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ABSTRACT

In this thesis the effect of antisymmetrization in diquark models of baryons composed of light

(u and d) quarks is investigated. The diquark in this study is considered alternately as a point­

like and as a composite particle. The wave functions for both diquark and diquark-quark

systems have been determined in a non-relativistic approximation by using the radial

Schrodinger equation and a range ofcentral potentials. The ground state masses of the diquark­

quark system have been calculated in three distinct ways:

(1) The ground state energy eigenvalues and the wave functions for thediquark and diquark­

quark, each being treated as a two-body system, have been calculated by using the generalized

Runge-Kutta and search methods.

(2) The expectation values for the potential energy and kinetic energy have been calculated

by using the wave functions derived in (1) for the two-body system without antisymmetrization.

These results have been checked by applying the virial theorem in parallel calculations.

(3) The potential and kinetic energy expectation values have also been determined by taking

antisymmetrization into account via operator kernels namely, norm, potential and kinetic energy

which have been derived by using the non-local Generator Coordinate Method (GCM). The

expectation values of these operator kernels have been calculated with respect to the wave

functions produced in (1). For the purpose of performing the integrations the wave functions

, expanded in terms of cubic splines, and Gaussian quadrature have been employed.

Lastly the diquark and diquark-quark ground state masses were calculated for each

approach, (1) - (3), and compared with

(a) each other,

(b) the results for a two-body system,
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(c) the results for a full three-body treatment and,

(d) the average mass of N - b:. .

The form factors and root mean square radii of the baryon for the four central potentials have

been calculated with antisymmetrization for each approach (1) - (3) and compared with

(a) each other,

(b) the results for the baryon without antisymmetrization

(c) the results for the baryon with antisymmetrization including the meson cloud

(d) the experimental data.

The trends found are striking and it can be concluded that there is a strong dynamical effect

due to the presence of antisymmetrization in diquark models of baryons.
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1 INTRODUCTION

1.1 WHY ANTISYMMETRIZATION?

The diquark system is fonned as a bound state of two quarks and regarded as elementary

when it interacts with the third quark (spectator) to fonn a baryon. The computational labour

involved in baryon calculations using a diquark model is reduced since the dynamics are

mediated by the interactions within. an effective two-body rather than three-body system.

According to Lichtenberg [1] many authors have assumed that diquarks can be treated as

elementary and as a result no attempt has been made to antisymmetrize the wave function under

the interchange ofany two quarks in the system, that is, ofa diquark pair and a spectator quark.

However, although quarks are fermions, correct antisymmetrization of the wave function is

often neglected in diquark calculations [1]. Antisymmetrization is necessary because of the

exchange ofcluster quarks with the spectator inside baryons. Lichtenberg [1] pointed out that

if an attempt is made to symmetrize the wave function between a diquark pair and a quark

outside the diquark, then the wave function is more complicated, which results in losing some

of the value of the simple diquark picture (see also [2]). He furthennore pointed out that the

fact that some physicists obtain good predictions by using diquarks without completely

antisymmetrizing the wave function, shows that interference tenns which result from

antisymmetrization are often less important. The only way to show that these interference tenns

are indeed small,is to antisymmetrize the wave functions [1].

In this work a diquark is assumed not to be an elementary particle but rather a correlated

state of two quarks. Therefore the aim of this study is to investigate what effect antisy­

mmetrization has on the baryon mass in diquark models. It is with this in mind that a rigorous

determination of the effects ofantisymmetrization in diquark-quark models ofbaryons within
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the non-relativistic constituent quark model has been undertaken. The formalism has been

developed by Adam and Bakker [3]. The use of the non-local Generator Coordinate Method

(GCM) [4,5] in exchange operator kernels is proposed to theoretically study the effect of

antisymmetrization in diquark models of baryons. GCM was invented by Griffin, Hill and

Wheeler [6,7,8]. The GCM formalism has been applied to bound state problems and has proved

to be very powerful and general. Griffin and Wheeler [7] proposed that the distance between

the colliding particles must be the most important degree offreedom which must also be kept

as the only generator coordinate. GCM is considered in this study and the required operator

kernels to be derived in chapter 4 are based on this method. In this work a non-relativistic

constituent quark formalism is applied to baryonic systems. In the model the state of the system

is completely characterized by the time independent diquark-quark wave function. Within this

approach, a systematic study of antisymmetrization in the ground state ofa baryon built from

light (u and d) quarks is presented.

1.2 DIQUARK MODELS IN ACTION

A model in which a baryon is a bound state ofa diquark-quark [9-13] is employed in this

work. The fact that [13] quarks cluster in pairs in baryons leading to a two-body structure is

a central idea in the diquark simplification of the quark model. The diquark is as old as the

quark model itselfand was suggested by GeII-Mann in his pioneering paper on quarks [14]. He

suggested that a bound state of two quarks or diquark may be stable. Since then a number of

authors [9-13; 15-19] have considered models containing diquarks. In particular, a model of

excited baryon states in which one quark acquires orbital angular momentum while the other

two quarks remain as an S-wave diquark, has been useful [17].
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Leinwenberg [18] and Fleck et al [19], performed theoretical investigations of diquark

clustering which produced encouraging results. Leinwenberg employed a gauge invariant

method to investigate the clustering of the scalar diquark. Fleck et al. searched for the diquark

clustering in baryons by performing non-relativistic three-body calculations where ground

states and orbital excitations for different flavour combinations have been considered. A

diquark is regarded by Fleck et al [19] as a correlated pair of up (u) and down (d) quarks

having the right quantum numbers to combine with the third quark to form a baryon.

A diquark is defined by Anselmino [2] in two ways; first as any system of two quarks

considered collectively and second, as a two-quark correllation in a hadron containing more

than two quarks. According to a diquark model,if one quark is excited, the other two remain

unexcited relative to each other inside a baryon. The diquark may release a quark to be captured

by the spectator quark, which then becomes an unexcited diquark.

Close [20] proposed that one quark feels an attraction to two quarks in a baryon and that this

pair (diquark) can have the same effective colour charge as a single antiquark and in this way

attract and neutralize the third quark. Diquarks have played a role in the description ofmany

exclusion processes.

(a) NN elastic scattering [21]

(b) pp annihilation into hyperon-antihyperon pairs [22]

(c) pp creation ,in photon-photon interactions [23]

(d) PV elastic scattering [24]

(e) Charmonium decay into baryon-antibaryon pairs [25,26].

Lately a simplified diquark model has been used in the description of J /'I! .... PPV [27]. It

has been also used to describe a violation of the Gottfried sum rule [28]. Diquarks were also
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used to explain the abundant large - PT deuteron observed in 70-GeV pp interactions [29].

Concerning the baryon decays, in 1972 and 1973, Ono [30] used a diquark-quark model to

computerize the baryon decay rates where he found good agreement with experiment. By using

a diquark-quark model Bediaga et al [31] have been able to estimate the life-time of the

charmed baryon, I\c and its value was found to be in agreement with the experimental results.

To date about 300 papers on diquarks have been written [32].

1.3 OUTLINE OF STUDY

In chapter 2 the wave function for the diquark-quark system is discussed with respect to

symmetries:

(a) spatial, .

(b) spin,

(c) flavour and ,

(d) colour.

Chapter 3 is devoted to a discussion ofthe Schrodinger equation for the diquark-quark system

with four different central potentials:

(a) Bhaduri,

(b) Martin,

(c) Cornell.and,.

(d) Quigg.

A more detailed description of the operator kernels, namely

(a) norm kernel,

(b) potential energy kernel,
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(c) kinetic energy kernel,

(d) form factor kernel,

(e) charge density and

(t) root mean square radius,

is given in chapter 4. Chapter 4 is devoted to operator kernels in the single channel case

whereas chapter 5 is devoted to operator kernels, namely

(a) norm kernel,

(b) potential energy kernel and

(c) kinetic energy kernel

in the coupled channel case. The results are given in chapter 6. Concluding remarks and the way

forward are given in chapter 7.
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2 TOTAL WAVE FUNCTION FOR THE DIQUARK-QUARK SYSTEM

2.1 INTRODUCTION

The total wave function of the diquark-quark (Dq) system is constructed such that it is

antisymmetric upon the exchange of any two quarks. The relation j = L+ S, where j is the

total angular momentum, L is the total orbital angular momentum and S is the total spin

angular momentum, will be used in this chapter in the discussion of spatial and spin parts of the

total wave function. The details ofhow the antisymmetric Dq wave function is constructed are

given in the following sections.

2.2 THE PAULI EXCLUSION PRINCIPLE

The Pauli exclusion principle is equivalent to the rule [33] that:

pairs of identical fermions can exist only in states whose total wave functions are

antisymmetric (change sign) under interchange ofthe two particles.

In the case where all the three quarks ofthe baryon have the same flavour, the flavour factor

becomes symmetric under the interchange ofany two quarks. The spin factor is also symmetric

under the interchange ofany two quarks since all the quarks have the same spins and they point

in the same direction. The fact that the spins ofthe quarks couple together to form the total spin

ofthe baryon, implies that there is no orbital angular momentum (that is, L=O) for the three

quarks. This leads to the conclusion that the quarks are positioned in a symmetric way which

causes the space factor to be symmetric too, under the interchange of any two quarks. All three

factors are symmetric, and this causes the product of these factors to be symmetric as well.

This violates the Pauli exclusion principle. This contradiction between the quark model and the

Pauli exclusion principle was resolved in 1964 by Greenberg [34] by suggesting that quarks
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must possess colour in addition to space, spin and isospin (flavour). This leads to the

generalized Pauli exclusion principle [33] which states that:

the total wave function which consists of space, spin; isospin and colour must .

be antisymmetric for a pair ofparticles.

Mathematically the generalization of this principle can be expressed as (see also [35,36])

(2.2.1)

where \Ifj)q (~ , n) describes an orbital motion, \If (S, 0- , ros ) is the spin state, \If (T, t, roT) is

the isospin part and \Ifc represents the totally antisymmetric colour singlet state. Therefore

the total wave function (\IfB) is antisymmetric on the interchange of each diquark constituent

with the spectator. The Pauli exclusion principle is an important tool ofunderstanding fermion

systems and because the baryons are fermions they are therefore subject to the Pauli exclusion

principle.

In chapter 4 the spatial wave function which fully takes into account the antisymmetrization will

be discussed.

2.3 THE SPACE WAVE FUNCTION

For the diquark-quark model there are two orbital angular momenta £12 and £3 where

£12 is the orbital angular momentum ofthe chosen pair of quarks in their mutual centre-of­

mass frame and ·£3 is the orbital angular momentum of the spectator quark about the center-

of-mass ofthe pair in the total centre-of-mass frame. The total orbital angular momentum can

therefore be written in the form

(2.3.2)

in the diquark-quark model.
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For the lowest lying state (S-state):

-+

L=O

and furthermore it is assumed, in a single channel approach, that

L =L = 012 3

(2.3.3)

(2.3.4)

Denoting the wave function of the diquark by <Po and that of the diquark-quark by w[jq' the

unsymmetrized baryon wave function i~ then given by

(2.3.5)

where t is the relative coordinate of the pair of quarks and fi is the relative coordiante of the

spectator quark about the centre-of-mass of the diquark in the total centre-of-mass frame. The

requirements that any bound state wave function and its derivative [37] must meet are

(a) <Po and w[jq must vanish at least at t =±oo and fi ==±oorespectively.

dt1>=- dW- .
(b) <Po, __D, w[j and ---.E3. must be finite and continuous.

d~ q dn

The symmetrized space wave function ofbaryon will be discussed explicitly in chapter 4.

2.4 THE SPIN WAVE FUNCTION

Spin is a quantum degree of freedom. It is a form of angular momentum, an intrinsic

angular momentum which is not associated with orbital motion. The spin angular momentum

is represented by the vector S and the quantum number for the spin angular momentum by the

letter s. The total spin angular momentum can be expressed in the form (see also [38]):

~ - ...... -s=s +S +S
1 2 3 (2.4.6)

for all the three quarks inside baryon.

A baryon is a bound triquark state with either spin- ~ or spin- 2 .Because in this work only
2 2

the baryon with the flavour configuration uud or udd is treated, spin- 2 will not be treated as
2
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it is suitable for flavour configuration uuu. When the spins of two quarks in a baryon couple

they either form a scalar diquark, S 12 = 0 or a vector diquark, S 12= 1 . Kobzarev et al. [39]

noted.that in the ground state, the baryon has an equa] probability of having either the scalar

or the vector diquark. The scalar diquark spin state is antisymmetric whereas the vector diquark

state is symmetric. In the case of the scalar diquark, the two quarks have opposite spin

whereas in the case ofthe vector diquark the spins are parallel. For the three-quark system there

are two kinds ofmixed symmetric states, the TI
1
-type and TI

2
-type constructed as follows (see,

for example [40]):

(i) the TI
1
-type state is constructed from coupling spins of quarks 1 and 2 to form a scalar

diquark which after coupling with spin of quark 3 the total spin S becomes

1 1
s=s ®s =o®-=-

12 3 2 2 (2.4.7)

In this state the spin wave functions are antisymmetric between quarks 1 and 2 but under the

interchange ofquarks 1 and 3 or 2 and 3, they are neither symmetric nor antisymmetric.

(ii) The TI
2

-type is constructed from coupling spins of quarks 1 and 2 to form a vector

diquark where after coupling with quark 3, the total spin S is

1 1
S = S ® S = 1 ® - = - (2 4 8)12 3 2 2 ..

In this state the wave functions are only symmetric in quarks 1 and 2 and there is no possibility

for a totally antisymmetric spin-state for the bound triquark state taking place. By considering

2x2x2=8

= 4 + 2 + 2, (2.4.9)

it is clear that there are 2 3 states in a baryon made ofidentical quarks because each quark can

be labelled as spin up or spin down. Equation (2.4.9) means that there are four symmetric

states, two mixed symmetric TI
1

-type and two mixed symmetric TI
2
-type states.
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For the coupling ofquarks 2 and 3 as well as 1 and 3 to fmm 5 23 and 5 13 respectively, the same

procedure is followed.

The spin-1 state has the symmetric triplet states:

S=l, M =1
5

ep;pin =
D

~( X 1 (1) X 1 (2) + X__1 (1) X 2:. (2) ) , S =1, M =0
f2 2 -2 2 2 5

X_2:. (1) X_2:. (2),
2 2

S=l, M =-1
5

(2.4.10)

where X 1 represents the spin up and X_ 1 represents the spin down. The spin-O state has the
2 2

antisymmetric singlet state:

~D5Pin = ~(x 1 (1) X 1 (2) - X__1 (1) X_1 (2)),
{2. 2 -2 2 2

S=o, M =0
5

(2.4.11)

(2.4.12)

In spin formalism using the Clebsch-Gordan coefficients and L = 0, eqns (2.4.10) and (2.4.11)

can generally be written as

~ 1 1
cI>::-D = LJ <--515215a>x (1) X (2)

2 2 51 525 1 5 2

where a = 51 + 52' 51 = 52 = +~ or -~ and X is the spin wave function of a quark.
2 2

Therefore the total spin wave function of the baryon is given in the fonn:

~ 1 1 1
'I'B= LJ <--515215a><5-a53IsM >X (l)x (2)x (3)

2 2 2 5 SI 52 53
5 1 5 2 5 3°

where

1
5 + 5 + 5 = a + 5 =M and 5 =-123 35 32

Since the diquark is either a scalar or a vector, eqn. (2.4.13) becomes

(2.4.13)

(2.4.14)
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. 1
'¥sBPln (12, 3) 1 = - [2X 1 (1) Xl (2) X ~ (3) -X~ (1) X_~ (2) X~ (3)

/6 2 2 2 2 2 2

-X_~(1)X~(2)X~(3)]
222 (2.4.15)

where the subscript 1 refers to the vector diquark and the state (12,3) refers to the diquark-

quark system comprised of the diquark, (12), and a- quark 3. For the scalar diquark eqn.

(2.4.13) becomes

. 1
,¥~Pln(12,3)o=n2 [X~ (l)x_~ (2)x~ (3) -X_~ (l)X~ (2)x~ (3)]

v~ 2 2 2 2 2 2

(2.4.16)

where the subscript 0 refers to the scalar diquark. On exchange of the diquark constituent,

that is, quark 2 with quark 3, eqn. (2.4.13) becomes

-X_~(1)X~(3)x~(2)]
222 (2.4.17)

when the vector diquark is taken into account and

. 1
,¥~Pln ( 13, 2) 0 = - [X 1 (1) X_ 1 (3) X 1 (2) - X_ 1 (1) X 1 (3) X 1 (2) ]

{2 2 2 2 "2 2 2

(2.4.18)

when the scalar diquark is considered. The next exchange of the diquark constituent, that is,

quark 1 with the external quark 2 in a baryon changes eqn. (2.4.13) into the form

,¥~Pin (32, 1) 1 = ~ [2x 1 (3) X 1 (2) X_ 1 (1) - X 1 (3) X 1 (2) X 1 (1)
/6 2 "2 2 2 -2 2

(2.4.19)

for the vector diquark and
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\lfspin(32,1) =~[Xl (3)X 1 (2)Xl (1) -X_l (3)Xl (2)Xl (1)]
B 0 {2 2 -2 2 2 2 2

(2.4.20)

for the scalar diquark.

2.5 THE FLAVOUR WAVE FUNCTION

Baryons occur in groups or multiplets of like masses in which the particles differ with

respect to charge. The isospin is denoted by T. The z-component of the isospin, MT , is

quantized according to

M
T

= T, T-l, ... , -T (2.5.21)

The main purpose ofisospin formalism is to allow u and d quarks to be considered as identical

particles with respect to mass (see also[ 41D. According to elementary group theory, the three

fundamental multiplets (representations) of SU
F

(3) (F for flavour) can be given by (see also

[42]:

3x3x3=1O+8+8+1 (2.5.22)

The relation (2.5.22) indicates that there are 10 symmetric states, 8 mixed symmetric III -type

and 8 mixed symmetric Il 2 -type states. The III -type is antisymmetric and Il
2
-type is symmetric

under the exchange ofquarks 1 and 2. In eqn. (2.5.22) 1 represents a totally antisymmetric state

under the exchange of any pair.

Therefore

uu

for the vector diquark and

~lavour =
D

1
- (ud+du)
{2

dd

(2.5.23)



for the scalar diquark.

For the III -and Il2 -types

~lavour =
D

13

1
- (ud - du)

12.
(2.5.24)

and

1
Ipflavour = _ (ud - du) u

B 12 (2.5.25)

(2.5.27)

1
Ip~lavour = f6 [ (ud + du) u - 2uud] (2.5.26)

respectively. By analogy with spin wave function the following, for the bound states (12), (13)

and (32), can be found:

IpBflavour ( 12 I 3) 1 =~ [2 ~ 1 (1) ~ 1 (2) ~ _ 1 (3) - ~ 1 (1) ~ _ 1 (2) ~ 1 (3)
{6 2 2 2 2 2 2

-~-2 (1) ~2 (2) ~2 (3)]
222

Ipflavour (12, 3) =~ [ ~ 1 (1) ~ 1 (2) ~ 1 (3) - ~ 1 (1) ~ 1 (2) ( 1 (3) ]
B 0 02 -2 --2 -2 - -

V~ 2 2 2

(2.5.28)

Ipflavour ( 13 I 2) =~ [2 ~ 1 (1) ~ 1 (3) ~ 1 (2) - ( 1 (1) ~
B 1 f6 2 2 -2 2

-~ l(1)(l(3)~1(2)]
-2 2 2 (2.5.29)

Ipflavour ( 13 I 2) = ~ [ S 1 (1) ~ 1 (3) S 1 (2) - S 1 (1) S 1 (3) S 1 (2) ]
B 0 12 2 -2 2 2 2 .2

(2.5.30)

and

-~ 1(3)(l(2)~l(1)]
-2 2 2 (2.5.31)
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wfl avour ( 32 , 1 ) =~ [ ~ 1 (3) ~ 1 (2) ~ 1 (1) - ~ 1 (3) ~ 1 (2) ~ 1 (1) ]
B 0 {2 2 -2 2 -2 2 2

(2.5.32)

2.6 THE PROJECTIONS IN SPIN-FLAVOUR SPACE

The projections in spin-flavour space are calculated as follows

p = <'¥~ (1 , 2, 3) Q9 '¥~ (1 , 2, 3) I'¥~ (3, 1 , 2) Q9 '¥~ I ( 3, 1, 2 ) >

= <'¥~ (1 , 2, 3) I'¥~ I ( 3, 1, 2 ) ><'¥~ (1 , 2, 3) I'¥~ I ( 3, 1, 2) >

1 1 1 1
t- - S -

= ss/EE I 2 2 2 2

°ss 10tt I

S
1 Si T

1
t l- -

2 2

(2.6.33)

where

1 1
- - S

<'¥~ (1 , 2 , 3) I'¥~ I ( 3, 1, 2 ) > = - SS I
2 2

1
°SSI

S - Si
2

and 1 1
- - t

. I t I ~ ~ I 2 2
<'¥~ (l, 2, 3) '¥B (3, 1, 2) > = -t t

1 °tt l

T - t l

2

(2.6.34)

(2.6.35)

where the Wigner 6j [43] symbols are defined by

~ lZ}
J 23

(2.6.36)

For the scalar and the vector diquark basis functions, the following matrix elements can be
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(2.6.38)

(2.6.39)

(2.6.37)

(2.6.40)

obtained by using eqns. (2.4.15) through (2.4.20):

<W~(12,3)lIW~/(31,2)l>= - ~ 0ssl

1 .f3
<W~ (12, 3) 1 IW~ (31, 2) 0> = 2'"" 0ss 1

<W: (12, 3) 0 IW~ 1 ( 31 , 2) 0> = ~ 0 ss 1

1 .f3
<W~ (12, 3) 0 IW~ (31, 2 ) 1> = 2'"" 0 ss 1

with analogous expressions holding for the isospin functions and for the (231) permutation. In

the case of central spin-independent potentials, the spin/isospin wave function will be a

symmetric mixture ofvector and scalar basis functions. That is

w(S,t) (1 2 3)
B "

(2.6.41)

Using eqns. (2.6.37) through (2.6.40) and the identical results for the isospin matrix elements

it is easy to show that

<w (s, t) (1 2 3) Iw(s , t) (3 1 2) > = 1
B " B "

(2.6.42)

Indeed, this must be so, because for a SYmmetric basis function any cyclic permutation maps the

basis function onto itself

2.7 THE COLOUR WAVE FUNCTION

The force between quarks originates as a result ofthe interaction between colour charges.

Colour theory assumes that any quark inside a baryon can take on one of the three different

colours, namely red (R), green (G) and blue (B). The baryons are colour singlet, that is, they

are colourless. The colour part of the baryon (Dq) wave function is therefore [44]
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1 -
'¥ = - (RR + GG + BB) (2.7.43)

colour /3
This equation means that the diquark colour wave function is an anti-triplet. There are six ways

ofmaking a symmetric combination oftwo colours and three ways offorming an antisymmetric

combination (anti-triplet) (see also [20]). In other words any pair is in the J" and is

antisymmetric. The six symmetric combinations are

RB + BR.; RG + GR; BG + GB; RR; GG; and BB

and the three antisymmetric combinations are

BR - RB; RG -GR and GB - BG.

(2.7.44)

(2.7.45)

In qq system the state "3" indicates that indeed a diquark acts like an antiquark in colour space.

In qqq system

qqq = 10 + 8 + 8 + 1 (2.7.46)

The singlet state 1is an indication that qqq system is the physical system ofbaryons and it must

be borne in mind that there are the only physically observed states. It must be noted that any

pair of quarks can have spin = 0 or 1 and SU (3) flavour = "3" or 6. Here 0 and 3" are

antisymmetric and 1 and 6 are symmetric under interchange ofthe labels. If the qq structure of

a diquark D is considered, eqn.(2.7.43) becomes (see also [20, 44])

'¥qqq =~{~ (GB-BG) R +~ (BR-RB) G +~ (RG-GR) B}
Colour /3 {i {i {i (2.7.47a)

This equation is allowed and required by colour confinement and can be generalized as [45J

'¥c= ~6LE.'iklqliq2kq31' (2.7.48b)
v v ikl

where E.' i kl is the permutation symbol defined by E.' i k1 = +1 if i, k, I is an even permutation

of 1, 2, 3 or E.' i k1 = -1 if any two of the subscripts i, k, I is an odd permutation of 1, 2, 3 or

f i kl = 0if any two of the subscripts i, k, I are equal. For example



17

r 123 =r 231 =r 312 =1 and r 213 =r 132 =r 231 =-1. This colour singlet consists of a triplet

combined with an anti-triplet. This equation is totally antisymmetric under exchange of any two

identical quarks and totally symmetric under a cyclic permutation. Any pair inside the baryon

is in the"3" and is antisymmetric. The remainder of the wave function must therefore be totally

symmetric under exchange. The colour R, G or B ofa quark can be represented by the so called

colour spinors, namely (see also [38], [45])

Cl=R=[~)' C2=G=(~)' C3=B=(~) (2.7.49)

It must be noted that the colour wave functions are acted upon by the so-called colour

operators. Eight independent colour operators are identified as follows (see also [38], [45]):

~ 1
C=-A.

2 ~
( i = 1, 2, 3, ... , 8) (2.7.50)

with

(2.7.51)
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3 SCHRODINGER EQUATION FOR THE DIQUARK-QUARK SYSTEM.

3.1 INTRODUCTION.

The Schrodinger equation is required in this work to generate the data for the space wave

function and to detennine the energy eigenvalue by the search method for both diquark and

diquark-quark systems. The treatment of the motion of quarks inside baryons is an example of

a few-body problem. In such systems each quark interacts with all the others. If the forces

acting between these quarks are known then the Schrodinger equation of their motion can be

written down.

A quark of constituent mass, m , moving in a field of spherical symmetry, obeys the
q

Schrodinger equation for a stationary state:

H'P ( r, e, &) = E'P ( r, e, & )

where H is the Hamiltonian operator written as

11 2

H = -_V2 +V (r)
2m

and 'P (r, e, &) is the wave function of the quark dependent on r, e and &.

For three particles, equation (3.1.1) generalizes to

112 3 v~ 3H=--L-+L V(r ij )
2 i mi l=i<j

(3.1.1)

(3.1.2)

(3.1.3)

where V ( r .. ) is a central potential which is dependent on the relative distance only. ThelJ

Jacobi coordinates for three bodies are given by (see also [40, 46, 47]):

~=r2-r\

2 r +rfi=_(r-_1_ 2)
{3 3 2

and

R- 1 (- - -= - r +r +r )3 1 2 3

(3.1.4)

( 3.1.5)

(3.1.6)

where ~ is the separation vector between any two chosen particles, fi is the separation vector
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between spectator quark and the centre-of-mass of the diquark system and Ris the relative

coordinate of the centre-of-mass of the diquark-quark system.

3.2 CENTRAL POTENTIALS

A range of central potentials have been used in this work to balance the opposing

requirements .of mathematical convenience and physical realism. They depend on the

coordinates of the system only. In other words, consideration is given to the motion of three

quarks inside a single baryon which are subject to forces that depend on the positions between

two quarks and between diquark and a quark. In the three-body problem, the central potential

energy in eqn.(3.1.3) for the three identical quarks, is written in the form (see also [47]):

3

V= L V(r.)
l=i<j lJ

(3.2.7)

where (see also [46, 48])

1.... 13 ....
=--s+_V_-'I')

2 2

and

1.... 13 ....
= --S-_V-'I')

2 2

Four central potentials are employed in this study:

(a) Bhaduri potential [49],

(b) Cornell potential [50],

(3.2.8)

(3.2.9)

(3.2.10)



(3.2.11)
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(c) Martin potential [51] and

(d) Quigg potential [52].

These potentials are discussed in the subsections below.

3.2.1 Bhaduri potential.

The central potential that will be used with the Schrodinger equation is given by

A
V -= -- +Br .. -D

qq r. . :LJ
:LJ

This potential has been used by Bhaduri, Cohler and Nogami. It is sometimes called a "

Coulomb- plus-linear" potential [53] because it rises linearly in r at large distances and it is

coulombic in r at short distances .The potential was proposed to generate the spectra of

mesons. From the Lipkin rule [54,55,56], the qq interaction is half as strong as the V ­
qq

potential in mesons [57, 58, 59]. This assumption is not rigorously justifiable although

compatible with the experimental results on baryons. That is,

1
V = -V-

qq 2 qq

where V - is given by eqn. (3.2.11).
qq

(3.2.12)

Equation (3.2.12) gives the relation between the quark-antiquark and the quark-quark

potentials. The shape of a typical qq potential is shown [60] in fig. 3.1.
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v

o R

Fig.3.1 A funnel-like potential.

where V denotes the potential and R denotes the relative coordinate of either the diquark or the

diquark-quark system. This ~tential is named a funnel-like potential because of its shape. The

relation between the diquark-quark potential and the quark-quark potential is analogous to eq.

(3.2.12):.

V- =2V =V -
Dq qq qq

where V andV - are given by eqns. (3.2.11) and (3.2.12) respectively.qq qq

Equation (3.2.13) describes a two-body potential.

3.2.2 CORNELL POTENTIAL

(3.2.13)

This potential has the same form as that used by Bhaduri, that is, eqn.(3.2.11), and the

difference is only in the parameters [50]. Eqns.(3.2.12) and (3.2.13) are also used for this

potential.
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3.2.3 MARTIN POTENTIAL

The power law potential

. V (r) =A + Br J3 (3.2.14)

has been proposed by Martin for mesons [51]. Later on, Richard and Taxil [59] applied this

potential to baryon spectroscopy. In this work the parameters which were used by Richard and

Taxil have been adopted and are discussed in chapter 6. Eqns. (3.2.12) and (3.2.13) are still

applicable to this potential.

3.2.4 QUIGG POTENTIAL

Quigg and Rosner proposed the potential of the form [52]

V-=Aln(Br)
qq (3.2.15)

where A and B are the adjustable parameters. This equation was also used by Lipkin [53] in his

analysis. Eqns.(3 .2.12) and (3.2.13) are similarly used for this potential.

3.3 KINETIC ENERGY OPERATOR.

The laplacian operator for the three identical quarks in eqn. (3.1.3) can be written as

(3.3.16)

for the three-body problem. By using the Jacobi coordinates eqns. (3.1.4) through (3.1.6) and

the chain rule method, the following is obtained

-- at -- ail -- aR --
V1 = -a .V~ + -a .V

Il
+ - • VRr 1 r 1 ar1

(3.3.17a)
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- - 1 - I-V =-'1 --V +-'1
2 ~{3n 3 R

and

- 2 - I­V =-'1 +-'1
3 (3 n 3 R

On squaring eqns. (3.3.17a) through (3.3.17c) the following are obtained

'12 = '12 +~ '12 +~ '12

1 ~ 3 n 9 R'

'12 = '12 +~ '12 +~ '12

2 ~ 3 n 9 R

and

Therefore on adding eqns. (3.3.18) through (3.3.20), eqn. (3.3.16) becomes

3 1
"'12 = 2'12 +2'12 + _'12

f:11 ~ n 3 R

(3.3.17b)

(3.3.17c)

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

In this work, the motion of the baryon is ignored but the motion of the quarks inside a single

baryon is taken into account. Therefore the factor ~V~ is dropped in eqn.(3.3.21) and this
3

leaves

This operator gives the kinetic energy operator of the baryon as

h2 3 '12
h2

T = --L _1 = -_ ('12 +'12 )
B 2 i=l m. m ~ II

1

where m = m
1

= m
2

= m
3

is the mass of the quark.

3.4 VlRIAL THEOREM

For the stationary state, the virial theorem is written in the form (see also [61])

(3.3.22)

(3.3.23)

1 _ -
<T> = 2"<r. W> (3.4.24)

The quantity ~ <r. W> is called the virial of the particle(s). When the forces are central and

conservative, eqn.(3.4.24) becomes
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1 dV
<T> = -<r->

2 dr
(3.4.25)

The virial theorem is applied in the calculations ofboth the diquark and diquark-quark systems

without effecting antisymmetrization.

3.5 RADIAL SCHRODINGER EQUATION

The Schrodinger equation is used with a range of central potentials discussed in section

3.2 to determine the wave functions for both diquark and diquark-quark systems in a non-

relativistic approximation. For spherically symmetric potentials, the angular part of the

Schrodinger equation is separable from the radial part. In this section the radial equation for

the central potentials is discussed. Eqn (3.1.2) can be written as

2 2m
'\1 W + - (E - V (r) ) W = 0 (3.5.26)

'h2

for a spherically symmetric potential where '\12 is the Laplacian operator, E is the energy

eigenvalue and V(r) is the central potential. By letting W to be the function, W(r , e, S) , the

following can be obtained.

'\12w = ~_a_2_ (rW) + __l a_ (sine_a_w) +
r ar 2 r 2sine ae ae

(3.5.27)

The solution of the Schrodinger equation can be separated by standard techniques [62], as

follows.

If

and

then

W(r,e,S) = R(r)Q(e,S)

2m
F(r) = -[E-V(r)]

h2

(3.5.28a)

(3.5.28b)
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=_~{ 1 ~(sineaQ)+ 1 a
2Q}

Q sine ae ae sin2e ae2

(3.5.29)

Eqn.(3.5.29) leads to [62]

and

1 d 2 ~
--'-(rR)+[F(r)--]R=O
r dr 2 r 2

(3.5.30)

1 ~ (sine aQ) _ 1 a
2
Q = ~Q (3.5.31)

sine ae ae, sin2 e a&2
Eqs (3.5.30) and (3.5.31) are called the radial and the angular equations respectively. In order

to yield permissible solutions

~=1(1+1) , 1=0,1,2, ... (3.5.32)

where I is the orbital angular momentum which determines the angular part of the wave

function. The values ofl do not depend on the shape of the central potential, V(r). Therefore

eqn.(3.5.30) can also be written as [62]

_ 'h
2
£(rR) +V(r) (rR) + 'h

2
1(1+1) (rR) =E(rR)

2m dr 2 2m r 2

(3.5.33)

IfU(r) = r R(r), which is called a reduced wave function, and 1=0, eqn.(3.5.33) is much simpler

to solve than eqn (3.1.1) and has the form of one-dimensional Schrodinger equation but differs

as follows [63]:

(a) the variable r, ranges from zero to infinity whereas x is considered from the negative

infinity to the positive infinity.

(b) the radial wave function, R(r) is finite at the origin following the condition that U(O) = 0,

where R (r) = U (r )
r
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4 THE SINGLE CHANNEL CASE

4.1 INTRODUCTION

This chapter treats the single channel case only, the coupled channel case being discussed

in chapter 5. In the single channel case only one spin state of the diquark is considered, that is,

either the scalar diquark or vector diquark. These are respectively the spin-O and spin-l

channnels. Ifthe two channels are simultaneously considered then the coupled channel case is

obtained. In this study numerical calculations are performed only in the single channel case.

However the algebraic expressions for the coupled channel case are derived in chapter 5.

It has been shown in chapter 2 that the total baryon wave function in a non-relativistic

independent quark model consisting of four factors, namely colour, flavour, spin and spatial,

must be totally antisymmetric under an exchange of any two quarks. The main aim of this

chapter is to discuss and derive the spatial component '¥B ( ~ , fi) of the operator kernels

effecting the antisymmetrization.

4.2 MEAN SQUARE RADIUS

Ifthe volume density of a system is p, the mean square radius is given by

fpr2d3r
<r 2> = ..::..-::--__

fPd 3
r

where r is measured relative to the centre-of-mass ofthe system.

(4.2.1)

For a two-quark system, p (r) is expressed in terms of the wave function <P. Therefore

p (r) = fl<p (r
1
-r

2
) 1

26 (r-r
1

) 6 (r
1
+r

2
) d 3r1 d 3r2

+flc;P(r -r) 1
26(r-r )6(r +r )d 3 r d 3 r1 2 2 1 -2 1· 2 (4.2.2)

Since the condition 6 (r1 +r 2) = 0, is imposed to remove the centre-of-mass, the equation

r 1 = - r 2' holds. Therefore
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p(r) =21<t>(2r)1 2

By substituting eqn. (4.2.3) into eqn. (4.2.1), the following is obtained

f l<t>(2r) 12r2d3r
<r 2> = -=-- _

fl<t> (2r) 1
2d 3r

Therefore the root mean square (r.m.s) radius can be written in the form

4.3 EXPECTATION VALUES WITHOUT ANTISYMMETRIZATION

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

In Quantum Physics, mathematical operators play a central role. An operator is considered

to be some instruction that when applied to a function, changes it into another function. In this

thesis an operator 6 is designated by the small circumflex over it. In order to calculate the mass

of the baryon the expectation value of the operator 6 must be defined. Two postulates of

quantum mechanics [63] are:

(i) the average of a large number of measurements of the observable 6 of which 6 is the

operator and <t> is the wave function is given by

A f<t>*6<t>d 3 r
<O>=~--­f<t>*<t>d 3 r

(4.3.7)

(ii) the product of <t>*<t> is a measure of the probability that the particle with state function

<t> can be found at the position r ofconfiguration space, that is, <t> *<t> is a measure of particle

density at r.
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Eqn. (4.3.7) is called an expectation value of operator O. Therefore from eqn. (4.3.7) the

expectation value of the potential energy for both the diquark and the diquark-quark systems

can be respectively given by

and

where ~ and Ii are defined in eqns.(3.1.4) and (3.1.5).

(4.3.8)

(4.3.9)

The expectation value ofthe kinetic energy for both the diquark and the diquark-quark systems

are also given by means ofthe Virial theorem

and

(4.3.10)

<T- > =Dq

1. dV- (n)
2 f \¥nq (Ii) n ~n \¥nq (Ii ) d 3n

f\¥iq (Ii) \¥nq (Ii ) d 3n
(4.3.11)

where <Tn> and <Tnq> are generally defined in eqn. (3.4.25).

4.4 EXPECTATION VALUES WITH ANTISYMMETRIZATION

4.4.1 Operator kernels for diquark models of baryons

If the coordinates of the identical quarks 1,2 and 3 in a baryon are specified as rl' r2

and f 3 then the coordinates ofthe centre-of-mass ofthe two-body substates 12, 13, and 23 are
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given by

.... 1\ +r 2
R

12
=

2

.... r
1
+r

3R
13

=
2

and

.... r
2
+r 3 (4.4.12)R

23
=

2

In the centre-of-mass the coordinates r l' r 2 and r 3 obey the condition that

r +r +r =0
123

(4.4.13)

This condition represents the centre-of-mass at rest. In the diquark model the spatial wave

function must be in the following form:

(4.4.14)

where ~ and il are given by eqns. (3.1.4) and (3.1.5). Therefore the expectation value for the

operator 0 as given by eqn. (4.3.7) becomes

f'P; (t il) O'{JB (t il) d 3~d 3n
<0> = (4.4.15)

<1>
for the baryon where <i > is the normalization. By taking into account the effects of exchange

between the diquark pair and the external quark, the expectation value of the operator 0 is

defined as

f'Pi (X)<P-6(~)o(X-il)OA[<Pn(~)o(X/_fi) ]'P- (X/)d3~d3nd3Xd3xl
<0> = q SYITl.... Dq

<1>
(4.4.16)

- -I
If Ko (X, X ) is defined by
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(4.4.17)

then

J'¥~ (5b K· (X XI) '¥- (X I) d 3Xd 3X 1
Dq 0 I Dq .

<0> = (4.4.18)
<1>

where Ko (X I Xl) is the operator kernel, A is the antisymmetrization operator and 0sym is the

symmetrized fonn of the operator O.

To make eqns.(4.4.15) and (4.4.18) equivalent, eqn.(4.4.18) needs to be divided by the

- -Iexpectation value ofthe nonn kernel Ki (X I X ) . There are two parts to any operator kernels -

direct and exchange. The capital letters D and E will be used for the direct and exchange parts

respectively.

4.4.2 The norm kernel

4.4.2.1 The direct part of the norm kernel

Equation (4.4.17) becomes

KiD (X, XI) =J~ (~) 0 (X -fi) et>o (~) 0 (X 1-fi) d 3 ~d 3n

= o(X-X /)J~(~)et>o(~)d3~

for the unnormalized 4>n (~) .

4.4.2.2 The exchange part of the norm kernel

Equation (4.4.17) becomes

Ki
E (X I Xl) =2J~ (~) 0 (X -fi ) et>o (t) 0 (X 1-fi I) d 3 ~ d 3n

2 3 * 2-1 1- 1-1 2-
= 2 (-) et>o (I -X +-XI) <I>::c (I -X +-X I)

{3 {3 {3 D {3 {3

(4.4.19)

(4.4.20)
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where the factor 2 arises from the equivalence of the (13) and (23) permutations in

even parity ~tates. The variables ~ I and nI

1.... !3 ....= __ ~+_V_Jn

2 2

and

!3.... 1 ....= __VJ~ __n
2 2

(4.4.21)

(4.4.22)

These coordinates describe the exchange between quark 2 and quark 3 in a diquark and a

diquark-quark respectively.

4.4.2.3 The expectation values ofthe norm kernel

The expectation values of the direct and exchange parts of the norm kernel are

respectively

and

(4.4.23)

where

(4.4.24)

(4.4.25)
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4.4.3 The potential energy kernel

4.4.3.1 The direct part of the potential energy kernel

Equation (4.4.17) must now be written in the fonn

K D (X, XI) = f~ (~ )0 (X -fi )L V ( r i . ) ~ (~ ) 0 (X I-fi )d 3 ~ d 3f]
Y D i<j J

= 0 (X ~XI) {f~ (~ )V ( ~ )~ (~ ) d 3 ~

+ 2N(~)Vn r;x+ ~~I)<l>o(~)d3~}

or

K:(X,X /) =O(}C-X/){f~(~)VD(~) ~(~) d3~

+2f~(~)V(1 r;x- ~~I)<l>o(~)d3~}

which implies that eqns (4.4.26) and (4.4.27) are equivalent.

4.4.3.2 The exchange part of the potential energy kernel

Equation (4.4.17) takes the fonn:

Ky
E (X, XI) = 2f~ (~) 0 (X-fi) fu V (rij)~ (~) 0 (X I-fi/) d 3~d 3f]

= 2 (2.) 3~ ( I 2.xI +~X I )~ ( I~X 1+ 25( I )
{3 0 {3 {3 0 {3 {3

(4.4.26)

(4.4.27)

{
2-/1- 1-/2- l-/l-}

V ( I-x + -x I ) + V ( I-x + -x I ) + V ( I-x - -x I )
{3 {3 {3 {3 . {3 {3

(4.4.28)

for the exchange tenn for the potential energy kernel and the factor 2 has the same meaning as

in section 4.4.2.2.
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4.4.3.3 The expectation values of the potential energy kernel.

The expectation values for the direct and exchange terms are respectively expressed

.in the following forms

<KyD(X,X
/
» =f'¥~ (X)~(~)Vj)(~)<Po(~)'¥j) (X)d3~d3X

. q q

+ 8n2f'¥~ (X)~(~)tI>-o(~)'¥j) (X). q q

{V( I J3x-~~ I) +V( I ~~+ J3XI )}~2X2d~dXd]1
2 2 2 2

(4.4.29a)

or

<KV
D(X, Xl) > = f'¥~q (X)~ (~ ) Vj) ( ~ )~ ( ~ ) '¥j)q (X) d 3~ d 3X

+ 16n2f'¥~q(X)~(~)V( I ~~+ ';XI )~(~)'¥j)q(X)

~2X 2d~dXd]1 (4.4.29b)

or

<Ky
D (X,X I) > = f'¥~q (X)~ (~) Vj) (~) ~ (~) '¥j)q (X) d 3~d 3X

+ 16n
2f'¥~q (X)~ ( ~ ) V (I ~ ~ - ';X I)<Po ( ~ ) '¥j)q (X)

~2X 2d~dXd]1 (4.4.29c)

where ]1 = ~. X and
~x

{
2-/1- 1-/2- 1-/1-}V( I-X +-XI) +V( I-X +-XI) +V( I-X --XI)

J3 J3 J3 J3 {3 J3

(4.4.30)
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4.4.4 The kinetic energy kernel

4.4.4.1 The direct part of the kinetic energy kernel

The direct term for the kinetic energy kernel is given by

KD (5{, XI) = -~J~ (~) (5 (X - il) (2V; + 2'12
) <Po (~) (5 (X 1_ il) d 3 ~ d 3n

T 2rn D ., Il
g

= - ~2 (5(X-X/){Jq,i(~)'1~<Po(~)d3~ -'1~Jq,i(~) ~(~)d3~}
g

(4.4.31)

where the expression 2'1~ +2V~ is defined in eqn.(3.,3.22).

4.4.5.2 The exchange part of the kinetic energy kernel

The exchange term of the kinetic operator kernel is given by

K
T
E(X, XI) = - 2 ~2 J~ (.~) 0 (X -fi) ('1~ +'1~ ) <Po (~ I) (5 (X -ill) d 3 ~ d 3n

g 2 .

-~J~ (~) (5 (X-il) ('12 +'12 +'12 /+'12
/) <P-:c (~/) (5 (X I-fi/) d 3~d 3nrn D ~ I1 ~ Il D

g

(4.4.32)

After some algebra, eqn. (4.4.32) becomes

KTE(X,X /) = -~ (..3-)3J~( I~x/+..3-xl )'12 <P-:c ( I ~X+..3-X/I)
rng /3 1D /3 /3 D /3 /3

2* 1- 2-1 1-/2-+ V ~(I-X+-X I )<1J:,(I-X +-X I)
XD f3 f3 D f3 f3

2 * 1 - 2 -I 1 -I 2 - }+'1 /~(I-X+-X 1)<1J:,(I-X +-XI)
XD f3 f3 D f3 f3

(4.4.33)
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4.4.4.3 The expectation values of the kinetic energy operator kernel

The expectation values for eqns. (4.4.31) and (4.4.33) are respectively

<KTD(5Lx/»= - ~2 JlIliq(X)~(~)V~<Prs(~)1I1Dq(X)d3~d3X
q

and

<K E (X, XI) > = 8rr2JlIl~ (X) KT
E (X, XI,)l) lIl-

D
(X I) X 2 (X I) 2dXdX Id)l

T ~ q

-> ->1
where K

T
E (X, X ,)l) is given by eqn. (4.4.33).

4.5 FORM FACTOR

4.5.1 INTRODUCTION

The form factor is defined as [40]

(4.4.34)

(4.4.35)

(4.5.36)

where p (r) is the charge density normalized to unity and Cl is the wave number vector, that

is

For a point distribution,

F (q) = 1

(4.5.37)

(4.5.38)

For a spherically symmetric uniform charge distribution, p (r) = Po' with a charge edge at r=R

the form factor, eqn.(4.5.36), becomes [40]

4rrpo
F(q) = --(sin(qR) -qRcos(qR))

q3

For a smooth charge distribution [40]

3
P (r) = l:-e).lr

8rr

, where )lis a constant, the form factor, eqn. (4.5.36) becomes

(4.5.39)

(4.5.40)
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2

F (q) = (1 +~) -2 (4.5.41)
• }.12

Equation (4;5.41) is called the dipole form factor. Taking }.12 = O. 71GeV 2 [64] gives good

agreement with the proton experimental form factor, 0.83 fin [64]. To take into account the

low- q 2 contribution of the mesons, the monopole form factor is defined as [64]

0 2

F(q) =--
02+ q 2

where 0 = 0 . 795 GeV [64].

(4.5.42)

To account for the dressing by a meson cloud, the monopole meson term [64]

0 2
F (q) = FEquark (q) (4.5.43)

02 +q2

can be considered, where FEquark ( q) is the electric form factor to be numerically calculated

in chapter 6. Equation (4.5.43) describes the bare-constituent quark model with meson cloud.

4.5.2 FORM FACTOR WITHOUT ANTISYMMETRIZATION

To calculate the form factor for the diquark-quark system, the spherical Bessel

function [65] will be used as the operator. This is defined by

j 1 (x) 0 ~ IT J 1 (x I
2x 1+"2

= (-x) 1 (~~) 1 sinx
x dx x

In this study 1=0 and x = q 0\ - R) and therefore eqn. (4.5.44) becomes

sin (ql r\ - RI )
jo (q (1\ - R)) = ------

q/r\ -RI

From eqns. (3.1.5) and (3.1.6) the following can be deduced

- R- 1 -r - =-ll
1 {3

(4.5.44)

(4.5.45)

(4.5.46)

The form factor for the diquark-quark system is therefore defined by the following equation:
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4.5.3 FORM FACTOR WITH ANTISYMMETRIZATION

4.5.3.1 The norm kernel

(4.5.47)

The direct and exchange norm kernels are respectively given by eqns. (4.4.23) and

(4.4.24).

4.5.3.2 The form factor operator kernel

Here the operator kernel is given by

3 sin...2L Il sin...2L Il
1 sin ...2L Il

11L sinql i\ -RI
i = f3 + f3 + f3

q!r\-R! ...2L Il ...2L Il
1 ...2L Il

1f

f3 f3 f3

4.5.3.2.1 The direct term

(4.5.48)

The direct term for the form factor operator kernel and its expectation value are

respectively given by

(4.5.49)

and
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4.5.3.2.2 The exchange term

The exchange term ofthe form factor operator kernel and its expectation value are

calculated as follows:

(4.5.51)

and

E -> -> 1 64rr
2 f * - * 2 - 1 1-<K (X, X ) > = -- \¥- (X) <1>- (-X +-X)

F . 3{3 Dq D {3 {3

q 1 q - -I
sin-X sin-IX+X I

{3 {3
-----''---- + --"'-----

3.-x -q Ix+X 11

{3 {3

<P::- (~X 1+ 2 X)\¥_ (X I) X 2 (X I) 2dXdX Idp
D{3 (3 Dq

By integrating eqn. (4.5.36) over angles, it can be found that [66]

f sinqr 2dF(q) =4rr p(r)---r r
o qr

where q is equal to the 3-momentum transfer.

(4.5.52)

(4.5.53)

F (q) is a three-dimensional Fourier transform of a charge distribution in space. The charge

density p (r) may be obtained from the inverse Fourier transform [66]:

p (r) = _l_jF (q) sinqr q2dq
2rr2

o qr

Equation (4.5.36) can again be simplified to give [66]

1
F(q2) =1-_<r 2>q2+---

6

(4.5.54)

(4.5.55)

Differentiating eqn. (4.5.55) with respect to q 2 and taking the limit as q 2 - 0, the following

is obtained
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Therefore [40]

2 6 lim dF(q2)
<r>=- 20q -. d q 2

For a very small q, the mean square radius is therefore

<r2>;::< -6 F(q2) :-F(O)
q2_0

(4.5.56)

(4.5.57)

=_6 F (q2)-1 (4.5.58)
q2

From this equation the root mean square radius can be calculated by taking the limit of q tends

to zero, namely q = 0 . 1, and substitute into eqn. (4.5.58 ). The experimental value of the root

mean square radius for the proton ,(uud), is 0.83 fin [64].

4.6 THE HARMONIC OSCILLATOR

The harmonic oscillator used in this work is just to test whether the diquark model behaves

properly or not. If the size for the diquark is assumed and the symmetrical oscillator

Hamiltonian is used, then the following are true (see, for example [67, 68]):

3 '})2
V(Lri) = (~2+n2)

2 mb 4
(4.6.59)

and
3 3

ex 2 ex2 ex 2 ex2
_ 1 (1~2) 2 2 :'- -exp --.., -exp(--n)

~ 2 ~ 2
rr 4 rr 4

(4.6.60)

These equations imply that

-+

~(~)

3

ex 2 ex2
_ 1 1 2- -exp (--~ )

~ 2""
rr 4

(4.6.61)
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and

with

40

3

2 2
0'2 0'2 2

'¥- = -exp (--I) )
Dq ~ 2

rr 4

(4.6.62)

(4.6.63)

(4.6.64)

where 0'1 is free and O'~ = 2~ with b being the size of the diquark and has the dimension
2 b 4

of length. The direct and exchange terms for the harmonic oscillator are calculated in the

following subsections:

4.6.1 The direct term of the harmonic osciUator

The direct term can be calculated as
3

- - I - - I 0', f 3 ",-2V[jD (X, X ) = 6 (X-X) _- n (~2+x 2) exp (_0'2~2) d 3~
~ 2 rob4 1

rr 2

= 2~6(X-X/) (X2+2~) (466).. 5
2 rob 4 2 0'1

Ifthe diquark size is small then 0'1 is large and so ~ term contributes very little. Therefore
0'2

1

eqn. (4.6.65) becomes

(4.6.66)

4.6.2 The exchange term of the harmonic osciUator

The exchange can be deduced as follows:
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(4.6.67)

After a little algebra and the use ofL'Hospital's rule, eqn. (4.6.67) reduces to

(4.6.68)

The expectation value for BB as a function of a diquark size is therefore determined as

(4.6.69)

Similarly for the diquark-quark potential the following is obtained

3 ~2 9 ~2 1
<Ho> = -ex;- + ---- (4.6.70)

q 2 ID 4b 4 ID ex2
2

Therefore from eqns. (4.6.69) and (4.6.70) the expectation value of the Hamiltonian for the

baryon can be calculated as

(4.6.71)

for ex .... 00 and ex .... 00
1 2·

Eqn. (4.6.71) is also the expectation value of the direct part of the kernel.
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5 THE COUPLED CHANNEL CASE

5.1 INTRODUCTION

In the case ofa coupled channel approach, both possibilities ,that is, 5
12

=0 and 5 12 =1

are simultaneously taken into account. In such a model it is possible to distinguish, for example,

between different members of the N -I::. multiplet as opposed to averaging over the multiplet.

The aim of this chapter is to discuss the effect of antisymmetrization in the diquark models of

baryons when both possibilities are simultaneously considered. The emphasis here is on the

development ofthe algebraic expressions ofthe operator kernels for the diquark-quark system.

In this chapter the single and double primes will denote the single and double exchanges of

quarks respectively.

5.2 DIQUARK-QUARK WAVE FUNCTION

The unsymmetrized wave function in the coupled channel state is given by

with

where ~ and i1 are defined in eqns.(3.1.4) and (3.1.5).

The symmetrized wave function is given by

(5.2.1)

(5.2.2)
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for

where

and

and for

with

"2 II __ 1 "2 _ .f3 ....
<, - - <, -I)

2 2

and

If the following basis vectors

et>S=<t> (~) + et> (f) +et> (f/)
a a a a

et>l = .f3 {et> (~/) - et> (f/)}
a 2 a a

et>2 = .2:. {2 et> (~) - et> (f) - et> (f/)}
a 2 a a a

(5.2.3)

(5.2.4)

(5.2.5a)

(5.2.5b)

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.10)

(5.2.11)

(5.2.12)

(5.2.13)

(5.2.14)
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are considered then

\¥~ = ~ {( <ps + <ps) Xs + (<pI - <pI) XI + (<p2- <p2)X2}
Dq 4 0 1 0 1 0 1

and

1 s 1 2
\¥- = - (<p + <p ) X + - (<p - <p ) X

Dq 2 0 1 2 0 1

If the normalization expression is defined as

then

<\¥- I \¥~ > = ~{<<p + <p I<ps + <ps> + <<p - <p I <p2
- <p2 >}

Dq Dq 4 0 1 0 1 0 1 0 1

gives the overlap of ljJ and ljJs.

5.3 OPERATOR KERNELS

5.3.1 The norm kernel

(5.2.15)

(5.2.16)

(5.2.17)

(5.2.18)

(5.2.19)

(5.2.20)

The operator kernels are 2 x 2-matrices in \¥ -space. The dependencies are denoted by

-+ -+/
subscripts 0'13, as in K (X, X ) of)'

5.3.1.1 The direct norm kernel.

Following the discussion in chapter 4, the direct norm kernel can be given by

5.3.1.2 The exchange norm kernel.

(5.3.21)

The exchange norm kernel for the coupled channel can be calculated as follows:
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(5.3.22)

(5.3.23)

E .... .... 1 2 3 3 * 1.... 2 .... 11 I 2... 1 .... 11
K. (X, X) = 2 (-) -~ (I-X + -X I) ~ ( -X + -X )

1 10 f3 4 1 f3 f3 0 f3 f3
(5.3.24)

E .... .... 1 2 3 1 * 1.... 2 .... 11 I 2.... 1 .... 11
K. (X, X) = 2 (-) -~ (I-X + -X ) ~ ( -X + -X )

1 11 f3 4
1 f3 f3 1 f3 f3

(5.3.25)

5.3.2 Potential energy kernel

5.3.2.1 The central potential

The central potential is given by

(5.3.26)

where ~/and el are given by eqns. (5.2.5) and (5.2.7) respectively.

As in chapter 4 the direct and exchange tenns under central potential can be obtained.

(a) The direct term

The direct tenn is given by

Kv"o (X, XI) a' =0a'0 (X -XI) f I q,a (~) I 2 {V c ( ~ )

+V C ( I~ ~ + f3 XI)d 3~}
2 2

where V C denotes the central potential.

(5.3.27)
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(b) The exchange term

The exc~ange term for the central potential is given by

E .... .... /
whereK i (X, X ) a~ are given by eqns. (5.3.22) through (5.3.25).

5.3.2.2 The spin-spin potential

The interaction is defined algebraically as follows:

VS, s = V ( E)° ° + V ( r /) ° ° + V ( r III ° °- 1· 2 IS 2· 3 S 3· 1

where °1 , 02 and 03 are the Pauli's spinors.

In spin-space eqn. (5.3.29) is a 2 x 2 - matrix given by the following equations:

and

(a) The direct kernel

The direct operator kernels under potential are calculated as follows:

D ........ /
Ky s (X, X ) 01 = 0

(5.3.29)

(5.3.30)

(5.3.31)

(5.3.32)

(5.3.33)

D ........ /
Kys (X, X ) 10 = 0 (5.3.34)

Ky
D

S (X, X/) 11 = is (X-X I) f I<P 1 (t) 12 {V s (U - 4 V S ( I.2:. t - y'3XI) } d 3 ~
2 2

(5.3.35)
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(b) The exchange kernel

The calculations are perfonned as follows:

K Es (X, XI) 00 = 2 (2) 3<p~ (12x 1+~x I) <Po (12x +~x 11)
v {3.p {3 {3 {3

2Jv s (12x 1+~xl) -v s (12x+~x 11) +v s (I ~x -~x II)}
2l" {3 {3 {3 {3 {3 {3

(5.3.36)

K Es (X, XI) = 2 (2) 3<p* (12x 1+ ~XI) <p (12x+~x 11)
v 01 {3 0 {3 {3 1 {3 {3

(5.3.37)

(5.3.38)

(5.3.39)
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5.3.3 The kinetic energy kernel

5.3.3.1 The direct term

The direct term is the same as that in the single channel and is given by:

KTD(X,X /) = - ~20(X-X/){\,7~f<Pi(€)<Po(€)d3~ + f<Pi(€)TD<PD(€)d3~}
q

(5.3.40)

5.3.3.2 The exchange term

The exchange is given by

K
T
E (X, XI) = - ~l~K.E (x, XI) {\,72 + \,72 ,}

ID 2 1 X X
q

(5.3.41)

E .... .... I
where Ki (X, X ) is given by eqns. (5.3.22) through (5.3.25).
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6 NUMERICAL ANALYSIS

6.1 INTRODUCTION

The calculations which include and exclude antisymmetrization have been calculated and

the results are given below. In order to obtain the well-behaved wave functions and the

corresponding eigenvalues, the radial Schrodinger equation has been integrated numerically

using the Runge-Kutta-Nystrom method [69]. The spline approximation and the Gauss

quadrature have been employed in this thesis. This is a reliable and a robust self-starting

method. To investigate the effect of antisymmetrization, the data for the diquark and diquark­

quark wave functions has been generated by solving the Schrodinger equation. To demonstrate

that convergence was achieved, the data obtained has been used to draw the graphs given in

figs. 1-4 and 5-8 for the diquark and the diquark-quark respectively. The calculations of the

antisymmetrized and non-antisymmetrized models follow below.

6.2 GENERALIZED RUNGE-KUTTA METHOD.

In order to obtain the well-behaved wave functions and the corresponding eigenvalues the

radial Schrodinger equation will be integrated numerically by using standard integration techni­

ques, in this case the generalized Runge-Kutta method. Solving the Schrodinger equation is

an initial-value problem and therefore the Runge-Kutta method is useful. The initial-value

problem considered is of the form

yll= F(X, y, y/) (6.2.1)

where y(Xo) =Yo and y/(Xo) =y~.

F is assumed in such a way that the problem has unique solution on some interval containing

x o' The aim here is to find the approximate values of y l' Y2' ••• , at uniformly spaced
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points of distance H, that is, Xl =Xo + H, X
2

=X o+ 2H, .••. , respectively. The values

Y:, Y;, ..., correspond to the uniformly spaced points X:' X;, .. ., respectively. A

generalization of the Runge-Kutta method is called Runge-Kutta-Nystrom (see, for example

[69]) and is the fourth-order method. Four auxiliary quantities ~, B
N

, c
N

and D
N

are

evaluated and then used to approximate the new values YN +1 and Y~+1 ofthe solutions Y and Y I

respectively. The algorithm for solving eqn (6.2.1) is adopted from Kreyszig [69] as follows:

1
K=-H

2

N = O,I,2,oo.,n-l

where Hand n are given.

1where ~ = K (Y 1+_ 'A )
N N 2~""N

where ex =H (y/+c )
N N N

1
Y =Y+H(y/+-('A+B+C))

N+l N N 3~""N N N

and

1
y l =y /+- ('A +2B +2C +D )

N+l N 3 ~""N N N N (6.2.2)

It can be noticed that y N+1 and Y~+1 are the approximations to Y and Y I respectively at

XN +1 = Xo + (N +1) H (6.2.3)
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6.3 SPLINE FUNCTIONS

In this th~sis the most commonly used spline function called the cubic spline is employed..

This function can be thought of as an analytical French curve. Its four parameters can be

chosen to cause the curve to go through two adjacent points and the first and second

derivatives to be continuous(see also [69]). In such a case a cubic polynomial is considered and

is called a cubic spline function. A cubic spline is defined as a continuous function which has

continuous first and second derivatives and is represented by a third degree polynomial. The

method ofsplines was originated in 1946 by Schoenberg [70]. The discussion and the algorithm

ofthe spline functions have been adopted from Schwarz and Waldvogel [71 ], Kreyszig, [69],

Ebert et aI, [72] Daniels, [73] Maron et al. [74]. The problem here is to approximate a

function f{x). The (n+l) pairwise different support abscissae are ~ven by Xo<Xl< .•. <x
n

and

the corresponding function values are given by y0' Yl' Y2' • • • , Yn' The condition imposed

on an interpolating function sex) is that it must be at least continuously differentiable. Therefore

the bending curve ofthe spline must be taken as the solution sex) of the interpolation problem.

Three properties uniquely define the interpolating spline function sex).

(a) s(x) is a cubic polynomial in the interval [Xi' Xi +1] and is piecewise composed of

polynomials of degree three.

(b) The first and second derivatives of sex) are continuous at the interior support abscissae.

(c) The second derivative is zero at the end-points X o and x
n

' that is,

(6.3.4)

This property is called the natural condition. Therefore the resulting sex) is called a natural

cubic spline function. The algorithm ofthe cubic spline function sex) is as follows:

(i) h.=x.. -x
l liJ. l

(6.3.5)
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for the subinterval [x., x. 1] where h. are the i th.
1 1+ 1

(ii) The i th cubic polynomials Si (x) are given by

S. (x) =a. (x-X.)3+b. (X-X.)L+ C (x-x) +d.1 1 1 1 1 1 11
(6.3.6)

(iii) The values of Si (x) and the first two derivatives at the end-points of the interval are as

follows:

(iv) Therefore from (iii) the following can be derived

1a = -- (yll _yll)
i 6h. i +1 i

1

(v) By substituting for a. ,b. and C., the following can be derived from (iii)1 1 1 .

1 1
S/(X ) =-(y. -y.)+-h (2 y ll +yll)

i i+1 h. 1+1 1 6 1 1+1 1
1

(6.3.7)

(6.3.8)

(6.3.9)

(6.3.10)

(6.3.11)

(6.3.12)

(6.3.13)

(6.3.14)

(6.3.15)

(6.3.16)

(6.3.17)

(6.3.18)

(vi) On decreasing the index i by one, the following can be obtained from (iii), (iv) and (v):

-f- (Yi -Yi~l) + (2yt+Y:~1) = :, (Yi+1 -Yi) - :, (Y:~l +2yt)
i-1 1 1

(vii) By multiplying eqn. (6.3.18) by 6, the following can be derived
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h. y/I +2(h +h.)yll+hy/I -~(y _y.)+_6_(y._Y. )=0 (6.3.19)
l-1 l-1 l-1 l l l l+1 h. l+1 l h. l l-1

l l-1

6.4 GAUSS QUADRATURE

The word quadrature is used in the place of numerical integration. The discussion of

Gauss quadrature in this section is adopted from Ref [75]. The evaluation of a definite integral

over a finite interval is given by [75]
b

G = Jf (x) dx
a

(6.4.20)

with a and b being finite and Qx) being a continuous function ofx for the interval a ::;x ::;b. It

can be shown that by choosing the location ofthe two points carefully, an exact formula for the

integral ofa cubic polynomial can be obtained. Ifthe limits of integration a to b can be replaced

ex=

by -1 and +1 respectively, and a new variable ex can be defined as [75]:

2x- (b+a)

b-a

which reduces to

1 1
x = - (b-a)ex+- (b+a)

2 2

then eqn. (6.4.20) becomes [75]
+1

G = J'¥ (ex) dex
-1

with

111
'¥(ex) = - (b-a) f [- (b-a)ex+- (b+a)]

222

Here a linear function

is defined such that [75]
+1 +1

J (11 0 + 111 ex) dex = J'¥ (ex) dex
-1 -1

(6.4.21)

(6.4.22)

(6.4.23)

(6.4.24)

(6.4.25)

(6.4.26)
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Let

(6.4.27)

with B ,B ,ex: and ex: being arbitrary. These four parameters can be chosen such that ano 1 0 1

exact formula for a cubic integrand is obtained [75]:

(6.4.28)

which reduces to [75]

After integration the following is obtained

1
ex: = -ex: =-

1 0 {3

and

B = B = 1o 1

Therefore

l' 1
G =\F(--) +\F(-)

I {3 {3

(6.4.29)

(6.4.30)

(6.4.31)

(6.4.32)

Eqn. (6.4.26) is the Gauss quadrature formula for two points. Note that for lower polynomials

the truncation error is zero.

For higher degree polynomials the truncation error is therefore given by

e = C\Fiv (()),
T

-1<()<1 (6.4.33)

For the higher order Gauss quadrature, formulas are obtained from using more points and

different weights (B
i

) [75]:
+1 n-1

!\F(ex:)dC:X = ~Bi\F(ex:i)
-1

(6.4.34)

An exact formula for a polynomial of degree 2n-l can be obtained with n points as in eqn.
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(6.4.34). The ex
i

in eqn. (6.4.34) are also the roots ofthe Legendre polynomial of degree nand

the method discussed above is called Legendre-Gauss quadrature. The Legendre polynomials

and the weights are defined by [75]

1
P

n
= n [(2n-l)exP

n
_

1
(ex) - (n-l)P

n
_

2
(ex)]

and

2
B. =-------

l ( 1 -ex~) [P I (ex. ) ] 2
.L n 1

The general truncation error is given by [75]

w(2n) ((.1.) 2 n
e = to' ( - LB. ex2n

)
T (2n) ! 2n+l i~O l l

(6.4.34a)

(6.4.34b)

(6.4.34c)

(6.4.34d)

(6.4.35)

It should be appreciated that the ex
i

are symmetric about the origin and that the B l for ex l is

the same as that for -ex
l

,

6.5 DIQUARK AND DIQUARK-QUARK WAVE FUNCTIONS

The parameters for the various central potentials used to construct the D and Dq wave

functions shown in figs. 1-12 have been given as follows:

(a) Bhaduri potential

B
VCr) = -Ar + - - D

r

where A = 520.311c

B = 185.7thc

l1C= 0.197239 MeV fin
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D = 913.5 MeV

m = 337MeV (6.5.36)
q

(b) Cornell potential

B
VCr) = -Ar + - - D

r

where A= 520.0 'he

B = 182.62/'he

'he= 0.197239 MeV fin

D=975.0MeV

In = 330 MeV (6.5.37)
q

(c) Martin potential

VCr) = A + Br ro

where A=-8337 MeV

B = 6992.3 MeV

1)=0.1

m =300MeV (6.5.38)
q

(d) Quigg potential

VCr) = Aln(Br)

where A= 744MeV

B = 0.87 fm- 1

m =330MeV (6.5.39)q
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curve for the Comell potential, the broken curve for the Martin potential and the

dotted curve for the Quigg potential.
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The normalized diquark and diquark-quark wave functions ofBhaduri and Comell potentials

as well as Martin and Quigg potentials look similar (see figs. 9 -10) because the potentials are

of the same nature.

6.6 CALCULATING THE MASS OF A BARYON WITHOUT ANTISYMl\IETRI-

ZATION

The cubic spline method ( section 6.3), together with the Gaussian quadrature ( section

6.4), were used to calculate the potential and kinetic energy for both the diquark and diquark-

qUMk systems without antisymmetrization. A consistency check between the calculation of the

mass of the baryon approach using both eigenvalue and expectation values was performed in

a FORTRAN code and the results were identical in both cases. Tables I and IT give the binding

energies and the masses of thediquark and diquark-quark systems when Bhaduri, Comell,

Martin and Quigg potentials are used in the radial Schrodinger equation without

antisymmetrization.

Table I: The values of the potential energy, the kinetic energy, the binding

energy and the mass of the diquark system without antisymmetrization

forL=O.

Potential v- T- E- M-
0 0 0 0

MeV MeV MeV MeV

Bhaduri -93.1 254.7 161.7 835.7

Comell -124.0 253.6 129.6 789.6

Martin -63.2 205.3 142.1 742.1

Quigg -63.0 186.0 123.0 783.0
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The binding energies in tables I and 11 are used for calculating the masses of the diquark and

diquark-quark systems from the equations:

M- = 2m + E-
D q D

for the diquark system and

M- = 3m + E
Dq q

for the diquark-quark system, where

E = E- + E-
D Dq

(6.4.21)

(6.4.22)

(6.4.23)

Using a constituent quark mass of337 MeV with Bhaduri potential, 330 MeV with the Cornell

potential and 300 MeV with Martin potential in the Schrodinger equation the results obtained

in the centre-of-mass frame are comparable to those obtained by Silvestre-Brac et al [19].

These results are given in Table 11.

Table 11: The values of the potential and kinetic energies, the binding

energy and the baryon mass of the diquark-quark without

antisymmetrization for L=O.

Potential v- T- E- M-Dq Dq Dg Dq

MeV MeV MeV MeV

Bhaduri -550.9 402.3 -148.6 1024.1

Cornell -606.9 400.7 -206.2 913.4

Martin -525.6 390.6 -135.0 907.1

Quigg -510.8 372.0 -138.8 974.2
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6.7 CALCULATJNG THE MASS OF BARYON JNCLUDJNG

ANTISYMMETRIZATION

To demonstrate the validity ofeqns.(4.4.29a) through (4.4.29c) a consistency check was

performed in a FORTRAN code by exchanging quark labels and the results were identical in

all the cases. In Table Ill, the antisymmetrization results of the kinetic and potential energy

operator kernels are given.

Table Ill: The calculated values of the kinetic and the

potential energies, binding energy and the mass of

the baryon including antisymmetrization with L=O.

Potential v- T- E- M-
Dq Dq Dq Dq

MeV MeV MeV MeV

Bhaduri -559.2 783.2 224.0 1235.0

Cornell -647.5 775.3 127.8 1117.8

Martin -480.7 703.6 223.1 1123.1

Quigg -463.8 652.2 188.4 1178.4

In Table IV, the baryon mass for the operator kernels was compared with the baryon mass

obtained from the two- and three-body calculations as well as the average mass of N - f:J, .



70

Table IV: Comparison of the GCM diquark-quark ground state masses for

the four central potentials with (a) each other, (b) results for the

two-body treatment, (c) the results for a full three-body

treatment and (d) the average mass of N -£5. .

Potential GCM Two-body Three-body Average mass

calculations calculations calculations

MeV MeV MeV MeV

Bhaduri 1235.0 1024.1 1204.0 1173.0

Cornell 1117.8 913.5 1089.5 1173.0

Martin 1122.9 907.1 1086.0 1173.0

Quigg 1178.3 974.2 --------- 1173.0

6.8 THE CALCULATIONS OF THE BARYON FORM FACTORS

The form factors for the diquark-quark have been calculated with and without

antisymmetrization as well as the inclusion of meson cloud for the various potentials as

indicated in figures 13 through 18. The wave numbers have been selected as 1.0 -15.0 with

the unit fm -1.
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Fig.II. Comparison of the constituent quark elastic electric fonn factors for the Bhaduri,

Comell, Martin and Quigg central potentials without antisymmetrization. The solid

curve indicates the results for the Bhaduri potential, the broken curve for the Comell

Potential, the dotted curve for the Martin potential and the dashed curve for the

Quigg potential.
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potential.
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Table V: The calculated root mean-square radii for the baryon

for the four central potentials.

Method Bhaduri Comell Martin Quigg

potential potential potential potential

1 1 1 1

<r 2>2
-

< r 2> 2 < r2> 2 <r 2> 2

fin fin fin fin

Non-antisymrnetrization 0.39 0.40 0.43 0.42

Non-antisymmetrization

+ meson cloud 0.72 0.73 0.74 0.74

Antisymrnetrization 0.45 0.46 0.51 0.50

Antisymmetrization +

meson cloud 0.76 0.76 0.79 0.79

Dipole 0.81 0.81 0.81 0.81

Experiment 0.83 0.83 0.83 0.83



78

7 CONCLUSION

The motivation for undertaking these calculations was to examme the effect of

antisymmetrization in diquark models of baryons in the ground state within a well-defined

diquark model. The Generator Coordinate Method (GCM) operator kernels provide a

transparent and explicit way for including antisymmetrization within such a model. The

expectation values for several observables have been calculated in a pure diquark model and

compared with corresponding results where antisymmetrization has been included via the GCM

kernel. The results are also compared with those for three-body models of baryons and with

experiment. The observables studied were the masses, the elastic electric form factors and the

charge densities. The diquark model used was a simple non-relativistic one involving central

interactions and a single channel.

7.1 COMPARISON OF THE DIFFERENT CALCULATIONS OF THE 6-N MASS

In the case ofcentral potential the implicit averaging over spins necessitates a comparison

with the averaged t, - N measurements rather than with those of a specific baryon. In general,

two-body models ofbaryons produce unphysically deep binding due to the large reduced mass

of the diquark-quark system. The resulting t,-N masses are about 180 MeV lower than the

corresponding three-body results for the same potentials - see Table IV. This trend can be

understood in terms of the fact that both the inclusion of the binding energy in the diquark mass

and the "reduction" in the number of particles (from three to two) in the system are non­

variational procedures. For the central potentials used the two-body masses range between

907.1 MeVand 1024.1 MeV (the experimental value is 1173 MeV). The corresponding three­

body results vary from 1086 MeV to 1204 MeV and were calculated by means of the
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Integrodifferential Equation Approach (IDEA). For three bodies the IDEA is an augmented

version oft~e S-projected Faddeev Equation and takes higher partial waves into account in an

average way. For interactions with no hard core, such as those encountered in quark systems,

the IDEA is essentially exact.

There is much better agreement between the three-body IDEA masses and equivalent two-body

GeM kernel results than when antisymmetrization is not taken into account. The agreement for

all four potentials considered is within about four percent. In all cases, the three-body masses

are somewhat lower - see Table IV. Given the fact that the kinetic and potential energies are

appreciable fractions of the masses this concordance is noteworthy.

Comparing results in Tables IT and ill it can be seen that the antisymmetrization procedure has

relatively little influence on the expectation values of the potential energy. The large positive

shifts in the masses are entirely due to the approximate doubling of kinetic energy expectation

values. Are these shifts believable? Gavin et al [64 ], using the hypervirial approach [77] in a

three-body system, have detennined that the expectation value of the kinetic energy is about

70 % ofthe baryon ground state mass for quark potential models. This result corresponds very

well with the GeM diquark values in Table ITl.

The relative model independence of the potential energy (two-body results including and

excluding antisymmetrization are not very different from corresponding three-body values) is

interesting. The explanation for this insensitivity is probably that the motion of the third quark

is mediated by an interaction which is well-approximated by an aggregate static potential

resulting from the other two quarks. This explanation is closely related to the reason for the

success of the non-relativistic quark potential model:- the colour fields are essentially frozen

with respect to the motion of the quarks.
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The explanation for the low kinetic energy expectation values when antisymmetrization is not

taken into account via the GeM kernels must be that the large values of the diquark-quark

reduced masses (see Table II) produce unphysically deep binding for the effective two-body

system. This effect is offset when the GeM kinetic energy operator, which is a function of

constituent quark masses rather than diquark masses (see equations (4.4.31) and (4.4.32», is

used.

7.2 THE FORM FACTORS

The elastic electric form factor results (see Figures 11 - 16) confirm the pattern of better

reproduction ofexperimental data when the antisymmetrization kernels are introduced. When

the effect of the meson cloud around the constituent quarks is introduced by means of the

appropriate monopole factor, the correspondence agreement between the data and the GeM

kernel results is almost perfect.

The agreement between the results ofcalculations ofr.m.s radii (see Table V) is also improved

by the introduction of antisymmetrization. When the meson cloud contribution is included in

a standard way the r.m.s radii agree to within 2-5% ofthe experimental proton value of0.83

fm [64]. This is further evidence for the usefulness of the diquark model improved by

antisymmetrization.

7.3 SUMMARY AND WAY FORWARD

It is clear from this study that diquark wave functions may be used to extract physical

information which is of a surprisingly high quality. This affirms the wide applicability of the

GeM and more generally the resonating group model approaches. These were developed more
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specifically for few-nucleon systems (see [4] and [78] ) but it has been shown here that the

GeM is equally applicable to quark systems.

A logical generalization of this work would be to extend the analysis to systems of coupled

channels (see chapter 5). The single channel model implies a comparison with a fictitious 6. - N

system rather than a proton or neutron. Analysis of other baryons such as h and of excited

states would also be possible.

Another interesting way to build on the formalism developed here would be to calculate

relativistic corrections to the masses. This could be done by transforming the diquark and

diquark-quark wave functions to momentum space and calculating the corresponding kinetic

energy expectation values using the appropriate relativistic operators. To include relativistic

effects in coordinate space is not convenient because of the square root form of the kinetic

energy operator. However, the approach described above would also not give the full

relativistic correction, which arises also from a consideration of retardation effects and of

Lorentz invariance of the appropriate phase space. These effects are most easily treated in

momentum space too. Nevertheless, confining potentials (which occur is of necessity in quark

calculations) provide some difficulty in momentum space. Recently, however, some progress

has been made in applying the fact that the Fourier transform of a linearly increasing potential

does exist in a distributional sense [79] and it would be interesting to apply this full formalism

(hitherto restricted to mesons) to diquark models ofbaryons too.
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APPENDIX

A.I DERIVAnON OF AN OPERATOR KERNEL

The total baryon wave function appears as

where '¥- (L rn is the spatial wave function
Dq .

'¥s is the spin wave function

'¥ is the isospin wave function, and
1

'¥c is the colour wave function.

The expectation value of the operator 0 in the pure diquark model is of the form

where r is the relative coordinate.

(ALl)

(AI.2)

To take into account the effects of exchange between the diquark pair and the external

quark, <0> in eqn. (A 1.2) is redefined as
r +r

<0> = f'¥iq (r 3 - 1 2 2) <Pi (r1 - r) 0 (r - (r3 -

r +r r +r r +r +r
1 2 ) ) ] '¥_ (r _ 1 2 ) 0 ( 1 2 3 )

2 Dq 3 2 3

(Al.3)

where A is the antisymmetrization operator. In the account of eqn. (AI.2) the following can

be written:

where Ko (r, r I) is defined as

(A 1.4)
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r +r r +r +r
o (r 1_ (r - 1 2 ) ) 0 ( 1 2 3 ) d 3r d 3r d 3r

3 2 3 1 2 3

(AI.S)

In using the Jacobi coordinates

- 2(_ r 1 +r 2 )n=-r----f3 3 2

and

- 1 (_ _ _)R=-r+r+r3 1 2 3

with

the following is then obtained

K6 (5Lx /) = f<ti(~)o(X-fi)A~(~)O(X/-fi)o(R)d3~d3nd3R (A 1.6)

For eqns. (AI.2) and (AlA) to be equivalent, eqn. (AI.4) must be divided by the expectation

... -I
value of the norm kernel Ki (X, X ) , that is

(Al.?)
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A.2 FORTRAN CODE

PROGRAM RAYZA

IMPLICIT REAL*8(A-H, O-Z)

PARAMETER(EIN=-300.0, EFlN=300.0)

PARAMETER(ETOL=O.0000001, YTOL=O.00000001)

PARAMETER(RIN=O.00000001, RFIN=5.DO)

PARAMETER(N=500, NLIM=120)

PARAMETER(NIN=20)

PARAMETER(NpTS=50, NMU=20)

PARAMETER(LTP=1)

DIMENSION R(O:N),Y(O:N), 2(0:N)

DIMENSION CD(4, N+l),CDQ (4, N+l)

DIMENSION T(NIN), W(NIN), WMU (NMU), TMU (NMU)

COMMON/CHMIHM

COMMON/CMASS/QM,DMASS

QM=QMASS

IF (LTP.EQ.1)THEN

QMASS=330.DO

WRITE(3, *)'CORNELL POTENTIAL'

ENDIF

IF (LTP.EQ.2)THEN

QMASS=337.DO



WRITE(3,*)'BHADURI POTENTIAL I

ENDIF

IF (LTP.EQ.3)THEN

QMASS=300DO

WRITE (3,*)'MARTIN POTENTIAL'

END IF

IF (LTP.EQ.4)THEN

QMASS=330DO

WRITE (3,*)'QUIGG POTENTIAL'

ENDIF

PI=4.0*ATAN(l.DO)

P=16.0*PI**2

Pl=4.0*PI

P2=3 .DO*SQRT(3.0)

P3=128.DO*PI**2fP2

P4=64.DO*PI**2fP2

PS=8.*PI**2

HM=3.892168D4/QMASS

Dl=3.892168D4/QMASS

DO 300 K=I,2

WRITE(3, *)'HM=',HM

H=(RFIN-RIN)/FLOAT(N-1)

El=EIN
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CALL RAY(R, Y, Z, H, N, El, LTP, K)

IF (Y(N).LT.O.O) GO TO 15

E2=EFIN

CALL RAY(R, Y, Z, H, N, E2, LTP, K)

IF (Y(N).GT.O.O) STOP

15 CONTINUE

DO 20 1=1, NLIM

E3=(El+E2)I2.DO

CALLRAY(R, Y, Z, H, N, E3, LTP, K)

IF (ABS(EI-E2)/2.DO.LE.ETOL) THEN

IF (ABS(Y(N)).LE.YTOL) THEN

CONTINUE

ENDIF

ENDIF

IF (Y(N).GT.O.O) THEN

E1=E3

ELSE

E2=E3

ENDIF

20 CONTINUE

IF (K.EQ.1) EDIQUARK = E3

WRITE(3, *)'ENERGY=',E3

WRITE(3,*)' ,
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WRITE(3,205)

DO 250 1=0, N, 10

WRITE(3,203) R(I),Y(I),Z(I)

250 CONTINUE

WRITE(3,*) I

RM=RIN

RP=RFIN

IF(K.EQ.1 )THEN

CALL CUBS3(R, Y, CD, N+1)

ELSE

CALL CUBS3(R, Y, CDQ, N+1)

ENDIF

CALL GAUSSPT(1, NIN, NIN, RM, RP, T, W)

CALL GAUSSPT(1, NMU, NMU,-1.DO, l.DO, TMU, WMU)

SUM1=0.DO

SUM2=O.DO

SUM3=O.DO

SUM3A=O.DO

SUM4=O.DO

SUM5=0.DO

SUM6=0.DO

SUM6A=0.DO

SUM7=O.DO
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SUM7A=0.DO

SUM7B=0.DO

SUM8A=0.DO

SUM8B=0.DO

SUM8C=0.DO

SUM9A=0.DO

SUM9B=0.DO

SUMlOA=O.DO

SUMlOB=O.DO

SUMIIA=O.DO

SUMIIB=O.DO

SUMIIC=O.DO

SUMIID=O.DO

DO 500 I=l,NIN

C .... CALCULATIONS OF THE BARYON MASS WITHOUT ANTISYMMETRIZATION

IF (K.EQ.l)THEN

SUMl=SUMl+Pl *CINT(CD, R, T(I),N+l)**2*W(I)

SUM2=SUM2+Pl *CINT(CD, R, T(I),N+1)**2*V(T(I),LTP, K)*W(I)

SUM3=SUM3+Pl *CINT(CD, R, T(I),N+1)**2*VCl(T(I),K)*W(I)

SUM3A=SUM3A+Pl *CINT(CD, R, T(I),N+1)**2*F*(T(I),K)*W(I)

VD=SUM2/SUMl

TD=SUM3/SUMl

FD=SUM3A/SUMl
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. ELSE

SUM4=SUM4+P1 *CINT(CDQ, R, T(I),N+1)**2*W(I)

SUM5=SUM5+P1 *CINT(CDQ, R, T(I),N+1)**2*VC1(T(I),K)*W(I)

SUM6=SUM6+P1 *CINT(CDQ, R, T(I),N+1)**2*V(T(I),LTP, K)*W(I)

SUM6A=SUM6A+P1 *CINT(CDQ, R, T(I),N+1)**2*F(T(I),LTP, K)*W(I)

TDQ=SUM5/SUM4

VDQ=SUM6/SUM4

FDQ=SlTh16NSUM4

ENDIF

C ... CALCULATIONS OF BARYON MASS EFFECTING ANTISYMMETRIZATION

DO 600 J=1, NIN

SUM9A=SUM9A-D1 *P*CINT(CDQ, R, T(I),N+1)**2*CINT(CD, R, T(J),N+1)

# *CINTT(CD, R, T(J),N+1)*W(I)*W(J)

SUM9B=SUM9B-D1*P*CINT(CDQ, R, T(I),N+1)*CINT(CD, R, T(J),N+1)**2

# *CINTT(CDQ, R, T(I),N+1)*W(I)*W(J)

SUM7A=SUM7A+P*CINT(CDQ, R, T(I),N+1)**2* CINT(CD, R, T(J),N+1)**2 *W(n*W(J)

SUMlOA=SUM10A+P*CINT(CDQ, R, T(I),N+1)**2* CINT(CD, R, T(J),N+1)**2

# *F1(T(J))*W(I)*W(J)

SUM8A=SUM8A+P*CINT(CDQ, R, T(I),N+1)**2* CINT(CD, R, T(J),N+1)**2

# *VC(T(J))*W(I)*W(J)

DO 700 KK=1,NMU

XA=SQRT«T(J)**2-2. *SQRT(3.)*T(I)*T(J)*TMU(KK)+3.*T(I)**2)/4.)

XB=SQRT«T(J)**2+2. *SQRT(3.)*T(I)*T(J)*TMU(KK)+3. *T(I)**2)/4.)
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SUM8B=SUM8B+P5*CINT(CDQ, R, T(I),N+1)**2* CINT(CD, R, T(J),N+1)**2

# *(VC(XA)+VC(XB))*W(I)*W(J)*WMU(KK)

XC=SQRT((T(I)* *2+4. *T(I)*T(J)*TMU(KK)+4.*T(J)**2)/3.)

XD=SQRT((T(J)**2+4.*T(I)*T(J)*TMU(KK)+4.*T(I)**2)13.)

SUM7B=SUM7B+P3 *CINT(CDQ, R, T(I),N+1)*CINT(CDQ, R, T(J),N+1)

# *CINT(CD, R, XC, N+1)*CINT(CD, R, XD, N+1)

# *T(I)*T(J)/(XC*XD)*W(I)*W(J)*WMU(KK)

SUMllA=SUMllA-P4*D1 *CINT(CDQ, R, T(I),N+1)*CINT(CDQ, R, T(J),N+1)

# *CINT(CD, R, XD, N+1)*CINTT(CD, R, XC, N+1)

# *T(I)*T(J)/(XC*XD)*W(I)*W(J)*WMU(KK)

SUMllB=SUMllB-P4*D1 *CINT(CDQ, R, T(I),N+1)*CINT(CDQ, R, T(J),N+1)

# *CINT(CD, R, XC, N+1)*CINTT(CD, R, XD, N+1)

# *T(I)*T(J)I(XC*XD)*W(I)*W(J)*WMU(KK)

SUMllC=SUMllC-P4*D1 *CINT(CDQ, R, T(I),N+l)*CINTT(CDQ, R, T(J),N+1)

# *CINT(CD, R, XC, N+1)*CINT(CD, R, XD, N+1)

# *T(I)*T(J)/(XC*XD)*W(I)*W(J)*WMU(KK)

SUM11D=SUM11D-P4*D1 *CINT(CDQ, R, T(J), N+1)*CINTT(CDQ, R, T(I),N+1)

# *CINT(CD, R, XC, N+1)*CINT(CD, R, XD, N+1)

# *T(I)*T(J)I(XC*XD)*W(I)*W(J)*WMU(KK)

XE=SQRT((T(I)**2-2.*T(I)*T(J)*TMU(KK)+T(J)**2)/3.)

SUM8C=SUM8C+P3*CINT(CDQ, R, T(I),N+1)*CINT(CDQ, R, T(J),N+1)

# *(VC(XC)+VC(XD)+VC(XE))*CINT(CD, R, XC, N+I)

# *CINT(CD,R,XD,N+I)*T(I)*T(J)I(XC*XD)*W(I)*W(J)*WMU(KK)
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XF=SQRT(T(I)* *2+2*T(I)*T(J)*TMU(KK)+T(J)* *2)

SUM1OB=SUMl OB+P4*CINT(CDQ, R, T(I),N+1)*CINT(CDQ, R, T(J),N+1)

# *CINT(CD, R, T(J),N+l)*CINT(CD, R, XF, N+l)*(F1 (T(J)+F1 (XF»

# *T(I)*T(J)*W(I)*W(J)*WMU(KK)

700 CONTINUE

600 CONTINUE

500 CONTINUE

WRITE(3,*)'CALCULATING BARYON MASS WITHOUT ANTISYMMETRIZATION'

IF (K.EQ.) THEN

ED=VD+TD

WRITE(3,*)'ENERGY OF THE DIQUARK=',ED

C (a) Potential and kinetic energies of the diquark

WRITE(3,*)'VD=',VD

WRITE(3, *)'TD=',TD

WRITE(3,*)'SUMl =',SlJMI

WRITE(3, *)'SUM2=',SUM2

WRITE(3, *)'SUM3=',SUM3

C (b) Potential and kinetic energies of the diquark-quark

ELSE

EDQ=VDQ+TDQ

WRITE(3, *) 'ENERGY OF THE DIQUAR-QUARK=',EDQ

WRITE(3,*)'VDQ=',VDQ

WRITE(3,*)'TDQ=',TDQ
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WRITE(3,*)'FORM FACTOR WITHOUT ANTISYMMETRIZATION=',FDQ

ENDIF

WRITE(3,*)' ,

DQMASS=(2*QMASS+E3)*QMASS/(3 *QMASS+E3)

DMASS=2*QMASS+EDIQUARK

HM=3.892168D4/DQMASSI2.DO

300 CONTINUE

C------------NORM ~~~-------------------------------

SUNA=SUM7A+SUM7B

C-----------J>OTENTI~ ENERCi){------------------------

SUNB=(SUM8A+SUM8B+SUM8C)/SUNA

C-------------~TICENERCi){--------------------------­

SUNC=(SUM9A+SUNI9B+SUM11A+SUM11B+SUM11C+SUM11D)/SUNA

C------TOT~ ENERCi){ FROM~TIC AND J>OTENTI~ ENERCi){ ~~~S----­

SUND=SUNB+SUNC

C-----------THE MASS OF A BAR){ON----------------------------­

SUNE=3. *QMASS+SUND

C----------------------FORM FACTOR THROUCiH OJ>ERATOR ~RNE~S---------------­

SUNFF=(SUM1 OA+SUM1 OB)/SUNA

WRITE(3,*)'FORM FACTOR \\lITH ANTIS){MMETRIZATION=', SUNFF

WRITE(3,*)'C~C~ATIONS OF BARYON MASS WITH ANTIS){MMETRIZATION'

WRITE(3, *)'SUM4=',SUM4

WRITE(3, *)'SUMS=',SUMS
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WRlTE(3,*)'SUM6=',SUM6

WRlTE(3,~)'SUM6A=',SUM6A

WRlTE(3,*)'SUM7A=',SUM7A

WRlTE(3, *)'SUM7B=',SUM7B

WRlTE(3, *)'SUM8A=',SUM8A

WRlTE(3,*)'SUM8B=',SUM8B

WRlTE(3,*)'SUM8C=',SUM8C

WRlTE(3,*)'SUM9A=',SUM9A

WRlTE(3,*)'SUM9B=',SUM9B

WRlTE(3,*)'SUMl OA=',SUMlOA

WRlTE(3,*)'SUMlOB=',SUMl OB

WRlTE(3,*)'SUMl 1A=',SUM1lA

WRlTE(3,*)'SUMllB=',SUMllB

WRlTE(3,*)'SUMll C=',SUM11C

WRlTE(3,*)'SUMIID=',SUMIID

WRlTE(3,*)'NORM KERNEL=',SUNA

WRlTE(3,*)'POTENTIAL KERNEL =',SUNB

. WRlTE(3,*)'KINETIC KERNEL =',SUNC

WRlTE(3, *)'ENERGY OF A DIQUARK-QUARK FROM KERNELS=',SUND

WRlTE(3,*)'DIQUARK -QUARK MASS USING KERNELS=',SUNE

BMASS=3. *QMASS+EDIQUARK+E3
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WRITE(3, *) ,

WRITE(3,*) DIQUARK MASS=',DMASS

WRITE(3,*) ,

WRITE(3,*) 'BARYON MASS=',BMASS

203 FORMAT(T5,F6.3,5X,2(FlO.7,5X))

205 FORMAT(T8,'R',12X,'U',13X,'Ul',/,T5,6('='),8X,6('='),8X,6('='))

STOP

END

SUBROUTINE RAY(R,Y,Z,H,N,E,LTP,K)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER(RIN=O.00000001, YA=O.O, ZA=1.0)

DIMENSION R(O:N), Y(O:N), Z(O:N)

R(O)=RIN

Y(O)=YA

Z(O)=ZA

DO 151= 0, N-l

X=R(I)

Cl= Hl2.*FUNC(X, Y(I),Z(I), E, LTP, K)

C2= Hl2.*FUNC(X+Hl2.,Y(I)+Hl2.*(Z(I)+Cl/2.),Z(I)+ Cl, E, LTP, K)

C3= Hl2. *FUNC(X+Hl2.,Y(I)+Hl2. *(Z(I)+Cl/2.),Z(I)+C2, E, LTP, K)

C4=Hl2.*FUNC(X+H,Y(I)+H*(Z(I)+C3),Z(I)+2.*C3, E, LTP, K)

R(I+1)= R(I) + H

Y(I+l) = Y(I) + H*Z(I) +H*(Cl+C2+C3)/3.
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Z(1+1) = Z(I) + (C1+2*C2+2. *C3+C4)/3.

15 CONTINUE

RETURN

END

FUNCTION FUNC(X, Y, Z, E, LTP, K)

IMPLICIT REAL*8(A-H, O-Z)

COMMON/CHM/HM

FUNC=Y*(V(X, LTP, K) - E)/HM

RETURN

END

c. .... POTENTIAL ENERGIES OF CORNELL, BHADURI, MARTIN AND QUIGG AND

C THEIR DERIVATIVES FROM THE VIRIAL THEOREM .

FUNCTION V(X, LTP, K)

IMPLICIT REAL*8(A-H, O-Z)

COMMON/CHM/HM

COMMON/CMASS/QM,DMASS

GO TO(I,2,3,4), LTP

C CORNELL POTENTIAL

1 HC=O.19IDO

A=5.2D2*HC

B=1.8262D2/HC

D=975.DO

V= -A/X + B*X-D



V=V/2.DO *K

RETURN

C BHADURI CENTRAL POTENTIAL

2 HC=O.197239DO

A=5.203D2*HC

B=1.857D2/HC

D=913.5DO

V= -A/X + B*X-D

V=V/2.DO *K

RETURN

C MARTIN POTENTIAL

3 A=-8.337D3

B=6.9923D3

C=O.lDO

V=A+B*(5.07*X)**C

V=V/2.DO*K

RETURN

C QUIGG POTENTIAL

4 A=744.DO·

B=O.87DO

V=A*LOG(B*X)

V=V/2.DO*K

RETURN
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END

FUNCTION VMl(X, K)

IMPLICIT REAL*8(A-H, O-Z)

A=-8.337D3

B=6.9923D3

C=O.lDO

VMl =O.5*5.07*B*C*X*((5.07*X)**(C-l.DO))

VMl=VMl/2.DO*K

RETURN

END

FUNCTION VM(X)

IMPLICIT REAL*8(A-H, O-Z)

A=-8.337D3

B=6.9923D3

C=O.lDO

VM=O.5*(A+B*(5.07*X)**C)

RETURN

END

FUNCTION VQ(X)

IMPLICIT REAL*8(A-H, O-Z)

A=744.DO

B=O.87DO

VQ=O.5*A*LOG(B*X)



RETURN

END

FUNCTION VQ1(X, K)

IMPLICIT REAL*8(A-H, O-Z)

A=744.DO

B=O.87DO·

VQ1=O.5*A

VQ1=VQ1I2.DO*K

RETURN

END

FUNCTION VC(X)

IMPLICIT REAL*8(A-H, O-Z)

HC=O.197DO

A=5.2D2*HC

B=1.8262D2/HC

D=975.DO

VC=O.5*(-NX+B*X-D)

RETURN

END

FUNCTION VC1(X, K)

IMPLICIT REAL*8(A-H, O-Z)

HC=O.197DO

A=5.2D2*HC
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B=1.8262D2IHC

VC1=O.5*(AIX+B*X)

VC 1=VC 1/2.DO*K

RETURN

END

FUNCTION VB(X)

IMPLICIT REAL*8(A-H, O-Z)

HC=O.197239DO

A=520.3*HC

B=185.7IHC

D=9l3.5DO

VB=O.5*(-AlX+B *X-D)

RETURN

END

FUNCTION F(X, K)

IMPLICIT REAL*8(A-H, O-Z)

Q=l.DQ

Rl=Q/SQRT{3}

F=SIN(Rl *X)/(Rl *X)

F=F/2.DO*K

RETURN

END

FUNCTION Fl(X)
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IMPLICIT REAL*8(A-H, O-Z)

Q=1.DO

RI =Q/SQRT{3}

FI =SIN(RI *X)/RI *X

RETURN

END

FUNCTION VB 1 (X, K)

IMPLICIT REAL*8(A-H ,O-Z)

HC=O.197239DO

A=520.3*HC

B=185.7/HC

VBI=O.5*(AIX+B*X)

VB 1=VB 1/2.DO*K

RETURN

END

SUBROUTINE GAUSSPT(NLOW, NDIM, NGAUSS, A, B, X, W)

IMPLICIT REAL*8(A-H, O-Z)

DThffiNSION X(NLOW:NDIM),W(NLOW:NDIM)

GN=O.5/NGAUSS

EXTRA=I.O/(0.4*NGAUSS*NGAUSS+5.0)

XZ=-GN

NT=O

NTEKEN=O
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5 PNM2=1.0

PNMl=XZ

DO 10 I=2,NGAUSS

PNMIXZ=PNMl *XZ

PN=2.0*PNMIXZ-PNM2-(pNMIXZ-PNM2)1I

PNM2=PNMl

10 PNMl=PN

MTEKEN=1

IF (pN.LE.O.O) MTEKEN=-l

IF((MTEKEN+NTEKEN).EQ.O) GO TO 15

GO TO 20

15 NT=NT+l

X(NT)=XZ

20 NTEKEN=MTEKEN

IF ((1.0-XZ).LE.EXTRA) GO TO 30

XZ=XZ+(1.0-XZ*XZ)*GN+EXTRA

GOT05

30 CONTINUE

DO 60 I=I,NT

XZ=X(I)

DELTA2=1.0

35 PNM2=1.0

PNM1=XZ
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PNMIAF=1.0

T=0.5+I.5*XZ*XZ

DO 40 K=2,NGAUSS

PNMIXZ=PNMI *XZ

PN=2.0*PNMI XZ-PNM2-(pNM IXZ-PNM2)IK

PNAF=XZ*PNM1AF+K*PNM1

T=T+(K+0.5)*PN*PN

PNM2=PNMI

PNMI=PN

PNMIAF=PNAF

40 CONTINUE

DELTAl=PNfPNAF

XZ=XZ-DELTAI

IF (DELTA1.LT.O.O) DELTAI=-DELTAI

IF «DELTA1.GE.DELTA2).AND.(DELTA2.LT.1.E-6)) GO TO 50

DELTA2=DELTAI

GO TO 35

50 X(I)=XZ

W(I)=I.O/T

60 CONTINUE

NGHALF=NGAUSS/2

NGP 1=NGAUSS+1

NTP 1=NT+I
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APB=A+B

BMAG2=(~-A)/2.0

DO 90 I=l,NGHALF

X(NGP1-I)=B-BMAG2*(1.0-X(NTP1-I»

90 W(NGP1-I)=BMAG2*W(NTP1-I)

IF (N_GHALF.NE.NT) GO TO 100

GO TO 110

100 X(NT)=APB/2.0

W(NT)=W(1 )*BMAG2

110 DO 120 I=l,NGHALF

X(I)=APB-X(NGP I-I)

120 W(I)=W(NGP1-I)

RETURN

END

C DOUBLE PRECISION FUNCTION CINT(C, X, R, N)

C

IMPLICIT REAL*8(A-H, O-Z)

DIMENSION C(4, N),X(N)

RR=R

IF(RR.LT. X(l»THEN

C RR=X(1)

CINT=O.DO

ENDIF
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DO 1 K=2, N

Kl=K-l

IF(X(Kl). LE. RR. AND. RR. LT. X(K»THEN

DX=RR-X(Kl)

CINT=C(l, Kl)+C(2, KI)*DX+C(3, Kl)/2.DO*DX**2+C(4, Kl)/6.DO*DX**3

ENDIF

1 CONTINUE

RETURN

END

DOUBLE PRECISION FUNCTION CINTT(C, X, R, N)

C ----

IMPLICIT REAL*8(A-H, O-Z)

DIMENSION C(4, N),X(N)

RR=R

IF(RR. LT. X(l»THEN

C RR=X(l)

CINT=O.DO

ENDIF

DO 1 K=2, N

Kl=K-l

IF(X(KI). LE. RR. AND. RR. LT. X(K»THEN

DX=RR-X(KI)

CINTT=C(3, Kl)+C(4, Kl)*DX
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ENDIF

1 CONTINUE

RETURN

END

SUBROUTINE CUBS3 (X, FX, C, N)

C

IMPLICIT REAL*8(A-H, O-Z)

DIMENSION C(4, N),X(N),FX(N)

C SEE COMMENTS IN 'CARL DE BOOR: A PRACTICAL GUIDE TO SPLINES

C PAGE 57

C X-MESH, FX: FUNCTION AT X

C C=CUBIC COEFFICIENTS

C F(S)=C(l, I)+H*(C(2, I)+H*(C(3, I)+H*C(4, 1)/3.)/2.)

C WHERE H=S-X(I)

L=N-1

IG=O

IE=O

DO 1 J=l, N

1 C(l, J)=FX(J)

DO 10 M=2, N

C(3, M)=X(M)-X(M-1)

10 C(4, M)=(C(1, M)-C(1, M-I»/C(3, M)

IF(IG-l)11,15,16
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11 IF(N. GT.2)GO TO 12

C(4,1)= l.DO

C(3,1)=1.DO

C(2, 1)=2.DO*C(4,2)

GO TO 25

12 C(4,1)=C(3,3)

C(3, 1)=C(3,2)+C(3,3)

C(2, 1)=«C(3,2)+2. *C(3, 1))*C(4,2)*C(3,3)+C(3,2)**2*C(4,3))/C(3, 1)

15 C(4,1)=1.DO

C(3, 1)=0.DO

GO TO 18

16 C(4,1)=1.DO

C(3, 1)=1.DO

C(2, 1)=3 .DO*C(4,2)-C(3,2)/2.DO*C(2, 1)

18 IF(N. EQ.2)GO TO 25

19 DO 20 M=2, L

G=-C(3, M+l)/C(4, M-I)

C(2, M)=G*C(2, M-l)+3.DO*(C(3, M)*C(4, M+l)+C(3, M+1)*C(4, M))

20 C(4, M)=G*C(3, M-1)+2.DO*(C(3, M)+C(3, M+l))

IF(IE-1 )21 ,30,24

21 IF(N. EQ. 3.AND. IG. EQ.O)GO TO 22

G=C(3, N-1)+C(3, N)

C(2, N)=«C(3, N)+2.DO*G)*C(4, N)*C(3, N-l)
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* +C(3, N)**2*(C(I, N-l)-C(1, N-2»)/C(3, N-l»)/G

G=-G/C(4, N-l)

C(4, N)=C(3, N-l)

GO TO 29

22 C(2, N)=2.DO*C(4, N) .

C(4, N)=1.DO

GO TO 28

24 C(2, N)=3.DO*C(4, N)+C(3, N)/2.DO*C(2, N)

C(4, N)=2.DO

GO TO 28

25 IF(IE-l )26,30,24

26 IF(IG. GT.O)GO TO 22

C(2, N)=C(4, N)

GO TO 30

28 G=-I.DO/C(4, N-l)

29 C(4, N)=G*C(3, N-I)+C(4, N)

C(2, N)=(G*C(2, N-l)+C(2, N»/C(4, N)

30 DO 40 J=L, 1,-1

40 C(2, J)=(C(2, J)-C(3, J)*C(2,J+l»/C(4, J)

DO 501=2, N

S=C(3, I)

SS=(C(I, I)-C(1, I-1»/S

SSS=C(2, I-l)+C(2, I)-2.DO*SS



C(3, I-l)=2.DO*(SS-C(2, I-l)-SSS)/S

50 C(4,I-l)=SSS/S*6.DO/S

RETURN

END
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