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ABSTRACT 

The burgeoning human population size and the consequent land development pressures to meet 

its various needs has led to an unparalleled increase in the rates at which natural environments 

are converted for anthropogenic purposes. Among the major drivers of landscape modification 

by humans, urbanisation is arguably the most damaging, persistent and rapidly expanding 

across the globe. With the expansion of urbanisation, an increasing proportion of global 

biodiversity will be affected. The Ethekwini Municipality Area (EMA) is an urbanised 

landscape with high levels of biodiversity in South Africa. However, this area has a relatively 

large human population (~3.5 million), most of which is poor. Furthermore, it is located within 

a region (KwaZulu-Natal) undergoing rapid landscape changes. High development pressures, 

unauthorised development practices, conflicting governance systems and the preponderance of 

development priorities over environmental concerns has subjected most of the EMA to human 

activity. Considering these pressures, it is important to understand how wildlife adapt and 

persist in this human dominated landscape in order to guide conservation action. The aim of 

this study was to assess the impacts of anthropogenic disturbance on persistence patterns of 

forest mammals (excluding bats) in an urban-forest mosaic in the EMA, Durban, South Africa. 

The objectives were to: (1) determine factors affecting the occupancy of forest mammals; (2) 

determine the effects of landscape context on mammalian richness; (3) determine the effects 

of patch attributes and species’ ecological and life-history traits on nestedness patterns and (4) 

determine the effects of anthropogenic disturbance and abiotic factors on activity patterns and 

temporal niche overlap of mammals. 

Between May–September 2016 and December 2016–April 2017, mammalian surveys 

were conducted in forest patches within the study area using remote-triggered camera traps. 

Furthermore, data on vegetation structure at each camera trap location was recorded in order 

to better understand the habitat requirements of species. The results showed varying responses 

of mammals to landscape and habitat structural variables. The blue duiker (Philantomba 

monticola), bushbuck (Tragelaphus scriptus), bushpig (Potamochoerus larvatus), and Cape 

porcupine (Hystrix africaeustralis) were negatively affected by the loss and degradation of 

forest habitat and the increase in matrix development intensity whereas the large-spotted genet 

(Genetta tigrina) and vervet monkey (Chlorocebus pygerythrus) were relatively unaffected by 

such changes. Among habitat variables, an intact undergrowth and a high density of large trees 

were found to be important for the occurrence of many species found in this area as they 

provide sufficient breeding, roosting and browsing resources for specialist species that respond 
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negatively to urban development. The results also demonstrated the importance of habitat area 

and its spatial configuration to the occurrence and persistence of mammals in this area. Patches 

that supported a high diversity of mammals were significantly larger, closer together, more 

contiguous and less separated by roads and urban development than patches that supported 

fewer species. The mammalian assemblage in the EMA was found to be significantly nested, 

with nestedness patterns related to patch size and isolation. This suggested that both the ability 

of species to persist on patches of various sizes and the ability to move to patches with different 

degrees of isolation affects the distribution and abundance of mammals in this area. Ecological 

specialists were found to be under more severe threat from further loss of forest habitat, which 

will likely threaten the long-term ecosystem functioning of forest habitat. When the activity 

patterns of species in the EMA were compared with activity patterns of the same species 

occurring in a less-disturbed landscape (Isimangaliso Wetland Park), no significant shifts in 

activity patterns were observed for most species except for common duiker (Sylvicapra 

grimmia), vervet monkey and Cape porcupine. Furthermore, there was only partial support for 

higher temporal overlap in activity patterns of ecologically similar species in the highly-

disturbed EMA.  

Overall, the results presented in this thesis have provided insights into the persistence 

abilities of mammal species found in the EMA. The results have also provided basic ecological 

information on poorly known taxa, which will advance our understanding of their ecology 

locally and regionally. To ensure the continued persistence of mammals in the EMA, 

conservation efforts should prioritise the prevention of further loss of habitat, particularly large 

tracts of contiguous habitat. Furthermore, measures aimed at improving matrix permeability 

(e.g. stepping stones or corridors) should be promoted. This will help in reducing the negative 

effects of roads, which will ultimately increase landscape connectivity. Nevertheless, this is a 

metropolitan area with high development pressures, which are expected to increase even further 

in the future given the rapid population growth rate and the need to provide basic services to 

the people. Therefore, town planners, land owners, ecologists, and other decision makers need 

to consider the whole landscape, including the matrix, in the planning phase of future 

development projects in this area in order to minimise potentially negative effects on 

biodiversity. 
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ISIZULU ABSTRACT - NGOKUFINGQIWE 

Ukwanda kwabantu emhlabeni, kanye nokwenyuka kwesidingo sokuhlinzeka abantu 

ngezidingo sekudale ukuthi linyuke izinga lokuguqulwa kwezindawo zasendle ukuze 

zisetshenzisselwe ukuhlinzeka izidingo zabantu. Kwizinhlobonhlobo zezizathu ezidala lokhu, 

ukwakhiwa kwamadolobha kunomthelela omkhulu kunazo zonke ezinye izizathu emhlabeni 

wonke jikelele. Njengoba ukwakhiwa kwezindawo zasemadolobheni kuqhubeka, iningi 

lezilwane zasendle zizithola sezihlala ezindaweni ezisondelene namadolobha. Indawo 

engaphansi kukaMasipala waseThekwini (EMA) ingezinye zezindawo ezinothe kakhulu 

ngemvelo eNingizimu Afrika. Kepha, le ndawo inabantu abaningi kakhulu (izigidi eziyi-3 

nengxenye), futhi iphinde itholakale esifundeni (KwaZulu-Natal) lapho kwenzeka khona 

ngamandla ukuguqulwa kwezindawo zasendle ukuze zisetshenziselwe izidingo zabantu. 

Ngaphezu kwalokho, lendawo ingaphansi kwengcindezi yokuthi iguqulwelwe 

ukusetshenziswa ngabantu, kunabantu abakha ngokungemthetho futhi abaphethe bacabangela 

kakhulu izidingo zentuthuko kunesidingo sokongiwa kwemvelo. Esimeni esinjengalesi, 

kubaluleke kakhulu ukucwaninga ukuze kubonakale ukuthi izilwane ezitholakala kule ndawo 

zenza kanjani ukumelana noguquko olwenzekayo ukuze zikwazi ukongiwa, zingashabalali. 

Inhloso yalolu cwaningo bekuwukuthola ukuthi izilwane ezitholakala emahlathini akulendawo 

(lezi ezinoboya, ngaphandle kwamalulwane) zimelana kanjani noguquko olungaka 

olwenzakalayo. Izinjongo zalolu cwaningo bezimi kanje: (1) ukuthola izinto ezinomthelela 

ekutheni izilwane zitholakala kuphi kule ndawo; (2) ukuthola ukuthi ubunjalo bendawo 

bunomthelela yini ekuthezi zingaki izilwane ezitholakalayo; (3) ukuthola ukuthi izilwaze 

ngabe zinephethini ethile yini ekuhlaleni emahlathini ahlukene kanye (4) nokuthola ukuthi 

ngabe izilwane ziyazishintsha yini izikhathi ezizisebenzisela ukufuna ukudla kanje nokunelisa 

ezinye izidingo ngenxa yokushintsha kwendawo. 

Kusukela kuNhlaba kuya kuMandulo wezi-2016 kanye noZibandlela kuya kuNdasa 

wezi-2017 kube nocwaningo ukuthola ukuthi yiziphi izilwane ezikhona kule ndawo 

kusetshenziswa amakhamera. Kwaphinde futhi kwaqoqwa ulwazi mayelana nesimo 

nezihlahla/izitshalo ezikulendawo ukubona ukuthi yisiphi isimo sezihlahla esithandwa 

yizilwane. Imiphumela ikhombisile ukuthi izilwane zikwazi ngokungafani ukumelana 

noguquko. Iphithi (Philantomba monticola), unkonka (Tragelaphus scriptus), ingulube 

yasehlathini (Potamochoerus sylvaticus) kanye nengungumbane (Hystrix africaeustrais) bona 

baluzwela kakhulu ushintsho kanti inkawu (Chlorocebus pygerythrus) kanye nensimba 

(Genetta tigrina) bona bayakazi ukumelana noshintsho. Imiphumela ikhombise ukuthi 
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ukucinana kwzihlahla ezisahluma kanye nokuba khona kwezihlahla ezinkulu kubaluleke 

kakhulu ekutheni zonke izilwane zibe khona kule ndawo. Ukuba khona kwalokhu okubalwe 

ngenhla kwenza izilwane zibe nezindawo ezanele zokucasha, zokulala kanye nokudla. 

Kuphinde kwabonakala ukuthi ukuba khona kwamahlathi kanye nokuthi atholakale esondelene 

kunomthelela omuhle ekutheni izilwane zitholakale kuwo. Mayelana nokutholakala 

kwezilwane emahlathini, kwatholakala ukuthi ubukhulu behlathi kanye nokuthi likude 

kangakanani kwamanye kunomthelela. Lokhu kukhombisa ukuthi kudingeka amahlathi 

amakhulu ukuze izilwane zikwazi ukuphila kuwo futhi kudingeka asondelane ukuze zikwazi 

ukuwasebenzisa wonke. Kutholakale ukuthi izilwane ezidinga ukuthi amahlathi abe sesimeni 

esithile kuphela yiwona asemathubeni okushabalala kule ndawo ngikuqhubeka koshintsho 

olwenzekayo. Uma kuqhathaniswa izikhathi lapho izilwane zinyakaza khona kutholakale 

ukuthi akunamehluko otheni phakathi kwalendawo kanye nenye indawo engakaguqulwa 

kakhulu (Isimangaliso Wetland Park), ngaphandle kwempunzi (Sylvicapra grimmia), inkawu 

kanye nengungumbane. Futhi ezilwaneni ezinezidingo ezifanayo, akutholakalanga ukuthi 

zinyakaza kakhulu ngesikhathi esifanayo kule ndawo.  

Jikelele, imiphumela eyethulwa kulo mqulu ikhombisa ukuthi izilwane zikwazi kanjani 

ukumelana noguquko olwenzekayo ezindaweni ezihlala kuzo. Luphinde futhi lwasinika 

nolwazi olunzulu mayelana nezidingo zalezilwane endle. Ukuqinisekisa ukuthi izilwane 

ezitholakale kule ndawo azishabalali, kumele kuqinisekiswe ukuthi amahlathi ayavikelwa, 

ikakhulu lawo amakhulu futhi atholakala eduzane kwamanye. Okunye futhi, kumele 

kuqinisekiswe ukuthi izihlahla ziyatshalwa ezindaweni eziphakathi nendawo kwamahlathi 

ukuze kusizwe izilwane ekutheni zifinyelele kalula emahlathini ahlukene. Lokhu kuzosiza 

ekutheni izilwane zikuthole kulula ukuhamba ngokukhululeka kule ndawo uma ziya 

kwamanye amahlathi. Kodwa ngenxa yokuthi le ndawo ingaphansi kukaMasipala, 

kuyabonakala ukuthi isidingo sokuthi amahlathi ashintshelwe ukwenziwa izindawo 

zokusetshenziswa ngabantu kusazoqhubeka ngenxa yokukhula kwesibalo sabantu 

esilindelekile. Kunxenxwa bonke labo abathintelene nokwenza izinqumo mayelana 

nokusetshenziswa komhlaba ukuthi uma benza izinqumo bacabangele ukunjalo bendawo jikele 

ukuze intuthuko ezokwenziwa ingabi nomthelela omubi kakhulu ezilwaneni nakwimvelo 

jikelele.   
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CHAPTER 1 

Introduction 

1. 1 Biodiversity loss 

Human-driven activities, as a result of the increase in land development activities to meet the 

needs of a growing human population, pose the greatest threat to the Earth’s biological diversity 

(Foley et al., 2005; Bradshaw et al., 2009; Gibson et al., 2011). The impacts of anthropogenic 

disturbance on biodiversity are particularly high in tropical regions where both species 

diversity and human pressures on the environment are high (Bradshaw et al., 2009; Gibson et 

al., 2011; Dirzo et al., 2014; Pimm et al., 2014). In the past 500 years, extinctions triggered by 

humans rival the rate and magnitude of those experienced during the past five mass extinction 

events, causing some authors to refer to the current wave of extinctions as the sixth mass 

extinction (Pimm et al., 1995; Pimm and Raven 2000; Dirzo and Raven 2003; Pimm et al., 

2014; Ceballos et al., 2015). In the past four decades, almost all indicators of the state of 

biodiversity showed declines whereas pressures on the environment increased (Butchart et al., 

2010). Despite some local successes (such as prevention of extinction, decreased pressures on 

natural resources and increase in the coverage of protected areas), the rates of biodiversity loss 

do not appear to be slowing down (Jenkins and Joppa 2009; Butchart et al., 2010; Pereira et 

al., 2012). The rural poor face the most serious and immediate risks from biodiversity loss as 

they directly depend on it (e.g. for food, building material, fuel, etc.) (Diaz et al., 2006; 

Cardinale et al., 2012). With the global human population size expected to increase even further 

in the coming decades (United Nations 2014), human-driven threats to global biodiversity are 

likely to equally increase, leading to further loss. 

 

1.2 Major drivers of biodiversity loss 

A diverse array of natural and anthropogenic pressures are impacting global ecosystems (Brook 

et al., 2008; Laurance and Useche 2009). The major drivers of global change include climate 

change (Thomas et al., 2006), illegal trade of wildlife (Rosen and Smith 2010), land-use 

changes (Foley et al., 2005), biological invasions (Bradley et al., 2010) and pollution (Dukes 

and Mooney 1999). The effects of these different drivers have often been studied in isolation 

but there is strong evidence that the impacts of one driver can strongly depend on the effects 

of other drivers acting in concert (Didham et al., 2007; Brook et al., 2008; Bradley et al., 2010). 
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Of particular concern, however, are the synergies among drivers (where their combined impact 

is greater than the sum of individual effects) as these may exacerbate the rate of biodiversity 

loss, with synergisms among drivers being reported with increasing frequency in literature 

(Brook et al., 2008; Laurance and Useche 2009; Fox et al., 2014). Therefore, although species 

may be directly affected by one or a few drivers, their fate is sealed by the synergistic effects 

that may be detached from the initial cause of decline (Brook et al., 2008). The consideration 

of these synergies is likely to lead to a better understanding of underlying causes of native 

biodiversity loss which will be important for formulating sound conservation principles (Brook 

et al., 2008). 

 

1.3 Forest habitat loss 

Forests are the most species rich ecosystems on Earth (Bradshaw et al., 2009). Despite covering 

a small portion of the global land surface, they contain over half of species all worldwide 

(Pimm and Sugden 1994; Laurance 1999; Bradshaw et al., 2009). Nevertheless, forests are 

beleaguered by a myriad of human-associated disturbances, threatening their existence 

(Laurance 1999; DeFries et al., 2010; Laurance et al., 2014). Between 2000 and 2012, 2.29 

million km2 of forest habitat was lost worldwide (Hansen et al., 2013). By 2012, at least 70% 

of the world’s forests were within 1 km of forest edge with about 20% of forest habitat within 

100 m of an edge (Haddad et al., 2015; Riitters et al., 2016). The loss of forest habitat does not 

only cause biodiversity loss, but its effects permeate through the whole ecosystem at all levels 

of biological organisation, affecting important ecological functions and processes (Haddad et 

al., 2015). Nevertheless, these rates of forest loss underestimate the level of threat facing forests 

as more subtle human activities causing biodiversity loss (e.g. hunting, logging, etc.) are hard 

to pick up from satellite imagery (Achard et al., 2002; Asner et al., 2009). Despite these loses, 

however, 0.8 million km2 of forest gain occurred during the same period (Hansen et al., 2013). 

However, most of this gain is likely to be due to secondary regrowth on abandoned lands and 

establishment of commercial forest plantations (Achard et al., 2002; Asner et al., 2009). 

Secondary forests and commercial forest plantations are very different from primary forest 

cover in terms of their biodiversity value and thus cannot sufficiently offset the loss of primary 

forests (Achard et al., 2002; Barlow et al., 2007; Gibson et al., 2011). Furthermore, forest loss 

opens frontier forested areas to colonisation and exploitation by hunters, miners and slash-and-

burn- farmers, leading to a multitude of environmental problems (Laurance et al., 2009; Suarez 

et al., 2009).  
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1.4 Habitat fragmentation 

Destruction and fragmentation of natural habitat poses a threat to global biodiversity (Fischer 

and Lindenmayer 2007; Fahrig 2013; Haddad et al., 2015; 2017). Habitat fragmentation is a 

process whereby a large area of continuous habitat is transformed into smaller units of smaller 

total area, isolated from each other by a matrix of habitat unlike the original (Wilcove et al., 

1986; Fahrig 2003; 2013). The conceptual development of the habitat fragmentation literature 

was rooted in the equilibrium theory of island biogeography (MacArthur and Wilson 1967; 

Laurance 2008). According to the theory, the number of species in an undisturbed insular 

environment (e.g. an island) is determined by its distance from a source of colonists (e.g. 

mainland) and its size (MacArthur and Wilson 1967). Most studies from experimentally-

fragmented landscapes showed that indeed species richness in small fragments was lower than 

in large habitat fragments (Debinski and Holt 2000; Ewers and Didham 2006; Didham 2010; 

Haddad et al., 2015). However, due to restrictive conceptual paradigms and imprecise and 

inconsistent use of terminology, the results failed to provide process-based insights about 

species distributions in fragmented landscapes (Haila 2002; McGarigal and Cushman 2002; 

Lindenmayer and Fischer 2007; Laurance 2008). Fragmentation research framed based on the 

island biogeographic theory assumed that fragments resembled “islands” in a “sea” of 

disturbance, an assumption that is clearly not the case for most human-dominated landscapes 

(Laurance 2008; Fahrig 2013). Presently, fragments are viewed as parts of a heterogeneous 

landscape, with studies documenting the influence of the whole mosaic of landscape elements 

surrounding habitat fragments on biota (Lindenmayer et al., 1999; Haila 2002; Bennett et al., 

2006; Didham 2010; Brudvig et al., 2016). The incorporation of the broader landscape is 

important for biodiversity conservation as the survival of many species necessitates 

simultaneous management of various landscape elements (Daily et al., 2001; Bennett et al., 

2006). 

 

1.4.1 Effects on biodiversity 

Due to the pervasiveness of fragmentation of natural habitats worldwide, habitat fragmentation 

has become a central theme in conservation biology (Debinski and Holt 2000; Fahrig 2003; 

Ewers and Didham 2006). Generally, fragmentation leads to the loss of biodiversity by 

reducing the size of habitat patches which limits resource availability, reduces colonisation 

rates and alter reproductive success, leading to a small population size (Turner 1996; Fahrig 
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2003; Ewers and Didham 2006; Haddad et al 2015; 2017). This exposes the population to 

environmental and demographic stochasticity, natural catastrophes and reduced genetic 

diversity (Turner 1996; Debinski and Holt 2000; Didham 2010). Nevertheless, there are huge 

discrepancies in the results from fragmentation experiments especially regarding the 

relationship between species richness and abundance and fragment size (Debinski and Holt 

2000; Fahrig 2003; Ewers and Didham 2006). The differing responses are due to the influence 

of edge effects, competitive release and the differences in spatial scales between studies 

(Debinski and Holt 2000; Fahrig 2003; Ewers and Didham 2006; Smith et al., 2011). This has 

led to debates about the influence of different mechanisms associated with fragmentation and 

even about the utility of the term itself (Fahrig 2003; Lindenmayer and Fischer 2007; Didham 

2010; Didham et al., 2012). Fahrig (2003) suggested that the effects of habitat loss and isolation 

(fragmentation per se; the breaking apart of habitat while controlling for habitat amount) should 

be separated as they have different ecological effects. Indeed, studies that separated the effects 

of the two mechanisms found that the effects of habitat loss were universally huge and resulted 

in the loss of biodiversity whereas the effects of isolation were less strong and likely to be as 

negative as positive (Fahrig 2003; Watling and Donnelly 2006; Smith et al., 2011; Fahrig 2017; 

but see Fletcher et al., 2018). However, the range in area represented in studies was more than 

an order of magnitude greater than the range in isolation, precluding the detection of isolation 

effects simply because there was not enough variation in isolation values to cause a response 

in species richness (Watling and Donnelly 2006; Bailey et al., 2010). Furthermore, the 

analytical procedures used in many studies were conservative with regards to isolation effects, 

leading to area effects including a significant portion of isolation effects (e.g. Villard et al., 

1999; Koper et al., 2007; Smith et al., 2009). Lastly, matrix type and species’ dispersal abilities 

may strongly confound the effects of isolation (Ewers and Didham 2006; Lee and Peres 2009; 

Didham 2010). Thus, a more holistic view of the landscape, together with proper 

methodological and analytical procedures are required if we are to fully understand the 

ecological effects of habitat fragmentation on biodiversity. 

 

1.4.2 Effects of habitat edges 

As a result of habitat fragmentation, the amount of edge habitat in the landscape increases 

dramatically, exposing the biota within fragments to ecological changes associated with edge 

effects (Laurance and Yensen 1991; Ries et al., 2004; Ewers and Banks-Leite 2013; Haddad et 

al., 2015). Edge effects lead to several changes in the functioning and composition of habitat 

fragments and these include microclimatic changes, increased wind shear and turbulence, 
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increased liana abundance, changes in litter fall, nutrient cycling and a variety of other effects 

(Kapos 1989; Laurance et al., 2002; 2007). These effects result in elevated tree mortality near 

edges, driving the fragments towards an early-successional state with a homogenised 

vegetation (Tabarelli et al., 2008). This lowers species diversity at both the patch and landscape 

scale, leading to impoverishment in terms of species composition, functional diversity and life 

history traits (Tabarelli et al., 2008). In animals, edge effects may lead to local extinction of 

edge-avoiding species, increase in the abundance of edge dwelling species and invasion of 

remnant fragments by species common in the matrix, leading to an overall increase in species 

diversity at the expense of species of conservation concern (Lidicker 1999; Pardini 2004; Reino 

et al., 2009; Pfeifer et al., 2018). 

 

1.4.3 Effects on community dynamics and composition 

Understanding the effects of habitat fragmentation on community composition and dynamics 

is important as changes may have functional effects for fragments (Andresen 2003). 

Fragmentation leads to significant alterations in community composition in taxa as diverse as 

dung beetles (Didham et al., 1998), birds (Boulinier et al., 2001), butterflies (Steffan-Dewenter 

and Tscharntke 2000), mammals (Laurance 1994; Ahumada et al., 2011), bees (Brosi et al., 

2008) and plants (Laurance et al., 1998a; 2006). In particular, fragmentation, through the edge 

effects it creates, leads to increased temporal variability in the number of area-sensitive species 

in edges, leading to high species turnover (Didham et al., 1998; Laurance et al., 2002). This 

makes species more susceptible to local extinction, causing them to be lost at 

disproportionately higher rates at a landscape level (Kemper et al., 1999; Laurance et al., 2006). 

As a result, the guild composition of fragments becomes indistinguishable from the edge. Over 

time, these changes may result in small fragments converging in composition, containing only 

a biased subset of the original community (Tabarelli et al., 1999; Laurance et al., 2007). 

Fragmentation may also intensify competitive interactions among ecologically similar species, 

causing the less competitive species to be lost from small fragments (Laurance 1994; Pardini 

2004). Lastly, due to high temporal variability in species richness especially along edges, 

fragmentation may predispose fragments to invasion by highly competitive exotic species, 

displacing the sensitive native fauna (Didham et al., 2007). These effects may eventually erode 

the functional diversity of biota in fragmented landscapes (Ahumada et al., 2011), significantly 

curtailing the maintenance of important ecosystem functions (Girao et al., 2007). 

 

1.4.4 Effects on ecological processes 
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Intact forest ecosystems are renowned for their ecological complexity and a high degree of 

ecological interactions. In particular, plant-animal mutualistic interactions are important for the 

maintenance of forest biodiversity and ecosystem integrity (Rodriguez-Cabal et al., 2007; 

Neuschulz et al., 2016). Fragmentation may profoundly affect species interactions due to local 

extinctions and/or replacement of interactive partners, with effects cascading through the 

community, increasing the rates of extinction (Aizen and Feinsinger 1994a; b; 2003; Cordeiro 

and Howe 2001; 2003; Valiente-Banuet et al., 2015). For example, the loss of seed dispersers 

has been shown to lead to fewer dispersal agents, low seed removal and subsequently reduced 

recruitment of plants in small fragments than in continuous forest (Cordeiro and Howe 2001; 

2003; Cramer et al., 2007). Large-seeded plants are particularly strongly affected due to 

reliance on a few, extinction prone disperser assemblages (Cramer et al., 2007; Neuschulz et 

al., 2016). Similarly, fragmentation leads to a reduction in the abundance and diversity of 

pollinators, causing a reduction in plant reproductive success (Aizen and Feinsinger 1994a; b; 

2003; Aguirre and Dirzo 2008). Alternatively, the composition of the pollinator assemblages 

may change, affecting pollen deposition if efficient pollinators are replaced by less effective 

ones (Aizen and Feinsinger 2003). Due to the decoupling of the loss of species and interactions, 

ecosystem services and functions resulting from these interactions are under more intense 

threat from fragmentation as mutualists cease to function long before they become rare/extinct 

(McConkey and Drake 2006; Valiente-Banuet et al., 2015).  

 

1.4.5 Effects on ecosystem functions 

Pristine forest ecosystems are important stores of biodiversity as they maintain a wide variety 

of ecosystem services including carbon storage, pollination and seed dispersal, climate 

regulation, maintenance of stream flow during dry periods, moderation of flash floods, 

recharging of ground water and enhancement of water quality and soil conservation (Nasi et 

al., 2002; Bradshaw et al., 2007; Lewis et al., 2009; Makarieva et al., 2014). The destruction 

and fragmentation of habitat can lead to a reduction in the delivery of these services. High tree 

mortality near forest edges as a result of fragmentation, which is disproportionately high in 

large trees, results in a significant loss of aboveground biomass (Laurance et al., 1997; 2000). 

This huge biomass is converted into greenhouse gases as the biomass from dead trees 

decomposes (Houghton 2005). The successional trees (vines, lianas and secondary vegetation) 

that proliferate and replace dead trees at edges do not fully compensate for this loss of biomass 

as they have low wood density, which reduces the carbon storage capacity of forests (Laurance 

et al., 1998b). It has been estimated that this process releases about 1-2 Pg C year-1, which 
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accounts for about 25% of all greenhouse gas emissions (Houghton 2005; Pan et al., 2011). 

The loss of forests may also increase the susceptibility of people to flood-related disasters. A 

global analysis of the association between forests and flooding showed that flooding frequency 

is high when the amount of remaining natural forest is low and increases with the rate of natural 

forest area loss (Bradshaw et al., 2007). As forests continue to be lost at a rapid pace, this 

imperils their biological diversity and the ecosystem services derived from it (Nasi et al., 2002). 

 

1.4.6 Species response to fragmentation 

Organisms show species-specific responses to fragmentation (Laurance 1990; Crooks 2002; 

Gehring and Swihart 2003; Henle et al., 2004; Lees and Peres 2008). Understanding 

characteristics that render species more susceptible to fragmentation is thus important for 

understanding, predicting and mitigating the effects of fragmentation (Davies et al., 2004; 

Henle et al., 2004; Cagnolo et al., 2009). Several factors have been proposed to affect species 

sensitivity to fragmentation (e.g. body size, resource specialisation, dispersal ability, fecundity, 

population size, trophic level, sociality, etc.) (Laurance 1991; Henle et al., 2004; Ewers and 

Didham 2006). Studies conducted to date have found a huge variability in the relevance of 

these factors as predictors of extinction proneness (Davies et al., 2000; Crooks 2002; Barbaro 

and Halder 2009; Cagnolo et al., 2009). Based on a literature review, only six factors have 

found good empirical support: population size, population variability, the degree of habitat 

specialisation, competitive ability and sensitivity to disturbance, rarity and biogeographic 

origin (Henle et al., 2004). However, interactions between traits may confound the relevance 

of different traits in predicting extinction risk due to a high degree of collinearity and 

synergistic interactions between them (Davies et al., 2004; Henle et al., 2004; Watling and 

Donnelly 2007; Meyer et al., 2008; Bommarco et al., 2010). Furthermore, traits interact with 

the environment (e.g. spatial configuration of natural habitat patches) such that the 

vulnerability of species differs with the environment (Henle et al., 2004; Anjos 2006; Ewers 

and Didham 2006; Vetter et al., 2011). Thus, the consideration of single traits limits our 

understanding of species response to fragmentation and underscores the need to consider trait 

complexes rather than dealing with traits individually (Henle et al., 2004; Ewers and Didham 

2006).  

 

1.5 Urbanisation 
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Urbanisation is the main driver of land-use change and a major threat to biodiversity worldwide 

(Mcdonald 2008; Guneralp and Seto 2013; Murray and St Clair, 2015). In 2008, a historical 

landmark was reached when the urban human population exceeded the rural population for the 

first time in recorded history (United Nations, 2014) and by 2014, 54% of the world’s human 

population resided in urban areas (United Nations, 2014). By 2050, at least two thirds of all 

people in the world are expected to reside in urban areas (Montgomery 2008; Salek et al., 

2015), with most of the increase expected to occur in developing countries (Grimm et al., 2008; 

Montgomery 2008; Angel et al., 2011; Guneralp and Seto 2013). This increase, concomitant 

with the increase in urban land cover, will disrupt biodiversity in hotspots and other areas that 

were previously unaffected by urban development (Seto et al., 2012). 

Urbanisation has one of the most irreversible (Seto et al., 2011) and lasting impacts 

(McKinney, 2002) on the global biosphere resulting in habitat loss, altered local climates, and 

increased local extinction rates (McKinney, 2002; Grimm et al., 2008). While urban areas cover 

a small portion of the surface of the earth (~5%), their impact and footprint is disproportionately 

large and extends beyond urban areas (McKinney 2002). For example, urban areas are 

responsible for 78% of global carbon emissions, 60% of residential water use and 76% of 

industrial wood use (Grimm et al., 2008). According to Mcdonald et al. (2008), 8% of terrestrial 

vertebrates are threatened largely because of urban development. As the first three decades of 

the 21st century are expected to experience more urban land expansion than all of history (Seto 

et al., 2012), with the percentage of urban land in the biodiversity hotspots expected to double 

during the same period (Angel et al., 2011; Guneralp and Seto 2013), there is a short window 

of opportunity for policy makers to make decisions that minimise the long-term impacts of 

urbanisation.  

 

1.5.1 The urban environment 

Urban areas comprise a heterogeneous habitat mosaic containing clusters of high- and low-

density buildings, intensively-managed green spaces, natural habitat remnants and linear 

features such as roads, rivers and railway lines (Soulsbury and White 2015). As the structure 

of this mosaic differs greatly among urban areas, this gives each urban area unique habitat 

features (Soulsbury and White 2015). Due to the displacement of native flora by non-native 

species mainly introduced for ornamental purposes and the increase in cover by impervious 

land surface, one universal feature of urban areas is the fragmentation and degradation of 

natural habitats (McKinney 2002), with the vegetation characterised by low coverage of mid- 

and upper-canopy levels, low stem density and more ground cover relative to canopy cover 
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(Chase and Walsh 2006; Pickett et al., 2001). As a result of increased transportation networks, 

resource extraction and motorised recreation, elevated noise levels have become a ubiquitous 

feature of urban environments (Barber et al., 2010; Francis and Barber 2013). Anthropogenic 

noise is a cause for concern because it differs markedly in pitch and amplitude from noises 

from natural areas, creating novel acoustic environments (Francis et al., 2011). As a result, the 

distance over which acoustic signals can be perceived by animals decreases (Barber et al., 

2010). Another characteristic of the urban development is light pollution (Gaston et al., 2013). 

At present, light pollution globally is increasing at about 6% annually (Holker et al., 2010; 

Gaston et al., 2013). Light pollution has a significant impact on the activity patterns and 

reproductive behaviour of organisms by causing changes in the initiation of daily activity (due 

to altered circadian rhythmicity) and timing of reproduction (Dominoni et al., 2013). Light 

pollution may also affect the behaviour or density of predators or prey, leading to disruption in 

prey-predator interactions among nocturnal organisms (Gaston et al., 2013). As the world gets 

more illuminated, the loss of darkness could have potentially important (albeit unknown) 

consequences for biodiversity conservation as a substantial proportion of global biodiversity 

(30% vertebrates, >60% invertebrates) is nocturnal (Holker et al., 2013). 

 

1.5.2 Effects of urbanisation on biodiversity  

As urbanisation leads to significant differences in the biophysical attributes (e.g. biotic, 

climatic, and edaphic) between areas of high and low human housing densities, a number of 

studies have assessed the effects of urbanisation on biodiversity across rural-urban 

gradients/mosaics (Blair 2004; Randa and Yunger 2006; Ordenana et al., 2010). Generally, 

species richness and diversity peaks at intermediate levels of urbanisation whereas abundance 

peaks at the extreme end of urbanisation (Blair 2004; McKinney 2008). Moderate levels of 

urbanisation lead to increased habitat heterogeneity through increases in ornamental 

vegetation, water sources, primary productivity, and the amount of edge between habitats (Blair 

2004; McKinney 2008). As a result, there is an increase in the abundance of resources that can 

be exploited by native species, which also attracts widely-ranging species, increasing overall 

species diversity (McKinney 2002; Ordenana et al., 2010). On the other hand, more intense 

urbanisation decreases the amount of resources available by removing a substantial amount of 

land from primary production which is permanently replaced with pavement and structures 

(McKinney 2002; 2008; Brearley et al., 2010; Goad et al., 2014). Consequently, there is a 

reduction in species diversity in urban areas as a result of a few urban-adapted, invasive species 

utilising the majority of resources (McKinney 2006; Pauchard et al., 2006). The loss of native 
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species and the simultaneous increase in non-native species leads to biotic homogenisation, 

resulting in depauperate ecological communities (Blair 2004; McKinney 2002; 2006; 2008). 

 

1.5.3 Species response to urbanisation 

Organisms moving into urban areas are confronted with a number of novel stressors such as 

human disturbance, vehicle collisions, noise, high densities of non-native predators (cats and 

dogs) and light pollution (Ditchkoff et al., 2006; Croci et al., 2008; Lowry et al., 2012; 

Widdows and Downs 2015). This exposes them to selection pressures that differ drastically 

from those under which they evolved (Bokony et al., 2012; Lowry et al., 2012). Consequently, 

urbanisation has been implicated in biodiversity loss and species endangerment (Pauchard et 

al., 2006; Mcdonald et al., 2008; Hahs et al., 2009). However, there are several characteristics 

associated with urban environments that have been shown to be beneficial to colonising species 

(e.g. high food abundance, the low abundance of larger predators, and the longer growing 

season) (Lim and Sodhi 2004; Baker and Harris 2007; Evans et al., 2011). Indeed, some species 

attain higher densities in more urbanised settings that in adjacent rural areas (Contesse et al., 

2004; Sol et al., 2014). Therefore, the central question in urban ecology is why some species 

survive in urban areas while others do not (Levey et al., 2009; Lowry et al., 2012; Sol et al., 

2013).   

Species differ greatly in their ability to adapt to the urban environment and they have 

been grouped into three categories (Blair 2004; McKinney 2002; 2006). Urban avoiders are 

species that are sensitive to human impacts and are usually rare or completely absent in urban 

areas (Blair 2004; McKinney 2002; 2006; Bateman and Fleming 2012). Urban adapters are 

those species occurring in the matrix of human land-use associated with moderate levels of 

urban development (McKinney 2006; Christie and Hochuli 2009) and they depend on both 

natural as well as anthropogenic food for survival (Kark et al., 2007; Croci et al., 2008; 

Widdows and Downs 2015). Urban exploiters are species that become totally dependent on 

human-subsidised resources for survival and they are generally tolerant of human disturbance 

(McKinney 2002; 2006). To maintain high levels of biodiversity in urban areas in the future, it 

is imperative that policy makers and town planners integrate natural areas into future urban 

extensions to increase habitat diversity so that urban areas are habitable to species with 

different environmental tolerances (Kark et al., 2007). 

 

1.5.4 Effects of urbanisation on wildlife use of urban environments 
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Urban development affects wildlife in diverse and complex ways and include effects such as 

habitat fragmentation, reduced gene flow, high rates of mortality (due to vehicle collisions, 

human persecution) and increased exposure to disease (Baker and Harris 2007; Croci et al., 

2008; Bateman and Fleming 2012; Moss et al., 2015). Furthermore, the spatial arrangement of 

industries, residential areas, roads, and other built infrastructure affects the availability, quality, 

distribution and connectivity of remaining natural habitats with consequences for wildlife 

distribution (McAlpine et al., 2006; Wattles and DeStefano 2013). In particular, urbanisation 

exposes species to enhanced edge effects as edges characteristic of urban landscapes (e.g. roads 

and residential areas) are ‘hard’ due to their strong contrast with native vegetation (Vignoli et 

al., 2009; Brearley et al., 2010; 2011; Villasenor et al., 2014). Hard edges act as a barrier to the 

movement of organisms in the landscape, leading to an increase in the depth and magnitude of 

edge influence (Villasenor et al., 2014). As a result, many species have reduced occurrence in 

areas of high human development (Ordenana et al., 2010). In developed landscapes, wildlife 

has few places to hide from humans and these places are often isolated by roads, walls and 

buildings, making their access difficult (Saito and Koike 2013; 2015). As a result, they utilise 

natural areas and less-developed areas wherever they are available (Knopff et al., 2014; 

Mitchell et al., 2015; Wang et al., 2015). Furthermore, they decrease their diurnal activity 

and/or use areas with adequate cover when moving through the urban landscape during the day 

(Knopff et al., 2014; Garwood et al., 2015; Mitchell et al., 2015). Despite these negative effects 

of urbanisation, the heterogeneity it provides serves as a refuge for many species that have 

adapted to urban conditions (Cervinka et al., 2014). In particular, the retention of natural-like 

areas such as nature reserves, household gardens, golf courses, parks and other open areas in 

low-density housing developments is beneficial to several species as it increases niche diversity 

(Cervinka et al., 2014; Villasenor et al., 2014). The presence of these areas allows several 

species to utilise urban landscapes and are thus essential for sustaining wildlife populations and 

increasing urban biodiversity (Bateman and Fleming 2012). 

 

1.6 Occupancy modelling 

Occupancy refers to the proportion of an area that a species inhabits or the fraction of landscape 

units in which a species is found (MacKenzie et al., 2002; 2003; Bailey et al., 2004; MacKenzie 

et al., 2006). Few species are likely to be always detected at a site when present (MacKenzie 

et al., 2002; 2003; 2006). This “false absence” may result in an underestimation of the sites 

occupied by the target species and biased occupancy estimates (MacKenzie et al., 2003). 
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Therefore, to account for potential errors, one must account for imperfect detectability as a 

result of potential false absences (MacKenzie et al., 2002; Gu and Swihart 2004). Occupancy 

accounts for imperfect detection by integrating detection probability into the occupancy 

estimation procedure, resulting in unbiased estimates of occupancy (MacKenzie et al., 2006; 

Bailey et al., 2007). During occupancy estimation, the assumption of population closure applies 

(i.e. it is assumed that there has been no births, deaths, immigration or immigration during the 

time over which occupancy is estimated, and thus that there have been no changes in 

occupancy) (Otis et al., 1978; Mackenzie et al., 2002; 2006). Through the incorporation of site 

covariates into the modelling framework, occupancy modelling provides a robust approach for 

determining species-habitat relationships by testing scientific hypotheses regarding species 

distribution in landscapes (MacKenzie et al., 2006; Rovero et al., 2014). 

 

1.7 The South African forest biome 

The forest biome is the smallest biome in southern Africa, covering an estimated 0.56% of 

South Africa (7177 km2) (Low and Rebelo 1996; Mucina and Rutherford 2006). Forests are 

generally restricted to areas with high water availability. According to Low and Rebelo (1996), 

forests are restricted to frost-free areas with a mean annual rainfall of >525 mm in winter 

rainfall regions and >725 mm in summer rainfall regions. However, they occur outside of these 

rainfall envelopes as groundwater, flood water and the sheltering effect (the presence of gorges 

with low solar irradiation which reduces evaporation and evapotranspiration rates) also play a 

role in forest distribution (Geldenhuys 1991; Mucina and Rutherford 2006). Forests are found 

from sea level up to over 2100 m above sea level (Low and Rebelo 1996). They generally occur 

as a series of small to very small patches (<10 ha), with most of them less than 1 km2 (Midgley 

et al., 1997; Eeley et al., 2001; Lawes et al., 2004; Mucina and Rutherford 2006). Forests are 

scattered along the eastern and southern seaboard, occurring on south-facing slopes in 

KwaZulu-Natal (KZN) and the Eastern Cape Provinces and at high altitudes along the 

Drakensberg escarpment to the Limpopo Province (Low and Rebelo 1996). Despite their small 

area, indigenous forests support a disproportionately high proportion of the region’s 

biodiversity, with 14% of birds and mammals found in the forest biome (Geldenhuys and 

MacDevette 1989). Two major forest types are recognised in South Africa: Afromontane and 

Indian Ocean Coastal Belt forests (Moll and White 1978; Cooper 1985), with the Scarp forest 

representing a zone of overlap between the other two forest types (Eeley et al., 1999; Lawes 

1990a; Lawes et al., 2007). The Indian Ocean Coastal Belt forest include six forest subtypes 
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(swamp forest, dune forest, coastal lowland forest, riverine forest, coastal scarp forest and sand 

forest) whereas the Afromontane forest is made up of mist-belt mixed Afrocarpus/Podocarpus 

and montane Afrocarpus/Podocarpus subtypes (Eeley et al., 1999). 

 

1.7.1 Threats to the forest biome 

Forests in South Africa have been subjected to human impacts for a very long time (~1600 

years) (Feely 1980). Due to this, the indigenous forest used to cover a much larger portion of 

the region than at present (Acocks 1953; Olivier et al., 2013). Early pressures on forests were 

from native people who used forest products for fencing, fuelwood, medicine, building 

material, food, smelting of iron, etc. (McCracken 1986). Large-scale exploitation of forests 

(particularly for timber) started after the arrival of European settlers, with most of forest 

destruction taking place from 1860-1940 (Lawes 2002). At present, nearly half of the 

indigenous forest biome has been transformed, mainly in recent years (Macdonald 1989; Eeley 

et al., 2001). The forest biome is under increasing human pressures due to the rising human 

population size and threats now are more varied and include communal grazing, logging, 

mining, agricultural expansion, altered fire regimes, illegal hunting, and land-use changes 

(Geldenhuys and MacDevette 1989; Castley and Kerley 1996; Jewitt et al., 2015). The Coastal 

Belt forest is under more pressure due to tourism-orientated coastal development, sand dune 

mining, buildings, roads, commercial forestry and sugarcane (Saccharum officinarum) 

expansion (Midgley et al. 1997; Jewitt et al., 2015). 

 

1.7.2 Forests of KwaZulu-Natal 

KwaZulu-Natal (KZN) Province supports one sixth of the indigenous forests of South Africa 

(1185 km2) (Low and Rebelo 1996). This province is unique in that all three major forest types 

occurs within its borders suggesting that it is critical to the conservation of this biome (as well 

as its fauna) in South Africa (Eeley et al., 2001; Fig. 1.1). The Afromontane forest is mainly 

located in steep, south-facing slopes of mountains and hills which are sheltered from extreme 

temperatures and experiences considerable seasonal fluctuations in temperature and rainfall 

(Midgley et al., 1997; Lawes et al., 2007). The Indian Ocean Coastal Belt forest occurs at lower 

elevations from the shoreline up to 10-15 km inland and temperatures are warmer, with the 

rainfall occurring throughout the year although it is higher during the spring and summer 

months (Low and Rebelo 1996; Midgley et al., 1997; Lawes et al., 2007). The Scarp forest is 

located between these two forest types and occurs up to 70 km inland in the northern parts of 

the province (Lawes et al., 2000a; 2007). As a result of its location, the Scarp forest comprises 
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a mixture of Afromontane and Coastal Belt forest fauna and flora, together with palaeoendemic 

endemics and relic populations from tropical Africa (Lawes 1990a; Lawes et al., 2000a; 2007). 

Of the three forest types, Afromontane forest is considered to be the most ancient and thus 

more persistent, having been around in the region before the Last Glacial Maximum (~ 18 000 

BP; Moll and White 1978; White 1978; Lawes 1990a). The Indian Ocean Coastal Belt forest, 

on the other hand, was established in the region only after the Last Glacial Maximum (<8000 

years), and thus, is much younger (Tinley 1985; Lawes 1990a). The Scarp forests have strong 

Afromontane affinities and were relatively unaffected by climatic changes during the 

Quartenary, having acted as refugia during the Last Glacial Maximum (Cooper 1985; Lawes 

1990a). As a result, they have the highest species richness and concentration of forest specialist 

species (Lawes et al., 2000a; 2007). Due to past climatic influences causing fluctuations in the 

distribution of vegetation, forests in the region are naturally fragmented which has affected the 

faunal assemblages residing within them (Lawes et al., 2000a). 

 

 

Fig. 1.1. Map of KwaZulu-Natal Province, South Africa, showing the distribution of 

Afromontane and Indian Ocean Coastal Belt forests and their various sub-classifications 

(Mucina and Rutherford 2006). 

 

1.8 Study area 
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The study was conducted in nine Protected Areas within the EThekwini Municipality Area 

(EMA), Durban, KZN, South Africa (Fig. 1.2; Table 1.1). The EMA, 2297 km2 in extent, is 

the third largest metropolitan area in South Africa and has the busiest port in Africa (EThekwini 

Municipality 2013). The area has a large human population (~3.5 million) with an annual 

growth rate of 1% (ECPDP 2015). The climate is sub-tropical, characterised by hot and humid 

summers and sunny, mild winters and has a mean annual minimum and maximum temperature 

of 13.9°C and 24°C, respectively (http://en.climate-data.org/location/27097/). The rainfall is 

seasonal, mostly occurring during the summer months with a mean annual rainfall of 974 mm 

(http://en.climate-data.org/location/27097/). The parent material is clastic sedimentary 

sandstone, allowing the permeability of water, leading to moist soils (Hlanguza, 2015). The 

varied climate, physiography, topography, soils and geology are thought to be responsible for 

the high diversity of terrestrial and aquatic life in the EMA (McLean et al., 2016). The EMA 

falls under the Maputaland-Pondoland Albany, one of the 36 global biodiversity hotspots 

(Boon et al., 2016). Among the cities of South Africa, EMA has the highest level of poverty 

(32%) and has high levels of inequality, with a GINI index of 0.63 (EThekwini Municipality 

2015). Although the area is considered to be urban, it has a sizeable portion considered rural 

and peri-urban (65%) as a result of the segregational laws of the Apartheid system which 

marginalized certain communities, forcing them to live away from urban areas (Boon et al., 

2016). The area also includes areas that fall under tribal land where traditional governance 

systems are applied under the guidance of the local Chiefs (Boon et al., 2016; McLean et al., 

2016). The EMA has high levels of biodiversity with 2267 plant, 37 amphibian, 69 reptilian, 

526 avian and 82 mammalian species found within its borders (McLean et al., 2016). The eight 

vegetation types found include Eastern Valley Bushveld, KwaZulu-Natal Coastal Belt, 

KwaZulu-Natal Hinterland Thornveld, KwaZulu-Natal Sandstone Sourveld, Ngongoni Veld, 

Scarp Forest, Northern Coastal Forest and Mangrove Forest (McLean et al., 2016).   

Similar to other metropolitan areas globally, the EMA has undergone tremendous 

landscape modification with 53% of the original vegetation having been transformed for 

anthropogenic purposes such as agriculture, buildings, roads and human settlements, with a 

further 17% considered to be highly degraded (EThekwini Municipality 2015). Consequently, 

only 3.1% of EMA is under some form of legal protection for environmental reasons with 

protected areas covering only 0.6% of the area (EPCPD 2015). The major threats to 

biodiversity include habitat destruction, introduction of alien invasive species, over-

exploitation of wildlife and human-induced climate change (EThekwini Municipality 2015; 

Boon et al., 2016). However, there is an open space plan that has evolved over the years and 

http://en.climate-data.org/location/27097/
http://en.climate-data.org/location/27097/
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has been instrumental in guiding approaches to biodiversity conservation and management over 

the past few decades (Roberts 1994). This plan, formalised under the Durban Metropolitan 

Open Space System (D’MOSS), consists of a network of areas of high conservation value set 

aside to ensure the conservation of native fauna and flora in the face of increasing urban growth 

and development and to improve the long-term quality of life among the urban residents 

(Adams 2005; Roberts 1994; Fig. S1.1). The D’MOSS was founded based on the principles of 

the Island Biogeography Theory (McArthur and Wilson 1967) and consists of core areas, 

connecting corridors and buffers (Roberts 1994; Adams 2005). The main role of core areas 

(nature reserves) is to serve as sites where conservation is the main function and they are linked 

into a system by connecting buffers (Roberts 1994; Adams 2005). Buffer areas are other green 

spaces such as golf courses, sports fields, parks, cemeteries, gardens, etc. (Adams 2005). Most 

of forest habitat within the EMA falls under the Indian Ocean Coastal Belt vegetation type 

which originally occupied about 65% of the EMA of which 67% has been transformed 

primarily for human settlements and sugarcane farming (Mucina and Rutherford 2006; 

EThekwini Municipality 2007; GeoTerraImage 2014).  

 

 

Fig. 1.2. Map showing the study area, Ethekwini Municipality Area, Durban, KwaZulu-Natal, 

South Africa. 
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Table 1.1. Protected areas surveyed for the present study.  

Nature Reserve                  Coordinates                               Size (ha)        Camera trap sites                          

Burman Bush                      29°48′59″S; 31°00′59″E                53                          3 

Giba Gorge                          29°48′36″S; 30°46′08″E               287                        6 

Kenneth Stainbank              29°54′34″S; 30°56′02″E               194                         6 

Krantzkloof                         29°46′20″S; 30°49′51″E               584                         25 

Palmiet                                29°49′28″S; 30°55′59″E               49                           6 

Paradise Valley                   29°50′19″S; 30°53′35″E               280                         9 

Pigeon Valley                     29°51′53″S; 30°59′13″E                10                           2 

Silverglen                            29°55′58″S; 30°52′56″E               467                        15 

Virginia Bush                      29°46′12″S; 31°02′47″E               43                          4 

 

1.9 Problem statement 

Globally and locally, the transformation of natural habitats for anthropogenic activities poses 

a great threat to biodiversity (Haddad et al., 2015; Jewitt et al., 2015). In fragmented 

landscapes, species’ ability to move between fragments is important for population persistence 

as remnants become too small to support viable populations (Pardini et al., 2005; McAlpine et 

al., 2006). Furthermore, the size, shape and quality of fragments, as well as the presence and 

quality of dispersal routes become important (Fahrig and Merriam 1994; Gilbert-Norton et al., 

2010). Nonflying mammals are considered the most vulnerable terrestrial vertebrates to 

fragmentation (Wilcox 1980). In particular, forest dependent mammals are sensitive to habitat 

loss and fragmentation due to their specific food and habitat requirements and a limited ability 

to move through the matrix (Chiarello 1999; McAlpine et al., 2006). Thus, in order to stem the 

ongoing loss of terrestrial mammals, understanding their responses to landscape change should 

become a research priority (Crooks et al., 2017). 

Metropolitan areas provide ideal settings for studying the effects of habitat 

fragmentation on wildlife as they represent areas with the largest human population and 

harbour a limited amount of suitable habitat, characterised by a high degree of isolation, (Brady 

et al., 2009). Furthermore, the matrix is highly impenetrable with many artificial barriers to 

movement (McAlpine et al., 2006). Consequently, most of the movement of species occurs 

within fragments as the surrounding landscape is less suitable to cross (Vignoli et al., 2009). 

Therefore, assessing biodiversity patterns in highly urbanised landscapes can provide crucial 

information towards the management of these areas (Angold et al., 2006), guiding habitat 

conservation measures and raising public awareness (De la Hera et al., 2009). High rates of 

urbanisation, informal settlements, conflicting governance systems and land development 
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pressures pose significant threats to biodiversity within the EMA, subjecting all but the most 

inaccessible areas to human activity (Roberts et al., 2012; McLean et al., 2016). Of the eight 

vegetation types found in this area, four have exceeded the level of degradation at which 

quantitative targets set for protection will be met with the rest either close to the threshold or 

located in areas experiencing high development pressures (Roberts et al., 2012; Roberts and 

O’Donoghue 2013). Also, EMA is located within a region (KZN) experiencing rapid rates of 

landscape change, having lost 7.6% of natural habitat from 2005-2011 (Jewitt et al., 2015). 

However, the impacts of such changes in the landscape in the EMA on forest mammals have 

not been studied. It is therefore important to determine the persistence patterns of forest 

mammal communities in this rapidly changing landscape. To my knowledge, no other studies 

have been conducted on forest mammal communities in other metropolitan areas in South 

Africa. Therefore, this study will also fill this important knowledge gap, contributing to novel 

information that will inform biodiversity conservation in South Africa.  

Mammal communities in the study region have not received adequate research attention 

in the past. In the late 1980s to the 2000s, several studies on forest mammal communities in 

KZN were conducted (Maddock 1988; Bowland 1990; Lawes 1990a, b; 1992; Maddock and 

Perrin 1993; Bowland and Perrin 1995; 1998; Lawes et al., 2000a, b; 2007). These studies were 

conducted in coastal dune forests of north-eastern KZN, the KZN Midlands and some parts of 

south-eastern KZN. Recently, Ehlers Smith (2016) conducted a study on forest mammal 

assemblages in Coastal Belt forests for south-eastern KZN. Thus, although there is ecological 

understanding of mammal communities in some parts of the region, this knowledge base is 

likely to be outdated given the rapid rate of landscape change in the province (Olivier et al., 

2013; Jewitt et al., 2015) and incomplete as not all areas in KZN have been assessed. Only one 

previous study overlaps with the areas surveyed in the current study (Bowland 1990). In a 

recent Red List assessment of mammals of South Africa, two species (blue duiker, Philantomba 

monticola; red duiker, Cephalophus natalensis) that occur within the region were reclassified 

as Vulnerable and Near Threatened, respectively (Child et al., 2016). Therefore, in addition to 

contributing to the knowledge on poorly-known taxa regionally and locally, the aim of this 

study is also to provide crucial information for the conservation of these threatened species.  

 

1.10 Aims and objectives 
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The overall aim of this study was to assess the effects of anthropogenic disturbance on 

persistence patterns of forest mammals (excluding bats) in the urban-forest mosaic of the 

Ethekwini Municipality Area (EMA), Durban, South Africa. The study had four objectives: 

1. To determine factors affecting the occupancy of forest mammals in the EMA. The sub-

objectives were to establish reliable estimates of occupancy and detection probabilities 

of individual species and to use these estimates to determine their responses to 

landscape and habitat structural variables. It was predicted that the amount of forest 

habitat in the landscape would positively affect occupancy and detection probabilities. 

It was also predicted that high structural complexity in the vegetation would positively 

affect occupancy and detection probabilities. 

2. To determine the effects of landscape context on mammalian richness in the EMA. The 

sub-objectives were to quantify the relative effects of within-patch, isolation, matrix 

and landscape-level attributes on species richness. It was predicted that habitat 

structure, forest area, forest configuration and matrix composition at the landscape level 

would affect mammalian richness. 

3. To determine the effects of patch attributes and species’ ecological and life-history 

traits on nestedness patterns of mammals in the EMA. It was predicted that the 

assemblage would exhibit a nested pattern with nestedness related to patch attributes 

(patch size, patch shape, patch isolation and niche complexity) and species’ ecological 

and life-history traits (body mass, niche breadth, sociality, trophic level, arboreality and 

dispersal ability). 

4. To determine the effects of anthropogenic disturbance and abiotic factors on activity 

patterns and temporal niche overlap of forest mammals between Protected Areas 

experiencing high levels of urban development (EMA) and a less-disturbed Protected 

Area (Isimangaliso Wetland Park). It was predicted that species would increase 

nocturnal activity levels in the EMA relative to Isimangaliso Wetland Park, with 

activity shifts mediated by abiotic factors. It was further predicted that diurnal species 

would exhibit stronger responses to disturbance than nocturnal species as their activity 

times overlap to a greater extent with human activities. Lastly, it was predicted that 

ecologically similar species in the EMA would exhibit higher levels of temporal 

overlap, with species showing similar responses to abiotic factors predicted to show 

high levels of temporal overlap. 
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1.11 Structure of the thesis 

The main body of this thesis is organised as manuscripts prepared for publication in peer-

reviewed journal articles. The first chapter (Chapter 1) is the Introduction which provides the 

literature review of the concepts covered in this study. The next four chapters (Chapter 2, 3, 4 

and 5) are experimental chapters with each one covering a specific objective. Each chapter is 

formatted according to the journal it is intended to be (or has been) submitted to. Because of 

this thesis format, a certain degree of repetition, especially in the methods section, was 

unavoidable. However, this is deemed to be of little concern as this format allows the reader to 

read each chapter separately without losing the overall context of the thesis. Chapter 2 

investigated factors affecting the occupancy of forest mammals. Chapter 3 investigated the 

effects of landscape context on mammalian richness. Chapter 4 investigated the effects of patch 

attributes and species’ ecological and life-history traits on nestedness patterns. Chapter 5 

investigated effects of anthropogenic disturbance and abiotic factors on activity patterns and 

temporal niche overlap. The final chapter (Chapter 6) discusses the main findings of the study 

and their implications and suggests possible avenues for future research. 
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1.13 APPENDIX 

 

Figure S1.1. Map showing the study sites and the different habitat types making up the D’MOSS.
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(g)                                                                      (h) 

 

(i) 

 

Figure S1.2. The locations of camera trap sites in (a) Burman Bush, (b) Giba Gorge, (c) 

Kenneth Stainbank, (d) Krantzkloof, (e) Paradise Valley, (f) Palmiet, (g) Pigeon Valley, (h) 

Silverglen and (i) Virginia Bush Nature Reserves. 
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ABSTRACT 

Urbanisation is one of the most rapidly expanding forms of landscape modification by humans 

and leads to large-scale loss and fragmentation of native habitat which can alter the structure, 

composition and function of remnant habitat. Therefore, understanding the influence of both 

landscape and patch characteristics is important for understanding factors affecting the 

distribution of organisms in urbanized landscapes. Consequently, the aim of this study was to 

determine the responses of forest dwelling mammals to landscape and habitat structure in the 

urban-forest mosaics of EThekwini Municipality Area, Durban, South Africa. Using presence 

and absence data of mammals from camera traps, we modelled occupancy of species using the 

occupancy modelling framework. The occupancy by Philantomba monticola was positively 

influenced by foliage height diversity, forest cover (%), woody cover (%) and distance to road 

and negatively influenced by road density. For Tragelaphus scriptus, Potamochoerus larvatus 

and Hystix africaeaustralis, occupancy was influenced positively by forest cover (%) and 

woody cover (%) and negatively influenced by road density and bare ground (%). For Genetta 

tigrina and Chlorocebus pygerythrus, occupancy was positively influenced by leaf litter (%), 

woody cover (%), forest cover (%) and road density and negatively influenced by distance to 

road. Thus, species showed varying responses to landscape and habitat structural variables. 

Genetta tigrina and C. pygerythrus appeared less vulnerable to the loss of forest habitat and 

degradation in habitat quality whereas P. monticola, T. sylvaticus, P. larvatus and H. 

africaeaustralis showed strong responses to such changes. The semi-arboreal habits of G. 

tigrina and C. pygerythrus may be an important factor facilitating their adaptability to urban 

environments as they can move unimpededly across the urban landscape. The diversity of 

responses suggests that landscape management approaches that consider the habitat 

requirements of multiple species are more likely to produce desired outcomes. We suggest that 

the protection and restoration of structurally intact forest habitats is the most prudent strategy 

for the conservation of biodiversity in this landscape.   

Keywords: Forest, Fragmentation, Mammal occupancy, Urbanisation, Protected area 
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2.1. Introduction 

The increase in human population size and the consequent increased needs for food, 

shelter and other products, has led to an unparalleled increase in the rates at which natural 

environments are transformed into agricultural lands, plantations and urban areas (Foley et al., 

2005; Laurance, Sayer, & Cassman, 2014). Among the different forms of landscape 

modification by humans, urbanisation is arguably the most damaging, persistent and rapidly 

expanding across the globe (Isaac et al., 2013; Mahan & O’Connell, 2005; McKinney, 2002; 

2006; Tremblay & St Clair, 2011). This has led to the growth of urban areas since the second 

half of the 20th century to be considered the single greatest threat to biodiversity worldwide 

(Elmqvist et al., 2013; Grimm et al., 2008). Currently, more than half of the human population 

resides in urban areas (Goddard, Dougill, & Benton, 2010; UN, 2014) and at least two thirds 

of all people worldwide are expected to be urban residents by 2050 (Montgomery, 2008; Salek, 

Drahnikova, & Tkadlec, 2015). As the human population size continues to grow and humans 

continually move from rural to urban areas, the demands for residential, industrial, commercial 

and recreational space will equally increase (Grimm et al., 2008). This will cause the urban 

land cover to increase further, posing an even greater threat to native biodiversity (Angel et al., 

2011; Guneralp & Seto 2013; McKinney, 2006; Montgomery, 2008).  

Urbanisation causes large-scale fragmentation and degradation of native ecosystems by 

reducing the overall amount of native habitat in the landscape, increasing the degree of isolation 

of remnant patches and causing a decline in habitat quality within fragments (Brady et al., 

2009; Brearley et al., 2010; FitzGibbon, Putland, & Goldizen, 2007; Garden et al., 2006; 

Garden, McAlpine, & Possingham, 2010). Consequently, urban landscapes are characterised 

by the dominance of built infrastructure (comprised mainly of buildings, bridges, high density 

of roads and paved areas), interspersed with patches of vegetation in the form of remnant native 

vegetation, cultivated parks, golf courses, green belts, residential gardens and conservancies 

(Garden et al., 2010; Soulsbury & White, 2015). Urbanisation reduces the structural complexity 

of vegetation as a result of the increase in intensively-managed vegetation along the gradient 

of urban development intensity (Chace & Walsh, 2006; Jokimaki, 1999; Mahan & O’Connell, 

2005; van der Ree & McCarthy, 2005; Villasenor, Blanchard, & Lindenmayer, 2016). In 

particular, remnant patches of vegetation within urban environments are characterised by more 

ground cover than canopy cover, with less coverage by mid- and upper-canopy levels and more 

ground cover than in nearby, less-developed sites (Chace & Walsh, 2006; Villasenor et al., 

2016). Urbanisation also exposes wildlife to enhanced edge effects as edges characteristic of 
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urban landscapes are ‘hard’ due to their strong contrast with native vegetation (Brearley et al., 

2010; 2011; Vignoli et al., 2009; Villasenor et al., 2014). Hard edges increase matrix resistance 

to dispersal by reducing the probability of safe passage through high densities of roads, 

buildings and other components of the urban development matrix (Villasenor et al., 2014). 

Lastly, urbanisation exposes wildlife to an incredibly hostile matrix that serves as a barrier to 

the movement of fauna even if patches of native vegetation are located closer to each other 

(Brearley et al., 2010; Caryl, Thomson, & van der Ree, 2013; FitzGibbon et al., 2007; Soga & 

Koike 2013; Verbeylen et al., 2003; Villasenor et al., 2015). These effects lead to the loss of 

genetic diversity (as a result of reduced gene flow) which may eventually precipitate a wave of 

local extinctions (McKinney, 2002; 2006; Miller, 2012).  

Native mammals, especially medium-sized species, are strongly affected by 

urbanisation and its associated secondary impacts as they are generally not adapted to urban 

environments (Garden et al., 2006). This is especially the case among terrestrial (and to a lesser 

extent arboreal) forest-dwelling mammals due to their specific food and habitat requirements, 

limited locomotory and dispersal abilities and a limited ability to move through the matrix 

(Makelainen, Schrader, & Hanski, 2014; McAlpine et al., 2006a). The inability to use the 

matrix renders forest mammals particularly vulnerable to the effects of loss and fragmentation 

of their habitat (Laurance, 1990; 1994). In urban landscapes, as natural forests are cleared, the 

density of roads, humans, people, and amenities increase (Brady et al., 2009; Radeloff et al., 

2005; Randa & Yunger 2006). As a result, forest mammals are forced to increasingly move 

across the matrix of human development (McAlpine et al., 2006a; 2006b). Individuals moving 

between remnant forest patches face anthropogenic barriers to movement such as walls, fences, 

buildings and roads, which increases their susceptibility to vehicle collisions and predation 

from feral predators (McAlpine et al., 2006a; b; Rhodes et al., 2006). Consequently, the effects 

of isolation of remnant patches on mammals intensify as the level of fragmentation increases. 

Therefore, understanding the consequences of habitat loss and changes in landscape structure 

is key towards the conservation of forest-dependent mammals and for the design of appropriate 

measures to increase matrix permeability which is important for maintaining mammalian 

diversity in urban areas (FitzGibbon et al., 2007; Caryl et al., 2013).  

Preserving large, intact native ecosystems is a key component of current approaches to 

biodiversity conservation but this is rarely achievable in highly urbanised landscapes where 

only small portions of native habitat remains (Alvey, 2006; Dunn et al., 2006; Miller & Hobbs, 

2002). For successful conservation of biodiversity in such areas, the promotion of biodiversity 

within the urban ecosystem becomes important (Alvey, 2006; Miller & Hobbs, 2002). Urban 
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and suburban nature reserves play an important role in biodiversity conservation (Donnelly & 

Marzluff, 2004). These areas have high biodiversity value and provide several benefits for both 

wildlife and urban residents such as in increasing human health and well-being, preserving 

local biodiversity, creating stepping stones or corridors for natural populations, providing 

important ecosystem services and fulfilling ethical responsibilities (Dearborn & Kark, 2010). 

Furthermore, they allow urban residents to maintain a strong connection with nature and help 

place conservation and environmental issues into their social consciousness (Dunn et al., 2006; 

Dearborn & Kark, 2010). These areas also serve as the only suitable areas for wildlife in 

urbanised landscapes and form an important part of regional conservation plans as they 

promote the persistence of biodiversity at the regional level (Fernandez-Jurisic, 2004). 

Therefore, understanding the factors influencing the distribution and occurrence of wildlife that 

persist and utilise these areas is key to biodiversity conservation (Chibesa & Downs, 2017). 

Camera trapping has become an important tool for several wildlife applications and its 

use in wildlife research has increased exponentially especially in the last decade (Rovero et al., 

2014). Camera trapping is considered to be an efficient, cost-effective and easily replicable 

approach for monitoring ground-dwelling terrestrial mammals (Ramesh & Downs, 2014; 

Ramesh et al., 2016; Tobler et al., 2008). This approach is especially useful for documenting 

abundance, occupancy and habitat use of elusive, rare and nocturnal species (Rovero et al., 

2014; Tobler et al., 2008). In this study, we used camera traps to estimate site occupancy and 

detection probabilities of forest mammals in an urban-forest mosaic in the eThekwini 

Municipality Area, Durban, South Africa, using the occupancy modelling framework 

(MacKenzie et al., 2002; 2006). Because urban matrices vary widely in development intensity, 

land-use type and vegetation coverage (and thus in their permeability to movement), it is 

important to incorporate the influence of both within-patch habitat variables and aspects about 

the broader landscape on the occupancy of species in urbanised landscapes (FitzGibbon et al., 

2007). Consequently, the aim was to establish reliable estimates of occupancy and detection 

probabilities of different species of mammals and to use these estimates to determine their 

responses to various landscape and habitat structural variables. We predicted that the amount 

of forest habitat in the landscape would positively affect occupancy and detection probabilities. 

We also predicted that high structural complexity in the vegetation would positively affect 

occupancy and detection probabilities. The results from this study will provide crucial 

information regarding the habitat requirements of a range of mammals and will form the basis 

for the conservation of diverse mammalian assemblages in this and other metropolitan areas 

across the country and globally. 
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2.2. Materials and Methods 

2.2.1 Study area 

The study was conducted in nine forested Protected Areas in the EThekwini 

Municipality Area (EMA), KwaZulu-Natal (KZN), South Africa (Fig. 2.1). The EMA, 2297 

km2 in extent (1.4% of KZN), is the third largest metropolitan area in South Africa and has the 

busiest port in Africa (EThekwini Municipality, 2013). The area has a large human population 

(~3.5 million) with an annual growth rate of 1% (ECPDP, 2015). The climate is subtropical 

humid with an annual rainfall of 1000 mm, mostly occurring during the summer months 

(McPherson, Brown, & Downs, 2016). The EMA is highly transformed, with 53% of the 

original vegetation having been lost and a further 17% considered to be highly degraded 

(EThekwini Municipality, 2015). Only 3.1% of EMA is under some form of legal protection 

for environmental reasons with protected areas covering only 0.6% of the area (EPCPD, 2015). 

Major threats to biodiversity include habitat destruction, introduction of alien invasive species, 

over-exploitation of wildlife and human-induced climate change (Boon et al., 2016; EThekwini 

Municipality, 2015). Forests in this area fall under the Indian Ocean Coastal Belt vegetation 

type which originally occupied about 65% (EThekwini Municipality, 2007). Other forest types 

include northern coastal, dune, scarp and mangrove forest types (EThekwini Municipality, 

2007). 
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Fig. 2.1. The study area, EThekwini Municipality Area, Durban, KwaZulu-Natal Province, 

South Africa. 

 

2.2.2 Camera trap surveys 

We conducted the study using passive, infrared camera traps (LtI Acorn® 6210MC, 

Shen-zhen Ltl Acorn Electronics, China; Moultrie® M-880, EBSCO Industries, USA) to assess 

the presence or absence of mammals. A total of 76 camera trap sites were established across 

the study area with sampling taking place over two periods: May–September 2016 and 

December 2016–April 2017. The sampling periods were classified as dry and wet seasons, 

respectively. In each camera trap site, cameras were placed for a minimum of 21 days and left 

to operate for 24 h/day. It was assumed that during that short time period, sites were closed, 

and occupancy would not change, and therefore population closure assumptions would be 

fulfilled (MacKenzie et al., 2002). Cameras were checked every two weeks to download 

photographs and to change the batteries. The sensitivity of the cameras was set to high with a 

photographic delay between pictures set to 30 s. Camera traps were set at a height of 15–25 cm 

above the ground and were attached to a robust tree on a game trail or on an open clearing to 

allow maximum camera sensor optimal range. To avoid blank shots, a portion of the vegetation 

was removed within 1 m of the view range of cameras. All animal photographs were classified 

to species level and then grouped into independent photographic events (Ramesh & Downs, 
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2015). For photographs to be considered independent photographic events, they had to be (1) 

consecutive photographs of different individuals of the same species or different species and 

(2) consecutive photographs of individuals of the same species taken at least 30 min apart 

(O’Brien, Kinnaird, & Wibisono, 2003). 

 

2.2.3 Landscape structure  

We determined all suitable habitats within the study area using the 2014 land-cover 

layer of South Africa (GeoTerraImage, 2014) in ArcGIS 10.4 (ESRI, Redlands, USA). Forests 

in this region fall under the Indian Ocean Coastal Belt and are made up of dense bush and 

indigenous forest subclasses (GeoTerra Image 2014; Mucina & Rutherford 2006). Although 

there are slight differences in the structure between the two subclasses with indigenous forest 

having taller trees and a higher diversity of understory vegetation classes than dense bush 

(GeoTerraImage, 2014), the two habitats types provide complementary habitat for a range of 

forest-associated mammals as dense bush represents a successional stage of secondary 

indigenous forest regeneration (Ehlers Smith, Ehlers Smith, Ramesh, & Downs, 2017a). We 

therefore combined the coverage by these two habitats into a single forest layer and overlaid it 

over the study area to represent forest habitat. To select camera trap locations, a 400 m x 400 

m systematic grid was overlaid over the study site with the centres of the grid selected as 

camera trap locations. Considering the mean maximum dispersal distance by the species 

occurring within the study area (~1 km) (Bragg, 2003; Fuller, Biknevicius, & Kat, 1990; 

Lawes, Mealin, & Piper, 2000; Odendaal & Bigalke, 1979), we extracted land-use 

classification within a 1 km buffer around each camera trap survey site using the land-cover 

layer (GeoTerraImage, 2014). The following broad-scale covariates were extracted from this 

buffer distance: forest cover (%), urban cover (%), road density, and distance to sealed road 

(see Table 2.1 for details). We also determined housing density using the 2005/6 housing map 

for the eastern region of South Africa (GeoTerraImage, 2010). As this buffer distance is larger 

than the grid used to select camera trap locations, this leads to the duplication/overlap of 

information of broad scale covariates between sites, which can be a potential source of 

problems associated with multi-collinearity (but see Zuckerberg et al., 2011). To take that into 

account, we also extracted broad-scale covariates around 500 m and 100 m buffer distances 

(Maseko et al., 2016). Occupancy in this study was interpreted as the proportion of sites “used” 

rather than occupied since a single individual could be responsible for detection at multiple 

sites (MacKenzie et al., 2006).  
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Table 2.1. Descriptions of covariates used to model occupancy and detection probability by 

mammals across the study area. 

Covariate Abbreviation Description 

Bare ground (%) BG Proportion of cover by bare ground within 

the circular plot. 

Leaf litter (%) LL Proportion of cover by leaf litter within the 

circular plot. 

Woody cover (%) WOOD Proportion of cover by woody plants and 

seedlings within the circular plot. 

Foliage Height Diversity FHD Distribution of canopy cover among forest 

strata expressed as a diversity index. 

Forest cover (%) F Proportion of the landscape covered by 

forest habitat within the buffer distance. 

Distance to sealed road DIST Euclidean distance of camera trap site to 

the nearest sealed road. 

Road density RD Total length of sealed roads divided by the 

total buffer area. 

Stem density (2-5 m) SD2 Number of trees in the 2-5 m height band 

within the circular plot. 

Stem density (6-10 m) SD6 Number of trees in the 6-10 m height band 

within the circular plot. 

Stem density (11-15 m) SD11 Number of trees in the 11-15 m height band 

within the circular plot. 

 

 

2.2.4 Habitat structure 

We recorded the microhabitat structure at each camera trap location within a 20 m 

radius around each camera trap site (Ehlers Smith et al., 2017a). A foliage profile for each site 

was then compiled. To do so, a visual estimation of percentage coverage of each vegetation 

class relative to other classes was made within the individual quarters of the circular plots 

(totalling 100% coverage in each). To determine the vegetation structure for each circular plot, 

the percentage coverages for each vegetation class among the individual quarters were 

averaged. The vegetation classes that were considered in the present study included bare 

ground, leaf litter, grass cover, herbaceous plant cover (including seedlings) and woody 

vegetation cover (including saplings). Furthermore, the stem density of trees was recorded at 

different height bands (2 – 5 m, 6 – 10 m, and 11 – 15 m). Woody vegetation and trees were 

classified following Ehlers Smith et al. (2015; 2017a). 
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2.2.5 Analyses    

To determine the microhabitat characteristics of each camera trap site, the mean height 

scores for each vegetation class of the foliage profiles were converted into foliage height 

diversity (FHD) (Ehlers Smith et al., 2015) using the Shannon-Wiener formula where pi is the 

proportion of the total foliage which lies in the ith layer of the chosen horizontal layers (Bibby 

et al., 2000). 

                                                               

To avoid issues associated with multi-collinearity, we tested for correlations between 

independent covariates and removed highly correlated covariates (r>0.70) using the Pearson’s 

correlation coefficient test (Graham, 2003). There was a significant correlation between grass 

cover and FHD. We removed grass cover from the analyses and retained FHD as a measure of 

the structural complexity of the vegetation. Percentage urban cover was highly correlated with 

road density. We retained road density as a measure of the overall intensity of matrix 

development due to its strong correlation with other indicators of anthropogenic disturbance in 

urban areas (e.g. housing density, number of people, percentage of impervious surface, etc.; 

Brady et al., 2009). All the above analyses were conducted using SPSS 25.0 (IBM Corporation, 

2013). 

To model site occupancy and detection probabilities, a detection history for the 21 days 

of camera operation was created, assuming that there were no changes in occupancy during 

this period. To increase the detection probability, data from three days were summed up into a 

single sampling occasion giving a total of seven sampling occasions. A binary detection history 

within a single-season occupancy model was used for each species (MacKenzie et al., 2006). 

For each occasion the target species could score a 1 or a 0, where 1 indicated that the animal 

was captured at the sampling station during that trapping occasion (at least one of the 3 days) 

and 0 if it was not captured. A single-season occupancy model was run for each species for 

both dry and wet seasons using the programme PRESENCE 7.9 (Hines, 2006). Prior to 

modelling, all continuous site covariates were standardised to z scores “allowing model 

coefficients to be interpreted as the change in the log-odds ratio of occupancy relative to a 1 

standard deviation change in the covariate from its mean” (Cooch & White, 2005). A global 

model containing all potential covariates for occupancy was constructed. Detection probability 

was then allowed to vary by all covariates. We then followed a two-step procedure to 
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modelling, first modelling detection (p) and then occupancy (psi), and allowed the potential 

covariates for occupancy to vary individually or in combination, while detection was 

maintained either in the global model or remained constant (i.e. psi (covariate) p (covariate), 

or psi (covariate), p (.)). We then tested covariates on psi and p simultaneously (e.g. psi 

(covariate + covariate), p (covariate + covariate). This provided with a stepwise approach to 

determine the influence of each covariate either in isolation or in combination with other 

covariates on both psi and p. For model selection, calculation of model weights and model 

averaging, the framework of Burnham and Anderson (2002) was followed. To assess model 

fit, 10000 parametric bootstraps were used in the final model to estimate the mean dispersion 

parameter (ĉ) (MacKenzie & Bailey, 2004; White and Burnham, 1999). Models with ĉ ~1 were 

considered to be better descriptors of the data whereas models with ĉ >1 indicated that there 

was more variation in the data than expected (Burnham & Anderson, 2002). The Akaike 

Information Criterion, modified for small sample sizes (AICc) was used to rank models 

(Burnham & Anderson, 2002). Occupancy and detection probability parameters were estimated 

from the best model that had the lowest AICc and ΔAIC values and high value of Akaike 

weights (AICc wgt), while the ‘constant’ parameters psi (.), p (.) were assumed to provide the 

simplest model (Ramesh & Downs, 2014). All models with ΔAIC ≤ 2 were considered as the 

best models in the candidate set (Burnham & Anderson, 2002). The variable strength on 

occupancy and detection probability was determined by calculating the Akaike weights based 

on retained models representing all contributing covariates.  

 

2.3. Results 

Twenty-one days of sampling in 76 sites equated to 1596 camera trap nights yielding a 

total of 3888 and 3006 photographs of mammals in the dry and wet seasons, respectively. A 

total of 21 and 20 species (including humans and domestic animals) were recorded during the 

sampling periods (Table SI 2.1). Species that did not historically occur within the study region 

(impala, Aepyceros melampus; zebra, Equus burchelli) were removed from the analyses. 

Humans (Homo sapiens), domestic cats (Felis catus) and dogs (Canis domesticus) were also 

removed from the analyses. For occupancy estimates, modelling was only conducted for 

species for which there were enough data (i.e. they had a naïve occupancy ≥ 0.20). During the 

dry season, occupancy modelling was conducted for the blue duiker (Philantomba monticola) 

(number of photographs (n) = 1788), bushbuck (Tragelaphus scriptus) (n = 282), large-spotted 

genet (Genetta tigrina) (n = 117) and vervet monkey (Chlorocebus pygerythrus) (n = 213). In 
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the wet season, occupancy modelling was conducted for the blue duiker (n = 1222), bushbuck 

(n = 115), bushpig (Potamochoerus larvatus) (n = 88), Cape porcupine (Hystrix 

africaeaustralis) (n = 98), large-spotted genet (n = 107) and vervet monkey (n = 255).  

At the 500 m buffer distance in the dry season, the blue duiker had the highest 

occupancy (0.69 ± 0.10) with the bushbuck having the lowest occupancy probability (0.32 ± 

0.11) (Table 2.2). In the wet season, however, the large-spotted genet had the highest 

occupancy (0.79 ± 0.11) with the Cape porcupine having the lowest occupancy (0.31 ± 0.08). 

Average detection probability across seasons, species and models ranged between 0.21 ± 0.06 

and 0.64 ± 0.05, with the blue duiker having the highest detection probability (dry season) and 

bushbuck having the lowest detection probability (dry season). At the 100 m buffer distance, 

in the dry season, the blue duiker had the highest occupancy (0.71 ± 0.09) with the bushbuck 

having the lowest occupancy probability (0.30 ± 0.09). In the wet season, the blue duiker also 

had the highest occupancy (0.78 ± 0.08) with the Cape porcupine having the lowest occupancy 

(0.36 ± 0.10). Average detection probability across seasons, species and models was high and 

ranged between 0.21 ± 0.06 and 0.64 ± 0.05, with the bushpig (wet season) and blue duiker 

(dry season) having the lowest and highest detection probability, respectively (Table 2.2).  

Within species, there were changes in occupancy and detection probabilities between 

seasons. For the blue duiker, occupancy was higher during the wet season at all buffer 

distances. Detection probability, on the other hand, was higher during the dry season at all 

buffer distances (Table 2.2). In the dry season, occupancy by the blue duiker was positively 

influenced by leaf litter (%), woody cover (%) and forest cover (%). It was negatively 

influenced by the density of small trees. In the wet season, occupancy was positively influenced 

by leaf litter (%), woody cover (%), forest cover (%) and distance to road. Detection probability 

in the dry season was positively influenced by leaf litter (%), forest cover (%) and distance to 

road and negatively influenced by bare ground (%), foliage height diversity and road density. 

In the wet season, detection probability was positively influenced by leaf litter (%) and 

negatively influenced by foliage height diversity and road density (Table 2.3). For the 

bushbuck, occupancy was also higher during the wet season except at the 1 km buffer distance. 

Detection probability was higher in the wet season at all buffer distances (Table 2.2). In the dry 

season, occupancy was positively influenced by woody cover (%) and forest cover (%) and 

was negatively influenced by bare ground (%). In the wet season, occupancy was positively 

influenced by woody cover (%), foliage height diversity and forest cover (%) and was 

negatively influenced by bare ground (%). Detection probability in the dry season was 

positively influenced by forest cover (%) and distance to road and negatively influenced by 
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bare ground (%), leaf litter (%) and road density. In the wet season, detection probability 

responded positively to woody cover (%) and density of small trees and negatively to leaf litter 

(%) and road density (Table 2.3). For the bushpig, occupancy was positively influenced by 

foliage height diversity, forest cover (%) and woody cover (%) and negatively affected by road 

density. Detection probability was positively influenced by forest cover (%) and distance to 

road and negatively influenced by the stem density of small trees (Table 2.3). For the Cape 

porcupine, occupancy was positively influenced by foliage height diversity, forest cover (%) 

and woody cover (%) and was negatively influenced by road density. Detection probability 

was positively influenced by forest cover (%) and negatively influenced by road density and 

stem density of small trees (Table 2.3). 

For the large-spotted genet, occupancy was higher during the wet season at all buffer 

distances. Detection probability, on the other hand, was higher in the dry season at all buffer 

distances (Table 2.2). In the dry season, occupancy was positively influenced by leaf litter (%), 

woody cover (%), forest cover (%) and road density and was negatively influenced by distance 

to road. In the wet season, occupancy was positively influenced by leaf litter (%), woody cover 

(%), forest cover (%) and road density and was negatively influenced by distance to road and 

stem density of small trees. Detection probability in the dry season was positively influenced 

by stem density of large trees and negatively influenced by bare ground (%) and stem density 

of medium-sized trees. In the wet season, detection probability responded positively to stem 

density of large trees and road density and negatively to bare ground (%) (Table 2.3). With 

regards to the vervet monkey, occupancy was higher during the dry season at all buffer 

distances. Detection probability was also higher during the dry season at all buffer distances 

(Table 2.2). In the dry season, occupancy by the vervet monkey was positively influenced by 

forest cover (%) and road density and negatively influenced by bare ground (%) and distance 

to road. In the wet season, occupancy was positively influenced by forest cover (%), stem 

density of large trees and road density and negatively influenced by distance to road. Detection 

probability in the dry season was positively influenced by forest cover (%), road density and 

stem density of large trees and negatively influenced by bare ground (%), foliage height 

diversity and stem density of small trees. In the wet season, detection probability was positively 

influenced by forest cover (%) and foliage height diversity and negatively influenced by foliage 

height diversity and stem density of small trees (Table 2.3). 



49 

 

Table 2.2. Top logistic models for predicting site occupancy and detection probability between seasons of 6 species of mammals when broad-

scale covariates were extracted around 1 km, 500 m and 100 m of each camera trap site across the survey region. The occupancy and detection 

probability for the bushpig and Cape porcupine was only modelled in the wet season. 

Buffer distance      Species             Season                Model                                  NPar. AICc      AICcwgt.           psi ± SE                   p ± SE                                                                                                           
1 km                                   Blue duiker                  Dry                psi(LL+WOOD+F),p(BG+FHD+DIST)         8            445.45            0.35                        0.70 ± 0.08                          0.66 ± 0.06 

                                           Blue duiker                  Wet                psi(F+DIST+SD11),p(LL+RD)                      7            573.31            0.46                         0.78 ± 0.07                         0.61 ± 0.03 

                                           Bushbuck                     Dry                psi(WOOD+F),p(BG+LL)                              6            303.19            0.23                         0.40 ± 0.10                         0.32 ± 0.06 

                                           Bushbuck                     Wet               psi(WOOD+F),p(LL+WOOD+SD2)              7            333.45            0.52                         0.37 ± 0.09                         0.37 ± 0.05 

                                           Bushpig                        Wet                psi(FHD+F+RD),p(SD2)                                6            280.09            0.28                         0.38 ± 0.09                         0.25 ± 0.06 

                                           Cape porcupine            Wet                psi(FHD+F+RD),p(F+SD2)                            7            285.13            0.30                         0.26 ± 0.09                        0.28 ± 0.07 

                                           Large-spotted genet     Dry                psi(LL+F+DIST+RD),p(BG+SD11)               8            405.03            0.38                         0.37 ± 0.15                         0.33 ± 0.05 

                                           Large-spotted genet     Wet                psi(LL+WOOD+F+RD),p(BG+SD11)           8            451.14            0.37                         0.57 ± 0.08                         0.29 ± 0.05 

                                           Vervet monkey            Dry                psi(F+DIST+RD),p(BG+F+SD2)                    8           368.98             0.32                         0.48 ± 0.11                         0.38 ± 0.07 

                                           Vervet monkey            Wet                psi(F+DIST+RD),p(BG+F)                             7           355.21             0.35                         0.45 ± 0.12                         0.26 ± 0.07             

500 m                                 Blue duiker                  Dry                 psi(WOOD+F),p(LL+FHD+RD)                    7           446.25            0.29                         0.69 ± 0.10                         0.64 ± 0.05 

                                           Blue duiker                  Wet                psi(WOOD+FHD+F+SD11),p(LL+RD)          8           574.90            0.35                         0.78 ± 0.08                         0.61 ± 0.03 

                                           Bushbuck                     Dry                psi(WOOD+F),p(BG+LL)                                6           302.60            0.29                         0.32 ± 0.11                         0.21 ± 0.06 

                                           Bushbuck                     Wet               psi(FHD+F),p(LL+WOOD+SD2)                     7           315.23           0.47                         0.37 ± 0.09                         0.27 ± 0.05 

                                           Bushpig                        Wet                psi(FHD+RD),p(SD2)                                      5           287.74            0.39                         0.36 ± 0.09                         0.25 ± 0.06 

                                           Cape porcupine            Wet                psi(FHD+F+RD),p(F+SD2)                             7           285.33            0.45                         0.31 ± 0.08                         0.29 ± 0.09 

                                           Large-spotted genet     Dry                 psi(LL+WOOD+F+RD),p(BG+SD11)            8           406.06            0.27                         0.53 ± 0.15                         0.33 ± 0.05 

                                           Large-spotted genet     Wet                psi(LL+WOOD+F+RD),p(BG+SD11)             8           458.98            0.26                         0.79 ± 0.11                         0.23 ± 0 .04 

                                           Vervet monkey             Dry                psi(F+DIST+RD),p(BG+FHD+F)                   8           369.05             0.34                         0.50 ± 0.11                         0.41 ± 0.07 

                                           Vervet monkey             Wet               psi(F+DIST+RD),p(BG+F+SD2)                     8           353.17            0.29                         0.43 ± 0.12                         0.28 ± 0.07             

100 m                                 Blue duiker                  Dry                psi(WOOD+F+SD2),p(FHD+F+DIST)            8           445.19            0.43                         0.71 ± 0.09                          0.64 ± 0.05 

                                           Blue duiker                  Wet                psi(WOOD+F+DIST),p(LL+FHD+RD)           8           575.55            0.38                         0.78 ± 0.08                         0.62 ± 0.05 

                                           Bushbuck                     Dry                psi(BG+WOOD),p(F+DIST+RD)                    7           298.88             0.50                         0.30 ± 0.09                         0.33 ± 0.06 

                                           Bushbuck                     Wet                psi(BG+WOOD+F),p(RD)                               6            333.99            0.37                         0.37 ± 0.11                         0.35 ± 0.06 

                                           Bushpig                        Wet                psi(WOOD+F),p(F+DIST)                              6            288.79             0.35                         0.40 ± 0.10                         0.21 ± 0.06 

                                           Cape porcupine            Wet                psi(WOOD+F),p(F+RD)                                  6            308.50            0.32                         0.36 ± 0.10                         0.28 ± 0.08 

                                           Large-spotted genet     Dry                 psi(LL+F+RD),p(SD6+SD11)                         7            405.12            0.31                         0.53 ± 0.12                         0.34 ± 0.06 

                                           Large-spotted genet     Wet                psi(F+DIST+SD2),p(RD+SD11)                     8            457.07             0.43                         0.70 ± 0.13                         0.23 ± 0.03 

                                           Vervet monkey             Dry                psi(BG+F+DIST),p(RD+SD2+SD11)             8            375.19             0.47                         0.54 ± 0.12                         0.35 ± 0.07 

                                           Vervet monkey             Wet                psi(F+DIST+SD11),p(FHD+SD2)                  7            348.51             0.22                         0.51 ± 0.19                         0.26 ± 0.07             
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Table 2.3. Untransformed parameter estimates for explanatory variables from the best occupancy and detection probability model for six species 

of mammals when broad-scale covariates were extracted around 1 km, 500 m and 100 m of each camera trap site across the survey region.  

                                                                                Site occupancy                                                       Detection probability 

Buffer distance     Species                   Season     Covariate    Estimate      Standard error             Covariate         Estimate    Standard error    

1 km                    Blue duiker                  Dry            Intercept        1.096               0.349                       Intercept           0.645             0.137              

                                                                                   LL                  0.609               0.132                       BG                  -0.540             0.123  

                                                                                   WOOD          0.900               0.248                        FHD                -0.251            0.040  

                                                                                   F                     0.783               0.175                       DIST                0.140            0.018 

                            Blue duiker                  Wet           Intercept         1.287               0.299                       Intercept            0.469            0.109        

                                                                                   F                     0.530               0.188                       LL                    0.117             0.005 

                                                                                   DIST              0.219               0.123                       RD                   -0.191            0.010 

 SD11             -0.096               0.003 

                           Bushbuck                      Dry           Intercept        -0.462               0.108                       Intercept           -0.214           0.066 

                                                                                  WOOD           0.335                0.093                       BG                   -0.816           0.253                      

                                                                                   F                    0.733                0.198 LL                    -0.217           0.104                 

                           Bushbuck                     Wet            Intercept        -0.635               0.206                       Intercept           -0.326           0.158 

                                                                                   WOOD          0.899                0.071                       LL                    -0.359           0.013          

                                                                                   F                    0.808                0.052 WOOD              0.239            0.086 

                                                                                                                                                                  SD2                   0.234            0.072         

   

                           Bushpig                        Wet            Intercept        -0.636              0.136                       Intercept           -0.863           0.213  

                                                                                   FHD              1.415                0.460                       SD2                  -0.026           0.009 

  F                    0.528               0.137 

                                                                                   RD                 -0.159              0.030 

                           Cape porcupine            Wet            Intercept        -2.075              0.078                       Intercept           -0.415           0.173                       

                                                                                   FHD               1.697               0.661                       F                       0.762            0.106   

                 F                     0.356              0.068                       SD2                  -0.272           0.072 

                                                                                   RD                 -2.290              1.305                       

                           Large-spotted genet     Dry             Intercept         0.293               0.050                       Intercept           -0.512          0.152 

                                                                                   LL                  0.149               0.200                       BG                    -0.289          0.063 

                                                                                   F                     0.213               0.066                       SD11                 0.119           0.055 

                                                                                   RD                  0.164               0.026 
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                                                                                   DIST             -0.169               0.142 

                          Large-spotted genet     Wet             Intercept        1.433                0.500                       Intercept           -1.207          0.156 

                                                                                   LL                 0.189                0.043                       BG                    -0.176          0.023 

                                                                                   WOOD         0.539                0.036 SD11                  0.530          0.277          

                                                                                   F                    0.187                0.029 

                                                                                   RD          0.176                0.039 

                          Vervet monkey            Dry              Intercept       -0.083               0.002                       Intercept          -0.295           0.049 

                                                                                   F                    0.873               0.262                       BG                   -0.376           0.056 

                                                                                   DIST             -0.187              0.114                       F                       0.147            0.013  

                                                                                   RD                 0.137               0.032                       SD2                  -0.210           0.055               

                          Vervet monkey           Wet              Intercept       -0.216               0.074                       Intercept           -0.767           0.081 

                                                                                   F                    0.253               0.115                       BG                    -0.961           0.173 

                                                                                   DIST            -0.127               0.051                       F                        0.328           0.088 

 RD                0.211               0.100                  

500 m                Blue duiker                Dry                Intercept       1.065                0.038                      Intercept            0.650           0.133 

                                                                                   WOOD         0.916                0.349                      LL                     0.539           0.136 

                                                                                   F                    0.657               0.137                      FHD                  -0.264          0.014  

                                                                                                                                                                RD                     -0.148          0.015  

                          Blue duiker               Wet                Intercept        -1.293              0.299                      Intercept             0.452           0.108 

                                                                                   WOOD          0.286               0.128                      LL                      0.142           0.014 

                                                                                   FHD              0.199               0.031                      RD                     -0.238          0.102 

                                                                                   F                    0.324               0.125                   

                                                                                   SD11             -0.099              0.013 

                          Bushbuck                 Dry                  Intercept       -0.661               0.054                     Intercept           -0.165          0.016 

                                                                                   WOOD          0.878               0.136                     BG                    -0.216          0.018 

                                                                                    F                   0.800               0.128                      LL                    -0.183          0.066 

                          Bushbuck                 Wet                 Intercept        -0.635              0.105                      Intercept           -0.326          0.058 

                                                                                   FHD              0.899               0.071                       LL                   -0.585          0.017 

                                                                                   F                    0.808               0.132                      WOOD             -0.285          0.127 

                                                                                                                                                                 SD2                  0.199           0.046  

                          Bushpig                      Wet               Intercept        -0.589             0.128                       Intercept           -0.853          0.210 

                                                                                   FHD               0.809              0.217                       SD2                  -0.551          0.197 
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                                                                                   RD                 -0.306             0.194 

                          Cape porcupine           Wet              Intercept        -1.544              0.509                       Intercept          -0.365        0.084 

                                                                                   FHD               2.066              0.971                       F                       0.219         0.052 

                                                                                   F                     1.013              0.375                       SD2                 -0.225         0.037 

                                                                                   RD                 -2.015             0.962                        

                          Large-spotted genet      Dry             Intercept        0.265               0.034                      Intercept           -0.514         0.154 

                                                                                   LL                  0.442               0.147                      BG                   -0.283         0.140 

                                                                                   WOOD           0.117              0.149                       SD11                0.524         0.177  

                                                                                   F                     0.274              0.024                      

                                                                                   RD                  0.060              0.125 

                          Large-spotted genet      Wet            Intercept          1.431              0.501                      Intercept           -1.207        0.053 

                                                                                   LL                   0.167              0.046                      BG                    -0.761        0.154 

                                                                                   WOOD           0.374              0.155                       SD11                0.325         0.116    

                                                                                   F                     0.267              0.094 

                                                                                   RD                  0.102              0.068  

                          Vervet monkey             Dry             Intercept        -0.091              0.009                      Intercept          -0.303          0.150 

                                                                                   F                     1.020              0.414                      BG                   -0.380          0.156 

                                                                                   DIST              -0.296             0.133                      FHD                 -0.074          0.012  

                                                                                   RD                 0.093               0.013                      F                       0.214           0.154 

                          Vervet monkey             Wet            Intercept        -0.237               0.027                      Intercept           -0.733         0.175 

                                                                                   F                     0.259               0.103                      BG                    -0.110         0.017 

                                                                                   DIST            -0.685                0.186                      F                       0.423           0.186  

                                                                                   RD                 0.153               0.039                      SD2                  -0.931          0.172               

100 m                Blue duiker                   Dry             Intercept        1.024                0.323                     Intercept             0.660          0.135 

                                                                                   WOOD          0.822                0.131                     FHD                  -0.275          0.013 

                                                                                   F                    0.259                0.041                     F                         0.305          0.136 

                                                                                   SD2               -0.136               0.059                     DIST                  0.219           0.121 

                          Blue duiker                   Wet             Intercept       1.284                 0.298                     Intercept            -0.457          0.109 

                                                                                   WOOD          0.450                0.286                      LL                     0.123           0.016 

                                                                                   F                    0.209                0.019                      FHD                  -0.183          0.010 

                                                                                   DIST             0.324                 0.103                      RD                    -0.239          0.104 

                          Bushbuck                      Dry             Intercept       -0.459                0.033                      Intercept           -0.417           0.187 
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                                                                                   BG                 -0.866              0.237                      F                        0.334           0.014 

                                                                                   WOOD           1.095               0.380                      DIST                -0.267          0.156  

                                                                                                                                                                  RD                   -0.443          0.183 

                         Bushbuck                      Dry             Intercept        -0.459                0.033                      Intercept           -0.417          0.187 

                                                                                   BG                -0.529                0.142                      RD                   -0.435          0.219 

                                                                                   WOOD         1.095                 0.380                       

                                                                                   F                    0.457                0.136 

                          Bushpig                        Wet             Intercept        -0.373               0.125                     Intercept           -1.124         0.251 

                                                                                   WOOD          0.813                0.255                      F                       0.345          0.154 

                                                                                    F                    0.377               0.124                      DIST                 0.367          0.144  

                          Cape porcupine            Wet             Intercept        -0.559               0.178                      Intercept           -0.523         0.193 

                                                                                   WOOD           0.416               0.153                      F                         0.510        0.137 

                                                                                   F                     0.628               0.267                      RD                    -0.423         0.191  

                         Large-spotted genet       Dry             Intercept         0.162               0.023                      Intercept            -0.441        0.144 

                                                                                   LL                  0.158               0.063 SD6                   -0.298        0.137 

                                                                                   F                     0.645               0.104                      SD11                  0.248         0.121 

                                                                                   RD                 0.139                0.086                      

                          Large-spotted genet      Wet             Intercept        1.545                0.383                      Intercept           -1.207         0.157 

                                                                                   F                     0.968               0.158                       RD                     0.783         0.140 

                                                                                   DIST              -0.116              0.041                       SD11                 0.386         0.127 

 SD2               -0.267               0.136 

                          Vervet monkey              Dry            Intercept        -0.089               0.013                      Intercept           -0.463          0.168 

                                                                                   BG                 -0.291               0.027                      RD                    0.178           0.016 

                                                                                   F                     0.603               0.104                       SD2                  -0.183          0.062  

                                                                                   DIST              0.078                0.019                      SD11                 0.273           0.019 

                          Vervet monkey              Wet            Intercept        0.594                0.152                      Intercept           -0.984           0.218 

                                                                                   F                     0.245                0.176                      FHD                  0.354           0.164 

                                                                                   DIST             -0.198                0.029                      SD2                  -0.299           0.127  

                                                                                   SD11              0.379                0.138 
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2.4. Discussion 

2.4.1 Seasonal changes in occupancy 

 Changes in species occupancy between seasons are determined by a range of factors 

such as seasonal changes in food availability, disturbance levels, movement patterns, habitat 

use, biological rhythms, etc. (O’Connell et al., 2006). Tropical and sub-tropical rainforests 

experience pronounced seasonal fluctuations in resource availability mainly brought about by 

changes in rainfall patterns (Corlett & Primack, 2011). These fluctuations have consequences 

for the activity patterns and movements of forest dwelling mammals (Djagoun, Kassa, Mensah, 

& Sinsin, 2013; Gould & Gabriel, 2014). In this study, we found that for most species, 

occupancy was generally higher during the wet season whereas detection probability estimates 

were generally higher during the dry season. During the dry season, food availability declines 

significantly for herbivores, forcing them to expand their movement ranges to meet their 

resource requirements (Gould & Gabriel, 2014). In contrast, more resources are available in 

the wet season and thus home range sizes may be smaller as species only need to move smaller 

distances to satisfy their daily requirements (Zielinski et al., 2015). As a result, occupancy is 

expected to be higher in the dry season. The higher occupancy in the wet season by the blue 

duiker and bushbuck may relate to their feeding behaviour. The blue duiker is a concentrate 

browser whereas the bushbuck is a concentrate selector (Jarman, 1974; Hoffman, 1989). Thus, 

both species are highly selective in terms of food preference (Apio & Wronski, 2005; Faurie 

& Perrin, 1993). Consequently, their occupancy was higher in the wet season as during this 

period their distribution was not determined by the spatial distribution of key resources but 

widely spread across the landscape. In the dry season, however, occupied sites strongly 

correlate with key resource areas resulting in their movements being restricted to those sites 

(e.g. Cid et al., 2013). For the large-spotted genet, the higher occupancy during the wet season 

may relate to the higher abundance of insect prey during this period as well as more favourable 

thermal conditions (Ramesh & Downs, 2014). The changes in seasons may also affect fine-

scale habitat features and vegetation structure which can alter patterns of habitat use. In this 

study, there were no significant changes in vegetation structure between seasons except for the 

slight increase in the herbaceous and woody cover in the wet season. This can affect the 

availability of hiding spaces for many species especially those that rest during the day. As a 

result, these species would be expected to shift their areas of occurrence to environments with 

high habitat cover. The seasonal variation in occupancy estimates suggests that seasonality 

should be considered in mammal inventories especially for purposes of long-term monitoring.   
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2.4.2 Effect of buffer distance 

Species respond to environmental variation at different spatial scales (Cushman & 

McGarigal, 2004). It is therefore important to consider factors across a range of spatial scales 

in order to determine the factors influencing the distribution and abundance of organisms at the 

landscape level (Boscolo & Metzger, 2009; Fuhlendorf et al., 2002; Garden et al., 2010). This 

is particularly important when dealing with multiple species as each species has its own ‘scale 

of effect’ (the scale at which its response to environmental variation is strongest) (Martin & 

Fahrig, 2012). Generally, we found no significant effect of buffer distance on covariates 

appearing in the top models for species in the current study. For the blue duiker, the most 

noticeable difference observed was an increase in the importance of forest cover (%) with the 

decrease in buffer distance. These results are counter-intuitive as at smaller scales, habitat 

quality generally predominates for forest specialists whereas habitat amount and configuration 

become important at landscape scales (Hernandez-Stefanoni et al., 2011). A possible 

explanation for the results of the current study is that at smaller buffer distances, the proportion 

of forest cover occupied a larger portion of the buffer area (the proportion of other land cover 

types declined with decreasing buffer distance), inflating the effects of forest cover on the 

occupancy by the blue duiker. For bushbuck, bare ground (%) exhibited a slight increase in 

importance with a decrease in buffer distance. This suggests that habitat quality became more 

important at smaller spatial scales. Bare ground exerts a negative effect on bushbuck occupancy 

as high levels of bare ground indicates limited availability of undergrowth vegetation which is 

important to this species as a source of browsing material (Ehlers Smith et al., 2017a; Skinner 

& Chimimba, 2005). For the vervet monkey, the stem density of large and small trees became 

more important at smaller buffer distances. As the vervet monkey uses both natural and 

transformed areas in this landscape (Patterson, Kalle, & Downs, 2018), the importance of stem 

density at the smaller scales may be due to the importance of these structures for roosting 

purposes whereas at large scales, their distribution is relatively insensitive to habitat factors 

due to the high levels of habitat heterogeneity at this scale which enhances niche availability 

(e.g. Lantschner et al., 2012). Overall, the general lack of buffer distance effects may be due to 

limited variation in the factors investigated across scales (cf. Renfrew & Ribic, 2008), that 

factors operating at one scale may obscure the effects of other factors operating at other scales 

(Koper & Schmiegelow, 2006; With & Pavuk, 2012) and that the buffer distances used were 

outside the ranges of the scales of effect for the species in this study (Jackson & Fahrig, 2015). 

Nevertheless, that habitat variables were important across all scales suggests that conservation 
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efforts aimed at protecting and enhancing habitat condition should be balanced with conserving 

large tracts of contiguous habitat to adequately conserve the mammalian assemblages in this 

landscape.  

 

2.4.3 Factors affecting occupancy 

 Forest cover (%) was an important covariate affecting occupancy for a number of 

species as it featured in the majority of top occupancy models. In particular, occupancy by 

bushbuck, bushpig and Cape porcupine was strongly linked to forest cover (%) in the 

landscape. Bushbuck are secretive ungulates showing preference for areas with thick 

vegetation cover (Coates & Downs, 2006; Downs, Coates, & Child, 2016; Ehlers Smith et al., 

2017a; Odendaal & Bigalke, 1979; Ramesh & Downs, 2015; Rowe-Rowe, 1994; Waser, 1975). 

Protective cover is important for bushbuck as it provides concealment from predators during 

the day (Coates & Downs, 2006; Waser, 1975). Similarly, bushpig occur in a wide range of 

habitats such as bush thickets, riverine areas and other areas characterised by dense vegetation 

cover (Kingdon, 1997; Skinner, Breytenbach, & Maberly, 1976; Skinner & Chimimba, 2005; 

Venter, Ehlers Smith, & Seydeck, 2016a). However, when occurring in open areas dominated 

by human impacts, bushpig require forest as refugia. Cooper and Melton (1988) suggested that 

they require at least 2 ha of forest to rest during diurnal times. Large tracts of forest are 

important for bushpig not only for providing refuge, but they also provide suitably-sized 

habitats within rapidly developing landscapes (Ehlers Smith et al., 2017b). Bushbuck, however, 

are more adaptable and can survive in areas impacted by human activities (Downs et al., 2016). 

Ehlers Smith et al. (2017b) found high bushbuck occupancy within forest patches in urban 

areas although it was low in areas with a high human population size. Their shyness (Skinner 

& Chimimba, 2005), together with their cryptic colouring and their ability to modify their 

activity patterns are some of the attributes that allow bushbuck to be able to survive in densely 

populated areas (Kingdon, 1997; Waser, 1975).  

In addition to forest cover (%), occupancy by Cape porcupine was positively affected 

by foliage height diversity and woody cover (%) and negatively affected by road density. 

Similarly, in a mixed urban-agriculture-forest mosaic, Cape porcupine occupancy was 

associated with high habitat heterogeneity suggesting a broad habitat occurrence (Ehlers Smith 

et al., 2017a). However, occupancy by Cape porcupines was negatively affected by 

urbanisation (Ehlers Smith et al., 2017b) and in a mixed-use farmland mosaic it was negatively 

associated with high human abundance (Ramesh & Downs, 2015). Thus, in more developed 

landscapes, porcupines may be more dependent on remnants of forest habitat for the provision 
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of suitable daytime roosting sites (e.g. rock crevices, caves, burrows, etc.) as these are unlikely 

to be found in more intensely developed parts of the landscape where native habitat is replaced 

by roads and buildings. Furthermore, the high levels of soil compaction in urban areas may 

have significant negative effects on porcupines as they require soft soil for digging 

subterranean food sources (Bragg, 2003; Bragg & Child, 2016). This is likely to be more 

problematic in areas with proximity to roads as the percentage of impervious surface increases 

with road density in urban areas (Brady et al., 2009). 

Blue duikers are exclusive forest and thicket dwelling species and require closed forest 

especially during midday as they hide in thick vegetation ruminating (Rowe-Rowe, 1994; 

Skinner & Chimimba, 2005). We found that occupancy by the blue duiker was positively 

affected by leaf litter (%), woody cover (%), forest cover (%) and the density of large trees. 

Indeed, preference for dense vegetation is a common occurrence among forest duikers 

(Bowkett, Rovero, & Marshall, 2007) as woody cover is important not only as a food source 

but also for providing cover (Hanekom & Wilson, 1991). Thus, a dense canopy, high large tree 

stem density and high woody cover are important requirements for blue duiker occurrence 

(Ehlers Smith et al., 2017a). As forest gleaners feeding primarily on fallen leaves, fruits and 

seeds on the forest floor, high amount of leaf litter is important for blue duiker as it is where 

they obtain most of their food sources (Bowland & Perrin 1995; 1998). Occupancy by the blue 

duiker increased with distance away from roads. Elsewhere, the abundance of duikers was also 

shown to be negatively affected by the proximity to roads (Laurance et al., 2006). Thus, roads 

may constitute high risk areas for duikers due to threats from vehicle collisions and/or increased 

predation pressure from feral predators as they obtain a predatory advantage in open areas 

(McAlpine et al., 2006a).  

 The large-spotted genet is one of the most widely distributed carnivores in southern 

Africa and is found in a range of habitat types (Kingdon, 1997; Ramesh & Downs, 2014; 

Roberts et al., 2007; Rowe-Rowe, 1992; Skinner & Chimimba, 2005; Widdows et al., 2016). 

In this study, we found that occupancy by the large-spotted genet was positively affected by 

leaf litter (%), woody cover (%), forest cover (%), density of roads and the distance to the 

nearest road. The major prey items in large-spotted genets’ diet are insects (Orthoptera and 

Coleoptera) and small mammals (Roberts et al., 2007) and these are usually found in the leaf 

litter layer which explains the positive effect of this covariate on occupancy by genets. Despite 

the genet being considered an opportunistic semi-arboreal omnivore, it feeds primarily on the 

ground (Stuart, 1981), especially in the leaf litter layer and low-lying bush and shows a lack of 

preference for arboreal food sources (Roberts et al., 2007). Thus, high amounts of leaf litter 
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and woody cover are important for this species as they serve as the primary template from 

which they obtain preferred food as well as subsidiary prey items (e.g. myriapods and 

arachnids) (Rowe-Rowe, 1992).  

The strong association between high forest cover and large-spotted genet occupancy 

found in the present study has also been found in several studies (Ehlers Smith et al., 2017a; 

Ramesh & Downs, 2014; Skinner & Chimimba, 2005; Stuart, 1981; Virgos, Romero, & 

Mangas, 2001). High bush cover provides shelter for resting and foraging while simultaneously 

reducing the risk of predation (Ehlers Smith et al., 2017a; Ramesh & Downs, 2014). 

Specifically, large trees are important for large-spotted genets as they use them for diurnal 

resting (Rowe-Rowe, 1992; Skinner & Chimimba, 2005) which explains the positive effect of 

large trees on the detection probability by this species. However, Widdows et al. (2015) found 

that bush cover negatively affected the occupancy by large-spotted genets. One possible reason 

for the divergent findings is that the study by Widdows et al. (2015) was conducted within a 

more urbanised landscape (i.e. urban green spaces in the suburbs of the Kloof/Hillcrest area) 

whereas the current study and previous other studies were conducted in Protected Areas. In 

suburbs, genets invade human households and utilize a variety of anthropogenic resources for 

food and shelter, reducing their reliance on areas with high dense bush cover (Widdows & 

Downs, 2015; 2016; Widdows et al., 2015). This may explain the positive effect of road density 

on occupancy by genets as they must increasingly cross roads in search of alternative food 

resources in the urban environment especially in winter where insect prey abundance is low 

(Widdows & Downs 2015; Widdows et al., 2015). The ability to survive in transformed habitats 

with close proximity to humans suggests a high level of adaptability to disturbance by this 

species and lends support to the suggestion that mesocarnivores are less strongly affected by 

habitat disturbance through anthropogenic activities than larger carnivores due to their 

generalised food and habitat requirements and small area requirements (Crooks, 2002; Gerber, 

Karpanty, & Randdianantenaina, 2012; Kertson et al., 2011; Ordenana et al., 2010; Randa & 

Yunger, 2006).  

Occupancy by vervet monkeys was positively affected by forest cover (%). Within their 

distributional range, vervet monkeys are found in areas with high levels of vegetation cover as 

cover is important for reducing predation risk from ground predators as vervet monkeys’ 

perceived predation risk increases with distance away from trees (Kingdon, 1997; Makin et al., 

2012; Skinner & Chimimba, 2005;). Thus, forest habitats are important low risk environments 

for vervets for foraging and for conducting a range of other daily activities. We further found 

that road density positively affected occupancy by vervet monkeys. It has been shown that 
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urban vervet monkeys have short flight initiation distances (FIDs) than their rural counterparts 

and thus less wary of humans approaching (Mikula et al., 2018). This suggests that they are 

more resistant to human-caused disturbance and other associated novel disturbances 

characteristic of urban areas probably due to habituation and positive encounters with humans 

(Mikula et al., 2018; Patterson et al., 2018). Such ‘desensitisation’ to human-caused impacts is 

important in allowing them to carry on with their normal activities (e.g. resting, foraging or 

breeding) even when confronted with increasing anthropogenic disturbance (George & Crooks, 

2006; Whittaker & Walker, 1998). Consequently, roads and other components of the urban 

development matrix may not present high-risk environments to vervet monkeys to move 

through and thus not constrain their distribution. In fact, vervet monkeys in suburban areas of 

the Msunduzi and EThekwini Municipalities have been shown to use roads as dispersal 

pathways when moving between residential gardens and patches of natural forest and they 

generally seek residential gardens closer to roads (Patterson et al., 2018). This has allowed 

them to be successful at using the urban environment as they use a range of human provisioned 

food items such as cultivated fruits, vegetables and crops, with their occurrence positively 

correlated with the level of human provisioned food (Patterson et al., 2016; 2018).  

 

2.5. Conclusions  

Efforts to conserve biodiversity in urbanised landscapes are necessary for ensuring the 

survival of species resident in these areas. However, managers and landscape planners need to 

know the key variables most important in affecting fauna across a variety of scales to ensure 

successful conservation outcomes (Garden et al., 2010). Our study shows that forest habitat 

and in particular an intact undergrowth, is important for a variety of species. Furthermore, a 

high density of large trees is important particularly for roosting by semi-arboreal species and 

also for providing sufficient cover to large, ground-dwelling species. The study also showed 

variable responses to habitat and landscape structure. Bushbuck, bushpig, Cape porcupine and 

blue duiker showed strong responses to loss of forest habitat and degradation in habitat quality. 

On the other hand, large-spotted genet and vervet monkey showed resistance to such changes. 

Their generalised food and habitat requirements and their semi-arboreal habits allowing them 

to climb, may be important factors allowing them to tolerate urban environments as they can 

easily move through walls and houses to secure resources in the urban landscape and to escape 

from humans and domestic predators (e.g. Dudus et al., 2014). The diversity of responses 

suggests that landscape management approaches that consider the habitat requirements of 
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multiple species are more likely to be successful. KZN and the EMA in particular is under 

intense and growing development pressure due to the burgeoning human population size and 

the pursuit of economic development (Jewitt et al., 2015). As species were shown to respond 

to factors at both local and landscape levels, we suggest that in the planning phase of future 

development projects, ecologists, town planners, land managers, conservationists and other 

relevant stakeholders should take the whole landscape structure into account, including the 

matrix, to ensure the conservation of rich native mammalian assemblages. Particular attention 

should be directed towards the protection and restoration of structurally intact forest habitats 

in this landscape.   
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2.8 Supporting information 

Table SI 2.1. Number of independent photographs of mammals captured by camera traps in the study sites including their threat status according 

to Red Data Book of South African Mammals (Child et al., 2016). 

 

                                                                                                                    Number of photographs 

Species                                      Scientific name                               Dry season                Wet season                           IUCN Status                         

African wild cat                        Felis lybica caffra                                     1                               6                                      Least Concern 

Banded mongoose                    Mungos mungo                                         31                              9                                      Least Concern 

Blue duiker                               Philantomba monticola                            1788                          1222                                Vulnerable 

Burchell’s zebra                       Equus burchelli                                         68                              47                                    Least Concern 

Bushbuck                                 Tragelaphus scriptus                                 282                            115                                  Least Concern 

Bushpig                                    Potamochoerus larvatus                           118                             88                                   Least Concern 

Greater cane rat                        Thryonomis swinderianus                         4                                 nr*                                 Least Concern             

Cape porcupine                        Hystric africaeustralis                               95                               98                                  Least Concern 

Caracal                                     Caracal caracal                                         14                              16                                   Least Concern 

Common duiker                       Sylvicapra grimmia                                    25                              45                                   Least Concern 

Domestic cat                            Felis catus                                                   11                              8                                     – 

Domestic dog                          Canis domesticus                                         8                                7                                     – 

Greater galago                         Otolemur crassicaudatus                            12                              7                                     Least Concern 

Human               Homo sapiens                                              6                                8                                     – 

Impala                                      Aepyceros melampus                                  14                              23                                   Least Concern 
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Large-spotted genet                 Genetta tigrina                                            117                           107                                  Least Concern  

Red duiker                               Cephalophus natalensis                               358                           751                                  Near Threatened            

Rock hyrax                              Procavia capensis                                        542                           135                                  Least Concern 

Slender mongoose                   Galerella sanguinea                                     25                             14                                    Least Concern 

Vervet monkey                        Chlorocebus pygerthrus                               213                            255                                 Least Concern 

Water mongoose                      Atilax paludinosus                                       37                              52                                   Least Concern 
 *nr = not recorded                   
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Table SI 2.2. Naïve occupancy of mammal species for which occupancy estimates were conducted and the total number of photographs 

recorded across both seasons. 

                                                           Season     Blue duiker    Bushbuck   Bushpig    Cape porcupine   Large-spotted genet   Vervet monkey                       

Number of sites present                     Dry               52                    21               11               9                            33                                  30                               

                                                           Wet              56                    20                21              17                           39                                  28                                       

Naïve occupancy                                Dry              0.68                 0.28             0.14           0.12                        0.43                               0.39                                           

                                                            Wet             0.74                 0.26             0.28           0.22                        0.51                               0.37          

Total number of photographs                                3010                 397              206            193                         224                                468 
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ABSTRACT  

The loss and fragmentation of natural habitats is a major threat to biodiversity globally. In 

fragmented landscapes, species are not only affected by patch-level attributes but also by the 

influence of the whole mosaic of landscape elements surrounding habitat patches. Therefore, 

it is important to understand the simultaneous effects of local and landscape-level attributes on 

biodiversity. In this study, we determined the influence of landscape context on species 

richness of forest mammals in an urban-forest mosaic of the EThekwini Municipality Area, 

Durban, South Africa. We determined presence/absence of mammals in 28 patches using 

remote-triggered camera traps over two sampling periods. We applied generalised linear 

modelling within an information-theoretic framework to quantify the effects of within-patch, 

isolation, matrix and landscape level attributes on species richness. The results showed the 

importance of landscape context on occurrence patterns of mammals in fragmented landscapes. 

In particular, they showed that patch size, shape complexity, habitat amount in the immediate 

environment, habitat proximity and road density were the most important factors influencing 

mammalian richness patterns. Overall, the results stressed the importance of habitat area and 

its spatial configuration to faunal preservation and suggest that management efforts in this 

landscape should be aimed at protecting fragments from further loss and disturbance and matrix 

improvement to increase landscape connectivity.  

Keywords: Fragmentation; Forest; Habitat; Isolation; Mammal; Species richness; Urban 

mosaic 
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3.1. Introduction 

The destruction and fragmentation of natural habitat for anthropogenic activities poses 

a great threat to global biodiversity (Fischer & Lindenmayer, 2007; Haddad et al., 2015; 

Hanski, 2015). Habitat fragmentation is a landscape-level process whereby a large area of 

continuous habitat is transformed into smaller units of smaller total area, isolated from each 

other by a matrix of habitat unlike the original habitat (Fahrig, 2003; McGarigal & Cushman, 

2002). The reduction in habitat area, increase in isolation and greater exposure to anthropogenic 

land uses along fragment edges have pervasive effects on the structure and function of remnant 

habitats (Didham, 2010; Fahrig, 2003). Fragmentation reduces biodiversity by up to 75%, 

causing changes in ecosystem processes as diverse as nutrient cycling, species persistence, 

nutrient retention, species interactions, trophic dynamics, and species movement (Haddad et 

al., 2015). Due to the pervasiveness of fragmentation of natural habitats worldwide, habitat 

fragmentation has become a central theme in conservation biology (Didham, 2010; Ewers & 

Didham, 2006). Despite its influence, fragmentation is an ambiguous process with direct and 

indirect effects, sometimes with equivocal implications (Haila, 2002). Furthermore, it is not a 

unitary term as different mechanisms are responsible for fragmentation effects, which has 

resulted in considerable confusion about the contribution of different mechanisms and even 

about the term itself (Didham, 2010; Fahrig, 2003; Lindenmayer & Fischer, 2007).  

The major complicating issue in fragmentation research is the relative roles of habitat 

loss and fragmentation per se (the breaking apart of habitat while controlling for habitat 

amount) (Fahrig, 2017; Villard & Metzger, 2014). Several authors have suggested that the 

effects of the two mechanisms should be separated in both empirical studies and conceptual 

formulations of the fragmentation process as they have different ecological effects (Fahrig, 

2003; Haila, 2002). Empirical studies that have done so have shown that the effects of habitat 

loss were universally huge and resulted in the loss of biodiversity whereas the effects of 

isolation were less strong and likely to be as negative as positive (Fahrig, 2003; Smith, Francis, 

Fahrig, 2009; Watling & Donnelly, 2006). However, there are almost equally as many studies 

that have found the effects of fragmentation per se to exert strong and sometimes even stronger 

effects than those of habitat loss (Boscolo & Metzger, 2011; Flather & Bevers, 2002; 

Martensen, Pimentel, & Metzger, 2008; Mazerolle & Villard, 1999; Radford & Bennett, 2004; 

Villard, Trzcinski, & Merriam, 1999). Furthermore, the analytical procedures used in many 

studies were conservative with regards to isolation effects, leading to fragment area effects 

incorporating a significant portion of isolation effects (Koper, Schmiegelow, & Merrill, 2007; 
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Smith et al., 2009; Villard et al., 1999). Thus, habitat fragmentation per se complements the 

direct effects of habitat loss, leading to even steeper declines in biodiversity especially in 

landscapes with medium to low amounts of natural habitat (Haddad et al., 2017; Hanski, 2015; 

Villard & Metzger, 2014).  

In addition to the effects of habitat loss and fragmentation per se, the quality of the 

complex mosaic of land cover types that lie between patches of primary habitat (the ‘matrix’) 

matters (Driscoll et al., 2013; Ricketts, 2001). The matrix can affect fragment dynamics in a 

variety of ways such as in facilitating movement of organisms between patches (Driscoll et al., 

2013), mediating the nature and strength of edge, area and isolation effects (Cook, Lane, Foster, 

& Holt, 2002; Ewers & Didham, 2006) and serving as additional foraging habitat for organisms 

in habitat fragments (Anderson, Rowcliffe, & Cowlishaw, 2007; Kupfer, Malanson, & 

Franklin, 2006). Also, the responses of various ecological processes within fragments (e.g. 

microclimatic gradients, community composition, species turnover) depend on how far from 

the edge did the sampling take place, suggesting that edge effects and/or synergisms between 

edge and area effects are responsible for the many patterns that have been purported to be 

related to area effects (Ewers, Thorpe, & Didham, 2007; Fletcher et al., 2007; With & Pavuk, 

2012). Fragment dynamics are also affected by other human-caused disturbances (e.g. wildfire, 

timber extraction and hunting) that act synergistically or additively with fragmentation 

(Chiarello, 1999; Laurance & Cochrane, 2001; Michalski & Peres, 2005; Peres, 2001). Lastly, 

although the effects of habitat loss, fragmentation per se, matrix type and edge effects on 

biodiversity are undeniable, their relative effects may differ with the spatial scale as population 

processes (e.g. foraging, movement, dispersal, reproduction) occur at different rates within 

different ecological ‘neighbourhoods’ (Addicott, et al., 1987; Radford & Bennett, 2007). These 

results suggest that studies should be broader in scope and consider a range of landscape 

elements at various spatial and temporal scales (Boscolo & Metzger, 2009; Smith, Fahrig, & 

Francis, 2011). 

Consequently, several studies conducted at larger spatial scales to determine the 

influence of the whole mosaic of landscape elements surrounding habitat patches (i.e. the 

landscape context) on biota have been conducted (Bennett, Radford, & Haslem, 2006; 

Lindenmayer et al., 1999). Results from these studies have shown that aspects such as the 

proportion of different land use types, the amount of nearby habitat, the distance to the nearest 

conspecific population and the presence and the quality of dispersal routes complement patch-

level characteristics in influencing species distribution and abundance (Boscolo & Metzger, 

2011; Fahrig & Merriam, 1994; Martensen et al., 2008; McAlpine et al., 2006; Radford & 
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Bennett, 2004; 2007;). A corollary to this is that processes occurring in the wider landscape 

have as great or even greater influence on the population dynamics of biota than within-patch 

processes (Bennett et al., 2006). The incorporation of the broader landscape context is 

particularly important for conservation purposes as the conservation of many species in human 

dominated landscapes requires the simultaneous management of multiple landscape elements 

(Bennett et al., 2006). 

Forest vertebrates have been particularly useful as model organisms for understanding 

the influence of landscape context as they generally show strong responses to landscape 

structural aspects (Betts et al., 2006; McAlpine et al., 2006). Nevertheless, most studies have 

been conducted in patches embedded in agricultural contexts and other disturbance regimes 

where the matrix is more benign, allowing frequent movement of fauna between habitat patches 

(Bennett et al., 2006; Kennedy et al., 2010; 2011). There is therefore a need for more studies 

conducted in landscapes where the matrix is more inhospitable and less permeable to 

movement (Kennedy et al., 2011). In such landscapes, species are being lost at arguably faster 

rates and thus the implementation of appropriate conservation measures is more urgently 

needed. Metropolitan areas are suited for this purpose as (1) there is less habitat in the overall 

landscape (Pickett et al., 2001; Vignoli et al., 2009), (2) the edges between natural vegetation 

and matrix are ‘harder’ (Brearley et al., 2010; Villasenor et al., 2014), (3) the matrix is highly 

impenetrable to moving organisms with many artificial barriers to movement (Rhodes et al., 

2006) and (4) species are subject to debilitating influence of secondary impacts of urbanisation 

in the matrix such as human persecution and road kills (Bateman & Fleming, 2012).  

In this study, we determined the influence of landscape context on species richness of 

mammals in an urban-forest mosaic in the EThekwini Municipality Area (EMA), KwaZulu-

Natal (KZN), South Africa. Although previous studies have been conducted on the habitat 

requirements of species within the study area, these studies were conducted in urban green 

spaces (McPherson, Brown, & Downs, 2016; Widdows, Ramesh, & Downs, 2015). 

Consequently, the current study was conducted to understand the ecological requirements of 

species in natural forests interspersed with urban development. We quantified the relative 

effects of within-patch, isolation, matrix and landscape level attributes on mammalian species 

richness patterns. We predicted that habitat structure, forest area, forest configuration and 

matrix composition at the landscape level affect species richness. We focused on species 

richness because management efforts targeted at groups of species are more likely to be 

effective than those implemented at single species level which suggests the need for 

community-level approaches (Huggett, 2005). 
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3.2. Materials and methods 

3.2.1 Study area 

The study was conducted in nine forested Protected Areas within the EThekwini 

Municipality Area (EMA), KZN, South Africa (Fig. 3.1). The EMA is the third largest 

metropolitan area in South Africa and has the busiest port in Africa (EThekwini Municipality, 

2013). The area has a large human population (3.5 million) with an annual growth rate of 1% 

(ECPDP, 2015). The climate is subtropical humid and has a mean annual minimum and 

maximum temperature of 13.9°C and 24°C respectively: the mean annual rainfall is 974 mm, 

mostly occurring during the summer months (http://en.climate-data.org/location/27097/). Frost 

is infrequent while mist is common and provides additional moisture (Mucina & Rutherford, 

2006). The study area comprises of natural forest and grassland habitats interspersed with urban 

development.  

 
Fig. 3.1. The study area, EThekwini Municipality Area, Durban, KwaZulu-Natal, South 

Africa. 

 

http://en.climate-data.org/location/27097/
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The area is largely transformed, with 53% of the original vegetation having been 

converted for anthropogenic purposes such as agriculture, buildings, roads and human 

settlements, (EThekwini Municipality, 2015). Most of the forests within the EMA fall under 

the Indian Coastal Belt vegetation type which originally occupied about 65% of the EMA with 

67% of it having been transformed primarily for human settlements and sugarcane farming 

(EThekwini Municipality, 2007). The EMA is situated within the Maputaland-Pondoland 

Albany (MPA), one of 36 global biodiversity hotspots (Mittermeier et al., 2005; Noss et al., 

2015).  

 

3.2.2 Survey site selection 

We determined all suitable habitats within the study area using the 2014 land-cover 

layer of the study region (GeoTerraImage, 2014) with ArcGIS 10.4 (ESRI, Redlands, USA). 

Prior to survey site selection, we reclassified the land cover into 10 major categories (from the 

original 72 classes). The Indian Coastal Belt forests in the study region are made up of dense 

bush and indigenous forest subclasses (GeoTerra Image, 2014; Mucina & Rutherford, 2006). 

To determine the amount of habitat in the landscape, we merged together indigenous forest and 

dense bush subclasses and overlaid the merged layer over the study area. To select camera trap 

locations, a 400 m x 400 m systematic grid was overlaid over the merged forest layer of each 

study site with the centroids of each grid selected as survey locations. Survey locations (GPS 

coordinates) were then entered into a handheld Global Positioning System (GPS, Garmin Etrex 

20x, Garmin© USA; 3 m accuracy) which was used to locate them in the field. 

 

3.2.3 Mammal surveys 

We determined the presence/absence of mammals in 28 patches (1.21–347.46 ha; mean 

= 51.16 ± 78.88 ha) using passive infrared camera traps (LtI Acorn® 6210MC, Shen-zhen Ltl 

Acorn Electronics, China; Moultrie® M-880, EBSCO Industries, USA). Camera traps were 

placed at a site for a period of 21 days and were in operation 24 h/day. Camera trap sensitivity 

was set to high with a 30 s photographic delay between captures. Surveys were conducted over 

two sampling periods, May–September 2016 and December 2016–April 2017, which coincided 

with the dry and wet seasons, respectively. Survey locations were visited every two weeks to 

download photographs, change the batteries and to ensure that camera traps were functioning 

properly. Camera traps were set at a height of 15–25 cm aboveground depending on the 

steepness of the terrain and were attached to a tree on a game trail or on an open clearing to 

allow optimum camera sensor range.  
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3.2.4 Habitat structure 

Habitat structure was recorded at each camera trap location within a 20 m radius around 

each camera trap site (Ehlers Smith et al., 2017). A foliage profile for each site was compiled 

using visual estimation of percentage coverage of each vegetation class relative to other classes 

within the individual quarters of the circular plots (totalling 100% coverage in each). Habitat 

structure was determined as the average percentage coverage for each vegetation class among 

the individual quarters of the circular plot. The vegetation classes used to determine habitat 

structure were bare ground, leaf litter, grass cover, herbaceous plant cover (including seedlings) 

and woody vegetation cover (including saplings). Stem density of trees at different height 

bands (2–5 m, 6–10 m, and 11–15 m) was also recorded. To determine microhabitat 

characteristics of each camera trap site, the mean height scores for each vegetation class of the 

foliage profiles were converted into foliage height diversity (FHD) using the Shannon-Wiener 

formula (Ehlers Smith et al., 2015; Skowno & Bond, 2003). 

 

3.2.5 Landscape structure analysis 

To characterise the landscape structure of the study area, we used the spatial analysis 

program FRAGSTATS 4.2 (McGarigal, 2015) and ArcGIS 10.4 (ESRI, Redlands, USA). As 

forest habitat was the focus of the study, we determined all indices of fragmentation for the 

forest land cover type. Prior to analyses, the reclassified land cover map of the study region 

was rescaled to a grain (cell) size of 20 m. This grain size was the most appropriate based on 

the size of our landscape and also because it allowed for maximum computational efficiency 

(McGarigal, Cushman, & Regan, 2005). As a result of this grain size, the minimum patch size 

detected in the landscape was 0.04 ha. However, patches of this size were much smaller than 

the home range sizes of species present within the study area (Bragg, 2003; Foord, van Aarde, 

& Ferreira, 1994; Furstenburg, 2011a, b; Seydack, 1990). Consequently, for relating species 

richness patterns of mammals to landscape context, we only considered patches ≥1 ha because 

although they were still smaller than the home range size for the majority of the species, they 

at least encompassed a single home range size for the species with the smallest home range in 

the landscape (Furstenburg, 2011b; Lawes, Mealin, & piper, 2000a).  

For the computation of metrics, analytical parameters were set to 8 cell neighbourhood 

rule (McGarigal et al., 2005). The following metrics were computed at the patch level: patch 

size (PSIZE), patch shape index (SI) and edge contrast (ECON). FRAGSTATS calculates an 
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edge contrast index between a patch and its surrounding environment with each segment of the 

perimeter weighted by the degree of contrast using a weighting procedure (0 = no contrast; 1 

= maximum contrast) (McGarigal, 2015). However, for the weighting to be appropriate, this 

requires biological information regarding the magnitude of edge effects generated by different 

land cover types (Watling & Orrock, 2010). Since this information was not available, we opted 

for a categorical classification of edge contrast (see Table 3.1 for details). We also included 

two variables related to the habitat structure: percentage of woody cover (WOOD), as it was 

the most important variable affecting the occupancy of mammals in the study area (Chapter 2) 

and foliage height diversity (FHD) as a measure of heterogeneity and niche space availability 

(August, 1983).  

For configuration metrics, we calculated the Euclidean nearest neighbor distance 

(ENND). The ENND is the most common isolation measure in literature (Prugh, 2009). 

However, this measure has been criticised for being too simplistic and unrealistic as it does not 

consider the area of surrounding habitat (Bender, Tischendorf, & Fahrig, 2003; Prugh, 2009). 

We therefore included two other configuration parameters. The first one was a buffer-based 

measure whereby the amount of forest habitat within a defined buffer distance around each 

patch (HA) was calculated. As there is a lack of information on the maximal dispersal distance 

for most species in the study area, we used a 0.54 km buffer around each survey patch as it 

represents the average distance between dense bush and indigenous forest patches across KZN 

(0.66 km and 0.42 km, respectively; Olivier, van Aarde, & Lombard, 2013). The second 

configuration index used was the proximity index (PX). This index is preferred over distance-

based approaches as it is less vulnerable to the changes in patch size, shape and total amount 

of habitat within a landscape and thus more likely to produce reliable results (Bender et al., 

2003).  

For landscape metrics, we computed patch density (PD), percentage of the landscape 

(PLAND) and largest patch index (LPI). We also determined the distance of each surveyed 

patch to the urban centre (CBD) and reserve size (RS). As some reserves were partially fenced 

especially in areas adjacent to intense development such as malls, highways and high-density 

housing, we included another variable indicating whether the reserve was partially fenced or 

not (FENCE). To incorporate the effects of the matrix, we determined matrix development 

intensity. For this we calculated the density of sealed roads (RD) and percentage cover by urban 

land cover type (URBAN) within a 0.54 km buffer of each surveyed patch.  

 

3.2.6 Data analyses 
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To determine the adequacy of sampling, we generated species accumulation curves of 

mammals using the EstimateS 9.1.0 package (Supplementary Fig. S3.1, Colwell, 2016). 

Generalised Linear Models (GLMs) were used to relate variation in the response variable to 

predictor variables. Prior to analyses, we conducted correlation analyses between all predictor 

and the response variable using the Pearson’s correlation coefficient (Table 3.2). This was done 

to determine variables with potentially strong effects on the response variable and also to 

determine variables correlated with each other. In GLMs, a normal distribution with identity 

link function was applied (McCullagh & Nelder, 1989). For model validation, the Wald statistic 

was used to determine the significance of the regression coefficient for each parameter. A 

goodness-of-fit of the whole model was assessed using the log-likelihood ratio test. To avoid 

problems associated with multi-collinearity, we avoided using highly correlated variables 

(r>0.70) in the same model (Martensen, Ribeiro, Banks-Leite, Prado, & Metzger, 2012). For 

each model we determined the log likelihood value (LL), number of model parameters (K), 

Akaike Information Criterion (AIC) value, ΔAIC, and model probability (Santos-Filho, Peres, 

da Silva, & Sanaiotti, 2012). We used a model selection approach (Burnham & Anderson, 

2002) to identify top models. We used AICc (AIC corrected for small sample sizes) in all 

analyses rather than AIC, as the number of forest patches we surveyed divided by the number 

of model parameters was <40 in all cases (Burnham & Anderson 2002). The Akaike weight 

(AIC Wgt) was used to rank the importance of variables (Burnham & Anderson 2002). The 

relative importance of each predictor was evaluated using the sum of Akaike weights (∑ Wgt) 

of each candidate model in which each predictor appears. Models with ΔAICc values ≤2 were 

considered to have substantial support as low ΔAICc indicates that the model describes the data 

relatively well compared with the best-fit model (Burnham & Anderson, 2002). All statistical 

analyses were conducted in SPSS 25.0 (IBM Corporation, 2013). 
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Table 3.1. Description of the variables used in the generalised linear modelling of species richness of mammals across the study area. 

Variable                                                   Units                       Description 

Within-patch level 

Percentage woody cover                          Percent                     Proportion of cover by woody plants and seedlings within the circular plot. 

Foliage height diversity                            None                        Distribution of canopy cover among forest strata expressed as a diversity index. 

Patch-level 

Fragment size                                           Hectares                   The size of the patch in hectares. 

Shape index                                              None                        Patch perimeter (m) divided by the square root of patch area (m2), adjusted by a  

                                                                                                   constant to adjust for a square standard.  

Edge contrast                                            Categorical               Ranking of distinctness of patch edge with the adjacent habitat type: 0 = 

                                                                                                   indistinct, 1 = low, 2 = moderate, 3 = severe.   

Configuration metrics 

Euclidean nearest neighbour distance      Meters                      Distance to the closest patch of any size in the landscape.  

Habitat amount                                         Hectares                   Amount of habitat within a specified buffer distance of the focal patch. 

Proximity index                                        None                        The sum of patch area (m2) divided by the nearest edge-to-edge distance squared   

                                                                                                   (m2) between the patch and the focal patch of all patches of the same class whose  

                                                                                                   edges are within a specified distance (m) of the focal patch.   

Landscape-level 

Patch density                                            Patches/100 ha         Number of patches of the corresponding patch type divided by total landscape area  

                                                                                                   multiplied by 100. 

Percentage of landscape                           Percent                     Percentage of the landscape comprised of the focal patch type. 

Largest patch index                                  Percent                     The percentage of the landscape comprised by the largest patch. 

Reserve size                                              Hectares                  The size of the nature reserve in hectares. 

Fencing                                                     Categorical              Categorical classification of nature reserves in terms of the presence of partial  

                                                                                                   fencing: 0 = unfenced, 1 = fenced.  

Distance to urban centre                           Meters                      Distance of the focal patch to the closest central business district. 

Matrix composition 

Density of sealed roads                             Meters/ha                Total length of sealed roads (m) divided by total buffer area. 

Percentage urban cover                             Percent                    Percentage of the buffer area comprised by the urban land cover type.  
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3.3. Results 

Twenty-eight (28) patches were surveyed for this study. Patch size ranged from 1.21-

347.46 ha (55.16 ± 78.88 ha). A total of 3888 and 3006 independent photographs of mammals 

were recorded in the dry and wet seasons, respectively. A total of 21 and 20 species (including 

humans and domestic animals) were recorded during the respective seasons. Species that did 

not historically occur within the study region were however removed from the analyses. Such 

species were impala (Aepyceros melampus) and zebra (Equus burchelli) (Vincent, 1962). We 

also removed humans (Homo sapiens), domestic cats (Felis catus) and dogs (Canis domesticus) 

from the analyses as the focus was on native forest-dependent wild mammals.  

We recorded 16 species of mammals in the dry season. During this season, the blue 

duiker (Philantomba monticola) was recorded in the highest number of patches, being found 

in 25 patches, followed by the large-spotted genet (Genetta tigrina) (19 patches), vervet 

monkey (Chlorocebus pygerythrus) (17), water (Atilax paludinosus) and slender mongooses 

(Galerella sanguinea) (13 patches) and bushbuck (Tragelaphus scriptus) (7 patches). The 

African wild cat (Felis lybica) was the least commonly recorded species, being found only in 

a single patch. Other species recorded in a few patches were red duiker (Cephalophus 

natalensis), greater galago (Otolemur crassicaudatus) and banded mongoose (Mungos mungo), 

being recorded in three, four and five patches, respectively. In the wet season, 15 species of 

mammals were recorded. The composition of species was similar to the dry season except for 

the lack of one species in the wet season, the greater cane rat (Thryonomis swinderianus). The 

blue duiker was also found in the highest number of patches in the wet season, being found in 

23 patches. The large-spotted genet and vervet monkey were also recorded in a large number 

of patches, being recorded in 20 and 16 patches, respectively. Bushbuck, Cape porcupine 

(Hystric africaeustralis) and water mongoose had equal level of occurrence, being recorded in 

nine patches. The African wild cat was recorded in the fewest number of patches, being 

recorded only in one patch. Other species recorded in a few patches were the caracal (Caracal 

caracal) (3 patches), greater galago (3 patches), banded mongoose (4 patches) and the common 

duiker (Sylvicapra grimmia) (5 patches).  
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Table 3.2. Correlation matrix showing Pearson’s correlation coefficients for the predictor variables. Values indicating high levels of correlation 

are highlighted in bold. 
 

                                  CBD                ECON              ENND             FENCE               FHD           HA            LPI               PD             PLAND          PSIZE             PX             RD               RS                 SI                URBAN           WOOD 

 

CBD                          1                            

           

ECON                       -0.476                   1                      

 

ENND                       0.117                    -0.521              1                          

    

FENCE                     -0.339                  -0.199              0.202                  1                           

   

FHD                          0.152                    0.182              -0.244                -0.219              1                

 

HA                            0.002                    -0.194              -0.138                -0.154              -0.266        1                  

 

LPI                           -0.344                   -0.215              0.262                   0.644             -0.172        -0.009            1                   

 

PD                            -0.365                    0.381              -0.148                 0.126               0.268         -0.617           0.016           1                                    

 

PLAND                    -0.610                    0.278               -0.092                0.413               -0.245        0.458            0.438          -0.150         1                      

 

PSIZE                      -0.215                    0.043               -0.375                0.006               -0.228         0.885            0.079          -0.304         0.609             1                       

 

PX                            0.074                     0.226               -0.634                -0.442              0.055          0.580           -0.207         -0.098         0.170             0.659              1                   

  

RD                            0.130                     0.241               -0.085                -0.044              0.445        -0.620           0.086           0.466         -0.173           -0.414             -0.185          1                   

 

RS                            0.305                    -0.274                0.036                -0.380              -0.183        0.558           -0.180           0.466          -0.040           0.222              0.173          -0.492          1                      

 

SI                             0.196                    -0.272               -0.220                -0.087             -0.035         0.682            -0.207          -0.285         0.030             0.661              0.566          -0.518         0.292             1                     

 

URBAN                  -0.440                    0.411                -0.382                 0.581              0.096        -0.353            0.273           0.644          0.286             0.063              -0.046         0.345          -0.746            -0.068            1                                  

 

WOOD                   -0.181                    -0.147                0.084                 0.340               0.121         0.296            0.325            0.112          0.439            0.406               0.097         0.084          -0.295            0.278            0.306                1         
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There was some degree of variability between models, with the number of variables 

affecting species richness of mammals in the top models ranging between 6 and 12 (Table 3.3). 

However, considerable overlap in the structure of the top model between seasons was found 

(Table 3.3). Based on the results of the top model, in the dry season, species richness of 

mammals was positively affected by percentage of woody cover, patch size, shape index, 

proximity index, percentage of the landscape and largest patch index (Table 3.4). The 

Euclidean nearest neighbour distance, patch density and road density had a negative effect on 

species richness. In the wet season, foliage height diversity, shape index, habitat amount in the 

vicinity, proximity index, percentage of landscape and largest patch index affected species 

richness positively. Euclidean nearest neighbour distance, patch density and road density had 

a negative effect on species richness in the wet season (Table 3.4). The relative variable of 

importance across all models in the dry season was highest for patch size (Wgt = 0.68), shape 

index (Wgt = 0.66), proximity index (Wgt = 0.58), road density (Wgt = 0.57) and percentage 

of landscape (Wgt = 0.53) (Fig. 2.2). In the wet season, the relative variable of importance 

across all models was highest for shape index (Wgt = 0.66), proximity index (Wgt = 0.63), 

road density (Wgt = 0.55), habitat amount (Wgt = 0.52) and foliage height diversity and 

percentage of landscape (Wgt = 0.51, respectively) (Fig. 3.2).  
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Table 3.3. Top 10 models based on model selection for predicting species richness of mammals in 28 patches across the study area for the dry 

and wet seasons, respectively.  

Season   Model                                                                          LL            K             AICC            ΔAICC       AICWgt            Model Likelihood 

Dry                   WOOD+SI+PSIZE+PX+PD+ENND+PLAND+LPI+RD                                                       -32.100                10                         90.010                           0.000                       0.32                                    1 
 

                          FHD+SI+PSIZE+ECON+PX+HA+PLAND+CBD+RS+URBAN                                        -40.540                 11                         92.986                          2.976                        0.18                                    0.23 

 

                          FHD+SI+HA+RS+ENND+LPI+RD+URBAN+FENCE                                                        -41.736                10                          93.677                          3.667                       0.11                                    0.16 

 

                          FHD+WOOD+PSIZE+ECON+RS+FENCE+CBD                                                                -42.052                 8                           93.918                          3.988                        0.08                                    0.14 

 

                          SI+PX+HA+LPI+RD+FENCE+CBD                                                                                      -42.411                8                           95.141                          5.131                       0.04                                     0.08 

 

                          ECON+PX+HA+LPI+PD+URBAN+CBD                                                                             -42.791                 8                          96.934                          6.924                        0.03                                    0.03                                                                     

 

                          PSIZE+SI+PD+URBAN+CBD                                                                                               -42.919                  6                          96.989                          6.978                       0.03                                    0.03 

                          

                          PSIZE+SI+ECON+HA+PD+RD+RD                                                                                     -41.344                  8                           97.008                         6.999                       0.02                                    0.03 

                           

                          PSIZE+SI+HA+PX+RD+FENCE                                                                                           -39.346                  7                           99.258                         9.248                       0.01                                    0.01                                                                                   

  

                          PSIZE+WOOD+ECON+HA+RS+PD                                                                                     -41.164                 7                           100.951                        10.941                     0.01                                    0.00                                                                                   

                           

Wet                   FHD+SI+PX+PD+ENND+HA+PLAND+LPI+RD                                                                -30.601                 10                           86.061                         0.000                         0.29                                   1 

 

                          WOOD+FHD+PSIZE+SI+ECON+PX+PLAND+RS+RD+FENCE+URBAN                     -34.031                  12                           88.289                         2.228                         0.15                                   0.32 

 

                          WOOD+PSIZE+SI+HA+LPI+RS+FENCE+URBAN+CBD                                                 -36.291                  10                          88.878                         2.817                         0.07                                   0.24 

  

                          WOOD+PSIZE+HA+ECON+RS+PD+URBAN+CBD                                                          -36.294                  9                           89.488                         3.427                         0.05                                    0.18 

 

                          SI+PSIZE+PX+LPI+PD+URBAN+CBD                                                                               -37.893                  8                           89.986                         3.925                         0.04                                     0.14                

 

                          WOOD+SI+ECON+PX+LPI+RD                                                                                           -40.134                 7                            90.048                         3.987                         0.04                                    0.14 

 

                           PSIZE+PD+PLAND+FENCE+RD                                                                                         -35.810                 6                            91.621                         5.560                         0.02                                   0.06 
                          

                           FHD+PLAND+PX+HA+URBAN+CBD+RS                                                                         -39.030                8                           91.871                          5.810                         0.02                                    0.05 

 

                           FHD+ECON+ENND+PX+PLAND+URBAN                                                                        -40.944                7                           92.189                          6.128                         0.01                                    0.05 

 

                           WOOD+HA+PX+PD+LPI+RS                                                                                               -38.328                7                            93.547                         7.486                          0.01                                   0.02                                                                                                                                                                 
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Table 3.4. Coefficient estimates of explanatory variables for the best GLM models for species 

richness of mammals across the study area in the dry and wet seasons based on the Wald 

statistic. Significant values are highlighted in bold.  

 

Season        Variable       β Estimate        Standard Error       Wald Statistic       P-value                 

Dry              Intercept         1.468                  0.635                          5.349                    0.021 

                    WOOD           0.992                  0.220                          3.661                    0.056 

                    PSIZE             1.507                  0.157                          10.493                  0.001 

                    SI                    1.201                  0.513                          5.477                    0.019 

                    ENND            -0.321                 0.019                          0.134                    0.989 

                    PX                  1.125                  0.302                          4.172                     0.023   

                    PD                  -0.207                 0.028                          0.822                     0.365 

                    PLAND          0.234                  0.035                          0.486                     0.426 

                    LPI                  0.731                  0.151                         0.157                      0.678 

                    RD                 -1.047                  0.181                          8.434                     0.041 

Wet             Intercept          1.234                  0.069                          0.113                    0.014 

                    FHD               0.355                   0.169                          0.924                    0.643  

                    SI                    1.131                   0.468                          5.835                    0.016 

                    ENND            -0.264                  0.099                          1.761                    0.184 

                    HA                  1.204                  0.322                           8.771                    0.002 

                    PX                   1.057                  0.295                          4.138                    0.034 

                    PD                   -0.472                 0.251                          0.982                    0.642 

                    PLAND           0.323                  0.265                          1.476                    0.224 

                    LPI                  0.390                  0.173                          0.152                     0.819 

                    RD                  -1.246                 0.239                          4.027                     0.029               
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Fig. 3.2. Sum of the Akaike weights for each explanatory variable in the wet and dry seasons, 

respectively. See text for the description of variables. 

 

3.4. Discussion 

Patches with complex shapes have high perimeter to area ratios, high amount of edge-

affected habitat and reduced core area (Ewers & Didham, 2007). Consequently, they have been 

shown to house impoverished species assemblages, leading to the generalisation that they are 

less suitable for biodiversity conservation (Baz & Grcia-Boyero, 1995; Collinge & Palmer, 

2002; Helzer & Jelinski, 1999; Yamaura, Kawahara, & Iida, 2008). In this study, we found that 

shape complexity had a significantly positive effect on species richness patterns of mammals. 

Indeed, a range of empirical and simulation studies have shown that complex shapes may 

actually have beneficial effects on biota due to: (1) higher colonisation rates (Orrock et al., 

2011); (2) a greater variety of microenvironments due to their elongated shapes (Garmendia et 

al., 2013; Hamazaki, 1996) and (3) high habitat heterogeneity and primary production due to 

high amount of edge (Garmendia et al., 2013). Any of the above factors singularly or acting in 

concert with the other factors may account for the positive effects observed in this study. 

Furthermore, we found a positive relationship (Pearson’s r = 0.661) between patch size and 
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shape complexity, suggesting that some of the positive effects of shape complexity were due 

to patch size. Nevertheless, patches with complex shapes embedded in high contrast matrices, 

as is typical in the EMA (McLean et al., 2016), experience net emigration due to the interaction 

between patch shape and boundary contrast, leading to the positive effects of complex shapes 

being counterbalanced by high emigration rates (Collinge & Palmer, 2002). Thus, connecting 

core areas of patches with complex shapes through appropriately targeted restoration efforts 

may be important for increasing their conservation potential (Yamaura et al., 2008).   

The number of species of mammals recorded in this study increased with patch size as 

predicted by the island biogeography theory (MacArthur & Wilson, 1967). This provided 

support to a number of studies demonstrating the negative effects of fragmentation on species 

richness of forest mammals (Ahumada et al., 2011; Chiarello, 1999; Laurance, 1990; 

Lindenmayer et al., 2000). The reduction in forest patch size increases the amount of forest 

habitat subjected to edge effects (Pfeifer et al., 2018) as forest area loss results in a 

disproportionate loss of forest interior habitat (Riitters & Wickham, 2012; Riitters, Wickham, 

Costanza, & Vogt, 2016). Such changes in landscape composition pose significant threats to 

biodiversity through changes in biogeochemical cycles, ecosystem processes and ecosystem 

resilience, affecting ecosystem service provision and human dependencies (Haddad et al., 

2015; Jewitt et al., 2015; Rolo et al., 2018). Natural habitats and the ecosystem services they 

provide serve as a safety net for poor and vulnerable people against natural disasters and thus 

are an important adaptation tool to climate change (Roberts et al., 2012; Roberts & 

O’Donoghue, 2013). Given the high rates of poverty within the EMA, and thus the high 

percentage of vulnerable communities (Boon et al., 2016; Davids et al., 2016; Ground, Slotow, 

& Ray-Mukherjee, 2016), the loss of natural habitat will increase the vulnerability of these 

communities even further, and could hamper the implementation of cost-effective, ecosystem-

based approaches to adapt to climate change (Roberts et al., 2012; Roberts & O’Donoghue, 

2013). Natural habitats within the EMA are threatened with high development pressures as a 

result of the burgeoning human population, unauthorised development practices and the 

predominance of development priorities over environmental concerns (Boon et al., 2016; 

Ground et al., 2016; McLean et al., 2016). Already, four vegetation types within the EMA are 

considered to have reached the level of degradation at which meeting quantitative targets set 

for their protection will be almost impossible (Roberts & O’Donoghue, 2013). Given the high 

proportion of specialist species in forest habitats in this landscape (Lawes, Eeley, & Piper, 

2000b; Olivier & van Aarde, 2017), and the fact that many of them carry an extinction debt 
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(Olivier et al., 2013), these results suggest that management efforts aimed at protecting the 

remaining natural habitat from further loss are urgently needed in this landscape. 

We found an increase in species richness with an increase in the amount of habitat in 

the immediate environment of patches. Further indirect corroborating evidence of strong 

habitat amount effects was the strong effects of measures of isolation (PX and ENND; positive 

and negative, respectively) on species richness. These findings provide support to the 

suggestion that the amount of habitat in the immediate vicinity is important in fragmented 

landscapes (Cox, Dickman, & Hunter, 2004; Crooks, 2002; Fahrig, 2013; Gerber, Karpanty, & 

Randrianantenaina, 2012; McAlpine et al., 2006; Thornton, Branch, & Sunquist, 2011). 

Species that have access to large amounts of suitable habitat will have a high probability of 

finding suitable foraging and breeding sites in the landscape (Boscolo & Metzger, 2009; Jewitt 

et al., 2015). Furthermore, recolonisation rates are likely to be higher due to demographic and 

genetic contributions of immigrants (Boscolo & Metzger, 2011; Didham, 2010; Laurance, 

1991). However, isolation is not only a function of habitat area and distance between patches 

but also matrix composition, matrix contrast and species’ willingness to cross the matrix (Uezu 

& Metzger, 2001). Furthermore, the configuration of nearby habitat is also important. In the 

EMA, most patches are surrounded by high levels of matrix development intensity such as high 

densities of buildings and roads (EThekwini Municipality, 2007; McLean et al., 2016). In this 

study, we found strong negative effects of high road density on mammalian species richness. 

Roads not only affect biota directly through mortality but may even have stronger effects on 

species by inhibiting their movement as a result of road avoidance through traffic disturbance 

(Forman & Alexander, 1998; McAlpine et al., 2006; Rhodes et al., 2006). Road effects are 

however unlikely to be detrimental to all species in the study area. In a previous investigation, 

we found that the occupancy of two species responded positively to road density (Chapter 2). 

Nevertheless, species moving along the hostile matrix of roads, residential areas and other areas 

with high development intensity face additional threats such as attacks from feral predators and 

human persecution (McAlpine et al., 2006). Therefore, the barrier effects of roads on wildlife 

should receive increased attention in urban planning to reduce potential detrimental effects as 

it compounds the level of threat faced by organisms.    

The level of aggregation of habitat in the landscape determines how fragmented a 

habitat is. In this study, we found positive and negative effects of LPI and PD on species 

richness, respectively. This suggested a strong effect of habitat aggregation. In aggregated 

landscapes, species richness is more resistant to habitat loss as the largest patch, supporting 

large populations, serves as a buffer to population extinction brought about by habitat loss 
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(Radford et al. 2005). Landscapes with a few large patches are advantageous to species as they 

have a large core area and species within them can obtain most of their habitat requirements 

without venturing into the matrix where mortality rates are likely to be higher (Didham 2010; 

Helzer & Jelinski, 1999). This increases the proportion of the population in the part of the 

landscape where they can breed, which increases the reproductive rates of species (Fahrig, 

1998; 2003). Aggregation is particularly important for species that respond strongly to 

isolation, increasing their incidence in the landscape (Radford et al. 2005). Thus, large patches 

should become a focal point for landscape management efforts such as corridors, habitat 

restoration and matrix improvement due to their high conservation potential as they aggregate 

the most vulnerable species in the landscape and have high local diversity (Flather & Bevers, 

2002; Uezu & Metzger, 2011).   

A challenge to research on habitat loss and degradation on fauna is the importance of 

habitat quality relative to landscape effects for species persistence (Graham & Blake, 2001). In 

this study, we found positive effects on species richness of two variables relating to the 

vegetation structure, WOOD and FHD. This supports previous studies showing the important 

of habitat integrity for maintaining diverse species assemblages in fragmented landscapes 

(Cushman & McGarigal, 2004; Ehlers Smith et al., 2017; McAlpine et al., 2006). Woody 

understory is important for providing not only ample hiding places (Miklos & Ziak, 2002) but 

also for providing resources such as fruits, leaves, foliage and seeds (Bowland & Perrin, 1995; 

1998; Simonetti, Grez, & Estades, 2013). FHD indicates the amount of niche spaces available 

in the environment and has been shown to be strongly related to mammalian species richness, 

diversity and abundance (August, 1983; Gentile & Fernandez, 1999; Grelle, 2003; Pardini, de 

Souza, Braga-Neto, & Metzger, 2005). Specialist species with poor dispersal ability are more 

likely to be strongly affected by habitat quality variables as they have a limited ability of finding 

suitable habitat elsewhere in the landscape (Ye, Skidmore, & Wang, 2013). As the majority of 

habitats in the study region have been transformed at thresholds beyond which there is a 

precipitous decline in the capacity of the landscape to support viable populations (Jewitt et al., 

2015), increasing the integrity of remaining forest habitat through restoration efforts may be 

the only available option for conserving edge sensitive, forest interior species (McLean et al., 

2016).  

 

3.5. Conclusions 
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The results of this study showed that species richness patterns of mammals across the 

study area were determined by a combination of within-patch, patch, matrix and landscape-

level attributes. Indeed, species in biological communities respond to environmental variation 

across different spatial scales (Cushman & McGarigal, 2004). This highlights the importance 

of considering factors across a range of organisational levels when determining factors 

influencing the distribution and abundance of organisms at the landscape level. From a 

conservation perspective, this suggests that management efforts should be integrative and 

consider all the organisational levels to produce desired outcomes. This study has also 

contributed to the literature documenting the importance of landscape context on biodiversity 

patterns in changing landscapes. In particular, it has shown that habitat area and its spatial 

configuration affect the occurrence and persistence of fauna in fragmented landscapes. It has 

also demonstrated the importance of habitat integrity for the preservation of fauna. We found 

that patches that supported higher species richness were significantly larger, closer together, 

more contiguous and less separated by roads and urban development than patches that 

supported depauperate communities. To ensure the continued persistence of mammals in the 

landscape, conservation efforts should strive to minimise further loss of habitat, particularly 

large tracts of contiguous habitat. We recommend the promotion of planned habitat networks 

that include small patches of high-quality habitat, stepping stones and corridors, which will 

facilitate the functional connectivity of the landscape. These efforts may help in ameliorating 

the negative effects of roads and ultimately increase habitat accessibility and reduce isolation 

effects for the most distant patches. However, this is a metropolitan area with high development 

pressures, which are expected to increase even further in the future. Therefore, we urge town 

planners, land owners, ecologists, and other decision makers to take the whole landscape 

structure into account, including the matrix, in the planning phase of future development 

projects to minimise the potential detrimental impacts. 
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Fig. SI 3.1. Species accumulation curve of mammal species sampled across 76 camera trap 

sites in the dry and wet seasons. 
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Abstract 

Species assemblages in fragmented landscapes often exhibit nestedness, a pattern whereby 

species found in species-poor sites represent a subset of those in species-rich sites. 

Understanding patterns of nestedness and its causes is important for determining mechanisms 

of species impoverishment in fragmented landscapes. In this study, we investigated the effects 

of patch attributes and species’ life-history traits on nestedness patterns of terrestrial mammals 

in an urban-forest mosaic in EThekwini Municipality Area, Durban, South Africa. A 

presence/absence matrix of mammals (16 species) in forest patches (28 patches) was compiled 

based on the mammalian survey conducted using remote-triggered camera traps. The 

mammalian assemblage in the study area displayed significant nestedness. The Nested Ranking 

(NR) of fragments was strongly correlated with fragment area and proximity index but not with 

shape index and foliage height diversity. The best model based on AICc showed that among 

species’ life-history traits, body mass, trophic level, niche breadth and sociality were the most 

suited as predictors of extinction vulnerability. In particular, niche breadth was strongly 

associated with extinction vulnerability. Thus, the ability to persist on fragments of various 

sizes as well as the ability to move to fragments with different degrees of isolation shape 

fragment dynamics in this landscape. Furthermore, species with broad resource requirements 

are more likely to persist with further habitat disturbance. Overall, this study showed the 

importance of integrating patch attributes and ecological traits of species in nestedness analyses 

for determining species in most need of conservation action which is important for preventing 

further loss of species.   

Keywords: Dispersal, Extinction, Fragmentation, Nestedness, Persistence, Vulnerability, 

Urban Mosaic 
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4.1 Introduction 

The human domination of the earth and the increase in land development activities for meeting 

various human needs is a major factor leading to the reduction in natural habitats and the 

simultaneous isolation of remaining habitat into discrete fragments (Foley et al., 2005; 

Laurance, Sayer & Cassman, 2014). The loss and fragmentation of habitat that results from this 

process is considered to threaten global biodiversity as it is a major cause of species extinction 

worldwide (Fahrig, 2003; Haddad et al., 2015). However, not all species are equally sensitive 

to fragmentation (Henle et al., 2004). Such species-specific differences in extinction 

probability may lead to the formation of nested patterns (Rosenblatt et al., 1999; Frick, Hayes 

& Heady, 2009; Wang et al., 2013). Nestedness is the degree to which assemblages in species-

poor (or smaller) habitats are proper subsets of those in successively species richer (or larger) 

habitats and results in distribution patterns whereby rare species only occur in the richest 

assemblages while common species occur in all assemblages (Patterson & Atmar, 1986; 

Patterson, 1987). The primary determinants of nestedness are presumed to be selective 

extinction/colonization of species (Cutler, 1991; Ulrich, Almeida-Neto & Gotelli, 2009). In 

systems whereby selective extinction is the major cause of nestedness, habitat fragments within 

the same region will tend to converge in species composition suggesting that particular traits 

may be selected against, leading to higher extinction of particular species (Patterson & Atmar, 

1986). As a result, nestedness has been considered to be useful for determining species that are 

likely to go extinct with further habitat disturbance (Fleishman et al., 2007). Therefore, 

understanding patterns of nestedness and its causes is important for determining mechanisms 

of species impoverishment in fragmented landscapes (Simberloff & Martin, 1991; Lynam & 

Billick, 1999; Schouten et al., 2007).  

Nestedness patterns have been found in a range of taxa and ecosystem types, suggesting 

that it is a common feature of species assemblages in insular environments (Wright & Reeves, 

1992; Wright et al., 1998; Fischer & Lindenmayer, 2005). Compared to the species-area 

relationship, nestedness analysis provides a more comprehensive framework for understanding 

biodiversity patterns in fragmented landscapes as it considers both the richness and 

composition of species on fragments (Schouten et al., 2007). Consequently, its importance for 

a range of applied conservation purposes has been recognised. Firstly, understanding 

nestedness patterns in multiple-use landscapes can help guide the selection of sites with 

compensatory and complementary benefits for conservation (Louzada et al., 2010). Secondly, 

nestedness analyses have potential applications for the identification of species that only occur 
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in species rich communities, and thus for the selection of indicator species (Fleishman & Mac 

Nally, 2002; Saetersdal, Gjerde & Blom, 2005). Thirdly, because the order of species 

disappearance is predictable, nested analyses provide a predictive tool for determining species 

at most risk of extinction (Atmar & Patterson, 1986; Patterson, 1987; Wang et al., 2013). 

Lastly, nestedness can identify patch or landscape variables that have a causal effect or are at 

least correlates of the observed species distribution patterns (Patterson & Atmar, 2000; 

Fleishman & Mac Nally, 2002; Soga & Koike, 2012).  

Nestedness result from gradients in patch attributes and these should be included in 

nestedness analyses (Ulrich et al., 2009). Understanding the influence of patch attributes on 

nestedness is important for determining the factors with the greatest influence on species spatial 

distribution patterns across a range of environments (Fleishman et al., 2002; Mac Nally, 

Horrocks & Bennett, 2002; Soga & Koike, 2012). The principal patch attributes affecting 

nestedness patterns are patch size, isolation, shape complexity and habitat heterogeneity (Cook 

& Quinn, 1995; Wright et al., 1998; Honnay et al., 1999; Wang et al., 2010). Habitat area and 

isolation are generally considered to be the most important determinants of nested patterns due 

to their influence on species extinction and colonisation rates (MacArthur & Wilson, 1967; 

Cook & Quinn, 1995; Wright et al., 1998; Laurance, 2008). In particular, area is thought to 

have the strongest influence as its effects can override those of other factors (Fahrig, 2003; 

Watling & Donnelly, 2006). However, isolation effects are likely to cause strong effects on 

nestedness in systems where there is a high variation in isolation distances among patches and 

with dispersal abilities of species also highly variable and corresponding to the range of 

isolation distances (Patterson, 1990; Cook & Quinn, 1995; Wright et al., 1998; Watling, Gerow 

& Donnelly, 2009; Wang et al., 2010). Shape complexity and habitat heterogeneity may have 

causal effects on nestedness patterns by imposing a gradient in habitat and/or resource 

availability between patches (Honnay et al., 1999; Hill et al., 2011; Garmendia et al., 2013). 

In addition to the characteristics of patches, the ecological and life history traits of 

species may be important in determining nestedness patterns as they determine species’ 

persistence (Schouten et al., 2007; Wang et al., 2009; 2010; Hu et al., 2011). In fragmented 

landscapes, considerable variation among taxa exists in traits such as dispersal ability, habitat 

specificity, fecundity, population size, trophic level, sociality, geographical range size, area 

requirements, etc. (Wright et al., 1998; Feeley et al., 2007; Schouten et al., 2007). The variation 

in these traits affects the immigration and persistence abilities of species and thus the likely 

structuring forces of nestedness patterns (Cook & Quinn, 1995; Lomolino, 1996; Frick et al., 

2009). The consideration of both immigration and persistence abilities in producing nested 
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patterns by determining the roles of patch attributes (e.g. size, isolation) and species’ life-

history traits is important as these are intimately linked but few studies have considered their 

effects on nestedness simultaneously (Ulrich et al., 2009; but see Feeley et al., 2007; Wang et 

al., 2009; Soga & Koike, 2012). 

Forest mammals are well suited for evaluating vulnerability to habitat fragmentation 

due to several reasons. Firstly, forest mammals are tightly linked to their habitats due to their 

specific food and habitat requirements (McAlpine et al., 2006; Makelainen, Schrader & 

Hanski, 2014). Secondly, they are highly ecologically diverse, suggesting that differential 

vulnerabilities to fragmentation may be contingent upon species-specific ecological traits 

(Laurance, 1990; Nupp & Swihart, 2000; Crooks, 2002; Swihart et al., 2006). Thirdly, many 

forest dependent mammals cannot cross or are reluctant to cross large open areas (McAlpine 

et al., 2006; Rhodes et al., 2006). Fourthly, they have limited locomotory and dispersal abilities 

(Bakker & van Vuren, 2004; Makelainen et al., 2014). Therefore, understanding the 

implications of habitat loss and fragmentation for forest dependent mammals, especially in 

rapidly developing landscapes, is important for their conservation. In this study, we 

investigated nestedness patterns of forest mammals in an urban-forest mosaic within the 

EThekwini Municipality Area (EMA). The patches in this area varied greatly in size, shape 

and degree of isolation, presenting an opportunity to elucidate potential causal factors affecting 

nestedness patterns. The objectives of the study were therefore to (1) determine whether the 

mammalian assemblage exhibits a nested pattern, (2) determine whether nestedness patterns 

are related to size, shape, degree of isolation and niche space availability in patches and lastly 

(3) to determine whether life-history traits (body mass, niche breadth, sociality, trophic level, 

arboreality & dispersal ability) influence the occurrence of nested patterns.  

  

4.2 Materials and Methods 

Study area 

The study was conducted in nine forested Protected Areas within the EThekwini Municipality 

Area (EMA), Durban, KwaZulu-Natal, South Africa (Fig. 4.1). The EMA is the third largest 

metropolitan area in South Africa and has the busiest port in Africa (EThekwini Municipality, 

2013). The area has a large human population (3.5 million) with an annual growth rate of 1% 

(ECPDP, 2015). The climate is sub-tropical, characterised by hot and humid summers and 

sunny, mild winters and has a mean annual minimum and maximum temperature of 13.9°C 

and 24°C, respectively (http://en.climate-data.org/location/27097/). The rainfall is seasonal, 

http://en.climate-data.org/location/27097/
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mostly occurring during the summer months with a mean annual rainfall of 974 mm 

(http://en.climate-data.org/location/27097/). The parent material is clastic sedimentary 

sandstone, allowing the permeability of water, leading to moist soils (Hlanguza, 2015). The 

study area forms part of Durban Metropolitan Open Space System (D’MOSS), a network of 

areas of high conservation value set aside to ensure the conservation of native fauna and flora 

in the face of increasing urban growth and development (Roberts, 1994). Land-use changes in 

the study area started around the 1860s, particularly with the establishment of sugarcane 

(Saccharum officinarum) farming operations (Kercival, 2015). However, large-scale landscape 

transformation started around 1914 as a large portion of the area started to be developed and 

settled to sustain the industrial progress. The forests within the study area fall under the Indian 

Ocean Coastal Belt vegetation type and are made up of dense bush and indigenous forest 

subclasses (Mucina & Rutherford, 2006; GeoTerraImage, 2014). The forests are species-rich, 

structurally diverse and multi-layered, with well-developed canopy and understory tree layers 

but a poorly developed herbaceous layer (Mucina & Rutherford, 2006). The trees are 

dominated by Bridelia micrantha, Phoenic reclinata, Syzigium cordatum, Vacherria karroo, 

Albizia adianthifolia and Antidesma venosum (Mucina & Rutherford, 2006). 

 

Mammal survey 

We determined presence/absence of mammals across 28 forest fragments using passive 

infrared camera traps (LtI Acorn® 6210MC, Shen-zhen Ltl Acorn Electronics, China; 

Moultrie® M-880, EBSCO Industries, USA). To select camera trap locations, a 400 m x 400 m 

systematic grid was overlaid over the sample areas with the centroids of the grid selected as 

survey locations. Surveys were conducted over two sampling periods: May–September 2016 

and December 2016–April 2017. Camera traps were placed at a site for a period of 21 days and 

were in operation for 24 h/day. The sensitivity of the cameras was set to high with a 30 s 

photographic delay between captures. Survey locations were visited every two weeks to 

download photographs, change the batteries and to ensure that camera traps were functioning 

properly. Camera traps were set at a height of 15–25 cm aboveground depending on the 

steepness of the terrain and were attached to a tree on a game trail or on an open clearing to 

allow optimum camera sensor range. To avoid blank shots, a portion of the vegetation was 

removed within 1 m of the view range of the cameras. To overcome issues associated with 

multiple captures of individuals by the same camera traps, only consecutive photographs of 

individuals of the same species taken at least 30 min apart we used (O’Brien, Kinnaird, & 

Wibisono, 2003). 

http://en.climate-data.org/location/27097/
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Fig. 4.1. The study area, EThekwini Municipality Area, Durban, KwaZulu-Natal, South 

Africa. 

 

Habitat structure 

Habitat structural variables were recorded within a 20 m radius around each camera trap 

location. A 20 m radius is appropriate for determining habitat structure as it captures more 

variability due to its large spatial coverage (see also Ehlers Smith et al., 2017a). Using visual 

estimation, we determined the percentage coverage by bare ground, leaf litter, grass cover, 

herbaceous plant cover and woody vegetation cover in four cardinal directions. To determine 

the vegetation structure around each camera trap, these values were averaged. To determine 

the vegetation structure for the whole patch, the percentage coverage values for all camera trap 

locations within that patch were averaged. We also recorded the stem density of trees at various 

height levels, the maximum height of trees and the average height of the grass, herbaceous and 

woody layers. To determine microhabitat characteristics of each camera trap site, the mean 

height scores for each vegetation class of the foliage profiles were converted into foliage height 
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diversity (FHD) using the Shannon-Wiener formula (Bibby et al., 2000; Skowno & Bond, 

2003; Ehlers Smith et al., 2015):  

                                                                                                            

where pi is the proportion of the total foliage which lies in the ith layer of the chosen horizontal 

layers. 

 

Patch attributes 

Using the land cover map of the study area (GeoTerraImage, 2014), we used the spatial analysis 

program FRAGSTATS 4.2 (McGarigal, 2015) and ArcGIS 10.4 (ESRI, Redlands, USA) to 

compute patch attributes that have been shown to influence nestedness patterns: patch size, 

isolation, shape complexity and habitat heterogeneity (Wright et al., 1998; Honnay et al., 1999; 

Hu et al., 2011). Patch size was determined as the total area of each patch in hectares. To 

determine fragment isolation, we used the proximity index as it is a more ecologically 

meaningful measure of isolation than distance-based approaches and is also less vulnerable to 

the changes in patch size, shape and total amount of habitat within a landscape (Bender, 

Tischendorf & Fahrig, 2003). The proximity index was calculated as follows (McGarigal, 

2015): 

                                                                                                           

where aijs is the area (m2) of patch ijs within a specified neighbourhood (m) of patch ij and hijs 

is the distance (m) between patch ijs and patch ijs, based on patch edge-to-edge distance, 

computed from cell centre to cell centre. A 0.54 km buffer around each survey fragment was 

used to determine the proximity index as it represents the average distance between dense bush 

and indigenous forest fragments across the study region (Olivier, van Aarde & Lombard, 2013). 

To determine patch shape complexity, we used the shape index formula as follows (McGarigal, 

2015):   
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where pij is the perimeter (m) of patch ij and aij is the area (m2) of patch ij. Foliage height 

diversity (see above) was used as a measure of habitat heterogeneity and niche space 

availability (August, 1983).      

 

Ecological and life-history traits 

To determine the effects of ecological and life-history traits on extinction proneness, we 

selected six traits: body mass (McKinney, 1997; Cardillo, 2003; Cardillo et al., 2005), niche 

breadth (Crooks, 2002; Swihart et al., 2003a; b; 2006; Devictor et al., 2008), sociality 

(Courchamp, Clutton-Brock & Grenfell, 1999; Lawes, Mealin & Piper, 2000a), trophic level 

(Purvis et al., 2000; Henle et al., 2004; Cagnolo et al., 2009), arboreality (Laurance, 1990; van 

der Ree et al., 2010) and dispersal ability (Lindenmayer et al., 1999; Barbaro & Halder, 2008; 

Bregman, Sekercioglu & Tobias, 2014). Body mass of each species (kg) was obtained from the 

literature (Estes, 1991; Skinner & Chimimba, 2005; Kingdon & Hoffmann, 2013). We 

determined the average body mass of each species as the average of body masses provided for 

both males and females. As there is a huge variation in reported body masses between studies 

and across regions, we used the average of all reported body masses for each species.  

Niche breadth represents the range of resources used by a species (Brown, 1995). To 

estimate niche breadth we used two dimensions, diet and habitat, as there is an abundant 

literature on dietary and habitat aspects of species occurring within the study area and also 

because these dimensions represent the responses of species to processes and conditions in 

their immediate environments (and thus more strongly related to their occurrence and 

abundance than influences that occur at coarser scales). To determine diet breadth, the number 

of diet classes making ≥2% of the diet of each species were tallied (out of 19) (Swihart et al., 

2003a). Diet classes included mammals, birds, amphibians, reptiles, fish, molluscs, annelids, 

arthropods, fungi, flowers, shoot/stem, carrion, tubers/corms/bulbs, seeds, fruits, leaves, gum, 

grass and bark. Similarly, with habitat breadth, the number of habitat types (out of 9) used by 

a species were tallied. Nine basic habitat types in the Afrotropics were considered (Kingdon, 

1997; Estes, 1991; see Brashares, 2003): desert, semi-desert, dry bush/scrub, dry savanna, wet 

savanna, moist/mixed woodland, forest mosaic, lowland forest, and Afromontane. We used 

published accounts to determine habitat use of species. Standardised Z-scores were then 

computed for each measure of niche breadth for each species. To produce a niche breadth score 

for each species, standardised Z-scores of diet and habitat breadth were averaged for each 

species (Swihart et al., 2003a).  
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We indexed sociality based on a scale from 0-3 (Swihart et al., 2003b). Species that are 

completely asocial were assigned a rating of 0, species with rudimentary sociality (e.g. 

huddling, overlap of home ranges) were assigned a rating of 1, monogamous species were 

assigned a rating of 2 and species forming communal groups were assigned a rating of 3 

(Swihart et al., 2003b). To determine the trophic characterization of each species, species were 

assigned to one of the three trophic groups (carnivore, herbivore, and omnivore) following 

Estes (1991), Skinner & Chimimba (2005) and Kingdon & Hoffmann (2013). Arboreality was 

indexed on a scale of 0-4, with the rating of 0 assigned to species that are completely terrestrial, 

a rating of 1 assigned to species predominantly terrestrial but occasionally use trees, a rating 

of 2 assigned to species that spend equal time on the ground and on the trees, a rating of 3 

assigned to species that use mostly trees but often come to the ground and a rating of 4 assigned 

to species that use predominantly trees and rarely come to the ground (de Castro R Fernandez, 

2004). To determine the dispersal ability of species, we estimated natal dispersal distance using 

allometric equations from literature (Sutherland et al., 2000; Bowman, Jaeger & Fahrig, 2002). 

Based on categorisation of species to various trophic groups, we used the equation that applies 

to each trophic group (Sutherland et al., 2000). As dispersal distances estimated using the 

maximum dispersal distance equation were too large and could not fit within the context of the 

spatial extent of study area, we used the equation for estimating median dispersal distance. 

Median dispersal distance was also used because it represents a rescaled frequency distribution 

of dispersal distances for each species and can thus be used regardless of sex for each individual 

species (Sutherland et al., 2000). The following equations were used (Sutherland et al., 2000): 

                                                                                            

                                                                        CDD = 3.45M 0.89                                   

                                                             

                                                      H+ODD = 1.45M 0.54                              

where CDD and H+ODD are the dispersal distances (km) of carnivores and herbivores and 

omnivores combined, respectively, M is body mass (kg) and the rest are constants derived from 

allometric relationships.  

 

Data analyses 

Quantifying nestedness 

The presence/absence mammal data was converted into a binary matrix with rows representing 

species and columns representing patches.  We combined the datasets for the two sampling 

periods into a composite dataset and used the composite dataset in subsequent analyses. We 
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used the BINMATNEST software binary matrix ‘temperature’ calculator to determine the 

degree of nestedness of the assemblage matrix (Rodriguez-Girones & Santamaria, 2006). 

BINMATNEST provides a robust approach for nestedness analysis and overcomes several 

limitations of the commonly used Nestedness Temperature Calculator (NTC) (Atmar & 

Patterson, 1993; 1995; Rodriguez-Girones & Santamaria, 2006). In BINMATNEST, rows and 

columns are ordered to maximally pack the binary presence/absence matrix. BINMATNEST 

uses a genetic algorithm (GA) to calculate the nestedness temperature of the matrix by 

determining the deviation of a particular data set from the ideal nested structure and indicates 

the extent of this deviation as a temperature value. Highly nested assemblages exhibit fewer 

deviations from perfect nestedness and are assigned a lower temperature value than less nested 

assemblages (Rodriguez-Girones & Santamaria, 2006). To determine the statistical 

significance of the matrix temperature, the matrix temperature was compared against the 

distribution of simulated temperatures using 1000 Monte Carlo simulations. The choice of an 

appropriate null model for determining the significance of nested patterns has come under 

scrutiny as many algorithms have been shown to be susceptible to type I errors (Fischer & 

Lindenmayer, 2002; Rodriguez-Girones & Santamaria, 2006). BINMATNEST uses three 

different null models to assess the statistical significance of a matrix temperature. We chose to 

use the constrained null model 3 as it is less prone to type I and type II errors than null model 

1 and 2, providing a robust test of nestedness (Rodriguez-Girones & Santamaria, 2006). For all 

other analytical parameters, we used the default settings of the BINMATNEST program. 

 

Correlates of nestedness and extinction probability 

BINMATNEST ranks patches and species in order of increasing nestedness such that the 

degree of nestedness is maximised, which is referred to as Nested Ranking (NR). NR can be 

used as a measure of habitat suitability of patches and the vulnerability of species to extinction 

(Feeley et al., 2007). Species found only in the larger patches are assigned a low NR and are 

considered to be extinction prone whereas those occurring in fragments spanning a range of 

fragment sizes are assigned a high NR (Feeley et al., 2007). To determine correlates of 

nestedness, we used the Spearman’s rank correlation to evaluate the relationship between the 

NR of each forest patch and the patch attributes size, shape index, proximity index and foliage 

height diversity. A significant correlation between the order of the patches and the patch order 

for a given characteristic indicates a possible contribution of that attribute towards the 

formation of a nested structure (Patterson & Atmar, 2000; Rodriguez-Girones & Santamaria, 

2006). Prior to analyses, patch attributes were log-transformed. To overcome issues associated 
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with multicollinearity between explanatory variables, we computed the variance inflation 

factor (VIF) for each variable. Variables that had a VIF value greater than 10 we considered to 

contribute substantially to multicollinearity and were subsequently removed from the analyses 

(Armitage, Berry & Matthews, 2002).  

To determine the relationship between the ecological and life-history traits of species 

and extinction vulnerability, we used Generalised Linear Models (GLM) with Poisson error 

distribution and log-link function. In the models, NR was used as the dependent variable with 

life-history traits used as explanatory variables. Various combinations of traits were used in the 

modelling procedure. To identify the top models, a model selection approach based on the 

Akaike Information Criterion (AIC) was used (Burnham & Anderson, 2002). To account for 

the small sample size relative to the number of parameters estimated in a model (<40 in all 

cases), we used AICc (AIC corrected for small sample sizes) rather than AIC (Burnham & 

Anderson, 2002). Models with ΔAICc values ≤2 were considered to have substantial support 

as low ΔAICc indicates that the model describes the data relatively well compared with the 

best-fitting model (Burnham & Anderson, 2002). Models with ΔAICc ≥ 7 were considered to 

have essentially no support and were subsequently removed from the analyses (Burnham & 

Anderson, 2002). To determine the relative importance of each predictor variable, the sum of 

Akaike weights (AIC Wgt) of each candidate model in which each predictor appears was used 

(Burnham & Anderson, 2002). All statistical analyses were conducted in SPSS 25.0 (IBM 

Corporation, 2013). 

 

4.3 Results 

Twenty-eight (28) patches were surveyed for this study. There was a huge variability in patch 

size, with patch size ranging from 1.21-347.46 ha (mean ± SD; 55.16 ± 78.88 ha). Most patches 

were small, with 57% of the patches less than 30 ha and only 25% greater than 100 ha. Foliage 

height diversity exhibited less variability, ranging from 0.61-0.88 (0.73 ± 0.091). The shape 

index ranged from 1.24-4.88 (2.04 ± 1.012). The proximity index showed high variability, 

ranging from 3-107 (52.89 ± 28.835). A total sampling effort of 3192 camera trap nights across 

both sampling periods yielded 6894 independent photographs of mammals. A total of 21 

species (including humans and domestic animals) were recorded during the sampling. 

However, this included species that did not historically occur within the study region. Such 

species were impala (Aepyceros melampus) and zebra (Equus burchelli). These species, and 

humans (Homo sapiens), domestic cats (Felis catus) and dogs (Canis domesticus) were 
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removed from the analyses, after which 16 species were left, which formed the focus of the 

analyses.  

In the dry season, the most commonly recorded species were blue duiker (Philantomba 

monticola) (number of photographs (n) = 1788), bushbuck (Tragelaphus scriptus) (n = 282), 

large-spotted genet (Genetta tigrina) (n = 117) and vervet monkey (Chlorocebus pygerythrus) 

(n = 213). In the wet season, commonly recorded species were the blue duiker (n = 1222), 

bushbuck (n = 115), bushpig (Potamochoerus larvatus) (n = 88), Cape porcupine (Hystrix 

africaeaustralis) (n = 98), large-spotted genet (n = 107) and vervet monkey (n = 255). Species 

also exhibited a wide range in patch occupancy, ranging from 1-25 occupied patches, with large 

patches generally occupied by more species than smaller patches. Species exhibited a wide 

range in ecological and life-history traits (Table 4.1). Body mass ranged from 0.55-75.20 kg. 

The number of habitats used ranged from 3-8 whereas the number of diet classes comprising 

the diet ranged from 3-13. All trophic groups, sociality and arboreality ranks were represented 

in the assemblage. Estimated natal dispersal distance ranged from 1.98-31.97 km (Table 4.1). 

The mammalian assemblage was significantly nested, with the maximally packed 

incidence matrix having a nestedness temperature (T) value of 13.032o. This temperature value 

was significantly different from the mean T of 1000 randomly generated matrices using null 

model 3 (P = 0.00001; Table SI 4.1). Spearman’s rank correlation showed that the fragment 

order determined by BINMATNEST was significantly correlated to fragment area and the 

proximity index (r = 0.371, P < 0.013; r = 0.613, P < 0.0001, respectively; Table 4.2; Fig. 4.2; 

Fig. 4.3), suggesting the role of extinction probability and fragment isolation in affecting the 

nested patterns. Fragment shape and habitat heterogeneity were not related to the fragment 

order determined by BINMATNEST and thus had no causal effects on nestedness.  
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Table 4.1. Ecological and life-history traits of mammals recorded in the study area. Scientific names are presented in the parentheses. Data were 

taken from Estes (1991), Skinner and Chimimba (2005), and Kingdon and Hoffman (2013). 

Species                                                                 BM1 (kg)          SO              TL2              AR             DD (km)       NB Score            

African wild cat (Felis lybica)                              4.65                   0                 0                  1               13.55               0.45 

Banded mongoose (Mungos mungo)                    1.35                   3                 2                  1                 4.51               1.28 

Blue duiker (Philantomba monticola)                  4.32                   2                 1                  0                 3.19                0.21 

Bushbuck (Tragelaphus scriptus)                        65.12                 1                  1                  0               13.81               1.09 

Bushpig (Potamochoerus larvatus)                     75.20                 3                  2                  0               14.92                1.93 

Cane rat (Thryonomis swinderianus)                    4.12                  3                  1                  0                 3.11               -0.18 

Cape porcupine (Hystric africaeustralis)            11.65                  2                  2                  0                 5.46               1.36 

Caracal (Caracal caracal)                                   12.2                    1                  0                  1                31.97             -0.87 

Common duiker (Sylvicapra grimmia)                17.48                  1                 1                   0                 6.80               1.67 

Greater galago (Otolemur crassicaudatus)            1.78                  2                 2                   4                 1.98               1.46 

Large-spotted genet (Genetta tigrina)                    1.85                  1                 2                   3                 5.96               2.36 

Red duiker (Cephalophus natalensis)                  11.80                  1                  1                  0                  5.50               -0.44      

Rock hyrax (Procavia capensis)                            3.28                  3                  1                  1                  2.75               -0.48    

Slender mongoose (Galerella sanguinea)              0.55                  0                  2                  1                  2.02                1.41 

Vervet monkey (Chlorocebus pygerthrus)             4.75                  3                  2                  2                  3.36                2.23 

Water mongoose (Atilax paludinosus)                   3.40                  1                  2                  0                10.25                0.85 
1BM = body mass, SO = sociality, TL = trophic level, AR = arboreality, DD = dispersal distance, NB = niche breadth.  20 = carnivore, 1 = 

herbivore, 2 = omnivore. 
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Table 4.2. Top models for predicting the relationship between species’ ecological and life-history traits and extinction variability.  

Model                                                     LL1                K                AICc                  ΔAICc           AICwgt                Model Likelihood          

BM+TL+NB+SO                                   -44.690          5                  105.382             0.000               0.450                           1 

BM+TL+NB+SO+AR                           -37.930          6                  107.487             2.105               0.170                           0.349                     

NB+SO+AR+DA                                   -44.794          5                  108.599             3.217               0.090                           0.200 

NB+TL+SO+AR+DA                            -37.231          6                  109.161            3.779                0.070                           0.156                

BM+TL+NB+DA                                  -41.194          5                  109.503             4.121               0.060                           0.139 

TL+NB+SO+DA                                   -49.837          5                  110.205             4.823                0.040                           0.089 

BM+TL+NB+SO+AR+DA                   -37.453          7                  112.024             6.642                0.020                          0.044             
1LL = log-likelihood value, K = number of parameters  
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Fig. 4.2. The relationship between the nested ranking of patches as determined by 

BINMATNEST and the ranking of patches by area within the study area. 

 

Fig. 4.3. The relationship between the nested ranking of patches as determined by 

BINMATNEST and the ranking of patches by the proximity index within the study area. 

 

Model selection based on AICc values showed that the model containing the ecological 

and life-history traits body mass, trophic level, niche breadth and sociality was the best 

supported model (Table 4.2). Thus, body mass, trophic level, niche breadth and sociality are 
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suited as predictors of extinction vulnerability of mammals in the study area. The results of the 

top model showed that among these traits, niche breadth had a significant effect on extinction 

proneness whereas other traits did not have a significant effect (Table 4.3; Fig. 4.4). Analyses 

of the relative importance of each trait pointed to niche breadth as having the highest relative 

importance (Wgt = 0.93). Sociality (Wgt = 0.86), trophic level (Wgt = 0.82) and body mass 

(Wgt = 0.71) also had relatively high relative importance. Arboreality (Wgt = 0.37) and 

dispersal ability (Wgt = 0.32) had the lowest relative importance. 

 

Table 4.3. Beta estimates for explanatory variables from the best model on the relationship 

between species’ ecological and life-history traits and nested ranking. Significant values are 

highlighted in bold. 

Variable                                   β Estimate           S.E.              Wald Statistic     P-value 

Intercept                                    1.929                    0.232             65.067                  0.001     

BM                                            0.734                    0.023             0.511                    0.884                              

TL                                             0.383                    0.122             0.957                    0.777 

NB                                            1.549                     0.543             9.134                    0.002              

SO                                             0.426                    0.028             0.198                    0.920 

 

 

 

Fig. 4.4. The relationship between niche breadth and the nested ranking of terrestrial mammals 

as determined by BINMATNEST. The plot is based on partial residuals of the independent 

variable. 
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4.4 Discussion 

Nestedness patterns provide a useful framework for identifying species sensitive to landscape 

change. Therefore, determining the nestedness of an assemblage and its causes has important 

conservation implications (Simberloff & Martin, 1991; Martinez-Morales, 2005). According 

to Patterson and Brown (1991), three conditions are necessary for the formation of nested 

patterns: (1) species and sites compared must share a common biogeographic history, (2) both 

must be exposed to the same present-day ecological conditions and (3) hierarchical niche 

relationships must exist among species or sites. The first two conditions suggest that the 

assemblage must be subject to colonisation by the same species pool. The third suggests that 

there must be considerable variation in incidence patterns among species across fragments, 

either due to differential vulnerability to extinction as a result of variability in ecological traits 

or due to differences in fragment characteristics such as area, isolation, habitat quality, etc. In 

this study, we evaluated the influence of both patch and species attributes on the formation of 

a nested structure. We showed that for the mammalian assemblage, among patch attributes, 

patch size and isolation were strongly associated with nestedness whereas among species traits, 

body mass, trophic level, niche breadth and sociality were suitable predictors of extinction 

proneness with niche breadth having the strongest association with nestedness.    

 

Effect of fragment attributes on nestedness patterns 

The mammalian assemblage in this study showed a significant degree of nestedness when 

patches and species were packed into a state of maximum nestedness. These results support 

other studies across a range of taxa and ecosystem types (Patterson & Atmar, 1986; Wright et 

al., 1998; Davidar et al., 2002; Frick et al., 2009; Wang et al., 2010; Soga & Koike, 2012). 

Analyses showed that the nestedness patterns found were related to the size of patches and their 

degree of isolation. The relationship between nestedness and patch size observed could be 

related to area requirements, causing species with small area requirements to be found in most 

patches and species with large area requirements to disappear in a sequential fashion from small 

patches (Rosenblatt et al., 1999; Davidar et al., 2002; Hu et al., 2011). Wright et al. (1998) 

suggested that area effects are likely to be strongest in insular habitats with a wide variation in 

habitat area and where species display a considerable variation in area requirements. Indeed, 

in our study site, there was a huge variation in patch size with the size ranging from 1.21-

347.46 ha. Furthermore, most of the patches were small, with only 25% of the surveyed 

fragments larger than 100 ha. In addition to a small area of usable habitat available, species in 
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small fragments have to contend with stronger edge effects (Pfeifer et al., 2018), causing them 

to be lost from these patches at disproportionately higher rates. As a result, most species 

occurred in larger patches as these were large enough to ensure their long-term persistence 

(Chapter 2). Over time, the species composition in small patches will converge, characterised 

by the dominance of extinction-resilient, generalist species and the loss of extinction-prone, 

area-demanding species (Patterson, 1987; Wethered & Lawes, 2005). Species with the smallest 

NR in our study area include the African wild cat (Felis lybica), cane rat (Thryonomis 

swinderianus), banded mongoose (Mungos mungo), common duiker (Sylvicapra grimmia) and 

greater galago (Otolemur crassicaudatus). These species have a limited distribution within the 

study area probably because of high levels of landscape transformation although regionally 

they are broadly distributed (Child et al., 2016). 

Colonisation may also be an important structuring agent in species composition patterns 

as differences in the dispersal abilities among species interact with patch isolation, leading to 

nestedness (Darlington, 1957; Patterson, 1987; Watling et al., 2009). Consequently, poor 

dispersers would be present only on the closest patches whereas strong dispersers would be 

found on most patches due to frequent colonisations (Darlington, 1957; Patterson, 1987; 

Wright et al., 1998; Wang et al., 2010). Patches surveyed for the current study are located 

within protected areas and thus there is likely to be frequent movement of species between 

patches, particularly for those patches located within the same protected area. Nevertheless, 

large-scale movements (i.e. movements between distantly-located patches) are unlikely to be 

frequent as on a landscape level, these fragments are surrounded by high densities roads 

(McLean et al., 2016; Chapter 2). Roads affects species both directly through mortality and 

indirectly by inhibiting their movement as a result of road avoidance through traffic disturbance 

(Fahrig & Rytwinski, 2009). Thus, by causing selective movement of species across the 

broader landscape, roads may facilitate the formation of nested patterns as only species with 

no aversion to roads may move unimpededly across the landscape.   

That both patch size and isolation are correlates of nestedness patterns has also been 

found in other studies, suggesting that differential extinction and differential colonisation 

ability of species are the ultimate factors influencing nestedness in ecological communities 

(Patterson, 1990; Cutler, 1991; Lomolino, 1996; Davidar et al., 2002; Hill et al., 2011). 

However, historical processes, such as dispersal and paleoclimatic change, may also have 

affected the distribution patterns of forest mammals within the study area (cf. Lawes, 1990). 

Lawes et al. (2007), for example, showed that the distribution patterns of forest mammals in 

the study region displayed a strong response to climatic extinction filtering (i.e. contraction and 
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expansion of forest habitat during glacial and interglacial periods). As a result, their distribution 

patterns closely resemble the timing and development of forest habitat (Lawes, 1990; Lawes, 

Eeley & Piper, 2000b). The strong response to climatic extinction filtering likely affected the 

fauna from which they were assembled from as well as the dispersal routes used to reach their 

present distribution, setting an upper limit of species found within these forests (Lawes et al., 

2000; 2007). However, given the small scale of this study, climatic filtering is unlikely to be 

an important factor shaping assemblage patterns at this spatial and temporal scale.  

 

Ecological and life-history correlates 

Large body size is one of the most commonly cited traits linked to extinction vulnerability 

(McKinney, 1997; Brashares, 2003; Cardillo, 2003; Kosydar, Conquest & Tewksbury, 2014). 

Species with larger body sizes are predicted to be at high risk of extinction due to their large 

area requirements, low reproductive output and high levels of exploitation by humans 

(Brashares, 2003; Cardillo, 2003; Cardillo et al., 2005). In this study, there was no relationship 

between body size extinction proneness. The two largest species in our study area, the 

bushbuck (Tragelaphus scriptus) and the bushpig (Potamochoerus larvatus), had relatively 

high NR suggesting that they were less prone to extinction. Although these species exhibit 

several characteristics typically associated with large body size (e.g. large area requirements, 

low growth rates), they are characterised by broad habitat requirements (Skinner & Chimimba, 

2005; Ramesh & Downs, 2015; Ehlers Smith et al., 2017a; b), ability to occur in open areas 

provided that there is some cover nearby (Cooper & Melton, 1988; Bragg & Child, 2016; 

Venter, Ehlers Smith & Seydeck, 2016) and tolerance to human disturbance (Skinner & 

Chimimba, 2005; Ramesh & Downs, 2015; Ehlers Smith et al., 2017a; b). These characteristics 

make them less susceptible to extinction in human-dominated landscapes. Furthermore, as 

body size is an indirect measure of dispersal ability, with large species generally having better 

dispersal abilities (Gehring & Swihart, 2003; Barbaro & Halder, 2008), this trait may allow 

these species to escape barriers to movement due to high matrix development intensity. 

However, this is less likely to be the case as we found a weak relationship between body mass 

and dispersal ability of mammals.  

We found that species with a wide niche breadth were less vulnerable to extinction than 

those with a narrower niche breadth. These results are consistent with other studies showing 

that species that use a broad array of resources within their geographical range are less sensitive 

to fragmentation (Gehring & Swihart, 2003; Swihart et al., 2003a; b; 2006; Devictor et al., 

2008; Cagnolo et al., 2009; Bommarco et al., 2010). Generalists are robust to habitat 
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fragmentation as they can utilise disturbed habitats due to their ability to use a diverse range of 

food and habitat types and to exploit edge habitats (Crooks, 2002; Gehring & Swihart, 2003; 

Henle et al., 2004). Specialists, on the other hand, are less likely to survive the loss of habitat 

as they have limited ability to use alternative resources (Cagnolo et al., 2009). Although 

generalists were generally less prone to extinction in the study area, surprisingly, the species 

that was most robust to extinction was a specialist, the blue duiker (Philantomba monticola). 

This could be related to several life history traits of the blue duiker making them less prone to 

fragmentation. Firstly, the blue duiker has a small home range size, allowing them to occur in 

small habitat fragments (Lawes et al., 2000a; Skinner & Chimimba, 2005). Secondly, the blue 

duiker has a high degree of territoriality, high reproductive rate and high rate of subadult 

dispersal, traits that promote the formation of metapopulations in fragmented landscapes 

(Bowland & Perrin, 1995; Lawes, Mealin & piper, 2000). This lowers extinction rates in the 

landscape due to the ‘rescue effects’ from the neighbouring fragments (Brown & Kodric-

Brown, 1977; Lawes, Mealin & Piper, 2000). Thirdly, the blue duiker has a high growth rate, 

high adult survival rate and early sexual maturity, making it less susceptible to population 

crashes due to anthropogenic disturbances (Lwanga, 2006; Mockrin, 2009). 

Species at the top of food chains are considered to be more susceptible to extinction 

from habitat loss due to large home ranges, low reproductive output and small population sizes 

(Swihart et al., 2003a; Henle et al., 2004; Cagnolo et al., 2009). The results of this study did 

not lend support to this hypothesis as there were no significant differences in extinction risk 

among trophic levels. Crooks (2002) and Brashares (2003) found that mammalian carnivores 

with smaller area requirements, generalised resource requirements, ability to use the matrix 

and occurring in landscapes where large predators have been extirpated showed rates of 

extinction similar to those for species at lower trophic levels. The ‘mesopredator release’ 

(Crooks & Soule, 1999) described above could be operating in our study area as 

mesocarnivores such as the large-spotted genet (Genetta tigrina), slender (Galerella 

sanguinea) and water mongoose (Atilax paludinosus) generally exhibited lower susceptibility 

to extinction. By causing a disparity in extinction risk between members of the same trophic 

level, mesopredator release could result in the disappearance of the overall trophic level effect. 

This suggests that synergies between biological traits and trophic level may complicate the 

relationship between trophic level and extinction risk, leading to context-specific results 

(Davies et al., 2000; Henle et al., 2004; Cagnolo et al., 2009).  

The degree of sociality exhibited by a species is considered to be an important correlate 

of extinction vulnerability. Highly social species are predicted to be more heavily affected by 
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habitat fragmentation as sociality imposes a limit on the minimum fragment size required to 

support a viable population (Lawes et al., 2000a; Swihart et al., 2003a; b). Furthermore, for 

some social species, dispersers do not disperse randomly across the landscape but to fragments 

occupied by conspecifics (conspecific attraction), lowering the proportion of occupied 

fragments in a metapopulation (Smith & Peacock, 1990; Ray, Gilpin & Smith, 1991). We found 

no significant difference in extinction risk between social and solitary species, in contrast to 

these hypotheses. Sociality can provide several benefits to group living animals such as 

increased foraging efficiency (Valone & Templeton, 2002), reduced predation risk (due to 

higher vigilance) (Pulliam, 1973) and reduced probability of capture by a predator of an 

individual as group size increases (Pulliam & Caraco, 1984). These benefits may balance out 

the disadvantages of sociality leading to a lack of effect. Furthermore, sociality and many other 

life-history traits are so highly confounded that it is extremely difficult to conclusively test for 

its independent effects. As a result, the literature is replete with contradictory results regarding 

the effect of sociality on extinction risk in fragmented landscapes (Henle et al., 2004). As 

sociality affects species’ dispersal and patch occupancy rates, determining unbiased effects of 

sociality on fragment dynamics is important for informing conservation managers about which 

management strategies are most likely to be beneficial to conservation (e.g. matrix 

management versus fragment preservation).  

 

4.5 Conclusions 

Nestedness analyses provides unprecedented opportunities for determining the factors that 

influence extinction vulnerability which has important conservation implications as it provides 

an understanding of why some species are more vulnerable to extinction than others. In 

particular, assessing the influence of patch characteristics on extinction risk of species with 

different ecological and life-history traits provides useful information for designing effective 

management strategies to prevent future extinctions. In this study, we found that patch size and 

isolation were significantly related to nestedness patterns. This suggests that both the ability of 

species to persist on fragments of various sizes and the ability to move to fragments with 

different degrees of isolation shape fragment dynamics in this landscape. From a conservation 

perspective, this suggests that measures aimed at both increasing the integrity of fragments and 

improving structural and functional connectivity of the landscape are the most likely to lead to 

desired outcomes. The results of this study also showed that among life-history traits of species, 

niche breadth was most important in determining extinction risk. Therefore, further loss of 
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habitat in the landscape is likely to have a disproportionate effect on ecological specialists 

which could eventually result in functionally homogenised assemblages (McKinney & 

Lockwood, 1999; Devictor et al., 2008). Overall, this study showed that the integration of patch 

attributes and ecological traits of species in nestedness analysis provides an important 

functional perspective for understanding patterns of species loss in fragmented landscapes 

which is crucial for proactive conservation management.        
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4.8 Supporting information 

Table SI 4.1. Presence-absence matrix (1 = presence, 0 = absence) for 16 species of mammals in 28 patches in the EThekwini Municipality Area, 

Durban, South Africa, and the associated Nested Ranking (NR), respectively. The matrix was arranged in a maximally packed order by the 

BINMATNEST program (Rodriguez-Girones & Santamaria, 2006).   

Species                                   NR             Fragments 

                                                                  23   13   11   22   12   9   10   18   17   4     8   27   15   25   16   7   1   2   24   14   21   26   20   5   3   9   28   6  

Philantomba monticola             16                 1     1     1     1     1     1   1      1     1     1    1    1    1     1      0    1    1   1   1     0     1    1     1     1   1    1   1    1 

Genetta tigrina                          15                 1     1     1     1     1     1   1      1     1     0    1    0    0     1      1    1    0   0   1     0     1    1     0     1   0    0   1    1  

Chlorocebus pygerythrus          14                 1     0     1     1     1     1   1      0     0     0    0    0    0     1      0    1    0   0   1     1     0    0     0     1   1    1   0    0 

Galerella sanguinea                  13                 1     1     1     1     1     1   1      1     1     1    1    1    0     0      1    1    0   1   0     0     0    1     1     0   0    0   0    0 

Atilax paludinosus                     12                 1     1     0     1     1     0   0      1     1     0    1    1    0     1      1    0    0   1   1     0     1    0     0     0   0    0   0    0  

Tragelaphus scriptus                 11                 0     1     1     0     0     1   0      0     0     0     0   0    1     1      0    1    0   0   0     1     0    0     0     0   0    0   0    0  

Potamochoerus larvatus            10                 0     0     0     0     0     0   0      1     0     1    1    0    1     0      1    0    0   0   0     0     0    0     0     0   0    0   0    0 

Hystrix africaeaustralis             9                   1     1     1     1     0     0   0      1     0     0    0    1    0     0      0    0    0   0   0     0     0    0     0     0   0    0   0    0 

Procavia capensis                      8                   1     0     0     1     0     0   0      0     0     0    0    1    0     0      0    0   1    0   0     0     0    0     0     0   0    0   0    0 

Cephalophus natalensis             7                   0     0     0     0     0     1   0      0     1     1    0    0    0     0      0    0    0   0   0     0     0    0     0     0   0    0    0   0 

Caracal caracal                         6                   1     0     0     0    1      1   1      0     0     0    0    0    0     0      0    0    0   0   0     0     0    0     0     0   0    0    0   0 

Otolemur crassicaudatus           5                   0     0     0     0    1      0   0      0     0     0    0    0    0     0      0    0    0   0   0     0     0    0     0     0   0    0    0   0 

Sylvicapra grimmia                    4                   0     0     0     1    0      0   0      0     0     0    0    0    0     0      0    0    0   0   0     0     0    0     0     0   0    0    0    0 

Mungos mungo                          3                   1     1     1      0   0      0   0      0     0      0    0    0    0     0     0     0   0    0   0    0     0     0    0     0   0     0    0   0 

Thryonomys swinderianus         2                   1    0      1      0   0      0   0      0     0      0    0    0    0    0      0    0    0    0   0    0     0     0    0     0   0     0    0   0 

Felis silvestris                            1                   1    1      0      0   0      0   0      0     0      0    0    0    0    0      0    0    0   0    0    0     0     0    0     0   0     0    0   0 

*T = 13.032o; P <0.00001 
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Table SI 4.2. The habitat types and diet classes used by the species of mammals found in the study area (Estes 1991; Skinner & Chimimba, 2005; 

Kingdon & Hoffmann, 2013). Items that are used by a species are marked with a positive sign whereas those that are not used by are marked with 

a negative sign. 

Niche breadth 

dimension       

Species 

Habitat AWC1   BM       BD      BB       BP  CR  CP  CA  CD GG LSG RD RH SM  VM WM 

Desert    + - - - - - - - - - - - - - - - 

Semi-desert    + - - - - -    +    + - - - -    +    +    + - 

Dry bush/scrub    +    + +    +    + -    +    +    + -    + -    +    +    + - 

Dry savanna    +    + -    +    + -    +    +    +    +    + -    +    +    + - 

Wet savanna    +    + -    +    + -    +    +    +    +    + -    +    +    +    + 

Moist/mixed 

woodland 

   +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    + 

Forest mosaic    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    + 

Lowland forest    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    + 

Afromontane    -    -    +    +    +    +    +    +    +    -    +    -    +    +    +    + 

Diet 

Birds    +    + - -    + - -    + + -    + - -    + +    + 

Mammals    +    + - -    + - -    + - -    + - -    + -    + 

Amphibians    +    + - - - - -    - - -    + - -    + -    + 

Reptiles    +    + - - - - -    + + -    + - -    + +    + 

Fish    -     - - - - - - - - -    - - - - - + 

Molluscs    - + - - - - - - - - + - - + - + 

Insects    + + + - + - - + + + + - - +    + + 

Myriapods    + + - - - - - - - + + - - + - + 

Crustaceans    - - - - - - - - - - + - - - - + 

Fungi    - - + + + - - - - - - - - - - - 

Annelids    - - - - + - - - - - + - - - - - 

Flowers    - - + + - - - - + + + + - - + - 

Arachnids    +    + - - - - - + - - + - - - - + 
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Stem    - - + + + + + - + - - + + - + - 

Carrion    - - - - + - + + - -    + - - - - + 

Tubers/corms/bulbs    - - - - + + + - + - - - - - - - 

Seeds    - + + + + + + - + + + + + - + + 

Fruits    + + + + + + + - + + + + + + + + 

Leaves    - - + + + + + - + + + + + - + - 

Gum    - - + + - - - - + + - - - - + - 

Grass    - - - + + + - - - - + + + - + + 

Bark    - - + - + - + - - - - - - - - - 
1Abbreviations: AWC = African wild cat, BM = banded mongoose, BD = blue duiker, BB = bushbuck, CR = cane rat, CP = Cape porcupine, CA = caracal, CD = common 

duiker, GG = greater galago, LSG = large-spotted genet, RD = red duiker, RH = rock hyrax, SM = slender mongoose, WM = water mongoose, VM = vervet monkey. 
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ABSTRACT  

The effects of anthropogenic disturbance on biodiversity has received considerable attention 

however, most studies have concentrated on spatial aspects and numerical responses. As a 

result, little is known about subtle responses of wildlife to disturbance such as changes in 

activity patterns and species interactions. Determining the influence of anthropogenic 

disturbance on shifts in activity patterns of species and species interactions may however 

provide crucial information regarding the mechanisms of species and population declines in 

disturbed landscapes. In this study, we determined the influence of anthropogenic disturbance 

and abiotic factors on the activity patterns and temporal niche overlap of forest mammals. We 

compared activity patterns of eight species of forest mammals between Protected Areas 

experiencing high levels of urban development (Ethekwini Municipality Area) and a less 

disturbed Protected Area (Isimangaliso Wetland Park). We also compared the level of temporal 

niche overlap among ecologically similar species (ungulates and mesocarnivores) between the 

two landscapes. We found that for most species, there were no significant shifts in activity 

patterns between the two study areas, except for Sylvicapra grimmia, Chlorocebus pygerthrus 

and Hystric africaeustralis. In the disturbed landscape, S. grimmia shifted most of its activity 

patterns towards midday, with another peak in the afternoon. For C. pygerthrus, activity peaked 

in the late morning, declined during midday and increased in the afternoon, reaching a peak in 

the early afternoon. Hystric africaeustralis initiated their activity earlier and were were active 

for longer in the disturbed landscape. With regards to temporal niche overlap, we obtained 

mixed results, with higher temporal niche overlap for some species pairs in the disturbed 

landscape and higher overlap in the less disturbed landscape for other species pairs. These 

results suggest that shifts in activity patterns may be species-specific, driven by patterns of 

disturbance activities pertinent to that particular area and the time constraints a species of 

interest is operating under. The results also showed the complexity of determining temporal 

species responses to anthropogenic disturbances as activity patterns are affected by multiple 

factors which interact with each other in complex ways. Future studies that consider whole-

assemblage overlap in activity patterns may contribute towards a better understanding of 

community-level consequences of human-driven disturbances. 

 

Keywords: Abiotic factors, Activity pattern, Anthropogenic disturbance, Behaviour, 

Competition, Temporal niche overlap   
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5.1 Introduction 

Human alteration of the global environment is occurring at unprecedented levels and 

threatens biodiversity and species persistence (Sala et al., 2000; Bradshaw et al., 2009; Gibson 

et al., 2011; Laurance et al., 2014; Haddad et al., 2015). At present, 50–75% of the earth’s land 

surface has been appropriated for human use with anthropogenic impacts permeating virtually 

every ecosystem on earth (Vitousek et al., 1997; Venter et al., 2016). According to the ‘risk-

disturbance’ hypothesis, animals respond to anthropogenic disturbance similarly to predation 

risk and as a result, trade-off between avoiding perceived risk and engaging in fitness 

enhancing activities such as feeding, mating and parental care (Frid and Dill, 2002). 

Consequently, animals generally respond to anthropogenic disturbance by reducing movement 

rates and showing spatial avoidance of human activities (Benitez-Lopez, 2018; Shamoon et al., 

2018; Tucker et al., 2018). However, as more and more of the global environment is used for 

human activities, animals have few spatial refuges to escape anthropogenic disturbances 

(Benitez-Lopez, 2018; Tucker et al., 2018). As a result, behavioural plasticity (the ability to 

exhibit a range of behaviours in response to various stimuli) may be the key towards allowing 

organisms to survive in landscapes subjected to high anthropogenic disturbance (Norris et al., 

2010; Lendrum et al., 2017). Therefore, understanding the ability of species to adapt 

behaviourally to anthropogenic disturbance may provide crucial information for conserving 

biodiversity in rapidly changing landscapes (Wong and Candolin, 2015).  

In order to obtain a better understanding of the mechanisms of biodiversity loss and to 

develop effective conservation measures, a full understanding of the whole gamut of species 

responses to anthropogenic disturbance is required (Frey et al., 2017). Most studies on the 

effects of anthropogenic disturbance on wildlife have concentrated on spatial (e.g. habitat use) 

and numerical aspects (e.g. species richness and abundance) (Presley et al., 2009; Frey et al., 

2017). As a result, there is a limited understanding on more subtle response of wildlife to 

disturbance such as changes in behaviour, activity patterns and species interactions (Presley et 

al., 2009; Frey et al., 2017; Benitez-Lopez 2018). However, changes in behaviour may provide 

equally valuable insights into wildlife responses to anthropogenic disturbance as species’ 

behavioural patterns show strong responses to habitat perturbations (Schwitzer et al., 2007; 

Donati et al., 2016). For example, species have been shown increase the overall time spent 

active (e.g. through cathemerality) in disturbed landscapes in order to compensate for reduced 

resource availability (Schwitzer et al., 2007; Norris et al., 2010). Therefore, determining the 

influence of anthropogenic disturbance on shifts in activity patterns of species and species 
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interactions may enable the research community to determine causes of species and population 

declines (Gerber et al., 2012; Carter et al., 2015; Wang et al., 2015; Frey et al., 2017; Reilly et 

al., 2017; Gaynor et al., 2018). The relative lack of studies evaluating behavioural shifts and 

changes in interspecific interactions of species, particularly in mammals, has largely stemmed 

from inherent challenges associated with quantifying these responses (Blake et al., 2012; 2017; 

Frey et al., 2017). Nevertheless, the advent of time-stamped images from camera trap data has 

unleashed novel opportunities for studying complex species responses (Blake et al., 2017; Frey 

et al., 2017). Camera trapping allows researchers to collect activity data on many species 

simultaneously and activity patterns from camera traps can be obtained with less bias and at 

finer time scales compared to other methods (e.g. direct observation, live trapping, radio 

tracking) (Rowcliffe et al., 2014; O’Connor and Rittenhouse, 2017). This information can 

provide novel insights into subtle and complex behavioural shifts in response to anthropogenic 

disturbances at species and community levels (Rovero and Zimmermann, 2016). Currently, 

these issues are gaining global attention with a large body of literature accumulating 

investigating issues of temporal dynamics of wildlife communities such as activity patterns and 

interspecific niche partitioning using camera traps (Ridout and Linkie, 2009; Di Bitetti et al., 

2010; Gerber et al., 2012; Farris et al., 2015; Wang et al., 2015; Reilly et al., 2017).  

Activity patterns of an organism are an important part of their behavioural repertoire 

and are related to various aspects such as energetic constraints, disturbance levels, risk 

exposure, food availability, species interactions, etc. (Zhang et al., 2011; Rowcliffe et al., 2014; 

Leuchtenberger et al., 2018). Determining species’ activity patterns and patterns of time 

partitioning provides information regarding their ecology and can provide insights into the 

mechanisms facilitating coexistence among sympatric species (Ridout and Linkie, 2009; 

Rowcliffe et al., 2014). Activity patterns of animals are primarily underpinned by circadian 

rhythms, allowing organisms to anticipate and respond optimally to environmental fluctuations 

within the 24-hour cycle (Kronfeld-Schor and Dayan, 2003). However, external factors can 

override the circadian pacemaker (i.e. biological clock), causing shifts in activity time in 

response to environmental conditions and biological processes (Kronfeld-Schor and Dayan, 

2003). As a result, activity patterns exhibit high levels of plasticity and have been shown to 

vary in response to biotic and abiotic factors (Hill et al., 2003; 2006; Michalski and Norris, 

2011), habitat loss and fragmentation (Presley et al., 2009; Schwitzer et al., 2007; Donati et al., 

2016; Shamoon et al., 2018), coexistence with sympatric species (Foster et al., 2013; 

Monterroso et al., 2014; Bu et al., 2016; Massara et al., 2018) and anthropogenic disturbance 

(Norris et al., 2010; Ramesh and Downs 2013; Carter et al., 2015; Blake et al., 2017; Gaynor 
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et al., 2018). Therefore, determining how anthropogenic disturbances alter patterns of species 

interactions is important for understanding community-level consequences of anthropogenic 

disturbances (Mueller et al., 2018; Smith et al., 2018).  

Although the temporal niche was originally considered to be the least important niche 

axis along which species segregate (Schoener 1974), recent studies have shown the importance 

of temporal niche partitioning as a mechanism facilitating stable coexistence of ecologically 

similar species (Gerber et al., 2012; Wang et al., 2015). However, few studies have investigated 

the direct effects of anthropogenic disturbance on the ability of species to partition their 

temporal activity patterns to facilitate coexistence (e.g. Wang et al., 2015; Mueller et al., 2018). 

Shifts in activity patterns as a result of anthropogenic disturbance may however have important 

consequences for coexistence of species as it may alter the level of interspecific competition 

(Lewis et al., 2015; Moll et al., 2018). For example, many studies have shown that temporal 

displacement from periods of human activities causes shifts in activity patterns of animals 

towards nocturnality (Kamler et al., 2007; Gaynor et al., 2018). Consequently, anthropogenic 

disturbance may increase temporal overlap in activity patterns of species as they may adopt a 

nocturnal lifestyle to minimise temporal overlap with human activity patterns (Presley et al., 

2009; Lewis et al., 2015; Cruz et al., 2018; Gaynor et al., 2018). Nevertheless, such responses 

are likely to differ with species, landscape, the nature and level of human disturbance 

(Kolowski and Alonso, 2010; Toews et al., 2018), suggesting the need for determining how 

temporal overlap varies across a gradient of anthropogenic impacts (Cruz et al., 2018).        

 To date, however, most studies documenting the impacts of external variables on 

activity patterns of species have focused on a single factor at a time (Frey et al., 2017). As a 

result, the effects of multiple factors are unknown, leading to a lack of information on the 

cumulative effects of multiple factors and interactions between them. In particular, relatively 

few studies on the effects of anthropogenic disturbance variables on activity patterns of 

mammals have considered the effects of abiotic factors (e.g. Norris et al., 2010). Abiotic factors 

are known to affect the activity patterns of animals, particularly the allocation of diurnal and 

nocturnal activities (Donati and Borgognini-Tarli, 2006; Fernandez-Duque et al., 2010; Hanya 

et al., 2018). Previous studies have shown that abiotic factors such as day length, luminosity 

and climatic factors (e.g. temperature, relative humidity, cloud cover, etc.) influence the 

activity patterns of mammals (Hill et al., 2003; 2004; Donati and Borgognini-Tarli, 2006; 

Michalski and Norris, 2011). Among climatic factors, temperature is one of the most influential 

as it affects the behaviour of species directly through its influence on thermoregulation and 

indirectly via food availability (Kappeler and Erkert, 2003; Fernandez-Duque et al., 2010; 
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Majolo et al., 2013; Lopes and Birca-Marques, 2017; Hanya et al., 2018). Rainfall causes heat 

loss resulting in a decrease in mammal activity (Radford et al., 2011; Voigt et al., 2011; Majolo 

et al., 2013; McFarland et al., 2014). However, prey species may increase activity during 

rainfall as this helps to reduce the ability of predators to sense the odours and sounds emitted 

by them (Wrobel and Bogdziewicz, 2015). Day length represents an important ecological 

constraint on activity budgets as it sets the upper limit on the time available for species to 

conduct daily activities such as moving, feeding and resting (Curtis et al., 1999; Hill et al., 

2003; 2004; Donati and Borgognini-Tarli 2006; Schwitzer et al., 2007). Luminosity is an 

important correlate of activity patterns as it increases the level of predation risk of species by 

making them more conspicuous to predators (Gursky 2003; Michalski and Norris, 2011). As a 

result, many species reduce their activity levels and movement rates during bright moonlight 

(Gursky, 2003; Michalski and Norris, 2011; Prugh and Golden, 2014). However, luminosity 

can increase the foraging efficiency of visually-orientated predators, leading to high activity 

levels at high luminosity levels (Prugh and Golden, 2014). Therefore, studies on the influence 

of anthropogenic disturbance on activity patterns of mammals should incorporate the influence 

of abiotic variables as they may modulate the effect of anthropogenic disturbance on activity 

patterns. 

 In this study, we determined the influence of anthropogenic disturbance and abiotic 

factors on the activity patterns and niche overlap of ecologically similar species of forest 

mammals. We hypothesised that anthropogenic disturbance (landscape transformation) and 

abiotic factors (temperature, rainfall, humidity, day length, luminosity) affect the diel activity 

patterns of species. Firstly, we compared activity patterns of eight species of forest mammals 

between Protected Areas experiencing high levels of urban development (EThekwini 

Municipality Area) and a less disturbed Protected Area (Isimangaliso Wetland Park) in 

KwaZulu-Natal, South Africa, and investigated shifts in the activity patterns of each species 

between the two areas. We predicted that species would increase nocturnal activity levels in 

the highly disturbed landscape relative to the less-disturbed landscape, with activity shifts 

mediated by abiotic factors. Furthermore, we predicted that diurnal species would exhibit 

stronger responses to disturbance than nocturnal species as their activity times overlap to a 

greater extent with human activities. Secondly, we compared the level of temporal niche 

overlap among ecologically similar species (ungulates and mesocarnivores) between the two 

landscapes. We predicted higher levels of temporal overlap in the disturbed landscape, 

particularly among ungulates, with species showing similar responses to abiotic variables 

predicted to show particularly high levels of temporal overlap.  
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5.2 Materials and methods 

Study areas 

Our study was conducted in two study areas, EThekwini Municipality Area and 

Isimangaliso Wetland Park (referred to as Ethekwini and Isimangaliso hereafter, respectively), 

KwaZulu-Natal (KZN), South Africa (Fig. 5.1.). Ethekwini is 2297 km2 in extent and is the 

third largest metropolitan area in South Africa (EThekwini Municipality, 2013). The area has 

a large human population (~3.5 million) with an annual growth rate of 1% (ECPDP, 2015). 

The climate is subtropical humid with an annual rainfall of 1000 mm. Ethekwini is highly 

transformed, with 53% of the original vegetation having been transformed to agriculture, 

buildings, roads and human settlements, with a further 17% considered to be highly degraded 

(EThekwini Municipality, 2015). Most of the forests within Ethekwini fall under the Indian 

Ocean Coastal Belt vegetation type and include indigenous forest and thicket/dense bush 

subclasses (Mucina and Rutherford, 2006; GeoTerraImage, 2014).   

Isimangaliso is the oldest protected wetland in South Africa and covers an area of more 

than 700 km2 (Porter, 2013). The climate of the area is subtropical, with an average annual 

rainfall of 700 mm for the Western Shores and 1500 mm for the Eastern Shores (Leslie and 

Spotila, 2001). The area is made up of an integrated system of eight habitat types surrounding 

Lake St Lucia including grassland, marsh, reed, mangrove, swamp forest and dune forest 

habitats (Porter, 2013; Ramesh et al., 2016). Mammal surveys in the Isimangaliso were 

conducted in the Eastern Shores (30 000 ha), Western Shores (38 000 ha) and False Bay (2000 

ha) sections. Large parts of the Western Shores are heavily impacted by human impacts, 

particularly Eucalyptus spp. and slash pine (Pinus elliottii) plantations. The plantation activities 

arose from prior management strategies for revenue production that were initiated in 1901 

(Porter, 2013) but presently, selected areas are being restored to natural habitat (Kheswa et al., 

2018). Consequently, only the mammal data from the Eastern Shores and False Bay sections 

of Isimangaliso were considered for this study.  
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Fig. 5.1. Map showing the study areas surveyed for Ethekwini and the actual camera trap locations for Isimangaliso in the Eastern Shores and 

False Bay sections. 
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Study species 

Common duiker 

The common duiker (Sylvicapra grimmia) is a medium-sized mammal (17.52 kg) with 

a body colouration that varies greatly within its distributional range (Wilson, 2013). Unlike 

other duiker species, the common duiker is mainly found in open savannah woodlands (Skinner 

and Chimimba, 2005). However, due to its generalised habitat requirements, it is one of the 

most widely distributed antelopes in the African continent and can be found in almost every 

habitat type in sub-Saharan Africa except dense evergreen forests (Skinner and Chimimba, 

2005; Wilson, 2013). It is a concentrate feeder feeding primarily on leaves, twigs, flowers, 

fruits and seeds of a wide range of trees and shrubs (Skinner and Chimimba, 2005; Prins et al., 

2006; Wilson, 2013). It has a mean home range size of 21 ha, which varies from 12.1-27.4 ha 

annually (Allen-Rowlandson, 1986). This species is mainly active during the early morning 

and late afternoon, with activity patterns extending into the night hours (Skinner and 

Chimimba, 2005).   

 

Red duiker 

The red duiker (Cephalophus natalensis) is a small forest duiker (11.81 kg) with a 

generally red colour although there is considerable variation between regions and individuals 

(Bowland, 1990). It has specialised habitat requirements, being restricted to areas with dense 

vegetation (forests, forest clumps and dense thickets), leading to a patchy distribution within 

the southern African region (Hoffmann and Bowland, 2013). It is a concentrate feeder, feeding 

primarily on fallen leaves, fruits, flowers and stems (Bowland, 1990; Bowland and Perrin, 

1995; 1998; Skinner and Chimimba, 2005). Its home range varies from 2-15 ha (Bowland, 

1990; Bowland and Perrin, 1995). The activity pattern is diurnal, peaking at dawn and dusk 

and with limited activity at night (Bowland and Perrin, 1995). 

 

Bushbuck  

The bushbuck (Tragelaphus scriptus) is a medium-sized antelope (body mass range: 25 

– 80 kg) and is the most widely distributed antelope species in the African continent (Jarman, 

1974; Skinner and Chimimba, 2005; Downs et al., 2016). This species is closely associated 

with riverine or any other dense vegetation adjacent to permanent water (Jacobsen, 1974; 

Skinner and Chimimba, 2005). It is primarily a browser, feeding mainly on leaves, twigs, buds, 

flowers and fruits (Skinner and Chimimba, 2005; Plumptre and Wronski, 2013). It has a mean 

home range of 33.9 ha (range: 25.2 - 43.3 ha) (Coates and Downs, 2005). The bushbuck is 
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active during day and night, with peaks in the early morning or late evening (Waser, 1975; 

Skinner and Chimimba, 2005). 

 

Large-spotted genet 

The large-spotted genet (Genetta tigrina) (1.85 kg) is widely distributed in the sub-

Saharan region and has been recorded in fynbos, savanna, grassland, bush clump and forest 

habitats (Rowe-Rowe 1992; Skinner and Chimimba, 2005; Ramesh and Downs, 2014; 

Widdows et al., 2016). It is mainly associated with wooded or dense habitats particularly in 

high rainfall areas (Gaubert, 2013). It has an opportunistic, generalist diet feeding primarily on 

rodents and insects, supplemented by reptiles, arachnids and fruits (Roberts et al., 2007; 

Skinner and Chimimba, 2005; Gaubert, 2013). The home ranges vary from 50 - 100 ha 

(Maddock, 1988). This species is almost exclusively nocturnal with activity starting 1 - 2 h 

after sunset until 01h00-02h00 (Skinner and Chimimba, 2005). 

 

Water mongoose 

The water mongoose (Atilax palidunosus) (3.40 kg) is generally associated with 

riparian habitats (rivers, streams, swamps, marshes and dams), as long as there is adequate 

vegetation cover nearby (Skinner and Chimimba, 2005; Baker and Ray, 2013). It has a diet 

primarily made up of aquatic prey such as crabs, amphibians and fish although they can be 

opportunistic, feeding on terrestrial prey such as rodents, birds, insects, reptiles and fruits 

(Rowe-Rowe, 1977; Louw and Nel, 1986; Maddock, 1988; Ray, 1997; Skinner and Chimimba, 

2005). This species is mainly active about 30 min. after sunset and remains active until 01h00-

02h00 (Maddock and Perrin, 1993), although diurnal activity (during early morning and late 

afternoon) has been reported in some instances (Rowe-Rowe, 1978). 

 

Vervet monkey 

The vervet monkey (Chlorocebus pygerythrus) (4.75 kg) is mainly associated with 

riparian vegetation and savanna habitats. It is generally absent in open grassland and open scrub 

and in some areas, it occurs in coastal forests (Skinner and Chimimba, 2005). It has a varied 

diet made up primarily of fruits, leaves, flowers and seeds (Foord et al., 1994; Skinner and 

Chimimba 2005; Isbell and Jaffe, 2013). This species has also been recorded foraging on 

insects, grasshoppers and termites, and can be problematic in agricultural areas due to its crop 

raiding activities (Skinner and Chimimba, 2005; Turner et al., 2016). Its home range sizes vary 
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from 20.8 - 80.9 ha (Foord et al., 1994). This species is active during the day with activity 

peaks in the morning and in the afternoon (Skinner and Chimimba, 2005).  

 

Cape porcupine 

The Cape porcupine (Hystrix africaeustralis) (10 - 24 kg) is widely distributed within 

southern Africa, occurring mostly in savanna, semi-desert, and forest habitats although they 

are generally absent in swamps, moist forests and deserts (Skinner and Chimimba, 2005; 

Happold, 2013). Its diet is omnivorous, consisting primarily of roots, bark, bulbs, berries, 

shoots, fruits and herbs (De Villiers et al., 1994; Bragg, 2003; Skinner and Chimimba, 2005). 

In agricultural areas it is considered a pest as it causes considerable damage to crops (Skinner 

and Chimimba, 2005; Bragg and Child, 2016). Its home range size is 24.6 ha in farmland areas, 

34.6 ha in peri-urban areas and 45.18 ha in suburban areas (Ngcobo, 2018). It is almost 

exclusively nocturnal although on occasions they can be seen sunbathing close to their burrow 

entrances (Skinner and Chimimba, 2005). 

 

Bushpig 

The bushpig (Potamochoerus larvatus) is widely distributed throughout sub-Saharan 

Africa, particularly on the east side of the sub-continent. It occurs in a wide range of habitat 

types, especially those with thick vegetation cover such as forests, thickets, riparian areas and 

reed beds (Skinner and Chimimba, 2005; Seydack, 2013). It has a large body size, with an 

average body mass of about 72 kg (Seydack and Bigalke, 1992). It also occurs in agricultural 

areas where it is considered to be a pest (Cooper and Melton, 1988; Skinner and Chimimba, 

2005; Seydack, 2013). It has an omnivorous, generalist diet dominated by rhizomes, tubers, 

roots, monocotyledons, dicotyledons, animal matter and fungi (Seydack, 1990; Seydack and 

Bigalke, 1992). Its home range is relatively large, ranging from 370-1001 ha (Seydack, 1990). 

It is primarily nocturnal although crepuscular activity may be recorded during winter 

(Breytenbach and Skinner, 1982; Seydack, 1990). 

 

Data collection 

We deployed infrared camera traps (LtI Acorn® 6210MC, Shen-zhen Ltl Acorn 

Electronics, China; Moultrie® M-880, EBSCO Industries, USA) to record photographs of 

mammals in the two study areas. In Ethekwini, a 400 m x 400 m systematic grid was overlaid 

over the forest cover layer in the study area to select camera trap sites. The forest cover layer 

was created by merging the indigenous forest and thicket/dense bush layers. Sampling was 
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conducted from December 2016 – April 2017. Camera traps were set at a height of 15–25 cm 

above the ground and were attached to a robust tree on a game trail or on an open clearing to 

allow maximum camera sensor optimal range. To avoid blank shots, a portion of the vegetation 

was removed within 1 m of the view range of cameras. The sensitivity of the cameras was set 

to high, with a photographic delay between pictures set to 30 s. In each camera trap site, 

cameras were placed for a minimum of 21 days and left to operate for 24 h/day. For 

Isimangaliso, the data used for this study were based on an extensive camera trapping survey 

conducted in the area in 2013 and 2014 (Ramesh et al., 2016). For this study area, a systematic 

grid of 2 km2 was used to select camera trap locations. The average distance between cameras 

was 1.7 km, ensuring that trap sites were uniformly distributed covering all the major habitat 

types. Cameras were secured on trees at an average height of 20 cm above the ground and were 

positioned on an active wildlife trail, about 2-3 m from the trail (Ramesh et al., 2016). The 

sensitivity of the cameras was set to high with a photographic delay between captures of 60s 

(Ramesh et al., 2016). Cameras were left to operate 24 h/day and operated on each camera trap 

site for a period of 24-46 days, depending on the logistics (Ramesh et al., 2016). 

 

Abiotic factors 

As we did not measure abiotic variables in the field, we used qualitative indices to 

quantify the relative influence of nocturnal illumination, maximum daytime temperature, total 

daily precipitation, day length and relative humidity on temporal niche overlap (Norris et al., 

2010). We calculated a standardised nocturnal illumination index (to the average over the study 

period) for each study area where for each night, the duration of moonshine between the set 

and rise of civil twilight was multiplied with a value corresponding to the illuminated fraction 

of the moon, and multiplied by a factor C, a fraction of the sky covered by clouds (of any type) 

(see Schwitzer et al., 2007 for detailed analysis). We obtained the data for moon phase, day 

length (hours), illuminated fraction, civil twilight, moonrise and moonset from the South 

African Astronomical Observatory. Data for maximum temperature (oC), total precipitation 

(mm), cloud cover (%) and relative humidity (%) on the day each photo was recorded were 

obtained from the King Shaka International Airport weather station (-29.611 E; 31.123 S) for 

Ethekwini and from Charter’s Creek weather station (-28.197 E; 32.414 S) for Isimangaliso, 

and were provided by the South African Weather Service. Following the technique used to 

generate the nocturnal illumination index, we also derived qualitative indices to evaluate the 

relative effects of temperature, relative humidity and precipitation on temporal niche overlap.  
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Activity patterns 

To test the hypothesis that anthropogenic disturbance caused a shift in diel activity 

patterns of species, we compared the 24-h activity curves for each species between Ethekwini 

and Isimangaliso. For each photograph, the date, time of detection, camera site ID and species 

identity were recorded. To remove possible temporal autocorrelation between consecutive 

photographs for each species, only photographs separated by at least by a 30-min. period were 

used (Ridout and Linkie, 2009; Farris et al. 2015; Wang et al. 2015). In cases where more than 

one individual of the same species was captured within a single photograph, the event was 

considered as a single data point. Pooled data often give higher estimates of overlap than the 

original, unpooled data, which can be particularly problematic when comparing activity 

patterns of species across different sites (Meredith and Ridout, 2018). We therefore 

transformed the raw observations of activity time (‘clock time’) for each detection to ‘solar 

time’, corresponding to the position of the sun in the sky to remove the influence of day length 

variation over the sampling periods (Nouvellet et al., 2012). To ensure that we compared the 

activity patterns of species exposed to similar environmental conditions across the two study 

areas, only photographs recorded within the same months (or overlapping time 

periods/seasons) were used. 

We pooled all observations for each species within each study area, with detection 

records considered to represent a random sample from the underlying continuous temporal 

distribution that describes the probability of a photograph being taken at any time of the day 

(Ridout and Linkie, 2009). We used the nonparametric kernel density estimation method to 

compare the activity curves of each of the 8 species across the two study sites using the package 

‘overlap’ (Meredith and Ridout, 2014) in R 3.5.1 (R Core Development Team, 2018). Density 

of activity (y-axis) uses a von Mises kernel and corresponds to the circular distribution of 

recorded capture times on the 24-h x-axis (Ridout and Linkie, 2009). We then calculated the 

coefficient of overlap (∆), a value ranging from 0 to 1, which is defined as the area under the 

curve, obtained by taking the smaller of the two density functions at each time point (Ridout 

and Linkie, 2009). We expected a higher ∆ value if species did not alter their temporal activity 

patterns at sites with high anthropogenic disturbance and a ∆ value closer to 0 if they altered 

their activity significantly. We used ∆1 for small sample sizes (n < 50) and ∆4 for larger sample 

sizes (>50) (Ridout and Linkie, 2009). For all activity curves, we applied a standard smoothing 

parameter of 1 (Bogdan et al., 2016; Bu et al., 2016). We used 10,000 bootstrapped samples 

from each distribution to estimate the 95% confidence intervals of ∆ for each comparison 

(Meredith and Ridout, 2014). To determine whether any observed shifts in activity curves 
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represented statistically significant differences in activity distributions over the 24-h cycle, we 

applied the nonparametric Mardia-Watson-Wheeler (MWW) test using the circular statistics 

software Oriana 4.0 (Kovach, 2011).  

 

Temporal niche overlap 

To determine whether anthropogenic disturbance affected temporal overlap between 

ecologically similar species, we used the method detailed above to calculate ∆ between species 

pairs at each location. We only compared ∆ between species pairs where we observed a 

minimum of 10 independent detections for both species in each study area. For ungulates, we 

compared temporal overlap between bushbuck, common duiker and red duiker as these were 

the only ungulates for which we had enough detections in both sites. Similarly, for 

mesocarnivores, we compared temporal overlap between the large-spotted genet and the water 

mongoose. To determine whether differences represented statistically significant results, 

bootstrapped estimates of ∆ between the study areas were compared using an independent 

samples t-test.  

To quantify the level of anthropogenic disturbance, we used the 2014 land cover map 

of South Africa (GeoTerraImage, 2014). For each camera trap site, within a 1000 m buffer, we 

determined the percent cover (% area) of natural forest (as a measure of habitat availability), 

as well as percent cover of linear features (roads, recreational trails, railways, power lines, 

seismic lines, etc.), cultivated areas, mines, urban development, and plantation, which were all 

merged into a single ‘disturbance’ layer. We also determined percent cover of open areas which 

consisted of a merged layer consisting of bare/none vegetated areas, grassland and low 

shrubland cover types. We hypothesised that open areas might influence perceived predation 

risk, affecting the activity patterns of species as has been shown for mammals elsewhere 

(Presley et al., 2009; Schwitzer et al., 2007). 

 We modelled the coefficients of overlap among ecologically similar species against 

abiotic factors, forest cover, open areas and anthropogenic disturbance using a beta regression 

model, appropriate for response variables bounded between 0 and 1 (Ferrari and Cribari-Neto, 

2004). Beta regression uses a logit link function to link the mean of the response variable to 

the regression parameters, allowing the interpretation of parameter estimates as odds ratios 

(Cribari-Neto and Zeileis, 2009). We used the Akaike Information Criterion, corrected for 

small sample size (AICc), to rank the resulting candidate models (Burnham and Anderson, 

2002). The models with the smallest AICc and high Akaike Weights (wi) were considered to 

be the best supported models describing temporal overlap across different species pairs in each 
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study area. Models with ΔAICc ≤ 2 in the candidate set were considered to have substantial 

support (Burnham & Anderson, 2002). Statistical analyses were conducted in R using packages 

‘betareg’ (Zeileis et al., 2018) and ‘AICcmodavg’ (Mazerolle, 2017).  

 

5.3 Results 

All 76 camera trap sites for Ethekwini were used for the analyses whereas for 

Isimangaliso, 56 sites were used (49 sites for Eastern Shores and 7 sites for False Bay). After 

removing photographs that were taken within a 30-min. timeframe, a total of 1083 photographs 

were used across the two study areas (543 and 539 photographs for Ethekwini and 

Isimangaliso, respectively; Table 5.1). Ethekwini had a high level of human disturbance 

compared to the Isimangaliso. Forest cover in Ethekwini averaged 52.1%, with open areas and 

anthropogenic disturbance averaging 2.3% and 43.2%, respectively. For Isimangaliso, forest 

cover, open areas and anthropogenic disturbance averaged 70.2%, 11.3% and 8.5%, 

respectively. The number of pooled photographs for each species varied across the two study 

areas, with the red duiker having the highest number of pooled observations in Ethekwini and 

Cape porcupine having the highest number of pooled observations in the Isimangaliso (Table 

5.1).  

 

Table 5.1. The number of independent detections of mammal species used in this study in 

Ethekwini and Isimangaliso, respectively. 

Species                           Scientific name                      Ethekwini    Isimangaliso    Total           

Common duiker             Sylvicapra grimmia                 38                  44                      82 

Red duiker                     Cephalophus natalensis           132                80                      212 

Bushbuck                       Tragelaphus scriptus                99                 114                    213 

Large-spotted genet       Genetta tigrina                         52                  63                     115 

Water mongoose            Atilax paludinosus                    27                  32                     59 

Vervet monkey              Chlorocebus pygerythrus         74                  45                     119 

Cape porcupine              Hystrix africaeustralis              91                 124                   215 

Bushpig                         Potamochoerus larvatus           30                  39                     69 

   

                                                                                                                                                                           

Activity patterns 

The results of the MWW test for nonparametric data indicated that for most species, 

there were no significant shifts in activity patterns between the two study areas, except for the 

common duiker (MWW test, W = 20.87; P < 0.001), vervet monkey (W = 7.89; P = 0.02) and 
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Cape porcupine (W = 25.78; P < 0.001). For the common duiker, activity patterns in Ethekwini 

showed two peaks, with the main peak at noon and another peak between 14:00–16:00 (Fig. 

5.2). For Isimangaliso, common duiker activity peaked early in the morning (~05:00) and late 

in the evening (~18:00). For the vervet monkey, activity in Ethekwini peaked in the late 

morning (~08:00), declined towards midday and increased from midday to the afternoon, 

reaching a peak around 17:00 (Fig. 5.2). In Isimangaliso, vervet monkey activity showed a 

bimodal activity pattern, with a peak in the late morning (~08:00) and another peak in the 

evening (~18:00) (Fig. 5.2; Fig. SI 5.1). For Cape porcupine, activity in Ethekwini was initiated 

earlier, reaching a peak around 21:00 whereas in Isimangaliso, the peak in activity levels was 

reached around 23:00. Across all species and across the study areas, the Watson’s U test 

showed that the activities differed from a uniform distribution, indicating a preference for 

specific diel phases (P < 0.005), except for the common duiker in Isimangaliso (Watson’s Test, 

U = 0.156; P = 0.10). For Ethekwini, the species with the least nocturnal activity was the vervet 

monkey whereas for Isimangaliso, the red duiker had the least nocturnal activity (Fig. 5.2; Fig. 

SI 5.1). The species with the least diurnal activity across the study areas were the bushpig and 

Cape porcupine for Ethekwini and Isimangaliso, respectively (Fig. 5.2; Fig. SI 5.1).  

 

Temporal niche overlap 

There was significant temporal separation in Ethekwini in the activity patterns across 

species pairs in ungulates (common duiker vs. red duiker: MWW test, W = 11.38; P < 0.05; 

common duiker vs. bushbuck: W = 15.44; P < 0.01; red duiker vs. bushbuck: W = 8.62; P = 

0.01) (Fig. 5.3). For the large-spotted genet and water mongoose, however, no significant 

temporal niche separation was observed (W = 4.43; P = 0.11) (Fig. 5.3). For Isimangaliso, there 

was significant temporal niche separation in the activity patterns between the common duiker 

and red duiker (W= 18.83; P < 0.01) and between the common duiker and bushbuck (W = 9.19; 

P < 0.01), whereas between the red duiker and bushbuck, there was no significant difference 

(W = 1.01; P = 0.58) (Fig. 5.3). Like Ethekwini, there was no significant temporal niche 

separation between mesocarnivores in Isimangaliso (W = 3.52; P = 0.17). 
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              Common duiker ∆1 0.587 (0.436 – 0.733)              Red duiker ∆4 0.777 (0.688 – 0.864) 

         

             Bushbuck ∆4 0.810 (0.726 – 0.903)                         Large-spotted genet ∆4 0.833 (0.698 – 0.939) 

         
             Water mongoose ∆1 0.828 (0.669 – 0.958)            Vervet monkey ∆1 0.787 (0.653 – 0.898) 

       
             Cape porcupine ∆4 0.713 (0.606 – 0.811)              Bushpig ∆1 0.898 (0.747 – 0.992) 

       
Fig 5.2. Diel activity curves and temporal overlap of species between Ethekwini and 

Isimangaliso. Activity overlap (i.e. periods of no change in activity) is represented by the 

coefficient of overlap (∆, denoted in grey), accompanied by the 95% confidence intervals in 

parentheses. 

 

 Among species pairs, the species pair with the highest temporal overlap in Ethekwini 

was the large-spotted genet and water mongoose species pair (Fig. 5.3). The red duiker and 

bushbuck species pair had the lowest temporal overlap. Like Ethekwini, the large-spotted genet 

and water mongoose species pair had the highest temporal overlap in Isimangaliso (Fig. 5.3). 

The common duiker and red duiker species pair had the lowest temporal overlap in 

Isimangaliso. For the common duiker and the red duiker as well as large-spotted genet and 
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water mongoose species pairs, there was significantly high temporal niche overlap in Ethekwini 

than in Isimangaliso (Independent samples t-test; P < 0.05; Fig. 5.3). For the common duiker 

and bushbuck as well as red duiker and bushbuck species pairs, there was significantly high 

temporal niche overlap in Isimangaliso than in Ethekwini (Independent samples t-test; P < 0.05; 

Fig. 5.3). Based on the top models, the results showed that human disturbance was the most 

important factor affecting temporal niche overlap among species pairs in Ethekwini as it 

featured most frequently among the top models and had the highest Akaike weight across all 

species pairs (Tables 5.2 & 5.3). For Isimangaliso, cover by natural forest was the most 

important factor affecting temporal niche overlap among species pairs (Tables 5.2 & 5.3). 

Among the abiotic factors, maximum temperature, humidity and luminosity were the most 

important factors (Tables 5.2 & 5.3).    

   

5.4 Discussion 

Activity patterns 

We found significant differences in the diel activity patterns between the study areas 

for the common duiker, vervet monkey and Cape porcupine. The activity pattern of the 

common duiker in the Ethekwini showed a peak of activity during the midday and another 

lower peak in the early evening. The major form of anthropogenic disturbances in the 

Ethekwini is non-motorised human recreation particularly hiking, biking and bird watching 

(Zungu, unpubl. obs.). These activities are highly unpredictable and thus disruptive to wildlife 

(George and Crooks, 2006), and are known to evoke strong flight responses among ungulates 

(Stankowich, 2008). These activities have been shown to peak during midday in the nature 

reserves of our study region (Ehlers Smith, 2016). Thus, the shift towards high activity levels 

during the midday by the common duiker was unexpected as it increases temporal overlap with 

human activities. Nevertheless, we suggest that in the case of Ethekwini, although human 

activities may peak during the same period the common duiker is most active, as we obtained 

less than 10 photographs of humans during the duration of the sampling period, these activities 

are not likely to be sufficiently intense to elicit strong negative responses. Furthermore, the 

common duiker has generalist habitat requirements (Skinner and Chimimba, 2005) which may 

result in it being relatively unaffected by anthropogenic disturbance as they can utilise parts of 

the landscape that are not frequented by human activities. However, high human activities are 
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likely to be localised in certain areas (e.g. those close to trails), leading to spatial and temporal 

displacement of the species in those areas (e.g. George and Crooks, 2006).  

 

    (a)                                                                        (b) 

       ∆1 0.693 (0.569 – 0.805)                                   ∆1 0.599 (0.473 – 0.728) 

 

      ∆1 0.689 (0.555 – 0.825)                                    ∆1 0.736 (0.605 – 0.849)                  

    
      ∆4 0.642 (0.552 – 0.746)                                     ∆4 0.729 (0.641 – 0.833) 

  

      ∆1 0.790 (0.629 – 0.923)                                 ∆1 0.759 (0.588 – 0.898) 

 
Fig 5.3. Activity curves and temporal overlap between species pairs in (a) Ethekwini and (b) 

Isimangaliso. 
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Table 5.2. Top models showing the influence of abiotic and human disturbance factors on temporal niche overlap between species pairs across 

the study areas. 

Study area                   Species pair                                       Model                        LL              K            AICC           ΔAICC       AICwi  

Ethekwini                    Common duiker, red duiker                T+F+D*                     -91.421        4             351.231       0.000          0.237         

                                     Common duiker, bushbuck                 H+D                          -97.248        3             364.123       0.000          0.369 

                                     Red duiker, bushbuck                         T+DL+F+D               -105.847      5             343.953       0.000          0.483 

                                     Genet, water mongoose                       L+F+O+D                -101.325       4             369.410       0.000          0.198 

                                                                                                  D+O+R                    -92.448         3             370.537       1.127          0.154                                                            

Isimangaliso                Common duiker, red duiker                 F+O+D                     -73.558         4             252.319       0.000          0.382                 

                                                                                                  F+T+O+L+H            -80.772        6             254.187       1.868           0.136 

                                     Common duiker, bushbuck                 T+F                            -83.614        3             281.654       0.000          0.297 

                                     Red duiker, bushbuck                          H+F+O                      -90.817        4             343.271       0.000          0.395 

                                     Genet, water mongoose                       F+D                           -78.628        3             287.623       0.000          0.512                     
*T = temperature, F = forest cover, D = human disturbance, H = humidity, DL = day length, L = luminosity, O = open habitats, R = rainfall. 
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Table 5.3. Parameter estimates of top model predicting temporal niche overlap between species pairs across the study areas. Only estimates from 

top models with ∆AICc = 0.00 are shown. Significant values are highlighted in bold. 

Study area          Species pair                                     Intercept (S.E.)         Variable                  Coefficient estimate (S.E.)   P-value    Adj. R2       

Ethekwini            Common duiker, red duiker             0.617 (0.123)               Temperature           -0.036 (0.001)                         0.638         0.268 

                                                                                                                           Forest                      0.188 (0.012)                         0.717 

                                                                                                                           Disturbance             1.803 (0.152)                         0.038 

                            Common duiker, bushbuck              0.777 (0.143)                Humidity                 0.487 (0.002)                         0.959         0.292        

                                                                                                                           Disturbance             1.638 (0.009)                         0.032 

                             Red duiker, bushbuck                      0.445 (0.125)                Day length              -0.344 (0.024)                        0.162         0.465 

                                                                                                                           Temperature            0.827 (0.158)                         0.046 

                                                                                                                            Forest                      0.617 (0.044)                         0.703 

                                                                                                                            Disturbance             1.602 (0.276)                         0.042 

                            Genet, water mongoose                    -0.655 (0.147)               Luminosity              0.931 (0.504)                         0.153        0.217 

                                                                                                                            Forest                       0.181 (0.023)                        0.443 

                                                                                                                            Open                        0.228 (0.059)                         0.476 

                                                                                                                            Disturbance             1.017 (0.232)                         0.044 

Isimangaliso        Common duiker, red duiker             0.909 (0.011)                Forest                       1.588 (0.099)                         0.002        0.324 

                                                                                                                            Open                        0.508 (0.009)                         0.603 

                                                                                                                            Disturbance             0.115 (0.013)                         0.409 

                             Common duiker, bushbuck              0.825 (0.139)                Temperature            0.249 (0.016)                         0.141        0.388 

                                                                                                                            Forest                      2.091 (0.215)                          0.001                                

                             Red duiker, bushbuck                       0.981 (0.146)               Humidity                 0.085 (0.001)                          0.385        0.335 

                                                                                                                            Forest                      1.191 (0.373)                          0.039 

                                                                                                                            Open                       -0.219 (0.016)                         0.091 

                             Genet, water mongoose                    0.893 (0.175)               Forest                       0.861 (0.045)                          0.059       0.444 

                                                                                                                            Disturbance             1.001 (0.361)                          0.043 
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The activity patterns of the vervet monkey were almost similar between the study areas 

except that in Ethekwini, the morning peak in activity was initiated a bit later and was lower 

than in the Isimangaliso, with the activity level increasing from midday to the afternoon. Thus, 

overall, activity levels were higher in the second part of the diurnal period in Ethekwini than 

in Isimangaliso. Baldellou and Adan (1998) observed similar patterns of activity in vervet 

monkeys in KZN, with vervets showing a peak in activity around 14:00. They suggested that 

as days are longer and food availability is not limiting during the breeding season, vervets 

spend more time resting, grooming and sunbathing in the early morning as their foraging is not 

limited by time constraints (Baldellou and Adan, 1998). Furthermore, as vervets in the 

Ethekwini have access to anthropogenic food, metabolic requirements can be met sooner due 

to higher nutritional and energy content of anthropogenic food (Saj et al., 1999; Thatcher et al., 

2018), reducing time constraints even further. Also, urban vervets are less wary of humans as 

a result of generally positive human encounters and habituation, allowing them to engage in 

their daily activities irrespective of human disturbance levels (Mikula et al., 2018; Patterson et 

al., 2018). Thus, the differences in activity patterns observed between the two study areas for 

this species may relate more to energetic demands for feeding and lactation and time available 

for engaging in social interactions (Baldellou and Adan, 1998) than to anthropogenic 

disturbance levels. 

The Cape porcupine in Ethekwini reached an earlier peak in activity and were active 

for longer than in the Isimangaliso. As the occurrence of Cape porcupine is strongly negatively 

influenced by urban development (Ehlers Smith et al., 2017), the increased duration of night 

activity may be due to the lower overall availability of foraging habitat in the Ethekwini, 

causing the species to spend more time in search of productive food patches. This can be 

compounded by shorter nights during the summer period, resulting in porcupines not being 

able to meet their minimum metabolic requirements (Alkon and Saltz, 1988a). Consequently, 

porcupines may have to increase the duration of activity and increase their movement ranges 

to increase foraging efficiency (Alkon and Saltz, 1988b; Ngcobo, 2018; Ngcobo et al., in 

prep.). Furthermore, as porcupines show lunar phobia (Bragg, 2003), they increase their 

activity levels on dark nights to compensate for restricted food intake during moonlit nights 

(Alkon and Saltz, 1988a).  

Nocturnal species are less likely to alter their activity patterns in response to human 

disturbance as their activity patterns overlap to a limited extent with human activities (Reilly 

et al., 2017). Indeed, we found no significant differences in activity patterns for bushpig, large-

spotted genet and water mongoose between the two study areas. For the bushpig, activity was 
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high immediately after sunset, peaking about 4 hours after sunset and declined thereafter until 

close to sunrise. Bushpig are highly adaptable species and adapt easily to transformed 

landscapes such as agricultural areas and other areas with high human presence (Cooper and 

Melton, 1988; Ramesh and Downs, 2015). Nevertheless, they still require natural habitat for 

use as refugia during the diurnal period (Cooper and Melton, 1988).  

The large-spotted genet and water mongoose were exclusively nocturnal with activity 

peaks in the early and late hours of the night, a pattern observed in other studies (Maddock, 

1988; Maddock and Perrin, 1993; Ray, 1997). The occurrence of large-spotted genets (Ramesh 

and Downs, 2014) and water mongoose (Ehlers Smith et al., 2017) within the study region has 

been shown to be positively associated with proximity to human residential areas, suggesting 

a high level of tolerance to human disturbance. Furthermore, genets have been shown to move 

into residential gardens and human households where they access anthropogenic food and 

human associated prey such as cockroaches (Widdows and Downs, 2015). The high levels of 

adaptability to anthropogenic disturbance, generalised niches and small area requirements 

(Crooks, 2002; Ordenana et al., 2010; Gerber et al., 2012), may explain why marked shifts in 

activity patterns are rare among mesocarnivores (Gerber et al., 2012).  

 The bushbuck displayed a cathemeral activity pattern with peaks in activity during 

dawn and dusk. Other studies have also found the bushbuck to be active during both the diurnal 

and the nocturnal periods (Jacobsen, 1974; Waser, 1975; Ehlers Smith, 2016). Cathemerality 

is an adaptive strategy allowing flexibility of species in terms of activity patterns in response 

to various selection pressures (Hill, 2006). Furthermore, it reduces time constraints associated 

with conducting all essential activities (Donati et al., 2007). Consequently, it may facilitate 

efficient use of resources in unpredictable and disturbed environments, leading to robustness 

to external influences (Donati et al., 2001; Hill, 2006). Nevertheless, physiological constraints 

associated with a ruminant digestive system (e.g. the need to alternate feeding and rumination 

at intervals) may impose fixed time budgets on this species (Wronski et al., 2006). As has been 

shown elsewhere for forest duikers, red duiker showed peaks in activity patterns at dawn and 

dusk, with dusk being their main activity period (Bowland, 1990; Ehlers Smith, 2016). In a 

study conducted within the study region, Ehlers Smith (2016) found that red duiker exhibited 

similar activity patterns in nature reserves, residential areas and farms, suggesting rigidity in 

activity patterns. This may relate to their smaller body size causing activity to be restricted to 

cooler hours due to thermoregulatory challenges at high ambient temperatures (Du Toit and 

Yetman, 2005; Shrestha et al., 2014). 
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Temporal niche overlap 

High levels of anthropogenic disturbance may increase temporal overlap in activity 

patterns of species if they show similar responses to human impacts (Lewis et al., 2015; Cruz 

et al., 2018). Temporal niche overlap between the common duiker and red duiker and large-

spotted genet and water mongoose species pairs were higher in the Ethekwini than in 

Isimangaliso, in support of the above hypothesis. However, for the common duiker and 

bushbuck and red duiker and bushbuck species pairs, temporal niche overlap was higher in 

Isimangaliso. The higher temporal overlap in Isimangaliso may be due to high food availability 

(as a result of a higher quality habitat), allowing each competitor to key on a food type (e.g. 

Carter et al., 2015). If species show high overlap in one niche dimension, they are likely to 

show reduced overlap in another dimension to reduce the overall level of competition 

(Schoener 1974; Gerber et al., 2012). Although the diet of the common duiker and red duiker 

in sympatry does not vary significantly, they forage on several food items (at least 70 species) 

and show a lack of specialisation on particular species, reducing interspecific competition 

(Prins et al., 2006). Furthermore, the common duiker prefers more open habitats whereas the 

red duiker is an exclusive forest species, leading to spatial segregation in habitat use (Bowland, 

1990; Abu Baker and Brown, 2014; Ehlers Smith et al., 2017b).  

For the large-spotted genet and water mongoose species pair, separation in habitat use 

is unlikely to be the case as they both are highly dependent on water (Maddock and Perrin, 

1993; Skinner and Chimimba, 2005). Indeed, we obtained high levels of co-occurrence of the 

two mesocarnivores in the same camera trap sites (Zungu, unpubl. data). Nevertheless, as these 

species differ in their degree of arboreality, with the genet being semi-arboreal, they may 

achieve spatial segregation in habitat use at a finer scale (Skinner and Chimimba, 2005; see 

also Oliveira-Santos et al., 2008). Furthermore, these species differ in their prey preference, 

with the large-spotted genet feeding primarily on rodents and insects (Roberts et al., 2007) 

whereas the water mongoose feeds primarily on aquatic species (crabs and amphibians) (Ray, 

1997).  

Among ungulates species pairs, temporal overlap between the common duiker and 

bushbuck was higher than all other pairs, followed by the red duiker and bushbuck species pair 

and was least between common duiker and red duiker species pair. Similarly, Ehlers Smith 

(2016) obtained the largest coefficient of overlap between the common duiker and bushbuck. 

Nevertheless, temporal overlap was generally high among all ungulate species pairs. As a 

result, separation between the three species may be more related to habitat selection (Ehlers 

Smith et al., 2017a), body size, and degree of dietary specialisation (Prins et al., 2006). The 



157 

 

bushbuck is the larger of the three species, and thus more likely to browse at a higher height 

than the duikers. Furthermore, the duikers are concentrate browsers whereas the bushbuck is a 

selective browser (Hoffman, 1989; Skinner and Chimimba, 2005).  

Results from top models based on AICc showed strong effects of anthropogenic 

disturbance on temporal overlap in activity patterns among species pairs. In particular, 

anthropogenic disturbance was an important factor affecting temporal overlap in Ethekwini as 

it appeared in the majority of top models and had high model weights. For Isimangaliso, 

however, forest coverage (habitat availability) was the most important factor affecting activity 

overlap. The reduction in forest fragment size increases the amount of forest habitat subjected 

to edge effects which disproportionately affects forest-interior mammals (Massara et al., 2018; 

Pfeifer et al., 2018). As a result, if species show similar responses to edges, concordant patterns 

of activity patterns may arise, increasing temporal niche overlap (Presley et al., 2009). 

Furthermore, in disturbed landscapes, species may show higher activity (e.g. due to moving to 

safe refuges) than in intact habitats, increasing the level of antagonistic encounters with 

competitors (Schwitzer et al., 2007). Among abiotic factors, temperature had the strongest 

(positive) effect on temporal niche overlap among species pairs, particularly among ungulates 

species pairs. At high temperatures, ungulates (particularly the smaller ones) reduce activity 

levels due to high thermal conductance, low thermal inertia and low thermal tolerance limits 

(Haim and Skinner, 1991; Du Toit and Yetman, 2005). Luminosity was also an important 

factor, particularly for the nocturnal genet and water mongoose species pair as genets have 

been shown to hunt more effectively on moonless nights as they become less conspicuous to 

their preferred prey (Bearder et al., 2002). Nevertheless, high temporal niche overlap for the 

species pairs considered in this study as a result of the factors discussed above may be 

compensated for by segregation in other niche axes, permitting stable coexistence (see above).  

 

Limitations 

Various factors limited our ability to make strong inferences regarding shifts in activity 

patterns in relation to anthropogenic disturbance. Firstly, camera trapping only records activity 

when a species encounters a camera trap: no information is recorded on activity away from the 

cameras (Diete et al., 2017). As a result, some animal activity is likely to be missed as camera 

traps do not cover the whole landscape. Furthermore, inferences regarding the activity patterns 

can only be made for areas where cameras were deployed: inferences regarding activity 

patterns in areas not sampled cannot be made with certainty. Secondly, species may become 

accustomed to occasional anthropogenic disturbance and display only short-term responses to 
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the disturbances (e.g. moving away temporarily from areas frequented by humans) rather than 

show a long-term complete avoidance of these areas (Kays et al., 2016). However, such short-

term responses are hard to detect from camera trap data (Blake et al., 2017). Thirdly, the small 

sample size of animal detections may increase the amount of error associated with the 

estimation of the coefficient of overlap. Lashley et al. (2018) showed that at least 100 detections 

are necessary for reducing the error associated with activity overlap estimates. Fourthly, the 

coefficient of overlap is only a descriptive metric and does not determine whether the two 

activity curves are significantly different. Although the MWW test is generally used for such 

purposes however, in cases where activity curves do not achieve statistical significance based 

on the MWW test, it becomes difficult to determine the ecological relevance of such 

differences. Lastly, we only considered landscape-based patterns of human disturbance and did 

not quantify human activity (e.g. level of human visitation/trail use), which could confound the 

results.  

 

Conclusions 

Determining shifts in activity patterns of species and changes in temporal niche portioning 

provides insights into the potential drivers of species loss in disturbed landscapes. In this study, 

we have shown how species adjust their activity patterns in relation to abiotic factors and 

human-driven disturbances. The results showed that the common duiker, vervet monkey and 

Cape porcupine significantly altered their activity patterns, providing support to an increasing 

number of studies showing shifts in response to anthropogenic disturbances (Gaynor et al., 

2018). However, in contrast to previous studies, the activity shifts were not towards nocturnal 

activity, with each species adjusting its activity patterns in a unique manner. Thus, shifts in 

activity patterns of species observed may be situation- and species-specific, relating directly to 

the timing and patterns of disturbance activities pertinent to that particular area and to the time 

constraints a species of interest is operating under. We also found that temporal niche overlap 

was higher for some species pairs in Ethekwini whereas it was higher in Isimangaliso for the 

other species pairs. Therefore, these results only provided partial support to the suggestion that 

anthropogenic disturbance may increase temporal overlap in activity patterns of species if they 

show similar responses to disturbance (Moll et al., 2018). The inconsistency of the results 

shows how complex interactions between multiple factors, as well as the fact that activity 

patterns vary in space and time (Blake et al., 2012), complicates the detection of temporal 

responses to anthropogenic disturbances. We recommend that future studies should consider 
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whole-assemblage overlap in activity patterns as all species potentially compete for the same 

resources in ecological communities (Mancina and Castro-Arellano, 2013). 
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5.7 Supporting information 

Table SI 5.1. Summary of activity patterns of the eight species in the two study areas. 

Study area        Species                             Mean activity (S.E.)   Length vector   Concentration   Circular variance   Watson’s U (p-value)      

Ethekwini          Common duiker               11:26 ± 00:38               0.599                  1.507                   0.401                         0.758 (<0.005) 

                           Red duiker                       10:26 ± 00:37               0.359                  0.769                   0.641                         1.211 (<0.005) 

                           Bushbuck                         11:59 ± 01:41               0.159                  0.322                   0.841                         0.226 (<0.005) 

                           Large-spotted genet         23:26 ± 00:27               0.692                  1.958                   0.308                         1.360 (<0.005) 

                           Water mongoose              00:28 ± 00:53               0.525                  1.229                   0.475                         0.439 (<0.005) 

                           Vervet monkey                11:44 ± 00:29               0.576                   1.415                  0.424                         1.378 (<0.005)  

                           Cape porcupine                23:44 ± 00:21               0.679                  1.884                   0.321                         2.251 (<0.005)  

                           Bushpig                            22:21 ± 00:33               0.719                  2.126                   0.281                         0.878 (<0.005)   

Isimangaliso      Common duiker               06:05 ± 02:09               0.185                   0.376                   0.815                         0.156 (0.100) 

                           Red duiker                       11:01 ± 00:33               0.496                   1.140                   0.504                         1.193 (<0.005) 

                           Bushbuck                         11:32 ± 01:49               0.299                   0.626                   0.701                         0.584 (<0.005) 

                           Large-spotted genet         22:42 ± 00:31               0.574                   1.406                   0.426                         1.167 (<0.005) 

                           Water mongoose              00:53 ± 00:36               0.659                   1.775                   0.341                         0.795 (<0.005) 

                           Vervet monkey                10:21 ± 00:46               0.479                   1.090                   0.521                         0.736 (<0.005)  

                           Cape porcupine                22:52 ± 00:10               0.877                   4.373                  0.123                          5.472 (<0.005)  

                           Bushpig                            23:00 ± 00:36               0.620                   1.592                  0.380                          0.831 (<0.005)                                          
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Fig. SI 5.1. Activity patterns of the eight species in (a) Ethekwini and (b) Isimangaliso. Bars 

of histogram plot for 24-h activity indicate the relative frequency of records in each hour and 

a longer bar means greater clustering of the data around that hour. 
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CHAPTER 6 

Conclusions 

6.1 Introduction 

We live in a world amidst a wave of species extinctions, driven by anthropogenic activities 

(Vitousek et al., 1997; Dirzo et al., 2014). Global extinction rates soared over the last century, 

with current rates of extinction predicted to be several hundred times the natural levels (Dirzo 

and Raven 2003; MEA 2005). With the increase in the severity of many of the threats to 

biodiversity, the current rates of extinction will surely increase (Dirzo and Raven 2003; Pereira 

et al., 2010). Land-use changes as a result of the need for providing water, food, fibre, and 

shelter to a burgeoning human population have become an arena of global importance (Tilman 

et al., 2001; Foley et al., 2005). Among the major drivers of land-use changes, urbanisation is 

probably the most destructive and rapidly expanding globally (Mcdonald 2008; Murray and St 

Clair, 2015). As urbanisation expands, an increasing proportion of global biodiversity will be 

affected (Seto et al., 2012). In coming decades, southern Africa is predicted to experience the 

largest increase in urban land in areas with high levels of biodiversity, with the proportion of 

urban land in biodiversity hotspots expected to nearly double by 2030 (Guneralp and Seto 

2013). As a result, conserving wildlife in urbanised landscapes is increasingly becoming an 

important component of global efforts to stem biodiversity loss (Alvey 2006; Kowarik 2011).  

 The province of KwaZulu-Natal (KZN), South Africa, supports a high proportion of 

endangered forest taxa with 84% of threatened forest biota found in KZN and Eastern Cape 

provinces (Castley and Kerley 1996). Unfortunately, KZN is experiencing high levels of 

landscape change as a result of a large human population size (~10.8 million) (Statistics South 

Africa 2011) and the need to provide for a rapidly increasing populace. Since 1994, an average 

of 1.2% of natural habitat has been lost in KZN per year (Jewitt et al., 2015). The major factors 

driving this loss were agriculture, timber plantations, built environments, mines and dams 

(Jewitt et al., 2015). The eThekwini Municipality Area (EMA) perhaps represents the worst-

case scenario regarding threats to biodiversity in KZN. This area only occupies 1.4% of KZN 

but contain almost a third (~32%) of its population (Statistics South Africa 2011). As a 

metropolitan area, EMA experiences high development pressures which are compounded by 

unauthorized development and land occupation and conflicting governance structures (Boon et 

al., 2016; McLean et al., 2016). Considering these landscape changes, there is an increasing 

need to understand how wildlife adapt and persist in this human dominated landscape to guide 
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conservation action. As forest mammals are the most representative of overall biodiversity in 

the region (Eeley et al., 2001), the results presented here have implications for the conservation 

of other taxa occurring within this landscape. 

The overall aim of the research presented in this thesis was to contribute towards 

understanding the effects of anthropogenic disturbance on the persistence of forest mammals 

within the urban-forest mosaics of the EMA. Consequently, the objectives of this study were 

as follows: (1) to determine factors affecting the occupancy of forest mammals; (2) to 

determine the effects of landscape context on mammalian richness; (3) to determine the effects 

of patch attributes and species’ ecological and life-history traits on nestedness patterns and (4) 

to determine the effects of anthropogenic disturbance and abiotic factors on activity patterns 

and temporal niche overlap of mammals. 

 

6.2 Research findings 

Seventy-six sites were sampled for 21 days between May–September 2016 (dry season) and 

December 2016–April 2017 (wet season). This equated to a sampling effort of 1596 camera 

trap nights in each season. A total of 3888 and 3006 independent photographs of mammals 

were recorded in the dry and wet seasons, respectively. From these photographs, a total of 21 

and 20 species (including humans, non-native species and domestic animals) were recorded 

during the respective seasons. After removing humans, domestic animals and species and that 

did not historically occur within the study region, this left a total of 16 and 15 species of 

mammals in the dry and wet season, respectively. The species recorded were distributed across 

28 forest patches, with an average patch size of 55.16 ± 78.88 ha (range: 1.21-347.46 ha). Most 

patches were small, with 57% of the patches less than 30 ha and only 25% greater than 100 ha. 

Foliage height diversity of patches ranged from 0.61-0.88 (mean ± SD; 0.73 ± 0.091). The 

shape index ranged from 1.24 - 4.88 (2.04 ± 1.012). The proximity index raged from 3 - 107 

(52.89 ± 28.835). 

 

6.2.1 Factors affecting occupancy 

Across all the buffer distances considered for deriving landscape structural variables, the blue 

duiker (Philantomba monticola) had the highest occupancy and detection probabilities, 

followed by the large-spotted genet (Genetta tigrina), vervet monkey (Chlorocebus 

pygerythrus) and bushpig (Potamochoerus larvatus) (Chapter 2). The bushbuck (Tragelaphus 

scriptus) and Cape porcupine (Hystrix africaeustralis) had the lowest occupancy and detection 
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probabilities. For most species, occupancy was generally higher during the wet season, with 

the vervet monkey being the only species with higher occupancy in the dry season. As 

predicted, occupancy estimates for all species were positively influenced by forest cover (%) 

in the landscape. For the blue duiker, occupancy was positively influenced by foliage height 

diversity, forest cover (%), woody cover (%) and distance to road and negatively influenced by 

road density. For bushbuck, bushpig and Cape porcupine, occupancy was positively influenced 

positively by forest cover (%), foliage height diversity and woody cover (%) and negatively 

influenced by road density and bare ground (%) in the case of bushbuck. For the large-spotted 

genet and vervet monkey, occupancy was positively influenced by leaf litter (%), woody cover 

(%), forest cover (%) and road density and negatively influenced by distance to road. Overall, 

the species showed varying responses to landscape and habitat structural variables with blue 

duiker, bushbuck, bushpig, and Cape porcupine negatively affected by the loss and degradation 

of forest habitat and the increase in matrix development intensity. On the other hand, the large-

spotted genet and vervet monkey showed robustness to such changes (Chapter 2).  

 

6.2.2 Effects of landscape context on mammalian richness 

Although there was some degree of variability between models, with the number of variables 

appearing in the top models ranging widely, there was considerable overlap in the structure of 

the top models between seasons (Chapter 3). Results based on model selection showed that in 

the dry season, the model containing factors woody cover (%), patch size, shape index, 

proximity index, percentage of the landscape, largest patch index, Euclidean nearest neighbour 

distance, patch density and road density was the most supported, suggesting that these factors 

were suitable predictors of mammalian richness. Among these factors, woody cover (%), patch 

size, shape index, proximity index, percentage of the landscape and largest patch index had a 

positive effect on mammalian richness whereas Euclidean nearest neighbour distance, patch 

density and road density had a negative effect. In the wet season, foliage height diversity, shape 

index, habitat amount in the vicinity, proximity index, percentage of landscape and largest 

patch index affected species richness positively. Euclidean nearest neighbour distance, patch 

density and road density had a negative effect. When factors were ranked according to 

importance, the factors with the strongest influence in the dry season were patch size, shape 

index, proximity index, road density and percentage of landscape. In the wet season, the most 

important factors were shape index, proximity index, road density, habitat amount, foliage 

height diversity and percentage of landscape (Chapter 3). 
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6.2.3 Effects of patch attributes and life-history traits on nestedness 

The results on nestedness patterns showed that the mammalian assemblage was significantly 

nested (Chapter 4). Among patch attributes, nestedness was found to be strongly correlated 

with patch size and proximity index. Among the ecological and life-history traits of species, 

results based on model selection showed that the model containing the traits body mass, trophic 

level, niche breadth and sociality was the most supported. Among these traits, niche breadth 

had a significant effect on extinction proneness whereas other traits were not significant. When 

species traits were ranked according to their importance, the results showed that niche breadth 

had the strongest effect on extinction proneness followed by sociality, trophic level and body 

mass. Arboreality and dispersal ability had the smallest effect (Chapter 4). 

 

6.2.4 Effects of anthropogenic disturbance on activity patterns and temporal overlap  

As a result of increased exposure to anthropogenic disturbances, animals are expected to 

increase their levels of nocturnal activity in order to reduce overlap temporal overlap with 

human activities (Gaynor et al., 2018). However, this may increase the degree of temporal 

overlap in activity patterns among ecologically similar species if they show concordant 

responses to human activity. As a result, ecologically similar species in landscapes with high 

anthropogenic disturbance should exhibit high levels of temporal overlap in activity patterns 

(Lewis et al., 2015). An investigation was carried out to test these hypotheses (Chapter 5). 

Across all species and across the study sites, the results showed that the activities differed from 

a uniform distribution, indicating a preference for specific diel phases. For most species, there 

were no significant shifts in activity patterns between the study areas, except for the common 

duiker, vervet monkey and Cape porcupine. In the disturbed landscape, the activity pattern of 

the common duiker shifted towards a main peak in activity during midday with another lower 

peak in the early evening. For vervet monkey, activity patterns in the disturbed landscape were 

characterised by a delayed morning peak, with overall high activity levels during the second 

part of the diurnal period. For Cape porcupine, they initiated their activity earlier and were 

active for longer in the disturbed landscape. There were mixed results with regards to temporal 

niche overlap between species pairs. For the common duiker and the red duiker as well as large-

potted genet and water mongoose species pairs, there was significantly high temporal niche 

overlap in the disturbed landscape than in the less disturbed landscape. For the common duiker 

and bushbuck as well as red duiker and bushbuck species pairs, the opposite was found 

(Chapter 5).  
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6.3 Discussion of the main findings 

The results from the investigation on factors affecting the occupancy of mammals showed that 

species exhibited variable responses to landscape and habitat structural variables (Chapter 2). 

This supported several studies showing that species exhibit species-specific responses to 

habitat disturbances (Nupp and Swihart 2000; Crooks 2002; Henle et al., 2004; Ewers and 

Didham 2006). The species-specific nature of the responses suggests that landscape 

management approaches should consider habitat requirements of multiple species.  

Occupancy estimates for all species were positively related to forest cover in the 

landscape, suggesting the importance of forest habitat for their persistence (Chapter 2). These 

results were supported by findings from another investigation (Chapter 3) which showed that 

patches that supported higher species richness were significantly larger, closer together and 

more contiguous than patches that supported fewer species. Furthermore, the investigation on 

nestedness patterns showed that patch size and isolation were the most important patch 

attributes affecting nestedness (Chapter 4). Combined, these findings suggest that large patches 

that occur closer to each other should become a priority for conservation action as they support 

most species and are particularly important for sensitive species. However, small fragments 

and marginal habitat should also be incorporated into conservation plans as they play a role in 

improving landscape connectivity, especially for disturbance-adapted species (Graham and 

Blake 2001; Fischer and Lindenmayer 2002; McAlpine et al., 2006). As habitat variables had 

a strong effect on occupancy and richness patterns (Chapter 2 & 3), this suggests that 

conserving large tracts of contiguous habitat should be balanced with protecting and enhancing 

habitat condition. In particular, maintaining an intact undergrowth and a high density of large 

trees should be prioritized in order to provide sufficient breeding, roosting and browsing 

resources for specialist species that have a hard time venturing outside of habitat patches. As 

many habitats in this landscape have been transformed at thresholds beyond which they will 

no longer support a viable population (Jewitt et al., 2015), increasing the integrity of remaining 

forest habitat may be the only available option for conserving edge sensitive, forest interior 

species (McLean et al., 2016). 

The results showing that species richness patterns were determined by a combination 

of within-patch, patch, matrix and landscape-level attributes (Chapter 3) stresses the 

importance of considering factors across a range of organizational levels when determining 

factors influencing the distribution and abundance of organisms at the landscape level. This is 
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especially the case since factors acting at various levels of biological organization may not be 

independent of each other (Cushman and McGarigal 2004). For example, local scale edge 

effects may drive fragmentation effects manifested at the landscape level (Koper and 

Schmiegelow 2006; With and Pavuk 2012). Thus, studies using models that include attributes 

across a range of organizational levels and using information-theoretic approaches to determine 

the most suitable and parsimonious models are important in determining the relevance of local 

and landscape-level mechanisms to landscape-level patterns (Koper and Schmiegelow 2006). 

The findings that nestedness patterns were related to both patch size and isolation 

(Chapter 4) provided support to other studies showing that differential extinction/colonisation 

are important factors influencing nestedness in insular communities (Davidar et al., 2002; Frick 

et al., 2009; Wang et al., 2010; Soga and Koike, 2012). This suggests that both the ability of 

species to persist on patches of various sizes and the ability to move to patches with different 

degrees of isolation shape fragment dynamics in this landscape. From a conservation 

perspective, this suggests that: (1) determining minimum critical patch sizes should be done 

with cognizance of the degree of patch isolation as it will have an influence on how large a 

patch would need to be to manage extinction risk; (2) measures aimed at improving matrix 

permeability (e.g. stepping stones or corridors) are likely to be as important as those aiming at 

preventing extinctions on patches (e.g. habitat preservation and restoration) and that (3) for 

successful conservation of biodiversity in this landscape, a combination of many fragments 

will be required (Cook and Quinn 1995).   

The findings from the investigation on the influence of anthropogenic disturbance and 

abiotic factors on the activity patterns and temporal niche overlap (Chapter 5) showed that for 

most species, there were no significant shifts in activity patterns between the two study areas. 

Furthermore, there was only partial support for higher temporal niche overlap among 

ecologically similar species in the disturbed landscape relative to the less disturbed landscape. 

However, that animals show no behavioural responses to anthropogenic disturbance does not 

mean that anthropogenic impacts are not having significant effects on species. At the 

physiological level, animals may be showing signs of excessive stress (e.g. high glucocorticoid 

levels), which can suppress fitness by impairing immune and reproductive functions (Benitez-

Lopez 2018). Thus, in the long term, exposure to anthropogenic disturbances may have a 

negative influence at the population level. Furthermore, individual variation in activity patterns 

due to differences in age, sex, reproductive status and personality affects species responses to 

disturbance and may mask patterns at the population level (Hertel et al., 2017). As the alteration 

of activity patterns is not the only way in which wildlife respond to human impacts, studies 
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that take a holistic view by considering the behavioural, physiological, population, and 

evolutionary responses of wildlife to anthropogenic disturbances may be crucial towards fully 

understanding how anthropogenic disturbance affects the persistence of wildlife populations 

(Gill et al., 2001; Gaynor et al., 2018).  

 

6.4 Inferences from individual species 

The large-spotted genet and vervet monkey appeared to be the least susceptible to 

anthropogenic disturbance in the EMA. These species are semi-arboreal, allowing them to 

overcome artificial barriers to movement in the urban matrix. Both species have been reported 

to move into urban households where they utilize a variety of anthropogenic resources for food 

and shelter, reducing their reliance on forest patches (Widdows & Downs, 2015; 2016; 

Widdows et al., 2015; Patterson et al., 2016; 2018). Furthermore, both species are viewed 

positively by most household owners suggesting a limited possibility of experiencing negative 

encounters with humans (Patterson et al., 2016; Widdows and Downs 2018). Thus, for these 

species, the ability to use the urban matrix seemed to be an important factor favouring their 

persistence within the study area (Crooks 2002; Contesse et al., 2004; Newsome et al., 2015; 

Widdows et al., 2016; Patterson et al., 2018). 

The bushbuck, on the other hand, appears to have adapted to anthropogenic disturbance 

by maintaining a cathemeral activity pattern (Chapter 5) (Jacobsen, 1974; Waser, 1975; 

Wronski et al., 2006). Cathemerality provides species with flexibility in their activity patterns 

which increases their adaptability to external influences (Donati et al., 2001; Hill, 2006). 

Furthermore, it reduces time constraints associated with conducting all essential activities, 

facilitating efficient use of resources in unpredictable and disturbed environments (Donati et 

al., 2007). In addition, the bushbuck is characterised by broad resource requirements (Skinner 

and Chimimba 2005; Ramesh and Downs 2015; Ehlers Smith et al., 2017), ability to occur in 

open areas (particularly fringes grassland habitats next to thick cover) (Coates and Downs 

2006) and tolerance of anthropogenic disturbance (Skinner & Chimimba, 2005; Downs et al., 

2016). However, this species had the second lowest occupancy estimates among species for 

which occupancy was estimated (Chapter 2). This may be since the species only occurred in a 

few of the Protected Areas surveyed for this study (Zungu, unpubl. data). In areas where the 

species occurred, it occupied fragments of various sizes and consequently, it was less prone to 

extinction (Chapter 4). Thus, this species can be considered to be doing relatively well in this 

landscape. 
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Similarly to the bushbuck, the bushpig also has broad habitat requirements (Skinner 

and Chimimba 2005; Ramesh and Downs 2015; Ehlers Smith et al., 2017a), ability to occur in 

open areas provided that there is some cover nearby (Cooper and Melton 1988; Bragg and 

Child 2016; Venter et al., 2016) and tolerance to human disturbance (Skinner and Chimimba 

2005; Ramesh and Downs 2015; Ehlers Smith et al., 2017b). Furthermore, this species was 

positively affected by foliage height diversity, suggesting a broad habitat occurrence and 

generalized food and habitat requirements (Chapter 2). Nevertheless, the bushpig requires at 

least 2 ha of forest to rest during diurnal times (Cooper and Melton 1988). Thus, large tracts of 

forest habitat are important to bushpig for refugia (Ehlers Smith et al., 2017b), which may 

impose a limit on their ability to occupy disturbed landscapes. Furthermore, urban areas are 

characterized by high levels of soil compaction which reduces the availability of soft soil for 

digging subterranean food sources, potentially limiting the range of food resources available to 

this species. It could thus be inferred that with further loss of habitat in this area, this species 

will likely show a decline in occurrence.  

The blue duiker is an exclusive forest dwelling species and requires closed forest habitat 

(Rowe-Rowe, 1994; Skinner & Chimimba, 2005). Intuitively, one would expect this species to 

be the most threatened in the study area. However, this species was found in the highest number 

of camera trap sites and was the most frequently detected by camera traps, suggesting that it is 

both abundant and widespread. Therefore, the species appears to be thriving in this landscape 

despite being negatively affected by proximity to roads and high road densities (Chapter 2). 

The negative response to roads suggests that the ability of this species to persist in this area is 

unlikely to be due to ‘rescue’ effects as a result of frequent movement between patches. Instead, 

we suggest that the small home range size of this species (~0.8 ha) allows it to occupy even the 

smallest of the patches (e.g. Lawes et al., 2000). Furthermore, the blue duiker has a high growth 

rate, high adult survival rate and early sexual maturity, allowing rapid population recovery 

from disturbances (Lwanga 2006; Mockrin 2009). However, it is also possible that the high 

capture rates of blue duiker by camera traps could be due to its small home range size, causing 

single individuals to be captured multiple times by the same camera traps. This could lead to 

misleading inferences regarding their abundance. Thus, it would be important to conduct 

population counts of this species (and others as well) to obtain a more accurate indication of 

their status within the study area. 

For the Cape porcupine, occupancy was also positively affected by foliage height 

diversity, suggesting a broad habitat occurrence (Ehlers Smith et al., 2017a; Chapter 2). 

However, occupancy by this species has been shown to be negatively affected by urbanisation 
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(Ehlers Smith et al., 2017b), high human abundance (Ramesh and Downs 2015) and high road 

densities (Ehlers Smith et al., 2017a; Chapter 2). Thus, this species shows a strong reliance on 

natural habitats possibly as a result of the limited availability of suitable daytime roosting sites 

(e.g. rock crevices, caves, burrows, etc.) in the urban matrix. Furthermore, as the ranging 

patterns of Hystrix porcupines are determined by food resource distribution (Lovari et al., 2013; 

Mori et al., 2014), Cape porcupine home range size tends to be larger in urban areas due to 

limited food availability and high environmental heterogeneity (Lovari et al., 2013; Ngcobo 

2018). Furthermore, they possibly must increase the duration of activity to increase foraging 

efficiency (Chapter 5). Lastly, Cape porcupines in urbanized landscape occupy primarily forest 

habitat at the landscape level (Ngcobo 2018), suggesting that they are only likely to occur in 

areas with high levels of habitat availability. Given that the species had the lowest occupancy 

estimate (Chapter 2), this suggests that this species is doing poorly in the study area and should 

be given increased conservation attention.  

 

6.5 Recommendations for future studies 

This thesis has provided insights into the effects of anthropogenic disturbance on persistence 

patterns of forest mammals in the urban-forest mosaic of the EMA. Despite the insights gained, 

a lot more still needs to be done. In future studies, the following is recommended: 

1. Due to resource constraints, this study was limited in extent, covering only a small 

portion of the EMA. Therefore, a further study covering a large spatial extent and 

conducted over longer temporal scales is required to obtain a better understanding of 

the dynamics of the broader landscape.  

2. The nature of this study did not allow for an assessment of the extent of poaching/illegal 

hunting of wildlife. During field work, some evidence of potential poaching activity 

was observed (e.g. snares). A further study that will assess the level and impacts of 

hunting is necessary. This could be achieved through questionnaire surveys in 

communities surrounding Protected Areas to determine the importance of bush meat 

towards their livelihoods and to determine the most preferred species. This would help 

to provide information necessary to determine the overall level of threat to species, 

especially the vulnerable duikers.  

3. The level of anthropogenic disturbance in this thesis was determined primarily based 

on patterns of land cover (i.e. landscape metrics). Therefore, there is a need to determine 

the level of more direct anthropogenic disturbances to wildlife, such as the pattern and 
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level of visitation frequencies by recreationists to natural areas and the types of 

recreational activities taking place.  

4. Presence/absence data generally have a low ability to detect population declines over 

time (particularly for population declines of less than 50%) and may thus provide 

misleading information on the state of species in an area (Strayer 1999; Manuel et al., 

2001). Studies that collect data based on other response variables (e.g. abundance, 

fecundity, etc.) are needed in order to obtain a more comprehensive understanding of 

the status of mammals within the EMA.  

5. Climate change has become a significant threat to biodiversity globally and locally, 

with South Africa expected to experience increased warming and reduced rainfall, with 

an increase in the frequency extreme rainfall events (Department of Environmental 

Affairs 2013). These changes are projected to cause a significant retraction in forest 

cover in coming years (Department of Environmental Affairs 2013). Further studies are 

required to determine which species are likely to be the most affected by these changes.  

6. The persistence ability of fauna in heterogeneous landscapes depends to a large extent 

on their ability to move freely across the landscape. Future studies that would relate 

patterns of landscape composition to connectivity for ecological processes (e.g. by 

modelling landscape connectivity using connectivity softwares such as Conefor 

Sensinode and Circuitscape) (Saura and Torne 2009; McRae et al., 2008) are needed to 

provide information that could serve as a basis for devising corridors/connectivity plans 

and for guiding future restoration and Protected Area expansion plans in the EMA. 

 

6.6 Final remarks 

The results presented in this thesis have provided insights into the factors affecting the 

occurrence of species in the study area, how landscape context affects mammal richness 

patterns, the effects of patch attributes and species life-history traits on extinction proneness 

and how anthropogenic disturbance affects activity patterns and patterns of temporal niche 

overlap among ecologically similar species. The results have also provided basic ecological 

information on poorly known taxa which will advance our understanding of their ecology 

locally and regionally. This information can assist the Ethekwini Municipality management in 

integrating biodiversity conservation into urban planning, making the city of Durban more 

ecologically sustainable. During the latest IUCN Assessment of South African mammals, the 

blue duiker was classified as Vulnerable (Child et al., 2016). EThekwini Municipality has 
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shown interest in using the blue duiker as an umbrella species (Lyle Ground, pers. comm.). The 

results of this study can inform the conservation of this species in this area and guide potential 

reintroduction attempts.  
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6.8 Supporting information 

Table SI 6.1. Datasheet used to collect data on habitat structure. 

 


