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ABSTRACT 

Of the approximate 300 currently recognised bat species known from the Afrotropics, very few 

have been studied in sufficient detail to a) provide accurate species and distributional limits for 

extant taxa, b) identify possible cryptic species, and c) ascertain the closest sister lineage of 

numerous taxonomic groups. For those species where DNA-based phylogenies are available, 

the use of additional taxonomic markers and methods has provided further insights into the 

evolutionary history of certain extant chiropteran groups. This work comprises a series of 

systematic studies of African and Malagasy Chiroptera aimed at investigating sequence-based 

evolutionary hypotheses of higher and lower level taxa using comparative molecular cytogenetic 

and morphometric techniques.  

 

Efforts were directed at resolving taxonomic inconsistencies of chiropteran taxa from the African 

subregion and/or Madagascar, for which there is a general paucity of comprehensive and/or 

resolved phylogenies. Taxa belonging to the families Pteropodidae, Hipposideridae, 

Myzopodidae, and Molossidae were chosen for study because molecular-based have failed to 

provide consensus regarding evolutionary relationships amongst the above-mentioned 

taxonomic groups, or are in stark contrast to phylogenies based on morphological data.  In 

addition, molecular cytogenetics and geometric morphometric approaches were used because 

they have had been applied in few evolutionary studies of Afrotropical bats.  

 

With the exception of a few karyotypic descriptions, scant data are available that details the 

chromosomal diversity and karyotypic evolution of bats from Madagascar in relation to their 

conspecifics or congenerics on other continents.  To understand better the mechanisms that 

may have structured the karyotypes of extant Malagasy Chiroptera and the utility of 

chromosomal characters in retracing their evolutionary history, eight species from seven 

families were analysed using G- and C-banding and chromosome painting. Robertsonian (Rb) 

fusions and fissions were the dominant mode of genome restructuring amongst taxa and, for the 

most part, proved useful characters for investigations of phylogenomic relationships amongst 

families and genera.  

 

Chromosomal data generated from painting studies employing Myotis myotis (MMY) 

chromosomal probes, produced phylogenetically important characters that supported two 

conflicting hypotheses regarding the evolutionary affinities of the Myzopodidae, a family of bats 

endemic to Madagascar. The Rb fusion MMY 9+11 detected in Myzopodidae, also common to 

Phyllostomidae, could suggest a close association of Myzopoda aurita with the superfamily 

Noctilionoidea. However, the Rb fusion MMY 3+4 that is also present in vesper bats, suggests 

closer evolutionary ties between M. aurita and the Vespertilionoidea. A sex-autosome 

translocation, a cytogenetic character previously confined to phyllostomid and vespertilionid 
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bats, was also detected in M. aurita casting further uncertainties on the evolutionary origins of 

this deep-branching species. This study highlighted the need for more refined cytogenetic 

investigations based on human-derived chromosomal paints and the application of high-

resolution bacterial artificial chromosomal (BACs) probes to map intrachromosomal breakpoints 

and/or subchromosomal rearrangements in the genome of Myzopoda.   

 

Heterochromatic polymorphisms and inversions appear to be important mechanisms of 

karyotypic evolution amongst pteropodid genera. Painting data revealed that at least five 

structural arrangements might be linked to the evolutionary divergence of pteropodine and 

rousettine fruit bats. A cryptic pericentric inversion was detected in the genome of Pteropus 

rufus corresponding to the homologue of MMY 4+19 (equivalent to HSA3+21); an ancestral 

syntenic character proposed for eutherian mammals. Proposed synapomorphies of the 

rousettine clade, as defined by molecular DNA studies, include the derived state of the MMY 

4+19 homologue and the non-centric fusion of MMY 16/17+24 homologue.  

 

Integration of painting data on Hipposideros commersoni with published comparative maps of 

other hipposiderids enabled a brief revision of the postulated ancestral hipposiderid 

chromosomal complement. These data disputed previously proposed chromosomal 

synapomorphies of Hipposideridae and supported the basal position of H. commersoni within 

the genus. The inclusion of other hipposiderid genera, in particular Malagasy Paratriaenops and 

southern African Cloeotis, in chromosome painting studies may allow for further inferences 

regarding the evolutionary history of this diverse family.  

  

Morphometric approaches were employed to resolve uncertainties concerning species-level 

relationships within Afrotropical Otomops. Multivariate analyses delineated three well-supported 

morphological groups that corresponded to recently described genetic lineages and revealed 

several species-specific morphological traits for taxonomic diagnoses. Otomops from Djibouti, 

Ethiopia, Kenya, and Yemen constitute an undescribed morphologically and genetically 

cohesive group that requires a formal taxonomic description. Understanding the ecological and 

possible physiological adaptive value of morphological variation can provide valuable insights 

into the evolutionary history of this Afrotropical species complex.  

 

This work has provided further insights into the systematics of certain Afrotropical Chiroptera 

through the use of molecular cytogenetic and geometric morphometric techniques. Specifically, 

it has facilitated the interpretation of ancestral, independent and convergent chromosomal 

characters in the evolution of Afrotropical taxa belonging to the families Pteropodidae, 

Hipposideridae, and Myzopodidae, and has also elucidated lineage-specific morphological 

attributes in members of the genus Otomops thereby advancing our understanding of 

chiropteran diversity within the region.    
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AFROTROPICAL CHIROPTERA 

 

Bats (Order Chiroptera) belong to the second most speciose group of placental mammals. With 

approximately 1260 recorded species, they account for at least 23% of the 5500 described 

mammalian species (Fenton 2012; Wilson & Reeder 2005). Currently there are 20 recognised 

families of extant bats: Cistugonidae, Craseonycteridae, Emballonuridae, Furipteridae, 

Hipposideridae, Megadermatidae, Miniopteridae, Molossidae, Mormoopidae, Mystacinidae, 

Myzopodidae, Natalidae, Noctilionidae, Nycteridae, Phyllostomidae, Pteropodidae, 

Rhinolophidae, Rhinopomatidae, Thyropteridae and Vespertilionidae (Simmons 2005; Miller-

Butterworth et al. 2007; Lack et al. 2010). The unique capability of powered flight amongst bats 

has allowed them to colonise most regions of the world, apart from the Arctic, Antarctica and 

several isolated oceanic islands (Mickleburgh et al. 2002).  

The greatest bat biodiversity is concentrated within the tropics. The Afrotropical region, in 

the biogeographical sense, encompasses sub-Saharan Africa, the southwestern fringes of the 

Arabian Peninsula (African subregion), and Madagascar and its neighbouring oceanic islands 

(Malagasy subregion) (Udvardy et al. 1975; Olson et al. 2001; Fig 1). The region boasts 

approximately 300 chiropteran species belonging to 12 families and 56 genera (ACR 2012; 

Goodman et al. 2011, 2012a,b). Two families (Cistugonidae and Myzopodidae) and 28 genera 

are endemic to the region. The highest species diversity for bats and other small mammals is 

concentrated within the eastern regions of southern Africa (Schoeman et al. in press), the West 

African forests, Eastern Arc forests, East African coastal forests and Madagascar (Myers et al. 

2000; Ceballos & Ehrlich 2006). Madagascar is of particular biogeographical interest and 

conservation significance due to the islands unique biota and extraordinarily high levels of 

endemism (Goodman & Benstead 2005). Relative to other mammalian taxa inhabiting the 

island, the bat fauna is the least understood and studied.  

Very few widespread bat species have been studied in detail across portions of their 

range within the Afrotropics, and, hence, little information is available on their biology and 

ecology. Incomplete biological inventories of certain areas, insufficient specimen material to 

support taxonomic studies and the poor resolution of many cryptic species complexes has led to 

a gross underestimation of the true number of bat species occurring in the region. At least 10% 

of all extant Afrotropical Chiroptera are threatened (Critically Endangered, Endangered or 

Vulnerable), with a further 5% listed as Near Threatened (IUCN 2013). Approximately 55 taxa 

are listed as Data Deficient due to limited information available to formulate measures of their 

conservation status. An additional 30 taxa of questionable taxonomic status or more recently 

described species have yet to be evaluated.  
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Figure 1. The Afrotropical region showing the demarcation of the African and Malagasy subregions.  The 
black solid line indicates the separation between the Afrotropical and Palaearctic regions. The coloured 
areas depict predicted bat biodiversity throughout Africa as modelled using Maxent (Monadjem, 
Schoeman, and Smith unpublished data).  

 

 

RECENT ADVANCES IN SYSTEMATIC STUDIES OF AFROTROPICAL 

CHIROPTERA 

 

The new age of discovery 

Within recent decades, concerted efforts have been made to improve our understanding of the 

diversity, taxonomy, distribution and natural history of bats worldwide. Countries within the 

Afrotropics, in particular Madagascar, have benefited from this renewed attention, with national 

and international research enriching our knowledge of the bat fauna within the region (Hoffman 

et al. 2009). With this collective effort have come rediscoveries of rare species (e.g. Monadjem 

et al. 2005) and the discovery of many new species (reviewed in Ceballos & Ehrlich 2009; 
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Hoffman et al. 2009; Monadjem et al. 2010). Inventories of previously poorly surveyed areas 

and/or the new collections from remote areas have yielded morphologically distinct species 

belonging to several families, previously not known to science (e.g. Myzopoda schliemanni, 

Goodman, Rakotondraparany, Kofoky 2007; Pipistrellus raceyi, Bates, Ratrimomanarivo, 

Harrison, Goodman 2006; Rhinolophus maendeleo, Kock, Csorba, Howell 2000; R. sakejiensis, 

Cotterill 2002; R. ziama, Fahr Vierhaus, Hutterer, Kock 2002; Scotophilus tandrefana, 

Goodman, Jenkins, Ratrimomanarivo 2005).   

From 1988 until present, approximately 44 new bat species have been described from 

Africa and the Malagasy subregion (Hoffman et al. 2009; ACR 2012; Taylor et al. 2012). In 

Madagascar alone, there has been an increase from an estimated 30 species (Eger & Mitchell 

1996, 2003), to over 44 recorded species (Goodman 2011; Goodman et al. 2011, 2012b). 

Approximately 80% of all Malagasy bat species are endemic, whilst those non-endemics are 

shared with neighbouring oceanic islands or mainland Africa (Goodman 2011; Goodman et al. 

2012b). Most of these new species discoveries have originated from the compilation of new 

specimen material that disputed traditional classifications and thus warranted systematic 

revisions of certain taxonomic groups (Yoder et al. 2005). This refinement of species 

boundaries and definition of their historical diversification has been bolstered by an increase in 

the size of available museum collections. Specimen collections provide an invaluable resource 

for taxonomists and systematists in understanding biodiversity, both past and present. 

Traditionally geared towards the preservation and comparison of organismal phenotypes, which 

was the primary means of species recognition, biological repositories now play a significant role 

in enhancing both biodiversity science and genomic studies (Hanner & Gregory 2007).  

 

The molecular phylogenetic revolution 

DNA sequence data and molecular phylogenetics have transformed our perception of the 

evolutionary relationships amongst Chiroptera. The ease, precision and efficiency of DNA 

sequencing methods, facilitated by polymerase chain reaction (PCR) based techniques, have 

allowed for the rapid study of a greater number of taxa than was possible in previous years and 

have entrenched the use of sequence data as a preferred means for phylogenetic 

reconstruction and inference (Galtier et al. 2009; Winker 2009; McCormack et al. 2013). Where 

traditional comparative morphological studies have failed to provide consensus, molecular DNA 

approaches have, for the most part, provided robust phylogenies that have resolved several 

contentious hypotheses concerning evolutionary associations at both higher and lower 

taxonomic levels.  

Higher-level systematic studies of the Chiroptera were traditionally dominated by 

morphological data that supported the existence of two reciprocally monophyletic clades: the 

Megachiroptera (largely non-echolocating bats belonging to the family Pteropodidae) and the 

Microchiroptera (echolocating bats) (Koopman 1994a; Simmons 1998; Simmons & Geisler 
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1998). Molecular studies have revolutionised this long-established classification of the 

Chiroptera by revealing the paraphyly of Microchiroptera and positioning rhinolophoid microbats 

as the sister-taxon to the pteropodids to the exclusion of other previously recognised microbat 

families (Van Den Bussche & Hoofer 2004; Eick et al. 2005; Teeling et al. 2005; Fig 2). 

Currently two subordinal and four superfamilial groups are recognized: Yangochiroptera or 

Vespertilioniformes consisting of the Emballonuroidea, Noctilionoidea and the Vespertilionoidea, 

and the Yinpterochiroptera or Pteropodiformes, which comprises the Pteropodidae and several 

families belonging to the Rhinolophoidea (Craseonycteridae, Rhinopomatidae, 

Megadermatidae, Hipposideridae, and Rhinolophidae) (Eick et al. 2005; Teeling et al. 2005).  

 

 

 

 

Figure 2. Molecular consensus tree and timescale derived from Miller-Butterworth et al. (2007) that 
portrays the current understanding of phylogenetic relationships amongst Chiroptera at the familial, 
superfamilial and subordinal levels. Nodal numbers indicate molecular dates in millions of years with 95% 
credibility intervals indicated in parentheses. The position of Cistugonidae is based on the phylogeny of 
Lack et al. (2010).  
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Further genetic studies have led to the discoveries of novel families previously classified 

within Vespertilionidae. For instance, traditional classifications have long recognised 

Miniopterus as the sole genus of the vespertilionid subfamily Miniopterinae. Recent analyses 

based on mitochondrial DNA (mtDNA) revealed the basal positioning and genetic 

distinctiveness of this group from all other vespertilionid species (Hoofer & Van Den Bussche 

2003; Van Den Bussche & Hoofer 2004). Analyses based on mtDNA and nuclear markers 

provided conclusive evidence and consensus for the recognition of Miniopteridae (Eick et al. 

2005; Miller-Butterworth et al. 2007). Similarly, Stadelmann et al. (2004) used cytochrome b (cyt 

b) data to provide strong support for the removal of Cistugo leuseri and C. seabrae from the 

Myotis genus and the recognition of Cistugo as a separate and distinct subfamily of 

Vespertilionidae. Using a concatenated data set of one mitochondrial and six nuclear genes, 

Lack et al. (2010) provided definitive evidence for establishing Cistugo as a hitherto 

unrecognised and endemic African bat family, designated Cistugidae and later reclassified to 

Cistugonidae (Van Cakenberghe & Seamark 2011).  

 

The integrative consensus – beyond DNA sequencing and molecular phylogenies 

Despite the major advances to resolve the branches of the chiropteran phylogenetic tree using 

nucleotide sequence data, some uncertainty nevertheless surrounds the evolutionary 

arrangement of certain families and the positioning of several genera and species within 

particular lineages. Ambiguities may arise from the lack of species-level phylogenies for 

numerous bat lineages that are needed to fully resolve higher-level relationships within 

Chiroptera. Incongruities between molecular DNA reconstructions resulting from differences in 

taxon sampling (Rokas & Carroll 2005), disparities in the number and/or type of gene loci 

utilised (Eick et al. 2005; Galtier et al. 2009; Vallo et al. 2012), and the improper choice of out-

group (Van Den Bussche & Hoofer 2004), can contribute towards misinterpretations of the 

phylogenetic relationships within Chiroptera. Incomplete lineage sorting and/or introgression 

between sister taxa (e.g. Baird et al. 2008) may also hamper phylogenetic inferences. 

Furthermore genetic variation is neutral or near neutral and is the result of random processes 

that do not drive evolutionary divergence in the process of speciation (Winker 2009). Hence, the 

use of genetic data without considering other characters or traits subject to selective pressures 

may present a unidimensional view of complex evolutionary processes (Winker 2009).  

Accurate evolutionary reconstruction and species delimitation relies increasingly on the 

combined analysis and/or accumulation of evidence from multiple types of taxonomic 

characters. Taxonomic congruence between studies based on autonomous data sets provides 

strong evidence that latent historical patterns have been uncovered and can maximise the 

resolution of evolutionary lineages (Hillis 1987). A diverse array of taxonomic markers and 

methods can be used as independent means of assessing the degree of support for various 

genetic clades and/or to better understand those evolutionary processes that have led to 
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observed DNA sequence divergences (Simmons 2000; Wetterer et al. 2000), which include 

palaeontological data, morphometric characters, karyotypic data, bioacoustic information, and 

ontogenetic data, to name but a few. This multi-disciplinary method, collectively termed 

integrative taxonomy or integrative biology, is fast becoming a widely accepted discipline in 

modern systematics (Dayrat 2005; Padial et al. 2010).  

Within the recent past, there has been an increase in systematic studies of Afrotropical 

Chiroptera that have adopted an integrative approach to provide a more complete and insightful 

interpretation of species diversity and other complex phenomena that underlie speciation within 

the Rhinolophidae (Stoffberg et al. 2012; Taylor et al. 2012; Benda & Vallo 2012), 

Hipposideridae (Benda & Vallo 2009; Vallo et al. 2008, 2011a), Emballonuridae (Goodman et al. 

2012b), Molossidae (Ratrimomanarivo et al. 2007, 2009; Goodman et al. 2010a), Miniopteridae 

(Miller-Butterworth et al. 2005; Goodman et al. 2009a,b; Ramasindrazana et al. 2011) and 

Vespertilionidae (Vallo et al. 2011b, 2012; Goodman et al. 2012a; Monadjem et al. 2013). In 

most cases, sequence data have provided evolutionary hypotheses allowing for the a posteriori 

categorization of taxa that have facilitated the discovery of apomorphic attributes supporting 

genetic clades (Ramasindrazana et al. 2011). It has also proved valuable in determining the 

nature of important adaptations, and whether they have an independent or convergent origin 

(Teeling et al. 2002). Hence, molecular DNA phylogenies can be the first step in providing an 

evolutionary context for the advancement of bat systematic studies.  

 

 

ALTERNATIVE TAXONOMIC CHARACTERS AND METHODS 

 

Molecular cytogenetic and geometric morphometric data, whilst becoming increasingly 

recognised as valuable tools in mammalian systematic studies, have been relatively under-

utilised as methods that can support molecular studies of Afrotropical bats. Below is a brief 

review of the two methods as they apply to taxonomic studies of Chiroptera and other small 

mammals.      

 

The molecular cytogenetic approach 

Chromosomes are regarded as heritable independent units of the nuclear genome that can 

carry mutations and are thus considered important evolutionary characters (Dobigny et al. 

2004a). Structural chromosomal rearrangements, such as inversions and translocations, can 

represent large-scale genomic mutational changes occurring within particular lineages that are 

the drivers of karyotypic evolution (Rokas & Holland 2000; Murphy et al. 2004) and, in certain 

instances, speciation (Rieseberg 2001; Navarro & Barton 2003).  Chromosomal speciation may 

promulgate when hybrid fertility (or viability) is reduced because of malsegregation or mispairing 
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of homologous chromosome during meiosis (White 1978). This chromosomal mispairing may 

result from structural chromosome changes produced for example, by reciprocal translocations, 

tandem fusions, monobrachial fusion events, inversions, and X-autosome translocations (White 

1973; Baker & Bickham 1986). Karyotypic evolution advances at a slower pace than nucleotide 

evolution (Murphy et al. 2004), thus chromosomal rearrangements are considered rare genomic 

changes (RCGs sensu Rokas & Holland 2000) capable of providing markers of common 

ancestry amongst taxa. Nevertheless, chromosomal rearrangements have been relatively 

under-utilised as evolutionary markers within phylogenetic investigations (Dobigny et al. 2004a). 

This is in part due to ambiguities in the identification of regions of chromosomal homology 

between taxa. 

Chromosomal banding techniques, including G- and C-banding, allow for: a) the 

identification and characterisation of chromosomes, b) the detection of regions of chromosome 

homology, and c) the recognition of chromosomal rearrangements by means of banding 

polymorphisms. Comparative banding studies have revealed that karyotypic evolution within 

bats is dominated by Robertsonian (Rb) rearrangements (centric fusions or fissions), with 

inversions, reciprocal translocations, centromere shifts and heterochromatic additions (i.e. non-

Rb translocations) reportedly being less common (Bickham 1979; Baker & Bickham 1980).  

Traditional banding studies have limited use when comparing the chromosomes of taxa 

from divergent lineages or with radically reorganised genomes. Rearrangements that do not 

result in obvious differences in chromosomal banding patterns cannot be easily detected. 

Molecular cytogenetic techniques, such as Zoo-FISH (zoo-fluorescence in situ hybridisation) or 

cross-species chromosome painting using chromosome specific painting probes, however, 

allows for the resolution of homologous chromosomes / chromosomal arms and syntenies (i.e. 

conserved units of gene loci) between even distantly related taxa (Wienberg & Stanyon 1997; 

Ferguson-Smith & Trifinov 2007). Syntenic associations can represent chromosomal 

synapomorphies that allow for an independent determination of phylogenetic relationships 

amongst the taxa under study (Dobigny et al. 2004a). Shared syntenic associations are 

reportedly more useful in inferring evolutionary relationships than those rearrangements that 

result in disruptions of ancestral synteny (Robinson et al. 2008), as chromosomal breakpoints 

may not be identical across all taxa resulting in different combinations of two or more 

homologous elements (e.g. Volleth 2013).  

 To date approximately 50 bat species belonging to ten families have been studied using 

cross-species chromosome painting with chromosomal probes mostly derived from Homo 

sapiens (HSA), Myotis myotis (MMY), Aselliscus stoliczkanus (AST) or other bat probes (Volleth 

et al. 1999, 2002, 2013; Pieczarka et al. 2005; Ao et al. 2006, 2007; Eick et al. 2007; Mao et al. 

2007, 2008, 2010; Richards et al. 2010; Kulemzina et al. 2011; Sotero-Caio et al. 2011; Table 

1). Only three studies have incorporating species from Africa and the Malagasy subregions 

(Volleth & Heller 2007; Volleth et al. 2002; Eick et al. 2007; Table 1). Hence, our understanding 

of chromosomal evolution among Afrotropical bat lineages remains depauperate.
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Table 1. Chiropteran species that have been studied using cross species chromosome painting 
techniques. The list is non-exhaustive as it does not include those species investigated in this study.  

AST – Aselliscus stoliczkanus; CBR – Carollia brevicauda; PHA - Phyllostomus hastatus; HSA – Homo 

sapiens; MMY – Myotis myotis.  
 

Family Species Region Probe  Study 

Pteropodidae Cynopterus sphinx Indomalayan MMY Ao et al. 2007 

Eonycteris spelaea Indomalayan HSA Volleth et al. 2002 
 Rousettus leschenaulti Indomalayan AST Mao et al. 2007 

Hipposideridae Aselliscus stoliczkanus Indomalayan HSA, MMY Mao et al.2007 ; Ao et al.2007 

 Hipposideros armiger Indomalayan AST Mao et al. 2010 

Hipposideros larvatus Indomalayan HSA, AST Volleth et al. 2002 ; Mao et al. 2007 

 Hipposideros pomona Indomalayan AST Mao et al. 2010 

Hipposideros pratti Indomalayan AST Mao et al. 2010 

Rhinolophidae Rhinolophus affinis Indomalayan AST Mao et al. 2007 

Rhinolophus ferrumequinum  Indomalayan AST Mao et al. 2007 

 Rhinolophus pearsoni  Indomalayan AST Mao et al. 2007 

 Rhinolophus hipposideros Palaearctic MMY Volleth et al. 2013 

 Rhinolophus pusillus Indomalayan AST Mao et al. 2007 

 Rhinolophus rex Indomalayan AST Mao et al. 2007 

 Rhinolophus sinicus Indomalayan AST, MMY Mao et al. 2007 ; Ao et al. 2007 

 Rhinolophus meheleyi Palaearctic HSA, MMY Volleth et al. 2002 ; Ao et al. 2007 

Megadermatidae Megaderma spasma Indomalayan HSA Mao et al. 2008 

Emballonuridae Taphozous melanopogon Indomalayan HSA Mao et al. 2008 
Phyllostomidae Carollia brevicauda Neotropical PHA Pieczarka et al. 2005 
 Phyllostomus hastatus  Neotropical CBR Pieczarka et al. 2005 
 Desmodus rotundus Neotropical CBR, PHA Sotero-Caio et al. 2011 
 Diaemus youngi Neotropical CBR, PHA Sotero-Caio et al. 2011 

 Diphylla eucaudatus Neotropical CBR, PHA Sotero-Caio et al. 2011 

 Glossophaga soricina Neotropical HSA Volleth et al.1999 

Molossidae Tadarida teniotis Palaearctic MMY Mao et al. 2008 
 Mops mops Indomalayan HSA Volleth et al. 2002 
 Mormopterus jugularis Afrotropical HSA Volleth et al. 2002 
 Mormopterus planiceps Australasian HSA Volleth et al. 2002 
Miniopteridae Miniopterus fuliginosus Indomalayan MMY Ao et al. 2006 
Vespertilionidae Eptesicus bottae Palaearctic HSA Volleth et al. 2001 

 Glauconycteris beatrix Afrotropical MMY Volleth & Heller 2007 

 Hesperoptenus blanfordi Palaearctic HSA Volleth et al. 2001 

 Hypsugo pulveratus Indomalayan MMY Ao et al. 2006 

 Murina hilgendorfi Palaearctic AST Kulemzina et al. 2011 

 Myotis altarium Indomalayan MMY, AST Ao et al. 2006, Mao et al. 2007 

 Myotis dasycneme Palaearctic HSA, AST Volleth et al. 2002, Kulemzina et al. 
2011 

 Myotis myotis Palaearctic HSA Volleth et al. 2002 
 Nyctalus velutinus Indomalayan MMY Ao et al. 2006 
 Pipistrellus pygmaeus Palaearctic HSA Volleth et al. 2002 
 Plecotus auritus Palaearctic AST Kulemzina et al. 2011 
 Scotophilus dinganii Afrotropical MMY Eick et al. 2007 
 Scotophilus mhlanganii  Afrotropical MMY Eick et al. 2007 
 Tylonycteris robustula Indomalayan MMY Ao et al. 2006 
 Tylonycteris sp. Indomalayan MMY Ao et al. 2006 
 Vespertilio murinus Palaearctic AST Kulemzina et al.  2011 
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Painting studies have demonstrated that chiropteran chromosomal evolution is mostly 

characterised by conservation of whole syntenic blocks; typically whole chromosomes or 

chromosomal arms (karyotypic orthoselection), with a few exceptions (see review of Volleth & 

Eick 2012; Volleth 2013). FISH analyses also revealed that prevailing Rb rearrangements tend 

to produce identical arm combinations in both closely and distantly-related taxa (Mao et al. 

2007, 2008). Identical chromosomal fusion products in distantly-related taxa may be a result of 

convergence (homoplasy) or, as in the case of intrafamilial karyotype evolution, it may indicate 

the retention of a chromosomal polymorphism through multiple speciation events (hemiplasy 

sensu Avise & Robinson 2008; Robinson et al. 2008).  In some studies with wide-spread 

homoplasies and/or limited taxon sampling, chromosomal syntenies are mapped a posteriori 

onto an existing phylogeny (e.g. Mao et al. 2007, 2008; Richards et al. 2010; Sotero-Caio et al. 

2011), and/or the cytogenetic signatures are interpreted within an evolutionary framework (e.g. 

Volleth et al. 2002; Ao et al. 2007). These approaches have been able to deduce chromosomal 

characters, including Rb products, which may be phylogenetically important.  

Based on reciprocal painting studies using human and bat (M. myotis) probes, it was 

established that 25 chromosomal syntenic blocks or ‘evolutionary conserved units’ (ECUs 

following Volleth et al. 2002), have been retained during chiropteran chromosomal evolution 

(Table 2). These ECUs are reported in reference to HSA homology and have been found to 

sometimes vary in chromosome morphology amongst taxa (Volleth et al. 2002; Volleth et al. 

2011). Variations in the structural appearance of the ECUs (e.g. centromere shifts, inversions, 

fissions and fusions), can represent valuable characters for phylogenetic inference. Eight 

syntenic associations of the presumed eutherian ancestral karyotype have been found in 

Chiroptera (see review of Volleth & Eick 2012; Table 1). A further seven HSA syntenies 

represent unique cytogenetic signatures for bats (Volleth et al. 2002; Table 1). Increase in 

available chromosome banding and painting data for Chiroptera will aid in the estimation of 

evolutionary rearrangements within different lineages and will provide a better understanding of 

the utility of these cytogenetic techniques in the reconstruction of the ancestral chiropteran 

chromosomal complement.
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Table 2. Twenty-five evolutionary conserved units (ECUs: Volleth et al. 2002) that have characterised 
chiropteran chromosomal evolution. Chromosomal homologies between human and bat (Myotis myotis), 
as revealed by bi-directional painting are reported (Volleth et al. 2011). HSA syntenic associations are as 
reported in Ruiz-Herrera et al. (2012). Underlined syntenies are representative of the syntenic segmental 
associations for the postulated mammalian ancestor (Robinson & Ruiz-Herrera 2008; Ruiz-Herrera et al. 
2012). a  = bat-specific segment combinations.    
 
Evolutionary conserved unit  
(ECU) 

HSA homology MMY homology 

1a-6ba 1pter-p22, 6pter-p22 3 
1b 1p13-q23, 1q23-q25, 1q32 22 
1c 1q31, 1q41-qter 25 
2a 2q14-qter 11 
2b 2pter-q13 15 
3a-21 3q12-q21, 3q23-q26, 3q27-qter, 21q 4 
3b 3pter-p26, 3p25-p21, 3p21-p13, 3q22-q23 19 
4a-10ba 4pter-p13, 4p12-q21, 4q22-q24, 4q25-q26, 10p 2 
4b-8c-19ba 4q27-q31, 8p21, 8p23, 19p 7i 
5a-7b-16ba 5pter-q23, 16p, 7q11.2, 7q21.3-q22 8 
5b 4q32, 5q31-qter 7ii 
6a 6p21-qter, 4q32 9 
7a 7p21-q11.21, 7q11.23-q21.3, 7q22.1-qter 12 
8a 8q 20 
9 9pter-qter 14 
10a 10q 18 
11a 11pter-cen, 11q12-11q23 13 
11b-22b-12ba 11q23-qter, 12q23.3-qter, 22q11.2-q12.3 23 
12a-22aq 12pter-q23.3, 22q12.3-qter 6 
13-8b-4ca 13q, 8p22, 8p21-p11, 4q33-qter 5 
14a-15a-14b-15b 14q11-q32, 15q11-q24 1 
15c 14q32.2-qter,15q25-qter 24 
16a-19a 16q, 19q 16/17 
17 17 21 
18-20a 18pter-qter, 20pter-qter 10 
 

 

The geometric morphometric revolution 

Morphometrics, derived from the Greek words ‘morphē’ (shape) and ‘metron’ (measurement) is 

a sub-field of biometry. It refers to the class of methods providing quantitative description, 

comparison, analysis, and interpretation of biologically relevant size and/or shape variation 

patterns between biological forms (Rohlf 1990). Traditional morphometrics involves the 

application of univariate and multivariate statistical analyses to sets of linear (size) 

measurements of various specimen characters (Adams et al. 2004). These characters usually 

correspond to the distances between two identifiable points or landmarks on the surface of a 

particular object, such as specimen crania. Such variables rarely include information on both the 

size and shape of the organisms under study, except in those cases where measurements such 

as angles are included (Marcus & Corti 1996). As the geometrical relationships amongst the 

distance measurements are not accounted for, analyses of traditional morphometric distance 

data may have limited discriminating power.   
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Geometric morphometrics has revolutionised the field of morphometrics by providing a 

robust method for analysing relationships amongst taxa at various taxonomic levels, as it 

incorporates both size and shape components of morphological diversity. Developed in the late 

1980’s, geometric morphometrics utilises landmark coordinates, taken from digitised specimen 

images recorded in two or three dimensions (Adams et al. 2004). Differences in the landmark 

configurations of individual specimens and the consensus configuration (i.e. the averaged 

landmark configuration for all specimens examined), are representative of shape and size 

variation that may be visualised using thin plate splines (TPS). Thin plate splines are 

representations of the relative displacements of landmarks of a specimen allowing for a visual 

amplification of shape changes otherwise indistinguishable and difficult to describe using 

traditional morphometric data. They are powerful guides to the biological and functional 

interpretation of evolutionary diversification (Bookstein 1996) and may assist in the identification 

of novel morphological traits that can corroborate controversial phylogenies. Hence, geometric 

morphometric data can play an integral role in evolutionary biology and in the discovery of 

unique morphological characters and characters states.   

The cranium has commonly been used as a source of morphometric data. It represents a 

complex and integrated structure composed of three evolutionary significant and partially 

independent units: the basicranium (cranial vault), neurocranium (braincase, auditory bullae and 

frontal, parietal and occipital regions), and orofacial module (orbital, nasal, oral and masticatory 

regions) (Hallgrimson et al. 2007a,b).  These anatomical regions vary in terms of ontogeny, 

function, and phenotypic expression and are governed by various neutral and adaptive forces 

(Caumul & Polly 2005; Hallgrimssom et al. 2007a; Cardini & Elton 2008). Hence, the cranium 

can be a rich source of phylogenetic informative characters. Recent studies have demonstrated 

that the cranium, in particular the neurocranial unit, carries phylogenetic signal (e.g. Caumul & 

Polly 2005; Cardini & Elton 2008; Klingenberg & Gidaszewski 2010). This is most clearly 

observed between recently diverged taxa with sequence divergence of mtDNA between 5 and 

10% (Polly 2003; Caumul & Polly 2005). In this context, recent investigations have found 

significant relationships between morphological divergences amongst taxa as determined from 

cranial geometric morphometric data and phylogenetic and/or phylogeographic patterns (e.g. 

Sztencel-Jabłonka et al. 2009; Evin et al. 2008, 2011; Velazco et al. 2010; Taylor et al. 2012). 

Reconstructed morphometric patterns have proven to be useful correlates of molecular derived 

phylogenies.  
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RATIONALE AND SCOPE OF STUDY 

 

The work described in this thesis represents a series of systematic studies of Afrotropical 

Chiroptera that were aimed at elucidating some evolutionary relationships at higher and lower 

taxonomic levels described below. The different studies focused specifically on taxa from the 

African subregion and/or Madagascar, for which there is a general paucity of comprehensive 

and/or resolved phylogenies. I employed an integrative approach based on the principles of 

cumulative evidence, and used cross species chromosome painting and geometric 

morphometric techniques to: a) evaluate different evolutionary hypotheses based on sequence 

data, and b) to explore cytogenetic and morphometric character evolution amongst the various 

taxa under study. As certain data sets are only informative at limited hierarchical levels 

(Wetterer et al. 2000), I used molecular cytogenetic approaches to address taxonomic 

incongruities at the familial, sub-familial and generic levels, whilst geometric morphometric data 

were used in investigations directed at the species level. Molecular cytogenetics and geometric 

morphometric approaches were chosen for this study as they have been relatively under-utilised 

in evolutionary studies of bats from Africa and Madagascar.   

 

TAXONOMIC ISSUES ADDRESSED IN THIS STUDY 

 

Family level ambiguities within Vespertilioniformes (Chapter two) 

Uncertainty and controversy surrounds the phylogenetic positioning of the enigmatic and 

endemic Malagasy Myzopodidae within the Chiroptera. Depending on the data set and 

analytical methods employed, topologies retrieved from different studies are for the most part, in 

conflict or incapable of fully resolving the phylogenetic affinities of this enigmatic family.  

Molecular studies that have used a concatenation of three mitochondrial (12S rRNA, tRNAVal, 

16S rRNA; Van Den Bussche & Hoofer 2001) and/or two nuclear (RAG2 and dentin matrix 

protein 1, Hoofer et al. 2003; Van Den Bussche et al. 2003) genes were congruent in placing 

the Myzopodidae as the most basal Vespertilioniformes taxon and sister to Emballonuridae. 

Van Den Bussche et al. (2003) using RAG2 sequence data alone retrieved an alternate 

topology that positioned Myzopoda within the Emballonuridae. Further molecular analyses using 

a larger nuclear data set (PRCK1, SPTBN, STAT5A, THY) placed Myzopoda within the 

Vespertilionoidea, albeit with low support (Eick et al. 2005). More recently analyses of 17 introns 

from nuclear genes provided strongly supported evidence for the positioning of Myzopoda as 

the most basal within the largely Neotropical superfamily Noctilionoidea (Teeling et al. 2005; 

Miller-Butterworth et al. 2007). Based on these latter phylogenetic studies, the closest sister 

family to Myzopodidae was the New Zealand Mystacinidae. Until molecular consensus is 

reached regarding the true evolutionary affinities of Myzopodidae, topologies derived from 
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alternative data sets need to be explored in order to provide perspective regarding the true 

biogeographical origins of this family. 

 

Genus level incongruities within Pteropodidae and Hipposideridae (Chapter three) 

The Pteropodidae is the most diverse group of bats within the Pteropodiformes suborder, 

comprising 46 genera and 186 species (Simmons 2005). There are approximately 42 

Afrotropical species, with 35 African species and a further seven species distributed throughout 

Malagasy subregion (ACR 2012). Andersen (1912), using morphological characters, formerly 

established the evolutionary framework of pteropodid classification: Macroglossinae (nectar- 

and pollen-feeders); Harpyionycterinae (containing the single genus Harpyionycteris); 

Pteropodinae (containing the remaining genera). The great morphological diversity within this 

group has made further traditional classifications based on cranial and anatomical characters, 

particularly difficult.   

Bergmans (1997) refined pteropodid classification by incorporating findings from 

molecular studies using DNA-hybridisation and mtDNA sequence data, leading to the 

recognition of six subfamilies and nine tribes including the Afrotropical endemic 

Epomophorinae. In recent years several studies have attempted to resolve inconsistencies in 

the classification of pteropodids using molecular-based phylogenies. Studies based on mtDNA 

(Juste et al. 1999; Álvarez et al.1999) and concatenated nuclear and mtDNA data sets (Giannini 

& Simmons 2005; Almeida et al. 2011) are congruent in recognising a derived and monophyletic 

clade composed primarily of African genera within the Epomophorinae. This clade includes 

Rousettus and Eonycteris, (both genera formerly classified to Rousettinae sensu Bergmans 

1997), to the exclusion of the African genus Eidolon. Inconsistencies regarding the phylogenetic 

affinities of the Cynopterinae (including the genus Cynopterus) and Pteropodinae (including the 

genus Pteropus) have hampered the interpretation of the evolutionary diversification and 

morphological adaptations within the family. 

Based on mtDNA data alone, the Cynopterinae and Pteropodinae subfamilies have been 

regarded as sister clades that occupy a basal position relative to the Epomophorinae (Álvarez et 

al. 1999; Juste et al. 1999). Such associations are only weakly supported as mtDNA is, in some 

cases, unable to resolve deep lineage relationships (Galtier et al. 2009). Concatenated data 

sets of nuclear and mtDNA, using an increased taxonomic representation of fruit bat genera, 

have provided better-supported phylogenies (e.g. Almeida et al. 2011). It was shown that 

Cynopterinae is the most basal tribe and the Pteropodinae is the successive sister group to 

Eidolon (Almeida et al. 2011). In general, the rapid diversification of the group has resulted in 

some unresolved or weakly supported nodes of molecular phylogenies that make it difficult to 

determine basal relationships amongst pteropodid genera (Giannini & Simmons, 2003, 2005; 

Almeida et al., 2011).  
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Evolutionary associations amongst the nine genera and 81 species within the family 

Hipposideridae are another source of contention amongst Pteropodiformes taxa. In general, 

inter-generic relationships remain debatable as morphological and molecular based phylogenies 

are either poorly-resolved or are incongruent in assigning basal placement (Bogdanowicz & 

Owen 1998; Jones et al. 2002; Wang et al. 2003; Benda & Vallo 2009). The phylogenetic 

placement of the genera Aselliscus and Hipposideros have attracted the most attention in 

recent literature. Cladistic analyses of morphological data placed Aselliscus at the root of the 

hipposiderid tree (Hand & Kirsch 1998, 2003), which contradicts certain molecular DNA studies 

that revealed Aselliscus as nested within Hipposideros (Wang et al. 2003), or occupying the 

terminal branches of the hipposiderid tree (Li et al. 2007). The most recent and inclusive 

molecular investigation of hipposiderid genera, showed Hipposideros as the most basal lineage 

in clade containing the genera Asellia, Coelops and Aselliscus (Benda & Vallo 2009).  

Evolutionary relationships amongst the most speciose hipposiderid genus, Hipposideros 

remain unresolved. Basal relationships amongst the numerous taxa remain in question as there 

is no comprehensive phylogeny for Hipposideros worldwide (Murray et al. 2012). The taxonomy 

of the more than 16 species described from the Afrotropics is unclear as many of the African 

forms have not yet been surveyed using molecular techniques (Vallo et al. 2008). Furthermore, 

recent genetic studies of certain taxa have begun to reveal high levels and cryptic diversity and 

paraphyly within several currently recognised Hipposideros spp. (Vallo et al. 2008, 2011a; 

Monadjem et al. 2013). Phylogenetic studies of limited taxa have suggested that the large 

Afrotropical endemics, that includes taxa formerly assigned to the H. commersoni group (H. 

commersoni, H. gigas, H. thomensis, H. vittatus), may occupy the basal positions within the 

genus tree and should therefore bear more primitive evolutionary traits (Eick et al. 2005; Vallo et 

al. 2008; Monadjem et al. 2013). This molecular hypothesis is yet to be tested using alternative 

data sets.  

 

Species level incongruities within the genus Otomops (Chapter four) 

Of the 17 genera within the family Molossidae, seven genera comprising 44 species are found 

within the Afrotropical region (Simmons 2005; ACR 2012). Whilst recent studies have provided 

some clarity regarding the diversity, biogeography and intra-generic relationships (see 

Ratrimomanarivo et al. 2007, 2008, 2009; Taylor et al. 2009), very little is understood of the 

intergeneric affiliations. Two recent studies have provided the first molecular insights into the 

biogeographical and temporal origins of the family (Lamb et al. 2011; Ammerman et al. 2012). 

Using mtDNA and nuclear sequence data from six genera and 17 species, Lamb et al. (2011) 

raised important questions regarding the taxonomic validity of certain generic and specific 

arrangements as inferred from previous traditional morphological classifications (Freeman 1981; 

Legendre 1984). For example RAG2 sequence data (Lamb et al. 2011) and mtDNA data (Lamb 
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et al. 2008) have revealed three distinct and reciprocally-monophyletic lineages of Afrotropical 

Otomops: a lineage from north-east Africa and Arabia, constituting an undescribed taxon; a 

clade from sub-Saharan Africa (excluding north-east Africa), referable to O. martiensseni; and a 

taxon from Madagascar referable to O. madagascariensis. This is in conflict with traditional 

classifications based upon morphological data that either recognise both a single polytypic Afro-

Arabian species (O. martiensseni) and separate Malagasy species (O. madagascariensis) 

(Simmons 2005), or three distinct taxa, namely, O. martiensseni from east Africa, O. icarus from 

southern and central Africa, and O. madagascariensis from Madagascar (Peterson et al. 1995). 

The discordance between the morphological and genetic delineation of Afrotropical Otomops 

and the possibility of a new species from the African subregion warrant a detailed assessment 

of the morphological diversity of Otomops. Further studies with increased sample sizes and 

using alternative methods are required to resolve the current taxonomic uncertainty regarding 

Afrotropical Otomops.  

 

GENERAL AIMS AND OBJECTIVES 

 

This study used two approaches to investigate taxonomic uncertainties amongst Afrotropical 

Chiroptera. The aims of the molecular cytogenetic component of the study were focussed on 

the analysis of karyotypic diversity and evolution amongst Malagasy bats belonging to both the 

Vespertilioniformes and Pteropodiformes suborders. Novel G- and C-band data for several 

species were presented and used in combination with unidirectional cross species chromosome 

painting utilising Myotis myotis (MMY) painting probes, to generate genome-wide comparative 

maps of the taxa under study. Identified chromosomal rearrangements and syntenies were used 

to: 

1. Define the mode (i.e. type of chromosomal rearrangements) and possible role of 

chromosomal evolution in the evolutionary history of Afrotropical Chiroptera. 

2. Test recent molecular-based hypotheses regarding the evolutionary placement of the 

family Myzopodidae by mapping chromosomal rearrangements onto a molecular based 

phylogeny (Teeling et al. 2005; Miller-Butterworth et al. 2007) (Chapter Two). 

3. Evaluate the phylogenomic relationships between the Pteropodinae and 

Epomophorinae subfamilies (Chapter Three) 

4. Assess the validity of recently-described chromosomal synapomorphies for the families 

Pteropodidae and Hipposideridae (Chapter Three). 

5. Reassess the phylogenomic positioning of the genus Hipposideros within the family tree 

using chromosome painting data for Malagasy H. commersoni and compare these 

relationships to existing systematic classification for hipposiderids (Chapter Three). 
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The second focus of the study was directed at evaluating and characterising morphological 

divergence between geographical populations of Afrotropical Otomops and to test the 

taxonomic validity of recently described genetic lineages (Lamb et al. 2008). Geometric 

morphometric data (landmarks) described from the crania of Otomops were used to: 

1. Assess the congruence between morphological and genetic patterns of diversity. 

(Chapter Four) 

2. Establish the species limits of Otomops taxa from sub-Saharan Africa, the Arabian 

Peninsula, and Madagascar (Chapter Four) 

3. Evaluate the adaptive significance of morphological evolution amongst Otomops from 

Africa and the Arabian Peninsula (Chapter Four). 

 

 

ARRANGEMENT AND STYLE OF THESIS 

 

Most of the work presented in this thesis has been published. This thesis has been prepared 

according to the format of manuscripts for publication in peer-reviewed journals. This has 

resulted in variation in the format of the three research chapters and some repetitive text 

particularly in the case of the research method sections. Included in each chapter is an 

introduction to the content under discussion, a brief description of the methods and analytical 

techniques utilised, results and discussion sections, and appendices. Figures and Tables are 

labelled according to the relevant chapters in which they appear and not for the complete thesis. 

Pages are numbered sequentially and a comprehensive list of references is provided at the end 

of the dissertation. 

 

Chapter 1 – General introduction 

 

Chapter 2 – Superfamily and family level investigations 

Richards LR, Rambau RV, Lamb JM, Taylor PJ, Yang F, Schoeman MC, Goodman SM (2010) 

Cross-species chromosome painting in bats from Madagascar: the contribution of 

Myzopodidae to revealing ancestral syntenies in Chiroptera. Chromosome Research 18: 

635–653. 

 

Chapter 2 – Family and genus level investigations 

Richards LR, Rambau RV, Goodman SM, Taylor PJ, Schoeman MC, Lamb JM (manuscript) 

Karyotypic evolution in Malagasy flying foxes (Pteropodidae, Chiroptera) and their 

rhinolophoid relatives as determined by comparative chromosome painting. 
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Chapter 4 – Species level investigations 

Richards LR, Taylor PJ, Schoeman MC, Goodman SM, Van Daele PAAG, Lamb JM (2012)  

Cranial size and shape variation in Afrotropical Otomops (Mammalia: Chiroptera: 

Molossidae): testing species limits using a morphometric approach. Biological Journal of the 

Linnean Society 106: 910‒925. 

 

Chapter 5 – Summary and concluding comments  
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CHAPTER TWO 

 

 

SUPER-FAMILY AND FAMILY LEVEL INVESTIGATIONS 1 

  

                                                           
1 For consistency throughout the thesis, information in the following text has been updated since the 2010 
publication. 
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ABBREVIATIONS  

 

CBG-banding   C-banding by treatment with barium hydroxide 

GTG-banding   G-banding by trypsin digestion 

IHB                   Intercalary heterochromatic block 

MAU                 Myzopoda aurita 

MGO                Myotis goudoti 

MGR                Miniopterus griveaudi 

MJU                 Mormopterus jugularis 

MMY                Myotis myotis 

Rb                    Robertsonian 

X-A                   X-autosome translocation 

Zoo-FISH         Zoo-fluorescence in situ hybridization 
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ABSTRACT  

 

The chiropteran fauna of Madagascar comprises eight of the 20 recognized families of bats, 

including the endemic Myzopodidae. While recent systematic studies of Malagasy bats have 

contributed to our understanding of the morphological and genetic diversity of the island’s 

fauna, little is known about their cytosystematics. Here we investigate karyotypic relationships 

among four species, representing four families of Chiroptera endemic to the Malagasy region 

using cross-species chromosome painting with painting probes of Myotis myotis: Myzopodidae 

(Myzopoda aurita, 2n=26), Molossidae (Mormopterus jugularis, 2n=48), Miniopteridae 

(Miniopterus griveaudi, 2n=46), and Vespertilionidae (Myotis goudoti, 2n=44). This study 

represents the first time a member of the family Myzopodidae has been investigated using 

chromosome banding and chromosome painting techniques. Painting probes of M. myotis were 

used to delimit 29, 24, 23, and 22 homologous chromosomal segments in the genomes of M. 

aurita, M. jugularis, M. griveaudi, and M. goudoti, respectively. Comparison of GTG-banded 

homologous chromosomes/chromosomal segments among the four species revealed the 

genome of M. aurita has been structured through 14 fusions of chromosomes and/or 

chromosomal segments homologous to M. myotis chromosomes leading to a karyotype 

consisting solely of bi-armed chromosomes. In addition, chromosome painting revealed a novel 

X-autosome translocation in M. aurita. Comparison of our results with published chromosome 

maps provided further evidence for karyotypic conservatism within the genera Mormopterus, 

Miniopterus, and Myotis. Mapping of chromosomal rearrangements onto a molecular consensus 

phylogeny revealed chromosomal syntenies shared between Myzopoda and other bat species 

of the infraorders Pteropodiformes and Vespertilioniformes. Our study provides further evidence 

for the involvement of Robertsonian (Rb) translocations and fusions/fissions in chromosomal 

evolution within Chiroptera. 

 

 

INTRODUCTION 

 

Madagascar is home to eight of the 20 recognized chiropteran families, of which two belong to 

the suborder Pteropodiformes (Pteropodidae and Hipposideridae) and six to the suborder 

Vespertilioniformes (Emballonuridae, Miniopteridae, Molossidae, Myzopodidae, Nycteridae, and 

Vespertilionidae) (Goodman 2011; ACR 2012). Until a decade ago, the systematics and 

biogeographical affinities of the Malagasy bat fauna remained poorly known (Peterson et al. 

1995; Eger and Mitchell 1996, 2003). Recent biological surveys and systematic studies utilizing 

morphometric and/or molecular sequencing techniques have refined our knowledge of the 

evolutionary relationships among bats; consequently the number of Malagasy Chiroptera has 
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increased from 28 species and 19 genera (Eger and Mitchell 2003) to over 44 species 

belonging to 23 genera, and a species-level endemism of approximately 70% (Goodman 2011).  

Of these endemics, the family Myzopodidae (represented by Myzopoda aurita and M. 

schliemanni), is the most enigmatic with regard to its phylogenetic position, which has fluctuated 

among three currently recognized superfamilies: Vespertilionoidea (Koopman 1994b; Eick et al. 

2005), Emballonuroidea (Van Den Bussche et al. 2003), and Noctilionoidea (Teeling et al. 2005; 

Miller-Butterworth et al. 2007). Cladistic analyses of morphological data place Myzopoda either 

basal to the Nataloidea (sensu Simmons 1998) and Vespertilionoidea (Smith 1976), within the 

Nataloidea (Simmons and Geisler 1998), or within the Vespertilionoidea (Koopman 1994b). In 

contrast, molecular studies using a concatenation of three mitochondrial (12S rRNA, tRNAval, 

16S rRNA; Van Den Bussche and Hoofer 2001) and/or two nuclear genes (RAG2 and dentin 

matrix protein 1, Hoofer et al. 2003; Van Den Bussche et al. 2003) are congruent in placing the 

Myzopodidae as the most ancestral family within the Vespertilioniformes, sister to 

Emballonuridae.  

Using only RAG2 sequence data, Van Den Bussche et al. (2003) retrieved an alternate 

topology positioning Myzopoda within the Emballonuridae. Further molecular analyses based on 

nuclear markers (PRCK1, SPTBN, STAT5A, THY), position Myzopoda within the 

Vespertilionoidea (Eick et al. 2005). More recently, analyses of 17 introns from nuclear genes 

placed Myzopoda as the most basal member of the largely Neotropical superfamily 

Noctilionoidea, with the closest sister family being the New Zealand Mystacinidae (Teeling et al. 

2005, Miller-Butterworth et al. 2007). Following the phylogenetic hypothesis of Teeling et al. 

(2005) and Miller-Butterworth et al. (2007), Myzopoda originated from a Neotropical noctilionid 

ancestor that dispersed to Madagascar from South America during the early Eocene. This 

scenario is in stark contrast to recent phylogeographic studies on Malagasy bats which 

demonstrate colonization from Africa across the Mozambique Channel (Russell et al. 2008; 

Ratrimomanarivo et al. 2007, 2008) or from Asia (Lamb et al. 2008; O’Brien et al. 2009). 

Chromosomal data have contributed significantly to our understanding of evolutionary 

relationships within and among chiropteran families. Comparative cytogenetic analyses have 

revealed that chromosome evolution in bats is largely conservative (Baker and Bickham 1980). 

For example, 65 of the 99 karyologically examined members of the Molossidae share a 

karyotype of 48 chromosomes (Sreepada et al. 2008). This karyotypic conservatism is also 

observed at the generic level, as in Myotis taxa where species typically exhibit diploid numbers 

of 2n=44 (Baker and Patton 1967; Bickham 1979a, b; Bickham et al. 1986). Intergeneric 

variation in diploid number of bats is usually mediated by Robertsonian (Rb) translocations and 

is characterized by centric fusions or fissions of whole chromosomal arms (Baker and Bickham 

1980). While G-banding allows for easy identification of Rb rearrangements between species 

and/or genera of the same family, the use of Zoo-fluorescence in situ hybridization (Zoo-FISH) 

in combination with GTG-banding provides more detailed comparisons between taxa (Wienberg 

and Stanyon 1997; Ferguson-Smith and Trifonov 2007). 
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To date, approximately 50 species representing nine of the 20 global chiropteran families 

have been studied using cross-species chromosome painting (Volleth et al. 1999, 2001, 2002, 

2013; Pieczarka et al. 2005; Ao et al. 2006, 2007; Eick et al. 2007; Volleth and Heller 2007; Mao 

et al. 2007, 2008, 2010; Kulemzina et al. 2011; Sotero-Caio et al. 2011, Volleth et al. 2013). 

With the exception of Volleth and Heller (2007) and Volleth et al. (2002), none of these studies 

have included representative species from Madagascar. Hence, the cytosystematics of 

Malagasy bats relative to those from other regions of the world is largely unknown. Herein we 

present genome-wide comparative chromosomal maps of four species of Malagasy bats 

generated using Myotis myotis flow-sorted chromosomes. These species represent four 

families: Myzopodidae (Myzopoda aurita), Molossidae (Mormopterus jugularis), Vespertilionidae 

(Myotis goudoti), and Miniopteridae (Miniopterus griveaudi); of these, the first three are endemic 

to Madagascar while the last occurs on Madagascar and the Comoros (Weyeneth et al. 2008; 

Goodman et al. 2009a). The karyotype of each species is presented here for the first time and 

compared with those of other species from the same families and/or superfamilies. We have 

now increased the taxon sampling in chromosome painting studies of the Chiroptera to 10 of the 

20 recognized chiropteran families. Our aim was twofold. Firstly, we investigated karyotypic 

evolution among four Malagasy chiropteran families relative to other bat species using GTG-

banding and chromosome painting based on M. myotis painting probes. Secondly, we test 

recent molecular-based hypotheses regarding the phylogenetic placement of M. aurita by 

mapping chromosomal rearrangements identified from published chromosomal maps of 

representatives of the superfamilies Vespertilionoidea (Volleth et al. 2002; Ao et al. 2006; Mao 

et al. 2008; this study), Emballonuroidea (Mao et al. 2008), and Noctilionoidea (Volleth et al. 

1999) onto a molecular-based phylogeny (Teeling et al. 2005; Miller-Butterworth et al. 2007). 

This consensus phylogeny revealed wide-scale homoplasies between the Myzopodidae and 

several bat families. Our results provide further insights into the karyotypic evolution amongst 

Chiroptera and support previous studies suggesting the involvement of Rb fusions in genome 

restructuring of Chiroptera. Furthermore, we describe a novel X-autosome translocation 

identified in M. aurita using M. myotis whole chromosome probes. 

 

 

MATERIALS AND METHODS 

 

Specimens examined 

The four species examined in this study were captured from natural habitats in eastern and 

western Madagascar using mist nets and harp traps (see Table 1). Specimens were identified 

using external morphological characters (e.g., tragus shape in the case of Miniopterus, 

Goodman et al. 2009a, b; Goodman 2011), and thereafter euthanized according to ethical 

guidelines of the American Society of Mammalogists (Sikes and Gannon 2011) and with the 
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approval of the Animal Ethics Committee of the University of KwaZulu-Natal, Westville Campus, 

South Africa. Voucher specimens, identified by SMG, were deposited in the Field Museum of 

Natural History, Chicago.  

 

Table 1. Bat species investigated in this study. 

FMNH Field Museum of Natural History, Chicago, SMG field collection number of Steven M. Goodman in 
cases when final catalog numbers in the FMNH have yet to be assigned. 
 

Chromosome preparation and GTG- and CBG-banding  

Metaphase spreads were harvested either from bone marrow preparations following Volleth et 

al. (2009), or from fibroblast cell cultures established from tail- and wing-membrane explants 

using standard cytogenetic protocols. GTG-banding was obtained following Seabright (1971) 

with slight modifications. Metaphase chromosome slides were digested in a 0.025% trypsin 

solution for 10–30 s, followed by two rinses in fetal calf serum buffer (500 µl FCS in 50 ml 

phosphate buffer), and then stained with a 10% Giemsa solution for 4–5 min. CBG-banding was 

carried out using the method of Sumner (1972), wherein slides were initially treated with a 0.2 M 

HCl solution for 3 min and then incubated in a 5% Ba(OH)2 solution at 55°C for 1–2 min. 

Following this, slides were incubated for 30–45 min in a 2× SSC solution at 55°C and stained for 

5–8 min using a 10% Giemsa solution.  

 

Zoo-FISH  

In order to detect regions of homology among chromosomes of the four species analysed in this 

investigation, we used the complete suite of M. myotis whole chromosome painting probes (21 

whole chromosome painting probes representing 21 M. myotis (MMY) autosomes and the X 

chromosome, Ao et al. 2006). Flow-sorted MMY probes have been successfully used in past 

chromosome painting studies of the families Molossidae, Vespertilionidae, and Miniopteridae 

(see Ao et al. 2006 and Mao et al. 2008). Chromosome-specific painting probes were produced 

Scientific name and 
abbreviation 

Locality GPS 
coordinates 

Number and  
sex 

2n FNA Accession 
number 

Myzopoda aurita 
(MAU) 

Station Forestiere d'Ivoloina,  
Province de Toamasina, 
Madagascar 

18°05702 S, 
49°35908 E 
 

1 ♀ 26 48 FMNH 
194176 

 Forêt de Sahafina, Province de 
Toamasina, Madagascar 

18°81027 S, 
49°98000 E 

1♀ 26 48 SMG 
16636 

Mormopterus 

jugularis (MJU) 
Grotte d’Ambanilia, Province de 
Toliara, Madagascar 

23°54000 S, 
43°74611 E 

1 ♂ 48 54 FMNH 
202492 

Miniopterus  

griveaudi (MGR) 
Grotte d’ Anjohibe, Province de 
Mahajanga, Madagascar 

15°32289 S, 
46°53159 E 

1 ♀ 46 50 SMG 
16249 

Myotis goudoti 
(MGO) 

Grotte d’Ambanilia, Province de 
Toliara, Madagascar 

23°54000 S, 
43°74611 E 

1♂ 44 50 FMNH 
202490 

 Forêt de Maromizaha, Region 
Alaotra Mangoro, Madagascar 

18°98138 S, 
48°46388 E 

1♀ 44 50 SMG 
16191 
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using degenerate oligonucleotide PCR (DOP-PCR, Telenius et al. 1992) of flow-sorted 

chromosomes of M. myotis as previously described (Ao et al. 2006). Myotis probes were 

labelled with biotin-16-dUTP or digoxigenin-11-dUTP (Roche Molecular Chemicals) by a 

secondary DOP-PCR amplification. Probe DNA was precipitated overnight at −80°C in a mixture 

comprising 6–8 µl DOP-PCR product, 6 µl salmon sperm DNA, 6 µl mouse Cot 1 DNA (in the 

case of M. aurita), 4 µl Na Acetate (3 M), and 100% ethanol. The precipitated probe mixture 

was centrifuged for 30 min, washed with 70% ethanol (at 4°C), pelleted, and air dried. Probes 

were dissolved in 15 µl hybridization buffer (50% deionized formamide, 10% dextran sulfate, 0.5 

M phosphate buffer pH7.3, 1× Denhardt’s solution). Probes were denatured for 10 min at 72°C 

and pre-annealed by incubation for 25–30 min at 37°C. Metaphase spreads were denatured at 

65–67°C in 70% formamide/2× SSC for 1 min, rinsed in ice-cold 70% ethanol to halt the 

denaturation process, and finally dehydrated in an ethanol series and air dried. Pre-annealed 

probes were applied onto slides and allowed to hybridize at 37°C for 72 h. Biotin-labelled Myotis 

probes were detected using Cy3-labeled streptavidin (1:500 dilution, Amersham) and Dig-

labelled probes were detected with anti-dig FITC (1:500 dilution, Amersham). Post-hybridization 

washes of slides included two washes in 50% formamide/2× SSC, two rinses in 2× SSC, and a 

wash in 4× SSC/0.1% Tween 20 at 42.5°C. This was followed by three 5 min washes in 4× 

SSC/0.1% Tween 20 at 37°C, after which slides were counterstained with 4-,6-diamidino-2-

phenylindole (DAPI) for 10 min and mounted with an antifade reagent (Vectashield, Vector 

Laboratories).  

 

Image capture and data processing  

FISH images were captured using the Genus System version 3.7 (Applied Imaging Corp., 

Newcastle, UK) with a CCD camera mounted on an Olympus BX 60 epifluorescence 

microscope (Fig. 1). Hybridization signals were assigned to specific chromosomes or 

chromosomal segments as identified using enhanced DAPI-banding patterns resembling GTG-

banding patterns.  

 

 

Chromosome nomenclature and terminology  

The karyotype of M. goudoti was arranged following the numbering convention of Bickham 

(1979a), where the chromosomal arms rather than individual chromosomes were numbered. 

The GTG-banded karyotype of M. jugularis was arranged following the numbering scheme for 

Mormopterus planiceps by Volleth et al. (2002), where bi-armed chromosomes are numbered 

first. Chromosomes of M. griveaudi were arranged according to the chromosomal complement 

of Miniopterus fuliginosus published by Ao et al. (2006), while the M. aurita karyotype was 

arranged according to relative chromosome size, from largest to smallest.   
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Figure 1. Examples of FISH results employing MMY probes indicated by cy3 (red) and FITC (green) 
signals on partial metaphase spreads of Myzopoda aurita, Myotis goudoti, Miniopterus griveaudi, and 
Mormopterus jugularis, which were counterstained using DAPI (blue). White arrows indicate hybridization 
signals on chromosomal regions/arms. a MMY24 and MMY25 hybridized to separate chromosomal arms 
of MAU4. b MMY1/2 hybridization to MAU1q and MAU8 (q arm and proximal portion of the p arm) 
indicating fission of MMY1/2 and hybridization of MMY20 to MAU1p and the proximal portion of MAU1q. 
Thus, MAU1 is a product of a fusion event between MMY20 and MMY1/2. c Hybridization of MMY21 and 
MMY X to the X chromosome of M. aurita. Therefore, the X chromosome of M. aurita is a composite 
chromosome formed as result of a sex-autosome translocation. d Chromosome painting of MMY8 on M. 
goudoti chromosome 8 representing the high degree of homology between Myotis myotis (2n=44) and M. 
goudoti (2n=44). The asterisk indicates background hybridization on the X chromosome of M. goudoti. e 

Conservation of MMY1/2 and MMY X on M. griveaudi chromosomes 1 and X, respectively. f Hybridization 
of MMY14 and 15 to M. jugularis chromosomes 12 and 13, respectively. 
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Table 2. Chiropteran species used in the mapping analysis. Species include seven representatives of the 
Pteropodiformes and 11 representatives of the Vespertilioniformes. 
 
Family Species and abbreviation 2n Painting 

probe 
Reference 

Pteropodidae Eonycteris spelaea (ESP) 36 HSA Volleth et al. 2002 
 Rousettus leschenaulti (RLE) 36 AST Mao et al. 2007 
Rhinolophidae Rhinolophus pearsoni pearsoni (RPE) 44 AST Mao et al. 2007 

  Rhinolophus sinicus (RSI)  36 AST Mao et al. 2007    
Hipposideridae Aselliscus stoliczkanus (AST) 30 HSA Mao et al. 2007 
 Hipposideros larvatus (HLA) 32 AST, HSA Mao et al. 2007, Volleth et 

al. 2002 
Megadermatidae Megaderma spasma (MSP) 38 HSA Mao et al. 2008 
Emballonuridae Taphozous melanopogon (TME)  42 HSA Mao et al. 2008 
Phyllostomidae Glossophaga soricina (GSO) 32 HSA Volleth et al. 1999 
Myzopodidae Myzopoda aurita (MAU) 26 MMY This study 
Molossidae Mormopterus jugularis (MJU) 48 HSA, MMY Volleth et al. 2002; This 

study 
 Mormopterus planiceps (MPL) 48 HSA Volleth et al. 2002 
 Tadarida teniotis (TTE) 48 MMY Mao et al. 2008 
Miniopteridae Miniopterus fuliginosus (MFE) 46 MMY Ao et al. 2006 
 Miniopterus griveaudi (MGR) 46 MMY This study 
Vespertilionidae Myotis altarium (MAL) 44 MMY Ao et al. 2006 
 Myotis goudoti (MGO) 44 MMY This study 
 Myotis myotis (MMY) 44 HSA Volleth et al. 2002 
AST – Aselliscus stoliczkanus; HSA – Homo sapiens; MMY – Myotis myotis 

 

 
 
Phylogenomic comparisons using chromosomal characters 

 

 In order to interpret our results in the context of other bat species, we compared our data with 

the published chromosome map data of an additional 14 species (Volleth et al. 1999, 2002; Ao 

et al. 2006, 2007; Mao et al. 2007, 2008; Table 2). We used the chromosome complement of M. 

myotis as a reference to delimit syntenic associations (Table 3), which were compiled using 

previously published chromosome painting data presented in Ao et al. (2007, Table 1) and Mao 

et al. (2007, Table 2; 2008, Table 2). Further, following the precedent in Ao et al. (2006) and 

Mao et al. (2007), we use Myotis altarium as a substitute for M. myotis, as the two species have 

similar karyotypes (Ao et al. 2006). Identified syntenic associations/disruptions were scored as 

present or absent in binary format. A total of 79 characters, including 73 fusion events and six 

MMY chromosome fissions were scored from 18 chiropteran taxa (Table 3). We mapped these 

characters onto relevant lineages of a DNA sequence-based phylogeny of higher level 

chiropteran systematics (Teeling et al. 2005; Miller-Butterworth et al. 2007). This allowed us to 

plot the polarity of karyotypic evolution among the various bat families unambiguously and to 

identify plesiomorphic and synapomorphic chromosomal rearrangements associated with the 

karyotypic evolution of Myzopoda. 
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Table 3. Data matrix of 79 chromosomal characters (syntenic associations of homologous 
chromosomes/chromosomal segments of Myotis myotis) mapped onto the consensus sequence-based 
tree (Teeling et al. 2005; Miller-Butterworth et al. 2007).  

No. Character ESP RLE AST HLA RPE RSI MSP TME GSO MAU MAL MGO MMY MFI MGR MJU MPL TTE 

1 1/2 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 
2 1/3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
3 1/6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
4 1/11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
5 1/14 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 1/16/17 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
7 1/18 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 2/6 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
9 2/9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 2/20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
11 2/25 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 3/4 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 
13 3/7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
14 3/9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 3/11 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 3/13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
17 3/15 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 3/18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
19 4/5 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 4/6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
21 4/8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
22 4/14 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
23 4/18 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
24 4/19 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
25 5/6 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 
26 5/8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
27 5/10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
28 5/14 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
29 5/23 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
30 6/10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
31 6/11 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
32 6/13 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
33 6/15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
34 7/9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
35 7/10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
36 7/15 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
37 7/18 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
38 7/19 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
39 7/21 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
40 7/22 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
41 7/25 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
42 7/8/12/15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
43 7/8/22/24/25 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
44 8/10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
45 8/11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
46 8/12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
47 8/14 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
48 8/15/19 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
49 8/24 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
50 9/11 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
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Table 4. (continued) 

No. Character ESP RLE AST HLA RPE RSI MSP TME GSO MAU MAL MGO MMY MFI MGR MJU MPL TTE 

51 9/15 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
52 9/19 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
53 10/12 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
54 10/18 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
55 10/24 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
56 11/16/17 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
57 11/20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
58 12/14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
59 12/16/17 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
60 12/25 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
61 13/14 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
62 13/15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
63 13/23 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
64 15/21 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
65 16/17/24 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

66 18/21 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
67 18/23 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
68 19/20 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
69 20/22 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
70 20/25 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
71 21/22 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
72 21/25 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
73 21/X 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
74 Fi 7 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
75 Fi 8 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 
76 Fi 10 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
77 Fi 12 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
78 Fi 20 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
79 Fi 22 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 

 

RESULTS 

 

Karyotype analysis 

(a) M. aurita: This is the first description of the karyotype of M. aurita, and has a diploid number 

of 2n=26 (NFa=48, Fig. 2a). All autosomes are bi-armed; these consist of one large 

submetacentric (pair 1), six metacentrics (pairs 2, 6, 7, 8, 9, and 11), and five submetacentric 

chromosomes (pairs 3, 4, 5, 10, and 12). The X chromosome is submetacentric. CBG-banding 

analysis revealed the presence of heterochromatin located within the centromeric and telomeric 

regions of all autosomes (Fig. 2a). Interstitial heterochromatin was detected in six autosomes 

(pairs 2–6 and 9) and on the proximal portion of the short arm of the X chromosome.  

 

(b) M. jugularis: This species has a karyotype with a diploid number of 2n=48 (NFa=54). The 

chromosomal complement comprises a large metacentric (pair 1), three smaller metacentrics 

(pairs 2–4), 19 acrocentric autosomes (pairs 5–23), a submetacentric X, and a small 
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metacentric Y chromosome (Fig. 2b). Heterochromatin was detected in the terminal segments 

of the four metacentric chromosomes (data not shown) and interstitial regions in four acrocentric 

pairs (5, 6, 7, and 8).  

 

 (c) M. griveaudi: The karyotype of M. griveaudi has a diploid number of 2n=46 (NFa=50, Fig. 

3a). It comprises two large metacentrics (pairs 1 and 2), one medium metacentric (pair 7), 19 

acrocentric autosomes (pairs 3–6 and 8–22), and a submetacentric X. C-banding revealed the 

presence of heterochromatin localized within the centromeric regions of all chromosomes (data 

not shown). 

 

(d) M. goudoti: The karyotypes of both individuals of this species have a diploid number of 

2n=44 (NFa=50) and comprise three large metacentrics (pairs 1/2, 3/4, and 5/6), one small 

metacentric (pair 16/17), and 16 acrocentric autosomes (pairs 7–15 and 18–25; Fig. 3b). The X 

chromosome is a submetacentric, while the Y chromosome is a small acrocentric. 

Heterochromatin was present only in the centromeric regions of chromosomes, with the 

exception of chromosomes 7 and 8, which contained segments of interstitial heterochromatin 

below the centromere (C-banding data not shown). 

 

Chromosome painting in four Malagasy bat species 

Chromosome-specific MMY painting probes delimited 29 homologous chromosomal segments 

in the genome of M. aurita (Table 4 and Fig. 2a). Three MMY probes (MMY 3/4, 12, 13) were 

retained on single chromosomes corresponding to pairs MAU2, 11, and 12, respectively. Five 

chromosome pairs of M. aurita corresponded to two probes of M. myotis: MAU3 bore homology 

to MMY10 and 6; MAU6 corresponded to MMY9 and 11; MAU7 hybridized with MMY5 and 14; 

MAU9 corresponded to MMY18 and 23; and the X chromosome hybridized with MMY X and 

presumably MMY21 (as determined by differential DAPI-banding patterns used to discriminate 

between MMY16/17 and MMY21, which flow-sort together). Four MMY probes each hybridized 

to two separate Myzopoda autosomes: MAU8 and 1q hybridized with MMY1/2; MAU4p (dist) 

and 10q corresponded to MMY7; MAU4q (prox) and 5q (prox) were painted with MMY8; and 

MAU4p and 10q hybridized with MMY22. Furthermore, autosome 4 hybridized with three 

additional MMY probes (22, 24, and 25; Table 4 and Fig. 2a), whereas MAU5 hybridized with a 

further two whole chromosome probes (MMY15 and 19; Table 4, Fig. 2a). A total of 14 fusion 

events were detected in the karyotype of M. aurita.  
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Figure 2. a The G-banded karyotype of a Myzopoda aurita (2n=26) with the C-banded homologue on the 
left side of each chromosomal pair and b Mormopterus jugularis according to Volleth et al. (2002). 
Chromosome numbers are given below each chromosomal pair. The vertical lines indicate chromosome 
painting results obtained using Myotis myotis probes, and the numbers adjacent to the lines represent M. 
myotis probes. Further painting analyses using human derived probes are required to confirm the precise 
positioning of MMY16/17 and 21.   
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In contrast, the 21 M. myotis probes (including the X) were retained on 24 chromosomes 

in M. jugularis (Table 4, Fig. 2b). Twenty-one M. myotis probes were retained on single intact 

chromosomes in the genome of M. griveaudi, highlighting 23 regions of homology between M. 

myotis and M. griveaudi (Table 4, Fig. 3a). Furthermore, all 21 M. myotis probes and the X 

chromosome were retained on single intact chromosomes in the genome of M. goudoti, 

corresponding to 22 regions of homology between the two Myotis species (Table 4, Fig. 3b). 

Thus, the hybridization patterns among karyotypes of M. goudoti, M. griveaudi, and M. jugularis 

are identical for all except three M. myotis probes: MMY1/2, 3/4, and 5/6 were retained on 

individual chromosomes in M. goudoti (2n=44); MMY1/2 and MMY5/6 (but not MMY3/4) were 

retained on individual chromosomes in M. griveaudi (2n=46); and MMY1/2 (but not MMY3/4 or 

MMY5/6) is retained on a single chromosome in M. jugularis (2n=48). The conserved HSA 

syntenies homologous to M. myotis chromosomes, established by Volleth et al. (2002), are 

provided in Table 4. The following HSA syntenies or evolutionary conserved units (ECUs), 

considered to be synapomorphies supporting chiropteran monophyly sensu Volleth et al. 

(2002), were present in the genomes of Myzopoda, Mormopterus, Miniopterus, and Myotis: 

1a/6b homologous to MAU2p, MJU6, MGR8, MGO3/4p; 4a/10b corresponding to MAU1q, 

MJU1q, MGR1q, MGO1/2q; 4b/8c/19b presumed to be homologous to chromosomal segments 

located on MAU10p, MJU2, MGR4, MGO7; 11b/22b/12b found on MAU9p, MJU21, MGR20, 

MGO23; 13/8b/4c corresponded to MAU7q, MJU7, MGR2p, MGO5/6p; 18/20 bore homology to 

MAU3p, MJU3, MGR9, MGO10. The HSA 5a/7b/16b synteny, homologous to MMY8, was 

disrupted within the M. aurita genome.  

 

Genome-wide chromosomal correspondence between Myzopoda and the Molossidae, 

Miniopteridae, and Vespertilionidae 

By integrating our chromosome painting and GTG-banding data, we established a genome-wide 

comparative map detailing the level of genome conservation among the four species 

investigated in this study (Fig. 4). Chromosomes of each species were arranged according to 

the chromosome complement of M. aurita in order to contrast the highly rearranged biarmed 

karyotype of Myzopoda with those of other Malagasy chiropteran families with high diploid 

numbers (2n=44–48). Seven of the twelve bi-armed chromosomes of Myzopoda corresponded 

to two autosomal arms in Mormopterus, Miniopterus, and Myotis (Fig. 4). Most of the bi-armed 

chromosomes of M. aurita were the product of Rb fusions of two homologous acrocentric 

autosomes in Mormopterus, Miniopterus, and Myotis, as was the case for MAU6 and MAU9. 
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Figure 3. G-banded karyotypes of a Miniopterus griveaudi  with chromosomes arranged according to the 
scheme proposed by Bickham (1979a) and b Myotis goudoti with chromosomes arranged from largest to 
smallest according to Ao et al. (2006). Vertical lines indicate the extent of hybridization sites produced by 
Myotis myotis painting probes, which are represented by numbers adjacent to the lines.2 

                                                           
2 Repeat painting experiments utilising Miniopterus griveaudi and Myotis goudoti cell-cultured material 
revealed some chromosomal misidentifications and/or mispairing of Richards et al. (2010) that were 
originally based upon bone-marrow chromosomal harvests. These misidentifications have been corrected 
in Fig. 3 a, b; the changes do not affect the outcomes of the study.  
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Monobrachial homologies included: MAU1 homologous to MJU1q and 15, MGR1q and 

19, MGO1/2q and 20; MAU3 homologous to MGR2q and 9, MGO5/6q and 10; and MAU7 

homologous to MGR2p and 11, MGO 5/6p and 14. Two whole chromosomes were shared in 

toto between M. aurita and the other genera: MAU11 homologous to MJU4, MGR7, and 

MGO12 and MAU12 homologous to MJU14, MGR12, and MGO13. In addition, MAU2 was 

homologous to MGO3/4, a bi-armed chromosome not present in Mormopterus and Miniopterus. 

Chromosome painting revealed that MAU4 corresponds to the fusion of five separate 

autosomes/autosomal segments of Mormopterus, Miniopterus, and Myotis, whereas the fusion 

of three autosome/autosomal segments was necessary to derive MAU5 (Fig. 4). Our GTG-

banded comparative map indicates that tandem fusions could be involved in the formation of 

MAU4 and 5 (Fig. 4).  

 

Table 4. Chromosomal correspondence among Myotis myotis (MMY), Myzopoda aurita (MAU), 
Mormopterus jugularis (MJU), Miniopterus griveaudi (MGR) and Myotis goudoti (MGO) as revealed by 
cross-species chromosome painting with MMY whole-chromosome painting probes. Underlined syntenies 
represent bat-specific segment combinations (Volleth et al. 2002, 2011).    
 
MMY probe MAU MJU MGR MGO HSA 
1/2 8q and 8p (prox) + 1q  1 1 1/2 14a/15a/14b/15b + 4a/10b 
3/4 2 6 + 8 8 + 6 3/4 1a/6b + 3a/21 
5/6 7q + 3q 7 + 9  2 5/6 13a/4c/8b/13b + 12a/22a 
7 4p (dist) + 10q 2 4 7 4b/8c/19b + 5b 
8 4q (prox) + 5q (prox) 5 3 8 5a/7c/16b  
9 6q 11 5 9 6a 
10 3p 3 9 10 18/20 
11 6p 10 10 11 2a 
12 11 4 7 12 7a/7b 
13 12 14 12 13 11a 
14 7p 12 11 14 9 
15 5q (dist)  13 13 15 2b 
16/17 8p (dist) 18 18 16/17 19a/16/19a 
18 9q 16 14 18 10a 
19 5p  17 15 19 3b 
20 1p + 1q (prox) 15 19 20 8a 
21 Xp (dist) 19 16 21 17 
22 4p + 10p  20 17 22 1b 
23 9p  21 20 23 11b/22b/12b 
24 4p (prox) 23 21 24 15c 
25 4q (dist) 22 22 25 1c 
X Xp (prox) + Xq X X X X 
The last column provides the homology and evolutionary conserved syntenic associations of Homo 

sapiens (HSA) chromosomal segments in Malagasy Chiroptera following Volleth et al. (2002). p short arm; 
q long arm; prox proximal portion of chromosome arm; dist distal portion of chromosome arm.  
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Figure 4. Genome-wide chromosomal correspondence among G-banded chromosomes of Myzopoda aurita (MAU), Mormopterus jugularis (MJU), Miniopterus griveaudi 
(MGR), and Myotis goudoti (MGO), with M. aurita as the reference species. The homologies were directed by chromosome painting analyses using Myotis myotis 
chromosome-specific painting probes. Asterisks indicate areas where homology has been retained despite differential banding patterns. Further painting analyses using 
human derived probes are required to confirm various breakpoints and the precise positioning of MMY 16/17 and 21 in the genome of M. aurita 

 
3
5
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Phylogenomic analysis of chromosomal rearrangements 

We investigated karyotypic evolution in Myzopoda relative to other chiropteran families by 

mapping the 79 chromosomal characters (Table 3) onto the relevant lineages of the consensus 

molecular phylogenetic tree (modified from Teeling et al. 2005; Miller-Butterworth et al. 2007, 

Fig. 5), which places Myzopoda within the Noctilionoidea (Fig. 5). Of the 79 chromosomal 

characters included in the data matrix (Table 3), 50 were autapomorphic characters. Six unique 

chromosomal fusion products were found in the karyotype of M. aurita (characters 10, 30, 40, 

43, 48, and 73; Table 3). A further 18 characters were found to be possible homoplasies (Fig. 

5). We retrieved a single synapomorphy (character 50, centric fusion of MMY9 and 11) uniting 

Myzopoda with Glossophaga, a representative of the Noctilionoidea. Myzopoda shared the 

homoplastic character 74 (fission of MMY7) with Glossophaga, Taphozous, and members of the 

Pteropodiformes represented in the consensus phylogenetic tree. Possible characters that may 

be common to Myzopoda and certain Pteropodiformes taxa represented in Fig. 5 included 

characters 6 (fusion of MMY 1 and 16/17), 28 (fusion of MMY5 and 14), 75 (fission of MMY8), 

and 79 (fission of MMY22). Only three syntenies were shared between Myzopoda and members 

of the Vespertilioniformes: character 12 (MMY3/4, shared with Myotis), character 50 (fusion of 

MMY9 and 11, shared with Glossophaga), and 67 (fusion of MMY 18 and 23, shared with 

Taphozous).

 

Figure 5. Karyotypic relationships and genome phylogeny of ten chiropteran families. Seventy-nine 
chromosomal rearrangements were mapped a posteriori on to a consensus molecular phylogenetic tree 
modified from Teeling et al. (2005) and Miller-Butterworth et al. (2007). Numbers on branches refer to 
chromosomal characters described in Table 3 and asterisks indicate homoplasious characters 
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DISCUSSION 

 

We presented data on genome-wide chromosomal correspondence between M. myotis and 

representative species of four bat families from Madagascar, including the endemic 

Myzopodidae. We used genome-wide comparative maps of the species M. aurita, M. jugularis, 

M. griveaudi, and M. goudoti to illustrate the chromosomal rearrangements that lead to the 

karyotypic differentiation of the four bat families occurring on Madagascar. By comparing our 

maps with published comparative chromosome maps of other bat species (Volleth et al. 2002; 

Ao et al. 2007; Mao et al. 2007, 2008), we demonstrated karyotypic conservatism present within 

the genera, Miniopterus, Mormopterus, and Myotis such that Malagasy species were near 

identical to congeners from other continents. We also identified several evolutionary important 

characters associated with the karyotype evolution of M. aurita.  

 

Karyotypic conservatism within the genera Mormopterus, Miniopterus, and Myotis  

Comparison of our results with published data revealed a high degree of karyotypic 

conservatism within and among three genera of bats occurring on Madagascar: Mormopterus, 

Miniopterus, and Myotis. For example, the GTG-banding patterns of chromosomes of M. 

jugularis are near identical to those of the Australian species M. planiceps Volleth et al. (2002). 

Both species do not display the metacentric state of MMY6 (homologous to MJU9) as found in 

Tadarida teniotis (Mao et al. 2008). Karyotype conservatism appears to be characteristic of the 

Molossidae, as 65 of the 99 karyologically examined members of this family display a karyotype 

of 2n=48 and differ only in fundamental number (Sreepada et al. 2008).  

The GTG-banded karyotype of M. goudoti was similar to that of M. myotis (Volleth et al. 

2002) and the Asiatic M. altarium (Mao et al. 2007). This level of karyotypic conservatism 

contrasts with molecular dating estimates based on mitochondrial and nuclear DNA divergence 

between M. goudoti and M. myotis, which indicate that the two species last shared a common 

ancestor 11.39±1.5 MYA (Stadelmann et al. 2004, 2007). Karyotypic conservatism was also 

observed within Miniopterus, with the karyotype of M. griveaudi similar to that of M. fuliginosus 

(Ao et al. 2007). This is despite a 15.3% cyt b sequence divergence separating the two species 

(Goodman et al. 2009b). The same holds true for M. aelleni and M. gleni, which occur in 

sympatry with M. griveaudi within numerous cave roosts in Madagascar (Goodman et al. 2009a, 

b). Both M. aelleni and M. gleni carry an identical diploid and fundamental number to that of M. 

griveaudi (2n=46, NFa=50; Richards et al. unpublished), yet are distinguished from M. griveaudi 

by cyt b genetic distances of 9.9% and 10.5%, respectively (Goodman et al. 2009b). 
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Phylogenomic relationships between Myzopoda and other chiropteran families 

The diploid number of 2n=26 makes M. aurita one of the few bat species with a diploid number 

lower than 30. Other species with low diploid numbers include pteropodids (Balionycteris 

maculata (2n=24), Yong and Dhaliwal 1976; Megaerops niphanae (2n=26), Hood et al. 1988); 

emballonurids (Saccopteryx canescens (2n=24), Hood and Baker 1986), and vespertilionids 

(Lasionycteris noctivagans (2n=20), Baker and Patton 1967; Glauconycteris beatrix (2n=22), 

Volleth and Heller 2007), with the lowest recorded diploid number belonging to Vampyressa 

melissa (2n=14, Gardner 1977). Our side-by-side GTG-band comparison indicates that the 

genome of M. aurita has been formed through 14 chromosomal and subchromosomal fusions, 

leading to a karyotype consisting solely of bi-armed chromosomes. Chromosome painting 

revealed two complex rearrangements involving fusion (centric and possibly tandem) of three or 

more MMY chromosomal segments, which include characters 43 (fusion of MMY7/8/22/24/25, 

Table 3) and 48 (fusion of MMY8/15/19, Table 3). Similar complex rearrangements/fusions have 

only been documented in Megaderma spasma (2n=38, Mao et al. 2008).  

The mapped molecular tree (Fig. 5) showed that very few of the bi-armed chromosomes 

of Myzopoda were shared between species of other families. The only exceptions were MAU2 

(homologous to MMY3/4), also present in Myotis, and MAU6 (Rb fusion of MMY9 and 11), 

common to Glossophaga soricina chromosome pair 2/18 (Volleth et al. 1999). The consensus 

phylogeny of Teeling et al. (2005) and Miller-Butterworth et al. (2007) shows character 50 as a 

possible synapomorphic feature uniting M. aurita with G. soricina (Fig. 5). Comparative GTG-

banding and chromosome painting studies have revealed homologues of MMY9 + 11 in at least 

four other phyllostomid genera, to the exclusion of those comprising the Desmodontidae (Baker 

and Bass 1979; Sotero-Caio et al. 2011). Increased taxon sampling of representatives from the 

families Mormoopidae, Mystacinidae, Thyropteridae, Furipteridae, and Phyllostomidae in further 

chromosome painting studies is necessary to confirm this as a synapomorphic feature of the 

Noctilionoidea superfamily. Our mapping approach failed to provide further unequivocal 

evidence for the placement of Myzopoda with Glossophaga in the Noctilionoidea. 

In common with the findings of Mao et al. (2008), our consensus phylogeny demonstrated 

the predominance of homoplasies/convergence in chromosomal evolution of the various bat 

families investigated. The disruption of MMY7 was present in all the representatives of the 

Pteropodiformes as well as in Myzopoda, other species of the infraorder Vespertilioniformes 

(i.e., Taphozous melapogon and G. soricina) and humans (Volleth et al. 2002). The fission state 

of MMY7 has been proposed for the ancestral eutherian karyotype (Robinson & Ruiz-Hererra 

2008; Ruiz-Herrera et al. 2012). The disruption of MMY8 was considered to be confined to the 

Pteropodiformes and was previously suggested by Volleth et al. (2002) and Ao et al. (2007) to 

represent a synapomorphy uniting the Rhinolophidae and Hipposideridae (Rhinolophoidea). 

Mao et al. (2008) considered it a homoplastic character, as it has been detected in both the 

Megadermatidae and humans, and now in Myzopoda (this study). More recent preliminary 
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painting studies have also revealed two MMY8 homologous elements within the genomes of 

Nycteris and Emballonura (Volleth 2013). The chromosomal breakpoints of the homologues in 

these primitive Vespertilioniformes taxa differ from those found in Rhinolophoidea (Volleth 

2013). Additional painting studies employing human paints will be able to verify the 

chromosomal breakpoints in Myzopoda. Other characters shared between Myzopoda and the 

Pteropodiformes included character 6, character 28, and character 79. That chromosomal 

evolution in Myzopoda has, in part, been characterized by the retention of plesiomorphic 

characters (e.g., character 74) lends support to the consideration of the family as one of the 

more primitive members of the Vespertilioniformes (Van Den Bussche and Hoofer 2001; Hoofer 

et al. 2003; Van Den Bussche et al. 2003). 

 

Karyotypic evolution within Noctilionoidea and Vespertilionoidea 

Comparison of M. myotis probe-based chromosome painting results from the four Malagasy bat 

species with previously published comparative chromosome maps of representatives of the 

Noctilionoidea (Volleth et al. 1999) and the Vespertilionoidea (Volleth et al. 2002; Ao et al. 2006; 

Mao et al. 2008; this study) provided further insights into chromosomal evolution within these 

two superfamilies.  

The phylogeny of Miller-Butterworth et al. (2007) identified Myzopoda as a basal member 

of the Noctilionoidea and Natalus (2n=36, Baker and Jordan 1970, Kerridge and Baker 1978) as 

the most ancestral genus of the Vespertilionoidea. Molecular sequence-based dating placed the 

divergence between the two superfamilies at approximately 55 MYA (Miller-Butterworth et al. 

2007). This divergence was typically associated with the retention of character 74 (fission of 

MMY7) within the Noctilionoidea lineage. Although chromosome painting revealed that 

segments of MMY7 were contained within MAU4 and MAU10, cross-species painting using 

human chromosome probes is necessary to determine more precisely which chromosomal 

segments are associated with each M. aurita autosome. Two separate inserts of MMY7 may 

also be found on chromosomes 6/7 and 1 in G. soricina (Volleth et al. 1999, Table 4 in Mao et 

al. 2008). GTG-banding studies of several phyllostomid bats, the most derived family within the 

Noctilionoidea, revealed that chromosomes 6/7 and 1 are also present in the karyotypes of the 

genera Brachyphylla, Erophylla, Monophyllus, and Phyllonycteris (Baker and Bass 1979). GTG-

banded chromosomes/chromosomal arms homologous to GSO6/7 and 1 were also identified in 

the karyotype of Noctilio albiventris (Patton and Baker 1978), a representative of the 

Noctilionidae. This suggests that the fission state of MMY7 may be a feature in the karyotypes 

of genera/families belonging to Noctilionoidea.  

The fusion state of MMY7 is considered the single unambiguous synapomorphy uniting 

the Natalidae, Molossidae, Miniopteridae, and Vespertilionidae (superfamily Vespertilionoidea) 

(see Volleth et al. 2002; Mao et al. 2008, this study). This autosome is in a metacentric state in 

M. jugularis and is acrocentric in M. griveaudi and M. goudoti (see Fig. 4). That Mormopterus is 
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an older lineage in the Vespertilionoidea, having diverged from Miniopterus and Myotis 54–43 

MYA (Miller-Butterworth et al. 2007), and bearing a karyotype similar to that of Natalus (Volleth 

et al. 2002), suggests that the ancestral condition of MMY7 in this superfamily was bi-armed. 

The divergence of the Miniopteridae from the Molossidae was accompanied by the Rb fusion of 

MJU7 and 9 (character 25, Table 3), producing the large metacentric chromosomal pair in M. 

griveaudi (MGR2; homologous to MMY5/6), and two pericentric inversions involving MGR4 and 

9 (see also Ao et al. 2006). The lineages bearing Myotis and Miniopterus split between 49 and 

38 MYA (Miller-Butterworth et al. 2007), with Myotis differentiated from Miniopterus by the 

centric fusion of MGR6 and 8 (leading to the metacentric MMY3/4 which corresponds to 

MGO3/4), and a pericentric inversion on MGO12 (homologous to MMY12). 

  

X-autosome translocation  

In addition to autosome fusions, Myotis painting probes detected an autosome-sex 

chromosome translocation involving MMY X, which corresponds to MAU Xq and possibly 

MMY21 (corresponding to the distal portion of the short arms of the X chromosome in M. aurita). 

Further painting studies with HSA paints are necessary to confirm the precise positioning of 

MMY21 and 16/17, which flow-sort together. While X-autosome translocations are common in 

New World phyllostomid genera such as Artibeus, Carollia and Chaeroniscus (Hsu et al. 1968; 

Tucker and Bickham 1989), only two cases have been reported in Old World species belonging 

to the Vespertilionidae. These include Glischropus tylopus (2n=30/31, Volleth and Yong 1987) 

from Malaysia and Glauconycteris beatrix (2n=22/23, Volleth and Heller 2007) from central 

Africa. Hence, the X-A translocation in Myzopoda represents the third known occurrence in an 

Old World species. However, as only two females were investigated, we can only predict males 

of this species to have a diploid number of 2n=27. A C-positive intercalary heterochromatic 

block (IHB) was detected above the centromere in the short arm of the X-A translocated 

chromosome of M. aurita (Fig. 2a). Such IHBs are also present in X chromosomes of G. tylopus 

(Volleth and Yong 1987) and Carollia brevicauda (Parish et al. 2002).  

X-A translocations pose two problems in effective meiotic pairing (Dobigny et al. 2004b). 

The first results from the difference in replication times of the autosomal (early-replication) and 

gonosomal (late-replication) segments (Sharp et al. 2002). Second, X-inactivation (Lyon 1968), 

important in the maintenance of balanced X-linked gene expression between males and 

females, cannot be transferred to the translocated autosome (Dobigny et al. 2004b). Silencing 

of autosomal genes could result in zygotic abnormalities and subsequent death (Sharp et al. 

2002). Studies into the composition of such IHBs in X-A translocated chromosomes (e.g., 

Parish et al. 2002, Dobigny et al. 2004b) revealed them to be composed largely of 5S and 28S 

rDNA clusters and highly-amplified telomeric repeats. The heterochromatic block separates the 

early-replicating autosomal and late-replicating gonosomal segments, preventing the 

transmission of the X-inactivation signal from the sex genes to those of the translocated 



41 

 

autosome (Volleth and Yong 1987, Sharp et al. 2002, Dobigny et al. 2004b). Further, 

fluorescent in situ hybridization studies using telomeric and ribosomal probes may confirm the 

presence of telomeric repeats and rDNA sequences within the IHB of the X chromosome in M. 

aurita. 

 

CONCLUSIONS 

 

In this study, we used comparative chromosome painting to investigate karyotypic evolution of 

four genera of bats occurring in the Malagasy region. By doing so, we increased the taxon 

sampling in chromosome painting studies of the Chiroptera to 10 of the 20 recognized 

chiropteran families. Chromosomal evolution in bats is largely driven by Rb fusions (Baker and 

Bickham 1980, Ao et al. 2006, 2007, Mao et al. 2007, 2008) and bats from the Malagasy region 

are not the exception to this rule as they appear to exhibit this default rearrangement. In this 

study, we identified 14 Robertsonian fusions separating M. aurita from three species (all of 

which also differ by several fusions). While the majority of these fusions and the syntenic 

associations that were described in this study are largely autapomorphic or homoplastic (see 

also Mao et al. 2008), we are able to some extent demonstrate the evolutionary association of 

Malagasy bats to other extralimital species. For instance, our data indicates that the placement 

of Myzopoda within the Noctilionoidea can be supported by a single synapomorphy, as found by 

other datasets (Teeling et al. 2005, Miller-Butterworth et al. 2007). Chromosome painting data 

from representatives of the families Furipteridae, Mormoopidae, Mystacinidae, Noctilionidae, 

and Thyropteridae are required to fully understand the phylogenomic relationships within the 

Noctilionoidea. Further, we also describe an X-autosome translocation which has previously 

only been described in the families Phyllostomidae and Vespertilionidae. Additional cytogenetic 

work on Myzopoda using human derived probes would confirm and/or provide further insights 

into the segmental chromosomal associations and tandem fusion events proposed to be 

involved in the genome evolution of this remarkable chiropteran family. 
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CHAPTER THREE 

 

FAMILY AND GENUS LEVEL INVESTIGATIONS 
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ABSTRACT 

 

Pteropodidae and Hipposideridae are two of the eight chiropteran families that occur on 

Madagascar. Despite major advancements in the systematic study of the island’s bat fauna, few 

karyotypic data exist for Malagasy species. We utilised G- and C-banding in combination with 

chromosome painting employing Myotis myotis probes to establish genome-wide homology 

among Malagasy species belonging to the families Pteropodidae (Pteropus rufus, 2n = 38; 

Rousettus madagascariensis, 2n = 36), Hipposideridae (Hipposideros commersoni, 2n = 52), 

and a single African representative of the Rhinolophidae (Rhinolophus clivosus, 2n = 58). 

Painting probes of M. myotis detected 26, 28, 28, and 29 regions of homology in R. 

madagascariensis, P. rufus, H. commersoni, and R. clivosus, respectively. Translocations, 

pericentric inversions, and heterochromatin addition were responsible for karyotypic differences 
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amongst the Malagasy pteropodids and painting of P. rufus revealed a cryptic pericentric 

inversion on PRU 4. Chromosomal characters suggest a close alliance between Rousettus and 

Pteropus. Hipposideros commersoni shared several chromosomal characters with extralimital 

congeners, but did not exhibit the two chromosomal synapomorphies proposed for 

Hipposideridae. This study provides further insight into the chromosomal rearrangements that 

have been proposed for the ancestral karyotypes of pteropodid and rhinolophoid bats.    

 

 

INTRODUCTION 

 

Madagascar boasts a unique chiropteran fauna that includes two of the six families within 

the suborder Pteropodiformes: Pteropodidae (Old World fruit bats or flying foxes) and 

Hipposideridae (Old World leaf-nosed bats). Given the timeline between the first appearance of 

bats in the fossil record dating from the early Eocene and the separation of Madagascar from 

Gondwana [Storey et al., 1995; Simmons et al., 2008], the island was colonized on multiple 

occasions via overwater dispersal, which in turn gave rise to a mainly endemic taxa [Goodman, 

2011]. Hypotheses concerning the evolutionary history of certain Malagasy pteropodid and 

hipposiderid taxa remain ambiguous, as phylogenies are not fully resolved at the generic and 

specific levels for both families worldwide.  

Three endemic flying fox species classified to two subfamilies [sensu Bergmans, 1997] 

occur on Madagascar: Eidolon dupreanum, Rousettus madagascariensis (subfamily 

Rousettinae), and Pteropus rufus (subfamily Pteropodinae). Molecular studies have disputed 

the traditional classification of the Rousettinae and Pteropodinae and have posed novel 

hypotheses concerning the evolutionary relationships among pteropodids. For example, DNA 

based analyses are consistent in recognizing Rousettus and the Indomalayan Eonycteris as 

sister taxa, to the exclusion of Eidolon and other rousettine genera [Giannini and Simmons, 

2003, 2005; Almeida et al., 2011]. Rousettus madagascariensis is considered the most derived 

species within this abridged rousettine clade [Almeida et al, 2011] and the sister species to R. 

obliviosus of the nearby Comoros Islands [Goodman et al., 2010b]. Pteropodinae as defined by 

Bergmans [1997] is polyphyletic as it includes at least two clades that have evolved 

independently from each other [Almeida et al., 2011]. Pteropus, the most speciose pteropodine 

genus, is closely allied with the Australasian Acerodon [Giannini and Simmons, 2005; Almeida 

et al., 2011]. Pteropus is suggested to have dispersed to Madagascar via Aldabra from 

Australasia / Indomalaysia, with the Malagasy species representing a more recently evolved 

taxon [O’Brien et al., 2009; Chan et al., 2011]. Eidolon, an Afrotropical endemic, does not bear 

close evolutionary affinities to any other genus [Almeida et al., 2011].  

The Malagasy hipposiderid fauna comprises four endemic species belonging to the 

genera Hipposideros, Paratriaenops, and Triaenops. Hipposideros commersoni is the sole 

representative of the genus in Madagascar. Intergeneric relationships amongst Hipposideridae 
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remain unresolved as molecular phylogenies are either poorly-sampled or are incongruent in 

describing basal relationships amongst the genera [e.g. Jones et al., 2002; Wang et al., 2003; Li 

et al., 2007]. Most of the debate arises from the positioning of the genera Aselliscus and 

Hipposideros within the family tree. Phylogenies derived from morphological data placed 

Aselliscus at the root of the hipposiderid tree [Hand & Kirsch 1998, 2003], whilst gene-based 

investigations position the genus within Hipposideros (Wang et al. 2003), or at the terminal 

branches of the hipposiderid tree [Li et al. 2007]. The most recent and comprehensive 

molecular investigation primarily based on Afrotropical taxa, showed Hipposideros as the most 

basal lineage in clade containing the genera Asellia, Coelops and Aselliscus [Benda & Vallo 

2009]. Furthermore, molecular studies suggest that the large Afrotropical endemics, 

Hipposideros gigas and H. vittatus represent some of the most ancestral forms within the genus 

[Eick et al., 2005; Vallo et al., 2008; Benda and Vallo, 2009; Monadjem et al., 2013]. It has yet 

to be determined whether the other large Afrotropical hipposiderids, including the Malagasy H. 

commersoni, exhibit similar traits. Currently, there are no available molecular phylogenies with 

the comprehensive species-level coverage of hipposiderids necessary for the fine-scale 

resolution of phylogenetic relationships amongst this diverse group [Murray et al. 2011].  

Karyotypic evolution may advance at a slower pace than nucleotide evolution [Murphy et 

al., 2004]; thus, chromosomal rearrangements are rare genomic markers capable of retracing 

common ancestry at different taxonomic levels [Rokas and Holland, 2000]. Chromosomal 

banding and chromosome painting studies of Chiroptera, have demonstrated the occurrence of 

Robertsonian (Rb) rearrangements, inversions and heterochromatin addition in genomic 

restructuring amongst pteropodids and hipposiderids [Haiduk et al., 1981; Ao et al., 2007; Mao 

et al., 2008; Mao et al., 2010; Volleth et al., 2011]. Painting studies have also identified several 

clade-specific chromosomal characters in support of molecular hypotheses concerning 

evolutionary relationships amongst Pteropodidae and Hipposideridae [Ao et al., 2007; Mao et 

al., 2008, 2010; Volleth et al., 2011]. To date, no data have been available to determine whether 

these plesiomorphic and/or synapomorphic characters are present within the Malagasy 

representatives of these families, as insular species are under-represented in chromosome 

painting studies.  

In this study, we present G- and C-banded karyotypes of Malagasy endemic 

Pteropodidae and Hipposideridae species. Using chromosome painting with Myotis myotis as 

the overlay, we examine mode (/s) of chromosomal evolution among the Malagasy species 

relative to their congeners. Secondly, utilizing chromosomal characters identified from published 

chromosomal maps of extralimital taxa, we (a) infer phylogenomic relationships among 

Malagasy pteropodids and their rhinolophoid relatives, and (b) assess recent molecular-based 

hypotheses concerning evolutionary relationships among Pteropodidae and Hipposideridae. 

Thirdly, we tested for the presence of previously described synapomorphic characters proposed 

for Pteropodidae and Hipposideridae within the genomes of their Malagasy representatives. Our 

comparative analyses provide novel insights into the phylogenomic relationships among the 
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Malagasy taxa and the proposed chromosomal rearrangements that comprise the ancestral 

karyotypes of the Pteropodidae and Hipposideridae.  

 

 

 MATERIAL AND METHODS 

 

 The four species used in this study were collected from wild populations in Madagascar 

and South Africa (table 1). Specimens were identified using external morphological 

characteristics (e.g. forearm length) and/or echolocation characteristics [Monadjem et al., 2010; 

Goodman, 2011]. Bat capture and euthanasia were conducted according to ethical guidelines of 

the American Society of Mammalogists [Sikes and Gannon, 2011], and with the approval of the 

Animal Ethics Committee of the University of KwaZulu-Natal, Westville Campus.  

 

 Table 1. Chiropteran species investigated in this study. 
 

 DM = Durban Natural Science Museum; FMNH = Field Museum of Natural History, Chicago; UADBA = 
Université d’Antananarivo, Département de Biologie Animales 

 

 

Specimens examined 

Voucher specimens were deposited in the Durban Natural Science Museum (DM), South 

Africa; the Field Museum of Natural History (FMNH), Chicago, USA; or Université 

d’Antananarivo, Département de Biologie Animale, Antananarivo, Madagascar.  

  

  

 

Species name and 
abbreviation 

Locality GPS coordinates Number 
and sex 

2n FN Accession 
number 

Rousettus 

madagascariensis  
(RMA) 

Grotte d’Anjohibe, Province de 
Mahajanga, 
Madagascar 

15.613611 S,  
46.927500 E 

1 ♂ 36 66 FMNH 
209106 

Pteropus rufus 

 (PRU) 
Captive in Ambovondramanesy 
village, near Berivotra, Province 
de Mahajanga, Madagascar 

-15.9000 S,  
46.575 E 

1 ♂ 38 68 UADBA 
43751 

Pteropus rufus 

 
 Captive in Ambovondramanesy 
village, near Berivotra, Province 
de Mahajanga, Madagascar 

-15.9000 S,  
46.575 E  

1 ♂ 38 68 UADBA 
43763 

       
Hipposideros 

commersoni 

 (HCO) 

Grotte d’Anjohibe, Province de 
Mahajanga, 
Madagascar 

-15.613611 S, 
46.927500 E 

1 ♂ 52 60 FMNH 
209110 

Hipposideros 

commersoni 

 

Réserve Spéciale d’Ankarana, 
Province d’Antsiranana, 
Madagascar 

 1 ♀ 52 60 FMNH 
213588 

Rhinolophus clivosus  

(RCL) 
Ferncliffe Nature Reserve, 
Pietermaritzburg, South Africa 

-29.550000 S, 
30.320000 E 

1 ♀ 58 60 DM 12005 
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Cell culture, chromosome preparation and G- and C-banding 

Metaphases were obtained from bone marrow preparations using the methods of Volleth 

et al. [2009] or fibroblast cell lines that were established from tail and/or wing membrane 

biopsies, using standard cytogenetic protocols. G-banding with trypsin was done following 

Seabright [1971] and C-banding using barium hydroxide according to a modified method of 

Sumner [1972].  

 

Cross-species chromosome painting (Zoo-FISH) 

Chromosome-specific painting probes of 21 autosomes and the X chromosome of Myotis 

myotis (MMY) were generated using DOP-PCR as previously described [Ao et al., 2006]. They 

remain the only set of chiropteran probes that have been painted reciprocally to human 

chromosomes [Volleth et al., 2011], thus providing definitive resolution of Homo sapiens (HSA) 

syntenic homologies. Myotis probes were labelled with biotin-16-dUTP or digoxigenin-11-dUTP 

(Roche Molecular Chemicals) and hybridised to metaphases of the five species investigated in 

this study following procedures previously described [Richards et al., 2010]. Biotin-labelled 

Myotis probes were detected using Cy3-labelled streptavidin (1:500 dilution, Amersham) and 

Dig-labelled probes were detected with rabbit anti-FITC (1:500 dilution, Amersham). 

 

Image capture and data processing 

FISH images were captured using the Genus System version 3.7 (Applied Imaging Corp, 

Newcastle, UK) with a CCD camera mounted on an Olympus BX 60 epifluorescence 

microscope. Hybridization signals were assigned to specific chromosomes or chromosomal 

segments defined by enhanced DAPI-banding patterns.  

 

Chromosome nomenclature  

The G-banded karyotypes of R. madagascariensis and Pteropus rufus were arranged 

according to the scheme for Rousettus leschenaulti by Mao et al. [2007]. The karyotypes of H. 

commersoni and Rhinolophus clivosus followed the scheme of R. ferrumequinum tragatus by 

Mao et al. [2007], whereby biarmed chromosomes are numbered first. To best of our 

knowledge, no comprehensive banding and chromosome painting data exists for the Malagasy 

species.  

 

Phylogenomic comparisons using chromosomal characters 

We integrated our results with the published comparative maps of an additional seven 

Pteropodiformes taxa [Volleth et al., 2002; Ao et al., 2007; Mao et al., 2007, 2008]. We identified 

chromosomal characters based on GTG-banded comparisons and M. myotis homology, 

capable of providing an independent assessment of evolutionary relationships amongst the 

Pteropodidae, Hipposideridae, and other rhinolophoid species. For a more meaningful 
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interpretation of phylogenomic relationships among taxa, we only report characters that occur in 

two or more species.   

 

 

RESULTS  

 

Pteropodidae - karyotypes and Zoo-FISH 

Rousettus madagascariensis has a karyotype with 2n = 36, FN = 66 (fig. 1a). The 

chromosome complement comprises four large metacentrics (pairs 1-4), four medium-sized 

submetacentrics (pairs 5-7, 12), four pairs of small metacentrics (pairs 13-16), four pairs of 

subtelocentrics (8-11), and the single acrocentric pair 17. A secondary constriction is present on 

the short arm near the centromere of pair 7. The X chromosome is a large subtelocentric and 

the Y is the smallest and heterochromatic. Pairs 9-11 have short arms comprised mostly of 

heterochromatin (fig. 1c), and all chromosomes contained heterochromatin in the 

pericentromeric and telomeric regions.  

The karyotype of P. rufus (2n = 38, FN = 70; fig. 1b) is characterised by 11 pairs of meta- 

and submetacentrics, six pairs of subtelocentric autosomes, one pair of acrocentric 

chromosomes, a large subtelocentric X chromosome, and a small acrocentric Y chromosome 

(fig. 1d). Chromosomal pair 7 displayed a secondary constriction. C-banding analysis revealed 

the presence of heterochromatic short arms in pairs 11, 13, 14, and 18 (fig. 1d). 

Heterochromatin was present in the pericentromeric and telomeric regions of all chromosomes 

and intercalary heterochromatic bands were detected in four pairs of bi-armed chromosomes.  

The complete suite of M. myotis probes successfully hybridized to both pteropodid 

species, resulting in 26 and 29 regions of homology detected in R. madagascariensis and P. 

rufus, respectively (fig. 1a,b; table 2). Four probes (1/2, 3/4, 5/6, 7) hybridized to two 

chromosomes in the genomes of R. madagascariensis and P. rufus. The remaining probes 

each hybridized to a single homologous chromosome/chromosomal arm in both pteropodid 

species. Eight chromosomal pairs of R. madagascariensis (1-6, 8, and 13) corresponded to two 

MMY probes whereas only seven P. rufus autosomal pairs (1-6, 8) were highlighted by two 

MMY probes.  
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Figure 1. G-banded karyotypes of R. madagascariensis (RMA) (a) and P. rufus (PRU) (b). Chromosomal 
homologies to M. myotis (MMY) chromosomes are indicated on the right. C-banded metaphase spreads of 
R. madagascariensis (c) and P. rufus (d). Arrows indicate C+ heterochromatic short arms present in the 
Pteropodidae karyotypes. The gonosomes are indicated by X and Y.   
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Hipposideridae and Rhinolophidae - karyotypes and Zoo-FISH 

The chromosomal complement of H. commersoni (2n = 52, FN = 60) comprised mostly 

acrocentric chromosomes with the exception of pairs 1-5 (fig. 2a). The biarmed chromosomes 

consist of a large submetacentric (pair 1), a medium-sized subtelocentric (pair 2), and three 

pairs of metacentrics (3-5). Chromosomal pair 16 displayed a secondary constriction within the 

pericentromeric region. The X chromosome is a large subtelocentric with large intercalary 

blocks of heterochromatin (fig. 2a and c). The Y chromosome is an acrocentric consisting 

almost entirely of heterochromatin. Heterochromatin was concentrated in autosomal 

centromeres, with intercalary heterochromatic bands detected in pairs 1-3 (fig. 2c).  

Rhinolophus clivosus was included in this study as it bears a karyotype similar to H. 

commersoni. The karyotype of R. clivosus has a diploid number of 2n = 58 (FN = 60, fig. 2b), 

and is dominated by acrocentric chromosomes. Two small metacentric pairs (1-2) are present. 

A secondary constriction was located on pair 16. C-banding analysis revealed heterochromatin 

present in the telomeres and centromeres of all autosomes (fig. 2d). Several autosomal pairs 

appeared to contain large intercalary heterochromatic blocks. 

Myotis autosomal probes detected 28 regions of homology in the genome of H. 

commersoni and delimited 29 homologous chromosomal segments in R. clivosus (fig. 3a and b; 

table 2), Thirteen MMY autosomes, including the X, were conserved as whole chromosomes in 

H. commersoni, whereas 14 MMY homologous whole chromosomes were identified in R. 

clivosus. Seven probes (1/2, 3/4, 5/6, 7, 8, 10, 12) were retained on two separate chromosomal 

pairs in R. clivosus.  

 

Comparative analyses based on G- and C-band homology 

Seven autosomal pairs corresponding to MMY 2, 5, 7i [see Volleth et al., 2011 for a 

description of MMY 7 partial chromosomal arms], 20, 22, and 25 were shared amongst the 

species investigated in this study (fig. 3). The banding patterns of three homologous 

chromosomes (MMY 20, 22, 25) were unaltered suggesting that they may represent ancestral 

elements of the suborder Pteropodiformes. G- and C-banding analyses revealed possible 

paracentric inversions on both the short and long arms of the X chromosomes. The karyotypes 

of the two pteropodids were similar except for the amount of heterochromatin present within the 

short arms of four homologous chromosomal pairs, two pericentric inversions and a possible 

tandem fusion in R. madagascariensis (fig. 3). Comparative painting analyses of the 

pteropodids, involving MMY probes 19 and 4, revealed a cryptic pericentric inversion in pair 4 of 

P. rufus, undetectable using G-banding patterns alone (fig. 4a). Hybridization patterns in the two 

pteropodid species differed due to the fusion of chromosomes homologous to MMY 16/17 + 24 

in RMA13, and the retention of MMY 16/17 and 24 as separate chromosomes in P. rufus (fig. 

4b).   



51 

 

 

    
Figure 2. G-banded karyotypes of H. commersoni (HCO) (a) and R. clivosus (RCL) (b). Chromosomal 
homologies to M. myotis (MMY) chromosomes are indicated on the right. C-banded metaphase spreads of 
H. commersoni (c) and R. clivosus (d) are provided. Arrows indicate C+ intercalary blocks present in 
autosomes of the rhinolophoid bats. The gonosomes are indicated by X and Y.  
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Two autosomal pairs homologous to MMY 10 and the fusion of MMY 13 + 23, were 

retained within the genomes of the pteropodid and hipposiderid taxa. Banding patterns within 

the p arm of the chromosomes homologous to MMY 13 + 23 were conserved between H. 

commersoni and both flying fox species (fig. 3). MMY10 was conserved as a single metacentric 

autosome in H. commersoni (fig. 4c). A further two centric fusions involving MMY 3 + 11 and 

MMY 13 + 23 differentiated the karyotype of H. commersoni from R. clivosus (fig. 3, 4d and e). 

Two elements of MMY 8 and 12 were present within the hipposiderid and rhinolophid species, 

as well as a marker chromosome homologous to MMY 21. Marker chromosomes corresponding 

to MMY 10 were also identified within the karyotypes of the Malagasy pteropodids.  

 

 
Figure 3. Genome-wide chromosomal homologies among Afrotropical pteropodid, hipposiderid and 
rhinolophid bats as directed by M. myotis chromosome painting probes and G-banding comparison. 
Chromosome numbers are provided below or above the chromosomes/ chromosomal segments of each 
species. Chromosomal homologies to M. myotis (MMY) chromosomes are indicated on the left. Arrowheads 
indicate secondary constrictions, whilst crossed lines demonstrate possible paracentric and pericentric 
inversions. RMA, Rousettus madagascariensis; PRU, Pteropus rufus; HCO, Hipposideros commersoni; 
RCL, Rhinolophus clivosus. 



53 

 

 

 

                     
Figure 4. The results of FISH with MMY chromosomal probes onto metaphase chromosomes of R. 
madagascariensis (RMA), P. rufus (PRU), H. commersoni (HCO) and R. clivosus (RCL). An inversion 
differentiating RMA from PRU was detected using paints MMY4 and 19 (a). Paints MMY24 and 16/17 
revealed a fission and heterochromatic addition in PRU (b).  Hybridization of MMY 10 to HCO3 and RCL 
20 and 23, indicating the fission of MMY10 in the genome of R. clivosus (c). MMY 11 and 3 hybridized to a 
single chromosomal pair in H. commersoni and two separate autosomes in R. clivosus (d). MMY 13 and 
23 were retained on a single chromosomal pair in H. commersoni and as two separate chromosomes 
within the genome of R. clivosus (e). Arrowheads indicate the position of centromeric regions. 
Chromosomes were counterstained using DAPI, while MMY3, 4, 11, 16/17 and 23 were labelled with biotin 
and MMY 10, 11, 13, 19 and 24 were labelled with dig paints. 
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Phylogenomic relationships based on chromosomal characters 

Our chromosome painting data of R. madagascariensis, P. rufus, H. commersoni, and R. 

clivosus were integrated with comparative chromosome maps of seven additional taxa. We 

identified 25 chromosomal characters, summarized in table 2, that were used to describe 

phylogenomic relationships amongst the 11 species. Widespread monobrachial homologies 

resulted in few shared chromosomal rearrangements across all species, apart from the fission 

state of MMY 7. Possible plesiomorphic characters included the fusion state of MMY 20 and 22, 

and the fusion product of MMY 13 + 23.  The synteny of MMY 13 + 23 was conserved amongst 

three pteropodid genera, all three hipposiderid species, and the single species belonging to the 

family Megadermatidae.  

Very few chromosomal characters were common across all analysed pteropodid taxa. 

The secondary constriction present on chromosomes or chromosomal segments homologous to 

MMY 10 was the only character shared among the pteropodids, including the Malagasy 

representatives. Six fusion characters were shared amongst Eonycteris, Rousettus and 

Pteropus. The synteny of MMY 4 + 19 was altered in P. rufus due to a pericentric inversion. 

Homologues to MMY 16/17 + 24 were present in different combinations within the genomes of 

the genera Eonycteris, Rousettus and in Hipposideros larvatus. This Rb product was not 

present in genomes of P. rufus, H. commersoni and Aselliscus stoliczkanus. 

The fission state of the MMY 8 homologue and the secondary constriction on 

chromosomes homologous to MMY 21 were common only to the Hipposideridae and 

Rhinolophidae. Our comparative analyses failed to identify synapomorphic characters for the 

Hipposideridae.  The fusion product of MMY 3 +11 represented the only chromosome limited to 

Hipposideros spp. Similarly, the fission of MMY 12 was a feature common to only the 

Hipposideros spp., and not Aselliscus. MMY 20 and 22 homologues and the fission of MMY 12 

were also present in the karyotype of R. clivosus. 
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Table 2. Chromosomal characters shared among11 Pteropodiformes taxa from four families.  

 
 Characters are described based on Myotis myotis homologies. Cynopterus sphinx (CSP); Eonycteris spelaea (ESP); Rousettus leschenaulti (RLE); R. madagascariensis 
(RMA); Pteropus rufus (PRU); Aselliscus stoliczkanus (AST); Hipposideros larvatus (HLA); H. commersoni (HCO); Rhinolophus pearsoni (RPE); R. clivosus (RCL); 
Megaderma spasma (MSP). Fi = fission; Fu = Robertsonian fusion; inv = inversion ; SC = secondary constriction; * = non-centric fusion. Numbers in bold = possible 
synapomorphies. MMY chromosomal segments as according to Volleth et al. [2011]: 7i = HSA 19/8/4 homologous segment; 7ii = HSA 5 homologous segment; 8ii = HSA 7/5 
homologous segment. Cited from: a Ao et al. [2007], b Volleth et al. [2002], c Mao et al. [2007], d this study, e Mao et al. [2008]. 

 

 

 Pteropodidae Hipposideridae Rhinolophidae Megadermatidae 
Character CSPa ESPb RLEc RMAd PRUd ASTa HLAb HCOd RPEc RCLd MSPe 

 2n = 34 2n = 36 2n = 36 2n = 36 2n = 38 2n = 30 2n = 32 2n = 52 2n = 44 2n = 58 2n = 38 
Fi 7 1 1 1 1 1 1 1 1 1 1 1 
Fu 22 1 1 1 1 1 0 1 1 0 1 1 
SC 10 1 1 1 1 1 0 0 0 0 0 0 
Fu 20 0 1 1 1 1 0 1 1 0 1      1inv 
Fu 10 0 1 1 1 1 1 1 0 0 0 0 
Fu 13 + 23 0 1 1 1 1 1       1 inv 1 0 0       1 inv 
Fu 16/17 + 24 0  1*  1*  1* 0 0 1 0 0 0 0 
Fu 1 + 14 0 1 1 1 1 0 0 0 0 0 0 
Fu 3 + 9 0 1 1 1 1 0 0 0 0 0 0 
Fu 4  + 19 0 1 1 1        1 inv

 0 0 0 0 0 0 
Fu 6 + 11 0 1 1 1 1 0 0 0 0 0 0 
Fu 7 + 15 0 1 1 1 1 0 0 0 0 0 0 
Fu 18 + 21 0 1 1 1 1 0 0 0 0 0 0 
Fu 3 + 7ii 1 0 0 0 0 0 0 0 0 0 1 
Fu 8ii + 11 1 0 0 0 0 0 0 0 0 0 1 
Fi 12 1 0 0 0 0 0 1 1 1 1 1 
SC 21 0 0 0 0 0 1 1 1 1 1 0 
Fi 8 0 0 0 0 0 1 1 1 1 1 1 
Fu 3 + 11 0 0 0 0 0 0 1 1 0 0 0 
Fu 7i + 19 0 0 0 0 0 1 1 0 0 0 0 
Fu 8ii + 14 0 0 0 0 0 1 1 0 0 0 0 
Fu 1 + 16/17 0 0 0 0 0 1 0 0 1 0 0 
Fu 3 + 15 0 0 0 0 0 1 0 0 1 0 0 
Fu 4 + 5 0 0 0 0 0 0 1 0 0 1 0 
Fu 4 +18 0 0 0 0 0 1 0 0 0 0 1 

 
5
5
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DISCUSSION 

 

Karyotypic evolution among Malagasy pteropodids 

Relative to the families Hipposideridae and Rhinolophidae, the Pteropodidae have been 

the least studied using chromosome painting techniques. Only three species divided amongst 

the subfamilies Cynopterinae and Rousettinae have been examined thus far [Volleth et al., 

2002; Ao et al., 2007; Mao et al., 2007]. We present the first painting analysis of a member of 

the Pteropodinae, P. rufus. To date, karyotypic data for Pteropus spp. are largely derived from 

conventionally stained karyotypes [Harada and Tsuneaki, 1980; Rickart et al., 1989; Hood et al., 

1988].  Due to the inadequacy of conventional cytogenetic studies in delimiting chromosomal 

rearrangements, karyotypic comparisons between Pteropus and other pteropodid genera have 

remained incomplete. Despite an overall similarity in diploid numbers of P. rufus (2n = 38) and 

R. madagascariensis (2n = 36), our chromosome painting analyses with M. myotis revealed 

several karyotypic differences between the Malagasy species. Chromosomal rearrangements 

responsible for differences in diploid number and fundamental number between Malagasy 

pteropodids included a single non-centric fusion, two pericentric inversions, and 

heterochromatin polymorphisms on four homologous chromosomal pairs. Corresponding 

rearrangements have been implicated in the genome evolution of African pteropodids [Haiduk et 

al., 1981].  

 

Phylogenomic relationships amongst Pteropodidae 

Chromosomal characters based on G-banded comparisons and chromosomes painting 

analyses were used to assess the phylogenomic relationships amongst five pteropodid species 

including the Malagasy representatives studied herein. The single character common to all 

pteropodid species was the secondary constriction present within chromosomes/chromosomal 

segments homologous to MMY 10. This marker chromosome was conserved as a single 

element within the karyotypes of R. madagascariensis, R. leschenaulti, P. rufus, and Eonycteris 

spelaea. Homologues to MMY10 appear as two elements on separate biarmed chromosomes in 

Cynopterus sphinx, one of which bears a secondary constriction adjacent to the pericentromeric 

region [Ao et al., 2007].  Marker chromosomes have been reported from all pteropodids 

analysed karyotypically, with the exception of Scotonyteris ophiodon [Haiduk et al., 1981].  A 

study of ten Philippine pteropodids revealed the secondary constriction to correspond to 

nucleolar organizer regions (NOR) [Rickart et al., 1989]. Additional investigations using silver-

staining and /or hybridization experiments with rDNA probes will be able to determine whether 

this is the case for Malagasy pteropodids.  

Six chromosomal characters, each representing a centric fusion, were common to the 

genera Rousettus, Pteropus, and Eonycteris. Three fusion products corresponding to MMY 3 + 

9 (HSA 6), 4 + 19 (HSA 3 + 21) and 13 + 23 (HSA 11) [HSA synteny based on Volleth et al., 

2002, 2011], represent conserved elements within the placental ancestral karyotype [Robinson 
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and Ruiz-Herrera, 2008; Ruiz-Herrera et al., 2012].  Within Chiroptera, these three 

chromosomal features have only been reported from pteropodids [see Volleth et al., 2011], with 

the exception of C. sphinx [Ao et al., 2007]. Comparisons between the G-banded karyotypes of 

R. madagascariensis and P. rufus (this study), and published karyotypes of E. spelaea [Volleth 

et al., 2002] and R. leschenaulti [Mao et al., 2007], revealed the banding patterns of 

chromosomes homologous to MMY 3 + 9 and 13 + 23 were conserved across all taxa. Our 

study shows the MMY homology of P. rufus chromosomal pair 4, corresponding to MMY 4 + 19, 

as distinct and more similar to the MMY syntenic arrangement in HSA 3 [see Fig. 2, Volleth et 

al., 2011]. Experiments with human painting probes and chromosomal probes derived from 

species with fragmented genomes including Eulemur macaco (black lemur) and Tupaia 

belangeri (tree shrew) [Volleth et al., 2011], are needed to confirm the chromosomal segmental 

order within PRU 4 and to determine whether it is representative of the conserved arrangement 

in HSA 3. Additional painting studies with human probes will also confirm the position of HSA 21 

on PRU4.  The arrangement in chromosomal pair 4 in R. madagascariensis is the same as that 

described for E. spelaea [Volleth et al., 2002] and R. leschenaulti [Mao et al., 2007], and is 

considered as a derived state [Volleth et al., 2011]. This syntenic association may therefore 

represent an autapomorphy of the rousettine clade as defined by molecular DNA studies [e.g. 

Giannini and Simmons, 2005; Almeida et al., 2011]. The non-centric fusion of homologues to 

MMY 16/17 + 24 appears to be characteristic of the Eonycteris and Rousettus genera and may 

therefore characterize an additional synapomorphic feature of this rousettine clade. The Rb 

fusion of MMY 16/17 + 24 within certain hipposiderid species may therefore not represent a 

convergence event as previously suspected [see Volleth et al., 2002; Ao et al., 2007]. 

This study and other published chromosomal data [Volleth et al., 2002; Mao et al., 2007] 

thus support the molecular hypothesis of a close association Eonycteris and Rousettus 

(Rousettinae). Furthermore, chromosomal data suggests a close alliance between Pteropus 

and Rousettus as 16 chromosomes were shared in toto between these two genera. The 

extensive chromosomal rearrangements that have occurred between C. sphinx (Cynopterinae) 

and genera belonging to other subfamilies, renders the phylogenomic relationships amongst 

pteropodid genera particularly difficult to discern. The secondary constriction present on 

chromosomes / chromosomal segments corresponding to MMY 10 represented the only 

possible chromosomal synapomorphic feature of pteropodids analysed thus far. Painting 

analyses of additional species that display intermediate steps of chromosomal evolution 

between Cynopterus and other pteropodids are needed to fully resolve the cytosystematics of 

fruit bats.  

 

Phylogenomics relationships between Hipposideros commersoni and other hipposiderids 

Karyotype analyses of hipposiderids revealed diploid numbers varying between 2n = 30-

52, with most species exhibiting a biarmed karyotype of 2n = 32 [see reviews of Bogdanowicz 

and Owen, 1998; Sreepada et al., 1993]. Hipposideros commersoni, one of four large 
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Afrotropical hipposiderids, exhibits an atypical diploid number of 2n = 52 [H. vittatus,  

Rautenbach et al., 1993; H. gigas,  Koubínova et al; H. commersoni, Volleth et al., 2011]. Our 

understanding of karyotypic evolution within the family remained limited as only species with 2n 

= 30 [Aselliscus stoliczkanus; Ao et al., 2007] and 2n = 32 [H. armiger, H. larvatus, H. pomona, 

H. pratti; Mao et al., 2010] were studied using chromosome painting techniques. Despite this 

limited taxon sampling, several synapomorphic features of Hipposideridae have been proposed 

based on findings of chromosome painting analyses using human, Myotis and Aselliscus probes 

[see Volleth et al., 2002; Ao et al., 2007; Mao et al. 2010]. The syntenic associations of MMY 8 

+ 14 (homologous to HSA 5 + 7 + 9) and MMY 7 + 19 (HSA 3 + 9 + 4), proposed 

synapomorphies of Hipposideridae, were not present in the genome of H. commersoni. 

Conversely, two chromosomes corresponding to the homologues of MMY 10 and 13 + 23, 

considered key features of the ancestral karyotype of Hipposideridae, were conserved as 

biarmed elements in H. commersoni. MMY 13 + 23, equivalent to HSA 11 and postulated to be 

a synapomorphic feature for Eutheria [Robinson and Ruiz-Herrera, 2008; Ruiz-Herrera et al., 

2012], was also present in four of the five pteropodid species analysed thus far.  

Ao et al. [2007] proposed A. stoliczkanus (AST) as the likely basal taxon within 

Hipposideridae, as this species shared plesiomorphic chromosomal characters with 

pteropodids, including the retention of MMY 10 and 12 as a bi-armed elements and the 

arrangement of MMY 23 on the p arm of AST 11. Until present, all Hipposideros spp. studied 

using chromosome painting displayed a different G-banding pattern in the p arm of 

chromosomes homologous to AST 11 based on one or more paracentric inversions [see Mao et 

al., 2010]. Our results, however, show the G-banding pattern in the p arm of HCO 2 is the same 

as that of AST 11 and pteropodids, considered to be the ancestral condition. Our data also 

indicates that H. commersoni shares several chromosomal features with both the Pteropodidae 

(e.g. fusion state of MMY 10 and MMY 13 + 23) and the Rhinolophidae and Megadermatidae 

(fusion state of MMY 20 and 22 and the fission of MMY 8 and 12).  Hipposideros commersoni 

also displayed a secondary constriction on the MMY 21 homologue; a feature considered 

diagnostic for Hipposideridae and Rhinolophidae [see Volleth et al., 2002; Mao et al., 2007]. A 

largely acrocentric chromosomal complement has been postulated as ancestral for both the 

Hipposideridae [Bogdanowicz and Owen, 1998] and the Rhinolophidae [Mao et al., 2007].  

These data bring into question the supposition that A. stoliczkanus possesses the most 

primitive hipposiderid chromosomal complement [Ao et al., 2007]. Benda and Vallo [2009] 

demonstrate that A. stoliczkanus occupies a terminal branch in a clade containing the genera 

Asellia and Coelops, representing the successive lineage to Hipposideros. Furthermore, 

molecular phylogenies indicate the 2n = 52 Hipposideros species are basal to other Afrotropical 

Hipposideros spp. characterised by 2n = 32 karyotypes [Eick et al., 2005; Vallo et al., 2008; 

Monadjem et al., 2013]. Hence, the karyotype of H. commersoni may in fact be more 

representative of the ancestral hipposiderid chromosomal complement. The inclusion of other 

2n = 52 species, such as H. gigas and H. vittatus, in future painting studies of Hipposideridae 
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may provide further evidence that corroborate our findings. More comprehensive painting 

studies that include detailed comparative maps of additional hipposiderid genera, including the 

recently described Malagasy Paratriaenops are needed to provide conclusive resolution of 

intergeneric phylogenomic relationships amongst the family. 

 

 

CONCLUSIONS 

 

By expanding chromosome painting studies of Pteropodidae and Hipposideridae to 

include Malagasy endemic species, we have refined our knowledge of the phylogenomic 

relationships among the two families and the chromosomal characters that have played an 

important role in their karyotypic evolution. Our results confirm Rb rearrangements as an 

important mode of karyotype evolution in Chiroptera. Despite the limitation of these 

rearrangements in resolving interfamilial relationships amongst bats due to widespread 

monobrachial homologies and convergent events [Mao et al., 2008], we found these characters 

(chromosomal fusion and fission events) to be useful in inferring phylogenetic relationships at 

the generic level [see also Sotero-Caio et al., 2011]. Our study also highlighted the utility of 

inversions in phylogenomic studies of Pteropodiformes taxa. Repeat experiments with HSA 

paints and probes derived from species with fragmented karyotypes are necessary to resolve 

the segmental associations of certain chromosomal elements within the karyotypes of the 

species studied here. These include clarifying the structural composition of PRU 4 and 

determining whether the paracentric inversion within the MMY 2 homologous segment, 

suggested to be a synapomorphy for Pteropodiformes, is present within the Malagasy taxa.  

 

 

ACKNOWLEDGEMENTS 

 

Research permits were obtained from the Direction des Eaux et Forêts and Madagascar 

National Parks (formerly ANGAP) in Madagascar and eZemvelo KZN Wildlife in South Africa. 

This study was supported in part by grants awarded by the John D. and Catherine T. MacArthur 

Foundation (to SMG), Volkswagen Foundation (to SMG, PJT, MCS and JML), South African 

National Research Foundation (to LRR), and the South African Biosystematics Initiative (to 

JML). We thank B. Ramasindrazana and C. Maminirina for their generous assistance with 

sample collection in Madagascar. Dr F. Yang is thanked for supplying the Myotis paints for this 

study. Dr. P Sommer of the School of Life and Environmental Sciences, University of KwaZulu-

Natal, is gratefully acknowledged for the use of tissue culture facilities.

.  



60 

 

 

 

CHAPTER FOUR  

 

SPECIES LEVEL INVESTIGATIONS 
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ABSTRACT 

 

The taxonomy of the Old World bat genus Otomops (Chiroptera: Molossidae) has been the 

subject of considerable debate. The failure of classical morphological studies to provide 

consistent patterns regarding interspecific relationships within Otomops has limited any 

understanding of the evolutionary history of the genus. We used traditional and geometric 

morphometric approaches to establish the species limits of taxa from sub-Saharan Africa, the 

Arabian Peninsula, and Madagascar. Morphometric data supported the recent recognition of 

three distinct Afrotropical taxa: Otomops madagascariensis from Madagascar; Otomops 

martiensseni s.s. from southern, eastern, central, and western Africa; and an undescribed taxon 

from north-east Africa and the Arabian Peninsula. Analyses of craniodental measurements and 

landmark-based data showed significant cranial size and shape divergence between the three 

taxa. Cranial size and shape variation within Afro-Arabian Otomops were strongly influenced by 

altitude, seasonality of precipitation, and precipitation in the driest month. Based on 

morphometric patterns and molecular divergence estimates, we suggest that morphological 
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evolution within Afro-Arabian Otomops occurred in response to the fluctuating climate during the 

Pleistocene on the one hand, and the increasing aridity and seasonality over north-eastern 

Africa on the other. 

 

INTRODUCTION 

 

It is widely recognized that current information on the systematics and phylogenetic history of 

living Chiroptera is limited, despite major advances in the past decade (Volleth et al., 2002; Van 

Den Bussche & Hoofer, 2004; Eick, Jacobs & Matthee, 2005; Miller-Butterworth et al., 2007). 

Molossidae, a wide spread family in the New and Old Worlds, are no exception. Increased 

sampling and the application of molecular sequencing techniques have provided insights into 

the evolutionary history of the various genera of this family (Ratrimomanarivo et al., 2007, 2008; 

Lamb et al., 2008, 2011; McDonough et al., 2008; Taylor et al., 2009). Although some molossid 

bats are very common and have day-roost sites in synanthropic settings, others, such as 

species of the Old World genus Otomops Thomas, 1913, are rarely collected and poorly 

studied. The poor representation in museum collections of members of this genus, which 

impedes systematic studies (Kitchener, How & Maryanto, 1992), is associated with the difficulty 

in capturing these high-flying, large-bodied bats by conventional methods, such as mist nets 

and harp traps.  

Simmons (2005) recognized seven species of Otomops, five of which are strictly 

Indomalayan (including Papua New Guinea): Otomops wroughtoni (Thomas, 1913) from India 

and Cambodia; Otomops formosus Chasen, 1939 from Java; Otomops papuensis Lawrence, 

1948 and Otomops secundus Hayman, 1952 from New Guinea; and Otomops johnstonei 

Kitchener, How & Maryanto, 1992 from Indonesia. The Indomalayan species are categorized as 

data deficient (IUCN, 2013) because most are only known from the original type series 

(Kitchener et al., 1992). Two species are currently recognized from the Afrotropics. Otomops 

madagascariensis Dorst, 1953 is distributed in the dry regions and Central Highlands of 

Madagascar (Goodman, 2011). Otomops martiensseni (Matschie, 1897) has a disjunct 

distribution across sub-Saharan Africa and the south-western portion of the Arabian Peninsula. 

There are records attributed to this species from Central African Republic, Democratic Republic 

(DR) of Congo, Djibouti, Ethiopia, Eritrea, Ghana, Ivory Coast, Kenya, Rwanda, Tanzania (type 

locality), Zambia, Zimbabwe, and Yemen (Al-Jumaily, 1999; Lamb et al., 2008).  

Chubb (1917) recognized the South Africa population as a separate species, Otomops 

icarus Chubb, 1917. Otomops icarus has also been identified from Angola (Hill & Carter, 1941) 

and Malawi (Ansell, 1974). Harrison (1965) demonstrated that, based on external and 

craniodental measurements, O. icarus from South Africa were smaller in size than O. 

martiensseni from Kenya, Tanzania, and Zimbabwe. The multivariate analyses of Peterson, 

Eger & Mitchell (1995), however, revealed that Kenyan Otomops were morphologically distinct 
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from specimens collected from Angola, DR of Congo, Rwanda, South Africa, Uganda, and 

Zimbabwe. Fenton et al. (2002), using forearm length, confirmed the morphological separation 

of specimens from South Africa (O. icarus) and Kenya (O. martiensseni). Inconsistencies in the 

delineation of the species limits of O. martiensseni and O. icarus using morphometric data and 

the failure to identify species-specific morphological characters has led to several studies 

questioning the taxonomic validity of the latter species (Freeman,1981; Long, 1995; Taylor, 

2005). Consequently, populations from South Africa, Angola, and Malawi are considered 

conspecific with O. martiensseni, and O. icarus is regarded as a junior synonym of O. 

martiensseni (Simmons, 2005; Monadjem et al., 2010).  

More recent molecular-based studies using cytochrome b and D-loop mitochondrial DNA 

sequences have clarified phylogenetic and phylogeographical patterns within Otomops and 

have raised questions regarding the taxonomic status of Afrotropical members of this genus 

(Lamb et al., 2006, 2008). Molecular data provide evidence for three distinct and reciprocally-

monophyletic lineages from north-east Africa and Arabia, sub-Saharan Africa (excluding north-

east Africa) and Madagascar. On the basis of these molecular studies, and including the 

conclusions of Peterson et al. (1995), the Malagasy lineage was recognized as O. 

madagascariensis. The genetic lineage described from Burundi, Ivory Coast, South Africa, 

Tanzania, and Zimbabwe included specimens sampled from areas neighbouring the type 

localities of O. martiensseni (Magrotto Plantation, near Tanga, southeastern foothills of the East 

Usambara Mountains, Tanzania; Matschie, 1897) and O. icarus (Durban, KwaZulu-Natal, South 

Africa; Chubb, 1917). The north-east lineage has been considered as an undescribed taxon 

occurring in Kenya, Ethiopia, and Yemen (Lamb et al., 2008, 2011). The discordance between 

the morphological and genetic delineation of Afrotropical Otomops and the possibility of a new 

species from the Afrotropics has warranted a critical assessment of the morphological diversity 

of Otomops.  

The present study aimed to investigate and describe inter- and intraspecific patterns of 

cranial size and shape variation in Afrotropical Otomops using traditional and geometric 

morphometric approaches. More specifically, we evaluated and characterized morphological 

divergence between geographical populations of Afrotropical Otomops and tested the 

taxonomic validity of recently described genetic lineages (Lamb et al., 2008). We discussed 

cranial morphological variation among Otomops in the context of functional morphology. Finally, 

we assessed the adaptive role of cranial size and shape variation within Afro-Arabian Otomops, 

in relation to ecogeographical factors. 

 

MATERIAL AND METHODS 

Material examined 

Crania of 202 (100 males and 102 females) Otomops specimens from 13 museums were 

examined in the present study (see Supporting information, Appendix S1): BMNH  ̶ The Natural  
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Figure 1. Map of Africa and the Arabian Peninsula showing the collecting localities for specimens included 
in the present study. The historical distribution of the taxa Otomops martiensseni, O. icarus, and O. 

madagascariensis are shown. Type localities of O. martiensseni (OMAR), O. icarus (OICA), and O. 

madagascariensis (OMAD) are indicated on the map. 

History Museum (formerly British Museum of Natural History), London, United Kingdom; DM  ̶  

Durban Natural Science Museum, Durban, South Africa; FMNH  ̶  Field Museum of Natural 

History, Chicago, IL, USA; HZM  ̶  Harrison Zoological Institute, Kent, United Kingdom; MNHN  ̶  

Muséum National d’Histoire Naturelle, Paris, France; MRAC – Musée Royale d’Afrique 

Centrale, Tervuren, Belgium; MNHU  ̶  Museum für Naturkunde, Berlin, Germany; NM  ̶  

KwaZulu-Natal Museum, Pietermaritzburg, South Africa; NZM – Livingstone Museum, 

Livingstone, Zambia; ROM  ̶  Royal Ontario Museum, Toronto, Canada; SMF  ̶  Senckenberg 

Museum, Frankfurt, Germany; SMNS  ̶  Staatliches Museum für Naturkunde, Stuttgart, 

Germany; TM  ̶  Ditsong National Natural History Museum (formerly Transvaal Museum), 

Pretoria, South Africa. Afrotropical taxa examined in the present study included: O. 

madagascariensis (Madagascar) and O. martiensseni s.l. (Africa, including animals that 

previous studies assigned to O. icarus) (Fig. 1, Table 1). Holotypes examined in the present 

study included: O. icarus (BMNH 16.10.9.1); O. martiensseni (MNHU 97523); and O. 

madagascariensis (type locality south of Soalala, Namoroka, Réserve naturelle intégrale no. 8, 
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Madagascar, MNHN 1953-1590). The crania of all type specimens examined were intact, with 

the exception of that of O. icarus, from which the mandible was missing (this was excluded from 

craniodental analyses). 

Each specimen was assigned to a relative age class (1–6) based on cusp degradation of 

maxillary molars, and skull size and shape, before being measured (for ageing criteria, see the 

Supporting information, Appendix S2). To avoid the confounding effects of age on sample 

variation, only adult specimens assigned to age classes 4–5 were utilized in the study. Three 

morphometric data sets (craniodental measurements, dorsal, and ventral landmark data) were 

recorded for Otomops crania.  

Morphological data of Otomops were pooled into three operational taxonomic units 

(OTUs), according to the phylogeographical patterns and genetic clades described by Lamb et 

al. (2008): (1) Ethiopia, Kenya, and Yemen, hereafter referred to as the north-eastern or NE 

OTU; (2) Burundi, Ivory Coast, South Africa, Tanzania, and Zimbabwe, herein termed the 

southeast-central-west or SECW OTU; and (3) Madagascar, hereafter referred to as the 

Malagasy OTU (Fig. 1, Table 1). Specimens from collecting localities that were not represented 

in the genetic-based study were assigned to an OTU based on their geographical origin and 

included: NE OTU – Djibouti; SECW OUT – DR of Congo, Malawi, Uganda, and Zambia. The 

holotypes of O. martiensseni and O. icarus were assigned to the SECW OTU. 

 

Table 1. Geographic origin, OTU assignment and sample size for the specimens examined in this study.  
 

 
Species 

 
Country 

 
OTU 

TM Dors Vent PLS 
M F M F M F 

Otomops martiensseni s.l. Burundi S 1 0 1 0 1 0 
-’’- Central African Republic S 1 0 1 0 1 0 
-’’- DR of Congo S 1 1 1 1 1 1 
-’’- Ivory Coast S 2 1 2 1 2 1 
-’’- Malawi S 0 1 0 1 0 1 
-’’- South Africa S 18 22 26 23 16 19 
-’’- Tanzania S 2 0 2 0 2 0 
-’’- Uganda S 0 1 0 1 0 1 
-’’- Zambia S 1 0 1 0 1 0 
-’’- Zimbabwe S 1 0 1 0 1 0 

 Total  27 26 35 27 25 23 
Otomops martiensseni s.l. Djibouti N 0 1 0 1 0 1 

-’’- Ethiopia N 9 10 9 9 9 9 
-’’- Kenya N 24 28 25 26 25 21 
-’’- Yemen N 5 2 5 2 5 2 

 Total  38 41 39 38 39 32 
O. madagascariensis Madagascar M 18 20 19 19 - - 

Combined total   83 87 93 84 64 55 
M = male, F = female, TM = traditional morphometrics, Dors = geometric morphometrics, dorsal view, Vent 
= geometric morphometrics, ventral view, PLS = partial least squares analysis and regression analysis. 
OTU: S = south-east-central-west OTU; N = north-eastern OTU; M = Malagasy OTU. Geographic localities 
are depicted in Fig. 1 and further details are provided in Appendix S1. 
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Traditional morphometrics 

A total of 170 specimens (N = 83 males; N = 87 females) were examined (Table 1). Twelve 

craniodental measurements following Freeman (1981), were recorded from Otomops by LRR 

using Mitutoyo callipers accurate to 0.01 mm: GSL – greatest skull length; BCH – braincase 

height; BCB – braincase breadth; MB – mastoid breadth; ZB – zygomatic breadth; IOW – inter-

orbital width; PL – palatal length; MTR – maxillary toothrow length; UCW – maxillary intercanine 

width; TBL – tympanic bulla length; LTR – mandibular toothrow length; MAT – moment arm of 

temporalis. A single external measurement, forearm length (FA), was measured from dried 

skins and fluid preserved study specimens examined by LRR.  

Because Afrotropical Otomops display significant morphological sexual dimorphism 

(Fenton et al., 2002), we conducted a two-way multivariate analysis of variance (MANOVA) on 

craniodental variables to test for heterogeneity in sexual dimorphism amongst the three OTUs 

defined in the present study. This would determine whether morphological data of males and 

females could be combined in subsequent analyses. 

ANOVA was used to test for significant size differences between the three Afrotropical 

OTUs. Descriptive statistics (mean, SD, and range) were computed for each OTU. Student–

Newman–Keuls multiple range tests were used to identify statistically nonsignificant subsets of 

the three taxa. Canonical variates analysis (CVA) of log10-transformed variables was used to 

explore patterns of cranial variation among and between Afrotropical OTUs. Discriminant 

function analysis (DFA) using cross-validation was used to assess the validity of the a priori 

OTU assignment of specimens from the various geographical localities (Fig. 1, Table 1). All 

statistical analyses were conducted using IBM SPSS Statistics, version 19.0.0 (SPSS, Inc., 

2010). 

 

Geometric morphometrics 

A total of 175 dorsal images (93 males; 82 females) and 163 ventral images (79 males; 84 

females) were analysed (Table 1). Dorsal and ventral images of Otomops skulls were captured 

using a Fujifilm Finepix S8100 digital camera mounted on a tripod with the lens facing 

downward (18x optical zoom, 5 megapixel resolution, macro function). To standardize specimen 

placement and facilitate repeatability, each skull was placed on a stage (square Perspex dish 

with graph paper and plasticine) before image capture. Fourteen dorsal and 16 ventral 

landmarks (see the Supporting information, Appendix S3) were recorded from the cranial 

images using the software TPSDIG, version 2.16 (Rohlf, 2010a). Repeatability tests for 

specimen placement and/or image capture and landmark placement were conducted using the 

approach of Fadda, Faggiani & Corti (1997). Analyses of dorsal and ventral data sets showed 

image capture and landmark placement digitizing error levels were low compared to the 

resolution needed for diagnosing OTUs (data not shown).  
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TPSRELW, version 1.45 (Rohlf, 2010b) was used to conduct a generalized Procrustes 

analysis (GPA) of landmark data sets. Landmark configurations of each individual were 

translated, rotated, scaled, and superimposed to derive a consensus configuration of all 

specimens analysed. The GPA residuals variation was then decomposed into affine (UniX and 

UniY) and non-affine (partial warps) components of shape change. Shape matrices, consisting 

of both affine and non-affine shape components, were partitioned according to OTU. Partitioned 

shape matrices were analysed by means of CVA to explore patterns of intra and interspecific 

cranial shape variation. DFA using cross-validation was employed to test the validity of 

specimen taxonomic assignments. MANOVA (Wilks’ lambda test criterion) tested the overall 

significance in shape variation between Afrotropical OTUs. All multivariate analyses were 

conducted in NYTSYS-PC, version 2.02k (Rohlf, 1999) or IBM SPSS Statistics. TPSREGR, 

version 1.37 (Rohlf, 2009) was used to obtain thin plate splines (deformation grids describing 

shape changes, magnified X 3) by regressing the original shape matrix onto the first and second 

projected canonical vectors. Centroid size (the square root of the sum of squares of the 

distances between each landmark and centroid), used as a geometrical estimate of cranial size, 

was extracted for each individual using TPSRELW. A statistical difference in log10-transformed 

centroid size of OTUs was tested with ANOVA. TPSREGR was used to regress the dorsal and 

ventral shape matrices against log10-transformed centroid size to test for allometry in shape 

data of males and females. A Goodalls’ F-test was used to evaluate the statistical significance 

of the regression model and the explained variance was used to determine the overall fit of the 

model (Monteiro, 1999).  

The relationship between cranial size of Afro-Arabian (sub-Saharan Africa, including the 

Arabian Peninsula) Otomops and ecogeographical variables was assessed using stepwise 

regression analysis. Ecogeographical variables (WORLDCLIM database, version 1.4; Hijmans 

et al., 2005) sampled at a spatial grid resolution of 30 arc seconds (approximately 1 km2), were 

obtained for 28 localities for males (N = 64) and 24 localities for females (N = 55) (data set 

available from LRR) using the ArcView 3.2 extension BIOCLIMav (Moussalli, 2003). The O. 

icarus holotype was excluded from stepwise regression and partial least squares (PLS) 

analyses as the precise type locality was not fully specified. Ecogeographical variables 

included: Altitude; Bio1 (annual mean temperature); Bio4 (seasonality of temperature); Bio5 

(maximum temperature of warmest month); Bio6 (minimum temperature of coldest month); 

Bio12 (annual precipitation); Bio13 (precipitation of wettest month); Bio14 (precipitation of driest 

month); and Bio15 (seasonality of precipitation). All variables were log10-transformed and 

screened for outliers and normality before conducting the statistical analysis. Principal 

components analysis (PCA) of the correlation matrix of ecogeographical variables was 

employed to derive a reduced set of factors that were independent of each other. Stepwise 

regression analysis was used to assess the influence of each ecogeographical factor on cranial 

size (as estimated by log10-transformed dorsal and ventral centroid size), whereas a two block 

PLS analysis (Rohlf, 2006) was utilized to explore the covariation between cranial shape and 
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the ecogeographical factors derived from PCA. The association between shape and 

ecogeographical datasets was measured by the amount of covariance explained by the first pair 

of PLS vectors (Rohlf & Corti, 2000). The significance of the correlations between PLS vector 

pairs was tested using permutation tests with 999 randomizations.  

 

 

RESULTS 

Geographic variation in sexual dimorphism 

Two-way MANOVA on log10-transformed craniodental characters revealed a highly significant 

effect of OTU (λ = 0.03, F24,306 = 65.54, P < 0.0001), sex λ= 0.18, F12,153 = 59.89, P < 0.0001), 

and OTU X sex interaction (λ= 0.71, F24,306 = 2.38, P < 0.001). Hence, we treated males and 

females separately in univariate and multivariate analyses. Analyses of the three morphological 

data sets for males and females produced congruent results. For practical reasons, only the 

results of analyses using craniodental measurements, dorsal landmark data of males, and 

ventral landmark data of females are presented. Results not presented are available from LRR.  

 

Analyses based on the three Afrotropical OTUs 

One-way ANOVA revealed that craniodental measurements, forearm length, male dorsal 

centroid size, and female ventral centroid size differed significantly between the three 

Afrotropical OTUs defined above (Tables 2, 3). Individuals of the NE OTU were significantly 

larger than the SECW animals, with animals from the Malagasy OTU being the smallest. 

Characters demonstrating the highest level of variation within Afrotropical males as indicated by 

F-values were BCH, ZB, FA, and GSL. Characters with high F-values in females were mostly 

width-related (MB, ZB, IOW) with the exception of GSL and LTR. The three OTUs were 

significantly different from each other for all variables, except UCW and MAT in males and UCW 

in females. MANOVA revealed significant OTU size differentiation for males (λ= 0.03, F24,138 = 

27.53, P < 0.0001) and females (λ= 0.01, F24,146 = 53.66, P < 0.0001).  
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Table 2. Mean ± SD and range of external, craniodental and dorsal centroid size parameters of male Afrotropical Otomops classified to three Operational Taxonomic 
Units (OTUs) and results of ANOVA.  

 
Character 

Malagasy OTU South-east-central-west OTU North-eastern OTU  
F−value Mean ± SD Range Mean ± SD Range Mean ± SD Range 

Greatest Skull Length (GSL)      25.7 ± 0.48 (18)      24.9−26.5     27.5 ± 0.54 (27)     26.5−28.8    28.5 ± 0.36 (38)     27.8−29.3 189.16 
Braincase Height (BCH)        8.2 ± 0.20 (18)       7.9−8.5       8.6 ± 0.25 (27)       8.2−9.0      9.4 ± 0.18 (38)       8.9−9.8 243.84 
Mastoid Breadth (MB)      12.6 ± 0.22 (18)     12.2−13.0     13.4 ± 0.34 (27)     12.1−13.8    13.9 ± 0.18 (38)     13.5−14.3 163.33 
Zygomatic Breadth (ZB)      12.8 ± 0.26 (18)     12.3−13.2     14.0 ± 0.33 (27)     13.4−14.4    14.5 ± 0.23 (38)     14.0−14.9 227.14 
Inter-orbital Width (IOW)        5.4 ± 0.22 (18)       4.9−5.8       6.2 ± 0.22 (27)       5.7−6.5      6.4 ± 0.19 (38)       6.0−6.8 159.99 
Braincase Breadth (BCB)      10.5 ± 0.25 (18)     10.1−10.9     11.1 ± 0.38 (27)     10.6−12.1    11.6 ± 0.21 (38)     11.2−12.1   97.72 
Anterior Palatal Length (PL)      10.3 ± 0.25 (18)       9.9−10.8     11.2 ± 0.48 (27)     10.4−12.0    11.5 ± 0.26 (38)     10.8−12.0   72.15 
Maxillary Toothrow Length (MTR)        9.5 ± 0.25 (18)        9.1−10.0     10.2 ± 0.36 (27)       9.7−10.7    10.5 ± 0.21 (38)     10.1−11.0   84.08 
Maxillary Inter-canine Length (UCW)        2.8 ± 0.24 (18)       2.4−3.2       3.1 ± 0.27 (27)       2.8−3.6      3.2 ± 0.18 (38)       2.9−3.7   21.08 
Mandibular Toothrow Length (LTR)      10.1 ± 0.21 (18)       9.7−10.4     11.0 ± 0.32 (27)     10.6−11.6    11.4 ± 0.19 (38)     10.9−11.8 168.11 
Moment Arm of Temporalis (MAT)        4.8 ± 0.18 (18)       4.4−5.1       5.4 ± 0.26 (27)       4.9−5.7      5.4 ± 0.16 (38)       5.1−5.7   57.27 
Tympanic Bulla Length (TBL)        6.3 ± 0.26 (18)       5.9−6.7       6.7 ± 0.20 (27)        6.3−7.1      7.1 ± 0.17 (38)       6.7−7.5   94.44 
Forearm Length (FA)      63.3 ± 1.12 (19)     61.0−66.0     66.0 ± 1.27 (25)     63.0−68.0     70.8 ± 1.69 (38)     68.4−75.6  192.97 
Dorsal Centroid Size (DCZ) 
(log10−transformed) 

     3.02 ± 0.01 (19)      3.00−3.03     3.04 ± 0.01 (35)      3.01−3.06     3.07 ± 0.01 (39)      3.06−3.08  145.61 

All F−values were significant at the P < 0.0001 level. Statistically non-significant subsets (P > 0.05) based on Student Newman-Keuls tests are in bold and are 
underlined. Sample size of each OTU is provided in parentheses. 
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Table 3. Mean ± SD and range of external, craniodental and ventral centroid size parameters of female Afrotropical Otomops classified to three Operational Taxonomic 
Units (OTUs) and results of ANOVA.  
 
Character 

Malagasy OTU  South-east-central-west OTU  North-eastern OTU    
F−value Mean ± SD Range Mean ± SD  Range Mean ± SD Range 

Greatest Skull Length (GSL)   23.7 ± 0.48 (20)     22.8−24.5     25.5 ± 0.38 (26) 24.7−26.1   27.1 ± 0.41 (41) 26.2−27.9 438.74 
Braincase Height (BCH)      7.9 ±0.17 (20)       7.6−8.2       8.3 ± 0.23 (26)   7.8−8.8     9.1 ± 0.16 (41)   8.7−9.5 281.68 
Mastoid Breadth (MB)   11.9 ± 0.24 (20)     11.5−12.4     12.8 ± 0.20 (26) 12.3−13.1   13.5 ± 0.14 (41) 13.1−13.8 414.88 
Zygomatic Breadth (ZB)   12.1 ± 0.24 (20)     11.6−12.6     13.2 ± 0.24 (26) 12.7−13.6   13.9 ± 0.22 (41) 13.4−14.3 359.89 
Inter-orbital Width (IOW)     5.1 ± 0.15 (20)       4.9−6.4       5.9 ± 0.18 (26)   5.7−6.5     6.2 ± 0.14 (41)   5.9−6.6 344.36 
Braincase Breadth (BCB)   10.1 ± 0.29 (20)       9.7−10.6     10.8 ± 0.22 (26) 10.2−11.1   11.4 ± 0.21 (41) 11.0−11.9 200.02 
Anterior Palatal Length (PL)     9.3 ± 0.27 (20)       8.7−9.7     10.3 ± 0.28 (26)   9.8−10.8   10.7 ± 0.28 (41) 10.2−11.3 176.72 
Maxillary Toothrow Length (MTR)     8.8 ± 0.21 (20)       8.4−9.1       9.5 ± 0.19 (26)   9.2−10.0   10.0 ± 0.22 (41)   9.5−1−10.5 246.18 
Maxillary Inter-canine Length (UCW)     2.5 ± 0.14 (20)       2.3−2.8       2.9 ± 0.18 (26)   2.7−3.3     2.9 ± 0.18 (41)   2.4−3.3   36.06 
Mandibular Toothrow Length (LTR)     9.2 ± 0.19 (20)       8.7−9.6     10.2 ± 0.24 (26)   9.7−10.7   10.7 ± 0.21 (41) 10.1−11.1 333.20 
Moment Arm of Temporalis (MAT)     4.3 ± 0.12 (20)       4.0−4.5       4.9 ± 0.14 (26)   4.7−5.2     5.1 ± 0.13 (41)   4.9−5.4 271.20 
Tympanic Bulla Length (TBL)     6.0 ± 0.24 (20)      5.6−6.5       6.4 ± 0.20 (26)   6.1−6.8     6.8 ± 0.19 (41)   6.4−7.1   96.46 
Forearm Length (FA)   61.3 ± 1.22 (15)    60.0−63.5     63.3 ± 1.62 (19) 60.0−66.0   69.4 ± 1.69 (36) 65.7−72.7 175.02 
Ventral Centroid Size (VCZ) 
(log10−transformed) 

  2.98 ± 0.01 (19)    2.97−3.00     3.01 ± 0.01 (27)   2.99−3.03           3.05 ± 0.01 (38) 3.03−3.06 383.84 

All F−values were significant at the P < 0.0001 level. Statistically non-significant subsets (P > 0.05) based on Student Newman-Keuls tests are in bold and are 
underlined. Sample size of each OTU is provided in parentheses. 
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CVA of craniodental measurements provided strong support for the morphological 

differentiation of the three Afrotropical OTUs (Fig. 2). Canonical variate 1 (CV1) was considered 

an indicator of overall size, with most variables displaying high and positive loadings in both 

male and female datasets. The three OTUs were clearly separated along CV1, which accounted 

for 88.3% and 85.0% of the morphological variation in males and females, respectively (Fig. 2, 

Table 4). The SECW OTU separated from the NE OTU along CV1 and CV2 in both the male 

and female plots. Based on factor loadings for CV2 (Table 4), SECW specimens possessed 

shorter braincases and larger MAT relative to NE animals. In addition, NE males had narrower 

inter-orbitals and proportionately shorter mandibular toothrows than SECW males. Cross-

validated classification showed 100% correct taxonomic assignment of males and 98.9% 

correct assignment of females.  

 

 

 

 
Figure 2. The first two canonical variates (CV) from a canonical variates analysis of log10− transformed 
craniodental variables of the three Afrotropical OTUs for males and females. Sample sizes for male and 
female datasets provided in parentheses. Malagasy OTU (18,20): , Madagascar. South-east-central-

west OTU (27,26):  , Burundi; , Central African Republic; , DR of Congo; , Ivory Coast; , Malawi; 

, South Africa; , Tanzania; , Uganda; , Zambia; , Zimbabwe. North-eastern OTU (38,41): , 

Djibouti;  , Ethiopia; , Kenya; , Yemen. Types: OMAD = O. madagascariensis; OMAR = O. 
martiensseni.  
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Table 4. Variable-canonical vector correlation coefficients for the first two canonical variates from 
canonical variates analyses of 12 log10−transformed craniodental measurements recorded from males and 
females of the three Afrotropical OTUs.   

 
Character 

Males (n = 83) Females (n = 87 ) 

CV1 CV2 CV1 CV2 

Greatest Skull Length (GSL)  0.621     0.250     0.713      0.273 
Braincase Height (BCH)  0.686   −0.363     0.536      0.481 
Mastoid Breadth (MB)  0.569     0.074     0.692      0.198 
Zygomatic Breadth (ZB)  0.674     0.382     0.691      0.053 
Inter-orbital Width (IOW)  0.558     0.477     0.660    −0.048 
Braincase Breadth (BCB)  0.451     0.027     0.481      0.160 
Anterior Palatal Length (PL)  0.379     0.259     0.467    −0.009 
Maxillary Toothrow Length (MTR)  0.413     0.177     0.548      0.110 
Maxillary Inter-canine Length (UCW)  0.201     0.201     0.205    −0.156 
Mandibular Toothrow Length (LTR)  0.576     0.432     0.642    −0.049 
Moment Arm of Temporalis (MAT)  0.311     0.435     0.578    −0.203 
Tympanic Bulla Length (TBL)  0.440     0.070     0.333      0.148 
Eigenvalue      12.322     1.639   20.185      3.553 
Variance Explained (%)      88.268    11.732   85.033    14.967 
 

MANOVA of landmark data revealed significant differences in cranial shape between OTUs 

defined for male (dorsal shape: λ= 0.02, F48,134 = 18.45, P < 0.0001) and female (ventral shape: 

λ= 0.02, F56,108 = 12.07, P < 0.0001) Afrotropical Otomops. The CV plots based on landmark 

data showed clear separation between the Malagasy, SECW, and NE OTUs (Fig. 3). Thin plate 

splines associated with the negative x-axis of CV1 in the respective male and female biplots 

demonstrated that Malagasy Otomops crania were distinguished from mainland specimens by 

narrow yet prognathic rostra, small nasals, an inward displacement of the zygomaxillary 

junction, outwardly-angled zygoma, expanded braincases with broad and outwardly directed 

bullae, a distinctly pointed supraoccipital region, and a larger occipital foramen. Thin plate 

splines associated with the positive x-axis of CV1 in male and female biplots indicated that the 

NE OTU was characterized by short and broad rostra, large nasals, a narrow braincase, 

elongated bullae, an outward deflection of the zygomaxillary junction, and posterior 

displacement of ventral landmark 14 (margin of hard palate). The SECW OTU was 

distinguished from the NE OTU by a wider post-orbital constriction, smaller nasals, and smaller 

bullae, as determined by the splines associated with the positive y-axis of CV2 in the male 

biplots and the negative y-axis of CV2 in the female biplot. Cross-validated DFA revealed that 

98.9% of males and 91.7% of females were assigned correctly. Misclassified specimens 

included: one SEWC male classified to the NE OTU; one SEWC female assigned with the NE 

OTU; three SEWC females classified to the Malagasy OTU. Both the O. icarus and O. 

martiensseni holotypes were assigned to the SECW OTU. Regression of shape data onto 

centroid size revealed a significant correlation in males (dorsal: Goodalls’ F24,1488 = 6.11, P < 

0.0001) and females (ventral: Goodalls, F28,1484 = 9.67, P < 0.0001). The influence of allometry 

on shape variation was, however, marginal, accounting for 14.6% and 13.7% of total sample 
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variation in dorsal male and ventral female shape datasets, respectively (Cardini & O’Higgins, 

2004; Colangelo et al., 2010). 

 

Figure 3. The first two canonical variates (CV) from a canonical variates analysis of landmark data of the 
three Afrotropical OTUs of males and females. Sample sizes for male and female datasets provided in 

parentheses. Malagasy OTU (19, 19): , Madagascar. South-east-central-west OTU (35, 27): , 
Burundi; , Central African Republic; , DR of Congo;  , Ivory Coast; , Malawi; , South Africa;  , 

Tanzania; , Uganda; , Zambia;  , Zimbabwe. North-eastern OTU (39, 38):  , Djibouti;  , Ethiopia; 
, Kenya; , Yemen. Types: OICA = O. icarus; OMAD = O. madagascariensis; OMAR = O. martiensseni.
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Influence of ecogeographical factors on cranial size and shape 

PCA reduced the nine ecogeographical variables to three factors with eigenvalues > 1 that 

combined, explained 91.3% and 86.1% of the variance in environmental variables among 

localities for males and females, respectively (Table 5). We interpreted the components as 

follows. The first principal component (PC1) was associated with seasonality and altitude 

because altitude, seasonality of precipitation, and precipitation in the driest month contributed to 

most of the variance observed along this axis. Annual mean temperature, maximum 

temperature of the warmest month, and minimum temperature of the coldest month contributed 

the most to the second component; thus, PC2 was associated with temperature. PC3 was 

linked with precipitation because precipitation of the wettest month and annual precipitation 

were highly correlated with this axis.  

 

Table 5. Factor loadings of nine log10‒transformed ecogeographic variables on the first three principal 
components (PC) with eigenvalues >1 from 28 localities for male and 24 localities for female Afro-Arabian 
Otomops. Variable-factor correlations with magnitudes greater than 0.700 are indicated in bold. 
 
Bioclimatic variables 

Males Females 

PC1 PC2 PC3 PC1 PC2 PC3 

Altitude    0.942 −0.207   0.052    0.880    0.031  −0.072 
Mean Annual Temperature  −0.018   0.959   0.228  −0.110    0.950 −0.039 
Maximum Temperature of warmest month    0.358   0.878 −0.104    0.322    0.867 −0.291 
Minimum temperature of coldest month  −0.054   0.748   0.542 − 0.103    0.807    0.344 
Seasonality in temperature  −0.590 −0.075 −0.695 −0.503 −0.590 −0.282 

Annual Precipitation  −0.575   0.027   0.786 −0.514    0.083    0.829 

Precipitation of wettest month    0.189   0.226   0.925    0.422    0.014    0.892 

Precipitation of driest month  −0.813 −0.428 −0.035 −0.873 −0.143    0.037 
Seasonality in precipitation    0.956   0.242   0.047   0.960 −0.057    0.112 
Eigenvalue    3.989   2.683   1.546    3.526    2.503    1.722 
Variance explained (%)  44.318 29.807 17.178  39.179  27.808  19.137 
 

 
Stepwise regression analyses revealed the principal predictor of cranial size variation 

was PC1 in both male and female datasets (Table 6). Female cranial size was also shown to be 

negatively correlated with precipitation. The PLS analysis showed significant associations 

between cranial shape and ecogeographical variables. The first pair of PLS vectors explained 

69.5% (r = 0.75, P < 0.0001) and 81.8% (r = 0.84, P < 0.0001) of total covariation between the 

two datasets for males and females, respectively. PC1 was strongly correlated with both the 

PLS shape vector (males: r = 0.75, P < 0.0001; females: r = 0.75, P < 0.0001) and PLS 

ecogeographical vector (males: r = 0.99, P < 0.0001; females: r = 0.99, P < 0.0001).  
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Table 6. Results of stepwise regression analyses of overall cranial size of male and female Afro-Arabian 
Otomops (as represented by log10−transformed dorsal and ventral centroid size) against ecogeographic 
variables.  
 
Gender Principal Component β t−value P−value 

Males (n = 64) 
R

2 = 0.560 
adjusted R2 = 0.553 

PC1 (altitude + seasonality)     0.748   8.882   < 0.0001  
PC2 (temperature)    0.076   0.895     0.374 NS 
PC3 (precipitation)    0.049   0.575     0.567 NS 

Females (n = 55) PC1 (altitude + seasonality)    0.783   9.902   < 0.0001  

 R
2 = 0.675 

 adjusted R2 = 0.663 
PC2 (temperature)    0.100   1.277     0.207 NS 
PC3 (precipitation)  −0.250 −3.165     0.003  

The standardized regression coefficients (β) reflect the explanatory power of individual predictor variables 
when other entered variables are held constant. The t−tests (t) provide details of the significance of 
predictor variables. R2 − coefficient of multiple determinations when all predictor variables are entered. NS 
= non-significant. 
 

The ordination of individuals along the PLS shape and ecogeographical vectors (Fig. 4) 

reflected similar groupings amongst male and female Afro-Arabian Otomops, as reported 

above. Thin plate splines depicting the mean shape of both OTUs demonstrated that individuals 

of the NE OTU have narrow post-orbitals (distance between dorsal landmarks 6 and 14), long 

frontals, a long hard palate, and elongated bullae. SEWC animals possessed longer rostra, 

broad post-orbitals, small nasals, outwardly-directed bullae, and shorter palates. Regression of 

shape matrices onto centroid size demonstrated that cranial shape variation amongst Afro-

Arabian Otomops was significantly correlated with cranial size in males (dorsal: Goodalls’ 

F24,1488 = 6.11, P < 0.0001) and females (ventral: Goodalls’ F28,1484 = 9.67, P < 0.0001). Size-

related shape variation, however, only accounted for 9.0% and 15.4% of total sample variation 

in dorsal male and ventral female shape datasets, respectively.
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Figure 4. The first two latent vectors from a partial least squares analysis, demonstrating covariation 
patterns between cranial shape and ecogeographic factors in Afro-Arabian Otomops. Explained 
covariance = 69.7% (males), explained covariance = 81.8% (females). Sample sizes for male and female 

datasets are provided in parentheses. South-east-central-west OTU (28, 22):  , Burundi; , Central 
African Republic; , DR of Congo; , Ivory Coast;  , Malawi; , South Africa; , Tanzania; , 

Uganda;  , Zambia; , Zimbabwe. North-eastern OTU (42, 33): , Djibouti; , Ethiopia; , Kenya; , 
Yemen. Type: OMAR = O. martiensseni



77 

 

 

 

DISCUSSION 

 

Taxonomy and distributional limits of Afrotropical taxa 

Analyses of traditional morphometric data and dorsal and ventral landmark data were congruent 

in revealing morphological divisions amongst Afrotropical Otomops. Multivariate analyses of 

craniodental measurements and landmark data, including leave-one out cross-validations, 

provided strong support for three geographically distinct OTUs corresponding to the genetic 

lineages described by Lamb et al. (2008): Malagasy Otomops, which is referred to as O. 

madagascariensis; Otomops from southern, eastern, central, and western Africa; Otomops from 

north-east Africa and the Arabian Peninsula. The findings of the present study corroborate the 

views of Peterson et al. (1995), who treated Otomops from DR of Congo, South Africa, Uganda, 

and Zimbabwe as a separate taxon from Kenyan Otomops. Traditional and geometric 

morphometric data indicates the range of the SECW OTU to extend from Ivory Coast in the 

west, to South Africa in the south, with its eastern most limits along the Albertine Rift of Burundi 

and Uganda, and the Eastern Arc Mountains of Tanzania. It incorporates the type localities of 

O. martiensseni and O. icarus. Hence, we consider icarus as a junior synonym of martiensseni 

and describe the range of the SECW OTU as that of O. martiensseni s.s. Additional material 

from western and central sub-Saharan Africa is required to clarify the distributional limits of O. 

martiensseni s.s. Otomops from Djibouti, Ethiopia, Kenya, and Yemen constitute a 

morphologically and genetically cohesive group that does not appear to have an available name 

and requires a formal taxonomic description.  

 

Functional cranial morphology  

Malagasy Otomops were significantly smaller than mainland animals in overall body size, 

exhibiting a 4% reduction in forearm length relative to SEWC individuals and a 11% reduction in 

forearm length relative to the NE OTU. Crania of Malagasy bats were distinctly shorter and 

narrower than their Afro-Arabian congeners, averaging 7% and 10% smaller in cranial size (as 

estimated by GSL) than SEWC and NE specimens, respectively. Similar patterns of 

morphological differentiation between closely-related mainland and insular bat populations have 

been described (Russo et al., 2009). For example, the morphological divergence of the 

Hawaiian hoary bat, Lasiurus cinereus semotus, from the mainland subspecies L. c. cinereus, 

was accompanied by an overall reduction in body and cranial size (Jacobs, 1996). Structural 

changes of the cranium and mandible associated with mastication have allowed the Hawaiian 

bat to prey upon smaller and/or hard-bodied insects not consumed by L. c. cinereus, a 

lepidopteran specialist (Jacobs, 1996; Barclay, Fullard & Jacobs, 1999). Similarly, O. 

madagascariensis has a varied diet, consuming almost equal volumes of hard-bodied 
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(Coleoptera) and soft-bodied (Lepidoptera and smaller-sized Diptera) prey (Andriafidison et al., 

2007). This is in contrast to the two larger mainland taxa which feed predominantly on moths 

(Rydell & Yalden, 1997; M. C. Schoeman, unpubl. data).  

Our geometric morphometric analyses demonstrated significant cranial shape divergence 

between insular and mainland Afrotropical bats and provided possible insights into interspecific 

differences in functional cranial morphology. Crania of O. madagascariensis were characterized 

by narrow, prognathic rostra and smaller nasals. This species possesses outwardly-angled 

zygoma, possibly allowing for greater masseter muscle attachment and hence increased 

crushing power during mastication (Maynard-Smith & Savage, 1959). In addition, the 

proportionately broader braincase coupled with a more posteriorly positioned supraoccipital 

margin in Malagasy Otomops compared to Afro-Arabian animals, suggests a greater surface 

area for the insertion of the medial and deep temporalis muscles (Freeman, 1981; Reduker, 

1983; Nogueira, Peracchi & Monteiro, 2009). The temporalis is largely responsible for 

movement of the mandible during mastication and in resisting stress forces produced by 

captured hard-bodied insects (Maynard-Smith & Savage, 1959). Similar relationships between 

cranial morphology, size, and insertion of the masseter and temporalis muscles, including prey 

selection, have been described for Myotis spp. (Reduker, 1983), and phyllostomid bats 

(Nogueira et al., 2009). The broadening of the braincase in Malagasy Otomops also appears to 

be coupled to the posterior inflation and lateral shift of the tympanic bullae; morphological 

changes corresponding to the external auditory meatus. It has been suggested that changes in 

bulla shape and volume amongst taxa may correspond to adaptive differences in sound 

frequency sensitivity and recognition (Schleich & Vassalo, 2003; Colangelo et al., 2010). Hence, 

differences in bulla configuration between O. madagascariensis and mainland African animals 

may equip Malagasy Otomops to detect a wider variety of prey species than the Afro-Arabian 

taxa. 

 

Ecophenotypic significance of cranial size and shape variation within Afro-Arabian 

Otomops  

Forearm length and craniodental data revealed that north-eastern individuals were significantly 

larger in size than SECW OTU. This size disparity, however, was unable to explain most of the 

cranial shape variation between the NE and SEWC OTUs, suggesting that other factors such as 

ecogeographical variables may influence morphological variation in Afro-Arabian Otomops. 

Cranial size and shape variation in Afro-Arabian Otomops were significantly correlated with 

altitude, seasonality of precipitation, and precipitation of the driest month. Because these three 

ecogeographical variables are strongly correlated, it is difficult to determine the independent 

effects of each variable. In general, larger animals, particularly those belonging to the NE OTU, 

inhabit semi-arid, high altitudinal areas (> 900 m a.s.l.) characterized by low levels of 

precipitation in the dry months and pronounced seasonality in rainfall.  
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Increases in mammalian body and cranial size are often attributed to an ecophenotypic 

adaptive response to increase fasting endurance; this may be advantageous at high altitudes or 

semi-arid environments where primary productivity (as measured by annual precipitation) varies 

seasonally, rendering resources scarce (Lindstedt & Boyce, 1985; Millar & Hickling, 1990). 

Fasting endurance has been the proposed adaptive mechanism explaining intraspecific 

variation in body and/or cranial size in various mammalian species (Ritke & Kennedy, 1988; 

Gür, 2010). Similarly, increased body size in the tropical bat species Cynopterus sphinx, was 

associated with increasing seasonality of precipitation, and including decreased relative 

humidity and increased daily minimum temperature (Storz et al., 2001). Bats have low metabolic 

water reserves relative to their evaporative surface areas, most notably those of the wings 

(Thomas & Cloutier, 1992). Increases in chiropteran body size, correlated with a lowered 

surface area to volume ratio, may reduce evaporative water loss in more arid, resource-limited 

environments (Maharadatunkamsi et al., 2003). Maintenance and conservation of metabolic 

reserves may be essential in the reproductive strategies of pregnant or lactating northeastern 

African Otomops females, particularly in habitats where resource availability is unpredictable 

and limited because of low levels of precipitation. 

Phylogenetic history may also have contributed to the observed morphometric patterns 

within Afro-Arabian Otomops. The congruence between the results obtained in the present 

study and those reported previously Lamb et al. (2008, 2011) suggests that the various 

structural components of Otomops crania may have, to some extent, retained a phylogenetic 

signal. Recovering similar patterns of structure in genetic and morphological datasets of closely 

related mammalian taxa is not an uncommon phenomenon (Cardini & O’Higgins, 2004; Cardini 

& Elton, 2008). This is particularly evident amongst recently divergent sister lineages, exhibiting 

1–10% mitochondrial (mt) DNA sequence divergence (Caumul & Polly, 2005). Molecular dating, 

based on cytochrome b sequence data, places the divergence of Afro-Arabian Otomops clades 

approximately 1.2 Mya (0.7–1.8 Mya; 3.4% mtDNA divergence), coinciding with the Pleistocene 

(Lamb et al., 2008). Climatic oscillations and continued uplift of the East African Rift System 

during the late Pliocene and early Pleistocene initiated a progressive increase in aridity and 

seasonality of the eastern and north-eastern African palaeoenvironment (deMenocal, 2004; 

Sepulchre et al., 2006). Periods of intense aridification occurring approximately 2.8, 1.7, and 1.0 

Mya (deMenocal, 2004) resulted in the fragmentation and isolation of populations of once 

widespread tropical species and the subsequent evolution of larger, arid and/or seasonally-

adapted mammal taxa in eastern and north-eastern Africa (Renaud, Benammi & Jaeger, 1999; 

Bobe, Behrensmeyer & Chapman, 2002). It is therefore possible that morphological divergence 

in Otomops may be attributed to vicariant events leading to the separation of the two Afro-

Arabian OTUs. This initial segregation may have been reinforced by subsequent directional 

selection, leading to the larger-sized north-east African individuals that are adapted to 

prolonged fasting-endurance in more seasonal climates, as well as smaller-sized Otomops in 

the relatively more mesic or buffered environments of southern, central, and western Africa.  
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In conclusion, the present study provides the first detailed cranial comparisons of 

Afrotropical Otomops using both traditional and geometric morphometric approaches. Our 

analyses delineated three well supported morphological groups of Afrotropical Otomops that 

correspond to the genetic lineages described by Lamb et al. (2008) and revealed several 

species-specific morphological traits. Morphometric patterns appear to reflect the 

phylogeography and ecophenotypic adaptations of Afrotropical Otomops. The relative 

contribution of each factor to morphological evolution within Otomops remains to be fully 

understood and explored. 
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APPENDICES 

 

APPENDIX ONE 
 
List of specimens used in the morphometric analyses. The country, locality and museum catalogue number of each specimen is provided.  Museum abbreviations: 
BMNH = Natural History Museum, London, United Kingdom; DM =Durban Natural Science Museum; Durban, South Africa; FMNH = Field Museum of Natural History, 
Chicago, USA; MNHN = Muséum National d’Histoire Naturelle, Paris, France; MRAC = Musée Royale d’Afrique Centrale, Antwerp, Belgium; MNHU = Museum für 
Naturkunde, Berlin, Germany; NM = KwaZulu-Natal Museum, Pietermaritzburg, South Africa; NZM = Livingstone Museum, Livingstone, Zambia; ROM =  Royal Ontario 
Museum, Toronto, Canada; SMNS = Staatliches Museum für Naturkunde, Stuttgart, Germany; TM = Transvaal Museum, Northern Flagship Institution, Pretoria, South 
Africa. M = male, F = female, TM = traditional morphometrics, Dors = geometric morphometrics, dorsal view, Vent = geometric morphometrics, ventral view. OTU: S = 
south-east-central-west OTU; N = north-eastern OTU; M = Malagasy OTU. 
 

Species Country Locality Coordinates Museum No. Sex Age 
class 

OTU TM Dors Vent 

Otomops martiensseni s.l. Burundi 2.3 km N, 0.7 km W Teza, Kibira   3°200’ S,   0°550’ E FMNH 137633 M 5 S X X - 
-’’- Central African Republic Bamingui-Bangoran NP   7°550’ N, 19°290’ E BM 81.238 M 5 S X X X 
-’’- Côte d’Ivoire Comoé NP   8°715’ S,   3°797’ W SMF 92048 M 4 S X X X 
-’’- Côte d’Ivoire Comoé NP   8°715’ S,   3°797’ W SMF 92049 M 5 S X X - 
-’’- Côte d’Ivoire Comoé NP   8°715’ S,   3°797’ W SMF 92050 F 4 S X X X 
-’’- DR of Congo Lufuko Stream, Marungu   7°400’ S, 29°460’E NZM 3395 M 5 S X X X 
-’’- DR of Congo Welle River, Poko   3°080’ N, 25°580’ E BM 19.3.92 F 4 S X X X 
-’’- Djibouti Mount Day 11°460’ N, 42°390’ E BM 69.1256 F 4 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 44.31328 M 4 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 64.36220 M 4 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 40.31315 M 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 46.31370 M 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 47.31371 M 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 48.31372 M 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 60.36217 M 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E SMF 41832 M 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E SMF 41833 M 5 N X X - 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 61.36218 F 4 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 41.31316 F 5 N X - - 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 42.31317 F 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 43.31318 F 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District   6°540’ N, 40°480’ E HZM 45.31369 F 5 N X X X 
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Appendix S1. Continued 

Species Country Locality Coordinates Museum No. Sex Age 
class 

OTU TM Dors Vent 

Otomops martiensseni s.l. Ethiopia Sof Omar Cave, Bale District 6°540’ N, 40°480’ E HZM 49.33964 F 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District 6°540’ N, 40°480’ E HZM 50.33965 F 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District 6°540’ N, 40°480’ E HZM 56.36213 F 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District 6°540’ N, 40°480’ E HZM 57.36214 F 5 N X X X 
-’’- Ethiopia Sof Omar Cave, Bale District 6°540’ N, 40°480’ E HZM 63.36220 F 5 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 48666 M 4 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 48655 M 5 N X - - 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 48656 M 5 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 63808 M 5 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 48660 M 5 N - X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 48661 M 5 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 48663 M 5 N - X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 48664 M 5 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 48667 M 5 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 63779 F 4 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 63782 F 4 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 63772 F 5 N X X X 
-’’- Kenya 19 km W of Makindu 2°180’ S, 37°400’ E ROM 48654 F 5 N X X X 
-’’- Kenya Chyulu Hills 2°350’ S, 37°500’ E MRAC 38548 M 4 N X - - 
-’’- Kenya Chyulu Hills 2°350’ S, 37°500’ E MRAC 38549 M 4 N X X X 
-’’- Kenya Chyulu Hills 2°350’ S, 37°500’ E MRAC 38546 F 5 N X X X 
-’’- Kenya Chyulu Hills 2°350’ S, 37°500’ E MRAC 38547 F 5 N X X X 
-’’- Kenya Chyulu Hills 2°350’ S, 37°500’ E SMNS 46077 F 5 N X - - 
-’’- Kenya Chyulu Hills 2°350’ S, 37°500’ E SMNS 46079 F 5 N X - - 
-’’- Kenya Ithundu Caves, Kiboko 2°120’ S, 37°430’ E ROM 65876 M 4 N X X X 
-’’- Kenya Ithundu Caves, Kiboko 2°120’ S, 37°430’ E ROM 65877 M 5 N X X X 
-’’- Kenya Ithundu Caves, Kiboko 2°120’ S, 37°430’ E ROM 65875 F 5 N X X X 
-’’- Kenya Ithundu Caves, Kiboko 2°120’ S, 37°430’ E ROM 65878 F 5 N - X X 
-’’- Kenya Ithundu Caves, Kiboko 2°120’ S, 37°430’ E ROM 65879 F 5 N X X X 
-’’- Kenya Ithundu Caves, Makindu 2°200’ S, 37°420’ E ROM 81198 M 4 N X X X 
-’’- Kenya Ithundu Caves, Makindu 2°200’ S, 37°420’ E ROM 81199 M 5 N X X - 
-’’- Kenya Lake Baringo, Kampi Ya Moto 0°260’ N, 35°580’ E ROM 68362 F 4 N X X X 
-’’- Kenya Lake Baringo, Kampi Ya Moto 0°260’ N, 35°580’ E ROM 68364 F 4 N X X X 
-’’- Kenya Lake Baringo, Kampi Ya Moto 0°260’ N, 35°580’ E ROM 68360 F 5 N X X X 
-’’- Kenya Lake Baringo, Kampi Ya Moto 0°260’ N, 35°580’ E ROM 68366 F 5 N X X X 
-’’- Kenya Machakos District 1°310’ S, 37°160’ E MRAC 35264 F 4 N X X X 
-’’- Kenya Makindu Cave, Makindu 2°180’ S, 37°500’ E ROM 78158 M 4 N X X X 
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Appendix S1. Continued 

Species Country Locality Coordinates Museum No. Sex Age 
class 

OTU TM Dors Vent 

Otomops martiensseni s.l. Kenya Makindu Cave, Makindu   2°180’ S, 37°500’ E ROM 78155 M 5 N X X - 
-’’- Kenya Makindu Cave, Makindu   2°180’ S, 37°500’ E ROM 78157 M 5 N X X X 
-’’- Kenya Makindu Cave, Makindu   2°180’ S, 37°500’ E ROM 78156 F 4 N - X X 
-’’- Kenya Makindu River - ROM 65873 F 5 N X X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 36517 M 4 N X X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 36519 M 4 N - - X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 91249 M 4 N X X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 78151 M 5 N X X - 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 78152 M 5 N X X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 91250 M 5 N X X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 41928 F 4 N X X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 41932 F 4 N - X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 78147 F 4 N X X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 41920 F 5 N X X - 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 41924 F 5 N X X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 41927 F 5 N X X - 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 78148 F 5 N X X X 
-’’- Kenya Mount Suswa   1°090’ S, 36°210’ E ROM 78154 F 5 N X X - 
-’’- Kenya Nairobi   1°170’ S, 36°490’ E ROM 79677 F 5 N X X X 
-’’- Kenya Near Makindu, 192 km E of Nairobi   2°180’ S, 37°500’ E ROM 48657 M 4 N X X - 
-’’- Kenya Near Makindu, 192 km E of Nairobi   2°180’ S, 37°500’ E ROM 48659 M 4 N X X X 
-’’- Kenya Near Makindu, 192 km E of Nairobi   2°180’ S, 37°500’ E ROM 48662 M 4 N X X X 
-’’- Malawi Mangoche Mountain 14°270’ S, 35°290’ E NZM 3228 F 4 S X X X 

O. icarus (holotype) South Africa Central Durban 29°510’ S, 31°010’ E BM 16.10.9.1 M 4 S - X X 
Otomops martiensseni s.l. South Africa Hime Road, Berea, Durban 29°480’ S, 31°010’ E DM 4950 M 4 S - X X 

-’’- South Africa Durban - DM 5392 M 4 S X - - 
-’’- South Africa 296 Marine Drive, Brighton Beach,  29°540’ S, 31°010’ E DM 5427 M 4 S X X X 
-’’- South Africa Hillary, Durban - DM 5935 M 4 S - X - 
-’’- South Africa Durban - DM 5936 M 4 S - X - 
-’’- South Africa 106 Bailey Road, Red Hill, Durban 29°460’ S, 31°010’ E DM 6888 M 4 S X X X 
-’’- South Africa 137 Glenardle Road, Brighton Beach, 29°560’ S, 30°000’ E DM 6930 M 4 S X X X 
-’’- South Africa Durban - DM 7909 M 4 S X X X 
-’’- South Africa Kingsway, Durban 30°230’ S, 30°530’ E DM 7914 M 4 S X X X 
-’’-. South Africa 20 Jan Smuts Avenue, Northdene, 

Durban 
- DM 3886 M 5 S X X X 

-’’- South Africa Ocean View Farm, Park Rynie, 
Durban 

30°200’ S, 30°220’ E DM 8032 M 4 S X X X 
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Appendix S1. Continued 

Species Country Locality Coordinates Museum No. Sex Age 
class 

OTU TM Dors Vent 

Otomops martiensseni s.l. South Africa 5 Springfield Drive, Westville, Durban 29°500’ S, 30°933’ E DM 8571 M 4 S - X X 
-’’- South Africa Queen Elizabeth Park, Pietermaritzburg 29°340’ S, 30.190’ E DM 10790 M 4 S X X X 
-’’- South Africa Durban North, Durban - DM 11731 M 4 S X X X 
-’’- South Africa Percy Osbourne Road, Morningside, Durban 29°490’ S, 31°010’ E DM 11732 M 4 S X X X 
-’’- South Africa Fenniscowles Road, Umbilo, Durban 29°530’ S, 30°580’ E DM 5344 M 5 S X X X 
-’’- South Africa 20 Jan Smuts Avenue, Northdene, Durban - DM 3885 M 5 S - X - 
-’’- South Africa 560 Marine Drive, Bluff, Durban 29°550’ S, 31°000’ E DM 5509 M 5 S - X X 
-’’- South Africa 560 Marine Drive, Bluff, Durban 29°550’ S, 31°000’ E DM 5511 M 5 S - X X 
-’’- South Africa 560 Marine Drive, Bluff, Durban 29°550’ S, 31°000’ E DM 5512 M 5 S - X - 
-’’- South Africa Park Rynie, Durban 30°180’ S, 30°440’ E DM 5605 M 5 S X X X 
-’’- South Africa 50 Winifred Drive, St. Winifred, Durban 30°540’ S, 30°510’ E DM 6220 M 5 S X X X 
-’’- South Africa Durban - DM 6904 M 5 S X X X 
-’’- South Africa 27 Hunters Way, 412 Waterside, Umgeni Heights,  

Durban 
29°480’ S, 31°120’ E DM 10294 M 5 S X X X 

-’’- South Africa Wentworth, Durban - HZM 1.2145 M 5 S X X X 
-’’- South Africa Durban, South Africa - NM 379 F 4 S - X X 
-’’- South Africa Marshall Grove, Carrington Heights, Durban 29°530’ S, 30°580’ E DM 3518 F 4 S - X X 
-’’- South Africa Umhlanga, Westbrooke, Durban - DM 4490 F 4 S - - X 
-’’- South Africa 296 Marine Drive, Bluff, Durban 29°540’ S, 31°010’ E DM 5426 F 4 S -    X X 
-’’- South Africa 560 Marine Drive, Bluff, Durban 29°550’ S, 31°000’ E DM 5518 F 4 S X - X 
-’’- South Africa Durban - DM 5936 F 4 S - X X 
-’’- South Africa 106 Bailey Road, Red Hill, Durban 29°460’ S, 31°010’ E DM 6887 F 4 S X X X 
-’’- South Africa La Lucia, Durban - DM 6936 F 4 S X X X 
-’’- South Africa La Lucia, Durban - DM 6937 F 4 S X - X 
-’’- South Africa 27 Hunters Way, 412 Waterside, Umgeni Heights,  

Durban 
29°480’ S, 31°120’ E DM 8419 F 4 S X X X 

-’’- South Africa 27 Hunters Way, 412 Waterside, Umgeni Heights,  
Durban 

29°480’ S, 31°120’ E DM 10295 F 4 S X X X 

-’’- South Africa 29 Glen Anil Street, Glen Anil, Durban 29°450’ S, 31°020’ E DM 11434 F 4 S X X X 
-’’- South Africa 3 km of Modimolle (Nylstroom) 24°660’ S, 28°130’ E DM 11526 F 4 S X X X 
-’’- South Africa Voortukker Strand, near Margate, Durban 30°510’ S, 30°220’ E HZM 4.3078 F 4 S X X - 
-’’- South Africa Bluff, Durban - TM 38865 F 4 S X - - 
-’’- South Africa 26 Waller Crescent, Berea, Durban 29°490’ S, 31°000’ E DM4760 F 5 S X X X 
-’’- South Africa 296 Marine Drive, Brighton Beach, Durban 29°540’ S, 31°010’ E DM 5425 F 5 S X X X 
-’’- South Africa 560 Marine Drive, Bluff, Durban 29°550’ S, 31°000’ E DM 5514 F 5 S X X X 
-’’- South Africa 560 Marine Drive, Bluff, Durban 29°550’ S, 31°000’ E DM 5516 F 5 S X X X 
-’’- South Africa 106 Bailey Road, Red Hill, Durban 29°460’ S, 31°010’ E DM 6886 F 5 S X X X 
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Appendix S1. Continued 

Species Country Locality Coordinates Museum No. Sex Age 
class 

OTU TM Dors Vent 

Otomops martiensseni s.l. South Africa Ocean View Farm, Park Rynie, Durban 30°200’ S, 30°220’ E DM 8031 F 5 S X X X 
-’’- South Africa 27 Hunters Way, 412 Waterside, Umgeni Heights, 

Durban 
29°480’ S, 31°120’ E DM 8420 F 5 S X X X 

-’’- South Africa 8 Buys Road, Pinetown, Durban 29°450’ S, 30°370’ E DM 8421 F 5 S X - X 
-’’- South Africa Voortukker Strand, near Margate, Durban 30°510’ S, 30°220’ E HZM 3.3077 F 5 S X X X 
-’’- South Africa Bluff, Durban - TM 33867 F 5 S X - - 
-’’- South Africa Bluff, Durban - TM 42514 F 5 S X - - 
-’’- South Africa Wentworth, Durban - HZM 1.2145 M 5 S X X X 
-’’- South Africa Durban  NM 378 M 5 S - X X 
-’’- Republic of 

Yemen 
Hud Sawa Cave, Ar-Rayadi Al-Gharbi Mountains,  
3 km NW of Al-Mahweet 

15°.466’N, 43°550’ E HZM 51.33976 M 4 N X X X 

-’’- Republic of 
Yemen 

Hud Sawa Cave, Ar-Rayadi Al-Gharbi Mountains,  
3 km NW of Al-Mahweet 

15°466’ N, 43°550’ E HZM 53.33978 M 5 N X X X 

-’’- Republic of 
Yemen 

Hud Sawa Cave, Ar-Rayadi Al-Gharbi Mountains,  
3 km NW of Al-Mahweet 

15°466’ N, 43°550’ E HZM 54.33979 M 5 N X X X 

-’’- Republic of 
Yemen 

Hud Sawa Cave, Ar-Rayadi Al-Gharbi Mountains,  
3 km NW of Al-Mahweet 

15°466’ N, 43°550’ E SMF 87648 M 5 N X X X 

-’’- Republic of 
Yemen 

Hud Sawa Cave, Ar-Rayadi Al-Gharbi Mountains,  
3 km NW of Al-Mahweet 

15°466’ N, 43°550’ E SMF 87649 M 5 N X X - 

-’’- Republic of 
Yemen 

Hud Sawa Cave, Ar-Rayadi Al-Gharbi Mountains,  
3 km NW of Al-Mahweet 

15°466’ N, 43°550’ E HZM 55.33980 F 4 N X X X 

-’’- Republic of 
Yemen 

Hud Sawa Cave, Ar-Rayadi Al-Gharbi Mountains,  
3 km NW of Al-Mahweet 

15°466’ N, 43°550’ E HZM 39.31195 F 5 N X X X 

Otomops martiensseni 
holotype 

Tanzania Magrotto Plantation, Magrotto Hill, near Tanga   5°070’ S, 38°030’ E MNHU 97523 M 5 S X X X 

Otomops martiensseni s.l. Tanzania Tongwe F.R., Tanga, Muheza District   5°305’ S, 38°728’ E SMF 79542 M 4 S X X X 
-’’- Uganda Budongo Forest, Bunyoro   1°450’ S, 31°350’ E ROM 46695 F 4 S X X X 
-’’- Zambia Mafinga Mountains 10°250’ S, 33°500’ E Unaccessioned 

specimen 
M 5 S X X X 

-’’- Zimbabwe Hostes Nicolle Institute, Sengwa Wildlife Ranch 18°167’ S, 28°217’ E ROM 83979 M 5 S X X X 
Otomops 

madagascariensis 
Madagascar Province d’Antsiranana, RS d’Ankarana,  

3.5 km SE Andrafiabe 
12°942’ S, 49°055’ E FMNH 176357 M 4 M X X  

-’’- Madagascar Province d’Antsiranana, RS d’Ankarana,  
3.5 km SE Andrafiabe 

12°942’ S, 49°055’ E FMNH 176356 M 4 M - X  

-’’- Madagascar Province d’Antsiranana, RS d’Analamerana,  
Grotte de Barazibe 

12°711’ S, 49°473’ E FMNH 178849 F 4 M X X X 
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Appendix S1. Continued          
Species Country Locality Coordinates Museum No. Sex Age 

class 
OTU TM Dors Vent 

Otomops madagascariensis Madagascar Province d’Antsiranana, RS d’Analamerana, 
Grotte de Barazibe 

12°711’ S, 49°473’ E FMNH 178850 F 4 M X X X 

-’’- Madagascar Province d’Antsiranana, RS d’Analamerana, 
Grotte de Barazibe 

12°711’ S, 49°473’ E FMNH 178851 F 5 M X X X 

-’’- Madagascar Province d’Antsiranana, RS d’Ankarana,  
Grotte Boribe 

13°000’ S, 49°000’ E FMNH 183896 F 4 M X X X 

-’’- Madagascar Province d’Antsiranana, RS d’Ankarana,  
Grotte Boribe 

13°000’ S, 49°000’ E FMNH 183897 F 4 M X X X 

-’’- Madagascar Province d’Antsiranana, RS d’Ankarana,  
Grotte Boribe 

13°000’ S, 49°000’ E FMNH 183927 F 5 M X X X 

-’’- Madagascar Province d’Antsiranana, RS d’Ankarana,  
Grotte Antsiroandoha 

12°891’ S, 49°098’ E FMNH 177398 F 5 M X X X 

-’’- Madagascar Province de Fianarantsoa, 3.8 km NW  
Ranohira, along Namaza River  

22°540’ S, 45°380’ E FMNH 166073 F 4 M X X X 

-’’- Madagascar Province de Mahajanga, Grotte d’Anjohibe,  
3.7 km NE Antanamarina 

15°537’ S, 46°886’ E FMNH 179318 F 4 M X X X 

-’’- Madagascar Province de Mahajanga, Grotte d’Anjohibe,  
3.7 km NE Antanamarina 

15°537’ S, 46°886’ E FMNH 179316 F 5 M X X X 

-’’- Madagascar Province de Mahajanga, Grotte d’Anjohibe,  
3.7 km NE Antanamarina 

15°537’ S, 46°886’ E FMNH 179317 F 5 M X X X 

-’’- Madagascar Province de Mahajanga, Parc National de 
Bemahara, Grotte d’Anjohimbabazimba 

18°245’ S, 44°716’ E FMNH 169667 M 4 M - X X 

-’’- Madagascar Province de Mahajanga, Parc National de 
Bemahara, Grotte d’Anjohimbabazimba 

18°245’ S, 44°716’ E FMNH 169692 M 5 M X X X 

-’’- Madagascar Province de Mahajanga, Parc National de 
Bemahara, Grotte d’Anjohimbabazimba 

18°245’ S, 44°716’ E FMNH 169693 F 5 M X X X 

-’’- Madagascar Province de Mahajanga, Parc National de 
Bemahara, Grotte d’Anjohimbabazimba 

18°245’ S, 44°716’ E FMNH 169689 F 5 M X X X 

-’’- Madagascar Province de Toliara, Grotte d’Ambanilia,  
3.7 km SSE Sarodrano 

23°540’ S, 43°767’ E FMNH 172397 M 4 M X X X 

-’’- Madagascar Province de Toliara, Grotte d’Ambanilia,  
3.7 km SSE Sarodrano 

23°540’ S, 43°767’ E FMNH 172938 M 4 M X X X 

-’’- Madagascar Province de Toliara, Grotte d’Ambanilia,  
3.7 km SSE Sarodrano 

23°540’ S, 43°767’ E FMNH 172942 M 4 M X X X 

-’’- Madagascar Province de Toliara, Grotte d’Ambanilia,  
3.7 km SSE Sarodrano 

23°540’ S, 43°767’ E FMNH 172934 M 5 M X X X 
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Appendix S1. Continued 

Species Country Locality Coordinates Museum No. Sex Age 
class 

OTU TM Dors Vent 

Otomops madagascariensis Madagascar Province de Toliara, Grotte d’Ambanilia,  
3.7 km SSE Sarodrano 

23°540’ S, 43°767’ E FMNH 172936 M 5 M X X X 

-’’- Madagascar Province de Toliara, Grotte d’Ambanilia, 
3.7 km SSE Sarodrano 

23°540’ S, 43°767’ E FMNH 172939 M 5 M X X X 

-’’- Madagascar Province de Toliara, Grotte d’Ambanilia,  
3.7 km SSE Sarodrano 

23°540’ S, 43°767’ E FMNH 172940 M 5 M X X X 

-’’- Madagascar  Province de Toliara, Grotte d’Ambanilia,  
3.7 km SSE Sarodrano 

23°540’ S, 43°767’ E FMNH 172941 M 5 M X X X 

-’’- Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

  23°548’ S, 43°716’ E FMNH 172947 M 5 M X X X 

-’’- Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172948 M 4 M X X X 

 Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172951 M 4 M X - - 

-’’- Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172950 M 5 M X X X 

-’’- Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172945 F 4 M X X X 

-’’- Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172949 F 4 M X X X 

 Madagascar Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172949 F 4 M X X X 

-’’- Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172952 F 4 M X X X 

-’’- Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172943 F 5 M X X X 

-’’- Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172944 F 5 M X X X 

-’’- Madagascar  Province de Toliara, Grotte de Bishiko,  
0.75 km E of St. Augustin 

23°548’ S, 43°716’ E FMNH 172953 F 5 M X X X 

Otomops madagascariensis 
holotype 

Madagascar  Province de Mahajanga, Réserve  
Naturelle (intégrale no. 8) au Sud du 
Soalala, Namoroka 

16°230’ S, 45°280’ E MNHN.CG 
1953-1 

F 5 M X X X 
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APPENDIX TWO 

Specimen ageing criteria 

 

The first maxillary molar (M1) located on the right-hand side of Otomops skulls was primarily 

used in describing the degree of cusp degradation per specimen. This is the first of three 

maxillary molars to erupt and thus acquires the greatest degree of wear of all three molars. The 

degree of development and degradation on the second (M2) and third (M3) molars were also 

recorded and used in the age-categorization of specimens. Specimens belonging to relative age 

classes 1 to 3 were not considered in this study as they represented juveniles. As specimens 

belonging to age class 6 were poorly represented in both male and female data sets, they were 

incorporated into the age class 5; thus analyses were primarily conducted on adult specimens 

belonging to toothwear classes 4 and 5. 

 

Class 1: M1 and M2 partially erupted; M3 absent or partially erupted, no cusp wear, incisors and 

premolars curved inwards; distinct sutures, braincase round with no supraoccipital ridge; sagittal 

crest absent or underdeveloped; wide interorbital width relative to greatest skull length (present 

in toothwear class 1 and 2). Class 2: M1 and M2 fully erupted; M3 present yet partially erupted; 

minimal to no wear of cusps; incisors curved slightly inwards; distinct sutures; braincase round 

with no supraoccipital ridge; sagittal crest absent or underdeveloped; wide interorbital width 

relative to greatest skull length (present in toothwear class 1 and 2). Class 3: all molars fully 

erupted; cusp 1 of M1 interlocked with cusp 3 of M2; slight wear on M1 and M2 cusps; braincase 

edge rounded; slight development of supraoccipital ridge and sagittal crest; wide interorbital 

width relative to greatest skull length; interorbital ridges developing. Class 4: all molars fully 

interlocked; M1 and PM2 interlocked; moderate wear on all molars; dentine exposed on 

occlusional surfaces of molars; braincase edge ovoid; supraoccipital ridge and sagittal crest well 

developed; interorbital ridges present; narrow interorbital constriction relative to greatest skull 

length and braincase breadth (present in toothwear class 4-5). Class 5: heavy wear on cusps of 

M1 and M2; moderate to heavy wear on cusps of M3; dentine exposed on occlusional surfaces of 

molars; braincase edge ovoid; supraoccipital ridge and sagittal crest well-developed; interorbital 

ridges present and well-defined; narrow interorbital constriction relative to greatest skull length 

and braincase breadth (present in toothwear class 4-6). Class 6: extremely heavy wear on 

cusps of M1 and M2; heavy wear on cusps of M3; dentine exposed on occlusional surfaces of 

molars; braincase edge ovoid; supraoccipital ridge and sagittal crest well developed; interorbital 

ridges present and well-defined; narrow interorbital constriction relative to greatest skull length 

and braincase breadth (present in toothwear class 4-6). 

 



89 

 

 

 

APPENDIX THREE 

Description of landmarks recorded on the dorsal and ventral views of Otomops crania (as 

depicted in Fig. 1). Numbers in parentheses provide type of landmark. Type 1 - juxtaposition of 

cranial regions; Type 2 - extremities of bony or dental processes; Type 3 – extremal points and 

maximum point of curvature (e.g. the bottom of a concavity). 

Dorsal view. Landmark 1: anterior most point of nasals (2). Landmark 2: upper anterior point of 

nasals (2). Landmark 3: Anterior most point of premaxilla (2). Landmark 4: exterior tip of 

lachrymal process (2). Landmark 5: junction of jugal region of zygomatic arch and maxilla (1). 

Landmark 6: anterior point of interior orbit (2). Landmark 7: junction of jugal and squamosal 

process (1). Landmark 8: posterior point of interior orbit (2). Landmark 9: point of maximum 

curvature of mastoids (3). Landmark 10: edge of supraoccipital margin (2). Landmark 11: 

posterior-most point of supraoccipital (2). Landmark 12: junction of interparietal, parietal and 

sagittal sutures (1). Landmark 13: junction of frontal, parietal and sagittal sutures (1). Landmark 

14: junction of frontal, nasal and sagittal sutures (1). 

  

Ventral view. Landmark 1: anterior most point of nasals (2). Landmark 2: posterior border of 

maxillary canine alveolus (2). Landmark 3: junction of jugal region of zygomatic arch and maxilla 

(1). Landmark 4: anterior point of interior orbit (2). Landmark 5: posterior point of interior orbit 

(2). Landmark 6: anterior point of external bulla (2). Landmark 7: exterior point of external 

auditory meatus (2). Landmark 8: junction of internal and external bullae (1). Landmark 9: 

posterior point of occipital condyle (2). Landmark 10: posterior point of maximum curvature of 

occipital foramen (3). Landmark 11: Lateral edge of occipital foramen (2). Landmark 12: anterior 

most point of occipital foramen (3). Landmark 13: basisphenoid-basioccipital junction (1). 

Landmark 14: junction of posterior palate and midline (1). Landmark 15: posterior edge of M3 

(2). Landmark 16: anterior edge of M1 (2) 
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SUMMARY AND CONCLUDING COMMENTS
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BEYOND DNA SEQUENCING 

 

A dramatic increase in the application of DNA sequence data and the associated sophistication 

of phylogenetic techniques has addressed many long-standing evolutionary and ecological 

questions concerning the world’s Chiroptera. In most cases, DNA sequence based phylogenies 

have detailed historical evolutionary processes that have a) provided a better understanding of 

contemporary patterns of diversity, b) directed efforts in the discovery of lineage-specific 

morphological attributes, and c) have been insightful for the interpretation of ancestral, 

independent and convergent character states in the evolution of taxa. Despite these 

advancements, there remains a general paucity of comprehensive and/or resolved phylogenies 

for a substantial portion of most taxonomic groups within the Afrotropics. This study employed 

comparative chromosome painting and geometric morphometric approaches as independent 

means to provide further insights into the systematics of Afrotropical bats. These approaches 

were specifically chosen for this investigation as they have been relatively under-utilised in 

evolutionary studies of regional bats, yet elsewhere in the world have provided valuable insights 

into cladogenic events formerly inferred from DNA sequence data (e.g. Evin et al. 2008, 2011; 

Sotero-Caio et al. 2010; Volleth et al. 2011). 

 

 

CYTOTAXONOMY AND CHROMOSOMAL EVOLUTION WITHIN AFROTROPICAL 

CHIROPTERA  

 

Basic karyotypic data are only available for half of the approximate 1260 described chiropteran 

species (Volleth 2013). Deficiencies in detailed karyotypic descriptions of Afrotropical bats has 

hampered our efforts in understanding chromosomal changes that may be coupled with 

important events in the evolutionary history of many taxa. This study provided G- and/or C-

banded karyotypes for eight chiropteran species assigned to seven families, including the 

enigmatic and endemic Myzopoda aurita from Madagascar, for which high resolution 

chromosomal data was not available and/or uncertainty characterised their phylogenetic 

antiquity. Comparative chromosome painting experiments based on Myotis myotis paints 

revealed that Robertsonian (Rb) fusions and fissions are by far the most dominant structural 

rearrangement responsible for karyotypic differences amongst the taxa under study. This is not 

surprising as these are the most frequent rearrangements involved in genomic restructuring in 

bats (Bickham & Baker 1980) and mammals in general (Wienberg 2004; Ferguson-Smith & 

Trifinov 2007). A consequence of karyotypic evolution mediated via Rb rearrangements is the 

high incidence of convergent events due to identical arm combinations in distantly related taxa, 

which can limit the utility of chromosomal characters in resolving interfamily relationships 

amongst Chiroptera (Moa et al. 2007, 2008). This study also identified several convergent 

chromosomal characters amongst evolutionary distant taxa (Chapters 2 & 3).  
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Despite the prevalence of convergent cytogenetic characters and monobrachial 

homologies, a single chromosomal synapomorphy (MMY 9+11) was recovered that supported 

the assignment of Myzopoda aurita within the Noctilionoidea as suggested by DNA-based 

sequence analyses (Teeling et al. 2005; Miller-Butterworth et al. 2007). Comparative G-banding 

studies suggest this character is a common feature amongst phyllostomid bats (Baker & Bass 

1979; Sotero-Caio et al. 2011). Increased taxon sampling, in particular the monotypic 

Mystacinidae that is the proposed sister taxon to Myzopodidae and included within the 

Noctilionoidea, may be able to confirm whether MMY 9+11 does represent a synapomorphy of 

the superfamily and whether Myzopoda is in fact aligned with this predominantly Neotropical 

clade. Alternately, the synteny MMY 3+4 shared between the Vespertilionidae and Myzopoda 

may provide support for molecular hypotheses that place M. aurita within the Vespertilionoidea 

superfamily (Van den Bussche et al. 2003; Eick et al. 2005). Hence, the taxonomic affinities of 

Myzopodidae remain somewhat unclear and further studies are required before any definitive 

conclusion can be drawn on the phylogenetic placement of Myzopodidae within the bat family 

tree.  

Despite the limitations of molecular cytogenetic techniques to fully resolve the 

phylogenomic placement of Myzopoda, it provided important insights into the karyotypic 

evolution of this distinctive bat family. One interesting aspect of karyotypic evolution within the 

Myzopodidae is the occurrence of a novel X-A translocation. Such rearrangements are 

considered rare amongst bats and have only been reported from the Phyllostomidae and 

Vespertilionidae (Volleth 1987; Volleth & Heller 2007). Although more refined investigations 

based on human-derived chromosomal probes are necessary to confirm the autosome 

translocated to the X-chromosome, it is clear that Myzopodidae represents the third known bat 

family to carry this rearrangement implicated in karyotype-mediated speciation (see White 

1978). Sex-autosome translocations are not typically subject to convergence (Rokas & Holland 

2000), and the formation of such unique rearrangements may be favoured by the presence of 

interstitial heterochromatic blocks (IHBs) that segregate the translocated segments (Parish et al. 

2002).  

Another point of interest is the possible occurrence of tandem fusions in the genomic 

evolution of Myzopoda. Very low diploid numbers, such as 2n = 26 in M. aurita, can only be 

explained by the involvement of non-Rb rearrangements such as tandem fusions (Bickham 

1987; Pieczarka et al. 2005; Mao et al. 2008; Volleth & Eick 2012). Primitive chiropteran 

species, such as Myzopoda, may display a higher distribution of telomeric repeat sequences 

(TTAGGG) n or ITs within the telomeric and/or centromeric and interstitial chromosomal regions 

that may provide potential evolutionary breakpoints (Meyne 1990; Faria et al. 2009). 

Comparative genomic studies of other eutherian groups have shown that such evolutionary 

breakpoints regions are localised to specific chromosomal hotspots characterised by a high 

number of tandem repeats that are distributed heterogeneously throughout the genome and are 

commonly associated with fragile sites (Ruiz-Herrera et al. 2005, 2006; Ruiz-Herrera & 
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Robinson 2007). These break sites may allow for the establishment of Rb and tandem fusion 

products and/or inversions and, hence, can make for useful cytogenetic markers in subsequent 

phylogenomic studies where their presence can be confirmed through the use of chromosome-

specific DNA repeat probes. Additional cytogenetic studies of Myzopoda will also aid in 

determining whether or not the evolutionary breakpoint in the MMY8 homologue, a cytogenetic 

feature previously considered confined to the Pteropodiformes and suggested to represent a 

synapomorphy uniting the Rhinolophoidea (Volleth et al. 2002; Ao et al. 2007; Mao et al. 2008), 

is a homoplastic character carried by Myzopoda and rhinolophoid bats. Recent preliminary 

painting studies have, however, shown that two MMY8 homologous subchromosomal elements 

are also present within the genomes of Emballonura and Nycteris (Volleth 2013). The 

chromosomal breakpoints of the homologues in these primitive Vespertilioniformes taxa differ 

from those found in the rhinolophoid bats. The presence of an X-A translocation and the 

possible occurrences of tandem fusions in the karyotypic evolution of M. aurita provide added 

evidence for the consideration of this deep-branching family as unique among Chiroptera. Of 

further interest would be a detailed karyotypic assessment of the sister species, M. schliemanni, 

to determine whether it exhibits similar chromosomal characteristics.  

Chromosomal data confirmed various plesiomorphic characters described for the 

Pteropodiformes (Chapter 3). These data also demonstrated a close alliance between the 

pteropodine and rousettine fruit bats with their divergence described by approximately five 

major karyotypic differences that include  Rb fusions/fissions, heterochromatic polymorphisms, 

and inversions. This study further highlights the relative importance of inversions in 

chromosomal evolution of pteropodids. The cryptic pericentric inversion detected on the MMY 

4+19 homologue of Pteropus rufus, corresponding to HSA 3+21 homologous sequences 

(Volleth et al. 2002, 2011) and representing one of the largest proposed ancestral elements 

located within the chiropteran genome, requires further attention. Until the present study, only 

the closely-related rousettine species Eonycteris spelaea and Rousettus leschenaulti exhibited 

entire HSA 3+21 synteny conservation. Volleth et al. (2011) considered the arrangement in the 

rousettine bats as a derived state. A full cytogenetic survey of other pteropodid species from 

different genera is required to determine whether the MMY 4+19 syntenic arrangement in P. 

rufus constitutes a plesiomorphic state, and whether the proposed derived state is an 

synapomorphy of the rousettine clade as defined by molecular DNA studies (e.g. Giannini & 

Simmons 2005; Almeida et al. 2011).  

With the application of MMY paints, this study revealed that the MMY16/17+24 synteny 

found in rousettine and hipposiderid bats (Chapter 3), sometimes considered a homoplastic 

feature present within both families (see Volleth et al. 2002; Ao et al. 2007), may in fact have 

different break / fusion points as indicated by painting results of R. madagascariensis. 

Comparisons between Afrotropical fruit bats and the Indomalaysian Cynopterus were limited 

due to the low number of shared syntenies between taxa. Painting analyses of additional 

species that display intermediate steps of chromosomal evolution between Cynopterus and 
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other pteropodids are needed to fully resolve the phylogenomic relationships amongst fruit bats. 

The inclusion of the Afrotropical Eidolon dupreanum and E. helvum in further chromosome 

painting studies may prove vital in understanding the complexities that underpin chromosomal 

evolution at the intergeneric level in this diverse chiropteran group. 

Hipposideridae represents another taxonomic group wherein phylogenomic relationships 

amongst various genera and species have not been fully studied, as very few species have 

been examined using chromosome painting techniques. Painting results for one of the most 

basal taxa within the genus Hipposideros, H. commersoni, provided key insights into the 

proposed ancestral complement of the family. The syntenic associations of MMY 8+14 and 

MMY 7+19, proposed synapomorphies of Hipposideridae, were not present in the genome of H. 

commersoni yet are present in the genomes of other members of the genus and in Aselliscus 

stoliczkanus (AST). Aselliscus stoliczkanus has been proposed as possessing the most 

primitive hipposiderid chromosomal complement relative to other Hipposideros spp. as it shared 

three ancestral elements with pteropodids (MMY 10, MMY 12, MMY 23+13), including the 

identical G-banding pattern in the p arm of AST 11 homologous to MMY23. Until the present 

study, all Hipposideros spp. surveyed using chromosome painting techniques have displayed 

various paracentric inversion/s and heterochromatic addition in the short arm of the 

chromosome homologous to AST 11 that have led to altered G-banding patterns (Volleth et al. 

2002; Mao et al. 2010). Hipposideros commersoni is the first known member of the genus that 

exhibits a G-banding pattern that is identical to both fruit bats and A. stoliczkanus. This brings 

into question whether the karyotype of A. stoliczkanus is truly representative of the ancestral 

hipposiderid karyotype.  

The most recent molecular study of Afro-Arabian hipposiderid bats, provide strong 

support for the assignment of A. stoliczkanus at the terminal branch of a clade that is the 

successive sister lineage to Hipposideros (Benda & Vallo 2009). The study also suggested that 

Hipposideros arose before Aselliscus, although dating estimates may not be entirely accurate 

(Benda & Vallo 2009). Further efforts should be aimed at increasing the taxon sampling of 

Afrotropical hipposiderids in chromosome painting studies, particularly the inclusion of the 

genera Cloeotis, Triaenops, and Paratriaenops as these constitute a distinct tribe, Triaenopini 

(sensu Benda & Vallo 2009), that is well differentiated from the genera Hipposideros, Asellia, 

Coelops, and Aselliscus.  

 Overall, this study highlighted the limited use of chromosomal characters in 

phylogenomic investigations directed at the intrageneric level, with the notable exception of 

certain genera such as Hipposideros (Mao et al. 2010; this study) and Rhinolophus (Moa et al. 

2008), due to the highly constrained nature of chromosomal evolution amongst Chiroptera 

despite deep genetic divergence amongst congenerics. Few interchromosomal rearrangements 

appeared to have occurred during the karyotypic evolution of the Malagasy Chiroptera studied 

herein and their extralimital congenerics. This is not surprising given the fact that karyotypic 

conservatism has been reported from a number of bat lineages (e.g. Baker & Patton 1967; 
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Bickham 1979a, b; Baker & Bickham 1980; Bickham et al. 1986; Sreepada et al. 2008). Thus, 

the present study does not provide support for the theory of speciation via chromosomal 

evolution, at least at the specific level.  Hence, alternate taxonomic methods, including 

morphometric techniques, may prove useful to elucidate possible mechanisms responsible for 

species divergence at lower taxonomic levels. 

 

 

ADAPTIVE CRANIAL EVOLUTION IN AFROTROPICALCHIROPTERA 

 

The analyses of cranial morphology using traditional and geometric morphometric techniques 

provides the first detailed descriptions of cranial size and shape differences between Otomops 

spp. across their Afrotropical distributions (Chapter 4). Morphometric data were consistent in 

delineating three morphologically distinct species, previously described from genetic studies 

(Lamb et al. 2006, 2008, 2011). These data revealed that cranial divergence amongst Afro-

Arabian taxa was strongly influenced by bioclimatic factors including altitude, seasonality of 

precipitation, and precipitation in the driest month. Based on morphometric patterns and 

molecular divergence estimates, it was established that morphological evolution within Afro-

Arabian Otomops was correlated with the fluctuating palaeoclimate and the increasing aridity 

and seasonality over north-eastern Africa. The timing of speciation within the Otomops group 

approximately 1.2 Mya coincides with diversification events of other taxa across Africa 

subregion (see Bobe et al. 2002; deMenocal 2004). Previous studies have shown that both 

speciation and extinction are greatly influenced by dramatic changes in climate (Flagstad et al. 

2001; Bobe & Behrensmeyer 2004; Maslin & Christensen 2007; Tolley et al. 2008).  

In general, this study has contributed towards resolving the taxonomic status of 

Afrotropical Otomops and has provided a better understanding of the cranial variation between 

the taxa studied. It has also provided support for molecular studies and has identified 

morphological characters that may be used in taxonomic diagnoses. This investigation has also 

highlighted the importance of museum material and the maintenance of biological repositories 

as a vital component in the advancement of systematic studies of Afrotropical Chiroptera as 

demonstrated by recognition of a new and yet undescribed taxon from northeast Africa and the 

Arabian Peninsula. The extent of the range of the northeastern OTU and its conservation status 

requires further investigation. Preliminary studies have revealed subtle differences in the 

structure of the baculum of the two Afro-Arabian species (L.R. Richards, unpublished data). 

Other taxonomic markers, including karyotypic data, may provide additional support for the 

recognition of this distinct taxon.  
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