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Abstract 

Leaf Area Index (LAI) remains one of the important forest structural attributes, accurate 

estimations of LAI are crucial as LAI is a major input variable for 3-PGS to predict growth of 

different commercial forest species and their water use. While remote sensing offers a faster 

and effective means of estimating LAI, LAI is seldom available at spatio-temporal scales that 

can be used to guide and inform management decisions for localised applications. Furthermore, 

the knowledge relating to spatial and temporal variation of LAI is still limited. This study 

sought to estimate LAI of Eucalyptus dunnii in the Midlands area using vegetation indices and 

texture measures derived from WorldView-3 imagery. The first objective was to review 

previous work on remote sensing methods of estimating LAI across different forest ecosystems, 

crops and grasslands. The results revealed that during the last decade, the use of remote sensing 

to estimate and map LAI has increased for crops and natural forests. However, with regards to 

commercial forests and grasslands, there is still a need for more research as the number of 

studies is still small. The second objective was to use a combination of vegetation indices and 

texture measures to estimate LAI. The relationships between LAI and vegetation indices (VI), 

and LAI and texture were modelled using Partial Least Squares Regression (PLS-R). In terms 

of LAI estimation using texture, the results showed that combining two or more texture bands 

leads to improved LAI estimation accuracy. Although texture measures can improve LAI 

estimation accuracy, very few studies focusing on estimating LAI using texture measures have 

been published. Vegetation indices alone achieved poor LAI estimation accuracy. The best 

performing model incorporated texture ratios and it achieved an estimation accuracy of R2=70, 

RMSE 1.21 in 2019 and R2=0.72, M=RMSE=1.26. Overall, this study demonstrated that 

texture band ratios can estimate LAI of Eucalyptus dunnii in the Midlands area with acceptable 

accuracy. 

Keywords: LAI estimation, Eucalyptus dunnii, Partial Least Squares Regression, texture 

measures, commercial forestry. 
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1. CHAPTER ONE 

1.1 Introduction 

Commercial forests in South Africa cover approximately 1,257,341 hectares which is 

approximately 1% of the country’s land (Kumbula et al., 2019). The most planted exotic 

commercial forests species are Acacia, Pinus and Eucalyptus.  Eucalyptus and Acacia are 

generally classified as hardwood forests while Pinus is classified as softwood forest. Both soft 

and hardwood plantations cover approximately 39.5% surface area of KwaZulu-Natal 

province, with Eucalyptus being the most planted species in the Midlands area, covering 

approximately 30% of the planted area (DAFF, 2015). Commercial forests play a valuable role 

in South Africa’s economy as they contribute annually towards South Africa’s gross domestic 

product (GDP) with Eucalyptus contributing over 9% towards the total exported wood pulp, 

timber and non-timber products (Kumbula et al., 2019). Therefore, the development of an 

accurate and operational model for estimating Leaf Area Index (LAI) of Eucalyptus species at 

landscape scale is necessary, especially because LAI is a key indicator of forest health and 

productivity.  

LAI can be defined as the total one sided area of leaf tissue per unit ground surface area 

(Waring, 1983). According to this definition; LAI quantitatively measures the leaf surface area 

available for the interception of photosynthetically active radiation (PAR) and transpiration, 

and is an important structural variable for describing the energy and mass exchange in a 

forested ecosystem (Gong et al., 1995a). LAI drives both the within and the below-canopy 

microclimate, controls canopy water interception, radiation extinction and carbon gas 

exchange, hence a key component of biogeochemical cycles in ecosystems (Potithep et al., 

2013). Any changes in canopy LAI whether caused by drought, defoliation, frost, fires or 

management practices are followed by changes in forest stand productivity. Process-based 

growth prediction models quantitatively analyse stand productivity and often LAI is the key 

input into such models. Additionally LAI is a significant variable incorporated into models that 

estimate water use and energy fluxes for commercial forests (Blinn et al., 2019). 

Previously, LAI was measured through direct methods, however, there has been a shift towards 

using indirect methods such as vegetation indices derived from remotely sensed data. Direct 

techniques include destructive sampling, which is time consuming, laborious and expensive. 

Therefore, a faster yet effective method of predicting LAI is needed. Indirect techniques such 
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as remote sensing offer an opportunity to study and monitor the earth’s surface at local, regional 

and even global scales. Furthermore; remote sensing sensors offer cost effective, high spatial 

and temporal resolution coverage. 

One of the most common indirect methods of estimating LAI is deriving vegetation indices 

from remote sensing data. Several studies have demonstrated that vegetation indices can be 

utilised to estimate LAI accurately (Qiao et al., 2019, Li et al., 2019, Gebreslasie and van Aardt, 

2011, Kross et al., 2014, Blinn et al., 2019).  Mthembu (2001) studied the relationship between 

one of the commonly used vegetation indices known as Normalized Difference Vegetation 

Index (NDVI) and LAI and found that NDVI has a strong correlation with LAI and can 

accurately estimate the LAI of Eucalyptus grandis x camaldulensis with correlation 

coefficients of 0.78 for destructive sampling and 0.75 for the leaf canopy analyser. The results 

of the above mentioned study demonstrate that remote sensing offers an effective method of 

estimating LAI of commercial forests.  

Vegetation indices (VIs) have been utilised for various remote sensing applications. They have 

provided accurate and reliable results in assessing vegetation health and detecting change, 

estimation of chlorophyll and water content in vegetation and in assessing environmental stress 

(Korhonen et al., 2017, Davhula, 2016). Vegetation indices often use Near Infrared (NIR) and 

Red regions on the electromagnetic spectrum. This is because vegetation, particularly healthy 

vegetation, strongly absorbs electromagnetic energy in the visible region while reflecting 

strongly in the NIR region, and this contrast is then used to study the status of vegetation (Blinn 

et al., 2019, Kross et al., 2014). However, vegetation indices do not only utilise Red and NIR 

portions of the electromagnetic spectrum. There are many vegetation indices that utilise other 

portions of the electromagnetic spectrum. 

Glenn et al. (2008) concluded that remote sensing models that estimate LAI based on VIs only 

are subject to error and uncertainty. Therefore, additional remote sensing techniques such as 

texture features must be applied to improve LAI predictions. Texture features is a technique 

that is applied to quantify spatial variability of pixel values and patterns within an image. This 

technique complements spectral information with a spatial component. According to 

Beckschafer et al. (2013), changes in spatial distribution of vegetation can be detected through 

texture variation in the images and therefore texture is linked to the spatial distribution of 

vegetation.  
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Statistical techniques such as stepwise multiple linear regression (SMLR) have been used in a 

number of studies, however, these techniques have an inherent problem of multi-collinearity. 

The relationships between LAI and vegetation indices (VI) and texture with VIs were modelled 

using Partial Least Squares Regression (PLS-R). PLS-R is a data compression technique that 

is used to create predictive models from data containing highly collinear variables or factors 

(Chin, 1998 ; Haenlein and Kaplan, 2004; Wold, 1996).  

A number of image texture techniques have been developed.  For example Gebreslasie and van 

Aardt, (2011) identified four commonly used image texture techniques, which are model based, 

geometrical, statistical and signal processing. Li et al. (2019) used a combination of indices 

and textures to estimate LAI for rice using WV-2 image. The study demonstrated that feature 

texture extraction is an effective way of solving problems that are related to spectral 

heterogeneity and complex spatial distribution in the same category. The study used 

multivariate regression models to assess the potential of combining various indices and textures 

for the estimation of rice LAI. The study also proved that by combining textures and indices to 

estimate LAI, one can improve accuracy by up to twenty five percent. This study will examine 

a statistical image texture technique known as grey level co-occurrence matrix (GLCM) for the 

estimation of the LAI of Eucalyptus dunnii plantations. Research has shown that combining 

two or more texture bands leads to improved LAI estimation accuracy. Pu and Cheng (2015) 

used two band texture combinations to estimate forest LAI and found that texture combinations 

are more powerful compared to single band textures. Collecting the LAI by means of 

destructive sampling poses a challenge for forestry companies with large land holdings across 

South Africa because it is expensive, laborious, time consuming and not efficient at regional 

scales. The currently available LAI products are not well validated at regional levels. 

Therefore, there is need to develop LAI estimation techniques that are locally parameterised. 

This study will assess the utility of high resolution WorldView-3 vegetation indices and texture 

features in estimating LAI.  

Models of estimating LAI are species and location specific, therefore, there is need for a model 

for estimating the LAI of Eucalyptus dunnii in the Midlands area. To the best knowledge of 

the researcher, no study has been conducted in South Africa to determine to what extent 

additional remote sensing techniques such as image texture algorithms and combined 

vegetation indices derived from high resolution imagery particularly WorldView-3 can 

improve LAI estimations for Eucalyptus dunnii in the Midlands area. This study investigated 

the following vegetation indices: Red Edge-NDVI, Green-NDVI, Simple Ratio, Modified 
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chlorophyll absorption ratio index 2, anthocyanin reflectance index (ARI), Red Edge triangular 

vegetation index (core only) and Red Edge yellow ratio. The study included Red Edge 

vegetation indices because  Red Edge-NDVI and Green-NDVI have shown the potential to 

improve saturation levels compared to normal NDVI (Xie et al., 2018). Improvements in LAI 

estimation using remote sensing can be used to improve Physiological Processes Predicting 

Growth (3PGS) models.  

1.2  Aim 

The aim of this study was to assess the ability of texture ratios computed from WorldView-3 

imagery for the estimation of LAI over different seasons using PLS-R. 

1.2.1 Objectives 

Specific objectives were to: 

• Review remote sensing methods of estimating LAI for forests and crops. 

• Test the utility of texture ratios in estimating LAI of Eucalyptus dunnii in the Midlands 

over two seasons using PLS-R. 

• Test the utility of single texture bands in estimating LAI of Eucalyptus dinnii in the 

Midlands using PLS-R. 

• Test the utility of vegetation indices in Estimating LAI of Eucalyptus dunnii in the 

Midlands over two seasons using PLS-R 

• Determine the best technique in estimating LAI and map spatial distribution over the 

different seasons.  

1.2.2  Key research questions 

1. What are the trends in the use of remote sensing methods to estimate LAI? 

2. Are vegetation indices the best method of estimating LAI of Eucalyptus dunnii in the 

Midlands area? 

3. Are texture band ratios effective in estimating LAI of Eucalyptus dunnii in the 

Midlands area? 

4. Can single texture bands produce the best accuracy in estimating LAI of Eucalyptus 

dunnii in the Midlands area?  

5. What is the best model in estimating LAI of Eucalyptus dunnii in the Midlands area 

using PLS-R? 
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1.2.3  Research structure 

This dissertation consists of two research papers responding to research objectives and 

hypotheses. Each paper presents information which could be read independently, but 

contributes to the entire general introduction (chapter 1) and synthesis (chapter 5). The entire 

dissertation is formed by six chapters. 
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2.  CHAPTER TWO 

Forest, crop and grassland Leaf Area Index estimation using remote sensing: 

A review of current research trends and accomplishments 

Abstract 

Leaf Area Index (LAI) is an important parameter in plant ecophysiology, it can be used to 

directly quantify foliage and as a measure of the photosynthetic active area and thus the area 

subject to transpiration in vegetation. The sensor type (active or passive), model (empirical, 

physical or hybrid) used to estimable LAI depends on the canopy attributes. The aim of this 

paper was to review work on remote sensing methods of estimating LAI across different forest 

ecosystems, crops and grasslands in terms of remote sensing platforms, sensors and models. 

To achieve this aim, scholarly articles with the title or key words “Leaf Area Index estimation” 

or “LAI estimation” were searched on Google Scholar and Web of Science with a date range 

between 2010 and 2020. The results of the study revealed that during the last decade, the use 

of remote sensing to estimate and map LAI has increased for crops and natural forests. 

However, with regard to commercial forests and grasslands, there is still a need for more 

research as the number of studies is still small. Forest ecosystems were broadly grouped into 

two groups: natural forests and commercial forests, and of the 84 studies related to forests, 60 

studies were related to natural studies and 24 studies were related to commercial forests. In 

terms of model types, empirical models were the most often used models for estimating the 

LAI of forests followed by physical models. Hybrid models such as PROSAIL were mostly 

used for crop and grassland LAI estimations. In terms of readily available LAI products, 

MODIS LAI is the most widely used LAI product.  

Keywords: LAI estimation, sensors, models, passive, active, data source LAI products 

2.1 Introduction 

Leaf Area Index (LAI) is an important parameter in plant ecophysiology, as it can be used to 

directly quantify foliage and as a measure of the photosynthetic active area and thus the area 

subject to transpiration in vegetation (Chen, 2013a, Wulder et al., 2004). The importance of 

LAI is seen in applications ranging from process-based ecosystem simulations, site water 

balance, and radiative transfer studies. Furthermore, LAI is a major input variable for 

Physiological Processes Predicting Growth (3PGS) models to predict growth of different 

species and water use (Waring et al., 2010). LAI estimations and mapping of forests, crop and 
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grasslands date back to the 1990s. Recent studies of forest, crop and grassland LAIs have been 

published by Wang et al., (2017), Chen, (2013b), Yan et al., (2019) and Roosjen et al., (2018). 

Many definitions of LAI have been proposed in the literature, and these definitions are often 

dependent on the purpose of the study.  For the purpose of this study the following definition 

will be used: LAI is the total one sided area of leaf tissue per unit ground surface area (Watson, 

1947). According to this definition, LAI quantitatively measures the leaf surface area available 

for the interception of photosynthetically active radiation (PAR) and transpiration, and is an 

important structural variable for describing the energy and mass exchange in a vegetated 

ecosystem (Gong et al., 1995b). 

There are various methods of measuring LAI, which can be broadly grouped into two 

categories: direct and indirect methods. Direct methods of estimating LAI include harvesting, 

litter collection and allometry and are more accurate than indirect methods (Jonckheere et al., 

2004). Indirect methods include optical devices such as LICOR-2200, which measures 

intercepted radiation below the vegetation canopy (Davhula, 2016). Deriving LAI from remote 

sensing data is another indirect method of estimating LAI. Both these methods of estimating 

LAI offer different advantages and disadvantages. However, indirect methods have been shown 

to offer more advantages than disadvantages, especially when a large area is being studied. 

Remote sensing is one of the commonly used indirect methods of estimating LAI as remote 

sensing technology offers a better alternative to estimating and mapping LAI for larger 

landscapes more efficiently and accurately (Pu and Cheng, 2015). Remote sensing also offers 

a less time consuming and cost effective method of estimating LAI (Xu et al., 2020). 

The development of high spatial resolution satellite data has enabled researchers around the 

world to more effectively monitor vegetation at higher accuracy (Kross et al., 2014). Remote 

sensing enables convenient collection of data dating back to several years while providing 

reliable and accurate estimates of LAI and other biophysical attributes for different vegetation 

types. Although a number of remote sensing methods of estimating LAI have been developed, 

not a single method can be applied consistently and repeatedly for estimating LAI locally and 

regionally (Sibanda et al., 2017). The reason for this is variations in biophysical, environmental 

and topographic traits of vegetation in space and time (Sarker and Nichol, 2011, Bastin et al., 

2014) 

LAI can be derived by using empirical, statistical and hybrid methods. Deriving LAI by means 

of statistical and physical approaches was first carried out on crop canopies in the beginning of 
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the 1970s. One of the earliest studies on estimating LAI using statistical approaches was carried 

out in 1974 by Kanemasu et al., (1974) who used Landsat MSS to derive wheat LAI. In recent 

years, the number of studies on crop LAI have been increasing, while recent studies on crop 

LAI have been published by Kross et al., (2014), Lu and He, (2019), Macedo et al., (2018) and 

Feng et al., (2019). After research on crop LAI estimations using statistical approaches started 

showing positive results in the 1980s, the number of forest LAI studies started increasing. With 

regard to commercial forests and grasslands, there is still a limited number of studies, therefore 

this area requires further investigation. 

During the last decade, the use of remote sensing to estimate and map LAI has increased (Zhou 

et al., 2014a). High spatial and spectral resolution sensors such as QuickBird, IKONOS and 

WorldView-3 have shown great potential in achieving acceptable levels of accuracy in 

estimating LAI. The availability of high spatial resolution sensors such as the ones mentioned 

above has also led researchers to investigate the effects of spatial and spectral resolution in 

effectively estimating LAI. In a study conducted by Holmgren and Thuresson, (1998) about  

satellite remote sensing for forestry planning, it was concluded that 30m spatial resolution 

provides insignificant results when it comes to forest management planning. Gebreslasie and 

van Aardt, (2011) conducted a similar study as the one mentioned above but used a higher 

spatial resolution satellite sensor. In this study, forest structural attributes such as diameter at 

breast height (DBH), mean tree height (MTH) volume and basal area (BA) were investigated 

for the same species and in the same geographical area but results were different. In terms of 

coefficient of determination, results were as high as 0.64 for DBH. 

Advancements in remote sensing have made it possible to estimate LAI timely with acceptable 

accuracy. A number of previous studies have estimated LAI with acceptable accuracies using 

spectral reflectance, however; due to saturation of vegetation indices at LAI values above 3, 

texture measures have been utilised as an alternative (Gu et al., 2013). Image texture is the 

measure of the spatial variation in the grey levels in the image as a function of scale. Image 

texture has been demonstrated by Gu et al. (2013), Pu and Cheng, (2015), Li et al. (2019) to 

improve the estimation of LAI. 

This paper reviews previous work on remote sensing methods of estimating LAI across 

different forest ecosystems, crops and grasslands. This review looks at the current trends and 

accomplishments and direction of research in terms of different remote sensing platforms, 

sensors and models that are utilised to estimate LAI. To achieve this, the paper reviews 
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published papers on LAIs estimated using remote sensing from the past ten years.  Remote 

sensing has been used by a number of researchers to estimate LAI globally and the availability 

of different remote sensing imagery and increases in diversity of spatial, spectral, temporal and 

radiometric characteristics have led to more research and thus better accuracy in estimating 

LAI (Chen, 2013a). 

2.2  Materials and Methods 

Scholarly articles with the title or key words “Leaf Area Index estimation” or “LAI estimation” 

were searched on Google Scholar and Web of Science with a date range between 2010 and 

2020. In total, 490 articles were found, 312 were found from Google Scholar and 178 were 

found on the Web of Science. These articles were downloaded into Endnote (The EndNote 

Team, 2013), whereafter duplicated articles were discarded. The remaining articles were then 

filtered to eliminate conference papers, review papers, theses, book chapters, and audio visual 

material. Studies focusing on LAI estimations using ground based handheld devices and studies 

focusing on LAI estimations for vegetation cover types of no interest were also removed. This 

reduced the dataset to 165 journal articles from 23 different journals (Table 2.1). These journal 

articles were then manually screened to study sites, satellite sensor used, and statistical method 

used to determine LAI. Of the 168 papers reviewed, 157 used optical devices to estimate LAI 

data, and only 8 papers measured LAI using ground-based methods.  

 

2.3 Results 

A total of 168 journal articles were screened from 23 different journals (Table 2.1). Remote 

Sensing of Environment had the most publications (38) followed by Remote Sensing (26), 

International Journal of Remote Sensing (18) and IEEE Transactions on Geoscience and 

Remote Sensing (10). Journals such as International Journal of Applied Earth Observation and 

Geoinformation, Agricultural and Forest Meteorology and Canadian Journal of Remote 

Sensing had less than 10 journal articles while journals such as Journal of Geography, 

Environment and Earth Science International, Precision Agriculture and Plant Methods had 

one publication each. 
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Table 2.1 Journal list and the number of articles for forest, crop and grassland 

Journal  Number of publications 

Remote Sensing of Environment 38 

Remote Sensing 26 

International Journal of Remote Sensing 18 

IEEE Transactions on Geoscience and Remote Sensing 10 

International Journal of Applied Earth Observation and Geoinformation 9 

Agricultural and Forest Meteorology 9 

Canadian Journal of Remote Sensing 9 

ISPRS Journal of Photogrammetry and Remote Sensing  6 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing  6 

Forests 6 

GIScience & Remote Sensing 5 

Remote Sensing Letters 4 

Sensors 4 

Journal of Forestry Research 4 

Forest Ecology and Management 3 

European Journal of Agronomy 2 

Chinese Journal of Geophysics 2 

Journal of Quantitative Spectroscopy and Radiative Transfer 2 

Annals of Forest Science 1 

Precision Agriculture 1 

Plant Methods 1 

Journal of Geography, Environment and Earth Science International 1 

Journal of Remote Sensing 1 

 

2.3.1    Application areas 

As mentioned above, this paper reviewed 168 papers related to estimating LAI across different 

forest ecosystems, crops and grasslands. Forests had the highest number of studies, having had 

84 studies, followed by crops with 56 studies and grasslands 25 studies (Figure 2.1). Forest 

ecosystems were broadly categorised into two groups: natural forests and commercial forests, 

and of the 84 studies related to forests, 60 studies were related to natural studies and 24 studies 

were related to commercial forests (Figure 2.2).  
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and New Zealand (10) (Figure 2.4). There were a number of countries in Africa, Asia, South 

America and the Middle East that had no studies at country scale.  

 

Figure 2.3 Spatial distribution and number of LAI studies conducted at country level 

 

2.3.3   Satellite data used 

Advancements in remote sensing technology have enabled researchers around the world to 

timely and accurately monitor vegetation. According to Lavender (2017), the number of 

satellite systems for vegetation monitoring has increased by 66% during 2016. Remote sensing 

enables the convenient collection of data dating back several years while providing reliable and 

accurate estimates of LAI and other biophysical attributes for different vegetation types.   

The majority of forest, crop and grassland studies analysed in this paper used Landsat, followed 

by Sentinel and MODIS sensors. Freely accessible satellite data such as Landsat, Sentinel and 

MODIS have gained popularity compared to commercial satellite data sources, such as World-

View, IKONOS and QuickBird. Other commonly used sensors for estimating LAI were 

WorldView-3, SPOT, QuickBird and IKONOS. LiDAR data was mostly used on forests, 

followed by crops. There were only four studies on grasslands that used LiDAR data (Figure 

2.5). In general, forests have a complex canopy structure, therefore; observing forest 

parameters using LiDAR has been shown to be efficient (Arnó et al., 2012), especially for 

reducing the impact of LAI saturation (Hadaś and Estornell, 2016).  
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(2016) and Verrelst et al., (2012). A study conducted by Omer et al., (2016), using WorldView-

2 imagery demonstrated that machine learning algorithms, such as support vector machines 

(SVMs) and artificial neutral networks (ANN) can accurately predict LAI at tree species level. 

The SVM model which was based on validation data achieved an R2 of 0.75. There was an 

overall increase in machine learning methods, especially for big data calculations. 

There are more than 150 vegetation indices that have been developed for mapping and 

estimating biomass, either using space borne, airborne and ground based sensors (Furniss et 

al., 2009). Of the 150 vegetation indices, only a few have been tested and validated (Liang et 

al., 2015). Goswami et al., (2015) estimated LAI and other plant structural attributes using 

satellite images. This study used traditional vegetation indices such as Normalized Difference 

Vegetation Index (NDVI) and found that NDVI has a strong correlation of R2 = 0.83 with 

biomass and R2=0.70 with LAI. Although different VIs have shown positive results for 

estimating LAI, there is no VI that is generic and can be applied consistently and continuously 

to estimate LAI regionally and globally. 

2.3.4.2   Physical models 

Another method of deriving LAI from spectral data is through the inversion of radiative transfer 

(RT) or physical process models. Radiative Transfer Models (RTM) have been shown in a 

number of studies as one of the successful methods of estimating LAI from remote sensing 

data (Liu et al., 2012, Banskota et al., 2013, Le Maire et al., 2011, Su et al., 2019). The widely 

used and well validated RTMs are PROSPECT, which is a 1-Dimentional leaf reflectance 

model (Jacquemound and Baret, 2000) and SAIL, which is a canopy reflectance model 

(Vohland and Jarmer, 2008). The performance of physical models in terms of R2 (0.71-0.99) 

was relatively consistent compared to empirical models (0.14-0.99). Appendix 3 shows key 

models that were applied in the reviewed papers. The model with the highest number of 

applications in forest, crop and grassland studies was PROSAIL, which could be attributed to 

its ease of use and robustness. From the studies that were reviewed in this paper, there were no 

crop and grassland LAI studies that applied the PROSPECT+DART model, while 4-Scale 

BRD and DART models had the highest number of applications in forest environments.  

Darvishzadeh et al., (2019a) used the combined version of PROSPECT and SAIL known as 

PROSAIL to retrieve the LAI of saltmarsh from Sentinel-2 and RapidEye satellite data. This 

study achieved an R2 of 0.59 and RMSE of 0.16. The adaptability of this model is highly 
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dependent on the type of remote sensing data, the ecosystem and the texture of the vegetation 

canopy.   

Quan et al., (2017) used the radiative transfer model to estimate the LAI of grasslands.  The 

RTM-based method showed a higher accuracy of R2 = 0.64 and RMSE = 42.67 gm−2 when 

compared to other models. However, the disadvantages of the RTMs are that they are not as 

fast as other methods and they have many parameters which are difficult to acquire (Quan et 

al., 2017). 

2.3.4.3   Hybrid models 

Hybrid models combine statistical and RTM input and output data to generate a simulation 

dataset which includes spectral data, VIs and biophysical and biochemical properties of 

vegetation (Wei et al., 2017). There are different hybrid model types, which include an iterative 

approach, optimisation method, look up tables (LUT) and artificial neutral networks. In terms 

of machine learning algorithms, ANN was most prominent type of hybrid model in the 

reviewed literature; this has gained popularity because of its computational speed and retrieval 

performance (Verger et al., 2011). ANN has been reported in literature as more accurate than 

empirical models for estimating LAI (Jensen and Binford, 2004). A number of studies have 

applied hybrid models and achieved satisfactory results, and these include Verrelst et al., 

(2012), Qu et al., (2012) and Liang et al., (2015).  

The R2 range of hybrid models was 0.21-0.99 while the RMSE range was 0.26 -1.13. The study 

by  Rivera et al., (2013), compared a hybrid PROSAIL model and empirical model based on 

NDVI and Simple Ratio (SR), the study found that PROSAIL performed better in terms of 

RMSE (0.38), while the RMSE of NDVI was 2.28 and 0.88 for SR.  Hybrid models can be 

used to calibrate traditional VIs such as NDVI, develop new VIs and analyse the performance 

of VIs.  

2.3.5   Other LAI Products 

There is a wide range of LAI products available. This section discusses some of the widely 

used LAI products that were operational after 2010. Advancements in radiative transfer models 

have facilitated the development of operational global and regional LAI products. Although 

discrepancies between ground LAI data and digital LAI products still remain, improvements 

in atmospheric correction and radiometric calibrations have improved LAI retrieval accuracy 

of many LAI products.  
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MODIS LAI is one of the most widely used LAI products which is based on biome specific 

3dimensional radiative transfer (3D RT) model. This model uses atmospherically corrected 

reflectance and a biome map to generate retrievals (Le Maire et al., 2011). The MODIS LAI 

product is derived from the daily MODIS-Terra data and has been available since 2000. 

Moreover, this data is available daily at 1 km spatial resolution.  

There are many other LAI products that have been developed. The Multi-Angle Imaging 

Spectrometer (MISR) is another LAI product that has been used since 2000. This product is 

based on the same 3D RTM algorithms as the MODIS product, where the difference between 

MODIS and MISR is that MISR uses combined spectral data directional information collected 

by MISR. MISR algorithms provide LAI retrieval for 60-90% of the model input data (Wan et 

al., 2009). 

GEOV2 LAI is another LAI product. This product is a Geoland2/BioPar project. GEOV2 is an 

improvement of the previous GEOV1 product in terms of continuity. GEOV2 data has less than 

1% gaps compared to 20% of missing data/gaps in GEOV1 (Fang et al., 2019), GEOV2 also 

provides cleaner data that is less affected by radiometric and geometric noise. The data has 

been freely available since 2000 at the Copernicus portal (https://land.copernicus.eu/). 

Global Land Surface Satellite (GLASS) LAI dataset was developed by Beijing Normal 

University and can be accessed at (http://www.bnu-datacenter.com). This product has a revisit 

time of eight days and operated from 1982 to 2012. From 2000 to 2012 the GLASS LAI product 

was derived using General Regression Neural Networks (GRNNs) from MOD09A1, which is 

a MODIS land surface reflectance (Liang et al., 2021). This data was available at 1 km for the 

globe.  

GLOBMAP LAI is long term global LAI product which was developed in 1982 through a 

fusion of MODIS and historical Advanced Very High Resolution Radiometer (AVHRR) data.  

This product was developed by establishing a simple pixel to pixel relationship between 

MODIS and AVHRR datasets. This data is available at 8 km resolution.  

EPS LAI is a global LAI product generated from AVHRR sensor on board the MetOp 

(Meteorological–Operational) satellite constellation. This data is available on a 10 day basis 

from https://landsaf.ipma.pt/en/. EPS LAI data is derived from an algorithm that uses the 

PROSAIL radiative transfer model as input and training data. 



19 

 

PROBA-V LAI is a first version Copernicus Global Land service global LAI product available 

at https://land.copernicus.eu/. This dataset is generated from Sentinel-3/OLCI, PROBAV 

sensors every five days and the spatial resolution of this dataset is 1/3 km. 

The Visible Infrared Imaging Radiometer Suite (VIIRS) LAI dataset is a National Aeronautics 

and Space Administration (NASA) product. This dataset was developed in 2018 and is still 

operational. The data can be downloaded at https://search.earthdata.nasa.gov/search. The data 

is available every eight days at a spatial resolution of 500m. The VIIRS LAI dataset can be 

used to study energy absorption of broadleaves and coniferous vegetation canopies.  

2.4   Discussion 

This literature review investigated forms of LAI estimations using remote sensing technology 

for forests, crop and grasslands. The paper further unpacked trends in the use of different sensor 

systems, models, number of journal articles published and LAI products. The review found that 

there has been considerable advancements in terms of satellite system technology and models 

used for LAI and this has led to improvements in LAI index estimation accuracy. Accurate LAI 

estimates of forests, crops and grassland are essential for improving the management and 

enhancement of the health of these vegetation types.  

There has been great progress in terms of satellite data availability and access since the launch 

of Landsat in 1972. Easy access to data meant the increase in the number of studies using free 

satellite data such as Landsat, Sentinel and lower spatial resolution Moderate Resolution 

Imaging Spectroradiometer (MODIS). Although commercial satellite data is still relatively 

costly, it offers a better spectral and spatial resolution. The most commonly used commercial 

satellite data in this review were SPOT, QuickBird, IKONOS and WorldView (Figure 2.5). 

The popularity of the aforementioned commercial satellite is because of high spatial resolution 

and higher revisit times. The results also showed an increasing trend in the fusion of data from 

different sensors and data with different spatial, spectral and temporal resolution. 

Of the 168 forest, crop and grassland LAI estimation papers reviewed, the use of passive remote 

sensing in these studies was almost three times higher when compared to active remote sensing 

studies. In terms of active remote sensors, LiDAR was more widely used for forests than crops 

and grassland. These findings are consistent with the previous review paper conducted by Xu 

et al., (2020) which reviewed research trends and future directions of LAI estimations using 

remote sensing from 1990 to 2020. Radar systems have been mostly used for crops compared 

to forests and grasslands. Generally, crops are more dynamic throughout the growing season; 
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therefore radar systems that function under varying cloud conditions are useful for temporal or 

time-series crop analysis and can be used even during seasons of high cloud cover. Although 

grasslands are homogenous and less dynamic throughout the growing season, they usually 

cover larger areas, which poses a challenge when obtaining and processing data. 

 

Remote sensing studies on LAI for forests, crop and grasslands were conducted across a wide 

range of scales. Although the majority of studies were conducted at local and sub country scales 

(110), there were also studies conducted at global (7) continental (19) and country scales (29). 

There were also 14 studies that were conducted at variable scales. Analysing data of studies 

conducted at continental or global levels is challenging as it requires high computer processing 

power.  

Empirical, physical and hybrid model types have different advantages and limitations. 

Empirical models as shown in the results section, are most commonly used models and are 

effective as they can be used across different data types to determine the relationship between 

LAI and spectral reflectance data. However, these methods utilise large statistical data inputs 

and can only be applied at certain locations as they are highly dependent on vegetation types 

and canopy structural change (Gu et al., 2013). Another limitation of empirical models is 

saturation problems. Although some studies have shown that this problem can be mitigated by 

incorporating modified indices, this problem cannot be completely avoided when using optical 

imagery. According to Thissen et al., (2004), machine learning algorithms have offered a better 

way to analyse remote sensing data as they do not make assumptions about variable 

distributions. However, it is important to understand the limitations of empirical methods such 

as machine learning algorithms (e.g. multi-collinearity) before applying them. 

Physical models, unlike empirical models, provide solutions developed without strong reliance 

on field data (Darvishzadeh et al., 2019b). The great advantage of physical models is their 

applicability at wide range locations and scales, where they can also be applied to a wide range 

of vegetation types and canopy structures. The results show that there is an increase in the 

application of all model types. However, in terms of physical models, PROSAIL is the most 

commonly used radiative transfer model. A challenge associated with physical models is that 

they are complicated, as they require many data inputs and are time consuming to process.  

Hybrid models are a combination of empirical models including machine learning algorithms, 

regression methods and physical models. Darvishzadeh et al., (2019b) used the combined 
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version of PROSPECT and SAIL known as PROSAIL to retrieve the LAI of saltmarsh from 

Sentinel-2 and RapidEye satellite data. This study demonstrated that RTM is one of the best 

methods to estimate LAI from remotely sensed data. However, the adaptability of this model 

is highly dependent on the type of remote sensing data, ecosystem and the texture of the 

vegetation canopy.  

As mentioned in the results section, the current trend for forest, crop and grassland LAI 

estimation is the exploration of newly developed algorithms based on machine learning 

methods, especially for big data calculation.  However, there are still challenges associated 

with the use of hybrid models, which include the problem of instability and model overfitting. 

Problems associated with hybrid models are inherited from empirical models since hybrid 

models integrate the methods of empirical models.  

There are other models which are less frequently reported in literature. These models include 

the Radiative Transfer (GORT) model (Guijun et al., 2011, Wang and Fang, 2020), Geometric 

Optical Mutual Shadowing (GOMS) model (Li and Strahler, 1985, Fu et al., 2011), Geometric 

Optical and a two-layer canopy-reflectance model (ACRM) (Kuusk, 2001, Liu et al., 2016), 

Kuusk–Nilson forest reflectance model (Nilson et al., 2003, Kuusk et al., 2019) and  DART 

which is a 3D canopy reflectance model developed by (Gastellu-Etchegorry et al., 2004). A 

review by Song, (2013) concludes that combining new algorithms and complementary 

information from various sensors leads to the development of better global LAI products. 

There are a number of global LAI products that have been developed. For example, MODIS, 

MERIS, which are medium to coarse resolution data, are most widely used satellite sensors to 

generate global LAI products. Feng et al., (2019) reviewed the quality of MODIS (MOD15A2), 

Copernicus PROBA-V (GEOV1), and the recent EUMETSAT Polar System (EPS) LAI 

products for croplands LAI estimation and found that  the quality of LAI data from the 

abovementioned satellite data is closely related to Sentinel-2 and Landsat 7/8   LAI data 

(R2=0.90, RMSE = 0.50). Other popular LAI products include GEOV2 LAI, Global Land 

Surface Satellite (GLASS) LAI and GLOBMAP LAI.  

The availability of satellite data which combine high revisit time, with high spectral and spatial 

resolution has fast tracked the development and validation of sophisticated models for LAI 

estimation. The current focus on improving the robustness of RTMs will lead to the 

development of even better and more accurate LAI products.  
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2.5 Conclusion 

This paper reviewed 168 published articles on LAI estimations for forests, crops and grassland. 

The paper reviewed articles in terms of study sites, satellite sensors, and statistical methods 

used to determine LAI. The results of the study indicate that there is an increasing trend in the 

use of all model types. However, the majority of the literature still focuses on conventional 

statistically focused empirical models.  There is also an increasing trend in the fusion of data 

from different sources. The fusion of multi-source data includes using data with different 

spatial, spectral and even temporal resolution. In terms of passive and active sensors, LiDAR 

demonstrated a great ability to detect forest canopy structures and estimate forest LAI even in 

mixed species plantations.  

The development of high spatial resolution sensors like World View-3 has increased efficiency 

and improved results drastically. However, like other systems, remote sensing has its 

drawbacks. One of them is the dependency on weather conditions, as some measurements can 

only be taken under clear skies conditions. Although a number of remote sensing methods of 

estimating LAI have been developed, not a single method can be applied consistently and 

repeatedly for estimating LAI locally and continentally. The reason for this is variations in 

biophysical, environmental and topographic traits of vegetation in space and time. In the short 

term, empirical models that can be validated locally are recommended for forest and crop 

managers. 
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3. CHAPTER THREE 
Estimating Leaf Area Index of Eucalyptus dunnii in Midlands Area, 

KwaZulu-Natal province over two seasons using vegetation indices and 

texture measures derived from WorldView-3 imagery. 

 

Abstract 

 

Leaf Area Index (LAI) remains one of the most important forest structural attributes, as accurate 

estimations of LAI are crucial, because LAI is a major input variable for Physiological Processes 

Predicting Growth (3PGS) models to predict growth of different species and their water use. LAI 

estimation methods are species and location specific therefore there is need for a model for 

estimating LAI of Eucalyptus dunnii in the Midlands, KwaZulu-Natal province of South Africa. 

Using the Partial Least Squares Regression (PLSR) algorithm, this study investigated three 

techniques to determine the best technique for estimating LAI using WorldView-3 imagery in the 

Midlands area. The PLSR texture ratios model achieved the highest accuracy of R2=70, RMSE 

1.21 and R2=0.72, RMSE=1.26 for wet and dry seasons, respectively. The PLSR model using a 

combination of vegetation indices had the lowest estimation accuracy, it achieved an R2 of 0.59, 

RMSE= 1.38 in 2019 and R2= 0.60, RMSE=1.40 in 2020 on the test dataset. The results of this 

this study provided evidence that image texture ratios can be used to effectively estimate LAI with 

high accuracy. 

Keywords: LAI estimation, Eucalyptus dunnii, Partial Least Squares Regression, Texture 

measures, commercial forestry.  

 

3.1  Introduction 

Canopy structure is the main feature for monitoring forest ecosystems because interactions with 

the environmental processes such as net primary production and temperature, occur through the 

canopy (Weiss et al., 2004). Leaf Area Index (LAI) is one of the most important canopy structures 

and is a key indicator for forest physiological and biological processes, such as gas and energy 
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exchange and carbon and water balance at local, regional and global scales (Chason et al., 1991). 

LAI can be defined as the total one sided area of leaf tissue per unit ground surface area (Waring 

et al., 2010). According to this definition, LAI is the quantity of potential photosynthetic active 

area in a habitat.  

Since LAI is an indicator for vegetation physiological and biological processes, it can be used to 

reliably monitor forest plantations, thus enabling early detection of forest damage caused by water 

stress, insect diseases and nitrogen deficiencies. Furthermore, the availability of information about 

crop health and development can provide forest managers with valuable information allowing for 

early yield forecasting (Groten, 1993, Mkhabela et al., 2011), efficient fertilizer application (Scharf 

and Lory, 2002) and weed control (Mahlein et al., 2012, Luedeling et al., 2009). 

LAI can be measured through direct and indirect methods. Direct methods include field 

observations, surveys and litter harvesting, however, these methods are time consuming, costly, 

laborious and logistically impractical, particularly within large spatial extents (Omer et al., 2016, 

Yu et al., 2019, Wang et al., 2019). Nevertheless, direct methods are highly accurate and can be 

used as a reference for the development and improvement of data collected through indirect 

methods (Cutini et al., 1998). Indirect methods, on the other hand, include innovative approaches 

such as using vegetation indices obtained through remote sensing, which can generate spatially 

explicit information on species. This is particularly important within a commercial forestry 

landscape (Peltzer et al., 2015). 

The recently developed high resolution multispectral sensors like WorldView-3 have 

demonstrated great capabilities in estimating and mapping the LAI of forest species. WorldView-

3’s unique technical properties such as eight spectral bands and a finer spatial resolution of 1.24m 

across the visible and near infrared (NIR) regions have proved effective in monitoring forest 

attributes. These bands are highly sensitive to the variability within forest attributes (Peerbhay et 

al., 2013). WorldView-3 sensors offer unique imaging bands such as the red-edge band, which is 

valuable for mapping and distinguishing vegetation attributes. The spatial resolution is one of the 

most important technical aspects of satellite sensors and it plays a key role in retrieving data about 

vegetation. In a study conducted by Holmgren and Thuresson (1998) on satellite remote sensing 

for forestry planning, it was concluded that a low 30m spatial resolution provides insignificant 
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results in forest management planning. This indicates that it is very important to consider sensor 

spatial resolution when conducting a forest related study.   

Eucalyptus dunnii is one of the dominant commercial tree species in the Midlands area of 

KwaZulu-Natal, South Africa. More than 30% of the Mondi planted area in Greytown is planted 

with Eucalyptus dunnii. So, there is a need to develop an operational method of calculating LAI 

over a large area such as the Midlands. Moreover, a means of remotely obtaining LAI over a larger 

area is sought after by many forestry companies. Therefore, this study aims to provide an 

operational method of efficiently calculating LAI over a large area. This study derived LAI using 

satellite images, which will be particularly useful to forestry companies that manage landholdings 

of regional scales. As noted by Gao et al., (2014) the coarse scale LAI products derived from 

Moderate Resolution Imaging Spectrometer (MODIS) are not adequate or suitable for 

compartment scale analysis as most Eucalyptus plantations in South Africa contain very few, or 

no homogenous pixels. 

Several studies (Li et al., 2019, Pope and Treitz, 2013, Pu and Cheng, 2015, Lottering et al., 2018) 

have been conducted using high resolution sensors with reliable accuracy in forestry. These studies 

are species and location specific and were conducted on a limited landscape. These limitations 

create the need to develop a model for estimating LAI of Eucalyptus dunnii in the Midlands area. 

To the best knowledge of the researcher, no study has been conducted in South Africa to determine 

the extent of additional remote sensing techniques in improving the estimation of LAI of 

Eucalyptus dunnii. Therefore, this study aims to determine whether image texture ratios derived 

from high-resolution WorldView-3 imagery can improve LAI estimation for Eucalyptus dunni in 

the Midlands area for two different seasons. The objectives included: (1) establishing whether 

image texture ratios improved the estimation of LAI of Eucalyptus dunnii over single texture bands 

and vegetation indices using the partial least squares regression (PLS-R) algorithm and (2) to map 

the spatial distribution of LAI over the two seasons using the optimal model and PLS-R.  

 

 

 



26 

 

3.2  Study Area 

3.2.1  Introduction-general description of the study area 

This study was conducted within Mondi commercial plantations located in the Midlands area, 

KwaZulu-Natal. The Midlands area is known for its mountains, hilly and undulating veld and flat 

surfaces. The Midlands is also popularly known for its warm temperatures and a mean annual 

temperature of approximately 23°C and high summer rainfall reaching ±1029mm, which is 

favourably important for fast growth of Eucalyptus dunnii (Dube et al., 2014, Dube and Mutanga, 

2015) 

This study investigated Eucalyptus dunnii compartments which are managed for pulpwood 

production. The study sites were selected to represent a wide range of productivity classes as 

measured by site indices at reference age of eight years to provide an estimation of LAIs 

operational at sites of different productivity. Sixteen compartments representing different age 

classes were selected for this study (Table 3.1) and the ages of the selected compartments ranged 

from one year to ten years. These compartments were further grouped to represent three phenology 

periods of Eucalyptus dunni. The ages representing these periods are: 

1) 1.8 to 3.6 - Canopy closure period 

2) 4.3 to 6.3 - Mid rotation 

3) 7.4 to 10.8 - End of rotation 
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Table 3.1 General descriptions of study sites 

COMPARTMENT AREA (ha) AGE (Years) SITE_INDEX (m) ESP1 (m) ESP2 (m) PSPH 

E024 6.7 1.8 26.9 3 2.5 1333 

F021 23.9 2.2 22.2 3 2.5 1333 

A006 34.3 3.6 20.7 3 2 1666 

D016 39.1 4.3 21.1 3 2 1666 

C030 17.5 4.8 20.2 3 2 1666 

D036 38.9 4.8 17.8 3 2 1666 

D021 10.9 5.3 17.8 3 2 1666 

D010A 47.1 6.3 21.1 3 2 1666 

A001 16.6 7.4 20.7 3 2 1666 

D001 17.2 7.7 21.1 3 2 1666 

A005 28.9 7.7 17.4 3 2 1666 

B015 29.8 8.8 23 3 2 1666 

F043 17.7 9.3 20 3 2 1666 

B001 26.3 10.3 19.5 3 2 1666 

B003 22 10.5 19.5 3 2 1666 

A011 7.6 10.8 17.4 3 2 1666 

 

In this study, direct and indirect field based LAI measurements were carried out. Sampling plots 

in compartments representing age classes were placed in such a way that each compartment would 

have one sampling plot per one hectare grid. The one hectare grid was created using an ArcGIS 

sampling tool. Within the one hectare grid, a circular plot of 250sqm was placed using slope and 

aspect as strata.  All compartments were greater than six hectares in size. All sampling plots were 

uniform in size and they were sampled the same way. Conditions of understory vegetation, 

uniformity of canopy and tree condition were carefully considered during the site selection 

process. All compartments with signs of disease infestation, growth loss due to drought and fire 

scars were excluded from the selection. In addition to this, compartments were inspected through 

Google Earth’s latest image and they were later visited for an infield inspection. Figure 3.1 depicts 
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the study area. Figure 3.2 depicts the workflow of the methodology undertaken to meet the 

objectives of this study. 
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Figure 3.1 Map of the study area 

 

Figure 3.2 Workflow of the methodology undertaken to meet the objectives of this study 

3.3 Data collection 

3.3.1  Destructive sampling 

Sampling plots were selected from compartments representing different age groups. In each 

compartment, three trees representing mean DBH for the compartment were felled at ground level 

with a chainsaw. Height and crown width of these trees were also measured. DBH for all the trees 

in the sampling plots were measured at 1.3 m above ground prior to destructive sampling. This 

method was adapted from (Ghebremicael, 2003) and modified. All leaves were harvested from 

live branches and put into a box and a 30% subsample of leaves was then taken and placed into 

paper bags of known weight. The 30% subsample leaves were used for the determination of 

specific leaf area (SLA) from which LAI was calculated. The subsample was taken to the 

laboratory where it was measured and oven dried for 72 hours at 60 °C. A desiccator was used to 

cool dry leaves and prevent absorption of moisture by leaves.  Dry leaves were then measured as 

soon as possible to prevent moisture absorption and determine accurate dry sample weight.  

Other tree components such as the stem and live branches were also sampled and measured. Tree 

stems were cut into 1 m logs and at every one metre crosscut a 3 cm disk was sampled. These discs 
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were measured with and without bark to determine wood density and volume. Live and dead 

branches were cut using a garden pruner and separated. Dead branches were discarded and all live 

branches were weighed in the field while they were still fresh using a 30 kg spring balance scale 

with an accuracy of ±0,1 g. 

3.3.2  Leaf area determination 

The subsample leaves were scanned using an LI-3100 leaf area meter and oven dried. The leaf 

area meter was calibrated to an accuracy of 0.1mm 2 .To calculate specific leaf area (SLA) from 

the sub sample, a ratio of oven dry to fresh weight was calculated and an average ratio determined.  

The SLA which was used to relate dry foliage weight to Leaf Area (LA) was obtained using the 

equation: 

SLA (mm2g-1) = LA (mm2)/Leaf dry matter (g)....(1) 

The tree LA was calculated from SLA using the equation:  

Leaf area (m2) = Tree dry leaf weight (kg) x SLA (m2/kg)....(2) 

The LAs were then scaled up to the entire plots and then to per hectare volume, as Table 3.2 

depicts. 

Table 3.2 Example of destructive sampling data 

Compt Age Tree 

No. 

Dbh Height WF_ 

wet 

Sample_ 

WF_wet 

Sample_ 

WF_dry 

Sample  

leaf area 

Area/ 

tree 

Leaf 

area 

Tree 

LAI SLA SLA Sample 

 cm m kg kg kg cm2 m2 m2 m2/m2 cm2/kg m2/g % 

A011 10.8 1 16.2 23.42 3.942 1.183 0.669 51213.88 6 17.07 2.844 76.55 7.655 0 30 

A011 10.8 2 16.3 25.66 4.471 1.341 0.604 32901.025 6 10.97 1.828 54.47 5.447 0 30 

A011 10.8 3 16.6 25.6 4.865 1.46 0.658 37141.287 6 12.38 2.063 56.45 5.645 0 30 

 

3.3.3  LiCor-2200 plant canopy analyser  

A LiCor-2200 plant canopy analyser was used to measure field LAI or effective LAI.  The LiCor-

2200 instrument was used in several studies and it has provided reliable LAI estimates. The 

instrument measures diffuse radiation from different parts of the sky using a fisheye optical sensor 

with 148° field of view. The sensor comprises five detectors that are placed in concentric rings. 

The ratio of below-canopy and above-canopy radiation, measured for the five zenith angles, 
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corresponds to the transmittance of the gap frequency. Estimations of LAI are based on the 

inversion of the standard Poisson model of gap frequency distribution (Ilangakoon et al., 2015). 

All readings were taken under clear skies or uniformly overcast conditions. To eliminate the effect 

of direct radiation on the sensor, readings were taken facing the opposite direction from the sun. 

The LAI-2200 sensor can view a full 360° of azimuth, but there are view restrictor masks which 

restrict the sensor field of view to 270°, 180°, 90°, and 45° which can be attached onto the sensor 

head to restrict the view of the sensor for purposes such as hiding unwanted objects and features 

from the sensor view to reduce errors, or to study canopies with leaves asymmetrically distributed 

about the azimuth. In this study, a viewing restrictor of 180° was used.  

 

Two LI-COR LAI-2200 Plant Canopy Analyser sensors with a 180° viewing cap and one data 

logger were used to take below and above canopy radiation measurements. On each tree, three 

below canopy readings were taken around the diameter of the tree. The sensor was held at 

approximately 1.3 m above the ground. One LAI-2200 sensor was set up in an open area where 

there was no edge effect but as close as possible to the sampling plots where below canopy readings 

were taken. The above canopy sensor was set to automatically log readings at 15 second intervals 

for the duration of plot measurements.  A similar approach was followed by Lottering et al.,        

(2018). For a better correlation with direct or destructive sampling readings, three upper rings of 

LAI 2200 were used to estimate LAI (Kross et al., 2014). Measurements on sloping terrain were 

made with the sensor parallel to the ground at the same compass direction rather than level. The 

mean LAIs of stand were calculated by averaging the readings from all sampling plots. LAI 

readings from each sampling plot were used to determine the within compartment distribution of 

LAI.  

3.3.4  Remote sensing data acquisition and processing 

WorldView-3 images are useful for studying vegetation attributes (Sibanda et al., 2017), and have 

been used in a number of vegetation health and LAI studies with acceptable accuracy. For the 

aforementioned reasons, WordView-3 (WV-3) images were used in this study to estimate LAI. 

For the wet seasons, a multispectral WorldView-3 image was acquired on 26 September 2019 and 

for the dry season, another multispectral WorldView-3 image was acquired on the 12 July 2020. 

Both images have a spatial resolution of 1.24m for multispectral bands and 31cm for the 

panchromatic bands. Each image consist of eight bands, as shown in Table 3.3. 
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Table 3.3 WorldView-3 bands 

Band name Band number Band width 

Coastal Blue 1 397nm-454nm 

Blue 2 445nm-517nm 

Green 3 507nm–586 nm 

Yellow 4 580nm–629 nm 

Red 5 626nm–696 nm 

Red Edge 6 698nm–749 nm 

Near Infrared 1 7 765nm–899 nm 

Near Infrared 2 8 85nm7–1039 nm 

 

Image processing was conducted for WV-3 images in ENVI 5.6 software. Image processing 

included geometric, radiometric and atmospheric correction. Geometric correction and 

orthorectification of the images were performed by collecting 167 ground control points using a 

digital elevation model (DEM) with 5m contours. The image was then radiomatrically corrected 

to top of the canopy reflectance and to remove the influence of atmospheric effects (clouds and 

noise) using the Fast Line of Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH).  

3.3.5  Vegetation Indices extraction 

A total of 22 vegetation indices were selected for evaluation. These indices use a combination of 

the visible, red edge and near infrared bands (Table 3.4). The selected vegetation indices include 

NDVI, SAVI, and EVI, SR, red-edge normalized difference vegetation index (NDVIre), Red Edge 

simple ratio (SRre), Green Difference Vegetation Index (GDVI), MCARI and MTVI2. Vegetation 

indices can serve as a proxy for LAI and several studies have investigated the actual relationship 

between LAI and VIs. One such study was conducted by Potithep et al., (2010) in a deciduous 

broadleaf forest and the results concluded that (1) NDVI and EVI can depict seasonal variations 

of LAI, (2) NDVI and EVI have a linear relationship with LAI and (3) when combined, NDVI and 

EVI can improve LAI estimations. However, some studies have reported that the relationship 

between LAI and NDVI usually saturates under dense canopies (Baret and Guyot, 1991, Gitelson, 
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2004, Feng et al., 2019). To address this limitation, different VIs have been developed by 

modifying NDVI through wavelength optimisation or the incorporation of a coefficient (Huete et 

al., 2002, Inoue et al., 2008, Feng et al., 2019). Replacing the red band in traditional NDVI with 

bands such as red edge improved the relationships of modified NDVI and LAI (Liang et al., 2015, 

Fang et al., 2013, Feng et al., 2019). The modified VIs such as the Green NDVI and Normalized 

Difference Red Edge (NDRE) have been reported in several studies to weaken saturation and thus 

improve LAI prediction accuracy (Tian et al., 2011, Tillack et al., 2014, Viña et al., 2015, Sun et 

al., 2020). The 23 VIs were calculated using ENVI 5.6. They were then extracted into a spreadsheet 

using ArcGIS Pro 2.8.0 zonal statistics tool. 
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Table 3.4 Vegetation indices used in this study 

Vegetation Index Acronym Equation Environmental Features Reference 

Normalized Difference 

Vegetation Index 

NDVI NIR − Red

NIR + Red
 

Chlorophyll and canopy leaf 

area.  

(Rouse et al., 1974) 

RedEdge NDVI RedEdge NIR − RedEdge

NIR + RedEdge
 

Chlorophyll and canopy leaf 

area.  

(Gitelson and 

Merzlyak, 1994) 

Simple Ratio SRI NIR

RED
 

Chlorophyll and LAI  (Jordan, 1969, Rouse 

et al., 1974)  

Enhanced vegetation Index EVI 
2.5

(NIR − Red

NIR + 6 ∗ Red − 7.5 ∗ Blue + 1
 

Chlorophyll and LAI  (Huete et al., 1997)  

Red green ratio RGR Red

Green
 

Chlorophyll (Gamon and Surfus, 

1999) 

Difference vegetation index DVI NIR-RED Chlorophyll and LAI  (Tucker, 1979) 

Atmospherically resistance 

vegetation index 

ARVI NIR − Red

NIR + Blue
 

Cholorophyll (Kaufman and Tanre, 

1996) 

Anthocyanin reflectance 

index 

ARI 1 (1)

Green
−

(1)

Red edge
 

Anthocyanins (Gitelson and 

Chivkunova, 2001)  

Green atmospherically 

resistant index 

GARI NIR − [Green − γ(Blue − Red)]

NIR − [Green − y(Blue − Red)]
 

Chlorophyll (Gitelson et al., 

1996) 

Green difference vegetation 

index 

GDVI NIR − Green Chlorophyll (Sripada et al., 2006) 

Visible atmospherically 

resistant index 

VARI Green − Red

Green + Red − Blue
 

Chlorophyll  (Gitelson et al., 

2002) 

Plant senescence reflectance 

index 

PSRI Red − Blue

Red edge
 

Chlorophyll and carot-enoids  Merzlyak et al... 

(1999)  

 

Green normalized difference 

vegetation index 

GNDVI NIR − Green

NIR + Green
 

Chlorophyll and LAI (Ahamed et al. 2011) 

Transformed difference 

vegetation index 

TDVI 
√0.5 +

NIR−Red

NIR+Red
 

Chlorophyll and LAI (Bannari et al. 2002) 

Soil adjusted vegetation 

index 

SAVI 1.5 ∗ (NIR + Red

(NIR + Red + 0.5
 

Chlorophyll (Huete 1988) 

Datt/Maccioni index DMI NIR − RedEdge

NIR − Red
 

Chlorophyll (Maccioni et al. 

2001) 

RedEdge yellow ratio REY RedEdge − Yellow

RedEdge + Yellow
 

Chlorophyll Gwata 2012) 
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3.3.6 Texture parameters 

Texture parameters are commonly used to measure the spatial variations in the grey levels in the 

image as a function of scale (Pu and Cheng, 2015). The variations in image texture can result from 

changes in species type, canopy closure and stem density. Several studies have shown that grey-

level co-occurrence measures (GLCMs) can measure and estimate target forest structural attributes 

(e.g. Hlatshwayo et al., 2019, Pu and Cheng, 2015, Lottering et al., 2018). In this study, GLCMs 

were applied to study their ability to estimate forest LAI. A total of eight 2nd order grey level 

statistical texture-based features were extracted from the eight WV-3 multispectral images on per 

band basis (Table 3.5). The selected texture feature measures were relevant to the study and they 

were selected based on the literature review and their potential for estimating and mapping forest 

structural attributes including LAI from high resolution MS data, which has been demonstrated in 

many existing studies (e.g. Gebreslasie and van Aardt, 2011, Gu et al., 2013, Kraus et al., 2009, 

Murray et al., Zhou et al., 2014b, Ozdemira and Karnielib, Ozdemira and Karnielib, 2011) 

The eight texture measures; namely mean, variance, entropy, correlation, contrast and second 

moment were calculated using 3x3 and 5x5 moving window sizes. These window sizes were 

selected because they cover a range of sizes that roughly match the spaces between the uniform 

areas of the canopy in the forest compartment. 

 

Red edge triangular 

vegetation index (core only) 

RTVIcore 100(NIR − REDedge) − 10(NIR − GREEN) Chlorophyll and LAI (Chen et al. 2010) 

Modified triangular 

vegetation index 

MTVI 1.5[1.2(NIR − Green) − 2.5(RED − GREEN)]

√[2NIR + 1)2 − (6NIR − 5√(RED)) − 0.5]

 
Chlorophyll (Haboudane et al. 

2004) 

RedEdge simple ratio SRre NIR

RedEdge
 

Chlorophyll (Gitelson & 

Merzlyak 1994) 

Green ratio vegetation index GRVI NIR

Green
 

Chlorophyll (Sripada et al. 2006) 

Leaf  Chlorophyll Index LCI NIR − RedEdge

NIR + Red
 

Chlorophyll (Gobron et al., 2000) 

Green Leaf Index GLI 2 ∗ Green − Red − Blue

2 ∗ Green + Red + Blue
 

Chlorophyll (Raymond   Hunt Jr. 

et al., 2011) 
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Table 3.5 Texture measures used in this study 

Parameter Equation Description 

Contrast 
∑ 𝑃𝑖,𝐽(1 − 𝑗)2

𝑀−1

𝑖,𝑗=0
 

Measures the level of local variation within a 

window(Kayitakire et al., 2006) 

Correlation 

∑ 𝑃𝑖,𝑗

𝑀−1

𝑖𝑗=0
  [

(𝑖 − 𝜇𝑖)(𝑖 − 𝜇𝑗

(𝜎
2
𝑖

)(𝜎
2
𝑗

)
] 

Measures the grey level linear dependency 

within an image(Yuan et al., 1991) 

Dissimilarity 
∑ 𝑃𝑖𝑗

𝑀−1

𝑖𝑗=0
|𝑖 − 𝑗| 

Measures local variation(Rubner et al., 2001) 

Homogeneity 

∑
𝑃𝑖𝑗

1 + (1 − 𝑗)2

𝑀−1

𝑖𝑗=0

 

Measures the smoothness of image 

texture(Tuttle et al., 2006) 

Mean 
𝜇𝑖 = ∑ 𝑖

𝑀−1

𝑖,𝑗=0
(𝑃𝑖𝑗) 

This is the average grey level in the small 

neighbourhood(Materka and Strzelecki, 1998) 

Second 

Moment 
∑ 𝑃𝑖𝑗

2
𝑀−1

𝑖𝑗=0
 

Indicator of local homogeneity(Yuan et al., 

1991) 

Variance 
𝜎

2

𝑖
= ∑ 𝑃𝑖𝑗

𝑀−1

𝑖𝑗=0
(𝑖 − 𝜇)2 

Variability of the spectral response of 

pixel(Materka and Strzelecki, 1998) 

Entropy 
∑ 𝑃𝑖𝑗(−𝐼𝑛𝑃𝑖, 𝑗)

𝑀−1

𝑖,𝑗=0
 

This is a statistical measure of 

uncertainty(Yuan et al., 1991) 

 

The texture parameters found in Table 3.5 and derived from WV-3 images were processed in two 

steps: 

1. The single texture parameters derived from WV-3 images were tested in estimating 

Eucalyptus dunnii LAI using PLSR; and 

2. The two band texture ratios derived from WV-3 images and their accuracy in predicting 

Eucalyptus dunnii LAI were assessed using PLSR. It should be noted that ratios were only 

used for texture parameters that were computed from the same spectral band and moving 

window. These image texture ratios were derived using the following equation: 

Image texture = 
𝐵1

𝐵2
….(3) 

Where B1 and B2 are texture parameters 
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The equation displays texture parameters, which are rationally combined to form texture ratios for 

estimating LAI. 

3.4 Statistical Analysis 

The relationships between LAI and vegetation indices (VI), and LAI and texture were modelled 

using Partial Least Squares Regression (PLS-R). PLS-R is a data compression technique that is 

used to create predictive models from data containing highly collinear variables or factors (Chin, 

1998 , Haenlein and Kaplan, 2004, Wold, 1996). PLS-R reduces explanatory (X) variables into a 

few non-correlated latent variables based on the information contained in the response variable(Y), 

then regresses the new variables against the response variable to build a linear model as follows: 

Y = Xβ + ε….(4) 

Where Y is a mean-centred vector of a dependent variable, X is a mean-centred matrix of 

independent variables, β is a matrix of regression coefficients, and ε is a matrix of residuals. 

Several studies have demonstrated that PLSR is able to extract significant variables and build a 

reliable model (Hansen and Schjoerring, 2003, Kiala et al., 2017, Abdel-Rahman E.M et al., 2014)  

In this study, the leave-out-one cross validation method was used to select the optimal number of 

components for each PLS-R model. For the development of models, only the number of 

components with lowest error were selected, this was done to avoid overfitting the models. The 

‘plsR’ function in the R statistical software package version 3.1.3 (Team., 2015) was used in this 

study. It subsequently used the variable of importance in the projection (VIP) method for variable 

selection as PLS-R does not specify which variables will play the most significant role in the 

development of the model. VIP methods calculate the significance scores of each vegetation index 

by ranking its importance among explanatory variances. It is important to incorporate VIP for 

variable importance because, it increases the robustness of the model development process. All 

variables with a VIP Score greater than 1 (one) were considered significant and were selected for 

developing PLS-R models.  

3.5 Accuracy Assessment  

Model performance was based on an independent test dataset, which was accomplished utilizing 

the coefficient of determination (R2) and root mean square error (RMSE). The dataset (n = 202) 
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was split into 30% test (n = 61) and 70% training (n = 141) data. Models that had the highest R2 

and lowest RMSE were reserved for estimating LAI. See equation (5) for calculating the RMSE.    

                                           RMSE =  √
SSE2

n
…(5) 

Where SSE is sum of errors (observed-predicted values) and n is the number of pairs 

3.6  Results 

3.6.1   Descriptive Statistics 

In total, 202 points were used to develop the model. Table 3.6 below shows the number of samples 

collected, maximum, minimum and average LAI across the study area for the wet and dry seasons. 

The average LAI was 3.28 m²/m² and 2.48 m²/m² for wet and dry seasons respectively. Table 3.6 

shows a summary of LAI values for the two seasons. 

Table 3.6 Descriptive statistics for LAI values (m2/ m2) measured through LiCor-2200 plant 

canopy analyser 

 Number of points Maximum LAI Minimum LAI Average LAI 

Wet season 2019 202 6.06 1.03 3.28 

Dry season 2020 202 4.91 1.00 2.48 

 

Direct field LAIs were collected to provide a reference for LAI collected indirectly through a 

LiCor-2200 plant canopy analyser (Appendix 1). To determine LAI, 45 trees were sampled across 

the study area. As has been stated in the previous chapter, to calculate LAI from direct field data, 

Leaf Area (LA) was calculated from SLA and total dry mass, then scaled up to determine LAI for 

the sampling plot. The average LAI was 2.95 m²/m². Table 7 shows a summary of LAI, SLA and 

LA values. Appendix 2 shows values for all 45 sampled trees.  

Table 3.7 Descriptive statistics for direct field-based LAI, Specific LAI and Leaf Area 

 Number of trees Maximum LAI Minimum LAI Average LAI 

LAI(m2/m2) 45 5.68 1.09 2.95 

SLA(m2/kg) 45 13.19 5.11 7.40 
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Key: VI – vegetation indices; ST – Single texture; TR – Texture ratios 

Figure 3.5 The number of components for each model 

 

The black arrows indicate that the components with the lowest error for 2019 VI, 2020 VI, 2019 

ST, 2020 ST, 2019 TR and 2020 TR were 12, 10, 9, 6, 8 and 9, respectively. 

3.5.3 Using optimised PLS-R model to estimate LAI 

Table 3.8 shows that integrating texture ratios into the model yielded higher estimation accuracy 

compared to the model that used vegetation indices and single texture bands only. The first model 

using a combination of vegetation indices had the lowest estimation accuracy, as it achieved an R2 

of 0.59, RMSE= 1.38 in 2019 and R2= 0.60, RMSE=1.40 in 2020 on the test dataset. The second 

model which had single texture bands achieved an R2 of 0.65, RMSE=1.35 in 2019 and R2=0.67, 

RMSE=1.32 in 2020 based on the test dataset. The best performing model used texture ratios and 

it achieved an estimation accuracy of R2=70, RMSE 1.21 in 2019 and R2=0.72, M=RMSE=1.26 

based on the test dataset. Since the PLS-R texture ratio model had the highest R2, further analysis 

was done with this model. 
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Table 3.8 Comparison between predictive PLS-R LAI models 

 

PLS-R Model 

2019 2020 

R2 RMSE R2 RMSE 

Vegetation Indices Test 0.59 1.38 0.60 1.40 

 Train 0.60 1.34 0.61 1.36 

Single texture bands Test 0.65 1.35 0.67 1.32 

 Train 0.63 1.33 0.66 1.34 

Image texture ratios Test 0.70 1.21 0.72 1.26 

 Train 0.69 1.23 0.71 1.25 

 

3.6.3 Frequency of significant variables selected by the PLS-R model 

VIP selected 78 and 75 significant texture ratio parameters that yielded the highest overall 

classification accuracy for developing the PLS-R models for 2019 and 2020, respectively. 

However, we only illustrated the top ten selected ratios for developing the model in Table 3.9 

Table 3.9 shows that mean, entropy and dissimilarity were the most frequently selected texture 

parameters for developing the 2019 and 2020 PLS-R texture ratio models. Results in Table 3.9 

shows texture parameters that contain the majority of LAI information for 2019 and 2020. The 

texture ratios that contributed the most to the model were mean/entropy, mean/ second moment, 

mean/dissimilarity and mean correlation. These texture parameters were computed from the NIR-

1, NIR-2, Red edge, red and green bands (Figure 3.6). This pattern was observed for both years. 

In terms of texture window size, both window sizes (3 x 3 and 5 x 5) performed well in the model, 

however the 3 x 3 window size frequency was higher than the 5 x 5 window size (Figure 3.6). The 

smaller window size, 3 x 3 in this case was better for detecting compartments that have high 

spectral variability.  
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Table 3.9 Top 10 selected texture ratios selected by the PLS-R algorithm in 2019 and 2020 

2019 2020 

Window Size Band Texture Ratio Window 

Size 

Band Texture Ratio 

3 × 3 NIR-1 Mean/Entropy 3 × 3 NIR-1 Mean/Entropy 

3 × 3 NIR-2 Mean/Entropy 3 × 3 NIR-2 Mean/Entropy 

3 × 3 NIR-2 Mean/Entropy 3 × 3 RED Mean/Entropy 

5 × 5 RED EDGE Mean/Entropy 3 × 3 RED EDGE Mean/ Homogeneity 

5 × 5 RED Mean/Second Moment 5 × 5 NIR-1 Mean/Second Moment 

3 × 3 GREEN Mean/Dissimilarity 3 × 3 RED Mean/Dissimilarity 

5 × 5 NIR-1 Mean/Second moment 5 × 5 GREEN Mean/Homogeneity 

3 × 3 RED EDGE Mean/Correlation 3 × 3 NIR-1 Mean/Correlation 

3 × 3 RED Mean/Second moment 5 × 5 RED EDGE Mean/Dissimilarity 

5 × 5 RED Mean/Second Moment 3 × 3 RED Mean/Second Moment 
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b.  

Figure 3.7 LAI over the study area for a) 2019 and b) 2020 using image texture ratio 

 

3.6.5   Relationship between LAI and Age 

The LAI values recorded for compartments of the same age group from the same season are 

significantly different. For instance, the LAI value of F021 at canopy closure was 5.12 whereas 

the LAI value of A006 at canopy closure phase was 3.83 (Table 3.10). The difference in LAI 

values could be mainly attributed to the difference in stand density and site quality. The results 

also show that there are significant differences among phenological phases, compartments that 

are at canopy closure phase have the highest LAI compared to older compartment which are at 

the end of rotation, the LAI values start declining at mid rotation, and then older compartments 

at the end of rotation have the smallest LAI. It was observed from the results that younger 

compartments that are at canopy closure phase had the highest LAI.  
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Table 3.10 Showing LAI values of compartments (compt) at different phenological phases 

Compt no. Phase 2019 LAI 2020 LAI Destructive sampling LAI 

E024 Canopy closure 5.31 4.35 4.74 

F021 Canopy closure 5.12 3.85 4.66 

A006 Canopy Closure 3.83 3.38 3.91 

D016 Canopy closure 3.48 2.96 3.35 

C030 Canopy Closure 3.85 3.01 4.73 

D036 Mid rotation 3.60 2.87 3.94 

D021 Mid rotation 3.05 2.07 2.47 

D010A Mid rotation 3.14 2.09 3.68 

A001 Mid rotation 2.59 1.91 3.41 

D001 Mid rotation 2.87 1.81 1.95 

A005 End of rotation 3.22 1.83 3.04 

F043 End of rotation 2.55 1.67 2.02 

B001 End of rotation 1.88 2.10 2.58 

B003 End of rotation 2.01 1.53 1.5 

A011 End of rotation 1.54 1.27 1.25 

 

In addition to the correlation analysis, scatterplot was used to illustrate the relationship between 

destructive sampling and age, 2019 wet season LAI and age, and lastly 2020 dry season and 

age. The results of this study show that there is a strong relationship between LAI collected 

through destructive sampling (R2= 0.75) (Figure 3.8). Younger compartments at canopy 

closure and mid rotation exhibited higher LAI compared to older compartments that were at 

the end of rotation. This could be attributed to younger compartments having wider fresh leaves 

and dense canopies, it was observed during the harvesting of the older compartments’ leaves 

that they tended to have narrower and often dry or damaged leaves; hence low LAI.  

 

Figure 3.8 Relationship between destructive sampling LAI and age 
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4.  Discussion 
 

The aim of the study to assess the utility of WorldView-3 vegetation indices and image texture 

for the estimation of LAI. The relationship between LAI and vegetation indices (VI) and texture 

with VIs was modelled using Partial Least Squares Regression (PLSR). The study tested the 

performance of three different image processing techniques to select the best performing 

model. The discussion will focus on 1. The relationship between LAI and image texture ratios 

and 2. The spatial distribution of LAI over the two growing seasons.  

4.1  The relationship between LAI and image texture ratios 

While all three techniques (vegetation indices, single texture bands and texture ratios) were 

successful in estimating the LAI for both seasons, the findings of this study demonstrate that 

texture ratios were capable of estimating LAI with higher accuracies. The Vegetation Indices 

(VI) technique produced the lowest accuracy (wet season: R2=0.59, RMSE=1.38; dry season: 

R2=0.60, RMS3=1.40), while while single texture bands showed an improvement (wet season: 

R2=0.65, RMSE=1.35; dry season: R2= 0.67, RMSE=1.32), the highest overall accuracy was, 

however,  observed when texture ratios were incorporated into the model (wet season: R2=0.70, 

RMSE= 1.21) (dry season: R2= 0.72, RMSE=1.26). 

The results of this study confirm the findings of previous studies that reported a significantly 

higher correlation between LAI and texture parameters. For example,  Shamsoddini et al., 

(2013) assessed the potential of  11 GLCM texture measures and vegetation indices extracted 

from 8 WorldView-2 bands in mapping forest structural attributes. Their findings showed that 

incorporating texture parameters into the model improved the accuracy of mapping forest 

structural attributes. In a separate study, Gu et al., (2013) also assessed the ability of 4 

IKONOS-2 texture band parameters and vegetation indices in estimating urban forest LAI and 

found that the performance of texture parameters was higher compared to vegetation indices. 

These findings demonstrate texture parameters contain additional valuable information about 

forest structural attributes such as LAI. This study’s analysis also proves that texture 

parameters provide an alternate opportunity for improving the development of more accurate 

local LAI maps.  

The significant improvement of LAI estimations in this study can be attributed to higher spatial 

and spectral resolution of WorldView-3 images. A number of studies have demonstrated the 

significance of spatial and spectral resolution in improving LAI estimations (Pu and Cheng, 
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2015, Lottering et al., 2018, Abdel-Rahman E.M et al., 2014). (Gebreslasie et al., 2008) tested 

the effects of spectral resolution in estimating forest structural attributes and concluded that 

using higher spatial resolution sensors to estimate forest structural attributes increases 

estimation accuracy by up to 19.7%.  

One of the important steps in developing a model for estimating LAI is selecting an optimum 

number of bands or regions. This study found that NIR, Red edge, red, green bands are highly 

correlated to and strongly influence LAI. These results are consistent with the findings of 

Davhula (2016) and Feng et al., (2019). For instance, the NIR band generated the most 

influential GLCM statistical features for the estimation of LAI. NIR is sensitive to chlorophyll 

content and vegetation structure (Jordan, 1969).  The Red edge band also contributed the most 

suitable GLCM variables. In addition, the mean and entropy texture features computed from 

NIR-1 made the highest contribution to model development. This indicates that the relevant 

information about vegetation attributes such as LAI is embedded in the red, green, red edge 

and NIR spectral regions. These findings are consistent with all the methods investigated; thus, 

they confirm that the red-edge band corresponds most to LAI. The direction of these findings 

was mainly influenced by vegetation structure as LAI is a component of vegetation structure, 

which influences the reflectance in the red, NIR and Red edge regions (Pu and Cheng, 2015). 

The use of single bands and vegetation indices for estimating LAI is common using 

hyperspectral data, but this study further demonstrated the improvement of LAI estimation 

using multispectral data. Furthermore, this study demonstrated that texture analysis can 

improve LAI estimations in regions of forest where spectral indices such as NDVI can saturate. 

4.2  Spatial distribution of LAI over the two seasons 

LAI distribution maps were created using the PLS-R model. The maps show the difference 

between 2019 (wet season) and 2020 (dry season). From the map it can be seen that the winter 

season had a lower LAI. The wet season has a relatively higher LAI. This is because LAI is 

affected by the supply of water, nutrients and temperature (White et al., 2010, Battaglia et al., 

1998). In instances where there is enough supply of nutrients, water becomes the main 

determinant of LAI and tree growth (Benecke, 1980, Benson et al., 1992, Rubilar et al., 2013). 

Low water availability during the dry season hinders crop productivity. Furthermore, seasonal 

tree growth and defoliation of different functional types of leaf internal attributes lead to 

changes in the leaf lifespan and leaf area (Qiao et al., 2019).  These findings align with those 

of Savoy and Mackay, (2015) and Ojeda et al., (2018). They also correspond with the findings 
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of (Zhu et al., 2016) where the lowest LAI was found in winter and the highest LAI was found 

in summer.  

4.3   Conclusion 

This study contributes to previous research studies on estimating LAI using high resolution, by 

incorporating two band texture ratios. It was able to develop a model that can accurately and 

efficiently estimate the LAI of Eucalyptus dunnii in the Midlands area, therefore addressing 

the needs of local forest managers. This study has shown that WorldView-3 imagery is capable 

of predicting LAI for two different seasons and can detect seasonal differences in LAI. 

Furthermore, this study revealed that: 

 

• The texture ratio model produced higher LAI estimation accuracy when compared to 

vegetation indices and single image bands.  

• The PLS-R model effectively mapped the spatial distribution of LAI over the two 

seasons. 

• The predictive maps show that LAI was highest during 2019 (the wet season) and 

lowest during 2020 (the dry season).  

Overall, this study was the first to utilize texture ratios to detect and map the spatial distribution 

of LAI using PLS-R over the wet and dry seasons. This study contributed to the body of 

literature and evidence that conclusively demonstrates the significance of using image texture 

ratios and PLS-R to effectively estimate LAI. 

 

5.  Synthesis 
 

LAI is a very important parameter in plant ecophysiology and it can be used to directly quantify 

foliage and as a measure of the photosynthetic active area and thus the area subject to 

transpiration in the tree crown (Chen, 2013a; Wulder, Hall, Coops, & Franklin, 2004). 

Therefore, accurate estimation of LAI is crucial for optimal forestry management. Furthermore, 

understanding the spatial and temporal variation of LAI is particularly essential for silvicultural 

operations that are aimed at enhancing wood production, water yield and thus the overall stand 

productivity. 

Using traditional methods of estimating LAI has been a serious challenge for large scale 

commercial forestry as these methods are time consuming, costly and impractical over large 
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forestry holdings. However, the advancements in remote sensing technology has offered a 

faster and effective method of estimating LAI with acceptable accuracies. This study reviewed 

methods of estimating LAI, found that there is an increasing pattern in the use of machine 

learning algorithms for the estimation of LAI. This is because of their advantage when it comes 

to handling big data sets. Moreover, the development of high spatial and spectral resolution 

sensors such as WorldView-3 has enabled scientists around the world to more effectively 

monitor vegetation attributes at higher accuracy (Kross et al., 2014). 

One of the commonly used remote sensing methods of deriving LAI from spectral data is the 

empirical-based approach. In this approach regression models are used to study the relationship 

that exist between the target variable, for example, LAI and its spectral reflectance 

(Darvishzadeh et al., 2008a and 2012). The main objective of this study was to estimate LAI 

of Eucalyptus dunni using high resolution WorldView-3 imagery in Midlands region of 

KwaZulu-Natal Province, South Africa. Our study utilised PLS-R to model the relationship 

between LAI and vegetation indices (VI), and texture with LAI. Among the three PLS-R 

models that were tested, the PLS-R texture ratio model had the highest R2 and lowest RMSE 

(wet season: R2 0.70, RMSE=1.21) (dry season: R2=0.72, RMSE=1.26). 

The use of vegetation indices did not yield the highest accuracy, this can be attributed to 

saturation of vegetation indices such as NDVI at LAI value above 3 (Zhou et al., 

2014b).Generally, the best performing texture parameters were computed from the red, green, 

red edge and NIR1 and NIR2 bands. This indicates that the relevant information about 

vegetation attributes such as LAI is embedded in the red, green, red edge and NIR spectral 

regions. NIR and red edge bands are known to relate strongly with vegetation structure while 

red and green are known to relate to chlorophyll content. Integrating texture variable calculated 

form the best performing spectral bands led to increased LAI estimation accuracy.  

5.1  Future research and recommendations 

This study demonstrated that two band texture ratios can estimate LAI with high accuracy, 

however for future research; 

• Explore the ability of three or more band texture combinations for the estimation of 

LAI. 

• Map and estimate LAI of various seasons and determine bands and vegetation that are 

consistently significant in LAI estimation. 
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• Explore robust machine learning algorithms for LAI estimation at local scales. 

5.2 Conclusion 

The focus of this study was to estimate the LAI of Eucalyptus dunni using high resolution 

WorldView-3 and texture features. In this chapter, the aim and objectives highlighted in 

Chapter one (introduction) will be reviewed. 

5.3 Review of Objectives 

The aim of this study was to assess the utility of WorldView-3 vegetation indices and image 

textures for the estimation of LAI of Eucalyptus dunnii.  

5.3.1   Specific objectives reviewed 

• Review remote sensing methods of estimating LAI for forests and crops. 

In order to meet this objective, published studies on using remote sensing to estimate LAI 

between 2010 and 2020 were reviewed. This study found that there were a total of 168 research 

publications focusing on estimations of LAI for forests, crops, and grasslands, published from 

23 different journal publications. Among many remote sensing methods of estimating LAI, the 

most commonly used was empirical models. The results of this study also showed that there is 

an increasing trend in the use of machine learning algorithms. Several studies reported similar 

results as this study (Omer et al., 2016, Lin et al., 2019, Xu et al., 2020) 

• Test the utility of vegetation indices in estimating LAI of Eucalyptus dunnii in the 

Midlands over two seasons using PLS-R. 

The second objective was met by extracting 23 vegetation indices from WorldView-3 images, 

and these vegetation indices were used as inputs into the model. Although the vegetation 

indices (VI) model produced acceptable accuracies, it was not the best performing model. It 

achieved an estimation accuracy of R2=0.59, RMSE=1.38 for 2019 (wet season) and R2=0.60, 

RMSE=1.40 for 2020 (dry season).  These findings coincide with those of Gu et al., (2013), 

Gebreslasie and van Aardt, (2011) and Li et al., (2019). It can therefore be concluded that 

vegetation indices alone do not yield the highest LAI estimation accuracy.  

• Test the utility of texture ratios in estimating LAI of Eucalyptus dunnii in the 

Midlands over two seasons using PLS-R. 

To meet the third objective, various texture measures were extracted from WorldView-3 

imagery to create texture combinations. VIP analysis selected 78 and 75 significant texture 
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ratio parameters that yielded the highest overall classification accuracy for developing the PLS-

R models for 2019 and 2020, respectively. The best performing model incorporated texture 

ratios and it achieved an estimation accuracy of R2=70, RMSE 1.21 for 2019 (wet season) and 

R2=0.72, M=RMSE=1.26 for 2020 (dry season). These results align with a number of published 

studies, such as those of Pu and Cheng, (2015), Ozdemira and Karnielib, (2011) and Gu et al., 

(2013). Therefore, it was concluded that texture measures can be used to estimate LAI of dunnii 

with high accuracy.  

• Test the utility of single texture bands in estimating LAI of Eucalyptus dinnii in the 

Midlands using PLS-R. 

The fourth objective was met by comparing the R2 and RMSE of the single texture band model 

against the vegetation index model and the image texture ratio model. The single texture band 

model yielded adequate accuracy for both seasons (wet season: R2=0.65, RMSE=1.35) (dry 

season: R2= 0.67, RMSE=1.32), however; it was not the best model. The PLS-R model that 

yielded best results for both seasons was the one that integrated image texture ratios. The 

dominant texture ratios for both seasons were mean/entropy, mean/second moment, 

mean/dissimilarity and mean/correlation. These results are similar to those obtained by 

Hlatshwayo et al., (2019). Based on the results obtained in this current study, it was concluded 

that the best technique in estimating LAI is image texture measures. These conclusions confirm 

the hypothesis that combining texture algorithms improves the estimation of LAI. 

• Determine the best technique in estimating LAI and map spatial distribution over 

the different seasons.  

The fifth objective was met by using three methods; the first was collecting destructive 

sampling data and deriving LAI to be used as a reference, the second was collecting field LAI 

using the LiCor-2200 plant canopy analyser and the third was deriving vegetation indices and 

texture measures from WorldView-3 images. The relationship between LAI and vegetation 

indices (VI) and texture measures with VIs was modelled using Partial Least Square Regression 

(PLS-R). Then the best model was selected based on highest R2 and lowest RMSE.  

5.3.2  Concluding Remarks 

The aim of this study was to determine the best method for estimating the LAI of Eucalyptus 

dunnii in the Midlands area of KZN. By integrating texture ratios into the PLS-R model, the 

model estimation accuracy increased. This study showed that PLS-R texture measures model 

can be used to estimate the LAI of Eucalyptus dunnii in the Midlands with high accuracy. In 
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addition, the predictive maps showed that 2019 (wet season) had higher LAI when compared 

to 2020 (dry season). These conclusions are drawn based on the findings throughout this thesis 

and answer key research questions posed in Chapter one: 

• What are the trends in the use of remote sensing methods to estimable LAI? 

A total of 168 publications on estimating LAI using remote sensing were reviewed. The 

analysis revealed that there are few studies focusing on using texture measures to estimate LAI.  

• Are vegetation indices the best method of estimating LAI of Eucalyptus dunnii in 

the Midlands area? 

Vegetation indices were computed from WordView-3 images and tested against single image 

texture and two texture band ratios using PLS-R. It was concluded that vegetation indices can 

estimate LAI with adequate accuracy. However, they are not the best method of estimating 

LAI. The vegetation indices PLS-R model achieved an estimation accuracy of R2=0.59, 

RMSE=1.38 for 2019 (wet season) and R2=0.60, RMSE=1.40 for 2020 (dry season). 

• Are texture band ratios effective in estimating LAI of Eucalyptus dunnii in the 

Midlands area? 

Texture ratios extracted from WorldView-3 imagery were input into a PLS-R model and 

successfully estimated LAI of Eucalyptus dunnii with highest accuracy for both seasons. The 

R2 of the best model was 0.70, RMSE 1.21 for 2019 (wet season) and 0.72, M=RMSE=1.26 

for 2020 (dry season). 

• Can single texture bands produce the best accuracy in estimating LAI of Eucalyptus 

dunnii in the Midlands area? 

Single texture ratios were computed from best performing bands and input into a PLS-R model. 

The single texture band model yielded adequate accuracy for both seasons (wet season: 

R2=0.65, RMSE=1.35) (dry season: R2= 0.67, RMSE=1.32), however; it was not the best 

model.  

• What is the best model in estimating LAI of Eucalyptus dunnii in the Midlands area 

using PLS-R? 
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This study revealed that the texture band ratio model is the best model in estimating LAI of 

Eucalyptus dunnii in the Midlands area when compared to vegetation indices and single texture 

band models.  

Overall, this study demonstrated that texture band ratios can estimate LAI of Eucalyptus dunnii 

in the Midlands area with acceptable accuracy. 
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Appendix 1 Destructive sampling LAI 

          Destructive sampling      LiCor-2200     

WF_ 

wet 

Sample_WF_ 

wet 

Sample_WF_ 

Dry 

Sample_Leaf_ 

Area 

Area/ 

Tree 

Leaf 

Area 

Tree 

LAI SLA SLA 

Ceptometer 

sample plot 

  

Sample 

LAI-2200-

compartment 

LAI(Avg) 

  

kg kg kg cm2 m2 m2 m2/m2 cm2/g m2/kg 2019 2020 % 
2019  

LAI 

2020  

LAI 

3.942 1.183 0.669 51213.88 6 17.07 2.844 76.55 7.655 1.65 1.45 0.3 1.54 1.26 

4.471 1.341 0.604 32901.03 6 10.97 1.828 54.47 5.447 1.65 1.45 0.3 1.54 1.26 

4.865 1.46 0.658 37141.29 6 12.38 2.063 56.45 5.645 1.65 1.45 0.3 1.54 1.26 

7.091 2.127 1.057 67913.08 6 22.64 3.773 64.25 6.425 2.68 1.98 0.3 3.21 1.84 

6.841 2.052 1.049 74333.49 6 24.78 4.13 70.86 7.086 2.68 1.98 0.3 3.21 1.84 

7.113 2.134 1.077 70675.59 6 23.56 3.926 65.62 6.562 2.68 1.98 0.3 3.21 1.84 

4.18 1.254 0.5 53893.62 7.5 17.96 2.395 107.79 10.779 4.95 4.91 0.3 5.08 4.21 

7.743 2.323 0.979 105641.4 7.5 35.21 4.695 107.91 10.791 4.95 4.91 0.3 5.08 4.21 

5.6 1.68 0.705 93014.53 7.5 31 4.134 131.94 13.194 4.95 4.91 0.3 5.08 4.21 

4.002 1.2006 0.436 28102.38 6 9.37 1.561 64.46 6.446 2.61 1.93 0.3 2.8 1.84 

3.424 1.027 0.486 34914.94 6 11.64 1.94 71.84 7.184 2.61 1.93 0.3 2.8 1.84 

5.659 1.698 0.607 42521.39 6 14.17 2.362 70.05 7.005 2.61 1.93 0.3 2.8 1.84 

6.219 1.866 1.029 80993.63 6 26.99 4.499 78.71 7.871 3.91 3.51 0.3 3.87 3 

7.213 2.164 1.163 83916.25 6 27.97 4.662 72.15 7.215 3.91 3.51 0.3 3.87 3 

9.165 2.749 1.206 90455.13 6 30.16 5.026 75 7.5 3.91 3.51 0.3 3.87 3 

4.624 1.387 0.655 47479.06 6 15.83 2.638 72.49 7.249 2.49 3.77 0.3 3.82 3.38 

3.893 1.168 0.517 43501.3 6 14.5 2.417 84.14 8.414 2.49 3.77 0.3 3.82 3.38 

4.341 1.302 0.594 39414.29 6 13.14 2.19 66.35 6.635 2.49 3.77 0.3 3.82 3.38 

5.967 1.79 0.893 69717.69 6 23.24 3.873 78.07 7.807 3.65 2.65 0.3 3.14 2.09 

6.489 1.947 0.921 71975.41 6 23.99 3.998 78.15 7.815 3.65 2.65 0.3 3.14 2.09 
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5.389 1.617 0.814 57207.41 6 19.07 3.178 70.28 7.028 3.65 2.65 0.3 3.14 2.09 

4.907 1.472 0.732 37458.71 6 12.49 2.081 51.17 5.117 1.32 1.83 0.3 2.01 1.53 

3.885 1.166 0.595 33597.58 6 11.19 1.866 56.47 5.647 1.32 1.83 0.3 2.01 1.53 

6.531 1.959 0.91 63995.9 6 21.34 3.556 70.33 7.033 1.32 1.83 0.3 2.01 1.53 

3.543 1.063 0.525 38884.42 6 12.96 2.16 74.07 7.407 2.09 2.85 0.3 1.87 2.1 

2.431 0.729 0.388 25401.58 6 8.47 1.412 65.47 6.547 2.09 2.85 0.3 1.87 2.1 

2.315 0.695 0.395 21095.18 6 7.03 1.171 53.41 5.341 2.09 2.85 0.3 1.87 2.1 

3.335 1.005 0.476 32965.07 6 10.94 1.823 69.25 6.925 2.05 2.19 0.3 2.58 1.91 

2.127 0.638 0.32 19765.34 6 6.59 1.098 61.77 6.177 2.05 2.19 0.3 2.58 1.91 

2.411 0.723 0.367 23372.88 6 7.79 1.299 63.69 6.369 2.05 2.19 0.3 2.58 1.91 

4.29 1.286 0.621 44032.7 6 14.69 2.448 70.91 7.091 1.56 1.94 0.3 2.54 1.66 

2.66 0.798 0.406 27037.86 6 9.01 1.502 66.6 6.66 1.56 1.94 0.3 2.54 1.66 

3.778 1.133 0.57 37847.74 6 12.62 2.103 66.4 6.64 1.56 1.94 0.3 2.54 1.66 

7.695 1.786 1.031 79206.98 6 34.13 5.688 76.83 7.683 5.09 4.64 0.23 5.12 3.85 

5.954 1.829 0.941 75066.87 6 24.44 4.073 79.77 7.977 5.09 4.64 0.31 5.12 3.85 

7.283 2.155 0.781 61562.93 6 20.81 3.468 78.83 7.883 5.09 4.64 0.3 5.12 3.85 

5.755 1.726 0.704 56271.89 6 18.76 3.127 79.93 7.993 2.02 2.77 0.3 3.04 2.07 

3.552 1.066 0.494 33276.46 6 11.09 1.848 67.36 6.736 2.02 2.77 0.3 3.04 2.07 

4.446 1.334 0.564 43962.33 6 14.65 2.442 77.95 7.795 2.02 2.77 0.3 3.04 2.07 

7.624 2.287 1.049 66126.96 6 22.04 3.674 63.04 6.304 3.71 3.72 0.3 3.59 3.86 

7.962 2.387 1.081 83372.16 6 27.81 4.635 77.13 7.713 3.71 3.72 0.3 3.59 3.86 

5.767 1.73 0.855 63061.96 6 21.02 3.504 73.76 7.376 3.71 3.72 0.3 3.59 3.86 

3.122 0.937 0.456 52691.74 6 17.56 2.926 115.55 11.555 3.57 3.77 0.3 3.52 2.97 

5.71 1.713 0.78 58536.69 6 19.51 3.252 75.05 7.505 3.57 3.77 0.3 3.52 2.97 

6.401 1.92 0.855 69919.36 6 23.31 3.885 81.78 8.178 3.57 3.77 0.3 3.52 2.97 
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Appendix 2 List of countries and number of publications for each country 

Country Name 

No. of 

Publications Country Name 

No. of 

Publications Country Name 

No. of 

Publications 

China 29 Botswana 1 Malawi 1 

United States 21 Belgium 1 Mali 1 

Brazil 16 Bolivia 1 Mozambique 1 

Australia 11 Bulgaria 1 Niger 1 

Canada 11 Burundi 1 Peru 1 

Russia 10 Cambodia 1 Poland 1 

South Africa 8 Chad 1 Philippines 1 

Algeria 6 Congo 1 Saudi Arabia 1 

Egypt 6 Cameroon 1 Senegal 1 

Spain 5 Colombia 1 Sierra Leone 1 

United Kingdom 5 Central African Republic 1 Sudan 1 

India 4 Ethiopia 1 Sweden 1 

New Zealand 4 France 1 United Arab Emirates 1 

Finland 3 Ghana 1 Thailand 1 

Germany 3 Greece 1 Turkey 1 

Japan 3 Guinea 1 Tanzania,  1 

Argentina 2 Hungary 1 Uganda 1 

Zaire 2 Indonesia 1 Ukraine 1 

Italy 2 Ivory Coast 1 Burkina Faso 1 

Kenya 2 North Korea 1 Venezuela 1 

Mexico 2 South Korea 1 Vietnam 1 

Nigeria 2 Kazakhstan 1 Namibia 1 

Netherlands 2 Liberia 1 Zambia 1 

Angola 1 Libya 1 Zimbabwe 1 

Austria 1 Lesotho 1   



72 

 

Appendix 3 Models and sensors used for forest, crop and grassland studies and the level of accuracy achieved by each model 

 

  

  

Forest 

    

Crop 

    

Grassland 

    

Model Sensors N R 
RMS

E 
N R 

RMS

E 
N R 

RMS

E 
Algorithms 

  
VIs based 27 

0.14-

0.97 

0.05-

2.41 
22 

0.59-

0.82 

0.52-

1.53 
25 0.58-0.83 

0,20-

1.71 
Wide range of VIs 

Empirical 

Models 
Reflectance based 15 

0.58-

0.97 

0.10-

1.08 
9 

0.45-

0.95 

0.03-

1,82 
10 0.36-0.95 

0.02-

1,83 
Regressions 

  
Derived metrics 19 

0.57-

0.98 

0,02-

1,47 
3 

0.35-

0,95 

0.01-

1,95 
2 0.45-0.98 

0.16-

0.45 
Regressions 

  
Machine Learning 8 

0.84-

0.95 

0.43-

1.95 
13 

0.58-

0.97 

0.34-

1.94 
9 0.44-0.97 

0.14-

1.66 
ML Algorithms 

  
PROSAIL 2 

0.81-

0.95 

0.41-

0.48 
8 

0.83-

0.96 

0.13-

1.45 
4 0.38-0.98 

0.13-

1.48   

  
DART 2 

0.75-

0.87 

0.46-

0.52 
0 

    
0 

    
Look up tables(LUT) 

  

PROSPECT+DAR

T 
1 0.77 

  
0 

    
0 

     

Physical 

Models 

4-Scale 

bidirectional 

2 
0.80-

0.86 

0.78-

1.4 
1 0.85 1.3 0 

    

Iterative optimization, 

LUTs 
reflectance 

distribution (BRD) 

  
Other models 5 

0.71-

0.95 

0.71-

0.96 
3 

0.83-

0.99 

0.31-

0.92 
2 0.87-0.95 

0.83-

0.95 

LUTs, 

dynamic model, etc. 
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PROSAIL 5 

0.63-

0.92 

0.26-

1.12 
9 

0.58-

0.96 

0.3-

1,16 
5 0.67-0.98 

0.27-

1.13  

  
PARAS 2 

0.83-

0.93 

0.71-

0.85 
0 

    
0 

     

Hybrid 

Models 
4-Scale BRD 2 

0.43-

0.68 

0.31-

1.08 
1 0.86 0.43 0 

    

Regression and ML 

algorithms 

  
Other models 5 

0.21-

0.99 

0.20-

1.86 
1 0.89 0.5 1 0.78 0.64 

  

                       

Other 

models 

  

6 
0.41-

.096 

0.01-

0.92 
3 

0.43-

0.97 

0.42-

0.98 
1 0.67-.099 

0.01-

1.94 

Regional phenology 

model, path length 

distribution model, 

etc. 

 




