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ABSTRACT

Natural land is rapidly becoming urbanized. Wastewater Treatment Works (WWTWs)
are a ubiquitous component of this urban landscape. WWTWs may provide profitable
foraging areas for insectivorous bats because of their association with a high abundance
of pollution-tolerant chironomid midges (Diptera). However, bats that feed on these
insects may also accumulate metal pollutants in their tissues, with acute or chronic
effects on their health. There have been no studies to investigate whether African bats
utilize these WWTWs as foraging grounds, and the potential physiological impacts
from foraging at such sites. The aim of this study was to investigate the impact of
WWTWs on foraging ecology and multiple tiers of physiology (haematology and
genotoxicity, detoxification organs and reproduction) in an urban adapter, the banana
bat (Neoromicia nana, family Vespertilionidae) in KwaZulu-Natal, South Africa.

N. nana exhibited a significantly higher abundance and feeding activity at wastewater-
polluted sites than at unpolluted reference sites. Additionally, the most abundant insect
order at wastewater-polluted sites and in the diet of resident bats was Diptera, compared
to a diverse insect diet at unpolluted sites. Thus, WWTWs provide an optimal food
resource to bats in the short-term. However, I found significantly higher levels of
essential and non-essential metals at WWTW-polluted sites, and in the tissues of
WWTW bats than at unpolluted sites. Further, I found sub-lethal haematological and
genotoxic responses related to increased metals in WWTW bats. Specifically, N. nana
at WWTWs had significantly lower antioxidant capacity and significantly higher levels
of DNA damage and haematocrits than bats from unpolluted sites. An accumulation of
DNA damage, especially from double-stranded breaks ultimately leads to tissue damage

and disease. These longer-term effects of chronic pollutant exposure should be most
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evident in the organs involved in detoxification, the liver and kidneys. Indeed, I found
evidence of disrupted balance of essential metals and mineral nutrients,
histopathological tissue damage and whole organ effects in the liver and kidneys.
Finally, I found reproductive system alterations in male N. nana at WWTWs. Although
I did not find significant effects on the sex organs, testosterone hormone concentrations
were significantly lower in male N. nana at WWTWs than in males from unpolluted
sites. In addition, body condition indices for N. nana from the WWTWs were
significantly lower than at unpolluted sites, suggesting lower quality male bats at
WWTWs. Taken together, these results suggest the potential for serious long-term
health risks, negative fitness implications and ultimately, population effects for these

top predators within the urban landscape.
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Chapter 1

Introduction



CHAPTER 1: Introduction

1.1. Urban Pollution

By the year 2050, the global human population is projected to pass 9 billion (United Nations
Population Fund, State of World Population, 2014). Concomitantly, the expansion of cities is
increasing rapidly, with large areas of natural land being transformed into urbanized landscapes
(McKinney, 2006; Seto et al., 2011). It is expected that the majority of this urbanization will occur
in coastal countries such as South Africa, where anthropogenic stress on the environment is already
widespread (McKinney, 2006). To cater for the growing human populations, industrial development
and services are increased. However, this development creates serious habitat alteration, which
impacts on both the environment and its resident organisms. As a result, wildlife is becoming
increasingly exposed to the physical features associated with urban development, and is showing a
general decline in response to it (Vorosmarty et al., 2010). The physical manipulation of the
landscape by anthropogenic activities such as fragmentation has had predominantly negative

impacts on the resident fauna and flora (Schmiegelow and Monkkonen, 2002).

In addition to the physical land-transformation, a chief anthropogenic disturbance to the urban
environment is pollution. Pollution often has adverse effects on biodiversity (Azrina et al., 2006;
Nedeau et al., 2003; Vorosmarty et al., 2010). Pollutant exposure may directly affect organisms or
may influence them through modifications to the habitat or prey. River pollution is currently a
major problem, and there has been a recent influx of data highlighting the poor state of South
African rivers in urban areas (eThekwini Municipality State of the Rivers Report, 2011). Within the
previous century, the species diversity of aquatic invertebrates (Williams et al., 2003) and aquatic
vertebrates (Reash and Berra, 1987) has decreased significantly in polluted rivers. For instance, the
global diversity of non-marine mollusks has been steadily decreasing, with 708 freshwater mollusc
species included in the 2002 IUCN Red List of Threatened Species (Lydeard et al., 2004).
Vertebrates exposed to river contaminants, such as the African bullfrog (Pyxicephalus adspersus),
have shown a rapid decline in numbers in urban reserves in South Africa (Oberholster et al., 2008).
The rapid rate of urbanization in South Africa has resulted in the introduction of a range of
contaminants into freshwater ecosystems (Gleick, 1998). Increased industrial development produces
inorganic and organic pollutants, such as chemical runoff from factories and sewage effluent that

are deposited into rivers (Sacks and Buckley, 1998). Furthermore, industrial and pharmaceutical



substances containing xenobiotic chemicals such as endocrine disrupting chemicals (EDCs) are

found in specific pollution sources such as wastewater (Fossi et al., 2002).

Wastewater treatment works (WWTWs) are ubiquitous in urban landscapes and are constantly in
operation. Wastewater treatment works are an essential service, linked to urbanization and the
concentration of human populations associated with it. They also have a precise point of effluent
discharge into the river, allowing for a clear partitioning of sites receiving or not receiving
wastewater. Furthermore, the type of pollution can be assessed from identifying wastewater
constituents (Leland et al., 1974). Thus, WWTWs provide an ideal model to investigate the toxic

effect of river pollution on exposed organisms.

Wastewater effluent contains both industrial and domestic input including solids, pathogens and
organic and inorganic pollutants (Gagnon and Saulnier, 2003). Various types of operational
practices are employed by wastewater treatment plants to treat waste effluent. Conventional
operational practices such as the screening and spraying of wastewater onto percolating filter beds
have been largely replaced by more recently designed systems (Govender, 2002). The system most
often used in South Africa is the process of activated sludge, because it is able to cater for larger
populations and requires small land space (Govender, 2002). Domestic and industrial waste influent
received by treatment plants employing this system, undergoes an aerobic biological process
whereby wastewater is degraded using microbial communities (Lalbahadur, 2005). The wastewater
is treated in aeration and settling tanks. It is then chlorinated to remove pathogenic organisms before
being discharged into rivers (Jackson et al., 2002). However, the sludge produced in the tanks used
for this process contains high levels of metals (Braum, 2004; Govender, 2002). These metals,
including lead (Pb), cadmium (Cd), chromium (Cr) and nickel (Ni), are particularly toxic to living

organisms when ingested in large quantities or over a long period of time (Andres et al., 2000).

The processes used to treat wastewater focus on the removal of solids, nutrients and pathogenic
bacteria, often neglecting the treatment of metals (Gagnon and Saulnier, 2003). In addition to the
inefficient removal of metals from the wastewater, are varying efficiencies of EDC removal from
wastewater according to the hydrophobicity and molecule size of the specific chemical (Nakada et
al., 2006). Thus, effluent contains high levels of certain chemicals even after treatment (Janex-
Habibi et al., 2009). Furthermore, organic waste that contributes a high input from nutrients such as
nitrogen (N) and phosphorous (P) compounds, promote eutrophication where elevated quantities of
organic matter are produced (Yount and Crossman, 1970). Because of changes to dissolved oxygen

levels, this eutrophication commonly leads to altered invertebrate communities (McGarrigle, 1998).



1.2. Pollution through the trophic levels

Macroinvertebrate community structure at water bodies is highly related to water quality. As
pollution levels increase, invertebrate diversity usually decreases (Mason, 2002), and the
community becomes dominated by species with lower dissolved oxygen demands (McGarrigle,
1998). With lower levels of competition from more sensitive species, these pollution-tolerant
insects are able to flourish at polluted sites. For instance, pollution-tolerant insect groups from the
Chironomidae, Oligochaeta, Erpobdellidae, Ancylidae and Lymnaeidae were associated with sites
located downstream of sewage outputs along Irish rivers (Abbott et al., 2009). Similarly, the two
pollution-tolerant insect groups most associated with WWTWs in South Africa were Chironomidae
and Oligochaeta (Dickens and Graham, 1998). In contrast, pollution-sensitive taxa (Ephemeroptera,
Plecoptera, Trichoptera) were more closely associated with upstream sites along the same rivers

(Abbott et al., 2009).

The shift in insect diversity at polluted sites compared to unpolluted sites in turn affects the prey
available to predators within these habitats. For instance, in Italy, the European dipper, (Cinclus
cinclus) 1s a semi-aquatic insect-eating bird that specifically preys on pollution-sensitive taxa
(Sorace et al., 2002). As river quality has been decreasing, dipper populations have shown a
corresponding decline (Sorace et al., 2002). In contrast, three-spined stickleback (Gasterosteus
aculeatus) exploit the abundance of pollution-tolerant benthic oligochaetes in contaminated
freshwater systems (Egeler et al., 2001). Thus, the abundance of some predators are negatively
affected, whereas other predators may exploit the availability of prey. Although some may benefit,
calculated bioconcentration ratios indicate that metal and some organic pollutants bioaccumulate in
even higher concentrations in the predators of the affected insects (Hsu et al., 2006). However, in
terrestrial food chains, biomagnification of metals, for instance, varies according to pollutant
assimilation and immobilization in the predator species (reviewed in Laskowski (1991)). In
addition, the transfer of pollutants through the food chain may be greater in specific types of
contaminated prey, particularly pollution-tolerant insect species that are also capable of

accumulating metals without impact (Hare, 1992).

The group of aquatic flies known as the chironomid midges are a prominent insect group capable of
enduring polluted environments (Postma et al. 1995) and are amongst few other insect groups able

to accumulate metals without being affected (Groenendijk et al., 1998). The growth rate of



chironomids is rapid, with a quick generation turnover, ensuring constant availability to the
ecosystem (Menzie, 1981). Although chironomid larvae are found in sediment, the chironomid life
cycle is dominated by the adult stage which is spent on and above the water surface (Ristola, 2000).
At WWTWs in particular, chironomid midges often occur at a high density at artificial tanks
containing wastewater (Broza et al., 2003). In fact, chironomid swarms are a characteristic feature at

WWTWs.

In the wastewater, particulate matter upon which the midges feed contain various metals (Stuijfzand
et al., 2000). Chironomid midges show a remarkable metal-regulating capacity, and can take up
metals, distributing them in various parts of their body without negative effects on survival
(Boonstra et al., 2009; Krantzberg and Stokes, 1990). In addition, Park et al. (2009) found that
amongst other aerial invertebrates developing on sewage filter beds, chironomid midges take up a
range of organic pollutants such as 17a-ethinylestradiol and butylated hydroxy aniline. When
predators such as bats or birds constantly exploit this contaminated food source, the pollutants
accumulate within the body. Unable to undergo metabolism, most metallic elements that are not
excreted, become stored in tissue (Fritsch et al., 2010). In addition, the persistent lipophilic nature of
organic pollutants causes them to accumulate in fat stores (Fossi and Marsili, 2003). In turn, the
physiology and anatomy of the predator may be negatively impacted, with acute or chronic effects

(Walker, 1998).

1.3. Pollutant effects on physiology

Acute exposure to pollutants can be lethal or elicit visibly observable effects (Yen et al., 2002).
Numerous laboratory experiments have tested this by determining the lethal dose (LCs) of specific
pollutants in different animal species (Jolly et al., 1978). However, longer-term chronic exposure to
pollutants, like predators may experience by exploiting pollution-tolerant prey, often result in sub-

lethal effects in different levels of biological organization.

1.3.1. Genotoxicity and haematological responses

The first level where pollutant-induced sub-lethal damage may be evident is in the blood cells,

which have a fairly rapid turnover rate. Genotoxic agents such as metals may cause DNA strand

breaks, chromosomal aberrations, and other oxidative damage from reactive oxygen species (ROS)



produced during metal interactions (Shugart, 2000). In addition, toxic metals commonly found in
WWTWs, including cadmium, nickel and lead, inhibit DNA repair at low concentrations. Although
antioxidant systems such as superoxide dismutase scavenge free radicals to counteract damage from
ROS production, wastewater-associated metals have the ability to impair antioxidant activity itself
(Beyersmann and Hartwig, 2008) or form highly reactive radicals when they interact with the
intermediates of ROS detoxification (Pham et al., 2013; Simpson, et al., 1988). If there is not
enough protection from antioxidants against ROS, then cellular functioning may also be disrupted
by pollutant exposure. Pollutants may interfere with cell division resulting in lagging chromosomic
fragments, forming micronuclei in mammalian erythrocytes (Hartmann et al., 2008). In addition,
erythrocyte volume may be affected, causing altered haematocrits. For instance, metal exposure

lowers the haematocrit in wood mice, Apodemus sylvaticus (Rogival et al., 20006).

1.3.2. Effects on detoxification organs

Sub-lethal damage from pollutant exposure can cause long-term effects in various organs. However,
the effects of ongoing exposure to pollutants are often most evident in the organs responsible for
detoxification, the liver and kidney (Clark and Shore, 2001). Pollutants ingested by an organism are
metabolized, excreted, accumulated or stored in a less toxic form (Baker et al., 2003). There are
various mechanisms by which this may occur. To detoxify metals for instance, metallothionein
proteins produced in the liver and kidney bind to the metal ions, preventing excess damage
(Sakulsak, 2012). Thus, animals exposed to excess metals often have upregulated metallothionein
levels (Dai et al., 2013; Sakulsak, 2012). However, pollutants may still accumulate in organ tissue

leading to histopathological lesions, which can in turn alter organ size and function (Ma, 1989).

1.3.3. Endocrine disruptors and reproduction

Together with the risk for detoxification organs posed by pollutants at WWTWs, are other threats to
physiological function. WWTWs receive high quantities of various EDCs, which are removed from
treated wastewater in varying efficiencies (Huang and Sedlak, 2001). The endocrine system
maintains hormonal balance. However, the action of endogenous hormones such as estrogen and
testosterone may be modulated, mimicked, enhanced, or inhibited by EDCs, which bind to hormone
receptors (Tyler et al., 1998). EDCs found in wastewater can therefore severely alter the

reproductive physiology and behaviour of the resident wildlife exposed to them. Pollutant-induced



cases of intersex, altered primary and secondary sexual organs, and changes in sexual behaviour
have been observed across taxa, including frogs, fish, birds and mammals (Tyler et al., 1998). This
is because the development of sexual traits and sex organs like the testis and baculum, are mediated
by hormones (Yonezawa et al., 2011). Moreover, disruptions to the sex organs and hormones affect
an individual’s ability to acquire mates and reproduce, and thus impact fitness. Ultimately,
reproductive system alterations will carry longer term consequences for wild populations exposed to

pollutants.

1.4. Bats as a model taxon

The effects of pollution on ecology and physiology have been studied in various animal groups. In
mammals, a large majority of studies have been performed under laboratory conditions on non-
volant-mammal species, particularly rodents. However, compared to similarly sized non-volant
small mammals, bats have relatively long life spans (Barclay and Harder, 2003). The long life span
of bats is a valuable characteristic in pollution studies, because the accumulation of certain metals
such as cadmium, is specifically associated with age (Walker et al., 2002; Walker et al., 2007).
Organic contaminants may also persist in bat tissue several years after exposure (Bayat et al., 2014).
In addition, the slow reproductive rate of bats allows for clear trends of population decline or

increase to be elucidated (Jones et al., 2009).

The life history characteristics of bats therefore render them excellent indicators of environmental
quality (Jones et al., 2009). For instance, certain bats co-exist with humans in altered landscapes and
have been shown to be sensitive to the effects of both urbanization (Russo and Ancillotto, 2015) and
agriculture (Park, 2014). Bats are thus exposed to multiple sources of anthropogenic pollution yet
there is a major scarcity of bat ecotoxicological studies. In fact, Zukal et al. (2015) specifically
highlighted the low number of articles showing direct adverse effects of metals on bats, and
provided various reasons why bats are ideal bioindicators of heavy metal pollution. For instance,
the rapid metabolic processes of insect-eating bats requires that they consume an high quantity of
prey per night, nearly equivalent to their body mass (Kurta et al., 1989). Furthermore, they are a
high trophic level component of the ecosystem, which increases their susceptibility to pollutant
accumulation through their diet (Hernout et al., 2013). Bioaccumulation of metals, for instance, is
characteristically more prominent in carnivorous than in herbivorous small mammals (Alleva et al.,

2006; Hamers et al., 20006).



For many insect-eating bats, rivers and streams, are important foraging habitats (Biscardi et al.,
2007; Grindal et al., 1999; Racey et al., 1998; Warren et al., 2000). Insect-eating bats may thus be
particularly vulnerable to water pollution because riparian vegetation and the emergent aquatic
insects upon which bats feed are in direct contact with the polluted water (Walsh and Harris, 1996).
In addition to foraging at rivers and other water bodies, bats may also ingest pollutants by drinking
water at these contaminated sites. Water quality effects on bat activity are however, often species
specific (Ciechanowski, 2002, Korine et al., 2015). For instance, Kalcounis-Rueppell et al. (2007)
found that the activity of Epfesicus fuscus was lower downstream than upstream of a sewage output
in North Carolina, USA. In contrast, Perimyotis subflavus, a species that specializes in riparian
habitats (Ford et al., 2005), was more abundant at downstream sites (Kalcounis-Rueppell et al.,

2007).

Thus, poor water quality does not affect all bat species negatively. In fact, some bat species may, in
the short term, benefit from the proliferation of prey insects in polluted water. Vaughan et al. (1996)
also investigated differences in bat activity above and below sewage outputs and found that certain
species such as Pipistrellus pipistrellus were most active upstream of a pollution source, whereas
others such as Myotis species concentrated their feeding activity downstream of the pollution
source. At Irish rivers, Abbott et al. (2009) found that P. pygmaeus was significantly more active at
downstream sites, while M. daubentonii was less active. Although the diet of the bats were not
investigated, the trend in bat species abundances at upstream versus downstream sites was attributed
to possible preferential feeding on the specific insect prey found at the sites. Racey et al. (1998)
compared two rivers with differing water qualities and established that a river with inferior water
quality could support bat activity and insect density as great as a healthy river. In Durban, South
Africa, Naidoo et al. (2011) found greater bat diversity and activity at a polluted river than an
unpolluted river, but the proportion of insect orders in the diet of bat species showed no correlation

with the proportion of insect orders captured at the rivers.

Thus, there is evidence that bats, specifically riparian specialists, either exploit the high availability
of pollution-tolerant insects in river habitats polluted by WWTWs, or avoid these habitats (Park and
Cristinacce, 2006; Racey et al., 1998; Vaughan et al., 1996). Few studies, however, have
investigated if bats that utilise polluted sites suffer potential physiological effects. Thus, while it
appears that certain bat species benefit in the short-term, there may be long-term consequences for
their health. For example, Pilosof et al. (2013), found that exposure to sewage water activates the
immune response in P. kuhlii, causing a decrease in neutrophil levels and an increase in

lymphocytes. Lilley et al. (2013) found that, although organic tin compounds did not increase



oxidative damage, it was associated with an immune system response of decreased complement
activity in M. daubentonii. In addition, Pikula et al. (2010) showed that vespertilionid bats foraging
over aquatic habitats are exposed to toxic heavy metals in the Czech Republic. A biological
response was also found in these bats, where the metal-binding protein, metallothionein, was higher
in aquatic-insect-foraging bats than in those foraging in terrestrial or terrestrial/ aquatic habitat. It is
thus likely that bat species chronically exposed to pollutants may be experiencing sub-lethal

physiological effects.

1.5. Neoromicia nana - the urban adapter

Studies in southern Africa have recently begun to elucidate the effects of urban water pollution on
bat diversity and activity (Naidoo et al., 2011). At a wastewater-polluted river in Durban, the
majority (approximately 41%) of bats recorded at the polluted river was represented by the banana
bat, Neoromicia nana (Family Vespertilionidae) (Naidoo et al., 2011). N. nana is a small (3 - 4
grams), insect-eating bat that commonly occurs in forest and riparian habitats throughout sub-
Saharan Africa (Monadjem et al., 2010). Although N. nana typically roosts in rolled-up banana
leaves (LaVal and LaVal, 1977), it has also been found to roost in anthropogenically provided
spaces such as thatched roofs of houses (Monadjem and Fahr, 2007; O’Shea, 1980) and curled
leaves of strelitzia (Strelitzia caudate and S. nicolaii) and banana trees (Musa and Ensete spp.)

planted in private gardens (M.C. Schoeman, unpubl. data).

N. nana’s utilization of urban roosts and its high abundance along polluted urban rivers indicates
that it is an urban adapter; i.e. a species that profits from resources provided by humans (Jung and
Kalko, 2011). The small size and the fact that it is an urban adapter suggests that N. nana should
exploit the increased availability of small chironomid midges at wastewater-polluted sites.
Furthermore, chironomid activity is at its peak during the early evening (Broza et al., 2003), which
correlates with the foraging period of N. nana. The toxic effects of pollution should thus be evident
in N. nana, making this species an ideal model predator to assess the impact of wastewater

pollutants.
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1.6. Outline of thesis

There have been no studies to investigate whether African bats utilize WWTWs as foraging
grounds, and no recorded studies to investigate the potential physiological impacts from foraging at
such sites. The purpose of this thesis was to investigate the impact of WWTWs on foraging ecology
and multiple tiers of physiology (haematology and genotoxicity, detoxification organs and
reproduction) in an urban adapter, the banana bat (Neoromicia nana) in KwaZulu-Natal, South
Africa. In obtaining an overall representation of the risk of wastewater impact on N. nana, I ask the

following questions and test the following predictions:

1. Does wastewater pollution affect foraging ecology and metal concentrations in N. nana at
sites receiving and not receiving wastewater effluent along three urban rivers in Durban, South
Africa (Chapter 2)? I predicted that the abundance of the pollution-tolerant chironomid midges
associated with wastewater and the relative abundance and feeding activity of N. nana would be
higher at wastewater-polluted sites (WWTW tank and downstream sites) than at sites situated
upstream of the wastewater pollution. If so, I further predicted that there should be a significant
correlation between the abundance of pollution-tolerant insects at wastewater-polluted sites and
in the diet of N. nana at the sites. I also predicted that metal content at the sites and in tissues of
bats should be higher at wastewater-polluted sites (WWTW tank and downstream sites) than at

sites situated upstream of the wastewater pollution.

2. Does foraging at wastewater-polluted sites elicit sub-lethal haematological and genotoxic
responses in N. nana (Chapter 3)? Measures of haematological/genotoxic damage which are
commonly used in routine assessments of ecotoxicological responses to environmental pollution
were selected. I predicted that compared to bats foraging at unpolluted sites, N. nana foraging at
WWTWs should have a greater extent of DNA damage, compromised total antioxidant
capacity, higher levels of chromosomal aberration indicated by micronuclei formation, and

altered blood oxygen capacity based on haematocrits.

3. How does pollutant exposure impact the detoxification organs, namely the liver and kidney of
N. nana foraging at WWTWs (Chapter 4)? I predicted that organs of WWTW bats should reveal
higher levels of toxic non-essential metals in liver and kidney tissue, based on SEM-EDS
imaging to quantify metals and mineral nutrients. I also predicted that N. nana foraging at
WWTWs should have a greater extent of histopathological lesions in the liver and kidney tissue,

higher renalsomatic and hepatosomatic indices (characteristic of organ swelling due to metal
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damage) and upregulated metal detoxification (metallothionein 1E) proteins compared to N.

nana foraging at unpolluted sites.

4. Is the reproductive system of male N. nana foraging at WWTWs altered in the context of four
hypotheses of EDC effects (Chapter 5)? I predicted that, compared to male N. nana foraging at
unpolluted sites, N. nana foraging at WWTWs should have a lower concentration of plasma
testosterone (the primary male sex hormone), reduced baculum morphometric parameters
indicative of early-life exposure to pollutants, lower gonadosomatic indices (GSI) indicating
whole organ effects on testes, and lower body condition as a general indication of male quality

and fitness.

Finally, in Chapter 6, I synthesize the conclusions of the previous chapters, specifically within
the framework of the main aims of the research. Factors contributing to differences in the
foraging behaviour of N. nana at sites polluted and unpolluted by wastewater effluent,
physiological responses, and the potential health and population effects in pollutant exposed .
nana are discussed. Implications of wastewater pollution for urban N. nana populations, bat
communities and river ecosystems are explored. To conclude, recommendations for future

studies are made.
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Chapter 2

Foraging at wastewater treatment works increases
the potential for metal accumulation in an urban

adapter, the banana bat (Neoromicia nana)
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Wastewater treatment works (WWTWs) are known to provide profitable foraging areas for
insectivorous bats in Europe and the New World because of their association with high
abundance of pollution-tolerant midges (Diptera). However, bats that feed on these insects
may also accumulate metal pollutants such as cadmium and copper in their tissues, with acute
or chronic effects on their health. Using a time expansion bat detector, the activity (number of
passes and feeding buzzes) of Neoromicia nana (family Vespertilionidae) was quantified at
three WWTW points - upstream, the point of wastewater effluent discharge, and downstream —
along three urban rivers in South Africa. In addition, metal concentrations in the kidney, liver
and muscle tissue of N. nana caught at the sites were quantified. The diversity of aerial insects,
sampled over the same period as the bat surveys, was measured using a black light trap and
sweep-netting. Relative abundance and feeding activity of N. nana were higher at
wastewater-polluted sites than at upstream sites. The most abundant insect order at
wastewater-polluted sites and in the diet of resident bats was Diptera. Essential metals
(copper, zinc and iron) were detected in all N. nana tissue samples, but the toxic metals
cadmium, chromium and nickel were mostly present in tissue of bats at wastewater-polluted
sites. Thus, although WWTWs provide an optimal food resource to bats in the short-term, it
may pose serious long-term health risks for these top predators.

Key words: Neoromicia nana, urban adapter, wastewater metal pollution, chironomid midge,

diet.

INTRODUCTION
A major anthropogenic disturbance within the
urban landscape is river pollution from a range of
inorganic and organic contaminants (Gleick 1998),
such as chemical runoff from textile factories
and sewage effluent (Sacks & Buckley 2004). These
pollutants often have an adverse effect on animal
biodiversity (Nedeau et al. 2003; Azrina et al. 2006;
Vorosmarty et al. 2010) due to direct physiological
effects on organisms or through modifications to
the habitat or prey (Bridges & Semlitsch 2000). For
example, metal pollutants taken up through the
drinking of polluted water or the ingestion of
contaminated prey can directly or indirectly affect
the health of organisms, resulting in impaired
physiology (Sanchez-Chardi et al. 2009), reproduc-
tion (Eeva et al. 2009) and behaviour (Mogren &
Trumble 2010) or, in severe cases, mortality
(Hoenerhoff & Williams 2004). Bioaccumulation of
metals is characteristically more prominent in
carnivorous small mammals than in herbivorous

*Author for correspondence. E-mail: schoemanc@ukzn.ac.za

small mammals (Alleva et al. 2006; Hamers et al.
2006).

Insect-eating predators such as bats may be
particularly vulnerable to organic and inorganic
contaminants in water because riparian vegetation
and the emergent aquatic insects upon which bats
feed may be in direct contact with the polluted
water (Walsh & Harris 1996). Aquatic insects such
as chironomid midges (family Chironomidae)
thrive in urban rivers polluted by wastewater
works (Boonstra et al. 2009) because organic
nutrients such as nitrogen (N) and phosphorous
(P) promote eutrophication (Yount & Crossman
1970). At the same time, however, the tissues of
these chironomid midges usually contain high
concentrations of metal pollutants such as cadmium
and copper, without showing adverse effects on
survival (Krantzberg & Stokes 1990). Bats that feed
on these midges may also accumulate metals in
their tissues with acute or chronic effects on their
health (Fritsch et al. 2010).

Wastewater treatment works (WWTWs) provide
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an ideal model to investigate the effect of river
pollution on bats. WWTWs are ubiquitous in urban
landscapes and are in constant operation. Accord-
ing to the Green Drop Report by the Department
of Water Affairs (DWAF 2011), 56% of South Af-
rica’s WWTWs are in a poor to critical state, sug-
gesting that treated effluent thatis discharged into
rivers by these WWTWs differ in their compliance
with national chemical, microbial and physical stan-
dards. There is evidence that bats in Europe and
North America, specifically riparian specialists, ei-
ther exploit the high availability of pollu-
tion-tolerant insects in river habitats polluted by
WWTWs, or avoid these habitats (Vaughan et al.
1996; Racey et al. 1998; Park & Cristinacce 2006).
For example, Myotis daubentonii, one of three
species of ‘trawling bats’ found in Europe, avoided
nutrient-polluted sites and was more active up-
stream of sewage effluent discharges into Irish
rivers (Abbott ef al. 2009). Other riparian specialists
such as Perimyotis subflavus, Pipistrellus pygmaeus
and Pipistrellus pipistrellus species were more ac-
tive at sites downstream of sewage outputs than
upstream (Kalcounis- Rueppell et al. 2007; Abbott
et al. 2009). These riparian specialists, unlike M.
daubentonii, are better adapted to capturing
smaller, airborne prey such as the pollu-
tion-tolerant midges at downstream sites (Fenton
& Bogdanowicz 2002). However, small body size
coupled with the fact that bats have relatively long
life spans compared to similarly sized non-volant
small mammals (Barclay & Harder 2003) means
that these bats may have also a high risk of accu-
mulating metals in organs (Walker et al. 2002). Al-
though the lethal effects of large contaminant
doses on bats have been documented (Clark et al.
1978), sublethal effects, such as metal-induced
damage in target organs, endocrine disruption
and modulation of the endocrine system have re-
ceived far less attention, and often remain unde-
tected in bats (Clark & Shore 2001).

The small (34 g), insect-eating bat Neoromicia
nana (family Vespertilionidae) is known as the
banana bat because it typically roosts in rolled-up
bananaleaves (Laval & Laval 1977), but it may also
roost in thatched roofs of houses (O’Shea 1980;
Monadjem & Fahr 2007). N. nana commonly occurs
in forests and savanna, particularly in riparian
habitats, throughout sub-Saharan Africa (Monad-
jem & Reside 2008; Monadjem et al. 2010a). N. nana
has an intermediate bandwidth, frequency-
modulated low duty-cycle echolocation call and
short, broad wings with low wing loading

(Monadjem ef al. 2010b), suggesting that it forages
near the edge of vegetation (Schnitzler & Kalko
2001). Moreover, N. nana appears to be an urban
adapter (sensu Jung & Kalko 2011), i.e. it is able to
exploit resources provided by humans. For exam-
ple, in the subtropical city of Durban in South
Africa, N. nana roosts in the curled leaves of strelit-
zia (Strelitzia caudate and S. nicolaii) and banana
trees (Musa and Ensete spp.) planted in private
gardens (M.C. Schoeman, unpubl. data) and
occurs in large numbers along polluted rivers,
feeding on small insects such as chironomid
midges (Naidoo et al. 2011).

The aim of this study was to evaluate the influence
of wastewater pollution on the foraging ecology
and metal concentrations of N. nana at sites both
receiving and not receiving wastewater effluent
along three urban rivers in Durban, South Africa.
We predicted that the abundance of the pollu-
tion-tolerant chironomid midges associated with
wastewater and eutrophication (Marques et al.
1999), the relative abundance and feeding activity
of N. nana, and metal content at the sites and in
tissues of bats would be higher at wastewater-
polluted sites (tank and downstream sites) than at
sites situated upstream of the wastewater pollution.

METHODS

Study area

The study was conducted in the urban land-
scape of Durban, South Africa (529°58'; E30°57).
There are approximately 32 WWTWs that operate
within the Durban Metropolitan (Ceroi 1999).
Three rivers that receive effluent from WWTWs
with activated sludge tank systems were selected:
Verulam Wastewater Works (529°38.38; E31°03.49)
situated on the Mdloti River (DWAF 2009),
Kingsburgh Wastewater Works (530°04.29;
E30°51.26) situated on the Little Amanzimtoti
River (Naidoo et al. 2002) and Umbilo Wastewater
Works (529°50.44; E30°53.31) situated on the
Umbilo River (Lacko et al. 1999) (Fig. 1). According
to the Department of Water Affair’s Green Drop
Report (DWAF 2011), Verulam and Umbilo had
poor wastewater quality compliance, while
Kingsburg’s compliance was excellent. Study sites
were situated (i) at least 3 km upstream of the point
of effluent discharge into the river, (ii) at the sludge
tanks in the wastewater treatment works and
(iii) atleast 3 km downstream of the point of waste-
water effluent discharge. Upstream and down-
stream sites at each river had similar abiotic and
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Fig. 1. Map of the study area in Durban, South Africa, showing the location of the Verulam, Kingsburgh and Umbilo
Wastewater Works on the Mdloti, Little Amanzimtoti and Umbilo Rivers, respectively.

biotic features including distance between sites,
width between banks (3-9 m), water surface
clutter (Biscardi et al. 2007) and riparian vegetation
(visual assessment).

Metal content at sites

Water samples were collected at sites upstream
of the point of wastewater effluent discharge, at
the sludge tanks of WWTWs, and at sites down-
stream of the point of wastewater effluent discharge.

At each site, water was collected at sunset to corre-
spond with the feeding emergence times of bats.
Water was collected just below the surface in plastic
bottles prepared with 2 ml, 65% concentrated
nitric acid (Jackson et al. 2007). Three replicates
were taken at each of the nine sites, resulting in a
total of 27 samples. After allowing for overnight
nitric acid digestion, the samples were filtered
through Advantec GA-55 (47 mm) glass fibre filter
membranes on a filtration pump, to remove
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particulates. Ten ml of the filtrate was refrigerated
until analysis for metal content.

Metal content, including cadmium (Cd), chro-
mium (Cr), copper (Cu), iron (Fe), lead (Pb), nickel
(Ni) and zinc (Zn), was determined using Induc-
tively Coupled Plasma Optical Emission Spec-
trometry (ICP-OES). Calibration standards of
metal solutions were tested using the ‘automated
analysis control’ function on WinLab32 ICP Con-
tinuous software (Perkin Elmer, U.S.A.). Although
mercury (Hg) is also a toxic metal pollutant in
rivers (Moeletsi et al. 2004), it was not tested for
because detection of this hydride requires special-
ized equipment (cold vapour system; Henry &
Miles 2001) which was not available to us.

Neoromicia nana sampling

Neoromicia nana was sampled with active (mist-
nets) and passive (echolocation recordings) meth-
ods at each study site for three nights during
winter (June/July 2009) and summer (March/April
2010). We randomly sampled the three sites along
each river during each season to minimize the
effects of daily climatic variation on bat activity.
Because it was not possible to sample all the study
sites at the same time, we sampled study sites
during nights with comparable climatic condi-
tions, specifically similar temperature and no rain.
We passively monitored the relative abundance
and feeding activity of N. nana by recording bat
echolocation calls at each site from 18:30 and 18:00
until 22:30 and 21:00 in summer and winter,
respectively. Echolocation calls were recorded
using an Avisoft Ultrasound 116 Bat Detector
(Avisoft Bioacoustics, Berlin, Germany) connected
to a laptop computer (Hewlett Packard Pavil-
ion 6210 notebook). At upstream and downstream
sites, the recording equipment was set up along-
side the river with the microphone positioned at a
45° angle to record bats flying directly above the
river. At tank sites, the recording equipment was
set up a few metres from the tank, with the micro-
phone pointing at a 45° angle toward the tank.
Batsound Pro-Sound Analysis software (ver-
sion 3.31b, Pettersson Elektronik AB, Upsala,
Sweden) was used to analyse the recorded echo-
location calls. A sampling rate of 500 000 Hz
(16 bits, mono) with a threshold of 16 was used.
The dominant harmonic, i.e. peak frequency (PF)
and the bandwidth (BW) from each recorded bat
pass was measured using the power spectrum
(size 1024), and duration (DU) of the call was
measured from the oscillogram (Schoeman &

Jacobs 2008). N. nana calls were identified by com-
paring PF and DU of calls with those of reference
calls (Schoeman & Jacobs 2008; Monadjem ef al.
2010b; Naidoo et al. 2011).

While recording bat activity, we captured N.
nana with mist-nets which were set across the
rivers and next to the tanks, far enough from
the recording equipment to minimize distur-
bance. Nets were checked every 10-15 minutes.
Captured bats were sexed and their life-stage
(juvenile or adult) was determined from the pres-
ence of cartilaginous epiphyseal plates (Anthony
1988). We measured forearm length (to nearest
0.1 mm) with callipers, and body mass with a
Pesola scale (to nearest 0.5 g). Species were identi-
fied using a taxonomic key (Monadjem et al.
2010a). Bat species other than N. nana were re-
leased where they were caught. N. nana individu-
als were held individually in cotton bags
overnight to collect faecal pellets, and released the
next day where they were caught, except N. nana
collected during the summer sampling period,
which were used to test metal content present in
tissue (see below).

Relative abundance and feeding activity

We defined a bat pass as a series of echolocation
calls made by one individual (Saunders & Barclay
1992). We quantified the relative abundance of
N. nana with an acoustic activity index (AI) (Miller
2001):

n
Al=YP,
1

where n = number of 1 min intervals for sampling
night and P = sum of presence counts (N. nana
passes within a 1 mininterval = 1 present count).

We quantified the feeding activity of N. nana at
each site as the total number of feeding buzzes
recorded (Fenton et al. 1977). Feeding buzzes con-
sist of high pulse-repetition rates of echolocation
pulses emitted by animalivorous bats as they
capture prey.

Insect diversity

At each site we captured nocturnal insects with a
22 W black-light bucket trap (Black 1974) for the
same period that mist-nets were set. Black-light
traps effectively sample Diptera, Lepidoptera and
Coleoptera (Nabli ef al. 1999). The black-light trap
was positioned along tanks or above water level
near the river (~1 m above water, 1-3 m from the
edge of the river), and at least 50 m away from
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the mist-nets to prevent the light from affecting
bat activity. In addition, we captured insects by
sweep-netting (20 sweeps) along the edge of the
river or tank, every hour from the start to the end
of the sampling period per night. Insects collected
from the sweeps and the light trap were pooled
and identified to order using a taxonomic key
(Scholtz & Holm 1985). Diptera were further
analysed to obtain the abundance of chironomid
midges. At least one individual from each col-
lected order was mounted on a slide and used as a
reference library for dietary analyses.

Neoromicia nana dietary analysis

To obtain representative samples of dietary
breadth of N. nana at individual and population
level, five faecal pellets from each bat (Whitaker
et al. 1996) and a minimum of 20 pellets per site
(Whitaker et al. 1999), respectively, were collected
for dietary analyses. Faecal samples were individ-
ually teased apart in 70% alcohol. Remnants of
insect exoskeletons were identified to order with
the aid of a classification key (Scholtz & Holm
1985) and a reference collection of insects trapped
at each site. The percentage of the total pellet
volume comprising each order present was visu-
ally estimated following Whitaker (1988).

Metal content in Neoromicia nana tissue

Twenty-six adult N. nana captured at upstream
(n = 3),tank (n = 15), and downstream (n = 8) sites
along the Umbilo, Little Amanzimtoti and Mdloti
rivers during summer (March/April 2010) were
analysed for metal content. These bats were
euthanased by decapitation, as approved by the
University of KwaZulu-Natal Animal Ethics
Committee (Reference: 086/12/Animal), and con-
sistent with the American Veterinary Medical
Association Guidelines for the Euthanasia of
Animals (AVMA 2013). Bats were dissected for the
collection of liver, kidney and pectoral muscle
samples. The removed tissue samples were kept
at —-80°C until preparation for metal analysis.
Samples were dried at 60°C for two days in an
oven and then weighed to obtain the dry mass of
the sample. Using a ratio of 45.5 ml HNO3: 1 g
tissue, the dried tissue samples were digested
overnight in 65% concentrated nitric acid. To
remove particulate matter, the digested samples
were diluted with distilled water (1:2) and filtered
through syringe filters with a diameter of 25 mm
and pore size of 0.45 i (PALL, Acrodisc). The lig-
uid filtrate was kept for analysis.

Dry weight concentrations of Cu, Cr, Fe, Ni, Zn,
Pb and Cd in liver, kidney and muscle samples
were determined using ICP-OES (Perkin Elmer,
Optima 5300 DV). The only metal in the tissue
samples where all concentrations were below detec-
tion of the ICP-OES was Pb (DL = 0.0420 ug/g),
which was therefore not presented in the results.
The major limitation of ICP-OES is the high detec-
tion limit for metal quantification. A number of
measured concentrations for Cd, Ni and Cr were
alsobelow their detection limits (DL = 0.0027 ug/g;
0.0150 ug/g; 0.0071 ug/g respectively). All metal
concentrations below detection limits were assigned
the value of the detection limit for the respective
metal.

To test whether the recovery rates of metals were
consistent across all sites, the same procedure used
to prepare N. nana tissue samples for metal
analysis, was performed on certified standard
reference material (dried oyster tissue, SRM1566b)
(National Institute of Standards and Technology).
Recovery rates for the metals in the standard refer-
ence material (dried oyster tissue, SRM1566b)
ranged from 67% to 150%, with the exception
of Cd which had a poor recovery rate of 11%.
However, metal concentrations between the three
replicates of oyster samples analysed were consis-
tent, with only 1% to 6% standard deviation
between replicates. Thus, despite the wide range
of recovery rates between metals, the trends across
upstream, tank and downstream sites per metal
should be consistent.

Statistical analyses

One-way ANOVAs and Tukey HSD post hoc tests
were used to compare differences between up-
stream, tank and downstream sites for each of the
metals at the rivers. Three-way ANOVAs were
used to compare differences in N. nana relative
abundance, N. nana feeding activity, total insect
abundance, insect order richness and midge abun-
dance among sites (upstream, tank and down-
stream) and rivers, and between seasons (summer
and winter). The proportion of insect orders in the
diet of N. nana bats was compared with the propor-
tion of insect orders at the rivers using a Pearson’s
correlation. Statistical analyses could not be used
to compare differences in tissue metal concentra-
tions among upstream, tank and downstream
sites because of low sample sizes (n = 0 or 1 for
some sites). We conducted simple linear regressions
to determine the extent to which metal concentra-
tions measured in N. nana tissue (dependent vari-
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able) are associated with metal concentrations in
the water (independent variable). Assumptions of
normality and equality of variance were tested
using a one-sample Kolmogorov-Smirnov testand
a Levene’s test, respectively. If assumptions were
not satisfied, non-parametric tests were run. All
analyses were performed with SPSS 19.0, using
alpha of 0.05.

RESULTS

Metal content in water

There were significant differences in metal con-
tent in water among downstream, tank and
upstream sites (Fig. 2a—c), except in Pb at the
Umbilo and Mdloti rivers (Fig. 2a,c), and in Ni at
the Little Amanzimtoti River (Fig. 2b). Metal
content was highest at tank sites, except Cuand Fe,
which were highest upstream at the Little
Amanzimtoti River (Fig. 2a—c).

Neoromicia nana relative abundance and
feeding activity

Neoromicia nana emits low duty-cycle, frequency
modulated echolocation calls (LD-FM). The PF of
N. nana was 68.6 + 2.0 kHz, witha BW of 14.1 = 3.7
kHz and a DU of 4.6 = 0.8 ms (mean = S.D.; n =
10). Passive monitoring revealed 5361 N. nana call
sequences: 668 were recorded at upstream sites,
2142 at tank sites, and 2551 at downstream sites.
There was a significant difference in the relative
abundance of N. nana among upstream, tank and
downstream sites (Fp49 = 84.424, P < 0.0005;
Fig 3a). Tukey HSD post hoc tests showed that rela-
tive abundance was significantly higher at down-
stream than at tank and upstream sites (P <
0.0005). The lowest relative abundance was at the
upstream sites (Fig. 3a). There was no significant
difference in N. nana relative abundance among
rivers, however there was a significant interaction
effect between river and site (Fu49 = 6.783, P <
0.0005), indicating that the difference in abun-
dance among sites was not consistent among
rivers. There were no significant seasonal differ-
ences in relative abundance.

Feeding activity (i.e. number of feeding buzzes)
was significantly higher at wastewater-polluted
sites than at upstream sites (F,49) = 10.315, P <
0.0005; Fig. 3b), but did not differ significantly
between tank and downstream sites. There were
also no significant seasonal differences in feeding
activity. Feeding activity differed significantly
among rivers, with the Little Amanzimtoti River
having significantly lower numbers of feeding

buzzes than the Umbilo and Mdloti rivers (F,49) =
9.438, P < 0.0005).

Insect abundance and richness of orders

The total number of insects captured during
both sampling seasons was 3742 at the Umbilo
River, 3209 at the Little Amanzimtoti River and
3513 at the Mdloti River. At all three rivers, the
most prevalent order at the upstream sites was
Coleoptera (45.8-69.8%) and at wastewater-pol-
luted sites it was Diptera (41.2-73.1%; except
for the Umbilo downstream site, which varied)
(Table 1). Neuroptera, Dermaptera and Mantodea
were rare (<2%) and were pooled into one
category classified as ‘other’. Trichoptera and
Ephemeroptera were more abundant at upstream
sites than at wastewater-polluted sites (Table 1).
More than 80% of Diptera caught at the tank and
downstream sites comprised chironomid midges.

There was a significant difference in insect abun-
dance and number of insect orders among the
upstream, tank and downstream sites,and be-
tween seasons (all P < 0.05, Table 2). Tukey HSD
post hoc tests showed that downstream sites had a
significantly higherinsectabundance and number
of insect orders than tank sites (Table 2). The num-
ber of insect orders was also significantly higher at
upstream sites than at tank sites. There were
significantly higher abundances and number of
insect orders in summer than in winter (Table 2). In
addition, there were several significant interaction
effects between sites, season and river for insect
abundance (see Table 2). Mean abundance of
midges per night (Fig. 4) was significantly higher
at wastewater-polluted sites than at upstream
sites, and at tank sites than at downstream sites
(Table 2). Midge abundance was significantly
higher in summer than in winter, and at the
Little Amanzimtoti and Mdloti rivers than at the
Umbilo River (Table 2). There were also significant
interaction effects between site, season and river
(Table 2).

Neoromicia nana diet

In total, 86 N. nana were captured: five individu-
als at upstream sites, 45 individuals at tank sites
and 36 individuals at downstream sites. At least
20 faecal pellets were analysed for N. nana cap-
tured at the upstream, tank and downstream
sites except at the Umbilo upstream site where
no faecal pellets were collected from the single
N. nana captured. At all tank and downstream sites
(except downstream at Little Amanzimtoti in
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winter), the insect order constituting the highest
proportion (or second highest by <1%) in the diet
of N. nana was Diptera (Table 3). At upstream sites,
Coleoptera was the insect order constituting the
highest proportion (or second highest by <4%) in
the diet of N. nana (Table 3).

The proportions of insect orders in the diet of
N. nana were significantly correlated to the pro-
portions of insect orders captured at the majority
of wastewater-polluted sites: the tank sites at
Umbilo and Mdloti in summer, and Little Aman-
zimtoti in summer and winter, the downstream
sites at Mdloti in both seasons, Umbilo in winter
and the Little Amanzimtoti in summer (all P <

0.05, all < 0.1) (Table 3). This indicates that at
wastewater-polluted sites, N. nana generally fed
opportunistically. Among the upstream sites, only
Mdloti River in summer had proportions of insect
orders significantly correlated to those in the diet
of N. nana, suggesting that N. nana fed selectively
at the other upstream sites.

Metal content in Neoromicia nana tissue
Cu, Zn and Fe were detected in all the tissue
samples (raw data are available in the online
supplement). Conversely, Cd, Cr and Niwere
detected in tissue collected from only waste-
water-polluted sites (except one occurrence
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Table 2. Significant (P < 0.05) results for three-way ANOVAs and Tukey post hoctests for insect abundance, number of
insect orders and midge abundance among sites (upstream (U), tank (T), downstream (D)) and rivers (Umbilo (Umb),
Little Amanzimtoti (L), Mdloti (M)), and between seasons (summer (S), winter (W)).

Variable Effect Significant three-way ANOVAs Significant post hoc
Tukey tests
F d.f. P
Insect abundance Site 4.818 2,46 0.015 D>T
Season 313.867 1,47 <0.0005 S>W
Site x season 8.462 2,46 0.001
Site x river 16.911 4,46 <0.0005
River x season 4.038 2,46 0.028
Site x season x river 18.062 4,46 <0.0005
No. of insect orders Site 10.627 2,46 <0.0005 U>T, D>T
Season 64.234 1,47 <0.0005 S>W
Midge abundance Site 156.086 2,49 <0.0005 T>U, D>U, T>D
Season 143.973 1,49 <0.0005 S>W
River 10.372 2,49 <0.0005 L>Umb, M>Umb
Site x season 36.468 2,49 <0.0005
Site x river 10.540 4,49 <0.0005

of Cd at an upstream site) (Table 4). At all three
rivers, the maximum Cd concentration at waste-
water-polluted sites in the kidney, liver and
muscle tissue was higher than (or equal to) the
detection limit. Only upstream sites had Cd con-
centrations below detection and were therefore
assigned the value of the detection limit of Cd (see
ranges, Table 4). Although Cr and Ni were below
detection in liver tissue, Cr was detected in one

downstream kidney sample and in three muscle
samples from the tank site. Ni was detected in
kidney tissue sampled at the wastewater-polluted
sites of the Mdloti River, and in muscle tissue
samples from the wastewater-polluted sites of the
Umbilo River (Table 4). There was a positive signif-
icant relationship between the metals quantified
in the kidney and the metals in the water (R* =
0.662, P < 0.0005; F = 48.974; Fig. 5). However,
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Fig. 4. Mean midge abundance per night at upstream (U), tank (T) and downstream (D) sites at the Umbilo, Little
Amanzimtoti and Mdloti rivers during winter (2009) and summer (2010) (* indicates significant differences between

the sites at the P < 0.001 level). Bars = +S.E.



Trich
1.3+2.3

0.0

Hym
27+23

13.0+x14

Hem
85+0.7
6.0+ 8.2
8.0+9.2

11.7+ 10
10.0+6.1

Lep
8.0+4.2

Insect order (% volume diet composition)
9.3+3.8

Dipt
61.0+5.3
35.0+£21.2
46.0 £ 8.2

Col

355+17.7

140+7.6
37.0x27

No. of pellets
15
10

Season

Table 3. Mean (+S.D.) percentage volume of the insect orders Coleoptera (Col), Diptera (Dip), Hymenoptera (Hym), Hemiptera (Hem), Lepidoptera (Lep) and Trichoptera (Trich)
Site

in the diet of Neoromicia nana captured at upstream (U), tank (T) and downstream (D) sites at the Umbilo, Little Amanzimtoti and Mdloti rivers during winter (W) and summer (S).

River
Umbilo
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+2.7
7.7+6.8
13.0+6.7

9.0+55
12.7+ 10

50.0 £ 25.7
40+55

280+7.1

21.7+24.3
53.0+2.7

n =

20+28

0.0
0.0
0.0
0.0
0.0

95+35
35+47
27+3.1
14.0+ 134
15+£3.0
15.0+ 15.6

9.0+4.4
7.0+6.7
258+ 12.7

85x7.2
325+0.7

140+7.1

20.0+£0

205+ 12
6.0+x1.8
9.3+4
7027

275+538
7.0+£7.1

46.8 +10.3
13.0+10.1
20+28
52.8 £ 33.3
575+ 154
458 +10.4
61.3+16.7

39.0+ 28
60.0 £ 12.2

24.0+£9.9
353x127
40.0 £ 29.9
120+ 2.7
32.3+85
415+ 23.3

10
20
15
20
10
20
40

U

Little Amanzimtoti

Mdloti

0.0
0.0

4.0

20+
3.0+33

15.8+14.9
239+ 117

13.3+4.6

7.3+x49
+29

3.8

22.3+154
119+11.2

23.8+6.9

=

0.0
033+1

9575
144 +8.0 0.0

7821
15+16

224+154

43

there were no significant relationships be-
tween metal in liver and muscle tissue and
metal in the water (all P > 0.05).

DISCUSSION

As we predicted, the relative abundance
and number of feeding buzzes of N. nana
were highest at wastewater-polluted sites
and lowest at sites located upstream of the
wastewater pollution, presumably due to
the higher abundance of insects, specifi-
cally Diptera, present at the wastewater-
polluted sites. Diptera also comprised the
largest proportion in N. nana’s diet at
wastewater-polluted sites. This corre-
sponds with previous studies, where high
abundances and feeding rates of riparian
specialist bats were recorded below sew-
age outfall, compared to unpolluted up-
stream sites (Vaughan et al. 1996, Racey
et al. 1998; Kalcounis-Rueppell et al. 2007;
Abbott et al. 2009). The significant correla-
tions between insects captured and diet
composition at most polluted sites sug-
gests that here N. nana fed opportunisti-
cally on the abundant prey, specifically
small dipterans. In contrast, the non-
significant correlations between insects in
the diet and those captured at most
upstream sites (except at Mdloti River
during summer) suggests that N. nana
tended to forage selectively on insects
from different orders, in particular moths
(Lepidoptera), beetles (Coleoptera) and
bugs (Hemiptera).

These trends suggest that the foraging
ecology of N. nana might conform to pre-
dictions from optimal foraging theory
where prey are ranked by the predator
according to their profitability (Mac-
Arthur & Pianka 1966). Moths, bugs and
beetles are energetically probably more
profitable to bats than small midges,
hence they are an important component
of the diet of many insectivorous bat
species (Monadjem et al. 2010b). This is
also the case for N. nana at unpolluted sites
in southern Africa (Fenton et al. 1977;
Schoeman & Jacobs 2011). Thus, N. nana
may not be foraging randomly, but instead
is adapted to optimally exploit the high
abundance of swarming pollution-
tolerant midges at wastewater-polluted
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Fig. 5. Relationship between the concentrations of metals in the kidney and the concentrations of the metals in the
water (regression equation: y = 1.158x + 2.753) in Neoromicia nana at upstream, tank and downstream sites of the

Umbilo, Little Amanzimtoti and Mdloti rivers.

sites in urban landscapes. However, ultimately
less profitable items should be eaten only when
the energy gained from eating them exceeds the
energy gained from rejecting them and finding
more profitable prey (Jones 1990), mediated by
prey abundance. To test this hypothesis, future
studies should quantify the differences in energy
returns for bats between catching many small
midges flying in swarms, and fewer, more widely
dispersed, large fast-flying insects.

Moreover, molecular studies of bat diet may (e.g.
Razgour et al. 2011) or may not (e.g. Alberdi et al.
2012) support the course-grained results of micro-
scopic dietary analyses. Nevertheless, molecular
studies provide a high resolution of prey identifi-
cation — often to species level — which provide
insights into fine-scale patterns in resource use.
Furthermore, all insect capture methods are
biased towards catching insects of a particular
order, size or mobility (Muirhead-Thomson 1991).
Thus, analyses investigating the relationships
between the diet of N. nana and prey availability
using molecular dietary data and prey data from
additional capturing methods, such as suction or
sticky insect traps or different lights, may yield
different results to those we report here.

Pollution-tolerant insects such as chironomid
midges (Postma et al. 1995) constituted more than
80% of all Diptera at wastewater-polluted sites. In
contrast, pollution-sensitive invertebrates from

orders such as Ephemeroptera and Trichoptera
(Dinakaran & Anbalagan 2007) were less abun-
dant here than at upstream sites; thus insect order
richness was low at polluted sites. At sites polluted
with industrial discharge chironomid midge larvae
have shown morphological deformities such as
head capsule and mouthpart asymmetry, yet no
adverse effects on their survival and growth to
adults was shown (Al-Shami et al. 2010). Similarly,
metal-adapted genetic strains of chironomid
midges have been found at sites downstream
of pollution (Groenendijk et al. 1998). Although
not tested in this study, the tissue of chironomid
midges at metal-contaminated sites usually con-
tain high concentrations of metals (Krantzberg &
Stokes 1990), which are transferred from substrate
to larvae to adult (Reinhold et al. 1999). This puts
those bats that opportunistically feed on the large
swarms of chironomid midges at polluted sites at
risk of accumulating metals themselves.

The essential metals Cu, Zn and Fe were de-
tected in all tissue samples from N. nana foraging
at upstream and wastewater-polluted sites.
However, the non-essential metals Cd, Ni
and Cr were detected only in N. nana foraging at
wastewater-polluted sites (except one upstream
occurrence of Cd). While Cu, Zn and Fe are essen-
tial for normal cellular processes and bodily func-
tion, Cd, Cr and Ni are considered harmful to
organisms (Hoffman et al. 2001). We found a signif-
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icantly positive relationship between concentra-
tions of metals in the kidney tissue and metals in
the water. This is an important result because the
kidney is the main storage site of toxic metals in-
cluding Cd (Hunter & Johnson 1982). In addition,
the liver and kidney actively regulate essential
metals, thus concentrations of toxic metals in these
tissues reflect exposure and accumulation of those
metals for a prolonged period (McGeer ef al. 2000).
This suggests that there is potential for transfer of
metals through the food chain.

Cd was presentin kidney, muscle and liver. Cd is
known to have deleterious effects on health
(Henson & Chedrese 2004; Burger 2008). It is one
of the metals of most concern to wildlife, and is a
teratogen, carcinogen and possible mutagen (Bur-
ger 2008). It has also been recently recognized as
an endocrine-disrupting chemical (EDC), re-
ported to mimic the effects of oestrogen in the
body (Henson & Chedrese 2004). The concentra-
tions obtained for tissue Cd in wastewater-
polluted sites in this study ranged from 0.003 to
3.686 ug/g. The higher values are similar to the
Cd concentration of 3.6 + 2.2 ug/g found in the
liver of the bat Eptesicus diminutus (family Vesperti-
lionidae) caught at metal-polluted coal mining
areas of Brazil (Zocche et al. 2010). These Brazilian
bats also showed significant metal-induced
DNA damage (Zocche et al. 2010). On the other
hand, Cd has a tendency to accumulate in tissue
and Cd concentration is therefore strongly corre-
lated with exposure time (Fritsch et al. 2010). Fur-
thermore, Cd concentrations in the kidney and
liver of small mammal species increase with age
(Walker et al. 2007; Fritsch et al. 2010). Thus, given
enough time, Cd levels in N. nana foraging at
wastewater-polluted sites may reach critical con-
centrations. Because in our study, the Cd recovery
from N. nana tissue was poor, the Cd concentra-
tions given here may be an underestimation of the
true extent of the accumulation.

Cr and Ni levels were below detection in the
liver of N. nana, but concentrations in the kidney
and muscle tissue ranged from 0.007-0.683 ug/g
and 0.015-19.656 ug/g, respectively. Cr has
been linked to chromosomal aberrancy (at mean
concentrations ~3.053 ug/g) (Tull-Singleton ef al.
1994) and carcinogenicity (O’Brien et al. 2003). In
mammals, chronic exposure to Ni may cause
degenerative effects in various organs (Sheffield
et al. 2001). Although terminal physiological
damage is not likely to occur from the Cr and
Ni concentrations found in N. nana, there remains

a risk of undetected sublethal effects. In fact, the
upper limits of Cr and Ni concentrations in the
kidney were higher than what was reported in
meadow voles (Microtus pennsylvanicus) collected
at a site treated with municipal sewage sludge
(Alberici et al. 1989). What may be of significance
here is that both Ni and Cr are readily transferred
from adult to young through lactation (Streit &
Nagel 1993).

The low abundance of N. nana at unpolluted up-
stream sites is also reflected in our relatively low
capture rate here. Hence, sample sizes of metal
concentration and diet of N. nana were relatively
small at upstream sites. Contaminant concentra-
tion data obtained from tissue samples often
contain a large degree of natural variability between
individuals due to genetic variation and physio-
logical fluctuations (Rothery 2000). Also, there can
be much variability in the diet of bat species within
the same habitat due to seasonal variation in the
spatial and temporal availability of prey (Jacobs
et al. 2007; Schoeman & Jacobs 2011). Thus, with
increased sample size there may be a continuum
of variation and increased overlap in diet and
metals in tissues between wastewater-polluted
and unpolluted sites.

Future research should also use methods with a
lower detection limit for metal determination
than ICP-OES, such as ICP-MS or differential pulse
anodicstripping voltammetry (Pikula et al. 2010) to
obtain a better resolution of accumulated metals in
tissues. Although only adults were included in the
metal analysis, sampled adult bats were represen-
tative of the population and may therefore have
contained older bats. The correlation between age
and the concentration of some metals such as Cd
thus warrant a precise determination of age in
future studies. In addition, metal concentrations
should also be tested in insects captured at the
polluted and unpolluted sites to more accurately
track the transfer of metals from the pollutant
source to the predator.

In conclusion, our study is the first to find evi-
dence both for the small African insectivorous bat,
N. nana, exploiting high abundance of pollut-
ant-tolerant insects at WWTWs, and metal con-
tamination in tissues of these bats. These urban
adapters benefit in the short-term by exploiting
the high abundance of metal-tolerant chironomid
midges occurring at metal-polluted WWTW sites.
However, there may also be long-term costs. Based
on metal concentrations in the water and target
organs, it can be concluded that metals from
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wastewater are probably passing from the water
through the food chain to N. nana. More specifi-
cally, important toxic metals, such as Cd, Cr
and Ni, may accumulate in organs, pertinently the
kidneys, potentially posing negative long-term
health effects for both adult and young N. nana.
Further research investigating specific physiologi-
cal effects, such as lesions from metal exposure in
the kidney and liver, and consequent health
effects is currently being conducted in our labora-
tory.
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ABSTRACT

Wastewater Treatment Works (WWTWs) are a ubiquitous feature of the urban landscape. The Banana Bat,
Neoromicia nana specifically exploits the high abundance of chironomid midge prey available at WWTWs
but these populations also have higher levels of non-essential metals (Cd, Cr and Ni) in their tissues than bats
foraging at unpolluted sites. Pollutant exposure may elicit primary physiological responses such as DNA
damage and haematological changes. We investigated whether pollutant exposure from foraging at
WWTWs impacts haematological and genotoxic parameters in N. nana. We compared four measures of
haematological/genotoxic damage between N. nana foraging at three WWTWs and two unpolluted sites
located in KwaZulu-Natal, South Africa: DNA damage measured by the Comet assay, total antioxidant
capacity as indicated by the FRAP assay, chromosomal aberration indicated by micronuclei formation and
blood oxygen capacity based on haematocrits. There was significantly higher DNA damage in N. nana at
WWTWs than in bats from unpolluted sites, suggesting inadequate repair to double stranded DNA breaks.
In addition, WWTW bats had a significantly lower antioxidant capacity than bats from unpolluted sites. This
suggests that bats at WWTWSs may have a diminished capacity to cope with the excess reactive oxidative
species (ROS) produced from pollutants such as metals. There was no increase in micronucleus frequency in
WWTW bats, indicating that cellular functioning has not yet been disrupted by chemical exposure.
Haematocrits, however, were significantly higher in WWTW bats, possibly due to erythrocyte production
in response to certain pollutants. Thus, effects of pollutant exposure in bats foraging at WWTWs elicit sub-
lethal haematological and genotoxic responses which may pose serious long-term risks. This provides
evidence that WWTWs, that are aimed to remove pollutants from the environment, can themselves act as a

source of contamination and pose a threat to animals exploiting these habitats.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

To cater for the rapidly growing human population, natural land is
being transformed into urban habitat at an alarming rate (McKinney,
2006). By 2050, nearly 70 percent of the global human population
will be residing in urbanized habitat (United Nations, 2011). As a
result, wildlife is becoming increasingly exposed to the physical
features associated with urban development, and is showing a
general decline in response to it (Vorosmarty et al., 2010). Waste-
water Treatment Works (WWTWs) are a ubiquitous and often
permanent component of the urban landscape. They receive both
industrial and household waste which contains a cocktail of patho-
gens, inorganic and organic contaminants (Gagnon and Saulnier,
2003). The influent undergoes various stages of treatment in large,
open-top sludge tanks before finally being discharged into rivers.
During this process, the wastewater in sludge tanks is exposed and

* Corresponding author. Fax: +27 31 260 2029.
E-mail address: Samantha.Naidoo.ukzn@gmail.com (S. Naidoo).
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freely accessible to volant animals. In addition, pollution-tolerant
chironomid midges thrive at WWTWSs (Boonstra et al., 2009).
Because chironomid midges at WWTW tanks are in direct contact
with the wastewater, volant, insect-eating predators such as bats are
at a high risk of contaminant intake and accumulation.

The Banana Bat, Neoromicia nana (family Vespertilionidae), is
an urban adapter (Jung and Kalko, 2011) that exploits the high
abundance of chironomid midge prey available at WWTWs
(Naidoo et al., 2013). N. nana have a significantly higher abundance
and feeding activity at WWTWs than unpolluted sites within the
urban landscape. In addition, chironomid midges are the dominant
prey type in the diet of these resident WWTW bats (Naidoo et al.,
2013). Midges are however pollution-tolerant (Vermeulen, 1995).
More specifically, midges can accumulate high levels of metals, with-
out decreases in survival and growth to the adult stage (Al-Shami et
al,, 2010). Further, bioaccumulation of metals is characteristically more
prominent in carnivorous small mammals than in herbivorous small
mammals (Alleva et al.,, 2006; Hamers et al., 2006). Hence, N. nana
foraging at WWTWs contain higher levels of non-essential metals
(Cd, Cr and Ni) in the tissues than bats foraging at unpolluted sites
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(Naidoo et al., 2013). Of the tissue types analysed, metal levels in the
kidneys correlated to metal levels at the polluted sites. The kidney is
actively involved in metal regulation and detoxication, thus concen-
trations of toxic metals in the tissue reflect exposure and accumulation
of those metals for a prolonged period (McGeer et al., 2000).

When organisms are exposed to pollutants, a cascade of
response events is induced. DNA damage and haematological
changes may occur primarily, followed by longer-term damage
such as lesions in detoxication organs and ultimately, visible
pathological disease. Various pollutants, including metals found
in wastewater, are genotoxic agents which cause direct or indirect
damage to genetic material. Direct genotoxic effects include
chromosomal aberrations such as micronucleus formation and
DNA damage such as strand breaks, adduct formation, protein
cross-links and oxidative damage from reactive oxygen species
(ROS) produced during metal interactions (Shugart, 2000).

Sub-lethal physiological responses such as chromosomal aber-
rations and DNA damage from contaminants are typically inves-
tigated in the laboratory in dose-response exposure experiments
(Swanepoel et al., 1999). Few studies have investigated mammal
responses to pollutant levels occurring in the environment, many
of which focus on acute poisoning events (Kohler and Triebskorn,
2013) and mine pollution (Johnson et al., 1978; Sanchez-Chardi et
al., 2008). For instance, physiological effects, including changes to
haematological parameters, histopathological alterations, geno-
toxicity, and compromised enzymatic activity were noted in
shrews (Crocidura russula) inhabiting an abandoned pyrite mining
site (Sanchez-Chardi et al., 2008). Similarly, Zocche et al. (2010)
found that bats (Tadarida brasiliensis) inhabiting coal-mines in
Brazil had significant DNA damage.

Acute poisoning events including pesticide applications have
resulted in several cases of increased mortality in bat populations
(Clark et al,, 1978; Kunz et al., 1977). Furthermore, high concentra-
tions of organic pollutants were found in bats affected by White-nose
syndrome, an emerging disease which is decimating North American
bat populations (Kannan et al., 2010). Pollutant exposure in bats may
thus contribute to immunosuppression (Pilosof et al. 2013), further
increasing their susceptibility to infection by White-nose syndrome
and other diseases. Physiological effects on bats foraging at WWTWSs
over a long period of time have not, however, been investigated.
Understanding these effects is of critical importance because
WWTWs are relatively common fixtures scattered across urban
landscapes, and are intensively utilized by these animals.

The aim of this study was to therefore investigate whether
pollutant exposure from foraging at WWTWs impacts haematologi-
cal and genotoxic parameters in N. nana. We selected three measures
of haematological/genotoxic damage which are relatively quick and
cheap to perform and commonly used in routine assessments of
ecotoxicological responses to environmental pollution: DNA damage
measured by the Comet assay, chromosomal aberration indicated by
micronuclei formation and blood oxygen capacity based on haema-
tocrits. In addition, we measured muscle antioxidant capacity using
the FRAP assay as a first-tier indication of tissue reducing power. We
predicted that N. nana foraging at WWTWSs would have a greater
extent of DNA damage, compromised total antioxidant capacity,
higher levels of chromosomal aberration and changes in blood
oxygen capacity compared to bats foraging at unpolluted sites.

2. Methods
2.1. Sample collection

We collected pollutant exposed N. nana samples at three WWTWs which use
sludge tank systems and contain high concentrations of wastewater-associated
metals (lead, cadmium, chromium, nickel, copper, zinc and iron; Naidoo et al.,
2013) in Durban, South Africa (5S29°58'; E30°57’): Umbilo Wastewater Works

(S29°50.44’; E30°53.31’), the Verulam Wastewater Works (S29°38.38';
E31°03.49'), and the Kingsburgh Wastewater Works (S30°04.29'; E30°51.26')
(Fig. 1). We selected two unpolluted reference sites in the Umdoni Park, Pennington
about 80 km south of Durban (Fig. 1). Umdoni Park covers an area of 210 ha
comprising mainly dense coastal forest representative of the Indian Ocean Coastal
Belt biome (Mucina et al., 2006). There are no WWTWs located in the immediate
vicinity of the park, with the closest WWTW situated > 8 km away. We sampled
two sites within the forest: Unpolluted site 1 (530°40.36'; E30°23.31"), located close
to the border of the park, and unpolluted site 2 (S30°41.15’; E30°23.35’) located
further inside the park. Because N. nana has a relatively small home range — 300 m
from the roost (LaVal and LaVal, 1977) — individual turnover between unpolluted
sites and contamination from the nearest WWTW was unlikely.

N. nana were captured with mist nets at WWTW sludge tanks, and both mist
nets and harp traps at the unpolluted sites. All bats were collected during the
summer (January-March 2013). Captured bats were sexed and their life-stage
(juvenile or adult) was determined from the presence of cartilaginous epiphyseal
plates (Anthony, 1988). Only adult bats were kept for analyses. We measured
forearm length (to nearest 0.1 mm) with digital callipers, and body mass with a
Pesola scale (to nearest 0.5 g). Species were identified using a taxonomic key
(Monadjem et al., 2010) and species other than N. nana were released where they
were caught. Captured N. nana were humanely euthanized, as approved by the
University of KwaZulu-Natal Animal Ethics Committee (Reference: 031/13/Animal).
Twenty uL of whole peripheral blood from each bat was immediately diluted with
ethylenediaminetetraacetic acid (EDTA) (1:1) and stored on ice to prevent
coagulation.

2.2. DNA damage

We assessed DNA damage using the single cell gel electrophoresis assay, or
Comet assay, as described by Tice et al. (2000). The comet assay is a reliable method
employed in genetic toxicology, which allows the quantification of DNA strand
breakage or potentially pre-mutagenic lesions from exposure to toxic chemicals
(Fontanetti et al., 2010). The basic steps of the comet assay are slide preparation,
lysis, electrophoresis, neutralization and staining (Fairburn et al., 1995; Tice et al.,
2000).

Frosted glass microscope slides (two slides per individual), modified to create
two clear windows, were coated with 300 uL of 1 percent high melting point
agarose (HMPA) and allowed to dry. Twenty pL of the blood/EDTA solution was
added to 300 pL of 0.5 percent low melting point agarose (LMPA) kept at 42 °C.
The HMPA-coated slides were then covered with 130 pL of the cell LMPA suspen-
sion and placed on ice to set. Prepared slides were placed in lysis buffer
(2.5 mol L=! NaCl, 0.1 mol L' EDTA, 1 percent Triton X-100, 1 percent DMSO)
for three weeks at 4 °C. Subsequent to the lysing period, slides were rinsed with
distilled water for 3-5 min. To allow alkali unwinding of the DNA, the slides were
incubated in electrophoresis buffer (0.3 molL~! NaOH, 1 mmolL~! EDTA) for
20 min in a horizontal gel electrophoresis tank. The unwound DNA was electro-
phoresed at a voltage of 25V and a current of 300 mA for 20 min. Slides were
rinsed with distilled water for 3-5 min and soaked in a cold, freshly prepared
neutralization buffer (0.8 mol L~ Tris-HCl buffer—pH 7.5) for 15 min.

Slides were then removed from the neutralization buffer, rinsed again with
distilled water for 3-5 min and stained in 0.01 mmol L' ethidium bromide. After a
final rinse in distilled water (3-5 min), slides were stored at 4 °C in dark, moist
conditions. Slides were rehydrated with distilled water prior to imaging. Images of
100 cells per individual were captured with a Nikon E5400 camera, using
a fluorescent microscope (Nikon Eclipse E400 microscope; magnification=400 x ,
filter B-2 A: excitation=450-490 nM, barrier=520 nM).

We used CASP 1.2.3b (CASPLab.com, 2010) software for image analysis. Nuclear
material is observed as a comet, with the high-molecular-weight DNA contained in
the head of the comet and the comet tail containing broken fragments (Olive and
Banath, 2006) (Fig. 2a). We measured percent tail DNA and the olive tail moment
(OTM) per cell (Fig. 2b). The OTM is a robust indicator of damage, providing a
measure of the combination of head DNA, tail DNA and distribution of DNA in the
tail (Kumaravel and Jha, 2006). We classified each cell into one of five damage
categories based on percent tail DNA, according to Gorbi et al. (2008): class 1: <5
percent; class 2: 5-20 percent; class 3: 20-40 percent; class 4: 40-95 percent; class
5: 95-100 percent.

2.3. Total antioxidant capacity (TAC)

We measured the total antioxidant capacity in N. nana pectoral muscle using
the FRAP assay (ferric reducing/antioxidant potential) following Griffin and
Bhagooli (2004) with modifications. The FRAP assay uses the reducing potential
of antioxidants to produce a colour change from a reaction with ferric tripyridyl-
triazine (Fe"'-TPTZ), resulting in ferrous tripyridyltriazine (Fe'-TPTZ) (Griffin and
Bhagooli, 2004). Frozen pectoral muscle tissue was dissected and weighed before
performing a whole cell extract using an extraction buffer as in Mosser et al. (1988).
Tissue was disrupted in a TissueLyser (Qiagen) and then centrifuged for 10 min at
8050 x g. We quantified protein concentrations using a Thermo Scientific BCA
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Fig. 1. Map of the study area in Durban, South Africa, showing the location of the Verulam, Kingsburgh and Umbilo Wastewater Works and Umdoni Park (unpolluted sites 1 and 2).
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Fig. 2. (A) (1) cell containing undamaged DNA and (2) cell containing damaged
DNA, visualised as a comet head and tail. (B) Visual representation of comet
parameters (Tail DNA percent and Olive tail moment) measured.

protein assay kit. We added 20 pL of protein per bat and 20 uL of a series of
FeS0,.7H,0 standards (0, 25, 50, 75, 100, 150, 200, 500, 1000 M) in duplicate into a
96 well microtiter plate. 150 uL of FRAP working reagent (acetate buffer: TPTZ:
FeCl5-6H,0 in a 10:1:1 ratio) was added to each well. We mixed reagents on a plate
shaker and incubated for 20 min (Berker et al., 2007) at 37 °C, before allowing to
cool. We confirmed that 20 min incubation allowed adequate time for the reaction
to reach a steady-state. Absorbances were measured at 600 nm on a BioTek
PowerWave XS multiwell plate reader and compared with a standard curve of Fe!
to determine the FRAP value for total antioxidant capacity.

2.4. Micronucleus assay

During erythrocyte maturation in mammals, the nucleus is expelled, resulting in
an anucleated mature erythrocyte. However, remnants of nuclear chromatin resulting
from chromosome breakage and/or aberrant cell division can still be observed as
micronuclei in the otherwise anucleated erythrocytes (Hartmann et al.,, 2008).

We prepared peripheral blood smears on glass microscope slides using 10 uL of
the blood/EDTA solution per slide. The slide was then air-dried, heat-fixed and stained
with May Grunwald-Giemsa stain. We prepared two slides per individual. Criteria
following Schmid, 1975, were used to identify and count micronuclei. We scored the
frequency of micronucleated erythrocytes (MNE) in 2000 peripheral erythrocytes per
individual using a Nikon Eclipse E400 microscope (magnification=1000 x, oil
immersion). The peripheral erythrocytes scored included normochromatic (mature)
and polychromatic (immature) erythrocytes and the assay was performed according to
the EPA: US. Environmental Protection Agency (1998) guidelines specific for mam-
mals. Parasitic infections such as malaria could resemble MN, but Dertinger et al.
(2000) indicated that parasites are very prevalent in circulation, whereas whereas true
MN are extremely rare. All animals exhibiting extremely highly prevalent MN-like
material were excluded from the analysis.

2.5. Haematocrit

Whole peripheral blood was collected in heparinized micro-capillary tubes and
stored on ice. The samples were centrifuged in a Heraeus Christ combifuge for
5 min at 6798 x g. The volume fraction of erythrocytes was measured on a Heraeus
Christ micro-haematocrit reader.

2.6. Statistical analyses

We performed One-way ANOVAs and Tukey HSD post-hoc tests to compare
differences in N. nana between WWTW sites and the unpolluted sites for OTM,



S. Naidoo et al. / Ecotoxicology and Environmental Safety 114 (2015) 304-311 307

number of cells per damage class, TAC, number of MNE and percent haematocrit.
In addition, we repeated the above ANOVAs on the standard deviations of the data
to assess differences in interindividual variation associated with polluted sites
(Depledge and Lundebye, 1996). We conducted simple linear regressions to
determine the extent to which OTM at the different sites were attributed to
percent tail DNA and tested whether there was a significant difference between the
slopes using a One-way ANOVA. The OTM was compared with the percent
haematocrit using a Pearson correlation. We also conducted a Spearman correla-
tion between OTM and TAC to investigate whether there was a relationship
between DNA damage and antioxidant capacity. Assumptions of normality and
equality of variance were tested using a 1-sample Kolmogorov-Smirnov Test and a
Levene's Test, respectively. Non-parametric tests were performed where assump-
tions were not satisfied. All analyses were performed with SPSS 21.0, using alpha
of 0.05.

3. Results
3.1. DNA damage

The mean OTM/bat was significantly different between sites
(F(419)=3.018, P=0.044) with the Umbilo WWTW having a sig-
nificantly higher OTM than unpolluted site 2 (Tukey HSD post-hoc
test: P=0.024; Fig. 3a). Mean OTM/bat at the Umbilo WWTW
remained significantly higher than the unpolluted sites combined
(Tukey HSD post-hoc test: P=0.024). In addition, OTM was
significantly correlated with percent haematocrit (P=0.006,
1?=0.542). The slopes of the simple linear regressions performed
for OTM plotted against percent tail DNA were not significantly
different between sites. However, the order of increasing magni-
tude of slopes and thus higher occurrence of double stranded DNA
breaks were: unpolluted site 2 < unpolluted site 1 < Kingsburgh
WWTW < Verulam WWTW < Umbilo WWTW (Fig. 3b). The aver-
age standard deviation of the OTM was higher at the Umbilo
WWTW (mean OTM std. dev.=1.25) than at the unpolluted sites
(mean OTM std. dev.=0.75), albeit not statistically significant
(P> 0.05). There was no significant difference between the sites
for each damage category. However, DNA damage in WWTW bats
was significantly higher than at the combined unpolluted sites for
class 4 (40-95 percent) (Fig. 3c).

3.2. Total antioxidant capacity (TAC)

Total antioxidant capacity represented by the FRAP value was
significantly higher at unpolluted site 1 than at all WWTWs
(Fia38)=3.005, P=0.033; Tukey HSD post-hoc tests: P<0.05;
Fig. 4). When the unpolluted sites were combined, the TAC was
significantly higher than at all three WWTWs (F338)=4.123,
P=0.014). There was no significant correlation between TAC and
OTM (P=0.797, r*=0.066), although in general the animals at
WWTWs had lower TAC and higher OTM than unpolluted sites.

3.3. Micronucleus assay

The incidence of micronucleated erythrocytes for bats from
each of the sites are summarized in Table 1. MNE were infrequent
among individuals, with a mean occurrence of 0.16 MNE/1000
erythrocytes at all sites, except for the Umbilo and Verulam
WWTWs which had mean of 0.25 MNE/1000 erythrocytes.
Because no micronuclei were encountered for numerous indivi-
duals, statistical analysis could not be performed.

3.4. Haematocrit

There was a significant difference in mean haematocrit
between sites (F4,44)=9.614, P<0.001). The mean haematocrit
per bat was significantly higher at all three WWTWs than at
unpolluted site 1, and at the Umbilo and Kingsburgh WWTWs

A

1.6 - *

14 4

1.2 4

. |

0 |

-

0.6 1

Mean OTM/ bat

0.4 4

0.2 4

0 4

UMBILO KINGS. VERULAM UNPOL. 1 UNPOL. 2

WWTWs UNPOLLUTED

* VWWTW

- © Un.1
Un.2

U (R2=0.784)

. V(RZ=0.771)
K (R?=0.783)

<7~ Un. 1(R?=0.809)

—~ Un. 2 (R? = 0.821)

Olive Tail Moment
[
T

0 20 40 60 80 100
% Tail DNA

a5 -20%
020 - 40%
m40 - 95%

ok,
UNPOL. 2

Mean no. cells/ damage class / bat ()

UMBILO KINGS VERULAM UNPOL. 1

WWTWSs UNPOLLUTED
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WWTWs and unpolluted sites 1 and 2 at Umdoni Park (* indicates significant
differences between the sites at the P < 0.05 level). N=24; Bars= + Std.dev.

than at unpolluted site 2 (Tukey HSD post-hoc tests: all P < 0.05;
Fig. 5). When unpolluted sites 1 and 2 were pooled, there was still
a significantly higher mean haematocrit between sites (F349)=
9.508, P<0.001). However, Tukey HSD post-hoc tests were
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Fig. 4. Total antioxidant capacity in N. nana pectoral muscle tissue at the Umbilo,
Kingsburgh and Verulam WWTWs and unpolluted sites 1 and 2 (Unpol. 1 and
Unpol. 2) at Umdoni Park (* indicates significant differences between the sites at
the P<0.05 level). N=37; Bars= + Std.dev.

Table 1
Number of micronucleated peripheral erythrocytes (MNE) in N. nana at the Umbilo,
Kingsburgh and Verulam WWTWs and unpolluted sites 1 and 2 at Umdoni Park.

Site No. of bats MNE/bat Mean MNE/bat MNE/1000
erythrocytes
Umbilo WWTW 6 0/2/0/0/1/0 0.5 0.25
Kingsburgh WWTW 6 0/1/0/0/1/0 0.3 0.16
Verulam WWTW 6 1/0/1/0/0/1 0.5 0.25
Unpolluted site 1 3 0/0/1 0.3 0.16
Unpolluted site 2 3 0/1/0 0.3 0.16
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Fig. 5. Mean haematocrit per bat in N. nana at the Umbilo, Kingsburgh (Kings.),
Verulam WWTWs and unpolluted sites 1 and 2 at Umdoni Park (Unpol. 1 and
Unpol. 2) (* and ** indicate significant differences between the sites at the P < 0.05
and P < 0.001 levels, respectively). N=48; Bars= + Std.dev.

significantly higher at only the Umbilo WWTWs than at the
unpolluted site (P < 0.001).

4. Discussion

We predicted that pollutant exposure from foraging at
WWTWs would elicit haematological and genotoxic responses in
N. nana. In accordance with our predictions, we found significantly
higher DNA damage, and diminished total antioxidant capacity in
bats foraging at WWTWs, and haematocrits were also significantly
higher in these bats. DNA damage from pollutants, namely metals
such as those found in wastewater, occurs primarily by oxidation

of metals into metal ions that have a high affinity for amino acids
and which in addition, results in the generation of damaging free
radicals or ROS. DNA damage may also occur from interference of
DNA repair processes caused by pollutants (Hartwig, 1995). Bats
however, produce comparatively lower ROS and higher concentra-
tions of antioxidants to compensate for the excess ROS produced
during flight (Salmon et al., 2009) and to minimize oxidative
stress when transitioning from torpor to an active state (Wilhelm
Filho et al, 2007). For example, both Mexican free-tailed bats
(T. brasiliensis) and Cave Myotis bats (Myotis velifer) showed higher
tolerance to protein oxidation compared to mice (Salmon et al.,
2009). In addition, Myotis daubentonii exhibited tolerance to
oxidative damage from an organic tin compound, tributyltin
(Lilley et al., 2013). In fact, the longevity of bats which is three
times longer than mammals of a similar basal metabolic rate, is
largely facilitated by this lower production of free radicals together
with their increased antioxidant defences (Brunet-Rossinni and
Austad, 2004; Brunet-Rossinni, 2004a, 2004b; Wilhelm Filho et al.,
2007). However, low levels of polyunsaturated fatty acids in the
midges (Ghioni et al.,, 1996) that the bats feed on at WWTWs
(Naidoo et al., 2013), may not provide adequate protection against
formation of ROS during arousal from torpor.

The slope of the regression of OTM and percent Tail DNA
indicated that the nature of the DNA damage in WWTW bats
consisted of more double stranded than single stranded breaks. In
addition, DNA damage in WWTW bats was significantly higher
within class 4 (40-95 percent), further indicating a high propor-
tion of severe damage such as double stranded DNA breaks.
Double stranded DNA breaks are of more concern than single
stranded breaks because they can affect multiple genes simulta-
neously, may disrupt cell-cycle regulation, lead to cell malfunc-
tioning, and ultimately, cause cell death (van Gent et al., 2001).
In addition, double stranded breaks require higher DNA repair
efforts (Hartwig, 1998).

Metal ions in particular, not only generate DNA damage with
high repair requirements, but also inhibit the proteins involved in
DNA repair itself (Hartwig, 1998; Hartwig and Schwerdtle, 2002).
Some metal ions are more damaging to DNA and DNA repair
mechanisms than others (Hartwig, 1998). Of the toxic metals
commonly found in WWTWs, cadmium, nickel and lead, even at
low concentrations, inhibit DNA repair. Chromium and chromium
compounds, especially hexavalent chromium, are particularly
damaging to DNA due to its unique action of direct binding to
DNA in addition to ROS production (Beyersmann and Hartwig,
2008). This has been observed in chromium exposed humans
working in the chrome-plating industry who had elevated DNA
strand breaks compared to non-exposed workers (Gambelunghe
et al.,, 2003). Notably, DNA damage and chromium concentrations
were significantly higher at Umbilo than at the other two WWTWs
(Naidoo et al., 2013). Furthermore, metals (Cd, Ni, Cr, Fe, Cu, Zn)
quantified in the kidney of bats foraging at these WWTWs
correlated to metal levels in the water at the sites, with kidney
Cd at the Umbilo WWTW measured at concentrations as high as
3.686 pg g~ '—similar to levels (4.05pgg~"') found in Brazilian
bats with significant DNA damage (Zocche et al., 2010). Although
not statistically significantly different, the average standard devia-
tion for OTM/individual was also higher at the Umbilo WWTW
than at the unpolluted sites. This greater inter-individual varia-
bility is characteristic of parameters measured in individuals from
contaminated sites (Depledge and Lundebye, 1996). In fact, all
negative impacts assessed were most apparent at the Umbilo
WWTW, which has one of the lowest scores for wastewater
quality compliance in KwaZulu-Natal (DWAF: Department of
Water Affairs and Forestry, 2009). Measuring total DNA strand
breaks cannot however, provide insight into the specific cause or
mechanism of damage, and the higher DNA damage at WWTWs



S. Naidoo et al. / Ecotoxicology and Environmental Safety 114 (2015) 304-311 309

could have been caused or exacerbated by nutritional status
(Ames, 1999), disease and age (for review see Fairburn et al.,
1995), none of which was quantified in detail here.

Bats foraging at the Umbilo WWTW showed the lowest
antioxidant capacity where TAC was significantly lower than at
the unpolluted sites. Antioxidant systems such as superoxide
dismutase, catalase, and glutathione peroxidase are vital in coun-
teracting damage from the production of ROS, by scavenging free
radicals. Even though bats already have high baseline antioxidant
enzymes (Wilhelm Filho et al., 2007), they can further enhance the
activity of these enzymes to provide protection against harmful
ROS (Arenas-Rios et al., 2007). However, wastewater-associated
metals have the ability to impair antioxidant activity (Beyersmann
and Hartwig, 2008). For instance, cadmium inhibits catalase,
superoxide dismutase, glutathione reductase, and glutathione
peroxidase (Beyersmann and Hartwig, 2008). The TAC is a simple
measure of total reducing power or plasma or tissue extracts,
without providing any information on the levels of each compo-
nent of the antioxidant defence system (Halliwell and Gutteridge,
2007). TAC, as measured with the FRAP assay, therefore does not
represent all aspects of redox regulation (Prior and Cao, 2001). The
significantly lower TAC at WWTWs, suggests that foraging at these
sites, at least in part, influences the maintenance of redox regula-
tion in the bats, and a more detailed analysis of redox state may be
warranted.

There was no correlation between OTM and TAC. OTM was
however, measured in blood, whereas TAC was measured in
muscle. These parameters, in addition to other factors such as
DNA repair rate should be measured within the same tissue type
to investigate the relationship between DNA damage and antiox-
idant capacity. The fact that DNA integrity is diminished in at least
one tissue type of bats foraging at sites where TAC is also
significantly lower than that of reference sites, is in itself worrying.

Bats at WWTWs had significantly higher haematocrits than
bats at unpolluted sites. A higher haematocrit may be attributed to
an increased erythrocyte turnover in response to a variety of
factors including nutritional stress, hydration and parasitism
(Decker and Knight, 1990). For instance, high production rate of
erythrocytes has been noted in bats as a stress response to
experimentally imposed social isolation combined with cold
exposure (Martin and Stehn, 1977). Whether haematocrits
increase or decrease with exposure very much depends on the
stressor. For instance, wood mice, Apodemus sylvaticus exposed to
soil metal pollution had lower haematocrits than unexposed mice
(Rogival et al., 2006). Conversely, Cyriac et al. (1989) found
Oreochromis mossambicus fish to have an increased haematocrit
in response to metal exposure and attributed it to swelling of
erythrocytes. Different metals may however, affect erythrocyte
production differently. For instance, lead (Bersényi et al., 2003)
and cadmium (Zikic et al., 2001) exposure result in lower haema-
tocrit, whereas an excess of iron may cause an increase in
haematocrit (Crowe and Morgan, 1997). Our previous study
(Naidoo et al., 2013) found iron levels at the tank sites of both
the Umbilo (0.9 +0.07 mgL~') and Verulam (1.3 +0.00mgL~ ')
WWTWs to be significantly higher than at downstream sites. To
put this into perspective, both concentrations were higher than
the South African Water Quality Guideline (DWAF: Department
of Water Affairs and Forestry, 1996) for human consumption
(0-0.1 mgL~"), and it may therefore be quite plausible for bats
foraging at these sites to have high haematocrit values, typical of
tissue iron overload. Iron-catalysed oxidative stress can also result
in DNA damage (Johnson, 2000), thereby at least in part explaining
the significant correlation between OTM and haematocrits in N.
nana.

We found no increase in micronucleus formation in erythro-
cytes of bats at WWTWs, and thus no observed chromosomal

aberration. This indicates that cellular functioning has not been
disrupted by pollutant exposure. Pollutants may cause the produc-
tion of lagging/centromere-lacking chromosomic fragments or
may affect the functioning of the spindle apparatus (Schmid,
1975). Micronuclei are formed after the telophase stage of cell
division when the lagging chromosomic fragments remain in the
cytoplasm of daughter cells as a small, secondary nucleus in most
vertebrates and a small piece of nuclear material in the otherwise
anucleated erythrocytes of mammals (Hartmann et al., 2008). The
normal resting values for the frequency of micronucleated ery-
throcytes differs widely among species (eg. Lynx (Lynx ruffus)=
1.08; Crocodile (Crocodylus moreletty)=0.3; Squirrel (Spermophilus
variegatus)=0.05 MNE/1000 erythrocytes) (Zafiiga-Gonzalez et al.,
2000, 2001). The MNE values obtained for N. nana (0.16-0.25
MNE/1000 erythrocytes) were similar across all sites and are thus
most likely representative of the normal, baseline range of MNE
frequency for this species. Similarly, spontaneous MNE for the
Jamaican fruit bat, Artibeus jamaicensis were 0.1 MNE/1000 ery-
throcytes (Ztiiiga-Gonzalez et al., 2000). The constant, low level of
MNE in N. nana may indicate that bats have an efficient MNE
removal system, and/or the spleen of N. nana at WWTWs removed
defective erythrocytes such as MNE from the circulating blood at
an increased rate, replacing them due to the high turnover of new
erythrocyte production (Corazza et al., 1990).

To conclude, the increased haematocrit and DNA damage in
peripheral blood, in conjunction with diminished antioxidant
capacity in muscle tissue suggest that foraging at WWTWs
affects multiple levels of physiology causing potentially harmful
responses in N. nana. DNA damage, especially double stranded
breaks, may result in an accumulation of mutations which
ultimately lead to tumour formation, cancers and other hereditary
diseases (Pastink et al., 2001; van Gent et al, 2001). Thus,
short-term benefits from abundant prey carry long-term risks
through the occurrence of trans-generational epigenetic changes
(Martinez-Zamudio and Ha, 2011). This together with our previous
study (Naidoo et al., 2013) provides evidence that WWTWs, that
are aimed to remove pollutants from the environment, can
themselves act as a source of contamination and pose a threat to
animals exploiting these habitats. This remains an important focus
for further studies in our labs.
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LIVE FAST, DIE YOUNG:
Haematological and genotoxic responses in an urban adapter,

the Banana Bat, foraging at wastewater treatment works

S. Naidoo, D. Vosloo & M.C. Schoeman

School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
Background

To cater for the rapidly growing human population, natural land is being transformed into urban habitat at an alarming rate 1. Wastewater Treatment Works (WWTWs) are a ubiquitous
feature of the urban landscape. They receive a cocktail of pathogens, inorganic and organic contaminants which undergo various stages of treatment in large, open-top sludge tanks
before being discharged into rivers 2. The Banana Bat, Neoromicia nana is an urban adapter that specifically exploits insect prey at polluted sites 3, and is the most abundant bat species
at WWTWs in KwaZulu-Natal, South Africa 4. We investigated whether pollutant exposure from foraging at WWTWs elicits haematological and genotoxic responses in N. nana. We
compared four measures of haematological/ genotoxic damage between N. nana foraging at three WWTWs (Umbilo, Kingsburgh, Verulam WWTWs) and two unpolluted sites (within
the Umdoni Park) located in KwaZulu-Natal: blood oxygen capacity based on haematocrits, chromosomal aberration indicated by micronuclei formation, total antioxidant capacity as

indicated by the FRAP assay and DNA damage measured by the comet assay.

N. nana exploits the high abundance of chironomid midge
prey available at WWTWs, with Chironomidae comprising
the highest proportion of their diet at tanks 4. Chironomid
midges, however, can accumulate high levels of metals,

without decreases in survival & growth to the adult stage.

N. nana at WWTWs thus have higher levels of non-essential
metals in their tissues than bats at unpolluted sites. In
addition, metal levels in the kidneys correlate to metal
levels at the polluted sites %

During the treatment process, wastewater in sludge
tanks is exposed and freely accessible to volant
animals. Furthermore, dense swarms of pollution-
tolerant chironomid midges occur at the tanks.
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™

Implications

WWTWs provide the short-term benefit of highly abundant prey for bats, however we found evidence that pollutant exposure from foraging at WWTWs elicits haematological and
genotoxic responses in N. nana>. The increased haematocrits in N. nana at WWTWs (Fig. 1), may be due to erythrocyte production in response to certain pollutants. There was no
increase in micronucleus frequency in WWTW bats, indicating that cellular functioning has not yet been disrupted by chemical exposure. However, WWTW bats had a significantly lower
antioxidant capacity than bats from unpolluted sites (Fig. 2). This suggests that bats at WWTWSs may have a diminished capacity to cope with the excess reactive oxidative species (ROS)
produced from pollutants such as metals. In addition, the higher DNA damage in N. nana at WWTWSs than in bats from unpolluted sites (Fig. 3B), and the slope of the regression of OTM
and %Tail DNA (Fig. 3C) suggests inadequate repair to double stranded DNA breaks. These results suggest that foraging at WWTWs affects multiple levels of physiology causing
potentially harmful responses such as tumour formation, cancers and other hereditary diseases ©. Thus, WWTWs, that are aimed to remove pollutants from the environment, can

themselves act as a source of contamination and pose serious long-term threats to animals exploiting these habitats. This remains an important focus for further studies in our labs.
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ABSTRACT

The Banana Bat, Neoromicia nana, exploits pollution-tolerant chironomids at wastewater treatment
works (WWTWs). We investigated how pollutant exposure impacts the detoxification organs, namely
the liver and kidney of N. nana. (i) We performed SEM-EDS to quantify metal content and mineral nu-
trients, and found significant differences in essential metal (Fe and Zn) content in the liver, and signif-
icant differences in Cu and one mineral nutrient (K) in the kidneys. (ii) We performed histological
analysis and found more histopathological lesions in detoxification organs of WWTW bats. (iii) We
calculated hepatosomatic/renalsomatic indices (HSI/RSI) to investigate whole organ effects, and found
significant increases in organ size at WWTWs. (iv) We quantified metallothionein 1E (MT1E), using
Western Blot immunodetection. Contrary to predictions, we found no significant upregulation of MT1E in
bats at WWTWs. Ultimately, N. nana exploiting WWTWs may suffer chronic health problems from sub-
lethal damage to organs responsible for detoxifying pollutants.

Histopathology

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The global human population has been growing at an unprec-
edented rate and is projected to reach over 9 billion by the year
2050 (United Nations Population Fund, State of World Population
(2014)). To accommodate the growing numbers, natural land is
rapidly becoming urbanized. In fact, in India, China and Africa, ur-
ban land expansion rates have now exceeded or are equal to urban
population growth rates (Seto et al., 2011). The typical infrastruc-
ture of cities is designed to cater for the needs of the urban popu-
lation, with the most basic requirement being sanitation. Thus, a
common physical feature of the urban landscape is wastewater
treatment works (WWTWs). WWTWs receive industrial and
household waste which is treated in large, open-top tanks (Gagnon
and Saulnier, 2003). Wastewater treatment tanks usually contain
particularly high levels of metals (Karvelas et al., 2003). In the UK,
an estimated 12,508 tonnes of the toxic elements Cd, Cu, Cr, Ni, Pb
and Zn is received at a typical urban WWTW per year (Crane et al.,
2010). Despite advances in metal treatment techniques, the
removal of certain metals such as copper and zinc at WWTWs, have
shown little improvement in the last three decades (Crane et al,,

* Corresponding author.
E-mail address: samantha.naidoo.ukzn@gmail.com (S. Naidoo).
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0269-7491/© 2015 Elsevier Ltd. All rights reserved.

2010). A prominent biotic characteristic of WWTWs is the prolif-
eration of pollution-tolerant chironomid midge swarms (Boonstra
et al, 2009). Chironomid midges often contain high concentra-
tions of metal pollutants from WWTWs without showing adverse
effects on survival (Krantzberg and Stokes, 1990). Predators that
feed on these midges may however, accumulate metals in their
tissues with acute or chronic effects on their health (Hare, 1992).
The Banana Bat, Neoromicia nana, is an urban adapter (Jung and
Kalko, 2011; Monadjem et al., 2010) that exploits the swarms of
pollution-tolerant chironomid midges that occur at WWTWs
(Naidoo et al., 2013). At wastewater-polluted sites, we previously
found that chironomid midges were the most abundant prey type
in the diet of resident bats (Naidoo et al., 2013), compared to
diverse insect diets at unpolluted sites (Naidoo et al., 2013;
Schoeman and Jacobs, 2011). Significant correlations between in-
sects captured and diet composition at the wastewater-polluted
sites suggested that N. nana fed opportunistically on the abun-
dant chironomid prey (Naidoo et al., 2013). There is a considerable
body of literature showing the transfer of metals and other pol-
lutants from chironomid prey to predators, including bats
(Goodyear and McNeill, 1999; Lescord et al., 2015; Park et al., 2009;
Reinhold et al., 1999; Timmermans et al., 1992). In addition, metal
concentrations in the water at the WWTW sites were significantly
correlated with the metal concentrations in the kidney tissue of the
bats (Naidoo et al., 2013). We have previously shown that pollutant
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exposure from this abundant food resource carries physiological
costs for N. nana, specifically sub-lethal haematological and geno-
toxic responses (Naidoo et al., 2015). N. nana at WWTWs had
significantly lower antioxidant capacity and significantly higher
levels of DNA damage and haematocrits than bats from unpolluted
sites (Naidoo et al., 2015). An accumulation of DNA damage, espe-
cially from double-stranded breaks as observed in N. nana at
WWTWs, ultimately leads to tissue aberrations and disease
(Jackson and Bartek, 2009). These longer-term effects may occur in
various tissue types and organs in the body, however the organs
where sub-lethal effects of chronic pollutant exposure would be
most evident are the liver and kidneys (Clark and Shore, 2001).

The liver and kidneys are the main organs responsible for
detoxification in the body. The liver has a wide range of functions
including detoxification of the blood by excretion in bile, phago-
cytosis and chemical transformation of toxic molecules (Fox, 1991).
The kidneys regulate the extracellular fluid environment in the
body and the concentrations of waste products that are filtered
from the blood and returned into circulation (Fox, 1991). Thus,
when bats ingest pollutants including the metals found at
WWTWs, they are either metabolized, excreted, accumulated or
stored in a less toxic form (Baker et al., 2003). An accumulation of
metals in the organs may, however, cause various types of tissue
damage including inflammation, necrosis, hyperplasia or hyper-
trophy. These lesions in the tissue may further lead to altered organ
size and impaired organ function (Ma, 1989).

Metallothionein 1 E (MT1E) is a protein produced primarily in
the liver and kidney that protects against metal damage by binding
to and detoxifying metal ions (Sakulsak, 2012). Metallothionein has
a high affinity for non-essential metals such as Cd and Hg and some
essential metals such as Zn and Cu, with its metal binding affinity in
the order: Cd > Pb > Cu > Hg > Zn > Ag > Ni > Co (Waalkes et al.,
1984). When the metal ions exceed metallothionein binding ca-
pacity, they may cause physical damage such as histopathological
alterations (Goyer et al., 1989) to tissue as observed in both the liver
and kidney (Sanchez-Chardi et al., 2009) of shrews (Crocidura rus-
sula) inhabiting an abandoned pyrite mining site. Thus, metal-
lothionein is generally upregulated in animals exposed to excess
metal levels (Dai et al., 2013; Sakulsak, 2012).

Metallothionein protein expression is however, highly species-
specific (Henry et al., 1994). For instance, humans have metal-
lothionein concentrations per gram of liver up to 100 times the
levels of that found in rat and mouse (Henry et al., 1994). To date, of
the limited number of reports of metallothionein levels in bats,
Pikula et al. (2010) found that species and foraging habitat in-
fluences metallothionein content. Bats foraging in aquatic habitats
had higher levels of metallothionein than bats foraging in terres-
trial or terrestrial/aquatic-habitats (Pikula et al.,, 2010). Habitat
quality and diet play a significant role in eliciting physiological
coping responses. Thus, given that WWTWs form an integral part of
the urban landscape and an important prey base for urban
adapters, it is important to understand the potential sub-lethal
effects in organs of N. nana foraging at these sites. Furthermore,
the effect of exposure to the cocktail of pollutants at WWTWSs has
not been elucidated in wild bats or laboratory based studies.

The aim of our study was to therefore investigate how pollutant
exposure impacts the detoxification organs, namely the liver and
kidney of N. nana foraging at WWTWs: (i) We performed SEM-EDS
metal imaging to quantify the content of metals and mineral nu-
trients in liver and kidney tissue; (ii) We performed histological
analysis to investigate the extent of tissue damage in the detoxifi-
cation organs; (iii) We calculated hepatosomatic/renalsomatic
indices (HSI/RSI) to investigate whole organ effects and (iv) We
quantified metallothionein 1E (MT1E) in the liver and kidney, using
Western Blot immunodetection. We predicted that, compared to

N. nana foraging at unpolluted sites, N. nana foraging at WWTWs
should have (i) higher levels of toxic non-essential metals, (ii) a
greater extent of histopathological lesions in the liver and kidney
tissue, (iii) higher hepatosomatic/renalsomatic indices (character-
istic of organ swelling due to metal damage (Ma, 1989)), and (iv)
upregulated metallothionein protein content in the liver and
kidney.

2. Methods
2.1. Sample collection

We captured N. nana bats at sludge tanks in three WWTWs
within Durban, South Africa (529°58’; E30°57’): Umbilo Waste-
water Works (529°50.44’; E30°53.31’), the Verulam Wastewater
Works (529°38.38’; E31°03.49’), and the Kingsburgh Wastewater
Works (S30°04.29’; E30°51.26') (Fig. 1). These WWTWs use open-
top sludge tank systems that contain high levels of waste-
water—associated metals (lead, cadmium, chromium, nickel, cop-
per, zinc and iron; Naidoo et al., 2013). We captured N. nana bats at
two unpolluted reference sites in the forest of Umdoni Park
(S30°41.15’; E30°23.35'), Pennington about 80 km south of Durban
(Fig. 1). Umdoni Park covers an area of 210 ha comprising mainly
dense coastal forest representative of the Indian Ocean Coastal Belt
biome (Mucina et al., 2006). There are no WWTWs located in the
immediate vicinity of the park, with the closest WWTWs situated
>8 km away. We sampled two sites within the forest: Unpolluted
site 1 (§30°40.36’; E30°23.31’), located close to the border of the
park, and unpolluted site 2 (S30°41.15’; E30°23.35’) located further
inside the park. Because N. nana has a relatively small home range
— 300 m from the roost (LaVal and LaVal, 1977) — individual
turnover between unpolluted sites and contamination from the
nearest WWTWs was unlikely.

We used mist nets and harp traps to capture bats at the sites
during the summer (January—March 2013). We recorded their sex,
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Fig. 1. Map of the study area in Durban, South Africa, showing the location of the
Verulam, Kingsburgh and Umbilo Wastewater Works and Umdoni Park (Unpolluted
sites 1 and 2).
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Fig. 2. Mean percent necrosis and infiltration/inflammation area in the liver and
kidney tissue of N. nana at WWTWs and unpolluted sites (Bars = +Std.dev).

forearm length (to nearest 0.1 mm), and body mass (to nearest
0.5 g). We assessed life-stage (juvenile or adult) from the presence
of cartilaginous epiphyseal plates (Anthony, 1988). Species were
identified using a taxonomic key (Monadjem et al., 2010) and only
adult N. nana where kept for analyses. To minimize the number of
animals sacrificed, we captured six bats per site as used in other
physiological studies of bats (Pilosof et al., 2014). However, because
N. nana is less abundant at unpolluted sites than at WWTWs
(Naidoo et al., 2013, 2015), we collected three bats from each un-
polluted site. The bats were humanely euthanized, as approved by
the University of KwaZulu-Natal Animal Ethics Committee (Refer-
ence: 031/13/Animal).

2.2. Elemental content

Dissected liver tissue and right kidney tissue from each bat was
stored on ice and then individually snap frozen by plunging into
liquid nitrogen. The snap frozen samples were immediately stored
at —80 °C. We dehydrated the tissue for three days in an Edwards
Modulyo Freeze dryer (Edwards, United Kingdom). The samples
were then fractured, and mounted onto specimen stubs with the
fractured surface positioned upward. We coated the samples with a
thin layer of carbon using a Quorum Q 150 TE carbon coater
(Quorum Technologies, East Sussex, UK). We viewed and digitally
captured images of the tissue with a Zeiss Field Emission Gun
Scanning Electron Microscope Ultra Plus. Energy-Dispersive X-ray
Spectrometric analysis (SEM-EDS) was performed using AZtecE-
nergy Version 1.2 (Oxford Instruments Analytical, Oxfordshire)
software for the EDS detector (X-Max 80 mm, Oxford Instruments)
connected to the electron microscope (operating at 20 kV).

SEM-EDS bombards the sample with electrons to generate X-
rays. An energy spectrum of peaks, characteristic of the elements of
interest, is quantified to produce the relative percentage elemental
composition of the sample. We performed compositional analyses
for the following metals: aluminium (Al), chromium (Cr), manga-
nese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn),

arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb), and min-
eral nutrients: nitrogen (N),oxygen (O), sodium (Na), magnesium
(Mg), phosphorous (P), potassium (K) and calcium (Ca). Three
technical replicates per compositional analysis were run for each
liver/kidney collected from individual bats, at a standardized
working distance of 8.5 mm (magnification = 400x).

2.3. Histological evaluation

We fixed a piece of dissected liver and the left kidney from each
bat in 10% neutral-buffered formalin until dehydration in an
ethanol dilution series. The tissues were then cleared in xylene and
embedded in paraffin wax. We prepared slides of hematoxylin and
eosin stained, 5—10 mm sections of liver and kidney. We captured
three images/slide using a Nikon Eclipse E400 microscope
(magnification = 400x) connected to a Nikon E5400 camera. We
scored liver and kidney tissue damage per individual based on total
number of lesions, total number of lesion types and percent lesion
area relative to tissue area. Lesions were scored using digital whole-
slide imaging on Leica SlidePath Gateway 2.0 (Leica Microsystems,
Germany).We took care to differentiate between lesions and
autolysis associated with specimen fixation, which may mimic
necrosis (Shackelford et al., 2002).

2.4. Hepatosomatic/renalsomatic index

The liver and both kidneys were dissected from each bat and
kept moist to prevent dehydration. They were immediately
weighed on a three decimal balance (wet weight - to nearest
0.001 g). Hepatosomatic and renalsomatic indices were calculated
as a percentage of the organ weight relative to the total body
weight of each individual (organ weight/total body weight x 100)
(Sellers et al., 2007).

2.5. Metallothionein content

To quantify metallothionein 1E (MTI1E) protein content,
dissected liver tissue and right kidney tissue from each bat was
stored on ice and then individually snap frozen by plunging into
liquid nitrogen. The snap frozen samples were immediately stored
at —80 °C until used for whole cell extraction. We added Halt™
protease inhibitor cocktail (Thermo Scientific) to each sample to
prevent protein degradation. The tissue was weighed and homog-
enized using an extraction buffer as in Mosser et al. (1988). Tissue
was disrupted in a TissueLyser (Qiagen, Germany) and centrifuged
at 4 °C for 10min, at 8050x g. Protein concentrations in the su-
pernatant acquired were quantified using a Pierce BCA protein
assay kit (Thermo Scientific) and BioTek PowerWave XS multiwell
plate reader and KC4 software (Bio Tek). We used the extracted
protein to perform Western Blot immunodetection on all liver

Table 1

Total number of lesions (Total #), type of lesions (Lesion types: (a) necrosis, (b)
infiltration/inflammation, (c) vacuolization, (d) hyperplasia, (e) atrophy, (f) tubular
dilatation, and (g) cylinders), and percentage individuals showing lesions (% Indiv.)
in the liver and kidney tissue of N. nana at the Umbilo (UWWTW), Kingsburgh
(KWWTW), and Verulam (VWWTW) WWTWs and unpolluted sites 1 (UNPOL. 1)
and 2 (UNPOL. 1) at Umdoni Park.

LIVER lesions KIDNEY lesions

Total # Lesion types % Indiv. Total # Lesion types % Indiv.

UWWTW 5 a, C 83 5 a,bf g 67
KWWTW 4 a,b,c 67 4 a, b 67
VWWTW 10 a,b,de 67 9 abg 100
UNPOL. 1 1 a 33 2 a,b 33
UNPOL. 2 2 a, b 67 1 a 33
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Fig. 3. N. nana hepatic (A—F) and renal (G—K) sections showing: (A, G) tissue without lesions, (B, H) necrosis, (C, I) infiltration/inflammation, (D) vacuolization, (E) hyperplasia, (F)

atrophy, (J) tubular dilatation, and (K) cylinders (H&E, x400; scale bars represent 50 pm).

samples and subsequently, on all kidney samples. 20 pg of extracted
protein for each sample was diluted with sample loading buffer
(buffer: sample in a 1:6 ratio). CdCl, was added to the sample so-
lution at a concentration of 0.25 mg Cd/ml, to facilitate the
migration of MT as a compact band (Aoki and Suzuki, 1991). The
sample solution was boiled for five minutes at 95 °C and briefly
cooled on ice. Proteins and a PageRuler pre-stained protein ladder
(Thermo Scientific) were separated on an 8% sodium dodecyl sul-
phate polyacrylamide gel at a voltage of 90 V for 30 min and at
120V for 90 min in a Mini-PROTEAN tank (Bio-Rad, Hercules, USA).
Samples from different sites were randomly loaded onto gels to
account for inter-gel/membrane differences.

The resolved proteins were then electrophoretically transferred
to a Hybond-ECL nitrocellulose membrane (GE Healthcare, Amer-
sham) at 100 V for 45 min with cooling using a Trans Blot system
(Bio-Rad). To normalize the protein loading, membranes were
stained with Ponceau S dye (Sigma—Aldrich), and colorimetric
images were captured (Bio-Rad ChemiDoc XRS™ System). We
incubated the membranes in blocking buffer (5% non-fat dried
milk, Tris-buffered saline, 0.1% Tween) for one hour. The mem-
branes were processed for immunodetection with a polyclonal
anti-rabbit primary antibody (Sigma Anti-MT1E in TBS-T, 1:200),
goat anti-rabbit secondary antibody (biotin in TBS-T, 1:200), Avidin-
biotin complex peroxidase staining kit (Thermo Scientific), and

metal enhanced DAB substrate kit (Thermo Scientific) according to
their respective specifications. The Immunoreactive bands were
visualized, imaged and quantified on a Bio-Rad ChemiDoc XRS
System. Densitometric analysis of total protein and immunoreac-
tive analysis was performed with ImageLab software, Version 2.0
(Bio-Rad). Total protein signal instead of a single constitutively
expressed protein was used to correct for loading differences as in
Aldridge et al. (2008).

2.6. Statistical analyses

We pooled data into two groups: WWTW sites (Umbilo, King-
sburgh, Verulam) and unpolluted sites (Unpolluted site 1, Unpol-
luted site 2) to perform statistical analyses. We compared liver/
kidney metal composition among sites using one-way ANOVAs. We
performed Spearman/Pearson correlations between HSI and liver
MT1E, RSI and kidney MT1E, between liver/kidney MT1E and each
element, and between elements that showed significant differences
between sites. Histopathological lesion data is presented in Table 1
as total number of lesions, lesion types and percent individuals
showing lesions. We performed one-way ANOVAs to compare
differences in N. nana HSI, RSI, liver MT1E and kidney MT1E be-
tween WWTW sites and unpolluted sites. Assumptions of
normality and equality of variance were tested using a 1-sample
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Fig. 4. (A) Mean hepatosomatic index/bat and (B) Mean renalsomatic index/bat of
N. nana at the Umbilo, Kingsburgh and Verulam WWTWs and unpolluted sites 1 and 2
at Umdoni Park. (U = UWWTW = Umbilo WWTW; V = VWWTW = Verulam WWTW;
K = KWWTW = Kingsburgh WWTW; Un. 1 = Unpolluted site 1; Un. 2 = Unpolluted
site 2) (P < 0.05 between WWTWs and Unpol. sites). N = 24; Bars = +Std.dev.

Kolmogorov—Smirnov Test and a Levene's Test, respectively. Non-
parametric tests were performed where assumptions were not
satisfied. All analyses were performed with IBM SPSS 22.0, using
alpha of 0.05. In addition, we performed sample size calculations to
determine the minimum number of subjects required for an
adequate study power of 80% (ClinCalc.com software, ClinCalc LLC).
For all variables tested except RSI and elements in the liver and
kidney listed below, sample size was low enough for sufficient
power of statistical tests. In contrast, the small sample sizes of As,
Cd, Hg, Na, and Pb in the liver, and RSI, Cd, Cr, Hg, Ni, Pb in the
kidney may result in greater probability of a type-II error; thus
statistical analyses using larger sample sizes for these variables may
reveal significant differences between bats from WWTWs and
unpolluted sites.

3. Results
3.1. Metal composition

Of the 12 metals quantified in the liver, only Fe and Zn were
significantly different between sites. Fe and Zn were significantly
higher at WWTWs than at the unpolluted sites (Fe: F(125) = 10.363,
P = 0.004; Zn: F125) = 11.944, P = 0.002). (Fig. A.1, Supplementary
material). There were no significant correlations between liver

MT1E and each of the metals or mineral nutrients.

In the kidney, Cu was significantly higher at WWTWs than at
unpolluted sites (x2(1,25) = 4.27, P = 0.039; Fig. A.2, Supplementary
material). Of the mineral nutrients quantified in the kidney, only K
was significantly different among sites, with unpolluted sites hav-
ing significantly higher K than WWTWs (X2(1,25) = 12.484,
P = 0.000) (Fig. A.2, Supplementary material).

3.2. Histological evaluation

We found a higher incidence and variety of histopathological
lesions in bats foraging at WWTWs than at unpolluted sites in both
the liver and kidney (Table 1). We found five lesion types in the liver
and four in the kidney. The organs of bats from the unpolluted sites
had minimal lesions (liver: necrosis, vacuolization; kidney: necro-
sis, infiltration/inflammation) and were generally healthy.

In the liver of bats at WWTWs, we found necrosis, infiltration/
inflammation, vacuolization, hyperplasia and atrophy (see Fig. 3 for
representative micrographs). In the kidney, we found necrosis,
infiltration/inflammation, tubular dilatation and cylinders (see
Fig. 3 for representative micrographs). Amongst WWTWs, the liver
and kidney showed least damage at the Kingsburgh WWTW (le-
sions in 67% of individuals) and most damage at the Verulam
WWTWs, with 100% of the individuals exhibiting lesions (Table 1).

Only necrosis and infiltration/inflammation occurred in the liver
and kidneys of bats at both WWTWs and unpolluted sites. There
was a higher percent necrosis and infiltration/inflammation, and
therefore a greater severity of these lesions, in the liver and kidneys
of individuals from WWTWs compared to unpolluted sites (Fig. 2).

3.3. Hepatosomatic/renalsomatic index (HSI/RSI)

HSI in bats from the WWTW sites was significantly higher than
at the unpolluted sites (F(1, 25) = 12.276, P = 0.002) (Fig. 4A). RSI at
the WWTWs was also significantly higher than at the unpolluted
sites (F(l, 25) = 12.722, P = 0.002).

3.4. Metallothionein content

Although liver MT1E in bats from the WWTW sites was signif-
icantly lower than at the unpolluted sites (Fj, 25) = 8.461, P = 0.009;
Fig. 5A), the protein fold difference at unpolluted sites was only 1.15
times that of the WWTWs. In addition, liver MT1E content of in-
dividuals from both the WWTWs and unpolluted sites were
interspersed with each other around the regression line (Fig. 5C).

Kidney MT1E at the WWTWs was significantly lower than the
unpolluted sites combined (F125) = 11.788, P = 0.003; Fig. 5B).
However, the protein fold difference at unpolluted sites was only
1.07 times that of the WWTWs. Kidney MT1E content of individuals
from the WWTWs and unpolluted sites were again interspersed
with each other around the regression line (Fig. 5D). However, in-
dividuals from the unpolluted sites were situated slightly above the
95% confidence limits compared to individuals from the WWTWs
(Fig. 5D). There were no significant correlations between HSI and
liver MT1E, or between liver and kidney MT1E. However, RSI was
significantly correlated with kidney MT1E (P = 0.018, 1* = —0.477).
In addition, there were significant correlations between MT1E and
Cu (P = 0.009, 2 = —0.524; Fig. 6A)), MT1E and K (P = 0.002,
1% = 0.600; (Fig. 6B), and between Cu and K (P = 0.040, 2 = —0.422;
Fig. 6C).

4. Discussion

We found evidence that pollutant exposure impacts the detox-
ification organs, the liver and kidney, of N. nana foraging at
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WWTWs. Contrary to our predictions, we did not find significantly
higher levels of toxic non-essential metals such as Cd and Pb in the
liver and kidneys of WWTW bats. We did, however, find an unex-
pected potential impact of excess essential metals, namely Fe and
Cu in the liver and kidney respectively, as well as lower Zn levels in
the liver of WWTW bats. We found a greater extent of histopath-
ological lesions and significantly higher hepatosomatic and renal-
somatic indices in WWTW bats, as predicted. We did not, however,
find support for our prediction of increased liver and kidney MT1E
content in N. nana at WWTWs.

Although Fe and Cu are essential metals for living organisms,
and have limited bio-availability, at elevated concentrations both Fe
(Fraga and Oteiza, 2002) and Cu (Gaetke and Chow, 2003) are toxic
and pose a threat to cells and tissues. We previously found Fe levels
at the tank sites of both the Umbilo (0.9 + 0.07 mg L) and Verulam
(1.3 mg L~1) WWTWs to be significantly higher than unpolluted
sites and at river sites located downstream of the WWTWs (Naidoo
et al., 2013). Both concentrations were higher than the South Af-
rican Water Quality Guideline (DWAF, 1996) for human consump-
tion (0—0.1 mg L™!). Indeed, the higher Fe levels we found in the
liver of bats in the present study are consistent with previous Fe-
induced haematological responses such as an increased haema-
tocrits in N. nana at WWTWs (Naidoo et al., 2015). On the other
hand, the significantly lower levels of the essential metal Zn in
WWTW bats may be of more concern than Zn-toxicity because of
its importance in physiological functions (Fox, 1991). More impor-
tantly, there is a specific biological interaction between Zn and
other metals including Cu and Fe (Fraga and Oteiza, 2002).

Zn acts as an antioxidant and competes with Fe for cellular
binding sites (Fraga and Oteiza, 2002). Thus, low Zn levels can cause

an increase in membrane and intracellular Fe concentration (Rogers
et al., 1987). When binding sites are occupied by Zn rather than Fe,
there is reduced iron-mediated oxidation of lipids, proteins, and
DNA (Fraga and Oteiza, 2002). Thus, the low Zn and high Fe content
in the liver of bats at WWTWs may contribute to liver deterioration.
Furthermore, negative effects of Fe are most prominent in the liver
(Papanikolaou and Pantopoulos, 2005). Zn also serves a special
protective function against Cd-induced tissue damage (Mahran
et al., 2011). Therefore, despite the fact that Cd was not signifi-
cantly higher at WWTW sites than at unpolluted sites, lower Zn
levels in these bats may make them more susceptible to the effects
of any Cd they are exposed to. Although our earlier work found that
Zn levels were significantly higher at WWTW sites than at unpol-
luted sites (Naidoo et al., 2013), the lower Zn levels observed in
N. nana at WWTWs may be attributed to exposure to synthetic Zn-
chelating agents used to treat high Zn during the wastewater
treatment process (Vohra and Kratzer, 1964).

Similarly, we did not predict site differences in mineral ele-
ments, however K content in the kidney was significantly lower in
N. nana at the WWTWs than at unpolluted sites. In contrast, renal
Cu content was significantly higher in N. nana at WWTWs than at
the unpolluted sites. This corresponds with the significantly higher
levels of Cu previously quantified at the WWTWs, particularly the
Umbilo and Verulam WWTWs, compared to unpolluted sites
(Naidoo et al., 2013). Cu can be a potent toxicant because of its
redox nature (Grosell et al., 2004). In addition, Cu content was
significantly negatively correlated with K content. A primary active
process in the kidney is sodium re-absorption which occurs via
Na'/K*-ATPase pumps (Vander et al., 1994). High levels of Cu have
been shown to inhibit Na reabsorption into cells (Grosell et al.,
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2002; Laurén and McDonald, 1985). Inhibited sodium reabsorption,
in turn, results in a loss of K (Vander et al., 1994). In addition, the
mammalian copper transporter Ctr1, is directly linked to potassium
levels in organs including the kidney (Lee et al., 2002). This suggests
that the high Cu content in the kidneys of WWTW bats are directly
compromising the Na®™/K*-ATPase pump, causing a decrease in K in

the cells. Ultimately, this may contribute to sodium deficiency and
potassium deficiency linked disorders in bats at WWTWs. How-
ever, we used SEM-EDS to provide a measure of metal differences
between bats from WWTWs and unpolluted sites. SEM-EDS is a
semi-quantitative method, which serves to detect differences be-
tween groups (or individuals). It is not a technique that quantifies
the total amount of metals. To understand the extent of disturbance
in ionic regulation, future work should use quantitative techniques
such as AAS (Atomic Absorption Spectroscopy) or ICP (Inductively
Coupled Plasma Mass Spectrometry). However, our previous work
highlighted high metal loads in the liver and kidney of bats foraging
at these WWTW sites, and the samples were indeed analysed by
ICP-OES (Naidoo et al., 2013). The high Cu levels detected in the
current study were also highlighted in our previous study.

Although toxic non-essential metals like Pb and Cd were not
significantly higher in N. nana at WWTWs, elevated Fe and Cu
concentrations in liver and kidney of bats at WWTWs may be
causing sub-lethal effects in these detoxification organs. Further-
more, the high variability in As, Cd, Hg, Na, Pb (in the liver) and RSI,
Cd, Cr, Hg, Ni, Pb (in the kidney) data probably resulted in low
statistical power in detecting differences between bats from
WWTWs and unpolluted sites. We found a greater extent of tissue
lesions indicative of histological damage in the liver and kidney of
N. nana at WWTWs. Necrosis and infiltration/inflammation were
found in liver and kidney of bats at all sites. More specifically,
incidence and variety of histopathological lesions were higher in
both the liver and kidney of bats foraging at WWTWs than at un-
polluted sites. The extent of the both the necrosis and infiltration/
inflammation was more severe in WWTW bats, with a greater
percent of tissue area occupied by the lesion. When oxidative stress
from pollutants causes DNA damage, tissue lesions such as necrosis
and inflammation occur. Cell-cycle arrest, as seen in necrosis, has
been observed in response to not only metals in laboratory exper-
iments, but also in response to environmental landfill leachates
(Damek-Poprawa and Sawicka-Kapusta, 2003; Sanchez-Chardi
et al, 2008, 2009). Landfill leachates may be similar to the
pollutant exposure at WWTWs in that contamination is by a
mixture of pollutants from decomposing solid waste. For instance,
wood mice (Apodemus sylvaticus), and greater white-toothed
shrews (C. russula) collected from the Garraf landfill in Spain,
showed severe histopathological alterations in both the liver and
kidney (Sanchez-Chardi et al., 2009). An increase in tissue lesions
such as necrosis and inflammation may lead to sub-optimal organ
function and therefore negatively impact the general health of the
bats. Importantly, these lesions may ultimately result in tumour
formation, cancers and other diseases which may reduce lifespan
(Pastink et al., 2001; Van Gent et al., 2001).

Additionally, hyperplasia, vacuolization and atrophy in the liver
were found only in WWTW bats. Vacuolization is of particular note,
because its occurrence in the liver suggests a lipid/water distur-
bance which is linked to metabolic disturbance (Pereira et al.,
2006). The potential metabolic disturbance in the bats was also
supported by enlarged kidneys, as discussed below. In the kidney,
tubular dilatation and cylinders were found only in WWTW bats.
Both lesions may be indicative of early nephrotoxicity and therefore
bats foraging at WWTWSs may be at a higher risk for chronic kidney
disease (Dakrory et al., 2015). The greatest extent of histopatho-
logical damage occurred in both the liver and kidney of bats at the
Verulam WWTWs, with 100% of the individuals exhibiting lesions.
It is perhaps notable that Verulam WWTWs also had higher Cu
levels than other WWTWs. Excess Cu results in the depletion of
glutathione, an important antioxidant, which enhances cellular
toxicity (Chen et al., 2006). In mice, Cu ions cause degeneration of
renal tubules, which can lead to inflammation in renal tissues
(Chen et al., 2006).
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Toxicological effects on a whole organ level are commonly
assessed using organ weight data, especially hepatic and renal
weight (Michael et al., 2007; Tete et al., 2013). We found signifi-
cantly higher hepatosomatic and higher renalsomatic indices in
WWTW bats. Increased hepatosomatic/renalsomatic indices in
response to pollutants suggest tissue damage such as hepatocel-
lular or tubular hypertrophy (increased cell size) or hyperplasia
(increased cell proliferation) which may increase the organ size
(Hall et al., 2012). Therefore, organ indices must be interpreted in
conjunction with histopathological data to determine the cause of
organ enlargement. Histological analyses did not reveal hypertro-
phy in the liver or kidney of bats at WWTWs. However, we found
evidence of hyperplasia in the liver of bats at the Verulam WWTWs,
and these bats also had significantly higher Fe levels in the liver.
Thus, hyperplasia in response to Fe accumulation in the liver may
be contributing to the higher hepatosomatic index at WWTWs.
Because there was no evidence of histopathological change asso-
ciated with size increases in the kidney, the higher renalsomatic
index of bats at WWTWs may be indicative of a pollutant exposure
effect other than tissue damage from metals such as metabolic
disturbance. Kidney weight is highly dependent on changes in
metabolism (Liro, 1985). In rodent species, for example, unfav-
ourable external conditions can cause metabolism to intensify,
leading to an increase in the relative weights of kidneys (Schwarz
et al., 1964).

Because we predicted that the detoxification organs of bats at
WWTWs would have higher levels of toxic non-essential metals,
we expected a higher MT1E content in response. However, there
was no notable protein-fold difference in liver MT1E among sites.
Although there was a very low protein fold difference, kidney MT1E
was in fact, significantly lower at WWTWs than at unpolluted sites.
There are several potential reasons why this trend was observed.
Firstly, toxic non-essential metals like Cd and Pb are strong MT1E
inducers. MT1E is also induced by Cu, which was significantly
higher in the kidney of WWTW bats. However, this increasing ef-
fect of Cu on MT1E in bats at WWTWSs may be confounded by the
high levels of other metals which induce MT1E, particularly Zn
(Kelly et al., 1996), which was higher at unpolluted sites. Thus, the
seemingly lower MT1E at unpolluted sites may be, in part, due to
the lower Zn levels in these bats. In addition, MT1 and MT2 spe-
cifically protect against Zn deficiency by serving as reservoirs (Kelly
et al., 1996). MT-bound Zn is thus stored and used for physiological
functions requiring Zn, when Zn availability is low. Thus, MT may
be decreased at WWTWSs because they are being utilized to
compensate for the lower Zn levels in bats at WWTWs than from
unpolluted sites.

Secondly, there are various isoforms of MT (MT-I, MT-II, MT-III
and MT-IV) (Thirumoorthy et al., 2011). Although metal-binding
and detoxification is characteristic of the MT1E isoform we quan-
tified, other MT isoforms may be involved and being upregulated in
WWTW bats (Sakulsak, 2012). Further, metallothionein levels may
also be influenced by other factors including hormones such as
glucocorticoids (Quaife et al., 1986). Another possible reason why
MT1E in bats at WWTWs is not upregulated, is that the bats receive
multiple exposures to varying metal concentrations and are
exposed to a combination of them (Dai et al., 2013). Thus, metal-
lothionein regulation in wild bat populations may not correlate
with patterns observed in laboratory studies with controlled metal
exposures.

Finally, the synthesis and extent of metallothionein response
differs widely among species (Henry et al., 1994). Internal metal
concentrations and metallothionein levels in sympatric small
mammal species along the same pollution gradient showed
species-specific patterns (Fritsch et al., 2010). Low metal accumu-
lation was associated with high metallothionein in wood mice (A.

sylvaticus), but with low metallothionein in bank voles (Myodes
glareolus). In common (Sorex araneus) and pygmy (S. minutus)
shrews, elevated metal accumulation resulted in a sharp increase of
metallothionein (Fritsch et al., 2010). Among vespertilionid bats,
the highest metallothionein levels were found in Pipistrellus pipis-
trellus, an aquatic-insect-foraging species (Pikula et al., 2010).
Notably, Pikula et al. (2010) found a negative correlation between
metallothionein and Pb levels, and conclude that the use of MT
levels as a biomarker of exposure to heavy metals may not be so
straightforward in vespertilionid bats.

To conclude, increased pollutant exposure at WWTWs disrupts
the balance of essential metals and mineral nutrients in the liver
and kidneys of N. nana foraging at WWTWs. Although innate
physiological mechanisms such as metallothionein may offer pro-
tection against tissue damage, the regulation of these mechanisms
are complex and may themselves be compromised at WWTWs.
Whole organ effects, represented by increased hepatosomatic and
renalsomatic indices are evident in N. nana at WWTWs and may be
indicative of metabolic disturbance. This is accompanied by addi-
tional organ damage indicated by histopathological damage within
the liver and kidney tissues. Although these lesions may be caused
by high levels of metals such as Cu at WWTWs, they may also result
from organic pollutants that the bats are exposed to during the
wastewater treatment process. In fact, the physiological effects
noted here, are not specifically restricted to metals. In addition to
metals, wastewater contains a range of contaminants including
pharmaceuticals and personal care products which may contribute
to these effects (Gibson et al., 2005; Jones et al., 2007). Thus, while
the effect of metal exposure on bats is of great concern (Zukal et al.,
2015), the combination of metals with other pollutants, especially
at WWTWs poses a serious threat to urban exploiter bats such as
N. nana. Future work should therefore quantify both metals and
organic pollutants that affect bats during the wastewater treatment
process. Taken together, our results show that foraging at WWTWs
affects the ecology (Naidoo et al., 2013), haematology/genotoxicity
(Naidoo et al., 2015) and detoxification organs (this study) of
N. nana. It is likely that chronic health problems related to sub-
lethal pollutant exposure increases mortality in the long-term.
We are currently investigating effects of foraging at WWTWs on
reproductive organs and sex hormones in our laboratories. Ulti-
mately, the fitness of urban N. nana populations exploiting
WWTWs may be affected.
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Fig. A.1. Mean relative % elemental liver content / bat for elements (Fe, Zn and P) with
significant site differences in N. nana at the Umbilo, Kingsburgh and Verulam WWTWs
and unpolluted sites 1 and 2 at Umdoni Park. (P < 0.05 between WWTWs and Unpol.

sites). N = 24; Bars = + Std.dev.
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significant site differences in N. nana at the Umbilo, Kingsburgh and Verulam WWTWs
and unpolluted sites 1 and 2 at Umdoni Park. (P < 0.05 between WWTWs and Unpol.

sites). N = 24; Bars = + Std.dev.
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CHAPTER 5:
Sex and the city: Reproductive system alterations in an urban
adapter, the banana bat, exposed to endocrine-disrupting

chemicals at wastewater treatment works

5.1. Abstract

The reproductive system may be particularly vulnerable to the negative effects of pollutants,
particularly endocrine-disrupting chemicals (EDC), which occur in high concentrations at WWTWs.
Neoromicia nana, the banana bat, is an urban exploiter that forages extensively on pollution-tolerant
insect prey at wastewater treatment works (WWTWSs) within the urban landscape. We have
previously found high metal levels in different tissues, and sub-lethal physiological effects in
haematological parameters and detoxification organs of N. nana at these sites. We investigated the
reproductive system of male N. nana foraging at WWTWs in the context of four hypotheses of EDC
effect: (i) We quantified the concentration of plasma testosterone - the primary male sex hormone -
and found significantly lower levels in WWTW bats (ii) We measured baculum morphometric
parameters to investigate effects of early-life exposure, and found no significant differences (iii) We
calculated gonadosomatic indices (GSI) to investigate whole organ effects on testes, and found no
significant differences between sites, and iv) We calculated body condition indices (BCI), to
compare body condition as a general indication of male quality. WWTW bats had significantly
lower BCI than bats from unpolluted sites. Taken together, our results suggest that alterations to the
endocrine system and body condition may impact reproduction, with serious negative consequences

for evolutionary fitness of males in urban N. nana populations at WWTWs.

Keywords: Neoromicia nana, Wastewater treatment works, Endocrine-disrupting chemical,
Testosterone, Baculum, Testis, Gonadosomatic index, Body condition index.

5.2. Introduction

Wastewater treatment works (WWTWs) are common and often permanent fixtures scattered across

urban landscapes. They provide an essential service to human populations, however, in serving to

remove contaminants from reclaimed water, they themselves act as a source of pollution to the
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wildlife exposed to them. WWTW tanks contain an extensive list of contaminants, many of which
are not completely removed, and thus remain exposed during treatment and in the treated effluent

discharged to rivers (Auriol et al., 2006).

Pollutants not only cause physical damage to cells, tissue and organs, but also interfere with the
homeostatic functioning of physiological systems. The endocrine system of animals for instance, is
particularly vulnerable to the negative effects of pollutants (Colborn et al., 1993). Hormones under
the control of the endocrine system are constantly maintained in balance. However, endocrine
disrupting chemicals (EDCs) bind to hormone receptors and modulate, mimic, enhance, or inhibit
the action of endogenous hormones (Tyler et al., 1998). Because humans produce and excrete large
quantities of natural and synthetic hormones from oral contraceptive use, hormone replacement
therapy and other medicinal purposes, WWTWs in particular, receive high quantities of these
estrogenic and androgenic compounds (Huang and Sedlak, 2001). In addition, industrial waste
received, contains EDCs in the form of organochlorine pesticides, specific metals including
cadmium and lead, polychlorinated biphenyls (PCBs), dioxin-like chemicals, bisphenol-A,
alkylphenolic chemicals, inclozolin fungicide, tributyl tin and plasticizer phthalates (Tyler et al.,
1998). The efficiency of EDC removal from wastewater varies with the hydrophobicity and
molecule size of the specific chemical (Nakada et al., 2006). Thus, effluent may contain high levels
of certain chemicals even after treatment (Janex-Habibi et al., 2009). For instance, treated
wastewater effluent contains steroidal estrogens (Routledge et al., 1998) and alkylphenols

(Routledge and Sumpter, 1996) in quantities sufficient to affect testis growth in fish.

The EDCs found in wastewater can severely alter the reproductive physiology and behaviour of the
resident wildlife exposed to them. Exposure can be directly with the water or indirectly via
predator-prey interactions. For example, industrial and household waste received at WWTWs
undergoes treatment in open-top sludge tanks, producing a characteristic proliferation of pollution-
tolerant chironomid midge swarms (Boonstra et al., 2009). The midges retain pollutants, including
metals and other EDCs (Park et al., 2009) that they are exposed to, within their body tissue (Hare et
al., 1992; Krantzberg and Stokes, 1990). Park et al. (2009) quantified EDCs such as 17a-
ethinylestradiol and butylated hydroxy aniline, and the estimated daily exposure rate for bats
feeding on aerial invertebrates at sewage filter beds. The estimated EDC exposure for bats was
nearly equivalent to levels which cause harmful effects in male European starlings (Sturnus
vulgaris) (Markman et al., 2008; Park et al., 2009). Numerous cases of intersex fish (Tyler and
Jobling, 2008), frogs (Cevasco et al., 2008), and reptiles (Milnes, 2005) that were exposed to EDCs
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have been observed. In addition, EDCs elicit various reproductive system effects in crustaceans,

including abnormal development of secondary sexual characters (Rodriguez et al., 2007).

Reproductive system effects from EDCs are not, however, confined to aquatic and semi-aquatic
taxa. In birds, egg-shell thinning (Blus et al., 1997) and altered song patterns (Markman et al.,
2008) have been documented in several species. A growing body of evidence is now highlighting
the negative effects of EDCs on mammalian reproduction, from porpoises to humans (Pelch et al.,
2010). These effects are primarily produced in response to the hormone-altering actions of EDCs.
Because the reproductive system is governed by hormones, the sex organs are particularly affected.
For instance, disruptions to testosterone levels in males may affect testis size (Garamszegi et al.,
2005). The development of the baculum, or os-penis during pre-natal and early life is also mediated
by androgens, especially testosterone (Yonezawa et al., 2011). In East Greenland polar bears
(Ursus maritimus), exposure to xenoendocrine pollutants through the consumption of contaminated
seal prey, reduced genitalia size and baculum bone density (Sonne et al., 2006). Although testis size
was not affected, baculum length was positively associated with PCB congeners in wild mink
(Neovison vison) from Sweden (Persson and Magnusson, 2015). Alterations to sex organs and sex
hormones will ultimately affect an individual’s ability to acquire mates and reproduce, and thus
impact fitness. EDCs may thus alter hormone levels, anatomy, physiology, behaviour and fitness

(Pelch et al., 2011). Furthermore, they can act at very low doses (Pelch et al., 2011).

The banana bat, Neoromicia nana (family Vespertilionidae), is an insect-eating bat and urban
adapter that profits from resources provided by humans within anthropogenic landscapes (Jung and
Kalko, 2011). N. nana typically roosts in rolled-up banana leaves ((Musa and Ensete spp.; LaVal
and LaVal, 1977) yet will also roost in thatched roofs of houses (O’Shea 1980; Monadjem and Fahr,
2007), and in curled leaves of strelitzia (Strelitzia caudate and S. nicolaii) planted in private
residential gardens (M.C. Schoeman, unpubl. data). In addition to this abundant availability of
anthropogenic roost sites, N. nana exploits WWTWs within the urban landscape. We previously
found that N. nana was the dominant animalivorous bat species foraging at wastewater-polluted
sites (Naidoo et al., 2011). Moreover, chironomid midges were the most abundant prey type in the
diet of N. nana at wastewater-polluted sites, compared to a diverse insect diet in V. nana at
unpolluted sites (Naidoo et al., 2013; Schoeman and Jacobs 2011). However, N. nana at WWTWs
exhibited higher levels of metals in the tissue (Naidoo et al., 2013), and sub-lethal haematological
and genotoxic responses, including significantly lower antioxidant capacity and significantly higher
levels of DNA damage and haematocrits than bats from unpolluted sites (Naidoo et al., 2015). In

addition, we found sub-lethal damage to the organs responsible for detoxifying pollutants.
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Differences in essential metal (Fe and Zn) content in the liver, and in Cu and one mineral nutrient
(K) in the kidneys were accompanied by significant increases in liver and kidney size and greater
extent of histopathological lesions in WWTW bats (Naidoo et al., 2016). It is therefore likely that N.
nana foraging at WWTWs also exhibits effects from EDC exposure.

The aim of this study was to therefore to investigate the reproductive system of male N. nana
foraging at WWTWs in the context of four hypotheses of EDC effect: (i) We quantified the
concentration of circulating testosterone, the primary male sex hormone (ii) We measured baculum
morphometric parameters to investigate whether early-life exposure to pollutants affects baculum
development, (iii) We calculated gonadosomatic indices (GSI) to investigate whole organ effects on
testes, and (iv) We calculated body condition indices (BCI), to compare body condition as a general
indication of male quality and fitness. We predicted that, compared to male N. nana foraging at
unpolluted sites, N. nana foraging at WWTWs should have (i) lower plasma testosterone levels, (ii)

smaller bacula, (iii) lower GSI, and (iv) lower BCL

5.3. Methods

5.3.1. Sample Collection

We used mist nets and harp traps to capture N. nana bats at three WWTW sites and at two
unpolluted reference sites. We sampled N. nana at sludge tanks that contain high levels of
wastewater —associated metals (lead, cadmium, chromium, nickel, copper, zinc and iron; Naidoo et
al., 2013) in the Umbilo Wastewater Works (529°50.44°; E30°53.31°), the Verulam Wastewater
Works (S29°38.38”; E31°03.49”), and the Kingsburgh Wastewater Works (S30°04.29’; E30°51.26”)
located within Durban, South Africa (S29°58”; E30°57”) (see Naidoo et al. (2015) for map). We
captured N. nana bats at two unpolluted reference sites in the forest of Umdoni Park (S30°41.15’;
E30°23.35”), located in Pennington, about 80 km south of Durban. There are no WWTWs located in
the immediate vicinity of the park, with the closest WWTW situated > 8 km away. Furthermore,
individual turnover between unpolluted sites and contamination from the nearest WWTW was
unlikely because of the relatively small home range of N. nana (~ 300 m from the roost (LaVal and

LaVal, 1977)).

Captured bats were identified to species using a taxonomic key (Monadjem et al., 2010) and only

male adult, N. nana were kept for analyses. Life-stage (juvenile or adult) was assessed from the
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presence of cartilaginous epiphyseal plates (Anthony, 1988). We performed sampling during the
summer (January - March 2013), before mating, which in N. nana occurs during late April to
August (Van der Merwe and Stirneman, 2007). However, to account for any differences in testes
size, between the January to March sampling period, we sampled bats from the reference sites at the
beginning and end of the sampling period. In addition, we only used males with a similar degree of
visible descended testicular state. The bats were humanely euthanized, as approved by the
University of KwaZulu-Natal Animal Ethics Committee (Reference: 014/15/Animal). They were
sacrificed at the same time every day, to remove the potential effect of diurnal fluctuations in

plasma testosterone levels (Maurel et al., 1981).

5.3.2. Testosterone Concentration

Whole peripheral blood was collected from each bat and allowed to coagulate. We centrifuged
the samples at 8050 x g for 10 min and stored the supernatant at ~ 80 © C until further analysis.
We quantified plasma testosterone concentrations in the supernatant using a colorimetric,
competitive Testosterone ELISA kit (Enzo Life Sciences Inc.). We diluted SuL of sample
plasma with standard diluent (sample: diluent in a 1:20 ratio) and added 50uL of testosterone
ELISA antibody (mouse monoclonal) into each well of a goat anti-mouse IgG coated microtiter
plate. We incubated the plate at room temperature on a plate shaker for 1 hour at 500rpm. 50uL.
of testosterone ELISA conjugate (alkaline phosphatase) was added into each well and the plate
was again incubated at room temperature on a plate shaker for 1 hour at 500rpm. We performed
three washes on the plate with a Tris-buffered saline buffer. 200uL of p-nitrophenyl phosphate
substrate was added to each well and incubated at 37°C for 1 hour. The optical density of the
plate was read at 405nm in a BioTek PowerWave XS multiwell plate reader. Standard curves
from the assay were used to calculate the total plasma testosterone concentration (ng/mL) in
each sample. To minimize inter-assay variation, all samples were analysed at the same time.

The intra-assay coefficient of variance was 21.6% for the optical densities quantified.

5.3.3. Baculum Morphometrics

We hydrated the penis from each bat in distilled water and then placed the penis in a 5% KOH
solution with alizarin stain for 40 minutes, following Kearney et al. (2002). The baculum was then

dissected from the penis using insect pins, fine forceps and a dissecting microscope. We cleared the
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dissected baculum in glycerine solutions of 20%, 40%, 60% and 80% for a period of 24 hours in
each concentration. The baculum was then placed in 100% glycerine with a thymol crystal to
prevent fungal growth until imaging. We viewed and digitally captured images of the bacula using a
camera attached to a fluorescence microscope (Nikon Eclipse E400 microscope; magnification =
400 x). We used phase contrast microscopy to enhance the contrast of the image because of the
translucent nature of the baculum. We measured the total baculum length (TBL), total baculum
width (TBW), shaft length (SL), shaft width (SW), gap length (GL), gap width (GW), side view
length (SVL) and side view width (SVW) using NIS-Elements D (Nikon) software. All
measurements were converted to an index relative to forearm length of the bat to account for body

size differences.

SW TL [sL Ssvw SVL
GL--
| GW |
500pm

W

Fig 1. Baculum measurements were total length (TL), total width (TW), shaft length (SL), shaft
width (SW), gap length (GL), gap width (GW), side view length (SVL) and side view width (SVW).

5.3.4. Gonadosomatic Indices (GSI)

The testes were dissected from each bat, kept moist to prevent dehydration and immediately
weighed on a three decimal balance (wet weight (WW); to nearest 0.001 g). The gonadosomatic
index was calculated as a percentage of the average testis weight relative to the total body weight of

each individual (average testis weight/total body weight x 100) (Sellers et al., 2007).
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5.3.5. Body Condition (BCI)

We measured the forearm and body length (to nearest 0.1 mm), and body mass (to nearest 0.5 g) of
each N. nana collected. To evaluate body condition, we calculated both the ratio and residual index
for two measures of body size, forearm length and body length. We calculated standard ratio body
condition indices as BCI-1 (body mass/ forearm length) and BCI-2 (body mass/ total body length).
Although BCI-2 is employed to calculate body condition in most taxa, BCI-1 is more commonly
used in bats because forearm length is a good indication of size (Speakman and Racey, 1986).
Schulte-Hostedde et al., (2005) tested multiple methods and found that the residuals from an
ordinary least squares (OLS) regression as indices of body condition, satisfy critical assumptions
and correlate well with the proportion of mass associated with energy reserve. We therefore used
the residuals from OLS regressions of body mass against forearm length (BCI-3) and of body mass

against total body length (BCI-4) as additional measures of condition.

5.3.6. Statistical Analyses

We pooled data into two groups: WWTW sites (Umbilo, Kingsburgh, Verulam) and unpolluted sites
(Unpolluted site 1, Unpolluted site 2) because sample size per site was too low to perform robust
statistical analyses (as discussed in Naidoo et al., 2016). We compared testosterone concentration,
baculum morphometric parameters, GSI and all measures of BCI between WWTWs and unpolluted
sites using one-way ANOVAs. We performed a MANOVA between WWTWs and unpolluted sites
using the baculum morphometric parameters as dependent variables. We performed Spearman/
Pearson correlations between testosterone concentration and each of the baculum morphometric
parameters, GSI and BCI measures, between each of the baculum morphometric parameters versus
GSI and BCI measures, and between GSI and BCI measures. Assumptions of normality and
equality of variance were tested using a 1-sample Kolmogorov-Smirnov Test and a Levene’s Test,
respectively. Non-parametric tests were performed where assumptions were not satisfied. All
analyses were performed with IBM SPSS 22.0, using alpha of 0.05. We also performed sample size
calculations to determine the minimum number of subjects required for an adequate study power of
80% (ClinCalc.com software, ClinCalc LLC). For testosterone concentration, BCI-1 and BCI-2,
sample size was low enough for sufficient power of statistical tests. However, for GSI, BCI-3, BCI-

4 and the baculum morphometric parameters, the large overlap in values between sites suggests that



70

larger sample sizes for these variables may reveal significant differences between bats from

WWTWs and unpolluted sites.

5.4. Results
5.4.1. Testosterone Concentration

Testosterone in bats from the WWTW sites was significantly lower than at the unpolluted sites (F7;,
23y =50.295, P = 0.000) (Fig. 2). There was a notably large hormone fold difference where
testosterone in bats at WWTWs was 25.89 + 5.99 (mean + std. dev.) times lower than that of the
unpolluted sites. Testosterone was significantly positively correlated with BCI-1 (P = 0.039, r° =

0.433) and BCI-2 (P = 0.014, /= 0.506).

80 -
70 -
60 -
50 -
40 -+
30 -
20 - *
10 -
0 + r
UMBILO KINGS. VERULAM JUNPOLLUTED

Mean testosterone/ bat (ng/mL)

WWTWs

Fig. 2. Mean testosterone concentration in N. nana at the Umbilo, Kingsburgh and Verulam
WWTWs and unpolluted sites at Umdoni Park. (* indicates significant differences between the sites
at the P < 0.05 level). N =23; Bars = Mean = Std. dev.

5.4.2. Baculum Morphometrics
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There were no significant differences in baculum morphometric parameters (TL, TW, SL, SW, GL,
GW, SVL and SVW; all P > 0.05) between bats from the WWTWs and unpolluted sites. Means +
Std. dev. for the eight parameters are presented in Table 1. The MANOVA was not statistically
significant for baculum morphometric parameters based on site (£ (7, 14y = 1.75, P = 0.172; Wilk's A
= 0.5, partial n° = 0.5). There were no significant correlations between baculum morphometric

parameters and testosterone concentration, GSI or BCI measures.

Table 1. Baculum measurements (total length (TL), total width (TW), shaft length (SL), shaft width
(SW), gap length (GL), gap width (GW), side view length (SVL) and side view width (SVW); Mean

(um) + Std. dev.)) of N. nana at the Umbilo (UWWTW), Kingsburgh (KWWTW), and Verulam
(VWWTW) WWTWs and unpolluted sites (UNPOL.) at Umdoni Park.

BACULUM SITE
PARAMETERS UWWTW KWWTW VWWTW UNPOL.
TL 30.26 +4.01 29.52+1.62 31.05+2.87 30.61 +3.38
™ 10.36 + 1.49 10.02 £ 1.26 10.66 + 1.70 10.01 £ 1.36
SL 23.49+3.57 23.10+1.00 2420+ 2.31 22.61+1.29
SW 548+ 0.70 5.13+ 0.34 5.43+£0.90 5.04 £0.33
GL 630+ 1.12 5.52+ 0.95 6.61 =£0.63 7.31+£1.77
GW 557+ 1.19 5.15+0.98 5.53+£0.70 4.62 +0.50
SVL 446+ 0.80 3.78+ 0.69 3.83£0.70 3.73+£047
SVW 30.19 £ 3.27 30.49 £ 0.68 3476 +£2.69 3148+ 1.61

5.4.3. Gonadosomatic Indices (GSI)

There was no significant difference in the gonadosomatic index between bats from the WWTWs

and the unpolluted sites (£ .3 =0.151, P=0.701) (Fig. 3). There were no significant correlations

between GSI and testosterone concentration, baculum morphometric parameters or BCI measures

(all p>0.05).
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Fig. 3. Mean gonadosomatic index in N. nana at the Umbilo, Kingsburgh and Verulam WWTWs
and unpolluted sites at Umdoni Park. N = 23; Bars = Mean + Std. dev.

5.4.4. Body Condition (BCI)

Bats from the WWTWs had significantly lower BCI-1 (£, 23, = 14.153, P = 0.001), BCI-2 (F{4, 23 =
17.573, P =0.000) (Fig. 4 A), BCI-3 (F1, 23 = 13.117, P = 0.002) and BCI-4 (F{;, 3= 10.311, P=
0.004) (Fig. 4 B) than bats from the unpolluted sites. In addition, there were significant positive
correlations between testosterone concentration and BCI-1 (P = 0.039, 7* = 0.433) (Fig. 4 C), and
between testosterone concentration and BCI-2 (P = 0.014, »° = 0.506) (Fig. 4 D).
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Fig. 4. Mean (A) BCI-1 and BCI-2, (B) BCI-3 and BCI-4, (C) relationship between BCI-1 and
testosterone concentration and (D) relationship between BCI-2 and testosterone concentration of V.
nana at the Umbilo, Kingsburgh and Verulam WWTWs and unpolluted sites at Umdoni Park. (*
indicates significant differences between the sites at the P < 0.05 level). N = 23; (Mean + Std. dev.)

5.5. Discussion

The aim of this study was to investigate the reproductive system of male N. nana foraging at
WWTWs in the context of four hypotheses of EDC effect. In accordance with our predictions, we
found significantly lower plasma testosterone concentrations, and lower body condition in male N.
nana foraging at WWTWs than in males from the unpolluted reference sites at Umdoni Park. We
did not, however, find support for our predictions that bats at WWTWs would have smaller bacula

or lower GSI.
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Testosterone is the main male sex hormone in vertebrates and is responsible for the development of
the male internal reproductive ducts and external genitalia (Guillette, Jr., et al., 1996). It is also
directly involved in the production of sexual signals such as displays showing off specific
phenotypes that constitute reproductive effort (Mills et al., 2009). We found that testosterone
concentration in bats at the WWTWs was notable, 25.89 = 5.99 fold lower than bats from
unpolluted sites. Although bat testosterone levels have a wide range of variability during different
stages of the reproductive cycle (Hosken et al., 1998), we sampled bats from unpolluted sites at both
the start and end of the sampling period, and overall testosterone levels were still consistently much

higher than those of the WWTW bats.

In males, testosterone binds to androgen receptors with the highest affinity and also mediates the
actions of the other androgens, androstenedione, dehydroepiandrosterone, and
dehydroepiandrosterone sulfate (Kaufman and Vermeulen, 2005). The low testosterone in WWTW
bats is likely due to the mechanistic action of EDCs which directly disrupt hormone signalling by
binding to these androgen receptors (Pelch et al., 2010). An excess of estrogenics may also lower
testosterone in exposed males by impacting the aromatase system which converts testosterone to
estradiol (de Ronde and Jong, 2011). Serum testosterone levels were lowered by approximately 2-
fold in laboratory controlled experimental exposures of male mice to EDCs (Wan et al., 2011). In
male rhesus monkeys (Macaca mulata) exposed to PCBs, normal plasma testosterone levels were
nearly halved, in conjunction with decreased testicular size and adversely affected spermatogenic

activity (Ahmad et al., 2003).

The low testosterone concentrations in male N. nana at WWTWs may also be related to their copper
and zinc levels. Chang et al. (2011) found that Korean men with a high level of Cu and elevated
Cu/Zn ratio in hair tissue had decreased serum testosterone. Similarly, we previously found that N.
nana at WWTWs had significantly higher kidney Cu and significantly lower liver Zn than bats from
unpolluted sites (Naidoo et al., 2016). Thus, the high Cu/Zn ratio in WWTW bats may contribute to
decreased synthesis of testosterone. Further, a high Cu/Zn ratio has shown to correlate with

decreased sperm quality (Yuyan et al., 2008).

Testosterone directs spermatozoa development and sperm production (Garamszegi et al., 2005).
Although we did not assess semen in the present study, the lower testosterone levels suggest that
WWTW males may have lower sperm production and quality, and hence less efficient sperm

competition (Parker, 1970). Male and female N. nana roost together and group membership is
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labile, suggesting a promiscuous mating system and sperm competition (Bernard et al. 1997). Thus,
males which have the genetic capacity to cope better with pollutant exposure, may dominate
fertilization of resident females and thus have a higher reproductive output (Garamszegi et al.,
2005). However, wives of human male WWTW workers that were exposed to WWTW-pollutants

around the time of conception experienced high incidences of fetal loss (Morgan et al., 1984).

Because testosterone is linked not only to sexual differentiation and fertility, but also to sexual
behaviours, N. nana at WWTWSs may face negative impacts on mating success in addition to the
physiological effects of EDC exposure (Blocker and Ophir, 2013). Demasculinization, ornament
production, courtship, territoriality, male attractiveness to females, male-male competition and
aggression, sexual receptivity, sexual arousal, vocalization, mounting females and copulatory
behaviour in males can be altered in response to EDCs in a range of taxa (reviewed in Frye et al.,
2012; Shenoy and Crowley, 2011). In addition, other socially relevant behaviour such as play
(Hotchkiss et al., 2003), the motivation to explore and anxiety was reduced (Farabollini et al.,

1999), and pain threshold increased in bisphenol-A treated male rats (Aloisi et al., 2002).

The low plasma testosterone levels that we found suggest recent pollutant exposure in these adult
males. However, prenatal exposure to EDCs also programs adult gene expression, therefore the
adult’s ability to produce testosterone may also be impaired because of long-term developmental
effects (Hotchkiss et al., 2002, Pelch et al., 2010). During pre-natal and early life, testosterone is a
key androgen involved in the development of the baculum, or os-penis (Yonezawa et al., 2011).

The distal part of the baculum develops as cartilage during embryogenesis, followed by the growth
of the shaft and proximal portion, and is completed by ossification of the structure (Smirnov and
Tsytsulina, 2003). During early postnatal life, the baculum continues to grow for approximately two
months in vespertilionid bats (Nyctalus noctula, Vespertilio murinus) (Smirnov and Tsytsulina,
2003). Various mechanical and behavioural hypotheses have been proposed for baculum function in
bats (Herdina et al., 2015). These include structural support, expansion of the female cervix for
optimal sperm deposition (Long and Frank, 1968), coital locking (Dyck et al., 2004), and protracted
copulatory time (Dixson, 1987). Contrary to our prediction, we did not find significant reductions in
size of bacular parameters of bats from WWTWs. This suggests that testosterone activity and
baculum development was not significantly disrupted during fetal and early life. By contrast, in East
Greenland polar bears (U. maritimus) (Sonne et al., 2006), wild mink (V. vison) from Sweden
(Persson and Magnusson, 2015), and river otters (Lontra canadensis) from the USA (Henny et al.,
1996), EDC exposure decreased baculum size. In the case of N. nana, it may be that the pollutant

exposure dose was not high enough to adversely affect baculum development. It may also be a
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consequence of the mixture of EDCs that the bats are exposed to at WWTWs. Although primarily
androgen-mediated, estrogen also plays a role in early baculum growth in rats (Yonezawa et al.,
2011). Specific EDCs such as some metals (Iavicoli et al., 2009) and PCB congeners (Hamers et al.,
2011) have estrogenic effects, and may therefore oppose disrupted testosterone by having a
stimulating effect on baculum growth. Alternatively, it may be linked to the ecology of N. nana,
where lactating bats and their juveniles form maternity roosting colonies (Bernard et al., 1997;
LaVal and LaVal, 1977). Pregnant and lactating bats may change their foraging habits to sustain
high-quality milk production (Kurta et al., 1989) by selecting prey items that are high in energy and
calcium (Barclay and Harder, 2003; Dietz and Kalko, 2007; Kunz, 1974). It is thus possible that
suckling male N. nana are not exposed to pollutants if their lactating mothers do not feed primarily

on chironomids at WWTW tanks during the period which coincides with baculum development.

Although we found no changes in baculum morphometrics as an effect of early life exposure to
EDCs, the disruptions to testosterone levels that we observed in adulthood may in turn affect other
sex organs such as the testes (Garamszegi et al., 2005). However, contrary to our prediction, we did
not find lower GSI in WWTW bats, indicating no whole organ effects on testes. Although findings
of pollutant effects on testes are common, there are some cases where no significant change in testes
size was noted. For instance, testis size was not associated with EDC levels in wild mink (V. vison)
(Persson and Magnusson, 2015). In mink, testes size varies during the breeding cycle, even within
short timeframes (Persson et al., 2011). Similarly, in bats there is some degree of variation with
natural reproductive cycles (Hosken et al., 1998; Racey, 1974). Although we controlled for
differences in time between sampling at each site (see Methods), this natural variation may have
masked a possible effect of EDCs on testis size. In addition, intermittent or differing volumes of
EDC release, and the opposing effects of different pollutants at WWTWs may prevent a directional
effect on whole organ size. For instance, exposure to the EDC, Aroclor 1242 causes testes size to
decrease (Ahmad et al., 2003). On the other hand, tissue lesions such as inflammation from metals
may cause organ enlargement (Naidoo et al., 2016). We have previously found higher levels of the
metals, Fe and Cu, along with significantly higher renalsomatic and hepatosomatic indices in N.
nana at WWTWs than in bats from unpolluted sites (Naidoo et al., 2016). Thus, further
histopathological analysis of the testis should be performed to reveal the nature of tissue/

spermatogenic damage within the testes to explain why GSI did not differ between sites.

Although we did not find an effect on the sex organs, ie. the baculum and testes, the decreased
testosterone levels in N. nana at WWTWSs may still ultimately affect the individual’s ability to

acquire mates and reproduce, and thus impact fitness, as discussed earlier. Body condition is an
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important factor in determining an individual animal's evolutionary fitness (Green, 2001). The body
condition index provides a measure of the energetic state of an individual, specifically the relative
size of energy reserves such as fat and protein (Krebs and Singleton 1993). In many taxa, fitness
parameters related to reproduction correlate strongly with body condition (Dobson, 1992). As
predicted, all four measures of body condition (BCI-1 to BCI-4) were significantly lower in bats
from the WWTWs than from the unpolluted sites, suggesting lower quality males. A low BCI
indicates that more energy reserves are being utilized for survival than for reproductive effort
(Jakob et al., 1996). Low BClIs are common in animals living in poor quality habitats (Schulte-
Hostedde et al., 2005) or infected with disease (Dunlap and Mathies, 1993). Energy reserves are
then channelled into maintaining basic bodily functions to survive. Similarly, in N. nana at
WWTWs, we previously found physiological injury such as DNA damage that requires additional
energy to repair, and increased erythrocyte production to counter oxidative stress from pollutants
(Naidoo et al., 2015). Thus, N. nana at WWTWs direct their energy reserves into basic functioning
and detoxification processes, resulting in a lower body condition. This channelling of energy away
from reproductive processes provides an additional explanation for the low testosterone observed in
WWTW bats, since maintaining high testosterone levels has been shown to be energetically
expensive (Emerson and Hess, 1996). In support of this premise, the only significant correlation we
found between variables quantified in the present study was between testosterone and BCI-1/BCI-2
where bats from the unpolluted sites had higher testosterone and higher body condition compared to
bats from the WWTWs. High testosterone levels drive stronger secondary sexual signals and
increase reproductive functioning, yet the hormone also imposes health risks (Alonso-Alvarez et al.,
2007). For example, the immunocompetence handicap hypothesis proposes that high circulating
levels of testosterone entails a cost because of the higher risk of mortality from immunosuppression
(Folstad and Karter, 1992). Additionally, the oxidative hypothesis postulates that high testosterone
generates oxidative stress in mammalian tissues (Alonso-Alvarez et al., 2007). When a sexually
selected marker, in this case high testosterone, is present, the handicap it imposes may demonstrate
that the genotype is of high quality (Zahavi, 1975). Bats from the unpolluted sites had high
testosterone levels that positively correlated with their high BCls, suggesting that they can afford
the testosterone handicap, and still maintain body condition. In WWTW bats however, low
testosterone and its associated low BCI, suggests that in addition to EDC effects on testosterone
directly, these bats cannot afford the high testosterone handicap because survival costs are increased

from counteracting pollutant exposure effects.

To conclude, our results show that male N. nana foraging at WWTWs suffer negative alterations to

the endocrine system and body condition with impacts for evolutionary fitness. Testosterone levels
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link male morphology, behaviour, and, ultimately, reproductive success. Furthermore, alterations to
the hormonal balance may lead to diseases such as cancer, cryptorchidism and various types of skin
diseases (Kumar et al., 2008). Future work should thus investigate long term physical damage to
sperm, compositional structure of primary sex organs, behavioural changes and number of offspring
produced by male N. nana at WWTWs. In addition, future studies should quantify EDCs at the
particular WWTWs to understand which and how specific combinations of environmental pollutants
affect reproduction. Finally, reproductive system alterations in female N. nana should be studied to
understand the consequences for urban N. nana populations exploiting abundant food resources

WWTWs.
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CHAPTER 6: Synthesis and conclusions

6.1. Synthesis/ Conclusions

River pollution negatively affects biodiversity (Azrina et al., 2006; Nedeau et al., 2003; Vorosmarty
et al., 2010); it significantly lowers species richness and population abundances. Specifically, there
are negative health effects in susceptible organisms (Lydeard et al., 2004; Oberholster et al., 2008),
however, evidence for the impacts of pollution are often available for a limited number of traits. The
results of this thesis revealed that wastewater pollution affects the foraging ecology and negatively
impacts the physiology (haematology, DNA integrity, kidney function) and condition (BCI,
organosomatic indices, testosterone levels) of urban N. nana populations in Durban, South Africa.
The results suggest that N. nana may benefit from WWTWs in the short-term but there may be
negative implications for this species and for other river biota exposed to wastewater pollution both

in the short and long-term.

Some bat species, pertinently urban adapters, exhibit increased activity at wastewater-polluted sites
along rivers (Kalcounis-Rueppell et al., 2007; Vaughan et al., 1996). Similarly, N. nana abundance
and feeding activity were significantly higher at wastewater-polluted sites (tank and downstream)
than at sites located upstream of tank sites and effluent discharge into rivers (Chapter 2). This was
related to the increased abundance of chironomid midges captured at wastewater-polluted sites and
in the diet of N. nana (Chapter 2). Although chironomid midges are able to tolerate polluted
environments, metal pollutants accumulate in the body of this organism (Krantzberg and Stokes,
1990). Indeed, the concentrations of metals associated with wastewater pollution (Cr, Cu, Fe, Ni,
Zn, Cd and Pb) were generally lower in the water at unpolluted upstream sites than at wastewater-
polluted sites, with the highest concentrations occurring at WWTW tanks (Chapter 2). Because
metal pollutants accumulate in midges, N. nana foraging on them at sites polluted with effluent

from WWTWs have a high chance of being exposed to these metals.

In support, I found evidence that metal pollutants at WWTWs are transferred to N. nana (Chapter
2). Essential metals (Cu, Zn and Fe) were detected in all N. nana tissue samples, however the toxic
metals cadmium, chromium and nickel were mostly present in tissue of bats at wastewater-polluted
sites. In addition, there was a significant positive relationship between the concentrations of metals
in the kidney tissue samples and in water samples. Notwithstanding the low sample size and

detection limit of the instrument, the presence of more toxic metals in N. nana tissue samples
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collected from bats foraging at polluted sites is particularly notable. Cd has a tendency to
accumulate in target organs over time, and Ni and Cr may be transferred from adult to young
through lactation (Streit and Nagel, 1993). Thus, my results show the accumulation of specific
metals in the tissues of N. nana at sites polluted by WWTWs. These results, in combination with the
increased foraging behaviour of N. nana along wastewater-polluted rivers and at WWTWs, suggests

that sub-lethal physiological effects are likely present in these individuals.

As predicted, I found that pollutant exposure at WWTWs causes sub-lethal effects in three aspects
of biological functioning in N. nana: haematological and genotoxic parameters (Chapter 3), the
detoxification system (Chapter 4), and in the reproductive system (Chapter 5). Bats ingest pollutants
at the WWTWs that, in turn, are absorbed into the blood from the intestinal tract (Andersen et al.,
1994). I found that primary physiological responses such as DNA damage and haematological
changes are elicited in V. nana at WWTWs (Chapter 3). WWTW bats had significantly higher DNA
damage and significantly lower antioxidant capacity than bats from unpolluted sites. This suggests
that in WWTW bats, there is potential inadequate repair to double stranded DNA breaks, and a
diminished capacity to cope with the excess reactive oxidative species produced from pollutants
such as metals. Although there was no increase in micronucleus frequency, bats at WWTWs had
significantly higher haematocrits, possibly due to erythrocyte production in response to certain
pollutants such as Fe. These responses to pollutant exposure, detected in the peripheral blood and
muscle tissue are precursors for more harmful long-term damage. For instance, the high occurrence
of double stranded DNA breaks in N. nana may disrupt cell-cycle regulation and cell functioning,
and may induce cell death (van Gent et al., 2001). Persistent DNA damage may ultimately lead to

the formation of tumours and cancers (Pastink et al., 2001).

As blood circulates through the body, it passes through the liver and kidney, where toxic substances
and pollutants are filtered for excretion or storage (Fox, 1991). 1did not find support for my
prediction that the detoxification organs of WWTW bats should have higher levels of toxic non-
essential metals in liver and kidney tissue. Instead, I found significant differences in essential
metals, and in one mineral nutrient (K) between sites (Chapter 4). I found higher Fe and lower Zn
in the liver, which may lead to liver deterioration from an increased oxidation of lipids, proteins,
and DNA (Fraga and Oteiza, 2002). In the kidney, I found higher Cu and lower K levels in WWTW
bats. High levels of Cu have been shown to inhibit Na reabsorption into cells (Grosell et al., 2002).
Because Na re-absorption in the kidney occurs via Na'/K'-ATPase pumps (Vander et al., 1994), the
increased Cu exposure at WWTWs may lower Na and thus, lower K levels in cells, ultimately

contributing to sodium deficiency and potassium deficiency linked disorders in bats at WWTWs.
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Innate physiological mechanisms such as metallothionein may offer protection against tissue
damage, however I found no significant protein-fold increase in MT1E in WWTW bats (Chapter 4).
Consistent with my prediction that chronic exposure to pollutants should impact the detoxification
organs, | found a significantly greater extent of histopathological lesions and higher organ indices in
the liver and kidney of WWTW bats than bats from unpolluted sites (Chapter 4). This suggests that
bats at WWTWS may have impaired organ function and metabolic disturbance. It is clear that
pollutant exposure at WWTWs places stress on cells, organs and physiological functions in the

bodies of exposed bats.

To counteract these sub-lethal effects, additional energy must be directed towards survival. Energy
use is divided between basic physiological functioning (survival) and in acquiring mates and
producing offspring (reproduction) (Jakob et al., 1996). The body condition index (BCI) is a proxy
for the energetic state of an individual, specifically the relative size of energy reserves such as fat
and protein (Krebs and Singleton 1993). It is thus an important indicator of an individual animal's
evolutionary fitness (Green, 2001). I found that the BCI of male N. nana at WWTWs was
significantly lower than BCI of males at the unpolluted sites (Chapter 5). This indicates that more
energy reserves are being utilized for survival than for reproductive effort, suggesting lower quality
males (Jakob et al., 1996). Thus, N. nana at WWTWs direct their energy reserves into basic
functioning such as repairing DNA damage and detoxifying pollutants, resulting in a lower body
condition. Maintaining high testosterone levels is energetically expensive (Emerson and Hess,
1996), and indeed, I found strikingly lower testosterone levels in bats from WWTWs compared to
bats from unpolluted sites. In addition to lower energy availability for testosterone production, the
bats at WWTWs are exposed to a wide range of endocrine disrupting chemicals (EDCs) that directly
alter hormone synthesis and regulation. Various organic pollutants, and some metals found in
WWTW bats such as Cd (Chapter 2), Fe and Cu (Chapter 4) are potent EDCs. I thus predicted that
male N. nana at WWTWs should have reduced baculum morphometric parameters indicative of
early-life exposure to pollutants, and lower gonadosomatic indices (GSI) indicating whole organ
effects on testes. However, I did not find support for these predictions (Chapter 5). Although I did
not find significant effects on male sex organs, the decidedly low testosterone levels in WWTW
bats is likely sufficient to negatively impact fitness, because testosterone levels link male

morphology, behaviour, and, ultimately, reproductive success.

The abundant supply of pollution-tolerant chironomid prey at wastewater-polluted sites along rivers
and within WWTWs, favour high foraging activity of urban N. nana throughout the year at these

sites. However, the ingestion of metals and organic pollutants cause short-term sub lethal responses
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in haematological and genotoxic parameters, including higher levels of DNA damage, lower
antioxidant capacity and increased haematocrits. In addition, the accumulation of pollutants in the
liver and kidney result in disruptions in the balance of essential metals and mineral nutrients,
histopathological damage within the tissue and whole organ effects. Finally, the combination of
EDC exposure and lower energy reserves available for reproductive activity is linked to
significantly lower testosterone levels and lower body condition in male N. nana at WWTWs.
Collectively, my results indicate that various aspects of N. nana health are compromised by
foraging at wastewater-polluted sites, bearing negative short-term and long-term implications for

urban N. nana populations.

6.2. Potential consequences for N. nana populations

Sub-lethal physiological effects ultimately translate to larger scale impacts on physiology. For
instance, an accumulation of DNA damage may lead to the disruption of cellular activities, and
induce mutations. Consequently, serious health problems such as the development of cancers and
organ disease may originate from these sub-lethal effects, resulting in a decreased lifespan and
increased mortality. The stability of a population is negatively impacted by an increase in death rate
(Krebs, 2008). Furthermore, increased mortality is particularly important for slow reproducing,

long-lived species such as bats (Fairbrother, 2001).

In addition to increased mortality from chronic health problems related to sub-lethal pollutant
exposure, mortality rates are affected by a number of biotic factors including predation and
parasitic/ infectious diseases. In fact, pollutant exposure has been specifically linked to stressors that
regulate these biotic factors, and hence risk of early mortality (Fairbrother, 2001). For example,
impaired immune system functioning from exposure to metals and other pollutants has been
associated with outbreaks of parasitic/ infectious diseases (Boyd, 2010; Fairbrother, 2001). This
“contaminant-pathogen synergy” has been, for example, linked to the phocine distemper epidemic
that struck the seal population in the Wadden Sea in the early 1990s, which coincided with
depressed immune response from polychlorinated biphenyl contamination (Ross et al., 1995).
Although the immune receptors of bats are unique and offer them greater resistance to pathogens
than immune receptors of other mammals (Escalera-Zamudio et al., 2015), pollutant exposure may
increase the vulnerability of bats to parasitic/ infectious diseases. For instance, high concentrations
of organic pollutants were found in bats affected by White-nose syndrome, an emerging disease

which is decimating North American bat populations (Kannan et al., 2010). Furthermore, pollutant
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exposure in bats contributes to immunosuppression (Lilley et al., 2013, Pilosof et al. 2013), further
increasing their susceptibility to infection by White-nose syndrome and other diseases. This may be
particularly important for urban adapters, such as N. nana, that are consistently active at polluted

sites.

Together with mortality rates, population stability is also regulated by birth rates and thus,
reproductive success. Pollutant exposure at WWTWs may result in negative effects on reproductive
success, as discussed in Chapter 5. Over time, pollutant exposure may affect the functionality of sex
organs, sperm quality, sex-specific behaviours, male to female sex ratios and an array of sex-related
parameters. In addition to the lower fitness of male N. nana at WWTWs, trans-generational
epigenetic effects of pollutants may further reduce the reproductive success of individuals, resulting
in fewer offspring produced in these populations (Bickham et al., 2000). Pollutant effects on the

reproductive health of N. nana individuals may therefore potentially extend to the population level.

In Europe, populations of specific bat species are declining in response to urbanization and its
associated features, such as decreased water quality (Jones et al., 2009). In addition to physiological
and direct molecular impacts of pollutant exposure, stochastic mutation processes in small
populations may accelerate loss of genetic diversity (Kimura, 1962). Ultimately, urban N. nana
populations may decrease in genetic diversity and thus number of individuals. N. nana’s flexibility
as an urban adapter to exploit anthropogenic resources allows it to thrive in urbanized landscapes.
However, this ability may in itself be cause for a possible future decline of urban N. nana

populations.

6.3. Potential consequences for the local ecosystem

Within an ecosystem, there are both direct (physiological functioning) and indirect (modifications to
the food web) effects that may arise as a result of exposure to pollutants (Fleeger et al., 2003).
Therefore, although there may be direct effects at each trophic level, they are invariably intertwined
because of their interaction with each other (Wooton, 1994). For instance, neuroendocrine
disturbances from exposure to pollutants, may elicit behavioural changes that affect biotic
interactions (Boyd, 2010). Metals in particular, have been shown to affect predator-prey interactions
by modifying both prey response behaviour and predator capture ability (Boyd, 2010). In predatory
fish, respiration rate and swimming performance to capture prey is impaired by exposure to metals

(Atchison et al., 1987). Loss of co-ordination, in bats, for instance, would greatly impair their
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hunting ability. In insects, metals may result in behaviours that increase susceptibility to predation
(Mogren and Trumble, 2010). For instance, metal can induce phototaxis where insects such as
mayflies (Adenophlebia auriculata), move to areas with a high risk of predation (Gerhardt and
Palmer, 1998). This is especially important at WWTWs, given that they are well-lit. Metals may
also reduce locomotive ability, resulting in decreased escape ability from predators (Mogren and
Trumble, 2010). In addition, infochemical disruption by pollutants may prevent the organism from
detecting approaching predators (Klaschka, 2008). Thus, the effects of pollutants may affect

multiple levels within the local ecosystem, resulting in trophic cascades (Nakano et al., 1999).

In addition to indirect effects of pollutants on biotic interactions within the ecosystem, the negative
impact on the health of N. nana may affect higher levels of biological organization. I have shown
that foraging at wastewater polluted sites affects N. nana on a cellular, organ and organismal level
(Chapter 3, 4, 5). These effects may further extend to the population level (as discussed above —
Section 6.2), as well as community and ecosystem levels. Pollutants may alter community and
ecosystem composition by causing a variation in the abundance of one species to affect abundances
of other species (Wooton, 1994). Species that are more sensitive to pollution effects are more likely
to be reduced or lost from a community (Clements et al., 2009). Ultimately, the resistance and
resilience of communities to respond to pollutant exposure will determine whether local ecosystem

function is diminished (Chapin et al., 1997).

With the majority of urban rivers becoming polluted, the resident biodiversity may be under serious
threat (Vorosmarty et al., 2010). To preserve river biota in landscapes altered by anthropogenic
pollution, it is important that the mechanisms of chemical-induced damage are understood at each
trophic and biological level. A detailed analysis of responses within ecosystems is rarely attainable
due to the range of variables that have to be taken into consideration (Linder and Joermann, 2001).
By unravelling pollutant effects in higher predators such as N. nana, much insight into these

processes has been acquired.

6.4. Future work

In Chapter 2, I showed that N. nana abundance and feeding activity was significantly higher at
wastewater-polluted sites than at unpolluted sites, because of the increased prey abundance at these
sites. One important caveat of this study was that metal concentrations could not be determined in

chironomid midges, mainly due to the low abundance of the insects at upstream sites. In future
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studies, control midges that are not exposed to pollution could be laboratory-bred to compare with
those captured at polluted sites. This will contribute to better quantification of metal
bioconcentration (BCF) and bioaccumulation factors (BAF) (Linder and Joermann, 2001). In
addition, future work should aim to quantify organic pollutants and the full range of metals in the

wastewater mixture and in the prey that the bats ingest.

I have shown that sub-lethal damage from pollutants occurs in various aspects of N. nana
physiology (Chapter 3, 4, 5). However, to establish that there is indeed damage within organs and
tissue, individuals were sacrificed. Future work should aim to use non-destructive methods for
investigating related physiological effects. In addition, this would enable a greater sample size and
alternative statistical analyses. Future studies should also investigate longer-term health effects of
the sub-lethal responses I quantified. For instance, developmental defects and the occurrence of
specific diseases related to the metals found in high concentrations in N. nana tissue should be
investigated. In addition to longer-term health effects, adjacent parameters to the responses I found
should also be studied. For instance, I quantified a single hormone, testosterone. The significant
effect of pollutant exposure on testosterone suggests disruptions to the endocrine system, where
related hormones such as corticosterone may be affected. Finally, having found that wastewater
pollution indeed induces harmful effects in these top predators, research in related fields such as
chemistry, wastewater management and engineering should investigate possible solutions to
increasing removal efficiencies of specific pollutants and preventing the direct exposure of urban

wildlife to wastewater during the treatment process.

To conclude, the results of this study establish a link between exposure to wastewater pollution,
foraging behaviour patterns, and sub-lethal alterations to haematological/ genotoxic parameters,
detoxification organs and the reproductive system of N. nana. My results show that WWTWs,
aimed to remove pollutants from the environment, can themselves act as a source of contamination
and pose a threat to animals exploiting these habitats. Further research into the effects of WWTWs
and polluted rivers, on urban biodiversity is vital, particularly because of the rapidly increasing rate
of urbanization. WWTWs are an essential component of cities and may thus contribute to local and
landscape effects of urbanization. In addition, pollutants in rivers pose an even greater threat to the
resident fauna in the light of global warming (Clements et al., 2008). With increased water
evaporation from rivers, it is estimated that the toxicity of metals and other pollutants will increase
significantly due to lower dilution (Clements et al., 2008). Thus, the future functioning of urban
river ecosystems faces serious threat unless the mechanisms of pollutant transfer and effects are

elucidated.
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