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Abstract

Plantation forestry involves the management of man-made industrial forests for the

purpose of producing raw materials for the pulp and paper, saw milling and other

related wood products industries. Management of these forests is based on the cycle

of planting, tending and felling of forest stands such that a sustainable operation is

maintained. The monitoring and reporting of these forestry operations is critical to

the successful management of the forestry industry. The aim of this study was to test

whether the forestry operations of clear-felling, re-establishment and weed control

could be qualitatively and quantitatively monitored through the application of

classification and change detection techniques to multi-temporal medium (15-30 m)

and a combination of textural analysis and change detection techniques on high

resolution (0.6-2.4 m) satellite imagery.

For the medium resolution imagery, four Landsat 7 multi-spectral images covering

the period from March 2002 to April 2003 were obtained over the midlands of

KwaZulu-Natal, South Africa, and a supervised classification, based on the

Maximum Likelihood classifier, as well as two unsupervised classification routines

were applied to each of these images. The supervised classification routine used 12

classes identified from ground-truthing data, while the unsupervised classification

was done using 10 and 4 classes. NDVI was also calculated and used to estimate

vegetation status. Three change detection techniques were applied to the

unsupervised classification images, in order to determine where clear-felling,

planting and weed control operations had occurred. An Assisted "Classified" Image

change detection technique was applied to the Ten-Class Unsupervised

Classification images, while an Assisted "Quantified Classified" change detection

technique was applied to the Four-Class Unsupervised Classification images. An

Image differencing technique was applied to the NDVI images. For the high

resolution imagery, a series of QuickBird images of a plantation forestry site were

used and a combination of textural analysis and change detection techniques was

tested to quantify weed development in replanted forest stands less than 24 months

old. This was achieved by doing an unsupervised classification on the multi-spectral

bands, and an edge-enhancement on the panchromatic band. Both the resultant

datasets were then vectorised, unioned and a matrix derived to determine areas of

high weed.
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It was found that clear-felling operations could be identified with accuracy in excess

of 95%. However, using medium resolution imagery, newly planted areas and the

weed status of forest stands were not definitively identified as the spatial resolution

was too coarse to separate weed growth from tree stands. Planted stands younger

than one year tended to be classified in the same class as bare ground or ground

covered with dead branches and leaves, even if weeds were present. Stands older

than one year tended to be classified together in the same class as weedy stands,

even where weeds were not present. The NDVI results indicated that further

research into this aspect could provide more useful information regarding the

identification of weed status in forest stands. Using the multi-spectral bands of the

high resolution imagery it was possible to identify areas of strong vegetation, while

crop rows were identifiable on the panchromatic band. By combining these two

attributes, areas of high weed growth could be identified. By applying a post­

classification change detection technique on the high weed growth classes, it was

possible to identify and quantify areas of weed increase or decrease between

consecutive images. A theoretical canopy model was also derived to test whether it

could identify thresholds from which weed infestations could be determined.

The conclusions of this study indicated that medium resolution imagery was

successful in accurately identifying clear-felled stands, but the high resolution

imagery was required to identify replanted stands, and the weed status of those

stands. However, in addition to identifying the status of these stands, it was also

possible to quantify the level of weed infestation. Only wattle (Acacia mearnsiJ)

stands were tested in this manner but it was recommended that in addition to

applying these procedures to wattle stands, they also are tested in Eucalyptus and

Pinus stands. The combination of textural analysis on the panchromatic band and

classification of multi-spectral bands was found to be a suitable process to achieve

the aims of this study, and as such were recommended as standard procedures that

could be applied in an operational plantation forest monitoring environment.
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Chapter 1: Introduction

1.1 Background

Plantation forestry (see glossary, p.181) involves the management of man-made

industrial forests (as opposed to natural or indigenous forests) for the purpose of

producing wood fibre for the pulp and paper industry, saw logs for the saw milling

industry and other related wood products. Management of these forests is based on

the cycle of planting, tending and felling of forest stands (compartments in plantation

forestry - see glossary) such that a sustainable operation is maintained.

The monitoring and reporting of these forestry operations is critical to the successful

management of the forestry industry. This reporting is also one that introduces a

substantial risk of data corruption of any forest management database due to

incorrect or late reporting of operations. Examples of this include reporting incorrect

compartment numbers where operations were carried out, forgetting to report an

operation or reporting an operation as completed, when it has not been completed.

These actions can have detrimental effects on the decision-making capability,

especially for the long term planning scenarios such as yield regulation and volume

determinations.

Monitoring and detecting such data errors is a very labour intensive exercise,

especially for forestry companies with large land holdings spread over a wide

geographic area. Manual audits go some way to detecting and controlling this

problem, but are not always an optimal solution.

Technological developments in Geographic Information Systems (GIS) as well as

recent developments in medium and high spatial resolution remote sensing

technology offer the possibility of a more effective solution to this problem. However,

research is required in order to develop suitable methodologies and applications of

the remote sensing technologies available, especially for monitoring plantation

forestry operations.

Plantation forestry in the Midlands of KwaZulu-Natal, South Africa utilises three main

genera, Eucalyptus, Pinus and Acacia (see 3.1.2.6 Land Use, for details on the

species). The cultivation of these forest stands is undertaken at an intensive scale in
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terms of its planning and management. This requires a high level of information that

is both current and accurate, but which is also constantly changing. The type of data

required includes details of the actual forest stands such as the area, species and

age class (Le. the date of planting), as well as details of what operations were

undertaken and when; what quantity of materials such as seedlings, fertiliser and

weed control chemicals were used, how many man-days were used for each

operation and other such data. Considerable effort and cost is required to obtain,

capture and store this data. It also requires sophisticated systems to manipulate and

interrogate this data in order to provide data that can be used to report on current

operations and plan future ones. Extensive use is made of digital databases, which

are then accessed using commercial relational database management systems and

Geographic Information Systems (Katsch and Bredenkamp, 1997).

In order to ensure the validity of the data in these databases, manual audits involving

visual inspections during field visits and other audit activities are undertaken.

Because of time, cost and other practical constraints, these audits are only done on

a small subset of the total data set, and therefore only cover small portions of widely

spread landholdings. This is especially true for the major forestry companies that

have a large geographic spread of forestry land holdings.

There is a critical set of operations that are most likely to affect the accuracy of the

data in these databases. These are operations that change the status of the

compartments and are generally understood to be the clear-felling, planting and

thinning operations. Therefore, if these operations can be closely monitored, the risk

of data corruption is greatly reduced.

The data maintained in these forestry databases are used to derive long term

strategic plans such as yield regulation plans and sustainability levels (covering up to

30 years), medium term tactical plans including harvesting and planting scheduling,

weed control plans, and roads maintenance plans (covering three to five year

periods) and short term operational plans such as the annual plans of operations

(APO), felling plans, budgetary and other financial forecast plans (covering the

current year) of operation. This data is also used in the decision-making process

regarding the establishment of processing plants such as pulp and sawmills, the
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costs of which can run into billions of Rand. Therefore, it is obvious that any errors in

the data could have a serious impact on their effective execution.

Literature reviews show that remote sensing technology has been repeatedly used

to detect changes in forestry environments. Considerable work has been done using

remote sensing to successfully monitor the transformation of forest land cover. This

has involved both coniferous and tropical forestry, but generally on a regional to

global scale (Boyd et al., 2002; Sader et al., 2001; Castelli et al., 1999; Cohen and

Fiorella, 1999; Yuan et al., 1999; Zhan et al., 1998).

Other applications have included the determination of land-use cover types (Hallum,

1993), the mapping of forest mortality (Collins and Woodcock, 1994), the

measurement of stand height and basal area in conifer plantations (Puhr and

Donoghue, 2000), and volumetric estimates in Eucalyptus plantations (Katsch and

Van Laar, 2002). Harne et al. (1998), describe the successful detection of c1ear­

felled areas in Finnish boreal forest, whose findings are also supported by Varjo

(1997). Other publications such as Leckie (1985), Sohlberg (1985), Hildebrandt

(1985) and Katsch and Vogt (1999) describe the use of satellite-based remote

sensing techniques being applied to forest enumerations and forest mapping.

Most of these studies have been applied in Northern Hemisphere boreal and other

natural forests, but there is paucity of literature on the application of remote sensing

being applied to the management of plantation forestry. The focus of this research

is aimed at providing answers to the application of remote sensing to enhance

plantation forest management, with a specific focus on monitoring the operations of

clear-felling, planting and weed control. These operations are the most critical in

terms of cost and importance in the management cycle of plantation forestry, hence

this focus. It should be noted that all references to medium or high resolution refer to

the spatial resolution, unless otherwise stated.

1.2 Hypothesis and Corollaries

This study hypothesises that the interaction of solar radiation with vegetation in

plantation forests, as captured by space-borne optical sensors, provides information

that is useful for monitoring plantation forestry operations. Two corollaries that stem

from this hypothesis are:
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1. The forestry operations of clear-felling, replanting and weed control, in the

Midlands of KwaZulu-Natal, could be qualitatively monitored through the

application of change detection techniques applied to multi-temporal, medium

spatial resolution (15-30 m) satellite imagery, in conjunction with GIS

technology.

2. The status of vegetation cover in re-established stands less than two years

old could be quantitatively determined by the application of textural analysis

and change detection techniques to multi-temporal, high spatial resolution

(0.6-2.4 m) satellite imagery, where the level of discrimination is between crop

and weed (see glossary).

1.3 Aim and Objectives

1.3.1 Aim

The aim of this research was to validate the above hypothesis, by applying selected

change detection techniques to multi-temporal imagery of operational forests in the

Midlands of KwaZulu-Natal, utilising the repeatability and scale of coverage of

medium resolution satellite imagery (e.g. Landsat 7), and the high definition of high

resolution satellite imagery (e.g. QuickBird 2). The purpose of this was to monitor the

integrity of the data captured during the normal reporting of forestry operations, and

to use exception reporting to highlight any possible database inaccuracies. The

study aimed to provide a cost-effective and practical solution to the problem of

monitoring and auditing these critical operations.

1.3.2 Objectives

The specific objectives of the study were:

1. To determine whether supervised and unsupervised classifications, as well as

NDVI value estimations, on repeat imagery obtained from a medium resolution

sensor (Landsat 7 ETM+), could be used to detect clear-felling, planting and

weed status of plantation forestry stands.

2. To determine whether change detection analyses and NDVI estimates on the

classified medium resolution imagery could be used to detect clear-felling,

planting and weed status of plantation forestry stands.
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3. To determine the accuracy of the classification and change detection results by

comparing with ground-truthed data.

4. To compare the spectral classes of the classified imagery, and the change

detection results, with the status of compartments reflected in the forestry

database.

5. To determine whether unsupervised classification of the multi-spectral and

panchromatic bands, as well as image segmentation techniques of textural

analysis on the panchromatic band of high resolution QuickBird imagery could

quantify vegetation cover in terms of crop versus weed, the density and spatial

distribution of this cover by type (crop versus weed).

6. To determine whether change detection analyses on the classified high

resolution imagery can detect changes in weed status.

7. To determine the accuracy of the classification and change detection results by

comparing with ground-truthed data.

8. To compare the spectral classes of the classified imagery, and the change

detection results, with the status of compartments reflected in the forestry

database.

9. To test the feasibility of a canopy cover model as a means of creating a threshold

for the identification of weed infestation from high resolution imagery.

1.4 Structure of thesis

Chapter 2 reviews the literature relevant to the study topic and provides a framework

for this study in terms of remote sensing research. In Chapter 3 a detailed

description of the study sites is given. This leads into Chapter 4, where the focus is

on the research undertaken on the medium resolution imagery. This includes details

of the materials and methods, and a presentation and discussion of the results and

conclusions of the medium resolution imagery research. Chapter 5 details the

research on the high resolution imagery, with descriptions of the methods and

materials, and discussion of these results and conclusions. Chapter 6 presents a
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synthesis of the overall study by providing a general discussion, conclusions and

recommendations of the findings. A glossary of terms is given at the end of the

thesis, together with a list of references and relevant appendices.
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Chapter 2: Literature Review

2.1 Introduction

Remote sensing has experienced significant developments since cameras were first

taken up into the air. This is especially true for satellite remote sensing, which

developed out of the early space flights of the 1960s and 1970s. It was during this

time that multi-spectral techniques came to the fore, in place of the optical camera

technology (Lillesand and Kiefer, 2000). From the introduction, in 1972, of the first

purpose built remote sensing satellite, ERTS 1 (later renamed Landsat 1) to the

current Landsat 7, SPOT 5, and similar multi-spectral/panchromatic sensors, the

range of technologies has broadened to include RADAR, L1DAR and hyperspectral

technologies. The latest developments have been in the area of spatial resolution,

with order-of-magnitude increases being achieved in the Ikonos and QuickBird

series of sensors, which have panchromatic resolutions of one metre or better

(Donoghue, 1999). Directly related to these developments has been the exponential

progress in computing technology (both hardware and software) which has made

remote sensing technology and data available to a wider variety of different

professional and technical disciplines. This has, in turn, expanded the application of

remote sensing technology to many different fields.

The literature reviewed below covers topics that include the range of forestry

applications that have made use of satellite imagery, the sensors and platforms most

suitable for applications in plantation forestry, based on such factors as spatial and

spectral resolutions, geometric and radiometric corrections and geo-referencing

processes, repeat coverage cycles and other such procedures that are involved in

the application of remote sensing techniques. Reference to methodology,

classification and change detection techniques and procedures, in a GIS

environment, are of particular interest.

2.2 The Application of Remote Sensing in Monitoring Forest Operations

By nature, commercial forestry, especially at an industrial scale as practiced by large

forestry companies, is geographically very extensive. This creates a particular set of

constraints when the monitoring of operations is required. Because of the large

coverage obtained by remote sensing satellites (especially the medium spatial
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resolution sensors such as Landsat and SPOT), such satellites are particularly

suitable for forest management applications.

2.2.1 Forestry Operations

Certain forestry operations have the greatest potential impact on database accuracy.

Their impact is because they cause the most significant amount of change in the

status of a compartment (e.g. changing from standing to felled) or major cost

implications are involved. These are primarily the harvesting and re-establishment

operations. They must be reflected in the database, and this in turn can affect long­

term planning outcomes such as sustainability, yield regulation and volume

production. Together with weed control, harvesting and replanting operations also

contribute to the bulk of the costs relating to the forestry operation as a whole

(Grobbelaar, 2000).

2.2.1.1 Harvesting Operations

Many studies have applied remote sensing techniques to the detection of harvesting

operations (Lillesand and Kiefer, 2000; Puhr and Donoghue, 2000; Harne et al.,

1998; Jeanjean and Achard, 1997; Singh, 1989; Leckie, 1985; Sohlberg, 1985).

Varjo (1997) refers to several references that show that clear-felling operations

cause one of the largest spectral changes in Finnish operational forestry. Sader et

al. (2001) were able to detect forest-clearing operations with 86.5% accuracy over

several time periods, producing a kappa co-efficient of agreement of 0.82.

2.2.1.2 Re-Establishment Operations

Another major operation that causes a significant change in the status of a

compartment is that of planting or re-establishment. Under normal plantation

conditions in the KwaZulu-Natal Midlands, trees are planted on a grid pattern with an

espacement varying from 3 m x 1.5 m (for Acacia species), 3 m x 2 m (for

Eucalyptus species) to 3 m x 3 m (for Pinus species). At the time of planting, the

seedlings have a crown diameter of less than 20 cm. However, after the first year of

growth, provided the correct silvicultural treatments (especially weed control) have

been applied, the canopies of the faster growing species (Eucalyptus and Acacia)

are between 1.5 m and 2.0 m in diameter. Being slower growing, Pine canopy

diameters are between 1.0 m and 1.5 m. Landsat 7 imagery has a fairly coarse

spatial resolution of 30 m. This implies that the smallest detectable unit covers an
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area of 900 m2 (0.09 ha). Based on the standard planting espacements listed above,

there should be between 200, 150 and 99 trees (for Acacia, Eucalyptus and Pinus

respectively) within a single pixel, and so individual tree counts are not feasible.

Literature shows that even with the very high spatial resolutions of aerial

photography and Light Detection and Ranging (L1DAR) technology, which have sub­

metre pixel sizes, stem counts are still only in the experimental stage (Jacobs and

Mthembu, 2001). Research done by Wulder et al. (2000) showed that with one­

metre spatial resolution imagery, a minimum tree crown radius of 1.5 m was required

for reliable tree location identification.

2.2.1.3 Weed Control Operations

Forest stands that are re-established generally have a range of vegetative cover

which can vary from a pure stand of newly planted seedlings surrounded by bare soil

to seedlings totally surrounded by weed vegetation. These various stages of

vegetative cover affect the reflectance characteristics of the imagery, and the

possibility of identifying whether this range of vegetation cover can be accurately

detected has important implications for the monitoring of critical weed control

operations (Datt, 1999). However, Nilson et al. (2001) found difficulty in quantitatively

describing the effects on reflectance caused by the successional changes in ground

and field-layer vegetation. Even with very high 0.5 m resolution airborne imagery,

detection of weeds has varying success rates, depending on the type of weed and

the age of the weed. Gray et al. (2004) obtained classification accuracies ranging

from 49% to 96% for weeds in soybean fields, with the higher accuracies being in

fields with fewer weed types present.

2.3 The Role of Geographic Information Systems (GIS) in Forestry and its

Integration with Remote Sensing

By definition forest management involves the capture, interrogation, update and

analysis of forest data that has spatial, as well as attribute components. In addition,

this data is not only of considerable volume, but also very complex. This complexity

and volume can only be handled effectively through the use of suitable technologies,

and Geographic Information Systems (GIS) are ideal tools to meet this need (Von

Gadow and Bredenkamp, 1992, Levinsohn and Brown, 1991). In addition to this

complexity, plantation forestry data is categorical in nature (e.g. compartments,

roads, rivers, dams, contours etc.) and best represented by a vector format, making
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GIS the most appropriate tool to manage such data. Another key reason for using

GIS is its capacity to integrate data from different sources and types (Lunetta, 1999;

Ounningham and Thompson, 1989). Remote sensing data is of a continuous nature

(as opposed to a categorical nature), and utilises a raster format. Such data requires

some form of classification in order to extract useful information. Once classified, this

information is available to aid decision-making processes, and this is best achieved

by its integration into GIS (Lillesand and Kiefer, 2000; Eastman, et al., 1995).

There is an increasing merging of remote sensing image processing software and

GIS software (e.g. EROAS lmaqine" (EROAS, 2003), ArcGISTM (ESRI, 2000),

IORISITM (IORISI, 2003), GeoMedia™ (Intergraph, 2003», due to the extensive

overlap between these software types. Image processing software is increasingly

developing GIS-type functionalities, while GIS software is increasingly adding raster

and image processing capabilities. This is also reflected in the fact that there are an

increasing number of research projects that are integrating remote sensing

techniques and GIS technology as a core part of their methodology (Xue, et al.,

2002; Yang and Lo, 2002; Smith and Fuller, 2001; Weng, 2001; Luque, 2000).

2.4 Factors affecting the use of Remote Sensing in Forestry

Remote sensing technology, in various forms, has been applied in forestry since the

early part of the zo" Century. Aerial photography was applied in German forestry in

the 1920's (Katsch and Vogt, 1999; Hildebrandt, 1985). Wide use of aerial

photography has been applied in the Nordic countries since the 1950's (Sohlberg,

1985). Satellite remote sensing applications began in earnest with the launch of the

original ERTS 1 (later called Landsat 1) in the early seventies, mainly due to its

multi-spectral scanner (MSS) technology. In 1981, a national forest cover project

was undertaken in South Africa, using Landsat data (Katsch and Vogt, 1999).

Generally, most of the work undertaken using remote sensing technologies for

forestry have been for forest management, mapping and planning, damage

assessment and inventory (Katsch and Van Laar, 2002; Hildebrandt, 1985; Leckie,

1985; Sohlberg, 1985;), and in terms of forestry remote sensing research, the bulk of

the literature falls into one or more of these categories.
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It should be noted that the vast majority of this research has been carried out in

Northern Hemisphere natural forests (which tend to be uneven-aged, mixed species

stands, and usually of a great geographical extent). These are somewhat different

from Southern Hemisphere plantation forests, which are even aged, single species

(and even single clone) stands that cover relatively small areas, compared to natural

forests.

Remote sensing imagery derives its usefulness from the information content that can

be extracted from it. However, the application of remote sensing data in forest

management applications has been slow due to high cost and the limited

classification accuracies achieved to date «80%) (Heyman, et al. 2003). This

accuracy is dependent on such factors as the spatial, temporal, spectral and

radiometric resolutions, the spatial scale of imaged features, the radiometric contrast

between different features of interest, and the end purpose for which the imagery is

required (Narayanan, et al. 2002). For remote sensing technology to be applied in

forestry, several factors have to be considered, including the technical limitations of

the sensors, the cost and availability of imagery and the purpose for which the

technology is to be applied. These factors determine what sensor is to be used for a

specific application.

With respect to the technical limitations, the most important aspects to be considered

are the spatial, spectral and radiometric resolutions (Varjo, 1997). For change

detection purposes, the temporal resolution of the imaging system must also be

considered (Pouncey et al., 1999).

2.4.1 Spatial Resolution

The minimum spatial resolution required is determined by the smallest feature that

requires identification on an image (Varjo, 1997). The basic feature that is the focus

of this study is the forest stand or compartment, which varies from about 0.5 hectare

to 50 hectares in size, but which is, on average, 12 hectares. Ideally, one would want

to be able to measure variation within these compartments, a practical size of which

is about 500 m2
• Therefore, to detect this, the spatial resolution (or pixel size) of a

suitable medium resolution sensor equates to a pixel size of 22.3 m x 22.3 m. Varjo

(1997), quotes figures of 4-5 m as the best spatial resolution to monitor forest

canopy, which would require the application of high spatial resolution sensors.
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An essential element in deciding on a suitable spatial resolution is what the minimum

mapping unit needs to be. Usually, this is defined as the pixel size of the chosen

sensor, because most classification processes are pixel based. However it can be a

larger unit, and in the case of forestry, is often the forest stand or compartment.

Varjo (1997) and Varjo and Folving (1997), both support this. However, this can also

present other problems where the delineation of stands is an issue (Varjo, 1997).

Concerning medium resolution sensor types, Landsat 7 multi-spectral bands have a

pixel size of 30 m, while the panchromatic band has a 15 m spatial resolution. (At the

time of undertaking the medium resolution study it was readily available and

affordable. However, it has subsequently developed fundamental problems, in terms

of the Scan Line Corrector failure, which will have a negative impact on its

usefulness). SPOT 4 and 5 imagery is available as well, but is less affordable, as it is

currently about three times the price of Landsat imagery. The swath width is only 60

km, compared to 185 km for Landsat 7, which makes it even more costly (Janssen,

2000). The spatial resolution of SPOT is 20 m in the multi-spectral bands, and 10 m

in the panchromatic band. However, it has a lower spectral resolution than the

Landsat 7 sensor, which reduces the spatial resolution advantage (Varjo, 1997).

Narayanan et al. (2002) found that while Landsat TM imagery had higher information

content than the Shuttle Imaging Radar-C at smaller pixel sizes, the reverse was

true for larger pixel sizes, with the transition occurring at a pixel size of about 720 m.

While radar technology is outside of the scope of this study, it does illustrate how

one needs to understand the sensors' limitations and potential when choosing a

suitable sensor for a project.

High resolution sensors such as the QuickBird and Ikonos sensors have a much

finer spatial resolution (QuickBird: 2.4 m multi-spectral; 0.6 m panchromatic; Ikonos:

4 m multi-spectral; 1 m panchromatic) but are not readily available and are extremely

expensive. This is compounded by the fact that having a higher spatial resolution

means that the swath width is much smaller than lower resolution satellites such as

Landsat, and therefore more images are required to cover the same area, which

further increases the cost. However, they are effective for applications requiring high

detail over small areas, although Heyman et al. (2003) observed that when using

traditional per-pixel classifiers, increased spatial resolution increases the information
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content of the imagery but classification accuracy can decrease due to an increase

in variability within each class.

2.4.2 Temporal Resolution

A fundamental principle of change detection is the application of multi-temporal

imagery (Pouncey et al., 1999). This introduces another parameter into the process,

that of the required temporal resolution, i.e. how many images are required, and at

what time interval? These requirements are project-specific, but certain aspects are

generic.

Image availability can be a constraint, particularly due to weather conditions such as

cloud cover hindering the acquisition of clear images at the required times. Other

constraints in terms of temporal resolution can be the revisit cycle of the required

sensor (for instance, the revisit cycle of Landsat 7 is 16 days, SPOT 4 is 26 days,

while Ikonos has a 14-day cycle), (Janssen, 2000). Some coarse resolution sensors

(e.g. NOAA AVHRR) have daily repeat cycles, but these are considered to have far

too coarse a spatial resolution for change detection on a local as opposed to a

regional or global scale.

Varjo and Folving (1997) found that change detection results were more accurate

the shorter the interval between images. The ranges in this quoted study varied

between one and three years, with change detection accuracies of 93.1% to 87.6%,

respectively. However, this study was conducted in Scandinavian boreal forests

(with slow growth rates), while South African sub-tropical/temperate plantations

experience much faster growth rates. This latter factor might well play a significant

role in the temporal resolution requirements.

2.4.3 Radiometric Resolution

Radiometric resolution determines the number of possible spectral values measured,

and thus the degree of separability of small changes in spectral intensity (Varjo,

1997), in other words, the level of spectral differences that can be detected.

An associated problem is that of mixed pixels or mixels, which are caused by more

than one feature, each of which has its own unique spectral reflectance value, being
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present within the same pixel. In other words, it is a function of the spatial resolution,

such that the individual features are smaller than the pixel size.

Various procedures have been tried in an attempt to extract this information from

within the pixel, e.g. McGovern et al. (2002) developed a radiometric normalisation

technique using linear transformation functions that included the application of a

thresholding process on sub-pixel scale elements to extract reference data from a

land cover class. RMS errors for this technique ranged from 0.8 - 2.5 DN.

2.4.4 Spectral Resolution

Spectral resolution refers to the part of the Electromagnetic Spectrum that is being

measured (Janssen, 2000), Le. what wavelengths (or range of wavelengths) are

captured into "bins", for which response is integrated. This is a function of the sensor

selected for a project, and therefore the only control one has over this aspect is to

understand what the specifications and limitations of each sensor are, and to select

the most suitable one.

2.5 Rectification Requirements and Procedures

2.5.1 Geometric Referencing

Accurate spatial registration of the various images used is an essential feature in

change detection (Lillesand and Kiefer, 2000; Singh, 1989). This is due to the fact

that the basis of change detection relies on identifying changes in spectral

reflectance between pixels of identical spatial location. Registration and rectification

errors can lead to inaccurate results being produced during a change detection

procedure due to mismatching of the overlaying pixels. This is a serious

disadvantage of using pixel level analyses. Igbokwe (1999) describes a method of

geometrical rectification and image registration with two-dimensional image

correlation that produced image registration accuracies of 0.28 pixel. This

methodology was tested on Landsat MSS and TM data. Toutin (2004) provides a

very comprehensive review of the geometric processing issues involved in ortho­

rectifying remote sensing imagery.

2.5.2 Atmospheric Correction

Atmospheric conditions can play a major role in the quality of electromagnetic

radiation recorded by satellite sensors due to the scattering and absorption of

15



various wavelengths by atmospheric gases and aerosols (Janssen, 2000; Song et

al., 2001). Calibration of images is designed to allow several images or difference

images to be radiometrically comparable, as well as enabling the phenomena of

interest to be more separable or identifiable (Varjo, 1997).

The fundamental principle on which the decision to undertake atmospheric

correction or not is whether qualitative or quantitative results are required. Where

qualitative results are the objective (e.g. such as determining thematic classes, or

Boolean logic such as "Has change occurred - yes or no"), atmospheric correction is

optional. However where any quantitative analysis is required (e.g. calculating areas

of change, or degrees of change), atmospheric correction is important in order to

ensure that the results are radiometrically comparable.

Song et al. (2001) compared seven absolute and one relative atmospheric correction

algorithms, and concluded that simple dark object subtraction, with or without the

Rayleigh atmosphere correction or relative atmospheric correction is recommended

for classification and change detection applications. This correction is required

where terrestrial surfaces are monitored over time, due to the necessity of putting

multi-temporal data on the same radiometric scale. The work of Puhr and Donoghue

(2000) also supports the need for atmospheric correction when comparing the

results obtained from different images.

However, in an interesting paper describing a change detection methodology, Harne

et al. (1998) differentiate between short term monitoring and long term monitoring of

change. The former is used to detect disturbance changes, while the latter is used to

detect trends. Due to this difference, there is a difference in the requirement for

calibration between images, of which atmospheric correction is one element.

According to Harne et al. (1998) short term monitoring can be based on the

comparison of intensities from different parts within an image, where the greatest

proportion of the image includes only vegetative succession. In such cases, images

do not have to be calibrated into absolute reflectance values (unlike long term

monitoring where trends need to be determined). Hame et al. (1998) also point out

that where two independent image classifications are compared in order to highlight

change, absolute calibration is also not required, provided that the change is very

striking, or a large amount of ground-truth data is available. A problem does occur
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though, where there are errors in the classification, due to the uncertainty created in

determining whether change has occurred or whether the difference is due to errors

in the classification.

2.5.3 Radiometric Calibration

Where a supervised classification methodology is applied, and training data sets are

available for every image pair (or where the image pairs are spectrally similar

enough), radiometric calibration can be omitted (Varjo, 2003;Varjo, 1997).

An advantage of radiometric calibration being applied in change detection

procedures is that non-change spectral variances (due to sensor anomalies, differing

atmospheric conditions or variations in viewing or solar angles) can be detected and

removed prior to any change detection being applied (Varjo, 1997). Chen et al.

(2005) describe a simple radiometric correction method, called the Temporally

Invariant Cluster (TIC) method, which created radiometrically comparable data sets

in order to improve landscape change detection results.

2.6 The Use of Textural Analysis in Forestry Classification Applications

2.6.1 Introduction

The purpose of image classification is to characterise every pixel in an image into

meaningful classes in order to extract meaning from the image. This is achieved

either by utilising the relationship of spectral (or radiance) properties to one another,

or the spatial relationships of the pixels, such as texture, shape, size or context

(Lillesand and Kiefer, 2000). A third means is based on the temporal relationships

between pixels, where the time element is used to distinguish classes, and it is this

factor on which change detection is based.

2.6.2 Principles of Textural Analysis

While standard optical remote sensing classification techniques are based on the

spectral characteristics inherent in imagery, incorporating ancillary information such

as texture, context and structural characteristics has been shown to improve

classification results (Ouma et al., 2006; Tso and Mather, 2001; Coppin, 1991; Fung

and LeDrew, 1987). It is interesting to note that these characteristics preceded the

development of spectral analysis techniques, as they form the basis of the original

manual image interpretation techniques utilised in extracting information from aerial
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photography (Tso and Mather, 2001; Janssen, 2000; Coppin, 1991), and are now of

increasing importance due to their role in object-orientated segmentation and

classification procedures.

Texture refers to the visual roughness or smoothness of features across an image,

due to the spatial variability of tonal values, which result in a repetition of patterns

across the image (Tso and Mather, 2001). This concept deals with the structure of

the object itself, based on the tonal variation within itself (Le. the "within object"

variance, also referred to as the microstructure (Jonckheere, 2000».

Tso and Mather (2001) define context as the probability of occurrence a group of

pixels will have, based on the pixel nature across the whole scene. Context

describes the relationship between an object and the rest of the scene (Le. the

"between objects" variance, also referred to as the macrostructure (Jonckheere,

2000». It is usually applied through a statistical technique such as a majority filter

window, which is used to refine a classification.

It should be noted that spectral and textural features are inter-related, and

complement, rather than duplicate, information derived from both sources (Coppin,

1991). Both properties are always present in an image (Haralick et al., 1973), but the

degree to which one is dominant over the other is a factor of the resolution of the

one compared to the other. Where spatial resolution is high in relation to the scale of

tonal variation, texture can improve class discrimination in a classification. The

converse is also true where homogenous areas within an image are small, as texture

is a feature of an area rather than a point (Tso and Mather, 2001).

Textural analysis can be applied using four different theoretical approaches. These

are the frequency domain theory (Jensen, 1996); a statistical approach (Jonckheere,

2000); joint grey-level probability density, after Haralick et al. (1973); and fractal

theory (Tso and Mather, 2001). All of these methods involve the quantification of

texture patterns. Of these four theories, two were considered to be applicable in this

study; these being the frequency domain and the statistical approach, and detailed

descriptions of these procedures are given in Chapter 5.1.3, Methods. A Fourier

Transform technique, used to measure elements in the frequency domain and
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several statistical procedures, utilising convolution filter masks, as well as the

variance and skewness functions were tested.

2.6.3 Statistical Approach

When using a statistical approach for the determination of textural characteristics, a

fundamental principle on which this is based is that of spatial autocorrelation, Le.

things closer together are more likely to be similar than things further apart (Meisel

and Turner, 1998). The basis on which this is measured is determined by the size of

the convolution window applied. Therefore it is imperative that the optimal window

size is determined prior to any analyses being undertaken. This can be done using

semivariograms (Tso and Mather, 2001; Jonckheere, 2000; St-Onge and Cavayas,

1997).

2.6.3.1 Semivariograms

The semivariogram is a mathematical function that correlates the dissimilarity, or

semivariance, of points within a data set to the distance between them, and when

viewed graphically, describes the spatial correlation between all data points in the

data set (Johnston et al., 2001). It is a dissimilarity function because the variance of

the difference increases with distance.

Mathematically, the semivariance function is defined as follows:

N(h)

A(h) = Yz N (h)~)Xi - yY (Equation 2.1)
i=!

where: 'A(h)= semivariance at lag distance h;

N(h) = number of data point pairs separated by h;

Xi =value at the start of the pair;

Yi =value at the end of the pair.

(Meisel and Turner, 1998)

Graphically, a typical semivariogram (a plot of the semivariances A(h) is as follows

(Figure 2.1):
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Figure 2.1 Illustration of a Typical Semivariogram

from which four critical measures, Lag; Sill; Range; and Nugget, are derived.

By fitting a recognised model (e.g. spherical; linear; circular or exponential) to the

discrete points of the semivariogram a continuous line can be obtained, from which

the range, sill and nugget can then be measured (Johnston et al., 2001; Meisel and

Turner, 1998).

The Lag is the distance between the data point pairs. To reduce the large number of

possible combinations, these are usually grouped into distance classes, in a process

called "binning".

The Sill is the maximum value of the semivariance l\(h) , Le. where the graph

reaches a plateau.

The Range is the lag distance at which the graph levels off, and is usually set at the

point where the sill reaches 95% of the semivariance l\(h). Beyond this point there is

little or no autocorrelation between the variables. It is this factor that provides the

means to determine the optimal window size (Tso and Mather, 2001).

The Nugget is the measurement or independent error parameter, and is the distance

from the origin to where the graph intercepts the semivariance l\(h).

(Johnston et al., 2001; Jonckheere, 2000)
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Two assumptions on which semivariance analyses are based are those of

stationarity (i.e. any variation is due to separation distance alone) and anisotropy

(i.e. no directional trends occur in the data). However, these are not always met

when working with natural phenomena (Johnston et al., 2001; Meisel and Turner,

1998). An advantage of using semivariance is that it tends to be insensitive to

variations in contrast across consecutive images (St-Onge and Cavayas, 1997),

which is an important consideration in a study such as this one, which is based on

repeat images.

Various authors have applied semivariance analyses in studies of forest stands and

attributes. Woodcock et al. (1988) calculated variograms for aerial photography and

TM imagery of forest stands. Cohen et al. (1990) applied variograms in their studies

on forest canopies. Other forestry applications of semivariance analyses have been

done by Wulder et al. (2000); St-Onge and Cavayas (1997) and Hyppanen (1996).

2.6.4 Frequency Domain Approach

Textural analyses may also be carried out using techniques that have their

theoretical bases in the frequency domain. In image processing, this is usually

achieved through the application of a Fourier Transform. Fourier analysis is the

mathematical technique of transforming an image's spatial components into its

frequency components (Jensen, 1996). The frequency spectrum is called the

magnitude of the Fourier Transform, and is displayed as a two-dimensional image.

This image represents the magnitude and direction of the different frequency

components of the input spatial image (Jensen, 1996), and is symmetrical about its

centre. These images are in the form of a disc, with low frequency information close

to the centre of the disc, i.e. the co-ordinate origin, and high frequency information

further out to the extremity of the image (Fisher et al., 2003; Tso and Mather, 2001).

The square of the amplitude spectrum is known as the Fourier power spectrum, and

the angular distribution of the power spectrum values is sensitive to structural

directionality present in the spatial domain (Tso and Mather, 2001).

If there are many edges or strong linearity at a specific angle in the spatial input

image, the power spectrum image will display high values concentrated around a

direction perpendicular to the angle in the spatial domain. They appear as bright

dots, and a line connecting these dots to , the centre of the image is always
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orthogonal to the orientation of these lines in the input image. Thus the frequency

and orientation of the lines can be determined (Jensen, 1996). This phenomenon

was of particular interest to this study. However, these bright dots could also be the

result of other features such as noise, and a filtering operation has to be done in

order to separate noise and other linear features from the particular linear features of

interest. Textural roughness can also be extracted using the power spectrum

functionality, as the radial distribution of the power spectrum values is sensitive to

this roughness or smoothness (Tso and Mather, 2001). Smooth structures produce

high power spectrum values away from the origin, while coarse structures produce

high values close to the power spectrum origin.

The filtering of power spectrum images is generally done using wedge or ring filters,

where the angle and radius values of these filters control the width of the filter's

effective area (Tso and Mather, 2001). Wedge filters are used to highlight

directionality, while ring filters highlight textural roughness (Jonckheere, 2000).

While textural analyses can be done using the features of the frequency domain, for

general image processing applications spatial domain filtering is more cost effective

(Jensen, 1996), and it is certainly less complicated. Fourier methods become more

appropriate when the filter functions required to perform the image processing

become very large. There are also some specialised filter functions that are better

done using Fourier techniques than spatial domain techniques (Jensen, 1996).

Textural analysis is generally done using a single band (Coppin, 1991; Fung and

LeDrew, 1987), but Coburn and Roberts (2004) describe an alternative multiscale

methodology using several bands of textural information with different window sizes,

which resulted in a 40% improvement in the classification of forest stands.

2.7 The Use of Change Detection in Satellite Image Analyses

Singh (1989) defines change detection as "the process of identifying differences in

the state of an object or phenomenon by observing it at different times". Eastman et

al. (1995) distinguish between change detection and time series analysis as being

two distinct processes, the analytical methods of which are often very different.
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Change detection involves either the determination of differences in surface

characteristics between two dates, or defining differences that are uncharacteristic of

normal variation within a specified period. Time series analyses, on the other hand,

involves detecting trends of change over a sequence of more than two images, and

includes a description of characteristic values and an abstraction of anomalies

(Eastman et al., 1995). Change detection is a bi-temporal process, where the same

site is compared at two different dates, while time-series analysis a more

comprehensive process where the same area is compared over a longer interval

with multiple images, also called temporal trajectory analysis. This process requires

composite images built up from daily images obtained by such sensors as the NOAA

AVHRR, SPOT VEGETATION or MODIS. Unfortunately all these sensors have a

fairly coarse resolution, which limits their application in change detection (Coppin et

al., 2004). From these composite images, seasonal development curves are derived,

against which the change detection processes are run. When applied to larger scale

processes, such as across regional or global scales, trends rather than change

events are analysed (Coppin et al., 2004).

Irrespective of which process is used, there are several criteria that should be met

when undertaking either of these procedures. These include the following:

• Data should be acquired from the same (or very similar) sensors,

• The same spatial, spectral and radiometric resolutions should be applied,

• The same viewing geometry and time of day should be used (anniversary

dates can be used, as they minimise sun angle and seasonal differences).

• Accurate spatial registration between the images, preferably to within half a

pixel, is also generally required. (Donoghue, 1999; Lillesand and Kiefer,

2000)

The type of data used in change analysis also has an effect on the process. There

are two types of data used: quantitative (refers to difference in degree, e.g.

temperature change) or qualitative (referring to difference in kind, e.g. a land use

change). The analysis technique used will differ depending on the data type, and

whether simple change (pair-wise) or multiple (time series) comparisons are being

made (Eastman et al., 1995). Another issue with change detection is the ability to

detect incremental change (for instance, growth in young stands over time), as
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opposed to abrupt change (such as harvesting operations), which tends to be fairly

easy to detect (Coppin et al., 2004).

The net result of the above criteria is that the selection of a change detection

procedure is dependent on the application and the data sets involved (Donoghue,

1999). Change detection and time series analyses are two processes that have

uniquely benefited from remote sensing technology, and it is in this field that the

greatest advances have been made (Eastman et al., 1995). The next major step in

the development of change analysis is to move from simply identifying historic

change to predicting future change using various modelling algorithms. Authors such

as Pontius et al. (2001) and Jensen et al. (1994) have researched this topic.

Despite all the advances made in the technology, digital change detection remains a

difficult process, in part due to the classical remote sensing challenge: maximisation

of the signal-to-noise ratio (Coppin et al., 2004).

2.8 Change Detection Techniques

2.8.1 Introduction

By definition, change detection requires some form of classification procedure to be

applied. Singh (1989) defines two classes of change detection techniques based

either on any data transformation technique applied, or secondly on the analysis

technique applied to delineate areas of change. Classic remote sensing principles

have applied pixel level unsupervised and supervised classification techniques, as

well as a combination of these two (Lillesand and Kiefer, 2000; Pouncey et al., 1999;

Mattila, 1998; Singh, 1989). However, a new development trend is now moving away

from pixel based classification towards Object-orientated Classification, as applied in

the eCognition® software (Mittelberg, 2002; Willhauck, 2000).

Varjo (1997) supports this, when he makes an interesting statement regarding the

selection of change detection techniques, in which he suggests that for monitoring

and updating purposes, none of the traditional methods are suitable. This would

support the contention that new methods such as object-orientated processes, or the

"Autochange Analysis" process (see 2.8.11) should be considered where such

monitoring and reporting are of issue. The application of Nonparametric Discriminant

Analysis has also been suggested as an alternative methodology (Varjo, 1997).
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Varjo and Folving (1997) describe a methodology that applies an unsupervised

clustering approach that combines a relative regression calibration with

studentisation of the spectral difference features. By using forest stands as the

classification units change detection accuracies of between 87.6% and 93.1% were

achieved.

Coppin et al., (2004), Harne et al. (1998) and Singh (1989) list several tested

methods of change detection, including 1) thresholding of a single spectral feature;

2) direct classification of a multi-date data set; 3) change vector analysis; 4) decision

tree classifiers; and 5) residual computation of a regression model between two

images. Similarly, Jeanjean and Achard (1997) mention the use of simultaneous

analysis of multi-temporal imagery or comparative analysis of independent single

date classifications for change detection purposes, where the analysis techniques

are derived from thresholding, supervised or unsupervised classification, or temporal

analysis. Mas (1999) also tested several change detection methodologies for use

with Landsat MSS imagery. These included image differencing, vegetative index

differencing, Selective Principal Component Analysis, direct-multi-date unsupervised

classification, post-classification change differencing and a combination of image

enhancement and post-classification comparison. A more detailed analysis of the

various techniques is given below.

2.8.2 Post Classification Comparison

A comparison of independently classified images provides one of the simplest and

most common means of detecting change. This method, called Post Classification

Comparison, has several advantages, particularly because it does not require

accurate registration of multi-date images, while also minimising the need to

normalise for atmospheric and sensor differences (Coppin et al., 2004; Singh, 1989).

This method has met with both success and failure, depending on the area of

interest to which it was applied. Mas (1999) identified post-classification comparison

as the most accurate procedure, with the added advantage of the change type being

indicated. Spectral variations caused by differences in vegetation phenology and soil

moisture variance resulted in image enhancement techniques producing poor

results. These factors had less impact on the results from classification methods,

and were also more efficient in handling imagery from different seasons. Other
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research found that because the accuracy of the change detection is totally

dependent on the accuracies of the initial classifications, errors in classification are

magnified with this method, which can lead to a large number of false change

indications (Coppin et al., 2004), and several studies have shown this method to be

unreliable for use in detecting land cover and change analysis (Singh, 1989). An

example of this is quoted by Singh (1989) where in one study this methodology

identified six times more change than a change vector methodology applied to the

same area.

However, Zukowskyj et al. (2001) describe the application of post-classification

contextual filters to increase the overall accuracy of such classifications. A

commonly applied such method is based on the use of a modal majority decision

rule within a 3x3-kernel filter. These authors applied 221 different decision rules and

kernel sizes in order to determine those that produced the greatest accuracy

improvement, by quantifying the effects of decision rule changes, window size,

shape and weighting, probability thresholding prior to filtering, edge effects and

multiple pass filtering. For a set of imagery obtained from Landsat TM, the optimal

filter proved to be a two-pass filter with both kernel sizes between 11x11 and 15x15

pixels, using a modal majority decision rule, with edge effects reduced. The resultant

accuracy increased from 57.9% to 71.3%. It was concluded that simple filters were

more effective than complex ones (Zukowskyj et al., 2001).

2.8.3 Principal Component Analysis

A standard method of change detection involves the use of Principal Component

Analysis (PCA), (Lillesand and Kiefer, 2000; Harne et al., 1998; Eastman et al.,

1995; Singh, 1989). An interesting finding by Eastman et al. (1995) was that change

detection was more identifiable in the minor (second and third) components, rather

than the major (first) component, a fact also supported by the work of Fung and

LeDrew (1987), as well as in Coppin et aI's. (2004) review article. The latter authors

found that statistics extracted from a subset of the data should not be used for land

cover change detection due to the degree of variability and uncertainty of the

unextracted part of the data. This is in contrast to the findings of Eastman et al.

(1995), who found that improved results were obtained when only input data from

the area of interest were analysed. Singh (1989) reported that the use of

standardised variables (Le. correlation matrix) produced significantly better results
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than applying non-standardised variables (Le. a variance-covariance matrix). PGA

does have a limitation due to the effect that this process has on the spatial structure

and content of remotely sensed images, resulting in structural differences between

the various principal components, as well as between them and the original image.

Avena et al. (1999) discuss this issue in the light of their research and conclude that

great care is necessary in the application of PGA to remote sensing, as well as in the

interpretation of the results. Without a thorough understanding of the eigenstructure

of the data and visual inspection of the resultant images it is difficult to interpret the

actual nature of the principal components, and to avoid drawing incorrect

conclusions, a thorough knowledge of the study area is required before using this

methodology for change detection (Coppin et al., 2004).

A variation of PCA can be applied where information on particular areas of interest is

known. This system, known as Canonical Component Analysis, maximises the

separability of the known classes, while simultaneously minimising intra-class

variability (Lillesand and Kiefer, 2000). While the data reduction improves

classification efficiency, the increased spectral separability improves classification

accuracy.

2.8.4 Univariate Image Differencing Technique

Singh (1989) describes the univariate image differencing technique, where

equivalent pixels of two co-registered images are subtracted from one another to

derive a resultant change image. Coppin et al. (2004) found this methodology the

most widely applied change detection algorithm. The actual changes are recorded in

the tails of a histogram, with minimal to no change areas being around the mean.

The success of this method is determined by how well the threshold values are set

to distinguish change from no-change values in the histogram. Image subtraction

and thresholding was at one stage the most common method to detect land-cover

change due to its ability to accentuate spectral change (Lunetta, 1999). Various

edge-effect enhancements have been tested to improve change detection results,

but with mixed success (Singh, 1989).

2.8.5 Image Regression

Another method is Image Regression, based on the assumption that values of pixels

at time t1 are a linear function of the same pixels at time tz. A least-squares
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regression is applied using these pixel values to derive a difference image. The size

of the residuals indicates where change occurred. However, the critical step is the

determination of the threshold values for the "no-change" pixel residuals (Coppin et

al., 2004). This methodology is reported to produce marginally better results than the

univariate image differencing technique in detecting tropical forest cover changes

(Singh, 1989).

2.8.6 Image Ratioing

Image Ratioing can also be applied to produce a difference image, having the

advantage of producing a result rapidly. Two images of different dates are divided

(ttl t2) on a pixel-by-pixel basis, such that where there is a close similarity in

reflectance values between the relevant pixels, the resultant ratio is close to 1, and

no change is indicated (Coppin et al., 2004). Values further away from 1 indicate

possible change, but again, the successful application of this method depends on

appropriate threshold values being applied (Singh, 1989).

2.8.7 Vegetation Indices Differencing

Vegetation Indices Differencing is a refinement of Image Ratioing, based on the use

of particular bands (also called band ratioing). This method has the advantage that

significant intensity differences in the spectral response curves are emphasized,

while the ratioing effect also reduces the influence of topographic effects and

normalised irradiance differences on multi-date images (Singh, 1989). As the name

indicates, this methodology has found particular application in vegetation studies,

chiefly due to the particular spectral characteristic that is inherent in vegetation,

being strong absorbance in the red spectrum and strong reflectance in the near

infrared spectrum (Lillesand and Kiefer, 2000). Various indices have been

developed, but all are based on the use of Red and Near-Infrared (NIR) bands,

which in the case of Landsat 7 sensors are Bands 3 and 4 respectively. Chen et al.

(1999) give a comprehensive listing of these indices and their formulae.

The most commonly applied index is the Normalised Difference Vegetation Index

(NDVI), which, for Landsat imagery, is calculated as: (band 4 - band 3)/(band 4 +

band 3). Regarding its application in change detection, Singh (1989) quotes several

studies that have applied vegetation indices to detect changes in vegetation canopy.

The results were such that it was not possible to draw definitive conclusions as to its
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efficacy. Nelson (1982), (in Singh, 1989), found that NDVI provided an accurate

means of delineating forest canopy change. However, Singh (1989) also describes

Banner and Lynham's (1981) findings that using a Transformed NDVI (TNDVI) were

less accurate in delineating clear-felled areas than using a supervised classification

technique.

In a variation of vegetation indices, Datt (1999) studied the remote sensing of

chlorophyll content in Eucalyptus species using the visible/near infrared reflectance

values and indices of specific wavelengths. The 710nm wavelength proved to have

the most sensitivity to chlorophyll content, while the best performing indices was the

ratio (R850-R710)/(R850-R680). While chlorophyll content is beyond the scope of this

study, there could be a potential application of this methodology in assisting in the

determination of weed status as opposed to crop status.

2.8.8 Generalised Linear Models

In order to provide a quantitative approach to image-based change detection

Morisette et al. (1999) applied Generalised Linear Models (GLMs) to enhance

standard change detection techniques. Preliminary variogram analysis was applied

to the image data to determine initial sampling considerations. A "joint-count" test

was used to assess the independence of the binary response (change/no-change)

data set derived from the reference data. A model error term was then checked

using the empirical variogram of the residuals. The conclusion reached in this study

was that GLMs could assist in the examination of different change metrics, while

applying the resulting model across the whole image enabled a probability of change

estimate to be calculated, as well as pixel-specific estimates of the variability of

change estimate. However, the assumption of independent response data used for

the modelling should be respected.

2.8.9 Change Vector Analysis

Another technique applied in change detection is the use of Change Vector Analysis

(CVA). Eastman et al. (1995) and Lillesand and Kiefer (2000) describe its use in

determining clear-felled and re-established areas. This procedure uses spectral and

spatial data to perform a spatial-spectral clustering on two images taken at different

times to define homogeneous areas. These areas are first defined for each image,

after which a change vector is calculated between the area spectral means of the
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two images. The magnitude of the vector describes the intensity of change while the

angle defines the type of change (Singh, 1989). Change detection and the

classification of the change are thus separate operations, unlike multi-date

classifications, which combine the two processes. A significant advantage of this

method is its ability to analyse change concurrently in all bands as opposed to

selected bands (Coppin et al., 2004). However, a problem reported with this method

is that it is parameter sensitive, but there is no clear procedure on defining these

parameters (Harne et al., 1998). Singh (1989) quotes several studies where this

methodology was applied to forestry situations.

Zhan et al. (1998) discuss the use of this technique when applied using the Red and

Near-Infrared (NIR) reflectance space. The technique is based on the change

phenomenon represented by the rapid change in brightness and greenness

associated with deforestation (or clear-felling in plantation situations). In other words,

the brightness-greenness space signatures of a location recorded at different dates

can indicate whether change has occurred, as well as an indication as to the type of

change occurrence. Greenness is related to the difference between the NIR and the

red bands (NIR - Red), while brightness is related to the mean of NIR and red

([NIR+Red]/2). Thus, a change vector in the NIRlRed space is equivalent to the

change vector in the greenness/brightness space, indicating a change event. When

the reflectance difference is calculated between images of two separate dates, this

produces a Delta image (Le. the amount of change between the two images),

represented as a Delta-Brightness or a Delta-Greenness image. The Delta- Red and

the Delta-NIR space are overlain on the Delta-Brightness and Delta-Greenness

space and used to interpret the change vectors (Zhan et al., 1998).

Nackaerts et al. (2005) describe the performance of a modified change vector

analysis (mCVA) process applied to forest change detection. This methodology

overcomes a disadvantage of the standard change vector analysis, Le. the need for

reference data to interpret the change vectors, by preserving the information held in

the change vector's magnitude and direction as continuous data, for n change

indicator input bands. These can be subjected to statistical change feature

extraction, and the feature extraction phase is the only time training data are

required. In standard CVA, reference data are required for the "change-no change"

thresholding in the magnitude domain, and again for the angle grouping.
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2.8.10 Delta Transformation Technique

A technique related to CVA is the Delta Transformation Technique developed by

Walkey (1997) (in Lillesand and Kiefer, 2000). Using 2D scatter-plots to graph

change versus no change axes, change occurrences are represented as data

concentrations above or below the axis of stable spectra (Le. area of no change).

2.8.11 Autochange Analysis

Hame et al. (1998) describe a change detection and classification methodology,

called "Autochange" Analysis, that is similar in some respects to Change Vector

Analysis, but uses, as an input, two images acquired on different dates, and a

parameter list given by the user. Change detection and classification are performed

as separate processes, with the output being a five-channel image estimating the

degree of change and classifies the changed and unchanged areas. The method

carries out the change analysis using homogeneous areas selected from the images

and only in the last step is the whole image classified. Changes are detected and

identified using a k-clustering algorithm in two phases. First, clustering is performed

on the two images to form "primary clusters". Second, clustering is then performed

within the primary clusters of the later image to produce the "secondary clusters".

Then change magnitude and change type are obtained by comparing the primary

clusters in the earlier image to the secondary clusters in the later image.

2.9 Enhancements to Classification and Change Detection Techniques

Although the use of supervised and unsupervised classification procedures, in

various forms and versions, is still fundamental to the science of change detection

(Lillesand and Kiefer, 2000; Janssen, 2000), ongoing research has resulted in a

constant stream of new techniques and processes being developed to enhance the

effectiveness of these classification techniques. Successful change detection is

totally dependent on an accurate classification of an image and all of the

enhancements are aimed at increasing the accuracy of the classification process

such that clear distinctions between the various classes or items of interest can be

separated in the image.

2.9.1 Artificial Neural Networks

Conventional classification techniques generally have a statistical basis from which

they work. Alternative approaches have been developed using non-statistical bases,

in the form of Artificial Neural Networks (ANN) and Knowledge-based methods such
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as Decision Trees (Qiu and Jensen, 2004; Tso and Mather, 2001). An ANN consists

of an input layer, a hidden layer and output layer. In each layer, nodes called

neurones are present. Every neurone is connected to every other neurone in the

adjacent layer. Each neurone has a weight and value associated with it, based on

the sum of the product of the weights and values of the previous computational layer

(Tso and Mather , 2001). A process, called a learning strategy, provides an initial set

of weights and controls how these weights and neurones should be updated to

improve performance. The concept of multiple nodes or neurones provides a

robustness to the classification process, as it reduces the potential impact of

problematic data unduly skewing results. Qiu and Jensen (2004) describe a method

that combines neural networks with fuzzy systems,whereby the learning algorithms

of the neural network automate the creation of the fuzzy set parameters for the fuzzy

"if-then" rules in the expert system. This resulted in superior classification accuracies

compared to the back-propagation based ANN and the maximum likelihood

classifier.

Boyd et al. (2002) compared the accuracy of vegetation indices, regression analysis

and neural networks in estimating coniferous forest cover in the U.S. Pacific

Northwest. While results of all three methodologies were very similar, the neural

network technique offered advantages through its ability to analyse complex

datasets without assumptions being required, a good tolerance to spectral 'noise',

the ability to integrate multi-source data, and the possibility to weight the significance

of the discriminating variables used.

Bruzzone and Serpico (2000) describe a methodology to enhance feature selection

in multi-class (Le. more than two land-cover classes) classification, whereby an

upper bound is set to the error probability of the Bayes' classifier. The main

advantage with this technique is that it allows one to select features by taking into

account their effects on classification errors.

2.9.2 Clustering Techniques

Another preparatory method for classification involves some form of clustering

technique that enables an image to be segmented into regions with similar

radiometric properties. This clustering process is usually an automated process

using a k-means or dynamic clustering method. This latter method is limited by being
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very slow and does not work well on large datasets such as coarse-scale remote

sensing images (Viovy, 2000). In addition, it is necessary to define the number of

clusters prior to executing the programme, but this is seldom a known quantity. In

order for an automated clustering process to be of maximum benefit, it is desirable

that the number of clusters be automatically determined so that a good indication of

similar spectral groupings is obtained. This then gives a good idea of how many

classes can be extracted during a classification process. From this preliminary

process, further classification can then occur to refine the final groupings required.

Viovy (2000) describes a methodology that achieved an automated clustering, based

on hierarchical and dynamic clustering principles, which was very fast, and did not

result in any degradation on large imagery. Duda and Canty (2002) compared

several clustering algorithms used in unsupervised classification systems, and found

that fuzzy clustering performed the best compared to a reference scene of Landsat 5

imagery. The clustering techniques tested were the k-means, Extended k-means,

Fuzzy k-means, Fuzzy Maximum Likelihood, and Agglomerative Hierarchical

algorithms.

2.9.3 Spectral Unmixing Techniques

Spectral unmixing, also known as spectral mixture analysis (SMA); linear spectral

unmixing (LSU) or spectral mixture modelling (Adams et al., 1986), is a technique

that aims to extract additional information from within pixels. It is based on the

assumption that a pixel is made up of a linear combination of pure components,

known as endmembers (Adams et al., 1986). However, multiple scattering by

vegetation surfaces can cause significant non-linear mixing, and the failure of SMA

to account for this is an acknowledged limitation of this procedure (Dennison and

Roberts, 2003). These end-member components could be water, soil, shadow,

vegetation etc. The signal received by the sensor depends on the proportion of these

individual components within the pixel, and this technique can be used to find the

proportions (or abundance) of these endmembers within a pixel, as well as a number

of endmember spectra of known composition (Van der Meer, 1999). This process

produces a fraction image of the endmember.

It can be modelled in the following way:

N N

b;= Lae,iX;+ e"Lxe = 1 (Equation 2.8.1)
e=1 e=1
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where: b, is the reflectance of mixed pixel spectra in Band i;

ae,l is the reflectance of the component in Band i .

Xi indicates the proportion of pixel area covered by the ground cover

type e; and

eAis the residual error (Dennison and Roberts, 2003; Shakoor, 2003).

Model residuals, eA' or the root mean squared error (RMSE) are used to assess the

model fit, according to the following equation:

RMSE=
M

(Equation 2.8.2)

where: M is the number of bands (Dennison and Roberts, 2003).

The spectral unrruxmq process produces a series of "fraction images" for each

endmember, with data values lying between 0 and 1 (ideally) (Neville et al., 1997),

and a root mean square (RMS) error estimate representing the difference between

the observed mixed spectrum and the calculated mixed spectrum. Values of 0

represent pixels that have no endmember of interest present, while values of 1 in a

fraction image represent a complete presence of the endmember of interest

(Farrand, 2002).

Van der Meer (1999) derived an iterative spectral unrmxmq (ISU) process by

applying optimisation techniques to run the iterations. These techniques include the

minimisation of the following criteria: average RMS; the spread of RMS values; the

spatial structure of the RMS image; the spatial anisotropy of the RMS values; and

the local variance.

The selection of endmembers can be undertaken in a number of ways. The normal

way is to select pixels that are known to be pure representations of each

endmember based on ground-truthed data. Another method is to select pixels from

within an image. The success of this method is dependent on proper endmembers

being selected and that the image endmember pixel spatial resolution is smaller than

the physical features being modelled (Peddle and Johnson, 2000). Dennison and

Roberts (2003) describe several methods of endmember selection including the use
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of Principal Components Analysis; determination of a simplex that fits the image

data; the application of a Pixel Purity Index; and the use of "virtual" endmembers

selected to minimise RMSE within user-specified constraints. Which ever method is

selected, the key principle is that the success of any SMA application depends of the

success of endmember identification.

Spectral matching algorithms, such as Multiple Endmember Spectral Mixture

Analysis (MESMA) and Spectral Angle Mapping (SAM), are used to identify

unknown spectra based on the degree of similarity to one or more known spectra.

Dennison et al. (2004) reported that these two methods produced similar results in a

vegetation study, but that the selection of error constraints had a greater impact on

the number of spectral matches than which algorithm was applied. Another point of

interest is noted by Farrand (2002) in his discussion on Spectral Feature Fitting,

where it was stressed that analysis should be done using only those channels that

cover the absorption band of interest.

2.9.4 Tasselled Cap Technique

When using multi-band imagery, such as Landsat or SPOT, there are various

options that assist in being able to extract and view features of interest. One of these

is the Tasseled Cap transformation (Pouncey et al., 1999), which provides a means

to optimize data viewing for vegetation studies. This information is displayed as three

data structure axes defined as:

• Brightness-a weighted sum of all bands, defined in the direction of the principal

variation in soil reflectance.

• Greenness-orthogonal to brightness, a contrast between the near-infrared and

visible bands. Strongly related to the amount of green vegetation in the scene.

• Wetness-relates to canopy and soil moisture.

2.9.5 Hybrid Techniques

The separation of live green material from brown senescent or dead vegetation is

often a required result of a classification process. Datt (2000) reports on a procedure

that can be used to separate these two classes with 100% accuracy. This process

involves the application of a cross-correlogram spectral matching technique, based

on the finding of a diagnostic absorption feature near 1730 nm for dry vegetation and

a chlorophyll absorption feature near 680 nm for green vegetation. A calculation of
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the cross correlation between a reference spectrum and test spectra at different

match positions in these two spectral regions enabled this separation to be

identified.

Barandela and Juarez (2002) describe an interesting procedure in which a

supervised classification system that has an ongoing learning capability has been

developed. Using a Nearest Neighbour rule as the central classifier, additional

procedures have been added to reduce the risk of noise being added into the

training sample. This methodology could have application in an operational system,

as it would allow for an automated process to be put in place to classify the regular

repeat images required for such a system.

Where there are only a few classes required from a classification, a technique of

potential application is a partially supervised process (as opposed to the normal

supervised classification technique) that allows for the efficient mapping of a specific

land-cover class, or a few land-cover classes (Fernandez-Prieto, 2002). Based on

the combined use of a Radial Basis Function network (which models the image data

distribution) and a Markov Random Field approach (which uses the spatial­

contextual data), only training data sets from the specific classes of interest are

used, instead of a fully supervised classification approach (Fernandez-Prieto, 2002).

The advantage with this method is that a classification accuracy comparable with

that of fully supervised classifiers is obtained, but with less effort.

Huang et al. (2002) developed a modified version of this transformation for use on

Landsat 7 data, while Collins and Woodcock (1994) applied a similar methodology

called the Gramm-Schmidt Transformation to detect change in forest mortality. The

results of this technique produce components that are multi-temporal analogues of

the three major Tasseled Cap dimensions (brightness, greenness, wetness), as well

as a component measuring change. The advantage that this technique holds over

other change detection techniques lies in the relationship between the scene

characteristics and the transformed components, which allows the extraction of

information not available with other change detection methodologies (Collins and

Woodcock, 1994). Coppin et al. (2004) describe several variations of the tasseled

cap procedure that have been tested for their effectiveness as change detection

agents by various researchers.
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More theoretical research is currently being done on the use of multi-fractal

dimension indices as textural descriptors of remotely sensed data. Parrinello and

Vaughn (2002) describe the use of a multi-fractal index, called Spectrum Range,

which can substitute or complement classical textural descriptors by calculating the

multi-fractal spectrum of pixels inside images such that multi-fractal indices can be

used as textural feature descriptors. However, this methodology does not appear to

be suitable for feature extraction at an operational level at this stage. It will no doubt

offer potential benefits for improved feature extraction in the future.

In addition to simple enhancements of the classification process, attempts have also

been made to model future changes based on observed patterns identified through

change detection. An example of this is given by Petit et al. (2001) that modelled

land cover change using a Markov chain process. While this type of application

holds promise for the future, it lies outside the scope of this study. It does, however,

illustrate the use of change detection beyond the simple application of highlighting

change.

The use of machine learning systems such as Support Vector Machines (SVM) has

been tested by Pal and Mather (2005), and improved classification accuracies

compared to neural networks or maximum likelihood classifiers are reported.

2.10 Threshold Determination

The use of threshold techniques is a key element in change detection, but

determining the values of these threshold levels is critical to the successful

application of this technique (Eastman et al., 1995; Singh, 1989). As noted by Singh

(1989) virtually all methods of change detection rely on some sort of thresholding

criteria to identify true change from no change or "noise" effects. Rosin and loannidis

(2003) describe and evaluate several image thresholding algorithms which can be

applied in order to derive the thresholds required.

Lillesand and Kiefer (2000) refer to the use of a "change-versus-no change binary

mask" as part of the process to establish threshold levels, while Singh (1989)

describes a method for applying multiple threshold levels using density slicing,

where objects represented by several different pixel value groupings are categorised

into several pre-defined slices. However, selection of the best threshold levels is
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usually based on apriori knowledge of the scene characteristics (Singh, 1989).

Bruzzone and Fernandez-Prieto (2000) developed an automatic threshold technique,

for use in unsupervised change detection that assists in the determination of

decision thresholds by taking into account the various costs that may be associated

with commission and omission errors. This method minimises the overall change

detection cost, such that the more critical kinds of error are reduced according to

end-user requirements.

2.11 Accuracy Assessment Techniques

The results of any classification process need to be verified as to their accuracy in

correctly defining features into categories of interest. Although this can be a difficult

process, it is generally done using certain statistical tests and models. Remote

sensing literature gives several examples of these methodologies (Janssen, 2000;

Lillesand and Kiefer, 2000; Biging et al., 1999) while Khorram, et al., (1999) devote a

whole publication to addressing this topic, specifically on land-cover change

detection accuracy assessment.

When change detection procedures are involved, the issue of accuracy assessment

becomes even more complex, but not addressing them can lead to failure in

achieving the goals of change detection (Biging et al., 1999).

Lowell (2001) describes an area-based accuracy assessment technique using 500­

pixel by 500-pixel areal sample units. A subjective assessment of the amount of

change was then made using image enhancement techniques on each sample unit

in order to obtain an independent assessment of change. Confidence intervals were

then calculated on the basis of these independent estimates of change.

A review of the literature revealed a wide range of classification accuracies were

achieved, and appeared to be independent of the classification procedure (Le.

supervised or unsupervised). Varjo and Folving (1997) quoted accuracies of

between 87.6% and 93.1 %; Zukowskyj et al. (2001) achieved accuracies of 71.3%

and Rowlinson et al. (1999) reported accuracies of 52.5%. Singh (1989) gives a

comprehensive listing of accuracies achieved using a wide variety of different

change detection techniques, which ranged from 51.4% to 74.4%. All of these
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studies utilised Landsat TM imagery. Heyman et al. (2003) quote a range of

achieved accuracies from 42% to 75% from several different studies.

2.12 Review Summary

Based on this review of the literature it is evident that much work has been done in

monitoring general land cover/land use change (Hostert et al., 2003; Chen, 2002;

Yang and LO,2002; Petit et al., 2001; Pontius et al., 2001; Smith and Fuller, 2001;

Luque, 2000; Castelli et al., 1999; Chen et f/" 1999; Mas, 1999; Morisette et al.,
I

1999' Yuan et al., 1999; Zhan et al., 1998; Hallum, 1993), as well as a good deal of
, I

research focussing specifically on forest land cover/land use change monitoring

(Chen et al., 2005; Nackaerts et al., 2005; Heyman et al., 2003; Boyd et al., 2002;

Kayitakire et al., 2002; Jacobs and Mthembu, 2001; Nilson et al., 2001; Sader et al.,

2001; Puhr and Donoghue, 2000; Cohen and Fiorella, 1999; Harne et al., 1998;

Jeanjean and Achard, 1997; Varjo, 1997; Varjo and Folving, 1997; Hypannen,1996;

Coppin, 1991). In terms of the application of remote sensing to forest management,

literature shows that there has been a wide range of applications in this field,

including considerable use of change detection techniques for various forest

management purposes. In particular, the detection of clear-felled stands is a well­

researched application (Cohen and Fiorella, 1999; Hame et al., 1998; Varjo, 1997;

Coppin, 1991).

However, apart from one paper which examined plantation forest inventory data in

the United Kingdom (Puhr and Donoghue, 2000) all other work was based on

studies done in the Northern Hemisphere boreal and mixed forests (covering North

America, Scandinavia and Russia) or tropical rain forest or savannah. Katsch and

Vogt (1999) describe remote sensing applications for mapping, mensuration and

disease/stress assessment in Southern African plantation forestry, while Katsch and

Van Laar (2002) discuss the estimation of growing stock of eucalypt plantation

forests. No other published work was found that specifically addressed the

monitoring of plantation forest operations. Harne et al. (1998) and Coppin (1991)

describe the monitoring of clear-felling, thinning, soil preparation and regeneration

operations, but again these are in Northern Hemisphere boreal and mixed forests.

Two works (Gray et al., 2004; Shaw, 2004) that discussed the use of remote sensing

for monitoring of weed growth in crop lands were located, but both were based on
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agricultural applications, rather than forestry ones. It would appear that limited work

has been done in this specific field of interest.

Thus, there is a distinct gap in the literature regarding remote sensing applications in

plantation forestry in general, and certainly a dearth of literature covering the

monitoring of plantation forestry operations in Southern Africa. This study seeks to

address these gaps by investigating whether the application of proven remote

sensing techniques can be used to monitor specific forestry operations, namely

clear-felling, replanting and weed control, in South African plantation conditions.

Another aspect that this literature review highlighted is that while there have been

several studies done on identifying individual tree crowns (e.g. Jacobs and

Mthembu, 2001; Wulder et al., 2000), this review did not find any studies that had

used tree rows as a means of separating crop and weed in a manner similar to that

applied in the high resolution portion of this study. This is another unique contribution

that this study attempts to add to the body of remote sensing knowledge.

As the focus of this study was to test the application of proven remote sensing

techniques for monitoring plantation forestry operations, it was necessary to select

the most appropriate techniques. Image differencing, change vector analysis (CVA)

and composite analysis appear to be the preferred choices in forest change

detection applications (Cohen and Fiorella, 1999), although Coppin et al. (2004)

found that Univariate Image Differencing was the most widely applied change

detection algorithm. However, post-classification techniques have also proved to be

suitable and popular for land cover change detection (Lunetta, 1999). Variations on

the CVA technique, such as the Tasselled Cap Transformation and Autochange

Analysis, have also proved successful (Cohen and Fiorella, 1999; Harne et al., 1998;

Collins and Woodcock, 1994). Other methodologies such as vegetation indices

(NDVI, TNDVI), Principal Component Analysis (PCA) and non-parametric Kernel

methods have also been successfully applied (Varjo, 1997), as have various

clustering or segmentation techniques (Katsch, 2003; Pekkarinen, 2002; Viovy,

1997). Based on these findings from the literature, as well as practical

considerations such as the availability of software, post-classification change

detection was selected as the most appropriate technique for the change detection
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process. In addition, a segmentation process using textural analysis techniques was

selected to improve the high resolution imagery classification results.

While there is plenty of literature on thresholding (Rosin and loannidis, 2003;

Bruzzone and Fernandez-Prieto, 2000; Lillesand and Kiefer, 2000; Eastman et al.,

1995; Singh, 1989 to list a few), no specific thresholding techniques that might be

applicable to plantation forest monitoring have been reported. It was therefore

decided to test the feasibility of utilising the canopy characteristics to derive suitable

thresholds to separate crop from weed.

An important process that requires attention in any of the techniques applied is that

of accuracy assessment, due to the fact that none of these techniques is absolute in

its application. The basis of classification and change detection is that these

processes are an estimation of reality, based on indirect measurement of certain

criteria. Therefore, some form of accuracy assessment is required in order to

establish levels of confidence in the output results of any change detection

procedure. Accuracy needs to be assessed at two points, the first being an

evaluation of the classification accuracy, and the second being an assessment of the

change detection procedure (Biging et al., 1999, Khorram, et al., 1999).

Having established a framework in terms of published research on the subject matter

of this study, it was then necessary to select a suitable study area in which to test

the hypotheses. An area of appropriate forestry activity was identified in the

KwaZulu-Natal Midlands, the details of which are discussed in the next chapter.
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Chapter 3: The Study Area

3.1 Introduction

The study area is located in the Province of KwaZulu-Natal, Republic of South

Africa, in an area known generically as the Midlands, where commercial plantation

forestry is a primary economic activity. The medium resolution imagery study sites

consisted of 162 compartments located on 20 plantations north of Pietermaritzburg,

being concentrated around the town of Greytown, as well as in an area to the north

of the town of Howick (see Figure 3.1.1). They were all within plantations falling

under the management of the Midlands District of Mondi Business Paper SA ­

Forest Operations. The NE corner co-ordinates of the study site were 28° 55' 29"S;

31° 01' 19"E, and SW corner co-ordinates were 29° 34' 58" S; 30° 13' 25" E.

Compartments that could be considered for the medium resolution study sites had to

meet certain criteria. These were as follows:

o They needed to be representative in terms of plantation forestry in the

KwaZulu-Natal Midlands.

o They needed to cover the range of genera (Eucalyptus; Pinus and Acacia)

that make up the most important commercial forestry species planted in the

KwaZulu-Natal Midlands.

o The full range of operations from clear-felling, planting and weed control

through to canopy closure was required to be present within the study site.

Each of these operations should also be present in each image acquired, in

order to account for any seasonal variation. While it would have been useful

to have the full range of operations occur within the same compartments

within the duration of the study, this was not considered critical, as each

image was considered as independent of the other images, with regard to

these criteria.

Study sites for the high resolution imagery were based on a subset of the medium

resolution imagery compartments, due to the smaller extent covered by the high

resolution imagery. Seventeen compartments from two adjacent plantations, known

as Mistley and Canema, were initially selected for the high resolution study sites,

although these were later reduced to twelve as a result of some compartments not

meeting the requirements of the high resolution research (see Figure 3.1.2).
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Location of KwaZulu-Natal , South Africa

Figure 3.1.1 Location of Medium Resolution study sites in the KwaZulu-Natal

Midlands
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Figure 3.1.2 Location of High Resolution study sites on Mistley/Canema Plantations
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For the high resolution study sites, the requirements were much more focussed on

the re-establishment phase, rather than the whole rotation. For this reason the

following criteria were required:

o They had to have been re-established (either planted or coppiced) within the

early phase of the high resolution project. This was the main reason why

some of the compartments initially selected were later discarded, as they had

not been re-established in time to provide a result.

o Although it would have been preferable that the study sites covered the range

of genera (pine, gum and wattle) that make up the most important commercial

forestry species planted in the KwaZulu-Natal Midland, no replanted gum

compartments were available within the study area, and only one gum

coppiced compartment was present. However, a good selection of replanted

wattle compartments was available.

While the study area is characterised by a unique set of climatic and topographic

conditions, within the area there is a range of climatic, geological and physiographic

variations. Being a well-established forestry area meant that the plantations were in

rotation, with all three genera, Eucalyptus, Pinus and Acacia, represented and so all

operations would be available for study. The necessity of visiting specific sites for

ground-truthing purposes was catered for by the sites being close enough to

Pietermaritzburg, the base of operations.

3.2 Biophysical Description of Study Area

3.1.2.1 Climate

The study area falls in the summer rainfall region of South Africa, with the resultant

characteristic warm, wet summers and cold, dry winters. Figures 3.2.1 and 3.2.2

provide the detailed distribution of temperature and rainfall. Mean annual rainfall

varies from 800 mm to 1200 mm, which is either associated with frontal weather

patterns or summer thundershowers. With thunderstorms being a primary summer

weather phenomenon, a lightening flash density of 7 to 8 ftashes/km" per annum is

experienced. Winter precipitation events are sometimes associated with snow in the

higher lying areas in the Howick area (Snyman, 2002).

45



30

25

6 20
o-c.. 15
E
{!!. 10

5

o

Climatic Data - Greytown Area

-

<,
......... l,(

J......... l)

~\
V I;,

IT lil J,

I, [\ 1'1 l~
1/

" I,

JAN FEB MAR APR MAY JUN JUL AUG SEP aCT NOV DEC

140

120

100 E
80 g
60 ~e
40 ~

20

o

Ic::J Median Max.Temp.(°C) ' Median Min.Temp.(OC) -o-Median Rainfall (mm) I

Figure 3.2.1 Climatic Data - Greytown area. (Snyman, 2002)

Temperatures range between 24°C to 26°C in summer but drop to between 11°C

and 14°C in winter for most areas (see Figures 3.2.1 and 3.2.2). Frost is a regular

occurrence, apart from the Iow-lying easterly areas.
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Figure 3.2.2 Climatic Data - Howick area. (Snyman, 2002)

3.1.2.2 Geology and Soils

The Greytown area straddles two major geological zones, with the eastern section

underlain by intercalated arenaceous (sandstone) and argillaceous (clay) strata. An

assemblage of tillites and shales underlies the western section. Dolerite outcrops

also occur (WRC, 1995).

Argillaceous (clay) strata dominate the geology of the Howick area, with the outer

areas having intercalated arenaceous (sandstone) and argillaceous (clay) strata
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(WRC, 1995). Dolerite sills and dykes are common, in association with areas of the

"red" Hutton and Inanda soil forms.

Soils in the Greytown area are generally well-weathered fine-sandy-c1ay-loam humic

topsoils, underlain by yellow or red apedal subsoils, with the dominant soil forms

being the Sweetwater, Inanda, Kranskop and Magwa forms. Hutton, Clovelly and

Oakleaf forms occur in the lower lying areas, and the drier northern slopes. High

(>1.8%) topsoil carbon contents are common, while clay contents vary between 25%

and 35% in topsoil horizons, but reach levels of up to 55% in deeper subsoils.

Mispah and Glenrosa forms (Iithosols) commonly occur on steep slopes, particularly

in the drier, warmer areas towards the Tugela River. Hydromorphic soils of the

Tukulu form generally occur along riparian areas (Snyman, 2002).

In the Howick area, fine-sandy-c1ay humic topsoils, underlain by yellow or red apedal

subsoils, characterise the soils. Dominant soil forms are Inanda and Magwa, with

Hutton being the subdominant soil form. Topsoil horizon clay contents vary from

34% to 35%, reaching levels of 60% in deeper subsoils. Hydromorphic soil forms,

such as Tukulu and Katspruit, occur along riparian zones, with peat soils such as the

Champagne form and organic variants of the Katspruit and Westleigh forms

occurring in wetlands, especially in the upper reaches of the Umvoti River (Snyman,

2002).

3.1.2.3 Topography

The Greytown area is characterised by an undulating plateau with moderate to steep

slopes in places. The eastern and northern boundaries of the area are characterised

by steeply incised river valleys (such as the Tugela River) leading into more rugged

terrain below the plateau area. Altitude varies from 750 m to 1570 m above mean

sea level (amsl).

In the Howick area, the topography is more varied, ranging from undulating terrain

interspersed with prominent hills having moderate to steep slopes, to the Gilboa

area, which forms a high plateau, dominated by Mount Gilboa. Steep scarps are

present along the perimeter of this plateau. Altitudes in the Howick area vary from

750 m to the peak of Mount Gilboa at 1768 m amsl.
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3.1.2.4 Hydrology

The study area within the Greytown area is part of the U primary drainage basin,

falling mainly into the U40 and U20 secondary catchments (i.e. the hydrological

catchment areas defined by the Water Research Commission (WRC, 1995)). The

mean annual precipitation (MAP) is 860 mm, with a median annual simulated run-off

of 126 mm. The average groundwater depth is 25 m, with an annual recharge rate

of 60 mm. The main river draining through the area is the Umvoti River (WRC,

1995).

The Howick area falls within the U and V primary drainage basins, with the

secondary catchments being U20 and V20, and is an important catchment for the

major river of the area, the Umgeni River. MAP is 980 mm, and a median annual

simulated run-off of 144 mm. The average depth to groundwater is less than 20 m,

with an annual groundwater recharge rate of 75 mm (WRC, 1995).

3.1.2.5 Natural Vegetation

In both study areas the predominant natural vegetation type is a grassland biome,

associated with the Short Mistbelt vegetation type in the Greytown area, and Moist

Upland Grassland vegetation type in the Howick area (Low and Rebelo, 1996).

The main type in the Greytown area is the Natal Mist Belt 'Ngongoni Veld (Acocks

veld type 45, (Acocks, 1988)). This occurs as a transitional stage between the

Highveld Sourveld of the higher lying plateau regions and the 'Ngongoni Veld proper

(Acocks veld type 5) of the lower lying regions. These grasslands are Sourveld, with

the main species being Themeda triandra where the sward is relatively undisturbed,

with significant communities of Monocymbium ceresiiforme, Trachypogon spicatus

and Tristachya leucothrix. Where intensive agriculture, especially overgrazing has

occurred, there is a marked increase in Aristida junciformis (Camp, 1997).

Patches of indigenous forest and thickets occur in the more sheltered river valleys,

with dominant species being Rapanea melanophloeos, Cryptocarya woodii and

Syzygium gerrardii. Other species present include shrubs and climbers such as

Dalbergia obovata and Uvaria caffra.
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In the Howick area, the main natural vegetation ranges between Southern Tall

Grassveld (Acocks veld type 65) and Natal Mist Belt 'Ngongoni Veld (Acocks veld

type 44). Grassland areas are classified as sourveld, with Themeda triandra,

Heteropogon contortus, Tristachya leucothrix, Eragrostis curvula and Elionurus

muticus being the main species. Hyparrhenia hirta (thatch grass) is also

characteristic of these areas. Much of the area's grassland is in a poor condition,

and exists as a secondary vegetation status. Incorrect grazing management has led

to an increase in unpalatable species and the intrusion of herbaceous weeds (Camp,

1997).

In sheltered sites and rocky outcrops, woodland and thickets occur, with the

dominant tree species being Maytenus heterophylla, Zanthozylem capense, Ziziphus

mucronata, Rhus rehmanniana and Acacia sieberana. Forest pioneer species such

as Rapanea melanophloeos, and Fynbos species such as the Cliffortia species

occur in areas protected from fires (Camp, 1997).

Both of these areas fall predominantly into the Bioresource Group 5, Moist Midlands

Mistbelt, as defined by Camp (1997).

3.1.2.6 Land Use

By definition, the study area was located in a commercial plantation forestry area.

However, the predominant land use throughout the study area is commercial

forestry, together with sugar cane and arable cropping (generally maize) as well as

some beef and sheep farming activities. Plantation forestry activities are undertaken

by large forestry companies (e.g. Mondi, Sappi), and many private farmers in this

area.

The plantation forests consist of exotic hardwood and softwood species that are

grown primarily for the production of pulp and paper, although there is a smaller

market handling saw timber for the furniture and construction industries. Softwood

species are of the genus Pinus, and consist predominantly of three species, P.

patula, P. taeda and P. elliottii. Hardwood species are of the genera Eucalytpus

(commonly called Gum) and Acacia (generally known as Wattle). There is only one

species of Acacia widely cultivated, A. mearnsii, which is utilised for the production
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of tannin extract from its bark, as well as the timber being used in the pulp and

cellulose industries.

The Euealytpus species fall into two categories, defined by their wood density.

These are called soft (or sub-tropical) gums, grown in the warmer areas, and hard

(or cold-tolerant) gums, grown in the higher lying, more temperate areas. The hard

gums have a higher wood density than the soft gums. Main species in the soft gums

are E. grandis and E. saligna, while the main species of hard gums include E.

maearthurii, E. dunnii, E. nitens and E. smithii. A great deal of afforestation is now

done using clonal hybrids of these species (e.g. E. grandis x E. nitens).

For the pulp and paper industry, gum and wattle are grown on short rotations of 8 to

10 years, while pines are grown for 15 years. The forest industry is run on the

principle of the European Normality Model (Von Gadow and Bredenkamp, 1992).

This model allows for sustainable use, whereby the forest areas are managed on a

rotational basis, such that all felled areas are replanted, and the area felled at any

one time is equivalent to the total afforested area divided by the rotation length (e.g.

if 100 ha is afforested on a 10 year felling cycle, or rotation, only 10 ha is felled and

replanted annually, thus creating a continual production cycle).

Having found sites suitable for this study, the chosen methodologies could then be

applied as the next step in this research. The materials, methods and results of

applying classification, textural analyses and change detection techniques to

medium and high resolution imagery for monitoring plantation forestry operations are

described in detail in the next two chapters.
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Chapter 4: Monitoring Forest Operations using Medium

Resolution (30 m) Imagery

4.0 Introduction

The scale of coverage that can be obtained from medium resolution satellite imagery

lends itself to forest monitoring applications, particularly in areas where these

operations have a wide geographic dispersion. Also, such imagery tends to be

cheaper than high resolution imagery, and so can provide a broad-scale "first-look"

product cost-effectively (Lillesand and Kiefer, 2000). These factors provided the

rationale for its application in this study.

4.1 Materials and Methods

4.1.1 Introduction

The materials and methods utilised in this study were based on proven remote

sensing image classification and change detection techniques, but with the aim of

detecting change in, and monitoring of vegetation state, within a commercial

plantation forest environment. This requirement meant that the repeat cycle was a

matter of months, rather than the years that are normally reported in literature.

4.1.2 Materials

Materials used in this research project were primarily data sets in various digital

formats. Three different types of base data sets were utilised for this study, which

involved the integration of these data sets, a process that was made possible

through the use of GIS.

4.1.2.1 Suitable Study Sites

Suitable sites were located by a process that included overlaying Landsat 7 path/row

grids on a data set of the forestry landholdings that fell within a radius of 100 km of

Pietermaritzburg. This distance was chosen as being practical for travelling to

ground-truthing sites. Also overlain were data sets that showed where harvesting

and planting operations were planned to occur over the next year (2002/2003), as

these were the critical operations that had to be monitored as part of the objectives

of this study. A supplementary data set of the physiographic regions was also
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included to try and include some of the main site factors, such as geology, soil and

climate, in the study sites. This process was undertaken using ArcGIS 8® (ESRI,

2000), and resulted in suitable compartments being identified to form the study area.

A set of 162 compartments in 20 plantations were identified from which ground­

truthing sites were selected. For display purposes only 15 of these compartments

are shown (see Sample Illustration Site - Figure 3.1.1).

4.1.2.2 Satellite Imagery Data

The satellite imagery applied in this study was standard Landsat 7 multi-spectral

imagery purchased from the Satellite Applications Centre (SAC) of the CSIR. The

selection of the Landsat 7 sensor was based primarily on a cost/benefit basis, and

was a balance between obtaining imagery with a resolution small enough to detect

the critical spectral information required, and being available at a reasonable cost.

Another factor to be considered was the repeat cycle, especially as this study

required imagery at a much closer interval than is normally the case for change

detection processes. The revisit cycle of sixteen days for Landsat 7 was suitable,

especially over periods of high cloud cover, as it allowed a greater chance of

obtaining a cloud-free image.

The specific Landsat images used in this study were selected on the basis of the

following criteria:

1. Imagery with a maximum amount of cloud-free coverage over the areas of

interest.

2. Imagery covering as much of the seasonal variation as practically possible, but

with at least a mid-winter and mid summer image, together with an inter-seasonal

image. As many of the forestry operations that were to be monitored as part of

this study reach a peak in mid to late summer (January to May), this was a

particular period of interest.

3. Imagery that covered all the areas of interest within the study site in a single

image.

The images were obtained from SAC as geo-referenced to Transverse Mercator, Lo

31°, Clark 1880 spheroid, Cape Datum (Le. equivalent to USGS L1G processing

level). They were supplied on compact disc in ERDAS Imagine® .IMG format.
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A total of four images were purchased, covering the period from March 2002 to April

2003. Technical specifications of the sensor are provided in Appendix 1, together

with a sample of a raw image.

The four images obtained for this study were captured on the following dates:

First image - 30.03.2002 (referred to as the March image in the text).

Second image - 18.06.2002 (referred to as the June image in the text).

Third image - 28.01.2003 (referred to as the January image in the text).

Fourth image - 02.04.2003 (referred to as the April image in the text).

Details of the images are summarised in Table 4.1 below.

Table 4.1 Summary of Landsat 7 images used in study

Image Date Time Frame Cloud Sun Sun

Acquired Acquired Details: Cover Azimuth Elevation

(GMT) Path/Row

March 30.03.2002 07:39:33 K-J 168/080 0000 52.11° 42.89°

June 18.06.2002 07:39:16 K-J 168/080 0000 36.19° 28.00°

January 28.01.2003 07:39:16 K-J 168/080 0000 81.2]0 54.15°

April 02.04.2003 07:39:29 K-J 168/080 0000 50.94° 42.24°

Source: SAC, 2003.

These images were standard Landsat 7 (ETM+) images, including the seven multi­

spectral bands (Le. Bands 1 to 7), with a 30 m spatial resolution, plus a

panchromatic band image with a 15 m resolution. The panchromatic images were

not utilised in this study. For analysis purpose, all multi-spectral bands (excluding

the thermal infrared (TIR) band) were used. However, for display purposes, an RGB

composite image was used comprising Bands 4, 3, and 2.

4.1.2.3 Forest Management Attribute Data

The forest management information is recorded on a monthly basis by the field staff

and captured into an Informix relational database called the Forest Management

System (FMS). All operational information is captured into this database, which is

linked to the GIS using key fields. Reports can be drawn from FMS, either using the

standard menu system, or using SQL.
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Specific information that is required by the GIS on a regular basis is available

through the creation of standard "views" or query tables in FMS. These include the

compartment register, which lists all the base information for every compartment,

and certain planning information such as felling or planting plans.

A record is kept of all operations that have an operation code, for the lifespan of a

compartment, including some information if a compartment is merged with another

compartment. If the compartment is deleted however, the history is deleted as well.

This historical aspect of the database has a key role to play when it comes to

comparing the data derived from the satellite imagery with the database data.

Compartment data, both as base data and historical operational data, were extracted

from FMS and used in this study to compare with the data classified by the imagery,

in order to test the hypothesis proposed for this study. Specific compartment

information extracted from FMS included species, felling dates, planting and coppice

(see glossary) dates and growth cycle. Historical information extracted included

when burning, planting and other establishment operations had occurred, as well as

when weed control operations had been done. This information was queried on a

compartment basis.

4.1.2.4 Geographic Information System (GIS) Data

In addition to the forest management information, a complete set of digital spatial

data for all forestry landholdings in the study area was maintained through the

application of GIS technology. This information included the legal cadastral

information, compartment (commercial and non-commercial) information, roads,

rivers, contours, buildings, dams and a considerable amount of derived information

such as slope classes, climatic data and other such information.

The cadastral information provided a means to enable the image processing

functions to be focussed on the specific areas of interest. This reduced the

processing time as well as reducing the disk space requirements, although these still

proved to be very intensive. The compartment information provided the units of

observation on which the image processing and analysis were based. This data also

provided the link in terms of integrating the image analysis results with the FMS data

and in so doing enabled a comparison reporting process to be devised,
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4.1.3 Methods

As stated earlier, the fundamental principle on which this study was based is that of

image classification and change detection techniques being applied to satellite

imagery. The aim was to then integrate the classified imagery with operational data

extracted from the FMS database to provide exception reports that highlighted

possible discrepancies between the operational data recorded in the database and

what actually the case in the field was.

4.1.3.1 Image Rectification and Atmospheric Correction

As the base GIS data was projected to Transverse Mercator, Clarke 1880 (Cape

datum) on Lo31 0, the imagery was ordered with these projection parameters.

The only exception was the March image, which had already been purchased with

the datum being in WGS 1984. This image then had to be reprojected to match the

other images. This was done using the image rectification tools in ERDAS lrnaqlne"

(ERDAS, 1999), with the image being geo-rectified to the January 2003 image. Apart

from the data being supplied in a projected state, according to the above

parameters, no other geo-rectification was considered necessary, as the images all

matched to within one to one and half pixels. As the unit of observation was the

compartment, and analyses were based on compartments, rather than pixels, it was

felt that this error was well within acceptable limits. This was reinforced by the mixed

pixel effect experienced along the edges of compartments.

4.1.3.2 Classification Ground-Truth Data

A key factor in defining the best analytical method to adopt was to select which

classification method would provide the greatest separation between classes,

thereby producing the most accurate change detection analysis.

As part of the classification process, field trips were made close to the time of image

acquisition (usually within two weeks) to ascertain the actual status of each

compartment selected as a ground-truthing site. An exception was the March image,

due to it having been acquired prior to the commencement of this project.

The ground-truthing assessment was based on confirming whether a compartment

was standing or felled (including operations in-progress). For felled compartments,
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verification was made as to whether it had been burnt or not, and whether replanting

or coppicing (for gum stands) had occurred. A visual estimate of ground cover, in

terms of soil, slash (see glossary), crop and weed cover was also made, and if a

crop was present, an estimate of its height was also made. A random check was

made on the spatial location, using a GPS, to confirm that the compartment spatial

data matched the ground location. A digital camera was also used in the January

and April trips to photograph sites as visual references for each class.

4.1.3.3 Determination of Land-Cover Classification Classes

The aim of determining land-cover classes was to identify all possible vegetation

classes that represented the status of each compartment on the ground. This ranged

from bare soil through crop and/or weed cover to a closed canopy state.

Originally ten land-cover classes were decided on, but after the January image

ground-truthing it was decided to split the canopy cover state into a younger canopy

(or pre-canopy) as Class 9, and a mature (or closed) canopy state, Class 12. Class

11 was also added to cater for the slash/weed situation observed during the field trip.

In both cases, these classes were added to test whether additional separation could

be obtained.

The 12 classes were defined as follows, with photographs of typical sample sites

being given in Appendix 9:

Class 1 Bare Soil (no crop)

Class 2: Slash (including senescent vegetation)

Class 3: Crop/Slash

Class 4: Crop/Soil

Class 5: Crop/SlashlWeed

Class 6: Crop/SoillWeed

Class 7: Crop/Soil/SlashlWeed

Class 8: CroplWeed

Class 9: Pre-canopy Closure

Class 10: Weed

Class 11: SlashlWeed

Class 12: Closed Canopy
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4.1.3.4 Supervised Classification Procedure

It was initially decided to utilise a supervised classification procedure as the first step

in the classification process due to it being well documented as a recognised method

(Lillesand and Kiefer, 2000; Varjo, 1997; Janssen, 2000; Pouncey et al., 1999). This

method however, required the use of ground-truthed data to provide training data

sets. The ground-truthed land-cover classes were used to define these training

classes, with six to eight training sites being selected for each land-cover class,

within each image. Using the standard functions available in ERDAS lrnaqine", area

of interest (AOI) polygons were digitised within ground-truthed compartments in

areas known to represent the relevant land-cover class. These signatures were then

evaluated for separability and contingency. The signature separability test was run

on all eight bands within the raw image, with the transformed divergence algorithm

being applied as the distance measure. The contingency parameters utilised the

parallelepiped algorithm for the non-parametric rule, and parametric algorithms for

the overlap and unclassified rules. The parametric rule used the maximum likelihood

classifier.

Once the signature files had been finalised, a supervised classification was run on

the image, utilising the maximum likelihood classifier. The classification was limited

to areas of interest defined by a polygon layer of the cadastral boundaries of each

farm within the study area. This was done to reduce the processing time, and the

resultant output file size. It also allowed easier assessment of the results as only the

areas of interest were shown in the classified image.

The results are discussed in detail in section 4.2.

4.1.3.5 Unsupervised Classification Procedure

A result similar to the supervised classification was also obtained with an

unsupervised classification, using ten classes, l.e., the number of classes

determined by the initial ground-truthing. As the additional two classes (Le. Classes

8 and 11) applied to the supervised classification did not provide useful information,

it was decided to apply the original ten-class grouping to the unsupervised

classification process.
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The first process was to undertake an unsupervised classification, based on ten

classes. This was achieved by applying the standard ISOOATA model in ERDAS

lrnaqine", running six to eight iterations to achieve a convergence level of 0.950. An

area of interest (AOI) based on the farm cadastral boundaries was applied during the

process to limit the analysis to only the areas within the required plantation

boundaries. This was necessary in order to limit the classification process to only

those areas of interest to this study (Le. forest stands), and in so doing removing

potential bias from pixel values of non-forestry objects within the images (Katsch,

2003).

Distinct groupings were noted in the Ten Class Unsupervised Classifications, and so

a second unsupervised classification was run on the raw image file, but this time

specifying only four classes (see Figure 4.2.4). Apart from this, the same parameters

were applied to the procedure as for the ten-class classification.

4.1.3.6 NDVI Value Estimation Procedure

An additional process was also run, using the Indices module in ERDAS Imagine®to

produce standard NDVI values from each raw image.

It was possible at this stage to run a comparison with the database, either visually or

by converting the classification data to a vector format and joining to an extract from

the FMS database. However, it was shown that an improved classification resulted

from completing the change detection process first and then using that data to run

the comparison.

4.1.3.7 Change Detection Routines

The second major step in the analysis process was to undertake the change

detection procedures. Following an intensive review of the literature on this subject

(see section 2.8 above), together with discussions with the project Supervisors and

Or. Jari Varjo of the Finnish Forestry Research Institute, it was decided to adopt a

post-classification approach, utilising the Assisted Change Detection model that is

available from the ERDAS website and run as a model within ERDAS lmaqine"

(ERDAS, 2003). The actual change detection process was run in two stages (see

Figure 4.1.3.1). It was hoped to apply some additional techniques reviewed in the
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Figure 4.1.3.1 Diagram of the Image Analysis Process Flow applied in this study
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literature, such Change Vector Analysis and segmentation, but some practical

considerations, such as proprietary software or algorithms, prevented this.

4.1.3.8 "Classified" Image Change Detection Routine

The first stage was to run the Assisted Change Detection model's "Classified Image"

Module on the Ten-Class Unsupervised Classification data set, using the first-date

classified image and the second-date classified image as the inputs to produce a

difference image. This model works by testing to see if each pixel in image 1 is the

same as the equivalent pixel in image 2, and if not, returns the Image 2 value

(ERDAS, 2003). The resultant difference image displayed all change in terms of their

state in second date image, Le. if any class was displayed it meant that it had

changed to that class. Unchanged data was represented by blank or white pixels

(Le. null data). This model did not indicate the class from which it changed, Le. its

original class.

4.1.3.9 "Quantified Classified" Change Detection Routine

The second stage in this change detection routine was to run the Four-Class

Unsupervised Classification data set through the second module of the Assisted

Change Detection model. This module, called the "Quantified Classified Change

Detection" Module, produced a difference image that had a two-digit value for each

cell. The first digit indicated the class to which it had changed, while the second digit

identified the class from which it had changed, e.g. a 32 code indicated that the pixel

had changed to class 3 from class 2 (ERDAS, 2003). A limitation with this module

was that it could only handle a maximum of six classes.

Thus the Ten-Class Unsupervised Classification data set could not be analysed

using this module. However, it provided very useful results with the Four-Class

Unsupervised Classification data set.

4.1.3.10 NDVI Image Differencing Routines

A final set of change detection procedures was run on the NDVI images, using the

Change Detection/Image Differencing model in ERDAS Imagine®. The two input

files were the first date NDVI image and the second date NDVI image. The output

files were two difference images, one being a standard image difference file (called

an NDVI change image in this study), whose values reflected the amount of change
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between pixels, while the other image was a "highlight change" file (called an NDVI

difference image), which indicated all change above a user-selected threshold level,

using colour coding.

4.1.3.11 Acquisition of Repeat Images at Specified Time Intervals

The steps described above were applied to every image acquired for analyses.

4.1 .3.12 Classification and Change Detection Accuracy Assessment

In order to assess the classification accuracy against the ground-truthed data, a

standard error matrix (Khorram et al., 1999), as well as a chi-square test, was run for

every classification, whereby each sample compartment's ground-truthed class was

tested against the equivalent class as determined by the image classification

process. These tests were run on an Excel® spreadsheet add-in programme,

EZAnalyze (EZAnalyze, 2005).

A review of the literature on accuracy assessment (see 2.11 above), described a

wide range of accuracies, but did not set a limit as to what was accurate or not. Initial

results from the signature separation and contingency matrices for the supervised

classification training data indicated a general level of accuracy not lower than 80%,

and so it was decided to set a threshold level of 85% as being an acceptable level of

accuracy. Treitz and Howarth (2000) referred to an accuracy level of 67.6% being

insufficient for operational classification and mapping.

The same procedure was used to test the classification accuracy of the change

detection processes.

4.1.3.13 Comparison of Imagery Data with the Forestry Database

The final phase of the analytical process was to compare the resultant unsupervised

Ten-Class and Four-Class classes, identified by the classification and change

detection procedures, with the data recorded in the operational forestry database.

Because of the format of the data in the forestry database, it was not possible to

automate this process as part of this study, as it would have required additional

routines to be written into the forestry database programme. However, a manual

process was undertaken to create a summary table of the relevant data in the

forestry database against which the imagery data could be compared. This was
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done by determining what operations had been recorded against all of the study

compartments in the period between each image. A Ten-Class or a Four-Class

Unsupervised Classification class was then allocated to each study compartment.

The resultant table was then joined to the image data table described above and a

standard query was then run to identify where there were discrepancies between the

two data sets.

As an additional check, a visual comparison was also made between the NDVI

difference images and a thematic GIS layer showing the compartment status as

reflected by the operational forestry database.
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4.2 Results and Discussion

4.2.1 Introduction

The results of this study are described below in terms of the outcomes of each stage

of the classification and change detection process detailed in section 4.1.2 above.

For the purposes of clarity, a sample illustration site (see Figure 3.1.1), comprising

15 out of the 162 sample compartments, has been chosen from the study area to be

used to illustrate the relevant results described and discussed below. This same

area was used throughout this section to show the patterns of classification and

change identified in this study. However, these descriptions and discussions apply to

the results obtained over the whole study area. Where applicable, significant

variations from these results are noted and discussed.

Figure 4.2.1 shows the sample illustration sites for all four images, based on an RGB

composite image of bands 4, 3 and 2. The changes in spectral characteristics could

be clearly seen (for example, see compartments E14 and E23), and illustrated the

fundamental principle of identifiable change over time on which this study was

based. Identifying what that change actually represented was the challenge of this

(and any change detection) project.

4.2.2 Image Classification

4.2.2.1 Supervised Classification

Figure 4.2.2 shows the type of classification achieved using supervised

classification. The classified imagery, signatures and classification accuracy are

discussed below.

4.2.2.2 General Description of Classified Image

The overall impression gained from this classification is the range of classes that

occur across the compartments, with no compartment consisting of only one class,

where all pixels had the same value. Each compartment had two or more classes,

although there tended to be a dominant class. Compartments with the least variation

were those with either a closed canopy, or bare soil, Le. the two extreme states of
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Fig.a RGB Composite Landsat Image: March 2002

Figure 4.2.1 RGB Composite Images (Bands 4:3:2) of Sample Illustration Sites
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Fig.a Supervised Classification Image: March 2002

Fig.c Supervised Classification Image: January 2003 Fig.d Supervised Classification Image: April 2003

Figure 4.2.2 Supervised Classification Images
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vegetation cover. The compartments with the greatest variation were those that had

some measure of weed together with crop cover. There did not appear to be a

seasonal effect, with a summer image having more variation than a winter one, as

one might expect. It was this range of classes that prompted the move to an

unsupervised classification, as less variation occurred with this classification method.

Another effect that was consistently noted throughout the study area was the mixed

pixel effect along the edges of some compartments. For this reason, any edge pixels

were disregarded when analysing an image.

4.2.2.3 Signature Separability and Contingency Matrices

Results from the signature separability and contingency matrices indicated that there

was a clear separation between some of the classes. Examples of this included

Class 2, slash and Class 12, closed canopy. There were however, exceptions,

where the degree of separability was such that distinct classes could not be obtained

(see Table 4.2.1).

Table 4.2.1 Signature Separability: April 2003 Image (Best Minimum Separability)

Class Pairs

I
1: 2 1: 3 1: 4 1: 5 1: 7 1: 8 1: 9 1: 10 1:11 1:12
1997 2000 1839 2000 2000 2000 2000 2000 2000 2000

2:3 2:4 2:5 2:7 2:8 2:9 2: 10 2:11 2:12
1755 1795 1997 1997 1992 1998 2000 1958 2000

3:4 3:5 3:7 3:8 3:9 3: 10 3:11 3:12
1823 1502 1483 1493 1650 1805 1291 1999

4:5 4:7 4:8 4:9 4: 10 4:11 4:12
Class 1 Bare Soil 1976 1929 1862 1984 1995 1929 2000
Class 2 Slash 5:7 5:8 5:9 5: 10 5:11 5:12
Class 3 Crop/Slash 1618 1887 1836 1910 1759 2000
Class 4 Crop/Soil 7:8 7:9 7: 10 7:11 7:12
Class 5 Crop/SlashlWeed 1520 1802 1562 1804 1998
Class 6 Not present in image 8:9 8: 10 8:11 8:12
Class 7 Crop/Soil/SlashlWeed 1344 1686 1.913 1983
Class 8 CroplWeed 9: 10 9:11 9:12
Class 9 Pre-canopy closure 1285 1767 1775
Class 10 Weed 10:11 10:12
Class 11 SlashlWeed 1893 1995
Class 12 Closed Canopy 11:12
BOLD = separable (>1900) 2000
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As an example, the separability between Class 1, bare soil and Class 4, crop/soil for

the April image signature separability test produced a separability of 1839. However,

overall separability was 1843 and a best minimum separability of 1285, well below

the recommended limit of 1900 (Pouncey et al., 1999). The equivalent results for the

March image produced figures of 1914 and 909, respectively (see Table 4.2.2). The

other images produced similar results.

Similar results were produced by the contingency matrices for the signatures, with

Classes 8, 9 and 12 giving contingency results above 90%. However, the other class

signatures produced figures in the low 80%s and 70%s.

1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10 1:12
1568 1996 1985 2000 1204 2000 2000 2000 2000 2000

2:3 2:4 2:5 2:6 2:7 2:8 2:9 2:10 2:12
2000 1995 2000 1724 2000 2000 2000 2000 2000

3:4 3:5 3:6 3:7 3:8 3:9 3:10 3:12
1855 1973 1996 1994 1997 2000 1997 2000

4:5 4:6 4:7 4:8 4:9 4:10 4:12
1994 1851 1983 1990 2000 1997 2000

Class 1 Bare Soil 5:6 5:7 5:8 5:9 5:10 5:12
Class 2 Slash 2000 1815 1911 1671 909 2000
Class 3 Crop/Slash 6:7 6:8 6:9 6:10 6:12
Class 4 Crop/Soil 2000 2000 2000 2000 2000
Class 5 Crop/Slash/ Weed 7:8 7:9 7:10 7:12
Class 6 Crop/SoiV Weed 1858 1847 1729 2000
Class 7 Crop/Soil/Slash/ Weed 8:9 8:10 8:12
Class 8 CroplWeed 1917 1815 2000
Class 9 Pre-canopy closure 9:10 9:12
Class 10 Weed 1693 1993
Class 11 Not present in image 10:12
Class 12 Closed Canopy 2000
BOLD = se arable (>1900)

4.2.2.4 Classification Accuracy

In setting up the accuracy assessment tests, a null hypothesis that the spectral

classes detected by the image did not reflect the land-cover classes identified in the

ground-truthing process was proposed. The results of the chi-square tests for every

image produced overall probabilities of less than 0.05, thus suggesting that the null

hypothesis be rejected (see Table 4.2.3 to Table 4.2.6). When the individual classes

were examined on their own, differentiation between some classes was seen to be
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Table 4.2.3 Error Matrix: Supervised Classification - March 2002 Image

25.0%

75.0%

100.0%

75.0%

60.0%

92.3%

66.7%

60.0%

75.0%

43.8%

68.6%
Overall

Accuracy

User
Accuracy

85.7%

100
0.000

a one-tailed test

85.7% 100.0 Yo 75.0% 100.0 Yo 75.0% 100.0% 23.1 Yo 25.0 Yo 42 .9 Yo 66.7 Yo 92 .3%
DF
P

The chi s uare test resuff 01the observed Ire uencies 01 our variables was si nifieant usi

Reference Row Incremental

Observed ~M~~~ro~~~~~00~~~M~~~W~12To ta l Chi Square

Class 01 6 0 0 0 0 0 1 0 0 0 0 7 45.198

expected 0.700 0.500 00400 0.300 0.400 0.700 1.300 00400 0.700 0.300 1.300

Class 02 0 5 0 0 0 0 0 0 0 0 0 5 65.000

expected 0.500 0.357 0.286 0.214 0.286 0.500 0.929 0.286 0.500 0.2 14 0.929

Class 03 0 0 3 0 0 0 1 0 0 0 0 4 36.721

expected 00400 0.286 0.229 0.171 0.229 00400 0.743 0.229 0.400 0.171 0.743

Class 04 1 0 0 3 0 0 1 0 0 0 0 5 40.077

expected 0.500 0.357 0.286 0.2 14 0.286 0.500 0.929 0.286 0.500 0.2 14 0.929

Class 05 0 0 0 0 3 0 0 0 1 0 1 5 29.577

expected 0.500 0.357 0.286 0214 0.286 0.500 0.929 0.286 0.500 0.214 0.929

Class 06 0 0 1 0 0 7 5 2 1 0 0 16 29.132

expected 1.600 1.143 0.9 14 0.686 0.914 1.600 2.971 0.914 1.600 0.686 2.971

Class 07 0 0 0 0 0 0 3 0 1 0 0 4 10.615

expected 00400 0.286 0.229 0.171 0.229 00400 0.743 0.229 0.400 0.171 0.743

Class OS 0 0 0 0 0 0 2 1 0 1 0 4 11.593

expected 00400 0.286 0.229 0. 171 0.229 0.400 0.743 0.229 0.400 0.171 0.743

Class 09 0 0 0 0 0 0 0 1 3 0 0 4 22.875
expected 00400 0.286 0.229 0. 171 0.229 00400 0.743 0.229 00400 0.171 0.743

Class 10 0 0 0 0 1 0 0 0 0 2 0 3 33.944
expected 0.300 0.214 0.171 0.129 0.171 0.300 0.557 0. 171 0.300 0.129 0.557

Class 12 0 0 0 0 0 0 0 0 1 0 12 13 47.414
expected 1.300 0.929 0.743 0.557 0.743 1.300 20414 0.743 1.300 0.557 2.4 14

Columns 7 5 4 3 4 7 13 4 7 3 13 70 372.147
Total Grand Chi Square

Total Total
0 0 0 0 0 0Producer Accuracy

Khat 0.631

Table 4.2.4 Error Matrix: Supervised Classification - June 2002 Image

66.7%

50.0%

66.7%

60.0%

40.0%

80.0%

50.0%

100.0%

100.0%

100.0%

User
Accuracy

100.0%

69.2%
Overall

Accuracy
100

0.000

. % 100.0% 75 .0 Yo 100.0% 75 .0 Yo 20.0% 100.0% 100.0% 100.0% 100.0% 100.0% DF
P

The chi square test resuff of the observed frequencies of your variables was significant using a one-telled test

Y
0.652

Reference Row Incremental
Observed Class 02 Class 03 Class 04 Class 05 Class 00 Class 07 Class 08 Class~ Class 10 Class 11 Class 1~ Total Ch i Square
Class 02 3 0 0 0 0 0 0 0 0 0 0 3 11.625
expected 0.6 15 0.154 0.308 0.154 0.6 15 0.385 0.077 0.308 0.077 0.154 0.154

Class 03 1 2 0 0 0 0 0 0 0 0 0 3 24.625
expected 0.6 15 0.154 0.308 0.154 0.615 0.385 0.077 0.308 0.077 0.154 0.154

Class 04 1 0 3 0 1 0 0 0 0 0 0 5 14.500
expected 1.026 0.256 0.513 0.256 1.026 0.641 0.128 0.513 0.128 0.256 0.256

Class 05 0 0 0 2 0 0 0 0 0 0 0 2 37.000
expec ted 0.410 0.103 0.205 0.103 0.410 0.256 0.05 1 0.205 0.05 1 0. 103 0.103

Class 06 0 0 0 0 6 3 0 0 0 0 0 9 18.300
expected 1.646 0.462 0.923 0.462 1.846 1.154 0.231 0.923 0.231 00462 0.462

Class 07 0 0 0 0 0 1 0 0 0 0 0 1 6.800
expected 0.205 0.051 0.103 0.05 1 0.205 0.128 0.026 0.103 0.026 0.051 0.051

Class 08 1 0 0 0 0 0 1 0 0 0 0 2 19.936
expe cted 0.410 0.103 0.205 0.103 0.410 0.256 0.051 0.205 0.051 0.103 0. 103

Class~ 0 0 0 0 0 1 0 4 0 0 0 5 27.760
expected 1.026 0.256 0.513 0256 1.026 0.641 0.128 0.513 0.128 0.256 0.256

Class 10 1 0 0 0 0 0 0 0 1 0 0 2 19.938
expected 0.410 0.103 0.205 0. 103 00410 0.256 0.05 1 0.205 0.051 0.103 0.103

Class 11 1 0 1 0 1 0 0 0 0 2 0 5 14.500
expected 1.026 0.256 0.513 0256 1.026 0.641 0.128 0.513 0.128 0.256 0.256

Class 12 0 0 0 0 0 0 0 0 0 0 2 2 37.000
expected 0.410 0.103 0.205 0.103 0.410 0.256 0.051 0.205 0.051 0. 103 0. 103

Columns 8 2 4 2 S 5 1 4 1 2 2 39 231.985
Total Grand Chi Square

Total Total
Accurac 375 0 0Producer

Kha t
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Table 4.2.5 Error Matrix: Supervised Classification - Jan. 2003 Image

100.0%

100.0%

100.0 %

100.0%

50.0%

100.0%

0.0%

0.0%

100.0%

83.3%

User
Accuracy

100.0%

82.5%
Overall

Accuracy
100

0.000
0.0%

Reference Row Incremental

Observed Class 01 Class 02 Class 03 Class 04 Class 05 Clas s 06 Class 07 Class 08 Class 09 Class 10 Class 12 Total Ch i Square

Class 01 5 0 0 0 0 0 0 0 0 0 0 5 28.333

expecfed 0.750 0.875 0.625 0250 0.250 0.250 0.375 0.375 0.250 0.500 0.500

Class 02 0 7 0 0 0 0 0 0 0 0 0 7 33.000

expected 1.050 1.225 0.875 0.350 0.350 0.350 0.525 0.525 0.350 0.700 0.70 0

Class 03 0 0 5 0 0 0 0 0 0 1 0 6 29 .000

expected 0.900 1.050 0.750 0.300 0.300 0.300 0.450 0.450 0.300 0.600 0.600

Class 04 1 0 0 2 0 0 0 0 0 1 0 4 20.167

expected 0.600 0.700 0.500 0200 0.200 0.200 0.300 0.300 0.200 0.400 0.400

Class 05 0 0 0 0 2 0 0 0 0 0 0 2 38.000
expected 0.300 0.350 0.250 0.100 0.100 0.100 0.150 0. 150 0.100 0.200 0.200

Class 06 0 0 0 0 0 2 0 0 0 0 0 2 38 .000
expected 0.300 0.350 0.250 0.100 0.100 0.100 0.150 0.150 0.100 0.200 0.200

Class 07 0 0 0 0 0 0 3 0 0 0 0 3 37.000
expected 0.450 0.525 0.375 0.150 0.150 0.150 0.225 0.225 0.150 0.300 0.300

Clas s 08 0 0 0 0 0 0 0 3 0 0 0 3 37 .000
expected 0.450 0.525 0.375 0.150 0.150 0.150 0.225 0.225 0.150 0.300 0.300

Class 09 0 0 0 0 0 0 0 0 0 2 0 2 18.000
expected 0.300 0.350 0.250 0.100 0.100 0.100 0.150 0.150 0.100 0.200 0.200

Class 10 0 0 0 0 0 0 0 0 2 0 0 2 38.000
expected 0.300 0.350 0.250 0.100 0.100 0.100 0.150 0.150 0.100 0.200 0.200

Class 12 0 0 0 0 0 0 0 0 0 0 4 4 36 .000
expected 0.600 0.700 0.500 0200 0.200 0.200 0.300 0.300 0.200 0.400 0.400

Columns 6 7 5 2 2 2 3 3 2 4 4 40 352.500
Total Grand Chi Square

Total Total
Producer Accuracy 83 .3% 100.0% 100.0% 100.0% 100.0% 100.0% 100 .0% 100.0%
Khat 0.801

Table 4.2.6 Error Matrix: Supervised Classification - April 2003 Image

100.0%

User
Accuracy

100.0%

33.3%

100.0%

100.0%

60.0%

100.0%

66.7%

100.0%

50.0%

100.0%

74 .3%
Overall

Accuracy
100

0.000
The chi

% 66.7 f. 66.7 ¥.. 100.0% l00.0 ¥.. 75 .0% 100.0% 50 .0 f. 100.0% l00.0 f.Y
0.714

Reference Row Incremental
Observed Class 01 Class 02 Class 03 Class 04 Class 05 Class 07 Class 08 Class 09 Class 10 Class 11 Class 12 Total Chi Square
Class 01 2 0 0 0 0 0 0 0 0 0 0 2 15.500
expected 0.229 0.171 0.171 0.171 0.057 0.229 0.229 0.229 0.114 0.057 0.343

Class 02 0 2 0 0 0 0 0 0 0 0 0 2 21.333
expec ted 0.229 0.171 0.171 0.171 0.057 0.229 0229 0.229 0.114 0.057 0.343

Class 03 0 0 2 0 0 0 0 0 0 0 0 2 21.333
expected 0.229 0.1 71 0.171 0.171 0.057 0.229 0.229 0.229 0.114 0.057 0.343

Class 04 2 0 0 3 0 0 0 0 0 0 0 5 23.000
expected 0.571 0.429 0.429 0.42 9 0.143 0.571 0.57 1 0.57 1 0.286 0.143 0.857

Class 05 0 0 1 0 1 0 0 0 0 0 0 2 21.333
expec ted 0.229 0. 171 0.17 1 0. 171 0.057 0.229 0.229 0.229 0.1 14 0.057 0.343

Class 07 0 0 0 0 0 3 0 0 0 0 0 3 23.250
expected 0.34 3 0.257 0.257 0.257 0.086 0.343 0.343 0.343 0.171 0.086 0.5 14

Class 08 0 0 0 0 0 0 4 2 0 0 0 6 23.167
expected 0.686 0.514 0.514 0.514 0.171 0.866 0.686 0.866 0.343 0.171 1.029

Class 09 0 1 0 0 0 1 0 2 0 0 2 6 7.125
expected 0.686 0.5 14 0.514 0.514 0.171 0.686 0.686 0.686 0.343 0. 171 1.029

Class 10 0 0 0 0 0 0 0 0 2 0 0 2 33.000
expe cted 0.229 0.171 0. 171 0.171 0.057 0.229 0.229 0.229 0.114 0.057 0.343

Class 11 0 0 0 0 0 0 0 0 0 1 0 1 34.000
expected 0.114 0.086 0.086 0.086 0.029 0.114 0.1 14 0.114 0.057 0.029 0.171

Class 12 0 0 0 0 0 0 0 0 0 0 4 4 19.333
expected 0.457 0.343 0.343 0.343 0.114 0.457 0.457 0.457 0.229 0. 114 0.686

Columns 4 3 3 3 1 4 4 4 2 1 6 35 242.375
Total Grand Chi Square

Total Total
Accurac 50 .0 0 0 0 0 0Producer

Khat
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statistically valid (numbers in italics are individual chi-square values). Using the

chosen threshold level of 85% (see section 4.1.3.12) a success rating was decided

on as follows:

85 -100%: Acceptable classification

<85% : Unacceptable classification

The overall accuracy results reported in the error matrices were all below this

threshold, resulting in unacceptable overall classification results. However, the

classification of some individual classes recorded much higher user or producer

accuracies (see Table 4.2.3 to 4.2.6).

When the supervised classifications were undertaken the classes tended to fall into

three groups of signatures, defined by the extent of the classification accuracy.

These groupings were as follows:

1). Compartments that ranged from being clear-felled to planted, weed-free

stands younger than one year.

2). Planted stands older than one year or with significant weed growth, but not

having reached a closed canopy stage (usually less than two years old).

3). Stands with a closed canopy.

The first and last groups represented either end of the classification spectrum, with

the middle group tending to classify all the spectral ranges that were not sufficiently

distinct to enable the classification results to produce distinct classes suitable for

consistent determination of the status of a compartment.

Most clear-felled areas could be clearly identified. There was however, some cross­

classification between Class 1, bare soil and Class 4, crop/soil. This was anticipated,

as the contingency matrices indicated that there was not a clear distinction between

these two classes. It would also account for the lack of distinction between felled

stands and those planted, weed-free stands younger than a year. The error matrix

results showed that whereas virtually all the ground-truthed Class 1 compartments

(i.e. bare soil) were correctly classified, up to 50% of the Class 4 ground-truthed

compartments were incorrectly classified as Class 1 (see Table 4.2.3 to Table 4.2.6).

When assessing the classified images visually (see Figure 4.2.2), compartment E18

in the January image displays a good example of a felling operation in progress,
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where the southern half of the compartment was classified as Class 12, closed

canopy (Le. unfelled) while the northern section was classified as Class 2, slash.

The ease with which incorrect classifications can occur, even within a fairly

controlled environment such as a supervised classification, is illustrated by

compartment E18 in the sample site (see Figure 4.2.2d, April image). The presence

of an unburnt needle mat together with some wattle "lawn" regrowth of less than ten

centimetres in height still caused it to be classified as a Class 4, crop/soil, rather

than as Class 1 or 2, which in actual fact it was. Despite this anomaly, clear-felled

areas can be identified with a high degree of accuracy, which could be expected in

the light of the results from the contingency matrices.

At the other end of the classification spectrum, compartments with full canopy cover

could also be clearly identified, and had a very uniform classification. Examples of

this are seen in compartments E14 and E18 in the March (Figure 4.2.2a) and June

(Figure 4.2.2b) images. However, other compartments, such as E22 and E23, were

also full canopy, but were classified as Class 9, pre-canopy closure stage. When

visually checked across the study site, this classification did not appear to be linked

to species, although there was a greater tendency for pine and gum stands to be

classified as Class 12, full canopy, while wattle tended to be classified more as

Class 9, pre-canopy closure. The classification of closed canopy in the January (Le.

summer) image was much more consistent in terms of compartments being

classified as Class 12, full canopy. This result was borne out by the error matrix

results of the April image (Table 4.2.6), where 66.7% of the Class 12 ground-truthed

compartments were correctly recorded as Class 12 in the image, but 33.3% were

classified as Class 9. However, in the June and January images (Tables 4.2.4; 4.2.5

respectively), the error matrix results showed that all Class 12 ground-truthed

compartments were correctly classified as Class 12. In the March image 92.3% of

Class 12 compartments were classified correctly, but with one compartment (7.7%)

being classified as Class 9 (see Table 4.2.3).

The cross-classification between Class 12, full canopy and Class 9, pre-canopy

closure in the autumn and winter images is probably due to the nature of some

species, especially wattle, to reduce leaf area during periods of moisture stress,

either by shedding leaves/needles (gum/pine) or by the pinnules closing up (wattle).
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This would have the effect of reducing canopy density, and so causing the shift in

spectral reflectance towards pre-canopy closure state. This would also explain why

wattle, with its greater canopy reduction, was much more likely to be classified as

such, rather than pine or gum. This fact was reinforced by the January classification

being much more consistent in classifying closed canopy as Class 12.

Although closed canopy and clear-felled states can be identified with reasonable

accuracy, the young regrowth period (Le. from time of planting to canopy closure ­

usually a period of about 2 years, depending on species, silvicultural management

and site factors) becomes problematic for the classification process. Using visual

assessment, this can be seen if one compares the classifications for E11, E15, E17,

E28, E29 and E35 across all four images (see Figure 4.2.2). For example, E11 in the

March image is classified as Class 1, bare soil, Class 4, crop/soil and Class 6,

crop/soil/weed; in June, as Class 4, crop/soil and Class 6; in January as Class 10,

total weed; and in April as Class 8, crop/weed, Class 9, pre-canopy closure, and

Class 10, total weed. When ground-truthed in January it was classed as Class 9,

pre-canopy closure, and was used as a training site for this class. However, it was

not correctly classified during the classification process. Other examples of

misclassification include compartments E28 and E35 in the January image, which

were classified as Class 10, total weed, when in fact they were Class 8, crop/weed.

In the June image they were classified as Class 9, pre-canopy closure, but were

ground-truthed as being Class 6, crop/soil/weed. However, in the April image, both

compartments were correctly classified.

It was noted that the error matrices for the March and June images (see Tables 4.2.3

and 4.2.4) reflected much more misclassification than the equivalent test for the

January and April images (see Table 4.2.5 and Table 4.2.6). There was a much

greater separation of classes in the latter two images, with many of the classes

having a 100% correct classification. While there was no obvious reason for this

difference, it is thought that because the ground-truthing for these images was much

more intensive than for the first two images, it enabled better training sites to be

established, which, in turn, produced a more accurate classification.

When considering the classification on compartments that were in the first two years

of a re-establishment cycle (Le. from planting to canopy closure), the density of
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vegetation appeared to be the most critical classification determinant, irrespective of

whether it was crop or weed. Compartments that had been weed-free at the time of

image acquisition were generally classified in one or more of the first 4 classes,

depending on the density of the crop. Compartments with either a substantial crop

cover or weed cover, or a combination of both tended to fall into the middle order

classes (Class 5 to Class 8, including Class 10). There was, however, too much

overlap between all of these classes to be able to successfully produce distinct

groupings. There also appeared to be a seasonal effect, where the annual weeds

died off in winter, and so produce a different spectral signature.

While it was clear that there were many cross-classifications within these groups of

classes, the errors all occurred within the class range, rather than being

misclassifications across the major class groupings, e.g. being classified as full

canopy or clear-felled.

An interesting point that was observed in the March image was in compartment

D05A, which was in the process of being weeded at the time of image acquisition.

One can clearly see the weeded area, classified as Class 4, crop/soil, and the non­

weeded portion, classified as Class 8, crop/weed. Unfortunately, this was the only

compartment where such a process could be identified, but it could provide a basis

from which it might be possible to highlight weeding operations more accurately, or

locate areas of potential weed problems.

A general observation that should be made about the use of such imagery is that a

significant amount of information can be gleaned through visual interpretation,

especially if one has ancillary information about the compartments being observed.

This would include knowing what species are planted, the age of the crops and

something about what operations have been done on the compartments. One can

identify areas of possible weed concentration within compartments; areas of either

good growth, where canopy closure has been reached ahead of the rest of the

compartment (e.g. see compartment D05A in the January image), or alternatively,

areas of poor growth where there appears to be bare soil in a compartment that has

otherwise reached a Class 9, pre-canopy closure stage.
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4.2.2.5 Unsupervised Classification

When comparing the results of the supervised and unsupervised classifications it

was found that the unsupervised classifications produced more consistent

distinctions between the classes. In addition a reduction in the number of classes

also gave greater separability. It was therefore concluded that an unsupervised

classification provided the best separation between classes, and would be adopted

as the main classification procedure. An additional advantage was that it was also a

much simpler procedure to implement. The initial unsupervised classification was run

using ten classes, based on the early ground-truthing identifying 10 possible classes.

It must be noted that the class numbers in the unsupervised classification bear NO

relationship with the equivalent numbers in the supervised classification classes, and

so should not be interpreted as being synonymous. Because of the apriori nature of

the supervised classes, compared to the post-priori nature of the unsupervised

classes, the differentiation between these classes was unrelated, and therefore

direct comparison between these two methods was not possible. An example of this

is seen in the fact that ten of the twelve supervised classes cover the first twelve

month period after clear-felling, compared to only five of the ten unsupervised

classes covering this same period.

4.2.2.6 Ten-Class Unsupervised Classification

The unsupervised classification process categorised the spectral values into ten

classes, which were defined as follows:

Class 1 Excluded (classified features outside of the compartments)

Class 2: Closed Canopy (usually soft gum)

Class 3: Closed Canopy (usually hard gum; mature pine)

Class 4: Closed Canopy (usually young pine; wattle)

Class 5: Pre-canopy Closure

Class 6: Crop/Soil/SlashlWeed

Class 7: Weed

Class 8: Crop/Soil/SlashlWeed

Class 9: Planted/Coppiced « 1 year old)

Class 10: Slash/Burnt (i.e. felled compartments)
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Descriptive categories were allocated to these classes, based on ground-truthed

data, from which it was found that these classes followed the general trend from

dense vegetative cover to no vegetative cover. Classes 2, 3 and 4 formed a distinct

grouping, as did Classes 9 and 10, with very minimal cross-classification between

them as groups. Classes 6, 7 and 8 also formed a unique group. However, within

these categories, classes could not be assigned definitive descriptive categories, as

there was not a clear differentiation between many of them, especially between

Classes 6, 7 and 8, which tended to cover a wide range of vegetation cover. Neither

were the genera linked to Classes 2, 3 and 4 absolute, but were allocated on the

basis of a general trend. Sample illustration sites of the Ten-Class Unsupervised

Classifications are given in Figure 4.2.3.

As with the Supervised Classification error matrices, the results for this classification

also produced overall probabilities of less than 0.05, showing that the classifications

were statistically significant, and therefore valid (see tables 4.2.7 to 4.2.11).

Regarding the closed canopy classes, mature pine and gum compartments were

generally classified as Class 2 or 3 in the summer image, but as Class 3 or 4 in the

winter image. Mature wattle canopy tended to be classified as Class 2 or 3 in the

summer image, but as Class 4 or 5 in the autumn and winter images. Examples of

this were seen in compartments E22, E23 and E33A in the March and June images

(see Figure 4.2.3 a, b). The Producer Accuracies for Class 2 varied from 50%

(however, there were two samples in this case, one of which was classified as Class

5) to 100%, with some cross-classification with Classes 3 and 4, where the accuracy

was not 100% (refer to Tables 4.2.7 to 4.2.11). This was not unexpected given the

proximity of these Class spectral values to Class 2.

Clear-felled areas, on the other hand, were classified as Class 10 fairly consistently

across all images and independent of species. Compartments E14, E18, E22 and

E23 in the January and April images illustrated this. Some portions of the clear-felled

compartments tended to be classified as Class 9, but this was not all that common.

These results were reflected in the error matrices as well, with the June, January

and April images all having Producer Accuracies above 95% for Class 10 (see

Tables 4.2.9 to 4.2.11). The March image Producer Accuracy dropped to 72% (Table

4.2.8).
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Fig.a Ten-Class Unsupervised Classification Image: March 2002 Fig.b Ten-Class Unsupervised Classification Image: June 2002

Fig.c Ten-Class Unsupervised Classification Image: January 2003 Fig.d Ten-Class Unsupervised Classification Image: April 2003

j
N

Figure 4.2.3 Ten-Class Unsupervised Classification Images
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Table 4.2.7 Error Matrix : Ten-Class Unsupervised Classification­

March 2002 to April 2003 Combined Image Data

Reference Row Incremental

Observed ~~~ro~M~~~OO~~~OO~OO~10Total Chi Square

Class 02 12 1 0 0 1 0 0 0 0 14 131.061

expected 1.021 0.438 0.656 0.438 0.583 0.802 1.750 3. 135 5.1 77

Classro 1 3 1 1 0 0 0 0 0 6 53.175

expected 0.438 0.188 0.28 1 0.188 0.250 0.344 0.750 1.344 2.2 19

Class 04 1 1 6 1 0 0 0 0 0 9 84.968

expec ted 0.656 0.28 1 0.422 0.281 0.375 0.516 1.125 2.0 16 3.328

Class 05 0 0 1 3 0 0 0 0 0 4 73.333

expected 0.292 0.125 0.188 0.125 0.167 0.229 0.500 0.896 1.479

Class 06 0 1 1 0 7 1 1 0 0 11 103.072
expected 0.802 0.344 0.516 0.344 0.458 0.630 1.375 2.464 4.068

Class 07 0 0 0 1 0 5 3 0 0 9 51.040
expected 0.656 0.28 1 0.422 0.281 0.375 0.516 1.125 2.016 3.328

Class 08 0 0 0 0 0 3 8 3 0 14 36.663
expected 1.021 0.438 0.656 0.438 0.583 0.802 1.750 3. 135 5. 177

Class 09 0 0 0 0 0 0 5 33 8 46 67.817
expected 3.354 1.438 2. 156 1.438 1.9 17 2.635 5.750 10.302 17.010

Class 10 0 0 0 0 0 2 7 7 63 79 65.477
expected 5.760 2.469 3.703 2.469 3.292 4.52 6 9.875 17.693 2 9.2 14

Columns 14 6 9 6 8 11 24 43 71 192 666.606
Total Grand Chi Square

Total Total

User
Accuracy

85.7%

50.0%

66.7%

75.0%

63.6%

55.6%

57.1%

71.7%

79.7%

72.9%
Overall

Accuracy
Producer Accuracy 85.7% 50.0% 66.7% 50.0% 87.5% 45.5% 33.3% 76.7%
Khat

64
0.000

a one-tailed test

Table 4.2.8 Error Matrix: Ten-Class Unsupervised Classification -March 2002 Image

Reference Row Incremental
Observed Class 02 Class 03 Class 05 Class 06 Class 07 Class 08 Class 09 Class 10 Total Chi Square
Class 02 10 0 0 0 0 0 0 0 10 55.833
expected 1.51 9 0.380 0.253 0.759 1.01 3 1.266 1.646 3.165

Class 03 2 2 0 0 0 0 0 0 4 28.917
expected 0.608 0.152 0.10 1 0.304 0.4 05 0.506 0.658 1.266

Class 05 0 0 2 0 0 0 0 0 2 77.000
expected 0.304 0.076 0.051 0. 152 0.203 0.253 0.329 0.633

Class 06 0 1 0 6 1 0 0 0 8 55.776
expected 1.215 0.304 0.203 0.608 0.810 1.013 1.316 2.532

Class 07 0 0 0 0 4 1 0 0 5 28.180
expected 0.759 0. 190 0. 12 7 0.380 0.506 0.633 0.823 1.582

Class 08 0 0 0 0 3 1 0 0 4 20.194
expected 0.608 0. 152 0. 101 0.304 0.405 0.506 0.658 1.266

Class 09 0 0 0 0 0 2 11 7 20 26.087
expected 3.038 0.759 0.506 1.519 2.025 2.532 3.29 1 6.329

Class 10 0 0 0 0 0 6 2 18 26 25.252
expected 3.949 0.987 0.658 1.975 2.633 3.291 4.2 78 8.228

Columns 12 3 2 6 8 10 13 25 79 317.239
Total Grand Chi Square

Total Total
OF
P

83.3% 66.7% 100.0% 100.0% 50.0% 10.0% 84.6% 72.0%

77

49
0.000

a one-tailed test

User
Accuracy

100.0%

50.0%

100.0%

75.0%

80.0%

25.0%

55.0%

69.2%

68.4%
Overall

Accuracy



Table 4.2.9 Error Matrix: Ten-Class Unsupervised Classification - June 2002 Image

Row Incremental

Observed Class 02 Class 04 Class 05 Class 08 Class 09 Class 10 Total Chi Square

Class 02 1 0 0 1 0 0 2 20 .750

expected 0.051 0.103 0.051 0.308 0.872 0.615

Class 04 0 2 0 0 0 0 2 37 .000

expected 0.051 0.103 0.051 0.308 0.872 0.615

Class 05 0 0 1 0 0 0 1 38 .000
expected 0.026 0.051 0.026 0.154 0.436 0.308

Class 08 0 0 0 3 2 0 5 8.535
expected 0.128 0.256 0.128 0.769 2.1 79 1.538

Class 09 0 0 0 1 13 0 14 14.158
expected 0.359 0.718 0.359 2.154 6.103 4.308

Class 10 0 0 0 1 2 12 15 17.245
expected 0.385 0.769 0.385 2.308 6.538 4.615

Columns 1 2 1 6 17 12 39 135.688
Total Grand Chi Square

Total Total

User
Accuracy

50.0%

100 .0%

100.0%

60.0%

92.9%

80 .0%

82 .1%
Overall

Accuracy
Producer Accuracy 100.0% 100.0% 100.0% 50 .0% 25

0.000
a one-tailed test

Table 4.2.10 Error Matrix: Ten-Class Unsupervised Classification -January 2003

Image

Reference Row Incremental
Observed Class 03 Class 04 Class 05 Class 07 Class 08 Class 09 Class 1( Total Chi Square
Class 03 1 1 0 0 0 0 0 2 17.500
expected 0.103 0.103 0.051 0.103 0.308 0.256 1.077

Class 04 0 1 1 0 0 0 0 2 27.250
expected 0.103 0.103 0.051 0.103 0.308 0.256 1.077

Class 05 1 0 0 0 0 0 0 1 18.500
expected 0.051 0.051 0.026 0.051 0.154 0.128 0.538

Class 07 0 0 0 0 1 0 0 1 5.500
expected 0.051 0.05 1 0.026 0.05 1 0.154 0.128 0.538

Class 08 0 0 0 0 3 0 0 3 16.500
expected 0.154 0.154 0.077 0.154 0.462 0.385 1.615

Class 09 0 0 0 0 2 3 1 6 10.343
expected 0.308 0.308 0.154 0.308 0.923 0.769 3.23 1

Class 10 0 0 0 2 0 2 20 24 11.502
expected 1.231 1.23 1 0.615 1.23 1 3.692 3.077 12.923

Columns 2 2 1 2 6 5 21 39 107.095
Total Grand Chi Square

Total Total
OF
P

50.0% 50.0% 0.0% 0.0% 50.0% 60.0% 95.2%
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36
0.000

a one-tailed test

User
Accuracy

50.0%

50.0%

0.0%

0.0%

100.0%

50.0%

83.3%

71.8%
Overall

Accuracy



Table 4.2.11 Error Matrix: Ten-Class Unsupervised Classification -April 2003 Image

50.0%

92 .9%

50 .0%

33.3%

50 .0%

100 .0%

100.0%

80 .0%
Overall

Accuracy

User
Accuracy

66 .7%

Reference Row Incremental
Observed Class 02 Class 04 Class 05 Class 06 Class 07 Class 08 Class 09 Class 1C Total Chi Square
Class 02 2 0 1 0 0 0 0 0 3 26 .167
expected 0.171 0.429 0.171 0.086 0.086 0.257 0.686 1.114

Class 04 0 3 0 0 0 0 0 0 3 18.000
expected 0.171 0.429 0.171 0.086 0.086 0.257 0.686 1.114

Class 05 0 1 1 0 0 0 0 0 2 10.250
expected 0.114 0.286 0.114 0.057 0.057 0.171 0.457 0.743

Class 06 0 1 0 1 0 0 0 0 2 19.000
expected 0.114 0.286 0.114 0.057 0.057 0.171 0.457 0.743

Class 07 0 0 0 0 1 2 0 0 3 24 .222
expected 0.171 0.429 0.171 0.086 0.086 0.257 0.686 1.114

Class 08 0 0 0 0 0 1 1 0 2 6.021
expected 0.114 0.286 0.114 0.057 0.057 0.171 0.457 0.743

Class 09 0 0 0 0 0 0 6 0 6 20.250
expected 0.343 0.857 0.343 0.171 0.171 0.514 1.371 2.229

Class 10 0 0 0 0 0 0 1 13 14 18.813
expected 0.800 2.000 0.800 0.400 0.400 1.200 3.200 5.200

Columns 2 5 2 1 1 3 8 13 35 142.722
Total Grand Chi Square

Total Total
0 0 0 0 0Producer Accuracy 100.0% 60 .0% 50 .0% 100 .0 Yo 100.0 Yo 33.3 Yo 75.0 Yo 100.0 Yo OF 49

Khat 0.745 P 0.000
The chi s uare test result of the observed fre uencies of our variables was si nificant usin a one-tailed test

As was noted in the supervised classification description, compartment E18 in the

January image illustrates a felling operation in progress, with the northern section

classified as Class 10, while the southern portion is classified as Class 2.

While the mature canopy and clear-felled areas were relatively accurately classified,

the intermediate classes were less accurately classified. The density of ground

cover, the season of acquisition and to some extent the species and its age all had

an effect.

Areas of young plantings that were relatively weed-free were classified as Class 9 or

Class 10 in all four images, Le. independent of season. Classification of portions of

these areas into Class 8 was also fairly frequent. Compartments E15 and E17 in the

January image were examples of this. Compartments with young plantings, but with

weed infestations tended to be classified into Classes 6, 7 and 8, usually in

combination with each other. This was also reflected by the error matrices, which

usually had a spread of values across these classes (see tables 4.2.7 to 4.2.11).
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However, irrespective of the season, compartments with a noticeable presence of

Class 7 indicated a strong possibility that weeds were a problem in those

compartments. This class often tended to appear in patches within the compartment,

rather than being the dominant class. This was reinforced by the fact that the

unplantable, open areas frequently had this class as a predominant class, especially

in the summer months. Attempts were made to have this class as a class on its own,

but its presence was very seldom dominant enough for it to produce a noticeable

classified group. However, it should be observed and noted where it does appear, as

it could serve as a useful warning of potential weed problems. Compartments 010,

E11, E28 and E29 illustrated this class well.

The seasonal variation that occurred in the mature canopy classification was

illustrative of a phenomenon noted with the unsupervised classification process,

which was that species played a role in how compartments were classified, in

addition to the actual ground cover and season of acquisition. This tended to

complicate the interpretation of the results somewhat. The reason for this variation in

classification is likely to be the seasonal variation in canopy density, as explained in

the supervised classification discussion (see section 4.2.1 .1 above), where the

winter canopy was less contiguous due to a reduction in leaf cover.

The cross-classifications displayed in the winter images were mainly due to the fact

that weed growth had to a large extent ceased, and what weed was present was

usually senescent and brown in colour. The spectral effect of this was to reduce its

signature to that close to bare soil, hence the classification into Class 9 or 10.

Therefore this classification did not always mean that a site was weed-free.

Careful analysis of all the classes in the Ten-Class Unsupervised Classification

across all!the images, together with a detailed inspection of the history records of all

operations that had occurred in the observed compartments during this same period,

enabled a classification flow diagram to be developed. This flow is documented in

Figure 4.2.4, and provided a key to understand and interpret the classification

results. It was from this diagram that the Four-Class Unsupervised Classification

process was devised, and implemented.

AO



Compartment
clearfelled

1

1 1
Slash: Burnt:

Class 10 Class 10

1 1
Coppiced or Planted: Planted:

Class 9/10 Class 9/10

I I
1

Weeded?

I
1 1
Yes: Kl r- No:

Class 9/10 Class 6/7/8
Weeding Op

I I
1

Pre-canopy
closure: Class 5

1
Note:

Closed Canopy: Soft Gum: Class 2
Hard Gum; Pine: Class 3

Class 2/3/4 Wattle; young Pine: Class ~

Figure 4.2.4 Process Flow of Class Allocation by Unsupervised Classification Model.

The process flow started with a compartment being clear-felled, where it was

classified as Class 10. Although there are two different treatment methods,

depending on whether the slash (or harvesting residue - see glossary) is burnt or

not, there was no differentiation between these two states at this stage. This

continued to be the case through the re-establishment phase, with no differentiation

between coppiced or planted crops. The first differentiation occurred once

substantial weed growth had occurred, with weedy compartments falling into

Classes 6, 7 or 8. Weed-free compartments, on the other hand, remained as Class 9

or 10. Weeded compartments also returned to this class, once weeding operations

had occurred. The final differentiation occurred with the closure of canopy cover

(Class 2, 3 or 4), with an intermediary step where the canopy was less dense, but
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approaching full closure (Class 5). As was noted above, there was some movement

between these two states over the course of the year due to seasonal effects and

species characteristics.

Bruzzone and Serpico (2000), support the logic behind this process in stating that a

more effective classification is achieved by reducing the number of features available

when defining a feature set as an input to the classifier.

4.2.2.7 Four-Class Unsupervised Classification

As the initial supervised classification analyses gave a strong indication that it would

be necessary to group signatures and classes, several alternative groupings were

tested, including five, four and three classes, by running the classifications and

visually comparing how a chosen set of compartments were classified, particularly in

terms of the process flow described in Figure 4.2.4. After these comparisons were

run between the various groupings it was found that the four-class classification

gave the clearest information. The main aim of the Four-Class Unsupervised

Classification was to attempt to improve the classification of compartments to

determine whether they were likely to be weed-free, or have a potential weed

problem. Figure 4.2.5 illustrates the Four-Class Unsupervised Classification. The

class descriptions for Four Class classification differs from the other classifications,

and is as follows:

Class 1 Closed Canopy (Dense Canopy) - equivalent to Ten-Class

Unsupervised Classes 2-4

Class 2 Pre-Canopy (Open Canopy) - equivalent to Ten-Class Unsupervised

Class 5

Class 3 Weedy - equivalent to Ten-Class Unsupervised Classes 6-8

Class 4 Weed-free (Also equivalent to clear-felled) - equivalent to Ten-Class

Unsupervised Classes 9-10 (see Section 4.2.2.6).

This classification produced mixed results, with only very general indications being

given as to whether there were weed problems or not, although the error matrices

again gave overall probabilities of less than 0.05 (see Tables 4.2.12 to 4.2.16).

However, the separation between standing and clear-felled was again very clear, as

is illustrated by compartments E14, E18, E22 and E23 when comparing the June

and January images (see Figure 4.2.5 b, c).
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Fig.a Four-Class Unsupervised Classification Image: March 2002

Fig.c Four-Class Unsupervised Classification Image: January 2003

~
~
~

Fig.b Four-Class Unsupervised Classification Image: June 2002

Fig.d Four -Class Unsupervised Classification Image: April 2003

Figure 4.2.5 Four-Class Unsupervised Classification Images
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The error matrix for the pooled data of all four images gave a producer accuracy of

90.7% for the Class 4, weed-free, which represented all felled compartments, or

newly planted areas that were weed-free (see Table 4.2.12). The balance of these,

Le. the misclassifications fell into Class 3, weedy (7.8%) or Class 2, pre-canopy

(1.6%). The differentiation between Class 1, full canopy and Class 2, pre-canopy

was less distinct, especially in the June image (Table 4.2.14), where the producer

accuracy was 50% for both classes. This was most probably due to the same reason

as discussed under Supervised Classification above, in terms of the seasonal effect

on canopy density, where some leaves either wilt or are shed in winter, thereby

reducing the canopy density. Overall, the producer accuracy of Class 1, full canopy,

was 76.5%, with the misclassified compartments (23.5%) being in Class 2, pre­

canopy. The equivalent value for Class 2, pre-canopy, was 80%, but with the

misclassified compartments falling into Class 3, weedy (20%). Both of these results

reflected the overlap expected across the continuum of values created by an

unsupervised classification process.

As far as monitoring the weed state was concerned, the March image of

compartment D05A illustrated the difference between a weedy and weed-free state,

where a weeding operation was in progress (the western portion was weedy, while

the eastern portion had been weeded). However, as the crop grew it became

increasingly difficult to distinguish between weed and crop, although it did follow the

general flow of figure 4.2.4, Le. from weedy to weed-free to pre-canopy to closed

canopy. Results from the error matrices reflected this (see Tables 4.2.13 to 4.2.16),

as is illustrated by Class 3, weedy, with a producer accuracy, for all images

combined, of 76.5%, with 14.7% being misclassified as Class 4, weed-free, and

8.8% being misclassified as Class 2, pre-canopy. In the April image (Table 4.2.16),

there was a producer accuracy of 100% for Class 3, weedy, but when compared to

the January image producer accuracy of 62.5% for this class (Table 4.2.15), there

did not appear to be a consistently accurate classification of this class. Replanted

stands less than a year old and unplanted stands tended to be classified into the

same class, "weed-free", even if there was weed present. An example of this is seen

when comparing compartments E14, E15 and E17 using the January and April

images.
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Table 4.2.12 Error Matrix: Four-Class Unsupervised Classification ­
Combined Data - All Ima es

Reference Row Incremental
Observed Class 01 Class 02 Class 03 Class 04 Total Chi Square
Class 01 13 0 0 0 13 136.118
expected 1.133 1.000 2.267 8.600

Class 02 4 12 3 2 21 79.628
expected 1.831 1.615 3.662 13.892

Class 03 0 3 26 10 39 67.288
expected 3.400 3.000 6.800 25.800

Class 04 0 0 5 117 122 48.787
expected 10.636 9.385 21.272 80.708

Columns 17 15 34 129 195 331.821
Total Grand Chi Square

Total Total

User
Accuracy

100.0%

57.1%

66.7%

95.9%

86.2%
Overall

Accuracy
Producer Accuracy 76.5% 80.0% 76.5% 9

0.000
a one-tailed test

Table 4.2.13 Error Matrix: Four-Class Unsupervised Classification ­
March 2002 Ima e

9
0.000

a one-tailed test

Reference Row Incremental
Observed Class 01 Class 02 Class 03 Class 04 Total Chi Square
Class 01 10 0 0 0 10 55.833
expected 1.519 0.633 1.772 6.076

Class 02 2 4 3 0 9 27.658
expected 1.367 0.570 1.595 5.468

Class 03 0 1 11 5 17 26.514
expected 2.582 1.076 3.013 10.329

Class 04 0 0 0 43 43 27.771
expected 6.532 2.722 7.620 26.127

Columns 12 5 14 48 79 137.775
Total Grand Chi Square

Total Total
Producer Accuracy 83.3% 80.0% 78.6%

User
Accuracy

100.0%

44.4%

64.7%

100.0%

86.1%
Overall

Accuracy

Compartment E14 was pure slash in January and bare soil in April, havlnq been

burnt in the intervening period. In both images it was classified as weed-free, which

was correct. Compartment E17 had been planted to wattle in January 2002, and

compartment E15 in February 2002. In both the January and April ground-truthing

exercises, E15 was much more weed-free than E17, but they had both been

classified into the same category. Compartment E17 could not be classed as weed­

free, and in both cases, required a weeding operation. Compartment E15 was

correctly classified, being SUbstantially weed-free at the times when these images
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were acquired. Compartment E15 also showed better growth and stocking than did

compartment E17.

Table 4.2.14 Error matrix: Four-Class Unsupervised Classification­
June 2002 Ima e

Reference Row Incremental

Observed Class 01 Class 02 Class 03 Class 04 Total Chi Square
Class 01 1 0 0 0 1 19.000
expected 0.050 0.050 0.150 0.750

Class 02 1 2 0 0 3 30.333
expected 0.150 0.150 0.450 2.250

Class 03 0 0 4 4 8 8.000
expected 0.400 0.400 1.200 6.000

Class 04 0 0 2 26 28 5.143
expected 1.400 1.400 4.200 21.000

Columns 2 2 6 30 40 62.476
Total Grand Chi Square

Total Total

User
Accuracy

100.0%

66.7%

50.0%

92.9%

82.5%
Overall

Accuracy
Producer Accuracy 50.0% 100.0% 66.7% 9

0.000
a one-tailed test

Table 4.2.15 Error Matrix: Four-Class Unsupervised Classification ­
Janua 2003 Ima e

9
0.000

a one-tailed test

Reference Row Incremental
Observed Class 01 Class 02 Class 03 Class 04 Total Chi Square
Class 01 0 0 0 0 0
expected 0.000 0.000 0.000 0.000

Class 02 0 3 0 2 5 20.103
expected 0.000 0.375 1.000 3.625

Class 03 0 0 5 0 5 20.000
expected 0.000 0.375 1.000 3.625

Class 04 0 0 3 27 30 5.017
expected 0.000 2.250 6.000 21.750

Columns 0 3 8 29 40 45.121
Total Grand Chi Square

Total Total
100.0% 62.5% 93.1% OF

User
Accuracy

60.0%

100.0%

90.0%

87.5%
Overall

Accuracy

Compartments older than a year tended to be classified as a Class 2, weedy status,

passing onto the Class 3, pre-canopy status as they matured. However, there was

some cross-classification between the weedy and pre-canopy closure states,

depending on the season and density of ground cover. The January and April

images of compartments E28, E29 and E35 illustrated this.
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Table 4.2.16 Error Matrix: Four-Class Unsupervised Classification ­
April 2003 Ima e

Reference Row Incremental
Observed Class 01 Class 02 Class 03 Class 04 Total Chi Square
Class 01 2 0 0 0 2 22.000
expected 0.167 0.278 0.333 1.222

Class 02 1 3 0 0 4 15.200
expected 0.333 0.556 0.667 2.444

Class 03 0 2 6 1 9 18.382
expected 0.750 1.250 1.500 5.500

Class 04 0 0 0 21 21 13.364
expected 1.750 2.917 3.500 12.833

Columns 3 5 6 22 36 68.945
Total Grand Chi Square

Total Total

User
Accuracy

100.0%

75.0%

66.7%

100.0%

88.9%
Overall

Accuracy
Producer Accuracy 66.7% 60.0% 100.0% 9

0.000
a one-tailed test

In an attempt to improve the weed status classification, the Ten-Class Unsupervised

Classification Class 7 was extracted as a unique layer, and overlain on the Four­

Class Unsupervised Classification, where a visual comparison was made to see how

closely it corresponded with the ''weedy'' class classification. While it corresponded

very closely with the "weedy" class, in that it only appeared where this class was

present, it did not appear to show much more than where there was a real

concentration of weed. In some compartments (e.g. D05A in the March image) it

covered the majority of the compartment. However, this was seldom the case, with

the bulk of this class appearing as concentrated patches within an overall ''weedy''

class compartment. When assessing the usefulness of the Class 7 data, there was

unfortunately insufficient ground-truth data to identify, with certainty, what this class

did actually represent. Despite this, it does appear to have the potential to be a key

indicator of the presence of major weed concentrations. When results of the Four­

Class Unsupervised Classification are visually assessed, it was very useful to have

the Class 7 data overlain as well, in order to flag these compartments for further

investigation.

The lack of very clear thresholds between the weedy and weed-free states meant

that one could not assign a definite weedy or weed-free status to any specific

compartment. At best one could only assign a possible "flaq" to a compartment that
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would act as warning that a compartment might need to be checked in the field to

determine its actual status.

The age of the crop, the density of the vegetation cover (both crop and weed), and

the season in which the image was acquired all affected the outcome of the Four­

class unsupervised classification. A stand could move from a pre-canopy closure

status to a "weed-free" status simply because some of the crop canopy density was

lost as a result of a reduction in growth vigour, exposing the lower story weed

vegetation or ground cover. Compartment E35 is an example of this when

comparing the January and April images. This was also reflected in the results

obtained by the supervised classification.

However, where the normal sequence of forestry operations was followed, one could

estimate the most likely status that the unsupervised classification represented when

interpreted in conjunction with the operational history recorded in the database.

4.2.2.8 NOVI Value Estimation

The overall impression gained when observing the results of the NOVI images was

that it mirrored both the Ten- and Four-Class Unsupervised Classification results,

both in its strengths and weaknesses (see Figure 4.2.6). It was able to clearly

identify clear-felled areas, and areas of closed canopy, but it was not very successful

in separating weedy from non-weedy areas. A pattern similar to that derived by the

unsupervised classifications was noted, where weedy or more densely vegetated

areas had higher values (e.g. greater than 0.37 in compartments 005A and 010 in

the March NOVI image) than the weed-free areas, which had values ranging from

0.05 to 0.17 in the March image.

What was found was that classes with higher vegetative cover had indices close to

1, while areas of low vegetative cover had indices less than 0 (e.g. clear-felled

compartments ranged from -0.06 to -0.15, with burnt compartments having values

close to -1). Although the absolute values of these figures were affected by the

season in which the image was acquired, the ranges tended to move in the same

proportion, thus maintaining some form of identifiable range. As NOVI is actually a

measure of the degree of "greenness", this result was expected. However, this range

was narrower than anticipated.
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Fig.a NDVI Value Estimation : March 2002

Fig.c NDV I Value Estim ation : January 2003

~
N

Figure 4.2.6 NDVI Value Estimation Images

89

Fig.d NDVI Value Estimati on : April 2004



When one follows the progression of the NDVI values across the four images

(March, June, January to April - see Figure 4.2.6), one can identify the same pattern

as seen in the Four-Class Unsupervised Classification. From a weedy western

portion and weed-free eastern portion in the March image through a weedy or an

intermediate crop growth stage in the June and January images, to a pre-canopy

closure stage in the April image, the same grouping of pixels can be detected. The

value range within each of these groups is not sufficiently discrete to be able to

reclassify them into new classes of separable features.

A point of interest was noted in the January image in compartment E17, a portion of

which was being thinned at the time of image acquisition. This portion had NDVI

values ranging from 0.13 to 0.20, compared to the unthinned section which, having a

higher vegetation density, returned values in the order of 0.23 to 0.40. However, in

the adjacent compartment E15, which had been thinned several months earlier, the

same range of values was returned, depending on whether there were weed patches

present or not.

The fact that a greater degree of separation was not possible using NDVI values was

rather disappointing, as theoretically, the best chance of separating spectral

signatures of different vegetation classes should be provided by a process based on

vegetative indices, such as the NDVI.

In terms of monitoring weed cover, it was not possible to clearly distinguish weedy

from non-weedy areas. No additional separation between crop and weed or even

crop and soil could be achieved, compared to that which was achieved using either

the supervised or unsupervised classification processes.

Concerning the thinning that was able to be identified in the NDVI image

(compartment E17 - see note above), one could not run a classification across the

image using these values to separate thinned, weed-free stands from weedy stands.

However, it was interesting to note that this thinning was identifiable in the NDVI

image, whereas it was not identifiable in the unsupervised classification images

(either the Ten-Class or the Four-Class). It could well indicate a possible avenue for

further research.
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4.2.3 Change Detection

4.2.3.1 Assisted Change Detection: "Classified" Images

The results of the Ten-Class Unsupervised Classification assisted change detection

process are described under this section, and illustrated in Figure 4.2.7. There were

three resultant change images, March to June, June to January and January to April.

In each case, if the class had changed, the change image reflected the new class

(Le. the class as it was in the later image). Where there was no change, it was

unclassified. The error matrices again gave overall probabilities of less than 0.05,

indicating a good result for the overall classification (see Tables 4.2.17 to 4.2.20),

but there was cross-classification between some classes.

As identifying clear-felled compartments was one of the primary focuses of change

detection in this study, it was important that this could be reliably identified. The error

matrix for the "Classified" Image pooled data change detection procedures, showed

that Class 10, clear-felled, could be identified with a producer accuracy of 97.9%

(see Table 4.2.17). The misclassified portion (2.1 %) fell into Class 9. Both the

March/June (Table 4.2.18) and January/April (Table 4.2.20) change detection

images had 100% correct classification for this class. In terms of a visual

assessment, when one compares the patterns of compartments E14, E18 and E22

over all three change images, one can readily pick up the change from closed

canopy to felled (see Figure 4.2.7).

The other change of interest was that of weed status. Compartment E35 illustrates a

normal development pattern from weed-free in the early change image to pre­

canopy in the latter changes, which is what one would expect. The pattern of

Compartment E28 also shows a reasonably normal development pattern, moving

from weed-free initially to a weedy status, with some pre-canopy development in the

June/January image, but reverting back to a very weedy status in the January/April

image. While a strong weed presence was noted in both the January and April

ground-truthing, the weed was more pronounced in January than in April. However,

the tree growth was much greater in April, and so this might have been misclassified

as weed growth, rather than crop growth. The problem is that this was not consistent

across the images, and so it is difficult to draw specific conclusions.
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Fig. a Change: March to June 2002

Fig. b Change: June 2002 to January 2003

Fig. c Change : January to April 2003

Figure 4.2.7 Assisted Change Detection: "Classified' Images
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Table 4.2.17 Error Matrix: Classified Image Change Detection ­
Combined Data - All Ima es

Reference Row Incremental

Observed ~~~~~~~~~~~~~~~~~10 Total Chi Square

Class 02 2 1 0 0 1 0 0 0 0 4 78.167

expected 0.069 0.103 0.3 10 0. 138 0.069 0.103 0.483 1.103 1.621

Class 03 0 1 1 1 0 0 0 0 0 3 23.8 52

expected 0.052 0.078 0.233 0.103 0.052 0.078 0.362 0.828 1.21 6

Class 04 0 1 5 1 0 0 0 0 0 7 48.698

expected 0.121 0.181 0.543 0.241 0.12 1 0.181 0.845 1.931 2.83 6

Class 05 0 0 2 1 0 0 0 0 0 3 23.852

expected 0.052 0.078 0.233 0. 103 0.052 0.078 0.362 0.828 1.216

Class 06 0 0 1 0 1 0 1 0 0 3 23.392

expected 0.052 0.078 0.233 0.103 0.052 0.0 78 0.362 0.828 1.2 16

Class 07 0 0 0 1 0 1 2 0 0 4 21 .202
expected 0.069 0.103 0.3 10 0.138 0.069 0.103 0.483 1.103 1.621

Class 08 0 0 0 0 0 0 7 3 0 10 33.86 3
expected 0.172 0.259 0.776 0.345 0.172 0.259 1.207 2.759 4.052

Class 09 0 0 0 0 0 0 3 24 1 28 49.323
expected 0.483 0.724 2. 172 0.966 0.483 0.724 3.379 7.724 11.345

Class 10 0 0 0 0 0 2 1 5 46 54 47.408
expected 0.931 1.397 4.190 1.862 0.931 1.397 6.5 17 14.89 7 21.879

Col umns 2 3 9 4 2 3 14 32 47 116 349.756
Total Grand Ch/Square

Total Total

User
Accuracy

50 .0%

33.3%

71 .4%

33.3%

33.3%

25.0%

70 .0%

85.7%

85.2%

75 .9%
Overall

Accuracy
64

0.000
a one-tailed test

Applying the process flow described in Figure 4.2.4 to the change detection image,

one could quickly see what class the compartment had changed to, and so see

where in the process it was placed. This then allowed one to derive a status for that

compartment, which could then be compared to the database in order to ascertain

whether this reflected what the status of the compartment was on the ground.

However, as had been the case throughout this study, while the two extreme states

(full canopy or felled) could be determined with a high degree of accuracy, the

intermediate states of weedy and weed-free still had a great deal of overlap, which

did not allow a categorical allocation to a specific class. This was further complicated

by the presence of more than one class within a single compartment, even where

this presence had been correctly determined.

When comparing the error matrices results, the cross-classification between the

classes that reflect a weedy or highly vegetated state (Classes 6, 7 and 8) is

apparent, with producer accuracies of 50%, 33.3% and 50% respectively (see

Table 4.2.17). There is also cross-classification with Classes 3, 4 or 5.
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Table 4.2.18 Error Matrix: Classified Image Change Detection ­
March/June 2002 Ima e

Reference Row Incremental
Observed Class 03 Class 04 Class 05 Class 07 Class OS Class 09 Class 10 Total Chi Square

Class 03 1 0 0 1 0 0 0 2 38.000
expected 0.050 0.100 0.050 0.050 0.250 0.850 0.650

Class 04 0 1 0 0 0 0 0 1 19.000
expected 0.025 0.050 0.025 0.025 0.125 0.425 0.325

Class 05 0 1 0 0 0 0 0 1 19.000
expected 0.025 0.050 0.025 0.025 0.125 0.425 0.325

Class 07 0 0 1 0 0 0 0 1 39.000
expected 0.025 0.050 0.025 0.025 0.125 0.425 0.325

Class OS 0 0 0 0 3 2 0 5 11.282
expected 0.125 0.250 0.125 0.125 0.625 2.125 1.625

Class 09 0 0 0 0 1 14 0 15 16.278
expected 0.375 0.750 0.375 0.375 1.875 6.375 4.875

Class 10 0 0 0 0 1 1 13 15 20.357
expected 0.375 0.750 0.375 0.375 1.875 6.375 4.875

Columns 1 2 1 1 5 17 13 40 162.918
Total Grand Chi Square

Total Total

User
Accuracy

50.0%

100.0%

0.0%

0.0%

60.0%

93.3%

86.7%

80.0%
Overall

Accuracy

a one-tailed test

OF
P

100.0% 50.0% 0.0% 0.0% 60.0% 82.4% 100.0%

36
0.000

Table 4.2.19 Error Matrix: Classified Image Change Detection ­
June 2002/Janua 2003 Image

66 .7%

80 .0%

50.0%

0.0%

100.0%

User
Accuracy

50.0%

72.5%
Overall

Accuracy
25

0.000
a one-tailed test

0.0% 50.0% 50.0% 95 .2% OF50.0 Yo 66.7%

Row Incremental
Observed Class 02 Class 04 Class 05 Class 08 Class 09 Class 10 Total Chi Square
Class 02 1 1 0 0 0 0 2 14.667
expected 0.100 0.150 0.100 0.300 0.300 1.050

Class 04 1 2 0 0 0 0 3 21.444
expected 0.150 0.225 0.150 0.450 0.450 1.575

Class 05 0 0 0 1 0 0 1 5.667
expected 0.050 0.075 0.050 0.150 0.150 0.525

Class 08 0 0 0 3 0 0 3 17 .000
expected 0.150 0.225 0.150 0.450 0.450 1.575

Class 09 0 0 0 2 3 1 6 8.762
expected 0.300 0.450 0.300 0.900 0.900 3.150

Class 10 0 0 2 0 3 20 25 11.076
expected 1.250 1.875 1.250 3.750 3.750 13.125

Columns 2 3 2 6 6 21 40 78.616
Total Grand Chi Square

Total Total
0
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Table 4.2.20 Error Matrix: Classified Image Change Detection­

January/April 2003 Image

Reference Row Inc remental

Observed Class 02 Class 03 Class 05 Class 06 Class 07 Class 08 Class 09 Class 10 Total Chi Square

Class 02 2 0 1 0 0 0 0 0 3 27.000

expected 0.167 0.4 17 0.167 0.083 0.083 0.250 0.750 1.083

Class 03 0 3 0 0 0 0 0 0 3 18.600

expected 0.167 0.417 0.167 0.083 0.083 0.250 0.750 1.083

Class 05 0 1 1 0 0 0 0 0 2 10.600

expected 0.111 0.278 0.1 11 0.056 0.056 0. 167 0.500 0.722

Class 06 0 1 0 1 0 0 0 0 2 19.600

expected 0.1 11 0.278 0.11 1 0.056 0.056 0.167 0.500 0.722

Class 07 0 0 0 0 1 2 0 0 3 25.000
expected 0.167 0.41 7 0.167 0.083 0.083 0.250 0.750 1.083

Class 08 0 0 0 0 0 1 1 0 2 6.000
expected 0.111 0.278 0.111 0.056 0.056 0.167 0.500 0.722

Class 09 0 0 0 0 0 0 7 0 7 21.000
expected 0.389 0.972 0.389 0.194 0.194 0.583 1.750 2.528

Class 10 0 0 0 0 0 0 1 13 14 19.714
expected 0.778 1.944 0.778 0.389 0.389 1.16 7 3.500 5.056

Columns 2 5 2 1 1 3 9 13 36 147.514
Total Grand Ch/Square

Total Total

User
Accuracy

66.7%

100.0%

50.0%

50.0%

33.3%

50.0%

100.0%

92.9%

80.6%
Overall

Accuracy
OF 49
P 0.000

100.0% 60.0% 50.0% 100.0% 100.0% 33.3% 77.8% 100.0%

a one-tailed test

Because of the tendency of compartments to change between weedy and weed­

free, depending on the season and what silvicultural operations have occurred in

them, it is not always possible to arrive at the correct status of a compartment

without reference to its history. An example of this is seen in compartment E11,

where the June/January change image shows it to be in a weedy status, while the

January/April change image shows it to be in a weed-free status. Viewing the latter

image in isolation would not tell one whether it was recently planted, or whether it

had been weeded at some time between the two images. However, by knowing its

history, Le. when it had been planted, one could then arrive at a correct conclusion

as to its status.

An alternative method would have been to calculate the area of each class within a

compartment, and by ranking these areas, allocate a dominant class. However, this

would not necessarily have provided the information that would give the best

interpretation of events in the compartment, particularly as such a ranking based on

the classification would have classification errors carried over into it.
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4.2.3.2 Assisted Change Detection: "Quantified Classified" Images

This section focuses on the results obtained from the change detection procedure

applied to the Four-Class Unsupervised Classification images in order to establish

what change, if any, had occurred. Figure 4.2.8 illustrates these results. This

process differed from the previous process above in that both the before and after

classes were given in the change image, so that one could determine exactly what

change had occurred. This was achieved by assigning a two-digit code to each

change class, such that the first digit was the class TO WHICH it had changed (Le.

the class it was in the later image), and the second digit was the class FROM

WHICH it had changed (Le. the class it was in the earlier image). The error matrices

produced the same overall probability results, Le. less than 0.05 (see Table 4.2.21)

The primary focus of interest in this change detection process was the change in

weed status. While the Four-Class images gave a total of twelve combinations, two

weed status classes were of particular interest. These were the change from weed­

free to weedy (code 34 in the two digit code, Le. to class 3, from class 4), and weedy

to weed-free (code 43). The former was used to flag possible problem

compartments, while the latter was used to see where progress had been made. As

a visual assessment, a good example of this could be seen in compartment D10A,

where in the March/June change image there was a weed increase, while in the

June/January image there was both an increase and decrease in patches, but in the

January/April image there was a weed reduction (see Figure 4.2.8). In the latter

image, the reduction was due to weeding operations having occurred between

January and April. The ground-truthing in January showed that this compartment

had a high weed density at the time, especially compared to the ground-truthing

undertaken in June. The April ground-truthing showed that there was not much weed

at that time. Thus, this change detection was shown to be accurate. When assessing

the classification accuracy reflected in the Chi-square tests, the accuracy of the

Class 43, weedy to weed-free status, was 100%, while that of Class 34, weed-free to

weedy, was only 75.0% (see Table 4.2.21). The remainder were classified as

unchanged. This implied that where weeding operations had occurred, they could be

detected. However, there was less certainty in detecting that weed was becoming a

problem.
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.--------------,--,""'"-----\--'1 Fig. a Change: March to June 2002

Fig. b Change: June 2002 to January 2003

Rg. c Change: January to April 2003

Figure 4.2.8 Assisted Change Detection: "Quantified Classified" Images
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Table 4.2.21 Error Matrix: Quantified Classified Image Change Detection­

Combined Data - All Images

Reference No Row Incremental
Observed Class 12 Class 24 Class 34 Class 41 Class 42 Class 43 Change Total Chi Square
Class 12 4 0 0 0 0 0 0 4 99.000
expected 0.155 0.078 0.505 0.117 1.049 0.194 1.903

Class 24 0 2 0 0 0 0 0 2 101.000
expected 0.078 0.039 0.252 0.058 0.524 0.097 0.951

Class 34 0 0 9 0 0 0 3 12 43.057
expected 0.466 0.233 1.515 0.350 3.146 0.583 5.709

Class 41 0 0 0 3 0 0 0 3 100.000
expected 0.117 0.058 0.379 0.087 0.786 0.146 1.427

Class 42 0 0 0 0 26 0 0 26 73.185
expected 1.010 0.505 3.282 0.757 6.816 1.262 12.369

Class 43 0 0 0 0 0 5 0 5 98.000
expected 0.194 0.097 0.631 0.146 1.311 0.243 2.379

No Change 0 0 4 0 1 0 46 51 38.775
expected 1.981 0.990 6.437 1.485 13.369 2.476 24.262

Columns 4 2 13 3 27 5 49 103 553.017
Total Grand Chi Square

Total Total

User
Accuracy

100.0%

100.0%

75.0%

100.0%

100.0%

100.0%

90.2%

92.2%
Overall

Accuracy
OF
P

100.0% 100.0% 69.2% 100.0% 96.3% 100.0% 93.9%

36
0.000

It was also noted that the change detection image differentiated between stands that

were bare soil or slash from those that were newly planted (with or without weed).

This is seen when comparing compartments E15 and E17 with E14 and E18 in the

June/January change image. There was no separation between any of these

compartments in the January Four-Class unsupervised image. However, in the

change image, there was a clear distinction between the two groups (soil/slash vs.

planted/weed-free/weedy). The Ten-Class unsupervised image did show a degree of

separation between these two groups, but still with considerable overlap.

Another change class of interest was that of the change from standing to felled (or

closed canopy to weed-free). Although this change was a focus of the Assisted

"Classified" Change Detection procedure (see section 4.2.3.1), it was also of

concern in this process as it could be used as a confirmation of the results obtained

above. The class codes of interest for clear-felling were code 41 (closed canopy to

weed-free) or 42 (pre-canopy to weed-free). Compartments E14, E18 and E22

illustrated this well over all three change detection images, in that there was a

98



change to pre-canopy status in the March/June image (due to the winter slow-down

in growth), a change to felled status in the June/January image and no change in the

January/April image. All these conditions were confirmed as correct by the ground­

truthing field observations. The error matrix also reflected this, with classification

accuracies of 96.3% recorded (see Table 4.2.21).

In order to confirm the ability of the "Quantified Classified" Change Detection

process to accurately detect clear-felled stands from standing compartments, which

was the primary concern of this study, a further test was done. In this test a sample

of 360 compartments that were classified as felled or standing (including

compartments that were partly felled) was tested for its level of accuracy. The error

matrix for this data set produced a classification accuracy of 100%, with a kappa

value (Khat) of 1.00 (see Table 4.2.22). The remaining change classes were of less

interest as they covered small increases in vegetation density (either crop, weed or

both) or the change to pre-canopy or closed canopy status. While they assisted in

the interpretation of the change process over time, they did not add much new

information in terms of weed density or infestation.

Table 4.2.22 Error Matrix: Quantified Classified Image Change Detection - Felled vs.

Standing Accuracy Assessment

Reference Row Incremental User
Observed Felled Standing Total Chi Square Accuracy
Felled 145 0 145 215.000 100.0%
expected 58.403 86.597

Standing 0 215 215 145.000 100.0%
expected 86.597 128.403

Columns 145 215 360 360.000 100.0%
Total Grand Chi Square Overall

Total Total Accuracv
1

0.000
OF
P

100.0%100.0%Producer Accuracy
Khat 1.000
The chi s uare test result of the observed fre uencies was si nificant usin a one-tailed test

A very useful feature with this method was its ability to show the exact state of

change in terms of what the original state was, and to what state the pixel had

changed. The "Classified" Image process described above (section 4.2.3.1) did not

describe the change in this manner, but simply showed the new change state.
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Cohen and Fiorella (1999) noted this factor when comparing image differencing and

CVA to composite analysis, stating it as a disadvantage of composite analysis in not

describing the exact nature of the change. Although the "Quantified Classified"

Change Detection methodology could not be described as a pure composite analysis

method, this study supports that contention, in that this methodology was of more

use in describing the change than the "Classified" Image Change Detection.

As was the case with the other methods, there was still limited success in being able

to clearly differentiate between weed and crop, despite the apparent increase or

decrease in the weedy class. However, a major finding was the ability of this

Assisted "Quantified Classified" Change Detection method to distinguish between

the soil/slash classes and the weedy/weed-free classes, so demonstrating the added

information value obtained through running this procedure, even though it added

another step to the whole process.

4.2.3.3 NDVI Image Differencing Change Detection

The NDVI change detection routine produced two change images for each routine

run. The one was simply an image (known in this study as an NDVI change image)

that returned a value indicating the amount each pixel had changed by after

comparing the two (before; after) images. This was either a positive value for an

increase in value, or a negative value for a decrease in value. The second image

was a difference image (known as an NDVI difference image) showing all change

above a user-defined threshold. For the purposes of this study a threshold of 25%

was chosen, after several thresholds were visually tested.

The NDVI change image, illustrated in Figure 4.2.9, gave useful indications of trends

occurring over time. What was also of interest was that it gave slightly more detail of

what change occurred within compartments, than was the case with either the Ten­

Class or the Four-Class Unsupervised Classification. An example of this is seen in

compartment D10A in the March/June NDVI change image (see Figure 4.2.9a),

where a portion of the compartment increased in NDVI values (Le. there was an

increase in growth), while another portion decreased in value, indicating a decrease

in growth. When one compared this result against the same area in the

unsupervised classification images, neither of these reflected this change. In the

Four-Class image, the bulk of the compartment was classified as "weed increase",
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Figure 4.2.9 NDVI Change Images
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Fig. a Change March to June 2002

Fig. b Change: June 2002 to January 2003

Fig. c Change: January to April 2003



and in the Ten-Class image it was classified as Class 8, Le. a "weedy" class. In

compartment E28, a similar classification occurred as in compartment D10A (Le. a

portion had an increase in NDVI, and another part had a decrease in NDVI). In this

case, the Four-Class image classified the area of decrease as a "weed reduction",

and the area of increase as "no change". These patterns were repeated across all

three NDVI change images. Without more detailed ground-truthing data it was not

possible to relate these patterns to the presence or absence of weed, as opposed to

crop, but it does strengthen the possibility of further research being able to identify a

methodology that can do so.

What was encouraging was that clear-fellings were again very distinct (see

compartments E14, E18 and E22 in the June/January NDVI change image, Figure

4.2.9b). In addition to being very distinct they were also very uniformly classified

across the whole compartment. The only exception was, as expected, where a

compartment was only partially felled. This was in contrast to the variation displayed

for any other state. This was also noteworthy in view of the unsupervised

classifications' inability to distinguish between clear-felled (Le. bare soil or slash) and

newly planted or weeded areas. An example of this is seen in the June/January

NDVI change image, where compartments E15 and E17 (planted, with some weed

present) are both clearly different from E14 and E18 (clear-felled).

The NDVI Difference image data (see Figure 4.2.10) did not add much new

information, apart from confirming trends identified in the NDVI change image. The

only operation that exceeded the 25% threshold level was that of the clear-felling,

which simply provided further confirmation that clear-fellings were readily detectable

(again, compartments E14, E18 and E22 in the June/January difference image

provide examples of this).

The only other change classes described were all below the 25% threshold level and

fell into the "some decrease" or "some increase" classes. These were much too

general to supply specific data as to the status of a compartment, but merely showed

the general trend over the change period being monitored.

Because of the slow growth rate of forest crops there was never any increase in

NDVI change large enough to exceed the 25% threshold level.
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Figure 4.2.10 NDVI Image Differencing Images
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The NDVI difference images were dependent on where the thresholds were set and

using 25% as a threshold, only clear-felling was detected. However, setting lower

thresholds produced images that showed too much change to really be effective in

highlighting true change. If sufficient ground-truthing were done within compartments

to determine the status of each portion of change reflected in the NDVI change

image, it might then be possible to adjust the threshold levels on the NDVI difference

image such that additional information is produced and when interpreted in

conjunction with the NDVI change image, could supply useful information. However,

this is an area that requires more research to test this. Possibly utilising the "change­

versus-no change binary mask" method suggested by Lillesand and Kiefer, 2000,

would aid the identification of suitable threshold levels.

4.2.4 Comparison between Classification Results and Compartment Status in

FMS

By interpreting the records of operations in FMS, a compartment status could be

inferred. For example, if the database recorded that a weeding operation had been

done shortly before an image had been captured, one could assume that the

compartment should be weed-free. The classification results were compared to the

inferred compartment status in the forestry database (see Table 4.2.23). Overall, the

classification results reflected what was recorded as compartment status in the

database. A sample of 50 compartments from the January image was tested against

the database, and produced the following percentage agreement:

Supervised Classification : 66%

Unsupervised Ten-Class Classification : 88%

Unsupervised Four-Class Classification : 86%

"Classified" Image Change Detection : 86%

"Quantified Classified" Change Detection : 90%

There was a 100% agreement between both the clear-felled and closed canopy

classes and their status in the database. However, in the case of six compartments

tested (Le.12% of the total of 50), the difference in status between the classified

images and the database was such that it indicated that this difference was not due

to a misclassification, but reflected a discrepancy between the status on the ground
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(as recorded by the classifications) and the recorded status in the database. In all

cases, the status involved was the weed status.

Table 4.2.23 Sample of the Comparison between Classification Data and FMS

Forestry Database

FMS Compt. Superv. Unsup Unsup. "Classified" "Quantif.

Compt Month Record Status Classific. 10-Class 4-Class CO* Class". CO

005A Feb.'02 Weeding Weed- Soil/Crop Soil/Slash Weed-free N/A N/A

Op. free Weed Weedy Weedy

010 Jan.'03 No Ops. Weedy Weed Weedy Weedy Weedy Weed Incr.

E14 Jan.'03 Felling Felled Slash Soil Weed-free Soil Felled
Op.

E17 Apr.'02 Weeding Weed- CroplWeed Soil/Slash Weed-free Soil Unchanged
Op. free

E18 Jan.'03 Felling Felled Slash Soil Weed-free Soil Felled
Op.

E28 Mar.'02 Weeding Weed- Soil Soil/Slash Weed-free N/A N/A
Op. free

*(CD =change detection)

As can be seen from Table 4.2.23, by interpreting the FMS record to produce a

compartment status, a meaningful comparison can be produced.

An example of this is seen with compartment E14, which was reported, in FMS, as

felled in January 2003, and therefore should have been classified as such in the

imagery. All the classes allocated by the classification procedures were classes

equivalent to clear-felled stands (soil; slash; weed-free etc.) Compartments D05A,

E17 and E28 had weeding operations reported in various months, and when the

closest image to that was queried, the classified record indicated agreement with a

weed-free status (Le. weed-free; soil/slash, soil etc.)

What was of interest was that, over the period that this study covered (Le. March

2002 to April 2003), seven compartments that were classified by the imagery as

being felled were not recorded as such in the database. The reasons why these

compartments had not been recorded as felled in the forestry database were not

established, but it did show that the processes applied in this study could highlight

such anomalies, which could then be followed up in an operational application of
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these procedures. This is reinforced by the results from the comparison of the 50

compartments described above, and demonstrates the validity of the hypothesis.

4.2.5 General Discussion

4.2.5.1 Effect of Mixed Pixels

When one examined every image, irrespective of whether it was a raw image or a

classified one, the boundaries of compartments consisted of mixed pixels. The only

exception was where the canopy was the same height and type for both adjacent

compartments.

The effect of these mixed pixels was to add additional classes that were either

incorrect or were so small in relation to the rest of the compartment as to be

irrelevant to any classification. However, when a process such as a zonal statistical

function was run on the data these mixed pixels were included and introduced some

confusion into the process.

One way in which this could have been avoided was to buffer all compartment

boundaries with at least a 30 m buffer (Le. one pixel width) and only run processes

using the inner pixels of the resultant polygons. A disadvantage with this process is

that it would negatively affect narrow compartments.

Rather than creating a more complicated data set, it was decided to ignore edge

pixels in any visual assessment. It was initially anticipated that the results from such

automated processes as the zonal statistics function were only important to

determine the dominant class, and this would not be significantly affected by the

inclusion of minor pixel values that the mixed pixels would represent. Therefore, it

was felt that the inclusion of these minor classes was not of sufficient concern as to

necessitate the additional processing.

4.2.5.2 Effects of Spatial and Spectral Resolution

The basic cause of the difficulty in identifying weed status was the spatial resolution

available with the Landsat 7 imagery. In terms of the basic unit of observation being

the compartment, and not the pixel, this spatial resolution was not problematic, a fact

supported by the good fit between the spectral groupings that represented the

compartments and the compartment vector data that was overlain on it. In contrast
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to Varjo's (1997) findings regarding the delineation of stands, this finding was

probably due to the fact that compartment boundaries are much more clearly defined

in plantation forestry than those defining natural forest stand management units.

Therefore, in terms of the spatial resolution for plantation forestry, the compartment

is a useful unit of observation, even with spatial resolutions as coarse as Landsat's

30 m. The findings of Varjo (1997) and Varjo and Folving (1997) support this.

However, the spectral resolution was problematic when it came to separating weed

cover from crop cover, as discussed above in section 4.2.2 on Classification.

4.2.5.3 Role of Temporal Resolution

Varjo and Folving (1997) found that change detection results were more accurate

the shorter the interval between images. The intervals in the study ranged between

one and three years, with accuracies ranging from 93.1% to 87.6%, respectively. As

far as the detection of clear-fellings is concerned, this study supports their findings,

in that with the periods between consecutive images being between three and six

months for this study, a higher accuracy than Varjo and Folving's (1997) was

achieved.

The temporal resolution used in this study was found to be adequate to meet the

objective of being able to identify critical change and compare this against the

forestry database such that its accuracy could be assessed. With respect to c1ear­

fellings, such is their distinctiveness that they could be determined in successive

images (Le. every sixteen days, cloud-free imagery permitting). However, in order to

achieve a suitable cost-benefit ratio, quarterly or even half-yearly images would

allow the database to be regularly audited.

4.2.5.4 Effect of Compartments as Units of Observation

One of the more problematic issues encountered in this study was the methodology

used to allocate classification classes to compartments in order to determine their

status. This was achieved by overlaying the compartment spatial data on the

difference images produced by the change detection processes. Then, using the

Majority statistical function in ArcGIS 8 Spatial Analyst Zonal Statistics function, cl

table listing every compartment with the dominant classification class was produced.

However, the degree to which multiple classes occurred within compartments was

underestimated, and so the majority statistical function proved to be an unreliable
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method of assigning a class to a compartment due to the extent of these multiple

classes within a single compartment. This resulted in compartments being classified

as one class in the ground-truthing exercise, but a different class (or classes) in the

image classification process, when in actual fact this was not the case. An example

of this was where a compartment was classified as being a class 5, slash/crop/weed

land-cover in the ground-truthing exercise, but as a class 7, soil/slash/crop/weed

land-cover in the image classification process, as a result of there being a majority of

this class according to the classification process. Compartments that had operations

in progress (e.g. partly felled or weeded) could not be clearly identified, and this

tended to create misclassifications. This resulted in a significant under-estimation of

the classification accuracy when the statistics were calculated. However, because

compartments are the base unit of management , they could not be ignored in favour

of classifying on a purely pixel-based system. A combination of both pixel-based

classification and utilising the compartments as units of observation would provide a

more appropriate methodology.

4.3 Conclusions and Recommendations

4.3.1 Conclusions

In order to test the hypothesis of this study, the first requirement was to test whether

the forestry operations of clear-felling, replanting and weed control in the KwaZulu­

Natal Midlands could be successfully identified through the use of satellite imagery.

It also required determining which classification technique was most successful in

achieving this. A second requirement was to test whether these procedures could be

applied as an audit mechanism on the relevant data recorded in a forestry database.

4.3.1.1 The Identification of Clear-felled Stands

The findings of this study confirm those of similar studies concerning the detection of

clear-fellings (Sader et al., 2001; Puhr and Donoghue, 2000; Hame et al., 1998;

Jeanjean and Achard, 1997), but with accuracy greater than that achieved in Sader

et al.'s (2001) study.

While every method from the supervised and unsupervised classifications (both Ten­

and Four-Class) to the change detection procedures could identify clear-felled

compartments, the most successful process was the Quantified Classified Change
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Detection technique, which was able to distinguish felled compartments from

standing compartments with 100% accuracy (kappa = 1.00).

4.3.1 .2 The Identification of Planted Stands

The Landsat imagery was not able to identify planted stands of an age younger than

about 12 months. Also, weed free stands younger than 12 months were classified as

being clear-felled. Stands older than this tended to be classified into one of the

intermediary categories, along with weedy stands, until canopy closure was

imminent, at which time it was classified as pre-canopy or closed canopy.

4.3.1.3 The Identification of Weed Status

The issue of weed status identification was, without doubt, the most difficult aspect

of this study, and one that met with the least success, in terms of the overall aims of

the project. Having said this, it was anticipated that it would be problematic, given

the spatial resolution of the Landsat imagery and the planting espacement applied in

plantation forestry.

To some degree, there was a measure of success that exceeded the more

pessimistic expectations, but the findings of this study are supported by what Nilson,

et al. (2001) found regarding the difficulty in quantitatively describing the effects on

reflectance caused by the successional changes in ground and field-layer

vegetation. Determining the effect the various stages of vegetative growth have on

the reflectance characteristics of Landsat imagery, and establishing whether there is

a correlation between these reflectance values and the composition of the vegetative

cover might provide a key to interpreting weed growth patterns in young stands. In

this study, it was not possible to accurately differentiate between a pure tree stand

on the one extreme and a totally weeded cover on the other extreme in any stand

less than one year old.

Although the results reflected in the statistical analyses of the weed state

classification showed low classification accuracy, a visual assessment of the

classified data enabled one to extract very useful information, based on the

classification variation within the compartments, especially where ancillary

information regarding the species, age, or operational history was available to assist

this interpretation. What was also noted was the impact that genera/species had on
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the outcome of the classifications. By applying the data from the Ten-Class

Unsupervised Classification Class 7, additional information could be provided to

assist in flagging potential problem areas. It would, however, be necessary to devise

a means of tabulating this information so that it could be compared with the forestry

database.

The type of information that could be interpreted from a visual assessment included

either possible weed concentrations or weed-free areas within compartments, and

indications of crop uniformity, where areas of either improved or retarded growth

could be identified within compartments. This aspect opens up possibilities of

applying "precision farming" techniques to a forestry environment. This possibility

would be dependent on devising means to overcome the limitations of the spectral

and spatial resolutions encountered in this study.

While no attempt was made to undertake any individual tree counts or location, it

was interesting to note the findings of Wulder et al. (2000) that when using one

metre spatial resolution imagery a minimum diameter of 1.5 m was required for

individual canopies to be detected. In this current study, the threshold level at which

weed-free status from weedy status compartments was able to be differentiated was

generally found to occur in compartments that were older than one year,

approximately the time at which the individual canopies would have a diameter of

between 1.5 and 2.0 m.

4.3.1.4 The Role of GIS

GIS was fundamental to the successful integration of the vector (compartment) and

remotely sensed data in this study, due to its ability to integrate diverse data sets.

The ease with which the compartment vector data was overlain on the classified

imagery and analyses undertaken, such as the zonal statistical functionality,

supports the literature (Lillesand and Kiefer, 2000; Lunetta, 1999, Eastman, et al.,

1995; Dunningham and Thompson, 1989), in this regard.

A key element in this study was the fact that a comprehensive GIS database,

including both spatial and attribute data, of all forest compartments was available.

This factor played an important role in allowing a coarser spatial resolution to be

applied than might otherwise be the case where this information was not available as
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well as supporting the concept of the compartment being the base unit of

observation for this study. Varjo (1997) was also able to use the forest stand (or

compartment) as the base unit of observation.

4.3.2 Recommendations

4.3.2.1 Identification of Clear-felled Stands

The methodology described in this study may be used to identify clear-felled stands,

in order to audit the forestry database. This would allow the accuracy of the ''felled

versus standing" status of all compartments in the database to be measured. Any

discrepancies could then be queried with the relevant operational staff.

4.3.2.2 Identification of Weed State

As there was limited success in determining the weed state of forest compartments,

it is recommended that more research be undertaken into this field, as there are

good indications that greater success could be obtained in this area.

Several recommendations regarding the possibilities of improving weed status

classification can be made on the basis of the results obtained in the medium

resolution imagery study. These include:

1. Applying a pixel based unit of observation and using the compartment

boundaries to delimit management units. The percentage of each class within

the compartment could then be calculated, and used to rank classes within

the compartment. This prevents the information loss that occurred when using

only the majority class to allocate a classification class to a compartment.

2. A convolution filter, based on a standard deviation, minimum/ maximum

values or some similar function, could be applied to the raw data as a pre­

processing procedure prior to a classification being applied. The classification

process would then be applied to the pattern data in conjunction with the

spectral data. Included in this process, should be a focus on the role the

genera/species plays in the classification result, as this would improve some

of the spectral class definition.

3. The use of an object-orientated classification system, as opposed to the

traditional spectral band classification systems, should be tested.
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4. Applying Datt's (2000) findings regarding spectral matching to discriminate

between dry and green vegetation might provide a means of creating a

greater separation between a crop cover and weed cover where the weed has

been treated, or is in a winter-senescent state.

5. Another possible method that could be investigated regarding the weed/plant

separation is that of spectral unmixing, as described by Van der Meer (1999).

6. Although the NDVI results did not reveal as much separation as was

anticipated, additional research into the role of vegetation indices could well

provide useful applications that are able to discriminate between weed and

crop cover.

7. Imagery having a greater spatial or spectral resolution, such as SPOT 4 or 5

"Vegetation" imagery could also be investigated, but this would .have to be

weighed against the additional cost of such imagery. A possible alternative

could be to apply a multi-stage sampling approach, using Landsat imagery to

find particular problem areas, and then acquiring Ikonos or QuickBird imagery

for these specific areas. A further alternative would be to investigate the use

of hyper-spectral imagery such as that of the Hyperion sensor.
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Chapter 5: Monitoring Forest Operations using High

Resolution (0.6 - 2.4 m) Imagery

5.0 Introduction

Based on the results and conclusions found in Chapter 4 above, it was seen that

while medium resolution imagery has a wide geographic coverage, its spatial

resolution limits its application to a "between-stand (compartment) variation" level. In

other words, it can generally detect differences between, but not within,

compartments. This problem was amplified by the cross-classification that resulted

from the "within-stand" variation that did occur within the images. In order to

overcome these problems, a much finer spatial resolution was required, hence the

application of high resolution imagery, which was aimed at detecting forest

operations, such as planting and weed control, at a "within-stand" level. This chapter

describes in detail the process followed to develop and test a methodology to

monitor and measure the planting and weed control operations at a "within-stand"

level. Success in this process would provide forest managers with a means to

quantifiably monitor these operations.

5.1 Materials and Methods

5.1.1 Introduction

The materials and methods utilised in the high resolution imagery study required the

application of additional remote sensing image classification techniques, to those

applied in the medium resolution study. These were based on methods

recommended from the results of this earlier study, and chiefly involved the use of

textural analysis as an enhancement to improve the classification and change

detection results. A notable feature of this study was the level to which the

classification and change detection techniques were applied, Le. down to individual

crop row level, the widths of which ranged from 0.5 to 3 m, depending on the age of

the crop.

5.1.2 Materials

The data sets applied in this study were similar to those applied in the medium

resolution study, in other words, suitable study sites; satellite imagery and forest
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stand management data. These three main data sets were again integrated through

the application of GIS technology.

5.1.2.1 Suitable Study Sites

Due to the greatly reduced coverage available from high resolution satellites, the

study sites chosen were from a subset -of compartments selected for the medium

resolution imagery study, and were all found on two adjacent plantations covered by

the QuickBird imagery. The location of these study sites is shown in Figure 3.1.2

(see Chapter 3 Study Sites, above).The primary criteria for site selection was that

the stands had to be clear-felled and replanted within a period of 24 months, as this

was the most crucial time period in terms of weed suppression, as well as initial tree

crop growth. The study sites selected also had to be in this stage for at least three

consecutive image acquisitions, in order for the minimum change detection results to

be obtained.

Unfortunately, the spread of genera available in this area was limited to chiefly wattle

(A. mearnsit), with only one suitable Eucalypt coppice stand being available in the

imaged area. No planted Eucalypt stands were available within the test sites. It had

been hoped to have more Eucalypt stands tested, as well as some pine stands.

However, the sites selected did have the advantage of having been continuously

monitored throughout the whole study period, and so provided a very good source of

ground-truthed data, which allowed a thorough testing of the methodology.

Initially twenty compartments were identified as potential sites, and were monitored

throughout the test period. However, of these twenty compartments only twelve

compartments eventually met the selection criteria and were used to develop and

test the research methodology.

5.1.2.2 Satellite Imagery Data

The imagery selected for the high resolution imagery study was that available from

the Digital Globe satellite, QuickBird 2. This imagery was selected because of its

high resolution capability, having a panchromatic band of 0.6 m spatial resolution,

and four multi-spectral bands, Red (630-690 nm); Green (520-600 nm); Blue (450­

520 nm); and Near-Infrared (760-900 nm), each of 2.4 m spatial resolution (Digital

Globe, 2003). Detailed specifications of the QuickBird satellite and sensor are given
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in Appendix 2. Due to cost constraints, and the number of repeat images required,

only the minimum image size of 8x8km (64 km2
) could be obtained. However, this

imagery did cover 95% of the selected study area, with a small part of the study area

in the December 2003 image being lost.

Six repeat images of the study sites were obtained, and covered the period from

December 2003 to June 2005. In order to cover the complete seasonal spectrum

specified acquisition windows were supplied to Digital Globe, these being December

2003; April 2004; October 2004; December 2004; March 2005; and June 2005.

However, the actual image acquisitions occurred in December 2003; May 2004;

December 2004; March 2005; April 2005; and June 2005. This resulted in an uneven

spread of images over the study period. Fortunately this did not affect the results too

negatively, and even the very close repeat of the March, April and June 2005

imagery proved to add value, as this was instrumental in identifying a particular

event that might not otherwise have been identified. The fast growth rates

experienced in South African plantation forests also necessitates rapid repeat

imagery.

Initially the standard imagery bundle product was ordered, but was found to be

unsuitable due to the partial orthorectification that is done on this product, and which

prevents further, more accurate image rectification being carried out on the imagery.

As a result, a special request was submitted to the suppliers to provide the imagery

as a basic imagery product, which could then be more accurately orthorectified

(normally one is required to purchase full scenes when ordering the basic imagery

product (Digital Globe (2005)).

5.1.2.3 Forest Management Attribute Data

As an additional source of verification of the results of this study, the operational

data recorded in the forestry database was used to verify operations recorded from

the imagery. However, once the methodology had been developed and tested, the

results derived from the image processing could be used to validate the accuracy of

the operations recorded in the database.
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The timing, type of operation undertaken, as well as issues such as validating

whether work paid for had been completed or not were examples of the use of the

forest management attribute data available from the database.

5.1 .2.4 Geographic Information System (GIS) Data

The compartment layer in the GIS database was a fundamental data input in the

process, as it was used to identify and delineate compartments within the imagery.

These compartment areas formed the basic data sets to which all processing

operations were applied. This data set also provided the link to the forest

management database, and the ancillary information available from it.

Other data sets utilised from the GIS included the plantation boundary data; digital

terrain models (DTMs); and roads, which were used on different occasions, such as

for enhancing the presentation of the results. The DTMs were used in the

orthorectification procedures. All data sets were projected to UTM Zone 36 south,

WGS 84 spheroid/datum.

5.1.3 Methods

While maintaining several similarities to the methodology applied to the medium

resolution image processing, the methodology applied to the high resolution imagery

was more complex, as additional steps were required in order to extract the required

level of information. Also several different approaches had to be tested before

arriving at a successful methodology. However, the fundamental principles of image

classification and change detection techniques still formed the basis of the

methodology, with textural analysis being utilised as an enhancement technique to

these methods.

A major difference in approach to processing the high resolution imagery compared

to that done on the medium resolution imagery was the scale of area processed.

With the medium resolution imagery the level of processing was restricted to

individual plantation (i.e. ''farm'') level, through the application of areas of interest

defined by the plantation boundaries. All the variance within these boundaries was

processed and contributed to the classification results. The problem with this

approach was that it tended to result in a major level of cross-classification between

classes which should have been separable, and was highlighted in the conclusions

above. With the high resolution imagery, an improved process was applied,
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whereby all processing was restricted to an individual compartment level, where

each compartment was treated as a separate study site, and processed individually.

However, the down-side to this approach was the greater volume of work required,

but this was made manageable by the restriction of the processing to only those

compartments identified in the medium resolution imagery as having been felled, but

the new crop had not yet reached canopy closure.

Figure 5.1.1 illustrates the complete process flow of the methodology applied to the

high resolution imagery

5.1.3.1 Image Rectification and Atmospheric Correction

The image rectification process proved to be a difficult step in the work flow, due to

the complex geometry inherent in the satellite platform. Some of the problems

experienced in rectifying these images were in line with those reported by Toutin

(2004). This resulted in less than optimal rectification on some of the imagery.

The Basic Imagery data sets were supplied as unprojected data sets, and were then

projected to a WGS84 Datum, UTM Zone 36 South projection. Various different

rectification techniques were tested, but in order to minimise the rectification

problems, it was decided to ortho-rectify one image using the QuickBird RPC model

in the Data Preparation Module of Erdas Imagine 8.7, in conjunction with a 20 m

DTM derived from 10 m dot-rolled contours, and 15 ground control points

established using a sub-metre GPS unit (17 points were acquired, but two points

were discarded as their RMSE results were above acceptable limits). This was done

on both the multi-spectral and panchromatic bands of the March 2005 image, using

the RPC coefficients supplied in the .imd file provided with the imagery. An Image-to­

Image registration process was then applied to all the other images, using the ortho­

rectified March 2005 image as the Reference Image.

The image-to-image registration process was applied using polynomial models on

the multi-spectral and panchromatic bands. Table 5.1.1 lists the various parameters

obtained from the orthorectification. Most of the image rectification results

approximated Digital Globe's stated accuracies of 3 - 6 m for rectifying Basic

imagery products using high quality DTMs (equivalent to DTED Level 2) and sub­

metre GCPs using the RPC method (Digital Globe, 2005), and were similar to levels
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Table 5.1.1 Orthorectification parameters for QuickBird Images

Image Date Band GCPs RMSE Resample Output

Method Cell Size

Dec-03 MSS 52 1.6 NN 2.4
Pan 96 3.2 NN 0.6

Mav-04 MSS 22 1.4 NN 2.4
Pan 90 2.8 NN 0.6

Dec-04 MSS 20 1.5 NN 2.4
Pan 11 1.0 NN 0.6

Mar-05 MSS 13 1.7 NN 2.4
Pan 12 4.6 NN 0.6

Apr-05 MSS 40 1.7 NN 2.4
Pan 71 8.0 NN 0.6

Jun-05 MSS 50 1.1 NN 2.4
Pan 72 3.7 NN 0.6

achieved by Kayitakire et al. (2002) where a positional circular error of 6.3m at a

95% confidence interval was achieved on 1m Ikonos imagery. However, those

images where the accuracies were much lower (e.g. the April 2005 image) had been

acquired using high off-nadir viewing angles.

Another complication that occurred with the ortho-rectification was that the

panchromatic bands of the images did not accurately match their equivalent multi­

spectral bands, due to the greater difficulty in achieving accurate and consistent

image rectification on the panchromatic bands. However, the effect of these issues

was greatly reduced once the data was vectorised and the compartments buffered

(see section 5.1.3.5).

Following the ortho-rectification process, all the multi-spectral band images were

converted to radiance, and then reflectance values, in order to normalise these

images. This process was carried using a .gmd model created in the Modeler

Module of Erdas Imagine 8.7. A layout of this model is presented in Appendix 3. The

"absCaIFactor" and sun elevation values required to run this model were provided in

the .imd file supplied by Digital Globe with the imagery (see Appendix 4), while the

formulae to calculate both radiance and reflectance were provided by Jha (2005),
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and are given in Appendix 5. The ESUN values were based on the Landsat 7 values,

as the spectral band ranges of the QuickBird imagery are very similar to the Landsat

7 ranges (Jha, 2005). All the relevant parameters for the imagery utilised in this

study are given in Tables A2.1 and A2.2; Appendix 2.

All further processing of the multi-spectral imagery occurred on the reflectance

images.

5.1.3.2 Image Sub-setting

As was noted in the processing of the medium resolution imagery, edge effects

along compartment boundaries caused problems due to the mixed-pixel effects. This

phenomenon was also noted to occur in the high resolution imagery. In order to

reduce this effect, compartment boundaries had a reduction or internal buffering

applied to every compartment that was a study site. This was achieved by applying a

-10 m buffer distance to the ArcGIS buffering process, which resulted in the

compartment polygons shrinking inwards by 10 m. Based on a visual assessment of

the study sites, 10 m was found sufficient to remove these edge effects. The effect of

this was to reduce false spectral variation within the compartment study sites, thus

improving the classification results. This helped counter the problems reported by

Heyman et al. (2003) where the greater variability within the classes caused a

reduction in classification accuracies, as well as reducing the misregistration

problems.

This process was a distinct improvement on the procedures applied in the medium

resolution imagery, where the sub-setting was restricted to the plantation

boundaries. This greater coverage meant that in addition to the mixed-pixel edge

effects, the digital number values were also diluted by the presence of non­

afforested areas such as the riverine valleys and other open areas, which led to an

increase in cross-classification as the statistical variance was skewed by irrelevant

digital number values.

The subset compartment polygons were then converted to Areas of Interest (AOls)

in Imagine 8.7, and used in the Data Preparation module to subset each study site.

Both the multi-spectral bands of the reflectance images and the panchromatic band
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of every image were subset in this manner. These subset data sets then served as

the input data for the next phase of processing (see Figure 5.1.1).

This next phase split into two parallel process flows (see Figure 5.1.1), one utilising

the multi-spectral bands, and the other utilising the panchromatic band. Again, all

study sites across all six images were processed.

5.1.3.3 Image Classification - Multi-spectral Bands

Initially, several unsupervised classification test phases were run, using 20, 12 and 6

classes. This was done in order to try and identify and extract any unique classes or

class combinations. These test classifications were applied to all forest stands

simultaneously, but masking out any area that was not a forest compartment. The

ranges of stands varied from mature standing trees to clear-felled areas with only

soil or slash ground cover. No significant classes could be consistently identified in

this manner, and so it was decided to work with individual compartments

independently by sub-setting them (see 5.1.3.2 above).

The focus of the high resolution imagery study was restricted to compartments that

were between 0 and 2 years of age from the time of last clear-felling, as the main

aim was to identify weed infestation during the critical period from time of planting to

canopy-closure stage. Canopy closure generally occurs within the first 24 months of

growth.

Based on the major classes observed in the ground-truthing, it was decided to

restrict the number of classes to four. These classes, described in detail in section

5.2.1 below, represented the following ground cover states:

Class 1: Shadow/Soil

Class 2: Soil/Slash

Class 3: Light Vegetation « 60% ground cover)

Class 4: Heavy Vegetation (> 60% ground cover)

Photographs of typical examples of these classes are given in Appendix 10.

The unsupervised classification procedure was completed using the Classification

module in Erdas Imagine 8.7, utilising a maximum of 6 iterations with a convergence

threshold of 0.950.
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5.1 .3.4 Image Textural Analysis - Panchromatic Band

Despite the high resolution of 2.4 m, the multi-spectral bands could not identify the

crop rows. However, these rows were very clear on the 0.6 m panchromatic imagery,

and it was decided to optimise this feature to refine the classification results. This

was undertaken by applying an edge-enhancement textural analysis process

(Janssen, 2000).

Textural analysis utilising spectral signatures involves the application of a moving

convolution window in order to produce the smoothing or sharpening effect of the

analysis. In order to determine the optimal window size for every study site, it was

necessary to undertake semivariogram analyses of the input data sets. This

required converting the raster imagery to vector points, where every raster cell in the

image was represented by a point with a value equal to the ON of that cell. This

conversion was done using the Raster to Vector Conversion utility in ArcGIS Spatial

Analyst extension (McCoy and Johnston, 2002). These point files tended to be very

large, often containing millions of points. During the conversion process, all NULL

data areas in the raster input image were also converted to points, and these had to

be clipped out of the point data set using the buffered compartment boundary

polygon in order to reduce the size (and hence processing time) of the point

shapefiles. The resultant point shapefiles then served as the input into ArcGIS

Geostatistical Analyst extension (Johnston et al., 2001), in which an ordinary kriging

procedure was run to derive the semivariograms. Based on a series of test runs it

was found that the optimal number of lags was 12, while the lag distance was set at

0.6 m, Le. the spatial resolution of the input data. Using the resultant Range values

from the semivariogram calculation, the optimal convolution window size was

determined, and applied to the textural analyses procedures. The window sizes

ranged from a minimum of 3x3 to a maximum of 11 x11. Although not definitive, there

was a trend for the larger windows to be more applicable to more diverse stands,

while the smaller windows tended to be applied to stands with less variation, such as

stands with a closed canopy. However, it was clearly seen that no one single window

size could be applied across all sites.

Because of the strong linearity of the crop rows observed in the panchromatic

imagery, it was decided to focus the textural analysis on this feature. Several

different techniques were tested before an Edge Enhancement process was
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selected. Prior to this selection, two textural analyses and a Fourier Transform

technique were tested. The textural techniques were applied using the functionality

available in the Radar Interpreter Module of Erdas Imagine 8.7, while the Fourier

Transforms were carried out using the Fast Fourier Transform tool in the Image

Interpreter module. Two different textural operators were applied, one being the

Variance option, and the other being the Skewness option.

The Variance function is defined as:

where:

L(X
i

. _~)2
Variance =_--:J'---_

n-l

xi j = Brightness (ON) value of pixel (i;j)

i,j =row; column

n =number of pixels in a window

x = Mean of moving window, where:

and the Skewness function is defined as:

where: X i j =Brightness (ON) value of pixel (ij)

i,j = row; column

n = number of pixels in a window

x =Mean of moving window

V =Variance (see above)

(Leica Geosystems, 2003)

Using the Edge Enhancement tool (based on a Prewitt detector) available in Erdas

Imagine 8.7's Image Interpreter module (under Interpreter\Spatial

Enhancement\Convolution), the applicable convolution window sizes were applied to

the input image date sets. The output was an edge enhanced image for each study

site. These images then had a grey-level thresholding process applied so that they

were reclassified into two classes, "rows"; "no-rows", using the Reclassify function in

ArcGIS Spatial Analyst. Reclass Values were assigned to a "Value" field as follows:

NoOata: 0

No Rows: 1
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Rows: 2

Class break values were assigned based on a visual assessment of the images

under a range of break values in order to determine the optimal split between "rows"

versus "no-rows." However, in order to automate this process, several regression

equations were calculated based on the image means, ranges, medians and modes

in order to determine which value could be used to programmatically calculate the

optimal break value for the 2-c1ass image reclassification process. The Image Mean

proved to be the most significant statistic to use for this procedure, with an R2 value

of 0.9935 (see Table 5.1.2). The input data for this calculation is given in Appendix 6.

Table 5.1.2 Regression Analysis Results for Class Break Values based on the Image

Means

Regression Statistics

MullipleR 0.9968

RSquare 0.9935

Adjusted R Squ 0.9788

Standard Error 24.5997

Observations 69

ANOVA

df SS MS F SignificanceF

Regression 1 6302175.22 6302175.22 10414.34272 3.00728E-75

Residual 68 41149.78029 605.1438277

Total 69 6343325

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower95.()O;{, Upper95.()O;{,

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A

X Variable 1 1.0119 0.0099 102.0507 0.0000 0.9921 1.0317 0.9921 1.0317

The Break Threshold value in this table is the class break value assigned based on

the visual interpretation of the imagery. Thus in an automated procedure, the image

mean value could be read and assigned to the class break routine in order to

reclassify the image into the required two-class image.

5.1 .3.5 Image Vectorisation - Multi-Spectral and Panchromatic Bands

The four-class unsupervised classified images contained information regarding the

amount of vegetation present, but could not separate crop from weed. The two-class

reclassified panchromatic data sets contained the "Row; No Row" information, which

could define what was crop. Thus by combining these two datasets, one could then
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classify the stands utilising all this information to determine what was crop, what was

weed and what was soil or slash.

Thus, the two separate data sets, in terms of the multi-spectral and panchromatic

bands (see Figure 5.1.1), had to be combined into a single data set in order to derive

the final classified data set. However, this task was complicated by the fact that there

were two different resolutions (2.4 m multi-spectral and 0.6 m panchromatic). Thus

any raster merging of these data sets would mean either the larger resolution cell

size being resampled down to the same cell size as the finer resolution cell size, or

the finer cell size being resampled up to match the larger resolution cell size. Both of

these methods are problematic, in that it is an incorrect procedure to run any

analyses on data sets that have been resampled from a coarser to a finer resolution,

while if one were to resample a finer resolution into a coarser one, the detail

available in the finer resolution is lost, thereby negating the value of the finer

resolution.

To test this process in Erdas Imagine 8.7, the various data sets were combined

using the LayerStack routine available in Erdas Imagine 8.7. It was seen that the 2.4

m resolution data was resampled down to match the 0.6 m resolution data, which

was problematic, for the reasons discussed above. In addition, the problems relating

to the image registration accuracies further complicated the combination of these

data sets.

In order to circumvent the problem of combining different raster resolutions (2.4 m

vs. 0.6 m) described above, it was decided to vectorise both the 4-c1ass

unsupervised classification data sets and the 2-c1ass reclassified panchromatic data

sets. A generalisation technique was applied during this process in order to produce

a result that more closely resembled the real world than would be the case if the

data followed the raster pattern. In this way, the different resolution issues were

overcome, as well as reducing the misregistration problem to a large degree.

Once vectorised, the two data sets for each study site were then unioned (see

Figure 5.1.1), utilising the ArcGIS ArcToolbox Geoprocessing Tools functionality.

This union function achieved the aim of having a single data set that contained all
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the information from both the multi-spectral and panchromatic bands, which a

classification routine could then utilise to produce a more accurate classification.

Once unioned a new field called "MATRIX" was added to the resultant data set, and

the matrix value was calculated by concatenating the "GRIDCODE" field value from

the 4-class unsupervised classification polygon layer and the "GRIDCODE" field

value from the 2-c1ass reclassified "Row; No Row" polygon layer. Any polygons that

had a zero value in either "GRIDCODE" field were deleted. These occurred where

there was no intersection between the two input layers, and were an artefact of the

different resolutions not matching along the edges. As a final step in this process, in

order to simplify the data sets by reducing the number of polygons with identical

values, a dissolve routine was applied to the unioned data sets, with the "MATRIX"

field used as the dissolve variable (see Figure 5.1.2). This resulted in a table

consisting of the unique records for each matrix variable present in the data set. Two

additional fields were created in this table, one of which was used to calculate and

record the area, in hectares, of the amount of each matrix value, and the other field

used to calculate the overall percentage of the study site that each matrix value

represented. This table then provided the quantified ground cover within each study

site for the applicable image date (see Figure 5.1.2). The percentage ground cover

measurements for those classes that related to potential weed cover were then

compared against a threshold value and if the threshold was exceeded, the area

was flagged.

Two threshold systems were tested. One was based on the "Plant-to-Canopy"

requirement where no weeded area may exceed 5% of the total compartment area

(Da Costa, 2005a), and any compartment that had heavy vegetation exceeding this

threshold was then flagged. The other threshold tested was using the limits derived

from the Ground Cover Percentage Model described below (see section 5.1.3.8

Ground Cover Percentage Model).
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Figure 5.1 .2 Example of Ground Cover Table

The Matrix values represented the following classes:

Class 1: Shadow/Soil
1----'--'---

Class 2: Soil/Slash
I--~~­

Class 3: Light Vegetation I--~-=~

Class 4: Heavy Vegetation ""-----'-__

where classes 12; 22 and 32 represented crop areas, class 31 represented potential

light weed areas «35% ground cover = weed), while classes 41 and 42 represented

potential heavy weed infestation (>65% ground cover =weed). Classes 11 and 21

represented no potential weed infestation.

5.1.3.6 "Classified" Image Change Detection Routine

The application of the change detection procedures was focussed on a much

narrower group of classes than was the case with the medium resolution change

detection routines. Two classes within the matrix stood out as indicators of potential

weed problems areas, and the change detection routine on the high resolution

imagery was restricted to measuring the level of change in these two classes.

Several possible change detection procedures were investigated, including change

vector analysis, and the modified change vector analysis (mCVA) developed by

Nackaerts et al. (2005). However, it was felt that the level of change detection

required in this study was such that a simple image differencing would highlight

change sufficiently well. Using a post-classification comparison technique allowed

advantage to be taken of its greater tolerance to image registration problems and

atmospherics differences (Coppin et al., 2004; Singh, 1989). This was important due

to the problems experienced with the image registration process.
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Therefore, the change detection methodology applied was the same as that utilised

in the medium resolution study, except that only the "Classified" Image Change

Detection module was utilised. A layout of the model is given in Appendix 7 below. In

order for this module to be used, the vectorised data sets used to derive the matrix

outputs had to be converted back to a raster format. However, only the two classes

of interest were rasterised. Class 41 (Heavy Vegetation with no rows) and Class 42

(Heavy Vegetation with rows) were selected form the data sets by means of a

definition query in ArcGIS 9.1, and converted to an Erdas Imagine image format

using the feature to raster function in the ArcGIS Spatial Analyst extension. As part

of the conversion process, a reclassification was also done to reclassify both classes

to a common class, indicated by a value of "1".

A 2-c1ass unsupervised classification was run on the reclassified data sets, using the

Erdas Imagine 8.7 Classification module. The two classes were either "Class 1:

Weed Area" (value = 1) or "Class 2: NoData". The maximum number of iterations

was set to 6, with a convergence threshold set to 0.950. These data sets then

served as the input into the change detection process, which utilised the add-on

Assisted Change Detection model that is available from the ERDAS website (Erdas,

2005). The change detection procedures were run using any two consecutive

images only. The outputs from the change detection process highlighted those areas

where there had been a change from any other class to either Class 41 or Class 42,

and supported Mas' (1999) findings relating to post-classification comparison, in that

the nature of the change was given. If either of these classes were present in both

images used in the change detection procedure, it did not display any change. In the

same way, it did not display any data where neither class was present in both

images. In this way it highlighted areas where there was an INCREASE in potential

weed infestation, which was the important parameter of interest in this particular

process.

5.1.3.7 Classification and Change Detection Accuracy Assessment

Because of the Vectorisation process it was decided to undertake the accuracy

assessment on the unioned data set, as this was the final "classified" result. The

accuracy assessment was undertaken using randomised points within every study

site, as defined by the buffered compartment polygon (see 5.1.3.2 Image Sub-setting

above). The random points were generated using the "Generate Random Points"
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facility in the Hawth's Analysis Tools, an add-on module for ArcGIS 9.1 (Beyer,

2005). A new set of random points was generated for every image date as well, in

order to ensure a statistically valid process was applied. Using the knowledge of the

study sites derived from field visits after every image acquisition, including referral to

the digital photographs (see Appendix 10) and field notes taken during these visits,

the actual and expected classes for every random point were recorded and Chi­

Square tests for goodness of fit were applied to this data (Zar, 1984). User, Producer

and Overall Accuracies were calculated on the error matrices derived from the

comparison of the observed (i.e. classified image data) and reference (i.e. ground­

truthed data) data (Khorram et al., 1999).

Several different groupings of the data were tested, ranging from grouping all data

into one pool, to testing each study site as a separate group, as well as testing

various groupings of age classes. This was done to try and determine the grouping

or set of data that provided the highest statistical probability of goodness of fit, i.e.

the data set that provided the best classification result.

For the change detection accuracy assessment, the same error matrix methodology

as the classification error matrix was applied (Khorram et al., 1999), but with only

two classes of interest being tested, viz. Weed Increase (Class=1) versus No

Increase (Class=O). Two accuracy assessments were run. In the one test, called the

"First Image vs. Second Image" test, random points were assessed for their status in

the first-date image, compared to their status in the second-date image, based on

the change detection error matrix theory described by Khorram et al., (1999). This

was done for both the "observed" and "reference" data. An example of how the

change class was derived is given in Table 5.1.3. From these results, a change class

was derived on which the chi-square test could be run.

A similar process was followed for the other accuracy assessment done using the

actual Change Detection Results images (called the Change Detection Image

accuracy assessment), in the same way a normal classification accuracy

assessment is done, where the status of each point is derived for the observed and

reference data.
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Table 5.1.3 Example of "First Image vs. Second Image" Accuracy Assessment Input

Compt Date Date CD Date
8025 Dec-03 May-04 Dec-03 May-04

8025 Dec-03 May-04 Dec-03 May-04

8025 Dec-03 May-04 Dec-03 May-04

8025 Dec-03 . May-04 Dec-03 May-04

8025 Dec-03 May-04 . Dec-03 May-04

8025 Dec-03 May-04 Dec-03 May-04

8025 Dec-03 May-04 Dec-03 May-04

8025 Dec-03 May-04 Dec-03 May-04

8025 Dec-03 May-04 Dec-03 May-04

8025 Dec-03 May-04 Dec-03 May-04

Where: CD_WI =Change: Weed Increase (Le. weed increase from Image 1 to Image 2)

NC_NW = No Change: No Weed (Le. no weed in Image 1 or Image 2)

NC_HW = No Change: Heavy Weed (Le. heavy weed in Image 1 and Image 2)

Because of the relatively small area where change had occurred, compared to the

total compartment area, use was made of the "Use Raster as Probability

Distribution" function within the "Generate Random Points" facility in the Hawth's

Analysis Tools (Beyer, 2005). This increased the likelihood of sample points being

generated within the change areas, in order to provide a better test statistic, similar

to the Special Effort Sampling method described by Khorram et al., (1999). The

change detection raster images were used as the input to the sample point selection.

Statistical analyses were undertaken in SPSS v11.51 (SPSS, 2002) and a Microsoft

Excel add-in module, EZAnalyze (EZAnalyze, 2005).

5.1.3.8 Ground Cover Percentage Model

In addition to the ''top-down'' approach using the satellite imagery, it was also

decided to test a "bottom-up" approach to be used as a means of deriving a

threshold against which the observed weed or crop status could be compared, such

that any compartment that exceeded the modelled ground cover percentage would

then be flagged as having a potential weed infestation.

This model was based on the assumption that at any specified age, the crop should

represent a certain percentage of the total ground cover. The balance of the ground

cover should then be soil, slash or dead vegetation, on the basis that proper weed

control measures had been applied. Where the vegetation signal was such that the

ground cover percentage represented by that vegetation signal exceeded the



threshold level for that crop age, it should indicate weed infestation, and be flagged

appropriately. The concern with this approach is that it is extremely difficult to

accurately model vegetation growth, due to the very large number of variables that

can influence this growth. These include site conditions (slope, soil, aspect etc.),

silvicultural operations, weather conditions, species and many other parameters.

However, the aim was simply to model the general canopy development trend of a

wattle stand over the first 18 months of growth in order to derive an "ideal" ground

cover percentage for any specified age within this period. Knowing the age of a

compartment at the time of an image acquisition would then allow one to derive this

theoretical ground cover percentage for that compartment, and compare this to the

calculated ground cover percentage derived from the imagery. An important concept

in this process was that the crop row, not the individual tree, was of interest. This is

particularly the case with early wattle growth as it grows in a "hedge" form rather

than individual trees as is the case with pine and gum crops planted using seedlings

or clones.

The model was developed by undertaking actual crown diameter measurements in

19 wattle compartments covering a total of 273.2 hectares. Circular sample plots,

with a radius of 8.92m, were laid out on a grid pattern in every compartment, such

that there were two plots/hectare. Each tree within a sample plot had its crown

diameter measured twice, one measurement perpendicular to the crop row direction,

and the other along the crop row direction. An assumption of a spherical crown form

was made, in order to simplify the initial testing. These two measurements were then

averaged, and the area of each crown calculated. A total crown area for each plot

was then calculated by summing the crown areas of every tree in the plot. Using the

plot size and the total crown area per plot, a ground percentage was calculated for

each plot. These measurements were then plotted on a graph to derive the trend

line, such that Age, on the x-axis, was plotted against Ground Cover Percentage, on

the y-axis.

Regression analyses were run on the data in order to derive the trend line. Any

ground cover percentage values which lay above the trend line could be considered

to have a weed problem, while any values below the trend line could indicate sub­

optimal crop growth.
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5.2 Results and Discussion

5.2.1 Introduction

This section details the results achieved from the application of high resolution

imagery to monitoring plantation forestry operations at a "within-stand" level. It was

this level of detail that provided the greatest challenge to be solved in this project,

and was due to the necessity of firstly identifying the stand crop, and then

subsequently differentiating the crop from weed. This all had to be done in the first

12-16 months after planting, as after this period canopy closure occurs and the

necessity of monitoring diminishes.

While several methodologies were tested, as described in the previous section on

Methods, above, and the results obtained are briefly reported on, the emphasis is on

the methods that proved most successful, and detailed descriptions of these results

are discussed here. Two of the processes ran in parallel, the multi-spectral image

classification and the panchromatic image textural analyses, prior to the resultant

images from these processes being merged and additional processing done to

obtain the final products (see Figure 5.1.1)

5.2.2 Multi-spectral Image Classification

The descriptions given in this section refer to the 2.4 m multi-spectral imagery prior

to any enhancement effected through the textural analysis processes. Thus, the

results obtained here were not final outcomes, but are given simply to explain why

the textural analysis processes were required to improve the classification results.

5.2.2.1 Unsupervised Classification

Based on the success obtained with the medium resolution imagery, it was decided

that only unsupervised classification processes would be utilised. The four classes

defined by the unsupervised classification process were based on consistent visual

estimates obtained during repeated ground-truthing visits, and were as follows:

Class 1: Shadow/Soil

Class 2: Soil/Slash

Class 3: Light Vegetation «60% vegetation cover)

Class 4: Heavy Vegetation (>60% vegetation cover)
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Class 1: Shadow/Soil tended to classify particular reflectance values which differed

according to the age of the compartment. In stands less than six months, especially

those that had been burnt, areas of very dark soil (usually where brushwood rows

(see glossary) had previously been burnt) were classified as this class. However,

once the crop rows were well established, usually in stands older than six months,

the parts of the crop row, and the inter-row areas, that were in shade were classified

as this class. Hence, it was not a pure class in all stages of the stand development.

However, within the parameters described above, there was a consistency in the

areas it classified, and was therefore considered a valid class.

It should be noted that wherever brushwood rows occurred as a result of harvesting

operations, these caused a particular signature in the imagery that was noticeable

for about a year after the felling operations. This was particularly the case once the

rows were burnt, when these areas were consistently classified as Class 1:

Shadow/Soil.

Class 2: Soil/Slash occurred in areas where either the new crop was too small to be

identified as crop, or as the crop grew and the crop rows became more defined, the

inter-row areas were classified as this class. There was no differentiation between

pure bare soil and where residual slash was present. However, in terms of what was

being investigated in this study, this had no effect on the results, as these conditions

were considered the same class.

Class 3: Light Vegetation classified areas that had vegetation present, either in the

form of young or sparse crop rows, or where weed was present to some extent,

usually in the inter-row. However, it seldom indicated pure crop rows, but rather

defined patches of light weed infestation, together with areas of true crop. This

inability to define crop from weed was a critical factor in the decision to pursue

textural analyses to improve these classification results.

Class 4: Heavy Vegetation classified those areas of major weed growth, as well as

crop rows, particularly in stands that were older than 18 months. However, these

classification results suffered from the same drawbacks as were experienced with

the Class 3: Light Vegetation classifications. These limitations, however, did not

mean that this classification process was of no value. On the contrary, these
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classifications gave accurate information regarding the areas where weed was most

likely to be a problem, as well as indicating the areas of good crop growth,

particularly as the crop approached an age of 16 months or more. Figure 5.2.2 is an

example of the unsupervised classification results for one study site covering the full

study period.

5.2.3 Panchromatic Image Texture Analyses

As was mentioned in section 5.1.3.4 above, although the multi-spectral resolution of

2.4 m is regarded as a high resolution (it is in fact that highest commercial resolution

currently available from a satellite platform (Digital Globe, 2005)), it was still not

sufficient to be able to separate crop from weeds on the basis of the crop rows.

However, when viewing the 0.6 m resolution panchromatic imagery the crop rows

were very apparent, particularly as the crop age exceeded four months (see Figure

5.2.3A). Even in very young stands, less than three months old, crop rows were

often discernable where there had been a "line-cleaning" operation. This is where a

clear row is hoed down to bare soil along the planting line. This line is usually 1 t01.5

m wide, with the centre line of this cleared area being a distance of 3 m

perpendicular to the adjacent rows on either side (see Figure 5.2.1).

Figure 5.2.1 Line-cleaning along crop row
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Fig. a December 2003

Fig. c December 2004

Fig. b May 2004

Fig. d March 2005

Fig. e April 2005

j
N

110000

Figure 5.2.2 Example of Four-Class Unsupervised Classification (Compt. E022)
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Figure 5.2.3 Comparison of Texture Analyses Processes (part of Compt. E014)
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The purpose of this hoed row is to remove any initial weed competition as the plant

crop becomes established, following its planting (if a seedling) or germination (where

seed is sown directly into planting line - this occurs only in wattle establishment). It

was this visibility of the crop rows that was believed to be a key element in being

able to separate crop from weed within the vegetation signal, provided a means

could be found to merge the two differing resolution datasets. The most effective

methodology to utilise this characteristic was to apply some form of textural analysis

(Tso and Mather, 2001; Lillesand and Kiefer, 2000; Janssen, 2000) to enhance the

lineation features of the crop rows. Three textural parameters and a frequency

domain parameter, Fourier Analysis, were tested in order to determine an optimal

methodology. The textural parameters were edge enhancement, variance and

skewness (see Figure 5.2.3), and were applied using a convolution window, the size

of which was determined using semivariograms, as detailed in section 5.1.3.4 above.

5.2.3.1 Texture Analysis - Variance

The Variance function produced images that were smoothed and tended to group

areas that had a similar texture into clumps. As such it actually did the opposite of

what was intended, in terms of trying to define the crop rows more sharply (see

Figure 5.2.38). Only where the rows were already very sharply defined in the original

image was there some definition of the rows, and then only at certain stages of the

crop development. It was also noted that the convolution window size played a role

in the amount of row definition that occurred. The only lineation that this

methodology did highlight was the brushwood rows and roads within the

compartments. However, this was due more to the fact that these features had

sufficient uniformity within themselves to cause the smoothing function to group

them together, rather than the lineation itself. What could be deduced from this test

was that the crop rows themselves did not possess SUfficiently uniform texture such

that a smoothing function could uniquely identify them. Although not tested in this

study, this methodology could play a role in trying to identify concentrations of

vegetation growth that might indicate potential weed patches. It might also have

application if one wanted to obtain a measure of stand uniformity. An inspection the

histograms of the variance texture images showed that the bulk of the values were

concentrated close to the origin. Even when the values were stretched, however,

one gained little additional information. As this methodology did not assist in

identifying crop rows it was discarded as a suitable enhancement method.
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5.2.3.2 Texture Analysis - Skewness

The Skewness function did define linear features much more effectively, except that

it tended to define the inter-row areas, rather than the crop rows as was expected

(see Figures 5.2.3C; 5.2.4). This was probably due to the inter-row signal being the

more dominant signal, particularly in the younger stages of the study sites. With the

planting rows being 3 m apart, and early canopy width along the rows being less

than 1.5 m, this meant that the inter-row signal would be about 60-70% of the signal

range. This would result in the Skewness statistic highlighting this. However, this

factor caused it to also be discarded as a suitable enhancement technique for the

aims of this study. It could however have useful applications in some situations. As

with the Variance function, the histogram data were again concentrated close to the

origin, but stretching the values did not add much clarity or information to the

resultant image. Up to the age of 12 months the Skewness function tended to define

the image data into clumps, similar to the way the Variance function defined the

data. After this age threshold, the lineation patterns became much more defined, as

the inter-rows areas became more definitive.

5.2.3.3 Texture Analysis - Edge Enhancement

In contrast to both the above mentioned procedures, the Edge Enhancement

function was able to detect the lineation virtually as soon as it had occurred in the

form of a line-cleaning operation. In some cases this was even prior to the crop

emerging as a distinctive feature. While other strong linear features such as the

brushwood rows (both unburnt and burnt) were also highlighted, this did not hide the

crop rows, as was the case with the other two processes (see Figure 5.2.3D). It also

tended to maintain the crop row definition well into canopy closure, with the oldest

study site at 26 months still having some indication of the crop rows. This

methodology was by far the most successful at defining the crop rows (see Figure

5.2.5), and so was selected as the textural analysis method of choice for this study,

which was based on the premise that crop rows could be used to assist in separating

crop from weed. The edge enhanced images were the input to the two- class

classified "Row; No Row" images (see section 5.1.3.4).

As mentioned in the literature review, various studies have attempted to produce

tree counts based on individual tree identification (e.g. Jacobs and Mthembu, 2001;

Wulder et al., 2000), with minimum crown dimensions of 1.5 m required for 1 m
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Fig.A Row Delineation

.-\
N

1:1 000

Fig.B Skewness Image highlighting Inter-Rows
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1:1 000

Figure 5.2.4 Illustration of Skewness Image highlighting Inter-Rows (part of E014)

Skewness image overlain on Row Delineation image. Green is Crop Row; Black is Skewness

image highlighting inter-row areas.
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Fig a Edge Enhanced Panchromatic Image (Bright pixels = Rows)

Fig. b Two CLass Reclassified Image highlighting Crop Rows

Fig. c Classified Rows overlain on Enhanced Pan Image

6
N

1:1 000

Figure 5.2.5 Illustration of Classified Row Image highlighting Crop Rows (part of

Compt E014)

Fig. c shows Classified Row Image (Fig.b) overlain on Edge Enhanced Pan Image (Fig.a)
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spatial resolution imagery being reported (Wulder et al., 2000). However, because

this study focussed on the tree row as a whole, rather than individual tree crowns,

successful identification of tree rows was achieved where crown dimensions were

much smaller than figures reported in these other studies. This was a one of the

unique findings of this study.

5.2.3.4 Frequency Domain Analysis - Fourier Transform

The Fourier Transform analysis did not provide a distinctive result that could be used

to delineate the crop rows, although there were indications that crop rows were

being identified to some extent. However, a great deal of processing was required to

separate the "noise" signal from the crop row signal and in the end the edge

enhancement process provided a much quicker and simpler solution, which was in

agreement with Jensen (1996) regarding the application of the Fourier Transform.

What was particularly noticeable in some of the Fourier images was the presence of

one or more frequency components (shown up as white dots), usually in some form

of a linear arrangement, and based on the theory of the Fourier Transform, could

indicate the frequencies associated with repeating lines across the image (Jensen,

1996). It was thought that these frequency components could indicate the crop rows.

However, this was not investigated in this study, but could possibly warrant further

investigation (see section 5.3.2, Recommendations, below).

5.2.4 Classification of Vectorised Data Sets

The unsupervised classification results of the multi-spectral images were then

vectorised, while the edge enhanced panchromatic images were reclassified to two­

class "Row, No Row" images, which were also then vectorised. These two

vectorised data sets were then unioned to derive the final classified data sets, based

on a matrix of values derived from the two input data sets. The results of these

outputs are discussed in this section. Figures 5.2.6 to 5.2.9 are of compartment

E022, and show examples of these classification results, illustrating the typical

classification patterns. However, the same results were obtained from the other

study sites.
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Fig. a December 2003

Fig. b May 2004

Fig. c December 2004
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Figure 5.2.6A Example of Weed Potential Classification (First and Second Phases)

of a study site (Compt. E022)
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Fig. d March 2005

Fig. e April 2005

Fig. f June 2005
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Figure 5.2.68 Example of Weed Potential Classification (Third and Fourth Phases)

of a study site (Compt. E022)



5.2.4.1 Classification Process

The objective of this process was to extract the vegetation signal of the multi­

spectral classified imagery in combination with the crop row information derived from

the higher resolution panchromatic imagery in order to define areas of potential

weed growth, as opposed to crop growth. The logic behind this process was

predicated on the basis that a vegetation signal within a crop row would be crop, as

opposed to weed, while vegetation signals outside of a crop row should be weed.

Where there was little or no vegetation signal but there was a row defined, this

should indicate crop as well. A soil/slash signal outside of a crop row should indicate

a weed-free environment, and hence not be a potential weed problem area. Based

on these criteria, the classification matrix (see section 5.1.3.5 above) was assigned

the following status:

Class 11: Shadow/Soil

Class 12: Crop

Class 21: Soil/Slash

Class 22: Crop (Crop/Soil in stands <3 months)

Class 31: Light Weed

Class 32: Crop (CroplWeed in stands <3 months)

Class 41: Heavy Weed

Class 42: Heavy Weed

Three phases in this classification process were noted, each slightly different from

the others. This was a function of the degree of crop row delineation, with

classifications showing decreasing cross-classification from the very young stands

up to an age between 14 and 16 months, after which cross-classification again

increased.

In stands less than three months old, there tended to be insufficient differentiation

between crop, soil and weed. The evidence for this was seen in the fact that instead

of delineating the crop rows, Classes 22 and 32 tended to group larger areas beyond

the true crop row, forming more clumped areas. This resulted in a cross­

classification between Class 21 and Class 22, such that Class 22 was a mixed class

of Crop and Soil (see Figure 5.2.7b). Where the vegetation signal was stronger a

similar cross-classification occurred between Class 31 and Class 32, where the latter

class was a mixed class of Crop and Weed (see Figure 5.2.7c). Having noted this,
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Figure 5.2.7 Close-up of Classes 21; 22; 31 and 32, at < 3 Months Phase
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there were areas of pure crop where the crop row definition was clear enough to be

highlighted by the edge enhancement process (see Figure 5.2.7b). Although present

in subsequent images, this cross-classification had greatly decreased in extent, such

that it became a minor class. Although not a pure class, Class 32 did provide useful

indications of where the early stages of potential weed problems could occur,

particularly as the Class 42: Heavy Weed areas were often associated with this

Crop/Weed class. A similar pattern occurred with the Class 42: Heavy Weed, where

these areas tended to be concentrated into clumps rather than being in rows, as was

expected (see Figure 5.2.7c). However, in the vast majority of these areas, heavy

weed growth did occur, and this class was highly indicative of problematic weed

growth. Although crop areas did occur within these areas, the weed growth was

such that it diluted the crop row delineation and so became more indicative of weed

rather than crop. This cross-classification was only of concern in these very young

stands, when there was very little crop row development (with any crop crown

diameter generally being less than 20 cm). Crop row definition could only be derived

from the delineation effect caused by the line cleaning operations.

In stands from three to about twelve months old, crop row delineation was much

clearer, with Class 22 now able to effectively define crop areas (see Figure 5.2.8b).

There was still a tendency for there to be some cross-classification between crop

and weed in those areas classified as Class 32. However, where this was the case,

it correctly identified those areas that did have a weed concentration, and was

therefore not an inaccurate classification. Again, this class tended to extend beyond

the true crop row and form clumps, although these clumps were smaller in extent

than was the case in stands less than three months old (see Figure 5.2.8c).

This classification is what would be expected from a newly established stand as it

grows, but it was encouraging to see that the classification process mirrored this

development. What was clear from the classification results was that one could

immediately tell where there were potential weed problem areas, particularly where

there were patches of heavy weed. This would certainly provide useful management

information to field staff that needed to monitor operations such as weed status, a

finding supported by Shaw's (2004) research. It also gave some visual indication of

where stands were under-performing, for instance due to poor stocking or sub­

optimal growth (see Figure 5.2.8b).
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Figure 5.2.8 Close-up of Classes 21; 22; 31 and 32, at 3-12 Months Phase

147



These could then be investigated on the ground and corrective action applied where

possible. It was also interesting to note the degree to which the crop row lineation

could be determined, and how early on it could be characterised. This was seen in

the fact that Classes 12 and 22 correctly classified crop, as opposed to weed. Areas

classified as Classes 11 and 21 did not have weed growth, but were either shadow

or soil (see Figure 5.2.8b). The third phase of the classification occurred in

compartments that were between twelve months and about 16 months old (it should

be noted that these age ranges were not definitive, as these phases occurred at

slightly different ages on different sites, due to factors such as site quality,

silvicultural treatments etc.). In this stage the classifications were more pure, with the

crop signature being much more definite (see Figure 5.2.9b). The anomaly with

Class 42: Heavy Weed continued in this phase, with this class being particularly

indicative of heavy weed patches, rather than crop, as was anticipated (see Figure

5.2.9c). For this reason, it was classed as heavy weed, rather than crop. However, it

was still beneficial to keep it a separate class, rather than merging it with Class 41 ;

Heavy Weed, as when viewed spatially one could obtain useful information about the

distribution of the weed infestation as well as some crop row information (see Figure

5.2.9c). Once again the principle of the row delineation identifying crop as opposed

to weed proved successful, and even more so than was the case in the younger

stands of the first and second phases.

Once compartments were older than fourteen to sixteen months after establishment,

greater cross-classification between the weed and crop classes tended to occur, with

some areas being classified as weedy, but which were in fact crop. This was due to

canopy closure occurring, with a subsequent loss of clear row delineation, but with a

strong vegetation signal being present. Therefore, the cut-off limit for successful

identification of weed potential was set at fourteen months. With the onset of canopy

closure, weed infestation is no longer a major concern, and so the need to monitor

this falls away. Thus this cross-classification is not a problem. Based on these

results, the optimal period in which to identify potential weed infestation was from

three to fourteen months after establishment.
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5.2.4.2 Accuracy Assessment of Classification Results

Accuracy assessment routines were performed on several combinations of the

classification data sets, as well as on each of the individual study site classification

results. The chi-square test result of the observed frequencies of all the data pooled

together was significant (P < 0.0001) using a one-tailed test, with an overall accuracy

of 80.8% (see Table 5.2.1); while a kappa of 0.748 was attained (see Table

5.2.2).This indicated a good level of agreement, and highly significant (P < 0.001),

with a T-test result of 21.88. A contingency coefficient of 0.837 was obtained,

compared to a highest possible value of 0.894 for a 5x5 table (see Table 5.2.2),

showing a very high level of association between the observed and reference

classes.

Results of the accuracy assessments done on the pooled data of compartments

between three and fourteen months supported the finding that this was the optimal

period to identify potential weed infestations. The overall accuracy for this grouping

was 82.5% (see Table 5.2.3). In addition, the chi-square test results of the 3-14

Month pooled data also proved to be significant using the one-tailed test, while a

kappa score of 0.767 was achieved, together with a contingency coefficient of

0.841(see Table 5.2.4). This latter measure again indicated a very high degree of

association between the observed and reference classes. Gray et al. (2004) reported

classification accuracies ranging from 49% to 69%. However, that study attempted to

identify weeds by type, rather than simply differentiating weed from crop, which was

the focus of this study. Nilson et al.'s (2001) study on the effect of successional

changes in vegetation cover on ground reflectance values found it difficult to quantify

these effects. However, this study was able to quantify the effect such vegetation

succession had, in that it was able to calculate the area affected by weed infestation,

as well as the change in crop cover.

Compartments less than three months old only achieved an overall classification

accuracy of 73.3%, while compartments older than fourteen months achieved a

slightly better overall classification accuracy of 80.0%. The chi-square was

significant (P < 0.0001), indicating a good fit between the reference and observed

data.
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Table 5.2.1 Chi-Square; User; Producer and Overall Accuracies for Pooled Data

Results Report - Chi Square Table of Observed and Reference All Compartments

Reference
Heavy Light Shadowl Soill Row Incremental

Observed Crop Weed Weed Soil Slash Total Chi Sauare
Crop 64 3 3 0 1 71 93.455
expected 25.212 8.114 10.722 4.927 22.024

Heavy Weed 8 24 0 0 2 34 119.915
expected 12.073 3.886 5.135 2.359 10.547

Light Weed 2 0 32 0 2 36 153.019
expected 12.784 4.114 5.437 2.498 11.167

Shadow/Soil 5 0 1 17 10 33 105.315
expected 11.718 3.771 4.984 2.290 10.237

Soil/Slash 8 1 1 0 61 71 100.703
expected 25.212 8.114 10.722 4.927 22.024

Columns Total 87 28 37 17 76 245 572.408
Grand Chi Square
Total Total

Producer Accuracy 73.6% 85.7% 86.5% 100.0% 80.3%
16

0.000
a one-tailed test

User
Accuracy

90.1%

70.6%

88.9%

51.5%

85.9%

80.8%
Overall

Accuracy

Table 5.2.2 Kappa and Contingency Coefficient for Pooled Data

Asymp.
Aoorox. ,-t>Value Std. Error" Aoorox . SiQ.

Nominal by Nominal Contingency Coefficient .837 .000
Measure of Agreement Kappa .748 .033 21.882 .000
N of Valid Cases 245

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.
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Table 5.2.3 Chi-Square; User; Producer and Overall Accuracies for 3-14 Months

Pooled Data

Results Report· Chi Square Table of Observed and Reference Compartments 3-14 Months old

Reference
Heavy Light Shadow/ Soil/ Row Incremental

Observed Crop Weed Weed Soil Slash Total Chi Square

Crop 46 2 2 0 1 51 60.967

expected 19.125 5.419 7.650 3.506 15.300

Heavy Weed 3 15 0 0 1 19 88.111

expected 7.125 2.019 2.850 1.306 5.700

Light Weed 2 0 20 0 2 24 68.841

expected 9.000 2.550 3.600 1.650 7.200

Shadow/Soil 5 0 1 11 4 21 74.615
expected 7.875 2.231 3.150 1.444 6.300

Soil/Slash 4 0 1 0 40 45 93.894
expected 16.875 4.781 6.750 3.094 13.500

Columns Total 60 17 24 11 48 160 386.428
Grand Chi Square
Total Total

User
Accuracy

90.2%

78.9%

83.3%

52.4%

88.9%

82.5%
Overall

Accuracy
Producer Accuracy 76.7% 88.2% 83.3% 100.0% 83.3%

16
0.000

a one-tailed test

Table 5.2.4 Kappa and Contingency Coefficient for 3-14 Months Pooled Data

Asymp.
Approx. T>Value Std. Error

a
Approx. Sig.

Nominal by Nominal Contingency Coefficient .841 .000
Measure of Agreement Kappa .767 .040 17.901 .000
N of Valid Cases 160

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

5.2.4.3 Quantification Process

An important difference between the medium resolution image processing, which

was purely qualitative in its approach, and the high resolution image processing was

the quantification of the classes achieved during the classification stage. This was

successfully achieved in this process, and Table 5.2.5 illustrates a sample of this

quantification. The primary focus of this process was to be able to highlight

compartments in which the potential weed infestation exceeded a specified

threshold. This had important management implications, as silvicultural contractors

are paid to maintain compartments in a weed-free status at all times, under a "Plant­

to-Canopy" (PTC) system. Although field audits are done at specified times

according to a schedule, this study sought to determine whether weed status could

be independently and quantifiably monitored through remote sensing techniques.
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Table 5.2.5 Illustration of Ground Cover Area and Percentage Quantification

Compt

6025
6025
6025
6025
6025
6025

C025
C025
C025
C025
C025
C025

0002
0002
0002
0002
0002
0002

E022
E022
E022
E022
E022
E022

E023
E023
E023
E023
E023
E023

E025
E025
E025
E025
E025
E025

Compartments < 3 months

Class Dec. 2003
Description Ha %

Soil/Slash 3.2 36.8
Crop/Soil 1 11.5
Crop 0.3 3.4
CroplWeed 1.2 13.8
Light Weed 1.5 17.2
HeavvWeed 1.5 17.2

Soil/Slash 4.8 26.8
Crop/Soil 3.6 20.1
Crop 1.4 7.8
~ropIWeed 4.6 25.7
Light Weed 0.8 4.5
HeawWeed 2.8 15.6

Soil/Slash 5.2 58.4
Crop/Soli 0.8 9
Crop 0.4 4.5
CroplWeed 0.8 9
Light Weed 0.9 10.1
HeawWeed 0.8 9

Soil/Slash 4.4 25.8
Crop/Soil 6 35.3
Crop 1.8 10.6
CroplWeed 3.4 20
Light Weed 0.5 2.9
HeavvWeed 0.9 5.3

Soil/Slash 3.9 32.5
Crop/Soil 2.5 20.8
Crop 0.5 4.2
CroplWeed 3.2 26.7
Light Weed 1.1 9.2
HeawWeed 0.8 6.6

Soil/Slash 4.7 40.5
Crop/Soil 0.9 7.8
Crop 0.3 2.6
CropIWeed 1.8 15.5
Light Weed 2.1 18.1
Heavy Weed 1.9 16.4

Corn artments 3·12 months

Class May. 2004 Dec. 2004
Description Ha % Ha %

Soil/Slash 3.3 37.8 3.5 40

Crop 1.6 18.3 1.5 17.2
CroplWeed 1.1 12.6 1.3 14.9

ightWeed 1.6 18.3 1.4 16
IHeawWeed 1.3 14.9 1.1 12.5

Soil/Slash 5.8 32.4 7.3 40.8

Crop 4.2 23.5 4 22.3
CroplWeed 4.8 26.8 2.2 12.3
Light Weed 1.6 8.9 2.4 13.4
HeawWeed 1.5 8.4 2.1 11.7

Soil/Slash 3.3 37.1 3.9 43.9

Crop 1.2 13.4 2.6 29.2
!croplWeed 2 22.5 1.3 14.6
Light Weed 1.1 12.4 0.9 10.1
HeawWeed 1.5 16.9 0.2 2.2

Soil/Slash 9.2 32.4 10.1 35.5

Crop 6.6 23.3 6.7 23.6
CroplWeed 5.9 20.8 4.2 14.8
Light Weed 3.9 13.7 4.1 14.4
HeawWeed 2.9 10.2 3.4 12

Soil/Slash 3.2 26.6 2.7 22.5

Crop 3.3 27.5 4 33.4
CroplWeed 2.7 22.5 2.4 20
Light Weed 1.1 9.2 1.4 11.7
HeawWeed 1.6 13.3 1.5 12.5

Soil/Slash 3.4 29.3 4.4 38

Crop 2.7 23.3 2.4 20.7
CroplWeed 2 17.2 1.7 14.7
Light Weed 1.6 13.8 1.7 14.7
Heavy Weed 1.8 15.5 1.3 11.2

I Compartments> 12 months I
Class Mar. 2005 Apr. 2005

Descriotion Ha % Ha %

Soil/Slash 3 34.3 2.3 26.3

Crop 2.7 30.9 3.6 41.2

Light Weed 1.5 17.1 1.2 13.7
HeawWeed 1.5 17.1 1.7 19.4

Soil/Slash 6.7 37.4 5.5 30.7

Crop 6.6 36.8 7.2 40.2

Light Weed 2.6 14.5 2.7 15.1
HeawWeed 1.9 10.6 2.4 13.4

Soil/Slash 3.3 37.1 2.8 31.5

Crop 3.2 35.9 3.2 36

Light Weed 1.4 15.7 1.4 15.7
HeawWeed 1.2 13.5 1.5 16.9

Soil/Slash 7.1 25 9 31.7

Crop 13.9 49 10.3 36.2

Light Weed 3.1 10.9 4.1 14.4
HeawWeed 4.4 15.5 5 17.6

Soil/Slash 3.1 25.8 3.5 29.2

Crop 5.9 49.1 4.8 40

Light Weed 1.5 12.5 1.6 13.3
HeawWeed 1.4 11.6 2 16.7

Soil/Slash 5.9 50.9 3.7 31.9

Crop 2.7 23.3 4.4 38

Light Weed 1.7 14.7 1.6 13.8
Heavy Weed 1.4 12.1 2 17.3

A significant advantage of this approach was that in addition to the quantification of

infestation levels, it could also highlight the spatial distribution of these infestations

within the compartments (Le. where the weed patches occurred within the stand).

The table also illustrates the reduction in the number of classes that occurred over

time, as the classification improved with increasing row definition. Class 11:

Shadow/Soil and Class 21: Soil/Slash were sufficiently similar as to constitute a

single class for the purposes of this table, and so the areas reported were combined

under the Soil/Slash class. With the improved classification as the crop grew over

the three to twelve month period, the cross-classification between crop and soil did

not occur, resulting in Class 22 better defining crop, and so was combined with

Class 12 to identify the crop area. After twelve months, the crop/weed cross­

classification was no longer evident, with vegetation now being classified as crop or

weed (light or heavy), and the areas of each class reported as such.
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Each classification class had the area, in hectares, and the percentage that this

represented across the compartment calculated. According to the specifications laid

down for a PTC compartment, no weeded area may exceed 5% of the total

compartment area (Da Costa, 2005a). Using this limit, it was a simple task to

highlight compartments exceeding this specification. Although there are other PTC

requirements in terms of weed type, weed height and similar specifications, these

could not be measured by the remote sensing techniques applied in this study.

5.2.5 Change Detection Results

5.2.5.1 Assisted Change Detection: "Classified" Images

Unlike the medium resolution image processing, only one change detection

methodology was appropriate for the change detection procedures applied to the

high resolution imagery. In part, this was due to the fact that the bulk of the answers

were actually provided by the classification process, and the change detection

procedures simply highlighted areas of weed increase when comparing consecutive

images. The focus of the change detection routine was only on changes in Class 41

and/or Class 42 (Heavy Weed), as these classes highlighted heavy weed

infestations. With this in mind, the results were successful in highlighting where

there had been an increase in weed infestation in the second image when compared

to what was reported in the first image. This is reflected in the results of the change

detection error assessment. Table 5.2.6 provides the chi-square as well as the user

and producer accuracy assessments for the change image (Le. observed versus

reference data). An overall accuracy of 84.4%, together with a significant chi-square

test result (P<0.0001), was achieved on the pooled data of "First Image vs. Second

Image" test, while an overall accuracy of 88.3% and a significant chi-square result (P

<0.0001) was achieved on the pooled Change Detection Images accuracy

assessment (see Table 5.2.8). These match the accuracies achieved by Varjo and

Folving's (1997) study. Overall, the accuracies attained were higher than generally

quoted in the literature (e.g. Zukowskyj et al. (2001); Rowlinson et al. (1999); Singh

(1989)) but it should be remembered that there was only one class of change being

measured, and so is not strictly comparable.

Where the same area had a heavy weed infestation in both images, nothing was

recorded. Neither was any indication given of a reduction in weed infestation.

However, as the point of interest was the increase in weed, this was not a problem.
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Not only did it answer the question of was there any increase in weed infestation, but

it highlighted where it had occurred, and by how much, measured in hectares. Figure

5.2.10 illustrates the results of the change detection process, where the colours

represent areas of weed increase between two consecutive images.

Table 5.2.6 Chi-Square; User; Producer and Overall Accuracies for "First Image vs.

Second Image" Change Detection Pooled Data

Results Report - Chi Square Table of Observ. and Ref.
"First Image vs. Second Image" Change Detection

Reference
Row Incremental

Observed CD WI NC HW NC NW Total Chi Square
CD_WI 145 8 10 163 1.552
expected 139.456 9.961 13.583

NC_HW 3 2 0 5 10.195
expected 4.278 0.306 0.417

NC_NW 6 1 5 12 17.870
expected 10.267 0.733 1.000

Columns Total 154 11 15 180 29.617
Grand Chi Square
Total Total

User
Accuracy

89.0%

40.0%

41.7%

84.4%
Overall

Accuracy
Prod. Accuracy 94.2% 18.2% 33.3%

DF 4
P 0.000

The chi square test result of the observed frequencies ofyour variables was significant
usin a one-tailed test

Table 5.2.7 Kappa and Contingency Coefficient for First Image vs. Second Image"

Change Detection Pooled Data

Asymp.
Approx. TbValue Std. Error" Approx. Sia.

Nominal by Nominal Contingency Coefficient .376 .000
Measure of Agreement Kappa .286 .095 4.995 .000
N of Valid Cases 180

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis .

Thus, such imagery could focus management attention into the most appropriate

areas, resulting in a reduction in the necessity of having to check the whole area, as

well as reducing the risk of missing problematic areas. Discussions with field and

technical staff revealed that this latter point was of concern, as it was fairly common
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Fig. b. Change Detection: Weed increase; May 2004 - Dec 2004
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Fig. c. Change Detection: Weed increase; Dec 2004 - Mar 2005
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Figure 5.2.10 Illustration of Change Detection forWeed Increase
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Table 5.2.8 Chi-Square; User; Producer and Overall Accuracies for Change

Detection Images Pooled Data

Results Report - Chi Square Table of Observ. and Ref.
Change Detection Images

Reference
Row Incremental

Observed CD WI NC HW NC NW Total Chi Square
CD_WI 154 8 10 172 1.000
expected 150.022 8.600 13.378

NC_HW 0 1 0 1 19.000
expected 0.872 0.050 0.078

NC_NW 3 0 4 7 23 .862
expected 6.106 0.350 0.544

Columns Total 157 9 14 180 43.862
Grand Chi Square
Total Total

User
Accuracy

89.5%

100.0%

57.1%

88.3%
Overall

Accuracy
Prod. Accuracy 98.1% 11.1% 28.6%

DF 4
P 0.000

The chi square test result of the observed frequencies of your variables was significant
usin a one-tailed test

Table 5.2.9 Kappa and Contingency Coefficient for Change Detection Images

Pooled Data

Asymp.
Approx. -rhValue Std. Error" Approx. Sig.

Nominal by Nominal Contingency Coefficient .443 .000
Measure of Agreement Kappa .285 .108 5.442 .000
N of Valid Cases 180

a. Not assuming the null hypothesis .

b. Using the asymptotic standard error assuming the null hypothesis .

for some areas within compartments to be overlooked during weed control

operations, particularly areas that were adjacent to unplanted areas where there was

confusion as to the actual compartment boundary (Da Costa, 2005b). This also

supports the fundamental tenet of this research that the effective use of remote

sensing imagery and techniques can allow a more focused management of forestry

operations, which in turn could produce cost savings, particularly in terms of

supervisory time, and allow more effective management of resources (Shaw, 2004).

Even in those operations where these techniques might not produce definitive

results, the adage, "You get what you measure" applies, since the knowledge that

one's work could be monitored very often produces a greater attention to quality

assurance.
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5.2.6 Comparison between Classification Results and Operational Database

Records

In order to determine the degree to which the image classification results could be

used to validate operational records in the management database, comparisons

were made between the operations recorded in the database against the

compartment status as derived from the classified imagery results.

Table 5.2.10 shows an example of the typical results obtained from the database

comparison. Despite weed control operations occurring during the period covered by

the image acquisitions, data derived from the imagery indicated increases in weed

cover in almost all cases. In several cases, there was a reduction in heavy weed

growth following a weed control operation, but a slight increase in light weed growth

for the same period. An example of this occurred in compartment C025, during the

period from December 2003 to May 2004, where there was a decrease in heavy

weed from 15.6% to 8.4% following line cleaning and inter-row weeding operations

carried in March and April 2004. However, the light weed category in the image

classification results increased from 4.5% to 8.9% in the same period. A similar

pattern was recorded over the period from December 2004 to March 2005 in this

compartment following another line cleaning operation recorded in January 2005.

Table 5.2.10 Example of Database Comparison Results (Operations vs. Ground

Cover Status)
Recorded Operations - Database Change in Ground Cover Status - Image Data

Operation Dates Acquisition Dates
comet Oneratlon Jan-04 Mar-04 Aor-04 Aua-04 SeD-04 Jan-05 Mav-05 Ground Cover Oeo-03 Mav-04 000-04 Mar-05 Anr-OS Jun-05

I
C025 LineClean Y Y Y Y Weed Status I1£1SI111lil . 'IncreaselilllilWl
C025 InterRow Y Y
C025 Spacing y Crop Status 1-rJt\1l,

I
E022 LineClean y Weed Status ~ ,iiii ll:! l ncrease .7ll'~~ 1

E022 InterRow y y y
E022 soactno y y Crop Status

I
E023 LineClean y Weed Status "~Increase ;;","",~

E023 InterRow y y y
E023 Snacino y y Cron Status I~D .

One operation where a consistent result was noted were the second or third spacing

operations, which generally occurred at an age of 15-16 months, where there was a

definite reduction in crop cover recorded by the imagery following these operations

in all cases where these operations were recorded in the database (see Table

5.2.10). However, the same could not be said for the first spacing operation, which

generally occurred at an age of about 4-5 months. This was probably due to the

same reasons given above concerning the difficulties of accurate classifications at
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this age. An exception to this result occurred in a compartment that had a first

spacing operation at a much later age of 9 months, where a reduction in crop cover

was recorded by the imagery.

Overall, the results were somewhat disappointing, in that it was very difficult to draw

conclusive results as to the accuracy of the database entries, especially for weed

control operations recorded during the first three months of the crop being

established. This was probably due to the difficulties experienced in obtaining

accurate classification of crop as opposed to weed, as discussed above (see section

5.2.4.1). This was further complicated by the rapid crop development at this stage

counter-acting a reduction in weed signal that would normally attend a weed control

operation. Another complication in this particular process was that image acquisition

did not correspond very well with the actual weed control operations being done. In

several compartments within the study area a weed control operation was done in

September, but the next image was only acquired in December, when there would

already have been weed growth subsequent to the last weed control operation

recorded in the database. The effect of chemical weed control operations generally

take several weeks to become evident, which would make it difficult to derive an

accurate result from image analysis, as this would be dependent on when the image

was acquired in relation to the herbicide application. Manual weed control operations

have an immediate effect, but these operations tend to occur over a smaller extent

(e.g. only a narrow band along a crop row) than herbicide applications, and so are

less evident in terms of image analysis.

Another factor complicating this process is the timing of the actual recording of the

operations in the database, as the operations might extend over more than one

month, but are only recorded once completed. In view of all these issues it was not

possible to draw conclusive results as to the efficacy of the previous weed control

operations.

5.2.7 Results of Theoretical Ground Cover Model

When considering this process it should be borne in mind that this was an

exploratory study to test the proof of concept of whether a model could be developed

that would provide suitable thresholds against which weed infestations could be
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identified, rather than trying to produce conclusive results. This fact had an impact

on the procedures applied, as is discussed below.

The results of this test are shown in Figure 5.2.11, and the model that best fitted the

results of the trial was a linear trend line, with the following equation:

% Crop Cover =0.0387xage + 0.0151 (Equation 5.2.1).

% Crop Cover over Time

100.0%

90.0%

80.0%

70.0%

Cii 60.0%
>
0
0

50.0%CL
0

0
~ 40.0%

30.0%

20.0%

10.0%

0.0%

0 2 4 6 8

Age (Months)

10 12 14 16

y = 0.0387x + 0.0151

R2 = 0.2604

• % CC by Age

-Linear (% CC by Age)

Figure 5.2.11 Graph of the Theoretical Ground Cover Model

Overall, with an R2 value of only 0.26, the initial results of the theoretical ground

cover model were disappointing, and did not provide a sufficiently robust model that

could be used to derive threshold values that accurately reflected the ground cover

status of the crop at specified ages. This was chiefly due to the large degree of

variance inherent in seedling wattle crops, as was illustrated by 14 month old crop

having an individual canopy area ranging from 0.2 m2 to 8.3 m2
. This was also seen

in other age classes, but to a slightly smaller degree, e.g. the 9 month class

individual canopy area ranged from 0.2 m2 to 5.5 m2
. However, there were many

other sources of variance, including site, microclimate, genetics etc. that contributed

to the poor model fit.
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It was seen that the field measurements resulted in generally higher ground cover

percentage values being obtained than those derived from the imagery. This was

particularly the case as the age of the stands increased. For example, the average

ground cover percentage derived from the imagery for 14 month old stands was 39%

compared to a value of 53% derived field measurements. The reason for this

discrepancy was due to the nature of the crown structure, which tended to be denser

closer to the centre of the crown, but much thinner on the edges. This resulted in the

imagery identifying much less crown area than was measurable on the ground. The

full widths of the crowns were however measured in the field measurements, leading

to a higher canopy cover figure for these results.

In order to relate the image-measured ground cover to the field-measured ground

cover, the data was then further interrogated to determine whether there was a

predictable relationship between the ground cover observed in the field (GCfield) and

that obtained from the image data (GCimage). A visual inspection of plots of GCfield

against GCimage, as well as GCfield against Age indicated that there was a

relationship. One would expect this to be the case, as there should be an increase in

ground cover with an increase in age, and that this relationship should be reflected in

both the field data and the image data. After testing various regression models that

utilised GCimage, Age and the interaction between these two, either independently or

jointly, it was found that a simple linear regression of GCfie1d against a combined

variable, Age x GCimage gave the best results, with an adjusted R2 value of 0.95 (see

Appendix 8), Le.

GCfield.predicted = 0.1569 + 0.07579 * (Age x GCimage) (Equation 5.2.2).

GCfield values were regressed against Age to derive a model that would predict

GCthreshold (see Figure 5.2.12). The fitted model had an R2 value of 0.98, with the

followinq form:

GCthreshold =0.0544 * Age + 0.0613 (Equation 5.2.3).

Thus, ground cover values obtained from an image would be applied to equation

5.2.2 in order to calculate GCfield. These values would then be checked against the

threshold value predicted by equation 5.2.3 for the same age, and where greater

than the ground cover value for that age, it would then be assumed that weed was a

problem and needed to be verified infield.
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One area of concern in this whole process was that, at the time that the field

measurements were able to be done, there were an insufficient number of suitable

compartments within the study area that could be measured for the crown diameter

field measurements. It was therefore necessary to do these measurements at sites

outside of the imaged area, resultinq in the problem whereby the field measurements

were not identical to the image data. However, while being fully cognisant of this

problem and its possible implications, it was decided to test the results obtained on

the basis of this being a "proof of concepf' study in order to provide a basis for a

much more rigorous and comprehensive study to further develop accurate threshold

values.

Despite the problems encountered with this process, it is anticipated that there would

be a better correlation with seedling crops, which tend to be somewhat more

uniform, particularly gum and pine seedling crops.
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Figure 5.2.12 Threshold Model
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5.2.8 Classification Results of Eucalyptus Coppice Stand

5.2.8.1 Detection of Weed Infestation

As previously mentioned, only one suitable Eucalyptus stand was available within

the study area during the period covered by the imagery. However, although it was

not possible to derive conclusive results because of this, there were strong

indications that could be surmised from the results obtained. This would obviously

require further research to confirm these empirical results.

In terms of the classification results, it was very apparent that the classes derived for

the wattle stands did not fit the Eucalyptus stand very well. Being a coppice crop,

with a very well developed root system from the previous crop, it grew a great deal

faster than the equivalent aged wattle crop. Although the rows tended to form more

quickly, the edge enhanced image of December 2003 (when the compartment was

four months old) was not able to define the crop rows sufficiently well to provide a

definitive row classification. By the time the next image was acquired in May 2004

(when the stand was nine months old) canopy closure was very close to completion.

While the row definition was very clear from the edge enhanced imagery, the degree

of vegetation growth was such that it tended to overshadow this and cause cross­

classification between the "crop" and "light weed" classes, although there was very

little weed present. This was due to the strength of the vegetation signal extending

beyond the edge enhanced row definition and so creating a clump rather than a row

effect.

Another confusing element, particularly in the December 2003 image, was the very

strong influence of the brushwood lines (see glossary). As these had not been burnt,

but were still in heaps, they produced a very strong shadow signal as received by

the sensor, which tended to skew the digital numbers, and hence the unsupervised

classification.

As the stand became older, a similar effect in terms of the cross-classification

between the "crop" and "heavy weed" classes was evident, with areas being

classified as heavy weed, when in fact there was little or no weed. Again this was

due to the high level of the vegetation signal reflected back to the sensor from a

more mature crop stand. Figure 5.2.13 illustrates the full range of classified results

from this Eucalyptus coppice stand.
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Figure 5.2.13 Weed Potential Classification of a Eucalyptus coppice stand (Compt.

8031)
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5.2.8.2 Detection of Eucalyptus Coppice Reduction

Eucalyptus stands that have been re-established by coppicing, rather than replanting

with seedlings, require two coppice operations in order for the correct stocking, in

terms of stems per hectare, to be achieved (Norris, 2000). Delays, portions of

compartments missed and other such problems negatively impact on the quality and

quantity of the final crop obtained. Therefore, if these operations could be monitored

from remotely sensed imagery, it could have important management implications.

During the course of this study, the one Eucalyptus compartment that was re­

established by coppicing was monitored both from the imagery and also ground

truthed. Due to a significant response being observed in both the raw and classified

imagery, it became very evident that a coppice reduction operation had occurred

within the study period. This was confirmed when the forestry operation records for

that compartment were checked and revealed that a coppice reduction operation

was reported in April. What was also interesting to note was that while the records

reported the operation had been completed and paid for in April, it was seen from

the June imagery that the operation was still in progress. Subsequent queries with

the field staff revealed that there were valid reasons for this discrepancy. However, it

did indicate that monitoring such operations through remote sensing was feasible,

and could enhance the operational management of forestry concerns. Unfortunately

this was the only such compartment that was available to be monitored during the

study period, and so statistical inferences could not be drawn to independently

validate this result, but the results, illustrated in Figure 5.2.14, clearly show the visual

effect the coppice reduction operation produced in the imagery.

5.2.9 Classification Results of Pine Stand

No suitable pine stands were available in the study area for analyses and so no

results could be obtained from this research. However, based on the understanding

gained from this work, it is surmised that because of the much slower growth rates of

pines, any analyses would have to be done over a longer period than was the case

experienced in this study, probably extending towards 36 months, with initial

successful identification of the crop probably only occurring eight to twelve months

after establishment. This is due to the wider espacement pine is planted at, as well
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Fig. a March 2005 Prior to coppice reduction (rectangle in SE corner is different species)

Fig. a April 2005 Coppice reduction in southern half of compartment

Fig. c June 2005 Coppice reduction continues in northerly direction

Figure 5.2.14 Identification of Coppice Reduction Operation
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as the fact that the row delineation that was so critical in this study would only occur

at a later stage than was the case with wattle or eucalypts.

However, these issues would need to be properly investigated before firm

conclusions could be drawn.

5.3 Conclusions and Recommendations

5.3.1 Conclusions

5.3.1.1 The Application of 2.4 m Multi-spectral Imagery

The 2.4 m multi-spectral imagery on its own was insufficient to identify potential

weed infestations. However, in combination with the textural information provided by

the panchromatic imagery, the vegetation signal inherent in this data was critical to

the successful differentiation of crop from weed and subsequent identification of

potential weed infestations.

5.3.1.2 The Application of Textural Analyses

Textural analysis proved to be an essential component in producing successful

classification and change detection results in the context of this study. Of the textural

analysis techniques tested the edge enhancement technique was the most

successful in delineating crop rows. This delineation of crop rows was the key to

distinguishing crop from weed, but it was still necessary to combine the crop row

data with the multi-spectral data set to achieve a successful classification. These

results agree with other studies (e.g. Ouma et al., 2006; Tso and Mather, 2001;

Coppin, 1991; Fung and Le Drew, 1987) that reported improved classification results

due to the inclusion of textural analyses in the classification process.

5.3.1 .3 The Effect of Stand Age

Stand age played a major role in the classification success, as those stands (or

compartments) less than three months old or older than fourteen months were not

classified as successfully as stands between these ages. The optimal period within

which to identify potential weed infestation in wattle stands is three to fourteen

months. However, identification of potential weed problems in stands younger than

three months can still be done with reasonable success. Stands older than fourteen
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months tend to be close to canopy closure, when it is no longer necessary to monitor

weed infestations. Hence, knowledge of stand age is probably a prerequisite.

5.3.1.4 The Effect of the Classification Matrix

Despite some level of cross-classification, particularly in the "early crop" stage, the

four-class matrix provided a good basis for deriving the weed infestation levels.

5.3.1.5 Quantification of Weed Infestation Levels

In addition to effectively identifying weed infestations spatially, it was possible to

quantify the level of infestation and report it on a hectare basis, as well as the

percentage of the compartment affected. The success in identifying and quantifying

weed infestation achieved in this study was higher than reported in other studies.

(Gray et al., 2004; Nilson et al., 2001). However, this approach would most probably

only yield meaningful results in plantation forestry, where regularly Iineated forest

stands is generally a feature.

5.3.1.6 The Success of the Change Detection Process

The change detection process was able to identify, and quantify, areas of weed

increase between consecutive images. While only bi-temporal change detection was

undertaken in this study, in terms of the actual change detection procedures, visual

comparison of the results gave one an indication of the temporal trends that

occurred in weed infestation.

5.3.1.7 Comparison of Classified Imagery with Operational Database

It was not possible to draw conclusive results when comparing operations recorded

in the operational management database to the classified image results. This was

mainly due to the imagery not being obtained sufficiently close enough to when the

operations occurred, such that any weed or crop growth masked operations

previously carried out. The only exceptions to this were the second or third spacing

operations, where a reduction in crop cover was recorded by the imagery. Based on

the image results, one could draw conclusions as to crop and weed status at the

time of image acquisition, but not infer any conclusions regarding previous

operations to the stands.
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5.3.1.8 Application of Theoretical Ground Cover Model

While conclusive threshold values were not obtained, there was sufficient evidence

to show that this concept could work, and that where required it was possible to

rescale the values derived from field measurements such that threshold values could

be derived for use with data derived from imagery. The net result would be

thresholds that could be used to alert managers to potential weed infestation levels

within forest stands.

5.3.1.9 Weed Detection in Eucalyptus Coppice Stands

There was insufficient evidence to draw any conclusions regarding the identification

of weed status in Eucalyptus coppice stands as only one compartment was available

within the study area. However, it was apparent that the wattle model developed in

this study would not be suitable for application in Eucalyptus coppice stands. This

appeared to be mainly due to the faster rate at which coppice stands attained

canopy closure, compared to wattle stands.

5.3.1.10 Detection of Coppice Reduction Operations

Although there was only one sample site, there were strong indications that coppice

reduction operations could be monitored using high resolution imagery.

5.3.1.11 Weed Detection in Pine Stands

No conclusions could be drawn regarding the application of these techniques in pine

stands, as no suitable pine stands were available within the study site.

In summary, this study has shown that the application of change detection and

textural analysis techniques to high resolution imagery can be used to quantitatively

assess weed status in plantation forest stands less than 24 months old.

5.3.2 Recommendations

5.3.2.1 Identification of Weed Infestations

Techniques involving the combination of multi-spectral and edge enhanced

panchromatic high resolution imagery should be used to identify and quantify

potential weed infestations as a management tool to improve the monitoring of weed

status within plantation forest stands. It will, however, be required to know stand

169



ages when interpreting the classified data, due to the effect stand age has on this

process.

5.3.2.2 Automation of Analysis Procedures

Due to the number of processes required to run these analyses, techniques should

be developed to automate as much of the processing as possible. This will allow

results to be provided more rapidly, which is a critical factor due to the time-sensitive

nature of monitoring weed infestations.

5.3.2.3 Application in Eucalyptus and Pine Stands

The application of the techniques described in this study should be tested in both

Eucalyptus coppice stands and Eucalyptus planted stands, as well as in Pine stands,

as each of these types have some unique characteristics that differ from wattle

stands, as well as from each other.

5.3.2.4 Further Development of Textural and Frequency Domain Techniques

Further investigation should be undertaken to determine whether the Variance

function, in the textural domain, can be used to identify landscape fragments, or

clumps, that might indicate weed concentrations. Similarly, further investigation of

the Fourier Transform could reveal its potential in delineating crop rows.

5.3.2.5 Use of Imagery Results to Audit Operational Databases

It is not recommended to utilise image classification results to audit operational

records in a management database for operations such as weed control, particularly

where chemical control is applied, as these effects are only evident several weeks

after application. Some assessment may be possible in cases where manual weed

control operations are undertaken, and image acquisition coincides with these

operations. It may also be possible to use such image results to check whether the

later (second or later) spacing operations have been done, especially where the

image acquisition is coincident with the actual operation. However, this would best

serve a supplemental source of this information, rather than being a primary source.
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5.3.2.6 Use of Theoretical Ground Cover Model

More rigorous testing should be done to produce conclusive threshold values in

wattle stands. The possibility of better results being obtained from seedling crops,

particularly gum or pine stands should also be tested.
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Chapter 6: Study Conclusions and Recommendations

6.1.1 Introduction

Overall, the work done in this study supported the original hypotheses stated at the

beginning of this study. The primary aim of being able to monitor specific plantation

forestry operations was achieved, together with an understanding of the appropriate

applications and limitations of both medium and high resolution imagery within this

context. These are discussed below.

6.1.2 Monitoring Forestry Operations

As was highlighted in the literature survey, virtually no research has been reported

on remote sensing applications in plantation forest conditions. This study has been

able to address some of the issues involved, particularly in terms of the monitoring of

plantation forestry operations.

The results of this study showed that it was possible to monitor a range of plantation

forestry operations using both medium and high resolution imagery, although the

degree of success was very much a function of the spatial resolution. Clear-felling

operations could be very accurately identified using medium resolution imagery,

even where compartments were only partially felled. However, weeding and planting

operations could not be successfully identified using medium resolution imagery.

Successfully identifying these operations required high spatial resolution imagery.

Even the high resolution multi-spectral imagery was not able to identify weed

infestations or newly planted stands without the textural information of the higher

resolution panchromatic imagery. However, using this textural information to identify

crop rows, in conjunction with the vegetation signal derived from the multi-spectral

bands, it was possible to distinguish between crop and weed, particularly in wattle

stands between three and fourteen months old. This could have useful applications

to other forest management situations such as highlighting areas of poor crop growth

due to poor stocking or other site conditions. Operations involving significant canopy

reduction, such as those of clear-felling; gum coppice reduction and the later wattle

spacing operations could also be successfully identified from image analyses.

Medium resolution imagery covers very large areas, of which only a small portion is

actually of interest (Le. the plantation areas), but cannot adequately identify features
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within compartments. High resolution imagery covers much smaller areas, but can

identify features within compartments. Therefore, a multi-stage sampling process is

recommended, whereby clear-felled compartments are identified from medium

resolution imagery, and where a concentration of these falls within a high resolution

image, that image could be obtained and the planting and weeding operations

monitored. Alternatively other high resolution imagery options such as airborne multi­

spectral imagery could also be utilised.

There are thus opportunities to allow more effective monitoring by field staff of

forestry operations, as the results of such image analyses can highlight those areas

that need to be verified on the ground. This allows a much more focussed approach

to operational management, reducing supervisory time, while simultaneously

reducing the risk of critical situations being overlooked. Where reasonably coincident

repeat imagery is available, trends over time can be assessed, thereby assisting in

the determination of appropriate management regimes to address trends such weed

infestation increases or decreases; crop failures; poor stocking and similar trends. In

view of the number of processes required to provide this data, it is also

recommended that these procedures be automated as much as possible.

In an era where environmental, social and political pressures require that forestry

companies relinquish direct control over some afforested land, remote sensing

techniques such as these described above, in conjunction with other techniques, can

provide a suit of tools that allow a measure of control and monitoring to occur without

necessarily having to do this on the ground. This could assist in ensuring continuity

of a sustainable raw material base.

6.1.3 Monitoring Vegetation Trends over Time

The above operations can be identified from single images. However, where repeat

imagery is available it is possible to monitor trends over time using change detection

techniques, such as the post classification comparison techniques applied in this

study. What was of particular interest was that using high resolution multi-spectral

imagery in conjunction with textural analyses of panchromatic imagery, one could

identify and quantify the vegetation succession over time, both in terms of crop and

weed development.
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6.1.4 Methods to Increase Classification Accuracy

6.1.4.1 Reducing Spectral Variability

Irrespective of the type of imagery used, classification accuracy was affected by the

degree of variability present within the area classified. On the medium resolution

imagery the limitation set by using an Area of Interest (AOI) consisting of the

plantation boundaries did not reduce variability sufficiently well due to the presence

of the unplanted areas within these boundaries adding an unnecessary degree of

variability. A major factor in the ability to distinguish crop from weed, and hence

quantify weed infestation, in the high resolution imagery was due to the variability

within each study site being restricted to the data of interest, Le. only the vegetation

and soil within the compartment. This was further improved by applying an internal

buffer to remove the mixed pixels along the compartment edges, which in turn

countered the problems described by Heyman et al. (2003) regarding a reduction in

classification accuracy due to the greater variability encountered in high resolution

imagery. An improvement in classification accuracy of the medium resolution

imagery would probably have been obtained had AOls been restricted to the forest

stands only, removing the extraneous variability of the unplanted areas.

6.1.4.2 Units of Observation

An issue related to spectral variability was the decision on what to use as the basic

unit of observation for the purposes of classification and change detection (Varjo,

1997). In the medium resolution imagery, compartments (or forest stands) were

selected as the units of observation, on the basis that they formed the smallest

management units (Le. there should therefore be a level of consistency within a

compartment, in terms of its status). However, one of the findings of the medium

resolution study was that this was problematic due to the variation occurring within

compartments such that a simple majority classification did not allow accurate

classification, and that some form of pixel basis should be introduced as a unit of

observation.

This problem was not encountered in the high resolution imagery study, even though

the compartments were still used as the units of observation. However, the major

difference was that every compartment was processed individually, rather than all

compartments being processed together, as was the case with the medium

resolution imagery. The net result was that where inter-compartment variability
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needed to be assessed, one could use medium resolution imagery, but assessment

of intra-compartment variability required high resolution imagery. This latter point is

fundamentally why it was possible to distinguish between crop and weed using the

high resolution imagery.

6.1.4.3 The Application of Textural Analyses

It is important to understand that the focus of the textural analysis was to delineate

the crop row, as opposed to individual tree crowns. Therefore, although the

individual crown sizes were much less than the 1.5 m radius found by Wulder et al.

(2000), the tree rows were sufficiently definable as to be able to be delineated using

textural analysis techniques, and this delineation was successfully used to

differentiate crop from weed, except where the weed density was such that it

overshadowed the crop row delineation.

6.1.4.4 Effects of Spatial and Spectral Resolution

The advantage gained by the greater spatial resolution of the high resolution

imagery is somewhat offset by the loss in spectral resolution, when compared to

medium resolution imagery. While the former imagery has four bands covering the

visible and near-infrared portions of the spectrum, medium resolution imagery has

up to eight bands ranging from the visible to the thermal parts of the spectrum. In

terms of vegetation analyses, the short-wave infrared band is particularly useful, but

is not available when using standard high resolution imagery (Janssen, 2000).

However, it was found that for the objectives of this study, the information gained

from the greater spatial resolution more than offset this loss in spectral resolution.

This may not always be the case, however, and one would need to be conversant

with how these issues could affect the objectives of a particular study.

6.1.4.5 Image Rectification and Registration Issues

The whole issue of accurate orthorectification proved to be a major source of

concern in this project, and highlighted the critical importance of this aspect when

selecting the appropriate type of imagery for a particular remote sensing application.

Fortunately, the impact of these registration problems was reduced by applying a

generalisation function during the vectorisation of the multi-spectral and

panchromatic images, such that the classification and change detection results were

not seriously impacted. The use of a post-classification comparison methodology
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also assisted in this case, as it is more resilient to registration problems than some of

the other change detection methodologies (Coppin et al., 2004; Singh, 1989).

What was also found was that even if no further atmospheric correction is applied,

ON to radiance/reflectance normalisation should be carried out on all satellite

imagery, particularly when processes such as NOVI are undertaken, as without this

correction, valid comparisons between images cannot be made.

In summary, the major findings were as follows:

• Medium resolution imagery can be used to successfully detect clear-felled

areas.

• It cannot be used to detect new plantings less than one year old, or weed

status.

• High resolution imagery can be used to detect new Wattle (A. meemsiii

plantings less than one year old, and the weed status of these stands.

However this does require the application of textural analyses of the

panchromatic band, in conjunction with unsupervised classification of the

multispectral bands.

• Coppice reduction operations in Eucalyptus stands can be monitored using

high resolution imagery.

• Vegetation trends over time can be monitored using both medium and high

resolution imagery, where repeat imagery is available.

Further research is recommended for the following aspects:

• Automated processing methodologies need to be developed to operationalise

the monitoring aspects of this application.

• Methodologies need to be refined for the application of these techniques to

Pine and Eucalyptus stands.
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Glossary:

Brushwood: See Slash.

Compartment: A defined area that has a common management regime within a

forest plantation (James, 1983). It is the plantation forestry equivalent of an

agricultural field, and is similar to the concept of a forest stand in northern

hemisphere boreal forests. It is the basic management unit in plantation forestry.

Coppice: Eucalyptus species have the ability to produce new growth from epicormic

and lignotuber buds found in the cambium or live bark at the base of the tree (Little

and MacLennan, 2001). Once a tree is felled, these buds develop into new stems,

and if managed correctly, can produce a new crop. This new growth is referred to as

the coppice crop, or simply coppice. Multiple stems form initially, and it requires one

or two coppice reduction operations for a utilisable crop to be produced.

Crop: Within the context of this study, crop refers to the commercial stand of trees

grown specifically for the production of wood fibre for pulp and paper mills, as well as

any other commercial timber product such as sawn timber, mining timber or veneer.

Plantation Forestry: The commercial application of growing trees for specific forest

products, whereby the crop is managed on an intensive scale, usually as even-aged

single species stands on short to medium term rotations (6 - 30 years, depending on

product, species and geography). Regeneration is by artificial means rather than by

natural regeneration, and the crop is managed in a similar fashion to an agricultural

crop. An alternative name is tree farming.

Re-establishment: This is a generic term covering all forms of operations aimed at

replacing harvested trees, usually by artificial means. For Pine and Wattle crops, re­

establishment is by planting nursery-produced seedlings (although Wattle is also

replanted using directly sown seed), but Gums are usually coppiced for one or two

growth cycles, rather than having seedlings replanted after every felling.

Replanting (or planting): Unlike the term re-establishment, this only refers to

establishing new crops by planting seedlings, clones or seed.
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Slash: A term referring to the residue of branches, bark, foliage and timber left

behind after a harvesting operation has removed the utilisable timber from a

compartment. It is often disposed of by burning, although it is increasingly being left

in-situ to rot down.

Weed: This term refers to any vegetation growth that occurs in the immediate vicinity

of the forest crop (see above), either in the crop row or the inter-row between the

crop rows, such that it competes with the crop for water and nutrients. Weed growth

has a particularly severe impact when occurring within the first year of the crop's

establishment.
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Appendices:

Appendix 1: Landsat 7 ETM+ Technical Specifications

Orbit Description: 705 km altitude; sun-synchronous; near-polar (inclination angle
= 98.2°); approx. 10:00 am (local time) crossing .

Repeat Cycle:

Swath Width:

16 days.

185 km (FOV =15°).

Spectral Bands: Band 1: 0.45 - 0.52 IJm
Band 3: 0.63 - 0.69 IJm
Band 5: 1.55 - 1.75 IJm
Band 7: 2.08 - 2.34 IJm

Spatial Resolution: 15m (PAN)
30m (Bands 1 - 5; 7)
60m (Band 6)

Band 2: 0.52 - 0.60 IJm
Band 4: 0.76 - 0.90 IJm
Band 6: 10.40 - 12.50 IJm
Panchromatic: 0.50 - 0.90 IJm

Sensor:

Data archive:

Enhanced Thematic Mapper Plus

http://www.sac.co.za

Sample of raw'Lan-dsat Image
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Appendix 2: QuickBird 2 Technical Specifications

Orbit Description: 450 km altitude; 98° sun-synchronous

Repeat Cycle: 1 to 3.5 days, depending on latitude.

Swath Width: 16.5 km at nadir.
Accessible ground swath: 544km centred on satellite ground
track.
Single scene: 16.5 km x 16.5 km
Strip scene: 16.5 km x 165 km

Viewing Angle: In-track and cross-track pointing.

Metric Accuracy: 14.0 m RMSE.

Digital Globe (2005)

Calculation Parameters for QuickBird Spectral Radiance and Reflectance

Values:

Table A2 1 Sun Elevation' Solar Zenith' Julian Day and Earth-Sun Distance ValuesI ,
QB Image Sun Solar Julian d

Date Elevation Zenith Day
17 Dec 2003 62.7 27.3 351 0.9842
22 May 2004 33.5 56.5 142 1.0122
06 Dec 2004 68.0 22.0 340 0.9854
03 Mar 2005 52.7 37.3 62 0.9914
11 Apr 2005 46.0 44.0 101 1.0020

17 June 2005 32.6 57.4 168 1.0159

Table A2.2 Band-specific values for Radiance and Reflectance Calculation
QuickBird Effective ESUN absCalFactor

Band Bandwidth
Blue 0.068 (450-520nm) 1969.000 1.604120e-:l

Green 0.099 (520-600nm) 1840.000 1.438470e-:l
Red 0.071 (630-690nm) 1551.000 1.267350e-z

NIR 0.114 (760-900nm) 1044.000 1.542420e-z

Jha (2005)
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Appendix 3: QuickBird ON to Radiance to Reflectance Model

QuickBird ON to Radiance Conversion

absCaIFador per Band from .IMD file

DN to radisnce cooVflrsion

Radiance

p=(PI*L*d**2)/(ESUN*COSa)

Reflectance

Stack ",flectsnce layers Into naw Image

Input DN image file
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Appendix 4: Example of QuickBird .imd File

version ="Q";
generationTime =2005-03-10T15:05:50.000000Z;
productOrderld = "000000194117_01_P001";
imageDescriptor ="Basic1 B";
bandld ="Multi";
panSharpenAlgorithm = "None";
numRows =7249;
numColumns =6876;
productLevel ="LV1B";
radiometricLevel = "Corrected";
bitsPerPixel = 16;
compressionType = "None";
BEGIN_GROUP = BAND_B

ULLon = 30.620;
ULLat = -29.155;
URLon = 30.74339499;
URLat = -29.12251234;
LRLon = 30.713;
LRLat = -29.228;
LLLon = 30.56344495;
LLLat = -29.28842847;
absCalFactor =1.604120e-02;

END_GROUP = BAND_B
BEGIN_GROUP =BAND_G

ULLon = 30.620;
ULLat = -29.155;
URLon = 30.74339499;
URLat = -29.12251234;
LRLon = 30.713;
LRLat = -29.228;
LLLon = 30.56344495;
LLLat = -29.28842847;
absCalFactor =1.438470e-02;

END_GROUP =BAND_G
BEGIN_GROUP = BAND_R

ULLon = 30.620;
ULLat = -29.155;
URLon = 30.74339499;
URLat = -29.12251234;
LRLon = 30.713;
LRLat = -29.228;
LLLon = 30.56344495;
LLLat = -29.28842847;
absCalFactor = 1.267350e-02;

END_GROUP = BAND_R
BEGIN_GROUP =BAND_N

ULLon = 30.620;
ULLat = -29.155;
URLon = 30.74339499;
URLat = -29.12251234;
LRLon = 30.713;
LRLat = -29.228;
LLLon = 30.56344495;
LLLat = -29.28842847;
absCalFactor =1.542420e-02;
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END_GROUP =BAND_N
outputFormat ="GeoTIFF";
BEGIN GROUP =IMAGE 1- -

satld = "OB02";
Catld ="101001000415C202";
ScenelD ="2";
TLCTime = 2005-03-06T08:20:13.104638Z;
numTLC =2;
TLCList =(
(0, 0.000000),
(7249, 4.202319) );
firstLineTime =2005-03-06T08:20: 13.104638Z;
avgLineRate = 1725.00;
exposureDuration =0.00057971;
collectedRowGSD = 2.507;
collectedColGSD = 2.554;
meanCollectedGSD = 2.530;
rowUncertainty = 36.51;
colUncertainty = 40.26;
sunAz = 52.7;
sunEI = 55.3;
satAz =261.2;
satEI = 78.7;
inTrackViewAngle = -3.2;
crossTrackViewAngle =-10.1;
offNadirViewAngle = 10.5;
c1oudCover= 0.0;
PNIIRS =2.9;
imageOuality = "Excellent";
resamplingKernel ="CC";
TDILevel =13;
positionKnowledgeSrc = "R";
attitudeKnowledgeSrc = "R";
revNumber =18997;

END_GROUP =IMAGE_1
END;
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Appendix 5: QuickBird ON to Radiance and Reflectance

Formulae

Conversion to top-of-atmosphere spectral radiance is a two step
process:

Step 1
Band-Integrated Radiance [W.m-2.s(1]

Conversion to band-integrated radiance applies absCalFactors, listed in the .imd
tiles, as tollows:

LPixel,Band =absCalFactorBand x qPixel,Band
where LPixel ,Band are top-of-atmosphere band-integrated radiance image pixels [W.m­
2.S(1],

absCalFactorBand is the absolute radiometric calibration factor [W.m-2.s(1] tor a
given band,
qPixel,Band are radiometrically corrected image pixels [counts].

Step 2
Band-Averaged Spectral Radiance [W.m-2.s(1]

The second step in conversion to top-of-atmosphere spectral radiance is to divide
the band-integrated radiance by an effective bandwidth (A). Effective bandwidths
were calculated from the QuickBird relative spectral radiance response curves tor
each band and are listed in Table 3

Table 3: QuickBird Effective Bandwidths (A)
Spectral Band Effective Bandwidth [IJ m]
Pan 0.398
Blue 0.068
Green 0.099
Red 0.071
NIR 0.114

Conversion from band-integrated radiance to band-averaged spectral radiance is
performed using the tollowing equation:

L
APixel,Band

=LPixel.Band
ABand

where L are top-ot-atmosphere band-averaged spectral radiance image
. I [W -2 -1] 1pixe s .m .sr ,npixel,Band

LPixel,Band are top-ot-atmosphere band-integrated radiance image pixels [W.m-2.s(\

and

A is the effective bandwidth [urn] tor a given band.
Band
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Appendix 6: Class Break Values: 2-Class Reclassification of

Edge Enhanced Imagery

Break Image Image Image Image Image Image

Threshold Mean Min Max Range Median Mode

340 330.07 76 616 540 327.25 324.84

250 236.16 14 675 661 229.39 200.39

380 372.69 127 721 594 366.13 360.50

310 283.89 53 555 502 284.00 307.85

240 255.52 37 589 552 243.88 174.86

200 249.02 36 617 581 228.96 156.66

360 325.29 65 578 513 334.16 349.96

450 351.42 34 887 853 325.70 148.99

460 399.33 107 661 554 397.63 397.63

420 360.94 1 726 725 368.67 450.91

360 313.06 9 633 624 309.08 244.79

320 287.52 1 819 818 259.14 111.97

250 244.99 1 2066 2065 234.04 225.97

250 252.91 2 944 942 250.75 250.75

350 312.74 35 1078 1043 324.24 336.88

300 310.99 1 773 772 298.93 307.99

240 256.36 3 661 658 247.88 234.96

250 250.98 1 710 709 241.29 232.97

265 247.55 4 552 548 256.59 260.91

220 208.26 39 550 511 208.40 216.99
240 230.69 6 671 665 228.04 230.66

275 302.13 65 701 636 295.73 287.52
325 336.11 2 953 951 331.32 331.32
400 397.73 114 809 695 388.70 372.90

360 343.06 1 808 807 347.19 340.88

310 305.70 1 723 722 307.84 321.96
350 337.38 37 887 850 329.16 280.65

320 292.58 102 803 701 276.03 250.94
250 251.23 16 736 720 247.25 247.25
340 339.09 117 827 710 335.97 335.97
320 310.78 6 665 659 306.52 290.94
270 262.87 1 592 591 261.31 265.94
320 291.38 22 636 614 285.70 285.70
340 356.15 49 772 723 343.78 328.70
210 231.12 10 658 648 223.62 197.91
350 379.83 44 735 691 378.98 370.37
270 286.09 16 592 576 286.75 293.69
240 239.81 30 560 530 229.69 207.81
220 219.89 1 753 752 188.25 91.18
350 378.62 90 766 676 377.02 385.99
290 311.90 83 603 520 301.50 244.97
375 372.26 155 632 477 372.78 367.84
280 304.33 36 642 606 310.97 348.59
280 288.94 35 580 545 287.73 348.91
280 317.66 19 702 683 309.87 205.66
305 325.51 146 674 528 323.84 318.57
280 286.79 22 897 875 280.31 276.81
350 353.60 140 641 501 345.54 330.52
270 290.70 14 584 570 292.00 307.97
270 267.07 29 567 538 263.57 256.92
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Break Image Image Image Image Image Image

Threshold Mean Min Max Range Median Mode

310 316.88 136 623 487 313.93 313.93

260 280.09 25 662 637 271.52 258.59

320 348.99 64 747 683 338.48 320.98

260 281.54 41 636 595 280.73 265.83

250 257.50 30 539 509 250.55 218.97

280 294.07 1 739 738 271.35 199.18

280 268.35 114 682 568 266.41 258.41

210 216.16 27 603 576 209.64 204.93

320 326.03 128 849 721 311.74 301.79

280 254.10 1 743 742 246.70 243.80

220 222.30 10 544 534 214.63 201.88

220 222.05 1 711 710 194.41 80.54

310 270.76 116 701 585 262.88 240.97

270 257.51 129 454 325 253.60 248.28

360 354.81 123 734 611 344.06 338.33

300 285.09 75 532 457 280.55 263.92

270 256.90 85 463 378 253.20 240.54

300 279.60 51 567 516 270.21 205.98
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Appendix 7: Layout of Classified Change Detection Model

Classified ImageChange Detection
For amy numberof classes

to outpu1

Sendsclass names

Sendscolourscheme

to output

Classified
Imagefrom Date2

Classified
Imagefrom Date1

o

Compu1es globalchange

in pixelclasses

OutputChange Image

(Erdas, 2005)
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Appendix 8: Regression Models: Ground Cover Model

Interaction Month Image Ground Predicted (Bias % bias Pred.(intercBias % bias

0.034 1 0.034 0.163 0.142497 0.021 13% 0.159576 0.004 2%

0.268 2 0.134 0.179 0.15542 0.023 13% 0.177312 0.002 1%

0.732 3 0.244 0.196 0.166061 0.030 15% 0.212483 -0.017 -9%

1.098 6 0.183 0.256 0.287183 -0.031 -12% 0.240225 0.016 6%

2.628 9 0.292 0.336 0.369523 -0.034 -10% 0.356196 -0.020 -6%

2.5 10 0.250 0.367 0.414839 -0.047 -13% 0.346494 0.021 6%

4.308 12 0.359 0.440 0.461444 -0.022 -5% 0.483536 -0.044 -10%

4.580333333 13 0.352 0.481 0.4987 -0.017 -4% 0.504179 -0.023 -5%

5.404 14 0.386 0.527 0.526755 0.000 0% 0.566611 -0.040 -8%

4.944 16 0.309 0.631 0.615792 0.015 2% 0.531744 0.099 16%

7.004 17 0.412 0.690 0.62803 0.062 9% 0.687888 0.002 0%
0.000

Regression: Predicted Ground Cover (field) Model

SUMMARY OUTPUT
Interaction(GC image-Age) only

RegressionStatistics
Multiple R 0.976859446
R Square 0.954254378
Adjusted R Square 0.949171531
Standard Error 0.041095702
Observations 11

ANOVA
df SS MS F SignificanceF

Regression 1 0.31706619 0.31706619 187.7401392 2.4697E-Q7
Residual 9 0.01519971 0.001688857
Total 10 0.3322659

Coefficients StandardError tStat P-vaJue Lower 95% Upper 95% Lower 95.0% Upper 95.00"{'
Intercept 0.156998609 0.020913412 7.50707774 3.66543E·05 0.109689184 0.204308033 0.109689184 0.204308033
Interaction 0.075797988 0.005531961 13.70182977 2.4697E-Q7 0.063283823 0.088312153 0.063283823 0.088312153
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Appendix 9: Photographs of Ground-truthed Classes: Medium

Resolution Imagery

CLASS 1 - SOIL

Figure 1a. Holmesdale Compt. Aa?

....

Figure 1b. Holmesdale Compt. C18

Treatment: Slash: IBurnt Planted: INo Weeded: INo

Veg. Cover Crop % : 0%
Weed %: <5%
Soil % >95%
Slash %: <5%

Crop Ht.: Om
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CLASS 2 - SLASH

Figure 2a Canema Campt. E14

Figure 2b Halmesdale Campt. B06

Treatment: Slash: ISpread/Stacked Planted: INo Weeded: INo

Veg. Cover Crop % : 0%
Weed%: <5%
Sail % <5%
Slash %: >95%

Crop Ht.: Om
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CLASS 3 - SLASH/CROP

Figure 3a Holmesdale Compt. C21

Figure 3b Holmesdale Compt E21

Treatment: Slash: ISpread Planted: IYes Weeded: 1No

Veg. Cover Crop % : 20-30%
Weed%: <5%
Soil % <5%
Slash %: 60-80%

Crop Ht.: <1.5m
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CLASS 4 - SOIUCROP

Figure 4a Mistley Compt. C04

Figure 4b Mistley Compt. C04

Treatment: Slash: IBurnt Planted: IYes Weeded:1Yes

VeQ. Cover Crop % : 20-30%
Weed%: <5%
Soil % 60-80%
Slash %: <5%

Crop Ht.: «t.sm
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CLASS 5 - SLASH/ CROPIWEED

Figure 5a Holmesdale Compt 803

Figure 5b Holmesdale Compt. C23

Treatment: Slash: I Spread/Stacked Planted: IYes Weeded: I No

Veg. Cover Crop % : 30-40%
Weed%: 40-30%
Soil % <5%
Slash %: 20-40%

Crop Ht.: <1.5m
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CLASS 6 - SOIUCROPIWEED

Figure 6a Holmesdale Compt. H16

Figure 6b Holmesdale Compt. H16

Treatment: Slash: IBurnt Planted: IYes Weeded: IYes

Veg. Cover Crop % : 30-40%
Weed%: 40-30%
Soil % 20-40%
Slash %: <5%

Crop Ht.: <1.5m
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CLASS 7 - SOIUSLASH/CROPIWEED

Figure 7a Canema Compt. E15

Figure 7b Canema Cornpt. E15

Treatment: Slash: I BurntlUnburnt Planted: IYes Weeded :1Yes

Veg. Cover Crop % : 50-70%
Weed%: <10%
Soil % 20-40%
Slash %: 20-40%

Crop Ht.: <2m
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CLASS 8 - CROPIWEED

Figure 8a Canema Campt. D10A

,. ~

Figure 8b Canema Campt. D10A

Treatment: Slash: IBurntlUnburnt Planted:· 1 Yes Weeded: TNo

Veg. Cover Crop% : 50-70%
Weed %: 20-40%
Soil % <10%
Slash %: <10%

Crop Ht.: <2m
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CLASS 9 - PRE-CANOPY CLOSURE

Figure 9a Gilboa Compt. C05A

Figure 9b Canema Compt. E11

Treatment: Slash: I Planted: IYes Weeded: I
Veg. Cover Crop % : >90%

Weed%: <10%
Soil % 0%
Slash %: 0%

Crop Ht.: >3m
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CLASS 10 - WEED

Figure 10a Canema Campt 010

Figure 10b Halmesdale Campt. H03A

Treatment: Slash: I Unburnt Planted: I No Weeded: I No

Veg. Cover Crop % : 0% ,

Weed%: >95%
Sail % <5%
Slash %: <5%

Crop Ht.: Om
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CLASS 11 - SLASHIWEED

Figure 11a Canema Compt D11

Figure 11b Canema Compt D11

Treatment: Slash: I Unburnt Planted: INo Weeded: INo

Veg. Cover Crop % : 0%
Weed%: >75%
Soil % <5%
Slash %: <25%

Crop Ht.: Om
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CLASS 12 - CLOSED CANOPY

Figure 12a Gilboa Compt. CC13B

Treatment: Slash: I N/A Planted:1No Weeded:1No

VeQ. Cover Crop % : >95%
Weed%: <5%
Soil % <5%
Slash % : <5%

Crop Ht.: >10m
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Appendix 10: Photographs of Ground-truthed Classes: High

Resolution Imagery

FIRST PHASE:

CLASSES 11/21 - SHADOW/SOIUSLASH

CLASS 12 - CROP
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CLASS 22 - CROP/SOIL

CLASS 31 - LIGHT WEED

217



CLASS 32 - CROPIWEED

CLASSES 41/42 - HEAVY WEED
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SECOND PHASE:

CLASSES 11/21 - SHADOW/SOIUSLASH (Inter-row area)

CLASSES 12/22 - CROP
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CLASS 31 - LIGHT WEED

CLASS 32 - CROPIWEED
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CLASSES 41/42 - HEAVY WEED
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THIRD/FOURTH PHASES:

CLASSES 11/21 - SHADOW/SOIUSLASH (In Inter-row)

CLASSES 12/22/32 - CROP (Row Delineation in Background)
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CLASS 31 - LIGHT WEED

CLASSES 41/42 - HEAVY WEED
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