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ABSTRACT 

The South African dairy industry has been characterized, in recent years, by an observed 

movement towards fewer, larger producers, implying a more competitive milk market in which 

efficiency measures are likely to become increasingly important determinants of farm financial 

success and survival. Due to the imperfect nature of efficiency estimates, a more integrated 

approach is adopted in this study in which economic performance is defined as an unobservable 

variable for which there exist many imperfect indicators, including various measures of efficiency. 

This study presents a two-stage approach to analyse economic performance, and its key 

determinants, for a panel of commercial milk producers in East Griqualand (EG) and Alexandria, 

South Africa, over the period 2007-2014. Stochastic frontier analysis was used to estimate 

technical efficiency (TE) from a translogarithmic production function, selected ex-post from 

several specified models with different functional forms and distribution assumptions. Parametric 

scale efficiency (SE) was then estimated from the resulting scale elasticities and parameter 

estimates. Results indicate that sampled producers are, on average, highly technically efficient, 

generally operating close to the efficient frontier, and are relatively homogenous in production. 

The general decline of mean TE scores over the study period indicates that farms on the best 

practice frontier became more efficient over time, while the average farm has become less efficient 

in relation to the advancing frontier. High mean SE scores confirm that most farms do not 

experience a substantial loss in output due to scale efficiency problems, but rather to inefficiencies 

in production (TE). Analysis of SE scores reveals that most farms operated at suboptimal scale, 

with increasing returns to scale, and could improve output by expanding towards the optimal scale.  

Latent economic performance was modelled in a Multiple-Indicators, Multiple-Causes (MIMIC) 

model framework, with estimated TE and SE serving as imperfect indicators. Three latent indices 

were constructed to represent managerial quality regarding the breeding, feeding and labour 

programme, and were included in the structural equation, in conjunction with traditional 

explanatory variables, as latent causes of economic performance. Evaluation of model fit for 

several specified models led to the selection of the most simplistic specification, in which the latent 

managerial constructs were not included. Results suggest efficiency, milk yield per cow, and level 

of specialization in dairying all have a significant effect on the economic performance of the 
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sampled farms. It should be noted that the sign of latent economic performance was not in line 

with expectations, and requires further research.
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CHAPTER 1: INTRODUCTION 

1.1 General Introduction 

Agricultural production is an integral part of the national economy contributing R72.2 billion to 

GDP in 2015. Despite a decrease in agriculture’s share of GDP from 6% in the 1970’s to 2% in 

2015 it remains an important sector of the national economy (Department of Agriculture, Forestry 

and Fisheries (DAFF), 2016). The South African dairy industry is the fifth largest agricultural 

industry in the sector, providing 60 000 jobs at the farm level and a further 40 000 indirect jobs in 

associated value chains, such as processing and milking (DAFF, 2014b). South Africa is currently 

a net exporter of dairy products, importing 40 199 tons and exporting 71 099 tons during 2015 

(DAFF, 2015). In global terms, South Africa is a relatively small milk producing country, 

contributing just 0.5% of world milk production in 2014 (DAFF, 2014b). 

Dairy industries in many countries have undergone significant structural change in the past two 

decades, with a consolidation trend towards fewer, larger milk producers. Melhim et al. (2009) 

highlighted the magnitude of these structural changes in the United States (US) dairy industry, 

reporting that between 1974 and 2002 the number of farms with milking cows declined by 79%. 

Furthermore, from 1964 to 2005 the number of milking cows per farm in the US increased by 60%. 

Evidence of industry consolidation can be found in several other studies on US milk producers 

(El-Osta & Morehart, 2000; Gloy et al., 2002; Tauer & Mishra, 2006; Gillespie et al., 2009; 

Hanson et al., 2013).  

Evidence of significant structural change has also been found in other major milk producing 

countries such as New Zealand and Australia. Clark et al. (2007) found evidence of a consolidation 

trend in the New Zealand dairy industry, indicating that from 1994 to 2004 the number of cows on 

New Zealand dairy farms increased by 37%, while herd size increased by 63%. Kompas & Che 

(2003) reported a similar trend in the Australian dairy industry, reporting that between 1978-79 

and 1999-2000 the number of dairy producers nearly halved. This large decrease in the number of 

dairy producers was, however, accompanied by almost a 70% increase in total milk production. 

This consolidation trend among Australian milk producers was further substantiated by Kompas 

& Che (2006). Furthermore, between 2001 and 2007, Hansson & Ferguson (2011) noted that the 

number of Swedish dairy farms decreased by 40%, while average herd size increased over the 

same period.  
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This observed movement towards fewer, larger producers is indicative of a more competitive milk 

market. In the face of increased competition, the economic efficiency of a milk producer’s 

operation is likely to become an increasingly important determinant of farm financial success 

(Weersink et al., 1990) and survival in the industry (Tauer & Belbase, 1987; Bravo-Ureta & 

Rieger, 1991). 

There are several different measures of efficiency referenced in the literature, including technical, 

allocative, scale and economic efficiency. Technical efficiency may be defined as the ability of a 

firm to obtain maximum output from a given set of inputs (Farell, 1957). Scale efficiency measures 

the ray average productivity at the observed input scale relative to what is attainable at the most 

productive scale size (optimal scale) (Ray, 1998). In essence, this indicates how close the observed 

firm is to the optimal scale (Madau, 2011). Economic efficiency, which is the product of technical 

and allocative efficiency, refers to the ability of a firm to produce a predetermined quantity of 

output at minimum cost for a given level of technology (Farell, 1957). Economically efficient 

farmers utilize inputs to production effectively, producing output at lower cost for a given level of 

technology. This allows for improved profitability and a potential competitive advantage. In 

essence, commercial milk producers may be able to improve their competitive position in a highly 

competitive milk market through the exploitation of production advantages associated with 

improved levels of efficiency. In the long run, firms that are not technically efficiency will not 

survive, as the forces of competition will drive inefficient farms out of business (Tsionas, 2006).  

Investigating firm performance through the analysis of various measures of efficiency is 

commonplace in the literature although most studies consider only technical efficiency in their 

analyses. Likewise, farm performance has commonly been defined in terms of technical efficiency 

(Sedik et al., 1999; Diaz & Sanchez, 2008), although several studies have extended their scope to 

include allocative efficiency (Kalirajan & Shand, 2001) and economic efficiency (Hansson, 2007).  

Despite the continued popularity of efficiency measures in productivity analysis, it is important to 

highlight several possible limitations associated with their use as indicators of farm performance. 

Firstly, many definitions of efficiency exist, including economic, allocative, scale and technical 

efficiency (Coelli, 1995; Hansson, 2007). Secondly, there are various empirical techniques for the 

measurement of any one type of efficiency, the choice of which may have a significant effect on 

the estimated parameters and hence the validity of the results (Kalaitzandonakes & Dunn, 1995; 



 
 

3 
 

Balcombe et al., 2006; Bravo-Ureta et al., 2007). Finally, farm performance may be investigated 

using alternative measurement approaches, such as Total Factor Productivity (TFP) (Fraser & 

Hone, 2001; Fogarasi & Latruffe, 2009a) and Gross Value Added (GVA) (Thomassen et al., 2009; 

Giannakis & Bruggeman, 2015). TFP measures the overall efficiency of agricultural production 

and may be defined as the ratio of aggregate output to aggregate input (Pingali & Evenson, 2010; 

O’Donnell, 2010). Productivity growth therefore occurs when growth in output exceeds growth in 

inputs (Pingali & Evenson, 2010). GVA may be defined as the difference between the value of 

total production and non-factor costs, where non-factor costs may be defined as the total cost of 

all factors not directly attributable to the milk production process (Giannakis & Bruggeman, 2015). 

Given the imperfect nature of efficiency based performance analysis, it may be desirable to 

investigate the determinants of farm performance on a more integrated level, considering factors 

other than efficiency estimates. Investigating the economic performance of a farm, for instance, 

provides a means of identifying the critical factors that determine the success or failure of a farm. 

However, before proceeding with an analysis of economic performance, an unambiguous 

definition of the concept must be established. Economic performance is a concept lacking a concise 

definition among the literature although there is a general consensus that the definition depends 

upon the nature of the study and the aspect of performance that is to be investigated. Paul & Siegel 

(2006) consider economic performance as being based on the analysis of marketed inputs and 

outputs and define the concept in terms of productivity, technical efficiency and cost effectiveness. 

Lanoski (2000) identifies profitability measures, such as return on investment (ROI) and return on 

equity (ROE); growth, in terms of sales and market share, and firm financial success as common 

measures of economic performance. Although definitions of economic performance differ per their 

application, measures of productivity, financial success and growth are common themes among 

the literature. For the purposes of this study it is proposed that economic performance be defined 

as a latent, unobservable variable for which there exist many imperfect indicators, including 

various measures of efficiency (Richards & Jeffrey, 2000). 

Defining economic performance as a latent (unobservable) variable requires that an appropriate 

latent variable modelling framework be specified. For the purposes of this study, a structural 

equation modelling (SEM) framework is used to model latent economic performance. More 

specifically, the Multiple-Indicators, Multiple-Causes (MIMIC) model, a special case of SEM, is 
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selected for its ability simultaneously to model the effects of various “cause” and “indicator” 

variables on latent economic performance. Within the MIMIC framework, efficiency estimates, 

included as “indicator variables”, and traditional observable “cause” variables such as herd size 

can be modelled simultaneously. The result is a comprehensive analysis of dairy farm economic 

performance, and its key determinants, at a level of integration not typically considered among the 

literature. 

The rapid rate of consolidation identified in several important milk producing nations raises several 

important research questions, such as: 1) Do larger milk producers possess an inherent advantage 

over smaller producers, indicating the presence of size economies in the dairy industry? 2) In a 

highly competitive milk market, what strategies or factors are most important in improving 

economic performance and, hence, financial success? 3) Is technological variation between 

producers a significant determinant of farm performance and, therefore, a possible contributing 

factor to the consolidation trend? The answers to these questions could give commercial milk 

producers insight into which strategies or factors are critical determinants of economic 

performance. This would enable famers to target critical success factors, thereby focusing 

resources and managerial efforts on those factors most likely to improve farm performance. 

Through efficient allocation of resources, greater levels of production can be achieved, resulting 

in improved farm performance, market position, and hence, the likelihood of remaining in business 

despite industry consolidation. 

Over the past 20 years the South African (SA) dairy industry has also undergone major structural 

change as the country has adopted the global trend of liberalizing the marketing of its agricultural 

products (Du Toit et al., 2010). This change is characterized by concentration of production into 

fewer, larger dairy farms (Du Toit et al., 2010; Mkhabela & Mndeme, 2010). From January 2007 

to January 2015, the number of South African milk producers declined by 53%, from 3899 to 1834 

(Coetzee & Maree, 2015). Despite the marked decrease in the number of national milk producers, 

total South African milk production has risen from 1939 million litres in 1980 to 2686 million 

litres in 2012, a 39% increase (DAFF, 2013). Greater aggregate milk production on a national level 

may be explained in part by an observed increase in the average herd size of South African milk 

producers. From 2009 to 2014, the average national herd size increased from 209 to 353 milk 

cows, a 69% increase (Coetzee & Maree, 2010; 2015). This evidence indicates a consolidation 
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trend within the South African dairy industry whereby fewer, larger producers are beginning to 

dominate the provincial and national industry. 

The competitive nature of the domestic milk market, coupled with structural adjustment 

throughout the industry, has created the need for local milk producers to improve their economic 

performance in order to remain in the industry. Considering the consolidation trend, an important 

question is how performance varies across individual producers and what possible strategies or 

factors decision makers may consider to improve economic performance. Furthermore, variations 

in productivity at the farm level imply that some producers could improve their economic 

performance (Hansson, 2007). 

The observed consolidation trend has been attributed, in part, to scale economies within dairy 

industries, enabling larger producers to remain in production through expansion of their operations 

(Melhim et al., 2009). Kumbhakar (1993) highlighted the ability of large US dairy farms to achieve 

higher levels of economic efficiency and profit than smaller producers. Although US dairy 

producers may consider increasing herd size as a primary means of improving farm performance, 

this may not be the scenario in South Africa. To validate such a statement requires an investigation 

into the presence of scale economies on SA commercial dairy farms. Previous work on factors 

affecting various measures of performance and financial success on dairy farms has highlighted 

the positive effect of the following variables: herd size and milk yield (Gloy et al., 2002), 

managerial ability (Ford & Shonkwiler, 1994), quality of breeding programmes, feeding strategies, 

labour quality (Richards & Jeffrey, 2000) and level of specialization in dairy (El-Osta & Morehart, 

2000).  

To date, there is a limited body of literature on the productivity of South African milk producers, 

with only a few studies employing empirical analysis to dairy industry data. Beyers & Hassan 

(2001a) investigated size economies in South African dairy production using a long run average 

cost (LAC) curve approach. Mkhabela & Mndeme (2010) adopted a two-step approach to cost 

analysis of milk producers in the KwaZulu-Natal (KZN) Midlands of South Africa. The first step 

involved the estimation of farmers planned output through the estimation of a production function. 

The second stage involved the estimation of the LAC curve by calculating the average cost as total 

cost divided by planned output. 
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Beyers & Hassan (2001b) considered an application of stochastic frontier analysis to a cross-

section of South African milk producers in which the relative performance of translog and 

normalized quadratic profit function specifications were compared. Mkhabela et al. (2010) 

considered an application of stochastic frontier analysis to a panel of milk producers from the KZN 

Midlands, considering Cobb-Douglas and translog specifications of production technology. To the 

author’s best knowledge, these are the only two applications of frontier analysis to the South 

African dairy industry. The lack of research into the efficiency and performance of South African 

dairy farmers highlights the potential importance of this study. Estimating technical and scale 

efficiency and identifying their key determinants, will provide valuable information to dairy 

farmers, policy makers and extension officers alike. Furthermore, a latent variable modelling 

framework, able to identify factors affecting farm economic performance, has not yet been 

considered in the South African context. The integrated approach proposed herein aims to extend 

the literature on dairy farm performance in South Africa through the use of structural equation 

modelling techniques and latent variable analysis. Section 1.3 contains a comprehensive 

breakdown of the importance of this study. 

1.2 Objectives 

The primary objective of this study is to determine the factors contributing to the economic 

performance of a panel of commercial milk producers from East Griqualand, KwaZulu-Natal, and 

Alexandria, Eastern Cape, South Africa for the period 2007-2014. This objective will be achieved 

by meeting two other general objectives. The first of these objectives is to estimate technical and 

scale efficiencies for the sampled dairy farmers in the two study groups. This objective will be 

divided into a series of specific objectives for the purposes of clarity. The specific objectives are 

as follows: 

● Identify the most appropriate functional form for stochastic frontier analysis. 

● Identify the most suitable distributional assumption regarding the inefficiency component 

of the composed error term. 

● Estimate technical efficiency for individual dairy farms using the most appropriate 

production technology for the data. 

● Estimate scale efficiency from the estimated production function parameters and scale 

elasticities. 
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● Determine whether size economies are present in the two study areas. 

The second general objective is to estimate the economic performance of the dairy farmers in the 

two samples. This will be achieved by meeting the following specific objectives: 

● Model economic performance in a latent variable framework (MIMIC model). 

● Identify the relative effects of the cause and indicator variables, including technical and 

scale efficiency, on economic performance. 

● Identify how to improve economic performance in the study areas by estimating the factors 

contributing to economic performance and latent managerial input variables. 

1.3 Importance of the study 

This study may be divided into two main sections, with the first section focusing on efficiency 

analysis and the second on economic performance. Pertaining to efficiency analysis, the estimation 

of technical and scale efficiency is important on several fronts. 

Firstly, gaining insight into the technical efficiency of dairy farmers in the two study areas will 

help in understanding the financial position and sustainability of dairy farms in these areas. This 

will assist in understanding the potential drivers behind the continuing consolidation trend. 

Furthermore, this study aims to identify factors of production associated with higher levels of 

technical efficiency, providing valuable information to dairy farmers, researchers, policy makers 

and extension services. 

Secondly, there has been a substantial amount of research regarding the effect of farm size on 

technical efficiency and farm survival in many countries. Very little of this research has been 

conducted on South African dairy farms. It is therefore important to determine whether smaller 

South African dairy farms are less technically efficient than their larger counterparts. Investigating 

returns to scale will reveal if economies of scale are present in the two study areas and subsequently 

allow for the determination of the optimal farm size for each region (if an optimal farm size does 

in fact exist). An important distinction between the concepts of scale and size economies must be 

made to avoid ambiguity and confusion. The concept of size economies encompasses economies 

of scale and represents a broader focus; the two concepts may be differentiated as follows: size 

economies evaluate variation in unit costs associated with changes in some or all inputs, whereas 
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scale economies evaluate the change in output due to proportionate changes in all inputs (Beyers 

& Hassan, 2001a). 

Thirdly, this study attempts to extend the scope of previous dairy productivity literature by 

incorporating scale efficiency, in addition to technical efficiency. Scale efficiency is traditionally 

calculated using nonparametric techniques such as Data Envelopment Analysis (DEA), whereas 

this study adopts a parametric approach to the calculation of scale efficiency. By calculating scale 

efficiency, it is possible to determine whether farms are operating at or near optimal scale. This 

provides an indication as to whether further increases in productivity can be attained by moving 

towards optimal scale. To the author’s knowledge, there are no examples in the South African 

literature in which parametric scale efficiency is incorporated into an analysis of dairy farm 

productivity. Furthermore, the inclusion of scale efficiency as an additional response variable is 

expected to reduce the chance of identification errors in the secondary analysis involving the 

MIMIC model. 

Finally, this study acknowledges the sensitivity of stochastic frontier analysis to the choice of 

functional form and distributional assumptions regarding the error terms. As such, a wide range of 

possible model specifications are considered in an effort to minimize bias and ensure the most 

appropriate milk production technology is modelled. In total, five functional forms, each with two 

distributional assumptions, and the assumption of either time variant or invariant efficiency are 

specified, resulting in 20 possible models. Researchers often fail to select a production technology 

based on comparative tests, and instead base their choices on criteria such as preference, 

familiarity, or computational convenience. As a result, very few studies consider a wide range of 

possible model specifications, particularly in the South African dairy literature.  

On the second front, the concept of economic performance will be defined in terms of the dairy 

industry and estimated using a latent variable (MIMIC) framework. The investigation of latent 

economic performance may be valuable on several fronts. Firstly, it allows for a more integrated 

approach to performance analysis than previous South African studies have allowed. Traditionally 

farm performance, or farm financial success, has been explained by simple measures of 

productivity such as total factor productivity or various measures of efficiency, as highlighted in 

the introduction. However, in reality these measures may be best considered imperfect estimates 
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of true farm performance. The decision to model economic performance as a latent variable is 

therefore justified on these grounds. 

The MIMIC model framework adopted in the second stage allows technical efficiency and scale 

efficiency (estimated in the first stage) to be incorporated as indicators of economic performance, 

while traditional explanatory variables such as herd size and milk yield are incorporated as causal 

variables. Furthermore, three latent management variables are introduced in attempt to capture the 

effect of managerial quality of the breeding, feeding and labour programmes on farm economic 

performance. These three indices are included in the MIMIC model framework as latent causes of 

economic performance as managerial performance is not directly observable and is therefore best 

modelled in a latent variable framework. It is important to note that, although these managerial 

indices are included as latent variables, they remain explanatory in nature, with economic 

performance being the only endogenous (dependent) variable. To the author’s knowledge, the 

inclusion of latent “quality” or “managerial quality” indices in performance analysis has not yet 

been considered in any South African studies regarding the dairy industry.  

The analysis of economic performance, within the MIMIC framework, not only provides a more 

in-depth insight into the factors affecting farm financial success, but will also provide dairy farmers 

with information on which aspects of the dairy enterprise are the most critical drivers of economic 

performance. In the face of industry consolidation, this information is of particular importance to 

those farmers who wish to improve their overall economic performance, beyond the scope of 

simple efficiency measures, in an effort to remain in business. This study is therefore an effort to 

extend the South African literature on the performance of dairy farms, using methods which have 

not yet been applied in the SA context. This study is by no means exhaustive and the author 

acknowledges room for future studies to improve upon the methodologies employed herein. It 

does, however, provide an investigation into the factors affecting the performance of dairy farms 

from a new, more integrated, perspective and provides a solid statistical foundation for future 

analysis. 

1.4 Structure of the dissertation 

The structure of this study is presented as follows: Chapter 1 presents background information on 

the South African dairy industry, including characteristics, policy environment, production 

information, and consolidation trends. The remainder of the introductory chapter deals with 
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objectives, the importance of this study to South African dairy farmers and policy makers, and 

finally an introduction to the data employed herein. 

Chapter 2 involves a comprehensive review of the literature on the analysis of productivity and 

efficiency measurement. This chapter begins with a review of fundamental production theory, 

followed by specification of a simple production function and definition of the associated 

parameters. Various measurement techniques, functional forms and one-sided error distributional 

assumptions are then discussed. Finally, the chapter gives a brief review of the techniques for 

measuring technical change before closing with previous literature on the measurement of 

efficiency on South African dairy farms. 

Chapter 3 involves a review of the literature on latent variable analysis, SEM techniques and 

economic performance. The concept of latent variables is introduced and applications in various 

fields of study discussed. The concept of economic performance is discussed and an appropriate 

definition established. Estimation of economic performance, using SEM techniques, more 

specifically the Multiple-Indicators, Multiple-Causes (MIMIC) model, is then discussed before 

highlighting previous applications of this technique. The chapter ends with previous agricultural 

research involving applications of latent variable analysis. 

Chapter 4 covers milk production in South Africa, including a discussion on the South African 

dairy industry as well as detailed descriptions of the dairy industries in KwaZulu-Natal and the 

Eastern Cape. Climatic, production, and marketing conditions of each production region are 

discussed in detail to provide insight into the factors and decisions faced by dairy farmers in these 

regions. 

Chapter 5 covers the modelling of technical and scale efficiency of dairy farms, beginning with 

detailed descriptions of the two study areas and of the data collected. Variables used in the 

production function are then defined before a preliminary analysis of the data is conducted, 

including multiple imputation and missing data analysis. Various functional forms are then 

specified and the methodology for the calculation of technical efficiency introduced. Finally, the 

methodology behind the calculation of parametric scale efficiency is presented. 

Chapter 6 presents the results of likelihood ratio testing, leading to the selection of the most 

appropriate functional form. Stochastic frontier results are then presented for the sampled dairy 
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farms and subsequently discussed. Resulting technical efficiency scores are benchmarked against 

previous studies and the temporal pattern of technical efficiency discussed. Parametric scale 

efficiency is then calculated from the resulting stochastic frontier parameter estimates. Finally, the 

relationship between farm size and technical efficiency is discussed, before closing with a general 

discussion at the end of the chapter. 

Chapter 7 covers the modelling of the economic performance of dairy farms, beginning with an 

introduction into modelling techniques and a preliminary analysis of the data. The variables used 

in the analysis of economic performance are then defined and discussed before the MIMIC model 

is specified and estimated using maximum likelihood techniques. Finally, the results of the MIMIC 

model are presented followed by a comprehensive discussion and comparison. The dissertation 

ends with a conclusion and a summary. 
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CHAPTER 2: REVIEW OF PRODUCTIVITY AND EFFICIENCY ANALYSIS 

2.1 Introduction 

The concepts of productivity and efficiency are terms often used synonymously in the literature, 

despite important differences between the two concepts (Coelli et al., 2005). Although they may 

differ in their definition, these two concepts are closely linked. Productivity, in essence, refers to 

relationship between outputs and inputs in a production process whereby an improvement in 

productivity is brought about by producing more output with the same inputs or producing the 

same output with fewer inputs (Rogers, 1998). The basic concept of efficiency refers to the 

relationship between a firm’s realised output and its potential output (Fan, 1991), in other words, 

the firm’s current production possibilities relative to the “best practice” production possibilities. 

A firm will achieve maximum productivity at the point where it is operating on the best practice 

frontier (is efficient) and is using the least possible combination of inputs to do so. The remainder 

of the chapter presents a review of the literature on the analysis of productivity and efficiency 

measurement, in which these concepts are developed and reviewed, with a number of different 

measurement techniques, functional forms and distributional assumptions being reviewed, 

compared and contrasted. The concept of technological change is then introduced before closing 

with a literature review of the measurement of efficiency on South African dairy farms. 

2.2 Productivity and the production function 

The productivity of a firm may be defined as the ratio of aggregate output to aggregate input 

(O’Donnell, 2010). In the case of a multiple-input, multiple-output production process the term 

Total Factor Productivity (TFP), which is a productivity measure involving all factors of 

production, is often used (Coelli et al., 2005).  

Productivity change can be decomposed into three general elements: technological change, 

efficiency change (technical and/or allocative) and scale efficiency change (Fan, 1991; Lovell, 

1996; Balk, 2001; Newman & Matthews, 2006). Technological change refers to the adoption of 

improved technologies that shift the frontier of potential production, while efficiency change refers 

to a reduction in the distance between a firm’s realized output and its potential output (Fan, 1991; 

Newman & Matthews, 2006; Diaz & Sanchez, 2008). The discrepancy between a firm’s realized 

and potential output may be attributed to a number of factors. These include: failure to account for 
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inherent quality differences (e.g. land quality), market failures, credit market constraints and 

different levels of technology (Helfand & Levine, 2004). Finally, scale efficiency change relates 

to economies in production that can be realized at certain scales of production (Stewart et al., 

2009), represented by movements along the production frontier (Balk, 2001; Newman & 

Matthews, 2006).  

For simplicity, and to illustrate conceptual differences between productivity and efficiency, 

consider a simple production process in which a single input (x) is used to produce a single output 

(y) in a single time period. The curve 0F in Figure 2.1 represents the production frontier that 

defines the relationship between the input and the output. The production frontier represents the 

maximum level of output that is attainable from each input level, given existing technology. The 

feasible production set is represented by the area between the production frontier and the X-axis 

(Coelli et al., 2005). 

 

 

   

  

 

 

 

 

 

  

 

Figure 2.1: Single input-output production process 

Source: Own illustration adapted from Coelli et al. (2005) 

A

E 

Output (Y) 

0 

B 

Input (X) 

C

D 
F 



 
 

14 
 

All points on the production frontier are considered technically efficient; however, not all these 

points are equally productive. The efficiency of each firm is represented by the distance of the firm 

from the production frontier. For example, point C is within the feasible production set but is below 

the frontier by the distance BC. This distance represents technical inefficiency. The productivity 

of any point may be measured by calculating the slope of a line emanating from the origin to that 

point. Consider point B, which represents a technically efficient firm, in comparison to point A, 

which is also a technically efficient firm. The line OA from the origin is tangent to the production 

function and has the greatest slope, therefore represents the point of maximum possible 

productivity. Firms operating at any other point on the production frontier, other than point A, will 

experience lower productivity. The improved productivity, found at point A, is achieved by 

exploiting scale economies (Coelli et al., 2005). 

Technical change becomes an additional source of productivity change when time is considered. 

Technical change involves improvements in both physical technologies and improvements in the 

knowledge base that creates a shift of the production frontier (Stewart et al., 2009). This shift in 

the production frontier introduces a new set of production possibilities which allows the firm to 

produce greater quantities of output with the same quantity of inputs. 

The production function describes the rate at which resources are transformed into products (Doll 

& Orazem, 1984) and may be defined as a mathematical representation of the various technical 

production possibilities faced by a firm (Beattie & Taylor, 1985). It is, however, more commonly 

defined as the maximum output that can be produced from a given set of inputs, for a specific level 

of technology (Rasmussen, 2010). The production function defining the technical possibilities of 

the firm may be given by: 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛−1|𝑥𝑛) 

where y denotes output, 𝑥1, … 𝑥𝑛−1 are variable inputs, 𝑥𝑛 is a fixed input and f is a function. Since 

output (y) is often measured in physical terms it may be referred to as total physical product (TPP). 

Average physical product (APP) is another important concept which may be defined as the ratio 

of output to input usage. Since the concept of efficiency is measured as output divided by input, 

APP provides a measure of the efficiency of the variable input (xi) used in the production process 

(Doll & Orazem, 1984). APP may be expressed by the following equation:  
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𝐴𝑃𝑃 =
𝑦

𝑥
 

The most important physical concept is that of marginal physical productivity (MPP), which is 

given by the slope of the production function at a particular point. MPP may be calculated by 

taking the first order derivative of the production function with respect to the variable input (Doll 

& Orazem, 1984). It therefore refers to the change in output associated with a one-unit increase in 

input. MPP may be expressed by the following equation: 

𝑀𝑃𝑃 =
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥) 

The neoclassical production function has been used to describe agricultural production 

relationships for many years (Debertin, 1986). This classical production function may be divided 

into three distinct stages, each of which has important implications for the efficient use of resources 

(Doll & Orazem, 1984). Figure 2.2 illustrates the three-stage neoclassical production function and 

the associated marginal and average product curves.  

It is evident that as input use increases, the production (TPP) function initially increases at an 

increasing rate, due to increasing MPP. When MPP reaches its maximum, a point of inflexion 

occurs on the TPP curve, which marks the end of increasing marginal returns and the start of 

decreasing marginal returns. It is important to note that before the point of inflexion, the function 

is convex to the horizontal axis while after this point it becomes concave to the horizontal axis. 

The concavity after the point of inflexion reflects diminishing marginal returns to production. 

Stage I and Stage II may be delineated by the point where APP reaches its maximum. This occurs 

at the point where MPP and APP intersect and become equal (Beattie & Taylor, 1985). 

In Stage I, APP is increasing at an increasing rate, indicating that the average rate at which the (x) 

variable input is being transformed into product is increasing up until APP reaches its maximum 

at the end of Stage I. In Stage II, total output continues to increase at a decreasing rate until the 

function reaches a maximum. Stage II and III may be delineated by the point at which TPP reaches 

its maximum (Beattie & Taylor, 1985).  In Stage III, once TPP has reached its maximum, the use 

of an additional unit of input results in a decrease in total output. This may occur, for example, if 

a farmer applies so much fertilizer that he negatively effects his crop yields (Debertin, 1986).  
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Figure 2.2: Neoclassical three-stage production function and marginal and average curves 

Source: Own illustration adapted from Beattie & Taylor (1985) and Debertin (1986). 

There are several important properties associated with production functions, among which the 

following four are critical: (1) non-negativity: the value of f (x) is a finite, non-negative, real 

number; (2) weak essentiality refers to the inability to produce positive output without the use of 

at least one input; (3) monotonicity: the use of additional units of an input will not result in a 
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decrease in output; and (4) concavity: if the production function is continuously differentiable, this 

assumption implies diminishing marginal productivity (Coelli et al., 2005).  

The law of diminishing marginal productivity is what causes the production function to be concave 

in relation to the horizontal axis. The application of these properties to Figure 2.2 yields some 

interesting information regarding the traditional three-stage production function. Firstly, in Stage 

I prior to the point of inflexion, the concavity assumption is violated due to the convex nature of 

the production function, brought about by increasing marginal productivity. Secondly, in Stage III, 

after the production (TPP) function has reached its maximum, the monotonicity assumption is 

violated since the use of an additional unit of input results in a reduction in output. Intuitively, 

Stage II is the economically feasible region of production, since none of the key assumptions are 

violated. 

It is important at this point to differentiate between the assumptions of strict concavity, weak 

concavity (concavity) and quasi-concavity. Strict concavity and weak concavity (concavity) 

require that the production function is concave to the horizontal axis at all points whereas quasi-

concavity is less restrictive and allows some portion of the function to be convex (Beattie & Taylor, 

1985). The production function illustrated in Figure 2.2 satisfies the assumption of quasi-concavity 

but not strict or weak concavity. 

2.3 Measuring efficiency 

The measurement of firm level efficiency has become commonplace with the development of 

frontier production functions (Beyers et al., 2002). Current literature on the measurement of 

efficiency of production finds its origins in the early work of Farrell (1957) that introduced a 

conceptual framework for the measurement of technical and allocative efficiency. Defining 

technical efficiency (TE) as the ability of a firm to obtain maximum output from a given set of 

inputs, and allocative efficiency (AE) as the ability of a firm to use inputs in optimal proportions, 

given their prices, Farrell (1957) showed that economic efficiency (EE) may calculated as the 

product of TE and AE (i.e., EE = TE x AE) and, therefore, is defined as the capacity of a firm to 

produce a given level of output at minimum cost for a given level of technology. 

According to microeconomic theory, production technology is represented by the production 

function that determines the maximum possible output that may be achieved from various 
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combinations of available inputs (Kalaitzandonakes et al., 1992). Therefore, the production 

function essentially represents a best practice frontier indicating all efficient production 

possibilities. The deviations of a firm from the efficient frontier may, therefore, be regarded as 

measures of inefficiency (Førsund et al., 1980; Kalaitzandonakes et al., 1992; Mathijs & Vranken, 

2001). Since, actual input and output levels are not known in reality, production functions must be 

empirically estimated using observed output and input data. 

There are several alternative specifications used to estimate efficiency through frontier analysis, 

including primal (direct) and dual approaches (Coelli, 1995; Thiam et al., 2001). The primal 

approach, which involves direct estimation of a production function, has been the most commonly 

used technique although it is subject to several drawbacks, the most severe of which is the 

possibility that parameter estimates may be biased and inconsistent if the behavioural assumptions 

of either profit maximization or cost minimization are valid (Coelli, 1995). This is a result of 

simultaneous equation bias that is caused by a lack of independence between inputs and the error 

term (Thiam et al., 2001). An additional limitation of the primal approach is that only data on input 

quantities and not input prices may be considered; therefore, the impact of allocative efficiency 

cannot be measured (Førsund et al., 1980; Coelli, 1995; Pingali & Evenson, 2010). Alternatively, 

dual forms of production technology, such as profit and cost functions, may be considered for the 

following reasons: 1) to account for alternative behavioural assumptions such as profit 

maximization or cost minimization; 2) to account for multiple outputs; and 3) to calculate both 

technical and allocative efficiency simultaneously (Coelli, 1995).  

Of the two dual alternatives to the production function, the cost function is the most commonly 

used to represent a firm’s production technology (Asche et al., 2007). According to Schmidt & 

Lovell (1979), a production process can be inefficient in two ways. Firstly, it can technically be 

inefficient in the sense that actual output is less than the maximum possible output for a given 

input bundle which results in an equi-proportionate overutilization of all inputs. Secondly, it can 

be allocatively efficient in the sense that marginal revenue product of an input may not be equal to 

marginal cost of that input. This results in input utilization in the wrong proportions, given 

respective input prices. A major limitation of the stochastic production function is its ability to 

consider only technical inefficiency (Schmidt & Lovell, 1979; Kumbhakar et al., 1989). 
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The development of the cost function approach overcame this limitation by considering both 

technical and allocative inefficiencies of the production process. Therefore, cost frontier 

approaches have the advantage of being able to facilitate the calculation of technical, allocative 

and economic efficiency (Bravo-Ureta & Pinheiro, 1997). Furthermore, the cost frontier approach 

accounts for exogenous outputs, endogenous inputs and can be extended to account for multiple 

outputs (Coelli, 1995). The assumption of cost minimization, which underpins the cost function 

approach, is generally considered appropriate in situations where output is regulated at a particular 

level (Coelli, 1995). This is often the case in regulated dairy industries where output supply is 

constrained by policy regulations or supply management quotas (see Richards & Jeffrey, 2000). 

The primary drawback of the cost function approach is that it requires price input data which are 

not readily available and difficult to collect, particularly over a number of time periods. 

The production function approach to efficiency analysis may not be appropriate when estimating 

efficiency of individual producers since they may face different prices and have differing factor 

endowments. This translates to different best-practice production functions and hence different 

points of optimal operation (Ali & Flinn, 1989; Wang et al., 1996). The desire to overcome the 

limitations of the traditional production function and consider farm-specific prices and resource 

endowments led to the formulation of the first profit functions (Ali & Flinn, 1989; Wang et al., 

1996). Although they were not responsible for the introduction of the concept of the profit function, 

Lau & Yotopoulos (1971) popularized the approach with an application to Indian agriculture.  

Kumbhakar et al. (1989) advocated the use of a profit function approach in a study on the economic 

efficiency of Utah dairy farmers on the grounds that it allowed for the production process to be 

technically, allocatively and scale inefficient. Although the cost function approach considers 

technical and allocative inefficiency, it is not able to facilitate the calculation of scale inefficiency. 

A production process may be scale inefficient in the sense of not producing an output level by 

equating the product price with the marginal cost (Kumbhakar et al., 1989). Kumbhakar & 

Bhattacharya (1992) extended the traditional profit function approach to a generalized 

(behavioural) profit function which could incorporate price distortions resulting from imperfect 

market conditions, socio-political and institutional constraints. Accounting for the effects of these 

restrictions is important because they determine to what extent the shadow prices paid by the 

farmer differ from observed market prices (Wang et al., 1996). 
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Despite several limitations, the primal approach remains valid in several situations and provides 

the benefit of requiring only data on input quantities, which are more readily available than input 

prices. Zellner et al. (1966) have shown that the primal approach may be adopted under the 

assumption that producers maximize expected, rather than actual, profits. Various methods have 

been developed for the measurement of deviation from the best practice frontier. These methods 

may be broadly categorized into parametric and nonparametric approaches (Kalaitzandonakes et 

al., 1992; Sharma et al., 1999; Bravo-Ureta et al., 2007; Tonsor & Featherstone, 2009). 

2.3.1 Parametric methods 

Parametric approaches differ from nonparametric methods in that they rely on a specific functional 

form. Parametric methods include deterministic and stochastic frontiers, both of which can be 

constructed using either programming or statistical procedures (Kalaitzandonakes et al., 1992). 

Aigner & Chu (1968) were the first to extend the pioneering work of Farell (1957) by specifying 

a Cobb-Douglas production function assuming all differences in technical efficiency would be 

captured by the disturbance (error) term. Afriat (1972) considered a similar deterministic model to 

that specified by Aigner & Chu (1968), except a gamma distributional assumption was imposed 

on the error term and estimation of the model parameters was executed using maximum likelihood 

(ML) methods. Further attempts to improve the deterministic frontier model were made by several 

authors (see Førsund et al., 1980; Coelli, 1995, for more detailed reviews). 

Deterministic frontiers are relatively easy to estimate and allow the production function to be 

expressed in a simple mathematical form (Førsund et al., 1980). The primary limitation of the 

deterministic methodology is the assumption that any deviation from the production frontier is due 

to technical inefficiency (Kalaitzandonakes et al., 1992; Bravo-Ureta et al., 2007). This 

specification fails to account for deviations from the frontier due to statistical noise, which refers 

to unexplained variation within the sample due to measurement errors, omitted variables and other 

random phenomena (Fried et al., 2002). The manner in which technical efficiency is defined means 

that estimated coefficients of deterministic frontier functions are susceptible to outliers (Ali & 

Chaudhry, 1990; Kalaitzandonakes et al., 1992). 

In an attempt to avoid the problem of spurious errors in extreme outlier observations, Timmer 

(1971) specified a probabilistic frontier. He adjusted the model of Aigner & Chu (1968) by either 

discarding a predetermined percentage of observations or by discarding outlier observations, one 
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by one, until the resulting estimated coefficients gained stability. Although the probabilistic 

frontier method has not been extensively followed, a few studies have adopted its methodology 

(Coelli, 1995). Bravo-Ureta (1986) considered an application of probabilistic frontier methodology 

in a study on the technical efficiency of milk producers in New England, Canada. Ali & Chaudhry 

(1990) specified a probabilistic frontier production function to determine farm efficiency in four 

irrigated cropping regions of the Punjab province in Pakistan. El-Osta & Morehart (2000) specified 

a deterministic parametric production frontier to investigate the effect of technology adoption on 

the production performance of a sample of dairy farms from several US states. 

The assumption that any deviation from the production frontier is due to technical inefficiency 

alone is particularly unrealistic in agricultural studies. This is due to the nature of agricultural 

production, which involves a number of random factors that differ between producers, such as 

climate, weather, and soil fertility. These factors are likely to contribute towards the observed 

deviations from the frontier and should not necessarily be incorporated in the inefficiency term. 

The stochastic frontier model, also known as the “error components” model, was independently 

developed by Aigner et al. (1977) and Meeusen & Van den Broeck (1977) to circumvent the 

inability of earlier deterministic models to account for random deviations from the frontier. The 

authors proposed the specification of a composite error term which allowed for the inclusion of 

random deviations from the frontier due to data error and statistical noise. The model of Aigner et 

al. (1977) may be expressed as follows: 

𝑦𝑖 = 𝑓(𝑥𝑖; 𝛽) + 𝜀𝑖 (i = 1,…, N)  (2.1) 

Where yi represents the maximum output attainable from xi, a vector of input, and β is a vector of 

unknown parameters to be estimated. This specification is similar to those used in the deterministic 

models of Aigner & Chu (1968) and Afriat (1972), with the exception of the disturbance term (εi). 

Aigner et al. (1977) imposed the following error structure onto equation 2.1: 

𝜀𝑖 = 𝑣𝑖 + 𝑢𝑖       (i = 1,…, N) (2.2) 

The composite error term (ε) consists of a non-positive error component (u), which reflects 

deviations from the efficient frontier due to firm inefficiencies, and a two-sided error component 

(v), which captures random effects outside the control of the firm. The random component (v) 
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captures external factors such as climate, topography and machine performance as well as 

observational and measurement errors (Aigner et al., 1977). 

The primary strengths of the stochastic frontier approach lie in its ability to consider statistical 

noise and permit estimation of standard errors and tests of hypotheses. The main criticism of 

stochastic frontier models is the lack of a priori justifications regarding the distribution of the error 

terms (Coelli, 1995; Sharma et al., 1999). The stochastic frontier model has been credited as the 

most appropriate methodology for application to agricultural studies due to its ability to account 

for statistical noise, allow for traditional hypothesis testing, and estimation of the inefficiency 

effects (Kumbhakar & Lovell, 2000, as cited by Cabrera et al., 2010).  

The model specifications in Aigner et al. (1977) and Meeusen & Van den Broeck (1977) both 

assume a distribution of u which has a mode at  u=0. Stevenson (1980) highlighted the possible 

unfeasibility of such an assumption in reality and proposed a more general model, adopting a 

truncated-normal distribution of u, that allowed for the possibility of both zero (u=0) and non-zero 

modes. Stevenson (1980) also specified a gamma distribution for u but did not consider an 

empirical application of this distribution in his work. Greene (1990) extended the restricted gamma 

distribution proposed by Stevenson (1980) in an empirical application, in which he combined a 

two-part gamma distribution with the stochastic frontier model. This specification was able to 

circumvent some of the practical shortcomings of one-sided disturbances due to the additional 

flexibility of a two-parameter (gamma) distribution (Greene, 1990). 

Early stochastic frontier models, based on cross-sectional data, were subject to several major 

drawbacks. Early models permitted the calculation of average efficiency across all firms but failed 

to identify firm-specific inefficiency (Gong & Sickles, 1989). Jondrow et al. (1982) attempted to 

overcome this limitation by proposing a method to separate the composite error term of the model 

into its two components for each observation, thereby permitting firm-specific estimates of TE. 

These estimates are based on the conditional distribution of (u) given (ε), and therefore require 

specific distributional assumptions for both error components (v and u). 

Schmidt & Sickles (1984) identified three major drawbacks to early stochastic frontier methods. 

Firstly, firm specific estimates of technical inefficiency may be estimated but not consistently. 

This may be attributable to the failure of Jondrow et al. (1982) to account for variability due to 

sampling error. Secondly, estimation of technical inefficiency, and its separation from statistical 
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noise requires specific distributional assumptions regarding the two error components (v and u). 

Efficiency estimates may be sensitive to these distributional assumptions, which introduces 

uncertainty regarding the robustness of the resulting estimates. Thirdly, inefficiency is often 

assumed to be independent of the regressors (inputs) which may not be a realistic assumption since 

it may violate the behavioural assumptions of some firms (Schmidt & Sickles, 1984; Gong & 

Sickles, 1989). 

Schmidt & Sickles (1984) recognized the potential advantages of modifying early stochastic 

frontier models to suit panel data applications. They proposed that the application of existing 

stochastic frontier models to panel data could potentially circumvent the problems associated with 

cross-sectional models. Seale (1990) attributed the inability of cross-sectional stochastic frontier 

models to estimate individual firm technical inefficiencies to a deficiency in degrees of freedom 

and considered panel data to be a potential remedy.  

There are several potential advantages associated with the use of panel data over conventional 

cross-sectional data for frontier estimation. For instance, panel data usually provide a large number 

of data points which increases the degrees of freedom, reduces collinearity among the explanatory 

variables and improves the efficiency of econometric estimates (Hsiao, 2003). This provides 

consistent estimates of firm efficiencies, relaxes the need to make specific distributional 

assumptions regarding the inefficiency disturbance term, removes the assumption that technical 

inefficiency is independent of the regressors (Schmidt & Sickles, 1984; Coelli, 1995), and allows 

for the simultaneous consideration of technical change and technical efficiency over time (Coelli, 

1995). Furthermore, the effects of missing or unobserved variables may be better handled in panel 

data situations as there is access to information on both intertemporal dynamics and individuality 

of firms (Hsiao, 2003). 

The extension of  Stochastic Frontier Analysis (SFA) to panel data allowed for the consideration 

of intertemporal variation which introduces the possibility of time-varying efficiency. As a result, 

the stochastic frontier analysis literature may be classified into models which assume technical 

efficiency is time-invariant and those which assume technical efficiency is time-variant 

(Khumbakhar et al., 1997). Schmidt & Sickles (1984) and Gong & Sickles (1989) adopt the 

assumption of time-invariant technical efficiency in their applications of SFA to panel data. Gong 

& Sickles (1989) justify this assumption by regarding firm-specific inefficiency as an inherent 
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residual between observed data and the corresponding production frontier. The authors note that 

without inordinate changes in the economic environment (such as deregulation), firm-specific 

efficiency is not likely to experience substantial changes over a finite number of time periods. 

Cornwell et al. (1990) identified time-invariant technical inefficiency as a strong assumption that 

may not be realistic and proposed the relaxation of this assumption in such a way as to retain the 

inherent advantages of panel data. Consider the standard stochastic frontier for panel data, 

specified as follows: 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝑋𝑖𝑡𝛽 + + 𝑣𝑖𝑡 (2.3) 

where the firm effect αi = α – ui, y represents output, x represents inputs, v represents statistical 

noise and u is a firm effect representing technical inefficiency. Cornwell et al. (1990) allowed the 

firm specific effects to vary over time by replacing the firm specific effect (αit) with a quadratic 

function of time, with coefficients varying across firms. 

𝛼𝑖𝑡 = 𝜃𝑖1 + 𝜃𝑖2𝑡 + 𝜃𝑖3𝑡2 (2.4) 

Where θi1, θi2, θi3 are unknown parameters. 

Battese & Coelli (1992) proposed a stochastic production function with a more simplistic, 

exponential specification of time varying firm effects where efficiency was specified as follows: 

𝑢𝑖𝑡 = 𝑒𝑥𝑝[−𝜂(𝑡 − 𝑇𝑢)]𝑢𝑖 (2.5) 

Where ui is the firm specific inefficiency assumed to be independently and identically distributed 

as truncated normal and η is a single unknown parameter. This specification may be considered 

somewhat restrictive since TE must either increase at a decreasing rate, decrease at an increasing 

rate or remain constant. It is worth noting that the authors do specify a more flexible, two parameter 

alternative, which would permit firm effects to be convex or concave; however, no application of 

this model is considered. The selection of either time-invariant or time-variant technical 

inefficiency depends on factors such as the nature of technical rigidities and technical change 

within a specific sector. In reality, however, the specification of inefficiency is often based on 

convenience rather than on a specific inefficiency mechanism derived from well-developed theory 

(Khumbakhar et al., 1997). 
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Empirical applications of stochastic frontier analysis using panel data have traditionally been based 

on balanced panel data, which assumes that each cross-sectional unit is observed for the same 

number of time periods (Kumbhakar & Heshmati, 1995). Early panel data models such as that of 

Schmidt & Sickles (1984) only permitted the use of balanced panel data. This assumption may be 

considered highly restrictive from a practical view, since sampled data are seldom balanced (Biørn, 

2004). Furthermore, dropping observations from an unbalanced data set to make it balanced may 

result in substantial efficiency loss (Biørn, 2004).  

In an attempt to relax the assumption of balanced data, Seale (1990) proposed an application of 

stochastic frontier analysis which allowed for direct estimation of technical and allocative 

efficiency from an unbalanced panel of data. Battese & Coelli (1992) considered an application of 

SFA to an unbalanced panel of data, assuming time-varying efficiency, for a sample of Indian 

paddy farmers. Kumbhakar & Heshmati (1995) further adapted the stochastic frontier model to 

consider a rotating panel of data. Rotating panel data refer to data collected using a rotational 

sampling design in which all units in the population are numbered consecutively. In each period a 

fraction of the sample selected in the previous period are replaced by new units from the population 

(Heshmati et al., 1995). 

Previously, stochastic frontier models failed to account for production risk, which is a critical 

aspect of the production process that is likely to affect technical efficiency estimates. Production 

uncertainty (risk) affects decisions concerning the choice of inputs and supply of outputs (Shankar, 

2012); and the adoption and utilization of new technologies, which are a major source of 

productivity growth (Battese et al., 1997). Since the concept of technical efficiency is essentially 

a measure of the degree of technology utilization in the production process, the inclusion of risk 

into stochastic frontier analysis should be considered (Battese et al., 1997). As a potential solution, 

Battese et al. (1997) proposed an alternative model which incorporated the stochastic frontier 

production function within the framework of the flexible risk model of Just & Pope (1978). In an 

attempt to improve upon previous SFA risk models, Tiedemann & Latacz-Lohmann (2013) 

combined Just and Pope’s framework with a stochastic frontier which was able to account for 

heteroscedastic error terms.  

The estimation of traditional production, cost, or profit functions typically relies on the assumption 

of technological homogeneity, whereby the underlying technology is assumed to be the same for 
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all producers (Alvarez et al., 2012). This assumption may not be appropriate since firms in a 

particular industry may use different technologies (technological heterogeneity), in which case the 

estimated underlying technology is likely to be biased (Orea & Kumbhakar, 2004; Alvarez et al., 

2012). Failure to account for these unobserved technological differences during estimation may 

result in them being incorrectly labelled as inefficiency (Orea & Kumbhakar, 2004). 

Production heterogeneity can be addressed through the use of either two-stage or one-stage 

methods. The two-stage approach involves first separating the sample into several groups, based 

upon some a priori sample separation information, and then conducting separate analyses for each 

group (Orea & Kumbhakar, 2004). The one-stage method is an attractive alternative with the 

ability to separate the sample into groups and estimate the technology for each of these groups in 

one step (Alvarez & del Corral, 2010). A comparison of the one-stage approach, commonly 

referred to as a latent class (mixture) model, and the two-stage approach found the latent class 

model to be a superior method (Alvarez et al., 2012). By incorporating the latent class model 

(LCM) into the stochastic frontier framework, Orea & Kumbhakar (2004), Alvarez & del Corral 

(2010) and Alvarez et al. (2012) were able to estimate efficiency, while accounting for 

technological heterogeneity. 

Tsionas & Kumbhakar (2004) indicated that the latent class model may not be realistic in certain 

cases, drawing attention to the fact that there may be some persistence in the movement from one 

group to another and the lack of parsimony of the model. As a potential remedy, Tsionas & 

Kumbhakar (2004) proposed a stochastic frontier model with a Markov switching structure in 

which parameters were allowed to take a finite number of possible values, and at each time period 

there was a probability that the parameter values will remain unchanged or switch to something 

different. This method has the advantage of considering both cross-sectional and temporal 

heterogeneity, something the previous LCM’s failed to achieve. 

2.3.2 Nonparametric methods 

Nonparametric frontier analysis involves the use of linear programming methods to construct a 

nonparametric piece-wise (frontier) surface over the data (Coelli et al., 2005). Efficiency estimates 

are represented by the distance, which may be in terms of production, cost, profit or revenue, of a 

decision making unit (DMU) from this best-practice surface. Efficiency scores range between zero 
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and one, with zero representing the lowest efficiency measure and one representing optimum 

efficiency (equal to that of the best-practice firm) (Stokes et al., 2007; Delis et al., 2009). 

Efficiency scores lower than one indicate that the same vector of outputs could be produced with 

a smaller vector of input, therefore reflecting the presence of inefficiencies in production 

(Andersen & Petersen, 1993). 

Nonparametric frontier methods originated from the work of Farrell (1957) which involved the 

use of linear programming techniques to construct a free disposal convex hull of the observed 

input-output ratios (Førsund et al.,1980). This approach was extended by Charnes et al. (1978) 

who adopted a mathematical programming approach to efficiency analysis which is commonly 

known as Data Envelopment Analysis (DEA). Central to the DEA approach is the assumption of 

convexity of the production possibilities set (Delis et al., 2009). The Free Disposal Hull (FDH) 

method is an extension of DEA that allows for nonconvex production possibility sets by assuming 

free disposability of inputs and outputs (Simar & Wilson, 1998; Delis et al., 2009). Both 

approaches allow efficiency to vary over time. 

DEA has the advantage of not requiring the specification of a production technology or 

distributional assumptions regarding the error term (Sharma et al., 1999). Furthermore, it allows 

for the simultaneous use of multiple inputs and multiple outputs, each being measured with 

different units of measurement (Wadud & White, 2000). It is, however, criticized for its 

deterministic nature, attributing all deviation from the frontier to inefficiency. As a result, DEA is 

likely to be highly sensitive to measurement error and statistical noise (Sharma et al., 1999).  

DEA models may estimate efficiency with either input or output orientations (Stokes et al., 2007; 

Murova & Chidmi, 2011). Input-oriented models measure technical inefficiency as a proportional 

reduction in input usage, holding output levels constant. Output-oriented models measure technical 

inefficiency as a proportional increase in output production, holding input levels constant (Coelli 

et al., 2005). These two orientations provide equal estimates under the assumption of constant 

returns to scale (CRS) but not for variable returns to scale (VRS) (Delis et al., 2009). There is a 

lack of consensus among the literature as to which orientation is the “best choice” (Delis et al., 

2009). Coelli et al. (2005) note that the choice of orientation depends upon the nature of the 

industry and should be selected according to which quantities (input or output) the firm has the 

greatest control over. 
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Early DEA models such as that of Charnes et al. (1978) assume CRS, which permits the estimation 

of an “overall” measure of technical efficiency. The CRS assumption that all firms operate at an 

optimal scale may not be appropriate since, in reality, a number factors such as imperfect 

competition, government regulations and financial constraints cause a firm to operate at a non-

optimal scale (Coelli et al., 2005). Banker et al. (1984) extended the work of Charnes et al. (1978) 

to consider VRS, which permitted the separation of overall technical efficiency into pure technical 

efficiency and scale efficiency components. Furthermore, overall technical efficiency was found 

to be equal to the product of pure technical efficiency and scale efficiency. Analysis with the 

assumption of VRS is considered more flexible and envelopes the data in a tighter manner than 

CRS (Sharma et al., 1999). One deficiency of the VRS measure of scale efficiency is that it fails 

to indicate whether the firm is operating under increasing or decreasing returns to scale (Coelli et 

al., 2005). This can be determined by solving a non-increasing returns to scale (NIRS) DEA model 

(Sharma et al., 1999). If the technical efficiency (TE) measure under NIRS is equal to that under 

CRS, there are increasing returns to scale. However, if the TE measure under CRS is less than that 

under NIRS, there are decreasing returns to scale (F𝑎̈re et al., 1994, as cited by Sharma et al., 

1999) 

Simar & Wilson (1998) introduced the bootstrap method as potential tool to analyse the sensitivity 

of measured efficiency scores to the sampling variation of the estimated frontier. The bootstrap 

method is based upon the idea of repeatedly simulating the data generating process (DGP), through 

resampling, and applying the original estimator to each of the simulated samples so that the 

resulting estimates mimic the original estimator’s sampling distribution (Simar & Wilson, 1998). 

This allows researchers to conduct traditional hypothesis tests and construct confidence intervals 

(Coelli et al., 2005). Simulating the DGP, however, can prove difficult since the bootstrap method 

requires that a clearly defined model of the DGP is known, otherwise it is not possible to determine 

whether the bootstrap accurately mimics the sampling distribution of the original estimators (Simar 

& Wilson, 1998). 

Two-stage DEA represents an attempt to simultaneously estimate farm level efficiency and explain 

the reasons for the resulting estimates of efficiency. This method involves estimation of the 

efficient frontier and firm level efficiency scores in the first stage (a conventional one-stage DEA). 

In the second stage, these efficiency estimates are regressed against a set of explanatory variables 
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in an attempt to explain observed inefficiency (Balcombe et al., 2008; Johnson & Kuosmanen, 

2012). Despite several applications in the literature (Wadud & White, 2000; Helfand & Levine, 

2004), the two-stage DEA approach has fallen under criticism due to several key limitations. 

Firstly, studies which have applied the method are criticized for failing to describe the underlying 

DGP, therefore raising doubt as to the meaning of the estimates. Secondly, two-stage DEA 

estimates have been found to be serially correlated and as a result standard approaches to statistical 

inference are invalid (Simar & Wilson, 2007). Simar & Wilson (2007) proposed an application of 

the double bootstrap method to DEA as a means of overcoming these limitations. 

In an attempt to circumvent the limitations of parametric stochastic frontier models, without 

foregoing their advantages, Kumbhakar et al. (2007) proposed a nonparametric stochastic frontier 

model based on the local maximum likelihood procedure (LML). This method adopts local 

modelling techniques which do not require strong assumptions regarding functional form and 

differ from traditional nonparametric approaches, such as DEA, in the sense they are able to 

provide efficiency estimates that account for random noise (Serra & Goodwin, 2009; Guesmi et 

al., 2013). Furthermore, local modelling techniques can accommodate heterogeneity in the data by 

making the variances of both components of the error term observation specific (Serra & Goodwin, 

2009). Due to the complexity involved in its implementation, this approach has received limited 

application in empirical studies (Guesmi et al., 2013).  

Dai (2016) proposed a fully nonparametric, three-stage method of efficiency estimation using the 

Richardson-Lucy blind deconvolution algorithm (RLb) to decompose firm specific inefficiency 

from their composite errors. In the first stage, the shape of the frontier is estimated using convex 

nonparametric least squares (CNLS) regression and the residuals are estimated. In the second 

stage, the expected inefficiency for all firms is estimated and used to correct the CNLS residuals 

estimated in stage one. Finally, stage three involves the estimation of firm specific efficiencies 

using RLb. This model does not require any distributional assumptions, is insensitive to statistical 

noise in the data and is robust to heteroscedasticity. Despite its potential advantages, RLb is 

sensitive to frontier estimation (the difference between the estimated and true frontier) and may be 

biased and thus should be applied with caution. 

 

 



 
 

30 
 

2.3.3 Semiparametric methods 

In an attempt to extend the stochastic frontier model proposed by Aigner et al. (1977), Fan et al. 

(1996) proposed a semiparametric frontier model which aimed to relax parametric restrictions on 

the functional form representing production technology, through the application of nonparametric 

regression techniques. The model proposed by Fan et al. (1996) involved the construction of 

pseudo-likelihood estimators of the parameters based on kernel estimation of the conditional mean 

function. The advantage of the proposed semiparametric approach is that no particular functional 

form need be selected, hence, estimators are robust to possible misspecifications of the production 

frontier. One drawback of this approach, however, is the need to specify particular distributional 

assumptions on the composed error terms (Fan et al., 1996). 

Attempting to combine the nonparametric frontier with the composite error stochastic frontier 

model, Kuosmanen & Kortelainen (2012) proposed a two-stage semiparametric frontier model 

referred to as the stochastic non-smooth envelopment of data (StoNED) model. In the first stage, 

the shape of the frontier is estimated using convex nonparametric least squares (CNLS) regression, 

which identifies the function that best fits the data from a family of functions which satisfy 

monotonicity and concavity conditions. In the second stage, the conditional expectations of 

inefficiency are estimated from the CNLS residuals using method of moments (MM) or pseudo-

likelihood techniques. The StoNED model essentially assumes that the observed data deviates 

from a DEA-style frontier production function due to a composite error term, consisting of noise 

and inefficiency components, such as that of the stochastic frontier model. It possesses the 

advantages of not requiring the specification of any particular functional form and extends 

traditional DEA methods in its ability to consider both inefficiency and noise components, thereby 

reducing sensitivity to outliers. 

In a recent attempt to circumvent the limitation of specifying a particular functional form, as 

required in traditional SFA, Vidoli & Ferrara (2015) proposed a generalized additive model 

(GAM) framework for the estimation of stochastic production frontier models. The GAM fits a 

response variable using a sum of smooth functions of the explanatory variables. The additional 

flexibility provided by GAMs removes the need to impose a perfect linear relationship between 

the explanatory variables and the dependent variable and retains the ability to explain variability 
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of the dependent variable using an additive function of the inputs (Vidoli & Ferrara, 2015). For 

detailed literature on GAMs, see Hastie & Tibshirani (1986). 

2.4 Flexible functional forms 

Investigating the relationship between a dependent variable and a set of independent variables is 

the primary objective of empirical research which generally requires two basic assumptions. The 

first assumption involves the specification of a functional form in which the dependent variable is 

represented by a function of the independent variables. The second assumption involves the 

specification of a probability distribution for the error (residual), which captures differences 

between actual and predicted values of the dependent variable (Sauer et al., 2006). Stochastic 

frontier analysis is no exception and requires the specification of a parametric production 

technology through the selection of a particular functional form. Since economic theory often does 

not justify the imposition of a particular functional form, flexible functional forms are often used. 

These flexible functional forms often violate monotonicity, convexity (or concavity) and 

homogeneity conditions (Kuosmanen & Kortelainen, 2012). This may be due to the failure of most 

researchers to test whether the estimated function meets the required monotonicity and quasi-

concavity conditions (Sauer et al., 2006). To provide insight into the advantages and limitations 

of flexible functional forms, the properties underlying production functions need to be clearly 

defined. 

Microeconomic theory highlights several properties which underpin production functions 

including: non-negativity, weak essentiality, monotonicity and concavity. It is important to note 

that these properties are not exhaustive and neither are they maintained under all conditions (Coelli 

et al., 2005). The monotonicity property requires that production functions monotonically increase 

in all inputs, that is, the output quantity must not decrease if any input quantity is increased. If a 

production frontier is not monotonically increasing, the estimates of individual firm efficiency 

cannot be reasonably interpreted (Henningsen & Henning, 2009). This problem may be illustrated 

using an example of a non-monotone production frontier as in Figure 2.3. Firm A is below the best 

practice production frontier and therefore may be considered inefficient, while Firm B is on the 

frontier and may be considered technically efficient. Firm B, however, uses a larger quantity of 

input to produce the same quantity of output as firm A and therefore, by definition, is less 
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technically efficient than firm A. This highlights the potential errors that may arise through the 

interpretation of production frontiers that do not meet the monotonicity requirement.  

In an attempt to avoid the problems associated with non-monotone production frontiers researchers 

often impose the monotonicity condition upon a production function. If the monotonicity condition 

is only violated at a few data points, this may be an appropriate course of action. However, if the 

condition is violated at many or all of the data points then the model is most likely misspecified 

and should be changed (Henningsen & Henning, 2009). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Non-monotone production frontier 

Source: adapted from Henningsen & Henning (2009). 

Apart from monotonicity, microeconomic theory often assumes that production functions are 

concave. This implies convex input sets and, hence, decreasing marginal rates of technical 

substitution (Henningsen & Henning, 2009). Furthermore, profit maximizing input levels can only 

be calculated from first-order equations if the production function is concave (Griffin et al., 1987). 
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Production functions are generally quasi-concave if all inputs are perfectly divisible and different 

production activities can be applied independently (Henningsen & Henning, 2009). However, in 

reality, these assumptions may not hold and therefore the rationale behind the quasi-concavity 

assumption may not be necessary. As a result, Henningsen & Henning (2009) suggest that quasi-

concavity should not be imposed when estimating production functions, but recommend checking 

for quasi-concavity after economic estimation, since some results of microeconomic theory (e.g. 

convex input sets) do not hold under non quasi-concavity.  

Before investigating the flexible functional forms, it is important to note that flexibility is a multi-

dimensional concept which does not possess one universal definition (Griffin et al., 1987). The 

two commonly used definitions of flexibility highlight the differences between the notions of local 

flexibility and global flexibility. Local (Diewert) flexibility implies that an approximating 

functional form is a perfect approximation (with zero error) for an arbitrary function and its first 

two derivatives at a particular point. This flexible form places no restrictions on the value of the 

function or its first or second derivatives at this point (Griffin et al., 1987). Global (Sobolev) 

flexibility is preferable to local flexibility since globally flexible functional forms, such as the 

fourier form, possess desirable nonparametric properties (Thompson, 1988). Furthermore, globally 

flexible functional forms are theoretically well founded and allow for meaningful tests of 

significance (Sauer et al., 2006). The relative complexity of specifying and estimating globally 

flexible functional forms has resulted in local flexibility becoming the more widely used definition 

(Thompson, 1988). 

Flexible functional forms were first developed in an effort to reduce the econometric limitations 

of earlier forms, such as the Cobb-Douglas function (Thompson, 1988). When selecting a 

functional form for empirical application, there is a choice between forms which exhibit good 

behaviour globally and those that possess higher degrees of flexibility. Relatively simple 

functional forms, such as the Cobb-Douglas, lack flexibility and hence the ability to represent more 

complex technologies, but satisfy certain global regularity conditions, because of their simplicity. 

Relatively more complex functional forms, while possessing higher degrees of flexibility and the 

ability to model more complex technologies, are not globally well-behaved (Guilkey et al., 1983). 

The Cobb-Douglas production function, a derivative of the translog form, is the most applied 

functional form with respect to efficiency measurement. It is a first order (nonflexible) form which 
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is relatively simple, and thus globally theoretically consistent (Sauer et al., 2006). This simplicity, 

however, comes at the cost of strong restrictions on the substitution possibilities (Mbaga et al., 

2003). The translog production function is a second-order Taylor series expansion, which is a 

frequently applied, locally flexible, functional form which imposes fewer restrictions on 

technology than the non-flexible forms (Mbaga et al., 2003). As with many locally flexible 

functional forms, the translog form is susceptible to multicollinearity, due to the large number of 

interactions between the explanatory variables. The translog form is also susceptible to possible 

low degrees of freedom. Furthermore, theoretical consistency cannot be imposed globally upon 

the translog form without the loss of second-order flexibility. 

Functional forms are data and model specific and differ not only in their convergence properties 

but also in their ability to approximate different technologies (Giannakas et al., 2003). Since the 

appropriate functional form is case specific, there is no single functional form that performs best 

under all circumstances. Furthermore, the imposition of an inappropriate functional form may 

result in biased and inaccurate estimates and misleading statistical inferences (Giannakas et al., 

2003). This highlights the importance of selecting a functional form which is best suited to the 

data and least likely to result in biased and inconsistent estimates. 

Determining the true functional form of an economic relationship is not possible, hence the 

challenge becomes the selection of the most appropriate functional form for the given relationship 

(Griffin et al., 1987).  This leads to the consideration of decision criteria, which assist in the 

selection of the most appropriate functional form. Before dealing with the problems associated 

with functional forms, it is important to distinguish between the ex-ante choice of functional form 

and the ex-post choice of functional form. The former refers to the selection of a particular 

functional form prior to actual estimation while the latter refers to the selection of a particular 

functional form, from a set of functional forms, estimated from the same data set, based on 

hypothesis tests and estimated results (Lau, 1986). 

Lau (1986) identified five broad criteria for the ex-ante selection of a functional form for a 

particular economic relationship: (1) theoretical consistency: the functional form selected must be 

capable of possessing all theoretical properties required of the particular economic relationship for 

an appropriate choice of parameters. In the case of a production function, this means that 

monotonicity and convexity assumptions must hold (Sauer et al., 2006). (2) Domain of 
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applicability: this most commonly refers to the set of values of the independent variables over 

which the functional form satisfies all requirements for theoretical consistency. (3) Flexibility: this 

refers to the ability of the functional form to approximate arbitrary but theoretically consistent 

economic behaviour through appropriate selection of parameters. The degree of flexibility required 

is dependent upon the economic relationship being investigated. In productivity analysis, 

flexibility generally means that the production, profit or cost function must be capable of 

generating output supply and input demand functions which have own and cross-price elasticities 

that can assume arbitrary values based only on the requirements of theoretical consistency, at any 

arbitrary set of prices, through the selection of an appropriate set of parameters. Flexibility of a 

functional form may be considered desirable since it allows the data to provide information about 

the important parameters. (4) Computational facility: this implies one or more of the following 

properties. The functional form and any functions of interest should therefore be: linear-in-

parameters, with linear restrictions (if any), and represented in an explicit closed form and be linear 

in the parameters (explicit representability). Different functions in the same system should have 

the same functional form but should differ in the parameters (uniformity) and the number of 

parameters included in the functional form should be minimized, while maintaining flexibility 

(parsimony). (5) Factual conformity: this implies consistency of the functional form with known 

empirical facts.  

2.5 Technological change 

When considering a production function from single period cross-sectional data, the underlying 

assumption is that the level of technology that existed at the time of data collection persists 

throughout that period. However, if time-series or panel data are available over several time 

periods, the effect of time, and more importantly technological change, may be considered 

(Debertin, 1968). The consideration of technological change is important as it has the potential to 

significantly affect the production process. Simply holding the level of technology constant is not 

acceptable. Although the potential effects of technological change cannot be denied, the definition 

and measurement of the concept are not free of problems (Chambers, 1988). One commonly 

accepted definition is that technological change represents a shift in the production function over 

time. The preceding definition may be expressed as follows: 

𝑦 = 𝑓(𝑥, 𝑡)  (2.6) 
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where: y represents output, f is a function, x is an input and t is time. In equation 1 technical change 

is measured by observing the change in output, holding inputs constant, as time changes. This 

equation assumes that technical change does not require new inputs and that the production 

function remains in the same basic form over time. This may be referred to as disembodied 

technical change (Chambers, 1988). 

Despite its appeal, the preceding definition makes some stringent assumptions and may not always 

be an accurate representation of reality, as not all technological advancements fit this definition. 

Some technologies require such drastic changes in the methods and inputs required that they 

represent an entirely new technology. This results in the creation of a new production function, 

rather than a simple shift of the existing production function. The concept described above may be 

referred to as embodied technical change since the new technology must be acquired to access the 

potential benefits of that technology. Embodied technical change may be represented by 

differentiating the production function and input bundle with respect to time, which means 

production functions do not need to be of the same functional from and input bundles may vary 

over time. Although embodied technical change is an attractive concept which is consistent with 

reality, it is very difficult to apply in an analytical sense. For this reason, the more simplistic 

definition of disembodied technical change, represented by equation 2.6, is often adopted 

(Chambers, 1988). 

The direct measurement of technical change over time is considered highly complex and 

researchers often rely upon the inclusion of simple time variables in a crude attempt to capture 

technological change (Debertin, 1968). Including a simple time trend variable into the production 

function is highly inaccurate but may be an improvement over a static model that fails to account 

for technological change in any way (Debertin, 1968). Furthermore, the inclusion of a time trend 

into the production function represents a workable alternative which may be easily applied 

(Chambers, 1988).  

The Cobb-Douglas production function with simple disembodied technological change (smooth 

time trend) may be expressed as follows (Ahmad & Bravo-Ureta, 1996): 

𝑙𝑛𝑌𝑖𝑡 =  𝛽0 + ∑ 𝛽𝑘ln (𝑥𝑘𝑖𝑡)

𝑘

+ 𝜁𝑇 + (𝑣𝑖𝑡 − 𝑢𝑖𝑡) 

   



 
 

37 
 

Where T is a time trend (t=1, 2, …, T) and 𝜁 is a parameter to be estimated. 

The translog production function can similarly be adjusted to account for disembodied technical 

change. In this instance, since the translog production function is a second-order flexible functional 

form, both T and T2 are introduced into the equation. The resulting expression is given by: 

𝑦𝑖𝑡 = 𝛽0 + ∑ 𝛽𝑘

𝑘=1

ln(𝑥𝑘𝑖𝑡) +
1

2
∑ ∑ 𝛽𝑘𝑗

𝑘=1𝑗=1

𝑙𝑛(𝑥𝑘𝑖𝑡)𝑙𝑛(𝑥𝑗𝑖𝑡) + 𝜁𝑇 +
1

2
𝜆𝑇2

+ ∑ 𝛽𝑘𝑡ln (𝑥𝑘𝑖𝑡)𝑇 +

𝑘=1

(𝑣𝑖𝑡 − 𝑢𝑖𝑡)           

       

Where T is a time trend (t=1, 2, …, T), λ and ζ are parameters to be estimated. 

2.6 Productivity analysis in South Africa 

Although there is an extensive body of literature concerning productivity analysis in countries such 

as the US, there is relatively little empirical research which considers productivity analysis of 

South African agriculture. Piesse et al. (1996) considered an application of data envelopment 

analysis (DEA), using farm level data, for small-scale farmers in three former Northern Transvaal 

homelands to investigate the productive efficiency of maize farmers. Total productivity is initially 

calculated and then decomposed into pure technical and scale efficiency components. Results 

indicated a wide dispersion of efficiency levels between farms, with inadequate farm size 

responsible for large proportions of inefficiency (Piesse et al., 1996). Furthermore, the authors 

supplement their initial result with linear regression analysis in an attempt to determine the effects 

of the variables included in the DEA analysis on efficiency levels. 

Gouse et al. (2003) applied DEA techniques, similar to that implemented by Piesse et al. (1996), 

in an efficiency analysis of insect-resistant (BT) cotton in South Africa. The study investigated 

and compared the technical efficiency of large-scale South African cotton farmers who adopted 

BT cotton varieties and those who did not. Results indicated that, on average, adopters of the BT 

cotton strains were more technically efficient than non-adopters.  

Abu & Kirsten (2009) investigated the efficiency of small- and medium-scale maize milling 

enterprises based on a translog stochastic profit frontier model. Cobb-Douglass and translog model 

specifications were considered although likelihood ratio tests revealed the translog model as being 
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more suitable. Parameters of the models were estimated using maximum likelihood techniques and 

technical, allocative and scale efficiencies calculated. Results indicated that mills with larger 

capacities were generally more efficient than those with smaller milling capacity. 

The above-mentioned studies have all considered applications of efficiency analysis, using either 

parametric or nonparametric techniques, to various agricultural commodities. Although these 

studies provide some insight into the methodologies employed in local studies and highlight some 

interesting findings, the focus must be brought back to milk production. There appears to be a 

limited number of South African studies which have investigated the productivity of milk 

production.  

Beyers & Hassan (2001a) considered a long run average cost (LAC) curve approach in an analysis 

of economies of size and managerial ability in the South African dairy industry. The specification 

of a translog cost function was chosen due to its flexibility, conventional U-shape average cost 

curve and several other benefits. The results of the study indicate that substantial size economies 

exist in the South African dairy industry. Furthermore, better managerial practices were associated 

with lower average costs, higher levels of optimal output and larger herd sizes for all farm sizes. 

The use of cross-sectional data by Beyers & Hassan (2001a) is a distinct limitation of the study 

since the effects of the various factors cannot be analysed over time. 

Beyers & Hassan (2001b) investigated the structure of milk production technology for a cross-

section of South African dairy farms using a parametric approach. The study considered both 

Cobb-Douglass and translog functional forms within a profit function framework, although the 

translog model was selected according to likelihood ratio tests. Although a parametric profit 

function was specified and the profit share equations calculated, no efficiency measures were 

calculated, as in a stochastic frontier framework. Instead, Iterative Seemingly Unrelated 

Regression (ISUR) and full information maximum likelihood (FIML) procedures were used to 

estimate the parameters of the output supply and input demand equations. Both quantity 

constrained (Hicksian) and unconstrained (Marshallian) elasticities were calculated. 

Mkhabela & Mndeme (2010) investigated the cost of producing milk in the KwaZulu-Natal (KZN) 

Midlands of South Africa using a LAC curve approach similar to that of Beyers & Hassan (2001a). 

Mkhabela & Mndeme (2010) improved upon the work of Beyers & Hassan (2001a) through the 

use of panel data, which contains both cross-sectional and time-series components and therefore 
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contains more information. The cost function specified by Mkhabela & Mndeme (2010) was, 

however, of a Cobb-Douglas form, and may be considered highly restrictive. Interestingly, the 

results of the study differed from that of Beyers & Hassan (2001a) in the sense that the cost curve 

was found to be L-shaped rather than U-shaped. Furthermore, in accordance with Beyers & Hassan 

(2001a), the authors noted the presence of size economies on the KZN Midlands dairy farms. 

Mkhabela et al. (2010) investigated the efficiency of dairy farms in the KZN Midlands, using a 

gross input-output approach and a stochastic production function approach. Cobb-Douglass and 

translog production function parameters were estimated using maximum likelihood. The results of 

the efficiency analysis indicate that farms which are larger, have larger investments in capital 

equipment and have fewer cows not in milk have higher levels of technical efficiency. To the 

author’s knowledge, this is one of the only applications of stochastic frontier analysis to the South 

African dairy industry. 

2.7 Concluding remarks 

This review of the literature has provided an in-depth insight into the economic theory of 

productivity analysis, with particular focus on efficiency analysis. Economic theory and 

fundamentals underpinning the concepts of efficiency and productivity have been introduced, with 

an important distinction between productivity and efficiency being made. Although this study 

considers an application of parametric efficiency analysis, parametric, nonparametric and 

semiparametric approaches have all been reviewed in an effort to remain comprehensive and 

subjective. Throughout the chapter, the inherent strengths and limitations of each approach have 

been highlighted and applications of the abovementioned methodologies briefly discussed. 

Following a detailed review of the various approaches to efficiency analysis, the concept of 

flexible functional forms was introduced, defined and discussed, with mention of various pros and 

cons associated with flexible functional forms. Concepts of local and global flexibility were also 

introduced. Following this discussion. the concept of technological change was introduced. 

Several approaches for the inclusion of technological change into the production function were 

introduced and their relative strengths and weaknesses highlighted. Simple time trends were 

applied to both a Cobb-Douglas and a translog production function for illustrative purposes. 
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Finally, a number of South African studies investigating productivity or efficiency analysis in 

South African agricultural industries were briefly reviewed. This review reveals the lack of South 

African literature on efficiency analysis and in particular on the dairy industry. While care has 

been taken to identify and briefly review all the relevant literature pertaining to productivity of the 

domestic milk market, the author acknowledges the possibility that some relevant studies may 

have been omitted. Early studies (such as Piesse et al., 1996; Beyers & Hassan, 2001a; Beyers & 

Hassan, 2001b) may not accurately represent the current state of the dairy industry since these 

studies were conducted shortly after deregulation of the dairy market. Deregulation marked the 

start of significant structural change in the South African dairy industry, moving from a regulated 

market to an open market. The introduction of competition and an entirely new process of supply 

would undoubtedly have resulted in a new set of challenges for commercial milk producers. The 

process of adjustment to such a change is, in reality, not rapid and its effects can be expected to be 

lagged over a number of years. Taking this into consideration, caution should be exercised when 

comparing the findings of these studies to more recent findings, as applicability in today’s milk 

market comes into question. 

Inter-regional comparison is commonplace in the international literature, with a wealth of studies 

investigating variations in production between regions. However, in the South African context the 

majority of studies consider data from only one production region. It is also surprising that despite 

a wealth of literature on dairy productivity analysis and frontier analysis methodology 

internationally, there has been very limited research conducted on this front domestically. In fact, 

only one study by Mkhabela et al. (2010), which considers an application of stochastic frontier 

analysis to SA milk production, could be found. 

The next chapter presents a review of the literature on latent variable analysis and structural 

equation modelling. The review begins with the introduction and definition of the concept of latent 

variable analysis and progresses to the introduction of latent variable modelling frameworks such 

as SEM and MIMIC. The chapter is concluded with a review of the literature on applications of 

the MIMIC to agricultural analysis.  
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CHAPTER 3: REVIEW OF LATENT VARIABLE ANALYSIS AND SEM TECHNIQUES 

3.1 Introduction 

A number of farm efficiency studies focus solely on the effect of technical efficiency on 

productivity (Tauer & Belbase, 1987; Kumbhakar & Heshmati, 1995; Sedik et al., 1999; Diaz & 

Sanchez, 2008; Murova & Chidmi, 2011; Cabrera et al., 2010). Bravo-Ureta & Rieger (1991) 

found that focusing only on technical efficiency substantially understates the potential gains from 

improvements in overall performance. Therefore, studies considering economic, allocative and 

technical efficiency effects on farm performance (Bravo-Ureta & Rieger, 1991; Bravo-Ureta & 

Pinheiro, 1997; Hansson, 2007) may be considered more comprehensive. However, calculation of 

allocative efficiency, hence economic efficiency, requires detailed input price and quantity data 

that are often not available in farm level agricultural data. Due to the imperfect nature of efficiency 

measures, it is posited that economic performance be defined as a latent variable for which there 

exist many imperfect indicators, including measures of efficiency (Richards & Jeffrey, 2000). This 

chapter begins with a brief literature review of latent variables, introducing the basic concepts of 

latent variable analysis. Fundamental concepts are then developed with a brief review of structural 

equation modelling, and a special case thereof, the Multiple-Indicators, Multiple-Causes (MIMIC) 

model. Finally, some applications are briefly reviewed to provide contextual background for model 

specification and analysis later on in this study. 

3.2 Latent variables 

Before proceeding with a review of latent variable analysis and the various methodological 

frameworks that may be applied, it is prudent to first identify an unambiguous definition for the 

concept of a latent variable. Many different definitions of the concept exist, although the selection 

of the most appropriate definition depends on the context (Skrondal & Rabe-Hesketh, 2004). 

Schumacker & Lomax (1996) define latent variables as variables which are not directly observable 

or measurable, rather they must be observed or measured indirectly and, hence, are inferred. 

Skrondal & Rabe-Hesketh (2004) define a latent variable as a random variable whose realizations 

are hidden from us. Bowen & Guo (2011) define latent variables as measures of hidden or 

unobserved phenomena and theoretical constructs. Apart from minor differences, all of these 

definitions highlight the unobservable, or not directly observable, nature central to the concept of 

latent variables. 
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Since latent variables cannot be directly measured, they must be indirectly measured by observable 

indicator variables which can be directly measured (Schumacker & Lomax, 1996). These observed 

variables are modelled as functions of model-specific latent constructs and latent measurement 

errors (Bowen & Guo, 2011). The estimation of latent constructs using observed variables is the 

basis of structural equation modelling which will be discussed in the following section. 

The conceptual framework behind latent variables analysis originates from the work of Spearman 

(1904), who developed factor analytic models for continuous variables in the context of 

intelligence testing (Borsboom et al., 2003). The basic statistical idea of latent variable analysis is 

that if a latent variable underlies a number of observed variables, then conditionalizing on that 

latent variable will render the observed variables statistically independent, otherwise known as the 

principle of local independence. The primary challenge, however, is to find a set of latent variables 

that satisfies this condition for a given set of observed variables (Borsboom et al., 2003).  

Although the theoretical concepts behind latent variables are often rich, available indicators often 

fail to fully capture the substantive content behind these latent constructs (Treier & Jackman, 

2008). This introduces the importance of content validity. Content validity exists when the scope 

of the latent construct is adequately represented by the indicators adopted for its measurement 

(Dunn et al., 1994). The standard approach to this problem is to use statistical procedures to 

combine the information into multiple indicators of the latent concept (Treier & Jackman, 2008). 

If content validity does not exist, it can be argued that proceeding with further analysis is pointless 

since the latent construct is not sufficiently represented by the indicators considered (Dunn et al., 

1994). Information from multiple indicators can be combined in several ways, including the use 

of a linear additive scale, simply summing each indicator, or weighting or re-scaling each item so 

that the contributions of each item to the scale are equal (Treier & Jackman, 2008). 

Another important consideration in the modelling of latent variables is that of substantive validity. 

Substantive validity refers to whether the items included to measure a construct are conceptually 

or theoretically linked to that construct. It differs from content validity in that it deals with each 

individual item (indicator) of a construct rather than with a set of items, as in the case of content 

validity. For a set of measurement items (scale) to have content validity, they must possess 

substantive validity (Dunn et al., 1994). For a description of various other types of validity 

considered in latent variable analysis, refer to Dunn et al. (1994). 
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There are several studies that recognize the latency of variables for which proxy variables have 

traditionally been used. Gao et al. (1997) specified “consumer taste” as a latent variable in an 

analysis of the effect of consumer taste on the demand for beef in the US. Patterson & Richards 

(2000) adopted a latent variable model to determine the effect of newspaper advertisement 

characteristics on consumer preferences for apples and on the demand for different apple varieties, 

specifying “consumer preferences” as a latent variable. Winklhofer & Diamantopoulos (2002) 

investigated the effect of various forecast performance criteria, such as bias, accuracy and cost, on 

sales forecasting effectiveness, which they defined as a latent variable with a number of imperfect 

indicators and causes. Shehzad (2006) adopted a latent variable approach to the problem of health 

unobservability, specifying child health as a latent variable.  

The application of latent variable analysis is not limited to any particular field of study and several 

studies have recognized the latency of variables in agriculture. Ford & Shonkwiler (1994) 

acknowledged the unobservable nature of management ability, relating a measure of farm financial 

success to three latent measures of “managerial ability”. These included financial, dairy and crop 

managerial ability. For each of these aspects of managerial ability, four observable indicators were 

specified in an attempt to ensure model identification. Kalaitzandonakes & Dunn (1995) adopted 

a similar approach in a study concerning technical efficiency, managerial ability and farmer 

education in Guatemalan corn production. Managerial ability was regarded to be a latent variable, 

with education, farming experience, and relevant personal attributes and talents specified as 

imperfect indicators.  

Ivaldi et al. (1994) and Ivaldi et al. (1995) investigated productive efficiency on samples of French 

grain producers and fruit growers, respectively. Both studies consider variations of the traditional 

production function approach in which individual levels of productive efficiency are proposed to 

be latent variables. Both studies consider applications of covariance structure analysis to deal with 

the estimation of the stochastic production function, and the measurement of technical efficiency 

in the case of Ivaldi et al. (1994). These latent variable approaches are credited for their ability to 

solve the problem of correlations between input quantities and individual effects. 

Eposti & Pierani (2000) proposed an alternative approach to the measurement of technical change, 

specifying the “level of technology” as a latent variable. Their analysis aimed to investigate the 

sources of growth of output and the rate of technical change in Italian agriculture through the 
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inclusion of latent technology level into an input demand system. Since the latent level of 

technology cannot be directly estimated from the input demand system the authors adopted a 

MIMIC model framework. 

3.3 Structural equation modelling 

Structural equation modelling (SEM) may be viewed as a general model encompassing a set of 

multivariate statistical approaches to empirical data (Bowen & Guo, 2011). Kaplan (2000) defines 

SEM as a class of methodologies that aim to represent hypotheses about the means, variance, and 

covariances of observed data in terms of a smaller number of structural parameters defined by a 

hypothesized underlying model. SEM essentially represents a synthesis of two separate statistical 

methods, namely factor analysis, developed in the fields of psychology and psychometrics, and 

simultaneous equation modelling, developed primarily in the field of econometrics (Kaplan, 2000). 

Schreiber et al. (2006) refer to SEM as a combination of confirmatory factor analysis and multiple 

regression since SEM is more of a confirmatory technique that can also be used for exploratory 

purposes. Before proceeding it is important to define and differentiate the concepts of confirmatory 

and exploratory factor analysis. Exploratory factor analysis (EFA) is used to determine the number 

or nature of factors that account for the covariation between variables when there is insufficient 

evidence to form an a priori hypothesis regarding the number of factors underlying the data. As a 

result, exploratory factor analysis is often considered to be a theory-generating procedure rather 

than a theory-testing procedure (Stapleton, 1997). Confirmatory factor analysis (CFA), unlike 

EFA, represents a theory testing procedure, in which a hypothesis is established prior to analysis. 

Confirmatory techniques aim to minimize the discrepancy between the observed and theoretical 

factor structures, in order to assess the goodness of fit of the fitted model to the data (Stapleton, 

1997). 

Structural equation models generally encompass two components: a measurement model and a 

structural model. The measurement model may be viewed as CFA, depicting the pattern of 

observed variables for the latent constructs, essentially linking the observed variables to latent 

variables (Schreiber et al., 2006). The application of a CFA serves as a test of reliability, assessing 

how well the observed variables define the latent variables (Schumacker & Lomax, 1996; Kaplan, 

2000). The measurement model is often used to examine the interrelationships and covariation 

among the latent constructs. This process involves estimation of factor loadings, unique variances, 
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and modification indexes to determine the most appropriate indicators of the latent constructs prior 

to estimation of the structural model (Schreiber et al., 2006). 

The structural model links the latent variables to each other through a system of simultaneous 

equations (Kaplan, 2000). These equations specify the prediction of the dependent latent 

variable(s) by the independent latent variable(s) (Schumacker & Lomax, 1996). One potential 

advantage of directly modelling the relationships between latent variables (as in the structural 

model) is that the negative effects of measurement error may be corrected (Skrondal & Rabe-

Hesketh, 2004). Potential advantages of SEM include substantial flexibility and the ability to 

incorporate explicit measurement models into more general statistical models (Kaplan, 2000). 

Before proceeding further, it is important to introduce and define the concepts of endogenous and 

exogenous variables. Exogenous variables, similar to independent variables, represent constructs 

that have an influence on other constructs but are not influenced by other factors in the model. 

Endogenous variables, similar to dependent variables, are affected by both exogenous and 

endogenous variables in the model. Both endogenous and exogenous variables can be observed or 

unobserved (latent) depending on the model in question (Schreiber et al., 2006). 

Traditional SEM, with latent variables, may also be referred to as covariance structure analysis 

since the primary focus is on the covariance structure. In this instance, the mean structure is 

typically eliminated by subtracting the mean from each variable (Skrondal & Rabe-Hesketh, 

2004). There are many possible formulations of SEM, although the LISREL model of Jöreskg 

(1973) is one of the most dominant specifications for SEM with latent variables.  

3.4 The MIMIC model 

A popular SEM which contains observed covariates is the Multiple-Indicators, Multiple-Causes 

(MIMIC) model. The MIMIC model of Jöreskog & Goldberger (1975) considers the relationships 

among observable endogenous “indicator” variables, exogenous “cause” variables, and latent 

constructs. This approach allows for the identification and estimation of latent variable indices and 

the impact of various factors on these indices (Richards & Jeffrey, 2000). 

The MIMIC model is a variation of SEM that has gained popularity as a research framework due 

to its flexibility in a wide range of research contexts (Thompson & Green, 2006, as cited by Finch 

& French, 2011). The notable advantages of SEM, including MIMIC, over observed variable 
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modelling are: 1) the ability to consider latent variables that cannot be estimated by any single 

measure; and 2) the ability to consider error due to measurement or omission, rather than assuming 

that measurements are made free of error (Finch & French, 2011).  

Figure 3.1 provides an illustration of a basic MIMIC model in which a single latent variable (η) is 

determined by several indicator variables, response items (Xq), and observed “cause” variables, 

regressors (Yp).  

 

Figure 3.1: A one-factor MIMIC model 

Source: Adapted from Muthén (1989) 

The observable cause variables are generally regarded as some of the most important determinants 

of the latent variable (Dell’Anno, 2007). The relationship between the cause and indicator 
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variables and the latent dependent variable is captured through the specification of two separate 

equations. In the structural equation, the latent dependent variable is linearly determined by a set 

of observable exogenous causes (Xi), while in the measurement equation, the latent dependent 

variable determines, linearly, a set of observable endogenous indicators (Yi). These two sets of 

equations are simultaneously solved, often using maximum likelihood (ML) estimation, to 

determine the effects of the various cause and indicator variables on the latent dependent variable 

(Jorëskog & Goldberger, 1975). It is important to note that there are no special rules of 

identification associated with the MIMIC model and estimation of model parameters proceeds in 

the same way as in general structural equation modelling (Kaplan, 2000). 

Figure 3.2 shows a path diagram of a multiple-factor MIMIC model. In this specification, there 

are four latent variables (n, X1, X2, X3), or factors, to be identified, whereby the latent response 

variable (n) is determined by three latent constructs (X1, X2, X3), which represent “cause” 

variables. Each of these latent “cause” variables are then identified by three “indicator” variables 

(V1, V2, …, V9). For example: the latent “cause” variable X1 would be identified by V1, V2, and 

V3. 

The MIMIC model has been a popular choice of model framework for latent variable analysis, 

which has been adopted extensively in a number of different disciplines, from behavioural 

psychology to marketing and economics (Macias & Cazzavillan, 2010). Proitsi et al. (2011) 

recently considered an application of the MIMIC model to assess the behavioural and 

psychological symptoms in dementia. The authors credited the MIMIC model for its ability to 

efficiently capture the complexity of inter-relationships between symptoms, factors and clinical 

variables considered in the study. Shehzad (2006) adopted a MIMIC model framework in his study 

on the determinants of child health in Pakistan. Results indicated that the use of MIMIC models 

allowed for a more comprehensive understanding of the determinants of child health compared to 

studies relying on single health measures. Furthermore, the unobservable nature of child health 

was successfully overcome using latent variable analysis. 
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Figure 3.2: Path diagram for a multiple-factor MIMIC model 

Source: own illustration adapted from Kaplan (2000) 

The MIMIC model has received several applications in the analysis of the informal (underground) 

economy. Breusch (2005) adopted the MIMIC model in an attempt to quantify the underground 

economy of various countries. The attractiveness of the MIMIC model in this instance comes in 

the form of being able to represent the size of the underground (informal) economy as a latent, 

unobservable variable, which cannot be directly quantified but has a number of causes and effects 

which are observable. Dell’ Anno (2007), in a similar study, analysed the “shadow” economy in 

Portugal using a MIMC model approach. The authors noted that the MIMIC model could be 

considered a useful methodology when taking other econometric alternatives into account.  

More recently, Macias & Cazzavillan (2010) investigated the Mexican informal economy using a 

MIMIC model approach. Dell’ Anno (2007) and Macias & Cazzavillan (2010) highlighted two 
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potential limitations associated with the MIMIC, the first of which pertains to the difficulties that 

arise when undertaking time series analysis. Since the MIMIC model only provides a group of 

estimated coefficients that can be used to create an index, benchmarking or calibration techniques 

must be used to convert the resulting index into values that can be used to construct a time series 

(Dell’ Anno, 2007). Secondly, assigning a specific meaning to the latent dependent variable is 

subjective since the actual meaning of the estimated latent variable may be conceptually different. 

There have been a limited number of applications of the MIMIC model to farm level data. As 

mentioned in the opening subsection of this chapter, Ivaldi et al. (1994) and Ivaldi et al. (1995) 

implemented covariance structure analysis, with similar equation structure to the MIMIC method, 

to estimate stochastic production functions of French grain and fruit producers, respectively. As 

mentioned earlier in the chapter, Esposti & Pierani (2000) adopted a MIMIC model approach to 

the measurement of technical change and determine sources of output growth in Italian agriculture.  

Richards & Jeffrey (2000) adopted a MIMIC model framework to estimate the efficiency and 

economic performance of a sample of Canadian dairy farmers, treating economic performance as 

a latent variable for which several imperfect indicators exist. Measures of technical, allocative and 

economic efficiency, estimated using a stochastic cost function framework, were then incorporated 

into the MIMC model as indicators of economic performance. Furthermore, the authors 

constructed latent quality indices to determine the effect of the quality of the breeding, feeding and 

labour programmes on latent economic performance.  
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CHAPTER 4: MILK PRODUCTION IN SOUTH AFRICA 

4.1 Introduction 

The South African (SA) dairy industry has undergone significant structural change since the 

promulgation of the Marketing of Agricultural Products Act of 1996. The shift from a market 

previously “protected” through state intervention to an open market system subject to competition 

posed a new set of challenges for SA milk producers. The most notable effects of deregulation 

include a reduction in profit margins, a geographical shift in the distribution of milk producers 

from inland to coastal regions, and consolidation and expansion of domestic dairy farms (Du Toit, 

2009). Consolidation of the SA dairy industry is still ongoing, while mean herd size and national 

production continue to grow. The aims of this chapter are to provide a current snapshot of the SA 

dairy industry, the changes that have occurred in recent years, and the nature of milk production 

in the country. A brief overview of the dairy industry in each of the study areas is also provided 

for some contextual background. 

4.2 The South African dairy industry 

The South African dairy industry is the fifth largest agricultural industry in the country, with gross 

value of production, including producers’ own consumption and on-farm usage, estimated at 

R12 544 million in 2013 (DAFF, 2014b). The total quantity of milk delivered to markets in 2014 

was estimated at 2.8 billion litres (Coetzee & Maree, 2015). 

The South African dairy industry may be disaggregated into two distinct sectors: the primary dairy 

sector, which refers to the production aspects of the dairy value chain and all associated factors, 

and the secondary dairy sector which refers to processing, distribution and marketing aspects of 

the dairy value chain. The remainder of this section will be dedicated to the description of, first, 

the primary and then the secondary sector of the South African dairy industry. 

The South African dairy industry has, in recent years, experienced notable shifts in the geographic 

distribution of milk producers (Table 4.1). Currently, the vast majority of national milk production 

(81.3%) may be attributed to three of the country’s nine provinces, namely, The Eastern Cape, 

Western Cape and KwaZulu-Natal. The Eastern Cape, responsible for just 13.8% of national milk 

production in 1997, has become the largest contributor (27.7%) in terms of national milk 

production. The Western Cape, historically the leading province in terms of milk production, 
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remains a significant contributor to national milk production (26.8%). KwaZulu-Natal has 

experienced good growth in the primary dairy sector and currently contributes 26.8% of national 

milk production. The Free State, North West and Mpumalanga provinces have experienced 

substantial decreases in milk production from 18%, 12.6% and 11% in 1997 to 7.3%, 4.2% and 

3.3% in 2014, respectively (Coetzee & Maree, 2009; 2015). 

Table 4.1: Geographical distribution of South African milk producers, 1997-2014. 

Source: Adapted from Coetzee & Maree (2009, 2015) 

There has undoubtedly been an observed geographical redistribution of milk producers from inland 

provinces, such as Mpumalanga, Free State and Northwest provinces, to coastal provinces, such 

as the Eastern Cape, Western Cape and KwaZulu-Natal. This redistribution trend is most likely 

due to the increased reliance on pasture-based dairy production systems. In an effort to curb rising 

costs of production, mainly in the form of purchased feeds, many milk producers have increased 

their reliance on pasture-based dairying. These grazing oriented systems may be associated with 

improved animal health, in the form of reduced veterinary, breeding, and medicine costs per cow 

and greater income from the sale of animals (Hanson et al., 2013). Despite the potential benefits 

for milk producers, pasture based dairy systems are limited by geographical location, land size, 

and the quality of land available. Furthermore, milk production per cow on pasture based dairy 

systems are typically lower than in total mixed ration (TMR) based systems. TMR systems refer 

Province 
Distribution of milk production (%) 

Dec-1997 Mar-2008 Oct-2014 

Western Cape 22.9 25.3 26.8 

Eastern Cape 13.8 21.8 27.7 

Northern Cape 1.2 0.7 0.8 

KwaZulu-Natal 15.7 21.1 26.8 

Free State 18 12.8 7.3 

North West 12.6 7.1 4.2 

Gauteng 4.4 3.1 2.3 

Mpumalanga 11 7.6 3.3 

Limpopo 0.4 0.5 0.8 

Total 100 100 100 
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to production systems based entirely on mixed rations, typically consisting of a combination of 

purchased and home-grown feed, with no reliance on grazing. 

Coastal areas are better suited to dairy production systems as mild temperatures and higher levels 

of rainfall support the growth of natural and artificial pastures necessary for optimal milk 

production. Artificial pastures refer to pastures created through human intervention, that would 

otherwise not occur naturally. Inland areas are, in comparison, less climatically favourable for 

dairying and require more intensive, higher cost production systems (DAFF, 2014b).  

It is important to note that despite the guise of lower variable cost of milk production in coastal 

regions, the additional cost of transportation to markets should be considered (Mkhabela & 

Mndeme, 2010). According to Blignaut (1999), the effects of widely dispersed and low volume of 

production per producer in certain areas is reflected in the collection cost of milk. The author 

further noted that the collection cost of milk was notably higher in inland regions, due to lower 

milk production per square kilometre (density of milk production), while in costal milk producing 

areas, collection costs were relatively low due to higher density of milk production. Although this 

information is dated, it is not unreasonable to assume, particularly in light of the redistribution 

trend, that costal producers in regions with relatively high density of milk production are likely to 

benefit from lower collection costs in comparison to those producers in relatively low density 

regions. 

There has been a significant decrease in the number of South African milk producers in recent 

years (Table 4.2). The total number of milk producers in the country has decreased from 7077 in 

1997 to 1834 in January 2015, a 74% decrease. The largest decline in the number of producers has 

occurred in the inland provinces of Mpumalanga (-89%), Northern Cape (-89%), Northwest (-

85%) and Limpopo (-81%) (Coetzee & Maree, 2009; 2015). This substantiates the relocation trend 

of milk production from inland to coastal regions. Despite the observed decline in the number of 

milk producers, annual domestic milk production has continued to increase. Total milk production 

for 2014 was 2.978 million tons compared to 2.559 million tons in 2007 (DAFF, 2015). 

Furthermore, the decline in the number of producers has been accompanied by an increase in the 

average herd size of milk producers (Table 4.3). The average national herd size per producer has 

increased from 151 cows in 2006 to 353 cows in 2014, translating to a 134% increase in nine years. 
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Herd size is a commonly used proxy for farm size in studies involving dairy farm analysis. The 

contemporaneous decrease in number of national producers and increase in average herd size is 

indicative of consolidation within the South African dairy industry whereby there are fewer, larger 

commercial milk producers. This situation is not unique to the South African context and has been 

highlighted in a number of studies concerning the dairy industries of important milk producing 

nations such as the United States, New Zealand and Australia (El-Osta & Morehart, 2000; Gloy et 

al., 2002; Kompas & Che, 2003; Kompas & Che, 2006; Tauer & Mishra, 2006; Gillespie et al., 

2009; Hansson & Ferguson, 2011; Hanson et al., 2013).  

Table 4.2: Number of milk producers per province in South Africa, 1997 to 2015. 

Source: adapted from Coetzee & Maree (2009, 2010, 2014, 2015) 

Given rising production costs and poor milk prices, South African dairy producers often look to 

increased milk production, either in the form of herd expansion, or improved milk production per 

cow, as a possible solution (Gertenbach, 2007). One possible driver behind the decision to increase 

total milk production may be a reduction in gross margin per cow. It is possible that farmers 

anticipate this change in two ways. Firstly, they may anticipate this as a reduction in the potential 

profitability of dairy farming and may opt to shut down their dairy enterprise and invest either off-

farm or in another farming enterprise, which offers better returns to investment. Farmers with 

diversified farming portfolios, who derive only a portion of total farm income from the dairy 

Province 
Number of producers % change 

1997 2007 2008 2009 2010 2011 2012 2013 2014 2015  

Western Cape 1577 827 815 795 754 683 647 573 529 533 -66 

Eastern Cape 717 420 407 387 354 314 283 271 264 262 -63 

Northern Cape 133 37 34 37 45 28 21 20 25 14 -89 

KwaZulu-Natal 648 385 373 373 348 323 322 294 281 267 -59 

Free State 1204 987 919 884 835 601 535 423 389 328 -73 

North West 1502 596 549 540 507 386 352 253 233 222 -85 

Gauteng 356 245 228 217 212 127 126 109 109 100 -72 

Mpumalanga 866 357 302 286 248 201 164 119 117 94 -89 

Limpopo 74 45 38 32 29 23 24 21 14 14 -81 

Total 7077 3899 3665 3551 3332 2686 2474 2083 1961 1834 -74 
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enterprise, are more likely to adopt this view as they are able to reallocate resources previously 

allocated to dairying to other farming enterprises. In this instance, the perceived loss associated 

with the decision to exit may be minimized.  

Secondly, farmers may anticipate the change as in indication that they should expand production 

if they wish to remain profitable. Producers who are highly specialized in dairying and have large 

investments in this enterprise are more likely to avoid the decision to shut down as long as possible 

since the perceived losses associated with the decision to exit may be far larger than for smaller 

producers and non-specialized producers. It is, therefore, larger and more specialized dairy 

producers that are likely to remain in business due to asset fixity and attempting to exploit scale 

economies in order to maintain profitability. 

Table 4.3: Mean herd size per producer, per province, for 2006 and 2014. 

Source: adapted from Coetzee & Maree (2009, 2015). 

Conventional economic theory dictates that the decision to shut down, given perfect information 

and no adjustment costs, occurs when the product price falls below average variable costs (Tauer, 

2006). However, in the case of farmers, standard shutdown theory does not apply since farmers 

anticipate a possible recovery of the milk price in the future and continue to operate despite average 

variable costs of producing milk exceeding the milk price. Furthermore, individual milk producers 

have different variable costs of production, therefore the decision to exit is farm specific. 

Province 
Mean herd size (cows) 

% Change 
2006 2014 

Western Cape 151 281 86 

Eastern Cape 349 769 120 

Northern Cape 67 76 13 

KwaZulu-Natal 267 574 115 

Free State 72 140 94 

North West 68 90 32 

Gauteng 225 117 -48 

Mpumalanga 91 169 86 

Limpopo 206 230 12 

Total 151 353 134 



 
 

55 
 

According to Tauer (2006), small dairy farms are likely to exit at higher milk prices than larger 

dairy farms and hence are less likely to persist in the face of low milk prices. 

Rahelizatovo & Gillespie (1999) investigated the factors affecting dairy farm exit in Louisiana, 

which was experiencing consolidation and overall decline in regional productivity. They found 

that milk prices, input prices, technology affecting milk productivity, agricultural policies 

incentivizing reduced milk production and early retirement, and farmer’s financial conditions all 

significantly affected the structure of the local dairy industry. 

Although the decision to exit dairy farming is often attributed primarily to low milk prices there 

are several other important factors that farmers may consider before deciding to exit the industry. 

Goetz & Debertin (2001) identified off-farm employment as an important determinant of farm 

exits in the US, finding that off-farm employment accelerated exits from production agriculture, 

only once the country had begun to experience a net loss of farmers. When deciding to exit 

farming, farmers compare the utility they expect to derive from remaining in farming with the 

utility derived from exiting and either becoming fully employed off-farm, retiring or relocating 

(Goetz & Debertin, 2001). Bragg & Dalton (2004) identified older producers, higher off-farm 

income, lower returns over variable cost and greater diversification of farm income as factors 

which significantly increase the likelihood of dairy farm exits.  

The secondary dairy sector in South Africa consists of 153 registered milk buyers, of various size 

and processing ability, and 122 producer-distributors. Producer-distributors are defined as 

producers who are able to market produce directly to consumers or retailers (Coetzee & Maree, 

2015). Of the 153 registered buyers there are several large milk buyers and processors including 

Clover, Parmalat, Woodlands Dairy, Lancewood and Nestlé. The remainder of the registered milk 

buyers represent smaller scale processing and marketing operations, operating more on a local 

basis. 

The South African milk market may be divided into liquid and concentrate products whereby 

liquid products constitute 58% of the market and concentrate products constitute 42%. Pasteurized 

milk is the largest product of the liquid milk market (51%) followed by UHT milk (29%). Together 

they constitute 80% of the liquid milk market in South Africa. The South African concentrated 

products market is comprised primarily of hard & semi-hard cheese (44%), followed by other 

cheese (19%) and butter (12%) (Coetzee & Maree, 2015). 
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4.3 Dairying in KwaZulu-Natal 

KwaZulu-Natal is currently the second largest milk producing province in South Africa (alongside 

the Western Cape), responsible for 26.8% of national milk production as of October 2014. There 

are currently 267 milk producers registered with the milk producers’ organization of KwaZulu-

Natal (KZN), which is significantly lower than the 648 producers of 1997. Furthermore, KZN has 

experienced the second largest increase in average herd size per producer since 2006, with a 115% 

increase from 267 in 2006 to 574 in 2014 (Coetzee & Maree, 2009; 2015). 

Dairy production systems are highly complex and may vary significantly between regions and 

producers. Pasture based systems and total mixed ration (TMR) systems represent opposite 

extremes, with any possible combination of the two representing partially pasture/TMR based 

systems. Milk production in KZN is primarily pasture based, with the majority of producers opting 

for the inclusion of formulated dairy concentrate rations to supplement any nutritional shortfalls 

and improve milk production as well as milk quality (Gertenbach, 2007). 

The majority of milk produced in KZN is produced within the Midlands region due to high annual 

rainfall, between 800 and 1000mm per annum, moderate temperatures and good quality soils. 

These conditions promote the growth of good quality dry land pastures during the rainy summer 

months. Moderate temperatures promote the growth of irrigated ryegrass pastures during the dryer 

winter months. These conditions make the Midlands more suited to pasture based dairy systems 

than the majority of other regions in the province. The Northern areas of KZN, such as Zululand, 

are not conducive to commercial dairy farming due partly to high temperatures, which often result 

in heat stress of most dairy breeds (Mkhabela, 2011). East Griqualand is another important milk 

producing region within the KwaZulu-Natal province. East Griqualand is characterized as a 

summer rainfall region which typically receives an average of 620 to 816mm of rain per annum 

(Camp, 1997). 

There are currently 17 milk buyers and 11 PD’s registered with KZNMPO. The majority of milk 

producers in the EG study group supply to large multinationals such as Clover and Nestle while a 

few of have chosen to process their milk on site, using specialized equipment. There are very few 

producer distributors currently opting to market their own milk in EG (Bischoff, 2015). 
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4.4 Dairying in the Eastern Cape 

The Eastern Cape is the largest milk producing province in South Africa, responsible for 27.7% of 

national milk production as of October 2014. Currently, there are 262 registered milk producers in 

the province, significantly less than the 717 milk producers registered in 1997. The Eastern Cape, 

like KZN, has experienced a substantial, 120%, increase in the average herd size of registered 

producers from 349 cows in 2006 to 769 cows in 2014 (Coetzee & Maree, 2009; 2015). 

The majority of milk produced in the Eastern Cape province is produced under pasture based dairy 

systems in the cooler coastal regions such as Alexandria, Cookhouse, East London, Tsitsikamma, 

and Queenstown (Agri Eastern Cape, 2015). Cooler temperatures and relatively high rainfall, 

averaging between 500mm and 700mm per annum, facilitate the growth of high quality natural 

pastures and minimizes expenditure on expensive dairy concentrates. The majority of dairy farms 

in the coastal regions of the Eastern Cape are dryland farms, relying solely on rainfall for the 

growth of pastures. This is in contrast to KZN dairying, where the majority of dairy farmers have 

at least some proportion of their land under irrigation. Irrigated lands are commonly used for 

annual or perennial ryegrass pastures during the cooler winter months, in an effort to reduce 

reliance on costly concentrate feeds (Currie, 2015). 

There are currently 12 registered milk buyers and 15 PD’s in the Eastern Cape (Coetzee & Maree, 

2015). The Alexandria study group markets the majority of its milk through large milk buyers such 

as Clover, Parmalat and Dairybelle while the remainder is supplied to Woodlands dairy, a large 

South African company which markets under the “Firstchoice” brand. The majority of milk 

produced by the Alexandria study group is marketed outside of the Eastern Cape Province with a 

large proportion being transported to Johannesburg in response to market demand. It is important 

to note that KZN milk producers may benefit from as much as 60c per litre transport advantage 

over EC milk producers (Currie, 2015). 
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CHAPTER 5: MODELLING TECHNICAL AND SCALE EFFICIENCY 

5.1 Introduction 

The modelling, estimation and application of stochastic frontier production functions to economic 

analysis has been a prominent area of focus in applied economic analysis over the past two decades 

(Ojo, 2003), with numerous applications to agricultural research. While much of this focus has 

been dedicated to the estimation of technical efficiency, very few applications have focused on the 

estimation of parametric scale efficiency. This chapter aims to surmount this limitation by 

modelling both technical and scale efficiency in a parametric framework. The chapter opens with 

a brief description of the study areas, data collected, and variables included in subsequent analysis 

and progresses into a preliminary analysis of the data. Several production functions are then 

specified. The final section of the chapter deals with the modelling of parametric scale efficiency. 

5.2 Description of the study areas and the data collected 

5.2.1 Data 

The data collected for the purposes of this study are detailed production and financial data from 

individual dairy farms, obtained from dairy consultants operating in the East Griqualand region of 

KwaZulu-Natal and the Alexandria region of the Eastern Cape, for the period 2007 – 2014. Data 

were collected on the dairy enterprise alone, hence, income and expenditures relate only to milk 

production and the dairy herd. Income from any value adding activities such as processing of milk 

into powered milk, maas, cheese, yoghurt, etc., are not considered. Farms included in the sample 

are considered specialized dairy producers, deriving more than 80% of their income from milk 

production. A few noteworthy exceptions warrant mention. Dairy farms with value adding 

enterprises, such as those mentioned above, typically realise large revenues, attributable to their 

value adding enterprises, which negatively distorts the proportion of total income that may be 

attributed to milk production. These farms are still considered specialized dairy farms since these 

value adding processes are centred on the dairy enterprise.  

The data consist of a combined panel of 26 commercial milk producers spanning a period of 8 

years, from 2007-2014. The number of pooled observations for the study is 208. It is important to 

note that the appropriateness of sample size is linked to the ratio of the number of subjects to the 

number of parameters estimated (Tanaka, 1987). Therefore, it is difficult to determine, with 
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certainty, the appropriate sample size for a specific study. Boonsma (1983), as cited by Tanaka 

(1987), suggested sample sizes in excess of 200 are appropriate if maximum likelihood (ML) 

estimation is used. The pooled sample of 208 observations used in this study is therefore 

considered sufficiently large. 

The original data from the East Griqualand study group consisted of 14 producers spanning the 

eight years from 2007 to 2014; however, due to one farm dropping out, an unbalanced panel of 

104 observations was achieved. The original Alexandria study group comprised of 26 farms, 

although only 18 farms were consistent across the entire eight-year period. Furthermore, five farms 

from the Addo, Cookhouse and Tsitsikamma regions were considered outliers and were 

subsequently dropped from the sample to retain representability. This resulted in an unbalanced 

panel of 104 observations. It is important to note that the original data are in terms of current 

(nominal) prices and must be deflated to constant prices before any intertemporal comparisons 

may be made.  

The resulting unbalanced panel of 208 observations was achieved by pooling the data from each 

respective production region. The unbalanced nature of the data is due to data omissions arising 

from incomplete farm records. Missing data analysis was conducted to determine the nature of the 

missing data and assist in the selection of an appropriate remedy. The results of the missing data 

analysis led to the use of multiple imputation, using the data augmentation technique, to construct 

a balanced panel of 208 observations. This will be covered in greater detail later in the chapter. 

Data from Alexandria in the Eastern Cape are considered representative of above-average dairy 

farmers in the region (Currie, 2015). Farms in the Alexandria study group are all considered 

specialized dairy farms, earning 100% of total farm income from the dairy enterprise. Data for the 

East-Griqualand area of KwaZulu-Natal are also considered representative of above-average dairy 

farmers in the area (Bischoff, 2015). The East Griqualand study group is comprised of both dairy 

farms and mixed enterprise farms, although all farms included in the sample may be considered 

specialized in dairy, with upwards of 80% of total farm income attributable to the dairy enterprise. 

5.2.2 East Griqualand 

East Griqualand (EG) refers to southern parts of KwaZulu-Natal, such as Kokstad, and northern 

parts of the Eastern Cape, such as Matatiele and Cedarville. The entire EG region is characterized 
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by the grassland vegetation biome (Figure 5.1), which is comprised of two major grass types, 

namely sweetveld and sourveld, with mixed veld as an intermediate (Ellery et al., 1995). Following 

the Bioresource Group (BRG) classifications of Camp (1997), the majority of the region may be 

classified as dry highland sourveld followed by moist highland sourveld. Mean annual rainfall 

ranges from 620 to 816mm for the former and 800 to 1265mm for the latter (Camp, 1997). Figure 

5.2 illustrates that the mean annual rainfall for the KZN portion of East Griqualand ranges between 

500mm and 800mm. 

Figure 5.1: Map of vegetation biomes in KwaZulu-Natal, South Africa. 

Source: Cartographic Unit, Geography Department, SAEES, University of KwaZulu-Natal, 

Pietermaritzburg, 2015. 

East Griqualand is a summer rainfall region characterized by sourveld grazing conditions, which 

are restricted to summer and spring, providing approximately six to eight months of grazing per 

year. Despite a reasonable carrying capacity during spring and summer, sourveld becomes 
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relatively unpalatable to livestock during autumn and winter (Tainton, 1981). This has important 

implications for the type of farming systems that can be supported within the region. In the case 

of milk production, this variability in the fodder flow increases reliance on supplementary feed 

sources such as irrigated pastures, maize silage, and feed concentrates over the autumn and winter 

months. Additional costs associated with winter supplementation affect the overall cost structure 

of milk producers in the region and subsequently has an impact on profitability. Since feed costs 

are typically one of the largest costs for dairy farmers, it is reasonable to postulate that the ability 

to maintain fodder flow throughout the year, through the production of home grown feeds, is likely 

to be an important determinant of farm financial performance.  

Figure 5.2: Mean annual rainfall map for KwaZulu-Natal, South Africa. 

Source: Cartographic Unit, Geography Department, SAEES, University of KwaZulu-Natal, 

Pietermaritzburg, 2015 
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Milk producers within the EG study group rely predominantly on pasture based systems, due to 

lower input costs and higher potential profitability. Farmers rely on perennial ryegrass and clover 

pastures for the majority of the year although yields begin to decline in mid-summer at which point 

kikuyu pastures are introduced to supplement any shortfalls in dry matter. Turnips are planted in 

February and grazed during mid-winter in an effort to augment winter pastures. Maize silage is 

typically fed from May to September in order to balance out any shortfalls in dry matter 

requirement which may arise due to the relatively low nutritive value of pastures during the winter 

months (Bischoff, 2015). Furthermore, Bischoff (2015) indicated that EG milk producers should 

aim to produce 15kgs of dry matter per cow per day throughout the year (this figure refers to 

roughage requirement alone and excludes any dairy concentrates) and one hectare of maize silage 

for every ten dairy cows. 

Mean annual temperature for the East Griqualand region ranges between 8.1 and 14.8 degrees 

Celsius. Referring to Figure 5.3, it is evident that the EG region experiences lower mean annual 

temperatures than most of the province, particularly the coastal regions. The northern reaches of 

KZN, in particular the North coast, experience significantly higher temperatures than traditional 

dairy farming areas, such as the Midlands and EG. These high average temperatures make northern 

KZN unsuitable for dairying.  

Hot weather has been linked to an increased incidence of heat stress in dairy cattle, which typically 

results in decreased milk production and reproductive performance (Armstrong, 1994), 

particularly in cows with high genetic potential (Kadzere et al., 2002). Heat stress occurs when 

any combination of environmental conditions (temperature, relative humidity, air movement and 

solar radiation) results in the effective temperature of the environment exceeding the thermo-

neutral (comfort) zone of the animal (Armstrong, 1994). By minimizing heat stress, it is possible 

to reduce or eliminate yield and reproductive losses. The relatively cool climate characterizing the 

EG region not only facilitates the growth of good pastures but is likely to minimize the incidence 

of heat stress and associated productivity losses. 
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Figure 5.3: Mean annual temperature map for KwaZulu-Natal, South Africa 

Source: Cartographic Unit, Geography Department, SAEES, University of KwaZulu-Natal, 

Pietermaritzburg, 2015 

 

5.2.3 Alexandria 

Alexandria is a small farming town located in the Ndlambe local municipality within the Cacadu, 

Sarah Baartman, district of the Eastern Cape. It is located in the south-western corner of the Eastern 

Cape Province in close proximity to the coastline (Sarah Baartman District Municipality, 2015). 

Figure 5.4 indicates that the coastal region between Port Elizabeth and East London is 

characterized by several different vegetation biomes including savanna, grassland, thicket and 

even areas of fynbos. Alexandria is most likely characterized by grassland and savanna vegetation 

which differs from the purely grassland vegetation of East Griqualand. Unfortunately, the lack of 
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available information on Eastern Cape vegetation did not permit the classification of the study area 

into specific Bioresource Groups (BRG)’s as in the case of the KZN study area. 

Figure 5.4: Map of vegetation biomes in the Eastern Cape, South Africa. 

Source: Cartographic Unit, Geography Department, SAEES, University of KwaZulu-Natal, 

Pietermaritzburg, 2015. 

Figure 5.5 indicates that mean annual rainfall for the Alexandria region ranges between 500mm 

and 700mm, similar to the figures reported for the EG region in KZN. It is evident that the northern 

stretch of coastline, between East London and Port St Johns experiences significantly higher 

rainfall than the Alexandria region. This former homeland known as the Transkei is, however, 

characterized by small-scale subsistence farming, with very little commercial agriculture taking 

place. Figure 5.6 indicates that the mean annual temperatures of the Alexandria region, and much 

of the Eastern Cape coastline, range between 17.7 and 20.6 degrees Celsius. This is significantly 

Alexandria 
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higher than for the East Griqualand region, which experiences mean annual temperatures not 

exceeding 14 degrees Celsius.  

Figure 5.5: Mean annual rainfall map for the Eastern Cape, South Africa. 

Source: Cartographic Unit, Geography Department, SAEES, University of KwaZulu-Natal, 

Pietermaritzburg, 2015. 

The Alexandria study group consists entirely of dryland dairy farms which cannot facilitate the 

growth of conventional ryegrass pastures due to the lack of irrigation infrastructure. Relatively 

high mean annual temperatures limit the use of “traditional” dairy pastures such as clover, stooling 

rye and radish, which are more suited to cooler, wetter areas such as the KZN Midlands. Milk 

producers in the region therefore rely primarily on Kikuyu and K11 pastures to meet the dry matter 

requirements of the dairy animals. 

Alexandria 
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Kikuyu is a palatable and nutritious tropical grass which grows well in warmer areas. It can tolerate 

heavy defoliation and provides relatively good foggage if left standing through the winter months 

(Bartholomew, 2015). K11, also called Coast Cross II, is a tropical Cynodon species which is well 

suited to warmer climates and is more drought resistant than Kikuyu. Young regrowth is palatable 

and nutritious although older growth may be relatively unpalatable. K11, unlike Kikuyu, is not 

well suited to foggaging (Bartholomew, 2015). 

Figure 5.6: Mean annual temperature map for the Eastern Cape, South Africa 

Source: Cartographic Unit, Geography Department, SAEES, University of KwaZulu-Natal, 

Pietermaritzburg, 2015 

Due to relatively mild winters, Alexandria dairy farmers are able to maintain a relatively large 

portion of their pastures over the winter months (foggaging). Excess grass and hay is baled and 

wrapped to serve as supplementary roughage to be fed during the winter months. Local milk 

producers do not rely on maize silage but rather augment any shortfalls in roughage requirement 

Alexandria 
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with citrus pulp which is readily available in the area and provides a cost-effective means of 

supplementation. Dairy concentrates are typically fed at a ratio of approximately 360g per litre of 

milk produced (Currie, 2015). 

5.3 Variables used in the production function 

The variables considered in the production functions analyses are summarized in Table 5.1 with 

detailed descriptions of each to follow. This study considers one aggregated output variable and 

five individual factors of production, some of which have also been aggregated for the purposes 

of computational simplicity. All variables have been adjusted for inflation and are reported in 2014 

Rands (2014 = 100). 

(i) Total dairy output (Y) 

The output variable in this study represents an aggregation of the two most significant outputs of 

the sampled dairy farms, namely, total income from the sale of milk and trading income. Total 

milk revenue represents total income from all milk sold to formal and informal (on-farm labour) 

markets as well as personal drawings. Trading income refers to the purchase and sale of livestock 

and may be defined as: stock sales + closing value - stock purchases - opening value.  

Total milk revenue rather than physical output was considered as it has the advantage of accounting 

for inherent differences in quality (Abdulai & Tietje, 2007). The price received by each farmer is 

usually dependent on a number of milk characteristics including the butterfat content, protein 

content, and milk quality. Somatic cell count (SCC) is the most widely accepted measure of milk 

quality which assesses microbiological milk quality (coliform counts, plate counts, etc.) and 

mammary gland inflation, associated with mastitis (Reneau, 2001). Although individual farm level 

prices are a function of several factors, it is reasonable to assume that price differences at the farm 

level capture at least some portion of inherent quality and compositional differences.  

It is important to note that this assumption may not hold in the case of producer-distributors and 

producers supplying smaller milk buyers who fail to recognize quality and compositional 

differences through selective pricing. In this case milk prices are essentially at a “flat rate” and do 

not capture any quality or compositional differences between producers. 
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 (ii) Total veterinary expense (V) 

High levels of production performance demanded by commercial dairy farmers requires that each 

milking cow’s needs in terms of health, production performance, and breeding performance be 

met, particularly for the highest producing milk cows (best milkers). Achieving these performance 

requirements requires large expenditure on various aspects of veterinary products and services. 

Veterinary expense was included in an attempt to assess the importance of herd health on aggregate 

output, following Winsten et al. (2000) and Del Corral et al. (2011).  

Veterinary expense is defined as all expenses relating to veterinary products and services including 

veterinary visits; medicine, dips and tags; artificial insemination costs; cleaning materials; milk 

recording costs and sundries. Following the findings of Del Corral et al. (2011), it is hypothesized 

that increased expenditure on veterinary products and services (V) will be correlated with 

improved herd health up until a certain point and therefore a positive relationship between 

veterinary expense and output is expected up until this point is reached. In other words, as 

veterinary expense increases production output is expected to increase up to a certain point, ceteris 

paribus. 

 

Table 5.1: Variables included in the production function 
  

Variable Code Description Unit 

Output Y The combined value of total milk income and trading income. Rand 

Veterinary V 
Total expense on veterinary products and services including: veterinary visits; 

medicines, dips and tags; cleaning materials; milk recording costs and sundries. 
Rand 

Labour L 
Total wage bill for the dairy enterprise which accounts for differences in labour 

quality. 
Rand 

Feed F Total expense on feed including purchased feeds and home grown feeds. Rand 

Herd H Average number of cows in milk per year. Cow 

Capital K 
Total maintenance, depreciation and running costs associated with capital 

stock items such as fixed improvements and machinery. 
Rand 



 
 

69 
 

(iii) Labour (L) 

Commercial dairy farming requires a mix of relatively skilled workers, who have been trained in 

the use of the highly specialized milking equipment and/or production monitoring systems, and 

relatively unskilled labourers, such as stockmen and cleaners. Since information regarding the 

number of labour hours attributable to the dairy enterprise was not available, the labour variable 

is represented by the total wage bill for all staff employed in the dairy enterprise. The benefit of 

quantifying labour in terms of wage is the ability to account for differences in labour quality (Gloy 

et al., 2002). Because an increase in labour is expected to result in increased output, in accordance 

with Kumbhakar et al. (1989), Jaforullah & Premachandra (2003), Hadley (2006), and Cabrera et 

al. (2010), a positive relationship between labour and output is hypothesized, ceteris paribus. 

(iv) Total feed expense (F)  

Expenditure on feed is typically one of the largest expenses of any dairy farmer, regardless of 

whether the majority of feed is purchased, or home grown. Following Abdulai & Tietje (2007), 

the feed variable is defined as the total rand value expenditure on all feeds, represented by the sum 

of purchased and home-grown feeds.  

Expenditure on purchased feeds is represented by total expenditure on all feed purchased for cows, 

heifers, calves, and includes dairy concentrates. Expenditure on home-grown feeds is represented 

by the aggregation of all costs associated with the production of feeds grown insitu. This includes, 

but is not limited to, expenditure on fertilizer, seed, pesticides and herbicides, planting, and 

harvesting costs. It is important to note that by expressing feed in aggregate value terms, it is not 

possible to account for differences in feed quality and composition between farms. This may 

introduce some degree of heterogeneity into the data (Abdulai & Tietje, 2007). Feed cost (F) is 

hypothesized to have a positive and significant relationship with dairy output in line with Tauer & 

Belbase (1987), Bravo-Ureta & Rieger (1991), Alvarez & Arias (2003) and Mbaga et al. (2003). 

In other words, as feed expense increases output is expected to increase, ceteris paribus. 

(v) Herd size (H) 

The herd size variable is represented by the average number of cows in milk per annum. It is 

included as a proxy for farm size, commonly measured in hectares. Herd size is considered more 

relevant than physical area measures of farm size since it intrinsically accounts for agricultural 
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potential of each farm. It could be argued that a farm with poor soils and low agricultural potential 

could achieve a large herd size through intensive feeding of purchased feeds, although the high 

cost of production associated with such a production system would most likely deem it unviable 

for South African milk producers. Furthermore, dairy farms from the two respective study areas 

are predominantly centred around pasture-based feeding systems, meaning that herd size is likely 

to represent the size of their farming enterprise reasonably well. 

Because an increase in herd size is associated with increased production potential, it is 

hypothesized that the relationship between herd size and output will be strongly positive and 

significant. In other words, as herd size increases output is expected to increase, ceteris paribus. 

These expectations are in line with the findings of Kumbhakar et al. (1991), Jaforullah & 

Premachandra (2003), Gillespie et al. (2009) and Cabrera et al. (2010). 

(vi) Capital (K) 

Following Hadley (2006) and Mkhabela (2011), the cost of the capital variable is constructed in 

an effort to represent the flow of services originating from capital stock items. This approach is 

adopted since there was insufficient data on capital expenditure to calculate the capital stocks. 

Furthermore, Mkhabela (2011) noted that unless the level of capacity utilization is known, running 

costs associated with capital stock items have more explanatory power. Total maintenance, 

depreciation and running costs associated with capital stock items such as fixed improvements and 

machinery were aggregated to produce an input of total running cost of capital stock items.  

In the modern dairy industry, capital investment has become an increasingly important part of 

production. Efforts to improve productivity, in the face of increasing herd sizes, has led to higher 

rates of technology adoption, much of it labour augmenting. Improved milking parlours, feeding 

systems, herd and production monitoring technologies are a few examples of increased capital 

investment. Kumbhakar et al. (1989), Von Bailey et al. (1989), Mbaga et al. (2003) and Jaforullah 

& Premachandra (2003) all reported a positive relationship between capital and dairy output. In 

line with the previous literature, it is hypothesized that the relationship between capital and output 

will be positive, ceteris paribus. 
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(vii) Regional dummy variable (D) 

A regional dummy variable was included to differentiate between the two production regions and 

capture any variation in production due to regional differences. These may include climatic 

variations such as land quality, marketing variations, and differences in the production systems 

used in the two regions. Hence, East Griqualand = 1, and 0 if otherwise. Since inherent regional 

differences are expected to exist, the coefficient estimate of the regional dummy variable is 

hypothesized to be significant. 

(viii) Smooth time trend (T) 

A smooth time trend variable was introduced as a crude attempt to proxy technological progress 

over the study period. According to Debertin (1968), including a simple time trend variable into 

the production function is highly inaccurate but may be an improvement over a static model that 

fails to account for technological change in any way. Furthermore, the inclusion of a time trend 

into the production functions represents a workable alternative which may be easily applied 

(Chambers, 1988). Since new technologies such as rotary milking parlours, AI and genetic 

progress, and advanced production monitoring software are all expected to improve productivity, 

the time trend is hypothesized to have a positive relationship with dairy output, ceteris paribus. 

5.4  Preliminary data analysis 

5.4.1 Missing data analysis 

Missing data are a prevalent issue for researchers using structural equation modelling (SEM) 

techniques (Enders & Bandalos, 2001). There is general consensus among the relevant literature 

that the effects of missing data need to be considered prior to statistical inference as it may affect 

research results (Lee, 2007; McKnight et al., 2007). Researchers often fail to state the presence of 

missing data and resort to default methods, such as list-wise deletion, without acknowledgement, 

in an effort to avoid addressing the problem (Van Buuren, 2012).  It is, therefore, considered 

prudent to analyse the missing data before proceeding with statistical estimation and inference. 

When considering the impact of missing data on research results the pattern, amount and 

mechanism of missing data should be investigated. The pattern of missing data refers to the 

presence of any consistencies in the way that data are missing, while the amount of data missing 
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refers to the total number of missing observations. Generally, it is desirable to have less missing 

data, ceteris paribus (McKnight et al., 2007). 

The mechanism of, or process underlying, the missing data is of particular importance as it allows 

to classify missing data into one of three broad categories. Rubin (1976) defined the three 

categories as: missing completely at random (MCAR), missing at random (MAR) and missing not 

at random (MNAR). These mechanisms are related to the level of bias the missing data may exert 

on subsequent statistical analyses, whereby MCAR is considered to have a negligible potential 

impact and MNAR the largest potential impact (McKnight et al., 2007). Data which are MCAR 

and MAR are considered ignorable (Enders & Bandalos, 2001), meaning there is no need to model 

the missing data mechanism as part of the estimation process (Allison, 2001). Data which are 

MNAR are non-ignorable, and may result in parameter bias and misestimation of standard errors 

(Finch, 2015). MCAR may be considered the “most desirable” classification since it indicates that 

there is no systematic process underlying the way in which the data are missing (there is no 

systematic relationship between missingness and either the observed or unobserved values in the 

data) (McKnight et al., 2007).  

Missing data analysis was conducted on the unbalanced, pooled dataset of 204 observations using 

R (R Core Team, 2015) to determine the amount, pattern and mechanism of the missing data. The 

results of the analysis indicated that 1.4% of the data were missing for each of the included 

variables, with the exception of the time trend variable. (Refer to Appendix 1 for detailed missing 

data analysis results.) To determine the underlying missing data mechanism, the null hypothesis 

that data are MCAR was tested using Little’s chi-square test. The resultant p-value of 0.164 

indicates that the missingness process is indeed MCAR. 

There are a number of conventional methods for handling missing data including: listwise deletion, 

pairwise deletion, dummy variable adjustment, simple imputation and maximum likelihood. Each 

of these methods is, however, subject to a number of limitations (refer to Allison, 2001, and Van 

Buuren, 2012, for further reading). Multiple imputation is an alternative approach which is 

considered the best general method for handling missing data in many fields (Van Buuren, 2012). 

This study considers an application of multiple imputation to surmount the issues associated with 

missing data. 
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5.4.2 Multiple imputation 

In an effort to retain all observations and create a balanced panel of data which is compatible with 

regular statistical methods, multiple imputation through the data augmentation technique was 

performed. Data augmentation is a type of Markov Chain Monte Carlo (MCMC) algorithm, which 

is a popular Bayesian method for finding posterior distributions (Allison, 2001). In short, MCMC 

is used to obtain the posterior distribution from which the imputed values for the missing 

observation are drawn. These imputed values replace the missing observations to create a new, 

independent data set. The imputation process is repeated m times to create m data sets (Finch, 

2015). For the purposes of this study m was set to a maximum of 10 iterations and MCMC multiple 

imputation was executed using the SPSS statistical software package (IBM, 2013). It is important 

to note that the final imputed data set is identical to the original data set with the exception of the 

imputed values.  

5.4.3 Multicollinearity analysis 

Stochastic frontier analysis involves an inherent trade-off between flexibility and the problem of 

collinearity among the explanatory variables. The use of flexible functional forms, such as the 

translog specification, are often better able to represent the underlying production technology than 

rudimentary functional forms, such as the Cobb-Douglas production function, due to the inclusion 

of more information (Reinhard et al., 2000). Greater detail and added flexibility, however, come 

at a cost. The inclusion of additional cross products and squared terms in flexible functional forms 

often results in high degrees of collinearity among the explanatory variables. This in turn reduces 

the precision of the resulting parameter estimates and, hence, subsequent statistical inference 

(Mittelhammer et al., 1980). It is important to note that the inclusion of a time trend variable, in 

an effort to measure technological change, is likely to exacerbate the problem of multicollinearity 

(Mittelhammer et al., 1980). 

Furthermore, the use of survey data often involves the collection variables that are highly 

correlated. The problem of collinearity often plagues analysts of survey data, and the presence of 

this problem encumbers precise statistical explanation of the relationships between predictors and 

responses (Liao & Valliant, 2012). Since the data used in this analysis are collected from farmers 

in a survey-like fashion, some degree of correlation is expected. The survey-like nature of the data, 

coupled with the inherent collinearity problems associated with flexible functional forms 
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(particularly those with a time trend variable), such as the full translog specification employed 

here, highlight the importance of assessing collinearity prior to estimation. 

Inspection of the correlation matrix serves as a good indicator as to the number, and severity, of 

correlations present. The correlation matrix for the translog production function, shown in 

Appendix 2.1, reveals relatively few variables with high degrees of correlation. Ten of the 561 

correlation coefficients were greater than 0.7. Considering the number of interaction terms 

included in the production function and the inclusion of a time trend variable, the degree of 

multicollinearity appears to be acceptably low. 

To further explore the nature of this collinearity, the condition index and variance decomposition 

proportions were calculated (Appendix 2.1). The condition index serves as a means to identify 

possible multicollinearity. According to Belsley et al. (1980), condition index values greater than 

30 may indicate collinearity problems and should be investigated further. The variance 

decomposition proportions associated with each condition index provide additional information to 

assist in identifying potential sources of collinearity. Generally, a large condition index associated 

with two or more variables exhibiting large variance decomposition proportions, is an indication 

that these variables are potential sources of correlation. Belsley et al. (1980) suggest that a large 

variance decomposition proportion may be 50% or higher.  

The calculated condition indices for this study proved to be substantially larger than the yardsticks 

provided by Belsley et al. (1980), indicating the presence of collinearity in the data (see Appendix 

2.2 for detailed results). One commonly employed solution to multicollinearity is the deletion of 

variables which are suspected to be the source of at least some portion of multicollinearity. This 

method may reduce the degree of collinearity but may result in a miss-specification problem 

(Herrero, 2005). Inspection of the variance decomposition proportions associated with relatively 

high condition indexes reveals that most correlation is between cross-product variables which 

contain the same explanatory variable.  

For example, referring to Appendix 2.2, the condition index of 56.3 is associated with two variance 

decompositions of 0.31 and 0.34, corresponding to the variables βVK and βVT respectively. Clearly, 

this correlation may be explained by the common presence of V. The same conclusion may be 

drawn from βHL and βLF. The largest concern relates to the herd size variable (H) which has a large 

condition index of 142.3 and four variance decomposition proportions in excess of 0.3. Intuitively, 
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herd size, a proxy for farm size, is expected to be correlated with the majority of variables in the 

production process, since increased herd size will be correlated to increases in all related factors 

of production. Once again, the high variance decomposition proportions are attributable primarily 

to the interaction variables which contain herd size as a common variable (βHH, βHF, and βHK). It is 

worth noting that these variables are correlated with βFK, the interaction between feed and capital, 

although the variance decomposition proportion is relatively small (0.33).  

Although formal testing reveals the existence of some degree of collinearity among the variables, 

it is the view of the author that omitting any of these variables from the production function would 

result in substantial miss-specification bias. It may be argued that herd size and its associated 

interaction variables display concerning levels of collinearity and should be removed. The counter 

argument put forward is that herd size is a crucial variable, serving as the primary means of 

differentiating between producers of different size. Its inclusion allows for comparisons between 

farms of various sizes, without which this analysis would be of limited value.  

On these grounds, it is argued that the deletion of the herd size variable would most likely result 

in severe model miss-specification, the negative effects of which may be more significant than 

those associated with collinearity. In an effort to display the acceptability of the translog 

specification, a comparison between the Cobb-Douglas and the translog specification revealed that 

the translog model displayed lower condition indexes (see Appendix 2.3). 

5.4.4 Descriptive statistics 

Table 5.2 presents the descriptive statistics for the East Griqualand study group, while descriptive 

statistics pertaining to the Alexandria study group are presented in Table 5.3. Investigation of the 

two tables indicates that the mean herd size for the two regions is very similar, with 491 milking 

cows noted in EG and 501 for Alexandria. The range between the smallest and largest producer, 

however, is substantially larger in the EG study group with 86 cows representing the smallest 

producer and 1253 cows representing the largest producer. In the case of Alexandria, a milking 

herd of 114 cows represents the smallest producer compared to 882 milking cows for the largest 

producer. 

Interestingly, milk producers from both EG and Alexandria experienced notable increases in mean 

heard size over the study period. EG dairy farms experienced a 76% increase in mean herd size 
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from 345 milking cows in 2007 to 608 in 2014, while mean herd size on Alexandria dairy farms 

increased by 31% from 435 milking cows in 2007 to 570 in 2014. These findings are supportive 

of the data presented in Table 4.3, albeit by a lesser degree. This further substantiates that the panel 

of sampled farms included in this study appear to be reasonably representative of commercial dairy 

farms in EG, the Eastern Cape, and South Africa. 

Table 5.2: Descriptive statistics for the East Griqualand study group 

Variable Code Units Mean value Maximum value 
Minimum 

value 
Standard 
deviation 

Aggregate output Y R/farm 9 452 082 26 928 560 1 131 934 6 463 285 

Veterinary 
expense 

V R/farm 763 112 7 231 345 51 020 1 166 256 

Cost of capital 
stocks 

K R/farm 1 969 767 5 911 411 347 380 1 334 597 

Total labour cost L R/farm 612 406 1 618 863 149 457 360 664 

Total feed cost F R/farm 4 031 528 12 572 750 426 347 2 727 504 

Herd Size H cows/farm 491 1 253 86 300 

 

 

Table 5.3: Descriptive statistics for the Alexandria study group 

Variable Code Units Mean value Maximum value 
Minimum 

value 
Standard 
deviation 

Aggregate 
output 

Y R/farm 12 821 370 24 376 640 1 933 729 4 992 348 

Veterinary 
expense 

V R/farm 558 975 962 279 104 581 232 350 

Cost of capital 
stocks 

K R/farm 1 526 239 2 993 069 324 263 635 077 

Total labour 
cost 

L R/farm 641 543 1 361 075 159 659 265 228 

Total feed cost F R/farm 6 933 405 16 195 190 929 626 2 826 097 

Herd Size H cows/farm 501 882 114 165 
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Interestingly, average annual expenditure on all feeds, both purchased and homegrown, appears to 

be notably higher for Alexandria producers. One possible explanation could be that EG producers 

are, on average, better able to meet the nutritional requirements of the milking herd using available 

grazing and home-grown feeds. It is important to note that the data presented in Tables 5.2 and 5.3 

are intended to provide a general overview of the average dairy farm in each of the two regions 

and are hardly conclusive. Average expenditure on labour, veterinary products and services, and 

capital stocks appear to all be reasonably similar between the production regions. 

5.5 Stochastic frontier analysis 

Frontier models involve the estimation of a best practice frontier against which each and every 

producer may be compared. The technically efficient frontier represents all technically efficient 

input bundles that may be used to produce a given level of output. Therefore, producers who lie 

on the frontier are considered technically efficient in production, while those below the frontier 

are considered inefficient, indicating misallocation of resources (Førsund et al., 1980). 

There are several alternative specifications used to estimate efficiency through frontier analysis 

including primal (direct) and dual approaches (Coelli, 1995; Thiam et al., 2001). The estimation 

of a primal production function has been justified by assuming that producers maximize expected 

profit or that profits are maximized with respect to anticipated output rather than actual output 

(Zellner et al., 1966; Ahmad & Bravo-Ureta, 1996; Thiam et al., 2001). Furthermore, there are 

often insufficient input price data to consider alternative dual approaches such as profit or cost 

functions. 

Stochastic Frontier Analysis (SFA) requires the specification of a production technology by 

selecting a particular functional form. The choice of functional form is a contentious issue since 

many studies appear to arbitrarily select one functional form over another (Mbaga et al., 2003). 

Another requirement, and well-known downside, of SFA is the adoption of a particular 

distributional assumption regarding the error component that captures inefficiency. The selection 

of a specific distributional assumption also appears to be a factor that many researchers do not pay 

much attention to (Mbaga et al., 2003). 

The general stochastic production frontier may be specified as follows: 

𝑦𝑖𝑡 = 𝑓(𝑥𝑖𝑡, 𝑡, 𝛼 )𝑒(𝑣𝑖𝑡−𝑢𝑖𝑡)  (5.1) 
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where y is output of the ith firm at time t; xit is a vector of inputs; α is a vector of parameters to be 

estimated; f (.) is a suitable functional form; (vit - uit) is a composed error term, where vit represents 

a two-sided stochastic term accounting for statistical noise and uit is a non-negative stochastic term 

representing inefficiency (Hadley, 2006). 

There are a variety of functional forms that may be considered in frontier estimation, including 

Cobb-Douglas, translogarithmic, normalized quadratic, Generalized Leontief, Generalized Box-

Cox, and Zellner-Revankar generalized production functions (Griffin et al., 1987; Coelli, 1995). 

The Cobb-Douglas functional form is commonly adopted in frontier analysis due to its simplicity 

and ease of estimation. It is, however, highly restrictive in the sense that it is linear in logarithms 

and does not allow for interaction between variables in the production function. In order to better 

represent the true production technology, it may be desirable to consider the application of more 

flexible functional forms such as translogarithmic (TL), Normalized Quadratic (NQ), and 

Generalized Leontief (GL) specifications. Each of these second-order Taylor series expansions 

offers local flexibility and the ability to investigate a number of interactions between variables in 

the production function through the inclusion of squared terms and cross-products. 

In an effort to identify the most appropriate model for the sample data, five different functional 

forms, each with two possible distributional assumptions, were specified. The fit of each of these 

models was then assessed using generalized likelihood ratio tests to determine the most appropriate 

model for the data. The five model specifications considered are based upon: i) Cobb-Douglas 

(CD) production function; ii) simplified translogarithmic production function (STL); iii) full 

translogarithmic production function (TL); iv) Generalized Leontief production function (GL); and 

v) Normalized Quadratic production function (NQ). A linear time trend was incorporated into each 

model in an attempt to account for technological progress over time. 

In an attempt to ensure the most appropriate model is selected prior to the estimation of technical 

efficiency, the potential impact of different distributional assumptions is also considered. This is 

achieved by specifying two of the most common distributional assumptions to each of the 

functional forms and determining, via likelihood ratio tests, the most appropriate distribution for 

each. It is important, at this point, to differentiate between the error component vit and uit. The error 

component vit is assumed to be independent and identically normally distributed with zero mean 

and constant variance [v𝑖𝑡~N(0, σ𝑣
2) ]. The error component uit (quantifying technical inefficiency) 
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is assumed to follow either i) a non-negative truncated normal distribution (TN) with mean μ and 

constant variance [μ𝑖𝑡~|N(μ, σ𝑢
2 ) ] , or ii) a half normal distribution (HN) with zero mean and 

constant variance [μ𝑖𝑡~|N(0, σ𝑢
2 ) ]. 

5.5.1 Cobb Douglas production function 

The general functional form of a Cobb-Douglas production frontier with smooth technical change 

may be expressed as follows: 

𝑙𝑛𝑌𝑖𝑡 =  𝛽0 +  ∑ 𝛽𝑘ln (𝑥𝑘𝑖𝑡)𝑘 + 𝜁𝑇 + 𝐷 +  (𝑣𝑖𝑡 − 𝑢𝑖𝑡)  (5.2) 

Where Y represents output, X represents the inputs to production and subscripts i, k and t denote 

individual firms, inputs and years, respectively. D is a regional dummy variable (East Griqualand 

region =1, 0 otherwise); T represents a smooth time trend accounting for technological change 

(2007=1,…, 2014=8); β0, βk,α, ζ are parameters to be estimated and (vit - uit) is a composed error 

term, where vit represents a two-sided stochastic term accounting for statistical noise and uit is a 

non-negative stochastic term representing inefficiency. 

The Cobb-Douglas production frontier specified in this study takes on the following form: 

𝑙𝑛𝑌𝑖𝑡 = 𝛽0 + 𝛽1ln (𝐻𝑖𝑡) + 𝛽2ln (𝐿𝑖𝑡) + 𝛽3ln (𝑉𝑖𝑡) + 𝛽4ln (𝐹𝑖𝑡) + 𝛽5ln (𝐾𝑖𝑡) + 𝜁𝑇 + 𝐷 (𝑣𝑖𝑡 − 𝑢𝑖𝑡) 

5.5.2 Simplified translog production function 

A simplified translog (STL) production function with smooth technological change may be 

expressed as follows: 

𝑙𝑛𝑦𝑖𝑡 = 𝛽0 + ∑ 𝛽𝑘𝑘 ln(𝑥𝑘𝑖𝑡) + ∑ 𝜉𝑘ln (𝑥𝑘𝑖𝑡)𝑇𝑘 + 𝜁𝑇 + 𝜆𝑇2 + 𝐷 + (𝑣𝑖𝑡 − 𝑢𝑖𝑡)  (5.3) 

Where the subscripts i, k and t denote individual firms, inputs and years, respectively. Y represents 

output, X represents the inputs to production, and D is a regional dummy variable (East Griqualand 

=1, 0 otherwise). T represents a smooth time trend accounting for technological change (2007=1, 

…, 2014=8), and β0, βk, ξk, ζ and λ are parameters to be estimated. Finally, (vit – uit) is a composed 

error term, where vit represents a two-sided stochastic term accounting for statistical noise and uit 

is a non-negative stochastic term representing inefficiency. 

As previously mentioned, the error component vit in equations (5.2) and (5.3) is assumed 

independent and identically normally distributed [v𝑖𝑡~N(0, σ𝑣
2) ]. The error component uit is 
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assumed to follow either i) a non-negative truncated normal distribution [μ𝑖𝑡~|N(μ, σ𝑢
2 ) ]; or ii) a 

half normal distribution [μ𝑖𝑡~|N(0, σ𝑢
2 ) ] and is equal to: 

𝑢𝑖𝑡 = 𝜂𝑖𝑡𝑢𝑖 = 𝑒
[−𝜂(𝜏(𝑖)−𝑇)]𝑢𝑖   (5.4) 

Where η is an unknown scalar parameter and τ(i) represents the set of Ti time periods among the 

T periods involved for which observations for the ith farm are obtained. Equations (5.3) and (5.4) 

can be estimated by first estimating the parameters of the model using maximum likelihood (ML) 

and then using the resultant estimates to calculate technical efficiency (TEit) at each data point 

assuming: 

𝑇𝐸̂𝑖𝑡 = exp (−𝑢𝑖𝑡)   (5.5) 

5.5.3 Translog production function 

A full translog (TL) production function may be specified as follows 

𝑙𝑛𝑦𝑖𝑡 = 𝛽0 + ∑ 𝛽𝑘𝑘=1 ln(𝑥𝑘𝑖𝑡) +
1

2
∑ ∑ 𝛽𝑘𝑗𝑘=1𝑗=1 𝑙𝑛(𝑥𝑘𝑖𝑡)𝑙𝑛(𝑥𝑗𝑖𝑡) + 𝜁𝑇 +

1

2
𝜆𝑇2 +

∑ 𝛽𝑘𝑡ln (𝑥𝑘𝑖𝑡)𝑇 + 𝐷𝑘=1 + (𝑣𝑖𝑡 − 𝑢𝑖𝑡)            (5.6) 

Where the subscripts i, k and t denote individual firms, inputs and years, respectively. Y represents 

output, X represents the inputs to production, and D is a regional dummy variable (East Griqualand 

=1, 0 otherwise). T represents a smooth time trend accounting for technological change 

(2007=1,…, 2014=8) and β0, βj, βkj,βkt, ζ and λ are parameters to be estimated. Once again, (vit – 

uit) is the composed error term defined above. 

It is important to note that before proceeding with estimation, data should be normalized by either 

the sample means or medians in order to make subsequent interpretation easier. The median may 

be more appropriate since it is less effected by outliers and hence provides a more precise 

approximation of the translog function (Farsi et al., 2005).  

The error term capturing technical inefficiency (uit) is equal to: 

𝑢𝑖𝑡 = 𝛿𝑖𝑗𝑧𝑖𝑡 + 𝑤𝑖𝑡  (5.7) 

Where δ is a vector of parameters to be estimated; z is a vector of explanatory variables associated 

with technical inefficiency over time; and w is a random variable defined by the truncation of the 
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normal distribution with zero mean and variance σ2 (Hadley, 2006). The unknown parameters of 

equations (5.6) and (5.7) may be simultaneously estimated by maximum likelihood. 

5.5.4 Generalized Leontief production function 

A Generalized Leontief production function with technological change may be expressed as 

follows: 

𝑙𝑦𝑖𝑡 = 𝛽0 + ∑  𝛽𝑘𝑘=1 √𝑥𝑘𝑖𝑡
2 +

1

2
∑ ∑ 𝛽𝑘𝑗𝑘=1𝑗=1 √(𝑥𝑘𝑖𝑡)(𝑥𝑗𝑖𝑡)

2
+ ∑ 𝛽𝑘𝑡  √𝑥𝑘𝑖𝑡

2    𝑇 +  𝜁𝑇 +𝑘=1

1

2
𝜆𝑇2 +  D + (𝑣𝑖𝑡 − 𝑢𝑖𝑡) (5.8) 

Where the subscripts i, k and t denote individual firms, inputs and years, respectively. Y represents 

output, X represents the inputs to production, and D is a regional dummy variable (East Griqualand 

=1, 0 otherwise). T represents a smooth time trend accounting for technological change 

(2007=1,…, 2014=8), β0, βj, βkj,βkt, ζ and λ are parameters to be estimated, and (vit – uit) is the 

composed error term defined above. 

5.5.5 Normalized Quadratic production function 

A normalized quadratic production function with technological change may be expressed as 

follows: 

𝑙𝑛𝑦𝑖𝑡 = 𝛽0 + ∑ 𝛽𝑘𝑘=1 𝑥𝑘𝑖𝑡 +
1

2
∑ ∑ 𝛽𝑘𝑗𝑘=1𝑗=1 (𝑥𝑘𝑖𝑡)(𝑥𝑗𝑖𝑡) + 𝜁𝑇 +

1

2
𝜆𝑇2 + ∑ 𝛽𝑘𝑡(𝑥𝑘𝑖𝑡)𝑇 +𝑘=1

𝐷 + (𝑣𝑖𝑡 − 𝑢𝑖𝑡) (5.9) 

Where the subscripts i, k and t denote individual firms, inputs and years, respectively. Y represents 

output, X represents the inputs to production, and D is a regional dummy variable (East Griqualand 

=1, 0 otherwise). T represents a smooth time trend accounting for technological change 

(2007=1,…, 2014=8), β0, βj, βkj,βkt, ζ and λ are parameters to be estimated, and (vit – uit) is the 

composed error term defined above. 

5.6 Parametric scale efficiency 

The analysis of scale efficiency (SE) is commonly associated with agricultural studies involving 

applications of nonparametric techniques (Chavas & Aliber, 1993; Piesse et al., 1996; Muchena et 

al., 1997; Sharma et al., 1999; Gouse et al., 2003; Tonsor & Featherstone, 2009). The use of 

nonparametric, typically DEA, techniques allows total technical efficiency (TE) to be decomposed 

into “pure” TE and SE components (Piesse et al., 1996). Under the assumption of constant returns 
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to scale (CRS), TE is represented holistically. It is only through the relaxation of this assumption, 

to that of variable returns to scale (VRS), that TE can be decomposed. This forms the basis for the 

calculation of nonparametric scale efficiency, in which estimates of TE obtained under the 

assumption of CRS are divided by estimates obtained under the assumption of VRS. 

Unfortunately, this approach is not transferable to a parametric framework. 

Attempting to surmount this limitation, Ray (1998) proposed a model for the estimation of scale 

efficiency in a parametric framework. Despite its potential operational advantages, this model has 

seen very few applications in agricultural studies (Madau, 2011). In fact, reviews by Coelli (1995), 

Thiam et al. (2001) and Bravo-Ureta et al. (2007) do not cover any studies dealing with the analysis 

of parametric scale efficiency. The methodology proposed by Ray (1998) represents a simple 

approach to the analysis of parametric efficiency that has the added benefit of being suitable for 

flexible functional forms, such as the translog production function. Ray’s (1998) approach allows 

scale efficiency scores to be calculated from the estimated parameters of the fitted production 

function and the associated estimates of scale elasticity. The methodology proposed by Ray (1998) 

may be expressed as follows: 

𝑆𝐸𝑖𝑡
0 = 𝑒𝑥𝑝 [

(1−𝐸𝑖𝑡)2

2𝛽
]  (5.10) 

Where Eit refers to scale elasticity and is simply the sum of production elasticities defined as 

𝐸𝑖𝑡 = ∑ (𝛽𝑗 + ∑ 𝛽𝑗𝑘𝑥𝑘𝑖𝑡
𝑙
𝑘=1 + 𝛽𝑗𝑡𝑡)𝑛

𝑗=1  (5.11) 

And  

𝛽 = ∑ ∑ 𝛽𝑗𝑘
𝑛
𝑘=1

𝑛
𝑗=1  (5.12) 

β ensures that the resulting scale efficiency estimates are bound between zero and one, in other 

words (0 < 𝑆𝐸𝑖𝑡
0 < 1). From (5.10) it is apparent that scale efficiency and scale elasticity are 

related but are ultimately two different measures relating to the returns to scale of a technology at 

any specific point on the production function. Scale elasticity may be defined as the ratio of the 

proportionate change in output to a small equi-proportionate change in all inputs (Ray, 1998). 

Scale elasticity then provides an indication of whether the production technology exhibits 
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increasing, decreasing or constant returns to scale based on whether its value is greater, less than, 

or equal to unity. Scale efficiency, however, measures the ray average productivity at the observed 

input scale relative to what is attainable at the most productive scale (MPSS), i.e. where scale 

elasticity is equal to one (Ray, 1998). 

It is important to note that at the most productive scale, where constant returns to scale prevail, 

both scale efficiency and scale elasticity are equal to unity. At any other point, where the observed 

input bundle is not at optimal scale (MPSS), their magnitudes differ and the value of scale elasticity 

does not directly reveal anything about the level of scale efficiency (Ray, 1998; Karagiannis & 

Sarris, 2005). In other words, scale efficiency will be less than unity, regardless of whether scale 

elasticity is greater than or less than unity. 

The empirical results of the technical and scale efficiency analyses are presented in the next 

chapter. 
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CHAPTER 6: EMPIRICAL RESULTS OF TECHNICAL AND SCALE EFFICIENCY 

ANALYSES 

6.1 Introduction 

The estimation of TE, within a Stochastic Frontier Analysis (SFA) framework, requires the 

specification of a production technology by selecting a particular functional form. The selection 

of functional form is a dataset specific challenge, a fact that is often overlooked in productivity 

analysis. Researchers commonly impose a specific functional form onto a dataset without any 

attempt to assess the suitability of the particular form to the data. The selection of functional forms 

often relies on ad hoc selection criteria such as flexibility, computational convenience, theoretical 

consistency, factual conformity and plausibility of estimated elasticities (Lansink & Thijssen, 

1998). The imposition of an inappropriate functional form may result in biased and inaccurate 

estimates and misleading statistical inferences (Giannakas et al., 2003). This chapter aims to 

minimize the potential drawbacks associated with the selection of an unsuitable functional form 

by modelling several common functional forms, with selection of the most appropriate form based 

on likelihood ratio testing. The most appropriate functional form is then used to specify the 

production function and generate estimates of technical efficiency for each milk producer. 

Technical efficiency estimates are then interpreted, with temporal and inter-regional components 

being discussed. The remainder of the chapter is dedicated to interpretation and discussion of 

parametric scale efficiency estimates, calculated from the estimated production function 

parameters and associated elasticities, following Ray’s (1998) methodology. 

6.2 Choice of functional form and distributional assumption 

In an effort to minimize potential bias resulting from the imposition of an unsuitable functional 

form, five common functional forms were modelled, four of which represent second-order Taylor 

series expansions, commonly referred to as flexible functional forms. Furthermore, since the 

choice of distributional assumption is another requirement of stochastic frontier analysis in which 

researchers do not seem to invest much time or effort (Mbaga et al., 2003), the suitability of two 

distributional assumptions was formally assessed for each of the five functional forms. In addition, 

the assumption of either time variant or time invariant efficiencies was modelled for each of the 

above-mentioned models, resulting in a total of 20 possible milk production functions. Table 6.1 
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presents a summary of the resulting 20 model specifications to be subjected to formal model 

testing.  

Each of these 20 models was specified and estimated within the stochastic frontier analysis 

software package frontier (Coelli & Henningsen, 2013), using the R statistical package (R Core 

Team, 2015). A series of likelihood ratio tests were then conducted to determine the most suitable 

model for the data. These likelihood ratio tests can be classified into two categories. The first may 

be classified as within-model likelihood ratio tests, conducted to determine the most suitable model 

within each functional form. The second, summarized in Table 6.2 may be classified as between-

model likelihood ratio tests, used to compare the most suitable models from each functional form 

and ultimately determine the most appropriate functional form for the given data set.  

Table 6.1: Summary of modelled milk production technologies. 

Model Functional form One-sided distribution Nature of efficiency 

1 

Cobb-Douglass (CD) 

HN Time invariant 

2 TN Time invariant 

3 HN Time variant 

4 TN Time variant 

5 

Simplified Translog (STL) 

HN Time invariant 

6 TN Time invariant 

7 HN Time variant 

8 TN Time variant 

9 

Translog (TL) 

HN Time invariant 

10 TN Time invariant 

11 HN Time variant 

12 TN Time variant 

13 

Generalized Leontief (GL) 

HN Time invariant 

14 TN Time invariant 

15 HN Time variant 

16 TN Time variant 

17 

Normalized Quadratic (NQ) 

HN Time invariant 

18 TN Time invariant 

19 HN Time variant 

20 TN Time variant 

*HN = half normal, TN = truncated normal 
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The within-model likelihood ratio tests, presented in Appendix 3, involve comparisons of each 

model to the ordinary least squares (OLS) equivalent. This is done to confirm if any significant 

production inefficiencies are present. The results, shown in Appendix 3, indicate that all 20 models 

are significantly different from their OLS equivalents. This implies that most of the sampled milk 

producers operated below the efficient production frontier. Therefore, the average production 

function, with no inefficiency, is considered to be an inadequate representation of the milk 

production technology (Karagiannis & Sarris, 2005). It is worth noting that the TN distribution 

appears to be significantly better than the HN distribution for each and every functional form. TL 

and GL functional forms provided some interesting results in that time variant and time invariant 

models were not significantly different. It was expected that models able to account for variation 

of efficiencies over time would be more appropriate than the more rudimentary time invariant 

models. 

The results presented in Table 6.2 indicate that the simplified translog (STL), Normalized 

Quadratic (NQ) and the Generalized Leontief (GL) were not significantly different from the Cobb-

Douglas (CD) functional form. The translog (TL) models with TN distributions were, however, 

significantly different from the CD models with TN distributions and are, therefore, considered an 

improvement. Furthermore, results indicate that the TL models with truncated normal distribution 

were significantly better than CD, STL, NQ and GL models with truncated normal distribution. 

This is true for both time variant and time invariant efficiency models.  

In addition to subjecting each of the above-mentioned models to likelihood ratio tests, each of the 

five functional forms were modelled in R using linear equation methods to determine the relative 

fit of the various functional forms to the data. In an attempt to gauge the suitability of each 

functional form, several residual plots (histograms) were generated to provide a graphical 

representation of goodness of fit (see Appendix 4). In total, ten separate plots were generated, with 

two for each functional form. For each plot, the Y-axis represents function specific (fitted) output 

and the X-axis represents actual output. Plots therefore represent the ability of a particular 

functional form (production technology) to model actual dairy output. Referring to Appendix 4, 

plots depicted on the right-hand side of the page are simply logarithmic representations of those 

on the left. This comparison of “fitted” output to actual output provides insight into the goodness 

of fit of each possible functional form.  
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Table 6.2: Between-model likelihood ratio tests  

Likelihood Ratio Tests 
 Model # DF LogLik Df Chisq Pr>(Chisq) Decision 

CD VS STL 

CDtnVAR 12 205,1      

STLtn 17 209,13 5 8,0631 0,1528  NSD 

CDtnVAR 12 205,1      

STLtnVAR 18 210,67 6 11,13 0,08443 . NSD 

CD VS TL 

CDtnVAR 12 205,1      

TLtnVAR 33 228,13 21 46,056 0,001256 ** TLtnVAR 

CDtnVAR 12 205,1      

TLtn 32 226,78 20 43,357 0,001833 ** TLtn 

CD VS GL 

CDtnVAR 12 205,1      

GLtn 32 199,63 20 10,932 0,948  NSD 

CDtnVAR 12 205,1      

GLtnVAR 33 200,57 21 9,0577 0,9888  NSD 

CD VS NQ 

CDtnVAR 11 201,02      

NQtn 32 204,99 21 7,9447 0,9954  NSD 

CDtnVAR 12 205,1      

NQtnVAR 33 206,41 21 2,6211 1  NSD 

STL VS TL 

STLtn 17 209,13      

TLtn 32 226,78 15 35,294 0,002233 ** TLtn 

STLtn 17 209,13      

TLtnVAR 33 228,13 16 37,993 0,001517 ** TLtnVAR 

STLtnVAR 18 210,67      

TLtn 32 226,78 14 32,227 0,003719 ** TLtn 

STLtnVAR 18 210,67      

TLtnVAR 33 228,13 15 34,926 0,002519 ** TLtnVAR 

NQ VS TL 

NQtn 32 204,99      

TLtn 32 226,78 0 43,572 2,20E-16 *** TLtn 

NQtn 32 204,99      

TLtnVAR 33 228,13 1 46,272 1,03E-11 *** TLtnVAR 

NQtnVAR 33 206,41      

TLtn 32 226,78 -1 40,736 1,74E-10 *** TLtn 

NQtnVAR 33 206,41      

TLtnVAR 33 228,13 0 43,435 2,20E-16 *** TLtnVAR 

GL VS TL 

GLtn 32 199,63      

TLtn 32 226,78 0 54,288 2,20E-16 *** TLtn 

GLtn 32 199,63      

TLtnVAR 33 228,13 1 56,988 4,39E-14 *** TLtnVAR 

GLtnVAR 33 200,57      

TLtn 32 226,78 -1 52,415 4,49E-13 *** TLtn 

GLtnVAR 33 200,57      

TLtnVAR 33 228,13 0 55,114 2,20E-16 *** TLtnVAR 

Significance codes: ***=<0.0001, **=0.001, *=0.05, "."=0.1    

NSD = No significant difference, VAR = time variant inefficiencies   
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Visual inspection of the plots reveals that CD, STL, and TL specifications appear to display 

acceptable levels of fit, with all three production technologies representing the actual data 

reasonably well. GL and NQ specifications displayed very poor levels of fit. Both production 

technologies failed to model the actual data with any reasonable degree of accuracy. 

6.3 Maximum likelihood results and discussion 

Table 6.3 presents the estimated parameters for each of the 20 model specifications, estimated by 

maximum likelihood. Since likelihood ratio testing revealed the translog model with truncated 

normal distribution and time variant inefficiency to be the most suitable approximation of the true 

underlying dairy production technology, only coefficient estimates pertaining to this model will 

be discussed. Coefficients with a negative sign indicate that an increase in the value of the 

associated variable results in a decrease in milk output, whereas a positive value represents an 

increase. Based on the estimated results there are several important issues to address: (1) output 

elasticities for inputs in the production function; (2) significance and interpretation of translog 

parameter estimates; (3) interpretation of technical efficiency estimates and inter-regional 

comparison; and (4) interpretation of parametric scale efficiency, calculated from the estimated 

production function parameters and associated elasticities, following Ray’s (1998) methodology. 

6.3.1 Elasticity and parameter estimates  

Since all variables in the production function have been expressed in logarithmic form, estimated 

coefficient values may be interpreted as partial output elasticities, the sum of which provide an 

indication of returns to scale (Cabrera et al., 2010). Estimated output elasticities conform to a 

priori expectations regarding their signs, with the exception of labour (βL), which is negative. The 

estimated coefficients for labour and veterinary expense were statistically insignificant at the 10% 

level of probability. Parameter estimates for feed (βF), herd size (βH) and capital (βK) were 

statistically significant at the 1% level. Of these inputs, feed had the greatest effect on productivity 

with a partial elasticity of 0.5. This is interpreted as, a 1% increase in aggregate feed expenditure 

would result in an estimated increase in dairy output of 0.5%, ceteris paribus.  

The next highest elasticity was for herd size (0.342) followed by capital (0.214). In other words, a 

1% increase in herd size and capital expenditure would result in a 0.342% and 0.214% increase in 

output, respectively, ceteris paribus. Scale elasticity, represented by the summation of output 
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elasticities, totalled 1.09 indicating slightly increasing returns to scale. This result is comparable 

to Tauer & Belbase (1987) and Hadley (2006), but contradictory to the findings of Kompas & Che 

(2006) and Cabrera et al. (2010) who reported constant returns to scale for Australian and US dairy 

farms.  

Concerning the elasticities of production, Hadley (2006) reported similar findings for a sample of 

dairy farms from England and Wales, with elasticities for feed cost (0.199), capital (0.123) and 

herd size (0.293) constituting the largest portion of total output elasticity. In this instance, herd 

size was found to have the greatest effect on productivity, rather than total feed cost, as indicated 

by the results of this study. 

Table 6.3: Maximum likelihood estimates of the specified production functions, East Griqualand 

and Alexandria Dairy Farms, 2007 - 2014 

Para 
meter 

Cobb-Douglas Simplified Translog 

Time invariant Time variant Time invariant Time variant 

HN TN HN TN HN TN HN TN 

β0 2.279 *** 2.423 *** 2.504 *** 2.589 *** 0.150 ** 0.198 *** 0.144 ** 0.161 *** 

βV -0.006  -0.006  0.001  -0.003  0.084 . 0.084 . 0.077 . 0.081 . 

βL 0.196 *** 0.193 *** 0.179 *** 0.184 *** 0.084  0.086  0.061  0.053  

βF 0.477 *** 0.496 *** 0.465 *** 0.483 *** 0.412 *** 0.450 *** 0.462 *** 0.455 *** 

βH 0.276 *** 0.270 *** 0.345 *** 0.323 *** 0.358 *** 0.329 *** 0.371 *** 0.360 *** 

βK 0.169 *** 0.147 *** 0.145 *** 0.128 *** 0.190 ** 0.152 * 0.156 * 0.162 ** 

ζ -0.010 ** -0.009 ** 0.000  0.004  0.001  -0.002  0.005  0.005  

λ         -0.002  -0.001  -0.001  -0.001  

βHT         -0.023  -0.020  -0.019  -0.020  

βLT         0.023 * 0.024 . 0.031 ** 0.031 ** 

βVT 
        -0.011 . -0.012 . -0.011 . -0.011 . 

βFT         0.010  0.006  -0.002  0.003  

βKT         -0.003  0.000  0.000  -0.004  

α 0.049  0.062 . 0.016  0.033  0.047  0.054  0.001  0.030  

σ2 0.025 ** 0.012 *** 0.042 * 0.016 *** 0.025 ** 0.012 ** 0.048 * 0.016 *** 

γ 0.731 *** 0.480 *** 0.847 *** 0.614 *** 0.757 *** 0.535 *** 0.878 *** 0.645 *** 

μ   0.153 ***  * 0.201 ***   0.162 ***   0.204 *** 

time     -0.098 * -0.087 .     -0.095 * -0.075 * 

TE 0.893  0.853  0.893  0.854  0.890  0.844  0.883  0.847  

Significance codes: ***=<0.001, **=0.001, *=0.05, "."=0.1 

ζ = time trend, λ = time trend2, α = regional dummy 
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Para Translog Generalized Leontief 

meter Time invariant Time variant Time invariant Time variant 
 HN  TN  HN  TN  HN TN HN TN 

β0 0.169 *** 0.204 *** 0.164 *** 0.192 *** -0.253 . -0.068  -0.276 * -0.116  

βV 0.07  0.083 . 0.065  0.079  0.215  0.209  0.191  0.170  

βL -0.017  -0.030  -0.028  -0.045  0.431  0.344  0.391  0.333  

βF 0.454 *** 0.478 *** 0.483 *** 0.500 *** -0.297  -0.364  -0.341  -0.413  

βH 0.328 *** 0.333 *** 0.332 *** 0.342 *** -0.124  -0.193  0.124  0.097  

βK 0.225 *** 0.209 ** 0.215 ** 0.214 ** 0.389  0.356  0.271  0.182  

βLL -0.336 * -0.383 ** -0.359 * -0.426 ** -0.716 * -0.723  -0.767 * -0.787 . 

βVV -0.021  -0.018  -0.03  -0.028  0.033  0.031  0.024  0.018  

βFF -0.57 *** -0.569 *** -0.558 *** -0.589 *** -1.367 *** -1.317 ** -1.367 *** -1.345 *** 

βHH -0.488  -0.446  -0.678 . -0.609  -0.911  -0.585  -1.264 . -1.088  

βKK -0.088  -0.087  -0.145  -0.122  -0.85 . -0.659  -0.955 * -0.801  

βHL -0.075  -0.128  -0.085  -0.166  -0.67  -0.778  -0.645  -0.715  

βHV -0.15 * -0.148 * -0.15 * -0.146 * -0.215  -0.216  -0.185  -0.172  

βHF 0.551 ** 0.544 ** 0.596 *** 0.612 *** 2.709 *** 2.593 ** 2.881 *** 2.84 *** 

βHK 0.023  0.044  0.117  0.129  0.87  0.462  1.122  0.864  

βLV 0.021  0.027  0.03  0.038  -0.19  -0.174  -0.184  -0.147  

βLF 0.149  0.186 . 0.156  0.22 * 0.966 * 1.083 * 0.933 * 0.973 . 

βLK 0.067  0.107  0.085  0.129  0.892  0.956  1.001 . 1.092  

βVF 0.07  0.081  0.067  0.077  0.335  0.354  0.334  0.407  

βVK 0.075  0.055  0.081  0.06  -0.094  -0.125  -0.099  -0.186  

βFK -0.075  -0.096  -0.109  -0.145  0.06  0.055  0.013  0.019  

ζ 0.008  0.003  0.008  0.006  0.014  0.015  0.015  0.025  

λ -0.005  -0.004  -0.003  -0.002  -0.005  -0.004  -0.004  -0.002  

βHT -0.004  -0.003  -0.003  -0.001  -0.014  -0.003  -0.013  -0.007  

βLT 0.036 ** 0.038 ** 0.04 ** 0.043 *** 0.059 . 0.059 . 0.07 * 0.07 * 

βVT -0.007  -0.008  -0.006  -0.007  -0.01  -0.008  -0.008  -0.006  

βFT -0.007  -0.008  -0.013  -0.013  -0.02  -0.029  -0.031  -0.039  

βKT -0.013  -0.017  -0.013  -0.02  -0.024  -0.029  -0.024  -0.033  

α 0.047  0.052 . 0.024  0.032  0.061  0.061  0.036  0.038  

σ2 0.018 *** 0.009 *** 0.027 * 0.012 *** 0.024 *** 0.012 ** 0.032 * 0.016 *** 

γ 0.717 *** 0.435 *** 0.809 *** 0.575 *** 0.713 *** 0.455 *** 0.793 *** 0.593 *** 

μ   0.125 ***   0.166 ***   0.148 **   0.195 ** 

time     -0.071  -0.077 .     -0.059  -0.069 . 

TE 0.91  0.878  0.909  0.873  0.879  0.826  0.876  0.819  

Significance codes: ***=<0.001, **=0.001, *=0.05, "."=0.1 

ζ = time trend, λ = time trend2, α = regional dummy 
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Parameter 

Normalized Quadratic 

Time invariant Time variant 

HN TN HN TN 

β0 -0.054  0.050  -0.073  0.007  

βV 0.083  0.084  0.065  0.065  

βL 0.262 * 0.221 . 0.234 * 0.192 . 

βF 0.545 *** 0.529 *** 0.549 *** 0.536 *** 

βH 0.207  0.197  0.315 . 0.287  

βK 0.217 . 0.172  0.168  0.137  

βLL -0.439 *** -0.432 ** -0.470 *** -0.460 *** 

βVV 0.017  0.014  0.015  0.009  

βFF -0.724 *** -0.710 *** -0.742 *** -0.735 *** 

βHH -0.637 . -0.536  -0.851 * -0.717 . 

βKK -0.431 * -0.387 . -0.481 * -0.429 * 

βHL -0.060  -0.095  -0.064  -0.103  

βHV -0.042  -0.039  -0.039  -0.032  

βHF 0.571 *** 0.557 *** 0.620 *** 0.600 *** 

βHK 0.280  0.215  0.359 . 0.291  

βLV -0.032  -0.034  -0.032  -0.032  

βLF 0.141  0.159 . 0.144  0.165 . 

βLK 0.164  0.211 . 0.189  0.234 * 

βVF 0.067  0.075  0.078  0.090  

βVK -0.034  -0.037  -0.040  -0.045  

βFK 0.019  0.017  0.008  0.007  

ζ 0.008  0.010  0.010  0.017  

λ -0.003  -0.003  -0.002  -0.001  

βHT -0.009  -0.002  -0.008  -0.004  

βLT 0.036 * 0.034 * 0.044 ** 0.042 ** 

βVT -0.007  -0.006  -0.005  -0.004  

βFT -0.018  -0.021 . -0.025 * -0.027 * 

βKT -0.011  -0.014  -0.012  -0.018  

α 0.044  0.046  0.009  0.020  

σ2 0.025 *** 0.012 *** 0.037 * 0.016 *** 

γ 0.746 *** 0.502 *** 0.831 *** 0.631 *** 

μ   0.156 ***   0.204 *** 

time     -0.072 . -0.073 . 

TE 0.874  0.820  0.871  0.816  

Significance codes: ***=<0.001, **=0.001, *=0.05, "."=0.1 
ζ = time trend, λ = time trend2, α = regional dummy   
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In an application of stochastic frontier analysis to estimate the TE of German dairy farms, Abdulai 

& Tietje (2007) reported total expenditure on dairy feeds to have the largest output elasticity 

followed by herd size. These findings are supportive of elasticities reported in Table 6.3. Mbaga 

et al. (2003), in a cross-sectional study of TE on Quebec dairy farms, reported an output elasticity 

for capital of 0.185 for a Generalized Leontief production function with truncated normal 

distribution. This is broadly comparable to the value of 0.214 estimated in this study.  

It is important to note that the variables included in the production functions of Hadley (2006) and 

Abdulai & Tietje (2007) were expressed in aggregate value terms, as were the production function 

variables in this study. Expressing these variables in value terms introduces several potential 

limitations, which will be discussed later in the chapter. This distinction becomes important when 

attempting to compare the results of different studies. Intuitively, similar studies with a reasonable 

degree of homogeneity represent acceptable benchmarks against which comparisons may be made. 

On the other hand, if two studies adopt different methodologies, use different variables or 

modelling techniques, the results should not be considered comparable. As such, results presented 

in Hadley (2006) and Abdulai & Tietje (2007) are considered acceptable benchmarks against 

which to compare the results of this study. 

The relatively large partial elasticity estimate associated with the feed expense variable is not 

evident in some of the previous literature such as Tauer & Belbase (1987) and Cabrera et al. 

(2010), who reported partial elasticities for feed of 0.288 and 0.059, respectively. The large partial 

feed elasticity observed in this study is most likely due to the nature of its construction. For the 

purposes of this study, feed expense is expressed as total rand value expenditure on both purchased 

and home-grown feeds. Home grown feeds are a function of several costs, including but not limited 

to, fertilizer, seed, planting, harvesting and herbicide and pesticide costs. Purchased feed is 

expressed as total rand value expenditure on all dairy, heifer and calf meal, and dairy concentrates. 

Intuitively, the inclusion of both purchased and home-grown feed components is likely to account 

for a large portion of the variability in dairy output. Studies considering only one of these aspects 

are likely to report smaller elasticities. The elasticities of Tauer & Belbase (1987) and Cabrera et 

al. (2010) are evidence of this as feed expense in these studies is defined in terms of purchased 

feed alone. Abdulai & Tietje (2007), on the other hand, express feed expense as the sum of costs 
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originating from both purchased and homegrown aspects, hence the relatively large reported 

elasticity for feed of 0.381. 

The statistical insignificance of the veterinary expense variable (βV) may be explained, in part, by 

the nature in which it is calculated. Veterinary expense was included in an attempt to capture farm-

level variations in animal health and breeding practices, such as artificial insemination (AI). 

However, due to lack of a comprehensive cost break-down of veterinary services, all veterinary 

expenses were pooled together into total veterinary expense. 

The downside to expressing variables as aggregate values is a possible loss of information. For 

example, the effects of increased expenditure on AI, representing improved breeding practices, 

cannot be disentangled from expenditure on unhealthy or non-productive animals. To illustrate, 

consider two farmers who spend the same amount on veterinary services over the same period. 

One farmer may have dedicated most of his resources to improving breeding performance, in an 

effort to positively affect milk output. The other farmer, however, may have dedicated most of his 

resources to maintaining health among poor producers and sickly animals, which is unlikely to 

stimulate milk output in the same manner. The resulting effect on milk production for these two 

scenarios is expected be very different, although, due to lack of information, they cannot be 

disentangled from one another. 

It is proposed that the insignificance of the labour variable may be attributable, in part, to the 

capital-intensive nature of dairy farming. Commercial dairy farms typically require large 

investments in capital infrastructure such as milking parlours and machinery and farm implements 

for the production of home grown feeds. Investment in advanced production management systems 

is another investment which many commercial dairy farmers make. Investment in equipment of 

this nature generally has a labour augmenting effect and typically requires fewer, more skilled 

labourers to operate the equipment. It is possible that the aggregate wage bill does not have a 

significant effect on milk output due to the large costs associated with other factors of production, 

such as capital and feed. Another possible explanation for the insignificance of the labour variable 

may be a lack of variation in the wage data. 

Of the remaining parameter estimates, two squared terms and four cross-products are statistically 

significant at the 95% level. Negative signs on the squared terms indicate decreasing returns to 

labour and feed. These results are contradictory to a priori expectations and the findings reported 
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in the previous literature. According to Wadud & White (2000) and Alvarez & Arias (2003), the 

squared labour and feed terms are expected to be of positive sign, indicating increasing returns to 

labour and feed. The coefficient of the regional dummy variable (α) was positive but statistically 

insignificant, indicating limited variability in the data between the two production regions. This 

indicates that farms in East Griqualand and Alexandria are reasonably homogeneous.  

Broadly, similar temperature and rainfall conditions mean both regions can facilitate the growth 

of good nutritional pastures. It is possible that farmers in these two regions have adopted similar 

milk production and feeding structures, centred primarily around grazing, with purchased feeds 

and concentrates fed to supplement nutritional shortfalls. Given that sampled farms in both regions 

are considered specialized dairy producers, it is not unreasonable to postulate that diffusion of 

technology may have occurred at similar rates within these areas. As a result, the levels of 

technology in these two regions may be relatively similar, resulting in similar production potential 

for a given set of inputs. Another important consideration is that sampled dairy farms all benefit 

from the services of a professional agricultural consultant. It is, therefore, possible that despite 

geographical differences, farms may share a number of similarities in operations, feeding regimes, 

technology and labour productivity. 

The parameter σ2 represents the sum of the variances u and v (𝜎𝑢
2 + 𝜎𝑣

2) and γ represents the ratio 

of the variance of u to σ2 (𝜎𝑢
2/𝜎2) (Jaforullah & Premachandra, 2003). Each of the coefficient 

estimates is statistically significant at the 1% level. The significance of σ2 is consistent with a 

priori expectations and suggests that a conventional average production function is not an adequate 

representation of the data (Theodoridis & Psychoudakis, 2008). 

The statistical significance of γ indicates that technical inefficiency is important in explaining part 

of the variation in observed dairy output. The estimated value of 0.545 implies that 54.5% of total 

variation in dairy output may be attributed to technical inefficiency. This is marginally lower than 

the 61.6% reported by Theodoridis & Psychoudakis (2008) and the 64.4% and 65.4% reported for 

variable and constant returns to scale models reported by Jaforullah & Premachandra (2003).  

Finally, concerning technological change, the estimated parameters ζ and λ incorporated into the 

production function to account for smooth technological change were statistically insignificant at 

the 10% level. Although this time trend was expected to capture at least some portion of variability 

in dairy output attributable to technological change, the results suggest that technological change 
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was not a significant determinant of dairy production output. This result should, however, be 

interpreted with caution as the inclusion of a simple time trend variable to capture technological 

progress is a crude and somewhat rudimentary approach that may be unable to effectively capture 

true technological progress. Another possible explanation is that technological progress, or 

adoption of new technology, in these areas may have been very slow over the study period. Perhaps 

most farmers have already adopted relatively new technologies, and continue to benefit from them, 

which is why no significant technological advancement can be identified in the data. 

6.3.2 Technical efficiency 

The results presented in Table 6.4 indicate that the average level of TE is 86.5% for the East 

Griqualand study group and 88% for the Alexandria study group. These results are well within the 

bounds of those found in similar studies, concerning TE of dairy farms. Bravo-Ureta & Rieger 

(1991), using cross-sectional data for 1984, estimated technical, allocative and economic 

efficiency for a sample of 511 New England dairy farms. Efficiency measures were estimated from 

a Cobb-Douglas stochastic cost frontier. Mean TE for the study ranged from 72.6% to 87.7%, with 

a mean of 83%. These findings are similar to the results presented in this study, despite the use of 

a more simplistic Cobb-Douglas functional form.  

Mbaga et al. (2003) used a 1996 cross-sectional sample of 1,143 specialized dairy farms (deriving 

more than 80% of revenue from the dairy enterprise) to assess TE for Quebec dairy farms. The 

sample was separated into farms located in areas suitable and not suitable for maize production. 

Cobb-Douglas, Translog and Generalized Leontief productions functions were specified, each 

with Half normal, Truncated normal and exponential distributional assumptions. Efficiency scores 

were presented for the Generalized Leontief model with a truncated normal distribution, selected 

via likelihood ratio testing. For non-maize regions TE ranged between 80.1% and 98.9%, with a 

mean of 94.5%. For maize regions, TE ranged between and 84.2% and 98.7% with a mean of 

94.9%. Mean efficiency scores presented by Mbaga et al. (2003) are larger than those presented 

in this study; however, some important similarities can be identified upon examining the range 

between maximum and minimum levels of efficiency. The range between maximum and minimum 

TE presented in Mbaga et al. (2003) was 18.78% for non-maize regions, and 14.5% for maize 

regions. This is broadly comparable to the ranges of 17.1% for the East Griqualand region and 

18.2% for the Alexandria region found in this study. This indicates a reasonably similar degree of 
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homogeneity between the sampled dairy farms in both studies. That being said, there appears to 

be a slightly higher degree of homogeneity among the sampled East Griqualand dairy farmers. 

Table 6.4: Descriptive statistics of mean technical efficiency per year, East Griqualand and 

Alexandria Dairy Farms, 2007 – 2014. 

East Griqualand 

TE (%) 2007 2008 2009 2010 2011 2012 2013 2014 Mean 

90-100 5 5 5 3 2 2 2 2 3 

80-90 8 8 8 10 11 9 7 6 8 

70-80 0 0 0 0 0 2 4 5 1 

60-70 0 0 0 0 0 0 0 0 0 

Min. 85.30 84.30 83.10 81.90 80.60 79.20 77.80 76.20 81.10 

Mean 89.60 88.90 88.00 87.10 86.20 85.20 84.10 83.00 86.50 

Max. 98.60 98.50 98.40 98.20 98.10 97.90 97.80 97.60 98.10 

Range 13.30 14.20 15.30 16.30 17.50 18.70 20.00 21.40 17.10 

          

Alexandria 

TE (%) 2007 2008 2009 2010 2011 2012 2013 2014 Mean 

90-100 8 8 8 6 4 3 2 1 5 

80-90 5 5 5 7 8 8 9 10 7 

70-80 0 0 0 0 1 2 2 2 1 

60-70 0 0 0 0 0 0 0 0 0 

Min. 83.80 82.70 81.40 80.10 78.70 77.20 75.60 73.90 79.20 

Mean 90.80 90.10 89.40 88.60 87.70 86.80 85.90 84.80 88.00 

Max. 98.00 97.90 97.70 97.50 97.30 97.10 96.90 96.60 97.40 

Range 14.20 15.20 16.30 17.40 18.60 19.90 21.30 22.70 18.20 

 

The high degree of homogeneity identified by Mbaga et al. (2003) and subsequently observed in 

this study is not all that surprising considering sampled dairy farms in both studies are classified 

as specialized dairy farms, deriving at least 80% of revenue from the dairy enterprise. Furthermore, 

in this study all sampled farmers are among the top producers in their respective regions, with both 

study groups comprised of “above-average” milk producers, all of whom benefit from the services 

of professional agricultural consultants.  
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Theodoridis & Psychoudakis (2008) investigated farm-level TE using a cross-sectional sample of 

165 Greek dairy farms for the period 2003-2004. TE was estimated through Maximum Likelihood 

estimation of a Cobb-Douglas stochastic production frontier. Mean TE for the sample was reported 

at 81.21%, which is slightly lower than the result reported here. The reported maximum (94.09%) 

and minimum (51.95%) efficiencies, resulting in a range of 42.14%, indicate a high degree of 

heterogeneity among Greek dairy farms. This observation does not correlate with the findings of 

this study.  

Finally, Cabrera et al. (2010) estimated TE for a cross-sectional sample of 273 Wisconsin dairy 

farms for the 2007 calendar year. Farms in the sample were identified as being specialized in dairy 

production, with most of their farm output coming from the dairy enterprise. Mean TE, originating 

from a Cobb-Douglas production function, was 88%, almost identical to the findings of this study. 

It is important to highlight similarity in sample composition between this study and that of Cabrera 

et al. (2010), whereby both studies consider samples comprised of farms specialized in dairy 

production. 

The comparisons above have all involved studies using cross-sectional data. Since this study 

considers panel data, and hence incorporates the dynamics of time and technological change, the 

models are not directly comparable. Estimated TE levels are, however, reasonably similar and thus 

provide useful insight into the result presented herein. To ensure a comprehensive comparison, it 

is important to compare homogeneous studies, using similar approaches and estimation 

procedures. The comparisons below represent panel data studies with broadly similar approaches 

to those adopted in this study. 

Kompas & Che (2006) estimated TE for an unbalanced panel of 252 farms in New South Wales 

and Victoria, Australia, for the years 1996, 1998, 2000. As in the case of Mbaga et al. (2003), all 

farms included in the sample dataset are considered specialized dairy producers, deriving more 

than 80% of income directly from dairy products. Likelihood ratio tests, used to select the most 

appropriate functional form, revealed the log-linear Cobb-Douglas production function as the most 

suitable functional form for the data. The resulting mean technical efficiencies were 88.4% for 

New South Wales and 86.8% for Victoria. These findings are highly comparable to those presented 

in this study, although it should be noted that the Cobb-Douglas functional form is considerably 

more restrictive than other flexible functional forms, such as translog, and may not adequately 
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represent milk production technology. The Cobb-Douglas production function does, however, 

have the benefit of being less prone to multicollinearity problems that often plague flexible 

functional forms. 

Hadley (2006) considered a large panel of farm survey data for various farm types in England and 

Wales for the years 1982 to 2002. Dairy farmers were defined as those deriving more than 60% of 

total annual farm income from the dairy enterprise. The sample comprised of 1,431 dairy farms in 

total. Dairy technology was modelled in a translog production function framework with the 

inclusion of a linear time trend to account for technological change over time. The resulting mean 

efficiency estimate of 89.7% is comparable to the results presented in Table 6.4. The range between 

maximum (97.2%) and minimum (58.4%) TE of 38.8% is markedly higher than that reported in 

Table 6.4. This may be explained, in part, by the different selection criteria used to select the dairy 

farm samples. Intuitively, one would expect to see a larger discrepancy between the most and least 

efficient farms with the use of a broader sampling criteria; i.e. a relatively lower degree of 

homogeneity between farms. 

Abdulai & Tietje (2007) used a balanced panel of data for 149 dairy farms, observed over the 

period 1997 to 2005, to estimate TE of dairy farms in northern Germany. Selection criteria for 

dairy farmers was that more than 75% of farm returns be realized from the dairy enterprise. Several 

popular panel data estimation techniques were reported in the study, although the results emanating 

from the Battese & Coelli (1995) model are of particular relevance since the methodology 

underlying their calculation is comparable to that adopted in this study. Mean TE was reported to 

be 92% with a maximum of 97.7% and a minimum of 68.8%, resulting in a range of 28.9%. The 

mean TE is higher than reported in this study and the range between maximum and minimum 

efficiency indicates a lower degree of homogeneity between the sampled dairy farms. 

Finally, Mkhabela et al. (2010), using an unbalanced panel of data for the period 1999 to 2007, 

estimated technical efficiencies for 37 dairy farms located in the KwaZulu-Natal Midlands of 

South Africa. Farms included in the sample were identified as highly specialized dairy farms, 

deriving at least 90% of total revenue from the dairy enterprise. Three separate models were 

specified, each with slightly different assumptions regarding the inclusion of herd size as an input 

in the production function. The preferable model, selected via likelihood ratio testing, resulted in 

mean technical efficiencies of between 70.2% and 80.7% for the nine years under study. 
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Interestingly, these findings are lower than the mean TE scores presented in Table 6.5. Holding all 

else constant, it appears that sampled farms from East Griqualand and Alexandria exhibit higher 

levels of TE than dairy farms in the KZN Midlands. This result should be interpreted with caution 

as the methodology, underlying assumptions and estimation procedures adopted in the two studies 

vary, and as such, results are not directly comparable.  

It is important, at this stage, to mention a possible limitation of this study. Due to data limitations, 

and insufficient detail regarding physical quantities, output and input variables are expressed in 

value terms. The type of analysis to be conducted often depends upon the nature of the data 

collected. For instance, do the available data contain sufficient information to facilitate an 

investigation into the effect of price (allocative efficiency) as well as quantity (technical 

efficiency), or do they limit analysis to only one of the above? In parametric TE analysis, variables 

included in the production function are typically expressed in terms of physical quantity, as this 

allows TE, free from the influence of price, to be investigated.  

In this study, the financial data collected were represented in aggregate value terms, providing 

information only on total rand value expenditure per farm. In this instance, the effect of price and 

quantity are both captured, but cannot be disseminated without additional information on either. 

Due to a lack of information on price and quantity, variables incorporated into the production 

function are expressed in total annual rand value, in line with Hadley (2006) and Abdulai & Tietje 

(2007). Defining the output variable in value terms, rather than physical output, has implications 

for the interpretation of inefficiency effects (u) as u accounts for any factors associated with 

production inefficiency, including technical inefficiency (Battese & Coelli, 1995). This has 

important implications for model interpretation and subsequent policy and management 

recommendations. While this is acceptable practice, it is important to note that this approach is 

subject to several drawbacks, two of which are of particular importance to this paper.  

Firstly, inherent quality and compositional differences cannot be identified and disentangled from 

one another. In the case of the labour variable, represented by the total wage bill, there is no way 

to determine what portion of total wage is attributable to managers, skilled workers or unskilled 

workers. Secondly, and more importantly, variables expressed in rand values need to be price 

deflated to neutralize the effect of price changes (inflation) over time. Representing these variables 

in aggregate value terms results in the inherent inclusion of price effects into TE analysis, therefore 
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conflating the concepts of technical and allocative efficiency to some degree (Hadley, 2006). It 

must therefore be disclosed that some of the movements in the mean efficiency scores may have 

been influenced to some extent by price changes over time. It is important that this be borne in 

mind when attempting to interpret results and structure recommendations for policymakers and 

dairy farm decision makers alike. 

Referring to Table 6.4, it is possible to segregate sampled milk producers into three broad 

categories based on their relative efficiencies. The first, referred to as “highly-efficient”, denotes 

producers with mean TE values between 90 and 100%. The second, referred to as “efficient”, refers 

to producers with mean TE values between 80 and 90%. The final group is referred to as 

“reasonably-efficient” and encompasses all producers with mean TE values between 70 and 80%. 

Results indicate that from 2007-2012, Alexandria had a higher proportion of dairy farms in the 

highly-efficient group, particularly for the years 2007-2010. Alexandria also had a lower 

proportion of dairy farmers in the reasonably efficient group, particularly for 2013 and 2014. This 

leaves East Griqualand with the highest proportion of farms in the efficient group. It is interesting 

to note that, for both regions, the distribution of farms shifted from higher to relatively lower 

efficiency groups over time. This implies that the average farm is becoming relatively less efficient 

over time, in comparison to the best practice farm (representing the frontier).  

The fundamentals of microeconomics dictate that the relationship between TE and time should be 

positive, with efficiency improving as technology progresses, enabling greater production 

potential with the same level of inputs. This is no different for milk production technology which 

has seen the adoption of a range of new technologies in recent years. Improved milking systems, 

such as rotary parlours, result in significant time saving as well as a reduction in the number of 

labourers required per cow. Advanced production monitoring software allows farmers to monitor 

their herds closely, feeding custom rations per each cow’s needs. This ensures wastage is 

minimized and milk yield is optimized by allocating the highest quality rations to the best milkers. 

Cost may also be reduced by feeding lower quality, cheaper rations to relatively poor milkers and 

dry cows.  

Concerning the temporal pattern of efficiency, results presented in Table 6.4 indicate that mean 

TE has generally decreased over time in the two study samples, while the range between minimum 

and maximum efficiency has widened. These results may seem counter intuitive at first, but it is 
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important to remember that the production frontier represents the best-practice farm and 

subsequently mean TE is calculated in relation to the best practice frontier. Therefore, if some 

farms can adopt newer technology or make better use of existing technologies than others, it is 

reasonable to assume that the average farm will lag further behind the best practice farm 

(representing the frontier), assuming farms are equally weighted. 

Kumbhakar et al. (1997) illustrated this concept in a study on cement plants, suggesting that in an 

industry characterized by rapid technological progress, one would expect to see a negative 

relationship between mean TE and time. This is based on the notion that rapid technological 

progress would result in the average lagging further behind the best practice firm, representing the 

frontier, therefore generating lower mean efficiency values over time. In other words, as the 

frontier shifts outward over time, the gap between the average farm and the best practice farm will 

widen. Supporting evidence can be found in Ahmad & Bravo-Ureta (1996), who reported a gradual 

decline in mean TE over the period 1971 to 1984 for a panel of 96 Vermont dairy farms, using a 

simplified translog production function with a smooth time trend and truncated normal 

distribution.  

Hadley (2006) reported similar findings for a panel of English and Welsh dairy farmers, in which 

farms became more efficient over time due to technical change, however annual mean levels of 

TE were found to decrease over time. This trend was further substantiated by Abdulai & Tietje 

(2007), who reported that the mean level of TE on a panel of German dairy farms were found to 

decrease over time. In contrast, Mkhabela et al. (2010) reported that mean TE values increased 

over the period 1999 to 2007 for a panel of South African dairy farmers. This suggests that the 

average farm became more efficient relative to the best practice frontier, possibly by making better 

use of existing technology.  

There has been considerable focus on determining the relationship between farm size and TE in 

recent years, with a wealth of literature providing different results. Given the continuation of 

industry consolidation, it is hardly surprising that it remains a topic of interest. The results 

presented in Table 6.5 suggest that over the whole study period, mean TE values for the Alexandria 

study group appear to increase with farm size, as indicated by Von Bailey et al. (1989) and Tauer 

& Mishra (2006). The largest milk producers, with milking herds of 626-896 cows exhibited a 

mean TE of 88.9%. Small farmers, milking 86-356 cows, exhibited a mean TE of 87.0%, while 
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medium size farmers, milking 356-626 cows, exhibited a mean TE of 88.1%. On a year-to-year 

basis it is evident that the difference in mean TE score between farms of different size is notably 

small. This implies that for the sampled Alexandria farms, mean TE scores are not sensitive to the 

size of operation. It is interesting to note that none of the sampled Alexandria farms increased herd 

size beyond 896 milking cows over the study period. In fact, the frequency distribution per farm 

size did not change drastically as is the case with the East Griqualand study group.  

For East Griqualand, the average TE levels for farms in different size categories, measured by herd 

size, does not indicate a positive relationship between farm size and TE as has been found in the 

previous literature (Von Bailey et al., 1989; Tauer & Mishra, 2006). For the years 2007, 2009, 

2012 and 2014 the highest levels of mean TE are associated with the largest farmers in the sample. 

With the exception of 2014, this pertains to large farms, milking 896-1166 cows. For the remaining 

years, medium sized farms, milking 356-626 cows appear to have the highest TE. On average, 

over the whole period of study, medium sized farms exhibited the highest levels of mean TE, 

89.1%, followed by large farms, 88.5%, with medium-large farms, milking 626-896 cows, 

associated with the lowest levels of TE in the sample. Although this result does not conform with 

the reported findings of Von Bailey et al. (1989) and Tauer & Mishra (2006), there are several 

possible explanations for the nonlinear relationship between farm size and TE.  

Firstly, the sample is comprised of a small number of farms with less than ten farms representing 

each size category. In some instances, as in the case of farms milking above 1,166 cows, there are 

only two farms representing this size category, and only for the year 2014. This hardly constitutes 

a large enough sample to be deemed representative, and as such, the relationship between farm 

size and TE should be interpreted with caution. Secondly, the continual growth of herd size must 

be considered. From Table 6.5 it is evident that several farms have increase in size over the study 

period, moving into subsequently larger size categories. Growth in herd size may appear simple 

but in reality, it requires a change in a number of factors. Increased herd size requires greater 

quantities of feed, more resources during milking, including labour and time, greater expenditure 

on veterinary products and services and most likely more capital investment. The two most 

important factors limiting the rate of growth are most likely available pasture (land) and milking 

infrastructure (capital investment). 
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Table 6.5: Frequency distribution of mean technical efficiency scores per farm size and region, 

East Griqualand and Alexandria Dairy Farms, 2007 – 2014. 

Farm size  Herd Size Farms TE (%) Farms TE (%) Farms TE (%) 

  2007 Total East Griqualand Alexandria 
Small 86-356 14 89.27 10 89.42 4 88.90 
Medium 356-626 8 91.64 - - 8 91.64 
Medium-Large 626-896 4 90.65 3 90.37 1 91.50 
Large 896-1166 - - - - - - 
Very Large 1166 + - - - - - - 
 2008       

Small 86-356 11 87.88 9 87.52 2 89.50 
Medium 356-626 10 90.86 1 98.50 9 90.01 
Medium-Large 626-896 5 90.24 3 89.67 2 91.10 
Large 896-1166 - - - - - - 
Very Large 1166 + - - - - - - 
 2009       

Small 86-356 9 87.59 7 87.27 2 88.70 
Medium 356-626 12 89.20 3 89.00 9 89.27 
Medium-Large 626-896 4 88.38 2 86.35 2 90.40 
Large 896-1166 1 94.00 1 94.00 - - 
Very Large 1166 + - - - - - - 
 2010       

Small 86-356 10 86.67 7 86.31 3 87.50 
Medium 356-626 10 89.13 2 90.95 8 88.68 
Medium-Large 626-896 4 86.63 2 83.55 2 89.70 
Large 896-1166 2 89.85 2 89.85 - - 
Very Large 1166 + - - - - - - 
 2011       

Small 86-356 8 85.48 5 84.78 3 86.63 
Medium 356-626 13 88.13 4 88.45 9 87.99 
Medium-Large 626-896 2 85.05 1 81.40 1 88.70 
Large 896-1166 3 87.17 3 87.17 - - 
Very Large 1166 + - - - - - - 
 2012       

Small 86-356 6 85.17 4 84.75 2 86.00 
Medium 356-626 13 86.47 5 85.94 8 86.80 
Medium-Large 626-896 4 85.55 1 80.10 3 87.37 
Large 896-1166 3 86.27 3 86.27 - - 
Very Large 1166 + - - - - - - 
 2013       

Small 86-356 6 84.10 4 83.68 2 84.95 
Medium 356-626 11 85.58 4 86.20 7 85.23 
Medium-Large 626-896 6 84.70 2 79.30 4 87.40 
Large 896-1166 3 85.23 3 85.23 - - 
Very Large 1166 + - - - - - - 
 2014       

Small 86-356 5 83.32 3 82.93 2 83.90 
Medium 356-626 11 84.88 5 84.62 6 85.10 
Medium-Large 626-896 8 82.58 3 78.77 5 84.86 
Large 896-1166 - - - - - - 
Very Large 1166 + 2 85.45 2 85.45 - - 
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To illustrate, consider a farmer milking 800 cows with an observed TE of 90%. If the farmer wishes 

to increase herd size to 1000 milking cows but keeps all other fixed resources the same, the 

available resources are placed under more stress. A greater number of cows are now expected to 

graze the same pastures resulting in each cow receiving a lower percentage of its daily nutritional 

requirement from grazing. This in turn requires more supplementation, either in the form of maize 

silage or purchased feeds, to meet the demanding nutritional requirements of the herd. 

Furthermore, milking times will be extended to deal with the increased number of animals, 

requiring additional labour hours. This shift to a larger herd size will undoubtedly alter the cost 

structure faced by the farmer and most likely alter input utilization. In this case, observed TE may 

decrease, despite increased herd size. 

6.3.3 Scale efficiency 

Frequency distributions of scale efficiency scores are presented in Table 6.6. During the period 

2007-2014, mean scale efficiency was 95.2 %. This implies sampled milk producers could have, 

on average, increased their output by 4.8% had they operated at optimal scale. Table 6.6 shows 

that the vast majority of farms achieved scale efficiency scores between 90-100 %. This indicates 

that the majority of sampled dairy farms are operating near optimal scale and do not experience 

any substantial loss in output due to scale efficiency problems. Generally, very few farms achieved 

scale efficiency scores lower than 90% for most of the study period. With the exception of 2011 

and 2012, less than four of the 26 sampled farms achieved scale efficiency scores below this level. 

Several farms operated at 100% scale efficiency over the study period, particularly prior to 2010, 

after which the number of farms achieving scale efficiency decreased notably. 

The highest number of farms to operate under scale efficiency was seven, for the year 2009, 

followed by five farms in 2007 and 2010. Table 6.6 indicates that after 2010 the number of scale 

efficient milk producers did not increase beyond three, and in the final year of study only one farm 

achieved scale efficiency. The difference between the highest and lowest levels of scale efficiency, 

indicated as “range” in Table 6.6, is also of importance. For most of the study period, the range 

between the most and least scale efficient farms was 11% to 26%, although for the years 2011 and 

2012 this range increased to 43.8% and 37.2 %, respectively. Reasons for the large shift of farms 

during 2011, and 2012 to some degree, to relatively lower levels of scale efficiency are unclear. 
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Table 6.6: Descriptive statistics of mean scale efficiency per year, East Griqualand and 

Alexandria Dairy Farms, 2007 – 2014. 

Scale efficiency (%) 2007 2008 2009 2010 2011 2012 2013 2014 Mean 

50-60 0 0 0 0 1 0 0 0 0 

60-70 0 0 0 0 0 1 0 0 0 

70-80 0 0 0 1 5 0 1 0 1 

80-90 2 1 1 3 9 6 1 1 3 

90-100 19 23 18 17 10 17 21 24 19 

100 5 2 7 5 1 2 3 1 3 

          

Total 26 26 26 26 26 26 26 26 26 

Min. 82.28 88.55 87.28 78.64 56.17 62.8 73.66 88.98 77.30 

Mean 97.11 97.63 98.46 94.96 86.52 93.49 96.21 97.23 95.20 

Max. 100 100 100 100 100 100 100 99.98 100 

Variance 0.24 0.07 0.08 0.34 0.99 0.63 0.34 0.08 0.35 

Range 17.72 11.44 12.71 21.36 43.83 37.2 26.34 11.00 22.70 

 

Jaforullah & Whiteman (1999) reported similar findings in an analysis of scale efficiency, using 

DEA techniques, on a sample of 264 New Zealand dairy farmers. The reported mean scale 

efficiency of 94% is very similar to the 95.2% reported in this study, despite the nonparametric 

approach to the measurement of scale efficiency. Minimum scale efficiency was reported to be 

45%, while 50% of sampled farms achieved scale efficiency. While reported minimum scale 

efficiency is broadly comparable to the results reported in Table 6.6, the proportion of scale 

efficient farms is substantially higher. Using an input distance-function approach to stochastic 

frontier analysis, Rasmussen (2010) estimated technical and scale efficiencies for several Danish 

farming enterprises, including dairying, for the period 1985-2006. Mean scale efficiency for the 

sample period was 89%. 

In an application of DEA to a sample of French and Hungarian dairy farmers for the period 2001-

2006, Fogarasi & Latruffe (2009b) reported mean scale efficiencies of 94% and 95% for French 

and Hungarian dairy farmers, respectively; 8% of French dairy farmers and 27% of Hungarian 

dairy farmers were scale efficient. Furthermore, only 9% of French dairy farmers operated at CRS, 

where scale elasticity equals unity. This finding is comparable to the results of this study, in which, 

on average, 11% of the sampled South African dairy farmers were found to be scale efficient and 
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exhibited CRS. Finally, in an analysis of technical and scale efficiency for a sample of 165 Greek 

dairy farms using DEA, Theodoridis & Psychoudakis (2008) reported mean scale efficiency of 

92.7% for the sampled farms. This is once again a comparable result; however, minimum scale 

efficiency was 29.8%, substantially lower than the 56.2% reported in this study. This implies there 

is a greater degree of homogeneity regarding the size of South African dairy farms sampled. 

Concerning the relationship between scale efficiency and scale elasticity, Table 6.7 indicates the 

vast majority of sampled farms exhibit increasing returns to scale. That is, they are operating at a 

suboptimal scale and could benefit by increasing output, thereby moving towards optimal scale. 

Suboptimal scale is characterized by scale elasticities greater than unity and scale efficiencies 

below unity. There are relatively few farms operating at supra-optimal scale, which is 

characterized by scale elasticity below unity, evidence of decreasing returns to scale. Farms 

operating at supra-optimal scale can benefit by reducing the scale of the operations. Table 6.7 

reveals that farms operating at supra-optimal scale, on average, achieved greater scale efficiency 

scores than farms operating at suboptimal scale. Furthermore, mean levels of scale efficiency 

associated with supra-optimal farms appear to be much closer to unity. In other words, the gap in 

mean scale efficiency between farms operating at supra-optimal and optimal scale is notably 

narrower than the gap between farms operating at suboptimal and optimal scale. 

This implies that scale inefficiency is primarily attributable to farms operating at suboptimal scale 

and these farms must have adjusted output levels to a greater extent than the farms operating at 

supra-optimal scale. These findings are in line with Karagiannis & Sarris (2005), who estimated 

scale efficiency for a sample of Greek tobacco farmers using the methodology proposed by Ray 

(1998) and Madau (2011), who estimated scale efficiency for a sample of Italian citrus growing 

farms using the same methodology.  

Eliminating the supra-optimal scale would potentially increase the output of three dairy farms by 

an average of only 0.45 % from 99.55% to 100%. Eliminating the suboptimal scale, on the other 

hand, would potentially increase output by 5.2% from 94.8% to 100%. According to Jaforullah & 

Whiteman (1999), this would suggest that if it is desirable to improve production efficiency then, 

from an agricultural policy viewpoint, encouraging the trend towards larger dairy farms is better 

than discouraging it. Although this observation pertains to the New Zealand dairy industry, given 
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the observed structural shift towards fewer, larger dairy farms in the South African dairy industry, 

it remains highly relevant. 

Table 6.7: Efficiency scores and scale, East Griqualand and Alexandria Dairy Farms, 2007-2014. 

Returns to scale Number of farms Scale elasticity  Scale efficiency   Technical efficiency  

2007     

Supra-optimal 9 0.97 99.87 91.27 

Optimal 1 1.00 100.00 93.70 

Suboptimal 16 1.12 95.65 89.65 

2008     

Supra-optimal 1 0.92 99.45 98.50 

Optimal - - - - 

Suboptimal 25 1.10 97.56 89.12 

2009     

Supra-optimal 7 0.91 99.21 88.80 

Optimal - - - - 

Suboptimal 19 1.07 98.18 88.66 

2010     

Supra-optimal 4 0.91 99.09 86.80 

Optimal 4 1.00 100.00 91.15 

Suboptimal 18 1.14 94.21 88.05 

2011   - - 

Supra-optimal - - - - 

Optimal - - - - 

Suboptimal 26 1.22 86.52 86.97 

2012   - - 

Supra-optimal 1 0.95 99.71 88.40 

Optimal 1 1.00 100.00 84.10 

Suboptimal 24 1.15 93.24 85.91 

2013     

Supra-optimal 1 0.98 99.95 82.23 

Optimal - 1.00 100.00 77.80 

Suboptimal 24 1.13 95.72 85.36 

2014     

Supra-optimal - - - - 

Optimal - - - - 

Suboptimal 26 1.11 97.23 83.92 

 

Concerning the relationship between scale efficiency and technical efficiency, there does not 

appear to be any discernible trend in the results presented in Table 6.7. For the years 2007 and 
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2010 farms operating at optimal scale appear to be associated with higher levels of technical 

efficiency; however, for the remainder of the study period this does not hold true. In fact, for 2012 

and 2013, farms operating at optimal scale appear to be associated with below-mean values of 

technical efficiency. This indicates that improved scale efficiency does not necessarily translate to 

higher levels of technical efficiency, ceteris paribus. 

Concerning the temporal pattern of scale efficiency, there appears to be no discernible relationship 

between scale efficiency and time for the sampled dairy farms. Initially, between 2007 and 2009, 

mean scale efficiency increases linearly with time, before decreasing over the period 2010-2011. 

Following this, it begins to increase again until the end of the study period in 2014. This provides 

further evidence of 2010 and 2011 results going against findings in other years, essentially pointing 

to these as outliers. 

Table 6.8 presents a frequency distribution of scale efficiencies per farm size, with results generally 

indicating a positive correlation between the number of milking cows and the mean level of scale 

efficiency. For most of the years under study, larger farms are associated with higher mean levels 

of scale efficiency. The years 2007, 2011 and 2012 are the exceptions to this trend. For 2007, farms 

of medium size, milking 356-626 cows, was associated with the highest mean level of scale 

efficiency and the largest farm, milking 626-896 cows, the lowest. 2011 once again proved to be 

an outlier with the smallest farms, milking 86-356 cows, exhibiting the highest levels of mean 

scale efficiency. For 2012, the highest level of mean scale efficiency was associated with medium-

large farms, milking 626-896 cows. Interestingly, for many of the years mean technical efficiency 

appears to be highest for those farms of medium size, milking 356-626 cows. 

Considering the regional level results, for East Griqualand herd size and mean scale efficiency do 

not display a clear correlation. A positive relationship between herd size and mean scale efficiency 

is evident for the years 2009, 2010, 2013, and 2014. For the remaining years there is no evidence 

of a clear trend. It should be noted that the sample size at each respective farm size is not 

sufficiently large to draw concrete conclusions but does provide valuable insight into the 

relationship between scale efficiency and farm size, as measured by herd size. Alexandria dairy 

farms show a positive relationship between herd size and mean scale efficiency for the years 2009, 

2012, 2013, and 2014. 
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Table 6.8 Frequency distribution of mean scale efficiency scores per farm size and region, East 

Griqualand and Alexandria Dairy Farms, 2007-2014. 

Farm size  Herd Size Farms SE (%) Farms SE (%) Farms SE (%) 

  2007 Total East Griqualand Alexandria 
Small 86-356 14 96.82 10 95.62 4 99.82 
Medium 356-626 8 99.37 - - 8 99.37 
Medium-Large 626-896 4 93.60 3 91.59 1 99.66 
Large 896-1166 - - - - - - 
Very Large 1166 + - - - - - - 

 2008       
Small 86-356 11 97.18 9 96.79 2 98.94 
Medium 356-626 10 97.90 1 99.45 9 97.73 
Medium-Large 626-896 5 98.10 3 98.18 2 97.98 
Large 896-1166 - - - - - - 
Very Large 1166 + - - - - - - 

 2009       
Small 86-356 9 97.28 7 98.64 2 92.51 
Medium 356-626 12 98.89 3 99.30 9 98.75 
Medium-Large 626-896 4 99.46 2 99.68 2 99.23 
Large 896-1166 1 99.99 1 99.99 - - 
Very Large 1166 + - - - - - - 

 2010       
Small 86-356 10 95.01 7 94.26 3 96.75 
Medium 356-626 10 94.21 2 95.48 8 93.89 
Medium-Large 626-896 4 94.58 2 96.40 2 92.76 
Large 896-1166 2 99.22 2 99.22 - - 
Very Large 1166 + - - - - - - 

 2011       
Small 86-356 8 89.07 5 88.72 3 89.66 
Medium 356-626 13 85.81 4 92.14 9 83.00 
Medium-Large 626-896 2 80.86 1 82.30 1 79.42 
Large 896-1166 3 86.53 3 86.53 - - 
Very Large 1166 + - - - - - - 

 2012       
Small 86-356 6 89.23 4 87.00 2 93.69 
Medium 356-626 13 94.59 5 93.03 8 95.56 
Medium-Large 626-896 4 96.34 1 96.14 3 96.41 
Large 896-1166 3 93.46 3 93.46 - - 
Very Large 1166 + - - - - - - 

 2013       
Small 86-356 6 96.50 4 98.12 2 93.26 
Medium 356-626 11 94.30 4 92.17 7 95.53 
Medium-Large 626-896 6 97.66 2 96.18 4 98.41 
Large 896-1166 3 99.69 3 99.69 - - 
Very Large 1166 + - - - - - - 

 2014       
Small 86-356 5 97.33 3 97.22 2 97.50 
Medium 356-626 11 95.85 5 95.45 6 96.19 
Medium-Large 626-896 8 98.44 3 99.72 5 97.67 
Large 896-1166 - - - - - - 
Very Large 1166 + 2 99.76 2 99.76 - - 
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On average, over the entire study period, however, the mean scale efficiency of Alexandria dairy 

farms appears to be relatively stable across different farm sizes. The difference in mean scale 

efficiency scores between the largest and smallest farm  

size classifications for East Griqualand is 17.4%. For Alexandria, this difference is marginally 

more pronounced, with a 20.4% difference in mean scale efficiency between the largest and 

smallest farm size classification. This implies, that in terms of scale of operation, there is a higher 

degree of homogeneity among East Griqualand farmers than among Alexandria farmers.  

The next chapter deals with modelling the economic performance of dairy farms in the East 

Griqualand and Alexandria regions. 
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CHAPTER 7: MODELLING THE ECONOMIC PERFORMANCE OF DAIRY FARMS 

7.1 Introduction 

Structural equation modelling (SEM) is a technique used extensively in the social sciences due to 

its ability to capture the relationships between latent (unobserved) variables and observed indicator 

or cause variables (Macias & Cazzavillan, 2010). When compared to similar techniques such as 

confirmatory factor analysis (CFA), SEM extends the possibility of relationships among the latent 

variables by considering both structural and measurement models. The structural model 

encompasses the relationships between latent constructs and observable variables in several linear 

equations, similar to the concept of simultaneous regression. The measurement model shows the 

pattern of observed variables for the hypothesized latent constructs and may be used to analyse 

covariation among the latent constructs (Schreiber et al., 2006). The Multiple-Indicators, Multiple-

Causes (MIMIC) model of Jorëskog & Goldberger (1975) adopted in this study represents a special 

case of SEM in which the hypothesized model may contain multiple indicators and multiple causes 

of the latent (unobserved) variables (Esposti & Pierani, 2000). 

Applications of SEM, and the MIMIC model, are typically found among the social sciences 

literature, due to the unobservable nature of the variables under study. There have been only a 

limited number of applications of these techniques in agricultural productivity studies. This study 

proposes the use of SEM techniques to model economic performance as a latent variable. The 

supporting argument is that studies investigating farm performance have typically reported various 

measures of efficiency as the sole indicator of farm performance. These efficiency measures, as 

highlighted in earlier chapters, are not free of problems and do not encompass all aspects pertaining 

to the relative performance of a farm.  

Furthermore, following Macias & Cazzavillan (2010), it is posited that by treating farm economic 

performance as a latent variable, the MIMIC model is less constrained by a lack of information 

and can make use of a greater number of variables, allowing for a more robust set of causal 

relationships to be covered. The inclusion of technical and scale efficiency as indicators of 

economic performance, in addition to the hypothesized cause and indicator variables, represents 

an attempt to investigate farm performance at a more integrated level than has been adopted 

traditionally. In addition, latent indices for breeding, feeding and labour management were 
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constructed in an effort to determine the effect of these three critical aspects of dairy farm 

management on relative economic performance (Figure 7.1). 

 

Figure 7.1 Path diagram of the proposed MIMIC model 

Estimating economic performance, and its key determinants, requires the identification of several 

“cause” and “indicator” variables and their subsequent inclusion into the MIMIC model 

framework. Causal variables refer to variables which have a direct relationship with farm 

performance such as herd size, milk yield and level of specialization. The three latent managerial 

quality constructs BREED, FEED and LABOUR are included as latent causal variables as they 

are not directly observable and hence must be identified using various indicators. These indicator 

variables are included as a means of identifying the latent constructs. It is important to note that 
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despite the presence of several latent variables in the above model specification there is only one 

endogenous (dependent) latent variable, namely economic performance. Individual levels of TE 

and SE, estimated in Chapter 6, are incorporated into the MIMC model as observed indicators of 

latent economic performance.  

The latent constructs BREED, FEED and LABOUR are incorporated as exogenous (independent) 

latent variables. These input quality variables are calculated from a set of observable variables 

found in typical farm accounting records, including total feed cost, ratio of concentrates to forage 

and a number of other indicators (figure 7.1). Variation in economic performance is explained 

through the structural equation which relates economic performance to the observable cause 

variables and latent constructs shown in figure 7.1.  

7.2 Variables used in the analysis of economic performance 

7.2.1 Structural equation variables 

(i) Herd size, indicated by the number of milking cows (Herdit) 

Herd size, indicated by the number of milking cows, has commonly been used as a proxy for farm 

size (Bragg & Dalton, 2004; Tauer & Mishra, 2006; Abdulai & Tietje, 2007) and has the benefit 

of intrinsically accounting for differences in the quality of farm land (Gentner & Tanaka, 2002). 

Furthermore, by incorporating herd size into the production frontier, residual information not 

captured by the incorporated variables, which may be correlated with farm size, can be accounted 

for (Tauer & Mishra, 2006). In other words, efficiency related to farm size, not captured by the 

variables in the production function, is likely to be captured by the herd size variable. Considering 

the above, herd size appears to be the most appropriate measure of farm size for use in this study. 

Herd size is hypothesized to have a positive relationship with economic performance since 

increased herd size is expected to result in increased output, ceteris paribus. 

(ii) Average milk production per cow (Milkit)  

Gloy et al. (2002) noted several studies which have reported a positive relationship between milk 

production per cow and various measures of farm financial success. Von Bailey et al. (1989), 

Huirne et al. (1997) and Gloy et al. (2002) all included average milk production per cow as a 

measure of productivity. Average milk production per cow captures latent characteristics such as 

a producer’s knowledge and ability to apply efficient production, feeding and breeding practices 
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as well as the ability to benefit from new technologies (Gloy et al., 2002). Tauer & Mishra (2006) 

suggest that milk production per cow is an indicator of poor or good management, capturing the 

effects of genetics, feeding, disease control and other managerial factors. Following Gloy et al. 

(2002), milk production per cow is hypothesized to have a positive relationship with economic 

performance, ceteris paribus. 

(iii) Level of specialization in dairy (Specit) 

The level of specialization provides a measure of diversity on-farm. Bragg & Dalton (2004) 

measured the diversity of on-farm income using the Herfindahl index, which is calculated as the 

sum of the squared income shares. Gillespie et al. (2009) simply expressed the level of 

specialization as the percentage of farm income derived from milk, while Du Toit (2009) 

calculated the ratio of total milk income to gross farm income to represent the level of 

specialization in milk production. This study adopted the approach highlighted by Du Toit (2009), 

expressing specialization as a ratio of milk income to total farm income. The range is thus bound 

between 0 and 1, with values approaching unity indicating increased specialization in milk 

production. 

Since all farms in the sample may be considered specialized, deriving more than 80% of total 

income from the dairy enterprise, the Spec variable is intended to capture differences between the 

most and least specialized farms in the sampled data set, thus revealing if a greater degree of 

economic performance can be derived from further specialization into dairy. Since relatively more 

specialized farms are more likely to dedicate a greater portion of their management efforts and 

farm resources towards dairy production, the level of specialization is hypothesized to have a 

positive relationship with economic performance, ceteris paribus. 

(iv) Trading income (Tradeit)  

Trading income is included to determine whether income through the sale of dairy livestock (cull 

cows and calves, for example) is a potential means of improving farm performance. Trading 

income is calculated as follows, and is expressed as a ratio of trading income of total milk income. 

Trading income = livestock sales + closing value – livestock purchases - opening value   (7.1) 
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Du Toit (2009) found trading income to have a positive effect on the competitiveness of East 

Griqualand milk producers. In line with this finding, additional income through the sale of dairy 

livestock is expected to improve economic performance. Trade is, therefore, hypothesized to have 

a positive relationship with economic performance, ceteris paribus. 

(v) Breeding management (BREED)  

Genetic improvement through breeding is an important source of technological change (Babcock 

& Foster, 1991, as cited by Atsbeha et al., 2012). Dairy production involves a continuous transfer 

of genetic material, either naturally or by AI, and therefore managerial decisions such as choice of 

insemination method, selection of semen and breed of cows will determine the genetic 

performance of cows to some degree. This genetic variation, due to managerial influence, may 

result in productivity differences among farms, even if only in the short term (Atsbeha et al., 2012).  

Following Richards & Jeffrey (2000), breeding expense per cow and breeding expense per unit 

output were selected as indicators of the breeding management variable (BREED). Breeding 

expense was calculated as total rand value expenditure on artificial insemination (AI) divided by 

herd size and quantity of milk produced in litres, respectively. Farms using bulls, rather than AI, 

were assigned values of zero (0). To ensure identification, it is generally desirable to specify three 

indicators when constructing an index; however, due to data limitations this was not possible. 

Furthermore, it is important to note that a high degree of correlation may exist between breeding 

expense per cow and breeding expense per unit output since the denominators, herd size and milk 

output, are likely to exhibit a high degree of correlation. This should be borne in mind when 

interpreting the results. Since BREED is expected to capture the genetic progress due to managerial 

influence between farms, it is expected to exhibit a positive relationship with economic 

performance, ceteris paribus. 

(vi) Feeding management (FEED)  

Total expenditure on feed is generally one of the largest costs associated with milk production 

(Buza et al., 2014) and is expected to be a significant determinant of economic performance. Total 

feed cost per unit output, cost of purchased feed per unit output and the ratio of purchased feed to 

home grown feed were all included as indicators of FEED. All costs are expressed in aggregate 

value terms, deflated by the CPI to account for inflationary effects. Total feed cost is represented 
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by the aggregation of total rand value expenditure on purchased feed, including supplementary 

feed, concentrates, and calf meal, as well as total expenditure on homegrown feeds. Expenditure 

on homegrown feeds is a function of several costs, including but not limited to, seed, fertilizer, 

planting, and harvesting costs. The ratio of purchased feed to homegrown feed is included in an 

attempt to assess a manager’s ability to meet the nutrient requirements of the herd using pasture 

and home grown feeds. Since the ability to manage purchased and home grown feeds effectively 

is expected to improve economic performance, FEED is hypothesized to have a positive 

relationship with economic performance, ceteris paribus. 

(vii) Labour management (LABOUR). 

A latent index of labour management was constructed in an effort to assess the ability of producers 

to effectively manage labour and implement labour saving technologies where possible. Following 

Richards & Jeffrey (2000), latent labour management indicators consist of labour per cow and 

labour per unit output. In this study, labour is expressed in terms of the aggregate wage bill in rand 

value and includes all labour of various quality. As mentioned for BREED, it is generally desirable 

to specify three indicators when constructing an index, however, due to data limitations this was 

not possible. Furthermore, a high degree of correlation may exist between labour cost per cow and 

labour cost per unit output since the denominators, herd size and milk output, are likely to exhibit 

a high degree of correlation. This should be borne in mind when interpreting the results for 

LABOUR. The results presented by Richards & Jeffery (2000) suggest that labour management 

(quality) is positively related to economic performance. Therefore, LABOUR is hypothesized to 

have a positive relationship with economic performance, ceteris paribus.  

 

7.2.2 Measurement equation variables 

 

1. Technical efficiency = β1PERF + u1 

2. Scale efficiency = β2PERF + u2 

3. Breeding expense per cow = β5BREED + u5 

4. Breeding expense per unit output = β6BREED + u6 

5. Concentrate/forage ratio = β7FEED + u7 

6. Feed cost per unit output = β8FEED + u8 
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7. Concentrates per unit output = β9FEED + u9 

8. Labour cost per cow = β10LABOUR + u10 

9. Labour cost per unit output = β11LABOUR + u11 

 

7.3 MIMIC model specification 

As mentioned above, the MIMIC model considers economic performance as a latent, unobservable 

variable for which many imperfect indicators exist. In order to describe the relationships between 

(1) indicator variables and latent variables; and (2) cause and latent variables, the MIMIC model 

consists of a set of structural equations and measurement equations. The structural equation 

specifies relationships among a series of latent variables (ƞ), their observable causes (z), and a 

random error term (ζ) as follows: 

ƞ = Φη + Γz + ζ  (7.2) 

where Φ is a parameter vector showing the marginal effect of the latent variables on each other, 

and Γ is a parameter vector showing the marginal effect of the cause variables on the latent 

variables. 

The measurement equations, specified below, relate each indicator variable (q) to the latent 

variables (ƞ), and a vector of random measurement errors (ϵ): 

q = Λqη + ϵ                  (7.3) 

where the components of Λqare called factor loading coefficients. The error terms of equations 

(7.2) and (7.3) are uncorrelated with each other, have zero means and have covariances given by 

Ψ and Θ, respectively. These covariance matrices provide information on the relationships 

between cause and indicator variables that are necessary to identify latent variable parameters 

(Richards & Jeffrey, 2000).  

Following the general framework highlighted by Figure 7.1 in the opening section of this chapter, 

the MIMIC model attempts to relate unobserved dairy performance to a set of observable causes 

and a set of latent management indices, posited to affect latent economic performance. The latent 

managerial indices (BREED, FEED, and LABOUR) represent an attempt to investigate the effect 

of managerial quality on the breeding, feeding, and labour programme, since these are 
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hypothesized to be critical aspects of a farm’s underlying ability to perform. Justification for the 

inclusion of these variables is provided in the previous subsection, outlining the variables included 

in the study. It is important to note that although latent in nature, these constructs remain 

explanatory (exogenous) in nature, and economic performance remains the sole endogenous latent 

variable. Since the model only consists of one endogenous latent variable, PERF, there is only one 

structural equation to be specified. The generic structural equation proposed may be expressed as 

follows: 

𝑃𝐸𝑅𝐹 = 𝐻𝑒𝑟𝑑𝑖𝑡 + 𝑀𝑖𝑙𝑘𝐾𝐿𝑖𝑡 + 𝑆𝑝𝑒𝑐𝑖𝑡 + 𝑇𝑟𝑎𝑑𝑒𝑖𝑡 + 𝐵𝑅𝐸𝐸𝐷 + 𝐹𝐸𝐸𝐷 + 𝐿𝐴𝐵𝑂𝑈𝑅 (7.4) 

Where the variables are defined as in the previous section. Latent managerial indices were included 

in an attempt to determine their effect on the latent economic performance of South African dairy 

farms as there has been limited empirical research into the critical success factors driving economic 

performance and farm financial success. Given the continuation of the consolidation trend in the 

domestic and international dairy industries, determining key success factors is considered to be of 

great importance. 

Model identification remains one of the more challenging aspects of structural equation modelling, 

as failure to consider identification can lead to misleading results, particularly when dealing with 

models involving latent variables and higher degrees of complexity. Generally, an under-identified 

model means that a researcher cannot determine a unique value for at least one parameter in the 

model (Bollen & Davis, 2009). One of the generally accepted identification rules pertaining to 

measurement models states that a congeneric measurement model will be identified if at least three 

measures are associated with every latent construct. In the case that every latent construct is related 

with at least one other construct, the required number of measures is reduced to two. 

It is important to note, prior to estimation, that there is some degree of concern regarding the 

identification of the latent managerial indices, particularly BREED and LABOUR. When 

constructing similar latent indices, researchers have typically specified three or more indicator 

variables, as specified above, to ensure identification (Ford & Shonkwiler, 1994; Kalaitzandonakes 

& Dunn, 1995; Richards & Jeffrey, 2000). However, due to compositional differences in the data 

from the two study regions, only two measures could be specified for each of the BREED and 

FEED indexes. Given that one of these must be normalized to unity for estimation purposes 

(Richards & Jeffrey, 2000), only one indicator retains explanatory power.  



 
 

119 
 

Furthermore, given that variables are expressed in aggregate value terms and the concern that the 

latent managerial constructs may not contain a sufficient degree of variability to be completely 

identified, it is considered prudent to specify several possible models and select the most 

appropriate model based on various measures of model fit. In an effort to remain comprehensive 

and ensure the best possible fit of the model to the data, six possible models have been specified, 

each with a different combination of structural and measurement variables.  

The primary reason for a multi-model specification is to test the relevance of the latent managerial 

constructs (BREED, FEED, and LABOUR). Testing of these variables is important as data 

restrictions have resulted in BREED and LABOUR possessing only two indicator variables, of 

which one is standardized to unity for estimation purposes. Given the aggregate nature of the data, 

there is concern that there may not be sufficient variability in the indicators to full identify the 

latent constructs. Rather than overlook this potential caveat it is considered prudent to compare a 

number of different model specifications and select the model most suited to the dataset.  

The six models are specified below: 

Model 1: 𝑃𝐸𝑅𝐹 = 𝐻𝑒𝑟𝑑 + 𝑀𝑖𝑙𝑘𝐾𝐿 + 𝑆𝑝𝑒𝑐 + 𝑇𝑟𝑎𝑑𝑒 + 𝐵𝑅𝐸𝐸𝐷 + 𝐹𝐸𝐸𝐷 + 𝐿𝐴𝐵𝑂𝑈𝑅 

Model 2: 𝑃𝐸𝑅𝐹 = 𝐻𝑒𝑟𝑑 + 𝑀𝑖𝑙𝑘𝐾𝐿 + 𝑆𝑝𝑒𝑐 + 𝑇𝑟𝑎𝑑𝑒 + 𝐵𝑅𝐸𝐸𝐷 + 𝐹𝐸𝐸𝐷 

Model 3: 𝑃𝐸𝑅𝐹 = 𝐻𝑒𝑟𝑑 + 𝑀𝑖𝑙𝑘𝐾𝐿 + 𝑆𝑝𝑒𝑐 + 𝑇𝑟𝑎𝑑𝑒 + 𝐹𝐸𝐸𝐷 + 𝐿𝐴𝐵𝑂𝑈𝑅 

Model 4: 𝑃𝐸𝑅𝐹 = 𝐻𝑒𝑟𝑑 + 𝑀𝑖𝑙𝑘𝐾𝐿 + 𝑆𝑝𝑒𝑐 + 𝑇𝑟𝑎𝑑𝑒 + 𝐹𝐸𝐸𝐷 

Model 5: 𝑃𝐸𝑅𝐹 = 𝐻𝑒𝑟𝑑 + 𝑀𝑖𝑙𝑘𝐾𝐿 + 𝑆𝑝𝑒𝑐 + 𝑇𝑟𝑎𝑑𝑒 

Model 6: 𝑃𝐸𝑅𝐹 = 𝐻𝑒𝑟𝑑 + 𝑀𝑖𝑙𝑘𝐾𝐿 + 𝑆𝑝𝑒𝑐 + 𝑇𝑟𝑎𝑑𝑒 + 𝐿𝑎𝑏𝑙𝑖𝑡𝑟𝑒 + 𝐴𝐼𝑙𝑖𝑡𝑟𝑒 + 𝑓𝑒𝑒𝑑𝑟𝑎𝑡𝑖𝑜 

Models one to five vary only in their inclusion/exclusion of the three latent management indices 

whereas model six has been specified to include one measure from each of these three management 

indices as structural variables. The final model is therefore not considered a MIMIC model but 

rather an application of conventional SEM. 

Model estimation and fit analysis was conducted using the statistical software program R (R Core 

Team, 2015). The plm package (Croissant & Millo, 2008) was used to ensure the data were 

modelled with a panel data framework. The lavaan package (Rosseel, 2012) was used to model 
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the specified equations within a MIMIC model framework, with parameter estimation carried out 

using maximum likelihood methods. Relevant fit indices were also generated using the lavaan 

package (Rosseel, 2012). 

7.4 Empirical results and discussion of the MIMIC model 

The two foremost goals of structural equation modelling are the assessment of goodness of fit and 

the subsequent estimation of model parameters. Estimation of model parameters is subject to 

several possible estimation techniques, although in this instance maximum-likelihood estimation 

was adopted due to its prevalence in the literature, relative ease of application, and accessibility of 

modelling software utilising this technique. Assessing model fit has been identified as a prominent 

issue which plagues applications of structural equation modelling (Fan et al., 1999). It is not a 

straightforward procedure as in traditional statistical approaches where variables are measured 

without error (Schermelleh-Engel et al., 2003). Since there is no single test of statistical 

significance to identify the most appropriate model, it is necessary to evaluate model fit based on 

several criteria. The two most popular methods of evaluating model fit are based on (1) the χ2 

goodness-of-fit statistic; and (2) various descriptive measures of model fit to the sampled data, 

otherwise known as fit indexes (Hu & Bentler, 1999; MacCallum et al., 1996). 

The χ2 goodness-of-fit statistic, traditionally used in model selection, assesses the discrepancy 

between the sample covariance matrix and the (fitted) covariance matrix produced by the specified 

models (Fan et al., 1999). In an effort to supplement the χ2 statistic, and avoid some of the 

associated sample size and distributional misspecification problems, a number of fit indices have 

been developed. These fit indices can be broadly categorized into absolute and incremental fit 

indexes (Hu & Bentler, 1999). Absolute fit indices assess how well a hypothesized model 

represents the sampled data by assessing the degree to which the fitted covariance matrix has 

accounted for the original sample covariance matrix. Incremental fit indices, on the other hand, 

quantify the proportionate improvement in model fit by comparing the hypothesized model with a 

more restrictive, nested, baseline model (Hu & Bentler, 1999; Fan et al., 1999). 

Identification of the most appropriate model is a topic of debate among the literature for several 

reasons. Firstly, determining the adequacy of fit indexes using different sampled data and under 

differing model conditions is a problem often encountered in applied research.  Differing model 

conditions refer to the potential sensitivity of fit indices to sample size, model misspecification, 
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estimation technique, violation of normality and independence assumptions, and bias resulting 

from model complexity (Hu & Bentler, 1999). This potentially results in fit indices pointing to 

conflicting conclusions regarding the extent to which a model matches the observed data 

(Schermelleh-Engel et al., 2003), which in turn generates uncertainty regarding model selection. 

Secondly, there is a large selection of fit indices at a researcher’s disposal, which raises the 

questions: which fit indices should be reported, and which indices should be considered most 

influential in model selection? These indices were developed under different theoretical rationales 

which makes comparison between different indices difficult and makes it almost impossible to 

select a single best index (Fan et al., 1999). Finally, there is a great deal of debate concerning 

conventional cut-off criteria for the various fit indices. Although specific cut-off criteria have been 

proposed by several researchers for given fit indices, the adequacy and rationale for these criteria 

are often questioned. Since these indices may be affected by several study specific factors such as 

sample size, estimation methods, and distribution of data it could be argued that a universal specific 

cut-off criterion cannot be adopted (Sharma et al., 2005). 

Table 7.1 contains a summary of model fit parameters for the six model specifications highlighted 

in the previous section. Prior to selecting the most appropriate model it is useful to consider the 

conventional cut-off criteria traditionally referred to among the literature for each of the fit indices 

considered herein. Incremental indices will be dealt with first, followed by absolute fit indices and 

finally model comparison statistics. Firstly, the Tucker-Lewis Index (TLI), or Non-normed Fit 

Index, and the Comparative Fit Index (CFI) generally range from 1 to 0, with 1 indicating perfect 

fit. A rule of thumb is that a value of 0.97 or above is indicative of good fit, while a value of 0.95 

is indicative of acceptable model fit (Schermelleh-Engel et al., 2003). Caution should be exercised 

when interpreting TLI, particularly under small sample sizes, as the index can be anomalously 

small, implying poor model fit, while other indices suggest acceptable model fit (Anderson & 

Gerbing, 1984, as cited by Bentler, 1990). 

Concerning absolute fit indices, the two measures of fit presented in Table 7.1 are the root mean 

square error of approximation (RMSEA) and the standardized root mean square residual (SRMR). 

Both descriptive measures provide an indication of overall model fit. Browne & Cudeck (1993), 

as cited by Schermelleh-Engel et al. (2003), and Sharma et al. (2005) suggest that RMSEA values 

less than or equal to 0.05 are an indication of good fit, values between 0.05 and 0.08 may be 
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considered acceptable fit, values between 0.08 and 0.1 as mediocre fit and values above 0.1 as 

unacceptable fit. Hu & Bentler (1999) suggest a cut-off value close to 0.06 for RMSEA, while 

Steiger (2007) considers 0.07 to be an acceptable cut-off criterion.   

Table 7.1: Comparison of MIMIC model fit parameters 

Concerning SRMR, Hu & Bentler (1999) indicated that a cut-off value close to 0.08 appeared to 

result in lower type II error rates. The authors went on to establish a series of combinational rules 

between various indices that were able to retain acceptable proportions of true population models 

and reject various types of misspecified models under most conditions. Furthermore, they 

suggested that for small sample sizes, n < 250, combinational rules based on CFI and SRMR are 

 Model 1 Model 2 Model 4 Model 5 Model 6 

Minimum Function Test Statistic 1119.397 505.094 91.684 4.658 12.887 

Degrees of freedom 53 35 20 3 6 

P-value (Chi-square) 0 0 0 0.199 0.045 

Baseline model test      

Minimum Function Test Statistic 2555.874 1795.296 1080.103 51.041 70.217 

Degrees of freedom 72 49 30 9 15 

P-value (Chi-square) 0 0 0 0 0 

Model vs. Baseline model      

CFI 0.571 0.731 0.932 0.961 0.875 

Tucker Lewis 0.417 0.623 0.898 0.882 0.688 

Log-likelihood and Information Criteria:      

Log-likelihood user model (H0) -2439.362 -1159.743 -478.971 -742.136 129.712 

Log-likelihood unrestricted model (H1) -1879.664 -907.196 -433.129 -739.806 136.155 

Number of free parameters 28 21 15 8 11 

AIC 4934.725 2361.485 987.941 1500.271 -237.424 

BIC 5028.176 2431.574 1038.004 1526.971 -200.711 

Sample-size adjusted Bayesian (BIC) 4939.458 2365.035 990.477 1501.623 -235.564 

Root Mean Square Error of Approximation:      

RMSEA 0.311 0.254 0.131 0.052 0.074 

90% Confidence Interval (Lower) 0.295 0.235 0.105 0 0.011 

90% Confidence Interval (Upper) 0.327 0.274 0.159 0.137 0.131 

P-value RMSEA <= 0.05 0 0 0 0.392 0.200 

Standardized Root Mean Square Residual:      

SRMR 0.432 0.162 0.142 0.028 0.038 

AIC=Akaike information criterion, BIC=Bayesian information criterion, CFI=Confirmatory Fit Index 

*Model 3 failed to converge and therefore could not be reported 
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preferable. For this combination rule, a CFI close to 0.95 and a value of 0.09 or lower for SRMR 

are recommended for practical applications. 

Finally, concerning model comparison, the Akaike information criterion (AIC), Bayesian 

information criterion (BIC), and the sample-size adjusted BIC (SSABIC) are reported in this study. 

AIC adjusts χ2 for the number of estimated parameters and is used to select the best fitting of 

several competing models (Schermelleh-Engel et al., 2003). The AIC is non-normed and thus 

should not be interpreted in isolation but rather compared across competing models. Models with 

the lowest AIC are considered to be the best approximation of the sampled data. BIC and SSABIC 

are scaled in such a way that lower values, approaching zero, indicate improved model fit (Enders 

& Tofighi, 2008). 

Analysing the results presented in Table 7.1, bearing in mind the suggested selection criteria 

outlined above, it is evident that Models 5 and 6 are the only models exhibiting any evidence of 

potentially acceptable fit. Model 3 failed to converge, therefore, no results could be reported. 

Models 1, 2, and 4 all exhibit significant χ2 test statistics, indicating that the fitted model is not 

comparable to the population covariance matrix, resulting in a rejection of the null hypothesis of 

acceptable model fit. Furthermore, RMSEA and SRMR values are well above the conventional 

rules of thumb. Models 1 and 2 show CFI and TLI values well below the acceptable criteria and 

very high AIC and BIC values in relation to the other models. Model 4 shows the second highest 

CFI and TLI values, larger than model 6. Furthermore, the AIC and BIC values indicate that model 

4 is preferable to model 5. This is an interesting result, considering the contrasting evidence 

provided by the various measures of fit.  

For model 5, the p-value associated with the χ2 test statistic is insignificant, indicating that the 

fitted model is comparable to the population covariance matrix, supporting the null hypothesis of 

acceptable model fit. For model 6, the p-value is significant at the 0.05 level indicating 

unacceptable model fit. This result should be interpreted with caution since there are several 

potential shortcomings associated with the χ2 test statistic. Firstly, the assumptions of multivariate 

normal observed variables and sufficiently large sample size may not always be fulfilled. 

Secondly, model complexity is penalized in the sense that the value of χ2 typically decreases as 

parameters are added to the model. Thirdly, χ2 is sample size dependent. For increasing sample 

size and a constant number of degrees of freedom, the value of χ2 increases. Therefore, as sample 
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size decreases, the value of χ2 tends to decrease, which may result in the model pointing to an 

unacceptable fit, when in fact the model may be acceptable (Schermelleh-Engel et al., 2003). It is 

therefore considered prudent to analyse several fit measures before drawing any conclusions as to 

the most acceptable model fit. 

TLI and CFI values for model 5 were 0.898 and 0.961, respectively. The CFI value of 0.961 is 

above the suggested cut-off criteria proposed by Hu & Bentler (1999) but the TLI value of 0.898 

is below the suggest cut-off criterion of 0.95 or higher. For model 6, TLI and CFI values were 

0.875 and 0.688, respectively, well below the specified cut-off criteria. It is important to highlight 

that the TLI has been found to be erratic under small sample sizes (Bentler, 1990). RMSEA and 

SRMR values for model 5 are well below the suggested criteria, although the RMSEA value of 

0.074 is marginally above the acceptable cut-off criteria proposed by Steiger (2007). 

Rather than compare individual measures of fit, which can provide conflicting evidence, it is 

posited that the combination rules proposed by Hu & Bentler (1999) are likely to provide a better 

estimation of model fit, minimizing type I and type II errors. Due to the small sample size of this 

study, the combination rule involving CFI and SRMR is the most applicable. As mentioned, the 

CFI value exceeds the cut-off criteria of 0.96, and the reported SRMR value of 0.028 is well below 

the specified cut-off criteria of 0.09. The RMSEA value of 0.052 reported for model 5 is within 

the cut-off criteria of 0.06 and 0.07 proposed by Hu & Bentler (1999) and Steiger (2007), 

respectively. Furthermore, the confidence interval calculated for RMSEA appears to be broadly in 

line with suggested criteria, with a lower limit equal to zero and an upper limit of 0.137. Adopting 

these criteria, model 6 appears to be an unacceptable fit, despite exhibiting significantly lower AIC 

and BIC values. 

Table 7.2 presents the maximum likelihood parameter estimates of the structural and measurement 

equations for models 5 and 6, although focus will remain on model 5, as this is considered the 

more acceptable model. Results indicate that technical efficiency is statistically significant, 

suggesting that efficiency is an important indicator of latent economic performance. The 

coefficient estimate of -0.882 is of expected size and is comparable, in absolute terms, to the value 

of 0.890 reported for economic efficiency by Richards & Jeffrey (2000). The negative 

directionality of this relationship is, however, not line with a priori expectations or the findings of 

Richards & Jeffrey (2000).  
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Table 7.2: MIMIC model parameter estimates 

Model 5 

Measurement Equations Estimate Std. Err Z-value P(>|z|) Std. lv Std. all 

PERF =~ 
     

  

SE 1 
   

0.023 0.391 

TE -0.882 0.247 -3.574 0 -0.02 -0.386 

Structural Equations 
   

  

Herd 0 0 -0.936 0.349 0 -0.12 

MilkKL 0.008 0.003 3.129 0.002 0.347 0.462 

Spec 0.071 0.021 3.412 0.001 3.079 0.51 

Trade 0.071 0.054 1.311 0.19 3.085 0.167 

Variances 
    

  

SE 0.003 0 8.062 0 0.003 0.847 

TE 0.002 0 8.166 0 0.002 0.851 

PERF 0 0 0.734 0.463 0.309 0.309 

Model 6 

Latent Variables Estimate Std.Err Z-value P(>|z|) Std.lv Std.all 

PERF =~ 
     

  

SE 1 
   

0.025 0.431 

TE -0.727 0.188 -3.868 0 -0.018 -0.35 

Regressions 
    

  

Herd 0 0 0.46 0.645 0 0.063 

MilkKL 0.007 0.003 2.686 0.007 0.293 0.39 

Spec 0.084 0.024 3.458 0.001 3.315 0.55 

Trade 0.049 0.058 0.848 0.396 1.941 0.105 

Ailitre -0.063 0.148 -0.422 0.673 -2.478 -0.056 

Lablitre 0.123 0.047 2.624 0.009 4.868 0.415 

Feedratio -0.054 0.02 -2.714 0.007 -2.154 -0.412 

Variances 
    

  

SE 0.003 0 7.441 0 0.003 0.814 

TE 0.002 0 8.845 0 0.002 0.877 

PERF 0 0 0.422 0.673 0.17 0.17 

 

One possible explanation may be found by examining the structure of the latent economic 

performance construct. Due to data limitations, efficiency analysis was limited to technical and 

scale efficiency leaving only two measures of economic performance to ensure identification. In a 

similar study by Richards & Jeffrey (2000), measures of technical, allocative and economic 

efficiency were included as indicators of latent economic performance. Furthermore, two of the 

three efficiency measures were normalized to zero to identify the economic performance construct. 

It is possible that using two measures of efficiency was not sufficient to fully identify latent 

economic performance. Another possibility is that the negative relationship observed between 
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technical efficiency and time was captured by the economic performance construct, resulting in a 

negative relationship between the two. 

Unfortunately, per model selection criteria, all models incorporating BREED, FEED and 

LABOUR indices were not preferable to model 5, which represents an overly simplified version 

of the model originally proposed. Models incorporating latent managerial indices were most likely 

rejected due to the identification concerns highlighted prior to estimation, and due to limited 

variability in the measures used to identify the latent managerial constructs. Although no results 

were generated from these constructs, some important insights can be drawn from this result. 

Firstly, prior to estimation, future research should ensure that there are sufficient data, and 

variability in the data, to develop strong indicators of these latent constructs. 

Regarding breeding management quality (BREED), the following improvements are proposed: (1) 

Since herd composition is an important indicator of managerial ability, at least one measure of 

herd composition should be incorporated as a measure of latent breeding quality. Calf-cow ratio, 

ratio of dry cows to cows in milk, and average time between calving are three possible measures 

for future consideration. (2) AI costs may not accurately proxy genetic progress, since farmers do 

not always accurately represent this expense in farm records, resulting in misleading results. 

Furthermore, farmers using bulls were naturally assigned AI costs of zero, implying no expenditure 

on genetic progress. AI is not the only means of improving on farm genetics. The use of carefully 

selected breeding bulls is also a viable means of improving herd genetics. Since the price of a bull 

essentially reflects its genetic potential, it should be incorporated as a measure of breeding quality, 

perhaps in conjunction with AI.  

Concerning feed management (FEED), the variables included as indicators of latent feeding 

management are considered acceptable, although several possible improvements are suggested. 

Firstly, expressing variables in value terms is not advisable as price and quantity effects become 

conflated. Deflating variables by appropriate price indices is a common remedy, although these 

indices are not able to fully remove the effect of price. This means results may be influenced by 

some aspect of price underlying the data, potentially reducing the accuracy of the results and 

resulting in misleading interpretations. An important limitation of this study lies in the fact that 

each variable was not deflated by an appropriate price index; instead all variables were adjusted 

for inflation. Thus, price movements, outside of inflation may have influenced the results to some 
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extent. To counter this, it would be ideal to use a specific price index relevant to each variable 

considered in the analysis. For example, when considering purchased feed, it would have been 

more appropriate to have deflated prices by an actual feed price index created using historical 

prices of purchased dairy feeds. This would ensure that any changes in price over time would be 

correctly accounted for. One potential limitation with this approach would be sourcing the 

necessary data to facilitate the construction of such indices. 

These difficulties can be overcome by using data expressed in quantities, if possible, although 

these data are not often available in South African agricultural research, as farmers do not typically 

keep such meticulous records. Secondly, a useful measure of latent feed management quality may 

be the quantity of concentrates, expressed in kilograms, fed per litre of milk. This is expected to 

give an indication of what proportion of a cow’s nutrient requirement is met using pasture and 

homegrown feed. 

Finally, regarding latent labour quality (LABOUR), several improvements are proposed. Firstly, 

where possible, data expressed in quantities rather than in value terms should be used, due to the 

reasons outlined above. In addition, knowledge of the employment structure of the farms would 

be beneficial, allowing labourers of differing skills to be differentiated from one another. This is 

not possible when using aggregate value data. Secondly, additional measures of labour should be 

considered to improve identification and explanatory power of the latent construct. One possible 

measure for future consideration is the capital to labour ratio used by Richards & Jeffrey (2000).  

In addition to the three latent indices defined in this study, it may be beneficial, data permitting, to 

incorporate several financial measures into an index of financial management. Following Ford & 

Shonkwiler (1994), a financial management index may be constructed from several financial 

measures including the equity/asset ratio, interest expense as a portion of total cash expenses, debt 

per cow, and gross profit margin. This could be extended to include measures of liquidity and 

solvency such as the debt/asset ratio and leverage. Given the relatively high capital investment in 

modern dairying, an investigation into the effects of latent financial management ability could be 

highly beneficial and yield some interesting results. The primary limitation in this case is data 

availability. 

Concerning the structural equation estimates presented in Table 7.2, coefficient estimates for milk 

production per cow, expressed in kilolitres (MilkKL) and level of specialization (Spec), were 
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statistically significant and exhibited positive signs. On the other hand, estimated coefficients for 

herd size (Herd) and trading income (Trade) were statistically insignificant. The significance of 

MilkKL and Spec is in line with expectations. The positive relationship between milk yield and 

economic performance is substantiated by the findings of Richards & Jeffrey (2000). The non-

significance of the herd size parameter estimate is unexpected and does not correspond to the 

findings of Richards & Jeffrey (2000). 

These results suggest that farmers may improve economic performance by improving milk yields 

per cow. Furthermore, income associated with the sale of dairy livestock, in the form of calves, 

heifers and cull cows, appears to be a viable means of improving economic performance for the 

sampled dairy farms. Post estimation model selection favoured the selection of the simplest model, 

meaning the effects of the three latent managerial indices on economic performance could not be 

investigated.  

Although some of the findings of this study are not in accordance with prior expectations and 

previous research, this study represents a valuable attempt to model the economic performance of 

South African dairy farmers at a level of integration not yet seen in the South African literature. 

Several possible reasons for these results are presented below. Firstly, data have been deflated 

using a general price index rather than individual price indexes which would account for price 

changes specific to each variable. This lack of detail in deflating prices means that the effect of 

price may have confounded the results. Secondly, due to data limitations, latent BREED and 

LABOUR indices were constructed using only two indicators, in the hope that this would be 

sufficient for identification. It appears, therefore, that the data used in this analysis did not contain 

sufficient detail to support the calculation of the latent managerial indices, leading to poor 

identification. Finally, the use of technical and scale efficiencies as indicators of economic 

performance may not have been sufficient to completely identify latent economic performance as 

was hoped. In general, it appears that the data did not contain sufficient detail to facilitate the 

calculation of the MIMIC model originally proposed. 

However, this study has provided valuable information regarding the investigation of farm 

performance on a more integrated level than traditionally considered and provides a good 

theoretical and statistical foundation upon which future research can improve. In assessing the 

limitation of this study, several suggestions have been made for future researchers to consider. It 
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remains the view of the author that the methodology outline in this study has the potential to 

provide valuable information on the aspects of dairy farming not investigated in traditional 

productivity analysis. These include feeding, breeding and labour management quality, and it is 

proposed that the inclusion of latent financial management quality would allow for a highly 

valuable study, with new insights into the factors affecting the true economic performance of South 

African dairy farms. If data with the required level of detail can be obtained, the methodology 

outlined in this study should provide some interesting results. In the face of continued industry 

consolidation, more integrated research is needed to determine what factors truly drive economic 

performance.  
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CONCLUSION 

This study used a two-stage approach to investigate the factors affecting the economic performance 

of a group of commercial milk producers from East Griqualand in southern KwaZulu-Natal and 

the northern parts of the Eastern Cape Province, and Alexandria in the Eastern Cape Province of 

South Africa. In the first stage, technical efficiency (TE) and scale efficiency (SE) were calculated 

through the specification of a production technology and subsequent estimation using parametric 

techniques. In the second stage, estimated TE and SE scores were incorporated into the analysis 

of economic performance, using structural equation modelling techniques. For the purposes of this 

study economic performance is defined as a latent, unobservable variable for which there exist 

many imperfect indicators, including various measures of efficiency. 

Prior to estimation, several popular functional forms and distributional assumptions were modelled 

and subjected to likelihood ratio testing. Results suggest the translog production function with 

truncated normal distributional and time variant efficiency most accurately represented the 

underlying milk production technology. Stochastic frontier analysis was then used to estimate 

individual levels of TE for the sampled farms. The dataset used in the study was comprised of an 

unbalanced panel of financial and production data for 13 East Griqualand and 13 Alexandria milk 

producers, spanning a period of 8 years (2007-2014). Missing data analysis revealed that missing 

observations were missing completely at random (MCAR) and multiple imputation was 

implemented to deal with the missing data. 

Estimated production frontier results suggest that dairy production exhibits increasing returns to 

scale and, of all input variables, total feed cost is most important in explaining the variability in 

dairy output, followed by herd size and capital expenditure. These findings are consistent with 

those of several international studies on the productivity of dairy farms.  The smooth time trend 

included to capture the effects of technological progress did not have a statistically significant 

coefficient estimate, implying a lack of technological progress. This result should be interpreted 

with caution as the manner of its inclusion represents a crude approach to the measurement of 

technical change. 

The mean level of TE in the East Griqualand and Alexandria samples was 86.5% and 88%, 

respectively, indicating that farms were producing between 13.5% and 12% below their potential 

due to inefficient means of production. These TE scores are well within the bounds highlighted by 
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the previous literature. While this may appear to suggest that South African commercial milk 

producers are at least as technically efficient as many of their international counterparts, this result 

should be interpreted with caution. Cross-study comparisons offer limited insight since they 

implicitly assume that the best practice farms, representing the estimated production frontier, are 

good estimates of the true production frontier, an assumption that may not be true in reality. These 

results suggest that, from a technical point of view, farms could expand milk production using the 

current levels of input and technology available. Farmers in East Griqualand and Alexandria can 

improve their productivity and technical efficiency simply by taking advantage of more efficient 

farming practices. Some examples may include; improved milking parlours, advanced herd 

management software, advanced pasture management systems, improved grass cultivars, and 

custom feed rations for each cow based on milk production potential. 

Results indicate a reasonably high degree of homogeneity both among producers within the same 

region and between different regions. This result is not surprising considering all sampled farms 

are specialized milk producers, deriving more than 80% of total revenue from the dairy enterprise. 

Mean levels of TE have generally declined over the study period, indicating that farms on the best 

practice frontier are becoming more efficient through time, while the average farm has become 

less efficient in relation to the advancing frontier. Although the reasons as to why this is occurring 

cannot be answered through the results of this analysis, there are some possible explanations based 

on intuition and the previous literature. Essentially, the diffusion of technical advances from 

frontier farms appears to have slowed, increasing the delay between innovative farmers adopting 

new technologies and the average farmer adopting them. Further research is required to investigate 

this. 

The mean level of scale efficiency over the study period was 95.2% implying that farms could 

have improved output by 4.8% had they operated at optimal scale. This confirms that most farms 

do not experience a substantial loss in output due to scale efficiency problems. Results suggest that 

very few farms, approximately 11%, operated at optimal scale. The majority of farms operated at 

suboptimal scale, indicating increasing returns to scale. Farms operating at suboptimal scale 

benefit from increased output, which brings them toward optimal scale. From a policy viewpoint, 

these results have important implications. If improved efficiency is desired then, given the 

observed trend towards larger dairy farms, it would be better to encourage farm expansion than to 
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discourage it. In practice, encouragement to expand is unlikely to stem from state intervention, 

government policies, or programmes, but rather from agricultural consultants promoting expansion 

based on the associated efficiency improvements. 

It is worth noting that farms operating at supra-optimal scale, decreasing returns to scale exhibited 

higher levels of mean SE, closer to the values associated with optimal scale. In other words, the 

mean SE gap between supra-optimal and optimal farms was notably smaller than that between 

suboptimal and optimal farms. The degree of technical efficiency was found to be lower than that 

of scale efficiency, indicating a greater portion of overall inefficiency is due to operating below 

the efficient frontier, rather than due to operation at an inefficient scale. 

For the second stage, several possible MIMIC models were specified due to concerns regarding 

the identification of the three managerial indices BREED, FEED, and LABOUR. Analysis of the 

resulting model fit identified the most simplistic model, including none of the proposed 

management indices as the best fitting. Empirical results pertaining to this model indicate that 

technical efficiency is a significant determinant of economic performance, although the negative 

coefficient estimate is not supported by the relevant literature. Of the structural variables, milk 

yield per cow and the level of specialization were identified as determinants of farm economic 

performance. This implies that farmers may improve their levels of economic performance by 

focusing resources and management efforts on improving milk yield per cow and by becoming 

more specialized in dairying. 

This study addressed some gaps in previous local research on the productivity of milk producers 

by: (1) evaluating, prior to estimation, several functional forms, each with one of two popular 

distributional assumptions regarding the inefficiency term. Previous local research has generally 

not invested much time in the ex-post selection of functional forms and distributional assumptions, 

typically considering two functional forms at most; (2) estimating parametric scale efficiency from 

the translog production function, an approach which has not been applied in local research; and 

(3) investigating farm performance at an integrated level using a latent variable approach, 

incorporating estimated efficiencies in a second stage analysis.  

The results of this study can be used by milk producers, policy makers, agricultural consultants, 

and other industry players to better understand milk production technology and the dynamics of 

technical and scale efficiency on South African dairy farms. The lack of research on the 
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productivity of the local dairy industry needs to be addressed as it is concerning that there is such 

a large body of literature on this topic pertaining to other important milk producing countries, yet 

very few studies employ these techniques at the domestic level. This would ensure that farmers 

and policy makers have access to relevant and reliable information, facilitating the decision 

making process and assisting them to make informed decisions. 

Areas for further research include: (1) extending efficiency analysis to consider the effect of price, 

thereby facilitating the estimation of allocative and economic efficiency, in addition to technical 

efficiency. Including three measures of efficiency as indicators of latent economic performance is 

expected to improve identification in the estimation of the MIMIC model. (2) Specifying a 

minimum of three indictors for each of the latent managerial constructs to improve identification 

and explanatory power. For the breeding index, cow-calf ratio and the ratio of dry cows to cows 

in milk are two indicators of herd composition that may be valuable. Furthermore, the cost 

associated with natural breeding (cost of bulls) should be incorporated into breeding cost as this 

represents a viable means of genetic improvement. For the feed index, the quantity of dairy 

concentrates fed per cow or per unit output may be a valuable addition. (3) Constructing a latent 

index of financial management ability may add a great deal of value since aspects financial 

performance are seldom incorporated into farm level analysis. Factors such as the equity/asset 

ratio, debt/asset ratio, interest expense as a portion of total cash expenses, debt per cow, and gross 

profit margin could be valuable indicators of financial managerial ability; and (4) extending sample 

size to levels typically seen in the international literature may be beneficial, particularly when 

using SEM methods. 
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SUMMARY 

The South African dairy industry, and the dairy industries of many other important milk producing 

countries, has undergone significant structural change in recent years, with an observed 

consolidation trend towards fewer, larger milk producers. This is indicative of a more competitive 

milk market. In the face of increased competition, the economic efficiency of a milk producer’s 

operation is likely to become an increasingly important determinant of farm financial success and 

survival in the industry. Furthermore, it is important that farmers understand the key drivers behind 

the success or failure, facilitating the decision to remain in business or exit the industry. Due to 

the imperfect nature of efficiency measures, farm performance was investigated at a more 

integrated level than traditionally considered. This involved specifying true farm performance as 

a latent variable, for which there exist many imperfect indicators, including traditional measures 

of efficiency. 

For the purposes of this study, individual milk producer data were collected from the East 

Griqualand and Alexandria study groups for the period 2007 to 2014. Data collected comprised 

production and financial records for each of the sampled farms. Total sample size was 208 

observations (26 farms x 8 years), although data omissions for some of the years resulted in an 

unbalanced panel. Missing data analysis confirmed data were missing completely at random 

(MCAR), supporting the use of multiple imputation using the Markov Chain Monte Carlo method 

to estimate the missing values. East Griqualand (EG) refers to the southern parts of KwaZulu-

Natal, such as Kokstad, and northern parts of the Eastern Cape, such as Matatiele and Cedarville. 

The area is characterized mainly by natural sourveld grazing, relatively high rainfall (500-800mm 

per annum), and moderate temperatures (8.1-14.8oC mean annual temperature). This facilitates the 

growth of good natural and artificial pasture and may reduce the incidence of heat stress. 

Alexandria is a small farming town located close to the coast in the south-western corner of the 

Eastern Cape Province. The area is characterized by relatively high rainfall (500-700mm) but is 

notably warmer than the EG region (17.7-20.6oC mean annual temperature). Farms in both regions 

are predominantly pasture based, feeding purchased feed and concentrates to meet nutritional 

shortfalls. 

The primary objective of this study is to determine the factors contributing to the economic 

performance of a panel of commercial milk producers from East Griqualand and Alexandria for 
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the period 2007-2014. This was to be achieved by addressing several specific objectives, including: 

determining the most appropriate functional form and distributional assumption, estimating 

technical and scale efficiencies, and determining if size economies are present on the sampled 

farms. Regarding economic performance, specific objectives included modelling economic 

performance in a latent variable framework, identifying the relative effects of the cause and 

indicator variables, including TE and SE, on economic performance, and subsequently identifying 

means of improving economic performance on the sampled dairy farms. 

The first section of the study focused on the ex-post selection of the most appropriate milk 

production technology, and distribution assumption regarding the technical inefficiency term (u). 

Cobb-Douglas, simplified translog, translog, Generalized Leontief, and normalized quadratic 

functional forms, each with either a half-normal or truncated normal distribution, were specified 

and subjected to likelihood ratio testing. Results showed that the translog model with truncated 

normal distribution was the best representation of the underlying milk production technology. 

Stochastic frontier analysis was used to estimate the individual levels of technical efficiency on 

the sampled farms over the study period. In the translog production function, aggregate dairy 

output, represented by the sum of total revenue from milk sales and livestock trading, was selected 

as the dependent variable, with herd size (H), total expenditure on purchased and home-grown 

feed (F), expenditure on veterinary products and services (V), total wage bill (L), the cost of capital 

(K), a regional dummy variable (D), and a smooth time trend variable (T) intended to capture 

technological progress, were included as independent variables.  

Results showed that herd size, total feed expense, and the cost of capital positively influenced dairy 

output, while veterinary expense and labour did not influence dairy output for the sampled farms. 

Mean levels of technical efficiency indicate that milk producers in both regions are highly efficient, 

with most farms exhibiting TE scores between 90 and 100%. Furthermore, evidence suggests that 

a high degree of homogeneity between milk producers exists at both the inter and intra-regional 

level. Mean TE scores over the study period generally declined, indicating farms on the best 

practice frontier became more efficient through time, while the average farm has become less 

efficient in relation to the advancing frontier. Parametric scale efficiency was calculated from the 

parameters and scale elasticities estimated during the calculation of TE, using the methodology 

proposed by Ray (1998). Results of this analysis suggest that milk producers are highly scale 
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efficient in production and do not experience any substantial losses in output due to problems 

associated with non-optimal scale. Furthermore, it was observed that most of the sampled dairy 

farms operated with increasing returns to scale and would benefit from an increase in dairy output. 

The second section of the study focused on modelling economic performance within a structural 

equation modelling framework. In this analysis, TE and SE estimated in the first stage of the study 

were included as indictors of a farm’s latent economic performance. In addition, three latent 

indexes were constructed to represent the managerial quality of a producer’s breeding, feeding and 

labour programme. These latent indices were included as explanatory variables in the structural 

equation along with herd size (Herdit), milk yield per cow (MilkKLit), trading income from the 

sale of livestock (Tradeit), and the level of specialization in the dairy industry (Specit).  

Due to identification concerns regarding the latent constructs, several models were specified to 

test the inclusion of the latent managerial indices. A comprehensive assessment of model fit 

revealed the most simplistic model to be the most suitable. Results indicated that TE, level of 

specialization, and milk yield per cow influenced latent economic performance, while herd size 

and trading income did not. The use of too few measurement items in the construction of the latent 

managerial indices, in conjunction with lack of variability in these items, most likely led to poor 

identification and the subsequent exclusion of these indices from the final analysis. In future, the 

use of a greater number of more diverse indicators is suggested when constructing these latent 

indices. Furthermore, incorporating an index of financial managerial ability, indicated by several 

common measures of financial performance is an area for future research. Finally, future research 

would do well to investigate allocative and economic efficiencies, in addition to technical 

efficiency, as the effects of price should be considered in a holistic analysis of farm performance. 

Furthermore, including three measures of efficiency as indicators of latent performance is expected 

to improve identification and explanatory power in the secondary analysis.   
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APPENDIX 

APPENDIX 1: MISSING DATA ANALYSIS 

Univariate Statistics 

 N Mean Std. Deviation 

Missing No. of Extremesa 

Count Percent Low High 

Y 
205 

11123119.742

27 

6032294.1505

95 
3 1.4 0 0 

V 
205 659437.45023 

850987.19761

4 
3 1.4 0 10 

L 
205 624022.59188 

316425.43869

5 
3 1.4 0 1 

F 
205 

5491065.2445

8 

3147075.0867

79 
3 1.4 0 1 

H 205 496.04455 242.624228 3 1.4 0 5 

K 
205 

1746398.2054

5 

1072480.1035

47 
3 1.4 0 9 

T 208 4.50000 2.296816 0 .0 0 0 

a. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR). 

 

 

 

Missing Patterns (cases with missing values) 

 

Ca

se 

# 

Miss

ing 

% 

Missi

ng 

Missing and Extreme Value Patternsa Variable Values 

T V L F H K Y Y V L F H K 

35 6 85.7  S S S S S S . . . . . . 

96 6 85.7  S S S S S S . . . . . . 

12

0 
6 85.7  S S S S S S . . . . . . 

- indicates an extreme low value, while + indicates an extreme high value. The range used is (Q1 - 1.5*IQR, 

Q3 + 1.5*IQR). 

a. Cases and variables are sorted on missing patterns. 
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EM Correlationsa 

 Y V L F H K T 

Y 1       

V .483 1      

L .775 .494 1     

F .918 .408 .638 1    

H .898 .541 .789 .762 1   

K .775 .618 .788 .589 .867 1  

T .218 .358 .277 .191 .274 .308 1 

a. Little's MCAR test: Chi-Square = 1.939, DF = 1, Sig. = .164 
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-0.10 

0.07 
0.06 

0.19 
-0.29 

-0.09 
-0.04 

0.01 
0.22 

-0.04 
1.00 

 
 

 
 

σ
2 

0.00 
-0.07 

0.11 
0.06 

-0.06 
-0.08 

0.13 
-0.06 

0.17 
-0.04 

-0.07 
0.14 

-0.05 
-0.07 

0.03 
0.03 

-0.22 
-0.06 

0.01 
0.06 

0.07 
0.08 

-0.02 
-0.01 

-0.05 
0.05 

-0.06 
0.10 

-0.13 
1.00 

 
 

 

γ 
0.05 

-0.03 
0.14 

0.06 
-0.09 

-0.11 
0.15 

-0.03 
0.19 

-0.02 
-0.09 

0.10 
-0.04 

-0.10 
0.02 

0.02 
-0.20 

-0.03 
0.00 

0.05 
0.07 

0.10 
-0.05 

0.04 
-0.06 

0.01 
-0.07 

0.10 
-0.15 

0.87 
1.00 

 
 

μ 
0.28 

0.14 
-0.04 

0.24 
0.01 

-0.11 
-0.17 

-0.04 
-0.04 

-0.09 
-0.09 

-0.25 
0.03 

0.12 
0.18 

0.09 
0.25 

0.22 
0.05 

-0.08 
-0.26 

-0.02 
0.28 

0.15 
0.15 

-0.09 
-0.21 

-0.20 
-0.22 

0.06 
0.10 

1.00 
 

tim
e 

0.13 
0.05 

0.16 
-0.29 

-0.14 
0.00 

0.12 
0.16 

-0.03 
0.24 

0.08 
0.02 

-0.02 
-0.18 

-0.23 
-0.12 

-0.09 
-0.01 

-0.01 
-0.04 

0.22 
0.03 

-0.34 
0.06 

-0.21 
-0.05 

0.25 
0.13 

0.22 
-0.12 

-0.10 
-0.63 

1.00 

 

APPENDIX 2: MULTICOLINEARITY 

2.1: Translog correlation matrix   
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Condition 
Index 

Variance Decomposition Proportions 

β0 βV βL βF βH βK βLL βVV βFF βHH βKK βHL βHV βHF βHK βLV βLF βLK βVF βVK βFK ζ λ βHT βLT βVT βFT βKT α 

1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
16.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.40 
18.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
25.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
27.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
34.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
35.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
43.3 . . . . . . . . . . . . . . . 0.47 . . . . . . . . . . . . . 
44.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
52.2 . 0.38 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
54.2 . . . . . . 0.47 . . . . . . . . . . . . . . . . . . . . . . 
56.3 . . . . . . . . . . . . . . . . . . . 0.31 . . . . . 0.34 . . . 
63.8 . . . . . . . . . . . . 0.32 . . . . . . . . 0.30 0.32 . . . . . . 
71.0 . . . . . . . . . . . 0.35 . . . . 0.52 . . . . . . . . . . . . 
76.0 . . . . . . . . . . . . . . . . . 0.47 0.44 . . . . . . . . . . 
81.5 0.45 . . . . . . . . . . . . . . . . . . . . 0.63 0.55 . . . . . . 
89.5 . . . . . . . . . . 0.42 . . . . . . . . . . . . . . . . . . 

142.3 . . . . . . . . . 0.84 . . . 0.72 0.65 . . . . . 0.33 . . . . . . . . 

 

2.2: Condition index and variance decomposition for the Translog model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3: Condition index and variance decomposition for the Cobb-Douglas model 

 

Condition 

Index 

Variance decomposition proportions 

β0 βV βL βF βH βK ζ α 

1 . . . . . . . . 

3.987 . . . . . . . . 

6.557 . . . . . . 0.88 . 

42.845 . . . . . . . . 

83.421 . 0.86 . . . . . . 

132.819 . . 0.60 . . . . . 

211.077 . . 0.38 . . 0.91 . . 

224.593 0.50 . . 0.96 0.45 . . 0.56 
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APPENDIX 3: WITHIN MODEL LIKELIHOOD RATIO TESTS 

Cobb-Douglas LR tests 

Model # DF LogLik Df Chisq Pr>(Chisq) Decision 

OLS 9 176,84      
CDhn 10 198,44 1 43,209 2,46E-11 *** CDhn 

OLS 9 176,84           

CDtn 11 203,21 2 52,741 1,07E-12 *** CDtn 

OLS 9 176,84           

CDhnVAR 11 201,02 2 48,364 9,64E-12 *** CDhnVAR 

OLS 9 176,84           

CDtnVAR 12 205,1 3 56,524 1,09E-12 *** CDtnVAR 

CDhn 10 198,44      
CDtn 11 203,21 1 9,532 0,002019 ** CDtn 

CDhn 10 198,44           

CDhnVAR 11 201,02 1 5,1549 0,02318 * CDhnVAR 

CDtn 11 203,21           

CDtnVAR 12 205,1 1 3,783 0,05178 . CDtnVAR 

CDhnVAR 11 201,02           

CDtnVAR 12 205,1 1 8,1601 0,004282 ** CDtnVAR 

Most Suitable model: CDtnVAR    
 

Simplified translog LR tests 

Model # DF LogLik Df Chisq Pr>(Chisq) Decision 

OLS 15 181,17      
STLhn 16 203,76 1 45,181 8,98E-12 *** STLhn 

OLS 15 181,17           

STLtn 17 209,13 2 55,933 2,16E-13 *** STLtn 

OLS 15 181,17           

STLhnVAR 17 205,84 2 49,352 5,87E-12 *** STLhnVAR 

OLS 15 181,17           

STLtnVAR 18 210,67 3 59,001 3,21E-13 *** STLtnVAR 

STLhn 16 203,76      
STLtn 17 209,13 1 10,752 0,001041 ** STLtn 

STLhn 16 203,76       

STLhnVAR 17 205,84 1 4,1714 0,04111 * STLhnVAR 

STLtn 17 209,13           

STLtnVAR 18 210,67 1 3,0672 0,07989 . STLtnVAR 

STLhnVAR 17 205,84           

STLtnVAR 18 210,67 1 9,6483 0,001895 ** STLtnVAR 

Most suitable model: STLtnVAR    
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Translog LR tests 

Model # DF LogLik Df Chisq Pr>(Chisq) Decision 

OLS 30 206,11      
TLhn 31 223,46 1 34,697 1,93E-09 *** TLhn 

OLS 30 206,11           

TLtn 32 226,78 2 41,343 3,27E-10 *** TLtn 

OLS 30 206,11           

TLhnVAR 32 224,42 2 36,622 3,51E-09 *** TLhnVAR 

OLS 30 206,11           

TLtnVAR 33 228,13 3 44,042 5,14E-10 *** TLtnVAR 

TLhn 31 223,46      
TLtn 32 226,78 1 6,6458 0,009939 ** TLtn 

TLhn 31 223,46           

TLhnVAR 32 224,42 1 1,9253 0,1653   NSD 

TLtn 32 226,78           

TLtnVAR 33 228,13 1 2,6992 0,1004   NSD 

TLhnVAR 32 224,42           

TLtnVAR 33 228,13 1 7,4197 0,006451 ** STLtnVAR 

Most Suitable model: TLtn or TLtnVAR   
 

Generalized Leontief LR tests 

Model # DF LogLik Df Chisq Pr>(Chisq) Decision 

OLS 30 176,37      
GLhn 31 196,55 1 40,358 1,06E-10 *** GLhn 

OLS 30 176,37           

GLtn 32 199,63 2 46,533 2,42E-11 *** GLtn 

OLS 30 176,37           

GLhnVAR 32 197,19 2 41,649 2,81E-10 *** GLhnVAR 

OLS 30 176,37           

GLtnVAR 33 200,57 3 48,407 5,99E-11 *** GLtnVAR 

GLhn 31 196,55      
GLtn 32 199,63 1 6,1753 0,01295 * GLtn 

GLhn 31 196,55           

GLhnVAR 32 197,19 1 1,2914 0,2558   NSD 

GLtn 32 199,63           

GLtnVAR 33 200,57 1 1,8739 0,171   NSD 

GLhnVAR 32 197,19           

GLtnVAR 33 200,57 1 6,7578 0,009334 ** GLtnVAR 

Most Suitable model: GLtn or GLtnVAR   
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Normalized Quadratic LR tests 

Model # DF LogLik Df Chisq Pr>(Chisq) Decision 

OLS 30 177,99      
NQhn 31 201,63 1 47,28 3,08E-12 *** NQhn 

OLS 30 177,99           

NQtn 32 204,99 2 54,006 5,69E-13 *** NQtn 

OLS 30 177,99           

NQhnVAR 32 202,7 2 49,413 5,69E-12 *** NQhnVAR 

OLS 30 177,99       

NQtnVAR 33 206,41 3 56,842 9,33E-13 *** NQtnVAR 

NQhn 31 201,63      
NQtn 32 204,99 1 6,7261 0,009501 ** NQtn 

NQhn 31 201,63           

NQhnVAR 32 202,7 1 2,1337 0,1441   NSD 

NQtn 32 204,99           

NQtnVAR 33 206,41 1 2,8365 0,09215 . NQtnVAR 

NQhnVAR 32 202,7           

NQtnVAR 33 206,41 1 7,4289 0,006418 ** NQtnVAR 

Most suitable model: NQtnVAR 

 

Significance codes 

Code Value 

Confidence 

level 

*** 0,001 99,9% 

** 0,01 99% 

* 0,05 95% 

. 0,1 90% 
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APPENDIX 4: RESIDUAL PLOTS DEMONSTRATING GOODNESS OF FIT 

4.1: Cobb-Douglas functional form 

4.2: Simplified translog functional form 
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4.3: Translog functional form  

4.4: Generalized Leontief functional form 
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4.5: Normalized Quadratic functional form 
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