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Abstract 

South Africa is the largest producer of sugar in Africa and one of the ten largest 

sugarcane producers in the world. Sugarcane in South Africa is grown under a wide 

range of agro-climatic conditions. Climate has been identified as the single most 

important factor influencing sugarcane production in South Africa. Traditionally, 

sugarcane mill committees have issued forecasts of anticipated production for a 

region. However, owing to several limitations of such committee forecasts, more 

advanced technologies have had to be considered. The aim of this study has been to 

develop, evaluate and implement a pertinent and technologically advanced operational 

sugarcane yield forecasting system for South Africa. Specific objectives have 

included literature and technology reviews, surveys of stakeholder requirements, the 

development and evaluation of a forecasting system and the assessment of 

information transfer and user adoption. A crop yield model-based system has been 

developed to simulate representative crops for derived Homogeneous Climate Zones 

(HCZ). The system has integrated climate data and crop management, soil, irrigation 

and seasonal rainfall outlook information. Simulations of yields were aggregated from 

HCZs to mill supply area and industry scales and were compared with actual 

production. The value of climate information (including climate station networks) and 

seasonal rainfall outlook information were quantified independently. It was concluded 

that the system was capable of forecasting yields with acceptable accuracy over a 

wide range of agro-climatic conditions in South Africa. At an industry scale, the 

system captured up to 58% of the climatically driven variability in mean annual 

sugarcane yields. Forecast accuracies differed widely between different mill supply 

areas, and several factors were identified that may explain some inconsistencies. 

Seasonal rainfall outlook information generally enhanced forecasts of sugarcane 

production. Rainfall outlooks issued during the summer months seemed more 

valuable than those issued in early spring. Operationally, model-based forecasts can 

be expected to be valuable prior to the commencement of the milling season in April. 

Current limitations of forecasts include system calibration, the expression of 

production relative to that of the previous season and the omission of incorporating 

near real-time production and climate information. Several refinements to the forecast 

system are proposed and a strong collaborative approach between modellers, 

climatologists, mill committees and other decision makers is encouraged. 
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1 Introduction 

1.1 Problem Statement in Summary 
South Africa is the largest producer of sugar in Africa and is one of the ten largest 

sugarcane producers in the world. Sugarcane is an economically important crop and is 

grown under a wide range of agroclimatic conditions in the eastern regions of the 

country. These regions are subject to high climatic variability, resulting in large 

fluctuations in annual production. Sugar industry stakeholders, who include the 

growers, millers and marketers, are therefore compelled to engage in decision making 

under high levels of climatic uncertainty. This, at times, evokes sub-optimal risk 

alleviating management approaches, which may significantly reduce profitability. 

Current crop forecasts are insufficiently accurate and neither tailored to assist with the 

wide range of decisions stakeholders need to make. A new forecasting system based 

on the most appropriate technology and sensitive to the requirements of industry 

stakeholders therefore had to be developed. 

 

1.2 Problem Statement 

1.2.1 Background to the South African Sugar Industry 
Sugarcane (Saccharum species hybrids) flourishes under a long and warm summer 

growing season with a high incidence of radiation and with adequate soil moisture. 

This needs to be followed by a dry, sunny and fairly cool, but frost-free, winter to 

promote high sucrose quantities before harvesting (Smith, 1992). Although relatively 

far south of the equator, some areas in eastern South Africa are well suited for 

commercial sugarcane production. In these areas sugarcane is produced under a wide 

range of climatic, agronomic and socio-economic conditions. 

 

The South African sugar industry comprises of approximately 430 000 ha under 

cane1, with 72% of the annual production cultivated by 2 000 large-scale commercial 

growers. Forty eight thousand small-scale subsistence growers cultivate an additional 

15% of the country’s annual crop, while the remaining 13% is grown by milling 

companies (Isaacs, 2003). The industry extends latitudinally from 25°S to 31°S and 

                                                 
1 In this study, for quantifiable attributes of sugarcane, the shortened term “cane” (e.g. cane yield, cane 
quality) was preferred as by general practice in the South African sugar industry. 
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altitudinally from sea level to approximately 1 100 m above sea level. Of the 

industry’s cane, 68% is grown within 30 km of the coast in the KwaZulu-Natal 

province, while 17% of the cane production is found in higher altitude, frost prone, 

but high rainfall areas of the KwaZulu-Natal midlands. The remaining 15% is 

produced under irrigation in the drier areas in the northern KwaZulu-Natal and 

Mpumalanga provinces (Isaacs, 2003). 

 

From an agronomical point of view, each sugarcane field is uniquely cultivated to suit 

the specific climatic, soil and socio-economic conditions present. This results in an 

extended range of management practices over the industry. Approximately 40 

cultivars that are specially adapted to South African growing conditions are available. 

Sugarcane is harvested at ages ranging from 12 to 24 months, depending on climatic 

conditions, and is cultivated under different irrigation and rainfed scenarios.  

 

Annual sugar production in South Africa has increased from 500 000 tons in 1950 to 

more than 2.5 million tons in 2001. In the past decade, sugar production has been 

approximately 2 million tons per annum and annual exports often exceeded 50% of 

the sugar produced. However, inter-annual variability of production has been around 

25%, mainly attributed to a high variability in rainfall. 

 

Climate, and especially rainfall, is probably the single most important factor that 

influences sugarcane production in South African. Inter-annual rainfall variability in 

the sugarcane growing belt ranges from 20% to 35% (Schulze, 1997) and the area is 

typically subject to relatively frequent severe and wide-spread droughts (e.g. 1983, 

1992, 2003), occasional flood producing tropical cyclones (e.g. 1984, 2000) and less 

frequent mid-latitude cut-off low pressure systems producing excessive heavy 

rainfalls (e.g. 1987). 

 

1.2.2 Yield2 Forecasting in the South African Sugar Industry 
Official communication channels have been implemented to forecast and convey 

estimates of the sugarcane crop size in South Africa. Prior to, and during, the milling 

season (normally April to December) growers survey the status of their crops and 
                                                 
2 The term “yield” in this study always refers to the tons sugarcane, or tons sucrose, per hectare 
harvested. 
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issue a formal estimate of the total tonnage of sugarcane expected to be delivered to 

their representative mill. A committee at that mill, known as the Mill Group Board 

(MGB), collates this information. These committees are constituted of elected grower 

representatives and members of the particular milling company. Once a month, 

starting in March of each year, the MGB reviews the information at hand and 

forecasts the expected size of the season’s crop. Mill Group Boards from the 15 mills 

in South Africa function independently and have adopted a range of forecasting 

techniques. These include simulation modelling (de Lange and Singels, 2003), 

empirical relationships (Lumsden et al., 1998) and field scouting. Mill Group Board 

forecasts are then forwarded to the Industrial Affairs Division of the South African 

Sugar Association (SASA), where a national forecast is compiled and distributed to 

marketers, milling companies, government and other interested stakeholders. 

 

There are several limitations to the forecasting process described above. First, 

growers have an incentive to over-estimate yields for delivery scheduling purposes 

(Wynne, 2001). Secondly, MGBs often base their forecasts on either subjective or 

non-representative information. Thirdly, there is no benchmark (or second opinion) 

available for their respective forecasts and, fourthly, MGBs cannot quantify the level 

of accuracy of their forecasts. Inaccuracies in MGB forecasts, resulting in sub-optimal 

decision making, have prompted the need for further research into forecasting of the 

sugarcane crop in South Africa. 

 

Several researchers have highlighted potential benefits that could stem from more 

accurate sugarcane yield forecasts in Southern Africa. These include better irrigation 

management, improved control over the crop removal operation, more efficient mill 

operations and the ability to tailor agronomic practices to suit the expected climate of 

a specific season (Hildebrandt, 1998; Lumsden et al., 1998; Schmidt, 1998; Ahmadi 

et al., 2000; Lumsden, 2000). In addition to these, national scale marketing and sales 

activities, such as price fixing and exchange rate risk management, could also benefit 

from accurate yield forecasts. Few researchers in Southern Africa have, however, 

investigated alternative yield forecasting techniques to the MGB forecasts. Lumsden 

et al. (1999) used crop yield models and climate outlooks to forecast yields for the 

Eston mill in the KwaZulu-Natal midlands. McGlinchey (1999) undertook a similar, 

but more operational, study which demonstrated the modelling of sugarcane yields in 
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Swaziland, while Smith (1992) reviewed empirical methods to forecast yields in 

South Africa.  

 

1.2.3 Benefits from Climate and Yield Forecasting 
Hansen (2002) produced Figure 1.1 to illustrate the determinants on which benefits 

from seasonal climate outlooks may be derived by tailoring information for decision 

making. It is evident that a forecast system should have three distinctive 

characteristics. First, there needs to be scope for improvement within the industry if 

more information was available at a specific point in time (human vulnerability). 

Secondly, a prognostic skill of external forces, such as climate, needs to exist, and 

thirdly, participants in the system should have the capacity to identify and change 

certain properties to alleviate system vulnerabilities. The simple nature of Figure 1.1, 

however, overshadows many complexities that exist in the fields of climate 

forecasting, decision making under uncertainty and mitigating against vulnerabilities. 

Potential 
to benefit

Climate 
predictability

Human 
vulnerability

Decision 
capacity

Potential 
to benefit

Climate 
predictability

Human 
vulnerability

Decision 
capacity

 
Figure 1.1 Determinants of the potential for humans to benefit from seasonal 

climate outlooks (from Hansen, 2002) 
 

The skills associated with climate forecasts are increasing and Hansen (2002) noted 

that substantial portions of climate variability throughout much of the world can be 

explained by changes in the El Niño-Southern Oscillation (ENSO). The growing 

understanding of ocean and atmosphere systems has resulted in a degree of climate 

predictability with lead times of several months in advance (Cane, 1999; Hansen, 
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2002). Hansen and Jones (1999) concluded that the ability to skilfully forecast climate 

at lead times of several months raises the prospect for improving agricultural 

decisions at all levels, ranging from field-scale crop management to regional and 

global food security forecasting and mitigation.  

 

Translating seasonal climate outlooks to production or economic outcomes is not a 

straightforward task (Hansen, 2002). Not only is this a relatively new and rapidly 

changing field of research, but climate outlooks remain probabilistic because of 

chaotic processes inherent in the atmosphere (Stern and Easterling, 1999). By 

implication, therefore, as noted by Horie et al. (1992), the most representative yield 

forecasts should be made after assuming the most probable future climate scenarios. 

Stone et al. (2000) emphasised the use of agricultural models to convert general 

climate outlook information into specific agricultural parameters, such as yield. 

Nevertheless, the probabilistic nature of climate outlooks and translated into yield 

forecasts necessitates risk-associated decision making capabilities among stakeholders 

(Thornton and Wilkes, 1998; Hammer, 2000a). 

  

Stern and Easterling (1999) found that, as a consequence of the probabilistic nature of 

climate forecasts, stakeholder decision making capabilities are often ill-suited for 

using the information. They suggested that although scientific capabilities to produce 

accurate forecasts are limited, there is good reason to believe that much benefit can be 

gained by appropriately linking this capability to the practical needs in society. The 

management of climatic risk has always been an intrinsic and critical component of 

agriculture and farmers are inevitably required to make decisions under uncertainty 

(Eakin, 2000; Hammer et al., 2001; Meinke et al., 2001). Climatic uncertainty 

requires decision makers to anticipate a range of possibilities, often leading to risk 

alleviating management strategies that will reduce negative impacts in low production 

years. Unfortunately, risk alleviating management is often implemented at the 

expense of sustainability, inefficient resource utilisation and reduced productivity and 

profitability (Hansen, 2002). 

 

There is nevertheless considerable scope to continue with research which aims to 

convey yield forecasts based on climate outlooks in a decision friendly manner. 

Marquis and Ray (1981) showed that crop forecasts could be expected to improve the 
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domestic value of a crop under certain supply demand scenarios. Hansen (2002) 

confirmed that agricultural decision makers will realise the potential benefits of 

climate forecasting once the point of providing climate information alone has been 

exceeded. Hammer et al. (2001) also suggested that the most relevant information to 

decision makers will be the likely outcomes (e.g. production or income) of viable 

decision options within the system being managed.  

 

1.3 Aim and Objectives of this Study 
The aim of this study was to develop, evaluate and implement an appropriate and 

technologically advanced operational yield forecasting system for the South African 

sugar industry. Yield forecasting in this context was defined as the ability to capture, 

or explain, in advance a certain degree of the natural variability in local and regional 

sugarcane production. 

 

With a relatively large number of related studies documented in the literature, it was 

considered vital for this study to align itself with recommendations and warnings 

issued by previous researchers. Stone et al. (2000) identified the following key 

considerations on the development of applications of climate outlooks for agricultural 

utilisation: 

• Understand the system and its management. 

• Understand the impact of climate variability. 

• Determine opportunities for tactical management in response to forecasts. 

• Evaluate the value of tactical decision options. 

• Participate during implementation and evaluation. 

• Provide feedback to climate forecasters. 

 

The first objective of this study was to review previously documented forecasting 

methods. This was undertaken not only to consider the recommendations and 

warnings emanating from these studies, but also to explore different technologies 

employed in the field, such as remote sensing, simulation modelling and empirical 

methods. A synthesis was compiled that underlines the potential use of these 

technologies in the context of the South African sugar industry. The second objective 

was to conduct a stakeholder survey and a series of consultations to identify important 
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issues of yield forecasts in the South African sugar industry. These included issues on 

management requirements, potential benefits, points of vulnerability and ways to 

alleviate certain problems. As a third objective, a reasonably flexible crop simulation 

environment had to be configured. This was done not only to allow the execution of 

operational yield forecasts, but also to allow evaluation exercises, such as comparing 

a history of production information with simulated values. The simulation 

environment had to be representative of the entire sugar industry in South Africa, 

providing enough information to delineate cane production regions into logical and 

manageable sub-units. The fourth objective of this study was to incorporate the use 

of climate forecasts in the yield forecasting system and to evaluate the system and 

some of its sub-components, such as the importance and quality of climate data. As a 

fifth objective, information transfer and user adoption of the above-mentioned 

forecasting system had to be evaluated against existing forecasts. Finally, the sixth 

objective was to recommend on technology adoption and to highlight further research 

in this field. 

 
 



 8

2 Review of Yield Forecasting Methods  

2.1 Introduction 
Prior to the development of any new sugarcane yield forecasting system, it is 

considered important to first review previous studies. This is undertaken in order to 

consider any recommendations and warnings arising from these studies and to explore 

different technologies employed in the field. 

 

Technologically, crop yield forecasting methods can be subdivided into four main 

categories. These are statistical methods, crop yield modelling, remote sensing and 

methods combining more than one of the afore-mentioned categories. The objective 

of this chapter is to synthesise the potential use of different forecasting technologies 

in the context of decision making in the South African sugar industry. 

 

2.2 Statistical Forecasting Methods 
Statistical forecasting includes methods of regression modelling and neural networks. 

Historical information is used to establish relationships between yield and other 

frequently observed variables. These relationships are then used with currently 

available variables to forecast yields. The methods do not attempt to explain the 

dynamics prevalent within a system and can only be developed if a relatively long 

history of crop performance in relation to certain input variables is available for a 

particular area of interest. Nevertheless, Lumsden et al. (1999) and Matthews et al. 

(2000) noted that statistical forecasting methods are currently the most widely used 

numerical methods for operational crop forecasting. Input variables could include 

simple derivatives of temperature and rainfall, more complex integrated drought and 

crop moisture indices and pre-season indicators, such as ocean surface temperature 

indices. 

 

For sugarcane, Lumsden et al. (1999) reported good performances using a locally 

derived statistical method to forecast sugarcane production from accumulated rainfall 

at the Eston mill in South Africa. Kuhnel (1994) investigated statistical relationships 

between ENSO and sugarcane production for different regions in Australia. He found 

that yields for certain sugarcane districts in Queensland were inversely related to the 
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Southern Oscillation Index (SOI) recorded in the year prior to harvest. In a similar 

study, Jury (1998) derived a sugarcane yield model for South Africa using the North 

Indian Ocean surface meridional wind, Southern Indian Ocean air pressure, East 

Atlantic Ocean surface meridional wind and South Indian Ocean outgoing longwave 

radiation as inputs for his model. Jury (1998) reported a coefficient of determination 

(R²) of 0.69. 

 

In various studies on other crops, such as wheat (e.g. Chmielewski and Potts, 1995), 

rice (e.g. Naylor et al., 2002), maize (e.g. Cane et al., 1994; Podesta et al., 1999) and 

soyabean (Hansen et al., 1998), researchers have also derived statistical relationships 

between crop yields and different climatic variables. Moreno et al. (2001) noted that 

the use of simple variables, such as solar radiation, temperature and precipitation to 

forecast the size and quality of crops has resulted in inconsistent results. The reason 

for this is that important driving factors, such as the soil water balance, were often 

neglected. Stephens et al. (2000) overcame this problem by developing a soil moisture 

stress index for wheat by using daily rainfall and temperature data and weekly 

radiation to drive a simple water balance algorithm. Likewise, Meyer et al. (1991) 

linked crop yields with integrated climate indices, only in their case using existing 

indices from other applications.  

 

Integrated climate indices assimilate large quantities of data, such as rainfall, 

evapotranspiration and soil properties, into a single number representative of the “big 

picture” (Hayes, 2001). These indices might be suitable for statistical yield 

forecasting (Meyer et al., 1991). Hayes (2001) highlighted various general indices, 

such as the crop moisture index (CMI), the surface water supply index (SWSI), the 

Palmer drought severity index (PDSI) and the drought reclamation index, which are 

generated for the USA by their National Drought Mitigation Center. After assessing 

one of the indices, viz. the PDSI, Alley (1984) and Karl and Knight (1985) stated the 

following advantages and limitations: First, it provided decision makers with a 

measurement of the abnormality of recent weather in a region. Secondly, it provided 

an opportunity to place prevailing conditions in an historical perspective and, thirdly, 

it provided spatial and temporal representations of historical droughts. Limitations 

included the fact that the index might require local calibration and that input variables 

describing the soil might be over simplified. The indices also do not perform well in 
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regions where there are extremes in the variability of rainfall or runoff, such as 

Australia and large parts of South Africa (Smith et al., 1993). Integrated climate 

indices are not readily available in South Africa. However, generating and using such 

indices for yield forecasting should nevertheless be an important consideration for the 

future. 

 

2.3 Yield Forecasts using Crop Yield Models  
Crop yield models provide a conceptual / mechanistic explanation of a crop’s 

response to external factors such as the climate and soil. These models have been 

developed and applied in many areas of research, including yield benchmarking (e.g. 

Inman-Bamber, 1995; Nielsen et al., 2002), irrigation scheduling (e.g. McGlinchey et 

al., 1995; Steele et al., 1996) and crop nutrition (e.g. Thorburn et al., 2002; Gungula 

et al., 2003). Matthews and Stephens (2002) provided a comprehensive overview on 

the development and applications of crop models in developing countries. Crop yield 

models are becoming increasingly important in translating information on climate 

variability into forecasts and recommendations tailored to the needs of decision 

makers (Hansen and Jones, 1999). Bannayan and Crout (1999) emphasised that one of 

the most important potential applications of crop modelling is in crop forecasting. A 

regional crop forecasting system integrates crop specific modelling with actual 

climate to date and projects the crop condition forward using probable future climate 

scenarios (Stephens et al., 2000; Potgieter et al., 2002). Complex crop yield models 

quantify the contribution of various physiological processes and climatic elements to 

yield (Cheeroo-Nayamuth et al., 2000). Hansen and Jones (1999) and Stone et al. 

(2000), however, argue that crop yield models do not need to be comprehensive or 

complex to be useful, mainly because simpler models require less input parameters. 

 

Various researchers have developed model-based yield forecast systems, both for 

sugarcane and for other crops. McGlinchey (1999) combined recorded climate data 

and climate forecasts issued by the South African Weather Service (SAWS) and the 

University of Zululand Climate Impact Predictions (Anon., 1999a) to serve as input 

for the CANEGRO model (Inman-Bamber, 1991). Nine sugarcane crops with 

different harvest months were simulated with future climate scenarios selected from 

historical climate records according to the climate outlook. This resulted in a 
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probabilistic range of yields. Promburom et al. (2001) used a modified version of the 

CANEGRO model to forecast regional sugarcane production in Thailand. An 

accuracy of 4.8% in yield at field and provincial scales was reported. Potgieter et al. 

(2003) used the APSIM-Sugar model (Keating et al., 1999) to assess yield forecasts at 

a field scale in Bundaberg, Australia. Different seasons with similar SOI values were 

selected from a 110 year climate record and simulation results were statistically 

evaluated. Lumsden et al. (1999) evaluated the use of different types of models to 

forecast sugarcane yields in the KwaZulu-Natal midlands in South Africa. They 

concluded that crop yield models outperformed statistical methods, such as linear 

regression models. In addition, they also supported the use of a less complex crop 

yield model, viz. the ACRU-Thompson model (Schulze, 1995), as opposed to the more 

complex CANEGRO model. 

 

For other crops, Supit (1997) and Stephens et al. (2000) demonstrated the use of crop 

models and seasonal forecasts for operational crop forecasts in the Australian and 

European wheat industries, respectively. De Jager et al. (1998) proposed a framework 

for forecasting maize yields in South Africa. Supit (1997) also referred to the 

extensive use of crop yield models from the Crop Growth Simulation System 

(CGMS) for forecasting agricultural yields in the European Union.  

 

Thornton and Wilkes (1998) mentioned the necessity to re-simulate crops at regular 

intervals after updating climate data with the most recent records when using crop 

yield models to forecast yields on a regional scale. They also recognised the necessity 

to simulate different future scenarios in order to generate statistical distribution 

functions of probable yields. The spread of these distribution functions can be 

expected to decrease as the season progresses, because of increased certainty of the 

climate to date and reduced uncertainty in the future climate (Thornton and Wilkes, 

1998). In contrast to simulating future scenarios probabilistically, Supit (1997) and 

Roebeling et al. (1999) defined two indices termed the yield indicator and the yield 

difference indicator. These indices are comparisons between yields of incomplete 

crops simulated up to the date of the last climate record and equivalent yields 

simulated under conditions of no water stress, and simulated for the previous season, 

respectively.  
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Hansen and Jones (1999) noted that crop yield models have been developed using the 

information from management intensive trial experiments. Commercial production, 

on the other hand, is hampered by many external factors, such as sub-optimal 

management and incidences of pests and diseases, which are not normally included in 

the models. Day (2001) mentioned that the exclusion of some of these factors have 

been a primary reason for some forecast studies to have failed when attempting to 

simulate large scale yield variability. The aggregation of model outputs to regional 

scales therefore often result in significant over-estimates of production and might 

require additional empirical corrections (Hansen and Jones, 1999). These empirical 

corrections should, however, not be seen as replacements for process-level crop 

models where physiological descriptions capture many mechanisms of crop response 

to weather variability and which have proven useful for regional applications (Hansen 

and Jones, 1999). Crop yield models should, therefore, not be discarded without 

substantial justification (Hansen and Jones, 1999).  

 

Hansen and Jones (1999) identified two opposing schools of thought regarding the 

required complexity of crop yield models when results are to be scaled up to regional 

levels. Rabbinge (1993), cited by Hansen and Jones (1999), suggested that model 

complexity should increase with spatial scale, while other authors such as Addiscott 

(1993) and Heuvelink (1998), cited by Hansen and Jones (1999), have argued the 

opposite. Hansen and Jones (1999) believe that a hybrid approach would be most 

applicable. 

 

Struzik (2001) noted the importance of satisfying both the spatial and temporal data 

requirements at which agricultural models operate. Temporal scales (i.e. time steps) of 

crop yield models are normally in the order of days, while spatial scales are normally 

in the order of one hectare. Horie et al. (1992) and Lumsden et al. (1999) emphasised 

the importance for climate input to be timely in the case of forecasting yields. Liu and 

Scott (2001) noted that a lack of solar radiation data is common in many countries and 

can be a major limitation to regional applications of crop yield models. The provision 

of timely and suitable high resolution inputs for crop models when conducting yield 

forecasts could, therefore, be problematic. However, various solutions to these 

problems have been investigated. These include spatialisation methods based on 

ground measurements (Struzik, 2001), satellite information (Struzik, 2001), automatic 
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weather station networks (AWS, e.g. Georgiev and Hoogenboom, 1999; Singels et al., 

1999b) and estimating / deriving missing input variables, such as solar radiation, from 

other measurements (e.g. Bristow and Campbell, 1984; Hunt et al., 1998; Liu and 

Scott, 2001). 

 

Possible disadvantages of crop yield models are the lack of genetic coefficients to 

simulate yields from different cultivars (Ogoshi, 1995) and a lack of credibility 

among industry stakeholders (Meinke et al., 2001). Bannayan and Crout (1999) note 

that an important advantage of crop models is the ability to quantify risk under 

uncertain conditions after conducting frequency analyses on outputs from repeated 

simulations.  

 

2.4 Remote Sensing for Crop Yield Estimation and 
Forecasting 

Remote sensing is a grouping of usually airborne techniques used for gathering 

information about an object or an area without coming into physical contact with it 

(Anon., 1997). Measurements of crop reflectance are used to derive estimates of 

photosynthesis, water stress, pests and diseases (Wisiol, 1987) and levels of 

management (Maselli et al., 1993). Remote sensing can be an attractive alternative to 

traditional field scale scouting because of its ability to cover large areas at relatively 

low cost (Anon., 1997). Gadekar (1998), for example, reported a 60% reduction in the 

cost of a crop forecast application when remote sensing technologies were employed 

in place of conventional field scouting. 

 

Three satellite missions are commonly used to provide information for agricultural 

purposes. They are the Land Satellites (LANDSAT), Systeme Pour l’Observation de 

la Terre (SPOT) and the NOAA Advanced Very High Resolution Radiometer 

(AVHRR). Table 2.1 displays some important image properties from these satellites. 

 

Previous researchers have utilised different remote sensing techniques for yield 

estimates. These may be grouped into three main categories, namely the derivation of 

vegetation indices (e.g. King and Meyer-Roux, 1990), estimates of radiation 

interception (e.g. Jaggard and Clark, 1990) and estimates of canopy temperature (e.g. 
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Gardner et al., 1981). Schmidt et al. (2000) concluded that vegetation index data from 

the NOAA-AVHRR satellite are likely to give good indications of mill average yields 

in the South African sugar industry. Higher resolution vegetation index information, 

such as that obtained from LANDSAT and SPOT, could theoretically also be used to 

estimate sugarcane conditions at farm and field scales (Schmidt et al., 2001). 

Lumsden et al. (1999), Schmidt et al. (2000) and Schmidt et al. (2001) concluded that 

there is significant scope to use remote sensing information for yield forecasting in 

the South African sugar industry. In a follow-up assessment, Gers (2003) found that a 

yield estimating application using a single-date LANDSAT image was not sufficiently 

accurate, suggesting that temporal information between consecutive images needs to 

be integrated in order to generate reliable yield estimates. 

 

Table 2.1  Important image properties of different satellites frequently used for 
remote sensing in agriculture (pers comm. Dr. A. Sand, CNES - 
Program Directorate, Toulouse, France) 

Satellite Resolution  
(m² per pixel) 

Flyover frequency  
(days) 

LANDSAT 900 16  
SPOT 400 26  
NOAA-AVHRR 1 210 000 9  

 

Remote sensing holds large potential benefits to crop yield forecasting applications. 

The technology is cost effective, timely, accurate, flexible and information is spatially 

consistent (Gadekar, 1998). A constraint, however, may be frequent cloud 

encumbrances (Smith et al., 1995).  

 

2.5 Combined Methods for Crop Yield Forecasting 
Roebeling et al. (1999) estimated relative evapotranspiration from Meteosat satellite 

information. This information was used in a statistical exponential linear model to 

forecast maize and sorghum yields in the Horn of African region. The models, 

especially those for maize, performed reasonably well (R² values between 0.70 and 

0.85). Roebeling et al. (1999) pointed out that the model was more accurate for 

drought sensitive crops, such as maize, as opposed to more robust crops such as 

sorghum. 
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Various studies have resulted in improved crop forecasts after combining remote 

sensing technologies with crop modelling (Maas, 1988; Horie et al., 1992; Roebeling 

et al., 1999). Promburom et al. (2001) coupled simulation models with remote sensing 

technologies to forecast sugarcane yields over large areas in Thailand. By using 

satellite information, Maas (1988) managed to reduce the yield forecast error from 

30% to 2% after adjusting the simulated green leaf area index. Maas (1988) confirmed 

that relatively simple crop yield models performed well, but noted that the 

combination of remote sensing information and crop modelling compensated for each 

other’s weaknesses. Horie et al. (1992) also concluded that this technique resulted in 

the most effective yield forecast method investigated. 

 

2.6 A Synthesis of Yield Forecasting Methods for the South 
African Sugar Industry 

Statistical yield forecasting still seems to be the most commonly used method in 

agriculture. This is so despite strong indications by Maas (1988) and Horie et al. 

(1992) that more accurate methods had been in existence for more than a decade. A 

possible reason for the lack of technology uptake could be that statistical methods are 

easy to use, require few input data and can easily be developed by industry 

stakeholders. If this hypothesis is true, then it implies that tangible shortcomings exist 

between industry stakeholders and scientists who are developing more advanced yield 

forecast systems. It is notable that few scientific descriptions of yield forecast systems 

have ventured into a discussion on possible information transfer and technology 

adoption. This would confirm some of the issues highlighted from the literature in 

Section 1.2.3 and emphasises the need to not only develop a scientifically acceptable 

yield forecast system, but to also assess the concerns and reservations of people 

intending to use the information. 

 

There seems to be elucidating evidence that statistical methods are less accurate for 

crop yield forecasting than either crop yield modelling or remote sensing forecasting 

techniques. Fundamentally, statistical methods are based on a re-occurrence 

philosophy, suggesting that if enough historical data exist, the future will be largely 

explainable from the past. While this approach is disputable, especially under 

conditions of possible climate change and genetic improvement, cognisance should be 

taken that important driving parameters, such as ENSO and other integrated indices, 
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are imbedded in statistical models. It would, however, be more appropriate to link sea 

surface temperature indices with climate responses rather than directly with yields. 

Hansen and Jones (1999) pointed out that the historical yield data often used to 

develop statistical relationships are representative of non-optimal management 

conditions from administrative production regions and that they will inevitably 

include intrinsic trends caused by other driving factors, such as area expansions, 

trends in yield decline and cultivar and agronomic changes. Unlike crop yield models, 

which often require daily climate input data, most statistical methods require input at 

a courser resolution. However, many scientific and remote sensing techniques exist 

for the very purpose of estimating variables in data poor areas. Some statistical 

methods have been developed using integrated indices, such as drought and / or soil 

moisture indices. This affirms the need for a mechanistically rigorous systems 

approach. It is concluded from this discussion that statistical methods should only be 

used if insufficient information exists to use crop yield models. 

 

Crop yield models used in isolation do capture direct crop responses to climate, but 

often omit many compelling driving factors such as incidences of pests and diseases 

and changes in cultivars. Because of these limitations, models often over-predict 

yields, resulting in large inconsistencies when extrapolated over wider areas. Remote 

sensing techniques seem the most appropriate way to overcome some of the above 

limitations of crop yield models. Various remote sensing techniques exist to establish 

values related to a crop’s status with respect to its cultivar, water stress, rate of 

growth, leaf area index, pest and disease incidence and yield. These values can be 

used to reset the crop’s status in the models. A technique that does not require remote 

sensing is to express simulated yields in relative terms by comparing them with 

simulated yields from another season or with simulated potential yields. This 

technique, however, assumes that parameters not simulated, such as pests and 

diseases, will have a uniform effect over all the simulations. It can be assumed that 

the aforementioned technique will be inferior to a well developed method which 

combines a crop yield model with remote sensing information. 

 

Crop yield model applications are well suited for decision making under conditions of 

uncertainty. Uncertainty can be addressed by repeated simulations and expressing 

outputs as frequency distributions, i.e. Monte Carlo approach. The future climate is 
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one of the main uncertainties in yield forecasting. Some studies disregard climate 

outlooks entirely and aim only at providing single non-probabilistic values of future 

yields (e.g. Supit, 1997; Roebeling et al., 1999). Stone et al. (2000), however, 

emphasised the importance of forecasting both yield shift and yield uncertainty and 

Potgieter et al. (2002) showed significant added value when including some 

knowledge of the future climate in a yield forecast. 

 

From the above discussion it may be concluded that the integration of a crop yield 

model forecast system with a strong remote sensing component would be well suited 

for the South African sugar industry. The incorporation of climate outlooks in a 

probabilistic manner is also supported. Sufficient climate data for crop yield 

modelling exist in the South African sugar industry and the industry has also engaged 

in a comprehensive crop modelling research programme. A simple, although 

mechanistically-based, locally calibrated crop model seems most appropriate for a 

yield forecasting application. Remote sensing technologies in the industry are, at 

present, still under-utilised and have therefore been excluded in this study. The 

development of a model-based yield forecast system would, however, allow for 

subsequent integration with remote sensing technologies. 

 

A wide range of issues has to be addressed for the development of a model-based 

yield forecast system. These include establishing industry stakeholder requirements, 

selecting a suitable crop yield model and configuring and preparing input data. The 

following three chapters report on these facets of the research. 
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3 Industry Stakeholder Requirements for Sugarcane 
Yield Forecasting 

3.1 An Overview of Stakeholder Requirements for Yield 
Forecasts 

The previous two chapters highlighted some issues related to information transfer and 

the adoption of yield forecasts in the South African sugar industry. In Chapter 2 it was 

hypothesised that a lack of communication and understanding between industry 

stakeholders and scientists may be a major attributing factor for the failure of more 

technologically advanced yield forecast systems. It was, therefore, necessary to assess 

the requirements and reservations of a range of stakeholders before another yield 

forecast system was to be developed. 

 

Fischhoff (1994) and Meinke et al. (2001) suggested that, in order to avoid failure, 

scientists and stakeholders should form partnerships in acknowledging the complexity 

and determining the demands of a forecasting system. Stone et al. (2000) warned that, 

although scientists are capable of structuring and quantifying their thoughts about 

system dynamics, they are often isolated from the requirements of analysts and 

practitioners. Likewise, Stone et al. (2000) also noted that decision makers and 

practitioners may not always know what to ask for, since they might be unaware of 

the possibilities of a scientific system. 

 

A wide range of factors have previously been attributed to the non-adoption and 

misuse of climate forecasts. Eakin  (1999) noted that small-scale farmers might not 

find climate forecast information useful. Likewise, Stern and Easterling (1999) found 

that those with the most education and money, such as large-scale farmers, will 

benefit from useful information before small-scale enterprises do. Pulwarty and 

Redmond (1997) and Nicholls (2000) conducted surveys in Columbia and Australia, 

respectively, and found that decision makers raised the following reservations about 

the adoption of seasonal climate outlooks: 

• Forecasts are difficult to interpret. 

• Models do not integrate all the relevant information. 

• Uncertainty and dissatisfaction exist over the accuracy of forecasts. 

• Large fluctuations exist between successive forecasts. 
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• Additional information is necessary before decisions could be made. 

• Insufficient procedures exist to integrate forecasts with decision making. 

• The value of the forecast is not obvious. 

• It is difficult to assess forecasts. 

• Contradictions exist between competing forecasts. 

• A history of previous forecasts is not available. 

• There is a lack of access to expertise. 

• There is a lack in communicating the forecast to end-users. 

 

Although these points refer specifically to the adoption of seasonal climate outlooks, 

most concerns are generic and should caution developers of yield forecast systems. 

Forecasts will only become useful once they have met the decision maker’s 

requirements in terms of attributes such as timing, lead time, accuracy, currency, 

parameters and spatial and temporal resolution (de Jager et al., 1998; Stern and 

Easterling, 1999; Nicholls, 2000). General principles of communication could also 

increase user adoption. These include  

• Presenting information in short and simple terms, 

• Giving additional guidance on how to take advantage of the information, 

• Allowing frequent repetition of the information over different channels, and 

• Transferring information through people who are trusted by the users (Stern 

and Easterling, 1999). 

 

Previous studies have highlighted aspects of spatial and temporal resolutions that 

should be considered to augment the usefulness of forecasts. Spatially, Lumsden et al. 

(1999) noted the importance of forecasting yields on a mill supply area scale, while 

temporally de Jager et al. (1998) and Lumsden et al. (1999) recommended updated 

forecasts on a monthly basis. Gadekar (1998) and Everingham et al. (2002a) 

emphasised the strategic importance to provide stakeholders with forecasts with long 

lead times. 

 

Thornton and Wilkes (1998) and Hammer (2000b) stressed the importance to 

communicate yield forecasts probabilistically. The application of seasonal forecasts in 

agriculture concerns risk management, which is only possible under a clear 
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understanding of the likelihood of certain outcomes (Hammer, 2000a). 

Communicating uncertainty and risk in a simple manner and with clarity does, 

however, present some difficulties. Stone et al. (2000) suggested that the use of 

simple bar graphs (histograms) showing the occurrences of different likely outcomes 

and their relation to the long-term mean or median might be appropriate. Likewise, 

plotting graphs of probabilities of non-exceedance, as done by Singels and 

Bezuidenhout (1999), might circumvent opportunities for users to misinterpret 

information. 

 

Stone et al. (2000) indicated that more sophisticated management capabilities are 

required to deal with risk-associated decision making. In climate forecasting, for 

example, it has been shown that users might prefer to adopt inferior outlooks, with 

scientifically unjustified narrow ranges of uncertainties, if the possible outcomes of 

other outlooks are too wide (Nicholls, 2000). Users should also not become 

disheartened, or reckless, if they “lose” or “benefit” from the forecast in any particular 

season. Rather, the information should be viewed in a statistically consistent manner 

over many seasons in order to benefit (Meinke and Hochman, 2000). 

 

There are numerous areas in which decision making can be enhanced once yield 

forecasts have been transferred and interpreted in a correct way (Horie et al., 1992; 

Wood, 1995; de Jager et al., 1998; Everingham et al., 2002a). Everingham et al. 

(2002a) subdivided stakeholders in the Australian sugar industry into four sectors, viz. 

farming, harvesting / transport, milling and marketing.  

• In the farming sector, seasonal climate outlooks and yield forecasts can 

enhance decisions on the timing and methods of planting, selection of 

herbicides, decisions on irrigation strategies and the determination of fertiliser 

quantities (Horie et al., 1992; Lumsden et al., 1998; Schmidt, 1998; 

Everingham et al., 2002a).  

• The harvesting and transport sectors can anticipate benefits from using climate 

outlooks and yield forecasts when planning harvesting and haulage schedules, 

pre-empting capacity requirements and planning and directing strategies for 

machinery sales (Gadekar, 1998; Lumsden et al., 1998; Everingham et al., 

2002a). 
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• Millers can use seasonal outlooks and yield forecasts to determine the number 

of staff required as well as to establish the opening date, crush rate and length 

of the milling season (Hildebrandt, 1998; Everingham et al., 2002a).  

• In the marketing sector, yield forecasts can be used to plan an overall 

marketing strategy, including forward selling, shipping and warehouse 

requirements (Gadekar, 1998; Everingham et al., 2002a). 

 

An assessment of stakeholder requirements for yield forecasts should incorporate all 

the issues discussed up to this point. These include the spatial and temporal resolution 

for forecasts, format of information, coping with uncertainty and understanding the 

stakeholders’ management skills as well as incorporating areas of potential benefits. 

Hansen (2002) emphasised the use of exploratory surveys, which are designed to 

establish stakeholders’ perceptions and perspectives. It was noted that few surveys 

have been documented in the literature. One such survey was the Climate Variability 

in Agriculture R&D Program (CVAP) in the Australian sugar industry, whereby key 

decisions, financial implications and preferred mechanisms of information transfer 

among stakeholders were established (Anon., 1999b). Hansen (2002) warned that a 

distinction should be made between what stakeholders want and what they actually 

need. Three important characteristics of yield forecasts were highlighted by Hansen 

(2002). These are  

• Site specificity (e.g. importance of scale, spatial variability and spatial 

representivity of climate outlooks and data), 

• Temporal specificity (e.g. timing of forecasts to suit decisions and intra-

seasonal characteristics, such as start of rainy season and duration of dry 

spells), and  

• Forecast skill (for users concerned with managing risk). 

 

The aim of this section is to establish vulnerabilities in the South African sugar 

industry that could be alleviated by using yield forecasts. Specific objectives are first, 

to identify key areas where yield forecasts could enhance decision making and 

secondly, to establish their financial impacts, strategic timing, spatial and temporal 

resolution requirements, desired reporting formats, required parameters and preferred 

communication media. 
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3.2 A Questionnaire Survey for Industry Stakeholders 
A questionnaire (see Appendix A) was distributed to a wide range of stakeholders in 

the South African sugar industry, who elaborated on the potential expected benefits of 

yield forecasts in their respective sectors. They were requested to state their 

preferences in the yield forecast’s time of issuing, its spatial and temporal resolution, 

output parameters, reporting format and means of communication. The questionnaire 

mainly comprised of multiple-choice questions and stakeholders were often allowed 

to make more than one choice per question, if they so preferred. 

 

The outcomes of the questionnaire, in conjunction with previous literature, were used 

to identify key issues where yield forecasts could have significant potential impacts in 

the industry. Individual stakeholders working in these sectors were consequently 

consulted for further information. All outcomes are reported in this chapter. 

 

3.3 Results from the Questionnaire Survey 
Thirty nine completed questionnaires were returned after the survey was widely 

broadcasted. No record was kept of the number of persons who did not respond to the 

questionnaire. Respondents were representative of commercial- and small-scale 

grower groups, miller-cum-growers, national and international millers, marketers, 

transporters and exporters. Figure 3.1 displays the relative contribution of 

representatives from these different sectors. It should be noted that respondents often 

felt that they were representing more than one industry sector. 

 

Figures 3.2 and 3.3 summarise various time-related issues on yield forecasts that were 

addressed during the survey. Figure 3.2 captures stakeholder preferences in (a) 

temporal resolutions and (b) forecast frequencies. It is evident from Figure 3.2(a) that 

96% of representatives would be satisfied if the milling season (i.e. April – 

December) were subdivided and reported upon a monthly basis. Users requiring lower 

temporal resolutions, such as seasonal production, could calculate the mean over the 

above-mentioned monthly values. Figure 3.2(b) shows that 96% of the representatives 

required at most monthly updates of yield forecasts. Figure 3.3 summarises the time 

of the year when stakeholders require yield forecasts. It is evident that the demand for 

forecasts increases towards the opening date of the milling season in April (milling 
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season shaded in grey). Most representatives also expressed a preference for obtaining 

updates at the commencement of each month. 

Marketing
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Figure 3.1 Distribution of stakeholder sectors which responded to the questionnaire 
survey 
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Figure 3.2  Stakeholder preferences (a) in temporal resolutions of reporting and 

summarising information and (b) in frequencies of forecast updates 
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Figure 3.3  A time chart indicating the percentage of stakeholder respondents who 

required yield forecasts at certain times in the year, with the thicker line 
indicating a general trend of increasing demand towards the opening of the 
milling season (area shaded in grey) 

 

Figure 3.4 summarises a range of preferences relating to the format, contents and 

methods of information transfer of the yield forecast. A small majority of respondents 

requested yield forecasts to be issued with confidence bands (Figure 3.4a). This 

denotes that stakeholders might be aware of the complexities of risk-based decision 

making. Most stakeholders showed interest in obtaining forecasts of all the parameters 

suggested, viz. cane yield, sucrose yield, fibre content and reduced sugar (non-

sucrose) content (Figure 3.4b). A slight majority of stakeholders proposed that yields 

be expressed as a percentage of an equivalent crop grown in the previous season 

(Figure 3.4c). Although not reflected in Figure 3.4(c), it should be noted that a 

majority of grower representatives would also be interested in a comparison between 

the current crop and the previous crop grown on the same field. A large majority of 

stakeholders in this survey preferred email as a means of communication (Figure 

3.4d). A relatively large number of stakeholders also expressed an interest to conduct 

further post-forecast calculations using a decision support program (DSP). 

 

Figure 3.5 shows the preferred spatial resolution at which yield forecasts should be 

made. It is noted that a farm scale, homogeneous climate zone scale and mill supply 

area scale were strongly supported. 
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Figure 3.4  Stakeholder preferences in (a) the manner by which yield forecasts should 

be communicated, (b) specific parameters to be reported, (c) the way by 
which yields should be expressed and (d) what communication medium 
should be used 
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Figure 3.5  Stakeholder preferences with regards to the physical size of yield forecast 

units 
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Subsequent to the stakeholder survey, a list of four key issues, at different scales, 

where yield forecasts could significantly benefit the industry was compiled. These 

issues were  

• Adjusting international marketing strategies, 

• Enhancing national financial systems, 

• Fine tuning milling operations, and 

• Adjusting fertilizer recommendations.  

 

International marketers intend to use yield forecasts prior to the start of the milling 

season. Accurate forecasts of production would enable marketers to exploit price 

hedging, to forward-sell anticipated sugar surpluses at higher profit margins and to cut 

expenditure on freight fixtures. Strategic marketing prior to the milling season could 

increase profits by as much as R18 million per annum if forecast errors could be 

reduced from 7% to 2.5% (pers comm. Mr. Q.L. Hildebrandt, International Marketing 

Director, SASA). 
 

On a national scale, yield forecasts are required, first to estimate the amount of 

income to be disbursed from millers to growers and, secondly, to estimate tax rebates 

for communal small-scale growers. In both these cases, forecasts would not improve 

primary productivity or profitability, but would assist in anticipating and streamlining 

large financial transactions (pers comm. Mr. D.P. Rossler, General Manager, 

Umthombo Agricultural Finance, SASA). 

 

Determining the commencement and closure of a mill, as well as proposing crush 

rates for the mill prior to April, can significantly increase mill productivity. 

Hildebrandt (1998) illustrated how between R120 000 and R800 000 could be lost per 

season at the Noodsberg mill alone (KwaZulu-Natal midlands) if production forecasts 

contained an error of between 2% and 11%. These losses were ascribed to lower cane 

qualities, less favourable cropping cycles and increased grower and miller expenses. 

Lumsden et al. (1999) also estimated an approximate R800 000 economic benefit per 

season for the Eston mill (KwaZulu-Natal midlands) by adopting a model-based yield 

forecast system. At the Umfolozi mill (Northern KwaZulu-Natal) the length of the 

milling season may vary from 30 to 37 weeks. If the milling season commences too 
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early, sugarcane supplies will deplete too early, resulting in the unnecessary crushing 

of low quality cane at the beginning of the season. An improvement of 0.05% in 

annual cane quality could be anticipated if the opening of the milling season were 

correctly adjusted by one week (pers comm. Mr. J. de Lange, Cane Procurement 

Manager, Umfolozi mill, Illovo Sugar Ltd). This results in higher production of 

sucrose and molasses valued at approximately R500 000 per annum. It is likely that 

the above-mentioned benefits would also pertain to the other 12 mills in South Africa. 

Accurate yield forecasts could, therefore be expected to increase mill productivity by 

approximately R9 million per annum. 

 

On a farm scale, stakeholders have indicated that the adjustment of fertilizer 

applications based on yield forecasts would enhance profitability and sustainability. 

Assuming 300 000 ha of cane harvested per annum in South Africa, a savings of just 

5% to standard fertilizer recommendations could reduce expenditure by as much as 

R21 million (pers comm. Dr. D.J. Nixon, South African Sugarcane Research 

Institute). This would, however, involve high accuracies in field scale yield forecasts 

between 10 and 24 months in advance, which implies unrealistically high skilled 

climate outlooks, extensive field scale data collection and near-perfect crop model 

output.  

 

3.4 Discussion and Conclusions 
Although speculative and often more intricate than discussed, the survey’s results 

point to potentially large savings from yield forecasts for some sectors in the South 

African sugar industry. Stakeholders generally envisage that yield forecasts could 

significantly enhance decision making across a range of scales in the industry. 

International marketing, national financing and mill operations are likely candidates 

to benefit from yield forecasts. At a farm level, growers require longer lead times and 

higher accuracies before agronomic benefits can be expected. Yield forecasts may, 

however, assist growers in general business issues such as managing cash flows, 

investments and purchasing new capital.  

 

Strong information transfer guidelines were compiled from the results of this survey. 

Yield forecasts should be issued at the commencement of each month, beginning in 
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the September prior to the next milling season. Reports containing summaries of cane 

yield, sucrose yield, reduced sugar content and fibre content should be communicated 

via email. Different crops, each harvested in a different month of the milling season, 

should be reported. Certain stakeholders would also require a single production value 

for the entire season. Results should be summarised for homogeneous climate zones, 

but should also be aggregated at a mill and national scale. All forecasted parameters 

should include confidence bands and values should be compared with those of the 

previous season. A DSP enabling users to aggregate information and to express 

results relative to different reference crops would assist a wide range of stakeholders. 

The DSP should, however, not replace a concise report on forecasted yields. Based on 

general principles of communication, it is strongly encouraged that yield forecasts be 

communicated through the South African Sugar Association and the South African 

Cane Growers Association. Local extension officers and agricultural economists 

should be encouraged, where possible, to integrate yield forecasts with agronomic, 

business and risk management approaches. 
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4 A Review of Sugarcane Crop Yield Models for Yield 
Forecasting in South Africa 

4.1 Introduction 
In the previous two chapters it was concluded that crop model-based yield forecasts 

would enhance decision making across various sectors of the South African sugar 

industry. This chapter briefly considers different sugarcane crop yield models for 

yield forecasting purposes in South Africa. 

 

Crop yield models perform simulations by numerically integrating fundamental 

processes with the aid of computers (Sinclair and Seligman, 1996). A crop’s response 

at a given location is simulated using measured or estimated input parameters that 

describe soil and atmospheric conditions. Three suitable models were identified for 

conducting yield forecasts in the South African sugar industry. These are, CANEGRO 

(Inman-Bamber, 1991), ACRU-Thompson (Schulze, 1995) and Canesim (formerly 

known as IRRICANE, Singels et al., 1998). These models have been tested in South 

Africa and have been used previously in crop forecasting applications (Lumsden et 

al., 1999; McGlinchey, 1999; de Lange and Singels, 2003). In this chapter each 

model’s history, level of complexity, required input parameters and accuracy is 

reviewed with the aim of identifying the most suitable model for yield forecasting. 

 

4.2 CANEGRO 
The CANEGRO model is based on the concepts and structure of the CERES-Maize 

model (Jones and Kiniry, 1986) and was developed for a single cultivar (NCo376) to 

assist in quantifying the impacts of a local pest in the South African sugar industry, 

viz. Eldana saccharina  (Inman-Bamber, 1991). The model has since been included as 

the official sugarcane model in the Decision Support System for Agrotechnology 

Transfer (DSSAT, Inman-Bamber and Kiker, 1997). Since its development in 1991, 

some improvements have been made to the model’s mass balance (Singels and 

Bezuidenhout, 2002) and its ability to accommodate more cultivars (Cheeroo-

Nayamuth et al., 2003; Zhou et al., 2003). Adapted versions of the CANEGRO model 

have been used in yield forecast applications in Swaziland (McGlinchey, 1999) and 

Thailand (Promburom et al., 2001). 
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CANEGRO simulates plant, atmospheric and soil properties with relatively high 

levels of complexity on a daily time step. Different mechanistic processes, such as 

radiation driven biomass accumulation, foliage development, canopy expansion and 

soil water movement are modelled (Bezuidenhout, 2000). The model requires a wide 

range of input variables, from cultivar and soil specific coefficients to daily climate 

and irrigation records. 

 

Later versions of CANEGRO also generate output of sucrose yields (Singels and 

Bezuidenhout, 2002). Reduced sugar and fibre content are not explicitly simulated. 

Singels and Bezuidenhout (2002) compared model output with observed data from a 

wide range of experiments situated within the South African sugar industry. They 

reported root mean square errors (RMSE) of 5.48 t.ha-1 and 2.60 t.ha-1 and R2 values 

of 0.82 and 0.86 for cane biomass and sucrose yield, respectively. These results 

equate to an approximate 82% accuracy and were based on data that were not 

annualised.  Accuracies of the model compared well with an equivalent Australian 

sugarcane model, viz. APSIM (Keating et al., 1999). 

 

4.3 ACRU-Thompson 
Thompson (1976; 1978) derived a linear relationship between evapotranspiration and 

sugarcane yield for the NCo376 cultivar. The Thompson equation was first imbedded 

into the 1984 version of the ACRU agrohydrological model (Schulze, 1995). ACRU is 

a daily time-step and multi-purpose physical conceptual model that deterministically 

simulates hydrological and crop responses to water movements through a multi-

component natural or agricultural system (Schulze, 1995; Schulze and Smithers, 

2004). Figure 4.1 illustrates schematically the conceptual components of the model. 

The ACRU sugarcane yield model requires fewer input data than CANEGRO and has 

been used extensively in regional applications of water demand and crop production 

(Schulze and Smithers, 2004). 

 

Hughes (1992) evaluated the original Thompson model as imbedded in ACRU, for 

sugarcane production at both coastal and inland sites in KwaZulu-Natal. The model 

yielded R2 values of 0.53 and 0.67 for the coast and inland, respectively. Model 

enhancements by Hughes (1992) improved these R2 values by 35%. Schulze et al. 
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(1999) added a degree-day driven crop coefficient development routine to the ACRU-

Thompson model during a sugarcane yield forecast study for the Eston mill in the 

KwaZulu-Natal midlands. Lumsden (2000) reported higher accuracies for ACRU-

Thompson than for DSSAT-CANEGRO during the same investigation (R2=0.78 vs. 

R2=0.62). This was attributed mainly to CANEGRO’s sensitivity to site specific input 

variables as opposed to the more robust simulation philosophy in ACRU. 

 
Figure 4.1 A schematic diagram of conceptual components in the ACRU 

agrohydrological modelling framework (from Schulze, 1995) 
 

4.4 Canesim  
The Canesim model, formerly called IRRICANE, was initially developed as a simple, 

user-friendly irrigation scheduling tool (Singels et al., 1998). Singels et al. (1999a) 

subsequently included an empirical cane yield equation, derived from the cane yield 

to transpiration relationship for the NCo376 cultivar in the CANEGRO model. In 

addition, Singels and Donaldson (2000) also incorporated a cultivar-sensitive canopy 
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expansion algorithm. De Lange and Singels (2003) have used the Canesim model to 

forecast sugarcane production for the Umfolozi mill supply area in northern 

KwaZulu-Natal. 

 
Canesim simulates soil water processes and plant development on a daily time step at 

a semi-mechanistic level of complexity. It requires daily climate data, irrigation 

information and a single input for the soil, viz. the soil’s water holding capacity. 

Currently, the model simulates cane yield, although attempts are underway to include 

the sucrose yield algorithms developed by Singels and Bezuidenhout (2002). 

 
As yet unpublished model verifications using a wide range of independently observed 

cane yield data display a RMSE of 4.88 t.ha-1 and a R2 value of 0.88 (pers comm.  

Dr. A. Singels, South African Sugarcane Research Institute, Mt. Edgecombe). Figures 

4.2 and 4.3 illustrate the model’s accuracy when used to forecast point specific 

(Bezuidenhout and Singels, 2001) and regional (Gers et al., 2001) cane yields, 

respectively. Both these comparisons yielded R2 values of 0.87. 
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Figure 4.2 Simulated Canesim and measured cane yields from 26 crops of a 

single cultivar grown experimentally under widely different 
agronomic conditions in South Africa (from Bezuidenhout and 
Singels, 2001)  
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Figure 4.3 Simulated Canesim and measured cane yields (expressed as a 
percentage of the preceding season’s yield) for the Darnall mill 
supply area on the KwaZulu-Natal north coast (from Gers et al., 
2001) 

 

4.5 Discussion 
CANEGRO is the only model currently used in the South African sugar industry for 

simulating sucrose yield. None of the above-mentioned models simulate fibre and 

reduced sugar contents or the effect of nutrients, weeds, flowering, pests and diseases 

on sugarcane. Unfortunately CANEGRO requires a large number of sensitive input 

variables, which makes it less suitable for wide-scale regional applications. In a direct 

comparison in the KwaZulu-Natal midlands, the ACRU-Thompson model produced 

better regional simulation results than CANEGRO (Lumsden et al., 1999).   

 

The Canesim model seems currently the most appropriate for an industry-wide yield 

forecasting application. Canesim has been verified at both point and regional scales 

with accuracies that exceed those of the ACRU-Thompson and CANEGRO models 

(Bezuidenhout and Singels, 2001; Gers et al., 2001). Canesim also requires fewer 

input parameters and work is currently underway to include the simulation of sucrose 

yield by the method of Bezuidenhout and Singels (2001).  

 

The next chapter will attempt to establish spatial simulation units for the Canesim 

model and to derive adequate model inputs for each of these units. 
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5 Homogeneous Climate Zones and Spatial 
Information for Sugarcane Yield Forecasting 

5.1 Introduction 
Chapter 3 provided guidelines on preferred formats, resolutions and methods of 

information transfer from yield forecasts. In addition, Chapter 4 reviewed and 

presented a viable sugarcane yield model for forecasting purposes. This chapter 

provides spatial model simulation units and derives additional information that is 

required for forecasting purposes. 

 

Model applications are inherently suitable for small-scale experimental studies which 

are accompanied by intensive soil and atmospheric measurements. However, large-

scale model applications are more meaningful, as they may address commercial 

production issues. The aggregation process during which model outputs are spatially 

extrapolated over larger areas is generally known as up-scaling. Commercially, crops 

are grown in an environment which varies both spatially and temporally and up-

scaling becomes imperative owing to the high cost associated with measuring input 

variables at the desired density (Hansen and Jones, 1999).  

 

King (1991, cited by Hansen and Jones, 1999) noted that up-scaling entails first, an 

accurate description of the landscape’s spatial and temporal heterogeneity and 

secondly, the correct integration of this heterogeneity. Up-scaling processes may 

include  

• The subdivision of the landscape into smaller more homogeneous simulation 

units or representative grid points, 

• Deriving model input not measured directly from available surrogate data, and  

• Stochastic sampling of input variables.  

 

Hansen and Jones (1999) warned that new properties and processes, such as lateral 

water flows, competition for water allocation and inconsistent farm resource 

allocations, emerge at regional scales. At the same time agricultural systems at larger 

scales could be expected to become less sensitive to high-frequency variability 

(O'Neill and Deangelis, 1986, cited by Hansen and Jones, 1999; Müller, 1992).  
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Spatially, Supit (1997) and Thornton et al. (1997) used a grid approach to simulate 

variable crop production within a wider region. This technique is associated with 

raster configurations in GIS (e.g. Piwowar et al., 1990), which is a suitable platform 

for remote sensing technologies and general circulation models (GCM, e.g. Hewitson 

and Crane, 1996). As an alternative to a grid approach, regions have also been 

subdivided into small, relatively uniform but spatially irregular simulation units, i.e. 

polygons (e.g. van Lanen et al., 1992; de Jager et al., 1998; Rosenthal et al., 1998; 

Promburom et al., 2001). Polygons are normally larger than grid cells and are 

demarcated more logically than grids, being based on topography, soil and climate 

characteristics. 

 

Agronomically, Hansen and Jones (1999) noted that the use of more than one planting 

date has improved yield forecasts. Similarly, Lumsden et al. (1998) stated that a crop 

forecast system should be sensitive to prevailing sugarcane cropping cycles in a 

region. Promburom et al. (2001) also highlighted the importance of ensuring 

regionally representative soil descriptions and irrigation strategies. 

 

The aim of this chapter is to acquire the necessary spatial information and input data 

to warrant the development of a crop forecast system for the South African sugar 

industry. Specific objectives are to  

• Subdivide the South African sugarcane growing region into smaller uniform 

simulation units, and to 

• Gather the relevant agronomic and aggregation information for each unit.  

These objectives were conducted independently and are reported separately. A final 

conclusion of the chapter consolidates the outcomes. 

 

5.2 Climate Regionalisation 
Climate does not display well-defined natural boundaries. Nevertheless, the spatial 

correlation between variables within a region has formed the basis for partitioning 

regions into smaller, relatively homogeneous spatial units (Hansen and Jones, 1999). 

Hansen and Jones (2000) pointed out that even if models were completely error-free 

and climate data represented the absolute average conditions for a region, simulated 

yields would not generally represent the region’s spatial average or inter-annual 
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variability as a result of the integration of non-linear response functions. 

Unfortunately, climate data frequently lacks sufficient spatial resolution (de Wit and 

van Keulen, 1987; Hansen and Jones, 1999; Matthews et al., 2000) and often 

represent sites that are convenient to measure (e.g. at administrative centres, close to 

the office or near a dam) as opposed to sites that are more representative of the larger 

district (Wörlen et al., 1999). Climate regionalisation may, therefore, be a valuable 

technique to enable generalisations to be made about areas on the bases of spatially 

and temporally varying parameters, such as precipitation (Comrie and Glenn, 1998). 

By identifying and simulating homogeneous areas, model applications are simplified 

and regional accuracy could be expected to increase.  

 

Several previous studies have regionalised parts of the South African sugar producing 

region according to climate and soil. Welding and Havenga (1974) and Schulze 

(1983) subdivided South Africa and KwaZulu-Natal, respectively into rainfall zones. 

Dent et al. (1989) noted reasonable agreement between zones derived for KwaZulu-

Natal in the above-mentioned two studies. Dent et al. (1989) continued by 

subdividing South Africa into 712 relatively homogeneous regions for hydrological 

response purposes (cf. Figure 5.1). Subsequent more detailed delimitations have given 

rise to the 712 regions now being regarded as dated (pers comm. Prof. R.E. Schulze, 

University of KwaZulu-Natal, Pietermaritzburg). Camp (1999) subdivided KwaZulu-

Natal into 195 bio-resource units based on climate, soil and topography (cf. Figure 

5.2). Although very comprehensive, Camp’s study excluded the Mpumalanga 

province, therefore not providing a consistent approach throughout the entire area in 

South Africa in which sugarcane is produced. Midgley et al. (1994) derived the 

boundaries of 1947 Quaternary Catchments (QCs) in South Africa. These QCs were 

produced according to topographical and hydrological, rather than climate 

characteristics. However, good relationships may be expected between topography 

and climate. The QCs have formed the basis of many hydrological research studies 

(e.g. Kienzle et al., 1997; Perks, 2001; Taylor, 2001; Chetty et al., 2003), which have 

resulted in high quality and representative climate data for each zone. 

 

The sugarcane producing areas extend over 118 QCs (cf. Figure 5.3). With regard to 

sugarcane related studies, the QCs were the spatial unit for yield simulations (Schulze, 
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1997) as well as for streamflow reduction, irrigation and water use efficiency studies 

(Schulze et al., 1999). 
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Figure 5.1 Relatively homogeneous hydrological response zones according to 

Dent et al. (1989) within the South African sugar industry 
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Figure 5.2 Bio-resource units based on similar soils and climates (Camp, 1999) 

for the sugarcane producing areas in KwaZulu-Natal. The encircled 
area depicts the Midlands North region, where revised homogeneous 
climate zones were based on these units 
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Figure 5.3 Quaternary Catchments (Midgley et al., 1994) within the South African 

sugarcane producing areas 
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The aim of this section of the study is to establish reasonably homogeneous climate 

zones for the sugarcane producing areas of South Africa. The term homogeneous 

implies that zones should, first, be uniform within themselves and, secondly, be 

distinctly different from their neighbours. Specific objectives were to: 

• Derive boundaries for homogeneous climate zones by assessing previously 

derived zones (Figures 5.1 – 5.3) and by consulting with regional extension 

officers, and  

• Quantify the homogeneity of these zones.  

   

Soils within the South African sugar industry are highly variable over short distances 

(Meyer, 1984; Meyer and Wood, 1990) and soil variability was therefore omitted 

from this regionalisation exercise. It was assumed more realistic to represent soils 

through statistical distributions within zones (e.g. Hansen and Jones, 1999). 

 

5.2.1 Methods of Delineating New Climate Zones for the 
Sugarcane Belt 

A template of new zones was based on the boundaries of the relatively homogeneous 

hydrological response zones of Dent et al. (1989), shown in Figure 5.1. These zones, 

however, were not specific to the sugar industry and were cropped to exclude those 

areas where sugarcane was not grown. Zones comprising altitude ranges in excess of 

400 m were further subdivided. This was done to distinguish between temperature 

sub-zones, which may be assumed to be determined mainly by altitude. The climate 

zones were subsequently presented to area extension officers during an intensive 

series of consultations. Extension officers had the opportunity to critique and refine 

subdivisions within their areas of jurisdiction. In the course of refinements they were 

carefully guided not to base their decisions on soils and management issues.  

Generally, the proposed zones were confirmed, but sometimes were subdivided into 

smaller areas. The Midlands North (encircled area in Figure 5.2) and Mpumalanga 

regions were exceptions, as extension officers felt the proposed zones were 

inappropriate. In collaboration with the relevant extension officers, new zones were 

proposed for Midlands North using the KwaZulu-Natal bio-resource units (Figure 5.2, 

Camp, 1999) and zones in Mpumalanga were trimmed to exclude close neighbouring 
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mountain ranges after obtaining high resolution production maps (J. Lambrechts, 

Transvaal Suiker Beperk Milling Company, Malelane). 

 

The newly delineated homogeneous climate zones (HCZ) and the QCs (Figure 5.3, 

Midgley et al., 1994) were then tested for homogeneity. The climatic uniformity 

within HCZs and QCs and the climatic contrast (discrimination) between 

neighbouring HCZs were quantified. This was done by using 1’ × 1’ (i.e. ∼ 1.6 × 1.6 

km) longitude / latitude estimates of long-term mean annual solar radiation (RS in 

MJ.m-2), mean annual precipitation (MAP in mm) and temperature (Schulze, 1997). 

Temperature was represented by long-term mean annual thermal units (HU in °C.d) 

with a base temperature of 10°C. Sugarcane production is known to correlate well 

with HU (Inman-Bamber, 1994; van Antwerpen, 1998), RS and MAP (Inman-Bamber, 

1995). 

 

The climatic uniformity within zones was expressed as the average of the coefficients 

of spatial variation (CV  in %) of the 1’ × 1’ MAP, HU and RS gridded points. A zone 

was regarded suitably uniform when the CV  of the gridded values was less than 10% 

(after Bezuidenhout and Gers, 2002).  

 

The contrast between neighbouring HCZs was quantified by the mean relative 

discrimination of any particular zone X ( XD  in %, Eq. 5.1). A XD  value of 0% 

would imply no climatic difference between a zone and its neighbours, while XD  will 

asymptotically approach 100% as the degree of contrast gets higher. Again, the 

criterion used by Bezuidenhout and Gers (2002) was adopted, which stated that a zone 

was suitably unique if its XD  value exceeded 18%. 
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where Y (1..N) are neighbouring zones to Zone X and YXD ,  is a discrimination index 

between Zone X and Zone Y (Eq. 5.2). 
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where X∂  is the mean distance (Eq. 5.3) between normalised data points in Zone X 

and YX ,∂  is the mean distance between normalised data points in Zones X and Y 

combined.  

 

Mean distance between normalised data points (∂ ), whether contained in one zone 

(i.e. X∂ ) or from two zones (i.e. YX ,∂ ), were calculated using Eq. 5.3. 
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where i and j refer to different normalised data points within one or two zones and 

MAP', HU' and RS' are normalised values according to their range in Zones X and Y 

combined (cf. Eq. 5.4). 

 

For example, 
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i −
=  

 

(5.4)

where MAPmax and MAPmin are the maximum and minimum mean annual 
precipitation data points within Zones X and Y, respectively. 
 

5.2.2 Results and Discussion 
Forty-eight HCZs (cf. Table 5.1 and Figure 5.4) were derived and tested for 

homogeneity and 118 QCs (cf. Appendix B) were tested for uniformity. Testing for 

homogeneity included the calculation of both CV  and XD  values, while uniformity 

testing only included the calculation of CV  values. The mean CV  over all HCZs was 

4.5%, while the mean CV  over all QCs was 6.1%. The fact that QCs subdivided the 

industry into a greater number of, but less uniform, zones signified the importance of 

developing the HCZ approach. It is also noted from Table 5.1 that no CV  value 

exceeded 10% and that no XD  value was below 18%. All the zones were therefore 
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concluded to be sufficiently uniform within themselves, but also adequately different 

from their neighbours. 

 
The HCZs that were derived in this may have value beyond yield forecast 

applications. They may apply to a wide range of climate related applications and 

research efforts, such as extrapolating recommendations from experimental results, 

identifying impact zones of pests and diseases and climate change impacts research.  

 

This study allowed for an expert based approach to delineate HCZs derived primarily 

from the work by Dent et al. (1989). Homogeneous Climate Zones were 

independently verified against interpolated datasets. These interpolated datasets were 

derived using independent variables, such as distance from the sea and altitude. It is 

believed that alternative regionalisation methods other than an expert based method 

would have been based on the same information, therefore limiting an independent 

verification exercise. As in any large industry, land use within the sugarcane 

production areas is not uniform and deep, inaccessible valleys as well as urban areas 

and timber plantations often fragment the sugarcane belt in South Africa. Such areas 

were automatically excluded by the extension officers. Uniformity of areas under cane 

within zones may, therefore, be higher than that established during the assessment. 

The author believes that this approach could only be superseded if detailed land use 

maps and higher resolution climate data were available. 
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Figure 5.4  Homogeneous Climate Zones for the South African sugar industry, with 

zone numbers corresponding with those in Table 5.1 
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Table 5.1 Homogeneous Climate Zones for the sugarcane producing areas of 
South Africa, their areas, the spatial means of gridded values of annual 
thermal time ( HU ), precipitation ( MAP ) and solar radiation ( SR ), 
mean coefficient of variance (CV ), mean relative discrimination ( XD ), 
mean plant available soil water holding capacity (AWC) and mean age of 
cane at harvest 

 

 
 

No. 

 
 

Name 
Area 
(km2)

1 HU
(°C.d)

MAP
    (mm)

SR  

(MJ.m-2) 
CV
(%)

XD
    (%)

 
3AWC  
(mm) 

3Age at 
Harvest 
(months)

1 Komati 1150 4457 584 8599 4.1 42.3 (50)2 (12)2 
2 Nelspruit 523 3493 798 8442 5.3 49.8 (50) (12) 
3 Hectorspruit 99 4310 647 8602 4.2 49.0 (50) (12) 
4 Malelane / Kaapmuiden 198 4130 734 8568 6.0 52.5 (50) (12) 
5 Louws Creek 181 3854 757 8504 5.9 47.8 (50) (12) 
6 Kaalrug / Inala 378 4207 814 8558 7.4 39.3 (50) (12) 
7 Barberton 554 3435 783 8555 6.4 31.6 (50) (12) 
8 Komati Projects 937 4219 671 8475 4.7 35.4 (50) (12) 
9 Makatini Flats 335 4419 576 8208 2.8 49.0 (50) (13) 

10 Pongola 767 4151 627 8496 7.2 45.1 (50) (12) 
11 Mkuzi 611 4145 624 8308 4.9 41.8 (50) (12) 
12 Hluhluwe 364 4348 743 7809 2.8 55.9 100 (50) 13 (12) 
13 Mtubatuba 541 4312 948 7655 2.9 61.0 100 (60) 13 (12) 
14 Mzondeni Strip 517 4267 843 7854 1.8 58.4 100 (60) 13 (12) 
15 Umfolozi Flood Plains 121 4317 1142 7503 2.3 61.8 110 (60) 13 (12) 
16 Melmoth Mist Belt 419 2916 938 7776 6.2 65.4 104 19 
17 Melmoth Hinterland 154 3255 873 7872 4.0 52.1 94 19 
18 Heatonville 746 4117 956 7631 3.4 62.5 110 (50) 13 (12) 
19 Empangeni 827 4180 1168 7384 4.2 61.4 110 (60) 14 (12) 
20 Zululand River Valley 223 3978 792 7696 2.9 73.2 (60) (12) 
21 Entumeni 427 3324 937 7798 7.6 60.3 92 17 
22 Eshowe 474 3541 1079 7530 3.9 69.9 92 14 
23 Emoyeni 485 3975 1234 7303 4.2 62.9 85 15 
24 Muden 62 3068 639 8607 5.8 91.2 (60) (13) 
25 Amatikulu 663 3919 1018 7350 3.5 57.8 75 (60) 13 (12) 
26 Kranskop Mist Belt 278 2505 920 7663 5.9 76.0 104 23 
27 Doornkop 257 3473 1047 7416 5.0 58.9 104 14 
28 New Hanover 458 2764 983 8095 7.8 62.0 110 23 
29 Upper North Coast 616 3830 996 7239 2.4 55.2 85 (60) 14 (12) 
30 Wartburg / Fawnleas 561 2769 870 7884 4.9 59.0 94 23 
31 Upper Tongaat 525 3429 955 7371 5.3 59.9 112 14 
32 Windy Hill Mist Belt 244 2679 985 7728 4.6 56.5 104 23 
33 Lower North Coast 586 3750 974 7206 2.2 50.8 85 (60) 14 (12) 
34 Hilton / Umgeni Valley 174 2967 895 8002 7.0 59.3 97 (60) (12) 
35 Umlaas Road 139 2908 786 7850 2.9 55.1 92 23 (12) 
36 Bainsfield / Richmond 260 2675 891 7892 4.8 55.4 127 18 
37 Tala Valley 86 2986 722 7770 3.7 59.4 (60) (12) 
38 Eston 224 2894 827 7586 3.7 53.3 92 23 
39 Mid Illovo 572 3027 846 7570 6.0 59.4 125 18 
40 Umkomaas 130 3316 774 8066 5.3 70.7 (60) (12) 
41 Illovo 315 3655 969 7106 2.1 65.7 64 14 
42 High Flats 730 2584 817 7681 5.6 70.5 84 20 
43 Dumisa 708 3307 883 7435 4.6 62.0 72 20 
44 Sezela 668 3664 980 7269 3.9 53.4 64 14 
45 Umzimkulu Coastal 527 3597 1079 6920 2.7 57.2 74 14 
46 Paddock / North Bank 557 3279 950 7058 6.1 53.9 82 22 
47 Hlaku / Nqabeni 125 2956 776 7528 2.2 67.3 100 23 
48 Oribi / North Paddock 162 3134 877 7239 5.6 56.7 65 23 

 Mean 430 3552 869 7805 4.5 57.4  
1 Thermal time was calculated with a base daily mean temperature of 10°C 
2 Values in brackets refer to irrigated crops 
3 AWC and age at harvest are discussed in Section 5.3.2 
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5.3 Soil and Crop Management Information for Homogeneous 
Climate Zones 

5.3.1 An Introduction to the Spatial Collation of Soil and Crop 
Management Information 

The Canesim model requires a value for AWC and information on irrigation 

scheduling as well as crop start and end dates. In addition, information on relative 

areas under certain management conditions, as well as areas delivering sugarcane to 

certain mills is required for aggregation purposes. De Jager et al. (1998), Lumsden et 

al. (1998) and Hansen and Jones (1999) point out a wide range of issues that need to 

be considered when information is collated to represent and aggregate regional 

agricultural production. These include the following: 

• Collecting representative model input data for large areas may be costly. 

• Spatial differences in management (e.g. cultivars and planting dates) and 

heterogeneity of soils need to be captured in an attempt to avoid aggregation 

bias. 

• Relative areas of crops under different management (e.g. rainfed vs. irrigated) 

need to be established. 

• Initial soil water content may be based on the end result of a soil water balance 

simulation prior to the planting date. 

• Simulations based on certain input parameters (e.g. AWC and rooting depth) 

may be calibrated against historical regional production to empirically 

improve the model’s accuracy. 

• Regional model applications may often treat individual soil map units as being 

homogeneous, describing the soil by a single set of parameters. This is done 

even though soils within individual map units can often vary remarkably 

(Reybold and TeSelle, 1989) and their model input parameter values are often 

not normally distributed (e.g. Young et al., 1998). 

• Soil specifications derived by experts may be sufficient for purposes of 

forecasting yields, especially if yield is expressed in relative terms (e.g. as a 

percentage of the previous season’s yield). 

• Simulations based on regional mean input parameters may be unrepresentative 

of mean regional production (e.g. Luxmoore et al., 1991). 
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• An alternative to using mean input parameters is to perform Monte Carlo 

simulations using stochastically sampled statistical distributions assumed to be 

representative of input parameters (e.g. Shaffer, 1988; Haskett et al., 1995; 

Hansen and Jones, 2000). 

 

Little of the information required by Canesim exists for HCZs. Regional extension 

officers were therefore consulted to establish estimates of mean crop age at harvest, 

mean AWC, the percentage of total area under irrigation, typical irrigation practices 

and the area within each zone supplying sugarcane to a particular mill. It has been 

acknowledged that simulations based on average management practices and crop 

conditions may be an over-simplification of the real system. Hansen and Jones (1999) 

highlighted many shortcomings in this approach, but also mentioned the cost of 

establishing more representative estimates. Input variables are interdependent. For 

example, irrigation practices may be correlated to the AWC. The above-mentioned 

potential refinements were omitted in this study owing to the magnitude of the data 

gathering exercise required. The potential improvement to forecast accuracy resulting 

from such refinements needs further investigation, but falls outside the scope of this 

study. 

 

5.3.2 Soil and Harvest Age Information 
Lumsden et al. (1998) used estimates of mean AWC to represent soils over relatively 

large areas under sugarcane. In a similar fashion, estimates of mean AWC values were 

collated from regional extension officers for rainfed and irrigated crops within each 

HCZ (Table 5.1). Extension officers in irrigated regions noted that sugarcane rooting 

depths were often limited owing to problems such as soil compaction and water tables 

caused by over-irrigation. Although soils in these regions may have higher AWC 

values than those reflected in Table 5.1, values in the vicinity of 50 mm and 60 mm 

were assumed to be more representative of the true rooting zones of sugarcane under 

irrigation. 

 

Information on typical crop harvest ages at different times of the milling season were 

also collected from extension officers. Crops harvested in the early season (i.e. April 

and May) are normally older than crops harvested towards the end of the season. This 
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is attributed mainly to the fact that early season crops need to wait until the milling 

season has opened, while late season crops are often harvested slightly prematurely to 

avoid the milling off-season. Table 5.1 reflects the mean harvest age of cane over the 

milling season for each HCZ. 

 

5.3.3 Irrigation Information 
Numerous irrigation practices are followed in the South African sugar industry. Few 

of these practices are optimal and crops are often over- or under-irrigated. An 

irrigation strategy that is representative of most practices was carefully established 

after in-depth consultations with extension officers and irrigation experts. According 

to extension officers, a representative strategy would have to allow for frequent over-

irrigation, especially during relatively wet periods in the north (Zones 1 – 18), but 

would also have to allow under-irrigation during hot and dry periods. This was 

represented by an assumed irrigation schedule by which 30 mm of effective irrigation 

would be applied once the soil moisture deficit falls below 30 mm. A minimum 

irrigation cycle of seven days was assumed. This would allow soils with AWC values 

of 50 mm to be over-irrigated at times, but would also allow a gradual depletion of 

soil moisture during hot and dry periods when the net water requirement is higher 

than 30 mm per week. Extension officers were satisfied that, on a large scale, the 

above-mentioned strategy was representative of sugarcane irrigation practices in 

South Africa. 

 

In addition to the above-mentioned irrigation strategy, the effect of water restrictions 

during droughts was also incorporated in some areas. Historic events of water 

restrictions were expressed as a percentage of the non-restricted water quota. This 

percentage was subsequently used to reduce the 30 mm irrigation event on a pro rata 

basis.  

 

Water restrictions in the Pongola area (Zone 10) were determined from river flow 

measurements of the South African Department of Water Affairs and Forestry. The 

Pongola river flow meter is situated downstream of the bulk of irrigated sugarcane in 

this catchment. However, assumptions emanating from the local water board could 

still be applied (pers comm. Mr. F. Cronje, Impala Water Board, Pongola). Water 
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restrictions were assumed using a linear relationship with the river flow rate. 

Available water for irrigation was assumed at 100% while the flow rate exceeded  

10 m3.s-1. Below this value, a linear reduction from 100% to 0% was assumed 

between 10 m3.s-1 and 4 m3.s-1. 

 

Historic records on enforced water restrictions are available for the Mpumalanga 

province for the period 1994 to 2002. This region is served by various rivers and non-

uniform water allocations within homogeneous climate zones may exist. No 

information on water restrictions prior to 1994 is available and, unlike the Pongola 

river, flow data could not be used to estimate water restrictions. No water restrictions 

were consequently assumed before 1994. 

 

5.3.4 Sugarcane Delivery Information 
 

Table 5.2 A summary of mills in the South African sugar industry and a list 
of Homogeneous Climate Zones (HCZs) supplying sugarcane to 
each mill, with mill numbers and HCZs corresponding with those 
in Figure 6.1 

 

No. Mill name HCZ 
1 Komati 1, 8 
2 Malelane 1, 2, 3, 4, 5, 6, 7 
3 Pongola 9, 10, 11 
4 Umfolozi 12, 13, 14, 15, 18 
5 Entumeni 21, 22 
6 Felixton 11, 18, 19, 20, 23 
7 Amatikulu 16, 17, 22, 23, 25 
8 Darnall 25, 27, 29 
9 Gledhow 27, 29, 31, 33 

10 Union Co-op 24, 26, 28, 30, 32, 34, 36 
11 Noodsberg 24, 26, 28, 30, 32, 34 
12 Maidstone 31, 33 
13 Eston 35, 36, 37, 38, 39, 40 
14 Sezela 41, 42, 43, 44 
15 Umzimkulu 45, 46, 47, 48 

 

Estimates of annual areas harvested within each HCZ and allocations of these areas to 

different mills in the vicinity were established from local extension officers and 
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historic harvesting records. Areas within each HCZ were also subdivided into 

irrigated and rainfed crops. Table 5.2 summarises the allocation of HCZs to different 

mills in the industry. It is noteworthy that some HCZs deliver sugarcane to more than 

one mill.  

 

5.4 Discussion and Conclusions 
The South African sugarcane production areas were subdivided into 48 homogeneous 

climate zones to provide simulation units. Climatically, all zones displayed less than 

10% internal variability, but differed by more than 18% from neighbouring zones. 

The new homogeneous climate zones were allocated to traditional mill supply areas to 

enable the aggregation of simulation results to mill scales. 

 

Additional information on mean cane age at harvest and mean total plant available 

soil water holding capacity were collated for each homogeneous climate zone. 

Likewise, a single, but versatile, irrigation strategy was assumed for all sugarcane 

crops under irrigation. The use of means, as opposed to statistical distributions for 

input variables, may, however, over-simplify model results (cf. Hansen and Jones, 

1999) and although it did not form part of this study, further work in this area should 

be encouraged. Information on irrigation water restrictions was included to 

temporarily adjust irrigation strategies in certain areas. This information is still limited 

because of simple conversion assumptions based on streamflow measurements and 

limited lengths of actual records. It may be expected that attempts to simulate river 

flow and water use could enhance the accuracy of simulations in irrigated areas. 

 

Further to the above-mentioned information, the Canesim model also required daily 

climate data for each homogeneous climate zone. The climate data are discussed in 

Chapter 6. 
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6 Climate Data for Homogeneous Climate Zones 

6.1 Introduction 
The previous two chapters provided a crop yield model and homogeneous climate 

zones (HCZ) for sugarcane yield forecasting purposes in the South African sugar 

industry. In addition, agronomic and aggregation information was gathered for each 

HCZ. In Chapter 5 suitable climate data for model simulations were neither assessed 

nor collated. The aim of this chapter was to review the origin of different climate 

datasets, assess the usefulness of these datasets for yield forecasting purposes and 

collate suitable climate data for each HCZ. 

  

Horie et al. (1992) successfully implemented a regional yield forecast system for rice 

in Japan using climate data from 860 stations. While capturing spatial and temporal 

climate variability to this level of detail is ideal, Matthews et al. (2000) warn that such 

intensive networks of climate stations are seldom available in developing countries. 

Alternative methods of capturing climate variability within crop production regions 

may include the use of interpolation techniques, meso-scale General Circulation 

Models (GCMs, e.g. Stern and Easterling, 1999; Eakin, 2000; Stone et al., 2000) and 

remote sensing (e.g. Anon., 1996; Ba and Nicholson, 2001; Dyson et al., 2002). 

 

Point-scale climate data for individual stations should be accurate, representative of a 

larger HCZ and cover a recent period in time before reliable operational yield 

forecasts can be established. Many research studies (e.g. Horie et al., 1992; Lumsden 

et al., 1999) have stressed the importance to use the most recent climate data, since 

the alternative, viz. climate outlooks, are normally expressed in probabilistic terms 

and often have low forecast skills. High quality climate data, nevertheless, remain a 

considerable limitation in regional model applications (Hansen and Jones, 1999; Liu 

and Scott, 2001).  

 

The objectives of this chapter are, first, to review different sources of climate data 

available to the South African sugar industry and, secondly, to compile datasets of 

suitable climate data for the Canesim model for the different Homogeneous Climate 

Zones (HCZ) over the period 1978 to 2002.  
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6.2 A Review of Climate Data Options Available to the South 
African Sugar Industry 

Several methods of collecting, emulating and enhancing climate data exist. These 

include the use of 

• Date from climate and rainfall stations, 

• Empirical interpolation and substitution methods, 

• Stochastic weather generators, 

• GCM down-scaling and 

• Remote sensing. 

 

Each of these methods offer solutions to different problems, but also have inherit 

limitations. This introduction briefly examines the different climate data options 

available to the South African sugar industry. 

 

6.2.1 Use of Data from Climate and Rainfall Stations 
The South African Sugarcane Research Institute (SASRI) has a well established 

network of manual and automated climate and rainfall stations (e.g. Inman-Bamber, 

1995; Singels et al., 1999b). In most cases, daily climate data are processed on a 

monthly basis, causing a lag of up to six weeks before quality controlled data are 

available for modelling purposes (Bezuidenhout and Singels, 2001). In addition, other 

organisations such as the South African Weather Service and the Agricultural 

Research Council, as well as many smaller private corporations, also record climate 

data within, or in close proximity to, sugar producing areas. The School of 

Bioresources Engineering and Environmental Hydrology (BEEH) at the University of 

KwaZulu-Natal in Pietermaritzburg has collated temperature and rainfall data from all 

the above-mentioned organisations into the single largest and most representative 

climate database for South Africa (Lynch, 2004; Schulze and Maharaj, 2004). 

Extensive quality control has been performed and missing data infilling techniques 

applied (e.g. Smithers and Schulze, 2000; Lynch, 2004; Schulze and Maharaj, 2004) 

to enhance data for applications in models.  

 

Climate station data usually form the basis for regional model applications, but may 

often be limited by their point-scale representivity, calibration inconsistencies and 
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missing data (Downing and Washington, 1997; Hunt et al., 1998; Hansen and Jones, 

1999). Point-scale rainfall measurements may, in particular, be misrepresentative of a 

larger area. Boughton (1981) reported measurement errors of up to 20%, while 

Hansen and Jones (1999) and Wilby and Wigley (2000) indicated that, over an area 

with a sparse network of stations and especially in summer rainfall areas with strong 

convective activity, the direct use of rainfall station data was likely to underestimate 

magnitudes and also frequencies of individual events. This may result in incorrect 

estimates of soil moisture content (de Wit and van Keulen, 1987; Hansen and Jones, 

1999), which affects the simulation accuracy of crop yields. A proposed method to 

alleviate the problem would be to increase the number of rainfall recording sites and 

to perform multiple simulations within each HCZ. Other climate parameters, such as 

temperature and solar radiation, may be assumed to be spatially more uniform than 

rainfall and a one station could be used to represent the whole HCZ. 

 

6.2.2 The Application of Empirical Interpolation and Substitution 
Methods 

Interpolation of climate values between stations with data and the use of surrogate 

values derived from other observed climate parameters present favourable 

opportunities to fill in missing data, both spatially and temporally. Spatial 

interpolation can be achieved through techniques such as principal components 

analyses (e.g. Boyer and Feldhake, 1994) and geostatistical methods (e.g. Bland and 

Clayton, 1994; Söderström and Magnusson, 1995). Hansen and Jones (1999) and 

Lynch (2004) concluded that inappropriate results were achieved during attempts to 

spatially interpolate daily rainfall data. However, while assessing mean and inter-

annual variability in simulated yields, Hansen and Jones (1999) concluded that 

simulations based on interpolated climate values might be more representative in 

assessing regional crop yields. Schulze and Maharaj (2004) have interpolated daily 

temperature values over South Africa for a 50 year period to a 1’ × 1’ latitude × 

longitude resolution (i.e. on a grid of ∼ 1.6 km × 1.6 km).  
 

Techniques to calculate surrogate values for missing data have been developed for 

rainfall, temperature, solar radiation and evapotranspiration. These techniques 

intercalate data that are temporally fragmented. Lumsden et al. (1998) and Smithers 
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and Schulze (2000) successfully filled in missing rainfall data using inverse distance 

weighting and other statistical methods, respectively. Wörlen et al. (1999) and 

Schulze and Maharaj (2004) discuss various issues such as adiabatic gradients and 

katabatic temperature drainage, as well as the role of cloud cover, that need to be 

considered when attempting to fill in missing temperature data. Bristow and Campbell 

(1984), Hunt et al. (1998) and Liu and Scott (2001), among others, assessed the use of 

empirical routines for estimating missing solar radiation data, using substitution from 

nearby stations and diurnal temperature values as main input parameter. Hunt et al. 

(1998) and Zelenka et al. (1998) identified a non-linear decline in accuracy when data 

from stations with increasing distance were used as substitutes. Liu and Scott (2001) 

emphasised the importance of using neighbouring stations in similar climatic zones 

for substituting solar radiation and also noted distinct differences in the dynamics at 

coastal sites as opposed to those at inland sites. Hargreaves and Samani (H&S, 1985) 

and Linacre (1991) derived routines to estimate reference potential evaporation using 

observed temperature, calculated extraterrestrial solar radiation, latitude and altitude 

as inputs. The H&S equation has received significant recognition, including support 

by the FAO (Allen et al., 1998). 

 

6.2.3 Emulating Climate Variables using Stochastic Weather 
Generators  

Stochastic weather generators (e.g. Richardson, 1981; Zucchini and Adamson, 1984; 

Richardson, 1985; Hansen, 1999) can emulate climate statistics at a specific location 

and output will include typical frequencies of short and long-term dry and wet, as well 

as cold and hot spells. These tools are valuable for long-term model applications on 

risk assessments and benchmarking, but are unsuitable when specific historic periods 

need to be simulated (Sharpley and Williams, 1990; Schulze, 1995; Liu and Scott, 

2001). 

 

6.2.4 Use of Downscaled Results from General Circulation Models 
Eakin (2000) and Stone et al. (2000) used GCM output to generate climate 

information for agricultural needs. GCMs have coarse spatial resolutions and perform 

reasonably well in simulating inter-annual climate variability at sub-continental scales 

(Bates et al., 2000). To enhance the usefulness of GCM output, meso-scale 
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atmospheric models and empirical downscaling techniques have been developed to 

estimate regional and local climate values (Wilby et al., 1998; Stern and Easterling, 

1999; Bates et al., 2000). These techniques may rely on regression analyses, canonical 

correlation analyses, statistical analogues, artificial neural networks and the use of 

topography and weather classification schemes (Hewitson and Crane, 1996; Bates et 

al., 2000). Unfortunately, as noted by Mearns et al. (1995, cited by Hansen and Jones, 

1999), GCMs tend to over-predict rainfall frequency and under-predict rainfall 

intensity. Hewitson and Crane (1996) and Wilby and Wigley (2000) have identified 

fundamental limitations to downscaling techniques, which include assumptions that: 

• Regional climate is exclusively driven by synoptic scale systems, 

• GCMs provide enough variables at the right resolution to represent synoptic 

systems and 

• Statistical relationships used for downscaling do not change over time (e.g. 

under conditions of climate change). 

 

6.2.5 Remote Sensing Applications for Producing Climate Data 
Remote sensing techniques have been used to estimate rainfall, solar radiation and 

evapotranspiration. Meteosat-based observations of Cold Cloud Duration (CCD) have 

been used to identify wet spells over large areas. The observations are, however, 

unsuitable for establishing daily rainfall patterns at resolutions less than 50 km2 

(Anon., 1996). Arkin and Meisner (1987) and Xie and Arkin (1997) developed 

improved techniques to estimate rainfall from GOES satellite observations of CCD. 

These routines did not perform well when thick cirrus clouds were present and when 

precipitation originated from warm clouds (Xie and Arkin, 1997). Nearly 70% of 

sugarcane production in South Africa occurs in close proximity to the KwaZulu-Natal 

coastline, which is an area synonymous with warm cloud precipitation. Therefore, it 

was assumed that GOES-based observations of CCD may not reflect actual rainfall 

satisfactorily within the study area. Another method of remotely sensing precipitation 

is through the use of radar. While a network covering 70% of South Africa exists 

(Banitz, 2001), only radar data collected at the Durban International Airport 

(29°59’5’’S, 30°57’30’’E) are applicable to the sugar producing areas in the country 

(van Heerden and Steyn, 1999). Similar to problems in CCD, radar observations are 

limited when rainfall originates from low coastal clouds on the KwaZulu-Natal 
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coastline (pers comm. Dr. D.E. Terreblanche, South African Weather Service, 

Bethlehem). 

 

Zelenka et al. (1998) and Roebeling et al. (1999) established methods of deriving 

estimates of solar radiation using satellite data. However, these methods are laborious 

and require high levels of calibration and image refinement and analyses before data 

can be made available for crop modelling purposes (pers comm. Dr. A. Zelenka, 

Swiss Meteorological Institute, Zürich, 2001). Roebeling et al. (1999) have also 

derived a method of estimating evapotranspiration from Meteosat data. 

 

6.3 The Derivation of Climate Data for Crop Yield Modelling 
Purposes 

6.3.1 Background 
Two comprehensive climate datasets that may be suitable for yield forecasting 

purposes were identified. The first, named the BEEH climate dataset, was compiled 

using the rainfall and temperature databases housed at the University of KwaZulu-

Natal (cf. Section 6.2.1). Although this dataset could be expected to contain data from 

a large network of climate stations in the sugarcane belt, lack of funding has 

prevented the BEEH database from being updated beyond 2000. Data from climate 

stations managed by SASRI (cf. Section 6.2.1), in contrast, are frequently updated as 

they are used in a wide range of operational applications (e.g. Singels et al., 1999b). A 

second dataset, named the SASRI climate dataset, therefore contained data originating 

exclusively from the climate stations managed by SASRI. It was assumed that, 

because of its need to be available in near real-time for forecasting purposes, an 

operational yield forecast system would be based on the SASRI climate dataset. The 

BEEH dataset may, however, be used to point out limitations in the current SASRI 

climate station network. 

 

6.3.2 The BEEH Climate Dataset 
A single representative data record was derived from the BEEH climate database for 

each HCZ from January 1978 to December 1999. This was based on the most 

centrally located rainfall station and a spatially interpolated centroid temperature 

record. A BEEH climate record therefore did not reflect climate at any specific 
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geographical point. All records were complete since infilling techniques had been 

applied prior to the data extraction (Lynch, 2004; Schulze and Maharaj, 2004).  

 

The Canesim yield model requires reference potential evapotranspiration for 

sugarcane (ECref in mm.d-1), which is defined as the daily evaporative demand for a 

three metre high sugarcane canopy under no water stress. This variable could not be 

calculated by the conventionally used Penman-Monteith method as applied by 

McGlinchey and Inman-Bamber (1996) since no estimates of solar radiation and wind 

speed were available in the BEEH climate database. The H&S equation (Eq. 6.1, 

Hargreaves and Samani, 1985; Allen et al., 1998) and that by Linacre (Eq. 6.2, 

Linacre, 1991; Schulze, 1995), provide alternative ways of estimating reference 

evapotranspiration (ETO in mm.d-1). In the H&S equation 
 

 ( )( ) amnmxmeanO RTTTET 5.08.170023.0 −+=  (6.1)

where Ra is extraterrestrial solar radiation (in MJ.m-2.d-1) and Tmean, Tmx and Tmn (in 

°C) are the daily mean, maximum and minimum temperatures, respectively. In the 

Linacre (1991) equation 
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  (6.2)
where z is altitude above sea level (in m), φ is latitude (in °, with positive values 

indicating the Northern Hemisphere), u is mean wind speed at 2 m (assumed constant 

at 2 m.s-1) and 
 

 ( ) 9.1035.053.037.00023.0 −+−++=− ramnmxmeandewmean TTTTzTT  (6.3)

where Tdew is dew point temperature (in °C) and Tra (in °C) is the range between long-

term mean air temperature of the hottest and coldest months in the year. 

 

Allen et al. (1998) noted that the H&S equation may need a linear adjustment at 

different locations. Likewise, an adjustment was required to convert potential 

evaporation to reference sugarcane evapotranspiration. It should be acknowledged 

that non-linear relationships exist when vegetation height changes via the theory of 

zero plane displacement (Calder, 1992; Shuttleworth, 1992). However, under fixed 

canopy height specifications, such as assumed for ECref , a linear relationship between 

potential grass and sugarcane evapotranpiration was assumed. Schulze et al. (1999) 
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derived adjustments to the Linacre equation in the sugarcane belt of South Africa. For 

this study data from 15 Automatic Weather Stations (AWS) situated in the sugarcane 

belt (cf. Table 6.2) were used to relate ETO values derived by the H&S and Linacre 

equations to ECref values derived by the Penman-Monteith equation (McGlinchey and 

Inman-Bamber, 1996). A cross validation procedure was performed at each site. This 

consisted of  

• an independent regression fit between the results of the H&S and Linacre 

equations and ECref using data records from 14 sites and  

• subsequently performing a verification at the remaining site using the afore-

mentioned regression coefficients.  

 

A RMSE and bias error (in mm.d-1) were calculated for each site (cf. Table 6.2). 

 

6.3.3 The SASRI Climate Dataset 
Climate stations managed by SASRI (cf. Table 6.1 and Figure 6.1) generally record 

daily rainfall, solar radiation (or sunshine hours), relative humidity at 8:00 and 14:00 

(alternatively, dry and wet bulb temperatures), wind run and minimum and maximum 

temperatures. The methods described by Spitters et al. (1986) and Allen et al. (1998) 

are used to convert measurements of daily sunshine hours and dry and wet bulb 

temperatures to Photosynthetically Active Radiation (PAR in MJ.m-2.d-1) and relative 

humidity, respectively. Potential sugarcane reference evapotranspiration was 

subsequently calculated by the Penman-Monteith equation as used by McGlinchey 

and Inman-Bamber (1996). In addition, data from several rainfall stations within 

given HCZs where rainfed sugarcane was cultivated, were also included. A summary 

of these rainfall stations is supplied in Appendix C.  

 

Data records from both climate stations and rainfall stations were often fragmented 

owing to one or more of the following reasons: 

• Recordings at climate sites were discontinued, 

• Theft and technical problems with instrumentation caused certain parameters 

to be incorrect or missing, 

• Manual measurements were taken on weekdays (Monday – Friday) only, and 

• Records for an entire month went missing in the mail. 
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Table 6.1  A summary of climate stations managed by the South African Sugarcane 
Research Institute at different locations in South Africa. Site numbers 
coincide with those in Figure 6.1 and provide approximate locations of 
each station. In some cases (e.g. Site 4), more than one station existed in 
close proximity to each other 

Station name Site Station details    (comment) 
Tenbosch 1 1978 – 1995  
Komati (AWS) 2 1996 – 2002 (data problems in 1997) 
Amaxala (AWS) 2 2001 – 2002  
Mhlati 3 1978 – 1998 & 2000 – 2002 (AWS) 
Kaalrug 4 1978 – 1993 (data often fragmented) 
Inala (AWS) 4 2000 – 2002 
Makatini 5 1978 – 1999 (data often fragmented) 
Pongola 6 1978 – 2002 & 1997 – 2002 (AWS) 
Glenpark 7 1978 – 1996 (few solar radiation data) & 1997 – 2002 (AWS) 
Riverview 8 1978 – 2002 (solar radiation terminated in 1992) 
Monzi (AWS) 9 1997 – 2002  
Dangu (AWS) 8 2000 – 2002  
Entumeni 10 1978 – 2002  
Mtunzini 11 1978 – 1999  
Felixton 12 1987 – 2002 
Heatonville (AWS) 13 1998 – 2002  
Amatikulu 14 1998 – 2002  
Doornkop 15 1978 – 1997  
Glendale 16 1978 – 2002 
Seven Oaks 17 1978 – 2002 
Jaagbaan 18 1978 – 2002 
Bruyns Hill (AWS) 19 1997 – 2002 
Darnall 20 1978 – 2002  
Gledhow 21 1996 – 2002 
Tongaat 22 1978 – 2002  
Mt. Edgecombe 23 1978 – 2002 (manual & AWS) 
Crammond 24 1978 – 2002 (no wind speed) 
Powerscourt 25 1978 – 1996 
Umbumbulu (AWS) 25 1997 – 2002 (long period with missing data: 1999 – 2001) 
Eston (AWS) 26 1997 – 2002  
Beaumont 26 1984 – 1995 
Thornville 27 1984 – 1996  
Richmond (AWS) 28 1997 – 2002  
Esperanza 29 1978 – 2002 (solar radiation data terminated in 1995) 
Sezela 30 1978 – 2002  
Umzimkulu 31 1990 – 2002  
Paddock 32 1983 – 1994 (relative humidity problems) 
AWS: Automatic Weather Station 

 
A complete climate record for most HCZs from 1978 to 2002 was compiled using the 

data from different available SASRI climate stations shown in Table 6.1. In most 

cases, data from more than one climate station were carefully combined according to 

the procedure explained below. Special attention was given to representivity and 

notable trends between neighbouring climate stations were first removed before data 

were combined. For each HCZ a day-to-day procedure was used to assess pre-selected 
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station records. Stations were ranked and data were selected from the station with the 

highest rank, i.e. the one containing the most complete record for the day. Rainfall 

station data were not combined in a similar fashion, but fewer simulations were 

carried out when rainfall data were unavailable. 
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Figure 6.1  The distribution of homogeneous climate zones, climate stations and 

sugar mills in the South African sugarcane production areas 
 

6.4 Results  
Table 6.2 summarises results of the linear relationship (offset and slope coefficients) 

and cross validations that were performed to assess the suitability of the Hargreaves 



 61

and Samani (H&S, 1985) and Linacre (1991) equations. Although unexplained, it is 

noted that the slope (m) and offset (c) coefficients deviated significantly from the 1:1 

line for both equations. Root mean square error values indicate that ECref was 

estimated more accurately by the H&S equation at 11 of the 15 sites. The Linacre 

equation did, however, perform better at most inland sites. Bias errors associated with 

the two equations were less distinct. It was concluded that the H&S equation was 

generally more appropriate to estimate ECref at different locations in the South African 

sugar industry. The record set of each homogeneous climate zone was enhanced 

accordingly by applying the H&S equation in conjunction with a linear correction 

using values of -0.49 and 0.44 (cf. Table 6.2) as offset and slope coefficients, 

respectively. 

 

Table 6.2  Cross validations reflecting the linear relationship (c=offset, m=slope) and 
independent verification results between reference sugarcane 
evapotranspiration (McGlinchey and Inman-Bamber, 1996) and reference 
short grass evapotranspiration according to Hargreaves and Samani (1985) 
and Linacre (1991), with site numbers corresponding with those shown in 
Figure 6.1 

   Hargreaves and Samani (1985) Linacre (1991) 

 
 

Site 

Independent 
regression results 

excluding the 
particular site 

Verification 
results using the 

independent 
regression (mm) 

Independent 
regression results 

excluding the 
particular site 

Verification 
results using the 

independent 
regression (mm) 

No. Name 

 
 
 

Number 
of data 
points c m R² Bias RMSE c m R² Bias RMSE 

1 Tenbosch 918 -.44 .44 0.56 -.12 1.012 1.57 1.36 0.45 -.49 1.467 
2 Amaxala 1877 -.45 .44 0.57 -.33 1.367 1.60 1.36 0.46 -.72 1.730 
3 Mhlati 948 -.50 .44 0.57 .43 1.151 1.62 1.38 0.46 .17 1.419 
4 Inala 754 -.48 .44 0.57 .74 1.105 1.61 1.38 0.46 .53 1.309 
6 Pongola 1558 -.50 .44 0.57 -.05 1.088 0.65 1.39 0.46 -.11 1.362 
7 Glenpark 2051 -.44 .44 0.57 .15 1.249 1.61 1.38 0.46 -.14 1.520 
8 Dangu 1055 -.47 .44 0.57 .35 1.140 1.61 1.38 0.46 .32 1.406 
9 Monzi 1713 -.47 .44 0.58 .28 1.263 1.61 1.38 0.46 .12 1.432 

13 Heatonville 1785 -.48 .44 0.58 -.36 1.657 1.52 1.35 0.45 -.23 1.647 
19 Bruyns Hill 1721 -.51 .44 0.59 -.55 2.007 1.63 1.38 0.46 .07 1.950 
22 Tongaat 810 -.47 .44 0.58 .34 1.179 1.63 1.38 0.46 -.01 1.468 
23 Mt. Edgecombe 1548 -.47 .44 0.57 -.20 1.049 1.66 1.38 0.46 -.31 1.423 
25 Umbumbulu 1226 -.49 .44 0.57 .08 1.196 1.64 1.39 0.46 .23 1.349 
28 Richmond 2085 -.58 .45 0.58 -.24 1.450 1.65 1.39 0.45 .13 1.347 
38 Eston 1867 -.58 .45 0.59 -.12 1.504 1.66 1.40 0.46 .24 1.410 

 Mean / Total 21916 -.49 .44 0.58 .03 1.294 1.55 1.38 0.46 -.01 1.482 
 

Table 6.3 reflects the way in which climate records were compiled using the SASRI 

climate stations. Zones 10, 21 and 25 contained adequate data from a single 

representative climate station within the respective zone. Values for all other zones 

were compiled from data that were either incomplete or that originated out of 

neighbouring zones. No suitable data were collected by SASRI for Zones 24, 37 and 
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40. These zones represent sugarcane producing areas under irrigation that are situated 

in deep valleys in the midlands of KwaZulu-Natal.  
 

Table 6.3 Time lines for each Homogeneous Climate Zone (HCZ), illustrating 
which climate stations’ data were used to complete each record set, with 
climate station numbers corresponding with those given in Table 6.1 

HCZ ‘78 ‘80 ‘82 ‘84 ‘86 ‘88 ‘90 ‘92 ‘94 ‘96 ‘98 ‘00 ‘02 
1 ├──────────────────1───────────────────┼───────2───────┤ 
2 ├────────────────────────3─────────────────────┼2┼──3──┤ 
3 ├────────────────────────3─────────────────────┼2┼──3──┤ 
4 ├────────────────────────3─────────────────────┼2┼──3──┤ 
5 ├────────────────────────3─────────────────────┼2┼──3──┤ 
6 ├──────────────────────4 & 3───────────────────┼2┼4 & 3┤ 
7 ├────────────────────────3─────────────────────┼2┼──3──┤ 
8 ├──────────────────1───────────────────┼───────2───────┤ 
9 ├───────────────────────5───────────────────────┼──6*──┤ 
10 ├───────────────────────────6──────────────────────────┤ 
11 ├───────────────────────────6──────────────────────────┤ 
12 ├─────────────────7 & 6*───────────────────┼─────7─────┤ 
13 ├──────────────8──────────────┼─8 & 11*──┼──9──┼───8───┤ 
14 ├──────────────8──────────────┼─8 & 11*──┼──9──┼───8───┤ 
15 ├──────────────8──────────────┼─8 & 11*──┼──────9──────┤ 
16 ├──────────────────────────10──────────────────────────┤ 
17 ├──────────────────────────10──────────────────────────┤ 
18 ├────────10────────┼───────10 & 12─────────┼────13─────┤ 
19 ├────────10────────┼───────10 & 12─────────┼────13─────┤ 
20 ├────────10────────┼───────10 & 12─────────┼────13─────┤ 
21 ├──────────────────────────10──────────────────────────┤ 
22 ├──────────────────────────10──────────────────────────┤ 
23 ├──────────────────────11─────────────────────────┼─14─┤ 
24 ══════════════ No Data ══════════════ 
25 ├──────────────────────────14──────────────────────────┤ 
26 ├──────────────────────────10──────────────────────────┤ 
27 ├───────────────────────15 & 16────────────────────────┤ 
28 ├────────────────────17 & 18───────────────┼──17 & 19──┤ 
29 ├────────────────20────────────────┼─20 & 16──┼───21───┤ 
30 ├─────────────────────18───────────────────┼──18 & 19──┤ 
31 ├───────────────────────16 & 15────────────────────────┤ 
32 ├─────────────────────18───────────────────┼─────19────┤ 
33 ├─────────────────────22───────────────────┼──19 & 23──┤ 
34 ├────────────────────24 & 18───────────────┼──24 & 19──┤ 
35 ├────25─────┼─────────────26 & 27──────────┼─────26────┤ 
36 ├────25─────┼─────────────26 & 27──────────┼─────28────┤ 
37 ══════════════ No Data ══════════════ 
38 ├────25─────┼───────────26─────────────┼27─┼─────26────┤ 
39 ├──────────────────25*─────────────────┼27─┼───25───┼26┤ 
40 ══════════════ No Data ══════════════ 
41 ├──────────────────29──────────────────┼────29 & 30*───┤ 
42 ├──────────────────25*─────────────────┼27─┼───25───┼26┤ 
43 ├──────────────────29──────────────────┼────29 & 30*───┤ 
44 ├───────────────────────30 & 29*───────────────────────┤ 
45 ├────────30 & 29*────────┼────────31 & 30 & 29*────────┤ 
46 ├───25───┼────────────32*───────────┼25┼31┼──25 & 26*──┤ 
47 ├───25───┼────────────32*───────────┼25┼31┼──25 & 26*──┤ 
48 ├───25───┼────────────32*───────────┼25┼31┼──25 & 26*──┤ 

* Denotes that some parameters in the source data were linearly adjusted before adding it to the record. 
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6.5 Discussion and Conclusions 
It may be concluded that various sources of climate data need to be evaluated and 

prioritised. Climate station data have relatively long records and therefore form a 

sound basis for long-term simulations. Empirical enhancements to climate station 

data, either through interpolation or substitution may, however, be more 

representative of larger areas. With the exception of radar-based rainfall information, 

GCM and satellite derived remote sensing technologies still seem more laborious and 

coarser in their assumptions to represent high spatial resolutions of climate and its 

variability (cf. Sections 6.2.4 & 6.2.5). These technologies should, nevertheless, not 

be discarded before a thorough investigation into their accuracy and representivity has 

been completed. That, however, falls outside the scope of this study. The use of 

stochastic weather generators is statistical and therefore inappropriate for forecasting 

yields for specific periods. 

 

Two climate datasets for HCZs were compiled in this chapter. The first, viz. the 

BEEH climate dataset, contained rainfall and temperature records from a 

comprehensive database from 1978 to 1999. Reference potential evapotranspiration 

for sugarcane was calculated using the Hargreaves and Samani (1985) equation. The 

BEEH dataset has not been updated since 2000 and therefore lacks the ability to be 

used for operational yield forecasting purposes. The second dataset, viz. the SASRI 

climate dataset, has been kept up to date, but lacks representative climate stations in 

some HCZ. The above-mentioned data were obtained from climate station records 

that often required enhancement by interpolation and substitution techniques. Chapter 

8 explains in more detail how climate data from these two sources were assessed. 

 

In Chapter 7 climate forecasting and the adoption of seasonal rainfall outlook 

information for sugarcane yield forecasting are reviewed. The Canesim model-based 

yield forecast system for the South African sugar industry is also configured using 

information as described in Chapter 5, as well as the climate data collated in this 

chapter. 
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7 Seasonal Rainfall Outlooks and the Configuration 
of the Canesim Yield Forecast System  

7.1 Introduction 
A forecast of sugarcane yield relies heavily on two components. First, it is important 

to estimate the current status of the crop and secondly, it is important to project yields 

into the future using a number of probable trajectories. Remote sensing (e.g. King and 

Meyer-Roux, 1990; Gadekar, 1998), field scouting and climate data applied in 

conjunction with yield models (e.g. Lumsden, 2000; Matthews et al., 2000; 

Promburom et al., 2001) have been used to estimate the current status of the crop. In 

Chapters 4 and 6 a suitable South African sugarcane yield model was selected and the 

collection of climate data for the region was discussed, respectively. This chapter 

describes the configuration of crop yield simulations with the Canesim model in more 

detail and reports on the methods used to incorporate seasonal rainfall outlook 

information into these simulations. 

 

Forecasts into the future can follow a long-term mean approach or, alternatively, 

additional knowledge may be used to assume future scenarios that may deviate from 

the long-term mean. The forecast skills of climate outlooks are likely to increase as a 

result of improved understanding and enhanced numerical modelling of prevailing 

ocean-atmosphere systems (Cane, 1999; Stern and Easterling, 1999). Various studies 

have shown the potential value of climate indicators and outlooks for agricultural 

yield forecasts (e.g. de Jager et al., 1998; Jury, 1998; Singels and Bezuidenhout, 

1999; Lumsden, 2000; Potgieter et al., 2002). In all these cases climate uncertainty 

was, as can be expected, simplified to a manageable number of inputs and outputs. 

Researchers are likely to reduce the complexity of climate driving factors, such as 

trade winds and Sea Surface Temperatures (SST), to phases and indices, such as the 

SOI and anomalies thereof (Stone and Auliciems, 1992). Likewise, future climate 

scenarios are often reduced to a manageable number of discrete outcomes, such as 

selecting a few analogue seasons from the history of observations. These approaches 

are practical and valuable since they simplify a system which, to some extent, can not 

currently be simulated owing to its complexity. However, it is anticipated that 

different approaches may have different levels of success and a review of these 

methods is therefore presented. 
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Yield models used for yield forecasts, therefore, need to be configured in such a way 

that neither accuracy is sacrificed nor uncertainty is over- or under-estimated. Many 

different combinations of linking climate data, management data and future climate 

scenarios may be evaluated within a yield forecast system. Likewise, different 

seasonal climate outlooks and interpretations of these climate outlooks may influence 

yield forecast skills.  

 

This chapter has two objectives. The first is to review general methodologies that 

form the basis of seasonal climate outlooks and to investigate the manner in which 

climate indices and outlooks are imported into yield forecast systems. The second is 

to derive a simple, but scientifically sound, configuration of input data and rainfall 

outlook information for a regional Canesim model-based sugarcane yield forecasting 

system in the South African sugar industry. It was envisaged that a thorough 

evaluation of a single, well contemplated configuration would illustrate certain 

advantages and constraints of the system developed, which could be further 

researched in future investigations. 

 

7.2 A Review of Seasonal Climate Outlooks and their 
Adoption for Yield Forecasts 

Monthly seasonal climate outlooks by the South African Weather Service (SAWS) 

have been compiled using a multi-faceted approach. A combination of outputs from 

statistical (Landman and Mason, 1999) and numerical models (Landman et al., 2001) 

were compared and a careful expert-based synthesis was derived to produce final 

outlooks. Numerical model outputs include simulation results from the Climate 

Systems Analysis Group (CSAG, University of Cape Town, South Africa), the 

European Centre for Medium-Range Weather Forecasts (ECMWF, Reading, UK) and 

the International Research Institute for Climate Prediction (IRI, Columbia University, 

USA). SAWS outlooks are prepared for total rainfall and mean temperature for the 

ensuing three months and for three to six month lead times. Expected occurrences, 

derived by consensus using the combination of sources of information given above, 

are communicated by stating the probability of receiving above-, near- and below-

normal rainfalls and temperatures for broad regions covering southern Africa. 
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Various other statistical climate forecasting models have been developed for southern 

Africa. Jury (1998) and Walker (1990), for example, derived statistical relationships 

between oceanic parameters and climate in South Africa. However, Downing and 

Washington (1997) regard statistical models as the most basic methods for making 

seasonal forecasts. General circulation models, which include more mechanistic 

descriptions of ocean-atmosphere dynamics,  have become a norm for forecasting 

future climate (e.g. Stern and Miyakoda, 1995).  

 

Nicholls (2000) notes that as a consequence of the increasing availability of climate 

forecasts from both statistical and modelling approaches, there is a necessity to adopt 

objective synthesising techniques. Although such techniques exist (e.g. Thompson, 

1977; Winkler and Makridakis, 1983), Nicholls (2000) points out that few climate 

forecasters have been implementing them. In contrast, Mains (1996, cited by Nicholls, 

2000) showed that subjective synthesising techniques often lead to conservative 

outlooks, and that individuals often did not handle dependence between different 

forecasts correctly. These authors suggest that consensus derived and subjectively 

synthesised climate outlooks, such as the SAWS outlook, may be sub-optimal.  

 

In the South African sugar industry, Everingham et al. (2002b) used a case study to 

demonstrate the strengths and weaknesses of skillful rainfall outlooks in the context of 

yield forecasts. Lumsden et al. (1999) assessed the accuracy of SAWS outlooks by 

computing the frequencies of hits and misses of a forecast. Lumsden et al. (1999) 

concluded that the outlooks were accurate only 33% of the time. Potgieter et al. 

(2003), however, criticised this type of approach since climate outlooks should firstly 

not be categorised and secondly, should be regarded as probabilistic and therefore not 

be either right or wrong. Climate outlooks should not be taken as real images of the 

future, but as a means of statistically reducing a priori uncertainty (Todini, 1999). 

 

Although climate outlook information has been adopted in numerous ways to enhance 

decision making, systems that link the future to likely analogue periods in the past 

have become increasingly utilised in agriculture (Everingham et al., 2002b). This is 

mainly so because historical values of daily precipitation, solar radiation and 

temperature can be made available for model simulations. Examples of such systems 

have been described by Hodges et al. (1987), Meinke and Hammer (1997), de Jager et 



 67

al. (1998), Lumsden et al. (1999), Hansen et al. (2001) and Potgieter et al. (2003). In 

these studies climate outlooks and indices, such as the SOI, were used to select more 

than one suitable analogue from the historical record. Model simulations based on 

several analogue seasons result in statistical distributions of simulated yields and 

economic outcomes, which facilitates a probabilistic interpretation of the forecast 

(Hansen, 2002). Although analogue-based yield forecast routines seem feasible, 

Hammer (2000b) and Antony et al. (2002) have emphasised the importance for 

researchers and climate forecasters to embark in participatory research in order to 

optimally enhance forecasts in the future. 
 

7.3 System Configuration 
An array of nine sugarcane crops, each harvested in a different month (April – 

December), was configured for a milling season. Collectively, these nine crops were 

subject to the typical management, soil and irrigation inputs derived for a particular 

HCZ in Chapter 5. Crops were of similar age and initiated in different consecutive 

months, thus reflecting a degree of inter-seasonal temporal variability. These arrays 

were configured for irrigated and rainfed crops, for each season from 1980 to 2002 

and within each of the HCZs. This produced simulation configurations for 4 950 

irrigated crops (9 crops × 25 zones × 22 seasons) and 6 534 rainfed crops (9 crops × 

33 zones × 22 seasons).  

 

The above-mentioned configurations were linked separately to the BEEH (1978 - 

1999) and SASRI (1978 - 2002) climate datasets (cf. Chapter 6). For the SASRI 

climate dataset, additional crop arrays were configured for those HCZs in which more 

than one rainfall record existed (cf. Appendix C). In these cases temperature and 

evapotranspiration were assumed homogeneous within the HCZ. It should also be 

noted that Zones 24 (Muden), 37 (Tala Valley) and 40 (Umkomaas) had no 

representative climate data within the SASRI dataset and long-term mean yields of 

108 t.ha-1 were assumed for all these crops. This value was based on information 

gathered from regional extension officers and, based on model verifications, was 

inflated by 20% to include an average model bias.  
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The SAWS seasonal rainfall outlook was used to select either nine or ten suitable 

analogue seasons from each HCZ’s climate history. Rainfall over a three-month 

period was accumulated for each season from 1980 to 1999. The three-month period 

coincided with the lead time of the SAWS outlook. Seasons were subsequently ranked 

from the driest to the wettest and were subdivided into three equal categories, namely 

below-normal (1st – 33rd percentile interval), near-normal (34th – 66th percentile 

interval) and above-normal (67th – 100th percentile interval). Thereafter, a nine or ten 

analogue seasons were selected from the midpoints of each category, these being at 

the 17th, 50th and 84th percentile, respectively. The number of seasons selected from 

each category coincided with the probability issued for the equivalent category in the 

SAWS seasonal rainfall outlook. In total, ten analogue seasons were selected when 

the rainfall outlook was not neutral, while only nine analogue seasons were selected 

with a neutral rainfall outlook. For example, if a neutral rainfall outlook was issued 

(33% probability of receiving above-normal, near-normal or below-normal rainfall), 

then the three closest analogue seasons to the tercile midpoints, viz. 17th percentile, 

the 50th percentile and the 84th percentile, respectively, would be selected. The 

simulation of the season was hence set to be completed along nine different 

anticipated future scenarios based on different sets of daily climate data from the 

selected analogue seasons. 

 

The forecasted cane yield for a crop was calculated as the mean yield simulated over 

the nine or ten different analogue seasons. The standard deviation over these crops 

could be used to estimate the forecast uncertainty at the point of simulation. Field 

scale standard deviations can not, however, be simply extrapolated to larger 

production regions, such as HCZ, as a result of a strong spatial co-variation between 

production units (Górski and Górska, 2003). Forecast uncertainty at different scales 

was excluded from the scope of this research owing to the limited production data 

available during this study. 

 

Everingham et al. (2002b) reviewed the above-mentioned routine. They argued that 

the use of ten analogue seasons may lead to unstable forecasts as a result of the 

relatively large weights attached to individual seasons. In this study, however, only 24 

years of historic climate data were available, which restricted the selection of more 

than ten suitable analogue seasons. They also identified the fact that, while the three 
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month lead time period is used as a determinant for analogue seasons, large 

proportions of crop growth may be governed by subsequent months in the analogue 

season, which were not assessed during the selection exercise. An increase in the 

number of selected analogue seasons and skillful rainfall outlooks with longer lead 

times may be useful in addressing these issues. 

 

For hindcasting purposes, the simulation environment was configured in such a way 

that any date in the period 1978 – 2002 could be treated as the end of the record, after 

which data originating from analogue seasons could be used to complete the particular 

season. Therefore, a 22 year hindcast used for assessing the accuracy of crop 

forecasts, when assuming that data terminated on a specific day in the year, would 

result in more than 100 000 simulations ((4 950 irrigated crops + 6 534 rainfed crops) 

× 9 analogue assumptions). The data and simulation environment were designed in 

Microsoft Access®, which is a powerful data manipulation and storage platform. 

7.4 Discussion and Conclusions 
Generally, the use of climate outlook information for yield forecasts has been well 

recognised. This approach, even though some studies point to low skills and certain 

limitations, implies that researchers may be optimistic regarding the current and future 

potential use of climate forecasts. At the same time, emphasis should be laid on 

participatory research in an attempt to bridge shortcomings between climate outlooks 

and applications for yield forecasts. Climate forecasters may, for example, consider 

issuing lists of feasible analogue seasons which could be used in simulations. 

Strategically, the adoption of climate outlooks and participation in related research, 

even though climate outlooks still have limited skills, may prove to be a valuable 

long-term approach. 

 

A configuration which emphasises diversity was used to simulate crop yields in the 

South African sugar industry. This allowed not only for the heterogeneous simulations 

of management × soil × climate combinations, but also compares a wide range of 

future climate scenarios by substituting future climate with climate data from pre-

selected analogue seasons. Although the analogue season approach has been well 

recognised in various other research studies, a review by Everingham et al. (2002b) 

indicated that nine to ten analogue seasons may be too few and could cause 
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inconsistent results between consecutive forecasts. In this study, selecting a sample of 

more than ten analogue seasons would, however, become problematic since the full 

climate record exists of 24 seasons only. Everingham et al. (2002b) also argued that 

crops are often scheduled to be harvested several months into the future, which adds 

uncertainty when the selection of analogue seasons is only based on a three month 

lead time. 

 

The system configuration presented above is based on  

• A suitably evaluated crop yield model,  

• A consistent and well documented rainfall outlook and analogue selection 

approach and  

• A logical spatial and temporal breakdown of representative crop simulations.  

 

It is, however, necessary to evaluate the system, select suitable sub-components and 

assess the overall reliability and performance of the system. These routines, and the 

results obtained, are reported in Chapter 8. 
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8 An Evaluation of the Canesim Model-Based 
Sugarcane Yield Forecast System and its 
Subcomponents 

8.1 Introduction 
The sugarcane yield forecast system based on the Canesim model was fully described 

in Chapters 4 to 7. For many processes it was acknowledged that certain assumptions 

made during the development phase of the system required further evaluation. This 

chapter reports on various evaluations that were performed on the system and 

provides some recommendations for future research. 

 

Promburom (2001) summarises factors that could influence accuracy when regional 

sugarcane model-based yield forecasts are conducted. These include inadequate and 

inappropriate model and aggregation algorithms, incorrect model inputs, inadequate 

model calibration and large errors in observed yields. Similarly, Parysow et al. (2000) 

lists four sources of uncertainty when using process-based models. These are: 

• Single variable uncertainties, such as sampling errors, measurement errors and 

expert-opinion errors; 

• Uncertainties in groups of variables, such as groups of inputs and sub-models; 

• Errors associated with characterising input variable attributes, such as 

stochastic vs. deterministic attributes; and 

• Uncontrollable sources of uncertainty (e.g. extreme events such as fire and 

heavy frosts). 

 

Although it may not be an easy undertaking, Parysow et al. (2000) noted that ideally 

error analyses should be performed to identify and reduce system inaccuracies. 

Comprehensive error analyses, also called error budgets (Gelb et al., 1974), include 

the identification and quantification of different sources of errors that propagate 

through the model to produce an error in global model output (Gertner and Guan, 

1991; Parysow et al., 2000). Error budgets are important in prioritising future research 

aimed at increasing forecast skill and they include attempts to: 

• Rank inputs according to their sensitivity in influencing model output; 

• Forecast uncertainty in model output as a function of uncertainty in model 

inputs; 
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• Partition the error contribution among different model inputs; and  

• Provide the foundation for the optimal reduction in error, or cost associated 

with additional data collection. 

 

Bannayan and Crout (1999), Peterson and Fraser (2001) and Potgieter et al. (2003) 

demonstrate the implementation of multiple simulations, using a Monte Carlo 

simulation approach to establish output distributions, and then link these with inputs. 

Variable input can be based on previous seasons (e.g. Potgieter et al., 2003), random 

sampling (e.g. Bannayan and Crout, 1999) or specialised sampling techniques (e.g. 

Parysow et al., 2000) and may incorporate attributes of climate, soil, crop and 

management. 

 

In order to quantify forecast skill, many research studies have compared simulated 

yields with derivatives of actual regional production (e.g. Hansen and Jones, 1999; 

Roebeling et al., 1999; Stephens et al., 2000; Promburom et al., 2001; Potgieter et al., 

2003). Hansen and Jones (1999) indicated that actual production information is often 

only available for administrative reporting districts, such as mill supply areas, as 

opposed to model simulation units, such as Homogeneous Climate Zones (HCZ). 

Potgieter et al. (2003) emphasise the importance of using different evaluation indices 

to express different types of errors. These include indices such as the Squared Mean 

Difference (SMD) and Absolute Mean Deviation (AMD) to reflect bias errors, and the 

Variance Ratio index (VR) to quantify the error in dispersion (Potgieter et al., 2003). 

Similarly, Rice and Cochran (1984) derive a composite equation to segregate an 

overall model error into bias, slope and random components. Hansen and Jones 

(1999), for example, cite various crop simulation studies where particularly inter-

annual variability was over-predicted (Mearns et al., 1992; Rosenberg et al., 1992; 

Moen et al., 1994; Meinke and Hammer, 1995; Chipanshi et al., 1998; Rosenthal et 

al., 1998), while in other cases simulated yields were also found to be biased (e.g. 

Haskett et al., 1995; Russell and van Gardingen, 1997). 

 

The aim of this chapter is to evaluate several components of the Canesim yield 

forecast system and to provide recommendations for future refinements. These 

include: 
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• Establishing the value of additional raingauge data in HCZs, 

• Assessing the accuracy and skill of the system using different climate datasets, 

• Evaluating the representivity of climate data in different HCZs, 

• Assessing the accuracy and skill of the system at different times of the year, 

and 

• Quantifying the value of seasonal rainfall outlooks to enhance yield forecasts.  

 

Figure 8.1 displays a diagrammatic “roadmap” of simulations and analyses performed 

in this chapter. 

 
SASRI climate and 

rainfall data 
1978-2002

Simulations were based on 
complete climate records.

(cf. Table 8.1)

BEEH climate data 
1978-1999

Simulations were based on 
complete climate records.

(cf. Table 8.1)

Assess value of 
additional rainfall data

(cf. Section 8.2.3)

Evaluate BEEH 
and SASRI climate data 
Combine two datasets into one

(cf. Section 8.2.4)

Hindcast simulations with 
neutral rainfall outlooks

1978-2002
Simulations made use of nine 

analogue seasons starting in Sepj-1, 
Jan, Mar, May, Sep and Dec.

(cf. Section 8.2.5)

Hindcast simulations with 
actual rainfall outlooks

1998-2002
Simulations made use of ten 

analogue seasons starting in Sepj-1, 
Jan, Mar, May, Sep and Dec.

(cf. Section 8.2.5)

Forecast accuracy at 
different times of the year

(cf. Section 8.3.3)

Evaluate the value of 
rainfall outlook information

(cf. Section 8.3.4)
 

Figure 8.1 A “roadmap” of simulations and analyses performed in this chapter. 
Simulations are shown in boxes and analyses are shown in oval shapes 
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8.2 Methods 

8.2.1 Industry Production Data Corrections 
Hansen and Jones (1999), Stephens et al. (2000), Promburom et al. (2001) and 

Everingham et al. (2002a) point out that historic production data often contain 

underlying trends that are not attributed to climate variability. These include: 

• Changes to production as a result of spatial expansion and the 

decommissioning of production areas, 

• Changes in agronomic practices, such as reducing harvest age, when 

attempting to adopt new technologies or to mitigate against pests, diseases and 

anticipated climate, 

• Changes in irrigation systems and strategies, 

• Changes to agricultural practices as a result of socio-economic and socio-

political preferences and pressures, and 

• Changes to physical boundaries of reporting districts as a result of mills that 

close, merge or move. 

 

Stephens et al. (2000) and Everingham et al. (2002a) demonstrate the value of historic 

production data once a certain amount of detrending and corrections have been made. 

Everingham et al. (2002a), for example, removed long-term trends and corrected for 

changes in production variability over time using a variance stabilising 

transformation. Stephens et al. (2000) overcame several aggregation and 

representation issues by assuming current production districts and technology for 

previous years.  

 

Historic figures which report on sugarcane production from 1980 to 2002 for 

individual mill districts were obtained from the South African Canegrowers 

Association (SACGA, Mt. Edgecombe, South Africa). Evidence of all the above-

mentioned underlying trends was apparent in the data. Various corrections aimed at 

transforming the data to present conditions and to units comparable with model output 

were consequently conducted. These included adjusting for mill closures and delivery 

diversions, converting from total tonnes crushed to mean tonnes per hectare, 

correcting for expansions in areas under irrigation and correcting for changes in age at 

harvest. 
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8.2.1.1 Corrections Resulting from Mill Closures and Sugarcane 
Diversions 

Changes to the industry’s milling configuration during the period 1980 to 2002 were 

evaluated. The Nkwaleni and Empangeni mills, situated in HCZs 20 and 19 (cf. 

Figure 6.1), respectively, were combined with the Felixton mill in 1985. The coastal 

Illovo mill (in HCZ 41) was relocated to the interior and renamed Eston mill in 1994. 

The Glendale mill (HCZ 27) closed in 1997 and sugarcane from that area was 

redirected to the Gledhow mill. The Tongaat mill was renamed Maidstone mill in 

1982. In 1987 and 1995 additional sugarcane was delivered to this mill owing to the 

closure of the Shaka’s Kraal (HCZ 29) and Mt. Edgecombe (HCZ 33) mills, 

respectively. In all the above-mentioned cases, data of total tonnes sugarcane crushed 

from the different mills were pooled together accordingly. It should be noted, 

however, that in almost all cases, as well as for the new Komati mill, which opened in 

1994, changes to growing areas and, consequently, relative contributions from 

different HCZs to mills, were likely to have occurred. These changes were omitted 

because accurate records of new and discontinued old enterprises were unavailable 

from SACGA. 

 

The total annual tonnes sugarcane crushed at each mill was also corrected for 

sugarcane that was diverted from other mill supply areas as a result of temporary 

management arrangements.  

 

8.2.1.2 Conversions from Total Tonnes Crushed to Cane Yield 
Sugarcane tonnages as described in Section 8.2.1.1 were converted to yield (t.ha-1) by 

dividing tonnages with each mill’s official estimated annual area harvested (data 

courtesy of the SACGA). It should be noted that estimated areas harvested are often 

suspect (Wynne, 2001) and areas managed by communal small-scale growers, for 

example, can undergo rapid and unannounced changes in land use and ownership. No 

information was available to assess or correct for such inconsistencies. 
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8.2.1.3 Harvest Age Corrections 
Inman-Bamber (1991) notes that growers have been reducing their harvest age since 

the early 1980s owing to the severe impact of the Eldana saccharina stalk borer on 

older crops. This trend was confirmed in the data through a gradual increase in the 

percentage of total area harvested per season. Equation 8.1 was used to correct this 

trend by reducing the yield in a given year J on a pro rata basis for the difference 

between the mill average crop age in year J (AgeJ in months) and the mill average 

crop age in 2001 (Age2001 in months), with  

 

J
JJ Age

Age
ActY 2001=  Eq. 8.1

where YJ and ActJ (in t.ha-1) are the mean corrected and actual yields for the mill, 

respectively. 

 
The mill’s average crop age in 2001 (Age2001 in months) was calculated using the 

weighted average age over the different contributing HCZs (Eq. 8.2). 
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where N is the number of HCZs supplying sugarcane to the mill, wi is the percentage 

of the 2001 season’s mill area harvested in zone i and ZoneAgei is the average age of 

harvested sugarcane in zone i in 2001 (cf. Table 5.1). 

 

The mill’s average crop age in year J (AgeJ in months) was calculated using a five 

year inverse distance weighted average age (Eq. 8.3), such that 
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Eq. 8.4

 

8.2.1.4 Cane Yield Corrections as a Result of Irrigation Expansion  
An additional correction was made for the Felixton and Umfolozi mills, where there 

were disproportional large expansions of irrigated areas between 1980 and 2002. 

Irrigated sugarcane normally produces higher yields than rainfed sugarcane and on a 

mill scale a trend of increasing performance was observed in the corrected yields (YJ) 

as a result of the increase in area under irrigation. Data of irrigation area expansions 
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for these mills (courtesy of the SASA Industrial Affairs Division, Mt. Edgecombe, 

South Africa) were used to make adjustments to the corrected yields. First, a 

regression between the percentage area under irrigation and YJ was established. 

Thereafter, values of YJ, where J<2002, were adjusted to the same level as Y2002 using 

the above-mentioned regression.   

 

8.2.2 Evaluation Parameters to Assess Forecast Accuracy  
Murphy (1993) defined forecast accuracy as the average relationship between 

individual pairs of forecasted and realised observations. During a yield forecast 

exercise, Supit (1997) calculated the Relative Root Mean Square Error (RRMSE in %, 

Eq. 8.5) between observed and simulated yields. The RRMSE enables forecast 

accuracy to be compared in similar terms across mills (Supit, 1997).  
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Eq. 8.5

where n is the total number of observed and simulated data pairs (23 years in this 

study), Yi is a mean corrected observed yield in a given year i (according to Section 

8.2.1), Esti is the simulated yield in year i and Y  is the mean of corrected observed 

yields over all years. 

 

Haskett et al. (1995), Russell and van Gardingen (1997) and Hansen and Jones (1999) 

reported that model-based yield forecasts often overestimated actual yields. These 

overestimations may be attributed to several causes, which have been discussed 

briefly in Section 2.3. Bezuidenhout and Singels (2001) and Gers et al. (2001) 

identified similar overestimation trends when applying the Canesim model, 

respectively. A relative root mean square unbiased error (σε in %, Eq. 8.6) was 

consequently calculated by multiplying model results with a correction factor. This 

technique calibrates simulated yields against the observed and also reduces the 

absolute variability of the simulation output (Hansen and Jones, 1999).  
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where Est  is the mean of the simulated yields over the period 1980 – 2002. 
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Forecast skill is a comparison of the quality of a forecast against another reference 

such as long-term mean, persistence or random guessing (Murphy, 1993; Mason, 

2000). For this evaluation, forecast skill (Skill in %, Eq. 8.7) was determined from the 

ratio of σε and the coefficient of variance of observed yields (CVY in %, Eq. 8.8). By 

definition, CVY is the forecast accuracy (RRMSE) when the the long-term mean yield 

(Y ) is always assumed for the forecast. Forecast skill can therefore be defined as the 

percentage of inter-annual production variability captured or explained by the 

forecast. For reporting purposes forecast skill was categorised into groups of no skill 

(Skill < 10%), low skill (10% ≤ Skill < 30%), medium skill (30% ≤ Skill < 60%) and 

high skill (Skill ≥ 60%). Values for different mills and the industry were denoted by 

subscripts (e.g. SkillPongola, SkillSezela and Skillindustry) 
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In addition to the above-mentioned parameters, the frequency when yields were 

forecasted with the correct sign (i.e. higher or lower, when compared with yields of 

the previous season) was also expressed as a percentage. This was termed the 

Directional Skill. 

 

8.2.3 Assessment of the Value to Accuracy from Additional 
Raingauge Data in HCZs within the SASRI Climate Dataset 

The simulation configuration described in Chapter 7 was used to simulate nine crops 

per milling season (April to December) per HCZ from 1980 to 1999 using the SASRI 

climate dataset. These simulations were carried out for both rainfed and irrigated 

crops. Additional simulations were carried out when more than one raingauge existed 

within a HCZ. The simulation configuration was not altered over time and model 

output therefore reflected a temporal variation solely as a result of variabilities in 

climate and available water for irrigation. Water restrictions for irrigation were 

applied according to the procedures described in Section 5.3.3. The simulations were 

carried out in historic mode, thus using the full climate dataset, and not substituting 

future scenerios with analogue years. The simulation results were aggregated to a mill 

scale according to the information provided in Section 5.3.4. 
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Evaluations could only be performed at mill supply scales since no actual production 

information was available for individual HCZs (cf. Section 8.2.1). Two HCZs 

containing more than one raingauge were identified. These were the Heatonville 

(Zone 18) and Upper North Coast (Zone 29) zones. These zones contained four and 

six additional raingauges, respectively, and delivered sugarcane to the Felixton and 

Gledhow mills, respectively. In both cases, contributions from the respective HCZs to 

the respective mills were substantial (between 38% and 66% of the total mill 

demand). It was assumed that multiple raingauges in a zone represented equal 

proportions of the zone. 

 

In order to assess the value of the additional raingauge data in the two HCZs, the 

following simulations were performed:  

• Data from all raingauges (default); 

• Data from all raingauges that did not contain a complete data record from 

1978 to 2002 were excluded; 

• Data from only two raingauges with comlpete records were included; 

• Data from one raingauge with a complete record were included; 

• All additional raingauges were removed and only the main climate station data 

were used. 

 
The forecast skills (Eq. 8.7) for both mills were calculated under each of the above-

listed scenarios and results were compared to each other. These results are discussed 

in Section 8.3.1. 

 

8.2.4 Assessment of the Value of Climate Data 
Two sets of model runs, based on the SASRI and the BEEH climate datasets, were 

carried out from 1980 to 1999 in a similar fashion to those described in Section 8.2.3. 

For the SASRI climate dataset, these simulations included additional raingauge data. 

Values for σε (Eq. 8.6) and Skill (Eq. 8.7) for both the BEEH and SASRI climate 

datasets were established for all individual mills and for the sugar industry as a whole. 

These reflected the overall accuracy of the model when using either one or the other 
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of the two datasets. This information was used later (cf. Sections 8.3.2 & 8.3.3) to 

compile a single composite climate dataset from both resources. 

 

It could be expected that either the SASRI or the BEEH climate dataset would be 

more representative for a particular HCZ, in which case a higher associated Skill 

value, both at a mill and an industry scale, could be expected. The change in Skill 

could therefore be used to evaluate the suitability of a particular climate dataset in a 

HCZ, which may provide valuable pointers towards increasing or reducing the current 

SASRI climate station network. It could therefore be assumed that, if the BEEH 

climate dataset produced better results than the SASRI dataset, there may be a need to 

review the location and number of SASRI climate stations within that zone. The 

increase in Skillindustry was hence used to quantify the suitability of a climate dataset. 

This was done after the relative weighting resulted from different areas under cane 

within different HCZs was removed (cf. Eq. 8.9).  
 

 
( )

( )[ ] ( )[ ] 4,, 10×
−

=∆
i

iSASRIindustryiBEEHindustry
iindustry Area

SkillSkill
Skill  Eq. 8.9

where Areai (ha) is the total area of cane harvested per annum in the i-th HCZ and 

Skillindustry,BEEH(i) and Skillindustry,SASRI(i) are the industry scale forecast skills under the 

condition that yields in the i-th HCZ were simulated using the BEEH or SASRI 

climate dataset, respectively. ∆Skillindustry(i) (in %) is therefore the change in Skillindustry 

per 10 000 ha as a result of the change in climate datasets in the i-th HCZ. A positive 

value indicates better results obtained by the BEEH climate dataset, while a negative 

value supports the use of the SASRI climate dataset. The results are discussed in 

Section 8.3.2. 

 

8.2.5 Model Forecast Accuracy in an Operational Context and 
Quantification of the Value of Seasonal Rainfall Outlook 
Information 

A composite climate dataset based on the best results in the previous section (cf. 

Section 8.3.2) was compiled for the period 1978 to 2002. This dataset comprised of 

combined BEEH and SASRI climate data for the period 1978 to 1999 and SASRI 

climate data from 2000 to 2002. The composite dataset was used to re-simulate the 

yield forecasts from 1980 to 2002 in a hindcast mode. During this undertaking it was 
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assumed that climate data terminated at a certain time of the year (as explained in 

Section 7.3). Climate data were terminated on 1 September prior to the opening of the 

milling season, 1 January, 1 March, 1 May, 1 September and 31 December. In each 

case, with the exception of 31 December, nine analogue seasons were used to 

complete the simulations. The nine analogue seasons were based on a neutral rainfall 

outlook with a three-month lead time, resulting in the selection of three below-normal 

(i.e. dry) scenarios, three scenarios with near-normal rainfall and three above-normal 

(i.e. wet) scenarios. The simulations were carried out for each HCZ from 1980 to 

2002 for sugarcane crops harvested in each month of the milling season (April – 

December). Results were aggregated and evaluated at a mill and industry scale. 

Evaluations included the calculation of σε , Skill and the directional skill. These 

evaluations reflected the accuracy of the Canesim sugarcane yield forecast system at 

different times of the year if it were to be used in an operational context under the 

scenario where future climate data were still unavailable. Results are discussed in 

Section 8.3.3. 

 

In addition to the above-mentioned simulations, the seasons from 1998 to 2002 were 

also simulated after using the actual SAWS seasonal rainfall outlook that was issued 

at that specific time (information courtesy of the South African Weather Service, 

Pretoria, South Africa). Compared to the simulations described in the previous 

paragraph, these simulations were therefore based on different selected analogue 

seasons. The difference in forecast skill between simulations based on a neutral 

seasonal rainfall outlook and those based on the actual seasonal rainfall outlook was 

used to quantify the value of rainfall outlook information. Results are discussed in 

Section 8.3.4. 

 

8.3 Results and Discussion 

8.3.1 The Value of Additional Raingauge Information 
Figure 8.2 displays the change in Skill at the Felixton and Gledhow mills resulting 

from the exclusion of additional raingauge information in the Heatonville and Upper 

North Coast HCZs, respectively. Yield forecasts were marginally better when more 

raingauges were used in the Heatonville HCZ. For the Upper North Coast HCZ, yield 

forecasts were most accurate when only two additional raingauges were used. 
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Forecast skill was generally not affected severely at Felixton, while the skill 

deteriorated significantly at Gledhow when fewer than two additional raingauges were 

used in the respective HCZ. This could be an indication that the main climate station 

used in the Upper North Coast HCZ is unsuitably located to represent the larger area. 

It could also, however, be an indication that higher rainfall variability in the zone 

exists and the zone may therefore require more rainfall stations.  

 

From these results it is clear that additional raingauges generally enhanced forecast 

accuracies. The results, however, are limited and not consistent as to how many 

additional gauges are required to optimally enhance model-based yield forecasts. It 

could be expected that certain areas, such as predominantly rainfed areas, may benefit 

more when data from additional raingauges are used. Further research, preferably at a 

sub-mill scale, will be required to provide better guidelines regarding the spatial 

distribution of raingauges. 
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Figure 8.2 Changes in forecast skills for yields at the Felixton and Gledhow sugar 

mills based on the number of raingauges used in one of each mill’s 
associated homogeneous climate zones  

 

8.3.2 The Value of Climate Data 
Table 8.1 gives values for σε and Skill for the Canesim yield forecast system at mill 

and industry scales when the SASRI and BEEH climate datasets were used to 

simulate yields. These results are based on a complete historical climate dataset from 
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1978 to 1999, with no substitution using analogue seasons. At seven of the 15 mills, 

forecasts using the SASRI climate dataset were significantly superior to the BEEH 

climate dataset (difference in Skill > 10%). Suspect evaporation estimates in the 

SASRI climate data for the Komati HCZ (Komati mill) were found. Forecasts at the 

Pongola and Umfolozi mills displayed no skill. The reason for low accuracies at these 

two mills is unknown, but it should be noted that both mill areas are largely irrigated 

and that little information of actual irrigation restrictions are available. Further 

research, however, is needed to explain these inaccuracies. The forecast skill on an 

industry scale was medium and differed by 0.1% between different climate datasets.  

 
Table 8.1  Evaluation statistics of modelled sugarcane yield forecasts based on 

climate data collated by the South African Sugarcane Research Institute 
(SASRI) and the School of Bioresources Engineering and Environmental 
Hydrology (BEEH, University of KwaZulu-Natal), respectively. The bias 
corrected Relative Root Mean Square Error (σε) and forecast skill (Skill) 
are supplied for mills and the industry as a whole 

SASRI climate 
dataset 

BEEH climate 
dataset 

 
 
 

No. 

 
 
 

Mill 

Mean of 
actual 
yield 
(t/ha) 

Standard 
deviation of 
actual yield 

(t/ha) 
σε 
(%) 

Skill 
(%) 

σε 
(%) 

Skill 
(%) 

1 Komati 78.2 17.44 suspicious data 18.13 -4.0 
2 Malelane 82.6 15.68 13.58 13.4 11.47 26.8 
3 Pongola 75.7 8.17 8.95 -9.5 12.56 -53.8 
4 Umfolozi 66.5 9.35 8.77 6.3 8.45 9.6 
5 Entumeni 41.7 6.56 5.68 13.4 6.73 -2.6 
6 Felixton 59.7 12.38 6.60 46.7 6.59 46.8 
7 Amatikulu 45.8 9.09 3.84 57.8 4.18 54.0 
8 Darnall 48.8 9.19 4.12 55.2 5.91 35.7 
9 Gledhow 49.2 8.41 5.07 39.7 6.12 27.2 

10 Union Co-op 71.8 11.91 6.81 42.8 9.30 21.9 
11 Noodsberg 67.7 14.23 6.89 51.6 9.16 35.6 
12 Maidstone 49.2 8.73 5.36 38.6 5.91 32.3 
13 Eston 59.5 9.54 6.48 32.0 7.45 21.9 
14 Sezela 55.6 13.46 5.21 61.3 5.20 61.4 
15 Umzimkulu 69.8 13.58 6.74 50.4 4.99 63.2 

Mill mean 61.5 11.18 7.94 30.4 8.14 25.1 
Industry 56.5 8.93 3.69 58.6 3.70 58.5 

 
 

Figure 8.3 depicts the difference in Skillindustry per 10 000 ha sugarcane based on an 

evaluation of yields generated by the SASRI and BEEH climate datasets, respectively. 

Data from SASRI for the Komati HCZ (Zone 1) were suspect, as stated previously, 

and the BEEH climate dataset was used for this zone, without any comparison 

between datasets being made. No SASRI climate data existed for Zones 24 (Muden), 

37 (Tala Valley) and 40 (Umkomaas) and long-term mean production (as noted in 

Section 7.3) was used to represent these zones. Zones 37 and 40 were subsequently 
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represented more skilfully by the BEEH climate dataset. However, simulations based 

on the BEEH climate dataset were less skilful than assuming the long-term mean 

yield for the Muden HCZ. All harvested yields for Muden were consequently set to 

108 t.ha-1. 

 

Climate data from the BEEH climate dataset generally produced better results in the 

Mpumalanga region (Zones 1 – 8, Figure 8.3). The likely reason for this is that the 

SASRI climate station configuration in Mpumalanga underwent several changes 

during the period of 1980 to 1999. These included the termination of manual stations 

with long historical data records and the installation of several new AWSs at new 

sites. In contrast, a reliable climate station was operated by SASRI in the Pongola 

HCZ (Zone 10). Data from this station were also used in Zone 11 and for certain time 

periods in Zone 9 (cf. Table 5.3). In Zululand, the North Coast and the Midlands 

(Zones 12 – 40) results using the SASRI climate dataset were superior to those 

produced by the BEEH climate dataset. In these regions, SASRI was managing well 

established climate stations in Zones 28, 29, 30, 31 and 33. Evaluations of yields 

using SASRI climate data in these specific zones were all superior to yields produced 

by the BEEH dataset. In the Midlands, Zones 26, 34, 37 and 40 were better 

represented by the BEEH climate dataset. None of these zones contained reliable 

SASRI climate stations and, with the exception of Zone 26, these zones all 

represented predominantly irrigated sugarcane that was cultivated in the warm 

climates of deep river valleys. On the South Coast (Zones 41 – 48), most zones were 

better represented by the BEEH climate dataset. Zone 44 contains a well established 

SASRI climate station, viz. Sezela (cf. Table 6.1). This was the only zone that 

contained a well established SASRI climate station in which the BEEH climate 

dataset produced superior results. Although the Sezela climate station may have a 

long and consistent data record, this station is situated on the coast and may be 

unrepresentative of the zone as a whole. 

 

It should be noted that the results shown in Figure 8.3 are based on the difference in 

skill between yields generated by the SASRI and BEEH climate datasets. A specific 

climate dataset may, therefore, be favoured because of its good climate representivity 

in a particular zone, or because of the other dataset’s poor data representivity. It is 

nevertheless observed that, with the exception of Zone 44, all HCZs containing well 
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managed and continuous SASRI climate stations (viz. Zones 10, 21, 31, 28, 30, 29 and 

33) were simulated more skilfully when compared to yields produced by the more 

generic BEEH climate dataset. It is imperative for forecast modelling to have a well-

managed climate station network. These results emphasise the importance to maintain 

climate stations with sound data quality control over long periods of time and also 

suggest that there may exist room for expanding the current SASRI climate station 

network. 
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Figure 8.3 Climate data origins used to represent homogeneous climate zones in the 
South African sugar producing areas. Climate data sources are BEEH, i.e. 
the School of Bioresources Engineering and Environmental Hydrology at 
the  University of KwaZulu-Natal, and SASRI,  i.e. the South African 
Sugarcane Research Institute. Colour shadings indicate the relative 
difference in forecast skills between the two climate data sources 
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8.3.3 Accuracy of Operational Forecasts 
Information contained in Table 8.2a, b and c reflects the 23 year mean accuracy of 

operational Canesim yield forecasts issued at different times of the year. The subscript 

“y-1” denotes a forecast issued during September in the year prior to the particular 

milling season. Accuracies are expressed in terms of σε , Skill and directional skills, 

respectively. All results were obtained under a neutral rainfall outlook using a 

combined SASRI / BEEH climate dataset for the period 1978 to 1999, and appending 

the remainder of the period 2000 to 2002 using the SASRI climate dataset.  

 

Figure 8.4 illustrates six identical time series reflecting average annual historical 

yields that were achieved over the entire sugar industry in consecutive years between 

1980 and 2002 (solid lines). Figure 8.4 also shows different time series of industry 

mean yields simulated by the Canesim system (dotted lines). These yields were 

simulated after it was assumed that available climate data terminated at a particular 

time, viz. Septembery-1, January, March, May, September and December. Similar 

graphs for the 15 mill supply areas are displayed in Appendix D.  

 

Forecast skills of simulated yields, as may be expected, generally increase as time 

progresses. At individual mill level (cf. Table 8.2b), skills increased on average from 

11.6% in September prior to the milling season to 33.3% in December. Forecasts 

issued in the September prior to the milling season were generally more accurate at 

mills with longer cropping cycles (e.g. Noodsberg and Umzimkulu mills), as a result 

of the relatively smaller proportions of the crop that were still outstanding at that point 

in time. With the exception of the Komati mill, which had a shorter historic record (cf. 

Appendix D), the highest forecast skills were achieved at the Umzimkulu, Noodsberg, 

Amatikulu and Sezela mills (cf. Table 8.2c). These mill supply areas cover a diverse 

range of agronomic and climatic conditions. The fact that the system could manage to 

perform reasonably well under a wide range of conditions emphasises the proficiency 

of a model-based yield forecast system. However, it also prompts further 

investigations into the lower skills obtained at other mills in areas with similar 

climates.  
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Table 8.2 A summary of sugarcane yield forecast accuracies at mill and industry scales. 
Forecast were issued at six different times of the milling season and their accuracies 
are expressed as (a) bias corrected Relative Root Mean Square Errors (σε), (b) 
forecast skills and (c) directional skills 

 

σε  (%) 
(a) 
 

No. 

 
 

Mill 1 Sepy-1 1 Jan 1 Mar 1 May 1 Sep 31 Dec 

 
 

Mean 
1 Komati 17.2 7.2 3.9 6.0 14.7 18.7 11.3 
2 Malelane 16.7 13.6 12.7 12.6 12.8 13.1 13.6 
3 Pongola 8.8 8.0 6.3 7.6 13.8 11.3 9.3 
4 Umfolozi 14.6 12.5 11.3 11.1 12.6 12.8 12.5 
5 Entumeni 12.9 12.5 11.5 11.3 12.6 12.7 12.3 
6 Felixton 18.9 17.3 13.8 11.9 10.5 10.7 13.8 
7 Amatikulu 17.7 15.8 11.0 8.6 7.5 7.3 11.3 
8 Darnall 16.5 14.9 11.3 8.2 8.6 8.5 11.3 
9 Gledhow 14.7 15.2 12.5 11.1 10.9 10.7 12.5 

10 Union Co-op 12.8 10.7 9.8 9.7 9.0 9.1 10.2 
11 Noodsberg 15.6 13.1 11.0 10.9 9.8 10.6 11.8 
12 Maidstone 15.3 15.5 11.9 10.8 11.6 11.4 12.7 
13 Eston 13.3 11.9 12.1 11.5 11.9 11.7 12.1 
14 Sezela 20.4 17.1 13.6 11.6 10.8 10.9 14.0 
15 Umzimkulu 14.5 12.3 9.9 8.2 8.3 8.2 10.2 

Mean 15.3 13.2 10.8 10.1 11.0 11.2  
Industry 13.7 11.8 8.8 7.1 6.6 6.5  

  

 

Forecast Skill (%) (b) 
 

No. 

 
 

Mill 1 Sepy-1 1 Jan 1 Mar 1 May 1 Sep 31 Dec 

 
 

Mean 
1 Komati  12.4 63.3 80.3 69.4 25.1 5.0 42.6 
2 Malelane 5.5 23.0 28.0 28.6 27.4 26.0 23.1 
3 Pongola 14.2 22.1 38.2 25.5 -35.3 -10.9 9.0 
4 Umfolozi 3.7 18.0 25.8 27.0 16.9 15.6 17.8 
5 Entumeni 11.7 14.6 21.6 23.0 14.2 13.1 16.4 
6 Felixton 3.6 11.8 29.8 39.6 46.6 45.7 29.5 
7 Amatikulu 6.1 16.3 41.9 54.6 60.2 61.5 40.1 
8 Darnall 8.6 17.2 37.0 54.6 52.2 52.8 37.1 
9 Gledhow 10.8 8.0 24.4 32.4 33.9 34.9 24.1 

10 Union Co-op 21.7 34.6 40.3 40.6 45.1 44.0 37.7 
11 Noodsberg 21.7 34.2 44.8 45.7 51.0 47.1 40.7 
12 Maidstone 9.8 8.9 29.7 36.4 31.5 32.7 24.8 
13 Eston 12.9 22.1 20.9 25.2 22.1 23.9 21.2 
14 Sezela 10.0 24.8 40.1 49.1 52.4 52.1 38.1 
15 Umzimkulu 21.3 32.9 46.1 55.5 54.7 55.4 44.3 

Mean 11.6 23.4 36.6 40.5 33.2 33.3  
Industry 11.3 23.2 43.2 54.0 57.3 57.9  

  

 

Directional Skill (%) (c) 
 

No. 

 
 

Mill 1 Sepy-1 1 Jan 1 Mar 1 May 1 Sep 31 Dec 

 
 

Mean 
1 Komati 75.0 87.5 87.5 75.0 75.0 75.0 79.2 
2 Malelane 63.6 63.6 59.1 59.1 50.0 40.9 56.1 
3 Pongola 63.6 54.5 59.1 54.5 59.1 54.5 57.6 
4 Umfolozi 54.5 59.1 77.3 81.8 81.8 81.8 72.7 
5 Entumeni 72.7 59.1 72.7 68.2 77.3 77.3 71.2 
6 Felixton 54.5 63.6 86.4 90.9 95.5 95.5 81.1 
7 Amatikulu 77.3 59.1 81.8 90.9 95.5 95.5 83.3 
8 Darnall 68.2 77.3 86.4 86.4 86.4 90.9 82.6 
9 Gledhow 72.7 81.8 90.9 90.9 90.9 86.4 85.6 

10 Union Co-op 63.6 72.7 81.8 77.3 81.8 81.8 76.5 
11 Noodsberg 68.2 81.8 86.4 81.8 77.3 72.7 78.0 
12 Maidstone 72.7 68.2 81.8 81.8 81.8 72.7 76.5 
13 Eston 77.3 63.6 72.7 77.3 77.3 77.3 74.2 
14 Sezela 63.6 77.3 86.4 81.8 86.4 90.9 81.1 
15 Umzimkulu 63.6 68.2 72.7 72.7 77.3 72.7 71.2 

Mean 67.4 69.2 78.9 78.0 79.5 77.7  
Industry 72.7 59.1 77.3 77.3 81.8 81.8  
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Figure 8.4  Time series of mean actual yield (solid lines) obtained by the South 

African sugar industry between 1980 and 2002. Dotted lines 
denote the Canesim system forecasted yields at different times of 
the season, starting in the September prior to the opening of the 
milling season (Septembery-1) 

 

It should be noted that skills at the Komati, Pongola, Umfolozi and Entumeni mills 

deteriorated significantly towards the end of the milling season. In all these instances 

the deterioration in accuracies commenced between May and September. Closer 

investigation revealed an over-prediction of inter-annual yield variability when longer 

periods of actual climate data (as opposed to analogue data) were available. The trend 

is likely to be caused by an over-simplification of input parameters. For example, if a 

HCZ is represented by only one simulated crop when more diverse conditions apply 



 89

in reality, then fluctuations in simulated yields can be expected to exceed fluctuations 

in the actual production. This problem may be addressed by accepting a more diverse 

range of agronomic inputs, which will allow for certain portions of the crops in the 

HCZ to stress, while other portions experience better growing conditions. In the 

simulations conducted for this study, diverse conditions were simulated when climate 

data terminated prematurely and different analogue future scenarios had to be 

assumed. It is suspected that for some HCZs these simulations could indirectly have 

addressed the lack of diversity in agronomic inputs, since some analogue seasons will 

allow crops to stress, while others will allow better growing conditions. These 

suspicions are confirmed for some mills by the increase in forecast errors as the 

proportion of the crop simulated by analogue data decreases. Negative forecast skills 

for the Pongola mill in September and December depict that these forecasts were 

worse than simply assuming the mill’s long-term mean as a forecast. The fact that 

accuracy at these mills deteriorated over the winter season suggests that simulations 

of winter growing conditions could be oversimplified. These observations point to the 

need for further research into the diversification of soil, harvest cycle, water use and 

irrigation strategy input variables within HCZs.  

 

Even though forecast skills (Table 8.2b) were often less than 30%, the system 

frequently forecasted the direction of future yields correctly, compared to the previous 

season (cf. Table 8.2c). For example, the directional skill for the entire industry in the 

September prior to the milling season was 73%, while the equivalent forecast skill 

was only 11%. Generally, the directional skill was higher for coastal mills dependent 

on rainfed sugarcane (e.g. Gledhow, Amatikulu, Darnall, Sezela) rather than for 

inland mills and mills which were supplied by large areas of irrigated sugarcane. 

 

8.3.4 The Value of Seasonal Rainfall Outlook Information 
The average changes in forecast skill over the period 1998 to 2002 are shown in Table 

8.3 and Figures 8.5a-e for HCZs, mills and the entire sugar industry. These are the 

results after analogue years were based on actual SAWS seasonal rainfall outlook 

information, as opposed to an assumed neutral outlook. Appendix E contains time 

series graphs for the industry as a whole and for individual mills. Each of these 
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displays mean actual yields and two forecasts, one based on a neutral outlook and 

another based on the actual SAWS seasonal rainfall outlook.  

 

Seasonal rainfall outlook information was the most valuable in January, where 

industry scale skills were improved by an average of 7.9% over the period 1998 to 

2002. The value of rainfall outlook information deteriorated from January towards the 

drier winter months, e.g. May. Also, rainfall outlook information issued in September 

(early spring) often had a negative effect on forecast skills. Generally, the Eston, 

Amatikulu and Gledhow mills reflected promising improvements in forecast skills 

when using the seasonal rainfall outlook (cf. Table 8.3). Also, forecasts based on the 

seasonal rainfall outlook issued for the Eston and the Umzimkulu mills were 

consistently more accurate than those based on a neutral outlook (cf. Table 8.3).  

 

The selection of analogue seasons in this study was based on three month 

accumulated rainfall outlook information. Several other seasonal climate outlooks are 

also available. These range from monthly accumulated rainfall outlooks, zero to three 

month mean temperature outlooks and three to six month mean temperature and 

rainfall outlooks. In addition, several crop response driving parameters, such as the 

number of rainy days, the number of cold, hot, wet and dry spells and the number of 

days with temperature and rainfall events exceeding certain threshold amounts may be 

more valuable than forecasts of means. A close partnership between climate 

forecasters and the sugar industry (and other sectors) may be necessary to ascertain 

and make advances on potential synergies. 

 

 



 91

KwaZulu-Natal

Mpumalanga

SEPTEMBER prior to the milling season

30°S

31°E

­
-30.0  – -25.0
-25.0  – -20.0
-20.0  – -15.0
-15.0  – -10.0
-10.0  – -5.0
-5.0  – 0.0
0.0  – 5.0
5.0  – 10.0

10.0  – 15.0
15.0  – 20.0
20.0  – 25.0
25.0  – 30.0

Change in 
forecast skill (%)

Legend

-30.0  – -25.0
-25.0  – -20.0
-20.0  – -15.0
-15.0  – -10.0
-10.0  – -5.0
-5.0  – 0.0
0.0  – 5.0
5.0  – 10.0

10.0  – 15.0
15.0  – 20.0
20.0  – 25.0
25.0  – 30.0

Change in 
forecast skill (%)

Legend

 
Figure 8.5a Spatial changes in forecast skill as a result of utilising seasonal 

rainfall outlook information as opposed to assumptions of neutral 
outlooks for forecasts issued in the September prior to the milling 
season   

 



 92

KwaZulu-Natal

Mpumalanga

30°S

31°E

JANUARY

­
-30.0  – -25.0
-25.0  – -20.0
-20.0  – -15.0
-15.0  – -10.0
-10.0  – -5.0
-5.0  – 0.0
0.0  – 5.0
5.0  – 10.0

10.0  – 15.0
15.0  – 20.0
20.0  – 25.0
25.0  – 30.0

Change in 
forecast skill (%)

Legend

-30.0  – -25.0
-25.0  – -20.0
-20.0  – -15.0
-15.0  – -10.0
-10.0  – -5.0
-5.0  – 0.0
0.0  – 5.0
5.0  – 10.0

10.0  – 15.0
15.0  – 20.0
20.0  – 25.0
25.0  – 30.0

Change in 
forecast skill (%)

Legend

 
Figure 8.5b Spatial changes in forecast skill as a result of utilising seasonal 

rainfall outlook information as opposed to assumptions of neutral 
outlooks for forecasts issued in January 
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Figure 8.5c Spatial changes in forecast skill as a result of utilising seasonal 

rainfall outlook information as opposed to assumptions of neutral 
outlooks for forecasts issued in March 
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Figure 8.5d Spatial changes in forecast skill as a result of utilising seasonal 

rainfall outlook information as opposed to assumptions of neutral 
outlooks for forecasts issued in May 
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Figure 8.5e Spatial changes in forecast skill as a result of utilising seasonal 

rainfall outlook information as opposed to assumptions of neutral 
outlooks for forecasts issued in September 
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Table 8.3  The change in forecast skill between yield forecasts based on a neutral 
seasonal rainfall outlook and those based on actual seasonal rainfall 
outlooks. Positive values depict an improvement in forecast skill when 
actual outlook information was used. Underlined values are statistically 
significant (P<0.05) according to a binomial distribution test 

 
Change in forecast skill (%) 

 
 

No. 

 
 

Mill 1 Sepy-1 1 Jan 1 Mar 1 May 1 Sep Mean 
1 Komati -3.49 -7.86 6.64 -4.09 0.03 -1.75
2 Malelane -11.5 6.47 0.81 -1.51 0.05 -1.13
3 Pongola -2.96 1.85 6.16 -1.20 -3.20 0.13
4 Umfolozi 9.29 -1.32 -6.04 -1.66 -0.43 -0.03
5 Entumeni -20.6 7.65 -0.14 -2.38 0.06 -3.09
6 Felixton -2.07 8.35  0.81 0.93 -0.17 1.57
7 Amatikulu -11.8 27.74 15.04 9.36 -0.59 7.95
8 Darnall -12.0 15.67 13.24 6.54 0.84 4.86
9 Gledhow -3.15 17.82 12.79 6.45 0.69 6.92

10 Union Co-op 1.54 -1.03 -2.15 -0.43 -1.32 -0.68
11 Noodsberg 0.92 -1.28 -2.32 -0.37 -1.12 -0.83
12 Maidstone -5.08 4.19 5.66 2.59 -0.45 1.38
13 Eston 10.33 12.38 14.83 3.41 3.91 8.97
14 Sezela -9.50 -0.57 0.92 6.42 0.57 -0.43
15 Umzimkulu 0.53 2.10 0.25 2.06 0.26 1.04

Mean -3.97 6.14 4.43 1.74 -0.06 
Industry -0.93 11.57 10.11 8.20 -0.47 

 

8.4 Discussion and Conclusions 
Depending on the time of forecast, the Canesim model-based sugarcane yield forecast 

system managed to capture between 11% and 58% of the natural seasonal variability 

in mean annual yields at an industry scale. The system also showed a significant 

capability to forecast whether yields in the forthcoming season could be expected to 

be higher or lower than in the previous season. Medium to high forecast skills were 

achieved at several mills located in different agro-climatic regions in South Africa. 

This emphasises the potential of the model-based system and prompts further research 

into mill areas, where forecast accuracies are currently low. In most cases, yield 

forecasts were poor for mills where substantial areas of cane were under irrigation. 

Evidence exists that several of these mills could be simulated more accurately if 

model inputs were to be diversified.   

 

The evaluations performed in this chapter indicate favourable results and compare 

well with previous forecasting assessments. On an industry scale, R2 values of actual 

vs. forecasted yields ranged from 0.48 to 0.82, depending on the time of forecast (cf. 

Figure 8.4). These compare favourably with results from Jury (1998), who achieved 

an R2 value of 0.69 after using a statistical ocean-atmospheric response model. A re-
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evaluation of the Eston mill results from Lumsden et al. (1999) revealed a σε value of 

19.9%, compared to 11.7% achieved in this study. Promburom et al. (2001) reported 

an accuracy of 4.8% when forecasting sugarcane production in Thailand. Their result 

is unfortunately not comparable with the evaluation parameters used in this study and 

generally the natural seasonal variability in sugarcane production in Thailand was 

found to be lower than in South Africa. 

 

An evaluation in the number of raingauges per HCZ has shown that, under rainfed 

conditions, additional raingauges may increase simulation accuracy. Generally, it 

could be expected that a carefully selected number of representative additional 

raingauges with complete records will increase overall simulation accuracy. Further 

research is, however, required to determine guidelines towards the number and 

positioning of these additional raingauges within homogeneous climate zones. 

 

Accurate and representative climate data play an important role in the accuracy of 

forecasts. An evaluation showed significant differences in accuracy between model 

simulations based on two different sets of climate data. Generally, climate data 

managed by SASRI produced more accurate forecasts for the Pongola, Entumeni, 

Darnall, Gledhow, Eston, Union Co-op and Noodsberg mills. In contrast, the 

Malelane and Umzimkulu mills were better represented by more generically derived 

climate data originating from temperature and rainfall databases housed at BEEH. A 

more detailed analysis also indicated that climate data originating from well managed 

climate stations with long data records often produced superior results to those from 

more generically derived data. This was evident even though established climate 

stations may often not be optimally located in order to represent a wider region.  

 

Seasonal rainfall outlook information issued over the period 1998 to 2002 generally 

improved forecast accuracies. Rainfall outlooks issued in January increased the 

forecast skill for the industry by 11.6%. At the same time, forecast skills on a mill 

scale were, on average, increased by 6.1%. Rainfall outlooks became less valuable 

towards the drier winter period and were generally inferior to a neutral rainfall 

outlook assumption in September. It should be noted, however, that these results were 

only based on five years of information and that several advances in climate 

forecasting technology have been phased in over these years (pers. comm. Willem 
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Landman, SAWS, Pretoria, South Africa). The results do, however, indicate 

significant potential enhancements in yield forecasting capabilities and should 

encourage collaborative research between the sugar industry and seasonal climate 

forecasters. 

 

Several additional issues arise once a model-based yield forecast system is 

implemented on an industry scale. Channels of information transfer, the 

communication of risk and communicating warnings and certain signals of concern 

need to be addressed. The Canesim model-based yield forecast system was used to 

generate official forecasts between 2000 and 2003. The following chapter will assess 

the accuracy and several other issues concerning these forecasts. 
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9 A Review of Historic Yield Forecasts and Related 
Information Transfer in the South African Sugar 
Industry 

9.1 Introduction 
In the previous chapter several evaluations of the Canesim sugarcane yield forecast 

system and some of its subcomponents were carried out. It was concluded that the 

system may be potentially valuable to decision making among stakeholders in the 

South African sugar industry. Several operational yield forecasts were issued between 

2001 and 2003. This chapter reviews some aspects of these forecasts and compares 

the results with conventional Mill Group Board (MGB) forecasts. 

 

Stern and Easterling (1999) noted that the effectiveness of forecast information 

depends on the systems that distribute the information, the channels used for 

distribution, the recipients' understanding and judgement concerning the information 

and the presentation thereof. 

 

Mill Group Boards have been issuing forecasts of anticipated mill production (tons 

cane.an-1) for their respective mills since the 1998 milling season. These forecasts are 

issued on a monthly basis starting at the end of March prior to the opening of the 

milling season and continuing until the milling season has closed (around December). 

The nature and some concerns of the forecasting process were discussed in Section 

1.2.2. It was noted that MGBs were unable to quantify and attach a level of certainty 

to their forecasts, which according to several previous studies have been an important 

reason why forecasts often have failed (Thornton and Wilkes, 1998; Stern and 

Easterling, 1999; Hammer, 2000b; Hammer, 2000c). Also, no additional information 

from other forecasts was available to evaluate or confirm official MGB forecasts.  

 
Strengths of the MGB forecasts are as follows: 

• Monthly updates are normally carefully reviewed after feedback of actual 

production at the mill has been received. This technique is supported in the 

literature (Arkin and Dugas, 1981; Duchon, 1986; Bannayan and Crout, 1999) 

and results in accuracies that will asymptotically approach 100% towards the 

end of the milling season. Also, near real-time production information is used 
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as opposed to climate data, the availability of which may lag up to six weeks. 

This concurs with the findings of Horie et al. (1992), who emphasised the 

importance for forecasts to utilise the most recently available actual data 

before switching over to probabilistic assumptions of future scenarios. 

• Forecasts by MGBs are also viewed as the official source of anticipated 

production. Widespread information adoption hence exists among industry 

leaders, government and international marketers. The consolidated MGB 

forecast, for example, regularly appears as the official production forecast on 

the Internet home page of the South African Sugar Association (cf. 

www.sugar.org.za). 

 

The aim of this chapter is to evaluate the operational Canesim sugarcane yield 

forecasts in light of the existing and more widely used MGB forecasts. Specific 

objectives are to (1) verify and compare the accuracies of MGB forecasts with 

Canesim-based forecasts, (2) review information transfer methodologies and (3) 

investigate the potential role of the Canesim model-based yield forecasts as a source 

of additional information in the South African sugar industry. 

 

9.2 Methods 

9.2.1 Operational Model-Based Forecasts of Sugarcane 
Production  

Canesim model-based yield forecasts were issued at approximately two month 

intervals for the 2001, 2002 and 2003 milling seasons. In all these cases, simulations 

were carried out for both the current and the previous season. Simulations for the 

previous season were performed similarly to those described in Sections 8.2.3 and 

8.2.4, where results were based exclusively on existing climate record data. 

Simulations for the current milling season were carried out using the SAWS rainfall 

outlook to select and simulate multiple future scenarios (similar to Section 8.2.5). 

Climate data originated solely from the SASRI climate station network (cf. Section 

6.2.1) and various data quality checks were performed prior to the simulations. 

 

The simulated yields for both seasons were subsequently aggregated to mill and 

industry scales (following approaches outlined in Section 5.3.4) and the forecast for 
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the current season (ESTi) was expressed relatively to the previous season (ESTi-1). 

This relative value was used to project the known actual production figures from the 

previous season onto the current season. All forecasts were scrutinised by performing 

random spot checks and cross checks with previous simulations. Problems were often 

identified and were usually associated with missing or incorrect climate data. Once 

the forecast was validated, a report was sent out via email to milling companies, 

grower representatives, MGBs, extension officers, marketers and other industry 

leaders. 

 

9.2.2 An Evaluation of Mill Group Board and Model-Based 
Forecasts 

All MGB and model-based forecasts for mills and the industry were compared with 

actual mill production achieved at the end of the season (Y in t.an-1). Accuracies were 

expressed in terms of a RRMSE (%, Eq. 9.1) and a Skill (%, Eq. 9.2).  
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Eq. 9.1
 

where Yy (t.an-1) is actual annual production achieved at the end of season y, Esty,i 

(t.an-1) is a forecast of production issued for season y some time before the end of the 

season, I is the number of forecasts that were issued during a specific time window 

(e.g. September to December), n is the total number of forecasts issued over the five 

year period within the specified time window and Y  is the mean actual production 

over the five year period. 
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Eq. 9.2

where CVY (%) is the coefficient of variance in annual production (Eq. 8.8). 

 

Separate RRMSE and Skill values were calculated for MGB forecasts issued in 

different months in the year (March - December). In all these cases the value for I 

(Eq. 9.1) was always 1. Canesim-based yield forecasts were not issued every month 

and, based on their date of issue, forecasts were consequently grouped into four time 

windows relative to the milling season. Those included the periods September to 

December in the previous year, January to April, May to August and September to 

December. Values of RRMSE and Skill were calculated for each of these. Mill names 
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were not disclosed as requested by the South African Sugar Association Industrial 

Affairs Division. 

9.3 Results of Operational Forecast Accuracies 
Tables 9.1 and 9.3 reflect RRMSE values for MGB and Canesim model-based 

forecasts at mill and industry scales, respectively. Tables 9.2 and 9.4 reflect the 

equivalent Skill values for the same forecasts. Mills were grouped into four sugar 

producing regions in South Africa, viz. Northern Irrigated and the KwaZulu-Natal 

North Coast, -South Coast and -Midlands regions.  

 

Figure 9.1 displays time series over the period 1998 to 2003 of MGB and Canesim 

forecasts at an industry scale. These time series reflect how forecasts changed over 

time as each season progressed. It is evident that the consolidated MGB forecast for 

the industry (thick solid lines) significantly over-estimated the size of the crop in 

1998, 1999 and 2001. In two of these cases (1999, 2001) MGBs seem to have 

assumed the next crop to be similar to the previous year’s crop.  
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Figure 9.1 Time series of Mill Group Board forecasts (MGB, thick lines) and Canesim 

model-based forecasts (CS, thin and dotted lines) of total industry-scale 
sugarcane production in South Africa. All forecasts are plotted against the date 
when they were issued. The last forecast by MGBs for a season (indicated by the 
year’s digit) may be assumed correct 

 
Tables 9.1 and 9.2 confirm the asymptotical increase in accuracy of MGB forecasts 

towards the end of the season, which may be attributed to adjustments made by the 

MGBs to production information that had been fed back before the next forecast was 

issued.  The consolidated MGB forecast for the industry displays no skill until July 
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(cf. Table 9.2). Large differences in mean forecast skills of the MGB forecasts were 

observed between different mills over the 1998 – 2003 period (cf. Table 9.2). These 

ranged from no skill (7.8% at Mill C) to high skill (74.3% at Mill M). Further 

research may be required to determine why certain MGBs generally had the ability to 

forecast their production more accurately than others. Various factors could be 

expected to influence MGB forecast accuracies. These may include the following: 

• Characteristics of typical crops grown within the mill supply area (e.g. age at 

harvest and cultivars); 

• Homogeneity of soils, climate and topography within the mill supply area; 

• The level of experience and skill of individual MGB members; 

• The tools and resources that are used during the forecasting process (e.g. 

utilising the SAWS climate outlook); 

• The total size of the crop and spatial expanse of the mill area; 

• The spread of socio-economic and cultural diversity among growers and 

stakeholders; and 

• Other institutional policies and procedures, such as communication, penalty 

systems and incentives. 
 

Table 9.1 Relative Root Mean Square Error values (%) for Mill Group Board 
forecasts and for the consolidated industry forecast at different times of the 
milling season. All values were calculated over the period 1998 to 2003 

Region Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 
Northern Irrigated          
    Mill A 8.51 7.88 6.54 6.29 5.50 4.25 3.61 2.40 0.83 0.18 4.60 
    Mill B 4.10 4.83 4.47 4.76 4.37 4.19 3.06 2.33 1.15 1.10 3.44 
    Mill C 10.06 10.38 9.42 9.09 8.13 6.12 5.38 3.57 1.46 0.28 6.39 
    Mill D 12.84 13.81 8.36 8.71 8.37 6.44 3.41 1.71 0.64 0.23 6.45 

KwaZulu-Natal Midlands          
    Mill E 11.88 9.88 10.54 9.57 8.09 5.55 3.07 3.19 1.85 0.01 6.36 
    Mill F 5.96 6.37 6.63 5.45 4.25 2.90 1.47 1.32 1.27 0.96 3.66 
    Mill G 9.33 8.61 7.96 6.98 6.14 4.11 3.08 1.76 0.91 0.13 4.90 
    Mill H 11.46 10.80 9.63 8.15 6.57 4.53 2.79 1.21 0.49 0.22 5.58 

KwaZulu-Natal North Coast         
    Mill I 10.01 8.13 6.69 6.19 5.79 4.50 1.68 1.37 0.25 0.01 4.46 
    Mill J 11.62 9.55 9.49 9.71 8.01 4.80 1.54 1.00 0.17 0.03 5.59 
    Mill K 15.29 10.48 11.77 9.86 7.51 5.00 2.48 1.34 0.51 0.00 6.42 
    Mill L 8.88 9.25 9.26 9.34 8.45 5.34 3.44 1.97 1.58 0.32 5.78 
    Mill M 13.97 7.87 7.26 6.96 4.76 3.61 1.33 1.06 0.65 0.02 4.75 

KwaZulu-Natal South Coast        
    Mill N 6.89 6.72 6.35 6.35 6.29 5.25 2.24 2.18 2.00 1.24 4.55 
    Mill O 9.94 8.23 6.76 6.55 6.36 5.66 2.64 1.69 2.28 0.54 5.07 

Mean 10.05 8.85 8.07 7.60 6.57 4.82 2.75 1.87 1.07 0.35  
National 6.74 6.43 6.18 5.52 4.32 2.78 1.67 1.02 0.40 0.10 3.52 
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Table 9.2 Forecast skills (%) of Mill Group Board and consolidated industry 
forecasts at different times of the milling season. All values were 
calculated over the period 1998 to 2003 

Region Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 
Northern Irrigated          
    Mill A 28.02 33.33 44.63 46.74 53.43 64.00 69.44 79.71 92.98 98.50 61.08 
    Mill B 34.05 22.36 28.15 23.42 29.72 32.62 50.85 62.48 81.48 82.35 44.75 
    Mill C -45.13 -49.82 -35.96 -31.15 -17.33 11.69 22.41 48.50 78.92 95.92 7.81 
    Mill D -43.29 -54.04 6.72 2.77 6.63 28.11 61.92 80.91 92.84 97.42 28.00 

KwaZulu-Natal Midlands          
    Mill E -29.03 -7.27 -14.44 -4.00 12.12 39.71 66.69 65.35 79.88 99.86 30.89 
    Mill F 47.95 44.37 42.11 52.44 62.93 74.66 87.16 88.50 88.87 91.63 68.06 
    Mill G 37.08 41.91 46.35 52.95 58.62 72.27 79.24 88.16 93.84 99.11 66.95 
    Mill H 10.62 15.82 24.94 36.49 48.79 64.64 78.23 90.58 96.15 98.25 56.45 

KwaZulu-Natal North Coast         
    Mill I 35.81 47.85 57.08 60.31 62.88 71.13 89.23 91.20 98.36 99.93 71.38 
    Mill J 11.35 27.13 27.57 25.92 38.91 63.41 88.23 92.34 98.71 99.75 57.33 
    Mill K -37.30 5.90 -5.69 11.46 32.59 55.15 77.71 87.95 95.41 99.99 42.32 
    Mill L 46.43 44.20 44.13 43.66 48.99 67.76 79.27 88.13 90.45 98.07 65.11 
    Mill M 24.39 57.42 60.70 62.36 74.25 80.44 92.82 94.28 96.46 99.90 74.30 

KwaZulu-Natal South Coast        
    Mill N 33.28 34.92 38.52 38.54 39.06 49.14 78.31 78.90 80.66 87.98 55.93 
    Mill O 3.38 20.02 34.34 36.33 38.20 44.99 74.38 83.59 77.81 94.80 50.78 

Mean 10.51 18.94 26.61 30.55 39.32 54.65 73.06 81.37 89.52 96.23  
National -9.98 -4.97 -0.92 9.89 29.49 54.55 72.73 83.30 93.43 98.40 42.59 

 
Canesim model-based forecasts of production at mill scales were generally inferior to 

MGB forecasts, with forecast skills ranging between -114% for Mill E (KwaZulu-

Natal Midlands) and 45% for Mill J (KwaZulu-Natal North Coast, cf. Table 9.4). It 

should be noted that forecast skills at mills situated in the KwaZulu-Natal Midlands 

were considerably lower than those of other regions. These results stand in contrast 

with those is Chapter 8 (cf. Table 8.2b), where it was argued that better operational 

forecast accuracies existed at mills where crops were harvested at older ages, viz. 

Union Co-op and Noodsberg. It should also be noted that during the January to April 

period model-based yield forecasts outperformed MGB forecasts at six of the 15 mills 

(cf. Table 9.4). Four of these mills originated from the Northern Irrigated region, 

while the other two were on the KwaZulu-Natal North Coast. Most of these results 

suggest that operational model-based forecasts of annual production were more 

reliable in areas where crops were harvested at a younger age. This could be owing to 

the fact that forecasted annual production was always expressed relative to the annual 

production of the previous season. This approach may be acceptable in regions such 

as the Northern Irrigated region, where most crops are harvested annually. However, 

in areas, such as the KwaZulu-Natal Midlands, where crops are often harvested at 
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ages up to two years, this approach may become unsuccessful since it relates 

production in one year with areas not harvested during the previous year. 
 

Table 9.3 Relative Root Mean Square Error (RRMSE in %) values for Canesim 
model-based forecasts of production over the period 1998 to 2003 at mill 
and industry scales. Values in brackets reflect mean RRMSE values of 
Mill Group Boards over the same time (derived from Table 9.1) 

 

Region Sep - Dec* Jan - Apr May - Aug Sep - Dec Mean 
Northern Irrigated        
    Mill A 12.36 10.25 (8.19) 20.14 (5.65) 21.44 (1.75) 16.05 
    Mill B 8.83 9.35 (4.46) 15.65 (4.45) 16.15 (1.91) 12.49 
    Mill C 9.66 7.16 (10.22) 9.04 (8.19) 13.77 (2.67) 9.91 
    Mill D 9.40 10.38 (13.33) 11.84 (7.97) 12.54 (1.50) 11.04 

KwaZulu-Natal Midlands       
    Mill E 14.02 10.74 (10.88) 10.85 (8.44) 9.58 (2.03) 11.30 
    Mill F 9.42 8.43 (6.17) 11.42 (4.81) 13.27 (1.26) 10.63 
    Mill G 22.96 20.16 (8.97) 14.20 (6.30) 19.17 (1.47) 19.12 
    Mill H 19.43 17.81 (11.13) 15.83 (7.22) 17.92 (1.18) 17.75 

KwaZulu-Natal North Coast       
    Mill I 7.29 9.28 (9.07) 7.04 (5.79) 8.49 (0.83) 8.02 
    Mill J 6.94 5.05 (10.58) 12.47 (8.00) 9.65 (0.69) 8.53 
    Mill K 14.37 11.24 (12.89) 12.07 (8.53) 9.97 (1.08) 11.91 
    Mill L 11.67 10.36 (9.06) 13.43 (8.10) 16.20 (1.83) 12.91 
    Mill M 14.48 11.05 (10.92) 13.90 (5.65) 11.64 (0.76) 12.77 

KwaZulu-Natal South Coast      
    Mill N 12.27 10.01 (6.81) 14.19 (6.06) 14.03 (1.92) 12.62 
    Mill O 16.12 12.00 (9.09) 7.61 (6.33) 11.70 (1.79) 11.86 

Mean 12.61 10.88 (9.45) 12.64 (6.77) 13.70 (1.51)  
National 6.15 3.31 (6.58) 7.64 (4.70) 4.24 (0.80) 5.34 

* Depicts forecasts issued during the year prior to the respective milling season 

 
At an industry scale, the Canesim model-based forecasts of annual production were 

satisfactory during the early season. Model-based forecasts of industry production 

were of medium skill during the September to December period of the previous year 

and significantly outperformed MGB forecasts in the early season (63% vs. -7%). 

These forecasts may be valuable to stakeholders, such as international marketers, who 

require an early estimate of the entire industry’s annual production. Later forecasts 

were, however, often less accurate than the consolidated MGB forecast and 

sometimes included erratic shifts between consecutive forecasts (cf. Figure 9.1). 

These shifts may be ascribed to irregularities in available climate data and also to 

changes in selected analogue seasons used to reflect the current seasonal rainfall 

outlook. It should also be noted that, while consecutive MGB forecasts asymptotically 

approached actual production, model-based forecasts remained inaccurate throughout 

the course of the milling season. This is as a result of the fact that production 



 106

information to date was generally fed back to MGBs before the next forecast was 

issued. The same information is being made available to the modellers who perform 

model-based forecasts. However, no procedure currently exists to incorporate this 

information into the forecast. 

 
Table 9.4 Forecast skill values for Canesim model-based forecasts of production 

over the period 1998 to 2003 at mill and industry scales. Values in 
brackets reflect equivalent values from Mill Group Board forecasts 
(derived from Table 9.2) 

 

Region Sep - Dec* Jan - Apr May - Aug Sep - Dec Mean 
Northern Irrigated        
    Mill A 29.12 41.25 (30.67) -15.49 (52.20) -22.92 (85.16) 7.99 
    Mill B 43.71 40.35 (28.21) 0.22 (28.48) -3.03 (69.29) 20.32 
    Mill C -18.22 12.33 (-47.47) -10.64 (-18.19) -68.59 (61.44) -21.28 
    Mill D -0.54 -10.98 (-48.67) -26.66 (11.06) -34.11 (83.27) -18.07 

KwaZulu-Natal Midlands       
    Mill E -113.69 -63.66 (-18.15) -65.42 (8.35) -45.99 (77.95) -72.19 
    Mill F 1.29 11.63 (46.16) -19.66 (58.03) -39.15 (89.04) -11.47 
    Mill G -61.33 -41.65 (39.50) 0.19 (57.55) -34.73 (90.09) -34.38 
    Mill H -63.12 -49.50 (13.22) -32.93 (43.72) -50.49 (90.80) -49.01 

KwaZulu-Natal North Coast       
    Mill I 19.84 -2.06 (41.83) 22.58 (62.85) 6.58 (94.68) 11.74 
    Mill J 24.50 45.05 (19.24) -35.74 (38.95) -4.98 (94.76) 7.21 
    Mill K -16.07 9.18 (-15.70) 2.54 (23.38) 19.50 (90.26) 3.79 
    Mill L -38.75 -23.21 (45.32) -59.68 (51.14) -92.57 (88.98) -53.55 
    Mill M -65.90 -26.58 (40.90) -59.19 (69.44) -33.38 (95.87) -46.26 

KwaZulu-Natal South Coast      
    Mill N 8.81 25.66 (34.10) -5.39 (41.32) -4.27 (81.46) 6.20 
    Mill O -18.74 11.66 (11.70) 43.96 (38.46) 13.88 (82.65) 12.69 

Mean -17.94 -1.37 (14.72) -17.42 (37.78) -26.28 (85.05)  
National 31.09 62.90 (-7.47) 14.46 (23.25) 52.56 (86.97) 40.25 

* Depicts forecasts issued during the year prior to the respective milling season 

 

9.4 A Synthesis on Forecast Accuracies and Information 
Transfer 

Bezuidenhout and Singels (2001) highlighted several problems in the operational 

Canesim yield forecast system, which included: 

• A time lag of up to six weeks in climate data availability resulting from slow 

data mailing, capturing and processing procedures;  

• Uncertainties regarding the accuracy of SAWS rainfall outlook information; 

• A lack of data with adequate spatial coverage; 

• Slow and inappropriate software and data formats; and 

• Limited computational and human resources. 
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In addition to these problems, it should also be noted that owing to an irregular influx 

of climate data, different combinations of climate stations were often used to execute 

consecutive yield forecasts in a season. Also, some problems arise when expressing 

the forecasted yield for the current season relatively to the simulated yield of the 

previous season: 

• First, it should be noted that differences between simulated yields of the two 

seasons are due solely to differences in climate and irrigation water regimes. 

These results may be incompatible at mill and industry scales where other 

factors, such as changes in the areas harvested, different lengths of milling 

seasons and different management practices could play important roles.  

• Secondly, as shown in Section 8.3.2, it should be noted that there is still a 

certain amount of error in simulated results, even if actual climate data have 

been used to simulate the entire season. The forecast error will therefore be 

exacerbated by expressing a forecasted yield in relative terms, using a 

simulated yield of the previous season as a benchmark.  

 

The timing of the Canesim yield forecasts may also inhibit the uptake of the 

information. Currently, data preparation and simulations are carried out once climate 

data have been received from collaborators, which occurs around the 15th of the 

following month. The final forecast is normally disseminated around the 22nd (five 

working days later). The SAWS seasonal climate outlook is usually issued on the 25th 

of each month, which results in a relatively dated rainfall outlook being used for the 

forecasts. It has, for example, occurred that the Canesim yield forecast was issued a 

day before the next month’s SAWS climate outlook became available.  

 

Stakeholder requirements should also be considered. In Chapter 3 (Fig. 3.3) it was 

established that stakeholders would need yield forecasts at the beginning of each 

month. Under the procedure described above, the most recent climate data of the last 

day of the previous month may be 15 days old and the rainfall outlook that was 

assumed is likely to be outdated by the time stakeholders use the information. 
 

A considerable amount of growth takes place in the early season and a model-based 

forecast of this growth, guided by the rainfall outlook, seems feasible. Mill Group 
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Boards, on the other hand, tend to assess the current status of crops and their forecasts 

therefore become more accurate when growth is restricted by dry winter conditions 

and when large proportions of the crop have already been harvested. It is believed that 

the accuracies of model-based forecasts of annual production at both mill and industry 

scales could be significantly enhanced if the correct feedback mechanisms of 

production to date are incorporated into the system. 

 

The author believes that a collaborative research approach between modellers and 

MGBs should be considered. De Lange and Singels (2003) have demonstrated some 

potential advantages of such an initiative. Canesim model-based forecasts of annual 

production and MGB forecasts can not be viewed as independent information sources 

since model-based forecasts have been disseminated to MGBs for their consideration 

since 2001. A collaborative attempt to forecast production could include growth 

models, large GIS-based databases of production and ground scouting information of 

yields, pest, diseases, sugarcane flowering, lodging and insufficient irrigation and 

ripening. 

 

9.5 Conclusions 
Operational Canesim model-based forecasts of annual production may be valuable to 

some mills and for the industry as a whole during the early season and during the 

period that MGB forecasts are unavailable (before March). Although some MGB 

forecasts seem more accurate than others, these forecasts generally had medium to 

high skills and outperformed model-based forecasts significantly, especially at a mill 

scale. Tentative information suggests that model-based forecasts may be more 

valuable if production were not expressed relative to that of the previous season, 

especially for mills where crop areas between consecutive seasons may differ 

substantially. 

 

Several constraints have been identified that prohibit more efficient regimes of 

information transfer of model-based forecasts. These are related mainly to the timing 

of information. Forecasts depend on recent climate data, rainfall outlook information 

and time constraints in executing the simulations. These information sources are not 
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synchronised and also do not currently allow for information transfer at the most 

optimum time for decision making. 

 

Several synergies exist between MGB and model-based forecasts. Model-based 

simulations can be used to quantify the impacts of sequences of climate events on 

crops. Mill Group Boards, on the other hand, have the ability to readily capture and 

project current infield and production information. Some resources, such as large 

spatial databases, may currently be under-utilised by both MGBs and modellers and 

the author believes that a collaborative effort between these parties should yield the 

most suitable results. 

 

This chapter concludes the results of this thesis. Chapter 10 contains the final 

conclusions and briefly highlights several areas that were identified for future 

research and consideration. 
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10 Conclusions and Recommendations 

10.1 Main Conclusions 
A crop growth model integrated with remote sensing technologies may provide highly 

valuable, if not the most suitable, forecasts of sugarcane yields and production for 

South Africa. Crop growth models have the ability to quantitatively translate 

information of recent climate into sugarcane yield responses, quantify impacts of 

probabilistic future climate scenarios and quantify risk and uncertainty. Remote 

sensing technologies, in addition, can be used to supply an economically feasible 

regional estimate of the current size of the crop and estimate the production area. 

Crop growth modelling and remote sensing in combination have, therefore, the ability 

to forecast future scenarios and aggregate information to larger areas. A sugarcane 

crop growth model, viz. Canesim, was selected for yield forecasts owing to its 

simplicity in algorithms as well as input data requirements and reasonable verification 

and representivity within the South African sugar producing areas. The adoption of 

remote sensing technologies in the South African sugar belt has been slow and remote 

sensing was, for this reason, excluded from the scope of this study. 

 

Industry stakeholders generally envisaged that yield forecasts could significantly 

enhance decision making in the South African sugar industry. International marketing, 

national financing and mill operations are the probable areas to show immediate 

benefits from using yield forecast information. Yield forecasts are usually required at 

the commencement of each month and certain stakeholders may need forecasts of 

anticipated industry scale production by as soon as September prior to the 

commencement of the new milling season in April of the following year. Different 

stakeholders require updates of forecasts of sugarcane production at a range of 

different time intervals, spatial resolutions and for window periods within the milling 

season. Stakeholders may, however, need to acquire the correct decision making skills 

to optimally utilise the probabilistic information supplied through model-based 

forecasts. Several of these stakeholder requirements could be addressed by a Decision 

Support Program, that will not only filter out the most relevant information, but which 

may also assist with probabilistic decision making techniques. 
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Sugarcane producing areas in South Africa were subdivided into 48 relatively 

Homogeneous Climate Zones (HCZs). The uniformity within, and differences 

between, HCZs were verified and the HCZs could potentially assist researchers to 

extrapolate various experimental outcomes over wider areas. These may include 

agronomic recommendations and pest and disease advisories. Climatically, all zones 

had less than 10% internal variability, but differed by more than 18% from 

neighbouring zones. For this study, HCZ were used to spatially extrapolate point-

based model simulation results. 

 

This study provided a powerful and flexible crop growth simulation system that was 

used to evaluate several system components and information and data sources. The 

system’s ability to provide forecasts of sugarcane production at climate zone, mill and 

industry scales was not only demonstrated, but was also operationally implemented in 

South Africa for several years. The study provided the first system, to the author’s 

knowledge, that produced model-based operational forecasts of sugarcane production 

at an industry scale for one of the 15 large sugarcane producing countries in the 

world.  

 

At an industry scale, the system could manage to capture up to 58% of the 

climatically driven variability in mean annual sugarcane yields. Accuracies compared 

well with results from previous literature and the system showed a significant 

capability to forecast whether yields in the approaching season could be expected to 

be higher or lower than those of the previous season. The reliability of forecasts, both 

at mill and industry scales, changed with time as the milling season progressed. 

Forecast accuracies differed widely between different mills and several factors, such 

as data quality from climate stations and the number of additional raingauges within 

HCZs, were identified and which may explain some of these inconsistencies. 

Generally, it was concluded that, should sufficient information and climate data exist, 

the system has the ability to favourably forecast yields over a wide range of agro-

climatic conditions. 

 

Climate forecasts contain potentially valuable information and should be consulted 

when forecasts of crop production are made. For this study, a methodology was 

developed that quantitatively translated a three month lead time rainfall outlook into 
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anticipated sugarcane yield responses. Rainfall outlook information for the February 

to April lead time increased the accuracy of industry scale forecasts of mean annual 

yields by 11.6% during the 1998 – 2002 period. Weaker responses existed for rainfall 

outlooks issued after February and outlook information issued in September was 

generally not of any value within the system. It should, however, be emphasised that 

valuable progress in the adoption of seasonal climate outlook information could be 

expected if climate forecasters and crop modellers increased collaboration. 

 

Several new issues, which were often omitted in more theoretical studies in the 

literature, come to the forefront when attempts are made to provide stakeholders with 

operational yield forecasts. These include: 

• Time constraints, such as fixed times when seasonal climate outlooks are 

issued and when climate station data are processed; 

• Conveying the forecast in logical and usable terms, such as expressing yields 

relatively to the previous season; and 

• Comparing forecasts with existing and more conventional ones already 

available in the industry. 

 
Operational forecasts of production at mill and industry scales were issued between 

2001 and 2003. In addition, forecasts for 1998 to 2000 were emulated in order to 

compare accuracies with conventional Mill Group Board (MGB) forecasts that were 

issued between 1998 and 2003. Model-based forecasts outperformed those of MGBs 

at some mills, mainly those in the Northern irrigated region, during the early season 

(Jan – Apr). Forecasts aimed at an industry wide scale also significantly outperformed 

early season MGB forecasts.  

 

Operationally, the system still has some limitations. Forecasts of sugarcane 

production, for example, are always expressed relative to yields of the previous 

season, potentially ignoring non-climatic changes between seasons. Also, near real-

time production information from mills, which can be used to correct certain errors, 

are not currently fed back into the system. The author believes that enough synergy 

exists between modellers and MGBs to encourage a collaborative effort to enhance 

forecasts of sugarcane yields and production within the sugar belt of South Africa. 
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10.2 Recommendations for Future Research  
The following list of recommendations for future research and refinements to the 

current Canesim model-based yield forecast system has been compiled. These are not 

in any order of importance: 

 

GENERAL 

• A multidisciplinary research strategy could be expected to enhance research 

outcomes. It is believed that different skills offered by modellers, statisticians, 

crop physiologists, GIS experts, experts in management, climatologists and 

experts in communication can significantly contribute to this field of study. 

 

• Based on Figure 1.1, it is important to identify why the South African sugar 

industry is vulnerable to yield losses and to make strategic (i.e. long-term), 

tactical (i.e. seasonal) and operational (i.e. daily and weekly) mitigation plans 

against such vulnerabilities. Small scale growers, for example, seem more 

vulnerable to yield losses than commercial growers, but also seem more 

limited in their capacity to gain from operational forecasts. 

 

• Collaboration between modellers and Mill Group Boards is essential. This 

should stimulate new ideas and will also streamline information flow. Further 

research is needed to establish why certain MBGs generally achieve more 

accurate forecasts than others. Accuracy may simply be dictated by the 

complexity, size and diversity of the respective mill areas, but may also 

include other issues, such as tools employed to make the forecast, the level of 

experience of board members and other organisationally and politically related 

issues, such as institutional policies and penalty systems. Similar to forecasts 

made by MGBs, there is also a need for the Canesim model-based system to 

include near real-time production feedback from mills. 

 

• More research is needed to improve model aggregation errors. Models, for 

example, can be calibrated to local conditions. This, however, may be 

suboptimal with a strong bias towards local historic information that may not 

be relevant to new practices, cultivars and production areas. Alternatively, 
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remote sensing technologies may be employed. These can be used to assess 

the crop’s status, calculate areas under cane, determine pest and disease 

infestations and highlight areas under water and temperature stress. 

 

• It has been shown that expressing forecasted yields relative to the previous 

season may introduce additional errors. Further refinements to this approach 

are needed and these may include local model calibration, using statistical 

indices and accounting for non-climate related changes in year-to-year 

production. 

 

• The Canesim yield model and input variables require further development and 

expansion to account for different cultivars, sugarcane flowering and impacts 

of pests (e.g. Horton et al., 2002) and diseases. In contrast to the CANEGRO 

model (cf. Singels and Bezuidenhout, 2002), the Canesim model does not 

currently simulate the dynamics of sucrose accumulation. The model also 

lacks information on fibre and reduced sucrose contents. In Chapter 7 it was 

concluded that the simulation of irrigated crops may need further refinement. 

These should include scenarios with water restrictions. In addition, the initial 

soil moisture content at the start of each crop, which currently does not vary 

between years, may also need to be varied based on conditions prior to the 

crop’s initialisation. Some results from this study suggest that the description 

of heterogeneity among crops may still be limited. Further research is needed 

to establish the optimal number of input variables needed to describe the 

diversity in soils, management and climate. It was shown, for example, that 

the number of raingauges providing data used to represent heterogeneity 

within climate zones may play an important role.  

 

• The Canesim model needs more extensive verification. Verifications of 

simulated cane yields have not been published and more confidence in the 

model is needed for different locations in the sugar belt, such as in the 

KwaZulu-Natal midlands, and during seasons with different climate regimes. 
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CLIMATE 

• A strong emphasis needs to be laid on closer collaboration with climate 

forecasters. Climatologists provide expertise in General Circulation Modelling 

and their subsequent downscaling to reflect regional climate patterns. Closer 

collaboration may also result in the provision of customised and correctly 

timed seasonal rainfall outlook information. Climate forecasters are likely to 

soon be able to forecast changes in the frequencies of rainy days, heavy 

rainstorms and duration of dry spells. Such forecasts, as opposed to those of 

only three month rainfall totals, may be more valuable to crop yield modellers, 

since they provide a better explanation of probable changes in available soil 

water regimes. The evaluations on the value of rainfall outlook information in 

this study (cf. Section 8.3.4) were only based on five years of data and further 

research is needed to confirm the value of seasonal rainfall outlooks within the 

Canesim model-based yield forecast system. 

 

• There is also a need to refine the selection criteria for analogue seasons. 

Strong indications exist that not enough analogue seasons are currently 

simulated. In addition, other outlook information, such as a one-month rather 

than only three-months rainfall outlooks as well as temperature forecasts, are 

currently already available for South Africa and need to be incorporated into 

the system. 

 

• It was shown that the current network of reporting climate stations is likely to 

be sub-optimal (cf. Section 8.3.2). This was confirmed in several areas where 

climate surrogates derived better results compared to data from nearby stations 

situated in other climate zones. The climate station network and additional 

raingauge network need to be assessed and a methodology needs to be 

developed to establish optimum locations and densities for these stations. At 

the same time it should also be ensured that new stations and existing stations 

measure all the required climatic variables, including solar radiation. Climate 

data communication also needs to be accelerated and near-real time climate 

data integrity checks should be performed. 
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• Integrated research strategies are needed to address issues of climate change. 

Generally, it is believed that higher climatic variability may be expected under 

climate change scenarios owing to the increased energy levels within the 

atmosphere. This will increase crop production vulnerabilities and will place a 

higher demand on the necessity to acturately forecast crop responses in 

advance.  

 

MANAGEMENT 

• There is a need to train decision makers on how to make management 

decisions under risk and uncertainty. Forecasts should be made understandable 

without sacrificing important information on risk and uncertainties. The level 

of confidence associated with each forecast needs to be conveyed. This should 

not only include an expression of future climate uncertainty, but also the 

magnitude of input, model and aggregation errors. At the same time, 

successive forecasts should not differ substantially from one another without 

an explanation being provided. Decision support tools, as well as specialist 

assistance are needed to help decision makers with forecast interpretations. 

  

The above-mentioned recommendations, in conjunction with the research 

conveyed in this study, emphasises the importance of a multi-disciplinary research 

approach to readily and accurately forecast climate variability with suitable lead 

times, correctly translate these into yield responses, quantify the associated risks 

and mitigate against these by using capable decision makers to implement 

alternative plans. 
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