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Abstract 

This thesis consists of three main parts. An introduction to diode-pumped solid-state 
lasers, thermal modelling of solid-state lasers and rate-equation modelling of solid-state 
lasers. 

The first part explains the basic components and operation principles of a typi­
cal diode-end-pumped solid-state laser. The stimulated emission process, solid-state 
laser gain media, various pump geometries and a basic end-pumped laser resonator 
configuration are among the topics that are explained. 

Since thermal effects are one of the main limiting factors in the power-scaling of 
diode-pumped solid-state lasers, the second part of this thesis describes numerical 
and analytical thermal models that determine the thermal lens and thermally induced 
stresses in a laser crystal. As a first step, a time-independent numerical thermal model 
which calculates the three-dimensional temperature distribution in the laser crystal is 
implemented. In order to calculate the time dependent thermally induced stresses in a 
laser crystal, a coupled thermal-stress finite element analysis model was implemented. 
Even though some steady-state analytical solutions for simple crystal geometries do ex­
ist, the finite element analysis approach was taken so that the time dependent thermally 
induced stresses could be calculated for birefringent crystals of various geometries. In 
order to validate the numerical results, they are compared to experimental data and 
analytical solutions where possible. 

In the last part, the population dynamics inside the laser gain medium are de­
scribed and modelled with a quasi-three-level rate-equation model. A comprehensive 
spatially resolved rate-equation model is developed and discussed. In order to simplify 
the implementation of the rate-equation model as a computer simulation, the spatial 
dependence of the laser parameters is ignored so that the model reduces to a single-
element plane-wave model. The simplified rate-equation model is implemented and 
solved numerically. The model is applied to a four-level CW and Q-switched Nd:YLF 
laser as well as a quasi-three-level QCW Tm:GdV04 laser. The models' predictions are 
thoroughly verified with experimental results and also with analytical solutions where 
possible. 
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Chapter 1 

Introduction 

A laser is a device that has the ability to generate or amplify spatially and temporally 
coherent radiation at frequencies which include the largest part of the electromagnetic 
spectrum (Siegman, 1986). Due to the high coherence of laser light it is possible to 
achieve much higher intensities than conventional light sources such as lamps, which 
emit radiation in all directions. Another characteristic of laser light is the fact that it 
is monochromatic. 

The operation of a laser is governed by the way in which electromagnetic radiation 
interacts with matter. The specific process is known as stimulated emission. It is from 
this interaction process where the term LASER has its origin. It is an acronym for 
Light Amplification by Stimulated Emission of Radiation. 

The first operation of a laser was that of a solid-state laser which was demonstrated 
in the form of a Cr3+ doped sapphire laser (Maiman, 1960). Since this first laser, several 
other types of gain media, including gas, liquid, chemical and nuclear have been used for 
laser operation with emission wavelengths that can range from the ultraviolet, through 
the visible region, all the way to the infrared part of the electromagnetic spectrum. 
Its unique attributes have ensured that lasers have found numerous applications in 
the medical, scientific, military and industrial fields. The ever increasing demand in 
laser applications ensures that the development of high power diode-pumped solid-state 
lasers remains a very active area of research. 

Even though numerous variations of lasers exist, the work presented in this thesis 
considers diode-end-pumped solid-state lasers in particular. This specific type of solid-
state laser and pump geometry are of great interest due to the many advantages that 
it possess. Some of the advantages of diode-pumped solid-state lasers include (Fan 
& Byer, 1988): A higher efficiency than lamp-pumped lasers; Enhanced peak powers 
due to the long upper state lifetimes; A simpler design than lamp-pumped lasers due 
to its simpler cooling geometry; A higher brightness than conventional diode lasers; 
Sharper emission spectra than diode lasers; Very good laser beam quality with nearly 
diffraction-limited operation. 
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CHAPTER 1. INTRODUCTION 

The main purpose of the work presented here, is to use existing laser theory in order 
to develop mathematical models that can be implemented in the form of a computer 
simulation of the laser. Two main models are developed: A thermal model of a diode-
end-pumped solid-state laser that can explain and predict the thermal effects such as 
thermal lensing and thermally induced stresses in these lasers. The second model is 
a rate-equation model that depicts the behaviour of the population dynamics in the 
laser gain medium. 

Before the models are developed and discussed in later chapters, the rest of this 
chapter is devoted to explaining the basic components and operation principles of 
diode-pumped solid-state lasers. 

1.1 Light Amplification by Stimulated Emission of 
Radiation 

As mentioned before, the process which governs the operation of a laser is a process 
know as stimulated emission. 

Atomic systems such as atoms and ions can only exist in discrete energy levels. 
When such an atomic system changes from one energy level to another, it is associated 
with the absorption or emission of a photon (Koechner, 1996). The frequency of this 
photon is proportional to the energy difference between the two energy levels and can 
be described by the Bohr frequency relation 

E=hu (1.1) 

where E — E2 — E\ is the energy difference between the two energy levels, h is Planck's 
constant and v is the frequency of the emitted or absorbed photon which can interact 
with the system. 

At thermal equilibrium, the population of the energy levels in an atomic system can 
be described by a Maxwell-Boltzmann distribution so that the lower energy levels have 
a higher population than the higher energy levels. When a photon with frequency v, as 
described in equation 1.1, interacts with the atomic system, the atom/ion is raised into 
a higher energy level while the photon is absorbed. In a laser context, this absorption 
process which excites atoms/ions from a lower energy state into a higher more energetic 
state is referred to as "pumping" the gain medium (see Figure 1.1). Note that the 
pumping process as it is referred to in this work refers to optically pumped lasers. 
There are other laser pumping techniques such as electrical and chemical pumping of 
which the details will not be discussed in the context of this work. 

For laser action to occur, the gain medium has to be pumped so that a condition 
of "population inversion" is achieved. Population inversion is the state where more 
ions/atoms are in some higher quantum energy level than in some lower level in the laser 
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CHAPTER 1. INTRODUCTION 

[\l\l\l\ E=E2-E1=hv E=E2-E1=hv 

Figure 1.1: An energy level representation of the pumping process. 

gain medium (Siegman, 1986). The pump process can be used to achieve population 
inversion in the gain medium since the upper laser levels in most lasers are metastable 
energy levels (relatively long lifetimes) (Siegman, 1986). The pumping process is thus 
a way to deposit energy in the laser gain medium which can in turn be extracted via 
the laser beam. 

Once population inversion in the gain medium has been achieved, it is possible to 
amplify electromagnetic radiation of a specific frequency via the process of stimulated 
emission as it passes through the gain medium. When a photon of the correct frequency 
is incident on the population inverted gain medium, it will cause the atoms/ions in the 
higher energy level to fall down to some lower energy level while an additional photon 
is emitted (see Figure 1.2). The emitted photon is indistinguishable from the incident 
photon since it has the same direction, frequency, phase and polarization (Koechner, 
1996). This amplification process forms the foundation of how a laser operates. 

1.2 Solid-State Laser Gain Media 

In order for a material to be a suitable laser gain medium, it must have sharp fluo­
rescent emission lines, strong absorption bands and an adequate quantum efficiency 
for the particular fluorescent transition that is of interest (Koechner, 1996). A fur­
ther requirement is that the pump band of the gain medium falls within the emission 
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CHAPTER 1. INTRODUCTION 

l\l\l\j\ E=E2-E1=hv E=E2-E1=hv W M 

Figure 1.2: An energy level representation of the stimulated emission process. 

spectrum of a pump source which is readily available. These particular features can 
generally be found in optically transparent solids, such as crystal, glass or ceramic, 
which contain a small amount of an active element, such as rare earth ions, in which 
optical transitions can occur. Due to the nature of this work, only solid-state gain 
media will be considered. 

1.2.1 Host Materials 

It is of utmost importance that the host material must have very good optical, me­
chanical and thermal properties in order to survive the harsh operating conditions of 
lasers. The key criteria for selecting a laser active ion host are summarized as follow 
(Koechner, 1996): 

• The host must possess good optical properties. This includes a homogeneous 
refractive index to ensure a good beam quality. Ideally the temperature depen­
dence of the refractive index should be as small as possible to reduce the effect of 
thermal lensing under severe pumping conditions. Another requirement is that 
the scattering losses in the host should be minimal in order to restrict the overall 
losses in the gain medium. 

• The host should have mechanical and thermal properties that will allow high-
power operation without being subject to excessive stresses, and ultimately frac-
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CHAPTER 1. INTRODUCTION 

Figure 1.3: Neodymium doped YAG crystals (VLOC YAG Brochure, 2008). 

ture, due to the thermal load. A high thermal conductivity is thus of great 
importance. 

• The host must have lattice sites that are able to accept the dopant ions. The effect 
of the local crystal field must be such that it induces the required spectroscopic 
properties. 

• It must be possible to grow the host to adequate sizes while still maintaining a 
good optical and mechanical quality. 

There are three primary groups of solid-state host materials which possess the 
above mentioned qualities: single crystals, glasses and ceramics. Of these host gain 
media, Neodymium doped yttrium aluminium garnet (Y3AI5O12, referred to as YAG) 
single crystals are the most widely used solid-state laser gain media. See Figure 1.3 for 
examples of single crystal gain media (YAG) doped with rare earth ions (Neodymium). 

Due to the recent advances in the ceramic manufacturing process, high quality, high 
transparent ceramics with much lower scattering losses can be fabricated (Qi et a/., 
2005). The optical absorption, fluorescence and emission spectra as well as physical 
properties of ceramics have been measured and compared with those of single crystals. 
The ceramic features seem to compare very well with that of the single crystals (Kracht 
et al, 2005) (Kumar et al, 2004) (Qi et al, 2005). 
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CHAPTER 1. INTRODUCTION 

1.2.2 Active Ions 

Rare earth (lanthanide) ions are very good candidates to act as active ions in solid-state 
laser materials since they possess numerous sharp emission lines throughout most of 
the visible and infrared part of the electromagnetic spectrum (Koechner, 1996). The 
emission lines remain very sharp, even in the presence of a local crystal field (Stark 
effect), due to the shielding of the outer electrons. 

The outermost electrons of these ions form a complete rare gas shell, which is the 
xenon shell with two 5s and six 5p electrons (Koechner, 1996). Inside this xenon shell 
is the 4 / shell. While the 4 / shells remains incomplete (i.e. not filled with 14 electrons), 
electrons that are already present in the 4/ shell can be raised into these empty levels 
by light absorption. The sharp absorption and emission lines that are observed in rare 
earth ions are due to these particular transitions which are shielded by the outer xenon 
shell (Koechner, 1996). 

Rare earth ions are used in solid-state laser gain media in either a divalent or 
trivalent form. A divalent rare earth ion is formed when the atom loses its outer 6s 
electrons. Additionally, a trivalent ion also gives up the 5d electron, or if it has none, 
its gives up one of the 4/ electrons (Koechner, 1996). 

The specific rare earth ions that are considered in this work includes trivalent 
Neodymium (Nd3+), Thulium (Tm3 +) and Holmium (Ho3+). 

1.3 Diode-End-Pumping 

The two main methods which are used to optically pump solid-state gain media are 
lamp-pumping and diode-pumping. Diode-pumped lasers are more efficient than lamp-
pumped lasers due to the fact that the diode lasers that are used for pumping have a 
much narrower spectral output (Fan, 1995). This makes it possible to select a pumping 
source with a very good overlap with the gain medium's absorption band without 
wasting too much of the pump radiation at wavelengths that are not absorbed by the 
gain medium. 

Another advantage of using diode-pumping instead of lamp-pumping is that diode-
pump systems usually lead to a lower thermal load in the gain medium (Fan, 1995) 
(Chen et at, 1990). A lower thermal load in the gain medium will result in lower 
thermally induced stresses. Due to the directionality and high radiance of diode-lasers, 
a higher pump power density can also be achieved than with lamp-pumped lasers. 

Flash lamp pump and diode-pump sources can be implemented in a variety of 
geometries of which only side-pump and end-pump geometries will be considered in 
this work (Figure 1.4). In a side-pump setup the pump light is radiated perpendicular 
to the laser mode into the gain medium. In the case of an end-pump geometry, the 
pump light is inserted parallel to the laser mode. 
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CHAPTER 1. INTRODUCTION 

Figure 1.4: Schematic diagram of side-pump and end-pump geometries. 

End pump geometries allow a very good spatial overlap between the pump radiation 
and the fundamental TEM0o transverse laser mode inside the gain medium which makes 
them more efficient than side-pump geometries (Rustad, 1994). Other very attractive 
features of end-pumped lasers include a very compact design with high beam quality 
(Koechner, 1996). The fact that a good laser beam quality along with a high efficiency 
can be achieved simultaneously with an end-pumped geometry makes end-pumped 
lasers very attractive. 

All the lasers that are considered throughout the rest of this work, have been diode-
end-pumped. 

1.4 Resonator 

In its most elementary form, an optical resonator consists of two opposing mirrors 
with the laser gain medium placed in between them (Figure 1.5). One of these mirrors 
will usually be ~100% reflective at the laser wavelength, while the other is partially 
transmissive at the laser wavelength. For an end-pump configuration, the former is 
referred to as the pump mirror while the latter is called the output coupler. 

Once population inversion in the gain medium has been achieved through optical 
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CHAPTER 1. INTRODUCTION 

100% Reflecting Mirror Partially Transmitting Mirror 

Figure 1.5: Schematic diagram of a basic solid-state laser resonator. 

pumping, it is possible to amplify electromagnetic radiation of a specific frequency 
via the process of stimulated emission as it passes through the gain medium. Laser 
radiation which has been initiated by a spontaneously emitted photon along the optical 
axis of the resonator is reflected between the two mirrors (assuming that the resonator 
is aligned). Each time the radiation passes through the laser gain medium it is further 
amplified by stimulated emission. If the net laser amplification in the gain medium 
exceeds the net loss in the system (including scattering and output coupler losses), 
coherent optical oscillations will build up in the resonator (Siegman, 1986). Since the 
output coupler is partially transmissive at the laser wavelength, a monochromatic and 
highly directional beam of laser radiation is coupled out of the resonator. 
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Chapter 2 

End-Pumped Solid-State Laser 
Thermal Model 

2.1 Overview 

Thermal effects remain one of the main factors that limit power scaling of diode-end-
pumped solid-state lasers (Pfistner et a/., 1994). The importance of the thermal effects 
in solid-state lasers ensured that it remained a very popular research topic over the 
last couple of decades and it drew the attention of many laser physicists. 

Some of the earliest pioneering work in thermal effects in solid-state lasers was done 
by Koechner. He starts by publishing experimental data for thermally induced stress-
birefringence in Nd:YAG crystals (Koechner & Rice, 1970). Koechner then calculated 
analytical solutions for temperature distribution, thermally induced stresses and ther­
mal lensing in the case of a uniformly pumped laser gain medium (Koechner, 1988). 
The temperature profile for a uniformly pumped laser rod was found to be parabolic 
within the rod. The thermally induced stresses that are induced by this temperature 
gradient were calculated and the maximum tensile stress in the rod was found to occur 
on the surface of the rod, in the tangential direction. 

In analogy to Koechner's model of a uniformly pumped rod, Egglestone developed 
a model to determine the temperature and stress distributions in uniformly pumped 
infinite-length Nd:YAG and Nd:glass slabs (Egglestone et a/., 1984). A very important 
relation which predicts the maximum pump power at which fracture will occur in a 
uniformly pumped slab is derived. The fracture power can be expressed as a function 
of the fracture pump power of a uniformly pumped rod as well as the aspect ratio of 
the slab. 

Cousins presented a steady state analytical model to calculate temperature and 
stress in thin edge- and face-cooled disks by making use of cylindrical symmetry 
(Cousins, 1992). Yan applied Cousins' approach to a top-hat pumped laser rod of 
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finite length (Yan & Lee, 1994). The analytical stress distribution throughout the 
rod was presented. Similar to Koechner's result for a uniformly-pumped rod of finite 
length, the maximum stress in the rod was found to occur on the surface of the rod 
(Yan & Lee, 1994). A very interesting conclusion from this work by Yan was that the 
maximum stress in the laser rod is nearly independent of pump beam size in the case 
where the pump beam radius is much smaller than the rod radius. Yan verified this 
statement with experimental data. 

The abovementioned analytical models are very useful to estimate the influence of 
the laser crystal geometry and material parameters on the thermal effects. However, 
all the existing analytical models are restricted to continuous-wave pumped isotropic 
crystal hosts with very basic gain medium geometries. 

With the modern advances in the processing power and memory of computers, finite 
element analysis (FEA) has become a very powerful alternative to analytical solutions. 
This approach allows the calculation of numerical solutions for arbitrary gain materials 
and geometries as well as various pump setups and cooling methods which are usually 
much closer to reality than the often crude assumptions in analytical models. 

Pfistner did some of the earliest work on numerical simulations of thermal and stress 
distributions in anisotropic Nd:YLF laser rods (Pfistner et al, 1994). He found that 
higher doping concentrations lead to a better spatial mode overlap of the pump, but 
also induced a stronger thermal lens. He also concluded that a face-cooled laser rod 
had higher induced stresses. 

Paschotta used FEA to investigate the thermal effects in laser media with a slab 
geometry (Pachotta et at, 2000). A key result from this work is that the induced 
stresses in the slab are very strongly dependent on the horizontal pump beam size 
along the width of the slab, while there is a negligible dependence on the vertical 
pump beam size. 

In the work presented here, both analytical and numerical solutions of thermal 
effects are discussed in detail and compared to each other as well as experimental 
results. 

2.2 Heat Diffusion Equation 

2.2.1 Derivation 

The temperature distribution in a a solid-state laser gain medium is described by the 
three-dimensional heat diffusion equation. In this section, the heat diffusion equation 
will be derived from first principles. This derivation is very similar to the approach 
taken by (Lienhard & Lienhard, 2008). 
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From the first law of thermodynamics it follows that for a closed system 

where U is the total energy in the system, Q is the heat that enters the system and 
W is the work that is done by the system. The derivative is taken with respect to the 
time, t. Assume that the system does no work. Equation 2.1 now reduces to 

Let the closed system be an arbitrary three-dimensional volume that is at rest (see 
Figure 2.1). Note that the term "closed system" as it is used here, refers to a system 
that can exchange heat and work with its surroundings, but no matter. 

The surface is denoted as S , while the volume is denoted as R. Let a surface and 
volume element be dS and dR respectively. There are two vectors defined on dS as 
illustrated in Figure 2.1. One of them is the unit normal vector ft (with | n\= 1), while 
the other is the heat flux vector, q= —kVT, at that point on the surface, according 
to Fourier's law, with k the thermal conductivity and T the temperature. This vector 
points in the direction where the temperature gradient is the highest. Further, allow for 
a volumetric heat release to be distributed throughout the volume R. This volumetric 
heat is denoted by q. 

The heat conducted out of a surface area dS can be written as 

( - W T ) • {ftdS) (2.3) 

where the dot product selects the component of the heat flux that is perpendicular to 
the surface of ds. To get the total heat that is added to the volume R, the heat that is 
generated in R should be added to the heat that flows into S. The total heat addition 
into R is now 

Q=- f {-kVT) • (ftdS) + [(Q)dR (2.4) 
Js JR 

The total internal energy in the system can be written as 

U= f (pu)dR (2.5) 
JR 

where p is the density of the material and u = cT is the energy per mass with c the 
material's specific heat capacity and T the material's absolute temperature in Kelvin. 
It follows from equation 2.5 that 

ITT r f AT\ 
(2.6) 
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Figure 2.1: An arbitrary three-dimensional volume that is considered to be a closed 
system. 

If equations 2.4 and 2.6 are substituted into equation 2.2 then 

From Gauss' theorem it follows that 

( A-(ndS)= f (V-A)dR 
Js Jn 

(2.7) 

(2.8) 

By making use of Gauss' theorem, the surface integral on the left side of equation 2.7 
can be converted into a volume integral so that equation 2.7 now becomes 

Jh.kvr-pc^ + iUR-o (2.9) 

Since the volume R was chosen to be arbitrary, the integrand must be zero. This leads 
to the three-dimensional heat diffusion equation 

2rr (2.10) 

This is the equation that is used to calculate the three-dimensional transient temper­
ature profiles in the laser gain media. 
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2.2.2 Heat Load 

The energy that is deposited into the gain medium via the optical pump and is not 
in turn released in the form of emission (such as fluorescence and laser emission) is 
converted into heat. The heat generation in the laser gain medium is mainly due to 
non-radiative energy transitions that are associated with 

• The energy difference between the pump and laser photons (also known as quan­
tum defect heating) 

• Absorption of the pump light into energy levels other than the intended pump 
level 

• Upconversion processes such as energy transfer upconversion (ETU) and excited 
state absorption (ESA) into higher energy levels and the subsequent non-radiative 
decay out of the higher levels 

• Spontaneous non-radiative decay from the upper laser level 

For a typical 1% doped Nd:YAG laser, about 35 — 40% of the absorbed pump power is 
converted into heat under the condition of no laser extraction (Fan, 1993)(Weber et al., 
1999). Roughly 25% is due to the quantum defect, while the additional contributions 
are responsible for the remaining 10—15% (Weber et at, 1999). Under lasing conditions 
the heat load reduces to 24% of the absorbed pump power (Fan, 1993). 

The ability to efficiently extract the generated heat from the gain medium is one of 
the main considerations that dominates the laser design, especially for high average-
power systems (Koechner, 1996). 

In general, the heat density q (units W.m~3), that is added to a laser gain medium 
via the pump radiation can be described by (Clarkson, 2001) 

q{x,y,z) = ar]Ip(x,y,z) (2.11) 

where r) is the percentage of absorbed pump power that is converted into heat, a is 
the absorption coefficient of the crystal and Ip(x, y, z) is the intensity of the pump 
radiation. The pump intensity profile is dependent on the pump delivery system. In 
this work, two typical pump delivery systems are considered, diode-stack- and fibre-
coupled pumping. 

In the following two sections the transverse intensity profile of the pump beam is 
defined in the x — y plane while z is the direction of pump light propagation (see Figure 
2.2). 
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Figure 2.2: The coordinate system that is used when defining the pump beam intensity 
profiles. From left to right is a cylindrical rod, square rod and a slab. 

Diode-Stack Pumping 

For the discussion that is about to follow, the pump beam is considered to be collimated 
inside the laser gain medium. Since the lengths of all the laser gain media that are 
considered in this work are well within the Rayleigh length of the pump beams, this 
is a valid assumption. The Rayleigh length is the distance from the waist of the beam 
to a point along the propagation direction where the cross-sectional area of the beam 
is doubled. 

In the case of diode-stack pumping, it is not unusual that the pump beam waist in 
the x and y directions are different due to the properties of the diode-stack. In this 
case the pump light intensity can be described by (LASCAD, 2008) 

Ip(x,y,z) = Ppe
azCe 

_2( |-^|SG 'T + 
(2.12) 

where Pp is the pump power that is incident on the gain medium and C is a normali­
sation factor so that transverse distribution of the pump intensity is normalised. From 
this condition it follows that 

III Ce 
-2| I ^ | S G T + 

dx dy = 1 (2.13) 
— OO J — OG 
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This implies that 
C = SGxSGy _ {2U) 

4 r ( ^ r ) r ( ^ ) 2 - ( ^ + ^ WXWy 

where SGX and SGy are the super-Gaussian coefficients for the x and y directions 
respectively (SG — 2 for a perfect Gaussian beam and SG —• oo for a top-hat beam), 
T is the gamma-function and w is the pump beam radius (with the x and y subscripts 
indicating the particular direction). 

If the pump beam radii in the x and y directions are equal and SGX = SGy = SG, 
then equation 2.14 reduces to 

SG2(2^" 
C= f),2

/ (2-15) 

As an example, consider the the transverse pump intensity profiles with various 
super-Gaussian coefficients that are incident on a 2 x 2 mm2 crystal face (see Figure 
2.3). The beam radii are 0.2 mm and 0.6 mm in the x and y directions respectively. 
These intensity profiles are typical of a pump beam that is produced by a diode-stack. 

Fibre-Coupled Pumping 

For fibre-coupled pumping a circular symmetric pump beam is assumed. In analogy to 
the previous section, the general transverse pump intensity profile is defined as 

-2 \Jx 

Ip(x,y,z) = Ppe~azCe Wp (2.16) 

or in cylindrical coordinates 

I SG 

Ip(r, z) = Ppe'azGe7v^ (2.17) 

As an example, consider the the transverse pump intensity profiles (with various 
super-Gaussian coefficients) that are incident on a 2 x 2 mm2 crystal face (see Figure 
2.4). The pump beam radius is 0.5 mm. 

It is generally considered that a top-hat transverse intensity profile is a very good 
approximation for a fibre-coupled diode pump where the fibre face is imaged onto the 
laser crystal (Chenais et al., 2004). For this reason, only analytical solutions for a 
top-hat pump beam will be discussed in the next section. 

2.2 .3 A n a l y t i c a l S o l u t i o n s 

A great advantage of analytical solutions is that the influence of various parameters 
can be analyzed directly by evaluating the analytical expression (Schmid et al, 2000). 
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(a) Both super-Gaussian coefficients = 5. 

(b) Both super-Gaussian coefficients = 50. 

Figure 2.3: The transverse pump intensity profiles for various super-Gaussian coeffi­
cients with the beam radii 0.2 mm and 0.6 mm in the x and y directions respectively. 
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(b) Super-Gaussian coefficient = 50. 

Figure 2.4: The circularly symmetric transverse pump intensity profiles for various 
super-Gaussian coefficients and beam radius of 0.5 mm. 
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This can be achieved without computing all the thermal and thermo-optical effects 
for different values of every parameter. Another important advantage of analytical 
expressions is that they are very fast to calculate. 

The analytical solutions of a continuous-wave (CW) end-pumped cylindrical laser 
rod with radius R and length L, is discussed in this section. The pump beam has a 
top-hat transverse intensity distribution with radius w(z). 

The heat diffusion equation (equation 2.10) can be written in cylindrical coordinates 

fld(dT\ \d2T d2T\ _ dT , o i o . 

* \r¥r y-dF) + 72W2+^)+q^ PC^ (2-18) 

The following assumptions are made: 

• The solutions are steady state so that the time dependence term is zero as in the 
case of continuous-wave pumping. 

• There is no axial heat-flux (Chenais et al, 2004) 

• The pump profile is axisymmetric (Chenais et al, 2004) 

• The thermal conductivity is independent of temperature 

• The material properties are independent of orientation (i.e. an isotropic material) 

• The edge of the crystal (r = R) is kept at a constant temperature by making use 
of a heat sink (T(R, z) — TR) 

With these assumptions, equation 2.18 now reduces to the following time-independent 
expression 

1 d ( dT\ 82T -q 

r dr \ dr J dz2 k 

The heat load that is added to the laser rod via the pump beam is defined as 

ar/Ppe -, r < wp{z) 
Q(r,z) = \ ™ ^ ) 2 ' - ' " ' T ' (2.20) 

1,0, r > Wp(z) 

so that the solution of equation 2.19 is given by (Cousins, 1992) (Chenais et al, 2004) 

,.(„z) -.,(«.„=^f. x (-;npf)+ 1 - &•r<- ^'\ ,,21, 
47rfc [ - In ^ J , r > wp(z) 

From this result it is clear that for a top-hat pump distribution, the temperature 
profile is parabolic within the pumped region while it is logarithmic outside the pumped 
region. 
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2.2.4 Numerical Solutions 

In contrast to the simplistic assumptions in most analytical models, numerical models 
make it possible to investigate complex pump geometries, gain media and cooling tech­
niques. The numerical model that was implemented in this research project was based 
on the finite element method (FEM). In this approach the partial differential equation 
that governs the problem (in this case the heat diffusion equation) is approximated by 
a system of ordinary differential equations, which can be solved by standard techniques 
such as Euler's method. 

Euler's Method 

Consider the two-dimensional time independent heat diffusion equation in cartesian 
coordinates 

d2T(x, V) d2T(x, y) = -q 
dx2 dy2 k l ' ' 

Now define a grid of discrete nodes over the area where the function is defined (see 
Figure 2.5). Consider a particular node P in the grid along with its neighboring nodes 
N, E, S and W (see Figure 2.6). 

The derivative of the dependent variable T at that specific node point P can be 
approximated by 

DT _Te- Tw 

dx~ A 
where A is the distance between consecutive nodes on the grid. 

The second derivative at a node P can be approximated by 

(2.23) 

d2T 

dx2 

d_(dT_ 

dx \ dx 

Je \SxJl 

1 

A 
J_ 
A 5 

A 
TE - TP TP-TX w 

A A 

(TE + TW- 2TP) 

Similarly it can be shown that 

d2T 
^(TN + TS-2TP) 

dy2 A2 

By applying these approximations, equation 2.22 can now be written as 

(2.24) 

(2.25) 

T(x, y) « ^ + \ (T(x + A, y) + T(x - A, y) + T(x, y + A) + T(x, y - A)) (2.26) 
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Figure 2.5: A grid that spans the area over which the differential equation will be 
solved. 
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Figure 2.6: A specific node P with its neighboring nodes that illustrates Euler's method. 
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By iterating through the grid, the temperature at each node can be calculated 
which makes it possible to estimate the temperature distribution over the entire area 
with very good accuracy. To increase the accuracy of the results, it is usually sufficient 
to just decrease the distance (A) between nodes. Euler's method is one of the most 
basic and robust numerical techniques to solve differential equations. 

Boundary Conditions 

For the nodes that are on the edge of the grid (Figure 2.5), boundary conditions should 
be implemented. In this work, both Dirichlet and Neumann boundary conditions will 
be considered. 

For a node point that is subject to a Dirichlet boundary condition, the value of the 
the solution (in this case the temperature) is specified at that particular node. 

In the case of a Neumann boundary condition, the derivative of the solution is 
specified for the nodes that exist on the edge of the finite element grid. In this particular 
application it will imply that the temperature gradient, instead of just a constant 
temperature value, is specified for the surface of the crystal. 

The most realistic boundary condition to describe the interface between the crystal 
and the copper heat sink is a Neumann boundary condition. It is implemented ac­
cording to Newton's law of cooling where the temperature gradient on the edge of the 
crystal is defined as (Chenais et al., 2004) 

TT 

= —r\Tedge ~ Tsink) (2 .27) 

where H is the heat transfer coefficient which describes the quality of the contact 
between the gain medium and the copper heat sink, k is the thermal conductivity of 
the laser gain material while Tedge and Tsink denote the temperature of the edge of the 
gain medium and the heat sink respectively. 

This more realistic boundary condition will result in an accurate absolute temper­
ature distribution throughout the gain medium. However, it is important to note that 
the temperature gradient in the gain medium is independent of the surface temperature 
of the gain medium (Koechner, 1996). 

Finite Element Analysis with MATLAB and A B A Q U S 

In this work, two commercial software packages were used to perform the finite element 
analysis. 

MATLAB's partial differential equation toolbox was used to calculate the steady 
state temperature distribution in isotropic laser rods such as Nd:YAG. Since there exist 
analytical solutions for the case of isotropic rods, the MATLAB implementation of the 
FEM was merely used as quick verification of the analytical results. 

dT 

dr 
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Figure 2.7: An example of the three-dimensional finite element discretization of a laser 
rod that is implemented in ABAQUS. 

For anisotropic crystals where the material properties are different for the var­
ious axes, a more sophisticated commercial software package, ABAQUS, was used. 
With ABAQUS it is possible to perform a three-dimensional time dependent coupled 
thermal-stress analysis of the laser rod in order to determine the thermally induced 
stresses as a function of time. See Figure 2.7 for an example of the three-dimensional 
finite element discretization that is implemented in ABAQUS. 

2.2 .5 C o m p a r i s o n b e t w e e n A n a l y t i c a l a n d N u m e r i c a l So lu ­

t i o n s 

Now that the analytical and numerical solutions of the heat diffusion equation have 
been discussed, they will be compared for the specific case where an isotropic cylindrical 
crystal is end-pumped by a CW top-hat beam. The input parameters in Table 2.1 were 
used for the calculations. 

The analytical temperature distribution (from equation 2.21) in the laser rod can 
be seen in Figure 2.8. Note that it is not the absolute temperate that is given but the 
temperature difference with respect to the crystal edge. The maximum temperature 
difference of 72 °C is located on the pump face in the center of the pump beam. 

Since there is an exponential decay of the pump power inside the laser rod (equation 
2.20), the pump face is the region of most interest. For this reason, the analytical 
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Table 2.1: Input parameters that were used for the calculation of the temperature in 
the Nd:YAG. 

Active ion 
Crystal host 
Doping at.% 
Thermal conductivity [W.m™1.]^""1] 
Absorption coefficient @ 808 nm [cm-1] 
Fractional heat load 
Fraction of pump power that is absorbed 
dn/dT [K-1] 
Incident pump power [W] 
Pump beam radius [jum] 
Crystal radius [mm] 
Crystal length [mm] 

Nd 
YAG 
1 
13 
9.1 
0.25 
0.935 
9.86xl0"6 

10 
125 
1 
3 

0 0.5 1 1.5 2 2.5 3 
Z[mm] 

Figure 2.8: The analytical temperature distribution in the Nd:YAG rod which is 
pumped from the left by a 10 W top-hat beam with a radius of 125 /xm. 
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^ 5 0 05 
r [mm] 

Figure 2.9: The analytical (blue line) and numerical (red dots) temperature distribu­
tions on the pump face of the Nd:YAG rod pumped by a 10 W top-hat beam with a 
radius of 125 fiia. 

temperature profile on the pump face is compared to numerical results as produced 
by a FEM implementation in MATLAB. The temperature distribution comparison of 
the pump face can be seen in Figure 2.9. The maximum temperature difference of 
74.65 °C on the pump face, as produced by the numerical calculations, compares very 
well with the analytical solution. Not only is the maximum temperature of the two 
models in very good agreement, but also the respective profiles of the temperature 
distribution throughout both the pumped and unpumped regions are in very good 
agreement. As expected, the temperature profile is parabolic within the pumped region, 
while is decreases logarithmically in the unpumped region. 

Note that in this implementation the boundary conditions were specified to be 
Dirichlet where the crystal edge was set to zero. 

The comparison between analytical and numerical solutions is merely a check for 
consistency. The approach from here on is to use the analytical equations to calculate 
the temperature distribution for isotropic cylindrical crystals that are end-pumped by 
a CW top-hat beam. For more complex pump configurations and anisotropic laser 
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materials, a full FEM is implemented in ABAQUS. 
The calculation of the temperature distribution inside the laser gain medium is the 

first step to ultimately determine the influence that thermal effects might have on the 
laser's performance. 

2.3 Thermal Effects 

In the previous section, the calculation of the temperature gradient in a laser rod was 
investigated. Consequences of the temperature gradient in the gain medium include 
laser beam distortion due to thermal lensing, depolarization loss due to stress induced 
birefringence and ultimately fracture of the laser rod (Clarkson, 2001). Of these thermal 
effects, thermal lensing and crystal fracture will be discussed in particular. 

To illustrate the influence of thermal effects, the following discussion is restricted 
to edge-cooled isotropic cylindrical rods (see Figure 2.10). 

Figure 2.10: A fractured Nd:YLF cylindrical crystal rod that is mounted in a copper 
heat sink. 
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2.3 .1 T h e r m a l L e n s i n g 

The refractive index profile in the laser gain medium acts on the laser beam as an 
arbitrarily shaped lens, which is generally referred to as a thermal lens. The thermal 
lens forms inside the laser gain medium due to a combination of the following effects: 

• The inhomogeneous temperature distribution in a pumped laser rod induces a 
gradient in the refractive index of the medium due to the refractive index that 
has a temperature dependence. 

• The temperature gradient leads to strains and stresses in the gain medium. The 
thermally induced strains cause a change in the refractive index (Pfistner et al, 
1994)(Weber et a/., 1999). 

• The end-face of the laser rod forms a bulge due to thermally induced displace­
ments in the rod. The bulge also contributes to the total thermal lens. 

In the design of most laser resonators, the thermal lens can be accounted for by adding 
a thin lens to the resonator stability calculations. 

For Nd:YAG laser rods in particular, the strain-induced refractive index changes are 
small in comparison to the contribution from the temperature gradient (Weber et at, 
1999). It is estimated that the temperature dependence of the refractive index of the 
rod contributes to more than 80% of the thermal lens in Nd:YAG lasers (Clarkson, 
2001). In the rest of this discussion the strain- and displacement-induced refractive 
index changes will be ignored. 

The temperature dependence of the refractive index in the rod induces a thermal 
lens of which the focal length (fth) is given by 

1 On rL ( d2T 

fth dTJo \dr* J 
Jo 

dz (2.28) 

where | ^ is the temperature dependence of the refractive index of the material and L 
the length of the rod in the pump light propagation direction. 

Consider a cylindrical laser rod which is subjected to a top-hat pump beam so 
that the temperature distribution can be described by equation 2.21. Under all the 
assumptions for which equation 2.21 is valid, the focal length of the thermal lens is 
given by 

1 dn 2rr~yP 

jVk = df^k^ ( ' } 

where r\ is the fraction of absorbed pump power that is converted into heat and 7 is 
the fraction of incident pump power (P) that is absorbed in the length (L) of the rod. 
The thermal conductivity of the material is denoted by k while w is the pump beam 
radius. 
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2 .3 .2 T h e r m a l l y I n d u c e d S t r e s s e s 

Aside from the optical influence that the pump-induced temperature gradient in the 
laser rod has on the laser, it also has an influence on the mechanical properties of the 
material (Weber et al, 1999). Stresses inside the laser rod are induced due to the 
hotter inner region of the rod that is restricted from expansion by the cooler outer 
region (Pflstner et a/., 1994). If the induced stresses in the laser rod exceed the tensile 
strength of the material, the rod will fracture and cause the pump and laser beams 
to be heavily distorted. The severe distortion losses might even cause the laser to no 
longer operate. Crystal fracture is one of the primary limiting factors in the power-
scaling of diode-end-pumped solid-state lasers which makes it an important effect that 
has to be considered in the design process. 

For isotropic materials such as Nd:YAG, which are subjected to a top-hat pump 
which is collimated in the crystal, it is possible to solve the stress distribution with 
analytical equations (Cousins, 1992) (Yan & Lee, 1994) if a plane stress approximation 
is made. This approximation assumes a thin disk that is only loaded in its own xy-plane 
and has no stresses in the ^-direction. 

For a cylindrical rod that is pumped by a CW top-hat beam which induces a 
temperature distribution in the rod as described in equation 2.21, the thermally induced 
radial (ar) and tangential (ag) stresses on the pump face are given by (Yan & Lee, 1994) 

_ ( aTEm,Pp \ 
'{]-\i*k(l-V)) 

. . (aIEan5L\y U f a ) + ! ( $ ) - ! ( * ) . r<Wr 

^)^^^r\^(i)-m-m.r>^ (2-3i> 
where 7] is the fraction of incident pump power (Pp) that is converted into heat, E is 
Young's modulus, v is Poisson's ratio, k the thermal conductivity, a. the absorption 
coefficient and « r is the linear expansion coefficient of the material. 

For the general three-dimensional case, the failure criterion that is considered is the 
Tresca stress, also known as the stress intensity, which is defined as 

oT — max(\ <7i — <T2 |, | 02 — <T3 |, | <T3 — <7i |) (2.32) 

where <7i,<72 and 03 are the principal stresses. 
With the plane stress approximation in the cylindrical isotropic rod, the Tresca 

failure criterion is merely the absolute value of the difference between ar and GQ. 

\(wh r>UJp 
(2.30) 
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It is generally accepted that the core of the rod is under compression (negative 
values of ar and a$) while the outer part is in tension (positive values of ay and ag). 
Since most laser gain medium materials are much stronger in compression than in 
tension, fracture will occur when the maximum tensile stress in the rod exceeds the 
tensile strength of the material (Cousins, 1992)(Yan & Lee, 1994)(Chenais et al, 2004). 
From equations 2.30 and 2.31 it follows that the maximum tensile stress occurs on the 
surface of the rod. 

The maximum stress in the rod can be calculated by substituting r — R into 
equation 2.31 so that 

(arEarjPA ( w2
p \ 

°- = ( i^r^) J [l ~ m>) (2-33) 
where wp is the pump radius. 

Note that the equation for the maximum tensile stress is written incorrectly in 
some literature. The maximum stress equation as it is written in (Yan & Lee, 1994) 
overestimates the maximum stress with a factor of two. In (Peng et at, 2005), the 
entire (1 — v) factor is missing in the equation. These errors have been corrected in 
the work presented here. 

The maximum stress on the surface will tend to tear the material in the tangential 
direction and cause it to fracture along the radial direction (Yan & Lee, 1994). 

If the material's fracture stress (a/rQC) is known, equation 2.33 can be used to 
estimate the critical incident pump power (Pc) at which fracture occurs 

[Ank{l - u)afrac\ ( 1_ 

2TP 
' - R ^ IT3f 

Although equation 2.34 gives a very good estimate of the critical incident pump 
power, the critical pump power is very strongly dependent on the surface roughness of 
the rod. 

Note that equations 2.30-2.33 are only valid for isotropic rods. For anisotropic 
crystals such as YLF or YVO4 where the material properties are not cylindrically 
symmetric, it is necessary to perform a three-dimensional FEM analysis in order to 
determine the stress distribution in the laser rod (Pfistner et a/., 1994). However, it is 
shown in Chapter 5 that the analytical stress model for isotropic rods can be used to 
estimate the stresses in anisotropic rods with reasonable accuracy. 

The equations in this section outline the analytical model for the stress distribution 
in an isotropic laser rod. In the next chapter, these equations will be implemented in 
an end-pumped Nd:YAG laser model and the results will be discussed in detail. 
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Chapter 3 

Continuous Wave Pumped Nd:YAG 
Rod 

In the previous chapter, the basic theory that describes the temperature distribution 
inside an isotropic end-pumped cylindrical laser rod was derived. Both analytical and 
numerical temperature models were considered. The theory behind two of the main 
thermal effects that are induced by the temperature gradient in the laser rod, namely 
thermal lensing and thermally induced stresses, were also discussed. 

In this chapter, the analytical and numerical models that have been discussed in the 
previous chapter are applied to an end-pumped Nd:YAG cylindrical rod laser model in 
order to investigate the temperature distribution and the induced thermal effects. 

Note that the main assumptions in the laser model include the following 

• The laser rod is isotropic 

• The laser rod is cylindrically symmetric 

• The material properties are independent of temperature 

• The heat flux in the axial direction is neglected 

• The pump beam is axisymmetric 

• Beer-Lambert absorption of the pump light in the laser rod 

• The pump beam in the crystal is perfectly collimated 

• The pump is continuous wave (steady-state) 

• A constant fraction of absorbed pump light is converted into heat 
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Table 3.1: Input parameters for the calculation of thermal effects in this chapter. 

Parameter 
Active ion 
Crystal host 
Doping at.% 
Thermal conductivity [W.m_1.K_1] 
Absorption coefficient @ 808 nm [cm-1] 
Fractional heat load 
Fraction of pump power that is absorbed 
Refractive index 
dn/dT [K-1] 
Incident pump power [W] 
Pump beam radius [/an] 
Crystal radius [mm] 
Crystal length [mm] 
Linear expansion coefficient [K_1 

Young's modulus [GPa] 
Poisson's ratio 

Value 
Nd 

YAG 
1 

12.9 
4.7 
0.27 
0.85 
1.81 

8 .9xl0- 6 

8.5 
650 

1 
4 

7 .9xl0- 6 

282 
0.28 

Reference 

(VLOC YAG Brochure, 2008) 
(Didierjean et al, 2003) 
(Didierjean et al, 2003) 

(VLOC YAG Brochure, 2008) 
(VLOC YAG Brochure, 2008) 

(Didierjean et al, 2003) 
(Didierjean et al, 2003) 
(Didierjean et al, 2003) 
(Didierjean et al, 2003) 

(VLOC YAG Brochure, 2008) 
(VLOC YAG Brochure, 2008) 
(VLOC YAG Brochure, 2008) 

The parameters that are used in the theoretical calculations of this model are listed 
in Table 3.1. A normal Gaussian pump beam profile as well as a top-hat pump beam 
profile are implemented. The transverse pump beam intensity profiles that were used 
in this model can be seen in Figures 3.1(a) & 3.1(b). The temperature distribution, 
thermal lens and thermally induced stresses that are induced by each of the two pump 
profiles are calculated and compared. 

3.1 Temperature Distribution 
The temperature distribution in the laser rod was calculated for a Gaussian pump beam 
and a top-hat pump beam. In both cases the results were compared to the measured 
temperature profile in a crystal that is pumped by a Gaussian beam. 

For the top-hat pump beam, the analytical (equation 2.21) and the numerical (based 
on equation 2.26) temperature profiles on the pump face were compared to experimental 
data taken from (Didierjean et al, 2003) (see Figure 3.2). 

The numerical distribution in the crystal was calculated with MATLAB's partial 
differential equation toolbox. The surface temperature of the crystal was kept constant 
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(a) Pump beam with a Gaussian transverse intensity profile. 
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(b) Pump beam with a top-hat transverse intensity profile. 

Figure 3.1: The transverse intensity profiles of the pump beams that are implemented 
in this chapter. 
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Figure 3.2: The calculated (solid blue line:analytical and dashed green line:numerical) 
temperature profiles on the pump face of the crystal while subject to a CW top-hat 
pump beam. The temperature profile due to a Gaussian pump beam is added as a 
comparison (black dashed line). In the case of the measured (red dots) temperature 
distribution (Didierjean et ai, 2003), the crystal was subject to a CW Gaussian pump 
beam. 

(Dirichlet boundary condition). The theoretically calculated temperature profiles are 
in very good agreement with the measured temperature profile. The non-symmetric 
shape of the experimental data is due to a slight dissymmetry in the pump setup. 

The analytical temperature distribution throughout the volume of the crystal is 
shown in Figure 3.3. 

For the Gaussian pump beam, only the numerical temperature distribution (based 
on equation 2.26) was compared to the experimental data, since the analytical solution 
in equation 2.21 is only valid for a top-hat transverse intensity distribution (see Figure 
3.2). The numerical implementation was the same as for the top-hat pump beam. The 
numerical model predicts the maximum temperature on the pump face to be 48 °C 
which is two degrees higher that the measured value. 

It is clear from Figure 3.2 that there is no significant change (< 5%) in the temper-
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Figure 3.3: The analytical temperature distribution in the Nd:YAG laser rod which is 
pumped by a 8.5 W top-hat beam with a radius of 650 //,m. 

ature distribution on the pump face when a Gaussian pump beam is used instead of a 
top-hat beam. (Didierjean et al, 2003) describes the pump beam in their experiments 
as Gaussian, but contradicts the statement by saying the output face of the multi-mode 
fibre was imaged onto the crystal (this implies a top-hat pump beam). Even though 
the difference between the temperature profiles are small, it is peculiar that the tem­
perature profile from the top-hat pump beam provides a better fit to the experimental 
data. It is not clear whether the experimental data was from a top-hat or a Gaussian 
pump beam. 

Note that the experimental data which the models are compared to is the measured 
temperature distribution across the centre of a square pump face ( 2 x 2 mm) while the 
theoretical calculations are for a circular (R = 1 mm) pump face. Even though the 
pump faces aren't the same shape, the experimental data is added merely to show that 
the calculated temperature distribution is very close to reality. As long as the area 
and circumference of the pump faces are roughly the same, the shape of the pump face 
shouldn't affect the temperature distribution too much in the case of a CW (steady-
state) pump. 
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3.2 Thermal Lensing 
In this section, only the temperature dependence of the refractive index is considered to 
contribute to the thermal lens. This is a very good assumption since the contribution 
of the "bulging-effect" and thermally induced strains only accounts for ~20% of the 
thermal lens in Nd:YAG lasers (Clarkson, 2001). 

In order to design a laser resonator that is stable under low as well as high power 
operation, it is very useful to determine the dependence of the thermal lens focal length 
on the incident pump power. The analytical expression for the thermal lens focal length 
(equation 2.29) makes it very easy to investigate how various pump parameters such 
as the incident power and beam radius influence the induced thermal lens. It is clear 
from equation 2.29 that the thermal lens optical power (inverse of the focal length) is 
linearly dependent on the incident pump power while the thermal lens focal length is 
proportional to the inverse of the incident pump power (Figure 3.4). For an incident 
top-hat pump beam of 8.5 W (radius 650 //m), the thermal lens focal length is ~2 m. 
As the pump power goes to zero, the thermal lens optical power goes to zero, which 
implies that there is no thermal lens at all. The maximum anticipated incident pump 
power should be used to get an estimate of the maximum strength of the thermal lens. 
If the pump power is increased from 8.5 W to 200 W, a much stronger thermal lens 
with a focal length of 84 mm is induced. 

From equation 2.29 it follows that the thermal lens focal length is proportional to 
the square of the pump beam radius (see Figure 3.5). In order to reduce the strength 
of the thermal lens, a larger pump beam size should be implemented. In reality, by 
changing the pump beam radius, many other important aspects of the laser's operation 
are influenced, such as the laser threshold. These effects are discussed in later chapters. 

It follows from equation 2.28 that even though the temperature profiles in the laser 
rod due to the respective top-hat and Gaussian pump beams are almost the same, the 
thermal lens induced by the Gaussian beam is expected to be stronger than that of the 
top-hat pump beam since the temperature profile in the case of the Gaussian beam 
has a stronger curvature at r = 0 (see Figure 3.2). It is estimated in some literature 
that the Gaussian pump beam can induce a thermal lens that is up to twice as strong 
as that of the top-hat pump beam (Clarkson, 2001). The Gaussian beam will also 
induce a more highly aberrated thermal lens (Clarkson, 2001). The degradation of 
the laser beam will thus be worse for a Gaussian pump beam. In order to reduce the 
degradation of the laser beam it must be chosen to be smaller than the pump beam 
radius so that the laser beam only occupies the central region of the pumped region 
where the aberrations are smaller (Clarkson, 2001). 

For CW lasers it is usually easy to compensate for the thermal lens in the design of 
the resonator, while in quasi-continuous wave pumped lasers the thermal lens changes 
drastically during a single QCW-pulse, which makes it extremely difficult to design a 
resonator which is stable for such a variable thermal lens. 
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Figure 3.4: The variation of the thermal lens focal length (blue) and optical power 
(green) with incident pump power (top-hat pump beam) and pump beam radius 
650 /im. 
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Figure 3.5: The thermal lens focal length (green) and optical power (blue) as a function 
of pump beam radius. The top-hat pump beam has an incident power of 8.5 W. 
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3.3 Thermally Induced Stresses 
The most important influence that the temperature gradient inside the laser rod has 
on the mechanical properties of the material, is the stresses that are induced. When 
the induced stresses in the laser rod exceed the tensile strength of the material the 
rod will fracture and the laser will no longer operate. For this reason it is important 
to operate the laser so that the thermally induced stresses are well below the tensile 
strength of the material. 

By making use of the analytical equations 2.30 Sz 2.31, the stresses on the pump 
face of the Nd:YAG rod can be determined (see Figure 3.6). As expected, the centre 
of the rod is under compression while the outer regions are in tension. 

-1 -0.5 0 0.5 1 
r [mm] 

Figure 3.6: The radial (yellow line) and tangential (blue line) stresses on the pump 
face of the Nd:YAG rod with an 8.5 W incident top-hat pump beam. The green and 
red regions indicate compression and tension respectively. 

With an 8.5 W incident top-hat pump beam, the maximum tensile stress of 16 MPa 
is found on the edge of the crystal. This value is well below the tensile strength of 
YAG which is 280 MPa (VLOC YAG Brochure, 2008). The maximum stress in the 
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laser rod has also been calculated numerically with ABAQUS and found to be within 
5% of the analytical value. 

The stress intensity distribution in the laser rod while it is pumped by a Gaussian 
beam has also been investigated numerically and the maximum tensile stress was found 
to be within 1% of the maximum tensile stress induced by a top-hat pump-beam of 
the same power. 

Now that the stresses have been calculated analytically and verified numerically for 
an 8.5 W incident pump-beam, it is very important to determine how hard the YAG 
rod can be pumped before fracture will occur. This power limit can be calculated by 
making use of equation 2.34 and is referred to as the critical incident pump power. 
Once the critical incident pump power is known, the laser can be operated below this 
limit to ensure that the crystal will not fracture. 

The critical incident pump power has been calculated analytically and numerically 
for the Nd:YAG crystal under lasing as well as non-lasing conditions. While the laser 
is not lasing, the fractional heat load (rj) is taken as 0.4 (Fan, 1993) as opposed to the 
0.27 (Didierjean et ai, 2003) under lasing conditions. Figure 3.7 shows the maximum 
stress intensity in the laser rod as a function of incident pump power. There is a very 
good agreement between analytical and numerical values for the maximum stress in 
the laser rod. When there is no laser beam to extract the pump energy from the rod, 
the critical incident pump power is ~100 W. When the laser is functional, the critical 
incident pump power increases to ~150 W since there is a laser beam that can extract 
energy from the laser rod so that less heat is generated. To prevent thermal fracture, 
the rod cannot be pumped with more than 150 W under lasing conditions. 

A possible method that can be applied to increase the total power that can be 
deposited into the rod before fracture occurs, is to pump the rod from both sides. 
Since the maximum tensile stress occurs on the pump face, there will be a very small 
contribution to the stresses on a particular rod face due to a pump beam that is 
pumping the opposite rod face. This will make it possible to deposit almost twice as 
much power inside the rod before fracture will occur. 

It is clear from equation 2.34 that the the ratio of the rod radius to the pump beam 
radius is very important in determining the critical incident pump power. By changing 
the pump beam radius, many other important aspects of the laser's operation will be 
influenced, such as the laser threshold. For this discussion, only the effect that the 
pump beam radius has on the critical incident pump power will be considered. Figure 
3.8 shows the critical incident pump power as a function of pump beam radius. As an 
example, when the pump beam radius is increased from 650 //m to 800 fim, the critical 
incident pump power will increase from 150 W to about 170 W. The numerical and 
analytical solutions agree very well for wp/R larger than 0.5. For wp/R smaller than 
0.5, there is a deviation between the numerical and analytical solutions which increases 
as the the pump beam radius decreases. For wp << R, the analytical solution suggests 
a constant critical pump power while the numerical solution shows a decrease in the 
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Figure 3.7: The analytical maximum stress intensity (blue lines) in the Nd:YAG laser 
rod under lasing and non-lasing conditions. In each case the analytical solution is 
compared to numerical results (red squares: non-lasing and red dots: lasing). The 
horizontal red line indicates the tensile strength of Nd:YAG. 

critical pump power. If the critical pump power was independent of pump beam size 
for small pump beam radii the pump beam intensity would go to infinity as the pump 
beam radius goes to zero. 

Figure 3.9 shows the pump beam radius dependence of the maximum stress in the 
laser rod for an incident pump power of 100 W. As before, there is good correspondence 
between the analytical and numerical values for the maximum stress only for wp/R 
greater than 0.5. For wp << R, the analytical solution suggests that the maximum 
stress is independent of the pump beam size while the numerical solution shows an 
increase in the maximum stress as the pump beam size decreases (increase in pump 
intensity). 

The analytical solutions (equations 2.33 k, 2.34) for the maximum stress and critical 
pump power of the laser rod are a very good approximation for wp/R greater than 0.5. 
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Figure 3.8: The critical incident pump power as a function of pump beam radius. (Blue 
line: analytical and red dots: numerical) 
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Figure 3.9: The maximum stress as a function of the pump beam radius for a 100 W 
incident pump beam. (Blue line: analytical and red dots: numerical) 
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3.4 Summary 
The theory surrounding the thermal effects in solid-state lasers that have been discussed 
in the previous chapter were applied to a CW pumped Nd:YAG laser. The temperature 
distribution in the laser rod as well as the thermal lens and stresses that are induced 
due to the temperature gradient have been discussed for this particular laser. The 
considerations and suggestions is this chapter are purely based on the thermal effects. 
Pump beams with Gaussian and top-hat transverse intensity profiles were considered. 
As a verification of the results, analytical and numerical solutions were compared where 
possible. 

The temperature gradient in the laser rod compared very well with experimental 
data. For a CW pumped laser, the transverse intensity profile of the pump beam seems 
to make no significant difference in the temperature gradient inside the laser rod. 

The thermal lens in the laser rod and its dependence on the incident pump power 
and pump beam radius was investigated. 

The analytical and numerical solutions for the maximum tensile stress in the laser 
rod are in very good agreement for wp/R greater than 0.5. For this reason the use 
of the analytical solutions to determine the maximum stress and critical pump power 
should be restricted to larger pump beam radii where wp/R is greater than 0.5. It is 
not clear why the analytical expression (equation 2.33) cannot accurately determine 
the maximum stress in the rod for wp/R < 0.5 but it might be due to the maximum 
stress that occurs elsewhere in the rod and not on the pump face. 

An incident pump power of 8.5 W induced a maximum tensile stress of 16 MPa 
which is well below the tensile strength of YAG. For the pump beam radius of 650 /im, 
the critical incident pump power is estimated to be 150 W. This power limit can 
somewhat be increased by using a larger pump beam. 

The analysis in this chapter shows how a good thermal model can act as a design 
tool to address thermally induced effects in end-pumped solid-state lasers. 
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Chapter 4 

Continuous Wave Pumped Nd:YAG 
Slabs 

4.1 Analytical Equation for the Maximum Stress in 
an Anisotropic Slab 

The theory that describes the analytical value of the maximum stress in laser gain 
media is restricted to cylindrical rods (see Section 2.3.2). 

It is well known that the critical pump power at which fracture occurs (Pc) in a 
uniformly pumped slab, in comparison to a uniformly pumped rod, scales according to 
(Egglestone et al, 1984)(Koechner, 1996) 

Pc(slab) _ 3w 

Pc(rod) ~ 2irt { ' ' 

where w is the width in the x-direction and t the thickness in the y-direction of the 
slab (Figure 2.2). 

Paschotta used finite element analysis to investigate the thermally induced stresses 
in a Yb:YAG slab (Pachotta et al, 2000). He particularly examined the pump beam 
size dependence of the maximum stress in the slab. He found that the maximum stress 
is very weakly dependent on the pump beam diameter in the ^-direction dpy. The 
maximum stress in the slab varied from 31% to 38% of the tensile strength of YAG 
when dpy was varied over the full thickness of the slab. On the other hand, Paschotta 
found that the maximum stress in the slab is very strongly dependent on the pump 
beam diameter in the x-direction dpx. He calculated a maximum stress variation of 
between 10% and 98% (of the tensile strength of YAG) when dpx was varied over the 
full width of the slab. 

By ignoring the influence that the size of dpy has on the maximum stress in the laser 
slab and by assuming that the scaling of Pc(slab) for a non-uniformly pumped slab is 
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also according to equation 4.1, then the critical pump power of the slab is calculated 
by substituting equation 2.34 into equation 4.1 and by replacing the (wp/R)2 term in 
equation 2.34 by (dpx/w)2 so that 

Pc(slab) = *°Kl-u)ot (4.2) 
tr,aEaT (l - f^) 

Equation 4.2 can now be used to investigate the influence that the aspect ratio 
(w/t) and dpx of the slab have on the critical pump power. 

Throughout this chapter the same material properties as listed in Table 3.1 are 
used and the slabs are assumed to be mounted so that the top and bottom surfaces 
(x'2-plane) are in contact with a heat sink. 

4.2 Power Scaling of Slabs 

One of the main reasons for using slabs instead of rods as gain media is the fact that 
they have a much higher critical pump power than rods. Exactly how much harder the 
slab can be pumped in comparison to a rod with the same material properties, depends 
very strongly on the aspect ratio of the slab as can be seen in equation 4.1. 

For a slab with w = 10 mm and t — 2 mm (length=5 mm), the maximum stress in 
the slab as a function of incident pump power (with dpx = 9.0 mm) is shown in Figure 
4.1. 

For the Nd:YAG rod in the previous chapter, fracture occurred at an incident pump 
power of 150 W, while thermal fracture of the Nd:YAG slab will only occur at 475 W 
incident pump power. The power-scaling of the laser becomes easier when there is much 
more pump power available without damaging the slab. The analytical solution of the 
maximum stress in the slab is compared to numerical data that have been calculated 
with a finite element analysis in LASCAD and found to be in perfect agreement as can 
be seen in Figure 4.1. 

4.3 The Influence of the Pump Beam Size on the 
Critical P u m p Power and Maximum Stress 

For the specific slab aspect ratio of 5 (w — 10 mm and t — 2 mm), the critical 
incident pump power as a function of dpx is investigated analytically (Figure 4.2). 
For dpx/w larger than 0.7, the analytical solution provides an accurate solution of 
the critical pump power. For the cylindrical YAG rod in the previous chapter, the 
analytical solution was accurate for wp/R larger than 0.5. The discrepancy between 
the analytical solution and the numerical results at small pump beam radii is similar 

44 



CHAPTER 4. CONTINUOUS WAVE PUMPED ND:YAG SLABS 

300 

250 

CD 
Q. 
1,200 
w 
CO 

co 150 
E 

I 100 
CD 

100 200 300 
Incident Pump Power [W] 

400 500 

Figure 4.1: The maximum stress in the slab as a function of incident pump power (with 
dpx — 9.0 mm). (Blue line: analytical and red dots: numerical) 

to the discrepancies that were found in the analysis of the stresses in a cylindrical rod 
in the previous chapter. 

As a further validation, it is also necessary to investigate the variation of the max­
imum stress as a function of dpx/w. This is shown in Figure 4.3 for a CW incident 
pump power of 100 W. For dpx/w larger than 0.7, the analytical solution is consistent 
with numerical results, while it cannot provide an accurate answer for smaller pump 
beam radii. 

At first glance, the the analytical model seems to be inadequate since it can only 
produce accurate answers for dpx/w larger than 0.7. Fortunately, most slab lasers 
operate in the region where dpx/w is in fact larger than 0.7, which makes equation 4.2 
extremely useful in the determination of thermally induced stresses in isotropic slabs. 
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Figure 4.2: The critical incident pump power as a function of dpx. (Blue line: analytical 
and red dots: numerical) 
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Figure 4.3: The variation of the maximum stress with dpx/w for a constant incident 
pump power of 100 W. (Blue line: analytical and red dots: numerical) 
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4.4 Aspect Ratio of the Slab 

From equation 4.2, it is clear that the fracture limit of the slab can be increased by 
increasing the aspect ratio of the slab. By fixing the width of the slab at 10 mm and 
then varying the aspect ratio by changing the thickness of the slab, the critical pump 
power is determined as a function of aspect ratio (Figure 4.4). For a Nd:YAG slab 
with w = 10 mm and t — 2 mm, fracture will occur at an incident pump power of 
475 W. This pump power limit can be increased to ~950 W with an aspect ratio of 
10. The analytical critical pump power as a function of slab aspect ratio is within 10% 
accuracy of the numerical solution for aspect ratios between 4 and 10. The aspect ratio 
of the slab can't always be increased to the desired value since it is often limited by 
the current manufacturing techniques of the specific crystal (in this case YAG) and the 
propagation of the pump light through the slab. 

1000 

Slab Aspect Ratio (w/t) 

Figure 4.4: The critical pump power as a function of the aspect ratio of the slab. The 
green region indicates the analytical solution with a 10% error estimation. The red 
dots are numerical values. 
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4.5 Summary 
In analogy to the analytical equation for the maximum tensile stress in a cylindrical 
rod, an analytical equation for the critical incident pump power of an isotropic slab 
has been derived by making use of the well known slab power scaling law (equation 

4-1). 
Equation 4.2 can be used to investigate the critical pump power as a function of 

dpx and slab aspect ratio. 
The analytical equation that has been derived in this chapter is in good agreement 

with numerical results as long as dpx/w is larger than 0.7. Fortunately, for most slab 
lasers, dpx/w is in fact larger than 0.7, which makes equation 4.2 a quick and accurate 
way to investigate the critical pump power in an isotropic slab. 

Even though equation 4.2 provides a robust way to estimate the maximum stress 
in a slab for large pump beam sizes, more work needs to be done in order to derive an 
expression for the maximum stress in a slab which is also valid for small pump beam 
sizes. 
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Chapter 5 

Quasi-Continuous Wave Pumped 
Tm:YLF Rod 

The power scaling of diode end-pumped solid-state lasers is a very active area of re­
search. The main problem that limits the power scaling of these lasers is the generation 
of heat inside the laser gain medium which can ultimately cause fracture. When the 
continuous wave (CW) pump power exceeds the fracture power of the crystal, a quasi-
continuous wave (QCW) pump is often used to reduce the average pump power to 
below the fracture pump power. 

Due to the anisotropic nature of YLF, it is necessary to perform a three dimensional 
finite element analysis of the laser material in order to investigate the temporal and 
spatial behaviour of the thermally induced stresses (Pfistner et al., 1994). 

A time-dependent FEM model of a Tm:YLF laser rod has been implemented in 
ABAQUS. The boundary conditions at the interface between the rod and the copper 
heat sink were assumed to be Neumann boundary conditions (equation 2.27) with a 
heat transfer coefficient of 0.9 W.cm^.K" 1 (Didierjean et al, 2003). Convection on 
the end-faces of the crystal are ignored in this study. To solve the heat equation 
numerically, the Tm:YLF rod has been discretized into 5560 finite elements. 

For the steady-state CW pump case, the model is compared to experimental fracture 
data taken from (So et al., 2006). Table 5.1 shows all the model input parameters that 
were used. For the CW pump case, fracture of the 4% doped Tm:YLF rod was reported 
at 38.7 W of absorbed pump power, which corresponds to 47.2 W of incident power 
(So et al, 2006). The transverse intensity profile of the pump beam was assumed to 
be a super-Gaussian of order 10. This is also referred to as a quasi-top-hat beam and 
is a very good representation of a fibre-coupled diode pump. 

At 47.2 W incident pump power, the maximum temperature in the YLF rod was 
calculated to be 128 °C, while the maximum stress intensity was calculated to be 
40.75 MPa, which agrees very well with the 33-40 MPa tensile strength of YLF that 
is found in literature (Koechner, 1996) (Peng et al, 2005). Throughout the rest of 
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Table 5.1: Input parameters that are used for the calculations in this chapter. 

Parameter 
Active ion 
Crystal host 
Doping at.% 
Thermal conductivity ||a [W.m^ .K - 1 

Thermal conductivity ||c [W.m^.Kr1] 
Absorption coefficient @ 792 nm [cm-1] 
Fractional heat load 
Refractive index n0 

Refractive index ne 

Incident pump power [W] 
Pump beam radius [yum] 
Crystal radius [mm] 
Crystal length [mm] 
Linear expansion coefficient ||a [K-1] 
Linear expansion coefficient ||c [K-1] 
Young's modulus [GPa] 
Poisson's ratio 
Specific heat [J .kg^.K - 1] 

Value 
Tm 

YLF 
4 

7.2 
5.8 
1.43 
0.33 
1.44 
1.46 

47.18 
470 
1.5 
12 

1 3 x l 0 - e 

8xl0~ 6 

75 
0.33 
790 

Reference 

(So et al, 2006) 
(Pollak et al, 1982) 
(Pollak et al, 1982) 

(So et al, 2006) 

(Walsh, 1995) 
(Walsh, 1995) 

(So et al, 2006) 
(So et al, 2006) 
(So et al, 2006) 
(So et al, 2006) 

(Pollnau et al, 1998) 
(Pollnau et al, 1998) 

(Koechner, 1996) 
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this work 40MPa is considered to be the tensile strength of YLF. Figure 5.1 shows the 
temperature and stress distributions in the T m Y L F rod at the CW critical incident 
pump power of 47.2 W. Even though the analytical equation 2.33 for the maximum 
stress is meant for an isotropic rod, it can be used to model the maximum stress in an 
anisotropic rod with great success if the material properties are taken to be the worst 
of the two axes (a- and c-axis) in the rod. Figure 5.2 shows the analytical values for 
the maximum stress as a function of incident pump power. 

Since there is a very good agreement between the numerically calculated fracture of 
the YLF rod and experimental fracture data in the case of a CW pump, the model was 
extended to a time dependent analysis so that it can simulate a modulated or QCW 
pump. 

5.1 Single-Pulse 

The first step in the time dependent numerical stress model is to determine the ther­
mally induced stresses during a single QCW pump pulse (see Figure 5.3). 
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NTH 

(a) The temperature distribution throughout the Tm:YLF rod. The maximum 

temperature is 128 °C. 

Tresca 
(Ave 

m 

Crit.: 
+4.08e+07 
+3.91e+07 
+3.74e+0 7 
+3.57e+07 
+3.40e+07 
+3.23e+07 
+3.06e+07 
+2.89e+07 
+2.72e+07 
+2.55e+07 
+2.38e+07 
+2.21e+07 
+2.04e+07 
+1.87e+07 
+1.70e+07 
+1.53e+07 
+1.36e+07 
+1.19e+07 
+1.02e+07 
+8.49e+06 
+6.79e+06 
+5.09e+06 
+3.40e+06 
+1.70e+06 
+0.00e+00 

1008) 

(b) The Tresca stress distribution throughout the Tm:YLF rod while subject 

to 47.2 W incident CW pump power. The maximum stress is 40.75 MPa. 

Figure 5.1: The numerical temperature and Tresca stress distributions in the Tm:YLF 
rod while subject to 47.2 W incident pump power. 
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Figure 5.2: The analytical values for the maximum stress in the Tm:YLF rod as a 
function of incident pump power. The red star indicates the numerical fracture point, 
while the horizontal dashed blue line represents the fracture limit of YLF. 

From Figure 5.3 is is clear that the maximum stress in the YLF rod increases 
monotonically while the pump pulse is present, reaching a maximum at the end of the 
pump pulse. This makes it possible to model a single "long" pulse for a particular 
incident power and simply consider the time that it takes for this incident pump power 
to induce a tensile stress in the material which is equal to the tensile strength of YLF. 
The time duration to reach the tensile strength is then considered to be the pulse 
duration that corresponds to that critical incident pump power (see Figure 5.4). For 
example, with an incident pump power of 100 W, it takes the YLF rod 40 ms to reach 
its tensile strength of 40 MPa. 

With this approach it is possible to determine the critical incident pump power as 
a function of a single pump pulse length, as illustrated in Figure 5.5. 

As a comparison, a Gaussian pump beam is compared to the quasi-top-hat pump 
beam. The transverse intensity profile of the pump beam (considering beams with the 
same size) seems to make no significant difference in the critical incident pump power 
and the induced stresses for a given QCW pulse duration. 
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240 

10 
Time [ms] 

Figure 5.3: The maximum stress in the YLF rod during a single 10 ms QCW pump 
pulse with a peak power of 200W. 

As can be expected, for long pulses the critical pump power at which fracture 
occurs, converges to the CW critical pump power of 47.2 W, while for a typical QCW 
pulse duration of 10 ms, fracture occurs at an incident pump power of ~250 W, which 
relates to an incident pump pulse energy of 2.5 J. 

Although the critical pump power of a single pump pulse gives valuable information 
regarding the damage that a single QCW pump pulse can inflict on the laser rod, in 
practice the rod is pumped with a train of QCW pulses so that it is important to 
consider the stresses that are induced in the laser rod due to repetitive QCW pulses. 

5.2 Duty Cycle 

The primary reason for pumping a laser rod with a QCW pump is to reduce the thermal 
load in the crystal by reducing the average power that is incident on the laser rod. 

In this discussion, the influence of the QCW pump duty cycle on the critical average 
power at which fracture occurs is investigated. The time dependent coupled thermal-
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80 

Figure 5.4: The maximum stress intensity as a function of time for various incident 
pump powers. The horizontal blue line shows the tensile strength of YLF. 

5 10 15 20 25 30 35 40 45 
Single QCW Pulse Duration (ms) 

Figure 5.5: The critical incident pump power as a function of a single QCW pump 
pulse duration. The dotted line represents a top-hat pump beam and the solid line a 
Gaussian pump beam. The green curves show the energy that is deposited into the 
YLF crystal as a function of a single QCW pump pulse duration. 
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stress analysis was also implemented in ABAQUS. 
Instead of considering a single QCW, the thermal stresses induced by a train of 

QCW pulses at various pump duty cycles are investigated. 
Figure 5.6 shows the time dependence of the maximum tensile stress in the Tm:YLF 

rod that are induced by QCW pump pulses with 245 W peak power at a 2% duty cycle 
as well as pump pulses with a 80 W peak power at a 60% pump duty cycle. Note that 
the QCW on-time is 10 ms in all cases while the duty cycle is varied by changing the 
pulse repetition frequency. 

Figure 5.6: The time dependence of the maximum tensile stress in the Tm:YLF rod 
that are induced by various QCW pump powers and duty cycles. 

It is generally believed that a laser rod that is pumped via a QCW pump beam will 
fracture at an average power which is roughly equal to the CW critical pump power. 
This hypothesis has been investigated specifically for the Tm:YLF rod that is under 
discussion. 

In order to vary the duty cycle of the pump, the QCW pulse duration was fixed at 
10 ms, while the pulse repetition frequency was changed. For the particular case of a 
10 ms pump pulse, the duty cycle percentage and the pulse repetition frequency are 
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the same. In other words, for repetitive pump pulses of 10 ms, a QCW duty cycle of 
50% is equivalent to a pulse repetition frequency of 50 Hz. 

For duty cycles higher than ~50%, it is true that fracture of the Tm:YLF rod 
occurs at an average power which is equal to the CW critical pump power of 47.2 W. 
At low duty cycles (<50%), fracture of the laser rod occurs at average powers that are 
substantially lower than the CW critical pump power. For a typical QCW duty cycle 
of 20%, fracture occurs at an average power that is ~70% that of the CW critical pump 
power. Figure 5.7 shows the average pump power (expressed as a percentage of the 
CW critical pump power) at which fracture occurs, as a function of pump duty cycle. 

0 20 40 60 80 100 
Duty Cycle % 

Figure 5.7: The average pump power (expressed as a percentage of the CW critical 
pump power) at which fracture occurs, as a function of pump duty cycle (fixed QCW 
on-time of 10 ms). 

A possible reason for the deviation of the critical average pump power from the 
CW critical pump power at low duty cycles, is the fact that the peak power of the 
individual pulses is very high for low duty cycles. At a duty cycle of 10%, incident 
peak power is 200 W (see Figure 5.8). The high peak power results in a heat load that 
is too high to be completely dissipated in the laser rod before the next pump pulse 
strikes. It seems that this deviation from the CW critical pump power at low duty 
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cycles, is merely a limitation of the thermal conductivity of the material. The average 
power fracture limit in laser materials with a higher thermal conductivity should be 
closer to the CW critical pump power at low duty cycles. 

300 

40 60 
Duty Cycle % 

100 

Figure 5.8: The incident peak power at which fracture occurs as a function of pump 
duty cycle. 

5.3 Summary 

To calculate the thermally induced stresses inside a Tm:YLF laser rod numerically, 
a time dependent finite element analysis was implemented in a commercial software 
package, ABAQUS. The model was validated for the CW pump case by comparing the 
numerical results with experimental values that were taken from (So et al, 2006). This 
was followed by a time dependent analysis to show the critical pump power for various 
pulse lengths and pump duty cycles. 

There seems to be no significant difference in the time dependent thermally induced 
stresses when a top-hat pump profile is used as opposed to a Gaussian pump profile. 
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For duty cycles higher than ~50% the fracture of the Tm:YLF rod occurs at average 
powers which are equal to the CW critical pump power. At low QCW pump duty cycles 
(<50%), fracture of the Tm:YLF rod occurs at significantly lower average pump powers 
than the critical pump power in the CW case. The deviation at lower duty cycles is 
due to the inability of the material to dissipate the high heat load (due to high peak 
powers) between pulses. 
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Chapter 6 

A Time-Dependent Analytical 
Thermal Model 

The time-dependent analytical thermal model for laser rods that is presented in this 
chapter was done after this dissertation was completed. This chapter includes a sum­
mary of the work as it was accepted for the 3rd EPS-QEOD Europhoton Conference 
to be held from 31 August - 5 September 2008, Paris, France. This work has also been 
published in a peer-reviewed journal (Bernhardi et at, 2008a). 

One of the main problems that limit the power scaling of diode-end-pumped solid-
state lasers is the generation of heat inside the laser gain medium which can ultimately 
cause fracture. When the continuous wave (CW) pump power exceeds the critical 
power at which crystal fracture occurs, a quasi-continuous wave (QCW) pump is often 
used to reduce the average pump power to below the fracture pump power. 

In previous work, we investigated the time-dependence of the temperature and the 
thermally induced stresses in QCW-pumped Tm:YLF laser rods by means of finite 
element numerical simulations (Bernhardi et al., 2008b). This enabled the prediction 
of the incident fracture power as a function of QCW-pump duty cycle. 

In this paper a time-dependent analytical thermal model that determines the tem­
perature and the thermally induced stresses in isotropic rods is presented. Even though 
the model is developed for isotropic rods, it is shown that it can also be used to accu­
rately estimate the thermal effects in anisotropic rods. By ignoring axial heat-flow in 
the radially symmetric rod, the temperature profile on the pumped face of the rod is 
given by 

TM)=2W / -^rwi—x dTds 6 - x ) 

where R is the radius of the rod, J» is a Bessel-function of the first kind with order ?', \im 

are the roots of Jo and D — k/(pcp) with k the thermal conductivity, p the density and 
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cp the specific heat capacity of the laser rod. Q(r,t) — I(r,t)a/(pcp) is the heat load 
where /(r, t) is the transverse pump intensity profile and a is the absorption coefficient 
at the pump wavelength. In the case of a top-hat transverse pump profile, equation 
6.1 reduces to 

T{rj) - £ ^ " ( T M C T ) 
m = l 

Q(r.r) 
- T ) 

'dr (6.2) 

where w is the pump beam radius. The integral in equation 6.2 can easily be solved 
numerically for a QCW-pumped laser. 

Figures 6.1 & 6.2 show the temperature in the centre of the pumped-face of the 
Tm:YLF rod as a function of time while the rod is subjected to two different QCW-
pump power and pulse repetition frequencies. The analytical model reduces the com­
putation time of the thermal effects from ~5.5 hours in the case of the finite element 
numerical model to less than a minute. By using the analytical model, it is possible 
to efficiently calculate the thermal influence of various pump scenarios within a short 
time. 

110 

50 100 150 200 250 300 350 400 
Time [ms] 

Figure 6.1: The temperature in the centre of the Tm:YLF rod as a function of time 
while the rod is subjected to a QCW-pump f 90 W @ 50 Hz. The two respective 
boundaries of the shaded regions indicate the analytical solution as determined with 
the thermal conductivity of the a- and c-axis of YLF respectively. The black curve 
shows the solution of the three-dimensional time-dependent coupled-thermal-stress fi­
nite element numerical simulation. 
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Figure 6.2: The temperature in the centre of the Tm:YLF rod as a function of time 
while the rod is subjected to a QCW-pump of 200 W @ 10 Hz. The two respective 
boundaries of the shaded regions indicate the analytical solution as determined with 
the thermal conductivity of the a- and c-axis of YLF respectively. The black curve 
shows the solution of the three-dimensional time-dependent coupled-thermal-stress fi­
nite element numerical simulation. 
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Part III 

Rate-Equation Modelling of 
Solid-State Lasers 
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Chapter 7 

Introduction to Rate-Equation 
Modelling 

7.1 Overview 

The entire theory that describes laser rate-equations can be found in standard text­
books such as (Loudon, 1983)(Siegman, 1986)(Koechner, 1996). The rate-equations in 
these textbooks are derived for idealised three- and four-level lasers. 

An alternative to the idealised three- and four-level laser models was proposed by 
Fan & Byer in the form of a quasi-three-level rate-equation model (Fan k, Byer, 1987). 
The main difference between the conventional three-and four-level rate-equation models 
and the quasi-three-level model is that the latter accounts for the Stark levels within 
each energy manifold . 

In this early work, Fan assumed a perfect overlap between the pump mode and 
the fundamental laser mode. The model provided a very good understanding of the 
reabsorption losses in quasi-three-level lasers which enabled him to model the threshold 
and efficiency with great accuracy. 

Building on the foundation that Fan provided, Risk has accounted for the effect of 
the relative sizes of the pump- and laser beams (Risk, 1988). The influence of the ratio 
of the pump beam size to laser beam size on the threshold and efficiency of the laser 
has been investigated in order to find the ratio for which the laser efficiency is at an 
optimum. 

Fan later used his quasi-three-level rate-equation model to investigate the energy 
storage in Yb:YAG and found that the energy storage in this gain element can at least 
be as sufficient as that of a four-level Nd:YAG laser (Fan, 1992). 

The quasi-three-level rate-equation was then extended to include the dynamics of 
a co-doped Tm,Ho:YAG laser (Sousa et al, 1997). No upconversion was included in 
this model. 
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At about the same time Rustad & Stenersen implemented a rate-equation model 
for co-doped Tm,Ho which also accounts for upconversion energy transfer in both the 
Thulium and Holmium ions (Rustad & Stenersen, 1996). 

More recently Schellhorn & Hirth have adapted the quasi-three-level rate-equations 
to model the population dynamics of a novel intracavity configuration where a Ho:YAG 
laser was intracavity-pumped by a Tm:YLF laser (Schellhorn & Hirth, 2002). 

The rate-equations that are discussed and implemented in this work are quasi-three-
level rate-equations. 

7.2 The Rate-Equation Approximation 

In order to develop a comprehensive mathematical model which can explain the oper­
ation of a laser, a full quantum mechanical approach can be taken. In such a model, 
the electromagnetic field as well as the atomic systems are described by quantum me­
chanical principles which makes the model complex and computationally intensive. 

When the bandwidth of the incident light is greater than the particular laser tran­
sition linewidth, the atomic system and electric field can be described classically by 
making use of rate equations (Loudon, 1983). The equivalent of this condition is to 
require that the energy level population and the electric field don't change significantly 
within the atomic coherence time (Rustad, 1994). 

The rate equations that govern the transient behaviour of the atomic system and 
the induced electric field are written in a simplified form as (Rustad, 1994) 

— -ac$(N2-Ni) (7.1) 

— + ac$(N2 - Nt) (7.2) 
T\ 

d<& _ GainRT- LossRT , . 

dt ~ TimeRT
 { ' 

where N2 and JVj are the population densities of the upper and lower laser levels 
respectively. $ is the laser photon density in the resonator, r2 and Ti are the lifetimes 
of the respective energy levels, a is the stimulated emission cross-section, c is the speed 
of light and the RT subscript denotes resonator roundtrip. 

The R2 and Rt in the first term of the population density equations 7.1 & 7.2 
represent the excitation rate into the particular energy level. The second term is 
due to the spontaneous emission out of the energy levels, while the last term is the 
stimulated emission laser action. 

Other mechanisms such as energy-transfer-upconversion which can also change the 
population density of a particular energy level are omitted in the simplified rate-
equations in this section. 

dN2 

dt 

dNi 
~dT 

R2-

Ri-
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7.3 Idealised Laser Models 

In this section a brief description of the idealised three- and four-level laser models are 
given so that they can be compared to the quasi-three-level model. This discussion of 
idealised laser models is equivalent to that of (Fan, 1995). 

7.3.1 Four-Level Lasers 

Consider the energy-level scheme in Figure 7.1 which illustrates the operation of an 
optically pumped four-level laser. 

WUN, 

T-4 
M3 v 

r31 / r32l 

/^•± 

W31N, 

Figure 7.1: A schematic diagram of an idealised four-level laser model (Fan, 1995). See 
text for a description of all the symbols. 

Initially all the atoms of the gain medium are in the ground level 1. The pump 
radiation excites the atoms from the ground level into level 4. The transition time (743) 
is assumed to be infinitely fast so that the atoms in level 4 decay rapidly into the upper 
laser level 3. This is a non-radiative transition in which the energy difference between 
the levels is transferred to the crystal in the form of heat. Due to the infinitely fast decay 
time, the population density of level 4 is assumed to be zero. The laser action occurs 
when the atoms are transferred from level 3 into level 2 via the process of stimulated 
emission. In addition to the stimulated emission process, the atoms can also decay 
from level 3 into level 2 by spontaneous emission. From level 2, the transition time 
(r2i) to the ground level 1 is again assumed to be infinitely fast so that level 2 has 

65 



CHAPTER 7. INTRODUCTION TO RATE-EQUATION MODELLING 

a population density of zero. In this non-radiative transition, the energy difference 
between level 2 and 1 is transferred to the crystal in the form of heat. The relaxation 
from level 3 directly into the ground level 1 is usually associated with fluoresence. 

Since levels 4 and 2 have population densities of zero, the system effectively reduces 
to a two-level model which only accounts for the population densities in levels 3 and 
2. Due to the fact that level 2 is assumed to be empty in the four-level laser model, 
there exists a population inversion as soon as level 3 is populated. 

The rate of change in the population inversion density between the upper and lower 
laser levels can be explained by the following rate-equation (Fan, 1995) 

d^L = WuNl _ ̂ L _ 2W32AN (7.4) 
at T3 

where AiV — N3 — N2 = N3 and Wij is a rate constant given by 

where the ij subscript denotes a transition from level i to j . Iij is the intensity of the 
light that has a photon energy of huij and a is the spectroscopic cross-section. 

Note that the spontaneous emission processes out of the upper laser level 3 is 
denoted by r3 which accounts for all the radiative and non-radiative spontaneous tran­
sitions out of the upper laser level. 

The time dependence of the laser light intensity in the laser cavity can be described 
by (Fan, 1995) 

^ f = cW32ANhu32 - !™ (7.6) 
at TC 

where c is the speed of light and rc is the cavity-lifetime denoted by 

r< = S ("> 
with L the optical length of the cavity and 8 the logarithmic roundtrip cavity losses 
that includes the loss of the output coupler. The first term in equation 7.7 represents 
the roundtrip gain in the resonator while the second term denotes the roundtrip loss 
in the resonator. 

The most widely-used solid-state laser, namely the 1064 nm Nd:YAG laser is a very 
good example of a four-level laser. 

7.3.2 Three-Level Lasers 

The main difference between the three- and four-level laser models is the fact that the 
ground level is the lower laser level in the case of the three-level model. Figure 7.2 
shows a schematic diagram which illustrates the operation of a three-level laser. 

66 



CHAPTER 7. INTRODUCTION TO RATE-EQUATION MODELLING 

Wl3Nt W1X{N2-NX) 

Figure 7.2: A schematic diagram of an idealised three-level laser model (Fan, 1995). 
See text for a description of all the symbols. 

To begin with, the atoms are in the ground level 1. The incident pump radiation 
causes the atoms to be excited into level 3. Similarly to the four-level laser the non-
radiative transition between the upper pump level and the upper laser level is assumed 
to be infinitely fast so that the population density in level 3 is zero. The assumption 
of an infinitely fast transition between level 3 and 2 effectively reduces the model to 
a two level model. The laser action transfers atoms from level 2 into level 1 with the 
process of stimulated emission. Since the lower laser level is in fact the ground level, it 
is possible for an atom in the ground level to absorb a laser photon and be excited to 
level 2 again. The reabsorption of the laser light introduces an additional loss in the 
system. Due to the fact that there are essentially only two energy levels, more than 
half of the atoms have to be pumped into the upper laser level 2 in order to reach a 
population inversion. This causes that more atoms to contribute to the non-radiative 
transition between levels 3 and 2 which adds heat to the crystal. Even more significant 
is that the populated lower laser level results in a higher laser threshold than in the 
case of a four-level laser. The rate-equation that describes the population inversion in 
the three-level laser model is given by (Fan, 1995) 

dAN NT + AN 
a A i V = 2W13N1 - T + - AW2l AN dt T2 

where AN = N2 - JVi and NT = Ni + N2. 

(7.8) 
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The additional factor of two that is present in the pump and stimulated emission 
terms is due to the system that comprises of the upper and lower laser level. This 
implies that an atom that is pumped from the ground level 1 into the upper laser 
level 2, changes the population inversion by two. The same argument is true for the 
stimulated emission laser action which transfers atoms from the upper laser level into 
the ground level. The transient behaviour of the laser light intensity is written in 
analogy to the four-level laser as (Fan, 1995) 

^ = cW21ANhv21 - — (7.9) 
at TC 

Due to the reabsorption loss in three-level lasers, they are less efficient and require 
higher pump densities than four-level lasers. A good example of a laser which operates 
according to the three-level model is a ruby laser. 

7.4 Quasi-Three-Level Lasers 

The discussion of quasi-three-level lasers in this section is analogous to that of (Fan, 
1995). 

The most significant difference between a quasi-three-level laser model and the 
previous idealised models is the fact that the former accounts for the Stark levels within 
each manifold (Fan, 1995). The Stark levels form as the electric field in the crystal 
perturbs the energy levels. In rare-earth ions the separation between the individual 
Stark levels are small because of the shielding from the outer xenon-shell which limits 
the effect of the crystal field. Figure 7.3 shows the energy-level diagram of a quasi-
three-level Tm:YAG laser where the Stark levels within each manifold can be clearly 
seen. Cross-relaxation is not shown in this figure and will be discussed in Chapter 10. 
Other examples of quasi-three-level lasers include the 4F 3 / 2 —> 4/g/2 transition in Nd3+ 

and the 5Ir —> 5I8 transition in Ho3+ . 
To simulate the population density of each Stark levels with a separate rate-equation 

will result in a complex system of coupled differential equations. In order to simplify 
the approach, the concept of quasi-thermal equilibrium is introduced (Fan & Byer, 
1987). This assumes that the population distribution between the Stark levels within 
an energy manifold at any given time, is given by a Boltzmann distribution as if the 
material is in thermal equilibrium. Quasi-thermal equilibrium is a valid assumption 
if the relaxation time within a manifold is much faster than the time in which the 
population density changes significantly. For a Q-switched laser the population density 
typically changes in the nano-second regime. 

Let the upper laser manifold be 2 and the lower laser manifold be 1 as illustrated 
in Figure 7.4. The particular Stark level within the upper manifold from which the 
laser action occurs is b while the transition terminates in Stark level a in the lower 
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Figure 7.3: The energy diagram of Tm:YAG. The blue arrow indicates the pumping 
process (780 nm) and the red arrow the laser transition (2022 nm). The dashed line 
shows the rapid decay from the pump manifold into the upper laser manifold. 
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laser manifold. From the assumption of quasi-thermal equilibrium it follows that the 
fraction of the upper manifold population that is in Stark level b can be written as 
(Fan & Byer, 1987) 

-(Eh-E0)/kT 
h = 9^~^ (7-10) 

where g^ is the degeneracy of Stark level b, EQ is the energy of the lowest Stark level 
in the upper manifold and 

z2 = J2yie (Et-E0)/kT 

Eb is the energy of Stark level b, kT is the thermal energy and Z2 is the partition 
function of the upper manifold. E, and gi are respectively the energies and degeneracies 
of the upper manifold which consists of m Stark levels. The fraction of the population 
of the lower laser manifold that is found in Stark level a, is found in a similar way 
by determining the partition function over the energy levels in the lower manifold and 
setting EQ = 0. 

<-3 

fpf,^, 

A • - . 

• * 
Y 
I 

k . 
* - * 
i - ^ -

WbaAN 

a 
-h-4-

Figure 7.4: A schematic diagram of a quasi-three-level laser model (Adapted from (Fan, 
1995)). See text for a description of all the symbols. 

The population dynamics of a quasi-three-level laser can be explained in the follow­
ing way. Initially all the atoms are assumed to be in manifold 1 (Figure 7.4). From the 
assumption of quasi-thermal equilibrium, let the fraction of the population of manifold 
1 that is found in the lower pump level be fp. The pump radiation transfers atoms 
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from manifold 1 into the upper pump level from where they quickly decay into the 
upper laser manifold 2. Similar to the previous idealised laser models, the decay from 
the upper pump level to the upper laser manifold is instantaneous and the energy dif­
ference between the levels is converted into heat. As discussed, the upper and lower 
laser manifolds are assumed to have an instantaneous Boltzmann distribution so that 
the population density of the upper laser level is given by fbN2 while the lower laser 
level population density is denoted by faNi. Atoms are transferred from Stark level b 
(in manifold 2) to Stark level a (in manifold 1). The spontaneous radiative and non-
radiative transitions from manifold 2 into manifold 1 can be from all the Stark levels 
in manifold 2 into all the Stark levels in manifold 1 and the total decay time is defined 
as r . 

The rate-equation that describes the population inversion in a quasi-three-level laser 
can be written as (Fan, 1995) 

dAN f NT + AN 
—^ = Ufa + h)W13N1 - ^ ~ 2( /0 + f^W^AN (7.11) 

at T 
where AA^ = fbN2 — faN\ and NT is the total dopant concentration. 

The transient laser intensity in the cavity is give by (Fan, 1995) 

^ = cWbaANh^ - ^ (7.12) 
at TC 

Note that in the special case where /„ —• 0, fp —• 1 and fb —> 1, equation 7.11 
reduces to that of the idealised four-level laser (equation 7.4). If fa —> 1, fp —-> 1 and 
fb —> 1, it reduces to the idealised three-level laser (equation 7.8). The quasi-three-level 
laser model is versatile enough to be able to describe the population dynamics of three-
and four-level lasers as will be shown in later chapters. 
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Chapter 8 

A Single-Element Plane-Wave 
Rate-Equat ion Model 

In this chapter, a general spatially-resolved quasi-three-level rate-equation model is 
developed from existing theory. In order to simplify the implementation of the model 
as a computer simulation, the spatially-resolved model is initially reduced to a single-
element plane-wave model. 

8.1 Spatially Resolved Rate-Equation Model 

In this section the population dynamics of a time and spatially dependent quasi-three-
level laser as illustrated in Figure 8.1 is discussed in detail. 

8.1.1 Energy-Level Population Densities 

Instead of considering the transient variation of the population inversion as in equation 
7.11, the time variation of the upper and lower laser manifolds are considered individ­
ually. Assume that the principle of quasi-thermal equilibrium can be applied within 
each manifold (Section 7.4). It follows that the population density of the upper laser 
manifold can be described in analogy to (Fan, 1992) as 

dN1= (<Jp{I$ + Ip) 
dt \ huP 

(faNi ~ fW - ( ^ l ^ II } ) (fbN2 - faNl) - ^ (8.1) 

where Ip is the pump intensity travelling to the right and Ip is the pump intensity 
travelling to the left (for double pass pumping or pumping from both directions) in 
the resonator and a similar notation is used for the laser intensity II- f'a and f'b 

are the fractional populations within the lower and upper manifold of the lower and 
upper levels of the pump transition respectively. Similarly, fa and /(, are the fractional 
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Figure 8.1: A schematic diagram of a quasi-three-level laser model, 
description of all the symbols. 

See text for a 

populations within the lower and upper manifold of the lower and upper levels of the 
laser transition respectively. The spectroscopic absorption cross-section at the pump 
wavelength is denoted by ap, while UL the spectroscopic emission cross section at the 
laser wavelength. T2 is the spontaneous emission lifetime of the entire upper laser 
manifold, hvp is the energy of a pump photon while IIVL is the energy of a laser 
photon. The total doping concentration is given by NT — JVj + N2. The first term in 
equation 8.1 describes the pumping process, the second term represents the stimulated 
emission process while the last term is due to spontaneous emission. The population 
densities as well as the pump and laser light intensities in this section are all functions 
of the spatial coordinates x, y, z and time t. For notational purposes, the dependence 
isn't indicated in this section. 

Note that the spectroscopic cross sections are defined between individual Stark 
levels. When it is not possible to determine the spectroscopic cross sections for all 
the possible individual Stark level transitions due to many overlapping transitions, the 
effective cross sections are used instead of the spectroscopic cross sections (Fan, 1995). 
For the pump transition, the effective absorption cross section is given by (Fan, 1995) 

-.abs 

Similarly, the effective emission cross section is defined as 

(ft tivp 

(8.2) 

(8.3) 
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The effective cross-sections for the laser transition are defined in the same way with 
the P subscript that is replaced by L. By making use of the effective cross sections, 
equation 8.f can now be written as 

w - {^r) <̂ w- - « - p±£) wr* - «!-*.> - f (B.4) 
Equation 8.4 is more convenient to use than equation 8.1 since it is not necessary to 
know the spectroscopic cross section for all the possible Stark level transitions that 
contribute to a particular wavelength. The measured effective cross section already 
includes all the possible transitions that contribute to a particular wavelength. For 
example, suppose that there are two transitions that contribute to the laser wavelength. 
The first transition has a spectroscopic emission cross section of cr2& and occurs from 
Stark level b (with population density N2b) in manifold 2 into Stark level a in manifold 
1. The second transition has a spectroscopic emission cross section of a2d and occurs 
from Stark level d (with population density N2d) in manifold 2 into Stark level c in 
manifold 1. The stimulated emission term in equation 8.4 can then be written as 

dN2 __ (Il + IL i , M , „ „ „ a b s 

dt \ hvL 
(a2bN2h + a2dN2d-aTN1)... 

dN2 f^ + I L \ {a2hfbN2 + a2dfdN2 _ aabsNi) _ _ _ 
dt \ huL 

dN2 ( h + h \ („emM -abs 

dt V huL 
(oTNt-oTNi)... (8.5) 

with of™ = cr2bfb + cr2dfd the effective emission cross section that is measured at the 
laser wavelength. The same approach is taken for a^s, a^s and erfT. The measured 
effective cross sections account for degeneracies in the same way. Suppose that the 
upper laser Stark level b has a degeneracy of 2. Then it follows that the measured 
effective emission cross section is simply cr£m = o2hfh + cr2bfb-

8.1 .2 P u m p Light D i s t r i b u t i o n 

Assume a normalised transverse pump light distribution function tpp so that 

J J^t(x,y,z)dxdy= 1 (8.6) 

for all z. The xy-plane is defined perpendicular to the incident pump light while z 
denotes the pump beam propagation direction. In each x-y slice of the crystal the 
integrated value of xpp must be 1. This definition of a pump light distribution function 
is general enough to allow for pump beams with Gaussian, super-Gaussian or top-hat 

74 



CHAPTER 8. A SINGLE-ELEMENT PLANE-WAVE RATE-EQUATION MODEL 

transverse intensity profiles. The + superscript describes the pump light travelling 
in one direction as previously noted so that it can be changed to a — for the other 
propagating direction. Also assume that tpp is independent of the population inversion 
and time. As an example, consider the case where ipp is a Gaussian distribution and 
w(z) is the pump beam radius at distance z from the pump beam waist so that 

2 2 , „2\l,„t,\2 

-KW(Z)2 

The pump light intensity can be determined by 

I${x, y, z, t) = P£(z, t)xl)${x, y, z) (8.8) 

with Pp the pump power. The propagation of the pump power along z can be described 
in analogy to (Fan, 1992) as 

dP, + 
dz 

= -Pp f [4>p~(x,y, 2)(^psiVi - (TpmN2)dxdy (8.9) 

Note that Pp, N\ and N2 are functions of the spatial coordinates x, y, z and time t. 
For notational purposes, the dependence isn't indicated in this equation. 

8.1.3 Total Laser Photon Number and Laser Light Distribu­
tion 

In the case of the pump light, the distribution was normalised in each xy-slice for a 
given z. In contrast, the laser light distribution <f>i is normalised over the entire volume 
of the resonator so that it is defined as 

jv<t>L{x,y,z)dV = l (8.10) 

where Vr is the volume of the laser beam inside the resonator. 
If the output coupler has a relatively low transmission at the laser wavelength 

(typically less than 20%), then as a first approximation the laser power that travels 
towards the output coupler is roughly the same as the laser power that is reflected back 
into the resonator by the output coupler. From the low-loss approximation it follows 
that 

• The laser power PL doesn't vary with the propagation distance —> ^EL. — Q 

• The laser light propagating towards the left (-) and the right(+) have equal power 
and intensity —* P£ — P[ and I~£ = l£ 
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The total laser light intensity (IL = l£ + 1^) is defined as (Rustad & Stenersen, 1996) 

hvLcQ(f)L{x,y,z) 
IL{x, y, z, t) = (8.11) 

n(x,y,z) 

where Q is the total number of laser photons in the resonator, huL is the energy of 
a laser photon and n(x, y, z) the refractive index at a point (x, y, z) in the resonator. 
The time dependence of Q can be described by (Fan & Byer, 1987) (Risk, 1988) 

l £ = — / (oTMw,*) - aa
L

bsN1(x,y,z))<t>L(^y,z)dV - - (8.12) 
(XL ft J vr IQ 

where rc is the cavity lifetime as defined by equation 7.7. 
The coupled differential equations 8.4 & 8.12 form the basis of the spatially re­

solved rate-equation model that can be used to describe the transient behaviour of the 
population densities and laser power. 

8.2 Single-Element Plane-Wave Approximation 

The single-element plane wave rate-equation approximation is based on the equations 
that were discussed in Section 8.1. Additional assumptions are implemented in order 
to make it easier to translate the model into a computer simulation of the laser. The 
main assumption in the single element approximations is that all the parameters in the 
model are assumed to be independent of their spatial coordinates (Figure 8.2). Instead 
of discretising the entire resonator volume and gain medium into finite elements and 
then solving the governing rate-equations for each finite element, the spatial dependence 
essentially collapses into a single element. The parameter values in the single element 
are then considered to be representative of that throughout the entire volume. 

8.2.1 Energy-Level Population Densities 

The approach in this section is to make use of the fact that parameters are spatially 
constant in order to reduce equation 8.4 into an equation that describes the transient 
behaviour of the upper laser manifold population density for the single-element plane-
wave rate-equation model. 

Pump Rate 

The first term in equation 8.4 represents the transition of atoms from the ground 
manifold into the upper laser manifold via the optical pumping process. In the spatially 
resolved rate-equation model, the pump intensity is a function of the propagation 
distance in the laser gain medium. However, in the plane-wave single-element model, 
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Spatially resolved rate-equation model 

Gain Medium 

Pump Light 

Single-element plane-wave rate-equation model 

Gain Medium 
Pump Light 

Figure 8.2: A comparison between the laser gain medium in the spatially resolved and 
single-element plane-wave models. 

the pump light intensity in the gain medium is assumed to be constant and is taken as 
the average pump light intensity of the spatially resolved model. The propagation of 
the pump light in the gain medium is described by equation 8.9. Since the population 
densities are assumed to be spatially constant, it follows from equation 8.6 that equation 
8.9 can be written as 

dPP 

dz 
-PpiopNi - ae

P
mN2)j ji>P(x, y, z)dxdy 

-PP(afNi - oTN2) (8.13) 

Note that the pump power in equation 8.13 only accounts for the pump power that 
travels in one direction (Pp — Pp). For the case of double-pass pumping or pumping 
from both ends, the pump power from the other direction should also be taken into ac­
count. The Beer-Lambert absorption of the pump light in the gain medium is obtained 
by solving equation 8.13 so that 

°p(z) = r]PP0e (8.14) 

where a — aP
bsNi — apmN2 is the absorption coefficient at the pump wavelength, t}P 

is the pump efficiency (i.e. the average number of ions in the upper laser manifold 
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that are created per absorbed pump photon) and P0 is the incident pump power. The 
average pump power in the laser gain medium (with length Lc) is given by 

pr = (£"pPdz)/Lc 

P^ = t£"VPP0e-azdz)/Lc 

= **w-£n (8.i5) 
aLc 

The average intensity of the pump beam in the laser gain medium is then determined 
as 

rave 
1P 

JDave rP 

A 
r/PPo(l - e'az) 

aALc 

r,pPQ{\ - e~az) 
T/ (8.16) 

By substituting the average intensity of equation 8.16 into the first term of equation 
8.4 the following pump rate is attained 

TIPP0(1 - e-°') 
Rp ~ — h ^ v c — (8"17) 

In the single-element plane-wave approximation, Rp denotes the rate at which atoms 
are excited into the upper laser manifold via the optical pumping process. 

Stimulated Emission 

The second term in equation 8.4 represents the transition of atoms from the upper 
laser manifold into the ground manifold via stimulated emission. The approach is 
to determine the average laser light intensity in the gain medium for the spatially 
resolved model and then to assume that to be the value of the laser light intensity for 
the single-element plane wave model. 

The integral over the entire resonator volume of the laser photon distribution is 
determined in the following way (Figure 8.3) 

/ 4>Ldv = f ct>Ldv 
JVr JVr 

= f <j)LdV + f fadV 
JVC JVa 

= [ [ C fadA'dz + [ [ a 4>LdA'dz 
J A JO J A JO 

= K(nLc + La) (8.18) 
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with 

f d>i 
JA 

dA (8.19) 

where A is the cross-sectional area of the laser beam. Vc is the volume of the laser 
beam inside the gain medium while VT is the volume of the laser beam in the entire 
resonator so that Va — Vr — Vc. The additional factor of n in the laser gain medium 
is due to the photons that travel slower in the gain medium so that there is a higher 
laser photon density in this region than in free space. 

Figure 8.3: A schematic diagram of the resonator. 

By combing equations 8.10 &; 8.18 it follows that 

KnLr 

JVC 

dV 
K(nLc + La) 

nLr 

La + Lc + (n-l)Lc 

nLc 

Lr + (n — l)Lc 

nLc 
La 

(8.20) 
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where L0 is the optical length of the resonator. Since the laser light distribution is 
considered to be uniform in the case of the single-element plane-wave approximation, 
equation 8.20 can be written as 

• > L — 

nLc 

__ nLc 

LQALC 

For the single-element plane-wave rate-equation model, equation 8.21 can now be sub­
stituted into equation 8.11 so that the laser intensity in the gain medium is written 
as 

One of the assumptions in the spatially resolved rate-equation model is that ^p- = 0. 
If it is assumed that the cross-sectional area of the beam (A) is constant in the gain 
medium it follows that ^ = 0 so that the laser intensity in the gain medium is 
constant. This implies that II is in fact the average laser intensity in the gain medium 

(IT"" = h)-
By substituting the pump rate (equation 8.17) into the first term of equation 8.4 

and equation 8.22 into the laser intensity of the second term of equation 8.4, the rate-
equation then describes the transient behaviour of the upper laser manifold population 
density in the single-element plane-wave rate-equation model is 

dN2 ripPpjl - e~a') cQ . N2 

~dt = h^vc ATQ
{aL N2 - GL Nl) - T2

 (8-23) 

8.2.2 Total Laser Photon Number 

Equation 8.12 describes the transient behaviour of the number of laser photons in the 
resonator. Since the population densities of the energy manifolds are zero outside of 
the gain medium, the integral limits change from the volume of the laser mode in the 
entire resonator (Vr) to the volume of the laser mode in the gain medium (Vc). From 
equation 8.20 and the fact that the population densities are spatially constant it follows 
that 

£ - £X.(°™-<*-"0^-£ 
— = * '- / <j)LdV 
at n JVc Tr 
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dn _ dl (ajmN2 - ofNj) nLc Q 

dt n Ln rr 

dQ, cflLc / m bs \ Q /o OA\ 
- = -T^{^N2-oL Nr)-- (8.24) 

In the single-element plane-wave rate-equation mode, equation 8.24 now replaces equa­
tion 8.12 to describe the transient behaviour of the number of laser photons in the 
resonator. 

8.3 Summary 

The spatially resolved rate-equations that describe the transient and spatial behaviour 
of the energy manifold population densities and the total number of laser photons in 
the resonator have been taken from literature and discussed in detail. A disadvantage 
of the spatially dependent rate-equation model is that the coupled rate-equations have 
to be solved for each point in space, which will ultimately result in a complex computer 
program that is computationally intense. 

In order to simplify the implementation of the rate-equation model as a computer 
simulation, the spatial variation of the parameters are ignored so that the laser gain 
medium is treated as a single-element with spatially constant parameters. Since the 
spatial dependence is ignored, the pump and laser beams are treated as plane waves 
that are incident on the gain medium. With these assumptions, the set of coupled rate 
equations that govern the behaviour of the laser reduces to the following 

dN2 _ VPP0(1 - e-°') cQ b N2 

~dt = " L T ^ L 2 " L Nl>~n 
In order to describe the population dynamics and laser photon number in the single-
element plane-wave rate-equation model, only these two coupled differential equations 
need to be implemented and solved in a computer simulation. 
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Chapter 9 

Nd:YLF Laser 

In this chapter, the single-element plane-wave rate equation model that has been de­
veloped in the previous chapter, is applied to a four-level Nd:YLF laser (Bollig et a/., 
2008) (Bernhardi et ai, 2008c). The parameters that were used in the model as well as 
additional information on the laser are noted in Appendix A. These parameters were 
not adjusted in any way to fit the experimental data. 

The model has been implemented in MATLAB where the two coupled ordinary 
differential equations (equations 8.23 & 8.24) were solved with MATLAB's ODE15s 
solver. A major advantage of this particular solver is that it has a variable time-
step where the derivative of the function is validated with each time step. When the 
derivative is large (high activity) the time steps are decreased, whereas the time steps 
are increased when the derivative is small (little/no activity). This approach allows for 
a very quick and efficient way to solve the governing differential equations. 

In addition to the numerically solved differential equations that are used to predict 
the laser's operation, analytical equations are also used to predict parameter behaviour 
where possible. 

9.1 Experimental Setup 
The experimental setup of the Nd:YLF laser is illustrated in Figure 9.1. A Jenop-
tik fibre-coupled diode module, capable of delivering a maximum power of 158 W at 
805 nm, was used to pump the two Nd:YLF crystals. The fibre that was coupled onto 
the diode module had a core 0.6 mm and a numerical aperture of 0.22. Since the power 
that the diode-pump delivered was too much to pump a single crystal, the pump beam 
was split with a 55% mirror into two pump beams in order to pump the two crystals in­
dividually. For pulsed operation, an acousto-optic modulator (AOM) with a maximum 
loss of 65% was inserted into the resonator. 
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Figure 9.1: The experimental setup of the Nd:YLF laser (Bollig et al, 2008). 

9.2 CW Operation 

9.2.1 Threshold and Efficiency 

The laser threshold and efficiency are two of the most important values that the rate-
equation model must be able to predict. For a four-level laser such as this Nd:YLF 
laser, there exist analytical estimations of the threshold and efficiency. The analytical 
solutions act as a further confirmation of the numerical rate-equation solution. 

The threshold of the laser with respect to the absorbed pump power is given by 
(Fan k Byer, 1988) 

PTH = ~^k^{Ap + ALK1'+ L) {9A) 

where hvP is the energy of a pump photon, rjP the pump efficiency (the number of 
atoms that are excited into the upper laser manifold per absobed pump photon), crf,m 

the effective emission cross section and r the lifetime of the laser transition. Ap and 
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AL are the cross-sectional areas of the pump and laser beams respectively. T is the 
output coupler transmission at the laser wavelength and L includes all other losses in 
the resonator except for the output coupler. 

The slope efficiency of a four-level laser with respect to the absorbed pump power 
is given by (Fan & Byer, 1988) 

Vslope — 1]P~ 
hvL 

hvP \T + L 
(9.2) 

where hu^ is the energy of a laser photon. 
The laser had a threshold of 9.5 W and a maximum output power of 60.3 W at 

158 W of incident pump power with a slope efficiency of 44% (Figure 9.2). The laser 
wavelength was measured to be 1053 nm. 

0 20 40 60 80 100 120 
Incident Pump Power [W] 

140 160 

Figure 9.2: Power scaling of the Nd:YLF laser. The red dots represent experimental 
data while the green and blue lines are rate-equation and analytical solutions respec­
tively. 

Both the analytical equations and the rate-equation model are consistent with mea­
sured data as they both predict a threshold of 19 W with slope efficiency of ~44%. 
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The reason for the slight overestimation of the threshold is due to the fact that the 
laser was optimised at full pump power, but not re-adjusted at lower powers. The rate-
equation model is more versatile than the analytical equations since it can also be used 
to investigate time-dependent variations of the laser such as relaxation oscillations. 

9.2.2 Relaxation Oscillations 

Relaxation oscillations as it is referred to in this work, refers to the large amplitude 
spikes in the laser output power that are observed in most solid-state lasers when they 
are initially switched on. This behaviour is due to the recovery time of the population 
inversion that is much longer than the cavity decay time. 

Figure 9.3 shows the photon number and population inversion of the Nd:YLF laser 
during the main relaxation oscillation spikes at full pump power (158 W). This partic­
ular laser has a cavity decay time of 28 ns and an upper manifold lifetime of 520 £is. 
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Figure 9.3: The total laser photon number (blue) and upper manifold population 
density (green) N2 (as a percentage of the total doping NT) of the Nd:YLF laser 
during the main relaxation oscillation spikes at full pump power (158 W). 
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Siegman describes a single relaxation oscillation pulse in the following way (Sieg-
man, 1986): 

As the laser is switched on initially, the number of laser photons in the resonator is 
roughly zero. When the population inversion exceeds the threshold inversion NTH, the 
total gain in the resonator exceeds the total loss so that the number of laser photons 
start increasing exponentially. As the number of photons in the resonator reaches 
the steady-state oscillation level, the laser signal in the resonator is so strong that 
it depletes the atoms in the excited state quicker than the pump can provide them. 
At this point the population inversion starts to decrease, but since it is still above 
NTH , the number of laser photons are still increasing. When the population inversion 
reaches NTH, the total gain equals the total loss. At this point, the laser photon 
number reaches a maximum and then starts to decrease as the population inversion 
decreases even further. The nett loss in the resonator is now greater than the nett gain 
so that the photon number decreases sharply. When the photon number reaches the 
steady-state level, the the population inversion is at a minimum. From here the entire 
process repeats itself. The damping behaviour in the relaxation oscillation spikes are 
due to the fact that neither the photon number nor the population inversion decreases 
all the way to zero after each spike so that the initial conditions of each pulse are closer 
to the steady-state behaviour of the laser (Siegman, 1986). 

The relaxation oscillation damping rate of a four-level laser is given by (Siegman, 
1986) 

IRO = r -5— (9.3) 
zrTH 

where Pp is the incident pump power and PTH is the incident threshold pump power, 
while 72 = ^r is the upper manifold decay rate with r2 the upper manifold lifetime. 

The decay rate of the relaxation oscillations that are produced by the rate-equation 
model compares very well with the analytical theory. Figure 9.4 shows the relaxation 
oscillations of the Nd:YLF laser at 158 W incident pump power. An analytical expres­
sion for the decay of the relaxation oscillations is given by 

D{t) = LP(1 - e-™ot) + Lmax(e-^ot) (9.4) 

where Lp is the steady-state laser output at an incident pump power of P W and Lmax 

is the maximum power of the first relaxation oscillation pulse. The red curve in Figure 
9.4 was produced by using PTH — 14 W, which is roughly the average between the 
experimental and numerical values for the threshold. 

The relaxation oscillation frequency can be expressed by (Siegman, 1986) 

URO = \j [ -p^- ~ 1 ) 727c (9-5) 

where j c is the cavity photon decay rate. 
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The analytical equation 9.5 predicts a UJRO — 2-n x 125 kHz which corresponds 
to a period of 8 /.is between pulses. Figure 9.5 shows relaxation oscillation pulses 
according to the rate-equation model at two different periods during the relaxation 
oscillation process. In the initial large amplitude region, the rate-equation predicts a 
period of 18 /is between pulses. The larger predicted value is not unusual since the 
experimentally measured period between pulses in the large amplitude region can be 
2-3 times larger than the analytical value (Siegman, 1986). In the small amplitude 
region, the pulse period as determined by the rate-equation model is 8.1 /is which is in 
perfect agreement with the analytical value. 

0 100 200 300 400 500 600 700 800 900 1000 
Time [|is] 

Figure 9.4: The relaxation oscillation spikes at full pump power (158 W). The blue 
curve is the rate-equation model solution while the red curve represents the analytical 
decay rate D(t). 

The relaxation oscillations that are produced by the single-element plane-wave rate-
equation model exhibit pulses that have a decay rate, frequency and period that is 
consistent with analytically determined values. 
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Figure 9.5: Relaxation oscillation pulses according to the rate-equation model at two 
different periods during the relaxation oscillation process. The figure on the left is 
during the initial large amplitude spikes while the figure on the left is during the small 
amplitude pulses. 

9.2.3 Output Coupler Transmission 

A great feature of the rate-equation model is the ability to optimise the laser's perfor­
mance by determining the optimum parameter values. Some of the parameters that can 
be investigated and optimised include the output coupler transmission, crystal length 
and pump size. 

Per illustration, the influence of the output coupler transmission on the laser output 
power is investigated. All the laser parameters in the rate-equation model are fixed 
while the output coupler transmission at the laser wavelength is varied. By making use 
of equations 9.1 & 9.2, the laser output power as a function of output coupler trans­
mission can also be investigated analytically. Both the rate-equation and analytical 
solutions are shown in Figure 9.6. 

From Figure 9.6 it is clear that the rate-equation provides a much better fit to the 
experimental data point than the analytical solution. The rate-equation model predicts 



CHAPTER 9. ND:YLF LASER 
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Figure 9.6: The laser power as a function of output coupler transmission. (Rate-
equation: green and Analytical: blue) The red star indicates the point where the laser 
operated at. 

the maximum laser power of 65 W at ~ 10% output coupler transmission at the laser 
wavelength. Since there is a relatively small difference between the laser output with 
a 10% and 20% transmission output coupler respectively, the laser was built with a 
20% transmission output coupler in order to reduce the power in the resonator, which 
minimises the risk of damaging any of the optics. 

9.3 Q-Switched Operation 

In addition to the modelling of the CW operation of the laser, the single-element 
plane-wave rate-equation model can also be used to simulate a Q-switched laser. 

The main difference between the CW and Q-switched lasers is an additional mod­
ulated loss that is introduced in the case of the Q-switched laser due to the Acousto-
Optic-Modulator (AOM). In the rate-equation model the loss of the AOM is assumed 
to be modulated between 0% and 100%. In reality, the maximum loss of this particular 
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Figure 9.8: A single Q-switched pulse (blue) along with the population density of N2 

(green) according to the rate-equation model. 

As the Q-switch is switched on, the loss in the resonator is very high (loss —> 100% 
in the case of the rate-equation model). Due to the loss in the resonator that is higher 
than the gain, the population inversion will keep on increasing without any laser action 
in this period so that energy is stored in the gain medium. As soon as the AOM is 
switched off, the loss in the resonator is small. At this point the gain is much higher than 
the loss in the resonator. The high gain will initiate the lasing action, which depletes 
the population inversion via stimulated emission. When the population inversion is 
depleted so that it reaches the threshold value, the laser power is at a maximum. 
There are still a lot of laser photons in the resonator at this point, so that they reduce 
the population inversion to below the threshold value via stimulated emission. From 
here the pump needs to replenish the population inversion again. Before the pump 
absorption causes the population inversion to reach the threshold value, the AOM is 
switched on again so that the loss is very high so that the laser can not lase. 

The single-element plane-wave rate-equation model predicts Q-switched pulses with 
a width of 175 ns (FWHM) while a Q-switch pulse width of 143 ns was measured. 
Figure 9.9 shows a modelled Q-switched pulse in comparison with an oscilloscope trace 
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Figure 9.9: An oscilloscope trace of a single pulse (yellow) along with a pulse as pro­
duced by the rate-equation model (blue). The measured pulse FWHM is 143 ns while 
the rate-equation model predicts the pulse FWHM to be 175 ns. 

of a pulse. The high-frequency oscillations on the oscilloscope pulse are due to mode-
beating between various longitudinal modes. This effect is not considered in the rate-
equation model. 

The rate-equation model manages to reproduce the pulse train as can be seen in 
Figure 9.10. The pulse train was simulated by using an AOM repetition frequency of 
15 kHz with an off-time of 3 /us at an incident pump power of 158 W. 

The initial couple of pulses in the pulse train are unstable but then stabilises very 
soon (after 5 pulses) to deliver stable pulses with a peak power of 19.1 kW. After the 
pulses stabilise, they have an average power of 57.3 W and an energy of 3.8 mJ per 
pulse. 

The population density of the upper manifold A^ that produces the pulse train 
in Figure 9.10 is shown in Figure 9.11. The population density of N2 increases to 
~ 0.24% of NT just before a Q-switch pulse. After a pulse, the population density of 
N2 is decreased all the way to ~ 0.1% of NT which is less than the threshold inversion 
of - 0.15% of NT-
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Figure 9.10: The pulse train during Q-switch operation as produced by the rate-
equation model. 
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Figure 9.11: The population density of N2 during Q-switch operation as delivered by 
the rate-equation model. 
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9.3.2 Average Power and Pulse Energy 

The rate-equation model was used to determine the average power and pulse energy of 
the laser as a function of pulse repetition frequency (Figure 9.12). An average power 
of 52 W was achieved at 5 kHz, which increased to a value of 59.1 W at 30 kHz. 
As expected, the average power converges to the CW power of 60.3 W at high pulse 
repetition rates. The pulse energy decreased from 10.4 mJ at a repetition rate of 5 kHz 
to 2 mJ at 30 kHz. The rate-equation provides a very good fit to the experimental 
data for both the average power and the energy per pulse. Unfortunately, one of the 
two Nd:YLF crystals fractured at 5 kHz while taking the measurements, so that the 
experiment could not be continued to even lower repetition rates. 

10 15 20 
Repetition Rate [kHz] 

Figure 9.12: The average power (blue) and pulse energy (green) of the laser as a 
function of pulse repetition frequency. The solid curves represent the rate-equation 
solutions while the dots are experimental data. 
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9.4 Summary 
The single-element plane-wave rate-equation model was applied to a four-level Nd:YLF 
laser to predict its behaviour during CW and Q-switched operation. 

The rate-equation model predictes a threshold power and slope efficiency for the 
CW laser that compares very well with experimental data. The relaxation oscillations 
were investigated and their behaviour was found to be in very good agreement with 
analytical solutions. The laser power as a function of output coupler transmission was 
compared with experimental data and analytical solutions where a good agreement 
with experimental data was found. 

During Q-switched operation, the pulse train with its corresponding population 
inversion was produced accurately by the rate-equation model. The pulse width and 
peak power is consistent with experimental data. Even though the example that was 
presented in this chapter was at a pulse repetition rate of 15 kHz, the rate-equation 
model predicted the laser operation accurately for other pulse repetition rates as well. 
The rate-equation produces the average power and pulse energy as a function of pulse 
repetition rate that agrees extremely well with measured data. 

The single-element plane-wave quasi-three-level rate-equation model manages to 
simulate and predict the behaviour of a four-level Nd:YLF laser during CW and Q-
switched operation accurately. 
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Chapter 10 

Tm:GdV0 4 Laser 

In this chapter, the single-element plane-wave rate-equation model that has been de­
veloped in Chapter 8, is applied to quasi-three-level Tm:GdV04 laser (Esser et al., 
2007) (Esser et al, 2008). A major advantage of using the Tm:GdV04 is that it has a 
strong and broad absorption spectrum centered at 799 nm, which makes it perfect to be 
pumped with commercially available high power laser diodes (Esser et al, 2007) . The 
population dynamics of the active ion, Thulium (Tm), is more complicated than the 
Neodymium (Nd) of the laser in the previous chapter. Thulium exhibits an additional 
energy transfer processes between ions, known as cross-relaxation. 

Cross-relaxation is the process where a Thulium ion which has been excited to the 
3 #4 energy manifold, transfers energy to a neighbouring Thulium ion that is in the 3H6 

ground manifold (Rustad & Stenersen, 1996). This process increases the efficiency of 
the laser since a single absorbed pump photon can result in two Thulium ions in the 
3 F 4 upper laser manifold (Figure 10.1). 

In the single-element plane-wave rate equation model, cross-relaxation is accounted 
for by using a pump efficiency that is larger than 1. With the correct doping con­
centration, the pump efficiency can approach a value of 2. As a comparison, note 
that Neodymium lasers have a pump efficiency of ~ 0.7 (Fan & Byer, 1988). A good 
agreement between the rate-equation model predictions and experimental data is found 
when a pump efficiency of 1.3 is used for the Tm:GdV04 laser. It should be mentioned 
that upconversion in neglected in the rate-equation model of the Tm:GdV04 laser. 

The rate-equation model is implemented in MATLAB in the same way as described 
in the introductory paragraph of chapter 9. Where possible, analytical expressions are 
compared to the rate-equation solutions. The rate-equation model parameters as well 
as additional information of the laser are noted in Appendix B. 

96 



CHAPTER 10. TM:GDV04 LASER 

3 H. 

3H f i 

Tm 3 + Tm 3 + 

Figure 10.1: The cross-relaxation process in Tm 3 + . The blue arrow indicates the pump 
process, the black arrows the cross-relaxation process while the red arrows indicate the 
stimulated laser emission. 

10.1 Experimental Setup 

The experimental setup of the laser is shown in Figure 10.2. The Tm:GdV04 crystal 
was pumped with a quasi-CW (QCW) fibre-coupled diode. The power supply that was 
connected to the laser diode pump was modulated by a pulse generator so that QCW 
pulses could be delivered by the diode pump. The pump light exiting the fibre was 
collimated and then focused into the crystal to a radius of 220 /.an. The diode pump 
was capable of delivering a maximum of 75 W at 803 nm. The optical fibre had a core 
diameter of 0.4 mm and a numerical aperture of 0.22. The resonator was designed with 
a length of 26 mm. This length was adjusted slightly to compensate for the thermal 
lens in the crystal. An output coupler with a 5% transmission at the laser wavelength 
of 1915 nm was chosen. 

10.2 QCW Operation 

The Tm:GdV04 crystal was pumped with a QCW beam in order to reduce the average 
pump power in the crystal to limit thermally induced stresses which ultimately cause 
crystal fracture. The QCW pump was set to an on-time of 20 ms at 5 Hz to provide 
an overall duty cycle of 10%. 
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Figure 10.2: The experimental setup of the Tm:GdV04 laser (Esser et ai, 2008). 

10.2.1 Threshold and Efficiency 

Note that in this section, any reference to pump power or laser power refers to the 
peak value during a QCW pump pulse. 

An analytical expression for the laser threshold with respect to the absorbed pump 
power of a quasi-three-level laser is given by (Fan & Byer, 1987) 

PTH = A
 hUP

em (AP + AL)(T + L + 2NQafl) (10.1) 

This expression is the same as the analytical threshold of a four-level laser (equation 
9.1) except for the last term. This term accounts for the reabsorption loss that occurs 
in quasi-three-level lasers due to the lower laser level that is thermally populated. 
No is the concentration of active ions in the medium, oa^s is the effective absorption 
cross-section at the laser wavelength and / is the length of the crystal. 

By making use of equation 10.1, it is possible to determine the laser threshold as a 
function of laser wavelength since the effective absorption- and emission cross sections 
are functions of wavelength. The laser will operate at the wavelength for which the 
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Figure 10.3: The laser threshold as a function of wavelength (sigma polarization) for 
various output couplers. The red star indicates the point at which the laser operated 
with a 5% transmission output coupler. 

threshold is a minimum. Figure 10.3 shows the threshold of the laser as a function of 
wavelength for various output couplers. 

The analytical approach predicts that the laser will operate at a wavelength of 
1910 nm with a threshold of 6 W incident pump power. It is very close to the ex­
perimental measured values of a laser wavelength at 1915 nm with a threshold of 5.6 
W. The rate-equation model predicts a threshold of 5.5 W which is even closer to the 
experimental value than the analytical expression. 

The measured slope efficiency for the laser was 28.4%, while the rate-equation model 
predicts 32% (Figure 10.4). The rate-equation fits the experimental data very well up 
to about 20 W incident pump power. At larger pump powers, a decrease in the laser's 
slope efficiency was observed experimentally. It is very likely that the decrease in the 
slope efficiency at higher pump powers is due to the very strong thermal lens that is 
induced in Tm:GdV04. Since the rate-equation model doesn't include any thermal 
effects such as thermal lensing, it is not able to predict the decrease in slope efficiency. 
The YLF laser in the previous chapter, has a negative thermal lens due to the negative 
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temperature dependence of the refractive index of YLF. The negative thermal lens is 
then compensated for by the positive lens formed by the bulging effect on the pumped 
face of the crystal. This results in an overall weak thermal lens. In contrast, the 
refractive index of GdV04 has a positive temperature dependence which induces a 
positive thermal lens so that the thermal lens contribution of the bulging effect just 
adds to the overall strength of the thermal lens. From equation 2.29, it is estimated 
that the focal length of the thermal lens (due to the temperature profile in the GdV0 4 

crystal) can be as strong as 20 mm at an incident power of 37 W. Thus, the thermal 
lens varies from very weak (at the start of a QCW pump pulse) to extremely strong 
during a single QCW pump pulse. Since it is very difficult to design a resonator that 
is stable for such a highly variable thermal lens, it is possible that the overlap between 
the pump and laser modes at high pump power is not so good as at lower pump powers. 
This would cause a decrease in the slope efficiency at high pump powers. It should 
be noted that thermal fracture of the Tm:GdV04 crystal was observed at an incident 
pump power of 37.3 W. 

0 10 15 20 25 30 35 40 
Incident Pump Power [W] 

Figure 10.4: Power scaling of the Tm:GdV04 laser. The blue line represents the rate-
equation solution and the red dots the experimental values. 
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10.2.2 Relaxation Oscillations 

The rate-equation model was also implemented to investigate the relaxation oscillations 
during each QCW pump pulse. At full pump power (37.3 W), the relaxation oscillation 
spikes reach a maximum power of 220 W from where the spikes decay to a CW power 
of 10 W. Figure 10.5 shows the relaxation oscillations for the laser at full pump power. 
Even at pump powers just above threshold, the relaxation oscillations have already 
stabilised to a constant laser output within the QCW pulse duration of 20 ms. 

250 

0.6 0.7 
Time [ms] 

Figure 10.5: The relaxation oscillations of the Tm:GdV04 laser at an incident pump 
power of 37.3 W. 

As expected, the upper laser manifold population density for the quasi-three-level 
laser is higher than the four-level laser of the previous chapter. For the four-level 
Nd:YLF laser, the upper laser manifold population as a percentage of the total ion 
density was N2/NT = 0.15%. For the quasi-three-level Tm:GdV04 laser the upper 
laser manifold population density as a percentage of the total ion density converges to 
N2/NT — 21.55%. The higher upper laser manifold population density for the quasi-
three-level laser is required to overcome the thermally populated lower laser manifold. 
This means that a higher upper laser manifold population density is required in order 
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Figure 10.6: The population inversion density during the relaxation oscillations of the 
Tm:GdVC"4 laser at an incident pump power of 37.3 W. 

to reach threshold. Figure 10.6 shows the upper laser manifold population density 
during the relaxation oscillations of the Tm:GdV04 laser at an incident pump power 
of 37.3 W. 

10.2.3 Output Coupler Transmission 

A change in the output coupler transmission will influence the threshold and cause 
a shift in the laser wavelength (Figure 10.7). As the output coupler transmission 
is increased, the laser wavelength changes from 1915 nm (sigma-polarization) at an 
output coupler transmission of 5% to 1850 nm at an output coupler transmission of 
25%. Between an output coupler transmission of 25% and 50%, the laser wavelength is 
unchanged. It should be noted that an output coupler transmission of 72% resulted in a 
change in the polarization of the laser light. This is because the pi-polarization results 
in a lower threshold at this particular output coupler and wavelength (1818 nm). 

As the laser wavelength is changed, the effective emission and absorption cross-
sections also change (equation 10.1). When the changing laser wavelength (as a func-
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Figure 10.7: The Tm:GdV04 laser wavelength as a function of output coupler trans­
mission. The red star represents the point at which the laser operated. 

tion of output coupler transmission) and the corresponding change in effective cross 
sections are ignored, the rate-equation model predicts the optimum laser output power 
at an output coupler transmission of 10% (Figure 10.8). If the change in the laser wave­
length and effective cross sections are taken into account, the optimum output coupler 
transmission is estimated to be 15%. Although there is not a big difference in the 
optimum output coupler transmission as predicted by the two models, the difference 
in the slope of the two curves is significant. 

In the rate-equation prediction (solid blue curve) in Figure 10.8, the effective cross-
sections (sigma-polarization) at 1915 nm were used to predict the laser output at all 
output coupler transmissions. The blue dots in Figure 10.8 show the the rate-equation 
solution with the effective cross sections adapted for the shifted laser wavelength. From 
Figure 10.8 it is evident that it is necessary to account for the change in laser wavelength 
and thus the effective absorption and emission cross sections in order to predict the 
laser power as a function of output coupler transmission. 
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Figure 10.8: The output power of the Tm:GdV04 laser (at an incident pump power of 
37.3 W) as a function of the output coupler transmission. The red star indicates the 
point at which the laser operated. The solid blue line show the rate-equation solution 
(constant effective cross sections) and the blue dots shows the rate-equation solution 
with the effective cross sections adapted for the shifted laser wavelength. 

10.3 Summary 

The quasi-three-level single-element plane-wave rate-equation model has been applied 
to a quasi-three-level Tm:GdV04 laser. The rate-equation model managed to predict 
the threshold of the laser accurately. An analytical expression for the laser threshold 
was used as a further confirmation. The analytical expression also predicts the wave­
length at which the laser will operate for a given output coupler transmission. The 
wavelength prediction of 1910 nm at a 5% output coupler transmission is very close to 
the observed wavelength of 1915 nm. 

The rate-equation model predicts the laser output accurately up to pump powers 
of ~ 20 W. At higher pump powers, a decrease in the slope efficiency of the laser was 
observed. This is due to the highly variable thermal lens in the crystal that influences 
the overlap between the pump and laser modes and reduces the efficiency of the laser. 
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Since the rate-equation model doesn't account for a thermal lens, the decrease in the 
slope efficiency of the laser is not predicted. 

The relaxation oscillations and the corresponding population dynamics were inves­
tigated with the rate-equation model. As expected, the population inversion density 
for the quasi-three-level Tm:GdV04 laser is much higher than that of the four-level 
Nd:YLF laser in the previous chapter. The higher population inversion that is required 
for the quasi-three-level laser is to overcome the reabsorption loss due to the lower laser 
level that is thermally populated. 

The laser power as a function of output coupler transmission was investigated. For 
the rate-equation model to accurately predict the laser power as a function of output 
coupler transmission, the changing laser wavelength and the corresponding change in 
effective absorption and emission cross sections should be taken into consideration. 
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Conclusion and Summary 
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Conclusion and Summary 

The first part of this thesis is mainly an introduction to diode-pumped solid-state 
lasers. The basic operation principles of diode-pumped solid-state lasers are explained. 
The interaction processes between electromagnetic radiation and matter are discussed. 
Solid-state gain media, end- and side-pump geometries as well as basic resonators are 
among the other topics that were considered. 

The second part consists of a detailed discussion of the thermal effects in solid-state 
lasers. The temperature distribution in a pumped laser rod was determined by solving 
the heat diffusion equation. Analytical solutions for isotropic cylindrical laser rods 
were discussed, while finite element methods were employed in order to determine the 
temperature distribution in more complex anisotropic materials of various geometries. 
The effects and the theory surrounding temperature induced thermal lensing and ther­
mally induced stresses were discussed. Analytical solutions for the thermal lens and 
thermally induced stresses were investigated for isotropic cylindrical laser rods. After 
all the theory surrounding thermal effects were explained, the temperature distribution, 
thermal lens and thermal stresses were determined for a CW pumped Nd:YAG rod. 
The analytical expressions and numerical solutions for the thermal effects were found 
to be consistent with experimental data. Next, the analytical expression that predicts 
the maximum stress in isotropic cylindrical rods was extended to predict the maximum 
stress in isotropic slabs. A good agreement with numerical models was found if the 
ratio of the pump beam diameter to the slab width was greater than 0.7. A coupled-
thermal stress finite element analysis of an anisotropic QCW-pumped Tm:YLF rod 
was performed in the commercially available software package, ABAQUS. The goal 
was to investigate the time-dependent thermal stresses in order to determine the av­
erage pump power at which crystal fracture occurs as a function of the QCW pump 
duty cycle. The final chapter in this section consists of a summary of a time-dependent 
analytical thermal model for end-pumped isotropic laser rods that was developed after 
the completion of this dissertation.. 

In the final part of this thesis, a single-element plane-wave quasi-three-level rate-
equation model was developed. The section started off with a detailed discussion of 
idealised three- and four-level rate-equation models. This was followed by the dis­
cussion and development of a spatially resolved quasi-three-level rate-equation model. 
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However, in order to simplify the implementation of the rate-equation model as a com­
puter simulation, the spatial dependence of the parameters was ignored by reducing the 
model to a single-element plane-wave quasi-three-level rate-equation model. The model 
was then applied to a four-level Nd:YLF laser as well as a quasi-three-level Tm:GdV04 

laser. For both lasers, the rate-equation model predicted a threshold and slope effi­
ciency that was consistent with experimental data. Population inversion, relaxation 
oscillations and the effect of the output coupler transmission on the laser behaviour, 
were some of the other dynamics that were predicted successfully by the rate-equation 
model. Where possible, analytical expressions were also implemented to explain and 
predict the behaviour of some laser parameters such as the laser wavelength. Over­
all, the single-element plane-wave rate-equation model managed to provide quick and 
accurate explanations for the laser dynamics during CW, Q-switch and QCW laser 
operation. 

The work that is presented in this thesis illustrates the successful development and 
implementation of numerical and analytical thermal models which explain and predict 
the thermal effects in diode-pumped solid-state lasers as well as a quasi-three-level 
rate-equation model that explains the population dynamics of such a laser. 

Future work will include the development of an analytical time-dependent model 
that determines the temperature distribution in the laser rod for an arbitrary pump 
profile. This will enable an analytical time-dependent analysis of the thermal lens and 
thermally induced stresses in laser rods of QCW-pumped lasers. The next step in the 
rate-equation model will be to extend the model to account for the spatial dependence 
of parameters. Additional effects such as upconversion and cross-relaxation will also 
be included. There is a complex interplay of parameters between the thermal and 
rate-equation models so that ultimately, the thermal and rate-equation models should 
be merged into one comprehensive laser model. 
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Appendix A 

Nd:YLF Laser Model - Additional 
Information 

This Appendix consists of additional information about the Nd:YLF laser that is de­
scribed in chapter 9. 

Table A.l: The parameters of the Nd:YLF laser that were used in the rate-equation 
model. 

Parameter 
Doping at.% 
Nd:YLF Refractive Index (1050 nm) 
Crystal length [mm 
Effective absorption cross-section [cm2] 
Effective emission cross-section [cm2] 
Upper level lifetime \ps] 
Pump Efficiency 
Density of active ions in 1% doping [cm3] 
Pump Wavelength [nm] 
Pump beam diameter [mm] 
Laser Wavelength [nm] 
Resonator length [mm] 
Output Coupler Transmission % at 1053 nm 
Other Losses % 

Value 
0.5 
1.46 
80 

2.35e-20 
14e-20 

525 
0.7 

1.4e20 
805 

2 
1053 
773 
20 
1 

Reference 
(Bollig et al, 2008) 

(Barnes & Gettemy, 1980) 
(Bollig et al, 2008) 

(Cross, 2004) 
(Czeranowsky, 2002) 

(Ryan & Beach, 1992) 
(Fan & Byer, 1988) 

(VLOC Catalog, 2008) 
(Bollig et al, 2008) 
(Bollig et al, 2008) 
(Bollig et al, 2008) 
(Bollig et al, 2008) 
(Bollig et al, 2008) 
(Bollig et al, 2008) 
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Figure A.l: The effective absorption cross-sections of Nd:YLE on the sigma (red) and 
the pi (blue) polarizations (Cross, 2004). 
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Figure A.2: The effective emission cross-sections (sigma-polarization) of NdrYLF (Cz-
eranowsky, 2002). 
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Appendix B 

Tm:GdV0 4 Laser Model -
Additional Information 

This Appendix consists of additional information about the Tm:GdV04 laser that is 
described in chapter 10. 

Table B.l: The parameters of the Tm:GdV04 laser that were used in the rate-equation 
model. 

Parameter 
Doping at.% 
Tm:GdV04 Refractive Index (1064 nm) 
Crystal length [mm] 
Effective absorption cross-section at Xp [cm2] 
Effective emission cross-section at Ap[cm2] 
Effective absorption cross-section at A/, [cm2] 
Effective emission cross-section [at A^cm2] 
Upper level lifetime [ms] 
Pump Efficiency 
Density of active ions in 1% doping [cm3] 
Pump Wavelength [nm] 
Pump beam diameter [frni] 
Laser Wavelength [nm] 
Resonator length [mm] 
Output Coupler Transmission % at 1915 nm 
Other Losses % 

Value 
3 

1.9 
3 

1.6e-20 
2.6e-20 

0.02e-20 
0.22e-20 

1.85 
1.3 

1.25e20 
803 
440 
1915 
26 
5 
2 

Reference 
(Esser et al, 2008) 

(Zagumennyi et al, 2003) 
(Esser et al, 2008) 
(Esser et al, 2008) 
(Esser et al, 2008) 
(Esser et al, 2008) 
(Esser et al, 2008) 

(Lisiecki et al, 2006) 
Estimated 

(Zagumennyi et al, 2003) 
(Esser et al, 2008) 
(Esser et al, 2008) 
(Esser et al, 2008) 
(Esser et al, 2008) 
(Esser et al, 2008) 
(Esser et al, 2008) 
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Figure B.l: The effective absorption cross-sections of Tm:GdV04 on the sigma (red) 
and the pi (blue) polarizations (Esser et ai, 2008). 
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Figure B.2: The effective absorption (solid curves) and emission (dashed curves) cross-
sections on the sigma (red) and pi (blue) polarizations of Tm:GdV04 (Esser et al, 
2008). 
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Abstract: A time-dependent analytical thermal model of the temperature 
and the corresponding induced thermal stresses on the pump face of quasi-
continuous wave (qcw) end-pumped laser rods is derived. We apply the 
model to qcw diode-end-pumped rods and show the maximum peak pump 
power that can be utilized without fracturing the rod. To illustrate an 
application of the model, it is applied to a qcw pumped Tm:YLF rod and 
found to be in very good agreement with published experimental results. 
The results indicate new criteria to avoid fracture when operating Tm:YLF 
rods at low qcw pump duty cycles. 
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1. Introduction 

The power scaling of diode-end-pumped solid-state lasers is a very active area of research. 
The main problem that limits the power scaling of these lasers is the generation of heat inside 
the laser gain medium; the generated heat causes steep temperature gradients inside the 
crystal, which in turn produce stress, leading to fracture. Fracture of the laser material occurs 
when the thermally induced stress exceeds the ultimate strength of the material [1]. When the 
continuous wave (cw) pump power exceeds the power at which crystal fracture occurs, the 
pump source is often modulated in time, creating a so called quasi-continuous wave (qcw) 
pump, with the effect of reducing the average pump power to below the fracture limit, while 
maintaining a high output power during the on-time of the pump pulse. 

In order to investigate the thermally induced stresses and the power limitations due to 
fracture, a thermal model of the laser gain medium is required. Existing analytical thermal 
models that describe the temperature and stresses in laser crystals are restricted to special 
cases and approximations, such as cw pump sources and steady-state conditions [1-5]. In this 
paper an analytical thermal model that determines the transient behaviour of the temperature 
and the corresponding induced stresses on the pump face of an isotropic laser rod is derived 
from first principles. To the best of our knowledge this is the first time that such a time-
dependent analytical model has been reported. We validate the model through finite element 
analysis, and apply the model to qcw pumped Tm:YLF laser rods, and find favourable 
agreement between the calculated fracture limits and the experimentally determined values 
reported in the literature. 

We have particularly chosen to apply the model to a YLF rod because power scaling with 
this material is limited by the relatively low fracture limit of 40 MPa, which is ~5 times lower 
than that of YAG [6]. Despite being derived for isotropic rods, we show that the model may 
be applied to anisotropic rods on condition that the highest linear expansion and the lowest 
thermal conductivity of the respective a- and c-axis of the crystal are used in the calculation. 
Finally, we illustrate how the model may be used to estimate the peak pump power that can 
safely be used to qcw pump a laser rod at a given duty cycle, opening the way to fracture-free 
power scaling with qcw pump sources. 

2. Theory 

In this section the transient temperature and stress profiles on the pump face of a 
longitudinally pumped isotropic laser rod are derived. We assume that the Rayleigh range of 
the pump beam is much longer than the length of the rod so that the pump beam is treated as 
perfectly collimated inside the rod. This implies that only the pump face need be considered 
since the pump light in the gain medium follows an exponential decay, with the steepest 
temperature gradient (and thus stress) on the pump face [2,4]. A closed form solution for the 
time dependent temperature profile on the surface of the crystal rod, u(r,t), may be found by 
solving the non-homogeneous heat diffusion equation [7,8]: 

^!l-DV2u(r,t) = Q(r,t), (1) 
at 

for a generalized source term Q(r,t). Here D = k/pCp is the diffusivity, k is the thermal 
conductivity, p is the density and Cp is the heat capacity of the laser material respectively, 
while all other terms have their usual meaning. We will assume that the rod has a length / and 
a radius R, and is homogenous and isotropic. Furthermore, we will assume that the boundary 
of the rod is at a constant temperature, u(R,t) = 0, with no initial temperature profile on its 
pump face: u(r,Q) = 0. With these boundary conditions, Eq. (1) may be solved directly by use 
of an appropriate Green's function, with the solution given in integral form as: 

u(r,t) = 'jJQ(t,T)G(r,Z,t-T)d@T, (2) 
00 
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with the Green's function G(r,£i) given by [7]: 

G(r,£0=L 2<? 
^xR2Jf(jum) 

Jo(jJmr/R)Ja(jUmr/R)ex 
R2 

(3) 

The summation is over the positive roots (jj^) of the zeroth order Bessel function, J0- For 
the common experimental configuration where the pump beam is imaged onto the rod face 
from a multimode fibre, the pump intensity may be approximated as having a top-hat spatial 
intensity profile. Figure 1 shows an example of a measured top-hat transverse intensity profile 
as produced by a fibre-coupled diode pump. If in addition the pump is not assumed to be cw 
but rather the more general qcw, consisting of a pulse train of on-off pulses with on-time T„„ 
(with %,„ usually longer than the upper-state lifetime of the laser gain medium) and period T, 
we may write the source term as: 

^ E ;nT<t<nT + T0„ 
Q(rJ) = \mV

2pCpTa„ , (4) 
0 ;nT + Ton<t<{n + \)T 

where n is the number of pulses, E is the energy in each pulse and w is the radius of the top-
hat beam, a is the absorption coefficient in units of inverse length of the crystal, while Tf is a 
parameter to account for the fact that not all the absorbed pump light is converted into heat. 
This model can be applied under lasing or non-lasing conditions by choosing an appropriate 
value for rj. Typical values for the heat load efficiency are 77=0.32 (lasing) and 77=0.4 (non-
lasing) [9]. 

Fig. 1. An example of a measured top-hat transverse intensity profile produced by a fibre 
coupled diode laser pump (own experimental results). 

Substituting Eqs. (3) and (4) into Eq. (2) and solving both the time and spatial integrals 
separately yields the following analytical expression for the temperature on the pump face of 
the rod: 

u{!. pT | / ) = 2arjERyJo(p_mr/R)Jx{pmwlR)f(p,t,jUm) 

kmvT,,. vUtipj 
(5) 

with the time dependence given by f(p,t,fi„) as: 
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/(p,/,//J = exd-//, 

c 

V •I--1 exd-//, / ^ 

-exd //* 
1-exp //„ — (6) 

with r= min[/, t„„]. Here we have introduced a new variable, rD = R2/D, which we refer to as 
the diffusion relaxation time of the system, and for convenience the temperature is calculated 
after p complete pulses plus some time / into the p+\ pulse, so that the total elapsed time from 
the start of the pumping process is pT + t. While the summation in Eq. (5) is carried to 
infinity, in practice one finds that 30 terms or above leads to very good convergence of the 
series. Equation (5) may easily be rewritten in terms of peak pump power (Pp) or average 
pump power (Pov) rather than pump energy (E) by noting that for the source term in this study 
Pp = E/T„„ and Pm = E/T (note: here we have assumed that the time pulse envelope is a square 
pulse; for other cases the peak pump power expression may have to be modified in an 
appropriate manner). In the special case of a cw pump source, T = z„„ so that the peak and 
average pump powers are identical. 

By making use of a plane-strain approximation and assuming that the stress in the axial 
direction is zero, we may calculate the radial and tangential stresses from the temperature 
profile from [10,11]: 

<rr(r,t) = C —- I u(r,i)rdr—- u(r,t)rdr 
R2 J r1 J 

(7a) 

K r 

ae{r,t) = C —- \u(r,t)rdr+ — \u(r,t)rdr-u(r,t) (7b) 

where C = yYI(\-v), with / the linear coefficient of expansion, Fis Young's modulus and V is 
Poisson's ratio. The plain-strain approximation is valid for l/R» 1 (a long rod) [11]. For the 
case where l/R « 1 (a thin disk), the plane-stress approximation is used where Eqs. (7a) and 
(7b) also hold with C = jY [11]. One can readily show that Eqs. (7a) and (7b) can be solved 
analytically to yield: 

ar(r,pT+ty. 
2CaT)ER^Jt(/umw/R) 

knwron ~uiJ}{nm) 

./,(//„,) RJ,(nmrlR) 

rUm 
f(P,UlimY, (8a) 

ae(r,PT+t). 
ICarjER ^J^mw/R) 

kmvTon j^nlJ^(fJm) 

J,(um) RJAurlR) 
_JW^+^W2 '-J0({jmr/R)\f(p,t,<uJ. (8b) 

Mm rjum 

Due to the fact that the stress tensor alone does not provide enough information regarding 
crystal fracture, we use the maximum shear stress to predict fracture [12]. This is also known 
as the stress intensity or the Tresca failure criterion, which in the plain-strain approximation 
reduces to: 

OT{r,pT+t) = \o0-0r\ 

_ ICarjER ^,Jx(pmwlR) 

knWTon m=\MlJ\iMm) 
M/Umr/R)f(pj,<um) 

(9) 
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where we have made use of the well known relation J2(x) = U\(x)lx - JQ(X). Equations (5), (8) 
and (9) allow the temperature, stresses and fracture limit to be calculated for any qcw pulse 
train, as a function of both time and position in the crystal rod. 

3. Model validation 

As a verification of the analytical thermal model, a time-dependent three dimensional coupled 
thermal-stress finite element analysis was implemented in a commercial software package, 
ABAQUS [13,14]. The average computation time of each finite element simulation 
(5560 discretization) was approximately 5.5 hours on a dual-core 2.4 GHz processor (the 
analytical model takes -1 -2 s). In analogy with convective heat transfer, we have specified a 
Neumann boundary condition with a heat transfer coefficient at the interface between the 
crystal and the copper heat sink. We have used a heat transfer coefficient of 0.9 Wcnf KT , 
which corresponds to a layer of indium foil between the crystal and the heat sink [5]. In the 
remaining text the finite element analysis will be referred to as the numerical model [ 14]. 

The analytical and numerical models have been applied to reported results [15] of a cw 
pumped, 4% doped, Tm:YLF laser rod with / = 12 mm and R = 1.5 mm (l/R=S so that we 
make use the plain-strain approximation as discussed in section (2)). The pump beam was a 
near top-hat profile with Af -100 and a pump radius of w = 470 (im in the middle of the 
crystal. The onset of fracture was reported at an incident power of 47.2 W (a= 1.43 cm- '; 
/7=0.33). While the actual stress values at fracture are not reported, it is known that the 
fracture limit of YLF crystals is in the 33-40 MPa range [1,6]. The parameters that were used 
in the numerical and analytical thermal models are shown in Table 1. 

The analytical model predicts a maximum Tresca stress of 42 MPa which agrees very well 
with the reported 33—40 MPa fracture limit range [1,6]. The numerical model results in a 
maximum Tresca stress of 41 MPa. This shows that for a cw pump, the analytical thermal 
model is consistent with both the experimental fracture data and with the numerical solutions 
of a three-dimensional finite element analysis. Since the analytical thermal model proved to 
be accurate for a cw pump beam, the transient behaviour of the temperature and the induced 
stresses were determined for various qcw pump duty cycles, defined as r0JT. Figure 2(a) and 
2(b) show the predicted time-dependence of the temperature in the centre of the pump face of 
the Tm:YLF rod for a 10% and a 50% pump duty cycle respectively (t„„ = 10 ms). The upper 
and lower boundaries of the shaded red region in Fig. 2 indicate the analytical model's 
predictions of the temperature when the thermal conductivity of the c - and the a-axis of 
Tm:YLF were used respectively. It is clear from the graphs that there is very good agreement 
between the analytical and numerical models when the lowest thermal conductivity is used in 
the calculations. Figure 3 illustrates that the thermally induced stresses as calculated by the 
two models show very good agreement when the highest linear expansion coefficient is used 
in the analytical model. The upper and lower boundaries of the shaded red region in Fig. 3 
indicate the analytical model's predictions of the maximum stress on the pump face when the 
two respective linear expansion coefficients of Tm:YLF were used along with the lowest 
thermal conductivity. 

By considering the transient stress distribution on the entire pump face with a qcw pump 
source, it is evident that the maximum stress does not always occur on the edge-surface 
(r - R) of the rod; this is contrary to the case of a cw pump beam [4]. The position of the 
maximum stress changes during a single qcw pump pulse as well as between qcw pulses. 
Figure 4(a) shows an animation of the analytically predicted <JT on the pump face of the 
Tm:YLF rod when subjected to a 90 W peak power pump beam at 50 Hz (T= 20 ms; T„„ = 10 
ms), while Fig. 4(b) shows an animation of the numerically predicted Or throughout the bulk 
of the Tm:YLF rod. A cross-section of the stress is overlaid on the analytical animation, and 
clearly shows the "peak" where the stress is maximum and its movement in time as the pulses 
accumulate. Note that the numerical solution does not exhibit the same symmetrical stress 
distribution on the pump face as the analytical solution since the anisotropic characteristics of 
Tm:YLF were accounted for in the numerical model and not in the analytical model. 
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Table 1. Parameter values ofthe pumped Tm:YLF rod that were implemented in the simulations. 

Parameter 

Pump beam radius (u») [mm] 

Rod radius (R) [mm] 

Absorption coefficient (Ot) [cm1] 

Thermal conductivity (k) [W.m'.K1] 

Linear expansion coefficient (J) [10"6 K"1] 

Fractional heat load (T]) 

Poisson's ratio ( f ) 

Young's modulus (Y) [GPa] 

Density(/>) [g.cm3] 

Specific heat capacity (Cp) [J.g''.K''] 

Thermal Model 

0.47 

1.5 

1.43 

7.2 (a-axis), 5.8 (c-axis) 

13 (a-

0.33 

0.33 

75 

3.9 

0.79 

•axis), 8.0 (c-axis) 

Reference 

[15] 

[15] 

[15] 

[1,16] 

[1,17] 

estimated 

[1,16] 

[1.2] 

[1,17] 

[1,17] 

(a) (b) 

Fig. 2. The analytically (red) and numerically (black) predicted temperature in the centre ofthe 
Tm:YLF rod as a function of time while the rod is subjected to a qcw pump with a peak power 
of (a) 200 W at 10 Hz (*;,„ = 10 ms) and, (b) 90 W at 50 Hz (%,„ = 10 ms). 

UAX 
(a) (b) 

Fig. 3. The maximum stress on the pump face ofthe Tm:YLF rod as a function of time while 
the rod is subjected to a qcw pump with a peak power of (a) 200 W at 10 Hz (%,„ = 10 ms), and 
(b) 90 W at 50 Hz (T,,„ = 10 ms). The analytical (red) and numerical (black) solutions are 
shown. 
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(a) (b) 

Fig. 4. (0.75 MB and 0.33 MB respectively) Animations of (a) the analytical stress distribution 
on the pump face and (b) the numerical stress distribution in volume of the Tm:YLF rod while 
it is subjected to a 90 W peak power qcw pump beam at 50 Wz(%,„= 10 ms). 

4. Power scaling of Tm:YLF rods by qcw pumping 

To achieve ever higher output powers from a diode-end-pumped solid state laser, the pump 
power itself must be increased in a concomitant manner. When the pump is a cw source, the 
high average powers required in some applications leads to high thermal loads, and the onset 
of fracture. A standard solution to this problem is to employ a qcw pump source, with the 
advantages that: (i) the average thermal load is reduced through a reduced duty cycle, and 
(ii) the qcw pulsing leads to higher peak pump power, resulting in much higher laser output 
power during the qcw pump pulses. 

During the qcw operation of a solid-state laser, the generally accepted criteria to avoid 
thermal fracture is to pump the crystal with an average power (Pai) that is below the cw 
fracture pump power (Pcw): 

P„, * Pew (10) 

The thermal model developed in section (2) provides a more comprehensive criterion for 
safe qcw operation, through direct application of Eq. (9), and the results are shown in Fig. 5. 
The green shaded area in Fig. 5(a) shows the analytically predicted average power with which 
the Tm:YLF crystal can be pumped without causing thermal fracture, while the red region 
indicate the predicted onset of fracture using Eq. (10). The yellow region then indicates the 
region of disagreement between the two models. It is clear that for qcw pump duty cycles of 
40% and higher, fracture of the Tm:YLF rod will indeed occur at average pump powers which 
are equal or greater to the cw fracture pump power, so that Eqs. (9) and (10) are in agreement. 
At pump duty cycles that are lower than 40%, the analytical model predicts that crystal 
fracture will occur at average powers that are significantly lower than the cw fracture pump 
power. By way of example, consider a qcw pump duty cycle of 10% (T = 100 ms; £,„ = 10 
ms) where the fracture limit of Tm:YLF is at Pctl. = 47 W. For this qcw duty cycle, fracture 
would occur at P„v > 26 W, with the region 47 W >Pav > 26 W indicating the error of using 
Eq. (10). This error is indicated for all duty cycles as the yellow shaded area in Fig. 5(a). The 
implication is that Eq. (10) is a necessary but not sufficient condition for fracture-free qcw 
operation in Tm:YLF lasers. 

An alternative approach to illustrate the results of the analytical thermal model is to 
consider the peak power during a qcw pump pulse and to note the peak power at which 
fracture occurs. The green shaded area in Fig. 5(b) indicates the qcw peak power that can be 
used to pump the Tm:YLF rod without fracturing it as predicted by the analytical model, 
while the red region indicates the fracture limit using Eq. (10); the yellow region is once again 
the region of discrepancy. 
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(a) (b) 

Fig. 5. (a). The average pump power (as a fraction of the cw fracture power Pcw) at which 
fracture of the Tm:YLF rod occurs as a function of qcw pump duty cycle (r„„= 10 ms). The 
green shaded region indicates the average pump power at which the Tm:YLF rod can be 
pumped without fracturing according to the analytical model. The yellow shaded region 
indicates the difference between the analytical model and Pew (b) The same notation as in (a) 
but for the peak pump power (in units of Pcw) at which fracture of the Tm:YLF rod occurs as a 
function of qcw pump duty cycle. 

Considering the qcw pump duty cycle of 10%, we note that the Tm:YLF rod can be pumped 
with a peak pump power of 5.5x higher (270 W) than the cw fracture power before fracture 
will occur, while Eq. (10) would predict a lOx higher value (470 W). 

The model predictions can thus be summarised as follows: the rule of thumb given by 
Eq. (10) is a necessary but not sufficient condition for fracture-free power scaling of Tm:YLF 
through the use of qcw pump sources. This is not surprising given that this criteria is not 
derived from an analysis of the onset of fracture, but is based rather on intuition. Equation (9) 
is derived from a full thermal analysis, and we suggest that this provides the necessary 
criterion for any laser rod to be pumped without fracture. In the limit that the duty cycle 
approaches the cw case, Eq. (9) correctly converges to Eq. (10) as expected. 

5. Conclusion 

A time-dependent analytical thermal model was developed to investigate the transient 
behaviour of thermally induced stresses in qcw end-pumped laser rods. The versatility of such 
a model is that all the material and pump laser parameters may be varied analytically, thereby 
aiding physical insight. For example, the model confirms exactly that the temperature 
increases linearly with pump power, as expected. Similarly, one can 'instantaneously' 
determine how the rod temperature varies with any of the key parameters, enabling one to 
easily probe the underlying physics with questions such as: how does the temperature profile 
vary with pump size w? Determining this numerically would be extremely time consuming. 
Furthermore, the resulting analytical expression for the temperature of the rod may be used to 
determine other quantities, such as the optical aberrations likely to be imparted to a 
propagating wave through the crystal rod. The key advantages of the analytical model are 
ease of computation, as highlighted above, and time of computation. We reported that the 
average computation time of each finite element simulation was approximately 5.5 hours on a 
dual-core 2.4 GHz processor; this is in stark contrast to the analytical model in which the 
computational time is less than a couple of seconds on a standard PC, i.e., for all practical 
purposes it is 'instantaneous' in comparison. 

The analytical model was used to investigate the thermal stress in a Tm:YLF rod at 
various qcw pump duty cycles, and was found to be in very good agreement with that of a 
time-dependent coupled thermal-stress finite element analysis, and with published 
experimental data. We have applied the analytical model to determine the maximum peak 
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power at which a Tm:YLF rod can be pumped before it will fracture. We show that at all qcw 
duty cycles the crystal will fracture at average power levels that are lower than predicted by 
using the corresponding cw fracture limit. The discrepancy is largest at low duty cycles, 
converging to a perfect agreement in the limiting case of a 100% duty cycle (cw). Thus we 
suggest a new criteria to be applied for safe power scaling of Tm:YLF rods. While the 
implementation of the analytical model has concentrated on YLF due to its low fracture limit, 
the model presented here may be applied to any end-pumped laser rod pumped using qcw or 
cw sources as the assumptions used to develop the analytical model are not material specific. 
It needs to be verified for other gain materials and other pumping conditions that the same 
discrepancy (between the predicted average power level at which fracture will occur and the 
cw fracture limit) exists at low duty cycles. 
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Of the various Neodymium-doped materials, Nd: YLF is particularly attractive for use in high-power diode end-
pumped solid-state lasers due to its weak thermal lens, especially on the a-polarisation, and it's long upper laser 
level lifetime that enables efficient energy storage for ^-switching. However, due to the low thermal fracture 
limit in Nd:YLF, power scaling has proven to be difficult. 

In our previous work, we addressed several issues relating to Nd:YLF in a novel fashion and were 
subsequently able to demonstrate the highest published power for an end-pumped Nd:YLF laser [1]. The laser 
delivered a total output power of 60.3 W CW and an average power of 52 W when g-switched between 5 and 
30 kHz, with good beam quality and no sign of lifetime quenching. However, we experienced fracture at 5 kHz. 

In order to address the fracture problem we decided to use crystals of a doping concentration below the 0.5% 
previously used. In addition, we decided to exploit the natural doping gradient along the length of the boule, 
which is especially pronounced at low concentrations but commonly ignored. In a collaboration, VLOC 
estimated the doping gradient of a specially manufactured boule (Fig. 2) and maintained the crystal orientation 
information during the manufacturing process of the 45 mm long, 6 mm diameter crystals. Initial thermal 
calculations indicate that for these crystals, the lower-doping end can be pumped 58% harder than the higher-
doping end before the thermal fracture limit is reached. 

To be able to pump each crystal rod from its low-doping end, we implemented a folded resonator (Fig. 1). In 
addition to using relatively low doping concentrations, we pumped at a wavelength of 805 nm, where the 
absorption of Nd.YLF is ~5 times lower than the conventionally used 792 or 797 nm. The combination of these 
techniques resulted in a more even distribution of the heat load along the length of the crystals. As in our 
previous work, we compensated for the strong astigmatism of the crystals by using two crystals with the c-axis 
vertical and two with the c-axis horizontal with a A/2-plate in-between [1 ]. 

,Pump Crystal Optical Axis [mm] 'np"» Power [W] 
bum 1 

Fig. 1 Laser resonator Fig. 2 Crystal doping gradient as Fig . 3 Power under CW operation 
estimated by VLOC 

With this configuration, no crystal damage occurred, even with all four fibre-coupled 75 W diode laser 
modules at full power. A total output power of up to 87 W CW was achieved, which is the highest reported so 
far but still less than expected (Fig. 3). Using Findlay-Clay and Caird analysis, the resonator loss was estimated 
to be 10% and 15% respectively. The crystals' total scatter loss was subsequently measured but was found to be 
only 1.64% round-trip loss at the laser wavelength. 

We observed significant fluctuations in the output power and beam pointing. These could be because the 
laser operates in Zone II of the thermal stability diagram [2], which makes the laser very sensitive to 
misalignment and to small fluctuations in the pump overlap and variations in diffraction in the air. We believe 
that the lower than expected output power is due to this as well, rather than to actual resonator losses. 

By redesigning the laser to operate in zone I, efficient and stable operation in excess of 100 W should be 
achievable. In the next step, g-switched operation will be investigated, which has the potential to yield high 
average powers even at repetition rates below 5 kHz. 
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Abstract: Time dependent thermally induced stresses in an end-pumped TmrYLF laser rod are investigated 
numerically. The variation of the maximum incident pump power at the fracture point with respect to pump 
pulse length is investigated. 
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1. Introduction 

The power scaling of diode end-pumped solid-state lasers is a very active area of research. The main problem 
that limits the power scaling of these lasers is the generation of heat inside the laser gain medium which can 
ultimately cause fracture. The generated heat causes steep temperature gradients inside the crystal, which in 
turn, produce stress. Fracture of the laser material occurs when the thermally induced stress exceeds the ultimate 
strength of the material [1]. 

When the continuous wave (CW) pump power exceeds the fracture power of the crystal, a quasi-continuous 
wave (QCW) pump is often used to reduce the average pump power to below the fracture pump power. In this 
paper we investigate the thermal stresses for a single QCW pump pulse. Due to the anisotropic nature of YLF, it 
is necessary to perform a three dimensional finite element analysis of the laser material in order to investigate 
the temporal and spatial behaviour of the thermally induced stresses [2]. 

In the next section, we discuss the theoretical model that we have implemented in the finite element 
analysis. In order to validate our numerical results, we compare the numerical solution with experimental results 
for a CW pump. After this has been verified, we investigate how the maximum temperature and thermally 
induced stresses vary with pulse length for the case of QCW pumping. 

2. Theoretical Model 

In this model we consider a super-Gaussian pump light distribution (in the X-Y plane). In general, the heat 
density added by the pump light beam to a crystal can be described by 

Q(x,y,z) = at]Ip(x,y,z) (i) 

where TJ is the fraction of absorbed pump power that is converted into heat, a is the absorption coefficient of 

the crystal and lp(x,y,z) is the intensity of the pump radiation [3]. 
For the case of a cylindrical crystal rod, pumped by a fibre-coupled diode, we assume that the pump beam 

radius in the x and y directions are the same so that the pump light intensity can be described by 

f 
(2) 

Ip(x,y,z) = Ppe-*C(zy 

where P is the incident pump power, C(z) a normalisation factor, w the pump beam radius and SG is the super-
Gaussian order. Since the propagation distance of the pump beam through the length of the crystal (12 mm) is 
well within the 87 mm pump beam Rayleigh range, we consider the pump beam to be collimated inside the 
crystal so that the pump beam radius has no z dependence. 

In analogy with convective heat transfer, we have specified a heat transfer coefficient at the interface 
between the crystal and the copper heat sink. We used a heat transfer coefficient of 0.9 Wcm "2K"', which 
corresponds to a layer of indium foil between the crystal and the heat sink [4]. 

Equation (1) can now be used in a 3D finite element analysis to define the heat added to the laser material 
via the pump beam radiation. 
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Due to the fact that the stress tensor alone doesn't provide enough information regarding crystal fracture, 
we use the maximum shear stress to predict fracture [5]. This is also known as the stress intensity or the Tresca 
failure criterion 

aT = maxUcr, -CT2|,|cr2 - 0 \ |0-3-0i|) (3) 

where Os, <J2
 a r ,d °3 a r e m e principal stresses. 

3. Finite Element Analysis Results 

We have implemented the model in the commercial finite element software package, ABAQUS [6]. In order to 
validate our model for the CW pump case, we have compared it with experimental results taken from [7] as well 
as a commercial laser modelling software package, LASCAD [8]. Since LASCAD is restricted to a CW pump 
beam, we implemented the time dependent simulations only in ABAQUS. 

For the CW pump case, fracture of the 4% doped Tm:YLF rod was reported at 38.7 W of absorbed pump 
power, which corresponds to 47.2 W of incident power, assuming an absorption coefficient of 1.43 cm"' [7]. We 
have assumed that 33% of the absorbed pump power is converted into heat. They reported a quasi-top-hat pump 
with M2 of 100 and pump focus radius of-470 um in the middle of the 12 mm long, 3 mm diameter crystal [7]. 
This pump setup was implemented in ABAQUS with a super-Gaussian order of 10. The maximum stress 
intensity was calculated to be 32.6 MPa, which agrees very well with the 33 MPa fracture limit of YLF [1]. 
LASCAD calculated a maximum stress intensity of 33.0 MPa. Figure 1 shows the stress intensity distribution. 

Figure 1: The stress intensity distribution through a slice of the crystal as viewed from the pump face. The maximum stress is 32.6 MPa, 
while the minimum value is 1.9 MPa. Both figures display the same results, but the figure on the left also shows the finite element grid. 

For the time dependant stress analysis, we considered the maximum stress intensity over the duration of a 
single QCW pulse (Figure 2a). 
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Figure 2: (a) The stress intensity during a single 50 W pump pulse of 10 ms duration, (b) The time dependence of the maximum stress 
intensity for various pump powers. The dotted line shows the fracture limit of YLF. 

From Figure 2a it is clear that the stress increases monotonically while the pulse is present, reaching a 
maximum at the end of the pump pulse. This makes it possible to model a single "long" pulse and simply 
consider the time that it takes to reach the fracture limit for a given pump power (Figure 2b). 



The time duration to reach the fracture stress was then considered to be the pulse duration that corresponds 
to that pump fracture power. This allows us to estimate the maximum incident pump power as a function of the 
pump pulse length, as illustrated in Figure 3. 
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Figure 3: The variation of incident pump power and pulse energy with pulse duration. The dotted line shows the CW fracture limit. 

As can be expected, for long pulses the fracture pump power converges to the CW case of 47.2 W, while 
for a typical QCW pulse duration of 10 ms, fracture occurs at an incident pump power of 395 W, which 
corresponds to an incident pump pulse energy of 3.95 J. 

The maximum temperature at fracture was also considered and it was found that the maximum temperature 
in the crystal varies from 105 °C for the CW case to 76 °C for a single pulse duration of 347 us. 

4. Conclusion 

To calculate the thermally induced stresses inside a Tm:YLF laser rod numerically, a time dependent finite 
element analysis was implemented. Firstly the model was validated for the CW pump case by comparing the 
numerical results with experimental values as well as with a laser modelling software package. This was 
followed by a time dependent analysis to show the fracture pump power for different pulse lengths. 

Future work will include an investigation of various crystal geometries (especially end-pumped slabs) and 
pump light distributions. A thorough investigation will be conducted to determine the fracture pump power for 
different pump duty cycles. 
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One of the main problems that limit the power scaling of diode-end-pumped solid-state lasers is the generation of 
heat inside the laser gain medium which can ultimately cause fracture. When the continuous wave (CW) pump 
power exceeds the critical power at which crystal fracture occurs, a quasi-continuous wave (QCW) pump is often 
used to reduce the average pump power to below the fracture pump power. 

In previous work, we investigated the time-dependence of the temperature and the thermally induced stresses 
in QCW-pumped Tm:YLF laser rods by means of finite element numerical simulations [1]. This enabled the 
prediction of the incident fracture power as a function of QCW-pump duty cycle. 

In this paper a time-dependent analytical thermal model that determines the temperature and the thermally 
induced stresses in isotropic rods is presented. Even though the model is developed for isotropic rods, it is shown 
that it can also be used to accurately estimate the thermal effects in anisotropic rods. By ignoring axial heat-flow 
in the radially symmetric rod, the temperature profile on the pumped face of the rod is given by 

/ ' ! / • . / > E /"" f 2*./,, '-IT- \-luVllTr)0[*. r)i 
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where R is the radius of the rod, J, is a Bessel-function of the first kind with order /', pm are the roots of Jn and 
D=k/(pcp) with k the thermal conductivity, p the density and cp the specific heat capacity of the laser rod. 
Q(r,t)=I(r,t)a/(pcp) is the heat load where I(r,t) is the transverse pump intensity profile and a is the absorption 
coefficient at the pump wavelength. In the case of a top-hat transverse pump profile, equation (1) reduces to 
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where w is the pump beam radius. The integral in equation (2) can easily be solved numerically for a QCW-
pumped laser. 

Figure 1 shows the temperature in the centre of the pumped-face of the Tm:YLF rod as a function of time 
while the rod is subjected to two different QCW-pump power and pulse repetition frequencies. The analytical 
model reduces the computation time of the thermal effects from -5.5 hours in the case of the finite element 
numerical model to less than a minute. By using the analytical model, it is possible to efficiently calculate the 
thermal influence of various pump scenarios within a short time. 
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(a) (b) 
Fig. 1 The temperature in the centre of the Tm:YLF rod as a function of time while the rod is subjected to a QCW-pump 
of (a) 90 W @ 50 Hz (b) 200 W @ 10 Hz. The two respective boundaries of the shaded regions indicate the analytical 
solution as determined with the thermal conductivity of the a- and c-axis of YLF respectively. The black curve shows the 
solution of the three-dimensional time-dependent coupled-thermal-stress finite clement numerical simulation. 
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