, radiation Calibration constant 

Thornthwaite (1948) 

(Maeda et al., 2011; Pereira 

and Pruitt, 2004) 

Mean daily temperature Daytime length, latitude 

Turc (1961) 

(Federer et al., 1996; 

McMahon et al., 2012) 

Mean daily temperature, radiation, 

relative humidity 

___ 

 

The Penman-Monteith method has been regarded as the most reliable method for precise 

reference evaporation estimates and is therefore used as a standard, for the verification of 

other meteorological-based methods (Chen et al., 2005). The method is applicable globally 

across varying climatic regions (Alexandris et al., 2008; Droogers and Allen, 2002; Lott and 

Hunt, 2001). The Penman-Monteith method has also been used successfully to validate 

remote sensing methods (Irmak et al., 2011; Jun et al., 2010). Although meteorological-based 

methods have been used, literature shows that they have limitations in mapping the spatial 

variations of total evaporation. It has been noted that these methods are based on 

meteorological stations, which are unevenly distributed spatially (Lee et al., 2004; Maeda et 
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al., 2011) and reference evaporation is derived from the interpolation of point-based 

estimates. Interpolation introduces errors, especially in areas characterized by varying 

climatic conditions and land cover types (Gibson et al., 2011; Lott and Hunt, 2001). 

 

Total evaporation can also be estimated using micro-meteorological techniques (Table 2.2). 

All the methods are used to derive total evaporation, except for the A-pan or British Standard 

tank (S-tank), which estimate reference evaporation and use coefficients to derive total 

evaporation (Chen et al., 2005). Brutsaert (2013) highlights that total evaporation from the 

surrounding area is proportional to the measured pan evaporation, using pan coefficients 

which vary, due to spatial variations of vegetation characteristics, as well as the 

environmental conditions (Brutsaert, 2013; Chen et al., 2005). Micro-meteorological methods 

have been applied across the globe for various land cover types, including agricultural fields 

(Allen et al., 2007b; Nagler et al., 2005) and natural ecosystems (Drexler et al., 2004; Lott 

and Hunt, 2001), with useful estimates. 

 

In South Africa, micro-meteorological methods have also been applied across different land 

cover types under varying climatic conditions, including, grassland areas (Savage et al., 

2010), agricultural areas (Mengistu et al., 2014), wattle (Clulow et al., 2011) and eucalyptus 

forests (Jarmain and Everson, 2002). In addition, Jarmain et al. (2009b) highlighted that 

ground-based methods will always be in demand, as estimates based on these methods are 

required to validate remotely sensed estimates of total evaporation (Jarmain et al., 2009a). 
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Table 2.2 Summary of micro-meteorological methods to estimate total evaporation 

Method Application Reference 

A-pan / S-tank Estimates reference evaporation and then 

total evaporation is estimated using pan 

coefficients 

Brutsaert (2013) 

McMahon et al. (2012) 

Bowen ratio Estimates total evaporation at a point Drexler et al. (2004), 

Savage et al. (1997) 

Eddy covariance 

 

Estimates total evaporation at a point Meyers and Baldocchi 

(2005), Scott (2010) 

Scintillometer Estimates total evaporation  along a transect McJannet et al. (2013) 

Odhiambo and Savage 

(2009), 

Surface renewal Estimates total evaporation at a point Spano et al. (2000), 

Mengistu and Savage 

(2010) 

Lysimeter Estimates total evaporation at a point Rana and Katerji (2000) 

 

Micro-meteorological techniques have limitations in estimating total evaporation (Jarmain et 

al., 2009b). With the exception of scintillometry, micro-meteorological methods are not 

representative of the spatial variability of total evaporation within the landscape, because 

their estimates are based on point measurements (Gibson et al., 2013; Glenn et al., 2007; 

Jarmain et al., 2009b). On the other hand, scintillometry estimates total evaporation as the 

average of the fluxes along a defined transect (Meijninger and de Bruin, 2000), which allows 

the detection of ground-based areal total evaporation variations for a defined path, usually not 

more than ten kilometers (Hoedjes et al., 2007). According to Meijninger and de Bruin 

(2000), scintillometry is a reliable method and an intermediate scale of measurement between 

ground-based point measurements and the spatial estimates from remotely-sensed data. It has 

a better spatial representation of total evaporation, when compared to point-based methods. 

Scintillometry has been successfully applied in agricultural fields (Anandakumar, 1999; 

McJannet et al., 2013) and landscapes with mixed land cover types (Hemakumara et al., 

2003). The method has also been used to validate remote sensing-based total evaporation 

estimates (Bastiaanssen et al., 2005; Bastiaanssen, 2000; Jia et al., 2003; Jovanovic et al., 

2011). Scintillometry has also been used over different land cover types, in South Africa, 

with reasonable estimation accuracy (Clulow et al., 2011; Kongo and Jewitt, 2006; Savage et 
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al., 2004; Savage et al., 2010). Although scintillometry has been widely-used, Hoedjes et al. 

(2007) highlighted that it is more applicable in homogenous areas, such as agricultural fields. 

 

In conclusion, the use of point-based and micro-meteorological methods in estimating the 

spatial variations of total evaporation remains a challenge. Remote sensing is gaining 

popularity in the spatial mapping and monitoring of natural resources at different spatial 

scales. 

 

2.2.2 Remote sensing methods  

 

The advent and advancement in remote sensing enables the spatial monitoring of total 

evaporation over large areas. The increased availability and advancement of satellite data 

products provides an opportunity to monitor variations of total evaporation at different spatial 

and temporal scales (Glenn et al., 2007; Ruhoff et al., 2012) and allows the monitoring of 

inaccessible areas (Li et al., 2009). In addition, Gibson et al. (2013) highlight that remote 

sensing technology holds great promise for the long-term monitoring of water resources on a 

relatively large scale and in a cost effective manner. Methods based on the use of remote 

sensing data are therefore well-suited for the spatial variations of total evaporation over time. 

The methods include the use of vegetation indices and the energy balance models, such as the 

Surface Energy Balance Index (SEBI), the Simplified Surface Energy Balance Index (S-

SEBI), the Surface Energy Balance System (SEBS), the Surface Energy Balance Algorithm 

for Land (SEBAL) and Mapping EvapoTranspiration at High Resolution with Internalized 

Calibration (METRIC). Energy balance models are based on the energy balance approach, 

since total evaporation requires energy in order to occur. Therefore, these models estimate 

total evaporation, using the following equation: 

  

EHGRn  0  (2.1) 

where: 

Rn = net radiation at the surface [W/m2], 

G0 = soil heat flux [W/m2],  

H = sensible heat flux to the air [W/m2], and 

λE = latent heat flux [W/m2]. 
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Net radiation can be acquired from remote sensing or ground-based meteorological stations, 

whereas soil heat flux is indirectly derived, using empirical relationships between vegetation 

and land surface characteristics, or directly, using soil heat plates. However, sensible and 

latent heat fluxes are derived in various ways depending on the model. Some models rely on 

the characteristics of the input image (to derive dry and wet limits), while others are based on 

the bio-physical characteristics of the area under study (Li et al., 2009). 

 

2.2.3 Vegetation indices 

 

Remotely sensed derived vegetation indices, combined with ground data, are useful in the 

estimation of total evaporation for crops and natural vegetation (Guerschman et al., 2009). 

Commonly-used indices include the Normalized Difference Vegetation Index (NDVI), the 

Soil Adjusted Vegetation Index (SAVI) and the Enhanced Vegetation Index (EVI). Seevers 

and Ottmann (1994) estimated the total evaporation of irrigated fields, using NDVI derived 

from the Advanced Very High Resolution Radiometer (AVHRR). Their results indicated a 

high correlation between the Blaney-Criddle meteorological ground-based method and 

NDVI-based estimates. However, they noted that NDVI could only detect severe water 

deficiencies, rather than slight changes. Similarly, based on the results of their study, Glenn et 

al. (2010) indicated that vegetation indices have problems in detecting water stress from 

vegetation during early stages. Nagler et al. (2005) used the Moderate Resolution Imaging 

Spectroradiometer (MODIS) derived NDVI and EVI, together with the eddy covariance 

system, to estimate total evaporation from riparian vegetation. Their results showed a high 

correlation between EVI and the eddy covariance measurements. 

 

Although remotely sensed vegetation indices enable the spatial estimation of total 

evaporation over large areas, they cannot provide accurate estimates in water-stressed 

vegetation. EVI and NDVI underestimate total evaporation from unhealthy vegetation and 

bare areas (Senay et al., 2011; Szilagyi et al., 1998). In addition, SAVI cannot accurately 

detect total evaporation in areas with sparse vegetation cover (Gilabert et al., 2002; Qi et al., 

1994; Rondeaux et al., 1996). 
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2.2.4 Surface Energy Balance Index  

 

According to van den Hurk (2001), SEBI is a modified Crop Water Stress Index (CWSI) 

(Jackson et al., 1981; Moran et al., 1996). The SEBI model computes total evaporation by 

combining remotely sensed inputs and meteorological data. SEBI derives total evaporation 

and the evaporative fraction, based on land surface dry and wet limits, which are 

characterized by maximum surface temperature, with low or no evaporation, and minimum 

surface temperature, with high or maximum evaporation, respectively (Li et al., 2009). In the 

SEBI model, the evaporative fraction is estimated from minimum and maximum surface 

temperatures and from the aerodynamic roughness length or roughness height of heat 

transfer, to derive latent heat flux (Li et al., 2009). However, van den Hurk (2001) 

highlighted that the SEBI roughness height is poorly computed for estimating total 

evaporation, hence the SEBI model needs further testing and verification against ground-

based estimates under various bio-physical and climatic regions. 

 

Menenti et al. (2003) has demonstrated the applicability of the SEBI model in France, Spain, 

Italy, China and the United States of America. Their results agreed well with estimates 

derived from the ground-based scintillometer (Menenti et al., 2003). Roerink et al. (2000) 

highlighted that total evaporation can be accurately estimated in wet or humid areas (e.g. 

England) and in extremely dry areas, such as the Sahara Desert, using the SEBI model, where 

the S-SEBI is unapplicable. 

 

2.2.5 Simplified Surface Energy Balance Index  

 

The S-SEBI model estimates instantaneous evaporation, using surface temperature, albedo 

and NDVI derived from remote sensing (Roerink et al., 2000). The major strength of S-SEBI 

is that it is simple, does not need additional meteorological data, which is ideal in 

inaccessible areas, nor does it need the vegetation height for heat transfer, like SEBS (Gowda 

et al., 2007). The model computes total evaporation and the evaporative fraction, by 

assuming a constant atmospheric forcing (i.e constant global radiation and air temperature). 

Under constant atmospheric forcing, surface temperature is correlated with surface 

reflectance (Menenti et al., 1989). The evaporative fraction estimated from the image feature 
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space (i.e. the relationship between surface reflectance and surface temperature) is useful for 

deriving latent and sensible heat fluxes, as shown in Figure 2.1 after Roerink et al. (2000). 

 

 

Figure 2.1 S-SEBI principle for deriving evaporative fraction and total evaporation 

Evaporative fraction is computed, based on the image feature space in Figure 2.1 (b) as: 

 

 
EH

H

TT

TT




 0  (2.2) 

where 

   = evaporative fraction [dimensionless], 

 T0 = land surface temperature [ºC], 

 TH = temperature of dry condition for a given reflectance value [ºC], and 

 TλE = temperature of wet condition for a given reflectance value [ºC]. 

 

To date, a number of international studies have estimated total evaporation, using the S-SEBI 

method (Boronina and Ramillien, 2008; Roerink et al., 2000; Sobrino et al., 2007). In the 

Alpilles Province of France, Gómez et al. (2005b) estimated the total evaporation from 

agricultural fields (i.e. corn, maize, wheat and alfalfa) and the results were validated, using 

ground-based Bowen ratio estimates. Their results show that the derived S-SEBI total 

evaporation estimates were in agreement with the crop development stages in the fields and 

also close to ground-based Bowen ratio estimates. In addition, Sobrino et al. (2007) estimated 

the total evaporation in the Iberian Peninsula, using S-SEBI (derived from AVHRR images) 

for different land cover types, namely, rice fields, olive trees, vineyard, forests and non-
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irrigated agricultural area. From the results, estimated total evaporation coincided well with 

surface characteristics, where high estimates of total evaporation were obtained from 

vegetated areas. The effect of incoming radiation and seasonal variations on total evaporation 

was also indicated, where higher estimates were obtained during summer and spring, while 

low estimates were obtained during the winter and autumn seasons. Boronina and Ramillien 

(2008), using AVHRR-derived S-SEBI, observed similar seasonal patterns of total 

evaporation estimates over the Lake Chad Basin. 

 

The major limitations of S-SEBI include its assumption of constant atmospheric forcing and 

its requirement of extreme surface temperature values, which are not always available on 

every remote sensing image (Roerink et al., 2000; Sobrino et al., 2007). Global radiation and 

air temperature are not always constant, especially in mountainous areas. Moreover, unlike 

SEBI, this model performs poorly in humid areas, as it prefers dry pixels, as well as in 

extremely dry conditions, such as the Sahara Desert, and over larger continental areas, where 

atmospheric conditions are not constant (Roerink et al., 2000). S-SEBI yields low estimates, 

when using coarse resolution images, due to mixed land cover spectral features in a single 

pixel. Further, the selection of extreme temperatures, representing the dry and wet conditions 

of the area, are derived by means of the image feature space (relationship between reflectance 

and surface temperature), without the use of location specific conditions. This introduces 

errors and uncertainties in the estimation of total evaporation.  

 

2.2.6 Surface Energy Balance System for Land  

 

SEBAL is a model, which was developed by Bastiaanssen et al. (1998) for computing 

turbulent fluxes or energy exchanges between land and the atmosphere using remote sensing 

data and meteorological data. Remote sensing inputs include vegetation indices, albedo and 

surface temperature, whereas meteorological inputs include temperature, wind speed, 

humidity and solar radiation (Teixeira et al., 2009). A detailed explanation of how all the 

energy balance components are derived to compute evaporation, using SEBAL is provided by 

Bastiaanssen et al. (1998). In brief, SEBAL uses the aerodynamic roughness length or 

roughness height of heat transfer (Li et al., 2009) in estimating latent heat flux. SEBAL has 

been widely-used internationally under varying climatic conditions in agriculture and natural 
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forests (Bastiaanssen, 2000; Long et al., 2011; Minacapilli et al., 2009; Ruhoff et al., 2012; 

Shilpakar et al., 2011; Teixeira et al., 2009). 

 

In Africa, Mutiga et al. (2010) used SEBAL to estimate total evaporation for a catchment in 

Kenya and their results showed that the model is effective in estimating the spatial variation 

of total evaporation for water resources management. In South Africa, Kongo and Jewitt 

(2006) used SEBAL-derived total evaporation estimates to examine the hydrological effects 

of rain water harvesting within a catchment. Their results indicated that SEBAL 

underestimated sensible heat flux, when compared with measurements from eddy covariance. 

Hellegers et al. (2009) used SEBAL to estimate total evaporation for the Inkomati Catchment 

and their results showed the variation of total evaporation between different vegetation types. 

They concluded that SEBAL, when combined with biomass production and rainfall data, 

shows the spatial distribution of water availability, consumption and surplus, based on 

different land cover types. Furthermore, Jarmain et al. (2009a) also used SEBAL in 

estimating total evaporation from Landsat images over different climatic regions and with 

varying land cover types, in the KwaZulu-Natal and Eastern Cape provinces. They concluded 

that the SEBAL model agrees well with ground-based measurements, especially with regard 

to net radiation. They further highlighted that SEBAL agrees well with the other energy 

balance models (SEBS, METRIC and VITT), which were used. 

 

Even though SEBAL has been successfully applied, a further understanding of the model and 

the impact of surface heterogeneity on heat fluxes at watershed or regional scales is required 

(Long et al., 2011). Despite its usefulness in understanding the spatial variations of total 

evaporation, SEBAL has some drawbacks. Gibson et al. (2013) state that the SEBAL model 

is protected by intellectual property in terms of availability, when compared to other models. 

SEBAL is also difficult to apply at large spatial scales (van den Hurk, 2001). In addition, if 

the SEBAL model is applied, its surface roughness parameter is poorly defined and its use of 

fixed temperature values for the dry and wet conditions of evaporation is problematic (Li et 

al., 2009). 
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2.2.7 Mapping EvapoTranspiration at High Resolution with Internalized Calibration 

 

The METRIC model (Allen et al., 2007b) was developed based on the SEBAL model and it  

computes the spatial variations of total evaporation, based on remotely sensed data and 

reference evaporation (Li et al., 2009). The model also requires solar radiation, air 

temperature dew point temperature and wind speed (Hankerson et al., 2012). METRIC 

computes and shows the estimated total evaporation as a fraction of the  reference 

evaporation (Hankerson et al., 2012) independent of vegetation type. METRIC differs from 

SEBAL in its use of meteorological-based reference evaporation (Allen et al., 2007b) and it 

also incorporates the soil moisture balance from meteorological-based data, to determine wet 

and dry limits for estimating evaporative fraction (Gowda et al., 2007). The METRIC model 

has been widely-used in United States under varying climatic and land cover types for 

various applications (Allen et al., 2007a). The model-based results also agreed well with 

ground-based lysimeter measurements.  

 

The METRIC model was also used in South Africa (Jarmain et al., 2009a) to estimate total 

evaporation for different sites under varying climatic conditions. The results showed that 

METRIC agreed well with other energy balance models, as well as with ground-based 

measurements, especially with regard to the estimation of net radiation.  

 

Although METRIC has been used extensively, much of its utility has been shown in the 

United States (where the model was developed), with Landsat images, or images with similar 

spatial resolution. Allen et al. (2011) also highlighted that the disadvantage of the METRIC 

model is that it requires trained experts or specialized personnel, high quality weather data 

and it relies highly on the ability of the operator to select the appropriate cold and hot pixels 

for the accurate estimation of total evaporation.  

 

2.2.8 Surface Energy Balance System  

 

The SEBS model, which was developed by, Su (2002), estimates heat fluxes, using remotely 

sensed data (i.e. land surface temperature, albedo, emissivity, fractional vegetation cover, leaf 

area index, NDVI) and meteorological data (i.e. temperature, humidity, wind speed and 

pressure) at a reference height. SEBS also requires solar radiation, which can be directly 
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measured on the ground or it can be modelled from remote sensing data (Su, 2002). Based on 

the energy balance equation, SEBS calculates the net radiation as: 

 

    441 TTRRn aswd     (2.3) 

 

where 

Rn = net radiation [W/m2],  

α = surface albedo [dimensionless], 

Rswd = downward shortwave solar radiation [W/m2], 

ε = surface emissivity [dimensionless], 

εa = atmospheric emissivity [dimensionless], 

σ = Stefan-Boltzmann constant [5.670 373 x 10-8 W m-2 K-4], and 

T = surface temperature [K] (Su, 2002). 

 

Soil heat flux (G0) is the amount of heat energy flowing into a cross-sectional area of soil per 

unit of time in response to the temperature gradient. It is computed as: 

 

 
    csccn fRG  10  (2.4) 

where 

G0 = soil heat flux [W/m2], 

Rn = net radiation [W/m2], 

c  = 0.05 [dimensionless,] ratio of soil heat flux to net radiation for full 

vegetation conditions 

s  = 0.315 [dimensionless] ratio of soil heat flux to net radiation for bare soil, 

and 

ƒc = fractional vegetation cover [dimensionless] (Su, 2002).   

 

SEBS uses the Monin-Obukhov Similarity Theory (MOST) to estimate the sensible heat (H) 

and latent heat (λE) fluxes. MOST relates surface fluxes to surface variables and variables in 

the Atmospheric Surface Layer (ASL), a detailed explanation of which is given by Su (2002). 

Unlike other energy balance models, SEBS computes the aerodynamic resistance of heat 

transfer more explicitly, instead of using fixed values, like SEBI and SEBAL (Li et al., 
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2009). Aerodynamic resistance varies with environmental conditions for different surface 

types, hence it has an effect on the estimation of heat fluxes, and subsequently, on total 

evaporation (Sugita and Kishii, 2002). Liu et al. (2006) highlight the importance of 

aerodynamic resistance when estimating total evaporation, using remotely sensed-based 

methods. SEBS is part of the open source freeware Integrated Land and Water Information 

System (ILWIS) package available free of charge (http://www.52north.org), unlike SEBAL, 

which is protected by intellectual property (Gibson et al., 2013).  

 

SEBS has been used internationally to estimate total evaporation for different land cover 

types, using different remote sensing sensors (Table 2.3) and yields reliable estimates. Su et 

al. (2007) evaluated the accuracy of total evaporation estimates from SEBS, using MODIS 

data, against ground-based measurements in the grasslands of Netherlands and Germany, the 

croplands of the United States, the rainforests of Brazil and the Canadian forests. Their 

results showed a close agreement between SEBS-based estimates and ground-based 

measurements, as well as the feasibility of using SEBS to estimate heat fluxes over 

inaccessible areas, where in-situ data are not readily available. However, there were 

uncertainties, due to satellite spatial resolution in capturing the spatial heterogeneity of the 

land cover types; hence, they recommended the use of medium resolution Landsat imagery. 

This is also supported by Vinukollu et al. (2011), who noted a disparity between total 

evaporation estimates derived using remote sensing data and ground-based measurements 

using eddy covariance system. They highlighted that the coarse spatial resolution MODIS 

data did not capture the heterogeneity of the surface (Vinukollu et al., 2011). 

 

 

http://www.52north.org/
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Table 2.3 Summary of SEBS applications at different spatial scales 

Remote Sensing 

Data 

Resolution 

(m) 

Location and Scale of Application Findings  Reference 

MODIS 1000 Regional land cover types of 

northern China 

SEBS concurs with previous results and the 

existing knowledge of total evaporation estimates 

in the area. 

He et al. (2007) 

MODIS 

 

1000 River basin (Iran) Mixed land cover types within a pixel make it 

difficult to derive land cover type based estimates 

accurately. 

Muthuwatta et al. 

(2010) 

MODIS 

 

1000 Catchment (Zimbabwe) Air temperature should be spatially represented, 

especially at heterogeneous areas. 

Rwasoka et al. (2011) 

AVHRR 

 

1000 Tibetan Plateau (China) Sub-pixel heterogeneity has been omitted due to 

coarse resolution imagery.  

Ma et al. (2003) 

AATSR 

 

1000 Nile delta (Egypt) High correlation of SEBS with ground data 

Applicability of SEBS over agricultural areas. 

Elhag et al. (2011) 

MODIS 1000 Catchment (South Africa) SEBS is sensitive to temperature gradient and 

should not be used with coarse resolution images in 

mountainous areas as temperature changes will not 

be captured. 

Gibson et al. (2011) 

AATSR 

 

1000 Landscape (Spain) SEBS estimates were comparable with ground-

based scintillometer results for the different 

agricultural fields. 

Jia et al. (2003) 

MODIS 1000 Global scale SEBS estimates correlates well with the ground-

based eddy covariance and the Penman-Monteith 

estimates. 

Vinukollu et al. (2011) 

MODIS 1000 National (Taiwan) SEBS spatial trends correspond to seasonal 

variations and vegetation cover conditions. 

Che-sheng et al. (2011) 
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ASTER 90 Agricultural region (Spain) SEBS agrees well with ground-based estimates 

under one land cover type and errors are introduced 

when different land cover types occur  

van der Kwast et al. 

(2009) 

ASTER 90 Irrigation area (418000 ha) of 

Australia 

SEBS correlates well with ground-based estimates 

and seasonal conditions. 

Ma et al. (2013) 

Landsat 5 TM 30 Agricultural crops of Texas, USA Performed well for crop under irrigation and dry 

land conditions 

Gowda et al. (2013) 

MODIS 

Landsat ETM 7 

Landsat 8 

1000 

30 

30 

Agricultural fields (South Africa) Landsat images provide better estimates when 

compared to MODIS.  

Mengistu et al. (2014) 

ASTER 15 Tibetan Plateau (China) SEBS results were reliable, but there is need to 

further assess the performance of other satellite 

sensors.  

Ma et al. (2011) 
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In the African context, Elhag et al. (2011) used SEBS to estimate total evaporation for the 

Nile Delta agricultural production zone of Egypt from Advanced Along-Track Scanning 

Radiometer (AATSR) images. SEBS showed a very high correlation, with ground-based 

measurements and its applicability in estimating daily total evaporation over agricultural 

areas was demonstrated. Rwasoka et al. (2011) used SEBS to estimate the spatial variation of 

total evaporation of a catchment in Zimbabwe, using MODIS data. The results showed that 

SEBS is a valuable model for determining the spatial variations of total evaporation and for 

managing water resources. However, Rwasoka et al. (2011) concluded that there is also a 

need for further research to determine the best approach for arid and semi-arid areas 

characterized by various land cover types. 

 

Gibson et al. (2011) highlight the applicability of SEBS in estimating total evaporation in the 

heterogeneous catchment of the Piketberg region, in South Africa, based on MODIS data. 

Their results show that SEBS is very sensitive to temperature gradient. Recently, Gibson et 

al. (2013) reviewed the estimation of total evaporation using SEBS and they concluded that 

the model did not yield accurate daily evaporation results at the MODIS spatial resolution. 

They recommended that any further research, using the SEBS model in South Africa, should 

be limited to fully vegetated areas or agricultural areas, and should also consider the potential 

of high resolution images. 

 

The SEBS model was also applied by Mengistu et al. (2014) to provide accurate estimates of 

total evaporation from agricultural fields in KwaZulu-Natal, South Africa. These estimates 

were based on images from MODIS, Landsat 7 ETM+ and Landsat 8 satellites. The results 

showed that Landsat provided better total evaporation estimates, when compared to MODIS, 

possibly because of their spatial resolution (30 m, compared to 1000 m). 

 

In addition, Jarmain et al. (2009a) reported the potential of several energy balance models 

(SEBS, SEBAL, METRIC and the Vegetation Index Temperature Trapezoid (VITT)), to 

estimate total evaporation from Landsat images over different climatic regions and with 

varying land cover types, in the KwaZulu-Natal and Eastern Cape provinces. They concluded 

that these methods extend the point-based measurement of total evaporation to large spatial 

scales and are also reliable in areas where measured meteorological data may be scarce. They 

also highlighted the previous application of the different energy balance models and major 
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findings across the globe for different land cover types. They also concluded that these 

models are useful for estimating total evaporation and therefore hold great potential for water 

resources management and planning. 

 

2.2.9 The influence of spatial heterogeneity on total evaporation estimates using 

remote sensing 

 

Although remote sensing provides an invaluable alternative for a better estimation of total 

evaporation at various spatial and temporal scales, the influence of landscape heterogeneity 

(i.e., the spatial variations of land cover types) within a study area on these estimates must be 

considered. Previous studies have established that spatial heterogeneity has a considerable 

influence on the estimation of total evaporation using remote sensing (Kustas et al., 2004; 

Kustas and Norman, 2000; McCabe and Wood, 2006; Norman et al., 2003; Saura, 2004). For 

instance, the study by Kustas and Norman (2000) noted that the variability in land cover 

characteristics (such as area and patchiness) across a landscape influences the ability of the 

sensor to explicitly represent variations of heat fluxes and total evaporation. Furthermore, 

Garrigues et al., (2006) found that the effect of land cover area in relation to the remote 

sensing sensor spatial resolution in determining the biophysical variables (e.g leaf area index) 

had a considerable effect on estimates of total evaporation. More specifically, McCabe and 

Wood, 2006 emphasized the importance of landscape heterogeneity and its influence on 

surface fluxes as detected by different satellite sensors with varying spatial resolutions. They 

further highlighted that the ability of the sensor to detect the specific land cover 

characteristics is limited when the scale of land cover is less than the spatial resolution. Thus 

the spatial arrangement including variations in area, patchiness and fragmentation of land 

cover types across a landscape is critical. It is, therefore important to explore not only the 

composition (land cover types) of the landscape, but also the spatial extent or scale and 

arrangement (patchiness) relative to the scale of remote sensing observation. 

 

Spatial heterogeneity refers to the complex spatial distribution of surface patterns or patch 

mosaics across a landscape (McGarigal, 2006). This depends primarily on the variability of 

climate, topography and human activities (Turner, 2001). Therefore the quantification of 

spatial heterogeneity provides a means of selecting optimum remote sensing sensors to detect 

the spatial variations. To quantify landscape heterogeneity, various methods, which are 



26 

 

widely known as landscape or spatial metrics, have been developed (Fiener et al., 2011; 

Kowe et al., 2014; Seto and Fragkias, 2005; Turner, 1989; Turner, 2001). Landscape metrics 

are geospatial data analysis algorithms, which quantify specific spatial characteristics of 

landscape mosaics, including patches and classes of patches (McGarigal, 2006). Furthermore, 

Kowe et al. (2014) noted that landscape metrics have the capability to determine land cover 

patterns and their spatial configuration (e.g. size, shape, edge, patches,) within a given 

landscape. Configuration refers to the spatial distribution or structure of patches, or more 

simply, the spatial arrangement of different land cover types within a landscape (Turner, 

2001). Although landscape metrics describe various properties of landscape heterogeneity, 

the choice of selecting these metrics depends on their relevance to the problem under 

investigation. Generally it is recognized that the spatial structure of elements (i.e patches) in a 

land cover mosaic determines the biophysical processes which operate within it (Haines-

Young and Chopping, 1996). 

 

Recently, Uuemaa et al. (2009) have highlighted the applicability of various landscape 

metrics in understanding patterns and processes within the earth surface. In addition, it has 

been established that spatial heterogeneity, particularly composition and structure, influences 

various biophysical processes across the landscape (Turner, 2001; Zhou et al., 2011). The 

studies by Uuemaa et al. (2013), Weng et al. (2007) and Zhou et al., 2011 have emphasized 

the relevance of landscape composition and configuration in water and energy flows, in urban 

planning and in ecology. They also suggest that variability in composition and configuration 

of a landscape plays an important role in determining the spatial patterns of biophysical 

processes and variables (e.g., land surface temperature). Even though many of the landscape 

metrics represent fundamental information, with regard to the estimation of total evaporation 

using remote sensing, particularly spatial resolution, configuration metrics are more likely to 

have a potential effect on the ability of the sensor to detect landcover spatial characteristics.  

Many of the landscape metrics are derived from the widely used primary metrics, and these 

are presented in Table 2.3. 

 



27 

 

Table 2.4 Primary landscape metrics used to determine spatial heterogeneity 

Landscape 

Metric 

Brief Definition References 

Number of 

patches (NP) 

Determines the total number of patches of a 

specific land cover type within a landscape. 

Turner (1989), 

Uuemaa et al. (2009) 

Mean patch size 

(MPS) 

Determines the mean area of patches of a specific 

land cover type within a landscape. The higher the 

value, the larger the area of the majority of 

patches.  

Turner (2001) 

Weng et al. (2007) 

Total edge (TE) It is an absolute measure of total edge length of all 

edge segments involving the corresponding patch 

type across a landscape. TE is equal to zero when 

the entire landscape consists of a single patch and 

increases when the landscape consists of many 

patches. It is a measure of landscape 

fragmentation. 

Riitters et al. (1995), 

Kowe et al. (2014) 

 

2.3 Discussion and conclusion 

 

Understanding the spatial variability of total evaporation remains a concern for water 

resources management at various spatial and temporal scales. A review of literature has 

demonstrated that there are various methods that have been developed to better understand 

variations of total evaporation estimates at different spatial scales and for a wide range of 

applications. Most notably, each of these methods has its own limitations and advantages. For 

instance, although meteorological-based methods have been widely-used, with acceptable 

estimates of total evaporation, it is evident that their point-based approach is inadequate for 

the accurate representation of the spatial variability of total evaporation. The interpolation 

approach, of point-based meteorological methods, overlooks the effect of spatial 

heterogeneity in land cover or climatic conditions and consequent total evaporation estimates, 

as it generalizes the characteristics of the land. Although the intermediate scintillometry 

method gives a better spatial representation of total evaporation, when compared to point-

based methods, this approach is mainly suitable for applications in homogenous areas. 

Despite their weaknesses, it has been shown that ground-based estimates still play a 

fundamental role in the estimation of total evaporation. However, remote sensing techniques 

provide an opportunity to spatially characterize total evaporation at different spatial scales, 

with reliable accuracy, although it has limitations, such as cloud cover, poor temporal and 
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spatial resolution, which hampers the continuous availability of quality data required for 

accurate estimation of total evaporation. 

 

Mindful of its shortcomings, remote sensing provides a cost-effective and reliable alternative 

for the accurate representation of the spatial variability of total evaporation at local, regional 

or international scale, when compared to point-based meteorological and micro-

meteorological methods. Specifically, it has been noted that remote sensing-based energy 

balance methods provide better spatial variations of total evaporation at different spatial 

scales, for water resources management. The SEBS model has been the most extensively 

used, with different satellite products, under different climatic regions, compared to other 

energy balance models.  

 

Although remote sensing methods provide a better way of estimating spatial variations of 

total evaporation at different spatial scales, the ability of different satellite products in the 

spatial representation of total evaporation remains a concern. Sensor spatial resolution in 

relation to land cover characteristics plays a critical role in determining total evaporation 

estimates. It is also apparent that the spatial heterogeneity (i.e., spatial arrangement and scale 

of land cover types) of the study area land cover characteristics is an important factor, when 

estimating the spatial variations of total evaporation using remote sensing, especially with 

regard to the sensor spatial resolution. Previously, spatial variations of total evaporation 

estimates were mainly derived from specific land cover types (e.g. agricultural fields, 

vineyards or wetlands) for a particular application. Variation of total evaporation across a 

heterogeneous catchment still requires further investigation, especially with regard to the 

influence of scale of observation. Catchments are characterized by various land cover types 

with varying water consumption. There is a need to understand water consumption and the 

contributions of different land cover types to total evaporation for water accounting purposes. 

This will also provide a better understanding of spatial variations of total evaporation for 

management and allocation of water. 
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3. OVERVIEW OF METHODOLOGY 

 

3.1 Introduction 

 

Total evaporation was estimated for the uMngeni catchment in KwaZulu-Natal Province, 

South Africa, using the SEBS model. The SEBS model requires three sets of information or 

data. The first set of data consists of land surface albedo, emissivity, temperature, Normalized 

Difference Vegetation Index (NDVI) fractional vegetation coverage (FVC) leaf area index 

(LAI), and the height of the vegetation. If vegetation information is not available, the NDVI 

is used as a surrogate. These input data can be derived from remote sensing data in 

conjunction with other information about the surface of interest. The second set includes 

meteorological data, such as air pressure, temperature, humidity, and wind speed at a 

reference height. These meteorological variables can be estimated by large scale 

meteorological models. The third set includes downward solar radiation, which can either be 

measured or estimated as model output or parameterization (Su, 2002). 

 

The study further estimates the spatial variations of total evaporation over a year (May 2013 

to April 2014), which include the dry (May to October 2013) and wet (November to April) 

seasons. This was done using daily reference evaporation (ETo) estimated for the uMngeni 

catchment from May 2013 to April 2014. In addition, the spatial heterogeneity across the 

uMngeni catchment was determined in relation to the scale of observation (spatial 

resolutions) of the two different sensors. 

 

3.2 SEBS Remote Sensing Inputs 

 

Remotely sensed SEBS inputs were derived from the 30 m resolution Landsat 8 and 1000 m 

resolution MODIS datasets, where these datasets include albedo, emissivity, NDVI, FVC, 

surface temperature (LST) and LAI. These parameters were derived from the two remotely 

sensed datasets using equations outlined in Appendices A and B. A sample of the derived 

remote sensing inputs from the two sensors is shown in Figures 3.1 for 24 June 2013 

(representing the dry season) and in Figure 3.2 for 23 March 2014 (representing the wet 

season). These figures show the spatial variations of the SEBS inputs for the two selected 

days. 
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It can be observed that the remote sensing inputs from the Landsat 8 and MODIS datasets 

show the same spatial variations for the two days. For instance, higher LST estimates were 

obtained in the eastern and southern areas than in the western and northern areas of the 

catchment. The eastern and southern areas of the catchment are dominated by built up areas 

(urban areas), whereas the western and northern areas are occupied by plantations, natural 

forests, commercial irrigated agriculture, water bodies and wetlands. However, Landsat 8 

showed higher LST values, with more variability across the catchment when compared to the 

1000 m MODIS data (Figures 3.1 and 3.2). 
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Figure 3.1 SEBS remote sensing inputs for 24 June 2013 (dry season) 
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Figure 3.1 cont… 
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Figure 3.1 cont… 
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Figure 3.2 SEBS remote sensing inputs for 23 March 2014 (wet season) 
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Figure 3.2 cont… 
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Figure 3.2 cont… 
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It was also found that the SEBS remote sensing inputs derived from the two sensors show 

variations between the two days representing dry and wet seasons. On the 24th of June 2013 

(dry), LST estimates were low, ranging from 280.71 K in the western and northern 

escarpments to 295.80 K in the coastal areas (Figure 3.1). The western and northern areas are 

largely dominated by plantations, natural forests, commercial irrigated agriculture, water 

bodies and wetlands. In contrast, on the 23rd of March (wet), LST was higher, ranging from 

294 K in the western and northern escarpments to 304 K in the southern and eastern coastal 

areas (Figure 3.2). The majority of the land cover types within the southern and eastern 

coastal areas are built-up areas. This highlights the spatial and temporal variability of surface 

temperature across the uMngeni catchment.  

 

The MODIS dataset showed lower emissivity values, when compared to the Landsat 8 

dataset. Emissivity refers to the ability of the surface to radiate incoming radiation and 

normally ranges between 0.9 and 1. Emissivity depends on surface-cover type, soil moisture 

content, soil organic content and vegetation density (Mallick et al., 2012). Generally, 

vegetated areas show slightly higher emissivity, as compared to water or bare surfaces. Low 

emissivity values indicate high reflection. This implies that the surface has low absorption 

ability of incoming radiation, hence less energy available for evaporation (Mallick et al., 

2012). With regard to the estimation of albedo, although its values are normally very low 

(less than 0.5) for most surfaces, the MODIS sensor estimated slightly higher estimates, 

especially in the north-western part of the catchment. This implies less absorption of 

incoming radiation (less energy available) and consequently reduced evaporation.  

 

A similar pattern was also observed for the other three SEBS input parameters namely: 

NDVI, LAI and FVC. The increase in NDVI, LAI and FVC may be attributed to the fact that 

the 23rd of March, represents wet period, which is characterized by higher rainfall, 

temperature and vegetation development, among other factors, which all contribute to an 

increase in total evaporation. However, it should be noted that high LST does not result in 

higher total evaporation estimates, since total evaporation is determined by the available 

energy (Rn – G0) on the surface and various bio-physical characteristics (e.g., land cover 

characteristics, moisture availability). 
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Overall, with regard to the derived SEBS inputs, it has been noted that the 1000 m MODIS 

datasets show lower and less variability of these parameters across the catchment, compared 

to the 30 m Landsat 8 data. This has a potential effect on the derived total evaporation 

estimates and energy fluxes. Total evaporation estimates derived from MODIS and Landsat 8 

datasets are more likely to exhibit the same spatial variations as portrayed by the SEBS input 

parameters (i.e., lower and less variability). Generally, areas with high NDVI, FVC and LAI 

(western and northern parts of the uMngeni catchment) are more likely to have higher total 

evaporation estimates, compared to the eastern and southern parts. The western and northern 

areas of the uMngeni catchment are predominantly natural forests, water bodies, plantations, 

commercial irrigated agriculture and wetlands, whereas the eastern and southern areas of the 

catchment are largely dominated by built up areas (urban areas). 

 

3.3 SEBS Meteorological Inputs 

 

Meteorological data used in the SEBS model included daily mean temperature, wind speed, 

humidity, pressure, sunshine duration and solar radiation. These datasets were recorded from 

meteorological stations within and adjacent to the uMngeni catchment, which are shown in 

Figure 3.3. The data from these stations were acquired from the South Africa Weather 

Services (SAWS) and the South African Sugarcane Research Institute (SASRI). The 

meteorological data acquired and used is summarised in Table 3.1. The data presented is only 

for the selected few days in which the SEBS model was run for the corresponding remote 

sensing images (Landsat 8 and MODIS). The meteorological data was also used to compute 

daily reference evaporation (from May 2013 to April 2014). The data used in the estimation 

of daily reference evaporation included wind speed, humidity and temperature. In addition, 

Table 3.2 shows the meteorological data corresponding to satellite overpass times, which 

were used in the SEBS model. 

 

Additional inputs used in the SEBS model included a Digital Elevation Model (DEM), 

(shown in Figure 3.4), average shortwave transmissivity (derived from DEM) (shown in 

Figure 3.5) of the study area, as well as the Julian day. 
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Table 3.1 Meteorological data acquired and used in the study  

23 May 2013 Meteorological station Tmean 

(°C) 

Tmax 

(°C) 

Tmin 

(°C) 

Mean wind speed 

(m/s) 

Pressure 

(Pa) 

Sunshine 

(hours) 

Humidity 

(%) 

 Mount Edgecombe 19.8 27.2 14.5 0.45 100750.0 7.1 80 

 PMB-Faulklands 16.3 31.3 7.7 0.44 92468.3 7.7 68 

 PMB - Ukulinga 18.8  28.2 11.3 0.50 94140.0 7.8 56 

 Wartburg - Bruyns Hill 17.9 26.5 9.9 0.80 90132.1 7.4 45 

 Cedara 16.5 26.7 6.3 1.20 89970.0 7.6 58 

08 June 2013 Meteorological station Tmean 

(°C) 

Tmax 

(°C) 

Tmin 

(°C) 

Mean wind speed 

(m/s) 

Pressure 

(Pa) 

Sunshine 

(hours) 

Humidity 

(%) 

 Mount Edgecombe 21.5 34.7 11.1 0.50 99780.0 7.3 61 

 PMB-Faulklands 20.4 31.3 8.0 1.00 93300.0 7.5 53 

 PMB - Ukulinga 16.3 28.9 13.0 1.00 92468.3 7.9 37 

 Wartburg - Bruyns Hill 17.9 25.9 11.7 1.70 90132.1 7.4 42 

 Cedara 16.9 26.8 7.1 1.90 89170.0 7.1 46 

24 June 2013 Meteorological station Tmean 

(°C) 

Tmax 

(°C) 

Tmin 

(°C) 

Mean wind speed 

(m/s) 

Pressure 

(Pa) 

Sunshine 

(hours) 

Humidity 

(%) 

 Mount Edgecombe 16.2 25.9 9.4 0.38 100540.0 7.3 73 

 PMB-Faulklands 14.9 30.1 6.9 0.70 93960.0 8.0 50 

 PMB - Ukulinga 18.5 26.5 11.6 1.04 92468.3 8.3 27 

 Wartburg - Bruyns Hill 16.0 24.8 7.9 1.52 90132.1 8.2 35 

 Cedara 14.1 24.7 3.5 2.50 89800.0 7.8 46 
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26 July 2013 Meteorological station Tmean 

(°C) 

Tmax 

(°C) 

Tmin 

(°C) 

Mean wind speed 

(m/s) 

Pressure 

(Pa) 

Sunshine 

(hours) 

Humidity 

(%) 

 Mount Edgecombe 17.3 24.3 12 0.52 100410.00 7.0 80 

 PMB-Faulklands 16.1 29.4 8.1 0.55 93960.00 7.7 67 

 PMB - Ukulinga 17.7 27.7 9.9 0.35 92468.28 8.1 56 

 Wartburg - Bruyns Hill 16.5 26.1 9.1 1.29 90132.10 7.8 50 

 Cedara 15.4 26.1 4.8 1.50 89730.00 7.4 60 

11 August 2013 Meteorological station Tmean 

(°C) 

Tmax 

(°C) 

Tmin 

(°C) 

Mean wind speed 

(m/s) 

Pressure 

(Pa) 

Sunshine 

(hours) 

Humidity 

(%) 

 Mount Edgecombe 15.9 22.1 7.2 0.99 100500.00 7.5 80 

 PMB-Faulklands 13.1 22.7 4.6 0.90   93960.00 8.1 78 

 PMB - Ukulinga 13.4 21.0 7.4 0.94   92468.28 8.2 75 

 Wartburg - Bruyns Hill 12.1 20.2 5.5 1.93   90132.10 7.9 73 

 Cedara 11.8 21.0 2.6 1.98   89580.00 8.1 81 

24 March 2014 Meteorological station Tmean 

(°C) 

Tmax 

(°C) 

Tmin 

(°C) 

Mean wind speed 

(m/s) 

Pressure 

(Pa) 

Sunshine 

(hours) 

Humidity 

(%) 

 Mount Edgecombe 25.5 31.8 18.9 1.09 100170.40 9.2 80 

 PMB-Faulklands 24.7 35.2 17.3 0.73   94140.00 8.6 71 

 PMB - Ukulinga 25.2 33.0 18.9 0.75   94111.40 9.6 69 

 Wartburg - Bruyns Hill 23.9 32.6 16.7 0.83   91733.60 9.2 61 

 Cedara 22.8 34.1 17.1 1.23   92114.00 8.9 70 
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Table 3.2 Meteorological data corresponding to satellite overpass used in SEBS model 

Date Meteorological station Tair (°C) Radiation (W/m2) Wind speed (m/s) 

23 May 2013 Mount Edgecombe 24.2 430.8 1.20 

 PMB-Faulklands 18.5 437.8 0.40 

 PMB - Ukulinga 20.8 452.3 0.60 

 Wartburg - Bruyns Hill 21.6 435.4 0.90 

 Cedara 20.2 421.3 1.80 

08 June 2013 Meteorological station Tair (°C) Radiation (W/m2) Wind speed (m/s) 

 Mount Edgecombe 27.6 404.2 1.20 

 PMB-Faulklands 24.2 399.6 1.20 

 PMB - Ukulinga 25.2 412.3 2.40 

 Wartburg - Bruyns Hill 23.4 426.2 2.00 

 Cedara 22.5 411.4 2.45 

24 June 2013 Meteorological station Tair (°C) Radiation (W/m2) Wind speed (m/s) 

 Mount Edgecombe 22.0  421.6 1.80 

 PMB-Faulklands 19.1 410.0 0.55 

 PMB - Ukulinga 20.9 429.5 1.60 

 Wartburg - Bruyns Hill 18.0 433.1 1.80 

 Cedara 16.6 406.3 2.00 

26 July 2013 Meteorological station Tair (°C) Radiation (W/m2) Wind speed (m/s) 

 Mount Edgecombe 23.3 532.0 0.50 

 PMB-Faulklands 18.1 501.3 0.75 

 PMB - Ukulinga 20.3 540.6 0.40 

 Wartburg - Bruyns Hill 17.4 513.5 1.30 

 Cedara 18.5 526.5 1.50 

11 August 2013 Meteorological station Tair (°C) Radiation (W/m2) Wind speed (m/s) 

 Mount Edgecombe 19.5 454.0 1.70 

 PMB-Faulklands 16.4 435.4 1.30 

 PMB - Ukulinga 16.6 463.2 1.50 

 Wartburg - Bruyns Hill 15.3 459.7 1.80 

 Cedara 14.4 430.3 2.10 

23 March 2014 Meteorological station Tair (°C) Radiation (W/m2) Wind speed (m/s) 

 Mount Edgecombe 28.2 617.7 0.10 

 PMB-Faulklands 26.9 653.4 1.60 

 PMB - Ukulinga 29.8 673.8 2.00 

 Wartburg - Bruyns Hill 25.7 643.8 1.30 

 Cedara 24.3 636.1 1.80 
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Figure 3.3 Location of meteorological stations and the validation site 

 

 

Figure 3.4 DEM for the uMngeni catchment 
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Figure 3.5 Average transmissivity of the uMngeni catchment 

 

3.4 SEBS Outputs 

 

As part of the process of estimating total evaporation the SEBS model also produces 

estimates of the other energy balance components or energy fluxes, which include net 

radiation (Rn), soil heat (G0), sensible heat (H) and latent heat (LE) fluxes. Given the large 

number of the SEBS outputs, a sample of the outputs fluxes for two selected days, 24 June 

2013 (representing dry season) and 23 March 2014 (representing wet season) are shown in 

Figure 3.6 and 3.7. These figures show the spatial variations of the SEBS output fluxes, as 

derived by the two different sensors. Generally, it can be observed that both Landsat 8 and 

MODIS datasets show the same spatial variations of energy fluxes across the uMgeni 

catchment. For instance, the western and northern parts of the catchment have higher 

estimates of Rn, compared to the eastern and southern parts of the catchment. The same 

pattern was observed for LE. Although both sensors show the same spatial variations of 

energy fluxes, the MODIS data shows lower fluxes, with less variability, when compared to 

the Landsat 8 data. 

 

The spatial variations of H flux (Figure 3.6 and 3.7) show that the western and northern parts 

of the catchment have lower estimates, compared to the southern and eastern parts of the 

catchment. Generally, H refers to the heat energy that can be sensed or simply measured with 

a thermometer and results in temperature changes. Lower estimates of H flux in the western 
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and northern areas (mainly dominated by plantations, natural forests, commercial irrigated 

agriculture, water bodies and wetlands) may be attributed to the fact that heat energy is being 

drawn from the surface to evaporate water. This results in cooling of the surfaces and lower 

temperatures across those areas. In contrast, in the eastern and southern parts of the 

catchment (dominated by built-up areas), slightly higher estimates were derived by both 

sensors. This is because the dominant landcover types (i.e., built-up areas) warm the lower 

levels of the atmosphere as they release heat energy. In addition, it has been observed that 

built-up areas are characterized with high H flux from the surface, due to lower vegetation 

cover and low evaporation (Nadeau et al., 2009). With regard to G0, it can also be observed 

that the lowest amount of incoming solar radiation was absorbed by the soil surface. This 

mainly applies to vegetated areas, due to interception of radiation, whereas in slightly 

covered areas (with vegetation) or bare soils, less radiation is intercepted, thus it penetrates 

the soil, resulting in a slight increase in G0 flux.  

 

 It is evident that energy fluxes exhibit seasonal dynamics, they vary between the two days 

used to represent the dry and wet periods. For instance, on the 24th of June 2013 

(representative of dry), the estimated Rn values were lower (Figure 3.6), whereas on the 23rd 

of March (representative of wet) they increased (Figure 3.7).  
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Figure 3.6 SEBS outputs for the 24th of June 2013 

  



58 

 

 

 

Figure 3.6 cont… 
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Figure 3.7 SEBS outputs for the 23rd of March 2014 
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Figure 3.7 cont… 
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3.5 Reference Evaporation Estimates 

 

Since the estimation of reference evaporation using ground-based meteorological data was 

done on a daily basis from May 2013 to April 2014, estimates for two selected days, 24 June 

2013 (representing dry) and 23 March 2014 (representing wet) are shown in Figure 3.8 and 

3.9. Reference evaporation varied spatially across the uMngeni catchment, with high values 

exhibited in the western and northern parts of the catchment, whereas the eastern and 

southern parts experienced lower values. This is may be attributed to variations in climatic 

conditions (radiation, temperature, humidity, wind speed), which are the primary factors 

which influence reference evaporation. For instance, the western and northern parts of the 

uMngeni catchment receive more radiation than the eastern and southern parts. On the other 

hand, reference evaporation for the 23rd of March shows less variability, when compared to 

that of 24 June. This is because reference evaporation is influenced by climatic conditions, 

such as temperature and rainfall. The observed variability in June can be attributed to the high 

spatial variations in climatic conditions across the catchment, whereas in March, within the 

catchment, there was a smaller spatial variation in climatic conditions resulting in less 

variability in reference evaporation. 

 

 

Figure 3.8 Spatial variation of reference evaporation across the catchment 

 

24th of June 2013 
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Figure 3.9 Spatial variation of reference evaporation across the catchment 

 

3.6 Spatial Heterogeneity 

 

To determine the spatial heterogeneity of the uMngeni catchment, the following landscape 

configuration metrics were used: (i) the number of patches (NP), (ii) mean patch size (MPS) 

and (iii) total edge (TE). These metrics measure the spatial arrangement of land cover types at 

class level across a landscape, which is likely to have a potential effect on the estimation of 

total evaporation using remote sensing, especially in relation to the sensor spatial resolution. 

 

In addition, land cover roughness length (Z0m) for momentum transfer was determined for the 

different land cover types within the catchment. The values used for the Z0m were derived 

based on published values in the literature (Brutsaert, 2005; Pardalos et al., 2014; Ramli et 

al., 2009; Su, 2006; WMO, 2008), for land cover types which coincided or were close to the 

different land cover types in the uMngeni catchment. The roughness lengths derived and used 

are shown in Table 3.1. The land cover map for the uMngeni catchment was derived from the 

KwaZulu-Natal Landcover dataset which was generated from SPOT5 satellite images at 20 m 

spatial resolution. 

 

 

 

 

23rd of March 2014 
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Table 3.3 Values used to determine land cover Z0m for uMngeni Catchment (after 

 Brutsaert, 2005; Pardalos et al., 2014; Ramli et al., 2009; Su, 2006; WMO, 

 2008) 

Land Cover Type  Zom (m) 

Built-up areas 1 

Com. Irrigation 0.0639 

Natural Forest 1.2214 

Grassland 0.0340 

Nat. Bush 0.5 

Orchards 0.6065 

Plantation 1.0 

Sub. Agric 0.496 

Sugarcane 0.1 

Waterbodies 0.001 

Wetland 0.02 

 

3.7 Validation of Remote Sensing Estimates 

 

Validation data for the period under study was not available at any sites within the uMngeni 

Catchment. Therefore, to validate remote sensing estimates of total evaporation from Landsat 

8 and MODIS datasets, ground-based measurements derived using eddy covariance system 

from a station adjacent to the catchment (shown in Figure 3.3) were used. Although the data 

used were derived from a station outside the catchment under study (shown Figure 3.3), it 

was covered by the same remote sensing scenes which were used to derive total evaporation 

estimates for the catchment. Furthermore the station is only approximately 8 km from the 

boundary of the catchment under study. It is important to note that only one site and land 

cover type was used for validation. The ground measurements from this station were used to 

validate the corresponding remote sensing estimates from the site. Although extensive 

validation using ground-based measurements was not possible, this small validation was 

intended to provide some insight to the performance of remote sensing in estimating total 

evaporation within the catchment.  

 

3.8 Discussion and Conclusion 

 

The use of remote sensing data with varying spatial resolution influences the ability of the 

sensor to detect spatial variations of biophysical input parameters (LAI, FVC, NDVI, and 

LST). This results in the poor representation of the derived energy fluxes and total 
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evaporation estimates. For instance, at 1000 m spatial resolution, MODIS input parameters, 

such as LST and NDVI show less variability, as compared to Landsat 8 at 30 m spatial 

resolution. At coarse spatial resolution, the sensor detects variations in biophysical 

parameters (e.g. LST, NDVI and LAI) within a single pixel as an aggregation, without 

distinguishing mixed coverage from different landcover types. This result in an aggregation 

of energy fluxes with less variability. Kustas and Norman (2000) found that coarse spatial 

resolution sensors invariably result in pixel-averaged heat flux estimation for different 

surfaces with varying land cover. They concluded that the lack of discrimination of sub-pixel 

variability can cause a significant departure of energy fluxes. 

 

Energy fluxes corresponded with surface characteristics and seasonal variations in the input 

meteorological data. Highly vegetated areas (as indicated by high NDVI, FVC and LAI 

parameters) resulted in higher estimates of LE, as compared to less vegetated areas. 

According to Irmak et al. (2011), vegetation acts as a barrier to the conduction of solar 

radiation to the soil surface, such that, less Rn is consumed in heating of the soil, instead, it is 

available for evaporation to occur. For instance, the majority of the western, central and 

northern parts of the catchment have land cover which is predominantly plantations, natural 

forests and commercial irrigated agriculture. In addition, in relation to seasonal variations, 

vegetation cover tends to be lower in density and productivity during the dry season (except 

for irrigated areas), whereas in the wet season, which is characterized by higher temperatures, 

incoming radiation and rainfall, there is increased vegetation density. This results in lower 

radiation being absorbed by soil surface, whereas in wet season, much of the radiation is 

available for evaporation to occur, as much of the soil surfaces are covered by dense 

vegetation. 

 

Spatial variations in H flux also corresponded with surface characteristics, with higher 

estimates in the southern and eastern parts, compared to the western and northern parts of the 

catchment. The southern and eastern parts are dominated by built-up areas which warm the 

lower levels of the atmosphere as they release heat energy. In addition, it has been observed 

that built-up areas are characterized with high H flux from the surface, due to reduced 

vegetation cover and low evaporation (Nadeau et al., 2009), when compared to more densely 

vegetated areas in the western and northern parts of the catchment. 

 



65 

 

The spatial variations in reference evaporation indicated the importance of ground-based 

meteorological data. As highlighted by Gong et al. (2006), reference evaporation is 

determined primarily by variations in meteorological conditions. For instance, in the dry 

season (24 June 2013), mean temperatures recorded from all stations used were lower 

(ranging from 14.1 to 18.5°C), whereas in the wet season (23 March 2014), they increased 

(ranging from 22.8 to 25.5). This is also supported by the findings of Zhang et al. (2007) and 

Xu et al. (2006), who demonstrated that the spatial variations in climatic variables influence 

the temporal spatial trends of reference evaporation. 

 

In conclusion, the differences in spatial resolution of remote sensing sensors influence the 

ability of the sensor to derive biophysical parameters and therefore total evaporation 

estimates. Coarse spatial resolution sensors aggregate variations of biophysical parameters 

within a single pixel, without discrimination. This results in the aggregation of energy fluxes, 

with less variability. In contrast, fine resolution sensors have the ability to discriminate 

variations in biophysical parameters for different landcover types. This underscores the 

importance of fine resolution remote sensors in discriminating land surface biophysical 

parameters of different landcover types for well-informed water consumption and 

management at catchment scale. 
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Abstract 

 

Total evaporation is one of the key components of the hydrological cycle and its reliable and 

accurate quantification is crucial for water accounting and management. Nevertheless, the 

scarcity of ground-based meteorological datasets remains one of the challenges of accurate 

estimation of total evaporation. The advent of remote sensing provides an invaluable 

opportunity for the accurate spatial characterization of total evaporation on a large scale. This 

study therefore aimed to determine if the accurate estimation of total evaporation depends on 

the sensor spatial-resolution and its ability to detect variations of total evaporation at 

catchment scale. Specifically, this study investigates the effect of 30 m Landsat 8 and 1000 m 

MODIS datasets in estimating total evaporation in the heterogeneous uMngeni Catchment, 

South Africa, using the Surface Energy Balance System (SEBS) model.  The results show 

that Landsat 8 has greater potential for estimating total evaporation for different land cover 

types, when compared to MODIS, which has a coarser spatial resolution. For example, 

MODIS-based daily total evaporation estimates did not show any significant differences 

across different land cover types (One way ANOVA; F1.924 = 1.412, p= 0.186), when 

compared to Landsat 8, which yielded significantly different estimates between different land 

cover types (One way ANOVA; F1.993= 5.185, p < 0.001). This therefore underscores the 

importance of sensor spatial resolution in estimating total evaporation at catchment scale. 

 

Keywords: total evaporation, Landsat 8, MODIS, land cover types, SEBS,  
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4.1 Introduction 

 

The estimation of total evaporation plays a vital role in understanding water accounting for 

monitoring and management of water resources. Total evaporation is the sum of evaporation 

from different surfaces, including interception, transpiration, soil moisture and open water 

bodies (Savenije, 2004). Total evaporation is the second largest quantity  in a catchment 

water balance after precipitation (Maeda et al., 2011) and is one of the processes  by which 

water is depleted from a catchment (Molden and Sakthivadivel, 1999), hence it has a bearing 

on water availability. Knowledge of the spatial variation of total evaporation will assist in the 

conservation of water resources at both local and regional scales, especially in the light of 

increased consumption, changing climate and the decreasing water availability and quality 

(Gibson et al., 2013; Jarmain et al., 2009). This therefore underscores the importance of 

estimating total evaporation for water use allocation and management. 

 

Total evaporation remains one of the most important components of the hydrological cycle 

and, as such, numerous methods have been developed to estimate it (Jin et al., 2013; 

Jovanovic and Israel, 2012; Mutiga et al., 2010). Most total evaporation estimation 

approaches focus on deriving point-based estimates, for example, the Penman–Monteith 

(Allen et al., 1998; Monteith, 1965; Penman, 1948), Hargreaves (Hargreaves and Samani, 

1985), Makkink (Makkink, 1957), Thornthwaite (Thornthwaite, 1948) and the Priestley and 

Taylor (Priestley and Taylor, 1972) equations. Although these methods have a proven record 

of yielding accurate total evaporation estimates, their point-based approach is not applicable 

to map spatial variations of total evaporation at large scales and in heterogeneous 

environments, especially in areas with limited field datasets (Gibson et al., 2011; Lee et al., 

2004; Lott and Hunt, 2001; Maeda et al., 2011). Remote sensing technologies enable the 

accurate and reliable quantification of total evaporation in complex environments and across 

large areas (Glenn et al., 2007; Ruhoff et al., 2012). Moreover, increased availability and 

advancement in remote sensing products enables the estimation of total evaporation at 

various temporal and spatial scales (Glenn et al., 2007; Ruhoff et al., 2012), including 

inaccessible and remote areas (Li et al., 2009). Gibson et al. (2013) state that remote sensing 

technologies have a great potential for long-term and large-scale water resource monitoring in 

a cost-effective manner. Remote sensing-based methods are well-suited for estimating spatial 

variations of total evaporation trends over time. 
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The use of remote sensing technologies to estimate spatial variations of total evaporation 

provides more information on water consumption by different land cover types. This will aid 

water resources management within the heterogeneous uMngeni Catchment, in KwaZulu-

Natal in South Africa, which is characterized by diverse climatic and land cover 

characteristics. In the uMngeni Catchment, the use of traditional point-based approaches in 

estimating and mapping total evaporation is challenging, given the scarcity and limited 

number of field-based meteorological stations across the catchment. The limited number of 

meteorological stations is unable to provide adequate input datasets required for total 

evaporation estimation across heterogeneous land cover types and climate regions within the 

catchment. This prevents the consistent and accurate estimation of total evaporation from the 

catchment, which is a pre-requisite for water accounting and sustainable water resources 

monitoring, management and planning. 

 

Better estimates of hydrologic loss fluxes, especially total evaporation across the uMngeni 

Catchment characterized by different land cover types, is required for water use accounting 

across the catchment. This study therefore seeks to investigate the spatial variability of total 

evaporation across different land cover types existing within uMngeni Catchment, using 

images from the multispectral Landsat 8 Operational Land Imager (OLI) and the long-serving 

Moderate Imaging Spectroradiometer (MODIS). 

 

The newly-launched multispectral Landsat 8 sensor, unlike the earlier Landsat data series (i.e. 

Landsat Multispectral Scanner (MSS), thematic mapper (TM) 5, Enhanced Thematic Mapper 

plus: ETM+), provides a new and critical data source needed for the accurate monitoring and 

understanding of water resources. For instance, the Landsat 8 sensor is characterised by a 

refined spectral range for the most important near infra-red (NIR) band, thus enhancing its 

sensitivity in characterizing different earth surface properties (El-Askary et al., 2014). 

Moreover, the enhanced radiometric resolution (from 8 bits to 12 bits) and, most importantly, 

the unique sensor design has led to substantial improvements in signal to noise ratios, 

approximately twice that of Landsat ETM+ (Pahlevan and Schott, 2013). It has also been 

noted that the narrowing of the NIR band avoids the effect of water vapour, similar to 

MODIS, and helps acquire accurate surface reflectance (Jia et al., 2014). The enhanced 
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radiometric resolution improves the spectral record precision and avoids spectral saturation, 

compared to previous Landsat images. (El-Askary et al., 2014). 

 

It is hypothesized that accurate total evaporation estimates from satellite remote sensing 

datasets depend mainly on sensor spatial resolution and its ability to detect and differentiate 

between spatial variations in land cover types across the catchment. Given this background, it 

is expected that Landsat 8 datasets will yield better total evaporation estimates at catchment 

scale, when compared to MODIS datasets. Therefore the aim of this study was to determine 

the effect of sensor spatial resolution on the spatial variations of total evaporation across the 

uMngeni Catchment, using datasets from the Landsat 8 and MODIS sensors, based on the 

SEBS model. The choice of the SEBS model was based on its availability and strength in 

estimating total evaporation, compared to other energy balance models. For example, unlike 

other energy balance models, SEBS calculates aerodynamic resistance of heat transfer more 

explicitly (Li et al., 2009) and this has an effect on the estimation of heat fluxes, and 

consequently, on total evaporation (Sugita and Kishii, 2002). 

 

4.2 Materials and Methods 

 

The effect of sensor spatial resolution on estimating the spatial variation of total evaporation 

was assessed in uMngeni Catchment characterized by different landcover types, using the 

SEBS model, based on two different multispectral sensors (i.e. Landsat 8 and MODIS data). 

 

4.2.1 Study area description 

 

The uMngeni Catchment is located in the KwaZulu-Natal Province of South Africa (Figure 

4.1) with an areal coverage of approximately 4349 km2 (Warburton et al., 2010). The 

uMngeni Catchment experiences a warm subtropical climate and it receives rainfall during 

the summer months (November to January), varying from 700 mm in the drier interior to 

1550 mm on the western side, with a 12ºC mean annual temperature range in the escarpment 

areas and 20ºC towards the coastal areas (Warburton et al., 2010). The catchment supports 

15% of the country’s total population, supplying water to the Durban and Pietermaritzburg 

economic corridor, which produces approximately 20% of the country’ s Gross Domestic 

Product (Summerton et al., 2010; Warburton et al., 2010), hence it promotes economic 
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development. The catchment has heterogeneous land cover, consisting predominantly of 

urban, natural forest, plantations, commercial and small-scale agriculture, among others 

(Ghile and Schulze, 2010; Mauck and Warburton, 2013).   

 

 

Figure 4.1 Location of the study area 
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4.2.2 Surface Energy Balance System model 

 

The SEBS model, which was developed by Su (2002), was applied for the estimation of total 

evaporation across the uMngeni Catchment. SEBS estimates heat fluxes, using remotely 

sensed and meteorological datasets. Land surface physical properties derived from remotely 

sensed spectral reflectance and radiance bands include surface temperature, albedo, 

emissivity, Fractional Vegetation Cover (FVC), Normalized Difference Vegetation Index 

(NDVI) and Leaf Area Index (LAI) (Su, 2002). The meteorological data required include 

temperature, humidity, wind speed and pressure at a reference height. SEBS also requires 

downward solar radiation, which can be directly measured on the ground or modelled from 

remote sensing data. A digital elevation model and a sun zenith angle map are also required. 

For this research, the MODIS TERRA and Landsat 8 images were used for the estimation of 

total evaporation across the uMngeni Catchment. Detailed procedures for the data 

acquisition, pre-processing and SEBS computation using MODIS and Landsat 8 are outlined 

in APPENDIX A and APPENDIX B. 

 

4.2.3 Landsat 8 and MODIS data acquisition and calibration 

 

The remotely sensed images that were used for this study were acquired for the period 2013 

to 2014. The period was chosen, based on the availability of Landsat 8 images. The Landsat 8 

sensor was launched on the 11th of February 2013 by the National Aeronautics Space 

Administration and the United States Geological Survey (NASA-USGS) 

(http://landsat.usgs.gov/) and images for the study area were available from May 2013 to 

present. The study was also intended to cover one year (i.e., May 2013 until April 2014), in 

order to include the wet and dry seasons. The comparison of sensor spatial resolution on total 

evaporation estimates was done for specific dates only. The exact dates include 23/05/2013, 

08/06/2013, 24/06/2013, 23/07/2013, 11/08/2013 and 23/03/2014. These days were chosen 

based on Landsat 8 availability and the fact that cloud-free images were available from both 

sensors for comparison purposes. Landsat 8 images are available at the USGS data centre at a 

16-day temporal resolution and these images were acquired using the bounding coordinates 

of the study area. All Landsat 8 scenes which covered the uMngeni Catchment were obtained, 

using path/row number 168/80 and 168/81 (i.e., the catchment requires two Landsat scenes). 

Moreover, all raw Landsat 8 images acquired were calibrated to Top-Of-Atmosphere (TOA) 

http://landsat.usgs.gov/
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reflectance, following the approach summarized at the Landsat 8 website 

(http://landsat.usgs.gov/). 

 

Clear sky calibrated MODIS Level 1B images (MOD021KM), including their respective geo-

location files (MOD03), corresponding with the selected Landsat 8 images, were used for this 

study. These images are available at a daily temporal resolution and can be downloaded at the 

MODIS website (http://ladsweb.nascom.nasa.gov/). Images were pre-processed, using the 

MODIS swath reprojection tool (MRTSwath). Band-related reflectance scales and offset 

constants were obtained from MODIS image files, using the HDFview software. MODIS 

bands one and two have a 250 m spatial resolution and bands three to seven have a resolution 

of 500 m hence, they were resampled to match the 1km spatial resolution of the other bands. 

Resampling was done, using the nearest neighbour resampling technique embedded in the 

MRTSwath tool.  

 

4.2.4 Atmospheric correction 

 

All spectral reflectance bands were corrected for atmospheric effects using the inbuilt 

Simplified Method for Atmospheric Correction (SMAC) algorithm (Rahman and Dedieu, 

1994). The SMAC algorithm is part of the open source Integrated Land and Water 

Information System (ILWIS 3.7) software (http://52north.org) and it requires water vapour 

content, aerosol optical thickness (AOT), ozone content, sun/senor angle and the sensor 

coefficient file. AOT was derived from the NASA website (http://earthobservatory.nasa.gov), 

whereas ozone content data was extracted from the Aerosol Robotic Network (AERONET) 

(http://macuv.gsfc.nasa.gov). Air pressure was derived from meteorological stations available 

within and adjacent to the uMngeni Catchment. All the input parameters coincided with the 

day of image acquisition. 

 

4.2.5 SEBS meteorological and ancillary data 

 

Meteorological field-data were obtained from the South Africa Weather Services (SAWS) 

and the South African Sugarcane Research Institute (SASRI). Meteorological stations, within 

and adjacent to the uMngeni Catchment, were considered for the estimation of total 

evaporation. The meteorological data that were used include temperature, wind speed, 

http://earthobservatory.nasa.gov)/
http://macuv.gsfc.nasa.gov)/
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humidity, pressure, sunshine duration and solar radiation. To produce a spatial representation 

of the point-based meteorological observations, interpolation was done, using a simple 

Krigging technique in ArcGIS 10.2 software. 

 

Additional data that were acquired include land cover types and elevation of the study area. 

The land cover data for the uMngeni Catchment were obtained from Ezemvelo KwaZulu-

Natal Wildlife (EKZNW) (2013). The digital elevation model for the catchment was 

downloaded from the Shuttle Radar Topography Mission (SRTM), USGS Earth Resources 

Observation Systems (EROS) data centre (http://srtm.csi.cgiar.org). 

 

4.2.6 Validation of remote sensing total evaporation estimates 

 

To evaluate the reliability and accuracy of total evaporation estimates from the 30 m Landsat 

and 1000 m MODIS datasets, ground-based measurements were used. The validation was 

done for specific days (i.e. mean daily total evaporation) corresponding with Landsat 8 and 

MODIS datasets. However, within the uMngeni Catchment, ground-based data for the period 

under study was not available; therefore, estimates from the adjacent Two Streams 

Catchment were utilized. These measurements were derived, using an Eddy Covariance (EC) 

system, which was stationed within a wattle (Acacia mearnsii) plantation (Everson et al., 

2014), and they coincided with the selected image acquisition period. These measurements 

although they were outside the catchment under study, they were covered by the same remote 

sensing scenes, which were used to estimate total evaporation for uMngeni catchment. Hence 

may provide an insight on the performance of remote sensing in estimates of total 

evaporation within the catchment. 

 

4.2.7 Statistical analysis 

 

In order to derive total evaporation estimates for each land cover type, the Zonal Statistics 

function in ArcGIS 10.2 was used. Landsat 8 and MODIS sensor-derived mean total 

evaporation estimates were statistically compared, using a paired T-test, to determine whether 

they were significantly different. In addition, total evaporation estimates for each land cover 

type were compared statistically amongst land cover types, per sensor and between sensors, 

using the Analysis of Variance (ANOVA). 

http://srtm.csi.cgiar.org/
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4.3 Results 

 

To determine the effect of sensor spatial resolution on estimating spatial variations of total 

evaporation, different land cover types within the catchment were identified. In addition, the 

spatial and temporal variations of total evaporation estimates across the catchment from the 

two sensors were also determined and tested for significant differences. 

 

4.3.1 Land cover types within the uMngeni Catchment 

 

The different land cover types existing within the uMngeni Catchment, based on EKZNW 

(2013) are shown in Figure 4.2. Natural bush, plantations, sugarcane, natural forest, water, 

built-up areas, grassland, wetlands, bush land and water-bodies are the predominant land 

cover types within the uMngeni Catchment. 

 

 

Figure 4.2 Main land cover types within the uMngeni Catchment, EKZNW (2013) 
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4.3.2 Spatial and temporal variability of total evaporation 

 

The spatio-temporal variation of total evaporation estimates across the uMngeni Catchment 

for the period under study is shown in Figure 4.3 (a-f). The results show that the highest total 

evaporation estimates occur in the northern, western and north-western parts of the 

catchment. This is in agreement with the spatial variations of the derived energy fluxes, such 

as Rn (Figure 3.6 and 3.7). These areas are largely dominated by plantations, natural forests, 

commercial irrigated agriculture, water bodies and wetlands, which all contributes to total 

evaporation. Although the two sensors depict similar trends of total evaporation, especially 

when considering Figure 4.3 (f), the paired T-test has shown that they are significantly 

different (p < 0.05). 

 

It can be observed that over the period of study, the highest mean total evaporation estimates 

were observed on the 23rd of March 2014, whereas the lowest were on the 23rd of May and 

the 26th of July 2013. The results in Figure 4.3 a (ii) – f (ii) show that MODIS estimates of 

total evaporation were lower, especially in the dry season, when compared to Landsat 8. This 

was also the case with reference evaporation, where lower estimates were observed in dry 

season and higher in wet season (Figure 3.5).The results in Table 4.1 show the derived total 

evaporation statistics across the uMngeni Catchment for the selected period. Results from the 

paired T-test show that the derived mean daily total evaporation estimates from Landsat 8 and 

MODIS datasets differed significantly (p = 0.028841). 

 

Table 4.1 Estimated total evaporation statistics for the uMngeni Catchment (mm) 

 Landsat 8 MODIS 

Date Min.  Max.  Mean  Stdev  Min.  Max.  Mean  Stdev  

23/05/2013 0.00 3.67 2.45 1.09 0.00 6.90 0.65 0.98 

08/06/2013 0.00 7.33 3.52 2.58 0.00 6.70 0.62 1.32 

24/06/2013 0.00 5.58 2.53 1.91 0.00 3.80 0.09 0.50 

26/07/2013 0.00 4.16 1.50 1.50 0.00 2.90 0.08 0.41 

11/08/2013 0.00 7.07 1.98 1.91 0.00 2.70 0.06 0.27 

23/03/2014 0.00 7.15 5.00 1.53 0.00 6.30 4.03 1.05 
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Figure 4.3 Spatial and temporal variability of total evaporation from the two sensors 

e(i) e(ii) 

f(i) f(ii) 
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4.3.3 Total evaporation variation between different land cover types 

 

The mean total evaporation estimates for different land cover types within the uMngeni 

Catchment for the period under study are shown in Figure 4.4 (a – f). It can be observed that 

Landsat 8 produced higher total evaporation estimates across the entire period of study, when 

compared to MODIS dataset. As can be seen in Figure 4.4 (c-e), MODIS show lower total 

evaporation estimates across different land cover types, when compared to Landsat 8. 

However, it can be observed that MODIS produced higher estimates of total evaporation on 

the 23th of March, almost showing a similar trend to those of the Landsat 8 sensor. A paired t-

Test was also performed to determine if there was any significant difference in mean total 

evaporation estimates obtained from the two sensors. Overall, the paired T-test results show 

that land cover-based total evaporation estimates from Landsat 8 and MODIS datasets exhibit 

significant differences (p < 0.05) for the period under study. Moreover, the ANOVA was 

performed to test any significant differences in total evaporation estimates between different 

land cover types. MODIS-based mean daily total evaporation estimates did not show any 

significant difference across different land cover types (One way ANOVA; F1.924 = 1.412, p= 

0.186). The 30 m Landsat 8 sensor yielded significantly different (p < 0.05) total evaporation 

estimates between different land cover types (One way ANOVA; F1.993= 5.185, p < 0.001). 
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Figure 4.4 Mean total evaporation between different land cover types 

(e) 11 August 2013 (f) 23 March 2014 
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4.3.4 Validation results 

 

A comparison of Landsat 8 and MODIS-based mean daily total evaporation estimates and 

corresponding ground-based EC measurements are shown in Figure 4.5. In general, it can be 

observed that Landsat 8 total evaporation estimates and EC measurements show a close 

agreement. This observation was further confirmed by a paired T-test, which shows that there 

is no significant difference (p = 0.426) between Landsat 8 estimates and EC ground-based 

measurements. However, a comparison between MODIS and EC total evaporation, shows 

that there was a significant difference (p < 0.001), indicating that MODIS underestimated 

total evaporation.  

 

 

Figure 4.5 Comparison between remotely-sensed estimates and ground-based 

measurements 

 

4.4 Discussion 

 

Catchments with heterogeneous land cover types provide a challenge for deriving accurate 

total evaporation estimates from remote sensing datasets, due to the difficulties in detecting 

the existing variations (McCabe and Wood, 2006; Vinukollu et al., 2011). While the 

application of multispectral sensors, with various radiometric, spectral and spatial resolutions, 
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have accomplished different estimation accuracies, there has been little reported research on 

the effect of sensor spatial-resolution on the accurate retrieval of total evaporation estimates, 

particularly at catchment scale. This study, therefore, explores the effect of varying sensor 

spatial resolution of the Landsat 8 and MODIS remote sensing products in estimating total 

evaporation in the uMngeni Catchment with heterogeneous land cover. 

 

4.4.1 Spatio-temporal variability of total evaporation  

 

The findings from the two multispectral sensors presented in this study have demonstrated 

that the variations in sensor spatial resolution have a significant effect on the accurate 

estimation of total evaporation at a catchment scale. As indicated by the spatial variations in 

remote sensing inputs (LST, NDVI, FVC etc) and derived energy fluxes (Rn, LE), MODIS 

showed lower estimates with less variability across the catchment. The poor spatio-temporal 

estimation of biophysical parameters and total evaporation estimates from MODIS datasets is 

a clear reflection of the effect of sensor spatial resolution in deriving biophysical parameters 

and total evaporation estimates across heterogeneous environments. At a localised scale, the 

coarse 1000 m MODIS sensor fails to detect and map the spatial variations of total 

evaporation. This may be explained by the fact that various land cover types are captured 

within a large single pixel and their biophysical characteristics (LST, NDVI, FVC, etc) are 

assigned to the land cover class with the highest percentage cover. The input parameters 

within a single pixel are derived as an aggregation, without variations. This limitation 

therefore results in the poor spatial retrieval of total evaporation estimates for land cover 

types within catchments. This was also highlighted by Roerink et al. (2000) who states that 

the MODIS pixel size fails to differentiate the existence of mixed land cover types within a 

particular pixel. On the other hand, it has been shown (Figure 4.3 (a-f) that the 30 m Landsat 

8 dataset provided better spatial variations in biophysical inputs and total evaporation 

estimates at catchment scale. Furthermore, a close agreement between EC ground-based 

measurements and Landsat 8, when compared to MODIS, may be attributed to the presence 

of the refined near infra-red band spectral range, improving its sensitivity in detecting fine 

variations of total evaporation between different land cover types. This study therefore 

demonstrates that the Landsat 8 multispectral dataset at 30 m spatial resolution has a better 

ability to detect small variations between land cover types and subsequently map the spatial 

variations of total evaporation at catchment scale.  
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Although MODIS data failed to adequately characterize total evaporation within the uMngeni 

Catchment, when compared to Landsat 8 and EC ground-based measurements, previous 

studies indicate the sensor as having greater potential at regional scales (McCabe and Wood, 

2006; Ruhoff et al., 2012).  

 

4.4.2 Total evaporation variations between different land cover types 

 

The variation of total evaporation between different land cover types is a clear indication that 

existing land cover types exhibit different evaporative signatures within a defined catchment. 

The results obtained using the Landsat 8 dataset, show that the sensor has managed to capture 

the variations of total evaporation estimates between the different land cover types within the 

uMngeni Catchment, when compared to the MODIS dataset. Some possible explanations for 

the better performance of the Landsat 8 dataset is that the improved sensor design (i.e. from 8 

bit to 12 bit) has made it more sensitive to the bio-physical properties of individual land cover 

types, which are critical for total evaporation retrieval. The failure of the MODIS sensor to 

detect the differences in bio-physical properties within the catchment results in poor total 

evaporation estimates per land cover type and may be due to the large sensor spatial 

resolution, amongst other factors. Findings from this work are consistent with those by 

McCabe and Wood (2006), who estimated total evaporation, using SEBS model derived from 

MODIS, Landsat ETM+ and ASTER. High and reliable estimates were obtained from 

ASTER and Landsat, whereas MODIS failed to discriminate the effect of spatial 

heterogeneity at the field scale. These results also agree with Mengistu et al. (2014), who 

highlighted that Landsat images provided better total evaporation estimates, when compared 

to MODIS images, possibly because of their higher spatial resolution. In addition, results 

from this study are also supported by Allen et al. (2008), who compared the performance of 

MODIS and Landsat-based total evaporation estimates from an irrigated agricultural area, 

based on the METRIC model. They concluded that spatial variations of total evaporation 

using MODIS sensor are highly degraded. 
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4.5 Conclusion 

 

The potential of two different multispectral sensors with different spatial resolutions, Landsat 8 

(30 m) and MODIS (1000 m) to estimate total evaporation was tested, using the SEBS model for 

the uMngeni Catchment. The findings of this study demonstrated that spatial resolution has a 

considerable effect in determining variations of biophysical inputs and subsequent total 

evaporation estimates. It was shown that better estimates of total evaporation were obtained from 

the 30 m spatial resolution Landsat 8 dataset, when compared to the 1000 m MODIS dataset. The 

Landsat 8 sensor has also managed to detect and map variations of total evaporation between 

different land cover types, whereas the MODIS dataset failed to adequately capture these 

variations. The Landsat 8 estimates were in closer agreement with EC ground-based 

measurements. The promising 30 m Landsat 8 sensor results illustrated in this study show the 

sensor’s effectiveness in determining total evaporation estimates per land cover type at 

catchment scale, when compared to remote sensing sensors with a coarse spatial resolution, such 

as MODIS. Although the Landsat 8 dataset proved effective in a catchment characterised by 

diverse land cover types, there is need for this dataset to be tested under different environments, 

with various bio-physical characteristics. 
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Scottsville, Pietermaritzburg 3209, South Africa 

 

Abstract 

 

This study investigated the feasibility of using multispectral remote sensing data to estimate 

spatial variations of total evaporation at a catchment scale. Total evaporation is of importance in 

assessing and managing long-term water use, especially in water-limited environments. In South 

Africa, increasing demand for water threatens long-term water supply sustainability. Therefore, 

there is a need to account for water utilization by different land uses for well-informed water 

resources management and future planning, in order to meet the growing demand, due to 

population growth and economic development. The aim of this study was to determine spatial 

variations of total evaporation, within the uMngeni Catchment in KwaZulu-Natal, South Africa, 

from Landsat 8 and MODIS images, using the SEBS model. The results indicate that Landsat 8 

is more suitable for spatial representation of seasonal and annual total evaporation estimates, 

when compared to the MODIS dataset. In addition, when compared to mean monthly ground-

based eddy covariance measurements, Landsat-based estimates have a high R2 of 0.72 and a low 

RMSE of 32.34 mm (30.30% of the monthly mean), whereas MODIS-based estimates have a 

low R2 of 0.44 and a high RMSE of 93.63 mm (87.74% of the monthly mean). Spatial variations 

of total evaporation have shown that different sensors, with varying spatial resolutions, have 

different abilities to show spatial variations of total evaporation, especially with regard to the 

characteristics of the land cover types at catchment level. It was also found that not only the land 

cover type within a catchment, but also the spatial characteristics (i.e area, patchiness), have an 

effect on total evaporation estimates. The findings of this study underscore the importance of the 
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sensor type and land cover characteristics in deriving accurate and reliable spatial variations of 

total evaporation at a catchment scale. 

 

Keywords: total evaporation, remote sensing, land cover characteristics, patchiness, areal extent 

 

5.1 Introduction 

 

Water availability is an issue of concern on a local and global scale and its management is 

becoming more challenging, particularly in semi-arid areas. In South Africa, the increasing water 

scarcity compounded by population growth and economic development (New, 2002), requires 

more accurate budgeting, so that the available water resources may be better allocated. In 

addition, the science community agrees that climate change may profoundly affect the 

hydrological cycle, particularly precipitation patterns and temperature, which all have a bearing 

on water availability (Dore, 2005; McCarthy, 2001). Consequently, there is a need for better 

water management to meet demand by various consumers. Total evaporation, which includes 

water consumption by plants and the loss of water from open water surfaces, soil moisture and 

non-vegetated surfaces,  is one of the key component of the water balance to be considered in 

water resources management (McCabe and Wood, 2006; Xu et al., 2006). Total evaporation 

depends on both climatic and land surface characteristics, and reflects the variations in water 

consumption, in response to climatic and land use changes (Mutiga et al., 2010; Wang et al., 

2013). Therefore, understanding spatial variations of total evaporation will aid the proper 

planning and allocation of water. 

 

There are different approaches which have been applied for the estimation of total evaporation. 

The most widely used include those of Penman-Monteith (Allen et al., 1998; Jia et al., 2014a; 

Penman, 1948), Thornthwaite (Thornthwaite, 1948) and Priestley-Taylor (Priestley and Taylor, 

1972), as well as the use of micro-meteorological methods, such as the eddy covariance (Clulow 

et al., 2011; Mengistu et al., 2014; Scott, 2010), surface renewal (Mengistu and Savage, 2010; 

Spano et al., 2000), scintillometry (Menenti et al., 2003) and lysimeters (Gowda et al., 2013; 

Makkink, 1957; Morton, 1983). Although these methods have been successfully applied to 
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derive total evaporation across different land cover types, ranging from forests to agricultural 

areas, they lack one of the key aspects, which is the spatial representation of total evaporation. 

Liou and Kar (2014) describes these approaches as lacking the spatial representation of the total 

evaporation across a heterogeneous landscape, hence they cannot be up-scaled for large-scale 

mapping and estimation. 

 

The advent of remote sensing technologies, therefore, provides a valuable alternative to address 

the important and challenging task of estimating the spatial variations of total evaporation across 

varying land cover types in a cost-effective manner, when compared to meteorological or micro-

meteorological methods (Dube et al., 2014; Nouri et al., 2014; Wilson et al., 2003). Although 

remote sensing cannot directly quantify total evaporation from space, satellite data provides 

inputs for its estimation, especially when combined with ground-based meteorological 

observations (Liu et al., 2003). Consequently, different remote sensing-based approaches have 

been developed to estimate spatial variations of total evaporation, including the use of energy 

balance models. These models include the Surface Energy Balance Index (SEBI) (Roerink et al., 

2000), the Surface Energy Balance System (SEBS) (Su, 2002), the Surface Energy Balance 

Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998) and the Mapping EvapoTranspiration at 

high Resolution with Internalized Calibration (METRIC) (Allen et al., 2007). However, the 

SEBS model is regarded as the most widely-used and effective model in deriving total 

evaporation estimates. This is because it estimates aerodynamic resistances more explicitly than 

other models (Elhag et al., 2011; Jia et al., 2003; Ma et al., 2012; Ma et al., 2011; Rwasoka et 

al., 2011; van der Kwast et al., 2009), it is applicable on various spatial scales and it has also 

been validated in several studies for different land cover types (Su et al., 2007). 

 

Although the SEBS model has a proven track record for the accurate spatial estimation of total 

evaporation, the use of this model, together with varying satellite datasets, across varying land 

uses, within a heterogeneous catchment, has not been widely researched. For instance, different 

studies that have estimated variations of total evaporation using SEBS, have focused mainly on 

individual or specific land cover types, such as wetlands (Chen et al., 2002; Jia et al., 2009), 

forest (Goodrich et al., 2000; Xu et al., 2006) or agricultural fields (Ray and Dadhwal, 2001; 



93 

 

Senay et al., 2007). However, few studies have focused on the potential of using multispectral 

data for estimating the spatial variations of total evaporation, within a heterogeneous catchment. 

The spatial heterogeneity of land cover characteristics within a catchment results in variations in 

water use patterns and subsequent total evaporation; hence, for better management of water 

resources, there is a need to understand such variations. Land cover heterogeneity, characterized 

by varying spatial characteristics, imposes challenges for estimating the spatial variation in total 

evaporation, using point-based measurements or local micro-meteorological observations. In this 

study, the use of multispectral remote sensing data, Landsat 8 at 30 m and MODIS at 1000 m 

spatial resolution, is investigated, to determine spatial variations of total evaporation across the 

uMngeni Catchment, in KwaZulu-Natal, South Africa. Specifically, this study aims to determine; 

(i) how total evaporation estimates vary across the heterogeneous catchment over a season or 

year, and (ii) the effect of varying land cover characteristics (i.e. land cover type, areal extent, 

patchiness and roughness length) in relation to the spatial resolution of the sensor in estimating 

variations of total evaporation. 

 

5.2 Materials and Methods 

 

The spatial and temporal variability of total evaporation estimates across a catchment with 

varying land cover characteristics was examined in the uMngeni Catchment, using the 30 m 

Landsat 8 and 1000 m MODIS data, over a period of one year (i.e. May 2013 to April 2014). 

Total evaporation estimates over a long period of time (one year), including dry (May to 

October) and wet (November to April) season are necessary for accurate water accounting 

purposes and management purposes at catchment scale.  

 

5.2.1 Study site 

 

The uMngeni Catchment in the Province of KwaZulu-Natal, South Africa, shown in Figure 5.1, 

is responsible for the provision of water to the Durban and Pietermaritzburg areas (Summerton et 

al., 2010). The catchment is characterized by spatial and temporal variations in climatic 

conditions. For instance, it receives rainfall in summer, which ranges from 700 mm in the drier 
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interiors to above 1 500 mm in the western parts. Generally, rainfall has a west-east and north-

south gradient (Figure 5.1). This implies that the eastern and southern most parts of the 

catchment receive low rainfall. The catchment has a mean annual temperature ranging from 12ºC 

in the west 20ºC towards the coast (Warburton et al., 2010). It has also been highlighted that the 

uMngeni catchment is vulnerable to heavy floods and sporadic droughts (Schulze, 1997; Schulze 

and Perks, 2000). This makes total evaporation monitoring vital for many applications, such as 

climate change modelling, water quality deterioration and land use/cover changes. The major 

land cover types within the uMngeni Catchment include built-up areas, commercial irrigated 

agriculture, wetlands, grasslands, natural forest, plantations, orchards, sugarcane, water bodies 

and natural bush. 

 

 

Figure 5.1 Location of the study area and mean annual rainfall (Schulze et al., 2008) 

 

5.2.2 Data acquisition and pre-processing 

 

To assess the spatial and temporal variations of total evaporation across the uMngeni Catchment 

with varying land cover characteristics, Landsat 8 and MODIS datasets were used, based on the 

SEBS model as explained in Chapter 4. Continuing from the study in Chapter 4, (Shoko et al., 

2014), which is a comparison of total evaporation from a few images for a few discrete days in 

time, this section (Chapter 5), estimates total evaporation over a period of one year (from May 

2013 to April 2014), as well as investigate the effect of land cover spatial distribution relative to 

sensor spatial resolution. The period covered coincided with the availability of Landsat 8 images, 
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since its launch on the 11th of February 2013. The one-year period covered the main dry and wet 

seasons within the uMngeni Catchment. It is important to note that the same data (i.e. remote 

sensing, meteorological and ancillary) and preprocessing techniques applied in this section were 

similar to those in Chapter three, therefore, no further detail is provided in this section.  

 

5.2.3 Determination of monthly and annual total evaporation estimates 

 

Monthly total evaporation estimates from the two sensors are derived based on daily estimates 

from MODIS and Landsat 8. However, the computation of seasonal and annual total evaporation 

from Landsat 8 datasets is challenging because of its 16-day temporal resolution and the 

potential lack of cloud-free images. To obtain seasonal and annual total evaporation estimates, 

Landsat 8-based estimates were up-scaled (gap filling) to monthly estimates, by applying a 

representative coefficient and daily reference evaporation, as applied by previous studies (Allen 

and Bastiaanssen, 2002; Singh et al., 2014; Tasumi et al., 2005). The cloudy-free images used to 

derive representative coefficients were the images for 23/05/2013, 08/06/2013, 24/06/2013, 

23/07/2013, 11/08/2013 and 23/03/2014. In the case of missing images for some months, due to 

cloud cover, available images for the previous or closest month were used to derive 

representative coefficient. The final seasonal or annual total evaporation estimates was therefore 

derived as: 

 

 



n

i

fioi ETETET
1  (5.1)

 

 

where: 

ET = seasonal /annual total evaporation estimates (mm), 

EToi = reference total evaporation estimates (mm) for period i (days), and 

ETfi = representative total evaporation coefficient (-) for period i. 

 

For this study, the ETfi used were estimated, using the actual total evaporation derived from 

Landsat 8 (mm) and reference total evaporation (mm) using the following function: 
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where 

ETfi  = representative total evaporation coefficient (-) for period i, 

ETLandsat 8 = actual total evaporation derived from Landsat 8 (mm), and 

EToi = reference total evaporation estimates (mm) for period i (days). 

 

Reference total evaporation was derived from meteorological data, using an inbuilt function in 

the ILWIS software (http://52north.org). The required inputs include wind speed, humidity and 

temperature. Additional inputs include a Digital Elevation Model (DEM), average shortwave 

transmissivity of the study area, as well as the Julian day. The average short wave transmissivity 

was derived from the DEM, using the formula after Allen and Bastiaanssen (2002) as: 

 

Zsw  510275.0
 (5.3)

 

where 

τsw  = average short wave transmissivity (-), and 

Z = DEM (m). 

 

5.2.4 Statistical Analysis 

 

To assess the reliability and performance of MODIS and Landsat 8, total evaporation estimates 

from the two datasets were statistically compared, using a paired T-test and the Analysis of 

Variance (ANOVA). To further assess how close estimates from remote sensing data were to 

ground-based measurements, the r-square (R2) and the root mean square error (RSME) were 

determined.  
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5.2.5 Determining spatial characteristics of different land cover types  

 

The spatial and temporal variability of total evaporation estimates across a catchment is 

hypothesized to vary with varying land cover characteristics (i.e. land cover type, areal extent, 

patchiness). Therefore, the spatial variations in land cover characteristics were generated, using 

the landscape configuration metrics analysis tool in ArcView 3.3 software. Different landscape 

configuration metrics have been developed and implemented to understand the spatial 

characteristics of a landscape for various applications (Fiener et al., 2011; Kowe et al., 2014; 

McGarigal and Marks, 1995; Seto and Fragkias, 2005; Turner, 1989; Turner, 2001). In this 

study, four primary measures of landscape characteristics were used: (i) number of patches (NP), 

(ii) mean patch size (MPS), (iii) total edge (TE), and roughness length (Zom). The number of 

patches (NP), which determines the number of patches for a specific land cover type and 

measures the extent of fragmentation of the land cover type within the catchment. The greater the 

number of patches for a particular land cover type, the more fragmented it is (Herold et al., 

2003). Mean patch size determines the average area of each patch for a particular land cover 

type. Generally, high values of MPS indicate that the majority of patches for a particular land 

cover type had a larger areal extent (Gustafson, 1998). The total edge is a measure of the extent 

of the fragmentation of a particular land cover. A high TE reflects more fragmentation of the 

land cover type (Kowe et al., 2014). However, to assess the effect of roughness length on total 

evaporation across the catchment, the land cover map, MODIS and Landsat derived roughness 

lengths were compared. The land cover map based roughness length was generated based on 

individual land cover values obtained from the literature (Su, 2006), which coincided with the 

uMngeni land cover types (highlighted in Chapter 3, Section 3.6). 

 

5.3 Results 

 

To understand the spatial variations of total evaporation across the uMngeni Catchment, different 

land cover types and their characteristics (i.e. area, patchiness) were determined. In addition, 

total evaporation estimates at a longer temporal scale (one year) were also determined. 
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5.3.1 Land cover types and distribution within the uMngeni Catchment 

 

The spatial variations in land cover types within the uMngeni Catchment are shown in Figure 

5.2, based on the EKZNW (2013) land cover database. Grassland is the most dominant land 

cover (28.42%), followed by natural forest (20.70%), built-up areas (11.39%), sugarcane 

(10.59%), subsistence agriculture (8.43%), plantations (8.38%), natural bush (6.60%), 

waterbodies (3.87%), wetlands (1.13%), orchards (0.24%) and commercial irrigation had the 

lowest areal coverage (0.23%), as shown in Figure 5.3. 

 

 

Figure 5.2 Main land cover types within the uMngeni Catchment, EKZNW (2013) 
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Figure 5.3 Land cover types areal extent, EKZNW (2013) 

 

5.3.2 Spatial characteristics of different land cover types 

 

Measures of the spatial characteristics for different land cover types within the uMngeni 

Catchment were derived and are shown in Table 5.1. Generally, different land cover types 

exhibit different spatial characteristics, which have an effect on spatial variations in total 

evaporation estimates across the catchment. It can be observed that grasslands have the highest 

number of patches (2538), followed by built-up areas (1866). Commercial irrigation had the 

lowest number of patches (44), followed by orchards (64). In terms of the mean patch size, built-

up areas have the largest mean patch size (0.73 km2), followed by sugarcane (0.65 km2). On the 

other hand, commercial irrigation and water bodies had the lowest mean patch size (0.12 km2), 

followed by orchards (0.13 km2). All the different land cover types have mean patch sizes that 

are smaller than the spatial resolution of the MODIS sensor (1 km2). However, the mean patch 

sizes of all the different land cover types were larger than the spatial resolution of Landsat 8 

sensor (0.0009 km2). Consequently, most of the patches for the different land cover types and 

subsequent total evaporation estimates are more likely to be detected by the Landsat 8 sensor 

than the MODIS sensor. Grassland was the most fragmented, compared to any other land cover 

type (shown by the highest total edge of 9.58), followed by natural forest (4.89). Commercial 
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irrigation was the least fragmented (shown by the lowest total edge length of 0.09), followed by 

orchards (0.12). 

 

Table 5.1 Spatial characteristic of different land cover types 

Land cover  No. of patches (-) Mean patch size (km2) Total edge (-) 

Built-up areas 1866 0.73 3.45 

Com. irrigation 44 0.12 0.09 

Natural forest 1700 0.43 4.89 

Grassland 2538 0.39 9.58 

Nat. bush 1182 0.20 3.18 

Orchards 64 0.13 0.12 

Plantation 1410 0.21 3.16 

Sub. agric 194 0.56 1.08 

Sugarcane 572 0.65 2.45 

Waterbodies 1122 0.12 1.27 

Wetland 218 0.18 0.53 

 

The results in Figure 5.4 indicate the various roughness length of momentum (Z0m) for uMngeni 

Catchment derived from: (a) Landsat 8, (b) MODIS and (c) uMngeni land cover map 

respectively. General values from literature (Brutsaert, 2005; Pardalos et al., 2014; Ramli et al., 

2009; Su, 2006; WMO, 2008) were used to determine Z0m for the land cover types represented in 

the uMngeni land cover map. It can be observed that the MODIS and Landsat derived Z0m maps 

indicate a similar spatial variation across the catchment, when compared to the land cover 

derived Z0m. The landcover-based Z0m also show higher values, as compared to those derived 

from remote sensing. This might be attributed to the fact that published Z0m values are not always 

available for every landcover type, hence they show a general representation. In contrast, remote 

sensing-based values correspond exactly with the characteristics of the land cover types at 

satellite overpass time; therefore remain attractive in estimating total evaporation. 

 

Figure 5.5 (a and b) illustrates the Landsat 8 and MODIS total evaporation estimates resulting 

from the use of roughness length according to SEBS for the 23rd of May 2013. In addition, 

Figure 5.5 (c and d) shows the Landsat 8 and MODIS estimates based on roughness length 

generated from uMngeni landcover map for the same day. It can be observed that SEBS derived 
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roughness length resulted in slightly higher total evaporation estimates, when compared to the 

land cover derived roughness length.  
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Figure 5.4 Z0m  for uMngeni Catchment, derived on the 23rd of May 2013 from: (a) Landsat 8, (b) MODIS and (c) land cover map 

 

 

 

 

 

(a) (b) 

(c) 
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Figure 5.5 Landsat 8 (a) and MODIS (b) total evaporation estimates for the 23rd of May 2013 using Zom derived by SEBS, and 

Landsat (c) and MODIS (d) total evaporation estimates using Zom derived from uMngeni land cover map 
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5.3.3 Monthly total evaporation estimates 

 

Monthly mean total evaporation estimates derived from upscaled Landsat 8 and MODIS daily 

datasets for the uMngeni Catchment for the period of May 2013 to April 2014 are shown in 

Figure 5.6. The calculation of total evaporation was done based on SEBS derived estimates of 

roughness length rather than land cover-based values, as published values are not always 

available for all land cover classes, whereas remote sensing-based values correspond exactly 

with the characteristics of the land cover types at satellite overpass time; therefore remain 

attractive in estimating total evaporation. It can be observed that both sensors show a similar 

trend of total evaporation. However, Landsat 8 shows higher mean monthly total evaporation 

estimates, compared to MODIS. During the course of the year, monthly total evaporation 

followed the expected variations in seasonal meteorological conditions, with low total 

evaporation estimates in the dry months of May, June, July, August and September, which 

constitute the dry period. The total evaporation estimates were high in the months of October to 

January, reached a maximum in December with 186 mm and 133 mm for Landsat 8 and MODIS 

respectively. Also, the results from a paired T-test show that the Landsat 8 and MODIS-derived 

mean monthly estimates of total differed significantly for the entire period (T-test; F1.796 = 2.200, 

p < 0.05). 
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Figure 5.6 Monthly mean total evaporation estimates for the catchment for the hydrological 

year 2013/14 

 

5.3.4 Spatial variation of seasonal and annual total evaporation 

 

The spatial variation of seasonal and annual total evaporation estimates derived from MODIS 

and Landsat 8 datasets for the uMngeni Catchment are shown in Figure 5.7. Generally, it can be 

observed that both sensors show a similar spatial distribution of total evaporation for the wet and 

dry seasons. The western and northern parts, which are mainly, dominated by plantations, natural 

forests, commercial irrigated agriculture, water bodies and wetlands, show higher total 

evaporation estimates, when compared to the eastern- and southern-most parts, which are mainly 

occupied by urban areas. In addition both sensors indicated that total evaporation varies with the 

season, with high and low values in the wet and dry seasons respectively. The results further 

highlighted the advantage of using the 30 m spatial resolution Landsat 8 sensor to map the spatial 

variations of total evaporation across a heterogeneous catchment, compared to the 1000 m 

MODIS sensor. 
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The seasonal and annual statistics of total evaporation from MODIS and Landsat for the whole 

catchment were extracted and the results are summarized in Table 5.2. Landsat 8 yielded higher 

seasonal and annual total evaporation estimates, when compared to MODIS. For instance, in the 

wet season, the 30 m Landsat 8 sensor recorded a maximum of 1629 mm with an average of 770 

and standard deviation of 309 mm. In contrast, MODIS recorded lower estimates, with a 

maximum of 820 mm and an average of 432 mm. The standard deviation of annual total 

evaporation ranged between 202 and 449 in the dry and wet seasons respectively for Landsat, 

whereas the MODIS sensor shows a low standard deviation ranging from 51 mm in the dry 

season to 109 mm in the wet season. 

 

Table 5.2 Summary of seasonal and annual total evaporation statistics (mm) 

 Landsat 8 MODIS 

Period Min.  Max. Mean  Stdev Min.  Max.  Mean  Stdev 

Wet season 0 1629 770 309 96 820 432 109 

Dry season 0 787 306 202 1 439 78 51 

Annual 0 2384 1053 449 101 1233 510 150 
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Figure 5.7 Spatial variation of seasonal and annual total evaporation 
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5.3.5 Seasonal total evaporation from different land cover types 

 

Seasonal total evaporation estimates for different landcover types for dry and wet seasons 

(2013/2014) are shown Figure 5.8 (a) and (b), respectively. Landsat 8 showed higher estimates 

for all the different land cover types, when compared to MODIS. It was observed that for both 

sensors the lowest total evaporation estimates were for built-up areas for both the wet and the dry 

seasons. However, for MODIS, the highest total evaporation estimates were observed from 

natural forest in both seasons, while for Landsat 8 the highest estimates were from commercial 

irrigation in the wet season and wetlands in the dry season. 

 

 

 

(a) ET: Dry season 
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Figure 5.8 Land cover-based mean seasonal total evaporation estimates from the two sensors 

a) Dry season (2013) and (b) Wet season (2013/14) 

 

5.3.6 Annual total evaporation from different land cover types 

 

Annual total evaporation estimates per land cover type within the uMngeni Catchment are shown 

in Figure 5.9. Annual estimates show that total evaporation varies with sensor, as well as with 

land cover type. As can be seen, the Landsat 8 annual estimates were higher than those for 

MODIS for all the land cover types. It can also be observed that both sensors show lowest mean 

annual total evaporation estimates from built-up areas. The results in Table 5.3 further indicate 

detailed annual total evaporation statistics for different land cover types. It was found that 

Landsat 8 shower lower minimum total evaporation estimates (less than one) as compared to 

MODIS. This might be attributed to the 30 m spatial resolution which enables Landsat 8 to 

detect small variations in total evaporation, as compared to the 1000 m MODIS resolution which 

fails to differentiate the existence of mixed land cover types within a particular pixel. The highest 

mean annual total evaporation estimates using Landsat 8 were from commercial irrigation (1472 

mm), followed by natural forest (1381 mm). For MODIS, natural forest had the highest mean 

(b) ET: Wet season 
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annual total evaporation (657 mm), followed by orchards (612 mm) (Table 5.3) and its standard 

deviation ranged from 33 mm (commercial irrigation) to 176 mm (orchards).  

 

Overall, the One Way ANOVA results also reported that MODIS land cover-based seasonal and 

annual mean estimates were significantly different from Landsat 8 land cover-based estimates 

(One way ANOVA; F1.812 = 2.22, p < 0.05). However, annual and seasonal mean total 

evaporation estimates for the different land cover types obtained from MODIS data showed no 

significant differences (One way ANOVA; F2.853 = 0.125, p = 0.998). In contrast, Landsat 8 

yielded significantly different mean total evaporation estimates for all land cover types (One 

Way ANOVA; F4.964 = 87.011, p < 0.05). 

 

 

 

Figure 5.9 Land cover-based mean annual total evaporation from the two sensors for the 

period 2013-2014 
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Table 5.3 Summary of land cover-based annual total evaporation statistics (mm) 

Landsat 8 MODIS 

Land cover Min. Max. Mean Stdev Min. Max. Mean Stdev 

Built-up areas < 0.5 2226 618 401 101 1106 380 151 

Com. irrig. 437 2011 1472 312 432 539 525 33 

Nat. forest < 0.5 2384 1381 428 125 1222 657 152 

Grassland < 0.5 2356 991 398 101 1232 546 162 

Nat. bush < 0.5 2346 1378 480 101 1039 604 175 

Orchards < 0.5 1954 963 326 225 978 612 176 

Plantation < 0.5 2259 1019 357 102 1222 567 162 

Sub. agric < 0.5 2149 751 355 113 983 483 99 

Sugarcane < 0.5 2134 994 308 142 971 453 110 

Waterbodies < 0.5 2350 1154 382 108 1233 593 173 

Wetland 249 2330 1306 324 255 913 592 123 

 

Histograms of annual total evaporation estimates from MODIS and Landsat 8, based on pixel 

coverage, for some of the land cover types, are shown in Figure 5.10. Generally, it can be 

observed that the two sensors have different capabilities in determining spatial variations of total 

evaporation, even within a particular land cover type. Landsat 8 managed to produce total 

evaporation estimates in a wider range (i.e. from < 250 mm to > 1500 mm) for the different land 

cover types. However, MODIS failed to detect total evaporation from some of the pixels with 

less than 250 mm and pixels exceeding 1000 mm. It can be noted that Landsat 8 and MODIS 

detected different pixel coverage for different total evaporation ranges. For instance, Landsat 8 

total evaporation estimates showed that the majority of the grassland pixels (43.99%) had an 

annual total evaporation between 500-1000 mm, and very few pixels (2.27%) of less than 250 

mm. In contrast, more than half (59.66%) of the grassland pixels for MODIS had an annual total 

evaporation between 250-500 mm, and 3.5% with less than 250 mm. In addition, about half of 

the natural forest pixels (49.65%) from Landsat 8 exceeded 1500 mm of total evaporation and 

1.56% with less than 250 mm. In contrast, the majority of natural forest pixels (64.85%) for 

MODIS had annual estimates between 500-1000 mm, and 0.28% with less than 250 mm. For the 

sugarcane land cover type, Landsat 8 detected almost half of the pixels (47.78%) between 500-

1000 mm and a few pixels (0.53%) with less than 250 mm, whereas MODIS detected the 

majority of pixels (88.7%) between 250-500 mm. Landsat 8 at 30 m spatial resolution managed 

to capture the small variations of total evaporation within a particular land cover type better than 

the MODIS sensor with 1000 m spatial resolution. 
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Figure 5.10 Mean annual total evaporation for selected land cover types from the two sensors 

 

(a) Grassland  (b) Natural Forest 

(c) Sugarcane 
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5.3.7 Validation results 

 

A comparison of monthly mean total evaporation measured by eddy covariance against 

Landsat 8 and MODIS-based monthly mean estimates is shown in Figure 5.11 for the Two 

Streams validation site, dominated by wattle plantation. The data used for this analysis was 

monthly mean measurements and monthly mean remote sensing estimates corresponding to 

the station for six months, from May to October 2013. Overall, the Landsat-based estimates 

correlated well (R2 = 0.72) with a RMSE of 32.34 mm per month (30.30% of the mean), with 

ground-based measurements. In contrast, MODIS performed poorly (R2 = 0.44), with a 

RMSE of 93.63 mm per month (87.74% of the mean) in the variations of mean monthly total 

evaporation estimates. 
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Figure 5.11 Validation of remotely-sensed mean monthly total evaporation with eddy 

covariance 

 

5.4 Discussion 

 

There have been various remote sensing studies aimed at estimating total evaporation at 

different spatial scales, using different sensors (Che-sheng et al., 2011; Gómez et al., 2005; 

Hafeez et al., 2002; Jia et al., 2003; Sobrino et al., 2007; Verstraeten et al., 2005). More 

recently, advances in remote sensing products, such as Landsat 8, have attracted even more 

attention in monitoring the earth surface characteristics. This is due to their better spatial 

resolution and refined spectral properties, which have the enhanced potential of 

(a) Landsat 8 (b) MODIS 
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distinguishing the small variations in surface features (El-Askary et al., 2014; Jia et al., 

2014b; Pahlevan and Schott, 2013). This study highlights the potential of using multispectral 

images (i.e. Landsat 8 and MODIS) in mapping the spatial variations of total evaporation, 

within a heterogeneous catchment, for more informed management of water resources, 

especially in water-scarce environments. Specifically, the study investigated how total 

evaporation varies within a heterogeneous catchment characterized by varying land cover 

types, with different spatial characteristics. 

 

5.4.1 Seasonal and annual total evaporation estimates 

 

Total evaporation for the uMngeni Catchment exhibits temporal and spatial variations, which 

reflect the combined effects of climatic conditions and land cover characteristics. It was 

observed that the western- and northern-most parts experienced high total evaporation 

estimates across the whole period, when compared to the eastern- and southern-most parts of 

the catchment. This may be due to variations in the climatic conditions, which vary 

seasonally across the Catchment. For instance, the uMngeni Catchment has a west-east and 

north-south gradient rainfall, thus more rainfall is received in the western and northern most 

parts of the Catchment. Moreover, high rainfall (above 1500 mm) is received in the western 

parts, whereas the drier eastern interiors receive an annual of 656 mm (Figure 5.1). Moreover, 

there are dams in the upper and middle parts of the catchment, which supplies water for 

irrigation (Warburton et al., 2010); this contribute to total evaporation. The results also 

confirmed that seasonal variations result in variations of total evaporation, with high total 

evaporation estimates in the wet season and low estimates in the dry season. Higher rainfall 

in the wet season, results in more water being available for evaporation. In the dry season, 

low total evaporation estimates may be attributed to lower rainfall, so that croplands and 

areas with natural vegetation might have less soil moisture available to be evaporated, 

compared to the wet season. 

 

5.4.2 Spatial variations of total evaporation across the catchment 

 

Spatial variations in seasonal and annual total evaporation estimates highlighted the effect of 

land cover characteristics on variations of total evaporation. It was observed that for both 

sensors the lowest estimates were from built-up areas, with Landsat 8 showing higher 
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estimates than MODIS. The low estimates observed from built-up areas may be due to their 

hydrological and spatial characteristics across the Catchment. Built-up areas, with extensive 

impervious surfaces, generally generate more surface runoff, which drains quickly and, in the 

long run, less surface water remains for evaporation (Taha, 1997; Walsh et al., 2012). The 

two sensors show different land cover type with the highest annual total evaporation 

estimates. For Landsat 8, the highest estimates were for commercial irrigation. High mean 

total evaporation estimates from commercial irrigation may be due to increased water 

availability for evaporation from the combined effects of rainfall and irrigation (Uddin et al., 

2013). Contrary to Landsat 8, MODIS produced the highest mean total evaporation estimates 

from natural forests. This can possibly be explained by their physiological and spatial 

characteristics (large patch size and number, areal coverage (see Table 5.1), among other 

factors within the Catchment. The physiological characteristics of forests allow them to 

evapotranspire, even in the dry season, due to their capability to access relatively deeper soil 

water by their roots (Rwasoka et al., 2011). The contrast in highest mean total evaporation 

between Landsat 8 and MODIS may be attributed to the fact that commercial irrigation 

constitutes the smallest number of patches (44) and have the smallest mean patch size (0.12 

km2) (Table 5.1), which might be difficult to detect with the 1000 m spatial resolution of 

MODIS. 

 

When considering the effect of varying land cover characteristics, it was observed that the 

spatial characteristics of the land cover types affect the estimation of total evaporation across 

the catchment. This was confirmed by grassland, which occupies the highest land area 

(approx. 28.42%) within the Catchment, but did not result in highest estimates. Lower 

estimates from grasslands may be attributed to its spatial and physiological characteristics. 

Grasslands had the highest patch number and the highest total edge length, which all reflect 

more fragmentation (Table 5.1) and this may result in patches being incorporated within 

neighboring pixels of major land cover type, among other factors. This was confirmed by 

Ellis-Cockcroft and Cotter (2014), who reported that fragmentation or isolated patches for a 

particular land cover type reduce estimates of total evaporation loss within a landscape. In 

addition, the physiological characteristics of grass (small surface area) provide a limited area 

through which soil water is lost. Both sensors detect the lowest seasonal and annual total 

evaporation estimates from built up areas, which constitute the third largest area (approx. 

11.4%) within the catchment. In addition, it was observed that the roughness length (Z0m) 
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derived from MODIS and Landsat show a similar spatial pattern, as compared to the land 

cover based. The use of roughness length shows a similar pattern with MODIS and Landsat 

8, although it has resulted in lower estimates. The results in Figure 5.10 also show that 

MODIS has a low ability to capture the variations of total evaporation on a pixel basis for the 

different land cover types, as it only detects total evaporation between 250 and 1000 mm for 

the different land cover types. This may be attributed to the effect of its 1000 m resolution in 

relation to patch size of different land cover types, which the sensor failed to discriminate 

(Roerink et al., 2000). The sensor reflects the predominant land cover type characteristics 

within the pixel, thereby missing its variation. Recent studies (Guerschman et al., 2009; Ha et 

al., 2011; He et al., 2007) have also highlighted the inability of the MODIS sensor to 

differentiate the small variations in land cover characteristics, especially when applied on a 

small scale. 

 

Although Landsat 8 has the potential to detect smaller spatial variations of total evaporation 

estimates at catchment scale, its temporal resolution and the possibility of cloud cover is of 

major concern. In contrast, although MODIS performs poorly in the spatial representation of 

total evaporation, its daily temporal resolution still remains attractive. It provides temporal 

estimates, for better time series analysis, which are required for well-informed water 

accounting and subsequent management and allocation.  

 

5.5 Conclusion 

 

The main essence of this study was to determine spatial variations of total evaporation from 

multispectral Landsat 8 and MODIS data and the effect of land cover characteristics (i.e. 

area, patchiness) for the uMngeni Catchment, using the SEBS model. The results show that: 

 

a) Landsat 8 with a 30 m spatial resolution is a promising dataset for the better spatial 

representation of total evaporation at catchment scale, when compared to MODIS 

with 1000 m resolution; 

b) The spatial characteristics of each land cover type in relation to the sensor spatial 

resolution affect spatial variations of total evaporation across the catchment; 

c) MODIS at 1000 m resolution has a low detection ability of total evaporation estimates 

within a particular land cover type for the entire period, when compared to Landsat 8 
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at 30 m spatial resolution, which managed to detect all the variations of total 

evaporation ranges; and  

d) Temporal and spatial variations in climatic conditions, among other factors, have a 

considerable effect on total evaporation estimation at a catchment scale. 

 

On the basis of this research it can be concluded that the Landsat 8 dataset could be useful for 

a better spatial representation of total evaporation in accounting for water loss at a catchment 

scale. However, despite useful results on the spatial variations of total evaporation from 

Landsat 8, its 16-day temporal resolution is a cause for concern besides limited validation 

data for the catchment. For the better long-term and sustainable management of water 

resources, daily total evaporation estimates at finer resolution are required. Although the 

MODIS datasets are less suitable for determining the spatial variations of total evaporation 

within a heterogeneous catchment, its daily temporal resolution still remains attractive in the 

monitoring of total evaporation for water accounting and planning. There is the need for 

further research to investigate the possible integration of Landsat 8 and MODIS datasets to 

estimate total evaporation for more comprehensive and well-informed water accounting at a 

catchment scale. 
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6. SYNTHESIS AND RECOMMENDATION 

 

 

6.1 Introduction 

 

Accurate information on the spatial variation of total evaporation across a heterogeneous 

catchment is critical for a wide range of applications, including irrigation management 

(Timmermans et al., 2013), drought monitoring (Rana and Katerji, 2000), climate change 

modelling (McVicar et al., 2012), hydrological modelling (Weiß and Menzel, 2008) and 

landuse/change management (Zhang et al., 2001). Ground-based methods of estimating total 

evaporation, although they have been widely-used, cannot estimate the spatial variations that 

occur at a catchment scale. The advancement of remote sensing offers an alternative method, 

which enables a better spatial representation of total evaporation from local to global scales. 

The aim of this research was to estimate the variations of total evaporation across a 

heterogeneous uMngeni Catchment, using remote sensing. The specific objectives were: (a) 

to determine the effect of sensor spatial resolutions on estimating total evaporation across the 

uMngeni Catchment, and (b) to determine spatial variations of total evaporation estimates, 

using multispectral remote sensing data within the heterogeneous uMngeni Catchment. Total 

evaporation estimates for the catchment were derived, using the SEBS model, based on 

multispectral Landsat 8 (30 m) and MODIS (1000 m) model input datasets.  

 

6.2 The Effect of Sensor Spatial Resolution on Estimating Total Evaporation 

 

In order to accurately estimate total evaporation in uMngeni Catchment, it was necessary to 

first assess the effect of varying sensor spatial resolution (i.e. pixel size). This research 

evaluated two readily available multispectral sensors namely; the 30 m spatial resolution 

Landsat 8 sensor and the 1000 m spatial resolution MODIS sensor in estimating spatial 

variations in total evaporation across a heterogeneous catchment using the SEBS model.  

 

The results of this study have shown that sensor spatial resolution plays a critical role in the 

accurate estimation of total evaporation across a heterogeneous catchment. For example, it 

was observed that remote sensing datasets with a smaller pixel, such as Landsat (30 m) is 
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capable of mapping the small spatial variations in total evaporation input parameters and 

subsequent estimates that occurred between landcover types. However, remote sensing 

datasets with a large pixel size, such as MODIS (1000 m), have problems in mapping spatial 

variations in total evaporation across varying land cover types at catchment scale. For 

instance, MODIS input parameters, such as LST, NDVI show less variability, compared to 

Landsat 8. This was further confirmed by the spatial variations of total evaporation, where 

MODIS estimates showed less variability, compared to Landsat 8. This suggests that large 

spatial resolution datasets are too coarse to distinguish variations in biophysical parameters 

and energy fluxes across different landcover types. The sensor detects such variations within 

a single pixel as an aggregation, without distinguishing mixed coverage from different 

landcover types. This further resulted in aggregation of energy fluxes with less variability. 

This is supported by Kustas and Norman (2000) who found that coarse spatial resolution 

sensors invariably result in pixel-averaged heat flux estimation for surfaces with significant 

variability in vegetation cover. They concluded that aggregation of sub-pixel variability can 

cause a significant error of the energy fluxes. 

 

Overall, the findings of this study provides the necessary insight and basis for future total 

evaporation estimation at catchment scale using remote sensing, particularly the ability of 

fine resolution sensors in discriminating biophysical parameters and energy fluxes. This 

provides a better representation of water loss from different landcover types, which is crucial 

for water management purposes, especially in water-scarce environments. 

 

6.3 Estimating the Spatial Variations in Total Evaporation across a Heterogeneous 

Catchment using Multispectral Remote Sensing Data  

 

Although great improvements have been made in estimating spatial variations of total 

evaporation, most research focuses on estimating total evaporation on specific land cover 

types using either remote sensing or meteorological-based methods. However, the results of 

this study showed that for accurate and reliable total evaporation estimation, incorporating 

different land cover characteristics (i.e. type, areal extent, patchiness etc.) is necessary if 

better water allocation, management and proper planning are to be achieved.  
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The findings from this study have also shown the potential of using the Landsat 8 sensor to 

determine spatial variations in total evaporation at a catchment scale. The sensor managed to 

capture variations in total evaporation at a wider range from different land cover types for the 

entire period. In contrast, the MODIS sensor, at 1000 m resolution, failed to detect variations 

in total evaporation ranges from some of the pixels within a particular land cover type across 

the catchment. This confirms the inability of coarse resolution satellite sensors, with their 

large pixel size to detect variations in land cover types which affects estimates of total 

evaporation. This is in agreement with Allen et al. (2008), who used MODIS and Landsat 7 

images to estimate total evaporation using the METRIC model. They stated that the spatial 

fidelity of the landscape was highly degraded, when using the MODIS sensor. This resulted 

in low total evaporation estimates. They concluded that Landsat-based estimates are highly 

preferred, when compared to those of MODIS, because of their better resolution (30 m). 

 

Results from this study have further highlighted the importance of inputs and energy fluxes in 

remote sensing estimates of total evaporation. For instance, the spatial variations of Rn play a 

critical role in determining the spatial and temporal variations of total evaporation. This is in 

agreement with the study by Sobrino et al. (2007), which showed that the spatial variations of 

total evaporation estimates followed that of Rn. They found that lower estimates of Rn and 

total evaporation occur in the dry season, whereas high estimates occurred during the wet 

season. This is primarily as a result of variations in climatic conditions, among other factors. 

For instance, in the wet season, an increase in solar radiation and rainfall results in more 

water and energy available for total evaporation to occur. Furthermore, total evaporation 

estimates were influenced by surface characteristics, where higher estimates were obtained 

from vegetated areas (as indicated by high NDVI, FVC and LAI parameters), as compared to 

less vegetated areas. The effect of seasonal variations in climatic variables on total 

evaporation was also indicated. Similar seasonal variations of total evaporation estimates 

were observed by Boronina and Ramillien (2008) in Chad. In addition, variations in total 

evaporation are determined by various bio-physical variables, rather than individual 

variables, such as LST (Glenn et al., 2007; Glenn et al., 2010; Jin et al., 2013). 

 

With regard to land cover heterogeneity, it is critical to determine variations in land cover 

types, including area and patchiness, especially in relation to the scale of remote sensing 

products. This might have an influence on the effectiveness of the satellite sensor to 
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discriminate land cover specific characteristics. This might also influence the ability of the 

sensor to derive total evaporation inputs and subsequent estimates. For instance, if the areas 

of land cover patches are smaller than the pixel resolution of the sensor, it is most likely that 

most of the patches are aggregated by the sensor. The sensor fails to differentiate the 

existence of mixed patches within a particular pixel, as well as variations in total evaporation 

inputs. This might lead to lower and less variability of input parameters resulting in the 

underestimation of total evaporation across heterogeneous catchments. 

 

Based on the findings from this study, it was confirmed that the 30 m Landsat 8 dataset has 

greater potential than the 1000 m MODIS in estimating spatial variations in total evaporation. 

Quantification of total evaporation is required at finer spatial and temporal resolution, for 

well-informed water accounting and subsequent management and allocation to different 

consumers. Although Landsat 8 produced better spatial variations in total evaporation, its 16-

day temporal resolution and the possibility of cloudy cover is a major problem. In contrast, 

despite poor spatial representation of total evaporation from MODIS, its daily temporal 

resolution still plays a fundamental role in the long-term analysis of total evaporation. It is 

however important to note that the availability of validation data for the catchment was a 

major challenge and concern of the study.  

 

Overall, this study confirms the feasibility of using multispectral remote sensing data to 

understand the spatial variations of total evaporation within a catchment, characterized by 

various land cover characteristics, for water accounting purposes. This approach enables the 

estimation of water use by different land cover types in a spatially distributed manner at a 

catchment scale. Furthermore, information on water use by different landcover types could 

serve to assess the effects of land use changes on hydrological processes. Remote sensing 

will continue to play a fundamental role in quantifying the surface energy budget and 

providing information, at a low cost, for improving water consumption estimates, especially 

in water scarce environments. 
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6.4 Recommendations for Future Studies 

 

In general, the findings from this study contribute to and support the ongoing research into 

understanding spatial variations of total evaporation for water resources management across 

the globe. Consequently, these findings may possibly lay a foundation for the better 

management and allocation of water resources, especially in water-limited areas.  

 

Although this study has highlighted the importance of sensor spatial resolution and land 

cover characteristics in understanding the spatial variations of total evaporation within a 

heterogeneous catchment in South Africa, further investigations are required. The following 

recommendations are therefore suggested for future studies: 

 

a) To fully understand the potential of using multispectral Landsat 8 datasets in spatial 

representation of total evaporation estimates, further studies should be undertaken 

over various bio-climatic regions.  

b) Future research should also consider integrating Landsat 8, which has low temporal 

and moderately high spatial resolution, with high temporal and low spatial resolution 

images, such as MODIS, to increase the utility of satellite products in water resources 

management. 

c) Successful water resources management requires the application of high spatial 

resolution remotely sensed data. Therefore, there is a need for future researchers to 

develop approaches for downscaling of daily low spatial resolution MODIS datasets. 

d) The present study used two multispectral sensors namely; the 30 m spatial resolution 

Landsat 8 and the 1000 m MODIS data. It would be interesting for future research to 

compare Landsat 8-based estimates with those obtained using Landsat 7 ETM. 

e)  In-situ measurements of total evaporation for the different land cover types in a 

catchment are very important for validating the remote sensing estimates. Therefore 

future studies should also focus on ground based techniques with better spatial 

resolution, such as scintillometry. 

f) Further validation of total evaporation estimates from Landsat 8 and MODIS within 

uMngeni catchment may be possible indirectly through the use of stream flow data 

together with simplified water balance calculations.  
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APPENDIX A Total evaporation estimation flowcharts using MODIS L1B images 

 

 

 

 

 

 

 

 

 

 

 

 

  

Appendix A. 1  MODIS L1B image acquisition 

 

Downloading MODIS Level 1B Images from the National Aeronautics and Space Agency (NASA) Website 

(http://ladsweb.nascom.nasa.gov/data/search.html) 

 

 

 
Product selection 

 Satellite: Terra MODIS 

 Group: Terra Level 1 

Products 

 Products: MOD021KM,                

MOD03, Geolocation-1KM. 

Temporal Selection 

Insert Date and time range 

of your interest. 

Collection Selection 

5-MODIS collections 

5- L1, Atmos and Land 

 

Spatial Selection 

 Insert Latitude /Longitude 

Coordinate System.  

 Specify spatial extent of 

your area. 

 Choose Day time granules. 

SEARCH 
Browse the image file to check if it covers your study area, add the image files and their 

respective Geolocation files, order, insert your email through which you will receive the 

order number and link to download the files.  

 

 

 

Download the files in HDF format 

http://ladsweb.nascom.nasa.gov/data/search.html
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Appendix A. 2  MODIS L1B Image Pre-processing 

Image preprocessing using MRTSwath tool downloaded at 

http://gcmd.nasa.gov 

 

 

 

Simplified Method for Atmospheric Correction 

(SMAC) 

Aerosol Optical thickness Retrieved 

from http://earthobservatory.nasa.gov 

 

 

 

Coefficient file downloaded at 

http://52north.org 

Import Geotiff images to ILWIS 3.7. 2 using GDAL 

Convert raw digital numbers (DN) using calibration coefficients extracted by the HDFView Tool 

downloaded at http://hdfeos.org/software/tool 

 

 

Selected Image files (MOD021KM)   Selected Geo-location (MOD03) files Image preprocessing involves: 

EV_250_Aggr1km_RefSB_b0& b1: (band1&2)        Solar Azimuth Angle    Format conversion to Geotiff.  

EV_500_Aggr1km_RefSB_b0-b4: (bands3-7)  Solar Zenith Angle    Image Spatial subset.  

EV_1km_ RefSB_b11-13: (band17-19)   Sensor Azimuth Angle    Resampling using Nearest Neighbor. 

EV_1KM_Emissive_b10 &11: (band31&32)  Sensor Zenith Angle     Assign geographic coordinates. 

       Height (Elevation map)     Assign output pixel size (0.01~1km) in degrees 

      

           

          
 

Angles: by multiplying Geolocation 

maps with a factor of 0.01 

Reflectance (bands 1-7)  

Reflectance =Reflectance scale *(DN – reflectance offset) 

Radiance (bands 2, 17, 18, 19, 31 & 32),  

Radiance = Radiance scale* (DN – radiance offset) 

 

Water vapor (w): (Sobrino et al., 2003) 

191817 355.0453.0192.0 WWWW   

Surface pressure  

Meteorological data  

 

 

Ozone content: Retrieved from 

http://macuv.gsfc.nasa.gov/. 

 

http://gcmd.nasa.gov/
http://earthobservatory.nasa.gov/
http://52north.org/
http://hdfeos.org/software/tool
http://macuv.gsfc.nasa.gov/
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Appendix A. 3  SEBS Computation using MODIS L1B Images 

Meteorological Data 

 Wind speed 

 Air Temperature 

 Pressure 

 Sunshine hours 

 Humidity 

 Solar Radiation 

 

 

 

NDVI: 
 
 RNIR

RNIR
NDVI




  

Land Surface Temperature  (Sobrino et al., 2004) 

   
      dewew

btmbtmbtmbtmbtmLST





19.527.73168.083.34

32312.1323179.102.131
2

 

Water vapour (w) 

Previously computed 

Albedo (Liang, 2000) 

0015.0018.0112.0116.0243.0291.0160.0 754321  rrrrrr  
Brightness Temperature (btm): 

(Oguro et al., 2011) , using bands 31 & 32 

  110/2ln

/
652 






Lhc

khc
BT  

 

 

Surface reflectance bands 1-7 

 

 

 

 

Radiance (bands 2, 17, 18, 19, 31 and 32 

 

 

 

 

 

SEBS 
In ILWIS 3.7.2 

 

Emissivity (e): bands 3 (R) and 4 (NIR) based 

on Sobrino et al. (2008) 

    CPvPv sv  1  

Output map include:  

Emissivity difference (de), NDVI and FVC 

 

FVC (Sobrino et al., 2004) 
2

minmax

min

















NDVINDVI

NDVINDVI
FVC  

Sun zenith angle 

From the Geolocation 

file  

DEM 

From the Geolocation file 

 

 

Julian Day 

From image file name 
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APPENDIX B Total evaporation estimation flowcharts using Landsat 8 images 

   

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B.1 Landsat 8 Image Acquisition 

Downloading Landsat Images using USGS GloVis Website 

(http://glovis.usgs.gov) 

 

Download Zipped Landsat Files and unzip the file using 

WinRAR  

 

Choose collection (Landsat Archive- Landsat 8 OLI) and upload study area map. 

Input time period (month, year) of the study 

 Add your desired image scenes to list and send to cart 

 

Receive download details (link) of your images through email 

Log in / Register: Then Order files (apply, go to item basket, 

proceed to check out and submit your order) 

Image Metadata File in text format containing:  

 Acquisition date   

 Sun elevation angle 

 Pre-launch constants (k1 and k2)  

 Calibration coefficients for each band, etc 

 

 

 

Bands (1-11) in Geotiff format and in Digital 

Numbers 
 

http://glovis.usgs.gov/
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APPENDIX B.2 Landsat 8 Image Pre-processing  

Import image bands in ILWIS 3.3 via GDAL 

 

Radiance (According to USGS 2013) 

LcalL AQML   

Brightness Temperature (for both bands) (Acc. to USGS 2013) 













1ln 1

2

1

L

K

K
BT  ,     













1ln 1

2

2

L

K

K
BT  

Using ENVI software  

Conversion of raw digital numbers (DN) using coefficients from the metadata file 

TOA Reflectance: (According to USGS 2013) 

 AQM cal '
 

Reflectance bands (2, 4, 5, 6 and 7) Radiance bands (10 and 11) 

Corrected TOA reflectance: (According to USGS 2013) 

   SESZ 








sincos

''

  
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APPENDIX B.3 SEBS Computation using Landsat 8 Images 

Meteorological data 

 Wind speed 

 Air temperature 

 Pressure 

 Humidity 

 Sunshine 

 Solar radiation 

 

 

 

SEBS 

In ILWIS 3.7.2 

Sun zenith angle 

Sz = 90° - Sun elevation 

 

DEM  

Acquired at http://srtm.csi.cgiar.org 

 

Julian Day 

From metadata file 

 

Emissivity (Sobrino et al., 2004) 

986.0004.0  FVCEmissivity  

Surface reflectance (bands 2, 4, 5, 6 &7)  

LAI  

     5.0
1/1 NDVINDVINDVILAI 

 

 FVC (Sobrino et al., 2004) 

2

minmax

min

















NDVINDVI

NDVINDVI
FVC  

Land Surface Temperature (Sobrino et al., 2004) 

     

321

1

sensorS LT  

Water vapour: retrieved from 

http://ladsweb.nascom.nasa.gov 

 

  

Albedo: Bands 2, 4, 5, 6 & 7 

(Liang, 2000): 

0018.0072.0085.0373.013.0356.0 75431  bbbbb  

NDVI: Bands 4 (R) and 5 (NIR) 

 
 RNIR

RNIR
NDVI




  

 

Brightness Temperature 

BT = Average (BT1 & BT2) 

http://ladsweb.nascom.nasa.gov/

