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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

South Africa is located in a semi-arid part of the world. The climate varies from desert and 

semi-desert in the west to sub-humid along the eastern coastal area, with an average rainfall 

for the country of about 450 mm per annum (mm/a), well below the world average of about 

860 mm/a, while evaporation is comparatively high (Turpie and Visser, 2013). As a result, 

South Africa’s water resources are, in global terms, scarce and enormously limited. The 

country has no truly large or navigable rivers, and the combined flow of all the rivers in the 

country amounts to approximately 49 000 million cubic metres per annum (m³/a), less than 

half of that of the Zambezi River, the closest large river to South Africa. Groundwater plays 

an essential role in especially rural water supplies, due to the predominantly hard rock nature 

of the South African geology, only about 20 percent of groundwater occurs in major aquifer 

systems that could be utilised on a large scale. Natural availability of water across the country 

is also uneven due to the poor distribution of rainfall. This condition is compounded by the 

strong seasonality of rainfall, as well as high within-season variability, over the entire 

country. Consequently surface runoff is also uneven. As a result, stream flow in South 

African rivers is at relatively low levels most of the time. The irregular high flows that do 

occur limit the amount of stream flow that can be relied upon to be available for use (Le 

Roux and van Hyussteen, 2010). 

Historically, the degree of development of potable water infrastructure has varied 

significantly among different geographical areas in South Africa (Schreiner and Van Zyl 

2006). Prior to 1994, the majority of the black population was confined to homelands and 

townships with limited if any infrastructure (DWAF, 1994). This has resulted in the 

development of large settlements with no potable water infrastructure. After 1994, the South 
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African government started to address these issues and to date major improvements have 

been achieved. By 2002, 84.5% of the population had access to piped and tap water inside 

their homes or within 200 m of their residence from communal or neighbours’ taps or 

boreholes. A coverage increase to 89.3% was achieved by 2010 (Stats SA, 2011). This 

contributed to a decrease in the average risk of contracting diarrhoeal diseases among 

children under 5 years of age from 17.8% in 2002 to 11.2% in 2010. Around 65% of all 

economic activity is concentrated in the metropolitan areas of the Gauteng Province and the 

municipalities of Cape Town, eThekwini and Nelson Mandela Bay (Le Roux and van 

Hyussteen 2010). 

 

A considerable percentage of the South African population is likely to occasionally rely on 

water resources of poor microbial quality to meet their demand for domestic use (Haarhoff, 

2008). Domestic water use includes drinking, laundry, cooking and personal hygiene. The 

water resources in question include streams, springs, and rivers, i.e., surface water resources. 

The public health risk is measured by the amount of indicator organisms such as faecal 

coliforms and Escherichia coli present in water (DWAF, 1996). Raw water obtained from the 

surface sources can meet the microbial criteria for domestic use after minimal treatment, i.e., 

boiling, addition of bleach or sand filtration (Murray et al, 2004). Boiling can, however, be 

time and energy consuming at the household level and bleach is often too expensive for poor 

households (Monyai, 2004). Thus treatment is frequently not done before domestic use, 

which in turn increases the chances of a waterborne disease outbreak, e.g., from hepatitis E  

and cholera (Dalsgaard et al, 2001). The major health risks associated with surface water are 

from microbial pathogens derived from human and animal faeces. Pathogenic organisms 

found in water with high counts of faecal coliforms include Escherichia coli, Vibrio 

cholerae, Aeromonas hydrophilla, Shigella dysenteria, Salmonella typhimurium, 
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Pseudomonas spp. and Klebsiella spp. and all these organisms can cause waterborne diseases. 

Therefore monitoring of microbial quality of surface water in South Africa is an important 

exercise in public health protection (Momba and Notshe, 2003). 

 

1.2 Current water availability and use in South Africa 

Water in South Africa is obtained from the following three sources in the order of 

magnitude: surface water (77%), return flows (14%) and groundwater (9%). There 

is a 98% assurance level which proposes that any peaks in future demand will 

exceed supply and this is a source of vulnerability that needs to be addressed (REF). 

The available water resources in South Africa are distributed as detailed in Table1.1 

Table 1.1: Water resource allocations per water user group in South Africa. 

 

           Water user/sector  

 

           Proportion of allocation 

 

Agriculture 

 

62% 

Domestic 

Urban 

Rural 

27% 

23% 

4% 

Industrial 3.5% 

Afforestation 3.0% 

Mining 2.5% 

Power generation 2.0% 

 

Source: South African Department of Water Affairs & Forestry (2004).  

1.3 Quality of drinking water and sanitation in South Africa 

Access to clean drinking water and basic sanitation, including toilets, wastewater treatment 

and recycling; influence a country’s developmental progress in terms of human health, 

education and gender equality. The provision of sustainable drinking water and sanitation are 

insufficient in various parts of Africa and, where available, water supply and sanitation 

services are differentiated according to urban, rural or informal settlements. The lack of an 
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adequate water supply at home or in its immediate surrounding area is a particular problem in 

South Africa. In rural regions of Africa, people spend, on average, three hours a day engaged 

in the collection of water for a family of six and this restricts their opportunities for 

education. Lack of access to good quality and inadequate sanitation can cause several 

diseases which are transmitted from human and animal waste to humans via contaminated 

hands, soil, water, etc. There are several diseases that can be prevented with good quality 

water supply and basic sanitation, e.g., diarrhoea and cholera which are estimated to causing 

2 million deaths per year (WHO, 2009).  

The provision of water and sanitation services addresses the critical needs of people. Safe 

water and good sanitation are essential to protect human health and maintaining a disease free 

environment (Okonkwo, 2010). 

 
1.4 Wastewater treatment plants and wastewater effluent 

 

As from 1956, South Africa set a mandate through the South African Water Act (Act 54 of 

1956) that the discharge effluent be treated to acceptable standards and returned to the water 

course of its origin, clean and safe (Morrison et al, 2001). As the demand for water increased, 

due to economic expansion and population growth, the operation of wastewater and sewage 

treatment plants has been operated under stress in South Africa. This exerted pressure on 

water and sanitation authorities to find ways to sustain the quality of water resources (Turton, 

2008). A number of studies conducted thus far have indicated that wastewater and sewage 

effluent from treatment plants and deteriorating infrastructure are a major source of pollution, 

contributing to a number of pollutants found in water resources (Ngwenya, 2006). The 

deteriorating state of municipal wastewater and sewage treatment infrastructure in South 

Africa is the largest factor contributing to the water contamination experienced in most parts 

of the country and a major contributor to health problems in poor communities (Coovadia et 

al, 1992). In many parts of South Africa, there have been outbreaks of typhoid fever 
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including KwaZulu-Natal, Limpopo and the Transkei (Coovadia et al, 1992). Another 

incident occurred in the Eastern Cape where 94 patients were treated with diarrhoea 

symptoms while 18 babies died (Ukhahlamba District Municipality Addendum, 2008). 

 

1.4.1 Environmental and public health implications of poor quality wastewater 

 
The world is facing problems regarding the proper/ recommended management of 

wastewater. This is due to extensive industrialization, ever-increasing population density and 

high urbanized societies (McCasland et al., 2008). The effluents from domestic and industrial 

activities amount to the key sources of the natural water pollution load. This is a crisis in 

terms of wastewater management and can lead to a pollution problem, which not only 

increases treatment cost, but also introduces a range of chemical pollutants and microbial 

contaminants to water sources (Amir et al., 2004). 

The prevention of pollution of water sources and protection of public health by maintaining 

water supplies free from diseases, are the two essential reasons for treating wastewater. This 

is accomplished by removing organic substances that have a high demand for oxygen from 

the system through the metabolic reactions of microorganisms, the separation and settling of 

solids to create an acceptable quality of wastewater effluents, and the collection and recycling 

of microorganisms back into the system, or removal of excess microorganisms from the 

system (Abraham et al., 1997). In municipal wastewater treatment systems, the common 

water quality variables of concern are biological oxygen demand (BOD), chemical oxygen 

demand (COD), dissolved oxygen (DO), suspended solids, nitrate, nitrite and ammonia 

nitrogen, phosphate, salinity and a range of other nutrients and trace metals (Brooks, 1996). 

The presence of high concentrations of these pollutants exceeding the values stipulated by 

national and international regulatory bodies is considered unacceptable in receiving water 

bodies. This is because, apart from causing a major drawback in wastewater treatment 
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systems, they also lead to eutrophication and various health impacts in humans and animals 

(EPA, 2000). In recent years, the reuse of treated effluent that is discharged to the 

environment from municipal wastewater treatment plants is receiving an increasing attention 

as a dependable water resource. In many countries, wastewater treatment for reuse is an 

important aspect of water resources planning and implementation. This is intended for 

discharging high quality water supplies for potable use. Furthermore, wastewater reuse is 

increasingly becoming important for supplementing drinking water needs in some countries 

around the world. The option of reuse of wastewater is becoming a necessity as a result of 

increased climate change leading to droughts and water scarcity (Rietveld et al., 2009). 

 

1.4.2 Characteristics of wastewater effluents 

The physicochemical characteristics of wastewater that are of concern are pH, dissolved 

oxygen (DO), oxygen demand (chemical and biological), solids (suspended and dissolved), 

nitrogen (nitrite, nitrate and ammonia), phosphate, and metals (DeCicco, 1979; Larsdotter, 

2006). A pH less than 7 in wastewater influent is an indication of septic conditions while 

values less than 5 and greater than 10 indicate the presence of industrial wastes and non-

compatibility with biological operations. The pH concentration range for the existence of 

biological life is quite narrow (typically 6-9) (Akpor and Muchie, 2011). Extreme pH is 

detrimental to biological processes in wastewater treatment units (EPA, 1996; Gray, 2002). 

Another parameter that has a significant effect on the characteristics of water is dissolved 

oxygen. It is required for the respiration of aerobic microorganisms as well as all other 

aerobic life forms. Dissolved oxygen concentration is governed by the solubility, 

temperature, partial atmospheric pressure and the concentration of impurities such as salinity 

and suspended solids in the water (Metcalf and Eddy, 2003).  

 



7 
  

Oxygen demand, which may be in the form of BOD or COD, is the amount of oxygen used 

by microorganisms as they feed upon the organic solids in wastewater (FAO, 2007). The 5- 

day BOD test (BOD5) is the most widely used test to measure organic pollution parameter 

applied to wastewater. It involves the measurement of dissolved oxygen used by 

microorganisms in the biochemical oxidation of organic matter. The presence of sufficient 

oxygen promotes the aerobic biological decomposition of an organic waste (Metcalf and 

Eddy, 2003). Although BOD test is widely used, it has a number of limitations, which include 

the requirement of a high concentration of active acclimated microorganisms and the need for 

treatment when dealing with toxic wastes thus, reduces the effects of nitrifying organisms. 

The BOD measures only the biodegradable organics and requires a relatively long time to 

obtain test results (Metcalf and Eddy, 2003). Similarly, the COD test measures the oxygen 

equivalent of the organic material in wastewater that can be oxidized chemically. The COD 

will always be higher than the BOD. This is because the COD measures substances that are 

both chemically and biologically oxidized. The ratio of COD: BOD provides a useful guide 

to the proportion of organic material present in wastewaters, although some polysaccharides, 

such as cellulose, can only be degraded anaerobically and so will not be included in the BOD 

estimation. 

 

Heavy and trace metals are also of importance in water. The metals of importance in 

wastewater treatment are As, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Mo, Ni, K, Se, Na, V 

and Zn. Living organisms require different amounts of these metals (Ca, Co, Cr, Cu, Fe, K, 

Mg, Mn, Na, Ni and Zn) as nutrients (macro or micro) for proper growth. Other metals (Ag, 

Al, Cd, Au, Pb and Hg) have no biological role and therefore are non-essential (Metcalf and 

Eddy, 2003). Heavy metals are one of the persistent pollutants in wastewater. Unlike organic 

pollutants they cannot be degraded but build up throughout the food chain, producing 
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potential human health risks and ecological disturbances. Their presence in wastewater is due 

to discharges from residential dwellings, groundwater infiltration and industrial discharges. 

The build-up of these metals in wastewater depends on many local factors such as the type of 

industries in the region, way of life and awareness of the impact on the environment through 

the careless disposal of wastes (Silvia et al., 2006). 

 

1.4.3 Effect of untreated or partially treated water in the environment and public health 

There is a significant relationship that exists between the quality of the final effluent and the 

receiving water bodies. Chemical and microbiological changes take place in water bodies as a 

result of a variety of anthropogenic activities due to the discharge of raw wastewaters into the 

receiving water bodies such as streams, rivers, lakes and ponds (Momba et al., 2006). These  

activities increase treatment costs and discharge of a variety of potentially pathogenic 

microorganisms to waters, thereby causing waterborne diseases with many health impacts 

and socio-economic effects (Craun, 1991) and a reduction in the quality of water (Simpson 

and Charles, 2000). Igbinosa and Okoh (2009) from their study revealed that there was an 

adverse impact on the physico-chemical characteristics of the receiving watershed as a result 

of the discharge of inadequately treated effluents from the wastewater treatment facility 

which poses a health risk to several rural communities which rely on the receiving water 

bodies primarily as their sources of domestic water. 

 

1.4.4 Efficiency of wastewater treatment plants 

The waste stabilization efficiency of a wastewater treatment plant (WWTP) is dependent on  

the type of sewer collection system, type of waste entering the sewer, type of wastewater 

treatment technology, the quality of domestic water and the standard of living of the 

community (Hammer, 1996). The most important factor that affects the removal efficiency of 
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treatment plants includes seasonal changes. In a previous study, It was reported that the final 

effluents were less polluted in the rainy season due to dilution by the rain, than that recorded 

during the dry season (Kantachote et al., 2009). There are other factors that affect the 

removal efficiency of wastewater treatment plants which include the type of wastewater 

treatment system, temperature, dissolved oxygen, pH, the time of sampling during the day 

and light intensity available. 

 

1.4.5 Inefficiency of wastewater treatment plants 

 The high quality of the final effluent results in a high quality of the receiving water body. 

The inefficiency of sewage treatment plants and their effluents negatively affect the receiving 

water bodies (Momba et al., 2006). The prevalence of infective agents in the final effluents 

after the treatment process is an indication of the inefficiency of the wastewater treatment 

plants for the removal of the pathogens, a result of poor disinfection process and poor 

maintenance of the infrastructure (Pearson and Idema, 1998) especially when the receiving 

water is used for domestic, recreational and agricultural purposes (Tchobanogeuos, 1979). 

The efficiency of sewage treatment plants is measured in terms of removal of organic matter 

determines the general efficiency indicator in terms of average TSS, COD, BOD and 

ammonia removal efficiencies (Sincero and Sincero 1996). There are several factors that are 

responsible for the inefficiency of a wastewater treatment plant viz., poor conditions of 

sewerage system, improper design of the plant and organizational problems (Storhaug, 1990), 

overloading and discharge of industrial effluents (Bataineh et al., 2002), chemical shock, 

inadequate mixing in the equalization tank and inappropriate C/N/P ratio in anaerobic and 

aerobic tanks (Sadeghpoor et al., 2009), short retention time and the treatment efficiency may 

be affected when the system is hydraulically under loaded (Kapur, 1999). 
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1.5 Waterborne bacterial pathogens 

Infectious diseases are commonly transmitted via the faecal-oral route. Infected humans or 

animals excrete viable pathogens. If faecal contamination occurs on the water supply, 

infections result from drinking water or using the water for domestic purposes. The cost, the 

complexity of diagnostic and detection methods make it difficult to know which 

microorganism is responsible for a certain episode, and also some of the microorganisms are 

more likely to cause diseases than others leading to death. The World Health Organization 

has identified several orally transmitted waterborne pathogens that have high health 

significance. These pathogens include bacteria, viruses, protozoa, and one helminth 

(Vissscher, 1990) as detailed in Table 1.2. 

 

1.5.1 Bacteria  

Bacteria are organisms that usually consist of a single prokaryotic cell. They have many 

different shapes; i.e rods, cocci, helical, etc. They are typically small between 0.1 – 5.0 µm 

compared to eukaryotic cells. The WHO (World Health Organisation) identified six bacteria 

that have high health significance. 

 

1.5.1.1 Escherichia coli 

Eschericia coli are Gram-negative, rod-shaped bacteria belonging the family 

Enterobacteriaceae. There are four known classes of virulent E. coli that cause infection in 

humans. These are the enteroinvasive (EIEC) strains, the enteropathogenic (EPEC) strains, 

the enterotoxigenic (ETEC) strains, and the enterohemorrhagic (EHEC) strain designated 

Eschericia coli O157:H7. E. coli infection results in mild to severe diarrhoea which can lead 

to dehydration. Infection of O157:H7 can cause hemolytic uremic syndrome, resulting in 
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severe anemia and kidney failure. Healthy cattle are a significant reservoir. The detection of 

E coli O157:H7 in environmental samples is a major public health concern (Nicolai, 2002). 

 

1.5.1.2 Salmonella and Shigella species 

Salmonella is a rod-shaped, motile Gram-negative bacterium. There is widespread occurrence 

in animals, especially in poultry and swine. Salmonella typhi, the most virulent of the 

Salmonella species, causes Typhoid fever. Symptoms include weakness, confusion, 

headache, and most notably a very high fever. Other Salmonella species generally produce 

milder symptoms: nausea, vomiting, abdominal cramps, mild fever, and headache. Some 

strains of Salmonella have developed antibiotic resistance. 

Shigella is a rod-shaped, non-motile, Gram-negative bacterium. The major symptom is 

watery or blood streaked diarrhea. Shigella spp. can only grow in the intestines of humans but 

can survive for a long time in water. Only a small number of organisms (200 cells) are 

needed to cause infection. Salmonella and Shigella species have been reported to be prevalent 

at all stages of treatment in conventional wastewater treatment plants including the final 

effluents indicating the inefficiency of wastewater treatment plants in totally eliminating 

these pathogens from wastewater (Pant and Mittal 2007). 

 

1.5.1.3 Vibrio cholerae 

Vibrio cholerae is a Gram-negative motile rod shaped bacterium. Infection causes large 

secretions of chloride into the intestines. This in turn causes water and electrolytes to leave 

the body via osmosis. Diarrhea can be very severe and cause death in less than a day. 

Humans are the main reservoir but Vibrio cholerae can multiply in water, which is the natural 

habitat for V. cholera and can  become a pathogen by horizontal gene transfer due to 

environmental stress (Boles et al., 2004).  These organisms transfer genetic material from one 
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another through mechanisms such as conjugation, transformation, or transduction and it is 

incorporated into the recipient chromosome by recombination. These genes may contain 

single or multiple nucleotide mutation. The change in DNA is due to the fact that Vibrios 

contain large chromosomal integrons (Cambray et al., 2010) and belong to the group of 

naturally competent bacteria, which allows them to absorb free DNA from their surrounding 

environment and recombine it into their genome (Seitz and Blokesch, 2013a). This organism 

can also cause wound infections and bacteremia. Cholera has re-emerged as a potential 

infectious disease in the recent past with a worldwide increase in its occurrence (Nicolai, 

2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534830/#B7
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534830/#B69
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Table 1.2: Major waterborne pathogens and diseases caused (Yates, 2013). 

 

 

 

Microorganisms Pathogenic organism Diseases caused 

 

Salmonella Typhoid, 

 

E. coli (enterotoxigenic) Bacillary dysentery 

Bacteria Yersinia Gastroenteritis 

 

Campylobacter Gastroenteritis 

 

Vibrio Cholera 

 

Leptospira Leptospirosis 

 

Polio virus Paralysis 

 

Rota virus Infantile gastroenteritis 

 

Hepatitis A virus Infectious hepatitis 

Viruses Norwalk virus Gastroenteritis 

 

Adenovirus Conjunctivitis 

 

Reovirus Respiratory disease 

 

Echovirus Aseptic Meningitis 

 

Giardia lamblia Diarrhea, malabsorption 

 

Entamoeba coli Diarrhea, ulceration 

 

Entamoeba histolytica Amoebic dysentery 

 

Cryptosporidium parvum Diarrhea 

 

Ascaris lumbricoides Ascariasis 

Protozoa, Ancylostoma Anemia 

helminths and Nectar Anemia 

other parasites Trichuris Diarrhea, anemia 

 

Tenia solium Teniasis 

 

Trichuris trichuria Trichuriasis 
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1.6 Historical background of Yersinia species 

In 1944, Van Loghem proposed that a new genus designated Yersinia, be separated from the 

genus Pasteurella. This proposition became effective in 1974. The first species identified in 

this genus by Malassez and Vingalin 1883 was Yersinia pseudotuberculosis. The second 

species, Yersinia enterocolitica, was identified in 1939 by Schleifstein and Coleman. This 

species was found to be heterogeneous and to contain several related species (‘’Y. 

enterocolitica-like’’) that were subsequently designated Y. intermedia, Y. frederiksenii, Y. 

kristensenii, Y. aldovae, and Y. rhodei. More recently, Y. mollareii and Y. bercovieri were 

also separated from Y. enterocolitica. Finally, the species Y. ruckeri was included in the 

genus. Members of the genus Yersinia are non-spore forming, Gram-negative or Gram-

variable, facultative anaerobic, rod-shaped or coccoid cells of 0.5-0.8 µm in width and 1-3 

µm in length. Y. enterocolitica are of pathogenic importance of humans and certain warm 

blooded animals, whereas the other species are of environmental origin and may generally be 

classified as opportunists (Fenwick and Murray, 1991; Wauters et al., 1988). 

 

Yersinia is well established as a food borne pathogen of human concern and is mostly 

associated with pork products (Nesbakken et al., 1985). Yersinia spp. have been reported as 

contaminants of raw meats and isolated from beef (Fukushima et al., 1987), lamb (Ibraham 

and Mac Rae, 1991), and poultry (De Boer et al., 1982). Yersinia spp. have also been isolated 

from cooked meats including turkey, chicken, pork and lamb (Hudson et al., 1992). The 

detection of Yersinia spp. in meats and other products is of particular concern in relation to 

consumer safety as these organisms are capable of growth on both raw and cooked meats at 

refrigeration temperatures which could lead to the propagation of significant numbers of the 

organism (Manu-Tawiah et al., 1993; Hudson and Mott, 1993). 
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Bacteria of the genus Yersinia cause diseases ranging from enteritis to bubonic plague (Black 

Death). The initial characterization of this genus was performed in 1894 in Hong Kong, when 

Alexandre Emile John Yersin together with Shibasaburo Kitasato identified Yersinia pestis 

(formerly known as Pasteurella pestis) as the causal agent of the bubonic plague (Bottone, 

1997).  

1.6.1 Classification of Yersinia enterocolitica 

Yersinia enterocolitica is the most predominant Yersinia species associated with disease in 

humans (Bottone, 1999; Robins-Browne, 2001). It has also frequently been isolated from 

animals, food and the environment (Fredriksson-Ahomaa et al., 1999; Thoerner et al., 2003; 

Falca˜o et al., 2004). Yersinia enterocolitica is particularly well-adapted to survive in a wide 

range of natural and host environments. As one of the few human pathogens that can 

proliferate at refrigeration temperatures, it is particularly significant for food microbiology 

and in blood transfusion (Robins-Browne, 2001). 

 Y. enterocolitica is divided in 6 biogroups that can be differentiated by biochemical tests: 1A 

(non-pathogenic), 1B (highly pathogenic), 2, 3, 4 and 5 (weakly pathogenic). Serologically, 

they can be seperated into approximately 60 serogroups based on the variability of the O side 

chain (O-antigen) of LPS. Eleven serogroups have been associated with human infections 

(Bottone, 1999), with the majority being caused by serogroups O:3, O:9, O:5,27 and O:8. 

More rarely encountered virulent serogroups are O: 4, 32, O:13, O:18, O:21 (Skurnik and 

Toivanen, 1993). Y. enterocolitica is widely distributed in nature in aquatic and animal 

reservoirs, with pigs serving as a major reservoir for the human pathogenic strains. The 

majority of non-porcine isolated bacteria are of the non-pathogenic group 1A (Bottone, 

1997). This species encompasses three grades of pathogenicity mostly non-pathogenic strains 

(biotype 1A), weakly pathogenic strains of biotypes 2 to 6, and highly pathogenic strains 

(biotype 1B). The high pathogenicity is attributed to the Yersiniabactin-siderophore-mediated 
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iron uptake system. Yersiniabactin is maintained by genes located in the Yersinia 

enterocolitica high-pathogenicity island (Carniel, 2001). 

 

1.6.2 Pathogenesis model of Yersinia enterocolitica 

The bacteria invades the epithelial cells, binding to intestinal brush-border membranes, from 

where they penetrate M cells and gain access to and multiply in Peyer’s patches (Fig 1.1). 

Bacteria taken up by M cells are usually phagocytosed and killed by macrophages of Peyer’s 

patches; however, pathogenic Y. enterocolitica strains have several surface components 

which enable them to resist phagocytosis and escape from complement-mediated death. 

Continuing proliferation of the bacteria results in an inflammatory reaction, which leads to 

local micro abscess formation and ulceration of the overlying epithelium. Finally, the bacteria 

may spread to the mesenteric lymph nodes and enter the bloodstream (Robins-Browne 2001). 

Source: (Sabina et al, 2011) 

Fig 1.1: Pathogenesis model of Yersinia enterocolitica 
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1.6.3 Clinical picture of Yersinia enterocolitica 

Yersinia enterocolitica causes a wide array of gastrointestinal syndromes such as enteritis, 

enterocolitis, acute mesenteric lymphadenitis and terminal ileitis depending partly on the age 

and condition of the host and serogroup of bacterial strain. Acute enteritis with fever and 

inflammatory diarrhoea is the most frequent occurrence in children, while acute terminal 

ileitis and mesenteric lymphadenitis, often mimicking appendicitis, is more common in 

young adults (Lee et al., 1990; Chandler and Parisi, 1994). Illness may last for 3 – 28 days in 

infants and 1 to 2 weeks in adults. Septicemia may occur in immunosuppressed hosts or those 

with an underlying disorder especially when an iron overload was induced (Blei and Puder, 

1993). Infection with Yersinia enterocolitica, predominantly serogroup O:3, can also lead to 

secondary immunologically induced sequelae such as arthritis, erythema nodosum, 

glomerulonephritis or myocarditis (Laitenen et al., 1972). In most cases, Y. enterocolitica 

infections and their sequelae are self-limiting. 

1.6.4 Virulence and epidemiology of the Yersinia species 

The virulence of pathogenic biotypes is attributed to the presence of plasmidial and 

chromosomal genes. The virulence plasmid of Yersinia (pYV) encodes adhesin A (YadA), 

Yersinia outer proteins (Yops) from the type III secretion system, and transcriptional regulator 

gene (virF) (Cornelis, 2001). The chromosomal virulence genes include inv (invasin), ail 

(attachment and invasion locus), ystA (Yersinia stable toxin) and myfA (mucoid Yersinia 

factor) (Ravell, et al, 2001). Some of these factors are restricted to pathogenic pYV- bearing 

strains of Yersinia enterocolitica, such as ail, ystA and myfA, while the inv gene is common to 

pathogenic and non-pathogenic strains (Falca˜oet al., 2006). Yersinia enterocolitica biotype 

1A strains are classically considered as non-pathogenic, since they do not bear pYV plasmid 

and chromosomal virulence genes, such as ail, myfA, ystA and the ysa locus (Robins-Browne, 

1989).  
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1.6.5 Plasmid-encoded virulence factors 

All virulent Y. enterocolitica strains carry an approximately 70-kb virulence plasmid, termed 

pYV (plasmid for Yersinia virulence), which is required for expression of virulence. 

Virulence plasmids of pathogenic Yersinia species are closely related to each other, sharing 

functional similarities and a high degree of DNA homology. The presence of pYV enables 

the bacteria to survive and multiply in lymphoid tissues of their host (Sato et al, 2006). 

The YadA protein promotes binding to epithelial cells. The gene codes for the major outer 

membrane protein YadA, which forms a fibrillar matrix on the surface of Y. enterocolitica and 

can be expressed at 37°C. 

 

 YadA plays a protective role in Y. enterocolitica, with different functions such as, serum 

resistance, surface hydrophobicity autoagglutination, adhesion to epithelial cells, expression 

of fibrils on the surface, haemagglutination, binding to intestinal brush border membranes 

and resistance to killing by polymorphonuclear leukocytes (Heise and Dersch, 2006). One 

major role of YadA is to protect Y. enterocolitica against killing by polymorphonuclear 

leukocytes. Although the mechanism is unknown, YadA has been suggested to act by binding 

to eukaryotic cells, and in doing so, allow delivery of the Yops, thus preventing phagocytosis 

(Grosdent et al, 2002). 

 

The Yop genes located on the pYV are well-known to code for at least 14 Yops proteins, 

previously called Yersinia outer membrane proteins because they are found in the outer 

membrane fraction of bacterial extracts (Lee et al, 2001). Some of the Yops form pores in the 

eukaryotic cell membrane, while others Yops are effector proteins delivered through these 

pores into the cytosol of the target cell. A minimum of different Yop effectors are injected by 

the Ysc secretion translocation apparatus (Tardy et al, 1999). The genes specific for the type 
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III machinery (ysc) are also located on the pYV. The yop and ysc genes are temperature and 

calcium-regulated and can be maximally expressed at 37°C in response to the presence of a 

low calcium concentration (Venecia and Young, 2005).  

 

1.6.6 Chromosome-encoded virulence factors 

 
Chromosome-encoded factors also play a role in pathogenicity. The chromosome encoded 

factors are involved in the adhesion and invasion to the host. Adherence to and invasion of 

epithelial layers require at least two chromosomal genes, inv (invasion) and ail (attachment 

invasion locus). 

(a). The invasion (inv) codes for Inv, an outer membrane protein found on the surface of 

Yersinia, which plays a vital role in promoting propagation and entry into epithelial cells of 

the stomach lining during the initial stage of infection, that is responsible for binding to β-1-

integrins on the apical surface of M cells and initiating uptake of the organism. Entrance 

through these cells leads to accumulation of bacteria in the Peyer’s patches and spread to the 

mesenteric lymph nodes (Hamzaoui et al, 2004). This gene is found in all Yersinia species; 

however non-pathogenic strains lack functional inv homologous sequences (Revell and Mille, 

2000). Expression of inv in Y. enterocolitica responds to both temperature and pH, inv 

expression is higher at 26°C compared to 37°C during in vitro growth (Logue et al, 2000).  

(b). The attachment invasion locus (ail) codes for the surface protein ail, which is produced at 

37°C which is in contrast to the inv. The ail is known to be restricted to strains of particular 

biotypes and serotypes associated with disease (Jourdan et al, 2000). 

(c) The heat-stable enterotoxin role in pathogenesis of Y. enterocolitica infection is unclear. 

Non-pathogenic strains of Y. enterocolitica and strains of related species have been found to 

produce Yst. Absence of enterotoxin production in vitro at temperatures exceeding 30°C 

suggests that the toxin is not produced in the intestinal lumen (Amirmozafari and Robertson, 

1993). 
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1.7 Significance of the Yersinia species in drinking-water 

Although most Yersinia spp. detected in water are probably non-pathogenic, in certain 

circumstances evidence has been presented to support transmission of Y. enterocolitica and Y. 

pseudotuberculosis to humans from untreated drinking-water. The most likely source of 

pathogenic Yersinia spp. is human or animal waste. The organisms are sensitive to 

disinfection processes. Within a Wastewater Sewage Plant, control measures that can be used 

to minimize the presence of pathogenic Yersinia spp. in drinking-water supplies include 

protection of raw water supplies from human and animal waste, adequate disinfection and 

protection of water during distribution. Owing to the long survival and/or growth of some 

strains of Yersinia spp. in water, E. coli (or, alternatively, thermotolerant coliforms) is not a 

suitable index for the presence/absence of these organisms in drinking-water. 

 

1.8 Scope of the current study 

 

Due to urbanization and population growth, water shortage is becoming a serious concern, 

especially in arid and semi-arid regions. Also, rapid increase in urbanization and population 

result in the generation of more wastewater. It is known that wastewater contains a wide 

range of pathogens and, sometimes, heavy metals and organic compounds that are hazardous 

to human health and the environment. Hence, the discharge of inadequately treated 

wastewater into the environment degrades quality of water and the surrounding environments 

(Bartram et al., 2005). Since large amounts of wastewater effluents are passed through 

sewage treatment systems on a daily basis, there is a need to remedy and diminish the overall 

impacts of these effluents on receiving water bodies. This can be achieved through the 

application of appropriate treatment processes, which will help to minimize the risks to public 

health and the environment. To achieve unpolluted wastewater discharge into receiving 

waterbodies, there is the need for careful planning, adequate and suitable treatment and 
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regular monitoring. The current study was undertaken to investigate the prevalence of 

Yersinia enterocolitica in treated effluent of two WWTP’s and its receiving surface water in 

Durban, South Africa, and to correlate this finding with physicochemical properties of the 

wastewater effluent. The correlation between antibiotic resistance patterns, virulence 

determinants of Yersinia enterocolitica and their fingerprinting profiles using RAPD-PCR 

was also determined. 

1.9 Hypotheses 

It was hypothesized that treated effluent from wastewater treatment plants are a potential 

source of Yersinia spp in surface water. It was further hypothesized that the Yersinia species 

isolated from the treated wastewater effluent harbour various virulence determinants and are 

resistant to the commonly used antibiotics. 

 

1.10 Objectives 

The objectives of this study were: 

1.10.1 To determine the distribution and abundance of Yersinia species in treated wastewater 

effluent and receiving surface water resources. 

1.10.2 To determine the phenotypic antibiotic resistance and virulence determinants of 

Yersinia eneterocolitica recovered from treated effluent and receiving surface water. 

1.10.3 To determine genetic relatedness of selected Yersinia enterocolitica isolates and 

correlate with their phenotypic resistant attributes. 
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1.11 Aims 

The aims of this study were: 

1.11.1 Enumeration of Yersinia species by membrane filtration and selective plating on 

Yersinia selective agar (YSA). 

1.11.2 Identification and confirmation of Yersinia species isolates via biochemical tests and 

PCR. 

1.11.3 To differentiate the isolates into different important species using PCR targeting 

specific gene.  

1.11.4 To determine the antibiotic susceptibility profiles of the isolates using the Kirby-Bauer 

disk diffusion assay. 

1.11.5 Investigation of the absence or presence of virulence genes in the isolates via PCR. 

1.11.6 To differentiate between species of the emerging bacterial pathogens using Random 

Amplified Polymorphic DNA (RAPD) analysis. 
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CHAPTER 2 

PHYSICO-CHEMICAL ANALYSIS AND ENUMERATION OF YERSINIA IN 

TREATED WASTEWATER EFFLUENT AND RECEIVING WATER BODIES 

 

   Abstract  

Waterborne diseases are predominantly caused by enteric pathogenic microorganisms 

including bacteria, viruses and protozoa, which are introduced into surface water through 

disposal of improperly treated wastewater or agricultural waste and runoff. A large part of the 

population in South Africa relies on water resources of inadequate microbial quality to meet 

their domestic and recreational needs. This study investigated the physicochemical properties 

and Yersinia spp. population of treated effluent from two wastewater treatment plants in 

Durban and the relevant receiving rivers.  The temperature of the water samples tested ranged 

from 15 - 23ºC for the New Germany treatment works (NGTW) and 17 - 24ºC for the 

Northern Wastewater treatment plant (NWWTP), while pH ranging from 6.8 - 7.8 and 6.7 - 

9.0 was recorded for NGTW and NWWTP, respectively. The COD values ranged from 37 - 

309 mg/L for NGWT and 52 - 292.3 mg/L for NWWTP. Biological oxygen demand (BOD) 

values for the NGTW ranged from 4.4 - 282.9 mg/L, while that for NWWTP ranged from 

106 - 205.1 mg/L. The correlation matrices showed a significant (p<0.05) positive correlation 

(r = 0.898) between pH and BOD. A stronger (p<0.01) negative correlation (r = -0.938) was 

observed between the Yersinia species load and the total dissolved solids (TDS) in samples 

collected before chlorination at the NGTW. There was a strong significant (p<0.01) positive 

correlation (r = 1.000) between pH and COD for the upstream point of the NWWTP. The 

high microbial counts obtained before chlorination (BC), was 8-37% after chlorination (AC) 

for both plants. The Yersinia population ranged between 4.3 - 7.8 log cfu/ml and 4 -7.3 log 

cfu/ml for NGTW and NWWTP, respectively. The highest counts were observed at the 

upstream points for both treatment plants. A total of 473 isolates were identified on the basis 

of colony morphology on Yersinia selective agar (YSA). Following biochemical tests, 274 

isolates were presumptively identified as belonging to Yersinia species. The presumptive 

isolates were further confirmed by PCR with 171 as the Yersinia spp and 40.93% (70/171) 

isolates confirmed as Yersinia enterocolitica. This study showed that the independent 

treatment plants monitored met some of the standards for water quality such as pH and 

temperature but fell short for the discharge effluent microbial quality standard. The study also 

demonstrated that Yersinia spp. survived the treatment process and confirmed that Ethekwini 

municipal wastewater treatment plants still discharge Yersinia pathogens into surface water 

of the Umngeni and Aller rivers. This could pose a health risk to the communities which rely 

on the receiving water bodies as their primary sources of domestic water. There is a need for 

the intervention by appropriate regulatory agencies to ensure the production of good quality 

treated final effluents. 
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2.1  Introduction 

South Africa is a water stressed country because of the low average rainfall of 465 mm per 

annum received which is below the global average of 860 mm per annum (Pitman, 2011). 

The availability of good quality water is of paramount importance to minimise or eliminate 

the risk of contamination of surface water bodies with pathogenic microorganisms (Pitman, 

2011). In South Africa, nearly 80% of the population rely on surface water as the main source 

of water for their domestic and recreational needs (Luyt et al., 2012). Most of these people 

are poor and rely on state intervention for improved water supply. Demand for this important 

scarce resource is expected to increase due to rapid industrial development, increasing human 

population and increase in consumption increase, and the resulting impact of human activities 

on the environment (Adewumi et al., 2010; Ngwa et al., 2013). Natural water bodies such as 

rivers are subject to dramatic changes in microbial and physico-chemical qualities as a result 

of a variety of anthropogenic activities on the watershed. These changes are caused by 

discharges of municipal raw waters or improperly treated effluent at a specific point-source 

into the receiving surface waters (Igbinosa and Okoh 2009). 

 

Yersinia is a bacterial genus  belonging to the family Enterobacteriaceae. Yersinia species 

are Gram-negative, rod-shaped bacteria, a few micrometers long and are facultative 

anaerobes (Ryan and Ray, 2004). At present, the genus includes 11 established species: Y. 

pestis, Y. pseudotuberculosis, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii, 

Y. bercovieri, Y. mollaretii, Y. rohdei, Y. aldovae and Y. ruckeri.  Among these species only 

Y. pestis, Y. pseudotuberculosis and some strains of Y. enterocolitica are of pathogenic 

importance to humans and certain warm blooded animals, whereas the other species are of 

environmental origin and may best act as opportunists (Murray et al., 1991; Wauters et al., 

1988).  

http://en.wikipedia.org/wiki/Genus
http://en.wikipedia.org/wiki/Enterobacteriaceae
http://en.wikipedia.org/wiki/Gram-negative
http://en.wikipedia.org/wiki/Bacteria
http://en.wikipedia.org/wiki/Facultative_anaerobe
http://en.wikipedia.org/wiki/Facultative_anaerobe
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Yersinia enterocolitica is the most prevalent Yersinia species linked to disease in humans 

(Bottone, 1999; Robins-Browne, 2001). It has also frequently been isolated from animals, 

food and the environment (Fredriksson-Ahomaa et al., 1999; Thoerner et al., 2003; Falca˜o et 

al., 2004). Yersinia enterocolitica is particularly well-adapted to survive in a wide range of 

natural and host environments and can proliferate at refrigeration temperatures. It is 

particularly significant in food microbiology and in blood transfusion (Robins-Browne, 

2001). Yersinia enterocolitica is an enteric bacterium that has been identified as an emerging 

waterborne pathogen (Theron et al., 2002; Sharma et al., 2003), however, reports of 

waterborne disease caused by Y. enterocolitica are few. Studies have documented the 

occurrence of various Yersinia spp. in environmental waters (Zanfaly et al., 2008; Amasiani 

et al., 2013; Sahota et al., 2014). The majority of Yersinia isolates recovered from water are 

considered to be non-pathogenic, due to the different subtypes and some strains which are 

named Y. enterocolitica-like strains due to a few phenotypic similarities they have with the 

Yersinia enterocolitica isolates. However, previous studies have suggested that Y. 

enterocolitica subtyping analyses may not be a reliable indication of pathogenicity but the 

detection of the pYV virulent plasmid can differentiate the pathogenic from non-pathogenic 

strains (Grant et al., 1998; Thoerner et al., 2003; Bhagat and Virdi., 2007).  

Considering that Y. enterocolitica is associated with animal hosts and shed in the faeces of 

infected animals, it is reasonable to assume that waterborne transmission of Y. enterocolitica 

may be occurring (Bottone, 1997). Illness caused by Y. enterocolitica infection is referred to 

as yersiniosis and can result in a wide variety of disease outcomes. Typical disease symptoms 

include those associated with gastrointestinal disease, such as fever, abdominal pain and 

diarrhoea (Bottone, 1997). However, the consequences of infection can be very serious, 

particularly in sensitive patients like the young, the elderly and the immunocompromised 

(Sharma et. al., 2003). Previous studies conducted in some provinces in South Africa have 
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implicated treated wastewater as a point source of contamination of receiving watershed with 

pathogenic and emerging pathogenic microorganisms (Igbinosa and Okoh, 2009) .However; 

there is a shortage of information on the prevalence of Yersinia spp. in treated wastewater 

effluents of some treatment plants in Durban, South Africa. This study therefore investigated 

the prevalence of Yersinia spp., especially Yersinia enterocolitica in treated wastewater 

effluent of two independent WWTP’s in Durban and evaluate the impact of the effluent 

quality on receiving water surfaces. This study also evaluated the correlation between certain 

physico-chemical parameters of the wastewater and the Yersinia spp. counts. 
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2.2 Materials and Methods 

2.2.1 Plant description  

The two wastewater treatment plants investigated in this study were the Northern wastewater 

treatment plant (NWWTP) and the New Germany treatment works (NGTW) located in 

Durban, South Africa. The NWWTP is located at geographical coordinates 29°48′45.62′′S 

and 30° 59′ 45.62′′ E and processes  70 ML per day of industrial and domestic wastewater 

and  the treated effluent is discharged into the Umgeni River. The NGTW is located at 

geographical coordinates 29°48′ 21.68′′S and 30°53′ 50.44′′E and treats more of the domestic 

waste than industrial waste. The capacity of the plant is about 7 ML per day but running at a 

capacity less than 1ML at the time of sampling. Treated effluent from this plant is released 

into Aller River, Alongside the river is an informal settlement with inadequate sewage and 

waste removal system and the residing community is believed to rely on the receiving river 

effluent for some of their day-to-day domestic activities. 

2.2.2 Collection of water samples 

Wastewater sample collection was done for six consecutive weeks (February – March), for 

both plants, at four sampling points of interest namely: before chlorination (BC), treated 

effluent discharge point after chlorination (DP), upstream (US) and downstream (DS) of the 

river receiving the treated effluent. Samples were collected in 2 X 1L plastic containers pre-

sterilized by soaking in 70% (v/v) ethanol. During sampling, the containers were first rinsed 

with water from the respective sampling point. The containers were not filled to the top but a 

headspace was left to allow for proper mixing during analysis. The samples were placed in a 

cooler box filled with ice packs and transported to the Department of Microbiology at the 

University of KwaZulu-Natal (Westville campus). Samples were stored at 4 °C and analysed 

within 24 h of collection. 
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2.2.3 Physico-chemical Parameter Analysis 

Temperature of the water samples was measured on site using a portable mercury 

thermometer (Scientific, USA); turbidity was measured with a turbidity meter 21000P 

(HACH, USA); pH was determined using a Microprocessor pH meter 211 (HANNA, USA). 

Chemical oxygen demand (COD) was measured using a Spectroquant Nova 60 (Merck, 

USA) according to the manufacturer’s instructions. A 3 ml sample was added to COD test 

cell (Merck), thoroughly mixed and heated for 2h in a TR420 spectroquant thermo-reactor 

and cooled to room temperature in the dark. The COD test cells were shaken and cooled 

further for another 10 minutes and read using the Spectroquant Nova 60 (Merck, USA).  

Total dissolved solids (TDS) were measured using the CDC 401 probe and HQ40d 

multimeter (HACH Colorado, USA). Dissolved oxygen (DO) was determined using the LDC 

101 probe with an HQ40d multimeter (HACH) for day 0 and day 5 after incubation at 20 ºC 

and the biological oxygen demand (BOD5) calculated thereafter using the two values using 

the following equation: 

 BOD5 (mg/L) = D1-D2 / P 

 Where, (D1= DO of diluted sample immediately after preparation, D2= DO of the sample 

after 5 days incubation at 20 ºC and P = volumetric fraction of the sample used). 

 

2.2.4 Microbial Analysis 

2.2.4.1 Enumeration and isolation of Yersinia species 

Five hundred millilitres of each water sample was filtered through a 0.45 µm pore membrane 

(PALL Life Sciences, Mexico). Using sterile forceps, filters containing the residue from the 

filtrate were rolled such that sample residue was on the inside. Rolled filters residue were 

placed into test tubes containing 10 mL modified tryptic soy broth (mTSB) and incubated at 

12 °C for 2-3 days. After 24 h of incubation, 10 μL of irgasan stock solution (4 mg/mL in 
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methanol) was added to each enrichment culture, to achieve a final concentration of 4 μg/mL 

(Bhaduri et al., 1997). To reduce the background flora, a 0.5 ml portion of the enrichment 

culture was transferred into 4.5 ml of 0.5% potassium hydroxide solution (KOH) and mixed 

gently for 20 s (Söderqvist et al., 2011). Thereafter, 1 ml of the treated samples was used for 

10- fold serial dilutions in sterile distilled water and 100 μl of each dilution was then spread 

plated onto Yersinia selective agar (YSA) and plates were incubated at 28 °C for 16-24 h. 

After incubation, the plates were observed for colonies displaying typical Yersinia spp. 

morphology of deep red centre with a transparent margin, often referred to as having “bulls-

eye” appearance. The colonies were enumerated and expressed in colony forming units per 

millilitre (cfu/ml). 

 

2.2.4.2 Biochemical Identification and Molecular Confirmation of Yersinia spp. by PCR 

The presumptive colonies were further identified by the biochemical reactions that would 

assist in eliminating organisms that may grow and resemble Yersinia spp on the YSA agar. 

The biochemical tests performed include urease test, citrate utilization, lactose fermentation 

and oxidase test.  DNA extraction was done from the presumptive colonies tested positive 

from biochemical tests screening. The isolates were grown on tryptic soy agar (TSA) at 37 °C 

for 24 h. Following incubation, 5 single colonies were picked and transferred into 100 μL 

nuclease-free water in 1.5 ml Eppendorf tube and homogenized by vortexing. The tubes were 

then placed in a boiling water bath at 100 °C for 10 min, cooled down centrifuged at 12000 

rpm for 3 min at 25 °C and immediately placed on ice. The supernatant was transferred into a 

new tube and used directly as DNA template in PCR assay (Sambrook and Russell, 2001) for 

Yersinia spp. identification. Each 25 µl reaction mixture contained 20 pmol of each primer 

(Table 2.1), 0.20 mM dNTPs, 4 mM MgCl2, 2.5 U of Taq DNA polymerase, 2.5 µl of 10X 

PCR buffer and 1 µl of the DNA template. Cycling conditions were initial denaturation (80 
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°C, 5 min), 30 cycles of amplification; 1 min of denaturation at 94 °C, 1 min of annealing at 

63 °C and 2 min of extension at 72 °C. For all the reactions 5 µl of each PCR product was 

analyzed by electrophoresis on 1.5% (w/v) agarose gels. The products were visualized by UV 

transillumination (Syngene, UK) after staining in 1 mg/ml ethidium bromide for 15 min. 

 

2.2.4.3 Molecular identification of Yersinia enterocolitica  

DNA was extracted as described in section 2.2.4.2. To specifically amplify the Y. 

enterocolitica 16S rRNA gene, a primer set by Neubauer et al. (2000) was used (Table 2.1).  

Each 25 µl reaction contained the Y. enterocolitica 16S rRNA-specific primers at a 

concentration of 80 nM each, 200 µM dNTPs, 0.5 U of Taq polymerase, 2.5 µl 10x PCR 

buffer and 2 µl of DNA template. Cycling conditions were: denaturation step at 94 °C for 5 

min, followed by 36 cycles consisting of heat denaturation at 94 °C for 45 s, annealing at 62 

°C for 45 s, and extension at 72 °C for 45 s. A final extension was performed at 72 °C for 7 

min. For all the reactions, 5 µl of each PCR product was analyzed by electrophoresis on 1.5% 

(w/v) agarose gels. The products were visualized by UV transillumination (Syngene, UK) 

after staining in 1 mg/ml ethidium bromide for 15 min. 

 

2.2.4.4 Multiplex PCR for identification of Y. pseudotuberculosis and Y. pestis 

DNA was extracted as described in section 2.2.4.2. A multiplex PCR was performed for the 

confirmation of the Y. pseudotuberculosis and Y. pestis using primer sets shown in Table 2.1. 

Each 25 µl contained 1 µl of genomic DNA, 1X PCR buffer, 0.2 mM dNTPs, 0.3 mM of 

each primer and 0.75 U Taq polymerase. The cycling conditions were 95 °C for 5 min, 40 

three-step cycles, 94 °C for 20 s, 60 °C for 20 s, 72 °C for 15 s. For all the reactions, 5 µl of 

each PCR product was analyzed by electrophoresis on 1.5 % (w/v) agarose gels. The products 
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were visualized by UV transillumination (Syngene, UK) after staining in 1 mg/ml ethidium 

bromide for 15 min. 

Table 2.1: Primers used in this study for PCR detection of genes specific to certain Yersinia 

species. 

Target organism 

 

 Primer Sequence (5´-3ˋ) 

 

Amplicon 

size (bp) 

Reference 

 

Yersinia spp. GCGGCAGCGGGAAGTAGTTTA 749  Kalheinz et al.,  (1998) 

 
TACAGCGTGGACTACCAGGGT 

  

    Y. enterocolitica AATACCGCATAACGTCTTCG 330  Neubauer et al., (2000) 

 

CTTCTTCTGCGAGTACGTC 

  

    Y. pseudotuberculosis GTCTGGGCTTTGCTGGTC 756  Steknova et al., (2008) 

 
ACGTCGTCTGTCATGATTCG 

  

    Y. pestis GTCTGGGCTTTGCTGGTC 510  Steknova et al., (2008) 

 

CTTGTTAGCGATAGTATCAGAGAAG 

   

 

2.2.5 Statistical Analyses of data 

 

Mean and standard deviation calculations were carried out using Microsoft excel office 2010.  

The Pearson’s correlation of the microbial counts and the physicochemical parameter data 

was done using the SPSS 18.0 software for windows program (SPSS, Inc. USA) and 

correlations were considered statistically significant at P values < 0.05 and P values <0.01. 
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2.3. Results 

2.3.1 Physicochemical parameters of water samples 

The physicochemical profiles of the treated effluents and receiving rivers of NWWTP and 

NGTW are presented in Table 2.2 and Table 2.3, respectively. The pH values were between 

6.7 ± 0.0 – 8.8 ±.01 for NGTW and 6.7 ± 0.6 - 9.0 ± 0.08 for NWWTP. These values varied 

between both plants and were within the recommended limits for surface water.  The lowest 

pH (6.7) recorded was from the UP point in NGTW and the BC point of the NWWTP while 

the highest (9.0) was recorded at the UP point in NWWTP. The temperature of the water 

samples fluctuated from 15 °C to 23 °C and 17 °C to 24 °C for the NGTW and NWWTP, 

respectively.  

The turbidity readings varied from plant to plant and ranged between 3.2 ± 0.08 to 452 ± 0.8 

and 2.23 ± 0.12 to 16.2 ± 0.08 NTU for NGTW and NWWTP, respectively. The high 

turbidity values were recorded for the NGTW in comparison to the NWWTP which had 

much lower readings (Table 2.2 & 2.3). TDS profiles varied for both plants as the readings 

were between 183.5 ± 0.1 to 772.3 ± 0.4 and 226.3 ± 1.2 to 2156 ± 0.8 NTU for the NGTW 

and NWWTP respectively.  

The COD values obtained ranged between 37 – 309 mg/mL and 52 – 292.3 mg/mL for both 

NGTW and NWWTP, respectively (Table 2.2 & 2.3). The BOD values ranged between 4.4 – 

314 mg/mL and 10.6 – 205.1 mg/mL for NGTW and NWWTP, respectively.  
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Table 2.2: Physicochemical profiles of treated effluents of the NGTW and its receiving water bodies  

over the sampling period. 

Key: UP- upstream, BC- before chlorination, AC- after chlorination, DS-downstream 

Values represent means of triplicate data ± standard deviation. 

Sampling 

Time 

 (Weeks) 

 

Point  

 

COD 

 (mg/L) 

 

Temperature 

(˚C) 

 

Turbidity 

(NTU) 

  

TDS 

 

pH 

 

BOD  

(mg/L)       (mg/L) 

  UP 269 ± 4.1 23 ± 0.0 13.2 ± 0.0 429.7 ± 0.5 8.8 ± 0.1 23.2 ± 0.4 

 

1 BC 94 ± 22.2 22 ± 0.0 21.2 ± 0.00 540.7 ± 0.5 7.2 ± 0.0 314 ± 2.6 

  AC 309 ± 0.8 21 ± 0.0 14.6 ± 0.3 534  ± 1.4 8.2 ± 0.1 105.5 ± 1.2 

  DS 292 ±  24.8 22 ± 0.0 13.4 ± 0.1 553.7± 5.4 7.4 ± 0.0 162.1 ± 8.6 

                

  UP 37.0 ± 4.5 18 ± 0.0 2.05 ± 0.05 214.1 ± 0.1 8.5 ± 0.3 13.7 ± 0.4 

2 BC 72.0 ± 8.0 23 ± 0.0 263  ± 0.82 659.7 ± 0.5 7.4 ± 0.1 282.9 ± 2.5 

  AC 92.7 ± 17.6 22 ± 0.0 1.25 ± 0.01 476.3 ± 0.5 7.6 ± 0.1 104.3± 0.5 

  DS 75.7 ±  4.6 19 ± 0.0 36.9 ± 1.52 375.0 ± 0.0 8.3 ± 0.1 161.2 ± 5.8 

                

  UP 222.7 ± 6.9. 17 ± 0.0 3.2 ± 0.08 197.4 ± 0.1 8.0 ± 0.0 13.4 ± 0.05 

3 BC 185.3 ± 15.1 22 ± 0.0 280.7 ± 3.4 772.3 ± 0.4 8.1 ± 0.0 159.3 ± 1.34 

  AC 100.7 ± 4.8 22 ± 0.0 10.2 ± 0.04 582.6 ± 1.2 7.3 ± 0.0 26.4± 0.4 

  DS 187.0 ±  41.8 18 ± 0.0 94.6 ± 1.61 401 ±  1.4 7.7 ± 0.0 59.8 ± 9.4 

                

  UP 229.0 ± 36.3 15 ± 0.0 5.00 ± 0.02 189.6 ± 0.3 7.4 ± 0.0 11.3 ± 1.2 

4 BC 187.7 ± 20.2 20 ± 0.0 9.99 ± 0.00 590.3 ± 0.5 6.8 ± 0.0 123.3 ± 12.1 

  AC 152.37 ± 13.8 20 ± 0.0 34.5 ± 0.16 576.7 ± 0.5 6.8 ± 0.0 33.6 ± 2.4 

  DS 72.3 ± 16.4 17 ± 0.0 53.2 ± 1.61 432 ± 0.5 7.1 ± 0.0 79.6 ± 1.4 

                

  UP 161 ± 2.4 16 ± 0.0 21.4 ± 0.4 282.7 ± 0.5 6.7 ± 0.0 4.4 ± 0.29 

5 BC 216 ± 8.1 20 ± 0.0 19.6 ± 0.0 550.7 ± 1.7 6.9 ± 0.1 73.4 ± 12.5 

  AC 170 ± 1.6 20 ± 0.0 8.0 ± 0.0 380.0 ± 0.8 7.0 ± 0.0 31.5 ± 1.9 

  DS 287 ± 4.0 15± 0.0 22.1 ± 0.3 343.3 ± 0.5 7.0 ± 0.0 43.2 ± 1.6 

                

  UP 303.3 ± 0.5 21 ± 0.0 8.6 ± 0.1 183.5 ± 0.1 7.5 ± 0.0 7.3 ± 0.1 

6 BC 297 ± 0.0 20 ± 0.0 268.7 ± 0.5 619.3± 0.5 6.9 ± 0.1 91.4 ± 1.6 

  AC 300.6± 0.5 21 ± 0.0 93.3 ± 1.7 480.3 ± 1.2 7.4 ± 0.0 16.6 ± 1.1 

  DS 185.0 ± 0.8 22 ± 0.0 452 ± 0.8 465.6 ± 0.5 7.4  ± 0.0 26.8 ± 1.5 
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Table 2.3: Physicochemical profiles of treated effluents of the NWWTP and its receiving water bodies 

over the sampling period. 

Sampling 

Time 

(Weeks) 

 

Point 
 

COD 

 

Temperature 

(˚C) 

 

Turbidity 

(NTU) 

 

TDS  

(mg/L) 

 

pH 

 

BOD  

(mg/L) (mg/L) 

 UP 152.3 ± 1.9 22 ± 0.0 9.17 ± 0.02 293.7 ± 0.5 7.3 ± 0.1 22. ± 0.4 

1 BC 58.3 ± 2.1 22 ± 0.0 2.88 ± 0.00 344.0 ± 0.8 6.7 ± 0.6 40.7 ± 5.0 

 AC 292.3 ± 6.3 21 ± 0.0 2.41 ± 0.02 344.7  ± 0.5 7.7 ± 0.4 110 ± 0.9 

 DS 138.7 ±  10.3 22 ± 0.0 9.20 ± 0.01 346.0 ± 0.0 7.4 ± 0.3 205.1 ± 3.8 

        

 UP 254.7 ± 13.5 19 ± 0.0 16.2 ± 0.08 294.3 ± 0.5 9.0 ± 0.08 21.5 ± 0.1 

2 BC 52.0 ± 16.5 19 ± 0.0 13.9  ± 0.12 369.0 ± 0.8 8.9 ± 0.1 91.1 ± 0.06 

 AC 96.0 ± 24.9 20 ± 0.0 11.0 ± 0.04 3743  ± 0.5 8.2 ± 0.08 12.2± 0.1 

 DS 56.3 ±  15.06 19 ± 0.0 7.15 ± 0.02 2156 ± 0.8 7.7 ± 0.1 178.9 ± 0.8 

        

 UP 67.3 ± 17.7 19 ± 0.0 2.7 ± 0.4 293.7 ± 0.9 7.5 ± 0.1 12.7 ± 0.1 

3 BC 175.7 ± 2.9 19 ± 0.0 2.23  ± 0.12 338.3 ± 5.4 7.6 ± 0.2 111.3 ± 0.8 

 AC 123.3 ± 9.3 18 ± 0.0 2.4 ± 0.03 345.3  ± 0.5 7.7 ± 0.03 67.4 ± 0.6 

 DS 87.3 ±  12.7 19  ± 0.0 9.9 ± 0.02 226.3 ±  1.2 7.2 ± 0.02 81.1 ± 6.8 

        

 UP 84.0 ± 8.0 17 ± 0.0 2.56 ± 0.1 292.3 ± 2.4 7.2 ± 0.0 10.8 ± 0.3 

4 BC 181.3 ± 2.1 18 ± 0.0 4.70 ± 0.09 353.7 ± 0.9 7.1 ± 0.0 158.5 ± 3.5 

 AC 85.3 ± 9.9 17 ± 0.0 5.01 ± 0.11 355.7 ± 0.5 7.2 ± 0.0 70.7 ± 0.8 

 DS 76.7 ± 22.4 17 ± 0.0 6.18 ± 0.12 1744.7 ± 6.0 7.4 ± 0.0 55.9 ± 1.5 

        

 UP 159 ± 4.1 21 ± 0.0 5.0  ± 0.1 1133.7± 2.0 7.2 ± 0.0 11.7± 0.5 

5 BC 267 ± 3.3 21 ± 0.0 13.4 ± 0.5 366 ± 0.9 7.3 ± 0.0 33.4 ± 4.2 

 AC 268  ± 5.7 21 ± 0.0 10 ± 0.0 370 ± 0.5 7.2 ± 0.0 23.5 ± 0.9 

 DS 119  ± 3.3 21 ± 0.0 5.0  ± 0.1 326 ± 0.5 7.2 ± 0.0 60.2 ± 1.1 

        

 UP 156 ± 5.7 23 ± 0.0 4.3 ± 0.3 321.3 ± 0.5 7.3 ± 0.02 10.6 ± 0.41 

6 BC 198 ± 6.5 23 ± 0.0 5.2 ± 0.02 368.3 ± 0.5 7.0 ± 0.05 23.5 ± 71.5 

 AC 152.7± 3.5 22 ± 0.0 4.9 ± 0.02 371.7 ± 1.9 7.1 ± 0.02 34.2 ± 2.8 

 DS 195.0 ± 5.7 24 ± 0.0 5.1 ± 0.02 265 ± 0.8 7.6 ±0.01 37.4± 4.9 

Key: UP- upstream, BC- before chlorination, AC- after chlorination, DS- downstream 

Values represent means of triplicate data ± standard deviation. 
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2.3.2 Microbial analysis of water samples 

2.3.2.1 Presumptive counts of Yersinia spp. in wastewater samples 

The presumptive Yersinia spp. population obtained for the different effluent samples at the 

NGTW is shown in figure 2.1. The upstream (UP) had counts ranging from 4.3 - 7.8 log cfu/ml 

throughout the sampling periods. The pre- chlorination (BC) point for all 6 sampling intervals 

had counts ranging from 5.3 - 7.4 log cfu/ml. After chlorination (AC), the range was 4.3 - 5.7 log 

cfu/ml and finally the downstream (DS) point had the log cfu/ml counts ranging from 5.6 - 6.6 

log cfu/ml. A reduction in Yersinia spp. counts was observed after the treatment process for this 

particular plant as displayed in Wk 1 from the (BC) at 7.4 log cfu/ml counts, which was reduced 

to 5.7 log cfu/ml at the (AC) sampling point. A similar trend was observed for all sampling 

intervals. The wastewater treatment process from the plant was effective in reducing the 

microbial load but did not completely remove all the Yersinia spp. The effluent (DS) samples 

had relatively lower Yersinia spp counts compared to the (BC) points but were higher than the 

(AC) points. There could be other sources influencing the higher counts from the (DS) point, 

these could include the rain wash off from the informal households and improper sanitation.  

Figure 2.2 shows the log cfu/ml plot for the presumptive Yersinia population from NWWTP. The 

upstream (UP) had values ranging from 5 - 7.3 log cfu/ml throughout the sampling intervals. The 

effluent sample before chlorination (BC) had counts ranging from 6.3 - 6.4 log cfu/ml. The post 

chlorination (AC) point had a range of 4 - 5.6 log cfu/ml and finally the downstream (DS) point 

had the log cfu/ml counts ranging from 5.6 - 6.2 log cfu/ml. The (BC) points had higher counts 

and reduction was observed in (AC) points for all the sampling intervals. It was observed that the 

AC point for Wk 1 and 2 had the lowest Yersinia spp counts (4 log cfu/ml) lower than all the 
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points reduced from the BC (6.3 log cfu/ml) points. The microbial counts for the DS points in 

Wk 5 and 6 was higher (6.7 log cfu/ml) compared to the former sampling intervals. 

 

 

 

Figure 2.2: Presumptive Yersinia spp. population in NWWTP and receiving water bodies. 
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Figure 2.1: Presumptive Yersinia spp. population in NGWT and receiving water bodies.  
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2.3.2.2 Biochemical and molecular identification of Yersinia spp. 

A total of 473 isolates presumptively identified based on their bull’s eyes appearance on YSA 

was further identified using biochemical reactions. After biochemical screening only 274 isolates 

displayed positive reaction by being able to utilize urea, oxidase negative, non- lactose fermenter 

and the inability to utilize citrate. These isolates were further confirmed by genus specific PCR 

for both the 16S rDNA of the subgenus Yersinia and the kingdom bacteria.  Of the 274 

biochemically identified isolates, only 62.41 % (174/274) were confirmed as Yersinia spp. based 

on the amplification of the expected fragment size of 749 bp (Figure 2.3). 

Of the 171 Yersinia spp. isolates, 40.94% (70/171/) were positively identified as Yersinia 

enterocolitica based on correct amplification of the expected fragment (330 bp) specific to 

Yersinia enterocolitica (Figure 2.4). 
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The PCR amplification for the genus identification confirmed that only 171 isolates are Yersinia  

 

 

 

 

Figure 2.4: Agarose gel showing the expected amplicon size (330 bp) for the Yersinia 

enterocolitica species specific gene. Lane M contains the 100 bp marker (Thermo Scientific), 

Lane YE contains a Yersinia enterocolitica positive control, Lane N is a negative control, Lanes 

1 to 8 are representative Yersinia enterocolitica isolates. 

 

  M     YE      N        1      2       3       4        5       6       7        8       9       10    11     12      13    14      M 

          M         YE           N           1           2           3          4           5             6         7             8        M     

Figure 2.3: Agarose gel showing the expected amplicon size (749 bp) for the 16S gene conserved in all 

Yersinia spp. identification Lane M contains the marker 1kb (Thermo Scientific), Lane YE contains a 

Yersinia enterocolitica positive control, Lane N is a negative control, Lane 1 to 14 are representative 

Yersinia spp. isolates. 

 

 

 

 

 

500 bp 

750 bp 

100 pb 

300 pb 



 
 

39 
 

2.3.4 Correlation between physico-chemical parameters and Yersinia counts  

Tables 2.4 and 2.5 show the correlation matrices of tested physicochemical parameters with 

presumptive Yersinia spp counts. At the NGTW (Table 2.4), there was a significant (p < 0.01) 

positive correlation between TDS and BOD (r = 0.580) as well as with temperature (r = 0.646). 

TDS correlated significantly (p< 0.05) with turbidity (r = 0.445) and again a significant           

(p< 0.05) positive correlation was observed for BOD and temperature (r = 0.441). At NWWTP 

(Table 2.5), TDS correlated significantly (p< 0.05) with temperature (r = 0.473) and with 

turbidity (r = 0.503) but correlated strongly (p < 0.01) with BOD (r = 0.626). 

 

Table 2.4: Correlation matrix between the physicochemical parameters and Yersinia population 

counts obtained for the NGTW. 

 

 

Parameter COD Temp Turbidity TDS pH BOD Yersinia 

COD (mg/L) 1       

Temperature (˚C) -0.010 1      

Turbidity (NTU) 0.003 0.327 1     

TDS (mg/L) -0.054     0.646**   0.445* 1    

pH -0.029 0.196 -0.040  -0.190 1   

BOD (mg/L) -0.321   0.441* 0.201       0.580** -0.013 1  

Yersinia (log cfu/ml) 0.077 -0.053 0.142  -0.072 -0.342 0.259 1 

 

 

 

 

*. Correlation significant at 0.05 level (2 tailed), **. Correlation significant at 0.01 level (2-tailed).UP- upstream, BC- 

before chlorination, AC- after chlorination, DS- downstream 

UP- upstream, BC- before chlorination, AC- after chlorination, DS- downstream 
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Table 2.5: Correlation matrix between the physicochemical parameters and Yersinia population 

obtained for the NWWTP. 

 

Parameter COD Temp Turbidity TDS pH BOD Yersinia 

COD (mg/L) 1       

Temperature (˚C) -0.066 1      

Turbidity (NTU) -0.006 0.029 1     

TDS (mg/L) -0.038 0.473* 0.503* 1    

pH 0.048 0.120 0.207 -0.110 1   

BOD (mg/L) -0.251 0.320 0.249      0.626** 0.033 1  

Yersinia ( log 

cfu/ml) 

0.135 0.074 0.150 -0.104 -0.259 -0.096 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*. Correlation significant at 0.05 level (2 tailed), **. Correlation significant at 0.01 level (2-tailed) UP- upstream, BC- 

before chlorination, AC- after chlorination, DS- downstream 
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2.4 Discussion 

 

The pH values observed in this study for all the sampling points fell within the recommended 

standards irrespective of the sampling intervals and the activities at each sampling point for both 

wastewater treatment plants and similar to previously reported values for final effluents and their 

receiving water bodies by Osode and Okoh (2009); Manios et al. (2006). The values were also 

within the acceptable limits of 6 – 9 recommended by the Department of Water Affairs and 

Forestry in South Africa (DWAF, 1996b) as indicated in Table 2.2 and 2.3.  The above results 

may suggest that the effluent may not have negative impact on the domestic use of the receiving 

water bodies such as fishery and recreational purposes with reference to pH standards. The 

neutral to alkaline pH values obtained from the current study were also similar to the pH values 

reported by Lokhande et.al, (2011), Morrison et al., 2001 and Igbinosa and Okoh (2009). 

 

The temperature observed in this study was in a range of 15 °C – 23 °C for NGTW and 17 °C – 

24 °C for NWWTP. The highest temperature of 23 °C was observed for the UP and BC samples 

and the lowest temperature of 15 °C was observed at the UP and DS of the NGTW. Temperature 

is an important water quality parameter due to its influence on other parameters. Temperature 

affects the solubility of solids, gas and and differently consequently affecting the availability of 

oxygen in water (Akan et al. 2008). It also affects the toxicity of some chemicals in water 

systems as well as the sensitivity of living organisms to toxic substances (Dojlido and Best, 

1993; Mayer and Ellersieck, 1988). The temperature values of the WWTP’s in the current study 

were within the acceptable limit of no risk (≤ 25
o
C) for domestic water uses in South Africa 

(WRC, 1995). This observation implies that the discharged effluent was of standard quality with 

respect to temperature and may not significantly offset the homeostatic balance of the receiving 
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ecosystems; neither will it adversely affect the use of the receiving watershed for domestic 

purposes. The results obtained in this study are in agreement with to the results obtained by Jaji 

et al. (2007). The current observations are in agreement with the findings of with Odjajare and 

Olaniran, (2015) who reported temperature ranges between 13-27 °C from the same WWTP’s 

used in this study. 

 

Turbidity values obtained for both plants ranged from 1.25- 452 NTU and 2.4 – 16.2 NTU for 

NGTW and NWWTP, respectively and were higher than the acceptable limits for domestic use. 

Increased turbidity obtained at downstream point of NGTW may be attributed to poor quality 

pipes through which the final treated effluent travels prior to discharge into the receiving water 

bodies. None of the receiving water bodies met the South African guideline of 0 to 1 NTU for 

turbidities in water for domestic use (DWAF, 1998). However, South Africa does not have 

guidelines for the turbidity values accepted for treated effluent (Government Gazette, 1984). The 

World Health Organization standard for domestic water supply is 5 NTU (WHO, 2004). These 

results show that the water was not of good quality with respect to turbidity. Excessively high 

turbidity of the effluent samples at the discharge point of the NGTW is of serious concern as the 

values were relatively higher than the typical values from similar studies in different plants 

(Odjadjare and Okoh, 2009). Highly turbid conditions may increase the possibility for 

waterborne diseases, since particulate matter may harbor microorganisms and may stimulate the 

growth of bacteria (Hoko, 2005), thereby posing some health risk to the effluent users. Also, the 

excessive turbidity in water can cause problems with water purification processes, such as 

flocculation, filtration and disinfection which may increase treatment cost (DWAF, 1998). 

Chlorination of water may result in an increase of trihalomethane (THM) precursor. 
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Trihalomethanes are by-products of chlorination and include several chemicals such as 

chloroform, bromodichloromethane, dibromochloromethane and bromoform.  Since these 

substances are suspected to cause cancer in humans, their concentrations in drinking water must 

carefully be controlled before release to surface water bodies (Hacioglu and Dulger, 2009).   

 

Chemical oxygen demand (COD) and biological oxygen demand (BOD) levels serve as an 

indication of both the organic and inorganic pollution within the water source, thus serving as a 

useful indicator of potentially toxic conditions as well as the presence of biologically organic and 

inorganic resistant substances (Sawyer et al., 2003). COD is a measure of the amount of oxygen 

required by a strong oxidant (e.g. H2SO4) to breakdown both organic and inorganic matters in a 

water system (Akan et al., 2008). Elevated levels of COD in water systems lead to drastic 

oxygen depletion which adversely affects the aquatic biota (Fatoki et al., 2003). The COD values 

of the effluent samples in this study ranged between 37-309 mg/L for NGTW and 52.0 – 292.3 

mg/L for NWWTP. The South African water quality guidelines specify COD concentrations of 

30 mg/L for wastewater discharge but also specify a general standard of 75mg/L (DWA, 2010).  

Almost similar values were observed from similar study by Igbinosa and Okoh (2009) whereby 

their COD values were between 34.82 – 238 mg/L. The current observation agrees with the 

previous works of Fatoki et al. (2003) who reported a mean COD value of 122.9 mg/L. 

 

Biochemical oxygen demand (BOD), the amount of oxygen needed by bacteria to oxidize the 

organic matter present in the water is a basic means of measuring the degree of water pollution 

(Hach, 1997). EU guidelines stipulate the BOD target limits of 3.0 to 6.0 mg/L (Chapman, 1996) 

and South Africa guidelines recommends 5 mg/L for BOD (Government Gazette, 1984). Except 

for the UP point at NGTW which had a BOD of 4.4 mg/L at week 5 of the sampling period, 
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which fell within the EU stipulated range but were within the SA guidelines. Even so the BOD 

levels recorded in the current study were much higher than those indicated in the EU and SA 

guidelines. These high levels of BOD from the investigated WWTP’s and receiving water bodies 

disqualify these water sources for use as aquatic ecosystems. An increase in BOD may be due to 

heavy discharge of industrial wastewater effluent, animal and crop wastes and domestic sewage. 

BOD values have been commonly adopted as a measure of effects of pollution. The greater the 

BOD, the more rapidly oxygen is depleted in the water, which may lead to anoxic conditions, 

and consequent disruption of balance of the aquatic ecosystem (Momba et al., 2006).  

Chlorination of the final effluent prior to discharge into receiving surface water as practised by 

the treatment plants investigated in this study was effective in reducing the number of 

presumptive Yersinia species after tertiary treatment but failed to totally eliminate them as these 

organisms were recovered after chlorination as well as in downstream points of the receiving 

points (Figures 2.2 and 2.3). It was noted that the upstream point (UP) of the NGTW along the 

Aller river had the highest counts ranging between 4.6 – 7.8 log cfu/ml compared to the UP point 

of the NWWTP along Umgeni river which had the Yersinia population ranging between 5 – 7.3 

log cfu/ml. Upstream of the river at the NGWTP has informal settlements with poor sanitation 

and inadequate sewage disposal system which contaminate the river with human and animal 

waste. Storm runoff from the informal settlements and discharge of inadequately treated 

wastewater influence the high counts obtained for this point. The higher turbidity values 

measured for the NGTW water samples relative to the NWWTP could also explain the high 

microbial population observed. Hoko (2005) previously indicated that highly turbid conditions 

may increase the possibility for waterborne diseases, since particulate matter may harbor 

microorganisms and may stimulate the growth of bacteria.  
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The downstream (DS) point had Yersinia species population ranging from 5.6 – 6.6 log cfu/ml 

and 4 - 6.2 log cfu/ml at the NGTW and NWWTP, respectively. The higher counts of Yersinia 

spp obtained for NWWTP could be attributed to the surrounding environment nearby the 

sampling site, as trace or evidence of human and animal faecal matter was found in the area.  The 

high microbial count in the DP indicates that apart from the cross contamination from the 

surrounding environment the discharge from the plant itself may also be a contributing factor.  

 

Higher amount of total dissolved solids leads to increased turbidity (Kumar and Bahadur, 2009). 

This was observed from the BC (Wk 2) point at NGTW where TDS value was 659.7 mg/L and 

the turbidity was also high at 263 NTU. Higher turbidity hinders the chlorination/disinfection 

process (Asano, 2007). Bacteria utilize these suspended solids as sites of attachment there by 

increasing the microbial load (Hurst, 1996 and Kurup et al, 2010). As observed throughout the 

sampling interval that the BC points in both plants had higher microbial counts that could be 

correlated with the high turbidity values observed.  

 

Previous reports have also suggested that wastewater treatment plants in South Africa are either 

dysfunctional or non-functional (Bateman, 2010). Sewage discharge is one of the problems 

presently facing South Africa, and several efforts are being vigorously pursued to control it. 

Water contaminated by effluents from various sources is associated with heavy disease burden 

(Okoh et al., 2007) and this could influence the current shorter life expectancy in the developing 

countries when compared with developed nations (WHO, 2002). The issue of treatment 

efficiency is of major importance if the reclaimed water is intended for recreational or potable 

reuse or is to be discharged into natural water bodies because disposal of inadequately treated 
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wastewater into surface water recipient is one of the major sources of pathogens in the 

environment (Touron et al., 2005; Ottoson et al., 2006; Odjadjare et al., 2012). 

 

Chlorine disinfection of sewage effluent at the two wastewater treatment plants (WWTPs) under 

investigation showed that there was a reduction in viable counts of presumptive Yersinia spp. at 

the discharge point during the sampling period but failed to totally eliminate them. Presumptive 

Yersinia spp. were also recovered downstream of the rivers receiving the treated effluent 

indicating the negative impact of the wastewater treatment plants on the microbial quality of the 

river. The DS points had 5.6 – 6.6 log cfu/ml and 5.6 – 6.2 log cfu/ml for both NGTW and 

NWWTP, respectively (Figures 2.2and 2.3).  It is known that water with high turbidity is often 

difficult to disinfect properly (Ekholm and Krogenus, 1998). This indicates that the high turbidity 

values of (1.25 ± 0.01 – 452 ± 0.8 NTU) and (5.0 ± 0.1 – 9.9 ± 0.02 NTU) obtained in the final 

effluent may have contributed to the high microbial load detected. There could be other 

contributing factors that may have increased the microbial load such as the upstream of the river 

of NGWTP has an informal settlement with poor sanitation and inadequate sewage disposal 

system, which contaminates the river with human and animal wastes.  Whilst at NWWTP the 

Umgeni River downstream is contaminated by faecal waste and run-off from the informal 

settlement contributing to high counts of presumptive Yersinia spp. observed. Although the 

treatment plants studied succeeded in removing Yersinia species from the influent water but 

discharge effluent had traces of Yersinia species still detected, this could be a potential threat of 

incidences of infectious diseases.  
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2.5 Conclusion 

This study was carried out to evaluate the efficiency of the treatment process of two independent 

WWTPs in eliminating Yersinia spp. from the influent received and the input of the treated 

effluent on the receiving rivers. The results revealed that the treatment plants exhibited effluent 

qualities that meet acceptable standard in some parameters, like pH and temperature. It was also 

observed that the effluents fell short of standard requirements that are critical to the provision of 

clean and safe water such turbidity, COD, BOD and total dissolved solids (TDS). Findings from 

this study therefore show that the effluent could pose significant health and environmental risks 

to communities who use the receiving water for domestic purposes and may also affect the health 

status of the aquatic milieu in the receiving water. The study therefore reiterated the need for 

continuous monitoring and improvements of the treatment regime employed in wastewater 

treatment plants. 
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CHAPTER 3 

ANTIBIOTIC RESISTANCE AND VIRULENCE DETERMINANTS OF YERSINIA 

ENTEROCOLITICA ISOLATES RECOVERED FROM TREATED WASTEWATER EFFLUENT 

AND RECEIVING RIVERS 

         Abstract 

Yersinia enterocolitica is a potentially pathogenic bacterium transmitted through the faecal-oral 

route. Typical symptoms include those associated with gastrointestinal disease, although 

infection can also lead to more serious and invasive illnesses, particularly in sensitive 

populations. Previous studies have detected Y. enterocolitica in surface water in various parts of 

the world, and studies have reported the intake of untreated water to be one of the potential risk 

factors for Y. enterocolitica infection. This study investigated the antibiotic resistant patterns and 

the virulence determinants of the previously identified Y. enterocolitica in treated wastewater 

effluents and the receiving rivers. In addition, the antibiogram and virulence factors of these 

isolates were determined in order to establish the possible effects posed by these isolates to the 

users of receiving surface waters. Finally, the genetic relatedness of the isolates was established 

by Random Amplified Polymorphic DNA (RAPD-PCR). The antibiotic susceptibility assays 

revealed that the isolates were resistant to ampicillin (100%), amoxicillin (98%), cefuroxime 

(96%), cefalothin (90%), streptomycin (93%), chloramphenicol (100%), tetracycline (100%) and 

trimethoprim (100%). The calculated multiple antibiotic resistance (MAR) indices of the Y. 

enterocolitica isolates ranged from 0.5-0.66, suggesting high multi-antibiotic resistance among 

the isolates. A high prevalence (59%) of class 2 integrin was found among the isolates, with 26 

and 6% of the isolates in possession of class1 and class 3, respectively. The integrase genes 

detection showed that the isolates possessed 3 classes of integrons, detected in 59%, 26% and 

6% of the isolates, respectively. The virulence determinant assays using crystal violet staining 

showed that only 21% (15/70) of the isolates could retain the purple colour suggesting that they 

may be the virulent strain of Y. enterocolitica. The negative MBL activity suggests that the tested 

isolates do not demonstrate any hydrolytic activity for the degradation of cephalosporins. 

Virulence gene detection via PCR showed that the most abundant gene is the ystA (56%) 

followed by ail (34%), both chromosomally located. The plasmid located genes were detected in 

3% of the isolates for both Vir/Lcr and yadA. The genotypic characterization of the tested 

isolates revealed two main clusters (A and B), with cluster A comprising the majority of the 

isolates (68%) and include the Y. enterocolitica positive control, whilst cluster B grouped 31% of 

the isolates. had 31% similarity to the control. 
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3.1 Introduction 

 

Yersinia enterocolitica, are gram-negative, oxidase-negative and facultative anaerobes. They are 

highly heterogeneous and can be divided into several biotypes, with only a few biotypes known 

to be associated with human disease. Y. enterocolitica is primarily a gastrointestinal tract 

pathogen and has become a major cause of diarrhoea in most of the industrialised world (Bolton 

et al., 2013). Y. enterocolitica are also known to be zoonotic pathogens (Simonova et al., 2008). 

Since drug resistance in zoonotic pathogens has affected the therapeutical interventions in 

humans; antimicrobial resistance in food-borne pathogens has recently become a public health 

issue (Simonova et al., 2008). One tenth or more of the world’s population is believed to 

consume food produced by irrigation with recycled wastewater; partially treated and/or in some 

instances using untreated hospital waste effluents. However, it is common knowledge that 

hospital waste effluents, even if treated, may contain pathogenic drug-resistant bacteria, which 

constitute the most dangerous risk factor for spreading of pathogenic and drug resistant 

organisms to the environment (Rahman et al., 2005). 

 

Antimicrobial resistance is a major global health concern requiring urgent interventions 

especially in developing countries, where health and related sectors are challenged with a 

number of constraints, including access to better or new drugs when resistance is suspected or 

has developed or even when the priority is to provide basic health care (Moore, 2010; Suma et al, 

2014). Spreading of antibiotic resistance genes by horizontal transfer has led to the prevalence of 

antibiotic resistance among bacterial isolates (Ploy et al., 2000). The spread of these resistance 

genes is significantly greater when they are part of a mobile gene cassette. Known mechanisms 

of horizontal gene transfer include: (a) mobilization of individual cassettes by the integron-
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encoded integrase (Collis, 1992), (b) movement when the integron containing the cassette 

relocates (targeted transposition) (Brown et al., 1996; Craig. 1996; Minakhina et al., 1999), (c) 

distribution of larger transposons such as Tn21 carrying integrons (Liebert, 1999), and (d) 

movement of conjugative plasmids containing integrons among bacterial species. It is therefore 

not surprising that many of the antibiotic resistance genes found in clinical isolates of gram-

negative microorganisms are part of a gene cassette inserted into an integron (Recchia, 1995). 

 

The overall objective of this chapter was to determine the prevalence of antibiotic resistance and 

virulence determinants among Y. enterocolitica recovered from treated effluents and receiving 

rivers as well as determining the level of genetic relatedness of the isolates using rapid fragment 

length polymorphic analysis. Understanding the antibiotic-resistance profiles of Y. enterocolitica 

in different locations of the wastewater treatment system will establish an understanding of both 

the baseline and potential movement of antibiotic resistance of these organisms and their 

possible spread into different ecosystems. The results of this study will establish a preliminary 

environmental assessment of wastewater treatment plants in eliminating or increasing the spread 

of antibiotic resistance of Y. enterocolitica recovered from the treated effluent and the 

surrounding receiving water bodies. 
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3. 2 Materials and Methods 

3.2.1 Maintenance of identified Y. enterocolitica isolates 

The PCR confirmed Y. enterocolitica isolates recovered from the treated wastewater effluent and 

the receiving surface water bodies were maintained on 40% glycerol and kept at -70°C. When 

required, the isolates were streaked onto TSA plates and incubated at 37°C. Individual colonies 

were used for the subsequent assays. 

3.2.2 Antibiotic susceptibility testing  

Antibiotic susceptibility profiles of the isolates was determined using the Kirby-Bauer disk 

diffusion assay as previously described (Bauer et al., 1966). The isolates were screened against a 

panel of antibiotics listed in Table 3.1 using Escherichia coli ATCC 25922 as a positive control. 

The isolates were grown on nutrient agar for 24 h at 37
o
C, then few distinct colonies were 

suspended in 5 ml of 0.8% NaCl solution and turbidity was standardized to 0.5 McFarland 

standards. The suspension was spread onto Muller-Hinton agar plate using a sterile swab. The 

plates were allowed to air dry by opening the plate at 45° angle in a sterile zone before antibiotic 

disks were placed at equidistance onto the bacterial lawn and incubated for 24 h at 37⁰C. After 

incubation the zones of inhibition were measured, recorded to the nearest millimeters and 

interpreted as resistant (R), intermediate (I) and susceptible (S), according to the Clinical 

Laboratory Standards Institution (CLSI, 2008) guidelines. 
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The MAR index values were calculated as described by Blasco et al. (2008) as follows: MAR = 

a/b, where a = number of antibiotics the isolate was resistant against; and b = total number of 

antibiotics tested. The resistant phenotypes were created based on the resistant patterns generated 

for the individual isolates against the tested antibiotics. 

3.2.3 DNA extraction 

DNA extraction was done following a protocol described by Akinbowale et al. (2007) with a few 

modifications. Single isolated colonies (5) were suspended in 80 µl of sterile deionized water, 

boiled in a water bath at 100 °C for 10 min and cooled on ice. Thereafter, the suspension was 

centrifuged at 14 000 rpm in a micro-centrifuge for 5 min. The supernatant was transferred into a 

sterile Eppendorf tube and used as a template in PCR assays. 

 

Class Antibiotic  (abbreviation) Concentration (µg) 

β-lactams Cefalothin (C) 30  

  Cefuroxime (CXM) 30  

  Ampicillin (AMP) 10  

  Amoxycillin (AMC) 30  

 

Aminoglycosides Gentamicin (CN) 10  

  Kanamycin (K) 30  

  Streptomycin (S) 10  

Phenicols Chloramphenicol (KF) 30  

Tetracyclines Tetracycline (TE) 30  

Quinolones Ciprofloxacin (CIP) 5  

Sulfonamides Trimethoprim (W) 5  

 

3rd Generation Cephalosporins Ceftriaxone (CRO) 30  

   

Table 3.1: List of antibiotics used in this study. 
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3.2.4 Integrase genes and gene cassette detection 

The integrase genes of interest (intI1, intI II and intI III) were detected using the primers listed in 

Table 3.2. The 50 μl PCR mixture contained 5 µl of 10X PCR buffer, 4 µl of 25 mM MgCl2, 10 

µl of 1 mM dNTP’s, 0.2 µl of 250 U Supertherm Taq polymerase, 1 µl of 10 mM of each primer 

and 2µl of DNA template. Integrase gene detection (intI1, intI II, intI III) was done in a 25 μL 

PCR mixture at the following conditions: 94 °C for 5 min, 30 cycles of 1 min of denaturation at 

94 °C, 1 min of annealing at 59 °C, 1 min of extension at 72 °C and a final elongation for 8 min 

at 72 °C. Amplification products were analyzed by electrophoresis in a 1.5% agarose gel using 

1X TAE buffer at 60V for 90 min. The amplicons were visualized using a GENESys version 

V1.2.0.0 gel documentation system using UV transillumination (Syngene, UK) after staining in 

0.5 mg/ml ethidium bromide for 15 min.   

Isolates detected to harbor the integrase genes were further screened for the presence of the gene 

cassette as described by Laveqsue et al. (1995) using the primers listed in Table 3.2 in a 25 μl 

PCR mixture containing 5 µl of 10 X PCR buffer, 3.8 µl of 25 mM MgCl2, 10 µl of 1 mM 

dNTP’s, 0.2 µl of 250 U Supertherm Taq polymerase, 1 µl of 10 mM of each primer (5'-CS and 

3'-CS) and 2µl of DNA template. The PCR was carried out in a 25 µl PCR mixture under the 

following conditions: 94 °C for 2 min, 20 s of denaturation at 94 °C, 30 s of annealing at 57 °C 

and 90 min of extension at 68 °C for a total of 30 cycles. The products were separated in a 2% 

(w/v) agarose gel at 70V for 90 min in 1% TAE buffer, and visualized using a GENESys version 

V1.2.0.0gel documentation system using UVtransillumination (Syngene,UK) after staining in 0.5 

mg/ml ethidium bromide for 15 min.   
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3.2.5 Restriction Fragment Length Polymorphism for the gene cassette array 

characterization 

Isolates with PCR products that correspond to the gene cassette regions were digested using 

EcoR1as per manufacturer’s guidelines. Briefly, each 30 µl reaction contained 3 µl (20 U) of 

EcoR1, 10 µl of PCR-amplified product 2 µl of enzyme buffer and 15 µl of double-distilled 

water. The reaction was incubated at 37°C for 3h for digestion. The products were separated in a 

2% (w/v) agarose gel at 70V for 90 min in 1% TAE buffer, and visualized using a GENESys 

version V1.2.0.0 gel documentation system using UVtransillumination (Syngene, UK) after 

staining in 0.5 mg/ml ethidium bromide for 15 min.   

 

 

Primer Primer sequence (5ˈ-3ˈ) Product 

size(bp) 
Reference 

    
Int1F CAG TGG ACA TAA GCC TGT TC 160 Koeleman et al. (2001) 

Int1R CCC GAG GCA TAG ACT GTA    
    

Int2 F CAC GGA TAT GCG ACA AAA AGG T 788 Mazel et al. (2000) 

Int2 R GTA GCA AAC GAG TGA CGA AAT G    
    

    

Int3 F GCC TCC GGC AGC GAC TTT CAG 979 Mazel et al. (2000) 

    
Int3 R ACG GAT CTG CCA AAC CTG ACT    

    

    

5'-CS GGCATCCAAGCAGCAAG Variable Levesque et al. (1995) 

    

3'-CS AAGCAGACTTGACCTGA    

Table 3.2:  The list of primers used for the integrase genes detection and gene cassette arrays. 
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3.2.6 Expression of pyv-associated phenotypic virulence determinants and metallo-β- 

lactamase (MBL) production by yersinia enterocolitica 

Yersinia enterocolitica isolates were subcultured onto TSA plates and incubated at 37 °C for 24 

h. After incubation, the isolates were tested for the presence of the PVY virulence determinant 

by flooding the plates with crystal violet (100 mg/ml) solution following the procedure by 

Bhaduri and Sommers, 2011. The isolates that retained the crystal violet and produced dark 

violet colonies were assumed to be pYV
+ 

bearing isolates while pYV
- 
colonies remained white. 

The MBL production of the Y. enterocolitica isolates was performed following the procedure by 

Yong et al. (2002). A disk diffusion assay was carried out using the Impenem antibiotic disk and 

the Impenem + EDTA (pH 8.0) disk. The isolates were grown on Muller- Hinton broth overnight 

at 37°C. Following incubation, the inoculum was standardized to 0.5 McFarland and streaked 

onto the Muller- Hinton agar plates and air-dried.  The two disks were placed onto the agar plates 

and incubated at 37°C for 24 h. The zones of inhibition (in millimeters) were measured. The 

MBL producing isolates were determined by an increase of ≥ 7 mm of the zone of inhibition 

from the disk that had Impenem + EDTA compared to the zone of the Impenem disk alone 

(Yong et al. 2002). 
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3.2.7 PCR detection of virulence genes  

Plasmid extraction was performed using plasmid mini-prep protocol as described by Kotchoni 

(2003), while Genomic DNA was extracted using a boiling method as described in section 3.2.3. 

Primers specific for the ystA, and ystB chromosomal encoded virulence genes, and yadA and 

virF/lcrF plasmid located virulence genes of Y. enterocolitica were synthesised by Inqaba 

biotech as per the sequences described by Theoner et al. (2002) and used for the detection of the 

virulence genes. PCR reactions were performed in 25 µl volumes containing 2µl of DNA 

template, 0.2 mM dNTPs, 5µl of 10X PCR buffer, 3 mM MgCl2, 1mM concentrations of each 

primer, and 1.25 U of Supertherm Taq polymerase. The thermal cycling conditions were: Pre-

denaturation at 95°C for 10 min; 25 cycles of denaturation at 95°C for 15 s, annealing for 30 s at 

appropriate temperatures (Table 3.3) depending on the primer pair used, elongation at 72°C for 

30 s; and a final extension at 72°C for 10 min.  The third chromosomal gene ail gene was 

detected using the primers described by Wannet et al. (2001). Briefly each 25 µl PCR mixture 

contained ail-specific primers at a concentration of 160 nM, 200 µM dNTPs; 0.5 U of 

Supertherm Taq Polymerase; 1µl of 10xPCR buffer; 3 mM MgCl2 and 2 µl of DNA sample. 

Cycling conditions were as follows: Pre-denaturation at  94°C for 5 min followed by 36 cycles 

consisting of heat denaturation at 94°C for 45 s, primer annealing at 62°C for 45 s, extension at 

72°C for 45 s and a final extension was performed at 72°C for 7 min. The amplicons were 

separated in a 2% (w/v) agarose gel at 70V for 90 min in 1% TAE buffer, and visualized using a 

GENESys version V1.2.0.0 gel documentation system using UVtransillumination (Syngene, UK) 

after staining in 0.5 mg/ml ethidium bromide for 15 min. 
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3.2.8 Genotypic fingerprinting of Integron positive Yersinia enterocolitica isolates by 

RAPD-PCR 

Integron positive Yersinia enterocolitica isolates were further characterized for genotypic 

similarities and variations. Genomic DNA for fingerprinting was extracted from the isolates 

using the ZR Fungal/ Bacterial DNA MiniPrep kit as per manufacturer’s instruction. The RAPD-

PCR was performed using a 10 bp primer-II (5ˈGAGACGCACA3ˈ). Each 25 μl reaction mix 

contained 30 ng genomic DNA, 1 U Taq DNA polymerase, 1 X PCR buffer, 2.5 mM MgCl2, 400 

μM dNTPs and 20 pmol / μl primer. The RAPD - PCR conditions were according to Leal et al. 

(2004) as follows: initial denaturation for 1 min at 94°C, annealing for 1 min at 55°C, extension 

for 1 min at 72°C, and a final extension at 72°C for 7 min. The PCR products were separated in a 

2 % (w/v) agarose gel at 70V for 90 min in 1% TAE buffer and visualized using a GENESys 

version V1.2.0.0 gel documentation system using UVtransillumination (Syngene,UK) after 

Primer  Primer sequence 

(5ˈ-3ˈ) 
Annealing 

temp 

 (°C) 

Amplicon 

size  

(bp) 

Reference  

ystA Forward ATCGACACCAATAACCGCTGAG 61 79 Thoerner et al.(2002) 

ystA Reverse CCAATCACTACTGACTTCGGCT       

     

ystB Forward GTACATTAGGCCAAGAGACG 61 146 Thoerner et al.(2002) 

ystBReverse GCAACATACCTCACAACACC       

     
Vir/LcrForward GGCAGAACAGCAGTCAGACATA 63 561 Thoerner et al.(2002) 
Vir/ LcrReverse GGTGAGCATAGAGAATACGTCG       

     

yadA Forward CTTCAGATACTGGTGTCGCTGT 60 681, 759, 

849 

Thoerner  et al.(2002) 

yadAReverse ATGCCTGACTAGAGCGATATCC       

     

A1 Forward TTAATGTGTACGCTGGGAGTG 62 425 Wannet et al.(2001) 

A2 Reverse GGAGTATTCATATGAAGCGTC       

Table 3.3: Primers used for detection of the virulence genes. 
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staining in 0.5 mg/ml ethidium bromide for 15 min. Genotypic similarities were analysed using 

the GelCompareII version 6.0 software package (Applied Maths) using Jacquard coefficient and 

Unweighted Pair Group Method with Arithmetic mean (UPGMA) cluster analysis to produce a 

dendrogram. 
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3.3 Results 

3.3.1 Antibiotic susceptibility profiles of Y. enterocolitica isolates 

The antibiotic susceptibility testing results as displayed in Table 3.4 showed that all Y. 

enterocolitica isolates were susceptible to gentamicin, ciprofloxacin and ceftriaxone. In addition, 

susceptibility to kanamycin, an aminoglycoside, was observed in 84% of the isolates.  However, 

93% of the isolates were resistant to streptomycin, a member of the aminoglycoside class of 

antibiotics. All Y. enterocolitica isolates showed high resistance pattern towards the β-lactam 

class of the antibiotics, with percentage resistance of 100%, 98%, 96% and 90% obtained for 

ampicillin, amoxicillin, cefuroxime, cefalothin, respectively. All the Yersinia enterocolitica 

isolates tested were resistant to chloramphenicol, tetracycline and trimethoprim. The multiple 

antibiotic resistance index calculated showed that each tested isolate is resistant to at least 50% 

of the test antibiotics with MAR index values varying between 0.5-0.66 amongst the isolates. It 

was also observed was that 85% of the tested isolates were grouped on the same antibiotic 

resistance phenotype with isolates resistant to 7 of the 12 tested antibiotics (Table 3.5).  
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Class Antibiotic  Resistant (%) Susceptible (%) Intermediate (%) 

     

 

 

Cefalothin (30 μg) 63 (90) 0 (0) 7 (10) 

β-lactams  
 

Cefuroxime (30 μg) 67 (96) 0 (0) 3(4) 

  

 

Ampicillin (10 μg)  70 (100) 0 (0) 0 (0) 

  

 

Amoxycillin (30 μg) 69 (98) 0 (0) 1 (2) 

 

 

Gentamicin (10 μg) 0 (0) 70 (100) 0 (0) 

Aminoglycosides  

 

Kanamycin (30 μg) 4 (6)           59 (84) 7 (10) 

  
 

Streptomycin (10 μg) 65 (93) 0 (0) 5 (7) 

 

Phenicols Chloramphenicol (30 μg)  70 ( 100) 0 (0) 0 (0) 

 
Tetracyclines Tetracycline (30 μg) 70 (100) 0 (0) 0 (0) 

 
Quinolones Ciprofloxacin (5 μg)  0 (0) 70 (100) 0 (0) 

 
Sulfonamides Trimethorprim (5 μg) 70 (100) 0 (0) 0 (0) 

 

3rd Generation 

Cephalosporins Ceftriaxone (30 μg) 0 (0) 70 (100) 0 (0) 

Table 3.4: Antibiotic resistance profile of Yersinia enterocolitica isolates recovered from treated wastewater effluents and receiving surface 

waters (n = 70). 
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Phenotype 
No. of 

isolates 
Resistant Profiles MAR index 

A 59 AMC AMP CXM C KF S TE W 0.66 

B 2 AMC AMP CXM KF S TE W 
 

0.58 

C 1 AMC AMP CXM C K TE W 
 

0.58 

D 1 AMC AMP CXM C KF TE W 
 

0.58 

E 2 AMC AMP C KF S TE W 
 

0.58 

F 1 AMC AMP CXM C S TE W 
 

0.58 

G 1 AMP CXM C KF TE W 
  

0.5 

H 1 AMC AMP C KF TE W 
  

0.5 

I 1 AMC AMP KF S TE W 
  

0.5 

J 1 AMC AMP CXM KF TE W 
  

0.5 

Table 3.5: Distribution of the resistance phenotype and multiple antibiotic resistance index amongst 

Yersinia enterocolitica isolates. 

.  

Key: AMC- amoxycillin, AMP- ampicillin, CXM-ceftriaxone, C- cefalothin, KF- chloramphenicol, S- streptomycin, 

TE- tetracycline, W- trimethoprim, K- kanamycin 
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3.3.2 Integrase genes and gene cassette arrays 

The detection of the integrase genes showed that of the 70 Y. enterocolitica isolates tested, 76 %  

(53/70) were found to contain integrase genes (Int I, Int II or Int III). Of the three integrase genes 

tested, Int II was most dominant as it was detected in 59% (41/70) of the isolates. This was 

followed by Int I detected in 26% (18/70) of the isolates while Int III was only found in 6% 

(4/70) of the isolates, with 10% (7/70) of the isolates lacking the integrase genes. The RFLP 

digestion of integron positive isolates using EcoR1 showed that there were four different banding 

patterns with the product sizes of 250, 300, 400, 500 and 800 bp.The gene cassette array found 

associated with class 1, 2 and 3 integrons, were aacA7, aadB, aadA and aadA1. The 

aadA1cassette array contained an orfD gene, which is a hypothetical protein for aminoglycoside-

3ˋ-adenyltransferase. The most prevalent gene cassette arrays were aacA7, aadB, aadA4 and the 

least dominant was gene cassette array aadA1 (Table 3.6).  
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Isolate 

designation 

Integron 
 

       Integron 

variable 

part 

  (bp) 

RFLP  

Pattern 

 (bp) 

Gene  

Cassette 

 array 

YE 12 Int 1 AMC , AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 14 Int 2 AMC,  AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 15 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 16 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 17 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 18 Int 3 AMC , AMP, CXM, C, KF, S, TE, W 1500 250,300,500,800 aadA1 

YE 20 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 21 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 22 Int 1 AMC , AMP, CXM, C, KF, S, TE, W 1500 250,300,500,800 aadA1 

YE 23 Int 1 AMC,  AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 32 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 250,300,500 aacA7, aadB, aadA4 

YE 35 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 250,300,500 aacA7, aadB, aadA4 

YE 37 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 250,300,500,800 aadA1 

YE 46 Int 2 AMC,  AMP, CXM, C, KF, S, TE, W 1500 250,300,500 aacA7, aadB, aadA4 

YE 50 Int 1 AMC,  AMP, CXM, C, KF, S, TE, W 1500 250,300,500 aacA7, aadB, aadA4 

YE 51 Int 2 AMC,  AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 53 Int 2 AMC,  AMP, CXM, C, KF, S, TE, W 1500 400,500,1000 - 

YE 55 Int 3 AMC , AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 56 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 250,300,500 aacA7, aadB, aadA4 

Table 3.6: Characterization of integrons and antibiotic resistance patterns of integron positive Yersinia enterocolitica isolates 

recovered from wastewater treated effluent. 

Resistant 

  Pattern 
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Isolate 
designation 

Integron         Integron 

variable 
part (bp) 

RFLP  

Pattern (bp) 

Gene 

 cassette array 

YE 59 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 1500 400,500 - 

YE 64 Int 3 AMC,  AMP, CXM, C, KF, TE, W,   1500 250,300,500 aacA7, aadB, aadA4 

YE 66 Int 1 AMC,  AMP, CXM, C S, TE, W   1500 250,300,500 aacA7, aadB, aadA4 

YE 2 Int 1 AMC , AMP, C, KF, S, TE, W   1500 250,300,500 aacA7, aadB, aadA4 

YE 67 Int 3 AMP, CXM, C, KF, TE, W     1500 250,300,500,800 aadA1 

YE 70 Int 1 AMC,  AMP, CXM, KF, TE, W     1500 250,300,500 aacA7, aadB, aadA4 

YE 3 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 900 400,500 - 

YE 6 Int 2 AMC,  AMP, CXM, C, KF, S, TE, W 900 400,500 - 

YE 47 Int 1 AMC,  AMP, CXM, C, KF, S, TE, W 900 400,500 - 

YE 45 Int 1 AMC,  AMP, CXM, C, KF, S, TE, W 900 400,500 - 

YE 1 Int 2 AMC,  AMP, CXM, C, KF, S, TE, W 900 400,500 - 

YE 31 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 900 400,500 - 

YE 33 Int 2 AMC,  AMP, CXM, C, KF, S, TE, W 900 400,500 - 

YE 48 Int 3 AMC,  CXM, CRO, C, KF, S, TE, W 900 400,500 - 

YE 36 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 900 400,500 - 

YE 54 Int 2 AMC,  AMP, CXM, C, KF, S, TE, W 900 400,500 aadA1 

YE 39 Int 2 AMC , AMP, CXM, C, KF, S, TE, W 900 250,300,500,800 - 

YE 8 Int 2 AMC,  AMP, CXM, C, KF, S, TE, W 900 400,500 - 

YE 60 Int 2 AMC,  AMP, CXM, KF, S, TE, W   900 400,500 - 

YE 69 Int 1 AMC,  AMP, KF, S, TE, W     900 400,500  

Table 3.6: Continued……… 

Key: AMC- amoxycillin, AMP- ampicillin, CXM-ceftriaxone, C- cefalothin, KF- chloramphenicol, S- Streptomycin, TE- tetracycline, W- trimethoprim 

MAR- Multiple Antibiotic Resistance 

Int - Intergron 

Resistant Pattern 
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3.3.3 Expression of pyv associated phenotypic virulence determinants and metallo-β- 

lactamase production by Yersinia enterocolitica. 

The pYV virulence determinant assay revealed that only 15 (21%) of the isolates were pYV 

positive while the majority of the isolates (85%) tested negative. For the metallo-β-lactamase 

activity assays, all the isolates (100%) were negative for the MBL activity, since the zones of 

inhibition for the Imp+EDTA disk compared to the Impenem alone did not show a great 

difference as expected to be any value ≥7mm. 

 

Sampling Isolate code Crystal violet Imp + EDTA activity
x
 

point  +/- +/- 
BC- N YE 1 + -          (4) 

BC-NG YE 2 ‒ -          (3) 

UP-NG YE 3 ‒ -          (3) 

BC-NG YE 4 ‒ -          (3) 

DS-N YE 5 ‒ -          (3) 

UP-NG YE 6 ‒ -          (4) 

AC-NG YE 7 + -          (4) 

DS-N YE 8 ‒ -          (4) 
AC-NG YE 9 ‒ -          (4) 

UP-N YE 10 ‒ -          (3) 

DS-NG YE 11 ‒ -          (0) 

DS-N YE 12 ‒ -          (4) 

BC-NG YE 13 ‒ -          (2) 

UP-NG YE 14 ‒ -          (3) 

DS-N YE 15 + -          (2) 

UP-N YE 16 ‒ -          (3) 

AC-N YE 17 ‒ -          (2) 

DS-N YE 18 - -          (0) 

BC-N YE 19 ‒ -          (3) 
UP-NG YE 20 + -          (5) 

AC-NG YE 21 ‒ -          (4) 

DS-NG YE 22 ‒ -          (4) 

BC-NG YE 23 ‒ -          (4) 

BC-NG YE 24 ‒ -          (4) 

UP-NG YE 25 + -          (3) 

DS-NG YE 26 ‒ -          (5) 

UP-NG YE 27 ‒ -          (1) 

DS-NG YE 28 ‒ -          (3) 

UP-N YE 29 ‒ -          (5) 

DS-NG YE 30 + -          (3) 

Table 3.7: Metallo-β-lactamase activity and virulence determinant profiles of Yersinia enterocolitica 

isolates. 
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x= Difference in inhibition zone of Impenem and EDTA, and EDTA ≥ 7 mm is considered positive 

 

 

 

 

 

 

Sampling 

 point 

Isolate 

 code 

Crystal Violet 

+/- 

Imp + EDTA activity
x 

+/-
 

UP-N YE 31 ‒ -          (4) 
AC-N YE 32 ‒ -          (3) 

DS-N YE 33 ‒ -          (3) 

DS-N YE 34 + -          (4) 

BC-N YE 35 ‒ -          (4) 

AC-N YE 36 ‒ -          (3) 

DS-N YE 37 + -          (4) 

AC-N YE 38 ‒ -          (3) 

AC-N YE 39 ‒ -          (3) 

AC-NG YE 40 ‒ -          (3) 

AC-N YE 41 ‒ -          (4) 

BC-NG YE 42 ‒ -          (2) 

BC-NG YE 43 ‒ -          (5) 
DS-N YE 44 + -          (4) 

AC-NG YE 45 ‒ -          (3) 

BC-NG YE 46 + -          (3) 

AC-N YE 47 ‒ -          (3) 

AC-NG YE 48 ‒ -          (3) 

UP-NG YE 49 + -          (3) 

BC-N YE 50 ‒ -          (4) 

AC-N YE 51 ‒ -          (4) 

AC-N YE 52 ‒ -          (5) 

UP-N YE 53 + -          (5) 

DS-NG YE 54 ‒ -          (4) 
AC-NG YE 55 ‒ -          (4) 

AC-N YE 56 ‒ -          (4) 

AC-N YE 57 - -          (5) 

AC-N YE 58 ‒ -          (3) 

AC-N YE 60 ‒ -          (3) 

AC-NG YE 61 ‒ -          (4) 

BC-NG YE 62 ‒ -          (5) 

DS- NG YE 63 ‒ -          (1) 

UP-N YE 64 + -          (3) 

UP-NG YE 65 ‒ -          (3) 

DS-NG YE 66 ‒ -          (3) 

DS- NG YE 67 + -          (1) 
DS-NG YE 68 ‒ -          (5) 

AC-NG YE 69 ‒ -          (4) 

BC-NG YE 70 ‒ -          (4) 

Table 3.7: Continued……… 
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3.3.4 Virulence genes detection 

 

The PCR amplification of the virulence genes yielded the expected amplicon size for the 

different virulence genes as represented in figure 3.1. 

 

 

 

 

 

The detection of virulence genes amongst the Yersinia enterocolitica tested isolates showed that 

some isolates harbored the virulence genes of interest as represented in Table 3.8. 

The most prevalent gene was ystA 39/70 (56%), followed by ail 27/70 (24 %) and both the 

plasmid located genes Vir/Lcr and YadA were detected in only 2/70 (2%) of the tested isolates. 

 

50bp 

250bp 

500 bp 

 1       2       3 4        5       6    7       8       9   10     11     12 M M 

yadA (759bp) 

Vir/ Lcr (561bp) 

ail (425bp) 

ystA (79bp) 

Fig 3.1: Agarose gel electrophoresis of the virulence genes detected in the Yersinia enterocolitica isolates 

recovered from treated wastewater and receiving surface water. Lane M = 50 bp plus ladder, lanes 1-3 

represent ystA positive isolates at 79 bp, lanes 4-6 represent ail positive at 425 bp, lanes 7-9 represent Vir/Lcr 

positive isolates at 561 bp and lanes 10-12 represent yadA positive isolates at 759 bp. 
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3.3.5 Genotypic fingerprint of Yersinia enterocolitica isolates by RAPD-PCR 

The 53 integron positive Y. enterocolitica isolates were further studied for their genotypic 

similarities using Primer II as detailed in section 3.2.8. Primer II (Akhila et al., 2013) used was 

capable of amplifying multiple polymorphic DNA fragments from all the tested isolates. RAPD-

PCR gel electrophoresis showed different banding patterns with variation in intensity.  As 

presented in figures 3.2 and 3.3, the three major bands (350 bp, 450 bp and 1400 bp) were 

common to all isolates. The different bands intensities observed were grouped as primary 

(brighter band), secondary (slightly bright) and tertiary (low intensity) based on their apperance 

on the gel. The tested isolates had visible bands ranging from 4 to 14 bands. 

The agarose gel image obtained from the RAPD-PCR was analyzed using the GelcompareII 

software. The resulting dendrogram demonstrated 2 major clusters, A and B (Figure 3.4).  

Obtained from RAPD-PCR analysis sixty eight percentage (37/54) of the isolates are grouped 

together in cluster A, with most of them showing aadA1 conserved region and belonged to 

phenotype A (Table 3.6). Cluster B has 31% (17/54) of the isolates. Although these isolates have 

 

Virulence Gene 

 

No. of positive isolates 

 

Positive isolates (%) 

 

ystA 

 

39 

 

56 

 

YstB 

 

0 

 

0 

 

ail 

 

24 

 

34 

 

Vir/Lcr 

 

2 

 

3 

 

YadA 

 

2 

 

3 

Table 3.8: Prevalence of the virulence genes detected from the Y. enterocolitica isolates. 
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similar profile as isolates in cluster A, most of them did not harbour any of these specified 

conserved regions. 

 

 

 

 

 

 

 

 

Figure 3.2: Integron positive Yersinia enterocolitica isolates RAPD polymorphisms amplified by 

primer II. M (100bp Plus DNA ladder), YE is the positive control. 

 

Figure 3.3: Integron positive Yersinia enterocolitica isolates RAPD polymorphisms amplified by 

primer II. M (100bp Plus DNA ladder), YE is the positive control. 
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Fig 3.4: Dendrogram analysis showing the genotypic similarities of the Yersinia enterocolitica isolates 

recovered from treated wastewater effluent and receiving surface waters. 
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3.4 Discussion 

An increase in the emergence of multi-antibiotics resistant bacteria in recent years is worrying 

and the presence of antibiotics resistance genes on bacterial plasmids has facilitated in the 

transmission and spread of drug resistance among pathogenic bacteria (Zulkifli et al, 2009). The 

increasing problems with antimicrobial drug resistance and the ability to fight against diseases 

and thus limiting therapeutic options to present-day clinicians (Zulkifli et al, 2009). 

Environments containing antibiotic residues exert selection pressure and contribute to the 

appearance of resistant bacteria (DebMandal et al, 2011). The majority of studies on 

antimicrobial susceptibility profiles of Y. enterocolitica focus on clinical and food isolates with 

little information in the literature on antibiotic susceptibility profiles of Y. enterocolitica isolated 

from environmental sources such as the discharged effluent from the municipal wastewater 

treatment plants. 

 

The antibiotic resistance profiling showed that there was a high prevalence of resistance to 

cefalothin, cefuroxime, ampicillin, amoxicillin, chloramphenicol, tetracycline and trimethoprim 

among the tested Y. enterocolitica isolates. High levels of resistance to trimethoprim were 

observed in other previous studies (Miranda and Zemelman, 2002; Chen et al., 2010). These 

results reflected the widespread use of these antibiotics in aquaculture worldwide. The high 

levels of resistance to β- lactams among the Y. enterocolitica isolates tested may be attributed to 

the fact that these isolates are able to produce β-lactamases. A study by SharifiYazdi et al. (2011) 

on antibiotic susceptibilities of Y. enterocolitica isolated from meat and chicken reported high 

levels of resistance of the isolates to cefalothin and ampicillin. This corroborates results of the 

current study as a high level of resistance to penicillins (amoxicillin) and aminoglycosides 
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(streptomycin) was also observed among the isolates. Resistance to the β –lactam antibiotics by 

Y. enterocolitica was also observed by Tzelepi et al. (1999) in their study on the antimicrobial 

susceptibilities of Y. enterocolitica isolated from aquatic environments. A resistance of Y. 

enterocolitica against tetracycline was reported by Simonova et al. (2008) which is in 

accordance with the present study. Pandove et al. (2012) observed that Y. enterocolitica isolates 

were resistant to ampicillin and ciprofloxacin, which was observed in the present study. Bolton et 

al. (2013) observed that isolates of Y. enterocolitica were resistant to sulphonamides and 

tetracycline. Resistance of Y. enterocolitica isolates to tetracycline was observed by many 

researchers (Mayrhofer et al. 2004; Kot and Rainko, 2009; Bolton et al., 2013), which are in 

agreement with the present study. Possible explanation for the high resistance to several 

antibiotics could be attributed to acquisition of a multi-drug resistance plasmid. Plasmid-

mediated transmission of antibiotic resistance has been described as the most common 

mechanism of horizontal gene transfer (HGT) (Norman et al., 2009) with sub-inhibitory 

concentrations of antibiotics facilitating the process of antibiotic resistance development (Davies 

et al., 2006). Antimicrobials have shown to enhance gene transfer and recombination (Couce and 

Blazquez, 2009), through the activation of the SOS system (Guerin et al., 2010) and also they 

have shown to induce phage production from lysogens. Such factors may play an important role 

in the proliferation of gene exchange in aquatic environments. 

 

None of the isolates tested in this study showed resistance to ceftriaxone, ciprofloxacin and 

gentamicin, which is in agreement with findings from previous studies (Rastawicki et al., 2000). 

The findings of the current study showed that all tested isolates were susceptible to gentamicin 

which is also consistent with the results of Funk et al. (2000). Y. enterocolitica is naturally 
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resistant to ampicillin (Aarestrup et al., 1998), which could explain 100% resistance to ampicillin 

observed in this study. While previous studies found 100% resistance of Y. enterocolitica to 

cefalothin (Funk et al., 2000), 90% of the isolates tested in this study were resistant. The MAR 

indices calculated from the resistance profiles from the Y. enterocolitica isolates ranged from 

0.5-0.66, suggesting that the tested isolates were multidrug resistant and could pose serious threat 

to people who may be exposed to the water.  

 

Detection of integrons within bacterial pathogens has been advocated as a tool in infection 

control and for studying antibiotic resistance within bacterial microflora (Jones et al. 2003). 

Integrons have been acknowledged as contributors to antibiotic resistance of Gram negative 

isolates and have been reported in environmental and animal isolates, for example, in diseased 

poultry (Bass et al., 1999), fish (Schmidt et al., 2001), pigs and cattle (Sandvang and Aarestrup 

2000) and retail ground meats (White et al., 2001). This raises concerns as there is a potential for 

transfer of integron-carrying bacteria from these sources to humans. In the current study, class 2 

intergron was found to be the most dominant, as it was detected in 59% (41/70) of the Y. 

enterocolitica isolates tested compared to class 1 and class 3 integron detected in 26% (18/70) 

and 6% (4/70) of the isolates, respectively. A study by Hansson et al. (2002) also found that the 

most common integron within the Enterobacteriaceae family was class 2 and that more than one 

gene cassette could be found within a conserved region. Gene cassettes encoding dfrA1, sat, and 

aadA1 was found in E. coli (Hansson et al., 2002). This is similar to the results of the current 

study, which indicated the presence of more than one conserved region in these integron positive 

Y. enterocolitica isolates. Genes conferring resistance to aminoglycosides and β-lactams are 

frequently found in integrons from Enterobacteriaceae, and the most common aminoglycoside 
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resistance gene cassettes belong to aad and aac families (Severino and Magalha˜es, 2002). 

Previous reports have shown the presence of aminoglycoside resistance genes associated with 

integrons found in Gram-negative bacteria (Fluit and Schmitz 2004). The gene cassette 

conserved regions detected in this study were aadA1 (known to confer resistance to 

streptomycin) and recognised as one of the most frequently integrated gene cassettes harboured 

in class 1 integrons (Partridge et al. 2009), aadB (gene encoding an aminoglycoside 

adenylyltransferase and resistance to kanamycin) (AAC), that confers resistance to amikacin, 

gentamicin, and tobramycin (Hopkins et al., 1991) and aadA4 (for streptomycin resistance). 

Several reports have shown the presence of aacA7 gene encoding a type I aminoglycoside 

acetyltransferase of aminoglycoside resistance genes associated with integrons found in gram-

negative bacteria (Severino and Magalhaes, 2002; Fluit and Schmitz, 2004). Resistance to 

streptomycin could be directly related to the presence of resistance genes within the integron and 

also the association of antibiotics such as ampicillin and tetracycline with the presence of 

integrons could be due to the genetic linkage between integrons and conjugative plasmids and 

transposons (Khosravi et al., 2012). In this study, it was observed that the majority of isolates 

were resistant to streptomycin and also that most of the isolates tested had the aacA7, aadB and 

aadA4 gene cassette array.  With the observations from the tested isolates, it can be inferred that 

resistance presented by the gene cassette correlated with phenotypic antibiotic resistance profiles 

obtained in this study. Previously, the association of multidrug resistance with integrons has been 

specially shown in Enterobacteriaceae (van Loon et al, 2004), despite the lack, in some studies, 

of experimental evidences showing the presence or content of the variable region (Leverstein et 

al., 2003). 
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The emergence of the (metallo-β- lactamases) MBLs in Gram negative bacilli is becoming a 

problem as it poses a huge challenge to the therapeutic agents used for treatment. These enzymes 

are known to possess hydrolytic activity leading to the degradation of the cephalosporins 

(Vettoretti et al., 2009).  In this study, the impenem +EDTA synergy assay showed that all Y. 

enterocolitica isolates tested had no MBL activity as all isolates had a zone of clearing less than 

the recommended value of ≥7 mm. These findings could not be compared with any studies as 

this assay has never been carried out for Yersinia spp. These observed findings for the Impenem 

disk assay correlates or shows a relation to antibiotic resistance profiles observed in this study, as 

most of the tested isolates had high resistance to the β- lactam class of antibiotics having an 

ability to produce the lactamases. This explains the poor zones of clearing observed with the 

Impenem disk known to belong to the β- lactam family.  

 

The virulence abilities of these isolates were evaluated by studying the pYV- encoded 

phenotypic characteristics using the crystal violet binding assay. It was observed that only 21% 

(15/70) of the tested isolates had an ability to bind to the crystal violet and change the colony 

morphology from cream to purple colour. The pYV is known to be unstable in all pathogenic 

Yersinia spp. because after continual cultivation or during processing, the pYV plasmid may be 

lost resulting in avirulent clones (Bhaduri and Sommers, 2008). The loss of pYV leads to the 

eventual over growth of cells lacking pYV and resulting in the disappearance of the pYV-

associated virulence characteristics (Bhaduri, 2001). It has been found that testing for 

pathogenicity in cultured isolates can be challenging and the validity of the virulence test has 

been questioned. A study by Prpic et al. (1985) tested the virulence by means of a calcium 

dependent assay and found that not all calcium dependent strains were virulent. A study by 

Noble et al. (1987) found that the results from the different virulence determinant tests do not 
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agree on the virulence characteristic of a tested organism. Therefore, the authors found that no 

individual virulence tests or group of tests could be consistently associated with symptomatic 

patients. A review by Bottone (1997) summarizes different studies with evidence that results 

from virulence testing may not be a reliable indicator of whether or not an isolate is of clinical 

significance to humans. 

 

It has been recognized that Y. enterocolitica isolates that lack the classic virulence characteristics 

may still be of clinical concern to humans and pose different, uncharacterized pathogenic 

mechanisms within the human host (Sulakvelidze, 2000). Hypothetically, pathogenic strains 

should contain all virulence genes in chromosomes (inv, ail, ystA) and plasmids (yadA, virF), all 

of which may interact with each other to cause illness in humans. However, in this study, the 

detection of the virulence genes from the Y. enterocolitica isolates showed that isolates have 1 or 

2 of the four detected virulence genes. The current study showed that 59% (39/70) of the tested 

isolates harbored the ystA gene which is the most prevalent gene detected amongst the tested 

isolates. This gene is related to the production of the heat stable enterotoxin (yst). The prevalence 

of ystA gene observed among Y. enterocolitica isolates in this study is lower than that reported 

by Thoerner et al. (2003) and Platt-Samoraj et al. (2006) where the ystA gene was identified in 

100% and 99% of the tested isolates, respectively. Grant et al. (1998) reported pathogenic 

biotype 1A strains that lack yst gene. The ail gene required for attachment and aligning to the 

host was detected in 34% (24/70) of the tested isolates. Previous studies have reported on the 

presence of ail gene in Y. enterocolitica biotype 1A strains, which are commonly considered as 

non-pathogenic (Kraushaar et al. 2011). Tennant et al. (2003) suggested that there are two 
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subgroups of biotype 1A of Y. enterocolitica, a group comprising pathogenic strains of clinical 

origin and another group comprising non-pathogenic strains of environmental origin. 

 

In the current study only 3% (2/70) of the isolates tested positive for each of the yadA and 

Vir/Lcr plasmid located virulence genes. The observed low occurrences of these genes have been 

attributed to the fact that virulence plasmid can easily be lost when the strains are subcultivated 

at temperatures higher than 30°C, if they are repeatedly subcultivated, or if they are stored over 

time. Reference strains which are cultivated only at 30°C may also lose the plasmid (Theoner et 

al. 2002). Also, it is possible that virulent strains without a plasmid may facilitate invasion in 

humans only by traditional and other unknown virulence genes in the chromosome, which is a 

hypothesis to be validated in the future. Nevertheless, due to different distributions of virulence 

markers, especially the conflicting occurrence of virF in the plasmid (Thoerner et al., 2003), it is 

certain that pathogenesis in virulent Y. enterocolitica is not single but diverse. 

 

Analysis of the RAPD-PCR results obtained in this study suggests that considerable genetic 

diversity exists among the tested Y. enterocolitica isolates. Amplification results by RAPD-PCR 

in Y. enterocolitica strains analysed in this present study showed different intensities of amplified 

bands, suggesting that some DNA fragments had been produced at a higher rate during 

amplification or these fragments could be the result of multiple copies of identical DNA 

sequences along the genome, amplification of different sequences of DNA and/or producing 

fragments of the same size (Sayada et al., 1994).Variation in segment size of DNA amplified 

through RAPD-PCR, between isolates of the same species, could be the result of deletions or 

insertions, modifying the size of the DNA segments (Welsh and McClelland, 1990). There were 
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two major clusters (A and B) observed from the dendrogram analysis. Cluster A was a major 

cluster with 68% of the isolates grouped on this cluster. These isolates were all MBL negative, 

none of the isolates from this group were positive for class 3 integron, they were negative for the 

plasmid located gene Vir/Lcr. High levels of resistance of the tested isolates were observed in 

amoxycillin, ampicillin, ceftriaxone, cefalothin, chloramphenicol, tetracycline and trimethoprim 

and belonging to phenotype A as grouped based on their resistance profiles pattern also this 

cluster had isolates belonging to phenotypes F and J. Cluster B had 31% of the tested isolates 

whereby the isolates in this cluster were similar to the ones grouped in cluster A that were under 

phenotype A, F and J, but this cluster had isolates belonging to phenotype G and D absent in 

cluster A. ( Figure 3.5). Again the isolates in this cluster were MBL negative but positive for 

both the plasmid encoded virulence genes (yadA and Vir/Lcr) and some of the isolates grouped 

in this cluster were positive for class 3 integrons.   

 

3.5 Conclusion 

The present study revealed that treatment effluent discharge from the municipal wastewater 

treatment plants investigated habour Yersinia enterocolitica, organisms known to be emerging 

pathogens. These pathogens have proved to be multiple drug resistant. All Yersinia 

enterocolitica isolates tested in this study showed high resistance (90-100%) to β-lactam class of 

antibiotics. The isolates also demonstrated resistance to more classes of antibiotics, including 

chloramphenicol, tetracycline, aminoglycosides (streptomycin) and trimethoprim. The high 

MAR index values obtained suggests multi-antimicrobial resistance among the isolates. The gene 

cassette conserved regions detected were aacA7, aadBand aadA4, encoding a type I 

aminoglycoside acetyltransferase, aminoglycoside adenylyltransferase and confer resistance to 
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streptomycin. These 3 conserved regions were found to be conserved on isolates that were class 

1 and 2 integron positive showing the abundance and spread of these conserved regions within 

the Yersinia enterocolitica tested isolates. Also aadA1 known to confer resistance to 

streptomycin was found on isolates that were class 1and 3 integron positive. The resistance 

observed can be related to tested isolates to be an integron mediated trait as observed from the 

results that the conserved regions confer resistance to some of the tested antibiotics.  

 

This study also provided data on the relation between RAPD-PCR profiles of the Yersinia 

enterocolitica isolates treated from wastewater effluents and receiving surface water. Two major 

clusters were grouped based on the genotypic similarities and the banding patterns. It was also 

noted that clusters differ based on the class of the integrons harboured by the isolates. Thus it can 

be concluded from this study that the Yersinia enterocolitica tested isolates harbor the gene 

cassette conserved regions enabling them to be resistant to antibiotics and also that the isolates 

are able to hydrolyse the β- lactamase o-ring. It was also observed that some of tested isolates 

habour the virulence genes and it is known that presence of virulence genes indicates that these 

isolates are capable to cause infections in immunocompromised and susceptible hosts. In general, 

due to high frequency of occurrence of ampicillin, tetracycline, chloramphenicol and 

trimethoprim resistant Yersinia enterocolitica isolates in this study, these antibiotics could not be 

drugs of choice for treatment of Yersinosis. Gentamicin, ciprofloxacin and ceftriaxone are 

recommended as   drugs of choice for treatment of Yersinosis as observed from this study. 
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CHAPTER 4 

 GENERAL DISCUSSION AND CONCLUSION 

4.1 General Discussion 

Currently South Africa is faced with water shortage and the demand for water is growing as the 

economy expands and the increase population numbers. In order for the country to continue to 

develop economically, while meeting the needs for water usage, steps must be taken to protect 

the quality of water resources. It is common knowledge that water sources are exposed to 

numerous drastic changes in microbial and chemical qualities resulting from a number of 

activities on the watershed or reservoirs. These changes are mainly influenced by discharges of 

municipal raw waters or treated effluent at a specific point-source into the receiving waters such 

as streams, rivers, lakes, ponds etc. (Momba et al, 2006). There is a growing awareness of the 

impact of sewage contamination on aquatic milieu; wastewater treatment is now receiving 

greater attention from the World Bank and government regulatory bodies (Looker, 1998).  

South Africa had outbreaks of Shigella dysenteriae and Vibrio cholerae that resulted in 13 and 

288 fatalities, (Pegram et al., 1998; DPLG 2001). This raises a need for assessment of water and 

wastewater to safeguard public health and the environment (Okoh et al., 2005; 2007). Thus 

monitoring wastewater treatment plants and their receiving water reservoirs of both the 

physicochemical properties and microbial load is of paramount importance (Okoh et al., 2007). 

Physicochemical properties such as temperature, pH, DO, salinity, and nutrient loads have been 

reported to influence biochemical reactions within water systems, hence changes in the 

concentration of these parameters symbolize changes in the condition of the water system 

(Hacioglu and Dulger, 2009).   
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There have been previous studies on the poor physicochemical and microbial quality of treated 

effluents from wastewater treatment plants and receiving surface bodies in the Eastern Cape 

province, South Africa (Igbinosa and Okoh, 2009), However to our knowledge, studies on  the 

prevalence of Yersinia spp and characterisation of integrons and gene cassette conserved regions 

of Yersinia enterocolitica recovered from wastewater treatment plants in South Africa have not 

been exhausted to give a clear indication of the prevalence and occurrence in water resources.  

Hence the current study investigated the prevalence of Yersinia spp., especially Yersinia 

enterocolitica in treated wastewater effluent of two independent WWTP’s in Durban and 

evaluate its impact on receiving water surfaces. This study, also evaluated the correlation 

between certain physicochemical parameters of the wastewater and the Yersinia spp. counts in 

the wastewater samples. 

The results obtained in this study showed that some of the physico-chemical parameters tested 

such as pH and temperature  were within the acceptable limits based on the current guidelines, 

while  turbidity, COD and BOD fell short of standard requirements  with values ranging from 

1.25 -452 NTU, 37- 309 mg/L and 4.4 – 314 mg/ L, respectively. The microbial analysis showed 

that Yersinia spp. were recovered at after chlorination (AC) points and the discharge point (DS). 

High Yersinia counts were observed for upstream (UP) point for both NGTW and NWWTP, 

with values as high as 6.8 x10
7
 and 2.1 x10

7
 cfu/ml respectively, while downstream (DS) values 

for NGTW and NWWTP were 4 x10
6
 and 1.7 x10

6
 cfu/ml respectively. The detection of Y. 

enterocolitica after tertiary treatment suggests that the process may not have been effective 

enough to completely remove these emerging bacterial species. 
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The antibiotic resistance profiles observed for the tested Yersinia enterocolitica isolates presents 

in charpter three showed that these organisms were resistant to tetracycline, trimethoprim and 

ampicillin. Furthermore, it was observed that the tested isolates were resistant to most of the β-

lactam antibiotics family such as amoxicillin (98%), cefuroxime (96%) and cefalothin (90%).  

Relatively high resistance observed for the β- lactamase family could be attributed to the fact that 

the organism produces β-lactamases that can destroy the o-ring (Hornstein et al., 1985). Yersinia 

strains are usually susceptible invitro to co-trimoxazole, aminoglycosides, tetracyclines, 

chloramphenicol, third-generation cephalosporins, and quinolones (Prats et al., 2000). The high 

resistance observed for tetracycline and chloramphenicol could be of serious public health 

concern as these are antibiotics of choice for yersinosis. The MAR indices calculated from the 

resistance patterns of tested Y. enterocolitica isolates ranged from 0.5-0.66, which is higher than 

the 0.2 limit, signifying that the tested isolates originated from high risks source(s) of 

contamination where antibiotics are used (Kuete et al., 2010). 

 

The detection of the integrase genes showed the presence and distribution of 3 classes of 

integrase genes amongst the Yersinia enterocolitica isolates.  The isolates had high occurrences 

of IntI II (56%), followed by Int1 I (26%) and IntI III (6%).  The gene cassette conserved regions 

of the integron positive isolates after restriction with EcoR1 showed that the isolates harboured 

four different regions namely, aadA1, aacA7, aadB and aadA. Interestingly, each conserved 

region conferred resistance to a few antibiotics used for susceptibility testing, such as 

streptomycin and trimethoprim. Genes causing resistance to aminoglycosides and β-lactams are 

often seen in integrons from the members of Enterobacteriaceae family, as most common 
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aminoglycoside resistance gene cassettes belong to aad and aac families (Severino and 

Magalha˜es, 2002). 

 

The MBL activity assay using the antibitotic impenem + EDTA synergy assay showed that all 

Yersinia enterocolitica isolates lacked this activity since the zones of clearing observed were less 

than the acceptable value of  ≥7 mm. The observations from this assay agreed with the resistance 

conferred by these tested isolates to the β- lactam antibiotics used for the susceptibility testing. 

The virulence associated phenotypic characteristics using crystal violet (CV) binding assay 

showed that only 15/70 (21%) of the tested isolates had an ability to bind to the crystal violet and 

change the colony morphology from cream to purple. This could be an indication that only 21% 

of the isolates bear the pYV protein. The pYV is known to be unstable in all pathogenic Yersinia 

spp. because after continual cultivation or during processing, the pYV plasmid may be lost 

resulting in nonvirulent clones (Bhaduri and Sommers, 2008). This could explain the low 

percentage of isolates that could retain the crystal violet. 

 

Virulence genes detection in the Yersinia enterocolitica isolates showed that the occurrence of 

genes varies for each isolate. There was a higher occurrence of the chromosomal genes 

compared to the plasmid located genes, which could be attributed to the fact that the Yersinia 

spp. lose plasmids during culturing. Results observed in the current study revealed that the 

occurence of the virulence gene was follows ystA (59%), ail (34%), Vir/Lcr (3%) and YadA 

(3%).  

RAPD profiles of Y. enterocolitica isolates analysed using BioNumerics (Applied Maths) 

confirmed the visual differentiation of isolates and grouped them in a cluster based on their 
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similatities. The genotypic characterization of the Y. enterocolitica isolates revealed that there 

were two major clusters A and B that grouped the isolates based on their phenotypic 

characteristics such as the antibiotic resistance profile, the occurrence of the intergrons and their 

conserved regions (Figures 3.3 and 3.4). Both clusters were related to the positive control of Y. 

enterocolitica, with cluster A being the major cluster with 68% of the isolates. These isolates 

were all MBL negative, none of the isolates from this group were positive for class 3 integron, 

lacking the plasmid located gene Vir/Lcr and included are the isolates belonging to phenotypes F 

and J (Table 3.5). Cluster B had 31% of the tested isolates grouped, these isolates had patterns of 

phenotype A, F and J, but this cluster had isolates belonging to phonotype G and D, including 

isolates that were positive for the plasmid located Vir/Lcr gene. 

 

Due to the psychrotrophic nature and the importance of Y. enterocolitica as a potential food- and 

water-borne enteric pathogen, there is a need to perform microbiological controls so that such 

pathogens do not find ways to enter the water systems accessible to humans. Yersinia 

enterocolitica could be an important drinking water pathogen because of its widespread 

occurrence and persistence in natural and treated waters (at least in some geographical areas), the 

existence of animal reservoirs, the evidence for possible waterborne outbreaks, and the lack of 

definitive data on its reduction via treatment processes (Fredriksson-Ahomaa1and Korkeala 

2003). 
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4.2. Potential future development of study  

One of the priorities in the treatment of wastewater is the removal of pathogenic microorganisms 

in order to comply with the required discharge standards for the treated effluent. In general, the 

proper implementation and management strategy results in the protection of the quality of water 

sources; the reduction of the cost of drinking water treatment; and the control, prevention or 

elimination of waterborne diseases. The current study has proved that the sewage treatment 

plants investigated discharge potentially pathogenic emerging bacterial species, Yersinia 

enterocolitica into the surface waters which are easily accessible to public and the community at 

large and this poses a high health risk to the environment. 

Certainly this study has set a platform for further investigation in this research area. In order to 

fully understand the specific strains of Yersinia enterocolitica that are discharged in treated 

effluent, more tests should be done to differentiate the identified organisms into serotype, 

biotype and biovar. The correlation between phenotypic and genotypic virulence determinant 

could be better determined using assays such as the autoagglutination test, CR-MOX testing and 

low calcium response assay. In addition, the presence of antibiotic resistance genes, especially 

the β- lactamase and the streptomycin resistance genes, should be confirmed in the isolates since 

most of the gene cassette conserved regions detected were found to confer resistance to 

streptomycin and most if not all isolates were resistant to the β- lactam class of antibiotics. While 

the RAPD- PCR could cluster the isolates based on their relatedness, more genetic fingerprinting 

could be performed to allow for intensive understanding of the genetic similarities among the 

isolates. This could be achieved using methods such as Enterobacterial repetitive intergenic 

consensus (ERIC-PCR), Amplified fragment length polymorphism (AFLP) and Pulse field gel 

electrophoresis (PFGE).  A greater effort should also be made in the future to increase the 
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number of WWTPs to be investigated, frequency of the sampling times and the effect of 

chlorination on the survival of Yersinia species in order to provide more information on the level 

of distribution of Yersinia spp. in treated effluent discharges. Overall, this study has revealed the 

operational conditions of the WWTPs under investigation and reiterated the need for constant 

monitoring of the treatment process in order to ensure strict compliance of the treated effluent 

quality to the stipulated guidelines. 
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Weeks 
Sampling 

points COD 1 COD 2 COD 3 AVERAGE STDEV Temp 1 Temp 2 Temp 3 AVERAGE STDEV 

 
UP 269 274 264 269.0 4.1 23 23 23 23 0 

 
BC 74 125 83 94.0 22.2 22 22 22 22 0 

1 AC 308 309 310 309.0 0.8 21 21 21 21 0 

 
DS 257 307 312 292.0 24.8 22 22 22 22 0 

 
UP 38 42 31 37 4.5 18 18 18 18 0 

 
BC 75 61 80 72 8.0 23 23 23 23 0 

2 AC 85 76 117 92.7 17.6 22 22 22 22 0 

 
DS 71 82 74 75.7 4.6 19 19 19 19 0 

 
UP 226 229 213 222.7 6.9 17 17 17 17 0 

 
BC 194 164 198 185.3 15.2 22 22 22 22 0 

3 AC 105 94 103 100.7 4.8 22 22 22 22 0 

 
DS 145 244 172 187.0 41.8 18 18 18 18 0 

 
UP 214 279 194 229.0 36.3 15 15 15 15 0 

 
BC 165 214 184 187.7 20.2 20 20 20 20 0 

4 AC 148 138 171 152.3 13.8 20 20 20 20 0 

 
DS 57 65 95 72.3 16.4 17 17 17 17 0 

 
UP 158 164 161 161.0 2.4 16 16 16 16 0 

5 BC 226 216 206 216.0 8.2 20 20 20 20 0 

 
AC 172 168 170 170.0 1.6 20 20 20 20 0 

 
DS 292 282 287 287.0 4.1 15 15 15 15 0 

 
UP 303 303 304 303.3 0.5 21 21 21 21 0 

6 BC 297 297 297 297.0 0.0 20 20 20 20 0 

 
AC 300 301 301 300.7 0.5 21 21 21 21 0 

 
DS 185 186 184 185.0 0.8 22 22 22 22 0 

APPENDIX A 

Table 1:  Triplicate analysis of COD and Temperature values for NGTW as detailed in Table 2.2 . 
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Weeks 
Sampling 

points pH 1 pH 2 pH 3 AVERAGE STDEV TDS 1 TDS 2 TDS 3 AVERAGE STDEV 

 
UP 8.69 8.76 8.82 8.8 0.1 429 430 430 429.7 0.5 

 
BC 7.22 7.16 7.18 7.2 0.0 541 541 540 540.7 0.5 

1 AC 8.4 8.2 8.06 8.2 0.1 532 535 535 534.0 1.4 

 
DS 7.36 7.41 7.33 7.4 0.0 561 552 548 553.7 5.4 

 
UP 8.14 8.76 8.51 8.47 0.25 214.2 214.1 214 214.1 0.1 

 
BC 7.43 7.53 7.25 7.403 0.12 660 659 660 659.7 0.5 

2 AC 7.69 7.56 7.43 7.56 0.11 477 476 476 476.3 0.5 

 
DS 8.15 8.39 8.43 8.32 0.12 375 375 375 375.0 0.0 

 
UP 8.03 8.03 8.03 8.0 0.000 197.2 197.5 197.5 197.4 0.14 

 
BC 8.09 8.09 8.09 8.09 0.000 772 773 772 772.3 0.47 

3 AC 7.28 7.28 7.28 7.28 0.000 581 583 584 582.7 1.25 

 
DS 7.69 7.69 7.69 7.7 0.000 399 402 402 401 1.41 

 
UP 7.42 7.42 7.42 7.4 0.00 189.2 189.9 189.8 189.6 0.31 

 
BC 6.76 6.76 6.77 6.8 0.00 590 591 590 590.3 0.47 

4 AC 6.77 6.8 6.75 6.8 0.02 577 577 576 576.7 0.47 

 
DS 7.13 7.13 7.13 7.1 0.00 433 432 432 432.3 0.47 

 
UP 6.66 6.65 6.67 6.7 0.01 283 283 282 282.7 0.47 

5 BC 6.8 6.81 6.82 7.0 0.09 550 549 553 550.7 1.70 

 
AC 6.99 7.01 6.99 7.0 0.01 380 379 381 380.0 0.82 

 
DS 7.05 7.04 7.06 7.1 0.01 343 344 343 343.3 0.47 

 
UP 7.56 7.55 7.54 7.6 0.01 183.3 183.5 183.7 183.5 0.16 

6 BC 7.35 7.32 7.31 7.0 0.17 619 619 620 619.3 0.47 

 
AC 7.48 7.38 7.35 7.4 0.06 480 479 482 480.3 1.25 

 
DS 7.5 7.46 7.41 7.5 0.04 465 466 466 465.7 0.47 

 

 

Table 2:  Triplicate analysis of pH and TDS values for NGTW as detailed in Table 2.2. 
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Weeks Sampling points Turbidity 1 Turbidity 2 Turbidity 3 AVERAGE STDEV 

 
UP 13.15 13.14 13.16 13.2 0.0 

 
BC 21.1 21.2 21.2 21.2 0.0 

1 AC 14.9 14.8 14.2 14.6 0.3 

 
DS 13.5 13.3 13.4 13.4 0.1 

 
UP 1.99 2.1 2.06 2.05 0.05 

 
BC 262 264 263 263 0.82 

2 AC 1.25 1.26 1.24 1.25 0.01 

 
DS 39.1 35.7 36.1 37.0 1.52 

 
UP 3.29 3.3 3.28 3.29 0.01 

 
BC 284 282 276 280.7 3.40 

3 AC 10.3 10.2 10.3 10.3 0.05 

 
DS 95.6 96 92.4 94.7 1.61 

 
UP 5.01 5.03 4.97 5.0 0.02 

 
BC 9.99 9.99 9.99 10.0 0.00 

4 AC 34.3 34.5 34.7 34.5 0.16 

 
DS 55.3 52.9 51.4 53.2 1.61 

 
UP 21.2 22 21 21.4 0.43 

 
BC 19.6 19.6 19.6 19.6 0.00 

5 AC 8.06 7.97 7.97 8.0 0.04 

 
DS 22 22.5 21.9 22.1 0.26 

 
UP 8.53 8.51 8.63 8.6 0.05 

 
BC 268 269 269 268.7 0.47 

6 AC 94 91 95 93.3 1.70 

 
DS 452 451 453 452.0 0.82 

 

 

Table 3:  Triplicate turbidity values for NGTW as detailed in Table 2.2. 
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BOD DAY 0 

   
BOD DAY 5 

          
Week 

Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 7.53 7.54 7.53 7.53 0.01 5.29 5.3 5 5.28 0.02 0.20 11.20 11.40 11.25 11.28 0.10 7.31 0.16 

 
UP 100 7.51 7.43 7.41 7.45 0.05 5.45 5.4 5 5.40 0.04 0.33 6.24 6.18 6.18 6.20 0.03 

  

 
UP 150 7.81 7.8 7.83 7.81 0.02 5.68 5.7 5 5.59 0.15 0.50 4.26 4.24 4.82 4.44 0.33 

  

 
BC 6 7.6 7.59 7.56 7.58 0.02 5.89 5.9 6 5.85 0.04 0.02 85.50 87.00 87.00 86.50 0.87 91.39 1.61 

 
BC 8 7.51 7.48 7.44 7.48 0.04 5.39 5.4 5 5.38 0.01 0.02 106.00 105.50 103.50 105.00 1.32 

  

 
BC 10 7.46 7.44 7.4 7.43 0.03 4.92 4.9 5 4.95 0.05 0.03 84.67 83.67 79.67 82.67 2.65 

  
1 AC 15 7.29 7.31 7.31 7.30 0.01 6.27 6.2 6 6.24 0.03 0.05 20.40 22.00 21.40 21.27 0.81 16.61 1.11 

 
AC 20 7.53 7.52 7.5 7.52 0.02 6.05 6.2 6 6.15 0.09 0.06 24.67 22.17 21.33 22.72 1.73 

  

 
AC 30 7.52 7.51 7.5 7.51 0.01 6.96 7 7 6.93 0.09 0.10 5.60 5.20 6.70 5.83 0.78 

  

 
DS 60 6.34 6.35 6.32 6.34 0.02 5.69 5.7 6 5.68 0.01 0.20 3.25 3.40 3.25 3.30 0.09 26.88 1.50 

 
DS 100 5.62 5.61 5.59 5.61 0.02 

 
4.5 5 4.51 0.02 0.03 36.67 37.33 36.00 36.67 0.67 

  

 
DS 150 5.19 5.09 5.07 5.12 0.06 4.29 4.3 4 4.30 0.02 0.02 45.00 38.50 38.50 40.67 3.75 

  

 
CONTROL 

 
7.69 

 
7.70 

 
7.69 7.69 0.01 6.55 6.5 6 6.51 0.04 1.00 1.14 1.19 1.21 1.18 0.04 

  

Table 4:  BOD values of the final treated effluent for NGTW as detailed in Table 2.2. 
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BOD DAY 0 

 
BOD DAY 5 

          

Week 
Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 6.74 6.47 6.43 6.55 0.17 1.85 1.7 2 1.73 0.12 0.20 24.45 23.75 24.05 24.08 0.35 13.74 0.44 

 
UP 100 4.54 4.12 4.19 4.28 0.23 1.5 1.4 1 1.44 0.06 0.33 9.21 8.12 8.52 8.62 0.55 

  

 
UP 150 5.72 5.33 5.29 5.45 0.24 1.23 1.2 1 1.19 0.04 0.50 8.98 8.28 8.28 8.51 0.40 

  

 
BC 6 7.77 7.82 7.7 7.76 0.06 1.56 1.5 2 1.54 0.02 0.02 310.50 314.00 309.00 311.17 2.57 282.96 2.51 

 
BC 8 7.76 7.73 7.61 7.70 0.08 1.31 1.3 1 1.27 0.04 0.02 322.50 323.00 319.00 321.50 2.18 

  
2 BC 10 7.56 7.64 7.63 7.61 0.04 1.17 1.1 1 1.12 0.04 0.03 213.00 217.67 218.00 216.22 2.80 

  

 
AC 15 7.85 7.8 7.81 7.82 0.03 1.1 1.1 1 1.07 0.04 0.05 135.00 134.40 135.80 135.07 0.70 104.30 0.50 

 
AC 20 7.89 7.85 7.78 7.84 0.06 1.4 1.4 1 1.38 0.03 0.06 108.17 107.83 107.17 107.72 0.51 

  

 
AC 30 7.84 7.89 7.83 7.85 0.03 0.86 0.9 1 0.84 0.02 0.10 69.80 70.40 70.10 70.10 0.30 

  

 
DS 60 7.9 7.16 7.15 7.40 0.43 1.61 1.6 2 1.59 0.02 0.20 31.45 27.90 27.80 29.05 2.08 161.24 5.76 

 
DS 100 7.86 7.17 7.04 7.36 0.44 1.22 1.2 1 1.19 0.03 0.03 221.33 199.67 196.00 205.67 13.69 

  

 
DS 150 6.46 6.45 6.36 6.42 0.06 1.48 1.4 1 1.44 0.04 0.02 249.00 250.50 247.50 249.00 1.50 

  

 
CONTROL 

 
8.34 

 
8.29 

 
8.12 8.25 0.12 7.89 7.9 8 7.94 0.06 1.00 0.45 0.37 0.12 0.31 0.17 

  

Table 4 continued…. 
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BOD DAY 0 

 
BOD DAY 7 

          

Week 
Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 8.2 8.15 8.18 8.18 0.03 4.19 4.2 4 4.18 0.02 0.20 20.05 19.95 20.00 20.00 0.05 13.38 0.05 

 
UP 100 8.18 8.17 8.16 8.17 0.01 4.36 4.3 4 4.32 0.03 0.33 11.58 11.73 11.67 11.66 0.08     

 
UP 150 8.31 8.29 8.25 8.28 0.03 4.07 4 4 4.05 0.02 0.50 8.48 8.50 8.44 8.47 0.03     

 
BC 6 7.94 7.88 7.9 7.91 0.03 4.48 4.5 4 4.45 0.03 0.02 173.00 171.50 174.00 172.83 1.26 159.31 1.34 

 
BC 8 7.81 7.85 7.83 7.83 0.02 4.33 4.3 4 4.30 0.04 0.02 174.00 177.50 178.50 176.67 2.36     

3 BC 10 7.84 7.87 7.85 7.85 0.02 3.98 4 4 4.00 0.03 0.03 128.67 128.00 128.67 128.44 0.38     

 
AC 15 7.98 7.95 7.97 7.97 0.02 6.72 6.7 7 6.71 0.01 0.05 25.20 24.80 25.40 25.13 0.31 26.40 0.35 

 
AC 20 7.96 8 8.01 7.99 0.03 6.04 6 6 6.03 0.01 0.06 32.00 33.00 33.17 32.72 0.63     

 
AC 30 8 7.99 7.95 7.98 0.03 5.86 5.9 6 5.85 0.02 0.10 21.40 21.40 21.20 21.33 0.12     

 
DS 60 7.08 7.11 7.12 7.10 0.02 4.15 4.1 4 4.13 0.02 0.20 14.65 14.95 15.05 14.88 0.21 59.79 9.36 

 
DS 100 6.69 6.91 6.81 6.80 0.11 4.99 4 5 4.66 0.56 0.03 56.67 96.33 61.00 71.33 21.76     

 
DS 150 5.98 6 5.81 5.93 0.10 4.09 4 4 4.07 0.03 0.02 94.50 98.50 86.50 93.17 6.11     

 
CONTROL 

 
7.95 

 
7.89 

 
7.87 7.90 0.04 7.28 7.3 7 7.29 0.01 1.00 0.67 0.60 0.57 0.61 0.05     

 

 

 

 

 

Table 4 continued…. 
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BOD DAY 0 

   
BOD DAY 5 

          

Week 
Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 8.54 8.53 8.54 8.54 0.01 5.86 4.8 5 5.16 0.60 0.20 13.40 18.45 18.75 16.87 3.01 11.27 1.20 

 
UP 100 8.57 8.58 8.57 8.57 0.01 4.98 5 5 4.93 0.08 0.33 10.88 10.94 11.33 11.05 0.25     

 
UP 150 8.63 8.64 8.63 8.63 0.01 5.88 5.6 6 5.69 0.17 0.50 5.50 6.02 6.16 5.89 0.35     

 
BC 6 8.47 8.46 8.47 8.47 0.01 5.96 5.3 6 5.68 0.35 0.02 125.50 158.50 134.50 139.50 17.06 123.28 12.11 

 
BC 8 8.34 8.35 8.33 8.34 0.01 5.89 5.4 5 5.53 0.32 0.02 122.50 149.00 150.50 140.67 15.75     

 
BC 10 8.29 8.28 8.29 8.29 0.01 5.49 5.7 6 5.60 0.10 0.03 93.33 86.33 89.33 89.67 3.51     

4 AC 15 8.4 8.41 8.4 8.40 0.01 6.18 6.3 6 6.32 0.15 0.05 44.40 42.00 38.60 41.67 2.91 33.62 2.40 

 
AC 20 8.37 8.38 8.38 8.38 0.01 6 6.1 6 6.01 0.11 0.06 39.50 37.50 41.17 39.39 1.84     

 
AC 30 8.42 8.43 8.41 8.42 0.01 6.69 6.2 6 6.44 0.24 0.10 17.30 22.20 19.90 19.80 2.45     

 
DS 60 6.95 6.93 6.91 6.93 0.02 4.02 4.2 4 4.10 0.07 0.20 14.65 13.85 13.90 14.13 0.45 79.60 1.37 

 
DS 100 6.84 6.86 6.84 6.85 0.01 3.98 4.1 4 4.00 0.05 0.03 95.33 93.67 96.00 95.00 1.20     

 
DS 150 6.91 6.87 6.84 6.87 0.04 4.26 4.3 4 4.28 0.02 0.02 132.50 128.50 128.00 129.67 2.47     

 
CONTROL 

 
8.66 

 
8.67 

 
8.60 8.64 0.04 6.69 6.8 7 6.76 0.06 1.00 1.97 1.88 1.79 1.88 0.09     
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BOD DAY 0 

   
BOD DAY 5 

          

Week 
Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 7.63 7.63 7.63 7.63 0.00 6.41 6.3 6 6.39 0.06 0.20 6.10 6.50 5.95 6.18 0.28 4.35 0.29 

 
UP 100 7.45 7.43 7.41 7.43 0.02 6.45 6.5 7 6.51 0.07 0.33 3.03 2.82 2.52 2.79 0.26     

 
UP 150 7.69 7.56 7.63 7.63 0.07 5.68 5.7 5 5.59 0.15 0.50 4.02 3.76 4.42 4.07 0.33     

 
BC 6 8.09 8.16 8.15 8.13 0.04 6.2 5.8 6 6.06 0.23 0.02 94.50 118.00 98.50 103.67 12.57 73.41 12.53 

 
BC 8 8.38 8.36 8.34 8.36 0.02 6.44 6.6 7 6.57 0.12 0.02 97.00 87.50 83.50 89.33 6.93     

 
BC 10 8.16 8.1 8.13 8.13 0.03 7.97 7 7 7.31 0.57 0.03 6.33 37.33 38.00 27.22 18.09     

5 AC 15 8.42 8.43 8.41 8.42 0.01 6.18 6.3 6 6.32 0.15 0.05 44.80 42.40 38.80 42.00 3.02 31.46 1.89 

 
AC 20 8.37 8.38 8.38 8.38 0.01 6.01 6 6 6.05 0.10 0.06 39.33 40.00 36.83 38.72 1.67     

 
AC 30 8.4 8.41 8.4 8.40 0.01 7.01 7 7 7.04 0.09 0.10 13.90 14.50 12.60 13.67 0.97     

 
DS 60 6.84 6.79 6.83 6.82 0.03 5.25 5.3 5 5.27 0.02 0.20 7.95 7.60 7.75 7.77 0.18 43.22 1.63 

 
DS 100 6.92 6.93 6.95 6.93 0.02 5.41 5.5 6 5.47 0.05 0.03 50.33 48.00 48.33 48.89 1.26     

 
DS 150 6.73 6.71 6.73 6.72 0.01 5.19 5.3 5 5.26 0.06 0.02 77.00 71.00 71.00 73.00 3.46     

 
CONTROL 

 
8.81 

 
8.92 

 
8.89 8.87 0.06 7.61 7.7 8 7.68 0.06 1.00 1.20 1.23 1.16 1.20 0.04     
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BOD DAY 0 

   
BOD DAY 5 

          

Week 
Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 7.53 7.54 7.53 7.53 0.01 5.29 5.3 5 5.28 0.02 0.20 11.20 11.40 11.25 11.28 0.10 7.31 0.16 

 
UP 100 7.51 7.43 7.41 7.45 0.05 5.45 5.4 5 5.40 0.04 0.33 6.24 6.18 6.18 6.20 0.03 

  

 
UP 150 7.81 7.8 7.83 7.81 0.02 5.68 5.7 5 5.59 0.15 0.50 4.26 4.24 4.82 4.44 0.33 

  

 
BC 6 7.6 7.59 7.56 7.58 0.02 5.89 5.9 6 5.85 0.04 0.02 85.50 87.00 87.00 86.50 0.87 91.39 1.61 

 
BC 8 7.51 7.48 7.44 7.48 0.04 5.39 5.4 5 5.38 0.01 0.02 106.00 105.50 103.50 105.00 1.32 

  

 
BC 10 7.46 7.44 7.4 7.43 0.03 4.92 4.9 5 4.95 0.05 0.03 84.67 83.67 79.67 82.67 2.65 

  
6 AC 15 7.29 7.31 7.31 7.30 0.01 6.27 6.2 6 6.24 0.03 0.05 20.40 22.00 21.40 21.27 0.81 16.61 1.11 

 
AC 20 7.53 7.52 7.5 7.52 0.02 6.05 6.2 6 6.15 0.09 0.06 24.67 22.17 21.33 22.72 1.73 

  

 
AC 30 7.52 7.51 7.5 7.51 0.01 6.96 7 7 6.93 0.09 0.10 5.60 5.20 6.70 5.83 0.78 

  

 
DS 60 6.34 6.35 6.32 6.34 0.02 5.69 5.7 6 5.68 0.01 0.20 3.25 3.40 3.25 3.30 0.09 26.88 1.50 

 
DS 100 5.62 5.61 5.59 5.61 0.02 4.52 4.5 5 4.51 0.02 0.03 36.67 37.33 36.00 36.67 0.67 

  

 
DS 150 5.19 5.09 5.07 5.12 0.06 4.29 4.3 4 4.30 0.02 0.02 45.00 38.50 38.50 40.67 3.75 

  

 
CONTROL 

 
7.69 

 
7.70 

 
7.69 7.69 0.01 6.55 6.5 6 6.51 0.04 1.00 1.14 1.19 1.21 1.18 0.04 
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WK 1 

         

WK 
2 

     Dilution UP AVG BC AVG AC AVG DS AVG 
  

UP AVG BC AVG AC AVG DS AVG 

10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
  

10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 cfu/ml 0 

 
0 

 
0 

 
0 

  
cfu/ml 0 

 
0 

 
0 

 
0 

 10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
  

10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 cfu/ml 0 0 0 0 0 0 0 0 

 
cfu/ml 0 0 0 0 0 0 0 0 

10
-2

 196 
 

TNTC 
 

93 
 

TNTC 
  

10
-2

 215 
 

TNTC 
 

119 
 

TNTC 
 

cfu/ml 
2 

x105 
 

0 
 

9 
X104 

 
0 

  
cfu/ml 

2 
X105 

 
0 

 

1 
X105 

 
0 

 10
-2

 187 
 

TNTC 
 

82 
 

TNTC 
  

10
-2

 204 
 

TNTC 
 

132 
 

TNTC 
 

cfu/ml 
2 

x10
5
 

2 
x10

5
 0 0 

8 
X10

4
 0 0 0 

 
cfu/ml 

2 
X10

5
 

2 
X10

5
 0 0 

1 
X10

5
 

1 
X10

5
 0 0 

10-3 31 
 

248 
 

16 
 

261 
  

10-3 32   161   11   169   

cfu/ml 
3 

x10
5
 

 

2 
x10

6
 

 

2 
x10

5
 

 

3 
x10

6
 

  
cfu/ml 

3 
X10

5
 

 

2 
X10

6
 

 

1 
X10

5
 

 

2 
X10

6
   

10-3 17 
 

219 
 

9 
 

242 
  

10-3 19 
 

142 
 

16 
 

172   

cfu/ml 
5 

x105 
4 

x105 2x106 
3 

x107 
9 

X105 
6 

X105 
2 

x106 
4 

X105 
 

cfu/ml 
2 

X105 
3 

X105 
1 

X106 
2 

X106 
2 

X105 
2 

X105 
2 

X106 
2 

X106 

10-4 9 
 

42 
 

0 
 

39 
  

10-4 7 
 

18 
 

0 
 

18 
 

cfu/ml 
9 

x105 
 

4 
x106 

 
0 

 

4 
x106 

  
cfu/ml 

7 
X105 

 

2 
X106 

 
0 

 

2 
X106 

 10-4 1 
 

59 
 

0 
 

21 
  

10-4 1 
 

9 
 

0 
 

12 
 

cfu/ml 1x105 
9 

x105 
6 

x106 
5 

x106 0 0 
2 

x106 
2 

x106 
 

cfu/ml 
1 

X105 
4 

x105 
9 

X106 
6 

X106 0 0 
1 

X106 
2 

X106 

10-5 0 
 

18 
 

0 
 

5 
  

10-5 0 
 

2 
 

0 
 

1 
 

cfu/ml 0 
 

2 
x107 

 
0 

 

5 
x106 

  
cfu/ml 0 

 

5 
X106 

 
0 

 

1 
X106 

 10-5 0 
 

11 
 

0 
 

1 
  

10-5 0 
 

0 
 

0 
 

0 
 

cfu/ml 0 0 
1 

x107 
2 

x107 0 0 
1 

x106 
3 

x106 
 

cfu/ml 0 0 0 
5 

X106 0 0 0 
1 

X106 

                   

Table 5: Enumeration of Yersinia species recovered from the treated effluent at NGTW over the sampling period as 

per figure 2.1. 
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WK 3 

        
WK 4 

     Dilution UP AVG BC AVG AC AVG DS AVG 
 

Dilution UP AVG BC AVG AC AVG DS AVG 

10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
  

10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 cfu/ml 0 

 
0 

 
0 

 
0 

  
cfu/ml 0 

 
0 

 
0 

 
0 

 10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
  

10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 cfu/ml 0 0 0 0 0 0 0 0 

 
cfu/ml 0 0 0 0 0 0 0 0 

10-2 TNTC 
 

TNTC 
 

163 
 

TNTC 
  

10-2 TNTC 
 

TNTC 
 

193 
 

TNTC 
 

cfu/ml 0 
 

0 
 

2 
x105 

 
0 

  
cfu/ml 0 

 
0 

 

2 
x105 

 
0 

 10-2 TNTC 
 

TNTC 
 

141 
 

TNTC 
  

10-2 TNTC 
 

TNTC 
 

171 
 

TNTC 
 

cfu/ml 0 0 0 0 
1 
x10

5
 

2 
x10

5
 0 0 

 
cfu/ml 0 0 0 0 

2 
x10

5
 

2 
x10

5
 0 0 

10-3 243   187   21   361   
 

10-3 218 
 

167 
 

21 
 

216 
 

cfu/ml 
2 
x106 

 

2 
x106 

 

2 
x105 

 

4 
x106   

 
cfu/ml 

2 
x105 

 
2 x106 

 

2 
x105 

 

2 
x106 

 10-3 214 
 

165 
 

18 
 

328   
 

10-3 214 
 

152 
 

19 
 

208 
 

cfu/ml 
2 
x106 

2 
x106 

2 
x106 

2 
x106 

2 
x105 

2 
x105 

3 
x106 

4 
x106 

 
cfu/ml 

2 
x105 

2 
x105 2 x106 

2 
x106 

2 
x105 

2 
x105 

2 
x106 

2 
x106 

10-4 31 
 

18 
 

4 
 

59 
  

10-4 29 
 

14 
 

1 
 

24 
 

cfu/ml 
3 
x106 

 

2 
x106 

 

4 
x105 

 
6x106 

  
cfu/ml 

3 
x106 

 
1 x105 

 

1 
x105 

 

2 
x106 

 10-4 27 
 

15 
 

0 
 

47 
  

10-4 18 
 

9 
 

1 
 

19 
 

cfu/ml 
3 
x106 

3 
x106 

2 
x106 

2 
x106 0 

4 
X1075 5x106 6x106 

 
cfu/ml 2x106 

3 
x106 9 x105 

5 
x105 

1 
x105 

1 
x105 

2 
x106 

2 
x106 

10-5 4 
 

1 
 

0 
 

11 
  

10-5 3 
 

1 
 

0 
 

3 
 

cfu/ml 
4 
X106 

 

1 
X106 

 
0 

 

1 
X106 

  
cfu/ml 

3 
x106 

 
1 x106 

 
0 

 

3 
x106 

 10-5 1 
 

1 
 

0 
 

4 
  

10-5 4 
 

0 
 

0 
 

1 
 

cfu/ml 
1 
X10

6
 

3 
X10

6
 

1 
X10

6
 

1 
X10

6
 0 0 

4 
X10

6
 

3 
X10

6
 

 
cfu/ml 

4 
X10

6
 

4 
X10

6
 0 0 0 0 

1 
x10

6
 

2 
x10

6
 

Table 5 continued…. 
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WEEK 5 

        

WEEK 
6 

     Dilution UP AVG BC AVG AC AVG DS AVG 
 

Dilution UP AVG BC AVG AC AVG DS AVG 

10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
  

10
-1

 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 cfu/ml 0 

 
0 

 
0 

 
0 

  
cfu/ml 0 

 
0 

 
0 

 
0 

 10-1 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
  

10-1 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 cfu/ml 0 0 0 0 0 0 0 0 

 
cfu/ml 0 0 0 0 0 0 0 0 

10-2 TNTC 
 

TNTC 
 

217 
 

TNTC 
  

10-2 TNTC 
 

TNTC 
 

49 
 

TNTC 
 

cfu/ml 0 
 

0 
 

2.2 x10
5
 0 

  
cfu/ml 0 

 
0 

 

1.5 
x10

3
 

 
0 

 10-2 TNTC 
 

TNTC 
 

189 
 

TNTC 
  

10-2 TNTC 
 

TNTC 
 

40 
 

TNTC 
 

cfu/ml 0 0 0 0 
1.9 
x10

5
 

2 
x10

5
 0 0 

 
cfu/ml 0 0 0 0 

1.9 
x10

5
 2 x10

5
 0 0 

10-3 TNTC 
 

243 
 

44 
 

158 
  

10-3 186 
 

288 
 

11 
 

181 
 

cfu/ml 0 
 

2.4 x106 4.4 x105 
1.6 
x106 

  
cfu/ml 1.8x107 

 
2.8x106 

 

1.1 
x105 

 
1.8 x106 

 10-3 TNTC 
 

316 
 

21 
 

139 
  

10-3 141 
 

263 
 

10 
 

143 
 

cfu/ml 0 0 3.1 x106 
2.8 
x106 

2.1 
x105 

3.3 
x105 2 x106 1.8 x106  cfu/ml 1.4x107 

1.6 
x107 2.6x106 2.7x106 1.0x105 1.1x105 1.4 x106 1.6 x106 

10-4 187   49   5   47   
 

10-4 76 
 

50 
 

2 
 

32 
 cfu/ml 1.9 x107 5x106 

 
5x105 

 
4.7x106   

 
cfu/ml 7.6x107 

 
5 x106 

 
2x105 

 
3.2 x106 

 10-4 193 
 

78 
 

6 
 

26   
 

10-4 61 
 

48 
 

0 
 

41 
 

cfu/ml 1.9x107 
1.9 
x107 7.8 x106 

6.4 
x106 

6 
x105 

5.5 
x105 

2.6 
x106 3.6 x106 

 
cfu/ml 6.1 X107 

6.8 
X107 

4.8 
x106 

4.9 
x106 0 2 x105 4.1 x106 3.6 x106 

10-5 24 
 

7 
 

0 
 

4 
  

10-5 9 
 

5 
 

0 
 

3 
 cfu/ml 2.4 x107 7 x106 

 
0 

 
4 x106 

  
cfu/ml 9 x106 

 
5 x106 

 
0 

 
3x106 

 10
-5

 18 
 

12 
 

0 
 

1 
  

10
-5

 7 
 

4 
 

0 
 

8 
 

cfu/ml 1.8 X107 
2 
X107 1.2 x106 

4.1 
x106 0 0 1 x106 2.5 x106  cfu/ml 7 X106 

8 
X106 4 x106 

4.5 
x106 0 0 8 x106 5.5 x106 

10-6 3 
 

0 
 

0 
 

0 
  

10-6 2 
 

0 
 

0 
 

0 
 cfu/ml 3x10

7
 

 
0 

 
0 

 
0 

  
cfu/ml 2 x10

7
 

 
0 

 
0 

 
0 

 10-6 1 
 

1 
 

0 
 

0 
  

10-6 2 
 

1 
 

0 
 

1 
 

cfu/ml 1 X107 
2 
X107 0 

1 
X107 0 0 0 0 

 
cfu/ml 2 X107 

2 
X107 0 1 X107 0 0 0 1 X107 

Table 5 continued…. 
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Weeks 
Sampling 

points COD 1 COD 2 COD 3 AVERAGE STDEV Temp 1 Temp 2 Temp 3 AVERAGE STDEV 

 
UP 151 151 155 152.3 1.9 22 22 22 22 0 

 
BC 56 58 61 58.3 2.1 22 22 22 22 0 

1 AC 290 301 286 292.3 6.3 21 21 21 21 0 

 
DS 134 129 153 138.7 10.3 22 22 22 22 0 

 
UP 239 253 272 254.7 13.52 19 19 19 19 0 

 
BC 31 56 71 52.7 16.50 19 19 19 19 0 

2 AC 131 75 82 96 24.91 20 20 20 20 0 

 
DS 36 61 72 56.3 15.06 19 19 19 19 0 

 
UP 44 71 87 67.3 17.7 19 19 19 19 0 

 
BC 176 179 172 175.7 2.9 19 19 19 19 0 

3 AC 114 136 120 123.3 9.3 18 18 18 18 0 

 
DS 102 71 89 87.3 12.7 19 19 19 19 0 

 
UP 81 95 76 84.0 8.0 17 17 17 17 0 

 
BC 184 179 181 181.3 2.1 18 18 18 18 0 

4 AC 99 76 81 85.3 9.9 17 17 17 17 0 

 
DS 57 65 108 76.7 22.4 17 17 17 17 0 

 
UP 164 154 159 159.0 4.1 21 21 21 21 0 

 
BC 271 263 267 267.0 3.3 21 21 21 21 0 

5 AC 275 261 268 268.0 5.7 21 21 21 21 0 

 
DS 115 123 119 119.0 3.3 21 21 21 21 0 

 
UP 161 148 159 156.0 5.7 23 23 23 23 0 

 
BC 189 201 204 198.0 6.5 23 23 23 23 0 

6 AC 149 151 158 152.7 3.9 22 22 22 22 0 

 
DS 199 199 187 195.0 5.7 24 24 24 24 0 

Table 6: Triplicate analysis COD and Temperature values for NWWTP as detailed in Table 2.3. 
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Weeks 
Sampling 

points pH 1 pH 2 pH 3 AVERAGE STDEV TDS 1 TDS 2 TDS 3 AVERAGE STDEV 

 
UP 7.51 7.19 7.21 7.30 0.15 294 293 294 293.7 0.5 

 
BC 7.33 5.95 6.82 6.70 0.57 344 343 345 344.0 0.8 

1 AC 7.25 8.26 7.61 7.71 0.42 344 345 345 344.7 0.5 

 
DS 7.17 7.75 7.15 7.36 0.28 346 346 346 346.0 0.0 

 
UP 9 9.1 8.9 9 0.082 294 295 294 294.3 0.5 

 
BC 8.9 8.9 8.9 8.9 0.000 368 369 370 369.0 0.8 

2 AC 8.3 8.2 8.1 8.2 0.082 375 374 374 374.3 0.5 

 
DS 7.6 7.6 7.8 7.7 0.094 2155 2156 2157 2156.0 0.8 

 
UP 7.51 7.69 7.41 7.5 0.116 295 293 293 294 0.94 

 
BC 7.89 7.46 7.44 7.6 0.208 331 344 340 338 5.44 

3 AC 7.71 7.65 7.64 7.7 0.031 345 345 346 345 0.47 

 
DS 7.17 7.22 7.18 7.2 0.022 225 226 228 226 1.25 

 
UP 7.15 7.15 7.15 7.2 0.00 289 293 295 292.3 2.49 

 
BC 7.1 7.1 7.1 7.1 0.00 353 353 355 353.7 0.94 

4 AC 7.15 7.15 7.15 7.2 0.00 355 356 356 355.7 0.47 

 
DS 7.38 7.38 7.38 7.4 0.00 1739 1742 1753 1744.7 6.02 

 
UP 7.24 7.15 7.08 7.2 0.07 1136 1134 1131 1133.7 2.05 

 
BC 7.27 7.25 7.25 7.3 0.01 367 365 366 366.0 0.82 

5 AC 7.19 7.2 7.2 7.2 0.00 370 371 371 370.7 0.47 

 
DS 7.2 7.21 7.22 7.2 0.01 326 326 327 326.3 0.47 

 
UP 7.33 7.31 7.29 7.3 0.02 321 322 321 321.3 0.47 

 
BC 7.07 7.09 7.08 7.0 0.05 369 368 368 368.3 0.47 

6 AC 7.16 7.14 7.11 7.1 0.02 373 369 373 371.7 1.89 

 
DS 7.62 7.61 7.59 7.6 0.01 264 266 265 265.0 0.82 

 

Table 7: Triplicate analysis of pH and TDS values for NWWTP as detailed in Table 2.3. 
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Weeks Sampling point Turbidity 1 Turbidity 2 Turbidity 3 AVERAGE STDEV 

 
UP 9.2 9.18 9.14 9.17 0.02 

 
BC 2.88 2.87 2.88 2.88 0.00 

1 AC 2.39 2.4 2.43 2.41 0.02 

 
DS 9.19 9.21 9.2 9.20 0.01 

 
UP 16.3 16.1 16.2 16.2 0.08 

 
BC 13.8 14 14.1 14.0 0.12 

2 AC 11 11.1 11.1 11.1 0.05 

 
DS 7.13 7.18 7.14 7.15 0.02 

 
UP 2.12 2.84 3.06 2.67 0.40 

 
BC 2.33 2.3 2.06 2.2 0.12 

3 AC 2.4 2.42 2.35 2.4 0.03 

 
DS 9.83 9.87 9.88 9.9 0.02 

 
UP 2.41 2.45 2.81 2.6 0.18 

 
BC 4.7 4.59 4.8 4.7 0.09 

4 AC 4.97 4.91 5.16 5.0 0.11 

 
DS 6.35 6.11 6.09 6.2 0.12 

 
UP 4.87 4.98 5.01 5.0 0.06 

 
BC 13 13.2 14.1 13.4 0.48 

5 AC 9.99 9.99 9.99 10.0 0.00 

 
DS 4.78 4.93 4.95 4.9 0.08 

 
UP 3.98 4.59 4.21 4.3 0.25 

 
BC 5.19 5.16 5.21 5.2 0.02 

6 AC 4.91 4.89 4.93 4.9 0.02 

 
DS 5.11 5.09 5.14 5.1 0.02 

 

 

Table 8: Triplicate analysis of turbidity values for NWWTP as detailed in Table 2.3. 



 
  

127 
 

 

 

 

   
BOD DAY 0 

 
BOD DAY 5 

           

Weeks 
Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 7.74 7.24 7.5 7.51 0.25 0.57 0.55 1 0.57 0.02 0.20 35.85 33.45 34.80 34.70 1.20 22.67 0.42 

 
UP 100 7.54 7.55 7.5 7.53 0.02 0.73 0.74 1 0.73 0.01 0.33 20.64 20.64 20.58 20.62 0.03 

  

 
UP 150 7.2 7.17 7.2 7.19 0.02 0.85 0.85 1 0.85 0.00 0.50 12.70 12.64 12.70 12.68 0.03 

  

 
BC 6 8.13 8.19 8.2 8.16 0.03 7.25 7.26 7 7.25 0.01 0.02 44.00 46.50 45.00 45.17 1.26 40.65 5.04 

 
BC 8 8.17 7.74 8.1 8.00 0.23 7.14 7.12 7 7.14 0.02 0.02 51.50 31.00 47.50 43.33 10.87 

  

 
BC 10 8.14 7.89 8 8.01 0.13 7.05 6.98 7 7.01 0.04 0.03 36.33 30.33 33.67 33.44 3.01 

  
1 AC 15 8.01 8.05 8 8.02 0.03 1.02 0.98 1 1.00 0.02 0.05 139.80 141.40 140.00 140.40 0.87 109.96 0.92 

 
AC 20 8.06 7.98 8 8.01 0.04 0.67 0.45 1 0.54 0.11 0.06 123.17 125.50 124.83 124.50 1.20 

  

 
AC 30 7.54 7.5 7.4 7.49 0.06 0.99 0.98 1 0.99 0.01 0.10 65.50 65.20 64.20 64.97 0.68 

  

 
DS 60 8.2 8.17 8.2 8.19 0.02 0.8 0.88 1 0.84 0.04 0.20 37.00 36.45 36.80 36.75 0.28 205.10 3.82 

 
DS 100 8.03 7.92 8.1 8.00 0.07 0.93 0.9 1 0.91 0.02 0.03 236.67 234.00 239.00 236.56 2.50 

  

 
DS 150 7.84 8.01 7.7 7.85 0.16 1.04 0.98 1 1.01 0.03 0.02 340.00 351.50 334.50 342.00 8.67 

  

 
CONTROL 

 
8.04 

 
8.03 

 
8.02 8.03 0.01 6.89 6.87 7 6.86 0.04 1.00 1.15 1.16 1.21 1.17 0.03 

   

 

 

 

Table 9:  BOD values of the final treated effluent for NWWTP as detailed in Table 2.3. 
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BOD DAY 0 

 
BOD DAY 7 

           

Weeks 
Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 8.08 8.07 8.1 8.07 0.01 1.45 1.44 1 1.42 0.04 0.20 33.15 33.15 33.45 33.25 0.17 21.47 0.09 

 
UP 100 8 7.99 8 7.99 0.02 1.77 1.75 2 1.77 0.02 0.33 18.88 18.91 18.76 18.85 0.08 

  

 
UP 150 7.76 7.75 7.7 7.75 0.02 1.61 1.59 2 1.59 0.02 0.50 12.30 12.32 12.32 12.31 0.01 

  

 
BC 6 8.28 8.27 8.3 8.27 0.01 6.62 6.61 7 6.61 0.01 0.02 83.00 83.00 83.00 83.00 0.00 91.09 0.06 

 
BC 8 8.27 8.26 8.3 8.26 0.01 6 5.99 6 5.99 0.01 0.02 113.50 113.50 113.50 113.50 0.00 

  

 
BC 10 8.24 8.23 8.2 8.23 0.01 5.93 5.93 6 5.93 0.01 0.03 77.00 76.67 76.67 76.78 0.19 

  
2 AC 15 8.3 8.29 8.3 8.29 0.01 7.52 7.53 8 7.52 0.01 0.05 15.60 15.20 15.40 15.40 0.20 12.17 0.07 

 
AC 20 8.27 8.26 8.3 8.26 0.01 7.58 7.57 8 7.57 0.01 0.06 11.50 11.50 11.50 11.50 0.00 

  

 
AC 30 8.3 8.29 8.3 8.29 0.01 7.34 7.33 7 7.33 0.01 0.10 9.60 9.60 9.60 9.60 0.00 

  

 
DS 60 8.02 8.01 8 8.01 0.02 1.25 1.24 1 1.27 0.04 0.20 33.85 33.85 33.40 33.70 0.26 178.86 0.83 

 
DS 100 7.58 7.57 7.6 7.57 0.02 1.27 1.15 1 1.19 0.07 0.03 210.33 214.00 213.33 212.56 1.95 

  

 
DS 150 7.41 7.4 7.4 7.40 0.02 1.61 1.59 2 1.59 0.02 0.02 290.00 290.50 290.50 290.33 0.29 

  

 
CONTROL 

 
8.34 

 
8.29 

 
8.12 8.25 0.12 7.89 7.92 8 7.94 0.06 1.00 0.45 0.37 0.12 0.31 0.17 

  

Table 9 continued…. 
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BOD DAY 0 

  
BOD DAY 7 

           

Weeks 
Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 8.01 7.93 7.97 7.97 0.04 4.07 4.09 4.1 4.08 0.01 0.20 19.70 19.20 19.50 19.47 0.25 12.69 0.15 

 
UP 100 7.98 8.03 8 8.00 0.03 4.16 4.18 4.2 4.16 0.02 0.33 11.58 11.67 11.67 11.64 0.05 

  

 
UP 150 8.08 8.02 8.02 8.04 0.03 4.57 4.62 4.5 4.56 0.07 0.50 7.02 6.80 7.06 6.96 0.14 

  

 
BC 6 7.96 7.97 7.97 7.97 0.01 5.89 5.88 5.9 5.88 0.02 0.02 103.50 104.50 105.50 104.50 1.00 111.28 0.83 

 
BC 8 7.98 7.98 7.96 7.97 0.01 5.22 5.21 5.2 5.21 0.02 0.02 138.00 138.50 138.50 138.33 0.29 

  

 
BC 10 7.93 7.94 7.96 7.94 0.02 5.23 5.22 5.2 5.21 0.02 0.03 90.00 90.67 92.33 91.00 1.20 

  
3 AC 15 7.94 7.96 7.93 7.94 0.02 3.97 3.95 3.9 3.95 0.02 0.05 79.40 80.20 79.80 79.80 0.40 67.36 0.61 

 
AC 20 7.93 7.97 8 7.97 0.04 3.07 3.03 3 3.04 0.03 0.06 81.00 82.33 83.00 82.11 1.02 

  

 
AC 30 8 7.94 7.99 7.98 0.03 3.99 3.96 3.9 3.96 0.03 0.10 40.10 39.80 40.60 40.17 0.40 

  

 
DS 60 7.91 7.94 7.92 7.92 0.02 4.16 4.12 4 4.09 0.09 0.20 18.75 19.10 19.70 19.18 0.48 81.10 6.79 

 
DS 100 6.98 6.89 6.93 6.93 0.05 4.02 3.98 3.9 3.97 0.06 0.03 98.67 97.00 100.67 98.78 1.84 

  

 
DS 150 7 6.99 7.02 7.00 0.02 4.91 4.27 4.3 4.50 0.36 0.02 104.50 136.00 135.50 125.33 18.04 

  

 
CONTROL 

 
7.95 

 
7.89 

 
7.87 7.90 0.04 7.28 7.29 7.3 7.29 0.01 1.00 0.67 0.60 0.57 0.61 0.05 
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BOD DAY 0 

  
BOD DAY 7 

           

Weeks 
Sample 
dilution 1 2 3 AVG SD 1 2 3 AVG SD 

p 
value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 8.22 8.09 8.03 8.11 0.10 4.72 4.79 4.8 4.76 0.04 0.20 17.50 16.50 16.25 16.75 0.66 10.80 0.30 

 
UP 100 8.02 7.82 7.81 7.88 0.12 4.89 4.72 4.8 4.81 0.09 0.33 9.48 9.39 9.09 9.32 0.21     

 
UP 150 7.49 7.48 7.47 7.48 0.01 4.32 4.31 4.3 4.32 0.01 0.50 6.34 6.34 6.28 6.32 0.03     

 
BC 6 8.28 8.27 8.29 8.28 0.01 4.89 4.71 4.9 4.84 0.11 0.02 169.50 178.00 169.00 172.17 5.06 158.52 3.54 

 
BC 8 8.37 8.36 8.35 8.36 0.01 4.69 4.71 4.8 4.72 0.03 0.02 184.00 182.50 180.00 182.17 2.02     

 
BC 10 8.36 8.37 8.35 8.36 0.01 4.61 4.75 4.8 4.72 0.10 0.03 125.00 120.67 118.00 121.22 3.53     

4 AC 15 8.42 8.41 8.41 8.41 0.01 3.92 3.77 3.8 3.83 0.08 0.05 90.00 92.80 92.00 91.60 1.44 70.71 0.84 

 
AC 20 8.41 8.41 8.42 8.41 0.01 3.89 3.79 3.9 3.85 0.05 0.06 75.33 77.00 75.83 76.06 0.86     

 
AC 30 8.44 8.42 8.43 8.43 0.01 4.01 3.98 4 3.98 0.03 0.10 44.30 44.40 44.70 44.47 0.21     

 
DS 60 7.8 7.79 7.8 7.80 0.01 5.96 5.81 5.9 5.90 0.08 0.20 9.20 9.90 9.40 9.50 0.36 55.85 1.49 

 
DS 100 7.32 7.3 7.28 7.30 0.02 4.91 4.84 4.8 4.85 0.05 0.03 80.33 82.00 82.33 81.56 1.07     

 
DS 150 6.37 6.36 6.36 6.36 0.01 4.87 4.76 4.9 4.83 0.06 0.02 75.00 80.00 74.50 76.50 3.04     

 
CONTROL 

 
8.66 

 
8.67 

 
8.64 8.66 0.02 6.69 6.79 6.8 6.76 0.06 1.00 1.97 1.88 1.83 1.89 0.07     
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BOD  DAY 0 

   
BOD DAY 7 

          

Weeks SAMPLE 1 2 3 AVG SD 1 2 3 AVG SD 
p 

value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 8.52 8.53 8.52 8.52 0.01 4.37 4.49 4.3 4.40 0.08 0.20 20.75 20.20 20.90 20.62 0.37 11.65 0.50 

 
UP 100 8.42 8.5 8.5 8.47 0.05 5.63 5.55 5.8 5.67 0.14 0.33 8.45 8.94 8.09 8.49 0.43     

 
UP 150 8.51 8.53 8.53 8.52 0.01 5.96 5.28 5.6 5.61 0.34 0.50 5.10 6.50 5.88 5.83 0.70     

 
BC 6 7.85 7.76 7.46 7.69 0.20 7.01 7.04 7 7.01 0.03 0.02 42.00 36.00 23.50 33.83 9.44 33.35 4.16 

 
BC 8 7.94 7.97 7.94 7.95 0.02 6.98 7.03 7.1 7.02 0.04 0.02 48.00 47.00 44.00 46.33 2.08     

 
BC 10 8.06 8.05 8.07 8.06 0.01 7.43 7.47 7.5 7.46 0.03 0.03 21.00 19.33 19.33 19.89 0.96     

5 AC 15 8.13 8.21 8.15 8.16 0.04 6.74 6.81 6.8 6.78 0.04 0.05 27.80 28.00 27.40 27.73 0.31 23.48 0.86 

 
AC 20 8.41 8.29 8.36 8.35 0.06 6.69 6.42 6.4 6.52 0.15 0.06 28.67 31.17 32.00 30.61 1.73     

 
AC 30 8.06 8.14 8.18 8.13 0.06 6.91 6.89 7 6.92 0.03 0.10 11.50 12.50 12.30 12.10 0.53     

 
DS 60 7.24 7.16 7.17 7.19 0.04 5.72 5.63 5.6 5.64 0.08 0.20 7.60 7.65 8.00 7.75 0.22 60.14 1.13 

 
DS 100 7.49 7.29 7.31 7.36 0.11 5.29 5.19 5.2 5.21 0.07 0.03 73.33 70.00 71.67 71.67 1.67     

 
DS 150 7.08 7.15 7.19 7.14 0.06 5.09 5.13 5.1 5.12 0.03 0.02 99.50 101.00 102.50 101.00 1.50     

 
CONTROL 

 
8.81 

 
8.92 

 
8.89 8.87 0.06 7.61 7.69 7.7 7.68 0.06 1.00 1.20 1.23 1.16 1.20 0.04     
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BOD 

DAY 
0 

   
BOD  

DAY 
7 

           

Weeks SAMPLE 1 2 3 AVG SD 1 2 3 AVG SD 
p 

value bod 1 bod 2 bod 3 avg sd FINAL sd 

 
UP 60 7.89 7.9 7.53 7.77 0.21 4.61 4.59 4.6 4.61 0.02 0.20 16.40 16.55 14.55 15.83 1.11 10.69 0.41 

 
UP 100 7.88 7.89 7.9 7.89 0.01 4.81 4.77 4.8 4.79 0.02 0.33 9.30 9.45 9.42 9.39 0.08     

 
UP 150 7.9 7.91 7.92 7.91 0.01 4.46 4.48 4.5 4.48 0.03 0.50 6.88 6.86 6.82 6.85 0.03     

 
BC 6 7.92 7.91 7.92 7.92 0.01 6.79 6.61 6.6 6.66 0.11 0.02 56.50 65.00 66.50 62.67 5.39 23.48 71.51 

 
BC 8 7.9 7.89 0.9 5.56 4.04 5.91 6.17 6.2 6.09 0.16 0.02 99.50 86.00 -264.50 -26.33 206.37     

 
BC 10 7.87 7.86 7.86 7.86 0.01 6.94 6.81 6.8 6.84 0.09 0.03 31.00 35.00 36.33 34.11 2.78     

6 AC 15 8.04 8.03 8.02 8.03 0.01 5.39 5.18 5.2 5.26 0.11 0.05 53.00 57.00 56.20 55.40 2.12 34.15 2.76 

 
AC 20 7.97 7.99 7.98 7.98 0.01 6.15 5.69 6.1 5.98 0.25 0.06 30.33 38.33 31.17 33.28 4.40     

 
AC 30 7.96 7.98 7.99 7.98 0.02 6.42 6.79 6.6 6.60 0.19 0.10 15.40 11.90 14.00 13.77 1.76     

 
DS 60 7.89 7.99 7.99 7.96 0.06 6.2 6.19 6.2 6.19 0.01 0.20 8.45 9.00 9.05 8.83 0.33 37.41 4.87 

 
DS 100 7.99 8.01 8.03 8.01 0.02 6.91 6.89 6.4 6.74 0.27 0.03 36.00 37.33 53.33 42.22 9.65     

 
DS 150 8.16 8.17 8.17 8.17 0.01 7.04 6.92 6.9 6.94 0.09 0.02 56.00 62.50 65.00 61.17 4.65     

 
CONTROL 

 
7.90 

 
7.91 

 
7.92 7.91 0.01 6.88 7.25 7.2 7.09 0.19 1.00 1.02 0.66 0.77 0.82 0.18     
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WEEK 1 

   

 

 
 

WEEK 2 
   

Dilution UP AVG BC AVG AC AVG DS AVG Dilution UP AVG BC AVG AC AVG DS AVG 

10-1 TNTC 
 

TNTC 
 

214 
 

TNTC 
 

10-1 TNTC 
 

TNTC 
 

127 
 

TNTC 
 

cfu/ml 0 
 

0 
 

2 X104 
 

0 
 

 cfu/ml 0 
 

0 
 

1 x104 
 

0 
 

10-1 TNTC 
 

TNTC 
 

169 
 

TNTC 
 

 10-1 TNTC 
 

TNTC 
 

111 
 

TNTC 
 

cfu/ml 0 0 0 0 2 X104 2 X104 0 0 

 

cfu/ml 0 0 0 0 1 x104 1 x104 0 0 

10
-2

 361 
 

TNTC 
 

39 
 

184 
 

10
-2

 218 
 

TNTC 
 

15 
 

316 
 

cfu/ml 4 x105 
 

0 
 

4 X104 
 

2 x105 
 

 cfu/ml 2 x105 
 

0 
 

2 x104 
 

3 x105 
 

10
-2

 312 
 

TNTC 
 

15 
 

91 
 

 10
-2

 309 
 

TNTC 
 

22 
 

298 
 

cfu/ml 3 x105 4 x105 0 0 2 X104 3 X104 9 x105 0 

 

cfu/ml 3 x105 3 x105 0 0 2 x104 2 x104 3 x105 3 x105 

10-3 89 
 

182 
 

1 
 

17 
 

10-3 62 
 

114 
 

0 
 

48 
 

cfu/ml 9 x105 
 

2 x106 
 

1 X104 
 

2 x105 
 

 cfu/ml 6 x105 
 

1 x106 
 

0 
 

5 x105 
 

10-3 51 
 

102 
 

0 
 

5 
 

 10-3 49 
 

179 
 

1 
 

32 
 

cfu/ml 5 x10
5
 7 x10

5
 1x10

6
 2 x10

6
 0 1 X10

4
 5 x10

5
 

4 
X10

5
 

 

cfu/ml 5 x10
5
 6 x10

5
 2 x10

6
 2 x10

6
 1 X10

4
 1 X10

4
 3x10

5
 4 x10

5
 

10-4 2 
 

19 
 

0 
 

0 
 

10-4 9 
 

4 
 

0 
 

7 
 

cfu/ml 2 x105 
 

2 x106 
 

0 
 

0 
 

 cfu/ml 9 X105 
 

4 x105 
 

0 
 

7 x105 
 

10-4 0 
 

7 
 

0 
 

0 
 

 10-4 1 
 

11 
 

0 
 

4 
 

cfu/ml 0 2 x105 7 x106 5 x106 0 0 0 0 

 

cfu/ml 1 x105 5 x105 1 x105 3 x105 0 0 4X105 6 x105 

10-5 0 
 

2 
 

0 
 

0 
 

10-5 0 
 

0 
 

0 
 

0 
 

cfu/ml 0 
 

2 x106 
 

0 
 

0 
 

 cfu/ml 0 
 

0 
 

0 
 

0 
 

10-5 0 
 

0 
 

0 
 

0 
 

 10-5 0 
 

1 
 

0 
 

0 
 

cfu/ml 0 0 0 2 x106 0 0 0 0  cfu/ml 0 0 1 X106 1 X106 0 0 0 0 

 

Table 10: Enumeration of Yersinia species recovered from the treated effluent at NWWTP over the sampling period as per 

figure 2.2. 
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WEEK 3 

   

 

  
WEEK 4 

   Dilution UP AVG BC AVG AC AVG DS AVG 
 

UP AVG BC AVG AC AVG DS AVG 

10
-1

 TNTC 
 

TNTC 
 

168 
 

TNTC 
 

10
-1

 TNTC 
 

TNTC 
 

113 
 

TNTC 
 cfu/ml 0 

 
0 

 
2 x10

4
 

 
0 

 
 cfu/ml 0 

 
0 

 
1 x10

4
 

 
0 

 10-1 TNTC 
 

TNTC 
 

144 
 

TNTC 
 

 10-1 TNTC 
 

TNTC 
 

98 
 

TNTC 
 

cfu/ml 0 0 0 0 1 x10
4
 

2 
x10

4
 0 0  cfu/ml 0 0 0 0 1 x10

4
 1 x10

4
 0 0 

10-2 181 
 

TNTC 
 

27 
 

216 
 

 10-2 219 
 

TNTC 
 

34 
 

181 
 cfu/ml 2 x10

5
 

 
0 

 
3 x10

4
 

 
2 x10

5
 

 
 cfu/ml 2 x10

5
 

 
0 

 
3 x10

4
 

 
2 x10

5
 

 10-2 178 
 

TNTC 
 

16 
 

193 
 

 10-2 212 
 

TNTC 
 

7 
 

165 
 

cfu/ml 2 x105 2 x105 0 0 2 x104 
3 
x104 2 x105 

2 
x105  cfu/ml 2 x105 2 x105 0 0 7 x104 5 x104 2 x105 2 x105 

10-3 11 
 

219 
 

2 
 

47 
 

 10-3 26 
 

198 
 

2 
 

29 
 cfu/ml 1 x105 

 
2 x106 

 
2 x104 

 
5 x105 

 
 cfu/ml 3 x105 

 
2 X106 

 
2 X104 

 
3 x105 

 10-3 8 
 

252 
 

0 
 

17 
 

 10-3 18 
 

243 
 

0 
 

41 
 

cfu/ml 1 x105 1 x105 3 x106 3 x106 0 
2 
x104 2 x105 

4 
x105  cfu/ml 2 x105 3 x105 2 X106 2 X106 0 2 X104 4 x105 4 x105 

10-4 0 
 

37 
 

0 
 

9 
 

 10-4 1 
 

17 
 

0 
 

1 
 cfu/ml 0 

 
4 x106 

 
0 

 
9 x105 

 
 cfu/ml 1 x105 

 
2 X106 

 
0 

 
1 x105 

 10-4 0 
 

29 
 

0 
 

0 
 

 10-4 0 
 

36 
 

0 
 

7 
 

cfu/ml 0 0 3 X10
6
 4 X10

6
 0 0 0 

9 
x10

5
  cfu/ml 0 1 x10

5
 4 X10

6
 3 X10

6
 0 0 7 x10

5
 4 x10

5
 

10-5 0 
 

4 
 

0 
 

0 
 

 10-5 0 
 

4 
 

0 
 

0 
 cfu/ml 0 

 
4 X10

6
 

 
0 

 
0 

 
 cfu/ml 0 

 
4 X10

6
 

 
0 

 
0 

 10-5 0 
 

1 
 

0 
 

0 
 

 10-5 0 
 

1 
 

0 
 

0 
 cfu/ml 0 0 1 X106 3 X106 0 0 0 0  cfu/ml 0 0 1 X106 3 X106 0 0 0 0 
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WEEK 5 

     

 

   
WEEK 6 

     Dilution UP AVG BC AVG AC AVG DS AVG Dilution UP AVG BC AVG AC AVG DS AVG 

10-1 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 

10-1 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 cfu/ml 0 

 
0 

 
0 

 
0 

 
 cfu/ml 0 

 
0 

 
0 

 
0 

 10-1 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 

 10-1 TNTC 
 

TNTC 
 

TNTC 
 

TNTC 
 cfu/ml 0 0 0 0 0 0 0 0  cfu/ml 0 0 0 0 0 0 0 0 

10-2 TNTC 
 

TNTC 
 

157 
 

TNTC 
 

 10-2 TNTC 
 

TNTC 
 

218 
 

TNTC 
 

cfu/ml 0 
 

0 
 

1.6 
x10

5
 

 
0 

 
 cfu/ml 0 

 
0 

 

2.2 
x10

5
 

 
0 

 10
-2

 TNTC 
 

TNTC 
 

171 
 

TNTC 
 

 10
-2

 TNTC 
 

TNTC 
 

183 
 

TNTC 
 

cfu/ml 0 0 0 0 
1.7 

x105 
1.7 

x105 0 0  cfu/ml 0 0 0 0 
1.8 

x105 2 x105 0 0 

10-3 216 
 

184 
 

44 
 

189 
 

 10-3 208 
 

311 
 

59 
 

167 
 

cfu/ml 
2.2 

x10
6
 

 

1.8 
X10

6
 

 

4.4 
X10

5
 

 
1.9 x10

6
 

 
 cfu/ml 2 x10

7
 

 

3.1 
X10

6
 

 

5.9 
X10

5
 

 

1.7 
x10

6
 

 10-3 229 
 

169 
 

69 
 

146 
 

 10-3 217 
 

296 
 

31 
 

153 
 

cfu/ml 
2.3 

x10
6
 

2.3 
x10

6
 1.7X10

6
 

1.8 
X10

6
 

6.9 
X10

5
 

5.7 
X10

5
 1.5 x10

6
 

1.7 
x10

6
  cfu/ml 

2.2 
x10

7
 

2.1 
x10

7
 2.9X10

6
 3 X10

6
 

3.1 
X10

5
 

4.5 
X10

5
 

1.5 
x10

6
 

1.6 
x10

6
 

10-4 60 
 

57 
 

8 
 

62 
 

 10-4 49 
 

61 
 

8 
 

39 
 

cfu/ml 6 x106 
 

5.7 
X106 

 
8 X105 

 
6.2 x106 

 
 cfu/ml 

4.9 
x107 

 

6.1 
X106 

 
8 X105 

 

3.9 
x106 

 10-4 44 
 

31 
 

15 
 

41 
 

 10-4 58 
 

52 
 

4 
 

28 
 

cfu/ml 
4.4 

x106 
5.2 

x106 
3.1 

X106 
4.4 

X106 
1.5 

X105 
4.8 

X105 4.1 x106 
5.2 

x106  cfu/ml 
5.8 

x107 
5.4 

x107 
5.2 

X106 
5.7 

X106 4 X105 6 X105 
2.8 

x106 
3.4 

x106 

10-5 13 
 

9 
 

1 
 

11 
 

 10-5 15 
 

19 
 

1 
 

3 
 

cfu/ml 
1.3 

x107 
 

9 X106 
 

1 X106 
 

1.1 x106 
 

 cfu/ml 
1.5 

x107 
 

1.9 
X107 

 
1 X106 

 
3 x106 

 10-5 7 
 

15 
 

4 
 

2 
 

 10-5 21 
 

11 
 

0 
 

1 
 

cfu/ml 7 x107 
4.2 

x106 
1.5 

X106 
5.3 

X106 4 X106 
2.5 

X106 2 x106 
1.6 

x106  cfu/ml 
2.1 

x107 
5.4 

x107 
1.1 

X107 
1.5 

X107 0 1 X106 1 x106 2 x106 

10-6 1 
 

0 
 

0 
 

0 
 

 10-6 0 
 

2 
 

0 
 

0 
 cfu/ml 1 x10

7
 

 
0 

 
0 

 
0 

 
 cfu/ml 0 

 
2 x10

7
 

 
0 

 
0 

 10-6 0 
 

2 
 

0 
 

0 
 

 10-6 1 
 

1 
 

0 
 

0 
 

cfu/ml 0 1 x107 1 X107 1X107 0 0 0 0  cfu/ml 1 x107 1 x107 1 X107 
1.5 

X107 0 0 0 0 
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(UP) 
        

Week COD (mg/ml) Temp (T˚C) Turb (NTU) 
TDS ( 
mg/l) pH 

BOD 
(mg/ml) YERS 

 1 269.0 23 13.2 429.7 8.8 23.20 5.6 
 2 37.0 18 2.1 214.1 8.5 13.70 5.4 
 3 222.7 17 3.2 197.4 8.0 13.40 4.3 
 4 229.0 15 5.0 189.6 7.4 11.30 5.3 
 5 161.0 16 21.4 282.7 6.7 4.40 7.2 
 6 303.3 21 8.6 183.5 7.5 7.30 7.8 
          Correlations 

  CODRlog10 pHRlog10 Temp BOD Turbidity TDS Yersinia 

CODRlog10 Pearson 
Correlation 

1 -.254 .248 .016 .308 .174 .205 

Sig. (2-tailed)   .627 .636 .976 .553 .741 .697 

N 6 6 6 6 6 6 6 

pHRlog10 Pearson 
Correlation 

-.254 1 .602 .898 -.517 .379 -.550 

Sig. (2-tailed) .627   .206 .015 .294 .459 .258 

N 6 6 6 6 6 6 6 

Temp Pearson 
Correlation 

.248 .602 1 .575 .115 .592 .245 

Sig. (2-tailed) .636 .206   .233 .828 .216 .640 

N 6 6 6 6 6 6 6 

BOD Pearson 
Correlation 

.016 .898 .575 1 -.262 .642 -.587 

Sig. (2-tailed) .976 .015 .233   .616 .170 .221 

N 6 6 6 6 6 6 6 

Turbidity Pearson 
Correlation 

.308 -.517 .115 -.262 1 .567 .610 

Sig. (2-tailed) .553 .294 .828 .616   .241 .199 

N 6 6 6 6 6 6 6 

TDS Pearson 
Correlation 

.174 .379 .592 .642 .567 1 .001 

Sig. (2-tailed) .741 .459 .216 .170 .241   .998 

N 6 6 6 6 6 6 6 

Yersinia Pearson 
Correlation 

.205 -.550 .245 -.587 .610 .001 1 

Sig. (2-tailed) .697 .258 .640 .221 .199 .998   

N 6 6 6 6 6 6 6 

  

Table 11: Statistical analysis of the physicochemical parameters and microbial counts at NGTW as per table 2.4. 
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(BC) 
 

        
Week COD (mg/ml) Temp (T˚C) Turb (NTU) TDS ( mg/l) pH 

BOD 
(mg/ml) YERS 

 1 94.0 22 21.2 540.7 7.2 314.00 7.4 
 2 72.0 23 263.0 659.7 7.4 282.90 6.3 
 3 185.3 22 280.7 772.3 8.1 159.30 5.3 
 4 187.7 20 10.0 590.3 6.8 123.30 6.3 
 5 216.0 20 19.6 550.7 6.9 73.40 6.8 
 6 297.0 20 268.7 619.3 6.9 91.40 6.6 
 

         Correlations 

  COD pH Temp BODRlog10 Turbidity TDS YersiniaRlog10 

COD Pearson 
Correlation 

1 -.325 -.826 -.890 .131 .017 -.132 

Sig. (2-tailed)   .530 .043 .018 .805 .975 .803 

N 6 6 6 6 6 6 6 

pH Pearson 
Correlation 

-.325 1 .705 .432 .590 .851 -.717 

Sig. (2-tailed) .530   .118 .393 .217 .032 .109 

N 6 6 6 6 6 6 6 

Temp Pearson 
Correlation 

-.826 .705 1 .883 .417 .439 -.208 

Sig. (2-tailed) .043 .118   .020 .411 .384 .693 

N 6 6 6 6 6 6 6 

BODRlog10 Pearson 
Correlation 

-.890 .432 .883 1 .113 .124 .092 

Sig. (2-tailed) .018 .393 .020   .832 .815 .862 

N 6 6 6 6 6 6 6 

Turbidity Pearson 
Correlation 

.131 .590 .417 .113 1 .801 -.609 

Sig. (2-tailed) .805 .217 .411 .832   .055 .200 

N 6 6 6 6 6 6 6 

TDS Pearson 
Correlation 

.017 .851 .439 .124 .801 1 -.938 

Sig. (2-tailed) .975 .032 .384 .815 .055   .006 

N 6 6 6 6 6 6 6 

YersiniaRlog10 Pearson 
Correlation 

-.132 -.717 -.208 .092 -.609 -.938 1 

Sig. (2-tailed) .803 .109 .693 .862 .200 .006   

N 6 6 6 6 6 6 6 

Table 11 continued…. 
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(AC) 
        Week COD (mg/ml) Temp (T˚C) Turb (NTU) TDS ( mg/l) pH BOD (mg/ml) YERS 

 1 309.0 21 14.6 534.0 8.2 105.50 5.7 
 2 92.7 22 1.3 476.3 7.6 104.30 5.3 
 3 100.7 22 10.2 582.6 7.3 26.40 4.3 
 4 152.4 20 34.5 576.7 6.8 33.60 5.3 
 5 170.0 20 8.0 380.0 7.0 31.50 5.7 
 6 300.6 21 93.3 480.3 7.4 16.60 5.3 
 

         Correlations 

  CODT pHT TempT BODT TurbidityT TDST YersiniaT 

CODT Pearson 
Correlation 

1 .361 -.430 -.134 .699 -.118 .565 

Sig. (2-tailed)   .482 .395 .800 .122 .824 .242 

N 6 6 6 6 6 6 6 

pHT Pearson 
Correlation 

.361 1 .530 .640 -.214 .132 .170 

Sig. (2-tailed) .482   .279 .171 .684 .803 .747 

N 6 6 6 6 6 6 6 

TempT Pearson 
Correlation 

-.430 .530 1 .282 -.462 .337 -.602 

Sig. (2-tailed) .395 .279   .589 .356 .514 .206 

N 6 6 6 6 6 6 6 

BODT Pearson 
Correlation 

-.134 .640 .282 1 -.689 .053 .359 

Sig. (2-tailed) .800 .171 .589   .130 .921 .485 

N 6 6 6 6 6 6 6 

TurbidityT Pearson 
Correlation 

.699 -.214 -.462 -.689 1 .239 .036 

Sig. (2-tailed) .122 .684 .356 .130   .649 .946 

N 6 6 6 6 6 6 6 

TDST Pearson 
Correlation 

-.118 .132 .337 .053 .239 1 -.563 

Sig. (2-tailed) .824 .803 .514 .921 .649   .245 

N 6 6 6 6 6 6 6 

YersiniaT Pearson 
Correlation 

.565 .170 -.602 .359 .036 -.563 1 

Sig. (2-tailed) .242 .747 .206 .485 .946 .245   

N 6 6 6 6 6 6 6 

Table 11 continued…. 
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(DS)  

Week COD (mg/ml) Temp (T˚C) Turb (NTU) TDS ( mg/l) pH 
BOD 

(mg/ml) YERS 
 1 292.0 22 13.4 553.7 7.4 162.10 5.6 
 2 75.7 19 36.9 375.0 8.3 161.20 6.3 
 3 187.0 18 94.6 401.0 7.7 59.80 6.6 
 4 72.3 17 53.2 432.0 7.1 79.60 6.3 
 5 287.0 15 22.1 343.3 7.1 43.20 6.5 
 6 185.0 22 452.0 465.6 7.4 26.80 6.5 
 

         Correlations 

  CODRlog10 pH Temp BOD Turbidity TDS YersiniaRlog10 

CODRlog10 Pearson 
Correlation 

1 -.397 .153 -.233 .072 .274 -.219 

Sig. (2-tailed)   .436 .772 .656 .893 .599 .677 

N 6 6 6 6 6 6 6 

pH Pearson 
Correlation 

-.397 1 .254 .546 -.074 -.189 .040 

Sig. (2-tailed) .436   .627 .262 .889 .720 .940 

N 6 6 6 6 6 6 6 

Temp Pearson 
Correlation 

.153 .254 1 .320 .518 .814 -.518 

Sig. (2-tailed) .772 .627   .536 .293 .049 .293 

N 6 6 6 6 6 6 6 

BOD Pearson 
Correlation 

-.233 .546 .320 1 -.573 .346 -.753 

Sig. (2-tailed) .656 .262 .536   .235 .501 .084 

N 6 6 6 6 6 6 6 

Turbidity Pearson 
Correlation 

.072 -.074 .518 -.573 1 .193 .367 

Sig. (2-tailed) .893 .889 .293 .235   .713 .474 

N 6 6 6 6 6 6 6 

TDS Pearson 
Correlation 

.274 -.189 .814 .346 .193 1 -.782 

Sig. (2-tailed) .599 .720 .049 .501 .713   .066 

N 6 6 6 6 6 6 6 

YersiniaRlog10 Pearson 
Correlation 

-.219 .040 -.518 -.753 .367 -.782 1 

Sig. (2-tailed) .677 .940 .293 .084 .474 .066   

N 6 6 6 6 6 6 6 

Table 11 continued…. 
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(UP) 

Weeks COD (mg/ml) Temp (T˚C) Turb (NTU) TDS ( mg/l) pH BOD (mg/ml) YERS 

1 269.0 23 13.2 429.7 8.8 23.20 5.84 
2 37.0 18 2.1 214.1 8.5 13.70 5.8 
3 222.7 17 3.2 197.4 8.0 13.40 5 
4 229.0 15 5.0 189.6 7.4 11.30 5.5 
5 161.0 16 21.4 282.7 6.7 4.40 6.3 
6 156.0 23 4.3 321.3 7.3 10.60 7.3 

         Correlations 

  CODRlog10 pHRlog10 Temp BOD Turbidity TDS Yersinia 

CODRlog10 Pearson 
Correlation 

1 1.000 .409 .908 -.419 .244 -.419 

Sig. (2-tailed)   .000 .421 .012 .408 .641 .408 

N 6 6 6 6 6 6 6 

pHRlog10 Pearson 

Correlation 

1.000 1 .409 .908 -.419 .244 -.419 

Sig. (2-tailed) .000   .421 .012 .408 .641 .408 

N 6 6 6 6 6 6 6 

Temp Pearson 

Correlation 

.409 .409 1 .577 -.047 .820 .565 

Sig. (2-tailed) .421 .421   .230 .929 .046 .243 

N 6 6 6 6 6 6 6 

BOD Pearson 
Correlation 

.908 .908 .577 1 -.233 .517 -.295 

Sig. (2-tailed) .012 .012 .230   .657 .293 .570 

N 6 6 6 6 6 6 6 

Turbidity Pearson 
Correlation 

-.419 -.419 -.047 -.233 1 .491 .199 

Sig. (2-tailed) .408 .408 .929 .657   .323 .706 

N 6 6 6 6 6 6 6 

TDS Pearson 
Correlation 

.244 .244 .820 .517 .491 1 .465 

Sig. (2-tailed) .641 .641 .046 .293 .323   .353 

N 6 6 6 6 6 6 6 

Yersinia Pearson 
Correlation 

-.419 -.419 .565 -.295 .199 .465 1 

Sig. (2-tailed) .408 .408 .243 .570 .706 .353   

N 6 6 6 6 6 6 6 

Table 12: Statistical analysis of the physicochemical parameters and microbial counts at NWWTP as per table 2.5. 
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(BC) 
        Weeks COD (mg/ml) Temp (T˚C) Turb (NTU) TDS ( mg/l) pH  BOD (mg/ml) YERS 

1 94.0 22 21.2 540.7 7.2 314.00 5.30 
2 72.0 23 26.0 659.7 7.4 282.90 6.3 
3 185.3 22 280.7 772.3 8.1 159.30 6.4 
4 187.7 20 10.0 590.3 6.8 123.30 6.3 
5 216.0 20 19.6 550.7 6.9 73.40 6.2 
6 198.0 23 5.2 368.3 7.0 23.50 6.4 

        Correlations 

  CODRlog10 pH TempRlog10 BOD Turbidity TDSRlog10 YersiniaRlog10 

CODRlog10 Pearson 
Correlation 

1 -.189 -.534 -.905 .195 -.254 .474 

Sig. (2-tailed)   .720 .275 .013 .711 .628 .342 

N 6 6 6 6 6 6 6 

pH Pearson 
Correlation 

-.189 1 .461 .333 .912 .655 .122 

Sig. (2-tailed) .720   .357 .518 .011 .158 .819 

N 6 6 6 6 6 6 6 
TempRlog10 Pearson 

Correlation 
-.534 .461 1 .311 .136 -.172 -.019 

Sig. (2-tailed) .275 .357   .549 .797 .745 .971 

N 6 6 6 6 6 6 6 

BOD Pearson 
Correlation 

-.905 .333 .311 1 .040 .496 -.643 

Sig. (2-tailed) .013 .518 .549   .940 .317 .168 

N 6 6 6 6 6 6 6 

Turbidity Pearson 
Correlation 

.195 .912 .136 .040 1 .652 .255 

Sig. (2-tailed) .711 .011 .797 .940   .161 .626 

N 6 6 6 6 6 6 6 
TDSRlog10 Pearson 

Correlation 
-.254 .655 -.172 .496 .652 1 .072 

Sig. (2-tailed) .628 .158 .745 .317 .161   .892 

N 6 6 6 6 6 6 6 

YersiniaRlog10 Pearson 
Correlation 

.474 .122 -.019 -.643 .255 .072 1 

Sig. (2-tailed) .342 .819 .971 .168 .626 .892   

N 6 6 6 6 6 6 6 

Table 12 continued…. 
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(AC) 
        Weeks COD (mg/ml) Temp (T˚C) Turb (NTU) TDS ( mg/l) pH BOD (mg/ml) YERS 

1 309.0 21 14.6 534.0 8.2 105.50 4 
2 92.7 22 1.3 476.3 7.6 104.30 4 
3 100.7 22 10.2 582.6 7.3 26.40 4.3 
4 152.4 20 34.5 576.7 6.8 33.60 4.3 
5 170.0 20 8.0 380.0 7.0 31.50 5.7 
6 152.7 22 4.9 371.7 7.1 34.20 5.6 

        Correlations 

  COD pH TempRlog10 BOD Turbidity TDSRlog10 Yersinia 

COD Pearson 
Correlation 

1 .587 -.354 .402 .228 .039 -.085 

Sig. (2-tailed)   .220 .491 .429 .664 .941 .873 

N 6 6 6 6 6 6 6 

pH Pearson 
Correlation 

.587 1 .358 .854 -.321 .243 -.559 

Sig. (2-tailed) .220   .486 .030 .536 .642 .249 

N 6 6 6 6 6 6 6 

TempRlog10 Pearson 
Correlation 

-.354 .358 1 .241 -.660 -.015 -.198 

Sig. (2-tailed) .491 .486   .645 .153 .977 .707 

N 6 6 6 6 6 6 6 

BOD Pearson 
Correlation 

.402 .854 .241 1 -.261 .166 -.613 

Sig. (2-tailed) .429 .030 .645   .617 .753 .195 

N 6 6 6 6 6 6 6 

Turbidity Pearson 
Correlation 

.228 -.321 -.660 -.261 1 .580 -.278 

Sig. (2-tailed) .664 .536 .153 .617   .227 .593 

N 6 6 6 6 6 6 6 

TDSRlog10 Pearson 
Correlation 

.039 .243 -.015 .166 .580 1 -.865 

Sig. (2-tailed) .941 .642 .977 .753 .227   .026 

N 6 6 6 6 6 6 6 

Yersinia Pearson 
Correlation 

-.085 -.559 -.198 -.613 -.278 -.865 1 

Sig. (2-tailed) .873 .249 .707 .195 .593 .026   

N 6 6 6 6 6 6 6 

Table 12 continued…. 
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(DS) 
 

        Weeks COD (mg/ml) Temp (T˚C) Turb (NTU) TDS ( mg/l) pH BOD (mg/ml) YERS  

1 292.0 22 13.4 553.7 7.4 162.10 5.6  
2 75.7 19 36.9 375.0 8.3 161.20 4  
3 187.0 18 94.6 401.0 7.7 59.80 5.6  
4 72.3 17 53.2 432.0 7.1 79.60 5.6  
5 287.0 15 22.1 343.3 7.1 43.20 6.2  
6 195.0 24 5.1 265.0 7.6 37.40 6.2 

 
        Correlations 

 
 

CODRlog10 pH Temp BOD Turbidity TDS YersiniaRlog10 

CODRlog10 Pearson 
Correlation 

1 -.372 .182 -.247 -.322 .086 .654 

Sig. (2-tailed)   .468 .729 .637 .534 .871 .159 

N 6 6 6 6 6 6 6 

pH Pearson 
Correlation 

-.372 1 .317 .477 .135 -.174 -.810 

Sig. (2-tailed) .468   .540 .339 .798 .742 .050 

N 6 6 6 6 6 6 6 

Temp Pearson 
Correlation 

.182 .317 1 .202 -.481 -.029   .046 

Sig. (2-tailed) .729 .540   .701 .334 .956 .931 

N 6 6 6 6 6 6 6 

BOD Pearson 
Correlation 

-.247 .477 .202 1 -.133 .680 -.737 

Sig. (2-tailed) .637 .339 .701   .802 .137 .095 

N 6 6 6 6 6 6 6 

Turbidity Pearson 
Correlation 

-.322 .135 -.481 -.133 1 .134 -.175 

Sig. (2-tailed) .534 .798 .334 .802   .800 .739 

N 6 6 6 6 6 6 6 

TDS Pearson 
Correlation 

.086 -.174 -.029 .680 .134 1 -.151 

Sig. (2-tailed) .871 .742 .956 .137 .800   .776 

N 6 6 6 6 6 6 6 

YersiniaRlog10 Pearson 
Correlation 

.654 -.810 .046 -.737 -.175 -.151 1 

Sig. (2-tailed) .159 .050 .931 .095 .739 .776   

N 6 6 6 6 6 6 6 

Table 11 continued…. 
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Isolate AMC (30) AMP (10) CRO (30) CXM (30) C  (30) KF (30) CIP(5) CN (10) K (30) S(10) TE (30) W (5) MAR 

 YE- CONTROL R R S R I R S S I R R R 0.58 
43 I R S R R R S S S I R R 0.5 

206 I R S R I R S S S I R R 0.4 
33 R R S R R R S S S R R R 0.7 
81 R R S R R R S S I R R R 0.7 

253 R R S R R R S S I R R R 0.7 
62 R R S R R R S S S I R R 0.58 

150 R R S R R R S S S I R R 0.58 
302 R I R S R R S S I R R R 0.58 
11 R R S R I R S S I R R R 0.58 

286 I R S R R R S S R R R R 0.7 
295 I R S R I R S S S I R R 0.4 
282 R R S R I R S S S R R R 0.58 
79 R R S R I R S S I R R R 0.58 

208 R R S R R R S S S R R R 0.7 
104 R R S R R S S S R I R R 0.58 
48 R R S R R R S S R R R R 0.7 
68 R R S R I R S S S R R R 0.5 

289 R R S R R R S S S R R R 0.7 
254 R R S R R R S S I R R R 0.7 
75 R R S R R R S S S R R R 0.7 
84 R R S R I R S S S R R R 0.58 

112 R R S R R R S S S R R R 0.7 
54 R R S R R R S S S R R R 0.7 

259 R R S R R R S S S R R R 0.7 
49 R R S R R R S S S R R R 0.7 
77 R R S R R R S S S R R R 0.7 

103 R R S R R R S S S R R R 0.7 
260 R R S R R R S S S R R R 0.7 

8 R R S R R R S S S R R R 0.7 
207 R R S R R R S S S R R R 0.7 
294 R R S R R R S S S R R R 0.7 
280 R R S R R R S S S R R R 0.7 
113 R R S R R R S S S R R R 0.7 

Table 13: Antibiotic susceptibility of Yersinia spprecovered from the treated effluent at NGTW and NWWTP as per table 3.4. 

R- resistant, S- susceptible, I- intermediate 
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47 R R S R R R S S S R R R 0.7 
118 R R S R R R S S R R R R 0.58 
191 R R S R R R S S R R R R 0.58 
192 R R S R R R S S S R R R 0.7 
281 R R S R R R S S S R R R 0.7 
218 R R S R I R S S S R R R 0.7 
190 R R S R R R S S S I R R 0.58 
151 R R S I R R S S S R R R 0.58 
285 R R S I R R S S S R R R 0.58 
262 R R S R I R S S S R R R 0.5 
55 R R S R R R S S S I R R 0.7 

303 R R S R R R S S S R R R 0.7 
120 R R S R R R S S S I R R 0.5 
86 R R S R R R S S S R R R 0.7 
53 I R S R R R S S S R R R 0.7 
40 R R S R R R S S S R R R 0.7 

135 R R S R R R S S S R R R 0.7 
252 R R S R R R S S S R R R 0.7 
189 R R S R R R S S S R R R 0.7 
253 I R S R R R S S S I R R 0.5 
37 R R S R R R S S S R R R 0.7 

261 R R S R R R S S S R R R 0.7 
45 R R S R R R S S S R R R 0.7 

129 R R S R R R S S S R R R 0.7 
34 R R S R R R S S S R R R 0.7 

185 R R S R R R S S S R R R 0.7 
72 R R S R R R S S S R R R 0.7 
78 R R S R R R S S S R R R 0.7 
80 R R S R R R S S S R R R 0.7 

136 R R S R R R S S S R R R 0.7 
230 R R S R R R S S S R R R 0.7 
197 R R S R R R S S S R R R 0.7 
198 R R S R R R S S S R R R 0.7 
215 R R S R R R S S S R R R 0.7 
186 R R S R R R S S S R R R 0.7 
187 R R S R R R S S S R R R 0.7 
188 R R S R R R S S S R R R 0.7 

R- resistant, S- susceptible, I- intermediate 

Table 13 continued…. 
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199 R R S R R R S S S R R R 0.7 
9 R R S R R R S S S R R R 0.7 
7 R R S R R R S S S R R R 0.7 

57 R R S R R R S S S R R R 0.7 
46 R R S R R R S S S R R R 0.7 
88 R R S R R R S S S R R R 0.7 
35 R R S R R R S S S R R R 0.7 
36 R R S R R R S S S R R R 0.7 
38 R R S R R R S S S R R R 0.7 
44 R R S R R R S S S R R R 0.7 
51 R R S R R R S S S R R R 0.7 
85 R R S R R R S S S R R R 0.7 

106 R R S R R R S S S R R R 0.7 
108 R R S R R R S S S R R R 0.7 
130 R R S R R R S S S R R R 0.7 
131 R R S R R R S S S R R R 0.7 
137 R R S R R R S S S R R R 0.7 
140 R R S R R R S S S R R R 0.7 
142 R R S R R R S S S R R R 0.7 
143 R R S R R R S S S R R R 0.7 
147 R R S R R R S S S R R R 0.7 
148 R R S R R R S S S R R R 0.7 
146 R R S R R R S S S R R R 0.7 
223 R R S R R R S S S R R R 0.7 
216 R R S R R R S S S R R R 0.7 
217 R R S R R R S S S R R R 0.7 
205 R R S R R R S S S R R R 0.7 
153 R R S R R R S S S R R R 0.7 
157 R R S R R R S S S R R R 0.7 
213 R R S R R R S S S R R R 0.7 
183 R R S R R R S S S R R R 0.7 
184 R I S R I R S S S R R R 0.5 
263 R R S R R R S S S R R R 0.7 
264 R R S R R R S S S R R R 0.7 
240 R R S R I R S S S R R R 0.58 
236 R R S R R R S S S R R R 0.7 
279 R R S R R R S S S R R R 0.7 

R- resistant, S- susceptible, I- intermediate 

Table 13 continued…. 
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329 R R S R I R S S S I R R 0.5 
433 R R S R I R S S S I R R 0.5 
340 R R S R I R S S S R R R 0.58 
318 R R S I R R S S S R R R 0.58 
362 R R S R R R S S S R R R 0.7 
359 R R S R R R S S S R R R 0.7 
358 R R S R I R S S S R R R 0.58 
334 R R S I I R S S S R R R 0.58 
395 R R S I I R S S S R R R 0.5 
399 R R S R R R S S S R R R 0.7 
403 R R S R I R S S S R R R 0.58 
402 R R S I R R S S S R R R 0.58 
356 R R S R R R S S S R R R 0.7 
391 R R S R R R S S S R R R 0.7 
393 R R S I R R S S S I R R 0.5 
394 R R S R R R S S S R R R 0.7 
308 R R S R R R S S S R R R 0.7 
370 R R S R R R S S S R R R 0.7 
352 R R S R I R S S S R R R 0.58 
346 R R S R R R S S S R R R 0.7 
426 R R S R R R S S S R R R 0.7 
364 R R S R R R S S S R R R 0.7 
375 R R S R R R S S S R R R 0.7 
377 R R S R R R S S S R R R 0.7 
383 R R S R R R S S S R R R 0.7 
336 R R S R R R S S S R R R 0.7 
325 R R S R R R S S S R R R 0.7 
314 R R S R I R S S S R R R 0.58 
466 R R S R R R S S S R R R 0.7 
390 R R S R R R S S S R R R 0.7 
315 R R S R I R S S S R R R 0.58 
319 R R S R R R S S S R R R 0.7 
320 R R S R I R S S S R R R 0.58 
344 R R S R I R S S S R R R 0.58 
345 R R S R I R S S S R R R 0.58 
347 R R S R R R S S S R R R 0.7 
326 R R S R R R S S S R R R 0.7 

R- resistant, S- susceptible, I- intermediate 

Table 13 continued…. 
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409 R R S R R R S S S R R R 0.7 
422 R R S R R R S S S R R R 0.7 
415 R R S R I R S S S R R R 0.58 
416 R R S R R R S S S R R R 0.7 
418 R R S R R R S S S R R R 0.7 
419 R R S R I R S S S I R R 0.5 
424 R R S R R R S S S R R R 0.7 
428 R R S R R R S S S R R R 0.7 
436 R R S R I R S S S R R R 0.58 
439 R R S R R R S S S R R R 0.7 
440 R R S R R R S S S R R R 0.7 
441 R R S R R R S S S R R R 0.7 
442 R R S R R R S S S R R R 0.7 
447 R R S R R R S S S R R R 0.7 
450 R R S R R R S S S R R R 0.7 
451 I R S R R R S S S R R R 0.58 
453 R R S R R R S S S R R R 0.7 
454 R R S R R R S S S R R R 0.7 
455 R R S R R R S S S R R R 0.7 
459 R R S R R R S S S R R R 0.7 
462 R R S R R R S S S R R R 0.7 
467 R R S R R R S S S R R R 0.7 
468 R R S R R R S S S R R R 0.7 
469 R R S R R R S S S R R R 0.7 
470 R R S R R R S S S R R R 0.7 
472 R R S R R R S S S R R R 0.7 
408 R R S R I R S S S I R R 0.5 

 

 

 

 

 

R- resistant, S- susceptible, I- intermediate 

Table 13 continued…. 
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   Antibiotic  Profile   Integrons Virulence genes Assays 

  No. Code   
 

      
MAR 
index Phenotype Int 1 Int 2 Int 3 

ail 
425 
bp 

ystA 79 
bp 

Vir/Lcr 561 
bp 

YadA 849 
bp 

Crystal 
violet MBL 

UP-NG 308 YE 27 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ + ‒ ‒ ‒ ‒ ‒ 

UP-NG 55 YE 25 AMC AMP CXM C KF S TE W 0.66 A + ‒ ‒ + + ‒ ‒ + ‒ 

DS-NG 40 YE 26 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

UP-N 441 YE 29 AMC AMP CXM C KF S TE W 0.66 A + ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

DS-NG 428 YE 22 AMC  AMP CXM C KF S TE W 0.66 A + + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

AC-N 188 YE 41 AMC  AMP CXM C KF S TE W 0.66 A ‒ ‒ ‒ + + ‒ ‒ ‒ ‒ 

BC-NG 207 YE 23 AMC AMP CXM C KF S TE W 0.66 A + ‒ ‒ + ‒ ‒ ‒ ‒ ‒ 

DS-NG 103 YE 30 AMC  AMP CXM C KF S TE W 0.66 A + ‒ ‒ ‒ + ‒ ‒ + ‒ 

UP-NG 252 YE 20 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ + ‒ 

BC-NG 259 YE 43 AMC AMP CXM C KF S TE W 0.66 A + + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

DS-NG 428 YE 22 AMC  AMP CXM C KF S TE W 0.66 A + + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

AC-NG 80 YE 21 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

UP-N 112 YE 31 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

DS-N 303 YE 33 AMC AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

BC-N 453 YE 35 AMC  AMP CXM C KF S TE W 0.66 A + + ‒ + ‒ ‒ ‒ ‒ ‒ 

DS-N 472 YE 37 AMC  AMP CXM C KF S TE W 0.66 A + ‒ ‒ + ‒ ‒ ‒ + ‒ 

AC-N 459 YE 39 AMC  AMP CXM C KF S TE W 0.66 A + ‒ ‒ + ‒ ‒ ‒ ‒ ‒ 

AC-NG 78 YE 40 AMC  AMP CXM C KF S TE W 0.66 A ‒ ‒ ‒ + + ‒ ‒ ‒ ‒ 

DS-N 302 YE 34 AMC CXM CRO C KF S TE W 0.66 A ‒ ‒ ‒ ‒ + ‒ + + ‒ 

AC-N 136 YE 36 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ + + ‒ ‒ ‒ ‒ 

AC-N 185 YE 38 AMC AMP CXM C KF S TE W 0.66 A ‒ + ‒ + + ‒ ‒ ‒ ‒ 

AC-N 462 YE 32 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

BC-NG 318 YE 2 AMC  AMP C KF S TE W   0.58 E + ‒ ‒ + ‒ ‒ ‒ ‒ ‒ 

BC-NG 213 YE 42 AMC  AMP CXM C KF S TE W 0.66 A + ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

DS-NG 428 YE 22 AMC  AMP CXM C KF S TE W 0.66 A + + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

Table 14: Summary of genotypic and phenotypic assays of Yersinia spp recovered from treated effluent. 
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AC-NG 80 YE 21 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

DS-NG 40 YE 26 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

UP-NG 55 YE 25 AMC  AMP CXM C KF S TE W 0.66 A + ‒ ‒ + + ‒ ‒ + ‒ 

BC-NG 72 YE 4 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

BC-NG 419 YE 70 AMC  AMP CXM KF TE W     0.5 J + ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

AC-NG 33 YE 7 AMC  AMP CXM, C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ + + ‒ 

DS-NG 344 YE 66 AMC  AMP CXM C S TE W   0.58 F + ‒ ‒ ‒ + ‒ ‒ ‒ ‒ 

UP-N 442 YE 10 AMC  AMP CXM C KF S TE W 0.66 A + + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

DS- NG 104 YE 63 AMC  AMP CXM C K TE W   0.58 C ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

AC-NG 79 YE 61 AMC  AMP CXM KF S TE W   0.58 B ‒ + ‒ + + ‒ ‒ ‒ ‒ 

UP-NG 253 YE 14 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

BC-NG 415 YE 62 AMC  AMP CXM KF S TE W   0.58 B + ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

BC-NG 264 YE 13 AMC  AMP CXM C KF S TE W 0.66 A + ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

DS-N 467 YE 5 AMC  AMP CXM C KF S TE W 0.66 A ‒ ‒ ‒ ‒ + ‒ ‒ ‒ ‒ 

DS-NG 48 YE 11 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

DS-N 197 YE 15 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ + ‒ 

UP-N 118 YE 16 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ + + ‒ ‒ ‒ ‒ 

UP-NG 409 YE 3 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ + ‒ ‒ ‒ ‒ ‒ 

UP-NG 55 YE 25 AMC AMP CXM C KF S TE W 0.66 A + ‒ ‒ + + ‒ ‒ + ‒ 

BC-NG 72 YE 4 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

AC-NG 33 YE 7 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ + + ‒ 

DS-NG 344 YE 66 AMC  AMP CXM C S TE W   0.58 F + ‒ ‒ ‒ + ‒ ‒ ‒ ‒ 

UP-N 442 YE 10 AMC  AMP CXM C KF S TE W 0.66 A + + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

DS- NG 104 YE 63 AMC AMP CXM C K TE W   0.58 C ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

AC-NG 79 YE 61 AMC  AMP CXM KF S TE W   0.58 B ‒ + ‒ + + ‒ ‒ ‒ ‒ 

UP-NG 253 YE 14 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

BC-NG 415 YE 62 AMC  AMP CXM KF S TE W   0.58 B + ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

BC-NG 264 YE 13 AMC  AMP CXM C KF S TE W 0.66 A + ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

DS-N 467 YE 5 AMC  AMP CXM C KF S TE W 0.66 A ‒ ‒ ‒ ‒ + ‒ ‒ ‒ ‒ 

DS-NG 48 YE 11 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

DS-N 197 YE 15 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ + ‒ 
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UP-N 118 YE 16 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ + + ‒ ‒ ‒ ‒ 

UP-NG 409 YE 3 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ + ‒ ‒ ‒ ‒ ‒ 

UP-NG 254 YE 6 AMC AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

AC-N 191 YE 17 AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ + ‒ ‒ ‒ ‒ 

DS-N 88 YE 18 AMC  AMP CXM C KF S TE W 0.66 A ‒ ‒ + ‒ ‒ ‒ ‒ + ‒ 

DS- NG 43 YE 67 AMP CXM C KF TE W     0.5 G ‒ ‒ + + ‒ ‒ ‒ + ‒ 

DS-N 468 YE 44 AMC  AMP CXM C KF S TE W 0.66 A ‒ ‒ ‒ + + + ‒ + ‒ 

AC-NG 216 YE 9 AMC AMP CXM C KF S TE W 0.66 A ‒ + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

DS-N 469 YE 12 AMC  AMP CXM C KF S TE W 0.66 A + + ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

UP-N 150 YE 64 AMC AMP CXM C KF TE W   0.58 D ‒ ‒ + + ‒ ‒ ‒ + ‒ 

Control   
YE- 

Control AMC  AMP CXM C KF S TE W 0.66 A ‒ + ‒ + ‒ ‒ ‒ ‒ ‒ 
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Isolate 

code 

     

Matrix 
      YE 28 100 

           YE 35   88.89 100.00 
          YE 2   44.45  42.11 100.00 
          YE 38   13.33  12.50  22.73 100.00 

         YE 42   45.46  30.77  36.85  70.00 100.00 
         YE 34    7.69   7.15  14.29  50.00  40.00 100.00 

        YE 36   25.00  14.29  19.05  60.00  36.37  85.72 100.00 
        YE 35   16.67  15.39  14.29   7.15   7.69   9.09   8.33 100.00 

       YE 37    9.09   8.33   4.77  18.19   0.00  11.11  10.00  66.67 100.00 
       YE 39    9.09   8.33   4.77  18.19   9.09  11.11  10.00  25.00  60.00 100.00 

      YE 40    0.00   9.09   5.00  20.00  22.23   0.00   0.00  12.50  40.00  75.00 100.00 
      YE 43    7.69   7.15   4.35  15.39   7.69  20.00   8.33  50.00  42.86  11.11  12.50 100.00 

     YE 33   20.00  18.19  10.00   0.00   9.09  11.11  10.00  66.67  60.00  33.33  16.67  66.67 100.00 
     YE 20    9.09   8.33   4.77   8.33   9.09   0.00  10.00  25.00  33.33  14.29  16.67  66.67  60.00 100.00 

    YE 31    9.09   8.33   4.77  18.19   9.09   0.00  22.23  25.00  33.33   0.00  16.67  66.67 100.00 100.00 100.00 
    YE 21   18.19  16.67  15.00   7.69   8.33  10.00   9.09  22.23  12.50  12.50  14.29  22.23  28.57  80.01  80.01 100.00 

   YE 22   25.00  23.08  19.05  23.08  25.00  18.19  27.27  18.19  10.00  10.00  11.11  18.19  22.23  37.50  37.50  71.43 100.00 
   YE 26    0.00   0.00   4.55  16.67   8.33  10.00   9.09   0.00   0.00   0.00   0.00  10.00   0.00  12.50   0.00  25.00  20.00 100.00 
   YE 23    9.09  18.19   4.77   8.33   9.09  11.11  10.00  11.11   0.00   0.00   0.00  11.11  14.29  33.33  14.29  50.00  37.50  50.00 100.00 

  YE 29    0.00   0.00   4.55   7.69   0.00  10.00   9.09   0.00   0.00  12.50   0.00  10.00   0.00  28.57   0.00  25.00  20.00  42.86  28.57 100.00 
  YE 27    0.00   0.00   0.00  30.00   9.09  25.00  22.23   0.00   0.00   0.00   0.00  11.11   0.00  14.29   0.00  12.50  22.23  50.00  33.33  50.00 100.00 

 YE 24    6.25   5.89   8.00  20.00  21.43  25.00  14.29   7.15   0.00   0.00   0.00   7.15   0.00   8.33   8.33  27.27  33.33  40.00  30.00  27.27  30.00 100.00 
 YE 41   11.77  17.65  16.00  11.11   5.56   6.25   5.89   6.25   0.00   7.15   0.00   0.00   0.00   7.15   0.00  14.29  12.50  23.08  15.39  23.08  15.39  17.65 100.00 

YE 30    0.00   0.00   4.77  18.19   0.00  11.11  10.00   0.00   0.00   0.00   0.00   0.00   0.00  14.29  14.29  12.50  10.00  12.50  14.29  12.50  14.29  18.19   7.15 100.00 

YE 25    0.00   8.33  10.00   8.33  20.00   0.00   0.00   0.00   0.00   0.00  16.67   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00  15.39   0.00 100.00 

 

Table 15: Percentage score similarity generated from GelCompare software for Yersinia s spp. bands on the RAPD profiles.  
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Isolate 

code 

  
 

  

               

Matrix    
       YE 70 100 

             YE 10   83.33 100.00 
            YE 62   63.64  50.00 100.00 
            YE 5   69.23  29.41  50.00 100.00 

           YE 19   31.25  50.00  54.55  23.53 100.00 
           YE 61   36.85  30.00  15.79  30.00  25.00 100.00 

          YE 17   12.50  12.50   7.69  12.50  13.33  22.23 100.00 
          YE 18   30.77  13.33   8.33   6.25  23.08  31.25  85.72 100.00 

         YE 12   18.75  26.67  15.39  26.67  38.47  21.05  36.37  55.56 100.00 
         YE 66   10.53  10.53  21.43  31.25  17.65  13.64  13.33   6.67  20.00 100.00 

        YE 7   18.75   5.56  25.00  46.15  28.57  15.00  25.00  16.67  33.33  50.00 100.00 
        YE 9   18.75  11.77  15.39  11.77  12.50   9.53   0.00   0.00   0.00  28.57  14.29 100.00 

       YE 15    6.67  23.08   0.00   0.00  25.00   5.27   9.09   0.00   8.33   7.15   0.00   8.33 100.00 
       YE 16    6.67  14.29   0.00   6.67  36.37  11.11  20.00  10.00   0.00   7.15   0.00   8.33  66.67 100.00 

      YE 13   11.77  58.33  15.39  18.75  38.47   9.53  15.39   7.69  23.08   5.89  14.29   6.67  44.45  44.45 100.00 
      YE 14   17.65  25.00   6.67   5.27  35.72  14.29  14.29  15.39  21.43   5.56   6.25   6.25  40.00  27.27  70.00 100.00 

     YE 11   31.58  47.06  16.67  19.05  33.33  11.54  31.25  33.33  22.23  20.00  22.23  10.00  18.75  26.67  29.41  43.75 100.00 
     YE 67   13.33   6.25   8.33   6.25  14.29  16.67  18.19   9.09  16.67  14.29   7.69   7.69  10.00  37.50  16.67  15.39  17.65 100.00 

    YE 44   12.50   5.89   7.69   5.89  13.33  15.79  16.67   8.33  15.39  21.43   7.15  15.39  20.00  33.33  25.00  23.08  23.53  85.72 100.00 
    YE 6   26.32  20.00  17.65  20.00  27.78  21.74   5.27  11.77  10.53  21.05  16.67  16.67   0.00   5.89  10.53  29.41  17.39  26.67  33.33 100.00 

   YE 65   13.05   8.33   4.77  23.81  13.64  25.00  15.79  10.53   9.53  25.00  15.00  21.05   5.27   5.27   9.53  14.29  16.00  10.53  15.79  27.27 100.00 
   YE 69   14.29   4.35   5.27  14.29  15.00  27.27  11.11  11.77  10.53  21.05  16.67  23.53   5.89   5.89  10.53  10.00  12.50  11.77  17.65  23.81  86.67 100.00 

  YE 4   12.50   0.00   7.69  12.50   6.25  15.79  16.67  30.00  15.39  13.33  15.39  25.00   0.00   0.00   0.00  14.29  23.53   8.33   7.69  17.65  46.67  42.86 100.00 
  YE 3   15.00  21.05  11.77   9.53  22.23  17.39  18.75  12.50  17.65  29.41  11.11  17.65   6.25   6.25  17.65  10.53  13.05   5.89  11.77  25.00  35.00  38.89  26.67 100.00 

 YE 63    0.00   0.00   0.00  13.33   6.67  10.53   0.00   0.00   7.69  14.29  16.67  16.67   0.00   0.00   0.00   7.15  11.11   9.09   8.33   5.56  31.25  26.67  30.00  12.50 100.00 
 YE 64    0.00   0.00   0.00   6.67   7.15   5.27   0.00   0.00   8.33   7.15   8.33   8.33   0.00   0.00   0.00   7.69  11.77  10.00   9.09   5.89  25.00  20.00  33.33  13.33  83.33 100.00 
 YE 1    6.25  13.33   0.00   6.25   6.67  10.53   8.33   9.09   7.69  14.29   7.69  16.67   0.00   0.00   0.00  15.39  11.11   9.09  18.19  11.77  31.25  26.67  44.45  12.50  71.43  83.33 100.00 

Control    0.00   0.00   0.00  11.77   0.00   4.55   7.15   7.69   6.67  12.50   6.67  14.29   0.00   0.00   6.67  21.43  15.79   7.69   0.00  10.53  35.30  16.67  25.00   5.27  75.00  62.50  75.00 100.00 

Table 16: Percentage score similarity generated from GelCompare software for Yersinia s spp. bands on the RAPD profiles.  
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Fig 1: Crystal violet assay for the Yersinia enterocolitica recovered from treated effluent of NGTW and 

NWWTP defined in table 3.7. 

pYV positive 

cell retained 

Crystal Violet 
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  gu   2:   t     β- lactamase production assay of Yersinia enterocolitica recovered from NGTW and NWWTP 

defined table 3.7. 

Impenem + EDTA 

disc 
Impenem disc 
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