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Abstract 

 

Electronic fraud is one of the major challenges faced by the vast majority of online internet users 

today. Curbing this menace is not an easy task, primarily because of the rapid rate at which 

fraudsters changes their mode of attack. Many techniques have been proposed in the academic 

literature to handle e-fraud. Some of them include:  blacklist, whitelist, and machine learning 

(ML) based techniques. Among all these techniques, ML-based techniques have proven to be the 

most efficient, because of their ability to detect new fraudulent attacks, as they appear. There are 

three commonly perpetrated electronic frauds, namely: email spam, phishing and network 

intrusion. Among these three, more financial loss has been incurred owing to phishing attacks.  

 

This research investigates and reports the use of ML and Nature Inspired technique in the 

domain of phishing detection, with the foremost objective of developing a dynamic and robust 

phishing email classifier with improved classification accuracy and reduced processing time. 

Two approaches to phishing email detection are proposed, and two email classifiers are 

developed based on the proposed approaches. In the first approach, a random forest algorithm is 

used to construct decision trees, which are, in turn, used for email classification. The second 

approach introduced a novel ML method that hybridizes firefly algorithm (FFA) and support 

vector machine (SVM). The hybridized method consists of three major stages: feature extraction 

phase, hyper-parameter selection phase and email classification phase. In the feature extraction 

phase, the feature vectors of all the features described in Section 3.6 are extracted and saved in a 

file for easy access. In the second stage, a novel hyper-parameter search algorithm, developed in 

this research, is used to generate exponentially growing sequence of paired C and Gamma (γ) 

values. FFA is then used to optimize the generated SVM hyper-parameters and to also find the 

best hyper-parameter pair. Finally, in the third phase, SVM is used to carry out the classification. 

This new approach addresses the problem of hyper-parameter optimization in SVM, and in turn, 

improves the classification speed and accuracy of SVM.  

 

Using two publicly available email datasets, some experiments are performed to evaluate the 

performance of the two proposed phishing email detection techniques. During the evaluation of 

each approach, a set of features (well suited for phishing detection) are extracted from the 



xvii 

 

training dataset and used to construct the classifiers. Thereafter, the trained classifiers are 

evaluated on the test dataset.  The evaluations produced very good results. The RF-based 

classifier yielded a classification accuracy of 99.70%, a FP rate of 0.06% and a FN rate of 

2.50%. Also, the hybridized classifier (known as FFA_SVM) produced a classification accuracy 

of 99.99%, a FP rate of 0.01% and a FN rate of 0.00%.  
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Chapter One  

 

Introduction and Background 

 

1.0 Introduction 

Fraud can, simply, be defined as an act of deceiving people into revealing their personal 

information, essentially for the purpose of theft. Electronic fraud (e-fraud) refers to every form of 

criminal deception carried out using the internet1. E-fraud is a cybercrime that is usually 

facilitated by the use of a computer and a computer network [2]. Online fraud is commonly 

executed through emails. Most of the emails have an increased note of urgency in them, which 

usually requires users to either update or verify their account information immediately. 

Fraudsters pose as friends, relatives or authoritative figures making e-fraud very difficult to 

detect. Fraudsters, usually try to stay undetected in order to ensure maximum gains. They 

achieve this by disguising their activities and spontaneously changing their mode of operation.  

Norton cybercrime noted that e-fraud costs the global economy $388 billion a year [3]. Also, 14 

adults, worldwide, fall victim to online fraud every seconds, resulting in over 1 million 

cybercrime victims yearly [3]. It is evident, there is an urgent need to secure the online 

environment and make it conducive and safe for e-business. This can be achieved by building an 

intelligent fraud detection system, capable of automatically adapting to spontaneous changes in 

fraud patterns. Many techniques have been proposed in the literature to handle e-fraud. Some of 

them include:  blacklist [4], whitelist [5] and machine learning (ML) based techniques [6]). 

Among all these techniques, ML-based techniques have proven to be the most efficient, because 

of their ability to detect new fraudulent attacks as they appear. Furthermore, nature inspired (NI) 

techniques can be used to optimize the performance of ML-based techniques, especially, in the 

feature extraction stage and in the hyper-parameter optimization stage (for Support Vector 

Machine (SVM)), as used in, [7],[8],[9] and [10]. In this research, two improved fraud detection 

techniques are developed. The first technique is based on a ML algorithm (random forest (RF)) 

and the second technique is based on the hybridization of a ML technique (SVM) with a NI 

technique (firefly algorithm (FFA)). 

                                                 
1 http://www.pcmag.com/encyclopedia/term/63509/e-fraud 
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1.1 Problem statement 

One of the major threats faced by vast majority of online users and businesses is e-fraud. Since 

the emergence of electronic commerce (e-commerce) in 1994, e-fraud has evolved at a much 

faster rate [11]. Figure 1.1 [12] shows the increase in the number of phishing attacks from 2010 

to 2013. The number of phishing attacks rose from 279,580 in 2011 to 448,126 (in 2013) leading 

to an estimated loss of about USD $5.9 million. Also, Figure 1.2 reveals that payment service 

industries and financial institutions are the two major target industries of fraudsters in recent 

times [13]. Due to the usefulness, effectiveness and lucrativeness of e-commerce, many 

organizations and individuals, today, now perform their business transactions online. The high 

rate of online business patronage is, undoubtedly, one of the major factors that have led to the 

rapid increase in online fraud. Consequently, many individuals and organizations, who have 

fallen prey in the past, now seek new ways of making their defence mechanism strong enough to 

prevent subsequent attacks. Behdad et al. [2] noted that a secured e-fraud defence system should 

be able to identify and also secure users from both existing and emerging attacks. Several 

traditional techniques have been used to build fraud detection systems, but many of these 

techniques are static, as they only have the capability to detect existing attacks. They are not 

capable of detecting unknown or emerging attacks. ML-based techniques are one of the few 

techniques suitable for developing fraud detection systems that can adapt to a changing 

environment. Their ability to detect both existing and emerging fraudulent attacks makes them 

suitable for this task. This research investigates and reports the use of ML and NI techniques in 

the domain of phishing detection, with the foremost objective of developing a dynamic and 

robust phishing email classifier, with improved classification accuracy and reduced processing 

time. 

 

The research questions examined in this research are outlined thus: 

 How can phishing email detection be greatly improved using Firefly based SVM and RF 

algorithm? 

 What technique can be used to develop a fast and accurate phishing email classifier, 

capable of effectively detecting both known and emerging phishing attacks, with low FP, 

FN and high classification accuracy? 
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Figure 1.1: Phishing attacks from 2010 to 2013  

 

Figure 1.2: Target industries by phishers 

 

1.2 Research objectives 

The need for a robust online fraud detection system that can effectively and efficiently adapt to 

the changing patterns of phishing attacks cannot be overemphasized. Much work has been done 

by the research community to significantly reduce phishing attacks with great accuracy. 

The major objectives of this research work are to: 

 Identify the best set of features (or attributes) suitable for accurately classifying 

phishing emails.  
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 Develop an improved phishing email technique, capable of accurately detecting both 

known and emerging phishing attacks. Emphasis is on classification speed and 

accuracy. 

 

1.3     Research methodology 

This research tackles phishing detection using two different approaches: 

 ML-Based technique (using RF algorithm) 

 A NI-based ML technique. In this approach, a NI technique (that is, FFA) is hybridized 

with a ML algorithm (that is, SVM). 

Two phishing e-mail classifiers are developed using RF algorithm, SVM and FFA. The first 

classifier is developed using the RF algorithm, and the second classifier is developed using both 

FFA and SVM. The performances of both classifiers are evaluated using a dataset collected from 

two online sources. The evaluations yielded better classification accuracy compared to proposed 

approaches reviewed in literature. More details are provided in Chapter 4. 

 

1.4    Scope and limitation 

This research focuses on three key areas: 

 E-Fraud 

 Machine Learning 

 Nature Inspired Techniques 

1.4.1 Electronic Fraud 

According to Behdad et al. [2], there are three popular types of e-fraud perpetrated by scammers 

today, namely, phishing, email spam and network intrusion. Some other types of e-fraud include: 

business fraud, investment fraud, internet auction fraud, identity theft, advance fee fraud, credit 

card fraud, auction fraud, and overpayment fraud [14].  This research focuses on phishing. This 

is primarily because, the financial loss incurred by many individuals and organizations as a result 

of phishing attacks is much higher, compared to the other types of e-fraud. Additionally, much 

work has not been done on phishing detection compared to email spam and network intrusion. 
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1.4.2 Machine Learning 

There are a number of techniques that can be used to handle phishing detection, including: 

blacklist approach, whitelist approach, heuristics-based approach, and data mining or ML-based 

approach [15]. Mahmoud et al. [15] carried out a literature survey of phishing mitigation 

techniques and discovered that the best performing phishing email classifiers used ML 

techniques. In the survey, the detection techniques proposed by Fette et al. [1] and  

Bergholz et al. [6] yielded the best result. Fette et al. [1] used RF and Bergholz et al. [6] used 

SVM. The excellent performance of the two proposed ML-based techniques made RF and SVM 

a suitable choice for this research. This research therefore focuses on RF and SVM.  

1.4.3 Nature Inspired Techniques 

Based on a comparative study in Table III of Behdad et al. [2], literature is very scare on the 

application of NI techniques to phishing email classification. Most phishing detection in 

literature have been based on blacklist [4] [16], whitelist [17] [18], visual similarity [5] [19], 

heuristic [20] [6].  There are several NI techniques that can be used, such as evolutionary 

algorithm (EA) [21] [22], swarm intelligence (SI) [23], artificial neural network [24]. This 

research focuses on one of the SI technique, namely, the FFA. FFA is a more recent SI technique 

that have not been explored in literature for phishing email classification.  

 

The lack of availability of datasets for this study is the primary limitation. Due to privacy 

regulations, it is very difficult to obtain a dataset that contains emails in their original and 

consistent format. This work therefore have to depend on two reliable publicly available dataset, 

SpamAssassin [25] and Monkey.org [26].  

 

1.5 Contribution to knowledge 

The core contributions of this research work are as follows: 

1. Introduction of a novel NI based ML technique (FFA_SVM). In FFA_SVM, two 

algorithms are hybridized. FFA and SVM. This new technique consists of three phases. 

The first stage involves feature extraction. In the second phase, FFA is used to find the 

optimized hyper-parameters for SVM (Radial Basis Function (RBF) kernel), using 5-fold 
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cross validation. The optimized parameters are then used to build a SVM model for 

classification. Finally, SVM is used to perform the classification. 

2. Implementation of a search method for SVM hyper-parameters. Hsu et al.[27] suggested 

that the best way to identify the optimized C and Gamma values is to try using an 

exponentially growing sequence of C and Gamma. To the best of our knowledge, this 

method has not been explored in the domain of phishing email filtering. In this research, 

a novel algorithm is developed, based on the hyper-parameter search technique, proposed 

by Hsu et al.[27]. 

3. Development of two phishing email filters based on SVM, FFA and RF algorithm. 

Experimental results showed that the two phishing email classifiers compare fairly and 

better with some results in literature.  

 

1.6 Outline 

The rest of this dissertation is structured as follows: 

Chapter two gives a background knowledge on some selected commonly used NI techniques and 

Artificial Intelligence (AI) techniques that have been applied successfully to e-fraud detection. 

Furthermore, the chapter presents a literature review on some AI-based techniques and NI-based 

techniques that have been applied successfully, as noted in the literature, to tackle three 

commonly perpetrated e-frauds – email spam, phishing and network intrusion. Also, other ML 

techniques that been applied to e-fraud are summarized. Finally, some available methods that can 

be used to improve the performances of NI techniques are outlined in Chapter two.  

 

Chapter three gives a description of the two techniques proposed in this research (that is, the  

RF-based technique and the firefly based SVM technique). Also, the features used by the two 

proposed techniques in this research are described in Chapter three. Chapter four provide details 

about the set up used for all the experiments performed in this research. It also provides details 

about the dataset and the performance measure used for all the experiments. Additionally, 

Chapter four presents the experimental results obtained from the tests carried out on the  

RF-based technique and the firefly based SVM technique respectively. The method used to 

evaluate the performance of the techniques proposed in this research is also explained in Chapter 
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four. Finally, the summary and conclusion is presented in Chapter five alongside with some 

recommendations on some techniques that can be explored in the future. 
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Chapter Two  

 

Literature Review and Background information 

 

2.0 Introduction 

This chapter gives an overview of some basic concepts related to our work. It then gives a review 

of e-fraud as well as some AI-based techniques proposed by researchers in handling various 

forms of e-fraud. Initially, basic concepts that provide overview of NI and ML techniques are 

presented alongside with a general introduction to e-fraud. 

 

2.1 Basic Concepts 

Some basic concept on NI techniques, ML, ANN and email filtering are discussed next.  

2.1.1 Nature Inspired techniques 

Nature has an easy and amazing way of solving complex problems. It is the source of inspiration 

to many techniques (referred to as NI techniques), such as the NI techniques listed in Section 

1.4.3. NI techniques are essentially AI techniques that are inspired by the approach nature adopts 

in solving its problems [2]. For example, Particle Swarm Optimization (PSO) is inspired by the 

emerging behavior of bird flocking or fish schooling [28]. FFA is inspired by the flashing lights 

of fireflies [29].  

 

NI computing is an emerging computational model for handling complex real world 

classification and optimization problems such as: e-fraud [30], traveling salesman problem [31], 

graph coloring [32], parking space problem [33], hostel allocation problem [34]. NI techniques 

and their applications are prominent in literature, very likely due to some inherent intriguing 

features they present including: 

1. Robustness: Optimization problem can still be resolved even when many uncertainties 

(such as noise in the environment) are present in the input data [35] [36]. 

2. Versatility: NI techniques have the capability of searching through a large database of 

solutions thereby making it suitable for solving any problem with less dependence on the 

domain knowledge [37]. 
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3. Adaptability:  NI techniques, as opposed to other AI methods, can be used to deal with 

problems that have changing patterns such as e-fraud. This is because this technique takes 

advantage of the dynamic problem-solving capability of nature. 

4. Specialization: In NI techniques, the population is divided into different groups, and 

various tasks are assigned to each of them alongside with specialized soldiers to secure 

them. For example, XCS, a type of learning classifier system (LCSs), make use of a 

niche-based technique when it want to conserve its population of rules [38]. 

 

2.1.2   Machine Learning 

Arthur Samuel (1959) defines ML as a “field of study that gives computers the ability to learn 

without being explicitly programmed”.  Similarly, Tom Mitchell (1998) defines ML as “a 

computer program is said to learn from experience E with  respect to some class of tasks T and 

performance measure P, if  its performance at tasks in T, as measured by P, improves with 

experience E”.  Furthermore, Ayodele [39] noted that learning involves finding hidden statistical 

regularities or patterns within data. ML algorithms are popularly used to solve problems 

involving automatic classification of data (such as e-fraud detection) [6]. They have the ability of 

analyzing data contents and extracting hidden patterns from them. The primary aim of ML-based 

systems is prediction, that is, prediction of known patterns that were learned from the training 

data [40]. 

There are several types of ML algorithms which can be grouped into different classes based on 

their mode of learning as outlined below [39]: 

1. Supervised learning: Supervised learning involves finding unknown patterns in 

labelled data. Algorithms that belong to this class include: SVM, Naïve Bayes (NB) 

Classifier, Logical Regression, Neural Network (NN), Bayesian networks, RF, K-

Means clustering, etc. These algorithms can only be used when the data available are 

well labeled, that is, when the desired output is known. 

2. Unsupervised learning: Unsupervised learning involves finding concealed patterns in 

unlabeled data. Some algorithms that can be used to handle unsupervised learning 

problems include: hidden Markov models, mixture models, K-means, etc. 
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3. Semi-supervised learning: This involves finding patterns in a dataset consisting of 

both labeled and unlabeled instances; it falls between supervised learning and 

unsupervised learning. 

4. Reinforcement learning: Reinforcement learning is concerned with how software 

agents learn through try-and-error interactions with their environments [41]. Unlike 

other types of ML, in reinforcement learning, the software agent is not told what to do 

or what actions to take, the agents try different actions and embark on the actions that 

yield the best reward [42]. 

5. Transduction: Algorithms in this category are similar to supervised learning. Here, 

outputs are predicted based on training inputs, training outputs and new inputs [39].  

6. Learning to learn: In learning to learn, actions are taken based on some set of 

assumptions (referred to as inductive bias) the algorithm has learnt, from past 

experience [39].  

 

2.1.3 Artificial Neural Network 

Artificial Neural Network (ANN) is a ML method that is inspired by the central nervous system 

of humans (especially, the brain) [43], in that, ANN tries to electronically simulate the human 

brain. ANN is made up of many artificial neurons interconnected with each other. The number of 

neurons in the network depends on the problem that is to be tackled. Inputs (having associated 

weights) are fed into the network through these neurons. The associated weights of these inputs 

are generally adjusted to train the network. ANN is divided into two: feed-forward networks and 

recurrent/feedback network [24]. Furthermore, feed-forward network is divided into three: 

single-layer perceptron, MLP and RBF nets [24]. Also, feedback network is divided into four, 

namely: competitive networks, kohonen self-organizing network, Hopfield network and ART 

models [24]. The most popular type of NN in use today are the MLPs [44]. A typical MLP NN 

consist of one input layer, one output layer and one or more hidden layers [44]. ANN has been 

successfully used to solve complex real world problems. Some of the applications of ANN, with 

respect to network intrusion detection, phishing detection and email spam detection are discussed 

in Section 2.4. 
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2.1.4 Email Filtering 

Email filtering most often refers to the process of automatically separating unsolicited emails 

from legitimate emails [45]. This is normally carried out by an email filter. Phishing attacks are 

typically perpetrated via emails. These emails usually contain social engineering messages (with 

specific phrases) that demand users to perform specific actions (such as clicking on a URL). 

Therefore, the content of these emails are useful features for phishing detection. Very few 

phishing email filters have been developed, in contrast to many existing email filters that have 

been developed for spam emails. Many of the existing email filters used several phishing 

detection techniques, ranging from blacklists [4], visual similarity [19], heuristic [20], and  

ML [46]. Of all these techniques, the ML-based technique achieved the best results. 

 

2.2 Electronic Fraud and its Detection 

E-fraud can simply be defined as deceitful actions carried out with the aid of electronic  

devices [2]. E-fraud is becoming highly lucrative, because of the high rate of patronage by 

fraudsters. Millions of dollars have been lost by many individuals and organizations. For 

example, the loss incurred globally from credit and debit card transactions as at August 2013 add 

up to $11.27 billion [47]. In another example, in [48], the Financial Fraud Action UK (FFA UK) 

revealed that the loss suffered by UK card holders was summed up to £450 million, which is 16 

percent higher than the loss incurred in 2012, which was £388.3 million. This is quite alarming. 

Behdad et al. [2] pointed out that it is practically impossible to handle e-fraud without 

automation, because of the complexities involved.  In order to build a robust fraud detection 

system, a lot of important factors, as discussed in Section 2.2.1, must be taken into proper 

consideration.  

2.2.1 General Challenges in e-Fraud Detection  

E-fraud detection is not an easy task. There are very few ready-made fraud detection  

solutions [49], because of some challenging peculiar properties faced by fraud detection [2]. 

Some of the general challenges faced in the detection of e-Fraud include: 

1. Experience Imbalance: For NI techniques to work effectively they must be trained with 

a set of well-balanced data (that is, the samples in the minority class must be equal to the 
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samples in the majority class). Unfortunately, real world data are usually imbalanced [2]. 

These imbalances have a negative effect on the performance of a fraud detection system. 

2. Online Learning: The classification accuracy of a fraud detection system depends on the 

volume of data fed into it during the training phase. Lack of complete or adequate data 

from the onset will have an adverse effect on the learning process [2]. The fraud detection 

system will have to make its decision based on the available data and at the same time, 

adapt as fast as possible as it encounters incoming data [2]. 

3. Adaptive Adversaries: Fraud detection is, increasingly, becoming more difficult 

because of the rapidly changing patterns used by fraudsters in perpetrating fraud [50]. 

This is a major challenge, because the module responsible for detecting fraud may 

become obsolete over time, implying that the module will not be capable of handling new 

attacks [2]. 

4. Concept Drift: The statistical properties of a target variable, which a model tries to 

predict, change over a period of time in unpredicted ways. This is a challenge, because 

fraudsters operate using different patterns, often implying that a pattern indicating non-

fraud today may be used by a fraudster tomorrow, thereby, reducing the predictive 

accuracy of the system [51]. E-fraud systems should be sensitive enough to detect 

patterns (new or evolving concepts) accurately, such as the change in the buying pattern 

of a customer due to inflation [2]. 

5. Noise: Noise refers to errors in the training data used by ML algorithms. Developing a 

robust e-fraud detection system involves the use of a large volume of data. According to 

an online resource, the likelihood of error existence in a large dataset is very high. The 

presence of noise in a dataset will reduce the learning rate of a detection system, because 

the system will need to compensate for the introduced noise. Markus and Myers pointed 

out that noise can be generated randomly, distributed uniformly or non-uniformly and can 

also be created by fraudsters [52]. A fraud detection system should be robust and 

sensitive enough to handle noise and concept drift accurately [2]. As suggested by 

Behdad et al. [2], some major challenges faced by e-fraud systems with regards to noise 

include:   

i. Distinguishing between noise introduced randomly or noise maliciously created 

by fraudsters, which is sometimes similar to random noise, and  
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ii. Segregating between noise and concept drift. The smallest amount of noise can be 

very harmful, because the system’s prediction rate should be as accurate as 

possible.  

6. Unequal Misclassification Costs: In fraud detection, the method used for classification 

of errors has its own cost implication on the e-fraud system which, usually, has unequal 

misclassification costs. Examples of misclassification cost include, False Positive (FP) 

error cost (e.g. resources wasted investigating non-fraud) and False Negative (FN) error 

cost (e.g. the expense involved in failure to detect fraud) [53]. These misclassification 

cost differs from example to example and it can possibly change with time. There is no 

doubt that this will have an adverse effect on the learning problem in question. 

7. Fast Processing and Large Volume of Data: Some e-fraud detection systems require 

real time detection, implying that the system’s speed is of the utmost importance [2]. 

Processing of large volumes of data will lead to a prolonged processing time. 

 

Basically, all the challenging properties of fraud highlighted in Section 2.2.1 need to be taken 

into proper consideration, if we want to build a robust fraud detection system that is sensitive to 

fraudulent attacks in a changing environment.  

 

2.3 Prominent Types of Electronic Fraud 

There are three prominent types of fraud, namely: email spam, phishing and network intrusion 

[2]. An introduction to these three types is given in the next three subsections. 

2.3.1 Email Spam 

Generally, email spam is defined as unsolicited bulk email [2]. It is, usually, addressed to 

hundreds or thousands of recipients. Gao [54] further explains that spam emails usually meet the 

following three criteria below: 

1. Anonymity: The address and the identity of the email sender are not revealed. 

2. Mass Mailing: The email is sent to a mailing list containing the addresses of a vast group 

of people. 

3. Unsolicited: The recipients in the mailing list have not granted confirmable consent for 

the email to be sent. 
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There are quite a number of techniques that can be used to handle the effect of email spam, such 

as user awareness, disciplinary measures, anti-spam software and email filter. Filtering is one of 

the widely used techniques today. Filtering can be defined as the automatic grouping of emails 

(both incoming and outgoing) into spam mails and legitimate mails [55].  Duan et al. [55] 

suggested that a spam detection system can be implemented at various levels. It can be 

implemented at the router’s end of email transmission, at the destination mail server, and also at 

the destination mailbox. Meanwhile, Duan et al., pointed out that filtering does not solve spam as 

a problem totally, because unsolicited mails are still delivered. It only separates junk mails from 

legitimate mails, thereby, saving time for users [55].  Fawcett [50] views spam filtering from the 

optic of data mining and outlined some of its challenges as follows:  

1. Skewed and drifting class distributions: The distributions of messages (both spam and 

legitimate mails) between users are unequal. It varies between individuals. 

2. Unequal and uncertain error costs: Sometimes, a spam detector might not be very 

accurate when filtering its messages. Errors committed can be very critical, because, for 

some users, every individual message is very important; a single missed message can be 

very costly. 

3. Disjunctive and changing target concept: “Spam” as a concept which changes over 

time. It is difficult to determine how much the change will be at a certain point in time, 

partly, because patterns adopted by spammers change over time. 

4. Intelligent adaptive adversaries: Spammers are improving in their filtering-evasion 

skills on a daily basis; they now employ new sophisticated techniques that some filtering 

system may not detect.  

 

2.3.2 Phishing 

Phishing is an act that attempts to electronically obtain delicate or confidential information from 

users (usually, for the purpose of fraud) by creating a replica website of a legitimate 

organization. Phishing is, usually, perpetrated by sending deceitful and well composed emails to 

users. These emails, usually, contain links to cloned websites, and clicking on this links may re-

direct users to a phishing website or a malware hosting website. Malware hosting websites are, 

usually, infected with malicious codes that can gain access to private information of users and 
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also cause damages to users’ computers. Due to the vast number of email messages received by 

various users today, separating legitimate emails from phishing emails is a challenging task, 

therefore, the need for a quicker, robust and effective filtering technique cannot be overstated. 

Several approaches have been proposed in the literature, including: network-based approach, 

blacklist, whitelist and content-based approach. Network-based approaches are costly to 

implement, difficult to maintain and time consuming [56]. Blacklist (that is, list of reported 

phishing websites) and whitelist (that is, list of target companies) approaches yield high FP and 

FN rates; their effectiveness is limited to the information stored in them. This limitation makes 

blacklist and whitelist incapable of automatically detecting new phishing attacks as they occur. 

The Anti-Phishing Working Group (APWG) noted that the average uptime for phishing a 

website is 44.39 hours (that is, less than 2 days). Content-based approach aims at capturing the 

content and structural properties of a data. According to White et al. [57], the blacklist approach 

is the widely used phishing detection approach adopted by many today. Nevertheless, Bergholz 

et al., pointed out that a content-based technique is the most accurate and secure of all the 

phishing detection techniques mentioned above [46]. This is because, the content-based 

technique is capable of discovering new fraudulent patterns in large datasets as they evolve. 

Phishing is a classification problem and Martin et al. [58], outlined five stages involved in 

phishing attacks: 

1. Planning: At this stage, plans on who the target organization should be and how to get 

the email address of the organization’s customers are determined. 

2. Setup: Here, the method for sending the messages (usually mass mailing) and obtaining 

the revealed users information is devised.  

3. Attack: At this stage, the fraudulent and deceptive message is sent out to users’ 

addresses. 

4. Collection: Here, the information of the victimized users’ are captured. 

5. Attack: At this stage, the actual fraud is committed using the captured information 

revealed by users at the collection stage. 

There are several approaches that have been applied to phishing detection. Adida et al. [59] 

suggested that phishing can be tackled and eliminated at the email level, since many scammers 

use email as their tool for committing fraud. Dhamija and Tygar [60] also suggested that email 

can be eliminated at the website level. They proposed that a security toolbar may be incorporated 
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into web browsers. Another approach proposed by Dynamic Security Skins [61] involves the use 

of visual hash. In this approach, visual hash was generated randomly and used to customize the 

web and windows form of a browser. Visual hash is responsible for identifying websites that 

have been authenticated successfully by the browser. Buntine also proposed a method called 

Cryptographic identity verification [62]. The author pointed out that this method can only work 

if the entire web infrastructure (both servers and client) is changed. In addition, increasing the 

awareness of users can increase mitigation against malicious attack; users should be well trained 

on various ways of identifying phishing website. 

Khonji [15] summarizes the approaches that can be applied to tackle phishing attacks into four 

categories, namely: offensive defence, correction, prevention and detection approach, 

respectively.  

2.3.2.1 Offensive Defence Approaches 

The objective of approaches that fall in this category, is to neutralize the effect of the phishing 

attack. This method is, mostly, applicable to users that have already fallen victim to the attack 

(that is, users that have already filled out and submitted their private information into the HTML 

forms of the phishing website). In this approach, whenever a user is misled to a phishing website, 

a software installed on the user’s browser will also submit several fake samples of information to 

the phishing website, so that it will be difficult for the attackers to locate the actual information 

submitted by the user. 

2.3.2.2 Correction Approaches 

Approaches in this category aim at, either, removing the phishing files from the website or 

making the phishing website inaccessible. Both can be achieved by alarming the internet service 

provider that hosted the website, in order that they will carry out the appropriate or required 

action. 

2.3.2.3 Prevention Approaches  

These approaches aim to both prevent users from falling victims and to stop phishers from 

defrauding users in the future. The latter can be achieved by involving law enforcement agencies. 

These agencies can carry out their investigation and penalize these attackers by making them pay 

dearly for their crimes. This serves as a deterrent and, in turn, minimizes subsequent attacks. 
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2.3.2.4 Detection Approaches 

The primary focus of approaches in this category is in identifying phishing attacks and 

classifying them into legitimate and illegitimate. This is usually achieved by examining hundreds 

of possible phishing features in every email and automatically filtering them. The examination of 

phishing features enables the detection system to be capable of adapting to new phishing attacks 

as they occur. Detection approach can be further classified into four approaches, namely, 

blacklist detection approach, whitelist detection approach, network-based detection approach and 

content-based detection approach. These four approaches are discussed, briefly, below. 

 

Blacklist Detection Approach 

Blacklist refers to the list of reported phishing websites. The blacklist approach is one of the 

approaches adopted by some internet service providers (ISP), web browser providers and some 

email providers (such as Gmail, yahoo, Microsoft, etc.) in order to identify blacklisted phishing 

addresses. These providers use the information on the blacklist to secure their system and, in 

turn, shield their users from falling victim to phishing attacks. For example, if an email is sent 

from an IP address that is already blacklisted, the email provider can either block this email from 

been delivered or send the email to the spam folder of the recipient. A blacklist usually contains 

domain names and IP addresses of previously detected phishing websites. Some blacklists also 

contain keywords, IP addresses of open proxies and relays, IP addresses of ISPs that host 

phishing websites and RFC violators (IP addresses that violate the internet and network 

engineering standards). Almomani et al. [63] reported that there are more than 20 spam blacklists 

commonly used today and these blacklists are, usually, updated at regular intervals; for example, 

the blacklist of Firefox browser (stored in the user’s profile) is, usually, updated every 30 

minutes [64]. 

Whitelist Detection Approach 

A whitelist refers to the list of targeted companies (such as eBay, Paypal, Visa, etc.). The 

whitelist approach is very similar to the blacklist approach; both of them are used to secure users 

from fraudulent attacks. The major difference between a whitelist and a blacklist lies in the 

information contained in both of them. A whitelist contains email addresses, IP addresses and 

domain names that are considered to be spam free. Generally, various providers use a whitelist to 
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inform of their filtering decision. For example, the network admin for an organization can decide 

to set up a whitelist of Media Access Control (MAC) addresses and then use it to control access 

into their network. Also, some spam filters keep a whitelist of email addresses, IP addresses and 

domain names and use this list to decide whether an email is legitimate or not. 

Network-based Detection Approach 

This approach is used by various network administrators to secure their network from intrusion. 

Generally, when a user sends a message over the network, it is formatted into a smaller unit 

called packet which contains the message sent by the user and the IP address of the sending 

network. However, the IP address can be faked in such a way that it will be hidden. Generally, 

network-based approach aims at blocking any network packet that is deemed to be illegitimate 

(that is, packets that contain disguised IP addresses).  

Content-based Detection Approach 

The content-based approach is another method that can be used to detect fraudulent attacks. This 

approach involves analyzing the content and structural properties of the data. For example, 

Microsoft Internet Explorer (Version 7) has an inbuilt classifier, that analyzes the contents of 

web pages and filters them, based on some criteria [6]. Bergholz et al., noted in [46] that the 

content-based approach is the most effective and secure of all the filtering approaches, even 

though [57] also noted that the black-list approach is the most widely used approach. 

 

Quite a number of phishing detection systems have been developed, based on the four 

approaches discussed above. Network-based approaches are, generally, costly to implement and 

time consuming [56]. Blacklist and whitelist approaches, usually, yield high FP and FN rates, 

because their effectiveness is only limited to the information stored on the blacklist (or the 

whitelists), thus, making them incapable of detecting new and emerging phishing attacks. Khonji 

et al. [15] described the classification performance of some of these detection techniques and 

outlined their limitations. Some of these techniques and their limitations are outlined in  

Table 2.1. Based on some case studies conducted by Aburrous et al. [65], some criteria and 

indicators that can be used for phishing detection were collated. A full list of these indicators and 

criteria are outlined in Table 2.2. One of the methods for effectively dealing with phishing emails 

is in identifying and preventing these emails from entering into users’ mailboxs. E-mail filters 
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can be used to achieve this. Also, web browsers can be well equipped with mechanisms for 

detecting and blocking illegitimate addresses (that is, phishing websites) from going through. If 

all these can be achieved, then phishing activity, as a whole, will be reduced to a negligible 

minimum.  

 

2.3.3 Network Intrusion 

Network intrusion involves several related actions occurring at different parts of the network. 

The state of the network changes when there is occurrence of several related actions in different 

parts of the network. In intrusion detection, the events that occur in the network are, usually, 

monitored and analysed for security issues. An intrusion detection system (IDS) is responsible 

for preventing any action in the network that attempts to compromise the integrity, 

confidentiality and availability of a certain resource, and it is also responsible for strictly 

monitoring any illegal access to the network’s resources [2]. Signs of intrusion can be detected 

by examining the log files and the traffic of the network [2]. Modern IDS adopts both host based 

and network based approaches [2], that is, the IDS monitor both system logs (host-based 

approach) and the flow of network packets (network-based approach). Generally, there are two 

basic approaches that are used when building a network intrusion system, namely: misuse 

detection and anomaly detection. The misuse detection approach focuses on protecting the 

network from known network threats and system vulnerability. Anomaly detection aims to 

search for events in the network that deviate from the normal behaviour of users, hosts or 

network connection.  

 

2.4 Application of Nature-Inspired Technique to e-Fraud 

Generally, one of the major challenges faced by AI techniques (with centralized control) is the 

ability to adapt to changing environment [2]. NI techniques have been able to overcome this 

challenge. NI techniques are inspired by the dynamic approach used by natural systems in 

achieving their various tasks. Behdad et al. [2] clarified that the objective for using these 

approaches is because natural systems (such as organs in an animal’s body or a group of animals 

or insect) can adapt easily to changing environment and they also have the ability to recover 

quickly from adverse conditions. Some NI techniques have been proposed in the literature for 
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detection of email spam, network intrusion and phishing as summarized in the following 

subsections. We present various approaches under the different types of NI techniques used.  

 

2.4.1 Application of ANN for e-Fraud Detection 

Some existing ANN-based e-fraud detection techniques that have been proposed in literature to 

handle email spam, phishing and network intrusion are discussed in this subsection. 

 

2.4.1.1 ANN for Email Spam Detection 

Zhan et al. [66] developed a spam filtering system based on the back propagation NN algorithm 

(one of the most successful and widely applied NN models). The filtering system automatically 

generates new rules from incoming messages, thereby, capable of automatically detecting 

emerging spam features or patterns. The system was developed in conjunction with other 

filtering mechanism (such as blacklisting and Bayesian filtering) in order to reduce the 

occurrence of the “false negatives” rate and “false positives” rate. Zhan et al., tested the system 

on an English dataset (acquired from SpamAssasin) and a Chinese dataset (acquired from China 

Education and Research Network (CERNET) Computer Emergency Response Team). They used 

1,000 emails each, from both datasets and compared the performance of the system to that of 

SpamAssasin, a widely used, robust, heuristic-based, spam filtering system that combines 

different spam detection techniques. The result of the experiments showed that the filtering 

system performed better in terms of classification accuracy, FN and FP rate, compared to 

SpamAssasin. The experiment yielded an accuracy rate of 98.5% and very low FP and FN rates. 

Similarly, Yang and Elfayoumy [67] performed a number of experiments to evaluate the 

performance of both feedforward back propagation NN and Bayesian classifiers. They developed 

two different algorithms, based on NN and Bayesian classifiers, respectively, and compared their 

performance. The result of the comparison revealed that even though training a NN takes a 

longer period of time, neural networking still has high tolerance to noisy data and also has the 

ability to classify new emerging patterns.  Elfayoumy carried out some tests using two different 

groups of network topologies. The result of the tests point to the following:  

1. The number of layers in a NN has a negligible impact on the performance of the network. 

2. The number of neurons in both hidden and output layers does not reduce the error rate of 

the network. 
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3. The number of output neurons in the output layer does not have a reasonable impact on 

the performance of the network. 

4. Large numbers of nodes are difficult to train and they require a large amount of memory 

and execution time. 

The above indications clearly reveal that the number of nodes or hidden layers in a network do 

not have a huge impact on the performance of the network. It is, therefore, advisable to avoid 

networks with large numbers of layers, nodes or neurons. 

 

Table 2.1: Phishing detection techniques and their limitations 

Detection Techniques Limitations References 

PhishNet made use of blacklist and 

heuristics 

High FP rate of 5% and a FN rate of 3% [4] 

SpoofGuard  made use of heuristics Very high FP rate of 38% and FN rate of 

9% 

[68] 

PhishCatch  made use of heuristics It cannot be adopted in a dynamic 

environment because it was developed 

using manually hard-coded rules. It also 

has a very high FN rate of 20% 

[69] 

PhishWish made use of blacklists and 

heuristics. 

It has a similar limitation to PhishCatch as 

it was also hard-coded with 11 rules. It 

also has a high FP rate of 8.3% 

[16] 

CANTINA made use of heuristics and 

network communication 

High FN rate of 11%. [70] 

Visual similarity-based phishing 

detection made use of blacklist, 

whitelist and visual similarities 

Very high FP rate of 17.4% and FN rate of 

8.3%. There is also a possibility of delay 

in the browser due to image processing. 

[5] 

Note: FP refers to False Positive; FN refers to False Negative 
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Table 2.2: Phishing indicators [65] 

Criteria Phishing indicators 

 

URL  & Domain Identity 

1 Using IP address 

2 Abnormal request URL 

3 Abnormal URL of anchor 

4 Abnormal DNS record 

5 Abnormal URL 

 

Security & Encryption 

1 SSL certificate 

2 Certificate authority 

3 Abnormal cookie 

4 Distinguished names certificate 

 

Source code & Java script 

1 Redirect pages 

2 Straddling attack 

3 Pharming attack 

4 OnMouseOver to hide the link 

5 Server form handler 

 

Page style & Contents 

1 Spelling errors 

2 Copying website 

3 Web Forms with Submit button 

4 Pop-up windows 

5 Disabling right click 

 

Web address bar 

1 Long url address 

2 Replacing similar char for URL 

3 Adding a prefix or suffix 

4 Using the @ symbol to confuse 

5 Hexadecimal   char Codes 

 

Social-human factor 

1 Emphasis on security 

2 Public generation salutation 

3 Buying time to access accounts 
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2.4.1.2 ANN for Phishing Detection 

Phishing attacks are difficult to detect, because of the sophisticated techniques used by phishers. 

Much work has been undertaken by researchers in the domain of ML. Zhang & Yuan [71] 

proposed a phishing detection algorithm, based on ANN. They applied the most common 

structure of a multilayer feed forward NN (consisting of one input layer, one hidden layer and 

one output layer). Zhang & Yuan pointed out that the feedforward NN is better at modelling 

relationships between inputs and outputs, compared to other regular (or frequently used) NN 

approaches. Zhang & Yuan implemented their algorithm on a dataset consisting of 4,560 

phishing email and 4,202 legitimate e-mails. They compared the performance of the proposed 

ANN-based algorithm to other NI algorithms, applied in the domain of phishing email filtering, 

and found it to be more suitable. Zhang & Yuan further noted that, even though their technique 

requires more time for parameter settings, it performed better compared to other classifiers. In 

another work, Almomani et al. [63] developed an algorithm called “Evolving Fuzzy Neural 

Network” (EFuNN). This algorithm, adopts the same technique used by NN. Almomani et al. 

explained that the major difference between EFuNN and NN is in the nodes creation. The 

number of nodes in EFuNN is created during the learning phase. Almomani et al., introduced a 

new framework, based on their proposed algorithm, known as Phishing Evolving Neural Fuzzy 

Framework (PENFF). The framework consist of five layers, namely: Input layer, Fuzzy output 

layer, Rule nodes layer, Fuzzy input layer and Output layer. Almomani et al., stated further that 

the framework is capable of predicting and also detecting “zero-day” phishing e-mail. “Zero-

day” phishing emails are emails that contain links to phishing websites that are not yet 

discovered, that is, websites that are not yet included in the blacklist of known phishing emails. 

Finally, Almomani et al., tested their algorithm on a dataset consisting of two classes. The first 

class consists of 2,000 phishing emails (acquired from the monkey website [26]) and the second 

class contains 2,000 ham emails (from spamassassin [72]). The result of their test showed that 

PENFF has the ability to detect phishing emails with a reduced error rate. Furthermore, 

Almomani et al., noted that their proposed framework can also be implemented in various 

learning systems. Martin et al. [58] proposed a new model that uses ANN to classify and predict 

phishing websites. The model has an embedded algorithm, responsible for updating the weights 

in the output and hidden layers of the NN. In their paper, Martin et al., explained how weights 

can be updated in a multi-layer network. Martin et al., planned to test their algorithm on two 



24 

 

publicly available datasets, provided by Jose Nazario [26]. Martin et al., believed that their 

framework works better and gives a lower error rate, compared to some other data mining 

classification algorithms mentioned in the literature.  

2.4.1.3 ANN for Network intrusion Detection 

Shun and Malki [73] proposed a NN-based IDS. The network architecture of their proposed NN 

consists of, one input layer, one hidden layer and one output layer. The input layer consists of 

several nodes (determined by the number of input data set), the output layer contains two nodes 

(one node to indicate normal traffic and the second node to indicate malicious traffic).  

Shun and Malki trained and tested their network on a dataset obtained from the repository of the 

Defense Advanced Research Project Agency (DARPA).  The dataset was classified into three: 

normal traffic, known attack and unknown attack. Shun and Malki carried out four different tests 

on the trained network and claimed that all the results yielded a 100% classification for both 

normal traffic and known attack and 76% for unknown attack, indicating that a NN is an 

effective method that can be used to secure a network from both current and future intrusions. 

Kachurka and Golovko [74] developed a prototype for an IDS, based on the NN algorithm. 

Kachurka and Golovko noted that the prototype is capable of accurately detecting both known 

and unknown attacks in real-time with low FP and FN rates. The system combines both anomaly 

detection techniques and misuse detection techniques (in contrast to most IDS methods that use 

only one of these techniques). The two detectors (anomaly detector and misuse detector) operate 

in parallel mode. Kachurka and Golovko performed a number of experiments on a real computer 

network using KDD data. They trained their network with a dataset containing 500 different 

connections and, thereafter, launched several attacks on the network to test its effectiveness. The 

result of their test (involving about three different threshold settings for the network detectors) 

indicated that their proposed IDS prototype is capable of handling both anomaly and misuse 

detection in real time. 

 

2.4.2  Application of Evolutionary Algorithm for e-Fraud Detection 

The EA, a subset of evolutionary computation, is a generic population-based metaheuristic 

optimization algorithm that uses a mechanism inspired by natural biological processes such as, 

recombination, selection, mutation and reproduction. Algorithms in this class apply the principle 

of survival of the fittest to operate on a population of individuals and, based on this principle, 
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they produce improved results. Different set of solutions are produced in different generations 

and new individuals are selected based on their fitness value. The new set of evolved solutions 

(or individuals) after each generation are usually more fit compared to the individuals they 

evolved from [75]. The EA can be used to solve complex real world optimization problems that 

evolve overtime (such as fraud detection). Some of its applications are discussed in the next four 

sub-sections: 

2.4.2.1 EA for Email Spam Detection 

Dudley et al. [76], developed a multi-objective EA that can be used for spam filtering.  

Dudley et al. explained that the algorithm is an improvement over SpamAssasin [76]. 

SpamAssassin detects spam messages by, firstly, carrying out a series of test (of different types) 

on an email. It then multiplies the result of each test by a pre-assigned weight, automatically 

derived by a 3-stage process, adds the resultant values together, and then classifies the message 

appropriately, based on whether the sum is greater or smaller than a user-defined threshold [76]. 

According to Dudley et al., in SpamAssasin, users only have the privilege to set their preferred 

threshold (before the entire tests are carried out), but they do not have the power to assign weight 

to an individual test if they want to. The multi-objective EA improved on this limitation. The 

algorithm was designed in such a way, that it provides several ranges of setups (with different 

sets of weights), giving users the liberty to switch between setups at will. This implies that users 

can now choose between setups that have their own preferred weight at every point in time. 

Dudley et al., ran a number of experiments to evaluate the algorithm’s performance, and the 

outcome was favourable. In another work, Sanpakdee et al. [77] proposed a mechanism for 

filtering spam emails using genetic algorithm (GA). In the mechanism, the email content was 

first extracted, and then divided into seven different groups (Adult, Financial, Commercial, 

Beauty & Diet, Travelling, Home-Based Business and Gambling) based on the relative meaning 

of the extracted words. A string of chromosomes comprised of the seven different groups (or 

genes), is then composed. The weight of each group (represented in the string of chromosomes) 

is calculated (using a formula explained in [77]) and then encoded into binary values. The binary 

values are fed into GA for fitness evaluation (by a defined fitness function), and then the fittest 

chromosomes are selected and used to create varieties of spam mail prototypes (that is, a set of 

rules). These prototypes are used for spam filtering. Sanpakdee et al., tested the mechanism on 

1,097 spam mails and 300 hams (collected from Enron Email Data set [78]). The test yielded an 
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accuracy of 85%. Sanpakdee et al., pointed out that the system can also dynamically generate 

new spam mail prototypes.  

2.4.2.2 EA for Phishing Detection 

Shreeram et al. [79] proposed a GA-based Phishing Attack Detection and Prevention System 

(PADPS). Shreeram et al., tested the system on a set of data that was collected from the  

APWG. Firstly, the dataset was analyzed and then fed into GA for fitness evaluation. After 

evaluation, a set of rules was formed and stored in a database used by the phishing detection 

system. Shreeram et al., noted that the GA-based system is capable of detecting both phishing 

emails and malicious links on web pages. 

2.4.2.3 EA for Network intrusion Detection 

Gong, et al. [80] developed a network intrusion detection software based on GA. Gong et al., 

focused on network misuse detection. They used GA to generate a set of classification rules from 

network audit data. The classification rules were then used to detect incoming network 

connections in real time. Gong et al., tested their software on a selected subset of the 1998 

DARPA dataset, and the test yielded good results. Gong et al., noted further that the GA-based 

software is capable of detecting network intrusions and also classifying network misuse detection 

in real time. In a similar work, Crosbie and Spafford [81] developed a robust IDS based on 

genetic programming. The IDS consist of multiple functional units (working independently) 

encapsulated as autonomous agents. These autonomous agents are responsible for detecting 

anomalous behaviour (e.g. repeated connection attempts, connections to privilege ports, etc.) in 

the network under continuously changing conditions. The agents were divided into groups and 

trained. The group with the best known agent was then selected and used by the IDS. Crosbie 

and Spafford trained and tested the GA-based IDS on a dataset that contained both intrusive and 

non-intrusive scenario data. The evaluation yielded positive results. This implies that genetic 

programming is a useful tool for developing IDSs (consisting of autonomous agents), capable of 

detecting both known and unknown network connections. 

 

2.4.3 Swarm Intelligence for e-Fraud Detection 

SI is a discipline that deals with some social living beings (belonging to natural and artificial 

systems) that organize themselves using two remarkable features: decentralized control and self-
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organization [82, 83]. SI focuses primarily on the combined behavior of these individuals 

resulting from their interactions with themselves and with their environment. Examples of some 

social living beings that falls into the domain of SI include: colonies of ants and termites, school 

of fish, flocks of birds, herds of land animals [82]. Parpinelli and Lopes  [83] noted that from the 

inception of SI, the two major study areas were PSO [28] and ant colony optimization (ACO) 

[84]. Although there are many recent SI techniques, this review will concentrate on the 

application of PSO and ACO to fraud detection. Both methods have been applied successfully in 

solving several optimization problems including e-fraud including email spam, phishing and 

network intrusion as we present in this section. 

 

ACO (initially proposed by Marco Dorigo [85] in 1992), is another NI technique that can be used 

for solving complex real world optimization task (such as e-fraud detection). ACO is inspired by 

the foraging behaviour of some ant species [84]. In search for food, these ants migrate from their 

nest (in colony) to different locations until they discover a food source. On their way back home, 

these ants deposit pheromones on the ground for the sake of the other members of their colony. 

These deposited pheromones help the other members to decide on the shortest path to take when 

they are also going back to their nest. Kolias et al. [86] explain that the path with greater 

pheromone concentration has the higher probability of being selected and ants that follow this 

path will, likely, return to their nest earlier than the ants that follow a path with a lesser 

pheromone concentration. 

 

PSO is a meta-heuristics inspired by the cordinate movements of bird flocks and fish  

schools [83]. It is a search technique which uses a set of agents to locate the global minimum or 

maximum in a search space [87]. Parpinelli and Lopes in [83], noted that each agent (or particle) 

can be seen as a potential solution to the problem at hand and the position of each particle is 

determined by the solution that they currently represent. Changes in the position of each particle 

are guided by a mathematical formula which controls the particle’s velocity and position. The 

movement of each particle is influenced by the quality of its own local experience (that is, the 

local best) as well as the quality of the neighbouring particles in the swarm [83]. This is expected 

to move the swarm towards the overall best and optimized solution. According to the literature, 

PSO has been applied successfully to solve several optimization problems. 
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The next subsections presents some application of ACO and PSO to spam email detection, 

phishing and network intrusion detection. 

 

2.4.3.1 ACO for E-mail Spam Detection 

El-Alfy [88] developed an ACO-based spam filter. That researcher proposed an algorithm (called 

AntSFilter) that uses ACO to mine through the dataset and extract the relevant set of rules. These 

extracted rules are then used to train the email classifier. El-Alfy evaluated AntSFilter on a 

public dataset called Spambase (made available by UC Irvine (USA) ML Repository repository 

[89]) and compared its performance to three other ML algorithms (Multi-Layer Perceptron 

(MLP), NB and Ripper classifiers). El-Alfy reported that AntSFilter performed better. In another 

work, Yin et al. [90] proposed a hybridized spam filtering algorithm (called LAD-ACO) that 

combines both linear discriminant analysis (LDA) and ACO. LDA was used to reduce the 

dimensionality of the feature space, and ACO was used to classify the email into spam or 

legitimate emails. Yin et al., evaluated the performance of LAD-ACO. They performed several 

experiments on a dataset obtained from Ling-Spam (a publicly available dataset), and compared 

the results obtained with two other ML algorithms (SVM and Naïve Bayes) in terms of precision, 

recall and TCR, and the result yielded 96.83%, 90.25% and 5.78%, respectively. 

2.4.3.2 ACO for Phishing Detection 

Radha and Valarmathi [91] proposed an ACO-based phishing website detection system. 

Furthermore, they proposed an associative classification algorithm that, progressively, finds 

existing association rules among data items. To avoid performing a comprehensive search for all 

possible set of rules in the dataset, Radha and Valarmathi used ACO to extract only the set of 

relevant rules. The extraction was carried out by updating the pheromones values in such a way 

that a set of better rules will be generated for each generation. Thereafter, only the set of rules 

that meet a predefined threshold will be selected. The selected rules will then be used to build a 

model for the phishing website classifier. Radha and Valarmathi tested their algorithm on 512 

website URLs, and the test yielded an accuracy of 98%. The same authors, in another work [92], 

proposed an e-banking phishing website detection system that uses classification a data mining 

algorithm and PSO to classify a phishing website. ACO was used to improve the classification 

result (that is, the number of correctly classified phishing website). They worked with 27 features 
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extracted from two publicly available dataset, and their implementation yielded an accuracy of 

91%. Jensen and Shen [7] proposed a new fuzzy-rough feature selection (FRFS) technique based 

on ACO. They improved the data reduction process of the original fuzzy-rough set method by 

using ACO to extract the optimal subset of features. Jensen and Shen noted that FRFS can be 

applied to ML problems such as phishing detection. They applied their technique to complex 

systems monitoring and compared the result obtained with the original version of the fuzzy-

rough feature selection method. They also compared their result to some other feature selection 

methods. Jensen and Shen reported that their test yielded the best data reduction on average and 

the smallest set of reducts. 

2.4.3.3 ACO for Network Intrusion Detection 

Abadi and Jalili [93] proposed an ACO-based optimization algorithm, called, AntNAG, for the 

minimization analysis of a large-scale network. To enhance the performance of their algorithm, 

they used a local search heuristic. AntNAG was tested on 12 different large-scale network attack 

graphs. The result showed that the proposed algorithm can be used successfully for minimization 

analysis of large-scale network. Zhang and Feng [94] proposed a new approach to network 

intrusion detection - a framework based on two existing ML methods, SVM and CSOACN 

(Clustering based on Self-Organized Ant Colony Network). Zhang and Feng pointed out that the 

proposed system can work in three modes: it can work using pure SVM, pure CSOACN or a 

combination of both. Zhang and Feng evaluated the performance of the three modes and the 

hybridized classifier performed better in terms of average detection rate, FP and FN rates and in 

terms of training time. Gao et al. [8] presented a new intrusion detection approach based on SVM 

and ACO. In their approach, they used ACO for the selection of relevant features and finally 

parsed the selected features to SVM for classification. The proposed method was tested on the 

MIT’s KDD Cup 99 dataset [89] and yielded a prediction accuracy of 99.4%, 95.2% and 98.7%, 

respectively, on three different subsets of that dataset.  

2.4.3.4 PSO for E-mail Spam Detection 

Behjat et al. [95] proposed a new approach to spam e-mail detection. They used Binary 

Quantum PSO (BQPSO) for feature selection. Behjat et al., reported that BQPSO reduced the 

number of extraneous and redundant features which, in turn, increased the prediction accuracy of 

their MLP classifier. In another work [9], the same authors used a PSO-based algorithm to solve 
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the high dimensionality problem associated with feature selection in spam email detection. The 

study found that the proposed PSO-based algorithm yielded excellent feature selection results 

and a high classification accuracy. Xue et al. [96] proposed two novel PSO-based multi-objective 

feature selection algorithms to provide solutions to a multi-objective spam detection problem 

involving the maximization of classification performance and minimization of the number of 

selected features. Xue et al., investigated the two novel approaches and their findings revealed 

that the approaches performed better, compared to some conventional methods. 

2.4.3.5 PSO for Phishing Detection 

Sumathi and Prakash [97] proposed a novel PSO-based method for phishing websites detection. 

The method used data mining and association rule approaches to search for relevant phishing 

patterns from a dataset consisting of phishing websites. Sumathi and Prakash used PSO to search 

for the best pair of hyper parameters for SVM classification. The study showed that PSO can be 

used to improve the prediction accuracy and efficiency of classifiers. Pandey and Ravi [98] 

proposed another new method, known as PSO Trained Auto Associative Neural Network 

(PSOAANN) to provide solutions to problems faced by phishing email and phishing website 

detection. PSOAANN consist of three layers: input layer, hidden layer and output layer. The 

input and output layers consist of an equal number of nodes, while the number of nodes in the 

hidden layer is user defined. PSO was used to train the network. Pandey and Ravi evaluated 

PSOAANN on two different dataset containing phishing websites and phishing emails, 

respectively. The result showed that PSOAANN can classify phishing emails adequately without 

feature selection and also classify phishing websites when used with a new feature selection 

algorithm, proposed by Pandey and Ravi. 

2.4.3.6 PSO for Network Intrusion Detection 

Chen and Qian [99] used PSO in combination with RBF NN to determine solutions concerning 

network intrusion detections. PSO was used to optimize the RBF parameters. The study found 

that the proposed technique (PSO-RBFNN) performed better than the existing RBF NN.  

Srinoy [10] proposed a technique that used PSO to solve the feature selection problem in 

network intrusion detection. They evaluated the performance of the approach on five multi-class 

problems and their study revealed that their method performed better in terms of accuracy, 

compared to some other classification methods. SVM was used as the PSO fitness function 

evaluators. Yi et al. [100] proposed a model (known as PSO-BP) for intrusion detection. Their 
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model combined PSO and back propagation (BP) NN together. In the model, the PSO algorithm 

was used for parameter optimization and the optimized parameters were then used to train the BP 

NN. PSO-BP was evaluated and the results showed that the algorithm can effectively detect 

intrusive activities. Saxena [101] introduced a novel method for network intrusion detection. 

That researcher used PSO in combination with SVM and K-Means clustering algorithm in his 

approach. PSO was used for parameter optimization, K-Means was used to generate different 

training subsets and SVM was used to classify intrusive attacks from legitimate actions in the 

network. 

 

A summary of all the e-fraud applications discussed above and some other applications outlined 

by [2] are given in Table 2.3. 

 

Table 2.3: NI techniques and its applications 

Nature-Inspired Techniques Applications References 

ANNs Email Spam Classification 

Phishing Detection 

Network Intrusion Detection 

[66, 67] 

[58, 102] 

[103-105] 

EAs Email Spam Classification 

Network Intrusion Detection 

[76, 77] 

[80, 81, 106-110] 

ACO Network intrusion detection 

Email Spam Classification 

Phishing Detection 

[8, 93, 94] 

[88, 90] 

[7, 93] 

PSO Network intrusion detection 

Email Spam Classification 

Phishing Detection 

[10, 99, 111] 

[9, 95, 112, 113] 

[92] 

Artificial Immune Systems Email Spam Classification 

Network Intrusion Detection 

[114] 

[115] 

Learning classifier systems Network Intrusion Detection [51, 116, 117] 
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2.4.4 Application of ML-based Techniques to e-Fraud  

Some of the ML-based techniques proposed in literature to handle email spam, phishing and 

network intrusion are discussed in this section.  Specifically, we highlight the application for 

SVM, decision trees and RF (a random combination of the two) and NB techniques for 

classification and detection of e-fraud.  Brief overviews of these techniques are provided before 

presenting a review of literature on their application to e-fraud. 

 

SVM is a content-based supervised ML model that has embedded learning algorithms, 

responsible for analysing data and also recognizing patterns in data. It is very useful in the 

domain of data classification and regression analysis. In a typical classification problem, the 

dataset is, usually, divided into two – training dataset and test dataset. As it is a supervised ML 

method, each instance in the dataset are, usually, labelled (that is, each instance belongs to a 

given class, e.g. spam and non-spam) [27]. Furthermore, each instance contains some set of 

features or attributes which is, usually, extracted from them. The primary aim of SVM is to 

perform predictions, based on the extracted features [27]. SVM performs predictions in the 

following way: 

1. Some set of features (in the form of vectors) are extracted from both the training data and 

the test data. 

2. The features extracted from the training dataset is used to train SVM 

3. After training, SVM produces a model 

4. The features extracted from the test dataset is then used to test the trained SVM model 

5. SVM classifies the test dataset into the given classes based on the knowledge learnt from 

the training data. 

SVM has proved to be very efficient in handling ML-related tasks. Several SVM-based 

classification techniques have been proposed in literature as discussed in the subsections below. 

 

Decision trees (DT) are predictive models used for tasks involving prediction of classes. They 

carry out predictions by using a set of binary rules to calculate specific target value. Generally, 

decision trees are constructed with the primary aim of identifying a strategy to reach a goal. DTs 

are useful for tasks involving classification and tasks involving prediction. Classification 
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decision trees are used to handle problems involving categorical values, while regression 

decision trees are useful for tasks involving continuous value [118]. DTs, usually, have some 

embedded algorithms used for splitting a node into two daughter nodes. Sometimes, some DTs 

can have hundreds and even thousands of nodes which could be very expensive in terms of 

processing time and memory consumption. To avoid this, a method known as pruning is, usually, 

used to reduce the number of nodes which in turn simplifies the tree [118].  DTs are very useful 

and efficient in handling classification and regression problems. The decision rules these trees 

generate are usually easy to interpret and also performs classification task very fast [118]. 

 

RF is an ensemble data mining technique introduced by Leo Breman [119] at the University of 

California, USA. RF performs classification and regression using a combination of decision tree 

models. RF was introduced to provide solutions to problems involving [120]: 

1. Data mining 

2. Analysis of data 

3. Building a predictive model 

Ensemble models (such as RF) usually perform better compared to individual models because 

they combine the results from different models [118]. This thesis employed RF, hence, more 

details on RF are provided in Chapter three. 

 

Finally, NB is a commonly used method in the domain of text categorization [121]. Classifiers 

here are usually constructed based on Bayes theorem. In NB classification, feature values are 

independent; they contribute independently to the classification output [121]. The presence or 

absence of each feature has an impact on the prediction accuracy of the constructed model. To 

train a Naïve Bayesian classifier, just a small amount of data is needed to estimate the means and 

variance of the variables [121]. NB classification has been applied successfully to complex real 

world classification tasks and it yielded promising results.  

 

2.4.4.1 SVM for Email Spam Detection 

Wang et al. [122] proposed a classification model for spam filtering using SVM for 

classification. They noted that the model is capable of performing active online learning. The 
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model was evaluated on a publicly available spam dataset, known as TREC2006. The results 

revealed that the model is proficient in spam email filtering. Similarly, Jongsub et al. [123] 

proposed another classification method for email spam filtering. The approach used SVM 

algorithm. Jongsub et al., explained that the proposed approach follows the learning procedure 

used by the n-gram model. The study showed that their proposed approach performed better than 

some other methods. Chi-Yao and Ming-Syan [124] proposed a SVM-based model for spam 

detection and also proposed an incremental update scheme for re-training the SVM model. They 

developed a spam detection system (known as MailNet) based on the proposed model, which 

they claimed to be capable of detecting spam emails in evolving social network. MailNet was 

evaluated on a live dataset, obtained from the email server of a university and the findings 

revealed that the SVM-based model can used for spam detection in a real world scenario.  

2.4.4.2 SVM for Phishing Detection 

Bergholz et al. [6] proposed a novel model-based approach suitable for detecting phishing email. 

In their study, two model-based phishing email features, Dynamic Markov chain and Latent 

Topic Model, were introduced. Bergholz et al., performed a number of experiments using SVM 

classifier (and some other classifiers) and their results showed that the proposed model is well 

suitable for detecting phishing emails. Chandrasekaran et al. [125] proposed a content-based 

approach to phishing email detection using SVM model. In the approach, some structural 

phishing features contained in emails were extracted from emails and used as the criteria for 

classifying emails into legitimate and phishing emails. In a similar work, Huang et al. [126] 

proposed another method for detecting phishing URLs. The study also used 23 features, 4 of 

which are structural phishing URL features, 9 are lexical features and 10 are brand name 

features. Huang et al. evaluated their approach using SVM classifier, and it produced a 

prediction accuracy of 99.0%. 

2.4.4.3 SVM for Network Intrusion Detection 

Mukkamala et al. [127] used SVM and NN to solve the problem posed by network intruders. The 

study revealed that SVM and NN are highly efficient in performing either attack or normal 

classifications. The study also showed that SVM and NN would decline very slightly in 

performance if they are trained with small amount of data. Khan et al. [53] proposed a method 

for network-based anomaly detection using SVM for classification. Khan et al., also used a 

Dynamically Growing Self-Organizing Tree (DGSOT) algorithm to improve the training time 
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spent by SVM. The study revealed that the proposed method performed better, compared to the 

Rocchio Bundling technique, in terms of training time and accuracy. 

2.4.4.4 Random Forest for Email Spam Detection 

Irena et al. [128] studied two different learning methods for classification of spam emails – 

supervised and semi-supervised learning methods. In the study of the supervised learning 

approach, Irena et al., investigated the use of RF classifier for both filtering of spam emails and 

also filing of emails into folders automatically. Irena et al., compared the performance of RF 

with some other classification algorithms and the study showed that RF outperformed the other 

algorithms in terms of classification accuracy, implying that RF is a suitable approach that can be 

used for email filtering. In another work, Tang  et al. [129] developed two different models for 

spam email detection based on RF and SVM with the goal of building a classifier capable of 

detecting spam emails. Tang et al., extracted some global sending behaviour features from a 

database containing a mixture of spam and non-spam IP addresses. These features were then 

used as input to the two models. The model returns the reputation scores of all the IP addresses 

as output. The study reveals that RF and SVM are reliable spam classification techniques when 

combined with global sending behaviour features of IP addresses. McCord et al. [130] proposed 

a detection scheme for discovering spam messages on Twitter (a social networking website). 

McCord et al., extracted some spam, non-spam, user-based and content-based features from a 

dataset containing Tweets (messages) and followers/following information of active Twitter 

users. Furthermore, McCord et al., evaluated the proposed detection system, based on the 

extracted features using four different data mining techniques and the results revealed that RF 

classifier outperforms the other three, in terms of precision and F-measure. 

2.4.4.5 Random Forest for Phishing Detection 

DeBarr et al. [131] introduced a new method for analysis of phishing messages, based on 

spectral clustering using an RF classifier. In the method, spectral clustering was used to analyze 

URL links for websites, usually contained in messages sent by phishers. DeBarr et al., evaluated 

the performance of their methods on two publicly available corpuses and compared the result 

with another filtering technique, that is, LDA. The results revealed that the RF classifier, 

combined with spectral clustering, performed better in terms of classification accuracy, 

precision, F-measure and Area Under the receiver operating characteristic Curve (AUC). 

Aggarwal et al. [132] developed a phishing detection technique known as PhishAri, for detecting 
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phishing URL on twitter network, real-time. The detection system was developed, based on URL 

features and Twitter specific features, which DeBarr et al., claimed to be a strong detection 

mechanism for detecting phishing Tweets. DeBarr et al., evaluated their proposed technique 

using three different classifiers – RF, DT and NB classifiers. The study found that RF performed 

better, compared to the other two, in terms of prediction accuracy. The study also revealed that 

PhishAri is capable of detecting new or zero-hour phishing Tweets in real time. Sarju et al. [133] 

proposed a spam email filtering technique based on 46 structural features extracted from a 

dataset containing 8,000 emails. In their study, three classification algorithms were used, namely, 

NB classifier, RF and AdaBoost. Some experiments were conducted to test the accuracy of the 

proposed method and the results revealed that RF classifier had a better classification accuracy 

compared to the Bayes classifier and AdaBoost. 

2.4.4.6 Random Forest for Network Intrusion Detection 

Jiong et al. [134] proposed three RF-based approaches to provide solution to the problems posed 

by anomaly, misuse and hybrid-network based intrusions. In the approach, RF algorithm was 

used to automatically build patterns of network intrusions and patterns of network services for 

misuse intrusions and anomaly intrusions, respectively. Jiong et al., developed three different 

IDS (misuse IDS, anomaly IDS and misuse + anomaly IDS), based on their proposed approach.  

Furthermore, some experiments were performed to evaluate the performance of the proposed 

approaches and the results showed that the three approaches yielded high detection rate and low 

FP rates. Similarly, Elbasiony et al. [135] introduced three intrusion detection approach that used 

a RF classification algorithm and a k-means clustering algorithm. The first and second 

techniques were proposed to provide a solution for misuse detection using RF and anomaly 

detection using k-means, respectively. The third approach was proposed to provide a solution for 

both misuse and anomaly detection using a combination of RF and K-means. RF was used to 

construct network intrusion patterns from a dataset containing samples of network connections. 

K-means was used to cluster different network connection data with the aim of grouping most of 

the network intrusions into one cluster. Elbasiony et al., evaluated the performance of their three 

approaches on a dataset containing network connections and the test yielded promising results. 

Revathi and Malathi [136] proposed a novel approach for detection intrusion attacks using a 

combination of RF and Simplified Swarm Optimization (SSO – a simplified version of PSO) 

referred to as SSO-RF. SSO was used for feature selection and RF is used for classification of 
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network intrusions. The method was tested on a dataset provided by DRAPA 98 and KDD cup 

99 and the result obtained outperformed some other techniques. Also, the results revealed that 

SSO-RF is capable of detecting network intrusions of different kinds. 

2.4.4.7 Naïve Bayes for Email Spam Detection 

Hovold [137] developed a spam filter using NB classifier. The classifier performs classification 

based on a sequence of tokens referred to as word position-based features. Hovold also proposed 

a novel weighting classification system. Some experiments were carried out to test the efficiency 

of the system using uni-gram, bi-gram and tri-gram attributes and the experiment showed that 

NB classifier performs better in terms of precision, accuracy and recall, compared to some other 

ML algorithms. Sahami et al. [138] constructed a spam email filter using the Bayesian approach. 

Sahami et al., trained the email filter using domain-specific features extracted from a dataset 

containing both legitimate and spam emails. Also, they tested the performance of the trained 

classifier using four different Naïve Bayesian filtering techniques and the results revealed that 

NB yielded high FPs, implying that it was not efficient enough to build a content-based spam 

filter. Metsis et al. [139] carried out a study on five different versions of Naïve Bayes. In the 

study, Metsis et al., constructed six new corpus known as Enron corpus, and evaluated the 

performance of the NB variants on the constructed datasets, all containing ham and spam 

messages of varying numbers. The ham messages were generated by a group of about 150 

employees working in Enron Corporation, USA. The performances of the five NB variants were 

compared with each other and the result showed that two of the five NB versions, (that is, 

Flexible Bayes and multinomial NB with Boolean attributes) yielded better results.  

2.4.4.8 Naïve Bayes for Phishing Detection 

Zhang et al. [17] proposed a new model for phishing web pages detection using NB classification 

approach. In the study, Zhang et al., developed a text classifier and an image classifier, based on 

the proposed model. Furthermore, Zhang et al., introduced an algorithm that hybridizes the 

classification results of the text and image classifiers. The text classifier uses Bayesian rules to 

classify the textual contents extracted from web pages. The image classifier uses the Earth 

Movers Distance (EMD) to quantity the visual similarity of suspicious web pages and then uses a 

Bayesian model to estimate the matching threshold of the measured web page similarity.   

Zhang et al., performed some series of experiments to evaluate the performance of the two 

classifiers. The classifiers performed better, compared to some other approaches. The study also 
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showed that the hybridized algorithm performed better than both the text classifier and the image 

classifier. Santos[140] proposed a data mining technique based on semantic ontology to provide 

a solution to the phishing email detection problem. The approach used a NB classification 

algorithm. Santos noted that the classifier is capable of filtering phishing emails, based on some 

extracted features. Furthermore, Santos evaluated the performance of the data mining technique, 

and it yielded promising results. 

2.4.4.9 Naïve Bayes for Network Intrusion Detection 

Farid et al. [141] introduced a new approach for automatic detection of network intrusions using 

the NB classifier and boosting to provide a solution to classification problems, usually 

encountered in the classification of large datasets containing intrusion detections. The proposed 

technique uses the NB classifier to generate the probability set to be used in the training process. 

Farid et al., evaluated the performance of the proposed approach on a variety of network 

intrusions stored in the KDD99 dataset and compared it with some existing classification 

algorithms. The results yielded high prediction rates and low FP. Amor et al. [142] carried out an 

experimental study on the use of NB classifier in network intrusion detection. The study 

considered intrusions at three different levels. Firstly, all the classes of attacks presented in the 

KDD99 datasets were considered. Furthermore, Amor et al., considered four classes of attacks: 

DOS, R2L, U2R and Probing. Thirdly, they considered two levels of attacks by grouping the 

samples in the dataset into normal and abnormal attacks. Amor et al., performed a number of 

experiments using the samples in KDD99 and compared the performance of their proposed 

approach to DTs. The results revealed that NB classifier is faster (from a computational point of 

view) and also yields relatively similar results. 

 

Several other AI-based techniques have been proposed to provide solution to the e-fraud 

detection problem faced by the vast majority of online users. Techniques include SVM, NB 

classifier, RF, Hidden Markov model. Some of this proposed techniques and their applications, 

including the ones discussed in Section 2.3, are summarized in Table 2.4. 
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2.5 Improving the Performance of e-fraud Detection Systems 

Even though it has been established that NI techniques are very effective in solving complex 

real-world difficulties, it is of importance to note that these techniques will only work effectively 

if they are applied in excellent conditions. Behdad et al. [2] proposed some methods that can be 

employed in resolving the challenges of applying NI techniques discussed in Section 2.2.1, 

which will in turn enhance the performance of these techniques. A summary of these methods 

are presented next. 

 

2.5.1 Experience Imbalance 

Many of the AI techniques are developed based on the assumption that the learning environment 

are well balanced [2]. This is not the case in the world of fraud detection; datasets are usually not 

balanced [2]. Kotsiantis et al. [143] pointed out that learning from an imbalanced data is usually 

a difficult task for many classification algorithms. Also, the learned model is generally biased 

towards the majority class in the data. Some techniques that can be used to improve the 

performance of e-fraud detection systems are discussed next. 

1. Sampling Techniques: This technique improves performance by artificially balancing 

the dataset. This is achieved by either oversampling (that is, increasing the samples in the 

minority class to match that of majority class) or under sampling (that is, decreasing the 

samples in the majority class to match that of the minority class). 

2. Using Appropriate Evaluation Metrics: when measuring performance, to avoid 

inaccurate prediction by the algorithm being used, it is very important to apply the correct 

evaluation metrics.  

3. One-class learning: Here, instead of training classifiers with two classes at the same 

time, classifiers are trained with one class at a time. This is done so that classifiers will be 

able to clearly differentiate between data belonging to the majority class and minority 

class after the training. 

4. Adaptive Parameters Used Internally by Algorithms:  The performance of an 

algorithm will be greatly improved if the correct values for the parameters setting are 

always used (and not random values). An ideal method can be developed to dynamically 

find the correct and optimized value to be used at every point in time. 
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2.5.2 Adaptive Adversaries 

The performance of an e-fraud detection system depreciate progressively in an adversarial 

environment [144]. This is because, fraudsters tries to defeat the system’s defense mechanism by 

changing their mode of attack [144]. Game theory can be used as a solution to spam and 

intrusion detection [114] [145]. Here, the classification problem is considered as a game between 

adaptive adversaries and intelligent classifiers [2].  

 

2.5.3 Concept Drift 

In a dynamic environment, concepts (targeted by the learning algorithm) changes frequently. To 

avoid inaccuracy in classification (due to changes in concept), Behdad et al. [2] suggests that 

parameters or rules should be evaluated continually. Some techniques that can be used to handle 

concept drift are outline and discussed next [146]. 

  

1. Instance Selection: Here, instances are selected based on their relevance to the current 

concept 

2. Instance Weighting: Here, weights are assigned to various instances based on their 

relevance and age, and the instance with the highest weight is selected. 

3. Collective Learning: Here, a set of concept description is maintained and selection is 

done collaboratively by choosing the concept with the most relevant description. 

 

2.5.4 Noise 

The effect of noise can be greatly reduced by using resampling method [2]. In resampling, the 

arithmetic mean of several collected samples is calculated and used. Pietro et al. [147] advised 

that it is better to have dynamic resampling (that is, using different resampling rates) if the level 

of noise in each data is unequal. 

 

2.5.5 Unequal Misclassification Cost 

A solution to this problem is to develop a system that is more sensitive to FP errors than FN 

errors. This is because FP errors are costlier than FN errors. To achieve this, some approaches 

are discussed in [148] and [149]. 
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2.5.6 Fast Processing and Large Volume of Data 

A solution to this problem is by increasing the processing speed of NI techniques when dealing 

with large volume of data. Some methods that can be employed to enhance the processing speed 

are discussed in [150] [151] [152]. 

 

2.6 Summary 

Many techniques have been proposed in the literature to handle e-fraud. Some of them include: 

blacklist, whitelist, and ML based techniques. Among all of these techniques, ML-based 

techniques have proven to be the most efficient, because of their ability to detect new fraudulent 

attacks as they appear. NI algorithms can also be used to improve the classification speed and 

accuracy of ML-based techniques. In this chapter, some of the proposed NI-based and ML-based 

e-fraud detection techniques are reviewed. From the review, it is discovered that many of the 

proposed techniques did not focus on phishing email detection, which is one of the fraud types 

that has affected the global economy greatly. This is the primary reason why this research 

focused on phishing email detection. Furthermore, it was also discovered that, of the few 

techniques that focused on phishing email detection, many did not yield very good and accurate 

results. This research, therefore, focused on developing improved phishing email detection 

techniques with high classification accuracy and speed. 
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Table 2.4: AI techniques and their applications 

AI Techniques Applications References 

Naıve Bayes classifiers Email spam detection 

Network intrusion detection 

Phishing 

[66, 67, 153-156] 

[141, 142, 157, 

158] [17, 140] 

Support Vector Machines (SVMs) Email spam detection 

Phishing detection 

Network intrusion detection 

Credit card fraud detection 

[122-124, 159] 

[6, 125, 126] 

[53, 127] 

[125, 160] 

Visualization Email spam detection 

Phishing detection 

Network intrusion detection 

[73, 161] 

[162, 163] 

[164, 165] 

Random Forest Email Spam Detection 

Phishing 

Network Intrusion detection 

[128-130] 

[131-133] 

[134-136] 

Learning vector quantization Network intrusion detection [166, 167] 

Fuzzy association rules Network intrusion detection [168] 

Agent-based IDS Network intrusion detection [74] 

AdaBoost algorithm Network intrusion detection [71] 

Hidden Markov model Credit card fraud detection [110] 

Association Rules Credit card fraud detection [77] 

Dempster–Shafer theory Credit card fraud detection [169] 
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Chapter Three  

 

Proposed Phishing Detection Techniques 

 

3.0 Introduction 

Phishing attacks are prominently perpetrated via sending of e-mails. These e-mails usually 

contain social engineering messages (with specific phrases) that demand users to perform 

specific actions (such as clicking a URL). Therefore, the content of these emails are useful 

features for phishing detection [170]. Many detection techniques have been proposed to build e-

mail filters, but many of them are only suitable for handling spam e-mails. For example, a 

popular method (known as “bag-of-words”) extracts all the words present in an e-mail, identifies 

the highest occurring words and use each of these words as the features for classification. This 

technique (also referred to as text classification method) works very well for the filtering of spam 

e-mails, but not for phishing e-mails, because, phishing e-mails contain some unique features 

that are only specific to phishing attacks. Features such as: presence of IP-based URLs, presence 

of non-matching URLs. This indicates that spam filtering techniques cannot be used to 

effectively handle phishing attacks. Therefore, a list of phishing-attack-specific features has to be 

defined and used to build an effective e-mail filtering system. Some of the existing solutions that 

can handle phishing attacks used different techniques ranging from blacklists [16], visual 

similarity [17], heuristic [18], and ML [8]. Of all these techniques, ML-based technique achieved 

the best result. It is noteworthy that  some existing spam filtering techniques (such as 

SpamAssasin [171]  and Spamato [172]) went beyond just “bag-of-word” methods, because they 

designed a set of spam emails heuristics that could also successfully detect some existing 

phishing emails features (such as, presence of IP-based URLs). These methods can be combined 

with the two techniques proposed in this research, to build a hybrid (phishing and spam) email 

filtering system with high classification accuracy and very low FPs and FNs. This chapter 

describes the two ML-based techniques proposed in this research. A brief introduction to RF, 

SVM and FFA is also given in this chapter. 
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3.1 Random Forest 

RF is an ensemble learning classification and regression method suitable for handling problems 

involving grouping of data into classes. The algorithm was developed by Leo Breiman and Adele 

Cutler [119]. RF algorithm is essentially taking randomly constructed decision trees, summing 

them and then dividing the sum by the total number of trees. Each tree in the forest have high 

variance, because, each of the tree are trained on different randomly selected data. Also, each 

tree is built from a number of randomly selected attributes [173]. To split a tree node, a small set 

of attributes are randomly selected from a larger set of attributes. The attribute that gives the 

highest level of learning is then selected and used as the split point [173]. Each of the chosen 

attributes forms the nodes of the tree [173]. RF has two sources of randomness [173], namely: 

 Randomness in the data (bootstrap) and  

 Randomness in the attribute selection (that is, the split points).  

Randomness in the data comes from the random selection of the data instances used in training 

each tree in the forest. And the randomness in the attributes comes from the random selection of 

attributes used in splitting each node of a tree. The number of combined decision trees 

determines the strength of the overall classifier. The more the trees, the more powerful and 

efficient the classifier becomes. The next subsection provide more details on how a random tree 

is constructed. 

3.1.1 Building a Random Tree 

Here, an example is considered involving building a spam e-mail classifier. Assuming there is a 

well labelled dataset containing both spam and non-spam e-mails and there is a database of 

possible spam terms.  A random tree can be built using the following steps: 

1. Divide the dataset into two: training and test datasets, and extract the words from all the 

emails in both datasets (each word is used as a feature). 

2. Start constructing decision trees using the steps below. 

3. Randomly select n group of words or n features (e.g. 50 words) from the training dataset 

4. For each of the randomly selected 50 words, check for the presence or absence of each of 

these words in all of the e-mails contained in the training dataset (perform the comparison 

sequentially). 
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5. Compute the information gain (IG) for all the 50 words. (Please take note that, to select 

split point for each node in the tree, only compute the IG of the randomly selected points 

– that is, 50 words). 

6. Split the dataset into two using the split point that has the highest IG. If there is a tie, just 

choose any of the split points (see Figure 3.1).  

 

Figure 3.1: Example of daughter nodes split 

7. Repeat step 3 – 7 to construct more trees.  

8. Stop constructing trees when a user defined terminating value is reached. 

9. Evaluate each constructed decision tree on the test dataset and sum the prediction 

accuracy of all the trees. 

10. Output the average accuracy (that is, divide the sum by the total number of trees in the 

forest). 

Each constructed tree in the forest is considered to be a classifier. Each of these trees have 

extremely high variance, because each of them is trained on different randomly selected data 

samples. The RF method has also been used to solve similar problem in literature, such as in [1], 

[128] and [18]. The RF algorithm is given in Figure 3.2 
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Algorithm 1: Random Forest 

Input:     N: number of nodes 

              M: number of features 

   D: number of trees to be constructed 

Output:  V: the class with the highest vote 

1. Begin RF Algorithm 

2. While stopping criteria is false do 

3. Randomly draw a bootstrap sample A from the training data D 

4. Use the steps below to construct tree Ti from the drawn bootstrapped sample A: 

4.1. Randomly select m features from M; where m << M 

4.2. For node d, calculate the best split point among the m features 

4.3. Split the node into two daughter nodes using the best split 

4.4. Repeat I, II and III until n number of nodes has been reached 

5. Build your forest by repeating steps I – IV for D number of times 

6. End While 

7. Output all the constructed trees [Ti]1
D 

8. Apply a new sample to each of the constructed trees starting from the root node 

9. Assign the sample to the class corresponding to the leaf node. 

10. Combine the decisions (or votes) of all the trees  

11. Output V, that is, the class with the highest vote. 

12. End RF Algorithm 

                                             Figure 3.2: Algorithm for RF [29] 

 

More details on RF can be found in  [174] and [119]. 

 

3.2 Support Vector Machines 

SVMs are arguably among the most successful classification algorithms [175]. It was invented 

by Vapnik [176] in 1995 and it is suitable for classification problems involving two classes. 

Utilizing a set of labelled input data (converted to vectors), SVM builds a model that predicts the 

likely classes each of the input data belongs to. SVM model maps the input vectors as points in a 

feature space in such a way that the two classes are separated by a hyper-plane with the widest 

possible margin. SVM then uses this feature space to classify new data mapped into the space 
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based on which side of the hyper-plane they fall into. An SVM with the largest margin  

(that is, distance between the hyper-plane and the closest data point) will yield a better result. 

The wider the margin, the better the classifier performance. Support vectors (as shown in  

Figure 3.3) are the closest points to the hyper-plane. They are the critical points that give the 

maximum margin for all the N-points in the data; these points support the hyper-plane, hence, 

they are termed support vectors. 

 

Given a set of training dataset, SVM finds the best (or optimal) hyper-plain with the maximum 

margin, which split the dataset into two different classes (e.g. positive and negative). To split the 

dataset into two different classes (with a minimal number of training errors), an optimal  

hyper-plane that best separates the two classes need to be constructed. This can be achieved by 

solving the optimization problem in equation (1) [176]: 

min
𝑤,𝑏,∈

     
1

2
𝑊𝑇𝑊 + 𝐶 (∑ ∈𝑛

𝜎

𝑁

𝑛=1

)                            

Subject to:     𝑦𝑛(𝑊𝑇 . 𝑥𝑛 + 𝑏) ≥ 1 −  𝜖𝑖,        𝑛 = 1,2, … , 𝑁  (1) 

                      𝜖𝑛  ≥ 0,                  𝑛 = 1,2, … , 𝑁 

           𝑊 ∈ ℝ𝑑 , 𝑏 ∈ ℝ 

Where C is a constant (also called penalty parameter), x is the input vector, y is the data label  

(+1 or -1) and W is a vector belonging to the Euclidian space d. If C is satisfactorily large and σ 

is reasonably small, the vector 𝑉0 and constant 𝑏0 that best minimizes the function (1) subject to 

the given constraints determines the optimal hyper-plane, which is then used to classify the 

dataset(s) with the best margin. Equation (1) describes an optimization problem that finds the 

best hyper-plane (that is, hyper-plane with the optimal margin) which minimizes the number of 

training errors (given by the sum of deviation) and also maximizes the margin with the correctly 

classified data points [176]. Correctly classified data points (or vectors) are the points that agree 

with the label 𝑦𝑛. Hsu et al. [14] pointed out that 𝐾(𝑥𝑖 , 𝑥𝑗)  ≡  𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗) is called the kernel 

function, which provides simple bridge from linearity to non-linearity for various algorithms that 

can be expressed in terms of dot products [177]. 
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Figure 3.3: Diagram showing support vectors, margin and hyper plane 

 

Hsu et al. [27] outlined four commonly used kernel functions namely: 

1. Linear Kernel: 𝐾(𝑥𝑖, 𝑥𝑗) =  𝑥𝑖
𝑇𝑥𝑗  

2. Polynomial Kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
, 𝛾 > 0 

3. Radial Basis Function (RBF) Kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2),   𝛾 > 0 

4. Sigmoid Function kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) =  tanh(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟) 

Where 𝛾, 𝑟 𝑎𝑛𝑑 𝑑 are the kernel parameters. 

For this work, the RBF kernel is used, because it has the ability to handle cases that involve the 

nonlinear relation between class labels and attributes [27].  The RBF kernel has two parameters: 

C (also termed, soft margin constant) and Gamma. These two parameters have a significant 

effect on the decision boundary of SVM and, in turn, have an effect on the classifier  

accuracy [178]. The C and Gamma pair that will yield the best classification accuracy varies 

from problem to problem, it is dependent on the problem at hand (that is, it is problem-

dependent). Therefore, identifying the best C and Gamma pair for a given problem is an 

important aspect of SVM classification. The traditional method of achieving this is via grid 

search using cross validation. Another reliable method is the use of the optimization technique. 

For grid search, the training data are divided into n-folds with the goal of using each part for both 

training and testing. For example, if the training data are divided into 5 parts, 4 parts will be for 

training and the 5th part will be used for validation. This process will be repeated 5 times, such 
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that at each run, different subsets will be chosen for validation and the remaining subsets will be 

used for training. Each of the 5 runs gives an estimate of 1/5th of the training data, then averaging 

the estimate will give a general estimate of what the out of sample error would be on 4/5th of the 

data. A range of parameter values (that is, C and γ) are chosen (usually on a logarithmic scale) 

and the classifier accuracy for each of the (C, γ) pair is estimated using cross validation. The 

parameter pair that gives the best cross validation accuracy is then selected and used to train the 

SVM model. Hsu et al. [27] suggested that trying an exponentially growing sequence of C and 

Gamma is a good way of identifying good parameters; for example,  

𝐶 =  2−5, 2−3, 2−1, … … , 2−15, γ = 2−15, 2−13, 2−11, … … , 23. SI techniques such as, FFA, PSO, 

ACO, glow worm (GW) can also be used to search for the optimized (C, γ) pair. These 

techniques are capable of finding the best available value from a large search space by 

maximization or minimization method. In this research, FFA is used to search for the best (C, γ) 

pair. A brief introduction to FFA is presented in the next section. 

 

3.3 Firefly Algorithm 

FFA (developed by Yang [29]) is a metaheuristic that is inspired by the flashing lights of fireflies 

- a unique and amazing feature of fireflies. There are about 2,000 species of firefly, and most of 

them produce short flashes (by a process called bioluminescence) at regular intervals [29]. The 

firefly produces these flashlights to attract potential mating partners and preys and also to send 

warning signals to predators that might want to attack them. FFA is stochastic in nature and can 

be used to solve difficult real world optimization problems and NP-hard problems [179].  

 

The light intensity of the flashlight produced by firefly decreases with increase in distance, that 

is, light intensity is inversely proportional to the square of distance (that is, 𝐼 ∝  1
𝑟2⁄ ). Also, as 

the distance increases, light is absorbed into the atmosphere which in turn reduces the light 

intensity. Yang [29] explained that flashlight can be formulated in such a way that it will be 

associated (or proportional) with the value of the fitness function to be optimized. The author 

also noted that some of the flashing attributes of fireflies can be idealized, so as to develop FFAs. 

FFA has a number of variants, but this paper focuses on the original version developed by Yang 

[29]. This algorithm was formulated using three idealized rules as follows: 
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1. All fireflies are unisex. 

2. The attractiveness of fireflies is proportional to their light intensity, implying that fireflies 

with less brighter intensity will move towards fireflies with brighter intensity. 

3. The light intensity of fireflies is affected or determined by the landscape of the objective 

function to be optimized. 

In FFA, there are two important issues that need to be defined namely, the variation of light 

intensity and the formulation of attractiveness. Typically, for maximization problems, the light 

intensity (I) produced by a firefly at location, y, is directly proportional to the fitness value of the 

objective function, that is , 𝐼(𝑦)  ∝ 𝐹(𝑦). Light intensity varies with distance between fireflies, 

and with the degree of absorption by the atmosphere, given by equation (2): 

       𝐼(𝑟) =  𝐼0𝑒−𝛾𝑟2
                                                   (2) 

Where 𝐼0 is the original light intensity, 𝛾 is the light absorption coefficient (constant), and r is the 

distance. Take note that in equation 1, the singularity at r = 0 is avoided in the expression𝐼 𝑟2⁄ , 

by combining the effect of both the inverse square law and absorption and approximating them 

in Gaussian form as shown in equation 1. Also, the attractiveness, 𝛽 of various fireflies is 

proportional to the light intensities emitted by them. It is defined in equation (3): 

 𝛽 =  𝛽0𝑒−𝛾𝑟2
                                                  (3)   

Where 𝛽0 is the attractiveness at r = 0. 

The distance between two fireflies 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗 is expressed by the Euclidian distance given in 

equation (4): 

            𝑟𝑖𝑗 = ∥ 𝑥𝑖 − 𝑥𝑗 ∥ =  √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑑

𝑘=1                                 (4) 

Where d represent the dimensionality of the problem at hand. The movement of firefly i to a 

more attractive firefly j is controlled by equation (5): 

𝑥𝑖 =  𝑥𝑖 +  𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗 − 𝑥𝑖) +  𝛼𝜖𝑖         (5) 

𝛼 ∈  [0,1], 𝛾 ∈  [0, ∞). 𝜖𝑖 are random numbers drawn from Gaussian distribution, 𝜖𝑖 can simply 

be replaced by 𝑟𝑎𝑛𝑑 −  1 2⁄  where rand belongs to the set of uniformly generated real numbers 

between 0 and 1. The second term in the equation reflects firefly movement as a result of 
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attraction to fireflies with brighter intensities. When 𝛽0 = 0, movement will depend on random 

walk only. 

 

 

 

1. Define initial values of firefly parameters: NF, NG, βo, α, and γ 

2. Define Fitness function G(x), x = (x1.,…xd)t 

3. Initialize n positions of firefly (i=1,2,3,….n) 

4. Evalute G(x) to determine light intensity Li of firely xi  

5. while (j < NG) 

      5.1   for k = 1 to NF 

                    5.1.1 for m = 1 to NF 

  5.1.1.1  If (Lk < Lm) 

            5.1.1.1.1    Move firefly k towards firefly m 

   5.1.1.2  end if 

   5.1.1.3    Calculate attrativeness variance with distance r using exp(-γr) 

   5.1.1.4    Calculate new fitness values for all fireflies  

  5.1.1.5    Update firefly light intensity Li 

                     5.1.2 end for 

               5.2 end for 

6. end while 

7. Output optimized firefly light intensity 

____________________________________________________________ 

Figure 3.4: Algorithm for firefly [29] 

 

3.4 Proposed RF-Based Technique for Phishing Email Detection 

This technique is based on the RF algorithm. In this RF-based technique, firstly, the email 

dataset is divided into 10 groups. Furthermore, the feature vectors of all the features described in 

Section 3.6 are extracted from a dataset consisting of phishing and legitimate emails. After, the 

extraction, the IG for all the extracted vectors is calculated and the features with the best 8 IG are 

           Algorithm 2: Firefly Algorithm 
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then selected and used to train the classifier via 10-fold cross validation. At the end of each fold, 

a tree is constructed and the CA for the tree is calculated. At the end of the 10-fold cross 

validation, the average CA (that is, the average CA of all the trees in the forest) is calculated and 

displayed on the screen. The pseudocode and flowchart for the RF-based technique used in this 

work is given in Figures 3.4 and 3.5. 

 

Algorithm 3: RF-Based Classifier 

 

Input:     NFold: Number of folds for cross validation 

    NT: Number of Trees 

Output:  Average - Average Classification Accuracy 

1. Process dataset 

2. Extract features 

3. Calculate information Gain and select best 8 features 

4. For I = 1 : NFold 

4.1. For J = 1 : NFold 

4.1.1. If (J == I) 

4.1.1.1. Process test dataset 

4.1.2. Else 

4.1.2.1. Process training dataset 

4.2. End J 

4.3. For K = 1 : NT 

//Start training the classifier by building different trees 

4.3.1. Build tree K using the current training dataset 

4.4. End K 

4.5. For L = 1 : NT 

//Test all the trees on the current test dataset (that is, calculate the CA for each tree) 

4.5.1. Sum  = Sum + CA 

4.6. End L 

4.7. Average  = Average + Sum 

4.8. Sum  = 0 

5. End I 

6. Average = Average / NFold 

7. Output Average 

______________________________________________________________________________ 

Figure 3.5: Pseudocode for RF-based classifier 
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Dataset

Extract Features

Select best 8 Features

(i.e. best Split Points)

Set I = I + 1

Set J = J + 1

Is J == I

No

Yes

Keep Ith fold Subset for test

Process Training Dataset

Is J < I

No

Training Dataset

Start Building Forest.

(Split nodes using the best split points)

Set K = K + 1

Is K < 8

No

Yes

Output Forest

(Trained Classifier)

Test Dataset

Sum = Sum + CA

Is I < NF

No

Average = Sum / 10

Output Average

Stop

Start

Yes

Yes

 

Figure 3.6: Flowchart for RF-based classifier 
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3.5 Proposed FFA_SVM Techniques for Phishing Email Detection 

This novel technique is developed based on the hybridization of FFA and SVM (known as 

FFA_SVM). This technique consists of three major phases: the feature extraction phase, hyper-

parameter selection phase and the email classification phase. In the feature extraction stage, the 

feature vectors of all the features described in Section 3.6 is extracted and saved in a file for easy 

reference. The extracted feature vectors is then divided into two sets, one set for training and the 

other set for testing. In the second phase, FFA is used to find the optimized SVM hyper-

parameter pair (that is, C and γ). This is achieved through cross validation. The hyper-parameter 

pair with the highest cross validation accuracy is, usually, the optimized hyper-parameter pair. 

To further improve the classification accuracy, a hyper-parameter search algorithm (shown in 

Figure 3.7) is developed, based on the search technique proposed by  

Hsu et al. [27]. Hsu et al., suggested that the best way to identify the optimized C and Gamma 

values is by trying exponentially growing sequence of C and Gamma [27]. To the best of our 

knowledge, this method has not been explored in the domain of phishing email filtering. In the 

third phase, the selected hyper-parameter pair is used to construct a SVM model (based on the 

extracted feature vectors in the training dataset) which is, in turn, used to classify new emails. 

Finally, the performance of the constructed SVM classifier is then evaluated on the test dataset. 

The flowchart and pseudocode for FFA_SVM is shown in Figure 3.8 and Figure 3.9 

respectively. 

 

3.5.1   Objective Function 

The objective function for FFA_SVM is defined by Equation (6). Classification accuracy is the 

major criteria used in designing the objective function. This implies that a firefly with high 

classification accuracy will yield a high fitness value. The objective function has one predefined 

weight,𝑊𝐴, for the classification accuracy. The weight can be adjusted from 80 to 100%, 

depending on how high users want the accuracy to be. In this research, 95% was used. A similar 

approach was used in [180] and [181]. 

                                           𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =  𝑊𝐴 ∗  𝑆𝑉𝑀𝐴𝑐𝑐𝑖                      (6) 

    Where 𝑊𝐴 = Predefined weight for SVM accuracy, 

     𝑆𝑉𝑀𝐴𝑐𝑐𝑖 = SVM accuracy for each firefly generation 
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Algorithm 4: ExponentialSequenceGen 

     Input:     CMinPower: the minimum exponent of C  

         CMaxPower: the maximum exponent of C  

         GMinPower: the minimum exponent of Gamma  

         GMaxPower: the maximum exponent of Gamma  

                     N: number of exponential sequence of C and γ pair of values to generated 

            Rand: randomly generated integer value 

         CList: List containing all the C values 

         GList: List containing all the G values 

Output: PList: list containing the paired C and Gamma values 

1. Begin ExponentialSequenceGen 

2. Enter the value for N 

3. Generate random number and save it in variable ‘rand’ 

4. CMinPower = -rand 

5. CMaxPower = CMinPower + ((N - 1) * 2) 

6. GMinPower = -CMaxPower 

7. GMaxPower = GMinPower + ((N - 1) * 2) 

8. While (CMinPower < CMaxPower) 

8.1     B = 2 ** CMinPower 

8.2    Add B to CList 

8.3    CMinPower = CMinPower + 2 

9. End While 

10. While (GMinPower < GMaxPower) 

10.1     C = 2 ** GMinPower 

10.2     Add C to GList 

10.3     GMinPower = GMinPower + 2 

11. End While 

12. For I = 1 : N 

12.1 Pair Ith value in CList with the Ith value in GList 

12.2 Add pair to PList 

13. End for  

14. Output PList 

15. End ExponentialSequenceGen 

 

 Figure 3.7: Algorithm for generating paired exponential growing sequence of C and γ values 
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Dataset
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Scaling

Select best 9 Features 

Set I = I + 1
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Process (n-1)-fold training Dataset

Is K < J
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Training Dataset

Randomly generate hyper-parameters for 
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Set L = L + 1

Calculate Average accuracy (AA)

Is L < 5

No

Select Hyper-parameter with the best AA

Set n = n + 1
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Move fireflies

Calculate new AA for fireflies. 

Is GB == 100
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Select optimized hyper-parameters

Is n < MaxGen
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Train SVM Classifier Trained SVM Model

Test Dataset

Sum  = Sum + CA

Is J < NF

No

Avg += Sum / NF

Is J < NF

No
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END
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No

Yes

Keep Jth fold 

Subset for test

Yes

Initialize Firefly 

Parameters

No

Update global best (GB)

 

Figure 3.8: Flowchart for FFA_SVM 
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Algorithm 5: FFA_SVM 

Input:   NR: Number of runs 

   NF: Number of folds for FFA_SVM cross validation 

  NFF: Number of fireflies 

  NFold: Number of folds for SVM cross validation 

  MaxGen: Maximum Generation 

Output: ACA: Average Classification Accuracy 

1. Process Dataset 

2. Calculate information Gain and select best 8 features 

3. Define initial values of firefly parameters: NF, NG, βo, α, and γ 

4. Evalute G(x) to determine light intensity Li of firely xi  

5. For i = 1 : NR 

5.1. For J = 1 : NF          

5.1.1.  Generate initial populations of fireflies xi (i = 1,2,…NFF) 

5.1.2.  For k = 1 : NFF 

5.1.2.1. For m = 1 : NFold 

5.1.2.1.1. Calculate average classification accuracy (ACA) using the firefly 

positions (i.e. C & γ) 

5.1.2.2. End m 

5.1.3. End k 

5.1.4. While (n < MaxGen) 

5.1.4.1. Evaluate fitness value 

5.1.4.2. Rank firefly and save global best  

5.1.4.3. For p = 1 : NFF 

5.1.4.3.1. For q = 1 : NFF 

5.1.4.3.1.1. If (Ip < Iq) 

5.1.4.3.1.1.1. Move firefly p towards firefly q    

5.1.4.3.1.2. End if 
5.1.4.3.2.  End q 

5.1.4.4. End p 

5.1.4.5. For s = 1 : NFF 

5.1.4.5.1.  For t = 1 : NFold 

5.1.4.5.1.1. Calculate new average classification accuracy (NACA) of the 

new firefly positions 

5.1.4.5.1.2. If (NACA > ACA) 

5.1.4.5.1.2.1.  Update firefly positions and their corresponding 

accuracies 

5.1.4.5.1.3. Else 

5.1.4.5.1.3.1. Don’t update firefly positions 

5.1.4.5.1.4. End if 

5.1.4.5.2. End t 

5.1.4.6.   End s                

5.1.5.  End while 

5.1.6.  Select global best (i.e. the firefly with the highest fitness)  

5.1.7. Train SVM model with the optimized parameters (obtained from the global best) 

5.1.8. Test model on current test data (i.e. 1/10th of dataset) 

5.1.9. Sum SVM classification Accuracy (CA) 

5.2. End j 

5.3. Calculate the Average SVM classification accuracy (ASCA) over the number of folds 

5.4. Sum ASCA 

6. End i 

7. Calculate overall average SVM classification accuracy over the number of runs – divide ASCA by 

NR 

__________________________________________________________________________________________ 

Figure 3.9: Pseudocode for FFA_SVM 
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3.6 Features for e-mail classification 

“Bag-of-words” representation is the approach commonly used in text categorization problems 

(such as spam and phishing detection) [128]. In this approach, all unique words in an entire 

dataset are extracted and used as single features. This, usually, results in tens, hundreds and even 

thousands of features (depending on the size of the dataset). Nevertheless, Bergholz et al. [46] 

noted that the approach used in spam filtering is quite different from the approach used in 

identifying phishing attacks. They explained that the techniques used by spammers to penetrate 

spam filters (such as typographical errors) do not, usually, appear in phishing emails. Therefore, 

to adequately filter phishing emails, features specific to phishing attacks will suffice. In this 

thesis, a group of 17 features that frequently appear in phishing emails is identified from the 

literature and used. Although, the number of features is low, a high accuracy was still achieved. 

These features are described in the remaining part of this section.  

3.6.1 URLs Containing IP address 

The website URL used by many legitimate organizations usually contains the name of the   

website (for example, www.yahoo.com, tells us that the URL is owned by yahoo). On the 

contrary, phishers usually mask their website name so that their identity can be hidden from 

users. They achieve this by using IP-based URLs (such as http://167.88.12.1/signin.ebay.com), 

therefore the presence of IP-based URLs in an email is an indication that the email is a potential 

phishing email. This feature was used in [6] and [170]. 

3.6.2 Disparities between ‘href’ attribute and LINK text 

The HTML <a> tag defines an anchor that may be used to establish a link to another website.  

Linking to another website can be accomplished by defining a “href” attribute; this attribute 

describes the location of the website that is to be linked to. The links are usually rendered to the 

browser after the “Link text” has been clicked (e.g <a href=”URL Address”>Link Text</a>). 

The link text could be a plain text (for example, “Click here”), a URL (yahoo.com), an image or 

any other HTML element. If the link text is a URL (and it is a legitimate link), it should tally 

with the website location pointed to by the “href” attribute (e.g. <a 

href=”http://www.yahoo.com”> yahoo.com </a>); if there is a disparity between the href 

attribute and the link text (e.g. <a href=http://www.yahoo.com> boguus.com </a>), then the link 

is likely pointing to a phishing website. All the links (containing a URL-based link text) in an 
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email are checked and if there is a disparity between the link text and the href attribute, then a 

positive Boolean feature is recorded. This feature was used in [6] and [170]. 

3.6.3 Presence of ‘Link’, ‘Click’, ‘Here’ in Link Text of a Link 

Link text present in most phishing emails usually contain words like “Click Here”, “Login”, 

“Update”. Hence, the text of all the links present in an email is checked and a binary value of 0 

or 1 is recorded based on the presence or absence of the words: Click Here, Login, Update and 

Link in the Link text. Similar feature was used in [8], [6] and [170]. 

3.6.4 Number of Dots in Domain Name 

As suggested by Almomani et al. [63], the total number of dots that should be present in the 

domain name of a legitimate organization should not exceed three (e.g. www.google.com). A 

binary value of 1 is recorded if an email contains a URL whose number of dots exceeds three. 

This feature was used in [170]. 

 3.6.5 Html Email 

The e-mail format for each e-mail is defined by MIME standards. The MIME standard defines 

the type of content contained in each e-mail. The content type (defined by the content-type 

attribute) could be plain text (indicated by “text/plain”), HTML (indicated by “text/html”). Fette 

et al. [1] proposed that an e-mail is a potential phish email if it contains a content-type with 

attribute “text/html”, they based their argument on the fact that it is almost impossible for 

phishing attacks to be launched without the use of HTML links. This feature was used in [1] and 

[170]. 

3.6.6 Presence of JavaScript 

JavaScript can either be embedded in the body of an email (using the script (<script>) tag) or in a 

link (using the anchor (<a>) tag). Some phishers use JavaScript to hide information from users. 

Fette et al. [1] proposed that an email is a potential phish e-mail if the “javascript” string is 

contained in either the body of the email or in a link. This feature was used in [1] and [170]. 

3.6.7 Number of Links 

The total number of links embedded in an email is recorded and used as a feature for 

classification. Zhang et al. [71] explained that phishing emails usually contain multiple numbers 

of links to illegitimate websites. This feature was used in [71] and  [170]. 
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3.6.8 Number of Linked To Domain 

For this feature, the URLs contained in an email are extracted, the domain names of each of 

these URLs are counted, and the counted value is used as a feature. Take note that each domain 

name is counted only once; subsequent occurrence (of an already counted domain name) is 

discarded and not counted. This feature simply refers to the total number of distinct domain 

names referenced by all the URLs in the email. This feature is also used in [170] and [1].\ 

3.6.9 From_Body_MatchDomain check 

To extract this feature, all the domain names in an email is extracted and each of these domain 

names is matched with the sender’s domain (that is, the domain name referred to by the “From” 

field of the same email); If there is a disparity between any of the comparison, Almomani et al. 

[63] noted that the email is likely a phish email. This feature was used in [170] and [63]. 

3.6.10 Spam Filter Feature  

SpamAssassin is an effective open source spam filter that is already in use by some organizations 

today, therefore, taking advantage of its accurate filtering capability will go a long way in 

reducing phishing to a reasonable extent [1]. In this work, an offline and untrained version of 

SpamAssassin was used to generate one binary feature. An e-mail is assigned a vector value of 0 

if it is labeled as ham by SpamAssassin and it is assigned a value of 1 if it is labeled as spam. 

This feature was used by Fette et al. [1], Bergholz et al. [6] and Akinyelu et al. [170]. 

3.6.11 Word List Features 

Some group of words that frequently appears in phishing emails were used as features. These 

words were divided into six different groups, and each of these groups was used as a single 

feature (making a total of six different features). For each group, the presence of each word is 

counted and normalized. The groups of words include: 

 Update, Confirm 

 User, Customer, Client 

 Suspend, Restrict, Hold 

 Verify, Account 

 Login, Username, Password 

 SSN, Social Security 

This feature is similar to the one proposed by Basnet et al. [182]. [27] 
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3.7 Summary 

This chapter has given a description of the two phishing email detection techniques proposed in 

this research, that is, the firefly based ML technique (FFA_SVM) and the RF-based technique. 

Furthermore, the phishing features extracted from the emails is also discussed in this chapter. 
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Chapter Four  

 

Simulations, Results and Discussion 

 

4.0 Introduction 

This chapter gives the details on the setup used for all the experiments performed in this 

research. It also provides details about the dataset and the performance measure used for all the 

experiments carried out in this research work. 

 

4.1 Experimental Setup 

The experimental setup for the RF-based classifier and the firefly based SVM is described next. 

 

4.1.1 Performance Measure 

Generally, four possibilities exist in classification problems involving two classes [15], namely: 

True Positive (TP, phishing emails correctly classified as phishing), FP (legitimate emails 

wrongly classified as phishing), True Negative (TN, legitimate email correctly classified as 

legitimate) and FN, phishing email wrongly classified as legitimate. In all the experiments 

carried out in this research, the following evaluation metrics were used: 

 

FP Rate =          
𝑇𝑃𝑛

𝐹𝑃𝑛+ 𝑇𝑁𝑛 
    (1)   

FN Rate =           
𝐹𝑁𝑛

𝑇𝑃𝑛+ 𝐹𝑁𝑛
   (2)   

Precision (Pr) =   
𝑇𝑃𝑛

𝑇𝑃𝑛+ 𝐹𝑃𝑛 
   (3)   

Recall (R) =        
𝑇𝑃𝑛

𝑇𝑃𝑛+ 𝐹𝑁𝑛 
   (4)   

F-Measure =       
2 ∗ Pr  ∗ 𝑅

Pr + 𝑅
   (5)             

Where, 𝑇𝑃𝑛, 𝑇𝑁𝑛, 𝐹𝑃𝑛, 𝐹𝑁𝑛 refers to the total number of true positives, true negatives, FPs and 

FNs in that order. 
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4.1.2 Cross Validation 

Due to lack of sufficient data, for all the experiments performed in this research, the 10-fold 

cross validation method is used. Performing this will correct the statistical dependency of all the 

individual instances in the dataset [6], and it will also lead to a good and accurate estimate of the 

evaluation. The dataset used for evaluation is divided into 10 parts. The classifier is trained on 9 

of these parts and then validated on the 10th part. This training and validation process is carried 

out 10 times, such that at the end of the 10th iteration, there would have been different 9/10th and 

1/10th training and validation subset, respectively, for all the 10 runs. Also, at the end of each 

iteration, the prediction accuracy is calculated and saved. The average classification accuracy is 

then evaluated at the end of the 10th run. The goal of cross validation is to define a validation 

subset that can be used to test the prediction accuracy of the model constructed in the training 

phase. Also, cross validation is known to provide a good estimate of the classifier’s 

generalization or out-of-sample error. 

 

4.1.3 Evaluation for RF-Based Technique 

The term ‘forest’ in ‘random forest’ simply refers to a collection of decision trees. Each decision 

tree in the forest is usually constructed by randomly selecting n-number of features. In the  

RF-based approach, different decisions trees is constructed at the training phase. The constructed 

trees was then evaluated on the test data. 

4.1.3.1 Methodology 

In the evaluation performed on the RF-based classifier, firstly, 15 features (outlined in Section 

3.6) are programmatically extracted from the dataset using C#. Furthermore, the vector values of 

all the features are normalized to one. This is to ensure that all the feature vectors fall within the 

same range (that is, between 0 and 1). Also, IG for all the extracted features is calculated (using 

the IG method explained by Mitchell [174]) and the best 8 features are selected. Using the 

selected features as split points, different set of trees are constructed and then used to evaluate 

the data samples in the dataset.  

4.1.3.2 System Configuration  

The system properties of the desktop computer used for all the experiments performed on the  

RF-based method are listed below: 



64 

 

 Operating System: Windows 7, 32 Bits 

 Processor Speed: 2.20GHz 

 Memory: 2GB RAM 

4.1.3.3 Parameters settings for RF-Based Technique  

As explained earlier, in the RF-based classifier, 10-fold cross validation is used. Furthermore, for 

the classifier training, 15 features are extracted from the dataset, and after initial sensitivity 

experimental runs, it was observed that 8 features and below yielded the best classification 

accuracy and speed. The number of features is therefore set to 8.  

 

4.1.4 Evaluation of FFA-SVM 

In this novel method, FFA is integrated with SVM. The hybridization was performed with the 

primary aim of developing an improved classifier capable of automatically detecting both known 

and emerging phishing emails.  

4.1.4.1 Evaluation Method  

Firstly, the vector values of 16 features are programmatically extracted from all the emails in the 

dataset using C# programming language. The extracted features are then normalized. IG for all 

the extracted features are calculated and the best nine features are selected. Furthermore, the 

selected features are converted to an input format required by the SVM library used for the 

implementation, that is, libSVM [183]. The formatted input vectors are then saved in a database 

for easy access. During classification, the feature vectors are scaled down to ensure that they 

have a mean of zero and a unit variance. The Gaussian transformation method is used for scaling. 

For FFA, the firefly parameters suggested by Yang [29] are used. Also, the hyper-parameter 

selection technique suggested by Hsu [27] is used. See Tables 4.1 and 4.2 for more details.  

 

Many experiments are performed to evaluate the robustness of FFA_SVM. In the experiments, 

different pairs of C and γ values are used. Each of the (C, γ) pairs are randomly generated using 

ExponentialSequenceGen algorithm. The experiments are divided into two different groups. The 

first group is based on the hybridized SVM (that is, FFA_SVM) and the second group is based 

on the existing SVM method (O-SVM). That is, in the first group, FFA is used in the hyper-

parameter selection phase and in the second group, the existing grid algorithm is used. For each 

group, firstly, 8 features are extracted from different datasets containing 150, 300, 500, 1,000, 
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2,000, 3,700 and 4,000 emails, respectively. Thereafter, another set of 9 features are extracted 

from the same group of datasets. Furthermore, 10 sets of (C, γ) pairs are randomly generated 

using ExponentailSequnceGen. Using each pair, a grid search is carried out on the training 

dataset via 5-fold cross validation. The best C and γ pair is then selected and used to generate the 

final classifier by re-training the entire training dataset. Also, another set of C and γ values (20 

pairs) are generated. A grid search on each of these pairs is carried out. The two groups of 

experiments are performed separately with the sole aim of comparing the performance of both 

FFA_SVM and O-SVM. 

4.1.4.2 System Configuration  

The system properties of the desktop computer used for all the experiments that were performed 

on the firefly based SVM method is as follows: 

 Operating System: Windows 7, 64 Bits 

 Processor Speed: Intel core (TM) i7-4770S CPU @ 3.10GHz 

 Memory: 8GB RAM 

In all the experiments, 10 times, 10-fold cross validation is performed. Also, to further validate 

the obtained results and to confirm that the results are statistically significant, some statistical 

analysis is carried out using z-statistics. In the statistical analysis, the results obtained from 

FFA_SVM is compared with some other results in the literature. Z-statistics is used for the 

statistical analysis, because, it is suitable for the analysis of sample spaces greater than 30 

samples, according to the central limit theorem. Since 10-fold cross validation, which was 

repeated 10 times, was carried out for each experiment, the total number of samples (that is, CA) 

at the end of each experiment is 100. The statistical analysis (using the result shown in Table 4.1) 

is discussed in the next subsection. 

4.1.4.3 Statistical Analysis 

The goal of this statistical analysis is to know if it can be concluded with 99% confidence level  

(i.e. α = 0.01) that FFA_SVM is better than the phishing email technique proposed by  

Fette et al. [1] (known as PILFER). As earlier stated, Z-test is used for the analysis, because, the 

number of samples to be analyzed is above 30. Furthermore, since 10 times 10 fold cross 

validation is used, the number of runs (𝑛1) for FFA_SVM is 100. As reported by Fette et al. [1], 

the number of runs (𝑛2) for PILFER is 10. Additionally, the average FP rate ( 𝑋1 ̅̅ ̅̅̅) obtained from 
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FFA_SVM is 0.01 and the average FP rate ( 𝑋2
̅̅ ̅̅ ) for PILFER is 0.13. Finally, as shown in  

Table 4.1, the variance ( 𝑆1) for the FP rate obtained from FFA_SVM is 0.0031660, and the 

variance (𝑆2) obtained from PILFER, as reported by Fette et al. [1], is 0.0013. The parameters 

are formally defined next.  

 

Parameters 

FFA_SVM:   𝑋1 ̅̅ ̅̅̅= 0.01,  𝑛1 = 100,  𝑆1 = 0.0031660 

PILFER [1]:  𝑋2
̅̅ ̅̅  = 0.13,  𝑛2 = 10,    𝑆2 = 0.0013  

α = 0.01 

Where:  𝑋1
̅̅ ̅̅  is the average FP rate obtained from our experiments, 

               𝑋2
̅̅ ̅̅  represents the average FP rate as recorded by PILFER [1] 

 

Hypothesis 

Let the null hypothesis be H0, and the alternative hypothesis be H1, where H0 is a measure of the 

effect of changing from PILFER to FFA_SVM, and H1 is what is expected to be true if the null 

hypothesis does not hold. 

H0:   𝑋1
̅̅ ̅  ≤  𝑋2

̅̅ ̅, 

H1:   𝑋1
̅̅ ̅  >  𝑋2

̅̅ ̅     

H1 is true, if and only if,  𝑋1
̅̅ ̅̅ −  𝑋2

̅̅ ̅ > 0    

 

Calculation of Test Statistics 

The Z-test is now used to test the hypothesis. The formula is given by: 

 𝑍 =  
( 𝑋1̅̅ ̅̅ −  𝑋2)̅̅ ̅̅ ̅̅

√
𝑆1

2

𝑛1
+

𝑆2
2

𝑛2
 

     (7) 

Where 𝑆1
2𝑎𝑛𝑑 𝑆2

2, 𝑛1𝑎𝑛𝑑 𝑛2, refers to the standard deviation and the number of runs for 

FFA_SVM and PILFER respectively.  

 

Decision Rule 

The null hypothesis is taken to be true if Z (as defined in equation (7)) is such that Z ≤ Zα, 

otherwise, reject H0. Here Zα denotes the critical value and its magnitude is Zα = Z0.01 = 2.3267. 
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The critical value is the minimum value of which the alternative hypothesis is true. From our 

calculation, Z = 9.3257. Since Z = 9.3257 > Zα, the null hypothesis is rejected, that is,  𝑋1
̅̅ ̅  >  𝑋2

̅̅ ̅. 

 

Table 4.1: Classification results for FFA_SVM over 100 runs 

Classification 

Accuracy 

False 

Positive 

False 

Negative 
Recall Precision F-Measure 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

99.75 0.2857 0 100 98.0392 99.0099 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 
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100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

99.75 0.2857 0 100 98.0392 99.0099 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 
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100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

99.75 0.2857 0 100 98.0392 99.0099 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

99.75 0.2857 0 100 98.0392 99.0099 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

100 0 0 100 100 100 

Variance 

0.002424242 0.003166041 0 0 0.149129179 0.03802368 
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4.1.4.4 Parameters settings for FFA_SVM 

The FFA and SVM parameters used for the evaluation of FFA_SVM are given in Table 4.2 and 

4.3, respectively. 

 

Table 4.2: SVM Parameters used for Evaluations 

SVM Parameters [27] C =  2-11 2-9       ………………………… 21 23 25 

γ =  2-5 2-3       ………………………… 27 29 211 

C = regularization constant, γ = Gamma 

 

Table 4.3: FFA parameters used for Evaluations 

Firefly Parameters [29] 

 

𝜶 𝜸 𝜷𝟎 𝑵𝒇 𝑵𝒈 

0.2 1 1 20 10 

Key: 𝛼 = alpha, 𝛾 = Gamma, 𝛽0 = Beta, 𝑁𝑓 = Number of firefly, 𝑁𝑔 = Number of generations 

 

4.1.4.5 SVM Library for FFA_SVM 

As aforementioned, this work make use of an open source library for SVM, known as LIBSVM. 

This library contains classes capable of handling binary classification tasks, regression tasks and 

distributed estimation. It is also capable of handling problems involving multi-class 

classification. LIBSVM was originally developed in C programming language but it has been 

converted to many other programming language, including Java, C#, MATLAB. In this work, 

the .Net conversion of LIBSVM 2.89 (adapted by Matthew Johnson [184]) is used. This .Net 

version contains several libraries that can be used by programming languages on the .Net 

platform (including C# and VB.Net). This library is also extended (using C#) to suite this work. 

Before LIBSVM can perform a classification task, the feature vectors must first be extracted 

from the dataset. The extracted vectors is then expected to be formatted in such a way that each 

line will contain three values (a label, an index and the extracted vector). The three values are 

expected to be formatted in the following order: Label Index: Value (that is, a label, followed by 

an index value, followed by a colon, and followed by the extracted vector value). The three 

values are explained next. 
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1. Label 

For classification task, label is an integer value referring to the class of an instance. They are 

used to calculate the classification accuracy. 

2. Index 

These are ordered integer values usually starting from 1. They must be in ascending order. 

3. Value 

Value refers to the extracted vector value for each feature. This can a real number or an integer 

number (for binary features). 

 

For example, assuming there is a binary classification problem at hand, and the task is to process 

a dataset containing 6 samples and 5 attributes. The processed file (without normalizing or 

scaling) will typically look like: 

-1 1:3 2:0 3:0 4:0 5:0  

-1 1:0 2:0 3:0 4:0 5:0  

+1 1:4 2:0 3:0 4:0 5:3  

-1 1:1 2:3 3:5 4:1 5:1  

+1 1:1 2:2 3:3 4:1 5:1  

+1 1:8 2:1 3:6 4:1 5:4  

In this work, the features were extracted from each instance in the dataset. Another dataset was 

then constructed using the format described above. 

 

4.1.4.6 SVM Kernel and Hyper-parameter Optimization 

Hyper-parameter optimization is a very important phase in SVM classification. This involves 

choosing the best pair of hyper-parameters, which will be used to train the entire training data. 

The standard method of performing hyper-parameter optimization is via grid search. The primary 

goal of performing a grid search is to find the parameters that gives the best cross-validation rate. 
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This is usually very time consuming, especially, if it involves classification of large problems. 

SVM consist of four basic kernel function [27], namely:  

 Linear: 𝐾(𝑥𝑖, 𝑥𝑗) =  𝑥𝑖
𝑇𝑥𝑗  

 Polynomial: 𝐾(𝑥𝑖, 𝑥𝑗) =  (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)𝑑, 𝛾 > 0 

 Radial basis function (RBF): 𝐾(𝑥𝑖, 𝑥𝑗) =  (−𝛾||𝑥𝑖 − 𝑥𝑗||)2, 𝛾 > 0  

 Sigmoid: 𝐾(𝑥𝑖, 𝑥𝑗) =  𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟) 

In this work, SVM with RBF kernel is considered. This kernel function requires the optimization 

of two parameters: C and 𝛾. These two parameters are problem-specific and they contribute 

immensely to the classification accuracy of SVM. Therefore, a diligent search for the best (C, γ) 

pair is required. This will involve performing a grid search on a sequence of (C, γ) pairs. To 

achieve this, each (C, γ) pair in the search space is usually evaluated using a cross valuation 

method. The pair that gives the highest cross-validation rate is then selected and used to train the 

SVM classifier. In this research, a hyper-parameter selection algorithm is developed (known as 

ExponentialSequenceGen). This algorithm is based on a hyper-parameter search technique 

proposed by Hsu et al. [27].  Hsu et al., suggested that trying an exponentially growing sequence 

of C and 𝛾 values is a very good way of searching for the best pair of hyper-parameter [27]. See  

Figure 3.7 for the algorithm and Table 4.2 for a typical example of exponentially growing 

sequence of C and 𝛾 values. 

There are two major factors that contributes to the performance of SVM classification: 

 The number of hyper-parameters generated for cross-validation and 

 The sequence of the hyper-parameters generated. 

The number of parameters generated have a great effect on the time consumed in the internal 

cross validation of the training dataset. This is primarily because, during the training phase, each 

pair of parameter is usually evaluated against all the samples in the validation dataset. For 

example, if there are 2000 samples in a validation dataset and there are 30 pair of C and γ values 

to be evaluated, each of the 30 pair will be evaluated one by one against all the 2000 samples. 

This is usually very time consuming. Also, the sequence of parameters generated have an effect 

on the classification accuracy of a given problem. The sequence of parameters used for 

ProblemA (for example) might not yield the same classification accuracy if used for another 



73 

 

problem (say ProblemB). Therefore, proper consideration has to be taken when deciding on the 

sequence and number of parameters to use for the classification of a given problem.  

 

4.2 Dataset Used 

Information about the dataset used for the experiments carried out on the RF-based classifier and 

the firefly based SVM is given in this section.  

4.2.1 Dataset used for RF based Technique 

For the implementation, two publicly available and reliable datasets of emails are used: ham 

corpora and phish corpora. The ham corpora is obtained from SpamAssassin [25] and the phish 

corpora is collected from Monkey.org [26]. Each of the legitimate emails obtained from 

SpamAssassin are labelled as Ham and the emails acquired from Monkey.org are labelled as 

Phishing emails. Datasets of various sizes and varied phish-ham ratios are used. The majority of 

the datasets contained a higher number of ham emails, compared to phishing emails, because in a 

real life scenario, people get far more legitimate emails, compared to unwanted emails. A good 

classifier should be able to accurately detect and filter out phishing emails in the midst of many 

legitimate emails. All the emails are labelled and distributed evenly into 10 different folders. The 

summary of the dataset details used for evaluation is given in Table 4.4. 

 

Table 4.4: Datasets used for the evaluation of RF-based Classifier. 

Total  

Sample 

Phish: Ham 

Ratio 

Email Per 

Folder 

Total PM 

per Folder 

Total HM 

per Folder 

Total PM Total HM 

150 7:8 15 7 8 70 80 

300 1:2 30 10 20 100 200 

500 1:4 50 10 40 100 400 

1000 1:9 100 10 90 100 900 

2000 1:9 200 20 180 200 1800 

Key: HM: Ham Email, PM: Phishing Email 
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Table 4.5: Datasets used for the evaluation of FFA_SVM. 

Total  

Sample 

Phish: Ham 

Ratio 

Email Per 

Folder 

Total PM 

per Folder 

Total HM 

per Folder 

Total PM Total HM 

150 7:8 15 7 8 70 80 

300 1:2 30 10 20 100 200 

500 1:4 50 10 40 100 400 

1000 1:9 100 10 90 100 900 

2000 1:9 200 20 180 200 1800 

3700 1:18 370 20 320 200 3500 

4000 1:7 400 50 350 500 3500 

Key: HM: Ham Email, PM: Phishing Email 

4.2.2 Dataset Used for FFA-SVM 

FFA_SVM is evaluated using dataset of ham emails provided by SpamAssassin and dataset of 

phishing emails provided by Jose Nazario (that is, Monkey.org). Datasets of various sizes and 

varied phish-ham ratios are used. The majority of the datasets contained a higher number of ham 

emails, compared to phishing emails, because, as explained earlier, in a real life scenario, people 

get far more legitimate emails compared to unsolicited emails. A classifier should be able to 

accurately detect and filter unsolicited emails in the midst of many legitimate emails. All the 

emails were well labelled and distributed evenly into 10 different folders. The summary of the 

dataset details used for the evaluation of FFA_SVM is given in Table 4.5. 

 

4.3 Results and Discussion 

Results obtained from all the experiments performed on the RF-based technique and FFA_SVM 

is outlined and discussed in this chapter. Results for the RF-Based technique are first discussed 

followed by the results for the firefly based SVM. 

 

4.3.1 Result and Discussion for RF-based Technique 

For the purpose of evaluation, five different datasets are constructed. Each of the datasets 

consists of 150, 300, 500, 1,000 and 2,000 emails, respectively. After the dataset construction, 

the RF-Based classifier is then evaluated on each of the datasets. The evaluation is performed 

with the primary aim of checking the performance of the RF-Based classifier on both large- and 
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small-sized datasets and to also check its performance on datasets containing varied phish-ham 

ratio. As shown in Table 4.6, the dataset with the largest number of emails (2,000 emails) yielded 

the best prediction accuracy, FN rate, F-measure and precision. This indicates that the classifier 

is capable of accurately classifying datasets with large number of emails. Also, as shown in 

Table 4.6, there is a slight increase in the FP rate for the dataset containing 2,000 samples. This 

is because of the presence of noise in some of the data. Some of the emails in the dataset is not 

well formatted. The increase in time in each of the experiments, is due to the increase in the 

amount of data. Table 4.7 compares the results obtained in the RF-based technique with the 

result obtained by PILFER [1]. Table 4.7 reveals that the results obtained by the RF-based 

classifier outperformed the results obtained by PILFER in terms prediction accuracy, FP and FN 

rate, Precision, Recall and F-Measure. The improvement in the result is because of the difference 

in the types of features used by both PILFER and the RF-Based technique. Also, it is because of 

the difference in the feature selection methods applied by the RF-based technique and PILFER. 

In PILFER, 10 features was extracted and used for the email classification. Whereas, in the RF-

based technique, 15 features are extracted from the email dataset. After the extraction, IG for the 

15 features are calculated and the best 8 features are selected. This method is used because of the 

variance in the number of features contained in various emails. For example, 5 features could be 

found in an email, whereas, 7 features could be found in another email. Therefore, checking an 

email for an increased number of features increases the probability of detecting whether the 

email is phishing or not. Furthermore, to reduce the classification speed, the number of selected 

features was moderated. To know the minimum number of features required to yield the best 

classification accuracy, several experiments are performed. For each experiment, different 

number of features are used, and it was discovered that the experiments with 8 features and 

below yielded the best classification accuracy. Therefore, the threshold for the number of 

features is set to 8. Figure 4.2 shows the Receiver Operating Characteristic curve (ROC curve), 

comparing the performance of PILFER with the RF-Based technique. The figure reveals the 

improved performance of the RF-Based technique. 
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Table 4.6: Results obtained from RF-based classifier 

 

S/N 

Dataset Information Performance Evaluation 

Email 

Per 

Folder 

Total 

Email 

P: H 

Ratio 

(%) 

PA 

(%) 

SR FP 

(%) 

FN 

(%) 

R 

(%) 

Pr 

(%) 

F-M 

(%) 

T(s) 

1 15 150 7:8 98.00 0.98 0.00 4.11 95.80 100 97.79 11.82 

2 30 300 1:2 98.33 0.99 0.00 4.00 96.00 100 97.75 21.03 

3 50 500 1:4 99.20 0.99 0.00 4.00 96.00 100 97.78 33.47 

4 100 1000 1:10 99.60 0.99 0.00 4.00 96.00 100 97.78 65.46 

5 200 2000 1:10 99.70 0.99 0.06 2.50 97.50 99.47 98.45 141.25 

Key: PA: Prediction Accuracy, SR: Success Rate, FP: False Positive, FN: False Negative, R: 

Recall, Pr: Precision,      T: Time, F-M: F-Measure, P: Phish, H: Ham 

 

Table 4.7: Classification Result for RF-Based Classifier Vs PILFER [154] 

Technique PA 

(%) 

FP-Rate FN-Rate Precision Recall F-Measure 

PILFER [1] 99.49 0.13% 3.62% 98.92% 96.38% 97.64% 

RF-Based Classifier  99.70 0.06% 2.50% 99.47% 97.50% 98.45% 

Key: PA: Prediction Accuracy, FP: False Positive, FN: False Negative, R: Recall, Pr: Precision,      

F-M: F-Measure 

 

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

PA FP FN Precision Recall F-Measure

RF-Based Classifier vs PILFER

PILFER RF-Based Classifier

Figure 4.1: ROC Curve comparing the RF-Based Classifier and PILFER [1] 
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 4.3.2 Result and Discussion on FFA_SVM Technique 

A number of experiments are performed in order to evaluate the performance of the FFA_SVM. 

All the experiments yielded very good results. The classification accuracy derived from all the 

experiments (as shown in Table 4.9 – 4.16) falls between the range of 99.40% and 100%. This 

indicates that the classifier is capable of correctly classifying datasets with both a few and a large 

number of emails. Also, the FP rates and FN rates are between the range of 0.16% and 0.00%. 

This indicates that a very small number of emails is misclassified. As explained in Section 3.1.4, 

two group of experiments are performed. The experiments are performed with the aim of 

comparing the performance of FFA_SVM and O-SVM. The experiments are also performed 

with the aim of knowing the maximum number of (C, γ) pairs that is required to yield the 

optimized (C, γ) pair for a given problem. Figures 4.2 – 4.19, show the Average Prediction 

Accuracy (APA), Global Best (GB), Recall (R), Precision (PR),  

F-Measure, FP Rate and the FN Rate for each of the experiments that are performed on both 

FFA_SVM and O-SVM. Note that the figures are in pairs. Figures 4.2 and 4.3, 4.4 and 4.5, 4.6 

and 4.7, 4.8 and 4.9, 4.10 and 4.11, 4.12 and 4.13, 4.14 and 4.15, 4.16 and 4.17, 4.18 and 4.19, 

show the result for the first to the ninth experiments, respectively. As shown in  

Figures 4.2 - 4.19, the optimized hyperparamter pair was found in a search space consisting of a 

maximum of 20 hyper-parameter pairs. Also, as shown in Figures 4.20 and 4.21, the time 

consumed by each experiment is relatively low. All this indicates that, a hyper-parameter space 

consisting of 10-20 exponentially growing sequences of C and γ pairs, randomly generated using 

the ExponentialSequenceGen algorithm, is enough to construct a fast and accurate phishing 

email classifier. Furthermore, as shown in Figure 4.14 – 4.19, the performance of FFA_SVM is 

slightly better than O-SVM in many of the experiments. This is an indication that FFA_SVM is 

an improved method. It also indicates that FFA can be used to improve the classification result of 

ML based techniques. Finally, it indicates that FFA_SVM can be used as an alternative method 

to O-SVM. 

 

As shown in Table 4.8, Figures 4.22 and 4.23, the performance of FFA_SVM is compared to the 

three best results discovered in the literature. An improved classification accuracy of 99.99% is 

obtained by FFA_SVM, in contrast to 99.49% [1], 99.31% [185] and 99.85% [6] as obtained by 

its competitors. Furthermore, in terms of FP rate and FN rate, FFA_SVM outperformed its 
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competitors. The improvement is because of the variance in the types of features used in the 

experiments and the difference in the feature selection techniques as explained in Section 4.3.1. 

FFA also played a very important role in the improved result. The high convergence rate of FFA 

and the amazing speed at which FFA precisely searches for its global optimum underscores the 

reason why FFA contributed immensely to the improved performance of FFA_SVM. 

 

To further validate the result, some statistical analyses (one tail, two sample z-test) are carried 

out. FFA_SVM yielded a FP rate of 0.011428% and a variance of 0.003166 using 10-times, 10-

fold cross validation. This leads to a z-statistic of 9.3257 when compared to PILFER [1]. On this 

basis, it can be concluded with 99% level of certainty, that the results produced by FFA_SVM 

are statistically significant. Statistical analysis could not be carried out on [185] and [6], because 

the FP variance (or standard deviation) obtained by [185] and [6] was not reported. 

 

Table 4.8: Results obtained for FFA_SVM vs. Three best Results in literature 

Technique Average Accuracy FP-

Rate 

FN-

Rate 

Precisio

n 

Recall F-Measure 

Fette et al. [1] 99.49% 0.13% 3.62% 98.92% 96.38% 97.64% 

R-Boost [185] 99.31% 1.4% 0% 98.63% 100% 99.31% 

Bergholz et al. [6] 99.85% 0.01% 1.30% 99.88% 98.70% 99.29% 

FFA_SVM 99.99% 0.01% 0.00% 99.92% 100.00% 99.96% 
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Table 4.9: Results obtained from the evaluation of FFA_SVM using 9 Features - 10 Runs 

 

S/N 

Dataset Information Performance Evaluation 

Total 

Email 

Email 

Per 

Folder 

P: H 

Ratio 

(%) 

APA(%) GB FP(%) FN(%) R(%) Pr(%) FM(%) T(s) 

1 150 15 7:8 99.40 100 0.75 0.43 99.57 99.25 99.37 15.52 

2 300 300 1:2 99.53 99.67 0.50 0.40 99.60 99.05 99.30 43.06 

3 500 500 1:4 99.76 99.80 0.30 0.00 100 98.94 99.44 77.33 

4 1000 1000 1:9 99.86 100 0.09 0.60 99.40 99.21 99.29 162.21 

5 2000 2000 1:9 99.94 99.95 0.06 0.10 99.90 99.47 99.68 670.38 

6 3700 3700 1:18 99.96 100 0.03 0.30 99.70 99.56 99.63 1022.77 

7 4000 4000 1:7 99.98 100 0.02 0.00 100 99.86 99.93 2544.72 

Key: APA: Average Prediction Accuracy, FP: False Positive, FN: False Negative, R: Recall,  

Pr: Precision, GB: Global best, T: Time, FM: F-Measure, P: H: Phish: Ham 

 

 

Table 4.10: Results obtained from the evaluation of FFA_SVM using 9 Features - 20 Runs 

 

S/N 

Dataset Information Performance Evaluation 

Total 

Email 

Email 

Per 

Folder 

P: H 

Ratio 

(%) 

APA(%) GB FP(%) FN(%) R(%) Pr(%) FM(%) T(s) 

1 150 15 7:8 99.40 100 1.00 0.14 99.86 99.00 99.39 15.71 

2 300 300 1:2 99.60 99.67 0.50 0.20 99.80 99.07 99.41 47.82 

3 500 500 1:4 99.78 99.80 0.28 0.00 100 99.02 99.48 84.01 

4 1000 1000 1:9 99.90 100 0.06 0.40 99.60 99.41 99.49 158.71 

5 2000 2000 1:9 99.96 100 0.05 0.00 100 99.57 99.78 631.80 

6 3700 3700 1:18 100 100 0.00 0.00 100 99.95 99.98 1066.87 

7 4000 4000 1:7 99.99 100 0.01 0.00 100 99.92 99.96 2642.99 

Key: APA: Average Prediction Accuracy, FP: False Positive, FN: False Negative, R: Recall, 

 Pr: Precision, GB: Global best, T: Time, FM: F-Measure, P: H: Phish: Ham 
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Table 4.11:  Results obtained from the evaluation of O-SVM using 9 Features - 10 Runs 

 

S/N 

Dataset Information Performance Evaluation 

Total 

Email 

Email 

Per 

Folder 

P: H 

Ratio 

(%) 

APA(%) GB FP(%) FN(%) R(%) Pr(%) FM(%) T(s) 

1 150 15 7:8 99.40 100 0.88 0.29 99.71 99.13 99.38 15.29 

2 300 300 1:2 99.60 99.68 0.50 0.20 99.80 99.07 99.41 43.61 

3 500 500 1:4 99.68 99.80 0.25 0.60 99.06 99.07 99.20 79.43 

4 1000 1000 1:9 99.78 99.90 0.16 0.80 99.20 98.65 98.89 175.02 

5 2000 2000 1:9 99.95 99.95 0.06 0.00 100 99.52 99.76 640.50 

6 3700 3700 1:18 99.98 100 0.02 0.10 99.90 99.71 99.80 1165.32 

7 4000 4000 1:7 99.995 100 0.006 0.00 100 99.96 99.98 2583.44 

Key: APA: Average Prediction Accuracy, FP: False Positive, FN: False Negative, R: Recall, 

Pr: Precision, GB: Global best, T: Time, FM: F-Measure, P:H: Phish:Ham 

 

 

 

 

 

Table 4.12: Results obtained from the evaluation of O-SVM using 9 Features - 20 Runs 

 

S/N 

Dataset Information Performance Evaluation 

Total 

Email 

Email 

Per 

Folder 

P: H 

Ratio 

(%) 

APA(%) GB FP(%) FN(%) R(%) Pr(%) FM(%) T(s) 

1 150 15 7:8 99.47 100 1.00 0.00 100 99.00 99.47 15.46 

2 300 300 1:2 99.60 99.67 0.50 0.20 99.80 99.07 99.41 43.51 

3 500 500 1:4 99.70 0.33 0.20 0.20 99.80 98.84 99.28 81.92 

4 1000 1000 1:9 99.85 100 0.12 0.40 99.60 98.96 99.26 162.08 

5 2000 2000 1:9 99.95 99.95 0.06 0.00 100 99.52 99.76 669.59 

6 3700 3700 1:18 99.97 100 0.02 0.20 99.80 99.66 99.72 1115.92 

7 4000 4000 1:7 99.98 100 0.03 0.00 100 99.84 99.92 2473.47 

Key: APA: Average Prediction Accuracy, FP: False Positive, FN: False Negative, R: Recall,  

Pr: Precision, GB: Global best, T: Time, FM: F-Measure, P: H: Phish: Ham 
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Table 4.13: Results obtained from the evaluation of FFA_SVM using 8 Features - 10 Runs 

 

S/N 

Dataset Information Performance Evaluation 

Total 

Email 

Email 

Per 

Folder 

P: H 

Ratio 

(%) 

APA(%) GB FP(%) FN(%) R(%) Pr(%) FM(%) T(s) 

1 150 15 7:8 99.47 100 0.63 0.43 99.57 99.38 99.44 14.72 

2 300 300 1:2 99.67 99.67 0.50 0.40 99.60 99.05 99.30 46.13 

3 500 500 1:4 99.76 99.80 0.30 0.00 100 98.94 99.44 72.07 

4 1000 1000 1:9 99.92 100 0.09 0.00 100 99.27 99.62 139.25 

5 2000 2000 1:9 99.95 99.95 0.06 0.00 100 99.52 99.76 555.46 

6 3700 3700 1:18 99.97 100 0.02 0.20 99.80 99.61 99.70 1034.14 

7 4000 4000 1:7 99.99 100 0.01 0.00 100 99.90 99.95 2376.33 

Key: APA: Average Prediction Accuracy, FP: False Positive, FN: False Negative, R: Recall,  

Pr: Precision, GB: Global best, T: Time, FM: F-Measure, P: H: Phish: Ham 

 

 

 

 

 

Table 4.14: Results obtained from the evaluation of FFA_SVM using 8 Features - 20 Runs 

 

S/N 

Dataset Information Performance Evaluation 

Total 

Email 

Email 

Per 

Folder 

P: H 

Ratio 

(%) 

APA(%) GB FP(%) FN(%) R(%) Pr(%) FM(%) T(s) 

1 150 15 7:8 99.47 100 0.63 0.43 99.57 99.38 99.44 14.54 

2 300 300 1:2 99.63 99.67 0.45 0.20 99.80 99.18 99.46 44.68 

3 500 500 1:4 99.64 99.80 0.30 0.60 99.40 98.88 99.11 73.96 

4 1000 1000 1:9 99.84 100 0.13 0.40 99.60 98.87 99.21 144.38 

5 2000 2000 1:9 99.96 100 0.05 0.00 100 99.57 99.78 594.91 

6 3700 3700 1:18 99.98 100 0.02 0.10 99.90 99.71 99.80 1070.96 

7 4000 4000 1:7 99.99 100 0.01 0.00 100 99.90 99.95 2280.33 

Key: APA: Average Prediction Accuracy, FP: False Positive, FN: False Negative, R: Recall,  

Pr: Precision, GB: Global best, T: Time, FM: F-Measure, P: H: Phish: Ham 
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Table 4.15: Results obtained from the evaluation of O-SVM using 8 Features - 10 Runs 

 

S/N 

Dataset Information Performance Evaluation 

Total 

Email 

Email 

Per 

Folder 

P: H 

Ratio 

(%) 

APA(%) GB FP(%) FN(%) R(%) Pr(%) FM(%) T(s) 

1 150 15 7:8 99.60 100 0.75 0.00 100 99.25 99.60 14.01 

2 300 300 1:2 99.67 99.67 0.50 0.00 100 99.09 99.52 42.38 

3 500 500 1:4 99.72 99.80 0.25 0.40 99.60 99.05 99.30 73.95 

4 1000 1000 1:9 99.90 100 0.10 0.40 99.60 99.14 99.35 155.58 

5 2000 2000 1:9 99.95 99.95 0.06 0.00 100 99.52 99.76 593.56 

6 3700 3700 1:18 99.99 100 0.01 0.00 100 99.76 99.88 1045.51 

7 4000 4000 1:7 99.98 100 0.02 0.00 100 99.84 99.92 2268.31 

Key: APA: Average Prediction Accuracy, FP: False Positive, FN: False Negative, R: Recall,  

Pr: Precision, GB: Global best, T: Time, FM: F-Measure, P: H: Phish: Ham 

 

 

 

 

Table 4.16: Results obtained from the evaluation of O-SVM using 8 Features - 20 Runs 

 

S/N 

Dataset Information Performance Evaluation 

Total 

Email 

Email 

Per 

Folder 

P: H 

Ratio 

(%) 

APA(%) GB FP(%) FN(%) R(%) Pr(%) FM(%) T(s) 

1 150 15 7:8 99.53 100 0.75 0.14 99.86 99.25 99.52 14.84 

2 300 30 1:2 99.53 99.67 0.50 0.40 99.60 99.05 99.30 42.88 

3 500 50 1:4 99.74 99.80 0.33 0.00 100 98.86 99.39 72.42 

4 1000 100 1:9 99.91 100 0.08 0.20 99.80 99.34 99.56 147.70 

5 2000 200 1:9 99.96 100 0.04 0.00 100 99.62 99.80 581.31 

6 3700 370 1:18 99.96 100 0.03 0.30 99.70 99.56 99.63 1079.13 

7 4000 400 1:7 99.998 100 0.002 0.00 100 99.98 99.99 2181.82 

Key: APA: Average Prediction Accuracy, FP: False Positive, FN: False Negative, R: Recall,  

Pr: Precision, GB: Global best, T: Time, FM: F-Measure, P: H: Phish: Ham 
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Figure 4.2: Effect of 10 and 20 SVM Parameters on FFA_SVM - 1000 Samples 

 

 

 

Figure 4.3: Effect of 10 and 20 SVM Parameters on FFA_SVM - 1000 Samples (FP and FN) 
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Figure 4.4: Effect of 10 and 20 SVM Parameters on FFA_SVM - 2000 Samples 

 

 

Figure 4.5: Effect of 10 and 20 SVM Parameters on FFA_SVM - 2000 Samples (FP and FN) 
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Figure 4.6: Effect of 10 and 20 SVM Parameters on FFA_SVM - 4000 Samples 

 

 

Figure 4.7: Effect of 10 and 20 SVM Parameters on FFA_SVM - 4000 Samples (FP and FN) 
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Figure 4.8: Effect of 10 and 20 SVM Parameters on O-SVM – 1000 Samples 

 

 

Figure 4.9:  Effect of 10 and 20 SVM Parameters on O-SVM - 1000 Samples (FP and FN) 
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Figure 4.10: Effect of 10 and 20 SVM Parameters on O-SVM - 2000 Samples  

 

 

Figure 4.11: Effect of 10 and 20 SVM Parameters on O-SVM - 2000 Samples (FP and FN) 
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Figure 4.12: Effect of 10 and 20 SVM Parameters on O-SVM - 4000 Samples  

 

 

Figure 4.13: Effect of 10 and 20 SVM Parameters on O-SVM - 4000 Samples (FP and FN) 
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Figure 4.14: Comparison between FFA_SVM and O-SVM - 1000 Samples 

 

 

Figure 4.15: Comparison between FFA_SVM and O-SVM - 1000 Samples (FP and FN) 
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Figure 4.16: Comparison between FFA_SVM and O-SVM - 2000 Samples 

 

 

Figure 4.17: Comparison between FFA_SVM and O-SVM - 2000 Samples (FP and FN) 
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Figure 4.18: Comparison between FFA_SVM and O-SVM - 4000 Samples 

 

 

 

Figure 4.19: Comparison between FFA_SVM and O-SVM - 4000 Samples (FP and FN) 
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Figure 4.20: Time consumed by FFA_SVM and O-SVM (10 Parameters) 

 

 

 

Figure 4.21: Time consumed by FFA_SVM and O-SVM (20 Parameters) 
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Figure 4.22: FFA_SVM vs PILFER, R-Boost and Bergholz et al. 

 

 

Figure 4.23: FFA_SVM vs PILFER, R-Boost and Bergholz et al (FP&FN). 
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RF-Based technique and the firefly based SVM technique are discussed in this chapter. All the 

results revealed that the two techniques compare fairly and better with some results in literature.  
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Chapter Five  

 

Summary, Conclusion and Further Work 

 

5.1 Summary 

Much work has been done by the research community to significantly reduce phishing attacks 

with great accuracy. In this research, three popular types of e-fraud are reviewed alongside some 

proposed ML-based and NI-based techniques that are used for them. Furthermore, some basic 

concept on NI techniques, ML, ANN and email filtering are presented. Moreover, some general 

challenges of e-fraud detection are examined and some techniques that can be used to improve 

the performance of the examined detection techniques are presented. Additionally, two improved 

phishing email detection techniques are proposed. The first technique is based on RF algorithm, 

and the second technique is based on FFA and SVM (known as FFA_SVM). In the second 

technique, FFA is hybridized with SVM. FFA is used to search for the optimized  

hyper-parameter pair, which is then used by SVM for classification. To further enhance the 

speed and accuracy of FFA_SVM, a hyper-parameter selection algorithm is developed. This 

algorithm generates exponentially growing sequence of C and γ pair of values.  

 

To evaluate the performance of the two techniques, several experiments are carried out on 

datasets of different sizes. The first set of experiments are carried out on the RF-based classifier 

and the second set of experiments are carried out on the firefly based SVM classifier. The 

experiments yielded excellent results. The RF-based classifier yielded a classification accuracy 

of 99.70%, while FFA_SVM yielded a classification accuracy of 99.99%. Also, FFA_SVM 

produced a FP-rate and FN-rate of 0.01% and 0.00% respectively, while the RF-based classifier 

produced a FP-rate and FN-rate of 0.06% and 2.50% respectively. 

 

5.2 Conclusion 

The urgent need for a robust, secure, fast and accurate e-fraud detection system cannot be 

overemphasized, because of the huge financial losses incurred by many organizations and 
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individuals owing to online fraud. A rapid change in fraud patterns is one of the major challenges 

faced by researchers in the field of e-fraud detection. There are three major types of e-fraud, 

namely: email spam, phishing and network intrusion. This research focus on phishing detection. 

Phishing remains a serious threat to global security and economy, as many organizations and 

individuals worldwide have fallen victims. It is a lucrative trade that will keep blooming as 

technology advances. The fast rate of emergence of new phishing websites and distributed 

phishing attacks has made it difficult to keep blacklists up to date. Therefore, a detection 

technique that can adapt to new fraud patterns is highly required. In this research, two phishing 

email detection classifiers are developed based on RF, FFA and SVM, and the results of all the 

experiments performed on both classifiers reveals that they have very high filtering capability 

and they are capable of accurately identifying phishing emails. The classifiers are also capable of 

adapting to new or emerging phishing trends. Moreover, the two proposed phishing email 

techniques can be integrated with existing email filters, which will no doubt reduce phishing 

attacks to the barest minimum and also ensure a secured online environment for organizations 

and users engaged in various online transactions. 

 

5.3 Future Work 

Due to the rapid change in phishing attack patterns, current phishing detection techniques need to 

be greatly enhanced in order to effectively combat emerging phishing attacks. In the course of 

this research, it was observed that the classification speed of SVM is very slow, especially when 

classifying dataset with large volume of data. This is because, for the classification of one data 

sample, the kernel function is, usually, evaluated for each of the identified support vectors [186]. 

This is not acceptable, especially for fraud detection systems that require real-time processing. 

For the future, a plan is in place to come up with an improved model for SVM. In the model, our 

primary concern will be how to reduce the time consumed during the training process. We also 

plan to hybridize more NI techniques using ML techniques. The hybridized systems could yield 

better results.  
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