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Abstract 
This work pertains to the selective hydrogenation of octanal in the presence of octene, which has 

applications in the hydroformylation process.  The octanal should be hydrogenated to the desired 

product, octanol, while avoiding or inhibiting the hydrogenation of octene.  Since octene is more 

thermodynamically favoured to hydrogenate, complete octene hydrogenation inhibition is 

difficult. 

This study aims to obtain a deeper understanding of the surface chemistry, which occurs on γ-

alumina supported copper-silver bimetallic catalysts.  This was done by first investigated 

monometallic copper catalyst at different weight loadings (5 and 15 wt%), then extending this to 

different weight loadings of the CuAg bimetallic catalysts, while maintaining the total metal 

loading.  Additionally, the effect of the Cu-Ag metal ratios and impregnation sequence were 

investigated.  Seven CuAg bimetallic catalysts and two Cu monometallic catalysts were 

synthesized via wet impregnation, and characterized using various techniques to determine 

surface morphology and the metal-metal and metal-support interaction on the catalyst surface.   

The characterization showed higher copper loadings (15 wt%) formed agglomerates.  The 5 wt% 

catalysts showed the metals to be well dispersed, with the effect of impregnation sequence 

showed significant differences simultaneous impregnation and the sequential bimetallic catalysts 

resulting in changes to the metal dispersion and catalyst acidity.  

The feed used consisted of 2% octene, 10% octanal and 88% octanol.  All reactions were 

temperature and pressure dependent, with optimum conditions of 50 bar and 160 °C.  The overall 

result from catalytic testing showed silver to play a significant role in the selective hydrogenation 

of octanal in the presence of octene.  The effect of impregnation sequence showed the 

simultaneous impregnation to give higher octanal and octene conversions, compared to the 

sequential impregnation catalysts, due to the synergistic effect between two metals in close 

contact with each other.  Sequential impregnation showed that when the copper was impregnated 

first followed by silver, produced lower octene conversions, and hence was a more suitable 

catalyst system for selective hydrogenation.  This research showed that γ-alumina supported 
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CuAg catalysts are beneficial for the selective hydrogenation of octanal while in the presence of 

octene in a competitive reaction environment.   
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Chapter 1 
Introduction and Literature Review 

1.1. Catalysis 
 

Catalysis describes the use of a material to speed up the rate of reaction, by lowering the 

activation energy, without being consumed by the reaction [1-3].  A more in depth understanding 

of catalysis proves the catalyst does react with the reactants temporarily allowing the products to 

form on the catalytic surface [1-3].  Essentially the reaction only occurs if there is sufficient 

activation energy to allow the reactants to undergo the reaction.  The catalyst provides an 

alternate route whereby lower activation energy is required to allow the substrates to react as 

shown in Figure 1.1.  It is important to note that the catalyst only affects the rate of reaction and 

not the chemical equilibrium.  It has been well documented that over time, in some cases, that the 

catalyst may deactivate [4, 5].  The time taken to deactivate is dependent on the type of catalyst, 

and other factors like coking, leaching, agglomeration of metal particles on the catalyst surface, 

and poisoning of active sites [5]. 

 

Figure 1.1.  Potential energy diagram depicting the reaction pathway comparing a catalyzed vs 

uncatalyzed reaction [6]. 
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In 1835, Jӧns Jacob Berzelius was the first to coin the term ‘catalysis’ which was used to identify 

an entity which was able to speed up the rate of reaction without being consumed in the process 

[7].  Catalysis was used as early as 1522 when Valerius Cordus used sulfuric acid to catalyze the 

conversion of alcohol to ether [7].  This began the first era of catalysis whereby other notable 

discoveries were reported such as: [7-10] 

1. The Lead chamber process (1746), describes the production of sulfuric acid, which is one 

of the first industrial processes. 

2.  Kirschoff (1812) reporting on the use of dilute acids to hydrolyze starch to sugar. 

3. Humpfry Davy (1817) used heated platinum to assist in the combustion of gases below 

their ignition temperature. 

4. The oxidation of alcohol to acetic acid using platinum, which was demonstrated by 

Edmund Davy in 1820.  

5. The deactivation of platinum-based catalysts, which was first observed by Henry in 1825, 

in his work regarding the combustion of methane and ethylene.  

6. The first commercial process which was developed by Phillips for the oxidation of sulfur 

dioxide (1831) over platinum-based catalysts. 

The second era marked a greater interest in the understanding of how reactions are influenced by 

catalysis.  This lead to breakthroughs regarding the rates of reactions by Wilhemy (1850), who 

proved the effect of the concentration of reactants, and by Willamson (1851), who showed that 

esters could be reversed back to alcohol.  In 1877, Lemoine showed that a catalyst can be used to 

increase the rate of reaction, speeding up the time it takes for a reaction to reach equilibrium [7, 

10]. 

The third era of catalysis marked the beginning of an industrial chemical revolution.  One of the 

most notable industrial processes began in 1898 with the ‘contact process’ involving the 

production of sulfuric acid using vanadium pentoxide as a catalyst.  Other important process 

which began in this time period were: [7] 
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1. The Ostwald process, in 1902, allowed for the production of nitric acid from a multi-step 

oxidation of ammonia.  

2. The Haber process which uses an iron-based catalyst for the production of ammonia on 

an industrial scale in 1913 

Other major catalytic advances since then are presented in Table 1.1: [7-14] 

Table 1.1.  A few notable catalytic advances from 1920's till 1990's. 

Company/Process Year Description 

Standard Oil Company 1920 Isoproponal from petroleum [7] 

Fischer-Tropsch 1922 Hydrocarbons from CO and H2 [11] 

Dupont 1926 Synthetic methanol production [7] 

Eugene Houdry 1936 Catalytic cracking [7] 

Karl Zieglar 1953 Ethylene polymerization [7] 

Sohio 1960’s Industrial production of acrylonitrile [9, 10] 

Monsanto 1966 Carbonylation of methanol [9, 10] 

Mobil Oil 1977 Methanol to olefins [12] 

Phillips petroleum Co. 1983 Hydroisomerization [7, 10] 

Exxon Research and Engineering 1990 Wax isomerization [13] 

 

In recent times, the focus in industry was to innovate and improve existing catalytic processes, in 

terms of catalyst lifetime, activity, selectivity, as well as becoming more environmentally 

friendly.  This led to chemistry fields such as green chemistry and photocatalysis.  There are 

three main categories of catalysis, which are heterogeneous, homogenous, and biocatalysis.  

Biocatalysis or Enzymatic catalysis uses enzymes with processes such as fermentation [1, 2].  

Enzymatic catalysis is used in a wide variety of processes and is applied in pharmaceuticals, 

paper and pulp production, agriculture and the food industry.  Enzymatic catalysis aims to use 

enzymes or cells similar to those found in nature; meaning that biocatalysts are active under mild 

reaction conditions and well-controlled temperature and pH.  These reactions are also preferred 

in aqueous media which is in correlation with many ‘green’ and ‘environmentally-friendly’ 
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initiatives [15, 16].  Enzymatic catalysis has shown to be effective in enantioselective and 

stereospecific reactions [17-19].  

Zhang et al. [20] reported on the effectiveness of enone/enoate reductases for the reduction of a 

wide variety of substrates including α, β-unsaturated alkenes, ketones, nitriles, and carboxylic 

acids.  These enzymes showed to have high activity at temperatures below 50 °C; however, it 

was also shown that pH plays a major role on the activity, which varies according to the enzyme 

used.  

Lam et al. [21] reported on trans-esterification of biodiesel using three major fields of catalysis 

namely; homogenous, heterogeneous, and enzymatic catalysis.  Each of these fields showed to 

contribute in different ways toward the overall aim of the study.  In the homogeneous system, 

catalysts are relatively cheap but a major drawback was the susceptibility to soap formation in 

the presence of excess free fatty acids (FFA).  Heterogeneous catalysis offered reusability and 

recyclability; however leaching lead to contamination of the product feed.  Enzymatic catalysts 

have high cost but they are also insensitive to FFA and water in the reactant feed.  The 

advantages and disadvantages for the types of catalysts used and explained in this study could 

also be extended into other types of chemical reactions such as alkylation, isomerization, 

oxidation and hydrogenation [16].  

 

1.2. Homogeneous catalysis 
 

Homogenous catalysis applies when both reactants and catalyst are in the same phase.  

Homogeneous catalysis is used in approximately 25 % of catalytic industrial processes [22].  

Homogeneous catalysis, in some cases, proves superior to heterogeneous catalysis due to its 

ability to operate in relatively milder conditions and providing high selectivity [22, 23].  The 

main drawback from this type of catalysis is the difficulty in separation of the reactants, products 

and catalyst.  A homogeneous catalyst is mainly comprised of a metal center with ligands.  The 

interaction between the ligand and metal defines the way the catalyst will behave in terms of 

activity and selectivity.  The factors which govern the behavior of the catalyst include electronic 

and steric effects [24].  
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The most well-known homogeneous catalyst is a rhodium based organometallic complex also 

known as the Wilkinson’s catalyst which is a used for the hydrogenation of unsaturated organic 

molecules such as alkenes and alkynes [25].  Zakzeski et al. [26] reported on the use of rhodium- 

and ruthenium-based catalysts to obtain high yields in hydroformylation.  Other metals such as 

platinum, when combined with various ligands, have proven to be effective homogeneous 

catalysts for hydroformylation, hydrogenation, hydration, oxidation and carbonylation reactions 

[27].  Palladium has also been used for functionalizing aryl halides with yields ranging from 40 – 

95 % depending on the ligand used [28].  A few well known palladium catalyzed reactions 

include the Heck, Buchwald, and Hartwig reactions [28].   

Some of the elementary steps in homogeneous catalysis involve ligand association and 

dissociation, which allows a vacant site to be produced in which the reactant can interact with the 

metal center.  Insertion occurs when the reactant bonds to the metal center, in some cases the R-

group on the reactant can migrate to form a single bond with the metal.  Types of migration such 

as hydride and methyl migration can also be promoted by the other ligands on the metal.  β-

elimination, oxidative addition and reductive elimination are all examples of catalytic steps 

which occur in homogenous catalysis [29]. 

 

1.3. Heterogeneous catalysis 
 

Heterogeneous catalysis comprises of 75 % of the world’s industrial catalytic processes and is 

defined as the reactant and catalyst being in different phases i.e. gas-solid, liquid-solid, or gas-

liquid [22].  Heterogeneous catalysis usually consists of a solid catalyst containing a porous 

inorganic material as the support and a metal as the active component.  The common types of 

supports used are; alumina, ceria, silica, manganese oxide, zeolites, and hydrotalcite [30].  The 

reaction between the reactant and active metal usually takes place at the interface between the 

catalyst surface and molecule which is depicted in Figure 1.2 [31]. 
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Figure 1.2.  Illustrating of a reaction on a heterogeneous catalyst. 

 

A catalyst is effective in decreasing the activation energy of a reaction.  This allows the 

thermodynamically favoured reaction to occur at an enhanced rate.  This enhanced rate also 

increases the formation of by-products via side reactions.  It is of great importance to have some 

control of the catalyst in terms of the selectivity to the desired products, as well as the activity of 

the catalyst, which depends on the catalyst stability.  The activity and selectivity in 

heterogeneous catalysis is dependent on many factors such as the support, metal, method of 

preparation, reaction conditions, etc.  The electronic and steric properties of the catalyst can be 

modified with the use of promoters, or a secondary metal.  These catalysts are able to have a long 

life span; however, it does depend on its susceptibility to deactivation caused by poisoning, 

leaching, coking, and sintering.  It has been noted that a major advantage of heterogeneous 

catalysis is the ease of the catalyst to be recycled and regenerated, making this system 

economically viable [23]. 
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1.4. Methods of preparation 
 

The catalyst preparation technique has a great influence on the behavior of the catalyst.  

Catalysts can be modified and fine-tuned, by altering the catalyst preparation procedure.  Some 

of the factors, which are affected by the preparation technique, include particle size, selectivity, 

activity, stability, and mechanical strength.  It is for this reason that the effect of catalyst 

preparation has been studied in depth to fully understand the contribution of the preparation 

techniques and methods [8, 30, 32, 33].  The preparation technique can be altered in a number of 

ways e.g. a change in the metal precursor salt, pH, and stirring time and calcination temperature 

etc.   

It is of commercial importance to produce a catalyst, which has high surface area, uniform pore 

size, and high mechanical strength.  It is for this reason that there has been continuous 

development in improving catalyst preparation procedures [11, 33].  Some of the most common 

catalyst preparation procedures include wet impregnation, co-precipitation, deposition-

precipitation, and the sol-gel method.  

Wet impregnation involves the addition of the dissolved metal salt added to the support.  This 

mixture is then stirred for a period of time, followed by drying and calcination [30].  Co-

precipitation requires a more controlled environment in terms of pH.  One or more metals are 

precipitated together with the support, which undergoes three main stages:  Supersaturation, 

nucleation and growth.  Supersaturation occurs by evaporation of the solvent or an increase in 

pH, which allows the metal to deposit onto the support.  Growth of the particle size depends on 

concentration of metal, pH and time [30].  Deposition precipitation uses the support to provide 

for the nucleation sites for the metal precursor.  The addition of the base is important as it is a 

determining factor to allow for a gentle change in pH [30].  The sol-gel technique involves the 

metal precursor dissolving in a solvent, thereafter the addition of acid or base for hydrolysis to 

allow for gel formation.  This is allowed to age followed by drying to remove excess moisture 

[30]. 
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1.5. Types of reactors 
 

Apart from the chemistry taking part on the catalytic surface, an important part of the catalytic 

process is the type of reactor used for the system.  A large amount of research and engineering 

goes into designing and optimizing reactors.  Common types are the fixed bed, fluidized bed and 

slurry bed reactor.  However, there are also modified reactors which include bubble tower, spray 

tower, and falling liquid film [34]. 

Reactors are designed to improve and optimize a variety of different catalytic chemical 

processes.  Many factors must be considered when choosing the type of reactor such as the 

catalyst choice, ease of operation, solvent effect, heat control, deactivation studies, economics 

and start-up costs.  There are three main types of reactors 

1.5.1. Batch flow reactor   

In this set up the reactants are added together and allowed to react for a certain period of time 

without interruption.  Once the reaction is complete, the products are removed.  This allows 

excellent contact between the catalyst and reactants.  Advantages of this type of reactor are good 

temperature control, and they are suitable for long reaction times and small scale production.  

These are generally used in the polymer and food industry [34, 35].  Major disadvantages 

involve the difficulty of cleaning the reactor, and deactivation of the catalyst, which could occur 

when the solvents are emptied out from the reactor [36].  An example of a batch reactor design is 

shown in Figure 1.3.   

 

Figure 1.3.  Diagram of a batch flow reactor [37]. 
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1.5.2. Continuous flow reactor 

This type of reactor can be used for gas and liquid phase reactions.  They are typically used for 

simple reactions.  It is economically viable as production costs are lower and products can be 

removed during the reaction, as compared to a batch reactor.  This set up can be used on a 

laboratory scale or an industrial scale.  Within this type of reactor, further modification allows 

for a fluidized bed reactor or a fixed bed reactor. 

In a fixed bed reactor, the reactant (gas/liquid) is fed downstream and is in close contact with the 

catalyst bed shown in Figure 1.4.  A fluidized bed reactor is known for its heat and mass transfer 

control.  The reactants and catalysts are usually dispersed with flow entering from the bottom of 

the reactor creating a dispersed fluid set up which can be seen in Figure 1.4b.  A few important 

factors to take into consideration are temperature control, especially with exothermic reactants 

and pressure control.  Since the catalyst is in a fixed position, there must be sufficient void space 

to allow the reactant to pass through without clogging which could cause back pressure or a 

pressure drop.  The catalyst must be mechanically stable to withstand disintegration.  Continuous 

reactors have an increased operating efficiency compared to batch reactors as there are fewer 

start-up and shut-downs required [34-36, 38-40]. 

               

Figure 1.4.  Schematic diagram of (a) fixed bed reactor [37] and (b) fluidized bed reactor [41]. 

1.5.3. Plug flow reactor 

One or more fluids can be pumped through the reactor pipes.  This set up is commonly used 

under high temperature and pressure conditions  [34, 35].  In this work, a continuous plug flow 

fixed bed reactor was used and will be explained in detail in chapter 2 

(a) (b) 

http://www.google.co.za/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=z3v3os8UoBVW2M&tbnid=YxCKQTJABr3crM:&ved=0CAUQjRw&url=http://www.essentialchemicalindustry.org/processes/chemical-reactors.html&ei=OroxU53fD-_60gW6iIGIDg&psig=AFQjCNGqrtbBpVijTFCBxHLjRByZe1GSng&ust=1395854126030066
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1.6.  Hydrogenation 

 

1.6.1. History of hydrogenation 
 

Hydrogenation describes the addition of hydrogen atoms to an unsaturated molecule and is a 

valuable reaction to organic chemistry [42].  James F. Boyce is known for his work in vegetable 

oils and fat for the manufacture of soaps and detergents in the late 19th to early 20th century.  His 

work involving the hydrogenation of cottonseed oil was considered to be a scientific 

breakthrough which allowed for further work and applications [43]. 

French chemist Paul Sabatier is considered to be the father of hydrogenation, for his contribution 

in the late 1890’s to work on the hydrogenation of gaseous organic compounds using a trace 

amount of nickel as a catalyst [8, 44-46].  The reaction involving the formation of methane and 

water from carbon dioxide and hydrogen using a nickel catalyst, called the Sabatier process, was 

based on the work done by James. F. Boyce [47].  Wilhelm Norman extended the application of 

catalyzed hydrogenation of liquid organic compounds like oleic acid, over a nickel catalyst in the 

presence of gaseous hydrogen [47].  Since then, major hydrogenation processes and applications 

have been developed as shown in Table 1.2 [46-48]. 

Table 1.2.  A few notable catalytic advances in the hydrogenation field. 

Process Year Description 

Chilling 1902 Hydrogenation of liquid vegetable oils  

Haber process 1905 Hydrogenation of nitrogen 

Fischer-Tropsch 1922 Coal to liquid fuel 

Murray Raney 1924 Amines to nitriles 

BASF 2009 Selective hydrogenation of alkynes 
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1.7. Catalytic hydrogenation 
 

Hydrogenation is used in many fields industrially such as the petrochemical industry, polymers, 

fine chemicals and pharmaceuticals.  Catalytic hydrogenation is one of the most widely used 

steps in organic synthesis and is invaluable in both the fine chemicals and pharmaceuticals 

industry [32].  The preferred option in industry is using supported metal as the catalysts due to its 

ability to diffuse hydrogen on the surface and to allow the reactants to be hydrogenated.  The 

hydrogen atom can be made to react readily with many functional groups and can be selective in 

the right conditions.  It is also the most economical method of reducing of unsaturated functional 

groups for both laboratory and industrial scale production, and can be used in gas phase or liquid 

phase reactions [36]. 

Some critical parameters of catalytic hydrogenation include the choice of catalyst used e.g. Pd/C, 

Ni/Al2O3, operating conditions, and catalyst preparation.  The performance of the catalyst 

depends on the nature of the active metal as well as the support.  As stated by Sabatier, the 

adsorption of reactants should neither be too strong or weak for high catalytic activity [49].  A 

good balance must be attained between the strength of adsorption between the reactant and 

catalyst, as this is a desirable catalytic property, and will be able to desorb the product without 

deactivating the catalyst.  A weak interaction will not adsorb the reactant sufficiently making an 

unfavorable catalyst.  The tendency of metals to dissociate the hydrogen bond is summarized in 

Figure 1.5.  The active catalyst must have sufficient surface area, be able to adsorb and dissociate 

hydrogen, and allow for easy desorption of the product.   

 

Figure 1.5.  The tendency of transition  metals to dissociate a hydrogen bond [50]. 
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Some of the factors, which influence the hydrogenation ability of the catalyst, are: [8, 32] 

The choice of the metal, as this plays a major role towards the catalytic activity.  The two main 

categories of metal catalysts are precious metals, which include Pt, Pd, Ru, Rh, Os, Ir, Ag and 

Au, and base metals, such as Cu, Ni, Co, Fe, which are relatively cheaper than the precious 

metals.  The type of support plays a significant role in the effectiveness of the catalyst properties 

and behaviour.  Types of support used can be acidic, basic or amphoteric.  Common types of 

supports used in hydrogenation are alumina, silica, ceria, titanium dioxide, magnesium oxide nd 

zeolites.  γ-alumina is a common support due to its high surface area and thermal stability.  It has 

been reported by Bachiller-Baeza et al. [42], that Rh showed to be effective in the selective 

hydrogenation of α,β-unsaturated aldehydes when supported on Mg and Ce.  This study was 

done in both the gas and liquid phase [42].  Hydrotalcite have also been investigated as a 

hydrogenation catalyst for acetone, acetophenone, and phenol compounds [51, 52].  It was also 

found effective in selective hydrogenation of α,β-unsaturated aldehydes which includes 

crotonaldehyde, cinnamaldehyde, citral, and acrolein [53]. 

The support plays a role in the metal particle size, the metal-support interaction, as well as the 

deactivation rate, thus affecting the overall activity of the catalyst [5, 30, 54].  To further 

elaborate, in a paper reported by Mori et al. [55] poisoned Pd/C showed to be effective in 

chemoselective hydrogenation for alkenes in the presence of aliphatic and aromatic ketones, 

however the catalyst deactivated over time, with recyclability of the catalyst proving difficult.  

However, Hong et al. [56] showed that when palladium was supported on titania (Pd/TiO2), the 

catalyst proved more stable over time for the selective hydrogenation of acetylene.  Apart from 

the metal-support interaction, the structure and pore size of the support plays an important role in 

activity and selectivity.  As a compromise between the most efficient and most economical 

catalyst, the loading, type of metal and support is constantly studied to reach an effective 

balance.  

Hydrogenation can be separated into two distinct groups, which are bulk hydrogenation, which 

entails the hydrogenation of in most cases a mono-functional group, and selective hydrogenation 

which entails the hydrogenation of one particular functional group in the presence of another 

functional group e.g. alkyne in the presence of an alkene.  
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1.8. Hydrogenation of alkenes (C=C) 
 

Carbon-carbon double bonds can readily be hydrogenated to the alkane under mild conditions 

[57].  Palladium is the most well-known and common metal for the hydrogenation of alkenes, 

however Pt, Ru, and Ni has also been used in the past [36, 58-62].  Steric factors and 

substitutions of the alkene determine the hydrogenation of the compound.   

A great deal of work has been conducted over the past 40 years to determine the mechanism of 

the catalytic hydrogenation of alkenes.  The Horiuti-Polanyi mechanism is most well accepted 

over a range of different heterogeneous catalyst due to the mechanism being supported by results 

obtained regarding stereochemistry, double bond isomerization and deuterium labeling of the 

alkene hydrogenation reaction [63].  The mechanism, shown in Figure 1.6, is rather simple with 

the diatomic hydrogen dissociated onto the active catalyst surface (1).  The reactant is adsorbed 

onto the surface via the double bond (2), the hydrogen is allowed to interact with the weakly 

adsorbed alkene bond (3), the alkane desorbs from the catalyst while reacting with the second 

hydrogen to form the product (4).   

 

Figure 1.6.  Mechanism of the catalytic hydrogenation of an alkene [64]. 

 

(1) (2) 

(3) (4) 
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1.9.   Possible mechanisms for alkene hydrogenation 

1.9.1. Langmuir-Hinshelwood mechanism 
 

This mechanism involves the dissociative chemisorption of the reactive gas (hydrogen) on the 

surface.  The hydrogen then migrates across the surface until interaction occurs with the reactant 

molecule, which is adsorbed to the catalyst surface.  Once the reactive gas and reactant interact, 

the product is desorbed from the surface allowing a new reactant molecule and gas to adsorb [65, 

66].  Augustine and co-workers [63] have also stated that the rate of reaction depends on the 

amount of the chemisorbed species on the surface, which in this study is hydrogen.  Considering 

that this may be the mechanism, which occurs, in this catalytic system, there are a few possible 

products, which could form as explained in this chapter.  Figure 1.7 shows a simple illustration 

of the Langmuir-Hinshelwood mechanism for a hydrogenation reaction. 

 

Figure 1.7.  Illustration depicting the Langmuir-Hinshelwood mechanism. 

 

1.9.2.  Horiuti-Polanyi mechanism 
 

The Horiuti-Polanyi mechanism involves the dissociation of a hydrogen molecule, followed by 

the addition of the atomic hydrogen to the substrate in a stepwise reaction shown in Figure 1.8.  

There are two possible pathways, with the first case being the addition of the dissociated 

molecule to the carbonyl oxygen forming a hydroxyalkyl species.  The second pathway occurs 

via the addition of the dissociated hydrogen to the carbonyl carbon, leading to the alkoxy 
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species.  The hydrogen dissociation was said to have a low energy barrier on palladium when the 

study was first conducted by Horiuti and Polanski in the 1930’s [67].  In addition to the energy 

barrier required to dissociate hydrogen on the palladium surface, studies were also conducted for 

nickel, copper, silver and gold catalysts [64, 68].   

 

Figure 1.8.  Illustration of the Horiuti-Polanyi mechanism. 
 

1.10. Hydrogenation of aldehydes 
 

The aldehyde functional group undergoes a dihydro-addition to form a primary alcohol [57].  

Low valent metal hydrides can be used in this reduction such as LiAlH4 and NaBH4.  Another 

method is catalytic hydrogenation with the use of a supported metal catalyst that is able to 

dissociate diatomic hydrogen and allow the carbonyl group to react with the hydrogen atom.  The 

hydrogenation of aldehydes is an important reaction in the fine chemicals and pharmaceuticals 

industry [69, 70]. 

Govender [71] investigated the use of copper in an aldehyde feed containing water over three 

types of supports, which were alumina, chromite and silica.  This study showed copper to be 

effective in the hydrogenation of octanal to octanol at temperatures ranging from 120 – 180 °C 

and pressures up to 60 bar.  The presence of water did not affect the activity of the catalyst, and 

was stated to improve the selectivity towards octanol formation.  This trend was seen with 

alumina and chromite supports.  The silica supported catalyst showed conversion to decrease 

over time indicating deactivation [71]. 
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There are two possible mechanistic pathways which have been stated by Sitthisa et al. [72] for 

the hydrogenation of acetone and propanal.  Figure 1.9 shows the two possible mechanisms, 

whereby Mechanism (1) shows that the addition of hydrogen to the carbonyl group takes place at 

the C atom of the carbonyl group, leading to an alkoxide intermediate.  The second hydrogen is 

then added to the alkoxide intermediate resulting in the alcohol.  Another possible reaction 

pathway, Mechanism (2), is when the hydrogenation occurs at the O atom forming a 

hydroxylalkyl intermediate, followed by the addition of the second hydrogen producing the 

alcohol [72].  

 

Figure 1.9.  Possible intermediates for the hydrogenation of an aldehyde [72]   (Redrawn with 

permission from Elsevier © 2014). 

 

1.11. Catalytic selective hydrogenation 
 

Selective hydrogenation involves the hydrogenation of a specific functional group while 

preventing or avoiding the hydrogenation of other possible functional groups present.  This 

becomes difficult in cases where the wanted reaction is not favoured due to kinetic or 

thermodynamic reasons.  It has been well documented that there is a heirachy as to the 

hydrogenation of certain functional group for example, C=C < C≡C, the alkyne is thermally less 

stable and hydrogenates to the alkene at a faster rate than the alkene to the alkane [73].  This can 
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also be extended to other functional groups such as C≡C > C=C > C=O (aldehyde) > C=O 

(ketone), mainly due to higher reactivity of the aldehyde than the ketone which is vulnerable to 

steric hindrance as well as electronic effects.  With selective hydrogenation being the focus of 

this study, an insight into the hydrogenation of a few of these functional groups was warranted.   

Early advances in hydrogenation were mainly done for olefin hydrogenation to the paraffin 

product, which was further extended to chemo- and regio-selective hydrogenation, namely the 

preferential hydrogenation of conjugated olefins over non-conjugated olefins.  This was also 

extended to carbonyl and nitrile hydrogenation [74]. 

1.11.1. Partial hydrogenation of alkynes to cis-olefins 
 

Partial hydrogenation of alkynes to cis-alkenes is an important class of reactions, which is used 

in the natural products and petrochemicals industry.  A widely used catalyst for this reaction is 

the Lindlar’s catalyst, however, the use of lead acetate and quinoline makes this method 

environmentally unfriendly [75, 76].  Metals such as Ni, Rh, Cu and Cr have been used to 

accomplish the partial hydrogenation of alkynes, however, a Pd based catalyst investigated by 

Sajiki et al. [77] showed promising results with a 97 % selectivity toward the desired product  

Figure 1.10 shows the partial hydrogenation of butyne to form cis-butene or trans-butene. 

 

Figure 1.10.  Hydrogenation of butyne to possible butene products. 

 

The hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol is a well-studied reaction due to its 

application in the production of vitamins A and B6, as well as in the polymer industry [78, 79].  

Rode et al. [79] reported on the ability to manipulate the catalytic system to obtain the desired 
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composition of products by varying the reaction conditions using a Pt/CaCO3 catalyst.  The 

selectivity was largely dependent on the hydrogen pressure; at lower pressure, the selectivity to 

butane-diol was almost 80 %.  It was also noted that as the pressure increased, so did the 

conversion of the butyne-diol to butane-diol, and the selectivity towards the butene-diol 

increased to approximately 50 % [79].  It was reported by Winterbottom et al. [59] that the use of 

Pd/TiO2 achieved a >95 % selectivity of butene-diol and Pd/charcoal promoted with lead 

additives gave selectivities between 92 – 98 % towards butene-diol.  The possible hydrogenation 

products are shown in Figure 1.11, where 2-butene-1,4-diol forms via selective hydrogenation 

and 2-butane-1,4-diol forms via total hydrogenation. 

 

Figure 1.11.  Reaction scheme for the hydrogenation of 2-butyne-1,4-diol [79] (Redrawn with 

permission from American Chemical Society © 2014). 

 

1.11.2. Hydrogenation of furfural to produce furfuryl alcohol 
 

Furfuryl alcohol is widely used in the chemicals industry in synthetic fibres, farm chemicals, 

thermostatic resin, plasticizers, and in the production of vitamin C and lysine.  It is for this 

reason that the hydrogenation of furfural has been extensively studied using Cu, Ni, Co, Ru, Pt 

and Pd based catalysts to achieve the most efficient hydrogenation system [80, 81].  Pd based 

catalysts were also found to have a significantly high selectivity toward the formation of 

byproducts and promote the decarbonylation reaction to produce furan.  Copper is reported to be 

preferred for this type of reaction due to its high activity and selectivity to the desired product, 

and there is a minimal formation of byproducts like 2-methyl furan [53, 81, 82].  Figure 1.12 

shows the possible products, which can be obtained from the hydrogenation of furfural.  
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Figure 1.12.  Hydrogenation reaction pathway of furfural [80] (Redrawn with permission from 

Elsevier © 2014). 

 

1.11.3. Hydrogenation of acetylene and diene impurities in alkene feedstocks  
 

Alkenes have a wide range of applications especially in polymer production and processes like 

hydroformylation [83].  Some of the streams may contain undesired components like alkynes and 

dienes [13, 83-85].  These components tend to poison the process catalysts downstream [85].  

Ethylene and propylene streams, derived from cracking, contain components like acetylene, 

propadiene and propyne which are removed by selective hydrogenation whilst minimizing 

alkene loss [83].   

In butyl and pentyl systems, undesired components such as vinyl acetylene and dienes must also 

be removed from the system to avoid the conversion to lower valued components.  Selective 

hydrogenation was reported to be carried out on various catalytic systems which include 

palladium, platinum, nickel, copper, copper/nickel, copper/chromium, copper/nickel/chromium, 

zinc/chromium, or nickel/molybdate catalysts [84, 86].  
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1.11.4. Selective hydrogenation in the hydroformylation process 
 

Hydroformylation (also called ‘the oxo process’) of a wide range of olefins (C2- C24) is an 

industrially practiced application to obtain aldehydes and alcohols, which act as intermediates for 

surfactants, detergents, plasticizers, and the perfume industry.  This reaction involves the 

addition of a carbon monoxide and hydrogen molecule to an alkene, forming aldehydes.  

Commercially a rhodium-phosphine modified complex is often used under mild conditions for 

the hydroformylation of small chain alkenes, however this is not used for longer carbon chains as 

the rhodium complex decomposes during separation of the reaction mixture [87].  Cobalt was 

reported to be better suited for the hydroformylation of higher alkenes under homogeneous 

conditions as it is stable against higher temperature, pressure and longer reaction time.  There is a 

continuous effort into improving these processes by studying the effect of the ligands, synthesis 

method, process conditions and heterogeneous catalysis [53, 87, 88].  Tadd et al. [88] showed the 

possible products from the hydroformylation process using 1-hexene, shown in Figure 1.13 

Hydroformylation has been investigated using a range of different types of catalyst namely 

homogenous [89, 90], heterogeneous [91, 92], supported aqueous phase catalysis [93, 94] and 

supported ionic liquid phase catalysts (SILP) [95].  SILP studies by Riisager et al. [95], on the 

hydroformylation of propene and 1-octene reported on a conversion of 1 % and 100 % selectivity 

to the aldehyde using a rhodium-phosphine based catalyst.  The conversion to the final product 

(alcohol) ranged from 47 – 67 % [95].  The unreacted alkenes can be separated by distillation 

before entering the hydrogenation reaction, or the alkenes are selectively hydrogenated in the 

presence of aldehydes [86]. 

In a study done by Rivas et al. [89], ligand effects in a rhodium catalytic system were shown to 

be a major factor on the conversion and selectivity to the desired product.  Aldehydes were 

reported to have selectivity greater than 95%, with octane and octene forming less than 5 % 

selectivity. 
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Figure 1.13.  The possible products from hydroformylation of 1-hexene [88] (Redrawn with 

permission from Elsevier © 2014). 

 
The desired product in hydroformylation is the aldehyde, which can then be hydrogenated to a 

primary alcohol.  Sasol has commercialized a process in 2001 using a rhodium catalyst to 

produce primary alcohols from 1-heptene, which is a product from the Fischer-Tropsch process.  

The hydroformylation product, octanal, is hydrogenated to give 1-octanol [24, 96].   

Selective hydrogenation reactions between octene and octanal in a combined feed have only 

been recently studied.  Interest has increased due to their importance from an industrial point of 

view.  It can be noted that in the hydrogenation of aldehydes from the hydroformylation reaction, 

there may be some unreacted olefins present [84, 86].  These olefins are regarded as valuable 

commodities, which can be recycled to the hydroformylation reactor.  If these olefins are passed 

to the hydrogenation step, they will form paraffins, which are undesired.  Either the unreacted 

olefins can be separated via energy intensive distillation processes or the aldehyde can be 

selectively hydrogenated in the presence of the olefin.  In this system there is a competitive 

reaction where either the octene or octanal could interact with the active site.  Previous studies 

have shown copper to be effective in this competitive reaction between octene and octanal with 

minimal hydrogenation of the octene [97].  Selective hydrogenation of these components in 

process streams have not been investigated extensively, therefore the behavior and interaction of 

the alkene and aldehyde functional group must been investigated.  The system that closely 

resembles this type of reaction is the selective hydrogenation of α,β-unsaturated aldehydes, 

where the aldehyde is selectively hydrogenated to produce the unsaturated alcohol.   
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1.12. Possible reactions from the hydrogenation of octanal in the presence of octene 

1.12.1. Main reactions 
 

Figure 1.14 shows the reaction scheme of the desired reaction, which is the formation of octanol 

from octanal.  Selectivity is based on the attraction of the carbonyl group to the active site on the 

catalyst surface.  Gallezot et al. [98] stated that the selectivity of carbonyl hydrogenation can be 

improved by increasing the interaction between the carbonyl molecule and the Lewis acid sites 

present on the catalyst surface.  The Lewis acid sites lower the electron acceptor nature of the пco 

bond which increases the back bonding interaction of the пco bond, favoring the carbonyl 

hydrogenation [98].    

Considering that both reactants allow for a competitive reaction environment, the aim is to 

preferentially hydrogenate one component while avoiding the hydrogenation of the other 

component present as shown in Figure 1.14 and 1.15  In this case, the octene hydrogenation is an 

undesired reaction, shown in Figure 1.16.  From the reactants used in this study, Figures 1.14 and 

1.15 are considered to show the main reaction processes in this work.   

 

Figure 1.14.  Reaction scheme depicting the hydrogenation of octanal to octanol. 

 

 

Figure 1.15.  Reaction scheme depicting the hydrogenation of octene to octane. 
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1.12.2.  Byproducts 
 

In some cases, side reactions could occur depending on the active site or support.  Some of the 

possible side reactions, which can form in the hydrogenation of octanal, are octyl octanoate, 

octanoic acid, 2-hexyl decanol, C16 diol, C14 acetal, and C16 saturated alkanes which are shown 

from Figures 1.18 – 1.20.  

C16 diol and 2-hexyl decanol as by products 

Many organic textbooks explain the aldol condensation between two aldehyde molecules 

involving the formation of an enolate resulting from the deprotonation of one aldehyde molecule.  

This enolate then reacts with the electrophillic carbon atom next to the carbonyl group in the 

second aldehyde molecule, resulting in the C16 aldol intermediate [99-101].  This intermediate 

product is further hydrogenated to form the C16 diol (shown in Figure 1.16).  This reaction takes 

place on basic sites on the support and has been reported previously in literature [60, 71].  The 

basic environment can further dehydrate followed by hydrogenation of the C16 diol to form 2-

hexyl decanol (shown in Figure 1.17) [102, 103].       

 

Figure 1.16.  Reaction scheme depicting the aldol reaction between two octanal molecules.  
 

 

Figure 1.17.  Reaction scheme depicting the formation of 2-hexyl decanol.  
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Octyl octanoate as a byproduct 

The industrial feed used contained many by-products including octanoic acid, therefore 

formation of the ester could occur by the addition reaction between the acid and alcohol followed 

by dehydration in an acidic environment.  Additionally, the ester could form by the 

dehydrogenation of octanal, followed by hydration producing an acid, thereafter the ester forms 

as mentioned previously [104, 105].  This reaction scheme can be seen in Figure 1.19. 

 
Figure 1.18.  Reaction scheme depicting the formation of octyl octanoate.  

 

Octyl ether as a byproduct 

A study by Bethmont et al. [106] showed that ether formation depends of the catalyst acidity.  

The aldehyde reacts with an alcohol molecule, thereafter undergoing dehydration to form the 

ether.  The ether can also form by first forming a ketal, which then undergoes hydrogenolysis to 

form the ether and alcohol as a by-product.  This reaction scheme is shown in Figure 1.19: 

 

Figure 1.19.  Reaction scheme depicting the formation of octyl ether. 
 

C24 acetal as a byproduct 

The formation of acetals has been well documented to occur on acidic sites [85, 107], with an 

exception reported by Millman et al. [108] where acetal formation on basic sites was observed.  

Figure 1.20 shows that the acetal is formed when the carbonyl group on the aldehyde becomes 

protonated, which then reacts with the incoming alcohol group, which is in excess as it is the 

octanol Octyl ether 
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solvent and desired product.  This addition reaction forms a hemi-acetal, which is able to further 

react by undergoing a substitution reaction with a second alcohol molecule.  This reaction occurs 

due to the increase in electrophilic nature of the carbon attached to the hydroxyl group in the 

presence of an acid site, thus forming the acetal product.   

 

Figure 1.20.  Reaction scheme depicting the formation of C24 acetal. 
 

1.12.3. Hydrogenation of α,β-unsaturated aldehydes 
 

The α,β-unsaturated aldehydes can be involved in intra-molecular selective hydrogenation.  In 

intra-molecular selective hydrogenation, there are steric and electronic effects that govern 

selectivity towards the selective hydrogenation of the carbonyl group.  Compounds with bulky 

groups around the double bond disfavours adsorption of the C=C bond due to steric hindrance, or 

electron donating groups in the conjugating system increase the electron density at the carbonyl 

bond which promotes adsorption to the active site [109, 110].  

The compounds chosen, in this study, are similar concerning carbon chain length and are a linear 

molecule with only the functional group of interest in the primary position of both molecules.  

This makes it more difficult to ensure the selective hydrogenation of the aldehyde as opposed to 

the alkene molecule. 

The selective hydrogenation of α,β-unsaturated aldehydes has been extensively studied 

industrially and academically due to its importance in the fine chemicals and pharmaceuticals 

industry.  The hydrogenation of this type of molecule is particularly difficult due to the presence 

of an alkene and aldehydes functional group on the same compound [58, 70, 111].  

The hydrogenation of the C=O bond in the presence of a C=C bond, as in the case of α,β-

unsaturated aldehydes,  is considered to be a difficult reaction.  This difficulty is a result of the 
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formation of saturated aldehydes is favoured over the unsaturated alcohol due to the C=C alkene 

(Δ H = -120 kJ. mol-1) bond being more reactive then the C=O bond (Δ H = -50 kJ. mol-1).  

Steric hindrance around the C=C bond contributes to the selective formation of the unsaturated 

alcohol [58, 62, 69, 98, 109, 110, 112, 113]. 

The are many proposed mechanism for the hydrogenation of α,β-unsaturated aldehydes which 

illustrates the difficulty of selective hydrogenation of unsaturated aldehydes.  One such reaction 

process is illustrated in Figure 1.21:  

 

Figure 1.21.  Elementary steps for the hydrogenation of acrolein [113] (Redrawn with permission 

from American Chemical Society © 2014). 

Acrolein has been studied extensively to determine the mechanism in catalytic hydrogenation as 

it is the simplest α,β-unsaturated aldehyde.  This study was done in the gas phase; therefore the 

intermediates form radicals which bond strongly to the catalyst surface.  The hydroxyallyl and 

the 1-formylethyl radials are considered more stable due to the attack on the terminal center sites, 

causing a delocalization of the π electrons.  This leads to the hydroxyallyl radical being the most 

favourable pathway to the unsaturated alcohol, propenol [113]. 

There are many factors which influence the ability of a catalyst to allow for selective 

hydrogenation which includes; the type of support, steric effects, particle size, promoters and 

type of metal or metals [70]. 
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1.13. Selective hydrogenation catalysts 

1.13.1. Platinum group metals 
 

Noble metals have been investigated for the hydrogenation of propanal and acetone in a 

competitive reaction environment.  As reported by van Druten and Ponec [61], the platinum 

group metals hydrogenate both the propanal and acetone with the aldehyde hydrogenating faster 

than the ketones in a homogenous catalysis system, and the ketones being hydrogenated faster 

than aldehyde hydrogenation using a heterogeneous catalyst [61]. 

da Silva et al. [54] reported on the use of noble metals for the selective hydrogenation of 

cinnamaldehyde, the results showed Pd to be non-selective and iridium being the most selective 

to the unsaturated alcohol.  The rest of the metals followed the trend Pd < Rh < Ru < Pt < Ir.  

They also investigated the effect of promoters such as tin and iron, which gave improved the 

activity in the conversion of the aldehyde to the alcohol.  This work showed that the Pt-Fe/C 

catalyst was approximately 7 times more active than the monometallic Pt/C catalyst and the Pt-

Sn/C catalysts.  This was attributed to the metal-metal interaction between the platinum and iron, 

as well as the combined metal-support interaction, which was not observed in the Pt-Sn/C 

catalyst.   

Delbecq and Sautet [109] looked at a theoretical approach, investigating the adsorption of C=O 

and C=C functional groups on Pd and Pt surfaces.  It was found that the carbonyl group adsorbs 

onto the metal surface via back donation of the metal orbital into the пCO orbital.  This adsorption 

can be further increased by the presence of Lewis acids, which in turn decreases the adsorption 

of the C=C bond with the surface [109]. 

Pd/C is able to convert the C=C bond in α,β unsaturated aldehydes to saturated aldehydes with 

high conversion and selectivity under mild conditions.  It was reported by Du et al. [110] that the 

C=C bond binds to the palladium center, and the C=O bond adsorption is suppressed due to the 

high electron density of the Pd/C catalyst.  Noble metals (Pt, Pd, Rh) was found to favour the 

hydrogenation of the C=C bond over the C=O bond in the absence of a promoter.   
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1.13.2. Group 11 metals (Cu, Ag, Au) 
 

Gold and silver, for many years, was considered inert due to its common applications such as in 

jewellery and coins.  It was only in the mid-20th century that the significance of silver as a 

catalyst was recognized for the oxidation of carbon monoxide (CO), the decomposition of formic 

acid and the epoxidation of ethylene.  Copper-based catalysts have been used for a number of 

processes such as nitrogen oxide removal, amination, oxidation of organic compounds, as well as 

selective hydrogenation in the fine chemicals industry.  Chetty [97] has investigated the use of 

Au/Al2O3 for the selective hydrogenation of octanal in the presence of octene.  It was found that 

the method of preparation played a vital role in the selectivity to the desired product, e.g. large 

gold particles promoted the formation of byproducts, whereas small particles favoured the 

selectivity to the desired product, which was octanol.   

1.13.2.1. Copper 
 

Non-noble metals (Cu, Ni, Zn) were investigated and it was shown that these metals are able to 

preferentially hydrogenate the C=O bond over the C=C bond in α,β-unsaturated aldehydes.  

There have also been studies to support the ability of copper to be effective for the selective 

hydrogenation of aldehydes and ketones [114, 115].   

Copper chromite catalysts used for the hydrogenation of non-conjugated unsaturated aldehydes, 

however, were not suitable for the conjugated α, β-unsaturated aldehydes as the C=C bond 

reactivity was increased and led to isomerization [116, 117].  It was later discovered by Hubaut 

et al. [117, 118] that the steric effects of the substrate played a major role in the selectivity for 

the desired product. 

A good example is the use of Cu/SiO2 for the selective hydrogenation of cinnamaldehyde to 

cinnamyl alcohol.  The catalyst activity and selectivity depends on a number of factors, which 

has been discussed, however, in this case the high dispersion of the copper was responsible for 

the high selectivity, together with the metal-support interaction.  It was found that an increase in 

dispersion increases conversion with no effect on the selectivity [111].  Chambers et al. [119] 

investigated the use of modified copper on silica catalysts for selective hydrogenation of 

cinnamaldehyde.  This work showed that the active sites were the predominant sites, with less 
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free copper, which were found with larger particles or strong metal support interactions (SMSI) 

[98].  

Marchi et al. [120] reported on the use of copper-based catalysts for the hydrogenation of 

cinnamaldehyde in the liquid phase.  This study found that γ-alumina allows for a better 

dispersion of copper, as compared to silica.  Copper dispersion was shown to increase the 

conversion but did not have a significant effect on the selectivity towards the desired product.   

1.13.2.2. Silver 
 

Silver has been used in many applications, for example the oxidation of volatile organic 

compounds (VOC’s), epoxidation of ethylene and reduction of NOx [121-123].  Silver is not 

commonly considered to be a heterogeneous hydrogenation catalyst due to its electron 

configuration of 4d105s1 which results in an inability to dissociate a strong bond such as diatomic 

hydrogen, nevertheless there have been many reports disproving this by showing the 

effectiveness of silver in the selective hydrogenation of α,β-unsaturated aldehydes [50, 121, 124, 

125].  This propelled a need for greater understanding and insight to the catalytically active silver 

species.  There are a few types of species that have been reported: isolated Ag+ ions aggregated 

silver particles, silver-aluminate like species, and Ag2O clusters [121, 124, 125].  Silver was 

found to have a low heat of adsorption value towards hydrogen, meaning the hydrogen does not 

strongly adsorb onto the silver surface.  This allows the C=O bond to hydrogenate preferentially, 

as opposed to the C=C bond which has been documented to require strongly adsorbed hydrogen 

to hydrogenate [50, 126]. 

Nagase et al. [127], first reported silver as a hydrogenation catalyst in 1983 for the selective 

hydrogenation of α, β- unsaturated aldehydes [123, 128].  A great deal of research has been done 

by Claus et al. [129], which reported on the chemoselective properties of silver in the study of 

α,β-unsaturated aldehydes to their corresponding alcohols.  Chen et al. [128] reported on the 

hydrogenation of chloronitrobenzenes and the chemoselective properties of supported silver 

catalysts.  Similarly, chemoselective hydrogenation of synthetic substrates in the presence of the 

supported silver catalyst reduces halonitrobenzenes to their respective aniline form as shown by 

Crook et al. [123]. 
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Acrolein is the simplest α,β-unsaturated aldehyde with a low boiling point and no bulky groups, 

increasing its difficulty in undergo selective hydrogenation.  Grunert et al. [130] used Ag/TiO2 

for gas phase hydrogenation of acrolein.  This catalyst was prepared by wet impregnation, which 

allowed for strong metal-support interaction, showed high selectivity towards the allyl alcohol 

(42%) [130].  Since then, there have been many reports of silver supported catalysts with 

supports such as aluminium foil, single crystals, wet impregnation and deposition precipitation 

over a wide range of inorganic supports such as titania, zeolites, silica and alumina [124, 130, 

131].  A supported silver silica catalyst was found to be effective in selective hydrogenation of 

which was attributed to the edges and kinks which favour the formation of the allyl alcohol [125, 

132].  Bron et al. [131] tested a range of silver based materials, this study concluded that surface 

coverage (or pressure) plays an important role in adsorption of both acrolein and hydrogen, thus 

affecting selectivity.  The higher pressure promotes the adsorption of acrolein whereby the C=C 

bond tilts away from the metal, increasing the activation of the C=O bond, thus favouring allyl 

alcohol formation [129, 131, 133].  Bron et al. [131] tested a range of preparation techniques of 

Ag/SiO2 which showed sputtered silver to favour the formation of propionaldehyde while 

nanocrystalline silver favoured the allyl alcohol formation . 

Wei et al. [132] used Ag/SiO2 to investigate the effect of the particle size of silver, on the 

acrolein hydrogenation to allyl alcohol, resulting in selectivities ranging from 20-35 %, with a 

maximum conversion of 88%.  This shows that the higher selectivity was attributed to the larger 

particle size.  Chen et al. [128] reported on Ag/SiO2 which was also found effective for the 

hydrogenation of o-chloronitrobenzene to o-chloroaniline, with a complete conversion and 100 

% selectivity. 

Claus et al. [134] reported on use of silver supported on SiO2 and TiO2 for the selective 

hydrogenation of crotonaldehyde.  The silica based catalyst showed an improved selectivity 

towards the formation of allyl alcohol compared to the titania based catalyst.  Grunert et al. [130] 

showed the effect of reduction on Ag/TiO2, with high temperature reduction (500 °C) having a 

lower selectivity to the allyl alcohol (27 %) compared to the low temperature reduction (200 °C) 

in which a selectivity of 42 % was obtained.  

Volckmar et al. [135] showed the influence of support, whereby the highest acrolein conversion 

(~90 %) was obtained with the pure supports silica and alumina.  Mixed supports comprising of 



31 
 

varying ratios of SiO2 and Al2O3 showed conversion to be in the range of 20-60 % with 

selectivity reaching a maximum of 40 %. 

1.13.2.3. Gold 
 

Gold have been reported to be highly catalytically active, when in the nanoparticle range, but 

reduces its catalytic activity as the particle size increase [136].  Catalysts containing gold 

nanoparticles have been used for low temperature CO oxidation and hydrogenation [137, 138] 

with complete conversions obtained as low as 30 °C on Au/Al2O3 catalysts [139].  Bond and 

Sermon [140] were the first to report on the catalytic activity of gold, in the 1970’s, for the 

hydrogenation of olefins.  Since the 1970’s, a great deal of research was undertaken to explain 

the catalytic activity of gold when in the nanoparticle range [141].   

Perret et al. [142] reported on the selective hydrogenation of benzaldehyde to benzyl alcohol 

using  Au/Al2O3, Pd/Al2O3, and Ni/Al2O3 catalysts.  The gold catalyst showed a lower activity 

initially when compared to the nickel and palladium catalysts; however, the gold catalyst offered 

superior stability compared to the other catalysts.  In addition, gold catalysts were used in the 

oxidation of benzyl alcohol to benzaldehyde as the main product (~80 %) with a maximum 

conversion of 20 % [143].  Hugon et al. [144] reported on the effectiveness of gold catalysts for 

the selective hydrogenation of 1,3-butadiene in the presence of alkenes, whereby gold offered a 

higher selectivity compared to palladium based catalysts.  

 

1.14. Bimetallic catalyst 
 

A surface containing two metals has unique surface properties as opposed to the monometallic 

system due to the interaction of the two metals with each other and with the support.  This will 

modify the surface and alter the behavior of the catalyst.  There are two distinctive categories 

when it comes to a bimetallic catalyst: [145] 

(a) Alloy – is defined when one metal dissolved in another and they cannot be distinguished from 

each other.  One of the metals would have a lower surface energy causing segregation between 
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the two species resulting in a higher surface concentration of the metal with the lower surface 

energy.   

(b) Intermetallic compound has a definite stoichiometry and unit cell containing both metals.  

Wei et al. [146] stated in their work that in the case of unsaturated aldehydes, when metal A is 

combined with an electropositive metal B; metal B acts as an electron donor, increasing the 

electron density of the host metal A.  An increase in electron density in the active metal causes a 

repulsion towards the C=C bond, therefore the binding energy of the C=C bond decreases 

resulting in an increase in C=O bond adsorption and activation which leads to an increase in 

selectivity.  The presence of a second metal has the potential for improving selectivity and 

activity.  A bimetallic system offers more possibilities of fine tuning the reaction.  It can result in 

the change of electronic properties of the catalytic surface and active sites [146]. 

Bimetallic catalysts are significantly different from the monometallic counterparts due to the 

combined effect of both metals producing a synergistic effect, which may alter selectivity, 

stability, and activity, etc. [33].  There are four main types of bimetallic systems shown in Figure 

1.22.  Ferrando et al. [145] discuss these types of arrangements in detail. [33]. 

 

 

Figure 1.22.  Possible mixing patterns of bimetallic catalysts.  These alloys can be described as 

(a) core shell, (b) sub-cluster segregated, (c) ordered or random mixing and (d) multi-shell [145] 

(Redrawn with permission from American Chemical Society © 2014). 

Cazayous et al. [147] correlated TEM and Raman data to determine the composition of Cu-Ag 

particles.  These techniques were able to determine core shell particles and monometallic 

particles.  A study on surface structures of Pt-Ni bimetallic catalysts, by Murillo et al. [148], 
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showed that within bimetallic systems the Pt-Ni-Pt(111) structure was more active for acrolein 

selective hydrogenation than the Ni-Pt-Pt(111) structure, indicating that characterization is vital 

in understanding the catalytic activity of bimetallic catalysts.  Simionato et al. [149] showed, 

with the use of XRD, TPR, and Raman spectra, that the incorporation of silver on alumina 

supported cobalt catalysts aids in the reduction of cobalt, and assists in the formation of Co0 sites 

which are considered to be the active sites.  Sun et al. [150] reported on the use of CuAg/Al2O3 

catalysts for hydrogenolysis of glycerol.  As the silver content increased to 5 wt %, on the 55.5 

wt % Cu/Al2O3 catalyst, the conversion increased to 100 %, as opposed to when no silver was 

present (94 %) and selectivity increased from 70 % to greater than 92 % with silver present 

[150].  Zheng et al. [151] showed the use of various characterization techniques for Au-Ag 

bimetallic catalysts.  TEM and XRD were employed to differentiate Au-Ag alloys versus 

monometallic Au and Ag particles, with STEM-EDX and XPS indicating the formation of a 

homogeneous Au-Ag alloy as opposed to core-shell structures.  The alloy was reported to have 

superior performance when compared to its monometallic counterparts.    

Zhu et al. [152] showed the effect of the variation of silver ratio on a Pd/SiO2 catalyst.  The 

acetylene hydrogenation did not show much variation in terms of conversion; however, there 

were significant differences with regards to selectivity towards ethylene.  It was shown that 

ratios 1:1 and 1:5 Pd:Ag showed selectivities of 58 % and 68 % respectively, while a ratio of 1:3 

Pd:Ag showed the highest selectivity of 84 % at 150 °C, indicating that the composition of 

bimetallic catalysts play an important role in the catalyst activity.  Deng et al. [153] showed in 

his work the effect of impregnation sequence of CuCo/SiO2 catalysts for higher alcohol 

synthesis.  The co-impregnated catalyst showed a stronger synergistic effect due to metal-metal 

interaction caused by the transfer of electrons from the copper to the cobalt species.  The change 

in the method of preparation directly affected the conversion and selectivity obtained, with the 

co-impregnated showing moderate conversion, with a higher selectivity towards alcohols (51.5 

%), while the catalyst with copper impregnated first showed higher conversion and a lower 

selectivity towards alcohols (39.9 %) [153].  Similarly, Jongpatiwut et al. [154] reported on the 

competitive hydrogenation for poly aromatic compounds showed that the effect of impregnation 

of Pd-F catalysts gave a significant difference, in conversion and selectivity towards the desired 

products, with respect to preparation methods.  The order of impregnation showed that when Pd 

was impregnated first a lower CO uptake with a TOF value of 34 was obtained, and when 
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fluoride was impregnated first, the CO uptake was considerably higher and the TOF was 

reported to be 85 [154].  This indicates the position of the active metal plays a vital role in the 

catalytic activity.   

Other notable work done using bimetallic catalysts found that zeolite Y-supported Pt-Ni catalysts 

showed better activity and stability as compared to their monometallic counterparts for 

acetophenone hydrogenation [155], while tungsten decreased platinum aggregation which was 

attributed to strong metal-metal interaction resulting in low toluene selectivity [156].  Bachiller-

Baeza et al. [157] found that the higher selectivity towards the unsaturated alcohol observed in 

citral hydrogenation was attributed to the presence of iron, which increased the Lewis acidity in 

the ruthenium catalysts.  Additionally, copper was shown to improve the silica supported-

ruthenium catalysts metal dispersion, resulting in increased activity and selectivity to crotyl 

alcohol in work done by Reyes et al. [158].  There have also been cases whereby bimetallic 

catalysts showed an undesired effect, such as in work reported by Ashour et al. [159] for 

crotonaldehyde hydrogenation using Pd-Cu/SiO2, where the copper was preferentially poisoned 

leaving palladium available to react with both functional groups.  Lucas and Claus [160] reported 

on the use of silver to assists in the co-ordination of C=O bonds, and allowed for a 70 % yield of 

allyl alcohol, in the liquid phase selective hydrogenation of acrolein, when combined with 

indium.    

In general, literature shows that bimetallic catalysts offer changes in structural, textural, and 

electronic properties of the catalyst, and it is this modification that affects the activity and 

selectivity [33].  Characterization of these catalysts becomes vital to fully understand the 

interaction between the metals and the metal-support interaction, and how this correlates with the 

results obtained from catalytic testing.  There has been sufficient work done to show the benefits 

using bimetallic catalysts over their monometallic counterparts.  It has been well documented 

that the incorporation of silver in monometallic catalysts systems has improved the catalytic 

activity.  For this reason, silver was chosen to be incorporated into the γ-alumina supported 

copper catalyst, which was investigated in this study. 
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1.15. Aims and objectives 
 

For this project, the effectiveness of γ-alumina supported copper-silver bimetallic catalysts in the 

selective hydrogenation of octanal in the presence of octene was investigated.   

 A range of γ-alumina supported copper catalysts with a variation of the silver loading will 

was prepared, characterized, and tested in a continuous liquid phase fixed bed reactor.  

 Catalytic reaction parameters such as temperature, pressure, hydrogen:octanal, and 

Liquid hourly space velocity (LHSV) will be investigated to determine its impact and 

contribution to the catalytic activity.  

 The bimetallic CuAg/γ-Al2O3 catalysts will undergo further investigation to determine 

the impact of varying factors such as; the impregnation sequence and the intermetallic 

weight loadings of each metal, while maintaining a constant total metal loading. 
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Chapter 2 
Instrumental Techniques and Reactor 

Design 
 

The syntheses and characterization of the nine catalysts prepared are presented in this chapter.  

Wet impregnation was the technique chosen to prepare the monometallic and bimetallic 

catalysts.  The catalytic reactor design and GC analysis method to identify and quantify the 

products are shown here.   

2.1. Catalyst synthesis 
 

Reagents for catalyst preparation 

 Commercial γ-Al2O3, Alfa Aesar 

 Copper nitrate, Sigma Aldrich 

 Silver nitrate, Sigma Aldrich 

 1000 ppm copper ICP standard, DLD Suppliers 

 1000 ppm silver ICP standard, DLD Suppliers 

 

2.2. Chemicals used for testing and analysis 
 

The feed used for the selective hydrogenation of octanal in the presence of octene was made up 

of 2 % octene, 10 % octanal, 88 % octanol, which were supplied by Sasol.  Octane, 1-octene, 

octanal and 1-octanol with purity >98 % were used for the calibration of the gas chromatograph 

instrument for product analysis and were purchased from Sigma Aldrich.  Hydrogen, nitrogen 

and synthetic air with a purity greater than >98 % was obtained from Afrox.  These gases were 

used for the analysis by gas chromatography and for catalytic testing.  
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2.3. Instrumentation and preparation 
 

The catalysts prepared were characterized using Infrared Spectroscopy (IR), in situ and powder 

X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron 

Microscopy (SEM), Nitrogen Physisorption using BET, Inductively Coupled Plasma – Optical 

Emission Spectroscopy (ICP-OES), Temperature Programmed Reduction (TPR), Temperature 

Programmed Desorption using ammonia (NH3-TPD) and Chemisorption using hydrogen and 

carbon monoxide.   

 

2.3.1. Infrared spectroscopy – attenuated transmission reflectance 
 

The infrared spectrometer used was a Perkin Elmer equipped with a Universal Sampling 

Accessory with a diamond crystal to reach an adequate force for analysis.  The software used 

was Spectrum 100, which allowed the spectra obtained to be analyzed and edited.  Samples 

required no prior preparation and were added to the sample holder, thereafter, the force was 

increased to 120 gauge to ensure sufficient contact between the surfaces.  The samples were 

scanned within the range 350-3500 cm-1. 

 

2.3.2. Inductively coupled plasma – optical emission spectrometry 
 

Quantitative and qualitative analysis of the catalyst were performed on a Perkin Elmer ICP-OES 

Optima 5300 DV.  The catalysts powders were digested in 10 mL of nitric acid and made up to 

100 mL using double distilled water.  Multi element standards were prepared in 10 – 100 ppm 

concentration for copper and 2- 10 ppm concentration for silver.  These standards were used to 

determine the accurate metal loading of the copper and silver on the catalyst prepared.  
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Table 2.1.  The selected spectral lines for each of the elements analyzed by ICP-OES. 

Element Spectral Line /nm 

Cu 224 

Ag 243 

 

2.3.3. X-ray diffractogram 
 

X-ray diffraction (XRD) was carried out using a Bruker D8 Advance XRD diffractometer using 

a Cu Kα radiation (λ = 1.506 Å).  Operating conditions were 40 kV and 40 mA with a scan rate 

of 0.5 ° min-1, slit (2θ) and divergence slit and scatter slit of 1°.  This XRD technique was used to 

determine two types of information, (1) crystallite size using the Scherrer equation in powder 

XRD, and (2) reduction and oxidation temperatures under in situ conditions.  The Scherrer 

equation used 0.98 as the constant value (k).  The operating conditions of in situ reduction used 5 

% H2/N2 at a flow rate of 30 mL/min.  The temperature was ramped at 10 °C/min till 600 °C, 

thereafter, the sample was cooled to 100 °C at the same rate.  The re-oxidation was carried out by 

flowing N2 for 2 hours at 100 °C to purge any hydrogen present.  Air was used as the oxidant at a 

flow rate of 30 mL/min at a temperature ramp at 10 °C until 600 °C, thereafter the sample was 

cooled to 100 °C.  The in situ XRD was conducted on selected samples. 

 

2.3.4. Nitrogen physisorption  
 

Samples were weighed and analyzed using the Micromeritics TriStar II 3020 surface area and 

porosity instrument and software.  Sample preparation involved degassing at 90 °C for 1 hour to 

remove absorbed moisture, thereafter, the temperature was increased to 200 °C and the sample 

was kept under nitrogen flow overnight.  The catalyst for which surface area was to be measured 

was placed inside a quartz tube and the adsorbate gas passed through while the tube is placed in a 

liquid nitrogen bath, where the temperature was maintained at 77.5 K.  Nitrogen physisorption 

provides information about the surface area, pore size, and pore volume of the catalysts.  All 

measurements were made in duplicate to ensure reproducibility.  
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2.3.5.  Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDX) 
 

For sample preparation, a piece of two-way carbon tape was placed onto a metal stub.  The 

catalyst powder was added to the tape and the excess powder was removed by gentle tapping.  

The powder was coated with carbon, using the polaron SC sputter coater, to provide an electron 

active surface.  The samples were analyzed using the Joel JSM 6100 instrument.  The energy 

dispersion X-ray spectroscopy (EDX) mapping was done using the Bruker EDX detector and 

was analyzed with the Espirit 1.8.5 software.  

 

2.3.6. Transmission electron microscopy (TEM)  
 

A small amount of the sample was added to an Eppendorf vial; thereafter a solvent such as 

acetone or ethanol was added.  This mixture was sonicated for 5 minutes to allow the breakup of 

larger particles, which allows good dispersion onto the metal grid coated with holy-carbon.  A 

copper or nickel grid was immersed into the Eppendorf tube to coat the grid with the mixture.  

The grid was placed into the Joel 1010 TEM instrument and analyzed using the Megaview III 

soft imaging system at an operating voltage of 100 kV.   

 

2.3.7. High resolution- transmission electron microscopy - energy dispersive X-ray 

spectroscopy (HRTEM-EDX) 
 

Samples were prepared in the same way as with TEM.  The copper or nickel grid, coated with a 

holy-carbon film, containing the sample was placed into the sample holder and analyzed using 

the Joel JEM-2100 using the iTEM software for imaging at 200 kV.  The microscope used a 

Lanthanum hexaboride (LaB6) gun and a Gatan ultrascan camera for imaging.  HRTEM was 

used for high magnification imaging as well as dark field imaging, mapping and line scan.  

HRTEM was conducted on selected catalysts. 
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2.3.8. Temperature programmed reduction/desorption (TPR/TPD) 
 

The calcined catalyst (0.04-0.05 g) was added to a U-shaped quartz tube between two layers of 

quartz wool.  This was fastened into the Micromeritics AutoChem II chemisorption analyzer.  

The catalyst was dried under helium to 400 °C at a rate of 10 °C/min.  The sample was cooled to 

70 °C, thereafter heated to 600 °C under 5 % H2/Ar for the TPR analysis at a rate of 10 °C/min.  

After analysis, the sample was cooled to 40 °C under helium.  In the case of TPD, 5 % NH3/Ar 

was used instead of hydrogen to determine acid sites.  All TPD analysis was conducted 

immediately after TPR analysis to ensure the analysis occurs on a fully reduced catalyst.  

 

2.3.9. Chemisorption 
 

The Micromeritics 2920 AutoChem II chemisorption analyzer was used to carry out pulse 

chemisorption using hydrogen and carbon monoxide.  All calcined samples were degassed under 

nitrogen at 90 °C and under vacuum at 200 °C prior to the analysis using the Micromeritics Flow 

prep 060 sample degas system.  The catalyst (0.03-0.04 g) was sandwiched between two layers 

of quartz wool in a U-shaped quartz tube, which was fitted onto the Micromeritics instrument.  

The analysis underwent an evacuation step using helium to ensure the sample has no moisture.  

The chemisorptive gas (H2 or CO) was then passed through at a set temperature with increasing 

pressure; after analysis the sample was flushed with helium to terminate the analysis.  All 

catalysts were analyzed in duplicate on separate samples to ensure reproducibility, and in 

duplicate on the same sample to ensure that the results correlate for both chemisorptive gas 

analyses. 

 

2.3.10. Thermal gravimetric analysis – differential scanning calorimetry (TGA-DSC) 
 

The TA SDTQ600 instrument was used for the thermal gravimetric analysis.  Samples were 

weighed and placed in a sample holder.  The analysis involves the sample being heated under air 



41 
 

with 50 mL/min flow rate from room temperature to 700 °C at a heating rate of 10 °C/min.  This 

analysis was also conducted under nitrogen instead of air.  

 

2.4. Gas chromatography 
 

GC using a flame ionization detector (FID) was used for analysis and quantification of the 

products obtained from the hydrogenation of octanal in the presence of octene.  A volume of 1 

µL, using a SGE 1 µL syringe, was injected into the column with an initial temperature of 40 °C 

and a spilt ratio of 20.  The injector temperature and pressure was 200 °C and 50 psi.  The 

column temperature program for the Perkin Elmer TotalChrom software was ramped as follows: 

an initial temperature of 40 °C was held for 5 minutes, thereafter a set point of 240 °C with a 

heating rate of 3 °C/min.  Afrox supplied both the carrier gases (He) and the flame gas (H2).  Gas 

chromatography-mass spectrometer was used to confirm all products using the Perkin Elmer 

Clarus 500 GC with a Perkin Elmer 560S mass spectrometer.  The samples were analyzed using 

the same method as the GC FID.  The mass spectrometer used a photo ionization detector with a 

positive electron ionization mode.  The Turbomass 5.4.2. software was used to analyze the 

chromatographs and MS spectra. 

2.5. Catalyst synthesis 

2.5.1. The monometallic catalyst - 5Cu/γ-Al2O3 
 

Commercial γ-Al2O3 pellets, obtained from Alfa Aesar, were ground into a fine powder using a 

mortar and pestle.  Copper nitrate (0.250 g) was dissolved in 15 ml of deionized water and added 

slowly to a slurry of γ-Al2O3 (4.752 g).  This mixture was stirred at room temperature for 6 

hours; thereafter it was heated gently for 1 hour to remove the excess water until a thick paste 

remained.  The paste was oven dried at 120 °C overnight, followed by calcination at 500 °C for 8 

hours under a flow of air, with a temperature ramp of 1.6 °C/min.  
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2.5.2. The bimetallic catalyst - 4.5Cu-0.5Ag/γ-Al2O3 
 

A 4.5 wt % Cu and 0.5 wt % Ag on γ-alumina catalyst was prepared using the wet incipient 

method.  Copper nitrate (0.225 g) was dissolved in the minimum amount of deionized water 

together with silver nitrate (0.025 g) and added slowly to a slurry of γ-alumina (4.752 g).  This 

mixture was stirred at room temperature for 6 hours; thereafter it was gently heated for 1 hour to 

remove the excess water until a thick paste remained.  The paste was dried at 120 °C overnight, 

thereafter, calcined at 500 °C for 8 hours under a flow of air.   

Sequential impregnation catalysts were prepared by firstly adding the metal (A) solution to the 

alumina slurry.  This mixture was stirred for 6 hours and oven dried overnight at 120 °C.  Once 

cooled to room temperature, a small amount of deionized water was added to form a paste.  The 

second metal (B) solution was added and stirred for 6 hours.  This mixture was then oven dried 

at 120 °C overnight.  The final catalyst precursor was calcined at 500 °C for 8 hours under a flow 

of air.  These catalysts are denoted by S-metal A wt % metal B wt %/γ-Al2O3.  From here on the 

catalyst metal loading will be denoted by the number, as shown in Table 2.1.  

Table 2.2:  Mass of components used for the preparation of all catalysts. 

Catalysts name: 
Order of 

Sequence 

Copper nitrate 

(g) 

Silver 

nitrate (g) 
γ-Alumina (g) 

5Cu/γ-Al2O3 - 0.952 - 4.754 

4.5Cu0.5Ag/γ-Al2O3 simultaneous 0.851 0.040 4.758 

S-4.5Cu0.5Ag/γ-Al2O3 Cu, Ag 0.869 0.043 4.674 

S-0.5Ag4.5Cu/γ-Al2O3 Ag, Cu 0.856 0.043 4.670 

4Cu1Ag/γ-Al2O3 simultaneous 0.761 0.080 4.760 

S-4Cu1Ag/γ-Al2O3 Cu, Ag 0.761 0.080 4.759 

S-1Ag4Cu/γ-Al2O3 Ag, Cu 0.766 0.079 4.755 

15Cu/γ-Al2O3 - 2.871 - 4.757 

13.5Cu1.5Ag/γ-Al2O3 simultaneous 2.545 0.355 4.257 
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2.6. Reactor set up 
The reactor set up was carried out using a fixed-bed continuous flow reactor and a gas 

chromatograph was used for analysis and quantification purposes.  The feed used for the 

reactions described in chapter 4 contained 2 % octene 10 % octanal and 88 % octanol.  All 

reactions were done in the liquid phase.   

Th     

1. H2 gas cylinder                                            pressure regulator  

2. N2 gas cylinder            shut off valve 

3. Brooks gas flow control box   one way valve 

4. H2 MFC (Mass flow controller)    reactor pressure gauge 

5. N2 MFC       Filter 

6. Reactor      regulator to set reactor pressure 

7. Catchpot      back pressure relief valve 

8. Feed pump      Vent line 

9. Thermocouple control box 

10. Wet gas flow meter 

Figure 2.1.  Schematic of the reactor set up. 
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2.7. Catalytic testing 
 

A 300 mm heating jacket was used to supply heat during the hydrogenation of aldehydes in a 

mixed feed.  The reactor tube had a 7 mm inner diameter and 9 mm outer diameter.  The catalyst 

bed was made up of approximately 2 mL of catalyst pellets (300-600 µm) diluted in a 1:1 ratio 

with 24 grit carborundum in a sandwich of glass wool.  This catalyst bed was packed in the 

region considered to be the hotspot of a 350 mm 316 stainless steel reactor tube.  24 grit 

carborundum was used to pack either side of the catalyst bed, separated by glass wool, to allow 

mixing of the feed with gas and to pre-heat the gases before they reach the catalyst bed to allow 

for constant temperature.  Glass wool was packed on either side of the reactor tube to prevent 

particulate matter from entering the product stream.  The reactor was secured by bolts which 

were tightened by a torque wrench; thereafter a leak test was conducted by holding a high 

pressure (50 bar) of nitrogen over a period of time to ensure there were no leaks in the system.  

The reactor was covered with an insulating jacket to allow for an isothermal environment.  The 

temperature was monitored by a thermocouple placed between the heating mantle and reactor 

tube to measure the outside temperature, which was controlled with a control panel.  The actual 

temperature within the reactor tube was controlled by a thermocouple placed inside the reactor 

tube.  A schematic diagram of the set-up is given in Figure 2.1. 

Liquid phase hydrogenation was carried out using a continuous plug flow fixed bed reactor 

which operated in a down flow direction.  The liquid feed was fed through the 1/8th inch 316 

stainless steel tubing feed lines, using a LabAlliance series II isocratic pump.  1/16th 316 stainless 

steel product pipes contain a filter leading to the catchpot allowed the products to be collected in 

a 500 mL stainless steel catchpot.  The hydrogen and nitrogen gas flow was controlled by Brooks 

mass flow controllers (MFC’s) with the excess gas exiting through a Ritter Drum Type (TGI-

model 5) wet gas flow meter.  The pressure was maintained using a Tescom pressure regulator to 

set the reactor pressure, before the sampling catchpot.   

The catalyst preparation prior to catalytic testing involved the catalyst drying at 200 °C 

overnight, followed by the blending of hydrogen at 160 °C.  The catalyst was then reduced using 

100 % hydrogen at a flowrate of 12 mL/min overnight at reduction temperatures ranging from 

220 – 260 °C.  
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Chapter 3 
3. Results and Discussion: Characterization 

 

Apart from the material used in the preparation of the catalyst, the characterization of the catalyst 

provides insight and understanding in the behavior of the catalyst.  Characterization essentially 

provides information of how the catalyst is likely to behave under reactor conditions and insight 

on the possible reaction pathways of the reactants.   

All catalysts were characterized using the techniques discussed in Chapter 2 are reported and 

discussed here.  This chapter shows all the characterization done on the catalysts before their use 

in reactions, called as “fresh” catalysts.  The colour of the catalysts correlate with literature and 

is the first simple characterization technique used to indicate certain properties of the catalysts 

e.g. the 5Cu/γ-Al2O3 and the bimetallic 4.5Cu0.5Ag/γ-Al2O3 catalyst were blue-green in colour, 

due to the low loading and well dispersed copper species on the support.  At higher weight 

loadings (>13 wt %), the colours of the copper catalysts changed to grey – dark grey, depending 

on the catalyst loading [161]. 

 

3.1. Infra Red-Attenuated total reflectance (ATR) 
 

Figure 3.1 shows a broad range for the hydroxyl group from 3100 – 3600 cm-1, adsorbed 

hydrogen from 1300 – 1670 cm-1, the Al-O bands at approximately 500 cm-1 and 790 cm-1.  The 

main peaks observed from Figure 3.1 were due to the adsorbed water, due to the hydroscopic 

nature of alumina, and the peaks corresponding to Al-O bands.   
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The ATR spectra were obtained for all monometallic and bimetallic catalysts.  

 

Figure 3.1.  IR of 5Cu/γ-Al2O3. 

Turek et al. [162] reported free hydroxyl alumina to be in the 3400 – 3800 cm-1 region.  This is 

due to the O-H peaks within the lattice as alumina contains acidic and basic properties, as well as 

possible moisture absorbed by the hygroscopic support.  In a study by Knözinger and Ratnasamy 

[163] surface hydroxyl peaks were investigated and assigned peaks in the region of 3690 cm-1, 

which were attributed to octahedrally coordinated aluminium and are the most acidic hydroxyl 

sites.  The most basic sites were found at 3785 cm-1 which are single coordinated hydroxyls 

[163].  Trueba and Trasatti [164] show the interaction between the Lewis acid and basic sites 

with water, allowing for hydration of the alumina support under atmospheric conditions.  This 

occurs in two major steps, by the water initially adsorbing onto the alumina support, whereby the 

electrons from the lone pair on oxygen from H2O are transferred to the aluminium atom on the 

alumina support.  The second step is the dissociation of H2O resulting in the hydroxyl group 

bonding to the aluminium and the hydrogen from the water molecule bonds to the oxygen atom.  

These steps are illustrated in Figure 3.2.  

 

Figure 3.2.  Schematic depicting the two major steps (1) adsorption of H2O on alumina and (2) 

dissociative chemisorption of H2O. 
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The IR results obtained are summarized in Table 3.1, showing the main peaks observed for all 

catalysts. 

Table 3.1.  Infrared Spectroscopy results for all catalysts. 

Catalyst O-H band (cm-1) H2O adsorbed (cm-1) Al-O (cm-1) 

γ-Al2O3 3184 1645,  1335 508 789 

5Cu/γ-Al2O3 3399 1653,  1390 505 806 

4.5Cu-0.5Ag/γ-Al2O3 3445 1640 515 794 

S-4.5Cu0.5Ag/γ-

Al2O3 

3484 1655 523 788 

S-0.5Ag4.5Cu/γ-

Al2O3 

3428 1655 508 802 

4Cu-1Ag/γ-Al2O3 3480 1641 513 804 

S-4Cu1Ag/γ-Al2O3 3459 1635 511 846 

S-1Ag4Cu/γ-Al2O3 3458 1687 508 840 

15Cu/γ-Al2O3 3445 1645 532 864 

13.5Cu-1.5Ag/γ-

Al2O3 

3441 1634 512 863 

 

The peak due to adsorbed hydrogen as reported by Abadleh et al. [165], was observed at 

approximately 1594 cm -1.  Unlike the adsorbed hydroxyl species which were observed at peaks 

higher than 3100 cm-1, peaks found between 1330 – 1670 cm-1 are due to the interaction between 

the alumina surface and the two hydrogen atoms in the water molecule [165].  Similarly to the 

results obtained from the infrared spectroscopy for all catalysts in this work, which showed 

alumina to have distinct peaks from 500 – 525 and 786 – 807 cm-1, this is also in agreement with 

work published by Mo et al. [166] for bulk γ-Al2O3.  Additionally, work done by Ramesh et al. 

[167] also attributed peaks observed at 580 and 840 cm-1 to the Al-O bond in γ-Al2O3, and Wang 

et al. [168] observed Al-O vibrational peaks at 584 and 778 cm-1.  Due to the low loading of 

metal on all catalysts, there are no significant differences in the data obtained from the IR 
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spectroscopy as seen from Table 3.1.  The infrared spectra for all catalysts are shown in the 

Appendix.   

3.2. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 
 

The total metal loading for all catalysts were 5 wt % therefore in the case of the bimetallic 

catalysts the metals percentage were varied to achieve the maximum 5 wt % total metal content.  

A theoretical amount of metal salt was calculated and applied in the synthesis procedure.  The 

catalysts were analyzed using ICP in duplicate and the average metal loading calculated is shown 

in Table 3.2.   

Table 3.2.  Weight loadings obtained from ICP-OES analysis for all catalysts. 

Catalyst Copper (wt %) Silver (wt %) 

5Cu/γ-Al2O3 5.82 - 

4.5Cu-0.5Ag/γ-Al2O3 4.61 0.51 

S-4.5Cu0.5Ag/γ-Al2O3 4.44 0.58 

S-0.5Ag4.5Cu/γ-Al2O3 4.52 0.53 

4Cu-1Ag/γ-Al2O3 4.23 1.08 

S-4Cu1Ag/γ-Al2O3 3.82 1.13 

S-1Ag4Cu/γ-Al2O3 4.09 1.23 

15Cu/γ-Al2O3 15.7 - 

13.5Cu-1.5Ag/γ-Al2O3 13.8 1.68 

 

3.3.  X-ray diffraction 
 

3.3.1. Powder XRD 

XRD provides information using the specific 2Θ and d-spacing values, which correspond with 

different phases of metal oxide and metal loaded catalysts.  There are two functions an XRD 

instrument can perform, firstly, powder XRD which is a quick characterization technique 

showing the 2Θ and d-spacing values which assists in determining the metal oxide phase on the 

catalyst.  The second function is the use of in situ XRD, which is a process of reduction and 
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oxidation allowing for the change in metal phase present, recorded over a number of scans 

during the analysis.  This change is monitored by the disappearance or appearance of peaks in 

the diffractogram.   

As shown in Figure 3.3, the power XRD for γ-Al2O3, 5Cu/γ-Al2O3, 15Cu/γ-Al2O3 and 

13.5Cu1.5Ag/γ-Al2O3 catalysts.  It can be seen at low weight loadings of 5 % Cu, there were no 

distinct peaks observed which has been well documented to suggest good dispersion of the metal 

[169].  Luo et al. [169] also stated that copper oxide peaks were not visible at weight loading less 

than 11%, this is consistent with work done by Kundakovic et al. [170] and Friedman et al. 

[171].  The results obtained correlated with what was observed in literature where CuO peaks 

were observed for the catalysts containing copper at 13 wt % loading and higher (Figure 3.3c-d).  

The CuO peaks were consistent with ICDD 80-1268, with the γ-alumina phase assigned to 

JCPDS 10-0425.    

 

 

 

Figure 3.3.  X-ray diffractogram for (a) bare γ-Al2O3 (green), and γ-Al2O3 supported with: (b) 

5Cu (black), (c) 15Cu (red), (d) 13.5Cu-1.5Ag (blue) catalysts. 
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Figure 3.4 and 3.5 shows the XRD diffractograms of the 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-

Al2O3 bimetallic catalysts prepared by simultaneous and sequential impregnation.  This provides 

a comparison between the sequential and simultaneous impregnation effect as well as the effect 

of the silver loading.   

 

Figure 3.4.  X-ray diffractograms for γ-Al2O3 supported with (a) 4.5Cu0.5Ag (red), (b) S-

4.5Cu0.5Ag (green), (c) S-0.5Ag4.5Cu (blue) catalysts. 

 

Figure 3.4a-c shows the catalysts containing 4.5 wt % Copper and 0.5 wt % silver/γ-Al2O3.  The 

simultaneously prepared catalyst (Figure 3.4a) does not show distinct metal peaks, similar to the 

5Cu catalyst.  This is most likely due to the low metal loading present.  Figure 3.4b shows that 

when copper was impregnated first followed by silver, the silver is able to form small crystallites 

on the surface of copper and the bare support allowing for distinct peaks observed in the 

diffractogram.  A mixture of silver oxides was observed namely Ag3O4 corresponding to JCPDS 

40-909, however, there is also a possibility of other phases present such as AgO (JCPDS 21-

1272) and Ag2O (JCPDS 12-0793) were present, which fall in the same region as the broad 

alumina peaks.  A minor presence of Ag3O4 is also present for the 0.5Ag4.5Cu catalyst/γ-Al2O3 

(Figure 3.4c).  

(a) 

(b) 

(c) 

Degrees (2Θ) 
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Figure 3.5.  X-ray diffractograms for γ-Al2O3 supported with (a) 4Cu1Ag (blue), (b) S-4Cu1Ag 

(red), (c) S-1Ag4Cu (black) catalysts. 

 

In the case of the 4Cu1Ag/γ-Al2O3 catalyst, there were no distinct peaks observed, unlike for 

what was observed for the 4.5Cu0.5Ag/γ-Al2O3 catalysts (Figure 3.4a-c).  This is most likely due 

to the larger quantity of silver present, which allows a greater probability of silver oxides 

forming larger agglomerates, which may not be crystalline.  Unlike the 4.5Cu0.5Ag/γ-Al2O3 

catalyst, the 1 % silver does not form the Ag3O4 crystallite phase.  There is a possibility of the 

AgO phase (JCPDS 21-1272) present, however, due to overlap of the copper and silver oxide 

phases, it cannot be confirmed [172].  AgO is reported to be unstable at room temperature and is 

able to decompose to metallic silver in the presence of light [173].  From the lack of metallic 

silver peaks in the diffractogram, it can be concluded that the silver is in the Ag2O phase which 

is more stable, however, it is also possible for the catalyst to have a mixture of silver phases on 

the support, according to work reported by Page et al. [174].  

 

3.3.2. In situ XRD 

In general, the in situ XRD showed that all catalysts, using 5 % H2/N2 gas, have an initial 

reduction temperature of 200 °C.  To determine the metal peaks, the catalyst had to undergo a 

reduction-oxidation process.  The reduction occurred under a 5 % H2/N2 mixture while being 

heated to 600 °C at 50 °C intervals, with a ramp rate of 10 °C/min.  The oxidation step followed 

with air as the oxidant while heated to 600 °C.  The diffraction patterns in Figure 3.6 depicts the 

5Cu/γ-Al2O3. catalysts undergoing reduction under 5 % H2/N2. 
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Figure 3.6.  In situ X-ray diffractogram for 5Cu/γ-Al2O3. 

 

The X-ray diffractogram of the 5Cu/γ-Al2O3 catalyst showed broad peaks for the γ-alumina 

support and sharp peaks for the copper metal, once reduced.  The reduction profile for the 

bimetallic 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3 catalysts are shown in the diffractogram in 

Figure 3.7.  The oxidation in situ XRD show that all the copper which was reduced under 

hydrogen, is oxidized back to CuO (see Appendix).   

  

Figure 3.7.  In situ X-ray diffractogram for (a) 4.5Cu0.5Ag/γ-Al2O3 and (b) 4Cu1Ag/γ-Al2O3 

catalysts. 

 

Figure 3.7a-b shows the reduction profiles of the 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3 

catalysts.  On the reduction of the metal oxides, it is observed in Figure 3.7 that there is a shift of 

the metal peaks to a lower 2θ value; this could be due to a loss of crystallinity or an increase of 
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defect sites.  There is also a minor presence of the Cu0 peaks in its original position (Figure 3.6) 

suggesting some of the copper remained unchanged in terms of crystallinity, with the d-spacing 

values remaining consistent with Cu0 JCPDS 04-0836.  This result could be correlated to the low 

silver content allowing for a good dispersion of silver, thus allowing for intimate contact 

between the silver and copper atoms causing a synergistic effect.  

The 4Cu1Ag/γ-Al2O3 catalyst showed a slight shift, and the d-spacing value to a lower value 

compared to the 5Cu catalyst; this is similar to what was observed with the 5Cu/γ-Al2O3 catalyst, 

however, the shift is not as significant.  Due to the higher loading of silver present, the silver has 

a higher affinity to migrate or interact with other silver atoms present rather than the 4 % copper 

available.  This catalyst also has a lower copper content, which allows for a higher dispersion 

and a greater area of bare support for silver to adsorb without coming into close contact with 

copper.  This results in a similar in situ reduction profile to the 5Cu/γ-Al2O3 catalyst.  

 

3.4.  Brunauer-Emmet-Teller (BET) analysis 
 

The total surface area of the catalyst was calculated from the amount of gas adsorbed by using 

the BET method.  The use of BET analysis allows one to obtain useful information, namely the 

surface area and pore volume of the catalysts.  The surface area measurements include external 

and internal surface area.  The pore volume is indicative of the total internal volume per unit 

mass of the catalyst allowing for a greater understanding of the occupation of the metal within 

the support.  Materials can be distinguished by their isotherms or pore size.  Three main groups 

of pore sizes are (a) macropores (> 50 nm), (b) mesopores (2-50 nm), and (c) micropores (< 2 

nm).  Alumina is a typical mesoporous material therefore the expected pore size region is 

between 2 – 50 nm.   
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Figure 3.8.  Hysteresis loops for γ-Al2O3 supported with: (a) 5Cu (Blue), (b) 4.5Cu0.5Ag  (Red), 

(c) 4Cu1Ag (Green), and (d) 15Cu (Black) catalysts. 

It can be seen in Table 3.3, that the 15Cu/γ-Al2O3 catalyst has a lower surface area compared to 

the 5Cu/γ-Al2O3 catalyst.  This is attributed to the higher weight loading of copper, which forms 

CuO on the surface and within the pores, which decreased the pore size to a greater extent than 

the 5Cu/γ-Al2O3 catalyst.   Figures 3.8 shows the adsorption/desorption isotherms obtained from 

the surface area analysis.  All catalysts show a mesoporous nature consistent with γ- Al2O3.  

These isotherms were used to determine the surface area, pore size and pore volume of the 

catalysts.  All catalysts showed a decrease in surface area because of the metal oxide deposition 

onto the alumina surface.  The pore size and pore volume did not differ significantly due to the 

high surface area of the support; the deposition of the metal most likely occurs on the surface.   

 

(a) 

(b) 

(c) 
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Table 3.3.  Surface area measurements for all catalysts. 
Catalyst Surface Area (m²/g) Pore Volume (cm³/g) Pore size (nm) 

γ-Al2O3 230 0.8 12.7 

5Cu/γ-Al2O3 216 0.7 11.8 

4.5Cu-0.5Ag/γ-Al2O3 224 0.7 12.8 

S-4.5Cu0.5Ag/γ-Al2O3 210 0.7 14.3 
S-0.5Ag4.5Cu/γ-Al2O3 195 0.6 12.6 

4Cu-1Ag/γ-Al2O3 207 0.7 12.7 
S-4Cu1Ag/γ-Al2O3 209 0.6 12.4 
S-1Ag4Cu/γ-Al2O3 191 0.6 12.8 

15Cu/γ-Al2O3 173 0.6 12.9 

13.5Cu-1.5Ag/γ-Al2O3 151 0.5 13.1 

 

Table 3.3 shows the 15 wt% catalysts have a lower surface area, which could be attributed to the 

higher concentration of metal available which covers more support and may enter the pores, thus 

decreasing the surface area and pore volume.  This is consistent with what is reported in 

literature by Hammed et al. [175] and Alouse et al. [176], whereby a general trend of increased 

metal loading resulting in decreased surface area.  There is no distinct trend concerning the total 

metal loaded 5 wt % bimetallic catalysts where 15-40 % decrease in the surface areas, when 

compared to the calcined γ-alumina, are observed.  It was observed that there was an effect due 

to the metal loading where the 15 % total metal loaded catalysts has a lower surface area than the 

5 wt % catalyst. 

 

3.5. Chemisorption 
 

Chemisorption is based on a technique that uses an adsorbate gas to chemically adsorb onto 

surface atoms, which possess electrons available for bonding.  The adsorbate gas forms a 

monolayer on the metal active sites.  This technique provides information regarding metal 

dispersion and active metal surface area.  There are two main methods of chemisorption, which 
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are static and pulse chemisorption.  The static method is when the reaction between the adsorbate 

gas and catalyst reaches equilibrium and therefore provides information of strongly adsorbed gas 

and weakly bound gas to the active sites.  The static method uses a ‘back sorption’ method.  The 

first adsorption of the reactive gas consists of both strongly and weakly adsorbed gas.  Once the 

first analysis is complete, the sample is degassed.  The weakly bound hydrogen is highly mobile, 

whereas the strongly bound hydrogen is said to adsorb onto the corner edges of the metal particle 

[177]. The sample undergoes a second analysis, in which case the sample the degassed removing 

the weakly bound species.  The results from the second analysis will therefore show the 

adsorption of only the weakly bound species thus determining metal dispersion [178]. 

There are three types of conformations possible for CO bound to metals; linear, bridge and twin 

type.  Figure 3.9 illustrates the three possible conformations:  

 

Figure 3.9.  CO adsorption confirmation types [179]. 

 

Figure 3.9 shows the types of conformations a CO molecule can adsorb onto a metal.  When a 

CO molecule is adsorbed onto two metal particles, it is called bridge type and lastly the twin type 

where one metal has two CO molecules adsorbed onto it.  ‘Coinage metals”, namely Cu, Ag and 

Au, are largely dominated by linear type CO adsorption.  High value metals  such as Ru, Rh and 

Pd, can have linear and bridge type conformations, with Rh also having a twin type adsorption 

[179].  Nygren et al. [180], reported that CO gas molecules are able to adsorb onto copper 

clusters containing up to 20 atoms.  In hydrogen chemisorption, the preferred cluster size 

contains up to 10 atoms of copper, according to studies done by Guvelioglu et al. [181] and 

Forrey [182].   
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Copper has been studied using various adsorption gases, however, there has always been a large 

drawback regarding accuracy of data of different adsorptive gases in relation to the copper 

dispersion.  Literature shows N2O is the most commonly used gas for the determination of metal 

dispersion in copper catalysts, following the decomposition reaction on the surface of copper as 

shown in the reaction below: [68, 119, 183-187] 

N2O(g) + 2Cu(s)     ↔    Cu-O-Cu(s) + N2(g)         (s) – surface species 

With this type of gas, the temperature plays an important role for differentiation between surface 

copper and bulk copper species.  Extended exposure to this gas may also lead to the oxidation of 

the copper species, which will overestimate the metal dispersion [183].  By using hydrogen as 

the chemisorption gas, the following equation is expected: 

H2 + CuO ↔ Cu-H + -OH 

Hydrogen has a weak adsorption on copper and has been considered one of the most common 

chemisorptive gases used where the dissociated hydrogen adsorbs onto the metal in a 1:1 ratio 

[181, 182, 188].  Table 3.4. shows the information used to calculate metal dispersion and 

metallic surface area of the catalysts. 

Table 3.4.  Atomic weight, cross sectional area, and density for copper and silver. 

 Copper Silver 

Atomic weight (g/mole) 63.6 107.9 

Cross sectional area (sq nm) 0.068 0.087 

Density (g/mL) 8.9 10.5 

 

The 5Cu catalysts were analyzed using reduction temperatures of 210, 250 and 290 °C to 

determine the effect of the temperature with regards to metal dispersion.  Table 3.5 shows a 

summary of hydrogen chemisorption results.   
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Table 3.5.  Summary of results obtained from hydrogen chemisorption for all catalysts. 

Catalyst Metal 
Dispersion: 

% 

Metallic 
Surface Area: 

m²/(g of 

sample) 

Metallic 
Surface Area: 
m²/(g of metal) 

Crystallite 
Size (6.000 V 

/ A): 
nm 

5Cu/γ-Al2O3 (210)* 1.2 0.4 7.6 87 

5Cu/γ-Al2O3 (250)* 3.3 1.05 21.3 33.1 

5Cu/γ-Al2O3 (290)* 4.9 1.6 31.7 21.1 

4.5Cu-0.5Ag/γ-Al2O3 8.6 3.0 60.6 19.2 

S-4.5Cu0.5Ag/γ-Al2O3 8.8 2.7 53.6 12.1 

S-0.5Ag4.5Cu/γ-Al2O3 4.9 1.5 30.7 21.6 

4Cu-1Ag/γ-Al2O3 8.4 2.5 51.5 12.7 

S-4Cu1Ag/γ-Al2O3 6.0 1.8 36.9 17.7 

S-1Ag4Cu/γ-Al2O3 9.6 2.9 59.1 11.1 

15Cu/γ-Al2O3 1.9 1.9 12.4 54.0 

13.5Cu-1.5Ag/γ-Al2O3 1.9 1.8 12.0 55.3 

*Reduction temperature during analysis 

It was found that the higher the reduction temperature, the higher the metal dispersion which 

could be attributed to surface diffusion as a result of the high temperature [189].  The optimum 

reduction temperature was chosen as 250 °C, as it is slightly higher than the reported reduction 

temperature of copper, ensuring complete reduction [190, 191], and the analysis temperature was 

120 °C.  A high reduction temperature may cause an adverse result by showing an 

overestimation of metallic surface area and metal dispersion due to more kinetic energy 

introduced to the system [68, 119, 192].   

The bimetallic catalysts prepared by simultaneous impregnation showed a higher metal 

dispersion than the copper catalysts.  Silver does not adsorb hydrogen well [179], therefore the 

results obtained for hydrogen chemisorption assume that the bimetallic results are due to the 

dispersion of copper.  The S-4.5Cu0.5Ag/γ-Al2O3 catalyst shows a similar metal dispersion to 



59 
 

the 4.5Cu0.5Ag/γ-Al2O3 which suggests that silver assisted in the chemisorption of hydrogen, 

this lowers the heat of adsorption required to the dissociated hydrogen to chemisorb to copper, as 

seen in the case of oxygen on transition metals [193].   

When silver was impregnated first, the hydrogen chemisorption is significantly lower than for 

the 4.5Cu0.5Ag/γ-Al2O3 catalyst; this is due to the higher surface coverage of copper resulting in 

a similar metal dispersion to the 5Cu catalyst.  The 4Cu1Ag/γ-Al2O3 catalyst showed an inverse 

result to the 4.5Cu0.5Ag/γ-Al2O3, this is due to the decreased synergistic effect between the 

copper and silver because the silver has a higher affinity to cluster to other silver atoms than to 

the copper present.  The samples were also analyzed using carbon monoxide as the adsorptive 

gas.  These results are shown in Table 3.6.  

Table 3.6.  Results obtained from carbon monoxide chemisorption for all catalysts. 

Catalyst Metal 
Dispersion: 

% 

Metallic 
Surface Area: 

m²/(g of 

sample) 

Metallic 
Surface Area: 
m²/(g of metal) 

Crystallite 
Size (6.000 

V / A): 
nm 

5Cu/γ-Al2O3 5.6 1.8 36.4 22.3 

4.5Cu-0.5Ag/γ-Al2O3 8.8 2.8 55.1 12 

S-4.5Cu0.5Ag/γ-

Al2O3 

5.9 1.9 37 17.9 

S-0.5Ag4.5Cu/γ-

Al2O3 

9.5 4.3 85.1 7.8 

4Cu-1Ag/γ-Al2O3 6.7 2.0 40.8 16.6 

S-4Cu1Ag/γ-Al2O3 5.3 1.6 32.5 20.2 

S-1Ag4Cu/γ-Al2O3 6.8 2.1 41.6 15.7 

15Cu/γ-Al2O3 2.6 2.5 16.5 40.6 

13.5Cu-1.5Ag/γ-

Al2O3 

2.5 2.3 15.5 42.6 
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The sequential impregnation catalysts showed that when copper was impregnated first, there was 

a lower CO chemisorption value compared to when silver was impregnated first.  This suggests 

that the silver is not as effective in adsorbing CO when compared to copper.  The 5 wt % 

catalysts showed metallic surface areas between 1.6-4.3 m2/g of sample, which is attributed to 

the metals being well dispersed.  At higher metal loadings, the 15 wt %, copper formed larger 

crystallites, this decreases the metal dispersion.  Similarly, when compared to hydrogen 

chemisorption (Table 3.5), the 15Cu/γ-Al2O3 and the 13.5Cu1.5Ag/γ-Al2O3 catalysts had a lower 

CO dispersion due to the large Cu agglomerates found at higher weight loading.  All catalysts 

was between of 2.5 – 10 % metal dispersion, from CO chemisorption.   

The CO molecule adsorbs more strongly to acid sites, indicating that the bimetallic simultaneous 

impregnation catalysts have more acid sites compared to the 5 wt % Cu catalyst.  In most cases, 

CO chemisorption showed a higher metal dispersion than the hydrogen chemisorption.  The 

calculated results are not used for the determination of crystallite size, but to provide information 

of the acidity of the catalyst surface.  Carbon monoxide is a weak base and adsorbed selectively 

to Lewis acid sites via the sigma bond on alumina surfaces.  There is also a possibility that the 

CO result could be due to both copper and the support surface as shown in work done by Mao et 

al. [194].   

In a study of Cu-Co catalysts, strong CO adsorption was attributed to high alcohol selectivity for 

the FT synthesis.  It was reported by Maity et al. [195] that CO chemisorption requires either an 

acidic or basic site, whereas for hydrogen chemisorption, both the acid-base pair must be present.  

In 2004,  Rachel et al. [196] reported on the use of CO chemisorption to determine crystallite 

size, which showed as the copper metal loading increased, the crystallite size also increased.  

In most cases, there is a higher quantity adsorbed in the case of CO chemisorption as compared 

to hydrogen chemisorption, which indicates that the carbonyl group is more readily adsorbed 

onto the catalyst surface than hydrogen.  The higher the quantity adsorbed, the higher metal 

dispersion obtained.  Metal dispersion is calculated using the information obtained from the 

quantity of gas adsorbed and this is directly correlated to the metal dispersion of the metal on the 

support. 
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3.6.  Transmission electron microscopy (TEM) 
 

The use of electron microscopy is by far the most common technique used in characterization of 

catalysts.  Depending on the instrument, a wide range of information can be obtained such as 

particle shape, particle size, surface morphology, surface density, metal dispersion and spatial 

composition.  When combined with EDS, elemental mapping of the catalysts can be achieved.  

Figure 3.10 shows the images obtained from TEM analyses for all catalysts.   

 

Figure 3.10. TEM image of bare γ-Al2O3 

Transmission electron microscopy is a technique used to observe and measure particle size and 

shapes.  All catalysts showed long rod-like structures consistent with that of γ-alumina.  It has 

been reported that an increase in the copper loading would be deposited on the surface of the 

alumina support darkening the particle parameter, which was reported by Chetty [197] where the 

effect of copper loadings going up to 25 wt % copper supported on γ-alumina was investigated.   
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Figure 3.11.  TEM images for γ-Al2O3 supported with (a) 5Cu, (b) 15Cu, (c)13.5Cu1.5Ag, (d) 

4.5Cu0.5Ag, (e) S-4.5Cu0.5Ag, (f) S-0.5Ag4.5Cu, (g) 4Cu1Ag, (h) S-4Cu1Ag, (i) S-1Ag4Cu.  

There were no metal oxide particles observed from Figure 3.10a-i, which is due to the low 

weight loading and the high surface area of the support.  This is supported by the results obtained 

from XRD, where there were no distinct peaks observed due to the good dispersion of copper.  γ-

alumina is known for its high surface area and mesoporous structure, which favours high 

dispersion of the copper and silver species onto the support [111].  The bimetallic catalysts 

prepared in this work have low loading of silver, between the values of 0.5 % to 1.5 %, these 

weight loadings are most likely too low to show a difference between silver oxide particles and 

the alumina support.  Other techniques were used to obtain a better understanding of the metals 

on the surface, such as SEM-EDX, XRD and TPR, which are shown in this Chapter.   

 

(d) 

(a) (b) (c) 

(e) (f) 

(g) (h) (i) 

100 nm 
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3.7. Scanning transmission electron microscopy (STEM-EDX)  
 

STEM is a technique used which shows the secondary electrons emitted from the HRTEM 

instrument.  This technique shows the metal particle as brighter spots or regions which can easily 

be detected against the support at high magnification.   

3.7.1. STEM-EDX mapping 
 

STEM EDX was used for the bimetallic catalysts.  A map of a bright area of sample on the grid 

indicates a high metal content region.  STEM-EDX analyses were done on selected catalysts to 

obtain a general understanding of the metal distribution and metal-metal interaction of the 

4.5Cu0.5Ag/γ-Al2O3, S-4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3 catalysts.  This analysis was 

not conducted on the monometallic catalysts (5Cu/γ-Al2O3 and 15Cu/γ-Al2O3) as the map will 

not provide much information of the copper-alumina interaction. 

 

Figure 3.12.  STEM-EDX images for 4.5Cu0.5Ag/γ-Al2O3 showing (a) dark field image, (b) 

copper map (blue), (c) silver map (red). 

Figure 3.12a-c shows the STEM-EDX image and mapping for the simultaneous 4.5Cu0.5Ag/γ-

Al2O3 catalyst.  Figure 3.12b shows copper to be well dispersed across the support, similar to the 

silver map shown in Figure 3.12c.  The mapping also served as a qualitative technique showing 

copper being present in a higher quantity compared to silver.   

(a) (b) (c) 
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Figure 3.13.  STEM-EDX images for S-4.5Cu0.5Ag/γ-Al2O3 showing (a) dark field image, (b) 

copper map (red), (c) silver map (green). 

Figure 3.13a-c shows the STEM-EDX for the sequential catalyst where copper was impregnated 

first (S-4.5Cu0.5Ag/γ-Al2O3).  Similar to the catalyst prepared in the simultaneous addition 

method, both copper and silver showed to be well dispersed across the support.   

    

Figure 3.14.  STEM-EDX images for 4Cu1Ag/γ-Al2O3 showing (a) dark field image, (b) copper 

map (red), (c) silver map (green).   

Figure 3.14a-c shows the TEM-EDX dark field TEM and mapping for the 4Cu1Ag/γ-Al2O3 

catalyst.  Both metals showed good dispersion across the region analyzed.  The amount of 

particles detected in the copper and silver scan is lower, when compared to Figure 3.12.  This is 

due to the lower loading of copper (4 wt %), and the possibility of the formation of  larger silver 

particles due to its higher loading of silver (1 %).  This suggests TEM-EDX can be used as a 

qualitative technique to indicate an estimated metal quantity in a specific region.   

(a) (b) (c) 

(c) (b) (a) 
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3.7.2. STEM-EDX line scan 
 

The mapping showed an even distribution of both metals present on the catalyst surface, 

however, the composition of the particles could not be determined using mapping.  Further 

characterization using a line scan allows for further information on the particle composition.  

Figure 3.15 and 3.16 depict the line scans obtained for the 4.5Cu0.5Ag/γ-Al2O3 and the S-

4.5Cu0.5Ag/γ-Al2O3 catalysts.   

 

Figure 3.15.  STEM-EDX images for 4.5Cu0.5Ag/γ-Al2O3 showing (a) line scan image, and (b) 

line scan spectra for copper (blue), silver (purple), and aluminium (green). 

In Figure 3.15, a line scan across a specific region at a high magnification can provide 

information of the composition and metal-metal interaction between both metals.  Aluminium 

was used as a base line for the support profile.  The copper correlates well with the aluminium 

profile, indicating that the copper has a good dispersion across the support.  The silver showed an 

increase in intensity in the regions of the bright spots which indicates that the particles are 

largely made up of an agglomeration of silver atoms on the catalyst surface.   

 

(b) (a) 
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Figure 3.16.  STEM-EDX images for S-4.5Cu0.5Ag/γ-Al2O3 showing (a) line scan image, and 

(b) line scan spectra for copper (red), silver (green), and aluminium (blue). 

In Figure 3.16, the line scan results obtained for the S-4.5Cu0.5Ag/γ-Al2O3 shows a similar trend 

to the simultaneous 4.5Cu0.5Ag/γ-Al2O3 catalyst shown in Figure 3.15.  The dark field image 

showed a higher amount of particles on the surface, this is most likely due to the copper being 

impregnated first, silver is on the upper layer, which could be detected more easily as seen with 

the powder XRD results (Figure 3.4).  The result remains consistent in that the copper has a good 

dispersion across the support, with the particles consisting of silver agglomerates.   

 

3.8.  Scanning electron microscopy (SEM-EDX) 
 

5Cu/γ-Al2O3 

The image obtained from the scanning electron microscope shows the morphology of the 

monometallic copper supported on γ-Al2O3.  The morphology shows smooth spherical particles 

of the metal on the support as shown in Figure 3.17.  No large CuO peaks are observed at a 

magnification of 107 000 x confirming the well dispersed CuO species over the alumina support, 

which is in agreement with the XRD data.  The EDS shows an even dispersion of copper on the 

support as shown in Figure 3.17c-d.  

Backscattered images use the principle that the heavier metals will show brighter on the image 

compared to the support.  The backscattered image, shown in Figure 3.17b, does not show any 

(a) (b) 
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bright regions due to the well-dispersed copper on the alumina support.  Due to SEM and 

backscattered SEM not showing any particles, EDX mapping was done to illustrate the metal 

dispersion on the support.  The EDX image showed an even dispersion of copper, however, two 

particles were observed from the results obtained by EDX mapping (in Figure 3.16d).  The 

copper dispersion map confirms that these particles are an agglomeration of copper on the 

surface.  This agglomeration could be due to the bulk CuO or CuAl2O4. 

  

 

Figure 3.17.  SEM image for 5Cu/γ-Al2O3 (a) SEM, (b) backscattered image, (c) SEM-EDX, (d) 

copper mapping (blue). 

 

4.5Cu-0.5Ag/γ-Al2O3 

Three catalysts containing 4.5 wt % copper and 0.5 wt % silver were prepared using 

simultaneous and sequential impregnation.  Figure 3.18a-c shows backscattered SEM images for 

the 4.5Cu0.5Ag/γ-Al2O3 catalysts.   

Agglomerated copper 
particles beneath the 
surface of alumina.  

(d) (c) 

(b) (a) 
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Figure 3.18.  Backscattered SEM images of (a) 4.5Cu0.5Ag/γ-Al2O3 and (b) S-4.5Cu0.5Ag/γ-

Al2O3 and (c) S-0.5Ag4.5Cu/γ-Al2O3 catalysts. 

   

Figure 3.19.  SEM-EDX mapping for (a) 4.5u0.5Ag/γ-Al2O3- Cu (blue), Ag (red), (b) S-

4.5Cu0.5Ag/γ-Al2O3 - Cu (green), Ag (red), and (c) S-0.5Ag4.5Cu/γ-Al2O3 - Cu (green), Ag 

(red). 

The simultaneously impregnated catalyst (4.5Cu-0.5Ag/γ-Al2O3) showed bright particles across 

the surface indicating that the metals are well dispersed.  The S-4.5Cu0.5Ag/γ-Al2O3 showed 

many bright particles across the support, this could be linked to previous results where the bright 

particles from STEM-EDX (see Figure 3.16) showed bright particles to be made up of silver.  

The high quantity of bright particles observed in Figure 3.18b is due to the copper being 

impregnated first with the silver being on the upper layer of the catalyst surface, thus allowing 

for easy observation using backscattered SEM.  The S-0.5Ag4.5Cu/γ-Al2O3 (Figure 3.18c) 

catalyst also shows a presence of metal agglomeration on the surface, this is also a result of 

sequential impregnation where the silver was impregnated first.  The copper impregnated second 

will not adsorb onto the silver but rather the bare support, which allows silver to be observed 

clearly using backscattered SEM.  The mapping was done on the simultaneous and sequential 

4.5Cu0.5Ag catalysts shown in Figure 3.19a-c to obtain information on the metal dispersion at 

lower magnification compared to the STEM-EDX.  The EDX was used to illustrate the metal 

(b) (a) 

(a) (b) 

(c) 

(c) 
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dispersion for selected catalysts shown in Figure 3.18a-c.  All catalysts analyzed in Figure 3.19a-

c showed a good dispersion for both copper and silver, therefore, does not provide enough 

information to differentiate between the surface characteristics of the catalysts prepared.  Line 

scans were conducted on these catalysts to provide information on the composition of the 

particles.  Figures 3.20-3.22 shows line scans for the 4.5Cu0.5Ag/γ-Al2O3 catalysts prepared 

using the simultaneous and sequential impregnation methods. 

3.8.1. SEM line scan 

4.5Cu0.5Ag/γ-Al2O3 catalyst 

    

Figure 3.20.  SEM image with (a) the line scan and the (b) spectra for 4.5Cu0.5Ag/γ-Al2O3 with 

copper (blue) and silver (dark green). 

A region containing a bright spot was analyzed by conducting a line scan across the bright spot 

as shown in Figure 3.20a with the results of the line scan shown in Figure 3.20b.  SEM-EDX and 

the line scan have a lower magnification compared to the STEM image (Figure 3.13) but the 

results show to correlation between these surface characterization techniques in that the silver is 

shown to increase across the bright region, while copper and aluminium showed a similar trend 

indicating the copper is well dispersed across the support.  This is consistent with the results 

obtained from STEM line scan (Figure 3.15).   

Sequential S-4.5Cu0.5Ag/γ-Al2O3 and S-0.5Ag4.5Cu/γ-Al2O3 catalysts 

  

Figure 3.21.  SEM image for (a) S-4.5Cu0.5Ag/γ-Al2O3 with (b) line scan spectra of copper 

(pink) and silver (red). 

(a) (b) 

(a) (b) 
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Figure 3.22.  SEM image for (a) for S-0.5Ag4.5Cu/γ-Al2O3 line scan spectra of copper (blue) 

and silver (dark green). 

In Figure 3.21,  the S-4.5Cu0.5Ag/γ-Al2O3 line scan showed a more even distribution across a 

bright region indicating that the small crystalites of silver oxide (shown in XRD) are well 

dispersed across the support.  In Figure 3.22, the S-0.5Ag4.5Cu/γ-Al2O3 showed a similar result 

where both metals are shown to be evenly distributed across the support.  The results are evident 

that the method of impregnation has an impact on the metal distribution, where the simultaneous 

catalyst showed larger silver particles than the sequential catalysts. 

Backscattered SEM proved to be an effective technique in focusing on metal rich areas compared 

to SEM.  This technique provided information on the surface charecteristics of the bimetallic 

catalysts prepared.  This showed that the silver particles are in close contact with copper, which 

may lead to synergistic effects which can alter catalytic activity.  Deng et al. [153] showed that 

that the catalysts prepared by co-impregnated or simultaneous catalysts has a stronger synergistic 

effect than sequential impregnation catalysts.  This strong interaction between copper and silver 

in the simultaneous impregnation, results in larger particles sizes seen from the line scan results.     

 

15Cu/γ-Al2O3 

Backscattered SEM showed a larger amount of agglomerated copper particles, which were 

confirmed from the EDX mapping showed in Figure 3.23a-c.  The agglomerated copper is a 

result of the increased weight loading, which is consistent with the results from XRD (see Figure 

3.3), which showed crystalline peaks characteristic of copper oxide.  The agglomerated copper 

also decreases the active metal surface area and this is consistent with the result obtained from 

both hydrogen and carbon monoxide chemisorption (Tables 3.5 and 3.6).  Backscattered SEM 

and EDX mapping was done for the 15Cu/γ-Al2O3 catalyst. 

(b) (a) 
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Figure 3.23.  SEM images for 15Cu/γ-Al2O3 showing (a) backscattered image, (b) EDX mapping 

with aluminium (blue) and copper (green), (c) copper map (green). 

13.5Cu – 1.5Ag/γ-Al2O3 

SEM imaging showed an irregular morphology consistent with alumina supported catalysts.  

Figure 3.24a shows a SEM image of 13.5Cu1.5Ag/γ-Al2O3.  The results obtained remains 

consistent with the 15Cu/γ-Al2O3. 

  

Figure 3.24.  SEM images of 13.5Cu1.5Ag/γ-Al2O3 (a) SEM image, (b) backscattered image 

with line scan, (c) spectra obtained from line scan with copper (blue), silver (pink), and 

aluminium (green). 

The backscattered SEM image (Figure 3.24b) for that the 13.5Cu1.5Ag/γ-Al2O3 catalyst 

correlated with the results obtained for the 15Cu/γ-Al2O3 catalyst (Figure 3.23), where the larger 

agglomerated particles are shown as brighter regions on the image.  Figure 3.24b-c show the line 

scan over a region of the backscattered image, confirming that copper has regions of good 

dispersion, but due to the increased metal loading there are also larger agglomerates in some 

regions.   

 

(a) (b) (c) 

(a) (c) (b) 
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Figure 3.25.  SEM images of 13.5Cu1.5Ag/γ-Al2O3 showing (a) EDX mapping, (b) copper 

(green), (c) silver (red). 

Figure 3.25a shows the metal mapping of copper and silver.  Silver shows to be well dispersed, 

while copper forms larger agglomerates.  The line scan over a specific region allows for an 

understanding of the composition of the particles shown in the backscattered image.  Figure 

3.25b-c shows that the larger particles are made up of copper, while silver shows to be better 

dispersed than copper. 

 

3.9. Temperature programmed reduction (TPR) 

The TPR profiles were obtained for all catalysts were conducted to determine the reduction 

profiles shown in Figures 3.26-3.27.  TPR shows the maximum temperature at which the metal 

reduces and the degree of reducibility of the catalyst.   

 

5Cu/γ-Al2O3, 15Cu/γ-Al2O3, and 13.5Cu1.5Ag/γ-Al2O3 

Figure 3.26a-c shows the reduction profile for the 5Cu/γ-Al2O3, 15Cu/γ-Al2O3 and 

13.5Cu1.5Ag/γ-Al2O3 catalysts.  The 5Cu/γ-Al2O3 catalyst shows a single intense reduction peak 

at 248 °C attributed to well dispersed copper and weakly adsorbed isolated copper ions (Figure 

3.26a).  Following the defined peak at 248 °C, there is a continuous peak up to 700 °C, attributed 

to a copper aluminate species (CuAl2O4).   

(c) (b) (a) 
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Figure 3.26.  TPR profile for the γ-Al2O3 supported with (a) 5Cu, (b) 15Cu and (c) 13.5Cu-1.5Ag 

catalysts. 

Kundakovac and Stephanopoulas [170] documented a broad reduction peak from 100 – 500 °C 

with 1 % Cu supported on γ-Al2O3, which was attributed to a copper aluminate phase, resulting 

from a strong interaction between the isolated copper ions and the support.  Liang et al. [198] 

stated that the CuAl2O4 forms as a result of copper ions filling defect sites of the alumina surface, 

is reported to occur at calcination temperatures higher than 500 °C due to solid-solid interactions 

between the metal and support [169, 171, 175, 198, 199].  Within this copper aluminate phase, 

there is an octahedral surface aluminate, formed by well dispersed copper ions on the surface 

which is easy to reduce, as well as a tetrahedral spinel phase, which reduces at a much higher 

temperature.   

It was also stated that at weight loadings of approximately 5 wt %, the copper is generally at the 

surface of the support and found as either copper ions or well dispersed copper [170, 171, 198].  

Luo et al. [169] reported that Cu/γ-alumina calcined at temperatures of 400 – 600 °C form 

CuAl2O4, which occurs via interaction between the metal and support.  The extent of copper 

diffusion is dependent on the calcination temperature, where an increase in calcination 

temperature increases the amount of copper diffused into the lattice.  This is in agreement with 

(a) (b) 

(c) 

Temperature °C 
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work done on the characterization of Cu/Al2O3 by Zhu et al. [200] and Friedman and Freeman 

[171].  

Figure 3.25b shows the reduction profile of 15Cu/γ-Al2O3 where two peaks was observed.  The 

first peak was attributed to the well dispersed copper, similar to the 5Cu, while the second peak 

at a higher reduction temperature was attributed to the bulk CuO.  A TPR study done by Dow et 

al. [161], reported on two reduction peaks observed for supported CuO catalysts.  The low 

temperature peak was attributed to the highly dispersed copper and the high temperature peak 

due to the bulk CuO species [161], consistent with the results obtained in this study.   

Garbowski et al. [201] explained that during the impregnation step, the Cu2+ ions interact with 

the hydroxyl groups via hydrogen bonding.  When calcined, this interaction was increased 

between the metal and support during the removal of water.  Considering that the Cu2+ species 

requires two –OH groups to adsorb to, this indicated that there is an exchange capacity.  For high 

copper loadings (> 6 wt %), there are not enough hydroxyl groups to exchange ions with so it is 

said to have reached its exchange capacity.  Once this exchange capacity has been reached, the 

bulk CuO species are formed [201].  The higher temperature needed for this bulk CuO reduction 

is needed because there is a smaller reactive surface due to large clusters of CuO.   

Figure 3.25c shows that the peaks of the 13.5Cu1.5Ag/γ-Al2O3 catalyst shifted to a lower 

reduction temperature for the well dispersed and bulk CuO.  There is no silver reduction 

observed due to the low weight loading of silver, as well as the low reduction temperature of 

silver, reported to be less than 100 °C.  Since silver is known to reduce at low temperatures, the 

reduced silver species adsorbed hydrogen, which is able to migrate across the silver species, thus 

reducing the copper faster.  Bachiller-Baeza et al. [157] reported that the bimetallic Ru-Fe 

catalyst showed a shift to a lower reduction temperature compared to monometallic iron, this 

observation was attributed to the presence of ruthenium.  A similar result was observed with Pt-

W/γ-Al2O3 catalysts where the addition of platinum increased the reducibility of tungsten, in 

work done by Alexeev et al. [156].  
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4.5Cu0.5Ag/γ-Al2O3, S-4.5Cu0.5Ag/γ-Al2O3, and S-0.5Ag4.5Cu/γ-Al2O3 

Figure 3.14a-c shows the temperature reduction profile of the simultaneous 4.5Cu0.5Ag/γ-Al2O3 

and the sequential catalysts S-4.5Cu0.5Ag/γ-Al2O3 and S-0.5Ag4.5Cu/γ-Al2O3.  

   

Figure 3.27.  TPR profile for the (a) S-4.5Cu0.5Ag/γ-Al2O3, (b) S-0.5Ag4.5Cu/γ-Al2O3, and (c) 

4.5Cu0.5Ag/γ-Al2O3 catalysts. 

The bimetallic catalyst shows an overlap of peaks at the lower temperature as well as a small 

peak at the high temperature.  Figure 3.27 shows one major peak due to the reduction of copper, 

however, upon deconvolution it shows a combination of two peaks.  The early onset of reduction 

(shown in green) may be attributed to the copper in close contact with the silver as seen with the 

13.5Cu1.5Ag/γ-Al2O3 (Figure 3.26c) and results from electron microscopy.  The bimetallic 

catalyst has a low loading of silver; therefore, the silver reduction does not show a defined peak.  

The electron microscopy results showed the metals present are in close proximity to each other.  

This intimate contact can lead to a synergistic effect, which may alter the reduction temperature 

as seen from the results obtained from the reduction study. 

The simultaneous impregnated catalyst (Figure 3.27c) showed that after the main reduction peak, 

there was moderate hydrogen consumption at temperatures greater than 300 °C.  This was also 

(a) (b) 

(c) 

Temperature °C 
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observed for the S-4.5Cu0.5Ag/γ-Al2O3 (Figure 3.27a), while the S-0.5Ag4.5Cu/γ-Al2O3 (Figure 

3.27b), showed a more distinct reduction peak with minor hydrogen consumption after the main 

reduction peak.  This hydrogen consumption is due to the strong interaction between the copper 

and support surface, which may form a copper aluminate phase.  This interaction was also 

present in the 5Cu/γ-Al2O3 catalyst, which is consistent with work done by Luo et al. [169] and 

Zhu et al. [200].  The results obtained from TPR analysis is shown in Table 3.7.  

Table 3.7.  Summary of results obtained from TPR analysis on all catalysts. 

Catalyst 

Temperature 

at maximum 

(°C) 

Degree of 

reducibility of Cu a 

Average oxidation 

state of Cu based on 

H2 consumed b 

5Cu/γ-Al2O3 248 28 0.3 

4.5Cu-0.5Ag/γ-Al2O3 215 20 0.2 

S-4.5Cu0.5Ag/γ-Al2O3 233 20 0.2 

S-0.5Ag4.5Cu/γ-Al2O3 135, 197 15 0.2 

4Cu-1Ag/γ-Al2O3 184, 242 10 0.4 

S-4Cu1Ag/γ-Al2O3 131, 193 12.1 0.3 

S-1Ag4Cu/γ-Al2O3 158, 203 12 0.3 

15Cu/γ-Al2O3 236, 299 40 0.3 

13.5Cu-1.5Ag/γ-Al2O3 167, 271 45 0.4 

a. Degree of reducibility = (moles of H2/moles of reducible Cu)*100 
b. Average oxidation state = oxidation state of Cu*(moles of H2*2/moles of reducible Cu) 

 

The S-4.5Cu0.5Ag/γ-Al2O3 catalyst shows higher hydrogen consumption, this is most likely due 

to the copper being impregnated first, increasing the interaction between the copper and support 

during the calcination step, whereas when silver is impregnated first, this may inhibit the 
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interaction between the copper and the alumina surface, thus decreasing the formation of copper 

aluminate.   

Surface area measurements for the S-0.5Ag4.5Cu/γ-Al2O3 and 1Ag4Cu/γ-Al2O3 catalysts show a 

lower surface area due to a higher amount of copper on the surface instead of migrating into the 

lattice, as shown in Table 3.3.  This is further supported from chemisorption studies where a 

higher metal dispersion was obtained for the S-0.5Ag4.5Cu/γ-Al2O3 and 1Ag4Cu/γ-Al2O3 

catalysts silver inhibits the migration of copper into the alumina lattice (Table 3.5 and 3.6).  The 

average oxidation state does not take into account silver, therefore, the value shown is an 

estimate as both metals gets reduced in the same region, and silver is known to reduce readily.  

The TPR profiles for the simultaneous and sequential 4Cu1Ag/γ-Al2O3 catalysts can be seen in 

the Appendix.  

 

3.10. Temperature programmed desorption (NH3-TPD) 

The acidity and basicity studies are used to provide information on the surface chemistry and 

provide information of selectivity to the main product and byproducts.  The most recent study, 

by Czaplinska et al. [192], using CuAg bimetallic catalysts, showed that the presence of silver 

increases the basicity, whereas copper promotes more Lewis acidity, which is in agreement with 

observations obtained in this study.  The 5Cu/γ-Al2O3 showed a high concentration of Lewis acid 

sites (weak and moderate) and strong acid sites, whereas the 4.5Cu0.5Ag/γ-Al2O3 and 

4Cu1Ag/γ-Al2O3 catalysts show a significant decrease in the concentration of acid sites, shown 

in Table 3.8.  The 15Cu/γ-Al2O3 has a lower acidity compared to the 5Cu/γ-Al2O3, this is due to 

the higher metal coverage on the surface, which then blocks some of the lewis acid sites of the γ-

Al2O3 support.  Silver is known to increase basicity, this effect is more pronounced with the 

13.5Cu1.5Ag/γ-Al2O3 catalyst, as this showed the lowest acidity overall, due to the highest 

loading of silver present. 

Sequential impregnation catalysts showed that when copper was impregnated first, as in the case 

of S-4.5Cu0.5Ag/γ-Al2O3, a high acid concentration is obtained, most likely due to the close 

interaction between the copper and the alumina support.  The S-4Cu1A/γ-Al2O3 g has a lower 
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copper to silver ratio of 4:1; the copper shows a lower acid concentration due to the increased 

presence of silver, which promotes basicity.   

Table 3.8.  Summary of results obtained from NH3-TPD analysis on all catalysts. 
Catalyst Acid site concentration /mmol g-1 Total acidity 

/mmol g-1 

 Weak sites 

(<250 °C) 

Medium sites 

(250 – 450 °C) 

Strong sites 

(>450 °C) 

 

5Cu/γ-Al2O3 0.66 8.95 1.76 11.37 

4.5Cu-0.5Ag/γ-Al2O3 2.46 0.94 5.41 8.81 

S-4.5Cu0.5Ag/γ-

Al2O3 

4.83 3.06 0.48 8.38 

S-0.5Ag4.5Cu/γ-

Al2O3 

2.44 1.78 0.37 4.40 

4Cu-1Ag/γ-Al2O3 2.45 1.56 0.47 4.48 

S-4Cu1Ag/γ-Al2O3 0.932 0.36 0.50 1.79 

S-1Ag4Cu/γ-Al2O3 2.17 0.48 2.78 5.43 

15Cu/γ-Al2O3 3.26 0.62 1.90 5.42 

13.5Cu-1.5Ag/γ-

Al2O3 

0.10 0.03 0.07 0.2 

 

This correlates with work done by Czaplinska et al. [192] where the increase in basicity was due 

to the incorporation of silver in a copper-silver bimetallic catalyst system.  Likewise, when silver 

was impregnated first as in the case of S-0.5Ag4.5Cu/γ-Al2O3 and S-1Ag4Cu/γ-Al2O3, the 

concentration was significantly lower due to the silver atoms inhibiting or limiting the copper 

and alumina interaction, which could be seen in the data obtained from chemisorption studies, 

surface area measurements and acidity studies (Tables 3.3, 3.5, 3.6,and  3.8)      

From CO chemisorption results (Table 3.6), it was shown that the presence of silver affected the 

metal dispersion.  The CO chemisorption results was used to provide information on the surface 

acidity of the catalyst as reported by Mao et al. [194].  This correlates with the results obtained 
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from the NH3-TPD where the copper-silver bimetallic catalysts showed overall lower catalyst 

acidity compared to their monometallic counterparts.   

3.11. Thermal gravimetric analysis –differential scanning calorimetry (TGA-DSC) 

TGA-DSC is used initially to determine calcination temperature of a catalyst by observing the 

decrease in weight of the catalyst until it reaches a plateau.  Figure 3.28 shows an example of an 

uncalcined catalyst.  The initial weight loss (~8 %) from 0 – 150 °C can be attributed to the loss 

of adsorbed water from the catalyst.  The intermediate weight loss (~5 %) from 150 – 250 °C is 

due to the decomposition of CuNO3 to form CuO.  The last weight loss (~6 %) from 250 – 420 

°C is due to the interlayer moisture and adsorbed hydroxyl groups from the alumina support.  

The results of TGA-DSC show that the calcination temperature of 500 °C is sufficient for the 

formation of CuO and removing interlayer moisture from the alumina support.  

 

Figure 3.28.  TGA-DSC results of 5Cu/γ-Al2O3 uncalcined catalyst. 

 

Figure 3.28 shows the TGA-DSC of the uncalcined catalyst.  This mainly shows the weight loss 

of approximately 12-15 wt % due to the adsorbed moisture on the catalysts, this is due to the 

hygroscopic nature of the alumina support which easily absorbs moisture at room temperature.  

TGA-DSC experiments were done on selected catalysts, as there is no significant variation 

between the results obtained.   
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Figure 3.29.  TGA-DSC results for uncalcined (a) 4.5Cu-0.5Ag/γ-Al2O3, (b) 4Cu-1Ag/γ-Al2O3, 

(c) 13.5Cu-1.5Ag/γ-Al2O3 and (d) 15Cu/γ-Al2O3 catalysts. 

 

Figure 3.2a and b shows a total weight loss of approximately 20 %, which is due to the adsorbed 

water due to the hydroscopic nature of alumina, as well as the water within the interlayers of the 

support.  The Figure 3.30c-d shows a weight loss of approximately 10 %, this is significantly 

lower than for the 5 wt % catalyst due to the higher metal loading covering a higher surface area 

compared to the 5 wt % catalysts.  This increased metal loading decreases the amount of water 

able to adsorb onto the alumina support.  

 

3.12. Summary 

The characterization techniques used in this work provided useful information in an effort in 

understanding the surface composition and metal-metal interaction for the nine catalysts 

prepared.  All weight loadings obtained using ICP-OES showed to be close to the theoretical 

values, allowing for an accurate comparison between the catalysts using the various 

characterization techniques.  

(a) 

(c) 

(b) 

(d) 
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Infrared spectroscopy does not give much insight into the metal-support interaction; however, it 

did confirm the hygroscopic nature of alumina due to the presence of the broad hydroxyl peak at 

~ 3200 cm-1 and the adsorbed water at 1600 cm-1.  X-ray diffraction proved a useful tool to 

determine the presence of copper clusters at higher weight loading (>13 wt % Cu).  For the 5 wt 

% catalysts, XRD has limited use in determining the crystallites for all catalysts, however, the S-

4.5Cu0.5Ag/γ-Al2O3 showed crystalline silver oxide present due to the silver being on the upper 

layer resulting in well dispersed silver.  A synergistic effect between the copper and silver were 

observed under in situ conditions, whereby the presence of silver showed to increase in the d-

spacing values of the copper peaks, suggesting the presence of defect sites in the 4.5Cu0.5Ag/γ-

Al2O3 catalyst.  The 4Cu1Ag/γ-Al2O3 catalyst did not show this behavior due to the silver having 

a higher affinity to other silver atoms rather than copper atoms.   

Surface area measurements showed a decrease in surface area with an increase in metal loading 

as well as a decrease in surface area when silver was impregnated first, as shown with the S-

0.5Ag4.5Cu/γ-Al2O3 and S-1Ag4Cu/γ-Al2O3 catalysts.  A few key differences were established 

depending on the effect of impregnation with the 5 wt % bimetallic catalysts due to the ionic 

radius of the metals, which showed to contribute significantly to the surface area measurements 

and metal dispersion from chemisorption studies.  An example is the S-0.5Ag4.5Cu/γ-Al2O3 

catalyst, which showed a higher metal dispersion compared to when copper was impregnated 

first.  This trend remained consistent for the 4Cu1Ag/γ-Al2O3 catalysts. 

Electron microscopy results showed that both the metals were well dispersed in all catalysts, 

with copper forming larger agglomerates at higher weight loadings.  The line scan proved to be 

an effective method in determining distinct differences for particle composition of the sequential 

and simultaneous bimetallic catalysts.  Simultaneous impregnation showed copper to be evenly 

dispersed across the support, with silver forming agglomerates in certain regions in addition to 

be fairly dispersed across the support.  The S-4.5Cu0.5Ag/γ-Al2O3 and S-0.5Ag4.5Cu/γ-Al2O3 

showed that copper was well dispersed with silver forming smaller agglomerates across the 

support, which was supported by XRD results.   

The monometallic copper results were in correlation with literature, which showed well 

dispersed copper particles across the surface of the support.  Dispersion also depends on weight 

loading with TPR differentiating between bulk CuO (~ 15 wt% Cu loading) and dispersed CuO 
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(~ 5 wt % loading).  The TPD results showed acidity to vary with the impregnation sequence and 

metal loading.  The overall observation was that the presence of silver increased the basicity of 

the catalyst as shown by the decreased acid sites concentration.  TGA was used to determine the 

thermal stability of the catalysts.  The TGA results for selected catalysts showed them to be 

thermally stable, with the weight loss being due to the removal of water.   
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Chapter 4 
4. Catalytic Results and Discussion 

 

The work carried out involved the hydrogenation of octanal in the presence of octene in a 

competitive reaction environment.  The catalysts used were CuAg/γ-Al2O3 with varied Cu-Ag 

ratios.  The catalysts were synthesized and characterized was discussed in Chapter 3.   

The feed used consisted of 10 % octanal, 2 % octene and 88 % octanol to investigate the ability 

of the catalyst to selectively hydrogenate the octanal whilst minimizing or inhibiting the 

hydrogenation of the octene.  Octanol is used as a diluent and is also the desired product from the 

octanal hydrogenation.  Studies have shown octanol as a diluent, to have no effect on the overall 

result [197].  Due to the exothermic nature of octanal hydrogenation, the octanal quantity in the 

feed was kept at 1 0%, with octene at 2 %, as it is a byproduct and serves as a model of an 

unwanted component in an industrial feed.  It has been reported that in the hydrogenation of 

aldehydes, minor byproducts like  2-hexyl decanol, octyl octanoate, C16 diol, and C24 acetal 

may form [60].  The undesired reaction forms octane from the hydrogenation of octene.  

 

4.1.  Optimization of reaction conditions using monometallic copper catalysts 
 

Characterization showed that Cu/γ-Al2O3 has high surface area, with copper having a good 

dispersion as shown from TPR and SEM-EDX studies (sections 3.8 and 3.9).  Based on previous 

work done on Cu/γ-Al2O3 catalysts, it was shown that this catalyst was stable for at least 28 

hours [71], therefore, no time on stream reactions were conducted for the optimization study.  

Reactions for this study were conducted over a period of 8 hours, and tested at three 

temperatures (120, 140, and 160 °C).  Pre-treatment of the catalyst involved drying under 

nitrogen at 200 °C, thereafter reduced using 100 % hydrogen.  The liquid feed was fed through a 

continuous fixed bed reactor as explained in Chapter 2.  
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4.1.1.  Effect of pressure using the 5Cu/γ-Al2O3, 
 

Based on previous work done for this catalytic system, the optimum temperature was reported to 

be 140 °C [197].  This temperature of 140 °C was chosen as the initial reaction temperature with 

the variable pressures being investigated.   

Figure 4.1a shows that the increase in pressure resulted in increased conversion of octanal and 

octene, with the maximum octene conversion reaching 12 % with complete selectivity towards 

octane.  The increase in pressure increased the interaction between the incoming reactants with 

the catalyst; therefore, the increase in conversion was observed.  Figure 4.1a showed the 

selectivity towards octanol.  There is no significant difference in selectivity from 95 to 96 % with 

the increase in pressure from 10 bar to 50 bar.   

Figure 4.1b shows the byproducts formation with C16 diol as a major byproduct as a result of 

aldol condensation, with other minor byproducts being 2-hexyl decanol, octyl octanoate, C24 

acetal and others, which include octanoic acid, C16 saturated alkane and octyl ether.  The 

increase in octanol selectivity leads to a decrease in the formation of the byproducts, however, an 

increase in C16 diols was observed, with an increase in pressure.  

  

Figure 4.1.  Graphs depicting the effect of pressure at 140 °C in terms of (a) octanal and octene 

conversion and selectivity to octanal, and (b) selectivity towards byproducts on the 5Cu/γ-Al2O3, 

using a 1:2 octanal:hydrogen ratio, and 18h-1 LHSV with 532 h-1 GHSV.  The catalyst was 

reduced at 240 °C.  
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The hydrogenation of butanal in work done by Zakzeki et al. [26], showed an increase in 

conversion with the increase in pressure.  Results showed a 60 % increase in conversion when 

the hydrogen pressure was increased from 0.75 MPa to 3.5 MPa indicating that relatively higher 

pressures favour hydrogenation, although the influence on selectively was not reported [26].  

Additionally Sharma et al. [53] attributed the increase in conversion of the aldehyde with 

increase in pressure, in work done for the hydroformylation of 1-hexene, to the higher quantity 

of hydrogen present at higher pressures [53].  An increase in hydrogen pressure favoured ethane 

hydrogenation in work done by Kiss et al. using a rhodium based catalyst [202].  This correlates 

with the result obtained for octene conversion observed in this study, with the octene conversion 

increasing with higher pressures (Figure 4.1a).  Bron et al. [131] observed an increase in 

conversion with an increase in pressure using a silver based catalyst.  They attributed this trend 

to the higher surface coverage of hydrogen at higher pressures, thus resulting in higher 

conversion supporting the results obtained in Figure 4.1a.  

4.1.2. Effect of reduction temperature on the 5Cu//γ-Al2O3 
 

In three separate experiments, fresh catalysts were reduced at three different temperatures, which 

were at 220, 240 and 260 °C.  With each of these catalysts, reactions were conducted at 

temperatures ranging from 120, 140, and 160 °C at 50 bar pressure.  The results are shown in 

Figure 4.2a-c.  There has not been extensive work done on the effect of reduction temperature 

and its effect on catalytic performance, allowing a few possible reasons to explain the significant 

effect on conversion for both substrates, with a change in reduction temperature. 
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Figure 4.2.  Conversion of octanal and octene at temperatures 120, 140, and 160 °C which were 

reduced at (a) 220, (b) 240, and (c) 260 °C.  All reactions were performed at 50 bar, LHSV: 18 h-

1, and octanal:hydrogen ratio of 1:2 on the 5Cu/γ-Al2O3 catalyst. 

 

Figure 4.2a-c shows that irrespective of reduction temperature, the increase in temperature 

resulted in the increase in conversion of octanal and octene.  This is consistent with work done 

by Ma et al. [186] for their work on the characterization of copper particles on graphite 

nanofibers.  From Figure 4.2a, the increase of temperature resulted in the increase of conversion 

reaching a maximum of 90 % conversion of octanal, and 12 % octene conversion at 160 °C.   

Figures 4.2a-c shows that with an increase in reduction temperature, there is an increase in the 

conversion of octanal and octene.  At a reduction temperature of 220 °C, the highest reaction 

temperature (160 °C) gave conversions of octanal and octene of 90 % and 12 % respectively.  

The highest reduction temperature of 260 °C showed conversions of octanal and octene reaching 

a maximum of 100 % and 48 % at a reaction temperature of 160 °C.  Stolle et al. [62] showed 

the effect of reduction temperature on Pt/TiO2 catalysts, which showed an increase in conversion 

of citral, with the increase in reduction temperature.  The increase in reduction temperature can 

be concluded to have an overall negative influence, as a key objective is to prevent or inhibit 

octene conversion; therefore, the optimum reduction temperature was chosen to be 220 °C.  

Although the high reduction temperature produces an undesired effect, and is not suited for 

optimum results in this study, the contribution of the reduction temperature towards the catalyst 

performance was interesting.   
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Literature shows hydrogenation is favoured on certain types of sites, for example carbonyl 

groups hydrogenate on large particles and planes, whereas alkene molecules prefer to 

hydrogenate on edges and kinks [177].  This does not mean the hydrogenation of a specific 

substrate is site exclusive to edges or corners, but merely provides information of the surface 

interaction.  Menon and Prasad [203] observed a similar result using a Cu-Al2O3-carbon catalyst 

applied in dehydrogenation.  The exponential increase in metal dispersion with the increase in 

reduction temperature observed was attributed to the copper becoming more exposed on the 

support surface.  A characterization study of copper containing catalyst, by Dandekar and 

Vannice [184], show that the increase of reduction temperature shows a lower CO chemisorption 

uptake and the crystallite size calculated using XRD showed a minor increase.  There are many 

possible reasons, which could explain the increased activity, which would require a greater 

understanding of the surface characteristics.  There has been significant work done to investigate 

the role of reduction temperature of copper catalysts, however it can be concluded from these 

efforts that in-depth characterization and understanding of the copper metal on the surface are 

important.  The reasons are listed below: 

(a)  Sintering occurs when metal atoms become mobile and agglomerate on catalyst surface 

[4, 5].  Sintering is favoured at high temperatures for prolonged periods of time, as it 

provides sufficient energy for the metals to become mobile.  At the highest reduction 

temperature (260 °C), the catalyst is reduced under 100 % hydrogen for 12 hours.  This 

may provide a favorable environment for sintering to occur.  Characterization studies 

showed copper to be well dispersed at low weight loadings, as well as the possibility of 

strong copper-alumina interaction and copper-aluminate phases present, which would 

affect the hydrogenation capability of the catalyst.  To prove sintering of copper after 

reduction, the used catalyst characterization would assists in identifying key differences 

between the catalysts reduced at different temperatures.   

 

(b)  Migration of copper could occur from the alumina lattice to the surface of the support.  It 

has been reported in literature that the increase in calcination temperature causes copper 

atoms to migrate into the alumina lattice decreasing the amount of copper atoms on the 

surface [171].  Calcination is a process where the catalyst is heated under flowing air to 

convert the metal salts into metal oxide on the catalyst.  Using a similar logic, the 
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reduction of the catalyst involved the metal oxide being heated under a flow of hydrogen 

gas, converting the metal oxide to the reduced metal.  This reducing environment can 

cause the migration of copper oxide from the lattice to the surface, which is then reduced 

on the surface exposing more active sites.  Techniques such as Electron Spectroscopy for 

Chemical Analysis (ESCA) and Low energy ion scattering spectroscopy (LEISS) analyze 

the surface of the catalyst whereby the intensity ratio between Cu/Al can be obtained.  

These techniques are expensive, and due to the high reduction temperature not chosen as 

one of the optimum parameters, this will not be further investigated for a Masters study, 

however it will be investigated for a more detailed doctorate study.  Hydrogen 

chemisorption can be used as a supporting technique, where the increase in reduction 

temperature resulted in a higher metal dispersion as shown in Chapter 3, Table 3.5.  

 

 

Figure 4.3.  Selectivity towards octanol is shown at various reduction temperatures.  All 

reactions were performed at 50 bar, LHSV: 18 h-1, and octanal:hydrogen ratio of 1:2 using the 

5Cu/γ-Al2O3 catalyst. 

Figure 4.2a-c showed the reduction temperature had a significant influence on the conversion of 

octanal and octene, while Figure 4.3 shows that the reduction temperature did not have a strong 

influence on the selectivity towards octanol which ranged from 97 – 99 % across the different 

reaction temperatures and reduction temperatures.  The 5Cu/γ-Al2O3 catalyst showed a low metal 

dispersion and metallic surface area from chemisorption studies (Table 3.5 and 3.6).  This 

suggests that there is a large area of bare alumina, which can also interact with the incoming 

substrates.  Figure 4.4 shows the major byproducts, which can form on the active metal sites as 
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well as the support, which contains both acidic and basic sites.  As discussed by Wang et al. [60], 

the hydrogenation of octanal can undergo further reactions such as aldol condensation resulting 

in the formation of C16 diol, 2-hexyl decanol, octyl octanoate and C24 acetal.  Minor by-

products include octyl ether, octanoic acid, and C16 saturated alkanes make up the other 

products, which were confirmed by GC-MS (see Appendix).  The reduction temperature of 220 

°C offers a higher selectivity to C16 diols, while higher reduction temperatures (240 and 260 °C) 

show the formation of C24 acetals, indicating a change in the catalyst surface.  The reduction 

temperatures at 240 and 260 °C show that with the increase in reaction temperature, there is an 

increase in the formation of C16 diol and C24 acetals.  The higher reaction temperature across all 

reduction temperatures investigated shows an increase in aldol condensation products, which 

form on acidic and basic sites, on the 5Cu/γ-Al2O3 catalyst, as shown in Figure 4.4. 

  

 

Figure 4.4.  Selectivity towards byproducts is shown at various reduction temperatures and with 

reaction temperatures (a) 220 °C, (b) 240 °C, and (c) 260 °C.  All reactions were performed at 50 

bar, LHSV: 18 h-1, and octanal:hydrogen ratio of 1:2 using the 5Cu/γ-Al2O3 catalyst. 
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4.1.3.  Effect of temperature on a 15 wt% Cu/γ-Al2O3 catalyst 
 

Generally, with more active metal present, the catalyst would be expected to show a higher 

activity as seen by Sun et al. [150] and Kusama et al. [204].  The metal loading was increased by 

a factor of 3 to determine the effect of metal loading for the selective hydrogenation of octanal in 

the presence of octene.  The 15Cu/γ-Al2O3 catalyst was used to investigate factors such as the 

effect of LHSV and the effect of octanal:hydrogen ratio.  Figure 4.5a-b shows the results 

obtained using the 15Cu/γ-Al2O3 catalyst at temperatures ranging from 120, 140, and 160 °C at 

an LHSV of 18 h-1 and a 1:2 octanal to hydrogen ratio.  These conditions were chosen as the 

initial parameters based on results obtained from previous work done in the selective 

hydrogenation of octanal in the presence of octene.   

  

Figure 4.5.  Graphs depicting the effect of temperature on a 15Cu/γ-Al2O3 catalyst in terms of (a) 

octanal and octene conversion and selectivity to octanol, and (b) selectivity towards byproducts 

on the 15Cu/γ-Al2O3 using a 1:2 octanal:hydrogen ratio and 18h-1 LHSV under a range of 

temperatures from 120 – 160 °C. 

The increase in metal loading from 5 wt % to 15 wt % showed a positive influence on the overall 

activity of the catalyst.  The study of the effect of metal loading was conducted over a range of 

temperatures to compare the results with the 5Cu/γ-Al2O3 catalyst.  The results showed that in all 

cases the 15Cu/γ-Al2O3 catalyst gave an improved conversion of the octanal reaching a 

maximum of 100 % octanal conversion at 160 °C.  The major drawback of increased metal 

loading was the increase in octene conversion, which ranged between 10 – 20 % over the 

temperature range 120, 140, and 160 °C shown in Figure 4.5a.  This increased conversion is 
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attributed to the increased active sites available, which are able to adsorb and interact with a 

larger amount of incoming reactants.  From TPR results, the 15Cu/γ-Al2O3 catalyst showed two 

peaks for the well-dispersed copper and bulk CuO (Figure 3.25).  Under reaction conditions, the 

bulk Cu has been reported to favour the hydrogenation of carbonyl molecules [169].  It was also 

observed that with the increase in conversion of the octanal, there was a decrease in the 

selectivity towards octanol from 98 % at 120 °C to 95 % at 160 °C.  This indicated that the 

increase in temperature provides more energy to allow for further reactions resulting in an 

increased selectivity towards byproducts.  Figure 4.14b depicts selectivity towards byproducts, 

which show C16 diol and C24 acetal as the major byproducts.  The selectivity towards C16 diol 

reached a maximum of 1.8 %, while the C24 acetal increased from 0.4 % to 1 % with the 

increase in temperature.  This indicates that the increase in metal loading provided more active 

sites for adsorption of the incoming reactants, as well as the re-adsorption of the primary 

products for further reactions.   

Table 4.1.  Summary of the octanal and octene conversion, and selectivity over the 5Cu/γ-Al2O3 

and 15Cu/γ-Al2O3 catalysts at reaction temperatures of 120, 140, and 160°C.   

 5 Cu/γ-Al2O3 15 Cu/γ-Al2O3 

 

Octene 

conversion 

(%) 

Octanal 

conversion 

(%) 

Octanol 

selectivity 

(%) 

Octene 

conversion 

(%) 

Octanal 

conversion 

(%) 

Octanol 

selectivity 

(%) 

120 1 38 98 10 58 98 

140 3 69 97 14 91 96 

160 12 90 97 23 100 95 

*All values were rounded up to the nearest whole number 

It can be seen from Table 4.1 that with the increase in metal loading, there is also an increase in 

conversion.  The conversion of octanal increases from 90 % using the 5Cu/γ-Al2O3 catalyst to 

100 % using the 15Cu/γ-Al2O3 catalyst at 160 °C, however, the selectivity to octanol decreases 

from 97 % to 95 %.  The most significant difference between the two catalysts is the octene 

conversion whereby the maximum conversion obtained at 160 °C for the 5Cu/γ-Al2O3 and 

15Cu/γ-Al2O3 catalysts were 12 % and 23 % respectively.  Hydrogen chemisorption (Table 3.5) 
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showed a decreased metal dispersion from the 5Cu/γ-Al2O3 to the 15Cu/γ-Al2O3 catalyst, this 

indicates that larger copper particles available in the 15Cu/γ-Al2O3 (shown using SEM in Figure 

3.23 and TPR Figure 3.26) favoured the hydrogenation of octanal and octene.  The 15Cu/γ-Al2O3 

catalyst showed a higher weak acid site concentration as shown in Table 3.8.  These Lewis acid 

sites have been reported to favour the adsorption of carbonyl groups onto the active site [98].  

This increase in conversion for both reactants can be attributed to the increase in active metal 

sites which allowed for a greater amount of reactant to be converted on the catalyst, as found by 

Yin et al. [187].  Similarly, Zhang et al. [205] reported on the effect of copper loading for 

hydrogenation of dimethyl oxalate, which showed that increase of metal loading promoted over 

hydrogenation due more active sites available.  This result is similar to the results obtained in 

this study, in which the 15Cu showed a lower selectivity towards octanol compared to the 5Cu/γ-

Al2O3.  Additionally, the formation of C24 acetal is seen for the 15Cu/γ-Al2O3 catalyst, but not 

over the 5Cu/γ-Al2O3 catalyst.   

 

4.1.4.  Effect of liquid hourly space velocity (LHSV) 
 

The effect of liquid hourly space velocity (LHSV) was investigated to determine the influence on 

the conversion and the selectivity towards octanol.  Three LHSV’s were investigated, which 

were 9 h-1, 18 h-1, and 27 h-1.  This was studied using the 15Cu/γ-Al2O3 catalyst at 160 ° C and 

50 bar at a feed: hydrogen ratio of 1: 2.  Figure 4.6a shows the effect of LHSV with respect to 

conversion.   

At a high LHSV (e.g. 27 h-1), the flow rate of feed passing through is higher compared to the 

other LHSV’s.  The high flow rate decreases the amount of time the reactant spends on the 

catalyst bed, limiting the amount of reactants, which can be converted. 
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Figure 4.6.  Graphs depicting the effect of LHSV at 160 °C at 50 bar in terms of (a) octanol 

selectivity, octanal and octene conversion, and (b) selectivity towards byproducts over the 

15Cu/γ-Al2O3.  

Figure 4.6a shows that the octanal conversion decreased from 100 % to 87 % with the increase of 

LHSV from 9 h-1 to 27 h-1 respectively.  The octene conversion showed a similar trend to that of 

octanal, whereby as the LHSV increased, the octene conversion decreased as shown in Figure 

4.6a.  This observation is similar to that observed by Zhang et al. [206] who attributed the 

decrease in conversion with an increase in liquid hourly space velocity, to the decreased contact 

time between the reactants and the catalyst surface.    

Figure 4.6a also shows that the selectivity remains constant between 96 – 97 % towards octanol, 

indicating there is no relationship between the LHSV and selectivity to octanol.  There is no 

distinct trend that can be observed for the selectivity and by products, with C16 diol and C24 

acetal being the major by products.  There is also a minor formation of 2-hexyl decanol and octyl 

octanoate, indicated by the byproducts % formation or selectivities.  Others include octyl ether, 

octanoic acid and C16 saturated alkanes.    

From the results obtained in the investigation for LHSV, the optimum condition was chosen to 

be 18 h-1 as it provided high octanal conversion while a moderate octene conversion, consistent 

with results obtained from previous studies [71, 197].  At low LHSV conditions (9 h-1) the 

octanal is converted almost completely, however the octene conversion was also increased which 

is undesired.  This low liquid space velocity is also uneconomical due to the lower amount of 

product over after a period of time, as compared to the LHSV of 18 h-1, which allows for similar 

conversion of octanal while the octene conversion is decreased from 26 % to 23 %.  When the 
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LSHV was increased to 27 h-1, although the octene conversion is decreased to 10 %, the octanal 

conversion also decreased by 12 %.  Kinetic study by Bertero et al. [207]  showed that one of the 

kinetic parameters was the competitive adsorption between the hydrogen and the substrate.  

Considering a similar case, with the increase in LHSV, there is a higher amount of reactant 

adsorbing onto the support, thus decreasing the amount of hydrogen adsorbed onto the surface 

which can lead to decreased conversion as there is insufficient hydrogen to react with the 

incoming substrates.  

 

4.1.5.  Effect of octanal: hydrogen ratio 
 

Two ratios of octanal:hydrogen were considered, 1:1.5 and 1:2, to determine the effect of the 

amount of hydrogen present on the overall activity of the system, and the effect on the octene 

conversion, which is the unfavoured reaction.  At a ratio of 1:2, there is 1 mole of octanal to 2 

moles of hydrogen gas.   

  

Figure 4.7.  Graphs depicting the effect of octanal: hydrogen ratio at 50 bar showing (a) octanal 

conversion and (b) octene conversion, over the 15Cu/γ-Al2O3 catalyst.  

The results of this study are shown in Figure 4.7a and 4.7b depicting the conversion of octanal 

and octene obtained using the 15Cu catalyst at temperatures 120, 140, and 160 °C.  Figure 4.16a 

shows that the conversion of octanal increased with the increase of the octanal:hydrogen ratio.  A 

similar trend was shown for octene conversion depicted in Figure 4.7b, which is the undesired 

reaction.  At a higher ratio of 1:2, the conversion for both reactants is increased.  It is also 
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observed that with the increase in temperature, the difference in conversion of octene between 

the two ratios decreases e.g. at 120 °C the difference in the two octanal:hydrogen ratios is 8%, 

whereas, the difference at 160 °C is 4 %. 

It is common that the hydrogen is in excess to allow for higher activity, such as in work done in 

crotonaldehyde hydrogenation by Ashour et al. [159], who used a 1:14 ratio of subrate:hydrogen 

ratio, with Bron et al. [131] using a ratio of 1:20 for the substrate to hydrogen ratio in acrolein 

hydrogenation.  Bridier et al. [68] showed in their work in the partial hydrogenation of propyne 

that with an increase in the hydrogen:substrate ratio, there was an increase in conversion.  The 

selectivity towards propene showed an initial increase to the propene, thereafter a decrease with 

the increase in ratio along with temperature, resulting in a greater formation of the saturated, 

undesired product.   

 

  

Figure 4.8.  Graphs depicting the effect of octanal:hydrogen ratio at 50 bar for selectivity 

towards (a) octanol and (b) byproducts at 1:1.5 octanal:hydrogen ratio and (c) byproducts at 1:2 

octanal:hydrogen ratio over the 15Cu/γ-Al2O3 catalyst.  
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Figure 4.8a shows the selectivity towards octanol at temperatures 120 – 160 °C.  At 120 °C, the 

selectivities towards octanol are 96 and 98 %, at ratios 1:1.5 and 1:2 respectively, and with the 

increase in temperature to 160 °C, the selectivity towards octanol at both ratios is approximately 

97 %.  This indicates why 160 °C was chosen as the optimum temperature, as it allows for 

maximum octanal conversion, while selectivity remains unchanged compared to a lower octanal: 

hydrogen ratio.   

Figure 4.8b-c showed the selectivity towards byproduct formation where C16 diol and C24 

acetal were the major byproducts.  The excess hydrogen present allowed for further reactions 

with the incoming octanal molecules and the adsorbed hydrogen present.  At a ratio of 1:2, there 

is an overall lower formation of C24 acetal, which resulted from the increased adsorbed 

hydrogen on the surface reducing the re-adsorption of octanal and octanol molecules thus 

reducing the C24 acetal formation.  Other minor by products included 2-hexyl decanol, octyl 

octanoate and others, which are made up of octyl ether, C16 saturated alkanes and octanoic acid.  

 

4.2. Copper-silver bimetallic catalysts 

As mentioned in chapter 1, silver was shown to be effective in the selective hydrogenation of 

α,β-unsaturated aldehydes [50, 123, 208].  For this reason, silver was chosen to be incorporated 

into the Cu/γ-Al2O3 system to improve the catalyst properties or behavior.  The effect of silver 

was investigated by preparing and testing a range of seven γ-Al2O3 supported CuAg bimetallic 

catalysts.  A few key factors were established; namely a suitable total weight loading, the weight 

loading of silver, and the impregnation technique.  As mentioned in Chapter 2, the simultaneous 

impregnation involved adding both metals to the γ-Al2O3 at the same time, while sequential 

impregnation involved the addition if the first metal which is stirred and dried, followed by the 

addition of the second metal, with the final step being calcination. 

These CuAg bimetallic catalysts were characterization and discussed in Chapter 3.  

Chemisorption studies indicated that the 5 wt % bimetallic catalysts prepared by simultaneous 

impregnation improved metal dispersion (Chapter 3, Table 3.5) and showed a decrease in the 

onset temperature for copper reduction (Figure 3.27) compared to the 5 wt % monometallic 

copper catalyst (Figure 3.26).  A substantial amount of work done towards the characterization of 
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Cu based catalysts [171, 209-211] showed weight loadings of copper below approximately 13 % 

Cu were difficult to analyze using x-ray diffraction, and indeed, loadings at 5 wt % or below 

prepared in this work were difficult to analyze.  The use of SEM-EDX and TEM-EDX provided 

information on the surface composition for the simultaneous and sequential impregnation 

catalysts as shown in Chapter 3.  These bimetallic catalysts were applied for the selective 

hydrogenation of octanal in the presence of octene and the results are shown in this Chapter.   

4.2.1. Bimetallic catalysts at 15 wt % loading 
 

Based on the optimization study in this chapter, the 15Cu/γ-Al2O3 catalyst showed the most 

activity in terms of highest conversion obtained for octanal and octene.  The 13.5Cu1.5Ag/γ-

Al2O3 bimetallic catalysts were investigated, shown in Figure 4.9, to establish a comparison 

between the 15Cu/γ-Al2O3 and 13.5Cu1.5Ag/γ-Al2O3 catalysts. 

The 15 % bimetallic catalyst consisting of 13.5Cu and 1.5Ag was investigated to determine the 

effect of silver in a copper system at high total weight loading.  Under optimum conditions at 18 

h-1 LHSV and a 1:2 octanal: hydrogen ratio, the 13.5Cu1.5Ag/γ-Al2O3 catalyst showed a 

maximum octanal conversion of 96 % at 160 °C.   

  

Figure 4.9.  Graphs showing results obtained from 120 – 160 °C, conversion of octanal (AL) and 

octene (ENE) and the selectivity towards octanol (OL) over (a) 15Cu/γ-Al2O3 and (b) 

13.5Cu1.5Ag/γ-Al2O3 catalysts. 
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Figure 4.9a-b showed the increase in conversion with temperature, for both the octanal and 

octene using the 15Cu/γ-Al2O3 and 13.5Cu1.5Ag/γ-Al2O3 catalysts.  The octene conversion 

obtained for the 13.5Cu1.5Ag/γ-Al2O3 ranged from 18 % to 40 %, over the temperatures 120, 

140, and 160 °C.  This octene conversion for 13.5Cu1.5Ag/γ-Al2O3 was significantly higher 

compared to the conversion over the monometallic 15Cu/γ-Al2O3 catalyst, which showed a 

maximum of 22.5 % at 160 °C (Figure 4.9a), thus indicating that the presence of silver had a 

negative influence for the selective hydrogenation of octanal.  A range of temperatures was 

investigated to observe the stability of the bimetallic catalysts, as it is known that silver reduces 

below 100 °C [121].  With higher temperatures, this may have caused agglomeration of silver 

which may reduce the synergistic effect of the bimetallic catalyst.  It was also important to 

investigate the mobility of silver in the sequential catalysts, if the impregnation sequence 

contributed to the metal dispersion and mobility of the metals under reaction conditions. 

The difference in the catalytic results could be explained from the results obtained from SEM-

EDX.  The SEM-EDX results (Figure 3.23) shown in chapter 3 showed the 15Cu/γ-Al2O3 

catalyst formed small clusters in certain regions, with an overall good dispersion across the 

catalyst surface.  The close contact between the silver and copper particles for the 

13.5Cu1.5Ag/γ-Al2O3 catalyst showed a shift to a lower reduction temperature observed in TPR 

analysis, most likely due to the synergistic effect (Figure 3.25).  This could result in a more 

favourable environment for the adsorption of octene, which has been reported to adsorb onto 

more basic sites [124], which could be seen from the decrease in acidity shown in the TPD 

results (Table 3.8).  

The difference observed between the monometallic and bimetallic 15 wt % catalysts can be 

attributed to the synergistic effect between the copper and silver metals resulting in an increased 

selectivity towards octanol, where the octanol selectivity at 160 °C for the 15Cu/γ-Al2O3 and 

13.5Cu1.5Ag/γ-Al2O3 catalysts are 95 % and 96 % respectively.  This synergistic effect also 

promoted higher octene conversion, which is an undesired result.  This increase in octene 

conversion for the 13.5Cu1.5Ag/γ-Al2O3 catalyst could be a result of octene or dissociated 

hydrogen on the surface becoming mobile on the silver particles, which increases the interaction 

between the reactants and hydrogen available, which resulted in higher octene conversion.  The 

use of the 13.5Cu1.5Ag/γ-Al2O3 catalyst, although with the increase the octanol selectivity, 
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showed a lower octanal conversion and higher octene conversion.  This makes this catalyst less 

suitable for selective hydrogenation of octanal in the presence of octene.  Sun et al. [150] showed 

the effect of silver loading on copper-based catalysts for the hydrogenolysis of glycerol to 1,2-

propanediol.  Silver weight loading, catalyst weight and the reaction conditions are the key 

parameters for their selectivity towards the desired product, 1,2 propanediol.  Under the same 

reaction conditions, an increase in the silver weight loading showed to maintain the conversion, 

while decreasing selectivity to 1,2 propanediol.   

Selectivity towards octanol  

Figure 4.9b shows that the 13.5Cu1.5Ag/γ-Al2O3 catalyst has a higher selectivity towards 

octanol at temperatures 120 and 140 °C compared to Figure 4.9a.  It was also shown that with 

the increase in temperature, a general trend for both the 15Cu/γ-Al2O3 and 13.5Cu1.5Ag/γ-Al2O3 

showed a decrease in octanol selectivity.  This may be due to the higher amount of kinetic energy 

in the system which also allows for byproduct formation.  

Selectivity towards byproducts  

Figure 4.10a-b shows the selectivity towards byproducts for the 15Cu/γ-Al2O3 and 

13.5Cu1.5Ag/γ-Al2O3 catalysts.  The decrease in selectivity towards octanol resulted in a higher 

selectivity towards the byproducts, as shown in Figure 4.10b, with the major byproducts being 

the C16 diol and C24 acetal, similar to that observed with the 15Cu catalyst (Figure 4.10a).  

These byproducts formed on both acidic and basic sites with the C16 diol forming as a result of 

aldol condensation and C24 acetals forming on the Lewis acid sites [71].  These major 

byproducts showed to increase significantly with temperature together with a minor formation of 

2-hexyl decanol, which is a result of aldol condensation, while a reduction in the formation of 

octyl octanoate was observed.  “Others” include octanoic acid, and C16 saturated alkanes.   
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Figure 4.10.  Selectivity towards byproducts over the (a) 15Cu and (b) 13.5Cu1.5Ag catalyst.   

 

The 15Cu/γ-Al2O3 catalyst showed a high acidity compared to the 13.5Cu1.5Ag/γ-Al2O3 

catalyst, which resulted in the formation of C24 acetal and C16 diol via aldol condensation.  The 

formation of the C16 diol at 120 °C confirms that the aldol condensation can occur on acidic or 

basic sites on the catalysts investigated, where the C16 diol can form from the formation of the 

enol or enolate intermediate for octanal hydrogenation.  As the temperature increased, the silver 

may become mobile exposing more acid sites, leading to an increase in C24 acetal.  An increase 

in other byproducts were also observed, this includes C16 saturated alkanes and octanoic acid.  

The investigation of the selective hydrogenation of octanal in the presence of octene using 15 wt 

% total metal loaded catalysts showed to have a negative influence of the desired result.  The 

increase in active metal sites allowed for the hydrogenation of both the octanal and octene, and 

the presence of silver thus showed an unfavourable result.  

 

4.2.2. Effect of bimetallic catalyst at 5 wt % loading 
 

Three 5 wt % bimetallic catalysts were prepared, one catalyst was prepared by simultaneous 

addition of the metal precursors, and two catalysts were prepared sequentially in varying the 

addition of the metal precursor order.  This was done to study the effect of silver, as well as to 

gain information about the nature of interaction between the copper and silver present on the 

support surface when prepared in different ways. 
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4.2.3. Effect of silver loading using 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3 
 

The ratio between copper and silver were varied to determine the effect of silver in a copper 

system, while maintaining the total metal loading.  Two catalysts namely 4.5Cu-0.5Ag/γ-Al2O3 

and 4Cu-1Ag/γ-Al2O3, were investigated.  Figure 4.11a-b compares two 5 wt % bimetallic 

catalysts of varying Cu-Ag ratios, in which Figure 11a shows the use of 4.5Cu0.5Ag/γ-Al2O3 for 

selective hydrogenation of octanal in the presence of octene, while Figure 4.11b shows the 

catalytic results for the 4Cu1Ag/γ-Al2O3 catalyst.   

Comparing the selectivity between the two 5 wt % simultaneously impregnated bimetallic 

catalysts, namely 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3, showed the 4.5Cu-0.5Ag/γ-Al2O3 

catalyst to have a higher selectivity to octanol as compared to the 4Cu-1Ag/γ-Al2O3 catalyst at 

lower temperatures, with the difference being negligible at 160 °C, as shown in Figure 4.11. 

  

Figure 4.11.  Octanol selectivity and the conversion of octanal and octene for catalysts (a) 

4.5Cu0.5Ag/γ-Al2O3 and (b) 4Cu1Ag/γ-Al2O3.  

Table 4.2.  A comparison between the monometallic and bimetallic catalysts.  
 5Cu/γ-Al2O3 4.5Cu-0.5Ag/γ-Al2O3 4Cu1Ag/γ-Al2O3 

 Octene 

conversion 

(%) 

Octanal 

conversion 

(%) 

Octanol 

selectivity 

(%) 

Octene 

conversion 

(%) 

Octanal 

conversion 

(%) 

Octanol 

selectivity 

(%) 

Octene 

conversion 

(%) 

Octanal 

conversion 

(%) 

Octanol 

selectivity 

(%) 

120 0.9 38 99 5 57 99 0.1 36 96 

140 3 69 97 13 89 97 3 71 97 

160 12 90 97 22 98 96 13 96 97 
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The increase in silver loading showed a decrease in conversion at temperatures 120 and 140 °C, 

which is expected due to the slightly lower amount of active metal (copper) on the surface in the 

intermetallic ratio of the catalyst prepared in this study.  At 160 °C the 4Cu1Ag/γ-Al2O3 catalyst 

had approximately 1 % lower conversion, which could be considered negligible, indicating that 

higher temperatures allow for a greater synergistic effect between the two metals, which results 

in a higher conversion for both bimetallic catalysts compared to the 5Cu/γ-Al2O3 catalyst (refer 

to Table 4.3).  A major difference between the two 5 wt % bimetallic catalysts is the octene 

conversion, whereby the 4.5Cu0.5Ag/γ-Al2O3 shows a significantly higher octene conversion as 

compared to the 4Cu1Ag/γ-Al2O3 catalyst.  This could be attributed to the low loading of silver 

creating more defect sites to allow to an increased possibility of octene adsorption and 

hydrogenation.  In situ XRD supports this showing a change in the d-spacing values under 

reduction conditions (Figure 3.7).  The 4Cu1Ag/γ-Al2O3 also showed a slight shift, which results 

in a similar octene conversion as the monometallic 5Cu/γ-Al2O3 catalysts (refer to Figure 3.7).  

The synergistic effect between the two metals allow for a lower loading of copper while 

maintaining the low octene conversion found with the 5Cu/γ-Al2O3 catalyst, as well as providing 

an increased conversion of octanal at high temperatures (160 °C). 

  

Figure 4.12.  The selectivity towards byproducts for catalysts (a) 4.5Cu0.5Ag/γ-Al2O3 and (b) 

4Cu1Ag/γ-Al2O3.  

Figure 4.12a-b showed the selectivity towards byproduct formation for the 4.5Cu0.5Ag/γ-Al2O3 

and 4Cu1Ag/γ-Al2O3 catalysts.  Both catalytic systems showed similar octanol selectivities, 

however, the 4.5Cu0.5Ag/γ-Al2O3 showed a higher selectivity to C16 diols and C24 acetal with a 

negligible amount of octyl octanoate, while the 4Cu-1Ag/γ-Al2O3 shows a significant amount of 
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octyl octanoate at 120 °C which decreased significantly with the increase in temperature.  Since 

octyl octanoate forms on basic sites, it can be assumed that the increase in silver content allowed 

for more basic sites to be available (see Table 3.8).  The decrease in octyl octanoate with an 

increase in temperature is a result of more energy being provided to the system which causes 

silver to become mobile on the surface and form larger agglomerates, the acid sites become more 

prominent which is shown by the increase in C24 acetal over the temperature range 120 – 160 

°C.    

Zheng et al. [151] supports the results that were observed in this study for the effect of weight 

loadings, whereby their work on Au-Ag catalyst system for the hydrogenation of esters showed 

silver to have an optimum weight loading.  Catalysts with weight loadings higher than the 

optimum Au-Ag ratio showed a decrease in conversion similar to what was observed in this 

work with the 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3 catalysts.  

4.2.4. Effect of metal impregnation sequence 
 

It is known that the composition of bimetallic catalysts plays an important role in their catalytic 

activity [54, 129, 148, 154, 212, 213].  There has been sufficient work done to prepare and 

characterize different types of bimetallic catalysts, and to investigate their activity in various 

types of reactions.  For this study, the effect of the impregnation sequence was investigated to 

determine the effect of the position of the silver, the metal-metal interaction, and its catalytic 

activity.   

  

Figure 4.13.  Graphs showing the conversion of octanal, and octene, and the selectivity towards 

octanol for (a) S-4.5Cu0.5Ag/γ-Al2O3, and (b) S-0.5Ag4.5Cu/γ-Al2O3 catalysts. 
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Octanal conversion: Characterization showed that sequential impregnation allows the silver to 

be impregnated above or below the active copper metal, which is impregnated onto the alumina 

support, as opposed to simultaneous impregnation where the arrangement of the metals is less 

controlled.  When copper was impregnated first followed by silver, the silver showed a better 

dispersion onto the copper and bare alumina support.  The S-4.5Cu0.5Ag/γ-Al2O3 catalyst 

showed a decrease in conversion (Figure 4.13a) compared to the simultaneous 4.5Cu0.5Ag/γ-

Al2O3 catalyst (Figure 4.11a) which were 70 % and 98 % respectively.  This was attributed to the 

silver metal limiting or hindering the availability for the active copper metal to adsorb the 

incoming octanal molecules.  Similarly, with the S-0.5Ag4.5Cu/γ-Al2O3, with the silver 

impregnated first followed by copper, there is a decreased possibility of copper migrating into 

the lattice due to the weak interaction between silver ions and alumina [214].  These result in a 

higher metal dispersion of the active copper metal on the surface, which is consistent to the 

results observed in CO chemisorption (Table 3.6) and surface area measurements for both the S-

0.5Ag4.5Cu/γ-Al2O3 and S-1Ag4Cu/γ-Al2O3 catalysts (Table 3.3).  Figure 4.13b showed a 

higher conversion observed from the S-0.5Ag4.5Cu/γ-Al2O3 due to more active metal available 

on the surface, reaching a maximum of 100 %, consistent with the surface area and 

chemisorption measurements.   

  

Figure 4.14.  Graphs showing the conversion of octanal, octene, and the selectivity towards 

octanol for (a) S-4Cu1Ag/γ-Al2O3 (b) S-1Ag4Cu/γ-Al2O3. 

A similar trend was obtained in the case of the S-4Cu1Ag/γ-Al2O3 catalyst (Figure 4.14a), 

whereby a lower octanal conversion is observed as compared to the simultaneous prepared 

4Cu1Ag/γ-Al2O3 (Figure 4.11b) catalyst due to the silver limiting access to the copper sites.  In 

the case of the S-1Ag4Cu/γ-Al2O3 catalyst shown in Figure 4.14b, the octanal and octene 
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conversion is similar to that observed with the simultaneous catalyst (Figure 4.11b) at 

temperatures 120 – 140 °C.  A minor difference between the S-1Ag4Cu/γ-Al2O3 and 

simultaneous 4Cu1Ag/γ-Al2O3 catalysts was observed at 160 °C, where the S-1Ag4Cu/γ-Al2O3 

showed a lower conversion compared to the simultaneous impregnation catalyst, unlike the result 

obtained with the S-0.5Ag4.5Cu/γ-Al2O3.  This result could be attributed to the silver metal has a 

preferred affinity to agglomerate at higher loadings as opposed to agglomerating to the 4 % 

copper available, thus decreasing the synergistic effect and metal dispersion of the catalyst.  

When copper was impregnated first, there is an increased possibility of copper ions migrating to 

the alumina lattice forming copper aluminate, and this phase is not active for hydrogenation thus 

decreasing the quantity of active copper species available to adsorb reactants [169, 170, 198].  

When silver was impregnated first, due to its larger ionic radius, silver does not migrate into the 

alumina lattice during calcination.  The silver may also limit the interaction between the copper 

and alumina, which allows the copper to have a higher dispersion on the surface as well as 

decreasing the formation of the inactive copper aluminate phase.  This is supported by 

characterization data obtained from the decrease in surface area observed in Chapter 3, Table 3.3 

and the increase in metal dispersion and metallic surface area (Table 3.5), thus resulting in an 

increase in conversion.  The CO chemisorption measurements support this argument where the 

simultaneous 4Cu1Ag/γ-Al2O3 and S-1Ag4Cu/γ-Al2O3 catalyst has a similar metallic surface 

area and selectivity.  This observation is consistent with reports by Maity et al. [195], whereby 

the increase in alcohol selectivity was reported to correlate to higher metal dispersion as 

determined by CO chemisorption.  

There have been a number of reports investigating the effect of the impregnation sequence such 

as; Shu et al. [213] reported on the effect of impregnation sequence using Pt-Ni catalysts for 

cyclohexene hydrogenation.  They attributed the difference in conversion observed for the Pt-Ni 

catalysts prepared in different ways to the Ni2+ ions diffusing into the alumina lattice when the 

nickel was impregnated first due to its small ionic radius.  As the radius increases, larger ions are 

unable to enter the lattice under the same conditions e.g. Pt2+.  The same argument could be 

applied in the current study by comparing the ionic radius of Cu2+ and Ag+.  When the Cu2+ ion 

(0.73 Å) is impregnated first, the copper ions are able to enter the γ-Al2O3 cavities.  Whereas, 

when the Ag+ were deposited first, it would remain outside the γ-Al2O3 cavities as the Ag+ ionic 

radius is 1.26 Å, which is much larger.  This is supported by studies done by Yan et al. [215] who 
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found no migration of silver ions for a 6 % Ag/Al2O3 catalyst due to the lack of interaction 

between the silver and the alumina support.  Additionally, Deng et al. [153] reported on the 

effect of impregnation sequence for Cu-Co catalysts for the synthesis of alcohols.  The 

conversion varied between 22 – 28 % with the copper catalyst, which was impregnated first, 

showing the highest conversion.  The co-impregnated catalyst showed the highest selectivity to 

the desired product, alcohol; with 52 %, whereas the sequential impregnated catalyst showed 

selectivities lower than 44 %.  On the contrary, in this study, the silver impregnated first showed 

the highest selectivity to octanol, while the copper impregnated first showed the highest octanal 

conversion.   

 

Octene conversion: The octene conversion over both sequential catalysts consisting of 

4.5Cu0.5Ag/γ-Al2O3, shown in Figure 4.13a-b, is lower than that over the simultaneous catalysts, 

indicating that the synergistic effect is not as pronounced in sequential impregnation catalysts 

compared to the simultaneous impregnation catalysts.  This observation is consistent with the 

results obtained with the sequential catalysts.  When copper was impregnated first followed by 

silver, the silver is most likely above the copper and bare alumina for the S-4.5Cu0.5Ag/γ-Al2O3 

and S-4Cu1Ag/γ-Al2O3 catalysts.  This resulted in a lower octene conversion (shown in Figure 

4.13a and 4.14a) as the active copper species may be blocked or has a limited availability to the 

incoming reactants.  It was also shown in Figure 4.13b and 4.14b that when silver was 

impregnated first followed by copper, the copper is most likely on the upper layer as seen with 

the surface area measurements and chemisorption studies.  The octene conversion is slightly 

lower than that of the simultaneous impregnation catalyst e.g. the S-0.5Ag4.5Cu/γ-Al2O3 had a 

16 % octene conversion whereas the simultaneous 4.5Cu0.5Ag/γ-Al2O3 had an octene 

conversion of 22 %.  The difference in conversion between these two catalysts could be 

attributed to the decreased synergistic effect obtained from sequential impregnation synthesis.  

Smith et al. [177] made a general statement that it has been shown in a number of studies that 

small particles, edges and corners favour C=C hydrogenation, while larger particles and plane 

flat surfaces favour the adsorption and hydrogenation of C=O functional groups.  It can be 

supported by the results observed with the 4.5Cu0.5Ag/γ-Al2O3 catalysts, where the lower 

amount of silver creates small well dispersed particles which can adsorb the incoming octene 

reactants.  The incoming reactants can then adsorbed and react with the dissociated hydrogen 
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adsorbed on copper.  However, it was also shown from the SEM-EDX line scan (Figure 3.15) 

and STEM-EDX (Figure 3.12) that the simultaneous catalysts allowed for both metals to be in 

close contact with each other resulting in a higher octene conversion.  This could be due to the 

synergistic effect of both metals in close contact with each other, which increases the adsorption 

of both octanal and octene as seen in work done by Deng et al. [153].  

 

Selectivity towards octanol: S-4.5Cu0.5Ag/γ-Al2O3 showed an increase in selectivity with an 

increase in temperature (Figure 4.13a), whereas the S-0.5Ag4.5Cu/γ-Al2O3 catalyst (Figure 

4.13b) showed a decrease at higher temperatures.  This could be due to the mobility of silver 

atoms on the surface, which may increase the synergistic effect at higher temperatures, resulting 

in an increased selectivity to octanol in the case of the S-4.5Cu0.5Ag catalyst or the formation of 

byproducts as seen with S-0.5Ag4.5Cu/γ-Al2O3.  The S-4Cu1Ag/γ-Al2O3 (Figure 4.14a) and S-

1Ag4Cu/γ-Al2O3 (Figure 4.14b) catalysts showed a minor decrease in selectivity to octanol with 

increase in temperature.  The highest selectivity was obtained at low temperatures of 120 °C with 

both catalysts showing the same selectivity at 160 °C, which is 97 %.  This is consistent with 

work done by Maity et al. [195], where copper was found to increase the alcohol selectivity in 

the Fischer-Tropsch synthesis.   

  

Figure 4.15.  Graphs showing the selectivity towards byproducts for (a) S-4.5Cu0.5Ag/γ-Al2O3, 

and (b) S-0.5Ag4.5Cu/γ-Al2O3. 

Selectivity towards byproducts:  A significant selectivity towards acid catalyzed byproducts such 

as octyl octanoate and C24 acetal was observed for the S-4.5Cu0.5Ag catalyst at 120 °C (Figure 

4.15a).  This decreased with an increase in temperature to a negligible amount.  The S-
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0.5Ag4.5Cu/γ-Al2O3 catalyst (Figure 4.15b) showed similar behavior with the major byproduct 

being octyl octanoate, while C16 diol and C24 acetal showed an increase with increase in 

temperature.  This could be due to mobility of silver as the temperature is increased, resulting in 

a change in the behavior of the catalyst.   

  

Figure 4.16.  Graphs showing the selectivity towards the byproducts over the (a) S-4Cu1Ag/γ-

Al2O3, and (b) S-1Ag4Cu/γ-Al2O3 catalysts. 

Interestingly, when the silver loading was increased to 1 %, there is no formation of octyl 

octanoate for the S-4Cu1Ag/γ-Al2O3, as shown in Figure 4.16a.  This indicates that the nature of 

the basic sites plays a role in which basic byproduct formation is favoured.  In this study, the 

higher weight loading of silver promotes the formation of C16 diols.  The S-1Ag4Cu/γ-Al2O3 

showed a minor presence of octyl octanoate at 120 °C, with no formation of C16 diol (Figure 

4.16b).  With the increase in temperature, there was an increase in selectivity to C16 diol, 

reaching a maximum selectivity of approximately 1 %, while the octyl octanoate selectivity 

became negligible.  This suggests that under reaction conditions, an increase in temperature 

caused a change in the surface charecteristics resulting in a change the nature of basicity, 

favouring octyl octanoate formation to favouring C16 diol formation.  C24 acetal formation was 

observed for both catalysts over the temperature range 120 – 160 °C, which was increased with 

the increase in temperature.  

 

4.2.5. Isoconversion between 5Cu/γ-Al2O3, 4.5Cu-0.5Ag/γ-Al2O3, and 4Cu1Ag/γ-Al2O3 
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Isoconversion studies provided information to compare the selectivities towards octanol and its 

byproducts using the 5Cu/γ-Al2O3, 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3 catalysts.  Figure 

4.17a shows the octanol selectivity and the conversion for octanal and octene.  This showed 

5Cu/γ-Al2O3 to have the highest octanol selectivity, followed by the 4Cu1Ag/γ-Al2O3 with the 

4.5Cu0.5Ag/γ-Al2O3 having the lowest selectivity to octanol.   

  

Figure 4.17.  (a) Isoconversion of octanal and octene over the catalysts and octene and selectivity 

towards octanol over the catalysts 5Cu/γ-Al2O3, 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3, and 

(b) Selectivity towards byproducts at 120 °C with a octanal:hydrogen ratio of 1:2. 

  

Figure 4.18.  Relationship between the catalyst acidity and the catalysts investigated under 

isoconversion conditions with (a) depicting octanol selectivity vs. Lewis acid site concentration 

and (b) showing the strong acid site concentration vs. byproduct selectivity. 

The difference in selectivity towards octanol and its byproducts could be attributed to the 

catalysts acidity and the types of acidity present.  Figure 4.18a shows that the Lewis acid sites 
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correlates well with the octanol selectivity as in the case with the 4.5Cu0.5Ag/γ-Al2O3 showing 

the lowest Lewis acidity as well as the lowest octanol selectivity.  The monometallic copper 

catalyst showed the highest selectivity of 98 % that is consistent with the high Lewis acidity 

obtained.  This high selectivity could be attributed to the high concentration of Lewis acidity, 

which is known to favour the adsorption of the C=O functional group.  This trend remained 

consistent with the 4Cu1Ag/γ-Al2O3 catalyst.   

Figure 4.18b shows the relationship between the strong acid sites and the selectivity to 

byproducts.  The 4.5Cu0.5Ag/γ-Al2O3 catalyst had a high concentration of strong acid sites, 

which increased the interaction between the octanal and catalyst surface.  This interaction may 

decrease the desorption rate of the substrate, leading to further byproduct formation, as well as 

the re-adsorption of the octanol molecule leading to further reactions.  The NH3-TPD results 

showed 4Cu1Ag/γ-Al2O3 to have the lowest acidity; this would favour base catalyzed byproduct 

formation due to the amphoteric nature of alumina and the additional basicity introduced from 

the 1 % Ag on the surface (Table 3.8).  This was supported by the minor formation of acid 

catalyzed C24 acetal.   

Isoconversion studies showed that the 5Cu/γ-Al2O3 and 4Cu1Ag/γ-Al2O3 show a similar octanol 

selectivity and octanal conversion, however, the 4Cu1Ag/γ-Al2O3 provides a lower octene 

conversion, which is the desired effect in this study, making this catalyst the most suitable for 

selective hydrogenation of octanal in the presence of octene.  

 

4.3. Kinetics 
 

The selective hydrogenation of octanal in the presence of octene can be considered a pseudo first 

order reaction, following the Langmuir-Hinselwood mechanism, resulting in the hydrogen being 

dissociated on the catalyst surface.  A few parameters were first established to determine the rate 

constants for the possible reaction pathways, such as the hydrogen pressure remained constant 

during the entire experiment, with the temperature and feed flow kept at a constant rate.  In this 

reaction, the addition of the dissociated hydrogen to the unsaturated functional group is 

considered to be the rate determining step.   
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Much work has been done on regarding the kinetics of liquid phase hydrogenations.  It was 

observed, by Guteirezz et al. [216], that the liquid phase hydrogenation of cinnamaldehyde using 

a copper-based catalyst, showed to have a pseudo first order rate of reaction.  Additional work by 

Sharma et al. [80], showed the hydrogenation of α,β-unsaturated aldehydes followed a pseudo 

first order reaction.  By assuming a pseudo first order reaction, one can separate the primary 

products from the byproducts to calculate the rate constant for octanal and octene hydrogenation 

as shown in Figure 4.19a-b.  

  

Figure 4.19.  Graphs depicting the rate constant of (a) octanal and (b) octene hydrogenation vs 

metal dispersion for the catalysts investigated under isoconversion conditions. 

Figure 4.19 shows a clear relationship between the metal dispersion and the rate constant.  To 

summarize, Figure 4.19a-b shows that irrespective of active metal loading (copper), the higher 

metal dispersion results in a higher rate constant.  This is due to the availability of the active 

copper species to adsorb the incoming reactants.  

The simultaneous prepared 4.5Cu0.5Ag/γ-Al2O3 catalyst showed the highest octanal and octene 

conversion (Figure 4.2 and Figure 4.11) which is supported by the kinetics which showed the 

highest rate constant.  The 4Cu1Ag/γ-Al2O3 catalyst showed the second highest rate constant for 

octene hydrogenation; however, catalytic testing showed this catalyst to have the lowest 

conversion for octene hydrogenation.  The 4Cu1Ag/γ-Al2O3 catalyst has the lowest weight 

loading of copper present, however, it allows for a similar octene conversion to the 5Cu/γ-Al2O3 

catalyst, which is due to the synergistic effect from the silver present in the bimetallic catalyst. 
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The turn over frequency (TOF) was calculated to determine if there were contributing factors 

such as mass-transfer limitations due to the catalyst system being a gas/liquid reaction.  Figure 

4.20 shows the TOF of the octanal and octene hydrogenation.   

 

Figure 4.20.  Graph depicting the TOF values of octanal (TOF AL) and octene (TOF ENE) 

hydrogenation for the 5Cu/γ-Al2O3, 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3. 

TOF was based on the moles of reactant converted over the moles of catalyst used over a certain 

period of time.  It was shown in Figure 4.20 that with the decrease in copper loading, which was 

the active metal; there was an increase in TOF indicating a lower amount of the active metal can 

provide a similar or improved conversion.  This relationship is attributed to the lower copper 

loading (4Cu1Ag/γ-Al2O3) showing a similar octanal and octene conversion to the 5Cu/γ-Al2O3 

catalyst.  This indicates that there are no mass-transfer limitations, as all reactions occur at 50 bar 

pressure with a octanal:hydrogen ratio of 1:2.  The excess hydrogen and high pressure suggests 

the consistent hydrogen coverage on the catalyst throughout the reaction.  This was supported by 

work done by Huerta et al. [217], Zhang et al. [218] and Chetty et al. [97].  The overall result 

showed that the addition of silver significantly improved the TOF values.  This was most likely 

due to the interaction between the copper and silver resulting in a synergistic effect, as the 

copper is considered the active metal and this quantity is decreased with the increase in silver 

loading.  

The kinetics was done at isoconversion; therefore, the most important factor to compare between 

the catalysts is the selectivity to the desired product, octanol.  This relationship is shown in 

Figure 4.21.  
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Figure 4.21.  Graph depicting the TON value compared to the octanol selectivity at 

isoconversion using the 5Cu/γ-Al2O3, 4.5Cu0.5Ag/γ-Al2O3 and 4Cu1Ag/γ-Al2O3 catalysts. 

The turn over number was dependent on the moles of catalyst used to adsorb a certain mole 

amount of reactant.  The turnover number shows an inverse relationship between the TON and 

octanol selectivity.  The 4.5Cu0.5Ag/γ-Al2O3 catalyst shows the highest TON value as well as 

the lowest octanol selectivity, while the 5Cu/γ-Al2O3 shows the lowest TON value and the 

highest octanol selectivity.  This implies that the activity of the catalyst did not depend primarily 

on the moles of active metal, but rather on the availability and synergistic effects of the 

interaction between copper and silver as shown in the catalytic testing. 

 

4.4.  Used catalyst characterization 

The recovery of the catalyst was obtained by drying the catalyst under 100 % Nitrogen at 200 °C 

for 12 hours in the reactor, thereafter the reactor was cooled to room temperature.  The glass 

wool and carborundum was removed together with the catalyst, which was then sieved to 

separate the carborundum from the catalyst pellets.  Used catalyst characterization was used to 

provide information of the catalyst thermal and mechanical stability, as well as the formation of 

coke on the surface.  Some of the techniques used to gain insight of the catalyst surface after the 

reaction were Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), 

Nitrogen Physisorption (BET), Infrared Spectroscopy (IR), Inductively Coupled Spectroscopy 

(ICP), and X-ray Diffraction (XRD).   
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4.4.1. Transmission electron microscopy (TEM) on selected catalysts 

It was shown in the catalytic testing that the 5Cu/γ-Al2O3, there was a significant effect on the 

catalyst activity which was dependent on the reduction temperature.  This indicated that there 

was a difference in their surface characteristics.  TEM analysis was used to assist in 

characterization of the used 5Cu/γ-Al2O3.  All used catalysts were analyzed using TEM, 

similarly to the fresh catalyst; there was no presence of metal or metal oxide particles.  This 

indicates that there was limited or minimal agglomeration.  Figure 4.22 showed selected images 

of the 5Cu/γ-Al2O3 used catalysts reduced at 220, 240, and 260 °C obtained from TEM analysis.  

 

Figure 4.22.  TEM Images obtained for the 5Cu/γ-Al2O3 catalyst reduced at temperatures (a) 

220, (b) 240, and (c) 260 °C 

4.4.2. Infrared spectroscopy 

Infrared Spectroscopy was used to easily determine the presence on organics on the catalyst 

surface.  Figure 4.23 shows the IR spectrum of the used 5Cu/γ-Al2O3 catalyst which was reduced 

at 220 °C. 

 

Figure 4.23.  Infrared spectrum of the used 5Cu/γ-Al2O3 catalyst. 
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Further interpretation of the IR spectrum obtained indicates that within the region between 2300 

-3100 cm -1 is due to the presence of organic material.  The presence of carbon/organics was 

observed for all used catalysts which are summarized in Table 4.5.   

Table 4.3.  Summary of results obtained from infrared spectroscopy of used catalysts. 

Used Catalyst O-H band 

(cm-1)  

C-C 

(cm-1) 

H2O adsorbed 

(cm-1) 

Al-O band (cm-1) 

 

5Cu/γ-Al2O3 (220) 3500 2925 1629 589 806 

5Cu/γ-Al2O3 (240) 3502 3201, 2359 1599 543 799 

5Cu/γ-Al2O3 (260) 3566 2924, 2360 1559 586 756 

4.5Cu-0.5Ag/γ-

Al2O3 

3461 2927, 2359 1567 579 786 

S-4.5Cu0.5Ag/γ-

Al2O3 

3640 2926, 2360 1558 583 783 

S-0.5Ag4.5Cu/γ-

Al2O3 

3603 2932, 2440 1588 581 776 

4Cu-1Ag/γ-Al2O3 3641 2926, 2362 1586 640 864 

S-4Cu1Ag/γ-Al2O3 3457 2925, 2360 1554 587 820 

S-1Ag4Cu/γ-Al2O3 3459 2965, 2345 1608 582 805 

15Cu/γ-Al2O3 3608 2914, 2359 1614 668 811 

13.5Cu-1.5Ag/γ-

Al2O3 

3633 2926, 2360 1553 552 795 

 

Coke formation is a common by-product in catalytic reactions, which can lead to deactivation of 

the catalyst by blocking access of the incoming reactants to the active sites, therefore infrared 

spectroscopy analysis was conducted to investigate the extent of coke formation.  The catalytic 

reactions were conducted over an 8 hour period; this showed no significant difference in 

conversion over time.  This indicates that the formation of coke is minimal.  The presence of 

organics obtained from infrared spectroscopy analysis could be due to insufficient drying of the 
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catalyst after the reaction, or heavy organics which have a boiling point greater than the drying 

temperature.   

4.4.3.  Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

The use of ICP was implemented to determine the metal loading of the used catalysts; this was to 

investigate the possibility of leaching, as this may reduce the active metal concentration, which 

results in reduced activity as well as undesired catalyst stability.  The ICP results obtained for all 

used catalysts are summarized in Table 4.6.   

Table 4.4.  Summary of metal loadings obtained from ICP-OES on the used catalysts. 

Used Catalyst Copper (wt %) Silver (wt %) 

5Cu/γ-Al2O3 (220) 4.60 - 

5Cu/γ-Al2O3 (240) 4.75 - 

5Cu/γ-Al2O3 (260) 4.67 - 

4.5Cu-0.5Ag/γ-Al2O3 4.25 0.48 

S-4.5Cu0.5Ag/γ-Al2O3 4.46 0.43 

S-0.5Ag4.5Cu/γ-Al2O3 4.34 0.41 

4Cu-1Ag/γ-Al2O3 3.65 1.05 

S-4Cu1Ag/γ-Al2O3 3.87 0.93 

S-1Ag4Cu/γ-Al2O3 4.03 0.97 

15Cu/γ-Al2O3 14.5 - 

13.5Cu-1.5Ag/γ-Al2O3 12.58 1.48 

 

The metals loadings are slightly lower than for the fresh catalyst, this is a result of a minor 

presence of carbon deposits, which contributes towards the total mass of the sample.  The 

amount of carbon deposits are unknown, therefore could not be subtraction from the used 

catalyst, resulting in a minor deviation from the actual metal loading.  Keeping this into 

consideration, the ICP analysis did not show the possibility of metal leaching during the catalytic 

testing.   
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4.4.4. X-ray diffraction 

Chapter 3 showed that due to the low weight loading of copper and silver, there were no metal 

oxide peaks observed for the catalysts with a total 5 wt % metal loading, metal oxides peaks 

were only observed with the catalysts containing a total metal loading of 15 wt %.  For this 

reason, the used catalyst characterization was conducted for the 15Cu/γ-Al2O3 and the 

13.5Cu1.5Ag/γ-Al2O3 catalysts as shown in Figure 4.24.   

 

Figure 4.24.  X-ray diffractogram (a) 15Cu/γ-Al2O3 catalyst: fresh (red) and used (black), and (b) 

13.5Cu1.5Ag/γ-Al2O3 catalyst: fresh (red) and used (black).  Peaks observed in the 

diffractograms are attributed to CuO ( ) and Cu ( ). 

Both used 15Cu/γ-Al2O3 and the 13.5Cu1.5Ag/γ-Al2O3 catalysts did not show metal oxide peaks 

on the diffractogram.  Since copper is known to readily oxidize, while silver is stable in its metal 

state, suggests that the presence of carbon on the surface can minimize or inhibit the re-oxidation 

of copper.  The CuO phase is consistent with that of ICDD 80-1268 and the used catalyst showed 

Cu0 peaks consistent with JCPDS 04-0836.catalysts did not show metal oxide peaks suggesting 

that the presence of carbon on the surface can prevent or inhibit the re-oxidation of copper.  The 

CuO phase is consistent with that of ICDD 80-1268 and the used catalyst showed Cu0 peaks 

consistent with JCPDS 04-0836. 
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4.4.5.  Brunauer-emmet-teller (BET) analysis 

Surface area measurements using nitrogen physisorption can provide useful information on the 

surface area and pore size of the used catalysts.  The comparison between the fresh catalyst and 

used catalysts can be used to investigate metal agglomeration or coke/carbon deposits on the 

surface or within the pores of the support.  The fresh catalysts all showed a decrease in surface 

area of between 15-40 % depending on the metal loading and impregnation sequence shown in 

Chapter 3, Table 3.3.   

Table 4.5.  Surface measurements for all used catalysts. 

Used Catalyst Surface area/ m²/g Pore volume/ (cm³/g) Pore size/ nm 

5Cu/γ-Al2O3 (220) 144 0.4 10.9 

5Cu/γ-Al2O3 (240) 154 0.4 11.0 

5Cu/γ-Al2O3 (260) 131 0.4 11.5 

4.5Cu0.5Ag/γ-Al2O3 133 0.4 11.5 

S-4.5Cu0.5Ag/γ-

Al2O3 

145 0.4 11.3 

S-0.5Ag4.5Cu/γ-

Al2O3 

149 0.4 11.1 

4Cu1Ag/γ-Al2O3 148 0.5 12.6 

S-4Cu1Ag/γ-Al2O3 153 0.4 11.0 

S-1Ag4Cu/γ-Al2O3 170 0.5 12.2 

15Cu/γ-Al2O3 107 0.3 11.2 

13.5Cu1.5Ag/γ-Al2O3 108 0.3 11.5 

 

Table 4.5 shows a significant decrease of between 40-50 %, compared to their equivalent fresh 

catalysts, in surface area for all used catalysts analyzed.  It can also be seen that there is a 

significant decrease in the pore volume of approximately 40 % while the pore size does not 

change significantly.  This further supports that there are carbon deposits, which were adsorbed 

onto the catalyst surface and within the pores of the catalyst.  There was no significant decrease 
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in the pore size which indicated that the carbon deposits form a relatively thin layer over the 

surface, which remains consistent with the results obtained from Infrared spectroscopy and ICP 

analysis.   

 

4.4.6. Scanning electron microscopy 

SEM analysis was conducted to selected used catalysts to provide information on the surface 

morphology of the catalyst surface after the reaction.  Transmission Electron Microscopy (TEM), 

was used to analyze the used 5Cu/γ-Al2O3 which was reduced at different temperatures, did not 

provide sufficient information on the catalysts which could be used to correlate the catalyst 

surface and the catalytic activity.  SEM analyses were implemented to obtain further information 

on the surface of the catalysts, which are shown in Figures 4.32 and 4.33. 

  

Figure 4.25.  Used 5Cu/γ-Al2O3 catalyst reduced at 240 °C showing (a) Backscattered, (b) SEM, 

and (c) Backscattered Map with copper (green). 

 

Figure 4.26.  Used 5Cu/γ-Al2O3 catalyst reduced at 260 °C showing (a) Backscattered, (b) SEM, 

and (c) Backscattered Map with copper (green). 
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The catalytic results showed that with an increase in reduction temperature, there was an increase 

in the catalytic activity.  Characterization using SEM-EDX mapping was conducted on the 

5Cu/γ-Al2O3 used catalysts, which were reduced at 240 and 260 °C (Figure 4.25 and 4.26).  The 

results showed minimal signs of agglomeration of copper.  The EDX mapping (Figure 4.25c and 

Figure 4.26c) showed that the copper maintained a good dispersion across the support.  The 

higher reduction temperature may cause an increase in the metal dispersion, which results in 

more available sites to adsorb the incoming reactants.  The results obtained were also supported 

by hydrogen chemisorption analysis (Table 3.5), which showed an increase in metal dispersion 

with an increase in reduction temperature.  A line scan analysis was conducted for the used 

5Cu/γ-Al2O3 catalyst reduced at 260 °C to confirm if the copper was well dispersed across the 

support.  This is shown in Figure 4.27a-b.  The line scan shows that the copper profile follows 

the same trend as the aluminium line scan.  This confirms that the copper is well dispersed with 

minimal agglomeration.   

  

Figure 4.27.  Line scan of used 5Cu/γ-Al2O3 catalyst reduced at 260 °C showing (a) SEM, and 

(c) Line scan spectra for copper (pink) and aluminium (blue). 

 

Used 15Cu/γ-Al2O3 

The analysis of the fresh 15Cu/γ-Al2O3 catalyst showed the metal to be clustered in some 

regions, with an overall good dispersion of metal across the support.  The results of the SEM 

analysis done on the used 15Cu/γ-Al2O3 catalyst, to compare the surface characteristics of the 

catalyst surface after the reduction and catalytic testing, the SEM results are shown in Figure 

4.28. 

(a) (b) 
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Figure 4.28.  The used 15Cu/γ-Al2O3 catalyst reduced at 220 °C showing (a) SEM, and (b) 

Backscattered SEM. 

SEM analysis off the used 15Cu/γ-Al2O3 showed an irregular morphology, and the presence of 

copper agglomerates was visible using backscattered SEM.  The copper agglomerates were due 

to the high metal loading, and this is consistent with the results obtained of the fresh 15Cu/γ-

Al2O3 catalyst shown in Chapter 3, Figure 3.23.  The Fresh 15Cu/γ-Al2O3 catalyst showed a 

higher amount of copper oxide particles, suggesting that during the reduction, the metal 

dispersion of the reduced metal increased.  This increase in metal dispersion and the smaller 

copper particles could result in higher catalytic activity, as there are more metal particles 

available to react.  The used catalyst SEM analysis provided supporting information to the 

catalytic testing results obtained, where the 15Cu/γ-Al2O3 catalyst showed higher octene and 

octanal conversions compared to the 5Cu/γ-Al2O3 catalyst (Table 4.1).  

 

Figure 4.29.  Used 15Cu/γ-Al2O3 catalyst reduced at 220 °C showing (a) SEM Map for copper 

and aluminium, (b) Copper (green) and (c) aluminium (blue).  

(a) (b) 

(a) (b) (c) 
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Figure 4.30.  Used 15Cu/γ-Al2O3 catalyst reduced at 220 °C showing (a) Backscattered, (b) Line 

scan for aluminium (green) and copper (blue). 

Figure 4.29 showed the results from EDX-Mapping of the used 15Cu/γ-Al2O3 catalyst.  This 

technique confirmed the bright spots to be made up of copper, which correlates to the results 

obtained from the fresh catalysts.  The line scan shown in Figure 4.30 conducted across a bright 

spot can also show that the bright particles may not be due to copper.  There were two bright 

regions, which were analyzed; the first region was made up of copper, while the second bright 

spot could be due to carbon deposits causing the surface to charge in certain regions on the 

catalyst surface.  This was supported by the presence of organic material on the catalyst surface, 

as shown by infrared spectroscopy and BET analysis.  

 

Used 4.5Cu0.5Ag/γ-Al2O3 (simultaneous)  

The SEM-EDX analysis of the fresh 4.5Cu0.5Ag/γ-Al2O3 catalyst showed agglomeration of 

silver in certain regions on the catalyst surface.  Due to the low reduction temperature of silver 

(below 100 °C), there is a possibility the silver may agglomerate at higher reaction temperatures.  

Therefore, SEM and backscattered SEM were implemented for analysis of the used 

4.5Cu0.5Ag/γ-Al2O3 catalyst to determine if there was a change in the surface morphology of the 

catalyst, which are shown in Figure 4.31.   

(a) 
(b) 
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Figure 4.31.  Used 4.5Cu0.5Ag/γ-Al2O3 catalyst reduced at 220 °C showing (a) SEM and (b) 

Backscattered SEM image. 

Contradictory to the results for the fresh catalysts, the SEM and backscattered SEM results 

obtained did not show large agglomerated particles.  This indicates that in a reducing 

environment, the metals have a higher metal dispersion than their metal oxide counterparts.  This 

result was similar to the results observed with the used 15Cu/γ-Al2O3 catalyst.   

 

Figure 4.32.  Used 4.5Cu0.5Ag/γ-Al2O3 catalyst reduced at 220 °C showing (a) SEM and (b) 

copper map (green) and (c) silver map (red). 

Figure 4.32 showed the EDX mapping results of the 4.5Cu0.5Ag/γ-Al2O3, which was prepared 

via simultaneous impregnation.  The SEM-EDX mapping showed an even distribution of both 

metals on the surface.  Similar, to the fresh catalyst, the used 4.5Cu0.5Ag/γ-Al2O3 catalyst after 

catalytic testing showed a minor degree of silver agglomeration, consistent with results obtained 

for the fresh catalyst.  This indicated that the surface morphology of the catalyst does not 

differentiate much from the freshly prepared catalyst, most likely due to the high thermal 

stability of the alumina-supported catalysts which may limit the extent of migration of the metals 

on the surface.  

 

(a) (b) 

(a) (b) (c) 
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4.5.  Summary of catalytic results and used catalyst characterization 
 

The optimization experiments show that copper supported on γ-alumina is effective in selective 

hydrogenation of octanal in the presence of octene, with conversion being favoured with a higher 

metal weight loading, temperature and pressure.  The optimum LHSV was found to be 18 h-1, 

which allowed a good balance between high octanal conversion and low octene conversion to be 

obtained.  The optimum temperature was chosen to be 160 °C as it provided maximum octanal 

conversion, while maintaining a high selectivity.  At 160 °C, the octanal:hydrogen  ratio of 1:2 

was chosen due to the higher octanal conversion compared to the 1:1.5 ratio.   

Bimetallic studies showed that there are a few key factors to consider when introducing an 

additional metal into the catalyst system.  This includes weight loading and impregnation 

sequence.  The increase in weight loading from 0.5 % Ag to 1 % Ag showed a decrease in 

octanal and octene conversion, with the S-4.5Cu0.5Ag/γ-Al2O3 and S-4Cu1Ag/γ-Al2O3 catalysts 

showing a lower conversion than the simultaneous impregnation catalysts (4.5Cu0.5Ag/γ-Al2O3).  

The S-0.5Ag4.5Cu/γ-Al2O3 catalyst showed a higher conversion compared to the simultaneous 

catalyst, while S-1Ag4Cu/γ-Al2O3 showed similar results to the simultaneous impregnation 

catalyst (4Cu1Ag/γ-Al2O3). 

A main objective of this study was to obtain a low octene conversion to allow for the selective 

hydrogenation of octanal.  The activity of all catalysts in terms of octene conversion under 

optimum conditions, with the conversion (%) shown in italics, is shown as: 

13.5Cu1.5Ag/γ-Al2O3 (40) > 4.5Cu0.5Ag/γ-Al2O3 (22) >15Cu/γ-Al2O3 (22) > S-0.5Ag4.5Cu/γ-

Al2O3 (16) > 4Cu1Ag/γ-Al2O3 (13) > S-1Ag4Cu/γ-Al2O3 (13) > 5Cu/γ-Al2O3 (12) > S-

4.5Cu0.5Ag/γ-Al2O3 (8) > S-4Cu1Ag/γ-Al2O3 (5) 

These results correlate with the characterization data obtained for the fresh and used catalysts.  

The larger the particle size, present with higher metal loaded catalysts, promoted the octene 

conversion, while the sequence of impregnation showed the simultaneous impregnation had a 

stronger synergistic effect resulting in higher activity.  The presence of silver proved useful in 

decreasing the octene conversion at higher temperatures, with the lowest conversion obtained 

over the S-4Cu1Ag/γ-Al2O3 catalyst.  
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A summary of the octanal conversion under optimum conditions, shown in italics, showed the 

following trend.   

S-0.5Ag4.5Cu/γ-Al2O3 (100) > 15Cu/γ-Al2O3 (100) > 4.5Cu0.5Ag/γ-Al2O3 (98) > 

13.5Cu1.5Ag/γ-Al2O3 (96) > 4Cu1Ag/γ-Al2O3 (96) > S-1Ag4Cu/γ-Al2O3 (93) > S-4Cu1Ag/γ-

Al2O3 g (91) > 5Cu/γ-Al2O3 (90) > S-4.5Cu0.5Ag/γ-Al2O3 (79) 

This was consistent with results obtained from chemisorption studies where the higher metal 

dispersion had more available active sites for adsorption and hydrogenation of the incoming 

octanal and octene reactants.  With the sequential catalysts, when copper was impregnated first, 

the silver on the upper layer minimized or inhibited the access and availability of the active 

copper sites, which decreased conversion of both reactants.  The S-4.5Cu0.5Ag/γ-Al2O3 showed 

the lowest octanal conversion due to the silver on the upper layer having a higher dispersion over 

the copper compared to the S-4Cu1Ag/γ-Al2O3, where silver would tend to agglomerate to other 

silver atoms, exposing more copper.  

All catalysts showed selectivities greater than 95 % towards octanol.  It was shown that when 

silver was impregnated first, the copper migration into the alumina lattice was inhibited, thus 

increasing the copper dispersion allowing for a higher amount of available active sites.  The most 

suitable catalyst was concluded to be the S-4Cu1Ag catalyst, as this catalyst showed the lowest 

octene conversion, while maintaining a good conversion of octanal of approximately 91 % and a 

high selectivity towards octanol.  

Used catalysts were characterized using IR, ICP, BET, XRD, SEM, and TEM analysis.  These 

techniques showed a minor presence of carbon deposits/organics on the surface, with no signs of 

metal leaching, and no significant changes in morphology indicating that all catalysts were 

thermal stable and recyclable.  
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Chapter 5 
Conclusions and Future Work 

 

Conclusions 

Selective hydrogenation of C=O functional groups in the presence of C=C functional groups has 

been considered difficult due to the C=C bond being more thermodynamically favoured to 

hydrogenate.  Extensive studies have been conducted over a wide range of catalytic systems, and 

new catalysts, are constantly investigated to determine the most efficient system for this reaction.  

Copper has been established in previous work to be active in the selective hydrogenation for 

unsaturated carbonyl molecules.  This research effort showed γ-Al2O3 supported CuAg catalysts, 

which were used for the selective hydrogenation of octanal in the presence of octene in a 

competitive reaction environment.  The optimum conditions were chosen to be 160 °C, 50 bar 

pressure, 18 h-1 LHSV, and 1:2 octanal:hydrogen ratio.  

Nine catalysts were prepared using wet impregnation and were characterized using various 

techniques to obtain an insight into the surface composition and interaction between the copper 

and silver impregnated on the alumina support.  SEM-EDX, TPR and H2/CO chemisorption 

studies showed key differences between the simultaneous and sequential impregnation catalysts.  

This was used to understand and correlate the results, obtained from catalytic testing.  Notable 

difference showed with the 5 % Cu and 15 % Cu catalysts was that an increase in weight loading 

resulted in clustering and agglomeration of the copper oxide on the surface in the higher loaded 

catalyst.  This was confirmed using XRD, SEM-EDX and TPR.  TPR also showed a decrease in 

reduction temperature for the bimetallic catalysts, with the copper and silver having a good 

dispersion on the support.  STEM-EDX provided useful information in determining the surface 

composition and metal-metal interaction.  Other techniques such as BET, TGA, and TPD all 

served as supporting techniques in establishing surface characteristics.   

The 5 wt % catalysts were further investigated for the effect of silver and impregnation sequence, 

this resulted in the higher loading of silver increasing the selectivity towards octanal conversion, 
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while allowing for minimal octene conversion making a suitable catalyst.  It was observed that a 

low loading of silver (0.5 % Ag) causes an increase in defect sites, resulting in a strong 

synergistic effect.  At a silver loading of 1 %, the silver has a higher preference to agglomerate 

with other silver particles present rather than the copper particles, therefore the synergistic effect 

between these two metals were not as strong as with the 4.5Cu0.5Ag/γ-Al2O3 catalysts.   

The effect of silver was established by preparing and testing a wide range of 5 wt % bimetallic 

catalyst.  A few key factors were established; namely a suitable total weight loading, the weight 

loading of silver, and the impregnation technique.  Catalytic results showed, with monometallic 

catalysts, a higher weight loading showed higher activity, which in some cases may not be a 

desired result due to the increased octene conversion.  Under optimum conditions, the higher 

weight loadings of the bimetallic catalysts showed the formation of silver agglomerates which 

resulted in a decrease the activity.  

The results obtained indicated a lower weight loading of 5 % for bimetallic catalyst system was 

more suitable compared to the 15 wt % catalysts.  The 5 wt % bimetallic catalysts provided low 

octene conversion and high octanal conversion under optimum conditions.  The octanol 

selectivity across all catalysts was higher than 95%, with the major byproducts being octyl 

octanoate, C16 diol and C24 acetal, which varied depending on the acidity of the catalysts and 

the temperature of the reaction.  From the seven 5 wt % bimetallic catalysts investigated, the S-

4Cu1Ag showed a lowest octene conversion of 5 % under optimum conditions, indicating that 

this catalyst system was most suitable, while maintaining a good conversion and octanol 

selectivity comparable to that of a monometallic copper catalyst system.   

This work showed that within bimetallic systems investigated, their activity was dependent on a 

few key factors such as total weight loading of the catalyst, intermetallic weight loading and the 

impregnation sequence (simultaneous and sequential).  It can be concluded that the presence of 

silver proved beneficial for the selective hydrogenation of octanal in the presence of octene, 

which allowed for minimal octene conversion while maintaining high octanal conversion and 

octanol selectivity as in the case of the 4Cu1Ag/γ-Al2O3 catalyst.   



128 
 

Kinetic calculations was implemented understand the rates of reaction towards the octanol 

formation and relates the surface characteristics (acidity and metal dispersion) contribution 

towards the selectivity of the desired and undesired products and byproducts.   

 

Future work 

The results obtained in this study provided sufficient information for a strong foundation into the 

use of copper-silver bimetallic catalysts for selective hydrogenation.  Further investigation of 

these bimetallic catalysts must be extended to establish their effectiveness in selective 

hydrogenation with reactant feeds containing a higher concentration of octene in the presence of 

octanal.  The application of these catalysts can also be extended into different mixed feeds such 

as an alkyne:alkene system, as this is a well-known industrial process which requires selective 

hydrogenation of alkyne to alkenes.   

It was stated in this work that the alumina support contributed to the by-product formation and 

the migration of copper into the lattice forming a copper aluminate phase which was inactive for 

hydrogenation.  It is important to change the support to provide supporting information on 

observations presented in this work.  It is expected that the change in support would vary the 

metal-support interaction and its contribution towards byproduct formation, however, the extent 

of the support effect must be established to prove that the copper and silver are the active 

components responsible for selective hydrogenation.  This can further be extended by looking at 

the effect of the impregnation sequence, as shown in this study, as this showed significant effect 

on the catalyst activity.  

Lastly, a general overview on the results obtained in this work showed that the bimetallic 

catalysts showed a changed catalytic behavior due to metal-metal interaction.  In this work, 

copper was presented as the active metal, while silver allowed for synergistic effects and a 

change in the metal dispersion.  Therefore, a different second metal could be added to the 

copper/alumina system to determine the preferred or most efficient bimetallic system.  

Additionally, a monometallic silver/alumina catalyst must also be investigated to provide further 

information on the contribution to silver in the bimetallic catalyst system.  The incorporation of 
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additional promoters or additives can be introduced to the catalytic system, such as ionic liquids, 

which will alter the surface properties, thus changing the behavior of the catalyst.   
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Appendix 

1. Infrared Spectroscopy 

1.1. Fresh catalysts 

 

Figure A1.  IR spectra of γ-Al2O3 supported (a) 15Cu and (b) 13.5Cu1.5Ag catalysts. 

 

  

Figure A2.  IR spectra of γ-Al2O3 supported (a) 4.5Cu0.5Ag and (b) 4Cu1Ag catalysts. 

 

 

Figure A3.  IR spectra of γ-Al2O3 supported (a) S-4.5Cu0.5Ag and (b) S-0.5Ag4.5Cu catalysts. 
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Figure A4.  IR spectra of γ-Al2O3 supported (a) S-4Cu1Ag and (b) S-1Ag4Cu catalysts. 

 

 

1.2. Used Catalysts 

 

Figure A5.  IR spectra of γ-Al2O3 supported (a) 5Cu/γ-Al2O3 -220 and (b) 5Cu/γ-Al2O3 -240 
catalysts. 

 

 

Figure A6.  IR spectra of γ-Al2O3 supported (a) 5Cu/γ-Al2O3 -260 and (b) 15Cu/γ-Al2O3 
catalysts. 
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Figure A7.  IR spectra of γ-Al2O3 supported (a) 4.5Cu0.5Ag-220 and (b) 4Cu1Ag-220 catalysts. 

  

Figure A8.  IR spectra of γ-Al2O3 supported (a) S-4.5Cu0.5Ag and (b) S-0.5Ag4.5Cu catalysts. 

 

 

Figure A9.  IR spectra of γ-Al2O3 supported (a) S-4Cu1Ag and (b) S-1Ag4Cu catalysts. 
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2. Scanning electron microscopy (SEM) 

15Cu/ γ-Al2O3   

    

Figure A10.  Images for15Cu/ γ-Al2O3 (a) SEM, (b) SEM-EDX mapping with copper (green), 

and (c) copper only map (green). 

 

3. GC spectrum 
 

 

Figure A11.  Example of a GC chromatogram of the products obtained. 

 

4. GC-MS for the main reactants and products 
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Figure A12.  GC-MS spectrum of octene. 

 
Figure A13.  GC-MS spectrum of octane. 
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Figure A14.  GC-MS spectrum of octanal. 

 
Figure A15.  GC-MS spectrum of octanol. 
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5. GC-MS for selected byproducts 

 

Figure A16.  GC-MS spectrum of Octyl octanoate. 

 

Figure A17.  GC-MS spectrum of C16 diol. 
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6. Reactor set up 

 

Figure A18.  Image of the reactor. 

 

 


