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Abstract

We conduct a comprehensive investigative review of solution generating algorithms

for the Einstein field equations governing the gravitational behaviour of an isolated

neutral static spherical distribution of perfect fluid matter. Traditionally, the master

field equation generated from the condition of pressure isotropy has been interpreted

as a second order ordinary differential equation. However, since the pioneering work

of Wyman (1949) it was observed that more success can be enjoyed by regarding

the equation as a first order linear differential equation. There was a resurgence

of the ideas of Wyman in 2000 and various researchers have been able to generate

complete solutions to the field equations up to certain integrations. These have

been accomplished by working in Schwarzschild (curvature) coordinates, isotropic

coordinates, area coordinates and a coordinate system written in terms of the redshift

parameter. We have utilised Durgapal–Banerjee (1983) coordinates and produced a

new algorithm. The algorithm is used to generate new classes of perfect fluid solutions

as well as to regain familiar particular solutions reported in the literature. We find

that our solution is well behaved according to elementary physical requirements.

The pressure vanishes for a certain radius and this establishes the boundary of the

distribution. Additionally the pressure and energy density are both positive inside

the radius. The energy conditions are shown to be satisfied and it is particularly

pleasing to have the causality criterion satisfied to ensure that the speed of light is

not exceeded by the speed of sound. We also report some new solutions using the

algorithms proposed by Lake (2006).
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Chapter 1

Introduction

Gravitation is a natural phenomenon by which physical bodies attract with a force

proportional to their mass. While it is the most familiar of the the four fundamental

interactions or forces of nature (electromagnetism, the nuclear strong and weak forces

being the other three) it is the least understood. Consequently there have been on-

going attempts at devising theories that will explain the effects of gravity fully.

It should be noted that a variety of approaches have been followed in studying

the effects of the gravitational field. The following are some theories that are in use

today:

• Einstein’s general theory of relativity is a theory where the effects of

gravitation are ascribed to the curvature of spacetime. Einstein proposed that

spacetime is curved by matter, and that free-falling objects are moving along

locally straight paths in curved spacetime. Modern physics makes extensive

use of Einstein’s theory and it is widely held to be the most successful theory

of gravitation till now.

• Brans-Dicke theory of gravitation (1961) is an alternative theoretical
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framework to explain gravitation. It is a well-known contrast of Einstein’s more

popular theory of general relativity. It is an example of a scalar-tensor theory,

a gravitational theory in which the gravitational interaction is dependent on

the tensor field of general relativity and is supplemented by a scalar field. Both

Brans-Dicke theory and general relativity are examples of a class of relativistic

classical field theories of gravitation, called metric theories.

• F(R) gravity is a type of rearranged gravity theory first proposed in 1959 by

Buchdahl (1959) as a generalisation of Einstein’s general relativity. Although it

is an active field of research, there are known problems with the theory. It has

the potential, in principle, to explain the accelerated expansion of the universe

without adding unknown forms of dark energy or dark matter.

• Einstein–Gauss-Bonnet (Lovelock) gravity (1971) is a generalization of

Einstein’s theory of general relativity introduced in 1971. It is the most general

metric theory of gravity yielding conserved second order equations of motion in

arbitrary number of spacetime dimensionsD. In this sense, Lovelock’s theory is

the natural generalization of Einstein’s general relativity to higher dimensions.

In dimension three and four (D = 3 and 4), Lovelock’s theory coincides with

Einstein’s theory, but in higher dimensions the theories diverge.

Einstein’s general relativity depicts the universe as a geometric system of three

spatial and one time dimensions. The presence of mass, energy, and momentum

(collectively quantified as mass-energy density or stress-energy) result in a bending

of this space-time coordinate system. The geometric and dynamical quantities are

related tonsorially via the Einstein field equations. These are, in the worst case

scenario, a highly coupled system of ten partial differential equations. The governing

field equations are in general nonlinear and this accounts for the extreme difficulty

that exists in finding exact solutions to the system of equations. By exact solutions we
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mean solutions of the field equations that are obtained and no recourse to numerical

methods are necessary. Why are exact solutions so important? The answer is that the

solutions allow us to extract important information about the evolution of celestial

phenomena in time. The literature contains a vast array of solutions of the Einstein

field equations for a large variety of matter configurations (Kramer et al 2003). The

difficulty though, with most solutions is that they fail to satisfy even very elementary

requirements for physical plausibility. Some well-known solutions in general relativity

applicable in astrophysics include:

• The Schwarzschild exterior solution (1916a) was amongst the first use-

ful exact solutions of the Einstein field equations. This solution describes the

gravitational field outside a spherical, uncharged, non-rotating massive object.

It is also a good approximation to the gravitational field of a slowly rotat-

ing body like the Earth or Sun. According to Birkhoff’s theorem (1923), the

Schwarzschild exterior solution is the most general spherically symmetric, so-

lution of the vacuum Einstein field equations.

• The Schwarzschild interior solution (1916b) describes the interior gravi-

tational field of static spheres. The Schwarzschild interior and exterior solutions

match smoothly across the boundary of the star. The interior solution for a

neutral sphere is not unique and hence we are investigating this in our present

work. It turns out that the system of field equations governing static spheres is

a system of three equations in four unknowns. Therefore one of the unknowns

has to be specified at the outset and the other three have to be obtained via

integration. This accounts for the non-uniqueness of the interior metric. The

Schwarzschild interior solution was obtained by assuming that the sphere is of

constant energy density.
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• The Reissner–Nordstrom solution (1918) is a static solution to the Einstein-

Maxwell field equations, which corresponds to the exterior gravitational field of

a charged, non-rotating, spherically symmetric body. The Reissner–Nordstrom

model reduces to the Schwarzschild exterior when the charge vanishes. Nu-

merous interior solutions have been found that match the exterior Reissner–

Nordstrom solution across its pressure free hypersurface. The reason for a large

number of solutions is that the presence of charge introduces an extra freedom

of choice in the model. Now there are six equations in four unknowns so any

two may be selected at the outset. Again, despite the rich variety of solutions

only a few are worthwhile as physically reasonable models.

• The Vaidya solution (1951) represents the exterior gravitational field of a

radiating neutral sphere. All previous solutions assumed the exterior of the

star to be empty. Vaidya generalized this case to incorporate the radiation

from the star, and the resulting solution was the famous Vaidya shining star

metric. Interior solutions have been found, however, a major stumbling block

was the Israel (1966)– Darmois (1927) junction conditions - these were only

fully understood by Santos (1985) who obtained the conditions to be satisfied

so that interior solutions could be matched to the exterior Vaidya spacetime.

• The Kerr solution (1963) describes the exterior gravitational field of a ro-

tating, axially symmetric gravitating body. The Kerr solution reduces to the

Schwarzschild exterior solution in the limit of vanishing angular momentum.

This solution was an important milestone in relativity history as a large number

of celestial bodies are rotating. Unfortunately, finding an interior solution that

matches smoothly to the Kerr solution is still an open problem. It is widely

regarded as one of the most important problems in classical general relativity.

(Wiltshire et al (2009)).
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Most attempts at solving the field equations for various matter configurations have

been motivated by mathematical considerations. That is, ad hoc forms for some of the

variables have been chosen which allow for a complete solution of the entire system

of field equations. Often the result is an unphysical solution. Another approach is to

impose some physical constraints at the outset by, for example, assuming a functional

dependence of the pressure or the energy density. The caveat in this approach is that

the resulting system becomes very difficult to solve. If the pressure is a function of

the energy density this is referred to as an equation of state. If the relationship is

linear it is called a barotropic equation of state and if the energy density contains a

power then we call this a polytropic equation of state. Exact solutions in the latter

case have been extremely rare. In some cases, such as for spherically symmetric

fluids that are static, the entire system may be solved in general up to integrations.

In other words, solutions to the system may be crafted in an algorithmic way.

We briefly trace the history of solution generating algorithms for static spherically

symmetric perfect fluid distributions of matter. Observe, that the chronology here

follows the actual reporting of the solutions on web platforms and does not necessarily

follow the order in which the articles were eventually published.

• 1949 Wyman solves the field equations and proposes the earliest solution gen-

erating algorithm on record.

• 2000 Fodor publishes a method involving one generating function and a tech-

nique requiring no integrations. Only differentiation and algebraic operations

are required.

• 2002 Rahman and Visser obtain an algorithm using isotropic coordinates. The

algorithm utilises one differentiation and one integration. The caveat in this

method is the appearance of a square root which is severely restrictive.
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• 2003 Lake extends the methods first proposed by Wyman (1949) and obtains

algorithms for curvature and isotropic coordinates. In curvature coordinates,

the difficulty lies in the fact that two integrations are called for whereas in

isotropic coordinates one integration is needed, however, the obstructive square

root appears in the integral. The algorithm for isotropic coordinates closely

follows the approach of Rahman and Visser (2002) and the transformations

linking the two algorithms is provided.

• 2004Martin and Visser produce another algorithm using so–called Schwarzschild

coordinates

• 2005 Boonserm, Visser and Weinfurtner propose the simplest of the algorithms

known.

• 2011 Hansraj uses Durgapal–Banerjee coordinates to obtain a new algorithm

involving one integration.

Our purpose in this thesis is to investigate the efficiency of some solution generat-

ing algorithms in an effort to construct new solutions to the Einstein field equations.

Our work is arranged as follows:

• In chapter 2 we give a broad overview of the aspects of Riemannian geome-

try relevant to our work. We examine the spherically symmetric spacetime in

its standard form and then consider it using curvature and isotropic coordi-

nates. We display the Einstein field equations in each of these three coordinate

systems.

• In Chapter 3 we review some well known solution generating algorithms. We

comment on their advantages and drawbacks. In all cases, we need to specify

a certain source function and then invariably perform some integrations to

determine the remaining geometric and physical quantities.
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• In chapter 4 we endeavour to establish new solutions using the algorithms. We

do have success and are able to report new classes of solutions for Durgapal–

Banerjee, curvature and isotropic coordinates. However, there still remains a

wide variety of source functions that could be used to unlock the entire system

of field equations. Finally, we briefly comment on the physical behaviour of

some solutions.
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Chapter 2

Mathematical Preliminaries

2.1 Introduction

In this chapter we collect some of the main aspects of differential geometry and sur-

face theory which are relevant to our study. We commence by establishing the line

element or the metric tensor and then we compute the required Christoffel symbols,

Riemann tensor, Ricci tensor, Ricci scalar and Einstein tensor. We also note the Weyl

conformal tensor which is useful for checking whether solutions are conformally flat

or not. We perform these calculations for the spherically symmetric line element in

standard form and then for curvature and isotropic coordinates. These calculations

then allow us to write the Einstein field equations in these three coordinate formu-

lations. While the choice of coordinates is irrelevant to the eventual values of the

geometric and physical quantities, the presentation of the field equations allow for a

variety of approaches to obtain new exact solutions.
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2.2 Differential Geometry

We take spacetime M to be a 4–dimensional differentiable manifold endowed with

a symmetric, nonsingular metric field g of signature (– + + + ). As the metric

tensor field is indefinite the manifold is pseudo–Riemannian. Points in M are labeled

by the real coordinates (xa) = (x0, x1, x2, x3) where x0 is timelike and x1, x2, x3 are

spacelike. The line element is given by

ds2 = gabdx
adxb (2.1)

which defines the invariant distance between neighbouring points of a curve in M.

The fundamental theorem of Riemannian geometry guarantees the existence of a

unique symmetric connection that preserves inner products under parallel transport.

This is called the metric connection Γ or the Christoffel symbol of the second kind.

The coefficients of the metric connection Γ are given by

Γa
bc =

1

2
gad (gcd,b + gdb,c − gbc,d) (2.2)

where commas denote partial differentiation.

The quantity

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ecΓ
e
bd − Γa

edΓ
e
bc (2.3)

is a (1, 3) tensor field and is called the Riemann tensor or the curvature tensor. Upon

contraction of the Riemann tensor (2.3) we obtain

Rab = Rc
acb

= Γd
ab,d − Γd

ad,b + Γe
abΓ

d
ed − Γe

adΓ
d
eb (2.4)
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where Rab is the Ricci tensor. The Riemann tensor indicates the amount of devi-

ation from flatness and the vanishing of this tensor suggests a flat spacetime. On

contracting the Ricci tensor (2.4) we obtain

R = gabRab

= Ra
a (2.5)

where R is the Ricci scalar. The Einstein tensor G is constructed in terms of the

Ricci tensor (2.4) and the Ricci scalar (2.5) as follows:

Gab = Rab − 1

2
Rgab (2.6)

The Einstein tensor has zero divergence:

Gab
;b = 0 (2.7)

a property referred to in the literature as the contracted Bianchi identity. This iden-

tity is useful when studying the conservation of matter which arises as a consequence

of the field equations.

An arbitrary rank two tensor can be decomposed into its symmetric and anti–

symmetric parts. Similarly the Riemann tensor (2.3) decomposes into the Weyl

tensor (or conformal curvature tensor) and parts which involve the Ricci tensor and

the curvature scalar. This decomposition is given by

Rabcd = Cabcd −
1

6
R (gacgbd − gadgbc)

+
1

2
(gacRbd − gbcRad + gbdRac − gadRbc) (2.8)

where C is the Weyl tensor. The Weyl tensor is trace-free,

Cab
ad = 0

10



and inherits all the symmetry properties of the curvature tensor (2.3). The vanishing

of the Weyl tensor is an indication of conformal flatness. This means that the

spacetime can be cast into a trivial scaling of the Minkowski spacetime.

The distribution of matter is specified by the energy–momentum tensor T which

is given by

Tab = (µ+ p)uaub + pgab + qaub + qbua + πab (2.9)

for neutral matter. In the above µ is the energy density, p is the isotropic pressure,

qa is the heat flow vector and πab represents the stress tensor. These quantities are

measured relative to a fluid four–velocity u (uaua = −1). The heat flow vector and

stress tensor satisfy the conditions

qaua = 0

πabub = 0

In the simpler case of a perfect fluid, which is the case for most cosmological models,

the energy–momentum tensor (2.9) has the form

Tab = (µ+ p)uaub + pgab (2.10)

The energy–momentum tensor (2.9) is coupled to the Einstein tensor (2.6) via the

Einstein field equations

Gab = Tab (2.11)

We utilise geometric units where the speed of light and the coupling constant

are taken to be unity. The field equations (2.11) relate the gravitational field to

the matter content. This is a system of coupled partial differential equations which

are highly nonlinear and consequently difficult to integrate in general. Here we

have provided only a brief outline of the results necessary for later work. For a
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comprehensive treatment of differential geometry applicable to general relativity the

reader is referred to de Felice and Clarke (1990), Hawking and Ellis (1973) and

Misner et al (1973).

2.3 Static Spherically Symmetric Spacetimes

The most general line element for static spherically symmetric spacetimes, in coor-

dinates (xa) = (t, r, θ, ϕ), is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdϕ2) (2.12)

where the gravitational potentials ν and λ are functions only of the spacetime co-

ordinate r. These coordinates are called standard or canonical coordinates. It is

reasonable to assume that the interior and exterior gravitational fields of an isolated

charged star are described by (2.12) in the absence of other matter. Whereas (2.12)

is perhaps the metric form that has been most used, it must be noted that the spher-

ically symmetric line element can be cast into a variety of forms. We will later resort

to Durgapal–Banerjee (1983) coordinates, curvature (or Schwarzschild coordinates)

as well as isotropic coordinates for our investigations.

For the metric (2.12) we may now evaluate the Ricci tensor (2.5), utilising the

above connection coefficients, to yield the following non–zero components:

Rtt = e2(ν−λ)

[
ν ′′ − ν ′λ′ + λ′2 +

2ν ′

r

]
(2.13)
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Rrr = −
[
ν ′′ + ν ′2 − 2λ′

r
− ν ′λ′

]
(2.14)

Rθθ = 1− [1 + rν ′ − rλ] e−2λ (2.15)

Rϕϕ = sin2 θR22 (2.16)

Then the Ricci tensor components (2.13) and the definition (2.5) yield the following

form for the Ricci scalar:

R = 2

[
1

r2
−
(
ν ′′ − ν ′λ′ + λ′2 +

1

r2
+

2ν ′

r
− 2λ′

r

)
e−2λ

]
(2.17)

for the spherically symmetric spacetime (4.18). The Ricci tensor components (2.13)

and the Ricci scalar (2.17) generate the corresponding non–vanishing components of

the Einstein tensor (2.6). These are given by

Gtt =
e2ν

r2

[
r
(
1− e−2λ

)]′
(2.18)

Grr = −e2ν

r2

(
1− e−2λ

)
+

2ν ′

r
(2.19)

Gθθ =
r2

e2λ

[
ν ′

r
− λ′

r
+ ν ′′ − ν ′λ′ + λ′2

]
(2.20)

Gϕϕ = sin2 θ G22 (2.21)

for the line element (2.12).
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2.4 Curvature Coordinates

The standard metric of a spherically symmetric spacetime (2.12) may also be written

in curvature coordinates and is given by

gab =



−e2Φ(r) 0 0 0

0 1

1− 2m(r)
r

0 0

0 0 r2 0

0 0 0 r2 sin2 θ


. (2.22)

where the metric potentials are given in terms of the functions m(r) and Φ(r). This

form is also referred to as Schwarzschild coordinates as one of the metric potentials is

expressed in the form of the Schwarzschild exterior solution. It must be remembered

that these alternative formulations of the metric tensor through coordinate redefini-

tions leave the Einstein field equations invariant - a property of tensor transformation

laws. The purpose in investigating a variety of forms is that the appearance of the

field equations in a different coordinate system could offer simplifications that could

lead to the discovery of new exact solutions. We therefore compute the geometric

quantities necessary for setting up the field equations. The Christoffel symbols (2.2)

14



are given by

Γr
tt = −(r − 2m)e2ΦΦ′

r
Γt

rt = Φ

Γt
tr = −Φ Γr

rr =
m′r −m

r(r − 2m)

Γθ
θr = −1

r
Γϕ

ϕr = −1

r

Γθ
rθ =

1

r
Γr

θθ = r − 2m

Γϕ
ϕθ = − cot θ Γϕ

rϕ =
1

r

Γϕ
θϕ = cot θ Γr

ϕϕ = (r − 2m) sin2 θ

Γθ
ϕϕ = sin θ cosθ

The Ricci tensor components are

Rtt =
e2Φ ((2r − rm′ − 3m)Φ′ + (r(r − 2m)((Φ2)′ + Φ′′))

r2
(2.23)

Rrr = −r2(r − 2m)(Φ′′ − Φ′2)− (rΦ + 2)(rm′ −m)

r2(r − 2m)
(2.24)

Rθθ = r(r − 2m)Φ′ −m′r −m (2.25)

15



Rϕϕ = −1

r
sin2 θ(Φ′r2 − 2Φ′rm−m′r −m) (2.26)

The Ricci Scalar is given by

R = − 2

r2

(
(2r − rm′ − 3m− 2m′) + r(r − 2m)

(
(Φ′)2 + Φ′′

))
(2.27)

The non-vanishing components of the Einstein tensor are given by

Gtt =
2e2Φm′

r2
(2.28)

Grr =
2 (r(r − 2m)Φ′ −m)

r2(r − 2m)
(2.29)

Gθθ =
m

r
−m′ + (r −m+ rm′)Φ′ + r(r − 2m)

(
(Φ′)2 + Φ′′

)
(2.30)

Gϕϕ = sin2 θ Gθθ (2.31)
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The components of the Weyl conformal tensor are

Ct
rrt = 2Cθ

rrθ = 2Cϕ
rrϕ = − g(r)

3r2(r − 2m)
(2.32)

2Ct
tθθ = 2Cr

rθθ = Cϕ
ϕθθ =

g(r)

3r
(2.33)

−2Ct
tϕϕ = −2Cr

rϕϕ = Cθ
θϕϕ =

sin2 θg(r)

3r
(2.34)

Cr
rtt = −2Cθ

θtt = −2Cϕ
ϕtt = −e2Φg(r)

3r3
(2.35)

where we have put

g(r) = rm′ − 3m+ r(3m− r − rm′) + r2(r − 2m)
(
(Φ′)2 + Φ′′

)
. (2.36)

2.5 Isotropic Coordinates

The metric (2.12) may be transformed into a variety of equivalent forms by redefining

the coordinates. Of course, the field equations also remain equivalent, however,

utilising variations in the form of the line element result in ostensibly different (but

equivalent) manifestations of the field equations. A popular alternative version of

(2.12) involves so called isotropic coordinates. The metric tensor for static spherically

symmetric spacetimes, using isotropic coordinates, is given by

gab =



−e2Φ(r)−B(r) 0 0 0

0 e2B(r) 0 0

0 0 r2e2B(r) 0

0 0 0 r2 sin2 θe2B(r)


. (2.37)

where B and Φ are yet to be determined functions of the spacetime coordinate r.

This form has been utilised by Lake (2006) to obtain a solution generating algorithm.

17



We use this algorithm to find new exact solutions for static fluid spheres. For the

line element (2.37) the non–zero coefficients of the metric connection (2.2) are given

by

Γr
tt =

e2ν (Ψ′ −B′)

e4B
Γt

rt = Ψ′ −B′

Γt
tr = 1(Ψ′ −B′) Γr

rr = B′

Γθ
θr = −rB′ + 1

r
Γϕ

ϕr = −rB′ + 1

r

Γθ
rθ =

rB′ + 1

r
Γr

θθ = r(rB′ + 1)

Γϕ
ϕθ = − tan θ Γr

ϕϕ = r sin2 θ(rB′ + 1)

Γθ
ϕϕ = sin θ cos θ

where primes denote differentiation with respect to r.

The components of the Ricci tensor Rab (2.4) have the form

Rtt = re−4B(e2Ψ(−rB′(Ψ) + (Ψ′)2r + r(Ψ′′ − rB′′ + 2Ψ′ − 2B′)) (2.38)

Rrr = −1

r
(rΨ′′ + rB′′ + (Ψ′)2r − 3rB′Ψ′ + 2r(B′)2 + 2B′) (2.39)

Rθθ = −r2Ψ′B′ −Ψ′r − 2rB′ − r2B′′ (2.40)

18



Rϕϕ = sin2 θRθθ (2.41)

The Ricci Scalar (2.5) is evaluated as

R = − 1

re2B

(
−2rBΨ′ + (Ψ′)2r + rΨ′′ + rB′′ + 2Ψ′ + 2B′ + r(B′)2

)
(2.42)

The Einstein tensor (2.6) is given by

Gtt = −e2Ψ (2rB′′ + 4B′ + r(B′)2)

re4B
(2.43)

Grr = −−2rB′Ψ′ + r(B′)2 − 2Ψ

r
(2.44)

Gθθ = −2r2B′Ψ′ + rΨ′ + r2(Ψ′)2 + r2Ψ′′ + r2(B′)2 (2.45)

Gϕϕ = sin2 θGθθ (2.46)

The Weyl conformal tensor (2.8) has the form

Ct
trr = 2Cθ

rrθ = 2Cϕ
rrϕ = −f(r)

3r
(2.47)

2Ct
tθθ = 2Cr

rθθ = Cϕ
θθϕ =

rf(r)

3
(2.48)

2Ct
tϕϕ = 2Cr

rϕϕ = −Cθ
θϕϕ =

r sin2 θf(r)

3
(2.49)

−2Cr
rtt = Cθ

ttθ = Cϕ
ttϕ =

e2(Φ−2B)f(r)

6r
(2.50)
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where we have put

f(r) = r(Ψ′)2 − 4rB′Ψ′ + rΨ′′ − 2rB′′ + 4r(B′)2 + 2B′ −Ψ′. (2.51)

It should be noted that the Weyl tensor is non-zero in general. The vanishing of

the Weyl tensor corresponds to conformally flat sapcetimes. We will be interested

in non-conformally flat solutions in our study as all conformally flat solutions of

the Einstein field equations have been found. They are either generalisations of the

Schwarzschild interior solution, shown to be conformally flat by Buchdahl (1971) in

the case of no expansion or Stephani and Krasinski (1983 ) stars if the solutions

are expanding. We will utilise these geometric components to construct the Einstein

field equations for static fluid spheres in chapter 4.

2.6 Einstein Field Equations

We are now in a position to generate the Einstein field equations for the spherically

symmetric spacetime (2.12).

Using (2.12) it is easy to verify that (2.7) is identically satisfied. The Einstein

equations (2.11) may be expressed as the system

[
r(1− e−2λ)

]′
= ρr2 (2.52)

−
(
1− e−2λ

)
+ 2ν ′re−2λ = pr2 (2.53)

re−2λ
[
ν ′ − λ′ + rν ′′ − rν ′λ′ + r(ν ′)2

]
= pr2 (2.54)

for the static spherically symmetric spacetime (2.12).
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The conservation laws T ab
b = 0 reduce to the equation

p′ + (ρ+ p)ν ′ = 0 (2.55)

which can be used in the place of one of the field equations in the system (2.52)

to (2.54). The exterior gravitational field for a static, spherically symmetric neutral

distribution is governed by the Schwarzschild (1916a) solution. The Schwarzschild

exterior line element has the form

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2) (2.56)

where M is associated with the mass of the sphere. Once a solution to the Einstein

field equations have been discovered, it needs to be checked that the solutions match

smoothly with the exterior Schwarzschild solution. That is, suitable constants must

exist such that the metric potentials are continuous across the pressure-free boundary

interface. This condition is called the Israel–Darmois junction condition. Note that

the vanishing of the pressure on the boundary of a static sphere is not true for all

configurations of matter. For example, radiating spheres have more complicated

junction conditions and these were discovered by Santos (1985) and Herrera et al

(1985).

2.6.1 Durgapal–Bannerjee Coordinates

We utilise the following transformation, which has been used by Durgapal and Ban-

nerji (1983), Durgapal and Fuloria (1985) and Finch and Skea (1989), to generate

new solutions in the case of neutral matter. A new coordinate x and two metric

functions y(x) and Z(x) are defined as follows

x = Cr2
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Z(x) = e−2λ(r)

A2y2(x) = e2ν(r)

where A and C are constants. For this transformation the Einstein field equations

(2.11) assume the form

1− Z

x
− 2Ż =

ρ

C
(2.57)

Z − 1

x
+

4Zẏ

y
=

p

C
(2.58)

4x2Zÿ + 2x2Żẏ +
(
Żx− Z + 1

)
y = 0 (2.59)

where dots represent differentiation with respect to x. We shall use this form of the

field equations to generate new solutions in chapter 4.

The field equation (2.59) may be viewed as the master equation for this system.

Once a form for Z(x) is chosen, we may proceed with the possible integration of the

second order linear differential equation in y(x). A large number of exact solutions

have been discovered in this manner. For example see Thirukannesh and Maharaj

(2006), Finch and Skea (1985), Maharaj and Mkhwanazi (1996). The last named

authors actually regained the Schwarzschild interior solution and demonstrated the

equivalence of their solution with the Schwarzschild interior solution.

It is strange that no one was able to recognise (2.59) as a linear first order differ-

ential equation in Z(x). That is, once a form for y(x) is chosen it may be possible

to integrate the linear first order differential equation to reveal the function Z(x).
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This has not been exploited before and we demonstrate in chapter 4 how the solu-

tion may be obtained explicitly. An algorithm is devised to find Z(x) once y(x) is

chosen. Of course, the algorithm is only successful if the integration of (2.57) may

be accomplished explicitly. Sadly only a small number of functions have been found

that allow this. We report on these in chapter 4.

2.6.2 Curvature Coordinates

With the aid of the geometric quantities (2.29) to (2.31) and the energy-momentum

tensor (2.9) we obtain the following Einstein field equations:

2m′

r2
= µ (2.60)

2(r(r − 2m)Φ′ −m)

r3
= p (2.61)

1

r2

(
m

r
−m′ + (r −m− rm′)Φ′ − r(r − 2m)

(
Φ′′ + (Φ′)2

))
= p (2.62)

for the line element in curvature coordinates. We have also selected a comoving fluid

velocity vector of the form ua = e−Φ(r)δa0 .

The isotropy of pressure condition (2.61) = (2.62) yields the differential equation

r2(r − 2m)
(
Φ′′ + (Φ′)2

)
+ r(3m− r − rm′)Φ′ + (3m− rm′) = 0 (2.63)

which is a Ricatti equation if considered as a first order equation in Φ′. If a form

for m is specified then, in theory, it should be possible to integrate equation (2.63)

to yield the function Φ(r) and consequently the remaining geometric and dynamical

23



quantities governed by the Einstein field equations. However, this is not always

possible as the Ricatti equation has been solved only for a few simple cases. For

example see Reid(1972) and Reissner (1916).

On the other hand, if (2.63) is viewed as a first order differential equation in m(r)

then specifying Φ(r) a priori would, theoretically, allow for the integration of (2.63)

as it is a linear first order differential equation. This is precisely the route chosen

by Lake (2006) in constructing exact solutions to the Einstein field equations for

static spherically symmetric neutral fluid spheres in an algorithmic way. Rearranging

equation (2.63) we get

r(rΦ′ + 1)m′ − (3rΦ′ − 2r2
(
Φ′′ + (Φ)2

)
+ 3)m+ r3

(
Φ′′ + (Φ)2

)
− r2Φ′ = 0 (2.64)

which is a first order equation in m(r). Now selecting forms for Φ(r) should allow

us to obtain m(r) by integration. Of course, one cannot choose Φ(r) in an arbitrary

manner as the integration of equation (2.64) must still be performed explicitly to

yield the metric potentials and the dynamical quantities. Some suitable choices for

Φ(r) were proposed by Lake (2006) and we have considered other possibilities in

Chapter 4. We will return to these later.

2.6.3 Isotropic Coordinates

We now consider the Einstein field equations for static fluid spheres in isotropic co-

ordinates. We select the fluid 4–velocity as ua = eΨ(r)−B(r) δa0 . Utilising the Einstein

tensor (2.44) to (2.46) and the energy momentum tensor (2.9) we obtain the set of

equations:

−e−2B
(
2rB′′ + 4B′ + r(B′)2

)
= µ (2.65)
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e−2B

(
2B′Ψ′ − (B′)2 + 2

Ψ′

r

)
= p (2.66)

e−2B

(
Ψ′′ + (Ψ′)2 − 2B′Ψ′ +

Ψ′

r
+ (B′)2

)
= p (2.67)

Again the pressure isotropy condition (2.66) = (2.67) yields the equation

Ψ′′ + (Ψ′)2 − Ψ

r
− 4B′Ψ′ + 2(B′)2 = 0 (2.68)

If we introduce a transformation, for example Ψ′(r) = Q(r) then the equation is

rewritten as

Q′ +Q2 − 1

r
Q− 4B′Q+ 2(B′)2 = 0

which is a Ricatti equation in Q(r). Once a form for B(r) is chosen, then the above

equation may be solved to reveal Q(r). In turn Q(r) must be integrated to yield

B(r) which can then be used to obtain all the remaining geometric and dynamical

quantities.

On the other hand if the equation (2.68) is rearranged as

2(B′)2 − 4Ψ′B′ +
(
Ψ′′ + (Ψ′)2 − 1

r
Ψ′
)
= 0 (2.69)

then it may be interpreted as a standard algebraic quadratic equation in B′(r). This

is readily solved to give

B′ = Ψ′ ± 1√
2

√
(Ψ′)2 −Ψ′′ +

1

r
Ψ′. (2.70)

Finally integrating (2.70) gives

B(r) = Ψ± 1√
2

∫ √
(Ψ2)−Ψ′′ +

1

r
Ψ′dr + C (2.71)
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where C is an integration constant. Now if Ψ(r) is prescribed then we proceed to

carry out the integration of (2.71) in order to yield the functional form for B(r).

The advantage of this particular algorithm is that only a single integration needs to

be performed as opposed to the the use of curvature coordinates which necessitates

two integrations. The caveat in this algorithm, however, is the fact that we need to

perform the integration of functions appearing under a square root. This is usually

very difficult and as a start, it will be prudent to select forms for Ψ that result

in the integrand of (2.71) being free of square roots. This form of B(r) has been

used by Lake (2006) to obtain an algorithm for generating new exact solutions of

the Einstein field equations for static fluid spheres. We will examine this in greater

detail in chapter 4.

2.7 Conditions for Physical Admissibility

We now consider briefly the conditions that have to be satisfied for solutions of the

Einstein system to be physically admissable. The system (2.57) admits an infinite

number of exact solutions as there are more variables than equations. Unfortunately

many of the solutions reported in the literature correspond to unrealistic distributions

of charged matter. It is desirable to isolate those solutions which are physically

reasonable as these can then be used to model charged stars. Often the following

constraints are imposed on solutions of the Einstein–Maxwell system in order to

obtain models of stellar configurations that are physically plausible:

(a) Positivity and finiteness of pressure and energy density everywhere in the interior

of the star including the origin and boundary:

0 ≤ p < ∞ 0 < ρ < ∞
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(b) The pressure and energy density should be monotonic decreasing functions of

the coordinate r. The pressure vanishes at the boundary r = R :

dp

dr
≤ 0

dρ

dr
≤ 0 p(R) = 0

(c) Continuity of gravitational potentials across the boundary of the star. The

interior line element should be matched smoothly to the exterior Schwarzschild

line element at the boundary:

e2ν(R) = e−2λ(R) = 1− 2M

R

(d) The principle of causality must be satisfied, i.e., the speed of sound should be

everywhere less than the speed of light in the interior:

0 ≤ dp

dρ
≤ 1

(e) The metric functions e2ν and e2λshould be positive and non–singular everywhere

in the interior of the star.

(f) The following energy conditions should be satisfied:

• Weak energy condition: ρ− p > 0

• Strong energy condition: ρ+ p > 0

• Dominant energy condition: ρ+ 3p > 0

(g) Surface Redshift. For static fluid spheres with a monotonically decreasing and

positive pressure profile, the surface redshift has been shown to be less than 2.

(Buchdahl 1959, Ivanov 2002)
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(h) Mass-Radius Ratio: The maximum mass to radius ratio for a static fluid sphere

must satisfy the condition

mass

radius
<

8

9

to ensure the stability of the sphere (Buchdahl 1959).

Note that most solutions do not satisfy all the conditions (a) to (h) throughout the

interior of the charged star. Additionally, some of the above conditions may be overly

restrictive. For example, observational evidence suggests that in particular stars the

energy density ρ is not a strictly monotonically decreasing function (Shapiro and

Teukolsky 1983).

Many solutions presented in the literature are singular at the centre and are valid

only for restricted regions of spacetime. Such solutions have to be treated as an en-

velope of the core and need to be matched to another solution valid for the core. For

example the solutions by Herrera and Ponce de Leon (1985), Pant and Sah (1979),

Tikekar (1984) and Whitman and Burch (1981) all suffer the drawback of a singu-

larity at the stellar centre. The solution by Bannerjee and Santos (1981) becomes

singular at a point in the interior of the distribution. Some solutions presented are

regular at the centre but are not stable. For example the solution by Maartens and

Maharaj (1990) violates the positivity of pressures condition; these solutions should

not be rejected as negative pressures may have occurred in the early universe and

thus such models may be acceptable in cosmology. Bonnor (1960, 1964, 1965), Bon-

nor and Wickramasuriya (1975) and Raychaudhuri (1975) showed that it is possible

to generate realistic solutions with vanishing pressure. In such charged dust dis-

tributions the Coulombic repulsion is the force responsible for holding the matter

in equilibrium in the absence of isotropic particle pressure. De and Raychaudhari
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(1968) have verified that in order to guarantee the equilibrium of a static charged

dust sphere the relation σ = ±ρ must be satisfied. Other configurations of spher-

ically symmetric distributions include the presence of anisotropic pressures. Such

cases were examined by Maharaj and Maartens (1989) and Ruderman (1972) in the

case of neutral spheres, and by Herrera and Ponce de Leon (1985) and Maartens and

Maharaj (1990) in the presence of charge.
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Chapter 3

A Review of Solution Generating

Algorithms

3.1 Introduction

In this chapter we review some of the important achievements in the area of solution

generating algorithms for the static neutral spherically symmetric fluid from the

earliest proposal of Wyman (1949). The idea of Wyman sadly lay dormant for over

fifty years until Fodor (2000) resuscitated it and went on to produce an efficient

algorithm for finding new exact solutions for the Einstein field equations. We do

not present the developments chronologically in this section and instead elect to

consider them in order of usefulness, with the most useful ones dealt with first.

Arguably the algorithm of Lake (2003, 2006) is most promising although no method

offers serious advantages without some side effects. One of Lake’s algorithms has

the drawback of involving two integrations while a second algorithm is at the mercy

of square roots of functions. Nevertheless functional forms are postulated which

do indeed result in new exact solutions as well as the regaining of familiar results.

The contribution of Boonserm et al (2005) was to prove four theorems which show
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how to construct new exact solutions of the Einstein field equations from existing

solutions. Fodor (2000), working in area coordinates, observed that his choice of

metric formulation resulted in the solving of an algebraic equation and consequently

not requiring explicit integration. His approach was also beset by the appearance

of square roots in the analysis. However, the major achievement of Fodor was that

the energy density and pressure and consequently the adiabatic sound-speed index

could be computed without a full integration of the potential functions. Finally

we consider the Martin and Visser (2008) algorithm which is a variation of Lake’s

algorithm however again two integrations are necessary to unlock all the required

functions.

3.2 Algorithm of Lake

We now examine two algorithms proposed by Lake (2006). Each of these has advan-

tages and disadvantages.

First Lake writes the spherically symmetric metric as

ds2M =
dr2

1− 2m(r)
r

+ r2dΩ2 − e2Φ(r)dt2. (3.1)

which is referred to as ’curvature coordinates’ or because of its resemblance to the

Schwarzschild exterior solution it is also called Schwarzschild coordinates. Note that

the 2–sphere is represented by dΩ2 = dθ2 + sin2 θdϕ2. The field equations governing

the gravitational behaviour of a neutral sphere, in these coordinates, have been given

in (2.57) to (2.59). A single function Φ(r) must be nominated a priori and then the

quantity m(r) may be established or vice-versa. Finally the energy density and

pressure are obtained via (3.5) and (3.6).
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The function m(r) is defined as follows

m(r) =

∫
b(r)e

∫
a(r)drdr + C

e
∫

a(r)dr
(3.2)

where

a(r) ≡ 2r2(Φ′′(r) + Φ′(r)2)− 3rΦ′(r)− 3

r(rΦ′(r) + 1)
(3.3)

and

b(r) ≡ r(r(Φ′′(r) + Φ′(r)2)− Φ′(r))

rΦ′(r) + 1
(3.4)

with ′ ≡ d
dr

and C a constant. Observe that the quantity m(r) has a clear interpre-

tation as the gravitational mass of the perfect fluid sphere.

We are now in a position to obtain the dynamical quantities. The energy density

is given by

ρ =
m′(r)

4πr2
(3.5)

while the pressure has the form

p =
rΦ′(r)[r − 2m(r)]−m(r)

4πr3
. (3.6)

We have followed Lake’s use of units for the geometric quantities. Note that it is

expected that both these quantities should be positive for a realistic matter config-

uration.

It is also argued that the source function Φ(r) must be a monotone increasing

function with a regular minimum at r = 0 based upon the behaviour of the distribu-

tion’s central conditions. Additionally to ensure continuity of the metric potentials

across the pressure-free boundary hypersurface (p(r) = 0) the necessary and sufficient
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condition is obtained by setting m(r = R) ≡ M , that is

Φ′(r = R) =
M

R(R− 2M)
.

This matches the interior solution to the unique exterior Schwarzschild solution

(Birkhoff 1923).

Lake (2006) concedes that while the number of source functions Φ(r) for which

(3.2) can be evaluated exactly is finite, it should be noted, however, that the gener-

ation of an exact solution does not necessarily mean that the equation p(r = R) = 0

can be solved exactly.

By way of an example, the form

Φ(r) =
1

2
N ln

(
1 +

r2

α

)
(3.7)

is postulated for Φ. Here N is an integer ≥ 1 and α is a constant > 0 . The function

(3.7) is monotone increasing with a regular minimum at r = 0. With the source

function (3.7), equation (3.2) can be evaluated exactly for any N . Interestingly this

function (3.7) produces known solutions for N = 1, ..., 5. It is remarked by Lake that

” these solutions with, N = 1,...5, in fact constitute half of all the previously known

physically interesting solutions in curvature coordinates. For N ≥ 5 the solutions

are acceptable on physical grounds and even exhibit a monotonically decreasing

subluminal adiabatic sound speed.”

Next we consider the spherically symmetric line element expressed in ”isotropic

coordinates”. The metric has the form

ds2M = e2B(r)(dr2 + r2dΩ2)− e2(Ψ(r)−B(r))dts (3.8)

where Ψ(r) and B(r) are two unknown functions to be determined. The advantage

of ’curvature’ coordinates was that the function m(r) had a physical interpretation
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connected to the stellar mass. However, in this formulation (3.8) no particular phys-

ical meaning can be attached to the functions Ψ and B at the outset. Nevertheless,

it will be noted that this structural version offers a more efficient approach to finding

new exact solutions of the Einstein field equations.

If a sufficiently smooth function Ψ(r) is selected at the outset then the function

B(r) may be calculated via

B(r) = Ψ(r) +
∫

c(r)dx+ C (3.9)

where

c(r) ≡ ϵ√
2

√
Ψ′(r)2 −Ψ”(r) +

Ψ′(r)

r
(3.10)

with ϵ = ±1, ′ ≡ d
dr

and C is a constant. The clear advantage of this algorithm is

the fact that only one integration must be performed. However, the presence of the

square root in the integrand is a negative feature. Nevertheless we may now compute

the energy density in the form

ρ =
−1

8πe2B(r)

(
2B′′(r) +

4B′(r)

r
+ (B′(r))2

)
(3.11)

while the pressure is given by

p =
−1

8πe2B(r)

(
−B′(r)Ψ(r) + (B′(r))2 − 2

Ψ′(r)

r

)
. (3.12)

As usual it is desired that both energy density and pressure remain positive through-

out the fluid’s distribution. Additionally it is argued that the source function must

be a monotonically increasing function for physical constraints to be satisfied. An

added bonus of this prescription, in contrast with ’curvature’ coordinates, is that the

adiabatic sound speed index may be obtained explicitly without the need to find the
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function B(r) - that is dp
dρ

may be found without having to perform the integration

(3.9). The details are contained in the work of Lake (2006) and are accordingly

omitted.

By way of a demonstration Lake provides the following functional form for the

source function Ψ:

Ψ(r) = α ln
f(r)

g(r)
(3.13)

where α > 0 is a constant and f and g are functions of r. An example, of suitable

functions f and g that satisfy the criteria that Ψ is monotonic and increasing is

g(r) = (δ + ϵr2)ζ and f(r) = δζ + γr2 with δ, ϵ, γ constants such that δ > 0 and

δ(1 − ζ)γ > ζϵ. It is stated by Lake (2006) that this class of solutions includes

a number of known solutions including the Schwarzschild interior solution and the

Rahman-Visser (2002) general quadratic ansatz.

While the algorithms above do indeed represent all possible spherically symmetric

perfect fluid spacetimes, it is acknowledged that there exists no systematic method

of selecting the source functions in each case. The advantages and drawbacks of each

proposal has been alluded to above.

3.3 Boonserm, Visser andWeinfurtner (BVW) Al-

gorithm

Boonserm et al (2005) write the spherically symmetric line element in the form

ds2 = −ζ(r)2dt2 +
dr2

B(r)
+ r2dΩ2 (3.14)
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where ζ(r) and B(r) are two functions to be determined from the pressure isotropy

condition. In addition dΩ2 is the unit 2-sphere dθ2+sin2 dϕ2. The associated master

Einstein field equation reduces to

[r(rζ)′]B′ + [2r2ζ ′′ − 2(rζ)′]B + 2ζ = 0 (3.15)

which is an ordinary differential equation in B(r). Therefore once you have chosen a

form for ζ(r), this equation must be solved for B(r). Note that this same equation

may be arranged differently as

2r2Bζ ′′ + (r2B′ − 2rB)ζ ′ + (rB′ − 2B + 2)ζ = 0 (3.16)

which is now a second order ordinary differential equation in ζ(r). The construction

of new solutions may now proceed systematically by assuming the existence of a

solution to any one of (3.15) or (3.16) above. In other words, new solutions may

be constructed from old solutions in an algorithmic fashion. Suppose we have a

spacetime metric

ds2 = −ζ0(r)
2dt2 +

dr2

B0(r)
+ r2dΩ2 (3.17)

and assume it represents perfect fluid sphere. The idea of BVW (2005) is to ”deform”

this solution by applying four different transformation theorems on (ζ, B0), such that

the outcomes still presents a perfect fluid sphere. The outcome of this process will

depend on one or more free parameters, and so automatically generates an entire

family of perfect fluid spheres of which the original starting point is only one member.

They also attempt to find a connection between all different transformation theorems.

We omit the proofs here and the interested reader may refer to the work of BVW

(2005) for the details. We adjudicate it prudent to state the main theorems which

give an idea of how new solutions may be constructed algorithmically.
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• Theorem 1

Suppose (ζ0(r), B0(r)) represents a perfect fluid sphere. Define

∆0(r) =

(
ζ0(r)

ζ0(r) + rζ ′0(r)

)2

r2 exp

{
2
∫ ζ ′0(r)ζ0(r)− rζ ′0(r)

ζ0(r)ζ0(r) + rζ ′0(r)
dr

}
(3.18)

Then for all λ, the geometry defined by holding ζ0(r) fixed and setting

ds2 = −ζ0(r)
2dt2 +

dr2

B0(r) + λ∆0(r)
+ r2dΩ2 (3.19)

is also a perfect fluid spheres. That is, the mapping

T1(λ) : {ζ0, B0} 7→ {ζ0, B0 + λ∆0(ζ0)} (3.20)

takes perfect fluid spheres into perfect fluid spheres.

• Theorem 2

Let {ζ0, B0} describe a perfect fluid sphere. Define

Z0(r) = σ + ϵ
∫ rdr

ζ0(r)2
√
B0(r)

(3.21)

Then for all σ and ϵ, the geometry defined by holding B0(r) fixed and setting

ds2 = −ζ0(r)
2Z0(r)

2dt2 +
dr2

B0(r)
+ r2dΩ2 (3.22)

is also a perfect fluid sphere.

• Theorem 3

If {ζ0, B0} denotes a perfect fluid sphere, then for all σ, ϵ, and λ, the three

parameter geometry defined by

ds2 = −ζ0(r)
2

σ + ϵ
∫ rdr

ζ0(r)2
√
B0(r)


2

dt2 +
dr2

B0(r) + λ∆0(ζ1, r)
+ r2dΩ2

(3.23)
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is also a perfect fluid sphere, where ∆0 is given by

∆0(ζ1, r) =

(
ζ1(r)

ζ1(r) + rζ ′1(r)

)2

r2 exp

{
2
∫ ζ ′1(r)ζ1(r)− rζ ′1(r)

ζ1(r)ζ1(r) + rζ ′1(r)
dr

}
, (3.24)

That is

T3 = T0oT1 : {ζ0, B0} 7→ {ζ0, B0+λ∆0(ζ0)} 7→ {ζ0Z0(ζ0, B0+λ∆0(ζ0), B0+λ∆0(ζ0)}

(3.25)

takes perfect fluid spheres into perfect fluid spheres.

• Theorem 4

If {ζ0, B0} denotes a perfect fluid sphere, then for all σ, ϵ, and λ, three param-

eter geometry defined by

ds2 = −ζ0(r)
2

σ + ϵ
∫ rdr

ζ0(r)2
√
B0(r)


2

dt2 +
dr2

B0(r) + λ∆0(ζ1, r)
+ r2dΩ2

(3.26)

is also a perfect fluid sphere, where ∆0(ζ1, r) is defined as

∆0(ζ1, r) =

(
ζ1(r)

ζ1(r) + rζ ′1(r)

)2

r2 exp

{
2
∫ ζ ′1(r)ζ1(r)− rζ ′1(r)

ζ1(r)ζ1(r) + rζ ′1(r)
dr

}
, (3.27)

depending on ζ1 = ζ0Z0, where as before

Z0(r) = σ + ϵ
∫ rdr

ζ0(r)2
√
B0(r)

(3.28)

That is

T4 = T1oT2 : {ζ0, B0} 7→ {ζ0Z0(ζ0, B0), B0} 7→ {ζ0Z0(ζ0, B0), B0+λ∆0(ζ0Z0(ζ0, B0))}

(3.29)

takes perfect fluid spheres into perfect fluid spheres.
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Using these theorems, one can find all possible solutions to Einstein’s field equa-

tions for a static perfect fluid, in principle. Naturally, known solutions may be re-

covered, however novel solutions may develop from existing metrics that are known

to solve the field equations.

3.4 Fodor Algorithm in Area Coordinates

The interesting feature of Fodor’s (2000) algorithm is that solutions of the field equa-

tions may be found without actual integration. The general stationary spherically

symmetric configuration is written in area coordinates as

ds2 = −e2νdt2 +
1

B
dr2 + r2(dϑ2 + sin2 ϑdφ2) (3.30)

where ν = ν(r) and B = B(r) are functions of the radical coordinate r. The energy

density µ has the form

µ =
1

8πr2
(1−B − rB′) (3.31)

the radial pressure pr is given by

pr =
1

8πr2
(2rBν ′ +B − 1) (3.32)

while the angular pressure has the form

pϑ =
1

16πr

(
2rBν ′′ + 2rB(ν ′)2 + rν ′B′ + 2Bν ′ +B′

)
(3.33)

where the prime denotes derivatives with respect to the radial coordinate r. Here

Fodor has taken the more general form of the field equations where the fluid is

anisotropic in general. However, if we assume pressure isotropy pϑ = pr then we

obtain the master field equation in the form

r(rv′ + 1)B′ + [2r2v′′ + 2r2(v′)2 − 2rv′ − 2]B + 2 = 0 (3.34)
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It is useful to introduce a new function β(r) as

β = rv′ + 1 (3.35)

Then the field equation (3.34) takes the simple form

rβB′ + 2rBβ′ + 2β2B − 8βB + 4B + 2 = 0 (3.36)

and the pressure becomes

p =
1

8πr2
(2βB −B − 1) . (3.37)

Introducing the transformations

α = β2B (3.38)

equation (3.36) becomes a second order algebraic equation in β ,

2(α+ 1)β2 + (rα′ − 8α)β + 4α = 0 (3.39)

Now if instead of α one introduces its square root, z =
√
α as a new function, and

denote
√
B = b, then it is possible to get from (3.39) an equation in b, namely

2b2 + (rz′ − 4z)b+ z2 + 1 = 0 (3.40)

which is, in fact, a second order algebraic equation in β. This equation was also

reported by Burlankov (1993). Theoretically, once a form for z is chosen the function

b(r) may be calculated from (3.40).

While in theory this appears simple, in practice the problem may become in-

tractable on account of the presence of square roots. More seriously Fodor (2000)

admits that the most simple polynomial forms for z do not appear to work. Consider

any function α for which

(8α− rα′)2 > 32α(α + 1) (3.41)
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then the quadratic equation (3.40) has two solutions for the function β which we

denote by β+ and β−,

β± =
1

4(α+ 1

[
8α− rα′ ±

√
(8α− rα′)2 − 32α(α + 1)

]
(3.42)

Using (3.38) and (3.35) the metric functions B+ and ν−, can be calculated as

B± =
α

β2
±
=

(α + 1)2

4α
β2
±, (3.43)

and

ν± =
∫ r

0

1

r
(β± − 1) dr + C± (3.44)

where C+ and C− are constants.The integral (3.44) generally cannot be resolved in

terms of elementary functions, but as can be seen from (3.31) and (3.37), the physi-

cally important pressure and density can be calculated without performing integrals.

If we denote the pressure and density belonging to β− by p+ and µ+ ,and those

belonging to β− by p− and µ−, we obtain

p± =
1

8πr2
(2β±B± − 1) (3.45)

and

µ± =
1

8πr2

(
1−B± − rB′

±

)
. (3.46)

So while this algorithm has the drawback of not admitting even simple polynomial

type solutions for z, it has a distinct advantage from a physical analysis point of

view. The dynamical quantities pressure and energy density may be computed even

though the integration (3.44) may not be achievable. This allows one to also compute

the adiabatic sound speed index dp
dµ

explicitly and then to test if the model supports

causality. That is we must check if 0 < dp
dµ

< 1 is satisfied everywhere in the interior

of the distribution. Most other solution generating techniques require that the metric

potentials be explicitly known before the dynamical quantities are calculated.
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3.5 Martin and Visser Algorithm

This approach constitutes a variation of Lake’s algorithm. The spherically symmetric

spacetime is chosen to have the form

ds2 = −exp
[
−2

∫ ∞

r
g(r)dr̃

]
dt2 +

dr2

1− 2m(r)/r
+ r2[dθ2 + sin2θdϕ2]. (3.47)

where g(r) is the so called ”gravity profile”. It is related to the gravitational redshift

z by

1 + z = exp
[∫ ∞

r
g(r̃)dr̃

]
(3.48)

and is related to the locally measured acceleration due to gravity by

a =

√
1− 2m(r)

r
g(r) (3.49)

Given g(r) positive for a downward acceleration in the vacuum region beyond the

surface of the star-like object, the Schwarzschild solution gives g(r) = (M/r2)/(1 −

2M/r) and m(r) = M . Martin and Visser find it more convenient to write the metric

in the form:

ds2 = − exp
[
−2

∫ ∞

r
g(r)dr̃

]
dt2 +

dr2

1− 2m(r)/r
+ r2[dθ2 + sin2θdϕ2]. (3.50)

where µ(r) = 4π
3
p̃(r) is proportional to the average density inside radius r. In terms

of these variables, the Einstein equations are

8πρ = 2m′(r)/r2 = 2[rµ′(r) + 3µ(r)] (3.51)

8πp = 2

{
g(r)[1− 2µ(r)r2]

r
− µ(r)

}
(3.52)
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8πp = −r[1 + rg(r)]
dµ(r)

dr
− 2

{
[1 + rg(r)]2 + r2

dg(r)

dr

}
µ(r)

+

[
dg(r)

dr
+

g(r)

r
+ g(r)2

]
. (3.53)

Equation (3.51) integrates to give

µ(r) =
1

r3

∫ r

0
4πρ(r̃)r̃2dr̃, (3.54)

which justifies the choice of notation m(r) = µ(r)r3. On the other hand the pressure

isotropy condition (3.52) = (3.53) yields the differential equation

dg

dr
= −g2 +

1 + µ′r3

r(1− 2µr2)
g +

rµ′

1− 2µr2
(3.55)

which is a Riccati equation, for which there is no general solution. Rearranging

(3.55) to extract dµ/dr we find

dµ

dr
= −2r(g2 + g′)

1 + rg
µ+

(g/r)′ + g2/r

1 + rg
. (3.56)

which is now a simple first-order linear ordinary differential equation and hence

explicitly solvable. The general solution is given by

µ(r) = exp

[
−2

∫ r[g2(r) + g′(r)]

1 + rg(r)
dr

]

×
{
C1 +

∫ −g(r) + rg′(r) + rg(r)2

r2[1 + rg(r)]
exp

[
2
∫ r[g2(r) + g′(r)]

1 + rg(r)
dr

]}
(3.57)

Now once a form for the function g(r) is chosen ab initio then the potential function

µ(r) may then be established with the aid of (3.57). In turn the energy density and
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pressure may be calculated via (3.51) and (3.52) respectively. As can be seen, this

process calls for two different integrations. So one would have to make an extremely

fortuitous choice for g(r) in order for all the integrals to be obtainable in elementary

analytic forms.
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Chapter 4

New Exact Solutions

4.1 Introduction

In this chapter we report new exact solutions of the Einstein field equations for static

spherically symmetric distributions of matter. Based on the success of others in the

past decade, we devise our own algorithm for finding new exact solution utilising a

coordinate transformation first used by Durgapal and Banerjee (1983). The master

field equation resulting from the pressure isotropy condition is rearranged in the form

of a linear first order differential equation that is explicitly solvable. In order to obtain

viable complete solutions the generating function must be chosen so as to facilitate

the integration of the master field equation. We exhibit some new solutions using

this method. We then investigate the algorithm of Lake (2006) utilising curvature

and isotropic coordinates. In both cases we are able to obtain new exact solutions

by postulating forms of the generating functions that have not previously yielded

success. Finally we study some of our solutions for physical plausibility.
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4.2 Solutions in Durgapal–Bannerjee Coordinates

As remarked in Chapter 2, the Einstein field equations (2.57) to (2.59) govern the

gravitational behaviour of static spherical perfect fluids. The most common approach

to obtaining a complete solution of the field equations has been to specify the grav-

itational potential Z(x) and then to integrate (2.59) to obtain the function y(x).

For example, the choice Z = 1 + x has been shown to lead to the Schwarzschild

interior solution by Maharaj and Mkhwanazi (1996). Additionally Finch and Skea

(1985) utilised the form Z = (1 + x)2 and generated a new class of solutions which

was shown to conform to the realistic behaviour of stars according to the theory

of Walecka (1975). Thirukannesh and Maharaj (2006) studied the general form

Z = (1+x)n and produced new classes of exact solutions, albeit some of which were

expressed as series as the Frobenius method of solving differential equations was in-

voked. In the approaches followed so far in the literature, a form for Z(x) is usually

postulated and then y(x) is calculated by solving the second order differential equa-

tion. An alternative approach is to consider (2.59) as a first order linear differential

equation in Z(x). It has the form

(2x2ẏ + xy)Ż + (4x2ÿ − y)Z + y = 0 (4.1)

which may be readily solved. The general solution to (4.1) is given by

Z(x) = keF + eF
∫
e−F y

2x2ẏ + xy
dx (4.2)

where

F (x) =
∫ 4x2ÿ − y

2x2ẏ + xy
dx

and k is an integration constant. This represents all possible solutions to the Einstein

field equations for a static spherically symmetric configuration of matter. We must
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now select suitable forms for the function y(x), compute F (x) and then via (4.1)

establish the gravitational potential Z(x). This will then generate a complete model

of the relativistic fluid sphere. Naturally, there is still no clear way to select suitable

source functions y(x) that will allow for the complete integration of the field equations

and so the familiar ad hoc methods must still be used.

4.2.1 The Choice y = a+ bx

As an example, we consider the simple choice

y(x) = a+ bx (4.3)

which is a linear function of x. This is equivalent to the choice e2ν = (v + wr2)2, v

and w being constants, in the canonical coordinate system if we bear in mind that

x = Cr2. On examining the literature, we observe that our choice corresponds to

the form of the Kuchowicz (1970)

e2ν =
(
Arα +Brβ

)2
(4.4)

if we put α = 1 and β = 2. Kuchowicz (1970) was, however, only able to solve

the field equations explicitly for specific choices of α and β. Therefore our solutions

will only coincide with those of Kuchowicz for appropriate values of the constants.

Another form postulated by Heintzman (1969) namely

e2ν = (a+ br2)n

bears a resemblance to our work. Nevertheless exact solutions have only been re-

ported for the cases n = 3,±1,−2 none of which coincides with our class of solutions.

With the form (4.3) we obtain

F (x) = log
(a+ 3bx)

2
3

x
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and substituting into (4.1) we obtain

Z(x) =
(1 + c1)(a+ 3bx)

2
3

x
(4.5)

where c1 is an integration constant. In order to facilitate a study of the field equations

for physical plausibility, we elect to set the constants to the values c1 = 1, a = 1 and

b = 3. Now it is possible to find the various dynamical quantities :

The energy density ρ is obtained via (2.57) and is given by

ρ

C
=

2 + x(−2 + (1 + 3x)
1
3 )

x2(1 + 3x)
1
3

(4.6)

The pressure is found with the help of (2.58) and has the form

p

C
=

2(1 + x)(1 + 3x)
2
3 + x(−1− x+ 8(1 + 3x)

2
3 )

x(1 + x)
(4.7)

The rates of change of each of these dynamical quantities is given by

dρ

Cdx
=

−4 + 4x2(8− 3(1 + 3x)
1
3 )− x(12 + (1 + 3x)

1
3 )

x3(1 + 3x)
4
3

(4.8)

dp

Cdx
=

−4 + x3(−40 + (1 + 3x)
1
3 ) + x(−24 + (1 + 3x)

1
3 ) + 2x2(−22 + (1 + 3x)

1
3 )

x3(1 + x)2(1 + 3x)
1
3

(4.9)

This allows us to compute the adiabatic sound speed index

dp

dρ
= −(1 + 3x)(−4 + x3(−40 + (1 + 3x)

1
3 ) + x(−24 + (1 + 3x)

1
3 ) + 2x2(−22 + (1 + 3x)

1
3 ))

(1 + x)2(4 + x(12 + (1 + 3x)
1
3 ) + x2(−8 + 3(1 + 3x)

1
3 ))

(4.10)

which we must check to see is constrained by 0 < dp
dρ

< 1. That is the sound speed

must be sub–luminal.
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In addition we investigate the energy conditions. The following quantities are

relevant:

ρ− p =
1

x+ x2

(
2 + 2x− 16 + 32x

(1 + 3x)
1
3

)
(4.11)

ρ+ p =
4(1 + 4x+ 7x2)

x2(1 + x)(1 + 3x)
1
3

(4.12)

ρ+ 3p =
8− 2x2(−44 + (1 + 3x)

1
3 )− 2x(−24 + (1 + 3x)

1
3 )

x2(1 + x)(1 + 3x)
1
3

(4.13)

and graphical plots will give us an indication whether the physical requirements are

satisfied or not. Regrettably, the plots show a generic defect in that we are unable to

obtain a vanishing pressure hypersurface. Additionally one of the energy conditions

is always violated and the causality cannot be ensured. Accordingly there is little

value in exhibiting all the plots.

We conclude this section by listing the complete solution to the Einstein field

equations for static fluid spheres for our choice of source funcion. It is given by

y(x) = a+ bx (4.14)

Z(x) =
(1 + C)(a+ 3bx)

2
3

x
(4.15)

ρ =
2 + x(−2 + (1 + 3x)

1
3 )

x2(1 + 3x)
1
3

(4.16)

p =
2(1 + x)(1 + 3x)

2
3 + x(−1− x+ 8(1 + 3x)

2
3 )

x(1 + x)
(4.17)
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The line element may be written as

ds2 = −(a+ bx)2dt2 +

(1 + C)(a+ 3bx)
2
3

x

−1

dr2 + r2(dθ2 + sin2 θdϕ2) (4.18)

4.2.2 The Choice y = (a+ bx)−1

This simple choice also does not appear to fall into any general class treated pre-

viously. If we set a = 1 in our work the case corresponds to Heintzmann’s (1969)

case for n = −1 in his work. There is also the problem of an extra constant q in

Heintzmann’s formulation e2ν = q(1 + br2)n. Therefore our solutions coincide only

for specific values of appropriate constants and not in general. With the choice

y =
1

a+ bx
(4.19)

which is equivalent to e2ν = 1/(v + wr2), the form of Z is easily obtained as

Z(x) =
1 + x+ 4x2 + 20x3

3
− 16x5 − 64x6

3
− 64x7

7

(1− 2x)2x(1 + 2x)4
(4.20)

where we have set a = 1, b = 2, C = 1 and k = 1. Observe that the solution for

general a and b is easily found, but we make these definitions of the constants to

make the physical analysis more transparent. The energy density is now given by

ρ =
−21− 168x+ 1092x2 + 1120x3 + 2912x4 + 896x5 − 6272x6 − 5632x7 + 5120x8 + 6144x9

21x2(−1 + 2x)3(1 + 2x)5

(4.21)

while the pressure has the form

p = −−21 + 126x+ 168x2 + 448x3 − 1344x5 − 896x6 + 1536x7 + 1536x8

21(1− 2x)2x2(1 + 2x)5
(4.22)
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The sound speed index is calculated as

dp

dρ
=
(
21− 42x− 756x2 + 3248x3 − 2464x4 + 1344x5 − 4480x6 − 8704x7

+3072x8 + 12288x9 − 6144x11
)
/
(
21 + 126x− 84x2 − 4648x3 + 18144x4

+11200x5 + 20608x6 + 7424x7 − 23552x8 − 22528x9 + 8192x10 + 12288x11
)
(4.23)

Finally, we give the expressions for the analysis of the energy conditions. These have

the form

ρ− p =
8 (−42 + 147x+ 126x2 + 476x3 + 280x4 − 1008x5 − 1120x6 + 832x7 + 1152x8)

21x(−1 + 2x)3(1 + 2x)5

(4.24)

ρ+ p =
2 (−21 + 504x2 + 616x3 + 1008x4 − 224x5 − 2240x6 − 1152x7 + 1792x8 + 1536x9)

21x2(−1 + 2x)3(1 + 2x)5

(4.25)

ρ+ 3p =
4 (21− 84x− 210x2 − 364x3 − 56x4 + 784x5 + 224x6 − 1088x7 − 128x8 + 768x9)

21x2(−1 + 2x)3(1 + 2x)5

(4.26)

and these quantities should be positive for a realistic stellar configuration.

4.2.3 Qualitative Physical Analysis

In view of the complicated expressions for the geometric and dynamical quantities

above, we have resorted to the use of mathematical software packages to plot the
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profiles of the main physical quantities. Figure 4.2 displays the pressure profile. It

is pleasing to note that the pressure vanishes for the value x = 0, 13 and this defines

the boundary of the fluid sphere. Furthermore, it can be observed that the pressure

is everywhere positive in the interior of the sphere and is monotonically decreasing

towards the boundary of the sphere. A negative feature, though, is that the pressure

is singular at the centre of the distribution.

Figure 4.1 exhibits the energy density and it is pleasing to see that the energy

density is everywhere positive within the radius obtained from the pressure free hy-

persurface. Additionally it is also decreasing outwardly and has the similar drawback

as the pressure of being infinite at the centre.

Perhaps the most noteworthy feature of this solution is Figure 4.3. This shows

that the adiabatic sound speed criterion 0 < dp
dρ

< 1 is satisfied everywhere inside

the spherical configuration. This ensures that the speed of sound never exceeds the

speed of light which is a fundamental postulate in Einstein’s theory of gravity.

The graphs Figures 4.4 – 4.6 indicate that the energy conditions are satisfied

everywhere inside the sphere. This is evidenced by all three expressions ρ− p, ρ+ p

and ρ+ 3p are always positive within the radius of the sphere. It should be pointed

out that it is indeed rare to find all these elementary requirements being satisfied in

the same model. Most models reported in the literature contain one or other defect

that renders them non-physical. In the work of Delgaty and Lake (1998) it is argued

that of over 100 exact solutions for the static spherically symmetric fluid sphere only

about 8 succeed as viable models of realistic phenomena. That is only this small

subset satisfy the basic requirements for physical plausibility. In our case, if we are

prepared to give up regularity at the centre, then all physical requirements are met.
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Physically this means that our model may serve as a core–envelope model– in other

words, our solution may be used to model a spherical shell of perfect fluid. This

solution needs to be matched with the Schwarzschild exterior on the outer boundary

and some other solution on the inside boundary. The matter surrounded by our shell

may be another fluid described by another appropriate exact solution. For example

it could be the Finch-Skea perfect fluid (Hansraj and Maharaj (2008)).
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Figure 4.1: Graph of Energy density versus radial coordinate x
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Figure 4.2: Graph of Pressure versus radial coordinate x
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Figure 4.3: Graph of dp
dρ

versus radial coordinate x
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Figure 4.4: Graph of ρ− p versus radial coordinate x
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Figure 4.5: Graph of ρ+ p versus radial coordinate x
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Figure 4.6: Graph of ρ+ 3p versus radial coordinate x

4.3 Solutions for Curvature Coordinates

We now investigate Lake’s algorithm using curvature coordinates in order to find

new exact solutions. We make the prescription

Φ(r) = log(2 + r3) (4.27)

which is inspired by Lake’s own form log(1 + r2). Observe that we are able to solve

the more general form Φ(r) = log(a + br3) with the aid of Mathematica (Wolfram

Research 2010) however we have set a = 2 and b = 1 to make the solution more

lucid. The general forms are lengthy and unwieldy. It is also noteworthy that this

general class of solutions does not appear to have been treated previously from an

examination of the comprehensive record of Delgaty and Lake (1998) and the smaller

collection in Stephani et al (2003). Then following the algorithm (3.2) we find that

a(r) = − 3

r + 2r4
and B(r) =

3r2

2 + 4r3
(4.28)

for this choice of Φ.
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Now it is possible to find the various dynamical quantities. Using (3.5) the energy

density ρ is given by

ρ =
3(1 + 2r + r4)

4π(1 + 2r3)2
(4.29)

while (3.6) allows us to calculate the pressure p as

p = −r(2 + 3r) + 2(−1 + 2r2 + r3) log(2 + r3)

8πr(1 + 2r3)
(4.30)

This allows us to compute the adiabatic sound speed index after taking the derivatives

of (4.30) and (4.29) and then dividing. We obtain

dp

dρ
= −

(
(1 + 2r3)(3r2(−2 + 2r + 8r2 + 3r3 + 2r4 + 4r5 − 4r7)

)

+2
(
(−2− 4r2 − 21r3 + 14r5 − 6r6 + 8r8 + 2r9) log 10(2 + r3)

)
/

(
12r2(2 + r3)(−1 + 6r2 + 8r3 + 2r6)

)
(4.31)

for the causality index. In order to assess whether the model satisfies the energy

conditions the following quantities are relevant:

ρ− p =
r(8 + 15r + 4r3 + 12r4) + (−2 + 4r2 − 2r3 + 8r5 + 4r6) log(10(2 + r3))

8πr(1 + 2r3)2

(4.32)

ρ+ p =
r(4 + 9r − 4r3) + (2− 4r2 + 2r3 − 8r5 − 4r6) log(10(2 + r3))

8πr(1 + 2r3)2

(4.33)

ρ+ 3p = −3(r2(−1 + 4r2 + 4r3) + (−2 + 4r2 − 2r3 + 8r5 + 4r6) log(10(2 + r3))

8πr(1 + 2r3)2

(4.34)
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The complete solution of the Einstein field equations is finally expressible as

Φ(r) = log(2 + r3) (4.35)

m(r) =
r3(2 + 3r)

2(1 + 2r3)
(4.36)

ρ =
3(1 + 2r + r4)

4π(1 + 2r3)2
(4.37)

p = −r(2 + 3r) + 2(−1 + 2r2 + r3) log(2 + r3)

8πr(1 + 2r3)
(4.38)

and the associated line element is given by

ds2M =
(1 + 2r3)dr2

(1− 2r2 − r3)
+ r2(dθ2 + sin2 θdϕ2)− (2 + r3)2dt2. (4.39)

Now substituting m(r) and Φ(r) into g(r) below,

g(r) = rm′ − 3m+ r(3m− r − rm′) + r2(r − 2m)
(
(Φ′)2 + Φ′′

)
.

we obtain:

g(r) =
−2r2 + 3r4 − 11r5 − 12r6 + 4r8

2(1 + 2r3)
+

r2(1− 2r2 − r3)

(1 + 2r3)(2 + r3)
(4.40)

for(2.36) which is non-zero. This establishes that this model is not conformally flat.

59



4.4 Solutions for Isotropic Coordinates

We select the form Ψ(r) = a + br2 for the purpose of running Lake’s algorithm in

isotropic coordinates. This form is not novel and is contained in the solutions of

Nariai (1950) and Tolman (1939) – however, it gives a powerful application of the

algorithm of Lake. Empirical testing with software packages suggest that we put

a = 1 and b = −1 for physically reasonable models. Accordingly we commence with

the form

Ψ(r) = 1− r2. (4.41)

This allows us to obtain the function

c(r) =
√
2r (4.42)

and consequently we are able to establish

B(r) = 2− r2
(
1− 1√

2

)
(4.43)

The energy density ρ is given by:

ρ =
e−4+(2−

√
2)r2

4π

(
6− 3

√
2 + (2

√
2− 3)r2

)
(4.44)

with the help of (3.11). The pressure p has the form

p =
e−4+(2−

√
2)r2

4π

(
−2 + (

√
2− 1)r2

)
(4.45)

by using (3.12). Observe that while these forms for ρ and p are reasonably simple, it is

not possible to write p explicitly in terms of ρ. The condition p = p(ρ) is an equation

of state and is highly desirable in constructing models of stars. Unfortunately the

form for neither p nor ρ allow for them to be solved in the form r = f(ρ) for some
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function f as they are not algebraic in r. Nevertheless we may compute the adiabatic

sound speed index as

dp

dρ
=

3
√
2− 5 + (3

√
2− 4)r2

−10
√
2− 15 + (7

√
2− 10)r2

(4.46)

which must lie between 0 and 1 for a causal fluid. The energy conditions require us

to obtain the following quantities which are supposed to be positive for a realistic

fluid sphere:

ρ− p =
e−4+(2−

√
2)r2

4π

(
8− 3

√
2 + (

√
2− 2)r2

)
(4.47)

ρ+ p =
e−4+(2−

√
2)r2

4π

(
4− 2

√
2 + (3

√
2− 4)r2

)
(4.48)

ρ+ 3p =
e−4+(2−

√
2)r2

4π

(
−3

√
2 + (5

√
2− 6)r2

)
(4.49)

The complete solution to the Einstein field equations may now be given by

Ψ(r) = 1− r2 (4.50)

B(r) = 2− r2
(
1− 1√

2

)
(4.51)

ρ =
e−4+(2−

√
2)r2

4π

(
6− 3

√
2 + (2

√
2− 3)r2

)
(4.52)

p =
e−4+(2−

√
2)r2

4π

(
−2 + (

√
2− 1)r2

)
(4.53)
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The line element for this solution has the form

ds2M = e(4−r2(2+
√
2))(dr2 + r2(dθ2 + sin2 θdϕ2))− e(−2−

√
2r2)dt2 (4.54)

Now substituting B(r) and Ψ(r) into f(r) below,

f(r) = r(Ψ′)2 − 4rB′Ψ′ + rΨ′′ − 2rB′′ + 4r(B′)2 + 2B′ −Ψ′ (4.55)

we have

f(r) = −4(−3 + 2
√
2)r3 (4.56)

for the Weyl tensor (2.51). That this function is non-zero suggests that the Weyl

tensor does not vanish in general and so this model is not conformally flat.
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Chapter 5

Conclusion

In this thesis, we have investigated solution generating algorithms for the Einstein

field equations in the case of a static configuration of neutral perfect fluid. The

problem of finding exact solutions commenced over a hundred years ago and in 1949

the first algorithm emerged with the work of Wyman (1949). Thereafter the topic

lay dormant until the work of Fodor (2000) who revived interest in the method.

Prior, to this exact solutions were sought in a purely ad hoc fashion with various

researchers imposing constraints on the geometry of the fluid or by attempting to

impose a functional dependence of the pressure on the energy density - this is called

an equation of state. The field equations are under–determined in this instance as

they form a system of three partial differential equations in four unknowns. This

means that one of the unknowns must be chosen upfront and the remaining ones are

to be found on integrating the system of field equations.

Solution generating algorithms offer a systematic approach to solving the system

of field equations. The key observation has been that in most analyses, the master

field equation arising out of the pressure isotropy condition, has been perceived as a

second order ordinary differential equation. Strangely, researchers (aside from those
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mentioned above) failed to exploit the fact that the master field equation may also

be interpreted as a first order differential equation and new possibilities for finding

solutions could emerge. This is the line that we have pursued in this work.

After declaring the mathematical formalism in use (chapter 2) we have conducted

a review in chapter 3 of the solution generating algorithms from Wyman (1949) to

Fodor (2000), Rahman and Visser (2002), Lake (2003), Martin and Visser (2004) and

then Boonserm et al (2005). It was noted that while these algorithms correctly gave

all spherically symmetric perfect fluid models, in practice each of the algorithms suf-

fered from some difficulty. For example some involved integrals of functions appearing

under square roots. Hence the problem of finding new more efficient algorithms is

still a challenge.

Finally in chapter 4 we presented a new algorithm making use of a coordinate

transformation used by Durgapal and Banerjee (1983). One metric potential function

must be selected upfront and then the remaining potential has to be found by a single

integration. We have demonstrated a new solution by finding a suitable function

that allowed the complete integration of the Einstein field equations. Additionally,

we have investigated the algorithm of Lake and in each case of curvature coordinates

and isotropic coordinates –we were able to construct new exact solutions.

This study reflects the view that while a large volume of literature exists on ex-

act solutions of the Einstein field equations, the area is still vibrant as a research

area. The reason for this is that exact solutions in themselves are not important.

They are only useful if they can be used to model realistic phenomena. Therefore

exact solutions must satisfy certain stringent conditions to succeed as astrophysical

or cosmological models. Regrettably, only a very small subset of published solu-

tions display the major requirements. Therefore this area remains a fertile research

domain.
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