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Abstract

Roughness is a relatively untouched field considering its significance

to natural scientists. In this thesis mathematical techniques for

measuring the roughness of signals are constructed and investigated.

Both one dimensional and two dimensional signals are tackled. Ap

plications include geological profiles and biological surfaces. Math

ematical techniques include Fourier and Wavelet Transforms.
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Chapter 1

Introduction

Computer Science post-graduate students are faced with two op

tions: choose a Computer Science topic - probably quite theoretical

- to research, or look outside their department and find some scien

tific application required by a third party. Here at the University of

Natal, Durban campus (UND) we have been blessed: the decision

to merge departments into schools meant Computer Science was

joined with Geology, and a surfeit of problems the geologists needed

solving were suggested as research topics. One of the problems pro

posed was that of measuring the roughness of a profile. The ability

to predict how much two surfaces in contact with one another will

slip is significant to an engineering geologist. The Geology Depart

ment was kind enough to furnish a set of Barton's profiles (from [1])

in digital format, the profiles themselves are used as a reference by

geologists when measuring roughness - for more information see [1]

or [2].

Rhodes University's Institute of Water Research (IWC) also had an

interest in roughness; they use the degradation of may-flies' gills to

measure the kaolin content of rivers. The more kaolin in the wa

ter, the more the gills will degrade, and the rougher will be their

appearance. Thus their requirement for roughness measuring soft

ware. The (IWC) provided the 2D sample images.



1.1 A Roughness Definition

The challenge then is to construct numerical techniques to measure

the roughness of both ID geological profiles and 2D biological sam

ple signals. The scientists working with these problems currently

sort their samples by measuring roughness with eyesight. Hopefully

the techniques developed here will manage to classify samples in the

same order that they have been ranked to this point.

1.1 A Roughness Definition

Trying to find a standard roughness definition is almost impossible.

Russ in [18] defines: "A conventional measurement of surface rough

ness is the "rms" or root-mean-square roughness. For an elevation

profile or surface image, this is determined by standard descriptive

statistics. The mean value of the elevation values is the average

surface elevation. The variance is the sum of the squares of the de

viations of individual values from this mean divided by the number

of points, and the standard deviation or "rms" value is the square

root of the variance." This definition could best be described as a

statistical attempt to measure roughness, and has the advantage of

working for either profiles or surfaces.

Another commonly used roughness evaluation method (at least by

geologists) is the Joint Roughness Coefficient (JRC) measure pro

posed by Barton in [1]. This measure suggests roughness coefficients

(JRC values) for a profile in the range 0 to 20. The JRC value is es

timated by visual matching with the profiles presented as Barton's

Profiles in Appendix A. The method has the advantage of being

readily available to geologists in the field, but the disadvantage of

only working for profiles. In this thesis Barton's profiles will be used

as a set of test profiles.

The third recognized measure for roughness estimation is based on

the fractal dimension D of either profiles or surfaces. The use of

fractals to measure roughness was suggested by Mandelbrot in [11].

For a profile the fractal dimension is a real number in the range [1,2]
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whilst for a surface the fractal dimension is in the range [2,3]. The

larger the fractal dimension D for a profile or surface, the "rougher"

the profile or surface. The box-counting algorithm implemented in

this thesis is a fractal measure which can be used on both profiles

and surfaces.

A scientist looking for information on surface roughness measures

will do best to search for books on fractals. Such books seem the

most likely place to find any references to roughness, and focus

around using fractal measures, like the fractal dimension of a sur

face. Most popular is the box-counting method. These methods are

discussed in, e.g. [13] and [18].

In this thesis the traditional spatial domain techniques currently

used by engineering geologists are compared with new methods

based on spectral domain techniques from the engineering litera

ture.



Chapter 2

The Simplified Roughness

Problem

Before looking at numerical codes it is important to indicate what

assumptions are being made about the signals to be analyzed.

2.1 One Dimension Signals

Starting with ID signals, assume that there are 2" samples which are

evenly spaced and lie in the range [ 0, 255] with the minimum being

0. The reason for this last assumption is that roughness must be

independent of the mean of the signal. Our roughness calculations

will be scaled to produce a measure in the range [0, 2n~l — 1], for

reasons evident after considering two dimensional signals.

2.2 Sampling Two Dimensional Signals

2.2.1 Rose Diagrams

In the case of 2D signals again assume evenly spaced samples on

a square 2" by 2" grid. Again the sample values lie in the range
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Figure 2.1: Circular sampling

[0, 255]. To get a measure of roughness for a 2D signal take a series

of ID slices through the centre of the 2D signal and sample these

slices at 2n points generating ID signals. This is illustrated in figure

2.1.

Use the ID techniques to calculate the roughness of each slice. This

ID roughness measure can then be used to construct a roughness

rose diagram for the 2D signal. This rose diagram can be superim

posed on top of the 2D signal to get a picture of roughness versus

direction for the signal. Figure 2.2 shows an example rose diagram.

At this point the decision to scale all roughness values to the range

of [ 0, 2n~1 — 1] makes sense: this forces the roughest surface to have

a roughness rose-diagram circular in shape, which in extreme cases

can just touch the perimeter of the sampling circle. An "overall"

roughness according to the area of the rose diagram is then com

puted. Note that this circular sampling of 2D signals will exclude

signal detail outside the perimeter of the sampling circle.
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Figure 2.2: An example rose diagram

2.3 Algorithms Overview

Now that the basic rules have been stated, numerical algorithms

can be considered. The first distinction to make is the difference

between spatial domain, frequency domain, and space/frequency do

main analysis techniques.

Spatial domain calculations use the raw signal values with some form

of algorithm to ascertain roughness. The output values of these

algorithms are then "scaled" to conform to the above-mentioned

rules. One of the spatial domain methods used in this project counts

how many times the signal value trends change direction: i.e. either

hit the peak of a continuous rise in values and start to fall again, or

encounter the bottom of a trough in values and start to rise.

Whilst methods like this may seem trivial, they outperformed the
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transform domain methods with some sample sets.

Frequency domain analysis takes place after the signal values have

been transformed to the frequency domain using a Discrete Fourier

Transform (DFT). The frequency amplitudes are then used as input

to a roughness algorithm.

Finally Discrete Wavelet Transforms are used to transform signals

to space/frequency domains, and the resulting coefficients are then

used as input to roughness algorithms.

Six key roughness algorithms have been implemented, three spa

tial domain measures, one frequency domain measure and two

space/frequency measures. The methods are: Direction Change

Counting (spatial), Height Increment Counting (spatial), Box Coun

ting (spatial), Fast Fourier Transform (frequency), Haar Wavelet

Transform (space/frequency) and Daubechies 4 Coefficient Wavelet

Transform (space/frequency).

The Direction Change Counting, Height Increment Counting and

Box Counting algorithms are covered in chapter 3. Chapter 4 con

tains an explanation of the Fourier transform, and discrete fast

Fourier transform theory and algorithms, whilst chapter 5 contains

the algorithm details and results of the discrete Fourier transform.

Chapter 6 is an explanation of the wavelet transform, with the dis

crete wavelet transform included, with chapter 7 having the algo

rithm details and results (similar to chapter 5). Chapter 8 describes

the image processing shell used and has instructions for compiling

and running the plugins coded by the author. Chapter 9 is a con

clusion which highlights project successes and failures, and indicates

which direction future work should be aimed toward.

Unless otherwise mentioned, the algorithms coded have all been

developed by the author for the purposes of this thesis.



Chapter 3

Spatial Domain Measures

Two algorithms (Direction Change and Height Increase) used in

this chapter have been developed by the author, the Box Counting

algorithm is based on ideas suggested in [13].

3.1 Direction Change Measure

One of the more intuitive methods to gauge roughness is to assess

how jagged a signal is: the more changes in slope direction (from up

to down, or down to up) across the signal, the more rough the signal

is. What becomes apparent whilst analyzing the sample data with

this Direction Change Count metric is the need to discard any false

peaks and troughs. What are false peaks and troughs and how are

they caused? Sample data can originate from a variety of sources

ranging from scanned images in books to digital photographs of mi

croscopic samples. The input devices used must always perform

some sort of sampling and quantization. As a result, some values

may be interpolated, omitted, or even assigned maximum or min

imum cut offs. Whilst these erroneous values are easily detected

and countered for by a human measuring roughness by sight only, a

computer program will treat the erroneous values like all the others.

The solution is to implement a threshold so that the user can specify
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how wide a trend change must be in order to be counted as such.

The algorithm for a signal {sj}j: o,... 2«-i is as follows:

3.1.1 Algorithm

roughness = 0

for j = 1 to 2" - 1 do

if Sj > Sj-i and downwardTrend = true then

if trendLength() > threshold then

roughness++

downwardTrend = false

end if

else if Sj < Sj-i and downwardTrend = false then

if trendLength() > threshold then

roughness++

downwardTrend = true

end if

end if

end for

return roughness

If a user is confident that the signal values are all correct, then a

threshold of 0 or 1 will suffice. The less confident the user of her

samples, the larger the threshold value should be. The downside to

thresholding is that genuine short trend direction changes will be

overlooked if the threshold value is greater than the trends are long.

3.1.2 Results

The results for the Direction Change Measure are broken down into

the ID profile and 2D images, which denote Barton's geological pro

files and the gill flap biological samples respectively. The 10 profiles

in Barton's roughness set, listed in Appendix A, were analyzed us

ing the ID Direction Change Measure in the hope that the result

would be a strictly increasing roughness classification.
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Figure 3.1: Roughness ranking of Barton's profiles by Direction Change Measure

The 7 2D biological sample images, listed in Appendix A, were

analyzed using the above algorithm along 256 slices through the

image. The number of slices used by the rose-diagram measures

always match the pixel width value for the image, the roughness

rose diagrams were superimposed on the images and the area of the

rose diagram was used as an overall measure of roughness for the

image in question. It was hoped that the result would be a strictly

increasing roughness classification of the images.

A full set of results for each measure can be found in Appendix B.

A summary is given for each measure in the text.

ID Results

The ID results for the Direction Change Measure were not alto

gether successful, the first four profiles were all ranked correctly,

but the fifth to eighth elements were ranked as progressively less

rough, with the ninth and tenth elements again resuming the up

wards trend. The graph in figure 3.1 shows the unsatisfactory rank

ing of Barton's profiles by the direction change measure.
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Figure 3.2: Roughness ranking of gill flap samples by Direction Change Measure

2D Results

It must be noted that the third image is contaminated: whoever was

responsible for scanning the sample donated their finger or thumb

print to the lower left corner; it is clearly discernible!

Of course this sample contamination is the same throughout all the

roughness measures, it is interesting to notice how it affects the

various measures.

Results for the 2D images were considerably better. The ridges of

a finger-print make for excellent direction changes, so the roughness

measure for the third sample was (somewhat unsurprisingly) quite

high considering how relatively plain the image is!

Returning to the results, the first image is marginally more rough

than the second and fourth images (we have already mentioned the

third sample), but otherwise the images roughness values are re

turned in the correct order.

Note: the roughness rose diagrams are included along with the re

sults graphs, for all the roughness measures, in Appendix B.
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3.2 Height Increase Measure

At first glance the second spatial domain technique seems fairly

trivial but turns out to be quite robust in practice. The idea is

to compute the total height climbed on each uphill section as one

traverses the signal. The algorithm is as follows:

3.2.1 Algorithm

roughness = 0

for j = 2 to 2n do

if Sj > Sj-i then

roughness + = (sj — Sj_i)

end if

end for

return roughness

As this measure can be quite large a user-defined scaling factor is

used to scale the totals down. As long as the same scaling value is

used for all the samples in a series, scaling will not invalidate the

roughness ordering provided.

3.2.2 Results

ID Results

After the relative lack of success of the Direction Change Measure,

the Height Increase Measure generates excellent results. The mea

sure ranks the profiles in the correct order, all 10 profiles form a

steadily increasing curve of roughness values as can be seen in figure

3.3. As this is the simplest roughness measure it will be interesting

to see how the more sophisticated measures perform.
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Figure 3.3: Roughness ranking of Barton's profiles by Height Increase Measure
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Figure 3.4: Roughness ranking of gill flap samples by Height Increase Measure

2D Results

The Height Increase Measure has very similar 2D results to those

for the ID Direction Change Measure. The first sample is a little

rougher than the second or fourth samples (again omitting the third

contaminated sample), but otherwise the samples are all ranked in

the correct order.
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Figure 3.5: Second level Figure 3.6: Third level

3.3 Box-Counting Roughness Measure

Traditional roughness measuring literature uses fractal methods

to measure the roughness of profiles and surfaces. Here the box-

counting method of calculating a fractal dimension value for a pro

file or surface is used.

Superimpose a grid over the sample image. This grid will necessarily

consist of a mesh of boxes. The number of boxes in the mesh denotes

the mesh size s. For a specific mesh size s, the number of boxes that

are occupied (contain some of the sample) is denoted N(s). Now

calculate values of N(s) which correlate to different values of s. It

is customary to first calculate N(s) for a single box, which should

always yield s = 1 and N(s) = 1. The next iteration is for a

quartered image, e.g. figure 3.5, which has s = 4, and N(s) = 3.

Then quarter each quarter and re-calculate, e.g. figure 3.6, which

has s — 16 and N(s) = 9. This quartering process can be repeated

ad infinitum, or, more usually with computer calculated algorithms,

until s = N2, where N2 is the number of pixels in the sample image.

The values of log(iV(s)) vs log(s) are graphed, and then a best-fit

line calculated for the graph's points. The slope of this line is the

fractal dimension [13].

Notice that the fractal dimension for a ID profile can only lie be-
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tween 1.0 and 2.0, but having to try and find a best-fit line can

lead to a fractal dimension < 1.0. The algorithm for a signal

{sj}j:o,...2n-i is as follows:

3.3.1 Algorithm

for j = 0 to n do

p = 2j

for i = 0 to p do

for x = 0 to 2n/p do

if S(i*2™/p+z) > f™^ then

max = S(i*2»/p+x)

else if S(i*2"/p+z) < m^n then

mm = S(j*2»/p+a;)

end if

end for

end for

= boxes from vain to max

end for

return log(AT(s)) vs log(s) gradient

3.3.2 Results

ID Results

The results for Barton's profiles were very good although there were

a few profiles which appeared out of sequence. The results graph

3.7 indicates a generally increasing curve.
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Figure 3.7: Roughness ranking of Barton's profiles by box counting measure
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Figure 3.8: Roughness ranking of gill flap samples by box counting measure

2D Results

The gill flap samples also produced satisfying results for the box-

count measure, like the other spatial measures the second sample

had a slightly lower roughness value than the first, but the measure

seemed impervious to the thumb-print in the lower left corner of

the third sample, ranking the image correctly, and only the sixth

sample appeared out of sequence, being ranked slightly more rough

than the seventh sample.
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The Fourier Transform

Much of this material has been adapted from [9], [14] and [15].

4.1 Introduction to the Fourier Transform

The Fourier transform is one of several linear transforms used to

solve scientific and engineering spectral problems. Sometimes the

Fourier transform is used for computational purposes; for instance

to shift a computationally hard problem (in the spatial domain,

e.g. convolution or correlation) to the transform domain where it is

may be more easily solved; otherwise it can be the transform itself

that is of interest, for instance when examining a function's power

spectrum.

The Fourier transform has the effect of decomposing a function f(x)

into sinusoids of different frequencies, whose respective amplitudes

ensure the sinusoids sum to the original function.

A smooth surface will have low frequency components, whilst a

rougher surface will have high frequency components. The Fourier

transform is a frequency measure, and therefore it seems likely to

be an effective roughness measure.
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The Fourier transform for a function f(x) is defined by

oo

F(u)= I f{x)ei27ruxdx (4.1)

and the function can be recovered from its Fourier transform ac

cording to

oo

f(x)= I F(u)e-i27ruxdu (4.2)

provided the integrals exist and any discontinuities are finite. F(u)

and f(x) are different representations of the same function, and

equations (4.1) and (4.2) are a means of transforming the function

between two (different) functional domains. The Fourier transform

is often denoted by the transform operator 3\

To entrench the practical uses for the Fourier transform, consider

the domain variables x and u. If x was being used to measure time

in seconds, then the transform units u will be a measure of cycles

per second, i.e. Hertz. If x were a unit of distance, e.g. metres, then

the transform units u would be a measure of cycles per metre, i.e.

inverse wavelength. These relations are summarized in table 4.1.

spatial domain

length(metres)

time(seconds)

frequency domain

cycles per metre (inverse wavelength)

cycles per second (Hertz)

Table 4.1: Units of physical functions and their transform equivalents

What properties does the Fourier transform have? There are two

important considerations: the first note is that the exponential term

-g a short-hand notation for
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cos( 2irxu) + i sin( 2iyxu) (4.3)

The second consideration is that a function f(x) can always be bro

ken down into even and odd sub-functions as follows

f(x) = E(x)+O(x) (4.4)

with

i> (4.5)

Using this decomposition, the Fourier transform of f(x) becomes

oo oo

F(u) = 2 E(x) cos (2-kux) dx + 2i / O(x) sin (2-kux) dx (4.6)

Equation (4.6) reveals that if the function f(x) is real valued then

its transform F(u) will be complex valued in general but its real

part will be an even function while its imaginary part will be an

odd function. These two properties are summarized in table 4.2

spatial domain

real and even

real and odd

frequency domain

real and even

imaginary and odd

Table 4.2: Fourier Transform symmetry properties

A complete list of symmetry properties can be found in [15].
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The Fourier transform has numerous other properties beyond the

symmetry relations described so far.

4.1.1 Spatial Scaling Property

If a is a real, non-zero constant, then

oo

3{f(ax)} = I f{ax)ei27!UXdx
—oo

oo

1 f mei2^pdfi (4.7)

1^1 J
oo

a\ \a/

This spatial scaling property implies that if a function is compressed

in the spatial variable while its amplitude is kept unchanged (i.e.

f(x) -»■ f(ax),a > 1), then its Fourier transform will be ±F (^),

which is a dilated and scaled down version of the function's "normal"

transform F(u).

4.1.2 Frequency Scaling Property

If a is a real, non-zero constant, then

oo

—oo

oo

= F(au)
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which implies that if the period of the function F(u) is shortened to

F(au) (i.e. a > 1), the reverse transformed function will be -jrf (|),

i.e. wider and shorter.

The symmetrical nature of the Fourier transform guarantees that

the "scaling" of a function in either the spatial or transform domain

will lead to some scaling for the function in the opposite domain.

4.1.3 Spatial Translation Property

If x0 is a real constant then

oo

-/
A2-KUX

dx

oo

oo

(4.9)

oo

%2-kuBf f(/3)ei2nu0dj3
—00

= F(u)ei2nxou

This implies that the Fourier transform of a translated function is

the transform of the unshifted function, multiplied by some phase

factor.
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4.1.4 Frequency Translation Property

oo

?{f(x)e-l2vxuo} = I f{x)e-i2*XU0ei27TXUdx
—oo

00

= / f(x)ei27rx^u-u^dx

= F(u - u0)

which shows that if F(u) is frequency shifted, it's corresponding

inverse transform is no longer real valued.

4.1.5 Convolution

The convolution of two functions / and g, denoted / * g, is defined

by

oo

(f*g)(x) = J f(x~ r)g{r)dr (4.11)
—oo

Note that / * g is a function in the spatial domain, and that

(f * 9)(x) = (g * f)(x) (4.12)

Now applying definition (4.11), and assuming that h(x) = f(x) *
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—oo

oo oo

f(x - T)g(r)dr}

00

/ f(x~r)g(T)dr
o

f(x - T)g(r]

ei2nuxdx

—oo —oo

oo oo

= y y f(x~r)g{r)ei27ruxdxdT
—00 —OO

~T)el2vuxdx

—oo

dr

oo r oc

= y g(r)e^UT I
oo

oo

—oo

oo

dr

= F(u) G(u)

This result, known as the Convolution theorem, states that the

Fourier transform of a convolution is merely the product of the

dividual transforms, i.e.
in-

(4.13)
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This theorem is useful, since calculating the convolution of two func

tions is computationally expensive, but Fourier transforms can be

calculated cheaply.

4.1.6 Correlation

The correlation of two functions, denoted / <g> g, is denned as

oo

f f(r + x)g(r)dr (4.14)

and is often referred to as lag [15]. Note that correlation is a function

in the spatial domain and

(f ® g){x) = (g ® f)(-z) (4.15)

Assuming that h(x) = f(x) <g> g(x),
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r)g(r)dr}

/
—00

//(x +
—00

OO 00

—oo —oo

oo oo

r)9(r)dr el27TUXdx

g(r)e^xdrdx

xdxdr

oo

J 9{r)
—00

oo

/ 9(T)
—00

/ 9(T)e

—oo

oo

J
-oo

oo

/•

J

—oo

oo

—oo

+ r)ei27rua:(ia:

-

)a dp

00

/•

J
^-oo

oo

r J f(/3)ei2™
—oo

dr

3d/3

= F(u) G(u)

so the Fourier transform of f®g is the product of F and the compl

conjugate of G

ex

(4.16)

Equation (4.16) is known as the Correlation theorem, and is useful
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when looking for the presence of a reference signal in another signal.

If f(x) and g(x) are different functions, the transform of their cor

relation is referred to as a cross-correlation, otherwise it is known

as an autocorrelation and is denoted (and calculated) as

(4.17)

a result know as the Weiner-Khinchin Theorem [15].

4.1.7 Parseval's Theorem

Parseval's theorem is most useful: the power of a signal represented

by f(x) in the functional domain and F(u) in the transform domain

is the same in both domains

OO OC

f \F(u)\2du= t F{u)F{u)du

OO

/

F{u)ei2nuxdu

F(u) du

f(x)dx (4.18)

ix

—OO

OO

= /!/(x)\2dx

so
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Total Power = f \f(x)\2dx = f \F(u)\2du (4.19)

4.1.8 Power Spectrum Definition

Using Parseval's theorem, the two-sided power spectral density

(PSD) of the function / can be defined as

u)\2 (4.20)

If the function / is real, the PSD simplifies to

Pf(u) = 2\F(u)\2 (4.21)

This is another example of a two-sided PSD; most literature will

not make reference to the factor of two in equation (4.21), i.e. inter

change one and two-sided PSD's.

Often the power between frequencies u and du is required, then it is

customary not to consider negative frequencies of u, but rather to

use only 0 < u < oo, which is a "proper" one-sided PSD [15].

Taking a finite section of the function f(x), computing its PSD, and

then dividing by the length of the interval gives the power spectral

density per unit length. Then Parseval's theorem states that the

integral of the one-sided PSD per unit length over positive frequency

is equal to the mean square amplitude of the signal f(x).
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4.2 Discrete Fourier Transform

It is a natural progression to want to use the Fourier transform com

putationally. It would be ideal to use arrays of evenly spaced sample

points of the function f(x) as the input to the Fourier transform al

gorithm. There is nothing sinister about this suggestion, and yet

the impact that the use of sampled points will have on the Fourier

transform is substantial.

4.2.1 Sampling Theorem

Assume the function f(x) has been sampled at evenly spaced points

in space. Let the specific interval between each sample be denoted

by A. Then the sample points of f(x) are

/„ = /(nA) n = ..., -2, -1, 0, 1, 2, ... (4.22)

and the reciprocal of the interval A is the sampling rate. Related to

A is the Nyquist critical frequency fc, defined by

2A

Nyquist's critical frequency will have both good (the sampling the

orem) and bad (aliasing) ramifications.

A function f(x) is bandwidth limited if it has no spectral components

beyond some frequency j3, i.e.

F{u) = 0 for \u\ > 2n/3 (4.24)
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The sampling theorem (4.25) is a remarkable result. If a continuous

function f(x) is sampled at an interval A and is bandwidth limited

to frequencies smaller than fc, i.e. F(u) = 0 for all \u\ > fc, then

the function f{x) is completely determined by its samples /„. In

fact f(x) is given explicitly by the formula

oo

= A ^ m.^Mx "";l (4.25)
^—' 7f(x — nA)
n=—oo x '

This result shows that the amount of information carried in a band

width limited signal (any low-pass filtered signal) can be described

by sampling at a rate A"1 equal to twice the maximum frequency

carried by the signal.

4.2.2 Aliasing

The problem with the sampling theorem is that it assumes the sam

pled function is bandwidth limited, and this may not be true. Gen

erally speaking, a real-world signal is far more likely to have finite

spatial support than be band limited. What happens when the func

tion is not band limited? The answer is quite simple: all the power

(PSD) that falls outside the interval (-/c, fc) is moved into that

range. This occurrence is known as aliasing, and once it has hap

pened, there is very little than can be done to remove the aliased

power.

How can aliasing be avoided? There are two steps to follow: i) either

be aware of the natural bandwidth of the signal being sampled or

enforce a bandwidth limit by means of a low-pass signal filter; and

ii) ensure the signal is sampled at a rate which ensures at least two

points per cycle of the highest frequency bandwidth occurring.

What if a scientist is given a set of points, and is unsure of whether

a natural bandwidth has been observed (or some form of filtering
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applied), when trying to decide if a signal has been "appropriately"

sampled? The answer is logical: when looking at the Fourier trans

forms of the points, the function should be approaching 0 as the

frequency approaches — fc (from above) and fc (from below). If the

transform is not approaching zero, then there has been a "fold-back"

of components outside the range.

4.2.3 Discrete Fourier Transform Derivation

Assuming JV consecutive (evenly spaced) sample points, define

fk = f{xk) xk = kA k = 0,l,2,...,N-l (4.26)

For simplicity, assume N even. Assume either that f(x) is only non

zero for the select set of points, or that the selection is "typical" of

the function. Using the N values, it will be possible to produce

values of the Fourier transform only at N points, specifically at

n N N ,

n = -T'-'T (427)

which is N+l points! Importantly, because of the periodic nature of

aliasing, the two end-values are actually the same value and corre

spond to the upper and lower limits of the Nyquist critical frequency

range, reducing the point count down to N again.

Using this new terminology the derivation is as follows
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CO

F(un)= J
—oo

N-l

(4.28)

k=0

N-l

A;=0

The final summation is referred to as the discrete Fourier transform

(DFT) of the N points xk, denoted Fn

N-l

fe=0

The discrete Fourier transform maps the TV numbers (/fc's) into the

transform domain (the -Fn's). Notice it is independent of A. Rewrit

ing the relation between the Fourier transform of the function and

the individual point's transforms

F(un) « AFn (4.30)

The index n runs from —y to y. Because Fn is periodic, with

period JV, this means F_n is equivalent to FN_n, with n = 1, 2,...

This leads to n in N varying from 0 to TV — 1. This shifting of indices

comes at a price, it is up to the reader to remember that 0 frequency

corresponds to n — 0, and the positive frequencies 0 < u < fc

correspond to 1 < n < N/2 — 1, and that the negative frequencies

-fc < u < 0 correspond to N/2 + 1 < n < N - 1. n = N/2

corresponds to both u = fc and u = —fc.

Both the symmetry properties in table 4.2 are true for the discrete
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form of the Fourier transform. The formula for the inverse Fourier

transform which recovers the /fc's from the Fn's is

n=0

This formula is very similar to the forward transform, the only dif

ference being dividing the summation by N and the negative sign

in the exponential. This means an algorithm to calculate Fourier

transforms can easily be modified to calculate inverse transforms.

4.2.4 Discrete Fourier Transform Theorems

These theorems are stated without proofs, mainly as they are anal

ogous to the continuous proofs (by replacing integrals with summa

tions) .

Convolution

A response function is a peaked function which tapers from its spike

to 0 in both directions. Then the following is a definition of discrete

convolution with a response function / of finite duration M [15].

M/2

if*9)i= J2 9j-kfk (4.32)
k=-M/2+l

If the signal fj is periodic with period N, it is completely determined

by the TV values /0,..., /jv-i, and the discrete convolution of two

real functions / and g transforms according to



4.2 Discrete Fourier Transform

(4.33)

Correlation

Assuming functions / and g are periodic with period N then the

discrete correlation of the two functions is

N-l

(/®s)iE=E/*+*** (4-34)

The discrete correlation theorem shows this discrete correlation of

two real functions / and g transforms according to

f®g<=^FG (4.35)

[15].

Parseval's Theorem

N-l 1 JV-1

[15].

4.2.5 Power Spectrum Definition

The power of the discrete Fourier transform will be crucial to rough

ness calculations. The N real input points will be transformed into

N complex valued output points. Then if {Fj} = DFT[{/^}] repre-

n=0
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sents the Fourier transform of the sample points, the discrete Power

Spectrum Density is defined as

IPj ee I y/MFi)2 + MFi)2 (4-37)

4.3 Fast Fourier Transform

The discrete Fourier transform described thus far, whilst workable,

is not ideal. To calculate the complexity of the process, consider the

Fourier Transform

^ (4.38)

which can be rewritten as

JV-1

Fn = ^2 wnk /* (4-39)
k=Q

where

W = ei2w/N (4.40)

This means that calculating the complete set of discrete Fourier

transformed points amounts to multiplying the set of sample point

/it's (a vector) by a matrix whose (n,k)th element is the constant

W to the power nk. Multiplying a vector of length N by an iV x JV

matrix is an operation of order iV2. Amazingly, the discrete Fourier

transform of a set of points can be calculated in a process of order
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iVlog2 N. Although there are several similar methods, the first Fast

Fourier Transform algorithm to become well-known was by J.W.

Cooley and J.W. Tukey in 1965.

One of the "discoveries" of a Fast Fourier Transform (FFT) was

by Danielson and Lanczos in 1942 [4], and their algorithm is given

here. Their first breakthrough was that a discrete Fourier transform

of length N can be rewritten as the sum of two discrete Fourier

transforms, each of length N/2. The two sub-transforms are gener

ated from the even and odd-indexed points of the original JV-length

vector as follows

JV-1

Fk = J2 wjk n

N/2-l JV/2-1

wmi)kh^
(4-41)

N/2-1

j=0

= Fk + WkF^

.7=0

JV/2-1

where Wk is as defined before. F^ denotes the fcth component of the

Fourier transform of length N/2 formed from the even components

of the original /7's, while F% corresponds to the odd components.

The k in Fk = F£ + WkF£ varies from 0 to N - 1, however the

transforms Fj; and F% are periodic in k, and have length N/2.

This algorithm can be used recursively. Now that Fk = Fg

the same algorithm can be used to find the values of F%, and F%, as

follows

k k k ,AA2.

Fl = F°ke + WkFk00



4.3 Fast Fourier Transform _

so now Ft- is

Fk = F™ + WkF? + Wk [Ffeoe + WkF£°] (4.43)

Notice the Ffeee,Ffceo,Ffcoe,Ffc00 transforms will only have JV/4 data

points. Using this method, it is obvious that choosing N = 2q

where q e % will be optimal. In fact it is easier to zero-pad a vector

of points up to the nearest power of two than to try and calcu

late the Fourier transform otherwise. Fairly quickly this method of

sub-dividing will reach a stage where the number of e's and o's in

the F^oeoo..,oeo SUperscript is log2 N, and the vector will have been

divided into sub-transforms of a single point. Now all that needs

to be done is a copying of an input point /„ (for some v) into the

output point. The question is, which point is needed? Reverse the

superscripts e's and o's, and then let e = 0 and o = 1. The binary

value these bit reversed superscripts yield is that specific v. This

is true because the successive subdivisions of the vector points into

even and odd sets are tests of successive least-significant bits of v.

The algorithm described is illustrated in the "butterfly" figure (4.1),

which shows the process for an 8-point signal. The first three

columns show the bit-reversal technique for the original points, the

remainder of the diagram shows the algorithm for calculating the

Fast Fourier Transformed points (the right hand side of the dia

gram) .

This bit-reversal technique can be used to simplify the FFT algo

rithm: rearrange all the inputs points into bit-reversed order before

beginning to calculate the FFT; so the points are now in the or

der given by bit-reversing their vector (array) indices. Now the

Danielson-Lanczos method of dividing up the data into even and

odd transforms becomes almost trivial: the data vector is now a set

of one point transforms, and adjacent pairs are combined to form

transform pairs, then combine the pairs to get 4-point transforms,
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'1 '2

f, I

Figure 4.1: 8-point signal FFT calculation

until eventually the first and second halves (the original even and

odd halves) are combined to give the final transform. Each column

takes N operations, and there are log2 N columns, so the entire set

of transform points can be calculated in N log2 N as claimed.

A Java implementation of the FFT is presented in Appendix C.



Chapter 5

Fourier Roughness Measure

5.1 Fourier Transform Roughness Measure

Here the idea is to use the Fourier spectrum of the signal as input

to a roughness algorithm. A standard Discrete Fourier Transform

(DFT) algorithm (from [15]) is used to compute 2" Fourier power co

efficients. These are arranged so that the low frequency coefficients

appear at the extremities of the transformed signal while the high

frequency coefficients appear at the centre. Now since the input sig

nal is real, the Fourier coefficients will be symmetric about the centre

and only half of them are required for the roughness calculations.

To compute roughness each power coefficient is weighted according

to the frequency it represents, i.e. assume that large high frequency

coefficients occur in rough signals while large low frequency coeffi

cients occur in smooth signals. The algorithm is then as follows:

5.1.1 Algorithm

{$} = FFT[{sk}]

roughness = 0

for j = 1 to 2*"1 do

roughness + = y/Mt(Sj)2 + 3m{Sj)2 * (j - 1)
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Figure 5.1: Roughness ranking of Barton's profiles by DFT Measure

end for

return roughness

Note that the coefficient SQ represents the average value of the sig

nal, therefore it has a weight of zero. Again this algorithm will pro

duce very large output and a scaling factor must be implemented to

ensure that the output lies in the range [0, 2n~l — 1].

5.1.2 Results

ID Results

The DFT measure did not enjoy a high degree of success with the

ID geology profiles. The results were somewhat mixed, with no

trend being obvious across the samples (see figure 5.1). This can

be attributed to the DFT measure being dependent on continuous

basis functions, which are more susceptible to sampling artifacts and

non-smooth input data.
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Figure 5.2: Roughness ranking of gill flap samples by DFT Measure

2D Results

By comparison the DFT measure is excellent at ranking the 2D

biological samples, ordering the images in the correct order, with the

notable exception of the third sample, which is disproportionately

rough compared with its neighbours because of the errant thumb-

print, which serves to prove the sensitivity of the DFT measure to

any form of sampling artifact.



Chapter 6

The Wavelet Transform

This chapter closely resembles the expositions in [5], [6], [8], [12],

[17], [19] and [20].

The Fourier transform gives an entirely frequency based representa

tion of a signal. The wavelet transform differs from this by giving

a representation that is partly spatially based and partly frequency

based. A wavelet transform gives the "localized" frequency compo

nents of a signal. Wavelet transforms have been successfully em

ployed in problems such as speech recognition [7]. Here they will be

employed to measure the local roughness of a signal.

Given a spatial signal of length 2" the Discrete Wavelet Transform

(DWT) algorithm (from [15]) generates 2" real wavelet coefficients

that can be arranged in the space/frequency domain as shown in
figure 6.1.
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Time

Figure 6.1: The time/frequency relationship.

6.1 Introduction

A single mother wavelet ip(x) is used to generate a wavelet set. The

various mother wavelets can have different properties, but all mother

wavelets must oscillate and decay, this is expressed by specifying

that the mother wavelets integrate to 0

oo

/ ip(x) dx = 0 (6.1)

Some wavelets decay to zero outside a finite interval, this compact

support leads to good representation of signals which themselves

have compact support or sharp spikes.

6.2 Continuous Wavelet Transform

Sets of wavelets are comprised of dilations and translations of their

mother wavelet. For the continuous wavelet transform (CWT) any

amount of dilation or translation can be applied. The wavelet with

dilation s and translation r is defined as
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ips,r(x) = —=ip(sx - t) for s,r£K (6.2)

which is the mother wavelet dilated by a factor of s and translated to

t/s. For practical purposes, a restricted set of wavelets is generally

used, with s = 2j and r = k where j, k E Z.

6.3 Orthonormality

For carefully chosen mother wavelets the collection {ipj,k(x)} Vj, k €

Z comprises an orthonormal basis for various function spaces. Or

thonormality can be expressed mathematically as

1 if j = m and k — n
(6.3)

0 otherwise

and means the wavelet set can be used to represent functions. A

function f(x) can be written as

oo oo

Z-/ Z_/ Pj>k*rj,k\x) (.6.4)
j=—oo &=—oo

The orthonormality property means that the coefficients pjJe can be
found using

oo

Pj,k = / f(x)ipjikdx (6.5)

The coefficients p3- k required to weight the wavelet basis functions

iJj,k{x) to generate f(x) are referred to as the Wavelet transform of
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the function f(x).

6.4 Haar Wavelet

The simplest wavelet is the Haar wavelet. The Haar mother wavelet

is defined as

ip(x) =

1 for a; G [0,1/2)

-1 for a; G[ 1/2,1) (6.6)

0 elsewhere

Consider the interval [ 0,1). At scale j = 0, there is only the mother

wavelet function ip on the interval; when j = 1, there are two

wavelets: ^1)0 and ^M. If j = 2, there are four wavelets: ^2,0,

■02,1, "02,2 and ip2,3] at j = 3 there are eight wavelets ....

For the case of functions that exist outside the interval [0,1)? join

unit intervals together and use translations of the ^'s.

6.4.1 Haar Smoothing Function

At this point there is a stumbling block. Returning to the interval

[0,1), consider any constant function y = a. The collection of Haar

wavelets is unable to represent it. The solution to the problem is to

introduce a smoothing function <f>(x). For the Haar transform the

smoothing function is defined to be a constant

l for xe [0,1)

(6.7)
0 elsewhere

Including translations of the smoothing function in the set of basis

elements the representation for a function f(x) becomes
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Pj,k^j,k(x) (6-8)
fc=-oo j—1 k=—oo

which makes use of both the smoothing function and the wavelet

function (often referred to as the scaling and detail functions). In

teger translations k of the scaling function (j> provide an averaged

description of the function, whilst the wavelet functions ip provide

detailed features at different scales j. Breaking down functions into

specific packets of information as described is the basis for multi-

resolution analysis.

6.5 The Dilation Equation

Note that the Haar smoothing function <f>(x) is a solution to the

dilation equation

Co 4>{2x) + Ci (f>(2x — 1)

Tck^x-k) (6-9)
fc=0

that satisfies

co + ci = 2 and c0 = cx (6.10)

and that the Haar wavelet function ij>(x) can be generated from the

Haar smoothing function according to
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- 1) - c0

A:=0

The conditions (6.10) allow the Haar basis to be generated from solu

tions to the dilation equation. Daubechies noted that this concept

can be generalized to produce smoother orthogonal wavelet bases

(in [5]). The coefficients ck, k = 0, 1,2, ... will, from now on, be

referred to as the "basis elements".

6.5.1 Approximation

The basic properties of wavelet approximation are given here, for a

more detailed description see [19]. An integer p must characterize

the functions 4> and ip in the following manner:

1. The polynomials l,x,.. .,xp~l are combinations of 4> and its

translates.

2. Smooth functions f(x) can be approximated with error O(hP)

by combinations of <f) at each scale h = 2~j.

3. The first p moments of the wavelet tp are 0

)(x)dx = 0 form = 0, l,...p-l (6.12)

6.5.2 Haar Basis Conditions

J

Strang shows (in [19]) that to satisfy the approximation conditions

the two Haar basis elements must satisfy

(6-13)
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and he also shows that orthonormality requires that the basis ele

ments satisfy

6.6 Daubechies Wavelet Construction

One way to generate both the Haar and Daubechies' wavelet sets is

to use recursion.

Iterate the recursive relation

(6.15)

starting with the box function as <f>0(x). Note to = 1 for Haar

and to = 3 for Daubechies. Using basis elements of [ 1,1], [i, 1, i],

[ 4> f» !' j] §ives first tne box function, then the hat, then a B-spline.

However, apart from the Haar basis elements [1, 1], these sets do

not satisfy orthogonality conditions.

Daubechies wanted smoother orthogonal wavelets with better ap

proximation properties than the Haar wavelet. To this end she de

rived (in [5]) an additional approximation condition

-ci + 2c2 - 3c3 = 0 (6.16)

and an additional orthonormality condition



6.7 Wavelet Algorithm 48

O (6.17)

which together with equations (6.13) and (6.14) gave her 4 basis

elements [1±^, *±&, 2^3, I^I], Both (6.17) and (6.16) can be

generalized, as Strang has shown in [19].

Iterations of the recursive relation (6.15) with these 4 cfc's give

Daubechies' 4 coefficient wavelet, which is denoted DA. Daubechies'

additional conditions for the coefficients ck were constructed care

fully, so that the wavelet bases they generate range from highly

localized basis sets like DA (few coefficients), to highly smooth ba

sis sets (there is no limit to the number of coefficients that can be

constructed with Daubechies' conditions) which have many more

elements. It is the wavelet user's responsibility to choose an appro

priate basis for the problem at hand.

6.7 Wavelet Algorithm

Much of this section follows that in [17].

Assume the function f(x) has been sampled at evenly spaced points

in space. Denote this sampled sequence byx = (^).

The wavelet decomposition is derived from sub-band filtering using

two niters: (hk) which is the smoothing or scaling (low-pass) filter,

and the detail or wavelet {high-pass) filter (gk). These filters have

the following property

The hk values equal the ck basis elements for 0 < k < m, and are 0
elsewhere.
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The wavelet filter (g^) is often referred to as the mirror filter, and it

is given by taking the elements of the scaling filter (hk) in backwards

order, with every other element negated.

The filtering of x is given by

(6.19)

i.e. y = ifx and z = Gx. where in Daubechies case the matrix H is

{h0 h

\h2 h

1 h2

h0

3

h3

h2 h

hQ hi h2

ho

h3

hi)

and the corresponding G is

go g\ g2 g?,

go gi g2

\92 93

9o 9\ 92 g

9o 9\J

(6.20)

(6.21)

Notice the matrix multiplication down-samples and produces se

quences half their original length. Reconstruction involves reversing

the filtering function, using transposed matrices, i.e. x = HTy+GTz

(hi~i~2k y* + 9i-2k (6.22)
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Figure 6.2: Wavelet decomposition of a signal x

6.7.1 Decomposition

Assume x has length 2". A pyramid algorithm is used to find the

decomposition. The process takes n steps, with each step halving

the size of the sequence, as is shown in figure (6.2). The wavelet

coefficients of the data are made up of the detail sequences zn/2, zn/A,

..., z2, zi, as well as the final smoothing sequence y1. It is customary

to stop the pyramid algorithm when zk and yk are reached (where

k is the number of coefficients g and h), as any further calculations

are unnecessary; which means only (n - log2 k) pyramid steps are

required.

Reconstruction involves the pyramid process being reversed, with

sequences z\ and yl used at the beginning, and with transposed

matrices HT and GT used for all the matrix multiplications until

the original sequence x is reconstructed.

A Java implementation of the discrete wavelet transform (DWT) is

presented in Appendix D.



Chapter 7

Wavelet Roughness

Measures

7.1 Haar and Daubechies' 4 Coefficient Mea

sures

These measures are similar to the DFT measure where low frequency

coefficients are associated with smooth functions whilst the high

frequency coefficients are associated with rough functions. Thus in

the wavelet-based calculations, the frequency level of the wavelet

coefficient is used as a weight. The squaring of the weights ensures

that the total roughness stays within the [0, 2"-1 -1] range for any
signal.

Wavelets come in all manner of shapes and sizes. Two wavelet

based roughness measures have been implemented. The fast wavelet

code from Numerical Recipes [15] was used to compute two wavelet

decompositions. One based the roughness measure on the simplest

of all wavelets, the Haar wavelet, and the other was based on the

famous Daubechies' D4 wavelet. The roughness algorithm is as
follows:
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Figure 7.1: Roughness ranking of Barton profiles by Haar Transform Measure

7.1.1 Algorithm

{Sj} = FWT[H}]

roughness = 0

for j = 1 to 2" do

roughness + = 61,- * -,—~—^

end for

return roughness

7.1.2 Results

The results for the two measures will be split into Haar and

Daubechies' 4 coefficient sections.

Haar ID Results

The ID samples, the downfall of the DWT measure amongst others,

held few problems for the Haar ID transform measure. The profiles

were ranked almost perfectly, with only the sixth and eight profil

being ranked out of sequence.
es
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Figure 7.2: Roughness ranking of gill flap samples by Haar Transform Measure

Haar 2D Results

The results for the biology samples where somewhat relieving! The

first sample was ranked as being slightly more rough than the sec

ond (a fault common through most of the measures), but the third

sample, the corrupt sample with the thumb-print in the lower-left

corner, did not produce as inaccurate a result as it did with, for in

stance, the DFT (where the third sample was ranked rougher than

both the fourth and fifth samples). The remainder of the biology

samples were ranked in the correct order.

With only the Daubechies' 4 coefficient measure left to be consid

ered, the Haar transform is the strongest all-round performer across

the samples and profiles, and seems less prone to sampling artifact
problems.

Daubechies' 4 Coefficient ID Results

The Daubechies' 4 coefficient measure eclipses (marginally) the Haar

transform measure when ranking the geology profiles, only having

one profile, the fifth profile, out of sequence. Otherwise all the
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Figure 7.3: Roughness ranking of Barton's profiles by Daubechies Transform
Measure

profiles are in the correct order, and their graph (refer to figure 7.3)

is almost a straight-line graph.

Daubechies' 4 Coefficient 2D Results

The Daubechies' 4 coefficient measure is a slightly better performer

than the Haar transform with the biology 2D samples, it also ranks

the second sample as less rough than the first, but the difference

between the two samples is slightly less, also the third sample (with

the sampling artifacts) is even closer in roughness to the rest of the

sequence than with the Haar transform. The rest of the samples are

ranked correctly.

The two wavelet transform measures, being both spatial and fre

quency measures, are more sophisticated measurement techniques.

Whilst neither can claim to have the best results for either the ID or

2D results, they both have excellent results when considered across

both the profile and sample sets. Included in this is their lesser

susceptibility to sampling artifacts. Future work, including true 2D

measurement techniques, should be based on wavelet transforms.
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Figure 7.4: Roughness ranking of gill flap samples by Daubechies Transform
Measure



Chapter 8

Where And How

The algorithms described in this thesis were written as plug-

ins for the image processing shell ImageJ which is developed

and maintained by Wayne Rasband of the Research Services

Branch of the National Institute of Mental Health located in

Bethesda, Maryland. ImageJ is available for free download from

http://rsb.info.nih.gov/ij/. Also downloadable from the same site

and useful for anybody considering developing further plugins for

ImageJ is a (fairly sparse) helpfile which documents all the ImageJ

classes and their relative positions in the ImageJ class hierarchy.

ImageJ ships with detailed setup instructions, which should lead to

a successful installation.

After installation of ImageJ, the interested reader can try out

the roughness plugins for ImageJ by copying the Java source and

class files for the plugins, as well as the sample signals, from

the disk included with this thesis, or by downloading them from

http://gannet.cs.und.ac.za/ . Make sure the paths to the Java

and ImageJ root folders are included in the environment variable
CLASSPATH before running ImageJ.



Chapter 9

Conclusion

The abilities of the measures to order correctly the ID profiles and

2D images were mixed. No one measure correctly ranks both sets of

samples. All five measures are reasonably successful when it comes

to measuring the 2D biological sample images: all ranked the third

sample as being far more rough than it should be, with the DFT

and Direction Change measures being particularly susceptible to

the sampling artifacts. When looking at the results for the ID

profiles, the Direction Change and FFT measures are both fairly

poor performers, with the almost trivial Height Increment Measure

ranking the samples correctly, and the two Wavelet transforms also

being close to correct.

The FFT will always be over-sensitive to sampling artifacts as its

basis functions are continuous. The Height Increment Measure (re

ferred to a by a geologist as the "drag your finger along the surface"

technique) had an unfair advantage as Barton's roughness profiles

were probably designed with this measure in mind, thus it would

appear the wavelet measures are the most accurate measure.

Future work in this field should be centred around developing a

series of true 2D wavelet measures for 2D images, and comparing the

resulting roughness coefficients with those generated by 2D fractal

dimension measures.



Appendix A

Sample Images
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Figure A.I: Barton's Roughness Measure profiles
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Figure A.2: Gill flap first sample Figure A.3: Gill flap second sample

Figure A.4: Gill flap third sample Figure A.5: Gill flap fourth sample
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Figure A.6: Gill flap fifth sample Figure A.7: Gill flap sixth sample

Figure A.8: Gill flap seventh sam
ple



Appendix B

Sample Image Results

Examination of these results could make for unexpected reading, the

resultant images would suggest different pixel areas to those reflected

here. The reason is simple, these results have been "normalized" to

aid comparison between the various measures, such as comparisons

can be made.

B.I Barton's Samples' Results
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Figure B.8: Box Counting Mea

sure: First sample

Figure B.10: Box Counting Mea

sure: Third sample

Figure B.12: Box Counting Mea

sure: Fifth sample
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Figure B.ll: Box Counting Mea
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Figure B.13: Box Counting Mea
sure: Sixth sample
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Figure B.14: Box Counting Mea

sure: Seventh sample
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Figure B.15: Roughness ranking of gill flap samples by Direction Change Mea
sure
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Figure B.16: Direction Change Mea- Figure B.17: Direction Change Mea
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Figure B.20: Direction Change Mea- Figure B.21: Direction Change Mea
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Figure B.22: Direction Change Mea
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Figure B.23: Roughness ranking of gill flap samples by Height Increase Measure
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Figure B.30: Height Increase Mea

sure: Seventh sample
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Figure B.31: Roughness ranking of gill flap samples by DFT Measure
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Figure B.32: DFT: First sample Figure B.33: DFT: Second sample

Figure B.34: DFT: Third sample Figure B.35: DFT: Fourth sample

Figure B.36: DFT: Fifth sample Figure B.37: DFT: Sixth sample
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Figure B.38: DFT: Seventh sample
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Figure B.40: Haar Wavelet Trans
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Figure B.46: Haar Wavelet Trans
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Figure B.47: Roughness ranking of gill flap samples by Daubechies Transform
Measure
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Figure B.48: Daubechies' 4 Coeffi
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Appendix C

Fast Fourier Transform

Algorithm

This material is taken almost verbatim from [15], the only changes

being those required by the translation from C to Java.

The following is the structure of an FFT algorithm. It has two

sections, the first section sorts the data into bit-reversed order; it

takes no additional storage, since it involves only swapping pairs of

elements (if kx is the bit-reverse of k2, then k2 is the bit-reverse of

kx). The second section has an outer loop that is executed log2iV

times and calculates, in turn, transforms of length 2,4, 8,..., iV. For

each state of this process, two nested inner loops range over the sub-

transforms already computed and the elements of each transform,

implementing the Danielson-Lanczos Lemma [4]. The operation is

made more efficient by restricting external calls for trigonometric

sines and cosines to the outer loop, where they are made only log2 TV

times. Computation of the sines and cosines of multiple angles is

through simple recurrence relations in the inner loops.

The FFT routine given below is based on one originally written by

N.M. Brenner [16]. The input quantities are the number of com

plex data points (nn), the data array (data[l. .2*nn]), and isign,

which should be set to either ±1 and is the sign of i in the expo-
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nential

When isign is set to -1, the routine then calculates the inverse

transform

.. N-l

^k ~ TV 2s n e " (C2)
n=0

except that it does not multiply by the normalizing factor 1/N,

which must be done by the user.

Notice that the number nn is the number of complex data points.

The actual length of the array (data[l..2*nn]) is 2*nn, with each

complex value occupying two consecutive positions. In other words,

data[l] is the real part of f0, data[2] is the imaginary part of

/o, and so on up to data[2*nn-l], which is the real part of fN_lt

and data[2*nn], which is the imaginary part of fN_lm The FFT

routine gives back the Fn's packed in exactly the same fashion, as
nn complex numbers.

The real and imaginary parts of the zero frequency component Fo

are in data[l] and data [2], the smallest nonzero positive frequency

has real and imaginary parts in data[3] and data [4], the small

est (in magnitude) nonzero negative frequency has real and imag

inary parts in data[2*nn-l] and data[2*nn]. Positive frequen

cies increasing in magnitude are stored in the real-imaginary pairs

data[3], data[4], Up to data[nn-l], data Dm]. Negative

frequencies of increasing magnitude are stored in data[2*nn-3],

data[2*nn-2] down to dataDm+3], dataDm+4]. Finally the pair

data[nn+l] and data[nn+2] contain the real and imaginary parts
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of the one aliased point that contains the most positive and the most

negative frequency. This storage arrangement of complex spectra is

the practical standard [15].

/* The code for this function was translated directly from

the C/C++ code given in Numerical Recipes in C, Chapter 12:

The Fast Fourier Transform. There have been changes made

with respect to storage and memory references, and variable

names and types.

The first half of the algorithm deals with the bit-reversal

of the array, and the second implements the Danielson-

Lanczos algorithm.

*/

void fourl( float data[], int nn, int isign )

int n, mmax, m, istep, i, j;

double wtemp, wr, wpr, wpi, wi, theta;

float tr, ti, mytemp;

n = nn << 1;

j = 1;

for (i=l; i<n; i+=2)

if ( j > i )

mytemp = data[ j ] ;

data[ j ] = data[ i ];

data[ i ] = mytemp;

mytemp = data[ j + 1 ];

data[ j + 1 ] = data[ i + 1];

data[ i + 1 ] = mytemp;

m = n >> 1;

while ((m>=2)&&(j>m))

j "= m;

m »= 1;
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Figure D.I: 8-point signal DWT calculation

trated for an 8-point transform in figure D.I. The output of the

DWT consists of these remaining components and all the "detail"

components that were accumulated along the way.

If the length of the data vector were a higher power of 2, there would

be more stages of applying (D.I) and permuting. The endpoint will

always be a vector of two smooth elements S and a hierarchy of detail

elements d, D etc. Notice that once detail elements are generated,

they simply propagate through to all subsequent stages.

A value di of any level is termed a "wavelet coefficient" of the original

data vector, the Si, S2 values should strictly be called the "mother-

function" coefficients although the term "wavelet coefficients" is of

ten used loosely for both d's and the final S"s. Since the full pro

cedure is a composition of orthogonal linear operations, the whole

DWT is itself an orthogonal linear operator.

To invert the DWT, one simply reverses the procedure, starting with
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the smallest level of the hierarchy and working (in ) from right to

left. The inverse matrix

Co

Cl

c2

c3

C3

-c2

Cl

-Co

Co

Cl

C3

-c2

C2 Ci

C3 -Co

(D.2)

C2 Ci Co C3

c3 -c0 C\ —c\)

is used instead of (D.I).

The matrices (D.I) and (D.2) embody periodic ("wrap-around")

boundary conditions on the data vector. One normally accepts this

as a minor inconvenience: the last few wavelet coefficients at each

level of the hierarchy are affected by data from both ends of the

data vector. By circularly shifting the matrix (D.I) JV/2 columns

to the left, one can symmetrize the wrap-around but this does not

eliminate it. It is in fact possible to eliminate the wrap-around

completely by altering the coefficients in the first and last N rows

of (D.I) giving an orthogonal matrix that is purely band-diagonal.

This variant, beyond our scope here, is useful when, e.g. the data

varies by many orders of magnitude from one end of the data vector

to the other.

Here is a routine, wtl, that performs the Daubechies pyramidal al

gorithm (or its inverse if isign is negative) on some data vector

a[l. .n]. Successive applications of the wavelet filter, and accom

panying permutations, are done by the routine daub4.

/* The code for these two functions was translated directly

from the C/C++ code given in Numerical Recipes in C,

Chapter 13: Wavelet Transforms.

*/
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private void wtl( float[] a, int n, int isign )

{

int nn;

if ( n < 4 ) return;

if ( isign >= 0 )

for ( nn = n; nn >= 4; nn »= 1 )

daub2( a, nn, isign );

else

for ( nn = 4; nn <= n; nn «= 1 )

daub2( a, nn, isign );

>

private void daub4( float[] a, int n, int isign )

{

double CO = 0.4829629131445341,

Cl = 0.8365163037378079,

C2 = 0.2241438680420134,

C3 = -0.1294095225512604;

float[] wksp = new float[n+1];

int nh, nhl, i, j;

if ( n < 4 ) return;

nhl = ( nh = n » 1 ) + 1;

if ( isign >= 0 )

{

for ( i = 1, j = 1; j <= n - 3; j += 2, i++ )

{

wksp[ i ] = ( float ) ( CO * a[j] + Cl * a[j+l]

+ C2 * a[j+2] + C3 * a[j+3] );

wksp[ i + nh ] = ( float ) ( C3 * a[j] - C2 * a[j + l]

+ Cl * a[j+2] - CO * a[j+3] );

}

wksp[i] = ( float )( CO * a[n-l] + Cl * a[n]

+ C2 * a[l] + C3 * a[2] );

wksp[i+nh] = ( float )( C3 * a[n-l] - C2 * a[n]

+ Cl * a[l] - CO * a[2] );

}

else
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wksp[l] = ( float )( C2 * a[nh] + Cl * a[n]

+ CO * a[l] + C3 * a[nhl] );

wksp[2] = ( float )( C3 * a[nh] - CO * a[n]

+ Cl * a[l] - C2 * a[nhl] );

for ( i = 1, j = 3; i < nh;

wksp[j++] = ( float )( C2 * a[i] + Cl * a[i+nh]

+ CO * a[i+l] + C3 * a[i+nhl] );

wksp[j++] = ( float )( C3 * a[i] - CO * a[i+nh]

+ Cl * a[i+l] - C2 * a[i+nhl] );

for ( i = 1; i <= n;

a[i] = wksp[ i ] ;
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