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Abstract

In this dissertation we consider the two dimensional flow of an incompressible and

electrically conducting second grade fluid past a vertical porous plate with constant

suction. The flow is permeated by a uniform transverse magnetic field. The aim of

this study is to use the multi-parameter perturbation technique to study the effects of

Eckert numbers on the flow of a pulsatile second grade fluid along a vertical plate. We

further aim to investigate the effects of other fluid and physical parameters such as

the Prandtl numbers, Hartmann numbers, viscoelastic parameter, angular frequency

and suction velocity on boundary layer velocity, temperature, skin friction and the

rate of heat transfer.

Similarity transformations are used to reduce the governing partial differential equa-

tions to ordinary differential equations. We used perturbation methods to solve

the coupled ordinary differential equations for zero Eckert number and the multi-

parameter perturbation technique to solve the coupled ordinary differential equations

for small viscoelastic parameters and Eckert numbers. It is found that increasing the
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Eckert number or the viscoelastic parameter enhances the boundary layer velocity

while reducing the temperature, the rate of heat transfer and the skin-friction. The

results for the boundary layer velocity and the temperature are presented graphically

and discussed. The results for the rate of heat transfer in terms of the Nusselt num-

ber and the skin friction are tabulated and discussed. A good agreement is found

between these results and other published research. The comparison between the re-

sults for zero Eckert numbers and small Eckert numbers is also presented graphically

and discussed.
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Chapter 1

Introduction

Fluid mechanics is a branch of mechanics that is concerned with the properties and the

behaviour of liquids and gases, Yuan (1967), Massey (1986), Spurk (1997). The study

of fluid motions helps to shed light on many other aspects of applied sciences and

engineering, for example, in bioengineering, fluid control systems, energy conversion

systems, climatology and oceanography, Yuan (1967) and Allen and Ditsworth (1972).

Fluids may be divided into two broad categories, namely inviscid and viscous fluids.

Inviscid or ideal fluids are fluids whose viscosity is negligible, such as water and

air under normal conditions and viscous fluids are the thick fluids whose viscosity

cannot be neglected. Examples of viscous fluids are oils, grease, paint and some

food products. Viscosity relates applied stress in moving fluid to the resulting strain

rate, Hughes and Brighton (1967). If this relationship is linear the fluid is termed

Newtonian. Water, oil and gases are examples of Newtonian fluids. If the relation
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between the applied stress and the shear strain rate is nonlinear the fluid is non-

Newtonian. Common examples of non-Newtonian fluids include solutions of various

polymers, the emulsion of water in oil, toothpaste and quicksand. According to

Hughes and Brighton (1967), non-Newtonian fluids may be classified into three groups

as follow:

1. Time independent non-Newtonian fluids . These are fluids whose shear rate

is a non-linear function of the shear stress. This group is further subdivided

into dilatants, pseudoplastics and yield stress fluids such as Bingham plastics

and Carson plastics. Bingham plastics are idealized materials which behave

partly like solids and partly like fluids, White (1991). These fluids would not

flow until a certain yield stress is exceeded. Thereafter the relationship be-

tween shear stress and shear rate is linear, see Figure 1.1. Pseudoplastic fluids

are characterized by a decreasing slope (local viscosity) with increasing stress.

Most non-Newtonian fluids belong to this category. If the apparent viscosity is

increasing with increasing shear rate the fluid is known as a dilatant.

2. Time dependent non-Newtonian fluids are fluids whose behaviour may vary with

time, Figure 1.2. If the shear strain is kept constant, the stress may vary and

vice versa, Hughes and Brighton (1967). If the shear stress decreases with time

as the fluid is sheared the fluid is known as thixotropic and the opposite effect is

rheopectic. Many fluids in this category lose their rheopectic property at large

shear rates to become thixotropic fluids, White (1991).
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3. Viscoelastic fluids. These fluids are characterized by the fact that their shear

stress is a non-linear function of the strain rate, for example, bitumen and flour

dough. In the deformation of an elastic solid, in general, some energy of a vis-

coelastic fluid may be recoverable. This contrasts with perfect fluids in which

all energy of deformation is dissipated. A viscoelastic fluid combines both elas-

tic and viscous characteristics. These fluids have attracted many researchers

because of their interesting properties and uses of such fluids in industrial ap-

plications. In this study, we are interested in the behaviour of a viscoelastic

fluid.

Figures 1.1 and 1.2 depict the different behavioural characteristics of non-Newtonian

fluids.

Shear

Plastic

Ideal Bingham

Dilatant

Pseudoplastic

Newtonian

Time rate of deformation

stress

stress
Yield

Figure 1.1: Stress- strain rate relationships in time-independent non-Newtonian fluids.

Source: Massey (1986).
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Time independent
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Figure 1.2: Stress- strain rate relationships in time-dependent non-Newtonian fluids.

Source: Massey (1986).

1.1 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a branch of fluid dynamics that deals with the in-

teraction between electrically conducting fluids and an electromagnetic field, Moreau

(1990). Any electrically conducting material moving in a magnetic field generates an

electromotive force that in turn induces its own magnetic field, Moreau (1990). The

applied magnetic field has the following two principal effects:

1. it produces an induced magnetic field which has the effect of perturbing the

original applied magnetic field

2. it creates an electromagnetic force due to the interaction of the current and the
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magnetic field known as the Laplace force (also called a Lorentz force), Moreau

(1990) . This force has the effect of perturbing the original motion, Moreau

(1990), Schecliff (1965).

In general, the fluid velocity field u and the magnetic field (of strength B are coupled,

Moreau (1990). The ratio of the induced magnetic field to the imposed magnetic field

is known as the induced Reynolds number. In low Reynolds number flow, the in-

duced magnetic field is usually ignored so that in MHD flow equations, the magnetic

field strength B is replaced by the known magnetic field B0, Schecliff (1965). Many

devices have been made that rely on the application of MHD principles directly, or

involve fluid-electromagnetic interactions, for example, in electron beam dynamics,

electrical discharges and power generators, Hughes and Brighton (1967), Sattar and

Alam (1995). There is a large body of literature on MHD flows, and some of the

recent studies include, for example, Attar and Alam(1995), Hayat et al (2003), Va-

jravelu and Rollins (2004), Hsiao (2007), Murthy et al (2007) and Mustafa (2008).

The magnetic field affects all electrically conducting fluids, for example, it increases

or decreases the fluid velocity or temperature depending on the nature and quantum

of the other fluid parameters, Anuar Bég et al (2005).
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1.2 Heat and mass transfer

It is a fundamental law of physics that energy can neither be created nor destroyed,

but can only be changed from one form to another. In thermodynamics energy is used

to specify the state of a system. The science of thermodynamics involves the study of

the relationships between various forms of energy and heat. The analysis of the rate

of heat transfer in a system is known as the science of heat transfer. The transfer of

heat is normally from a region of higher temperature to low temperature zones, see

Özişik (1988).There are three modes of transferring heat from one medium to another,

namely conduction, convection and radiation, Özişik (1988) and Welty et al (1984). In

conduction, the heat is transferred from an object at higher temperature to an object

at a lower temperature by kinematic motion in the case of fluids and by the movement

of free electrons in solids. Convection is a mode of heat transfer which involves the

energy exchange between a fluid and a solid due to temperature differences in the

fluid and the solid surface. This mode of heat transfer is further subdivided into free

or natural convection (which is a mode of heat transfer caused by density differences

due to temperature gradients) and forced convection which may be defined as a mode

of heat transfer in which the fluid motion is caused by external forces, for example by
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a pump, Colson and Richardison (1977). At temperatures higher than absolute zero

all materials emit energy. This energy is called thermal radiation and is transferred

in the form of electromagnetic radiation or photons, Bennet and Myers (1982). The

energy transferred may be reflected, emitted or absorbed. The energy transferred by

radiation is maximum when it is propagating in a vacuum, Özişik (1988). Heat and

mass transfer play an important role in many engineering and industrial processes

such as in heat exchangers, radiators, condensers and in the nuclear reactor core. In

aerospace technology the temperature distribution and heat transfer characteristics

are essential because of safety considerations. Studies have been done on heat and

mass transfer by, among others, Sharma and Mathur (1995) who investigated the

effects of different physical parameters such as the Prandtl and Eckert numbers on

the steady laminar free convection flow of an electrically conducting fluid. They found

that the temperature decreases with increasing Eckert and Prandtl numbers. They

also found that the rate of heat transfer increases with increases in the strength of

an applied magnetic field. Gokhale and Samman (2003) studied the effects of mass

transfer on the transient free convection flow of a dissipative fluid including heat

flux. They however found that the rate of heat transfer decreases with increasing

Eckert numbers whereas the skin friction increases with increasing Eckert numbers.

Soundalgekar et al (2004) studied the effects of viscous dissipative heat on transient

free convection flow. They compared the temperature for zero and non-zero Eckert

numbers. They found that the temperature in the presence of viscous dissipative
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heat is less than that at zero Eckert numbers. They also found that the rate of heat

transfer decreases with increasing Eckert numbers whereas the skin friction increases

with viscous dissipative heat. This is in conformity with the results of Gokhale

and Samman (2003) on the rate of heat transfer and the skin friction. However in

their research, Gokhale and Samman (2003) included the effects of heat flux. A

related study by Soundalgekar et al (2004) included the effects of a constant suction

velocity. Abel et al (2007) studied non-Newtonian viscoelastic boundary layer flows.

They found that the temperature increases with Eckert numbers. Bateller (2007)

extended the work of Abel et al (2007) by including radiative heat flux and elastic

deformation. In addition to confirming the findings of Abel et al (2007), they also

found that the temperature increases with increasing elastic deformation. Alam et

al (2007) investigated the effects of heat generation and thermophoresis on steady

laminar MHD with heat and mass transfer. They found that the temperature and

the rate of heat transfer increase with increases in the applied magnetic field. In their

study they did not however consider the effects of the Eckert number.

1.3 The Eckert number

In heat transfer problems, the Eckert number is one of a number of fundamental

dimensionless parameters. It relates the flow’s kinematic energy and enthalpy and

characterizes the dissipation. The physical significance of the Eckert number is bet-

ter understood when we analyze the role of this parameter in equations of motion
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and energy, Özişik (1988). After non-dimensionalizing the governing equations, the

Eckert number enters as a multiplier of the viscous energy. If the Eckert number

is too small, viscous energy generation is negligible. In this way the magnitude of

the Eckert number serves as a criterion in the decision on whether viscous energy

dissipation effects can be retained or neglected in the heat transfer analysis. Many

researchers have investigated the effects of the Eckert number on the temperature,

the boundary layer velocity, the rate of heat transfer and the skin friction. Soundal-

gekar et al (2004) studied the effect of the Eckert number on transient temperature,

velocity, skin friction and the rate of heat transfer. They found that the temperature

and skin friction of air increases with Eckert numbers whereas the Nusselt number

decreases. Their study did not however include an applied magnetic field. Bateller

(2007) investigated the effects of the Eckert number on viscous dissipation, work done

due to deformation, internal heat generation and thermal radiation. He found that

the temperature increases with increasing Eckert numbers. Mustafa et al (2008) an-

alyzed the effect of flow parameters such as Prandtl numbers, the Hartmann number

and the Eckert number on temperature, boundary layer velocity, skin friction and

the rate of heat transfer. They found that the skin friction increases with increas-

ing Hartmann numbers and magnetic Reynolds numbers. They also found that the

rate of heat transfer increases with increasing Prandtl numbers and decreases with

increasing Hartmann numbers, Eckert numbers and heat generation. In their study

he did not consider the effect of the Eckert numbers on the skin friction. Hsiao (2007)
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studied MHD mixed convection of viscoelastic fluid over a streching sheet with ohmic

dissipation. He found that temperature increases with increasing Hartmann num-

bers and decreases with increasing Prandtl numbers. He did not however analyze

the effects of the Eckert number on the temperature, the velocity and the rate of

heat transfer. After examining all these studies, one concludes that the effect of the

Eckert number is dependent on the nature of the problem and the other parameters

inherent in the system. The primary assumption in this thesis is that the Eckert num-

ber is very small, an assumption that is justified for low speed incompressible fluid

flows, Sharma and Muthur (1995). Another justification for the low Eckert number

assumption is that it has been found, for example in the case of the cooling of hot

surfaces in gas flows that maximum heat transfer occurs when the Eckert number is

0.3, Gshwerndtner (2004).

1.4 The constitutive equations

A constitute equation is a mathematical statement of the mechanical behaviour of

a group of materials, Astarita and Marrucci (1974). Constitutive equations are, in

general, subdivided into three categories ; differential, integral and rate type, Trusdell

and Noll (1965). A class of equations whose stress tensor is a function of differential

kinematics at the moment of observation is called a constitutive equation of differ-

ential type. These are equations of fluid memory because higher order deformation
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tensors are involved. In the second category the stress is given by one or more inte-

grals of deformation history whereas rate equations are those equations which have at

least one time derivative of the stress tensor. Both differential and integral type con-

stitutive equations are explicit in the stress tensor but rate equations are not explicit

in the stress. The rate of change of the stress that appears in these equations gives

the name to this category. Our study involves constitutive equations of differential

type.

Non-Newtonian fluids, unlike Newtonian fluids present characteristics which cannot

be described by the classical linear viscous model, Dunn and Rajagopal (1995). Rivlin

and Eriksen (1955) and Truesdell and Nol (1965) devised the earliest method of

classifying viscoelastic fluids. They presented a constitutive equation for a group of

fluids that have come to be known as Rivlin-Eriksen fluids or fluids of a differential

type, Vajravelu and Rollins (2004). The constitutive equations for these fluids present

a complexity in momentum equations where the equations of motion are an order of

magnitude higher than the Navier-Stokes equations, for more details see Rajagopal

and Gupta (1984), Rajagopal and Kaloni (1989), Rajagopal (1995).

The Cauchy stress tensor T for a second grade fluid of differential type is defined by

T = −pI + µA1 + α1A2 + α2A
2
1, (1.1)

where µ is the viscosity, p is the pressure, α1 and α2 are normal stress moduli A1 and

A2 are the first two Rivlin-Ericksen tensors defined as

A1 = (grad v) + (grad v)T , A2 =
d

dt
A1 + A1.grad v + (grad v)T .A1,
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where d/dt is the material derivative and v is the velocity field. For thermodynamic

reasons, the material parameter α1 must be positive, Dunn and Rajagopal (1995).

For a fluid of differential type modelled by equation (1.1) to be compatible with

thermodynamics and to satisfy the Clausius-Duhem inequality, and the assumption

that the specific Helmoltz free energy of the fluid be a minimum when the fluid is

locally at rest, we require that

µ ≥ 0, α1 ≥ 0 and α1 + α2 = 0. (1.2)

For details see Vajravelu and Rollins (2004), Garg and Rajagopal (1991) and Dunn

and Rajagopal (1995). The sign of α1 and the stability or instability of the fluid

motions have however been a subject of controversy and misunderstanding. A thor-

ough discussion of such problems can be found in the critical review by Dunn and

Rajagopal (1995).

1.5 Second grade fluids

Second grade fluids are non-Newtonian fluids whose stress tensor is given by equation

(1.1) and the conditions (1.2). A second grade fluid belongs to a subclass of fluids

of differential type, Dunn and Rajagopal (1995). Studies have been conducted on

second grade fluids by, among others, Vajravelu and Rollins (2004), Vajravelu and

Roper (1999) and Hayat et al(2003). Some of these studies, such as Vajravelu and

Rollins (2004) and Dunn and Rajagopal (1995), considered heat transfer in second
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grade fluids and the others, for example, Hayat et al(2003), the flow of a second grade

fluid without heat transfer.

In the case of heat transfer, most researchers are interested in investigating the ef-

fects of different physical parameters on the boundary layer velocity, temperature,

skin friction and the rate of heat transfer. The study by Vajravelu and Roper (1999)

investigated the effects of viscous dissipation and internal heat generation or absorp-

tion and work done due to deformation. In their study, they found that the boundary

layer temperature increases with increasing viscoelastic parameters and decreases with

increasing Prandtl numbers.

The viscous property of second grade fluids is due to the transport phenomenon of

the fluid molecules whereas the elastic property is due to the chemical structure and

configuration of polymer molecules, Hsiao (2007).

Baris (2003) studied the effect of elasticity on boundary layer velocity and temper-

ature. He used a perturbation technique and showed that the elasticity of the fluid

affects both the temperature and the velocity. It increases or reduces the velocity

depending on the value of other flow parameters present. This was confirmed later

by Vajravelu and Rollins (2004) in their study of the hydrodynamic flow of a sec-

ond grade fluid over a stretching sheet. They found that the velocity increases with

increasing viscoelastic parameters and decreases with increasing Hartmann numbers.

Murthy et al (2007) studied MHD unsteady free convective flow of Walter’s fluid with

constant suction and a heat sink. They investigated the effect of Hartmann numbers,
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Prandtl numbers and sink-strength on the mean velocity, mean temperature, heat

transfer and mean skin-friction. They found that the mean velocity decreases with

increasing Hartmann or Prandtl numbers. They also found that the mean temper-

ature increases with increasing Eckert numbers. They did not however consider the

effect of the viscoelasticity parameter and the angular frequency on either the veloc-

ity or the temperature field nor was the effect of the Eckert number on the velocity

considered.

1.6 Perturbation methods

The perturbation technique is one of the essential tools of applied mathematics and

theoretical physics used in the solution of linear and nonlinear differential equations.

Perturbation and asymptotic methods consist of expanding the solution in an asymp-

totic series in terms of a small parameter. The classic perturbation method of Poincaré

(1892) consists in expanding the solution in an asymptotic series of initial or bound-

ary value problem using a single parameter or functions of such a parameter. When

the series converges or is expected to converge the method is known as a pertur-

bation method. If the series is diverging asymptotically, the method is called an

asymptotic method, Zauderer (1989) and Holmes (1995). The perturbation method

has been applied to different types of problems in the physical sciences, for example,

the technique has been applied to problems in optics, the boundary layer theory of
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viscous flows, shock waves, reaction diffusion equations, celestial mechanics and non-

linear oscillations. In this study we are particularly interested in the perturbation

method. The perturbation method is used to approximate the solution to a differ-

ential equation analytically. This method may solve a problem that may otherwise

be impossible to solve using numerical methods to obtain reasonable accuracy. The

finite difference method is, for example, widely used in numerical analysis due to

its efficiency, accuracy and stability but it may fail to solve stiff equations, Misra

et al (2008). A good number of researchers have used the perturbation method, for

example, Beard and Walters (1964) in their study of an elastico-viscous boundary

layer. They suggested the use of the perturbation method when solving problems

with insufficient boundary conditions. The perturbation method has the advantage

of reducing the order of the equations and treating a singular perturbation problem

as a regular perturbation problem, Beard and Walters (1964), Verma and Sharma

(1988). In addition, it has been suggested by Simmonds and Mann (1986) that the

approximate analytic solutions obtained using the perturbation method often reveal

the important dependence of the exact solution on the flow or material parameters

in manner that is not possible with a full numerical solution. These reasons provide

sufficient motivation and justification for using perturbation methods to investigate

the problem of second grade fluid flow over an oscillating infinite flat-plate in this

research.

The classical perturbation method of Poincaré has been extended by Nowinski and
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Ismail (1965) to many parameters. This generalization is called the multi-parameter

perturbation technique. To apply this method the parameters must be independent

of each another and must be of the same order. In addition, these parameters must

describe different physical and fluid properties such as the material and dynamic

properties and must be small so that their higher powers and products can be ne-

glected, Nowinski and Ismail (1965). These methods use small parameters which,

perhaps may be their main weakness since some behaviours of the solutions may not

be observed. The multi-parameter perturbation technique has been used by many

researchers such as Sahoo et al (2003) in their study of heat transfer in mercury and

electrolytic solutions past an infinite porous plate with constant suction. Anuar-Bég

et al (2005) used the multi-parameter perturbation technique to study the combined

effect of periodic suction velocity and heat sinks in unsteady natural convection flow

of a viscous fluid past an infinite vertical porous plate. A similar study by Murthy et

al (2007) extended the work of Sahoo et al (2003) to include boundary layer heating

and cooling.

A more recent addition to the list of perturbation methods is the concept of multi-scale

perturbation. This method has the advantage of remedying the difficulties caused

by the secular behaviour in a perturbation series, Zeytounian (2002) and Zauderer

(1989). It has been used, for example by, Zhe-Wei (1994) in the stability analysis of

plane couette flow and Nemirovskii (2005) in the analysis of the hydrodynamics of

superfluid turbulence.
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1.7 objectives

The main objective of this study is to use the multi-parameter perturbation technique

to study the effects of Eckert numbers on the flow of a pulsatile second grade fluid

along a vertical plate. We further aim;

• to investigate the effects of an applied magnetic field on the velocity and tem-

perature fields.

• to investigate the effects of the Prandtl number on the velocity and temperature

fields.

• to investigate the effects of the viscoelastic parameter on the velocity and tem-

perature fields.

• to investigate the effects of the angular frequency on the velocity and tempera-

ture fields.

• to investigate the effects of suction velocity on the velocity and temperature

fields.

The rest of this thesis is structured as follows. In Chapter 2 we formulate the problem

mathematically. We use similarity transformations to reduce the governing partial

differential equations to ordinary differential equations. We use perturbation methods

to solve the coupled ordinary differential equations for zero Eckert numbers. We
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present the results graphically and discuss them. In Chapter 3 we use the multi-

parameter perturbation technique to solve the coupled ordinary differential equations

for small Eckert numbers. We compare the results of zero and small Eckert numbers.

Finally we present our conclusions in Chapter 4.
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Chapter 2

Flow of a second grade fluid

2.1 Mathematical formulation

In the present work we consider the two dimensional flow of a second grade fluid past

an infinite flat plate placed along the plane y′ = 0, the flow being confined to y′ > 0

and obeying the constitutive equation (1.1).

6

--x′

y′

suctionPlane of oscillations

Conducting second
grade fluid
(y′ > 0)�

�
���

-

?

Figure 2.1: schematic diagram for the problem
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Assuming that velocities are independent of x′, the streamwise coordinate, the pres-

sure is contant, Hayat et al (2003), and that the normal velocity v′ is constant, the

equations of motion are

∂u′

∂x′
= 0, (2.1)

∂u′

∂t′
+ v′

∂u′

∂y′
= ν

∂2u′

∂y′2
+ α∗

[

∂3u′

∂y′2∂t′
+ v′

∂3u′

∂y′3

]

− σB2
0u

′

ρ
+ gβ(T ′ − T ′

∞
), (2.2)

ρcp

[

∂T ′

∂t′
+ v′

∂T ′

∂y′

]

= k
∂2T ′

∂y′2
+ µ

(

∂u′

∂y′

)2

, (2.3)

where ν (= µ/ρ) is the coefficient of kinematic viscosity, B0 is the uniform magnetic

field strength along the y′ axis, σ is the fluid electrical conductivity, cp is the specific

heat at constant pressure and k (= λc/ρcp) is the thermal diffusivity where λc is the

fluid thermal conductivity.

The appropriate boundary conditions for this problem are

u′ = u0ǫe
iω′t′ , v′ = −v0, T ′ = T ′

w + ǫ (T ′

w − T ′

∞
) eiωt′ , y′ = 0, t > 0, (2.4)

u′ → 0, T ′ → T ′

∞
as y′ → ∞, (2.5)

where ǫ << 1 is an amplitude parameter, v0 is a constant suction parameter, u0 is

a constant velocity, ω′ is the angular frequency, T ′

w is the temperature of the surface

and T ′

∞
is the ambient fluid temperature. This model is an extension of the earlier

study of Hayat et al (2003) to include heat transfer and constant suction. It is also an

extension of the work by Soundalgekar et al (2004) to include the effects of an applied

magnetic field and a second grade fluid. Murthy et al (2007) did a similar study on

MHD unsteady free convective flow of Walter’s fluid with constant suction and a heat
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sink. This study however differs from the work of Murthy et al (2007) in that their

study included a heat sink as an additional term in the energy equations and the

boundary conditions. To non-dimensionalize equations (2.1) - (2.3) we introduce the

following dimensionless variables

η =
y′v0

ν
, t =

v2
0t

′

ν
, u =

u′

u0

, θ =
T ′ − T ′

∞

T ′

w − T ′

∞

. (2.6)

These variables are similar to those used by Soundalgekar et al (2004), Sharma et al

(1995), Hayat et al (2003), Sahoo et al (2003) and Murthy et al (2007). Substituting

(2.6) into (2.1) - (2.3) gives

∂u

∂t
− ∂u

∂η
=

∂2u

∂η2
+ α

(

∂3u

∂η2∂t
− ∂3u

∂η3

)

−Mu +
Gr θ

v0

, (2.7)

∂θ

∂t
− ∂θ

∂η
=

1

Pr

∂2θ

∂η2
+ E

(

∂u

∂η

)2

, (2.8)

where the central parameters are the Eckert number E, the Prandtl number Pr which

is the ratio of the momentum diffusivity to the heat diffusivity, Özişik (1988) and the

Hartmann number M . These parameters are defined respectively by

E =
u2

0

Cp∆T
, Pr =

µcp
k

and M =
σB2

0ν

ρv2
0

. (2.9)

The other terms are defined by

α =
α∗v2

0

ν2
, u0 =

(

gβ∆Tν

v0

)
1

2

, ω =
νω′

v2
0

and Gr =
gβν∆T

u0v0
, (2.10)

where α is the viscoelastic parameter and Gr is the Grashof number. The appropriate

boundary conditions are:

u = u0ǫe
iωt, θ = 1 + ǫeiωt at η = 0, t > 0,

u = 0, θ = 0 as η → ∞,
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where ω is a non-dimensional angular frequency. Various methods have been used

previously to solve equations similar in form to equations (2.7) and (2.8). Numerical

methods such as finite differences have been used by among others, Soundalgekar et

al (2004), Saeid (2004) and Hsiao (2007). Many researchers, for example, Bateller

(2007), Murthy et al (2007), used similarity transformations to reduce the partial

differential equations to ordinary differential equations. In that case one may solve the

resulting ordinary differential equations analytically, for example, using perturbation

methods, Hayat et al (2003), multi-parameter perturbation techniques, Sahoo et al

(2003), Anuar-Bég et al (2005) and Murthy et al (2007), Fourier series, Kelly (1965),

Soundalgekar (1976), Messiha (1966) and the Laplace transform method, Hayat et

al (2005). The equations have also been solved numerically using shooting methods,

Alam et al (2007).

Following Bateller (2007) and others, we reduce the partial differential equations (2.7)

and (2.8) to ordinary differential equations by assuming sinusoidally periodic solutions

of the form

u(η, t) = u0

[

f1(η) + ǫf2(η)e
iωt
]

, (2.11)

θ(η, t) = h1(η) +
ǫ

2
[h2(η) + h3(η)] e

iωt. (2.12)

Similar expansions have been used by a number of researchers such as Hayat et al

(2003), Kelly (1965) , Sahoo et al (2003), Murthy et al (2007) and Anuar-Bég et al

(2005). For convenience we have assumed here that h3 = 0(h1) and u0 as a constant.

In the absence of clear means of obtaining additional boundary conditions, Beard and
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Walter (1964) suggested a perturbation method to solve the problem. Substituting

the expansions (2.11) and (2.12) into equations (2.7)- (2.8) gives the following zeroth

order (in ǫ) differential equations

αf ′′′

1 − f ′′

1 − f ′

1 +Mf1 −
1

v0
h1 = 0, (2.13)

1

Pr

h′′1 + h′1 + Eu2
0f

′2
1 = 0, (2.14)

where Gr has been simplified by u0 from equation (2.10). The boundary conditions

are

f1 = 0, h1 = 1 at η = 0, (2.15)

f1 = 0, h1 = 0 as η → ∞. (2.16)

The first order differential equations are

αf ′′′

2 − (1 + αiw) f ′′

2 − f ′

2 + (M + iω) f2 −
1

v0

(h2 + h1) = 0, (2.17)

1

Pr

h′′2 + h′2 − iωh2 + 2Eu2
0f

′

1f
′

2 = − 1

Pr

h′′1 − h′1 + iωh1, (2.18)

with appropriate boundary conditions

f2 = 1 and h2 = 1 at η = 0, (2.19)

f2 = 0 and h2 = 0 as η → ∞. (2.20)
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2.2 Zero Eckert number solutions

The Eckert number is a dimensionless parameter which characterizes dissipation and

relates the kinetic energy to enthalpy. The dissipation may be large or small de-

pending on the magnitude of the characteristic velocity of the flow, the specific heat

capacity and the temperature differences. In this section, we solve the problem when

the Eckert number is zero. Equation (2.14) reduces to the simple second order bound-

ary value problem

h′′1(η) + Prh
′

1(η) = 0, h1(0) = 1, h1(∞) = 0,

whose exact solution is

h1(η) = e−Pr η. (2.21)

Similarly, equation (2.18) reduces to

h′′2 + Pr h
′

2 − iwPrh2 = − 1

Pr

h′′1 − h′1 + iωh1, h2(0) = 1, h2(∞) = 0,

with exact solution

h2(η) = 2e−p2 η − e−Pr η, (2.22)

where

p1 =
−Pr +

√

P 2
r + 4iwPr

2
and p2 =

Pr +
√

P 2
r + 4iwPr

2
.

Hence for zero Eckert numbers we find the boundary layer temperature to be an

exponentially decreasing function of the Prandtl number, angular frequency and time
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of the form

θ(η, t) = e−Prη + ǫe−p2 η+iωt. (2.23)

Now using the solution (2.21) in (2.13) we get

αf ′′′

1 (η) − f ′′

1 (η) − f ′

1 +Mf1 =
1

v0
e−Prη. (2.24)

To solve this equation we assume perturbation solutions of the form

f1 = f10 + αf11 + 0(α2) (2.25)

that are valid for sufficiently small α, see Beard and Walters (1964). Using the

approximation (2.25) in equation (2.24) gives

α (f ′′′

10 + αf ′′′

11) − f ′′

10 − αf ′′

11 − f ′

10 − αf ′

11 +M(f10 + αf11) =
1

v0
e−Pr η,

where the equation for f10 is

f ′′

10 + f ′

10 −Mf10 = − 1

v0

e−Pr η,

with general solution

f10(η) = C1e
β1η + C2e

−β2η − e−Prη

v0H
,

where C1 and C2 are constants and,

β1 =
−1 +

√
1 + 4M

2
, β2 =

1 +
√

1 + 4M

2
and H = P 2

r − Pr −M.

Using the boundary conditions (2.15) and (2.16) gives

f10(η) =
1

v0H

(

e−β2 η − e−Pr η
)

. (2.26)
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The equation for f11 is

f ′′

11 + f ′

11 −Mf11 = f ′′′

10

=
1

v0H

(

−β3
2e

−β2η + P 3
r e

−Pr η
)

. (2.27)

The general solution to equation (2.27) is

f11(η) = K1e
β1 η +K2e

−β2 η +
β3

2ηe
−β2 η

v0H
√

1 + 4M
+
P 3

r e
−Pr η

v0H2
. (2.28)

Using the boundary conditions (2.15) and (2.16) we get

K1 = 0 and K2 =
−P 3

r

v0H2
.

Hence

f11(η) =

(

β3
2η

v0H
√

1 + 4M
− P 3

r

v0H2

)

e−β2 η +
P 3

r e
−Prη

v0H2
. (2.29)

Substituting (2.26) and (2.29) in (2.25) gives

f1(η) =
1

v0H

(

e−β2 η − e−Pr η
)

+

(

αβ3
2η

v0H
√

1 + 4M
− αP 3

r

(v0H2

)

e−β2 η

+

(

αP 3
r

v0H2

)

e−Pr η. (2.30)

To find f2 we now substitute equations (2.21) and (2.22) in (2.17) to get:

αf ′′′

2 − f ′′

2 (1 + αiω) − f ′

2 + (M + iω)f2 =
2

v0

e−p2 η. (2.31)

Now assume a solution of the form

f2 = f20 + αf21 +O(α2). (2.32)
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This gives the two differential equations

0(α0) : f ′′

20 + f ′

20 − (M + iw)f20 =
−2

v0
e−p2 η, (2.33)

0(α1) : f ′′

21 + f ′

21 − (M + iω)f21 = f ′′′

20 − iω f ′′

20. (2.34)

The auxiliary equation for (2.33) is

k2 + k − (M + iω) = 0

with solutions k1 =
1

2
[−1 +

√

1 + 4(M + iω)] and k2 =
1

2
[1 +

√

1 + 4(M + iω)].

Therefore the solution for f20 is

f20(η) = C3e
k1η + C4e

−k2 η − 2

v0H1

e−p2 η, (2.35)

where H1 = p2
2 − p2 − (M + iω). The solution that satisfies the boundary conditions

(2.19) and (2.20) gives

C3 = 0 and C4 =
v0H1 + 2

v0H1

.

Hence

f20(η) =
1

v0H1

(v0H1 + 2) e−k2 η − 2

v0H1

e−p2 η. (2.36)

Equation (2.34) can now be written as

f ′′

21 + f ′

21 − (M + iω)f21 =
−k2

2

v0H1

(v0H1 + 2)(k2 + iω)ek2 η

+
2p2

2(p2 + iω)

v0H1
e−p2 η.
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The solution of the homogeneous part of the equation is

f21(η) = C5e
k1η + C6e

−k2 η (2.37)

and the particular solution is

f21p(η) =
k2

2(v0H1 + 2)(k2 + iω)η

v0H1

√

1 + 4(M + iω)
e−k2η +

2p2
2(p2 + iω)

v0H
2
1

e−p2 η. (2.38)

Hence the general solution is

f21(η) = C5e
k1 η + C6e

−k2 η +
k2

2(v0H1 + 2)(k2 + iω)η

v0H1

√

1 + 4(M + iω)
e−k2 η

+
2p2

2(p2 + iω)

v0H2
1

e−p2 η, (2.39)

where

C5 = 0 and C6 =
−2p2

2(p2 + iω)

v0H
2
1

.

Therefore

f21(η) =

(

−2p2
2(p2 + iω)

v0H2
1

+
k2

2(v0H1 + 2)(k2 + iω)η

v0H1

√

1 + 4(M + iω)

)

e−k2 η

+
2p2

2(p2 + iω)

v0H2
1

e−p2 η. (2.40)

Substituting equations (2.36) and (2.40) in (2.32) finally gives

f2(η) =
1

v0H1
(v0H1 + 2))e−k2 η − 2

v0H1
e−p2 η

+

(

α

(

−2p2
2(p2 + iω)

v0H2
1

)

+
αk2

2(v0H1 + 2)(k2 + iω)η

v0H1

√

1 + 4(M + iω)

)

e−k2 η

+
2αp2

2(p2 + iω)

v0H2
1

e−p2 η. (2.41)

40



For convenience the above equation can be written as

f2(η) =

(

v0H1 + 2

v0H1
+
α(−2p2

2(p2 + iω))

v0H2
1

)

e−k2 η

+

(

αk2
2(v0H1 + 2)(k2 + iω)η

v0H1

√

1 + 4(M + iω)

)

e−k2 η

+

(

2αp2
2(p2 + iω)

v0H2
1

− 2

v0H1

)

e−p2 η. (2.42)

Now, substituting (2.42) and (2.30) in (2.11) we find the boundary-layer fluid velocity

to be

u(η, t) =
u0

v0H

(

1 +
αβ3

2η√
1 + 4M

− αP 3
r

P 2
r − Pr −M

)

e−β2 η

+
u0

v0H

(

αP 3
r

P 2
r − Pr −M

− 1

)

e−Pr η

+ u0ǫe
iwt−k2 η

(

v0H1 + 2

v0H1
+
α(−2p2

2(p2 + iω))

v0H2
1

)

(2.43)

+

(

u0k
2
2α(v0H1 + 2)(k2 + iω)η

v0H1

√

1 + 4(M + iω)

)

ǫeiωt−k2 η

+ u0ǫ

(

2αp2
2(p2 + iω)

v0H
2
1

− 2

v0H1

)

eiωt−p2 η. (2.44)

2.3 Results and Discussions

Figure 2.2 shows the variation of boundary layer velocity with the visco-elastic pa-

rameter. The velocity decreases with increasing α. The general trend in these results

are similar to what was obtained by Hayat et al (2003). In Figure 2.2(b) we decreased

M while keeping the same values of α as in Figure 2.2 (a). We observed that the

smaller the Hartmann number the larger the velocity amplitude, confirming that a

magnetic field may be used as a means to reduce the boundary layer velocity. This is
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explained by the fact that increasing α is, in fact, equivalent to increasing the suction

velocity as can be seen from (2.10), implying that more fluid is being taken out of

the system, thereby reducing the momentum boundary layer.
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Figure 2.2: The velocity profile with Pr = 7, v0 = 0.01, ǫ = 0.01, ω = 1.5,

u0 = 0.01, t = π/2ω; (a) M = 65 and (b) M = 20.

Figure 2.3 shows the variation of the velocity profiles for different values of Hartmann

numbers M . The velocity decreases with increasing Hartmann numbers. Similar

results have been observed in earlier studies, for example, in Hayat et al (2003) and

Vajravelu and Rolins (2004). The reduction in the boundary layer velocity with

increasing magnetic force provides a means of controlling the flow in the desired

direction. This control of the boundary layer flow is of practical significance, for

example, in the control of flow around aircraft wings. Other methods that have been

proposed for the purpose of artificially controlling the behaviour of boundary layer
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flow include streamlining the body shape, Hayat et al (2002), suction and the use of

flexible walls as proposed by Kramer (1957). The application of MHD principles is

another method for controlling the flow field by altering the structure of the boundary

layer.
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Figure 2.3: The velocity profile with Pr = 7, v0 = 0.01, ω = 1.5, ǫ = 0.01,

t = π/2ω, α = 0.02, u0 = 0.01.
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Figure 2.4 shows the effect of suction on the boundary layer velocity for different

Hartmann numbers. The boundary layer velocity decreases with increasing suction.

Increasing suction means that more fluid is taken out of the system, thereby reducing

the momentum boundary layer. For Newtonian fluids (that is, α = 0), when M = 0

we found the same results as Soundalgekar et al (2004) and Attia (2003). In Figure

2.4(b) we increased the Hartmann number from M = 5 to M = 45 while keeping the

same suction values as in Figure 2.4 (a). Comparing Figure 2.4(a) and Figure 2.4(b),

we found that the boundary layer velocity decrease faster in Figure 2.4(b) with large

Hartmann numbers than in Figure 2.4 (a).
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Figure 2.4: The velocity profile with Pr = 7, ω = 1.5, ǫ = 0.01, α = 0.02,

t = π/2ω, u0 = 0.01; (a) M = 5 and (b) M = 45.
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Figure 2.5 shows the variation of the velocity with Prandtl numbers. We observe from

Figure 2.5 (a) that the velocity increases with increasing Prandtl numbers whereas

in Figure 2.5 (b) it is decreasing with increasing Prandtl numbers. This difference is

caused by the effect of the magnetic field. Increasing the Prandtl number is equivalent

to increasing the kinematic viscosity, Cebeci and Bradshaw (1984)
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Figure 2.5: The velocity profile with ω = 1.5, ǫ = 0.01, α = 0.02, t = π/2ω,
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Figure 2.6 shows the variation of the velocity with angular frequency. The velocity

does not depend on the angular frequency.
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Figure 2.6: The velocity profile with Pr = 7, v0 = 0.01, ǫ = 0.01, M = 10,

α = 0.08, t = π/2ω, u0 = 0.01.
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Figure 2.7 shows the variation of the temperature with the Prandtl number. The

temperature decreases with increasing Prandtl numbers. This may be explained by

the fact that increasing the Prandtl number is equivalent to reducing thermal dif-

fusivity which characterizes the rate at which the heat is conducted, White (1999)

and Cebeci and Bradshaw (1984). This is also consistent with the earlier findings by

Sattar and Alam (1995), Vajravelu and Roper (1999), Massoudi (2001), Soundalgekar

et al (2004) and Pantokratorras (2008).
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Figure 2.7: The temperature profile when ǫ = 0.1, ω = 1, t = π/2ω, α = 0.02,

u0 = 0.01, M = 5.
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Figure 2.8 shows the variation of the temperature profile with the angular frequency.

The temperature increases only marginally with increasing angular frequencies. This

is consistent with the results of Alam et al (2007).
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Figure 2.8: The temperature with Pr = 7, ǫ = 0.01, α = 0.02, t = π/2ω, u0 =

0.01, M = 5.
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2.4 Conclusion

In this chapter we have considered the solution of the equations of motion of a second

grade fluid when the Eckert number is zero and the viscoelastic parameter is small.

We have considered the effects of various physical parameters such as the Hartmann

number, suction, Prandtl number, viscoelastic parameter and angular frequency on

the properties of the fluid. Our investigations show that in the case of zero Eckert

numbers;

• increasing the magnetic field reduces the boundary layer velocity. This is in line

with the earlier finding by Hayat et al (2003) and Vajravelu and Rolins (2004)

• The boundary layer velocity increases or decreases with Prandtl numbers de-

pending on the nature and quantum of the other physical parameters, this is in

line with the earlier findings by Cebeci and Bradshaw (1984).

• The boundary layer velocity decreases with increasing suction velocity

• The velocity decreases with increasing visco-elastic parameter α. As α increases

we obtained back flow.

• Both the temperature and velocity are independent of the angular frequency.

• The temperature decreases with increasing Prandtl numbers.
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Chapter 3

Non-zero Eckert number solutions

3.1 Introduction

In this chapter we solve the problem defined by equations (2.13)-(2.20) when the

Eckert number is small but non-zero. In this case there are four coupled third order

differential equations. To solve these equations we use the multi-parameter pertur-

bation technique. This technique is very useful when solving problems with several

embedded small parameters. These parameters describe different physical and fluid

properties such as the material and the dynamic properties. For the technique to be

applicable the parameters must be of the same order but independent of each other,

Nowinski and Ismail (1965). This technique has been used by many researchers such

as Sahoo et al (2003) in his study of heat transfer in mercury and electrolytic solu-

tions past an infinite porous plate with constant suction. Anuar-Bég et al (2005) used
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the multi-parameter perturbation technique to study the combined effects of periodic

suction velocity and heat sinks in unsteady natural convection flow of a viscous fluid

flow past an infinite vertical porous plate. A similar study by Murthy et al (2007) ex-

tended the work of Sahoo et al (2003) to include boundary layer heating and cooling.

The parameters of primary interest and to which the multi-parameter perturbation

technique is applied in this chapter are the Eckert number E and the visco-elastic

parameter α. These parameters, in addition to ǫ, are assumed to be small so that

any product of the three parameters may be neglected.

3.2 Perturbation analysis

In this section we solve equations (2.13)- (2.20) using the multi-parameter perturba-

tion technique. We expand f1(η) and f2(η) in terms of E and α as follows:

f1 = f100 + Ef101 + αf111 + Eαf112 + 0(E2), (3.1)

f2 = f200 + Ef201 + αf211 + Eαf212 + 0(E2), (3.2)

h1 = h10 + Eh11 + 0(E2), (3.3)

h2 = h20 + Eh21 + 0(E2), (3.4)
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where α, E and ǫ are small so that products of these parameters all tend to zero. The

boundary conditions to be satisfied are:

f100 = f101 = f111 = f112 = 0, as η = 0, (3.5)

f100 = f101 = f111 = f112 = 0, as η → ∞, (3.6)

f200 = 1, f201 = f211 = f212 = 0, as η = 0, (3.7)

f200 = f201 = f211 = f212 = 0, as η → ∞, (3.8)

h10 = 1, h11 = 0, h20 = 1, h21 = 0, as η = 0, (3.9)

h10 = h11 = h20 = h21 = 0, as η → ∞. (3.10)

Substituting the expansions (3.1)-(3.4) in equations (2.13), (2.14), (2.17) and (2.18)

gives:

Zeroth order (E0) :

f ′′

100 + f ′

100 −Mf100 = −h10

v0

, (3.11)

f ′′

200 + f ′

200 − (M + iω)f200 = −
(

h10 + h20

v0

)

, (3.12)

h′′10 + Prh′10 = 0 (3.13)

h′′20 + Prh′20 − Priωh20 = −h′′10 − Prh′10 + iωh10, (3.14)

f ′′

111 + f ′

111 −Mf111 = f ′′′

100 (3.15)

f ′′

211 + f ′

211 − (M + iω)f211 = f ′′′

200 − iωf ′′

200. (3.16)

52



First order (E1) :

f ′′

101 + f ′

101 −Mf101 = −h11

v0
, (3.17)

f ′′

201 + f ′

201 − (M + iω)f201 = −
(

h11 + h21

v0

)

, (3.18)

f ′′

112 + f ′

112 −Mf112 = f ′′′

101, (3.19)

f ′′

212 + f ′

212 − (M + iω)f212 = f ′′′

201 − iωf ′′

201 (3.20)

h′′11 + Prh
′

11 = −u2
0Pr

(

f ′2
100 + 2αf ′

100f
′

111

)

, (3.21)

h′′21 + Prh
′

21 − Priωh21 = −h′′11 − Prh
′

11 + Priωh11 − 2u2
0Prf

′

100f
′

200. (3.22)

The solution to equation (3.13) is given by

h10(η) = e−Prη. (3.23)

Substituting equation (3.23) in (3.11) gives

f ′′

100 + f ′

100 −Mf100 = −e
−Prη

v0

, (3.24)

with the particular solution

f100(η) =
1

v0H

(

e−β2η − e−Prη
)

. (3.25)

Now substituting equation (3.23) in (3.14) to get

h′′20 + Prh
′

20 − Priωh20 = Priωe
−Prη. (3.26)

Solving the above equation and using the boundary conditions (3.9) and (3.10) we

get

h20(η) = 2e−p2η − e−Pr η. (3.27)
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Substituting equation (3.25 ) in (3.15) gives

f ′′

111 + f ′

111 −Mf111 =
1

v0H2

(

P 3
r e

−Pr η − β3
2e

−β2 η
)

. (3.28)

The solution of the above equation is given by

f111(η) =
P 3

r e
−Pr η

v0H2
+

(

−P 3
r

v0H2
+

β3
2η

v0H
√

(1 + 4M)

)

e−β2 η. (3.29)

Substituting equations (3.23 )and (3.27) in (3.12) give

f ′′

200 + f ′

200 − (M + iω)f200 = −
(

2e−p2η

v0

)

. (3.30)

Solving the above equation and using the boundary conditions (3.7) and (3.8) gives

f200(η) =
1

v0H1
(v0H1 + 2) e−k2 η − 2

v0H1
e−p2 η, (3.31)

where H1 = p2
2 − p2 − (M + iω) and k2 = 1

2
[1 +

√

1 + 4(M + iω)].

Differentiating equation (3.31) and substituting in equation (3.16) gives

f ′′

211+f
′

211−(M+iω)f211 =
−k2

2

v0H1
(v0H1+2)(k2+iω)e−k2 η+

2p2
2(p2 + iω)

v0H1
e−p2 η. (3.32)

The above equation has the solution

f211 =

(

−2p2
2(p2 + iω)

v0H
2
1

+
k2

2(v0H1 + 2)(k2 + iω)η

v0H1

√

1 + 4(M + iω)

)

e−k2 η

+
2p2

2(p2 + iω)

v0H
2
1

e−p2 η. (3.33)

Now differentiating equations (3.25) and (3.29) and substituting in equation (3.21)

gives

h′′11 + Prh
′

11 = A4e
−2Pr η + A5e

−(β2+Pr) η + A6e
−2β2 η, (3.34)
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where

B1 = −2u2
0Prα

(

β3
2Pr

v2
0H

2
√

(1 + 4M)
+

2β2P
4
r

v2
0H

3
− Prβ

4
2η

v2
0H

2
√

(1 + 4M)

)

,

B2 =
2u2

0P
6
r α

v2
0H

3
,

A3 = 2u2
0Prα

(

β4
2

v2
0H

2
√

1 + 4M
+
β2

2P
3
r

v2
0H

3
− β5

2η

v2
0H

2
√

1 + 4M

)

,

A4 = B2 −
u2

0P
3
r

v2
0H

2
,

A5 = B1 +
2u2

0P
2
r β2

v2
0H

2
,

A6 = A3 −
u2

0Prβ
2
2

v2
0H

2
.

The solution to equation (3.34) is given by

h11(η) = K5e
−Pr η +

A4e
−2Pr η

2P 2
r

+
A5e

−(Pr+β2)η

β2(β2 + Pr)
+

A6e
−2β2 η

2β2(2β2 − Pr)
, (3.35)

and the boundary conditions (3.9)-(3.10) give

K5 = − A5

β2(β2 + Pr)
− A4

2P 2
r

− A6

2β2(2β2 − Pr)
.

Equations (3.23) and (3.35) then give

h1(η) = (1 + EK5)e
−Pr η +

EA4

2P 2
r

Ee−2Pr η +
EA5 e

−(Pr+β2)η

β2(β2 + Pr)
+

EA6 e
−2β2 η

2β2(2β2 − Pr)
. (3.36)

Differentiating equations (3.25), (3.31) and (3.35) and substituting in (3.22) gives

h′′21 + Prh
′

21 − Priωh21 = PriωK5 e
−Prη + A7 e

−2Prη + A8 e
−(β2+Pr) η

+ A9 e
−2β2 η (3.37)

+ A10 e
−(Pr+p2)η + A11 e

−(Pr+k2) η

+ A12 e
−(β2+p2) η + A13 e

−(β2+k2)η,
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where

A7 = A4

(

iω

2Pr

− 1

)

, A8 = A5

(

Priω

β2(β2 + Pr)
− 1

)

,

A9 = A6

(

Priω

2β2(2β2 − Pr)
− 1

)

, A10 =
−4u2

0Pr
2p2

v2
0HH1

,

A11 =
2u2

0P
2
r k2(v0HH1 + 2)

v2
0HH1

, A12 =
4u2

0Prp2β2

v2
0HH1

,

A13 =
−2u2

0Prk2β2

v2
0HH1

.

The solution to equation (3.37) is given by

h21(η) = F6 e
−p2 η −K5 e

−Prη +
A7

Pr(2Pr − iω)
e−2Pr η

+
A8

β2
2 + Pr(β2 − iω)

e−(Pr+β2) η

+
A9

4β2
2 − Pr(2β2 + iω)

e−2β2 η +
A10

p2
2 + Pr(p2 − iω)

e−(Pr+p2);η

+
A11

k2
2 + Pr(k2 − iω)

e−(Pr+k2) η

+
A12

(p2 + β2)2 − Pr(p2 + β2) − Pr iω)
e−(β2+p2) η

+
A13

(k2 + β2)2 − Pr(k2 + β2) − Pr iω)
e−(β2+k2) η, (3.38)

where

F6 = K5 −
A7

Pr(2Pr − iω)
− A8

β2
2 + Pr(β2 − iω)

− A9

4β2
2 − Pr(2β2 + iω)

− A10

ψ1

− A11

k2
2 + Pr(k2 − iω)

− A12

ψ2
− A13

ψ3

with ψ1 = p2
2 + Pr(p2 − iω) , ψ2 = (β2 + p2)

2 − Pr(β2 + p2) − Pr iω

and ψ3 = (β2 + k2)
2 − Pr(β2 + k2) − Pr iω.
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Substituting equations (3.27) and (3.38) in(3.4) we get

h2(η) = 2e−p2η − e−Pr η + EF6 e
−p2 η − EK5 e

−Pr η

+
EA7

Pr(2Pr − iω)
e−2Pr η (3.39)

+
EA8

β2
2 + Pr(β2 − iω)

e−(Pr+β2) η

+
EA9

4β2
2 − Pr(2β2 + iω)

e−2β2 η +
EA10

p2
2 + Pr(p2 − iω)

e−(Pr+p2) η

+
EA11

k2
2 + Pr(k2 − iω)

e−(Pr+k2) η

+
EA12

(p2 + β2)2 − Pr(p2 + β2) − Pr iω)
e−(β2+p2) η

+
EA13

(k2 + β2)2 − Pr(k2 + β2) − Pr iω)
e−(β2+k2) η.

From equations (3.39) and (3.36) we get

θ(η, t) = (1 + EK5)e
−Pr η +

EA4

2P 2
r

e−2Pr η +
EA5 e

−(Pr+β2) η

β2(β2 + Pr)

+
EA6 e

−2β2 η

2β2(2β2 − Pr)
+
ǫ

2
eiωt

(

(1 + EK5)e
−Pr η +

EA4

2P 2
r

e−2Pr η

)

+ǫeiωtEA5 e
−(Pr+β2) η

2β2(β2 + Pr)

+ǫeiωt EA6 e
−2β2 η

4β2(2β2 − Pr)

+
ǫ

2
eiωt

(

2e−p2η − e−Pr η + EF6 e
−p2 η − EK5 e

−Pr η
)

+
ǫ

2
eiωt

(

EA7

Pr(2Pr − iω)
e−2Pr η +

EA8

β2
2 + Pr(β2 − iω)

e−(Pr+β2) η

)

+
ǫ

2
eiωt

(

EA9

4β2
2 − Pr(2β2 + iω)

e−2β2 η +
EA10

p2
2 + Pr(p2 − iω)

e−(Pr+p2) η

)

+
ǫ

2
eiωt

(

EA11

k2
2 + Pr(k2 − iω)

e−(Pr+k2)η

)

+
ǫ

2
eiωt

(

EA12

(p2 + β2)2 − Pr(p2 + β2) − Pr iω)
e−(β2+p2) η

)

+
ǫ

2
eiωt

(

EA13

((k2 + β2)2 − Pr(k2 + β2) − Pr iω)
e−(β2+k2) η

)

. (3.40)
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Substituting h11 into (3.17) gives

f ′′

101 + f ′

101 −Mf101 = −K5

v0
e−Pr η − A4 e

−2Pr η

2v0P 2
r

− A5 e
−(Pr+β2) η

v0β2(β2 + Pr)
− A6 e

−2β2 η

2v0β2(2β2 − Pr)
.

(3.41)

The boundary conditions are

f101 = 0 as η → 0 and f101 = 0 as η → ∞. (3.42)

The complementary solution to equation (3.41) is given by

f101(η) = F7 e
β1 η + F8 e

−β2 η, (3.43)

where F7 and F8 are constants to be determined. The particular solution to equa-

tion (3.41) is

f101p(η) = − K5

v0H
e−Pr η − A4 e

−2Pr η

2v0P 2
r (4Pr2 − 2Pr −M)

(3.44)

− A5 e
−(Pr+β2) η

v0β2(β2 + Pr)((β2 + Pr)2 − (β2 + Pr) −M)

− A6 e
−2β2 η

2v0β2(2β2 − Pr)(4β
2
2 − 2β2 −M)

.

Finally, equations (3.43), (3.44) and the boundary conditions (3.5)and (3.6) gives

f101(η) = F8 e
−β2 η − K5

v0H
e−Pr η − A4 e

−2Pr η

2v0Pr2(4P 2
r − 2Pr −M)

(3.45)

− A5 e
−(Pr+β2) η

v0β2(β2 + Pr)((β2 + Pr)2 − (β2 + Pr) −M)

− A6 e
−2β2 η

2v0β2(2β2 − Pr)(4β
2
2 − 2β2 −M)

,
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where

F8 =
K5

v0H
+

A4

2v0Pr2(4P 2
r − 2Pr −M)

+
A5

v0β2(β2 + Pr)((β2 + Pr)2 − (β2 + Pr) −M)

+
A6

2v0β2(2β2 − Pr)(4β2
2 − 2β2 −M)

,

and F7 = 0.

Differentiating equation (3.45) and substituting it in equation(3.19) gives

f ′′

112 + f ′

112 −Mf112 = −β3
2F8 e

−β2 η +
K5P

3
r

v0H
e−Pr η + F9 e

−2Pr η

+ F10 e
−(Pr+β2) η + F11 e

−2β2 η, (3.46)

where

F9 =
4PrA4

v0(4P 2
r − 2Pr −M)

(3.47)

F10 =
(Pr + β2)

2A5

v0β2((β2 + Pr)2 − (Pr + β2) −M)
(3.48)

F11 =
4β2

2A6

v0(2β2 − Pr)(4β2
2 − 2β2 −M)

. (3.49)

The appropriate boundary conditions are

f112 = 0 as η → 0 and f112 = 0 as η → ∞. (3.50)

The solution to equation (3.46) is thus

f112(η) = F12 e
−β2 η +

β3
2ηF8 e

−β2η

√
1 + 4M

+
K5P

3
r

v0H2
e−Pr η +

F9 e
−2Pr η

4P 2
r − 2Pr −M

(3.51)

+
F10 e

−(Pr+β2) η

(Pr + β2)2 − (Pr + β2) −M
+

F11 e
−2β2 η

4β2
2 − 2β2 −M

,
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where

F12 = −K5Pr
3

v0H2
− F9

4Pr2 − 2Pr −M
− F10

(Pr + β2)2 − (Pr + β2) −M

− F11

4β2
2 − 2β2 −M

. (3.52)

Substituting equations (3.51), (3.45), (3.29) and (3.25) in (3.1) we get

f1(η) =
1

v0H

(

e−β2 η − e−Prη
)

+ EF8 e
−β2 η

−EK5

v0H
e−Pr η − EA4 e

−2Pr η

2v0P 2
r (4P 2

r − 2Pr −M)

− EA5 e
−(Pr+β2) η

v0β2(β2 + Pr)((β2 + Pr)2 − (β2 + Pr) −M)

− EA6 e
−2β2 η

2v0β2(2β2 − Pr)(4β
2
2 − 2β2 −M)

+α
P 3

r e
−Pr η

v0H2
+ α

(

−P 3
r

v0H2
+

β3
2 η

v0H
√

(1 + 4M)

)

e−β2 η

+EαF12 e
−β2 η +

Eαβ3
2F8ηe

−β2 η

√
1 + 4M

+
αEK5P

3
r

v0H2
e−Pr η

+
EαF9 e

−2Pr η

4P 2
r − 2Pr −M

+
EαF10 e

−(Pr+β2) η

(Pr + β2)2 − (Pr + β2) −M
+

EαF11 e
−2β2 η

4β2
2 − 2β2 −M

. (3.53)

Substituting equations (3.38) and (3.35) into (3.18) give

f ′′

201 + f ′

201 − (M + iω)f201 = D4 e
−2Pr η +D5 e

−(Pr+β2) η +D6 e
−2β2 η

− F6

v0

e−p2η

+ D7 e
−(Pr+k2) η +D8 e

−(Pr+p2) η +D9 e
−(β2+p2) η

+ D10 e
−(β2+k2) η, (3.54)
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where

D4 = − A4

2v0P 2
r

− A7

v0Pr(2Pr − iω)
,

D5 = − A5

v0β2(β2 + P )r)
− A8

v0(β2
2 + Pr(β2 − iω))

,

D6 = − A6

2v0β2(2β2 − Pr)
− A9

v0(4β2
2 − Pr(2β2 + iω))

,

D7 = − A11

v0(k
2
2 + Pr(k2 − iω))

,

D8 = − A10

v0(p2
2 + Pr(p2 − iω))

,

D9 = − A12

v0((β2 + p2)2 − Pr(β2 + p2) − Priω)
,

D10 = − A13

v0((β2 + k2)2 − Pr(β2 + k2) − Priω)
.

The appropriate boundary conditions are

f201 = 0 as η → 0 and f201 = 0 as η → ∞. (3.55)

The complementary solution to (3.54) is given by

f(201)c(η) = D11 e
−k2 η +D12 e

k1 η, (3.56)
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and its particular solution is given by

f(201)p(η) =
D4

4P 2
r − 2Pr − (M + iω)

e−2Pr η

+
D5

(Pr + β2)2 − (Pr + β2) − (M + iω)
e−(Pr+β2) η

+
D6

4β2
2 − 2β2 − (M + ω)

e2β2 η − F6

v0H1
e−p2 η

+
D7

(Pr + k2)2 − (Pr + k2) − (M + iω)
e−(Pr+k2) η

+
D8

(Pr + p2)2 − (Pr + p2) − (M + iω)
e−(Pr+p2) η

+
D9

(p2 + β2)2 − (p2 + β2) − (M + iω)
e−(p2+β2) η

+
D10

(k2 + β2)2 − (k2 + β2) − (M + iω)
e−(k2+β2) η.

(3.57)

Equations (3.56) and (3.57) and the boundary conditions (3.55) give us the following

solution:

f201(η) = D11 e
−k2 η +

D4

4P 2
r − 2Pr − (M + iω)

e−2Pr η (3.58)

+
D5

(Pr + β2)2 − (Pr + β2) − (M + iω)
e−(Pr+β2) η

+
D6

4β2
2 − 2β2 − (M + ω)

e−2β2 η − F7

v0H1

e−p2η

+
D7

(Pr + k2)2 − (Pr + k2) − (M + iω)
e−(Pr+k2) η

+
D8

(Pr + p2)2 − (Pr + p2) − (M + iω)
e−(Pr+p2) η

+
D9

(p2 + β2)2 − (p2 + β2) − (M + iω)
e−(p2+β−2) η

+
D10

(k2 + β2)2 − (k2 + β2) − (M + iω)
e−(k2+β2) η,

(3.59)
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where

D11 = − D4

4P 2
r − 2Pr − (M + iω)

− D5

(Pr + β2)2 − (Pr + β2) − (M + iω)

− D6

4β2
2 − 2β2 − (M + ω)

+
F7

v0H1

− D7

(Pr + k2)2 − (Pr + k2) − (M + iω)

− D8

(Pr + p2)2 − (Pr + p2) − (M + iω)

− D9

(p2 + β2)2 − (p2 + β2) − (M + iω)

− D10

(k2 + β2)2 − (k2 + β2) − (M + iω)
,

and D12 = 0. Substituting equations (3.58), (3.33) and (3.31) in (3.2) gives

f2(η) =
1

v0H1
(v0H1 + 2) e−k2 η − 2

v0H1
e−p2 η

+ED11e
−k2 η +

ED4

4P 2
r − 2Pr − (M + iω)

e−2Pr η

+
ED5

(Pr + β2)2 − (Pr + β2) − (M + iω)
e−(Pr+β2) η

+
ED6

4β2
2 − 2β2 − (M + ω)

e−2β2 η − EF7

v0H1
e−p2 η

+
ED7

(Pr + k2)2 − (Pr + k2) − (M + iω)
e−(Pr+k2) η

+
ED8

(Pr + p2)2 − (Pr + p2) − (M + iω)
e−(Pr+p2)η

+
ED9

(p2 + β2)2 − (p2 + β2) − (M + iω)
e−(p2+β2) η

+
ED10

(k2 + β2)2 − (k2 + β2) − (M + iω)
e−(k2+β2) η

+α

(

−2p2
2(p2 + iω)

v0H2
1

+
k2

2(v0H1 + 2)(k2 + iω)η

v0H1

√

1 + 4(M + iω)

)

e−k2η

+α
2p2

2(p2 + iω)

v0H2
1

e−p2 η. (3.60)
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Therefore the boundary layer velocity is given by

u(η, t) =
u0

v0H

(

e−β2 η − e−Pr η
)

+ u0EF8 e
−β2 η

−u0EK5

v0H
e−Pr η − u0EA4 e

−2Pr η

2v0P 2
r (4P 2

r − 2Pr −M)

− u0EA5 e
−(Pr+β2) η

v0β2(β2 + Pr)((β2 + Pr)2 − (β2 + Pr) −M)

− u0EA6 e
−2β2 η

2v0β2(2β2 − Pr)(4β
2
2 − 2β2 −M)

+αu0
P 3

r e
−Pr η

v0H2
+ αu0

(

−P 3
r

v0H2
+

β3
2η

v0H
√

(1 + 4M)

)

e−β2 η (3.61)

+

(

Eαu0F12 + Eαu0
β3

2F8η√
1 + 4M

)

e−β2 η +
Eu0αK5P

3
r

v0H2
e−Pr η

+
u0EαF9 e

−2Pr η

4P 2
r − 2Pr −M

+
Eαu0F10 e

−(Pr+β2)η

(Pr + β2)2 − (Pr + β2) −M
+
Eu0αF11 e

−2β2 η

4β2
2 − 2β2 −M

+
ǫu0e

(iωt−k2 η)

v0H1
(v0H1 + 2) − 2ǫu0e

(iωt−p2 η)

v0H1

+ǫED11 e
(iωt−k2 η) +

D4ǫu0e
(iωt−2Pr η)

4P 2
r − 2Pr − (M + iω)

+
ED5u0ǫe

(iωt−(Pr+β2) η)

(Pr + β2)2 − (Pr + β2) − (M + iω)

+
ED6ǫu0e

(iωt−2β2 η)

4β2
2 − 2β2 − (M + ω)

− ǫu0EF7 e
(iωt−p2 η)

v0H1

+
ED7ǫu0e

(iωt−(Pr+k2) η)

(Pr + k2)2 − (Pr + k2) − (M + iω)

+
ED8u0ǫe

(iωt−(Pr+p2) η)

(Pr + p2)2 − (Pr + p2) − (M + iω)

+
ED9u0ǫe

(iωt−(p2+β2) η)

(p2 + β2)2 − (p2 + β2) − (M + iω)

+K1 e
(iωt−(k2+β2) η) +K2 e

(iωt−k2 η)

+K3 e
(iωt−p2 η),
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where

K1 =
ED10u0ǫ

(k2 + β2)2 − (k2 + β2) − (M + iω)
,

K2 =

(

−2p2
2(p2 + iω)

v0H2
1

+
k2

2(v0H1 + 2)(k2 + iω)η

v0H1

√

1 + 4(M + iω)

)

αu0ǫ,

K3 =

(

2p2
2(p2 + iω)

v0H2
1

)

αu0ǫ.
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3.2.1 Results and Discussions

Figure 3.1 shows the variation of the temperature profile with the Hartmann number

M. The temperature increases with increasing M in both Figures 3.1 (a) and 3.1 (b)

implying that an applied magnetic field can be used as a means of heating a fluid.

This result agrees with published results such as Sahoo et al (2003), Anuar Bég et al

(2005) and Alam et al (2007). In Figure 3.1 (b) the Eckert number is increased from

E = 0.001 to E = 0.01 while maintaining the same values of the Hartmann number as

in Figure 3.1 (a). The temperature becomes negative for small values of M implying a

rapid cooling of the fluid with increasing Eckert numbers. This suggests that, perhaps

a combination of moderate Eckert numbers and small Hartmann numbers could be

used as a means of reducing the boundary layer temperature.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ

                              η
(a)

M=0
M=5
M=15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

θ

                         η
(b)

M=O
M=5
M=15

Figure 3.1: The temperature profile with Pr = 7, v0 = 0.9, ǫ = 0.001, α = 0.001,

t = π/2ω, v0 = 0.9. ω = 2.5, u0 = 0.001; (a) E = 0.001 and (b) E = 0.01
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In Figure 3.2 the temperature decreases with increasing viscoelastic parameter α,

Hsiao (2007) and Bataller (2007). When the viscoelastic parameter is zero which im-

plies essentially a Newtonian fluid, the temperature is higher than when α 6= 0. This

means that a Newtonian fluid tends to heat-up much faster than a non-Newtonian

fluid. In Figure 3.2 (b), we used E = 0.01 instead of E = 0.001 and kept the variation

of the viscoelastic parameter as in Figure 3.2 (a). The temperature still decreases

with the increasing viscoelastic parameter but at a much quicker rate than in Figure

3.2 (a), and becomes negative for larger viscoelastic parameterS.
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Figure 3.2: The temperature profile with Pr = 7, ǫ = 0.001, t = π/2ω, M = 6,

v0 = 0.9. ω = 2.5, u0 = 0.001; (a) E = 0.001 and (b) E = 0.01
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Figure 3.3 shows the effect of suction on the temperature . The temperature increases

with increasing suction, Sahoo et al (2003) and Soundalgekar et al (2004). In Figure

3.3 (b) we increased the Eckert number from E = 0.001 to E = 0.01 while keeping

the same values of suction as in Figure 3.3 (a). The temperature still increases with

increasing suction. In addition we observe negative temperatures in Figure 3.3 (b).

These differences are due to the effect of the Eckert number. This again suggests the

possibility that a combination of suction and the Eckert number could be used as a

means of controlling the boundary layer temperature.
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Figure 3.3: The temperature profile with Pr = 7,M = 6, ǫ = 0.001, α = 0.001,

ω = 2.5, t = π/2ω, u0 = 0.001; (a) E = 0.001 and (b) E = 0.01.

68



Figure 3.4 shows the variation of the temperature profile with the angular frequency.

In Figure 3.4 (a), for small Eckert numbers, the temperature increases slightly with

increasing ω. These results agree with the earlier findings, for example by Alam

(2007). In Figure 3.4 (b) where the Eckert number is larger, the temperature dips

below zero before increasing to zero far from the plate.
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Figure 3.4: The temperature profile with Pr = 7, M = 6, ǫ = 0.001, α = 0.001,

v0 = 0.9, t = π/2ω, u0 = 0.001; (a) E = 0.001 and (b) E = 0.06.

Figure 3.5 shows the variation of the temperature profiles with Eckert numbers. The

temperature decreases with increasing Eckert numbers, Gschwendtner (2004). In

addition, for small Eckert numbers the boundary layer temperature dips below zero

near the plate surface. This means that the Eckert number tends to reduce the
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boundary layer temperature. This may be explained by the fact that increasing

the Eckert number is equivalent to decreasing the specific heat capacity, which is a

measure of the energy needed to increase the temperature.
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Figure 3.5: The temperature profile with Pr = 7, M = 6, ǫ = 0.001, v0 = 0.9,

α = 0.001, t = π/2ω, ω = 2.5, u0 = 0.001.

In Figure 3.6 we observe that the temperature decreases with increasing Prandtl

numbers. This may be explained by the fact that increasing the Prandtl number

is equivalent to reducing thermal diffusivity which characterizes the rate at which

the heat is conducted, White (1999) and Cebeci and Bradshaw (1984). This result

agrees well with the earlier work, for example, Sattar and Alam (1995), Vajravelu

and Roper (1999), Soundalgekar et al (2004), Bataller (2007) and Pantokratorras

(2008). In Figure 3.6 (b), larger Eckert numbers lead to very rapid decreases in the
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temperature to below zero near the plate surface. This is consistent with the fact

that the thermal boundary layer thickness decreases with increasing Prandtl number,

Cebeci and Bradshaw (1984).This result is in good agreement with Soundalgekar

(2004) and Attia (2003).
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Figure 3.6: The temperature profile with M = 6, ǫ = 0.001, α = 0.001, ω = 2.5,

t = π/2ω, v0 = 0.9, u0 = 0.001; (a) E = 0.001 and (b) E = 0.01.
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Figure 3.7 shows the variation of boundary layer velocity with suction. As expected

the boundary layer velocity decreases with increasing suction. Indeed when α = 0,

we found the same results as Soundalgekar et al (2004). Increasing suction means

that more fluid is taken out of the system, thereby reducing the momentum boundary

layer.
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Figure 3.7: The velocity profile with M = 5, Pr = 7, E = 0.001, ǫ = 0.001,

α = 0.01, ω = 2.5, t = π/2ω, u0 = 0.001.
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Figure 3.8 shows the variation of the velocity profile with Eckert numbers. The

boundary layer velocity increases with increasing E. Increasing the Eckert number is

the equivalent to increasing the square of the characteristic velocity of the flow.
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Figure 3.8: The velocity profile with M = 4, Pr = 7, ǫ = 0.001, α = 0.01,

v0 = 0.9, t = π/2ω, ω = 2.5, u0 = 0.001.

Figure 3.9 shows the variation of boundary layer velocity profile with Hartmann

numbers M. The velocity decreases with increasing Hartmann numbers for all Eckert

numbers Hayat et al (2003), Vajravelu and Rolins (2004) and Anuar-Bég et al (2005).

This is explained by the fact that increasing Hartmann numbers is the same as in-

creasing the Lorentz force that opposes the flow. The reduction in the boundary layer

velocity with increasing magnet force provides a means of controlling the flow in the
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desired direction. In Figure 3.9 (b) the Eckert number is increased while maintaining

the same variation of Hartmann numbers as in Figure 3.9 (a). The larger the Eckert

number, the larger the amplitude of the velocity. This suggests that a combination

of suitable Hartmann numbers and desired values of Eckert numbers could possibly

provide a means of controlling and reducing the boundary layer velocity.
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Figure 3.9: The velocity profile with Pr = 7, ǫ = 0.001, α = 0.01, v0 = 0.9,

t = π/2ω, ω = 2.5, u0 = 0.001; (a) E = 0.001 and (b) E = 0.01.
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Figure 3.10 shows the variation of the velocity profile with the angular frequency. The

velocity does not depend on the angular frequency. In Figure 3.10 (b) we increased

Eckert number from E = 0.001 to E = 0.01 while maintaining the same values of ω

in Figure 3.10 (a). The larger the Eckert number, the larger the amplitude of the

velocity.
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Figure 3.10: The velocity profile with M = 4, Pr = 7, ǫ = 0.001, α = 0.01,

v0 = 0.9, t = π/2ω, u0 = 0.001; (a) E = 0.001 and (b) E = 0.01.
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Figure 3.11 shows the variation of the boundary layer velocity with the viscoelastic

parameter α. The boundary layer velocity increases with increasing α. In Figure

3.11 (b) the boundary layer velocity is increasing with increasing α faster than in

Figure3.11 (a). This result agrees well with Alam et al (2007). This means that

for large values of the Eckert number, the effect of the Eckert number is much more

significant than that of α . When there is no energy changes (i. e θ = 0), this result

agrees with Hayat et al (2003).
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Figure 3.11: The velocity profile with M = 4, ǫ = 0.001, Pr = 7, v0 = 0.9,

t = π/2ω, ω = 2.5, u0 = 0.001; (a) E = 0.001 and (b) E = 0.01.
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Figure 3.12 shows the variation of the boundary layer velocity with Prandtl numbers.

The velocity increases with increasing Prandtl numbers for all Eckert numbers. The

Prandtl number is essential in heat transfer, it controls the relative thickness of the

momentum and thermal boundary layers, Cebeci and Bradshaw (1984). Increasing

Prandtl numbers is equivalent to increasing the momentum diffusivity. The velocity

amplitude is however higher in Figure 3.12(b) than in Figure 3.12(a). This result

agrees well with Sahoo et al (2003) and Attia (2003).
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Figure 3.12: The velocity profile with M = 2, ǫ = 0.001, v0 = 0.9, ω = 2.5,

t = π/2ω, α = 0.1 u0 = 0.001; (a) E = 0.001 and (b) E = 0.01.
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3.3 Comparison of results when E = 0 and E 6= 0

In this section we compare the results of Chapters 2 and 3 for zero and small but

non-zero Eckert numbers. Figure 3.13 shows the comparison of the variation of the

temperature with the angular frequency. In Figure 3.13(a) the Eckert number is zero

while in Figure 3.13 (b) the Eckert number is small but non-zero. In the absence

of the Eckert number, the temperature decreases asymptotically with the angular

frequency. For non-zero Eckert numbers, the temperature still does not depend on

the angular frequency but there is now a rapid cooling of the fluid resulting in negative

temperatures.
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Figure 3.13: The temperature profile with Pr = 7, v0 = 0.9, ǫ = 0.001, α =

0.001, t = π/2ω, v0 = 0.9. M = 6; (a) E = 0 and (b) E = 0.06

Figure 3.14 shows a comparison of the variation of the temperature with the Prandtl
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number in the absence and presence of the Eckert number. In all these cases the tem-

perature decreases with increasing Prandtl numbers. In Figure 3.14 (b) the boundary

layer temperature dips below zero near the plate surface.
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Figure 3.14: The temperature profile with M = 6, v0 = 0.9, ǫ = 0.001, α =
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Figure 3.15 shows the variation of the boundary layer velocity with the Prandtl num-

bers for zero and small Eckert numbers respectively. The boundary layer velocity

increases with increasing Prandtl numbers. In Figure 3.15 (b) the Eckert number

is small but different to zero whereas in Figure 3.15 (a) the Eckert number is zero.

The amplitude of the velocity is much higher in Figure 3.15 (b) than in Figure 3.15

(a). This means that the larger the Eckert number, the higher the amplitude of the

velocity.
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Figure 3.15: The velocity profile with M = 2, v0 = 0.9, ǫ = 0.001, α = 0.01,

t = π/2ω, v0 = 0.9. ω = 2.5; (a) E = 0 and (b) E = 0.01
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Figure 3.16 shows the comparison of the variation of the velocity profiles with the

viscoelastic parameter in the absence and presence of Eckert numbers. The velocity

decreases with increasing viscoelastic parameter in Figure 3.16 (a) and increases with

the increasing viscoelastic parameter in Figure 3.16 (b) depending on the value of the

Eckert number.

0 0.5 1 1.5 2 2.5
−0.01

−0.005

0

0.005

0.01

0.015

u

                  η
(a)

α=0.000
α=0.015
α=0.2

0 0.5 1 1.5 2 2.5
−100

0

100

200

300

400

500

600

700

                         η
(b)

u

α=0.000

α=0.015

α=0.2

Figure 3.16: The velocity profile with Pr = 7, v0 = 0.9, ǫ = 0.001, M = 4,

t = π/2ω, v0 = 0.9. ω = 1.5; (a) E = 0 and (b) E = 0.001

Figure 3.17 shows the comparison of variation of boundary layer velocity with angular
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frequency in absence and presence of Eckert number.The velocity does not depend

on the angular frequency. In Figure 3.17 (b) the amplitude of the velocity is much

higher than in Figure 3.17 (a).
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Figure 3.17: The velocity profile with Pr = 7, v0 = 0.9, ǫ = 0.001, α = 0.01,

t = π/2ω, M = 6; (a) E = 0 and (b) E = 0.06

Figure 3.18 shows the comparison of variation of boundary layer velocity with suction

for zero and non-zero Eckert numbers. The velocity is decreasing with increasing

suction. In Figure 3.18 (b) the Eckert number is small but different to zero whereas

in Figure 3.18 (a) the Eckert number is zero. The amplitude of the velocity is much
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higher in Figure 3.18 (b) than in Figure 3.18 (a). This suggests that combining the

suction velocity and moderated Eckert number may serve as a means of controlling

the boundary layer velocity.
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Figure 3.18: The velocity profile with Pr = 7, ω = 2.5, ǫ = 0.001, α = 0.01,

t = π/2ω, M = 5; (a) E = 0 and (b) E = 0.01

Figure 3.19 shows the comparison of variation of boundary layer velocity with Hart-

mann numbers. The velocity is decreasing with increasing Hartmann numbers. When

we compare Figure 3.19 (b) and Figure 3.19 (a), we found that the velocity decreases

faster in Figure 3.19 (a) than in Figure 3.19 (b).
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Figure 3.19: The velocity profile with Pr = 7, ω = 2.5, ǫ = 0.001, α = 0.01,

t = π/2ω, ω = 1.5; (a) E = 0 and (b) E = 0.001

From the above comparison, the physical effect of the Eckert number in our study is

to reduce heat transfer and to enhance the boundary layer velocity.
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3.4 Skin-friction and rate of heat transfer

The skin-friction coefficient or shear stress at the wall is defined as the force exerted by

the fluid on the surface over which it flows. Physically, the skin-friction is the resistive

drag force caused by shear in the boundary layer,Vajravelu and Mohapatra (1990).

Boundary layer control is very important in many disciplines such as in aeronauti-

cal engineering where they use artificial methods such as boundary layer suction to

reduce the drag and to improve the vehicle power, Hayat et al (2002). Among the

recent studies Sahoo et al (2003) investigated the effects of an applied magnetic field

and sink strength on the skin-friction. They found that the skin-friction decreases

with the increase in the applied magnetic field and sink strength for both mercury

and an electrolytic solution. Soundalgekar et al (2004) studied the effects of viscous

dissipative heat on transient free convection flow. They investigated the effects of

Eckert numbers and suction on the skin-friction. They found that the skin-friction

increases with increasing Eckert numbers in the case of air and decreases with increas-

ing Eckert number in the case of water. Murthy et al (2007) extended the study of

Sahoo et al (2003) to memory fluids. They found that the skin-friction for both mer-

cury and electrolytic solutions decreases with an increase in the applied magnetic field

and the sink strength. They did not however consider the effect of the viscoelastic

parameter, the Eckert number, the angular frequency and suction on the skin-friction.

Misra and Shit (2009) studied biomagnetic viscoelastic fluid flow over a stretching

85



sheet. In their study they investigated the effect of fluid viscoelasticity and ferromag-

netic interaction on skin-friction. They found that the skin-friction increases with

increasing fluid viscoelasticity but they also found in the case of small viscoelasticity

that the skin-friction increases with Prandtl numbers.

Mathematically, the skin friction is defined as:

τ = −µ
(

∂u

∂η

)

η=0

. (3.62)

Equation (3.62) reduces to:

τ = −u0

(

f ′

1(0) + ǫeiωt f ′

2(0)
)

, (3.63)

and differentiating equations (3.53) and (3.60) and substituting into (3.63) gives:

τ = − (ξ1 + ξ2 + ξ3) − u0ǫe
iωt (χ1 + χ2 + χ3) (3.64)
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where
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The variation of the skin friction with the various parameter values is shown in tables

3.1 and 3.2 for zero and small Eckert numbers respectively. The Prandtl number used

corespond to water (7) and air (0.72).
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Table 3.1: The skin friction for zero Ekert number

E Pr M v0 ω α τ

0.000 7 6 0.9 2.5 0.001 1.7975

0.000 0.72 6 0.9 2.5 0.001 −0.0149

0.000 1 6 0.9 2.5 0.001 −0.0125

0.000 7 6 0.9 2.5 0.001 1.7975

0.000 8 6 0.9 2.5 0.001 6.7889

0.000 7 6 0.9 2.5 0.001 1.7975

0.000 7 2 0.9 2.5 0.001 2.8086

0.000 7 6 0.9 2.5 0.001 1.7975

0.000 7 6 0.5 2.5 0.001 3.2410

0.000 7 6 0.9 2.5 0.001 1.7975

0.000 7 6 0.9 6 0.001 1.8666

0.000 7 6 0.9 2.5 0.001 1.7975

0.000 7 6 0.9 2.5 0.005 9.6543

Table 3.1 shows that the skin-friction coefficient in the case of zero Eckert numbers

increases with increasing Prandtl numbers, angular frequency and viscoelastic param-

eter whereas it decreases with increases in Hartmann numbers and suction. These
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findings are in agreement with the earlier results in Alam et al (2007) and Mustafa

et al (2008).

Table 3.2: The skin friction for small Eckert number

E Pr M v0 ω α τ

0.005 7 6 0.9 2.5 0.001 −0.1751

0.009 7 6 0.9 2.5 0.001 −1.7686

0.005 0.72 6 0.9 2.5 0.001 −0.0149

0.005 1 6 0.9 2.5 0.001 −0.0125

0.005 7 6 0.9 2.5 0.001 −0.1751

0.005 8 6 0.9 2.5 0.001 −64.4977

0.005 7 6 0.9 2.5 0.001 −0.1751

0.005 7 2 0.9 2.5 0.001 −1.9990

0.005 7 6 0.9 2.5 0.001 −0.1751

0.005 7 6 0.5 2.5 0.001 −8.2636

0.005 7 6 0.9 2.5 0.001 −0.1751

0.005 7 6 0.9 6 0.001 −0.1141

0.005 7 6 0.9 2.5 0.001 −0.1751

0.005 7 6 0.9 2.5 0.005 −57.2924
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Table 3.2 shows that the skin-friction coefficient in the case of small Eckert numbers

increases with increase in Prandtl numbers in the case of (air), suction and Hartmann

numbers, Soundalgekar et al (2004), whereas it is decreasing with increases in the

Eckert number numbers, Prandtl numbers (in the case of water) and viscoelastic

parameter, Mustafa et al (2008), Sahoo et al (2003), Ramana et al (2007), Alam et al

(2007) and Murthy et al (2007). Increasing the skin-friction in any system generally

reduces the velocity of the flows.

The rate of heat transfer is given in terms of the Nusselt number, Nu. It is an impor-

tant dimensionless parameter that is generally expressed as the ratio of convective to

conductive heat transfer across the fluid layer, Özişik (1988). Some of the recent stud-

ies that have considered heat transfer in boundary layer flows include those of Sahoo

et al (2003) who studied MHD unsteady free convection flow past an infinite vertical

plate with a constant suction. They investigated the effects of an applied magnetic

field and sink strength on the rate of heat transfer. They found that the rate of heat

transfer decreases with the increase in the applied magnetic field and sink strength

for both mercury and electrolytic solutions. Soundalgekar et al (2004) studied the

effects of viscous dissipative heat on transient free convection flow. They investigated

the effects of Eckert numbers and suction on the rate of heat transfer. They found

that the rate of heat transfer decreases with increases in the Eckert numbers whereas

it increases with increasing suction. Murthy et al (2007) extended the study of Sahoo

et al (2003) to memory fluids. They found that the heat transfer for mercury and
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electrolytic solution decreases with the increase in applied magnetic field. They did

not however consider the effect of the viscoelastic parameter, the Eckert number, the

angular frequency and suction on the Nusselt number. Misra and Shit (2009) studied

biomagnetic viscoelastic fluid flow over a stretching sheet. In their study they inves-

tigated the effect of fluid viscoelasticity and ferromagnetic interaction on the rate of

heat transfer.

They found that the rate of heat transfer decreases with increasing fluid viscoelastic-

ity.

In mathematical form, the Nusselt number is defined as:

Nu = −
(

∂θ

∂η

)

η=0

(3.65)

= −h′1(0) − (h′2(0) + h′1(0))
ǫ

2
eiωt
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Differentiating equations (3.39) and (3.36) and substituting into (3.66) gives:
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.
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The rate of heat transfer for various parameter is given in tables 3.3 and 3.4.

Table 3.3: The rate of heat transfer for zero Ekert number

E Pr M v0 ω α Nu

0.000 7 6 0.9 2.5 0.001 6.9979

0.000 0.72 6 0.9 2.5 0.001 0.7191

0.000 1 6 0.9 2.5 0.001 0.9989

0.000 7 6 0.9 2.5 0.001 6.9979

0.000 8 6 0.9 2.5 0.001 7.9978

0.000 7 6 0.9 2.5 0.001 6.9979

0.000 7 2 0.9 2.5 0.001 6.9979

0.000 7 6 0.9 2.5 0.001 6.9979

0.000 7 6 0.5 2.5 0.001 6.9979

0.000 7 6 0.9 2.5 0.001 6.9979

0.000 7 6 0.9 6 0.001 6.9960

0.000 7 6 0.9 2.5 0.001 6.9979

0.000 7 6 0.9 2.5 0.005 6.9979

Table 3.3 shows that the Nusselt numbers at the surface in case of zero Eckert numbers

decreases with increasing Prandtl numbers and is slightly decreasing with increasing
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the angular frequency. In this case the Nusselt number is independent of Hartmann

numbers, suction and the visco-elastic parameter.

Table 3.4: The rate of heat transfer for small Ekert number

E Pr M v0 ω α Nu

0.005 7 6 0.9 2.5 0.001 −2.7500

0.009 7 6 0.9 2.5 0.001 −10.5482

0.005 0.72 6 0.9 2.5 0.001 0.7191

0.005 1 6 0.9 2.5 0.001 0.9990

0.005 7 6 0.9 2.5 0.001 −2.7500

0.005 8 6 0.9 2.5 0.001 −83.5260

0.005 7 6 0.9 2.5 0.001 −2.7500

0.005 7 2 0.9 2.5 0.001 −6.6049

0.005 7 6 0.9 2.5 0.001 −2.7500

0.005 7 6 0.5 2.5 0.001 −24.5852

0.005 7 6 0.9 2.5 0.001 −2.7500

0.005 7 6 0.9 6 0.001 −2.7409

0.005 7 6 0.9 2.5 0.001 −2.7500

0.005 7 6 0.9 2.5 0.005 −43.3847
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Table 3.4 shows that the Nusselt number in the case of small Eckert numbers decreases

with increases in Prandtl numbers (water), the Eckert number, viscoelastic parameter.

It however increases with increases in Hartmann numbers, suction, angular frequency

and the Prandtl number (air). These results are also in agreement with the earlier

findings by Soundalgekar et al (2004), Mustafa et al (2008), Sharma et al (1995) and

Alam et al (2007). The Eckert number, Prandtl number (in the case of water) for

example, and the viscoelastic parameter reduces heat transfer whereas in the case

of air the Prandtl number, Hartmann numbers and suction velocity enhance heat

transfer.

3.5 Conclusion

In this chapter we have considered the effects of small but non-zero Eckert num-

bers, small viscoelastic parameters, angular frequency, Hartmann number, suction

parameter and the Prandtl number on the flow of a second grade viscoelastic fluid.

The multi-parameter perturbation technique was used to solve the problem and our

investigations show that;

• The temperature increases with Hartmann numbers.

• The temperature decreases with the viscoelastic parameter

• The temperature increases with suction.
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• The temperature increases slightly with the angular frequency.

• The temperature decreases with increasing Eckert numbers.

• Increasing the Prandtl number reduces the boundary layer temperature.

• The boundary layer velocity decreases with increasing suction.

• The boundary layer velocity increases with Eckert numbers.

• The boundary layer velocity increases with increasing viscoelastic parameters.

• Increasing the Prandtl number increases the boundary layer velocity.

• The boundary layer velocity is independent of the angular frequency.

• Increasing the magnetic field reduces the boundary layer velocity.

• The boundary layer velocity decreases with increasing viscoelastic parameter for

zero Eckert number whereas it increases with increasing viscoelastic parameter

in presence of small Eckert number.

• The boundary layer velocity increases with increasing Prandtl number for zero

and small Eckert number. The amplitude of the velocity is higher in the presence

of small Eckert number.

• The temperature decreases with increasing Prandtl number for zero and small

Eckert number. In presence of small Eckert number the boundary layer tem-

perature dips below zero near the plate surface.
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Chapter 4

Conclusion

We have considered the two dimensional flow of an incompressible and electrically

conducting second grade fluid past an infinite porous plate with constant suction.

The flow is permeated by a uniform transverse magnetic field. The aim of this study

was to use the multi-parameter perturbation technique to study the effects of the

Eckert number on the flow of a second grade fluid. We further aimed to investigate

the effects of other fluid and physical parameters such as the Prandtl numbers, Hart-

mann numbers, the viscoelastic parameter, angular frequency and suction velocity

on the boundary layer velocity, temperature, skin friction and the rate of heat trans-

fer. Similarity transformations were used to reduce the governing partial differential

equations to ordinary differential equations. We used perturbation methods to solve

the coupled ordinary differential equations for zero Eckert numbers and the multi-

parameter perturbation technique to solve the coupled ordinary differential equations
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for small Eckert numbers.

We analyzed the effect of the fluid parameters such as the Hartmann number, suction

velocity, angular frequency, Prandtl number and the viscoelastic parameter on the

boundary layer velocity and temperature. In the absence of the Eckert numbers we

found that:

• increasing the magnetic field reduces the boundary layer velocity. This is in line

with the earlier finding by, for example, Hayat et al (2003) and Vajravelu and

Rolins (2004)

• The boundary layer velocity increases or decreases with Prandtl numbers de-

pending on the quantum of the physical parameters. This is in line with the

findings by Cebeci and Bradshaw (1984).

• The boundary layer velocity decreases with increasing suction velocity

• The velocity decreases with increases in the viscoelastic parameter α, so that

large values of α lead to back flow.

• The temperature and velocity are both independent of the angular frequency.

• The temperature decreases with increasing Prandtl numbers.

In Chapter 3 we solved the coupled ordinary differential equations for small Eckert

numbers. We found that:

• The temperature increases with Hartmann numbers.
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• The temperature decreases with the viscoelastic parameter

• The temperature increases with suction.

• The temperature increases slightly with the angular frequency.

• The temperature decreases with increasing Eckert numbers.

• Increasing the Prandtl number reduces the boundary layer temperature.

• The boundary layer velocity decreases with increasing suction.

• The boundary layer velocity increases with Eckert numbers.

• The boundary layer velocity increases with increasing viscoelastic parameters.

• Increasing the Prandtl number reduces the boundary layer velocity.

• The Nusselt number and skin-friction decrease with increasing Eckert number

or viscoelastic parameter.

In addition, we compared the results of zero and small Eckert numbers. We found

that for small Eckert numbers the temperature decreases faster than for zero Eckert

numbers. Small Eckert numbers enhance the boundary layer velocity. The temper-

ature increases with increases in the applied magnetic field. This may be useful in

medical applications such as in cancer therapy where this effect may help to arrest

the cancerous growth of tumors, Misra et al (2008).
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Our results agree or disagree with the earlier published works depending on the nature

of parameters in the system, for example, when the energy equation is excluded our

results agree with those of Hayat et al (2003) on the effects of Hartmann numbers,

frequency and viscoelastic parameters on the boundary layer velocity in the case

of constant suction. If α = 0, our results agree with those of Soundalgekar et al

(2004). Our results also agree with the results of Murthy et al (2007) on the effects

of an applied magnetic field on the velocity but differ from their results on the effects

of Eckert numbers. These differences may arise from the boundary conditions and

the additional term in the energy equations. In our case we found that the applied

magnetic field induces a resistive force to the flow whose consequence is to reduce

the velocity and enhance the temperature. In addition, our results differ from the

results of Vajravelu and Roper (1999) on the effects of viscoelastic parameter. These

differences may arise from the additional term in the energy equations and in our

case we included the applied magnetic field which is not in their study.

The perturbation and multi-parameter perturbation methods produce approximate

analytic solutions that can be interpreted mathematically and physically for various

parameters. Numerically evaluated solutions may not provide the same intuitive feel

for the effects of these parameters. These methods give reasonable accuracy, Holmes

(1995). Unfortunately these methods use small parameters which, perhaps may be

their main weakness since some behaviours of the solutions may not be observed.
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In future, it may be worthwhile to solve this problem using a combination of nu-

merical methods for large Eckert and viscoelastic parameters and Fourier or Laplace

transforms.
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Appendix

List of Symbols

A1, A2 First two Rivlin-Ericksen tensors

B0 Uniform magnetic field strength

Cp Specific heat at constant pressure

E Eckert number, E = u2
0/Cp∆T

g Gravitational acceleration

Gr Grashof number, Gr = gβν∆T/u0v0

k Thermal diffusivity, k = λc/ρcp

M Hartmann number, M = σB2
0ν/ρv

2
0

Nu Nusselt number

P Pressure

Pr Prandtl number, Pr = µcp/k
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t Dimensionless time

t′ time

T ′ Fluid temperature

T ′

w Temperature of the surface

T ′

∞
Ambient fluid temperature

u0 Constant velocity

u′ Velocity component parallel to the plate

u Non-dimensional velocity

v0 Constant suction

v′ Constant normal velocity

x′ Cartesian coordinate

y′ Normal cartesian coordinate
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Greek Symbols

α Viscoelastic parameter, α = α∗v2
0/ν

2

α1, α2 Normal stress moduli

α∗ Material parameter of Second grade fluid

β Coefficient of volume expansion

ǫ Amplitude parameter

η Similarity variable

θ Dimensionless temperature

λc Fluid thermal conductivity

µ Coefficient of dynamic viscosity

ν Coefficient of kinematic viscosity

ρ Fluid density

σ Fluid electrical conductivity

τ Skin-friction

ω′ Angular frequency

ω non-dimensional angular frequency

115


