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Abstract
College of Agriculture, Engineering and Science, University of KwaZulu-Natal

Master of Science in Computer Engineering

Facial Expression Recognition using Covariance Matrix Descriptors and Local Texture
Patterns

by Ashaylin Naidoo

Facial expression recognition (FER) is a powerful tool that is emerging rapidly due to increased

computational power in current technologies. It has many applications in the fields of human-

computer interaction, psychological behaviour analysis, and image understanding. However,

FER presently is not fully realised due to the lack of an effective facial feature descriptor.

The covariance matrix as a feature descriptor is popular in object detection and texture recogni-

tion. Its innate ability to fuse multiple local features within a domain is proving to be useful in

applications such as biometrics. Developing methods also prevalent in pattern recognition are

local texture patterns such as Local Binary Pattern (LBP) and Local Directional Pattern (LDP)

because of their fast computation and robustness against illumination variations. This study will

examine the performance of covariance feature descriptors that incorporate local texture patterns

concerning applications in facial expression recognition. The proposed method will focus on

generating feature descriptors to extract robust and discriminative features that can aid against

extrinsic factors affecting facial expression recognition, such as illumination, pose, scale, rota-

tion and occlusion. The study also explores the influence of using holistic versus component-

based approaches to FER.

A novel feature descriptor referred to as Local Directional Covariance Matrices (LDCM) is pro-

posed. The covariance descriptors will consist of fusing features such as location, intensity and

filter responses, and include LBP and LDP into the covariance structure. Tests conducted will

examine the accuracy of different variations of covariance features and the impact of segment-

ing the face into equal sized blocks or special landmark regions, i.e. eyes, nose and mouth, for

classification. The results on JAFFE, CK+ and ISED facial expression databases establish that

the proposed descriptor achieves a high level of performance for FER at a reduced feature size.

The effectiveness of using a component-based approach with special landmarks displayed stable

results across different datasets and environments.

http://engineering.ukzn.ac.za/Home.aspx
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Chapter 1

Introduction

The continual advancement of computing power has made computers a fundamental ever-present

part of our lives [1]. A large contribution to our day-to-day activities and work is done on com-

puters, yet currently, these devices are indifferent to our affective states and have no perception

of the user’s emotional state. However, effective human-human communication depends on

the ability to read emotional and affective signals. A large part of the information available in

Human-Computer Interaction (HCI) is lost due to the emotional blindness of the system during

the interaction [2].

Recent studies on affective computing suggest that it is beneficial to provide computers with the

ability to interpret affective states of their users [3–5]. The importance of emotion in our daily

lives [6] infers that to improve HCI systems we need the ability to recognise the user affect. This

will allow progress in HCI by enabling affective computing to alleviate the shortcoming between

the emotionally deficient computer and expressive humans [7].

Baltrusaitis [2] describes applications that can benefit from the ability to use affect in their sys-

tems, such as interfaces that do not interrupt their users when they are stressed, online learn-

ing systems that adapt the teaching if the student is confused and video games that adapt their

difficulty based on player engagement. Further applications described include: assisted living

environments that can monitor the user’s state and report to medical professionals if the patient

is feeling pain, assistive technologies for diagnosing conditions such as depression and systems

that monitor drivers. Mobile technology companies such as Apple Inc. [8] have also started

integrating facial analysis into the core design and usability of their devices [9]. In September

2017 they demonstrated the Face ID protocol that will be released with their flagship devices.

1
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This protocol will replace their previous Touch ID protocol which uses fingerprint rather than

face as a biometric indicator. This will have a significant impact since Apple Inc. is one of

the largest developers and manufacturers of industry-leading technology with regard to human-

computer interaction. This demonstrates the capacity of facial analysis, which will encourage

other companies and industries to adopt more facial analysis techniques and technologies.

Successful affect-sensitive systems are dependent on reliable recognition of human emotions

[10]. Humans present multi-modal affective behaviour, which makes it subtle and complex. Peo-

ple are skilled at using non-verbal cues, such as various hand gestures, facial expressions, vocal

prosody, eye gaze, head movements and posture, for self-expression and interpreting other’s be-

haviour [2]. All these modes of expression convey vital affective information that humans use to

surmise each other’s emotions [11].

Faces are the most visible social part of the human body. Therefore, the face is prioritised over

the other modalities and receives great attention from both psychologists and affective comput-

ing researchers [12]. Faces reveal emotions [13], communicate intent, and help regulate social

interaction [14]. Therefore, facial expressions play a crucial part of non-verbal communication.

Early research in facial expression claimed that facial expressions are innate; that is, they cannot

be learned and have an evolutionary meaning for survival [15]. A worldwide observational study

was later conducted that determined humans of different ethnicities, ages and gender shared a

certain level of universality in the appearance of emotion in the face [13, 16]. Facial expression

recognition could, therefore, be applied to determine a generalised form of emotion.

1.1 Physiology of Facial Expressions

Facial expression physiology is a consequence of facial muscle activity. The muscles are known

as mimetic muscles or muscles of facial expressions. They belong to the group of head mus-

cles, that also contain muscles of the scalp and muscles of mastication, which are responsible

for moving the jaw and tongue. Facial muscles are innervated by the facial nerve. This nerve

branches out in the face and causes contractions when it is activated. The result is various ob-

servable movements on the face. The generally visible muscle actions are blocks of skin motion.
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Figure 1.1: Muscles of facial expressions [17].

The eyebrows, lips, cheeks, nose and wrinkles between the eyebrows and on the forehead display

these muscle actions most frequently [18].

The human face consists of 20 flat skeletal muscles [19], shown in Figure 1.1. The muscles are

located under the skin and are attached to either the skin or other muscles, not the bones or joints

as other muscles responsible for body movements are [19]. The muscles that are positioned near

the facial orifices, that is the mouth, nose, and eyes use the facial skin to move [17]. This move-

ment causes facial surface deformations, which result in a variable facial expression representing

emotions [17, 20]. The facial muscles are designed to move in groups instead of individually and

are also responsible for controlling the orifices.

According to the location, the taxonomy is partitioned into three groups: oral, nasal and orbital

[19]. The oral muscles alter the shape of the oral orifice. This group is responsible for complex

mouth motions and allows sophisticated shaping of the mouth. The nasal group is responsible

for the compression and opening of the nostrils. The three muscles that form the orbital group

are primarily responsible for the motion of the eyelid and protecting the eyes. A muscle that is

critical for facial expressions, is located between the eyebrows. It pulls the eyebrows downwards,

causing wrinkles over the nose and emphasising expression [17, 19].
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The facial muscles do more than regulate the position and width of facial openings. They also

make them more expressive. Consequently, the face is able to convey emotions and the present

psychological state of a person, which play an important role in the nonverbal communication

between people [19].

1.2 Expressing Different Emotion Types

Table 1.1: Emotions defined by the extent of pleasure and activation [21]

Pleasant glad, happy, warm-hearted, delighted, pleased, cheerful
Unpleasant sad, blue, unhappy, grouchy, miserable

High Activation surprised, astonished, aroused, active, stimulated
Low Activation passive, tranquil, quiet, idle, still

Pleasant + High Activation excited, lively, enthusiastic, elated, euphoric
Unpleasant + High Activation fearful, anxious, distressed, jittery, annoyed, nervous

Pleasant + Low Activation calm, contented, serene, at rest, relaxed
Unpleasant + Low Activation drowsy, droopy, dull, sluggish, tired, bored

There are roughly 200 different emotions based on extent of activation and pleasure. Table 1.1

shows some of the different emotions one can have based on these criteria [21]. These expres-

sions change with minute facial feature changes and are identified as micro-facial expressions.

The resulting emotion that humans display is often a combination of several micro-facial expres-

sions. The combinations of these expressions were grouped into seven basic universal expression

classes [16] which can be seen in Figure 1.2. The physiological signals that classify these basic

expressions are described in Table 1.2.

Figure 1.2: Universal basic expression classes.
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Table 1.2: Physiological signal response to basic expressions[16]

Anger Fear
Eyebrows lowered and squeezing together Eyebrows lifted and pulled inward

Vertical wrinkles between eyebrows Wrinkles on forehead
Eyelids tight and straight Upper eyelids lifted

Eyes tight and pupils narrowed Mouth open
Lips closed tight or gently opened Lips are tight

Happiness Sadness
Lips corners pulled back and up Inner parts of eyebrows pulled down

Mouth can be open and teeth visible Lips corners pull down
Cheeks raised Lips shake

Wrinkles under lower eyelid
Wrinkls outside eye corners

Disgust Surprise
Upper lip lifted Eyebrows lifted and pulled inward

Wrinkles on nose and under eyes Horizontal wrinkles appear on forehead
Cheeks lifted Eyes are open wide

Eyelids lifted but not tight Jaw is dropped
Eyebrows pulled down Mouth opened and lips tight

• Anger is regarded as a strong emotional reaction, therefore detecting anger can be benefi-

cial because anger is a strong predictor of violence. Frustration, physical threat, and verbal

threats are common sources of anger. It can also cause an increase in blood pressure, dis-

play a red face, and cause tension in the muscles.

• Disgust is a negative emotion generally evoked by smell, taste, or vision. There are no

universal grounds for what may cause this emotion. It is influenced by cultural or personal

reasonings. The extreme physiological response is vomiting. The most significant features

of the face are in the nose and mouth area.

• Fear is mostly induced by stressful or dangerous situations. Noticeable effects of fear on

the body include an increase in heart rate and blood pressure, open eyes and wide pupils.

In extreme situations, it may also induce muscle function loss such as paralysis.

• Happiness is a positive emotion often associated with a smile on the face.

• Sadness causes the facial muscles to lose tension. It is an undesirable emotion that is often

caused by negative events such as death or failure.
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• Surprise is often the most short-lived emotion as its engagement is sudden. It is usually

unanticipated and often proceeds into other emotions like happiness or sadness. The typ-

ical features of surprise are lifted eyebrows, wrinkles on the forehead, widely open eyes

and a dropped jaw.

1.3 Applications of Facial Expression Recognition Systems

Applications of FER systems are evident in multiple areas of HCI, including:

Affective computing: This is the study and further development of frameworks and gadgets that

recognise, understand, manage and duplicate human influences. This field is interdisciplinary

and consists of computer vision, machine learning, brain science and computer engineering.

The system must translate the condition of its user and adapt how it behaves to them, to react

appropriately to the user’s feelings.

Commercial survey: Online shopping systems often require users to give feedback to determine

customer satisfaction with their product or service. Facial expression recognition systems can

provide a measure of the extent of satisfaction and therefore an estimation can be made as to the

success of the product.

Human-Computer-Interaction: This is a relatively new and developing field that deals with

communication between humans and machines. These systems use audio and visual or sensory

data from the user to modify its current state for better application. A popular example used

in gaming consoles is the Xbox Kinect [22], which has to do with the cognitive and affective

aspects of HCI where the machine makes certain adjustments based on the user’s state.

Driver state surveillance: To prevent unforeseen circumstances such as accidents, injury or

death, driver state surveillance has become a leading concern for automotive industries. The

monitoring of the driver’s facial expressions gives sufficient insight to help avoid a collision.

The most common expression on a driver’s face before an accident is that of fear or surprise. If

identified early preventative measures can be taken to reduce or alleviate disaster.

Treatment of Asperger’s syndrome: This disorder inhibits people from recognising a speaker’s

words and emotions, which creates difficulty interacting with people. The use of an FER system

could help them to recognise people’s emotions and improve their daily communication.
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1.4 Description of Features that Model Appearance

The main challenge with regard to the discussions above is in building models for the different

facial expression classes to be efficiently computed. The difficulty stems from the huge variations

in appearances that exist in real-world images, even for the same expression or class. These

variations can occur due to different illumination conditions, viewpoints, scales, occlusions and

numerous other factors [23].

To overcome these problems special attention is given to designing robust image descriptors

for specific applications. These descriptors capture discriminative qualities or features within

an image that can be used later on for classification. The feature selection influences different

properties making it suitable for different computer vision tasks. These features are typically

pixel-features, they include colour or pixel intensity, image gradients, wavelet transforms, filter

responses and many others. Consequently, some features may be fast to compute, while other

features might promote a robustness to noise and other issues. However, since visual entities

consist of a region or continuous group of pixels, representation of such entities require region

descriptors [23].

Theoretically, a region descriptor is a joint distribution of pixel features within a region. A

histogram of features calculated at the pixels within the region is the discretised non-parametric

representation of a distribution and is considered one of the earliest forms of region descriptors.

Tuzel et al. [24] proposed the covariance region descriptor. This approach represented the

region by the covariance of the features of the pixels lying within the region. This method’s

representation is advantageous because it allows fusion of multiple features. Therefore, such a

descriptor is robust to noise in the pixel features and is partially invariant to rotation and scale of

the region.

1.5 Facial Expression Recognition Systems

The prevalent approach to facial expression recognition systems is set out in Figure 1.3, and can

be categorised into three steps [25]:
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Face Acquisition
Facial Data Extraction and 

Representation
Facial Expression 

Recognition

Face 
Detection

Head Pose 
Estimation

Geometric 
Features

Appearance 
Features

Basic 
Expression

Action Units

Figure 1.3: Basic structure of FER systems [25].

• Face acquisition

• Facial feature extraction and representation

• Facial Expression Recognition

The first step aims to find a facial region from the input frame images. Once the face location is

determined, various facial feature extraction approaches can be used, which is done in step two.

The last step involves using different classification approaches to label the expression.

This study will focus on facial feature extraction and representation in an FER system.

1.6 Motivation

The interaction between humans and computers is constantly growing. Therefore, HCI is a

developing research area and an essential requirement for giving computers the intelligence to

understand human behaviour and act accordingly. Interpersonal communication can be clas-

sified into both verbal and nonverbal communication. Verbal communication comprises raw

voice data only, while nonverbal communication consists of intensity and voice tone as well as

facial expressions and hand gestures [26]. When these modalities are combined an effective

communication for understanding and interpretation is produced. The ability to recognise facial

expressions in human-computer interactions is vital because it provides intuition on people’s

personality, psychological state and intention. When facial expression cues and gestures are

combined the internal meaning of a speaker can be efficiently elicited, without any vocal data.
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This forms the basis for facial expression recognition. The verbal component (spoken words) of

communication makes up only 7 percent of messages, the vocal component (voice intonation)

makes up 38 percent, while facial expressions of speakers make up a remarkable 55 percent of

the effect of spoken messages. This shows that the major modality in human communication is

facial expressions [26].

The basic steps involving facial expression recognition are described in Figure 1.3. To achieve

proficient expression recognition, a fitting framework for feature extraction and representation

must be chosen to be able to make the distinction between the most differentiable features that

represent facial cues. This being a continuously developing topic under research, many meth-

ods and techniques to extract features were proposed and have been combined with different

methodologies of classification, such as Principal Component Analysis (PCA) [27], Linear Dis-

criminant Analysis (LDA) [28], Gabor wavelet analysis [29], and Local Binary Patterns (LBP)

[30]. However, each of the above-mentioned algorithms has issues with inaccuracy or hardware

complexity. Therefore, it is necessary to propose an FER system that balances both accuracy

and complexity during the classification of emotions. Most of the methods listed above could

not accurately classify expressions and very similar facial expression classes are still confused.

Furthermore, expression in these cases was predominately identified using a holistic approach to

posed expressions. In addition, the general concerns regarding facial expression recognition are

that even if recognition is done in a constraint of faces specific to some culture, several factors

such as the presence of facial hair or glasses, pose and facial scars increase the task complexity.

Another challenge is the variation in size and orientation of the face in input images [31].

The covariance matrix as a feature descriptor is popular in object detection and texture recogni-

tion. However, its innate ability to fuse multiple local features within a domain is proving to be

useful in other applications such as in biometrics. This study attempts to classify expression us-

ing holistic and component-based approaches of most distinguishable characteristics of the face

using texture-based patterns and region covariance descriptors. The study additionally tests on

both posed and spontaneous expression datasets and introduces a novel feature descriptor.



Chapter 1 Introduction 10

1.7 Research Question

This research attempts to produce new knowledge to answer the following question:

• Can facial expression be successfully classified by using region covariance descriptors?

1.8 Research Goal

The primary aim of this dissertation is to design a facial expression recognition system that can

classify expressions from static images into predetermined classes accurately and efficiently. It

further aims to explore the impact of holistic and component-based approaches with regards to

facial expression recognition.

1.9 Research Objectives

The objectives of the research are as follows:

1. Determine the effectiveness of covariance matrix descriptors for classifying facial expres-

sion.

2. Examine the performance of a novel image descriptor for facial expression recognition

called Local Directional Covariance Matrices.

3. Test holistic-based and component-based approaches to facial expression recognition.

1.10 Delineation

The bounds of this research are as follows:

1. 2D facial images from the JAFFE, Extended Cohn-Kanade, and ISED databases only are

examined.

2. Existing pre-processing methods will be used where required.

3. The study will mainly focus on the feature extraction and representation framework in a

facial expression recognition system.

4. Only static-based methods using the basic prototypic expressions are tested.
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1.11 Contributions

This research makes five principal contributions to the field of biometrics in facial expression

classification:

1. Explore the effectiveness of region covariance matrices with applications to facial expres-

sion recognition.

2. Propose a novel image descriptor for facial expression recognition referred to as Local

Directional Covariance Matrices.

3. Evaluate holistic and component-based approaches for facial expression recognition.

4. Conduct research on a relatively new dataset, Indian Spontaneous Expression Database

(ISED), and evaluate the proposed system’s performance for various cultures and environ-

ments, in other words a cross-database evaluation.

5. Test against both posed and spontaneous facial expressions for analysis on FER.

1.12 Overview of Chapters

Chapter 2 covers the literature review that identifies the most appropriate features to classify

facial expression. Chapter 3 presents the principles of RCM and the structures of different local

texture patterns. Chapter 4 demonstrates the experimental results of the proposed algorithm.

Chapter 5 provides the concluding remarks and outlines future works.



Chapter 2

Literature Review
In Chapter 1, we introduced the physiology and breakdown of how the face is analysed to clas-

sify the basic expressions. It also showed the applications and structure of an FER system. This

chapter introduces the advances in computer vision for facial expression recognition. First, we

describe the most popular and useful representation of facial expressions. Next, we expand upon

the steps involved in an FER system shown in Figure 1.3. Then, after briefly presenting the dif-

ferent approaches and limits of facial feature extraction methods, we survey the state-of-the-art

geometric and appearance-based feature methods for FER, discussing their achievements and

limitations. Finally, an introduction to the psychology of visual perception of facial expression

recognition by humans is presented.

2.1 Introduction

Darwin founded research in the field of human emotions in his book, ”The Expression of the

Emotions in Man and Animals” [15]. From this research, it was evident that one of the most

significant features used in recognising human emotion is facial expression [32]. According

to Huang et al. [33], facial expressions are defined as facial changes in reaction to a person’s

intentions, internal emotional state or social interaction. Recent advances in technology have

promoted the applications of automated facial expression recognition, mentioned in Section 1.3.

Other applications include sociable robotics, interactive games, data-driven animation, neuro-

marketing as well as numerous other HCI systems [34]. The complexity involved for a human to

recognise expression is minimal, but it poses a huge challenge for computers [33]. Existing stud-

ies in the literature lack a consistent evaluation methodology, for example, tests are conducted

even though there is no subject similarity in training and testing, which results in misleading high

12
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accuracy [34]. This does not illustrate the majority of the FER issues that exist in real scenarios.

Subsequently, in databases that do not have controlled environments and in cross-database eval-

uations, low accuracy has been reported [34]. The difficulty in FER for computers stems from

the challenge in separating the expressions’ features space: the facial features from one subject

can exhibit similar properties to different expressions and facial features from multiple subjects

with similar expressions may vary drastically. Additionally, certain expressions such as sadness

and fear tend to be very similar [34]. To overcome these deficiencies a few studies attempted

to enable computers to achieve the level of accuracy that humans have. This chapter aims to

highlight some examples of these studies.

A simple example is presented in Figure 2.1, where six subjects displaying a happy expression

show considerable variation, not only in how the subjects convey expressions, but also in other

elements of the images, such as lighting, brightness, subjects’ pose and the background. Another

challenge that Figure 2.1 demonstrates is the training-testing scenarios that are not controlled.

Training images can vary from testing images regarding environmental conditions as well as

the subject ethnicity. To evaluate FER under these scenarios, cross-database techniques can be

used. This implies training the method using a particular database and testing it with another

one, potentially from a different ethnic group. This dissertation presents results on this approach

in Section 4.6.

Figure 2.1: The happy expression displayed across six different subjects. The images are from
the following databases: JAFFE [35], CK+ [36], ISED [37].
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Facial Expression Recognition systems consist of two main categories: static images [38–44] and

dynamic image sequences [45–48]. The temporal information is what differs between the two

methods. The features in static-based methods contain information about the current input image

only, while sequence-based methods use the temporal information in images captured from one

or more frames to recognise expression. Automatic FER systems use static or dynamic image

sequences as input and one of the basic expressions listed in Figure 1.2 is commonly output.

This dissertation will focus on static image-based methods and will consider the basic prototypic

expressions for both controlled and uncontrolled scenarios. From Figure 1.3 it can be seen that

the automatic facial expression analysis consists of three major components: face acquisition,

facial data extraction and representation, and finally facial expression recognition. Face acqui-

sition can then further be broken down into face detection [49–52] and estimation of head pose

[53–55].

After face detection, the system extracts the arrangement of facial features caused by facial ex-

pressions. These features are represented either by geometric-based [52, 56–58] or appearance-

based [39–42, 44, 56] methods.

Expression recognition can be performed after acquiring the facial features. According to Liu et

al. [38], expression recognition systems comprise of a training procedure that has three stages:

feature learning, feature selection and then classifier construction. In the feature learning stage

the extraction of all features associated with the facial expression takes place. In the feature

selection stage the best feature to represent the facial expression is selected. The aim of feature

learning and selection is to minimise variations that occur intra-class and maximise those that

occur inter-class [39]. The challenge in minimising the intra-class expression variation is that

images of different individuals with the same expressions are far from each other in terms of

pixel’s space. Maximising the variation that occurs inter-class is also challenging because images

of the same person with varying expressions may be very close to one another in terms of the

pixel’s space [59]. After the features are learned and selected into a fitting representation, the

facial expression is inferred by using a classifier.

2.2 Face Detection

The most popular approaches used for face detection in images include:

Skin-colour-based segmentation schemes [60]. This method uses the area and colour of the
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skin to classify between face and non-face regions. The images are represented in RGB, HCI,

and YCbCr colour models. This procedure loses effectiveness with movement and varying illu-

mination. It is also susceptible to many false detections when the background is of the similar

colour to the skin. Another drawback of skin-colour-based segmentation is that it varies across

ages and is not uniform for all races.

The Viola-Jones algorithm [61], also referred to as boosted cascade of simple features, is a

method that uses the AdaBoost learning algorithm; it is remarkably fast and can detect frontal

view faces rapidly. This method achieves exceptional performance by using new methods that

determine features very quickly and then separate the background from the face rapidly [61].

This method is used in this study for pre-processing.

2.3 Expression Classification

2.3.1 The Facial Action Coding System (FACS)

Early research on facial behaviour relied on human observers to scrutinise the subjects’ faces

and to subsequently make their analysis. But this can cause ambiguity, leading to inaccurate and

unreliable results. Ekman et al. recognised this problem and, by bringing forward the influence

of context to the observer, questioned how valid these observations are [62]. The context may

give prominence to voice instead of face and the observations may further be made incoherent

between different cultures due to misinterpretation [62]. To overcome these limitations, the

FACS system [62] was created to represent facial expressions and behaviours with reference

to a fixed set of facial parameters. This framework voids the facial behaviour of the face as a

whole and focuses on the individual parameters. Facial Action Coding is an approach that is

muscle-based and identifies the variety of facial muscles that cause changes in facial behaviours,

whether the muscle movements are individual or in groups. These facial behaviour changes are

called Action Units (AUs). The FACS consist of a few such action units. For example:

AU 1 is the action of raising the Inner Brow.

AU 2 is the action of raising the Outer Brow.

AU 26 is the action of dropping the Jaw.

There are additive and non-additive AUs. If the appearance of each AU is independent, the AUs

are additive. But if the AUs modify each other’s appearance, they are non-additive AUs [26].
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Thus, expressions can be demonstrated by a combination of any number of additive or non-

additive AUs. Figure 2.2 shows instances of upper and lower AUs as well as some of the facial

movements they produce when combined.

Figure 2.2: Upper and Lower Face AUs as well as their combinations [62].

2.3.2 The Six Prototypic Expressions

The six prototypic expressions are presented and labelled in Figure 2.3: anger, disgust, surprise,

happiness, sadness and fear. When compared to the other facial expression possibilities, these six

are the best researched. The observations made on these expressions show that the six prototypic

expressions are not always mutually distinguishable; there therefore exists confusion between

classifying among the different expressions. Sebe et al. [63] found that the most commonly

confused pairs of emotions are anger and disgust, and fear and surprise. This confusion arises

because these sets of expressions have the same types of facial movements. Modern-day FER

systems still experience these issues [64–66]. However, the confusion between surprise and fear

was not always apparent. Newer studies showed more confusion between happiness and fear

[67, 68] and fear with anger [69, 70]. Also, sadness was confused with anger [65, 67, 68].
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Figure 2.3: The six basic facial expressions from one subject of JAFFE dataset.

Artificial expressions that subjects make when instructed to are referred to as posed expressions.

This instruction is generally given under normal test conditions or when subjects will be ob-

served in a fixed environment. Spontaneous expressions follow opposite circumstances; these

are expressed naturally without the subject being consciously aware thereof. Until recently,

most research on FER systems focused on posed expressions only. This is due to the difficulty of

obtaining datasets consisting of spontaneous expression classes. The most common method re-

searchers use to elicit natural expressions from subjects is done by showing them films and clips

that evoke emotions. Researchers discovered that eliciting spontaneous expressions of sadness

and fear in subjects using this method of retrieval was difficult [68]. However, Cohn et al. [71]

reported that eliciting fear was difficult but that was not the case for sadness. This difference can

be accounted for by a variation in videos used in the studies. Anger was found to be the most

difficult to elicit using videos because it requires more personal involvement to trigger [71]. The

degree of ground truth involved with spontaneous expressions can also be challenging due to the

context of the environment subjects use. This environment can cause suspicion, changing the

natural expressions of the subjects [26]. Nevertheless, many psychologists believe that sponta-

neous expression recognition is superior to posed expression recognition. This study tests on

both posed and spontaneous expression datasets.
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2.4 Feature Classification Methods

The common feature classification methods used in FER are mentioned below:

• The unknown test subject is classified to a class using the minimum distance classifier. The

classifier minimises the distance between the test subject data and the class multi-feature

space, and the distance is expressed in terms of an index of similarity. This is done so that

the minimum distance and the maximum similarity are identical. [72].

• Support Vector Machines (SVM) [64] are based on the idea of decision planes, which

establish decision boundaries. A decision plane differentiates between a set of objects that

have varying classes.

• Artificial Neural Network (ANN) [73] is a method used to classify samples that have

numerous attributes. It is capable of modelling and processing nonlinear relationships

between inputs and outputs in parallel.

2.5 Feature Extraction and Representation

The face representation for FER systems based on still and dynamic facial images spawned a

variety of approaches over the past decades. This created many categorization classes for fa-

cial feature representation, the most general is the geometric-based and appearance-based ap-

proaches. Both of these approaches are summarised briefly in Tables 2.1 and 2.2 respectively.

More can be read about the other categorisations in [12, 58, 74–76].

2.5.1 Geometric-based Feature Methods

Geometric features have shown good performance in FER and have proven to be efficient, but

they are severely compromised by inadequate facial landmark detection and tracking [58, 76–

78]. The geometric-based interpretation of the facial structure of various facial expressions can

be defined as the following:

1) Using the position of points of facial features as visual information [56, 76].

2) Measuring facial feature points’ geometric displacement [69, 70].

3) Forming a geometric graph that represents faces [79, 80].
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The position of geometric points allows for an easy means of directly measuring faces’ contours.

This method was proposed by Zhang et al. [56] where 34 fiducial points were used to reflect the

facial geometry of images that are still, conveyed into a feature vector. Rudovic et al. [76] made

use of 39 facial landmark points in still images to portray facial expression in multiple views.

Recently more attention was given to this method [58, 77, 78], and its use was integrated to

dynamic facial images. Shin et al. [78] used 18 main feature point, as defined in MPEG-4 files,

and then used the dense optical flow method for tracking the feature points in sequential frames.

Another approach, introduced by Jain et al. [58], used Generalized Procrustes analysis to locate

a minimum of 18 facial points, which were subsequently formed into a 136-dimensional feature

vector for every facial image. This feature vector was used to describe the geometric structure of

every frame, over time, in a video clip of a facial expression. Using temporal model classifiers,

like Hidden Markov models (HMMs) and Dynamic Bayesian networks (DBN), these features

can be modelled according to the facial expression dynamics.

A more generalised approach for the formulation of geometrics is quantifying facial movements.

This is done by measuring facial points’ displacement between a facial image and the reference

image, which is the facial image that has a neutral expression. The analysis of the deformation of

the face is considered similar to human observations of facial activities [69, 70, 80]. The process

can be generalised into three steps: (1) the grids are tracked in consecutive frames over time

through grid tracking and deformation, (2) the difference of node coordinates is calculated by

comparing the image with the neutral expressions with the peak expression frame, and (3) these

differences are used in the stage when classification takes place.

An alternative approach that used a parametric setup [13] was formed to complement the Ac-

tion Unit protocol [79, 80]. To describe the facial representation it extracts facial components’

shape, including brows, eyes, cheeks and lips. Distances between each facial component were

calculated to determine feature vectors that defined the geometric structure of the face [81]. The

feature vectors were then used in an ANN for classification, achieving good performance.

The main advantage of using geometric features is the low dimensionality and simplicity. How-

ever, all the methods used for constructing the geometric features are challenged by variations in

lighting, non-rigid motion, image registrations error sensitivity as well as motion discontinuities

[82]. Therefore, difficulty rests in creating a deterministic physical model of facial expressions

that are better representations of facial geometrical properties and muscle movements for all

facial expressions [83].
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Table 2.1: Geometric-based feature methods research summary [83]

Reference Features Tracking method Dynamic Classifier

Zhang et al. (1998) [56] 34 facial feature points Manual labelling No Two-layer perception

Tian et al. (2002) [79] 15 parameters of geometric features Multi-state models Yes Three-layer neural network

Zhang & Ji (2005) [80] Geometric deformation Kalman filtering Yes Dynamic Bayesian networks

Kanajia & Metaxas (2006) [77] 78 facial feature points Modified active shape model Yes Conditional random fields (CRF)

Kotsia & Pitas (2007) [69] Geometric deformation feature Kanade-Lucas-Tomasi (KLT) tracker Yes Support Vector Machine (SVM)

Kotsia et al (2008) [70] Geometric deformation feature - No SVM

Shin & Chun (2008) [78] 18 facial feature points Dense optical flow Yes Hidden Markov models

Jain et al. (2011) [58] 68 facial points Generalized proscrustes analysis Yes Latent-dynamic CRF

Rudovic et al. (2013) [76] 39 facial feature points Active appearance model No SVM

Durmusoglu et al. (2016) [81] 18 facial feature points Manual labelling No Artificial Neural Network

2.5.2 Appearance-based Feature Methods

Appearance-based features are recognised as more stable during image spatial transforms, espe-

cially for inaccurate misalignment and images with low-resolution in comparison to geometric

features. Appearance-based features generally characterise an image of the face in terms of varia-

tion of pixel intensity or low-level features. Many studies during the past decade have introduced

different approaches using appearance-based features for FER. Two of the most represented fea-

tures used in FER are Gabor [56, 79] and LBP [39, 84, 85].

The Gabor feature implementation is popular due to its relation to how human’s visual percep-

tion system works. A Gabor feature is made up of a sinusoid signal modulated by a Gaussian

function, and each one defines the applicable frequency for the filter. Gabor energy filters are

robust to contrast polarity and image alignment errors, hence they have produced some of the

most successful FER systems thus far [83]. Littlewort et al. [86] used spatial Gabor energy

filters as the main type of feature and achieved respectable performance classifying the seven

basic emotions on the Cohn-Kanade dataset. Zhang et al. [56] preserved low dimension while

retaining suitable performance by efficiently applying Gabor wavelets to 34 facial points instead

of the whole image.

Local Binary Patterns have shown a high degree of accuracy in texture-based recognition tasks

while still being easy to implement and having fast computation. In recent years, there has been a

substantial influence of LBP in facial expression recognition [84, 87]. The LBP operator’s main

advantage in practical applications is its invariance against monotone gray-level changes, which

are caused by illumination variations. A further considerable advantage is the simplicity of its

computation, which allows for images to be analysed even in demanding real-time situations.
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The LBP was found to be more discriminative and efficient than Gabor features by Shan et

al. [39] when they used it to represent salient micro-patterns of face images to express facial

expressions.

Succeeding Shan et al. [39], many efforts have been made to utilise variants of LBP directly,

to estimate the intensity of facial expressions [88], facial AUs [89], multi-view facial expression

recognition [85] and 3D facial AUs detection [90]. Other variants of LBP have emerged to

attempt to enhance the representability to further improve performance or efficiency [91, 92].

Jabid et al. [91] proposed the Local Directional Pattern (LDP) for recognising facial expressions.

They calculated the edge response values of each pixel point for all directions, and then a code

was generated according to the relative magnitude strength. Numerous studies [93–95] present

that LDP is superior to LBP for face and facial expression recognition. Srikrishna et al. [94]

evaluate a method using LDN, which encodes the face’s directional pattern and produces a code

that is more selective. The directional patterns are computed using the compass mask and the

information is encoded by means of the foremost direction indices and signs that differentiate

between similar structural features.

Faces can be divided into several blocks; each block has the LDP operator applied to it and

the individual feature vector of each block is later concatenated to form a single discriminative

feature vector. Jun et al. [92] encoded compact LBP through the maximisation of the shared

information of features and class labels. Ryu et al. [96] put forth the local directional ternary

pattern for FER; they encode the shapes of the emotion-related features of the face, such as eyes,

eyebrows, upper nose and mouth, by making use of the directional information. The face image

is described spatially by using active patterns and sub-regions, which improve discriminability

of emotion-related features. Further uses of LBP in the recognition of facial expression are

mentioned in several studies [33, 89, 92, 97–100].

In dynamic facial expression recognition or video-based sequences, a recognised approach is

using dense optical flow [101]. The method involves computing movements in the rectangular

areas to estimate each face region’s level of activity by catching the smooth flow and global

information. This method is also capable of getting accurate time derivatives by using more than

two frames. Later, Lien et al. [102] suggested a spatial-temporal descriptor that integrated dense

optical flow, feature point tracking and high-gradient component analysis, and then HMMS were

applied to classify fifteen different AUs. Optical flow was then proposed [103, 104]; it used

horizontal and vertical components to represent motion patterns of facial expression. However,
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optical flow efficiency is reduced due to it’s sensitivity to image misalignment errors.

Image filter and techniques for texture descriptors for still images have recently gained popularity

for recognising dynamic facial expressions. Examples of common image filters for face analysis

are Haar features [57], Gabor wavelet representation [105] and independent component analysis

(ICA) [106]. The temporal descriptor was designed using Gabor representations. The Gabor

motion-energy filters were made as a representation that was biologically inspired for dynamic

facial expressions [105]. Facial expressions can be decomposed into non-Gaussian signals using

ICA. Recently, Long et al. [106] used ICA in natural videos to learn spatiotemporal filters, and

subsequently constructed feature representations for input videos based on learned filters.

Zhao et al. [107] extended the LBP operator to dynamic images. They used LBPs to describe

the temporal motion and the texture of appearance to obtain an effective description of dynamic

facial expression. Almaev & Valstar [108] achieved good results for emotion recognition in un-

restricted conditions by using LBP to encode the Gabor filters’ multi-scale and multi-orientation

templates, and they called this method the Local Gabor Binary Pattern from Three Orthogonal

Planes (LGBP-TOP). Furthermore, Jiang et al. [109] proposed a new method that made use of

local phase quantisation to describe facial actions’ temporal information. They also noted that

recent LBP studies showed that dynamic LBP outperforms describing facial expressions’ tem-

poral variation when compared to the temporal model making use of deep belief networks or

HMMs [83].

2.5.3 Covariance-matrix-based Feature Methods

In recent years there has been an expansion of covariance descriptors in computer vision ap-

plications. The covariance descriptor was first proposed by Tuzel et al. [24] to represent an

image region in applications of object detection and texture classification. The study used pixel

locations, colour values and derivatives of the intensities as feature vectors for the covariance de-

scriptor. Several studies [110–116] used Gabor filter features for tracking, person identification,

and face recognition. Facial recognition using Gabor filters as features were implemented first

[110] and then improved upon by using a kernel Gabor-based weighted region covariance matrix

[117]. They constructed a weighted matrix by computing the similarity of each pixel within a

face sample to emphasize features. Gabor features could carry more discriminative information

and display strong characteristics of scale, spatial locality and orientation selectivity [82], but



Chapter 2 Literature Review 23

Table 2.2: Appearance-based feature methods research summary [83]

Reference Features Dynamic Classifier

Yacoob & Davis (1996) [101] Optical flow Yes A rule based system

Zhang et al. (1998) [56] Gabor No Two-layer perception

Tian et al. (2002) [79] Gabor Yes Neural network

Buciu et al (2003) Independent component analysis (ICA) and Gabor No Maximum correlation classifier

Feng et al. (2005) [84] Local Binary Pattern(LBP) No Linear programming

Shan et al. (2005) [30] LBP No SVM

Littlewort et al. (2006) [86] Gabor Yes SVM

Yesin et al. (2006) [103] Optical flow Yes Hidden Markov models

Zhao & Pietikainen (2007) [107] Local Binary Pattern from three orthongonal planes Yes SVM

Shan et al. (2009) [39] LBP and Boosted-LBP No SVM

Jabid et al. (2010) [91] Local directional pattern No SVM

Wu et al. (2010) [105] Gabor motion energy filters Yes Linear SVM

Moore & Bowden (2011) [85] Variants of LBP No SVM

Jun et al. (2011) [92] Compact LBP No Nearest neighbor classifier

Sanchez et al. (2011) [104] Differential optical flow Yes SVM

Long et al. (2012) [106] Spatiotemporal features based on ICA Yes SVM

Almaev & Valstar (2013) [108] Local Gabor binary pattern from three orthongonal planes Yes SVM

Feng et al. (2013) [87] LBP on key points No SVM

Jiang et al. (2014) [109] Local Phase Quantization from three orthongonal planes Yes SVM

Srikrishna et al. (2015) [94] Local Directional Number Pattern No Nearest neighbour classifier

Vishnudharan et al. (2016) [95] LDNP No SVM

Ryu et al. (2017) [96] Local Directional Ternary Pattern No SVM with RBF

convolving face images with multi-banks of Gabor filters to extract multi-scale and orientational

Gabor coefficients is computationally expensive [118].

Another application covariance descriptors became popular in is action recognition [119–123],

where motion-related feature vectors such as optical flow and locations of 3D joints are used.

Wang et al. [119] verified the covariance descriptor representative effectiveness on the classifi-

cation of image sets. An image set is defined as a collection of images that belong to the same

class, but with variation, such as images of different views of the same object. The image set,

instead of the individual object in the image, is classified [82]. In this case, each image of its

respective class is vectorised into a feature vector and the covariance matrix of these feature vec-

tors is computed to represent this set of images [82]. Guo et al. [118] introduced a novel feature

descriptor using the covariance matrix for facial expression recognition. It used LBP features in-

stead of Gabor features to improve the discriminating ability and to decrease the computational

cost. An important factor to consider when using covariance descriptor is the feature selection
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as well as the metric used for classification [124]. In an attempt to uncover the key attributes of

the covariance descriptor, Faulkner et al. [124] characterised the interdependence between the

choice of features and distance measures. They concluded that the region covariance descriptor

would prove useful for methods that perform image super-resolution, deblurring, and denoising

based on matching and retrieval of image patches from an image dictionary.

2.6 Visual Perception of Facial Expression Recognition

Facial expression recognition has improved significantly since its inception in computer vision.

However, it still remains a considerable challenge for computer vision systems [125]. The hu-

man visual system remains superior by a great margin. Two fundamental questions that can help

to improve FER systems are:

1) What makes humans remarkably adept at recognising facial expressions?

2) How can we take advantage of this skill?

The first question’s answer lies in the study of visual perception, which shows that different vi-

sual cues are used by human observers to recognise different facial expressions [125]. Boucher

& Ekman [126] stated that the whole face is used by human observers to recognise anger and

surprise, while only the lower half of the face is looked at to recognise happiness and disgust.

Gouta & Miyamoto’s [126] research shows that mostly the top half of the face is used to recog-

nise anger, fear, surprise and sadness, where as the lower half is better suited for disgust and

happiness. Bassili’s [127, 128] work differed in that the entire face was found to be useful in

recognising basic facial expression (74.4%) versus only the lower (64.9%) or top (55.1%) part

of the face. The importance of facial features, such as eyebrows, eyes, mouth and wrinkles, was

studied by Smith et al. [129] and Roy et al. [130] for the static and dynamic recognition of the

six basic expressions. The studies highlighted the exact facial features that human observers use

to recognise each basic prototypic facial expression for static and dynamic facial expressions.

They reported humans use the mouth instead of eyes for happiness and conversely the eyes in-

stead of the mouth for fear. In other cases, humans use transient features like nasolabial furrow

and wrinkles on the forehead for disgust and sadness respectively.

Future implementations of FER systems should take advantage of these human traits and their

relative importance to improve performance, given that humans easily outperform machines at

recognising facial expressions in everyday situations. Hammal et al. [131] attempted to utilise
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this information by comparing their model to human performances in the same experimental

condition as Smith et al. [129]. Their study tested performance using their model on partially

occluded facial parts. The results showed that the model compared favourably to human-based

performance but also showed differences between the visual cues used by the model and the

human observers. Consequently, relative weights associated with each facial feature and its

respective facial expression were derived to further refine the classification. These additional

processing steps can be considered as fundamental improvements to FER systems that aim to get

closer to human performances. In Section 4.4.1 we compare the mouth versus the eye regions of

the face and their impact on the different facial expressions.

2.7 Conclusion

It is evident, from the literature, that the recognition of facial expression consists of multiple

facets. Each facet has its own challenges and complexities. The covariance-matrix-based de-

scriptor has minimal research concerning applications to facial expression recognition. This

dissertation will contribute towards discovering the effects of using a covariance-matrix-based

descriptor for feature representation. The study will also test the theories mentioned in Section

2.6 concerning the different segments of the face for expression classification. The use of local

texture patterns such as LBP is prevalent throughout facial analysis. The study will use these

local patterns and its variants with the covariance-matrix to propose a novel feature descriptor to

classify the six prototypic expressions. This work will focus more on controlled environments

but use datasets that consist of both posed and spontaneous expressions.
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Local Texture Patterns and Region

Covariance Matrices
In this chapter, we explore the methods and algorithms implemented in this study to create an

image descriptor for Facial Expression Recognition. The local texture patterns, such as LBP

and LDP, are described in detail, followed by a brief overview of the construction of RCM, em-

phasising its properties and limitations. We also introduce the different metrics used to analyse

RCM. Finally, we conclude with the implementation of the proposed LDCM operator.

3.1 Introduction

The use of local photometric descriptors has seen wide applications across texture recognition

[132], object recognition [133, 134], wide baseline matching [135], image retrieval [136, 137],

mining of video data [138], building panoramas [139], and recognising object categories [140–

143]. These local descriptors are computed in terms of the regions of interest of an image because

they are distinctive and robust to occlusion. Recently, studies have been aimed at making these

descriptors invariant to image transformation [144]. The traditional approach is to discern image

regions covariant to a class of transformations; these are then used as support regions to create

invariant descriptors [144]. Given an invariant region detector, the choice of the most appropriate

descriptor to characterise the region must then be considered. There are numerous possible

descriptors and associated distance measures, which emphasis various image properties, like

pixel intensity, colour, texture and edges. In this study, we focus on descriptors computed on

gray-value images.

26
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The accuracy of classification depends greatly on the information contained in the feature rep-

resentation, thus an effective and discriminative feature set is the most important constituent

of a successful FER system [145]. The best classifiers are still prone to fail if supplied with

inconsistent or inadequate features. Nevertheless, in real-world applications, facial images are

vulnerable to distortion by different factors, such as variations in lighting condition, pose, aging,

alignment, and occlusion [146]. Hence, designing a robust feature extraction method that can

perform consistently in changing environment is still a challenging task.

The Local Binary Patterns and Local Directional Patterns are local descriptors that have been

used for FER because of their discriminability of facial features. The RCM popularity stems

from its invariance to rotation and scale, making it robust to image transformations. This chapter

further analyses RCM and local texture patterns. In Section 3.4, the methods, properties, and

construction of RCM are examined. The algorithms and structures of the different local texture

patterns are covered in Section 3.2.

3.2 Local Texture Patterns

3.2.1 The Principle of Edge Detection

The edges contained in digital images are the group of pixels whose gray values have step

changes or the regions where the brightness of the image changes considerably [147]. The

gray profile observed in these regions is typically considered as one step. In other words, in a

minute buffer area of the image a gray value changes promptly to vastly different value. The

edges within an image commonly exist between objects and objects, objects and backgrounds,

and primitives and primitives (image element, such as an arc, from which more complicated

images can be constructed). The edge of an object is highlighted in the interruption of the gray

value [147]. The general approach to achieve effective edge detection is therefore to study the

changes of one image pixel in a gray area. The edge detection is principally the measurement,

detection and location of changes in image gray values [147]. When viewing images the most

basic observable features are the edges and lines of images. According to the edge and line

composition, the object structure can intuitively be determined. Hence, edge extraction is a vital

method in processing images and extracting features.
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3.2.2 Local Binary Pattern

The Local Binary Pattern operator is an image operator; it converts an image into an array or

image of integer labels that describe the small-scale nature of the image. Further image analy-

sis is done using these labels or their statistics (usually represented by histograms). The most

widespread types of the operator are intended for still, monochromatic images, but have also

been extended to colour images, videos ad volumetric data [148]. This section deals with the

fundamentals [148] and the different versions of the LBP operator in the spatial domain [30, 84].

3.2.2.1 Original Basic LBP

Ojala et al. [149] introduced the LBP operator. It is founded on the assumption that texture

has two locally complementary aspects: pattern and its accompanying strength. The original

LBP operator works in a pixel block of an image that measures 3 × 3. The outer pixels of this

block are thresholded by the value of its centre pixel, assigning ‘1’ for a value greater than the

threshold, and ‘0’ for a value lower than the threshold. Starting from a reference pixel-point,

the new outer thresholded values form a binary pattern consisting of tp0, ..., tp7, where tp is

the thresholded pixel. The LBP code is obtained by converting the binary pattern to a decimal

number, as LBPcentre =
∑7

p=0 tp2
p. The new decimal code becomes the centre pixel value of

it’s neighbourhood. The 8-neighbourhood is considered for the evaluation of LBP code, therefore

a total of 28 = 256 various labels can be attained, depending on the relative gray values of the

centre gray pixel as well as that of its 8-neighbourhood. An example of the LBP coded image

is shown in Figure 3.1 and its code generation of one-pixel in a 8-neighbourhood is presented in

Figure 3.2

Figure 3.1: Example of (a) Input Image and (b) LBP mask image [148].
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LBP = 11011101
Decimal =

(1× 20) + (0× 21) + (1× 22) + (1× 23) + (1× 24) + (0× 25) + (1× 26) + (1× 27) = 221

Figure 3.2: Example of LBP code generation, (a) Intensity Pixel Mask and (b) Threshold
values.

3.2.2.2 Derivation of Generic LBP Operator

The original basic LBP operator was defined to operate using only pixels in the 8-neighbourhood.

Thus, it was later transformed into a more generalised solution [150] to remove the limitations

of the size of the neighbourhood or the number of sampling points. The generic LBP is derived

below as formulated in [150–152].

Take a monochrome image I and let gc signify the gray level of an arbitrary pixel (x, y), thus,

gc = I(x, y). Furthermore, let gp signify the gray value of a particular sampling point in an

evenly spaced circular neighbourhood of P sampling points and radius R around point (x, y):

gp = I(xp, yp), p = 0, ..., P − 1. (3.1)

xp = x+Rcos(2πp/P ), (3.2)

yp = y −Rsin(2πp/P ), (3.3)

Figure 3.3 demonstrates examples of local circular neighbourhoods.
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Figure 3.3: The circular (a) - (8,1), (b) - (16,2) and (c) - (8,2) neighbourhoods [150].

If we assume that the local texture of the image I(x, y) is characterised by the joint distribution

of gray values of P + 1 (P > 0) pixels:

T = t(gc, g0, g1, ..., gp−1). (3.4)

The value of the centre pixel can be subtracted from the neighbourhood without any loss of

information:

T = t(gc, g0 − gc, g1 − gc, ..., gp−1 − gc). (3.5)

The joint distribution is then approximated by assuming the centre pixel to be statistically inde-

pendent of the differences. This allows for factorisation of the distribution:

T ≈ t(gc)t(g0 − gc, g1 − gc, ..., gp−1 − gc). (3.6)

Therefore, the first-factor t(gc) is the intensity distribution over the image I . When evaluating lo-

cal textural patterns, factor t(gc) does not contain useful information. Thus, the joint distribution

of differences

t(g0 − gc, g1 − gc, ..., gp−1 − gc). (3.7)

can be used to model the local texture. However, difficulty lies in achieving reliable estima-

tion in this multidimensional distribution of image data. To alleviate this shortcoming, vector

quantisation of the distribution was proposed [153]. To reduce the dimensionality of the high

dimensional feature space, they implemented learning vector quantisation using a codebook of

384 codewords. Hence, this operator that is based on signed gray-level differences can be seen

as a texton (fundamental micro-structures in natural images) operator [154]. Consequently, the
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learning vector quantisation-based approach exhibits certain downfalls that reduce its effective-

ness [148]: a) the differences gp − gc are invariant to the image’s mean gray value but not to

other differences in gray levels, b) to use it for texture classification the codebook must have

similar training to other texton-based methods. Therefore, only the signs of the differences are

considered to solve these challenges:

t(s(g0 − gc), s(g1 − gc), ..., s(gp−1 − gc)). (3.8)

where s(z) is the thresholding (step) function

s(z) =


1, z ≥ 0

0, z < 0

(3.9)

The generic LBP operator is derived from this joint distribution. It is obtained by summing the

threshold differences weighted by powers of two, similar to the basic LBP. The LBPP,R operator

is defined as

LBPP,R(xc, yc) =
P−1∑
0

s(gp − gc)2p (3.10)

The main differences between the basic LBP and LBP8,1 operators, is that the neighbourhood

in the generalised LBP is indexed circularly, which promotes the creation of texture descriptors

that are rotation invariant. Also, the diagonal pixels in the 3× 3 neighbourhood are interpolated

in LBP8,1 [148].

3.2.2.3 Uniform Local Binary Pattern

The Uniform Local Binary Pattern (ULBP) [150] operator is an extension of the LBP operator.

It is advantageous over LBP because it inherently creates features that are invariant or robust to

rotations of the input image. The LBPP,R patterns are generated by sampling circularly around

the pixel in the center of the neighbourhood, which causes two effects should the input image

be rotated. Firstly, each local neighbourhood is rotated so that they are in other pixel locations.

Moreover, the sampling points on the circle that surround the centre point in each neighbourhood

are rotated so that they are in different orientations [148].
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The ULBP is defined by uniform patterns when the bit pattern is considered to be circular. A

pattern is determined to be regular or uniform when the number of bitwise transitions between

0 and 1 in either direction is two at most. For example, consider a 3 x 3 pixel block, where

the centre pixel has 8 neighbours. This produces an 8-bit pattern; the patterns 00000000 (no

transitions), 11111111 (no transitions), 00000100 (2 transitions), 11111101 (2 transitions) are

uniform, whereas 01010011 (6 transitions) and 11001001 (4 transitions) are not uniform. Each

uniform patten has separate output labels and a single assigned label for all non-uniform patterns.

Thus, there are P (P−1)+3 various output labels to map patterns of P bits. Hence, a neighbour-

hood of 8 sampling points produces 59 distinctive uniform output labels and a neighbourhood of

16 sampling points give 243 unique uniform labels.

The ULBP operator is beneficial to FER because majority of the LBPs in natural images are

uniform [150]. In texture images 90% of all patterns are uniform, when using the (8, 1) neigh-

bourhood and around 70% in the (16, 2) neighbourhood. It was found, using facial images, that

90.6% of the patterns in the (8, 1) neighbourhood and 85.2% of the patterns in the (8, 2) neigh-

bourhood are uniform [148]. The ULBP easily detects different texture primitives, such as edges,

corners, flat regions, line ends and spots (examples of these patterns can be seen in Figure 3.4),

thus ULBP efficiently represents local facial features, making it coherent when representing the

facial texture that adheres to expression recognition.

Figure 3.4: Different texture primitives detected by ULBP where black spots represents 1 and
white spots represents 0 [148].

3.2.3 Local Directional Pattern

The Local Directional Pattern describes local image features by computing the values of the edge

response to all its neighbours; that is in all 8 directions for all the pixel positions. A code is then

generated from the relative strength magnitude, Jabid et al. [91] established that edge responses

are more stable than intensity values when noise and non-monotone illumination changes are
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present. Local Directional Pattern, therefore, performs better in these environments as compared

to its predecessor LBP.

The LDP is made up of an eight-bit binary code that is assigned to each pixel in an input image.

This pattern is encoded using an edge response value of pixels in various directions. There are

different edge detectors such as Kirsch, Prewitt and Sobel that can be utilised for this. The Kirsch

edge detector is more proficient at detecting directional edge responses because it considers all

eight neighbours as compared to the others [91]. Kirsch masks are shown in Figure 3.5 and an

example of the output images for the Kirsch edge responses are shown in Figure 3.6.−3 −3 5
−3 0 5
−3 −3 5


East M0

−3 5 5
−3 0 5
−3 −3 −3


North East M1

 5 5 5
−3 0 −3
−3 −3 −3


North M2

 5 5 −3
5 0 5
−3 −3 −3


North West M35 −3 −35 0 3

5 −3 −3


West M4

−3 −3 −35 0 −3
5 5 −3


South West M5

−3 −3 −3−3 0 −3
5 5 5


South M6

−3 −3 −3−3 0 5
−3 5 5


South East M7

Figure 3.5: Kirsch edge response masks in eight directions [91].

Figure 3.6: Example of output images for the Kirsch edge response directions [155].
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Each mask (Mi)i=0,1,...,7 represents a different orientation. For each mask Mi we compute the

response mi. In total we obtain response values m0,m1, ...,m7, each representing the edge sig-

nificance in their corresponding directions. The higher the response value, the more significant

the edge is in that direction. Local Directional Pattern code is generated by using the k most

prominent directions. The bits corresponding to the k most significant directional responses |bi|

are set to 1 and the (8− k) bits that remain are set to 0. The code LDPk is then computed as

LDPk =

7∑
i=0

bi(mi −mk)× 2i (3.11)

bi(n) =


1 n ≥ 0

0 n < 0

(3.12)

where mk is the kth most significant response.

Figure 3.7 demonstrates positions of the eight directional edge responses and the positions of

the LDP binary bits. Figure 3.8 is an example of the LDP code generation using 3 prominent

directions (k = 3).

Figure 3.7: (a) The 8 directional edge response positions, (b) The LDP binary bit positions.

Mask Index m7 m6 m5 m4 m3 m2 m1 m0

85 32 26 Mask Value 161 97 161 537 313 97 -503 -393
53 50 10 ⇒ Rank 6 7 5 1 4 8 2 3
60 38 45 Code Bit 0 0 0 1 0 0 1 1

LDP Code 19

Figure 3.8: Example of LDP code generation with the left matrix being the intensity mask of a
region in an image and k=3.
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3.2.3.1 Robustness of LDP

The LDP pattern is less susceptible to pattern changes when noise and non-monotone illumina-

tion changes are present, as compared to LBP. This is due to the fact that edge responses are

more stable than the intensity values [91]. An example is given in Figure 3.9, where LBP and

LDP codes are generated after Gaussian white noise is added to the original image. From the

corresponding image after the addition of noise (Figure 3.9 (b)), the 5th bit of LBP changed from

1 to 0, thus LBP pattern converted from uniform code to non-uniform code. However, the LDP

code remained unchanged, showing that edge response values exhibit greater stability than gray

values when noise and non-monotone illumination changes are present.

Figure 3.9: Superior stability of LDP shown where (a) Original Image and (b) Added Noise
Image [91].

3.3 Edge Detection Model: Sobel Operator

The advantage of using the Sobel operator for edge detection is that it has somewhat of a smooth-

ing effect on the image’s random noise, and because it is the differential of two rows and columns,

both sides of the the elements of the edge are enhanced, making them appear thick and bright

[147]. The Sobel operator can be considered an orthogonal gradient operator. The gradient re-

lates to the first derivative and gradient operator corresponds to a derivative operator. The Sobel

operator can be derived following Gao et al. [147].
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For a continuous function f(x, y), in the position (x, y), the gradient can be expressed as a vector,

where the two components are two first derivatives which are along the X and Y directions

respectively:

∇f(x, y) = [Gx Gy]
T =

 δf
δx

δf
δy

 (3.13)

The magnitude and direction angle of the vector are respectively:

mag(∇f) = |∇f(2)| = [G2
x +G2

y]
1
2 (3.14)

φ(x, y) = arctan(
Gx
Gy

) (3.15)

For each pixel location, the partial derivatives of the formulas above are calculated. A small

area template convolution is used for approximation. In Figure 3.10, the two 3 x 3 templates

used by Sobel are shown. These kernels convolute with every point in the image. Each kernel

has a maximum response to either the vertical edge or the level edge. The point’s output bit

is determined by the maximum value of the two convolutions, resulting in an image of edge

amplitude.

Figure 3.10: The Sobel Edge Operator [147].
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Their convolution is as follows:

g1(x, y) =

1∑
k=−1

1∑
l=−1

S1(k, l)f(x+ k, y + l) (3.16)

g2(x, y) =

1∑
k=−1

1∑
l=−1

S2(k, l)f(x+ k, y + l) (3.17)

g(x, y) = g21(x, y) + g22(x, y) (3.18)

If g1(x, y)> g2(x, y), that means there is an edge that has a vertical direction that passes through

the point (x, y), alternatively, if g1(x, y)< g2(x, y), then there is an edge that has a level direction

that passes through the point (x, y). If the pixel value of the point (x, y) is f(x, y), this point is

determined as an edge point, if f(x, y) satisfies one of the following two conditions[147]:

a) Condition 1:

1. g(x, y) > 4×
∑row

i=1

∑col
j=1

g2(i,j)
row×col

2. g1(x, y) > g2(x, y)

3. g(x, y − 1) ≤ g(x, y)

4. g(x, y) ≥ g(x, y + 1)

b) Condition 2:

1. g(x, y) > 4×
∑row

i=1

∑col
j=1

g2(i,j)
row×col

2. g1(x, y) > g2(x, y)

3. g(x− 1, y) ≤ g(x, y)

4. g(x, y) ≤ g(x+ 1, y)

In the formulas above, row and col indicate the number of rows and columns in the image,

respectively.
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3.4 Region Covariance Matrices

3.4.1 Properties of Covariance Representations

A covariance matrix belongs to the set of symmetric positive-definite (SPD) matrices.

The set of SPD matrices with the size d× d can be defined as:

Sym+
d = {A|A = AT , ∀x ∈ Rd, x 6= 0, xTAx > 0}. Using any two SPD matrices A1 and A2

and two positive scalars α and β, then αA1 + βA2 is also SPD. Therefore, SPD matrices form

a convex cone, which is a Riemannian manifold in the Euclidean space [113]. A Riemannian

manifold is a real smooth manifold that is differentiable and equipped with an inner product

that is smoothly varying for each tangent space. An illustration is provided in Figure 3.11. A

difficulty posed by this manifold structure is that it becomes challenging to process and analyse

SPD matrices. To evaluate between SPD matrices, a similarity or dissimilarity metric is needed.

A serious issue for SPD matrices is how to effectively and efficiently measure the similarity

between them. In Figure 3.11 it is demonstrated that for accurate measurement, methods that

promote the geodesic distance properties are preferred to Euclidean [82]. Devising such distance

measures remains an open issue.

Figure 3.11: Visualisation of Riemannian manifold of SPD matrices. (a) Sym+
d forms a closed,

self-dual convex cone, which is a Riemannian manifold in the Euclidean space Rd×d [82].
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3.4.2 Methods for Covariance Representations

The covariance descriptor was originally proposed as a region descriptor for feature representa-

tion. The feature vector of a given image region is extracted from each pixel to describe the pixel

properties, such as location, gradient, filter response, etc. The covariance matrix is computed

using these feature vectors to characterise this region. As introduced in Section 2.5.3, the covari-

ance descriptor has gained much interest in various computer vision and image processing tasks.

Successively, the uses of RCM has branched out to wider applications, promoting research on

how to process and improve covariance representations. The research relative to these improve-

ments has been categorised into three areas: covariance representation, similarity measures, and

classification methods.

Covariance representation aims to improve the quality of the covariance matrix for better ex-

pression of features. Gabor features extract more discriminable information as compared to the

first- and second-order gradient features. Hence, it was preferred to compute the covariance ma-

trix for face recognition [110]. When used in object tracking [112, 114], pixels are weighted

in calculating the covariance matrix. The pixels that are further from the centre of a region are

lower in weight. In action recognition [121], to limit background pixels, the covariance matrix

is computed using only the pixels whose temporal gradients are above a certain threshold.

Similarity measures for covariance representation are a fundamental issue in the analysis of

SPD matrices. Since SPD matrices reside on a Riemannian manifold [113], commonly used

Euclidean-based measures lack efficiency because they do not consider the manifold structure

in computation. A proposed solution to this problem is using Affine-Invariant Metric (AIM)

[156] for comparing covariance matrices. Although AIM improves similarity measurement, it

involves using matrix inverse and square rooting, resulting in high computational cost when the

dimensions of SPD matrices are large. The past decade has offered more contributions in an

attempt to produce effective similarity metrics for SPD matrices. One contribution mapped the

manifold to a Euclidean space [112], that is the tangent space at the mean point. However, these

approaches suffer from two main limitations [82]: a) mapping the points between the manifold

and the tangent space or vice-versa is computationally expensive, and b) the tangent space is

only a local approximation of the manifold at the mean point, thus, it may lead to a suboptimal

solution. To address these issues, kernel-based methods have been generalised to handle SPD

data residing on a manifold [82]. A pointX on a manifold M is mapped to a feature vector φ(X)
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in some feature space F. The mapping is implicitly induced by a kernel function k : (M,M)→

R, which defines the inner product in F, that is k(Xi, Xj) = 〈φ(Xi), φ(Xj)〉. The advantages

of this approach are:

1. By selecting an efficient kernel, the computational cost can be reduced.

2. The manifold structure can be well incorporated in the embedding.

3. Euclidean algorithms like SVM can be used.

Classification methods. The ability to gain a proficient similarity measure helps greatly in clas-

sifying. For example, when a respectable similarity measure is available, the k-nearest neighbour

(KNN) classifier will be able to achieve excellent classification performance. Furthermore, if a

valid kernel function is available, then SVM classification can be applied.

3.4.3 Construction of RCM

Tuzel et al. originally proposed the RCM feature descriptor [24]. Let I be a one-dimensional

intensity (grayscale) or three-dimensional colour image (RGB, HSV infrared, depth images) and

F be the W ×H × d dimensional feature image extracted from I , we have

F (x, y) = φ(I, x, y), (3.19)

where the function φ can be any mapping such as colour, intensity, filter responses, gradients,

etc. For a given rectangular region R ⊂ F , let {Zi}i=1..S be the d - dimensional feature points

inside R. The region R is represented with the d× d covariance matrix of feature points

CR =
1

S − 1

S∑
i=1

(zi − µ)(zi − µ)T , (3.20)

where µ is the mean of the feature vector zi,

µ =
s∑

k=1

zi (3.21)

The covariance matrix structure represents the diagonal entries as the variance of each feature,

and the non-diagonal entries are their respective correlations. This inherent representation pro-

vides multiple advantages to the region covariance descriptor. It allows the fusing of different

types of features that share some correlation with each other. Its robustness allows matching in
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different views and poses from a single covariance matrix extracted from a region. Noise from

the sample is reduced considerably during the computation of the covariance due to the aver-

age filter. RCM are low-dimensional and as a result of symmetry; CR has only (d2+d)
2 different

values [112].

The use of common machine learning methods on a standard covariance matrix is prohibited as

it does not lie on Euclidean space [24]. To be able to classify between these symmetric posi-

tive definite matrices a dissimilarity metric was developed [157], which calculates the distance

between feature points of two covariance matrices, C1 and C2. It can be described as

ρ(C1, C2) =

√√√√ d∑
i=1

ln2λi(C1, C2) (3.22)

where {λ(C1, C2) | i = 1, 2, ..., d} are the generalised eigenvalues of C1 and C2, computed

from

λiC1ui = C2ui, i = 1, 2, ..., d (3.23)

and ui 6= 0 are the generalised eigenvectors.

3.4.4 Log-Euclidean Metric on SPD Manifold

The SPD manifold is a topological space that is locally similar to Euclidean space. It has a

globally defined differential structure, which allows the derivatives of the curves on the manifold

to be defined. From Huang et al. [158], using the logarithm map logS1
: Sd+ → TS1Sd+(S1 ∈ Sd+)

, the derivatives at point S1 on the manifold lie in a tangent space TS1Sd+, which has an inner

product 〈, 〉S1 . The Riemannian metric of the manifold is the collection of inner products that are

on all tangent spaces. Hence, the geodesic distance between two points S1 and S2 on the SPD

manifold can be calculated by 〈logS1(S2), logS1(S2)〉S1 .

The AIM [156] and Log-Euclidean Metric (LEM) [159] are the two most popularly used Rie-

mannian metrics on the SPD manifold, because of their smoothly varying inner product and their

qualification to derive true geodesic on the SPD manifold. As mentioned previously, the AIM

is computationally too expensive to work in practice, due to the curvature of the SPD manifold.

Contrastingly, LEM only requires Euclidean computations in the domain of matrix logarithms.
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Therefore, it results in a strong reduction in computation time. In this study, we compare the

LEM and the Geodesic Equation 3.22 on the manifold of SPD matrices for FER.

3.4.4.1 Derivation of LEM for SPD Manifold

In the study [159], LEM for the SPD manifold Sd+ is derived by capitalising on the Lie group

structure under the group operation S1 � S2 := exp(log(s1) + log(S2)) for S1, S2 ∈ Sd+ where

exp(·) and log(·) denote the matrix exponential and logarithm operators.

From [158], LEM on the Lie group of SPD matrices relates to a Euclidean metric in the SPD

matrix logarithmic domain. Using LEM on Sd+, the scalar product between two elements T1, T2

in the tangent space at a point, S is given by:

〈T1, T2〉S = 〈DSlog.T1, DSlog.T2〉 (3.24)

where DSlog.T represents the directional derivative of the matrix logarithm at S along T . The

logarithmic and exponential maps associated with the metric can be shown in terms of matrix

logarithms and exponential:

logS1(S2) = Dlog(S1)exp.(log(S2)− log(S1)), (3.25)

expS1(T2) = exp(log(S1) +DS1 log.T2) (3.26)

Further details for Equations 3.24, 3.25 and 3.26 are found in study [159].
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Using Equations 3.24, 3.25 and 3.26, the geodesic distance between two SPD matrices is achieved

by LEM:

Dle(S1, S2) = 〈logS1(S2), logS1(S2)〉S1

= ||log(S1)− log(S2)||2F
(3.27)

which corresponds to a Euclidean distance in the logarithmic domain; that is the tangent space

at identity matrix. The distance between any two points on the SPD manifold using the LEM

framework is obtained by propagating by translation the scalar product in the tangent space at

identity matrix. Therefore, the space of SPD matrices is reduced to a flat Riemannian space

using LEM [159].

3.5 Local Directional Covariance Matrix

The success of a region covariance matrix as a descriptor relies on the pixelwise features chosen

for its specified operation. The LDP and RCM operators are designed to detect textures. Facial

expression of a person can be regarded as a texture of the face. Pixel location and intensity

are used in the RCM as it improves its discrimination ability [113]. The pixelwise mask of the

LDP-generated image will also be incorporated into the RCM. Thus, we form a novel mapping

function that is founded on local directional feature defined as

φ(I, x, y) = [x y I(x, y) LDP (x, y)]T (3.28)

The feature vector in region R can now be defined as zk = φ(I, xR, yR) , zk ∈ Rd, k =

1, 2, ..., n, and the covariance matrix CR can be derived by substituting (3.28) into (3.20).

The LDCM mapping has a total dimension of d = 4 and the consequent covariance matrices are

4 × 4 in size. This feature descriptor is considerably smaller than other methods, such as LDP

or LBP. The advantage of LDCM is that it is more compact than traditional LBP or LDP. The

incorporation of the LDP features versus LBP makes it more stable in the presence of noise, and

the inherent structure of the region covariance matrix makes it rotation and scale invariant. The

summary of the computation for the LDCM descriptor is depicted in Algorithm 1.
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Algorithm 1 LDCM generation
Input: Image: I(x, y)
Output: Covariance Matrix Descriptor: C4x4

Detect and Crop the face F from I
Compute LDP mask of image I(x, y) = LDPmask(x, y)
Generate feature matrix: φ(I, x, y) = [x y F (x, y) LDPmask(x, y)]

T

Calculate covariance matrix C of feature vector φ(I, x, y)

3.6 Conclusion

This chapter has outlined the methods used in this study to create a robust image descriptor for

FER. It presented the detailed mathematical and algorithmic descriptions of the techniques im-

plemented, that is, local texture patterns (LBP, ULBP, and LDP) and RCM. The study also shows

that specific distance metrics, such as Geodesic and Log-Euclidean, are the preferred choice to

optimise classification when using RCM. The intuition to take advantage of the individual prop-

erties of the studied methods and systems led to the creation of the proposed LDCM descriptor.

The proposed LDCM method incorporates the benefits of local descriptors and RCM by fusing

them into a single descriptor. The advantages include compactness, stability in the presence

of noise, and rotation and scale invariance. In the next chapter, we evaluate the methods and

systems proposed, showing their effectiveness in real-world scenarios for FER.
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Experimental Results
This chapter covers the implementation of the methods previously described in Chapter 3 with

application to FER. Two main concepts are researched: effectiveness of proposed LDCM de-

scriptor and holistic versus component-based approaches. Further tests examine efficiency of

LEM for classification, and use cross-database evaluations with posed and spontaneous expres-

sions to simulate real-world scenarios.

4.1 Introduction

This dissertation investigates whether facial expressions can be successfully classified by using

covariance descriptors with various pixel-level features. An FER system using RCM and local

texture patterns was presented to specifically address issues in challenging facial expression

recognition. Using the flow diagram in Figure 4.1, we describe the presented system as follows.

An input face image is pre-processed by converting the image to grayscale and cropping the face

area using the Viola-Jones algorithm. Two approaches are discussed in this study: holistic-based

and component-based. The holistic approach uses the entire face while the component-based

segments the face into smaller regions. The next step for both methods involves generating the

pixel feature matrices from different image masks. Figure 4.2 shows examples of the different

image masks of the face used to obtain the feature matrix. Once the feature matrix is compiled

using Equation 3.28 then the covariance matrix can be computed by Equation 3.20. Using the

covariance matrix as a facial expression descriptor, facial expression can then be classified.

45
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Figure 4.1: Flow Diagram of proposed FER system.
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Figure 4.2: The pixelwise feature masks used in the RCM structure.

The classifier has two methods of determining classification: MinDist and MinSum.

Method 1: MinDist uses the minimum distance between covariance matrix descriptors based on

a medium K-nearest neighbour with distance metric shown in Equation 3.22.

Method 2: MinSum uses the minimum sum of total regions of covariance matrices. The min-

imum sum of distances finds the minimum distance for each special region (eyes, nose, and

mouth) then adds them together. The smallest sum is chosen for classification. This method

utilises the discriminable features of all special regions instead of just the most dominant one. It

also uses a medium KNN with distance metric shown in Equation 3.22.

Figure 4.3 helps to visualises the two classification methods used.

Figure 4.3: Classification using MinDist or MinSum methods.

Expression classification evaluation is performed with the leave-one-out-cross-validation tech-

nique to determine the accuracy per expression class for each dataset used. This is described

in Algorithm 2. The expression classes consist of different facial expressions in each dataset,
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for example, the happy class. The expression class happy then consists of Ti=1,. . . ,n happy im-

ages. It is evaluated against the training class consisting of Tj=1. . . m mixed expression class

images. Each image in the test expression class is evaluated against all images in the training

class. The total number of correct classifications (Tc) is divided over the total number of images

in the expression class used (Tn) giving the overall accuracy of the expression being evaluated,

Tc/Tn × 100 = Ah (accuracy of expression class happy). The mean class average of the dataset

can then be calculated by summing all of the individual expression accuracies (Ai) and dividing

by the total number of expression classes (Te), (
∑Te

i=1Ai)/Te × 100.

Algorithm 2 Leave-One-Out-Cross-Validation
Input: Expression Class
Output: Expression Class Accuracy %

for Each Test Image in Expression Class Ti=1,...,n do
Get Covariance Descriptor for Ti
for Each Image in Training Class Tj=1,...,m do

Get Covariance Descriptor for Tj
Compute Covariance Distance Similarity Metric d(Ti, Tj)

end for
Classify using MinDist or MinSum
if Classification = true then

increment Tc
end if

end for
Accuracy = (Tc/Tn)× 100

In this chapter, the review of the performance of the proposed algorithm for facial expression

recognition, on JAFFE [35] , Extended Cohn-Kanade [36] and ISED [37] facial expression

databases is presented. The analysis is divided into five experiments. Firstly, the performance

of various covariance-based features tested against the whole face region is examined. Next, we

explore the impact of segmenting the face into equal-sized regions for FER. We then focus on

using special landmarks of the face with emphasis on eye versus mouth region. Additional tests

review the efficiency of LEM for classification and simulate real-world environment scenarios

by using cross-database evaluation of posed and spontaneous expressions.
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4.2 Experiment 1: Global Face Covariance Features

In this experiment, LDCM is used to analyse the face holistically and to determine its effective-

ness against different facial expressions in the databases mentioned below. We also incorporate

other feature patterns into the covariance matrix like LBP and Sobel mask and compare them to

conventional LDP and LBP methods, which use histograms as feature vectors. From experimen-

tation, it was shown that using a value of three for most prominent directions for LDP proved to

give the best results. Accordingly, all LDP methods use three most prominent directions. When

an LBP operator is chosen that covers a large number of neighbours with various labels, it creates

a sizeable feature vector and therefore the calculation of the distance between covariance ma-

trices reduces performance [118]. Therefore, the LBP and ULBP methods used an (8,1) radius

filter. The Sobel mask was generated using the method discussed in Section 3.3.

4.2.1 JAFFE Database

The Japanese Female Facial Expression (JAFFE) database has 213 images of 7 facial expressions

consisting of six basic and one neutral that 10 Japanese female models posed. All experiments

carried out on the JAFFE database use an average of 30 images per class tested against an average

of 60 random images consisting of 7 classes. Figure 4.4 illustrates examples of the JAFFE

database’s normalised images. These images are cropped automatically to make two eyes align

at the same position and are then resized to 160 x 160.

Figure 4.4: Cropped images from JAFFE database [35].

4.2.2 Extended Cohn-Kanade Database

The extended Cohn-Kanade Database (CK+) consists of 593 sequences from 123 subjects. These

sequences begin from a neutral position and ends with expression peak. The database comes with

327 validated emotion labels consisting of six basic (happiness, anger, fear, disgust, surprise and

sadness) plus contempt expressions. In our analysis, contempt is left out. Twenty-five images

are chosen per class and test against an average of 75 random images consisting of 6 classes.
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The images are adjusted and cropped to ensure two eyes align and are then resized to 256 x 256.

An example of the images used can be seen in Figure 4.5.

Figure 4.5: Cropped images from CK+ database [36].

4.2.3 ISED Database

The ISED database is relatively new, thus limited research has been conducted based on this

dataset. The database consists of 428 segmented video clips of spontaneous facial expressions

of 50 participants. The database consists of labelled peak expressions of 4 classes: happiness,

sadness, disgust and surprise. The database features mixed images of people with glasses, non-

cohesive poses, and other varying uncontrolled environmental factors. The images are cropped

by using a facial detector and then resized to 256 x 256. Examples of the cropped images are

shown in Figure 4.6. An average of 48 images per class was tested against an average of 93

random images consisting of 4 classes.

Figure 4.6: Cropped images from ISED database [37].

Tables 4.1, 4.2 and 4.3 illustrate the results when using the global face experiment. This exper-

iment established the effectiveness of the LDCM method compared to the original based LBP

and LDP methods. The LDCM method gives good performance accuracy of 90% and 71% using

JAFFE and CK+ datasets, respectively. The LDCM and the other covariance descriptor varia-

tion methods were outperformed by LBP and LDP using CK+ database. With JAFFE database

LDCM was also outperformed, but marginally. The LDCM performed the best with an impres-

sive 97% using ISED database; the covariance feature-based methods performed better than the
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LBP and LDP methods. This can be due to the fact that the ISED database contains more ran-

dom images that have partial occlusions and more pronounced pose variations of the face. The

covariance descriptor proves to be more robust for these conditions.

The Sobel-based feature descriptors had the lowest performance, yet it is still reasonable. Its

smoothening effect could cause the minute details of facial features to get lost, giving it a lack

of discriminability. The ULBP method performed worse than standard LBP; it could not capture

all the face’s texture with its reduced histogram feature vector. It is also noteworthy that the

LBP and LDP feature vectors consist of [1 x 16 348] feature points versus the much smaller [4

x 4] feature descriptor of the covariance matrix. The covariance descriptor is able to produce

similar or more effective results at a far lower computational cost in terms of feature size. The

confusion matrices in Table 4.4 indicate that the Happy expression is the most easily recognised

in JAFFE and ISED databases using the proposed descriptor. In the CK+ dataset Happy gets

misinterpreted as ‘Fear’ or ‘Surprise’. From Table 4.4 we also note a strong correlation between

Anger and Surprise in CK+ dataset.

Table 4.1: JAFFE database Global-Face accuracy

Features Acc.% Neutral Happy Sad Surprise Anger Disgust Fear
LDCM 90 90 100 90 90 87 79 91
LBCM 89 90 100 90 90 87 76 91

LDP+Sobel+COV 88 90 100 87 90 83 72 91
LBP+Sobel+COV 86 87 100 87 83 83 72 91

Sobel+COV 86 90 100 84 83 83 72 91
LDP 92 100 97 81 87 93 100 84
LBP 93 97 100 87 87 93 93 91

ULBP 88 94 99 88 89 94 93 92

Table 4.2: CK+ database Global-Face accuracy

Features Acc.% Anger Disgust Fear Happy Sad Surprise
LDCM 71 76 76 84 56 72 64
LBCM 73 76 76 88 60 76 60

LDP+Sobel+COV 68 60 76 88 64 68 52
LBP+Sobel+COV 71 76 76 88 52 76 56

Sobel+COV 70 76 72 84 68 76 44
LDP 85 100 68 88 96 76 80
LBP 87 100 80 88 96 84 72

ULBP 83 90 78 84 92 84 70
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Table 4.3: ISED database Global-Face accuracy

Features Acc.% Happy Surprise Sad Disgust
LDCM 97 100 100 98 92
LBCM 96 100 96 96 92

LDP+Sobel+COV 96 100 96 96 94
LBP+Sobel+COV 96 100 94 96 94

Sobel+COV 96 100 98 94 94
LDP 94 92 94 96 94
LBP 91 96 83 96 88

ULBP 90 94 86 96 92

Table 4.4: Confusion matrices for holistic face on JAFFE, CK+, and ISED datasets

JAFFE CK+ ISED

Hap. Fear Dis. Ang. Sad Neut. Sur. Ang. Dis. Fear Hap. Sad Sur. Hap. Sur. Sad Dis.
Hap. 100 0 0 0 0 0 0 Ang. 76 8 8 8 0 0 Hap. 100 0 0 0
Fear 9 91 0 0 0 0 0 Dis. 16 76 0 8 0 0 Sur. 0 100 0 0
Dis. 3 7 79 0 7 0 3 Fear 4 4 84 0 4 4 Sad 2 0 98 0
Ang. 10 3 0 87 0 0 0 Hap. 8 4 16 56 4 12 Dis. 2 0 6 92
Sad 10 0 0 0 90 0 0 Sad 8 16 4 0 72 0
Neut. 6 0 0 0 3 90 0 Sur. 12 8 8 4 4 64
Sur. 7 3 0 0 0 0 90

4.3 Experiment 2: Segmented Face

We begin this experiment by following the principles of Guo et al. [118]. They used the LBCM

operator with KNN to evaluate the impact of dividing the image into k equally sized rectangular

regions. Figure 4.7 demonstrates the segmentation of the image, where the image is divided

horizontally and vertically into equally sized partitions. The JAFFE dataset is used with LBP

consisting of an (8, 1) neighbourhood and radius. We also evaluate the proposed MinSum clas-

sifier method. Tables 4.5 and 4.6 illustrate the 7-class and 6-class mean recognition accuracy

for regions ranging from 1 to 8. The 7-class includes the neutral expression while the 6-class

excludes it.
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Figure 4.7: The face is divided using both vertical and horizontal segmentation ranging from 2
to 8 regions.

Table 4.5: Horizontal segmentation using JAFFE database with MinDist and MinSum classi-
fiers using LBCM

Regions
7-Class Mean

Recognition % Accuracy
6 -Class Mean

Recognition % Accuracy
MinDist MinSum MinDist MinSum

1 83 83 84 84
2 75 75 82 79
3 79 71 79 71
4 80 69 84 72
5 79 75 84 78
6 79 69 79 73
7 79 71 79 73
8 74 65 76 68

Table 4.6: Vertical segmentation using JAFFE database with MinDist and MinSum classifiers
using LBCM

Regions
7-Class Mean

Recognition % Accuracy
6 -Class Mean

Recognition % Accuracy
MinDist MinSum MinDist MinSum

1 83 83 84 84
2 85 77 85 77
3 85 77 85 77
4 83 75 86 82
5 81 72 81 74
6 79 74 81 78
7 82 68 87 76
8 78 75 82 74

The 7-class mean recognitions from Tables 4.5 and 4.6 are graphed in Figure 4.8.

The results show that when the region number becomes greater than 3 for the MinDist and

4 for the MinSum methods, the accuracy begins to drop. This could be due to the statistic
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Figure 4.8: The average recognition accuracies for different region numbers on the JAFFE
database.

characteristics of covariance matrices. With the increase of region numbers, the number of pixels

in each region decreases, resulting in statistic bias in computing the covariance matrices. The

results also show that the holistic face (1 region) performed better in the horizontal segmentation

but the vertical segmented approach had superior results for 2 and 3 region segmentations. The

MinSum was outperformed by the MinDist, suggesting that individual components of the face

are better recognised.

The next step for this experiment consisted of determining the individual region accuracies for

the horizontal and vertical segmentation of the face. This will allow some insight into how to

better choose regions when classifying the facial expression. The results of this experiment can

be seen in Tables 4.7 and 4.8. Interestingly, the results conform to Pantic et al. [26]; the vertical

segmentation across the centre of the face shows identical accuracy for both regions using the 6-

class mean. This entails that the symmetry of the face allows computation to be reduced by only

using half of the data required. We also see that the centre regions of the face perform weaker

than the outer regions, and for the horizontal segmentation, the lower half of the face performs

better than the top half. A further analysis is done in Section 4.4.1, where the eye region is tested

against the mouth.
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Table 4.7: LBCM 7-Class and 6-Class individual region mean accuracy % for JAFFE database
using Vertical Segmented Regions

7-Class Mean Acc. % 6-Class Mean Acc. %
Region Number Region Number

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
81 76 79 79
79 80 74 80 84 78
80 78 78 73 83 79 84 75
75 74 81 73 72 78 75 83 77 74
77 77 78 73 76 71 82 78 82 78 79 72
77 76 74 79 74 73 76 81 79 79 79 77 77 77
74 73 75 78 78 70 70 71 77 75 74 84 81 71 71 74

Table 4.8: LBCM 7-Class and 6-Class individual region mean accuracy % for JAFFE database
using Horizontal Segmented Regions

7-Class Mean Acc. % 6-Class Mean Acc. %
Region Number Region Number

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
76 80 79 85
74 75 77 76 76 80
76 73 74 80 79 75 75 82
74 78 74 70 80 77 82 76 75 83
69 80 65 70 70 78 70 83 70 70 73 80
71 71 76 70 73 72 78 72 76 79 72 79 73 81
68 73 72 66 72 74 74 82 71 75 75 70 72 78 76 82

The last phase of this experiment was testing the component-based approach using LDCM. The

global face image is segmented into equal-sized regions of [1 x 2], [2 x 1], [2 x 2], [3 x 3]. Figure

4.9 demonstrates a representation of how the face is divided. To classify between segments each

region in the test image is compared to its like region in the training images. The region that has

the minimum distance is chosen for classification (MinDist).

The results from Tables 4.9, 4.10 and 4.11 show that the holistic approach performs better than

the component-based approach using LDCM in CK+ and ISED databases. This could be due to

the fact that when the face is divided into smaller random segments it loses important discrim-

inable information. However, the JAFFE database performed the best using the proposed method

compared to the holistic approach, receiving a recognition accuracy of 96%. It is also evident

that certain regions exhibit greater performance than other regions. In CK+ the best performing

segment was the [1 x 2] split whereas in the JAFFE dataset it was the [2 x 2] split and the ISED
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dataset the [2 x 1] split. The information from the random segments can be improved upon by

targeting specific regions of the face.

Figure 4.9: Segmentation of face into different regions.

Table 4.9: JAFFE segmented regions accuracy %

Segments Acc.% Neutral Happy Sad Surprise Anger Disgust Fear
1x2 90 90 100 84 87 93 76 97
2x1 89 90 94 84 87 83 93 94
2x2 96 97 100 100 90 90 97 97
3x3 93 100 100 94 87 93 86 91

Table 4.10: CK+ segmented regions accuracy %

Segments Acc.% Anger Disgust Fear Happy Sad Surprise
1x2 57 56 72 80 40 56 40
2x1 53 40 64 64 52 48 52
2x2 54 36 60 80 44 64 40
3x3 54 36 64 76 40 60 48

Table 4.11: ISED segmented regions accuracy %

Segments Acc.% Happy Surprise Sadness Disgust
1x2 88 90 85 94 83
2x1 89 90 92 94 79
2x2 88 88 94 94 77
3x3 88 90 85 90 85
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4.4 Experiment 3: Special Landmark Regions

From the previous experiment of segmenting the face into random blocks, there is a hint that

certain regions possess more discriminable properties for classification than others. In this ex-

periment, we use eyes, nose and mouth detector to first extract the regions of interest from the

face. The pair of eyes including the eyebrows is used, the extracted eye region is expanded to

include the eyebrows. The special regions from the databases are segmented as follows:

CK+ dimensions: Eye - [80 x 160], Nose - [56 x 60], Mouth - [50 x 90]

JAFFE dimensions: Eye - [60 x 130], Nose - [40 x 50], Mouth-[40 x 60]

ISED dimensions: Eye - [70 x 200], Nose - [80 x 80], Mouth - [70 x 120]

The LDCM descriptor is then applied to each region and MinDist and MinSum classifiers are

used for classification. Figure 4.10 shows the regions of interest.

Figure 4.10: Landmark region extraction into region covariance descriptors.

Tables 4.12, 4.13 and 4.14 validate that the proposed method achieved the best results on CK+

database. Tracking the performance on CK+ dataset, from the global face we get an accuracy of

71% versus the split segments achieving 57% and finally attaining 82% using special landmark

regions. For all datasets, a high facial expression recognition accuracy is achieved using special

landmark regions and LDCM. The datasets JAFFE and ISED scored an average of 94% across

both classification methods. The minimum sum classification method achieved a mean of 89%

across all datasets, it outperformed the minimum distance classification method for CK+ and

ISED databases. This could propose that for spontaneous expressions a holistic-approach is

superior to a component-based approach.
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Table 4.12: JAFFE special landmark regions accuracy %

Method Acc.% Neutral Happy Sad Surprise Angry Disgust Fear
1 - MinDist 95 97 100 90 97 97 90 94
2- MinSum 91 93 97 97 97 83 69 100

Table 4.13: CK+ special landmark regions accuracy %

Method Acc.% Anger Disgust Fear Happy Sad Surprise
1 - MinDist 75 84 76 76 68 80 64
2- MinSum 82 92 88 80 80 76 76

Table 4.14: ISED special landmark regions accuracy %

Method Acc.% Happy Surprise Sadness Disgust
1 - MinDist 94 96 96 92 92
2- MinSum 95 96 98 92 94

4.4.1 Eye versus Mouth Region

The aim of this test is to determine how closely the proposed classifier operates compared to

the human observer approach concerning FER, mentioned in Section 2.6. For this test, the face

is divided into the top half to encapsulate the eye area, and the lower half to capture the mouth

area, and then each region is classified exclusively using LDCM on JAFFE, CK+, and ISED.

The recognition results for each region are presented in Table 4.15 and the confusion matrices in

Table 4.16.

Table 4.15 shows that in the CK+ dataset, anger, surprise, and fear are enhanced by the top of

the face, while the bottom of the face is more suited to classify sadness. In the JAFFE database,

surprise, anger, disgust and fear had greater performance using the lower half of the face. For

both CK+ and JAFFE happy expression results showed that using the top half of the face helps

achieve recognition. All four expressions: happiness, surprise, sadness, and disgust of the ISED

database achieved equal or superior accuracy using the lower half of the face. For CK+ dataset

superior performance is achieved using eye (89%) and mouth (82%) regions instead of the global

(71%) face region. The confusion matrices in Table 4.16 demonstrate that sad and surprise, as

well as happiness and disgust are misclassified on the top half of the face. On the lower half,

disgust, sadness and surprise, as well as fear and disgust, suffer confusion.



Chapter 4 Experimental Results 59

Table 4.15: LDCM accuracy % of Eye and Mouth components for FER on CK+, JAFFE, and
ISED datasets

Datasets Acc.% Anger Disgust Fear Happy Sad Surprise
Cohn Eye 89 100 88 96 80 72 100
Cohn Mouth 82 92 88 80 72 92 68
Datasets Acc.% Neutral Happy Sad Surprise Angry Disgust Fear
JAFFE Eye 83 80 97 87 83 73 72 88
JAFFE Mouth 88 90 94 87 90 83 83 91
Datasets Acc.% Happy Surprise Sadness Disgust
ISED Eye 93 98 96 92 88
ISED Mouth 97 100 96 94 98

Table 4.16: Confusion matrices for Eye and Mouth components using LDCM

Cohn: Eye Confusion Matrix Cohn: Mouth Confusion Matrix
Ang. Dis. Fear Hap. Sad Sur. Ang. Dis. Fear Hap. Sad Sur.

Ang. 100 0 0 0 0 0 Ang. 92 0 0 8 0 0
Dis. 8 88 0 0 0 4 Dis. 4 88 0 8 0 0
Fear 4 0 96 0 0 0 Fear 4 12 80 4 0 0
Hap. 8 4 4 80 0 4 Hap. 4 4 16 72 4 0
Sad 8 0 8 0 72 12 Sad 0 4 4 0 92 0
Sur. 0 0 0 0 0 100 Sur. 0 12 0 8 12 68

JAFFE: Eye Confusion Matrix JAFFE: Mouth Confusion Matrix
Hap. Fear Dis. Ang. Sad Neut. Sur. Hap Fear Dis. Ang Sad Neut. Sur.

Hap. 97 0 3 0 0 0 0 Hap. 94 0 0 0 0 3 3
Fear 9 88 3 0 0 0 0 Fear 6 91 3 0 0 0 0
Dis. 24 0 72 0 3 0 0 Dis. 3 14 83 0 0 0 0
Ang. 13 3 10 73 0 0 0 Ang. 10 0 3 83 0 0 3
Sad 10 3 7 0 80 0 0 Sad 7 0 0 0 90 3 0
Neut. 6 3 3 0 0 87 0 Neut. 10 0 0 0 3 87 0
Sur. 13 0 3 0 0 0 83 Sur. 7 0 3 0 0 0 90

ISED: Eye Confusion Matrix ISED: Mouth Confusion Matrix
Hap. Sur. Sad Dis. Hap. Sur. Sad Dis.

Hap. 98 0 0 2 Hap. 100 0 0 0
Sur. 4 96 0 0 Sur. 4 96 0 0
Sad. 6 0 92 2 Sad 4 0 94 2
Dis. 0 0 13 88 Dis. 2 0 0 98

4.5 Experiment 4: LEM Distance Classifier

The LEM distance metric has gained appreciation in recent years for its use with SPD matrices.

It is computationally efficient and allows the covariance matrix to be represented in a form where

traditional classification methods can be computed. The LEM from Section 3.4.4 is used with

the MinDist classifier for FER on the JAFFE, Extended Cohn-Kanade and ISED databases. The

holistic approach is used with the different covariance features. It is compared to the distance

metric from Equation 3.22.
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Table 4.17 gives the mean class accuracy for each dataset. The results show that LEM is equiv-

alent to, if not better than, AIM. It achieved the same mean class accuracy for CK+ and ISED

using LDCM. It performed better across all datasets using the Sobel pixel feature. A future

development that studies LEM with SVM for FER using covariance descriptors will be highly

beneficial to further the advancement of FER.

Table 4.17: LEM and Riemann distance metric mean class % accuracy on CK+, JAFFE and
ISED databases

Features
6-Class Mean

Recognition CK+
7-Class Mean

Recognition JAFFE
4-Class Mean

Recognition ISED
Distance Metric LEM Riemann LEM Riemann LEM Riemann
LDCM 71% 71% 89% 90% 97% 97%
LBCM 73% 73% 89% 89% 95% 96%
LDP+Sobel+COV 65% 68% 90% 88% 97% 96%
LBP+Sobel+COV 70% 71% 87% 86% 95% 96%
Sobel+COV 71% 70% 88% 86% 97% 96%

4.6 Experiment 5: Cross-Database Environment

As stated previously, the challenge of FER is increased in uncontrolled environments. To sim-

ulate these conditions, a cross-database approach is used. By using different databases for your

training and testing tests, you invite more randomness and provide more difficulty to the FER

system. You can also formulate new patterns between different ethnic groups if your datasets

support it.

The results using posed and spontaneous expressions, alternating between testing and training

images from JAFFE, ISED, and Extended Cohn-Kanade datasets are displayed in Tables 4.18,

and 4.19. The tests used the global face region and classified against the six prototypic basic

expressions for JAFFE and CK+ cross-database evaluation. When evaluating the ISED database

with JAFFE and CK+ databases, only four expressions were classified, those are, happy, sad,

surprise, and disgust. The proposed descriptor (LDCM) and K-NN using distance metric 3.22

were applied with the leave-one-out-cross-validation technique. The training and testing samples

of each respective dataset were the same used in Sections 4.2.1, 4.2.2, and 4.2.3. From Table

4.18, it can be observed that LDCM achieved an accuracy of 92% using JAFFE expression test



Chapter 4 Experimental Results 61

Table 4.18: Posed cross-database FER using JAFFE and CK+ datasets

Test Images Training Images Acc.% Ang. Dis. Fear Hap. Sad Sur.
JAFFE Extended Cohn 92 73 93 100 84 100 100
Extended Cohn JAFFE 86 80 84 92 92 84 84

images and CK+ training images. The results also improved when using CK+ test images and

JAFFE training images, where a six class mean expression recognition rate of 86% is achieved.

Evidently, from Tables 4.1, 4.2 and 4.18, it is proven that the cross-database results are better

than the standard JAFFE and CK+ dataset results using the proposed descriptor. When using

the standard JAFFE facial expression test class images against JAFFE facial expression training

class images and CK+ facial expression training class images the results were 90% (Table 4.1)

and 92% (Table 4.18) respectively. Subsequently, when using the standard CK+ expression

test images against CK+ expression training images and JAFFE expression training images, we

achieved 71% (Table 4.2) and 86% (Table 4.18) respectively. The increase in performance can

account for the difference of facial features between subjects used or, in this case, a higher

variance between different persons or expressions.

Contrarily, when using ISED, a spontaneous dataset, as the training sample in cross-database

evaluation with JAFFE and CK+ test samples, there is a significant decrease in accuracy. The

cultural differences between the training and testing subjects is one motivation for the reported

small accuracy as in Table 4.19. Although, when using the ISED dataset as the test sample and

JAFFE and CK+ as training samples, it achieves a recognition of 95% and 82% respectively,

shown in Table 4.19. The difference between the high and low recognition accuracy underlines

that it is more suitable to train with a posed expression set as opposed to a spontaneous dataset,

in these testing scenarios. The ISED data consists of facial images that contain non-cohesive

pose, partial occlusions like glasses, and other varying uncontrolled factors, while the CK+ and

JAFFE predominately consist of cohesive, posed and non-occluded images. Another factor may

include the difference in the number of subjects trained and tested. The ISED consists of 50

subjects whereas the JAFFE only consists of 10.
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Table 4.19: Spontaneous cross-database FER using ISED, JAFFE, and CK+ datasets

Test Images Training Images Acc.% Hap. Sad Sur. Dis.
JAFFE ISED 34 100 0 7 28
Extended Cohn ISED 36 100 0 28 16
ISED JAFFE 95 100 92 88 100
ISED Extended Cohn 82 58 100 94 77

4.7 Conclusion

The use of covariance features for facial expression recognition is not commonly practised. Its

applications originate from object detection and tracking. Newer studies are proving that RCM

performs adequately if you select appropriate features for specific tasks. This study has proposed

a new local feature of facial expression based on LDP codes and region covariance matrices.

The LDP code holds local information by encoding the texture of the face and the covariance

descriptor contains the global information. From the results obtained, it is established that the

proposed descriptor achieves a high level of performance for FER at a reduced feature size.

We have also investigated the effect of holistic vs component-based approaches to FER using

LDCM. It was found that by focusing on special regions of the face such as eyes, nose and

mouth, stable results across different datasets and environments were achieved. In the future,

more tests with images that incorporate more noise and partial occlusions can be beneficial to

determine the contribution of LDP and LBP when they are used in the covariance structure.

Covariance descriptors are also limited with regards to using standard machine learning methods.

Transforming covariance structure to accommodate standard machine learning methods is an

interesting research direction.
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Conclusion
The present chapter summarises the work presented in this dissertation, which was centered

around FER using covariance descriptors and local texture patterns. A brief discussion is pre-

sented in Section 5.1. In Section 5.2 we provide a summary of contributions made in this dis-

sertation and then proceed to discuss possible directions and challenges for future research in

Section 5.3.

5.1 Discussion

Recognising facial expression is an effective procedure to gauge the emotional state of human

beings. In this dissertation, we have studied covariance descriptors and local texture patterns for

facial expression recognition, and attempted to propose a state-of-the-art FER system using a

novel image descriptor.

In establishing the foundation of using a covariance approach, we acknowledge some of the

advantages of using covariance descriptors as follows:

• Compactness. A dimensionality reduction without any significant loss in recall has been

shown in Section 3.4.3, which implies lower computational and storage requirements.

• Flexibility. The addition of new features in the covariance descriptor has been shown in

Section 3.4.3 to be straight-forward. It does not cause any significant change in memory

or computation time. Hence, it provides an advantage compared to histogram-based ap-

proaches, in which the addition of a feature amounts to the addition of a dimension in the

histogram cube.

63
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• Parameter-freeness. There is no requirement to tune parameters such as bin size or bin

number.

• Distinctiveness. The covariance descriptor possesses an inherent ability to remove com-

mon features available in the data and consider only the discriminative information.

An important question regarding covariance descriptors that has not yet been addressed is:

Which data type is effective and when can it be used? Though this question is subjective and

depends exclusively on the current application, there are a few data properties that can assist in

decision making. Covariance valued data can be used in situations where the discriminating or

recognising properties of the data are founded on feature correlations instead of on the frequency

with which certain patterns occur, which is the case with feature histograms.

This dissertation aim of determining the effectiveness of covariance descriptors for facial expres-

sion recognition was positively achieved. In Chapter 2, the literature review examined the differ-

ent features, such as geometric and appearance-based methods used in FER. It further discussed

the benefits of using local texture patterns and covariance matrices because of their robustness

and fast computation; hence, there was viability to use the covariance descriptor for FER. From

Chapter 3, the advantages and disadvantages of the different operators, such as LBP, LDP and

Sobel, were discussed. The properties and methods of the covariance matrix were described in

detail and the LDCM image descriptor was proposed. Analysing the results in Chapter 4 proved

that the covariance descriptor successfully classified facial expressions. The JAFFE posed ex-

pression dataset, achieved 90% accuracy and the ISED spontaneous expression dataset achieved

97% accuracy using the holistic approach, validating the LDCM operator.

The face was segmented into equal-sized horizontal and vertical regions ranging from 2 to 8

regions using LBCM. It was observed that a loss of accuracy is obtained when the region sizes

begin to get too small, due to the statistic bias in computing the covariance matrices. The indi-

vidual region accuracies were also examined showing that the symmetry of the face can provide

for faster computation without losing significant precision by choosing to use half of the vertical

face. The special regions of the face were then examined to determine which regions perform

best for classification. The findings illustrated that the bottom half of the face is superior for

recognising happiness, surprise, sadness, and disgust for spontaneous expressions. The confu-

sion matrices show that sadness and surprise, as well as happiness and disgust are misclassified
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on the top half of the face. On the lower half, disgust, sadness and surprise, as well as fear and

disgust suffer confusion.

The special landmarks did better than the holistic approach on JAFFE and CK+ datasets, as ac-

curacies of 95% and 82% are achieved respectively. The ISED database was marginally lower

at 95%. The results show that the component-based method is superior for posed expressions

while the holistic approach is preferred to spontaneous expressions. The cross-database evalu-

ation made it more challenging by replicating real-world environments. It further approved the

effectiveness of the proposed descriptor. Lastly, the LEM similarity metric was evaluated for

FER using the covariance feature descriptors. It showed promising results and provides alternate

means for classification.

5.2 Contributions

This dissertation helped contribute to affective computing research by:

• Establishing the state-of-the-art in facial expression recognition. In-depth analysis of the

geometric-based and feature-based methods was covered in Section 2.

• Introducing covariance descriptors from image processing into facial expression recogni-

tion. Covariance descriptors have proven to be very successful in other application areas

within image processing. This dissertation tries to continue the success in the domain of

FER.

• Developing different features using the covariance structure for FER. The study proposed

an effective and efficient novel image descriptor, Local Directional Covariance Matrix, as

well as other variants seen in Section 4.2. The proposed descriptor performed better than

traditional methods for spontaneous expressions.

• Comparing the benefits of a component-based versus holistic-based approach for classifi-

cation. The component-based approach might lead to the loss of some of the benefits that

the covariance matrix introduced, by increasing computation and memory.

• Testing for special regions of interest that could lead to increase FER accuracy, if applied

in a component-based or rule-based approach. The eyes, nose and mouth were specifically

targeted.

• Using both posed and spontaneous expressions to provide a complete study of all types of

expressions.
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• Demonstrating the possibility of real-world scenarios by using cross-database evaluation

on posed and spontaneous datasets.

• Evaluating the performance of an alternative similarity metric (LEM) for SPD matrices.

5.3 Limitations and Future Directions

5.3.1 Limitations

There are existing open-ended questions to facial expression analysis that highlight limitations

when trying to develop a robust FER system.

How do humans correctly recognise facial expressions?

In Section 2.6, we discuss the human visual perception of how facial expressions are recognised,

but how humans recognise facial expressions is still not clear. Further understanding of the

parameter types and how they are processed is needed. By comparing how humans and machines

recognise facial expressions, new ways of improving recognition can be researched.

Is there any better way to code facial expressions for computer systems?

The majority of research concentrated on using either emotion-specific expressions or FACS

coded action units. The emotion-specific expressions label expressions at a rather basic level and

are not always adequate for all applications [160]. The intended design of FACS is to observe

subtle changes in facial features, but it is a system based on human observers and has a limited

ability to differentiate between variation in intensity. Challenges still exist in the design of a

computer-based system for coding facial expressions, which has more quantitative definitions

[160].

How do we obtain reliable ground truth?

Emotion-specific expressions are inadequately defined: one label may be applicable to various

expressions. Consequently, one expression may have various labels that refer to it, which con-

fuses system comparisons. A further issue is that label reliability is not known. For example,

investigators fail to disclose inter-observer reliability and facial expression validity of the ex-

pressions they analysed. This creates uncertainty in knowing if subjects truly had the target

expression or if only judges determined that subjects had that expression.
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How do we recognise facial expressions in real life?

There is much more difficulty in the analysis of real-life expressions compared to posed actions.

The elements that make facial expression analysis complex in real life are the motion of the

head, input images that are of low resolutions, the lack of a neutral expression for comparison,

and expressions of low intensity [160].

Expressions consist of a blend of multiple micro expressions. Therefore, one expression class

is insufficient to ascertain an expression. Making the differentiation between these micro-facial

expressions and being able to increase the number of standard emotion classes requires a higher

research scope.

The databases available to conduct research, lack a variety of different conditions, such as il-

lumination, occlusion, and pose. It is also difficult to obtain authentic spontaneous expression

databases because the environment is not in a natural setting when the subject is being observed.

5.3.2 Future Directions

Multi-modal. Human emotion comprises of facial expressions, gestures, and vocal data. For

a complete analysis of human emotion, data from all these domains should be incorporated.

Hence, multi-modal methods are an interesting research direction.

Real-Time Dynamic. It is possible for the suggested descriptor to be extended to a real-time

dynamic facial expression implementation using spatiotemporal methods on larger databases that

include a variety of races and ages.

Metric Learning on Covariance Matrices. The feature vectors collected from an image region

are a heuristic combination used in covariance descriptors, under the assumption that they will

provide an optimal solution for its intended application. Mechanisms that learn each feature’s

effective weights or contributions to the overall performance of the application, provide intuition

on why a certain feature combination performs well as well as what should not be used.

Kernal-Based Method. As discussed in Section 3.4.2, by embedding the manifold to tangent

spaces further analysis is simplified significantly, but some of the manifold structure has to be

disregarded to achieve this.

Convolutional Neural Networks. An interesting area worth investigation is the combination

between kernel representations and Convolutional Neural Networks (CNNs). CNNs incorporates

feature extraction, feature representation, and label prediction into a unified framework. They
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are considered as the state-of-the-art feature learning approach. It can be expected that applying

kernel representation to CNN features could generate more promising performance.
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