
Durban

1992

CONFORMAL MOTIONS

IN

BIANCHI I SPACETIME

by

Darren Brendan Lortan

Submitted in partial fulfilment of the

requirements for the degree of

Master of Science,

in the

Department of Mathematics and Applied Mathematics,

University of Natal



Abstract

In this thesis we study the physical properties of the manifold in general relativity

that admits a conformal motion. The results obtained are-general as the metric tensor

field is not specified. We obtain the Lie derivative along a conformal Killing vector of

the kinematical and dynamical quantities for the general energy-momentum tensor

of neutral matter. Equations obtained previously are regained as special cases from

our results. We also find the Lie derivative of the energy-momentum tensor for the

electromagnetic field. In particular we comprehensively study conformal symmetries

in the Bianchi I spacetime. The conformal Killing vector equation is integrated

to obtain the general conformal Killing vector and the conformal factor subject to

integrability conditions. These conditions place restrictions on the metric functions.

A particular solution is exhibited which demonstrates that these conditions have

a nonempty solution set. The solution obtained is a generalisation of the results

of Moodley (1991) who considered locally rotationally symmetric spacetimes. The

Killing vectors are regained as special cases of the conformal solution. There do

not exist any proper special conformal Killing vectors in the Bianchi I spacetime.

The homothetic vector is found for a nonvanishing constant conformal factor. We

establish that the vacuum Kasner solution is the only Bianchi I spacetime that admits

a homothetic vector. Furthermore we isolate a class of vectors from the solution which

causes the Bianchi I model to degenerate into a spacetime of higher symmetry.
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1 Introduction

General relativity is a theory of gravity. It has wide applications in astrophysics and

cosmology. In general relativity the gravitational field of a body is contained in the

curvature of spacetime. The Riemann tensor describes the curvature of the spacetime

manifold. Spacetime is taken to be a 4-dimensional, pseudo-Riemannian manifold

possessing a symmetric, non-degenerate metric tensor field. The gravitational field

is described by the Einstein tensor which is related to the curvature of spacetime

via the Ricci tensor and the Ricci scalar. The matter content is represented by

the symmetric energy-momentum tensor. The spacetime geometry is related to the

matter content via the Einstein field equations. The field equations are a nonlinear

coupled system of partial differential equations which satisfy conservation laws called

the Bianchi identities.

There exist many solutions to the Einstein field equations in the literature.

Exact solutions to the field equations are important because they facilitate the in­

vestigation of. the physical properties of specific models. Although a large number

of solutions are known today, many of these are not physical. A comprehensive list

of exact solutions to the Einstein field equations is given by Kramer et al (1980).

Exact solutions may be found in an ad hoc fashion by specifying one or more of the

geometric and matter variables and solving the field equations to find the remaining

variables. An alternative method of generating solutions to the field equations is
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to suppose that the gravitational field possesses a symmetry, e.g. a Killing vector.

Such an assumption simplifies the field equations and often makes them easier to

integrate. Most of the classical solutions, e.g. the Schwarzschild and the Robertson­

Walker models, are spacetimes of high symmetry. Models with less symmetry are

more difficult to investigate.

In recent attempts to obtain exact solutions a conformal symmetry require­

ment is imposed on the spacetime manifold, i.e. the manifold is invariant under the

action of a group of conformal motions. A number of exact solutions have been

found in various models with the assumption that the spacetime admits a confor­

mal Killing vector. Perfect fluid spacetimes and anisotropic fluid spacetimes with

a conformal Killing vector have been investigated by Herrera and Ponce de Leon

(1985a, b, c), Herrera et al (1984), Maartens and Maharaj (1990), Maartens et al

(1986), Mason and Maartens (1987), Mason and Tsamparlis (1985) and Saridakis

and Tsamparlis (1991). Many of these solutions have been concerned with astro­

physical applications. Spherically symmetric cosmological models, with vanishing

shear, admitting a conformal Killing vector have been studied by Dyer et al (1987)

and Maharaj et al (1991). A number of these authors have also extensively investi­

gated the kinematical and dynamical properties of the solutions to the field equations

with a conformal symmetry. In particular various spacetimes admitting an inherit­

ing conformal Killing vector, a special conformal symmetry, have been analysed by

Coley (1991) and Coley and Tupper (1989, 1990a, b, c, d). The analysis of conformal

motions in general relativity is important. It is clear that explicitly finding conformal

Killing vectors assists in the analysis of exact solutions. Conformal Killing vectors

have been found in certain spacetimes: Minkowski spacetime (Choquet-Bruhat et al

1977), Robertson-Walker spacetimes (Maartens and Maharaj 1986), pp-wave space-
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times (Maartens and Maharaj 1991) and locally rotationally symmetric spacetimes

(Moodley 1991).

In this thesis we consider the conformal geometry of the Bianchi I space­

time. The Bianchi spacetimes are spatially homogeneous and anisotropic and are

often used in the study of anisotropic cosmological models. The Bianchi I spacetime

is a generalisation of the corresponding locally rotationally symmetric spacetime,

studied by Moodley (1991). The Bianchi models have only three Killing vectors in

contrast to the Robertson-Walker models which have six. Consequently the inte­

gration of the conformal Killing vector equation is more complicated in the Bianchi

I spacetime. We integrate the conformal Killing vector equation for the Bianchi I

metric to obtain the conformal Killing vector and the conformal factor in general.

In chapter 2 we briefly discuss concepts in differential geometry necessary

for this thesis. We begin with a description of manifolds. Coordinate transfor­

mations, vector fields and tensor fields are defined on the manifold. We introduce

differentiation on manifolds: the covariant derivative and the Lie derivative are de­

fined. The curvature of the spacetime manifold is described by the curvature tensor,

the Ricci tensor, the Ricci scalar and the Einstein tensor. We consider the energy­

momentum tensor for neutral matter and charged matter. We then motivate the

Einstein field equations with nonvanishing cosmological constant. The Lie bracket,

Lie algebras and Lie groups are introduced briefly. We present the conformal Killing

vector equation and the special cases of Killing, homothetic, special and nonspecial

conformal Killing vectors are listed.

In chapter 3 we investigate the effect of the existence of a conformal sym­

metry on the Einstein field equations in general. We find the Lie derivative of the
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kinematical and dynamical quantities. The general energy-momentum tensor utilised

is applicable to neutral matter. Equations of other authors are regained as special

cases of our results. We also find the Lie derivative of the energy-momentum ten­

sor of the electromagnetic field. We briefly review results obtained on conformal

symmetries and consider other types of symmetries on the spacetime manifold.

In chapter 4 we discuss the spacetime geometry of the Bianchi I model.

The Einstein field equations for a perfect fluid energy-momentum tensor are derived.

We then integrate the conformal Killing vector equation for the Bianchi I metric to

obtain the conformal Killing vector and the conformal factor, subject to integrability

conditions. The integrability conditions place restrictions on the metric functions.

We provide all the details of the integration process. In particular we consider a

simplified class of conformal Killing vectors by setting certain functions of integration

to zero; this ensures that the integrability conditions have a nonempty solution set.

The conformal Killing vector obtained generalises results found previously on locally

rotationally symmetric spacetimes. The special cases of Killing vectors, homothetic

vectors and special conformal Killing vectors are considered.

The results obtained in this thesis are summarised in the conclusion. Some

avenues for future work are pointed out. This work is a generalisation of results

obtained by other authors. We believe that the results obtained in this thesis are

original. We have not found any published work in the literature on the general

solution of the conformal Killing vector equation in Bianchi I spacetimes.
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2 Manifolds and Tensor Fields

2.1 Introduction

In this chapter we briefly review and discuss aspects of differential geometry, mani­

folds and tensor fields. We concentrate only on those aspects that are necessary for

this thesis. We begin by heuristically introducing the 4-dimensional spacetime struc­

ture of a manifold which admits a Lorentzian metric in the neighbourhood of every

point. The additional structure of an affine connection is also necessary. Spacetime

is a 4-dimensional differentiable manifold endowed with a symmetric metric tensor

field which describes the gravitational field. In addition to the manifold we also con­

sider in §2.2 general coordinate transformations, tensor products and tensor fields

as natural geometric objects on the manifold. For more comprehensive expositions

on manifolds and related concepts the reader is referred to Bishop and Goldberg

(1968), Choquet-Bruhat et al (1977), Hawking and Ellis (1973) and Wald (1984).

The covariant derivative plays a significant role when considering the curvature of

spacetime in general relativity. The Lie derivative is important in the study of sym­

metries in general relativity. The Lie derivative provides a coordinate independent

description of symmetries. We consider the covariant derivative, the Lie derivative

and their properties in §2.3. The additional structure of the connection and the

related Christoffel symbols are also introduced in §2.3. The curvature tensor and the
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Einstein field equations are discussed in §2.4. The curvature tensor is derived and

the various identities which it satisfies are listed. The Ricci tensor, the Ricci scalar,

the Einstein tensor and the energy-momentum tensor are also defined. The Einstein

field equations for neutral matter are briefly introduced. We also present Maxwell's

equations and the electromagnetic tensor for charged matter. The Einstein field

equations are adapted to accommodate charged matter. We discuss Lie algebras and

Lie groups and the relations between them in §2.5. We require that spacetime be

invariant under a conformal Killing vector. The existence of a conformal symmetry

imposes restrictions on the metric tensor and often leads to a simplification of the

Einstein field equations. The existence of a conformal symmetry and its effect on

the Einstein field equations are pursued in later chapters. The general conformal

Killing vector is defined in §2.5 and the special cases of Killing, homothetic, special

and nonspecial conformal Killing vectors are listed.

2.2 Manifolds and Tensor Fields

We may consider a manifold as a Hausdorff space that can be continuously para-

metrised. The number of independent parameters generates the dimension of the

manifold, and the parameters are the coordinates of the manifold. Locally a man-

ifold has the structure of Euclidean space in that it may be covered by coordinate

neighbourhoods. It is important to note that the global structure of the manifold,

however, may be very different from that of Euclidean space. For the purposes of gen­

eral relativity we require the mathematical structure of a 4-dimensional differentiable

manifold. Points in the 4-dimensional manifold are labelled by the real coordinates

o 1 2 3 HOt· th t· l·k d· ( .x ,x ,x ,x. ere x = C IS e Ime 1 e cool' Inate we wIll take the speed of light

6



c = 1) and Xl, X 2 , x 3 are the spacelike coordinates. The manifold has to support a

differentiable structure so that differentiation of functions, involving changes of co­

ordinates in overlapping coordinate neighbourhoods, is permissible. For a rigorous

definition of a differentiable manifold the reader is referred to Bishop and Goldberg

(1968), Hawking and Ellis (1973), Misner et al (1973) and Wald (1984). Here we will

present only those aspects of manifolds necessary for this thesis.

Suppose that M is a set of points and let {Oa} be a collection of open

subsets in M. The function "pO' : 00' ----+ ~4 is bijective and maps the open set 00' to

an open region of ~4. The purpose of each map "pais to attach coordinates to points

in 00' of the manifold. The map "pO' together with the open subset 00' comprises the

pair ("pO', 00') called a chart. If P is a point in 00' then we sometimes call ("pO', 00')

a coordinate system about P. Consider the set of charts {(Oa, "pa)}aEI where I is

some index set. For a well-defined manifold we require that the following conditions

apply. The set {Oa} covers M so that each point of M is contained in at least one

00" We also require that for all 00' there exists an 0{3 such that 00' n 0{3 -=J. 0. This

ensures that in the intersecting region the composite functions "pO' 0 "p~l and "p{3 0 "p~l

are differentiable functions from ~4 to ~4. The inverse maps "p~l and "p~l are defined

as"pa and"p{3 are injective. Further it is necessary that the collection {(Oa,,,pa)}aEI

is maximal so that any other chart (00" "pO') is contained in this set. This prevents

the definition of new manifolds by the mere addition or deletion of a chart. The set

{(Oa, "pa)}aEI satisfying the above conditions is called an atlas. The set M together

with its atlas comprises a 4-dimensional differentiable manifold.

Consider the charts ("pa,Oa) and ("p{3,0{3) with intersecting coordinate

neighbourhoods. The maps "pO' : 00' ----+ ~4 and "p{3 : 0{3 ----+ ~4 generate the

coordinate systems x a
' and x a

, respectively. These coordinates are related by the
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composite functions "pOt 0 "p~l : ~4 ~ ~4 and "p(3 0 "p~l : ~4 ~ ~4 because in the

overlap Oot n 0(3 =I=- 0. These composite functions imply the functional relationships

a' a' (0 1 2 3)X = X X ,X ,X ,X

and the inverse relationships

a a 0' l' 2' 3' )X = X (X ,X ,X ,X

The functions x a' and x a given above are both differentiable and injective. The

Jacobians of the matrices

8 a'

X a' - ~
b - 8xb

and

are nonvanishing in the overlapping region 0 ot n 0(3 =I=- 0 . It is also possible to

establish the converse result. Suppose that we are given a chart (Oot, "pOt) and the

system of equations x a
' = x a'(xO,Xt,X2,x3) with IXb'l =I=- 0 for some point P E Oot

with coordinates x a
• Then we can establish, utilising the inverse-function theorem,

the existence of a coordinate system (0(3, "p(3) about P whose coordinates are related

to those of the previous chart (Oot, "pOt) by x a = x a ( xO', xl', x2', x3'). It is sufficient for

our purposes to require that the differentiability class of the manifold M is at least

C2 to ensure that operations which depend on the continuity of partial derivatives

are valid.

We define a regularly parametrised smooth curve on the manifold M by

the continuous functions x a
: u ~ M, where u is a real parameter. A curve with

a given parametrisation yields a tangent vector at a point P EM, and conversely

the tangent vector is tangent to some curve through P. Let Tp represent the set

of vectors tangent to a curve at the point P in M. The set of tangent vectors Tp

generates a vector space at P. The dual tangent space Tp at P is defined by the
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real-valued function Tp : Tp --+ ~. The dual space Tp satisfies the vector space

axioms. We can then construct spaces (T;)p of type (r, s) tensors at P by taking

repeated tensor products of Tp and Tp:

TT =T ® T ® ... ® T ® T* ® T* ® ... ® T*
s, Y I' Y I

r times s times

so that we have

TT : T* x T* x ... x T* x T x T x ... x T --+ ~
s , Y I' V' J

r times s times

(Bishop and Goldberg 1968, Misner et al1973, Schutz 1980). It is easily established

that the space (T;)p of multilinear functionals is also a vector space at P. A type

(r, s) tensor field on M is an assignment of a member of (T;)p to each point P E M.

It is convenient to represent the set of all type (r, s) tensor fields on M by T;. The

quantity Tala2 ...arblb2 ...bs represents the components of a (r, s) tensor field T in T;.

Under a change of coordinates the components Tala2 ...arblb2 ...bs transform according

to the rule

(2.1 )

in the manifold M.

In order to discuss metrical properties we need to endow M with a metric

tensor field g of rank two. In the case of an indefinite metric tensor field the mani-

fold M is called a pseudo-Riemannian manifold (Misner et al1973, Stephani 1990).

Spacetime M is a Hausdorff, oriented, smooth 4-dimensional manifold endowed with

a symmetric, non-degenerate tensor field g of signature (- + + +). By definition

the tensor field g satisfies (2.1). The metric tensor g is fundamental to the invariant

definition of the length of a curve in M which is given by the integral
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where xa == dxa / duo This definition reduces to the infinitesimal line element or

fundamental metric form

(2.2)

where we have dropped the modulus sign. The line element (2.2) gives a measure

of the infinitesimal interval between neighbouring points xa and xa + dx a in the

manifold. We can construct a coordinate system about any point P in the spacetime

of general relativity such that in the neighbourhood of P we have

(2.3)

The metric tensor 'TJab is that of special relativity. At any point P in spacetime there

exists a coordinate system in which the metric tensor takes the Lorentzian form

-1 0 0 0
o 1 0 0

o 0 1 0

000 1

In the case of special relativity there exist global coordinate systems for which the

metric tensor takes the above form. Such coordinate systems are called inertial

or Cartesian. However in the 4-dimensional manifold of general relativity Cartesian

coordinate systems occur only locally in the neighbourhood of a point. We distinguish

between the two by saying that the spacetime of special relativity is flat, while that

of general relativity is curved. The departure from flatness in general relativity is

due to the nonvanishing of the second derivatives in (2.3). (In §2.4 we formally define

the Riemann curvature tensor).
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2.3 Differentiation on Manifolds

To define the covariant derivative on M we need to introduce additional structure on

the manifold. The derivative operator \7, sometimes called the covariant derivative

operator, on the manifold M is a map which takes each smooth tensor field of type

(r, s) to a smooth tensor field of type (r, s + 1). The components of the tensor

field resulting from the action of \7 on a type (r, s) tensor field T are denoted by

(i) \7 is linear and Leibnitz,

(ii) \7 commutes with contraction,

(iii) For f E :F and V E Tp(M)

where :F : M --7 ?R is the collection of Coo maps. This requirement is con-

sistent with the notion of tangent vectors as directional derivatives on scalar

fields,

(iv) \7 is torsion free so that

for f E :F.

Note that some authors treat property (iii) as a definition after first defining V(f)

along a parametrised curve. The usual partial derivative operator 8a of the compo­

nents Tala2 ...arblb2 ...bs of the (r, s) tensor field T given by
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where the comma denotes partial differentiation, satisfies the above conditions. The

components Tala2 ...arblb2 ...bslc in another coordinate system, however, do not transform

like a tensor. Thus the partial derivative is coordinate dependent and is not naturally

associated with the structure of the manifold.

Property (iii) implies that any two derivative operators \7a and ~a must

agree in their action on scalar fields. However disagreement in the action of \7a and

~a on tensor fields of higher rank is possible. Consider the difference ~a(fWb) -

\7a(fWb), for some covariant vector field Wand an arbitrary scalar field f E F.

Using properties (i) and (iii) we obtain

At a point P EM, ~aWb and \7aWb each depend on changes in W as we move

away from P. However the above equation shows that the difference ~a Wb - \7aWb

depends only on the value of W at point P. Thus ~a - \7a defines a map of covariant

vectors at P to tensors of type (0, 2) at P. Since this map is linear by property (i),

(~a - \7a) defines a quantity at P denoted by Ccab. Thus given any two derivative

operators \7a and \7a there exists the object Ccab such that

(2.4)

The torsion free restriction implies that Ccab is symmetric in the indices a and b.

The difference in action of \7a and ~a on vector fields and all higher rank tensor

fields is determined by equation (2.4), and properties (i) and (iii). For example we

have for a contravariant vector field V

12



For the general formula for the action of \7a on an arbitrary tensor field given in

terms of Va and Cbac see Wald (1984). The difference between the two derivative

operators \7a and Va is completely characterised by the object Cbac. Conversely, if

Va is a derivative operator and Cbac is an arbitrary symmetric smooth quantity, it

is easy to show that \7a will also be a derivative operator.

For our purposes we need to consider the case where Va is the partial

derivative operator 8a • In this case, the object Ccab is replaced by rcab which is

called a Christoffel symbol. For a contravariant vector field T of type (1,0) we have

from above

or in a different notation

(2.5)

where the semicolon denotes covariant differentiation. As further examples we list

the covariant derivatives of the (0,1),(1,1),(0,2) and the (2,0) tensor fields:

Tab. = Tab +ra T db +rb Tad
,C ,c dc dc

(2.6)

(2.7)

(2.8)

'(2.9)

The covariant derivative of a type (r, s) tensor field follows the pattern suggested by

equations (2.5)-(2.9).
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A vector V given at each point on a curve with a tangent vector T is said

to be parallel transported as we move along the curve if

is satisfied. Note that we can also define the parallel transport of a tensor field

of arbitrary rank. A vector at a point P on the curve uniquely defines a parallel

transported vector everywhere else on the curve. The notion of parallel transport

may be used to identify the tangent spaces Tp(M) and TQ(M) of points P and Q if we

are given a derivative operator and a curve connecting P and Q. The mathematical

structure arising from the identification of tangent spaces of different points is called

a connection. Conversely we may start with the definition of a connection, and

then develop a derivative operator. It is possible to define many distinct derivative

operators on the manifold. In particular the fundamental theorem of Riemannian

geometry states that for the metric tensor field g there exists a unique derivative

operator V a satisfying

V a9be == 0

This is due to the requirement that the inner product of two vectors remains un-

changed if we parallel transport them along any curve. Thus the metric tensor field

g naturally determines the covariant derivative operator V a • The connection of this

derivative operator is called the metric connection. For the covariant derivative the

metric connection is comprised of the Christoffel symbols (of the second kind) which

are also called the connection coefficients. The Christoffel symbols are given in terms

of the metric and its derivatives as follows

ra 1 ad ( )
be =="29 ged,b +9db,e - 9be,d

In general the connection coefficients (2.10) do not transform tensorially.

14
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In order to define the covariant derivative we needed to impose the ad-

ditional structure of a connection on the manifold M. Other operators such as

the exterior derivative and the Lie derivative are defined on a differentiable manifold

without imposing additional structure on M. We do not consider the exterior deriva-

tive since it acts only on forms and is not relevant to this thesis. However we do

consider the Lie derivative of a tensor field since it provides a coordinate independent

description of a symmetry property in the manifold M.

We can define the vector field X to operate on the scalar field f E F to give

the Coo scalar field X(f). The Lie derivative with respect to X is an extension of this

operation to an operator [,X on all Coo tensor fields which preserves the tensor type.

This derivative corresponds to the change determined by an observer in going from a

point P, with coordinates x a, in the direction of a vector field X to an infinitesimally

neighbouring point Q, with coordinates xa +cXa
, and transporting the coordinate

system from P to Q. Consider an infinitesimal coordinate transformation

We obtain the Lie derivative of a type (1,0) tensor field T by comparing the con-

travariant components Ta at a point P and at an infinitesimally neighbouring point

Q. To first order in c we can establish the difference

which implies

(2.11 )

Then the Lie derivative of Ta in the direction of the vector field X is defined as the

limiting value

. Ta'(Q)_Ta(p)
hm --'--'------:.--.:....
e-+O c

15
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From (2.11) and (2.12) we obtain the equivalent expression

(2.13)

which is the Lie derivative of the (1,0) tensor field T. As examples we list the Lie

derivative of (0,1), (1, 1), (0, 2) and (2,0) types of tensor fields:

(2.14)

(2.15)

(2.16)

.c Tab == Tab Xc _ T cbXa _ T acX b
X ,c ,c ,c (2.17)

For an (r, s) tensor field the Lie derivative follows the pattern contained in (2.13)-

(2.17). Note that we can introduce the Christoffel symbols (2.10) to replace partial

derivatives with covariant derivatives in (2.13)-(2.17). This explicitly demonstrates

that the Lie derivative of a tensor is also a tensorial quantity. The Lie derivative .cx

satisfies a number of useful properties which may be used to simplify calculations.

We list these properties without proof (Stephani 1990, Wald 1984):

(i) .cx preserves tensor type, i.e. LxT is a tensor field of the same type as T.

(ii) .cx is linear and Leibnitz.

(iii) .cx commutes with contraction.

(iv) .cxf == X(f) where f E F.

(v) .cx commutes with the partial derivative.
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Two further properties satisfied by the Lie derivative and related to the Lie bracket

are given in §2.5.

In this section we have defined the covariant derivative and the Lie deriva­

tive. The Lie derivative arises naturally on the manifold. This derivative is intro­

duced without defining further structure on the manifold. Note that in order to

define the covariant derivative we have to impose the additional structure of a con­

nection on the manifold M. The covariant derivative generates the curvature tensor

on the manifold (see §2.4). The Lie derivative is important for the description of

symmetries of gravitational fields (see §2.5) and also other physical fields (Burke

1985, Schutz 1980).

2.4 Curvature and the Field Equations

The notion of curvature arises from the path dependence of parallel transport of

a covariant vector field W. This path dependence is directly related to the non­

commutativity of covariant derivatives of W :

where

(2.18)

are the components of the Riemann curvature tensor R. The tensor field R provides

a measure of the curvature of a manifold. For R = 0 we have flat spacetime and for

17



R =I 0 the spacetime is curved. The components Ra bcd satisfy the following identities

Rabcd = - Rbacd (2.19)

R abcd

R abcd

-Rabdc

R cdab

(2.20)

(2.21 )

R abcd + R acdb + R adbc = 0

Rabcd;e + Rabdejc + Rabec;d = 0

(2.22)

(2.23)

The identities (2.19)-(2.23) assist in calculations that involve the curvature of the

manifold and are important in the formulation of the Einstein field equations. The

equation (2.23) is called the Bianchi identity. Upon contraction of the Riemann

tensor (2.18) we obtain the Ricci tensor

(2.24)

The scalar curvature R is defined as the trace of the Ricci tensor

(2.25)

Contracting the Bianchi identity (2.23) and utilising the above identities for the

Riemann tensor yields

( Rab _ 1Rgab ) = 0
2 ;b

This has the equivalent form

cab
'b = 0
I

18
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if we define

Gab = Rab - ~Rgab

where the tensor G is called the Einstein tensor.

(2.27)

In general relativity the matter distribution is described by the energy-

momentum tensor T which is given by

(2.28)

where the energy density J.!, the isotropic pressure p, the energy flux vector qa (qa ua =

0), and the trace free anisotropic pressure tensor 1rab are measured relative to the

4-velocity ua. The 4-velocity u is timelike so that uaua = -1. For perfect fluids the

energy flux vector and the stress tensor vanish so that (2.28) becomes

(2.29)

The energy-momentum tensor T, given by (2.28), is coupled to the Einstein tensor

G, given by (2.27), via the Einstein field equations

(2.30)

where A is the cosmological constant. We are using units in which the coupling

constant in (2.30) is unity. From equations (2.26) and (2.30) it follows that

T ab 'b = 0
I

(2.31 )

which is a conservation law. The field equations constitute a system of ten nonlinear

partial differential equations which determine the gravitational field. The equations

(2.30) express the relationship between the curvature of the manifold structure and

the matter distribution in spacetime. Equation (2.26) implies that not all of the

field equations are independent. For further information on various categories of
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exact solutions to the Einstein field equations (2.30) the reader is referred to the

comprehensive list contained in Kramer et al (1980).

The energy-momentum tensor T in equation (2.28) represents neutral mat-

ter only. To accommodate charged matter we need to supplement the right hand side

of (2.30) with a term representing the electromagnetic field. The energy-momentum

tensor E for the electromagnetic field is given by

(2.32)

Here the components of the skew-symmetric electromagnetic field tensor F may be

given in terms of a 4-potential A:

(Misner et al 1973, Stephani 1990). The electromagnetic field tensor F satisfies

Maxwell's equations

Fab
jb

F abjc +F bcja +Fca;b = 0

(2.33)

(2.34)

where J represents the current density. With the electromagnetic field tensor given

by F ab = Abja - Aajb we note that (2.34) is identically satisfied. The Maxwell equations

(2.33)-(2.34) are the basic equations of the electromagnetic field in a curved space.

For electrodynamics in a curved background we need to supplement these equations

with the Lorentz equation. The Einstein field equations (2.30) have to be adapted

to the form

(2.35)
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to incorporate the electromagnetic field. Maartens and Maharaj (1990) find solutions

to the field equations (2.35), with a conformal symmetry, for a charged nonconducting

imperfect fluid without energy flow for symmetric static fluid spheres.

2.5 Lie AIgebras and Conformal Motions

In this section we only summarise those elements of the theory of groups of trans­

formations necessary for this thesis. Transformations are maps of a manifold into

itself and symmetries are those transformations that do not change the mathematical

structure of the manifold. An important feature of the study of transformations is

the infinitesimal transformation described by a vector field. Of particular interest

is the infinitesimal transformation described by the Lie derivative (2.12). We intro­

duce the concepts of Lie algebras and Lie groups and discuss the relation between

them. Furthermore we define a conformal Killing vector which is important for later

sections. For a more comprehensive treatment of Lie theory and its applications to

physics the reader is referred to Dubrovin et al (1984, 1985).

A Lie algebra is a vector space upon which is defined a bilinear multipli­

cation operation [ , ] which from any two Coo vectors X and Y produces another

vector [X, Y] satisfying:

(i) [X, Y] == -[Y, X]

(ii) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] == 0

Property (i) shows that [ , ] is skew-symmetric and property (ii) is called the Jacobi
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identity. One such operation is the Lie bracket:

[X, Y] == XY - YX

where XY is the composition of the vectors X and Y on scalar fields. The Lie algebra

is closed under the operation of the Lie bracket. The Lie bracket is associated with

the Lie derivative by the following properties:

LXY == [X, Y]

for all vector fields X, Y. Thus in addition to properties (i)-(v) listed in §2.3 the Lie

derivative also satisfies the above properties.

An r-dimensional Lie group Gr is an r-dimensional differentiable manifold

whose underlying set is a topological group. The group composition

and group inverse

are smooth functions. Every Lie group defines a unique Lie algebra and conversely

every Lie algebra defines a unique Lie group (Choquet-Bruhat et al1977, Dubrovin

et al1984, 1985, Kramer et al1980). For our purposes we use Lie groups to represent

the symmetries of mathematical structures on manifolds. Each of the elements or

generators of the Lie algebra of Gr represents an infinitesimal transformation. The

relevance of Lie algebras and Lie groups to various classes of solutions to the Einstein

field equations is comprehensively discussed by Kramer et al (1980).
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Manifolds with structure may admit groups of transformations which pre­

serve this structure. A conformal motion preserves the metric up to a factor. A

conformal Killing vector X is defined by

LXgab = 2'ljJgab (2.36)

where 'ljJ = 'ljJ( x a) is the conformal factor and g is the metric tensor. We normally

distinguish between four categories of symmetries admitted by the conformal Killing

equation (2.36):

(i) X is a Killing vector when 'ljJ = O.

(ii) X is a homothetic Killing vector when 'ljJ,a = 0 =J 'ljJ.

(iii) X is a special conformal Killing vector when 'ljJ;ab = O.

(iv) X is a nonspecial conformal Killing vector when 'ljJ;ab =J O.

The Killing vectors span a group of isometries, which may be utilised to characterise

solutions of the Einstein field equations systematically and invariantly (Kramer et al

1980). Killing vectors generate constants of the motion along geodesics. Conformal

Killing vectors generate constants of the motion along null geodesics for massless par­

ticles. Solutions to the Einstein field equations may be obtained by supposing that

spacetime admits a group of conformal motions Gr of infinitesimal transformations.

These symmetries impose restrictions on the metric functions and consequently ob­

taining solutions to the Einstein field equations is simplified (Castej6n-Amenedo and

Coley 1992, Coley and Tupper 1990a, b, c, Dyer et al1987, Maharaj et al1991, Van

den Bergh 1988).

The set of all conformal Killing vectors generates a Lie algebra with basis
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{XI}. The elements of the basis are related by

(2.37)

where the OK IJ are the structure constants of the group. From the Jacobi identity

and equation (2.37) we obtain the Lie identity

(2.38)

Any set of constants OK IJ satisfying

and (2.38) are the structure constants of a group. The maximal order r of a group

of conformal motions Gr for an n-dimensional manifold is given by

r==~(n+l)(n+2)

(Choquet-Bruhat et alI977). The maximal dimensionality of the Lie algebra in a

4-dimensional spacetime is r == 15. The generators of the G15 of conformal Killing

vectors for flat space are given by Choquet-Bruhat et al (1977), and Maartens and

Maharaj (1986) give the fifteen generators for Robertson-Walker spacetimes. Also

the conformal Killing vectors of pp-wave spacetimes were found recently by Maartens

and Maharaj (1991).
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3 The Lie Derivative and the Field Equations

3.1 Introduction

In this chapter we consider the kinematical and dynamical properties of spacetimes

that admit a conformal motion. Our results apply in general to the Einstein field

equations as we have not specified a particular form for the metric tensor field g.

We consider the Lie symmetries in the general case of an imperfect fluid energy­

momentum tensor for neutral matter. In addition we briefly consider the symmetries

of the energy-momentum tensor of the electromagnetic field. In §3.2 the kinematical

properties of the Lie derivative along a conformal Killing vector are derived. The

results are applied to the unit fluid 4-velocity vector that generates the kinematical

quantities. The Lie derivatives of the kinematical quantities along the conformal

Killing vector are explicitly determined. In §3.3 we derive the Lie derivative of the

energy flow vector. This result together with the kinematical results are applied to

the energy-momentum tensor for neutral matter. We then calculate the Lie deriva­

tive of the Einstein field equations with nonzero cosmological constant. Consequently

we obtain equations involving the Lie derivatives of the dynamical quantities. We

regain results given previously as special cases of our solutions. The Lie derivative

of the electromagnetic energy-momentum tensor is derived in §3.4 by using the gen­

eral decomposition of vectors established earlier. Thus it is possible to extend the
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results established in §3.3 to charged matter in general. We briefly review results

obtained on symmetry inheritance of conformal Killing vectors in §3.5. Other types

of symmetry inheritance are also considered.

3.2 The Kinematical Quantities

Before establishing the results of the Lie derivative of the kinematic quantities we first

prove a useful identity for the Lie derivative of a unit vector X along the conformal

Killing vector e. Recall that if eis a conformal Killing vector then (2.36) is satisfied:

This implies the useful result

which is utilised in subsequent calculations. We can always write, for any X,

(3.1 )

where Y is orthogonal to X (X . Y = 0). We take X to be a unit vector. The

quantity a is a scalar. As X is a unit vector we can write

where

€ = f +1 if X is spacelike

l -1 if X is timelike

Taking the Lie derivative of x a X a = c along the conformal Killing vector eyields

26



However contracting (3.1) with X a also gives

which together with the above result implies

'lj;= -(Y

Thus we have established the results

(3.2)

(3.3)

for the Lie derivative of the unit vector X along the conformal Killing vector ewhere

xaYa = o. Applying (3.2) and (3.3) to the fluid 4-velocity vector u we have that

(3.4)

(3.5)

where v is a spacelike vector and uava = o.
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If u is the fluid 4-velocity vector then we can establish the kinematic result

(Ellis 1973)

(3.6)

where

(3.7)

is the rate of expansion,

(3.8)

is the symmetric projection tensor (habub = 0),

(3.9)

is the symmetric shear tensor ((J'abUa = 0 = (J'a a),

is the skew-symmetric vorticity tensor (Wabub = 0) and

• b
Ua = Ua;bU

(3.10)

(3.11 )

is the acceleration vector (uaua = 0). The overhead dot denotes covariant differenti-

ation along a fluid particle worldline. Square brackets denote skew-symmetrisation.

Taking the Lie derivative of the connection coefficients (2.10) along the

conformal Killing vector eyields

LerabC = ~Legad[9db,c + gcd,b - gbc,d]

+ ~gadLe [gdb,c +gcd,b - gbc,d]
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= gad [~,egdb + ~,bged - ~,dgbe]

(3.12)

We use (3.5) and (3.12) to establish the next result. The Lie derivative of (3.6) is

given by

- ~,bUa + ~Ua,b +Va,b - Ua~,b - Ub~,a

+ gabUe~,e - ~reabUe - re abVe

(3.13)

As the expansion scalar for the fluid velocity congruence is defined by (3.7) we have

that

- -~,aua - ~ua,a + va,a +4ub~,b +~,aua

- ua~,a - ~rabaub + rabaV
b

29



(3.14)

where we have utilised (3.4) and (3.12). The Lie derivative of the projection tensor

(3.8) becomes

(3.15)

where we have used (3.5). The round brackets above denote symmetrisation. Note

that since uava = 0 we have

so that eis a conformal motion of the projection tensor hab if and only if va = o.

The Lie derivative of the shear tensor (3.9) along the conformal Killing vector e
reduces to the following:

- 'tjJaab - ~habVc;c - ~eU(aVb) + ~(Va;chCb +Vb;c hca)

- ~('tjJ,ahcb + 'tjJ,bhca)Uc +gCd(Ua;cU(dVb) +Ub;cU(dVa))

'tjJaab - !habvC;c - ~eU(aVb)

+ V(a Ub) +V(a;b) +U(a Vb) +U(a Ub);cVc
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where we have used (3.13)-(3.15). Note that (3.16) does not explicitly depend on

the derivatives of'ljJ. Also note that if Va = 0 then

and e is a conformal motion of the shear tensor O"ab. The Lie derivative of the

acceleration vector (3.11) is given by

(3.17)

where we have utilised (3.4) and (3.13). On substituting (3.13)-(3.17) into (3.6) we

obtain the Lie derivative of the vorticity tensor

(3.18)

which does not explicitly depend on the derivatives of'ljJ. Again note that if Va = 0

then

LeWab = 'ljJwab

and e is a conformal motion of the vorticity tensor Wab.

For easy reference we list the Lie derivative of the kinematical quantities

(3.14), (3.16)-(3.18) together:

Lee = -'ljJe + Va;a + 3'ljJ,aua
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[,e(Jab == 'ljJ(Jab - ~habVc;c - ~eU(aVb)

+ V(aUb) +V(a;b) +U(aVb) +U(aUb)icVc

Special cases of the above properties have been listed by other authors depending on

their applications. Herrera et al (1984) made the implicit assumption that va == 0 in

(3.4) in their study of conformally invariant solutions to the Einstein field equations.

Maartens et al (1986) give the kinematical quantities in a slightly different form; in

particular the 4-acceleration vector ua and the vorticity tensor wab are given in terms

of a scalar which reduces to an acceleration potential for an irrotational fluid.

3.3 The Dynamical Quantities

The energy flow vector qa is not a unit vector. However by using an argument similar

to that in §3.2 we can find the Lie derivative of qa along e. Let

(3.19)

where Q is the magnitude of the energy flow. As before we express the Lie derivative

of qa as follows
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where waqa = o. Contracting this equation with qa gives

Taking the Lie derivative of (3.19) along the conformal Killing vector eyields

Comparing the right hand side of the above two equations gives

Thus we have established the following results for the energy flow vector

(3.20)

(3.21 )

Note that the above results for qa and qa apply to any vector of variable magnitude

Q. For a unit vector q, (3.20)-(3.21) reduce to (3.2)-(3.3). Since uaqa = 0 it is

convenient to define the scalar quantity

The above implies that

~ - -uaw - vaq- a - a
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which we use later.

In order to establish the Lie derivative of the dynamical quantities it is

useful to first find the Lie derivative of the Riemann tensor (2.18):

LeRabCd = (Lerabd),c - (LerabC),d + race (Lerebd)

+ (Le race) rebd - r a de (Lerebc) - (Le ra de) rebc

{(.cerabd),e +race (.cerebd)- rebe (.cerade) }

- {(.cerabe),d +rade (.cerebe)- r'bd (.ceraee) }

On setting a = c in (3.22) we establish the Lie derivative of the Ricci tensor

(3.22)

(3.23)

where O'ljJ = gab'ljJjab. Contracting the Lie derivative of the Ricci tensor in (3.23) gives

the Lie derivative of the Ricci scalar
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== -21jJR - 601jJ (3.24)

Taking the Lie derivative of the Einstein tensor (2.27) and utilising (3.23) and (3.24)

gives the expression

(3.25)

The results (3.22)-(3.25) give the Lie derivative of quantities related to the curvature

of the manifold.

The Lie derivative along a conformal Killing vector eof the energy-momentum

tensor (2.28) is given by

LeTab == uaubLep, + habLep + 21jJ(p,UaUb+ phab )

+ 2(p, +P)U(aVb) +Le1rab

+ 2 (Q-l LeQ+ 21jJ) U(aqb) + 2q(aVb) + 2U(aWb) (3.26)

where we have used (3.5), (3.15) and (3.21). Then the Lie derivative of the Einstein

field equations (2.30) becomes

== 2(01jJ + A1jJ)gab - 21jJ;ab (3.27)

on utilising (3.25) and (3.26). Contracting (3.27) with uaub, hab, uahb
c, hachbd _

1 habhcd b a b dab' t . Id th .r 11' f' .3 , q , q u an q q In urn yIe s e 10 oWIng set 0 equatIons that Involve
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the dynamical quantities:

qa [.cep + 21/Jp + ~] + U a [~(Il + p) + Q.ceQ + 21/JQ2]

+qb.ce1rab = 2(01/J +A1/J )qa - qb1/J;ab - Q2Va (3.32)

Thus we have found the Lie derivative of the dynamical quantities in (3.28)-(3.34)

in general without any assumptions.

Special cases of the above system arising from taking the Lie derivative

of the Einstein field equations, have been considered by various authors. For cos­

mological purposes the most important special case of (3.28)-(3.34) is for a perfect
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fluid. By setting qa

simplification:

o - 7rab in the above set of equations we obtain after some

(3.35)

(3.36)

(3.37)

(3.38)

The subcase of (3.28)-(3.34) for a special conformal Killing vector ('l/Jjab = 0) with

A = 0 was first considered by Herrera et al (1984). The case with qa = 0 and

an anisotropic stress tensor was found by Maartens et al (1986) generalising results

obtained by Herrera et al (1984). Coley and Tupper (1989) imposed the restriction

qa i=- 0 and restricted the anisotropic stress tensor to satisfy the phenomenological

equation 7rab= -2TJ(J'ab where TJ is the bulk viscosity. In the case of Coley and Tupper

(1989) the system (3.28)-(3.34) reduces to the following:

Lep + 2'l/J1l- +2~ = -2(D'l/J +A'l/J) - 2ua
U

b'l/Jjab (3.39)
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Our equations (3.28)-(3.34) unify results presented previously in a consistent no-

tation. Also our equations generalise these results to the most general energy-

momentum tensor for neutral matter.

3.4 The Electromagnetic Field Tensor

The results of §3.3 may be extended to include charged matter. In this section we

find the Lie derivative along the conformal Killing vector eof the electromagnetic

tensor (2.32). Since Fab = Ab,a - Aa,b we have that

38



Thus substituting the above into the Lie derivative of (2.32) we obtain

FfaLeFfb - 2'ljJFca F cb+FCbLeFca

- ~ [-2'ljJgabFde Fde +gabFdeggdghe LeFgh + gab Fde LeFde ]

To eliminate the Lie derivative of the electromagnetic tensor on the right hand side of

(3.46) we have to find the Lie derivative of the 4-potential Aa. We use an argument

similar to that in §3.2. Let

where A is the magnitude of the 4-potential A. We can express the Lie derivative

of Aa as follows

where AaBa = O. We can then prove as before that

Thus we obtain the quantities

gCf(Ab,J - Af,b) [(aAa+ Ba),c - (aAc+ Bc),a]

4g
cf

A[b,fl (a[,cAal + aA[a,cl + B[a,cl)

gdggeh(Ah,g - Ag,h) [(aAe+Be),d - (aAd+ Bd),e]

4A[e,d] (a[,dAel +aA[e,d] +B[e,d])
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Substituting the above into (3.46) we obtain

LeEab = -2'ljJEab+ 4gcf A[a,f] (a[,cAb] + aA[b,c] + B[b,c])

+4gcf A[b,f] (a[,cAa] +aA[a,c] +B[a,cJ)

- 2gabA [e,dJ(a[,dAe] +aA[e,dJ +B[e,dJ)

where a is given by (3.48).

(3.49)

Thus we have found the Lie derivative of the electromagnetic energy­

momentum tensor E along the conformal Killing vector ein general. We have utilised

the decomposition (3.47) of LeAa to express LeEab in the compact form (3.49). We

have not seen this Lie property of the decomposition of the 4-potential A applied

to the electromagnetic energy-momentum tensor previously. Maartens et al (1986),

using a different notation, find the Lie derivative along eof E for the special case

when the electric field vanishes. Using (3.49) we are now in a position to find the

analogue of the system (3.28)-(3.34) for a charged fluid satisfying the Einstein field

equations, and also to study its physical properties. As this falls outside the scope

of this thesis it will be an area for future investigation.

3.5 Symmetry Inheritance

The idea that kinematical and dynamical quantities in general relativity inherit a

symmetry property has been investigated by many authors. It is hoped that the

imposition of a symmetry requirement will simplify the highly nonlinear Einstein

field equations and will lead to new solutions. Also a symmetry property provides a

mechanism to categorise invariantly solutions to the field equations in a systematic
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manner. In this section we briefly review symmetry inheritance properties of con­

formal Killing vectors in particular, and give some recent results on other types of

symmetry inheritance.

A number of authors have investigated restrictions to the Einstein field

equations by analysing the kinematic quantities with a conformal motion. If va == 0

then (3.4) gives

and fluid flow lines are mapped conformally into fluid flow lines. Herrera et al (1984)

imposed the condition va == 0 in their analysis of fluids without energy flow but with

a preferred direction of anisotropy. They presented solutions to the Einstein field

equations with a conformal symmetry for both isotropic and anisotropic pressures.

Coley and Tupper (1989) introduced the notion of an inheriting conformal Killing

vector if £eua == -'lj;ua is satisfied with va == O. The properties of spacetimes ad­

mitting a special conformal Killing vector where the symmetries are inherited, were

analysed by Coley and Tupper (1989). Maartens et al (1986), in their analysis of

anisotropic fluids, provide a counter example that illustrates in general that fluid

flow lines are not necessarily mapped conformally into fluid flow lines, i.e. v a :f O.

The condition of an inheriting conformal Killing vector is restrictive and Coley and

Tupper (1990a) showed that even for a perfect fluid energy-momentum tensor con­

formal Killing vectors do not in general map fluid flow lines conformally. In addition

they point out that Robertson-Walker spacetimes do not contain a special confor­

mal Killing vector; this motivates the study of other forms of vectors, e.g. inheriting

conformal Killing vectors. Furthermore Coley and Tupper (19.90b) proved that or­

thogonal synchronous perfect fluid spacetimes, other than Robertson-Walker, admit

no proper inheriting conformal Killing vector. (The term 'proper' means that the
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conformal Killing vector does not reduce to the special case of Killing vector, homo­

thetic vector or special conformal Killing vector). Coley and Tupper (1990c) found

all spherically symmetric spacetimes admitting a proper inheriting conformal Killing

vector for a perfect fluid with a barotropic equation of state satisfying the energy

conditions. With the assumption that the conformal Killing vector eis parallel to

the fluid 4-velocity u, Coley (1991) showed that any perfect fluid solution of the

Einstein field equations, with a barotropic equation of state and satisfying J-l +P =f 0,

is locally a Robertson-Walker model.

The field equations for a symmetry vector orthogonal to the fluid 4-velocity

vector were presented by Saridakis and Tsamparlis (1991). The results obtained

were applied to a conformal Killing vector in particular. A conformal collineation is

generated by an affine conformal vector eso that

where H ab is a symmetric Killing tensor. (The properties of a Killing tensor, which

generalises a Killing vector~ are discussed by Kramer et al1980). The affine confor­

mal vector is a generalisation of the conforrnal Killing vector. The kinematics and

dynamics of conforrnal collineations for anisotropic fluids were analysed by Mason

and Maartens (1987). Coley and Tupper (1990d) investigated the relationship be­

tween special affine conformal vectors and conforrnal Killing vectors. Katzin et al

(1969) introduced a symmetry called a curvature collineation defined by a vector e
satisfying

LeRabCd = 0

Collinson (1970a), Katzin and Levine (1970a, b, c, 1971, 1972) and Mclntosh and

Halford (1981) have investigated the properties of curvature collineations. Note that
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a special case of curvature collineations is a Ricci collineation defined by

Ricci collineations have been studied by Collinson (1970b), Melfo et al (1992), Oliver

and Davis (1977, 1979) and Tsamparlis and Mason (1990). Curvature collineations

are unfortunately very restrictive. Katzin et al (1969) showed that a curvature

collineation is also a conformal motion if and only if the conformal Killing vector

is special. Consequently the definition of a curvature collineation should be adapted

to allow for more general symmetry properties. Duggal (1992) generalised the con­

cept of curvature collineations by introducing the notion of curvature inheritance

defined by

LeRabCd = 2aRabcd

where a = a(xa
) is a scalar function in an n-dimensional differentiable manifold.

This allows for proper (a =J 0) curvature inheritance to reduce to nonspecial con­

formal Killing vectors. Note that the curvature inheritance is related not only to

conformal Killing vectors but to projection collineations as well. The geometrical

and physical properties, in particular an equation of state, of curvature inheritances

were investigated by Duggal (1992). In particular he showed that a spacetime admit­

ting a curvature inheritance and a conformal Killing vector is necessarily conformally

flat.
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4 The Bianchi I Spacetime

4.1 Introduction

In this chapter we investigate the conformal symmetries of the Bianchi I spacetime.

This is an attempt to consider the conformal geometry of spacetimes with less sym­

metry than models studied in the past. As the Bianchi I spacetime is the simplest of

the nine Bianchi models the method of solution will provide guidelines for the study

of conformal motions in the other more complicated Bianchi models. The spacetime

geometry of the Bianchi I model is reviewed in §4.2. The Einstein field equations for

a perfect fluid energy-momentum tensor are derived. In §4.3 we briefly review results

on conformal geometry in other spacetimes obtained by other authors. The system

of equations governing the conformal geometry in Bianchi I spacetime is presented.

This is a coupled system of first order partial differential equations. The confor­

mal Kil~ing vector equations are integrated in §4.4 to generate the general conformal

Killing vector subject to integrability conditions. The existence of a conformal sym­

metry places restrictions on the gravitational potentials. We provide all the details

of the integration process as the procedure is not obvious. We do not fully solve the

integrability conditions. However, we do obtain a particular solution showing that

these conditions have a nonempty solution set. The special cases of Killing vectors,

homothetic vectors and special conformal Killing vectors are considered in §4.5. Two
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other cases are isolated from the solution and discussed in §4.6.

4.2 Spacetime Geometry and Field Equations

The Robertson-Walker spacetimes are the standard cosmological models describing a

homogeneous and isotropic universe. In coordinates (xa
) = (t, x, y, z) the Robertson-

Walker line element is given by

where k = 0,1, -1 and R(t) is the scale factor. The conformal Killing vectors of this

line element, for each of the three cases k = 0,1, -1, have been found by Maartens

and Maharaj (1986). The Robertson-Walker spacetimes admit a maximal G15 Lie

algebra of conformal Killing vectors as they are conformally flat. These spacetimes

have a G6 Lie algebra of Killing vectors. A generalisation of the k = 0 Robertson-

Walker metric is the locally rotationally symmetric metric

This spacetime is called AIa in the MacCallum (1980) classification and it is of

type V 14 in the Petrov classification (1969). The conformal geometry of this locally

rotationally symmetric metric was studied by Moodley (1991). This model has a G4

Lie algebra of Killing vectors.

In this chapter we consider the spatially homogeneous and anisotropic

Bianchi I spacetime described by the line element

(4.1 )

45



This spacetime is a generalisation of the locally rotationally symmetric spacetime

given above and is often used in the study of anisotropic models. The line element

(4.1) admits a G3 Lie algebra of Killing vectors. The study of the conformal Killing

vectors of the Bianchi I metric is more complicated than the previous cases because it

has the least symmetry; in contrast the Robertson-Walker spacetimes have six Killing

vectors and the locally rotationally symmetric spacetime has four. The Abelian Lie

algebra of Killing vectors of (4.1) is spanned by

For a detailed analysis of the group structure and classification of Bianchi cosmologies

see Ellis and MacCallum (1969) and Ryan and Shepley (1975).

The nonvanishing connection coefficients (2.10) for the line element (4.1)

are given by

AA

BB

A

A

B

B

r033 = CC Cr3 -03 - C

where the dots denote differentiation with respect to the timelike coordinate t. With

the help of the above connection coefficients we calculate the components of the Ricci
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tensor (2.24):

Roo == _('4 +B+C) (4.2)
A B C

Rll 2 [A Ae~ C)] (4.3)== A A+A B+C

R22 2 [B B(A C)] (4.4)== B B+B A+C

R33 2[C C(A B)] (4.5)== C C+C A+B

Rab == 0, a i- b

The components (4.2)-(4.5) of the Ricci tensor together with the definition (2.25)

yield the Ricci scalar

(4.6)

The components of the Einstein tensor (2.27) for the Bianchi I spacetime (4.1) then

become

Goo (4.7)

Gll
2 [B BC C] (4.8)- -A B + BC + C

G22 - _B2 [ A+ Ac + C] (4.9)
A AC C
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(4.10)

Gab = 0, a f b

With the assistance of (4.2)-(4.6), the Einstein field equations (2.30) with vanishing

cosmological constant, are equivalent to the system

AB AC BC
AB + AC + BC

-p

-p

(4.11 )

(4.12)

(4.13)

(4.14)

for the Einstein tensor components (4.7)-(4.10), and the perfect fluid energy-

momentum tensor (2.29).

4.3 Conformal Killing Vector Equation

The Einstein field equations (4.11)-(4.14) are highly nonlinear and it is difficult to

find exact solutions in general. However the exact vacuum solution (p, = 0 = p) has

been found. This solution is called the Kasner solution. Also the solution for dust

(p, f 0 = p) and some other solutions with an equation of state are known (Kramer et

al1980). In an attempt to simplify the field equations we impose a symmetry require-
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ment on the spacetime manifold, namely a conformal Killing vector symmetry. In

many cases this assumption simplifies the field equations and leads to new solutions.

Even if no new solutions are found this approach leads to a deeper understanding

of the spacetime geometry concerned. The G15 Lie algebra of conformal motions

in Minkowski spacetime is given by Choquet-Bruhat et al (1977). Maartens and

Maharaj (1986) have found the fifteen conformal Killing vectors in the homogeneous

and isotropic Robertson-Walker spacetimes for all three cases of the spatial geome-

try: k = 0,1, -1. The conformal geometry of certain anisotropic locally rotationally

symmetric spacetimes have been considered by Moodley (1991). In this section we

investigate the conformal geometry of an example of the anisotropic Bianchi mod-

els, the Bianchi I spacetime. This spacetime is homogeneous but anisotropic and

generalises the results of Moodley (1991). Also note that Maartens and Maharaj

(1991) have found the conformal Killing vectors in the pp-wave spacetimes, the

plane fronted gravitational waves with parallel rays, and have related their results to

the Einstein-Maxwell and the Einstein-Klein-Gordon field equations. The pp-wave

spacetimes admit only one Killing symmetry which is a null vector. Solutions to the

Einstein field equations with a conformal symmetry have been investigated by Dyer

et al (1987) and Maharaj et al (1991) for applications in cosmology. For astrophysi-

cal models with a conformal symmetry see Herrera and Ponce de Lean (1985a, b, c),

Herrera et al (1984) and Maartens and Maharaj (1990).

The conformal Killing equation (2.36) for the line element (4.1) reduces to

the following system of ten equations:

(4.15)

A2X 1 _XO = °t x
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o (4.17)

(4.18)

(4.19)

(4.20)

(4.21 )

(4.22)

(4.23)

(4.24)

In the above system the subscipts t, x, y and z denote partial differentiation. The

system (4.15)-(4.24) is a coupled system of first order partial differential equa­

tions. We need to solve this system to obtain the conformal Killing vector X =

(XO, Xl, X 2 , X 3
) and the conformal factor 'ljJ in terms of the metric functions A(t), B(t)

and C(t). The solution obtained will be subject to integrability conditions. The inte-

gration of (4.15)-(4.24) is performed in the next section. As the system (4.15)-(4.24)

is a coupled system of equations we attempt to find differential equations involving

only one component of X to simplify the integration process.
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4.4 Solution of the Conformal Equation

On subtracting the derivative of (4.20) with respect to z from the derivative of (4.21)

with respect to y, we obtain B2X;x - C2 X;x == O. This result, together with the

derivative of (4.23) with respect to x, yields the identities

Also, subtracting the derivative of (4.23) with respect to x from the derivative of

(4.20) with respect to z, gives A2X~z - C2X;x == O. This result and the derivative of

(4.21) with respect to y yields the identities

Thus in general we have established

o

o

(4.25 )

(4.26)

for the components Xl, X 2 , X 3 •

(4.27)

On subtracting the derivative of (4.18) with respect to y from the derivative

of (4.17) with respect to z, we obtain

(4.28)

From equation (4.23) we obtain the result

(4.29)
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Subtracting (4.28) from (4.29) yields the following partial differential equation in the

component X 3
:

Integrating the above with respect to t we obtain the first derivative

3 B ~
X y == C!(x, y, z)

where j( x, y, z) is a function of integration. However identity (4.27) implies that X~

is independent of x. Thus we can write

(4.30)

where j == F. From equations (4.30) and (4.23) we have

(4.31 )

With the forms given in (4.30)-(4.31) we note that the conformal Killing vector

equation (4.23) is identically satisfied.

We now subtract the derivative of (4.17) with respect to x from the deriva­

tive of (4.16) with respect to y to obtain

(4.32)

From equation (4.20) we have the result

(4.33)

Equations (4.32)-(4.33) give the following partial differential equation in the com­

ponent Xl:
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We integrate the above to obtain

x~ = ~g(x,y,z)

where g(x, y, z) is a function of integration. However, identity (4.25) implies that X~

is independent of z. Hence we can write

(4.34)

where 9 == g. Substituting (4.34) into (4.20) yields

(4.35)

With the results (4.34)-(4.35) we observe that the conformal Killing vector equation

(4.20) is identically satisfied.

Now we subtract the derivative of (4.18) with respect to x from the deriva-

tive of (4.16) with respect to z to obtain

(4.36)

From equation (4.21) we obtain the partial differential equation

(4.37)

Addition of equations (4.36) and (4.37) gives a partial differential equation in the

component Xl:

The above equation can be integrated to obtain
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where h(x, y, z) is a function of integration. However identity (4.25) implies that X;

is independent of y. Therefore we can write

X~ = ~ 'H(x, z)

where h = 'H. Substituting (4.38) into (4.21) gives the result

X; = - ~'H(x, z)

(4.38)

(4.39)

Note that the conformal Killing vector equation (4.21) is identically satisfied if equa-

tions (4.38)-(4.39) hold.

Integrating (4.34) with respect to y gives the component

Xl = ~ (?(x, y) +o(t, x, z)

where we have set

QY(x, y) =f Q(x, y)dy

and a(t, x, z) is a function of integration. Henceforth we will use the notation where

the superscripts x, y, z denote integration. Substituting this form of Xl into equation

(4.38) implies that

oz = ~ 'H(x, z)

Upon integration this partial differential equation yields

o = ~W(x, z) +a(t, x)

where we let

'HZ(x,z) = f 'H(x,z)dz

and a(t, x) is a function of integration. Thus we have established that the component

Xl is given by
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Similariy, integrating (4.35) with respect to x yields the component

where we have let

~Y(x, y) =J9(x, y)dx

and ~(t, y, z) is a function of integration. Substituting the above form of X 2 into

equation (4.31) we obtain

We integrate this partial differential equation to get

- cf3 == - B:Fz (y, z) + f3(t, y)

where we have defined

:r (y, z) = JF(y, z)dz

and f3( t, y) is a function of integration. Thus we have the result that the component

X 2 is given by

Also integrating (4.39) with respect to x we obtain the component

where we have set

HX(x, z) == JH(x, z)dx

and 7(t, y, z) is a function of integration. On substituting this form of X 3 into

equation (4.30) we obtain the partial differential equation

1y = ~F(Y, z)
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Integrating this equation gives

where we have defined

P(y, z) = J:F(y, z)dy

and ,(t, z) is a function of integration. Hence we have established that

for the component X 3
•

It is convenient to collect the results obtained thus far. We have established

that

(4.40)

(4.41 )

(4.42)

for the components Xl, X 2
, X 3

• With (4.40)-(4.42) we find that the conformal

Killing vector equations (4.20)-(4.21) and (4.23) are identically satisfied. It remains

to solve the other equations of the system (4.15)-(4.24) to obtain XO and the confor-

mal factor 'ljJ. We first obtain a form for the timelike component XO to supplement

the spacelike components Xl, X 2 , X 3 •

On substituting (4.40) into (4.16) we obtain
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Similarly equations (4.41) and (4.17) give the differential equation

and substituting (4.42) into (4.18) yields

The system (4.43)-(4.45) may be solved to obtain the component Xo. Integrating

(4.43) with respect to x gives

where p(t, y, z) is a function of integration and we have set

QYX(x,y) = JQY(x,y)dx

a~(t,x) = Jat(t,x)dx

Substituting (4.46) into (4.44) we obtain

Integrating the above with respect to y we obtain

- (C)'P(t, y, z) = _B2 B FZY(y, z) +B2f3f(t, y) +p(t, z)
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where we let

pY(y, z) = JP(y, z)dy

(3f(t, y) =J(3t (t, Y)dy

and p(t,z) is a function of integration. On substutiting p(t,y,z) in (4.46) we obtain

the component

A2(~)"gYX(x, y) +A2(~)"1tZX(x, z) +A20W, x)

- B2(~)"pY(y, z) +B2(3i(t, y) +p(t, z)

Now substituting (4.47) in (4.45) we obtain

pz(t, z) = -1tX (x, z) [C2(~)" +A2(~)"]

+ :P'(y, z) [C2(~)' +B2(~)"] +C2,t(t, z)

Integrating the equation above gives

p(t, z) = C2,t(t, z) + p(t)

where we set

,t(t, z) =J,t(t, z)dz

and the function p(t) results from the integration process.

Thus we have established that (4.47) can be written as

xO = A2(~)"gYX(x,y) +A2(~)"1tZX(x,z) +A2Q~(t,X)
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where we have used the above form of p(t, z). Thus we have found the timelike

component XO of X. With XO given by (4.48) we obtain the conformal factor from

equation (4.15):

+ [A2a:(t, x) +B2 f3; (t, y) +c2,t(t, z) + p(t)]t (4.49)

Note that with the above forms of XO and 'ljJ the conformal Killing vector equa-

tions (4.15)-(4.18), (4.20)-(4.21) and (4.23) are satisfied. It remains to integrate the

equations (4.19), (4.22) and (4.24). These conformal Killing vector equations will

generate integrability conditions that will govern the existence of a conformal Killing

vector in the Bianchi I spacetime.

Substituting the timelike component XO, given by (4.48), and the conformal

factor 'ljJ, given by (4.49), into the remaining conformal Killing vector equations

(4.19), (4.22) and (4.24) we obtain after simplification:

~ {g:(x, y) - ~ [A (~)"]'gyX(x, y)}

+ ~ {1i~(x, z) - ~ [A (~) lWX(X, z)}

+ A [~ (~}]'pY(y, z) +ax(t, x) - A[Aa~(t, x)]t - A(P~))"

A
+ A [B2 f3;(t,y) +C2,t(t,z)] - [B2 f3;(t,y) +C2,t(t,z)L = 0 (4.50)
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A{ C
2 [A2 (C)']' }- C 11~(x,z) +11 C A 11

ZX

(x, z)

B{ C
2 [B 2 (C)']' }+ C F;(y, z) +13 C B FZY(y, z)

[A
2 (B)']' (p(t)).- C C A QYX(x, y) + ,z(t, z) - C[C,t(t, z)]t - C C

At this point we observe that we have, in fact, generated the general solution of

the conformal Killing vector equations (4.15)-(4.24). The timelike component XO

is given by (4.48), the spatial components Xl, X 2
, X 3 are given by (4.40)-(4.42)

and the conformal factor 'ljJ is given by (4.49). This solution is subject to the three

integrability conditions (4.50)-(4.52). The integrability conditions involve the func­

tions of integration F, Q, 11, et, (3" and p and the metric functions A(t), B(t) and

C(t). Ideally we would want to obtain the functional forms of F, (}, 11, Ci, (3" and

p explicitly or equations governing their behaviour. Due to the complexity of the

integrability conditions (4.50)-(4.52) we have not achieved this yet. However, we

do find a particular solution to equations (4.50)-(4.52), illustrating that the inte-

grability conditions have a nonempty solution set. In the remainder of this section

we investigate the integrability conditions in detail and obtain the aforementioned

particular solution.
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In the given form the equations (4.50)-(4.52) are difficult to analyse as they

are integral equations. We obtain differential equations from the integral equations

which govern the behaviour of F, Q and H. Differentiating equations (4.50)-(4.52)

with respect to x and y we obtain the following system of equations in the integration

function Q(x, y):

o

o

(4.53)

(4.54)

[A
2 (B)']'- - Q = 0

C A
(4.55)

Similarly, differentiating equations (4.50)-(4.52) with respect to y and z we obtain

the following set of equations for the function F(y, z):

B2

[ (C)']'Fyy-CB
B

F

o

o

(4.56)

(4.57)

(4.58)

On differentiating equations (4.50)-(4.52) with respect to x and z we obtain the

following system of equations for the function of integration H( x, z):

A2

[ (C)']'H xx - C A A H = 0
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(4.61 )

The differential equations (4.53)-(4.61) can be integrated to obtain the functional

dependence of :F, 9 and H. If a function of integration vanishes then the correspond-

ing system of three equations is identically satisfied. Conditions are placed on the

metric functions A(t), B(t) and C(t) if the function of integration is nonvanishing.

With the help of the conditions (4.53)-(4.61) we find that the integrability

conditions (4.50)-(4.52) reduce to the simpler form:

y (p(t)).
- B[Bf3t (t, Y)]t - B 13 + f3y(t, y) == 0

z (P(t)).- C[Cft (t, z)]t - C C + IZ(t, z) == 0

(4.62)

(4.63)

(4.64)

The functions of integration arising from equations (4.53)-(4.61), involving :F, 9 and

H, have been set to zero for convenience. In future work we intend to consider the

general case with nonvanishing functions of integration.
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Differentiating (4.62)-(4.64) with respect to x, y and z in turn gives systems

of equations in the functions of integration a, (3 and ,. For the function a(t, x) we

obtain the following system of equations

(4.65)

o

o

(4.66)

(4.67)

For the function (3(t, y) we have

o (4.68)

. Finally for the function ,(t, z) we obtain the system

(4.69)

(4.70)

(4.71 )

o (4.72)

We can integrate the above systems to obtain a(t,x),{3(t,y) and ,(t,z).
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The solution of equations (4.66)-(4.67) is of the form at == O. Then (4.65)

implies a xx == O. Thus the solution to the system (4.65)-(4.67) is given by

(4.74)

where a1 and a2 are constants. The solution of equations (4.69)-(4.70) is given by

/3t == O. Equation (4.68) implies /3yy == 0 so that the system (4.68)-(4.70) has the

solution

(4.75)

where /31 and /32 are constants. The solution of equations (4.72)-(4.73) is of the form

It == O. Then (4.71) implies IZZ == O. Hence the system (4.71)-(4.73) has the solution

I == ,1Z +'2 (4.76)

where 11 and 12 are constants. Note that the solutions (4.74)-(4.76) are valid only

if the functions A(t), B(t) and C(t) are not proportional to each other.

With the forms given by (4.74)-(4.76) we find that integrability conditions

(4.62)-(4.64) become

B(~}

cUJ = 11

(4.77)

(4.78)

(4.79)

which are essentially the reduced forms of the conformal Killing vector equations

(4.19), (4.22) and (4.24). Therefore with the restrictions (4.53)-(4.61) and the re­

quirement that functions arising from the integration of these equations vanish, we
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find that the integrability conditions (4.50)-(4.52) are satisfied. Consequently all the

conformal Killing vector equations (4.15)-(4.24) have been integrated. We note that

by introducing the transformation

we obtain the following solution to the system (4.77)-(4.79):

where Ao, Bo and Co are constants.

Thus the coupled system of equations (4.15)-(4.24) has the solution (4.40)­

(4.42), (4.48)-(4.49) subject to the conditions (4.53)-(4.61), (4.74)-(4.79). Collecting

the various results for easy reference we have the solution

B I!Y( ) C zA ~ x, y + A 'H (x, z) +QIX +Q2
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(4.83)

1/J - [A2(~)lgyX(X, y) + [A2(~)l1iZX(X, z)

- [B2(~)lpy(y, z) +p(t) (4.84)

subject to the following integrability conditions

B2[ (C)l (4.85)Fyy-CB B F = 0

C2 [B2 (C)l (4.86)Fzz + Jj C B F = 0

[~ (~)lF = 0 (4.87)

A2 [ (B)lQxx - B A A Q = 0 (4.88)

B2 [A2(B)lQyy + A B A Q = 0 (4.89)

[A
2
(B)1- - Q = 0 (4.90)C A

A2 [ (C)lHxx - C A A H = 0 (4.91 )

C2

[A
2(C)l 0 (4.92)Hzz + A C A H -
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o (4.93)

(4.94)

(31 (4.95)

/1 = c(~} (4.96)

Hence we have found the conformal Killing vector in the Bianchi I spacetime subject

to twelve integrability conditions. This solution holds when the functions of integra­

tion arising from (4.53)-(4.61) vanish. The conformal Killing vector (4.80)-(4.83)

with conformal factor (4.84), subject to the integrability conditions (4.85)-(4.96),

generalises the locally rotationally symmetric results of Moodley (1991). The exis­

tence of a conformal symmetry places restrictions on the metric functions A(t), B(t)

and C (t). It would be interesting to determine the effect of the conformal Killing

symmetry obtained on the Einstein field equations; this is an area of ongoing research.

4.5 Special Cases

In this section we consider special cases arising from the conformal Killing vector

solution (4.80)-(4.84). We can obtain the Killing vector of the spacetime (4.1) from

the conformal Killing vector solution (4.80)-(4.84) such that 'lj; = o. The following

are the restrictions on the functions of integration in order to obtain a Killing vector:

:F = 0
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9 0

H = 0

p = 0

With the above values the integrability conditions (4.85)-(4.96) are identically sat-

isfied. The components of the Killing vector X are given by

XO = 0

so that the Killing vector can be written as

a a ax = Q2- + (32- + 12-ax ay az

Clearly the Lie algebra of Killing vectors {;x' ;y' tz} of the Bianchi I spacetime may

be regained from our Killing vector X.

The homothetic vector of the spacetime (4.1) is obtained as a special case

of the solution of (4.80)-(4.84) such that 'ljJ,a = 0 f:. 'ljJ. For a homothetic vector the
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functions of integration satisfy:

F 0

9 0

1i 0

p == 'ljJt + f)

where f) is a constant. The integrability conditions (4.85)-(4.93) are identically sat-

isfied, and equations (4.94)-(4.96) restrict the metric functions:

A 'ljJ - a1
-
A 'ljJt + f)

B 'ljJ - /31
-
B 'ljJt + f)

C 'ljJ - ~Y1
-
C 'ljJt + f)

Therefore the existence of a homothetic vector places the following restrictions on

the gravitational field:
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where fh, ()2 and ()3 are constants resulting from the integration process. The com-

ponents of the conformal vector X become

so that we can write

for the homothetic vector. The nonvanishing conformal factor is given by

VJ=p

where VJ is a constant.

The homothetic Killing vector places restrictions on the metric functions

A(t), B(t) and C(t) unlike the case of the Killing vector. Note that the line element

(4.1) becomes

where we have set
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for the homothetic vector X. This line element satisfies the vacuum Einstein field

equations (4.11 )-(4.14) if

Pl +P2 +P3 1

222 1Pl + P2 + P3 =

Consequently we have generated the Kasner solution. We have established that the

only homothetic vector X admitted by the Bianchi I spacetime is contained in the

familiar Kasner solution.

In order to obtain a special conformal Killing vector of the spacetime (4.1)

from the conformal Killing vector solution (4.80)-(4.84) we require that VJjab = 0 -:j:;

VJ,a' Then the equations VJ,l2 = 0, VJ,l3 = 0, VJ,23 = 0 place the following restrictions

on the functions of integration in order to obtain a special conformal Killing vector:

:F = 0

9 0

1-{ 0

p = VJ

These equations imply that VJ is a function of time. However in addition we have

VJxx = AAVJt which implies that VJ is a constant. Thus the special conformal Killing

vector reduces to a homothetic vector. Therefore the Bianchi I spacetime does not

admit a proper special conformal Killing vector.
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4.6 Some Other Cases

It is difficult to analyse the conformal Killing vector solution in the form given by

equations (4.80)-(4.84). In an attempt to sin1plify the solution we place restrictions

on the functions of integration :F, Q and 'H. We discuss two such restrictions below.

CASE I: F=Q='H=O

In this case equations (4.80)-(4.84) reduce to

XO = p(t)

VJ = p(t)

The integrability conditions (4.85)-(4.93) are identically satisfied. The remaining

conditions (4.94)-(4.96) yield

A(t) = Ao[Rexp (atR)]-t
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as indicated previously. Note that since etb fi1 and 11 are unequal in general the

metric functions A(t), B(t) and C(t) are not proportional to each other.

Setting p = et1 = fi1 = 11 = 0 in the above solution we regain the Killing

vector. With the conditions et1 = fi1 = 11 = 0 and requiring that p is linear in t

we obtain the homothetic vector. We may also obtain our previous result on special

conformal Killing vectors from the above solution by requiring that 'lfJjab = 0 i= 'lfJ,a'

CASE II:

We can show that for this case the conformal Killing vector solution becomes

where J1' J2 and J3 are constants. The functions of integration F i= 0, 9 =J. 0

and 1-l =J. 0 take a simple form in this class of solutions. These may be compactly

expressed as follows

F = U1 exp {yJ-J1.:12 +izJ-J2J3} +b1exp {yJ-J1J2 - izJ-J2J3}

+ Cl exp {-yJ-J1J2 +izJ-J2J3 } +d1exp {-yJ-J1J2 - izJ-J2J3}
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9 a2 exp {XV:11:1a + iYV:11:12} +b2exp {XV:11:1a - iyV:11:12}

+ C2 exp {-xV:1t:Ta + iYV:11:12} + d2exp {-xV:11:1a - iYV:11:12}

1i aa exp {XV:11:1a +iZV-:12:1a} +baexp {XV:11:1a - iZV-:12:1a}

+ Ca exp {-xV:1t:Ta + iZV-:12:1a} + daexp {-xV:11:1a - iZV-:12:1a}

notation to represent our solutions. The above solutions may be equivalently ex-

pressed in terms of elementary functions. The constants :11,:12 and :13 are specified

by

_ A2 (C)':13 - - -
B A

and as for the conformal Killing vector solution we require

/1 c(~}
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which reduces to

where R(t) was defined previously. Substituting these particular forms of the metric

functions into the equations defining the constants :71,:72 and :73 we find that a1 ==

(31 == T1 == 0 which implies that :71 == :72 == :73 == O. This in turn implies that the

metric functions are proportional to one another and that :F, g, 11 are constants.

Thus for this case our Bianchi I model has degenerated into a spacetime of higher

symmetry viz. the Robertson-Walker model.
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5 Conclusion

The study of conformal symmetries and their relationship to exact solutions of the

Einstein field equations has generated much interest recently. In this thesis we stud­

ied the kinematical and dynamical properties of spacetimes that admit a conformal

symmetry in general relativity. We analysed the Einstein field equations, for neutral

matter and charged matter, with a conformal symmetry. In particular we found

explicitly the conformal symmetries in the spatially homogeneous and anisotropic

Bianchi I spacetime which is often utilised as an anisotropic cosmological model.

The equations obtained were general and we regained the work of other authors as

special cases.

In chapter 2 we briefly introduced aspects of differential geometry necessary

for later sections. We discussed the concept of a differentiable manifold. Vector

fields and tensor fields were then introduced on the manifold. The covariant and Lie

derivatives were defined and their properties discussed. Curvature was introduced via

the Riemann tensor, and the Einstein field equations for both neutral and charged

matter were motivated. We considered those aspects of Lie theory necessary for

the development of conformal symmetries in later chapters. Lie algebras and Lie

groups form the basis of the study of conformal symmetries. Finally we defined the

conformal Killing vector which imposed the condition o(a conformal symmetry on

the manifold.
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We investigated the effect of a conformal symmetry on the Einstein field

equations in chapter 3. The results obtained were general because we did not specify

a particular form of the metric tensor field. We considered the Lie symmetry in

the general case of an imperfect energy-momentum tensor for neutral matter. The

Lie derivatives of the kinematical quantities along a conformal Killing vector were

derived. Then we found the Lie derivative of the general energy-momentum tensor.

The Lie derivatives of the dynamical quantities were then found by considering the

Einstein field equations with nonzero cosmological constant. Results found previ­

ously were regained as special cases of our solution. We obtained the Lie derivative

of the electromagnetic energy-momentum tensor, thereby extending our results to

charged matter. We also reviewed previously published results on conformal Killing

vectors and other symmetries.

In chapter 4 we analysed the conformal geometry of the Bianchi I space­

time. We studied the spacetime geometry and derived the Einstein field equations

with vanishing cosmological constant. The conformal Killing vector equation was

explicitly solved to obtain the conformal Killing vector and the conformal factor, the

solution being subject to integrability conditions that relate the functions of inte­

gration to the metric functions. We showed that these conditions have a nonempty

solution set by obtaining a particular solution when certain functions of integration

vanish. The results obtained generalise the conformal Killing vectors of the locally

rotationally symmetric model studied by Moodley (1991). The conformal solution

found contains the three Killing vectors of Bianchi I spacetime. We obtained the

homothetic vector as a particular case from the conformal solution. From the inte­

grability conditions we found the functional dependence of the metric functions and

established that the only homothetic vector admitted by the Bianchi I spacetime is
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contained in the vacuum Kasner solution. The Bianchi I spacetime does not admit

a proper special conformal Killing vector. We also considered some other cases by

placing restrictions on the three functions of integration.

To summarise, we studied the effect of the existence of a conformal sym­

metry on the Einstein field equations and obtained the conformal Killing vectors in

the anisotropic Bianchi I spacetime. The equations for neutral matter obtained in

chapter 3 should be extended by finding an analogue of the system (3.28)-(3.34) for a

charged fluid satisfying the Einstein field equations. It would be interesting to study

the kinematics and dynamics of this general case. Also the integrability conditions,

obtained in chapter 4, should be solved in general. In addition the physical properties

of the Bianchi I spacetime admitting the conformal Killing vector should be studied

further. This would involve an analysis of the nonlinear Einstein field equations in

this spacetime. An analysis of other symmetries in the Bianchi I spacetime and other

Bianchi models should also be pursued. However this would not be a simple matter

as the equations involved are extremely complicated.

We believe that this thesis represents the first attempt to solve the con­

formal Killing vector equation in the Bianchi I spacetime. We hope that we have

demonstrated that the study of symmetries is a fertile area of research and that fur­

ther investigation of symmetries in the Bianchi I spacetime and other models should

be pursued.
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