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Abstract

In this thesis we examine the spacetime matching conditions covariantly for Locally

Rotationally Symmetric class II (LRS-II) spacetimes, of which spherical symmetry is

a special case. We use the semi-tetrad 1+1+2 covariant formalism and look at two

general spacetime regions in LRS-II and match them across a timelike hypersurface

using the Israel-Darmois matching conditions. This gives a new and unique result which

is transparently presented in terms of the matching of various geometrical quantities

(e.g. the expansion, shear, acceleration). Thereafter we apply the new result to the

case involving a general spherically symmetric spacetime, representing for instance the

interior of a star, and the Schwarzschild spacetime, which could represent the exterior.

It is shown that the matching conditions make the Misner-Sharp and Schwarzschild

masses exactly the same at the boundary, and the pressure is zero on the boundary.
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Chapter 1

Introduction

General relativity is Einstein’s theory which describes gravitation as the curvature of

spacetime due to the presence of matter and energy in the spacetime. The Einstein field

equations are the set of nonlinear partial differential equations that model gravitational

interactions, and these equations relate the spacetime geometry to the energy and

matter in the spacetime. In tensor form and using natural units (c = 8πG = 1), the

Einstein field equations are given by

Gab + Λgab = Tab, (1.1)

where

Gab = Rab − 1
2
Rgab, (1.2)

is the Einstein tensor, Λ is the cosmological constant, gab is the metric tensor and Tab is

the energy momentum tensor. In (1.2), Rab is the Ricci tensor and R is the Ricci scalar.

Solutions to (1.1) are the components of the metric tensor gab, which is the essential

object in general relativity as it characterizes a particular spacetime. Consider two

intersecting spacetime regions with different matter and energy distributions, which of

course have different metric tensors. These two spacetime regions need to be matched

at their common boundary to ensure that there are no sudden kinks or singularities in

the spacetime. This is the essence of spacetime matching.
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The matching of different spacetimes allows us to gain a theoretical insight, which

the individual models describing each spacetime might not allow (Fayos, Senovilla and

Torres, 1996). Spacetime matching can be used to study some fascinating physical

problems. Among these are the gravitational collapse or expansion of stars and the

collision of gravtitational waves (Fayos, Senovilla and Torres, 1996). A simple class

of spacetimes which enables this study is the Locally Rotationally Symmetric class II

(LRS-II) spacetimes. Since LRS spacetimes have a preferred spatial direction locally,

the semi-tetrad 1+1+2 covariant formalism will be needed (Betschart and Clarkson,

2004). A basic study is to match two general spacetime regions in LRS-II across a

timelike hypersurface, using the Israel-Darmois (Israel 1966, Darmois 1927) matching

conditions. This general study can then be expanded to explore more exotic physical

problems.

1.1 Need for spacetime matching

Many astrophysical systems have more than one spacetime. An example is a spherically

symmetric star immersed in vacuum. Inside the star, the spacetime is obtained by

solving the Einstein field equations with the stellar matter. The exterior of the star

is vacuum and so by Birkhoff’s theorem, the exterior is the Schwarzschild spacetime.

Now we have to smoothly match these two spacetimes at the boundary of the star, so

that there are no sudden jumps in the field equations. If such jumps exist, then that

will create surface stress energy tensors that can destabilize the whole system.

1.2 Israel-Darmois matching conditions

The Israel-Darmois matching conditions state that to smoothly match two spacetimes

across a hypersurface, the following conditions must be satisfied:

1. The projected metric on the hypersurface should be equal on both the sides.
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2. The extrinsic curvatures of both sides should be equal on the hypersurface.

These conditions are very similar to the conditions in electromagnetism, except that

there the potentials and normal derivatives were matched.

1.3 Basic questions in spacetime matching

Fayos, Senovilla and Torres (1996) suppose that we are given two adjacent orientable

spacetimes V and V . Then two basic practical questions we must ask are

1. Are these spacetimes matchable?

2. What are the possible matching hypersurfaces?

In practical problems it is important to select the correct direction for the normal

vector to the hypersurface, which was also mentioned by Goldwirth and Katz (1995)

and Fayos, Senovilla and Torres (1996). These choices will be discussed in detail in the

next chapter, together with the necessary conditions for general matching, which will

thereafter be applied to the spherically symmetric case. These elementary conditions

enable us to determine the feasibility of matchings just by inspection of the conformal

diagrams (Fayos, Senovilla and Torres, 1996).

1.4 Previous works

The subject of spacetime matching has been previously studied in literature. Fayos,

Senovilla and Torres (1996) outlined some of the previous treatments, which we shall

now mention. Oppenheimer and Snyder (1939) considered the matching of a closed

collapsing dust Friedmann-Lemâıtre-Robertson-Walker spacetime with a Schwarzschild

exterior spacetime. Einstein and Straus (1945) looked at the complementary matching

problem to Oppenheimer and Snyder (1939), in a paper which considered the impact

of the expansion of space on the gravitational field surrounding the star. The early

efforts to describe primordial black holes in Hacyan (1979) and Reed and Henriksen
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(1980) considered the generalization from the Schwarzschild spacetime to the Vaidya

spacetime. Hacyan (1979) modified the Einstein and Straus (1945) model for a radia-

tion filled universe and thus replaced the Schwarzschild metric with the Vaidya metric.

Lake (1980) studied the general treatment of this problem. Using the same type of

matching, Lake and Hellaby (1981) showed that the radiative version of the problem

in Oppenheimer and Snyder (1939) resulted in naked singular spacetimes, a counterex-

ample of the cosmic censorship conjecture. The general matching conditions for the

matching of the Vaidya and general Friedmann-Lemâıtre-Robertson-Walker spacetimes

were given in Fayos et al (1991). Fayos, Senovilla and Torres (1996) considered the

general matching of two spherically symmetric spacetimes across a timelike hypersur-

face, and applied their results to the general matching of the Vaidya spacetime and the

general flat Friedmann-Lemâıtre-Robertson-Walker spacetime with a linear equation

of state p = γρ.

Another interesting paper which looked at spacetime matching is Santos (1985), which

studied the matching conditions for a “shear-free isotropic fluid undergoing radial heat

flow with outgoing unpolarized radiation”. Santos (1985) found the relation

pΣ = (qB)Σ, (1.3)

where p is the isotropic pressure, q is the radial heat flux and Σ represents the boundary.

This result is different to the result of Glass (1981), which was pΣ = 0. According to

Santos (1985), (1.3) tells us that a spherically symmetric shear-free distribution of a

collapsing fluid, which is dissipating heat radially, has a nonzero isotropic pressure at

the boundary. The isotropic pressure can only be zero at the boundary if qΣ = 0,

i.e. the fluid is not dissipating, and in such a situation there is no radiation and the

exterior spacetime is the Schwarzscild spacetime (Santos, 1985).
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1.5 This thesis

We explore spacetime matching for two general regions in Locally Rotationally Sym-

metric class II (LRS-II) spacetimes using the semi-tetrad 1+1+2 covariant formalism

and the Israel-Darmois matching conditions. The outcome of this will be a new and

unique result, namely the general matching conditions for LRS-II spacetimes. There-

after we will apply the new result to the matching of a general spherically symmetric

spacetime to the exterior Schwarzschild spacetime. This example represents a spheri-

cally symmetric star immersed in vacuum.

The thesis is organised as follows: In the first chapter we outline the main results

concerning general matching conditions in general relativity. In the subsequent two

chapters we briefly explain the 1+3 and 1+1+2 covariant formalisms. In chapter 4 we

briefly describe LRS-II spacetimes and set out their field equations. The next chapter

is where we will employ the Israel-Darmois matching conditions to match two general

spacetime regions in LRS-II across a timelike hypersurface, which will give us the new

and unique matching conditions for LRS-II spacetimes. In the penultimate chapter we

will apply our results from the previous chapter to the matching of a spherically sym-

metric spacetime and the Schwarzschild spacetime. The final chapter is a discussion of

the results and their use in possible future research.
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Chapter 2

General matching conditions in

general relativity

2.1 Introduction

We aim in this chapter to present the general results concerning the general matching

of two spherically symmetric spacetimes across a timelike hypersurface. The reader is

referred to Fayos, Senovilla and Torres (1996), on which this chapter has been based,

for a comprehensive exposition.

We initially make a few standard assumptions about the matching problem. Let V+

and V− be two C3 orientable spacetimes with C2 metrics g+ and g−, having boundaries

S+ and S− respectively. The reader is encouraged to consult Hawking and Ellis (1973)

for the standard definitions.

2.2 Matching conditions for general spacetimes

The reader should consult Israel (1966), Clarke and Dray (1987) and Mars and Senovilla

(1993) as well for additional details. We assume that there is a C3 diffeomorphism from

S− to S+. This means that there is a three times continuously differentiable invertible
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function which maps from S− to S+. Let the disjoint union of V+ and V−, which

have points that are related through the diffeomorphism identified, be the complete

spacetime, which we shall denote as V4. The images of S− and S+ in V4 shall be noted

by S. The issue now is if V+ and V− can be joined in such a manner that V4 has a

Lorentzian geometry with the Einstein field equations well defined. From Clarke and

Dray (1987), this is possible if and only if S+ and S− are isometrical with respect to

their first fundamental forms h+ and h− which have been derived from V+ and V−

respectively, as in this case there is a natural continuous extension g of the metric to

the entire V4.

There are two embeddings given, xµ± = xµ± (ξa) of S, where ξa are intrinsic coordinates

for S and xµ± are local coordinates for V±. The requirement that the first fundamental

forms must match is

h+
ab = h−ab, (2.1)

where from Israel (1966), Clarke and Dray (1987) and Mars and Senovilla (1993)

h±ab ≡ g±µν(x± (ξ))
∂xµ± (ξ)

∂ξa
∂xµ± (ξ)

∂ξb
. (2.2)

Note that hab is the 3-space metric. Clarke and Dray (1987) and Mars and Senovilla

(1993) note that it should be mentioned how the tangent spaces are to be identified.

Hence consider

~t+a ≡
∂xµ+ (ξ)

∂ξa
∂

∂xµ+
, (2.3)

and

~t−a ≡
∂xµ− (ξ)

∂ξa
∂

∂xµ−
, (2.4)

which are two different tangent vector fields to S. The equation (2.1) tells us that the

scalar products of
{
~t±a
}

in V4 coincide. However we require the entire four dimensional

tangent spaces at S. Thus consider the spacelike unit vectors ~n± which are orthogonal
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to S± on S±. They are defined by

n+
µ t

+µ
a = 0, n+

µn
+µ = 1, (2.5)

and similarly for ~n−. These normal vectors are selected such that if ~n− points from V−

inwards, then ~n+ points from V+ outwards and vice versa. Suppose that

d

ds

∣∣∣+
p

= A~n+
∣∣
p

+Ba~t+a
∣∣
p
, (2.6)

is the tangent vector to the curve at p from the viewpoint of V+. Then ~n− has to be

chosen such that

d

ds

∣∣∣−
p

= A~n−
∣∣
p

+Ba~t−a
∣∣
p
, (2.7)

is the tangent vector to the curve at p from the viewpoint of V−. This selection gives us

two bases
{
~n+,~t+a

}
and

{
~n−,~t−a

}
for the tangent space of V4 at S. After this selection

has been completed, the ± can be omitted and we can thus write the basis for the

tangent spaces at S as
{
~n,~ta

}
. Now in the spacetime V4, we have a unique C1 atlas

C and a continuous extension g of the metric to V4. The Einstein field equations are

well defined in the distributional sense provided that the extension g of the metric is

continuous in V4 and (2.1) is satisfied (see Clarke and Dray 1987, Mars and Senovilla

1993). Equation (2.1) is an important condition for the calculation of the Riemann

tensor distribution and its contractions (Mars and Senovilla, 1993). The singular part

of a tensor distribution, being one of the two distinct components of these distributions,

is proportional to the Dirac one-form distribution δµ which is linked with S (Clarke

and Dray 1987, Mars and Senovilla 1993). Therefore this singular part describes an

infinite discontinuity at S. These infinite discontinuities need to be avoided in the

matter and curvature tensors, as only finite discontinuities are physically relevant for

a timelike matching hypersurface. The removal of the singular part of the Riemann

tensor distribution, for a general timelike hypersurface, is the same as the removal of

the singular part of the Einstein tensor distribution (Clarke and Dray 1987, Mars and
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Senovilla 1993). This occurs if and only if the second fundamental forms of S match,

i.e.

K−ab = K+
ab, (2.8)

where

K±ab ≡ −n
±
µ

(
∂2xµ± (ξ)

∂ξa∂ξb
+ Γ±µρν

∂xρ± (ξ)

∂ξa
∂xν± (ξ)

∂ξb

)
. (2.9)

Note that Γµρν is the Christoffel symbol of the second kind, and it represents the metric

connection coefficients which are given by

Γµρν = 1
2
gµλ (gνλ,ρ + gλρ,ν − gρν,λ) , (2.10)

where a comma denotes partial differentiation. Thus to match two spacetimes across

their common boundary, the matching conditions (2.1) and (2.8) must be satisfied.

Consider the matching of two full spacetimes V and V . Let S be a general timelike

hypersurface which divides V into two complementary parts which shall be denoted as

1 and 2. Similarly let S divide V into 1 and 2. From Goldwirth and Katz (1995), we

see that the matching of the spacetimes V and V can be done in four different ways: 1

with 1, 1 with 2, 2 with 1 and 2 with 2. The complete spacetime V4 is formed by the

disjoint union of V and V . S shall be the image of both S and S in V4. Note that due

to the earlier considerations regarding the normal vector of the matching hypersurface,

if S matches a part of V with a part of V , for example 1 and 2, then S also matches 2

and 1. For this reason 1-2 and 2-1 are called complementary matchings. Hence there

are just two distinct matchings 1-2 and 1-1. We will now provide a necessary condition

that will enable us to determine which matchings are valid. If we sssume that one

of the possible matchings has been carried out, then there exists a local coordinate

system of V4 where the metric is C1 for every point p on S (Mars and Senovilla 1993,

Lichnerowicz 1955, Bonner and Vickers 1981). We call these admissible coordinates
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(Lichnerowicz, 1955).

2.3 Matching of spherically symmetric spacetimes

A spherically symmetric spacetime (Hawking and Ellis 1973, Kramer et al 1980) is one

which admits the group of rotations SO(3) as an isometry group, where the group orbits

are spacelike two-surfaces. Thus the orbits are two-surfaces of constant positive curva-

ture, called two-spheres, and there are two surfaces orthogonal to the orbits (Kramer

et al, 1980). Two angular coordinates {x2, x3} ≡ {θ, φ} can be selected to describe the

orbits while two other coordinates {x0, x1} describe the orthogonal surfaces. Note that

0 ≤ θ < π and 0 ≤ φ < 2π, and every two-sphere is characterised by constant values

of the
{
xA
}
≡ {x0, x1} coordinates where (A,B, ... = 0, 1). A positive function R(xA)

can be defined such that the total area of a two-sphere is 4πR2. The line element of a

general spherically symmetric spacetime is therefore

ds2 = gBC
(
xA
)
dxBdxC +R2

(
dθ2 + sin2 θdφ2

)
, (2.11)

where the two-metric gBC has Lorentzian signature. There are two preferred congru-

ences of null geodesics for these spherically symmetric spacetimes, defined as those

invariant by the isometry group and the two principal null directions of the type-D

Weyl tensor (see Kramer et al 1980). A congruence is a set of curves such that through

each point in a region there passes only one curve. Geodesics are the extremal paths,

along which particles travel, on a manifold. Particles with mass travel along timelike

geodesics whereas massless particles such as photons travel along null geodesics. The

product of the expansions κ1 and κ2 of the two affinely parametrized congruences is

given by

κ1κ2 = − χ

2R2
, (2.12)

where

χ ≡ gµν∂µR∂νR. (2.13)
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Thus the two expansions have the same sign when χ < 0, which is the region of the

closed trapped surfaces (Hawking and Ellis, 1973), and they differ in sign when χ > 0.

When one of the expansions is zero, χ = 0, and the resulting hypersurface is known as

the apparent horizon (Hawking and Ellis, 1973). We can easily observe that

m ≡ R

2
(1− χ) , (2.14)

is the normal mass function introduced by Hernández and Misner (Hernández and Mis-

ner 1966, Cahill and McVittie 1970, Zannias 1990).

We now look at the general matching of two spherically symmetric spacetimes V and

V which are time oriented. We need to ascertain which of the four possible matchings

are allowed. Taking into account the required continuity of the signs of the expansions

for the two preferred null geodesic congruences across S, we have that the signs of χ
∣∣
p

and χ
∣∣
p

have to be the same for every point p in S. When χ
∣∣
p
> 0 the two expansions

have opposite signs in V and the same for V .

Now if sign(χ) = sign(χ) = +1 in a region of S, then only one of the possible dis-

tinct matchings and its complementary is permitted in this region, while the other

distinct matching cannot occur.

It is slightly different when sign(χ) = sign(χ) = −1 in a region of S. In this case

both expansions have the same sign in V and V , and by the correct choice of the time

orientations all can be regarded as positive. We thus have that all four matchings are

permitted for this case.

For the case in which χ = χ = 0 in a region of S, one of the expansions is zero

while the other could be zero or nonzero. The first possibility gives us the same type

of scenario as sign(χ) = sign(χ) = −1, while the second possibility results in the same

11



type of scenario as sign(χ) = sign(χ) = +1.

Summarizing the above, the following theorem has been proven:

Theorem: If there is at least one point p in S where χ
∣∣
p
> 0 (or where χ

∣∣
p

= 0

with one of the expansions nonzero), then only one matching and its complementary is

possible in principle.

Note that we must still verify whether the full set of matching conditions are satisfied.

2.4 Discussion

In this chapter we have looked at the matching of two general spacetimes and discovered

the allowable ways in which the matching can be performed. It was found that the

matching can be done in four different ways, but due to complementary matchings

only two are distinct. Thereafter we considered the general matching of two spherically

symmetric spacetimes, which resulted in the above theorem.
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Chapter 3

1+3 Covariant formalism

3.1 Introduction

Spacetime is described by Einstein’s theory of general relativity. Solving problems in

general relativity involves solving the Einstein field equations directly using a metric

description of the spacetime. This approach relies on choosing a coordinate system

relevant to the symmetry of the problem at the outset. An alternative coordinate inde-

pendent approach is the 1+3 covariant formalism whereby the spacetime geometry and

physics is described by scalars, 3-vectors and projected symmetric trace-free 3-tensors.

In this formalism the spacetime is split, through a timelike vector, into time and space,

where the 3-space is orthogonal to the timelike vector. The 1+3 formalism has been

successful in applications using the Friedmann-Lemâıtre-Robertson-Walker cosmologi-

cal model which is homogeneous and isotropic (Betschart and Clarkson, 2004).

3.2 Formalism

The reader is encouraged to look at Ellis and van Elst (1998) for a more in depth study

of the 1+3 formalism, on which this summary has been based. Consider a timelike

congruence parametrised by the proper time, τ , with ua as the timelike tangent vector
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to the congruence. Through the use of this timelike vector

ua = dxa

dτ
, (uaua = −1), (3.1)

we split the spacetime into time and space. This results in the following projection

tensors

Ua
b = −uaub, (3.2)

hab = gab + uaub, (3.3)

where Ua
b projects parallel to ua, and hab projects orthogonal to ua onto the 3-space.

With this choice of timelike vector, we can naturally define two derivatives: the covari-

ant time derivative (denoted by a dot) for any tensor T a..bc..d, given by

Ṫ a..bc..d = ue∇eT
a..b

c..d, (3.4)

and through use of the tensor hab, the fully orthogonally projected covariant derivative

D for any tensor T a..bc..d, given by

DeT
a..b

c..d = hafh
p
c...h

b
gh

q
dh

r
e∇rT

f..g
p..q , (3.5)

with total projection on all free indices. As a result of the spacetime splitting, the

spatial 3-volume element is given by

εabc = udηabcd =⇒ εabc = ε[abc], εabcu
c = 0, (3.6)
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where ηabcd is the 4-dimensional volume element. The 3-volume element satisfies the

following identities:

εabcεdef = 3!h[a
dh

b
eh

c]
f , (3.7)

εabcεcde = 2!h[a
dh

b]
e, (3.8)

εabcεbcd = 2!had, (3.9)

εabcεabc = 3! . (3.10)

The covariant derivative of ua can now be decomposed into its irreducible parts as

∇aub = −uaAb +
1

3
habΘ + σab + ωab, (3.11)

where Ab = u̇b is the acceleration, Θ = Dau
a is the expansion, σab = D〈aub〉 is the shear

tensor and ωab is the vorticity tensor. The Weyl curvature tensor Cabcd, which is the

trace-free part of the Riemann curvature tensor Rabcd, is defined by the equation

Cabcd = Rabcd − ga[cRd]b + gb[cRd]a + 1
3
Rga[c gd]b. (3.12)

The Weyl tensor can similarly be decomposed into its irreducible electric and magnetic

parts as

Eab = Cabcdu
cud, (3.13)

and

Hab = 1
2
εadeC

de
bcu

c. (3.14)

The energy momentum tensor can likewise be decomposed as

Tab = µuaub + qaub + qbua + phab + πab , (3.15)

where µ = Tabu
aub is the energy density, qa = q〈a〉 = −hcaTcdud is the 3-vector that

defines the heat flux, p = (1/3)habTab is the isotropic pressure and πab = π〈ab〉 is the
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anisotropic pressure.

3.2.1 Propagation and constraint equations

The set of variables that fully describes a spacetime under the 1+3 formalism is

{Θ, u̇a, ωab, σab, Eab, Hab, µ, p, q
a, πab} . (3.16)

The Einstein field equations and its integrability conditions give rise to certain propa-

gation and constraint equations which relate the above variables.

Using the Ricci identity for ua

2∇[a∇ b]u
c = Rab

c
du

d, (3.17)

we can obtain three propagation and three constraint equations. The propagation

equations are

Θ̇−Dau̇
a = −1

3
Θ2 + (u̇au̇

a)− 2σ2 + 2ω2 − 1
2

(µ+ 3p) + Λ, (3.18)

ω̇〈a〉 − 1
2
εabcDbu̇c = −2

3
Θωa + σabω

b, (3.19)

and

σ̇〈ab −D〈au̇b〉 = −2
3
Θσab + u̇〈au̇b〉 − σ〈ac σb〉c − ω〈aωb〉 −

(
Eab − 1

2
πab
)
. (3.20)

Equation (3.18) is the famous Raychaudhuri equation (Raychaudhuri, 1955) which

describes gravitational attraction. Its importance lies in its use in proving the Hawking-

Penrose singularity theorems in general relativity. The equations (3.19) and (3.20) are

the vorticity and shear propagation equations respectively. The constraint equations
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are

0 = (C1)a = Dbσ
ab − 2

3
DaΘ + εabc [Dbωc + 2u̇bωc] + qa, (3.21)

0 = (C2) = Daω
a − (u̇aω

a) , (3.22)

and

0 = (C3)ab = Hab + 2u̇〈aωb〉 +D〈aωb〉 − (curl σ)ab . (3.23)

Equations (3.21), (3.22) and (3.23) are the (0α) equation, the vorticity divergence iden-

tity and the Hab equation respectively.

Using the twice-contracted Bianchi identity, we can obtain two propagation equations

and a constraint equation. The propagation equations are

µ̇+Daq
a = −Θ (µ+ p)− 2 (u̇aq

a)−
(
σabπ

ab
)
, (3.24)

and

q̇〈a〉Dap+Dbπ
ab = −4

3
Θqa − σabqb − (µ+ p) u̇a − u̇bπab − εabcωbqc, (3.25)

where (3.24) and (3.25) are the energy conservation and momentum conservation equa-

tions respectively. The constraint equation is

0 = Dap+ (µ+ p) u̇a. (3.26)

Finally using the once-contracted Bianchi identity, we obtain two propagation and two

constraint equations. The propagation equations are

Ė〈ab〉 + 1
2
π̇〈ab〉 − (curlH)ab + 1

2
D〈aqb〉 = −1

2
(µ+ p)σab −Θ

(
Eab + 1

6
πab
)

+3σ〈ac
(
Eb〉c − 1

6
πb〉c
)
− u̇〈aqb〉

+εcd〈a
[
2u̇cH

b〉
d + ωc

(
Eb〉

d + 1
2
πb〉d

)]
, (3.27)

17



and

Ḣ〈ab〉 + (curl E)ab − 1
2

(curl π)ab = −ΘHab + 3σ〈acH
b〉c + 3

2
ω〈aqb〉

−εcd〈a
[
2u̇cE

b〉
d − 1

2
σb〉c qd − ωcHb〉

d

]
, (3.28)

where (3.27) and (3.28) are the Ė and Ḣ equations respectively. The constraint equa-

tions are

0 = (C4)a = Db

(
Eab + 1

2
πab
)
− 1

3
Daµ+ 1

3
Θqa − 1

2
σabq

b − 3ωbH
ab

−εabc
[
σbdHc

d − 3
2
ωbqc

]
, (3.29)

and

0 = (C5)a = DbH
ab + (µ+ p)ωa + 3ωb

(
Eab − 1

6
πab
)

+εabc
[

1
2
Dbqc + σbd

(
Ec

d + 1
2
πc
d
)]
, (3.30)

where (3.29) is the (divE)-equation and (3.30) is the (divH)-equation.

3.3 Discussion

We have presented in this chapter a summary of the 1+3 covariant formalism which

splits the spacetime into time and space through the use of a timelike vector ua. Our

choice of timelike vector enabled two derivatives to be defined: the covariant time

derivative and the fully orthogonally projected covariant derivative. Using this formal-

ism, certain quantites, namely the covariant derivative of ua, the Weyl tensor and the

energy momentum tensor, were decomposed into their irreducible parts. Finally we

presented the propagation and constraint equations which relate the set of variables

under the 1+3 covariant formalism.
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Chapter 4

1+1+2 Covariant formalism

4.1 Introduction

The 1+3 covariant formalism is not well suited for spacetimes that are not homoge-

neous and isotropic, such as Schwarzschild black holes, as it doesn’t take into account

spacetimes with a preferred spatial direction (Clarkson and Barrett, 2003). For this we

need the 1+1+2 covariant formalism which was recently developed by Clarkson and

Barrett (2003) and applied to spherically symmetric spacetimes.

4.2 Formalism

The reader is encouraged to look at Clarkson and Barrett (2003), Betschart and Clark-

son (2004) and Clarkson (2007), on which this chapter has been based, for a more

thorough treatment of the 1+1+2 formalism. Here we split the spacetime again but

now through the use of a preferred spatial vector ea which is orthogonal to ua. The

vector ea satisfies

eaea = 1, (4.1)

and

eaua = 0. (4.2)
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We now have a new projection tensor

Na
b ≡ hab − eaeb = gab + uaub − eaeb, (4.3)

which projects vectors orthogonal to ua and ea onto 2-spaces called sheets. The sheets

have the following volume element

ηab ≡ ηabce
c = udηdabce

c =⇒ ηabe
b = 0 = η(ab). (4.4)

We can now irreducibly split any 3-vector ψa into a scalar, Ψ, which is the component

of the vector parallel to ea, and a 2-vector, Ψa, which lies in the sheet orthogonal to

ea:

ψa = Ψea + Ψa, where Ψ ≡ ψae
a ,

and Ψa ≡ Nabψb ≡ ψā. (4.5)

Note that a bar over an index denotes projection with Nab. Similarly for any 3-tensor,

ψab,

ψab = ψ〈ab〉 = Ψ
(
eaeb − 1

2
Nab

)
+ 2Ψ(aeb) + Ψab , (4.6)

where

Ψ ≡ eaebψab = −Nabψab ,

Ψa ≡ N b
a e

cψbc = Ψā ,

Ψab ≡
(
N c

(a N
d

b) − 1
2
NabN

cd
)
ψcd ≡ Ψ{ab} . (4.7)

We now define two new derivatives: the hat-derivative which is the derivative along

the vector field ea in the surfaces orthogonal to ua, and the δ-derivative which is the

derivative projected onto the sheet, with projection on all free indices. For any tensor
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ψa...b
c...d, these are given by

ψ̂a..b
c..d ≡ efDfψa..b

c..d , (4.8)

δfψa..b
c..d ≡ Na

f ...Nb
gNh

c..Ni
dNf

jDjψf..g
i..j . (4.9)

Now using (4.5) and (4.6), the 1+3 kinematical and Weyl quantities can be split into

the irreducible set {Θ,A,Ω,Σ, E ,H,Aa,Σa, Ea,Ha,Σab, Eab,Hab} as follows:

u̇a = Aea +Aa, (4.10)

ωa = Ωea + Ωa, (4.11)

σab = Σ
(
eaeb − 1

2
Nab

)
+ 2Σ(aeb) + Σab, (4.12)

Eab = E
(
eaeb − 1

2
Nab

)
+ 2E(aeb) + Eab, (4.13)

Hab = H
(
eaeb − 1

2
Nab

)
+ 2H(aeb) +Hab. (4.14)

The fluid variables, qa and πab, may similarly be split

qa = Qea +Qa, (4.15)

πab = Π
(
eaeb − 1

2
Nab

)
+ 2Π(aeb) + Πab. (4.16)

The covariant derivatives of ua and ea can now be decomposed into

∇aub = −ua (Aeb +Ab) + eaeb
(

1
3
Θ + Σ

)
+ Ωεab

+ ea (Σb + εbcΩ
c) + eb (Σa − εacΩc)

+ Nab

(
1
3
Θ− 1

2
Σ
)

+ Σab, (4.17)

∇aeb = −Auaub − uaαb + eaub
(

1
3
Θ + Σ

)
+ ξεab

+ ub (Σa − εacΩc) + eaab + 1
2
φNab + ζab. (4.18)
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4.3 Discussion

We have presented an overview of the 1+1+2 covariant formalism developed by Clark-

son and Barrett (2003). Here the spacetime was split further through the use of a

preferred spatial vector ea which is orthogonal to ua. Using this formalism, we showed

that any 3-vector can be irreducibly split into a scalar component parallel to ea and a

2-vector which lies in the sheet orthogonal to ea. We defined two further derivatives:

the hat-derivative which is the derivative along the vector field ea in the surfaces or-

thogonal to ua, and the δ-derivative which is the derivative projected onto the sheet,

with projection on all free indices. We thereafter presented the decomposition into

their irreducible parts of certain relevant quatities, such as the 1+3 kinematical and

Weyl quantities and the covariant derivatives of ua and ea.
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Chapter 5

LRS-II spacetimes

5.1 Introduction

Locally Rotationally Symmetric (LRS) spacetimes were classified in Ellis (1967), Stew-

art and Ellis (1968) and van Elst and Ellis (1996). LRS spacetimes are defined by

the property that, in an open neighbourhood of each point, there is a continuous sub-

group of the Lorentz group which leaves invariant the Riemann tensor and its covariant

derivatives to the third order (Kǎspar, Vrba and Sv́ıtek 2014). Thus LRS spacetimes

are spacetimes which have a unique preferred spatial direction at each point (Betschart

and Clarkson, 2004). This direction results in a local axis of symmetry, such that all ob-

servations are identical under rotations about it (Betschart and Clarkson, 2004). Only

scalar quantities are required to describe an LRS spacetime under the 1+1+2 formal-

ism, as all 2-tensors and 2-vectors vanish, due to these spacetimes being isotropic about

the axis of symmetry (Betschart and Clarkson, 2004). An LRS-II spacetime is a space-

time free of rotation (Acquaviva et al, 2015) as it has no vorticity terms (Betschart and

Clarkson, 2004). The LRS-II quantities in (5.1) satisfy certain covariant propagation

and/or evolution equations which are obtained from the Bianchi and Ricci identities

for the vectors ua and ea (Betschart and Clarkson, 2004).
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5.2 Set of variables

The set of variables that fully describe an LRS spacetime is {A,Θ, φ, ξ,Σ,Ω, E ,H, µ, p,Π, Q}

(Betschart and Clarkson 2004, Acquaviva et al 2015). Since an LRS-II spacetime is free

of rotation, this results in the variables ξ, Ω and H vanishing (Betschart and Clarkson

2004, Acquaviva et al 2015). Thus for LRS-II spacetimes, we have the following smaller

set of variables which describe the spacetime,

{A,Θ, φ,Σ, E , µ, p,Π, Q} . (5.1)

5.3 Field equations

From Betschart and Clarkson (2004) and Acquaviva et al (2015), the field equations

are,

Propagation:

φ̂ = −1
2
φ2 +

(
1
3
Θ + Σ

) (
2
3
Θ− Σ

)
−2

3
(µ+ Λ)− E − 1

2
Π, (5.2)

Σ̂− 2
3
Θ̂ = −3

2
φΣ−Q , (5.3)

Ê − 1
3
µ̂+ 1

2
Π̂ = −3

2
φ
(
E + 1

2
Π
)

+
(

1
2
Σ− 1

3
Θ
)
Q. (5.4)

Evolution:

φ̇ = −
(
Σ− 2

3
Θ
) (
A− 1

2
φ
)

+Q , (5.5)

Σ̇− 2
3
Θ̇ = −Aφ+ 2

(
1
3
Θ− 1

2
Σ
)2

+1
3

(µ+ 3p− 2Λ)− E + 1
2
Π , (5.6)

Ė − 1
3
µ̇+ 1

2
Π̇ = +

(
3
2
Σ−Θ

)
E + 1

4

(
Σ− 2

3
Θ
)

Π

+1
2
φQ− 1

2
(µ+ p)

(
Σ− 2

3
Θ
)
. (5.7)
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Propagation/evolution:

Â − Θ̇ = − (A+ φ)A+ 1
3
Θ2 + 3

2
Σ2

+1
2

(µ+ 3p− 2Λ) , (5.8)

µ̇+ Q̂ = −Θ (µ+ p)− (φ+ 2A)Q− 3
2
ΣΠ, (5.9)

Q̇+ p̂+ Π̂ = −
(

3
2
φ+A

)
Π−

(
4
3
Θ + Σ

)
Q

− (µ+ p)A . (5.10)

From Betschart and Clarkson (2004) and Acquaviva et al (2015) the Gaussian

curvature K of the 2-sheet, defined by 2Rab = KNab, can be written in terms of the

covariant scalars as

K = 1
3

(µ+ Λ)− E − 1
2
Π + 1

4
φ2 −

(
1
3
Θ− 1

2
Σ
)2

. (5.11)

Betschart and Clarkson (2004) and Acquaviva et al (2015) state that the evolution and

propagation equations for the Gaussian curvature K are

K̇ = −
(

2
3
Θ− Σ

)
K , (5.12)

K̂ = −φK . (5.13)

From Acquaviva et al (2015), the Misner-Sharp mass (which is the mass in a spherically

symmetric region) for LRS-II under the 1+1+2 covariant formalism takes the form

M(r, t) =
1

2K3/2

(
1

3
(µ+ Λ)− E − 1

2
Π

)
. (5.14)
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5.4 Discussion

In this chapter we have defined what is an LRS spacetime and we have briefly described

an important class of these spacetimes, namely LRS-II spacetimes. We showed that

the set of variables that fully describe an LRS-II spacetime is {A,Θ, φ,Σ, E , µ, p,Π, Q}.

Finally the field equations for LRS-II spacetimes were presented.
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Chapter 6

Spacetime matching for LRS-II

We consider two general regions in LRS-II and match them, using the Israel-Darmois

matching conditions, across a timelike hypersurface S, which will be referred to as the

boundary.

Using (4.3), the metric tensor in Region 1 is given by

gab = −uaub + eaeb +Nab. (6.1)

We shall denote Region 2 with a tilde. Thus its metric tensor is given by

g̃ab = −ũaũb + ẽaẽb + Ñab. (6.2)

Let na be the unit normal in Region 1 to the matching timelike hypersurface S. It is

given as

na = αua + βea. (6.3)

Similarly in Region 2, let ña be the unit normal to S. Thus we have

ña = α̃ũa + β̃ẽa. (6.4)

27



Since S is timelike, like the boundary of a star, na and ña are spacelike. Making use

of (6.1) and (6.3), we have that in Region 1, the first fundamental form is given by

hab = gab − nanb (6.5)

= −uaub + eaeb +Nab −
[
α2uaub + β2eaeb + αβ (uaeb + eaub)

]
= −

(
1 + α2

)
uaub +

(
1− β2

)
eaeb − αβuaeb − αβeaub +Nab. (6.6)

Likewise, using (6.2) and (6.4), the first fundamental form in Region 2 is

h̃ab = g̃ab − ñañb (6.7)

= −
(
1 + α̃2

)
ũaũb +

(
1− β̃2

)
ẽaẽb − α̃β̃ũaẽb − α̃β̃ẽaũb + Ñab. (6.8)

The second fundamental form in Region 1 is

Kab = hcah
d
b∇dnc. (6.9)

Similarly in Region 2, the second fundamental form is

K̃ab = h̃cah̃
d
b∇dñc. (6.10)

A summary of the 2 regions is shown on the next page in Table 5.1.

The Israel-Darmois matching conditions require the matching of the first and second

fundamental forms on the boundary (Madhav, Goswami and Joshi, 2005), i.e.

hab = h̃ab, (6.11)

Kab = K̃ab. (6.12)
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Region 1 Region 2

gab = −uaub + eaeb +Nab g̃ab = −ũaũb + ẽaẽb + Ñab

Let na be the unit normal to S. Let ña be the unit normal to S.

na = αua + βea ña = α̃ũa + β̃ẽa
Since S is timelike, na is spacelike. Since S is timelike, ña is spacelike.
First fundamental form on the boundary First fundamental form on the boundary

hab = gab − nanb h̃ab = g̃ab − ñañb
= − (1 + α2)uaub + (1− β2) eaeb = − (1 + α̃2) ũaũb +

(
1− β̃2

)
ẽaẽb

−αβuaeb − αβeaub +Nab −α̃β̃ũaẽb − α̃β̃ẽaũb + Ñab

Second fundamental form on the boundary Second fundamental form on the boundary

Kab = hcah
d
b∇dnc (see (6.17) and (6.23)) K̃ab = h̃cah̃

d
b∇dñc (see (6.18) and (6.27))

Table 6.1: A summary of Region 1 and Region 2.

Taking the covariant derivative of (6.3) yields

∇dnc = ∇d (αuc + βec)

= (∇dα)uc + α (∇duc) + (∇dβ) ec + β (∇dec) . (6.13)

Applying (4.17) and (4.18) to (6.13) gives

∇dnc = (∇dα)uc + α
[
−Audec + edec

(
1
3
Θ + Σ

)
+Ncd

(
1
3
Θ− 1

2
Σ
)]

+ (∇dβ) ec + β
[
−Aucud +

(
1
3
Θ + Σ

)
educ + 1

2
φNcd

]
. (6.14)

Using (6.3) and (6.5) gives

hca = gca − ncna

= δca − (αuc + βec) (αua + βea)

= δca − α2ucua − β2ecea − αβucea − βαecua. (6.15)

Now acting (6.15) on (6.14) yields

hca∇dnc = ∇dna + α2ua∇dα− β2ea∇dβ + αβea∇dα− αβua∇dβ. (6.16)
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From (6.9), we see that we need to act hdb, given by (6.15), on (6.16). Doing so, we

obtain

Kab = ∇bna + α2ua∇bα− β2ea∇bβ + αβea∇bα− αβua∇bβ

− α2ubu
d∇dna − α4ubuau

d∇dα + α2β2ubeau
d∇dβ

− α3βubeau
d∇dα + α3βubuau

d∇dβ − β2ebe
d∇dna

− α2β2ebuae
d∇dα + β4ebeae

d∇dβ − αβ3ebeae
d∇dα

+ αβ3ebuae
d∇dβ − αβebud∇dna − α3βebuau

d∇dα

+ αβ3ebeau
d∇dβ − α2β2ebeau

d∇dα + α2β2ebuau
d∇dβ

− αβube
d∇dna − α3βubuae

d∇dα + αβ3ubeae
d∇dβ

− α2β2ubeae
d∇dα + α2β2ubuae

d∇dβ. (6.17)

In a similar way we can obtain

K̃ab = ∇bña + α̃2ũa∇bα̃− β̃2ẽa∇bβ̃ + α̃β̃ẽa∇bα̃− α̃β̃ũa∇bβ̃

− α̃2ũbũ
d∇dña − α̃4ũbũaũ

d∇dα̃ + α̃2β̃2ũbẽaũ
d∇dβ̃

− α̃3β̃ũbẽaũ
d∇dα̃ + α̃3β̃ũbũaũ

d∇dβ̃ − β̃2ẽbẽ
d∇dña

− α̃2β̃2ẽbũaẽ
d∇dα̃ + β̃4ẽbẽaẽ

d∇dβ̃ − α̃β̃3ẽbẽaẽ
d∇dα̃

+ α̃β̃3ẽbũaẽ
d∇dβ̃ − α̃β̃ẽbũd∇dña − α̃3β̃ẽbũaũ

d∇dα̃

+ α̃β̃3ẽbẽaũ
d∇dβ̃ − α̃2β̃2ẽbẽaũ

d∇dα̃ + α̃2β̃2ẽbũaũ
d∇dβ̃

− α̃β̃ũbẽ
d∇dña − α̃3β̃ũbũaẽ

d∇dα̃ + α̃β̃3ũbẽaẽ
d∇dβ̃

− α̃2β̃2ũbẽaẽ
d∇dα̃ + α̃2β̃2ũbũaẽ

d∇dβ̃. (6.18)

For our purposes we require Kab in terms of uaub, eaeb, uaeb, eaub and Nab. We likewise

require K̃ab in terms of ũaũb, ẽaẽb, ũaẽb, ẽaũb and Ñab. Note that we can write

∇aλ = −λ̇ua + λ̂ea, (6.19)
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where λ is any scalar function such as α or β. Acting on (6.19) with ua gives

ua∇aλ = λ̇, (6.20)

while acting on (6.19) with ea gives

ea∇aλ = λ̂. (6.21)

Using (6.14), (6.19), (6.20) and (6.21), we can write ∇bna in (6.17) as

∇bna = (−α̇− βA)uaub +
[
α
(

1
3
Θ + Σ

)
+ β̂

]
eaeb +

[
β
(

1
3
Θ + Σ

)
+ α̂

]
uaeb

+
(
−β̇ − αA

)
eaub +

[
α
(

1
3
Θ− 1

2
Σ
)

+ 1
2
βφ
]
Nab. (6.22)

We can now proceed and re-write (6.17). Using (3.1), (4.1), (4.2), (4.10) (noting that

Aa = 0), (6.19), (6.20), (6.21) and (6.22), (6.17) becomes

Kab = uaub

[
−
(
1 + α2

)2
α̇ + αβ

(
1 + α2

)
β̇ − αβ

(
1 + α2

)
α̂

+ α2β2β̂ − βA
(
1 + α2

)
− αβ2

(
1
3
Θ + Σ

) ]
+ eaeb

[
− α2β2α̇

− αβ
(
1− β2

)
β̇ + αβ

(
1− β2

)
α̂ +

(
1− β2

)2
β̂

+ α
(
1− β2

) (
1
3
Θ + Σ

)
− α2βA

]
+ uaeb

[
− αβ

(
1 + α2

)
α̇

+ α2β2β̇ +
(
1 + α2

) (
1− β2

)
α̂− αβ

(
1− β2

)
β̂

+ β
(
1− β2

) (
1
3
Θ + Σ

)
− αβ2A

]
+ eaub

[
− αβ

(
1 + α2

)
α̇

− α2β2α̂−
(
1 + α2

) (
1− β2

)
β̇ − αβ

(
1− β2

)
β̂ − αA

(
1 + α2

)
− α2β

(
1
3
Θ + Σ

) ]
+Nab

[
α
(

1
3
Θ− 1

2
Σ
)

+ 1
2
βφ
]
. (6.23)

We can obtain a similar result for Region 2. First we need to replace the dot and hat

derivative with the circle and bar derivative respectively. The circle derivative arises

from using the operator ũa∇a while the bar derivative arises from using the operator
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ẽaDa. Thus for Region 2 (6.19), (6.20) and (6.21) become

∇aλ̃ = −˚̃
λũa +

¯̃
λẽa, (6.24)

ũa∇aλ̃ =
˚̃
λ, (6.25)

and

ẽa∇aλ̃ =
¯̃
λ (6.26)

respectively. Taking into account (6.24), (6.25), (6.26) and the process in going from

(6.17) to (6.23), (6.18) can be rewritten as

K̃ab = ũaũb

[
−
(
1 + α̃2

)2 ˚̃α + α̃β̃
(
1 + α̃2

)˚̃
β − α̃β̃

(
1 + α̃2

)
¯̃α

+ α̃2β̃2 ¯̃
β − β̃Ã

(
1 + α̃2

)
− α̃β̃2

(
1
3
Θ̃ + Σ̃

) ]
+ ẽaẽb

[
− α̃2β̃2˚̃α

− α̃β̃
(

1− β̃2
)

˚̃
β + α̃β̃

(
1− β̃2

)
¯̃α +

(
1− β̃2

)2 ¯̃
β

+ α̃
(

1− β̃2
)(

1
3
Θ̃ + Σ̃

)
− α̃2β̃Ã

]
+ ũaẽb

[
− α̃β̃

(
1 + α̃2

)
˚̃α

+ α̃2β̃2˚̃β +
(
1 + α̃2

) (
1− β̃2

)
¯̃α− α̃β̃

(
1− β̃2

)
¯̃
β

+ β̃
(

1− β̃2
)(

1
3
Θ̃ + Σ̃

)
− α̃β̃2Ã

]
+ ẽaũb

[
− α̃β̃

(
1 + α2

)
˚̃α

− α̃2β̃2 ¯̃α−
(
1 + α̃2

) (
1− β̃2

)
˚̃
β − α̃β̃

(
1− β̃2

)
¯̃
β − α̃Ã

(
1 + α̃2

)
− α̃2β̃

(
1
3
Θ̃ + Σ̃

) ]
+ Ñab

[
α̃
(

1
3
Θ̃− 1

2
Σ̃
)

+ 1
2
β̃φ̃
]
. (6.27)

Keeping with the symmetry of LRS spacetimes, let us assume that

Nab = Ñab, (6.28)

so that the spherical 2-surfaces are the same on the boundary. Applying (6.28) on

(6.12) (this gives NabKab = ÑabK̃ab) and using (6.23) and (6.27), gives the first match-

ing condition (6.29).

Using (6.11), (6.12) and (6.28) gives the valid result, (hab−Nab)K
ab = (h̃ab− Ñab)K̃

ab,
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which can be computed using (6.6), (6.8), (6.23) and (6.27), to give the second match-

ing condition (6.30).

The matching conditions for LRS-II spacetimes become

βφ− α
(
Σ− 2

3
Θ
)

= β̃φ̃− α̃
(

Σ̃− 2
3
Θ̃
)
, (6.29)

f1α̇− αβf2β̇ + αβf2α̂ + f3β̂ = f̃1
˚̃α− α̃β̃f̃2

˚̃
β + α̃β̃f̃2

¯̃α + f̃3
¯̃
β, (6.30)

where

f1 =
(
1 + α2

)3 − α2β2
(
1− β2

)
− 2α2β2

(
1 + α2

)
, (6.31)

f2 =
(
1 + α2

)2
+
(
1− β2

)2
+
(
1 + α2

) (
1− β2

)
− α2β2, (6.32)

f3 =
(
1− β2

)3 − α2β2
(
1 + α2

)
− 2α2β2

(
1− β2

)
, (6.33)

f̃1 =
(
1 + α̃2

)3 − α̃2β̃2
(

1− β̃2
)
− 2α̃2β̃2

(
1 + α̃2

)
, (6.34)

f̃2 =
(
1 + α̃2

)2
+
(

1− β̃2
)2

+
(
1 + α̃2

) (
1− β̃2

)
− α̃2β̃2, (6.35)

f̃3 =
(

1− β̃2
)3

− α̃2β̃2
(
1 + α̃2

)
− 2α̃2β̃2

(
1− β̃2

)
. (6.36)

Thus after using the Israel-Darmois matching conditions to match two general space-

time regions in LRS-II across a timelike hypersurface using the semi-tetrad 1+1+2

covariant formalism, we have found the new and unique matching conditions for LRS-

II spacetimes.

33



Chapter 7

An example of LRS-II spacetime

matching

7.1 Introduction

The matching condition, (6.29), needs to be tested to see whether it makes sense. We

apply the matching condition to an example involving the matching of a general spher-

ically symmetric spacetime (the interior spacetime), and the Schwarzschild spacetime

(the exterior spacetime) across a timelike hypersurface. This represents a spherically

symmetric star immersed in vacuum.

7.2 Example

From Madhav, Goswami and Joshi (2005), the metric for a general spherically sym-

metric spacetime is given as

ds2 = −e2ν(t,r)dt2 + e2ψ(t,r)dr2 +R2 (t, r) dΩ2, (7.1)
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where dΩ2 = dθ2 + sin2 θdφ2 is the two-sphere line element. The Schwarzschild metric

is given as

ds2 = −
(
1− 2M

R

)
dT 2 +

(
1− 2M

R

)−1
dR2 +R2dΩ2, (7.2)

At the boundary they become

ds2
− = −e2ν(t,r)dt2 +R2 (t, r) dΩ2, (7.3)

and

ds2
+ = −

(
1− 2M

R

)
dT 2 +

(
1− 2M

R

)−1
dR2 +R2dΩ2, (7.4)

respectively. From (7.1), we obtain using (3.1) and (4.1) that

ua =
(
e−ν , 0, 0, 0

)
, (7.5)

and

ea =
(
0, e−ψ, 0, 0

)
. (7.6)

The normal to the boundary hypersurface for the interior spacetime is given by

n−r =
(
0, eψ, 0, 0

)
. (7.7)

Using (7.1) and (7.7), we find that for the interior spacetime

na = ea. (7.8)

Thus from (6.3)

α = 0, β = 1, (7.9)

for the interior. Thus from (6.29), for the interior spacetime we have φ. Now φ is given

by

φ = NabDaeb. (7.10)
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From (3.5)

Daeb = hcah
d
b∇ced. (7.11)

Since hab = δab for the interior spacetime and

∇aeb = δaeb − Γiabei, (7.12)

(7.11) becomes

Daeb = δaeb − Γiabei. (7.13)

We have from (4.1) and (7.6) that

ea =
(
0, eψ, 0, 0

)
. (7.14)

Thus a = 1 gives the only nonzero value in (7.14). Therefore i = 1 in (7.13), which

now becomes

Daeb = δaeb − Γ1
abe1. (7.15)

Using (4.3), (7.1), (7.5) and (7.6), we obtain

N00 = 0, (7.16)

N11 = 0, (7.17)

N22 = 1
R2 , (7.18)

N33 = 1
R2 sin2 θ

. (7.19)
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Using (7.14), (7.15), (7.16), (7.17), (7.18) and (7.19), (7.10) yields

φ = NabDaeb

= Nab
(
δaeb − Γ1

abe1

)
= N22D2e2 +N33D3e3

= N22
(
δ2e2 − Γ1

22e1

)
+N33

(
δ3e3 − Γ1

33e1

)
= N22

(
−Γ1

22e1

)
+N33

(
−Γ1

33e1

)
= 1

R2

(
e−2ψR∂R

∂r

)
eψ + 1

R2 sin2 θ

(
e−2ψR sin2 θ ∂R

∂r

)
eψ

= 1
R
e−ψ ∂R

∂r
+ 1

R
e−ψ ∂R

∂r

= 2
R
e−ψ ∂R

∂r
= 2R′

R
e−ψ. (7.20)

At the boundary, noting that R ≡ R (T ), (7.1) and (7.2) become

ds2
− = −e2νdt2 +R2dΩ2, (7.21)

and

ds2
+ = −dT 2

([
1− 2M

R(T )

]
− (R,T )2

1− 2M
R(T )

)
+R (T )2 dΩ2, (7.22)

respectively. From (7.21) and (7.22), we find that

dT

dt
=

eν√[
1− 2M

R(T )

]
− (R,T )2

1− 2M
R(T )

. (7.23)

At the boundary

R (T ) = R (t) ,

implying that

R,t = R,t = Ṙ. (7.24)

37



Note that R,T = R,t
(
dt
dT

)
, which after using (7.24), becomes

R,T = Ṙ
(
dt
dT

)
. (7.25)

Letting D = 1− 2M
R(T )

and using (7.25), we obtain from (7.23)

dT

dt
=

√
e2νD + Ṙ2

D
= eν

√
D + e−2νṘ2

D
. (7.26)

The normal to the boundary hypersurface for the exterior spacetime is given by

n+
r =

(
0, dT

dt
e−ν , 0, 0

)
,

which we can write as

nr =
(
0,
(
1− 2M

R

)
dT
dt
e−ν , 0, 0

)
. (7.27)

For the exterior spacetime

er =

(
0,
√

1− 2M
R , 0, 0

)
. (7.28)

Since

nr = βer, (7.29)

for the exterior spacetime, we have from (7.27) and (7.28) that

β̃ =
√

1− 2M
R

dT
dt
e−ν . (7.30)

Thus

β̃φ̃ =
√

1− 2M
R

dT
dt
e−ν 2

R

√
1− 2M

R (7.31)

= D 2
R
dT
dt
e−ν , (7.32)
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where φ̃ = 2
R

√
1− 2M

R is calculated in a similar manner as φ. From (6.29), our matching

condition for this example is

φ = β̃φ̃. (7.33)

Applying (7.33), using (7.20) and (7.32), gives

D + e−2νṘ2 = R′2e−2ψ, (7.34)

which implies that

1− 2M
R

= R′2e−2ψ − Ṙ2e−2ν . (7.35)

But from Madhav, Goswami and Joshi (2005), R′2e−2ψ − Ṙ2e−2ν = 1− 2M
R

. Therefore

(7.35) becomes

1− 2M
R

= 1− 2M
R
,

which implies that

M = M = constant, (7.36)

which further implies that

Ṁ = 0. (7.37)

Thus (7.36) shows that the Misner-Sharp and Schwarzschild masses are exactly the

same at the boundary. Equation (7.37) has physical significance as well. Using the

field equations it can be shown that

Ṁ = −p K̇

K
5
2

. (7.38)

Now (7.37) and (7.38) imply that

p = 0. (7.39)

Hence the pressure on the boundary must be zero.
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7.3 Discussion

In this chapter we have tested our matching conditions for LRS-II spacetimes with a

simple example: the matching of a general spherically symmetric spacetime and the

exterior Schwarzschild spacetime, which represented a spherically symmetric star im-

mersed in vacuum. We found in this example that the Misner-Sharp and Schwarzschild

masses are exactly the same at the boundary, and that the pressure at the boundary

vanishes. This is pleasing as these are known results.
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Chapter 8

Discussion

In this thesis we have outined the main results regarding general matching conditions in

general relativity. We have briefly explained the 1+3 and 1+1+2 covariant formalisms

and given a description of LRS-II spacetimes. We have employed the Israel-Darmois

matching conditions to match two general spacetime regions in LRS-II across a timelike

hypersurface using the semi-tetrad 1+1+2 covariant formalism, which gave us the new

and unique matching conditions for LRS-II spacetimes. We thereafter applied our new

result to a simple example: the matching of a general spherically symmetric spacetime

and the exterior Schwarzschild spacetime, which represented a spherically symmetric

star immersed in vacuum. This particular example leads to known results: the Misner-

Sharp and Schwarzschild masses are exactly the same at the boundary (Misner and

Sharp, 1964), and the pressure at the boundary is zero.

The matching conditions found for LRS-II spacetimes are

βφ− α
(
Σ− 2

3
Θ
)

= β̃φ̃− α̃
(

Σ̃− 2
3
Θ̃
)
, (8.1)

f1α̇− αβf2β̇ + αβf2α̂ + f3β̂ = f̃1
˚̃α− α̃β̃f̃2

˚̃
β + α̃β̃f̃2

¯̃α + f̃3
¯̃
β, (8.2)

where

f1 =
(
1 + α2

)3 − α2β2
(
1− β2

)
− 2α2β2

(
1 + α2

)
, (8.3)

41



f2 =
(
1 + α2

)2
+
(
1− β2

)2
+
(
1 + α2

) (
1− β2

)
− α2β2, (8.4)

f3 =
(
1− β2

)3 − α2β2
(
1 + α2

)
− 2α2β2

(
1− β2

)
, (8.5)

f̃1 =
(
1 + α̃2

)3 − α̃2β̃2
(

1− β̃2
)
− 2α̃2β̃2

(
1 + α̃2

)
, (8.6)

f̃2 =
(
1 + α̃2

)2
+
(

1− β̃2
)2

+
(
1 + α̃2

) (
1− β̃2

)
− α̃2β̃2, (8.7)

f̃3 =
(

1− β̃2
)3

− α̃2β̃2
(
1 + α̃2

)
− 2α̃2β̃2

(
1− β̃2

)
. (8.8)

We emphasize that these matching conditions have been derived for the first time in

this research.

The first matching condition (8.1), is a relation which contains the gravitational po-

tential, shear and expansion terms. It thus has physical meaning as it describes the

geometry of the spacetimes concerned. The second matching condition, (8.2), only has

terms involving α and β, as such it describes the geometry of the hypersurface. In

cases where α, β, α̃ and β̃ are constant, (8.1) should be used, as (8.2) reduces to zero.

The example in chapter 6 validated the matching condition (8.1). For situations where

α, β, α̃ and β̃ are not constant, the hypersurface geometry must be considered and

thus (8.2) needs to be taken into account. This has not been studied in this thesis, but

has been left open for further research.

Our example in chapter 6 represented a spherically symmetric star in vacuum. This

is a very idealised situation, and in reality the star would be emitting radiation and

matter and could be absorbing matter from the nonempty external spacetime which is

no longer a perfect vacuum. In such a radiative case the Schwarschild spacetime would

have to be replaced with the Vaidya spacetime. This is a possible next step to extend

the matching conditions we’ve found. Fayos, Senovilla and Torres (1996) matched

the Friedmann-Lemâıtre-Robertson-Walker and Vaidya spacetimes. This could be an

42



interesting case to consider for our matching conditons. Another very interesting prob-

lem is that of gravitational collapse. The idealised problem of gravitational collapse

was studied by Oppenheimer and Snyder (1939) but other more realistic gravitational

collapse models such as that done by Glass (1981) could be studied as well. The re-

markable LRS-II matching conditions found in this thesis could possibly also be applied

to brane-world cosmology. There are numerous applications for the LRS-II matching

conditions, (8.1) and (8.2), which it is hoped will be employed to examine more complex

physical problems.
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