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Abstract

The limitations of first generation biofuels have prompted the quest for alternative energy sources.
Approximately 60 million tonnes of sorghum are generated each year, with 90% being
lignocellulosic waste, which is an ideal feedstock for biofuel production. The recalcitrance of
lignocellulose often demands harsh pre-treatment conditions and results in the generation of
fermentation inhibitors, negatively impacting process yields and economics. In this study, an
artificially intelligent model to predict the profile of reducing sugars and all major volatile
compounds from microwave assisted chemical pre-treatment of waste sorghum leaves (SL) was
developed and validated. The pre-treated substrate was assessed for bioethanol production using
Saccharomyces cerevisiae. Monod and modified Gompertz models were generated and the

kinetic coefficients were compared with previous studies on different substrates.

To develop the Artificial Neural Network (ANN) model, a total of 58 pre-treatment process
conditions with varying parameters were experimentally assessed for reducing sugar (RS) and
volatile compound production. The pre-treatment input variables consisted of acid concentration,
alkali concentration, microwave duration, microwave intensity and solid-to-liquid ratio (S:L).
Response Surface Methodology (RSM) was used to optimise RS production from microwave
assisted acid pre-treatment of sorghum leaves, giving a coefficient of determination (R?) of 0.76,
resulting in an optimal yield of 2.74 g RS/g SL. A multilayer perceptron ANN model was used,
with a topology of 5-13-13-21. The model was trained using the backpropagation algorithm to
minimise the net error value on validation. The model was validated on experimental data and R?
values of up to 0.93 were obtained. The developed model was used to predict the profile of
inhibitory compounds under various pre-treatment conditions. Some of these inhibitory
compounds were: acetic acid (0-186.26 ng/g SL), furfural (0-240.80 ng/g SL), 5-hydroxy methyl
furfural (HMF) (0-19.20 ng/g SL) and phenol (0-7.76 ng/g SL). The developed ANN model was
further subjected to knowledge extraction. Findings revealed that furfural and phenol generation
during substrate pre-treatment exhibited high sensitivity to acid- and alkali concentration and S:L
ratio, while phenol production showed high sensitivity to microwave duration and intensity.
Furfural generation during pre-treatment of waste SL was majorly dependent on acid

concentration and fit a dosage-response relationship model with a 2.5% HCI threshold.



The pre-treated sorghum leaves were enzymatically hydrolysed and subsequently assessed for
yeast growth and bioethanol production using Saccharomyces cerevisiae BY4743. Kinetic
modelling was carried out using the Monod and the modified Gompertz models. Fermentations
were carried out with varied initial substrate concentrations (12.5-30.0 g/L). The Monod model
fitted well to the experimental data, exhibiting an R? of 0.95. The model coefficients of maximum
specific growth rate (umax) and Monod constant (Ks) were 0.176 h™t and 10.11 g/L respectively.
Bioethanol production data fitted the modified Gompertz model with an R? of 0.98. A bioethanol
production lag time of 6.31 hours, maximum ethanol production rate of 0.52 g/L/h and a

maximum potential bioethanol concentration of 17.15 g/L were obtained.

These findings demonstrated that waste SL, commonly considered as post-harvest waste, contain
sufficient fermentable sugar which can be recovered from appropriate HCI-based pre-treatment,
for use as a low cost energy source for biofuel production. The extracted knowledge from the
developed ANN model revealed significant non-linearities between the pre-treatment input
conditions and generation of volatile compounds from waste SL. This predictive tool reduces
analytical costs in bioprocess development through virtual analytical instrumentation. Monod and
modified Gompertz coefficients demonstrated the potential of utilising sorghum leaves for
bioethanol production, by providing data for early stage knowledge of the production efficiency
of bioethanol production from waste SL. The generated kinetic knowledge of S. cerevisiae growth
on waste SL and bioethanol formation in this study is of high importance for process optimisation

and scale up towards the commercialisation of this fuel.

Keywords: sorghum leaves, lignocellulosic pre-treatment, fermentation inhibitors, bioethanol

production, kinetic modelling.
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Chapter 1
General Introduction

1.1 Fossil fuel depletion and the need for renewable sources

Crude oil is the most important global fuel source, accounting for 36.4% of the world’s primary
energy consumption. Interestingly, in 2006, it constituted a meagre 17.67% of the remaining
fossil fuel reserves (Shafiee and Topal, 2009). The Energy Information Administration
predicted an approximate 15% increase in the global energy demand from the year 2012 to the
year 2020 (EIA, 2016). Over the last few years, the increasing world population and industrial
growth has been the major factor driving the energy sector. Emissions from transportation
sources play a significant role in the release of greenhouse gases (GHG) which contribute to
the anthropogenic greenhouse gas effect (Uherek et al., 2010). This has led to severe climate
change seen in the rising sea levels, melting of the polar ice caps, a rapid decline in biodiversity,
as well as extreme weather conditions (Jian-Bin et al., 2012). Furthermore, nitrogen based
oxides which are also released, significantly impact air quality, leading to various respiratory
issues within populations (Uherek et al., 2010). This has accelerated the research into

alternative, renewable energy methods for biofuel production.

Numerous advantages of biofuel development exist, such as an expansion of energy supplies,
enhanced energy security, an improvement to the development of rural agriculture as well as
reduced GHG emissions (Pradhan and Mbohwa, 2014). In the year 2014, renewable energy
provided approximately 19.2% toward the final global energy consumption, further increasing
in the year 2015. This suggests that a global energy transition is currently underway
(Renewables, 2016). Although biofuels make up only 0.8% of the total renewable energy sector
(Renewables, 2016), several countries have implemented policies to encourage the production
and use of biofuels. For instance, Thailand has implemented a 15 year plan to increase the
bioethanol production capacity to 9 million litres a day by the year 2022 (Ariyajaroenwong et
al., 2016). In South Africa, a mandatory blending of 5% biodiesel with diesel and 2-10%
blending of bioethanol with gasoline was enforced as of the 1%t October 2015 (DoE, 2015).
Brazil, which is one of the major bioethanol producing countries at a global scale, has mandated
an increase in the biodiesel blend from 7 to 8% by the 23" of March 2017 (DieselNet, 2016) as



well as a 2% increase from 25 to 27% minimum ethanol blend from the 16™ March 2015
(Biofuels Digest, 2016).

1.2 Bioethanol production

Bioethanol is a renewable and environmentally friendly alternative to fossil fuel (Shen et al.,
2011) and has swiftly become the most commonly used biofuel for transportation usage as it
has a higher octane number and thus burns more efficiently than gasoline (Sarkar et al., 2012).
Apart from its renewable and sustainable nature, bioethanol compared to alternate fermentative
fuel sources, has high practicality and will contribute towards energy security for the future
(Chung and Yang, 2016). A summary of the global production of biofuels in year 2013 is
presented in Figure 1. It shows that 87.2 billion litres of bioethanol from a total of 116.6 billion
litres of biofuel was produced, with lower contributions from biodiesel (26.3 billion litres) and
hydrotreated vegetable oil (HVO) (3.0 billion litres).

HVO
2.6%

Figure 1: Global biofuel production in 2013 (adapted from Chung and Yang, 2016).

Major leading bioethanol producers include Brazil and the USA with the former sourcing
sucrose from sugarcane- and the USA using starch obtained from corn (Sarkar et al., 2012).
This highlights the dependency of commercial bioethanol production on first-generation energy
sources, which currently places a heavy burden on food security (Sarkar et al., 2012). Research

has therefore shifted towards the development of economical and sustainable processes for



future bioethanol production plants. Presently, valuable second generation energy sources such
as agricultural crop residues are being sought for fermentative bioethanol production as well as
other biofuels (Chandel et al., 2007; Shen et al., 2011; Singh and Bishnoi, 2013; Gabhane et al.,
2014; Barcelos et al., 2016). One of the key differences between first- and second- generation
bioethanol production is an additional processing step (Figure 2). Lignocellulose is composed
of a complex network of cellulose, hemicellulose and lignin in approximate fractions of 25%,
40-50% and 25% respectively (Uju et al., 2016). The recalcitrant nature of lignocellulose
warrants a pre-treatment step which requires the use of severe process conditions to break down

lignocellulose to release glucose-rich cellulose.

Sugar based Starch based Lignocellulose based
Bioethanol Production Bioethanol Production Bioethanol Production

Extraction Saccharification ] / Pre-treatment
Lignocellulosic
hydrolysate
A 4

Enzymatic /_
x C

hydrolysis ellulose

Fermentable sugars

Fermentation

A 4
[ Fermentation slurry ]\, Biological waste (spent
media, by products etc.)

Distillation

Dehvdrati
[ ~90% Ethanol ] cyqeeR { ~99% Ethanol ]

Figure 2: Bioethanol production using renewable energy sources.

Bioethanol from lignocellulosic material is produced by harnessing the ability of
microorganisms to convert the glucose released during pre-treatment into bioethanol. The
pathway followed under anaerobic (fermentation) conditions for Saccharomyces cerevisiae is
seen in Figure 3. Numerous factors affect this fermentation process, including the presence of

compounds which are inhibitory to fermentation, the affinity of the producing microbe to the



substrate used as well as environmental factors such as pH, operating temperature and initial
substrate concentration (Raikar, 2012; Dai et al., 2014).
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l |
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Figure 3: Metabolic pathway for bioethanol production from glucose by Saccharomyces

cerevisiae under anaerobic conditions.

1.3 Fermentation inhibitors and their effects on fermentation
The harsh process conditions required to degrade the lignocellulose structure often lead to the
generation of a number of compounds that have been shown to inhibit the enzymatic hydrolysis

step as well as the fermentation process (Kamal et al., 2011).

During acidic pre-treatment, by-products that are formed include weak acids, furan derivatives
such as furfural and 5-hydroxymethyl furfural (HMF), and phenylic compounds (Kamal et al.,
2011; Jonsson and Martin, 2016). In contrast, alkali pre-treatment preserves the carbohydrate
structures to a certain extent, however some degradation may occur, generating carboxylic acids
(Jonsson and Martin, 2016). Furfural in particular has been shown to inhibit bioprocesses by
the conversion of furfural to furfuryl alcohol by Saccharomyces cerevisiae, which subsequently
inhibits anaerobic growth of the microorganism (Larsson et al., 1999). Additionally, furfural
causes the accumulation of reactive oxygen species within S. cerevisiae cells, resulting in
damage to vacuole and mitochondrial membranes, among others (Almeida et al., 2007). Furan

derivatives therefore hamper or completely inhibit bioethanol production by redirecting the



energy required for product formation to fix cellular damage caused by furans. Additionally,
enzymatic hydrolysis is often inhibited and necessary cofactors are needlessly used (Almeida
et al., 2007).

Acetic acid has been reported by Soudham et al. (2014) to be generated in large amounts during
acid pre-treatment. This becomes detrimental to fermentation as, once it is within the neutral
cell environment, it dissociates, leading to a drop in pH which inhibits cell activity (Harmsen
etal., 2010). Other acids such as formic and levulinic acid which are furan degradation products,
inhibit bioethanol production by causing intracellular accumulation of anions due to this acid
dissociation. Microorganisms will then attempt to correct this, leading to the unnecessary use

of ATP, therefore less is available for the formation of biomass (Almeida et al., 2007).

The generation of phenolic compounds has also been reported to be more significant during
alkali pre-treatment (Jonsson and Martin, 2016). The most significant effect of alkali pre-
treatment is the removal of lignin and structural alteration (Jénsson and Martin, 2016), which
leads to greater generation of phenolic compounds. Although the overall amount of phenolic
compounds generated is much lower than furan derivatives and weak acids, phenolic
compounds exert a more toxic effect on bioprocesses (Harmsen et al., 2010). These compounds
exhibit antimicrobial properties which leads to the generation of reactive oxygen species,
causing a loss in the producing microorganisms’ cell membrane integrity, a reduction in cell

growth and slower adaptation to sugars present (Harmsen et al., 2010; Almeida et al., 2007).

1.4 Bioprocess Modelling

To optimise the pre-treatment of lignocellulose, modelling tools such as Response Surface
Methodology (RSM) and Artificial Neural Networks (ANN) have been employed (Anwar et
al., 2012; Nikzad et al., 2015). RSM allows for the identification of many factors and their
interactive effects on the process yield (Rorke and Kana, 2016) and has been reported in the
modelling and optimisation of various bioprocesses. On the other hand, ANNs are capable of
gathering information by detecting patterns and relationships within data and are trained
through experience (Agatonovic-Kustrin and Beresford, 2000). ANN can also be used as a
predictive tool by acting as a virtual sensor for the estimation of parameters which are costly to
monitor (Gonzaga et al., 2009). Bioprocess kinetic modelling enables assessment of the

biochemical characteristics of a bioprocess. Monod models are used to describe biomass growth



in terms of the limiting substrate. The modified Gompertz models are used to determine
production lag time, maximum product concentration as well as the maximum production rate
on a given substrate (Imamoglu and Sukan, 2013; Dodi¢ et al., 2012; Putra et al., 2015). Kinetic
modelling allows for increased product yield and productivity and reduced formation of
unwanted by-products, to ensure high product quality (Almquist et al., 2014). The bioprocess
models can be used for virtual experimentation to reduce time and costs associated with process
development. Furthermore, the implementation of these models provides a strong foundation
for process design, control and optimisation which will inevitably reduce the challenges faced

during scale up (Linville et al., 2013).

1.5 Problem Statement and Justification of Study

Crude oil is one of the main sources for the world energy supply and its complete depletion is
anticipated in the next 35 years (Shafiee and Topal, 2009). The dwindling fossil fuel reserves
combined with greenhouse gas effects necessitates the broadening of the current energy
portfolio to include renewable energy sources for fuels (Cavka and Jénsson, 2013). Despite the
advantage of bioethanol as a cost effective alternative, a major challenge facing the transition
to bioethanol production is the sourcing of an economical, renewable feedstock that is capable
of yielding sufficient amounts of fermentable sugar with less fermentation inhibitors (Gabhane
etal., 2014).

Lignocellulosic biomass is a suitable renewable substrate, but its complex structure makes it
extremely recalcitrant to microbial degradation. To address this, a pre-treatment step is required
to enhance the effect of enzymatic hydrolysis. Several pre-treatment regimes have been reported
and these include chemical pre-treatment which makes use of acid or alkali, thermal and
microwave, among others. The use of microwave assisted chemical pre-treatment on waste

sorghum leaves is scantily reported in literature.

Apart from the abovementioned challenges with regards to the use of lignocellulosic biomass,
another limitation is the release of fermentation inhibitor compounds during the severe process
conditions required for pre-treatment. These compounds prevent effective bioconversion of
fermentable sugars to bioethanol (Cavka and Jonsson, 2013). Some of these by-products have

been reported to hamper enzymatic hydrolysis and fermentation processes. The detection and



guantification of these compounds is tedious, yet this knowledge is required to ensure

detrimental effects of these compounds are not overlooked.

Therefore, to alleviate concerns regarding food security and fossil fuel depletion, the use of
lignocellulosic biomass should be implemented. The generation of fermentation inhibitors
should be considered when developing efficient pre-treatment strategies. This can be achieved
by the implementation of ANN modelling to capture the complex interactions which link the
pre-treatment conditions to fermentable sugar production as well as inhibitor generation.
Furthermore, the fermentation process should be assessed in detail. Using kinetic models such
as Monod and modified Gompertz models will help to control the process, reduce costs and
increase the quality of the bioethanol produced. These findings could therefore contribute to

industrial scale productions from lignocellulosic biomass.

1.6 Aims and objectives

This study aimed to model the production of reducing sugar and all volatile compounds from
microwave assisted chemical pre-treatment of waste sorghum leaves. Additionally, the kinetic
behaviour of Saccharomyces cerevisiae growth and bioethanol production from waste sorghum

leaves was evaluated.

The following specific objectives were undertaken in order to achieve the abovementioned aims:

i Modelling and optimisation of microwave assisted acid (HCI) and alkali (NaOH)
pretreatment of waste SL for the release of fermentable sugars.

ii. Development of a soft-sensor based on an Artificial Neural Network (ANN) model to
predict the volatile compound profile generated during the pre-treatment regime
implemented in (i).

iii.  Development of Monod kinetic and Modified Gompertz models of Saccharomyces

cerevisiae BY4743 growth and bioethanol production from waste sorghum leaves.



1.7 Outline of dissertation/thesis

This thesis is comprised of five chapters presented in research paper format. Each experimental
chapter is self-contained, containing a literature review, materials and methods, results and
discussion, and conclusions. The description, assessment and application of waste sorghum

leaves for the production of bioethanol are central to all chapters.

Chapter 2 discusses the use of sorghum as a renewable feedstock for the production of biofuels
such as bioethanol and biohydrogen. It examines pre-treatment methodologies for
lignocellulosic biomass and the strategies to overcome the negative impacts of pre-treatment
on fermentation as well as the potential for producing bioethanol and other products from

sorghum leaves.

Chapter 3 focuses on the modelling and optimisation of microwave assisted chemical
pretreatment of sorghum leaves for the release of fermentable sugars as well as the profiling of
volatile compounds generated during pre-treatment. In addition, a soft-sensor capable of

predicting a volatile compound profile under varied process conditions was developed.

In Chapter 4, kinetic modelling of a laboratory scale batch bioethanol fermentation process,
using Saccharomyces cerevisiae BY4743 was undertaken to determine the dynamics and thus
predict the producing microorganism’s behaviour based on factors such as the producing
microorganism’s specific growth rate, affinity to the fermentation substrate and maximum

bioethanol production rate.

In conclusion, Chapter 5 integrates the work and states major conclusions derived from this study

and provides recommendations for future research.
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Chapter 2

Post-harvest sorghum waste as a renewable feedstock for biofuel production: A mini
review.

2.1 Abstract

Lignocellulosic bioethanol production has been highlighted as a promising, renewable
replacement for gasoline. Annual sorghum production is estimated at 60 million tonnes. A large
fraction (up to 90%) of this is considered as residual lignocellulosic waste. A major setback
associated with the pre-treatment of lignocellulose is the generation of compounds which inhibit
subsequent enzymatic hydrolysis as well as the fermentation process. In this review, the pre-
treatment strategies for post-harvest sorghum lignocellulosic waste are discussed. In addition,
the detoxification methods used for the reduction of fermentation inhibitors are reported.
Finally, the potential and challenges of using post-harvest sorghum waste as a lignocellulosic
substrate for the production of various biofuels are discussed.

Keywords: Sorghum biomass, lignocellulosic pre-treatment, detoxification, bioethanol

production, biofuels.

2.2 Introduction

The increasing global demand for energy coupled with diminishing fossil fuel reserves and the
associated greenhouse gas (GHG) emissions are driving the need for renewable energy sources
(Kurian et al., 2013). First generation bio-products which are produced from food crops such
as corn and sugarcane are frequently linked to food insecurity (Kurian et al., 2013), while
second generation bio-products which are produced from lignocellulosic biomass are
independent of the global food supply. Millions of tonnes of lignocellulosic crop residues are
generated from the agricultural sector and show potential to serve as economical feedstocks for
bio-production. The bioconversion of lignocellulosic biomass such as agricultural waste,
grasses etc. into biofuels as well as other value-added products offers a number of
environmental benefits (da Silva et al., 2012). Several lignocellulosic materials have been
exploited for biofuel production and include sorghum leaves (Rorke and Kana, 2016),
sugarcane leaves (Moodley and Kana, 2015) and napier grass, among others. Sorghum biomass,
specifically can be utilised for the production of bioethanol and biohydrogen which can be used
for transportation and electricity generation, as well as other commercially valuable products
such as xylitol (Zegada-Lizarazu and Monti, 2012; Woods, 2001; Sene et al., 2011).
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Although lignocellulosic biomass is a potential feedstock for biofuel production, it still presents
several challenges. For instance, it is comprised of a resistant matrix of lignin, cellulose and
hemicellulose which cannot be directly utilised by microbes during fermentation processes.
Therefore, pre-treatment is required in order to unwind these compounds, making the
fermentable sugars accessible to the microbes (Taha et al., 2016). Various pre-treatment
strategies exist and include chemical, thermal and microwave, among others. Depending on the
conditions of pre-treatment, lignocellulosic biomass generates, in addition to the fermentable
sugars, various compounds which are inhibitory to microbial metabolisms (Cavka and Jonsson,
2013). Therefore, to enhance process control and enable the reduction of unwanted inhibitory
compound generation, while optimising process conditions for maximal fermentable sugar

production, bioprocess modelling can be implemented.

Several studies have focused on modelling and optimisation of fermentable sugars and
bioethanol production from lignocellulosic biomass. Among the optimisation algorithms used
is Response Surface Methodology (RSM) and Atrtificial Neural Networks (ANNs). RSM is a
statistically based experimental modelling method which enables the description of interactive
effects among process variables (Bezerra et al., 2008; Wang and Wan, 2009a). A quadratic
model is usually developed to illustrate these interactive effects, and is then subsequently used
to optimise the process (Wang and Wan, 2009a). Additionally, Artificial Neural Networks
(ANNSs) as a predictive tool have recently gained much interest. ANN is a data processing
system which is a mathematical representation of the neurological functioning of a brain (Vani
et al.,, 2015; Wang and Wan, 2009a). It gathers information by detecting patterns and
relationships found in the data. Optimisation of pre-treatment processes using modelling tools
allows for maximum fermentable sugar release. Additionally, predictive tools such as ANN

may be used to reduce the generation of inhibitory compounds.

This review focuses on the potential of post-harvest sorghum waste as a feedstock for the
production of biofuels such as bioethanol and biohydrogen. The pre-treatment strategies
employed for the production of fermentable sugars and subsequent detoxification methods used
to reduce inhibitors generated during pre-treatment are discussed. Furthermore, the potential
and challenges associated with the production of biofuels such as bioethanol and biohydrogen

using post-harvest sorghum waste, are reviewed.
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2.3 Sorghum Production

Sorghum (Sorghum bicolor L. Moench) is an annual energy crop indigenous to Africa (Zegada-
lizarazu and Monti, 2012; du Plessis, 2008). It is a fast growing plant which is found in tropical,
subtropical and temperate climate zones. Numerous varieties of sorghum cultivars are grown
for grain, forage and sugar production, with each cultivar varying between short, leafy plants
and tall plants with thick, juicy stalks (Zegada-lizarazu and Monti, 2012). Post-harvest sorghum
biomass can be used for both first and second generation biofuel production. Sugar rich stalks
can be used for first generation biofuel production, while the leaves or bagasse of grain and
forage sorghum are ideal for second generation biofuel production (Zegada-Lizarazu and
Monti, 2012).

Sweet sorghum typically consists of cultivars that have been selected for sugar production. The
tall stalks of these plants are rich in soluble sugars like sucrose, glucose and fructose
(ZegadaL.izarazu and Monti, 2012). Grain sorghum is characteristically shorter in height than
other types, with the grain being rich in starch. Grain sorghum is often harvested for human
consumption as well as animal fodder, however it can also be used as a carbohydrate feedstock
for first generation biofuel production. Forage sorghum typically is high in protein and fibre
and the biomass is thus harvested for animal fodder. The biomass of all cultivars can be used
as a cellulose feedstock for second generation biofuel production (Zegada-Lizarazu and Monti,
2012).

Head
Flag leaf

‘\— Leaf sheath

Main stem

Figure 1: General form of sorghum plant
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2.4 Sorghum production in South Africa

Sorghum production in South Africa amounts to approximately 180 000 tons annually (du
Plessis, 2008). Nevertheless, this turnover is expected to rise in response to the 2% fuel blending
mandate implemented in South Africa (SA). Grain SA, the largest representative of commercial
farmers in this country stated that an additional 620 000 tons of sorghum will be required to
produce sufficient ethanol in order to meet the 2% fuel blending rate. Additionally, sorghum
grain still plays a major role in the food industry since it continues to serve as a staple food for
many rural communities (du Plessis, 2008), thus challenging its potential use as a substrate for
biofuel production. Therefore post-harvest wastes can easily be used to produce bioenergy in
both rural and industrial areas (Woods, 2001).

2.5 Global Sorghum Production

The United States Department of Agriculture (USDA) reported that the global sorghum
production during the 2015/2016 period reached 60.16 million tonnes (World Sorghum
Production, 2016). This leaves large volumes of remaining biomass, which can be used for the
production of biotechnological products of higher value, such as bioethanol, biohydrogen and
biobutanol, among others. However, before the lignocellulosic biomass is channelled towards
fermentation processes, the biomass must undergo pre-treatment in order to break down its

complex structure to enhance saccharification.

2.6 Composition of sorghum leaves

The average sorghum plant takes approximately 14 weeks to undergo five stages of growth, i.e.
from a seedling to a mature sorghum plant. A study conducted by Firdous and Gilani (2001)
showed that an increase in hemicellulose, cellulose and lignin occurs in all parts of the plant
throughout these stages. Table 1 shows the hemicellulose content was found to be higher in the
leaves (approximately 24%) compared to the stem (20%) or the whole plant (21%). On the other
hand, the cellulose and lignin contents were lowest within the leaves (ca. 23% and ca. 4.0 %

respectively).
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Table 1: Lignocellulosic composition observed in components of various sorghum cultivars.
(Adapted from Firdous and Gilani, 2001).

Average lignocellulosic composition of various sorghum cultivars (%)

Hemicellulose Cellulose Lignin
Whole sorghum plant 21.06 29.13 4.56
Sorghum stem 20.36 31.88 5.92
Sorghum leaf 24.01 23.49 3.90

Generally, the predominant reducing monosaccharide sugars found in sorghum leaves and
stems are glucose and fructose, while the major, non-reducing disaccharide found is sucrose.
However, the final sugar content may vary, depending on the type of sorghum that is produced.
Sweet sorghum varieties commonly display increased sucrose levels until maturity, while grain
sorghum varieties display decreased sugar content in the stems during grain formation (Wall
and Blessin, 1970).

An interesting factor to note may be the elevated sugar content observed in the forage parts of
sterile sorghum varieties where the setting of the seed is negatively impaired (Webster, 1963).
This may prove to be beneficial for second generation biofuel production by potentially
releasing more fermentable sugar. A sugar content increase of 3 to 9% was reported by Wall
and Blessin (1970) in the leaves two to three weeks after bloom of forage sorghum.
Hemicellulose and cellulose contents have also been found to be lower in sweet sorghum when
compared to grain, forage and fibre sorghum (Wall and Blessin, 1970), further promoting the

use of non-food sorghum cultivars for renewable energy production.

2.7 Suitability of sorghum leaves for fermentable sugar release

The complex matrix of lignocellulose (hemicellulose, cellulose and lignin) has led to the
recalcitrant nature of lignocellulosic material. Therefore, it has become common practise to
implement a pre-treatment step prior to enzymatic hydrolysis or fermentation, in order to
improve the digestibility of the lignocellulose (Cao et al., 2012). This is achieved by the
modification and removal of lignin, partial polymerisation and removal of hemicelluloses and
the reduction of cellulose crystallinity, as illustrated in Figure 2 (Behera et al., 2014; Mood et
al., 2013). Pre-treatment is considered to be one of the most expensive steps within the
conversion of lignocellulosic biomass (Singh et al., 2014). Desired characteristics of a

successful pre-treatment method include; low energy requirements while maintaining high
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performance, minimising sugar loss, reduced chemical usage to avoid the presence of inhibitors

during fermentation and the use of low-cost materials (Chiaramonti et al., 2012).

Lignin

Cellulose

o il = N {Y N7 N~ \J \
s % pemiceliniose

Pretreatment

Figure 2: Effect of pre-treatment on lignocellulosic material (Mood et al., 2013).

2.7.1 Physical Pre-treatment

Various mechanical size reduction methods exist such as chipping, shredding, grinding and
milling. Size reduction is employed to increase the surface area and decrease the degree of
polymerisation and crystallinity of cellulose (Singh et al., 2014). As size reduction is considered
as one of the most effective methods of increasing the accessibility of the lignocellulosic
material (Chiaramonti et al., 2012; Behera et al., 2014), it is commonly employed prior to other
forms of pre-treatment (Mood et al., 2013). However, it is a high energy process and is not
considered economically feasible at a larger scale of biofuel production. Therefore, alternative

methods are currently being sought (Chiaramonti et al., 2012).

Extrusion is a thermo-physical method which involves mixing, heating and shearing of
lignocellulosic material to achieve chemical and physical alteration (Yoo et al., 2011). Some of
the advantages of such an approach include high shear and rapid mixing, short residence time,

moderate barrel temperatures, no furan type inhibitor [furfural and 5-hydroxy methyl-furfural
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(HMF)] formation, easy scale-up as well as the possibility of a continuous operation (Mood et
al., 2013). Lastly, extrusion does not produce any effluent, thus reducing disposal costs (Mood
etal., 2013).

Microwave irradiation serves as a potential alternative to conventional heating methods which
aim to modify the structure of cellulose, partially remove or degrade lignin and hemicellulose
and thus enhance the enzymatic susceptibility of the lignocellulosic components (Mood et al.,
2013). Chen et al. (2012) reported a glucose concentration of 4.2 g per 10 g dry biomass of
sorghum bagasse at 130 °C for 1 hour, using microwave-assisted dilute ammonia pre-treatment.
Hu and Wen (2008) also reported that microwave-assisted alkali pre-treatment (0.1 g NaOH/g
biomass) of switchgrass at 190 °C for 30 minutes converted the intact structure of biomass to a

thinner form.

Freeze pre-treatment is a novel method that has been found to significantly increase the
enzymatic digestibility of rice straw. Although this method is more cost intensive, the
advantages of lower environmental impact, use of less dangerous chemicals and high efficacy

make this a method of significant interest (Mood et al., 2013).

2.7.2 Chemical Pre-treatment

Acid pre-treatment involving the use of sulfuric acid is one of the most common chemical
pretreatment methods applied for lignocellulosic biomass (Behera et al., 2014). This pre-
treatment may be carried out at low acid concentrations coupled with high temperatures or at
high acid concentrations coupled with low temperatures (Mood et al., 2013). Both of these
approaches suffer several drawbacks. Using a more concentrated acid may be more economical
as the process will be carried out at a lower temperature however, high acid concentrations lead
to higher levels of toxicity and corrosion, monosaccharide degradation and the production of
fermentation inhibitors such as furfural and HMF (Mood et al., 2013). In addition to this,
elevated temperatures may lead to the degradation of produced inhibitors, into unwanted
products such as levulinic and formic acids (Mood et al., 2013). Industrially, dilute acid
pretreatments (0.5 — 1.5%) are preferred as fewer inhibitors are produced and higher sugar
yields are obtained (Singh et al., 2014). Sindhu et al. (2014) reported a yield of 0.319g reducing

sugar/g substrate, using 5% sulfuric acid for 30 minutes at 121 °C to pre-treat bamboo.
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Another form of chemical pre-treatment involves the use of alkaline agents. Some of the
advantages of alkaline pre-treatment include: removing lignin, acetyl groups and different
uronic acid substitutions in order to enhance cellulose accessibility for enzymatic
saccharification (Mood et al., 2013). Most common alkali reagents are NaOH, KOH and
Ca(OH)2 but there are many drawbacks concerning alkali pre-treatment, including; long process
durations, lower hemicellulose and cellulose solubilisation and the need for slurry neutralisation
(Chiaramonti et al., 2012; Mood et al., 2013). In contrast to acid pre-treatment, alkali
pretreatment is operated at lower temperatures. Wu et al. (2011) achieved a saccharification
yield of 98.7% when sweet sorghum bagasse was treated with 2.5 M NaOH for 120 minutes at

room temperature.

lonic liquid (IL) pre-treatment involves the use of ionic liquids. ILs are a new class of solvents
which possess low melting points (<100 °C), high polarities, high chemical and thermal
stability, wide liquid temperature ranges and are non-flammable (Behera et al., 2014). The
network formed by hemicellulose, cellulose and lignin is degraded upon the formation of
hydrogen bonds between non-hydrated ions of ILs and the hydroxyl proteins of the sugars
(Mood et al., 2013). ILs such as 1-allyl-3-methyl imidazonium chloride (AMIMCI) and 1-
butyl3-methyl imidazonium chloride (BMIMCI) are found to be very effective as solvents for

cellulose dissolution at temperatures below 100 °C (Behera et al., 2014).

Ammonia fibre explosion (AFEX) is a physico-chemical method which involves the exposure
of lignocellulosic biomass to liquid ammonia at high temperature and pressure for a specified
period of time and then reducing the pressure abruptly (Behera et al., 2014). During the
pretreatment process, very little solid material becomes solubilised, minimising the loss of
hemicelluloses and lignin. The structure of the lignocellulosic material becomes altered,
resulting in an increased capacity to hold water, thus increased digestibility (Kumar et al.,
2009). AFEX has several advantages over other pre-treatment methods. AFEX does not result
in the formation of toxic materials, it does not require size reduction, results in approximately
99% sugar recovery and it does not necessitate the addition of a nitrogen source during

fermentation as the residual ammonia serves as a nitrogen source (Behera et al., 2014).
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2.7.3 Biological Pre-treatment

Biological pre-treatment encompasses the use of microorganisms such as brown, white and soft-
rot fungi which degrade lignin, hemicelluloses and cellulose. This occurs via the production of
enzymes to treat biomass prior to enzymatic hydrolysis (Chiaramonti et al., 2012; Behera et al.,
2014), with cellulose being the most difficult to degrade by biological treatment and white-rot
fungi being the most effective for lignocellulosic biomass degradation (Chiaramonti et al., 2012).
Advantages of biological pre-treatment include its low energy requirements, no generation of
toxic compounds (Behera et al., 2014) and the absence of chemical reagents. The main
disadvantage is the low process rate (Chiaramonti et al., 2012) as it can take weeks to achieve
significant results (Behera et al., 2014). Enzymes commonly used to enhance the saccharification
of lignocellulosic biomass include cellulase and hemicellulase however, high costs associated

with enzymes limit its commercial application (Zheng et al., 2014).

2.8 Inhibitory compounds from lignocellulosic pre-treatment

The main disadvantage of lignocellulosic pre-treatment is the degradation of sugars and
production of unwanted by-products such as fermentation inhibitors (Kamal et al., 2011). Under
acidic conditions, fermentation by-products include; weak acids, furan derived compounds and
phenylic compounds (Kamal et al., 2011; Jénsson and Martin, 2016) (Figure 3). Under alkaline
conditions, carbohydrate structures are better preserved but may undergo some degradation.
This leads to the production of carboxylic acids (J6nsson and Martin, 2016). Saponification of
the acetyl groups in the material also leads to the production of acetic acid. Some phenolic
compounds may also be produced and in certain processes, may be further degraded via

oxidation to form carboxylic acids (J6nsson and Martin, 2016).

The presence of acids such as levulinic, formic and acetic acid at concentrations of
approximately 100 mM in fermentations with Saccharomyces cerevisiae have been described
to exhibit an inhibitory effect on the fermentation (Jonsson and Martin, 2016). However, the
production of these acids would occur at the expense of sugar release, therefore pre-treatment

conditions should allow for the minimisation of weak acid formation.

Phenylic compounds such as phenolic aromatic carboxylic acids and non-phenolic aromatic
carboxylic acids originate from lignin or the hydrolysis of esterified phenols. Although these

compounds are found in acid hydrolysates at much lower concentrations than weak acids, the
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inhibitory effect exerted is frequently much stronger than that exerted by aliphatic carboxylic
acids such as acetic and levulinic acid (Jonsson and Martin, 2016). According to Larsson et al
(2000), the phenolic aromatic carboxylic acid, ferulic acid, was found to be inhibitory to S.
cerevisiae at a concentration of 1.0 mM, which is roughly 20 times lower than that of aliphatic
carboxylic acids. Lastly, the inhibition of fermentation by aldehydes appears to be similar to
that of carboxylic acids, where carbohydrate-derived furan aldehydes may be present in higher
concentrations but are not as inhibitory to fermentation, while lignin-derived aromatic
aldehydes are present at lower concentrations but possess a much higher toxicity (Jénsson and
Martin, 2016).
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Figure 3: Schematic diagram illustrating the main pathways of inhibitor formation from acid

pre-treated lignocellulosic material. Adapted from Almeida et al. (2007).

2.8.1 Hydrolysate Detoxification

Detoxification is carried out to convert fermentation inhibitors to inactive compounds, or to
reduce their concentrations (Kamal et al., 2011). Numerous methods of detoxification have been
studied, such as the use of chemical additives, i.e. reducing agents (Cavka and Jénsson, 2013)
and polymers (Cannella et al., 2014). Other methods such as liquid-solid extraction (Jonsson
and Martin, 2016; Kamal et al., 2011), employ the use of ion exchange or treatment with
activated charcoal, biological adaptation and many others (Kamal et al., 2011). Of these
methods, application of activated charcoal is one of the most widely used. A study conducted
by Kamal et al (2011) showed that using 2.5% activated carbon for an adsorption time of 60

minutes achieved a 58% furfural and 78% total phenolic reduction. Therefore, a yield of 0.78

22



0/g xylose was obtained from sago trunk hydrolysate, which was almost double the vyield
achieved without a detoxification step (0.307 g/g). In another study by Chandel et al. (2007),
sugarcane bagasse acid hydrolysate was treated with anion exchange resin, resulting in a 63.4%
reduction of furan-derivatives and 75.8% of total phenolics, while laccase treatment reduced
total phenolics by 77.5%. Although extensive research has been carried out in the search for
efficient strategies that aid the reduction or removal of well-known inhibitor compounds, the
investigation of the profile of various inhibitors generated under different pre-treatment

conditions has scarcely been reported.

2.9 Modelling and optimisation of lignocellulosic pre-treatment methods

The optimisation of the pre-treatment process is considered as one of the most important
developmental stages of an efficient bioprocess (Saini et al., 2013). Numerous modelling
strategies have been used for the development of lignocellulosic pre-treatment processes. The
Response Surface Methodology (RSM) has been frequently reported for modelling and
optimisation (Li and Xu, 2013; Gabhane et al., 2014; Umagiliyage et al., 2015; Saini et al.,
2013; Sindhu et al., 2014). This is largely due to the capability of RSM to account for interactive
effects of process parameters on the process output with a lesser number of experimental runs
(Rorke and Kana, 2016). RSM generates a polynomial equation which is used to determine

optimum process parameter set points (Mandenius and Brundin, 2008).

The Artificial Neural Networks are data-driven modelling tools capable of computing
relationships between process parameters and process responses in order to describe the
behaviour of a system (Sewsynker et al., 2015). They have an input layer, one or more hidden
layers and an output layer. The neurons within the hidden layer contribute to the establishment
of complex associations between the parameters which make up the input and output layers
(Nagata and Chu, 2003). Due to the marked ability of ANNSs to process inaccurate or fuzzy
information and describe patterns, they have gained increasing attention as virtual sensors
(Gonzaga et al., 2009). Therefore, ANNS show great potential as modelling and predictive

analytical tools for bioprocess development.

Additionally, the use of mathematical models to understand, predict and optimise the behaviour
of producing microorganisms during fermentation has significantly increased (Almquist et al.,

2014). These models are often used to increase product yield and productivity of a bioprocess,
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while simultaneously minimising the formation of by-products to produce high quality products
(Almquist et al., 2014). Monod kinetic models are commonly used to describe biomass growth
and product formation with respect to the limiting substrate (Imamoglu and Sukan, 2013), while
the modified Gompertz models are used to determine production lag time, maximum production
rate and maximum product concentration on a given substrate (Dodi¢ et al., 2012; Putra et al.,
2015). Fermentation Kinetics on lignocellulosic biomass therefore provides fundamental
information on process characteristics and behaviour, making process control and improvement

more efficient.

2.10 Lignocellulosic bioethanol production

One of the alternatives to gasoline is bioethanol produced from agricultural waste as it is both
renewable and eco-friendly (Shen et al., 2011). In South Africa, an average bioethanol
production cost of 70 US cents/litre was determined (USDA, 2006). This process exploits
microbial metabolism to convert simple sugars found in lignocellulosic biomass to bioethanol

(Shen et al., 2011). During this process, the following reactions occur:

Cellulases
(CeH100s)n (starch, cellulose, sugar) + nH,O —* nCsH1206 (glucose, fructose) [1]
Hemicellulases
(CsHgOa)n (hemicellulose) + nH.O —*»nCsH100s (xylose, mannose, arabinose, etc.) [2]
CeH1206 > 2CH3CH,0H (ethanol) + 2CO- [3]
CsH100s = 5CHsCH20H (ethanol) + 5CO2 [4]

To obtain fermentable sugars for bioethanol production, the lignocellulosic biomass must be
broken down using one or a combination of the previously mentioned pre-treatment methods.
The generation of fermentable sugars, which occurs during lignocellulosic degradation is seen
in reactions (1) and (2). Once the lignocellulose has been broken down and fermentable sugars
are obtained, it is then fermented at temperatures suited to the producing microorganism to
obtain 8-12% bioethanol. The bioethanol is then recovered from the fermentation medium by
distillation, de-watered and finally denatured by mixing it with 2-5% gasoline (Guo et al.,
2015).
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Bioethanol production via fermentation can be carried out using a range of inoculum sources,
such as pure and co-cultures (De Bari et al., 2013). Although genetically engineered pure
cultures are commonly used for the production of bioethanol, co-cultures of wild
microorganisms are fast becoming a more preferred inoculum method. Reasons for this include;
simultaneous conversion of mixed sugars, an increased substrate utilisation rate and the ability
to consume more than one type of sugar (De Bari et al., 2013). Lignocellulosic material releases
numerous sugars such as glucose, xylose, mannose, galactose and arabinose, with xylose being
the second most abundant sugar present (Anwar et al., 2014; Li et al., 2015). This release of
different types of sugars therefore necessitates the use of microorganisms which are able to
metabolise more than one type of sugar.

One of the commonly used yeasts is Saccharomyces cerevisiae. However, it has been
established that it is incapable of naturally utilising xylose (Li et al., 2015). Therefore, S.
cerevisiae strains used for bioethanol production from lignocellulose are often engineered to
use xylose (Romani et al., 2015; Sakihama et al., 2015). Other commonly used yeast species
include Scheffersomyces stipitis (De Bari et al., 2013) and the thermo-tolerant Kluyveromyces

marxianus (Gabardo et al., 2014).

A major challenge encountered during bioethanol process development is striking a balance
between optimisation of the process conditions for microbial growth, saccharification and
bioethanol production (Lin et al., 2012). Common operational parameters affecting bioethanol
production from lignocellulosic materials include pH, temperature, initial substrate

concentration and hydraulic retention time (HRT).

pH is considered a key process variable in the production of bioethanol as yeasts grow and
produce bioethanol at a slightly acidic pH of between 4 and 5 (Raikar, 2012). Therefore, the
fermentation capability of these microorganisms is severely hampered by very acidic (<4), basic
(>8) or even neutral (6-7) pH ranges. Raikar (2012) reported an ethyl alcohol % (v/v) of 6.9%
at a pH of 4, using grape waste and an increased ethyl alcohol % (v/v) of 7.6% at a pH of 5,
which then decreased. Therefore a pH range of 4.0-5.0 may be considered as optimal for

bioethanol production by S. cerevisiae.

Operating temperature has a significant impact on the fermentation process due to the

exothermic nature of bioethanol fermentation (Dai et al., 2014). In a study by Walsh and Martin

25



(1977), several strains of S. cerevisiae exhibited maximum temperature for growth between
37.5and 39.8 °C and optimum growth between 30.0 and 35.0 °C. A more narrow range of 28°C
to 34 °C has been reported by Dai et al (2014) to be optimal for yeast growth as well as

bioethanol production.

Initial substrate concentration is crucial to fermentation processes. A study by Dai et al (2014)
showed that, during simultaneous saccharification and fermentation (SSF), higher
concentrations of sugar and ethanol exhibited synergistic stress on yeast, which may lead to
incomplete or “stuck” fermentations. This effect is elucidated in the lower bioethanol
concentration obtained by Wang et al (2013) under SSF bioethanol production (Table 2).
Additionally, a significant decrease in the bioethanol production rates (from 28.3 to 13.7 and
3.7%) at respective sugar concentrations of 80, 160 and 300 g/L was observed. Therefore an

optimal range of 2-6 % is appropriate for a successful fermentation process.

The fermentation process time is chosen to ensure efficiency and to avoid wastage of resources.
Studies focusing on the optimisation of bioethanol production employed an HRT of between
48 and 72 hours (Singh and Bishnoi, 2012; Singh and Bishnoi, 2013; Luo et al., 2014). This
may be implemented to avoid end product inhibition caused by low ethanol tolerance. A study
by Kasavi et al. (2012) which evaluated the ethanol tolerance of industrial S. cerevisiae strains
showed a significant decrease in growth at ethanol concentrations of approximately 47 g/L and

higher.

Table 2 shows reported process conditions and bioethanol concentrations from sorghum
substrates. A high concentration of 127,80 g/L bioethanol was obtained by Deesuth et al. (2016)
from sweet sorghum juice under very high gravity (VHG) fermentation, while a concentration
of 68,00 g/L was reported for the same substrate and fermenting strain under continuous
operational conditions (Ariyajaroenwong et al., 2016). This demonstrates that fermentation
modes have a significant effect on production and should therefore be assessed prior to process
scale up. Additionally, studies by Luo et al. (2014) and Wang et al. (2013) suggested that sweet
sorghum bagasse possesses similar fermentation capabilities to sweet sorghum juice. Therefore,
although process conditions play an essential role in the optimal production of bioethanol, the
energy demand required to release the fermentable sugars from the substrate should meet the

required standard to be considered economically feasible.
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Table 2: Ethanol production from various sorghum substrates

Substrate Fermentation conditions Inoculum Bioethanol Reference
conc. (g/L)

Sweet sorghum juice 30 °C, 200 rpm, pH 4.93, 0.31 vvm, batch, S. cerevisiae NP 01 127,80 Deesuth et al. (2016)

(VHG) fermentation, 72 hr.
Sweet sorghum grain 37 °C, 300rpm, pH 4.5, batch, 32 hr. S. cerevisiae JP1 87,00 Barcelos et al. (2016)
Sweet sorghum juice 37 °C, 200 rpm, pH 4.5, batch, 21 hr. S. cerevisiae JP1 72,00 Barcelos et al. (2016)
Sweet sorghum bagasse 30 °C, 200 rpm, pH 6.0, 0.02 vvm, batch, ~ Schefferomyces stipitis 30,00 Barcelos et al. (2016)

40 hr CBS5774
Sweet sorghum juice 35 °C, 150 rpm, pH 5.0, batch, 168 hr S. cerevisiae ATCC 49.48 Luo et al. (2014)

24858

Sweet sorghum juice 30 °C, 0.01 h'%, continuous, immobilised,  S. cerevisiae NP0O1 68,00 Ariyajaroenwong et al. (2016)

single-tubular packed bed, 72 hr.
Sweet sorghum bagasse 30 °C, 80 rpm, batch, 24 hr. S. cerevisiae 41.43 Matsakas and Christakopoulos

(2013)

Sweet sorghum bagasse 37 °C, 150 rpm, pH 5.0, SSF, 168 hr. S. cerevisiae ATCC 38,00 Wang et al. (2013)

24858
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2.10.1 Product extraction

Bioethanol extraction can be carried out by solvent extraction and distillation. Currently, the
most common method applied is distillation (Onuki, 2006; Balat et al., 2008). However, it is
energy intensive and alternatives are being investigated (Pitt Jr. et al., 1983). A number of
distillation techniques can be employed, such as adsorption, azeotropic, diffusion, extractive
and membrane distillation (Aditiya et al., 2016). Another method investigated is supercritical
fluid extraction, which serves as an alternative to the above-mentioned extraction methods
(Rehm and Reed, 1996), though many disadvantages are associated with this. An additional
extraction method is in situ extraction. As many biotechnological processes are negatively
impacted by product inhibition, in situ product recovery from the fermentation medium will
result in a significant increase in the productivity of fermentation processes (Rehm and Reed,
1996). In situ product recovery strategies include adsorption (Ng and Kuek, 2013), distillation,
precipitation, electrophoresis, pervaporation, gas stripping, dialysis, reverse osmosis and
extraction (Rehm and Reed, 1996).

2.10.2 Techno-economic assessment of bioethanol production from lignocellulosic
biomass

Bioethanol has shown great promise as a sustainable alternative to transportation fuel, however
its potential is largely dependent on the eventual cost of bioethanol (Chovau et al., 2013).
Commercially, low cost, abundantly available feedstocks such as lignocellulosic biomass are
ideal (Quintero et al., 2013) as this will result in lowered production costs. This is essential for
the introduction of bioethanol as a large-scale transportation fuel (Quintero et al., 2013).
Developing a techno-economic model which simulates a commercial scale process plant is
therefore critical for process development. It calculates biofuel production costs using a process
model and economic model based on experimental data and economic assumptions (Vicari et
al., 2012). Techno-economic assessments for the production of bioethanol from various
lignocellulosic substrates have been reported (Quintero et al., 2013; Meyer et al., 2013;
Macrelli et al., 2012; Sassner et al., 2008). Meyer et al. (2013) achieved a minimum ethanol
selling price (MESP) of $2.51/gallon from corn stover, using recombinant S. cerevisiae, with
a reduced MESP of $2.22/gallon when organic acids are co-produced. In comparison, a lower
MESP of $0.97/L was obtained by Macrelli et al. (2012) from sugarcane bagasse and leaves,
using a microorganism consortium from a spent sulphite liquor plant. However, a study by
Vicari et al. (2012) determined a $0.15/gal uncertainty in MESPs from techno-economic

models. Uncertainties in primary measurements such as fermentable sugar yields from pre-



treatment as well as bioethanol yields during fermentation processes have been reported by
Vicari et al. (2012) to significantly contribute towards this. This highlights the necessity to
accurately model and optimise bioprocesses and quantify products essential to the overall

bioprocess.

2.11 Lignocellulosic biohydrogen production

In addition to bioethanol, lignocellulosic biomass such as post-harvest wastes can be used in
the production of biohydrogen. It shows great potential as a biofuel, owing to its high energy
content of 122kJ/g, recyclability and low carbon emissions when combusted (Wicher et al.,
2013). Biohydrogen has also gained interest as it can be obtained from waste and agricultural
residues (Han et al., 2015). It can be produced by biological and non-biological methods. Of
the biological methods, dark fermentation is the most economical due to its lower energy
consumption (Han et al., 2015) as well as its use of moderate environmental conditions (Sagnak
etal., 2011).

Anaerobic dark fermentation commonly employs Clostridium or Enterobacter species. It gives
higher fermentation rates and lower process costs in comparison to photo-dependent
techniques, as it can use a variety of organic substrates (Show et al., 2011). Other widely used
inoculum sources include mixed cultures which are found in anaerobic sludge, municipal waste
sludge, compost and soil. Mixed cultures have proven to be more beneficial when a large scale
is considered due to simple operation without risk of contamination, they are cost effective and
can utilise an array of feedstocks. Dark fermentation follows the Embden-Meyerhof/glycolytic
pathway in which hexoses such as glucose are catabolised to form pyruvate, which is further
oxidised to form acetyl-CoA (Lee et al., 2011). This reaction requires the reduction of
ferrodoxin by ferrodoxin reductase and once reduced, ferrodoxin is oxidised by hydrogenase
to regenerate ferrodoxin with the simultaneous release of electrons in the form of molecular
hydrogen. This metabolic pathway has been observed in some Clostridia species (Lee et al.,
2011). The acetyl-CoA is subsequently converted to acetyl phosphate which results in ATP
generation and acetate excretion. The accumulation of organic acids leads to a rapid drop in
the culture pH which consequently inhibits the production of hydrogen as bacteria are incapable

of sustaining themselves at pH levels below 5.0 (Nath and Das, 2004).
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Overall, hydrogen production is believed to follow one of the two main metabolic pathways:

the acetate pathway (Eq. 5) and the butyrate pathway (Eq. 6) (Barca et al., 2015).

CeH1206 + 2H20 = 2CH3COOH + 2C0O2 + 4H2 AGo =-206 kJ [5]

CsH1206 = CH3CH2CH2COOH + 2C0O7 + 2H,  AGo=-254 kJ [6]

Where, in the acetate pathway, 4 moles of hydrogen can be obtained when acetate is the main
product of the pathway, or the butyrate pathway where 2 moles of hydrogen can be obtained

when butyrate is the main product of the pathway.

Environmental process conditions such as pH, temperature and HRT have been reported to be
optimal for biohydrogen production at ranges of 5-7 (Tawfik et al., 2013; Nikhil et al., 2014;
Wang and Wan, 2009b), 35 and 37°C (Fan et al., 2006; Moodley and Kana, 2015; Sagnak et
al., 2011; Lo et al., 2013) and approximately three days (Show et al., 2011; Liu, 2008)

respectively.

Table 3 illustrates the various hydrogen yields reported from sweet sorghum. Although high
yields can be achieved, the use of sorghum juice and sorghum grain negatively impact the
global food supply, thus post-harvest residues such as sorghum bagasse and sorghum leaves

are more suitable for renewable biofuel production.



Table 3: Biohydrogen production from sweet sorghum

Substrate

Process conditions

Inoculum

Hydrogen Yield

Reference

Sweet sorghum leaves

Red sorghum grain

White sorghum grain

Sweet sorghum syrup

Sweet sorghum stalks

37.5 °C, 250 rpm, pH 7.0,
84hr, batch
30 °C, 100 rpm, pH 7.3,

80 hr

30 °C, 100 rpm, pH 7.3,

80 hr

30 °C, pH 5.0, 24 hr,
continuous
35°C, pH 5.5, 12 hr,

continuous

Anaerobic digested sewage sludge

Escherichia coli HD701,
Clostridium acetobutylicum ATCC
824

Escherichia coli HD701,
Clostridium acetobutylicum ATCC
824

Anaerobic seed sludge

Indigenous microflora of sweet

sorghum biomass

213.14 mL/g
substrate
2.09 mol H2/mol

glucose

3.01 mol H2/mol

glucose

0.68 mol H2/mol
hexose
0.74 mol H2/mol

glucose

Rorke and Kana (2016)

Morsy (2015)

Morsy (2015)

Saraphirom and
Reungsang (2011)
Antonopoulou et al.

(2011)
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2.11.1 Challenges and Future Outlook of Lignocellulosic Biofuel production

Due to the unethical use of first generation energy sources for biofuel production, research has
been directed towards the use of lignocellulosic biomass for biofuels. Nevertheless, several
factors such as high process costs and low product yields have hindered its use (Balan, 2014).
Techno-economic estimates show that second generation biofuels are approximately two to
three times more expensive than fossil fuel products. This is largely attributed to low conversion
efficiencies during lignocellulosic pre-treatment and enzymatic hydrolysis. Extreme process
conditions often lead to the generation of fermentation inhibitors which severely impact the
substrate conversion efficiency of the hydrolysate (Jonsson et al., 2013). This by-product
generation is heavily dependent on the feedstock used as well as the pre-treatment regime
employed, therefore it is essential that useful energy sources are assessed for the possible
generation of fermentation inhibitors. Knowledge of the types and quantities of by-products
released during pre-treatment will allow for screening and selection of suitable substrates, as
well as the appropriate pre-treatment regime, thus enhancing the potential for commercial
success. In addition, this knowledge will provide an in-depth perspective for the selection of
appropriate substrates and their pre-treatment regimes. This will reduce the resources required
for research and development by minimising preliminary experimentation for substrate

selection as well as subsequent process design.

Knowledge of the complex dynamics of a biochemical process within a fermentation process is
limited. This often leads to numerous fermentation processes being carried out at sub-optimal
conditions, leading to low product yields as well as process inefficiency. Therefore, reliable
bioprocess models are required during process development. Kinetic models capable of
accurately describing a fermentation process will provide invaluable information during biofuel
process development. The use of kinetic parameters coupled with mathematical models allows
for predictions of key process parameters such as cell concentration, substrate utilisation and
production rate within a fermentation process (Ariyajaroenwong et al., 2016). The developed
models can be used for virtual experimentation, thus reducing time and costs during bioprocess
development. They provide a basis for process design, control and optimisation which can
reduce scale-up challenges (Linville et al., 2013). Furthermore, these models enable fine-tuning

of the dynamics of fermentation processes for commercial application.
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2.12 Conclusion

Fossil fuel depletion coupled with environmental impacts have expedited research towards
renewable biofuels. Lignocellulosic sorghum leaf waste is a cheaper feedstock alternative for
biofuel production. However, its recalcitrance requires additional processing before
microorganisms can metabolise it. Therefore, low-cost pre-treatment strategies that minimise
the release of inhibitor compounds are necessary for optimal fermentable sugar recovery. In
addition to this, current biofuel production technologies are expensive and result in low energy
yields. Fermentative biofuel production from lignocellulose is therefore an attractive approach
for renewable energy development since the materials required are low cost, abundant and
sustainable. Mathematical optimisation strategies may help overcome pre-treatment challenges
by maximising fermentable sugar production whilst reducing inhibitor compounds as well as
improve low biofuel yields by use of kinetic modelling. Data generated from these models will

provide a comprehensive foundation for scale-up and commercialisation.
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Chapter 3
Microwave-assisted chemical pre-treatment of waste sorghum leaves: Process
optimization and development of an intelligent model for determination of volatile

compound fractions

This chapter has been published with the title:
Microwave-assisted chemical pre-treatment of waste sorghum leaves: Process optimization

and development of an intelligent model for determination of volatile compound fractions.

The article is presented in the following pages:
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detected. The reducing sugar production was optimized. An intelligent model based on Artificial
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1. Introduction

Rapidly diminishing fossil fuel reserves combined with environ-
mental pollution suggest a need for transition toward renewable
and sustainable feedstocks for fuel production and other commer-
cially important products (Cavka and Jénsson, 2013). Sorghum is a
fast growing cereal crop which generates large quantities of agri-
cultural waste in the form of sorghum leaves (Zegada-Lizarazu
and Monti, 2012). An estimated 64.32 million tons of sorghum
has been reported by the United States Department of Agriculture
(USDA) to be produced in the 2016/2017 period (World Sorghum
Production, 2016), with an estimated 76% of this weight attributed
to lignocellulosic waste (Stallcup et al., 1964).

* Corresponding author.
E-mail address: kanag@ukzn.ac.za (E.B. Gueguim Kana).

http://dx.doi.org/10.1016/j.biortech.2016.10.048
0960-8524/@ 2016 Elsevier Ltd. All rights reserved.

Lignocellulose is composed of three major components - cellu-
lose, hemicellulose and lignin (Kahr et al., 2013). Cellulose and
hemicellulose are sugar polymers which can be hydrolyzed to form
fermentable sugars (Chaturvedi and Verma, 2013) whereas, lignin
serves as a protective layer around hemicellulose and cellulose,
significantly reducing accessibility to microbial degradation
(Khoo, 2015). This presents a challenge for bio-conversion to fer-
mentable sugars (Cavka and Jonsson, 2013). An appropriate pre-
treatment is required to disrupt or break down the lignin barrier
in order to recover cellulose and hemicellulose (Anwar et al.,
2014). Pre-treatment methods frequently used include dilute or
concentrated acids and alkali solutions (Kumar et al., 2009) in con-
junction with thermal energy. Extreme process conditions required
to partially break down lignocellulose result in formation of
unwanted by-products (Cavka and J6nsson, 2013). Some of these
by-products have been reported to negatively influence enzymatic
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hydrolysis and fermentation processes (Zha et al., 2012). Fermen-
tation inhibitors include aromatic compounds, furan-derivatives
and aliphatic acids, concentrations of which vary, depending on
the composition of the lignocellulosic material used and the sever-
ity of pre-treatment process conditions (Cavka and Jénsson, 2013).

Some of the inhibitory effects observed during fermentation
include a longer lag-phase, slower microbial growth, lower cell
density as well as reduced productivity (Zha et al., 2012). Numer-
ous studies have focused on the removal/reduction of common
inhibitors in order to enhance microbial fermentation (Jonsson
et al, 2013; Palmqvist and Hahn-Hdgerdal, 2000a; Liu et al.,
2015). However, a complete assessment of the various intermedi-
ate volatile compounds which may arise during heat-assisted
chemical pre-treatment of lignocellulosic material has not been
comprehensively reported.

Challenges associated with pre-treatment often occur during
the fermentation or downstream stages of bioprocesses. However,
due to the variety and quantity of by-products generated, the iden-
tification and quantification of lignocellulosic pre-treatment prod-
ucts is often limited to sugars and commonly reported
fermentation inhibitors. This may lead to detrimental effects of
unidentified compounds being overlooked. Another major hin-
drance associated with full assessment of various intermediates
has been the high cost of instrumentation required for these anal-
yses (Zhang et al., 2005) as well as extensive sample preparation
and extended run times required for some of these methods
(Humpula et al., 2011). Consequently, costs associated with direct
quantification of large amounts of data can become insurmount-
able at both research and development (R&D), and production
stages due to the lack of instrumentation (Zhang et al., 2005).

Artificial Neural Networks (ANNs) have recently gained increas-
ing interest for modelling of non-linear processes. ANNs gather
information by detecting patterns and relationships found in data
and are trained through experience (Agatonovic-Kustrin and
Beresford, 2000) and can thus model bioprocesses using data
obtained from various modelling techniques (Desai et al., 2008).
ANNs have been reported in the modelling of bioprocesses by
Vats and Negi (2013) and Sewsynker et al. (2015). ANN also has
the capability of being used as a virtual sensor (soft-sensor) for
the estimation of process parameters which are difficult and costly
to monitor (Gonzaga et al., 2009).

Soft-sensors have provided an opportunity for real-time biopro-
cess monitoring using an indirect approach. In addition to this, real
time measurements can be achieved due to quick operating time of
soft-sensors. A predictive accuracy of 0.998 has been reported by
Herrera and Filho (2013), using a hybrid model comprised of
ANN and mass balance to predict product formation rate in
bioethanol production, using secondary measurements of pH, tur-
bidity, CO, flow rate and temperature. In this study, optimization
of microwave assisted acid pre-treatment as well as profiling of
volatile compounds generated from waste sorghum leaves (SL)
pre-treated under various microwave assisted regimes is carried
out. Furthermore, a soft-sensor model for the prediction of a vola-
tile profile from pre-treated lignocellulosic wastes is developed
and validated

2. Materials and methods
2.1. Feedstock preparation

Sorghum leaves used in this study were harvested from Uku-
linga Research Farm, Pietermaritzburg, South Africa (29°67E,
30°40'S). Approximately 5-8 sorghum leaves were cut off at the
leaf collar of mature (approximately 100-120 days) plants. They
were immediately oven dried at 70 °C for 48 h and milled to parti-

D.CS. Rorke et al./Bioresource Technology xxx (2016) xxx-xxx

cle sizes of 1-2 mm using a centrifugal miller (Retsch ZM-1, South
Africa). The milled leaves were stored in airtight containers prior to
use.

2.2. Experimental design

A four factor Box Behnken design was used for both microwave
assisted acid (HCl) and alkali (NaOH) pre-treatments (Table 1). This
generated 58 experimental runs with varied input values of acid
concentration or alkali concentration, microwave duration, micro-
wave intensity and solid-to-liquid (S:L) ratio.

2.3. Pre-treatment process

Pre-treatment involved weighing out 1.6 g (8% w/v), 2.8 g (14%
w/v) or 4.0 g (20% w/v) milled sorghum leaves into 500 ml Erlen-
meyer flasks. Leaves were then treated with 20 ml HCl or NaOH
at varied concentrations as shown in Table 1. Flasks were covered
with a glass plate and microwaved at a varied intensity range of
200-800 W for 2-10 min using a 1000 W capacity Samsung micro-
wave oven (Model: ME9114S1). Thereafter, pre-treated samples
were filtered using Munktell filter discs and the liquid phase used
for fermentable sugar quantification and volatile profile analysis.
Liquid hydrolysate was neutralized using 1.0 M NaOH or 1.0M
HCI and stored at 4 °C until further use. Solid biomass was rinsed
using distilled water and analyzed via acid-detergent fiber
analysis.

2.4. Analytical methods

2.4.1. Lignocellulosic biomass solubilisation

Lignocellulosic material solubilisation was analyzed using the
detergent fiber analysis technique described by Goering and Van
Soest (1992) and Wolfrum et al. (2009). This involved subjecting
lignocellulosic material to a neutral detergent solution to solubilize
and thus separate cell contents from cell wall components. The
residual cell wall components were then treated with an acid
detergent solution to solubilize and separate hemicellulose. The
remaining components (cellulose, lignin and acid insoluble ash)
were further treated with 2:1 saturated KMnO,. Lignin buffer solu-
tion to solubilize and separate lignin. Ashing was then carried out
on the final insoluble residue to separate cellulose and insoluble
ash.

2.4.2. Quantification of glucose and reducing sugars

Processed samples were analyzed for glucose content using the
YSI 2700 Model Biochemical Analyzer (YSI, USA). The sugar analyz-
ing principle is based on enzyme coupled reactions which produce
hydrogen peroxide. This allows for electrochemical detection
based on its electrochemical oxidation. Total reducing sugars were
quantified by DNS method (Miller, 1959).

2.4.3. Volatile compounds analysis

Volatile compounds from the liquid hydrolysate were analyzed
using coupled Varian 3800 gas chromatography (Varian Palo Alto,
California, USA) and Varian 1200 mass spectrometry (GC-MS).
The GC was equipped with an Alltech EC-WAX column of
30 m x 0.25 mm internal diameter x 0.25 um film thickness (All-
tech Associates Inc., Deerfield, Illinois, USA). Helium was used as
the carrier gas at a flow rate of 1 mL/min. From each pre-treated
sample, 4 pl was injected into a chromatoprobe trap prepared by
cutting glass tubes equaling the size of chromatoprobe quartz
microvials (length: 15 mm; inner diameter: 2 mm) and filled with
2 mg of a 50:50 mixture of Tenax TA (Alltech Associates, USA) and
graphitized carbon (Carbotrap™, Supelco, USA) and closed on both
ends with glass wool. The chromatoprobe traps were placed in a

biortech.2016.10.048
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Table 1

Codes and levels used for independent input variables for reducing sugar (RS) optimization and intelligent model development.
Independent variables Symbols Code

-1 0 1

Acid concentration (% v/v) A 0 2.00 4.00
Alkali concentration (% v/v) A? 0 117 235
Microwave duration (min) B 2.00 6.00 10.00
Microwave intensity (W) C 200 500 800
S:L ratio (% w/v) D 8.00 14.00 20.00

* Separate model used without acid concentration as an input.

Varian 1079 injector by means of a chromatoprobe fitting and ther-
mally desorbed. The temperature of the injector was 40 °C and was
held for 2 min with a 20:1 split ratio and then increased to 200 °C.
It was then held at 200 °C min~" in splitless mode for thermal des-
orption. Compound detection was delayed for 6 min. After a 3 min
hold at 40 °C, the GC oven was ramped up to 240 °C at 10 °C/min
and held there for 12 min. Compound identification was carried
out using the NISTO5 mass spectral library and comparisons with
retention times of chemical standards, as well as comparisons
between calculated Kovats retention indices and those published
in the literature. Clean chromatoprobe traps were run in GC-MS
as controls to identify background contamination. Compounds pre-
sent at higher or similar percentages in the blanks were considered
as contaminants and excluded from the analysis. For quantification
of compounds, known amounts of standards (97-99.5% purity) of
dominant compounds obtained from Sigma Aldrich Inc. GmbH,
Germany were injected into cartridges and thermally desorbed
under identical conditions to the samples and the peak area of
compounds in the samples were compared with those of the stan-
dards and used to calculate the total amount of compound per
gram of sorghum leaves (Suinyuy et al., 2013).

2.4.4. Optimization of reducing sugar using Response Surface
Methodology (RSM)

The experimental total reducing sugar yields were used to fit a
polynomial model equation, relating the input parameters to the
yield of total RS using Design Expert software (Stat-Ease Inc.,
USA). A general form of the model is shown in Eq. (1), where Y rep-
resents the process response which, in this case is total RS release,
o is the free or offset term, oy, o3, o3 and o4 are the linear coeffi-
cients, o3;, 3., 233 and o34 are the quadratic coefficients and o5,
O3, 014, Ol23 and olp4 are the interaction coefficients.

Y = olg + 04Xy + 0aX) + U3X3 + 0laXg + 0 X3 + 0zpX3 + Ol33X3
+ 0L44X3 + Oli2X1 Xz + 013X1X3 + O01aX1Xg + 03X2X3

+ 024X2X4

1)

2.5. Artificial intelligent model development to predict a profile of
volatile compounds

An Ensemble Neural Network was used to develop an intelli-
gent model to predict the type and fraction of volatile compounds
from microwave assisted pre-treatment of SL. The committee con-
sisted of 3 multilayer perceptron Artificial Neural Networks. The
topology of each committee member consisted of 1 input layer of
5 neurons, 2 hidden layers comprised of 13 neurons each and 1
output layer of 21 neurons (5-13-13-21).

The inputs included acid concentration, alkali concentration,
microwave duration, microwave intensity and S:L ratio while the
outputs were (in g/l) total reducing sugar and glucose and (in%)
furfural, 1-hydroxy-2-propanone, 5-methyl furfural, acetic acid,
formic acid, 2-phenyl acetaldehyde, citrannic anhydride, guaiacol,
phenol, 4-ethyl guaiacol, 4-ethyl phenol, 4-vinyl guaiacol, pyrra-

none, levulinic acid, dihydrobenzofuran, benzoic acid, HMF, phenyl
acetic acid and 4-hydroxy benzaldehyde. Subsequently the exper-
imental data set was divided into 75% for training and 25% for val-
idation. A logistic transfer function was employed for the hidden
layer. This layer had two main purposes; addition of weighted
inputs as well as the linked bias (2) and shift input data to a
non-linear form (3) (Desai et al., 2008).
n
sum:Z:]”'w'-)—() ()
1
where w; (i =1, n) are the connection weights, 0 is the bias and x; is
the input variable

1

oy = (1 + exp(—sum))

&)
The experimental data were normalized according to the fol-

lowing equation:

e;_

i~Enin (4)

Normalized (e;) = f—— -
max — Cmin

where e; is the normalized data and E,,;, and E, . denote the min-
imum and maximum values.

2.5.1. ANN training and Validation

The network was trained using a back propagation algorithm
with the goal of achieving a minimum net error on the validation
data set while preventing overtraining or memorization. A net
error value on the validation data set of 0.026 was achieved after
2500 training epochs. The accuracy of the intelligent model was
assessed using regression analysis on predicted and observed pro-
cess outputs and coefficients of determination (R?) were calculated
for each model output, illustrating the model’s ability to accurately
predict fractions of volatile compounds generated.

2.5.2. Sensitivity analysis and knowledge discovery

Sensitivity analysis was used to determine the sensitivity of the
model to changes in input parameter values (Sewsynker et al.,
2015). Sensitivity studies were carried out to determine the rate
and direction of output change when each input was varied from
its minimum to maximum values, while remaining inputs were
kept at their median value. To extract the functional relationship
between process inputs and outputs from the developed model,
mathematical equations illustrating the various functional rela-
tionships were derived using curve fitting.

3. Results and discussion
3.1. Sorghum leaf composition

Fiber analysis indicated that raw, untreated SL contain cellulose,
hemicellulose and lignin at fractions of 30.73, 32.72 and 3.56%
respectively (Table 2). This is in line with previously analyzed sam-
ples of SL which contained 28.56, 29.18 and 3.94% of cellulose,
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Table 2

Fiber composition of untreated microwave assisted chemically pre-treated sorghum leaves.
Sample Cellulose (%) Hemicellulose (%) Hemicellulose solubilisation (%) Lignin (%)
Untreated 30,73 32,72 0 3,56
Acid treatment 44,77 25,12 23 10,98
Alkali treatment 39,95 31,51 37 17,76

hemicellulose and lignin respectively (Rorke and Kana, 2016). A
very low reduction in hemicellulose content was observed for both
treatments (23 and 3.7% hemicellulose solubilisation for acid and
alkali treatments respectively) when compared to HCl pre-
treatment using a water bath for heating at 100 °C, which resulted
in 77% hemicellulose solubilisation (Rorke and Kana, 2016).

3.2. Volatile compound profile

The profile of groups of volatile compounds obtained under var-
ious combinations of microwave assisted acid pre-treatment con-
ditions is shown in Fig. 1. Major groups of compounds found
were aldehydes, aliphatic acids and ketones, as well as lower frac-
tions of alcohols, lactones and aromatic compounds (benzenoids
and phenolics). Commonly reported volatile compounds from
pre-treatment of lignocellulose include; furfural, HMF, formic acid,
levulinic acid, acetic acid and phenolic compounds (Palmqvist and
Hahn-Hdgerdal, 2000a; Jonsson et al., 2013), (Cavka and Jonsson,
2013; Chandel et al., 2007; Soudham et al., 2014; Dussdn et al.,
2014). Table 3 illustrates the relative volatile compound distribu-
tion ranges observed under varying pre-treatment conditions.
The largest volatile fraction observed was the aldehydes (up to
70%), of which furfural makes up a large portion (up to 68%), cor-
responding to a yield of 240.80 ng/g SL (Table 3). Furfural is a pro-
duct of xylose degradation, which occurs at high temperature and
pressure during pre-treatment (Palmqvist and Hahn-Hdgerdal,
2000a).

In addition to furfural was HMF, which is similarly formed upon
hexose degradation (Larsson et al., 1999). Also, these furan deriva-
tives are produced in larger quantities as process conditions
become more severe, with higher exposure time to acidic condi-
tions or temperatures (Harmsen et al., 2010). This suggests a
higher acid concentration will lead to greater generation of
furan-derivatives. Furfural has been reported to be inhibitory to
bioprocesses. For example, Saccharomyces cerevisiae metabolizes
furfural under aerobic, oxygen-limited and anaerobic conditions
to produce furfuryl alcohol (Palmqvist and Hahn-Hdgerdal,

2000a). The formation of furfuryl alcohol impedes ethanol produc-
tion as it inhibits anaerobic growth of S. cerevisiae (Palmqvist and
Hahn-Hagerdal, 2000a). Moreover, furfural causes reactive oxygen
species to accumulate within S. cerevisiae cells, as well as damage
to vacuole and mitochondrial membranes, chromatin and actin
(Almeida et al., 2007). Similarly, HMF is metabolized by S. cere-
visiae, producing 5-hydroxymethyl furfuryl alcohol, however this
occurs at a lower rate than that of furfural (Palmqvist and Hahn-
Hdgerdal, 2000a), causing a longer lag phase in microbial growth.
Therefore, furan derivatives inhibit or hamper ethanol production
by; redirecting energy used for ethanol production to fix damage
caused by furans; enzymatic inhibition or use of necessary cofac-
tors (Almeida et al., 2007).

The second largest fraction of the volatile profile is attributed to
aliphatic acids, amounting to a maximum of 80%, with acetic acid
being the most prominent (up to 48%, corresponding yield of
186.26 ng/g SL) due to the release of acetate upon hemicellulose
hydrolysis (Larsson et al., 1999). Once within the relatively neutral
cell environment, acetic acid dissociates, leading to a drop in pH
which ultimately inhibits cell activity (Harmsen et al., 2010). It is
therefore imperative that acid is neutralized before fermentation.
Other aliphatic acids formed were, among others, formic acid
(<12%), levulinic acid (<18%) and hexanoic acid (<15%), correspond-
ing to yields of 15.50, 21.20 and 6.70 ng/g SL respectively. Forma-
tion of formic acid occurs due to further degradation of HMF and
furfural while levulinic acid is formed upon the degradation of
HMF only (Larsson et al., 1999). Larsson et al. (1999) reported that
these acids are able to inhibit ethanol production by reduction of
biomass formation as well as ethanol yields. This occurs via intra-
cellular accumulation of anions due to acid dissociation, which
cells will attempt to correct by using a proton pump to remove
protons from the cell (Almeida et al., 2007). This process inevitably
utilizes ATP, therefore less is available for biomass formation.

Phenolic compounds such as phenol, 4-hydrozybenzaldehyde
and guaiacol are formed due to partial degradation of lignin
(Palmqvist and Hahn-Hdgerdal, 2000a; Jonsson and Martin,
2016). Although the fraction of phenolic compounds present in
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Fig. 1. Profile of volatile compound groups obtained under different pre-treatment conditions using microwave assisted HCl pre-treatment.
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Table 3

Relative amount (%) and corresponding yields of the profile of volatile compounds from microwave assisted acid pre-treatment of sorghum leaves.
Compounds” Relative compound distribution range (%) Corresponding yield (ng/g)

Acid pretreatment Alkali pretreatment Acid pretreatment Alkali pretreatment

Amines
Trimethylamine 0-1.25 0-63.69 0-0.62 0-2.93
Amides
Acetic acid amide (1] 0-10.33 0 0-2.09
2-Propenamide 0-1.15 0 0-0.96 0
Alcohols
2,3-butanediol 0-15.79 0 0-19.08 0
Benzyl alcohol 0-0.60 0 0-0.87 0
Furfuryl alcohol 1.34-2.24 0-9.03 0-2.32 0-0.20
Aldehydes
Furfural 0-67.70 0 0-240.80 0
5-Methyl-furfural 0-4.78 0 0-10.54 0
5-Hydroxymethylfurfural (HMF) 0-19.72 0 0-19.20 0
Aliphatic acids
Acetic acid 0-47.61 0-39.22 0-186.26 0-18.46
Formic acid 1.84-11.97 0-6.79 0.85-15.50 0-2.46
Hexanoic acid 0-14.88 0-10.31 0-6.70 0-3.73
Heptanoic acid 0-8.28 0-4.66 0-4.03 0-1.69
4-Oxo-pentanoic acid 0-17.66 0 0-21.20 0
Hexadecanoic acid 0-233 0 0-2.40 0
Propanoic acid 0-2.33 0 0-0.99 0
Butanoic acid 0-222 0 0-0.95 0
Isovaleric acid 0 0-3.06 0 0-1.44
Pentanoic acid 0.4.60 0-2.29 0-4.96 0-0.83
2-Oxo-propanoic acid 0-2.35 0 0-6.30 0
Tetradecanoic acid 0-0.51 0 0-0.75 0
Benzenoids
Benzeneacetaldehyde 0-7.99 0-9.85 0-11.82 0-3.57
Benzoic acid 0-4.30 0 0-9.48 0
Benzeneacetic acid 0-5.22 0-1.24 0-4.74 0-0.45
Ketones
1-Hydroxy-2-propanone 0-4.54 0-46.42 0-2.42 0-8.78
Isomaltol 0-20.16 0 0-8.99 0
5,6-Dihydro-2-pyranone 0-3.41 0 0-2.91 0
Ethanone 0-243 0-4.45 0-2.30 0-2.09
Levoglucosenone 0-5.20 0 0-12.27 0
Furyl hydroxymethyl ketone 0-4.21 0 0-3.81 0
Pyrranone 0-58.33 0-15.67 0-28.81 0-5.67
2-Cyclopentene-1,4-dione 0 0-0.91 1] 0-0.33
2,4-Dimethyl-1,3- 0 0-2.72 0 0-1.33
Cyclopentanedione
2-Pyrrolidone 0 0-3.01 0 0-1.42
2,5-Dimethyl-4-hydroxy-3-furanone 0-1.86 0-0.96 0-2.50 0-0.35
Lactones
5-Methyl-2-furanone 0-0.66 0 0-1.46 0
3-Methyl-2,5-furanone 0-9.84 0 0-18.88
Nitrogen-containing compounds
1H-pyrrole-2-carboxaldehyde 0-3.39 0 0-4.03 0
Indole 0 0-4.64 0 0-0.58
Dihydrobenzofuran 0.-2.80 0.60-23.54 0-1.67 0.03-4.54
Sulphur-containing compounds
Dimethyl sulfoxide 0-2.22 0-2.71 0-0.95 0-0.58
Phenolic compounds
2-Methoxy-4-vinylphenol 0-1.95 0-23.06 0-0.94 0-4.17
4-Hydroxy-benzaldehyde 0-3.46 0-3.81 0 0-1.79
Guaiacol 0 0-22.21 -2.760 0-10.84
Phenol 0-2.11 0-37.32 0-2.60 0-7.76
4-Ethyl-2-methoxy-phenol 0 0-10.11 0 0-2.29
4-Ethyl phenol 0 0-20.66 0 0-4.03
Diterpene alcohols
Phytol 0 0-33.04 0 0-9.57

4 Compounds listed according to compound class.

samples was relatively low (less than 6%), phenolic compounds where reactive oxygen species are generated, causing a loss of
have shown to be the more toxic group of fermentation inhibitors the fermenting organism'’s cell membrane integrity, reducing cell
(Harmsen et al., 2010). This may be due to the antimicrobial prop- growth and adaptation to the sugars present (Harmsen et al.,
erties exhibited by phenolic compounds (Adeboye et al., 2014), 2010; Almeida et al., 2007). Additionally, solubilized phenolic com-
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pounds are known to impede enzymatic saccharification of ligno-
cellulose (Jonsson and Martin, 2016). Whereas, weakly acidic phe-
nolic compounds can transport protons back across mitochondrial
membranes, leading to destruction of cellular electrochemical gra-
dients (Almeida et al., 2007). Due to the heterogeneity of phenolic
compounds, inhibition mechanisms discussed in this study are not
exhaustive.

The volatiles profile for samples pre-treated at varying micro-
wave assisted alkali process conditions is shown in Fig. 2, with
the largest fraction observed being phenolic compounds (<87%).
A similar observation has been reported by Jonsson and Martin
(2016), as the most significant effect of alkali pre-treatment is
the removal of lignin from lignocellulosic biomass as well as struc-
tural alteration. This leads to greater accessibility to cellulose dur-
ing enzymatic hydrolysis (Chaturvedi and Verma, 2013) as well as
greater generation of phenolic compounds. Similarly, a fraction of
aliphatic acids (up to 62%) was observed in alkali pre-treatment
compared to a fraction of (<78%) seen in acidic pre-treatment. This
pattern has also been reported by J6nsson and Martin in 2016, as
alkali pre-treatment is known to hydrolyze hemicellulose
(Chaturvedi and Verma, 2013), but at a lower rate than that of acid
hydrolysis. As previously mentioned, the effect of aliphatic acids
such as acetic, formic and levulinic acid can be detrimental to
microbial growth. However, in the case of S. cerevisiae, low internal
pH caused by the presence of these acids within the cell has been
reported to enhance thermotolerance by inducing certain heat
shock genes (Palmqvist and Hahn-Hdgerdal, 2000b). The marked
presence of diterpene alcohols of up to 33% (9.57 ng/g SL) may
be explained by the occurrence of phytol, which attaches to plant
chlorophyll as a side chain (Zerbe and Bohlmann, 2015) during
chlorophyll production. As lignocellulosic biomass was used in this
study, the marked presence of phytol may be due to the chloro-
phyll found in sorghum leaves.

3.3. Maximization of reducing sugars release using a regression pre-
treatment model

Experimental results seen in Table 4 showed that higher con-
centrations of glucose as well as total RS were obtained using

microwave assisted acid pre-treatment. Thus, microwave assisted
acid pre-treatment was selected for further optimization.

2 3

Compound fraction (%)

1 4 56 7

1l |‘|“‘“JJJ1
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The developed polynomial model is represented in Eq. (5)
where A: acid concentration (% v/v) B: microwave duration (min)
C: microwave intensity (W) and D: S:L ratio (% w/v).

Total reducing sugar = +5.82 + 1.55A + 0.31B — 0.84C
+0.58D + 0.15AB - 0.12AC
—1.29AD - 2.71BC - 0.65BD
—0.43CD — 1.04A% — 0.40B*

—0.44C* - 0.090D* 5)

Model fitness was assessed using Analysis of Variance (ANOVA).
A co-efficient of determination (R®) of 1 is an indication of a good
fit (Rorke and Kana, 2016). The RSM model gave an R? value of
0.76, thus the model can account for 76% of the variation observed
in the experimental data. An F-value of 3.19 in conjunction with a
low P-value of <0.05 shows the significance of the model.

3.3.1. Optimal RS generation from sorghum leaves using Response
Surface Methodology (RSM)

Fig. 3a shows the interactive effect of S:L ratio and acid concen-
tration on RS yield. A S:L ratio (< 15%) and low acid concentration
(<1%) gave a RS recovery of 3 g/l. The yield increased to about 7 g/1
when low S:L ratio (8-11%) was employed with an acid concentra-
tion of 4%. The interactive effect of microwave intensity and dura-
tion (Fig. 3b) shows an increase in RS yield from 1 g/ to almost 9 g/
I when microwave duration was increased from 2 to 10 min at
200 W intensity. However, a decrease in sugar yield was observed
with longer irradiation time (about 10 min) and an increase in
microwave intensity from 200 W to 800 W. This suggests that pro-
longed periods of exposure to significant levels of irradiation may
damage the plant cell structure (Li et al., 2014). Optimum set-
points of 3.83% HCI, 2 min microwave duration, 600 W microwave
intensity and 16.66% S:L ratio were predicted by the RSM model
with a RS yield of 6.0 g/l. An average observed RS yield of 9.13 g/I
was obtained from the validation experiments.

3.4. Artificial Neural Network Based model predicting the fractions of
volatile compounds from microwave-assisted chemical pre-treatment

3.4.1. ANN committee model assessment
A committee of ANN models was developed to predict the rela-
tive fractions of 21 volatile compounds from microwave-assisted

Run number as per BBD (alkali model)
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Fig. 2. Profile of volatile compound groups obtained under different pre-treatment conditions using microwave assisted NaOH pre-treatment.
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Table 4
Reducing sugar and glucose yields observed for microwave-assisted acid and alkali pre-treatment of sorghum leaves.

Input level code

Acid pre-treatment Alkali pre-treatment

Acid Conc. Alkali Conc.” MW duration MW intensity S:L ratio Total RS (g/1) Glucose (g/1) Total RS (g/1) Glucose (g/l)
-1 -1 -1 0 0 12.61 125 275 124
+1 +1 -1 0 0 19.30 234 1.77 0.15
-1 -1 +1 0 0 15.39 024 222 0.20
+1 +1 +1 0 0 25.10 091 328 0.02
0 0 0 -1 -1 46.67 1.36 035 0.04
0 0 0 +1 -1 21.07 0.70 0.63 0.06
0 0 0 -1 +1 2851 262 1.46 0.07
0 0 0 +1 +1 17.66 1.02 323 0.29
-1 -1 0 0 -1 8.45 0.96 0.96 0.82
+1 +1 0 0 -1 38.35 244 1.54 0.06
-1 -1 0 0 +1 27.50 212 5.52 1.94
+1 +1 0 0 +1 31.28 157 267 0.24
0 0 -1 -1 0 23.46 1.52 0.58 023
0 0 +1 -1 0 38.35 1.74 1.66 0.16
0 0 -1 +1 0 78.46 312 0.61 0.15
0 0 +1 +1 0 530 030 6.56 023
-1 -1 0 -1 0 14.88 0.96 394 1.16
+1 +1 0 -1 0 37.34 3.06 131 0.12
-1 -1 0 +1 0 8.70 0.08 129 0.13
+1 +1 0 +1 0 28.76 0.83 5.12 0.16
0 0 -1 0 -1 12.99 1.10 1.26 0.04
0 0 +1 0 -1 31.28 0.61 0.98 0.04
0 0 -1 0 +1 60.04 3.09 1.7 0.19
0 0 +1 0 +1 35.32 1.05 5.90 0.09
0 0 0 0 0 46.42 229 1.92 0.24
0 0 0 0 0 38.09 213 1.72 0.19
0 0 0 0 0 48.18 246 1.69 0.09
0 0 0 0 0 68.62 2.06 1.51 022
0 0 0 0 0 44.40 2.89 141 0.18

* Separate model used without acid concentration as an input, MW: Microwave.
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Fig. 3. 3-D Response Surface plots of the microwave assisted acid pre-treatment model, showing the interactive effects of variable input parameters on the release of total

reducing sugar.

acid and alkali pre-treated sorghum leaves. Compounds exhibiting
fractions above 1.0% across the majority of experiments were
selected for model outputs and included; reducing sugar, glucose,
furfural, 1-hydroxy-2-propanone, 5-methyl furfural, acetic acid,
formic acid, 2-phenyl acetaldehyde, citrannic anhydride, guaiacol,
phenol, 4-ethyl guaiacol, 4-ethyl phenol, 4-vinyl guaiacol, pyrra-
none, levulinic acid, dihydrobenzofuran, benzoic acid, 5-hydroxy
methyl furfural, phenyl acetic acid and 4-hydroxy benzaldehyde
(Fig. 4). The strategy of using an ensemble of neural networks
rather than a single multilayer perceptron was to enhance the net-
work prediction performance by using ensemble averaging (EA).
The positive impact of EA on ANN model’s prediction accuracy
has been detailed by Piotrowski et al. (2016). Upon training with
75% of experimental data, the accuracy of the developed commit-
tee model was assessed by using it to predict the relative fraction
of volatile compounds from 15 experimental runs of microwave
assisted acid and alkali pre-treatments which were not previously
exposed to the committee. Output values for the 21 compounds
gave varied coefficients of up to 0.93. Higher co-efficients of deter-
mination (>0.7) were obtained for furfural, formic acid, guaiacol,

phenol, 4-ethyl guaiacol, 4-vinyl guaiacol, levulinic acid, dihy-
drobenzofuran and HMF (Fig. 4), suggesting a higher reproducibil-
ity and accuracy in the prediction of the concentration of these
compounds by the developed model when subjected to novel
pre-treatment conditions. Fig. 5 shows the predicted versus
observed values where most of the data points are located along
the diagonal line. The relative higher prediction accuracy of the
ANN model on furan derivatives, aliphatic acids and phenol is of
significant importance as this shows potential for virtual analytical
assessment. This knowledge will enhance the design of suitable
pre-treatment and detoxification regimes with minimization of
inhibitory side-products (Larsson et al.,, 1999), boosting the eco-
nomic viability of SL and other lignocellulosic substrates for the
production of biofuels and biomaterials. The ANN predictive accu-
racy on glucose, 1-hydroxy-2-propanone, 5-methyl furfural, acetic
acid, 4-ethyl phenol, benzoic acid, phenyl acetic acid and 4-
hydroxy benzaldehyde gave coefficient values between 0.42 and
0.69. The model predictive efficiency on this set of volatile com-
pounds was lesser compared to the previous set as a result of pos-
sible interactive interferences of some intermediate volatile
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Fig. 4. Chart showing the various R? values obtained for each microwave assisted pre-treatment process output using ANN.
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Fig. 5. Regression plots showing the average predicted versus observed compound fraction values which exhibit R? values above 0.7.

compounds impacting the detection accuracy. However the model
could still account for about half of the variations in experimental
data. The negative impact of outliers on ANN based model develop-
ment has been reported by Khamis et al. (2005). Compounds
exhibiting coefficients of determination below 0.4 were not consid-
ered significant enough to be estimated using the developed
model. These included; reducing sugar, citrannic anhydride, 2-
phenyl acetaldehyde and pyrranone.
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3.4.2. Impact of input changes on process outputs

Sensitivity studies focused on the impact that process input
variation had on the evolution of commonly reported inhibitor
compounds. Thus, a high sensitivity to an input implies that the
concentration of the inhibitor will be highly affected with little
variation on the process input and vice versa as described by
Sewsynker et al. (2015). The effects of varying input parameter val-
ues within the ranges used, on process outputs of furfural, formic
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Table 5

Model equations illustrating the direction and rate of change of selected volatile compound outputs when input parameters were varied within their boundaries.
Eq.  Process input/output Model equation form Equation type Fitted model R? value
(a)  Acid conc.: Furfural y=0x"/K" + X" DR-Hill ¥ = 39.02x8622 /2 808672 . 48622 0.99
(b)  Acid conc.: Phenol y=7+(1-7T(fx) DR-gamma ¥ =1.27x10" + (1 - 1.27x10")I"(7.19x10%,2.87x10%) 0.99
(c)  Alkali conc.: Furfural y=a/(1+e=) Ratkowsky y =4.02x10" /1 + e-640+85% 0.99
(d)  Alkali conc.: Phenol y=0x"/K" +x" DR-Hill y=17.44x252/1.93232 | x252 0.94
(e) MW duration: Furfural  y— ab+ cx4/b + x¢ MMF ¥ = 2.25x107%(1.00x10°%) + 2.84x102x156x10' /1 00x10~8 4 x-158x10'  0.72
() MW duration: Phenol y=a-be™ Sigmoidal y=1.28x10" — 6.59¢161x10"x% 0.97
(g) MW intensity: Furfural  y— 1/(a+bx+ o) Reciprocal quadratic  y — 1/3.74x10% — 3.41x + 7.76x10 >x? 0.99
(h) MW intensity: Phenol y = 0x"/K" 4 X" Dr-Hill y= 8.87x201x10' /4_57X102’”“'"‘ |+ x201x10' 0.94
(i) S:L ratio: Furfural y=a/(1+et%) Ratkowsky Y =3.72x10' /1 4 e~456x10' +4.56x 0.99
(0)] S:L ratio: Phenol y=0x1/K" +x" DR-Hill y= l.40x10‘x8‘“’““‘/I.Oleo‘“"“" 0! 0.86

DR: Di

MMF: Morgan-Mercer-Flodin, MW: Microwave.

acid, phenol, levulinic acid and HMF are shown in Fig. 6a-e. Sensi-
tivity analysis indicated that an acid concentration above 2%
resulted in a linear increase in furfural, formic acid, levulinic acid
and HMF (Fig 6a). A drastic increase in furfural from approximately
2% to almost 40% (144 ng/g SL) was observed when acid concentra-
tion was increased from 2.5 to 3% illustrating a high sensitivity
within this region. This revealed that furfural production was lar-
gely dependent on acid concentration and fit a dosage-response
kind of relationship (Table 5a) with a threshold concentration at
about 2.5% HCI. By implication, dilute acid pre-treatment regimes
will generate lesser amounts of inhibitor products such as furfural
than that of concentrated acid due to less severe process conditions
as suggested by Behera et al. (2014). However, an inverse relation-
ship was observed for phenol, where a further increase in acid con-
centration from 2% to 4% led to a decrease in phenol from
approximately 12% (ca. 5.00 ng/g SL) to O (Fig. 6a). The direction
and rate of change of phenol production under acid pre-
treatment was best illustrated by a dose response gamma type
relationship (Table 5b). In contrast to this, alkaline pre-treatment
at a concentration of approximately 1% resulted in complete reduc-
tion of all compounds except phenol (Fig. 6b). An increase in alkali
concentration from 1% to 2.35% triggered a rise in phenol concen-
tration from 5% (0.27 ng/g SL) to approximately 18% (0.74 ng/g SL)
(Fig. 6b). The relationship was best fitted using a dose-response
type equation (Table 5d). Alkali pre-treatment has been shown to
partially degrade lignin, resulting in generation of phenolic com-
pounds such as phenol (Palmqvist and Hahn-Hagerdal, 2000a;
Jonsson and Martin, 2016). Fig. 6¢ illustrates low sensitivity of all
non-phenolic compounds to a change in microwave duration, as
all of these compounds remained near 0%. However, a linear
increase in phenol from 9% (1.26 ng/g SL) to 13% (2.60 ng/g SL)
was observed when microwave duration was increased from 2 to
5 min, exhibiting a sigmoidal type relationship seen in Table 5f. A
similar low sensitivity was observed for non-phenolic compounds
when microwave intensity was increased from 200 W to 800 W
(Fig. 6d), while a non-linear increase in phenol was observed,
which was best fitted by a dose-response type equation
(Table 5h). These data therefore suggest that generation of furan
derived compounds such as furfural and HMF is largely dependent
on acid concentration. This is in line with observations made by
Jonsson and Martin (2016), suggesting that acidic conditions result
in the formation of furan derivatives which are often further
degraded due to instability in an acidic medium or other process
conditions.

The impact of S:L input on the production of non-phenolic com-
pounds showed that an increase in S:L ratio from 8 to 12% led to a
linear decrease (Fig. 6e) and was best illustrated by a ratkowsky
type equation (Table 5i). Furthermore, a non-linear increase in
phenol from 0 to 20% (ca. 6.0 ng/g SL) was observed when S:L ratio

was increased from 10 to 12%, illustrating a relatively high sensi-
tivity of phenol generation to small changes in S:L ratio. A further
increase in S:L ratio to 13% led to a sharp decrease in phenol from
20% to approximately 12% which then plateaued at 12% (ca.
2.40 ng/g SL) even with increasing S:L ratio to 20%. This non-
linear relationship between S:L ratio and phenol production was
best illustrated using a Dosage Response model equation
(Table 5j). This type of response may be due to lower S:L ratio
allowing for increased accessibility of either alkali or acid solutions
to the lignocellulosic material, resulting in increased lignocellu-
losic degradation. Vargas Betancur and Pereira (2010) reported
an optimum S:L ratio of 1:2.8 (g:ml) for high xylose release and
low inhibitor generation from sugar cane bagasse. The developed
Artificial Neural Network models have been deposited into the
Repository of Intelligent Models (REDIM, 2016) with accession
numbers (PRHE000249 and PRAIO00402).

4. Conclusion

Optimization of reducing sugar release from microwave-
assisted acid pre-treatment resulted in an optimal release of
9.13 g/l. The developed intelligent model gave R?>-values of up to
0.93 and an average R?>-value of 0.59, illustrating that it could accu-
rately estimate concentrations of various volatile compounds. It is
therefore an efficient virtual analytical tool which lowers process
economics. Sensitivity analysis showed high sensitivity of furfural
to acid and alkali concentration and S:L ratio. Significant non-
linearities were observed between pre-treatment conditions and
the profile of volatile compounds. This knowledge will enhance
the design of lignocellulosic pre-treatment regimes for production
of biofuels and biomaterials.
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Chapter 3 - Appendix

Data not shown as per journal specifications are included as supporting information.

Table 1: Analysis of Variance (ANOVA) for total reducing sugar model from microwave
assisted acid pre-treatment
Model Sumof df Mean F P-value R? Adjusted Adeq.

output squares squares value R2 precision
Total 8899 14 6.36 3.19 0.019 0.76 0.52 7.469
reducing
sugar

df: degrees of freedom, F-value: Fisher-Snedecor distribution value, P-value: probability value,

R?: coefficient of determination.
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Table 2: Predicted and observed reducing sugar and glucose yields for microwave-assisted acid and alkali pre-treatment of sorghum leaves.

Input level code

Acid Pre-treatment

Alkali Pre-treatment

Acid Alkali MW MW Intensity SiL Total obs.  Total pred. Obs. Pred. Total obs. Total Obs. Pred.

Conc. Conc.” Duration Ratio RS RS (g/l) Glucose Glucose RS (g/) pred. RS Glucose Glucose
(9/) (9/m) (9/1) (9/1) (/) (9/m

-1 -1 -1 0 0 12.61 20.31 1.25 1.40 2.75 2.53 1.24 1.20

+1 +1 -1 0 0 19.30 34.23 2.34 2.53 1.77 1.35 0.15 0

-1 -1 +1 0 0 15.39 9.44 0.24 0.35 2.22 3.50 0.20 0.53

+1 +1 +1 0 0 25.10 37.96 0.91 2.28 3.28 4.35 0.02 0.20

0 0 0 -1 -1 46.67 35.64 1.36 141 0.35 0 0.04 0.07

0 0 0 +1 -1 21.07 23.39 0.70 1.02 0.63 1.58 0.06 0

0 0 0 -1 +1 28.51 35.18 2.62 2.61 1.46 2.58 0.07 0.24

0 0 0 +1 +1 17.66 37.68 1.02 1.27 3.23 5.90 0.29 0.25

-1 -1 0 0 -1 8.45 5.08 0.96 0.18 0.96 0.34 0.82 0.45

+1 +1 0 0 -1 38.35 33.57 244 212 1.54 2.40 0.06 0.36

-1 -1 0 0 +1 27.50 25.05 2.12 191 5.52 5.63 1.94 1.19

+1 +1 0 0 +1 31.28 27.43 1.57 1.82 2.67 4.26 0.24 0.16

0 0 -1 -1 0 23.46 17.89 1.52 1.71 0.58 1.77 0.23 0.25

0 0 +1 -1 0 38.35 52.55 1.74 197 1.66 1.33 0.16 0
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Figure 1: 3-D Response Surface plots of the microwave-assisted acid pre-treated model,

showing the interactive effects of the process variables on the release of total reducing sugar.
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Chapter 4
Kinetics of Bioethanol Production from Waste Sorghum Leaves using Saccharomyces
cerevisiae BY4743

This chapter has been submitted to Fermentation with the title: Kinetics of bioethanol

production from waste sorghum leaves using Saccharomyces cerevisiae BY4743.
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Abstract

Kinetic models for bioethanol production from waste sorghum leaves by Saccharomyces
cerevisiae BY4743 are presented. Fermentation processes were carried out at varied initial
glucose concentrations (12.5-30.0 g/L). Experimental data on cell growth and substrate
utilisation fitted the Monod kinetic model with a coefficient of determination (R?) of 0.95. A
maximum specific growth rate (umax) and Monod constant (Ks) of 0.176 ht and 10.11 g/L,
respectively were obtained. The bioethanol production data fitted the modified Gompertz model
with an R? value of 0.98. A maximum bioethanol production rate (rpm) of 0.52 g/L/h, maximum
potential bioethanol concentration (Pm) of 17.15 g/L and a bioethanol production lag time (t.)
of 6.31 hours were observed. The obtained Monod and modified Gompertz coefficients
indicated that waste sorghum leaves can serve as an efficient substrate for bioethanol
production. These models with high accuracy are suitable for the scale up development of

bioethanol production from lignocellulosic feedstocks such as sorghum leaves.

Keywords: Monod equation, Modified Gompertz equation, Bioethanol, Sorghum leaves.

1. Introduction
Ideal crops for commercial bioethanol production in South Africa include maize, grain sorghum
and sugar cane [1], however, in order to completely utilise these materials, post-harvest field
wastes should be employed for biofuel production. Sweet sorghum (Sorghum bicolor (L)
Moench) for one, yields significant amounts of biomass (leaves and pressed stalks) and sugar

(found in stalk) [2]. Bioconversion of lignocellulosic material to renewable fuels is currently
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receiving much interest since it does not impact food security [2]. Several studies on the
enhancement of fermentable sugar release from lignocellulosic substrates have been reported
[3-5]. However a significant knowledge gap exists on the kinetic assessment of the pre-treated

lignocellulosic substrates for biofuel production.

Bioethanol is one such fuel which exhibits several advantages over conventional fossil fuels.
This includes its renewable nature, ease of storage, higher oxygen content, higher octane
number, it is free of sulfur, contributes less to global warming as well as air pollution [6-7]. In
recent times, the application of bioethanol as a fuel replacement has become more appealing
[7]. Globally, efforts are being made to further expedite the use of renewable fuel sources as an
alternative. These efforts are being challenged by a significant increase in the cost of production
[8]. This suggests that further modelling and optimisation studies are required for the

development of biofuel from lignocellulosic substrates.

Kinetic modelling refers to a mathematical description of the changes in the properties of a
system in which biochemical reactions take place [9]. These models assist in the design of a
production process by representing the complex biochemistry of cells. Kinetic models can be
used to understand, predict and evaluate the effects of altering the components of a fermentation
process [10]. Most commonly, these models are used to increase yield and productivity as well
as minimise the formation of undesired by-products, ensuring the product is of high quality
[10]. Models capable of describing the kinetics of microbial growth, substrate utilisation and
product formation play a fundamental role in process optimisation and control [11] by providing

a basis for process design, control and scale-up [12].

Monod kinetics models are commonly used to describe biomass growth and product formation
with respect to the limiting substrate [13], while the modified Gompertz models are used to
determine production lag time, maximum production rate and maximum product concentration
on a given substrate [6,14]. Very few studies have reported on bioethanol fermentation kinetics
using lignocellulosic biomass as a feedstock [12, 2 and 13]. These studies include feedstocks
such as populus hydrolysate [12], sweet sorghum stalks [2] and rice hulls [13]. Despite this,
there is a scarcity of knowledge on the fermentation kinetics of this fuel using waste sorghum

leaves.
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Knowledge from fermentation Kinetic studies on waste sorghum leaves will provide
fundamental information on process characteristics and behaviour. Furthermore, decisions
involving process control and improvement can be made with relative ease when a bioprocess
is fully understood, advancing its commercial application. In this study, the Monod and
modified Gompertz models were used to assess the kinetic behaviour of a bioethanol

fermentation process (in batch system) using waste sorghum leaves.

2. Materials and Methods
2.1 Feedstock Preparation and Pre-treatment

Sorghum leaves used in this study were harvested from Ukulinga Research Farm,
Pietermaritzburg, South Africa (29°67'E, 30°40’'S). Approximately 5-8 sorghum leaves were
cut off at the leaf collar of mature (approximately 100-120 days) plants. They were immediately
oven dried at 70 °C for 48 hours and milled to particle sizes of 1-2 mm using a centrifugal miller
(Retsch ZM-1, South Africa). Milled leaves were treated under previously optimised conditions
[15] i.e. a 3.83% (v/v) HCI solution at a solid-to-liquid (S:L) ratio of 16.66% for 2 minutes at
600 W in a 1000 W capacity microwave oven (Samsung, Model: ME9114S1).

2.2 Enzymatic Hydrolysis
Pre-treated biomass was rinsed with distilled water until a pH of 4.0 was achieved. The biomass
was then oven dried at 60 °C for 24 hours and enzymatically hydrolysed using powdered
cellulase enzyme, Onozuka R-10 (Merck). This was carried out under optimal conditions of pH
4.0-5.0 and temperature of 40-50°C as specified by Gabhane et al. [16] in 500 ml Erlenmeyer
flasks. A solid loading rate of 20 g dry biomass in 200 ml 0.05 M citrate buffer with an enzyme
loading rate of 50mg/g of dry biomass was employed. The pH during enzymatic hydrolysis was
4.8 and the temperature was maintained at 50 °C using a waterbath (Gesellschaft fur
Labortechnik mbH D 3006, Burgwedel) at 120 rpm for 72 hours. The hydrolysate was filtered

and the filtrate analysed for glucose concentration using a 2.50 g/L dextrose standard.

2.3 Fermentation Medium Formulation
A mineral salt solution (pH adjusted to 4.5 using 1.0M HCI) containing (in g/L); yeast extract,
1.0; (NH4)2S0Og4, 2.0 and MgSOg, 1.0 was autoclaved at 121 °C for 15 minutes. Filter sterilised
enzymatic hydrolysate was then added to the mineral salts and initial glucose concentrations of

12.5-30.0 g/L were obtained by diluting or, where needed, supplementing with pure glucose.
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Glucose concentrations of between 15.0 and 20.0 g/L obtained during enzymatic hydrolysis

determined the range used for subsequent fermentation.

2.4 Microorganism and Inoculum Preparation
S. cerevisiae BY4743 used in this study was obtained from the Department of Genetics,
University of KwaZulu-Natal., Pietermaritzburg, South Africa. A single flask containing 100
mL Yeast-Peptone-Dextrose (YPD) medium was inoculated with a single colony and grown at
150 rpm, 30 °C for 16 hours until exponential growth phase was reached. This culture was
inoculated (10%) into prepared fermentation medium (working volume of 100 mL) containing
an initial glucose concentration of 12.5 g/L. The culture was then grown under the same
conditions as previously described and then used as a starter culture for subsequent fermentation

processes.

2.5 Fermentation process and Analytical Methods

Fermentation processes were carried out in sterilised 250 ml flasks with a working volume of
100 mL. Aliquots of 10 mL (10% inoculum) containing 0.94x10° cells/mL S. cerevisiae were
aseptically added to the fermentation flasks and the cultures were incubated at 30 °C, at 120
rpm for a minimum of 24 hours or until glucose concentrations were depleted to ensure that
microbial metabolism of glucose took place. Fermentations were aseptically sampled every two
hours and assessed for biomass concentration, sugar content and bioethanol content.

The sugar content of filtered enzymatic hydrolysate and fermentation media was determined
using a YSI 2700 Model Biochemical Analyser (YSI, USA). Ethanol content was determined
in the gas phase of the fermentation process using an ethanol vapour sensor (ETH-BTA, Vernier
Software and Technology, USA). The absorbance of culture broths was measured using a
spectrophotometer (UV-Vis Spectrophotometer, UVmini-1240, Shimadzu) at 650 nm. Cell
biomass quantification was achieved by using absorbance as a function of the concentration of
yeast cells. A standard curve was prepared by determining the dry weights and corresponding
absorbance values of yeast biomass at varied dilutions of a 24 hour S. cerevisiae culture grown
in fermentation media containing 12.5 g/L glucose. Dry weights were determined by
centrifuging 5 ml of each dilution (1:1, 1:2, 1:4, 1:8 and 1:10) for 10 minutes at 5000 rpm. The
supernatant was removed and the remaining biomass was dried at 60 °C until a constant mass

was obtained.
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2.6 Calculations of kinetic model constants
The average specific growth rates (x) of duplicate fermentation processes were calculated using
Equation 1. The specific growth rate values («) and the substrate concentration data were
subsequently used to estimate the maximum specific growth rate (umax) and Monod constant

(Ks) using a Lineweaver-Burk plot.

_ lnXZ—lnX:l
T ti—to 1)

The linear form of this equation is as follows:

r= it () @

u HUmax Hmax \S

In addition, experimental data on bioethanol production over time were used to fit the modified
Gompertz model (Equation 3) which showed the lag time, maximum bioethanol production rate,

and the potential maximum product concentration.
Tpm-exp(1)
P=PB,.exp {—exp [pT] At —t) + 1} (3)

Where P is bioethanol concentration (g/L), Pm is potential maximum bioethanol concentration
(g/L), rp.m is maximum bioethanol production rate (g/L/h) and t. is the time from the beginning

of fermentation to exponential bioethanol production (h).

Sugar utilisation, ethanol yield, ethanol productivity and fermentation efficiency were

calculated using the following Equations 4, 5, 6 and 7 respectively [17]:

.- . Original sugar content—Residual sugar content

Sugar utilisation (%) = —2 g7 = g x 100 (4)
Original sugar content

. ethanol Maximum ethanol concentration L

Ethanol yield [% )] = ot (9/L) (5)
g(glucose) Utilised glucose (g/L)
.. Maximum ethanol concentration (g/L)
Ethanol productivit L/h) = 6
p y (‘g/ / ) Fermentation time (hr) ( )
. .. Actual ethanol yield L

Fermentation ef ficiency (%) = yield (9/L)_ 19 (7

Theoretical ethanol yield (g/L)
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3 Results and Discussion

3.1 Monod kinetic model of Saccharomyces cerevisiae on waste sorghum leaves
Cell biomass, bioethanol production and glucose consumption were monitored throughout the
fermentation process. The correlation between absorbance and dry weight of yeast biomass was
determined by linear regression, which gave a correlation coefficient (r) of 0.96. The specific
growth rate () values obtained were 0.096, 0.104, 0.114, 0.122 and 0.123 h'! at initial substrate
concentrations of 12.5, 13.3, 19.4, 21.8 and 23.1 g/L respectively (Figure 1). In comparison,
Echegaray et al. [18] obtained a range of specific growth rates between 0.019 and 0.240 h!
using diluted sugarcane molasses as a substrate (170 — 270 g/L total reducing sugar range) under
anaerobic cultivation of S. cerevisiae. In addition, an increase in x values from 0.096 to 0.123
h™ was observed when the initial glucose concentration increased from 12.5 to 23.0 g/L. A
similar trend was reported by Laopaiboon et al. [19] whereby an increase in glucose
concentration from 10 to 150 g/L resulted in an increase of x value from 0.43 to 0.49 h. These
findings suggest that the specific growth rate of a culture increases with increasing substrate

concentration, until substrate saturation is reached [19].

Data on the specific growth rate («) values and initial substrate concentrations were used to
estimate Ks and umax (Figure 2). A maximum specific growth rate (umax) value of 0.176 h't was
obtained, which is the maximum growth rate of S. cerevisiae under the specified conditions.
This was close to the value of 0.169 h™* previously reported by Dodié¢ et al [14] using S.
cerevisiae cells grown on sugar beet raw juice. As cell growth rate is largely dependent on
substrate concentration, it is expected that a higher initial sugar concentration will result in
higher Monod coefficients [20]. The Ks value obtained (10.11 g/L) was in line with values
previously reported from several studies on lignocellulosic substrates (Table 1). Using citrus
pulp waste as a substrate, a Ks value of 10.690 g/L was reported by Raposo et al. [21], while
Srimachai et al. [17] obtained a Ks value of 10.210 g/L using oil palm frond juice. These
observations imply that S. cerevisiae has a similar affinity (1/Ks) to sorghum leaves as oil palm
frond juice, glucose and citrus waste pulp. In contrast to this, Ariyajaroenwong et al. [2]
reported a Monod constant (Ks) of 47.510 g/L when using sweet sorghum juice as a substrate.
This decreased affinity may be due to the presence of more than one type of sugar in sweet
sorghum juice [2]. Singh and Sharma [22] reported a Ks value of 3.700 g/L using glucose, which
is much lower than the range observed in previous studies, however this corresponds to a higher

affinity constant, which is expected as glucose is metabolised with ease.
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Variations in Ks values (from 3.7 to 213.6 g/L) can be attributed to substrate type and
concentration, strains of yeast employed or the fermentation process itself [2]. These data
demonstrate that the suitability of waste sorghum leaves as a substrate for S. cerevisiae growth
is similar to that of sugar beet raw juice and oil palm frond juice. Furthermore, the fermentation
volume size may impact the Ks value. This is illustrated by the vast differences in substrate
affinity for glucose obtained by Shafaghat et al. [23] using a working volume of less than 250
mL and Ahmad et al. [7] with a working volume of 8 L. The differences observed between the
aforementioned studies may be attributed to additional process challenges encountered in large

volume such as poor agitation, low mass transfer and inhomogeneity.
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Figure 1: Specific growth rates (ux) of S. cerevisiae BY4743 at varied initial glucose

concentrations.
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Figure 2: Lineweaver-Burk plot used to estimate Monod constants for batch ethanol

production from waste SL.

Table 1: Comparison of the obtained Monod model coefficients with previous studies

Substrate umax (h)  Ks(g/L) Reference

Sorghum leaves 0.176 10.110 This study

Oil Palm Frond Juice (10-20 years) 0.150 10.210 Srimachai et al. [17]
Sugar beet raw juice 0.169 ND Dodic¢ et al. [14]

Sweet sorghum juice 0.313 47.510 Ariyajaroenwong et al. [2]
Glucose 0.291 ND Govindaswamy et al. [24]
Banana peels 1.500 25.000 Manikandan et al. [25]
Glucose 0.084 213.60 Ahmad et al. [7]

Glucose 0.650 11.390 Shafaghat et al. [23]
Citrus waste pulp 0.350 10.690 Raposo et al. [21]
Glucose 0.133 3.700 Singh and Sharma [22]

ND: Not determined
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3.2 Bioethanol production

The bioethanol production trend of S. cerevisiae cultivated on fermentation medium prepared
from sorghum leaves is shown in Figure 3. A rapid depletion of glucose was observed from 0
to 32 hours. A lag phase in bioethanol production of 6 hours was obtained. This corresponds to
cell adaptation and synthesis of key nutrients required for biomass or product (bioethanol)
formation [14]. Ardestani and Shafiei [26] reported exponential growth of S. cerevisiae after 7
hours of incubation. A rapid increase in ethanol concentration was observed from 6 to 28 hours
corresponding to the exponential stage (Figure 4). This is expected as ethanol is a primary
metabolite and is therefore produced during exponential phase of cell growth. A similar
observation has been reported by Lin et al. [27] where a steady increase in ethanol was observed
over a duration of 48 hours at 30 and 40 °C. An average ethanol yield of 0.49 g-ethanol/g-
glucose was obtained, corresponding to a 96% fermentation efficiency during this period.
Fermentation efficiencies between 72.78 and 78.43% have been reported by Srimachai et al.
[17] using oil palm frond juice as a substrate, whilst ethanol yields between 0.40 and 0.49 g/g
have been obtained from sugar beet raw juice [14]. Waste sorghum leaves show excellent
potential for lignocellulosic bioethanol production. A productivity of 0.345 g/L/h was observed
in this study. Ethanol productivities on other lignocellulosic substrates in the range of 0.25 to
1.01 g/L/h have been reported [28-31], further pointing to the relative higher potential of waste
sorghum leaves for bioethanol production.

Glucose Consumption {g/L)
Ethanol Concentration {g/L)

0 5 10 15 20 25 30
Fermentation Time (hours)

--------- Average Glucose Consumption

Average Ethanol Production

Figure 3: Average glucose utilisation and ethanol formation during batch fermentation by S.
cerevisiae BY4743.
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Figure 4: Growth curve of Saccharomyces cerevisiae BY4743 during batch ethanol

production from waste SL.

Experimental data were fitted to the modified Gompertz model and kinetic coefficients were

determined (Equation 7).

0.52 exp(1)

P = 17.15exp {—exp[ 17.15

] (631 —1t) + 1} ©)

The fitted regression curve (Figure 4) exhibited an R? value of 0.98 and a correlation coefficient
(r) of 0.99, suggesting that this model is able to efficiently describe bioethanol production
during fermentation of sorghum leaf wastes. The Gompertz coefficients for maximum potential
bioethanol concentration (Pm), maximum bioethanol production rate (rpm) and lag time were
17.15 g/L, 0.52 g/L/h and 6.31 hours respectively from waste sorghum leaves. Very few studies
have reported a lag time of longer than one hour [14]. This suggests that a duration of at least 6
hours was required for yeast cells to adapt to fermentation medium derived from waste sorghum
leaves. Additionally, the maximum potential bioethanol concentration of 17.15 g/l, which
corresponds to 2.17% (v/v) illustrates that the impact of ethanol concentration within the
medium may have a slight effect on the specific growth rate of S. cerevisiae. This is supported
by an earlier study by Dinh et al. [32], which showed that a higher initial ethanol concentration
within fermentation media resulted in an increase in the time required for cells to reach the
optimal bioethanol production rate as well as a reduction in the maximum ethanol

concentration.
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Table 2 shows a comparison of the Gompertz coefficients obtained from this study using
sorghum leaves and those reported from oil palm frond juice and sugar beet raw juice. From
sorghum leaves, a higher maximum potential bioethanol concentration was achieved. In
addition to this, an observed bioethanol production rate of 0.52 g/L/hr was two times of that
achieved by Srimachai et al [17] from oil palm frond juice. This illustrates the higher potential

of waste sorghum leaves to accommodate a higher production rate.

Table 2: Comparison of modified Gompertz model parameters with previous studies

Substrate Pm pm t. (hr) Reference
(g/L) (g/L/hr)
Sorghum Leaves 17.15 0.52 6.31 This study
Oil Palm Frond Juice (10-20 years) 3.79 0.08 0.77 Srimachai et al. [17]
Oil Palm Frond Juice (3-4 years)  11.50 0.24 0.12 Srimachai et al. [17]
Sugar beet raw juice 73.31 4.39 1.04 Dodi¢ et al. [14]
4 Conclusion

This study developed two kinetic models to describe the growth of S. cerevisiae BY4743 on
pre-treated waste sorghum leaves for bioethanol production. Experimental data fitted the
Monod and modified Gompertz model with high accuracy and gave R? values of 0.95 and 0.98,
respectively. From the Monod model, a maximum specific growth rate and Monod constant of
0.176 h't and 10.11 g/L was obtained, respectively. These findings show that waste sorghum
leaves have a higher relative potential for bioethanol production by accommodating for a higher
production rate, thus higher productivity than other lignocellulosic substrates. Furthermore, a
maximum vyield of 0.49 g-ethanol/g-glucose was achieved after 32 hours of fermentation. The
generated kinetic knowledge of S. cerevisiae growth on sorghum leaves and bioethanol
formation in this study is of high importance for process optimisation and scale up towards

commercialisation of this fuel.
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Chapter 5

Conclusions and Recommendations for future studies

5.1 Conclusions

This study examined the development of a bioethanol production process from waste sorghum

leaves. A profile of the fermentation inhibitors generated during microwave assisted chemical

pre-treatment was developed and the production of fermentable sugar was modelled.

Furthermore, a soft-sensor capable of predicting the volatile compound profile under varied

process conditions was developed using Artificial Neural Network (ANN). Additionally, the

kinetic model of Saccharomyces cerevisiae growth and bioethanol production from waste

sorghum leaves was assessed. Major findings and their significance are summarised as follows:

Chapter 3:

In addition to reducing sugars, microwave assisted chemical pre-treatment of
waste sorghum leaves revealed the presence of 21 volatile compounds. Among
these compounds were fermentation inhibitors such as acetic acid, furfural,
HMPF, phenol, levulinic acid and formic acid. Acidic pre-treatment led to an
increased generation of furfural and HMF while phenol generation was
associated with alkali pre-treatment. These results demonstrate that an initial
profile analysis of compounds generated during pre-treatment is a critical step
for the selection of a suitable lignocellulosic pre-treatment and detoxification
strategy for a novel substrate. Furthermore, knowledge on the viability of
various substrates can be determined based on the amount of inhibitory

compounds formed during pre-treatment.

Acid pre-treatment was optimal for reducing sugar release, with an optimum of
9.13 g/L, while alkali pre-treatment gave an optimum of 2.50 g/L. Therefore,
microwave assisted HCI pre-treatment was more efficient for lignocellulosic
degradation and sugar release from waste sorghum leaves. This indicates that
waste sorghum leaves, which are usually left in the field after harvest or disposed

of by burning, contain sufficient fermentable sugar which is recoverable through
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Chapter 4:

an appropriate acid pre-treatment, illustrating its potential as a low cost

feedstock for bioethanol production.

The prediction of furfural, formic acid, guaiacol, phenol, 4-ethyl guaiacol,
4vinyl guaiacol, levulinic acid, dihydrobenzofuran and HMF generation by the
ANN soft-sensor gave coefficients of determination between 0.71 and 0.93,
illustrating adequate predictive accuracy. These findings indicate that ANN can
be successfully implemented as a soft-sensor for the prediction of inhibitor
compounds generated from chemical pre-treatment of waste sorghum leaves.
This predictive tool will enhance the design of lignocellulosic pre-treatment
regimes to optimise for the generation of fermentable sugars while reducing

fermentation inhibitors.

Sensitivity analysis showed high sensitivity of furfural and phenol to increased
acid concentration, with furfural generation occurring until a 2.5% HCI
threshold. Phenol exhibited a mild sensitivity to an increase in the concentration
of NaOH and a significant dependency to increasing microwave duration and
intensity. Knowledge of the functional relationships between the pre-treatment
operational conditions and fermentation inhibitor generation is paramount to the
design of lignocellulosic pre-treatment regimes and the impact on the overall

fermentation process economics.

The Monod model, with an R? of 0.95, gave a maximum specific growth rate
(umax) of 0.176 h'* and Monod substrate saturation constant (Ks) of 10.11 g/L.
This data show that waste sorghum leaves are well suited as a substrate for
bioethanol production by Saccharomyces cerevisiae. Furthermore, a relatively
high affinity for waste sorghum leaves was observed, which may significantly
enhance the growth of S. cerevisiae biomass on waste sorghum leaves, for

bioethanol production.
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ii.  The modified Gompertz model with R? of 0.98 showed a maximum bioethanol
production rate (rpm) of 0.52 g/L/h, maximum potential bioethanol
concentration (Pm) of 17.15 g/L and a bioethanol production lag time (t.) of
6.31 hours. In addition, a maximum vyield of 0.49 g-ethanol/g-glucose was
obtained, corresponding to a 96% conversion efficiency in 32 hours of
fermentation. The generated kinetic knowledge of S. cerevisiae growth on
sorghum leaves and bioethanol formation in this study is of high importance for

process optimisation and scale up towards commercialisation of this fuel.

5.2 Recommendations for future studies

Based on the findings of this study, the following recommendations can be made for future

research on bioethanol process development from waste sorghum leaves:

5.2.1 Taking into consideration the marked generation of fermentation inhibitors during
microwave-assisted acid pre-treatment, a two-stage bioprocess mode may be
adapted in which bioethanol production is followed by a biohydrogen stage
(Appendix). In this case, the lowered sensitivity of mixed cultures to
fermentation inhibitors, pre-treatment hydrolysate can be directed to
biohydrogen production, while enzymatic hydrolysate is directed toward
subsequent bioethanol production. This will assist in achieving a higher
substrate conversion efficiency when using lignocellulosic substrates such as

waste sorghum leaves.

5.2.2 The implementation of ANN as a virtual sensor for compounds which are difficult
or costly to monitor in real time will significantly lower the cost of process
development. Additionally, this will enable the monitoring of several process

parameters during fermentation processes.

5.2.3 Kinetic assessment of S. cerevisiae growth and bioethanol production on various
lignocellulosic substrates will pave the way for a more comprehensive
comparison of the productivities of the assessed microorganisms. Selection of

the microorganism demonstrating the best capability to produce high yields of
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bioethanol can therefore be carried out at smaller scales to reduce process

development costs.

5.2.4 Improving the capability of S. cerevisiae by using immobilisation techniques and
metabolic engineering for improved bioethanol yields from lignocellulosic
biomass will enhance the industrial feasibility of lignocellulosic bioethanol
production. This will significantly reduce costs associated with the production

and extraction processes.
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Waste Sorghum Leaves (WSL) are considered as agricultural waste residue and a potential
feedstock for biofuel production. This study investigates the optimum recovery of xylose
and glucose from WSL using six Response Surface-based models. Furthermore, the opti-
mum physico—chemical set-points for hydrogen production from these fermentable
sugars are determined and a preliminary scale up is assessed.

Models for saccharification were based on HCl (HCl-model), H,SO; (H.SO4-model) and
HNO; (HNOs-model) pre-treatments subjected to input variables of acid concentration,
heating time, solid to liquid ratio and acid exposure lag time in the ranges of 1-6%, 70
—240 min, 30-50% and 0—24 h respectively. The models gave high coefficients of deter-
mination of up to 0.93. The HCl-model showed the highest recovery of xylose and glucose,
with yields of 54.05 g/L and 15.98 g/L respectively, corresponding to 77% hemicellulose
solubilisation and a shorter pre-treatment time in comparison to the other two acids.

Optimization of physico—chemical variables for biohydrogen production gave set-
points of 50% inoculum concentration, process time of 83 h, 11 min with an initial pH of
7. Process scale up in a 13 L bioreactor resulted in a peak hydrogen fraction of 43.75% and a
volumetric hydrogen yield of 213.14 ml/g of fermentable sugar (FS), which is comprised of
xylose and glucose. These findings illustrate the potential of sorghum leaves which are
generally considered as agricultural waste for large scale production of fermentative
hydrogen.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Fossil fuels play a vital role in the global energy requirement
and account for more than 80% of the primary energy con-
sumption. Fossil fuel production profiles suggest a global peak

* Corresponding author. Tel.: +27 332605527.

production before 2025 and a projected decline thereafter [15].
The heavy dependence on fossil fuel-based energy and
increased emissions in greenhouse gas have resulted in
worldwide awareness of socio-economic impacts that may
arise. This search for alternative, renewable energy sources
has thus become an urgent issue [11].

E-mail address: kanag@ukzn.ac.za (E.B. Gueguim Kana).
http://dx.doi.org/10.1016/j.ijjhydene.2016.06.112
0360-3199/© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
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Bio-hydrogen is a promising source of renewable energy. It
is a clean, inexhaustible fuel and possesses a high energy
content of 122 kJ/g [22]. It can be used to generate electricity in
fuel cells [3] and it is considered to be environmentally friendly
asits combustion produces water, thusitis the only carbon free
fuel available [22,11]. First generation biofuel production
makes use of food crops as an energy source and is therefore
associated with land displacement and environmental dete-
rioration due to deforestation, competition with the global food
supply-resulting in higher food prices, loss of biodiversity and
increased greenhouse gas emissions caused by land displace-
ment [16]. Second generation biofuels using wastes are proving
to be the most promising energy sources. These wastes include
organic and animal waste, wastewater, agricultural and in-
dustrial residues and energy crops-all of which can be used for
the production of biofuels [1].

Sorghum which is a fast growing energy crop, is a prom-
ising feedstock source for biofuel production [35]. Moreover,
sorghum leaves are generally considered as agricultural waste
upon harvesting [24] and thus could potentially overcome the
drawbacks associated with first generation biofuel produc-
tion. Sorghum is indigenous to Africa and it grows well in dry,
arid soil as well as shallow and heavy clay soils, which allows
for lower production costs and a larger potential farming area.
Sorghum has low nutrient requirements and a shorter growth
period when compared to other biomass feedstocks such as
sugarcane and sugar beet [20,35]. The amount of energy
generated from sorghum varies depending on the part of the
plant used in the saccharification process as well as in the
actual fermentation process itself. Woods (2001) [37] reported
a yield of 60 tons of fresh sweet sorghum biomass from a
hectare of land, comprising 46 tons of fresh weight stems,
which can potentially produce 3000 L/hectare of ethanol,
equating to 12.6 GJ of electricity. Prior to using lignocellulosic
material for microbial fermentation, a pre-treatment stage is
required. This has proven to be the most crucial and costly
process in the production of renewable energy [16].

Sorghum lignocellulosic material is made up of cellulose,
hemicellulose and lignin which form an intricate structure
that is extremely resistant to decomposition and they ac-
count for approximately 42.03 + 3.38%, 24.53 + 4.45% and
9.89 + 2.35% of the lignocellulosic material respectively [24].
These constituents can therefore potentially be exploited for
biofuel production. Cellulose, the main constituent of ligno-
cellulose, is a polysaccharide made up of a linear chain of p-
glucose molecules and is insoluble in water and many
organic solvents due to hydrogen bonds that link the cellu-
lose fibres to one another. Hemicelluloses are heterogeneous
branched polymers that contain 5-C and 6-C carbohydrates
like xylose, arabinose, mannose, glucose and galactose and/
or urgonic acids. Hemicellulose is thus easier to hydrolyse
due to its amorphous, branched structure. Removing it will
increase the accessibility and thus the digestibility of cellu-
lose. It is also more sensitive to operating process conditions
and can lead to the production of unwanted products like
furfurals and hydroxymethyl furfurals which can inhibit the
fermentation process of biofuel production [9]. Lignin is an
aromatic polymer which cross-links with hemicelluloses to
provide structural strength and prevention of microbial
degradation [16].
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To optimally release fermentable sugars from lignocellu-
losic material, an appropriate and cost effective pre-treatment
is required. Previous studies by Sathesh-Prabu and Mur-
ugesan, [24]; Suresh et al. [28] and Siwarasak et al. [27]
employed physical and chemical pre-treatment prior to
enzymatic hydrolysis to facilitate its effect on the saccharifi-
cation of lignocellulosic material. Enzymatic hydrolysis and
the use of enzymes at a commercial scale has proven to be one
of the main contributing factors to the high costs associated
with pre-treatment [28], therefore novel pre-treatment stra-
tegies need to be optimized to make the pre-treatment stage
economically viable. Physical techniques like milling and
chemical techniques that employ acid or alkali have been
used to enhance fibre hydrolysis [9]. Combining pre-treatment
techniques may possibly result in higher fermentable sugars
being released [17].

Response Surface Methodology (RSM) is a modelling and
optimization tool where many factors and their interactive
effects on the process response can be identified with a
smaller number of experimental runs. RSM has been reported
in the optimization of various bioprocesses including the
optimization of ethanol production from sweet sorghum juice
[13], biohydrogen production from sugarcane molasses [31]
and biohydrogen production using nickel nanoparticles [18].

There is a dearth of knowledge in public domains model-
ling the recovery of fermentable sugars from WSL, coupled
with biohydrogen production at bench scale. This study fo-
cuses on the modelling and optimization of xylose and
glucose recovery from waste sorghum leaves using three acid
pre-treatments; hydrochloric acid (HCI), sulphuric acid
(H,S0,) and nitric acid (HNOs), which are subjected to varia-
tions in acid concentration, heating time, solid to liquid (S:L)
ratio and acid exposure lag time. Furthermore, the optimum
physico—chemical bioprocess setpoints for hydrogen biofuel
production from these substrates are investigated followed by
a preliminary assessment at bench scale.

Materials and methods
Sorghum leaves feedstock and experimental design

The sorghum leaves used in this study were harvested from
the Ukulinga Research Farm, University of KwaZulu-Natal in
Pietermaritzburg (29°67'E, 30°40'S), South Africa. Once the
plants were fully grown and flowering (approximately 90
days), 5-8 sorghum leaves were cut off at the leaf collar and
immediately dried at 80 °C for 48—72 h and further milled to
reduce particle sizes to 1-2 mm using a centrifugal miller
(Retsch ZM-1, South Africa). The milled leaves were stored in
airtight containers prior to use.

A four-factor Box-Behnken design was used to generate 87
experimental runs (29 for each acid type), shown in Table 1,
with varied inputs of acid concentration, heating time, S:L
ratio and acid exposure lag time in the ranges of 1-6%,
70-240 min, 30—50% (w/v) and 0—24 h respectively. The acid
types include HCI, H,SO, and HNOs. An additional process
parameter of acid exposure lag time, which involves exposing
the milled leaves to the acid solution at varied durations prior



)4 12943

samples were then filtered and the liquid phase was used

Table 1 — Pre-treatment parameter limits implemented e . .
P P for fermentable sugar quantification. The solid phase was

for the optimisation of sorghum lignocellulose pre- 5 - = 4 =
treatment. rinsed with distilled water and analysed using acid-detergent

fibre analysis, seen in Table 2. All 87 experimental runs were

Run A: B: Heating  C:S:L  D: Acid exposure 2 —

Acid (%) time (mins) ratio (%) lagtime (hours) carried outnrduplcate;
q: 1.00 155.00 30.00 12.00
2 6.00 155.00 40.00 24.00 Optimization of biohydrogen production
2 3.50 155.00 40.00 12.00
4 =50 240,00 40,00 2100 Inoculum development and fermentation process optimization
2 0 L2200, 40:00 2890 Anaerobic digested sewage sludge from the Darville Waste-
6 6.00 240.00 40.00 12.00 1 : itzb h Afri
7 350 70.00 40.00 24.00 water treatment p anF (Pleterm.antz'urg, South Africa), was
8 6.00 155.00 30.00 12.00 used as the source of inoculum in this study. The sludge was
9 6.00 155.00 50.00 12.00 heat treated at 121 °C for 10 min. According to Yin et al. [34];
10 3.50 155.00 50.00 0.00 this technique is highly effective in deactivating the non-
1 3.50 155.00 30.00 24.00 spore forming hydrogen consuming organisms that are inca-

P g hydrog g org

@ =2 Z0.00 000 g2 pable of survival at high temperatures while maintaining
= Sl 220 00 1200 hydrogen producing, spore-forming microorganisms such as
14 6.00 70.00 40.00 12.00 yArogen.p 8 SP g &
15 350 155.00 40.00 12.00 the endospore-fomAunAg C!ostndm [25].
16 1.00 155.00 40.00 0.00 For process optimization, the selected physico—chemical
17 1.00 155.00 50.00 12.00 parameters were inoculum concentration, fermentation time
18 3.50 240.00 50.00 12.00 and initial pH within the ranges of 30-50%, 24—96 h and 4—7
19 6.00 155.00 40.00 0.00 respectively, generating 17 experiments with varied input
20 250 90 000 9.0 conditions using Design Expert (Stat Ease, Inc.). The pH of the
21 3.50 240.00 40.00 0.00 Sraated h 1 ittt 758 1 M NaOH
2 350 70.00 £0.00 12.00 pre-treated sorghum leaves was adjusted to 7 using a
23 1.00 70.00 40.00 12.00 in preparation for hydrogen production. 50 ml of unfiltered,
24 3.50 155.00 40.00 12.00 optimally pre-treated leaves were fed into 250 ml fermenta-
25 3.50 155.00 50.00 24.00 tion vessels with appropriate volumes of a sterile mineral salt
26 3.50 155.00 30.00 0.00 mix containing (in g/L): NH4CL 0.5, KH,PO, 0.5, K,HPO, 0.5,
2 3.50 240.00 30.00 12.00 NaHCO; 4.0, FeCl.2H,0 0.15, MgClL.6H,0 0.085, ZnSO4.7H,0
28 S 22900 20 200 001, MnClL4H,0 003, H;BO; 003, CaCL.6H,0 0.01,
29 3.50 155.00 40.00 12.00

Na,Mo00,.2H,0 0.03 [17]. Heat-treated anaerobic sludge at
concentrations of 10%, 30% or 50% (working volume of 200 ml)
as described in Table 6 was added to the fermentation vessels.
to heating was included. The idea was to assess the impact of ~ The initial pH was adjusted to either 4.0, 5.5 or 7.0 with 1 M

acid exposure time prior to heating on sugar release pattern. NaOH and flushed with N, gas for 30 s, allowing for anaerobic
conditions to prevail. The fermentation processes were car-
Pre-treatment process ried out in a shaking water bath at a temperature of 37.5 °C

Milled sorghum leaves at weights of 3 g (30%), 4 g (40%) or 5 g and 230 rpm agitation for specified fermentation periods.
(50%) were placed in 25 ml Erlenmeyer flasks and treated with
10 ml acid solution of varied concentrations (1.0, 3.5 or 6.0% (v/
v)) as depicted in Table 1. Prior to heating, an acid exposure lag
time (0—24 h) was introduced, where the flasks were sealed
and the leaves leftin the acid at room temperature to facilitate
additional hydrolysis. The flasks were subsequently heated at
100 °C using a water bath (Gesellschaft fiir Labortechnik mbH
D 3006, Burgwedel) at varied heating time periods as specified
in Table 1. Heating timing was recorded once the temperature
of the substrate had reached 100 °C. The pre-treatment

Development and validation of the pre-treatment models

Xylose and glucose yield data were used to fit 6 polynomial
model equations for the three acid types, relating the mono-
meric sugar yields (xylose and glucose) to the input parame-
ters. A general form of the model is shown in Equation (1),
where Y represents the process response which, in this case is
xylose or glucose yield, o is the free or offset term called the
intercept, 24, %y, %3 and a4 are the linear coefficients, o112, 23,2,

Table 2 — Composition of untreated and acid pre-treated sorghum leaves.

Sample Cellulose Hemicellulose Hemicellulose Lignin
(%) (%) solubilisation (%)
(%)
Untreated 28.56 29.18 0 3.94
HCl-treatment 48.08 6.71 77 13.69
H,SO,-treatment 49.50 6.35 78 13.46
HNO;-treatment 38.08 7.48 74 14.58

81



12944 INTERNATIONAL JOURNAL

0332 and a44? are the quadratic coefficients and o5, 013, %14, 923
and a4 are the interaction coefficients.

Y = 0g + 04Xy + 0pXp + 03Xz + 04Xg + 011X5 + 0poX5 + 01335
+ 04sX] + 012X1Xo + 043X1X3 + 014 X1Xs + 023X0X3 + %24 XoXs
@)

For the modelling and optimization of biohydrogen pro-
duction with the considered physico—chemical variables,
yield data obtained from the fermentation experiments were
used to fit another polynomial model relating the hydrogen
yield to the input parameters. A general form of the model is
seen in Equation (2) where Y is the yield of hydrogen in ml/g
FS.

Y = oo + 01Xy + 0pXp + 43X3 + 011X] + 020X + 033X3 + 01pXq Xp
+ 013X1X3 + 023X2X3
@)
The significances of the developed models were assessed
by the Analysis of Variance (ANOVA) using Design Expert
Software (Stat Ease, Inc.) (Tables 4 and 6). The optimum set-
point values for xylose and glucose release as well as
hydrogen production were obtained by solving the poly-
nomial equations using the method of Myers and Mont-
gomery [19]. These set-points were validated experimentally
in triplicate.

Analytical methods

The pre-treated samples were analysed for xylose and glucose
content using the YSI 2700 Model Biochemical Analyser (YSI,
USA). The sugar analysing principle is based on enzyme
coupled reactions producing hydrogen peroxide which is
electrochemically oxidized, allowing for electrochemical
detection. The solubilisation of lignocellulosic material was
analysed using detergent fibre analysis technique described
by Goering and van Soest [8] and Wolfrum et al. [33]. Biogas
volumes were recorded using the water displacement method
[31]. The hydrogen fraction of the evolving biogas was
measured using a hydrogen-specific biogas sensor (BCP-H,)
(Bluesens, Germany). The cumulative volume of biohydrogen
produced was calculated according to Equation (3), where Vy;
and Vy; 4, are cumulative hydrogen gas volumes at the cur-
rent (i) and previous (i—1) time intervals, Vg;, and Vg;_1 the
total biogas volumes in the current and previous time in-
tervals, Cy; and Cy; 1 the fraction of hydrogen gas in the
headspace of the fermentation vessel in the current and pre-
vious time intervals, and Vy the total volume of headspace in
the fermentation vessel [21].

Vi,i = Vi1 + Cui (Vei — Vei-1) + Vi (Cui — Cuii-1) (3)

Process scale-up

Bench scale experimental setup
A bench scale fermentation process was carried outin a 13 L
bioreactor (Labfors-INFORS HT, Switzerland) at a working
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volume of 8 L and the optimized physico—chemical set-points
were used. Two litres of optimally pre-treated sorghum leaves
at xylose and glucose concentrations of 10.19 and 4.01 g/L
respectively and two litres of sterilised mineral salts were fed
into the sterile bioreactor containing an inoculum of four litres
of heat-treated anaerobic sewage sludge. The bioreactor was
flushed with N, gas for 3 min prior to fermentation, creating
an anaerobic environment. The fermentation temperature,
agitation and process time set-points were 37.5 °C, 250 rpm
and 84 h respectively.

Process monitoring

The biogas produced was continuously monitored at an in-
terval of 1 min to determine the fraction of hydrogen produced
in real time. This was achieved by using a BCP-H, sensor
(Bluesens, Germany). The sensor has a measuring range of
0-100% hydrogen and employs the thermal conductivity
measurement principle. The evolving biogas volume was
monitored using a milligas counter (MGC, Bluesens, Ger-
many). The culture broth was sampled every 7 h for sugar and
PH analysis.

Results and discussion
Sorghum leaf composition

Fibre analysis showed that native sorghum leaves contain
cellulose, hemicellulose and lignin at 28.56, 29.18 and 3.94%
respectively (Table 2). A reported sorghum bagasse compo-
sition of 41.20, 24.50 and 4.80% cellulose, hemicellulose and
lignin respectively [9] illustrates the variation in composition
of sorghum leaves and sorghum bagasse. With regards to
sorghum leaves, the more easily accessible hemicellulose
portion makes up a larger fraction (29.18%) of the leaf
composition when compared to sorghum bagasse (24—25%),
allowing for a larger release of fermentable sugar from sor-
ghum leaves compared to sorghum bagasse. The cellulose
fraction of 41.20% is also significantly larger in sorghum
bagasse making it more resistant to acid degradation [12].
Similarly, there is a lower fraction of lignin in sorghum leaves
compared to sorghum bagasse. The low lignin content of the
sorghum leaves can be explained by ADL (acid detergent
lignin) method estimating a lower lignin content than what is
actually present. Quantification of lignin can be carried out
using two methods; Klason lignin and acid detergent lignin
[10]. The acid detergent method is only capable of quantifying
lignin residue that remains after solubilisation in acid. Jung
et al. [10] estimated Klason lignin of grasses to be approxi-
mately 2—4 times larger than that of acid detergent lignin,
illustrating a more complete quantification of lignin as Kla-
son lignin accounts for both acid soluble and insoluble lignin.
The variation observed in the composition of sorghum
lignocellulosic biomass can be attributed to genetic and
environmental factors as well as farming conditions and
harvesting time [9], suggesting that sorghum bagasse
composition is dependent on growth conditions and the
cultivar type used.

Pre-treatments using the three respective acids resulted in
an unexpected increase in cellulose and lignin. This can be
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attributed to the reduced solubility of cellulose which
occurred during acid pre-treatment as the pre-treatment
caused cleaving of the hemicellulose-lignin bonds respon-
sible for the recalcitrant character of lignocellulosic material.
This leaves the acid-insoluble cellulose residue in a less
reduced state of depolymerisation than before [12]. The
accumulation of condensed degraded polysaccharides during
pre-treatment may also partially play a role in the increase in
lignin observed [23]. H,SO,-based pre-treatment gave the
highest level of hemicellulose solubilisation of 78%, with HCl
achieving a similar level of hemicellulose solubilisation of
77%. HNOs-based pre-treatment showed the lowest
solubilisation.

Sugar release from pre-treatment

Modelling of xylose and glucose release using acid-heat pre-
treatments

The pre-treatment process responses seen in Table 3 were
used to generate two polynomial model equations (Equations
(4)—(9)) for each acid-based model. The xylose and glucose
yields were related to the input variables A: acid concentra-
tion, B: heating time, C: S:L ratio and D: acid exposure lag time,
for HCI, H,SO,; and HNO; respectively.

HCl-based model equations

Xylose = +35.63 + 22.26A + 2.83B + 1.94C + 0.58D — 0.23AB
+ 2.61AC + 1.39AD + 2.69BC + 2.76BD + 3.85CD — 12.22A?
— 2.16B? — 1.34C? + 4.56D? (4)

Glucose = +10.69 + 5.66A + 1.31B + 0.75C + 0.12D + 0.69AB
+ 0.93AC + 0.36AD + 0.43BC + 0.84BD + 1.01CD — 0.57A?
— 0.48B% — 0.43C? + 1.79D? ()

H,S0,4-based model equations

Xylose = +24.54 + 18.18A + 2.02B — 5.64C — 0.54D + 1.55AB
— 2.44AC + 0.33AD + 0.062BC — 3.43BD — 0.18CD — 5.84A?
+ 1.48B% — 3.58C? + 1.51D? (6)

Glucose = +8.00 + 3.74A + 0.42B — 0.79C — 0.087D + 1.08AB
— 0.71AC + 0.15AD — 0.39BC — 0.86BD — 0.083CD

— 9.583E—-004A? + 0.40B? — 0.86C? + 0.21D? (7)

Table 3 — Four factor Box-Behnken design used for pre-treatment of sorghum leaves. The input parameters are: acid
concentration, heating time, S:L ratio and acid exposure lag time.
HCl H,S04 HNO;
Run A:Acid B:Heating C:SIL D:Acid Response Response Response Response Response Response
(%) time ratio exposure 1:Xylose 2:Glucose 1:Xylose 2:Glucose 1: Xylose 2: Glucose
(mins) (%) lagtime  (gt) @&/L) (&/L) (&L (/L) (/L)
(hours)

2 1.00 155.00 30.00 12.00 2.10 4.50 0.36 3.82 0 3.72
2 6.00 155.00 40.00 24.00 52.02 18.42 42.22 13.37 12.94 6.81
3 3.50 155.00 40.00 12.00 20.64 573 2851 8.41 17.97 6.45
4 3.50 240.00 40.00 24.00 48.06 15.49 22.06 6.64 49.06 15.95
5 1.00 155.00 40.00 24.00 0.86 5.18 0.26 4.35 0.09 4.81
6 6.00 240.00 40.00 12.00 4543 16.70 44.68 14.44 12.37 5.92
7 3.50 70.00 40.00 24.00 27.34 7.92. 27.25 8.87 24.90 8.54
8 6.00 155.00 30.00 12.00 36.96 12.74 32.00 10.23 17.27 5.56
9 6.00 155.00 50.00 12.00 45.49 16.02 21.96 7.77 12.79 7.19
10 3.50 155.00 50.00 0.00 38.05 11.78 14.57 5.91 17.11 6.33
11 3.50 155.00 30.00 24.00 35.37 11.15 31.93 8.97 33.87 8.43
12 3.50 70.00 30.00 12.00 32.29 8.62 25.33 7.16 21.54 6.47
13 3.50 155.00 40.00 12.00 36.99 10.76 24.69 8.36 18.74 6.36
14 6.00 70.00 40.00 12.00 45.60 14.75 37.91 11.07 8.24 5.54
15 3.50 155.00 40.00 12.00 42.36 13.40 24.84 8.26 13.54 5.82
16 1.00 155.00 40.00 0.00 5.00 6.03 0.69 463 0.48 4.31
17 1.00 155.00 50.00 12.00 0.20 4.07 0.10 4.22 0.31 4.06
18 3.50 240.00 50.00 12.00 35.65 11.73 21.51 8.40 18.05 7.68
19 6.00 155.00 40.00 0.00 50.61 17.86 41.34 13.06 10.32 5.76
20 3.50 70.00 40.00 0.00 31.78 9.48 23.10 7.62 19.80 7.19
21 3.50 240.00 40.00 0.00 4145 13.69 31.63 8.82 31.46 9.76
22 3.50 70.00 50.00 12.00 28.79 9.45 14.59 7.36 6.58 6.11
23 1.00 70.00 40.00 12.00 0.02 4.79 0 4.52 0 441
24 3.50 155.00 40.00 12.00 44.70 13.31 16.73 6.12 19.15 6.97
25 3.50 155.00 50.00 24.00 49.52 14.54 13.49 5.67 5.83 4.40
26 3.50 155.00 30.00 0.00 39.32 12.42 32.31 8.87 24.72 6.90
27 3.50 240.00 30.00 12.00 28.39 9.18 31.99 9.78 28.60 7.90
28 1.00 240.00 40.00 12.00 0.78 3.97 0.57 3.56 0 3.95
29 3.50 155.00 40.00 12.00 3345 10.26 29.94 8.87 26.08 8.01
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HNO;-based model equations

Xylose = +19.09 + 6.09A + 4.87B — 5.44C + 1.90D + 1.03AB
— 1.20AC + 0.75AD + 1.10BC + 3.12BD — 5.11CD — 15.04A?
+3.18B% — 1.06C? + 4.43D? ()

Glucose = +6.72 + 0.97A + 1.07B — 0.28C + 0.72D + 0.21AB
+ 0.30AC + 0.14AD + 0.035BC  + 1.21BD — 0.87CD
— 2.17A% + 1.24B? — 0.58C? + 1.21D? (9)

The fitness of these models was assessed using Analysis of
Variance (ANOVA), presented in Table 4. The coefficient of
determination (R?) is a measure of variance that falls between
0 and 1, with 1 indicating the model's ability to navigate the
design accurately and 0 indicating a total inability [31]. The R?
values for the HCI- and H,50,-based models for xylose and
glucose were well above 0.8 (0.88 and 0.93 respectively), indi-
cating that these models could account for 88 and 93% of the
variation observed in the data. The F-values for xylose and
glucose of these two acid models were relatively high (>7)
showing the significance of these models. The low P-values
observed for sugar outputs in both of the acid models further
illustrated the significance of these models.

Linear effect of input variables on monomeric sugar release
The high sensitivity of fermentable sugar release to the acid
pre-treatment type is illustrated by the high variability in
sugar yields under various acidic treatments. As observed in
Table 3, the xylose and glucose yields varied from 0.02 to
52.02 g/L and 3.97-18.42 g/L respectively for the HCl-based
model, 0-44.68 g/L and 3.56—14.44 g/L respectively for the
H,SO4-based model and 0-49.06 g/L and 3.72-15.95 g/L
respectively for the HNO3-based model. This sensitivity has
been observed in the studies of Moodley and Kana [17] with
xylose and glucose yields varying between 1 and 10 g/L
depending on acid type and concentration.

At low acid concentrations (<1%), all pre-treatments
exhibited low yields (>6.03 g/L) for both xylose and glucose,
while a marked increase in sugar recovery was observed with
acid pre-treatments at high concentration (>6%) with xylose
and glucose yields as high as 52.02 and 18.42 g/L respectively
when using HCI. A ratio of 2:3 g/L xylose per g/L glucose was
observed across all acid pre-treatments. Besides the concen-
tration, the acid type had a relevant impact on the sugar yield.
A concentration of 6% H,SO, gave xylose and glucose yields of
44.68 and 14.44 g/L respectively while the same concentration

of HNOj; resulted in lower xylose and glucose yields (12.94 and
6.81 g/L respectively) which is in contrast to the higher yields
observed at a concentration of 3.5% HNO3 (49.06 and 15.95 g/L
of xylose and glucose respectively). Sindhu et al. [26] reported
higher fermentable sugar release from bamboo pre-treated
with 5% H,SO, for 30 min compared to 2% HCl. These obser-
vations highlight the sensitivity of fermentable sugar recovery
on acid type, concentration and nature of the substrate.

Pre-treatment carried out at various heating times between
70 and 240 min gave different yields for all three acid pre-
treatment experiments. For the HCl-based model, xylose and
glucose yields increased from an average of 27.63 and 9.16 g/L
to a maximum of 50.61 and 17.86 g/L respectively as the pre-
treatment time was increased from 70 to 155 min. An in-
crease beyond this pre-treatment time showed no marked
improvement on the release of xylose and glucose. For the
H,S0,4-based model, xylose and glucose yields increased from
an average of 21.36 and 7.76 g/L to a maximum of 44.68 and
14.44 g/L respectively when pre-treatment time was increased
from 70 to 240 min. The HNOs-based model gave maximum
xylose and glucose yields of 49.06 and 15.95 g/L respectively
when pre-treatment heating time was increased to 240 min.
This is in line with the studies by Mafuleka and Kana [14] who
reported a similar pattern of sugar release as a function of pre-
treatment time.

As observed in Table 3, a solid to liquid ratio of 40% resulted
in higher yields (48.06 g/L xylose and 1549 g/L glucose)
whereas S:L ratios of 50% and 30% showed a low yield of
fermentable sugars for all three acid-based models. This could
be linked to the higher accessibility of the substrate to the acid
at low S:L ratios. An optimal S:L ratio of approximately 36%
has been reported by Vargas Betancur and Pereira [29] using
sugarcane bagasse.

Experimental data showed that an acid exposure lag time
of 24 h enhanced the recovery of fermentable sugars by
increasing the yields of xylose and glucose by 2.79 and 3.14%,
2.11 and 2.34% and 25.39 and 18.23% for HCI, H,SO, and HNO3
respectively. These observations highlighted the importance
of including a lag time between the acid treatment and the
onset of the heating phase for the three acid models investi-
gated. There is a dearth of information in public repositories
on investigations of acidic pre-treatment of lignocellulosic
feedstocks with an acid exposure lag time.

Interactive effect of pre-treatment variables on sugar release
The interactive effects of the pre-treatment input variables on
the sugar release pattern for the HCl-based model are shown

Table 4 — Analysis of Variance (ANOVA) for xylose and glucose models for HCl, H,SO; and HNO;,

Acid-based model Model output Sum of squares df Mean squares F-value P-value R?
HCl Xylose 7540.95 14 538.64 12.77 <0.0001 0.93
Glucose 457.20 14 32.66 7.47 <0.001 0.88
H,S0;4 Xylose 4851.04 14 346.50 13.58 <0.0001 0.93
Glucose 195.25 14 13.95 7.19 <0.001 0.88
HNO3 Xylose 3276.79 14 234.06 475 0.0031 0.83
Glucose 106.17 14 7.58 2.20 0.0763 0.69

df: degrees of freedom, F-value: Fisher-Snedecor distribution value, P-value: probability value, R? coefficient of determination.
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in Fig. la—d. It is observed that when the acid concentration
and the heating time were simultaneously increased from 1 to
6% and 70—180 min respectively, the recovery of xylose
improved to a maximum yield of approximately 47 g/L
(Fig. 1a). Furthermore, the interaction of these input parame-
ters on glucose release showed that at high set-point values
(>above 18 h) of acid exposure lag time and 155 min heating
time, higher yields were obtained. Similar observations on the
improvement of sugar recovery at high acid concentration
and process time have been reported by Mafuleka and Kana
[14]. However, given the cost of these operational variables, a
suitable techno-economic analysis is required to determine
the most suitable operational set-points. As reported by da
Costa Sousa et al. [5]; the more severe a pre-treatment regime
is, the less economically feasible the process becomes. This is
due to the costs associated with the treatment process of the
effluents and ensuring that all components of the process are
maximally utilised. Therefore, although sugar release in-
creases with acid concentration, the treatment of subsequent
waste products becomes more costly.

The interaction of lag time and heating time (Fig. 1b)
showed a peak yield of xylose of approximately 48 g/L, with
an acid exposure lag time of about 20 h and heating time of
155 min. A similar pattern was observed for glucose recovery
with an optimal yield of 14 g/L at an acid exposure lag time of
20 h and a S:L ratio of between 40 and 50% (Fig. 1d). These
observations indicate that a higher lag time value is prefer-
able to enhance the sugar release. However a reduced yield
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was observed with an acid exposure lag time of between 12
and 18 h for both sugars. This suggests a non-linear effect or a
complex interaction of this input parameter on sugar release.
Such a phenomenon may be explained by the exposure to
acid resulting in bond formation between the lignin and
hemicellulose fractions [10], which requires further heating to
cleave.

The interactive effects of the input variables for the H,SO4
model are shown in Fig. 2a—d. It is observed that when S:L
ratio was decreased from 50 to 30%, a significant increase in
xylose yield was observed to a maximum of almost 28 g/L. A
similar pattern is shown in Fig. 2d, where an optimal glucose
yield of 8 g/L is achieved at a low S:L ratio. This yield increased
to 32 g/L with a simultaneous increase in the heating time
from 70 to 240 min (Fig. 2a). A further increase in sugar re-
covery to almost 42 g/L is observed when acid concentration is
increased from 1 to 6%. In contrast to this, studies carried out
by Wang et al. [30] using lime, showed that a simultaneous
increase in S:L ratio and lime concentration was most bene-
ficial for sugar recovery. The interaction of heating time and
acid concentration (Fig. 2c) showed a peak glucose yield of
14 g/L when heating time and acid concentration were
simultaneously increased from 70 to 200 min and 1-6%
respectively. Furthermore, the interactive effect of S:L ratio
and acid concentration (Fig. 2b) showed a sharper increase in
xylose yield from 0 to 42 g/L when an increasing acid con-
centration from 1 to 6% was used at a low S:L ratio of (30%), in
comparison to a high S:L ratio.
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The interactive effects of the HNO; pre-treatment are
shown in Fig. 3a—d. It was observed that when acid con-
centration and heating time were simultaneously increased
from 1 to 3.5% and 70—240 min respectively, the recovery of
both xylose (Fig. 3a) and glucose (Fig. 3c) was improved from
4 and 6 g/L to a maximum yield of 28 and 9 g/L respectively.
In addition to this, an optimal xylose yield of 35 g/L was
obtained when acid exposure lag time was increased from
0 to 24 h, concomitantly with a low S:L ratio of 30% (Fig. 3b).
The interaction of S:L ratio and heating time (Fig. 3d)
showed a peak yield of glucose of 9 g/L with a S:L ratio of
approximately 40% and an increase in heating time from 70
to 240 min. These observations indicate that an acid con-
centration of 3.5% is preferable to enhance sugar release.
Above this concentration threshold, there is a low yield of
xylose and glucose.

Validation of developed models

Experimental validation was carried out in triplicate for all
models using their predicted optimum set-points. Fig. 4
shows the predicted and observed xylose and glucose
yields with the highest observed yields of xylose and
glucose of 54.05 and 15.98 g/L respectively obtained using
the HCl-based pre-treatment. HCl-based pre-treatment was
found to be optimal for fermentable sugar release from
sorghum leaves, which correlates with the findings by
Demirbas [6] stating that HCIl has an increased ability to
permeate lignocellulosic material more easily in
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comparison to other acids. Optimum set-points for acid
concentration, heating time, S:L ratio and acid exposure lag
time were 5.95% HCI, 176 min, 49.7% and 18 h and 15 min
respectively.

Optimization of biohydrogen production

Model assessment for hydrogen production

A polynomial model equation (Equation (10)) which relates the
process output (Hydrogen yield) to the variable input param-
eters of inoculum concentration (A), fermentation time (B) and
initial pH (C) was generated using the experimental data in
Table 5.

Hydrogen yield = +0.90 + 2.28A + 0.58B + 10.70C — 0.16AB
+ 5.70AC + 1.61BC + 2.43A% — 1.56B? + 9.37C? (10)

The fitness of this model was assessed using Analysis of
Variance (ANOVA), shown in Table 6. The coefficient of deter-
mination (R?) for this model (0.91) shows that the model could
account for 91% of variance observed in the data. The relatively
low P-value observed further illustrated the significance of the
model and thus, it can be used to navigate the optimization
space. P-value of below 0.0500 indicated that the model was
significant. The F-value of 7.85 also indicated that the model
was significant and there was less than 1% chance that this
value was due to noise.
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Linear and interactive effect of input variables on hydrogen
production
The yields of hydrogen are shown in Table 5. It was observed
that the production of hydrogen was extremely dependent on
the considered input variables with yields varying between
0 and 36.8 ml/g FS.

Hydrogen yield fluctuated as inoculum concentration was
increased. This may be due to the use of mixed microbial

15 | | |

: I I
s

[

Model 1 Model 2

Sugar yield (

Model 3 Model 4 Model 5 Model 6

WPredicted © Observed

Fig. 4 — Predicted and observed sugar yields for HCl pre-
treatment (model 1 = xylose, model 2 = glucose), H,SO,
pre-treatment (model 3 = xylose, model 4 = glucose) and
HNO; pre-treatment (model 5 = xylose, model 6 = glucose)
respectively.
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inoculum source [7]. Although heat pre-treatment is known to
enrich for hydrogen producing Clostridia [32], other endospore-
forming hydrogen consumers may still be present, leading to
lower yields of hydrogen. In this study, the highest hydrogen
yield was observed at 50% inoculum concentration. The
fermentation time of 60 h gave a maximum hydrogen yield of
36.80 ml/g FS. Beyond this fermentation time, there was no
further increase in hydrogen production.

Fig. 5a showed that a maximum yield of hydrogen (36.8 ml/
g FS) was achieved with an increase in inoculum concentra-
tion and increase of pH up to 7. A sharp increase in hydrogen
yield was observed at higher inoculum concentration. This
may be due to the high population of hydrogen producing
bacteria and the buffering capacity of the fermentation me-
dium [32]. As shown in Fig. 5b, more hydrogen was obtained
with an initial pH of 7 and process time of 60 h.

Validation of hydrogen production model

Validation experiments gave a hydrogen yield of 47.30 ml/gFS,
against a predicted value of 32 ml/g FS using 50% inoculum
concentration, 83 h of fermentation time and a pH of 7, which
was 47% higher than the predicted response value.

Bench scale experimentation

As shown in Fig. 6a, hydrogen gas production was initiated
after a lag phase of 17 h and reached a peak fraction of 44%
after 60 h, followed by a decline in hydrogen fraction corre-
sponding to the depletion of fermentable sugars. A longer lag
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Table 5 — Three factor Box-Behnken design used to model and optimize hydrogen yields on variables of inoculum

concentration, fermentation time and initial pH.

Run A: Inoculum B: Fermentation C: Initial Output: Hydrogen
concentration (%) duration (hours) pH yield (ml/g FS)

1 50.00 60.00 7.00 36.80

2 10.00 60.00 4.00 0

3 30.00 96.00 4.00 0

4 50.00 60.00 4.00 0

5 30.00 24.00 7.00 14.19

6 30.00 60.00 5.50 0

7 10.00 96.00 5.50 2.61

8 30.00 60.00 5.50 4.41

9 50.00 24.00 5.50 1.24

10 10.00 24.00 5.50 3.21

11 10.00 60.00 7.00 13.98

12 30.00 24.00 4.00 0

13 30.00 96.00 7.00 20.64

14 30.00 60.00 5.50 0

15 50.00 96.00 5.50 0

16 30.00 60.00 5.50 0

17 30.00 60.00 5.50 0.07

production. Similar results were reported by Sekoai and Kana
[25]; suggesting that the drop in pH may be due to the produc-
tion of volatile fatty acids (VFAs) during hydrogen production.

Table 6 — Analysis of Variance (ANOVA) of Hydrogen
production Model.

Model output Sumof df Mean F- P- R? The pH remained relatively constant throughout the rest of the
squares squares value value fermentation time, from the 30th hour to the 67th hour.

Hydrogen yield 151029 9  167.81 7.85 <0.01 0.91 Fig. 7 shows the phase contrast microscopy carried out on

(ml/g FS) the bench scale process effluent after 68 h of fermentation.

Both rod-shaped microorganisms and rod-shaped cells with
endospores were observed. The cells were approximately
3-3.3 ym in length, which corresponds to sizes of Clostridial
species reported by Bergey et al. [2]. These microorganisms
have previously been reported in hydrogen production [4,7].
They are considered as major hydrogen producers found in
heat-treated sewage sludge [7].

df: degrees of freedom, F-value: Fisher-Snedecor distribution value,
P-value: probability value, R coefficient of determination.

phase of 30 h has been reported by Zheng et al. [36] when using
untreated sludge as an inoculum source. A cumulative volume
of 2952 ml H, was obtained, corresponding to a hydrogen yield
of 213.14 ml/g FS. The initial sugar concentration decreased
from 14.2 to 8.61 g/L during the lag phase, which may be
explained by rapid cell formation.

As shown in Fig. 6b, cumulative volume of hydrogen began
to increase at the 17th hour and an exponential increase was
observed for 20 h and plateaued thereafter. A decrease in pH
from 7.50 to 6.12 coincided with the initiation of hydrogen

Conclusion

Of the pre-treatment models assessed, HCl pre-treatment
was most efficient, as a 77% hemicellulose solubilisation
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Fig. 5 — 3-D Response Surface Plots of a Hydrogen Production model, showing the interactive effects between the variable
process inputs on production of hydrogen.
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Fig. 7 — Phase contrast microscopy of the bench scale
process effluent sample, showing the presence of
presumptive rod-shaped endospore forming bacteria.

was achieved using 5.95% HCI for a lag time of 18 h and
heat application at 100 °C for 176 min with a S:L ratio of
49.7%. HCI pre-treatment allowed for a reduced heating
time of 176 min compared to H,SO, and HNO; which
required 240 min. This reduces the energy input require-
ment for pre-treatment. Xylose and glucose recovered were
subsequently used for the optimization of hydrogen pro-
duction. A yield of 47.30 ml H,/g FS was obtained under
optimized conditions. The feasibility of this process at
bench scale was assessed. A peak hydrogen fraction of
43.75% with a yield of 213.14 ml H,/g FS. Findings presented
in this study highlight the feasibility of using waste sor-
ghum leaves as an excellent feedstock for biofuel or
biomaterial production.
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