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ABSTRACT

This thesis replicates and explores some of the recent findings by Robert Siegler regarding the

development ofaddition skills in grade one children. Siegler states that children employ a number

ofdifferent strategies to solve single digit addition problems, these strategies coexist and compete,

and cognitive variability is an essential aspect of cognitive development. He also advocates the

use of the microgenetic approach in order to explore cognitive development. Many of Siegler' s

observations were replicated while the microgenetic approach produced valuable information.

Consideration of Siegler's work resulted in two research questions being formulated, both

concerning the actual selection of strategies.

First, a prediction analysis was employed to test the hypothesis that children attempt to match the

most appropriate strategy to the problem presented according to a principle ofleast effort (defined

as the attempt to maximise benefit and minimise cost). The predictions were stipulated prior to

the analysis and were based on the arithmetic development literature. It was predicted that

children would tend to retrieve the answers to small problems and tie-problems or calculate the

answer by counting on from the larger addend by the amount indicated by the small addend

(which involves reversing the order of the addends when the first addend is the smaller of the

two). The strategy selections (n=229) made by a sample of 12 grade one learners on 21 single

digit addition problems were categorised and compared to the predictions. The prediction analysis

reduced the expected error by 63%, supporting the least effort model of strategy choice. The

result is statistically significant (2=10.231, p<0.01).

Second, a test of proportions was used to test the hypothesis that under memory demanding

conditions children will resort to faster strategies, such as retrieval, in order to prevent memory

decay, or execute their strategies in an overt manner, by using their fingers, in order to aid the

memory limitations. The sample of selections used for the prediction analysis were compared to

a sample collected under special conditions. These demanding conditions involved a simultaneous

numerical memory task. The results suggest that retrieval is not used more frequently than normal.

However, the strategies are more likely to be executed in an overt manner (2=5.123, p<O.01).

The question of why and how the child develops an extensive addition strategy repertoire is

considered. A particular discovery sequence, based on the data collected is proposed, while a

constructivist model involving repetitive modifications is introduced as a possible account of

strategy discovery. Siegler's theory, emphasising the variability ofcognitive action, is contrasted

to the Piagetian tradition, particularly the memory limitation neo-Piagetian models of

development, emphasising how the structural development determines strategy use. It is proposed

that future models should incorporate both aspects of development.
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CHAPTER ONE

STATEMENT OF THE RESEARCH PROBLEM

There is still, and probably always will be, debate around the very nature of mathematics. There

are those who, like Plato and his followers, believe that mathematics is an external reality awaiting

discovery. On the other end ofthe spectrum there are those who contend that mathematics is no

more than a game where symbols are manipulated according to precise rules. The mathematician

Keith Devlin (2000b, p. 72) argues that mathematics is the "science of patterns". For him,

mathematics is abstracted from the world around us, but those abstractions are shaped by the

structure of our minds. Thus, according to this definition, mathematics is both discovered and

invented. Arithmetic is a branch ofmathematics that is concerned with the patterns ofnumbers.

It is also the first branch ofmathematics to which children are exposed. Devlin argues that higher

mathematics becomes increasingly abstract but not necessarily more complex. Therefore, children

need to master arithmetic before they are able to manage higher mathematics. If arithmetic is the

foundation ofhigher mathematics, then addition is the foundation ofarithmetic. The development

ofthese addition skills, perhaps the foundation ofall higher mathematics, is the focus ofthis work.

Yet, the development of this mathematical ability poses enormous obstacles to many learners,

making the domain an important area of study. The difficulties that learners have with

mathematics seems to be a particular problem in South Africa. A review of the annual matric

results demonstrates the extent of the challenge that mathematics poses for South African

learners. The Third International Mathematics and Science Study placed South Africa last out

Page 1



of the 41 participating countries l
. South Africa was the only African country included in this

study. A more recent study commissioned by the Department ofEducation revealed that South

Mrican grade four learners have the worst numeracy skills of the twelve Mrican countries

reviewed (Pretorius, 2000, July 16, p. 1). South Africa's substandard performance in mathematics

education may have its origin in poor foundational teaching and learning. Thus, an appropriate

place in which to focus any research is at the beginning, with simple addition. The research in the

area may have significant implications for the way children are taught. Furthermore, the

acquisition ofknowledge in general, as a topic ofcognitive science, is poorly understood. Gains

made in the domain of arithmetic development may therefore translate into advances in the

broader arena of cognitive science.

Afurther reason to study this particular domain is that there is a feeling that more ofthe cognitive

literature should be based on familiar classroom activities (Siegler, 1987). One ofPiaget's legacies

is his collection ofexperimental tasks. Many ofthe neo-Piagetian researchers have adopted these

tasks or close derivatives to them. Children are not familiar with most ofthese tasks. For example,

the various class inclusion, conservation and transitivity tasks are very different from the usual

early school activities. The tasks are unfamiliar for a good reason in that these experiments are

designed to expose children's reasoning and not their factual knowledge. Siegler (1987) points

out, however, that children may reason differently in familiar and novel domains. Therefore, it is

as important to study familiar areas, such as basic arithmetic, an important aspect of the "other

half of cognitive development" (Siegler, 1987, p. 731).

1This study was completed in 1995. A repeat of the study completed in 2000, and reported in The Sunday
Times, re:eal~d that Sout~ Mrican students were outperformed by the students of 37 other countries, indicating
that the SItuatIon has not Improved (pretorius, 2000, December 10).
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Anumber ofresearchers have made important contributions to our understanding ofhow children

develop their mathematical abilities. Two in particular have generated much work in the domain

of numerical development. Piaget' s domain general theory of cognitive development includes a

description of how the child acquires the notion of number. For many years, until relatively

recently, Piaget's general theory was the dominant one. The current neo-Piagetian theories have

all emerged from this original work. Robert Siegler, arguably the leading current theorist of

arithmetic development, entered the fray at a time when Piaget's dominance had already begun

to decline. He has made a number oforiginal contributions, most ofwhich appear to substantially

differ from Piaget's ideas. While Piaget's theory has been subjected to an enonnous amount of

empirical scrutiny, Siegler's has yet to face the same onslaught.

The discussion of children's numerical development is set against the backdrop of some of the

broader cognitive development debates, particularly concerning the nature of early cognitive

development. The staircase metaphor, best characterised by Piaget's theory and the neo-Piagetian

theories, has and continues to dominate the way we regard cognitive development. (Even the

modern infonnation processing theories, although not stage theories, focus on the incremental

relationship between age and thinking.) According to these staircase theories, children think in a

particular way at each age related level and their thinking at each level has a certain stability. The.

relatively sudden shift from one level to the next, a step up the staircase, is poorly explained, while

untidy evidence ofvariability in perfonnance is swept under the carpet by means of labels such

as decalage.

A recent alternative to this way of viewing development is Siegler's (1996) overlapping waves

metaphor. According to tlLs perspective, at any given age children will resort to a multitude of
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different ways ofthinking. Here development is regarded as the gradual increase and decrease in

the various ways of thinking, called strategies'l, as well as the discovery of new ones.

Development involves changing patterns ofstrategy use. So, instead ofa steplike progression, or

a linear progression, Siegler (1996) proposes that development can best be characterised as a

series ofoverlapping waves. The staircase theories have had a powerful influence on the teaching

curriculum. Yet, if Siegler's alternative view offers a more realistic picture, then it may have

useful corrective educational implications. (As a caution, it is noted that Sherman (1999) warns

that cognitive theorists tend to leap to the educational implications of their research without

empirical testing under realistic classroom conditions.) The debate between these two

developmental models is the central theme ofthis thesis.

Robert Siegler (1996) proposes that people tend to employ multiple problem solving strategies,

not only in mathematics, but also in other domains. The novice problem solver, in any particular

domain, might initially employ a single basic strategy to solve the problems while the expert is able

to decide which of many strategies is most appropriate to a particular problem (Siegler, 1996).

Between these two poles, the intermediate problem solver resorts to a diverse arsenal of

strategies. The moderate experience hypothesis (Siegler, 1996) suggests that the variability of

strategies is greatest when the child has moderate experience with the task at hand. There are

other models that describe a similar inverted-'U' relationship. McClelland and Atkinson's

achievement motivation theory suggests that motivation is highest when the subjective probability

ofsuccess is 0.5 (McClelIand, 1985). In other words, when children expect to succeed on halfof

the trials presented their motivation is greatest. The reason for this is that easy tasks offer little

2For the time being, the strategy is defined as any non-obligatory goal directed procedure. The definition
offered by Siegler and Jenkins (1989) will be discussed in Chapter Three.

Page 4



sense ofachievement while the difficult task provides an obvious excuse for failure. The Yerkes­

Dodson law (Yerkes & Dodson, 1908, as cited in Lachenicht, 1987) describes a similar

relationship between arousal and performance. Similarly, Karmiloff-Smith (as cited in Claxton,

1998) reports that in many domains children first acquire a basic level of competence and will

then, if allowed, continue to play with different possibilities that may even reduce their

competence for a while. In doing so, they maydevelop more advanced ways ofsolving problems

or ways that allow them to cope in different situations. It is the development and use of this

strategy arsenal that forms the focus of this work.

This study is concerned with Siegler's main theoretical ideas as well as his research method, the

microgenetic approach, and attempts to evaluate them. A number ofbroader questions are also

considered. First, why do children continue to develop a repertoire of addition strategies, even

after they appear to be adequately served (adequately served in terms ofa number ofvariables)

by a few of their existing ones? Second, how do children acquire this assortment of strategies?

Third, how do children select any particular strategy from their arsenal ofexisting ones? The first

question refers to the why of cognitive development while the other two refer to the how of

development. The how of development is a question that has been left, mostly, to the domain

general theories, while the domain specific theories, such as the theory of number development,

have focussed on the what of development. As a result, the field consists of many competing

theories.

The third ofthe three questions mentioned above constitutes the main focus ofthis research. Two

testable research questions were formulated in order to further examine the issue of strategy

selection. The first research question proposes that children select their addition strategies
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according to the principle of least effort. In other words, they will attempt to match the most

appropriate addition strategy with the problem presented. A large sample ofstrategy choices has

been collected and subjected to a prediction analysis to test the hypothesis.

The principle ofleast effort, as it is defined in this thesis, refers to an attempt to maximise benefit

and minimise cost This has been used to describe a various aspects of animal and human

behaviour and is equivalent to the Cost-Benefit Analysis in economics. The Cost-Benefit Analysis

is a decision making tool, whereby one attempts to maximise benefit less the cost, often used for

the allocation public funding for various projects (Brent, 1996). This decision making tool has

been used in domains other than economics. For example,foraging theory implies that many

animals resort to a Cost-Benefit Analysis when foraging for food. Accordingly, animals expend

food-gathering energy in a way that maximises the energy returns (Stephens & Krebs, 1986).

Researchers have used the principle to understand the behaviour involved searching for

information on the internet as well as to describe how scholars accumulate articles for their

literature surveys (as cited in Chalmers, 2000, November 11). Thus, the first research question

suggests that children will attempt to select the strategy that provides the most accurate answer

while attempting to minimise the amount of processing involved.

The second research question proposes that under conditions of cognitive stress children will

resort to faster strategies, such as retrieval3
, in order to save limited working memory space. (Case

(1985, as cited in Adams & Hitch, 1998) argues that speed reflects the amount of work space

required.) Alternatively, children will attempt to execute the strategies in a covert manner, in this

case by using their fingers, in order to overcome their memory limitations. A number ofthe neo-

3Retrieval involves a process were the answer to the problem is recalled without any apparent calculation.
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Piagetians (Case, 1987b; Halford, 1987; Pascual-Leone, 1970) offer various memory limitation

models of cognitive development. Case (1 987b) argues that information storage and mental

operations compete for limited working memory capacity4. Accordingly, ifthe task requirements

exceed the available working memory capacity then a breakdown in information processing

occurs. The experience of anxiety will also impact on this limited work space leaving less for

mental processing. The data in this study was collected under two conditions. The first involved

optimal conditions while the second involved an additional memory task making the execution of

the strategy more difficult. Requiring children to store a number while simultaneously solving a

simple addition problem reduces the work space available for the mental operations (Case,

1987b). The proportions ofretrieval use and the proportions ofovert and covert strategy use are

compared for the two conditions in which the data was collected.

The literature on which this thesis is based comprises three parts. The first part, contained in

chapter two, briefly covers Piaget's theory of cognitive development and, in particular, his

account of how the child acquires a notion of number. Piaget's work is considered not only

because he is one ofthe leading developmental theorists, but also that it provides a backdrop to

some ofthe more recent work. Also, Piaget has had much to say about the development oflogico-

mathematical knowledge. Contrasting Piaget to Siegler allows us to not only compare staircase

to waves, but to do this within the domain of numerical and arithmetical development. The

memory limitation neo-Piagetian theories are briefly mentioned. The working memory limitation

4Halford (1987) offers a similar theory to the one proposed by Case (1987b). However, Halford does not
believe that processing competes with short term storage. This difference is discussed in greater detail in the
following chapter.
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hypothesis seems to play an important role in arithmetic processing.

The second part of the literature review, described in chapter three, reviews much of the work

generated by Robert Siegkr and his various colleagues. Siegler is probably the leading current

theorist on the issue of early arithmetic development and offers an alternative to many of the

existing theories ofdevelopment. Most of Siegler's work involving simple addition is discussed.

Siegler has shifted his focus to "extending the overlapping waves model to a broader range of

tasks and age groups", and his most recent work is not relevant to the present study (personal

communication, 2000, June 4).

The third and final component is detailed in chapter four. This chapter describes the overlap and

the difference between Siegler's and Piaget's theories. This section explores the relationship

between conceptual knowledge, the aspect ofarithmetic development that Piaget has emphasised,

and procedural knowledge, an aspect of arithmetic development that is particularly relevant to

Siegler's theory.

The remainder of the thesis deals with the empirical research undertaken and, in particular, the

two research questions described above. These chapters include the aims, methods, results and

discussion of the results obtained.
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CHAPTER TWO

THE STAIRCASE METAPHOR OF COGNITIVE

DEVELOPMENT - JEAN PIAGET AND THE NEO­

PIAGETIANS

Any review ofthe literature ofcognitive development should begin with the work ofJean Piaget.

In fact, no single theorist has made a greater contribution to the understanding of children's

thinking. Piaget has been the most influential figure in the arena of cognitive development and

probably in the field ofdevelopmental psychology as a whole. His theory, some ofit nearly eighty

years old, is the central point around which much ofthe current debate in cognitive development

occurs. Despite many alternatives, Piaget's theory still occupies a prominent place in the

understanding of the development of children's thinking. Also, Piaget has a fair amount to say

about the nature and development of mathematics, however, for the purposes of this thesis the

focus has been limited to Piaget's version of how the child acquires a basic notion of number

(since this is essentially what arithmetic development is about). This description offers an

important foundation on which to examine the development of addition skills. This chapter

includes a briefsummary ofa very small part ofPiaget' s work, beginning with his general theory

followed by a review of his work on the child's conception of number.

2.1 Piaget's General Theory

Piaget believed that the purpose ofall behaviour and thought is to enable the organism to better

adapt to the environment. Accordingly, adaptation and its complementary process oforganisation

are regarded as invariant functions essential for survival (Vuyk, 1981). Adaptation, according to

Page 9



Piaget, is made possible through the two complimentary processes of assimilation and

accommodation.

For adaptation to occur the organism must be able to assimilate aspects ofthe environment as well

as accommodate elements ofit. Assimilation is the process where environmental input is adjusted

to fit the child's existing structure, whereas accommodation is the process where the child's
r'/

existing structure is adjusted to fit the environmental inputs. According to Piaget (1983),

assimilation ensures the continuity ofthe existing structure and the integration ofnew structures

but does not cater for any variation of the structure. Accommodation is the modification of the

existing structure by the elements it assimilates (piaget, 1983). These two complimentary

processes cannot be separated. Assimilation can not take place without some degree of

accommodation. This process builds the cognitive structure, which in turn actively attempts to

assimilate new elements of the child's interaction with the environment.

Equilibration is the dynamic interaction between the processes ofassimilation and accommodation

and refers to the progression of the cognitive structure towards a stable equilibrium when

interacting with the environment. Equilibration is a process while equilibrium is a state, albeit a

temporary one. Thus, equilibrium is not a final resting point, but rather becomes a new point of

departure (Piaget, as cited in Battro, 1973). Equilibration can be regarded as a continuous

sequence ofthe disequilibrium - equilibrium cycle. Accordingly, the organism has adapted to the

environment when it has reached a state ofequilibrium where the assimilatory needs are balanced

by the accommodatory capacity. Equilibration involves the modification of the child's mental

structures. Development is the progression ofsuccessive internal states ofhigher equilibrium. The

infant starts the process of cognitive development by assimilation and succeeds because of

accommodation (Russell, 1978).
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While adaptation refers to the relationship between the individual and the environment,

organisation, the internal aspect ofadaptation, refers to the relationship between the organism's

internal structures (Chapman, 1988; Piaget, as cited in Battro, 1973). Organisation is the action

exerted by the whole onto the parts, which serves to prevent incoherence. Organisation strives

for conservation. The chilG's existing structures are not abandoned for the sake of equilibrium

(Vuyk, 1981). Accommodation takes place while the existing structures are maintained as far as

possible. Organisation strives for a balance between differentiation and integration. (In terms of

the process of organisation, Piaget' s idea is compatible with some of the evolutionists such as

Stephen Jay Gould (2000) who argue the importance ofholistic structural principles. Siegler, as

we shall see, is closer to the ideas ofRichard Dawkins (1976) who emphasises only the adaptation

through variation and selection.)

Piaget's theory proposes that all children progress through an invariant path of development.

Accordingly, children progress through four stages of development that are both quantitatively

and qualitatively different from each other. (At different times Piaget distinguished three, four or

five stages, each being slightly different combinations of the various sub-stages. However, it is

generally recognised that there are four separate stages (Vuyk, 1981).) Children do differ in terms

of the tempo at which they proceed through the stages and some do not reach the highest stage.

The sequence ofthe four stages is as follows: the sensorimotor period, the preoperational period,

the concrete operational period and finally the formal operations period.

The sensorimotor period occurs between birth and approximately two years of age. During this

stage development reflects children's increasingly sophisticated interactions with objects. For

Piaget, sensorimotor adaptation is the foundation for conceptual adaptation (Russell, 1978). The

preoperational stage takes place between the ages oftwo and seven years. This period is the pre-
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school stage and is marked by the acquisition ofrepresentational skills, the most obvious ofthese

being the acquisition oflanguage. The concrete operations stage occurs approximately between

the ages of seven and twelve years. Children at this level ofcognitive development are no longer

ruled by their perceptions. Children are able to solve concrete problems but are unable to tackle

abstract concepts. Finally, many children reach the formal operations period at around twelve

years ofage. This is the highest level ofdevelopment and is associated with the ability to reason

about theoretical concepts in addition to the concrete ones. Therefore, development is from the

dependence on perception and appearance to independence through the growth of an

understanding of structure, or put differently, from figurative to operative knowledge.

The development through the stages is not always even. A concept may be acquired in one form,

yet take considerable time before it has been extended across its full range (Gruber & Voneche,

1977). Piaget refers to this as horizontal decalage, which he incorporates into his theory as a

force of development. The coexistence of more and less developed structures results in

disequilibrium, which then drives the individual towards equilibrium by developing the less

advanced structures. One of the controversial aspects of Piaget's theory is the issue the of

structural unevenness, and whether this can be tolerated without compromising the stages. Gruber

and Voneche suggest the stage concept could be weakened to refer to an orderly progression

rather than a universal pathway.

Piaget's theory has endured considerable attack. The attempts to replicate his findings using his

brilliant methodology, have, for the most part, been successful (Siegler, 1986). According to

Halford (1989), most of the basic phenomena documented by Piaget do occur, however, it is

Piaget's interpretations that have generated a great deal of controversy.
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Not all theorists agree that the Piaget's developmental sequence is, for the most part, adequate.

Some argue that Piaget has underestimated the abilities ofyoung children and overestimated the

abilities of adolescents and adults (people who fall into the formal operations period). For

example, Dehaene (1997) reports that children are able to conserve at an age far younger than

when Piaget's theory credits them with this ability. Others argue that most people do not ever

operate at the level suggested by the formal operations level (Halford, 1989), and when they do,

it is only in domains where they have a great deal of experience.

If some theorists believe that the invariant course of development has endured the criticism

relatively intact, few would argue the same for Piaget's causes of development. Halford (1989),

amongst others, argues that Piaget's mechanisms of development are largely unspecified even

though he believes that course of development has endured the attentions of many researchers

seeking to challenge the theory. The accommodation-assimilation interaction is somewhat vague

and possibly an inadequate explanation ofintellectual development. However, in Piaget's defence,

he, towards the end ofhis life, attempted to further develop his mechanisms ofdevelopment with

limited success.

2.2 The Child's Conception of Number

Despite being a prolific writer, Piaget devoted relatively little ofhis work to the question ofhow

children learn mathematics (Hughes, 1986). For Piaget, the focus has been on the development

of children's number concept, which, he argues, is closely and inseparably intertwined with the

development of logic (Piaget, 1953). Piaget (1953) believed that young children, to a large

degree, acquire the notions of number and mathematical concepts spontaneously and

independently through their interactions with the world. He argued that if we try to impose
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mathematical concepts prematurely, their learning will be merely verbal, without a true

understanding of the conc~pt. Also, it has been argued, that by trying to do so, we might only

succeed in developing a lifelong aversion to mathematics.

An integral aspect in the development of the number concept is the concept of conservation

(Piaget, 1952; 1953). In fact, according to Piaget (1952; 1953), conservation is a condition ofall

rational thought and mathematics is no exception. Conservation is a logical concept rather than

a mathematical one, which must be acquired before any true understanding ofnumber is possible

(Piaget, 1953). For Piaget, conservation refers to the logical operations where children maintain

magnitude and relations despite perceptual transformations (Gruber & Voneche, 1977). The

development ofconservation, according to Piaget (1952; 1953), is not innate, but rather acquired

inseparably with the development ofnumber. Children must first come to understand the principle

of conservation of quantity before they can develop their number concept.

In The Child's Conception o/Number (1952) Piaget describes the genesis ofnumber and logical

ability. Essentially, Piaget describes this early development through an assortment ofexperimental

tasks involving the comparisons oftwo sets. Accordingly, children progress through three distinct

stages (Piaget, 1952). At the first level, reached at the age offour-and-a-halfto five, children rely

on their perceptual evaluations ofquantity. Thus, ifa set ofobjects is spread out, children believe

that the quantity has increased. At the second level, these children conserve in certain cases and

are confronted by the conflict between one-to-one correspondence and the perceptual relations.

At the third level, reached at the age of six and a half to seven, children do not have to reflect on

the result ofperceptual transformations but realise that the quantity is conserved. Thus, at the first

level perceptions govern children's evaluation of quantity, at the second level the perceptions

compete with conservation while at the third level the ability to conserve frees children from their
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perceptual limitations. The development of number is, for Piaget (1952; 1953), a gradual

synthesis, through these three stages, of inclusion of categories and of serial order.

At the first stage ofthis development, children treat discontinuous quantities in the same way that

they would treat continuous ones (Piaget, 1952). For example, when a beaker ofwater is poured

into one ofa different shape, children at this level believe that the quantity ofwater has changed.

Similarly, when this water is replaced by a set of discrete objects, such as a collection ofbeads,

these children arrive at the same conclusion. While the first example demonstrates that these

children fail to conserve in the physical sense, the second demonstrates that they fail to conserve

in the mathematical sense. At this level, children'sjudgements are based on the perceptual features

ofthe set. Magnitude or quantity is believed to change when the objects within a set are displaced.

One ofthe most famous ofPiaget' s experiments illustrating the conservation ofnumber is the one­

to-one correspondence experiment. If these children are asked to compare two rows of evenly

spaced objects and ofequal length, then most ofthem will agree that each row contains the same

number of objects. When the length of one of the rows is stretched or compressed level one

children will now claim that the longer row contains more objects (Piaget, 1952; 1953).

According to Piaget, these children are non-conservers. These children make their judgements

according to one perceptual criterion only; their judgement will be based on either the length of

the row (usually) or the density. Thus, these children are not yet capable of recognising the

relationship between the two features.

When level one children are asked to reproduce a figure made up by a number ofobjects, they will

usually only succeed in making a general imprecise replication of the original figure (Piaget,

1952). Children's figure will usually differ from the model figure in terms ofthe number ofobjects

that make up the figure, especially as the model figure becomes more complex. Furthermore, if
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the objects in the original figure are displaced, children at this level will assume that the quantity

of objects has changed. In order to reproduce this new figure they will add or remove objects

from their copy of the original design. Children at this age are unable to reverse the operations

that transformed the sets, their thought being characterised by this irreversibility. This

irreversibility being an important characteristic ofthe earlier stages. On the whole, the reasoning

of children at this level is governed by his perception. They are not able to quantify, with

quantification being limited to judgements of 'more', 'less' or 'the same'.

At the next level, children show a number of improvements in their reasoning ability. Their

analysis of the figures that they are asked to reproduce is more precise. Children experience a

significant improvement in their practical skill, a hallmark ofthe concrete operational stage. They

may arrive at contradictory conclusions regarding comparisons of quantity corresponding with

the different features that they use. For example, when comparing two rows ofan equal number

objects but differing in length they will notice that they arrive at contradicting conclusions when

they consider the length of the rows and when they consider the density of the rows. These

children no longer concentrate on outstanding features ofthe sets, but do compare sets according

to the resemblance or the difference between the two. They begin to recognise the relationship

between features of the sets but this is not yet well organised. For example, they are able to

conserve at times, such as when they have observed the one-to-one correspondence, but revert

to their perceptual judgements in other situations. When comparing continuous quantities children

at this level are able to allow for the height and width ofa container. However, this ability breaks

down when one ofthese containers is further subdivided, because their evaluation is not based on

conservation and the relationship between height and width has become too complicated.

At the third level ofthis development, children's reasoning is freed from their perceptions (Piaget,
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1952). These children do not have to reflect on the result ofthe transformation, but rather know

that any perceptual transformations or the displacement of some ofthe objects does not change

the quantity of the set. They do not have to consider the result of the displacement, but know

beforehand that this does not affect the quantity of the set. These children are able to conserve

number. Piaget's notion of the conservation of number has had a large influence on the

educational curriculum, being the benchmark from which children are able to develop their

arithmetic skills (Hughes, 1986).

According to Piaget (1952), the development ofcardinal and ordinal concepts follows three stages

corresponding to the stages discussed above. At the first level of development, cardination and

ordination do not yet exist. These children make cardinal evaluations based on their global

judgement ofquantity. At the second stage, an accurate cardinal evaluation is achieved by a one­

to-one correspondence, which also requires some sort of ordination. However, this cardinal

evaluation is not lasting, while ordination is not differentiated from qualitative seriation. At the

third level, operations replace children's perceptual intuitions. Both cardination and ordination are

achieved. Number is both a hierarchical class and a series.

According to Piaget (1952) the construction of positive integers is completed when children

discover the additive and multiplicative operations. He emphasises that the development of

number and class are complimentary processes. From Piaget's perspective, numbers have logical

aspects while logic contains the notion ofnumber. Children's mathematical concepts are generated

spontaneously from his or her logical operations. The development of the additive composition

of classes is demonstrated by one ofPiaget's most famous experiments, the class inclusion test.

This experiment tests children's ability to comparea set with a subset of itself and is another

important yardstick in the child's developing abilities. The experiment involves giving children a
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number ofwooden beads made up oftwo uneven subsets, for example, a larger subset ofbrown

wooden beads and a smaller subset ofwhite, but also wooden, beads. When they are asked ifthere

are more wooden beads or brown beads, Children, until they are approximately seven or older,

will say that there are more brown beads (Piaget, 1952). Piaget took this to indicate that younger

children are unable to compare the part with the whole, but only part with part (brown with white,

not brown with the total group ofwooden beads). Similar results are obtained when these children

are asked ifthere are more tulips (part) or flowers (whole). Again the acquisition ofthe ability to

compare parts with whole p:-oceeds through three distinct stages. At level one, children are unable

to do this, at level two, they are successful under certain conditions only and at level three they

are able to compare part to whole.

Piaget (1952) argues that the ability to recognise that two sets are equivalent through one-to-one

correspondence is the beginning of the multiplicative operation. This becomes operational after

children are able to recognise that three (or more) sets can be equivalent since one ofthese sets

is multiplied by the other two (or more) when more than three sets are compared. Piaget (1952)

argues that when children discovers that ifx equalsy and y equals z, then x equals z they have then

grasped the two-to-one relationship and will be able to generalise this to larger numbers of sets.

Finally, for Piaget, measurement is a synthesis of division into parts and of substitution. The

process ofdivision allow children to conceive that the whole is composed ofparts added together.

Substitution allow children to apply one part on others which forms the basis ofa system ofunits.

Once children arrive at this level they have acquired the basic notion of number.

While Piaget has offered a detailed description of the what of development, the haw of

development is not as easily understood. His developmental pathway is very clearly specified, yet

Page 18



how children move from one level to the next is less clear. (Although this is a criticism that can

be levelled at many other theorists including some ofthe modern ones.) For Piaget, sensorimotor

actions become internalised and when reversibility is achieved, these internalised actions, or

schemes, become operations (Rotman, 1977). These operations become the objects of formal

thinking. The development oflogico-mathematical knowledge, for Piaget, involves an operation

on operations. New structures are constructed on the foundation of existing ones through the

process of equilibration.

Piaget's (1952) descriptio'1 of children's number development incorporates a fair degree of

variability in the way that children think. The second ofPiaget' s stages of number development

is characterised by this variability. The children at this level employ many different and often

contradictory ways of approaching the various tasks. Siegler's (1996) moderate experience

hypothesis proposes that variability will be at its greatest when a child has had moderate exposure

to the task, which is likely to coincide with the second stage, an inverted- 'D' curve ofexperience.

Number conservation is a logical task and children eventually reach a point where one logical

approach dominates the other ways of comparing quantities. Level one children, according to

Piaget's theory, are consistently fooled by their perceptions, while older children understand that

perceptual transformations do not change the number of elements. For this reason level three

thinkers usually resort to this single logical method of responding to the task making their

thinking, according to Piaget, consistent. Or, as Siegler (1995, p. 251) has put it, "ifchildren ever

adopt a new strategy and use it consistently, they would seem likely to do it when the superiority

of the new approach lies in its basic logic". The sequence then is from consistency to variability

back to consistency. An obvious question is whether children's thinking is so consistent on

numerical domains where there are many competing ways of approaching them as opposed to

domains dominated by a single logical approach? Also, how well does this developmental pathway
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stand up to more modern research methodologies? The next chapter covers much of Siegler's

work in numerical tasks in which children are more familiar.

2.3 Criticisms of Piaget's Theory of Numerical Development

As mentioned, Dehaene (1997) argues that children are able to conserve at an age far younger

than Piaget would have believed. Dehaene claims that when children are asked to compare two

sets they fail to understand the question rather than fail to conserve. These children witness the

experimenter move the objects before asking the same question and therefore reason that the

experimenter wants a different answer. MeWer and Bever (1967) replaced the objects in this type

ofexperiment with a type ofsweet. Children were allowed to pick up one ofthe rows and eat the

sweets. Under these conditions, young children were usually able to choose the row with the

greater number ofelements regardless ofthe perceptual appearance. However, Dehaene concedes

that Piaget' s criteria for the concept ofconservation are likely to be far more stringent. Being able

to demonstrate conservation in one particular task does not necessarily mean that children have

acquired the concept.

Siegler (1995) cites a number of other studies that expand Piaget's original findings on the

classical number conservation task which support Dehaene's (1997) conclusion. These studies

suggest that young children often perform better if the rows include fewer objectsl~ if the rows

are transformed by adding or subtracting objects~ if the wording of the questions is facilitative;

if the transformation was 'accidental' rather than deliberate; and if the children are trained in

various ways. This, however, as noted earlier, was only one ofthe many tasks to which Piaget's

IChapter Six presents some evidence that suggests that the addition operation is performed more
efficiently when small numbers are involved.
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subjects were required to respond. Also, even if children are able to respond to the tasks in

advanced ways under very specific conditions, one could not necessarily conclude that children

acquire the number concept earlier than at the age proposed by Piaget or that they acquire this

concept in a notably different way. Halford (1989) points out that despite the proliferation of

studies designed to refute Piaget's findings, his account of the course of development remains

relatively intact.

Piaget describes how young children, at the first level ofnumerical development, treat continuous

and discontinuous quantities in the same way (and fail to conserve either). Piaget, however, does

not demonstrate the role that language plays in this distinction between these two types of

quantities. In The Child's Conception ofNumber (1952), the role that language plays in the

acquisition of a number concept is not acknowledged. For example, the English language

distinguishes between mass and count nouns. Mass nouns are superordinate terms such as butter,

furniture and money (McShane, 1991). The discontinuous quantities in Piaget's (1952)

experiment included beads (count nouns) while the continuous ones included water (mass noun).

Markman (1985, 1989 as cited in McShane, 1991) argues the mass nouns assist children to

develop their understanding of class inclusion relations. While on this point, there is other

evidence, cited by Devlin (2000b), that indicates that Chinese and Japanese children outperform

their English speaking counterparts in school mathematics. This disparity appears to be largely

the result of language differences. A related finding, cited by Deheane (1997), indicates that

children's digit spans differ according to their language, with Chinese children having an

advantage over most of their western peers. Their advantage comes from speaking a language

with short number words. Miller, Smith, Zhu, &Zhang (1995) report that Chinese children are

better able to recite the counting sequence when compared to their American counterparts. The

difference, once again, is to do with the short length ofChinese number words and the reality that
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Chinese number grammar directly parallels the structure ofthe arabic system. This provides these

children with a numerical head-start. Thus, language, in a number of different ways, plays an

important role in the development of the number concept.

Russell (1978) offers a critique of the role that conservation plays in Piaget's theory of number

development. In at least one conservation task involving the ability to judge the area bound by a

loop of string, which is then elongated, adults believe that the changes in dimension are

compensated while children are able to recognise the change in area (Russell, 1976 cited in

Russel, 1978). Children appear to outperform adults on this particular task. Russell believes that

children's success has to do with their greater familiarity with these sorts oftasks. But, as Russell

(1978) suggests, if conservation indicates a structural equilibrium then it should really be

insusceptible to the effects of familiarity.

Possibly the most damaging of the criticisms levelled against Piaget's theory has to do with his

rejection ofany innate numerical ability. A fundamental premise ofPiaget 's theory is that children

enter the world a tabula rasa, whose contents are constructed with experience. The recent works

by Dehaene (1997), Butterworth (1999), and Devlin2 (2000b) all argue that children are born with

an inherent number module or number sense. Their evidence comes from a collection of studies

from a variety of domains. There is evidence to suggest that many animals are able to quantify

small collections ofobjects, suggesting that this number sense is a feature ofmany different animal

species. Also, Karen Wynn's (1992) famous experiment indicates that even infants as young as

five months old will stare for longer at events that violate numerical concepts compared to those

events that don't. This is a finding that strongly supports the 'innate' argument. Furthermore,

2Devlin (2000b) uses tlle term number gene, but does so in a metaphorical sense. He seems to prefer the
term used by Dehaene (1997), hle number sense.
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people who suffer specific brain injuries are rendered number blind, evidence supporting the

modular approach to understanding the working of the mind.

This, according to the thr~e authors, means that we are born (if not born then very soon

afterwards) with the ability to see the world in numbers just as we perceive it in colour or shapes.

The notion is similar to Noam Chomsky's concept of a language acquisition device, a

hypothesised innate mechanism facilitating the learning ofgrammatical rules. Therefore, it appears

that infants are not the blank slates that Piaget suggests, but rather that they enter the world with

some core competencies. The concepts ofthe language and number modules are further supported

by the proliferation of domain specific theories which have emerged as a consequence of the

failure of the various domain general theories to adequately explain all aspects of cognitive

development. If this view is correct, then it poses a serious challenge to Piaget's entire theory

since he postulates that knowledge is constructed with higher concepts being built on the

foundation of lower ones. However, some of the higher concepts appear to be present without

the foundation of lower ones. Piaget vigorously dismissed any claims of a priori abilities.

Nevertheless, there is growing evidence that in this respect he may have been wrong, although,

perhaps not entirely wrong, since the innate numerical abilities may be very limited when

compared with the final abilities3.

2.4 The neo-Piagetians

The early 1970's and onwards saw the proliferation of the various neo-Piagetian theories.

According to Case (1992), many of these theories were guided by the earlier work ofPascual-

3AnnetteKarmiloff-Smith (1992) offers a compromise between Piaget'sconstructivism and Jeny Fodor's
nativism, arguing that both are important aspects of development.
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Leone and have attempted to incorporate both domain general and domain specific aspects of

cognitive development. The theories of Bickhard (1978), Bruner (1964), Case (1985), Fischer

(1980), Halford (1982), McLaughlin, (1963) and Pascual-Leone (1970) are efforts to re­

conceptualise Piaget's progression in light of some of the criticisms levelled at the theory and to

incorporate more recent data (all cited in Halford, 1989). Furthermore, many ofthe theories have

attempted to combine the information-processing accounts of development with Piaget's

structural approach (Case, 1987a).

Most ofthese theorists, according to Halford (1989), have left Piaget's developmental sequence

relatively intact. All of the[:e theorists, and some others that do not fit into the category of the

neo-Piagetian theories, propose that higher concepts are formed from the integration of lower

ones, which is a fundamental Piagetian principle. However, Piaget's equilibration process is

abandoned by all of the neo-Piagetian theorists in favour their own developmental mechanisms.

Miller (1956) argued; in a classical article, that there are memory imposed limits on our capacity

to process information. He suggested that adults are able to process around seven units of

information. Development involves 'chunking' increasing amounts ofinformation into this fixed

number of processing units. Therefore, it is not the amount of information that is limited, but

rather the number ofunits into which the information is compressed. Some ofthe neo-Piagetian

theorists appear to have incorporated a similar notion in their theories by emphasising children's

developing processing capacities. They propose that development is linked to the child's short

term storage space (STSS) and that the child's processing ability is constrained by their memory

limitations.

Case (1987b), for example, is one of the theorists who argues that children's mental processing
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is constrained by the STSS. For Case (1987b), the total processing space comprises the operating

space and the STSS. The operating space declines as the processing becomes more efficient and,

since the total processing space remains constant, the STSS capacity increases. For Case (1987b)

and others, the STSS is the workspace ofhigher cognitive processes and, therefore, the increase

in storage results in the ability to process more complex information.

Halford (1987), like Case (1987b), argues that the information processing capacity increases with

age, but unlike Case, he does not believe that the increases occur in a discontinuous fashion. For

Halford (1987), development occurs as a result of increases in children's structure-mapping

ability. Structure-mapping refers to the process where elements from an external structure are

mapped to the internal representation of the structure, an essential aspect of reasoning. (He

describes four levels of increasing structure-mapping ability.) Therefore, with age, children are

able to map more complex relations between the elements ofthe structure. These more complex

structure-mappings make greater information-processing demands on the child, but the trade-off

is that children are increasmgly able to manage more complex concepts. Thus, the structure­

mapping level constrains children's conceptual understanding, which, in turn, constrains the

strategies that they are able to generate. Halford, Maybery, O'Hare and Grant (1994) state that

development involves the process of representing increasing complexity in parallel. Strategy

development, therefore, may involve a gradual shift from serial to parallel processing.

Importantly, Halford (1987) does not believe that the STSS is the workspace ofhigher cognitive

processes, and, accordingly, does not believe that Case's (1987b) trade-offoccurs. Processing and

STSS, for him, are at least partly distinct. In other words, increasing operational efficiency does

not necessarily facilitate storage. Halford, Maybery, O'Hare and Grant (1994) report numerous

studies that indicate that information can be held in passive short term memory without interfering
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with cognitive processes. They argue that the various memory studies support a multi-component

view ofworking memory. Therefore, a more complete description ofthe various working memory

components is required to better understand how memory and processing capacities are involved

in development.

Two neo-Piagetian ideas make valuable contributions to our understanding of arithmetic

development and are important for the purposes of this thesis. The first is the proposal that

efficient problem solving methods free up working space (Case, 1987b). While the second is the

suggestion that working space maturational development facilitate the use of more complex

problem solving methods (Case, 1987b and Halford, 1987). Also important is the notion that this

working space (whether this includes the STSS or not) is limited, which implies that the strategies

children employ is, at least, partly dictated by their structural limits.

2.5 Summary

For Piaget, children's numerical development is a gradual process intertwined with their logical

development. New mathematical structures are constructed from existing ones and it is believed

that before the age of six or seven children are not ready for maths. Piagetian educators believe

that children should be allowed to develop their concept of logic before they are taught

mathematics (Dehaene, 1997). For this reason most pre-school activities involve playing with

blocks of various colours and sizes. Also, Piaget describes a specific pathway in the acquisition

of number concept where variability occurs only in the transition from the use of perceptually

based reasoning to logical-mathematical reasoning. Piaget's sequence is invariant; children enter

the world with no numerical ability and acquire a number concept in the first years of their lives.

However, it appears that others factors affect the developmental pathway. Language plays a
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significant role in the acquisition of numerical ability (and perhaps other social factors play a

similar role). Also, a great deal ofnew evidence suggests that the child is born with some limited

numerical ability. The work of some of the neo-Piagetians emerged as attempts to re­

conceptualise the pathway first observed by Piaget. Robert Sieglerwas initially regarded as a neo­

Piagetian, however, as should become apparent in the next chapter, his current theory is too far

removed from Piaget to be included in this category of theories.
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CHAPTER THREE

THE OVERLAPPING WAVES METAPHOR OF

COGNITIVE DEVELOPMENT - ROBERT SIEGLER

AND OTHERS

Various researchers have, since the early 1980's, observed that children employ a number of

different ways to solve addition problems (Siegler and Jenkins, 1989). These observations have

resulted in the strategy becoming the most appropriate unit of analysis in the· study ofchildren's

developing arithmetic skills. It does appear that the development of addition skills is not simply

an issue of adding numbers faster than before, or more accurately than before or even both.

Children acquire new ways of solving these problems, and, therefore, development is both a

quantitative and qualitative process. Also, development is not a process of moving from one

strategy to another. Rather, higher order strategies coexist and compete with lower order ones.

The development ofaddition skills reflects the development ofthe child's overall strategy mix. To

begin to understand children's arithmetic development one needs to explore the strategies that

they use. Robert Siegler has conducted a large body of research examining the strategies that

children use. In particular, he has focussed on arithmetic strategy development l
.

3.1 The Strategy

Siegler and Jenkins (1989) have defined the strategy as a nonobligatory procedure. Therefore, a

procedure becomes a strategy when there are alternative procedures to choose from. Also,

according to these authors, the strategy is not a plan. For them, plans are a conscious type of

. lAItl~ough Siegler has also examined the domains of subtraction (Siegler, 1989b) and multiplication
(Lemalfe & Slegler, 1995), most of his effort has been directed at addition.
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strategy or procedure. Strategies are either conscious or unconscious nonobligatory goal directed

problem solving methods. However, since Siegler and Crowley (1991) advocate the use of

retrospective verbal reports to determine the strategy used in his microgenetic studies, one can

conclude that strategies, for the most part, must be conscious processes. The principles ofstrategy

selection, on the other hand, could be unconscious.

Moreover, the strategy is not the same as a heuristic. A heuristic is a simple rule ofthumb, which

relies on a single piece of information rather than aggregating several. Heuristics reduce the

number ofpossibilities, but sacrifice accuracy on the altar ofeconomy. Nor are strategies the same

as algorithms. These are, like plans, conscious problem solving methods that consist of exact

steps leading to a precise answer. The strategy, for Siegler and Jenkins (1989), is a general and

inclusive category ofproblem solving methods. Therefore, heuristics, plans and algorithms could

all be strategies, but this does not necessarily apply the other way around. There has to be some

overlap between these concepts. The term strategy fits the variation and selection model that

Siegler (1996) appears to support. According to Siegler and Jenkins, there are at least eight

different strategies that children use to solve single digit addition problems, one ofthese strategies

being retrieval and the others being backup strategies (backup strategies are defined as all

strategies other than retrieval).

The claim that children use multiple strategies to solve simple addition problems is a relatively

new one. Groen and Parkman (1972) once proposed the min model (a model suggesting that

children solve simple addition problems by exclusively using the min strategy, which involves

counting on from the larger addend by the number indicated by the smaller addend) as a

description of how first grade children solve these problems. Their findings revealed that the

smaller addend was a good predictor of the child's solution time. They then concluded that
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children use the min strategy exclusively. Ashcraft (1982) extended this model after finding that

the best predictor ofsolution times was the size ofthe smaller addend in first grade children, the

size ofthe sum squared in fourth grade children and that the two variables were equally good at

predicting solution times for children in the third grade. He then concluded that children in the

first grade consistently use the min strategy, children in the fourth grade consistently use retrieval

while the third grade saw the transition between the two strategies. (A sequence that sounds like

one Piaget would have developed.)

However, according to Siegler and Jenkins (1989), the children's verbal reports on how they

actually solved the problem was often not consistent with use of the min strategy. Siegler and

Jenkins, using the microgenetic approach as opposed to a chronometric analysis, found that the

smaller addend was an even better predictor of solution times then previously believed on

problems where the children had reported using the min strategy. However, the smaller addend

turned out to be a poor predictor of solution times on problems where children claimed to have

used a different strategy. As a result, Siegler and Jenkins concluded that the verbal reports are

accurate descriptions ofthe method used to solve the problem. Moreover, children use a variety

of strategies, not only the min strategy or retrieval, when attempting to solve simple arithmetic

problems..

Over the last two decades, Siegler and his colleagues presented much evidence supporting their

model ofstrategy development. Siegler and Jenkins (1989) believe that children may use existing

strategies to construct new ones. Also, they report that children are intrinsically motivated to

develop new strategies even when their existing ones adequately serve them. However, the source

of this motivation does not appear to be understood. New strategies mayor may not provide

greater accuracy and efficiency. Most young children use at least six strategies and are able to
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select adaptively amongst the available alternatives (Shrager & Siegler, 1998). (Selecting

adaptively implies choosing the fastest and most accurate strategy given the problem, the child's

procedural limitations and the task requirements.) While the discovery ofnew strategies occurs

after correct answers as well as incorrect ones, and with difficult as well as not so difficult

problems (Shrager & Siegler, 1998). These discoveries, according to Siegler, are generalised very

slowly (Shrager & Siegler, 1998). However, generalisation can occur faster if the child is

presented with challenge problems, which are problems that are best solved by the newly

discovered strategy (Shrager& Siegler, 1998; Siegler & Jenkins, 1989). An important observation

made by Siegler and his colleagues is that strategy discovery is not a trial and error process

(Shrager & Siegler, 1998). Children do not appear to attempt flawed strategies when discovering

new strategies. Thus, thert: appears to be some constraint on the discovery of new strategies

which may facilitate learning (Siegler, 2000).

3.2 Variation and Selection

Siegler's cognitive developmental theory has emerged from his attempt to incorporate the many

studies describing the variability ofcognitive action. Traditionally, researchers have focussed on

the way children think about particular topics at particular ages. This hunt for age related essences

has resulted in theorists overlooking the extent of the variation that occurs in the way their

subjects think (Siegler, 1996). Cognitive variation, in these theories, is limited to the period of

transition between the stages. According to the stage theories, children progress through an

invariant sequence ofstages and function according to their particular developmental stage. (The

concept of decalage has been proposed to explain findings that do not support this even

progression.) The transition from one stage to another is a sudden phenomenon that does not

appear to be well understood. Many recent studies have detected competencies earlier than some
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of the stage-theories predict and later incompetence at ages when people are expected to be

operating at a level described by the most advanced stage. Siegler argues that these

inconsistencies reflect the extent of the cognitive variation that occurs throughout our

development. LeFerve, Sadesky and Bisanz (1996, cited in Siegler 1996) conclude that college

students employ multiple strategies to solve simple addition problems, so this variation is not

limited to novice or intermediate addition problem solvers. It is not yet known if this cognitive

variation increases or decreases with competence, however, it seems likely that this pattern would

be different for the various domains. Furthermore, Siegler argues that variation occurs between

domains as well as within domains, which is a well-documented finding that has presented an

ongoing obstacle to the stage theorists (although not to the modular model of the mind).

While this variation may, to an extent, explain some the findings that have not been adequately

accommodated in the stage theories, it presents a new problem. If the child has a variety of

methods to choose from then, somehow the child has to make a choice. Performance would be

adversely affected if strategy selection were a random process. So, unless the selections are

adaptive then this variation is a cognitive impediment. Siegler (1996) claims that children select

adaptively. Yet explaining how the child chooses between the alternatives has proved to be a

difficulttask for the theorists. There has been a tendency to solve this problem by invoking higher

order mechanisms. For example, Flavell' s concept ofmetacognition, Sternberg'smetacomponents

and Case's executive processes have all, according to Siegler (1996), emerged, at least partly, to

explain the problem ofchoice. Yet all that has really been achieved, according to Siegler, is the

naming of things poorly understood. However, Siegler himself resorts to a metacognitive

component when he attempts to describe a possible process of strategy discovery.

Siegler extends the observed processes of variation and selection (and inheritance) into a
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cognitive-developmental theory drawing from the principles of Darwin's evolutionary theory.

Individual development, according to this argument, has much in common with the evolution of

species. He believes that the evolutionary approach is likely to be the most appropriate and useful

way ofviewing cognitive development (Siegler, 1996). For the process ofstrategy development,

two mechanisms are required. The first mechanism generates variability. The child would need

to spontaneously generate new and different ways to solve the problems. It is insufficient to only

record this broad choice of problem solutions. Any theory needs to explain how this variation

occurs in the first place. Second, some sort of learning must occur where useful strategies are

retained and less useful ones discarded.

Siegler is certainly not the first person to apply evolutionary principles to the field of cognitive

development. Evolutionary psychology is a growing branch ofthe human sciences that attempts

to use many ofthe principles and concepts that have been developed in the study ofthe evolution

ofspecies to understand the workings ofthe mind (plotkin, 1998). Some ofSiegler' s ideas could

be regarded as resembling the position put forward by evolutionists such as Dawkins (1976) who

emphasise only the adaptation through selection and variation. For any Dawkins type model to

succeed some equivalent of genes are needed. In Siegler's case, strategies are the gene

equivalents. The question is, however, are such strategies granular enough to serve as the

equivalents ofgenes?

3.3 The Overlapping Waves Metaphor of Cognitive Development

According to Siegler (1996), the overlapping waves model ofcognitive development is a better

reflection of the empirical data than previous staircase models have been. Different waves

represent the changing frequency of individual strategy use. The direction of development is
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towards greater use ofthe more advanced strategies. New strategies are generated and added to

the child's repertoire, becoming new waves in the model. This model represents the variation in

thinking that previous models have failed to capture. The emphasis is placed on the variation that

occurs throughout development, and not only between the stages. (The notion of cognitive

variability is discussed in more detail in Chapter Four.)

The different waves in the overlapping waves metaphor of development refer to the different

strategies that people employ, in the case ofthe present investigation, simple addition strategies.

These addition strategies, based on those described by Siegler and Jenkins (1989), include the

following:

1. Retrieval involves retrieving the answer directly from memory. This implies that

arithmetic facts are stored in some kind ofmemory table.

2. The sum strategy involves counting each ofthe addends separately, then counting up

to the first addend and continuing to count on by the number indicated by the second

addend. This is one ofthe more basic strategies and often reflects the way children are

initially taught. According to this definition, the completion time could be described

for the addition problem x + y by the formula x + y + (x + y).

3. The shortcut-sum strategy involves counting from one up to the total of the two

addends. Therefore, the completion time is described by x + y.

4. The count from first strategy involves counting on from the first addend by the

number indicated by the second addend and the completion time is described by y.

5. The min strategy involves counting on from the larger of the two addends by the

number indicated by the smaller of the addends. In other words, if the child is

presented with the problem x+y and y is greater than x, then the child starts at the
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number y and counts on by the number x. Ifx is greater than y, then the child starts

with x and counts on by y, in which case the strategy (at least for the present study)

would be coded as the count from first strategy. The completion time would be

indicated by the smaller ofx and y.

6. Decomposition involves breaking the problem into more manageable parts.

Decomposition could be described a class ofstrategies since there are many different

ways in which problems can be decomposed and recombined. The completion times

would probably be best indicated by a number less than the smaller ofx and y.

7. Guessing is different to retrieval in that the child explains that he or she guessed. The

child makes no attempt to retrieve an answer from memory, but simply provides any

number that comes to mind, which implies that the number is randomly generated.

There is evidence, however, that children spontaneously activate the sum ofthe two

numbers, so it seems likely that guessing somehow involves consciously not

attempting retrieve an answer.

8. Finger recognition involves putting up fingers to represent each ofthe addends and

the child recognises the total. This is different to the case where the child uses her

fingers to aid the execution of the particular backup strategy chosen.

The strategies described above are the strategies commonly used by children who are exposed to

the base-ten arabic number system. Children who have learned the roman number system, for

example, may develop different addition strategies. The list, however, is not exhaustive. Dixon,

Smilek, Cudahy and Merikle (2000) describe the phenomenon ofcolourednumber synaesthesia.

They have studied a child who perceives numbers as colours. Each numeral has a specific and

fixed hue. Thus, simple addition, for some, may involve the mixing ofdifferent colours. Consider

another example from the addition domain, although not single digit addition. Devlin (2000a)
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describes a well known story concerning Karl Friedrich Gauss. When Gauss was a young child,

one of his teachers instructed him to add all ofthe numbers from 1 to 100, no doubt to keep him

occupied for some time. Gauss realised that the problem could be conceptualised differently. He

decomposed the problem into a set of pairs as follows: (50 + 51) + (49 + 52) through to (1 +

100). He than took the number 101 (the sum ofeach ofthe pairs) and multiplied it by 50 to arrive

at the correct answer in far less time than his teacher had hoped. This anecdote demonstrates that

there are many different ways of decomposing addition problems. Therefore, there may be a

number ofother addition strategies not listed above. However, the strategies described by Siegler

and Jenkins (1989) are likely to include all of the common ones.

Siegler's (1996) overlapping waves metaphor emphasises the variability ofstrategy use, which is

in direct opposition to Halford's (1987) neo-Piagetian model (see Chapter Two), which suggests

that there are structural constraints that determine the strategies that the child is able to use.

Siegler's (1996) and Halford's (1987) views, however, are not necessarily mutually exclusive. It

is possible that the cognitive variability that is described by Siegler (1996) occurs around

structural constraints that are probably best accounted for from the Piagetian tradition. This point

will be discussed in Chapter Seven.

3.4 The Strategy of Retrieval

The strategy of retrieval2
, as the name suggests, does not involve any actual calculation or

counting. Retrieval is the most efficient of the strategies since it requires little effort to arrive at

2Some people .would argue tha~ retrieval is not actually a strategy since it can be used without any
conceptual understandmg of the domalO. In syntax development, for example, retrieval often comes before
un~erstanding: Siegler and Jenkins (1989) deliberately define the strategy as any problem solving method in order
to lOclude retrIeval.
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an answer. (Although it could be argued that this strategy involves a number ofmemory demands,

perhaps even more than some ofthe calculation strategies.) As children become more proficient

with addition problems they tend to use retrieval more frequently. Siegler and his colleagues

(1987; Siegler & Jenkins, 1989; Siegler, 1989a) attempt to explain the decision between retrieving

an answer or computing one, with their so-called distributions ofassociations model. Before

children select a strategy they attempt to retrieve an answer from memory. Siegler and Shrager

(1984, cited in Siegler, 1989) report that even pre-schoolers decide between retrieval and a

backup strategy. The probability of any particular answer being retrieved is proportional to the

strength of that answer relative to the other possible answers associated with the problem (the

peakedness ofthe distribution ofassociations). Thus, an answer associated with a peaked strength

distribution is more likely to be retrieved than a possible answer associated with a flat strength

distribution. With experience, the relative strength of a correct answer increases and the

distribution becomes peaked. However, the child will only retrieve the answer if the strength of

the answer exceeds the child's internal confidence criterion (a subjective threshold point that needs

to be exceeded before the child will select the answer with any confidence - presumably a

threshold point that varies according to different circumstances). Ifretrieval fails, the child resorts

to what Siegler calls backup strategies. Siegler (1987) then offered the strategy choice model to

explain how the child chose from the available backup strategies. The backup strategies are all

strategies other than retrieval, the commonality being that the likelihood of using a backup

strategy increases with more difficult problems, while retrieval is more likely to be used with less

difficult problems (Siegler, 1996). It appears that the retrieval table grows as the child grows

older.
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Figure 3-A. Flow diagram depicting Siegler's (1987; 1989a) addition process.

Anderson (1974, as cited in Anderson & Reder, 1999) argues that the organisation of human

memory is associative. Accordingly, our memory includes a dense interconnected network where

numbers are represented as nodes. The activation of any of the nodes results in a diminishing

activation spread along the associative network. Therefore, closely related nodes are also

activated. In many circumstances this is an advantage, but in the area ofsimple addition it may be

the source of some of the difficulties that children have with retrieval. Dehaene (1997)

demonstrates the advantage ofthis type ofmemory system by pointing out that when a person is

faced with a dangerous animal, without having any previous experience with this type ofanimal,

it is advantageous to be able to recall what one knows about other similar animals. However,

when confronted with an addition problem the activation ofall related facts only serves to make

selecting the correct answer more difficult. The retrieval models assume that the operands and the

problem as a whole trigger an activation ofthe memory network. A number ofcandidate answers
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are activated and the most strongly activated answer is the one that is retrieved (Niedeggen &

RosIer, 1999). Ifone considers that a+ b equals b+a then there are only forty five arithmetic facts

that children have to be able to recall to cover all ofthe possible answers in single digit addition

in base ten arithmetic. However, it takes considerable practice and time for these facts to be

learned (Ashcraft, 1982). T~le reason for the difficulty is that the activation spread activates more

than one possible answer resulting in arithmetic errors that are often related answers rather than

unrelated ones. Also, the law that states that a+b equals b+a is probably a discovery too. In

which case the retrieval problem becomes easier than the initial problem after the law is

discovered. Ifone considers Piaget's notion ofreversibility, a feature ofthe concrete operational

stage, then the commutative law is likely to only be discovered sometime after children first begin

to retreive.

LeFevre, Bisanz and Mrkonjic (1988) conducted an experiment that involved briefly presenting

a pair of digits to their subjects, which they were required to memorise. Then a third digit was

presented, after the other two had disappeared, and the subjects were asked if this digit was

identical to one of the pair ofdigits already presented. The researchers noticed that on the trials

where the third digit was equal to the sum ofthe digit pair, there was a significant increase in the

response time compared to when the third digit was a neutral one. This suggests that we

automatically activate the sum when presented with two single digits. The child takes longer to

determine that the third digit was not a part ofthe digit pair, because this number has already been

activated along with the original two numbers resulting in an interference effect. When the third

digit is a neutral one, it is easier to differentiate it from the first set ofnumbers. Lemaire, Barrett,

Fayol and Abdi (1994) obtained similar results with elementary school children. Ifwe extend these

findings to Siegler's (1987; 1989a) model, then we would conclude that the child does not choose

between retrieval and a backup strategy, but rather that the child automatically activates a set of
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possible answers, and then chooses between stating the most active answer (if the child is

sufficiently confident that the answer is correct) or calculating an answer using a backup strategy.

Possibly this phenomenon is an aspect of our so-called number intuition. As we calculate an

answer we may have already activated the answer to the problem. If the activated answer is

consistent with the calculated one then perhaps we have what we describe as an intuitive feel that

the answer is correct. This finding also suggests that children would have to partly ignore the two

addends to generate an answer by guessing.

A further prediction, based on this model of retrieval, is that when children begin to learn

multiplication, their retrieval time for addition problems would increase. This prediction is based

on the assumption that children would start to associate a second answer with the single digit pair.

For example, 2 and 3 would be strongly associated with the number 5 (2 plus 3 equals 5) and also

strongly associated with the number 6 (2 multiplied by 3 equals 6). The child would experience

some sort ofinterference effect between these two answers. Incorrect retrieval answers would be

more likely to be related answers (the correct answer for the two operands but with a different

operator). This prediction could be tested by comparing the response times and accuracy ofthe

retrieval ofadditionfacts ofchildren immediately before they are introduced to multiplication and

again when the school curriculum introduces multiplication. Miller and Paredes (1990) did exactly

this and their results support the prediction. They concluded that there is a substantial interference

effect when a new skill is integrated with existing knowledge. This is referred to as a/an effect,

which is the phenomenon where retrieval times increase when additional facts are associated with

concepts (Anderson, 1974 cited in Anderson & Reder, 1999). It is still not clear ifthis fan effect

is the result ofan interference effect, as claimed by Anderson and Reder or some type ofinhibition

mechanism, as argued by Radvansky (1999).
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The distributions ofassociations model has been used to explain some ofthe observed individual

differences between children (Siegler, 1989a). Siegler classified children into one ofthree groups,

which were generated by a cluster analysis ofa sample ofchildren's cognitive performance. These

groups include 'good students', 'not-so-good students' and 'perfectionists'. Siegler argues that

the 'good students' and the 'perfectionists' solve the problems equally fast and accurately, both

groups ofchildren having peaked distributions. They differ, however, in that the 'perfectionists'

set themselves higher confidence criteria, and thus use retrieval less often than the'good students'

do. 'Not-so-good' students, in contrast, have flatter distributions and lower confidence criteria.

In other words, they use retrieval less accurately and more often than the other two groups.

Siegler (1996) states that, although the 'perfectionist' group appears to represent the stereotypical

girl while the 'not-so-good' students appear to represent typical boys, the two genders were

evenly represented in all th:'ee groups.

Siegler (1990) reports that there is a significant correlation between the accuracy (defined as the

percentage correct) ofexecuting a backup strategy and the accuracy ofusing retrieval (r=.43 in

simple addition). The observation that the 'perfectionists' are very accurate when using the

backup strategies and set high confidence thresholds for retrieval is not a coincidence. Being able

to solve the problems using a backup strategy accurately means that the child is able to develop

peaked associative distributions. 'Not-so-good' students, on the other hand, are unable to set such

a high confidence threshold, because their distibutions ofassociated answers is less peaked. Also,

they do not need to set such a high confidence threshold because using retrieval at a lower

threshold offers a fast strategy that is no less (or more) accurate than their backup methods. If

accuracy is poor either way then the child may as well select the faster problem solving method.

Siegler (1990) hypothesises that ifone is able to teach the 'not-so-good' student to execute their

backup strategies more accurately then the students would be able to build more peaked
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distributions ofanswer associations which would then allow more accurate retrieval. This was a

hypothesis that Siegler (1990) said would soon be tested, however, to my knowledge this has not

yet been done. Siegler's hypothesis offers a very optimistic view ofindividual differences. Perhaps

the reason why the hypothesis has not been tested is that teaching a child to execute a backup

strategy more effectively, as many teachers would remark, is not a very easy thing to do.

Carr and Jessup (1997) report that first grade girls are more likely to use the overt strategies,

which involve finger counting, while boys are more likely to use more covert methods such as

retrieval. There were, however, no significant gender differences in the overall performance ofthe

children. This suggests that girls are more likely to be 'perfectionists', while boys are more likely

to be 'good students' (or 'not-so-good students'). This finding suggests that Siegler's three

categories of individual differences reflect, at least partly, gender differences. Siegler's (1989a)

and Carr and Jessup's findings appear, for the time being, to be inconsistent.

Siegler's model is not the only model of the retrieval process. His model assumes that retrieval

is always first attempted and ifit fails to generate an answer in time or of sufficient strength then

the child resorts to a backup strategy. A variant of this model assumes that retrieval and the

computation occur simultaneously with the first to generate the answer being the strategy chosen,

which is similar to the horserace model of word recognition (Logan, 1988 as cited in Schunn,

Reder, Nhouyvanisvong, Richards, and Stroffolino, 1997). The commonality is that these models

all postulate that ifthe answer is known it will retrieved otherwise one ofthe other computational

strategies will be used. Schunn et al. argue that the retrieve when the answer is known otherwise

compute models are unable to account for all of the empirical data.

Schunn et aI. (1997) contend that the person first decides between retrieval and a backup strategy
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before attempting either method. Also, according to these authors, the decision to retrieve an

answer is based on the familiarity ofthe problem and not the accessibility ofthe answer. They call

this process afeeling-oJ-knowing, which is similar to Siegler's confidence criterion, the difference

being that Siegler's is a measure ofthe answer strength while thefeeling-oJ-knowing is a measure

of problem familiarity. The feeling-oJ-knowing is possibly something like the tip-of-tongue

phenomenon that occurs in the process ofword retrieval. This model, referred to as the source

ofactivation confusion (SAC) model, is not necessarily inconsistent with the finding by LeFevre

et al. (1988; see Lemaire et al., 1994 for similar results) that suggests that we automatically

activate the sum of a single digit pair. According to the SAC model the associated nodes are

activated, but the feeling-oJ-knowing judgment is based on the activation level of the problem

node and not the node representing the sum (Schunn et al.). This departure form Siegler suggests

that children can decide to retrieve, even if the retrieval attempt is unsuccessful, or decide to

compute the answer, presumably even when the answer is retrievable, without first attempting to

retrieve the answer.
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Figure 3-B. Flow diagram depicting Schunn et al. 's (1997) retrieval/compute decision process.

The various retrieval models do, to an extent, explain how a child might choose between

retrieving an answer or calculating it. However, they do not describe how one selects from the

various competing backup strategies after deciding not to retrieve. This is the focus of the next

section.

3.5 Choosing between the Existing Backup Strategies

Siegler and Shipley (1995) claim that three generations ofstrategy choice models have emerged.

The first generation of models refers to the various metacognitive models. Second generation

models include the distribution ofassociations model. A third generation ofmodels refers to the

Adaptive Strategy Choice Model, although this is essentially a refinement ofthe distributions of

associations model. Later models attempt to explain both the selection and the discovery process.
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The first generation of models that were developed to account for strategy selection were the

metacognitive models that proposed that the child's cognitive knowledge was used to govern their

cognitive processes (Siegler, 1996). The term metacognitive has been used in different ways in

the cognitive science literature. Siegler reserves the term for knowledge and processes that are

explicit, rational, flexible, responsive to problem-solving goals and conscious (Crowley, Shrager,

& Siegler, 1997; Siegler, 1996). The metacognitive mechanisms are potentially verbalisable and

open to the process of reflection. They can be adapted to fit novel situations but the cost is that

they are slow and require a great deal of the working memory resources. These early

metacognitive models assert that the child is able to judge her intellectual capacity, the various

strategies that she is able to choose from, and the demands ofthe task (Siegler, 1996). A rational

selection is then made based on these three considerations. While some studies do indicate that

explicit cognitive knowled!.:e is related to performance (for example, Baroody & Gannon, 1994;

Cowen & Renton, 1996; Canobi, Reeve, & Pattison, 1999), children appear to often make

adaptive strategy choices without the explicit knowledge that these metacognitive models require

(Siegler, 1996)..

Associative mechanisms, on the other hand, refer to the part ofhuman cognition that is " implicit,

fast and responsive to nuances in the environment" (Crowley et aI., 1997, p. 463). Strategy

selection involves the learned correlations between the tasks, actions and their outcomes (Crowley

et al.). Associative systems operate without the need ofreflective awareness and thus do not place

excessive demands on the working memory system. These processes become automised and are

not conscious. The down side is that they require a great deal ofproblem solving experience to

make the associative connections. Also, they are not easily adapted to novel situations. It is worth

noting that these two types of mechanisms (associative and metacognitive) seem to have

complimentary strengths and weaknesses.
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The Siegler strategy choice model (1987; 1989a; Siegler and Jenkins, 1989) offers a description

of how children choose between the competing backup strategies in the event that they did not

retrieve an answer. Successful use of any particular backup strategy, in terms of speed and

accuracy (or other possible variables), results in an increased strength of the strategy. The

probability ofchoosing any particular strategy is proportional to its strength relative to the other

competing strategies. New strategies have, according to Siegler, novelty points, which increases

their likelihood ofbeing used, but the points decrease over time. Novelty points ensure that new

strategies are selected even though they have not yet established strength relative to the existing

ones. Also, experience with different problems will result in a closer fit between the strategies and

individual problems. Therefore strategy choice involves selecting the best strategy in terms ofthe

problem presented.

The flow diagram illustrates some of the limitations ofthis model. The model suggests that one

strategy will be used continuously on any given problem until it fails to generate an answer with

sufficient speed·and accuracy. However, this inflexibility is not a feature of children's addition

(Siegler, 1996). Similarly, the model cannot account for the generalisation of strategies to new

situations.
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Figure 3-C. Flow diagram depicting Siegler's (1987; 1989a) strategy choice model

Siegler and Shipley (1995) developed the Adaptive Strategy Choice Model (ASCM) as a

modification of the earlier associative models. According to the ASCM, strategies operate on a

problem to produce not only the answer, but also information regarding the effectiveness of the

operation. This information is then retained in a data base under four headings: Global data refers

to the history of the strategies effectiveness on all of the problems that it has been used, for

example, all simple addition problems. Feature data refers to the effectiveness Ol) specific classes

of problems, such as simple addition problems with a large difference between the size of the

addends. Problem-specific data refers to the strategy effectiveness on specific individual problems.

Novelty data refers to the novelty points discussed earlier that allow new strategies to be

competitive with old ones. As these new strategies are used their novelty points are gradually lost.

This loss, however, is compensated by an increase in the strength associated with the different

categories retained in the database. The database becomes a more accurate reflection of the

effectiveness of the various strategies.
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The Adaptive Strategy Choice Model differs from earlier associative models by explaining how

successful use of a strategy in one situation is generalised to new situations. When a strategy is

used on a problem that has not been solved using this particular strategy before, the selection

would have been made according to the global and feature data associated with the strategy. If

the strategy had never been used on the class ofproblem, then the decision would be made on the

global data only. This model has been used to explain the selection ofstrategies in other domains

(for example, Piaget's number conservation task in Siegler, 1995).

The Adaptive Strategy Choice Model assumes that strategy choice decisions are based on speed

and accuracy only (although other variables could easily be incorporated into the model's decision

making process). Other variables of strategy effectiveness could include the effort required to

provide an answer (although effort is probably reflected by speed) or the ability to solve the

problem under conditions ofcognitive stress. Children may select their strategy on its aesthetic

value. Also, ASCM offers a rational account of strategy selection and it is not clear how the

model accounts for the variability that appears to characterise action.

While the various models encountered so far may, to a degree, explain how one chooses from

existing strategies none of (hem explain how children develop these strategies in the first place.

It is important to note the distinction between two types of strategy discovery. The first occurs

when the difference between old and newmethods has to do with the answers that they generate.

This occurs when the child is motivated to discover new strategies because the existing ones are

flawed. The advantages ofgenerating new problem solving methods are obvious. The second type

of discovery occurs when the difference between old and new is not in the answers that they

generate but possibly in their efficiency or aesthetic value (Siegler & Jenkins, 1989). Siegler and

Jenkins present evidence that indicates that children do not generate flawed simple addition
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strategies, so strategy discovery in this domain is ofthe second type. (According to Siegler (2000)

if children construct flawed strategies, then this would indicate that they do not have an

appropriate conceptual understanding of the domain.)

3.6 The Discovery of New Strategies

Crowley et al. (1997) return to the concept of a metacognitive system to account for their

observations of strategy discovery. They argue that neither metacognitive mechanisms nor

associative mechanisms alone can account for the observed patterns ofdiscovery. Their alternative

is an approach where the two mechanisms interact in a competitive negotiation. In returning to

various metacognitive mechanisms Crowley et al. subject themselves to the same criticisms that

Siegler has levelled at other metacognitive theorists.

Other theorists have noted that both explicit (metacognitive) and implicit (associative)

mechanisms are involved in problem solving. Piaget (1976; 1978, cited by Crowley et aI., 1997)

and later Karmiloff-Smith (1992, cited by Crowley et aI., 1997) both argued that problem solving

starts as an implicit process becoming more explicit. In other words, children begin in a trial and

error fashion eventually building a repertoire of useful strategies. Afterwards they are able to

reflect on the existing strategies, adapting them or generalising them to new situations. Others

reverse this sequence with the initial plans being explicit until later when the procedure is enacted

without a metacognitive process governing it (Crowley et al., 1997). The important point being

that both types of model involve both metacognitive and associative mechanisms.

Crowley et al. (1997) point to the discovery ofthe min strategy, a phenomenon that has been well

documented (see Siegler and Jenkins, 1989), to argue their case for a competitive negotiation
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between both mechanisms. Based on their analysis of the data, the theorists reject both

mechanisms alone. Essentially, their argument is based on the observation that children do not

appear to generate flawed strategies (even ifthey sometimes fail to generate the correct answer).

If an associative mechanism alone was responsible for the discovery ofnew strategies one would

expect it to be a trial and error process. The errors leading to the construction ofinherently flawed

strategies. Addition strategies need to meet three goals, which are to represent the first addend,

to represent the second addend and to represent the combined set ofboth addends (Crowley et

aI., 1997). Siegler and Crowley (1994, cited in Crowley et aI., 1997) found that children are able .

to evaluate strategies according to these goals without being able to state why one particular

strategy would be better than the other. Children seem to have some sort of metacognitive

understanding of what the strategies must be able to do, although they have difficulty in

verbalising this. The evidence suggests that some sort ofmetacognitive process is involved in the

use of addition strategies.

However, the fact that new strategies are not initially generalised to situations where they would

be most effective suggests that it takes time for the associative links to be of sufficient strength

for the strategy to be able to compete with the existing ones, which is evidence for an associative

mechanism. Furthermore, Siegler and Jenkins (1989) noticed that the presentation of addition

problems best solved using the min strategy did not accelerate the discovery ofthe min strategy

but rather accelerated the generalisation ofthe strategy for children who had already discovered

it. They presented their subjects with a number ofchallenge problems during the eighth week of

their eleven-week study. These challenge problems were addition problems consisting ofone large

and one small addend, and are best solved using the min strategy. Surprisingly, exposure to these

challenge problems did not elicit the use ofthe min strategy in any of the children who had not

yet discovered it. The problems did, however, result in children who had already discovered the
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strategy using it more frequently. This appears to be evidence that is best accommodated in an

associative model. Therefore, both types ofmechanism are somehow required to explain the data.

Two computer simulations have been developed that indicate that although either of the

associative or the metacognitive mechanisms can account for the discovery of the min strategy

alone, the simulated data does not reflect the empirical data that has been collected so far

(Crowley et aI., 1997). The associative and metacognitive models have complimentary strengths

and weaknesses when compared to the data obtained in the Siegler and Jenkins (1989) study

(Crowley et al.). Therefore, perhaps the solution lies in some sort ofcombination between the two

mechanisms.

Crowley et al. (1997) propose that strategy discovery occurs through a competitive negotiation

between metacognitive and associative mechanisms. They propose that a metacognitive system

and an associative system act independently in the problem solving process. The first system to

produce a satisfying decision usually wins the negotiation. Each system has a separate

representation of the problem (although they must somehow constrain each other). In familiar

domains, the faster associative system is likely to produce decisions before the slower yet more

broadly applicable metacognitive system. For this reason, when we are familiar with a task we

tend to rely on the associative system to generate implicit non-verbalisable decisions. The

metacognitive system is freed from the burden ofmicro-managing the problem solving process

which provides the opportunity for this system to notice interesting aspects of the strategy that

might not be directly involved with the immediate problem solving goal. The metacognitive

system can intervene by increasing its bid to manage the problem solving process. In unfamiliar

domains, the associative system usually fails to provide a satisfying decision, giving the

metacognitive system the opportunity to manage the process in a more explicit and verbalisable

Page 51



manner.

Since the two systems are independent and self contained, they do not reqUire a meta­

metacognitive system to manage the metacognitive-associative interaction. The model does not

have a separate arbitration mechanism, rather it appears that the metacognitive system assumes

control when it intervenes. A useful analogy is a horse and its rider. The horse represents the

associative mechanism while the rider represents the metacognitive system, at times intervening

to change the pace and direction.

There is other evidence for this type of dual system in the cognitive science literature. Guy

Claxton (1998) in his recent book Hare Brain Tortoise Mind cites numerous research studies and

other anecdotal evidence spanning the last few centuries that argues in favour of two different

types of thinking. The first is the fast, deliberate and conscious hare brain which appears to

resemble Crowley et aI.' s (1997) definition of a metacognitive system, while the second is the

slower, unconscious and more playful tortoise mind which, in many ways, resembles the

associative system from Crowley et al. 's (1997) model. He argues that many, if not most, adults

rely almost exclusively on the first while neglecting the second, to their detriment. Children

fortunately employ this second type ofthinking, which is perhaps at least part thereason why they

spontaneously expand their strategy repertoire. The tortoise mind is able to detect elaborate

patterns which the child can use to select and discover strategies, however, it may be some time

before they are able to articulate this knowledge.

Shrager and Siegler (1998) tested the Crowley et al. (1997) model by developing a computer

simulation based on their metacognitive-associative interaction. Their Strategy Choice And

Discovery Simulation (SCADS) is an extension of the earlier Adaptive Strategy Choice Model.
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SCADS differs from ASCM in that it represents strategies as a sequence of components rather

than unitary mechanisms, records a more detailed trace of the execution of the strategies and

includes three metacognitive mechanisms into the model. The metacognitive system is made up

of an attentional spotlight, strategy change heuristics and goal sketch filters. Basically, the

attentional spotlight allocates resources to the running of new strategies and later, when the

simulation is more proficient in the execution ofthe strategy, allocates resources to the strategy

change heuristics. These heuristics reassemble the different components ofthe strategies while the

goal sketch filter weeds out flawed strategies. They report that the simulation selects and

discovers strategies in a way that is consistent with children's behaviour.

SCADS involves trial and error mechanisms (associative mechanisms), a filter mechanism (goal

sketch) and other mechanisms that are more responsive to the immediate problem solving goals,

such as the change heuristics that seek to eliminate any redundant processing (metacognitive

mechanisms). All that can safely be concluded is that some sort of interaction between

mechanisms that are responsive to immediate problem solving goals and mechanisms that are not

generates patterns of data that resembles children's development. In other words, there is a

compromise between short-term and long-term goals. (This type of compromise is discussed

further in Chapter Seven.) Since a computer has been used to model human behaviour, one would

need to be very cautious about drawing any further conclusions.

SCADS indicates that at least some new strategies may be constructed from existing ones. This

is a claim that was earlier made by Siegler and Jenkins (1989). Re-assembling new strategies with

sub-routines from existing strategies while meeting the objectives specified by the goal sketch

would lead to new functional strategies. Children could also look to other similar numerical

domains for strategy parts. In this regard, the important point is that new strategies apparently do
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not violate addition principles.

Siegler and Jenkins (198Y) first introduced the goal sketch that, they claim, governs the

construction ofnew strategies. This goal sketch specifies the objectives that a functioning strategy

must meet before it is included in the repertoire of existing strategies. Earlier it was stated that

the goals any addition strategy must meet are to represent the first addend, to represent the

second addend and to represent the combined set of both addends (Crowley et ai, 1997). Also,

the two sets cannot overlap. Possibilities that do not meet all ofthese requirements are discarded.

Siegler and Jenkins originally argued that the goal sketch drives the discovery process, yet it

seems to be no more than a standard against which new possibilities are judged. The goal sketch

resembles Chomsky's point that children do not attempt certain wrong grammatical ideas. He

suggests that there are constraints that prevent them from doing so. Like Chomsky, Siegler (2000)

argues that these constraints make the learning mechanisms more powerful.

This goal sketch is one way of explaining how children do not invent flawed strategies, but in

solving one question it raises a number of others. Siegler and Jenkins (1989) argue that goal

sketches are generated before actual strategies are discovered through a general knowledge ofthe

domain. Possibly it is some type of innate mechanism. Three recent publications argue that

humans possess a faculty referred to as a number sense (Dehaene, 1997; Devlin, 2000b) or

number module (Butterworth 1999). Thismodule provides us with a numerical intuition. All three

ofthe authors argue that this number module or sense compels us to see the world in quantities,

as much as we are compelled to see the world in colours. This predisposes children to the learning

of mathematics. Children, according to this perspective, are not the clean slates that Piaget's

constructivism suggests, but are born with an inherent arithmetic ability. Perhaps children are able

to identify the objectives oftheir goal sketch before they have the language to refine their natural
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arithmetic ability (although, this is not a line ofreasoning that Siegler has followed). Thus, the goal

sketch may be an innate ability.

The modular faculty approach referred to above, currently promoted in the domain of

mathematics by Butterworth (1999) was first introduced by Franz Gall in the field ofphrenology

where it became discredited. It has been revived by and is currently associated with Jerry Fodor

(1983) who details his argument in the book, The Modularity ofthe Mind. There do seem to be

some domains in the brain that work as modules, even if we do not know how they work (for

example, face-recognition). The approach, however, does not come without its critics. A counter

argument suggests that the modular approach simply serves to rename the thing that needs to be

explained without much idea how the module may work, a similar criticism to the one levelled at

the various metacognitive structures. Also, the modular approach still needs to explain how the

various modules combine to form a unified conscious experience.

Annettte Karrniloff-Smith (1992; 2000) draws a distinction between the notion of pre-specified

modules and the process of modularisation. She argues that the mind may very well become a

modular structure, but only as a consequence ofdevelopment. According to this line ofreasoning,

certain brain circuits are selected for the various domain specific processes and, eventually,. the

different encapsulated modules may be formed. This approach is congruent with the findings that

indicate that the young child's brain is characterised by its plasticity.

The goal sketch may reflect the child's sophisticated number concept. Piaget (1952) and others

argue that the number concept is acquired. For Piaget the number concept is a special kind of

concept and refers to a cognitive operative knowledge. This concept, as it is constructed, may

provide children with a sufficient conceptual understanding of numbers so that their addition
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strategies do not violate addition principles. In other words, when children begin to add single

digit pairs, they do so in ~ way that complies with their number concept. If the child has a

sufficiently rich number concept then defective strategies should never be generated. (As

mentioned in the Second Chapter, it is also possible that the constructivist and the modular views

are both partially correct. Children may be born with a very limited understanding ofnumber and

this ability may be further developed during the early years of their lives.)

The debate between those who believe that we have innate abilities and those who conclude that

our abilities are acquired is not a new one. In the classical work, The MenD Socrates attempts to

demonstrate to Meno that knowledge is acquired before birth (Plato, trans.1975). He does this

by questioning one ofMeno' s young slaves on a geometrical problem. Through the questions that

Socrates asks, the boy is able to solve the problem. Socrates assumes that this demonstrates that

knowledge is not taught but rather that the boy had the knowledge all along. This knowledge

exists from birth, however, in this case, it required Socrates' questioning before it was recalled.

The debate, therefore, is almost two and a half thousand years old, at least.

A somewhat different explanation for the goal sketch phenomenon is that in the domain of

addition skills, children are initially taught the sum strategy, which specifies the objectives that all

future strategies must meet. In this way the sum strategy becomes the goal sketch for later

strategy development. Perhaps it is no coincidence that the initial strategy that is taught tends to

make the three objectives most explicit. The sum strategy could be regarded as a prototypical goal

sketch. While this goal sketch determines whether a new strategy works, only experience will

determine whether it works well.
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3.7 Other Variables that may be Associated with Strategy Discovery

There have been a number of factors that have been investigated in order to determine the role

that they may play in the discovery process. These include the so-called transitional strategies, the

quantity ofproblems, the type ofproblems, the role ofthe unconscious mind, the context in which

maths is practised and anxiety.

With the various strategy selection models the strategy has been the unit of analysis. However,

for the strategy discovery models the various components of the strategies become the unit of

analysis. This is because many ofthe addition strategies are closely related and one ofthe leading

explanations ofstrategy discovery is that new strategies are constructed by reassembling routines

from existing ones. Crowley et al. (1997) claim that it is unlikely that each strategy maintains

independent subroutines. Strategies access the various components when they are executed. These

authors demonstrate this by describing the steps that may be involved in the discovery ofthe min

strategy. This highlights the role of transitional strategies in the discovery process.

Crowley et al. (1997) present a task analysis of the sum to min transition. The sum strategy

incorporates six procedural steps. If we take the addition problem x + y then the sum strategy

involves:

1. Assigning an addend to be represented first (x);

2. Assigning an addend to be represented second (y);

3. Count out the number x;

4. Count out the number y;

5. Count out part of the total represented by x; and,
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6. Count out the remainder of the total represented by y by counting on from x by the

number indicated by y (Crowley et aI., 1997, p.471).

According to these researchers, the first discovery that the child makes is to notice that the Steps

3 and 4 are not necessary because this counting produces the original value ofeach addend. This

is the cardinal word principle. The result is the shortcut sum strategy that involves Steps 1,2,5 and

6. Now two more discoveries are needed for the min strategy. One of these is that the order in

which the addends are presented does not necessarily need to be the order in which they are

processed. The child can count out the larger ofx and y first. This offers and advantage when

using the shortcut sum strategy because Step 6 involves counting the counts, which would be

easier with smaller numbers. (Although, these discoveries may involve additional memory

demands, it is also likely that the gains outweigh the disadvantages.) The other discovery involved

in this sum to min transition is that the counting out of the larger addend in Step 5 returns the

subtotal that is equal to the same addend. This step is then deleted and the result is the min

strategy. In this sense the shortcut sum strategy is a transitional strategy linking the sum and min

strategies.

Other researchers have suggested, that the count from first strategy plays the same role as the

shortcut sum strategy. Ifthe sequence ofthe discoveries is that Step 3 and 4 are deleted then Step

5 is deleted before the child notices that he can reverse the order of the addends, the result is

discovery sequence starting with the sum strategy then the count from first strategy before the min

strategy. A sequence that seems to be more intuitive than the shortcut sum transition since the

discoveries involved in deleting Steps 3 and 4 and then 5 are very similar and both are linked to

the cardinal word principle. However, in the Siegler and Jenkins (1989) study, most of the

children discovered the shortcut sum strategy before they discovered the min strategy. This data,
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however, was obtained from a very small sample and it is possible that sequence could follow one

of two routes. The difference between the two positions is the point where the child begins to

reverse the order of the two addends.

These descriptions of the sum to min transition appear to undermine Siegler's (1996) argument

for an evolutionary approach to understanding cognitive development. Here he is suggesting that

there is some sort of defiJ".ed problem space through which children progress in a relatively

confined and logical way, resembling a Piagetian progression. Three discoveries are made in this

description and appear to be made in a fairly constrained sequence. Even ifthere is no fixed order

in which these three discoveries are made, there does appear to be a sequence to the discovery

ofthe strategies. Therefore, the description appears to be closer to Piaget's principles than to the

random variation and selection processes that we associate with evolution.

Case's theory (as cited in Siegler, 1986), argues that strategy discovery will most likely occur

after the processes are automised and mental resources become available. Therefore, the overall

number of problems to which the child is exposed may be an important factor in the discovery

process. Siegler and Jenkin's (1989) study ofarithmetic strategy development saw seven of the

eight children discover the min strategy at some point during the eleven weeks ofpractice. When

children are presented with a sufficient number of addition problems, they will gain experience

using a particular strategy and perhaps automization occurs. This would then free up mental

resources for other possible processes. Fewer resources are required to use the strategy, and more

attention directed to the encoding of the problem. Improved encoding facilitates the learning

process. More relevant features of the problem are encoded and combined resulting in a better

understanding ofthe task. This could then lead to different and more efficient ways ofsolving the

problem.
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Case's automization proce~s (as cited in Siegler, 1986) resembles the associative-metacognitive

competitive negotiation process introduced by Crowley et al. (1997). In this model the child

becomes familiar with the domain and begins to rely on his associative system, which becomes

more and more efficient. The metacognitive system, relieved ofits management duties, is provided

with the opportunity to notice aspects of the process that are not necessarily involved with the

immediate problem-solving goal. It is themetacognitive system that makes the three discoveries

that may be involved in the sum to min transition. In Case's model there is a shift from a type of

associative mechanism to a type of metacognitive mechanism, while Crowley et al.' s model is

made up of a continuous competitive interaction between the two mechanisms.

It does not appear that the type ofproblem has much involvement in the discovery process. It has

already been noted that challenge problems, defined as problems that are best solved using the

min strategy, did not result in children who had not yet discovered the min strategy discovering

it (Siegler & Jenkins, 1989). All that was achieved by presenting these problems was the faster

generalisation of the min strategy for those who had already discovered it. However, nothing is

known about the role that other types of simple addition problems may have in the discovery

process.

The is some debate around the role that unconsciousness processing plays in the discovery ofnew

strategies. Siegler and Jenkins (1989) report that children tended to become less articulate when

attempting to explain how they solved the problem on the trial when the min strategy was first

discovered. Apparently, children were often the unaware that they had used the min strategy.

Similarly, Siegler and Stem (1998) report that a new strategy may be used before the child is

aware that she is using it. Siegler and Jenkins offer some explanations for these observations.

Firstly, a new strategy is likely to be more taxing of the mental resources than an existing and
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relatively well practised one. Thus, there would be fewer resources available to monitor and

report on the processes involved with solving the problem. Also, Siegler and Jenkins argue that

the new strategy may have been used amongst the partial use of the other existing strategy, and,

as a result, confusing the child as to how she solved the problem. This is consistent with the idea

that new strategies are constructed from existing ones. It is also possible that the child has not yet

established descriptive labels to· describe the new process. In other words, this unawareness may

be no more than a language problem.

The longer solution times observed by Siegler and Jenkins (1989), on the trial immediately before

the discovery of the min strategy suggests that there may be some cognitive interference or

conflict taking place. Perhaps Siegler would now state that the inarticulate behaviour is the result

of the competitive interaction between the associative and metacognitive systems. The

metacognitive system has to increase its bid on the problem solving process leaving fewer

resources to monitor the process and preventing the child from giving a coherent report.

Presumably, the new strategy would be adopted after a successful bid and the slow response time

immediately before the discovery is the result of increased competition between the associative

and metacognitive systems.

The context in which the child is taught and practices her maths skills influences not only

performance (in terms of the selection and execution of strategies) but also the development of

maths abilities. It appears to do this in two different ways. Claxton (1998) makes the distinction

between the deliberate conscious way of thinking and the playful unconscious way of thinking.

It is the unconscious playful way of thinking that may be involved in the recognition ofpatterns

that are used to discover new strategies. This way of thinking is associated with a more relaxed

and contemplative mode. However, under conditions of stress, attention is constricted. The
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person switches to the deliberate mode of thinking and the tortoise m;nd shuts down. Claxton

cites evidence that indicates that noisy and hot environments have the same type of effect. It

seems possible that noisy and crowded classrooms may hinder the type of thinking that may be

an important aspect of strategy discovery. Thus, the context seems to partly determine the type

of thinking that the child employs.

The context influences the child's performance and development in at least one other way. It

appears that the conditions in which the child tackles her problems can impact on her cognitive

performance by reducing the available working memory resources. Case (as cited in Adams &

Hitch, 1998) argues that the concept of working memory plays a critical role in both cognitive

performance and development. He suggests the temporary information storage and mental

operations compete with each other for limited working memory space. Case (1985, as cited in

Adams & Hitch) believes that the speed of the operation reflects the amount ofwork space that

was required, with fast operations indicating that less work space was needed. Towse and Hitch

(1995, as cited in Adams & Hitch) offer an alternative explanation for the speed - work space

relationship. They suggest that the observation is the result of working memory decay. Faster

operations result in less decay (hence the finding, cited by Dehaene (1997) and reported in

Chapter Two, that shorter number names enhances memory). This issue is not yet resolved,

however, we can conclude that for whatever reason, faster operations will be less affected by

working memory constraints. Procedural solutions will require more working memory space than

a non procedural method would, such as retrieval. Situations where the child is required to attend

to more than one task at a time may overload the working memory system and cognitive

processing is disrupted.

Anxiety is one example of a factor that demands limited working memory resources (Ashcraft,
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Kirk & Hopko, 1998). Anxiety, whether it is specific maths anxiety or generalised anxiety, draws

resources away from the working memory system, by focussing the system on the object of

anxiety, or the consequence offailure, that otherwise would be available for processing. Anxiety

disrupts cognitive processing that relies on working memory and it appears that the greater the

reliance on working memory (the slower the operation) the greater the disruption. The anxious

child is required to attend to the task as well as their anxiety which means that their mental

processing and temporary memory operations have less of the work space. Ashcraft, Kirk and

Hopko speculate that the anxious child will not develop a full repertoire of maths strategies

because the extra load prevents full mastery and learning. Thus, it appears that classroom

situations that involve excessive anxiety will hinder both the performance and development ofthe

child. Also, this demonstrates how an unsuitable home environment may impact on classroom

performance. Given South Africa's social, political and economic history, it seems reasonable to

assume that many children suffer from anxiety in one form or another. This may be just another

example of a disadvantage that South African children are required to overcome. How children

respond to these cognitively demanding situations is a question that is considered in the empirical

section of the present study.

The second research question formulated in this study tests whether children who temporarily

experience cognitively stressful situations will be more likely to resort to strategies such as

retrieval, because they require less of the work space and are less susceptible to decay or,

alternatively, use some sort of external counting aid, such as their fingers, because this extends

their limited working memory capacity. This hypothesis, however, is not supported by the

Siegler's (1990) observation that children who are told to emphasise speed over accuracy, or vice

versa, do not choose different strategies, but rather execute them faster (when speed is

emphasised) or more carefully (when accuracy is emphasised).
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The advances made in this domain ofcognitive science have not yet been translated into benefits

for the way children are taught arithmetic. If we assume that the discovery of the full repertoire

of addition strategies, or at least all of the sophisticated ones, is associated with a greater

understanding ofthe number concept, then understanding the factors that facilitate the discovery

process would benefit educators. So it seems that one way ofensuring that children develop the

advanced strategies is to ensure that they gain experience solving a sufficient quantity ofproblems

under suitable conditions. In other words, practice makes perfect.

3.8 Summary

The staircase metaphor has historically been useful in describing the essences at the different ages.

Children's abilities at the va.rious stages have been well documented and have, for the main part,

withstood the multitude of studies that have tested these age-related essences (Halford, 1989).

This simplicity has come at a cost - the cost ofoverlooking the extent ofthe variation that occurs

and, furthermore, makes understanding the shift from one stage to the next impossible. Explaining

how the child progresses from one level to the next has not been achieved because the gulf

between the stages does not exist.

Siegler's work is based on the strategy as his unit of analysis. His major area of concern is to

explain the extent of the variation that he and others have observed. Something that the stage

theorists have failed to capture. For Siegler the development ofaddition ability involves changes

in the child's strategy mix, with new strategies being added and old ones being erased, while at

the same time the individual strategies are used more effectively and more or less frequently.

Siegler believes that the selection of the strategy is purposeful. Accordingly, children attempt to

vary their choices in response to differences in the nature of the problem as well as the situation.
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Siegler has adopted an evolutionary approach to explain this variation and hopes that this will end

the stalemate that exists with regard to developmental mechanisms. However, the variation does

not appear to be as random as one would expect from an evolutionary model but, instead, may

be closer to Piaget's structured logico-mathematical progression. Accounting for how the child

benefits from the variation is only one aspect of the puzzle. How the child develops or discovers

new strategies in the first place is not yet well understood.
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CHAPTER FOUR

THE RELATIONSHIP BETWEEN CONCEPTUAL

UNDERSTANDING AND PROCEDURAL

KNOWLEDGE IN CHILDREN'S ADDITION

Piaget has contributed much to the understanding ofthe acquisition ofthe number concept while

for Siegler, the focus has been on the development of mathematical procedures, particularly

addition procedures. This raises the question ofwhether the differences between Piaget's staircase

theory and Siegler's overlapping waves theory have more to do with the different focus that each

theorist has taken rather than any fundamental theoretical contradictions. A more complete

understanding ofmathematical development will come when we better understand the relationship

between Siegler's and Piaget's theories or, put differently, the relationship between procedural

and conceptual knowledge. Procedural knowledge refers to the actual methods that children use

to solve arithmetic problems. Conceptual knowledge, on the other hand, refers to a deeper

understanding of our number system. It is possible that this understanding is used to construct

economical problem solving procedures. The issue has some practical significance in that

educators have fluctuated between emphasising one type ofknowledge over the other. Ifwe are

ever able to describe this relationship more precisely then we may begin to determine the most

appropriate classroom mix.

4.1 The Relationship between Conceptual and Procedural Knowledge

It is generally accepted that the two types ofknowledge develop in tandem, however, the exact

nature of the interaction is not well understood. Rittle-Iohnson & Siegler (1998) argue that the
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nature of this relationship is limited to four possibilities:

1. Procedural knowledge develops before conceptual understanding;

2. Conceptual understanding comes before procedural knowledge;

3. The two develop concurrently; or,

4. The two develop iteratively. This fourth point indicates that small increments in one

would lead to small increments in the other, which would then make possible further

gains in the first one. This description sounds very much like Piaget's concept of

horizontaldecalage where structural unevenness results in disequilibrium, which leads

to further growth in the less developed structures. One could draw an analogy with

the development of optics. This led to the development of the telescope which, in

turn, greatly expanded our knowledge ofastronomy. Each new discovery made others

possible.

Rittle-Johnson and Siegler (1998) point out that the research that has been conducted in this

domain has been limited to addressing the first two hypotheses only. The remaining two

possibilities have, so far, not been examined. This may be because we do not yet have the

methodological tools to do so. Or, put differently, exploring the exact nature of the relationship

is a difficult research goal.

4.1.1 Counting

The relationship between conceptual and procedural knowledge has been extensively explored in

the domain of counting (although only in terms of the first two possible relationships listed

above). Despite this relatively thorough research there still remain two prominent and competing

Page 67



theories (Wynn, 1990; Rittle-Johnson & Siegler, 1998). The first of these positions is the

principles before theory of counting developed by Gelman and her various colleagues (for

example, Gelman & Meck, 1983; Gelman, Meck & Merkin, 1986) argues that concepts come

before procedures. Gelman and Gallistel (1978 as cited in Gelman & Meck, 1983 and Gelman,

Meck & Merkin, 1986) proposed that five counting principles guide the development of the

child's counting ability. These are:

1. The one-to-one principle - every item in the set receives a unique tag;

2. The stable order principle - the tags must be assigned in the same sequence;

2. The cardinal principle - the final tag is equivalent to the symbol representing the

number of items in the set;

4. The abstraction principle - any group of objects can be tagged; and,

5. The order irrelevance principle - the objects in the set may be tagged in any sequence

as long as the other four principles are not violated.

This theory of counting contends that counting principles exist in children before they begin to

count as some sort ofinnate ability. Perhaps this is similar to Siegler and Jenkin's (1989) concept

of the goal sketch, although the principles before theory is not the one that Siegler supports.

Also, it could also be argued that the goal sketch develops from these same 'innate' counting

principles. In other words, the reason that children appear to understand addition principles as

soon as they begin to add is because they already understand basic counting principles and

addition is really an extension of their counting ability. The recent support for innate numerical

ability (e.g. Butterworth, 1999; Dehaene, 1997) provides additional backing for the principles

before position.
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The current alternative is theprinciples after theory ofcounting suggesting that procedures come

before concepts. Briars and Siegler (1984 as cited in Rittle-Johnson & Siegler, 1998) are amongst

some ofthe supporters ofthis view. Essentially, they argue that counting is first learned, possibly

through imitation, as a routine activity. This activity is later generalised to other situations and

gradually these principles emerge. Many routine activities are learned in a rhythmical (rather than

linear) fashion, and counting is probably no exception.

Both positions acknowledge that young children have an advanced conceptual understanding of

the early developing numerical domains, regardless ofwhether this understanding comes before

or after procedural competence (Rittle-Johnson & Siegler, 1998). However, this advanced

conceptual understanding is lost as children progress further into the mathematical curriculum.

This is regarded as a paradox, stimulating much research. (It is possible that this decreasing

conceptual understanding is associated with children's declining mathematical enthusiasm.) In

grammar learning, children are first correct, then incorrect before being correct again. But the

initial correctness is learningwithout understanding. In this numericaldomain, however, it appears
. .

that this early correctness is with understanding.

The privileged domains hypothesis maintains that our early developing numerical abilities are

evolutionary privileged. These skills have evolutionary importance and support the survival ofthe

species. It is suggested that somehow we have an innate ability to acquire them, which is why

young children appear to be so conceptually advanced.

Thefrequency ofexposure hypothesis is described by Rittle-Johnson and Siegler (1998), as well

as others, who contend that these early developing competencies develop because children have

a great deal of opportunity to observe and apply them. Perhaps the concepts are acquired early
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for no other reasons than that they are relatively simple concepts and children are often exposed

to them. This seems to be a more easily tested and explained hypothesis.

4.1.2 Single Digit Addition

Single digit addition, like counting, is regarded as an early developing competency and, as such,

a privileged domain. However, the relationship between children's conceptual understanding and

their procedural knowledge has been less extensively examined. Some research has inferred

children's conceptual understanding indirectly from their procedural ability. This is problematic

since Siegler and Jenkins (1989) demonstrate that children use a variety ofstrategies on any given

problem. This means that they do not necessarily choose an advanced strategy even when they

are capable of doing so, which could result in an under estimation of their conceptual ability

(referred to as a production difficulty in the literature (Kluwe, 1990». On the other hand,

Baroody and Gannon (1984) argue that using the min strategy may reflect nothing more than the

recognition of an economical addition strategy. This implies that children may use strategies

without the conceptual understanding associated with them. Both ofthese are possible.

Both Baroody and Gannon (1984) and Cowen and Renton (1996) have explored the relationship

between the concept ofcommutativity (the mathematical principle that states that a + b = b + a)

and the use ofthe min strategy (an addition procedure where the order ofthe addends is reversed

when necessary so that the child counts on from the larger addend by the number represented by

the smaller addend). Not surprisingly, both studies indicate that there is a positive correlation

between understanding commutativity and using the min strategy. Both studies report that some

children display an understanding ofthe commutative principle before they acquired the use ofthe

min strategy suggesting that the concepts come before the procedures.
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Canobi, Reeve and Pattison (1998) detected a similar relationship between commutativity and use

of the min strategy but also extended their study to include an examination of the relationship

between various numerical concepts and the strategy of decomposition (an addition procedure

where the problem is broken apart and recombined in a more manageable way). They explored

whether the concepts of additive composition (the principle that states that numbers are

composed by addition and can be decomposed in various ways) and associativity (the principle

that states that a + (b + c) = (a + b) + c) are related to the strategy of decomposition. The

researchers presented a series ofaddition problems to their subjects on a computer screen. With

each new problem the previous problem and correct answer would remain on the screen. The

problems were arranged in a sequence that provided conceptual clues to the subsequent problem.

The children's conceptual understanding was assessed by their ability to use the conceptual clues

from the previous problem. Also, the subjects were later asked to explain how to solve the

problems to a puppet. Their results support the view that an understanding of the concepts of

additive composition and associativity are related to the use of the decomposition strategy and,

as already noted, understanding the concept of commutativity is related to the use of order

indifferent strategies (such as the min strategy). Also, the results support the view that the order

indifferent strategy comes before decomposition. Furthermore, they found that an understanding

of these number concepts is related to the greater the use of retrieval as well as faster response

times and greater accuracy.

One interpretation of the relationship between conceptual knowledge and the use of retrieval is

that children who are able to understand the relations between the problems are better equipped

to store and retrieve arithmetic facts (Canobi et al. 1998). Perhaps decomposition and the ability

to reverse the order ofthe addends facilitates the use ofretrieval. The authors do not mention that

being able to reverse the order ofthe addends would almost halve the number ofsimple arithmetic
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facts that must be stored. A second interpretation is that the ability to store and retrieve arithmetic

facts may somehow facilitate the understanding ofconceptual knowledge (Canobi et al.). A third

interpretation, one not mentioned by the authors, is that perhaps conceptual knowledge and the

ability to store and retrieve arithmetic facts both develop independently with greater problem

solving practice. The finding. that suggests that children who have a greater conceptual

understanding also tend to be more accurate, faster and flexible interms ofstrategy choice could

be explained in the same way - as the consequence ofgreater practice.

It is usually assumed that the cardinal wordprinciple, which refers to the discovery that the last

word in a counting sequence represents the total ofthe set, is associated with the various counting

on strategies (the count from first strategy and the min strategy). Fuson, 1982, (as cited in

McShane, 1991) makes a distinction between a count-to-cardinal connection and a cardinal-to­

count connection. The first is the cardinal word principle that has been discussed and refers to an

action already completed. The second predicts an action that can be carried out. It is the second

connection that·is involved in the construction of these more economical strategies.

Ifwe extend Claxton's (1998) argument that there are two ways ofthinking - the faster hare brain

or the slower tortoise mind - or Crowley et al.' s (1997) metacognitive-associative negotiated

interaction argument to the conceptual-procedural debate, then we would predict that children

who are able to verbalise, and thus be conscious of, certain whole number concepts would also

be more likely to use them to solve addition problems. This however, does not mean that children

who are unable to describe or explain the concepts are unable to use them. Presumably, their

tortoise mind has long recognised the patterns that correspond to the concepts and perhaps has

used the patterns before the child is even conscious of this. It is only later when the hare brain,

to use Claxton's description, or the metacognitive system, from Crowley et al. 's model, eventually
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detects these patterns (that the tortoise mind or associative system have already recognised) that

the knowledge can become conscious.

Other evidence for the concepts before procedures view comes from Siegler and Jenkin's (1989)

observation that children do not generate flawed addition strategies. As noted, children appear

to understand the principles ofaddition and to only generate addition strategies that comply with

these principles as soon as they are able to add. They must have some sort of early conceptual

understanding of addition. If we think of addition as type of fast counting, then the early

conceptual understanding of addition could be a consequence ofbeing able to count.

Table 4-A lists the conceptual advances associated with the various calculation backup strategies

described above. Also, the table includes the predicted completion times for each ofthe strategies

listed according to their definitions discussed in Chapter Three. Therefore, given the addition

problem x +y, the strategies can be described according to Table 4-A below.
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Table 4-A. The conceptual complexity and completion times for the backup strategies.

Sum The child is unsure about number. Need x +y + (x +y).
to count addends in order to determine
their size.

Shortcut Sum Able to hold both addends and count.

Count from first Able to hold both addends and count.
Apply the count-to-cardinal connection.

Min Able to hold both addends and count.
Apply count-to-cardinal connection.
Apply commutative principle.

Decomposition Able to hold both addends and count.
Apply count-to-cardinal connection.
Apply commutative principle.
Apply associative principle.
Apply principle of additive composition.

x+y.

The smaller ofx and y.

Less than the smaller ofx
and y. Decomposition refers
to various strategies and,
therefore, the completion
times will differ according to
the way the problem is
decomposed.

Table 4-A provides a conceptual difficulty metric along with the completion times for each ofthe

backup calculation strategies. As the completion times for each strategy decreases, the conceptual

complexity increases. Halford's (1987) theory argues that advances in conceptual understanding

is achieved by greater structure-mapping ability. Therefore, the increasing conceptual complexity

described in the table above parallels structure-mapping advances.

The Piagetian approach implies that concepts come before procedures and that concepts dictate

the procedures that are used. Halford's (1987) neo-Piagetian theory, discussed in Chapter Two,

proposes that structure-mapping advances facilitate greater conceptual understanding. The

conceptual understanding d~terminesprocedural knowledge. The greater information-processing

demands made by more complex structure-mappings is compensated for by increased conceptual

ability and the use ofmore sophisticated strategies.This does not necessarily mean that children

do not ever use procedures without the associated concepts. However, in this case they have
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knowledge without understanding.

This particular sequence ofconcepts before procedures is not a universal mathematical sequence.

Historically, in the development of mathematics, procedures often come before concepts. An

example of this is calculus. Rittle-Johnson and Siegler (1998) assert that procedures come first

in the domains ofcounting and fraction multiplication (although, as noted, the domain ofcounting

is still open to debate) while concepts may come first in single digit addition, fraction addition and

proportional reasoning and the order of acquisition in the domain of multi-digit addition and

subtraction appears to be variable. All that can be generally concluded is that there appears to be

a relation between procedural and conceptual knowledge and perhaps an order of acquisition.

Since two ofthe possible relations (the possibility that the two may develop concurrently and the

possibility that they develop iteratively) have not been explored, the exact nature of "the

relationship is still not well understood. It could also be argued that procedures without the

associated concepts is knowledge without understanding.

4.2 The Staircase versus the Overlapping Waves

This leaves us with the question ofwhether Siegler and Piaget's descriptions are complimentary

or competing theories ofcognitive development. Siegler demonstrates that children at a given age

think in multiple ways on classroom tasks,however, one can not necessarily assume that they also

do this on classical Piagetian tasks, particularly his logical tasks. How can the path ofchange on

Piagetian tasks be best characterised? Siegler (1995) has attempted to answer this by revisiting

one ofPiaget's classical experiments, and in doing so, sheds more light on the union between his

and Piaget's theories. Siegler adopts a microgenetic, or micro-developmental, study ofPiaget's

number conservation task. Microgenetic studies involve a high density of observations over a
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relatively small period. While traditional stage theories have depicted change as being abrupt, the

various microgenetic studies have suggested that it is more gradual (Siegler, 1995).

4.2.1 The One-to-One Correspondence Experiment

Siegler's (1995) conclusions dispute Piaget's (1952) depiction of the development of number

concept through three stages. For Piaget (1952) level one children's perceptions govern their

evaluation ofquantity, while at the second level the perceptions compete with conservation and

at the third level the ability to conserve frees children from their perceptual limitations. Siegler's

(1995) results indicate that individual children and the group as a whole are best described as

using a variety ofreasons for their quantity evaluations throughout the Piagetian sequence, both

before and after the level three type reasoning has been discovered. Siegler (1995) claims that

Piaget and his colleagues over simplified the developmental sequence and did so because of the

limitations of the traditional experimental methods. Siegler (1995) states:

The monolithic character ofthese depictions seems unlikely to have sprung from

any deep conviction that all children progress through the same path of change.

Instead, it seems attributable to traditional methods not yielding sufficiently rich

data to differentiate among individual children's change patterns, and to

investigations therefore having little to say about the variability of the change

process (p.233).

4.2.2 Variability

For many years Piaget's theory offered a paradigm for the study of cognitive development. The

cognitive variability, that Siegler (1994) claims is a important aspect ofcognitive functioning, was

previously regarded as measurement error, something to be eliminated or classified as decalage.
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It is precisely this variability that has now become crucial, in a Gestalt-like switch that, according

to Kuhn (1970 as cited in Grannott, 1998), often characterises a change in the dominant paradigm.

This variability, according to Siegler (1996), is a vital part of understanding and explaining

cognitive development. Siegler (1995) claims that the children who learned best on the number

conservation task described above, continued to display cognitive variability within and between

trials. Also, Siegler (1995) found that learning appears to be enhanced by having children explain

the reasoning ofothers. Thus, on a practical level, we may be able to improve children's learning

by encouraging them to explain the reasoning of others.

Variability is a characteristic of human action and has been described by a number of different

researchers. Harry CoIlins (1992), for example, illustrates the importance of the role that

variability plays in human behaviour in his critique of artificial intelligence. While it is not

necessary to detail Collin's entire critique, it is worth noting that variability in behaviour is one

aspect that separates humans from machines. It takes a great deal oftraining for a sports player,

for example, to deliver a consistent stroke. One only needs to think ofthe amount oftime that golf

players spend practising their shots. Beginners will tend to vary from stroke to stroke, while

experts are able to deliver relatively consistent shots. Computers, on the other hand, are able to

execute a procedure in exactly the same way over and over again. This topic is discussed by

learning theorists such as Skinner, where it serves as the source ofa variety ofoperants. The point

is that variability is an integral aspect ofhuman behaviour.

For Siegler (1994) cognitive variability has several aspects: it occurs between children ofdifferent

ages; between different children of the same age; within the same child when presented with

similar problems; within the same child when presented with the same problem on more than one
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occasion (and this can not necessarily be explained by learning since the more advanced strategy

is often used first); and within the same child on the same problem. Indeed, a new generation of

research has documented the extent of this variability across many different domains. Siegler

(1994) proposes that variability contributes directly to cognitive development and cites varied

evidence to support this.

He points out that variability in simple addition is especially pronounced on the trial immediately

before the discovery of a new strategy and on the trial when this new strategy is first attempted

(Siegler, 1994; Siegler & Jenkins, 1989). (The latter point should be obvious since the use of a

new strategy must increase the variability.) Thus, there is a proximal relationship between

variability and strategy discovery. Also, children who display greater variability tend to be better

learners (Siegler 1994; 1995). Furthermore, Siegler (1994) believes that many modern researchers

in the area of cognitive development have found it necessary to incorporate some degree of

cognitive variability into their models. Moreover, Siegler argues that if variability is related to

learning, then thinking would be most variable during the period in our development when

learning is more important than performance (Siegler, 1994); Apparently this is the case during

infancy and childhood.

Perhaps then, according to Siegler (1994), this is why infants and children up to the age of seven

have more synaptic connections than older children and adults. It is conceivable that this

abundance of neural pathways is the source of this observed variability. Greenough, Black and

Wallace (1987) describe a Darwinian process of selection where the connections are gradually

pruned. Moreover, this mechanism is involved in both the processes oflearning and development,

suggesting that these two processes are more closely related than previously thought.
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The notion ofcognitive vari.lbility appears to be a major difference between the Piagetian tradition

and Siegler's theory. The difference may have much to do with the fact that Piaget adopted a

macro-perspective by focussing on variation in cognition across childhood, while Siegler has

adopted a micro-perspective by concentrating on the variation within the stages described by

Piaget.

4.2.3 Learning and Development

Siegler and Piaget differ in terms of how they view the processes of development and learning.

Piaget frequently made the distinction between learning and development, regarding the two as

fundamentally different processes. For Piaget, development involves the active construction of

knowledge while learning referred to the passive formation of associations (as cited in Siegler,

2000). Siegler recognises the difference between these two processes, however, the distinction,

according to him, has become increasingly blurred. Development, according to Siegler (2000,

p.32), refers to change that is universal, species specific, occurs over a longer period and in

response to a "broader variety ofexperiences", while learning appears to be the opposite. The rise

ofPiaget's theorysaw the decline oflearning as an area ofresearch. Siegler (2000) believes that

his theory is one ofthe few modern theories that have addressed the issue oflearning directly. He

argues that the two processes share the same underlying psychological and physiological

processes. Siegler (2000) cites the research produced by Greenough et al. (1987) that suggests

that both learning and development involve an initial increase in the number of synaptic

connections and a later pruning in support of his argument.
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4.3 Summary

Cognitive development involves both procedural and conceptual advances. There is evidence that

indicates that the two types of knowledge are to be linked to each other, however, the exact

nature of the relationship between the two is not yet well understood. In the domain of simple

addition, many conceptual discoveries appear to precede procedural breakthroughs. This suggests

that children's conceptual understanding largely determines their strategy repertoire. It seems

possible that advanced strategies can be taught to children who are not conceptually ready for

them, however, it is also likely that these strategies would often be used inappropriately and

would not generalised to new situations that warrant their use.

One of the fundamental differences between Piaget's and Siegler's theories has to do with the

notion ofcognitive variability. Children's cognitive actions appear far more variable than Piaget

originally thought and this variability appears to play an important role in subsequent learning.

Thus, Piaget's monolithic progression may be overly simplified, although Piaget was probably

more concerned with a macro-perspective of cognitive development, which did not reveal the

detailed patterns demonstrated by Siegler's micro-analysis.
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CHAPTER FIVE

AIMS AND METHOD

This chapter outlines the aims of the study before describing the research methodology. The

microgenetic approach, detailed in the method section, differs from the usual longitudinal study

in that the data collection is much denser and usually occurs over a shorter period oftime. This

type ofresearch method is beginning to generate useful developmental data. Arecently developed

statistical measure, prediction analysis, is described and, hopefully, justified. Prediction analysis

appears ideally suited to the microgenetic method. A reliability measure, Cohen's Kappa, is also

reported in the method section. This statistic was calculated in order to assess the degree of

observer agreement in the categorisation ofthe participant responses and the result provides some

.'\
reliability for the method as a whole.

,
I

5.1 The Aims of the Study

The broad objective ofthis study is to evaluate some ofthe essential features ofSiegler's theory

ofaddition strategy development. Although essentially exploratory, two research questions have

been specified along with a number ofother research objectives. The term exploratory research,

unfortunately, is often used to justifY poor research methodology. In this particular domain,

however, the current models and methodology are generally new and it could be argued that they

are not yet well developed. Therefore, the most appropriate approach to take is an exploratory

one.
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5.1.1 Objectives

The broad objective ofthe present study is to attempt a replication ofsome ofSiegler's research

findings. These include:

1. Determine whether the microgenetic methodology, that Siegler and Crowley (1991)

advocate, offers a feasible method of studying development;

2. Examine the degree of cognitive variability in children's addition strategy choices;

3. Consider how well Siegler's classifications of'perfectionist', 'good students' and not­

so-good students' describe the participants in this study;

4. Explore why children develop an extensive repertoire of addition strategies;

5. Evaluate Siegler's (2000) depiction of the addition strategy development pathway;

and,

6. Consider the benefit associated with developing more advanced strategies

During the course ofthis research it became possible to formulate two testable research questions.

5.1.2 Research Questions

1. Does the prin...:iple of least effort describe the selection of children's addition

strategies?

2. Do children under conditions of cognitive stress, execute their strategies in a covert

manner in order to extend their working memory capacity, or resort to faster

strategies, specifically retrieval, that require less working memory resources or are

less susceptible to decay?
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5.2 The Research Method

5.2.1 The Microgenetic Approach

The microgenetic method, according to Siegler and Crowley (1991), is an appropriate means of

closely observing cognitive change. The method involves examining the change process while it

happens, which then provides information on the factors associated with the change. The method

has three important aspects:

1. Children are observed through the change period;

2. There is a high density of data relative to the rate of change; and,

3. A trial-by trial analysis is used to infer the strategy used on each trial and the factors

associated with strategy development (Siegler & Crowley, 1991).

Conventional longitudinal studies are described by Siegler (1995) as before and after snap shots

ofthe child's abilities over a long period, while the microgenetic study involves a high density of

snap shots over a relatively short period of time. These observations should begin as close as

possible to the point immediately before change occurs and continue until this change has

stabilized. Change refers to the point at which the child is observed to have altered her pattern of

strategy use. The approach yields both qualitative and quantitative data (Siegler & Crowley,

1991). This project differs from the usual microgenetic. approaches in that there has been an

attempt to manipulate some of the factors that may be associated with strategy choice. The

strategy developmental process has been observed, but the conditions in which the child solves

the problems have also been manipulated in order to determine the effect that this has on the

strategy selection.
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The research design is contingent upon being able to determine the actual strategy chosen on a

trial by trial basis. The strategy that the child employed on each particular trial is inferred in a

number ofdifferent ways. First, the child's overt behavior is carefully observed and recorded. This

offers a direct way of determining how the child solved the problem. Second, the children are

asked how they solved the particular problem. Requesting verbal reports from the children has

been shown not to influence strategy choice (McGilly & Siegler, 1990, cited in Siegler &

Crowley, 1991). Third, the solution times are classified according to the strategy used and

subjected to a chronometric analysis.

This approach has a number ofweaknesses that can be separated into either practical or statistical

difficulties. The design involves a trial by trial analysis of individual children's performance and

thus involves a great deal of time. Also, attempting to infer the strategy that was used requires

skill and careful observation. The practical requirements ofusing small samples conflict with the

usual statistical requirements oflarge ones. Finally, according to Siegler and Crowley (1991), the

analysis of repeated measures data poses some statistical difficulties.

5.2.2 Analysis of Verbal Pretocols

Siegler and Crowley (1991) report that the validity ofverbal data as a means ofinferring cognitive

processes has been questioned. Ericsson and Simon (1980) have attempted to determine when and

when not to use verbal reports. They argue that if the subject reports information as it enters her

short-term memory it will be accurate but possibly incomplete. Information that needs to be

retrieved from her long-term memory will not be reliable. Furthermore, the processes that are

reported must not be too brief in duration since they will not be represented in the child's short­

term memory. (LeFevre, Sadesky and Bisanz (1996) suggest that children are possibly better than
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adults at describing the mental processes associated with solving addition problems because the

time per unit problem is far greater for children.) Ericsson and Simon further argue that if the

person is required to report on the processes involved with solving a problem as the child solves

the problem, and if the processes involved are of sufficient duration, then the reports will

correspond with other methodologies of studying cognitive development.

5.2.3 Chronometric Analysis

As already noted, Groen and Parkman (1972) report that the size ofthe smaller addend in simple

addition problems is the best predictor of solution times. This study wrongly assumed that

children employ the same strategy on each trial. More recent work indicates that children tend to

employ a variety ofstrategies when solving addition problems (Siegler, 1989b). Thus the size of

the smaller addend is the best predictor of solution times to addition problems, as suggested by

Groen and Parkman, when the subject uses the min strategy, but is not necessarily the best

predictor when the child uses one of the other possible strategies. Therefore, Siegler (1989b)

warns that in situations where children employ multiple methods to solve addition problems the

use ofa chronometric analysis to infer the strategy used is problematic. If, however, the subjects

do use multiple strategies and the solution times are classified according to the strategy reported

or observed, then this chronometric data can be separately analyzed.

5.2.4 The Pilot Study

A pilot study was conducted to investigate some ofthe practical considerations ofthe design. This

included the development ofthe recording sheet and recording procedure. Furthermore, this phase

was used to select the final sample ofchildren. The data collected during the pilot study was not
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used in the empirical section ofthis thesis, but was used to determine whether or not the children

would be able to comply with the requirements of the study and if their responses appeared to

resemble those collected in Siegler and Jenkin's (1989) research.

The Principal of a Junior Primary school in Pietermaritzburg was contacted and permission

obtained to collect the data. The school is located in a middle class suburb in Pietermaritzburg and

offers pre-primary, grades one, two and three education. The first grade teachers were consulted

and asked to identify learners who, they believed, were of average arithmetic ability and would

be willing to participate in the research. In addition, the teachers described how they typically

teach simple addition l
. The criteria for suitability were that the candidates would not be too

intimidated by an outsider asking them to solve addition problems and that they would be likely

to cope with most of the simple addition problems presented. A list of simple addition problems

was generated. Each of the addends was generated randomly on a computer spreadsheet. A

recording sheet was designed (a copy of this recording sheet is included in the appendix) listing

the problems in the order in which they would be presented. A section was included to record the

actual strategy used, the verbal protocol as well as the time taken to provide an answer.

Some time was spent in getting to know the children before introducing them to the tasks. The

introductory patter involved describing the research and ensuring that they were willing to

participate. Twenty-one problems were presented over three sessions and twelve children two,

from each grade one class, were retained for the main study.

. ~It does not appear that the teachers specifically train grade one pupils to solve simple addition problems
III a multitude ofways. It ~eems that children are. initially taught to use the sum strategy and invent new ways to
solve the problems on theIr own. Therefore, as Slegler and Jenkins (1989) suggest, strategy discovery appears to
largely be a spontaneous process.
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The verbal instructions for each session were as follows:

'1 am going to give you some maths sums and1want you to solve these as fast as you can, but

you must also try very hard to give me the right answer. 1am going to say the sumsfor you one

at a time. Once 1have toldyou the sum then you must tell me the answer. Afteryou have told me

the answer 1will then ask you to tell me how you got your answer. '

'Are you ready to begin? [Answer.] Do you understand what we are going to do? [Respond to

any queries that they may have which may involve repeating the instructions.] The first sum is.... '

After the child has stated the answer, 'How didyou get [answer given by the participant]. ,

Then, 'here is the next one, are you ready? '.

Finally, 'Thank you, you have been a greathelp '.

5.2.5 The Participants

The participants in the study were a selection of first time grade one pupils at a Junior Primary

school in Pietermaritzburg during 1999 who appeared to display intermediate addition problem

solving skills during the pilot study. The participants all turned six between the second half of

1998 orthe first halfof 1999 and the average age ofthe participants was six-and-a-halfyears (6:6)

at the start of the study. The moderate experience hypothesis (Siegler, 1996) suggests that

children are likely to display the greatest variation in terms of strategy use following moderate

experience with the task. Research conducted elsewhere (Siegler & Jenkins, 1989) indicates that
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children in their first year ofschooling are likely to have had moderate experience with single digit

addition. Participants were required to be able to solve at least halfof the problems presented in

the pre-test trials and be willing and able to report how they solved the problems. A further

requirement was that the participants should not employ a retrieval strategy on more than halfof

the problems presented during the pre-test trials. This requirement was included in an attempt to

select moderate addition problem solvers. Since the actual data sampling is an intensive one-on­

one interaction that requires a great deal oftime, a relatively small sample oftwelve children was

selected. Also, since the study involves a very fine and detailed analysis it is sufficient to select a

small sample. The final sample consisted of five boys and seven girls. This sample of children

actively and enthusiastically participated in the research project.

An analysis of any possible gender differences was not included in the scope ofthis study.

However, Hyde, Fennema and Lamon (1990) in a meta-analysis of the arithmetic performance

literature concluded that there are no gender differences in the overall ability. Carr and Jessup

(1997) report that although there are no significant differences in the overall ability between boys

and girls, boys are more likely to use retrieval while girls tend to use the overt strategies. Siegler

(1989a), in a more extensive study, claims that boys and girls were spread equally over his three

categories of'perfectionists', 'good students' and 'not so good students' challenging any claims

ofgender differences in strategy choice.

5.2.6 The Main StUdy

Each child who participated in the study was exposed to the same sequence ofsingle digit addition

problems. The two addends were generated randomly on a computer spreadsheet and a list of

problems was compiled. ':'he children were individually presented with seven problems per
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session, one problem at a time. The problems were presented to the individual participants in one

ofthe offices at the school. The testing patter was standardised and each child was asked to solve

the addition problem, which was presented verbally, as quickly and accurately as possible. The

patter used for the pilot study was used for the first phase of the main study.

The problems were presented to the children individually while at school between 08hOO and

lOhOO. Approximately three children were interviewed in an hour and the data collection took

around twenty hours to complete. However, the data was collected so as to minimise the

disruption to the participant's normal school routine and was therefore collected over a five week

period. Each child was observed during the trials and then asked to explain how they arrived at

their answer. All observations, answers and times were entered onto a record sheet for analysis.

The first phase of the study involved exposing the children to a variety of single digit addition

problems differing in complexity. This phase consisted ofthree sessions where each ofthe twelve

children was interviewed individually. Their answers and the time taken to provide them were

recorded, while the strategy was noted and recorded. Data from this phase will be used to discuss

how well children fit their strategies to the problems.

This was followed by the second phase where the children were required to solve the problems

while engaging with a separate memory task. The children were required to store and attempt to

recall a maximum ofa three-digit number while simultaneously attempting the addition problem.

The children were given the number before being given the problem and were then required to

provide the answer to the problem and state the number. This three-digit sequence was generated

randomly and reduced to either a two-digit or one-digit sequence if child had difficulty with

complying with the task requirements. The problems presented were similar to the ones presented
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during the first phase, although only two sessions ofdata sampling took place. The data obtained

during the second phase was compared to the first phase to determine the impact that the more

memory demanding conditions had on the strategy choice and use.

It proved relatively easy for the child to report whether he or she retrieved the answer or

calculated the answer. The responses were either that they knew the answer or that they counted.

However, the dual task made it very difficult for the child to describe the exact backup strategy

used whenever reporting that the answer was calculated. Therefore, it was decided to keep to the

retrieval - backup strategy dimension. The research question is based on the hypothesis that the

child would resort to retrieval more frequently in order to free up storage space for the dual task.

Hence, a finer analysis of the backup strategy used was not necessary. The backup strategy was

classified according to whether the child executed the strategy in a covert or overt manner (finger

counting), which was not difficult to observe, since the research question suggests a shift from

covert to overt strategy use.

The verbal instructions for this phase were:

'Now we are going to do things a little bit differently. I am going to give you some maths sums

andI want you to solve these asfast asyou can, but you must also try very hard to give me the

right answer - just as we have been doing all along. But, before I give you the sum, I am also

going to giveyou a number to remember. Then, I am going to say the sumsfor you one at a time.

Once I have toldyou the sum thenyou must tell me the answer and then tell me the number that

I askedyou to remember. Afteryou have toldme the answer and the number, I will then askyou

to tell me how you got your answer. Let's try one and see how it goes. '
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'Are you ready to begin? The number that I want you to remember is [three, two or one digit

number presented at one digit per second]. The first sum is.... ' After the child has stated the

answer, 'How did you get [answer given by the participant]. '

Then, 'here is the next one, are you ready? "

Finally, 'Thank you, you have been a great help '.

5.3 Statistical Analysis

The statistical analysis includes both descriptive and inferential statistical techniques. The

relationship between benefit and strategy complexity is considered in the descriptive section. For

this, each of the calculation backup strategies are assigned a conceptual complexity score

according to the number ofconceptual advances associated with them as described in Table 4-A.

These scores are plotted against the average completion time for the strategies and both the linear

and nonlinear regression equations are analysed. The first research questi0n is tested via a

prediction analysis. The critp.ria for the predictions were based on the developmental literature and

specified prior to the analysis. The data collected during the first phase ofthe project is compared

to the data collected during the second phase ofthe project to test the second research question.

5.3.1 Prediction Analysis

A prediction analysis has been used to test the first research question (that suggests that children

will select their strategies to suit the problem encountered). Ifchildren do select their strategies

according to a principle of least effort, then one should be able to predict the likely strategy or
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strategies that the child will use given the addition problem. Prediction analysis is a relatively new

statistical method developed by Hildebrand, Laing and Rosenthal (1977) for the analysis oftabular

data. Froman and Hubert (1980), in a review for the Psychological Bulletin, state that the

prediction analysis method is an appropriate technique for addressing many ofthe hypotheses of

interest to developmental psychologists. They argue that this method allows the analysis ofdata

that was previously wasted or underutilised. Since the method does not require the assumption

that the data is independent (a difficulty associated with the ~ and many other common

techniques) data collected over time can be analysed. The data is presented in the form ofa two-

way table, with rows equal to R, columns equal to C, and the researcher then specifies the set of

cells that she or he believes will contain the observed data (hits), the remainder being misses.

Hildebrand et al. present a measure ofprediction success, the delta value, which is defined as:

'\1= 1 -

L LwooP,P.
1 J tr'" 1. .J

The population probability for any event is represented by Pij,while the unconditional probabilities

are represented by Pi. and P,j (marginal probabilities). An error measure, wij, is assigned to each

cell. If the prediction identifies the cell as a success, or hit, then, the error measure is 0, while if

the cell represents a miss, the error value has been set as 1. The numerator represents the

observed errors while the denominator· represents the expected errors. Therefore, '\1 = 1 _

(observed errors / expected errors). The delta value represents the proportionate reduction in

error. Hildebrand et al. (1977) further claim that the correlation coefficientR2 is also an indication

of the proportionate reduction of error, suggesting that the two measures can be directly

compared.
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A related measure, U, refers to the precision with which the predicted outcome can be located on

the dependent variable (Hildebrand et al., 1977, p.26). A prediction that specifies a unique state

is more precise than a prediction that specifies that the observation will lie in one a number of

states. For example, the prediction that states that children will retrieve the answer to a given

problem is more precise than the prediction that states that children will either retrieve the answer

or reverse the order of the addends and count on. Therefore, when one compares two V values,

it is important to consider the precision ofthe predictions. One should also consider the scientific

plausibility of the prediction as measured by whether a "story goes with it"(Hildebrand et al.,

p.205).

The delta measure, the precision and the statistical significance of delta were calculated using

computer software recently produced by Alexander von Eye (personal communication, August

14,2000), one ofthe leading developers ofthis statistical technique. Although the delta value can

be calculated relatively easily on a computer spreadsheet, von Eye's programme offers a number

ofother measures that are not as easily calculated, particularly the statistical significance, saving

a great deal of time.

According to Froman and Hubert (1980), prediction analysis possesses desirable statistical

properties. The method has been developed to manage the cross-classification data that is often

collected in developmental research. Moreover, this statistical technique is an appropriate method

for analysing ordinal data. Froman and Hubert (p.13 7) predicted that this technique would become

"a major addition to the inference techniques routinely applied in developmental data analysis".

Despite this, the technique does not yet appear to be a well known method of analysis.
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5.3.2 Test for Proportions based on the Normal Approximation.

The data in the present study has been collected under two different conditions; initially without

any additional cognitive load and then with the additional requirement ofstoring and reproducing

either a three, two or single digit number. The hypothesis is that the children will resort to greater

.use ofretrieval otherwise they will solve the problems in a covert manner. The proportions of

retrieval and then the proportions of overt backup strategy use both with and then without the

additional memory task were compared to determine ifthe difference in proportions is significant.

According to Clarke and Cooke (1983), ifone has a sufficiently large sample ofobservations, the

binomial variable will follow the normal distribution. Although this is an approximation, it is an

adequate one, particularly when n is large. Using this method, one can calculate the confidence

intervals of the probability that the proportions differ. A two-tailed test is used, although one

could argue that a one-tailed test is sufficient, to determine ifthe proportions compared deviate

in either direction.

5.3.3 Linear and Nonlinear Regression Analysis

A scatter plot of the relationship between conceptual complexity, scaled as one conceptual

advance equals one unit (see Section 4.1.2 and particularly Figure 4-A), and average completion

time (benefit) is used to search for a relationship between these variables. An attempt is made to

fit a curve to the scatterplot using both linear and nonlinear bivariate regression techniques as

implemented in GraphPad rrism software. The software automatically fits the best curve to the

data entered. Other curves and lines can be fitted and compared to the reported results.
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5.3.4 Coding

Siegler and Jenkins (1989) describe the strategies that they observed in their study. However, they

do not explicitly make the distinction, for example, between use of the min strategy where the

order of the addends is reversed and where it is not (i.e. when the first addend is the larger and

the child counts on from the first addend by the number indicated by the second addend). In the

latter case, one is not certain whether the strategy should be classified as the count-from-first

strategy or the min strategy. The distinction between cases where the child reverses the order to

counts on from the larger addend by the number indicated by the smaller addend and cases where

she does not has been made in this thesis. For the purposes ofthis study the strategies were coded

as follows:

1. Retrieval;

2. Mill, order reversed;

3. Min, order not reversed (count from first);

4. Count from first, the order is not reversed and the first addend is smaller than the

second addend;

5. Count from second, the order is reversed and the second addend is smaller than the

first;

6. Sum;

7. Shortcut sum;

8. Finger recognition (this is not the same as finger counting, which is a strategy aid

rather than a strategy);

9. Decomposition; and,

10. Guessing.
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Each of the strategies was also coded according to whether it was executed in a covert (coded

a) or overt (coded b) manner. Overt was defined as the observed use, no matter how subtly, of

fingers to aid the counting process. For example, a strategy where the child reverses the order of

the addends to count on from the larger addend and uses her fingers to aid her counting would

be coded as an example ofstrategy 2b.

5.4 Observer Agreement Reliability

A selection of the verbal protocols (n=50) were presented for categorisation to an independent

judge to determine the reliability ofthe ratings. A Cohen' s Kappa value, K, of0.90 was obtained,

which suggests that the strategies were reliably identified. Landis and Koch (1977 as cited in

Everitt, 1996) have provided some arbitrary benchmarks for the evaluation ofK. A Value of0.90

falls in the perfect range (0.81-1.00) of observer agreement. Most of the difference that existed

between the raters were easily resolved after the comparison was made. Some examples of the

verbal protocols include the following: "Put six in my head then thinked two more" for the

problem 6+2, indicating the use of the count from first strategy; "counted seven then four in my

head" for the problem 7+4, indicating the use of the shortcut sum strategy; "just knew it"

suggesting that the child had retrieved the answer; and "seven plus one equals eight then counted

another three" for the problem 4+7 indicating that the child had used the min strategy.

5.5 Summary

The methodology is based on the microgenetic approach which, essentially involves an extensive

trial-by-trial analysis of the strategies that a small sample of children employ to solve a limited
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sample ofsimple addition problems. This type ofmicro-analysis necessitates a small sample size,

and the results can not necessarily be claimed to represent all children's thinking. Thus, the

findings will be need to be treated with caution. The design does pose some statistical difficulties,

but these are alleviated by the use a relatively new technique, prediction analysis, which is not yet

a well known statistical measure, and a test ofproportions based on the normal approximation,

along with the various descriptive methods. The statistical analysis is the focus ofthe next chapter.
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CHAPTER SIX

RESULTS

The results ofthe study should be considered as the starting point ofthe discussion that follows.

Since the present thesis employs a exploratory design, the results are, at times, the source of

further hypotheses, which will hopefully be considered in future research projects.

6.1 The Descriptive Statistics

6.1.1 Individual Participant Performance

Table 6-A summarises each child's performance. Each ofthe participants employed only three or

four of the possible addition strategies, which suggests that there may be some constraint on the

number ofstrategies that are chosen. The degree ofvariation, in terms ofthe number ofdifferent

strategies used, does not appear to be closely related to performance (r = 0.26). The use ofcovert

strategies, however, is negatively correlated (r = - 0.46) to performance. Thus, children who used

retrieval and the overt backup strategies tended to perform better than those who resorted to the

covert strategies. This fits Siegler's description of the 'perfectionist' student.
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Table 6-A. Summary of each child's performance

I_ri••••
A 4 8.13s 85.7% 10.0% 25.0% 65.0%

B 3 2.96s 95.2% 19.0% 76.2% 4.8%

C 4 3.59s 81.0% 30.0% 70.0% 0.0%

D 3 3.02s 95.2% 28.6% 38.1% 33.3%

E 3 4.15s 47.6% 25.0% 75.0% 0.0%

F 4 4.39s 95.2% 42.1% 36.8% 21.1%

G 4 6.03s 100% 33.3% 28.6% 38.1%

H 3 5.63s 100% 23.8% 28.6% 47.6%

I 3 4.43s 81.0% 21.1% 42.1% 36.8%

J 4 4.59s 95.2% 4.8% 85.7% 9.5%

K 3 2.73s 71.4% 9.5% 71.5% 19.0%

L 3 5.69s 95.2% 75.0% 10.0% 15.0%

6.1.2 Descriptive Statistics for the Strategies Observed

Table 6-B summarises the use of the different strategies. Although the use of decomposition

(strategy 9) always resulted in the correct answer, it was only used 4 times. Thus, the descriptive

statistics for the decomposition strategy were extracted from a very small sample. The count on

strategy includes strategy 3 (count on from the first addend when they should) which was utilized

70 times (30.4%) and strategy 4 (count on from the first addend even though reversing the order

of the addends would be more economical) which was utilized 17 times (7.4%).
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Table 6-B. Summary for each strategy

•
•
•
•

96.8%

(n = 63)

2.00s

1.47s

27.4%

93.1%

(n=58)

4.63s

3.84s

25.2%

86.2%

(n=87)

5.03s

3.47s

37.8%

81.3%

(n=J6)

8.80s

4.84s

7.0%

100%

(n=4)

3.59s

1.61s

1.7%

* This summary does not include one case where the child reports that she guessed (strategy 10) and one case

where the child reversed the order ofthe addends to count on from the smaller by the larger (strategy 5).

If one arbitrarily defines the conceptual complexity of each of the strategies as the number of

conceptual advances associated with each of the calculation strategies described by Table 4-A,

then we can establish a complexity index for each of the strategies as follows:

Table 6""C. Conceptual complexity and average time

Therefore, according to Table 6-C, the shortcut sum strategy is assigned the value of 1, the count

from first strategy the value of2, the min strategy the value 3, and the decomposition strategies
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the value 5. The decomposition is assigned a value of 5 because two additional conceptual

advances separate this strategy from the min strategy.

This complexity index can now be used as one of the scales in a scatterplot where strategy

complexity is plotted against the average time for each of the strategies. This plot, Figure 6-A,

gives an indication of the benefits associated with discovering the more advanced strategies, and

thus reveals something about how the principle of least effort drives strategy acquisition. This

graph is based on the assumption that each conceptual increment is equal, which may not

necessarily be the case. However, the graph does provide a general indication ofthe relationship

between complexity and completion time in the slope and the curve revealed in the graph. Thus,

the exercise is a useful one, but the results must be treated with caution.

Conceptual Complexity vs
Average Time

10.0
• Legend

.......... :, ..

f/)- 7.5Cl)

E
i=
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'-
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> 2.5«

0.0
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Conceptual Complexity

Figure 6-A. Conceptual complexity vs average time

Figure 6-A describes the relationship between conceptual complexity and the average time taken

to execute each of the calculation backup strategies. The estimated linear regression line is:
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y = -1.136x + 8.636,

while the goodness of fit fer the linear equation is given by r = 0.7274. Given that both Siegler

(1996) and Halford (1987) indicate that the strategies are discovered a sequence of increasing

complexity, the negative slope of the line indicates the overall benefit of developing more

conceptually advanced strategies.

The estimated nonlinear regression is given by the equation:

y = 16.88e-1.218x + 3.776,

which indicates that the benefit ofchanging strategy in the early stages is greater than the benefit

ofchanging strategies in the later stages. The goodness offit is given by R2 = 0.9823. The graph

is described an exponential decay equation suggesting that the returns (in the form of speed)

associated with the conceptual advances diminish as complexity increases. This suggests that there

is more benefit in terms of time saved for early advances than for later advances - a finding that

makes sense ifwe consider that strategies like decomposition also involve additional manipulation

and insight into the structure of the numbers. Later strategies like decomposition perhaps help

pave the way for later arithmetic skills such as multiplication rather than simply conferring a great

deal of extra speed in addition.

The correlation coefficient between conceptual complexity and average time is -0.85. Therefore,

conceptual complexity, as it has been defined for the present study, accounts for 73% of the

variance. It would be interesting to determine if conceptual complexity accounts for the same

degree of variance in the other arithmetic domains.
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6.1.3 Correlations between various Problem Indices and Latency

Table 6-D reports correlations between problem indices and latency. From the results presented

in this table it seems that it is possible to correctly identify the different strategies. One would

expect the min strategy to be correlated with the first addend (which would be the larger of the

two) because the strategy involves counting out the first addend. Similarly, one would expect the

count on strategy to be correlated with the second addend. The shortcut sum strategy should he

correlated with the sum because the child begins counting at one and ends at the number

representing the combined addends. Retrieval does not involve any counting and therefore should

not necessarily be significantly correlated to either of the addends or the sum.

Squaring the sum improves the correlation coefficient for the strategies where time is expected

to be best correlated to the size of the problem. This indicates that the sum squared is a better

measure of problem size than the sum, suggesting that children solve small problems

disproportionately faster than the larger ones.

Table 6-D. Correlations between various problem indices and latency

.1iIt•••
Sum 0.25 0.49 0.26 0.60

Sum squared

1st addend

2nd addend

0.29

0.17

0.08

0.53

0.70

0.15
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6.2 The Inferential Statistics

6.2.1 Prediction Analysis

Ifchildren tend towards selecting their strategies to fit the problem encountered, then one should

be able to predict the strategy that is likely to be used when given the actual problem. Hildebrand

et al. 's (1977) method provides a means ofevaluating the predictions. However, given the extent

ofthe cognitive variation that is said to occur, one would not expect a perfect fit. The predictions

are as follows:

6.2. 1. 1 First prediction

Retrieval when the sum of the two addends is less than or equal to 7. Siegler (1996) states that

children ofthis age will sometimes retrieve the answers for small problems. However, he does not

offer an exact definition ofa small addition problem. Benford's law (described byRobert Mathews

(1999) in the New Scientist) suggests that smaller numbers are more likely to be encountered than

larger ones and, therefore, children will obtain more exposure to smaller numbers. This greater

exposure means that children are more likely to retrieve the answers to problems comprised of

small addends.

6.2. 1.2 Second prediction

Order reversal when the first addend is less than the second addend. Groen and Parkman (1972)

and Ashcraft (1982) claim that children at this age will always count on from the larger addend.

Siegler and Jenkins (1989) reject this and demonstrate that the min strategy is used along with a
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number of other strategies. Therefore, the literature does indicate that children will employ this

strategy, particularly for problems where there is a large difference between the two addends.

6.2. 1.3 Third prediction

Count on from the first strategy when the first addend is greater than or equal to the second

addend minus one. It is likely that reversing the order of the strategies makes some additional

memory demands. Ifthe first addend is one less than the second addend either ofthe min strategy

(reversal) or the count from first strategy will be selected.

6.2.1.4 Fourth prediction

Retrieval when the two addends are equal (tie problems). This prediction is based on an exception

to the problem size effect. Theproblem size effect is the most widely reported phenomenon in the

mental arithmetic literature and refers to the observation that reaction times tend to be greater for

larger arithmetic facts (Ashcraft, 1992). Tie problems, however, are not consistent with the size

effect. Problems such as 7+7 are processed far more rapidly and accurately than their size would

suggest (Ashcraft, 1992). More recently, researchers have suggested that the problem size effect

is a misnomer (Ashcraft, 1992; Siegler, 1996). The reported relationship between problem size

and response time exists only because size is related to problem difficulty. Tie problems do not

fit the problem size prediction because they are easy problems to solve.
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Table 6-E. Prediction analysis for the least effort hypothesis

11

12

10

2

5

3

5

63

7

8

6

3

7
.......................:.:.... : ".:

7

59

8

3

2

87 16 4

12

12

11

11

11

10

8

8

11

11

11

11

12

12

12

9

12

11

229

The shaded cells in Table 6-E represent the obsenJed errors. The obsenJed errors total 45 while

the expected errors total 122.23. The total number of observations is 229. The value of the

prediction analysis, \1, is 0.632 and the precision, U, is 0.534. Therefore, the model reduces the

observed errors by slightly more than 63% when compared to an expected frequency distribution.

The result is a significant one (2 = 10.231, the critical value at the 5% level is 1.645) and the

hypothesis is strongly supported. Since this is a modelling technique, it would be useful to
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compare this to any other existing models. Groen and Parkman's (1972) min model, which states

that the first grade child will always count on the larger addend by the number indicated by the

smaller addend is a useful model for comparison and is reported in Table 6-F.

Table 6-F. Prediction analysis for the min model of strategy choice

11

12

12

12

11

11

11

10

8

8

11

11

11

5 11

9 12

0 12

12

9

12

11

63 59 87 229

The shaded cells in Table 6-F represent the observederrors. The total number of observations is

229. The value of the prediction analysis, '\1, is 0.326 and the precision, D, is 0.661.The result is
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also significant (Z= 6.899, the critical value at the 5% level is 1.645). Thus, Groen and Parkman's

(1972) model, although slightly more precise than the least effort model, sees an error reduction

of less than 35%. Therefore, the hypothesis that children select their strategies according to a

principle ofleast effort results in fewer errors (V = 0.632) than the min model of strategy choice

(V = 0.326). Also, the model that involves the adaptive selections is more 'scientifically plausible'

than the min model, since much evidence has been collected to suggest that first grade children

use multiple strategies and not only the min strategy. Therefore, since the Vvalue is an indication

ofhow well the table fits the mode, one can conclude that the least effort hypothesis results in a

far better fit of the data collected than the min model does.

Table 6-G. Evaluation of each of the predictions / partial hypotheses

Retrieval 0.593 29 - First prediction 13 - First prediction

(1 & 4) 21 - Fourth prediction 3 - Fourth prediction

Reversal (2)

Count on (3)

0.969

0.713

58

76

1

11

Table 6-G presents the partial delta values for each ofthe three strategies in order to evaluate the

individual predictions. For retrieval V = 0.593, for the reversal strategy V = 0.969 and for the

count on strategy V = 0.713. Thus, if we rank the predictions, they were most successful in

identifYing when the min strategy would be employed, a little less successful in identifYing when

the count from first strategy would be employed and least successful in identifying when retrieval

would be employed. The re~rieval strategy involved two predictions: The first being that children

will retrieve the answers to small problems (ifthey do not employ a backup strategy instead); and

that children will retrieve the answers to tie problems. The first prediction obtained 29 hits and 13
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errors, while the tie problem prediction obtained 21 hits and only 3 errors. The prediction

indicating that children will retrieve the answers to problems that are less than or equal to seven

in problem size is the least effective of the predictions in reducing the error rate. The following

chapter will consider where the model fits the data well and where it does not.

Finally, it is important to consider an alternative hypothesis, one that states that the previous

strategy used is the best predictor of the subsequent strategy choice. It is already clear that this

is not the only process involved, otherwise the success of the predictions reported above would

not be expected. However, the most recently used strategy is likely to have some influence over

subsequent strategy selections. This would be consistent with the various associative memory

models discussed in Chapter Three and with much ofthe Cognitive Science literature in general.

To investigate the hypothesis, the correlation between subsequent pairs of strategy choices is

reported. This correlation is 0.37, which indicates that the previous strategy choice accounts for

13.9% of the variance. Therefore, since R2 and V can be compared, it is reasonable to conclude

that the least effort model appears to be a better fit of the data collected when compared to the

idea that children's selections are governed by their most recently used strategy. However, the

least effort model is probably strengthened if this recency effect is incorporated. Moreover, this

recency effect fits the least effort hypothesis to some extent, because using an already activated

strategy saves the effort offinding another. Therefore, the recency effect is not a surprising result

and does not necessarily undermine the least effort hypothesis.
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6.2.2 Test for Proportions based on the Normal Approximation

The second research question is tested by comparing the trials that where collected under normal

conditions with those collected under conditions ofcognitive stress. The backup strategies, under

both condition, were categorised according to how they were executed (covert versus overt). The

hypothesis proposed that under the loaded conditions children will tend to use retrieval more

frequently, or execute the backup strategy in a covert manner.

6.2.2.1 The proportions of retrieval and backup strategy use

Table 6-H. Test for retrieval and backup strategy proportions

Retrieval 63 38

Backup 173

236

117

155

Table 6-H presents the frequency of retrieval and backup strategy use for both the normal and

loaded conditions. The proportions of retrieval and backup strategy use is tested as follows:

NIl: 1tA =1tB =1t(estimate); AH: 1tA is not equal to 1tB. A two tailed test resulted in Z = 0.481. The

critical range for Z is -1.96 to 1.96 at the 5% significance level. Thus, there is no evidence to

reject the null hypothesis. The loaded trials do not appear to influence the frequency ofretrieval

use.
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6.2.2.2 The proportions of overt and covert backup strategy use

Table 6-1. Test for overt and covert backup strategy proportions

Covert 114 35

Overt 59

236

82

155

Table 6-H presents the frequency ofcovert and overt backup strategy use for both the normal and

loaded conditions. The proportions of covert and overt backup strategy use is tested as follows:

NH: 1tA =1t
B
=1t(estimate); AH: 1tA is not equal to 1tB• A two tailed test resulted in Z = 5.123. The

critical range is -1.96 to 1.96 at the 5% significance level. The result is therefore significant and

the null hypothesis is rejected. The loaded trials affect whether strategies are executed in a covert

or overt manner. Children will be more likely to execute their strategies in an overt manner.

6.2.2.3 Odds ratios

Table 6-J. Odds ratios

Retrieval 0.27 0.25

Covert Backup

Overt Backup

0.47

0.25

0.23

0.53

Table 6-J presents the odds ratios to summarise the proportions of retrieval and overt backup

strategy use for each of the two conditions. The child is 2.08 times more likely to use an overt
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strategy in the trials where additional cognitive requirements are made, which is a statistically

significant result. Children are 1.09 times more likely to use retrieval on the normal trials, which,

as noted, is not a significant difference.

6.3 Summary

The results support the hypothesis that children select their strategies to suit the problem. They

reverse the order of the addends when there is some advantage to doing so. Children count on

from the larger addend (usually) by the number indicated by the smaller addend. They retrieve the

answers to small problems. The results only partially support the hypothesis that under cognitively

demanding situations childcen will resort to a fast strategy (retrieval) or a strategy aid (finger

counting). While children .do employ the finger aid counting when executing strategies in

demanding conditions more frequently than usual, the same is not true for the strategy ofretrieval.
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CHAPTER SEVEN

DISCUSSION

This chapter reviews the results presented in chapter six in more detail. These results are

addressed in a step-by-step fashion in line with the exploratory nature ofthe design. Each ofthe

research questions is then addressed before turning to the general discussion. This includes some

discussion on how and why children develop such an extensive repertoire of addition strategies

before considering the issue ofhow well the present study supports Siegler's general theory. The

implications ofthis study for educational practice as well as for future research is considered.

7.1 Review of the Descriptive Results

7.1.1 Individual Participant Performance

Table 6-A reveals that each of the children in the present study employed either three or four

strategies. Considering the list ofpossibilities, this suggests that there may be some constraint on

the number ofdifferent strategies that the child is able to use. The sample size oftwelve children

is very small and one cannot be very confident that this pattern is not simply a consequence of

chance.

However, if this observation is accurate, then there are at least two different explanations. The

first is that some strategies may simply be so superior to others that, after they are discovered, the

others are rendered obsolete. One would then expect, once children have discovered these

superior strategies, that they would all tend to use the same three or four strategies. This is partly
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supported by the observation that three of the strategies, all relatively sophisticated strategies,

account for 83% of all strategy use.

It is possible, given the various memory limitation models ofcognitive development, that there is

a structurally imposed limit to the number ofstrategies that are simultaneously activated. In other

words, the child may only be able to hold a few of the possible strategies available to immediate

access. Children need to hold the strategy procedure and the details ofthe problem given in their

limited working space. This explanation fits Halford's (1987) argument that processing capacity

is a function of primary memory capacity, which is defined as memory for currently active

information. Perhaps the primary memory capacity ofthese children is only sufficient to hold the

problem details and three or four strategies available. Halford claims that primary memory

increases with age and that this is what propels cognitive development.

The most significant predictor of performance appears to be the use of covert strategies. The

degree ofcovert strategyuse is negatively correlated to performance (measured as the percentage

correct). Therefore, the use ofretrieval and overt strategies is associated with better performance.

This fits Siegler's classifications of 'perfectionist' and 'good-students'. 'Perfectionists' tend to

mainly employ overt strategies, since these could be described as the safer options, while 'good­

students' employ the strategies ofretrieval along with the overt strategies. 'Not-so-good-students'

typically resort to the covert strategies and retrieval at a lower confidence threshold, both ofwhich

are more susceptible to mistakes. Therefore, some support is offered to Siegler's categories,

however, a more extensive evaluation would require a larger sample.

An interesting result concerning the notion ofvariability is that the number ofdifferent strategies

used does not appear to be related to current performance. This, however, does not necessarily
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mean that the degree ofvariation is not related to future performance. We shall return to the issue

ofvariation shortly.

7.1.2 Descriptive Statistics for the Strategies Observed

Table 6-B lists the descript:ve statistics for each category ofstrategy and indicates that the more

advanced strategies (retrieval, min and decomposition) tend to produce answers with greater

speed and accuracy than the less advanced strategies (shortcut sum and count from first). Retrieval

was both the fastest and most accurate of all the strategies (if one excludes the decomposition

strategy which was only used 4 times at 100% accuracy, but at a higher average latency). The

ability to reverse the order of the addends to count on from the larger of the two addends is

associated with better speed and accuracy than not reversing the order of the addends and

counting on from the first addend. The most primitive of the strategies used (excluding the

strategy of guessing) was the shortcut sum strategy which resulted in the slowest and least

accurate records ofall the calculation strategies used. Therefore, the use ofthe more conceptually

sophisticated strategies appear to be associated with better performance in terms of both speed

and accuracy.

There are at least two different explanations for this. First, if the discovery of new strategies is a

function of experience, then the first graders who use the more advanced strategies are likely to

be more experienced addition problem solvers and, therefore, more proficient. Similarly, a second

explanation is that certain strategies may be more efficient than others and the use_of these

strategies results in better performance regardless ofexperience. For example, since the shortcut

sum strategy involves more counting then the count from first strategy (which in turn involves

more counting than the min strategy) it is more likely that the child will make a mistake using the
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shortcut sum strategy and take a longer time to arrive at the answer than if she used one of the

more advanced strategies. Retrieval does not involve any counting and is the fastest and most

accurate ofthe strategies used in this study. (presumably, the accuracy ofretrieval will depend on

the child's internal confidence threshold - see the discussion in Chapter Three.) Therefore, having

discovered the more economical strategies the child is able to solve simple addition problems more

accurately and faster than before.

The latter explanation suggests that if one can teach the 'not-so-good student' to use more

advanced strategies then their overall performance should improve, since performance may be

related to the actual strategies that the child is able to use. However, many researchers suggest

that strategies are a product of the child's conceptual knowledge (for example, Halford, 1987)

and, therefore, using an ad\ anced strategy without the conceptual foundation would be a process

oflearning without understanding. These strategies would probably be used inappropriately and
. ''X

are less likely to be generalised to other situations. Strategies may assist advances in understanding

but perhaps only if the strategies are understood.

The ranking ofthe average latencies for the various backup strategies is consistent with Table 4-A,

that lists the strategies in order ofincreasing complexity and decreasing completion times. Tables

4-A and 6-B both depict the order ofdecreasing completion times as follows: shortcut sum, count

from first, min and decomposition. Therefore, this together with the sequence of strategy

discovery discussed below, offers some support for Halford's (1987) structure-mapping theory.

Figure 6-A describes the relationship between the conceptual advances and average latency

(Objective 5.1.1.6). These conceptual advances offer the benefit ofdecreased completion times.

The linear regression line indicates the overall benefit of developing strategies of greater
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conceptual complexity, while the nonlinear regression (curve) depicts the additional advantage of

the early strategy advances. This suggests that strategies such as decomposition involve additional

manipulation and insight into the structure ofthe numbers requiring greater time. Decomposition

is the most advanced ofthe strategies developed and may be the most recently acquired strategy

for the children who used it. Therefore, these children may not have had sufficient practice using

the strategy and are not yet able to derive the full benefit from using it. Thus, at a more advanced

stage of development, the relationship between complexity and average time may be better

represented by a linear equation with a negative slope. Decomposition may also be a strategy that

provides a foundation for later advances in arithmetic, such as multiplication, so the benefit does

not only involve decreased solution times.

The graph described by Figure 6-A suggests that the discovery of new strategies fits the notion

of least effort since the additional conceptual requirements result in increased benefit. The

nonlinear regression, however, suggests that the benefit associated with additional strategies

appears to tend towards a limit. This may be the point where new arithmetic operations are

introduced to begin the process all over again.

As mentioned, of all the possibilities available only three strategies accounted for 83% of all

strategy use. The strategies ofretrieval, min (with reversal) and counting on from the first addend

when the first addend is larger than the second were the three strategies favoured by the sample

offirst grade students. This is not really the pattern that one would expect given how Siegler has

emphasised the notion ofvariability, or, alternatively, this suggests that cognitive variability occurs

within limits.
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7.1.3 Correlations between various Problem Indices and Latency

The results in Table 6-D generally support Siegler's microgenetic methodology in that it appears

that the strategies were correctly identified (this may have been better ifadvanced recording and

timing technology had been employed as Siegler suggests). For the strategies that involve

counting, the latency (defined as the time taken to produce an answer) should be correlated with

the amount of counting involved. According to Sternberg (1969, cited in Groen and Resnick,

1977), in the case where a mental process can be decomposed into a number of identical steps

then the reaction time should be a linear function of the number of steps involved. For example,

the shortcut sum strategy involves counting from one through to the total of the two addends.

Therefore, the time taken to solve the problem should be best correlated the number of 'counts'

which is indicated by the size of the sum. Similarly, for the min strategy (with reversal), latency

should be best correlated with the size of the smaller addend, while for the count from first

strategy, latency should be best correlated with the size of the first addend. If these patterns are

not observed, then it seems unlikely that the strategies have been correctly identified.

The correlation scores calculated for the different strategies, for the most part, support the above

expectations. However, an interesting deviation from this pattern is that the sum squared and

latency resulted in a slightly higher correlation score than the correlation between sum and latency

for the strategies where one would expect the size of the problem to be the best predictor of

solution times. These results are consistent with other studies (for example, Siegler, 1996) that

suggests that children are able to solve small addition problems disproportionately faster than

larger ones. The relationship between size and latency appears to be curvilinear.

Obviously one would expect the child to solve smaller problems faster than larger ones since less
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processing is involved. Latency must be related to the amount of processing involved in solving

any given addition problem. However, these small problems are solved even faster than one would

expect given their size. This suggests that it is not simply the amount of processing that

differentiates large problenls from small ones, but also the nature of the processing. If we think

of the processing involved in calculating the answer to a backup strategy as a step-by-step

counting procedure, then it is difficult to understand why each step is slower when there are more

steps involved assuming that the actual steps are not different.

Benford's law states that in natural contexts smaller numbers occur more frequently than larger

ones (Mathews, 1999). The proportion ofnumbers beginning with the digit D is given by Loglo

(1 + lID). Numbers beginning with the digit 1 occur in about 30% of cases, 2 in 18%, 3 in 12%,

4 in 9% and so on, with the proportion decreasing with larger numbers. One would intuitively

expect that each number would be associated with a probability of0.1, however, the distribution

favours smaller numbers. Therefore, children are likely to gain more exposure with smaller

numbers than they are with larger ones and, thus, be more proficient in solving them. This means

that the association between problems and answers are stronger for smaller problems than they

are for larger ones. According to Siegler's (1987, 1989a) distributions ofassociations model, the

association between an addition problem and the candidate answers determines if the answer is

retrieved or calculated l
. This association may also impact on the time taken to decide between

retrieval and calculation, increasing or decreasing the time taken for either process. This implies

that since children are more familiar with smaller problems, they require less time to decide

between retrieval or calculation.

. lSchunn, Reder, Nhouyvanisvong, Richards and Stroffolino, 1997 argue that the decision to retrieve an
a~swer IS ?ased on the problem familiarity and not the accessibility of the answer. The same line of reasoning
diSCUSsed 10 above can be applied to either model.
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Dehaene (1997) argues that our mental number line represents numbers with decreasing accuracy.

This number line becomes increasingly compressed. The larger the quantity, the less likely we are

to express it precisely. Dehaene suggests that there is a universal decrease of number word

frequency with number size. Apparently, we express small numbers more frequently than larger

ones because our mental number line represents the larger ones with decreasing accuracy. Round

numbers are the exception to this rule. The frequency ofnumbers such as 10, 12, 15,20 and 100

are elevated compared to their neighbours. For example, the number 9, according to Dehaene,

represents the exact quantity while the number 10 may include any quantity between 5 and 15.

Therefore, it becomes more difficult to accurately navigate the line as the numbers increase. Thus,

mental arithmetic involving small numbers is easier to process, but as the numbers get larger the

processing is impeded by the compression of the mental number line.

A third factor that may be responsible for the curvilinear relationship between problem size and

latency is offered by those who describe an innate number ability. Human infants and animals,

according to the argument put forward by Dehaene (1997), Butterworth (1999) and Devlin

(2000b), are able to perceive very small quantities without counting. This suggest that the answers

to small problems are subsitized rather than retrieved. Subsitization may be a different process to

reading the answer offan internal memory table and, therefore, occur disproportionately faster the

process of retrieving the answer. In other words, the curvilinear relationship observed between

latency and the size ofthe answer for retrieval may be explained as the consequence ofassigning

one label (retrieval) to two different strategies.
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7.2 Review of the Inferential Results

7.2.1 Prediction An~lysis

The results of the prediction analysis presented, which are used to consider the first research

question, indicate that grade one children do attempt to select their strategies economically. In

other words, grade one children employ a principle of least effort in the use of simple addition

strategies. However, even though the model resulted in a significant reduction in the error, the

selections are not always optimal. It is possible that children sacrifice a degree oftheir short-term

optimality for long-term gains. Marian Stamp Dawkins (1986) discusses the link between short­

term and long-term optimality, suggesting that behaviour may be optimal in the long-term sense

if there is a compromise between short-term and long-term goals. Perhaps the child establishes

some sort ofcompromise between optimal strategy selections and variability. Variability, in this

sense, assists the longer-term goal oflearning, but, to an extent, sacrifices the short-term goal of

always producing the most accurate answer with the least amount ofeffort. Variability provides

children with a broader spectrum ofproblem solving methods, which would assist them to adapt

to new types ofproblems. Also, variability prevents stagnation. It is the variability ofstrategy use

that enables children to approach optimal strategy selection in the first place. Therefore, one can

conclude that children strive towards optimal strategy selections, but this is partially foiled by the

variability ofhuman action, which has long-term benefits.

The results also indicate that a recency effect is involved in the selection ofstrategies. Ifthe child

has narrowed the selection of strategies for a given problem to two options, then the most likely

strategy will possibly be the one most recently used. Also, the recency effect fits the least effort

hypothesis to some extent, since selecting the most recently used strategy saves the effort of
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finding an alternative one.

The selection of strategies, however, may be limited by children's procedural skills and their

conceptual understanding, thereby restricting the choices that they are able to make. For example,

ifchildren are not sufficiently competent with the best backup strategy for the problem presented,

they are likely to resort to the next best one. In other words, it seems likely that children would

attempt to select the fastest strategy that they can execute successfully.

The support for the model 1S a whole suggests that the way grade one children approach simple

addition tasks does not display the degree ofvariability that one would expect given the emphasis

that has been placed on this particular observation. Siegler's overlapping wave model, however,

would accommodate this pattern. According to this model, the variability would be determined

by the number of closely competing waves at any point in time. At this stage in the individual

children's development, their choices may be limited to the more advanced addition problem

solving procedures, since these may be the only waves at their current position on the

developmental continuum. The variation observed in the present study was often between the

leading two and sometimes three strategies for any given problem. For example, the child may

alternate between retrieval or the min strategy on a problem where both of these strategies are

appropriate and, therefore, were predicted.

One could propose that the degree of variation decreases as the analysis becomes finer. If we

examine all of the problems as a whole that were presented to the children then there is much

variability in terms of how these problems were solved. However, ifwe examine each individual

problem then the extent ofthe variation is much less. While this variation is certainly a feature of

how children solve these types of problem, there is clearly a limit to the extent of this variation.
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The patterns of strategy choice are not random, but appear to be restricted to the few best

strategies for any given problem.

Before addressing each ofthe predictions it is important to note that there were 16 instances were

a child employed the shortcut sum strategy, none of which were predicted. This child was the

weakest of the participants and the use of the shortcut sum strategy suggests that she was

somewhat behind the other participants in terms ofher addition strategy development. Also, there

where four cases were children employed various decomposition strategies, also not predicted.

However, as noted, the predictions resulted in a proportionate reduction of the expected errors

by 63% suggesting a relatively good fit.

7.2.1.1 First prediction

The prediction that children will tend to retrieve the answers to problems with a sum less than or

equal to seven is only parti...lly supported. The difficulty in predicting when the child retrieves an

answer occurs because it is likely that there is a great deal ofvariation amongst different children

in terms of which and how many of the possible answers they are able to retrieve. Retrieval is

possibly related to the amount of exposure that the child has with addition problems and,

therefore, reflect individual differences. Thus, children with greater exposure will tend to display

the broader range ofsimple addition problems that they can solve with retrieval. Also, as discussed

in Chapter Three, the ability to accurately retrieve answers is related to how accurately children

execute the different backup strategies. The child that is able to execute backup strategies

accurately is also able to build a distribution of peaked associations and, therefore, retrieve

answers with greater confidence (Siegler, 1990). Also, the internal confidence threshold

apparently varies from child to child which affects the range ofproblems that they are able to solve
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using retrieval.

To get an indication ofwhere, and perhaps why, predictions are not well supported one needs to

examine the error cells. This analysis will be limited to the cells with two or more errors. Three

children reported that they retrieved the answer to the problem 10+3, which was not predicted.

It is possible, however, that the strategy used was some type of fast notational strategy. Any

number less than 10, say x, added to 10 equals a two digit number of the form Ix. Perhaps these

problems are similar to the tie problems that are easy to solve and, therefore, more likely to be

retrieved. Two children reported that they retrieved the answer to the problem 2+7, while three

reported retrieving the answer to the problem 6+2, neither ofwhich were predicted. This indicates

that some children will retrieve the answers to problems that are larger than a sum of seven.

However, it is interesting that both of these cells are associated with problems that have answers

of either 8 or 9 and are not much larger than 7. Possibly the retrieval prediction should be

reformulated to state that children will tend to retrieve the answers to easy problems with the

range increasing with greater experience. These problems are ofsums ofaround 9,8 or 7 and less;

but may include larger problems that are, for whatever reason, easier to solve.

7.2. 1.2 Second prediction

The prediction that ifchildren do not retrieve an answer to a problem, then they will then calculate

an answer by reversing the order of the addends so that they count on from the larger addend by

the smaller addend is very well supported. This indicates that children will reverse the order ofthe

addends when necessary. There were no cells with two or more errors in the second prediction

column. Children are not likely to reverse the order of the addends unless there is an advantage

to doing so. However, as will become apparent in the next section, children do sometimes fail to
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reverse the order of the addends when there is an advantage to doing so.

7.2. 1.3 Third prediction

The prediction that children will count on from the first strategy when the first addend is greater

than or equal to the second addend minus one, is well supported. This result suggests that

reversing the order ofthe addends involves additional memory requirements and that children will

do so only if there is a clear benefit.

There were, however, five cells containing two errors. Four of these error cells referred to

instances where the child was expected to reverse the order ofthe addends but did not, choosing

to rather use the count from first strategy. The other error cell containing two misses refers to an

instance where the children were expected to retrieve the answer to a tie problem. This cell is

associated with the only two misses that occur for the fourth prediction. The four error cells

containing two misses indicates that reversing the order of the addends places additional

requirements on the child and perhaps they need to be sufficiently competent at counting on from

an arbitrary number before they are able to manage the process of reversing the order of the

addends.

7.2. 1.4 Fourth prediction

The data strongly supports the prediction that children will tend to retrieve the answers to tie­

problems. The observation that children will tend to retrieve the answers to single-digit tie­

problems has been well documented (for example, Ashcraft, 1992), but apparently not well

understood. Tie-problems are the exception to the problem size effect. (The problem size effect
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refers to the observation that latency increases with the size of the problem.) Researchers have

proposed that children retrieve the answers to these problems despite their size because they are

somehow easier problems to solve. What is not clear is why children find these problems easier

than any other addition problems of comparable size.

One could speculate that the answer has something to do with the notion of odd and even

numbers. Even numbers, by definition, are composed of two equal integers. Children begin to

develop a concept of odd and even numbers with their early number concept. The notion,

however, is not readily generalised to multi-digit numbers (Frobisher, 1999). The concept is

developed by partitioning objects into twos and noticing that sometimes there is a single object

remaining (odd) and sometimes not (even). As children begin to understand the concept ofeven

and odd numbers they may begin to associate even single digit numbers with the pair ofequal sets

that make up the total. Therefore, when presented with a problem comprised of a pair of equal

integers, they are more likely to be able to retrieve the answer. Familiarity may have something

to do with the a special patterns or characteristics associated with an addition problem and not

only be about the amount ofexposure that the child has had with the problem. Tie-problems are

special since they are comprised of two equal whole parts and this feature means that they are

stored and retrieved more easily.

Similarly, children begin to count in multiples greater than one. Children learn to count in twos,

threes and so one. This would reinforce the tie problem familiarity and, therefore, increase the

likelihood that their answers are retrieved. The issue of tie-problems appears to be unexplored.

On the whole, the four predictions resulted in a significant reduction in error of 63% supporting

the least effort hypothesis ofstrategy selection. The measurement ofthe error reduction was made
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possible by prediction analysis, a technique that appears well suited to the type ofdata collected.

7.2.1.5 The statistical technique

Prediction analysis is not a technique that is frequently used in psychological research despite

having been developed in order to analyse the cross-classification data that is often collected in

developmental research (Froman and Hubert, 1980). Howell (1992) is commonly used as an

advanced statistical text book in psychology and does not contain a single reference to the

technique. The technique provided a valuable analysis ofthe data collected in this study, offering

a type of measure that is not provided by the statistical measures that are typically used in

psychological research. The use ofthe technique is facilitated by the software developed by, and

obtainable from, Alexander Von Eye.

7.2.2 Test for Proportions based on the Normal Approximation

It is less clear how the context impacts on the selection of strategies. The hypothesis suggested

by the second research question was only partially supported. Children do not appear to resort to

greater use of retrieval when attempting addition problems under cognitively demanding

situations. In fact, they may use retrieval less frequently than normal, although the difference was

not significant. Halford et al. (1994) indicate that information can sometimes be held in short term

memory without interfering with the cognitive processes. Given that there is a significant shift

from the predominant use of covert strategies to the use of overt strategies for the more

demanding conditions, then there must be some sort of interference taking place. However, it is

beyond the scope ofthe present study to describe the exact nature ofthe interference in the multi­

component working memory.
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7.2.2.1 The proportions of retrieval and backup strategy use

The results ofthe test for proportions indicate that retrieval was not used more frequently under

cognitively demanding conditions (and, therefore, the backup strategies were not used any less

frequently). The nature of the task, however, may have interfered with the retrieval process

reducing the frequency of its use. Halford (1987) warns that dual task experiments may involve

an interference effect rather than competition for limited resources. The numbers that the children

were required to recall would have been activated along with the numbers associated with the

problem. This may have made choosing the correct answer more difficult than usual (LeFevre et

aI., 1988; Lemaire et al., 1994). Therefore, it is possible that children would resort to greater use

of retrieval if the nature of the distraction task had been nonnumericaI. On the other hand, the

SAC model (Schunn et aI., 1997) suggests that the decision to retrieve is not made on the

accessibility of the answer, but rather on problem familiarity. Therefore, neither the demanding

situation nor the additional activated candidate answers should affect the decision to retrieve or

to compute (although, perhaps the additional anxiety associated with the dual task may affect the

child's confidence threshold). This fits Siegler's (1990) observation that emphasising speed over

accuracy, or vice versa, does not affect the actual strategies chosen. It may however, affect the

way they are executed.

7.2.2.2 The proportions of overt and covert backup strategy use

The results do suggest that children execute their strategies in a manner that may aid their short

term memory when required to solve the problems under cognitively demanding situations. They

achieved this by executing the strategies in an overt rather than a covert manner. (This is a similar

process where adults resort pen and paper for maths problems that may exceed their processing
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ability.) The use offingers varied from the very obvious movement ofthe fingers to coincide with

counting to the very subtle and slight finger movements that the child may not necessarily be

aware of These finger movements may be arithmetic's equivalent of speech hand gestures.

McNeil (1985) argues that in speaking, hand gestures and the speech output share the same

computational stage. Gestures are a less transformed reflection of this inner process. Two

hypotheses concerning the role that these gestures play have been proposed. McNeil believes that

these hand gestures, or iconic gestures as he calls them, complement speech. For McNeil they

serve to facilitate communication. Butterworth and Hadar (1989), on the other hand, propose that

these hand gestures function to assist word retrieval. Devlin (2000b) argues that mathematical

thought processes are not linguistic but visual. (There are other Mathematicians who may dispute

this and the issue is not yet resolved.) It is possible then, that these finger movements serve a

similar function to the spee.:h gestures. They may be an external reflection of the internal visual

process. More importantly, ifwe take this analogy seriously, the finger movements, no matter how

subtle, may assist the child's working memory. This hypothesis is further supported by the finding

that finger use and arithmetic share the same region of the brain and are, therefore, different

manifestations of the same internal calculation process.

7.3 General Discussion

The study was designed to explore how children select from their repertoire ofexisting strategies

and the above discussion is concerned with this issue. It would be useful to now return to the

issues ofwhy children have such an extensive repertoire ofstrategies (Objective 5.1.1.4) and how

they develop this extensive repertoire in the first place. The first refers to the why of extensive

repertoire development and the other to the how of development. Following this discussion we
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will then review the extent to which the present study supports Siegler's theory.

7.3.1 The Strategy Repertoire

The research conducted indicates that young children in their first year of school employ a vast

array ofdifferent strategies and, according to the results just presented, attempt to select the best

strategy for the problem presented. At an initial glance, this appears to be something ofa cognitive

luxury and is, therefore, not well understood. Groen and Resnick (1977), in a study ofchildren's

addition, propose that children are motivated to perform regularly encountered tasks as quickly

and easily as possible. While, Klahr and Wallace (1976) argue that this is a general cognitive

tendency and an important aspect of development. School going children do encounter many

simple addition problems and are, therefore, likely to seek efficient problem solving methods.

A useful analogy would be the act ofcrossing a river. The person who is required to cross a river

on a daily basis is more likely to construct a raft or a bridge. These structures correspond with the

more advanced strategies. The person who is required to cross the river occasionally is likely to

walk some distance to an easier known crossing point. This may not be as efficient as crossing a

bridge, but does not involve as much construction. The person who is required to cross the river

very infrequently and is not aware ofa suitable crossing point may choose a strategy ofwalking

upstream to find a point where the volume ofwater would be less. Perhaps not the most efficient

strategy, but one that is bound to eventually assist the person in getting across.

Crowley et al. (1997) have recently developed a model involving both metacognitive and

associative mechanisms locked in a competitive negotiation which can be used to further

understand the development ofmore efficient addition strategies. This model is used in the present
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study to attempt an explanation ofwhy and how children develop their full repertoire. Shrager and

Siegler (1998) developed a computer simulation (SCADS) to test their metacognitive and

associative theory. SCADS involves a mechanism allowing the mental processes to become

automised. This, according to the model, then frees up 'change heuristics' that identify and

eliminate redundant processing.

If we apply this process to the use of addition strategies a pattern of strategy development will

emerge. The child begins to add using the first strategy taught and gradually become more

proficient at using the strategy. With experience, the use ofthe strategy becomes automised and

metacognitive resources that were previously involved in the execution ofthe strategy are freed

and thus able to focus on thp, task ofeliminating any redundant processing (the'change heuristics'

in SCADS). The initial strategy is modified accordingly and this new strategy is used in

competition with the old one. The choice between the strategies is explained by the Adaptive

Strategy Choice Model (ASCM) discussed in Chapter Three. Variability is likely to occur as the

consequence ofthe competition between the closely matched existing strategies. In this case, the

variability would probably not be entirely random but rather limited to the best strategies for the

particular occasion. This idea is supported by the data collected in this study where three advanced

strategies were used in 83% ofall cases.

Gradually the execution of the new strategy becomes automised and the metacognitive system,

once again, seeks to eliminate redundant processing. Accordingly, the first strategy used (the sum

strategy) is modified in a step by step fashion with each step corresponding to a new strategy. All

ofthe strategies coexist and compete. While the new strategies are being discovered and used, the

child is able to establish stronger associations between the problems and the answer and therefore, ,

retrieve the answers to more and more problems.
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A another useful analogy to this process of automatisation occurs in the act of learning to drive

a motor car. Learner drivers have great difficulty driving because they need to consciously think:

of each act involved in driving the vehicle. They must consciously remember to disengage the

clutch before changing gear then re-engage the clutch while, at the same time, steering the vehicle.

As theybecome more proficient, these processes are automised and require less conscious control.

Drivers become better able to review their driving and make the necessary improvements. With

greater practice, the driving becomes better. Indeed, the automisation ofdriving is associated with

the phenomenon ofDriving Without Awareness, a cause of concern for traffic authorities.

Thus, the reason that children's repertoire is so extensive may be the consequence of their

considerable exposure to, and practice with, small addition problems. The strategies that are

generated comply with their conceptual understanding. The early conceptual understanding

possibly defines the strategyparameters, while the development ofnew strategies facilitates deeper

conceptual understanding. The processing modifications are related to the various conceptual

advances discussed in Chapter Four.

This repetitive modifications process is not necessarily the only mechanism of strategy

development. Children could be taught new strategies from their more capable peers and adults.

(Although the use ofan advanced strategy without the conceptual understanding associated with

the strategy may be problematic.) It could also be argued that teaching assists the metacognitve

mechanism of eliminating redundant processing by directly pointing out shortcuts and, in doing

so, higWighting the unnecessary procedures.

Finally, it could also be argued that the strategy repertoire is not that extensive. Ifwe decompose

strategies into the different subroutines, then it is apparent that a few subroutines, recombined in
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different ways, account for the spectrum of strategies observed. For example, the cardinal-to­

count connection (which involves the subroutine of counting from one of the addends), and the

commutative principle (which involves the subroutine ofswopping the order ofthe addends), and

the principles ofassociativity and additive composition (which involve re-composing the problem

into different parts), combined in various ways account for all ofthe backup strategies observed.

With time, children are bound to discover the various strategy components and combine them in

ways that make problem solving a more efficient process. This does not contradict the repetitive

modification process described above, these subroutines correspond with each of the strategy

improvements, the only difference being the unit of analysis. The actual sequence of strategy

discovery is further described in the next section.

7.3.2 The Sequence of Strategy Discovery

This question is partly addressed by the previous one which offers a way ofdescribing how new

strategies are discovered. By applying the metacognitive and associative model to the development

of new strategies it is possible to explain how the child's repertoire of strategies is extended.

Moreover, if we begin witJ. the sum strategy, it is possible to describe a number of different

sequences of strategy discovery (Objective 5.1.1.5).

The child begins to add using the sum strategy. This may be because the young child learns to

count with the aid ofobjects. When given an integer pair to add, she selects a set of the objects

to represent the first addend by counting them out, does the same for the second addend, and then

counts out the total made up by the two sets. Later, the child may use her fingers without the

external objects. Either way, finger use is an important aspect of early addition. The part of the

brain that is associated with the control ofour fingers, the left parietal lobe, also happens to be the
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same region that is associated with arithmetic (Devlin, 2000b). (perhaps this is why we refer to

numbers as 'digits' .) With experience, the child becomes less reliant on her fingers, until this finger

use is 'oflline', indicating increasing automisation of the use of the strategy. This may also

coincide with the discovery ofmore economical strategies. (However, it is possible that we do not

ever totally disconnect our fingers from our thought process and these finger movements, as

discussed above, may serve the same purpose as our speech gestures.) Eventuallythe child is able

to use this addition strategy without any obvious external aids. Thus, it seems likely that the young

child learns to count using the sum strategy, first in an overt manner, but becoming less overt with

practice. The steps involved in the sum strategy are as follows (adapted from Crowley et

aI.,1997):

Step 1 - Count the first addend (x);

Step 2 - Count the second addend (y);

Step 3 - Count out the part of the total represented by x; and,

Step 4 - Count out the remainder of the total represented by y.

Once the child is proficient at using the sum strategy she may then discover that she does not need

to count out each addend separately and delete Step 1 and Step 2. Thus, the child can count out

the part ofthe total represented by the first addend (Step 3) before counting out the remainder of

the total represented by the second addend (Step 4). This is the shortcut sum strategy. Siegler

proposes that this strategy is a transitional strategy which links the development from the sum

strategy to the min strategy. According to Siegler, the child at this point is able to reverse the

order of the strategies and uses a combination between the shortcut sum and the min strategies.

After this, according to Siegler's depiction, the child discovers the min strategy. Other theorists

argue that the count from first strategy serves this transitional purpose. (For example, Groen and
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Resnick (1977) suggest this possibility. Unfortunately, their methodology excluded the possibility

of addressing the issue.) The data collected for this thesis suggests that both of these positions

may be correct. The shortcut sum and the count from first strategies are possibly both transitional

strategies.

The shortcut sum strategy may be the point where the developmental sequence splits, offering at

least two different routes. If we consider the second view (where the count from first strategy

comes before the min strategy), then after the child has discovered that she can delete Step 1 and

Step 2, but follow Step 3 and Step 4 to obtain the total ofthe integer pair (shortcut sum strategy),

she will soon be ready, after some practice at using the shortcut sum strategy, to observe that Step

3 is also redundant. This discovery is associated with the count-to-cardinal connection. The child

does not need to count out the part of the total represented by the first addend (Step 3), but can

rather begin at the number indicated by the first addend (x) and count on the remainder ofthe total

indicated by the second addend (Step 4). This is the count from first strategy. Counting on from

an arbitrary number greater than one is more difficult because it is harder to monitor the amount

of counting already done (iuson, Richards & Briars, 1982 as cited in Siegler & Jenkins, 1989),

but the gains presumably outweigh the disadvantage. According to this sequence, both the

shortcut sum strategy (without reversal) and then the count from first strategy complete the link

between the primitive sum strategy and more advanced min strategy.

Having discovered these strategies and after becoming sufficiently proficient at using them, she

could then begin to apply the addition principle ofcommutativity by discovering that the order of

the addends is irrelevant to the answer. The result would be the ability to use the min strategy. The

child can then reverse the order ofthe addends so that she begins to count from the larger addend

by the number indicated by the smaller addend. In other words, they can modify Step 4 by
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ensuring that ifx is less than y then the order ofthe addends is reversed. This is more economical

than the count from first strategy because the child always counts from the larger addend by the

number indicated by the smaller addend (and in doing so counts less). Being able to delete some

of the original addition steps or apply new addition principles may involve further resource

demands, however, it is likely that these are outweighed by the gains associated with less

processing.

Finally, when the child has become proficient at using all ofthe strategies that she has discovered,

she may begin to apply the related principles of associativity and additive composition to

recombine units to facilitate the solution ofthe problem. Associativity means that the sum can be

represented in different ways. Units can be shifted from one addend to the other without affecting

the sum. Additive composition means that the addends can be broken down and recombined to

create an additional addend. These principles, when applied, allow the child to discover the group

of strategies referred as the decomposition strategies.

Thus, the sequence ofdiscovery could be from the sum to shortcut sum to count from first to min

to decomposition. This procedural sequence is associated with the following discoveries in the

following order: Deletions of unnecessary sum strategy steps (shortcut sum), count-to-cardinal

connection (count from first), order irrelevance ofthe addends (min) and the two related principles

ofassociativity and additive composition (decomposition). This sequence is presented in Table 7­

A.
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Table 7-A. An alternative to Siegler's addition strategy developmental sequence

(1) Sum Strategy (2) Shorteut Sum
Strategy

(3) Count from first
Strategy

(4) Min Strategy

•••••••••••••••••••••

.. . .. - - .

••~~I~$~$tifu: •.•·:~~i~ffi~4ifd.iri~i~ ···APPiylli~p.tilicipi~hf·

The difference between the sequence described by Table 7-A, and the one that Crowley, Shrager,

and Siegler (1997) have proposed, which is summarised in Table 7-B, essentially involves the

point at which the child applies the commutativity principle (whether children apply the

commutativity principle before or after the count-to-cardinal discovery). Reversing the order of

the addends before applying the count-to-cardinal principle would certainly reduce processing

when executing the shortcut sum strategy. For this strategy, the child needs to count up to the

number indicated by the first addend then continue to count on by the number indicated by the

second addend. In order to count on, the child needs to count her counts. This would certainly be

. easier ifthe second addend Nere the smaller ofthe two. Siegler suggests that children execute the

shortcut sum strategy in this way. (They may initially count the first addend before the second and

then later begin to reverse the order of the addends when necessary- thus employ two variations

of the same strategy, these being shortcut without reversal and shortcut with reversal.)

However, ifSiegler's sequence is correct, then we would expect children to reverse the order of

the addends whenever the first addend was smaller than the second, regardless of whether they

use the shortcut sum strategy or a count on strategy. They would progress from the shortcut sum

strategy straight to the min strategy. However, the case where children count on from the first

addend by the second addend when it would have been more economical to reverse the order

Page 137



(strategy 4) was observed 17 times (7.4% of all strategy use). Also, if Siegler's sequence is the

only possible route then children who use the shortcut sum strategy should tend to reverse the

order of the addends when necessary. However, the child that resorted to the shortcut sum

strategy did not appear to reverse the order ofthe addends on any ofthe trials when it would have

been appropriate to do so. The fact that we observe both the shortcut sum strategy, without

reversing the order of the addends, and the count from first strategy, also without reversing the

order of the addends, suggests that there is at least one other developmental pathway to the one

Siegler has described. Another interpretation of this data is that children apply the principle of

commutativity with the shortcut sum strategy, then stop doing so after applying the cardinal-to-

count principle and then begin to apply the commutative principle again. There may be a range of

pathways in the development of addition strategies.

Table 7-B. Siegler's addition strategy developmental sequence

(l) Sum Strategy (2) Shortcut Sum Strategy (order
irrelevant)

.........•. ·························IA-bri

11&.~I~lIil,;®

(4) Min Strategy

......... :::::::: :.: :.:.:-::::::::::::::.:::::.; •..•-.-. :;.:":::.; .:": :::':.:::::::-;:;:;.:.:::-;:;":::-:-:.:.:.:::.:::':::::::<::::::-:.:":::::-:::::::.:.::.:;:.::: -.-.- :.: ;.:::::.•, -.-.- :•... :.:.::-:.:::::-:.:::::.:::::.:.:::.:::
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The order ofthe other discoveries has not been disputed. None ofthe discoveries are useful unless

the unnecessary sum strategy steps are discarded and this should therefore happen first. Also, the

principles that allow for the decomposition of addition problems can be regarded as extensions

ofthe order irrelevance principle. The order irrelevance principle involves shifting the difference

between the two addends from the larger to the smaller addend (to do this, the child simply

reverses the order of the two addends) while the decomposition strategies involve shifting any
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number of units from one addend to another. Thus, the reversal of the addends could be

considered as a special case of the associative principle. Accordingly, being able to decompose

problems implies that the child is also capable of swopping the addends (but not vice versa).

Therefore, the order irrelevant strategies will be discovered before decomposition.

Furthermore, Halford's (1987) structure-mapping theory ofcognitive development suggests that

strategy discovery is com'~rained by the child's structure-mapping ability. This implies that

strategies are discovered in order ofincreasing complexity and supports either sequence described

above. Table 3-A lists the backup strategies in order of increasing complexity and decreasing

completion time, a sequence possibly reflected by the orderofacquisition. Therefore, the sequence

ofstrategy discoveries, whether it is best described by Siegler's account or the alternative offered

in the present study, seems to be congruent with a neo-Piagetian description of development.

The idea that strategy discovery involves repeated modifications of the existing strategies can

account for either developmental sequence described. It is possible that some children will follow

the sequence as described by Siegler while others may follow slight variations of this. Also, the

sequence of discovery follows the child's increasing ability to map more complex relations.

7.3.3 The Implications for Siegler's Theory of Addition Strategy Development

Robert Siegler has made a number of new contributions to cognitive science in general and, in

particular, to how we understand the development ofchildren's early mathematical ability. On the

whole, the data collected for this study seems to support many of Siegler's ideas.
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7.3.3.1 The overlapping waves metaphor of cognitive development

One ofSiegler' s earlier contributions was the finding that children resort to a number ofdifferent

strategies, even in a relatively simple domain such as single digit addition. These competing

strategies correspond with the overlapping waves in his model of development. Development,

according to this metaphor, is a process where children discover new strategies and discard old

strategies while the existing strategies compete and the child becomes increasingly proficient at

selecting the appropriate strategy for the problem given. Previous researchers believed that

children would consistently use one strategy before moving on to the next (for example, Groen

and Parkman, 1972~ Groen and Resnick, 1977~ Ashcraft, 1982). Siegler claims that young children

will use around six different strategies and that the use of these strategies is variable. This study

indicates that first grade children will use at least three or four different strategies and, therefore,

lends support to Siegler's metaphor.

Siegler emphasises the variability ofstrategy use, which is an essential characteristic ofcognitive

development. The data collected for the present study supports the notion ofcognitive variability

(Objective 5.1.1.2). However, there appears to be some limit to the variability that does occur and,

as the analysis becomes finer, the variability is reduced. Looking at all ofthe problems presented

to the children one observes the use ofmany different strategies (at least eight different strategies

were observed), but when one considers individual problems, the choices are often limited to two

or three different strategies. This variability, for the most part, occurs between the most

economical strategies for any given problem. However, cognitive variability does appear to be an

important aspect of cognitive development and this agrees with Siegler's ideas.

Siegler's classifications of'~erfectionists', 'good students' and 'not-so-good students' is partially
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supported (Objective 5. 1. 1.3). The data collected suggests that the patterns of strategy use and

the way the strategies are executed is related to performance. The use of overt strategies and

retrieval is related to better performance. This pattern fits the 'perfectionists' and 'good students'

classifications. To examine this issue more closely one would need to conduct a study with a

larger sample of participants.

7.3.3.2 Strategy discovery

Crowley, Shrager and Siegler (1997) have proposed that strategy discovery involves both

metacognitive and associative processes. The data collected in this study does not contribute any

further understanding to the proposed combination between these two mechanisms. However, as

discussed above, the findings support a particular sequence ofsimple addition strategy discovery.

Siegler proposes that the shortcut sum strategy serves as a transitional strategy instead of the

count-from-first strategy. The data collected in the present study suggests that this may be the

case, however, there is at least one other alternative to this sequence. It appears that the shortcut

sum strategy (without reversal) and the count from first strategy both occur in the sequence

presented.

A constructivist process ofincremental modifications may prove to be a useful way ofdescribing

the discovery of new strategies. This could perhaps be regarded as a type of neo-Piagetian

explanation. However, the description does not contradict the overlapping waves model of

development. This constructivist process describes how and why new strategies are discovered,

while the overlapping waves metaphor describes how the various competing strategies are used.

This constructivist description is an extension of the 'change heuristic' mechanism employed in

Page 141



the SCADS software developed by Shrager and Siegler (1998). The constructivist models and the

emphasis on variability need not be mutually exclusive. Perhaps the variability occurs around the

underlying structural development. The fact that there is any debate about the exact developmental

pathway suggests that a constructivist process of discovery may be a better model than the

evolutionary approach to cognitive development associated with random variation and selection.

At one point, Siegler (1996) suggested that Darwinian evolutionary principles may be the best

means for understanding cognitive development. He drew parallels between the history of our

understanding of evolution with our increasing understanding of cognitive development,

highlighting the similarities in the historical progression ofour understanding and suggesting that

the same conceptual breakthrough that occurred in evolution could be employed in the domain

of cognitive science. Siegler may have been seduced by his observation that cognitive variation

is an important feature of cognitive development and that it also holds an important role in

Darwin's theory. This does not seem to be a position that he has subsequently pursued, perhaps

wisely, since the application ofevolutionary principles to psychology is not without controversy.

There are currently two different approaches to applying evolutionary principles to psychology.

Evolutionists such as Steven Jay Gould (2000) believe that selection and variation are one of a

number ofdifferent mechanisms ofmodification in the domains ofboth biology and psychology.

Siegler (1996) could, perhaps, be regarded as being closer to the Dawkins (1976) approach,

emphasising only the adaptation through selection and variation. These so-called ultra-Darwinians

would apply a strict variation and selection approach to understanding the development of

addition strategies. From this perspective, the strategy would be an equivalent to the gene,

something at which Siegler (1996) hints. Through a process of variation, new strategies are

generated, while through a process ofselection, certain strategies are retained. Richard Dawkins
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(1976) coined the term meme to refer to units of cultural transmission that includes things such

as tunes, ideas, catch phrases and clothing fashions. It seems that the strategy may have been

defined as a type of mathematical meme. Mary Midgely (2000), however, claims that thought

cannot be granular (meaning that the unit cannot be further decomposed) and, therefore, there can

be no identifiable gene equivalent. Midgely states that "ifmemes really correspond to Dawkinsian

genes they must indeed be fixed units - hidden underlying causes ofthe changing items that appear

round in the world". Strategies, like cultural memes, cannot be regarded as granular, since they

have already been decomposed into smaller units by being described in terms oftheir subroutines.

A general critique ofevolutionary psychology is that the approach seems to be better at describing

the advantages ofvariation than it does at explaining the source. While biologists have had some

success in explaining the source ofthe variation involved in the evolution ofspecies, psychologists

have still some way to go. The advantages ofa degree ofvariation in thinking are clear. Variability

appears to be related to learning. Numerous factors may play a role in motivating children to think

in many different ways.

7.3.3.3 The microgentic method

Siegler has made contributions not only to developmental theory, but also to research

methodology. The research methods described by Siegler and Crowley (1991) have been

successfully employed in the present study yielding valuable data (Objective 5.1.1.1). The

correlations between latency and the various problem indices reported in Table 6-D support the

claim that children are able to accurately describe the strategies that they use to solve simple

addition problems. Table 6-B, which reports the average time taken and the accuracy for each

strategy further supports the validity of the classifications. Retrieval was the fastest and most
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accurate (excluding decomposition), the min strategy was the second fastest and second most

accurate, the count from first was the third fastest and accurate strategy, while the shortcut sum

was the least fast and accurate ofthe four strategies mentioned. This is the pattern that one would

expect as well as being the pattern described in the literature (for example, Siegler, 1996). If the

strategies were not correctly identified then it is unlikely that one would observe this performance

hierarchy. Thus, the time and accuracy results suggest that the strategies were correctly identified.

7.3.4 Educational Implications

Since the present research involves a school task it is important to consider the educational

implications, ifany such implications exist. Ifwe accept Devlin's (2000b) point that arithmetic is

the foundation ofhigher mathematics, then obviously it is important to allow children to develop

a full conceptual understanding ofarithmetic. Halford (1987) suggests that the child's structure­

mapping development constrains their conceptual development, which, in turn, constrains the

strategies that the child is able to use. Therefore, one could argue that developing this repertoire

is a necessary component of a complete conceptual understanding and that children should be

encouraged to develop multiple problem solving techniques.

7.3.5 Future Research

It is assumed that higher mathematics is built on the foundation of arithmetic. A useful research

question to consider would be the degree to which the early development of addition strategies

predicts later mathematical success. It has been shown that children who display greater variety

in the strategies chosen learn and perform better on that particular task. This question will

consider whether this success is carried through to higher domains.
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There are very definite advantages for children who are able to develop and understand the

various strategies available. Thus, future research could focus on how to facilitate the

development of this. It has been suggested in the literature that one way of doing this is to

encourage children to explain how somebody who is older and more competent might solve a

given problem. Perhaps greater emphasis could be placed on encouraging children not just to solve

their problems but to do so in different ways. These ideas could be relatively easily tested.

The scientific study of arithmetic development would benefit from a longitudinal, but also very

detailed, study tracking the sequence ofstrategy discovery in a sample ofchildren as they progress

from their pre-primary year to the second or third grade. The logistical difficulties ofthis type of

study would be enormous. However, current knowledge is based on fragments collected at various

developmental levels so this type of study would be a important contribution. Furthermore, the

patterns of strategy use in the other branches of arithmetic (subtraction, multiplication and

division) have not been well explored.

Children are increasingly required to use calculators at school. It would be interesting to explore

whether this retards normal addition strategy development. Calculators may assist retrieval, but

are unlikely to assist the various backup methods. Also, the addition strategies that children

develop are linked to the number system. Therefore, it would be useful to explore the strategies

that are used in other number systems.

The present research, and other research in the area, has been conducted on average children from

middle class backgrounds (though not exclusively). It may be worth exploring the strategy

patterns ofchildren who come from less privileged backgrounds and who speak languages other

than English. This is possibly the most common future research suggestion that appears in most
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theses, but is often left undone.

7.3.6 Critique

Perhaps the single most important critique of the study has to do with the sample size of the

participants. Twelve grade one children participated in the study. The sample size was kept small

in order to adopt a very fine analysis oftheir addition strategy selections. Other studies employing

the same methodology have selected small samples of participants (for example, Siegler and

Jenkins, 1989). The various studies are producing a relatively consistent picture and, taken

together, provide further support for the general findings. However, a far more extensive study

with a sample that reflects the greater population is overdue.

7.4 Summary

The results presented in Chapter Six support many ofSiegler's main ideas. Children use a number

of different problem solving methods, even for tasks such as simple addition. The microgenetic

approach produced valuable data while prediction analysis offers a suitable means ofanalysing the

this data.

The two research questions considered suggest that children attempt to match the most suitable

strategy for the problem presented. However, optimal strategy choices are partly undermined by

cognitive variability as well as limits to children's procedural and conceptual understanding.

Furthermore, it appears that cognitively loaded situations affect the way that strategies are

executed rather than which ofthe strategies is selected. The overt execution ofstrategies appears

to offer an external memory aid that is used when the amount of processing required for a task
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threatens to exceed children's resources.

A strategy discovery process involving the repeated modifications of existing strategies is

introduced. This is a process that is more compatible with the constructivist models of

development than it is with the evolutionary models ofdevelopment.
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CHAPTER EIGHT

REPRISE

Throughout the present study, two approaches to cognitive development have been considered.

The Piagetian tradition emphasises structural development and how this determines the way in

which children approach simple addition and other types of problems. Halford (1987), in

particular, regards cognitive development as a function ofchildren's increasing structure-mapping

abilities. Structure-mapping ability constrains children's conceptual understanding, which, in turn,

dictates the strategies that they are able to develop. Siegler has positioned himself in direct

opposition to the Piagetian tradition. His theory emphasises cognitive variability and the role it

plays in development.

There is much evidence to suggest that children employ a host of different problem solving

strategies, and not only the strategy associated with their current developmental level defined by

their structural ability. In this respect, at least, Siegler appears to be correct. The selection of

strategies from the available possibilities has been the empirical focus ofthis work. On the whole,

the findings indicate that strategy choice is largely determined by the problem presented, as well

as children's conceptual and procedural knowledge, but apparently not necessarily on the

situation. The situation largely determines how the strategy will be executed.

The first research question, suggesting that a principle of least effort applies to the selection of

strategies, was supported by the prediction analysis. The result indicates that children will attempt

to match the problem presented with the most efficient strategy that they are able to execute

successfully. Children are likely to retrieve the answer to small problems and easy problems such
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as tie-problems. With greater experience, children will be able to make more and more accurate

associations between addition problems and their answers, thereby increasing the range of their

retrieval strategy. The actual decision to retrieve or to resort to a backup strategy appears to be

determined by problem familiarity. First grade children will tend to count on from the larger

addend by the amount indicated by the smaller addend when the answer is not retrieved. If the

smaller addend comes first they will tend to reverse the order ofthe addends, and are most likely

to do this when the difference between the two addends is great or when the first addend is small

and the second large.

However, children may never reach the level of perfect strategy selections, since selection­

optimality is compromised by variability. Variability offers a short-term cost for a long-term

benefit, the benefit being greater learning potential. Variability means that children are less likely

to stagnate and also that they are better equipped to adapt to new situations.

The second research question considered whether, under conditions ofcognitive stress, children

execute their strategies in an overt manner in order to extend their working memory capacity, or

resort to faster strategies, specifically retrieval, that minimise working memory decay or use less

of the valuable workspace. The results do not support the prediction that children will use

retrieval with greater frequency and, therefore, the context does not appear to influence the actual

strategy selected. This conclusion is supported by Siegler's (1990) finding that emphasising speed

over accuracy, or vice versa, does not influence the strategy selected but rather influences how

the strategy is executed. The results do suggest that, under cognitively loaded conditions, children

will execute their strategies in an overt manner. It is proposed that the overt execution ofbackup

strategies aids the child's memory limitations. This finding supports the limited-processing-space

hypothesis promoted by some of the neo-Piagetians. When children's cognitive processing
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resources are exceeded, they resort to external aids much in the same way as adults will resort to

pen and paper or to a calculator. Given that the evidence supports the notion of structural

constraints, then it seems likely that these structural constraints dictate the sequence of strategy

discoveries.

It is further argued that the backup strategies are discovered in a sequence corresponding with

increasing information-processing demands and decreasing completion times. This type of

sequence, even if there is debate around the exact description of the sequence, fits the neo­

Piagetian position on cognitive development. While the actual use of strategies is probably best

described by Siegler's overlapping waves metaphor.

Therefore, the present study, as well as much of the other cognitive science literature, offers

mixed support for the two competing positions ofcognitive development. Perhaps the reason that

the debate between the two traditions is ongoing is that both positions are partly correct. This

suggests that it may be worthwhile to seek a compromise between the overlapping waves and the

staircase metaphors of cognitive development. It is possible that the variability that Siegler has

emphasised occurs around an orderly underlying structural progression compatible with the neo­

Piagetian theories.

There are at least two ways of viewing cognitive variability. The first is discussed by Collins

(1992) in his critique ofartificial intelligence, where he claims that humans are simply unable to

reproduce action in a perfectly consistent way. Something about our architecture prevents us from

being able to do this. Perhaps children attempt to retrieve their best strategy from memory for any

given problem, but since they are unable to follow the same retrieval path consistently, they

sometimes retrieve close relatives instead of the strategy desired. Therefore, variability is the
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result of our cognitive architecture and occurs despite people's intentions.

The second explanation is offered by the evolutionary psychologists. Here variability in thinking

is said to serve the same evolutionary purpose as genetic variation. Since the variability provides

some adaptive advantage for individuals, the source ofcognitive variability has been selected for

over the course of our evolution. This may explain how our less than perfect architecture,

described by Collins (1992), occurred in the first place.

Finally, if we accept that the children's conceptual levels determine the strategies that they

discover, then the range ofthe strategy arsenal reflects the depth oftheir number concept. Devlin

(2000b) points out that higher mathematics is increasingly abstract but not necessarily that much

more complex. Therefore, children must master the complexities of arithmetic before they

undertake higher mathematics. In other words, the basic arithmetic operations, ofwhich addition

may be the foundation, are likely to serve as the infrastructure for all higher mathematical

concepts. Since cognitive variability appears to facilitate arithmetic development, children should

be encouraged think in novel ways.
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