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ABSTRACT 

Mitochondria perform functions which are central to the life of most eukaryotic cells. 

These organelles can be considered the ultimate energy power house of a living cell. The 

role of mitochondria in cancer phenotype remains a fertile area of research. Several 

carcinogens are known to enter the mitochondria, resulting in impaired functioning and 

altered structure. Aflatoxin BI (AFB1) a primary type I mycotoxin elaborated by 

Aspergillus flavus and Aspergillus parasiticus, is carcinogenic for a wide species range. 

The epoxide is capable of binding to nucleic acids and proteins, resulting in induced 

mutations, cellular toxicity, and eventually carcinogenesis. 

Approximately 250 000 deaths occur annually in both China and Africa due to patients 

presenting with Hepatocellular Carcinoma (HCC). The causative agents being AFB 1-

ingestion via contaminated foods and feeds, and the Hepatitis B Virus infection. The 

toxin has a multifaceted mode of attack, capable of being activated to a highly reactive 

and carcinogenic derivative, the AFBl-8,9-epoxide, via the cytochrome P450 enzyme 

system of the microsomes, endoplasmic reticulum and also the mitochondria. The 

epoxide is capable of binding to nucleic acids and proteins, reSUlting in the formation of 

covalent adducts. The repeated occurrence of gold labelled toxin within mitochondria 

from hepatomas of patients presenting with HCC suggested that these organelles were 

direct sites of toxin binding. 

Despite observations that mitochondria appear as direct and perhaps preferential 

targets for attack by AFBI, the actual in vivo immunolocalisation and 

characterisation of bound AFBI within liver mitochondria has not been reported 

previously . 



In addition the role of AFB1-protein binding within mitochondria was investigated 

to determine the mode of action of the toxin, within the mitochondrial system. 

Liver sections from rats treated with a single lethal dose of AFB1, showed distinct 

ultrastructural abnormalities viz. large nuclei, increased heterochromatin, and swollen 

mitochondria. Immunocytochemistry revealed for the first time, the selective localisation 

of conjugated gold labelled toxin within the mitochondria. Toxin was found in the 

intracristal and peripheral spaces and frequently within the mitochondrial matrix. The 

mitochondria isolated from treated rats revealed significant alterations and damage to the 

mitochondrial membranes. The cristae were also markedly swollen with the associated 

clearing of the mitochondrial matrix. 

Western blot immunoassays revealed the presence of five AFB1-bound proteins (150kDa, 

50kDa, 25kDa, 18kDa, 14kDa) in the inner mitochondrial fraction of isolated 

mitochondria. High pressure liquid chromatography also revealed that a significant 

proportion (84%) of an initial dose of toxin, was absorbed by mitochondrial protein. This 

study is the first to show the presence of specific mitochondrial proteins involved in toxin 

binding. In addition, the presence of toxin within the mitochondria and the specific 

binding to inner mitochondrial proteins suggest that the toxin specifically targets the 

electron transport chain and hence effects ATP production. 

This study conclusively indicates that mitochondria are direct targets for attack by 

AFBl during experimental carcinogenesis. Mitochondria therefore play an 

important role in AFB}-mediated carcinogenesis. 
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CHAPTERl 

INTRODUCTION 

Every living organism lives its' life with an adequate means of assuring survival. 

Their individual protective mechanisms that inherently support survival are often complex 

and scientifically elegant. The consequences however, of the action of one organism on the 

environment, and on others in the same biome, even though unintentional, may have adverse 

and often severely deleterious and hazardous effects. 

Aflatoxin BI (AFBI) is a carcinogenic secondary metabolite elaborated by pathogenic 

fungi such as Aspergillus flavus and Aspergillus parasiticus, fungi that are ubiquitous, and 

commonly found on poorly stored foods and feeds. Aflatoxin BI synthesis has no obvious 

physiological role in primary growth and metabolism of the organism and therefore it is 

considered a "secondary" process (Malik, 1982). To date, no biological role for aflatoxin BI 

in the ecological survival of the fungal organism has been confirmed. However, since AFBI 

is toxic to certain potential competitor microbes in the ecosystem (Detroy et al., 1971), a 

survival benefit to the producing fungi is implied. 

Based on its potent teratogenecity, mutagenecity, carcinogenecity and wide-spread 

occurrence in foods and feeds, the International Agency for Research on Cancer (IARC) has 

classifiedAFB1 as a Primary Type I carcinogen in humans and animals. 

Society as we know it, has advanced to such extents that man has adequately found 

measures to protect against winds, floods, storms and fires. He has even created light and 

electricity to cook, to warm and to insulate, to cool, refrigerate and preserve. Yet despite 

these advances in technologies, the majority of the world does not yet have access to them. 
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Aflatoxin BJ is thus a major public health concern, especially in poorly developed 

countries and areas, where long term food storage is often inadequate, and where high 

temperatures and humidity stimulate the growth of fungal moulds. Dietary contamination of 

foods with AFBJ will inevitably result in several adverse human and animal health effects. 

Despite intensive research on aflatoxin BJ (at least 4000 research articles) that have 

described exposure, toxic effects, and mechanisms of action, its exact role in toxin mediated 

carcinogenesis is sti11largely unknown. 

The united efforts of researchers from a broad research field, with culminated ideas 

from disciplines like molecular biology, biochemistry, physiology, microbiology, botany and 

basic science, are indeed necessary for a more coherent picture of this carcinogen and its 

mode of action in human and animal systems. 
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1.1 Objectives 

Aflatoxin B \, the most potent and carcinogenic of all mycotoxins was selected for this 

study. Recent studies at the Mycotoxin Research Unit (University of Natal) have shown the 

presence of AFBI in the liver tissues from patients presenting with Hepatocellular Carcinoma 

(HCC) at King Edward VIII Hospital, Durban. Biopsies taken from hepatomas from these 

patients, revealed the presence of toxin in several organelles, including the nucleus, 

endoplasmic reticulum and mitochondria. The repeated occurrence of AFBI-gold labelled 

conjugates within the liver mitochondria from these patients, observed in our laboratories, 

suggested that these organelles were principle sites of toxin binding. 

With these observations in hand, the effect of the toxin on rat liver tissues, isolated 

mitochondria and sub-mitochondrial particles was examined. In addition, the ultrastructural 

changes in isolated mitochondria, during AFB\ toxicity was examined. The transport of AFBI 

within the liver and into the mitochondria was investigated, with particular interest in AFB 1-

binding mitochondrial proteins that may be involved in AFB\ mediated toxicity in the liver. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

"Microscopic, unassuming, and insignificant ", these are the words that could often 

describe the rather troublesome and inconvenient presence of pathogenic fungi such as 

Aspergillus flavus and A. parasiticus. Deadly cytotoxic killers that prey silently on thousands 

of ignorant, and innocent people and animals, all over the world. These are the mycotoxins, a 

group of highly toxic, carcinogenic and mutagenic metabolites elaborated by fungi such as A. 

flavus and A parasiticus. 

These compounds result in toxicity to humans and to a variety of other animal species, 

when contaminated food supplies are ingested. Since the discovery of these molecules in 

1960, as the result of acute toxicity of poultry from contaminated food supplies, and their 

subsequent evaluation as carcinogens to rodents (Lancaster et al., 1961), aflatoxins have been 

internationally recognised as potent environmental toxicants and carcinogens to many species 

(IARe, 1976, 1987; WHO, 1979, Newborne and Butler, 1969). These widely disseminated 

environmental carcinogens cause liver parenchymal tumours as well as tumours at several 

other organ sites including the colon (Wogan and Newborne, 1967), glandular stomach 

(Butler and Bames, 1966) and kidney (Epstein et al., 1969). Although several aflatoxin 

metabolites and congeners have been tested for their carcinogenecity, aflatoxin Bl (AFBl) is 

the most potent (Hsieh et al., 1984). 

Aflatoxin Bl is a procarcinogen that must be activated metabolically to the AFBl-8,9-

epoxide (AFBO), the putative ultimate carcinogen. Gamer et a/., (1972) were the first to 

show that metabolic activation of aflatoxin was necessary for mutagenic activity. Indeed, the 

bioactivation of AFBl has been demonstrated as a necessary step in the most dramatic of its 

toxic and carcinogenic effects. Figure 2.1 shows the biotransformation pathways for AFBl. 
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Figure 2.1 
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Biotransformation pathways for Aflatoxin BI (Eaton and Groopman, 1994). 

In addition to the recognised pathways of aflatoxin bioactivation, metabolic 

detoxification of aflatoxins and their reactive metabolites have also been demonstrated. An 

important detoxification mechanism involves the conjugation of the reactive epoxides with 

gluthathione (GSH). The conjugation of GSH is an important reaction in determining the 

susceptibility of different species to the toxic effects of AFB j (Hayes et al., 1991). 

This conjugation reaction is mediated by cytosolic glutathione S-transferase (Rams dell 

and Eaton, 1990). A most striking species difference in GSH conjugation of AFB j -8,9-

epoxide has been observed in the mouse and the rat (Quinn et al., 1990). Although the mouse 

has a very high microsomal AFB j epoxidation activity (Monroe and Eaton, 1987), the species 

is very resistant to AFB j induction of tumours. The very high level of glutathione S­

transferase activity toward AFBO in the mouse appears to be the basis of its own resistance. 
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As shown schematically in Figure 2.2, the fate of AFB\ is dependent on the relative 

activity of several biotransformation pathways, in addition to other factors such as DNA 

repair rates. The amount of the mycotoxin that is going to exert carcinogenic or toxic effects 

will depend on the amount converted to various metabolites, as well as on the biological 

activity of those metabolites. 

Figure 2.2 
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Schematic representation of the role of various biotransformation pathways in the 
disposition, toxicity, and carcinogenecity of aflatoxin B. (Eaton and Groopman, 1994). 
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2.2 ABSORPTION AND BIOLOGICAL ACTIVITY OF AFLATOXIN Bl 

Aflatoxin Bl is a relatively low molecular weight, lipophilic molecule, suggesting its 

efficient absorption after ingestion (Eaton and Groopman, 1994). Wogan et al. (1967) 

reported no significant difference in the excretion and distribution of radioactivity after either 

oral or intraperitoneal (ip.) administration of [14C]AFBl in male Fischer rats (125g). This 

implied that absorption after oral exposure was complete. 

Aflatoxin Bl appeared to be absorbed rapidly from the small intestine into the 

mesenteric venous blood. In an experiment with Wistar rats, Kumagai (1989) injected 

eH]AFBl, directly into the stomach and into various sites of the small intestine of rats and 

measured radioactivity in the bile after 30 minutes. The results indicated that the site of 

absorption was the small intestine, the duodenum being the most efficient absorption site. 

From the intestine, AFBl apparently enters the liver through the hepatic portal blood supply 

(Wilson et al., 1985). The toxin was concentrated heavily in the liver, not only after oral 

administration but after intravenous and ip. dosing as well. This occurs because of the high 

permeability of the hepatocyte membrane for AFB1, and its active metabolism and subsequent 

covalent binding with hepatic macromolecules (Eaton and Groopman, 1994). 

According to several authors, most of the AFBl retained in the liver, several hours 

after dosing, was bound irreversibly to tissue macromolecules. Holeski et al., (1987) found 

that 2 hours after AFBl administration (0.25 mg/kg, ip.), 15% remained in the liver. Of the 

radioactivity in the liver, 12% constituted polar metabolites, 3% nonpolar metabolites, and 

70% covalently bound adducts. Wong and Hsieh (1980) reported that 100 hours after 

[14C]AFBl dosing, 6.5% of the administered dose was retained in the rat liver. 
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2.2.1 Acute Hepatotoxicity of Aflatoxins 

It is now apparent that the principal target organ in susceptible mammalian, avian and 

fish species is the liver. Acute structural and functional damage to the liver, as a result of 

AFBr toxicity, has been reproduced experimentally in most laboratory animals and in several 

domestic animal species. Numerous outbreaks of human acute aflatoxicosis involving liver 

failure and gastrointestinal bleeding have occurred in Southeast Asia and Africa 

(Massey et al., 1995). 

Further, extensive studies in a large population of mainland Chinese has confirmed 

significant exposure to aflatoxin Br, and a relationship of this exposure to liver cancer seems 

likely (Yeh et al., 1989). Such exposure is associated with a high incidence of hepatocellular 

carcinoma, but the extent to which concomitant hepatitis B virus (HBV) infection is involved 

is not known. It is however estimated that approximately 250,000 deaths occur annually in 

certain parts of China and sub-Saharan Africa due to hepatocellular carcinoma (Kensler et al., 

1994). 

The major contributors to this high rate of hepatocellular carcinoma included both 

aflatoxin ingestion and HBV infection. Evidence of acute aflatoxicosis has also been reported 

from Taiwan and Uganda (Shank, 1981) and is characterised by vomiting, abdominal pain, 

pulmonary edema, fatty infiltration and necrosis of the liver. An outbreak of aflatoxin 

poisoning in western India was also described (Shank, 1981), arising from the consumption of 

heavily mouldy corn. Specimens analysed showed 6-16mg AFBr/kg corn. Of the nearly 400 

patients examined, over 100 fatalities occurred. Liver specimens revealed marked 

parenchymal cell necrosis and extensive bile duct proliferation, lesions that are often seen in 

experimental animals after acute aflatoxin exposure. 
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2.2.2 Role of Aflatoxin-DNA adducts in the cancer process 

Aflatoxin B. reacts in vivo with the DNA in target cells to give primarily trans-8,9-

diliydro-8-(N7-guanyl)-9-hydroxyaflatoxin B. (Figure 2.3), (Bailey, 1994). The presence of a 

po~itive charge on the imidazole portion of the initial N7 -guanyl adduct (Figure 2.3), gives 

ris~ to a ring-opened fonnamidopyrimidine (F APY) derivative with some distinct 

c~omatographic behaviour (Croy and Wogan, 1981). Accumulation of this derivative is time 

dependent, nonenzymatic, and of some potential biological importance, because of its 

apJ arent persistence in DNA. Aflatoxin-DNA adduction is far greater in the liver than in 

oth~r organs. The level of liver DNA adduction per unit AFB\ dosage generally correlates 

witb ~pecies susceptibility (Cole et al., 1988). . 
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2.2.3 Interaction with Proteins 

The binding of aflatoxins to proteins has received a great deal of attention. Proteins 

that bind aflatoxins reversibly may act as reservoirs of the toxin, prolonging toxin exposure, 

or they may serve as carriers in the transport of reactive metabolites (Mclean and Dutton, 

1995). Mainigi and co-workers (1977) described several aflatoxin-protein complexes present 

in the liver cytosol during AFBJ induced hepatocarcinogenesis. Histones, nuclear non-histone 

proteins, albumin, and several other unknown proteins are reported as AFBJ-binding proteins 

(Iwaki et al., 1993). 

However the roles of these proteins in AFBJ mediated carcinogenesis and toxicity are 

largely unknown. There is evidence that some AFBJ molecules become cytoplasmically 

bound to molecules destined for the nucleus (Mclean and Dutton, 1995, Ch'ih et a!., 1993). 

These researchers have classified these proteins as specific cytoplasmic binding proteins. It is 

proposed that AFBJ, on entering the cell, is translocated in a non-covalently bound form (by 

these cytoplasmic binding proteins) to microsomes for activation by microsomal enzymes, to 

form the highly reactive 8,9-epoxide. 

The majority of the epoxide is detoxified and rapidly removed from the cell as water­

soluble polar metabolites. A portion of the activated AFBJ is translocated to various 

subcellular sites where covalent bonding occurs, first to cellular macromolecules like the 

rough endoplasmic reticulum, and then later to the nucleus, and finally to the mitochondrion 

(Mclean and Dutton 1995). 
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2.3 AFLATOXIN Bl IN THE MITOCHONDRION 

The presence of AFBl within liver mitochondria has been well documented (Wu et al., 

1984, Niranjan et al., 1986, Obidoa, 1986). The actual in vivo disposition of the toxin in 

human and animal liver, however, has not yet been deduced. At acute aflatoxin exposure 

levels, inhibition of cellular energy production is a major metabolic effect (Mclean and 

Dutton, 1995). 

2.3.1 The Mitochondrion 

Mitochondria are respiratory organelles that constitute about 20% of the cytoplasmic 

volume of liver cells (Hinke, 1994). Their primary function is electron transport, linked to 

adenine triphosphate (ATP) synthesis (oxidative phosphorylation). Mitochondria can be 

considered the ultimate power house of a cell, and contain the enzymes of the tricarboxylic 

acid cycle, fatty acid oxidation, and oxidative phosphorylation (Table 1). Other functions in 

liver cells include parts of the urea cycle, gluconeogenesis, fatty acid synthesis pathways, and 

the regulation of intracellular calcium ion concentrations (Hinke, 1994). 
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Table 1. Location of liver mitochondrial enzymes (Hinke, 1994) 

Outer membrane 
Monomine oxidase 
Cytochrome bs reductase 
Cytochrome bs 
Kynurenine hydroxylase 
Pore protein 
Phospholipase A2 
Lysophosphatidate acyltransferase 
Glycerophosphate acyltransferase 
Acyl CoA synthetase 

Intermembrane space 
Adenylate kinase 
Nuc1eosidediphosphate kinase 
DNAse I 
Sulphite-cytochrome c reductase 
D-Xylulose reductase 
Cytochrome c 

Inner membrane 
FoFJ ATPase (ATP synthase) 
NADH-CoQ reductase (complex 1) 
Succinate-CoQ reductase (complex II) 
Glycerol-3-phosphate-CoQ reductase 
Electron transferring-flavoprotein CoQ reductase 
Choline-CoQ reductase 
Proline-CoQ reductase 
CoQHrcytochrome c reductase (complex III) 
Cytochrome c 
Cytochrome c oxidase 
3-hydroxybutyrate dehyrogenase 
Transhydrofenase 
Inorganic pyrophosphatase 
Carnitine palmitoyltransferase 
Transporters for the following substrates: 
A TP-ADP antiport 
Phosphate-OH antiport 
Tricarboxylate-malate antiport 
Pyruvate-OH antiport 
Glutamate-OH antiport 
Glutamate-aspartate antiport 
a -Ketoglutarate-malate antiport 
L-Ornithine-proton antiport 
Citrulline uniport 
Acyl carnitine-carnitine anti port 
Calcium ion uniport 
Calcium-proton antiport 
Sodium, potassium-proton antiport 
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Matrix 
Tricarboxylic acid cycle 
Pyruvate dehydrogenase 
Citrate synthase 
Aconitate hydratase 
Isocitrate dehydrogenase 
a-Ketoglutarate dehydrogenase 
Succinyl-CoA synthetase 
Fumarate hydratase 
Malate dehydogenase 

Urea cycle enzymes 
Carbomyl-phosphate synthase 
Ornithine carbamoyltransferase 
Fatty acid oxidation 
Acetyl-CoA synthetase 
Acyl-CoA synthetase 
Acyl-CoA dehydrogenase 

Enoyl-CoA hydratase 
Enoyl-CoA isomerase 
3-Hydroxyacyl-CoA dehydrogenase 
Acetyl-CoA acetyl transferase 
Acetyl-CoA acyl transferase 
Electron-transferring flavoprotein 
Other matrix enzymes 
Fatty acid elongation system 
Aspartate aminotransferase 
Aldehyde dehydrogenase 
Dimethylglycine dehydrogenase 
Sarcosine dehyrogenase 
Glutamate dehydrogenase 
Hydroxymethylglutaryl-CoA lyase 
Hydroxymethylglutaryl-CoA synthase 
Nuc1eosidediphosphate kinase 
Phosphoenolpyruvate carboxikinase 
Pyruvate carboxylase 
Aminoacyl-tRNA synthetases 
DNA polymerase 
Elongation factors 
Polyriboadenylate polymerase 
RNA polymerase 
Ribosomes 
Propionyl-CoA carboxylase 
Methylmalonyl-CoA Mutase 
Methylmalonyl-CoA racemase 



2.3.1.1 ;Basic Structure 

The apparent structure of mitochondria in situ. revealed by thin sectioning depends on 

the type of cell in which the mitochondria occur, and on the physiological state of the cell. 

Within these limits, all mitochondria can be referred to by a general pattern. 

Each mitochondrion consists of a limiting or outer membrane within which IS a 

peripheral inner membrane, which in turn, encloses an inner space called the matrix. The 

matrix is rich in protein and also contains DNA and RNA. In a great number of cell types, the 

mitochondrial matrix exhibits rounded electron-dense granules rich in cations such as calcium 

and magnesium (Munn, 1974, Rinke, 1994). Lying in the matrix are a variable number of 

membranous structures called cristae, which appear either free, or as invaginations of the 

inner membrane (Figure 2.4). Most often , the cristae contain a space known as the 

intracristal · space. There is also a space between the outer and inner membrane, known as the 

peripheral or intermembrane space (Figure 2.4). 

I ntermembrane space 

Matrix 

Inner mer:nbrane 

Figure 2.4 Diagrammatic representa_tion of a section through a mitochondrion (Munn, 1974). 
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The inner membrane from rat liver can be separated from the outer membrane by 

treatment with digitonin, which breaks up the latter because it contains cholesterol. The 

resulting inner membrane may be intact, in which case it is known as a mitoplast, or inner 

membrane fragments may result, called sub-mitochondrial particles (SMP's). 

Electron microscopy reveals numerous knobs (arrows) attached to the outside surface 

of the inner membrane. These knobs have been identified as a complex of proteins with ATP 

synthase activity (Figure 2.5). 

Figure 2.5 
I 

Formation of submitochondrial particles by disruption of the cristal membrane. The 
outer membrane and inner boundary membrane are also disrupted, thus releasing the 
submitochondrial particles into the suspending medium (Munn, 1974). 
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2.3.1.2 Protein composition 

Quantitatively, the most important component of mitochondria is water. 'Water is 

absent from only certain small regions inside some proteins and membranes. The bulk of the 

dry mass of mitochondria is composed of protein. Schnaitman and Greenawalt (1968) have 

calculated that the matrix of rat liver mitochondria contain 67% of the total mitochondrial 

protein, the intracristal and peripheral spaces 6.3%, and the inner and outer membrane 21.3% 

and 4% respectively. According to Munn (1974), the proteins of the inner membrane of rat 

liver mitochondria can be resolved into at least 23 components; both the inner and outer 

membranes contain major proteins in the range of 50-70,000 Da, however, no individual 

proteins account for more than 10-15% of the total. The bulk of the protein generally 

represent enzymes (Table 1). 

2.3.1.3 Lipids, metal ions, nucleotides and other anions 

The lipid content of mitochondria from different organs varies substantially, but in all 

cases phospholipid accounts for over 75% of the total. The most commonly encounted 

phospholipids are phosphatidylcholine and phosphotidylethanolamine. The lipid composition 

of rat liver mitochondria is listed in Table 2. 

Table 2. Lipids of rat liver mitochondria (Munn, 1974). 
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Rat liver mitochondria contain several metal ions including potassium (83-160 

nmoles/mg protein), magnesium (20-50 nmoles/mg protein), sodium (3-75 nmoles/mg 

protein) and calcium (l0-33 nmoles/mg protein). Smaller amounts of zinc, iron, manganese 

and copper have also been reported (Munn, 1974). Mitochondria from a variety of organs in 

the rat have been shown to contain adenine nucleotides, and relatively smaller amounts of 

guanine, cytidine and uridine nucleotides. Other anions found in mitochondria include 2-

glycerophosphate, phosphoenolpyruvate, citrate, malate, and sulphate (Munn, 1974). 

2.3.2 Import of proteins into various sub-mitochondrial compartments 

More than 90% of all mitochondrial proteins are coded for by the nucleus (Hartl et al., 

1989; Hay et al., 1984, Hartl and Neupert, 1989). These proteins are synthesised as precusor 

proteins on free cytosolic polysomes and are post-translationally imported into one of the four 

submitochondrial compartments, viz., the outer membrane, the intermembrane space, the 

inner membrane and the matrix. Experiments conducted in several laboratories have given us 

a basic understanding of how mitochondria integrate the many proteins synthesised in the 

cytosol (Hay et al., 1984, Pon et al. 1989, Hinke, 1994, Hartl and Neupert, 1989). 

Incorporation of cytoplasmically synthesised proteins into mitochondria can be 

divided conceptually into five steps (Hay et al., 1984). 

1) Synthesis of the polypeptide itself, usually a larger precursor. 

2) Recognition and binding of the precursor to the mitochondrial surface. 

3) Translocation of the precursor across or into one or both mitochondrial 

membranes, depending on the fmal suborganellar localisation of the 

protein. 

4) Cleavage and/or other covalent modification (processing ofthe 

polypeptide chain to the mature protein). 

5) Assembly of subunits to functional holoenzymes, which in some cases 

involves an association with mitochondrially made subunits. 
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2.3.2.1 Binding of precursors to specific receptors of the outer membrane 

Several lines of evidence suggest that proteinaceous receptors at the surface of 

mitochondria are involved in specific recognition of precursor proteins. According to Hay et 

al., (1984), if import of a mitochondrial protein is mediated by a receptor, then this receptor 

should: 

a) be exposed at the cytoplasmic face of the outer membrane, sp that it is 

accessible both to newly synthesised precursors, and to factors which 

modify the receptor-precursor interaction. 

b) bind precursors even when their subsequent translocation and/or assembly 

is prevented. 

c) satisfy rapid and reversible binding, receptor-ligand interactions. 

d) serve an obligate role in the import pathway. 

Our current knowledge of precursor protein binding and recognition, involves at least 

four different classes of import receptors, i.e., for porin, the ADP/ATP carrier, Fl ATPase 

subunit ~ and cytochrome c. These receptor sites are protease accessible and converse at a 

common membrane insertion site, referred to as a general insertion protein (GIP) in the outer 

membrane. Pfaller et al., (1988) believe that GIP facilitates membrane insertion. Proteins of 

the matrix, inner membrane and intermembrane space (e.g. Fl ATPase subunit ~, ADP/ATP 

carrier and cytochrome b2 respectively) are directed into translocation sites between the outer 

and inner membranes (HartI and Neupert, 1989). 

17 



Morphologically described translocation contact sites between outer and inner 

membranes have been known for a number of years (Moynagh, 1995). Schleyer and Neupert 

(1985) used several immunological techniques to accumulate precursor proteins in 

translocation contact sites, thus experimentally demonstrating their importance in protein 

translocation. 

Pfanner et al., (1987) showed that the transport of precursor proteins occurred through 

a hydrophilic membrane, since translocation intermediates spanning the contact sites, were 

easily extractable with hydrophilic perturb ants , such as urea. Import into the mitochondrial 

matrix and inner membrane, unlike import into or across the outer membrane, requires an 

electrochemical potential across the inner membrane (Hay et al. , 1984). 

Completion of the translocation into the inner membrane or matrix however, is 

independent of membrane potential, but dependent on the presence of nucleoside 

triphosphates, which according to Hart and Neupert (1989), appear to be required for the 

unfolding of precursor portions still outside the mitochondrion. 

2.3.2.2 Proteolytic processing of translocated mitochondrial precursors 

During or shortly after their translocation, many mitochondrial precusor proteins 

undergo some form of covalent modification. According to Hay et al., (1984) the most 

frequent modification is proteolysis. Mitochondrial precusor proteins with amino-terminal 

presequences undergo either one or two separate proteolytic cleavages during their 

maturation. The first occurs in the matrix, and is mediated by a neutral, chelator-sensitive 

protease. 

This enzyme has been shown to be highly active at neutral pH, and is strongly 

inhibited by a variety of chelating agents, including EDT A and GTP. The enzyme was also 

insensitive to serine protease inhibitors, small polypeptide protease inhibitors, and sulfhydrol­

modifying agents such as iodoacetamide (Hay et al. , 1984). Bohni et al., (1983) and McAda 

and Douglass (1982) used partially purified preparations of the enzyme to determine its 

substrate specificity, as well as some physical characteristics. 
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These workers found that in the crude submitochondrial extract, the partially purified 

enzyme shows a narrow substrate specificity. Five mitochondrial precursors have been 

reported to be cleaved to their mature intramitochondrial forms in two discrete steps. The 

first cleavage, mediated by matrix protease yields a form of each protein which migrates 

electrophoretic ally between the precusor and the mature forms (Hay et al., 1984). 

These intermediates appear to be firmly bound to the mitochondrial inner membrane, 

protruding into the intermembrane space. The second cleavage, converts these intermediates 

to their mature forms. This takes place on the outer surface of the inner membrane. 

2.3.2.3 Assembly of processed proteins into functional units 

The final step in the import pathway is the assembly of cytoplasmically made 

polypeptides into functional forms within the mitochondrion. As yet, no research has directly 

demonstrated the proper assembly of newly imported subunits into complex forms in the 

mitochondrion. Mitochondrial protein import involves a process with more variations than 

one might anticipate. The entire process however, can be summarised in Figure 2.6. 
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Figure 2.6 
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Pathway for import of proteins into mitochondria 
MIM, mitochondrial inner membrane protein; MOM, mitochondrial outer 
membrane protein. The numbers represent the molecular weights of each protein 
(adapted from Moynagh, 1995). 
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Basically, mitochondrially targeted proteins are synthesised on cytosolic ribosomes as 

preproteins which possess positively charged signal sequences at their N-termini. These 

preproteins are guided by cytosolic chaperones and mitochondrial outer membrane receptors 

to the outer membrane translocation complex, which is present in contact site regions. This 

hetero-oligomeric complex spans the outer membrane and may form a translocation pore. 

Several polypeptide subunits of the complex have been identified. These include 

mitochondrial outer membrane proteins MOM38, MOM7, MOM8, MOM22, MOM30, where 

the numbers represent the molecular mass of each subunit (Figure 2.6). It is presumed that 

these subunits form a translocation channel which serves to receive incoming preproteins 

from the outer membrane receptors, and subsequently to guide preproteins to an adjacent 

mitochondrial inner membrane import complex (Moynagh, 1995). In addition the 

mitochondrial inner membrane proteins MIM17 and MIM23 behave as integral proteins of the 

mitochondrial inner membrane and may form the preprotein translocation channel of the inner 

membrane. 

A third protein, MIM44 is an essential component of the inner membrane import 

machinery. It seems to be a peripheral membrane protein on the mitochondrial matrix side 

but is firmly associated with the inner membrane by interaction with integral membrane 

proteins (either MIM17 or MIM23), (Figure 2.6). Heat-shock protein (hsp70) in the 

mitochondrial matrix also binds to preprotein in transit. A significant portion of hsp70 is 

reversibly associated with MIM44. It has been proposed that the two proteins function in 

close co-operation to drive protein import through the inner membrane into the mitochondrial 

matrix (Figure 2.6). 
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2.3.3 Components of the Electron Transport Chain 

The electron transport chain or respiratory chain in mitochondria forms the means by which 

electrons, from the reduced electron carriers of intermediatary metabolism, are channelled to 

oxygen and protons to yield H20. The main components of the chain are as follows: 

NAD+ INADH 

The electron-transport reaction for the NAD+ / NADH conjugate redox pair is : 

_ ...... NADH 

In effect, electrons are transported as hydride ions (If), which are formally equivalent to 

(H++2e-). 

Flavin Nucleotides 

The electron-transport reactions for FAD and FMN are: 

FAD + 2H+ + 2e- • FADH2 

FMN + 2W + 2e-

Electrons are effectively transported as H atoms by these nucIeotides [H;: W + e)] 

These carriers transfer electrons into the electron-transport chain independently of and 

bypassing the NAD+ / NADH couple. 

CoenzymeQ 

Co enzyme Q (alternatively known as ubiquinone or CoQ) is a benzoquinone 

derivative with a long hydrocarban side chain made up of repeating isoprene units (Figure 

2.7). The molecule undergoes a (2H+ + 2e-) reduction to form CoQH2 (alternatively known as 

ubiquinol). 
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Figure 2.7 The form of CoQ in mammalian mitochondria (Kushel and Ralston, 1988). 
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Cytochromes 

The cytochromes are a family of proteins containing prosthetic haem groups. 

Mitochondria contain three classes of cytochromes viz. a, b, and c, which have haem groups 

of different structures (Figure 2.8). 

Figure 2.8 
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The general cyclic tetrapyrrole structure of a haem ring. In cytochromes c and c}, the 
hemering is covalently attached to the protein via thioether bonds, formed by the reaction of 
the vinyl groups (-CH=CH2) on pyrrole rings A and B and cysteine residues of the protein. 
These thioether bonds are absent in cytochrome b. In cytochromes a and aJ' the vinyl group 
on the ring A is replaced by a hydrocarbon chain, and the methyl group on ring D is replaced 
by a formyl ( -CHO) group. In addition, cytochromes a and aJ contain bound Cu ions. 
(Kushel and Ralston, 1988). 
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Iron-Sulphur Proteins 

The electron-transport chain contains a number of iron-sulphur proteins (also known 

as non heme iron proteins. The iron atoms are bound to the proteins via cysteine - S - groups 

and sulphide ions (Figure 2.9). These 'proteins mediate electron transport by direct electron 

transfer. 

Figure 2.9 
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Schematic representation of an iron-sulphur protein (Kushel and Ralston, 1988). 

2.3.3.1 Organization of the electron-transport chain 

The electron-transport chain is composed of four complexes listed in Table 3. The 

pattern of electron transfer within these complexes is illustrated in Figure 2.10. 

Table 3. Complexes of the electron transport chain. 

Complex EnzyrnaticFunction Functional Components 

I NADHlCoQ oxidoreductase FMN; FE-S clusters 

11 SuccinatelCoQ oxidoreductase FAD; Fe-S clusters 

III CoQ - cytochrome c oxidoreductase Cytochromes b, cytochrome Cl; Fe-S 
clusters 

IV Cytochrome c oxidase Cytochromes a and a 3 
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Schematic organisation of the electron-transport chain in mitochondria 

(Kushel and Ralston, 1988). 
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2.3.4 Hepatic Mitochondrial Cytochrome P-450 system - Distinctive features of 

Cytochrome P-450 involved in the activation of Aflatoxin Bl 

In addition to their primary role in electron transfer and oxidative phosphorylation, 

mammalian mitochondria also carry out several metabolic functions. One of these specialised 

functions is steroid hydroxylation by a unique mitochondrially located Cytochrome P-450 

(Cyt P 450) in various steroidogenic tissues. There is now compelling evidence for the 

existence of mUltiple forms of Cyt P450 in mammalian liver (Niranjan et al., 1984). In 

mammalian liver, these Cyt P 450 - linked monooxygenases are compartmentalised in the 

microsomal fraction, in the nuclei, and in the mitochondria (Raney et al., 1992, Liu and 

Massey, 1992). 

The microsomal Cyt P 450 is involved in the oxidation of a number of physiologically 

important metabolites. The physiological and metabolic significance of Cyt P 450 reported to 

occur in the hepatic nuclear fraction, remains unclear. The Cyt P 450 - linked monooxygenase 

activity of hepatic mitochondria appears to play an important role in bile acid synthesis and 

vitamin D) metabolism. Niranjan et al., (1984) showed that intact rat liver mitoplasts and 

submitochondrial fractions possess a unique Cyt P 450 type monooxygenase system for the 

activation of AFB! into it highly reactive, electrophilic epoxide, which can then covalently 

bind to DNA, RNA and proteins. 
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2.4 THE EFFECTS OF AFBl ON OXIDATIVE PHOSPHORYLATION AND 

ELECTRON TRANSPORT 

The in vitro and in vivo effects of AFBl on oxidative phosphorylation and electron 

transport have been investigated (Ramachandra et al., 1975, Bai et al., 1977, Niranjan and 

Avadhani, 1980). Aflatoxin Bl is known to inhibit respiration, uncouple phosphorylation and 

affect ATPase activity. 

Liver mitochondrial injury is indeed one of the dominant features of aflatoxin toxicity. 

Dohertyand Cambell (1973) reported that in rats, an oral dose of 0.45mg pure AFBl/kg body 

weight inhibited both oxygen consumption and phosphorylation, after 24 hours of 

administering the toxin. According to Svoboda et al., (1966) respiration returned to normal 

after 72 hours, but not the phosphorylation. Clifford and Rees (1967) however, observed no 

changes in respiration or P:O ratios in rats, even up to 24 hours after administration of 7 mg 

AFBl/ kg body weight. 

Ramachandra et al., (1975) reported inhibition of respiration in rat liver mitochondria 

by about 50-70% in the presence of AFBl at concentrations of 1 x 10-4 M and 3 x 10-4 M 

respectively. They showed that aflatoxins have two distinct effects on mitochondrial 

function, as uncouplers at lower concentrations and as inhibitors at higher concentrations. 

Aflatoxin Bl acted as an uncoupler at a concentration of 1 x 10-6 M and at a concentration of 1 

x 10-4 M, AFBl inhibited electron transport. Aflatoxin Bl has been shown to inhibit electron 

transport between cytochrome b (Cyt b) and cytochrome c (Cyt c) or cytochrome Cl (Cyt Cl). 

Bai et aI., (1977) investigated the effect of a single LD50 dose of AFBl on cytochrome 

oxidase, NADH oxidase, succinate dehydrogenase, a-glycerophosphate dehydrogenase, 

fumarase, isocitrate dehyrogenase and malate dehydrogenase of rat liver and kidney 

mitochondria, 48 hrs after administering the AFBl. 
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Aflatoxin Bl inhibited all of the enzymes, with the exception of a-glycerophosphate 

dehydrogenase. The low levels of these mitochondrial enzymes during aflatoxin toxicity, 

observed in these studies, could point to mitochondrial injury after administration of the toxin. 

Aflatoxins have also been reported to induce decreases in certain mitochondrial 

dehydrogenases and electron transfer catalysts in ducklings and chickens (Obidoa and 

Siddiqui, 1978). These researchers investigated the effects of AFBl on electron transport and 

oxidative phosphorylation in the guinea fowl (Numida meleagris Pearl.) hepatic mitochondria. 

The addition of different concentrations of AFBl to guinea fowl liver mitochondria was 

shown to inhibit oxygen consumption. 

A complete interruption of oxygen uptake was observed when succinate was the 

respiratory substrate at an AFBl concentration of 3.3 x.1O-6 M. Succinate is an F AD­

dependent substrate which donates its electrons specifically to CoQ, and thus bypasses the 

first phosphorylation coupling site in its oxidation pathway. Obidoa and Siddiqui (1978) 

effectively showed that although succinate oxidation is inhibited by AFB}, the major point of 

inhibition was not at the dehydrogenase site, since tetramethyl p-phenylenediamine (TMPD) 

used in the study, significantly overcomes the effect. The compound (TMPD) is known to 

shunt electrons between Cyt b and Cyt c, thereby forestalling phosphorylation at the second 

uncoupling site. 

These results suggested that the possible site of action of AFBl on the respiratory 

chain was the second crossover point. These authors suggested that any differences in the 

effect of AFBl on guinea fowl liver mitochondrial respiration and that of rat liver, may be 

attributed to inherent species differences, since the study revealed that AFBl inhibition of 

guinea fowl liver mitochondrial respiration is not localised at coupling site II, but may also 

Involve inhibition around site I (Figure 2.10). These findings further explain'ed a greater 

susceptibility of avian species to aflatoxin toxicity. 
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2.5 THE EFFECTS OF AFLATOXIN Bl ON PROTEIN, RNA AND DNA 

SYNTHESIS 

2.5.1 DNA synthesis 

The interaction between AFB\ and the DNA of their target organs appears to be a 

reaction of great consequence in the oncogenic response. Specifically, several reports show 

that acute and chronic carcinogen administration of AFB\ inhibits mitochondrial DNA 

(mtDNA) synthesis (Wogan,1969). 

On the basis of uptake of thymidine}H and autoradiography, De Recondo et al., 

(1965) demonstrated that AFB\ inhibited 65 % of DNA synthesis after 1 hour and 95 % after 

12 hours in rats. They further demonstrated with in vivo techniques that the enzymes 

responsible for general DNA synthesis (phosphokinases, polymerases, and native DNA­

activating factor) remained fully active in AFB\ treated animals. In view of these results, it 

was assumed that AFB\ acts directly on the mtDNA molecule, and inhibits its ability to act as 

a primer for DNA synthesis. 

Friedman et al. (1978) also investigated the acute and subchronic effects of AFB\ on 

the in vitro incorporation ofthymidine-3H into mtDNA. However, their experiments involved 

mouse liver mitochondria. Aflatoxin B\ was found to induce a 50 % decrease in mtDNA 

synthesis acutely, with a 50 % decrease in the synthesis of high molecular weight mtDNA. 

Subchronic administration of AFB\ also resulted in inhibition of mtDNA synthesis by 54 %. 

Results also showed that AFB\ not only affected an inhibition of mtDNA synthesis, but also 

significantly reduced the primer activity of DNA isolated in the presence of the toxin. 

In a general context, the results of these experiments indicate that an early effect of 

AFB\ in rat liver is the suppression of DNA synthesis, and further that this action is a 

consequence of the interaction of the toxin with DNA. 
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According to current knowledge, a hypothesis has evolved concerning the mechanisms 

by which aflatoxins interfere with cellular activities viz. protein synthesis, DNA and RNA 

synthesis. The interaction of aflatoxin BJ with DNA is thought to be the initial and critical 

event in the response. This interaction is expected to interfere with DNA transcription. 

Hence, failure of DNA transcription would impair both DNA and RNA synthesis, given that 

the polymerases responsible for the respective syntheses would also be inhibited. 

Consequently, impaired transcription would also inhibit protein synthesis. 

2.5.2 RNA synthesis 

Administration of AFBJ to rats results in rapid and dramatic inhibition of the RNA 

precursor incorporation into nuclear RNA (Wogan, 1969). Lafarge et al. (1969) found that 

precursor incorporation into nuclear RNA was significantly inhibited within 30 minutes after 

AFB J administration. This inhibition was still evident 12 hours after dosing. They also 

showed a marked decrease in the nuclear content of RNA during the 12 hour period. The 

total cellular content of RNA and of DNA, however, was unaffected by the treatment. 

The marked suppression of precursor incorporation into nuclear RNA and decrease in 

the content of nuclear RNA caused by AFBJ has been reported by a number of investigators, 

who have studied the responses by different experimental approaches. The marked decrease 

in nuclear RNA following AFBJ treatment, have led researchers to determine its effect on 

RNA polymerase, the enzyme responsible for DNA-directed RNA synthesis. 

Gelboin et al., (1966) determined the activity of RNA polymerase in liver cell nuclei 

isolated at intervals from 15 minutes to 24 hours after dosing with AFBJ. They reported a 

60% inhibition as early as 15 minutes, which further persisted up to 2 hours. The AFB J dose 

used in these experiments (Img/kg body weight) was well below the lethal dose (6mg/kg 

body weight) in the rat. Subsequently, it has been shown that larger doses (Smglkg) of AFBJ 

produced an inhibition of RNA polymerase activity that persisted for several days after 

dosing. 
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2.5.3 Protein synthesis 

Various biochemical studies using liver slices and isolated liver nuclei have shown 

that AFBl administration leads to a pronounced inhibition of DNA and RNA synthesis. It 

should therefore be anticipated that protein synthesis should be inhibited under the same 

experimental conditions. Inhibition of protein synthesis has been demonstrated in rat liver 

preparations exposed in vitro to AFB 1• However, when studied in vivo, the toxin has been 

shown to inhibit the synthesis of only a few specific proteins, (inducible enzymes), (Wogan et 

al., 1969). The total liver protein synthesis, however appeared to be largely unaffected by the 

compound. 

Bhat et al., (1982) designed experiments to detennine the in vivo effects of a single 

(6mg/kg body weight) dose of AFBl on rat liver mitochondrial transcription and translation 

processes. With the use of intact hepatocytes, and also a highly selective mitoplast system for 

incorporation, they observed that both mitochondrial transcription and translation activities 

are inhibited progressively, even after 24 hrs of carcinogen administration. 

Most mitochondrially translated proteins are coded for by the mitochondrial genome. 

The observed inhibition of mitochondrial translation products may therefore be due to the 

direct attack of AFBl on the mitochondrial genetic system (Niranjan et al., 1986). Emeh et 

al., (1981) investigated the effects of AFBl on hepatic transcription and translation during 

early stages of AFBl carcinogenesis. Their results indicated a characteristic inhibition of both 

heterogeneous nuclear RNA and cytoplasmic protein synthesis, of about 90 % during the 

initial 3-9 hours after AFBl administration, although a rapid recovery in these biosynthetic 

processes occurred between 12-24 hours after toxin administration. 

In addition, their results showed that about 3-4 hours after in vivo administration of 

AFBl, over 60 % of the carcinogen in the hepatic tissue or in isolated hepatocytes, was 

present in a covalently bound fonn. This level steadily declined to reach an undetectable 

level at 24 hours, suggesting that the observed recovery in translation/transcription activities 

may be dependent upon or related to the repair process. 
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Contrary to this, Backer and Weinstein (1980) showed that the level of another 

carcinogen, Benzopyrene in the mitochondrial genome remained nearly constant even up to . 

24 hours after toxin administration. This is possibly due to the lack of repair in the 

mitochondrial genetic system. Hence the in vivo administration of AFBJ may lead to a 

prolonged inhibition of mitochondrial biosynthetic activities. These observations confirm and 

extend the view, that mitochondria are direct targets for attack by AFBJ. 

2.6 AFLATOXIN Bl BINDING TO MITOCHONDRIAL PROTEINS 

The role of mitochondria in the production and maintenance of cancer phenotype has 

been a subject of argument ever since the pioneer work of Warburg (1930), which showed 

fundamental changes in the metabolic patterns of tumour tissues. A number of studies have 

demonstrated altered mitochondrial content (Cederbaum et al., 1976, Howatson and Ham, 

1955), structure and function (Feo et al., 1973, Hackenbrock et al., 1971, White et al., 1974) 

in a variety of tumour cells. It has been shown that mitochondria from tumour cells have 

altered ultrastructural organisation, membrane composition, abnormal ion transport, and 

altered biochemical properties. 

Bhat et al., (1982) and Niranjan et al., (1984) have clearly shown the presence of a 

unique monooxygenase system in the mitochondria, which can activate AFBJ into the highly 

carcinogenic, electrophilic epoxide (AFBO). The activated epoxide has been shown to bind 

covalently to mtDNA, RNA and protein. The transport mechanism, however, for the 

distribution of AFBJ within liver tissues has not been elucidated. Extensive studies have been 

carried out on AFBJ-protein binding as a means of toxin transport. Several studies concerning 

the distribution of AFBJ in blood have shown that the toxin binds to serum albumin, and is 

carried by the blood cells and other plasma proteins (Sabbioni et al., 1987). 

Despite observations that the epoxide binds to proteins within the mitochondria, the 

actual in vivo disposition, characterisation and immunolocalisation of AFBJ-binding proteins 

in liver mitochondria have not been elucidated. 
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2.7 THE EFFECTS OF AFLATOXIN Bl ON THE ULTRASTRUCTURE OF 

RAT LIVER TISSUES, ISOLATED MITOCHONDRIA AND SUB­

MITOCHONDRIAL PARTICLES. 

Several mycotoxicologists have used light and electron microscopy to assess effects of 

toxins within cell systems and experimental animals. The morphological and biochemical 

lesions caused by AFBJ toxicity in animals appears to be exclusively in the liver (Massey et 

al., 1995). Several histological changes (characteristic of aflatoxicosis) including 

haemorrhage, hepatic necrosis and bile duct proliferation have been observed, primarily 

within this organ (Heathcote and Hibbert, 1978; Newberne and Wogan, 1968). 

At the light microscopic level, Clifford and Rees (1967) and Theron (1965) showed 

that rats and ducklings exhibit periportal necrosis and bile duct proliferation. Microscopic 

lesions associated with aflatoxicosis vary with species, duration of exposure, amount of toxin 

consumed, and quality of feed (Clifford and Rees, 1967; Vesonder et al., 1991; Theron, 

1965). 

At the ultrastructural level, Svoboda et al., (1966) showed gross cellular alterations 

and indicated that AFBJ interferes with DNA synthesis in hepatoma cells of rats fed AFB J-

contaminated feed, by altering the structure of the nucleolus. The ultrastructural effects of 

AFBJ on mitochondria within infected hepatocytes and liver tissues had only recently been 

studied. However, the role of mitochondria in cellular toxicity and cancer phenotype has been 

an argument of discussion ever since pioneer studies by Warburg (1930), which showed 

fundamental changes in the metabolic patterns of tumour tissues. Hackenbrock et al., (1971) 

and Howatson and Ham (1955) both reported mitochondria with significantly altered 

ultrastructural organisation, membrane composition and altered mitochondrial function in 

tumour cells. 
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The role of mitochondria in cellular toxicity and carcinogenesis remams to be 

discovered. For this reason various microscopic techniques have been employed to determine 

the mechanism of action of AFBJ and its effects on the mitochondria in liver cells. In 

addition, this is the first study in which immunocytochemistry has been used to specifically 

localise AFBJ within rat liver mitochondria. 

2.8 CONCLUSION 

The specific knowledge of the chemistry, biochemistry, toxicology, and epidemiology 

of aflatoxins is far greater than that for any other environmentally occurring chemical 

carcmogen. Yet among the plethora of publications, the exact mechanism of AFBJ 

carcinogenesis and the actual metabolic pathway leading to carcinogenesis remains unclear. 

Modem advances in molecular biology and biochemistry, together with basic research, only 

now provide research tools to explore avenues that otherwise would be quite impossible. The 

possible mechanism of toxin transport and the role of toxin binding to mitochondrial proteins 

is further emphasised in this study, as a potential factor in the metabolic fate of the toxin, and 

in the overall aetiology of AFBJ toxicity and carcinogenesis. 
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Chapter 3 

MATERIALS AND METHODS 

ETHICAL APPROVAL 

The protocol was approved by the Ethics Committee, University of Natal, Medical 

School, Durban. 

3.1 MATERIALS 

3.1.1 Chemicals and apparatus 

All chemicals were of reagent, analytical or electrophoresis grade and were 

obtained from one of the following sources unless otherwise stated: Sigma Chemical 

Co., Merck, and Boehringer Mannheim. A set of apparatus including scissors, petri 

dishes and centrifuge tubes were dedicated for mitochondrial use only. These were 

washed separately from all other glassware. All apparatus were wiped with 100% 

ethanol before use. 

3.1.2 Isolation Medium 

The structure of isolated mitochondria often depends on the nature of the 

isolation and/or suspension medium (ISOM). The composition of many buffers 

described in mitochondrial literature often vary according to both tissue and laboratory. 

Although similarities exist, it is probably true to say that the composition of buffers 

owes more to historical usage and personal preference than systematic study. However, 

certain chemicals are essential for the normal functioning of the mitochondria and these 

are described in Table 4. 
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Table 4. Essential ingredients for mitochondrial buffers 

0.25-0.3M 

Preservation 
100-150mM integrity 

EDTA ImM 

Mg2+ 5mM Essential co-factor 

pol- 5mM Essential for A TP synthesis 

serum 
albumin 1-10 mg/ml acyl-CoA's which can inhibit inhibitors 

mitochondria. 

3.2 ANIMALS AND CARCINOGEN ADMINISTRATION 

All experiments were carried out under aseptic conditions. Laboratory tops and 

benches were wiped clean using a 70% ethanol solution. In all experiments, female 

Wistar rats (250-300g) were used. Aflatoxin BI obtained from the Centre for Scientific 

and Industrial Research (CSIR), Pretoria, was dissolved in dimethyl sulphoxide 

(DMSO), (0.05%) and was injected intraperitoneally (ip.) at a lethal dose of 6mg 

AFB1/kg body weight. Control rats received an equal volume of DMSO. All animals 

had free access to water and standard lab chow during the experiment. 

After 24 hours following toxin administration, treated and untreated animals were 

anaethesized with ether, and sacrificed by exsanguination. Livers were immediately 

removed, weighed and then processed for mitochondrial isolation and electron 

mlcroscopy. 
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3.3 ISOLATION OF LIVER MITOCHONDRIA AND 

SUB-MITOCHONDRIAL PARTICLES 

Rat-liver mitochondria have long been used by researchers of mitochondrial 

structure and function because of the ease with which it is possible to prepare intact, 

pure mitochondria in high yields. The first steps in the successful isolation of largely 

intact mitochondria involves the rupture of the cell membrane while maintaining the 

structural integrity of the mitochondria. After a cell is broken, differential 

centrifugation may be used to separate the mitochondria from other organe1les and cell 

debris. 

Mitochondria are very easily damaged, and all necessary precautions were 

maintained at all times. Detergents used in washing glassware and common cations like 

calcium can 'uncouple' mitochondria. All buffers must therefore, be made up in double 

glass-distilled water. Many mitochondrial functions require mitochondrial integrity to 

be maintained and isotonocity of the media is usually achieved with non-ionic agents 

like 0.25M sucrose (Cain and Skilleter, 1987). 

3.3.1 Mitochondrial isolation 

Freshly removed rat livers (15g) were immediately placed into 30ml of ice cold 

ISOM, (70mM sucrose, 220mM D-Mannitol, 2.0mM Hepes buffer, O.5mg/ml BSA, pH 

7.4 using a 1 % potassium hydroxide (KOH) solution just prior to use). Livers were then 

trimmed of fat, and placed into 60ml of fresh ISOM. 

The livers were then chopped with a small scissors into minute (2mm) cubes and 

thoroughly washed in fresh ISOM to remove as much blood as possible. The final 

washing medium was free of blood. The chopped liver was then transferred to a pre­

cooled glass-Teflon motorised Potter-Elvejhem homogeniser. Fresh, ice cold ISOM 

(2ml) was added to each gram of chopped liver. The tissue was then homogenised 

using six up and down strokes of the pestle rotating at 500-1000 r.p.m. 
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The homogenate was then filtered into a beaker, through gauze. Fresh ISOM 

(20ml) was then added to the filtered homogenate. The homogenate was then 

transferred to a centrifuge tube (SOml) and centrifuged in a Beckman J2-21 centrifuge 

for 10 minutes at 1000g. This pelleted the nucleus, red blood cells and cell debris 

fractions. This nuclear-debris pellet was discarded. The supematant which contained 

the mitochondrial fraction was carefully decanted into a clean centrifuge tube and 

centrifuged at 10 OOOg for 10 minutes at 4°C. The resulting supematant was then 

discarded. The mitochondria formed a soft brown pellet at the base of the centrifuge 

tube. The pellet also revealed an upper fluffy, light pinkish brown layer, containing 

broken mitochondria and microsomes. This layer was discarded. A lower layer which 

was white and red, comprised residual cell debris and red blood cells. This layer was 

also discarded. Dark brown portions of the mitochondrial pellet were discarded as it 

contained pelleted red blood cells. 

The soft brown pellet (containing the crude mitochondrial fraction) was 

resuspended in SOml of fresh ISOM using a Smm diameter pre-cooled (4°C) glass rod, 

and centrifuged at 10 OOOg for 10 min. The purified pellet was then resuspended in 

O.Sml of ISOM. The priority in this isolation procedure was to aim for a smaller and 

purer yield, than a larger one, that may be contaminated with microsomes and other 

debris. 

3.3.2 Dlgitonin fractionation of mitochondria 

The relatively recent development of techniques for separating the outer and 

inner membranes of liver mitochondria and the concurrent development of enzymatic 

markers for these membranes have permitted the overall study of submitochondrial 

enzyme localisation, protein function and localisation. There are two principal 

advantages for us~ng fragmented mitochondria. In the first place it simplifies the system 

and allows certain functions to be studied in the absence of soluble components. In the 

second place, fragmentation overcomes the permeability barrier, imposed by 

mitochondrial membranes. 
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The techniques for separating the two membrane systems include density­

gradient centrifugation following mitochondrial swelling and contraction, with 

controlled osmotic lysis and, treatment with digitonin in isotonic media followed by 

differential centrifugation (Schnaitman and Greenawalt, 1968). Of these techniques the 

digitonin fractionation is often the most advantageous. This procedure does not employ 

hypertonic density gradients and does not markedly effect the integrity of the inner 

mitochondrial membrane. Improvements in this technique have permitted the isolation 

of morphologically and biochemically intact preparations of the inner membrane­

matrix fraction, which exhibits the ability to incorporate amino acids into acid­

precipitable protein, and respiratory control (Greenawalt, 1974). 

3.3.2.1 Isolation of sub-mitochondrial particles 

Stock digitonin solutions (approximately 1.2% w/v) were prepared just prior to 

use. Digitonin (120mg), (Sigma) was dissolved in lOml of hot (85°C) ISOM, 

containing no BSA. The solution was carefully stirred on a hot plate with a magnetic 

stirrer, until the digitonin was completely dissolved. The solution was allowed to cool 

to room temperature, and then O.lml of a stock BSA (50mg/ml) solution was added. 

The digitonin solution remains stable at 0-4°C for several hours during which 

time it must be used. Five millilitres of mitochondrial suspension (100mglml, 

determined by the Bradford assay, Appendix 1) was then added to a pre-cooled 20ml 

cylindrical vial. The vial containing the mitochondria was then surrounded by a jacket 

of ice, and gently stirred with a magnetic flea for 2 minutes. Five millilitres of the 

digitonin solution was then added and the mixture was gently stirred for 15 minutes. 

The digitonin-treated mitochondrial suspension (10ml) was then diluted (1 :4) with fresh 

ISOM. The diluted suspension was stirred gently with a glass rod, and centrifuged at 10 

OOOg for 10 min. The supernatant containing outer membrane and inter-membrane 

proteins was carefully drawn off and stored at -70°C. The pellet, designated the "crude 

mitoplast fraction" was diluted in 20ml of fresh ISOM and centrifuged again at the same 

speed for 10 min. The pellet from the second centrifugation was subsequently 

designated, the final mitoplast inner mitochondrial-matrix fraction or sub-mitochondrial 

particles (SMP's). 
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3.4 THE EFFECTS OF AFLATOXIN B. ON THE ULTRASTRUCTURE OF 

RAT LIVER TISSUES, ISOLATED MITOCHONDRIA AND SUB­

MITOCHONDRIAL PARTICLES. 

3.4.1 Transmission Electron Microscopy (TEM) 

Freshly removed liver tissues (2g) from treated rats and untreated rats were first 

chopped into small (lmm) pieces with a fine blade. The tissue samples were processed 

according to the steps outlined in Table 5. 

Table 5. Processing of rat liver tissues for TEM 

nnC'T_T,vpn in 1 % Osmium tetroxide 

20 minutes 
20 minutes 
30 minutes 
30 minutes 

48 hours (60°C) 

Hardened resin blocks were then removed from the gelatin drug capsules. The 

blocks were then trimmed with a sharp razor blade. Ultrathin sections were cut on a 

Reichert Ultracut microtome. Gold and silver sections were then mounted on 200-400 

mesh copper and nickel grids. 
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Sections were then stained with 2% uranyl acetate and lead citrate according to 

the procedure by Reynolds (1963) and viewed with a lOOS Joel Transmission electron 

microscope (60kV) at the Electron Microscope Unit, University of Natal. ., 

3.4.1.1 Processing of Mitochondria and Sub-mitochondrial samples 

Aqueous 1 % glutaraldehyde (O.2ml) in O.lM phosphate buffer was first placed 

in an eppendorf tube. One hundred and fifty micro litres of mitochondria in ISOM 

(30mg/ml, as determined by the Bradford Assay, Appendix 1) was then poured into the 

tube. The tube was then gently inverted. The mitochondria in suspension were allowed 

to prefix in glutaraldehyde for 1 minute. The tubes containing the pre-fixed 

mitochondria were then centrifuged at room temperature for 4 minutes at 15 000 g. The 

supernatant was discarded and replaced with 150111 of fresh glutaraldehyde. The 

mitochondrial pellet formed by centrifugation was allowed to fix in glutaraldehyde for 2 

hours. After this time the pellet was gently removed from the bottom of the tube with a 

fine needle and washed three times with 0.25M sucrose in O.1M phosphate buffer, pH 

7.2. Samples were then stored overnight at 4°C in a fresh change of this solution. 

Samples were then processed according to Table 5, proceeding from Step 5. 

3.4.2 Immunocytochemistry 

In immunocytochemistry, labelled antibodies are used as reagents for the 

detection of specific substances or antigens in situ. Immunocytochemistry may 

therefore be defined as the identification and localisation in a biological system of any 

constituent or inclusion to which an antibody may be raised and marked by a visible 

label (Snyman, 1993). 

In the present study, ICC has been employed in the identification and 

localisation of AFBl within liver tissues and mitochondria with the use of a polyc1onal 

AFBl antibody. Polyc1onal antibodies are normally the antibodies of choice, as they 

can recognise many epitopes of a single antigen (Snyman, 1993). Tissue sections are 

exposed to the primary antibody (anti-AFB1) which is then visualised by a labelled 

secondary antibody (goat anti-rabbit IgG gold probe). This gold probe is a gold sphere 

(5-lOnm in diameter). 
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3.4.2.1 Procedure 

For the immunolocalisation of AFBJ within the liver tissues and isolated 

mitochondrial samples from treated and untreated rats, a modified post-embedding 

labelling technique (Polak: and van Noorden, 1983) was used. Samples were processed 

according to Table S, with the exception of Step 3, the post fixation in osmium was 

omitted. Sixty nanometer (nm) thick sections were placed on 200 mesh nickel grids. 

Sections were etched with S% hydrogen peroxide (0.2ml per grid) for 3 minutes to 

block endogenous peroxidase activity. 

The grids were then placed in a drop of distilled water and jet washed with 10ml of 

distilled water. The grids were then drained and dried on a fibre free paper, and 

incubated at room temperature in normal goat serum (NGS), (lQOfll per grid) for 30 

minutes, to block non-specific binding sites. The grids were subsequently incubated in 

20fll of primary polyc1onal rabbit anti AFBJ (Sigma) for 3 hours, using a working 

dilution of 1:100. The grids were then placed in a droplet of SOmM Tris, pH 7.2, and jet 

washed with the same solution, using 20ml of solution per grid. 

The samples were then placed in a droplet of SOmM Tris containing 0.2 % BSA, pH 7.2, 

and jet washed with the same solution, using Sml of solution per grid. The grids were 

then transferred to a droplet of SOmM Tris containing 1 % BSA, pH 8.2, for S minutes. 

Grids were then incubated in a droplet ofIgG-gold (1OJ.ll) diluted 1:1S in TrisIBSA, pH 

8.2, for 1 hour. Samples were then placed in droplets and jet washed as before using: 

a) SOmM Tris containing 0.2 % BSA (10ml/grid), pH 7.2, for 10 minutes; b) SOmM 

Tris, (Sml/grid), pH 7.2, S minutes and, c) distilled water (Sml/grid), 10 minutes. 

The grids were then counterstained with 2 % uranyl acetate (100J.lI per grid) and lead 

citrate (100J.lI per grid) according to the procedure by Reynolds (1963) and viewed with 

a lOOS Joel Transmission electron microscope (60kV). 
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3.4.3 Light Microscopy for Immunohistochemistry 

3.4.3.1 Tissue preparation for embedding in wax 

Small pieces (1 x 1cm) of freshly isolated rat livers (15g) from treated (6mg 

AFB1/kg body weight) and untreated rats were immediately placed in a 10% formalin 

solution for 24 hours at room temperature. The liver samples were then transferred to a 

50% EtOH solution for 1 hour, and then a 70% and 90% EtOH solution for 30 minutes 

each. The samples were then dehydrated in a 100% EtOH solution for 2 hours. 

The livers slices were placed in a 50:50 EtOH (100%):Xylene (100%) solution 

for 30 minutes. Samples were then transferred to a 100% xylene solution for 1 hour. 

The livers were then placed in three changes of paraffin wax at 55°C, for 3 hours, and 

then overnight in a fresh change of wax at 55°C. The samples were finally embedded in 

fresh wax. 

3.4.4 Immunohistochemistry (IHC) 

Immunohistochemistry has proven to be a remarkable tool in aflatoxin exposure 

studies at the individual level. Santella et al., (1993) and Hsieh et al., (1984) have both 

shown that quantitative histochemical methods can be used to monitor exposure to 

Aflatoxin Bl by identification and measurement of DNA adducts in liver tissues. These 

researchers have used indirect immunohistochemical staining to identify imidazole ring 

opened AFBI-DNA adducts in liver sections from treated rats (2.5mg AFB1/kg body 

weight), and human liver from patients presenting with HCC in Taiwan. 

Immunohistochemistry can also be used to localise toxins within liver cells at a light 

microscope level. Wax blocks were sectioned using a Leica RM 2025 Ultra-cut 

microtome (Leica Instruments, Germany). Two to five nanometer thick sections 

(picked on poly-L-Iysine coated slides, Sigma) were used for the immunohistochemical 

localisation of AFBl within the liver tissues. Samples were then processed according to 

procedures outlined in Table 6. 
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The avidin-biotin complex system was selected for this study, as it is more 

sensitive than most other label systems for antigen detection. This methodology 

employs a primary antibody, a biotinylated secondary antibody, and a preformed 

biotinylated avidin molecule complexed with the horse-radish peroxidase complex 

The immuno-substrate used was diaminobenzidine (DAB), (Figure 3.1). 

Figure 3.1 

Avidin-Biotin Complex Method 

Primary antibody reads with the antigen. 
A blotlnylated secondary antibody links 

the primary antibody with the 
avidin-biotin enzyme complex. 

A schematic representation of the avidin-biotin complex labelling system 
(Snyman, 1993) 
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Table 6. 

NGS u ...... vu 

Avidin-Biotin method for immunohistochemical 
localisation of Aflatoxin BJ 

5 mmutes 

with delimiting pen 

20 minutes 

paper 

Droplet of polyclonal primary antibody (20J.1I) 
Rabbit-anti-AFBl (1 :200) 

3 hours 

5 minutes 

3 minutes 

dlnJW<; U to blue 5 minutes 
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3.5 POLYACRYLAMIDE GEL ELECTROPHORESIS OF 

MITOCHONDRIAL PROTEINS 

Polyacrylamide gel electrophoresis (PAGE) is most often the method of choice 

for the separation and characterisation of variou:s biological macromolecules . 
. ' ",/~ 

Analytical electrophoresis of proteins is often carried out in polyacrylamide gels under 

conditions that ensure dissociation of the proteins into their individual polypeptide 

subunits, and that minimise aggregation. 

The strongly anIOnIC detergent , sodium dodecyl SUlphate (SDS) is most 

commonly used in combination with a reducing agent and heat, to dissociate the 

proteins before they are loaded on the gel. Most proteins are soluble in SDS and bind it 

avidly. Even the most basic proteins are converted to their acidic SDS-derivatives. The 

denatured polypeptides bind SDS and become negatively charged. The amount of SDS 

bound is almost always proportional to the molecular weight of the polypeptide and is 

independent of its sequence. Hence SDS-polypeptide complexes migrate through the 

polyacrylamide gel in accordance with the size of the polypeptide. Approximately l.4g 

of detergent is bound per gram of polypeptide. 

Sodium dodoecyl sulphate-polyacrylamide gel electrophoresis is often carried 

out with a discontinuous buffer system in which the buffer in the reservoirs is of 

different pH and ionic strength from the buffer used to cast the gel. The negatively 

charged SDS-protein derivatives are subjected to an electric current, which causes them 

to migrate toward the anode. After migrating through a stacking gel of high porosity, 

the complexes are deposited in a very thin zone on the surface of the resolving gel. 

Hence the discontinuous buffer system has the ability to concentrate all of the 

complexes in the sample into a very small volume, allowing greatly increased resolution 

of the gel. The sample and the stacking gel contain Tris.CI (PH 6.8), the upper and 

lower buffer reservoirs contain Tris-glycine (pH 8.3), and the resolving gel contains 

Tris.CI (PH 8.8). 
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All components of the system contain 0.1% SDS (Laemmli, .1970). 

Polyacrylamide gels are composed of chains of polymerised acrylamide that are cross­

linked by a bifunctional agent such as N,N'-methylenebisacrylamide. The effective 

range of separation of SDS-polyacrylamide gels depends on the concentration of 

polyacrylamide used to cast the gel and on the amount of cross-linking. Cross-links 

formed from bisacrylamide add rigidity and tensile strength to the gel and form pores 

through which the SDS-polypeptide complexes must pass. The size of the pores 

decreases as the bisacrylamide:acrylamide ratio increases, reaching a minimum when 

the ratio is approximately 1 :20. Most SDS-polyacrylamide gels are cast with a molar 

ratio of biscarylamide:acrylamide of 1 :29. The sieving properties of the gel are 

determined by the size of the pores, which is a function of the absolute concentrations of 

acrylamide and bisacrylamide used to cast the gel. 

Table 7 shows the linear range of separation obtained with the gels cast with 

concentration of acrylamide that range from 5% to 15%. 

Table 7. Effective range of separation of SDS-polyacrylamide gels. 
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3.5.1 Procedure 

Mitochondrial proteins were subjected to PAGE using a SE '250'- "Mighty 

Small 11", Slab Gel Electrophoresis Unit (Hoefer Scientific instruments, San 

Franscisco), with reagents as listed in Appendix 2. 

All components of the system were thoroughly cleaned with double-distilled 

water and dried with ethanol just before use. Two sandwiches, each constructed with a 

glass plate (12 x 10 cm), spacers and a notched alumina plate were mounted against a 

central vertical core. Two separate upper buffer chambers, each having a capacity to 

hold 75ml of buffer were formed when the sandwiches were clamped to the central 

vertical core. 

The central core with the attached plate sandwiches was placed on a pre-heated 

(60°C) glass plate. At the same time, a 1 % agarose solution was maintained at 60°C in 

the oven until needed. Melted agarose was then run down the edge of one spacer, into 

the first assembled sandwich, with a pre-heated (60°C) Pasteur pipette. The entire unit 

was tilted gently so as to spread the agarose evenly across the bottom of the sandwich. 

As the agarose hardened it formed a plug of gel that sealed the bottom of each 

sandwich. 

In this study, 10% gels were used to resolve all protein samples analysed. All 

components of the gel were mixed in the order shown in Table 8. 

Table 8. Solutions for preparing resolving gels for Tris-glycine SDS­
polyacrylamide gel electrophoresis 
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The polymerisation initiator, ammomum persulphate and the crosslinker, 

N,N,N' ,N' -tetramethylethylenediamine (TEMED) were added just before the gel was 

poured. The concentration of ammonium persulphate that was used was generally 

higher than that used in other methods. The higher concentration eliminated the need to 

rid the solution of dissolved oxygen (which retards polymerisation) by degassing. The 

acrylamide resolving gel solution was then gently poured into the gap between the glass 

and alumina plates. Sufficient space was allocated for the stacking gel (the length of 

the teeth of the comb plus 1 cm). With the use of a Pasteur pipette, the acrylamide 

solution was overlaid with Sml of a resolving gel overlay solution (0.37SM Tris.CI; pH 

8.8; 0.1 % SDS). The overlay prevents oxygen from diffusing into the gel and inhibiting 

polymerisation. 

The entire apparatus was left at room temperature in an undisturbed area. After 

gel polymerisation (30-40 minutes), the overlay was carefully poured off and the top of 

the gel was then thoroughly washed several times with deionised water, to effectively 

remove any unpolymerised acrylamide. The water was then drained off from the top of 

the gel with a Sml syringe. Any remaining water was removed with the edge of a fibre 

free paper. The 4% stacking gel was then prepared in a disposable plastic tube. The 

appropriate volume of solution containing the desired amount of acrylamide for the 

stacking gel was prepared, using the values given in Table 9. All components of the gel 

were mixed in the order shown. 

Table 9. Solutions for preparing a 4% stacking gel for Tris-glycine SDS­
polyacrylamide gel electrophoresis 
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The initiator and crosslinker were added just before the stacking gel was poured. 

Without delay, the mixture was rapidly swirled and poured directly onto the surface of 

the polymerised resolving gel. A clean Teflon comb that would create the desired 

amount of wells was immediately inserted into the stacking gel. The comb was moved 

slightly to avoid trapping air bubbles. Additional stacking gel solution was added to fill 

spaces of the comb completely. The entire apparatus was left at room temperature in an 

undisturbed area. 

While the stacking gel was polymerising, the mitochondrial samples (200JlI of 

isolated mitochondria in ISOM; 30mg protein/ml) were prepared -by heating them to 

1000e for 2 minutes in an equal volume of 2x treatment Buffer (0.125M Tris.el; pH 

6.8; 4% SDS; 20% glycerol; 10% 2-mercaptoethanol). After heating, samples were 

cooled to room temperature. A sample of SDS-electrophoresis protein molecular 

weight markers (Boehringer Mannheim) was also denatured in the same way. The 

markers used included : 

1. a2-Macroglobulin 170 kDa 

2. ~-galactosidase 116 kDa 

3. Fructose-6-phosphate kinase 85.2 kDa 

4. Glutamate dehydrogenase 55.6 kDa 

5. Aldolase 39.2 kDa 

6. Triosephosphate isomerase 26.6 kDa 

7. Trypsin inhibitor 20.1 kDa 

8. Lysozyme 14.3 kDa 

The markers were first removed from the freezer and allowed to defrost in the 

refrigerator at 4°e for 1 hour. Ten microliters of each marker was then added to a clean 

eppendorftube and allowed to mix. To this solution containing the eight markers, 80ml 

of 2x treatment buffer was added, and the solution was then heated for 2 minutes at 

100oe. A small amount (10JlI) of bromophenol blue (0.1 %) was added to the pre-treated 

samples and markers. Thirty micro litres of marker solution was loaded per well on the 

gel. The remainder of the marker solution was stored at 4°C. 

50 



After polymerisation of the stacking gel (30-40 minutes), the Teflon comb was 

carefully removed. The loading wells were washed with deionised water to remove any 

unpolymerised acylramide. The entire central core, containing the polymerised gels 

was then mounted onto the electrophoresis apparatus, by simply snapping across the 

centre of the lower buffer chamber. Two gel well markers were secured onto the glass 

plates. Tris-glycine electrophoresis tank buffer (0.02SM Tris; pH 8.3; 0.192M glycine; 

0.1 % SDS) was poured into both the top (IS0ml) and bottom (2S0ml) reservoirs, and 

also into all of the wells, until each well was completely filled. 

Any bubbles that became trapped at the bottom of the gels were immediately 

removed with a bent hypodermic needle attached to a syringe. Thirty micro litres of 

each mitochondrial sample (30mg/ml) was loaded in a predetermined order into the 

bottom of the wells. The samples, including the molecular weight markers were 

carefully loaded with a SOlll Hamilton micro litre syringe. After each sample, the 

syringe was rinsed repeatedly in four sets of deionised water, twice in 100% ethanol, 

and twice in fresh tank buffer, to effectively clean it before the next application. The 

safety lid was then placed onto the unit. The electric leads were connected to the central 

core and also to the power supply (red to anode), (Leica Instruments). The entire 

apparatus was then surrounded by a jacket of ice packs. A constant current of 0.8S 

mA/sq.cm of gel was applied. The gels were run until the tracking dye reached the 

bottom of the gels (+1- Smm from the bottom of the glass plate). The power supply was 

then turned off. 

The gel sandwiches were then carefully removed from the central core and 

placed on a paper towel. The plates were carefully and gently pried apart with a spatula. 

The orientation of the gel was marked by cutting a corner from the bottom of the gel 

that was closest to the leftmost well (slot 1). Gels that were used for western 

immunoblotting were not marked. 
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One set of the gels were fixed and stained with Coomassie Blue, and the other 

was used to transfer proteins from the gel onto a nitro-cellulose membrane (0.45!lm 

pore size, Millipore). The mitochondrial polypeptides separated by SDS­

polyacrylamide gel electrophoresis were simultaneously fixed with methanol:glacial 

acetic acid and stained with Coomassie Brilliant Blue R250, a triphenylmethane textile 

dye. 

The entire gel was immersed in 250ml of the stain solution (0.125% Coomassie 

Blue R250, 50% methanol, 10% acetic acid) and placed on a slowly rotating platform 

for 4 hours at room temperature. The stain was then carefully poured off into a dark 

bottle, and stored in a dark cupboard for future use. The stained gel was then soaked in 

a destaining solution I (Appendix 1), on a slowly rocking platform for 4 hours. The 

destain solution was changed at least 3-4 times during this time. The gel was then 

placed in a destain solution 11 (Appendix 1) on a rocking platform overnight. After 

destaining, the gel was immediately photographed, to make a permanent record. The 

gel was subsequently stored at 4°C in deionised water containing 20% glycerol. 

3.6 WESTERN BLOTTING 

In western blotting, electrophoretic ally separated components are transferred 

from a gel to a solid support and probed with reagents that are specific for particular 

sequences of amino acids. Most western blots are carried out by direct transfer of 

proteins from the gel to a nitro-cellulose filter. Several types of electrophoresis 

apparatus for western blotting are available. Older types incorporate wet blotting, 

where the entire apparatus is immersed in an electrophoresis transfer tank. Blotting 

usually takes approximately twelve hours to complete. 

The newer type of apparatus, a semi-dry graphite electrode transblot apparatus 

(Hoefer Instruments, Germany) was used in this study. The test equipment comprised a 

base tray with one graphite plate secured firmly onto it, and a free, lid type graphite 

electrode that fitted firmly onto the base plate. The electric leads then connects to a 

voltage pack. 
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3.6.1 Transfer of proteins onto nitro-cellulose membranes. 

When the SDS-polyacrylamide gel was approaching the end of its run, the 

graphite plates were carefully rinsed with distilled water. Any beads of liquid that 

adhered to them were wiped of with a non-absorbent tissue. Protective surgical gloves 

were worn throughout this experiment. Oils and secretions from the skin will prevent 

the transfer of proteins from the gel to the filter. In addition, proteins from the skin may 

also contaminate the samples. Extreme care must be taken to avoid such contamination. 

Six pieces of Whatman 3MM paper and one piece ofnitro-cellulose filter (0.45Jlm pore 

size, Millipore) were then cut to the exact size of the SDS-polyacrylamide gel. If the 

filter paper is larger than the gel, the overhanging edges of the paper and filter will 

touch, causing a short circuit. 

This will prevent the effective transfer of proteins from the gel. The nitro­

cellulose filter was marked in one corner with a soft-lead pencil. The nitro-cellulose 

filter was then wetted briefly by floating on the surface of a tray of deionised water. 

The filter was allowed to wet from beneath by capillary action. After 2 minutes, the 

filter was completely submerged in the water for 5 minutes to displace any trapped air 

bubbles. The six pieces of 3MM paper were placed in a shallow tray containing 30ml 

of transfer buffer (39mM glycine, 48mM Tris base, 0.037% SDS, 20% methanol, pH 

8.3). 

Three sheets of 3MM paper, in perfect alignment were placed on the bottom 

electrode (the anode). The sheets were then rolled with a glass pipette to remove any 

trapped air bubbles. The wetted nitro-cellulose was then placed (exactly aligned) on the 

stack of 3MM paper. Any trapped air bubbles were then removed by rolling the sheets 

with a glass pipette. The SDS-polyacrylamide gel was then removed from the glass­

alumina plate sandwich and transferred briefly to a tray of transfer buffer for 5 minutes. 

The gel was then placed exactly on top of the nitro-cellulose filter. The gel was 

orientated so that the mark on the filter corresponded with the bottom left-hand corner 

of the gel. The remaining three sheets of 3MM paper were then placed on top the gel, 

again in perfect alignment. 
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The entire stack was gently rolled with a glass pipette to remove any air bubbles. 

The upper electrode (the cathode) was carefully placed on top of the stack. The 

electrical leads were connected (red lead to the bottom electrode) and a constant current 

of O.65mNsq. cm. of gel was applied for 1.5 hours. 

The entire apparatus was surrounded by a jacket of ice packs. After 1.5 hours of 

transfer, the current was turned off, and the leads disconnected. The stack was 

dissembled by gently peeling each layer off in turn. The gel was placed in tray of 

Coomassie 'blue and stained as described earlier. This allowed one to check if 

electrophoretic transfer was complete. The bottom left-hand corner of the filter was 

then cut off, as an insurance against obliteration of the pencil mark. The filter was then 

stained with Ponceau S. 

3.6.2 Staining proteins immobilised on nitro-cellulose filters 

The Ponceau S stain is completely compatible with all methods of 

immunological probing, because the stain is transient and is completely washed away 

during processing of the western blot. The stain does not, therefore interfere with the 

subsequent detection of antigens by chromogenic reactions, catalysed by antibody 

linked enzymes such as horseradish peroxidase. 

Staining with Ponceau S is generally used to provide visual evidence that 

electrophoretic transfer of proteins has taken place, and to locate molecular weight 

markers, whose positions are then marked with pencil. Following electrophoretic 

transfer of mitochondrial proteins from the SDS-polyacrylamide gel to the nitro­

cellulose filter, the filter was briefly allowed to float on the surface of a tray of 

deionised water. The filter was then transferred to a tray containing a working solution 

ofPonceau S stain (Appendix 1). 

The filter was incubated in the stain for 10 minutes, with gentle agitation. When 

the protein bands became visible, the nitro-cellulose filter was washed in several 

changes of deionised water at room temperature. The positions of proteins used as 

molecular-weight standards were then marked with pencil or water-proof black ink. 
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3.6.3 Blocking binding sites for immunoglobulins on the nitro-cellulose filter 

The nitro-cellulose filter was now ready for immunological probing. The blot 

was soaked in 30ml of3% BSA in saline solution (0.9% NaCl/lOmM Tris-HCI, pH 7.4) 

for 2 hours. The sections of the paper that do not contain protein were therefore 

blocked to prevent non-specific binding and also to reduce background staining. The 

blocking solution was discarded and the filter was immediately transferred to a heat 

sealable plastic bag. 

3.6.4 Binding of the primary and secondary antibody to the target protein. 

All western blots are probed in two stages. An unlabelled antibody specific to 

the target protein is first incubated with the nitro-cellulose filter in the presence of a 

blocking solution. The filter is then washed and incubated with a secondary reagent, 

anti-immunoglobulin that is either radiolabelled or coupled to an enzyme such as 

horseradish peroxidase. After further washing, the antigen-antibody-antibody 

complexes on the nitro-cellulose filter are located by autoradiography or in situ enzyme 

reactions. 

In this study a target protein was not directly probed. Instead, the presence of 

protein-bound AFBl was targeted (Figure 3.2). 

Typical Western Blotting: 

This study: 

Figure 3.2 Aflatoxin B) bound protein identification using western blotting. 
NC, nitro-celIulose membrane. 
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The filter was incubated at room temperature in 20J..ll of primary antibody 

(polyclonal anti-AFBI, Sigma) diluted 1:10 in saline containing 3% BSA and 10% 

rabbit carrier serum. The sealed plastic bag was rocked on a platform shaker for 4 

hours. The plastic bag was then cut open and the antibody solution discarded. The 

filter was thoroughly washed in five changes of saline (10 minutes each). After 

washing, the filter was incubated for 2 hours at room temperature with 15 J..ll of the 

secondary antibody (Goat anti-rabbit antibody conjugated to horseradish peroxidase, 

Sigma), diluted 1 :500 in saline containing 3% BSA. 

3.6.5 Chromogenic substrate localisation of antigen-antibody-antibody complexes 

The blots were then repeatedly washed in 5 changes of saline (10 minutes each) 

and transferred to a clean petri-dish. A solution of DAB (10ml) was then poured over 

the filter and gently rocked for 60 seconds (Appendix 1). The reaction was terminated 

as soon as the bands became visible. The blot was immediately plunged into deionised 

water to stop the reaction. The stained filter was washed in saline (2 minutes) and 

transferred to a tray of deionised water. The blot was immediately photographed for a 

permanent record. 

3.7 DIRECT IMMUNODETECTION OF AFLATOXIN BI ON SDS­

POLYACRYLAMIDE GELS. 

Direct immunodetection of antigens on polyacrylamide gels was developed by 

Olden and Yamada (1970). Although western blotting is more advanced, this method 

was tried to confirm results produced by the western blots. We found that a higher 

resolution was obtained using this technique, compared with the western blots. This 

could be attributed to the fact that the western blot was not a typical experiment, as 

described earlier (Section 3.6 and Figure 3.1). The concentration of protein-bound toxin 

was fairly minute and would therefore be extremely difficult to locate. By direct 

detection on polyacrylamide gels, the possible loss of toxin during transfer was 

minimised. For this procedure, gels were first fixed and all the SDS removed. All steps 

were performed with gentle agitation using 500-1000 ml of each solution listed below. 

After electrophoresis, gels were fixed in 50% trichloroacetic acid for 2 hours. 
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They were then washed for 1 hour in 7% acetic acid, for 16 hours in 1 % Triton 

X-I00/ 7% acetic acid, for 48 hours in two changes of 0.1 % Triton X-IOO/ 7% acetic 

acid, and for 24 hours in 7% acetic acid. The acetic acid was then washed out with 

phosphate buffered saline (PBS) for 2 hours. Following the removal of SDS, the slab 

gels were cut into strips with a pizza slicer, and transferred to a small container (a small 

plastic coverslip container was ideal). The gels were then incubated with primary and 

secondary antibodies in the same procedure as described for western blots in Section 

3.6. Bound antibody could also be detected by increased Coomassie blue staining of an 

antigen band. 

3.8 THE ABSORPTION OF AFLATOXIN Bl (Jig AFB1/mg mitochondrial 

protein) BY INTACT AND VIABLE RAT LIVER MITOCHONDRIA 

Several Aflatoxin Bl metabolites (AFBl-8,9-epoxide and AFBl-8,9-dihydrodiol) 

are known to react with cellular macromolecules such as DNA (Swenson et al., 1974), 

RNA (Swenson et al., 1977), and proteins (Iwaki et al., 1993), resulting in the 

formation of covalent adducts. Extensive studies have shown that AFBl can bind to 

several proteins including histones (Groopman et al., 1980), nuclear non-histone 

proteins and albumin (Sabbioni et al., 1987). None of these studies however have 

elucidated a quantitative result that indicates the amount of toxin bound by each of these 

proteins. Several studies however, have indicated that AFBI-DNA binding is ten times 

greater, and AFB1-rRNA twenty times greater, than AFB1-protein binding (Lijihsky et 

a/., 1970; Gamer and Wright, 1975). No study however has concentrated on the 

binding of toxin to specific mitochondrial proteins, or the amount of carcinogen bound 

per milligram of mitochondrial protein. 

In a simple approach, this study attempts to provide a quantitative picture of the 

amount of toxin bound per milligram of mitochondrial protein present in the sample. 

All experiments were in duplicate. 
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3.8.1 Treatment of isolated mitochondria: 

Mitochondria (22mg protein/ml), suspended in fresh isotonic 70mM sucrose 

buffer, were first incubated at 37°C for 10 minutes. To each experimental sample, 

0.51lg Aflatoxin Bl (AFBl)' per milligram mitochondrial protein (dissolved in lOOll1 of 

0.4% DMSO) was added. The mitochondrial samples containing toxin were then 

incubated at 37°C for 1 hour. Control samples received an equal volume ofDMSO only 

and were also incubated for the stipulated times. After incubation, the samples were 

plunged into ice, and then centrifuged at 15000g for 4 minutes, to pellet the 

mitochondria. The mitochondrial pellets and supernatants were gently removed and 

stored at -70°C for high pressure liquid chromatography (HPLC) and western blotting. 

3.8.2 Isolation of Aflatoxin Ht 

The pelleted mitochondria and supernatant fractions were then freeze-dried 

using a Virtis 8L Research Freeze Drying System. To the dried supernatant fractions 

which contained sucrose (designated Eppendorf 1), 500111 of chloroform (CHCh) was 

first added and the mixture was thoroughly vortexed. 

The chloroform was then filtered through a Pasteur pipette containing sodium 

sulphate and glass wool, into a clean glass vial. The above procedure was repeated 

three times, and all the filtered chloroform was transferred to the vial. Following CHCh 

extraction, 500111 of water was added to the Eppendorf 1, which contained the 

undissolved sucrose crystals. This would dissolve the sucrose crystals and release any 

toxin that may have been sequestered by the crystals. To this sucrose solution in 

Eppendorf 1, 500111 of CHCh was added to effectively extract any toxin that may be 

present. The solution was then vortexed. The chloroform (bottom layer) was then 

carefully removed with a syringe and transferred to Vial A above. The above extraction 

was also repeated three times, by adding fresh CHCh to the water-sucrose solution. 
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This procedure ensured a thorough extraction of AFBl present in the sample, 

hence preventing significant loss of toxin during experimental preparation. Finally, the 

Pasteur pipette was washed with fresh CHCh, at least twice, all of which was collected 

in the vial A. The CHCh in the vial was then evaporated at 30°C in the presence of a 

nitrogen atmosphere and stored at 4°C. 

3.8.3 High Pressure Liquid Chromatography 

The technique of HPLC is a popular tool of research, as it enables the analysis of 

a variety of compounds. The methods are easily adapted for a variety of purposes 

including simple identification and confirmatory procedures to more complex 

quantitative and qualitative procedures. 

Test equipment comprised a Spectro-Physics FL2000 fluorescence detector, a 

reverse phase column and a Millipore filter cartridge. All solvents used were of HPLC 

grade. The evaporated samples and standard AFBl (CSIR, Pretoria) were then 

derivatized. The derivatizing agent (DV A) was prepared by adding 0.15ml of H20 to 

2.85ml of trifluoroacetic acid (TFA). The DVA (1.5ml), was then added to the dry 

extract and left to incubate at room temperature for a period of 30 minutes, in order to 

form hemi-acetal adducts. The extracts were once again evaporated to dryness in a 

nitrogen atmosphere. 

The dried extracts were then reconstituted in acetonitrile to the desired 
• 

concentration in glm!. The HPLC mobile phase comprised of 10% acetonitrile, 10% 2-

propanol, and 2% acetic acid. High pressure liquid chromatography was performed 

using a Phenomanex LC18 column with fluorescence detection at 360 nm (excitation) 

and 440 nm (emission). The flow rate of the mobile phase was maintained at 1.0 

ml/min. All samples were injected in duplicate. Samples that were too concentrated 

were appropriately diluted (Figure 4.61). High pressure liquid chromatography revealed 

the presence of toxin within the mitochondrial pellet fraction from treated samples. The 

exact nature of the toxin, however, whether in free form or conjugated to protein was 

not elucidated by the study. 
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Hence, a simple dot blot of the mitochondrial pellet fraction, prior to CHCh 

extraction, was used to determine if aflatoxin present in the sample was in fact protein 

bound. The method for the treatment of mitochondria is described earlier. The treated 

and untreated mitochondrial samples were first thawed on ice for 20 min. Samples were 

then spotted (20J,ll) on a strip ofnitro-cellulose membrane (Figure 3.3). The membrane 

was allowed to dry at room temperature. The nitro-cellulose filters were then 

immunoprobed and stained according to the method described in section 3.6. 

Figure 3.3 

A B 

t 
Scoreline 

Diagrammatic representation of a nitro-cellulose membrane 

spotted with raw samples of (A) Untreated control mitochondria 

in sucrose (70mM) buffer (20,.d); (B) Treated mitochondria, 

Mitochondrial pellet fraction (20,.1). 
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Chapter 4 

RESULTS 

4.1 TRANSMISSION ELECTRON MICROSCOPY 

4.1.1 Rat liver tissues 

Samples of liver tissue from treated rats showed increases of heterochromatin in the 

peripheral and scattered cells of several nuclei; the nucleolus showed distinct micro­

segregation (Figure 4.1). Untreated rat liver tissues however, revealed nuclei that contained a 

single nucleolus with peripheral heterochromatin and regular profiles of the nuclear 

membrane (Figure 4.2). Mitochondria in both treated and untreated tissues were numerous. 

Cristae were well developed and the mitochondrial membranes largely intact. 

Several mitochondria in the experimental tissues exhibited distorted and elongated forms 

(Figure 4.3; 4.4) as compared to control samples which were well rounded and regular in 

shape (Figure 4.2). 

4.1.2 Isolated Mitochondria 

Isolated mitochondria from the livers of untreated rats showed distinct, well rounded 

and relatively even sized mitochondria (Figure 4.5; 4.6). The outer and inner membranes 

were clearly discernible and the cristae were also distinct (Figure 4.5; 4.6). The control 

samples also exhibited minimal mitochondrial division. Mitochondria from experimental 

samples however revealed several grossly swollen giant mitochondria (Figure 4.7). In 

addition, these samples showed high incidence of regular mitochondrial division (Figure 4.8). 

Several mitochondria in treated samples revealed an extension of the outer membrane, 

to exhibit a budding type of mitochondrial division (Figure 4.9). Several mitochondria 

isolated from treated rats revealed a distinct separation of membrane components; the outer 

membrane appeared to be separated from a condensed and granular matrix (Figure 4.10). 
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4.1.3 Isolated Sub-Mitochondrial Particles (SMP's) - Inner membrane fraction 

Control samples indicated fully expanded circular forms with most of the inner 

membrane largely intact and with numerous minute circular particles extending from the base 

of the inner membrane (Figure 4.11). In addition numerous paracrystalline filaments were 

observed in the control samples as compared to experimental samples (Figure 4.12). 

Experimental samples however, showed great disruptions in inner membrane integrity 

(Figure 4.13). There was also an abundance of damaged fibrillar and membranous material 

present (Figures 4.13; 4.14). The numerous particles found in the control samples 

(Figure 4.11) were hardly present in the experimental samples (Figures 4.13; 4.14). 

4.2 IMMUNOCYTOCHEMISTRY 

4.2.1 Rat liver tissues 

Conjugated gold labelled AFB\ was successfully located in several organelles within 

the liver tissues from treated rats. Label was found within several mitochondria and also 

closely associated with the mitochondrial membranes and matrices (Figure 4.15; 4.16; 4.17). 

Bound toxin was also localised in the nucleus and along the nuclear membrane (Figure 4.18), 

in the nucleolus and bordering its membranes (Figure 4.19), in areas of cytoplasmic clearing 

(Figure 4.20) and also within the endoplasmic reticulum and along its membranes 

(Figure 4.21). 

4.2.2 Isolated Mitochondria and Sub-mitochondrial particles from treated 

and untreated rats 

Immunogold-Iabelling of AFB\ was specific within the experimental mitochondrial 

samples (Figure 4.22). Method controls for isolated mitochondria and SMP's did not reveal 

the presence of bound toxin. In most cases, experimental samples revealed label scattered 

throughout the mitochondrial matrix which remained finely granular (Figure 4.23). Cristae 

were not easily visible. Label was also found near the mitochondrial membranes (Figure 

4.23). Label was frequently found within dividing mitochondria (Figure 4.24) and along the 

membrane of division (Figure 4.25). 
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Toxin was often found within the inter-membrane space and also in the areas of the 

outer membrane (Figure 4.25). No label was found in the control samples (Figure 4.26). No 

label was located in isolated SMP's from untreated rats (Figure 4.27). The particles were well 

rounded, the inner membrane was largely intact and there appeared to be an abundance of 

particles extending from the base of the membranes in the control samples (4.27). 

Experimental fractions showed the presence of AFB\ in close proximity to damaged 

membranous fractions (Figure 4.28) and in definite association with the inner membrane 

(Figure 4.29). Conjugated gold label was also found within paracrystalline filaments in the 

treated samples (Figure 4.30). Method controls were very specific, no label was found in both 

control SMP samples (Figure 4.31) and also in the treated SMP samples (Figure 4.32). 

4.2.3 Isolated mitochondria in 70mM sucrose - Treated with AFBl (O.5,..,g AFB1/mg 

mitochondrial protein). 

The mitochondria suspended in 70mM sucrose assumed an orthodox conformation. 

The matrix was fmely granular and the cristae hardly visible (Figures 4.33). The 

mitochondria were generally oval .to spherical in shape. Bound toxin was located in most 

mitochondria from samples treated with a single dose of toxin (O.5~g AFBI/mg mitochondrial 

protein). 

Toxin was often found within the mitochondrial matrix and within the intermembrane 

fraction (Figure 4.34). Label was also found closely associated with both the outer and inner 

membranes within budding mitochondria (Figures 4.35). Toxin was also found within 

mitochondria where matrix clearing appeared to be occurring (Figure 4.36). Bound toxin was 

also located in areas of distinct membrane damage or breaks, with the associated swelling of 

cristae and matrix clearing, particularly in areas of localised toxin (Figure 4.37). The 

appearance of toxin in treated samples appeared to damage the membranes of several 

mitochondria, allowing the extrusion of the mitochondrial matrix (Figure 4.38). Sub­

mitochondrial samples isolated in 70mM sucroOse showed no label in control samples (Figure 

4.39). Toxin was localised within treated SMP's (Figure 4.40) and also closely associated 

with the inner mitochondrial membrane fragments (Figure 4.41). 
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4.2.4 Isolated mitochondria in 2S0mM sucrose - Treated with AFBl (O.SJlg 

AFBl/mg mitochondrial protein) 

The mitochondria suspended in 250mM sucrose revealed a distinct change in 

ultrastructure, from the orthodox conformation to a highly configured form (Figure 4.42). 

The cristae were easily visible (Figure 4.42; 4.43). The inner and outer membrane 

components were also easily discernible (Figure 4.43). Immunocytochemistry revealed the 

presence of bound toxin within the mitochondrial matrix and cristae of treated mitochondrial 

samples (Figures 4.44). Several mitochondria showed distinct membrane breaks and 

membranous damage, with the associated clearing of mitochondrial matrices, particularly in 

areas of localised toxin (Figure 4.45). 

Bound toxin was also located in areas of the outer membrane, where the membrane appeared 

to be dissolved, and with the associated swelling of the cristae in that region (Figure 4.46). 

Figure 4.47 also shows a mass of labelled toxin at the outer membrane region of the 

mitochondria. Label was also located within distorted mitochondria, which displayed swollen 

cristae (Figure 4.48). No toxin was found in the control-untreated mitochondrial samples 

(Figure 4.42). 

4.3 LIGHT MICROSCOPY - IMMUNOHISTOCHEMISTRY 

The presence of the chromagen, diaminobenzidine (DAB), was successfully located in 

liver tissues from treated rats. No stain was found in the untreated samples (Figure 4.49) or 

the method controls (Figure 4.50). In the first experimental sample, examined 30 minutes 

after injection, toxin was located within the cytoplasm of infected cells (Figure 4.51). Stain 

was also found bordering the cell membranes (Figure 4.51). After 2 hours a large amount of 

toxin was found within the cells. The entire cytoplasm appeared to be infiltrated with toxin. 

The nuclei however remained largely uncontaminated (Figure 4.52). 

In the 24 hour samples the stain was found within the cytoplasm and also within the nuclei. 

Several cells showed distinct membrane damage and associated cytoplasmic clearing 

(Figure 4.53). 
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4.4 POLYACRYLAMIDE GEL ELECTROPHORESIS 

4.4.1 Mitochondrial protein and rat serum albumin concentrations in untreated and 

treated rats 

Protein concentrations were determined using the Bradford Assay (1976), 

(Appendix 1). Rats were sacrificed 24 hours after toxin administration. 

Table 10. Absorbance (595 nm) and protein content (mg/ml) of unknown mitochondrial 
samples isolated from rat liver (15g), (E = experimental mitochondria, 
C= control mitochondria), and in rat serum albumin (5ml). 

between l'nnlTrnl 

Mitochondrial protein increased by 41.8% following toxin treatment. 
Rat serum albumin increased by 40% in treated animals. 

Inverted light density - images of the polyacrylamide gels also confirmed an increase 

in protein concentration established by the Bradford assay above. Protein staining was more 

dense in the experimental fractions of both experimental mitochondria and SMP's isolated 

from the same part of the rat liver (15g), (Figures 4.54b, c and 4.55b, c). 

This was not as easily visible in the normal Coomassie blue stained gels (Figures 4.54a & 

4.55a). Rat serum albumin samples from treated and untreated rats also revealed a higher 

concentration of albumin in the experimental sample (Figure 4.56). 
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4.4.2 Protein profiles of rat liver mitochondrial and sub-mitochondrial fractions 

Mitochondrial fractions were repeatedly resolved on polyacrylamide gels to first 

establish a constant result. The experimental fractions were first diluted I :40 so that the 

bands could be easily resolved. The fractions obtained from different rats were all identical, 

indicating that the extraction procedures were correct and constant (Figure 4.57). The 

mitochondrial proteins that were resolved were in the molecular weight range of 10-200 kDa. 

There were no significant differences between protein patterns from mitochondria isolated 

from the livers of untreated and treated rats (Figure 4.57; lanes 2 and 3 respectively). In 

addition, there were no differences in protein profiles between control mitochondria and 

mitochondria that were treated with toxin (Figure 4.57; lanes 4 and 5 respectively). 

The isolated sub-mitochondrial fraction showed a lower number of proteins than the 

mitochondrial crude samples (Figure 4.58). The proteins that were not resolved included the 

outer membrane proteins and the inter-membrane fraction proteins. There were no significant 

differences between protein patterns of SMP's isolated from untreated and treated rats 

(Figure 4.58). 
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4.5 WESTERN BLOTTING 

The diaminobenzidine chromagen was rather difficult to use, resulting in rapid 

background staining and at the same time, extremely rapid fading in the presence of light, 

particularly during the few minutes of photographing. Given the different nature of the 

western blot procedure and the minute concentration of toxin bound to a particular protein in a 

single band of the gel, the staining was indeed faint and at times was only discernible to a 

trained eye. Nevertheless, the specificity of binding was determined by repeated trials, taking 

extreme caution to maintain all laboratory conditions exactly the same during each trial. 

Basic factors like temperature differences, unnecessary vibrations and irregular shaking all 

seemed to effect the staining reaction. 

The western-immunoblots of the inner mitochondrial-matrix fraction (Figure 4.58) 

from treated rats revealed the presence of 5 AFBJ-bound protein fragments in the following 

molecular weight range (154kDa, 50kDa, 25kDa, 18kDa, 14kDa), (Figure 4.59). 

4.6 DIRECT IMMUNODETECTION ON POLYACRYLAMIDE GELS 

The presence of AFBJ-bound proteins in the inner mitochondrial membrane-matrix 

fraction (Figure 4.58) was further confirmed by this technique, which in this instance 

provided a more visible result as the immunolocalisation was directly on the gel. 

The results confirmed the presence of the same 5 AFBJ-bound protein fragments in the 

same molecular weight range (154kDa, 50kDA, 25kDA, 18kDA, 14kDA), (Figure 4.60). 

67 



4.7 HIGH PRESSURE LIQUID CHROMATOGRAPHY 

High pressure liquid chromatography revealed the presence of toxin in both the 

supernatant and mitochondrial fraction. With the use of a 5.5J.lg AFBJ standard (>80% 

fluorescence), fluorescence chromatograms revealed the presence of toxin in the supernatant 

sucrose buffer fraction at 7% fluorescence (O.3J.lg.mrJ peak) and in the treated mitochondrial 

pellet fraction at 70% (4.6J.lg.mrJ peak), (Figure 4.61). 

Percentage HPLC recovery 

Amount of toxin internalised by mitochondria 

Amount of toxin in supernatant = 

89% 

840/; ,:.. 

5.4% 

These results suggest that approximately 84% of the initial dose was internalised by 

the mitochondria, indicating that approximately 4.6J.lg of AFBJ was internalised by every 

milligram of mitochondrial protein present in the sample. 

"Internalised" is the operative word, because although HPLC revealed the presence 

of toxin within the mitochondrial fraction analysed, the exact nature of the toxin within this 

fraction, whether protein bound or not, needed to be elucidated. 

For this, a simple dot blot of the HPLC mitochondrial fraction was used against 

untreated control mitochondria (Figure 4.33). The results indicated that the toxin within the 

HPLC fraction analysed was in fact protein bound (Figure 4.62). 
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Figure 4.1 Liver from rats treated with a single dose of toxin (6mg AFB/kg body weight). Chromatin 
segregation is evident, the nucleolus (NU) showing distinct micro segregation. Mitochondria 
(arrows) are swollen and show distinct clearing ofmartices, X8000. 

Figure 4.2 Liver from control-untreated rats. The nucleus (N) contains a single compact nucleolus 
showing peripheral heterochromatin and regular profiles of the nuclear membrane, X6000. 

69 



Figure 4.3 

Figure 4.4 

Liver tissue from a toxin treated rat showing a distorted and enlarged mtiochondrion (M), 
X30000. 

Liver tissue from a toxin treated rat showing an elongated mitochondrion (M), X 12 000. 
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Figure 4.5 

Figure 4.6 

Electron micrograph of isolated mitochondria from untreated rats. The inner and outer 
membrane (arrows) and cristae (C) are discernible, X15 000. 

Electron micrograph of isolated mitochondria from untreated rats. The mitochondria (M) are 
well rounded and are of even size, X30 000. 
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Figure 4.7 

Figure 4.8 

A solitary grossly swollen giant mitochondria (M) is seen among numerous normal-looking 
mitochondria isolated from the liver of a toxin treated rat, Xl 0 000. 

Isolated liver mitochondria from a toxin treated rat showing a dividing mitochondrion (M). 
The division appears as a continuation of the outer membrane (arrow), X30 000. 
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Figure 4.9 

Figure 4.10 

Isolated rat liver mitochondria displaying a budding type of division. The outer membrane 
(arrow) is continuous with all dividing mitochondria, XI5 000. 

--- - -- -- ---
J ~ ~'; 

Isolated liver mitochondria from treated rats showing a mitochondrion with a condensed and 
granular matrix (MM). The inner (I) and outer (0) membrane are separated, X30 000. 
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Figure 4.11 Digitonin treated mitochondria (untreated rats), showing several round sub-mitochondrial 
particles (SMP's). Most of the inner membrane appeared intact (arrow) and with numerous 
circular particles on the matrix side of the membrane, X50 000. 

Figure 4.12 Isolated sub-mitochondrial fraction from untreated rats showing the presence of distinct 
paracrystalline inclusions (P), x50 000. 
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Figure 4.13 Sub-mitochondrial particles from liver tissues of toxin treated rats, showing great disruptions 
in inner membrane integrity. The particles (SMP's) appear distorted and irregular, X30 000. 

Figure 4.14 Isolated sub-mitochondrial particles from toxin treated rats, with an abundance of damaged 
fibriller and membranous material (arrows). The particles found in control samples are 
scarcely present, X40 000. 
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Figure 4.15 lee electron micrograph of rat liver from treated rats, showing the presence of toxin 
(triangles) in the mitochondria, X30 000. 

Figure 4.16 lee electron micrograph of rat liver from treated rats, showing the presence of toxin (circles) 
in the mitochondria. X40000. 
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Figure 4.17 ICC electron micrograph of rat liver from treated rats, showing the presence of toxin 
(triangles) in the mitochondria, X60 000. 

Figure 4.18 An immunocytochemical (ICC) electron micrograph showing the presence of polyclonal 
gold labelled anti-AFB( (circle) in the nucleus (N) and along the nuclear membrane (arrow) 
in a liver cell from a toxin treated rat. X40 000. 
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Figure 4.19 ICC electron micrograph showing presence of label (circles) in the nucleouls (NU) and 
boardering its membranes (arrow) in experimental liver tissues, X40 000. 

cc 

Figure 4.20 ICC electron micrograph showing presence of label (triangles) in areas of cytoplasmic 
clearing (CC), in experimental liver tissues, X40 000. 
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Figure 4.21 

Figure 4.22 

An immunocytochemical electron micrograph showing the presence of polyclonal gold 
labelled toxin (circle) in close association to swollen ER, X30 000 

Electron micrograph of isolated liver mitochondria from toxin treated rats, showing label 
within the mitochondria (M). Conjugated gold label was located specifically within the 
matrix and near the mitochondrial membranes (arrow), X30 000. 
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Figure 4.23 Experimental samples showing label within a fmely granular mitochondria matrix (MM), 
and also in areas of the outer membrane (arrows), X50 000. 

Figure 4.24 Conjugated gold labelled toxin was often found within dividing mitochondria, with toxin in 
the matrix (MM) and closely associated with the mitochondrial membranes (arrows), 
X60000. 
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Figure 4.25 ICC electron micrograph showing toxin within the intermembrane space (arrow) and closely 
associated with areas of the dividing mitochondria (M), XI00 000. 

Figure 4.26 Isolated liver mitochondria from untreated rats, showing no labelled toxin within the 
mitochondria (M), X60 000. 

81 



Figure 4.27 lee electron micrograph of SMP's isolated from untreated rats. No labelled toxin was 
found in these samples. The particles were well rounded and without any significant 
alteration to the membranes. The inner membrane was largely intact (arrow), X60 000. 

Figure 4.28 lee electron micrograph showing the presence of toxin in' close proximity to damaged 
membranous regions (arrows) ofSMP's isolated from experimental rats, X60 000 
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Figure 4.29 ICe electron micrograph showing the presence of toxin in deftnite association with the inner 
membrane (IM). Portions of the membrane appear dissolved or damaged (arrow), X120 
000. 

.:';,:.~~.~~ ~ 
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Figure 4.30 The sub-mitochondrial fraction isolated from the livers of treated rats often revealed the 
presence of conjugated toxin within several paracrystalline inclusion (P), XIOO 000. 
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Figure 4.31 lee electron micrograph showing no presence of label within method controls of SMP's 
isolated from untreated rats, X40 000. 

Figure 4.32 lee electron micrograph showing no presence of label within method controls of SMP's 
isolated from treated rats, X30 000. 
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Figure 4.33 

Figure 4.34 

Electron micrograph of control mitochondria isolated in 70rnM sucrose buffer. The matrix 
(MM) is fmely granular and the cristae are hardly visible, X50 000. 

ICC electron micrograph of treated mitochondria (in vitro), isolated in 70rnM sucrose 
buffer. Toxin was often found within the mitochondrial matrix (MM) and within the 
intermembrane fraction (arrow), X60 000. 
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Figure 4.35 lee electron micrograph of treated mitochondria (in vitro), isolated in 70mM sucrose 
buffer. Label (diamonds) was also found closely associated with both the outer and inner 
membranes (arrows) within budding mitochondria, X40 000. 

Figure 4.36 lee electron micrograph of treated mitochondria (in vitro), isolated in 70mM sucrose 
buffer. Toxin (triangles) was frequently found within mitochondria where matrix clearing 
(arrows) appeared to be occuring, X60 000. 
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Figure 4.37 ICe electron micrograph of treated mitochondria (in vitro), isolated in 70mM sucrose 
buffer. Bound toxin (triangles) was located in areas of distinct membrane damage or 
breaks (arrows), with the associated swelling of cristae (C) and matrix clearing (MM), 
particulary in areas of localised toxin, X40 000. 

Figure 4.38 ICe electron micrograph of treated mitochondria (in vitro), isolated in 70mM sucrose 
buffer. The appearance of toxin in treated samples appeared to damage the membranes of 
several mitochondria, allowing the extrusion of the mitochondrial matrix (arrow), 
X60000. 
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Figure 4.39 ICe electron micrograph of untreated SMP's isolated in 70mM sucrose buffer. No label 
was found. The inner membrane (IM) is easily visible, with numerous round particles 
lining the membrane, X 120000. 

Figure 4.40 ICe electron micrograph of treated SMP'S (in vitro), isolated in 70mM sucrose buffer. 
Toxin was localised in areas ofSMP's (arrow), X60 000. 
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Figure 4.41 

Figure 4.42 

ICC electron micrograph of treated SMP's (in vitro), isolated in 70mM sucrose buffer. 
Gold labelled toxin (triangles) was closely associated with the inner membrane (IM) 
fragments ofSMP's, X30 000. 

Electron micrograph showing untreated mitochondria suspended in 250mM sucrose 
buffer. The mitochondria revealed a distinct change from an orthodox (0) conformation, 
to a more highly configured form (HC). Within the configured form, the cristae (C) are 
easliy visible and the matrix (arrow) is highly condensed, X60 000. 
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Figure 4.43 lee electron micrograph of untreated mitochondria suspended in 250mM sucrose 
buffer. The inner (IM) and outer (OM) membranes are easliy discernible. The cristae 
(C) and matrix (M) are also easily seen, X60 000. 

Figure 4.44 lee electron micrograph of treated mitochondria (in vitro), isolated in 250mM sucrose 
buffer. Bound toxin was localised within the mitochondrial matrix (MM) and cristae 
(C), X50 000. 
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Figure 4.45 lee electron micrograph of treated mitochondria (in vitro), isolated in 250mM sucrose 
buffer. Toxin was localised in areas of distinct membrane breaks and membranous 
damage (arrows), with the associated clearing of mitochondrial matrices (MM), 
particularly in areas oflocalised toxin, X60 000. 

Figure 4.46 lee electron micrograph of treated mitochondria (in vitro), isolated in 250mM sucrose 
buffer. Bound toxin was also located in areas of the outer membrane (OM), where the 
membrane appeared to be dissolved (arrow), and with the associated swelling of the 
cristae (C) in that region, X60 000. 
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Figure 4.47 lee electron micrograph of treated mitochondria (in vitro), isolated in 250mM sucrose 
buffer. Several mitochondria displayed a mass of labelled toxin at the outer 
membrane (arrow) region of the mitochondria, X50 000. 

Figure 4.48 lee electron micrograph of treated mitochondria (in vitro), isolated in 250mM sucrose 
buffer. Aflatoxin B( (arrow) was located within distorted mitochondria (M), which 
displayed swollen cristae (C), X40 000. 
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Figure 4.49 Immunohistochemical (IRC) light micrograph of a liver section from untreated rats. 
No toxin was found in the tissues. The cells were largely intact and the nuclei (N) and 
nucleolus (arrow) well formed, X5000. 

Figure 4.50 Immunohistochemical (IRC) light micrograph, method control of a liver section from 
treated rats. No toxin was localised within the tissues, X5000. 
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Figure 4.51 Immunohistochemical (IHC) light micrograph of a liver section from treated rats, 
examined 30 minutes after administration. Toxin was located within the cytoplasm (C) 
of infected cells. The diaminobenzidine (DAB) chromogenic stain was also found 
bordering the cell membrane (arrow), X5000. 

Figure 4.52 Immunohistochemical (IHC) light micrograph of a liver section from treated rats 
examined 2 hours after toxin administration. The entire cytoplasm (C) and some nuclei 
(arrow) appeared to be infiltrated with toxin., X5000. 
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Figure 4.53 Immunohistochemical (IHC) light micrograph of a liver section from untreated rats 
examined after 24 hours following toxin admistration. The stain was found within the 
cytoplasm (C), and also within the nuclei (N). The entire tissue appeared to be 
infected. Several cells showed distinct membrane damage and associated cytoplasmic 
clearing (arrows), X5000. 

95 



1 2 

A B 

Figure 4.54 Protein concentrllijoils inJO% polyacrylamide gels. A. Nonna!Cpomassie blue staui-ed gel. Lane 1 & 2 represent mitochondria from untreated and 
treated rats repectively. B. Inverted light image of A, showing a greater density of protein bands in lane 2. C. Inverted light image orA, with a 
lower light intensity showing the more heavily stained bands in lane 2. 
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Figure 4.55 Protein concentrations in 10% polyacrylamide gels. A. Normal Coomassie blue stained gel. Lane I and 2 represent SMP's from untreated and 
treated rats repectively. B. Inverted light image of A., showing a greater density of protein bands in lane 2. C. Inverted light image of A, with a 
lower light intensity showing the more heavily stained bands in lane 2. 
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Figure 4.56 Coomaasie blue stained gel, under inverted light intensity showing presence of albumin isolated 
from untreated rat serum (lane B) and treated rat serum (lane C). Bovine serum albumin marks 
the first lane of the gel and was used as a standard marker for albumin (lane A). 
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Figure 4.57 Coomassie blue stained gel of rat liver mitochondrial proteins. Lane 1, Molecular weight 
markers. Lane 2, Mitochondria isolated from untreated rats (in vivo). Lane 3, Mitochondria 
isolated from treated rats (6mg AFB,/kg body weight), (in vivo). Lane 4, Isolated 
mitochondria,untreated, (in vitro). Lane 5, Isolated mitochondria treated with aflatoxin B, 
(O.5f.lg AFBlImg mitochondrial protein), (in vitro). 
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Figure 4.58 Coomassie blue stain polyacrylamide gel showing protein 
of the inner mitochondrial matrix fraction of rat liver mitochondria. 
Lane 1, Control sample from untreated rats. Lane 2, Experimental sample 
from treated rats. 
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Figure 4.59 Western-immunoblots of the inner mitochondrial-matrix 
fraction from untreated rats (lane 1) and treated rats (lane 2). Five 
AFB\-bound protein fragments were identified in the following molecular 
weight range (154 kDa, 50 kDa, 25 kDa, 18 kDa, 14 kDa). 
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Figure 4.60 Direct immunodetection of AFB\-bound proteins on 10% 
Polyacrylamide gels. Five AFB\-bound protein fragments were identified 
in the following molecular weight range 
(154kDa, 50kDa, 25kDa, 18kDa, 14kDa). 
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Figure 4.62 Western dot-blot showing the presence of protein bound toxin in the treated inner 
Mitochondrial membrane fraction (E) analysed by HPLC. No toxin was found in 
control, untreated mitochondria (C). 

104 



Chapter 5 

DISCUSSION 

Cancer of the liver is estimated to be one of the eight most frequent cancers in 

humans. Biological and chemical factors (AFBJ and other environmental carcinogens) 

involved in the aetiology of liver cancer in humans have been identified during the latter half 

of this century, however knowledge of the disease itself extends back into the last century. 

The first clear demonstration of the chemical induction of hepatomas in rodents was reported 

by Sasaki and Yoshida (1935). These pioneering studies led to numerous investigations, 

primarily in rodents; these studies now form an experimental basis on which one can begin to 

relate the cellular and molecular pathogenesis of chemically induced hepatic neoplasia in 

animals to the development of the disease in humans. 

A great deal obviously remains to be learned about the metabolism of AFBJ by 

animals and humans. Information on the subject in this thesis further indicates and 

emphasises the multifaceted mode of action, and diverse metabolic pathways assumed by 

AFBJ during toxicity. This study indicates that a significant proportion of a single dose of 

AFBJ is rapidly taken up by the liver and by several organe1les within the liver. The 

treatment gives rise to a persistent array of histologic damage and biological alterations. 

105 



These findings imply that a small amount of the toxin or derivatives of it, remain 

undetected by detoxification processes in the liver, where they can persist in the tissue for 

prolonged times after dosing, and with the capabilities of interacting with cellular constituents 

to initiate self-perpetuating biochemical events leading to carcinogenesis and cellular death. 

The specificity of uptake and binding of the toxin within the mitochondria, indeed 

suggests that these organelles play some role in AFB1-mediated toxicity within the liver. 

Particular interest has been shown in the metabolic fate of the mycotoxin in mammalian 

hepatocytes, in order to elucidate its toxic and carcinogenic mechanisms. However, the actual 

transport mechanisms for AFBl within the cell system is largely unknown. The presence of 

AFBl within the several organelles of the liver suggests that the toxin is able to pass across 

several biological membranes. Aflatoxin Bl is a lipid soluble compound and is capable of 

dissolving the phospholipid bilayer of the mitochondrial membrane. In this study, membrane 

damage and extrusion of the matrix was observed in several toxin treated samples (Figures 

4.37,4.38,4.45), suggesting that the toxin dissolved the membrane at the surface, in order to 

penetrate the mitochondria. However, this proposed mechanism of AFBl transport into the 

mitochondria is not absolute. Several samples of mitochondria isolated from treated rats 

indicated the presence of toxin within intact mitochondria, the outer and inner membranes 

completely unaffected by the presence of the toxin (Figure 4.25). In addition, toxin was also 

located within the inter-membrane fraction in certain mitochondria and also directly on the 

membrane itself (Figures 4.34, 4.35), together suggesting another mechanism of entry into 

the mitochondria. 
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In these cases, it is possible that the toxin may have entered the mitochondria during 

mitochondrial protein import, through specific protein transport channels or contact sites on 

the mitochondrial membrane surface. 

Moynagh (1995) clearly indicated the presence of several outer and inner membrane 

proteins involved in a protein translocation complex, that allows preprotein polypeptides to 

enter the mitochondria (Figure 2.6). It has been proposed therefore that AFBl may be capable 

of binding to preprotein and entering the mitochondria via translocation across anyone of 

these contact sites. Aflatoxin Bl can be activated to its reactive epoxide by cytochrome P450 

in the endoplasmic reticulum and microsomes that are found in the cytoplasm (Eaton and 

Groopman 1994). The reactive AFBl-8,9-epoxide (AFBO), has been shown to bind to 

histones and several other proteins including the plasma protein albumin (lwaki et al., 1993; 

Sabbioni et al., 1987; Dirr and Schabort, 1986). 

Sabbioni et al., (1987) showed that a major serum albumin adduct was formed by 

AFBl in vivo in rats. They reported that the epoxide formed an adduct by binding with the E­

amino group of lysine, to form a Schiffs base. The Schiffs base undergoes an Amadori 

rearrangement to an a-amino ketone. Several authors strongly suggest that AFB1-Iysine 

adduct formation is the mechanism of AFB1-protein complex formation (Sabbioni et al., 

1987; Iwaki et al., 1993). Although the exact role of AFBl-protein binding remains unclear, 

their role in AFBl-mediated carcinogenecity and toxicity is slowly being unravelled. 
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Ch'ih et al., (1993) suggested that the lipophilic nature of AFBl did not allow it to 

freely enter the nucleus. They postulated that the toxin might translocate across the nuclear 

pore as a ligand-protein complex by binding to proteins destined for the nucleus (histones), 

thus increasing its uptake, activation and damage to DNA. In this study, AFBl was indeed 

located in the nucleus and along the nuclear membranes (Figure 4.18,4.19). 

Albumin has been targeted as the major transport protein for AFB1, responsible for 

toxin binding and translocation, at least in rat blood (Dirr and Schabort, 1986). Interestingly, 

in this study, albumin concentrations in the blood isolated from rats treated with a single dose 

of toxin increased by 40% as compared to control albumin samples isolated from untreated 

rats (Table 8, Figure 4.56). These results strongly suggest that albumin concentrations 

increased in direct response to the presence of AFB1, and possibly as a means of translocation 

within the blood to adequate areas of detoxification. 

Indeed albumin may be described as the principle binding protein involved in AFB1-

mediated toxicity and transport (Wild et al., 1986). However, the presence of other proteins 

involved in toxin binding have been reported by several authors (Iwaki et al., 1993; 

Groopman et al., 1980; Mainigi and Sorof, 1977) although their exact roles in AFBl mediated 

toxicity are largely unknown. 

In can be argued from this study, that AFB1-protein complexes are not necessary for 

transport into mitochondria, given the results obtained from in vitro trials. Aflatoxin Bl was 

specifically located within mitochondria that were treated directly with a single dose of the 

toxin. 
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Toxin was located within the matrix, inner membrane fractions and outer membrane 

regions (Figure 4.44, 4.45, 4.46), indicating that the native toxin was capable of penetrating 

the mitochondria, whilst present in an isotonic sucrose buffer. 

Several studies have shown that sucrose buffers maintain mitochondrial membrane 

integrity and function (Munn, 1974; Darley-Usmar et al., 1987), so it is apparent that toxin 

absorption by the mitochondria did not occur because of a loss in membrane integrity and 

permeability. 

Indeed several studies have shown that rats are very sensitive to APBJ with high incidence of 

hepatic tumour, while mice and hamsters were more resistant to the toxins cytotoxic as well 

as carcinogenic effects (Gamer and Martin, 1978; Wogan, 1973). It is well known that the 

mitochondrial inner membrane presents a barrier to a number of lipophilic and hydrophilic 

compounds (pederson, 1978; Munn, 1974). Liposome vesicles have been used for 

transmembranous delivery of proteins (Racker, 1972). 

With the use of this liposome system, Niranjan et al., (1986) showed a severe 

inhibition of protein synthesis in mouse mitochondria treated with liposome encapsulated 

APBJ (O.2/lmol of APBl per ml), whereas even 4 times this concentration of APBl alone, had 

no effect on protein synthesis by mouse liver mitochondria. Aflatoxin BJ however, inhibited 

rat liver mitochondrial activity by as much as 80%. The results from the study showed that 

the hepatic mitochondrial genetic systems in mouse and hamster are protected against 

injurious effects of APBJ under both in vivo and in vitro conditions. 
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In the case of mouse liver mitochondria, the protection seemed to result from the 

impermeability of the mitochondrial membrane to the carcinogen. In the case of the hamster 

liver system, the protective mechanism appears to be more complex and included a 

permeability barrier and the possible occurrence of a scavenging system. Although the nature 

of this scavenging system remains unknown, these authors have shown that over 40% of 

AFB\ associated with hamster liver mitochondria is water soluble, as against no significant 

water-soluble component in rat liver mitochondria. 

If AFB\ is capable of entering rat mitochondria in its native state, by passing freely 

through the mitochondrial membrane and into the matrix, as is true by the results obtained in 

this study (Figure 4.34, 4.36, 4.45) the use of toxin-protein complexes for entry would appear 

unnecessary . 

A closer look at the results however shows that a greater amount of label was localised 

in mitochondria isolated from treated rats (in vivo) (Figures 4.22, 4.23), that in isolated 

mitochondria that were treated with toxin (in vitro) (Figures 4.34, 4.46). 

One might argue that this result might stem from a concentration effect, considering 

that the rats received a different dose (6mg AFB\/kg body weight) than the isolated 

mitochondria (0.51lg/mg mitochondrial protein). However, mitochondria within a cell are 

more likely to have a higher metabolic activity than mitochondria isolated in sucrose buffer. 

In this instance, a higher cytochrome P450 activity within the mitochondria (in vivo) would 

result in a greater amount of toxin being activated to the AFB\-8,9-epoxide. 
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Hence one can conclude, that although AFB j can enter isolated mitochondria in an 

isotonic sucrose buffer, free of being bound to any protein or polypeptide fragment, and also 

in an inactivated state, as in vitro results imply, there may be some mechanism in vivo that 

greatly enhances entry into mitochondria. Thus, in an in vivo system, it is possible that AFBj 

can freely enter the mitochondria, where it can then be converted to the reactive AFBO, or it 

could be activated by microsomal and endoplasmic reticulum cytochrome P450 mixed-function 

oxidases to AFBO. It could then bind to several cytoplasmically synthesised proteins that are 

destined for the mitochondria. 

In this bound form, the toxin may be able to enter the mitochondria through several 

channels or contact sites involved in protein translocation. Protein profiles of crude 

mitochondria and inner-membrane matrix fraction from untreated and toxin treated rats, 

revealed no significant difference in band patterns (Figure 4.57). However it is apparent that 

protein content in mitochondria isolated from the livers (15 g) of treated rats were markedly 

greater than the protein content in mitochondria isolated from livers (15g) of untreated rats 

(Table 8, Figure 4.54). Mitochondrial protein content increased by approximately 41.8% 

following toxin treatment. Interestingly, albumin concentrations in the serum isolated from 

rats treated with AFB j, also showed an increase of 40%. Bhat et a/., (1982) and Niranjan et 

al., (1986) both showed a marked inhibition of mitochondrial proteins that were imported 

from the cytoplasm, after 3hrs of toxin treatment. This inhibitory effect appeared to be 

recovered by 12 hours and the 24 hours pattern compared with the control pattern both 

qualitatively and quantitatively. 
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The level of bound AFBl in the mitochondrial genome also remained nearly constant 

even up to 24 hours. This is possibly due to the lack of repair in this organelle system. It 

should also be noted that the number of adducts per 107 daltons mitochondrial DNA is about 

3-4 times higher than the level observed for nuclear DNA. Thus the inhibition of 

mitochondrial activity appears to be largely due to the direct attack on the mitochondrial 

genetic system. 

Considering that the rats were sacrificed 24 hours after toxin administration, any 

inhibitory effect of mitochondrial protein import from the cytoplasm would be recovered 

(Bhat et. ai, 1982). The increase in protein content in treated mitochondria after 24 hrs 

following toxin treatment, may not therefore be the result of increased protein synthesis, but 

possibly because of increased protein translocation of AFB1-cytoplasmic protein complexes 

into the mitochondria, or increased cytoplasmic proteins translocated into the mitochondria 

because of an increase in mitochondrial biogenesis observed in toxin treated samples (Figures 

4.8,4.9). Increased mitochondrial biogenesis in response to toxin administration has not been 

reported previously. 

The increased mitochondrial protein content could also reflect a repair process to 

mitochondria that were damaged by the presence of AFB1. Mitochondria in toxin treated 

samples in this study, however have been shown to undergo several ultrastructural and 

conformational changes (including a marked increase in division) in response to the presence 

of the toxin. 

112 



Numerous biochemical and autoradiographic studies have indicated that there is a 

definite turnover of mitochondrial components (e.g. proteins, lipids, and cytochrome c) in 

response to various pathological situations (Fletcher and Sanadi, 1961; Beattie et al., 1967; 

Gold and Menzies, 1968). Morphological evidence supporting the idea of a molecular repair 

and replacement of mitochondrial components is lacking, but there is a great deal of evidence 

that mitochondria can divide and multiply as a means of removal of what would appear to be 

old, effete or damaged mitochondria. 

Hence the greater frequency of such changes in pathological states (during AFB}­

mitochondrial toxicity for example), may be looked upon as an activation of normal 

mechanisms geared to the removal of organelles damaged by such noxious influences. 

Mitochondrial swelling has at times been regarded as another possible fate that might befall 

effete mitochondria (Rouiller, 1960). Ghadially (1980) reported that mitochondrial swelling 

occurs in virtually every mitochondrion. Ghadially (1982) and Rouiller (1960) further 

reported that in certain cases, one may occasionally find one or two grossly swollen 

mitochondria in company with other normal-looking mitochondria in a variety of 

experimental and other situations. Here there is clearly no general derangement of osmotic 

forces within the cell. 

The primary defect lies in the swollen mitochondria itself, and this could well be 

regarded as an effete or damaged organelle about to suffer dissolution. Several toxin treated 

samples in this study showed mitochondria in this form (Figure 4.7). 
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Swollen mitochondria or even swollen mitochondrial components have been observed 

in almost every type of tissue sUbjected to a variety of pathological influences. It is so 

common a manifestation of cell injury that it would be impossible to list every situation in 

which this change has been noted. David (1964) has listed the following conditions in which 

mitochondrial swelling has been seen in the liver: kwashiorkor, choline deficiency, vitamin 

BJ deficiency, hepatitis, diphtheria toxin, and cirrhosis. By far the commonest form of 

swelling, is that due to the involvement of the matrix or inner chamber. In early stages of 

induced swelling, there is only a modest increase in the size of the mitochondria, with the 

dilution ofthe matrix, as evidenced by decreased density, just visible. 

Loss of matrix density increases and this is also associated with the loss of matrix 

substance (Ghadially, 1980). These results by Ghadially (1980) were found in the 

mitochondria from the liver of a rat bearing a carcinogen-induced subcutaneous sarcoma, and 

are consistent with findings in this study. Several samples showed treated mitochondria with 

markedly swollen cristae (Figures 4.37, 4.45, 4.46). The matrix sometimes appeared patchy 

(Figures 4.36, 4.37), and several breaks were evident in the mitochondrial limiting 

membranes (Figure 4.37). The mitochondria found in tumours (Ghadially, 1980) are 

frequently disrupted owing to a flooding of the matrix chamber with water. In this study, 

disrupted membranes were a common feature associated with the presence of toxin (Figures 

4.37, 4.45). In addition the mitochondria in toxin treated cells, partiCUlarly in areas of the 

nucleus were markedly swollen (often referred to as cloudy swelling) and well contrasted 

(Figure 4.1), from the more normal looking mitochondria in the same area, in untreated rats 

(Figure 4.2). 
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Another common feature, often found in neoplastic tissues, are mitochondria with 

swollen or ballooned cristae and a relatively dense matrix, as evidenced by mitochondria from 

cells infected with the Herpesvirus (Ghadially, 1982). 

In certain pathological situations this type of ballooning may be accompanied by the 

separation of the inner and outer membranes (Ghadially, 1982). In this study a distinct 

separation of the outer and inner membranes were visible in toxin treated samples (Figures 

4.10), and this was sometimes coupled with the mitochondrial division (Figure 4.9), and 

swollen cristae (Figure 4.45). 

Mitochondrial inclusions (Figure 4.12), found in isolated mitochondria from toxin 

treated rats, of filamentous or crystalline nature have been reported in a number of cell types 

such as hepatic cells. These intramitochondrial paracrystalline inclusions have been reported 

in various normal and pathological tissues. Little is known about the chemistry or 

significance of these crystals. These inclusion have also been shown to be closely associated 

with the inner mitochondrial membrane and cristae (Ollerich, 1968). Several investigators 

have shown that these mitochondrial inclusions in liver cells under different pathological 

conditions represented a non-specific degenerative phenomenon in the mitochondrion 

(Ghadially, 1982). Interestingly a large proportion of these inclusions in this study were 

observed, closely associated with the inner-mitochondria membrane fraction from untreated 

control samples (Figure 4.12). There were hardly any inclusions in the experimental samples 

(Figure 4.13, 4.14). Ollerich (1968) indicated that these crystals might represent a form of 

protein storage or energy reserve (often found in hibernating animals and oocytes). 
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If this were the case within the mitochondria found in this study, it would adequately 

explain a greater concentration of these "energy storage" crystals in mitochondria isolated 

form untreated rats. It is possible that during AFB1-toxicity, the mitochondria may effectively 

utilise these stored forms of energy. This energy would be needed during mitochondrial 

repair processes and mitochondrial division. 

Other studies have indicated that these crystals might represent crystallised 

mitochondrial proteins. Although there is little to support or refute such assumptions, the 

presence of label within these inclusions (Figure 4.30), could further suggest AFBl-protein 

binding within these inclusions. In addition to the various altered mitochondrial morphology 

associated with the presence of AFB1, several other ultrastructural abnormalities were found 

in experimental tissues. 

The endoplasmic reticulum in several samples from treated tissues appear to be 

slightly swollen (Figure 4.21). Conjugated toxin was also closely associated with the 

endoplasmic reticulum membranes (Figure 4.21). According to Ghadially (1982) 

morphological features of necrosis and often neoplasia include familiar cytoplasmic changes, 

such as dilation or swelling of the endoplasmic reticulum and mitochondrial swelling, and 

often includes chromatin margination. Margination of chromatin (Figure 4.1) in toxin treated 

tissues as compared to control-untreated tissues (Figure 4.2) appears to be a fairly early 

change that occurs in the nucleus after irreversible injury leading to cell death (Trump et al., 

1963). 
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The evidence describing the specific attack of the mitochondrial system by AFBI in 

this study becomes more compelling, given the vast cellular alterations and ultrastructural 

abnormalities associated with the presence of the toxin. 

Western immunoblots and direct detection on polyacrylamide gels, used for the 

localisation of AFBI-bound proteins within the mitochondria further confirmed a possible role 

of mitochondrial proteins in AFBI-mediated toxicity (Figures 4.59, 4.60). There have been a 

.. 
number of studies on the macromolecular binding of labelled carcinogens to macromolecules. 

Several of these researchers have indicated that nucleic acid binding is of greater importance 

for tumour initiation. This opinion has been largely based on the fact that nucleic acid 

binding is greater on a per molecule basis than protein binding (Garner and Wright, 1975). In 

addition, it is a well established fact that AFBO reacts with liver DNA forming aflatoxin-N7
-

guanine adducts, leading ultimately to cellular mutations and carcinogenesis. 

Garner and Wright (1975) showed that 6 hours after toxin administration to rats, for 

every molecule of protein reacted with carcinogen, there were 400 molecules of DNA with 

bound carcinogen. These studies greatly emphasise the importance of AFBI-DNA binding in 

induced carcinogenesis. At the same time, the role of AFBI-protein binding may often be 

taken for granted as a secondary or insignificant process. This study however is the first to 

show that in an in vitro system, a significantly large proportion (84%) of a single dose of 

toxin remains bound to mitochondrial protein (Figures 4.61, 4.62). These HPLC results 

further suggested that AFBI-bound protein binding plays an important role in aflatoxin 

mediated carcinogenesis. 
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Hence, although AFBI-DNA binding may still remain the ultimate step in tumour 

initiation, AFB1-protein binding may also play just as important or crucial role in AFB1-

induced cellular toxicity through metabolism, modulation of DNA-adduct formation or 

transport. No AFB1-protein complexes were found in the outer and intermembrane fractions 

that were blotted and immunoprobed. Five specific proteins (Figures 4.59, 4.60), however, 

indicated the presence of bound toxin in the inner-mitochondrial matrix fraction. 

This indicated that the toxin may have specifically targeted the electron transport 

chain, which is found in this fraction. It should be noted that AFB 1 inhibits the electron 

transport chain at complex III (the cytochrome c oxidase complex), by inhibiting the activity 

all the enzymes ofthe complex (Ramachandra et al., 1975; Doherty and Cambell, 1973). 

This complex has been shown to contain several subunits. Some of these subunits 

include core protein (49kDa), core protein 11 (45kDa), cytochrome b (34kDa), cytochrome c 

(29kDa), iron sulphur protein (24kDa), (Rag an et al., 1987). Most other cytochrome c 

polypeptides (many are unidentified) have molecular weights in the region of 8-54kDa 

(Darley-Usmar et al., 1987). Fasman (1976) reported that of all the amino acids comprising 

cytohrome c in humans and animals, lysine appeared to be the most concentrated (comprising 

17% of the total amount of amino acids). Other amino acids for example were found in much 

smaller percentages of the total amount of amino acids viz. arginine, 1.92%; histidine, 1.82; 

asparagine, 7.69%; threonine, 6.73%; serine, 1.92%; glutamine, 9.62%, proline, 3.85%; 

glycine, 12.5%; alanine, 5.77%; cysteine, 1.92; valine, 2.88%; methionine, 2.88%; isoleucine, 

7.69%; leucine, 5.77%; tyrosine, 4.81; phenylalanine, 2.88%; tryptophan, 0.96% (Fasman, 

1976). 
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Given aflatoxin B J inhibition of the electron transport chain at Complex Ill, and 

considering the large amount of lysine residues in polypeptides comprising the complex, plus 

the fact that most of the inner-membrane matrix proteins found bound to AFBJ in this study 

do fall within the molecular weight regions (50kDa, 25kDa, 18kDa, 14kDa), of the 

polypeptides of Complex III (8-56kDa, Ragan et al., 1987), it would be safe to suggest that 

the some of the AFBJ-bound proteins may be part of the polypeptides subunits of Complex 

Ill. 

Although largely unproved at this stage, this assumption may be likely when 

considering the exact role of mitochondria in AFBJ mediated toxicity. Niranjan et al., (1984) 

reported a unique hepatic mitochondrial cytochrome P 450 enzyme system involved in the 

bioactivation of AFB J. 

Interestingly, this system is located in mitochondria, exclusively in the same inner­

membrane matrix fraction. The same fraction that houses Complex III and the AFBJ-bound 

proteins found in this study. One theory for the presence and significance of AFBJ-bound 

proteins within mitochondria from the livers of rats treated with a single dose of AFBJ could 

be the following: 
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In the cytoplasm of liver tissues, Aflatoxin B 1 may bind non-covalently to selective 

cytoplasmically sythesized proteins destined for the mitochondrial inner-membrane matrix 

fraction (electron transport chain). In this way, the protein-toxin conjugate could pass 

freely through several channels or contact sites of the mitochondria membranes during 

mitochondrial protein import and biogenesis. 

The toxin will therefore be transported to the inner mitochondrial matrix, where a 

unique cytochrome P450 enzyme system would convert it to the highly carcinogenic and 

reactive AFBO. The epoxide (AFBO) could then bind to mtDNA, mtRNA and proteins 

resulting in the inhibition of oxidative phosphorylation, protein synthesis and ultimately 

lead to mitochondrial injury, cellular death, mutation and eventually carcinogenesis. 

Alternatively AFB 1 may enter the mitochondria in its native state (being lipid 

soluble it would be able to cross the phospholipid bilayer). Once within the inner­

mitochondrial matrix it would be activated by mitochondrial cytochrome P450 to its reactive 

epoxide. The epoxide would then be capable of binding to proteins, mt DNA, and mt RNA. 

Aflatoxin B 1 can also be activated by microsomal and endoplasmic reticulum 

cytochrome P450 enzymes to AFBO. The epoxide (AFBO) could then enter the 

mitochondria or the nucleus, resulting in impaired activity and mutation, and eventually 

cellular death and carcinogenesis. 
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CHAPTER 6 

CONCLUSION 

Primary liver cancer is one of the leading causes of cancer mortality in Asia and 

Africa. AFBJ-induced carcinogenesis is of primary interest since the toxin is widely 

distributed as a human and animal food contaminant and its ingestion has been associated 

with high primary liver cancer incidence in several parts of the world. 

The exact mechanism of AFBj-induced carcinogenesis and cellular toxicity remains to 

be elucidated. The toxin appears to have a multifaceted mode of attack on several organelle 

systems within liver tissues. Hence AFBj-toxicity may involve several metabolic pathways 

that ultimately lead to toxin activation and eventually cellular death. 

Involvement of the mitochondrial system in cancer has been a subject of argument 

ever since Warburg's (1935) discovery on altered mitochondrial oxidative metabolism in 

tumour cells. Over the years a number of studies have demonstrated differential properties of 

mitochondria in tumour cells with respect to membrane structure, function and biogenesis. 

Experimental carcinogenesis and chemotherapy studies have shown that significant levels of 

nitrosamine and nitrogen mustard (Niranjan and Avadhani, 1980) are transported to 

mitochondrial compartments where they form adducts with mitochondrial DNA. 

Similarly, it has been proposed that AFB j administration leads to inhibition of 

mitochondrial oxidative phosphorylation and also DNA biosynthesis. The results of this 

thesis show that in rats treated with a single dose of aflatoxin, the mitochondria appear as 

direct targets for attack by the carcinogen. In addition, incubation of the toxin with isolated 

mitochondria and sub-mitochondrial particles revealed a significant specificity of the toxin to 

enter and bind to components of the mitochondria. 
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This is the first study to specifically show the selective uptake and immunolocalisation of 

aflatoxin Bl in rat liver mitochondria in vivo and in vitro. In addition, this study also 

emphasises for the first time that a significant proportion of administered toxin binds to 

protein found in the mitochondria, and thus suggests that AFB1-protein binding forms a 

major part of AFB1-induced toxicity in liver mitochondria and tissues. The identification of 

several AFB1- bound proteins found within the inner membrane fraction of treated 

mitochondria, reveals that the electron-transport chain is a specific target of AFBl. To clarify 

the roles and cellular localisation of the several AFB1-proteins found in this study, 

purification and characterisation of the individual proteins in necessary. 

These results taken together confirm that mitochondria are indeed direct and 

perhaps preferential targets for attack by AFBt • Mitochondria therefore appear to play 

a significant role in AFB t mediated toxicity and carcinogenesis. 
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APPENDICES 

APPENDIXl 

THE BRADFORD ASSAY: A rapid and sensitive method for the quantitation of 

microgram quantities of protein utilising the principle of protein-dye binding (Bradford, 

1976). Laboratory practise in protein purification often requires a rapid and sensitive 

method for the quantitation of protein. Several methods are available but most partially 

fulfil the requirement for this type of quantitation. The standard Lowry (1951) procedure 

is subject to interference by compounds such as potassium ions, magnesium ions, EDT A, 

Tris and carbohydrates (Bradford, 1976). The relatively insensitive Biuret reaction is 

also subject to interference by Tris, ammonia and glycerol (Bradford, 1976). The 

Bradford assay eliminates most of these problems, and is easily utiliseq for a large 

number of samples. 

Preparation of the Bradford reagent: Coomassie Brilliant Blue G-250 (100mg) was 

slowly dissolved in 50ml 95% ethanol. To this solution 100ml 85% (w/v) phosphoric 

acid was added. The reSUlting solution was diluted to a final volume of 1 litre. Final 

concentrations in the reagent were 0.01 % (w/v) Coomassie Brilliant Blue G-250, 4.7% 

(w/v) ethanol, and 85% (w/v) phosphoric acid. 

Protein Assay (Standard method): Six protein solutions (albumin standards) 

containing 0 to 100).1g protein in a volume up to 100).11 were pipetted into three sets of 6 x 

100mm test tubes (Table Al and A2)' The volume in the test tube was adjusted to 100).11 

with the appropriate buffer (distilled water). Five millilitres of protein reagent was then 

added to each test tube and the contents were then mixed by inversion or vortexing. The 

absorbance at 595nm was then measured after 2 minutes and before 1 hour in 3ml 

cuvettes (using a Spectronic 3000 Array Spectrophotometer, Milton Roy, USA), against a 

reagent blank prepared from O.lml distilled water and 5ml protein reagent. he weight of 

protein was plotted against the corresponding absorbance resulting in a standard curve 

used to determine the protein in unknown samples (Figure I A). 
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Protein assay (unknown sample): Twenty micro litres of the unknown mitochondrial 

sample was first diluted to 1ml in distilled water (Dilution 1 :50). Ten microlitres of this 

diluted sample was then transferred to anew, clean test tube. Five millilitres of reagent 

was then added and the absorbance measured as described above. 

The absorbance obtained and the protein determined from the standard graph was 

indicative of the protein content in 10 ~l of the diluted 1ml mitochondrial sample 

(designated B). The protein content in 20 ~l of mitochondrial suspension was therefore 

10 times the protein content (B) obtained above. This would indicate the protein content 

in 20ul of mitochondrial suspension. Hence the amount of protein per ml of 

mitochondria was calculated as follows: 

Concentration of mitochondrial protein mg protein (x-axis) X 10 X 50 

mg protein/ml mitochondrial sample 

Table At Preparation of a standard calibration curve 

Standard albumin, ,.11 
(1 mglml) 0 20 40 60 80 100 

Distilled water, ,.11 100 80 60 40 20 0 
Corresponding to the 
following mg protein per 0 0.02 0.04 0.06 0.08 0.1 
100,.d sample 

Table A2 Absorbance (595 nm) of standard albumin samples 
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APPENDIX 2 

PAGE AND WESTERN BLOT REAGENTS 

STOGK-SOLUTIONS (All solution were filtered) 

1 Monomer solution (30%T; 2.7% C) 
'Acrylamide 58.40 g 
Bis 1.60 g 
H20 200.00 ml 
Stored at 4° C in the dark 
• Acrylamide is neurotoxic and must be handled with extreme care. 

2 Resolving Gel Buffer (1.5 M Tris-CI, pH 8.8) 
Tris 
H20 

3 Stacking Gel Buffer (0.5 M Tris-CI, pH 6.8) 

4 10% Sodium dodecyl sulphate (SDS) 

5 Initiator (10% Ammonium persulphate) 

Ammonium persulphate 
H20 

36.30 
200.00 

3.00 
50.00 

50.00 
500.00 

0.50 
5.00 

6 Resolving Gel Overlay (0.375M Tris-CI, pH 8.8; 0.1 %SDS) 

Tris 
SDS 
H20 

25.00 
4.00 
100.00 

g 
ml 

g 
ml 

g 
ml 

g 
ml 

ml 
ml 
ml 

(Solution 3) 
(Solution 5) 

7 2x Treatment Buffer (0.125M Tris-CI, pH 6.8; 4% SDS; 20% glycerol; 10% 2-mercaptoethanol) 

Tris 
SDS 
Glycerol 
2-rnercaptoethanol 
H20 
Divided into aliquots and frozen 

2.50 
4.00 
2.00 
1.00 
10.00 

140 

ml 
ml 
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ml 
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8 Tank Buffer (0.025 M Tris, pH 8.3; 0.1 % SDS; 0.192 M glycine) 

g 
g 

Tris 
Glycine 
SDS 
H20 

12.00 
57.60 
40.00 
4.00 

m1 (Solution 5) 
litres 

The pH of this solution need not be checked, hence large volumes (up to 16 litres can be made up at one 
time and stored in 4 litre reagent bottles until needed). 

9 Stain Stock (1 % Coomassie Brilliant Blue R-250) 

Coomassie Blue R-250 
H20 

2.00 
200.00 

g 
m1 

10 Stain (0.125% Coomassie Blue R-250; 50% methanol; 10% acetic acid) 

Coomassie blue R-250 
Methanol 
Acetic acid 

\ 

62.50 
250.00 
50.00 

11 Destaining Solution 1 (50% methanol; 10% acetic acid) 

Methanol 
Acetic acid 
H20 to 1 litre 

500.00 
100.00 

12 Destaining Solution 2 (7% methanol; 5% acetic acid) 

Methanol 
Acetic acid 
H20 to 10 litres 

13 Ponceau S Stock solution 

Ponceau S 
Trichloroacetic acid 
Sulphosalicylic acid 
H20 to 100 ml 

700.00 
500.00 

2.00 
30.00 
30.00 

m1 
m1 
m1 

m1 
m1 

m1 
m1 

g 
g 
g 

(Solution 9) 

Dilute 10 ml of stock solution with 90 ml H20 to make a working solution ofPonceau S. 

14 Diaminobenzidine (DAB) 

"DAB 
Tris-CI (O.OIM, pH 7.6) 
Copper chloride (0.5% CoClz) 

18.00 
9.00 
3.00 

mg 
ml 
ml 

!he solution is then mixed by vortexing and filtered and used immediately. 
DAB is toxic and must be handled with extreme caution. 
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