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Abstract 

The usage of the Internet of things (IoT) equipped with intelligent machine learning (ML) or fuzzy 

logic (FL) systems in the medical sector is becoming a widespread normality. This following the 

implications of the 4th and 5th industrial revolutions (5IRs) aiming to integrate technology with the 

way we live and work. Many research areas have focused on incorporating individual elements 

of an intelligent IoT based system. However, none have holistically looked at encompassing a 

multi-faceted sensory device with an IoT framework backed by both ML and FL capabilities for 

unique monitoring and diagnostics. This implies that there is an opportunity to create such a 

product targeted for the medical sector. 

The developed system of systems (SoS) discussed therefore aims at eliminating the barrier to 

patient care outside of a hospital setting through the use of real time patient diagnostics.  

The study was approached by first establishing a streamlined IoT infrastructure. A multi-faceted 

Arduino based sensory device was then developed to collect user parameters. The electronics 

were housed in a common of the shelf (COTS) casing satisfying the criteria of wearability. 

Bluetooth connectivity then allowed for the transmission of sensory data from the WBAN to the 

IoT smartphone gateway. Sensory parameters being measured were electrocardiography (ECG), 

electromyography (EMG), body temperature (BT), infrared (IR) output, pulse rate (PR) as well as 

environmental humidity readings. Blood sugar (BS) levels were obtained non-invasively by 

calibrating the IR output voltage with that of a calibrated glucometer to obtain a straight line 

equation representing the relationship between the sensor ADC output and glucose in the blood. 

A Java based mobile application (MA) was then developed, which allowed for the processing of 

the sensory data before storage in a local SQLite database.  A two interface MA for use by 

registered doctors and patients was necessary to allow for data sharing and security. Registration 

and login for the MA was done through a NoSQL Firebase database. A JDBC was established to 

enable the transmission of data to a MS Azure Structured Query Language (SQL) database. This 

served as the cloud interface within the IoT network layer. The MA is able to integrate with a 

phone’s Global Positioning System (GPS) to allow for simultaneous tracking of patients. A return 

application programming interface (API) connection between MS Azure and the developed 

application layers was then created. Here the mobile doctor interface as well as a developed 

node.js based web application (WA) served as the mediums through which health practitioners 

could access patient data. 

ML models were developed using the MS Azure ML Classic Studio suite which allowed for a real 

time analysis of received data through deployment and subsequent consumption of data using 

POST Requests via the MA and a Java software development kit (SDK). An accuracy of 92% was 

achieved for the stroke prediction model based on the boosted decision tree algorithm.  Various 

ML models were analyzed to ensure that a high precision was obtained while preventing 

overfitting. Additional FL models were also developed, which took into consideration unique sets 

of vitals combinations to create a rule base depicting the patient health status and health risk. 
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This data was compared to the intuition of a doctor and received an 87% accuracy for model 1 

which took into consideration a patient’s PR, BS, BT and age to predict the health status of a 

patient. The model was then compared to the Modified Early Warning Score (MEWS) rating, a 

popular measure of health risk utilized in the medical field. The results of comparison also yielded 

an accuracy of 87%.  

A second FL model was then developed looking at the effect of environmental conditions on the 

risk rating of patients. Here input variables of BT, age and humidity readings were used to 

determine their effect the on the risk rating of a patient. This model scored an 80% accuracy when 

compared to the expertise of a physician. Both models were programmed onto the MA to predict 

the patient’s health status. Both models were also re-developed on MATLAB software to simulate 

the effect of various input variables on the response variable.  

Overall the designed system was able to possess around 15 of the typical features found in smart 

wearable systems which far exceeded the features of those devices it was compared to. The 

designed system satisfied the requirement of a feature rich experience while also satisfying the 

criteria of cost effectiveness. 
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Chapter 1: Introduction  
The healthcare industry faces a massive systems dilemma. Fatalities due to late response rates 

are attributed to factors such as late diagnosis. This in turn is as a result of at risk patients (e.g. 

elderly or post op patients) not being monitored consistently, a lack of real time information to 

make pre-emptive medical decisions and overburden on hospital resources. In addition, according 

to the World Health Organization (WHO) (World Health Organization, 2021), conditions such as 

stroke can be avoided by addressing behavioral risk factors such as obesity and tobacco usage 

which will reduce the strain on the healthcare system. Another area within the healthcare sector 

with severe shortcomings is knowledge sharing amongst health practitioners and healthcare 

organizations. According to a WHO report, 46% of the population lives in rural areas, yet only 

12% of doctors and 19% of nurses are working there (World Health Organization, 2010) which 

once again means limited resources and increased fatalities in these areas. Increasing the 

number of competent health care professionals is therefore only possible through knowledge 

sharing between experienced and less experienced doctors and nurses. 

This research aims to deliver a smart IoT based system which can successfully close the above 

mentioned gaps. The Internet of Things (IoT) can be defined as an emerging paradigm whereby 

physical objects embedded with sensors, processors and communication hardware, are able to 

establish a connection with the internet through either wired or wireless protocols (Kumar et al., 

2019), (Oracle, 2021). Through cloud computing and database integration, IoT devices can both 

store and share information between various devices in its ecosystem with minimal human 

intervention (Gillis, 2021). This exchange of information makes it possible for better decision 

making or intelligent actions between integrated devices often through the use of machine 

learning (ML) algorithms or fuzzy expert systems (FESs). ML is a subsection of Artificial 

intelligence (AI) that is based on the underlying premise that if a computer is provided with 

sufficient data – it is capable of developing patterns to predict or make decisions with little or no 

human intervention (SAS, 2021). A FES which also falls in the category of AI, is a rule base 

system which is used to classify outcomes which are not clearly defined in terms of Boolean logic. 

The data obtained from IoT frameworks can be made available to humans via an application layer 

such as a mobile or web application which falls in the domain of the Web of Things (WoT) 

(KDnuggets, 2017). The graphical user interface (GUI) in the application layer makes it possible 

for humans to interact with IoT systems to acquire data in real time.  

According to the CISCO annual internet report (Cisco, 2020), nearly two-thirds of the global 

population (5.3 billion people) will have internet access by the year 2023. The report also suggests 

that around 70% of the world population will have mobile connectivity by the year 2023 with 

machine-to-machine (M2M) which also includes IoT applications growing from 33% to 55% in 

2023. It is also expected that faster networks with reduced latency like 5G will be utilized in about 

10% of all global mobile devices. These statistics are promising and therefore suggests that IoT 

frameworks integrating mobile smartphones as gateways is a lucrative area of development.  
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One such industry that stands to gain from the implementation of IoT frameworks is the healthcare 

industry. According to Grandview research (Grand View Research, 2019), the IoT healthcare 

market is expected to have a surge in compound annual growth rate (CAGR) of 19.9% for 2019-

2025. Figure 1-1 illustrates the progressive growth of the IoT healthcare market in the US. One 

of the largest revenue contributors to this market share is telemedicine of which smart wearable 

devices (wireless body network sensors) for the application of remote monitoring is a major 

subcategory. Coupled with intelligent capabilities like FESs and ML for predictive analytics, these 

devices serve as a fundamental component of the 5th industrial revolution (5IR) as it aims to assist 

rather that eliminate health practitioners in their daily duties (Sarfraz et al., 2021).  

 

The proposed IoT system therefore aims to effectively aid health practitioners and patients to pre-

emptively make better healthcare decisions. Thus preventing fatalities and burden on hospital 

resources through a remote monitoring IoT system. This research also aims to create a prototype 

system aimed to be used as a complementary service within the healthcare domain to effectively 

speed up healthcare response time. Such a system will employ an integrated approach of bringing 

technology closer to the users (patient and health practitioners). The development of a remote 

monitoring device with IoT, ML and FES capabilities will ensure real time and predictive data is 

made available to both patient and health practitioners. 

The expected result of deploying such as system is therefore to reduce hospital stays, burden on 

health infrastructure and exacerbated health conditions caused by the late detection of 

communicable and non-communicable diseases. This while simultaneously promoting early 

Figure 1-1: U.S. IoT healthcare market size 
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healthcare awareness with patients. To address proactive monitoring of non-communicable 

diseases, the proposed ML model in the employed system aims to identify high risk patients as a 

result of behavioral risk factors.  Patients can then proactively monitor their health status or health 

practitioners can identify which patients require more attention.  

The proposed system will utilize the Global Positioning System (GPS) tracking abilities of 

smartphones which will enable early ambulatory dispatch during emergency cases. 

The wearable devices within the IoT system will make it possible to monitor patients remotely and 

non-invasively placing little or no burden on hospital resources (health practitioners or equipment). 

Health practitioners can then access this information to prevent emergency room visits through a 

proactive approach to healthcare, observe patient trends for risks and view historic patient data 

to identify anomalies. Users of these devices also stand to benefit by becoming more aware of 

their general health status and can therefore make better lifestyle changes to facilitate a better 

health outcome.  

In addition, employing such as system will break barriers between levels of patient care – allowing 

urban doctors to offer their services to rural areas without relocating. This while also empowering 

rural doctors with knowledge in healthcare best practices. In addition, the development of (fuzzy 

logic) FL systems with a rule base created from expert intuition can improve accuracy and 

precision for diagnosis without the presence of trained medical doctors. 

Lastly the benefit of the proposed system extends to the utilization of data availability. Living in 

the data age implies knowledge is power provided it is used responsibly. With IoT systems and 

cloud integration– the system will allow for the accessing of historical information from an array 

of patients and sensors allowing experts to make connections between anomalies and trends. 

This while contributing effectively to the future of healthcare education. 

 

1.1.  Problem Statement 
The healthcare systems of especially developing countries are becoming excessively burdened. 

This puts a strain on both hospital infrastructure as well as medical personnel. There are also 

many medical cases which are identified at severe stages often leading to deaths, chronic 

ailments or prolonged hospitals stays. To break this cycle there is a need for a proactive approach 

towards remote healthcare monitoring. With the advent of the 4IR and 5IR, technologies such as 

IoT, predictive modelling, MAs and WAs offer the opportunity to reduce or eliminate hospital stays 

through remote monitoring and preventative healthcare management. Predictive models offer the 

medical personnel the foresight into potential medical conditions their patients may be 

experiencing before conditions escalate. Such systems also allow for bulk diagnosis which 

reduces response time especially with scarce resources. In addition, real time monitoring and 

tracking of patients using mobile GPS technology, allows for early deployment of ambulatory 

services during emergency situations. Through the use of wearable sensors, vital patient 
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information can be sent through to doctors on a regular basis to enforce healthcare monitoring 

long after a patient leaves the clinical setting. This means that high risk patients may potentially 

have the option of early discharges and consequently remote post-operative care becomes a high 

probability. 

 

1.2.  Research Questions 
The following research questions will be addressed in this dissertation: 

1) How can an IoT framework coupled with wearable sensor technology and smartphone 

capabilities create a reliable channel for the acquisition of a patient’s vitals? 

2) What sensors would be required to create a WBAN to provide enough information to give 

doctors and patients a wide view of healthcare data? 

3) How can we use IoT, a WA and MA technology to give doctors foresight into their patients’ 

state of health and help them practice preventative healthcare? 

4) Which predictive algorithms can help predict potential health conditions of patients? 

5) Is it possible to provide health practitioners with the patient’s location so that they can 

dispatch ambulatory services during emergency situations? 

6) Can an IoT- based healthcare monitoring system aid in reducing the chain of survival 

execution time? 
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1.3. Literature Review 
The previous sections highlighted the forecasted growth within the healthcare telemonitoring 

sector and identified shortfalls that need to be addressed to improve the healthcare system. This 

part of the chapter will now explore the variations of healthcare monitoring system designs that 

have been researched and developed.  A critical assessment of the gaps within this research 

area will then be done with the aim of identifying possible areas for improvement. The chapter 

starts of by discussing the origins of telemonitoring systems and then progressively discusses 

researched systems which have been categorized according to the technologies they have 

utilized and their increasing complexity.  

 

1.3.1. The Origin of Telemonitoring Systems 
The origin of telemedicine dates back to the 19th Century, however the first published accounts 

took place in the 20th Century which describes the case of electrocardiograph transmission over 

telephone wires (World Health Organization, 2010). The area telemedicine as we know it today, 

started forming in the 1960’s primarily driven by the military and space industries along with early 

adopters utilizing commercially available equipment (Craig & Patterson, 2005), (Ruiz et al., 2008). 

The following sections aim to review the various IoT based telemonitoring device adaptations 

utilized in the medical field including their links to predictive modelling methods in the ML and FES 

spectrum. The various technologies employed in this space can be broken down into high level 

groups that essentially describe the key technologies that the specific system utilizes. Below 

describes the key high level characteristics that most smart IoT based devices employ: 

 IoT based framework (server or mobile gateway) 

 Application layer (web or mobile) 

 ML capabilities 

 FES capabilities 

 Location tracking  

 WBAN for retrieving vitals 

 Non-invasive sensor technology (e.g. IR sensing) 

 Wearable/ real time remote monitoring capabilities 

 Cloud/database integration 

Based on the above characteristics, the following healthcare applications will be discussed 1) IoT 

based telemonitoring systems, 2) ML models for disease diagnosis, 3) FES based predictions for 

health diagnostics, 4) IR sensor based devices for non-invasive telemonitoring, 5) IoT 

telemonitoring systems employing FE systems, 6) IoT telemonitoring systems employing ML and 

7) IoT telemonitoring devices utilizing a hybrid of FES and ML capabilities which will be the focus 

of this research. 
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1.3.2. Non-IoT Telemonitoring Systems 
This section discusses telemonitoring devices that do not possess an IoT based infrastructure. 

These devices can generally be grouped by their data transmission mechanism which is usually 

technologies like Bluetooth or Zigbee. These types of telemonitoring systems enable wireless 

transmissions but lack remote monitoring capabilities. This is due to the absence of long range 

data transmission technologies like Wi-Fi or Global System for Mobiles (GSM). Zanoguera et al. 

(2019) developed such as system using an ECG sensor module with Arduino Nano 

microprocessor, a data logger shield and a Bluetooth module to facilitate the transmission of data 

from the ECG sensor to the data logging shield. The set-up can be seen in Figure 1-2. 

 

A wearable heat monitoring device was developed by Fang et al. (2019) to enable temperature 

monitoring via heat flux modelling. Temperature sensors were used to obtain temperature 

readings and filtered via a microcontroller unit (MCU) before finally being transmitted to a WA for 

monitoring and modelling. The system architecture is shown in Figure 1-3. 

Figure 1-2: Block Diagram of Bluetooth Based Telemonitoring System 

Figure 1-3: Temperature Monitoring on WA Using Bluetooth 
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An example of ZigBee technology being used as the transmission technology can be illustrated 

by the prototype put forward by Ehnesh et al. (2020). A portable ECG monitoring device is 

developed using an ECG sensor, filtering modules and an Atmega 328P processor interfaced 

with a ZigBee module for transmission to a GUI on a computer. Figure 1-4 illustrates the 

component set-up. A variation of this ECG monitoring system using Bluetooth can be seen in the 

work of Roihan et al. (2019). 

 

These telemonitoring devices offer advantages over traditional wired devices. Armstrong (2007) 

for example highlights the benefits of wireless monitoring of users in applications like sports where 

unobtrusive methods of data acquisition that doesn’t inhibit movement is required. However, this 

type of technology lacks the remote monitoring capabilities which makes it unsuitable for cases 

where health practitioners need to monitor patients outside the hospital setting.   

 

1.3.3. Non-Invasive Glucose Monitoring Systems 
Types of non-IoT based systems with their sensor integration have been looked at. Although most 

data acquisition in the form of patient vitals do not require invasive methods, there are cases 

where diagnosis is usually done via direct blood or tissue sampling (Mete et al., 2012). One such 

case is the detection of Diabetes. This however poses a risk in the healthcare sector as people 

are often dissuaded from doing regular glucose level tests due to the invasive nature of the testing, 

high expense and unnecessary exposure to infectious disease (Daarani & Kavithamani, 2013). 

Several applications have therefore looked at non-invasively determining glucose levels by means 

of technologies such as infrared (IR) sensors and ML techniques. This section expands on some 

of these implementations: 

Figure 1-4: Zigbee Technology Being Used For Data Transmission 
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1.3.3.1. Capacitive sensor for non-invasive measurement of blood glucose 

Dutta et al. (2019) proposes a non-invasive blood glucose level approximation using capacitive 

sensors. The technology works on the premise that capacitance varies linearly with blood glucose 

concentration. The device makes use of an operational amplifier circuit to measure capacitance 

in terms of output voltage. A ratio of output voltage to input voltage is then used to determine a 

linear representation of the ratio relative to the concentration. Figure 1-5 illustrates the relationship 

between the ratio of output voltage/input voltage and blood glucose concentration.  

Figure 1-5: Relationship between Output Voltage and Glucose Levels 

 

1.3.3.2. Near Infrared (NIR) Sensors for the Determination of Glucose Levels 

The use of an IR sensor and receiver to determine glucose levels is another non-invasive 

technique that has been greatly explored (Apar & Dr Autee, 2019), (Daarani & Kavithamani, 

2013), (Sagar, 2020), (Alarcón-Paredes et al., 2019), (Dr Kavitha et al., 2019), (Sari & Luthfi, 

2016), (Haxha & Jhoja, 2016), (Prawiroredjo & Engelen, 2016). The technology works by placing 

the fingertip between the IR sensor and receiver. When the NIR light passes through the fingertip, 

a portion of the light gets absorbed by the glucose molecules present in the blood.  A greater 

amount of glucose molecules present in the blood will result in more NIR light being absorbed 

hence this fundamental relationship can be used to establish the blood glucose concentration 

levels. Truong et al. (2020), Gusev et al. (2020) and Manurung et al. (2019) utilize the IR method 

discussed with ML and artificial neural networks to improve their model accuracy.  Figure 1-6 
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shows a diagram illustrating the basic set-up for a diabetes IR detection system (Apar & Dr Autee, 

2019). 

 

 

 

 

 

 

1.3.4. GPS Enabled Telemonitoring Systems 
GPS is a location tracking service that utilizes GPS satellites to send signals to GPS receivers to 

acquire their speed, location and direction (Maddison & Mchurchu, 2009). According to NASA, 

the origins of GPS can be traced back to the Sputnik era where scientists used the principle of 

the “Doppler effect” for satellite tracking using shifts in radio signals. Maddison & Mchurchu (2009) 

offered a differing viewpoint and suggest that the first GPS was developed by the US Department 

of Defense for military applications. 

Many of the telemonitoring devices researched have the element of GPS locations. Munir et al. 

(2013) for example talks about the importance of GPS devices for the monitoring of elderly 

patients health status and to prevent them from getting lost. Satayanarayana et al. (2013), 

designed a system that uses an ARM/911 microcontroller with a GPS module that focuses on 

creating a two way communication between hospital personnel and ambulatory services. Zhang 

& Lu (2009) showed how GPS and general packet radio service (GPRS) can be used for ECG 

monitoring and response in cases of cardiac failure.  Another similar system was developed by 

(Fang & Kun, 2007) that focuses on monitoring out of hospital cardiac patients. 

These systems form an integral part of modern day telemonitoring systems as they allow for 

emergency reactions to proceed without the intervention of the patient. 

 

1.3.5. IoT Enabled Telemonitoring Systems 
A number of IoT based telemonitoring systems have been developed with the aim of making 

remote monitoring of patients possible (Rghioui et al., 2020), (Pacchierotti, 2018), (Beach et al., 

2018), (Nazar et al., 2017) (P.Ortiz et al., 2018). Many of these have employed multiple sensors 

through a wearable set-up for the data acquisition of fundamental patient physiological data. This 

info is subsequently passed to a gateway (mobile or server based) where temporary storage is 

possible before transmission to a cloud interface. The data which is stored in the cloud database 

Figure 1-6: Set-up for Diabetes IR Detection System 
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can later be retrieved via a WA or MA for use by health practitioners. The variations of the two 

IoT gateway configurations will be explored below. 

1.3.5.1. Mobile as a Gateway Configuration 

Numerous IoT based applications have explored the use of a smartphone as a gateway. 

According to khaddar & Boulmalf (2017), the smartphone forms the perfect IoT device due to its 

ability to interact effortlessly with various devices and sensors through protocols such as 

Bluetooth, near field communications (NFC), Wi-Fi etc. Many researched devices (Rodrigues et 

al., 2013), (Kominos & Stamou, 2006), (Horta et al., 2013), (Schrader et al., 2010), (Virone et al., 

2006), for example have looked at utilizing IoT with intelligent based personal assistants for 

healthcare monitoring using the smartphone as a gateway for communication. Santo et al. (2016) 

developed a mobile health solution that utilizes a body sensor network (BSN) to collect the 

patient’s location, fall detection and pulse rate data in real time for transmission to an intelligent 

personal assistant (IPA) via the smartphone. The IPA is then able to manage the data and activate 

alarms in the case of emergencies. Figure 1-7 illustrates the proposed Bluetooth connection 

service to enable data transferal from the smartwatch to the smartphone. 

 

 

 

 

 

 

 

 

 

 

 

Bellagente et al. (2016) introduced the concept of “Smartstone,”a low cost and easy to use 

smartphone to act as an IoT gateway to create a telemonitoring solution targeted towards 

addressing the needs of senior citizens. The system acquires data through various sensors 

located on wearables and personal area networks (PANs). Cloud integration and transmission is 

then established using a Wi-Fi or GSM signal. A remote server located on the cloud then allows 

for easy storage and retrieval of information by patient or doctor through Wi-Fi and GSM 

connections so that data can be viewed or analyzed via an application layer such as a MA or WA. 

Figure 1-8 illustrates this system. 

Figure 1-7: Data Transfer from Smartwatch to Smartphone IoT Gateway 
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1.3.5.2. Other IoT Gateway Configurations 

The flexibility in the use of IoT gateways have led to other gateway mechanisms being explored 

in the area of healthcare telemonitoring (Brezulianu et al., 2019), (Abed, 2020), (Ozkan et al., 

2020). Abdul-jabbar & Abed (2020), developed such a system which was used for real time 

monitoring of patients with pacemakers. The system made use of an ESP Wroom 32 module 

which served as both the microcontroller and Wi-Fi module enabling IoT capabilities. The system 

employed various sensors viz. ECG, temperature, heart rate and Hall Effect sensor (magnetic 

field detection) to capture patient vitals. This data was then filtered and amplified by the ESP 

Wroom 32 module before being sent directly to a browser site which can be viewed by the patient 

on their smartphone or computer. The proposed IoT infrastructure is illustrated in Figure 1-9. 

 

 

  

Figure 1-8: “Smartstone” IoT Architecture 



 

12 
 

 

 

 

 

 

 

 

 

 

 

 

Chandini & Kumar (2018) developed a similar set-up for monitoring patient ECG and temperature 

trends but instead used a Rasberry Pi module to serve as the gateway between the sensors and 

cloud platform. Also, Sanfilippo & Pettersen (2015) opted to create a set-up to monitor various 

patient vital signs through a fusion of sensors so that haptic feedback (via LED and vibration 

motor) can be given when dangerous levels are exceeded. The system utilizes the e-Health 

sensor shield to connect sensor information and then transmits this information via Wi-Fi to the 

cloud computing center for data storage. Data can then be accessed and reviewed by health 

practitioners via mobile or web interfaces. The system architecture is illustrated in Figure 1-10. 

The system makes use of a three tiered hierarchical server to maximize performance and 

scalability. 

Figure 1-10: System Architecture with Raspberry PI IoT Gateway 

Figure 1-9: ESP32 IoT Based System for Pacemaker Monitoring 
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Another variation was by Chamundeeswari et al. (2019) who utilized a system of ECG detection 

and monitoring using a heart rate sensor, Atiny 85 microcontroller and ESP8266 Wi-Fi module to 

establish an IoT framework.  

These types of gateway devices can be an effective mechanism for the implementation of IoT 

systems however lack the benefits of smartphones which are widely available and easily 

accessible by many individuals. Smartphones make it possible to implement health monitoring 

systems without burdening users with additional technology expenses. In addition, Boulos et al. 

(2011) suggested that smartphones generate a great amount of engagement from individuals of 

all ages which makes it a perfect medium for health applications as opposed to other server based 

gateways. 

 

1.3.6. AI and Fuzzy Logic in Healthcare 
A vast number of research topics have focused on AI (ML and deep learning) and FES models 

applied to disease diagnosis. These systems were either primarily AI focused, primarily FES 

based or a hybrids of the two. The models were developed with the fundamental aim of creating 

improved prediction models, however have not been integrated with an IoT platform which 

enables remote monitoring. For the purpose of highlighting the effectiveness of ML and FES 

models in the area of healthcare diagnostics, these will be explored further.  

 

1.3.6.1. ML and Deep Learning Algorithms 

A number of developments have been made in the ML and deep learning space for predictive 

diagnostics in healthcare. Many of these developments have focused on analyzing ECG trends 

to diagnose various cardiovascular conditions. Aspuru et al. (2019) for example carried out ECG 

waveform segmentation using a linear regression model and thereafter utilized classification 

algorithms which led to a 95% sensitivity. Ribeiro et al. (2020) developed a deep learning model 

for a 12 lead ECG and was able to outperform resident doctors with F1 scores above 80% and 

specificity over 90%. Majumde et al. (2018) also worked on developing a model for cardiac arrest 

detection using a decision tree algorithm. Another innovative application of ML in healthcare can 

be attributed to the work of Simjanoska et al. (2018), who utilized ECG data and a combination of 

a classification and regression models to estimate blood pressure readings.  

 

1.3.6.2. FES Models 

FL based applications have also been used in an array of healthcare applications. Duodu et al. 

(2014) created a FL rule based solution for the detection of Malaria which attained a 15.4% 

accurate diagnosis which outperformed the diagnostic accuracy of doctors for the same dataset. 

Oad et al. (2014) employed a fuzzy rule based approach for the prediction of heart disease which 
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matches similar neural networks and decisions tree algorithms. Other fuzzy logic systems 

developed by Djatna et al. (2018), Kasbe & Pippal (2017), Desai et al. (2021), Buczak et al. 

(2015), Jindal, et al. (2020) have been linked to the diagnostics of stroke, heart disease and Renal 

cancer. 

 

1.3.7. IoT & AI based Telemonitoring Systems 
To this point technology implementing Bluetooth and IoT in the areas of telemonitoring systems 

have been looked at. Another growing area of research in alignment with the 4IR and 5IR is IoT 

and AI fused systems. Devices that employ this type of infrastructure utilize the powerful area of 

AI (deep learning and ML) with IoT to bring predictive analytics to the disposal of the healthcare 

sector. AI inclusive of ML are bringing about massive paradigm shifts in the healthcare sector due 

to the availability of healthcare data and strides in analytical techniques (Jiang et al., 2017).   

Majumder et al. (2019) created an energy efficient predictive cardiac arrest system with IoT and 

ML functionality. The system utilized a decision tree ML model and utilized a smartphone as the 

IoT gateway and application layer. XU (2020) utilized an ECG monitoring solution with ML 

classification models and feature extraction. Shao et al. (2020), utilized a classification model 

trained on 17 different ECG features for the detection of Atrial Fibrillation using a LoRa IoT 

gateway and Fog AI interface as shown in Figure 1-11.  

 

Figure 1-11: IoT System for Atrial Fibrilation using classification model & LoRa Gateway 
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ML based telemonitoring systems offer great value to the healthcare industry, however they lack 

the intuitive expertise that fuzzy logic brings to the table. Hence, hybrid models may be needed 

to overcome its shortcomings. 

 

1.3.8. IoT & FL Based Telemonitoring Systems 
The effectiveness of FL systems were seem in section 1.3.6. A further adaptation of such FL 

based diagnostic systems is their integration with IoT (Santamaria et al., 2016), (Neeralagi, 2017) 

(Al-Adhab et al., 2016). Hussain et al. (2016) developed a smart home healthcare system that 

illustrated this concept. The system utilizes a body area network to acquire sensory information 

and uses a smartphone as a gateway for cloud integration. A FES then analyzes the data based 

on given rules to determine the patient’s risk for cardiac disease. A drawing of the infrastructure 

is shown in Figure 1-12. 

 

 

FL systems are an effective means to determine the “how” aspect of predictions through its 

inference rules, however are often intuitively based so lack the accuracy that ML models may 

bring. In addition, FL systems lack the ability to generate patterns from large datasets. Hence, 

these systems may also benefit from hybrid implementations. 

 

Figure 1-12: IoT HealthCare System with FES 
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1.3.9. IoT Fuzzy Logic and AI Hybrid Telemonitoring Systems 
Harvard business review suggests that the future of healthcare will see advancements in complex 

algorithms that make incredibly accurate predictions about our health status (Burt & 

Volchenboum, 2018). It is no surprise that predictive models are being combined to form hybrid 

systems which provide a greater accuracy for disease diagnostics. One such combination which 

has been explored is the combination of FL and AI determination models. When these hybrid type 

systems are formed, they produce a more effective solution to the problem (Sattar et al., 2019). 

Hameed et al. (2020) illustrates such a concept with an IoT home healthcare system which utilizes 

a fuzzy neural network to assist doctors by monitoring sensor data and alerting them of potential 

patient issues. The combination of AI (Deep learning and ML) and FL systems complement each 

other well. While AI techniques like neural networks and ML are good at perceiving patterns in 

the data (Linn & Lee, 1991), they don’t explain how end decisions are derived. FL can better 

explain this through inference rules (Nelles, 2001) but these rules are difficult to establish without 

the help of techniques like neural networks (Jang, 1993). Figure 1-13 shows the integration of the 

hybrid fuzzy neural networks proposed by Hameed et al. (2020). 

 

 

Figure 1-13: Hybrid Fuzzy Neural Network System 
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Despite the massive progress that has been made in the area of IoT based hybrid ML and FL 

based systems, there still exists massive room for creating solutions that utilize more sensory 

inputs combined with healthcare intuition to predict certain conditions. For example, although FL 

systems with ML capabilities have been integrated with IoT for predictive diagnosis of 

cardiovascular diseases (Khan, 2020), (Mohammad & Fahad, 2020) little work has been done in 

creating holistic systems for predicting other non-communicable diseases. One such example is 

stroke prediction which has been modelled using both ML and Fuzzy logic (Chun et al., 2021), 

(Islam, 2018) but never integrated with IoT capabilities (Yun-Hsuan Chen, 2021). A remote 

monitoring infrastructure based on IoT can therefore greatly benefit from stroke prediction model 

usage. Continuous real time input from a wide sensory network can stand to benefit the accuracy 

and precision of such models. In addition, the development of multi-sensory input to create a 

combination of different risk probabilities/ratings using FL can greatly improve the way doctors 

and patients handle health monitoring. The basis of further exploration in this research will 

therefore be aimed at creating a holistic IoT system integrated with ML and FES models to create 

a remote monitoring system with authentic predictive capabilities. 

 

1.4. Hypothesis Statement 
The development of an IoT based telemonitoring system with models for predictive capabilities 

will reduce burden on healthcare resources and assist with reduced fatalities due to late 

diagnosis. 

 

1.5. Research Contributions 
The following research contributions were achieved in this research: 
  

 A multi-sensory WBAN integrated with an IoT infrastructure which allows for multiple 

combinations of variables to be modelled and monitored to determine risk on patient 

health. 

 An intuitive FL model that utilizes a unique combination of patient vital signs to allow for 

pre-emptive medical care without a doctors supervision.  

 The use of humidity sensor input variable in a FES model used for patient monitoring. 

 The development of a second FL model to track the effect of environmental factors on 

human health. 

 Multiple rule base FESs implemented on an Android MA. 

 Integration of a ML based stroke prediction model with an IoT framework which allows for 

remote prediction and model consumption. 

 A Java database connection (JDBC) with MS Azure which reduces application 

programming interface (API) connection costs associated with the typical Microsoft WA 

services method. 

 A feature rich MA with a lower power consumption. 

 A feature rich MA with a low memory usage. 
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 IoT System with a double cloud platform (Firebase and Azure) integration for flexibility and 

efficiency of data transmission. 

 A two interface MA for patient and doctor machine to human (M2H) interaction. 

 A Single MA integrated with a primary and secondary Firebase database connection. 

 Implementation of both a MA and WA within an IoT infrastructure. 

 The use of the MEWS rating within an IoT remote monitoring application. 

 

1.6. Objectives and Outline 
The objectives of this research topic is to (1) develop a multi-purpose wearable sensory device to 

acquire reliable patient vitals under remote operating conditions,  (2) develop an IoT based data 

pipeline for the storage and transmission of patient data during emergency situations, (3) develop 

user friendly application layers (mobile and web) for accessing and viewing of patient vitals and 

location and (4) utilize ML and FES models to analyze patient parameters in real time to aid health 

practitioners in early prediction of patient diagnostics. 

The research work was composed of the following tasks: 

1. Define the stakeholders and their requirements and subsequently identify the minimal 

system requirements to satisfy stakeholder needs. Once the system architecture is defined 

from the stakeholder requirements, an evaluation of the proposed conceptual designs using 

the Pugh matrix will be evaluated (chapter 2). 

 Outcome: An early indication of the proposed high-level system architecture from the 

perspective of the customer/end-user. Identification of critical characteristics and 

components that should be prioritized in the subsequent design stages which will 

reduce potential downstream costs associated with poor preliminary considerations. 

   Lastly the identification of the optimal design that meets all stakeholder requirements               

   in terms of usability, IoT connectivity and physical characteristics. 

2. An in depth discussion of the design of the wireless body access network (WBAN) which 

serves as the sensing layer in the design (chapter 3). 

 Outcome: A completed WBAN device capable of reading patient vitals and 

transmitting data over Bluetooth to the MA. 

3. Development of the MA using Java on the Android Studio integrated development 

environment (IDE) and the WA using node.js, JavaScript, HyperText Markup Language 

(HTML) and Cascading Style Sheets (CSS). Then the integration of the MA with the WBAN 

device using broadcast receivers (chapter 4).  

 Outcome:  A completed MA with a patient and doctor interface able to receive data 

via Bluetooth from the WBAN and subsequently store this data in a SQLite database 

for future cloud transactions. Also a completed secondary WA layer ready to receive 

and display information on a hospital server. 

4. Setting up the cloud infrastructure layer and further integration with the rest of the system 

(MA and WA) (chapter 5). 
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 Outcome: Firebase NoSQL database set-up and integration as well as MS Azure SQL 

database set-up and integration. The resulting ability of the MA and WA to receive 

and transmit data to and from the cloud layer. 

5. Development of a stroke prediction model using the MS Azure ML classic studio service 

and an online Kaggle dataset. Thereafter the development of two FE systems for patient 

monitoring using the Mamdani approach. Triangular membership functions (MFs) will be 

used for creating fuzzy sets and the Mean of Maxima (MoM) method will be used for 

defuzzification (chapter 6). 

 Outcome: ML model for stroke prediction with high precision and accuracy using the 

Boosted decision tree binary classification model. Also two FE systems to model 

patient health using the Mamdani approach. 

6. Use case scenarios for each stakeholder will be explained indicating critical functions they 

need to carry out to ensure the smooth transition of information through the data pipeline 

(chapter 7). 

Outcome: Standard process that users can follow to effectively utilize the system  

7. Applying the system to a series of clinical trials and tests to gauge its performance 

compared to other systems (chapter 8). 

 Outcome: Overall system performance and results. 

Figure 1-14: Dissertation Objectives & Outline 
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1.6. Chapter Summary 
This chapter began by explaining the concept of IoT systems and how when integrated with 

powerful ML and FL models, can revolutionize healthcare telemonitoring systems. The Cisco 

annual report was used to show that the expected growth of M2M solutions including IoT was 

expected to grow by 33% to 55% by the year 2023 thus indicating the need for sectors like 

healthcare to get on board utilizing such solutions. The report further showed that around 70% of 

the population is expected to have mobile connectivity by the year 2023 which highlighted the 

suitability of using smartphones as IoT gateways.  This findings by Cisco was further supported 

by Grandview research forecasting a CAGR of 19.9% in the IoT healthcare market for the period 

of 2019-2025.  The potential of telemonitoring with smart wearable devices was also identified as 

a powerful pillar of 5IR which could potentially revolutionize the healthcare industry. The possibility 

of using these systems to reduce emergency response time, for the early identification of disease 

as well as to reduce the burden on healthcare facilities was highlighted. The proposed research 

topic was then introduced to be the development of an integrated IoT system utilizing a 

combination of inputs to provide monitoring and diagnostics that was an extension of previous 

research. An overview of the topics to be discussed was then highlighted. The chapter ended with 

a literature review explaining the limitations of previous research and how the proposed solution 

aims to bridge the gaps in these shortfalls. 
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Chapter 2: Requirements Analysis, Design 

Specifications & Concept Development 
Chapter 1 examined the various types of telemonitoring systems that have been researched and 

designed as well as the need for improved healthcare telemonitoring systems. It was found that 

a gap exists to use multi-sensory inputs to create new FL and ML models that can be integrated 

into an IoT framework for remote prediction and monitoring. However before a working system 

can be developed, the following has to be established: 

 Identification of critical stakeholders and their requirements need to be examined and 

formulated into a proposed architecture.  This is to take into consideration ease of use and 

also to ensure that a system which meets a genuine need in the healthcare industry is 

designed.   

 Background information of IoT architectures need to be examined to gain an 

understanding of the most suitable technologies in existence. 

 The background information will then serve as insight to establish the critical design 

requirements and challenges that need to be understood so that solutions can be 

implemented. The following areas need to be carefully considered before conceptual 

designs can be developed: 1) software specifications and challenges, 2) electronics 

specifications and challenges and 3) wearability specifications and challenges. 

 Evaluation of the various concept developments can then be carried out to eventually 

identify the most suitable design to progress with. 

 

2.1. Stakeholder Expectations 
In order to create a successful IoT telemonitoring system, careful attention needs to be given to 

identify the key requirements that the system should satisfy. These key requirements are often 

determined by the end users and stakeholders utilizing the system. The following section 

therefore aims to identify the key stakeholders of the intended IoT telemonitoring system as well 

as their requirements with which the system needs to be designed around. In order to obtain valid 

information, health care practitioners and patients were interviewed to gain an understanding of 

their perspective. The results are summarized below. 

 

2.1.1. Patient 
The patient includes all registered users forming a part of the system’s patient database. These 

patients don’t necessarily only include at risk individuals but also those wanting to take a better 

hold of their health status. From the patient’s point of view, they are concerned with the accuracy 

and timely display of their health status. In addition, they require a system that will continuously 
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transmit their data to a network of doctors for monitoring, so that ambulatory services can be 

dispatched in the case of an emergency or so that doctors can pick up on early warning signs of 

life threatening conditions. They also require a system that will predict and alert doctors of 

impending dangerous health calamities.  This is so that their doctors will not miss the early 

warning signs under their often busy and stressful working conditions.  

 

2.1.2. Physician/Doctor 
The Physician includes any individual that forms a part of the system’s doctor database. This can 

include doctors from all specialties that are registered health practitioners with the Health 

Professions Council of South Africa (HPCSA). A doctor is concerned with the reliability of the 

telemonitoring system and the accuracy of data obtained. They need to be able to quickly access 

patient data and easily navigate through the applications to identify issues. Hence the front end 

designs of these applications needs to ensure simplicity while still maintaining a feature rich 

experience.  The doctor is also concerned with being able to track the patient in the case of an 

emergency so that ambulatory services can be dispatched to prevent fatalities. While real time 

monitoring is massively important to spot health conditions with their patients, doctors are also 

concerned with historic data to spot trends and anomalies within their patients. Hence the long 

term storage and access of information presented in an easy to digest manner is critical for 

proactive health care management. 

 

2.1.3. Other Healthcare Personnel 
Other healthcare personnel includes nurses, radiologists or other health practitioners who have 

been given privileges to access a specific patient’s data by the physician in charge of that patient. 

As with the doctor, the supporting health practitioner is concerned with quickly accessing the 

patient’s data. With the fast pace nature of health care, information is required quickly. Hence 

reliability of the system and ease of use is of utmost importance to the healthcare staff. Also as 

mentioned previously, data integrity is also of massive importance to gauge the actions that needs 

to be taken.  

 

2.2. Design Specifications and Challenges 
The previous section addressed the key stakeholders and their requirements so that future design 

considerations can be aligned to end user goals and expectations. This section will now examine 

the fundamental structure of most IoT frameworks. This knowledge will then be utilized to identify 

the design specifications and challenges that need to be overcome when designing a successful 

IoT based telemonitoring system.  
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2.2.1. Telehealth, Telemedicine and Telemonitoring 
Telehealth refers to the technologies and services which enables health care over a distance. 

Telemedicine which falls under the umbrella of telehealth differs in that its main focus is to utilize 

remote technology to aid health practitioners to treat patients from a distance. Telemedicine can 

be further expanded into three main categories viz. 1) store-and-forward (information storage and 

transmission to doctors without the need for patient visits), 2) telemonitoring (remote monitoring) 

and 3) real time interactive services (Yolanda Smith, 2021). Figure 2-1. Illustrates the telehealth 

taxonomy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Telemonitoring is required to meet challenges such as demands placed on Western healthcare 

systems as a result of chronic conditions among the elderly, and the added pressure for quality 

patient care that revolves around patient-centeredness (Christensen, 2018). Telemonitoring 

technology allows for the successful transmission of critical patient physiological data such as 

blood pressure, heart rate, oxygen saturation etc. directly to caregivers via a MA or WA (G.F. 

Gensini, 2017). These technologies utilize sensors which can be embedded in smartphones or 

other wearable devices to capture, store or respond to data being retrieved from physical settings 

(e.g. a patient’s vital signs). The end result being a more proactive approach to healthcare (J. 

Mathew, 2018). 

Figure 2-1: Telehealth Taxonomy (Elena Muller, 2021) 
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2.2.2. The IoT Infrastructure 
IoT can be defined as a detailed network infrastructure comprising of a multitude of real-world 

objects all of which require a careful integration of communication, sensory, networking and 

information processing technologies. IoT can be broken up into M2M or M2H connections. The 

former being based on no human interactions and machines communicating with each other to 

make smart decisions and the latter being human engagement to interpret the IoT output (Hulft, 

2018). 

 

2.2.2.1. The 5 layers of IoT 

The IoT infrastructure can be broken up into several layers (R. Mehtaa, 2018): 

1) Perception layer – this layer, also called the ‘device layer’ is where sensor devices collect, 

process and securely transmit data to the network layer. Several device embedded 

sensors identify and collect critical information based on the application requirements.  

2) Network layer – also referred to as the ‘transmission’ layer, the core purpose that this 

layer serves is to securely transfer collected sensor data to the information processing 

system. This is either achieved through wireless or wired technologies including 3G, Wi-

Fi, and Bluetooth etc.  

3) Middleware layer – collects the data from the network layer and uploads it into a database 

where processes and decision making can take priority. It is composed of a variety of 

different technologies including cloud computing, databases and big data processing 

(Khanna, 2017). 

4) Application layer – this layer allows for the conveying of useful information to the end 

users and often involves a user interface that allows for interactions with the IoT interface. 

The application layer is often integrated with a software application that can either be 

mobile or web based.  

5) Business layer – the IoT business layer is where the information from the application 

layer can be analyzed and where decisions can be taken to improve the business KPI’s. 

For non-business related applications – the business layer can be thought of as just taking 

action based on the information provided by the IoT system. 

 

2.2.2.2. IoT Architectures 

Based on the layers identified above. Various IoT architectures can be incorporated based on the 

needs and requirements of the system (Hulft, 2018). 
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1) Device to cloud – direct connection and transfer of data from sensor to cloud 

 

 

 

 

 

 

 

 

 

 

2) Use of an IoT gateway – with gateway type architecture, a middle gateway layer 

intersects the sensor and cloud. Due to the primitive nature of sensors, this gateway is 

required for the successful transmission of data to the cloud. One such benefit of using a 

gateway type architecture is that the use of short range communication like Bluetooth can 

be used to reduce the strain on the device. 

 

 

 

 

 

 

 

 

 

 

2.2.2.3. Mobile as a Gateway Architecture 

With the above scenarios, the gateway can either be a server or smartphone. With a mobile being 

used as a gateway for IoT, the idea lies in the mobile being at the center of the IoT ecosystem 

and all other IoT devices forming the peripherals. In the image shown in Figure 2-4, sensor based 

devices collect information from real world entities and convey this information to the smartphone 

Figure 2-2: Device to cloud architecture 

Figure 2-3: Gateway IoT Architecture 
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via protocols such as RFID, Bluetooth, Wi-Fi and NFC. This transmission happens via data 

packets, and when a data packet is received by the smartphone, it establishes an internet 

connection and transfers the data to a cloud platform where the data gets housed in a database. 

Various methods of connection can be utilized to establish a secure connection for transmission 

such as a Hypertext Transfer Protocol (HTTP) POST to the specified destination (Softweb 

solutions, 2021). An example of this set-up is shown in Figure 2-4. 

 

 

 

2.2.3. Software Specifications and Challenges 
The software used in an IoT telemonitoring system is the backbone of its functionality.  Choosing 

the right type of software is an integral component in terms of speed, data integrity, efficiency and 

future scalability. The following section highlights critical software challenges that need to be 

considered when designing the proposed IoT system: 

 

2.2.4. Electronics Specifications and Challenges 
The electronics which include the microprocessor and its corresponding sensors are also 

fundamental components required to complete the data pipeline. Correct wiring of the sensor 

network with the microprocessor will ensure physiological patient data is extracted in real time 

and transmitted to the network and application layer for patient monitoring. The following section 

discusses the main electronic device requirements and challenges: 

 

Figure 2-4: Mobile Gateway as an IoT Architecture 
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2.2.4.1. MCU 
When selecting the microcontroller for the telemonitoring system, careful consideration should be 

given to the size, speed, device ports, energy usage and memory. The MCU selected should 

have sufficient processing power to run the code. In addition, a small enough controller should be 

selected to allow for the wearability criteria to be satisfied. There should also be sufficient 

communication ports for the peripheral devices and I/O ports for configuring the electrodes. 

 

2.2.4.2. IoT Gateway 

The IoT gateway is the central link between the WBAN and cloud interface. The IoT gateway 

selected for the intended telemonitoring system should be able to store and process large 

amounts of info locally. It should have Bluetooth or similar short range communication capabilities 

such that it is able to collect data from the WBAN network. Then it should be able to integrate with 

a cloud network to transfer data to a server based database for access by health practitioners. 

The IoT gateway should be energy efficient, reliable and small enough to be carried around with 

the patient to continuously receive, store and transmit data to the cloud. It should be able to easily 

integrate with cloud interfaces without incurring excessive costs for subscription or software based 

tools. Lastly it is preferred that the IoT gateway have a front end design for patients to monitor 

and interact with the sensor data from the WBAN.  

 

2.2.4.3. Battery 

The battery selected should be small enough yet have sufficient amperage and voltage to power 

the circuit. The battery should be rechargeable to allow for frequent charging and re-use 

considering the real time nature of device monitoring. With respect to charging, the battery should 

have a balanced charger to prevent short-circuiting.  

 

2.2.4.4. MCU Software  

The software chosen should be capable of programming the chosen MCU. In addition, it should 

allow for the programming of interrupts and timers for the transmission of data packages sent to 

the MCU via Bluetooth. The program developed should also minimize MCU flash memory and 

have fast execution time. Due to the complexity of the code, a debugger is also required to speed 

up the design process through efficient troubleshooting. 

 

2.2.4.5. Cloud Software  
Cloud integration forms an integral component of any IoT based telemonitoring system. Therefore 

careful consideration needs to be taken when selecting the intended platforms. For storing of 

information, suitable databases need to be selected. NoSQL databases should be used for 
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storage of schema less data (such as patient registration information) as it is cost effective and 

easier to use with non-complex querying requirements. Scalability is often easier and less cost 

intensive with NoSQL databases which allows for an increase in users on the platform. Schema 

data from the sensors should be stored in a SQL database where ACID (Atomicity, Consistency, 

Integrity, Durability) properties are a concern and semi-structured data is being used. 

The cloud software should also consider interoperability between the IoT gateway and sensing 

layers (mobile and web). This needs to be facilitated by a suitable connection SDK or backend 

software which is either part of the cloud platform or independent. Again cost and efficiency is a 

driving factor for this selection. It is also necessary to take into consideration community support. 

Well supported cloud software is easier to implement and communicates ease of use. Lastly to 

satisfy ML requirements, a cloud integration platform with ML capabilities is required to allow for 

ease of model development and integration with mobile and web apps via POSTS requests. 

 

2.2.4.6. MA Software  
Software selected should allow for programming of an Android app since most users have android 

based smartphones. A suitable mockup program should be used to determine the necessary 

application activities required to achieve optimum functionality. The programming language 

selected for the mobile app should have a large community support and usable syntax for ease 

of troubleshooting. The software should have high processing power and sufficient in built 

functions to allow for full mobile functionality. A suitable IDE with debugger, interpreter and 

compiler is also necessary. 

 

2.2.4.7. WA Software  

A suitable web programming software and run time environment is required. This is to allow for 

the creation of dynamic web pages with backend functionalities to draw data from cloud 

databases. HTML should be used for web structure development and CSS with suitable 

frameworks to initiate the front end design. These technologies are widely used and considered 

the standard mechanisms for creating reliable web based applications. 

 

2.2.4.8. Sensors 
The sensors selected should be suitable for the intended measurements and suitable for 

integration with the MCU. Accuracy of measurements is also a very important criteria for each 

sensor. For ease of use, the sensors should also have an embedded signal conditioning block 

which reduces the complexity of amplifying or filtering signals.  

 



 

29 
 

2.2.4.9. Short Range Communication 

Transmission of data to the gateway device is a crucial step in the IoT framework. A short range 

communication protocol needs to create a paired connection with the chosen IoT gateway and 

then transmit data continuously. Hence, indicator lights are required to indicate each stage of the 

connectivity process i.e. connected, disconnected and pairing. The size of the short range 

communication device is another important criteria that needs to be considered together with 

software and equipment compatibility. Baud rate (rate of data transmission) should be adjustable  

 

2.2.4.10. Haptic Feedback and Indicators 
The patient needs to be aware of impending dangers based on readings received by the sensors. 

Therefore indicators and haptic feedback devices are required to warn users when they are under 

strain or are reaching dangerous conditions. Patients need to also be made aware of when to 

take readings. The haptic feedback and indicators therefore play an important role in early 

warning detection and therefore need to satisfy the criteria of being obtrusive i.e. blink brightly, 

vibrate etc. to get the patient’s attention even when they are pre-occupied.  

 

2.2.5. Wearability Specifications and Challenges 
The wearability specification of the proposed monitoring system is not easily quantifiable. The 

following criteria needs to be met: 

 The device needs to be robust to withstand continuous wears but also comfortable to 

ensure ongoing use at least for testing purposes. 

 As far as possible the appearance of the WBAN should be unobtrusive which would 

otherwise deter users from wearing the device. 

 The above criteria must be achieved while also maintaining the signal quality. 

 Sensor placement is also an important consideration when designing the wearable 

strap/casing. 

 

2.3. Proposed System Description 
The techniques, methods and tools together with their applicability were based on a detailed 

literature review carried out in chapter 1.3 and stakeholder analysis in chapter 2.1.The WBAN 

device needs to contain the appropriate sensors to capture patient physiological data. This is 

dependent on the patient performing the relevant initiation processes e.g. setting Bluetooth, Wi-

Fi etc. The sensors will make contact with the patient’s skin and the corresponding data will be 

sent via Bluetooth (short range communication) to the patient’s smartphone. The corresponding 

information will then be stored locally in the patient’s phone database. The smartphone will serve 

as the IoT gateway which will create a link between the locally stored data and cloud platforms. 

The patient can then choose to transfer data to the cloud via a Wi-Fi connection and this can be 
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subsequently accessed by registered doctors via their smartphones or through the created WA. 

The MA will make use of the patient’s phone GPS tracker and will send this info to the cloud when 

prompted by the user. This will enable real time tracking of the patient by hospital personnel. The 

patient will be able to view health stats from the patient interface of the MA. FL models imbedded 

in the phone application will calculate patient status and subsequently transfer to cloud storage 

for viewing by doctors on their mobile phones or through the developed WA. ML models will be 

developed on a cloud service and accessed by the MA through a POST request. The resulting 

output will also be stored on the cloud database for viewing by health personnel. All of the 

predictive modelling evaluations can also be viewed by the patient on the mobile patient interface. 

An overview of the proposed system architecture based on stakeholder requirements and system 

specifications is shown in Figure 2-5. Figure 2-6 also shows the flow of information using a 

uniformed modelling language (UML) diagram. 

  Figure 2-5: Proposed Smart IoT Telemonitoring System 

Figure 2-6: UML Diagram for Proposed Telemonitoring System 
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2.4. Concept Development and Selection 
The previous sections identified and gauged the requirements, specifications and challenges 

required to design an effective IoT based healthcare system. This together with the objectives 

mentioned in section 1.5, can be used to identify and discuss possible IoT based telemonitoring 

systems. This section brainstorms and scores several concept designs using the Pugh matrix 

based on three areas 1) physical characteristics, 2) Usability and 3) IoT connectivity. The outcome 

is the selection of an optimum concept design which can be developed in further detail. 

 

2.4.1. The Pugh Matrix 
The Pugh matrix proposed by Pugh is an effective means of comparing the effectiveness of 

various design concepts based on a predetermined set of criteria. The main steps in developing 

the Pugh matrix and identifying the best design concept is highlighted below: 

Step 1: involves designing a criteria for selection based on internal and external stakeholder 

requirements. 

Step 2: selection of a design which serves as the baseline. Here the apparent best solution was 

chosen to be the benchmark to determine if alternative designs outscore it. An “S” is used to 
indicate the benchmark score. For the case of the IoT gateway selection, the Smartphone 
(Samsung Galaxy Note 10 Lite) was chosen as the benchmark. 

Step 3: All other designs are compared against the benchmark and scored for each item on the 
criteria. “S” indicating no difference, “+” indicating the design is more effective than the benchmark 
and “-“, indicating that the design is less effective than the benchmark. “++” and “--“can be used 
to indicate higher levels of discrimination. 

Step 4: Add all the “+” values and “-“values for each design and the highest score wins. 

Step 5: Check the above scoring by using a weighting for the criteria. Multiply the weighting by 
the respective score and sum up. Once again the highest weighted “+’s” depicts the most suitable 
design. 

The preceding sections will look at the matrix application for two fundamental design 

considerations i.e. the IoT gateway selection and the selection of the wearable design concept. 

2.4.2. Proposed IoT Infrastructure Designs 
One of the fundamental components of the IoT infrastructure is the selection of a suitable IoT 

gateway as mentioned in section 2.2.2. The Pugh matrix seen in Figure 2-7 was used to evaluate 

three different IoT gateway options i.e. mobile as a gateway (Samsung Galaxy Note 10 Lite for 

comparison), Rasberry Pi as a gateway and the Arduino Nano as a gateway. The scoring from 

the matrix clearly shows that the best option is mobile as a gateway, with the Rasberry Pi option 

having a score of -8 in comparison to the benchmark (Samsung Galaxy Note 10 Lite) and the 

Arduino Nano scoring -48 in comparison to the benchmark (Samsung Galaxy Note 10 Lite). Three 

characteristics were used to compare the various IoT gateways available i.e. physical 

characteristics, Usability and IoT connectivity. Within the domain of physical characteristics, the 

reliability of the device was considered the most important since the IoT gateway needs to be 
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physically durable for continuous uses while also being physically capable in terms of hardware 

capability to support the intended application. Battery life was also very important and scored 

second in terms of weighting since the continuous transmission of data was paramount to achieve 

the goal of real time monitoring. Size of device and affordability scored lower in weighting because 

it is assumed that the customer would still purchase the product if it were larger or more expensive 

on condition that it prolonged their life span. Under the area of usability, processing power scored 

the highest weighting of “5” since without a good enough middleware processor, the entire IoT 

infrastructure would collapse. On the other hand, ease of programming and sensor integration 

were considered a “nice to have” but not a deal breaker, hence they had lower weightings. Front 

end usability was given a moderate weighting since it is important, however complexities could 

be ironed out with further training or adjustment in the interface from market feedback during 

commercialization. All properties within IoT connectivity were considered relatively important. 

However ease of integration with the cloud platform and data handling costs were given a higher 

weighting as these would be crucial to ensuring transmission to healthcare professionals. Cost of 

data handling was also considered of high importance since it would result in major operating cost 

issues during the scale up and commercialization phase of the product deployment. Ability to 

store data locally and wireless capabilities were considered important however scored a “4” in 

terms of weighting since bare minimum requirements would be good enough to satisfy this criteria 

e.g. range of Bluetooth and size of storage does not need to be superior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7: Pugh Matrix for IoT Gateway Selection 
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In terms of IoT connectivity, the Rasberry Pi option scores the same as the mobile option for cloud 

integration as it is possible to create connections with databases and IoT hubs easily. Rasberry 

Pi also has a built in Bluetooth module as does a mobile phone which makes short range 

communication possible. In terms of local storage, a Rasberry Pi does have sufficient capabilities 

(32 GB) however this falls short in comparison to the impressive storage space found within the 

smartphone (128 GB).  With regards to the Arduino Nano, it fails in all of the criteria. Due to the 

absence of an operating system and built in Wi-Fi and Bluetooth module which need to be added 

on as auxiliary equipment. The Arduino Nano onboard memory is minimal (32 KB) which means 

that it is unable to store large amounts of data from the sensors. 

With respect to usability, programming language is subjective however the Python coding for the 

Raspberry Pi module was considered of equal complexity to Java required for the MA to be used 

on the smartphone. This factored in language popularity and the availability of resources for 

troubleshooting. The Arduino Nano however used “C” on the Codevision interface which had 

minimal online resources and a small audience of users therefore it scored lower in comparison 

to the benchmark. All options are the same in terms of integration with sensors and are able to 

connect easily through a plug and play approach. In terms of processing power, the Rasberry Pi 

does have computational power (512 MB RAM) however not nearly as powerful as a smartphone 

(6 GIG RAM). The Arduino Nano is however not effective in terms of processing power which is 

why it scores poorly in the area (2KB SRAM).  

Physically, the Arduino Nano scored well in terms of size (45mm by 18mm) which is much smaller 

than a smartphone or Raspberry PI (66mm by 30.5mm). The Rasberry Pi Zero and Arduino Nano 

are also much cheaper in comparison to a smartphone. In terms of battery usage, the smartphone 

is the biggest consumer of power, however it has a big enough battery with energy optimization 

capabilities which ranks it higher than the two other design options. The smartphone also wins in 

terms of reliability since it is a commercialized product as compared to the Rasberry Pi and 

Arduino Nano which are often suited for prototype designs.  

 

2.4.3. Proposed Wearable Designs 
As discussed in section 2.2.5, the wearable device has a unique set of challenges which need to 

be satisfied to ensure the effectiveness of the IoT telemonitoring system. To overcome these 

unique challenges, three design concepts were evaluated using the Pugh matrix. The results are 

shown in Figure 2-8. The first is the baseline concept which is based on a wrist strap design. A 

chest and waist strap were the other design concepts examined. The results show that the 

baseline is the winning concept and will be the most suitable for the intended application. The 

second best design is the waist strap (score of -7) with the worst suited being the chest strap 

(score of -63). 

 



 

34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2-8: Pugh Matrix for WBAN Selection 
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Each WBAN option was weighed up against placement, accuracy and ease of access of sensors. 

Placement and accuracy had the highest weightings of “5” since the positioning and accuracy are 

the most important factors for reliable communication of data to doctors. Ease of access is 

important however patients will not be accessing the sensors all the time so it was not given the 

highest weighting. In terms of usability, comfort was scored the highest weighting of “5” as the 

device needs to be worn 24/7. Willingness to use and possibility of prolonged use were also 

considered important yet had lower weightings since these are factors which can be rectified 

during commercialization. Ease of application and removal of device scored a weighting of “3” 

since this is done rarely. In terms of physical characteristics, reliability scored the highest with a 

weighting of “5” since a WBAN needs to be durable for continuous use and capable of protecting 

the components within it. Affordability, obtrusiveness, size of device and ease of seeing visual 

indicators were considered medium concerns hence were given a weighting of “3.”  

The chest strap scored low for placement of certain sensors as readings would not be possible 

from the chest. These include the humidity sensor and pulse rate sensor. Some sensors however, 

like the ECG would get optimum readings when placed on the chest. The design also scores low 

in terms of usability because it is much more uncomfortable to use as it requires wires and sensors 

to run across the chest. Although it is much less obtrusive than the other designs as it is used 

under the clothes, it prevents the user from seeing visual indicators when abnormal conditions 

are detected. The waist strap was a close runner up to the wrist strap. It has a small housing and 

users can easily see warning alerts. The design is also less obtrusive as it can be worn like a belt 

with the sensor housing depicting a belt buckle. The design scores in terms of comfort but falls 

short with respect to placement of sensors as many sensors would not be able get readings from 

the waist. The best design was the wrist strap which will be further explained in the preceding 

chapters. Here the sensors will be housed in a casing enclosed within a wearable strap. All 

readings can be taken with sensors obtaining measurements from the arm area. The device is 

also something most people will be inclined to wear as it depicts a typical wearable device.  

 

2.5. Chapter Summary 
The user requirements from the stakeholder’s perspective were examined based on interviews 

with concerned stakeholders. This together with the IoT frameworks were used to establish the 

specifications and challenges to address when designing the ideal IoT system. This included 

areas of software development, electronic design and wearability. A proposed high-level design 

was then presented together with a UML diagram. The concept developments were thereafter put 

through a Pugh matrix to identify 1) the optimum IoT gateway and 2) the optimum WBAN device. 

The criteria assessed for the IoT gateway was physical characteristics, IoT connectivity and 

usability. While for the WBAN device, the Pugh matrix scored conceptual designs based on 

physical characteristics, usability and sensor characteristics. The chapter concluded with the 

identification of the wrist WBAN set-up with smartphone IoT gateway integration as being the 

optimal conceptual designs to take forward. 
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Chapter 3: Sensing Layer - WBAN Device 
Chapter 2 looked at the various proposed wearable designs and showed through the use of a 

Pugh matrix that the best possible WBAN device would be in the form of a wearable arm strap. 

The chapter further elaborated on the various IoT frameworks characterized by their difference in 

IoT gateways and once again through a Pugh matrix approach scored an IoT system using a 

smartphone gateway as the most suitable for the proposed design. This section will delve into the 

detailed design of the WBAN selected in chapter 2, paying careful attention to the design criteria 

set forth in chapter 2.   

 

3.1. Sensing Layer Characteristics 
With an IoT based framework, the sensing layer is often composed of several layers of sensors 

based on the application. In the healthcare sector, the IoT sensing layer is composed of sensors 

that measure various physiological parameters. These parameters are obtained non-invasively 

through various different sensors either directly, as is the case with an electrocardiogram (ECG) 

or indirectly through methods like IR where the output ADC signal is fed into a correlation that 

determines the desired parameter for e.g. sugar levels in blood for the diagnosis of diabetes. 

Below is a list of common physiological readings that are possible within the health telemonitoring 

spectrum: 

 

3.1.1. ECG 
The ECG is a means of visually viewing the complex electrophysiological events that are 

occurring within the cardiac tissues of the heart over a period of time. In order to maintain a healthy 

body, the heart needs to be able to sustain regularity in its contraction and relaxation cycles. An 

ECG is therefore of paramount importance to monitor and ensure that deviation from a healthy 

heart function is indicated to health practitioners for them to take corrective action (Becker, 2006). 

Depolarization and repolarization can be defined as the action potential (AP) caused by ions 

moving across the cell membrane. This is what causes the contraction of the cardiac cells or 

muscles. Repolarization is the opposite and refers to the return of the ions to their rest state 

resulting in relaxation of the heart muscles. 

A normal ECG pattern can be shown by Figure 3-1. The waveform is constructed from various 

electrical signals that occur within the heart muscle tissues. The P wave is used to illustrate the 

electrical signal originating from the atria (chambers of the heart). There is a slight delay in 

electrical activity illustrated by the PR segment which can be attributed to the Atrioventricular(AV) 

node slowing down depolarization to ensure that the atria unloads blood into the ventricles before 

it contracts. The QRS is then the largest cycle and represents depolarization of the heart 

ventricles. Repolarization of the myocardium is indicated by the ST segment (Price, 2010). 
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As the ECG is plotted over time in milliseconds, the various segments have a normal range which 

indicates a healthy heart function.  

PR interval – 120 to 200 ms 

QRS duration – Up to 120ms 

QT interval – Up to 440 ms 

 

3.1.2. Electromyography (EMG) 
EMG is another fundamental measurement for health monitoring. It is the visual representation of 

the muscles response or electrical activity as a muscle stimulus is inflicted. An EMG is carried out 

when a health practitioner suspects that the patient may be suffering from a nerve or muscle 

disorder (Mayoclinic, 2019). 

Figure 3-2 shows an example of patient with normal EMG. At rest there is no AP, however during 

stimulation of the muscles a waveform appears. The size and shape of the EMG signal is dictated 

by the AP. Hence a stronger AP will mean that the muscle is more responsive to nerve stimulation. 

Here muscle fibre size is correlated to the AP rate and amplitude of the AP (ebme, 2021). 

Figure 3-1: Normal ECG wave 
Figure 3-1: Normal ECG Wave 
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3.1.3. Oxygen Saturation & Pulse Rate 
A pulse oximeter sensor is a device that measures both blood oxygen levels as well as pulse rate 

through the fingertip by means of light beams. The oxygen saturation (SpO2) gives information 

regarding the oxygen levels in the blood stream. The use of light beams to approximate the output 

variables allows the device to work non-invasively (U.S. food and drug administration, 2021). 

Pulse rate can be defined as the number of successful beats the heart is able to accomplish in a 

minute (John Hopkins Medicine, 2021)  also referred to as beats per minute (BPM). 

Normal ranges: SpO2 = 95 %-100 % (John Hopkins Medicine, 2021) 

                             Pulse rate = 60 BPM – 100 BPM (U.S. food and drug administration, 2021) 

 

3.1.4. Humidity  
Humidity and temperature parameters can be useful in the grander scheme of a health 

telemonitoring system. When combined with the patient’s location through GPS – doctors will be 

able to make correlations about how humidity affects the body temperature (BT) of a patient thus 

indicating potential health hazards such as sun stroke. A study on health effects has shown that 

humidity can be the cause of an increased risk of respiratory infections and allergies (Arundel et 

 

Figure 3-2: Normal EMG Wave 
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al., 1986). According to the study (Arundel et al., 1986), relative humidity in the range of 40%-

70% can hinder the survival and infectivity of bacteria and viruses. 

The effect of environmental temperature can also have an adverse effect on the human body, 

especially if it is left unmonitored. Relative humidity can also have an effect on temperature 

resulting in extreme cold or extreme heat effects. Risk level temperatures are shown below 

(Elaine, 2017): 

Between 32 °C – 40 °C, cramps and exhaustion is possible 

Between 40 °C – 54 °C, heat exhaustion is likely 

Over 54 °C, the likelihood of heat stroke is probable 

                                                                              

3.1.5. Body Temperature 
The importance of regulating body temperature is of utmost necessity which is why it forms an 

integral part of a well-integrated telemonitoring system. Limit alarms can be used to indicate when 

thresholds have been reached to warn both patients and doctors of impending health issues.  

Keeping the body temperature close to 37 °C helps to maintain cell temperature for optimal bodily 

reactions (BBC, 2021).   

Abnormal Ranges: Any temperature above 38 °C means fever (WebMD, 2021) 

                                 A drop in temperature below 35 °C means hypothermia (WebMD, 2021) 

 

3.1.6. IR Sensor & Receiver 
An IR sensor and receiver is a two part device that works together. When it comes to medical 

measurements, an IR sensor and receiver can work together with laws such as the Beer Lambert 

law to non-invasively determine the concentration of various substances within the blood. An IR 

LED transmits an IR signal which the receiver then picks up. These changes in the attenuation of 

the light signal will then give an indication of the concentration of specific components in the blood 

stream. According to Beer Lambert’s law, there is a correlation between the attenuation of light 

through a substance and the properties of the substance. By mapping the changes of light 

reflecting through different blood concentrations a variety of substances and their concentration 

can be detected in the blood stream e.g. blood sugar levels to detect diabetes (Ionescu, 2018). 

Glucose balance within the body is maintained by an intricate balancing act between the 

chemicals Insulin and Glucagon. When Glucose is too high, Insulin plays a role in reducing it. 

Conversely, Glucagon helps to increase Glucose levels when it detects an abnormal level. During 

Diabetes, the body’s ability to produce insulin is inactive and hence results in an imbalance in 

glucose levels. A high glucose level indicates a condition known as hyperglycemia and a low 
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glucose level indicates hypoglycemia. The various ranges of glucose levels and what it means is 

indicated below (Stoppler, 2021): 

 72 mg/DL – 99 mg/DL is the normal range  

 200 mg/DL – 400 mg/DL hyperglycemia 

 <70 mg/DL - hypoglycemia 

High blood sugar can be dangerous and overtime can cause the occurrence of non-

communicable diseases such as stroke, eye damage and kidney failure. 

 

3.2. High Level Specifications 
Now that the characteristics and importance of the sensors used within the sensing layer have 

been identified, the high level specification of the WBAN can be determined. It is known that the 

device needs to be in the form of a wearable arm band. Within the band needs to be an enclosure 

to house all the sensors. The band needs to fit securely so that sensors make adequate contact 

with the skin. The sensors should be optimally located to ensure the proper reading is attained. 

The device should be as small as possible, hence a small MCU and sensors are required to obtain 

readings. A Bluetooth module is required to transmit the data to the patient’s mobile phone. The 

device should have both haptic and visual feedback to alert the patient of impending health issues 

and also when to take readings.  

 

3.3. Electronic Design  
The electronic design refers to the integration of all sensory components with the chosen MCU. 

Whilst the software integration refers to the programming of the MCU to activate the electronic 

components. This section will elaborate on all of the sensors utilized in the prototype design along 

with the design decisions that led to the completed electronic system. Thereafter the software to 

control the MCU will be elaborated on. 

 

3.3.1. MCU 
A MCU is required to receive the digital signal from the WBAN, convert it to an analogue signal 

and then transmit the data to the smartphone MA using the UART protocol. When choosing the 

suitable MCU, various physical and performance characteristics need to be evaluated to 

determine a fit for purpose solution. The MCU selected was the Arduino Nano with the Atmega 

328P chipset. The Arduino Nano was suitable due it being low voltage, compact in size, 

lightweight and designed with sufficient digital and analogue pins to enable connections of various 

sensors. It supports an input voltage of 7 V-12 V and has an onboard 5 V and 3 V regulator if 

required. This MCU is also easily available and a cheaper choice compared to its predecessors 
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that have more computational power and are much larger such as the Arduino Uno and Arduino 

Mega. Another fundamental requirement was the availability of TX and RX pins to enable the 

transmission of data through the Universal Asynchronous Receiver and Transmitter (UART) 

protocol. The Atmega 328P is a high performance and low energy chipset with a 10 bit analogue 

to digital converter (ADC) which means it has a longer battery life and high enough precision for 

the intended application. Although the chipset is running on an 8 bit system with a low end random 

access memory (RAM) and processing power/clock speed, it satisfied the requirements of the 

proposed system as most of the data processing is done on the MA which also reduces energy 

usage. The MCU is also able to reach baud rates of up to 115200 which provides a fast enough 

transmission without errors on the receiving end. Table 3-1 indicates the required specifications 

along with the chosen MCU capabilities: 

 

 

 

 

 

 

 

 

 

The analogue and digital pin connections to the MCU is highlighted in the Table 3-2: 

 

Table 3-2: Analogue and Digital Pin Connections on MCU 

Table 3-1: Requirements and Specifications of Chosen MCU 
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3.3.2. Bluetooth 
The Arduino Nano does not come equipped with a built in Bluetooth module, therefore a 

standalone unit was purchased to satisfy the UART capabilities required. The Bluetooth module 

will be used to transmit and receive data to and from the MA using the MCU. The HM-10 low 

energy module, HC-05 and HC-06 were considered for use as a Bluetooth. The HC-05 was an 

older model and the HM-10 was much more expensive with the low energy requirement not being 

an immediate necessity. Therefore the HC-06 was selected as it is a common of the shelf (COTS) 

product that is easy to set-up and integrate. The HC-06 is a class 2 Bluetooth device which means 

that it can operate in ranges of up to 2 m. For the intended application, this is satisfactory as the 

IoT gateway is the patient’s smartphone which is usually in the patient’s possession. The device 

has a reasonable power and voltage requirement and utilizes a method called frequency hopping 

speed spectrum (FHSS) technique to inhibit interference with neighboring devices. In addition, 

the device is cheap, easily available, small and lightweight which fits the purpose of a WBAN. 

One of the drawbacks of the HC-06 is that it can only be operated as a slave, however for the 

system employed, the HC-06 is only required to accept a connection from the smartphone. The 

Android based application requires a radio frequency communication (RFCOMM) or Serial Port 

Profile (SPP) which is available on the HC-06 module. 

Figure 3-3 depicts the connection between an Arduino Nano MCU and the HC-06 Bluetooth 

module. 

 

 

 

 

 

 

 

Table 3-3 shows the system requirements for a Bluetooth device and the HC-06 capabilities: 

Figure 3-3: HC-06 Connection with Arduino Nano MCU 

Table 3-3: Requirements and Specifications of Chosen Bluetooth Module 
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3.3.3. Body Temperature Sensor 
The LM35 temperature sensor was utilized for measuring body temperature which would be used 

as an input for the FL and MEWS model and to monitor the patient. The LM35 temperature was 

selected over the MAX30205 temperature sensor since it is much cheaper with the required level 

of accuracy. The LM35 is low cost (due to wafer-level trimming), compact (20 mm × 5 mm), low 

energy (<60 μA) and easily accessible with analogue output capabilities. It is typically used to 

measure room temperature, however it is possible that it can be adapted to measure body 

temperature through the direct contact mechanism as opposed to the IR mechanism of operation. 

The response time is relatively fast when the sensor is already at ambient temperature and the 

temperature rise is gradual. The LM35 has an advantage over other linear scale temperature 

sensors calibrated in Kelvin as one can easily get a centigrade reading without having to subtract 

a large constant voltage from the sensor output. The sensor is also able to achieve typical 

accuracies of ± 
3

4
 °𝐶 over the temperature range of -55 °C to 150°C. The low output impedance 

of the sensor circuit also helps to keep noise out which results in a stable output voltage linearly 

proportional to the centigrade temperature.   

The LM35 temperature sensor has 3 pins. The ground, source and voltage. The sensor requires 

a 4 V – 20 V input which is supplied by the LM7805 voltage regulator (5 V) which is connected to 

the output of the 7.4 V lithium battery. The ground is connected to the lithium battery ground and 

the analogue pin is connected to one of the Arduino ADC channels. The sensor connection is 

shown in Figure 3-4: 

 

 

 

 

 

 

 

 

 

 

 

The resulting ADC output is then plugged into equation (3.1) to calculate the output voltage in 

volts: 

Figure 3-4: LM35 to MCU connection 
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                          𝑉𝑜𝑢𝑡 = 𝐴𝐷𝐶 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 ×  
𝑉𝑟𝑒𝑓

𝐴𝐷𝐶 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
… … … … … … … (3.1) 

 

For the Arduino microcontroller operating with a 10 bit ADC, the ADC resolution is given be 2^10. 

Hence the equation (3.1) can be simplified to give equation (3.2): 

 

                                        𝑉𝑜𝑢𝑡 = 𝐴𝐷𝐶 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 × 
𝑉𝑟𝑒𝑓

1024
 ………………………..…. (3.2) 

 

The measured temperature is then given by equation (3.3) where the output voltage is measured 

in mA. This equation was then used in the MCU code to calculate the temperature output of the 

sensor. This equation is further analyzed in the results section to determine its efficiency. 

                    

                                         𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°𝐶) =
𝑉𝑜𝑢𝑡

10
… … … … … … … … … … . . … . . … (3.3)  

 

3.3.4. Humidity Sensor 
A humidity sensor was added to the WBAN due to the importance of tracking the effect of humidity 

on the human body. The humidity output would be used for input into the FL model. Apart from 

high humidity resulting in low energy levels and lethargy, it can also result in hyperthermia in 

extreme cases as a result of the body’s inability to dispose of heat energy. The humidity sensor 

chosen for the application was the HIH-4000 since it was the most compact, accurate and reliable 

compared to similar sensors like the KS0430 Keyestudio module. The following characteristics 

contribute towards the choice of using the HIH-4000 module: 

 Ultra-low power requirement of less than 200 μA (requirement is <1 mA) 

 The element of the sensor has a 3 layer design which protects against wetting, dirt, dust, 

chemicals etc. (requirement is water proof and dust proof) 

 There is an almost linear voltage vs % relative humidity (RH). 

 The sensor is relatively easy to set-up. 

 Requires a low voltage supply in the range of 4 V – 5.8 V (requirement is 3.3 V to 5 V) 

The HIH-4000 has a ground, voltage and analogue output pin. As with the LM35 sensor, the 

ground and voltage is connected to the ground and output pin of the LM7805 (5 V) voltage 

regulator respectively while the output analogue pin is connected to one of the Arduino Nano ADC 

channels. An 80 KOhm resistor is required across the ground and output of the HIH-4000 which 

acts as a load resistor to stabilize the output value. The set-up is shown in Figure 3-5. 
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The ADC output can then be used to determine the output voltage at 25 °C where Vsupply is the 

sensor 5V supply and sensor RH is the measured sensor ADC value. 

 

                                    𝑉𝑜𝑢𝑡 =  𝑉𝑆𝑢𝑝𝑝𝑙𝑦  × (0.0062 × 𝑆𝑒𝑛𝑠𝑜𝑟 𝑅𝐻 + 0.16) …………….. (3.4) 

 

The above equation can be manipulated to give the RH at 25 °C: 

                                     

            𝑆𝑒𝑛𝑠𝑜𝑟 𝑅𝐻 = (
𝑉𝑜𝑢𝑡

𝑉𝑠𝑢𝑝𝑝𝑙𝑦
 × 0.0062) − 25.81 … … … … … … … … … . . (3.5) 

 

The true RH can then be calculated by taking into consideration the effect of temperature on 

humidity using equation (3.6) where T is the temperature at the measured sensor RH: 

 

                                    𝑇𝑟𝑢𝑒 𝑅𝐻 =  
𝑆𝑒𝑛𝑠𝑜𝑟 𝑅𝐻 

1.0546−0.00216 𝑇
  ……………………………………….. (3.6) 

 

To determine if the effect of temperature was considerable on the humidity, a graph was drawn 

(Figure 3-6) showing the change in RH at different temperature values between 0 °C – 120 °C. 

The results showed that there was a difference of 1.1 % – 5.7 % between the humidity value at 

Figure 3-5: HIH-4000 Connection with MCU 
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25 °C and the humidity value at different temperatures. The higher temperatures have a more 

significant effect on temperature. Since the range of temperatures experienced in the SA climate 

do not reach such extremes, it was decided that the equation for RH at 25 °C would be a sufficient 

indicator for the intended application and could be used in the MCU code. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.5. ECG Sensor 
The ECG sensor used for determination of the patient’s ECG signal was the Keyestudio AD8232. 

The other option was the Mikroelectronika ECG module, however this was much more expensive 

and required an adapter for use on the Arduino Nano MCU. The AD8232 is a low power 

consumption (170 μA) single lead heart rate monitor that has an operating voltage of 3.3 V. The 

requirement for such as sensor was current <1 mA and voltage between 3.3 V and 5 V. The 

AD8232 has a built in circuit designed to extract, amplify and filter small biopotential signals even 

in noisy conditions. In addition, the AD8232 has a leads off detection feature which indicates when 

all three electrodes are not connected hence when readings need to be retaken, this is a major 

requirement to ensure that the user is aware when the sensor is disconnected. 

The AD8232 has a six pins. The SDN pin was not used as this would power down the device 

when connected to the digital pin of the Arduino. The ground and 3.3 V pin of the ECG sensor is 

connected to the ground and output of the LD33CV (3 V) regulator respectively, which is 

connected to the output of the lithium battery. The output LO+ and LO- pin of the AD8232 is also 

connected to the digital pins of the Arduino and is used to activate the leads off detection feature. 

The block flow diagram showing the connections can be seen in Figure 3-7. 

Figure 3-6: Effect of Different Temperatures on Relative Humidity 
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The chosen reference voltage for the system was selected as 5 V, however the AD8232 is the 

only sensor that operates on a voltage of 3.3 V. As a result of this, the 5 V reference will not give 

the correct output peaks. To correct the issue, the MCU code was tweaked to recalculate the ADC 

output from the sensor. Using equation (3.1), for each ADC output, the corresponding output 

voltage was calculated using the known reference of 5 V.  The calculated voltage was then 

substituted back into equation 3.1 to calculate the corrected ADC output now using a reference 

voltage of 3.3 V. 

 

3.3.6. EMG Sensor 
The Myoware muscle sensor was selected to determine a patient’s EMG waveforms which would 

be used to identify muscular issues. The other options for EMG were sensors like the DFRobot 

SEN0240, however these sensors were much more expensive and did not have electrodes 

directly on the sensor. The Myoware sensor filters and rectifies the electrical activity from the 

muscular area it is located on. Once again, signal amplification and filtering is paramount to 

ensure data is correctly processed. It then outputs a voltage indicating the level of activity 

experienced by the muscle it is measuring. More activity will give off a higher voltage. The sensor 

has the placement of electrodes directly on the sensor which prevent noise artefacts caused by 

long cables. The forearm was selected as the area for muscle measurement as it allowed for a 

perfect positioning based on the wrist strap WBAN concept. 

The sensor operates with a supply voltage of between 3.1 V to 5 V therefore a 5 V supply was 

selected which was in accordance with voltage requirements. The ground and voltage pins were 

Figure 3-7: AD8232 Connection to MCU 



 

48 
 

connected to the ground and output pins of the LM7805 regulator respectively while the analogue 

output pin was fed into the ADC of the Arduino Nano. The connection is shown in Figure 3-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.7. Pulse Rate Sensor 
The Keyestudio analogue output pulse rate sensor was used as the heart beat measurement tool. 

Other options considered were the MAX30100 range sensors, however in terms of prices and 

ease of set-up – the Keyestudio sensor proved a better choice. The Keyestudio sensor is 

compact, affordable and lightweight which makes it suited for its function. The front of the sensor, 

as shown in Figure 3-9 is made up a small round hole and a square ambient light sensor. When 

a person places their earlobe or finger on the front side, the ambient light reflects off and enters 

through the round hole to be read by the sensor. The circuit connection is shown in Figure 3-10. 

 

 

 

 

 

 

 

Figure 3-8: Myoware EMG Connection with MCU 

Figure 3-9: Pulse Rate Sensor 
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In order to get the BPM, a threshold ADC output value needs to be selected to represent a 

peak/beat. A value of 512 was selected almost half way through the 1024 ADC resolution. The 

number of thresholds in a 10 second period is then calculated using timers on the MCU code and 

multiplied by 6 to give the BPM.  

 

3.3.8. IR Transmitter and Receiver 
The Keyes flame sensor was utilized as the sensor for measuring IR readings. Other options 

considered were PIR sensors however these required amplification circuits to be built which would 

not satisfy the size requirements. The Keyes flame sensor although traditionally used to detect 

fire through IR light was adapted to measure IR absorption when IR light passes through a 

patient’s finger. The set-up includes an IR LED which gives of IR wavelengths of up to 940 nm. 

The index finger is placed between the IR LED and the flame sensor which can measure 

wavelengths in the range of 760 nm to 1100 nm which is a requirement for glucose detection. As 

the light shines through the finger it will then come out at a lower frequency based on the light 

that is absorbed by the constituents in the blood as indicated by Beer Lambert’s law discussed 

previously. This can be used to measure different components in the patient’s blood through 

calibration with a known sensing device. Glucose measurements were taken using the IR 

transmitter and receiver set-up and plotted against a calibrated glucometer. The resulting straight 

line equation was then determined which could be used as a predictor of a person’s blood glucose 

levels. The equation and straight line derivation can be seen in the results section 8.1.3. Figure 

3-11 shows the IR sensor connection with the MCU. The sensor uses a 5 V supply voltage which 

falls within the voltage requirements of 3.3 V to 5 V. The ground and voltage pins were connected 

to the ground and output pins of the LM7805 regulator respectively while the analogue output pin 

was fed into the ADC of the Arduino Nano. The IR Led was connected to a digital pin of the MCU. 

Figure 3-10: Pulse Rate Sensor Connection with MCU 



 

50 
 

 

 

 

 

3.3.9. Lithium Battery and Balanced Charger 
Based on the current requirements calculated in Appendix I, it was decided that a 450 mA Lithium 

battery would allow for sufficient running of the prototype for testing (at least 2 hours). A 

compromise on the current was made to satisfy the small size requirement. In addition, the Lithium 

battery chosen carried a voltage of 7.4 V which satisfied the maximum supply voltage requirement 

for the sensors and MCU. The system was designed so that the battery can easily be removed 

and recharged using the balanced charger purchased.  

 

3.3.10. Veroboard Design 
A PCB layout could have been used to optimize on space, however for the purpose of this 

dissertation, it was decided to develop the prototype using a veroboard layout while also 

maximizing on board space. The veroboard will be used to establish the connection between the 

various components and to hold the components in place. A veroboard with L-80 mm by W-50 

mm was cut up and allowed for the connection of all the components. The stripboard layout 

showing the connection of the components can be seen in Appendix D. Figure 3-12 shows the 

veroboard with all the connections made with jumpers, ribbon cables and headers. To protect the 

end connections, ribbon cables were used to close off the exposed ends.  

Figure 3-11: IR Sensor Connection with MCU 
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3.4. MCU Software Design  
The MCU software design includes all aspects of programming the Arduino Nano to read the ADC 

output of the sensors, control the haptic and visual indicators as well as conversion of the ADC 

output to a measurable variable. The code also focuses on creating strings with unique delimiters 

that are sent via the UART protocol in buckets, using interrupts and timers. This so that it can be 

processed by the MA. The MCU software design focuses less on heavy data processing and 

more on extracting and sending data from the WBAN network to the IoT gateway. The preceding 

sections will delve into each component in more detail. 

 

3.4.1. Program Flow Initiation 
The microcontroller is programmed using the CodeVision AVR software which is an IDE that 

consists of an automatic program generator called the CodeWizard AVR. Codevision is 

implemented using the C language and is compatible with the Atmega 328P chipset being used. 

Figure 3-13 highlights the process flow for initiating the program code using CodeWizard AVR. 

The process starts of by creating a new project based on the Atmega chipset properties. The 

relevant input and output ports are then set-up based on requirements. The interrupts, timers, 

USART and ADC settings are then enabled before generating the code for editing. 

 

Figure 3-12: Components connected to Veroboard 
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Figure 3-13: CodeVision AVR Wizard Set-up 

 

3.4.2. Program Flow Operation 
Once the initial program code is generated, the code can then be edited to perform the following 

functions: 

 Read analogue sensor values. 

 Convert ADC output to measurable parameters e.g. conversion of ADC output for the 

LM35 output to a °C reading. 

 Set-up timers and interrupts to receive and send data through the UART protocol 

periodically. 

 Control the haptic and visual feedback. 

 

Figure 3-14 displays the operational flow for a single loop of the MCU. The process starts with a 

timer initiated loop. The loop is initiated after every 1000 ms.  The loop will first start off by reading 

the sensor values through the read analogue function. Then converts this to a measurable 

parameter if required based on given correlations. In order to read the value via the serial output 

or MA, it is first converted to ASCII annotation before being transmitted. This process is 

accomplished through a series of IF statements that look at the integer value size and counts the 

number of thousands, hundreds, tens and unit values and prints each value as it is calculated. 

The print statement is then used to concatenate the measured value together with a “#” delimiter 

to separate sensor values, before sending to the MA using the UART protocol. Two other timers 

are used for the pulse rate sensor and the vibration motor. The vibration motor is used for 

reminding the patient to take readings and is set to go off after 30 min. It will then remain on for 5 

seconds before resetting the timer to 0 for the next 30 min. The pulse rate sensor as mentioned 

in section 3.3.7 does not give a direct pulse output. A timer is used to calculate threshold ADC 

values over a 10 second period using the third timer. This value is then calculated over a minute 
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and communicated via UART as the BPM. The LED utilizes an interrupt routine to turn on based 

on info received from the MA when vital signs are determined to be above normal values defined. 

 

 

3.4.3. ADC 
The ADC settings were set to use the Vref pin of the Arduino as the voltage reference which 

corresponds to a 5 V value. In addition, the auto trigger source was selected to be free running 

which means that the ADC is continuously doing conversions without having to be re-triggered. 
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Figure 3-14: Single Loop Operational Flow MCU Code 
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This is desirable as the patient vitals will need to be checked on a continuous basis to flag potential 

health hazards.  

 

3.4.4. Timers and Interrupts for Sending Data Packages 
The speed at which data is received on the MA was controlled using a buffer on the MA which 

will be discussed in greater detail in chapter 4. In this way the parity between the MA and 

Bluetooth could be controlled through the use of delimiters. A 1000 ms timer was used to separate 

the transmission of different chunks of readings. The 1000 ms delay was trialed to be the minimum 

delay to ensure that the MA could process and split each chunk effectively without errors or 

crashes. Each set had a starting “#” delimiter and ending “#” delimiter. Which helped the android 

application identify the different sets and how they should be handled.  Timer 1 overflow was set 

up for the MCU. The overflow value was calculated to be 50 using equation (3.7), where the clock 

frequency was set at 16000 KHz and n is equal to the 10 representing the 10 bit ADC system: 

 

       𝐹𝑇𝑖𝑚𝑒𝑟 =
𝑓𝑐𝑙𝑜𝑐𝑘

2𝑛        ………………. (3.7) 

 

3.5. WBAN Strap Integration 
The WBAN strap includes the enclosures for housing of the electronic components as well as the 

Velcro strap used to secure the enclosure and sensors to the wrist and forearm of the patient. 

The smallest dimensions possible for the enclosure was calculated taking into consideration the 

dimensions as well as the optimum positioning of the sensors for accuracy of readings. The Velcro 

strap was to provide a firm enough hold of the enclosure while also providing enough pressure 

for some of the sensors to obtain an accurate enough reading from the surface of the skin. 

  

3.5.1. Enclosure Selection and Sensor Positioning 
Two commercial enclosures were selected to house the various components. A smaller enclosure 

houses the lithium battery, IR LED, sensor and Bluetooth and a larger enclosure was used to 

house the sensors, MCU, LED and vibration module. Some of the sensors are positioned outside 

of the casing so that readings can be taken. Various holes were made on the enclosure to allow 

for the electrodes to be visible for patient contact. The larger enclosure with the holes for the 

electrode pads, LED etc. is shown in Figure 3-15 along with the enclosure for the battery pack.  

Two holes were cut up on the bottom of the larger enclosure for the two ECG electrodes. On the 

side of the enclosure is a hole for the HIH-4000 humidity sensor and the LM35 temperature sensor 

which requires an index finger contact. The smaller enclosure has an opening for the index finger 
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to allow for an IR reading to be taken as well as an opening to see the Bluetooth’s LED so that 

patients can determine when pairing is successful. The top of the enclosure has a third opening 

for the ECG sensor ground electrode which requires the index finger contact. Also on the top is 

another opening for the LED to notify the patient of impending health issues. A layout diagram 

showing the positioning of the sensors can be found in appendix K. 

 

 

 

 

 

 

 

 

 

The ECG sensor needs to be in contact with a muscular region to measure contraction of the 

muscle fibres. It was therefore decided to position the sensor on the Velcro strap so that it could 

extend across the forearm region. A small Velcro strap was used to position the EMG sensor in 

place. Figure 3-16 shows the positioning of the sensor. 

 

 

 

 

 

 

 

 

Figure 3-15: Small Enclosure (black) and Large Enclosure (grey) with 

Holes for Electrodes 

Figure 3-16: Positioning of EMG Sensor of 

Forearm Using Velcro Strap 
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3.5.2. Integration of WBAN Strap and Electronics 
In order to obtain readings and ensure that the patient can comfortably use the device while 

moving around, the enclosure housing the electronic components needed to be strapped onto the 

patient’s arm using a Velcro strap. The preceding subsections details how this was done. 

 

3.5.2.1. Combining Electronics with WBAN Strap 

As mentioned previously, the smaller enclosure which contains the battery was glued at a right 

angle to the larger enclosure with a small hole between the two enclosures to allow the battery 

connection with the veroboard. The battery and veroboard was then be placed in their respective 

enclosures taking sensor placement discussed into consideration. The enclosures were then 

closed and fastened with screws. Figures 3-17 and 3-18 show the components within their 

enclosure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-18: Electronics within Larger Enclosure 

Figure 3-17: Electronics and Battery Pack within Smaller 

Enclosure 
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3.5.2.2. Prototype Fitting With Patient 

The patient starts off by putting on the stretchable arm band which contains the EMG sensor 

positioned in place. The enclosures are then secured onto the patient’s arm and the Velcro strap 

is placed across to hold the enclosure in place. Figure 3-19 highlights the proposed fitting. 

 

 

 

 

 

 

 

 

 

 

3.6. Chapter Summary 
This chapter highlighted all details of how the WBAN layer was designed. Initially the 

characteristics of the sensors used within the WBAN were discussed. The expected output of the 

sensors, how they are interpreted as well as why they are important components of the sensing 

layer was discussed.  

The chapter progressed with detailed descriptions of each component utilized within the WBAN. 

This included a discussion of the MCU connections with each sensor as well as MCU 

programming using the CVAVR software. The correlations to convert the ADC output to a valid 

sensory value were also discussed.  

The chapter concluded with discussing the enclosures housing the sensors, how they are 

integrated with the WBAN strap and finally how the device fits onto the patient. 

 

 

 

 

 

Figure 3-19: Fitting of WBAN on Patient’s Arm 
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Chapter 4: IoT Gateway and GUI’s 
Chapter 3 looked at setting up the WBAN device which serves as the sensing layer to receive 

vital signs from the patient. The electronic components, MCU software and eventual WBAN 

prototype was explained in detail. This section will focus on the development of the MA which 

aids IoT gateway functionality as well GUI functionality. Thereafter the second GUI which is the 

WA will be explored. It is important to note that chapter 7 focuses on the use case scenarios for 

the WA and MA, however this chapter will look at the technical aspects and design considerations 

which facilitates the information flow through the IoT gateway and GUI’s.  

 

4.1. MA and IoT Gateway Development 
The MA used in the system was developed in the Android studio IDE using the Java programming 

language. When designing the MA, a great deal of effort was made to ensure that the application 

satisfied the criteria of ease of usability, reliability and being a rich source of valuable information. 

These were the requirements identified by the key stakeholders in chapter 2. Since both 

physicians and patients have a different sets of requirements for the system, the MA needs to 

consider these differences and provide a different offering for each type of audience. The MA was 

therefore designed with two interfaces (a physician and patient interface). The preceding 

subsections will explain the activities within each interface in greater detail. Appendix C shows 

the MA UML diagram with the different activities that make up the application. Figure 4-1 shows 

the program flow which will be discussed in the preceding subsections. 

Figure 4-1: Operational Flow of MA 
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4.1.1. Patient Registration 
In order for a patient to utilize the MA, he/she is required to first register on the application. The 

registration process was designed to extract as much personal information from the user that 

would help health practitioners gauge the effect of lifestyle choices and health statistics on the 

health profile of the patient. Data such as age, weight, smoking status, previous health conditions, 

emergency contact details etc. can help the physician react more effectively during emergency 

situations. In addition, these variables were later used as inputs to the ML model discussed in 

chapter 6. Once the patient start’s entering their personal information on the registering pages, 

the data is then stored in hashMaps before a connection is established with Firebase and the data 

is uploaded to the cloud. The details of this transaction is explained in greater detail in chapter 6 

and chapter 7. 

 

4.1.2. Patient Tracking 
The location manager application within Android Studio is used to identify the user’s location using 

the phone’s built in GPS settings. This prevented having to integrate a GPS module within the 

WBAN network which reduced costs and space consumption. In order for the process to work, 

the relevant permissions need to be set under the Android manifest file. 

The ACCESS_FINE_LOCATION permission Android API needs to be granted to gauge the most 

precise location (within 3 square Km) whereas the ACCESS_COURSE_LOCATION grants 

permission to obtain an estimate location within 50 meters. On Android 12 (API level 31) or higher, 

users can only request that the MA provide approximate location (Android Studio, 2021). 

Therefore to avoid this mishap both the ACCESS_FINE_LOCATION and 

ACCESS_COARSE_LOCATION permissions should be set. 

ACCESS_BACKGROUND_LOCATION permission should be set and allows for continuous 

sharing of users location even when the MA is running in the background (Android Studio, 2021). 

This is important to ensure that user location is continuously being monitored in cases of 

emergencies. 

Details such as longitude, latitude, altitude, speed and accuracy together with the patient’s 

address is determined when the user activates the service on the MA. The service then runs in 

real time updating the patient’s Firebase node each time a change is observed. This enables real 

time monitoring of the user’s whereabouts by health practitioners. 

 

4.1.3. Receiving Information via the RFCOMM Protocol 
Figure 4-1 shows the operational steps undertaken by the MA when a patient utilizes the service. 

The process starts off by the patient registering or logging onto the patient interface. Once on the 

main interface, it is assumed that the patient performs all preliminary set-ups such as Bluetooth 
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and Wi-Fi enablement which is discussed in the use case scenarios in chapter 7. The Bluetooth 

activity allows the user to enable Bluetooth and discover neighboring devices through the 

device_list_adapter class. Search and pairing with other Bluetooth devices is made possible using 

broadcast receivers.  In order for the code to work effectively, the following permissions require 

enablement under the Android MA manifest file: 

The BLUETOOTH ADMIN permission is used to allow for the discovery of local Bluetooth devices. 

The BLUETOOTH_PRIVILEGED permission allows for successful pairing of devices (Android 

Studio, 2021). The BLUETOOH permission is to allow general access to Bluetooth capabilities 

(Android Studio, 2021).  

 

Information from the Bluetooth is received using the RFCOMM protocol via the phone’s Bluetooth 

and is processed using the Bluetooth_connection_service class. Data is stored in a byte which is 

converted to a string. A while loop then determines the start and end of a sensor sequence based 

on the “#” delimiter. Once a full sequence is detected it is then sent back to the Bluetooth class 

where the split function splits the sequence into individual sensor values based on the “-“ delimiter 

and split function. Prior to data being added to SQLite, the data will be checked against predefined 

thresholds to flag if the patient is having a medical emergency – in which case a short message 

service (SMS) will be sent to the doctor of the patient. This will allow for instantaneous alerts on 

problem cases. 

 

4.1.4. Storage of Data in the SQLite Database 
Through the use of a helper Class, the data is then uploaded onto a local SQLite database on the 

patient’s phone together with a created timestamp of the upload. The helper class accomplishes 

this through a create_table query which creates a new SQLite table with columns representing 

each sensor X and Y value. The insert_data function then adds the data to a matrix which is 

uploaded to SQLite using an insert query. The Schema shown in Figure 4-2 demonstrates the 

SQLite database structure after a successful upload. 

Figure 4-2: Schema for SQLite Database 
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4.1.5. Viewing of Vitals on the Patient Interface 
The MA allows the patient to view data in the monitor_vitals Activity. This is accomplished through 

a cursor function within the helper class that selects all values from the SQLite table through a 

select query. The monitor_vitals Activity then calls the cursor function and pulls the last value off 

the SQLite table to display as text on the front end of the MA. The patient’s body mass index 

(BMI), FES scores and ML stroke probability is also calculated by creating a connection with the 

Firebase database to collect input data and then to subsequently upload the calculated values to 

the Firebase database so that health practitioners can later access these scores. This functionality 

and integration with Firebase will be discussed in chapter 5. 

 

4.1.6. Cloud Upload 
Assuming Wi-Fi has been set-up, the patient can then initiate the upload to the MS Azure SQL 

database. The cloud sharing Activity utilizes a connection Class to create a data pipeline with the 

Microsoft Azure SQL database. This connection will be further explained in Chapter 9. The 

following permissions need to be set on the Android Manifest file: 

The INTERNET and ACCESS_NETWORK_STATE is used for accessing of the internet and 

network respectively. The CHANGE_WIFI_STATE allows the MA to change the WiFi connectivity 

state. The CHANGE_NETWORK_STATE allows the MA to change the network connectivity state. 

The ACESS_WIFI_STATE allows the MA to access information about the WiFi networks. 

 

The cloud sharing Activity starts off by retrieving data from the SQLite table through the cursor 

function within the helper class. Each SQLite column is stored in an individual array list. Before 

upload can be done, a function within the activity checks if a table with the patient’s ID exists in 

the SQL database. If the table does not exist, the user’s Firebase UID is extracted and used to 

create a new table with the relevant columns using a SQL create_table query. If the table already 

exists, each new upload deletes records using a SQL delete query and refreshes with updated 

data.  A FOR LOOP runs through each column and adds individual column values to each row in 

the SQLite database through and update query and asynchronous task. 
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The update query runs each time a complete loop of sensor values are retrieved, this ensures 

that there are no blank rows on the SQL table. Once the row update is complete (i.e. all values 

from the SQLite database have been transferred to the SQL database), the array lists are emptied 

and the process restarts until all values within the columns have been successfully updated. There 

exists a handler class that waits for 5 minutes for the asynch task to complete its process of 

uploading. After every 5 minutes, a perform_click function restarts the upload process so that 

there is a 5 minute delay between continuous updates. To control the size of the local SQLite 

database on the user’s phone, a resize function instance from the helper class is used to check if 

the rows in the SQLite database exceeds 5000 lines, if this is the case the oldest values are 

deleted using a delete query and the process of upload commences.  

 

4.1.7. Granting Firebase Permissions 
The find_doctor Activity works through the RecyclerView_Adapter and OnBindviewHolder 

functions which searches in the Firebase database for registered physicians. A class was created 

which allows for the basic physician information such as their specialty, location, mobile and email 

to be made available so that a patient can decide whether a physician is a good fit for them. Once 

a patient decides to share information with a doctor, the doctor’s Firebase UID is automatically 

added to the patient’s node – thus allowing the selected doctor to gain access to the patient’s 

data. Figure 4-4 shows an example node of a patient where a specific doctor has been granted 

access to data: 

 

Figure 4-3: Schema for SQL Database Table on Azure Showing Uploaded Data 
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4.1.8. Physician Registration Process 
The physician registration process is similar to that of the patient with the exception of the 

information collected during the registration process. The doctor registration process focuses on 

gathering information to validate the doctor and provide enough information for patient’s to find 

physicians that may be able to help them. Hence the focus is on collecting information such as 

contact details, HPSA details and the physician’s specialty area. 

 

4.1.9. Displaying of Information on the Physician Interface 
When the physician clicks on the track_patient Activity, a RecycleView_Adapter and 

OnBindViewHolder function is used to search for a patient on the patient database. This is 

accomplished through a Firebase connection which searches for patients via their first names. 

The physician can then choose to either view the patient location or sensor values and diagnostics 

through the various Activities available. The location tracking feature connects with the patient 

Firebase database and retrieves the user’s location from their node. The other activities for the 

sensor information and health status pull data from the MS Azure SQL database using a JDBC 

SDK which creates a connection with MS Azure using an API key. When patients upload their 

data, SQL tables corresponding to unique Firebase UID’s are created. This UID is automatically 

selected when the physician selects a specific patient so the correct table is looked up in the SQL 

database. The SQL table columns are stored in individual arraylists and are then converted to 

integers before being plotted using the MPAndroid chart software. The X-axis labels are inserted 

Figure 4-4: Sample Patient Node Showing Doctor Permissions 
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and formatted using the LineChartXAxisValueFormatter. The following dependencies need to be 

enabled in the build.gradle file of Android studio: 

 MPAndroidChart:v3.1.0 

 

4.1.10. Accessing Patient Timestamp Readings 
The MP Android chart has x axis labels with numbers. These numbers are annotated to specific 

date and time values by extracting them from the SQL database through MS Azure connection 

and displaying them on a ListView. Ranges at which specific issues occurred can then be 

determined using these timestamps. 

 

4.1.11. Integration with Models (FES, ML and MEWS) 
The FL, ML and Modified Early Warning Score (MEWS) are first calculated on the MA before 

being uploaded to Firebase for access by the doctor interface. This prevents processor usage 

and time delays through duplication of calculations. The MEWS and FES models are programmed 

in the MA code. Inputs to the models are extracted from the Firebase database based on the 

logged in user and then plugged into the models to obtain an output (score and probability) which 

is displayed on the MA and uploaded to the cloud. The MA also takes the Firebase input data and 

through a POST request consumes the Azure ML classic studio model developed. The input data 

is posted and then in return a scoring and probability outcome is displayed in JSON format which 

is further formatted and displayed via a TextView on the MA.   

 

4.1.12. MA Front End Design 
The front end design of the MA was created to take into consideration ease of use and best 

practices. Typical application set-ups were utilized such as registration pages and about pages 

so that users could easily identify and navigate through activities. To visualize the mobile 

activities, wireframe diagrams were developed using a software called Balsamic Wireframes. 

Sample wireframes are shown in Figure 4-5. 
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The front-end design of the MA was developed using layout resources which consists of the 

buttons, lists and texts etc. that the patient uses to interact with the GUI and is written in Extensible 

Markup Language (XML). Android Studio enables a drag and drop approach which allows for 

simplicity in front-end design which is another reason it was chosen as the IDE for the design. 

4.2. WA Development 
The WA was created as a secondary application layer to be used on the hospital servers. This 

will enable accessibility to a wide array of health care workers including those that don’t have 

access to the patient data via the MA. The WA was developed using Javascript running on the 

runtime environment node.js for the backend design and HTML, CSS and bootstrap for the front 

end design. The WA was designed to prioritize usability and provide a reliable and continuous 

supply of data to healthcare practitioners. The Visual studio source code editor was used to 

compile and develop the WA architecture. Within visual studio is a number of plugins that allows 

for easy integration with MS Azure. Figure 4-6 shows the general WA flow.  

 
Figure 4-5: (a): Main Page Wireframe, (b) Patient Interface Wireframe, (c) Doctor 

interface Wireframe 

 

(a) (b) (c) 
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Web Application 
(sign in page) – 
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Forgot username and password
This page allows user to enter 

login to change password – 
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User registers and their data is 

stored under the doctor node of 
firebase

Join patient network/update info
In this activity – user can enter their 
id number to create a unique node 
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4.2.1. Back- End Design 
The back-end design is achieved through the utilization of the node.js and npm package. Figure 

4-7 shows the initial set-up process for the node.js server. The process starts by first downloading 

and installing the Node.js application which also installs with the npm packaging manager. The 

http_server package is then installed using the command prompt. Node.js needs to then be linked 

up with visual studio code editor. To do this, visual studio code is downloaded and installed 

followed by the plugins necessary for HTML, Azure and Node.js integration. An index.js file is 

then created to run all server code. To run the website on the browser, the server is started on 

the visual studio terminal using the http-server command. 

 

 

Figure 4-6: Flow of Information through WA 

Figure 4-7: Node.js Server set-up 
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4.2.2. Integration with Databases 
Since Firebase creates different types of databases for a MA and WA, a separate database for 

patients and doctors needed to be created for the WA. The WA therefore requires patient’s to 

enter their data on the WA so that it can be viewed by physicians accessing the information. Here, 

the patient uses their ID number to create a unique node which the doctor can use to access their 

data. Like the MA, the WA also has the registration/login and forgot password pages for doctors 

using the system.  

The WA was also integrated with the MS Azure SQL database to view patient readings on the 

general patient info page. Similarly EMG and ECG graphs can be viewed on the ECG.js and 

EMG.js pages respectively. To activate the server running these pages, a server.js file is set-up 

which uses POST requests to retrieve info from the Azure database. The servers can be activated 

on the command line in visual studio using the node server.js prompt. EJS (embedded Javascript) 

files were used to acquire sensor readings from the database, since they allowed for dynamic 

updating of the values each time the browser was updated. To access any of the EJS pages, 

there is a sequence that is followed to correctly start and end a connection. The first page asks 

the doctor to enter the patient ID before proceeding to the next page, if this matches the database 

– the next transition.js page is reached. Once completed, the doctor will be asked to close the 

session which successfully ends the connection. 

 

4.3. Chapter Summary 
Chapter 4 looked at the detailed front and back-end designs of the MA and WA. The use of the 

MA as an IoT gateway was also discussed. Details of how information flows from the WBAN to 

the SQLite database to the MS Azure SQL database was examined. In addition, the integration 

with Firebase for patient and doctor registrations was looked at.  

The WA front end and back-end design was presented and an explanation of how doctors and 

other health practitioners can access information through the WA was also highlighted. The use 

of EJS pages for dynamic viewing of SQL data was touched on. 
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Chapter 5: Cloud Infrastructure 
Chapter 4 discussed the development of the MA and WA and briefly on how a connection pipeline 

was created with the databases to upload and download information to and from the cloud through 

the GUI’s. This chapter will focus on discussing the Firebase and MS Azure SQL database set-

ups as well as the technicalities of how connections between the cloud and the MA and WA were 

established. 

 

5.1. Firebase Integration 
Firebase can be defined as a NoSQL database program that stores data in a JSON like format 

which uses the backend-as-a-service cloud model to take care of all backend database services. 

The data follows a tree like hierarchy with nodes/branches containing user data. It offers a variety 

of features ranging from user registrations, forgotten passwords retrieval and JSON rules for data 

security. The Firebase NoSQL database was chosen to register and store registration information 

of the users because of these easy to integrate features. The Firebase database service offers 

advantages over traditional app databases which requires backend code to be written to retrieve 

data. With Firebase, the client does all the work and all that is required is a SDK to provide a 

connection between Firebase and the MA. Figure 5-1 and 5-2 show the difference between a 

traditional set-up and Firebase set-up. 

 

Figure 5-2: Firebase Database Set-Up 

Figure 5-1: Traditional Database Set-up 
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5.1.1. Setting up A Firebase Project 
Before integrating Firebase with either a mobile or WA, a Firebase account needs to be created 

and preceded by setting up a Firebase project. The Figure 5-3 highlights the process that was 

followed: 

 

 

5.1.2. MA Integration 
Firebase is integrated with the MA to perform the following functions: 

 Register users through a unique authentication procedure. 

 Store user data under nodes in the real time database. 

 Retrieve data from the real time database. 

 Set JSON rules to protect user data. 

The Firebase registration process is initiated by first setting up a Firebase authorization and 

database reference instance in each of the registration Activities on the MA. A connection with 

the MA was established through the Firebase console. The database reference should have the 

correct child paths to ensure that the data is entered under the correct node. For sign-up, the 

create_user_with_email_and_password function will create a new user with unique UID. For 

logging in, a Firebase authorization instance is created and the 

sign_in_with_email_and_password function is used to successfully log a user into the application. 

In the case of an error, a toast message indicating the reason for the error login will be displayed 

on the user’s MA. 

The uploading of data into the Firebase database is similar to the uploading done during the 

registration process. The getcurrentuserID feature retrieves the logged in user and database 

reference instance with the correct child structure. Data can then be uploaded onto the correct 

Figure 5-3: Firebase Console Set-Up 
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node. For retrieving data from Firebase, once again a database instance with the child structure 

can be created and a snapshot feature is used to extract the child data of a node into strings.  

Since the MA utilized two databases, a secondary database needed to be declared so that the 

above functions could be carried out on the secondary database. Information such as project ID, 

application ID, API key and database URL needed to be set before the secondary database could 

be initialized. Thereafter the process for registering, logging, uploading and downloading 

information is the same as described for the primary database. 

 

5.1.3. Web Integration 
Firebase is integrated with the WA to perform the following functions: 

 Register users through a unique authentication procedure. 

 Store user data under nodes in the real time database. 

 Retrieve data from the real time database. 

 Set JSON rules to protect user data. 

 Retrieve forgotten passwords. 

The web integration process with Firebase typically follows a similar process to that of the MA. 

The exception is that the WA establishes a connection with the web based Firebase database by 

initializing a Firebase configuration on a JavaScript file. The configuration details will include: 

 apiKey 

 AuthDomain 

 projectID 

 storageBucket 

 messagingSenderId 

 appId 

 measurementId 

Once the connection is established and provided that the process of setting-up the Firebase 

console as highlighted in Figure 5-3 is established. The registration and receiving of information 

using the database is then possible. The registration process will use a 

create_user_with_new_email_and_password function to create a new user while the 

signin_with_email_and_password query will sign existing users in. The retrieving of information 

such as location and patient information from Firebase can be retrieved by creating a connection 

in a Javascript file and then using the snapshot feature of Firebase together with a database 

reference instance to extract the data into elements on the HTML pages. The process for 

uploading also requires a Firebase reference instance but instead uses the update functionality 

to upload or update a Firebase node and corresponding child node information. The Firebase 

reference root is constructed using the patient’s ID number so that data is extracted from the 

correct nodes and child nodes. ID numbers are required since patients don’t register on the WA, 
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instead they upload their information to the doctor’s database using their unique SA ID numbers. 

This simplified the process since patients don’t need to be viewing the data on WA.  

 

5.1.4. JSON Rules 
The Firebase database uses JSON rules and a user’s unique UID to protect their data. These 

rules are highlighted in Figures 5-4 to 5-6. Each stakeholder (patient and doctor) have unique 

requirements with regards to data privacy. For the MA, rules are set for the patient database and 

doctor database. Within the patient interface are two nodes and Firebase allows each node to 

have specific security rules. The public user node within the patient interface is set that all 

authorized users can read and write to it. This allows doctors to search up patients. The user 

private node is set up to only allow physicians with permissions to access a patient’s personal 

details. When the patient adds a doctor to their network, the doctor’s unique UID is added under 

the private node of the patient. This enforces Firebase rule of only allowing UID’s that fall under 

the private patient node to be allowed access to that nodes data. The physician Firebase data 

rules is set to allow all authorized users to access it. Since the physician’s don’t have personal 

information to protect, this is a suitable option.  

For the WA, anyone can write on the Firebase node but only authorized users that have their ID 

in the created node can read it. This is to allow for patient’s to enter their data onto the WA as 

they are not physically registered on the WA themselves.  

 

Figure 5-4: Public Patient Firebase JSON rules 
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Figure 5-6: Private Patient Firebase JSON Rules 

Figure 5-5: WA Doctor Firebase JSON Rules 
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5.2. MS Azure Integration 
Microsoft Azure was chosen as the cloud computing service to handle to the storage of sensory 

information from the WBAN. There are a variety of cloud services that currently exist however 

Azure was chosen as it offers ease of integration, a wide service offering, a variety of online 

resources to help understand the service offerings and a costing structure that helps control and 

monitor costs. Two services within the Azure suite were chosen to be incorporated into the design 

of the IoT system. The first being the ML studio classic and the second being the Azure SQL 

database. The SQL database is used to store information received from the MA while the ML 

studio classic has a drag and drop configuration to help create, deploy and consume ML models. 

The use and creation of these models are explained in greater detail in chapter 6. The sections 

below will highlight the set-up and integration of Microsoft Azure such that it is able to make a 

successful data pipeline with both the MA and WA. 

 

5.2.1. Setting-up Microsoft Azure 
The process in Figure 5-7 highlights the procedure undertaken to set-up the MS Azure account 

to fulfill the requirements. The process starts off with registering, choosing of the plan and 

thereafter setting up the services to integrate with the MA and WA. The standard subscription 

plan was chosen for most of the services as it provided enough resources for the prototype design. 

A standard SQL database with 2GB of data and 5 DTU’s was sufficient to test the prototype. A 

server for the database was then created under the created_resource group. A resource group in 

Azure is essentially a container that houses all resources used within an Azure account. And 

resources are the services like SQL and ML which were utilized in the design. Once the server 

was created, the corresponding firewall rules were set to allow access to the data by users based 

on their IP addresses. For the ML modelling, Azure’s ML classic studio was utilized as it features 

a multitude of models and data manipulation techniques through a modularized design which 

enables efficient modelling through a drag and drop approach. 
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5.2.2. Mobile Integration 
The connection between the Microsoft Azure SQL database and the MA was accomplished 

through the JDBC API. There are a variety of other methods to create a connection such as 

through a WA service on Azure, however JDBC method is both open source and does not impose 

any fees. The first version was released in 1997 with the aim of creating connections with SQL 

databases as well as creating queries and commands.  Figure 5-8 shows the process of 

integration and communication to and from the SQL table and MA using the JDBC SDK. The 

process starts by first creating a connection with the MA and SQL table.  Thereafter SQL queries 

can be used to create the SQL table using the unique user ID, retrieving data for viewing on the 

doctor interface, transmission of data from SQLite to Azure SQL or clearing of tables before each 

upload. On the MA, a ConnectionAzure class was created which is used in Activities where 

queries on the SQL database needs to be run.  

Figure 5-7: Setting-Up MS Azure Services 
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5.2.3. Web Integration 
The web integration of MS Azure with the WA required the use of a template engine since dynamic 

pages are required to communicate the change in database information when refreshing the 

browser. The EJS express.js template engine was utilized to carry out the task. The first step 

involves using npm to install EJS on the console. A server.js file is then created in which the view 

engine (EJS) is set and a configuration is created and used to establish the SQL connection. The 

following configuration information was used to establish the connection: 

 User 

 Password 

 Server  

 Database 

 

An EJS file is then created with the body similar to a HTML page. A route is then created in the 

server.js file which allows rendering of the EJS file as HTML each time a POST request is made. 

Figure 5-8: Creating a Connection between MS Azure and MA Using JDBC SDK 
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5.3. Chapter Summary 
Chapter 5 looked at the detailed design and configuration of the network layer. The advantages 

of Firebase was discussed as well as how a communication was established with the GUI’s using 

Firebase instances referencing specific node addresses. Firebase rules to protect user 

information using JSON format was also discussed. 

The rest of the chapter then looked at the integration of MS Azure with the MA and WA. The JDBC 

SDK used to establish a connection between the MA and MS Azure SQL database was also 

discussed. The use of POSTS requests to consume ML models in Azure was also touched on. 

Lastly the integration of the WA with Azure using Node.js and EJS concluded the chapter. 
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Chapter 6: Modelling 
                                                     “All models are wrong, but some are useful” 

                                                                                                  (Carlson & Carlson, 2005) 

An engineering model can be defined as a mechanism to simplify a complex problem through a 

set of rules that aim to describe the relationship of different variables within the problem (IGI 

Global, 2021). The previous chapters have looked at how the entire IoT system was designed 

and integrated. This section aims to add intelligence to the IoT system by mapping the relationship 

between input patient vitals and output (patient health status). Two approaches to modeling will 

be utilized: 1) A ML approach 2) A FL approach using the Mamdani approach.  

 

6.1. ML using MS Azure Toolbox 
The ML classic studio within MS Azure was utilized to develop and deploy the ML model used for 

stroke prediction in the developed IoT system. MS defines the suite as a GUI-based IDE that can 

effectively be used for the development and operation of ML models within the Azure space. This 

solution was chosen since it allowed for a variation of models to be developed and tested rapidly 

thus allowing the best solution to be achieved. The preceding sections delve into the details of 

the design process including how the model is eventually made ready to be consumed by the MA. 

 

6.1.1. Background to ML Applications 
ML is a subset of AI (Iriondo, 2018) which is concerned with the application of a variety of 

algorithms with the aim of achieving a predictive model based on a given data set. This data set 

is often large (Nichols et al., 2018) and allows systems to learn without being explicitly 

programmed to do so. Various types of ML models exist. These include: supervised, un-

supervised, semi-supervised and reinforcement learning (Mohammed & Khan, 2017).  

 

6.1.1.1. Structured and Unstructured Data 

There are typically two types of datasets that are encountered when working with ML datasets. 

These include structured and unstructured data (Sarker, 2021). The explanations are given below: 

Structured data – is usually data that is organized and which can be easily accessed by a 

computer. It can often be stored in rows and columns as part of a database schema. Examples 

of this type of data include: names, dates, addresses etc. 

Unstructured data – A large part of data is categorized under this type. These types of data are 

often difficult to format, analyze and capture due to it lacking format and organization. Data under 
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this category can include images, sensor data, audio files, web pages etc. which often requires 

some form of pre-processing before it can be used.  

 

6.1.1.2.. Evaluating ML Model Performance 

The following metrics can be used to analyze the effectiveness of ML models. The theory in this 

section will be useful in understanding the analysis carried out later in this chapter and how the 

most effective model was chosen. 

The first measure of performance used to evaluate ML models is the accuracy. Put simply, 

accuracy is the number of correctly classified cases over the total number of cases. The 

mathematical expression is shown in equation (6.1). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
  ……………………………….. (6.1) 

 

Where:  

True Positive (TP) – is the instances where the model correctly predicted the positive class. 

True Negative (TN) – is the instances where the model incorrectly predicted the negative class. 

False Positive (FP)/ Type 1 error – when the model incorrectly predicted the positive class. 

False Negative (FN)/Type 2 error – when the model incorrectly predicted the negative class. 

 

Accuracy is a good indicator of performance for a balanced dataset however hides the bias 

present in imbalanced sets – as with the model dataset used in the development of the stroke 

prediction model. Hence, other measures of performance are required to indicate model 

effectiveness. This is when precision and recall are introduced. Precision can be defined as the 

correctly predicted positive cases and is described by equation (6.2). E.g. a 0.94 precision means 

that the model is able to predict positive cases 94% of the time. So one could say that precision 

looks at quality of predictions rather than quantity often missing positive cases. 

 

                  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 …………………. (6.2) 

 

Recall/sensitivity refers to the fraction of correctly predicted positive cases from the actual positive 

cases. Recall is described by equation (6.3). E.g. a recall of 0.94 means that the model identifies 
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stroke cases correctly 94% of the time. Recall looks at prediction quantity i.e. it maximizes on the 

number of TP predictions sometimes at the expense of incorrectly classifying a negative case as 

a positive one. 

                                             𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ……………………………... (6.3) 

 

In some cases there is a need for just one criteria to be satisfied, however in other cases a balance 

between precision and recall is required. Hence the F1 Score is introduced – which looks at the 

precision/recall tradeoff. A high F1 Score indicates a good balance between the precision and 

recall .The F1 Score is given by equation (6.4). 

 

               𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
 …………… (6.4) 

 

Other measures of performance can be gauged through graphical measures such as the area 

under the curve (AUC), the precision – recall curve (PRC) and the receiver operating 

characteristic (ROC) curve. An AUC of 0.87 for example indicates that 87% of the area is below 

the model curve. For binary classification models, the closer the AUC is to 1, indicates that the 

model is better at separating classes. The precision-recall curve given by Figure 6-1 indicates the 

balance between precision and recall. The curve needs to be as close to 1 as possible to indicate 

good precision and recall for the model.  

 

 

 

 

 

 

 

 

The ROC given by Figure 6-2 needs to be close as possible to the left hand corner which indicates 

good model efficiency however the drawback of the ROC is that it does not take into consideration 

FN values. 

Figure 6-1: PRC Curve 
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Once a model has been developed it is also crucial to test for overfitting and under fitting. This is 

when the bias and variance tradeoff needs to be considered. A high variance results in overfitting. 

This is usually when the model learns too much from the given dataset and therefore falls short 

in prediction accuracy with a new test dataset. A model with a high bias on the other hand, under 

fits the data i.e. makes very simplistic assumptions about the data. A good model overcomes 

these two issues and seeks to find a balance.  

 

6.1.1.3. Types of ML 

Depending on the required output of the prediction model and input data provided, various types 

of ML models can be applied. These models can be categorized into four main types (Sarker, 

2021): 

 

 

 

 

 

 

 

 

Supervised learning – with supervised learning models, sample input-output pairs in the form of 

a labeled training dataset is fed into the model. The model then develops patterns and is able to 

map a relationship between the input and output variables i.e. it infers a function which is 

Figure 6-2: ROC Curve 

Figure 6-3: Various types of ML techniques 
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predictive in nature (He et al., 2015). Most supervised learning models either use techniques of 

classification (separation of data) or regression (fitting of data). 

Unsupervised learning - this type of ML technique is centered on a data-driven process whereby 

the model learns independently with an unlabeled training set. This form of learning requires no 

human intervention (Han et al., 2011) and is often done for exploratory purposes for feature 

extraction, result groupings and making sense of trends and patterns in the data (Sarker, 2021). 

The most common learning tasks for models trained using this method are association rules, 

clustering, feature extraction etc. 

Semi-supervised learning – is a mixture of the methods mentioned above. With this type of 

method, the model is often trained with both labelled and unlabeled datasets (He et al., 2015), 

(Sarker et al., 2019). The main goal of the semi-supervised model is therefore to give the model 

an edge over traditional supervised models to deliver a better outcome (Sarker, 2021). The most 

common methods employed within this category of learning is classification and clustering. 

Reinforcement learning – reinforcement learning is when a software agent is able to 

automatically identify an optimal behavior within a given context or environment to improve its 

efficiency. A reward and penalty approach is taken where the agent learns to minimize risk and 

increase reward based on insights from environmental activists (Kaebling et al., 1996).  

 

6.1.1.4.. Binary Classification 

Binary classification is a type of supervised learning that is trained to provide an outcome in one 

of two categories after it measures a series of attributes. An example of this would be in the field 

of medical diagnosis of a single condition where the outcome could be a1: ‘diagnosis of the 

disease’ or a0:’no diagnosis of the disease’ (Parmigiani, 2001). The most popular types of binary 

classification algorithms include Logistic Regression, k-Nearest Neighbors, Decision Trees, 

Support Vector Machines and Naïve Bayes (Rao et al., 2021). 

 

6.1.2. Dataset for Developed Model 
The dataset used for the stroke prediction model was extracted from the Kaggle data repository 

and represents a sample of 5110 people consisting of 2995 females and 2115 males. The dataset 

uses the variables shown in table 6-1 in order to predict the likelihood of stroke. The dataset 

consists of both attribute and numerical data.  

 

Figure 6-4: Kaggle Dataset Statistics 
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6.1.3. Design Approach 
The ML model was developed using the ML classic studio package within MS Azure. Due to the 

nature of the data, a binary classification model was trained using the labelled dataset to deliver 

an output of class/category (stroke or no stroke) along with a probability score. The process 

started by creating a new project and uploading the raw dataset. Data exploration was then done 

on the dataset to determine the further processing that would be required. The dataset was then 

pre-processed (meta-data editing and cleaning). Thereafter the data was split for testing and 

training. A 70% training and 30% testing split was used. The training set is then used to train, 

score and evaluate various different models. Here evaluation checks how effectively a model 

scores (predicts) from a given dataset after it has been trained. A cross_validation module was 

used to further evaluate the suitability of the chosen model based on the k-folds method. Once 

the model was satisfactory, it was then deployed to a webserver ready to be consumed by the 

MA through a POST request. Figure 6-5 gives a high level overview of the process: 

Figure 6-5: High-Level Overview of Model Development within  

MS Azure ML Classic Studio 

Table 6-1: Dataset Description for Stroke Prediction Model 

 

Figure 6-0-4: Work Flow of Stroke Prediction Model 
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MS azure ML studio, uses a work flow approach to create a process pipeline using modules to 

clean and model the input data. Each model can then be configured to convert and model the 

dataset as per requirements. The flow diagram in Figure 6-6 illustrates a schematic for the stroke 

prediction model developed.  The following modules were utilized: 

 Data exploration (Summarize Data). 

 Pre-processing (Edit Metadata, Clean Missing Data, Select Columns in Dataset, Synthetic 

Mining Oversampling Technique (SMOTE)). 

 Training (Split Data, Train Model, Two-Class Decision Forest). 

 Evaluation (Score Model, Evaluate Model, Cross Validate Model). 

 Deployment (Web Deployment). 

 

 

Figure 6-6: Work Flow of Stroke Prediction Model 
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6.1.4. Exploratory Research 

Before processing the data, visualizations were used to identify trends, patterns and anomalies 

in the data set. Below illustrates the findings: 

Using the visualize feature with MS azure ML studio it is possible to view statistical information of 

the various characteristics within the dataset. It was seen that the original dataset consisted of 

5110 rows and 44 columns. The BMI column has the most missing values of 201 (Figure 6-8). 

Figure 6-7 shows that the dataset is also severely unbalanced with the TP stroke class being 

under-represented, with positive stroke cases accounting for only 4.9% of the dataset and non-

positive stroke cases accounting for 95% of the dataset. 

 

                                    

 

Figure 6-7: Histogram Showing Unbalanced Dataset 

Figure 6-8: Extract from MS Azure Showing missing BMI Values 
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The attribute data was then assessed using the histograms (Figure 6-9 – 6-18): 

Gender – of the men and woman who participated in the study, a higher percentage of men 

compared to woman experienced stroke.  

BMI status – Feature addition was done on the dataset to determine the BMI status of the patient. 

The ranges below, taken from the CDC, were used to categorize patients based on where their 

readings fell in the below ranges. 

 Below 18.5 (underweight) 

 18.4-24.9 (healthy weight) 

 25.0-29.9 (Overweight) 

 >30 (obese) 

The data shows that out of each of the weight categories, the cases of stroke was most prevalent 

in the overweight and obese categories. 

Hypertension status – a greater percentage of people with hypertension experienced stroke 

compared to the group without hypertension. 

Residence type – of the people living in urban areas, a greater percentage of these people 

experienced stroke compared to the rural group percentage. 

Heart disease status – the percentage of people with heart disease that experienced stroke was 

higher than the group with no heart disease. 

Marital status – the percentage of people married had higher cases of stroke compared to the 

group of unmarried individuals. 

Work type – more self-employed people suffer from stroke compared to any other working 

groups. 

Smoking status – most cases of stroke occurred in the group of individuals that formerly smoked. 

Glucose status – feature addition was done once again with the glucose levels. Based on the 

prescribed ranges below, patients were categorized according to their likelihood of developing 

health conditions: 

 Below 70 (hypoglycemia) 

 >99 (diabetes) 

 Any other value (normal) 

The trend shows no apparent correlation between the glucose levels in a patient’s blood and their 

likelihood of getting stroke. 

 

 



 

86 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9: histogram of Gender Variable vs Stroke Probability 

Figure 6-10: Histogram of BMI Status Variable vs Stroke Probability 

Figure 6-11: Histogram of Residence Type Variable vs Stroke Probability 



 

87 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-12: Histogram of Hypertension Status vs Stroke Probability 

Figure 6-13: Histogram of Work Type Status vs Stroke Probability 

Figure 6-14: Histogram of Glucose Status Variable vs Stroke Probability 
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Figure 6-15: Histogram of Heart Disease Status vs Stroke Probability 

Figure 6-16: Histogram of Smoking Status Variable vs Stroke Probability 

Figure 6-17: Histogram of Marital Status Variable vs Stroke Probability 
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The numerical data was evaluated using the box and whisper plots shown in Figure 6-19. As can 

be seen, patients who experienced stroke had a higher average age compared to the average 

age of the group that didn’t suffer from stroke. 

 

 

 

 

Figure 6-18: Histogram of Stroke Cases  

(a) (b) 

Figure 6-19: (a) Age of Stroke Patients Box Plot, (b) Age of Non- Stroke 

Patients Box Plot 
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The BMI feature has a large amount of outliers for those that didn’t experience stroke. To rectify 

this, the values greater than 50 were converted to 50 as super obesity is capped at this value. 

The rectified box plot is shown in Figure 6-20(a). Subjects that suffer with stroke tend to have a 

higher mean glucose level compared to those that don’t. Figure 6-20 (b) and Figure 6-20 (c) 

illustrate this point.  

 

 

Figure 6-18, shows the total percentage of individuals within the dataset diagnosed with and 

without stroke. It can be seen that the dataset is severely unbalanced, this means that as is the 

dataset will result in high precision and low recall models. However, for the problem at hand, the 

precision and recall are equally important. A high precision and low recall will result in more FP 

outcomes resulting in more patients visiting the physician when there isn’t a problem. 

A low precision and high recall will increase the FNs and could fail to predict those that are 

potentially at risk of stroke. Hence, as mentioned earlier in this chapter, a tradeoff between 

precision and recall is necessary in order to get a robust model. 

 

6.1.5. Data Pre-processing 
As can be seen, the dataset is severely unbalanced and required a re-sampling method. An 

oversampling method was chosen since the dataset was not large enough for under-sampling of 

the over represented class (the cases of no stroke). The SMOTE was used to create synthetic 

samples of the minority class i.e. positive cases of stroke. The sample size of the under-

Figure 6-20: (a) Rectified BMI Box Plot, (b) Box Plot Glucose levels of Non-

Stroke Patients, (c) Box plot of Glucose Levels of Patients with Stroke 

(a) (b) (c) 
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represented class was successfully increased from 249 elements to 2490 elements. The pie 

charts, Figure 6-21 (a) and (b) illustrates the sample size split before and after over-sampling: 

 
The second part of the data-processing stage included the classification of columns into numerical 

and categorical data as indicated in Table 6-1. Data imputation of the missing values was then 

done using the median value of the dataset. This was done for the BMI column which had the 

most missing values and consequently had a significant effect on the output. In addition, with 

feature addition of the BMI status, all missing status values were also filled in to complete missing 

values. Feature selection was then done to remove unnecessary columns. In the case of this 

dataset – only the Id column was removed since it had no effect on the output stroke prediction 

value. As mentioned previously, to remove outliers in the BMI column, values greater than 50 

were capped at 50 which represents the super obesity mark. 

Figure 6-22: Obesity Ranges ( (Wright, 2021) 

 

6.1.6. Model Evaluation 
To evaluate and score the models, the data was split into a training and testing set (70/30) split. 

70 % of the data was used to train the various models while 30 % was later used for the scoring 

of models. The details below indicate the various models with their respective scores. 

The 6 different Binary classification models shown below were explored: 

 Two-class Bayes point machine 

 Two-class boosted decision tree 

 Two-class decision forest 

 Two-class logistic regression 

 Two-class neural network 

 Two-class support vector machine 

Figure 6-21: (a) Sample Size Split before SMOTE, (b) Sample Size Split after SMOTE 

(a) (b) 



 

92 
 

6.1.6.1. Two-Class Bayes Point Machine 

The first model evaluated was the Two – class Bayes point machine algorithm. The model utilizes 

a linear classification approach called the Bayes point machine. Due to its roots in Bayesian 

theory, the model is not prone to overfitting. Thirty iterations were chosen and the statistical 

summary can be seen in Figure 6-24. The model has a good accuracy and precision of 86 % and 

97 % respectively, however falls short in terms of the recall which sits at 61 %. The model will 

diagnose 86 % of positive stroke cases correctly, however will only be able to successfully identify 

61 % of strokes cases (high degree of FNs).  

The AUC is 0.97 which indicates that the model is good at separating classes. The F1 score of 

75 % indicates an imbalance between precision and recall although it is not very severe. At a 

threshold of 0.5, this imbalance can further be seen in the PRC. The ROC curve is relatively close 

to the upper left corner which indicates good efficiency however a drawback of ROC is that it does 

not take into consideration FNs and hence hides the faults in this model. 

 

 

 Figure 6-23: (a) ROC Curve Bayes Point Machine, (b) Precision/Recall 

Curve Bayes Point Machine 

Figure 6-24: Bayes Point Machine Statistics 

(a) (b) 
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6.1.6.2. Two-Class Boosted Decision Tree 

The next model evaluated was the two-class boosted decision tree. This is an ensemble model 

that makes use of collection of weak learners to improve the overall performance of the model 

collectively. A sequence approach is taken where each weaker model works to improve the error 

of the previous model. With gradient boosting the loss function optimization is achieved through 

the gradient descent approach. This model seems to have an overall excellent rating with regards 

to all parameters. The F1 Score of 91 % indicates a good balance between precision and recall 

which is evident by both these Figures being above 90 %. The AUC is 97 % which indicates an 

excellent ability to separate the classes.  

 

 

 

6.1.6.3. Two-Class Decision Forest 

Two class decision forest is another ensemble technique that relies on the multiple decision trees 

to create a generalized model which uses a process of voting on the most popular output class. 

Trees with higher prediction confidence will have a higher weight. Results show that the model is 

not very effective for the intended dataset. Even though the accuracy is good at 82 %, the recall 

is very low at 67 % indicating once again a high degree of FNs which in the area of medical 

diagnosis cannot be compromised. 

(a) 

 

Figure 6-25: (a) Boosted Decision Tree, (b) Precision/Recall 

Curve Boosted Decision Tree 

Figure 6-26: Statistics Boosted Decision Tree 

(b) 
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6.1.6.4. Two-Class Logistic Regression 

The logistic regression model uses a supervised learning algorithm which means that the model 

requires a training set with the outcome. The probability of occurrence is predicted by fitting the 

data to a logistic function. The model scores well in most parameters and is possibly a good model 

for the intended application. Recall may have to be improved if used either through fine tuning of 

parameters of further data processing.  

 

Figure 6-27: (a) ROC Curve Two-Class Decision Forest, (b) 

Precision/Recall Curve Two-Class Decision Forest 

(a) 

 

(b) 

 

Figure 6-28: Statistics of the Two-Class 

Decision Forest 

 

Figure 6-29: (a) ROC Curve Logistic Regression, (b) 

Precision/Recall Curve Logistic Regression 

(a) 

 

(b) 
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6.1.6.5. Two-Class Neural Network 

The two-class neural network like the two-class logistic regression model is a supervisor based 

algorithm that requires a dataset with an output column. The neural network approach makes use 

of a set of interconnected layers. The first layer consist of the input which is connected to the 

second output layer. Between the input and output layer is a series of hidden layers which allows 

for effective training of the neural network. One drawback of neural networks is its black box 

approach to prediction with little understanding of how the final outcome is achieved. 

The two class neural network can possibly be used for the application with all parameters of 

interest scoring in the 90’s.  

 

 

 

 

 

Figure 6-30: Statistics Logistic Regression 

Figure 6-31: (a) ROC Curve Two Class Neural Network, 

(b) Precision/Recall Curve Two Class Neural Network 

(a) 

 

(b) 
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6.1.6.6. Two-Class Support Vector Machine 

The SVM model is a supervised learning algorithm which requires a labeled dataset. Quite simply 

the model works by creating a line or hyperplane which is able to effectively separate the data 

into classes. The model is a good model, but compared to other models identified, it falls short 

with regards to accuracy, precision and recall. At most the model is average and would not 

improve significantly with hyper tuning.  

 

 

 

 

Figure 6-32: Statistics Two Class Neural Network 

Figure 6-33: (a) ROC Curve SVM, (b) 

Precision/Recall Curve SVM 

(a) 

 

(b) 
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6.1.7. Model Selection 
Based on the evaluation of the various models, the most effective model was the two–class 

boosted decision tree. In the preceding sections, an explanation of how the model was further 

tuned and assessed for overfitting, and under fitting will be elaborated. Figure 6-35 shows the 

different statistics of each model in comparison to each other. 

 

 

Figure 6-34: Statistics for the SVM Model 

Figure 6-35: Graph Showing Different Performance Statistics of 6 Models 



 

98 
 

6.1.8. Cross validation 
The cross validation module within MS Azure ML studio was used to perform a number of train-

score-evaluate operations i.e. 10 folds automatically through different subsets of the input data. 

The first fold/subset is used for testing and the other 9 is used for training. The process is carried 

out 10 times before taking an average. As opposed to the previous evaluation method, the entire 

dataset is fed into the cross evaluation module together with the selected untrained model. Cross 

validation will ensure that there is no overfitting (high variance and low bias) of the data as it 

exposes the model to different sets of training data. The advantages of cross validation includes: 

 Cross validation will use more of the test data during the different simulations which will 

ensure overfitting is reduced. 

 It can be used to gage the quality of the dataset as well as how the model responds to 

different partitions of the dataset. 

Looking at the output of the cross validation module, one can see that classification metric for 

each fold as well as the standard deviation and mean of all the folds. As seen in Figure 6-36, the 

accuracy statistic for each fold is constantly high for each fold with an overall average precision, 

accuracy and recall above 91 %. This implies limited variation and a good quality dataset.  

Figure 6-36: K-Fold Method Statistics 
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6.1.9. Test for Overfitting and under fitting 
The first test of overfitting was achieved through the cross validation process which reduces 

variation by using more of the data for training the model. Another way to check the susceptibility 

of the model variance in the dataset is to score the model with the training set and the testing set 

and compare performance. As can be seen below, the model passes the test with the test score 

being slightly lowered compared to the training score yet still quite high with limited variation in 

scoring. This indicates that the model is not experiencing overfitting.  

 

 

 

 

Figure 6-37: (a) Workflow of Test Overfitting and Under Fitting, (b) ROC 

Curve Comparing Training and Test Data with Model 

(a) 

 

(b) 

 

Figure 6-38: Training Set Model Statistics 

Figure 6-39: Test Set Model Statistics 
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A test for under fitting can also be determined from fig 6.38 since under fitting would mean that 

the model would perform poorly on the training set because it is unable to capture the relationship 

between the input and output variables correctly thus indicating a high bias. This however is not 

seen when the model was trained with the training set, as all parameters have achieved scores 

above 95%. 

 

6.1.10. Web deployment and Model Consumption 
The deployment of the ML model is the final part of the ML model process and involves converting 

a training model to a predictive model. The first part of the process involved removing all 

redundant models and retraining the two-class gradient boosting model. The set-up web service 

module within Azure is then utilized which creates an input and output web service. A select_ 

columns_in_dataset query can then be used to ensure that the model only outputs the score and 

probability. Once the model is deployed it will then generate a unique URL and API key which can 

be used to create POST requests. 

 

6.2. FL Model 
This section will focus more on explaining how the FES systems utilized in the IoT system were 

developed. The theory surrounding FL systems will be explained followed by the application of 2 

FES models used for the prediction of patient health status. 

 

6.2.1. Fuzzy Logic Explained  
Fuzzy logic is a predictive methodology that allows for the description of systems that have 

uncertainty and imprecision. FL essentially represents the inputs of a system as linguistic 

variables to produce a certain output. It basically works through assigning partial truth values 

between true and false which becomes useful when certain systems cannot be described through 

traditional logic of 0 and 1 (Torres & Juan, 2005). In areas like medical diagnosis, it is more useful 

to consider intermediate logical values to make sense of the situation. Therefore in the medical 

field, FL plays a very important role (Torres & Juan, 2005). 

All FL systems consists of a knowledge base which is essentially made up of an IF-THEN rule 

base. These rules together with what is referred to as MFs establish reasoning with the data. MFs 

are curves which enable crisp input functions to be mapped out to their corresponding 

membership values of between 0 and 1 also known as their respective fuzzy sets (Section, 2020). 

The most common types of MF’s that exist are Gaussian, triangular and trapezoidal in nature 

(Erdal Kayacan et al., 2016). Fuzzy logic is however dependent on rules being created, so often 

expert knowledge is needed to create rules that make practical sense. 
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6.2.2. Fuzzy Logic Architecture 
Figure 6-40 illustrates the basic architecture surrounding a Fuzzy Logic system (Manshahia & 

Singh, 2018). At the start of the process, an input crisp variable is converted into fuzzy values 

through the information stored in the knowledge base. The fuzzy input together with the rule base 

established will produce a fuzzy output. The last step of the process is defuzzification which entails 

converting the output fuzzy values back into crisp values.  

 

 

 

 

 

 

 

 

 

 

6.2.3. Types of fuzzy inference systems 
There are two types of inference systems that are typically used in the fuzzy logic space. These 

include the Mamdani-type and the Sugeno-type. The Mamdani-type inference system expects 

that the outputs of the membership functions be fuzzy sets. The difference with the Sugeno-Type 

inference system is that the output membership functions are linear or constant (Kalogirou, 2014). 

One of the benefits of the Mamdani type system is the intuitive and simplistic rule bases. They 

tend to be useful in applications requiring tacit and specialist type knowledge. One such example 

is in the field of medical diagnostics where health practitioners can intuitively identify optimal rules 

to improve the accuracy of the fuzzy model (Mathworks, 2021). 

 

6.2.4. Approach 
The FES models were developed using the Mamdani approach. The development steps followed 

the typical FL model set-up as shown in Figure 6-41. The process starts off by converting the 

input variables (crisp format) to fuzzy sets using MFs. Here the triangular membership functions 

were used to describe the linguistic variable ranges for each measured input quantity. A rule 

Figure 6-40: Fuzzy Logic Block Diagram 
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based was then developed with a combination of linguistic variables and their respective 

outcomes. The outcome membership function was then developed. The defuzzification method 

used was the MoM method. The model was programmed on the Android IDE. 

 

                                      

Figure 6-41: Typical FL Model Development Process 
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The operational flow diagram showing the typical process for both FES models developed can 

be seen in Figure 6-42. 

Figure 6-42: Operational Flow FES 
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The process starts by retrieving data from Firebase and SQL and converting ADC values to 

suitable outputs if required e.g. LM35 temperature conversion. The input values are then plugged 

into the triangular MFs to output a fuzzy set. Each fuzzy set combination is then determined. 

During defuzzification, the minimum of each combination is determined. The maximum of all 

minimum values is then taken and the corresponding fuzzy set that it belongs to it is identified. 

The fuzzy set rule is then activated and score is determined based on the rule. The maximum 

value is then equated to the output MFs which operates in the range of the maximum value. The 

output is then averaged and this serves as the probability rating for the scoring identified. The 

preceding sections will explain the process in detail. 

 

6.2.5. Input, Output and Linguistic Variables 
The first step of the process involved identifying the input variables (also called crisp variables) 

that go into the fuzzification process. This included the sensory information from the WBAN 

network. The linguistic variables which describe each input variable was then determined based 

on different expected ranges of the input variables. Two models were developed: 1) A FL model 

to indicate general patient health status and 2) A FL model to determine the risk factor associated 

with the patient’s environmental conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6-2: Input Field and Corresponding Linguistic 
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6.2.6. Fuzzification with MFs 
The fuzzification process involved developing the relevant MFs to convert the Crisp input 

variables to its corresponding fuzzy set. Each variable as listed in Table 6-2 consists of 3 or 4 

fuzzy sets which are represented using the triangular MF.  Below lists the MFs and their 

corresponding fuzzy sets.  

 

6.2.6.1. Model 1 

 

Pulse Rate 

𝜇𝐿𝑜𝑤(𝑥) =  {
65−𝑥

65
 ,         0 ≤ 𝑥 ≤ 65  ……………………..….…. (6.5) 

 

𝜇𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) =  {

𝑥−60

80−60
, 60 ≤ 𝑥 ≤ 80 

 
100−𝑥

100−80
, 80 < 𝑥 ≤ 100

    ………………....…… (6.6) 

  

𝜇𝐻𝑖𝑔ℎ(𝑥) =  {
𝑥−95

140−95
 ,         95 ≤ 𝑥 ≤ 140  …………………....… (6.7) 

 

 

 

 

 

 

 

 

 

 

Figure 6-43: Triangular Membership Function Pulse Rate 
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Body Temperature 

𝜇𝐶𝑜𝑙𝑑(𝑥) =  {
36.5−𝑥

36.5
 ,         0 ≤ 𝑥 ≤ 36.5 ……………………………. (6.8) 

𝜇𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) =  {

𝑥−36.0

37.0−36.0
, 36.0 ≤ 𝑥 ≤ 37.0 

 
38.0−𝑥

38.0−37.0
, 37.0 < 𝑥 ≤ 38.0

  ……………………… (6.9) 

  

𝜇𝐻𝑜𝑡(𝑥) =  {
𝑥−37.5

42.0−37.5
 ,         37.5 ≤ 𝑥 ≤ 42.0 ………………………. (6.10) 

 

 

 

 

 

 

 

 

 

 

 

Glucose 

𝜇𝐿𝑜𝑤(𝑥) =  {
4.1−𝑥

4.1−0
 ,         0 ≤ 𝑥 ≤ 4.1    ……………………………. (6.11) 

 

𝜇𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) =  {

𝑥−3.9

4.7−3.9
, 3.9 ≤ 𝑥 ≤ 4.7 

 
5.5−𝑥

5.5−4.7
, 4.7 < 𝑥 ≤ 5.5

 ……………………………. (6.12) 

  

𝜇𝐻𝑖𝑔ℎ(𝑥) =  {
𝑥−5.3

20.0−5.3
 ,         5.3 ≤ 𝑥 ≤ 20.0 ………………………… (6.13) 

Figure 6-44: Triangular Membership Function Body Temperature 
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Age 

𝜇𝐴𝑑𝑜𝑙𝑒𝑠𝑐𝑒𝑛𝑡(𝑥) =  {
19−𝑥

19−13
 ,         13 ≤ 𝑥 ≤ 19   ………………………… (6.14) 

 

𝜇𝐴𝑑𝑢𝑙𝑡(𝑥) =  {

𝑥−16

30−16
, 16 ≤ 𝑥 ≤ 30 

 
45−𝑥

45−30
, 30 ≤ 𝑥 ≤ 45

   ………………………………… (6.15) 

 

𝜇𝑆𝑒𝑛𝑖𝑜𝑟 𝐴𝑑𝑢𝑙𝑡(𝑥) =  {
𝑥−40

100−40
 ,         40 ≤ 𝑥 ≤ 100  ………………….…… (6.16) 

 

Figure 6-45: Triangular Membership Function Glucose Levels 

Figure 6-36: Triangular Membership Function Age Figure 6-46: Triangular Membership Function Age  
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Output Function 

𝜇𝐻𝑒𝑎𝑙𝑡ℎ𝑦(𝑥) =  {
50−𝑥

50
 ,         0 ≤ 𝑥 ≤ 50    ………………………………. (6.17) 

 

𝜇𝑈𝑛𝑤𝑒𝑙𝑙 (𝑥) =  {

𝑥−45

60−45
,       45 ≤ 𝑥 ≤ 60 

 
75−𝑥

75−60
,       60 < 𝑥 ≤ 75

 ………………………………… (6.18) 

  

𝜇𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ(𝑥) =  {
𝑥−70

100−70
 ,      70 ≤ 𝑥 ≤ 100 ……………………..… (6.19) 

 

 

 

 

 

 

 

 

 

 

 

6.2.6.2. Model 2 

 

Humidity 

𝜇𝐿𝑜𝑤(𝑥) =  {
45.0−𝑥

45.0
 ,         0 ≤ 𝑥 ≤ 45.0  ……………………………… (6.20) 

𝜇𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) =  {

𝑥−40.0

50.0−40.0
, 40.0 ≤ 𝑥 ≤ 50.0 

 
60.0−𝑥

60.0−50.0
, 50.0 < 𝑥 ≤ 60.0

 ………………………… (6.21) 

𝜇𝐻𝑖𝑔ℎ(𝑥) =  {
𝑥−55.0

100−55.0
 ,         55.0 ≤ 𝑥 ≤ 100.0  ……………………… (6.22) 

Figure 6-47: Triangular Membership Function Output  
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Age 

𝜇𝐴𝑑𝑜𝑙𝑒𝑠𝑐𝑒𝑛𝑡(𝑥) =  {
19−𝑥

19−13
 ,         13 ≤ 𝑥 ≤ 19   ………………….… (6.23) 

 

𝜇𝐴𝑑𝑢𝑙𝑡(𝑥) =  {

𝑥−16

30−16
, 16 ≤ 𝑥 ≤ 30 

 
45−𝑥

45−30
, 30 ≤ 𝑥 ≤ 45

   …………………………..… (6.24) 

 

𝜇𝑆𝑒𝑛𝑖𝑜𝑟 𝐴𝑑𝑢𝑙𝑡(𝑥) =  {
𝑥−40

100−40
 ,         40 ≤ 𝑥 ≤ 100  …………………. (6.25) 

 

 

 

 

 

 

 

 

 

Figure 6-48: Triangular Membership Function Humidity 

Figure 6-49: Triangular Membership Function Age 
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Body Temperature 

𝜇𝐶𝑜𝑙𝑑(𝑥) =  {
36.5−𝑥

36.5
 ,         0 ≤ 𝑥 ≤ 36.5  …………………………..… (6.26) 

 

𝜇𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) =  {

𝑥−36.0

37.0−36.0
, 36.0 ≤ 𝑥 ≤ 37.0 

 
38.0−𝑥

38.0−37.0
, 37.0 < 𝑥 ≤ 38.0

  …………………….…. (6.27) 

  

𝜇𝐻𝑜𝑡(𝑥) =  {
𝑥−37.5

42.0−37.5
 ,         37.5 ≤ 𝑥 ≤ 42.0  ………………………… (6.28) 

 

 

 

 

 

 

 

 

 

 

Output Function 

𝜇𝐿𝑜𝑤 𝑅𝑖𝑠𝑘(𝑥) =  {
50−𝑥

50
 ,         0 ≤ 𝑥 ≤ 50    ……………………………… (6.29) 

 

𝜇𝑅𝑖𝑠𝑘𝑦(𝑥) =  {

𝑥−45

60−45
,       45 ≤ 𝑥 ≤ 60 

 
75−𝑥

75−60
,       60 < 𝑥 ≤ 75

 ………………………………. (6.30) 

  

𝜇𝐻𝑖𝑔ℎ 𝑅𝑖𝑠𝑘(𝑥) =  {
𝑥−70

100−70
 ,      70 ≤ 𝑥 ≤ 100 ……………………… (6.31) 

Figure 6-50: Triangular Membership Function Body Temperature 
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6.2.7. Developing a Rule Base 
The rule based forms an intricate component for FL predictions. For the systems employed based 

on 3 and 4 input variables each having 3 linguistic variables there were 27 and 81 possible rules.  

Table 6-3 and Table 6-4 show sample rules for model 1 and model 2 respectively. A full list of the 

rules can be found in appendix L. 

 

6.2.7.1. Model 1 

Table 6-3 shows a sample set of the rule base for model 1. Rule 1, 12 and 15 can be interpreted 

as follows: 

Rule 1: If body temperature = cold or glucose levels =low, pulse = low and age = adolescent, then 

output = critical health.  This essentially means that if an adolescent’s body temperature or 

glucose is low together with a low pulse this rule will activate and give a critical health output. 

Rule 12: If body temperature or glucose levels = normal, pulse = low and age = Senior Adult then 

the overall output is critical health. This means that although one out of the 3 measured variables 

is outside the limits, the scoring is critical since the patient is a senior adult. 

Rule 15: if body temperature or glucose levels= normal, pulse = normal and glucose = normal 

then the output is healthy. This implies that all measured variables of the patient is within normal 

ranges and therefore they are in a healthy state. 

Figure 6-51: Output Membership Function Model 2  
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6.2.7.2. Model 2 

Table 6-4 shows a sample set of the rule base for model 2. Rule 1, 12 and 15 can be interpreted 

as follows: 

Rule 1: If Humidity = low and age = adolescent and body temperature = low, then output = risky.  

This essentially means that if an adolescent has a low body temperature and is in low humidity 

conditions they are potentially in a risky situation. Due to their age, they are not classified at a 

higher risk rating. 

Rule 12: If Humidity= normal and age = normal and body temperature = normal then the overall 

output is low risk. This means that because the person’s body temperature is normal and they are 

in normal humidity conditions, they are at low risk of experiencing adverse effects due to the 

environmental conditions. 

Rule 15: if Humidity = high, and age group =adolescent and body temperature = normal then the 

output is high risk. This implies the patient needs to move to better conditions as the environment 

is having an adverse effect on their health status. 

Table 6-3: Sample Rule Base Model 1 
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6.2.8. Rule Evaluation 
This part of the process involves extracting the relevant Crisp variables from the SQLite database 

and determining their relevant fuzzy sets using the defined membership functions. IF AND 

statements were utilized within android studio to determine which membership function would be 

required to convert the necessary crisp inputs into fuzzy sets. The example below illustrates the 

rule evaluation principle for model 1: 

Given temperature = 36.1 °C, pulse = 70 BPM, glucose = 4 mmol/L and age = 21. The 

corresponding membership functions are as follows: 37 °C is located between sets cold and 

normal giving membership values of 0.01 for the cold set and 0.1 for the normal set. The pulse of 

70 BPM lies between the normal membership function with a value of 0.5. The glucose level of 

40 mmol/L lies between the low and normal range membership functions with output values of 

0.025 and 0.125 respectively.  Lastly the age lies in the Senior Adult range giving output values 

of 1. 

 

6.2.9. Defuzzification 
Once the necessary fuzzy sets are determined they would need to be converted back to crisp 

outputs using a relevant defuzzification method. The MoM, as shown in equation (6.32) was 

utilized to carry out this process. 

𝑥∗ =  ∑
𝑥�̅�

𝑛

𝑛
𝑖=1    …………….. (6.32) 

 

Where x* represents the crisp input and 𝑥�̅� is the sum of crisp values whose MFs reach the 

maximum. 

Table 6-4: Sample Rule Base Model 2 
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In order to identify the points to utilize in the above equation, the AND (minimum) and OR 

(maximum) needs to be determined from all fuzzy output sets. The possible combinations need 

to first be calculated to carry out this process. Two variables were utilized to hold the values of 

the fuzzy sets. The second variable is used for the instances of a value falling between two 

ranges. If the value however only falls between one of the ranges, then the second holding string 

will be set to a value of 2000, a random out of range number which will eliminate holding string 2 

combinations. 

Based on the holding values, 16 possible combinations are possible for model 1 and 8 possible 

combinations for model 2. This is considering that with any given crisp input value, it is only 

possible for it to fall between a maximum of two ranges e.g. low and normal or normal and high. 

So for model 2, letting the holding_string 1 = a and holding_string 2 = b with position 1, 2 and 3 

corresponding to humidity, age and BT for model 2, the possible sets are as follows: 

If humidity = “a-humidity” and age= “a-age” and BT = “a-BT”  

If humidity = “a-humidity” and age = “a-age” and BT = “b- BT 

If humidity = “a-humidity” and age = “b-age” and BT = “a- BT”  

If humidity = “b-humidity” and age = “a-age” and BT = “a- BT”  

If humidity = “a-humidity” and age = “a-age” and BT = “a- BT”  

If humidity = “a-humidity” and age = “a-age” and BT = “a- BT”  

If humidity = “a-humidity” and age = “a-age” and BT = “a- BT”  

If humidity = “a-humidity” and age = “a-age” and BT = “a- BT” 

Where “a”, “b” and “c” can be any linguistic variable based on the input crisp value e.g. humidity: 

a-humidity= “Low”, age: “a-age” = “Adolescent” and BT: a-BT= “cold.” The Figure below shows 

an extract of the programming for the temperature MF of model 2. The range of the input crisp 

value is determined and a value of “A”, “B” or “C” is given based on a lower range, normal range 

and high range. The holding string is prefixed with the word “Lingusitic.” 

 

//Humidity 
if (Humidity <= 39.9) { 
    LinguisticH1 = "A"; 
    LinguisticH1Val = (45.0 - Humidity) / (45.0 - 0.0); 
    LinguisticH2 = "A"; 
    LinguisticH2Val = 2000.0; 
 
} else if (Humidity >= 40.0 && Humidity <= 45.0) { 
    LinguisticH1 = "A"; 
    LinguisticH1Val = (45.0 - Humidity) / 45.0; 
    LinguisticH2 = "B"; 
    LinguisticH2Val = (Humidity - 40.0) / (50.0 - 40.0); 



 

115 
 

Aggregated pairs are then determined as shown below, where Group 1 for example indicates a 

scenario for input values which fall in low ranges of humidity, age and BT i.e. A = Low Humidity, 

A= Adolescent and A = Cold. The min value is then calculated followed by the max output of all 

min values. Here the 2000 value eliminates all duplicate sets so that the correct max value can 

be obtained. 

 

Group1 = LinguisticT1 + LinguisticP1 + LinguisticG1; 

MinGroup1 = Math.min(LinguisticT1Val,Math.min(LinguisticP1Val,LinguisticG1Val)); 

CheckG1 = Math.max(LinguisticT1Val,Math.max(LinguisticP1Val, LinguisticG1Val)); 

MinGroup1S = String.valueOf(MinGroup1); 

 

If (CheckG1<2000) 

 { 

    MF= Math.max(MinGroup1,MinGroup1); 

    Flag = "Okay"; 

 } 

 

 if(CheckG2<2000) 

{ 

    MF=Math.max(MinGroup2,MF); 

    Flag = "Okay"; 

} 

 

Finally, the output is fed back into the membership functions and the MoM method is used to 

determine the crisp output. The max value is equated back to its fuzzy set and this set is used to 

determine which MF to use. 

 

//Defuzzification 
 
if (Stat2.equals("AAA")) { 
    Status2 = "Risky"; 
    HealthStat2 = ((((60 - 45) * Statval2) + 45) + (75-(Statval2*(75-60)))) / 2; 
    Holding();    //done 
 
} else if (Stat2.equals("AAB")) { 
    Status2 = "Low Risk"; 
    HealthStat2 = 50 - (50 * Statval2); 
    Holding();   //done 
 

 

Model 1 will follow a similar process but will have 16 possible combinations possible for 

aggregating the fuzzy output sets generated. 
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6.3. Chapter Summary 
Chapter 6 described the modelling integrated with the IoT telemonitoring system. The chapter 

discussed the development of the stroke prediction model using MS Azure ML classic studio 

which obtained scores for accuracy, precision, recall and AUC all above 92% using the decision 

tree binary classification model. Six different models were tested and this scored the best. The 

chapter discussed the use of K-folds method to test for overfitting. 

The Chapter then proceeded to discuss the development of two FES models. The first one using 

humidity, age and body temperature to gauge environmental risk on patient health and the second 

using body temperature, pulse, age and glucose to gauge general patient health. The FL systems 

design methodology was described i.e. the use of triangular MFs for the inference rules and 

defuzzification using the MoM method.  
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Chapter 7: Use Case Scenarios 
The previous chapters described how the entire IoT system was designed and integrated. This 

chapter will now look at how the various stakeholders engage with the system to ensure a smooth 

data pipeline. This chapter will further outline how effectively the system meets stakeholder 

requirements. 

 

7.1. Patient Use Case Scenario 
The following use case scenario will highlight how the patient will engage with the system and 

their role in ensuring the transition of data through the IoT system. The use case will start by 

explaining the sequence of activities that the stakeholder would need to carry out while engaging 

with the system and the subsequent data flow in each scenario. Figure 7-1 illustrates a use case 

diagram for a patient accessing the system. 

 

Figure 7-1: Use Case Diagram for Patient Accessing IoT system 



 

118 
 

7.1.1. Overview 
The patient use case illustrates a typical scenario of a patient accessing the IoT platform i.e. the 

relevant steps to set-up and ensure the successful transfer of data through the data pipeline. This 

use case focuses on the following actions from the patient’s perspective: 

1) Initial MA set-up – preliminary actions that need to be performed by the patient to collect 

data from the WBAN and store it locally on the phone before migrating the data to the 

cloud. These include MA registration, setting up the Bluetooth and Wi-Fi communication 

and setting up the GPS tracker. 

2) Initial WA set-up – preliminary actions that need to be performed by the patient to ensure 

the flow of information from the cloud database to the WA 

3) Patient viewing of physiological data – how the patient can access their physiological data 

and health status through the patient interface of the MA. 

 

7.1.2. Sequence of Steps 
The patient should ensure that the battery in the enclosure is fully charged using the balanced 

charger and will ensure that this is done before proceeding. The patient will put on the wearable 

device which consists of the various sensors responsible for measuring patient vitals. When the 

patient is comfortable with the positioning of the device, they can then proceed to the next step. 

The device is designed to remain in the “ON” status to ensure that sensors are stabilized from the 

start of taking the readings. If the user is already a registered user they can proceed to the patient_ 

login Activity as shown below and enter their credentials before clicking on the login button. 

 

 

 

 

 

 

 

 

 

 

 Figure 7-2: (a) Registration Screen, (b) 

Login Screen 

(a) (b) 
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If the patient is not registered on the MA platform, they will then proceed to register as a “patient” 

on the MA. To do this, they should ensure that their mobile or Wi-Fi connectivity is enabled. The 

application will then ask the user to enter all of their user information. Sample registration pages 

are shown below:  

 

 

 

Upon completion, all the data will be stored in Hashmaps on the patient’s phone before being 

uploaded to the Firebase NoSQL patient database.  The user will be successfully registered, as 

seen in Figure 7-4.  

 

 

 

 

 

 

 

 

 

The patient will subsequently be logged in and taken to the patient_interface Activity of the MA. 

Once in the patient interface, the patient needs to then proceed to the connect Activity where they 

can set-up the Bluetooth, GPS and cloud sharing functionalities: 

Figure 7-3 : (a) to (d) – registration pages 

(b) 
(d) (a) (c) 

Figure 7-4: Registration Complete Page 
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 Bluetooth enablement – the Bluetooth devices Activity will allow the user to create a 

connection to transfer data between the WBAN and the MA. Clicking on the enable button 

will prompt the user to turn on Bluetooth with the message shown in Figure 7-5: 

 

 

 

 

 

 

 

After allowing this, the patient can then click the discover button to search for the WBAN 

Bluetooth device (HC06 Bluetooth module) as shown in Figure 7-6: 

 

 

 

 

 

 

 

 

The user needs to then click on the device and subsequently click the Start Connection 

button. This will enable the broadcast_receiver function to pair and create a connection 

with the Bluetooth device. To ensure successful connection, the patient can view the 

Bluetooth LED on the WBAN device. A fast flashing of the LED indicates the Bluetooth 

default state, upon pairing the flashing slows down and when a successful connection has 

been established the LED stays permanently on without flashing. Upon completion of 

connection, the MA should start receiving strings of data from the WBAN and this can be 

seen on a textview on the MA as shown in Figure 7-7. 

Figure 7-5: Bluetooth Prompt 

Figure 7-6: Bluetooth Discovery 
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 GPS enablement – In order to ensure GPS tracking of the patient’s location, the 

application makes use of the built in GPS within the phone. The patient can enable the 

app to access their location and subsequently store the data into a Firebase database 

node under the patient’s profile. By clicking on the GPS Activity “ON” button, the user can 

either switch on or turn off the location tracking capabilities of the system. Figure 7-8 

indicates the screen output when a patient has the GPS turned off and turned on. 

 

                

 

 

 

 

 

 

 

 

 

 

 Cloud sharing enablement – The cloud_sharing Activity will allow the user to transmit 

data stored in the phone’s SQLite database to the Microsoft Azure SQLite database. 

Figure 7-7: Screen showing   Smartphone 

receiving data from WBAN 

Figure 7-8: (a) GPS tracking enabled, (b) 

GPS tracking disabled 

(a) (b) 
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Clicking on the transmission button will initiate the upload process with a Textview 

illustrating that the upload is a success (Figure 7-9). 

 

 

 

 

 

 

 

Although system is designed to allow all registered doctors to read information stored in the Azure 

SQL database, as a start to data security – Firebase database security was enabled to protect 

the user’s primary registration data. Under the find_a_doctor activity, the patient is able to search 

for specific doctors that belongs to the health network. They can then choose to invite a doctor, 

which will transition them to a new screen as shown in Figure 7-10 (b) where they will be prompted 

to share their information. Upon accepting, they will then get a pop-up indicating that the doctor 

selected has been granted access to their Firebase data. 

 

 

 

 

 

 

 

 

 

 

 

 

It is at this point that the user can start viewing data being received from the WBAN over Bluetooth. 

By navigating to the monitor_vitals Activity, the user will be able to view their physiological data 

Figure 7-9: Cloud Sharing Transmission Screen 

Figure 7-10: (a) Searching for Doctor on Database, 

(b) Sharing info with Doctor Screen 

(a) (b) 
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by clicking on the getdata button. The units of measurement as well as the condition i.e. status is 

also shown like Figure 7-11 illustrates.  

 

 

 

 

 

 

 

 

 

 

 

 

To complete the data pipeline requires establishing a connection between the Azure SQL 

database and the WA. This is done by the user first registering their information on the WA. This 

will include the user entering the doctor’s unique database key (with whom they want to share 

information) - this key should be provided by the doctor. They will also enter their unique SA ID 

which will store their information under a node hierarchy starting with their ID.  

 

 

 

 

 

 

 

 

 

 

Figure 7-11: Patient Monitoring Vitals Screen 

Figure 7-12: Screen for Patients to Add Their Data to WA 

Database 
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When the patient enters the doctors unique database key, the doctors ID is then stored under the 

specific patient’s node (Figure 7-13). Rules in JSON format, then allow only doctor’s with ID’s 

under the patient’s node to view the patient’s data. A typical patient node and the respective 

screen for the user to add doctor permissions (Figure 7-14) is shown: 

 

If the patient already has their personal information stored in the database, but just wants to grant 

permission to another doctor, they can do so via the add_doctor_to_your_network html page. This 

will take the doctor ID and add it under the patient’s ID node. The doctor will then be able to 

access that patient’s node information since the JSON rule will now permit it. 

 

 

 

 

 

 

 

 

 

Figure 7-13: Firebase Node with Doctor ID Who Patient Has Chosen to Share Info With 

Figure 7-14: Screen on WA for Patients to Add Doctors They Want on Their Network 
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7.2.  Doctor Use Case Scenario 
The following use case scenario will highlight how the doctor will engage with the system and 

their role in ensuring the transition of data through the IoT system. The use case will start by 

explaining the sequence of activities that the stakeholder would need to carry out while engaging 

with the system and the subsequent data flow. 

 

7.2.1. Overview 
The doctor use case scenario explains the sequence of activities that a physician will need carry 

out when utilizing the developed health care system. This use case will explain the following: 

1) Doctor registration on both the mobile and WA 

2) The viewing of patient info on both the mobile and WA 

 

 

7.2.2. Sequence of Steps 
The doctor can start accessing the patient’s information through the doctor interface on the MA. 

If the doctor is already registered, they can navigate to the login Activity by clicking on the Return 

to Login Button. Once the button is clicked, they will be redirected to the login page. Here they 

can enter credentials to log in to the doctor interface. An illustration of this process is shown in 

Figure 7-15: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-15: (a) Main Page, (b) Doctor Login Page 

(a) (b) 
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If the doctor isn’t registered, they will then need to navigate to the registration page and complete 

details before they are transitioned to the doctor interface. Screens are shown below: 

 

 

 

 

 

 

 

 

 

 

Once registered, the information as with the patient will be uploaded to a Firebase database and 

thereafter transition the doctor to the doctor interface shown in Figure 7-17. Here, the doctor can 

either choose the patient_info Activity, timestamps or the track patient Activity. 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 7-16: (a) Doctor Registration selection, (b) Doctor details Registration Activity, (c) 

Registration Complete Activity 

Figure 7-17: Doctor 

Interface Activity 
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The track_patient Activity will allow the doctor to access patient information in the form of graphs 

and Textviews. Upon clicking the Activity, the doctor can then search for a specific patient 

registered using their first name. When a patient is located in the database, a general description 

of the patient pops up together with the option for the doctor to choose between the 1) the Loc 

Activity which allows the doctor to track the patient’s location, 2) the Gen activity for viewing the 

general patient data like temperature and BT, 3) The EMG Activity for viewing the patient’s EMG 

data and 4) The ECG Activity for viewing of the patient’s ECG data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to the importance of doctors being able to access historic data of patients to identify 

anomalies and trends in their health status, timestamps are extremely important. Details such as 

date of data points and its corresponding time will give insight into what triggered an event. These 

timestamps were too large to fit adequately on a mobile interface hence a timestamp screen was 

developed. Using this screen, a doctor is able to identify a number range for specific data points 

and through a listview under the timestamps Activity, identify the corresponding date and time 

range. The illustration of the screen is shown in Figure 7-19. 

 

(a) (b) 

Figure 7-18: (a) ECG monitoring Activity, (b) Location 

Tracking and Environmental Monitoring Activity, (c) General 

Patient Info 

(c) 
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To access data on the WA, as with the MA, physicians will need to first register on the WA. Here 

they will be prompted to enter all of their relevant data including practicing number and specialty 

service. Once registered, they will be directed to the login screen. Examples of registration pages 

are seen in Figures 7-20 and Figure 7-21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-19: Timestamps Activity 

Figure 7-20: Doctor Registration Page WA 
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If the user already has an account, they can click on already have an account on the registration 

page. Alternatively they can navigate directly to the login page from the main menu. The login 

page for entering credentials is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-21: Doctor Registration Details Page 

Figure 7-22: Doctor Login Page 
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If the user has forgotten their password, they can click on the “forgot password” link on the login 

page where they will be redirected to the forgot_password Page. Here a link will be sent from 

Firebase prompting user to change their password. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once logged in, the physician is able to choose between the patient_info screen and the 

monitoring screen. The patient_info screen will allow the physician to access general patient info 

stored within Firebase. Again only doctors with permissions can view a specific patient’s data. 

Once clicked, the doctor will be required to enter the patient SA ID as shown in Figure 7-24. The 

patient info Page is shown in Figure 7-25. 

 

 

 

 

 

 

 

 

Figure 7-23: Doctor Forgot Password Page 

Figure 7-24: Screen for Doctor to Capture ID for “Patient Info” 
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If the doctor were to navigate to the monitoring screen he/she would be able to access three 

screens showing patient data. 1) The location screen for patient tracking, 2) The general screen 

for patient PR, Temp etc. 3) The EMG screen for EMG graph and 4) The ECG screen for the ECG 

graph. Figure 7-26 shows an example of how the doctor will access the ECG screen of the patient. 

The EMG and general_info screen follow a similar procedure. ID number of the patient needs to 

be entered and submitted, then the next button needs to be clicked – if the user exists then the 

physician will be navigated to the relevant screen as depicted in Figure 7-26 and 7-27. The close 

off session button needs to be clicked before exiting the screen. 

 

 

 

 

 

Figure 7-25: Patient Info Page 
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Figure 7-0-27: Patient's Vital Screen 

Figure 7-27: Example of ECG Graph on WA Page 

Figure 7-26: Patient Vitals Screen WA 
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The doctor will also be able to track the user location on the screen shown below. Again ID number 

of the user will enable their location to be extracted from Firebase and displayed on the webpage.  

 

 

 

7.3.  Other Health Practitioner Use Case Scenario 
There will be cases when the doctor requires the assistance of supporting staff such as nurses 

and radiographers. This will require them having access to patient data, hence the reason for the 

supporting health practitioner use case. This use case scenario is much simpler that the other 

use cases. Here nurses etc. will be able to access patient records as per instruction from the 

patient’s doctor. No registration of supporting health practitioners is required. Instead, they can 

access the patient information through the registered doctor’s interface. This will usually be 

through the WA hosted on the hospital server. 

The supporting staff member will attain the doctor’s credentials. They will then be able to log into 

the doctors account and view the relevant patient’s data of whom the doctor is treating.  

 

7.4. Chapter Summary 
This chapter looked at the use case scenarios of various stakeholders. The first use case scenario 

related to the patient accessing the IoT system. The registration process for the user and their 

duties in terms of ensuring data transmission from the WBAN to the smartphone was illustrated. 

Figure 7-28: Patient Location Tracking on WA 
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Thereafter the patient’s role in enabling the transmission from the smartphone to the cloud was 

also elaborated on. The process of patients adding their data to the WA database was explained 

together with the procedure for the patient to access their health data via the MA. 

The second use case scenario was for the physician. The registration process of the physician 

was explained followed by the process physicians should use to read patient data off the MA and 

WA. This included the very important demonstration of how doctors can track the location of 

patients during emergency cases. The process of how other health practitioners can access the 

patient’s data was also briefly discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

135 
 

Chapter 8: Results 
The previous section looked at the use case scenario of each stakeholder. This was to gain an 1) 

understanding of how the system works, 2) to ensure that the system acts the way it was designed 

3) to show the role of each user to ensure that data flows smoothly through the data pipeline and 

4) to demonstrate system usability. With that established, the results section will now look at the 

effectiveness of the system in comparison with other known standards and systems. This section 

will be broken up into 4 parts: 

 Sensor Testing – will look at sensor performance and calibration. 

 The model testing – will look at the performance of the FL systems and ML model. 

 The MA testing – will explore the effectiveness of the MA designed. 

 Overall system effectiveness – will examine the performance of the system as a 

combined entity as well as compare the system to others found in the commercial sector 

and literature. 

 

8.1. Sensor Testing  
The sensor layer testing will involve determining the effectiveness, accuracy and precision of the 

connected sensors to ensure that the data entering the system is reliable and accurate. The 

section will start off by looking at the response times of sensors and will proceed to determine 

how accurate the sensors are in comparison to calibrated equipment or known standards. 

Repeatability tests will be carried out to ensure that the sensor results are consistent. Three 

patients were used to carry out the testing. Their profiles are shown in Table 8-1. Each patient 

has varying attributes from age to pre-existing conditions and exercise regime. 

 

Table 8-1: Profiles of Participants in Study 

 

8.1.1. Temperature Sensor 
The section looks at the LM35 temperature sensor. The sensor performance will be evaluated by 

first looking at the sensor response times to determine if the sensor is suitable for the given 

application. A comparison with a calibrated temperature sensor will then be done to establish a 

Profile Info Patient 1 Patient 2 Patient 3 

Gender Female Female Male 

Age 59 33 60 

Medical History None None Heart Disease 

Exercise Regime None Active Moderately Active 

Smoking Status Non-Smoker Non-Smoker Smoker 
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correlation to improve the sensitivity of the LM35 readings. Thereafter a cost evaluation will be 

done to show how the LM35 compares to COTS products. 

 

8.1.1.1. Temperature Sensor Response Times  
To determine the LM35 temperature response time, the 3 mentioned participants in Table 8-1 

carried out tests determine how long it takes for their temperature reading to reach stability. As 

can be seen from Table 8-2 and Figure 8-1, all patients took about 8 seconds to reach stable 

readings. It should be noted that these stable temperature readings highlight the lack of sensitivity 

of the LM35 temperature sensor for body temperature measurements. Expected normal body 

temperature for normal status patients should reach stabilization values of between 36.1 °C to 

37.2 °C which is not seen in Figure 8-1 for any of the 3 healthy patients. The LM35 temperature 

sensor was therefore calibrated in chapter 8.1.1.2 to fix these inaccuracies. However, what can 

be seen in the profiles in Figure 8-1 is that with each patient the same trend is observed i.e. the 

eventual outcome was the same in terms of stability time. At around 8 seconds, the graph starts 

to flat line indicating a stable value has been reached. Considering that the LM35 is a low cost 

sensor, this response time is promising. Although the sensor could possibly take longer to reach 

extreme highs and lows, for the typical range of body temperatures – the stability time is reduced 

as the temperature is already at room temperature. This is due to sensors never being switched 

off in the WBAN. This reduces the response time and improves the system performance.  

 

Table 8-2: LM35 Response Times 

Time in 
seconds 

T (°C) (Patient 1) 
  

T (°C) (Patient 2)  
 

T (°C) (Patient 3) 
  

1 29.8 29.8 29.8 

2 30.3 30.3 30.3 

3 30.8 30.8 30.8 

4 30.8 30.8 30.8 

5 31.7 30.8 30.8 

6 31.7 31.3 30.8 

7 32.2 31.3 31.3 

8 32.7 31.7 31.7 

9 32.7 31.7 31.7 

10 32.7 31.7 31.7 
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8.1.1.2. Temperature Sensor vs Calibrated Sensor 
Body temperature readings were taken for the 3 patients at different intervals over several days. 

The Information was used to test repeatability as well as to compare the LM35 to commercial 

body temperature thermometers. The recorded results can be seen in Table 8-3. 

 

Table 8-3: Body Temperature Readings of LM35 and Calibrated Sensor 

 

A 3D scatter plot of the calibrated sensor values (Figure 8-2), shows that most patients have BT 

temperature readings in the range of 36 °C (points clustered in this region) which is indicative of 

normal BT. The scatter plot also shows that the 3 patients share similar BT temperatures 

Runs Patient 1  Patient 2  Patient 3  

 LM35 
Temp 
(°C) 

Calibrated 
Thermometer 
(°C) 

LM35 
Temp 
(°C) 

Calibrated 
Thermometer 
(°C) 

LM35 
Temp 
(°C) 

Calibrated 
Thermometer 
(°C) 

Run 1 32.7 35.9 30.8 36.2 30.8 35.8 

Run 2 30.7 36.1 31.7 36.0 30.8 36.2 

Run 3 31.2 36.3 32.7 36.1 30.8 36.2 

Run 4 31.7 36.1 31.7 35.8 31.7 36.0 

Run 5 30.8 36.2 28.3 35.9 32.7 36.2 

Run 6 31.7 36.2 27.8 36.1 30.3 35.7 

Run 7 29.3 36.1 27.3 35.7 30.3 35.6 

Run 8 28.8 35.9 30.8 35.8 30.8 35.7 

Run 9 29.3 36.1 29.8 35.9 28.3 36.0 

Run 10 27.8 36.2 29.3 36.0 28.8 36.0 

Figure 8-1: Graph of Temperature over time (seconds) for the LM35 

Temperature Sensor 
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Table 8-3 above shows that the LM35 temperature sensor readings using the datasheet equation 

is not sensitive enough to be used for BT measurements, as it does not result in reliable enough 

readings. It was therefore decided to calibrate the LM35 sensor against a commercial 

thermometer to get a line of best fit. This was done using average ADC readings at various 

thermometer values (Table 8-4).  

 

       Table 8-4: ADC output Values and Thermometer Readings for Calibration of LM35 

Average 
ADC 
output 

Thermometer 
reading (°C) 

56 35.7 

58 35.9 

59 35.9 

60 36.1 

63 36.2 

64 36.2 

 

Figure 8-2: 3D Scatter Plot of Each Patient’s BT Using a Calibrated 

Temperature Sensor 



 

139 
 

The straight line equation (equation 8.1) depicts the established relationship between the input 

ADC signals from the LM35 temperature on the response variable i.e. the calibrated sensor BT 

value. 

 

𝑦 = 0.0702𝑥 + 31.8 ………………. (8.1) 

 

Figure 8-3 with R^2 value of 0.96 was therefore used to calculate the temperature output from the 

sensor. The R^2 value is very close to 1 which indicates that the regression model fits the 

observed data well. 96 % of the variance of body temperature is explained by the variance of the 

ADC output. As can be seen the line fits the data well, as an equal amount of points lie on both 

sides of the straight line – this indicates no overfitting or under fitting of the data is taking place 

and also indicates that there is no bias and variance present. It can also be seen from Figure 8-3 

that there is a positive correlation i.e. a positive slope between the body temperature and ADC 

output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8-5 shows various readings of body temperature calculated using the new straight line 

equation and compares this with the calibrated thermometer. The statistical results after 

comparison can be seen in Table 8-6. 

Figure 8-3: Calibration Curve for LM35 Body Temperature Sensor 



 

140 
 

 

             Table 8-5: LM35 Sensor Output Using Straight Line Equation vs Calibrated Sensor 

Reading Actual (LM35 

with straight 

line equation) 

Calibrated 

Sensor 

Percent 

Error (%) 

Standard 

deviation 

1 36.6 35.9 1.9 0.5 

2 36.2 35.6 1.7 0.4 

3 36.3 36.2 0.3 0.1 

4 36.4 36.0 1.1 0.3 

5 36.6 36.1 1.4 0.4 

6 36.4 35.8 1.7 0.4 

7 36.3 35.8 1.4 0.4 

8 36.5 36.2 0.8 0.2 

9 36.3 35.8 1.4 0.4 

10 36.3 36.2 0.3 0.1 

 

            Table 8-6: Statistics for Comparison of LM35 with Calibrated Temperature Sensor 

Average 36.4 

Sample Size  10 

MAE  % 1.2 

Average Standard Deviation 0.4 

 

Figure 8-4 shows a comparison between the LM35 body temperature sensor values (random 

samples from each patient) using the new equation developed vs the commercial body 

temperature sensor values. Table 8-6 shows there is a limited error between actual and expected 

values of 1.2 % which is less than the target of 5 %. In addition, the standard deviation is extremely 

low at 0.4 which indicates that the data is reliable and accurate. In Figure 8-4, the blue line 

depicted by the LM35 sensor has values slightly above the calibrated sensor values with random 

errors between readings. 
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Cost comparisons: 

Table 8-7 and Figure 8-5 shows how the LM35 weighs up against other body temperature 

measuring devices in the market in terms of cost. As can be seen, there is a price difference in 

the range of 88 % - 98 %, which makes the LM35 an extremely affordable solution to body 

temperature monitoring. This is in addition to the fact that the commercial devices in the market 

are often difficult to carry around and much larger in size making them more obtrusive and 

uncomfortable to use. The LM35 however, is small, compact and easy to use when integrated 

with the WBAN. The Beurer FT 70 Multi-functional thermometer is the most expensive at R1299 

with the second cheapest being the Beurer FT 09/1 Digital Fever Thermometer. The LM35 

(represented as the current system) comes out on top at only R30. This sensor is cheap, easily 

replaceable and durable for the application 

 

Table 8-7: Comparison in Price between Designed System and Commercial Products 

 

Current System Beurer FT 70 Multi-
Functional 
Thermometer 
 

Beurer FT 09/1 
Digital Fever 
Thermometer FT 
09/1 - White 
 

Medic Thermometer 
B/o IR 

R30 R1299 R250 R699 

Figure 8-4: Temperature Output with Straight Line Equation vs Calibrated 

Sensor 
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Figure 8-5: Graph Showing Price (Rands) of Current System vs Commercial Products 

 

8.1.2. Humidity Sensor 
The section looks at the HIH-4000 humidity sensor. The sensor performance will be evaluated by 

first looking at the sensor response times to determine if the sensor is suitable for the given 

application. A comparison with weather reports will then be done to establish the effectiveness of 

the sensor. Thereafter a cost evaluation will show how the HIH-4000 compares to COTS products. 

 

8.1.2.1. Humidity Sensor Response Times  
The response time for the HIH-4000 humidity sensor was obtained by running a test with steaming 

water. A starting point of 70 % humidity was chosen for each run which was the room humidity at 

the time. The sensor will always be at room humidity since it is never switched over. Then the 

time taken for each sample to reach 100 % humidity was measured. The results (Table 8-8 and 

Figure 8-6) shows that for run 1 and run 3, it takes the sensor approximately 5 seconds to reach 

100 % humidity from the reference point while run 2, took around 7 seconds. This indicates a 

fairly rapid response time and validates the performance of the sensor. Since 2 runs reached 

stability much faster at around 5 seconds – it can be seen that the sensor is capable of performing 

better under most circumstances. Figure 8-6 also highlights the point that at higher humidity, the 

sensor will be able to stabilize much rapidly i.e. above 80 % humidity. While at lower humidity, 

the response time may be slower. 
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Table 8-8: Table of Response Times for the Humidity Sensor 

Time in seconds 
% Humidity 

(Run 1) 
% Humidity  

(Run 2) 
% Humidity 

(Run 3) 

1 70.3 70.3 70.5 

2 81.0 71.9 74.6 

3 88.9 76.9 80.6 

4 95.7 84.85 83.2 

5 100 91.3 100.0 

6 100 97.1 100.0 

7 100 100 100.0 

8 100 100 100.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.1.2.2. Humidity Sensor vs Calibrated Sensors 
The comparison of the humidity sensor was done with weather report data. HIH-4000 readings 

were taken and compared with weather humidity readings for the same area. This was done for 

different time intervals and different days. As can be seen in Table 8-9 and Table 8-10, the RH of 

the HIH-4000 had a small error difference from the weather reports i.e. average % error of 3.3 

which was lower than the target of 5%. Table 8-10 also shows that the standard deviation is 

extremely low at 0.04 which indicates high accuracy and reliability of the data. The slight 

deviations could be as a result of neglecting the effect of temperature on the true RH. In addition, 

the weather forecast gives an approximate RH which may fluctuate.  

 

Figure 8-6: Graph of Humidity % over Time for the HIH-4000 Sensor 
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                              Table 8-9: Humidity Sensor Readings Compared to Weather 

 

 

 

 

 

 

 

 

 

 

       Table 8-10: Statistics for the Comparison of the Humidity Sensor with Weather Forecasts 

 

 

 

Figure 8-7 graphically depicts a smaller deviation as compared to Figure 8-4 for the LM35 

temperature sensor. However the average error between the LM35 and calibrated sensor was 

only an average of 1.2%. This can be attributed to the fact that the LM35 range is confined to the 

normal range of body temperatures which doesn’t have as wide a range as the expected humidity 

sensor output. It is also important to note that the LM35 % error should be much smaller than the 

HIH-4000 as it is much more critical to know the effect of each degree change on BT than it is to 

know each % decimal change in humidity. 

 

 

 

 

 

 

 

                 Figure 8-7: RH % readings for the HIH-4000 vs Weather Reports for the Same Area 

Humidity Sensor Comparison   

 Actual Weather 
Forecast 

% Error Standard 
Deviation 

Run 1 62.0% 61.3% 1.1 0.00 

Run 2 66.7% 69.0% 3.3 0.02 

Run 3 76.0% 79.0% 3.8 0.02 

Run 4 78.1% 82.0% 4.8 0.03 

Run 5 86.3% 90.0% 4.1 0.03 

Run 6 88.8% 92.0% 3.5 0.02 

Run 7 52.0% 55.0% 5.5 0.02 

Run 8 47.8% 50.0% 4.4 0.02 

Run 9 63.0% 64.0% 1.6 0.01 

Run 10 77.4% 78.0% 0.8 0.00 

Average 0.70 

Sample Size  10.00 

MAE (%) 3.28 

Average std Deviation 0.04 
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8.1.3. Glucose Sensor 
The Glucose readings of 3 patients were taken at different times of the day for multiple days 

(Table 8-11). Readings were taken at 3 intervals. The first being “before eating” which means a 

point when glucose levels should be lower. “During the day” when glucose levels is expected to 

be normal. Thereafter after eating when a spike in glucose levels is expected. The results tested 

repeatability and also helped to establish the glucose curve to calibrate the IR sensor. 

 

Table 8-11: Glucose Readings for 3 Patients at Different Times of the Day 

 

 

 

 

 

 

 

 

 

 

 

A 3D scatterplot of the calibrated glucose readings from the commercial sensor is shown in Figure 

8-8. As expected, after eating and during the day – the glucose readings of patients were usually 

in the high or normal range. With levels dropping when the patients hadn’t eaten. After eating, 

glucose levels would sometimes peak above 100 mg/dl while before eating to lows of 30 mg/dl. 

 

 

 

 

 

 

Figure 8-8: 3D Surface Plot of Glucose Readings at Different Intervals 

IR Sensor Patient 3  Patient 1  Patient 2  

 Actual 
(mg/dl) 

Calibrated 
(mg/dl) 

Actual 
(mg/dl) 

Calibrated 
(mg/dL) 

Actual 
(mg/dl) 

Calibrated 
(mg/dl) 

After 
Waking/Before 

eating 

      

Run 1 997 46.8 994 36.0 992 30.6 

Run 2 1007 77.4 1008 77.4 996 46.8 

Run 3 994 43.2 992 37.8 992 32.4 

During Day       

Run 1 996 50.4 1003 64.8 998 61.2 

Run 2 1000 54.0 1003 68.4 997 52.2 

Run 3 997 61.2 1001 57.6 1002 59.4 

After Eating       

Run 6 1016 106.2 1016 117.0 1003 66.6 

Run 7 1010 99.0 1001 70.2 996 50.4 

Run 8 1007 88.2 1013 104.4 1003 66.6 
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The results in Table 8-11 further shows that as expected for the 3 participants, that the glucose 

levels after waking or when the patients were hungry, resulted in low blood glucose concentrations 

yet not in the norm of 72-126 mg/dl. The recommended range around 3 hours after eating should 

be less than 140.4 mg/dl which was the case for all test participants. During the day, all test 

participants usually had normal glucose levels, with the exception of times when participants did 

not eat enough in which case glucose levels dropped to lower ranges. 

Using the ADC readings from the IR sensor at different calibrated glucometer values, Table 8-12 

of ADC output vs glucose levels (mg/dl) was used to obtain a calibration plot and equation for the 

IR sensor. The equation for the straight line equation used to calibrate the IR sensor is shown 

below: 

𝑦 = 3.24𝑥 − 3.1 × 103 ………………. (8.2) 

 

Table 8-12: Glucose Sensor Calibration Table 

ADC Output Blood Glucose Levels (mg/DL) 

992 30.6 

994 36.0 

998 61.2 

1003 64.8 

1003 66.6 

1001 70.2 

  

The developed graph of a straight line equation with R^2 value of 0.95 as seen in Figure 8-9. The 

graph shows a positive gradient, which means that as the ADC values from the IR sensor 

increases, the glucose levels in mg/dl increases as well. The R^2 value of 0.95 is very close to 1 

and indicates a good fit for the data points. 

 

 

 

 

 

 

 

 

Figure 8-9: Blood Glucose Levels Calibration Fit Using Commercial Sensor 
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Random readings from each patient was then taken and plugged into the calibrated equation to 

get the glucose readings. These readings were then compared with the calibrated sensor as 

shown in Table 8-13. 

 

Table 8-13: IR Glucose Readings Using Straight Line Equation Compared to Calibrated 

Reading Actual (IR 

sensor with 

Straight Line 

equation) 

Calibrated 

Sensor 

Percent 

Error 

(%) 

Standard 

deviation 

1 34.03 30.6 11.2 2.4 

2 37.27 36 3.5 0.9 

3 46.99 46.8 0.4 0.1 

4 50.23 50.4 0.3 0.1 

5 56.70 61.2 7.3 3.2 

6 69.66 64.8 7.5 3.4 

7 63.18 66.6 5.1 2.4 

8 69.66 70.2 0.8 0.4 

9 92.33 99 6.7 4.7 

10 105.29 106.2 0.9 0.6 

 

Table 8-14: Statistics for IR Sensor Compared to Commercial Sensor 

Average 62.5 

Sample Size  10 

MAE (%) 4.4 

Average std Deviation 2.4 

 

As can be seen in Figure 8-10 the difference between the observed and predicted values are 

small and unbiased which indicates that the regression model fits the observed data well. Average 

standard deviation of 2.4 and MAE of 4.4% is shown in Table 8-14. These statistics are low which 

means points are clustered around the mean and this indicates that the data is more reliable 
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Figure 8-10: IR Sensor Output Relative to Commercial Sensor 

 

The Clarke error grid analysis (Figure 8-11) was further used to validate accuracy of the glucose 

sensor system. This analysis method is used to validate the effectiveness and suitability of using 

commercial glucose sensors by comparing it to a reference reading (Daarani & Kavithamani, n.d.). 

In this case, the obtained values from the sensor reading will be compared to the commercial 

glucometer purchased.  

 

Figure 8-11: Clarke Error Grid Analysis 
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Table 8-15, shows the acceptable ranges of glucose readings relative to the reference. Points 

that fall in range A and B are acceptable, however if points in region C, D and E are in excess – 

it means that the glucose sensing device is not reliable for medical use. As seen in Figure 8-11 

all points measured lie in the region A – which indicates that the sensor is accurate enough to be 

used for guaging blood glucose levels in patients. Region A, as described in Table 8-15 indicates 

that all measured glucose levels using the IR sensor is within 20% of the reference value 

(commercial sensor). 

 

Table 8-15: Regions of Clarke Error Grid 

Region A Values within 20% of the reference value 

Region B Values are outside of 20% but would not lead to inappropriate 

treatment 

Region C Values leading to unnecessary treatment 

Region D Values indicating a potentially dangerous failure to detect 

hypoglycemia or hyperglycemia 

Region E Values that would confuse treatment of hypoglycemia or 

hyperglycemia and vice versa 

 

Cost comparisons: 

Table 8-16 shows how the IR costs of the prototype system designed compares to other IR based 

sensors on the commercial market. As seen in Table 8-16 and Figure 8-12, there is an 82 % - 

92 % reduction in price range with the compared devices, making the designed solution far 

superior in terms of cost savings. This is in addition to the fact that the commercial devices in the 

market are often difficult to carry around and are much larger in size making them more obtrusive 

and uncomfortable to use. The current system (refers to the developed system), is only R200 

while all other sensors are at least above R1000. Both Figures 8-5 and 8-12 therefore indicate 

the massive discrepancies between the costs of commercial products and the system designed 

– indicating a massive opportunity to reduce costs of wearable sensors while still maintaining 

sensor accuracy. 

 

Table 8-16: Table Showing Cost of Glucose Monitoring Solution vs Commercial Products 

 

Current System Beurer 
GL 50 Blood 
Glucose Monitor  

Abbott Freestyle 
Libre Blood Sugar/ 
Glucose Monitor 

Accu-Answer Cholesterol, 
Glucose, Hemoglobin & Uric 
Acid Blood Test Meter 

R200 R2500 R2199 R1099 
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The Beurer GL 50 70 blood glucose monitor is the most expensive at R1299 with the second 

cheapest being the Accu – Answer system at R1099. The IR sensor (represented as the current 

system) comes out on top at only R200. This sensor is cheap, easily replaceable and durable for 

the application 

 

 

 

 

 

 

 

 

 

 

Figure 8-12: Cost Comparison (Rands) of IR System with Other Commercial Products 

 

8.1.4. Pulse Rate Sensor 
The comparison for the pulse rate sensor was done against a commercial pulse oximeter 

readings. The value obtained from the pulse rate sensor at intervals before and after exercise for 

the 3 patients were recorded in Table 8-17.  

 

Table 8-17: Pulse Rate Sensor and Calibrated Sensor Values for different patients 

Pulse Rate 
Sensor 

Patient 3 Patient 2  Patient 1  

 Actual 
(BPM) 

Physical 
measurement 

(BPM) 

Actual 
(BPM) 

Physical 
measurement 

(BPM) 

Actual 
(BPM) 

Physical 
measurement 

(BPM) 

Before Exercise       

Run 1 72 73 78 74 66 64 

Run 2 76 78 78 76 72 72 

Run 3 74 72 96 92 66 69 

After Exercise       

Run 4 96 100 128 136 96 86 

Run 5 112 116 132 126 132 129 

Run 6 123 119 126 119 126 130 
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As expected, pulse rates before exercise were lower than after exercise. Normal range before 

exercise (60 BPM – 100 BPM) was experienced by all participants. After exercise, all participants 

did experience higher pulse rates, while patient 3 and patient 1 – due their age sometimes saw 

pulse rates dip to the lower ranges of 86 BPM - 90 BPM which is expected for individuals in the 

age range of 50-60 years. 

Readings of each of the patients were then compared to a calibrated pulse rate sensor and the 

results can be shown in Table 8-18. Table 8-19 shows that the % error is low at 2.7% which is 

well below the target of 5 %. In addition, a low standard deviation of 1.86 indicates that the data 

is reliable. The sensor readings sometimes results in deviations because of noise interference. 

This can be improved through placing the sensor in an enclosure to block out noise interferences. 

 

Table 8-18: Pulse Rate Sensor comparison with calibrated sensor 

Reading Actual (IR 

sensor with 

polynomial 

equation) 

Calibrated 

Sensor 

Percent 

Error 

Standard 

deviation 

1 72 73 1.4 0.7 

2 76 78 2.6 1.4 

3 74 72 2.8 1.4 

4 74 72 2.8 1.4 

5 96 100 4.0 2.8 

6 112 116 3.4 2.8 

7 123 119 3.4 2.8 

8 72 73 1.4 0.7 

9 76 78 2.6 1.4 

10 74 72 2.8 1.4 

 

Table 8-19: Pulse Rate Sensor vs Calibrated Sensor Statistics 

Average 84.90 

Sample Size  10.00 

Average error % 2.70 

Average std Deviation 1.86 

 

Figure 8-13 shows the graph with error bars of output IR glucose readings of implemented system, 

relative to the calibrated sensor values.  As can be seen, the actual values are close to the 

calibrated sensor output. 
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Figure 8-13: Pulse Rate Sensor vs Calibrated Sensor (BPM) 

 

8.2. Model Testing 
The sensor layer was tested and showed the effectiveness of the sensors in comparison to known 

standards and calibrated devices. This section will now independently test the performance of the 

models employed within the IoT system. This section will look at testing 1) The FL models using 

synthetic test cases and comparing with the intuition of a physician and also to literature and 2) 

the stroke ML model in comparison to literature standards. 

 

8.2.1. MATLAB Simulations 
After generating the models on Android studio, they were then developed on MATLAB to generate 

surface plots. This section will outline the process of re-creating the models in MATLAB and will 

thereafter discuss the surface plots generated.  

 

8.2.1.1. Simulation Process 
The simulation process was carried out using MATLAB’s Fuzzy Logic toolbox. The first step of 

the process involves defining the input variables, output variables and inference system. This was 

done using the fuzzy logic designer screen. For both models 1 and 2, the Mamdani inference 

system was selected as with the model created for the MA. For each model, the input and output 

variables were named and the method of defuzzification was selected to be the MoM approach. 

Figure 8-14 shows the set-up for model 1. Model 2 followed a similar procedure with different 

input and output variables defined. As can be seen in Figure 8-14, the input variables pulse rate 

(PR), blood sugar (BS), body temperature (BT) and age were defined as inputs while the output 
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was defined as “health status.” Here a higher output of health status means a more high risk to 

the patient while a lower output indicates a positive status of health. 

 

Figure 8-14: FL Designer Screen MATLAB (Model 1) 

 

Once the general set-up was complete, the next step involved defined the fuzzy MFs using 

MATLAB’s MF editor. For each of the inputs and output of both model 1 and 2, the fuzzy 

membership functions were defined. This involved selecting the type of MF and its range. For all 

models and variables, the triangular MF was chosen as was the case for the FES developed for 

the MA. Figure 8-15 shows a typical MF set-up for the PR variable of model 1. As can be seen, a 

PR range of 1 BPM- 160 BPM was chosen. Thereafter the operating ranges of low, normal and 

high pulse rates were defined. The same approach was used for all variables in both models.  
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Figure 8-15: Membership Function Editor on MATLAB (PR Variable Model 1) 

 

Once the membership functions were developed, the process of rule generation followed. This 

involved using MATLAB’s rule editor. Here all possible rule combinations based on the set of input 

variables were used to create a rule base for the model to predict. Figure 8-16 shows the rule 

editor for model 1. Here, 81 rules were developed by selecting the ranges of each variable and 

thereafter the health status outcome expected. This rule base will serve as a reference for the 

model when new input variables are fed into the FES. 
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Figure 8-16: MATLAB Rule Generator (Model 1) 

 

Figure 8-17 shows the rule viewer for model 1. By shifting the red line or manually changing input 

variables, the output of the model will change. This screen can be used to test the effect of the 

input variables (BS, PR, BT and Age) on the response variable which is the health risk of the 

patient. 

 

 

 

 

 



 

156 
 

 

Figure 8-17: MATLAB Rule Generator (Model 1) 

 

8.2.1.2. Surface Plots 
Using MATLAB’s surface viewer, it was then possible to generate surface plots for the different 

combination of input variables relative to the output for each of the models. This is the chosen 

method by MATLAB fuzzy logic suite to display the interaction between membership functions. A 

surface plot is used to determine the relationship between a response variable and two predictor 

variables. It consists of predictors on the x and y axis and a continuous surface on the z- axis 

representing the response variable. The results can be seen below, as mentioned previously – a 

lower output of the response variable “health status” is desired – as it indicates a patient is healthy 

and has low risk factors. A higher rating on the health status indicates a danger to the patient.   
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Model 1: 

Surface and contour plots of BT and PR relative to the health status of the patient was plotted. 

The results can be seen in Figure 8-18. The plots show that at lower temperature patients’ health 

become critical reaching values of over 90 %, however as temperatures reaches 36 °C, the start 

of the normal body temperature range, there is a dip in patient risk to around 80 %. The change 

at 36 °C can further be seen in the pseudo color chart on the y-axis with the change of color from 

yellow to green. After the normal temperature zone passes, lower temperatures tend to increase 

the health risk back to over 90 %.  The plot also shows that the health status risk drops to zero 

between the normal PR range of 80 BPM - 100 BPM, however risk to patient tends to peak at 

values below and above this range. This can further be seen in the pseudo- color plot in figures 

8-18(b). The blue area on the x-axis denotes the 60 BPM-100 BPM range and >150 BPM range.  

 

 

 

Figure 8-18: (a) Surface Plot BT and PR on Health Status, (b) Contour Plot of BT vs PR  

 

A surface plot and color pseudo-color plot (Figure 8-19) can be used to show the impact of BS 

and PR on a person’s health risk. As can be seen in 8.19, at sugar levels of about 21.7 mmol/L, 

health risk tends to drop from around 85 % to 50 %. This indicates that high BS poses a lower 

risk on patient health than low BS. At around 5-5.5 mmol/L, the normal range of BS, there is a 

slight dip on patient health risk from 90 % to around 87 %, however this is for pulse rates between 

100 – 150 BPM. 
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Figure 8-19: (a) Surface Plot BS and PR on Health Status, (b) Contour Plot of BS vs PR  

 

Figure 8-20, shows the effect of age and PR on patient health risk. As can be seen from Figure 

8-20(a) and figure 8-20(b) from around 60-100 BPM, there is a drop in health risk from 90 % to 

0 %. At 60BPM, the health risk drops to 60 % and then the risk is further dropped to zero when 

the peak of 80 BPM is reached. Age seems to have minimal effect on the health risk. There is a 

slight dip from 90 % risk to 89 % for age groups 20-30 and 40-60.  

 

 

 

 

 

Figure 8-20: (a) Surface Plot Age and PR on Health Status, (b) Contour Plot of Age vs PR  
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Figure 8-21 shows the relationship between the age and body temperature relative to a patient’s 

health risk. As can be seen, age and body temperature together have a constant effect on health 

risk – keeping it constant at 50%. The same can be said about the relationship between blood 

sugar and BT (Figure 8-23) as well as and age and blood sugar (Figure 8-22) which also show a 

50% risk in patient health. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-21: Surface Plot Age and BT on Health Status  

 

 

 

 

 

 

 

 

 

 

 

Figure 8-22: Surface Plot Age and BS on Health Status  
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Figure 8-23: Surface Plot BS and BT on Health Status  

 

Model 2: 

Figure 8-24 shows the surface plot of humidity and age on the response variable rating for model 

2. The graphs shows that at around 40-60 % humidity, the health risk of the patient drops from 

90 % to 0 %. This is expected, as this is the normal range of humidity known to have no adverse 

effects on the patient. Once again, age has almost no effect on the health risk with risk rating 

dropping from 90 % to 80 % for the 20’s age group and 86 % for the 40’s age group. 

 

 

Figure 8-24: (a) Surface Plot Age and Humidity on Risk Rating, (b) Contour Plot   
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As seen in Figure 8-25, there is a strong relationship between the temperature and humidity on 

the risk rating of the patient. At around 40-60 % humidity and at temperatures between 0 °C to 

40 °C, the risk rating drops to about 60 %. For the rest of the ranges of temperature and humidity, 

the risk rating remains high at over 80 %. 

 

            Figure 8-25 Surface Plot Temperature and Humidity on Risk Rating, (b) Contour Plot 

 

Figure 8-26 shows that at age group 45 and above, with temperatures above 40 °C, risk rating on 

patient increases from 88 % to over 99 %. Showing a strong correlation between high temperature 

peaks and age peaks. For age groups 40 and below, the risk rating sits at 60 %, from age 40 to 

45, this risk rating increases to 88 %. – Again showing a strong correlation between increased 

age group and increased temperatures on risk rating     

 

Figure 8-26: Surface Plot Temperature and Age on Risk Rating, (b) Contour Plot                                



 

162 
 

8.2.2. FL Model Testing 
The testing of the FL models was done using 15 synthetic test cases for each model. For each 

test case a score was obtained from the model and compared with the intuitive response of a 

physician and also MEWS rating for model 1. The comparison was then used to determine the 

statistics of the model and how it compares to the knowledge of a trained medical professional or 

a current risk rating method. The test will show if such systems can reliably be used to gauge 

patient health when doctors are not available.  

 

8.2.2.1. FL Model 1 (BT, BS, PR and Age) 
Table 8-21 shows a list of 15 test cases of hypothetical patient parameters designed to test the 

robustness of the designed models for different risk rating ranges. For each test case, the BT, BS 

and PR were input into the model to determine the status and percentage risk rating of the patient. 

This was then subsequently scored against the MEWS rating and the physician rating.  

The MEWS is a system developed with the primary focus of helping health practitioners gauge 

the status of their patients by scoring the patient’s vitals based on how severe they are. A score 

of 0-3 is used with the upper parameter 3 indicating highest severity. A higher MEWS total 

therefore indicates a higher severity of the patient’s condition. If a patient has a MEWS score that 

is equal to or greater than 5, they are considered critical and in need of urgent medical attention 

(Al-Dmour et al., 2019). Another way to interpret MEWS scoring is by using the ranges shown 

below: 

3 <Score >0 means 2 hour observations needed 

                                    Score = 3 means 1-2 hour observations needed 

                                    Score> 3 means ½ hour observations needed 

 

For the purpose of comparison, these intervals will be used to designate test cases into critical 

health, healthy and unwell ranges as was the case for the physician’s rating and the FL model 

rating. A score =2 will signify unwell range, a score >3 will signify critical range and a score 

between 0 and 3 will signify healthy status. 

The MEWS score is calculated using the Table 8-20. Although the typical MEWS score takes into 

consideration factors such as blood pressure, PR, respiratory rate, BT and the Alert, verbal, pain, 

unresponsiveness (AVPU) – for the purpose of comparison, scoring will be done using a change 

of parameters in the MEWS rating as done by (Choudhury & Baruah, 2015). For the purpose of 

this work, the variables BT, BS and PR will be used to evaluate the MEWS score. Table 8-20 will 

be used for scoring. 
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Table 8-20: MEWS Score Parameters and Ranges 

MEWS +3 +2 +1 0 +1 +2 +3 

BT  <=35 35.1-36 36.1-38 38.1-38.5 >38.5  

BS  <=40 41-50 51-100 101-110 111-130 >130 

PR  <=4.1  4.2-5.5 5.6-10 10.0-20.0 >20 

 

The MEWS score is calculated using the 3 variables in Table 8-20 above based on the ranges of 

the specific variables measured. Each of the patient’s vital signs (i.e. BT, BS and PR) are cross 

referenced with Table 8-20 to give a score between 0-9. The total score for the patient is then 

referred to as the MEWS rating. For normal patients, a MEWS score of 0 is obtained. A 

percentage rating was then obtained to compare with the FL model and physician rating. This 

results can be seen in Table 8-21. 

 

Table 8-21: FL Model 1 Performance Relative to MEWS and Medical Doctor Scoring 

 Vital Signs Using FL Using MEWS Medical Doctor 

No. BT 
(°C) 

BS 
(mmol/L) 

PR 
(BPM) 

Age Status Score 
(FL) % 

Status  Score 
MEWS 
% 

Physician 
Status 

Score 
Physician 
(%) 

1 39.9 12.3 110.0 14 Critical 
Health 

80.0 Critical 
Health 

55.0 Critical 
Health 

86 

2 40.3 11.7 125.0 32 Critical 
Health 

80.0 Critical 
Health 

66.7 Critical 
Health 

90 

3 41.5 12.0 55.0 45 Critical 
Health 

72.5 Critical 
Health 

66.7 Critical 
Health 

75 

4 34.2 4.8 72 80 Healthy 46.8 Healthy 22.2 Healthy 40 

5 33.6 3.6 50.0 75 Critical 
Health 

72.4 Critical 
Health 

55.6 
Unwell 

45 

6 36.6 4.3 75 21 Healthy 32.1 Healthy 0.0 Healthy  10 

7 37.2 5.0 82.0 45 Healthy 45.8 Healthy 0.0 Healthy 15 

8 36.5 4.9 93.0 88 Healthy 32.5 Healthy 0.0 Healthy 25 

9 37.1 5.2 68.0 65 Healthy 31.3 Healthy 0.0 Healthy 20 

10 37.0 5.1 77.0 15 Healthy 25.0 Healthy 0.0 Healthy 10 

11 36.6 4.3 110.0 15 Healthy 33.3 Healthy 11.1 Healthy 10 

12 40.3 5.0 118.0 18 Unwell 60.0 Critical 
Health 

44.4 
Unwell 

60 

13 41.5 4.9 85 32 Unwell 60.0 Healthy 22.2 Unwell 55 

14 34.2 4.8 68.0 28 Healthy 46.8 Healthy 22.2 Healthy 45 

15 33.6 5.1 50.0 33 Unwell 60.0 Unwell 33.3 Healthy 40 

 

The comparisons were done between the model, the MEWS rating and the physician’s response. 

The results can be seen in Table 8-22 and Figure 8-27. As can be seen the model scored equal 

accuracies and precision, 86.7 % and 83 % respectively, when compared to the MEWS rating 

and the physician rating. The high precision indicates that the model will be able to correctly 

diagnose patients with minimum FPs.  The recall however differed between the comparisons with 

the doctor and the comparison with the MEWS rating. When the FL model was compared to the 
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doctor it achieved values of 100 % while this value dropped to 83 % when compared to MEWS. 

The recall is relatively high in both cases and indicates that the model will be capable of reducing 

the number of FNs. The difference in expected output with the MEWS could be attributed to the 

fact that the MEWS has a smaller range classification compared to the FL model.  The high 

precision, recall and F1 Score means that the model will be able to adequately predict positive 

and negative risk scenarios in patients. The model can be improved through the use of medical 

doctors helping to solidify and develop the rule base for the model. 

 

Table 8-22: Scoring Matrix for FL Model 1 

Scoring 
metrics 

Comparison 
with Doctor 

Comparison 
with MEWS  

Accuracy 86.7 86.7 

Precision  83.0 83.0 

Recall 100.0 83.0 

F1 Score 90.7 83.0 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-27: FL Model Comparison with MEWS and Physician                                

 

Figure 8-27 shows a graphical comparison of the % ratings of model 1 relative to the MEWS rating 

and physician scoring. As can be seen by the surface plot, Figure 8-28(a), the plot shows that the 

physician results increases with the FL model results – showing some alignment with these two 

ratings. The MEWS rating relative to the FL model shows that the two aren’t always aligned. The 

plot shows creases on the x-axis as the FL model % increases. This can be attributed to the 

MEWS rating dropping to 0 % as can be seen in the straight line plot.  
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The line plot, Figure 8-28 (b) shows that there is a bigger difference between the FL model score 

% compared to the physician vs The FL model score % compared to MEWS. There is basically 

more alignment with the physician and FL model than the MEWS and FL model. There are also 

cases where the MEWS scores a test case as zero risk even if there is a slight risk. This can 

again be attributed to the stringent criteria of MEWS which is binary in nature. A rating either gets 

a 1 or a 0– no in-between. This is what adds to the attractiveness of using a method like FL – 

since medicine is not a precise science and many scenarios aren’t a straightforward “yes” or “no”. 

 

Figure 8-28: (a) Model 1 Surface Plot Comparison with MEWS and Physician FL Model 

Comparison with MEWS and Physician (b) Line Graph Comparison of Model 1 with MEWS and 

Physician Rating                               

 

 

8.2.2.2. FL Model 2 (Humidity, Age, Body Temperature) 
Model 2 was also tested in a similar manner to model 1. Here, 15 hypothetical test case simulating 

patient parameters were used to develop predictions using model 2. Then these results were 

subsequently compared to the predictions made by a physician. The results of the status and 

scoring by both the model and physician can be seen in Table 8-23. 
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Table 8-23: FL Model 2 Performance Relative to Physician Diagnosis 

 Vital Signs Using FL Medical Doctor 

No. Hum 
(%) 

Age BT 
(°C) 

Status Score 
(FL) 
% 

Physician 
Status 

Physician 
Score 
(%) 

1 30.0 15 34.2 Risky 60 Risky  70 

2 25.0 21 37.3 Low 
Risk 

32.1 
Low Risk  

10 

3 80.0 16 33.2 High 
Risk 

72.7 
High Risk  

85 

4 79.0 25 38.5 High 
Risk 

76.7 
Risky  

50 

5 82 47 37.1 Low 
Risk 

44.2 
Low Risk  

20 

6 73.0 55 39.3 High 
Risk 

77.5 
Low Risk  

45 

7 82.5 60 33.5 High 
Risk 

72.5 
High Risk  

85 

8 25.0 73 32.5 High 
Risk  

73.3 
High Risk  

95 

9 19.0 82 38.3 High 
Risk 

75.3 
Low Risk  

20 

10 30.0 72 31.2 High 
Risk 

74.4 
High Risk  

100 

11 47.2 15 37.2 Low 
Risk 

16.2 
Low Risk  

20 

12 49.3 62 36.8 Low 
Risk 

31.7 
Low Risk  

10 

13 47.5 10 36.9 Low 
Risk 

12.5 
Low Risk  

10 

14 52.3 62 37.3 Low 
Risk 

31.7 
Low Risk  

10 

15 52.5 66 37.1 Low 
Risk 

28.3 
Low Risk  

10 

 

The comparisons were done between the model and the physician’s response. The model 

statistics were then calculated and the results can be seen in Table 8-24. The model performed 

relatively well with an accuracy and precision above 80% and recall and F1 Score of 71% and 

76.5% respectively. The high precision and recall means that the model will be able to adequately 

predict positive and negative risk scenarios in patients. The model can be improved through the 

use of medical doctors helping to solidify and develop the rule base for the model. 
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                                    Table 8-24: Scoring Matrix for FL Model 2 

Scoring 
metrics 

Score FL% compared 
to Medical Doctor 

Accuracy 80 

Precision  83 

Recall 71 

F1 Score 76.5 

 

As can be seen in Figure 8-29, the doctor and physician more or less follow identical paths, 

however there are cases where there is a huge discrepancy between the predicted results 

relevant to the physician benchmark. Standard error bars on the predicted values can also be 

seen. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-29: Line Graph Comparison of Model 2 with Physician Rating                               

 

8.2.2.3. Literature Comparison of FL Models 
After comparing the model against medical doctors, the models were also compared to similar 

works in literature. The results of comparison can be seen in Table 8-25. The models either 

performed better or in the same range as the models examined. In the case of the model 

developed by (Jindal et al., 2020), the assistance of doctors establishing the rule base may have 

been a reason why accuracy achieved surpassed the models developed in this dissertation. Also 

a clearer definition of the critical inputs of renal cancer is known compared to the current models ’ 

risk rating features. Rian et al. (2019) was able to develop a similar system to rank patients health 
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risk and was able to get a range of accuracies ranging from 50-80 % whereas the developed 

model reached a constant range of accuracy irrespective of risk rating ranges. 

Table 8-25: Comparison of FL Models with Similar Literature Models 

Paper  
Output linguistic 
variables Output 

Membership 
functions 

Deffuzzification 
method Accuracy 

Designed 
FL Models 

1) Healthy, 
Critical 
health, unwell 

2) Risky, 

Normal, 
Critical Risk 

1) Health 
Status, 

2) Weather 
Risk Triangular MoM 

1) 88% 
2) 80% 

 (Duodo et 
al., 2014) 

Malaria free, 
uncomplicated 
Malaria, 
complicated 
Malaria 

Malaria 
Diagnosis Triangular Centre-of-gravity 76.9% 

 (Rian et 
al., 2019) 

Healthy, Unwell, 
Not Healthy 

Health 
Status Trapezoidal Centroid 50%-80% 

 (Jindal et 
al., 2020) 

Renal Cancer, No 
Renal Cancer 

Renal 
Cancer 
Diagnosis Gaussian Centre-of-gravity 96% 

 

8.2.3. ML Model 
The stroke prediction model developed was compared to similar ML approaches used in literature. 

The accuracy of 3 models were compared to the designed model and shows that the stroke model 

developed outperforms the literature ML models. The ML model developed is 11-18 % more 

accurate than the other models discussed. The model developed by (Gangavarapu Sailasya et 

al., 2021) utilized the same dataset used for the developed model, however a lower accuracy of 

82 % was obtained. An under sampling rather than an oversampling technique was used to 

balance the dataset. The results therefore show that for the given dataset, oversampling 

techniques, as was used, results in a higher model performance. Results of comparison can be 

seen in Table 8-26. 

 

Table 8-26: Comparison of ML model Performance with Similar Literature Model Performances 

Paper Participants Features ML model Accuracy 

Stroke Model 
developed 10346 13 

Two class 
boosted 

decision tree 94 % 

(Gangavarap
u Sailasya, 
et al., 2021) 5110 12 

Naïve Bayes 
Classification 82 % 
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(Chun, et al., 
2021) 503842 9 

Gradient 
Boosting 76 %-80 % 

 (Qin, et al., 
2021) 3035 17 SVM 83 % 

 

8.3. MA Testing 
The MA performance is vital as it serves as both the IoT gateway and one of the GUI’s. This is  

difficult to measure as the effectiveness of the MA will differ depending on the phone the user 

has. Hence to determine the differences in performance, two phones will be used for testing. A 

Samsung Galaxy Note 10 Lite and a Huawei P Mate. The Galaxy Note 10 Lite will represent the 

superior performance phone while the Huawei will represent a lower performance device.  

 

8.3.1. Battery Performance Testing 
The first test carried out to test MA performance was the battery test. A graph of battery usage in 

mAh was plotted over time for the two different phones. Results are seen in Figure 8-30.  

 

 

 

 

 

 

 

 

 

 

Figure 8-30: Battery Level % over Time for Different Phone Models Using MA 

 

The average usage on the two smartphones per hour was used and extrapolated over time hence 

the reason for the constant rise in battery level. The results indicate that both phones when using 

the MA, utilize a low percentage of battery power over an hourly period. However, there is a 

substantial difference in mAh consumption over a 5 hour period between the two phones. The 

performance of the Samsung Galaxy Note 10 Lite (orange line) far outweighs the Huawei P smart 
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(grey line) with the Huawei P smart using almost 3 times as much battery power as the Samsung 

Galaxy Note 10 Lite. This could be attributed to that fact that the Samsung has better battery 

optimization capabilities (present in newer phones) which allows it to consume far less mAh 

compared to its counterpart. Most new phones however have this ability and therefore proves that 

the MA will perform exceptionally well in newer phones. 

 

8.3.2. RAM Usage Testing 
The next test carried out to test the MA performance was a test of its memory usage over time. 

Figure 8-31 shows a plot of memory in megabytes over time in hours.  

 

 

 

 

 

 

 

 

 

 

Figure 8-31: Memory Usage (megabytes) over Time for Different Phone Models Using MA 

 

The results show that on average both phones utilized around 30 MB of RAM per hour. This in 

general indicates that the MA is a low consumer of memory usage considering that it is run 

continuously in the background and the fact that it uses a lot of computational power during data 

processing. It can be seen in Figure 8-31 that over a 21 hour period, both phones utilize about 

250MB of RAM.  

 

8.4. Overall System Performance 
The overall system performance will look at whether all modules within the system speak to each 

other effectively and determines whether the system performs as per design requirements. In 

addition, a comparison against other similar systems found in literature and the commercial 

market will be done to determine how the system performs. 
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8.4.1. System Integration Testing 
Software testing was done across the entire system to determine bugs and possible issues within 

the code. With complicated systems, it is an excellent method to determine if the system meets 

functional requirements and is working effectively. To effectively examine all aspects of the code 

within the system, the testing process is divided into different levels: 

 Unit testing: functional level testing done on sections of code to determine if the code is 

working correctly 

 Integration testing: testing between interfaces within the systems to determine if all 

components are effectively connected and work seamlessly 

 System testing: Involves testing and integrated system with all of its components to 

ensure that it sufficiently meets specifications 

 Acceptance testing: ensures that applications meet all requirements put forward 

 Performance testing: is essentially a speed check of different components viz. computer, 

software or network or device. This can be expressed in the unit of measure of response 

time or millions of instructions per second etc. 

 

Based on these types of testing, a combination of different test cases were developed to test the 

robustness of different components of the system. Tables 8-27 & 8-28 show the results of the 

tests performed. The tests were carried out on a Samsung Galaxy Note 10 Lite for the MA and 

Google Chrome for the WA, which represents the average capability of a typical smartphone and 

web browser. 

The results show that the WBAN, MA, WA and cloud interfaces are integrated well as all 

requirements of the system are met. Table 8-27 shows that the response times are fast enough 

for the intended application. The 4000 ms response time for the models is relatively fast 

considering the complexity of the models. In addition, the longer times can be attributed to the 

time delays put in place in the MA to prevent premature loading of null values into the cloud.  

                                           Table 8-27: System Response Time Testing 

 

Table 8-28 shows various scenarios developed to test the effectiveness of the overall system at 

critical points of operation.  The Table lists the expected outcome of each test, the system or 

components it will employ and test, the input and out specifications to carry out the test. As can 

be seen, all tests carried out was a pass, indicating that the system works effectively.  

Test Objective System component Time (ms) 

Transmit data to MA WBAN and MA 1000 

Time taken for patient’s location to appear on Firebase MA & Cloud 8000 

Time taken for webpage to load WA & Cloud 2000 

Time taken for models to calculate MA & Cloud 4000 

Time taken for data to display on patient interface MA & Cloud 4000 

Time taken for data to display on doctor interface MA & Cloud 6000 
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Table 8-28: System Validation Testing 

 

 

Test Objective System  
component 

Test Condition Input 
Specification 

Output 
Specification 

Pass/
Fail 

MA successfully 
identifies and pairs 
with WBAN 

WBAN and 
MA 

User is on 
“Bluetooth 
Devices” activity  

User clicks on 
discovered 
device and “start 
connection” 
button 

HC-06 light stop 
blinking indicating 
pairing successful 
– data starts 
transmitting on 
listview 

Pass 

WBAN Strings 
display correctly 

WBAN User is wearing 
device  

User pairs WBAN  
and MA 

Data string has 
delimiters in the 
required order 

Pass 

Warning LED’s work 
when required 

WBAN and 
MA 

User is wearing 
device and 
Bluetooth enabled 

User has 
abnormal vitals 

LED goes off Pass 

Vibration motor goes 
off every 30 min 

WBAN and 
MA 

User is wearing 
device and 
Bluetooth enabled 

30 min elapsed Vibration motor 
goes off for 5 
minutes 

Pass 

Data uploaded 
correctly onto 
SQLIte 

WBAN and 
SQLite 

User has receiving 
data from WBAN 

Input string from 
WBAN 

Data uploaded in 
correct columns in 
SQLite 

Pass 

Navigation from 
login activity to main 
activity 
(doctor/patient) 

MA & WA & 
Cloud 

User is on patient 
login activity 

User enters 
credentials and 
clicks on login 

User directed to 
main activity 

Pass 

Successful 
Registration process 
(doctor/patient) 

MA & WA & 
Cloud 

User is on 
registration page 

User enters 
details for 
registration and 
clicks on register 

User directed to 
login page and 
registration info 
stored in Firebase 

Pass 

Location tracking 
working on patient 
interface and 
Firebase updated 

MA & Cloud User is on “GPS” 
activity 

User clicks “ON” 
button 

User’s location will 
be visible under 
their node in 
Firebase 

Pass 

Data pulling through 
from SQLite 
database (patient 
interface) 

MA & Cloud User is on 
“monitor vitals” 
activity 

User clicks on 
“get data” button 

Data displays on 
Textview  

Pass 

Data pulling through 
from Firebase and 
SQL (doctor 
interface) 

MA & WA & 
Cloud 

User is on “Track 
Patient” activity in 
MA or “Monitor 
Vitals” page of WA 

User selects the 
parameter of 
user to track and 
clicks retrieve 
button 

Graphs and 
textviews are 
populated 

Pass 

Model Scores are 
Being calculated & 
uploaded onto 
Firebase 

MA & Cloud User is on Monitor 
Vitals activity and 
clicks retrieve 
button 

User clicks on 
“get data” button 

User MEWS, FES 
and ML models 
scores displayed 
on textview. 
Firebase database 
connections 
working  

Pass 

Data uploaded to 
MS Azure SQL  

MA & Cloud Patient in “cloud 
sharing” activity 

Patient clicks on 
“transmission 
button” 

Data is uploaded 
onto SQL 

Pass 
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8.4.2. System Comparison 
The uniqueness of the WBAN compared to other literature or commercial WBAN’s is the multitude 

of sensors it is composed of which helps gauge a patient’s health profile from a variety of 

viewpoints. The increased sensors also help model different scenarios which help doctors and 

patient’s gage trends through a systems thinking approach i.e. seeing the connections between 

different variables holistically rather than independently. The next advantage of the WBAN system 

is its integration with an IoT network that allows doctors and patients to share information. 

Although this may have been explored in literature, commercial products often don’t incorporate 

this feature – which often detaches the doctor from the equation leaving information in the hands 

of the user who often lacks medical experience. Lastly the incorporation of predictive modelling 

is also a feature which has been explored in literature but not incorporated in commercial 

products. Even in literature, a lot of model development in the area of medical diagnosis has been 

explored, however many of these implementations have lacked the consumption phase which 

actively utilizes the model. The prototype addresses this issue by utilizing an IoT data pipeline to 

consume the FES and ML models developed – which means the bridging of research to 

practicality is achieved. 

Tables 8-29 and 8-30 compares two critical components of an effective IoT healthcare 

telemonitoring system: 1) the price range, 2) the number of sensors/features respectively. 

 

Table 8-29: Price Comparison of Current System with Other Commercial Systems 

Current System Samsung Galaxy 
Fit2 Fitness Tracker 
 

Polaroid Single 
Touch Active 
Watch 

 

Apple Watch 
Series 3 GPS 

R1130 R 1399 R550 R3999 
 

 

 

 

 

 

 

 

 

Figure 8-32: Bar Graph Showing Price of Designed System Relative to Commercial Products 
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As can be seen from Table 8-29 and Figure 8-32, the current system costs excluding 

manufacturing costs are low considering the vast features it has at its disposal. The Polaroid is 

much cheaper however only possesses about 40 % of the features that the designed system has. 

Table 8-30 shows that in comparison to other literature systems and commercial systems, the 

designed system is also far more superior in terms of offering a feature rich experience. The 

designed system has 15 out of 21 of the features that are common in most wearable health 

devices as denoted by the green crosses. This Table further highlights some of the contributions 

of this dissertation which are essentially the features of the developed prototype. 1) A multi-

sensory WBAN was developed for remote monitoring, 2) a MA and WA was developed as GUIs, 

3) Cloud integration was incorporated into the design and 4) Models were developed that allowed 

for vitals to be analyzed to identify risk factors. 

 

Table 8-30: Feature Comparison of Current System with Other Telemonitoring Systems 

 
 
 
Feature 

 
 
Current 
System 

 
Samsung 
Galaxy Fit2 
Fitness 
Tracker 

 
Polaroid 
Single 
Touch 
Active 
Watch 
 

 
Apple 
Watch 
Series 3 
GPS 

 
(Simeone 
et al., 2021) 
(Literature) 
 

 
(Hameed et 
al., 2020) 
(Literature) 

ECG ×   ×   

EMG ×      

Pulse Rate × × × × × × 

Body Temp ×    × × 

Blood Pressure   ×  × × 

Pedometer   ×    

Sleep Tracker  ×     

Humidity  ×    ×  

Stress Tracker  ×     

Accelerometer   × ×   

Barometer    ×   

BMI ×      

MEWS Rating ×      

FES ×    × × 

ML  ×    × × 

GPS ×   × ×  

MA GUI × × × × × × 

WA GUI ×      

Cloud 
Integration/IoT 

× ×  × × × 

Doctor 
Interfacing 

×    ×  

Alerts × × × × × × 

Total 15 6 6 8 11 8 

https://consumer.huawei.com/za/wearables/band4e/
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8.5. Chapter Summary 
Chapter 8 looked at a holistic evaluation of the developed IoT telemonitoring system. The chapter 

began by discussing the effectiveness of the sensing layer and showed that the sensors satisfy 

requirements in terms of response times as well as sensor accuracy. The temperature and 

glucose sensor system was also compared and calibrated with commercial sensors. Calibration 

curves for both the glucose and temperature sensors were developed and showed minimum error 

between actual and expected results. A cost comparison of the LM35 and glucose sensor was 

also done with commercial products. Results showed that the cost effectiveness of the utilized 

sensors far outweighed commercial products. 

The chapter then looked at testing the 3 models developed. A comparison between the models 

were done using benchmarks such as the MEWS rating and the expertise of a physician. Results 

showed that both fuzzy logic models were able to perform reasonably well with accuracies of 

around 80 %. Interesting insights using surface plots were understood after running the models 

on MATLAB’s FL suite. The models including the developed ML model were also compared to 

literature models and showed that the FL models were in most cases better or equal in standard 

to similar models developed in literature. The developed ML stroke model achieved accuracy 

scores of >90 % which surpassed most models developed in literature.  

The chapter then progressed to testing the MA performance. Here the RAM usage and battery 

utilization was tested for different phone models when using the developed MA. Results showed 

that the battery usage was minimum with Ram usage of around 30MB for both phones.  The 

chapter then concluded by discussing the overall system performance. Overall system response 

times for the transmission of data were recorded. A due diligence exercise of testing each feature 

of the system was also recorded and showed a 100 % pass rate. The overall system was also 

compared to commercial and literature systems in terms of features and cost and showed that for 

the price tag that the developed system outweighs the similar systems designed. This was 

highlighted by the fact that the current system had 15 out of the 21 common features found in 

smart wearables. The chapter also ended with a reference to the objectives and research 

contributions and how the designed system met the defined criteria. 
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Chapter 9: Conclusion and Recommendations 
This dissertation presented the detailed design of an IoT based healthcare telemonitoring system 

backed by ML and FL based models to help doctors handle patient diagnostics. The system using 

a smartphone as an IoT gateway, its two application layers and database integration was 

discussed. This chapter will further elaborate on the contributions and conclusions derived from 

the development of the designed healthcare system. In addition, opportunities for expansion of 

this system will be discussed under the recommendations section.  

 

9.1. Dissertation Summary 
This dissertation began by exploring IoT systems and its growth through the increase usage of 

Wi-Fi capabilities. It was seen that there is a massive opportunity to implement further IoT systems 

in the healthcare industry. It was further noted that IoT systems using smartphones was a growing 

trend since smartphone usage is estimated to reach 2/3 of the population by 2023. A literature 

review of similar IoT and telemonitoring systems were then explored and identified a gap in the 

sensory layer as well as the way intelligent models were integrated within the system. It was 

identified that an improvement in the features of the WBAN i.e. the incorporation of additional 

sensors and capabilities would allow for a more user rich experience allowing doctors and patients 

to have a more holistic view of the incoming healthcare information. These additional features 

would then allow for the development of improved models encompassing a variety of input 

variables. A further gap was identified, which showed that although non-communicable disease 

models for e.g. heart disease prediction models were incorporated into IoT systems – there was 

a severe shortage of integrating other non-communicable disease models like stroke prediction 

models within these IoT systems. 

An opportunity to create a smart IoT system using a multi-sensory WBAN which overcomes the 

above shortcomings was therefore identified. To understand the full requirements of designing 

such as system – a detailed evaluation of the stakeholder needs as well as the design 

specifications and challenges in terms of software, electronics and wearability were examined. 

These requirements and considerations were then filtered down throughout subsequent detailed 

design stages. A high level proposed system was then highlighted showing how a WBAN would 

integrate with a smartphone as an IoT gateway and utilize a cloud platform to exchange 

information to healthcare professionals via a WA and MA interface.  

The detailed designed stages were then presented, starting with the construction of a Pugh matrix 

to identify the optimum IoT gateway and WBAN configuration. The results showed that a 

smartphone IoT gateway with wrist positioned WBAN would be the optimal architecture for the 

proposed design. The detailed design was then explained starting with the development of the 

WBAN sensor layer i.e. the electronic and software design as well as enclosure and fitting on the 

patient.  



 

177 
 

The IoT gateway and GUIs were then discussed. This included the discussion on the development 

of the WA and MA and its role in the transfer of information from the WBAN to the cloud service 

as well as their use as GUIs for health care personnel to view patient data stored in the cloud. 

The integration of the MA and WA with the cloud databases were also discussed. This included 

and overview of the set-up and operation of the cloud interfaces to collect information from the 

IoT gateway and transmit it to the application layer. 

An explanation of the models developed were then presented. This included 2 FL models using 

the Mamdani approach with triangular MFs and the MoM method for defuzzification. A binary 

classification stroke prediction model was also presented which utilized MS Azure’s ML classic 

studio framework to develop the model. Various ML models were evaluated and showed that a 

boosted decision tree was the best classification model based on accuracy, precision, recall and 

F1 score.  

Use case scenarios evaluating various stakeholders and their role in information transfer 

throughout the system was also discussed. The process of transmitting and receiving information 

for each stakeholder was explained in detail to highlight the effectiveness of the system. 

The dissertation concluded with the results showing the effectiveness of each sensor in the WBAN 

sensor layer. The glucose and LM35 temperature calibration was also performed. The 2 FL 

models were tested against a medical doctor’s evaluation and achieved accuracies of 88 % for 

Model 1 when evaluated against the MEWS and physician’s rating. Model 2 achieved an accuracy 

of 83 % when compared to a physician’s rating. The FL models and ML model were also evaluated 

against similar literature models which showed the effectiveness of the system. The overall 

system effectiveness in terms of response times, cost and features were tested and compared to 

literature and commercial products and showed that the developed system outperforms similar 

systems in terms of cost and features. 

 

9.2. Conclusion 
The objectives as outlined in chapter 1.5 as well as contributions identified in chapter 1.4 of this 

dissertation were achieved. Firstly a WBAN consisting of a multitude of sensors (ECG, EMG, 

Glucose, Pulse Rate, Humidity, and Temperature) was developed. The developed WBAN 

satisfied the wearability, software and electronic specifications as outlined in section 2.2. A Pugh 

matrix showed that to satisfy this criteria, a wrist based WBAN would be the optimal design. This 

configuration allowed for the stakeholder requirements to be satisfied in terms of the device being 

non-obtrusive, durable and accurate in terms of sensor readings (due to optimal placement of 

sensors). A MCU with enough ADC and digital connections was selected and ensured that the 

criteria of size and functionality was met.  

The development of an IoT pipeline was satisfied through the use of a Firebase NoSQL database, 

Azure SQL database and a mobile IoT gateway. According to the Pugh matrix, to satisfy the 
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requirements of the IoT gateway, a mobile based gateway would be optimal. It is able to store 

large amounts of data, communicate via short range communication (Bluetooth) with the WBAN 

and long range communication (Wi-Fi) with the cloud platforms. It is also possible to use it as an 

application layer so that patients can view data being received and communicated. The Firebase 

database was used for the registration process since it was well equipped to handle authentication 

processes which ensured user security. Furthermore user registration information was in a 

structured single line data which meant that the Firebase NoSQL database was well equipped to 

store and process this information using its node configuration. For the sensory data which was 

tabular rows of data, the SQL capabilities within Azure made it a good choice to store this type of 

data. Connections between the mobile IoT gateway was established using a JDBC for Azure SQL 

and another API connection for Firebase. These connections further enabled the connection with 

the doctor MA and WA. This enabled the completion of an IoT pipeline from local storage (SQLite) 

on the smartphone to the cloud databases to the doctors MA or hospital WA. A multi-sensory 

remote monitoring solution as outlined in the contributions (chapter 1.4) was therefore fulfilled.  

The viewing of data using application layers were satisfied through a development of a MA and 

WA. Both these application layers satisfied the requirements put forward i.e. ease of use while 

offering a feature rich experience to its users. The application layers allow both doctors and 

patients to interact with data and make conscious decisions about health. The application layer 

for the doctor allows for viewing of historic data graphically over a period of time with multiple 

sensor inputs. This further iterates the uniqueness of the system in providing a holistic and 

systems perspective to health care professionals accessing the data. The WA was successfully 

developed and can be hosted on a hospital server so that access can be given to healthcare 

professionals such as nurses, radiologists etc. who don’t have access to patient data via the MA.  

The Last objective of this dissertation was to add intelligence to the IoT system. This was 

accomplished through the development of 3 models and two techniques. The FES approach using 

the Mamdani technique and MoM method for defuzzification was utilized to develop a model to 

predict patient health risk and a model to detect the effect of environmental factors on human 

health. Both these models were compared to literature and subjected to a comparison with trained 

medical professionals and the MEWS rating. Results showed that the models fared well in its 

predictive abilities. Furthermore these models highlighted the unique abilities and contributions 

identified for the WBAN i.e. the unique combination of sensor inputs in models to predict health 

risks to patients ensuring a proactive approach to healthcare and reducing delays in treatment.  

A stroke prediction model was developed using the MS Azure ML Classic studio using the binary 

classification Boosted decision tree. This model was selected as the optimal after comparison 

with 7 other classification models. The Boosted decision tree resulted in an accuracy, FL score, 

precision and recall all above 90%. After development the model was successfully consumed by 

the MA allowing for remote prediction of stroke in patients. This model satisfied the intended 

contribution of creating a model that is actually utilized/consumed within an IoT system. 
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9.3. Recommendations 
As data security mechanisms to protect user data was not extensively looked at, future work 

includes research into improved security to protect patient data within the MS Azure SQL 

database. This to ensure that only authenticated users are able to access specific patient info. 

The research also looked at creating an independent IoT technology that operates outside of the 

confines of a hospital. Therefore there may be merit into looking at how this system can be further 

integrated into hospital based IoT systems. Here lies the opportunity of training ML models with 

historical data within the hospital databases. 

Another possible opportunity of future work could entail further expanding the capabilities of the 

sensing layer either through new capabilities or improvement of current capabilities. While this 

research focused on a wearable wrist device, opportunities still exist for auxiliary devices such as 

a head piece capable of measuring EEG data parameters.  

Azure SQL and Firebase were chosen as the database cloud platforms, however there may be 

opportunities to experiment with different cloud platforms to test scalability cost and data security 

potential.  

Lastly as the extent of ML algorithms were not explored extensively in this research, there exists 

opportunities to further examine different models that provide unique predictions based on user 

parameters. Herein also lies the opportunity to test different ML platforms and features to compare 

factors such as ease of use, speed of deployment and cost efficiency.  
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Appendices 

Appendix A: Bill of Materials (BOM) 
 

Equipment 
List Illustration Description Dim (mm) Function Connection Supplier Price (R) Total 

Arduino 
Nano and 
micro USB 
cable 

 Microcontroller 18×45 Control the 
circuit 

Connection to all 
other 
components and 
power source 

Stelltron/Ma
ntech 

110.98 

2 

7.4 V 
450mAh 
Lipo drone 
battery 
 
 

 

Rechargeable 
battery 

25×20×6 Power device N/A Mantech 190  
 
 
 
2 

2S,3S 
balance 
charger 

 

Protective 
circuit charger 
for 
rechargeable 
battery 

N/A Charging 
battery 

N/A Mantech 355 1 

Resistor Kit 
600pcs: 30 
Values x 20 
pcs each 

 Resistors  N/A Voltage 
dividers for 
Bluetooth, 
resistors for 
sensors etc. 

Connection with 
all components 
to reduce voltage 
drop 

Stelltron 80 

1 
 

 

 



 

191 
 

 

Bluetooth HM-10 
 

Bluetooth 27×13×2.2 Wireless 
transmission 

1) HC-05 RX to 
Arduino pin D3 
(TX) via a 
voltage divider 
2)Connect 
HM10 TX pin to 
Arduino RX pin 
2) HM10 VCC to 
5V on Arduino 
3) HM10 to 
common ground 

Stelltron 97.75 

1 

Vibration motor 
module Type 1 

 

Haptic 
feedback 
vibration 
sensor 

Not sure  Alert user for 
issues i.e. 
problematic 
health 
conditions 

1) G to GND 
Arduino 

2) V to 5V 
Arduino 

3) S to digital 
pin Arduino 

Make 
Electronics 

27.5 1 

Medium 
solderless 
breadboard or 
Vera board 

 

Breadboard/Ve
ra board 
solderless 

N/A To initially test 
components 
before 
soldering 

Connects to all 
components 

Stelltron 46 

1 

40pcs 10cm Male 
To Female Jumper 
Cable Dupont 
Wire 

 

Jumper wires 100 length For 
connection 
between 
sensors and 
breadboard 

Connection of 
components to 
breadboard 

Stelltron 50 

1 
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LM35 
 

Body 
temperature 
sensor & Room 
temperature 
sensor 

 
Record body 
temperature 
and room 
temperature 

1) VIN sensor to 
3V Arduino or 
5V with 
regulator 
2) GND sensor 
to GND Arduino 
3) SCL sensor To 
A5 Arduino 
4) SDA sensor to 
A4 Arduino 

Mantech 31 

2 

MAX30100 
 

Pulse and 
oximeter 
sensor 

18.8×14.4×
3 

Record pulse 
and blood 
oxygen levels 

1) VIN sensor to 
3V Arduino or 
5V with 
regulator 
2) GND sensor 
to GND Arduino 
3) SCL sensor To 
A5 Arduino 
4) SDA sensor to 
A4 Arduino 

Mantech 160 

5 

IRA - E710ST0 
 

IR sensor 9.2 outer 
diameter 

Detect 
radiation heat 
loss 

  Mantech 50 

2 

HIH-4000-002 
 

Humidity 
sensor 

4.17×2.03×
8.59 

Ambient 
temperature 

  RS 
components 

438 

1 
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AD8232  
 

ECG sensor 36×28 Detect ECG 
readings 

1) Ground 
Arduino to 
ground sensor 
2) 3.3V power 
supply Arduino 
to 3.3V sensor 
(use pull up 
resistor if using 
5V supply) 
3) Output 
sensor to A0 
Arduino 
4) LO sensor D2 
Arduino 
5) LO+ to D3 
Arduino 

Sparkfun 200 

 1 

N/A 
 

Agcl 3D printed 
electrodes 

  Gel less micro 
contact with 
skin 

N/A     

1 

LED 5mm (10 
Pack) 

 

LED Light  N/A Flash user in 
the case of 
emergencies 

1) connect 
digital pin to 
resistor  
2) connect 
resistor to Led 
3) Connect LED 
to ground 

Stelltron 10 1 
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Soldering Iron 60 
Watt Adjustable 
Temperature 

 

Soldering iron  N/A Solder 
components 
onto 
breadboard 
for final 
design 

N/A      1 

Digital Multimeter 
830 Series 

 

Digital 
Multimeter 

N/A Test voltage, 
current and 
resistor 
reading on 
circuit 

N/A     1 

L7805 Voltage 
Regulator 

 

Voltage 
Regulator 

Not sure To regulate 
voltage across 
circuit (5V) 

  Stelltron 3 1 

LD33CV Voltage 
regulator 

 

Voltage 
Regulator 

Not sure To regulate 
voltage across 
circuit (3V) 

  Stelltron 3 1 
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Appendix B: Project Planning 
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Appendix C: Mobile App UML diagram 
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Appendix D: Stripboard layout 



 

198 
 

Appendix E: Detailed Process Flow 
 

CVAVR 
(collects data from sensors 

and concatenates into a string 
-“Incoming Message”

Sensors
(EMG, ECG, 

Humidity, T, body T, 
Pulse Oximeter, IR)

BLUETOOTH

BluetoothConnectionService.Class 
(Receives String & sends to Bluetooth Act 

as it arrives)

(Sends data rec from cloud and mobile 
app)

Bluetooth Activity
(Splits “incoming message” String into individual 
strings and passes to MyHelper.class -ECGSensor, 

ECGxVal, ECGyVal, EMGSensor, EMGxVal, 
EMGyVal, HumSensor, HumxVal,Tsensor, TxVal, 
TyVal, BTSensor, BTxVal, BTyVal, PulseSensor, 
PulsexVal, PulseyVal,IRSensor, IRxVal, IRyVal, 

O2Sensor,O2xVal,O2yVal

INC STRING

MyHelper.class
( inserts the split data strings 
into the corresponding SQLite 

columns)

SQLite Database
(Stores data in “MyTable” with columns – ECGSensor, 
ECGxValues, ECGyValues, EMGSensor, EMGxValues, 

EMGyValues, HumSensor, HumxValues,Tsensor, 
TxValues, TyValues, BTSensor, BTxValues, BTyValues, 

PulseSensor, PulsexValues, PulseyValues,IRSensor, 
IRxValues, IRyValues,O2Sensor,O2xValues,O2yValues

Cursor alldata subclass

CloudSharing Activity
(encapsule class calls Asynch class which first retrieves data from Sqlite using 

“cursor.alldata” class within the MyHelper.class. Each column is stored in 
individual arrayList. A for loop runs through each value and then connects to Azure 
through ConnectionAzure.class and each loop puts values in individual rows within 

the Azure SQL database. A Handler class within the CloudSharing Activity then 
delays for 300000ms before performing click which erases the arrayList and 

restarts the process. Need to retrieve userID and pass to table creation function. 
This will create a tables using the userID (one long term data and one short term 
data). SQLite resize function checks the size of SQLite array every 5 minutes and 

deletes values to retain 5000 lines

Continuo
us

Continuo
us Continuo

us
Continuo

us

Continuo
us

Buffer – 
Activates with 

WIFI

Buffer – 
Activates with 

button click

Buffer – 
Activates with 

button click

PatientRegistration1,2,3 Activity
Patient enters information to be passed to firebase database. Data stored in Hashmap then 

pushed to firebase no SQL database for future reference and authentication. Two nodes 
created (one private and one public). Public Node is created with Hierarchy(Users 

public>CurrentUserId> and data – “age”,”doctor”,”doctorContactnumber”,”fullname”,”medical 
aid”, “gender”,”mobile”). A private Node is then created with hierarchy 

(Users>CurrentUserId>data -“age”, “weight”, “height”,”alternativenumber”, 
“doctor”,”doctorcontactnumber”, “fullname”, ‘medicalaid”,”medicalaidnumber”, 

“gender”,”mobile”,”birthdate”,”Address”,”Contactperson”,”contactpersonmobile”, 
“username”, “Password”,”email”,Check for pre-existing conditions “TB”, 

“Hypertension”,”HIV”,”Acute Bronchitis”,”Diabetes”,”Asthma”)

Doctor Registration2 and Registration complete Activity
Doctor enters credentials to register. “Uid”, 

“Username”,”Password”,”email”,”Mobile”,”Name”,”Hospitallocation”,”Fullname”,”practicenu
mber”,”Speciality”. Doctor database created so that patience database doesn’t login in to 

doctor interface. Doctor node copied in both databases and made public so that user can add 
doctor to network

Registration Activity
Directs user to login page for Patient 

interface, login page for Doctor 
interface, Registration for patient, 

Registration for doctor

Doctor Login/Doctor Interface 
Activity

Patient Login/Patient interface 
ActivityFirebase database (NO SQL database)

Creates two separate databases (1 for 
doctor and 1 for patient). Creates 

credentials for Doctor and patient using 
username and password. Stores other 

data in realtime database

WIFI

WIFI

Continuo
us

Continuo
us

Authentication

Authentication

Check for authentication

Check for authentication

MonitorVitals Activity
(displays latest value for each 

parameter based on button click and 
referencing of appropriate column of 

data using cursor class within 
MyHelper.class)

HealthSettings Activity
Allows user to enter duration for 

reminders of taking readings. This will 
set CVAVR code timer for vibration 

motor. User can also update personal 
information to keep it up to date 

FindADoctor  and ShareData Activity
Patient can search doctor node and 

add user ID to their node which 
makes it possible for doctor to share 

see their personal health info. 
Requires info from firebase to receive 

doctor info

FIREBASE UPDATE

FIREBASE UDPATE PATIENT INFO

CVAVR UPDATE VIBRATION MOTOR

Connection Activity
Takes users to connection settings i.e. 

to set-up the bluetooth connection, 
share info to azure and share GPS 

location 

Bluetooth Devices Activity
(set on/off, discover, enable, start 

connection)

 GPS Activity
Set connectivity on/off ( latitude, 

longitude, altitude, accuracy, speed, 
address). Then transmits data to 

Patient node in real time as long as 
wifi available

WIFI

Continuo
us

DeviceListAdapter class
Creates list of available 

connection when pairing

FEEDBACK INFO TO TURN LED ON AND OFF/DANGERS

OUTPUT STRING SENT TO MICROCONTROLLER

Continuo
us

Track Patient Activity
Navigates doctor to all the info of 
patients in their network. This is 

accomplished by a search and recycle 
view adapter that makes use of the 
FindFriends class. Receives access to 
firebase patient info to receive data

ConnectionAzure.class
(Established 2 way connection with 

Azure SQL Database)

Azure SQL Database
(Stores data in Sensor.dbo with columns - ECGxValues, 
ECGyValues, EMGxValues, EMGyValues, HumxValues, 

TxValues, TyValues, BTxValues, BTyValues, PulsexValues, 
PulseyValues, IRxValues, IRyValues,O2xValues,O2yValues

JAVA library connection

Graphing activities (Web app and mobile)
Collects Data from DoInBackground function and 
assigns to arrayList for access). Here the firebase 

dynamic key of the patient is obtained and passed 
to the Doinbackground function to collect data 

from the correct table in Azure

Buffer – 5 
minute delays 

between 
uploads

Left out sensor 
columns to 

save 
processing 

time

FindFriends Class
Assists with creating the view for the 

recycleviewAdapter

FindDoctor class 
Assists with viewholder for 
FindDoctor search activity

DoctorNetwork class
Updates patient node with doctor 

UID if permission is granted. Requires 
connection with firebase to send data

Doctor Network Activity
When search done takes user to 

prompt for sharing data with doctor

Allusers activity 
Gives doctor a chance to choose 

between EMG,ECG, Location tracking 
or general patient info of user. 

Provided he has access no info will 
show based on firebase Json rules

EMG Activity
Graphs the user EMG through Azure SQL data. Data is retrieved azure 

through azure connection class. This data is cleared of null values. Data 
is then passed to a function that converts the string list to integer list 

and loops through creating an array entry list before plotting on 
Mpchart. Individual text view values are retrieved using get.size.

General info
Graphs the user general info through Azure SQL data. This data is 

cleared of null values. Data is then passed to a function that converts 
the string list to integer list and loops through creating an array entry 

list before plotting on Mpchart. Individual text view values are 
retrieved using get.size.

Patient Location
Graphs the user Location, Temperature and humidity of area through 
Azure SQL data. This data is cleared of null values. Data is then passed 

to a function that converts the string list to integer list and loops 
through creating an array entry list before plotting on Mpchart. 

Individual text view values are retrieved using get.size.

ECG Activity
Graphs the user ECG through Azure SQL data. This data is cleared of 
null values. Data is then passed to a function that converts the string 

list to integer list and loops through creating an array entry list before 
plotting on Mpchart. Individual text view values are retrieved using 

get.size.

GPS DATA

Web Application (sign in page) – 
index page

Firebase JSON rules 
set to prevent 

access to Doctors 
not on patient 

network

Set SQL 
firewall rules 

to restrict user 
access

USERID

Cloud sharing activity 
will send data to 2 

tables – 1 temp table 
and 1 historic table. The 

temp table should be 
short term (GSM signal)

Direct user back to registration if not registration was done

Direct user back to registration if no registration was done

Forgot username and password
This page allows user to enter login 
to change password – email is sent 

using firebase

Sign- up
User registers and their data is stored 

under the doctor node of firebase

Join patient network/update info
In this activity – user can enter their 
id number to create a unique node 

for all their data

Add doctor to your network
Here the patient can choose which 

doctor can view their node by adding 
the doctor web firebase UID under 

their ID node

Firebase web app database. No Sql 
database for webapps. Stores doctor 

and patient information. And 
provides webapp authentication and 

hosting Firebase JSON rules set to 
allow anyone to write 
patient nodes but only 

authorized doctors to read 
patient nodes. Doctor node 
is set to read and write true 

– no privacy issues

Authentication

Main page 
Links user to main activities: patient 

info, Analytics and monitoring

Patient Info
Retrieves info from patient node if 

permission granted

Analytics ?? (Maybe a summary of all 
patients under the doctor with a 

graph)

Analytics
Displays azure sensor data with ML 

output either as graphs or textviews

ECG
Uses Server.js fetch API to create 

dynamic .ejs file which refreshes with 
reloading of page. Data is used to 

draw Chart.js object

EMG
Uses Server.js fetch API to create 

dynamic .ejs file which refreshes with 
reloading of page. Data is used to 

draw Chart.js object

General
Uses Server.js fetch API to create 

dynamic .ejs file which refreshes with 
reloading of page. Data is used to 

obtain latest parameters

Location
Uses Server.js fetch API to create 

dynamic .ejs file which refreshes with 
reloading of page. Data is used to 

obtain T and humidity of 
environment of user. Firebase 

location of user obtained

Server.js
Creates connection with microsoft 

Azure and renders to .ejs files

Index.js 
Support for html files to allow 

firebase connection
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Appendix F: Systems flow diagram for physiological parameters  
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Appendix G: Circuit Diagram 
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Appendix H1: SQL Queries 
 

//Creating Table MS Azure 

private void CreateDBTable(String DBT) { 
    String TheDBT = DBT; 
    String TheDBT_ML = DBT + "ML"; 
    try { 
 
        ConnectionAzure conStr = new ConnectionAzure();   
        connect = conStr.CONN();         
        if (connect == null) { 
 
            System.out.println("connection goes wrong"); 
 
        } else { 
 
            //long term data table 
            String sql = "CREATE TABLE " + TheDBT + 
                    "(ID int IDENTITY(1,1) PRIMARY KEY, "+ 
                    " ECGxValues NVARCHAR(255), " + 
                    " ECGyValues NVARCHAR(255)," + 
                    " EMGxValues NVARCHAR(255)," + 
                    " EMGyValues NVARCHAR(255)," + 
                    " HumxValues NVARCHAR(255)," + 
                    " HumyValues NVARCHAR(255)," + 
                    " TxValues NVARCHAR(255)," + 
                    " TyValues NVARCHAR(255)," + 
                    " PulsexValues NVARCHAR(255)," + 
                    " PulseyValues NVARCHAR(255)," + 
                    " IRxValues NVARCHAR(255)," + 
                    " IRyValues NVARCHAR(255))"; 
 
            //short term data table 
            String sql_ML = "CREATE TABLE " + TheDBT_ML + 
                    " (ECGxValues NVARCHAR(255), " + 
                    " ECGyValues NVARCHAR(255)," + 
                    " EMGxValues NVARCHAR(255)," + 
                    " EMGyValues NVARCHAR(255)," + 
                    " HumxValues NVARCHAR(255)," + 
                    " HumyValues NVARCHAR(255)," + 
                    " TxValues NVARCHAR(255)," + 
                    " TyValues NVARCHAR(255)," + 
                    " PulsexValues NVARCHAR(255)," + 
                    " PulseyValues NVARCHAR(255)," + 
                    " IRxValues NVARCHAR(255)," + 
                    " IRyValues NVARCHAR(255))"; 
 
 
            Statement stat = null; 
 
            try { 
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                stat = connect.createStatement(); 
            } catch (SQLException throwables) { 
                throwables.printStackTrace(); 
            } 
            try { 
                stat.executeUpdate(sql); 
                stat.executeUpdate(sql_ML); 
 
 
 
            } catch (SQLException throwables) { 
                throwables.printStackTrace(); 
            } 
 
            System.out.println("success"); 
            Delay1(); 
 
        } 
        connect.close(); 
 
    } catch (SQLException throwables) { 
        throwables.printStackTrace(); 
    } 
} 
//Uploading data to Azure SQL 

@Override 
    protected String doInBackground(String... strings) { 
        { 
            String Name = FirebaseAuth.getInstance().getCurrentUser().getUid(); 
            try { 
 
                ConnectionAzure conStr = new ConnectionAzure();   
                connect = conStr.CONN();         
 
 
 
                String Delete = "DELETE from "+ Name; 
                Statement Stat2 = null; 
                Stat2 = connect.createStatement(); 
                Stat2.executeUpdate(Delete); 
 
                
                if (connect == null) { 
                    msg = "connection goes wrong"; 
                    System.out.println(msg); 
                    String.setText(msg);    
                } else { 
                    for (int j = 0; j < ECGxValues.size() && j < ECGyValues.size() && j < EMGxValues.size() 
&& j < EMGyValues.size() && j < HumxValues.size() && j < HumyValues.size() && j < TxValues.size() 
&& j < TyValues.size() && j < IRxValues.size() && j < IRyValues.size(); j++) { 
 
                        String d = (String) ECGxValues.get(j);     
                        String e =(String)  ECGyValues.get(j); 
                        String f = (String) EMGxValues.get(j); 
                        String g = (String) EMGyValues.get(j); 
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                        String h = (String) HumxValues.get(j); 
                        String i = (String) HumyValues.get(j); 
                        String j2 = (String) TxValues.get(j); 
                        String k = (String) TyValues.get(j); 
                        String n = (String) PulsexValues.get(j); 
                        String o = (String) PulseyValues.get(j); 
                        String p = (String) IRxValues.get(j); 
                        String q = (String) IRyValues.get(j); 
                         
                      String query0 = "INSERT INTO " + Name + "(ECGxValues, ECGyValues, EMGxValues, 
EMGyValues, HUMxValues, HUMyValues, TxValues, TyValues,PulsexValues,PulseyValues, 
IRxValues, IRyValues) VALUES ('" + d + "','" + e + "', '" + f + "', '" + g + "', '" + h + "', '" + i + "', '" + j2 
+ "','" + k + "','" + n + "','" + o + "','" + p + "','" + q + "')"; 
 
                        Statement stat3 = null; 
                        try { 
                            stat3 = connect.createStatement(); 
                        } catch (SQLException throwables) { 
                            throwables.printStackTrace(); 
                        } 
                        try { 
                            stat3.executeUpdate(query0); 
 
                        } catch (SQLException throwables) { 
                            throwables.printStackTrace(); 
                        } 
                        msg = "inserting successful"; 
                        System.out.println(msg); 
                        String.setText(msg);   
                    } 
                    connect.close(); 
                    msg = "All data uploaded"; 
                    ECGxValues.removeAll(ECGxValues);  
                    ECGyValues.removeAll(ECGyValues); 
                    EMGxValues.removeAll(EMGxValues);  
                    EMGyValues.removeAll(EMGyValues); 
                    HumxValues.removeAll(HumxValues); 
                    HumyValues.removeAll(HumyValues); 
                    TxValues.removeAll(TxValues); 
                    TyValues.removeAll(TyValues); 
                    PulsexValues.removeAll(PulsexValues); 
                    PulseyValues.removeAll(PulseyValues); 
                    IRxValues.removeAll(IRxValues); 
                    IRyValues.removeAll(IRyValues); 
 
                } 
 
             } catch (SQLException throwables) { 
                throwables.printStackTrace(); 
            } 
        } 
        return msg; 
 
    } 
} 
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Appendix H2: SQLite Android Query code 
 

//create table 

@Override 
public void onCreate(SQLiteDatabase sqLiteDatabase) { 
    String createTable = "create table myTable(ECGSensor REAL,ECGxValues REAL,ECGyValues 
REAL,EMGSensor REAL,EMGxValues REAL,EMGyValues REAL,HumSensor REAL,HumxValues 
REAL,HumyValues REAL,IRSensor REAL,IRxValues REAL,IRyValues REAL,TSensor 
REAL,TxValues REAL,TyValues REAL,PulseSensor REAL,PulsexValues REAL,PulseyValues 
REAL);"; 
    sqLiteDatabase.execSQL(createTable); 
} 
 

//Resize table  

public void ResizeSQL() { 
 SQLiteDatabase sqLiteDatabase = this.getWritableDatabase(); 
 sqLiteDatabase.execSQL("DELETE FROM MyTable WHERE rowid < (SELECT + MAX(rowid)    
FROM MyTable)-5000"); 
 
} 
 

//Retirieving data from SQLite 

public Cursor alldata() { 
    SQLiteDatabase sqLiteDatabase = this.getWritableDatabase(); 
    Cursor cursor = sqLiteDatabase.rawQuery("select * from myTable", null); 
    return cursor; 
} 
 
 
 
public Cursor somedata() { 
    SQLiteDatabase sqLiteDatabase = this.getWritableDatabase(); 
    Cursor cursor = sqLiteDatabase.rawQuery("SELECT * FROM myTable ORDER BY ROWID DESC 
LIMIT 1",null); 
    return cursor; 
} 
 
public Boolean insertData(String ECGSensor, String ECGValueX, String ECGValueY, String 
EMGSensor, String EMGValueX, String EMGValueY,String HumSensor,String HumValueX,String 
HumValueY,String IRSensor,String IRValueX,String IRValueY,String TSensor,String TValueX, String 
TValueY,String PulseSensor,String PulseValueX,String PulseValueY) { 
    SQLiteDatabase sqLiteDatabase = this.getWritableDatabase(); 
    ContentValues contentValues = new ContentValues(); 
 
    //different columns for X and y values of each graph 
    contentValues.put("ECGSensor", ECGSensor); 
    contentValues.put("ECGxValues", ECGValueX); //under the x column of table for sql database put x 
value passed into function from mainactivity 
    contentValues.put("ECGyValues", ECGValueY); // as above for y values 
    contentValues.put("EMGSensor", EMGSensor); 
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    contentValues.put("EMGxValues", EMGValueX); 
    contentValues.put("EMGyValues", EMGValueY); 
    contentValues.put("HumSensor",HumSensor); 
    contentValues.put("HumxValues",HumValueX); 
    contentValues.put("HumyValues",HumValueY); 
    contentValues.put("TSensor",TSensor); 
    contentValues.put("TxValues",TValueX); 
    contentValues.put("TyValues",TValueY); 
    contentValues.put("PulseSensor",PulseSensor); 
    contentValues.put("PulsexValues",PulseValueX); 
    contentValues.put("PulseyValues",PulseValueY); 
    contentValues.put("IRSensor",IRSensor); 
    contentValues.put("IRxValues",IRValueX); 
    contentValues.put("IRyValues",IRValueY); 
 
 
    sqLiteDatabase.insert("myTable", null, contentValues); 
    return true; 
} 
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Appendix I: Battery Sizing 
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Appendix J: High Level Design approach 
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Appendix K: Sensor Positioning Matrix and Sketches 
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Appendix L: Rules Bases for FL Models 
Model 1: 

Rules Output 

IF Cold Temp AND Low Pulse AND Low Glucose AND Adolescent Age Critical Health 

IF Cold Temp AND Low Pulse AND Low Glucose AND Adult Age Critical Health 

IF Cold Temp AND Low Pulse AND Low Glucose AND Senior Adult Age Critical Health 

IF Cold Temp AND Low Pulse AND Normal Glucose AND Adolescent Age Unwell 

IF Cold Temp AND Low Pulse AND Normal Glucose AND Adult Age Unwell 

IF Cold Temp AND Low Pulse AND Normal Glucose AND Senior Adult Age Critical Health 

IF Cold Temp AND Low Pulse AND High Glucose AND Adolescent Age Critical Health 

IF Cold Temp AND Low Pulse AND High Glucose AND Adult Age Critical Health 

IF Cold Temp AND Low Pulse AND High Glucose AND Senior Adult Age Critical Health 

IF Cold Temp AND Normal Pulse AND Low Glucose AND Adolescent Age Unwell 

IF Cold Temp AND Normal Pulse AND Low Glucose AND Adult Age Unwell 

IF Cold Temp AND Normal Pulse AND Low Glucose AND Senior Adult Age Critical Health 

IF Cold Temp AND Normal Pulse AND Normal Glucose AND Adolescent Age Healthy 

IF Cold Temp AND Normal Pulse AND Normal Glucose AND Adult Age Healthy 

IF Cold Temp AND Normal Pulse AND Normal Glucose AND Senior Adult Age Healthy 

IF Cold Temp AND Normal Pulse AND High Glucose AND Adolescent Age Unwell 

IF Cold Temp AND Normal Pulse AND High Glucose AND Adult Age Unwell 

IF Cold Temp AND Normal Pulse AND High Glucose AND Senior Adult Age Critical Health 

IF Cold Temp AND High Pulse AND Low Glucose AND Adolescent Age Critical Health 

IF Cold Temp AND High Pulse AND Low Glucose AND Adult Age Critical Health 

IF Cold Temp AND High Pulse AND Low Glucose AND Senior Adult Age Critical Health 

IF Cold Temp AND High Pulse AND Normal Glucose AND Adolescent Age Healthy 

IF Cold Temp AND High Pulse AND Normal Glucose AND Adult Age Healthy 

IF Cold Temp AND High Pulse AND Normal Glucose AND Senior Adult Age Critical Health 

IF Cold Temp AND High Pulse AND High Glucose AND Adolescent Age Critical Health 

IF Cold Temp AND High Pulse AND High Glucose AND Adult Age Critical Health 

IF Cold Temp AND High Pulse AND High Glucose AND Senior Adult Age Critical Health 

IF Normal Temp AND Low Pulse AND Low Glucose AND Adolescent Age Unwell 

IF Normal Temp AND Low Pulse AND Low Glucose AND Adult Age Unwell 

IF Normal Temp AND Low Pulse AND Low Glucose AND Senior Adult Age Critical Health 

IF Normal Temp AND Low Pulse AND Normal Glucose AND Adolescent Age Unwell 

IF Normal Temp AND Low Pulse AND Normal Glucose AND Adult Age Unwell 

IF Normal Temp AND Low Pulse AND Normal Glucose AND Senior Adult Age Critical Health 

IF Normal Temp AND Low Pulse AND High Glucose AND Adolescent Age Unwell 

IF Normal Temp AND Low Pulse AND High Glucose AND Adult Age Unwell 

IF Normal Temp AND Low Pulse AND High Glucose AND Senior Adult Age Critical Health 

IF Normal Temp AND Normal Pulse AND Low Glucose AND Adolescent Age Unwell 

IF Normal Temp AND Normal Pulse AND Low Glucose AND Adult Age Unwell 

IF Normal Temp AND Normal Pulse AND Low Glucose AND Senior Adult Age Critical Health 
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IF Normal Temp AND Normal Pulse AND Normal Glucose AND Adolescent Age Healthy 

IF Normal Temp AND Normal Pulse AND Normal Glucose AND Adult Age Healthy 

IF Normal Temp AND Normal Pulse AND Normal Glucose AND Senior Adult Age Unwell 

IF Normal Temp AND Normal Pulse AND High Glucose AND Adolescent Age Unwell 

IF Normal Temp AND Normal Pulse AND High Glucose AND Adult Age Unwell 

IF Normal Temp AND Normal Pulse AND High Glucose AND Senior Adult Age Critical Health 

IF Normal Temp AND High Pulse AND Low Glucose AND Adolescent Age Unwell 

IF Normal Temp AND High Pulse AND Low Glucose AND Adult Age Unwell 

IF Normal Temp AND High Pulse AND Low Glucose AND Senior Adult Age Critical Health 

IF Normal Temp AND High Pulse AND Normal Glucose AND Adolescent Age Healthy 

IF Normal Temp AND High Pulse AND Normal Glucose AND Adult Age Healthy 

IF Normal Temp AND High Pulse AND Normal Glucose AND Senior Adult Age Critical Health 

IF Normal Temp AND High Pulse AND High Glucose AND Adolescent Age Unwell 

IF Normal Temp AND High Pulse AND High Glucose AND Adult Age Unwell 

IF Normal Temp AND High Pulse AND High Glucose AND Senior Adult Age Critical Health 

IF Hot Temp AND Low Pulse AND Low Glucose AND Adolescent Age Critical Health 

IF Hot Temp AND Low Pulse AND Low Glucose AND Adult Age Critical Health 

IF Hot Temp AND Low Pulse AND Low Glucose AND Senior Adult Age Critical Health 

IF Hot Temp AND Low Pulse AND Normal Glucose AND Adolescent Age Unwell 

IF Hot Temp AND Low Pulse AND Normal Glucose AND Adult Age Unwell 

IF Hot Temp AND Low Pulse AND Normal Glucose AND Senior Adult Age Critical Health 

IF Hot Temp AND Low Pulse AND High Glucose AND Adolescent Age Critical Health 

IF Hot Temp AND Low Pulse AND High Glucose AND Adult Age Critical Health 

IF Hot Temp AND Low Pulse AND High Glucose AND Senior Adult Age Critical Health 

IF Hot Temp AND Normal Pulse AND Low Glucose AND Adolescent Age Unwell 

IF Hot Temp AND Normal Pulse AND Low Glucose AND Adult Age Unwell 

IF Hot Temp AND Normal Pulse AND Low Glucose AND Senior Adult Age Critical Health 

IF Hot Temp AND Normal Pulse AND Normal Glucose AND Adolescent Age Unwell 

IF Hot Temp AND Normal Pulse AND Normal Glucose AND Adult Age Unwell 

IF Hot Temp AND Normal Pulse AND Normal Glucose AND Senior Adult Age Critical Health 

IF Hot Temp AND Normal Pulse AND High Glucose AND Adolescent Age Unwell 

IF Hot Temp AND Normal Pulse AND High Glucose AND Adult Age Unwell 

IF Hot Temp AND Normal Pulse AND High Glucose AND Senior Adult Age Critical Health 

IF Hot Temp AND High Pulse AND Low Glucose AND Adolescent Age Critical Health 

IF Hot Temp AND High Pulse AND Low Glucose AND Adult Age Critical Health 

IF Hot Temp AND High Pulse AND Low Glucose AND Senior Adult Age Critical Health 

IF Hot Temp AND High Pulse AND Normal Glucose AND Adolescent Age Unwell 

IF Hot Temp AND High Pulse AND Normal Glucose AND Adult Age Unwell 

IF Hot Temp AND High Pulse AND Normal Glucose AND Senior Adult Age Critical Health 

IF Hot Temp AND High Pulse AND High Glucose AND Adolescent Age Critical Health 

IF Hot Temp AND High Pulse AND High Glucose AND Adult Age Critical Health 

IF Hot Temp AND High Pulse AND High Glucose AND Senior Adult Age Critical Health 
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Model 2: 

 

Rules Output 

IF Low Humidity AND Adolescent Age AND Cold Body Temperature Risky 

IF Low Humidity AND Adolescent Age AND Normal Body Temperature Low Risk 

IF Low Humidity AND Adolescent Age AND Hot Body Temperature Risky 

IF Low Humidity AND Adult Age AND Cold Body Temperature Risky 

IF Low Humidity AND Adult Age AND Normal Body Temperature Low Risk 

IF Low Humidity AND Adult Age AND Hot Body Temperature High Risk 

IF Low Humidity AND Senior Adult Age AND Cold Body Temperature High Risk 

IF Low Humidity AND Senior Adult Age AND Normal Body Temperature Low Risk 

IF Low Humidity AND Senior Adult Age AND Hot Body Temperature High Risk 

IF Normal Humidity AND Adolescent Age AND Cold Body Temperature Risky 

IF Normal Humidity AND Adolescent Age AND Normal Body Temperature Low Risk 

IF Normal Humidity AND Adolescent Age AND Hot Body Temperature Risky 

IF Normal Humidity AND Adult Age AND Cold Body Temperature Risky 

IF Normal Humidity AND Adult Age AND Normal Body Temperature Low Risk 

IF Normal Humidity AND Adult Age AND Hot Body Temperature Risky 

IF Normal Humidity AND Senior Adult Age AND Cold Body Temperature Risky 

IF Normal Humidity AND Senior Adult Age AND Normal Body Temperature Low Risk 

IF Normal Humidity AND Senior Adult Age AND Hot Body Temperature High Risk 

IF High Humidity AND Adolescent Age AND Cold Body Temperature High Risk 

IF High Humidity AND Adolescent Age AND Normal Body Temperature Low Risk 

IF High Humidity AND Adolescent Age AND Hot Body Temperature High Risk 

IF High Humidity AND Adult Age AND Cold Body Temperature High Risk 

IF High Humidity AND Adult Age AND Normal Body Temperature Low Risk 

IF High Humidity AND Adult Age AND Hot Body Temperature High Risk 

IF High Humidity AND Senior Adult Age AND Cold Body Temperature High Risk 

IF High Humidity AND Senior Adult Age AND Normal Body Temperature Low Risk 

IF High Humidity AND Senior Adult Age AND Hot Body Temperature High Risk 
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Appendix M: MATLAB Code 
 

//Surface Plots 

% define the co-ordinates along the x and y axis 
 
x=[46.8 77.4 43.2 36.0 77.4 37.8 30.6 46.8 32.4]; 
y=[50.4 54.0 61.2 64.8 68.4 57.6 61.2 52.2 59.4]; 
z=[106.2 99.0 88.2 117.0 70.2 104.4 66.6 50.4 66.6]; 
 
 
Figure 
scatter3(x,y,z,'filled','MarkerEdgeColor','k'); 
grid on; 
xlabel('Before Eating') 
ylabel ('During Day') 
zlabel('After Eating') 
 
box on 

 

% define the co-ordinates along the x and y axis 
 
x=[55.0 66.7 66.7 22.2 55.6 0.0  0.0  0.0  0.0  0.0  11.1 44.4 22.2 22.2 33.3]; 
y=[86.0 90.0 75.0 40.0 45.0 10.0 15.0 25.0 20.0 10.0 10.0 60.0 55.0 45.0 40.0]; 
z=[80.0 80.0  72.5 46.8 72.4 32.1  45.8 32.5 31.3 25.0 33.3 60.0 60.0 46.8 60.0]; 
 
 
[X,Y]= meshgrid(x,y); 
Z=meshgrid(z); 
 
surf(X,Y,Z); 
xlabel('MEWS Results') 
ylabel ('Physician Results') 
zlabel ('FL model Results') 
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