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Abstract 

In the first part of the study, finite element solutions are presented for the optimal 
design of symmetrically laminated rectangular plates subject to a combination of 
simply supported, clamped and free boundary conditions. The design objective 
is the maximisation of the biaxial buckling load by determining the fibre orienta­
tions optimally with the effects of bending-twisting coupling taken into account. 
The finite element method coupled with an optimisation routine is employed in 
analysing and optimising the laminated plate designs. The effect of boundary 
conditions, the number of layers and bending-twisting coupling on the optimal 
ply angles and the buckling load are numerically studied. 

Optimal buckling designs of symmetrically laminated rectangular plates un­
der in-plane uniaxial loads which have a nonuniform distribution along the edges 
are presented in the second part of the study. In particular, point loads, partial 
uniform loads and nonuniform loads are considered in addition to uniformly dis­
tributed in-plane loads which provide the benchmark solutions. Poisson's effect 
is taken into account when in-plane restraints are present along the unloaded 
edges. Restraints give rise to in-plane loads at unloaded edges which lead to bi­
axial loading, and may cause premature instability. The laminate behavior with 
respect to fiber orientation changes significantly in the presence of Poisson's effect 
as compared to that of a laminate where this effect is neglected. This change in 
behavior has significant implications for design optimisation as the optimal values 
of design variables with or without restraints differ substantially. In the present 

2 



study, the design objective is the maximisation of the uniaxial buckling load by 
optimally determining the fiber orientations. Numerical results, determined us­
ing the finite element method, are given for a number of boundary conditions 
and for uniformly and non-uniformly distributed buckling loads. 

In the third part of the study, finite element solutions are presented for the op­
timal design of symmetrically laminated rectangular plates with central circular 
cut-outs subject to a combination of simply supported, clamped and free bound­
ary conditions. The design objective is the maximisation of the biaxial buckling 
load by determining the fiber orientations optimally. The effect of boundary con­
ditions and bending-twisting coupling on the optimal ply angles and the buckling 
load are numerically studied. The results are compared to those for laminates 
without holes. 

The fourth part of the present study gives optimal designs of symmetrically 
laminated angle-ply plates, which are obtained with the objective of maximising 
the initial post buckling stiffness. The design involves optimisation over the ply 
angles and the stacking sequence to obtain the best laminate configuration. The 
stacking sequence is chosen from amongst five candidate designs . It is shown that 
the best configuration depends on the ratio of the in-plane loads in the x and y 
directions. Results are also given for two additional configurations which do not 
exhibit bending-twisting coupling. 

The final section of the present study deals with the optimal design of uniax­
ially loaded laminated plates subject to elastic in-plane restraints along the un­
loaded edges for a maximum combination of prebuckling stiffness, post buckling 
stiffness and buckling load. This multiobjective study illustrates that improved 
buckling and post buckling performance can be obtained from plates which are 
designed in this fashion . The multiobjective results are also compared to single 
objective design results. 
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Chapter 1 

Literature Survey 

1.1 Introduction 

Laminated composite materials are used with increasing frequency in varIOUS 

technical applications, particularly in the fields of automotive, aerospace and ma­

rine engineering. This is primarily due to the high specific strength and stiffness 

values that these materials offer. Structures composed of composite materials of­

ten contain components which may be modelled as rectangular plates. A common 

type of composite plate is the symmetrically laminated angle ply configuration 

which avoids strength reducing bending-stretching effects by virtue of mid-plane 

symmetry. An important failure mode for these plates is buckling under in-plane 

loading. The buckling resistance of fiber composite plates can be improved by 

using the ply angle as a design variable, and determining the optimal angles to 

maximise the buckling load. Optimal design of composite plates is necessary to 
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realise the full potential of fiber-reinforced materials. 

A large amount of research into the buckling of laminated plates has been car­

ried out by numerous workers, but there remains much to be done on the optimal 

design of these plates. One phenomenon associated with symmetric angle-ply 

configurations is the occurrence of bending-twisting coupling which may cause 

significantly different results as compared to cases in which this coupling is exactly 

zero. The effect of bending-twisting coupling becomes even more pronounced for 

laminates with few layers. Due to this coupling, closed-form solutions cannot be 

obtained for any of the boundary conditions and this situation led to neglecting 

bending-twisting coupling in several studies involving the optimisation of sym­

metric laminates under buckling loads . In actual fact, closed-form solutions for 

symmetric laminates are not available even for the simplified models where this 

coupling is neglected except if the boundary conditions are simply supported all 

around. 

The first part of the present study adopts a numerical approach to include 

the effect of bending-twisting coupling and to obtain the optimal design solutions 

of laminated plates for a variety of boundary conditions. The finite element for­

mulation, which is used in conjunction with an optimisation routine to compute 

the optimal fiber orientations, is based on Mindlin type theory for thin laminated 

composite plates. Numerical results are given for various combinations of bound­

ary conditions and optimal designs with and without bending-twisting coupling 

are compared. 
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Poisson's effect manifests itself as in-plane loads if the unloaded edges of a 

uniaxially loaded plate are restrained from translating freely. This in turn trans­

forms a uniaxial buckling problem into a biaxial one and causes a reduction in the 

buckling load, as compared to the classic case, where the unloaded plate edges 

are free from restraint. Moreover, the optimal values of design variables change 

as compared to the classic case. In many practical situations, transverse move­

ment of unloaded edges is restricted by adjacent panels, supports or stiffeners, 

inducing a transverse in-plane compressive force. In these cases, the buckling 

of uniaxially compressed rectangular plates is affected by the so-called Poisson 

Plate Instability phenomenon. 

The second part of the present study deals with the optimal design of uni­

axially loaded symmetrically laminated rectangular plates subject to in-plane 

restraints along the unloaded edges taking the ply angle as the design variable to 

maximise the buckling load. The results are obtained for uniformly and nonuni­

formly distributed in-plane loads. In particular, point loads, partial uniform loads 

and nonuniform loads are considered in addition to a full uniform load. Taken 

into account also are the effects of bending-twisting coupling, as well as various 

combinations of free, simply supported and clamped boundary conditions. These 

effects rule out the possibility of an analytical solution and thus the finite ele­

ment method is used to analyse the problem and to determine the buckling loads. 

Optimal designs are compared with those obtained for plates without in-plane 

restraints. This study also illustrates that optimal designs for maximum buckling 
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load based on classical analysis becomes irrelevant and leads to totally erroneous 

results in the presence of in-plane restraints. Furthermore, an approximation of 

nonuniform loads by uniform ones again leads to inaccurate buckling loads and 

non-optimal ply angles. 

Plates with central cut-outs have decreased buckling resistance, and the use 

of values determined in optimal design studies of plates without holes can lead 

to non-optimal designs. The presence of holes in laminated plates complicates 

the modelling, and as such, little work has concentrated on the study of such 

problems. Even less dealing with the optimal design of such plates has been 

reported in the literature. In the third part of the present study, numerical 

results are given for biaxially loaded laminated plates with central circular cut­

outs having various combinations of boundary conditions, and optimal designs of 

these plates are compared to those for plates without holes. 

Quite often, composite structures are required to carry loads beyond their 

buckling limit. In these cases, the post buckling stiffness has to be maximised to 

improve the load carrying capability beyond the critical buckling load. This is 

the objective of the fourth part of the present study in which symmetric angle­

ply laminates are designed for maximum postbuckling stiffness. In this study, 

a method is proposed to determine the optimal fiber orientation and stacking 

sequence of rectangular laminates by considering the initial post-buckling stiff­

nesses in both the x and y directions. Design optimisation involves the comparison 

of the postbuckling performance of several laminate configurations with optimal 
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ply angles. Finally, the post-buckling performance of two laminated plates having 

in-plane and bending orthotropy are studied. 

The last section of the present study deals with the optimal design of uni­

axially loaded laminates plates subject to elastic in-plane restraints along the 

unloaded edges for a maximum combination of prebuckling and postbuckling stiff­

nesses, and buckling load. This multiobjective study illustrates that improved 

buckling and postbuckling performance can be obtained from plates which are 

designed in this fashion. The multiobjective results are also compared to single 

objective design results. 

1.2 The finite element method 

The finite element method is a numerical analysis technique for obtaining approx­

imate solutions to engineering problems. Although it was originally developed to 

study the stresses in complex airframes, it has since been extended and applied 

to continuum mechanics. 

It is in general necessary to obtain approximate numerical solutions to engi­

neering problems rather than analytical solutions. The governing equations and 

boundary conditions of these problems may be readily available, however there 

is usually no simple analytical solution to these problems. The difficulty, for ex­

ample may arise as a result of a complex geometry or some other features of the 

problem which is either irregular or complicated. 
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One possibility is to make some simplifying assumptions that make the prob­

lem easier to solve. In some cases, this may be acceptable. Often , however, this 

approach results in serious inaccuracies or wrong answers. An alternative way to 

solve these problems is to keep the complexities of the problem and try to find 

an approximate solution using a numerical technique. Over the years, several 

approximate numerical analysis methods have been developed. One of the most 

commonly used methods is the general finite difference scheme [1], [2] . The fi -

nite difference model of a problem gives a pointwise approximation to governing 

equations which is improved as more points are included. This method may be 

used to solve fairly difficult problems. 

If irregular geometries or unusual boundary conditions are considered, the 

finite difference techniques become difficult to implement. Another numerical 

method which has been developed for use in engineering is the finite element 

method. Unlike the finite difference method, which considers the solution region 

as an array of grid points, the finite element method considers the solution region 

as a complete part of many small, interconnected parts or elements. A finite 

element model of a problem gives a piecewise approximation to the governing 

equations. These small pieces or elements can be assembled together in many 

ways to cover the solution region, even for very complex geometries. 
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1.2.1 The Concept of the Finite Element Method 

The finite element discretization procedures reduce the problem to one of a finite 

number of unknowns by dividing the solution region into small elements and the 

final solution is defined in terms of assumed approximating functions for each 

element. The approximating functions (or interpolation functions) are defined 

at specified points called nodes or nodal points. Nodes are usually placed on 

the element boundaries. In addition to boundary nodes an element may also 

have interior nodes. For the finite element representation of a problem, the 

nodal values of the field variables become the new unknowns. The degree of 

approximation does not only depend on the size and number of the elements, 

but also on the interpolation functions selected. The functions cannot be chosen 

arbitrarily, because special conditions should be satisfied. The functions are 

usually chosen so that the field variable or its derivatives are continuous across 

adjoining element boundaries. An important advantage of the finite element 

method which is different from other approximate numerical methods is its ability 

to formulate expressions for individual elements before assembling them together 

to model the entire problem. The steps listed below are useful in explaining how 

the finite element method works [3]. 

1. Discretize the continuum. The fist step is to divide the continuum or solu­

tion region into elements. It is not only desirable but also may be necessary 

to use different types of elements in the same solution. The number and the 
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types of elements to be used in a given problem are matters of engineering 

judgment. 

2. Select interpolation functions. The next step is to assign nodes to each 

element and then choose the type of interpolation function to represent 

the variation of the field variable over the element. Polynomials are usually 

selected as interpolation functions for the field variable, since they are easily 

integrated and differentiated. 

3. Find the element properties. Once the finite element model has been es­

tablished (the elements and interpolation functions have been selected) the 

matrix equations are determined to express the properties of the individual 

elements. 

4. Assemble the element properties to obtain the system equations. The ma­

trix equations are combined to express the behaviour of the elements and 

formed to express the behaviour of the entire solution system. 

5. Solve the system equations. 

1.2.2 Advantages of the Finite Element Method 

One of the main advantages of the finite element method is that the method can 

handle irregular geometries routinely which is useful since, if irregular geome­

tries are present, closed-form analytical solutions, in general, are not available. 
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Another advantage of the method is that a variable spacing of the nodes is also 

routinely handled. When a body is discretized using finite elements, the nodes 

are said to form a mesh. When the nodes are not equally spaced, the mesh is 

said to be graded. Another advantage of the finite element method over analyti­

cal solution techniques is its ability to handle non-homogeneous and anisotropic 

materials. There is little extra effort required in the finite element method for­

mulation when these types of materials are modeled. The sizes and shapes of 

the elements can be selected to create highly irregular geometric forms. Triangu­

lar elements are particularly flexible in this respect, while rectangular elements 

can be simpler in other cases. The element size can be varied, so areas of steep 

stress gradients can be approximated in particular detail (Figure 1) . Any type 

of external load can be considered. Distributed loads are replaced by equivalent 

concentrated nodal point loads. The choice of boundary conditions is variable 

and it is possible to examine the effects of nonlinear properties of materials. A 

study of the progress of plastification in a notched plate subjected to increasing 

axial load is an example of this subject [4]. The finite element technique is also 

used for studying the solution of complex buckling [5] and vibration problems, as 

well as crack and fatigue effects [6]. 
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Figure 1. Combinations of triangular and rectangular elements in a typical 

complex structural model. 

1.2.3 A Brief History of The Finite Element Method 

The finite element method was developed simultaneously in the fields of applied 

mathematics and engineering. The first study to use piecewise continuous func-

tions defined over triangular domains appear in the applied mathematics litera-

ture with the work of Courant [7] in 1943,who motivated by Euler's [8] paper, 

used an assemblage of triangular elements and the principle of minimum potential 

energy to study the St. Venant torsion problem. Polya [9], [10], Hersch [11] and 

Weinberger [12], [13] worked on finding bounds on eigenvalues using this method. 

In 1959, Grenestadt [14], motivated by Morse & Feshback [15], made an approach 

involving cells instead of points, dividing the solution domain into sub domains. 

In his theory, he describes a procedure for representing the unknown functions by 

a series of functions . Using continuity requirements, continuous problem are then 
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discretized. This theory allows for irregularly shaped cell meshes and contains 

many of the essential and fundamental ideas of finite elements. White [16] and 

Friedrichs [17] used triangularly shaped elements, in regular meshes, to develop 

difference equations from variational principles. Numerous studies concerning 

discretization errors, rates of convergence and stability for different types of fi­

nite element approximations have appeared in the literature [18 - 39]. The finite 

element method has also been applied to nonlinear problems [40]. The develop­

ment of suitable function approximations to field variables has been considered 

in the literature on spline functions [41 - 54]. 

The earliest study in the engineering literature appears to be that of Hrenikoff 

[55], who assumed a continuum structure to be divided into elements or structural 

sections. McHenry [56] in 1943 and Newmark [57] in 1949 further developed this 

concept of discretization. Argyris and collaborators [58 - 64] published a series 

of papers on linear structural analysis and efficient solution techniques suited 

for automatic digital computation. In 1956, Turner et al [65] published a paper 

on the solution of plane stress problems by means of triangular elements whose 

properties were determined from the equations of elasticity theory. This study 

introduced the direct stiffness method for determining finite element properties. 

A further study on the plane elasticity problem was presented by Clough [66] . 

Besseling [67], Melosh [68], Fraeijs de Veubeke [69] and Jones [70] recognized that 

the finite element method was a form of the Ritz method and confirmed it as a 

general technique to handle elastic continuum problems. Zienkiewicz & Cheung 
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part at infinity [72] . 

Problem Statement 

Consider some domain D bounded by the surface L Let ¢ be a scalar function 

defined in the interior of D such that the behaviour of ¢ in D is given by 

L(¢) - f = 0 (1.1 ) 

where f is a known scalar function of the independent variables and L is a lin-

ear or nonlinear differential operator. It is assumed that the physical parameters 

in the differential operator are known constants or functions . In n dimensions , 

second-order differential operators can usually be reduced, by a suitable trans-

formation, to the form 

(1.2) 

where coefficients, A, Bi and C and the term D may be functions. The operator 

as given in equation (1.2) is linear if A, Bi , C and D are functions only of the 

independent variables (Xl, X2, X3, ... , x n ), and quasi linear if Ai, Bi, C and Dare 

functions of Xi; and the dependent parameter, as well as first derivatives of the 

dependent parameter. An operator is linear only if 

L(J + g) = L(J) + L(g) (1.3) 
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[71] reported that the finite element method is applicable to all field problems 

which can be put into variational form . 

Numerous papers may be found in the literature, dealing with all aspects of 

the finite element method and its applications to areas such as static and dynamic 

structural analysis, fluid flow and heat transfer. 

1.2.4 Theoretical Formulation 

Continuum Problems 

In the continuum or Eulerian approach to nature, all processes are characterized 

by field quantities that are defined at every point in space. The independent vari­

ables in continuum problems are the coordinates of space and time. Continuum 

problems are concerned with fields of temperature, stress, mass concentration, 

displacement, electromagnetic and acoustic potentials, etc. These problems arise 

from the phenomena in nature that are approximately characterized by partial 

differential equations and their boundary conditions . 

Continuum problems of mathematical physics are often referred to as bound­

ary value problems because their solution is sought in some domain defined by a 

given boundary, on which certain conditions called boundary conditions are spec­

ified. The boundary is said to be closed if conditions affecting the solution of 

the problem are specified everywhere on the boundary and open if part of the 

boundary extends to infinity and no boundary conditions are specified on the 
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The general definition of the operator L( ) in equation (3 .19) precludes a discus-

sion of appropriate boundary conditions. However, without boundary conditions, 

equation (3.19) does not describe a specific problem. 

Some Methods for Solving Continuum Problems 

From equation (3.19), it is seen that the general problem is to find the unknown 

function cP that satisfies equation (3.19) and the associated boundary conditions 

specified on ~. There are many alternative approaches to the solution of linear 

and nonlinear boundary value problems and they range from completely analyt­

ical to completely numerical. These can be listed as follows : 

1. Direct integration (exact solutions). 

a. Separation of variables. 

b. Similarity solutions. 

c. Fourier and Laplace transformations. 

2. Approximate solutions. 

a. Perturbation. 

b. Power series. 

c. Probability schemes. 

d. Method of weighted residuals (MWR). 

e. Finite difference techniques. 

f. Ritz method. 

g. Finite element method. 
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The Variational Approach 

Often continuum problems have the different, but equivalent, differential and 

variational formulations. In the differential equation formulation, the problem is 

to integrate a differential equation or a system of differential equations subject to 

given boundary conditions. In the classical variational formulation, the problem 

is to find the unknown function or functions that extremize or make stationary 

a functional such as I ( ¢) or system of functionals subject to the same boundary 

conditions. The two problem formulations are equivalent because the functions 

which satisfy the differential equations and their boundary conditions also ex­

tremize or make stationary the functionals. The classical variational formulation 

of a continuum problem often has advantages over the differential equation for­

mulation from the viewpoint of obtaining an approximate solution. 

Firstly, the functional, which may actually represent some physical quantity 

in the problem, contains derivatives of order lower than that of the differential 

operator and an approximate solution can be sought in a larger class of functions. 

Secondly, the problem may possess reciprocal variational formulations, that 

is, one functional must be minimized and another one of a different form must 

be maximized. 

Third, the variational formulation allows us to treat very complicated bound­

ary conditions as natural boundary conditions. 
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Fourth, from a mathematical viewpoint the variational formulation is helpful 

because it can sometimes be used to prove the existence of a solution by using 

calculus of variations. 

This approach is especially convenient when it is applicable; but before it can 

be used, a variational statement for the continuum problem must be formulated, 

which means that the problem must be posed in a variational form. 

Historically, variational methods are among the oldest means of obtaining 

solutions to problems in physics and engineering. One general method for ob­

taining approximate solutions to problems expressed in variational form is known 

as the Ritz method. This method is basically a forerunner of the finite element 

procedure. In fact, the finite element method is a special case of the Ritz method 

when the interpolation functions satisfy certain continuity requirements. 

The Ritz Method 

The Ritz method consists of assuming the form of the unknown solution in terms 

of known functions (trial functions) with unknown adjustable parameters. (The 

trial functions are also called coordinate functions.) The procedure is to substi­

tute the trial functions into the functional and thereby express the functional in 

terms of the adjustable parameters. The functional is then differentiated with 

respect to each parameter and the resulting equation is set equal to zero. If there 

are n unknown parameters, there will be n simultaneous equations to be solved 

for these parameters . The accuracy of the approximate solution depends on the 

25 



choice of trial functions. The trial functions are defined over the whole solution 

domain and they satisfy at least some and usually all of the boundary condi­

tions. If the exact solution is contained in the family of trial solutions, the Ritz 

procedure gives the exact solution. Generally, the approximation improves as 

the size of the family of trial functions and the number of adjustable parameters 

increase. The process of including more and more trial functions leads to a series 

of approximate solutions which converges to the true solution. Often a family of 

trial functions is constructed from polynomials of successively increasing degree, 

but in certain cases other kinds of functions may also offer advantages [73] . 

Relation of FEM to the Ritz Method 

The finite element method and the Ritz method are essentially equivalent. Each 

method uses a set of trial functions as the starting point for obtaining an approx­

imate solution; both methods take linear combinations of these trial functions 

and both models seek the combination of the trial functions that makes a given 

functional stationary. The major difference between the methods is that the as­

sumed trial functions in the finite element method are not defined over the whole 

solution domain and they have to satisfy no boundary conditions but only cer­

tain continuity conditions. Because the Ritz method uses functions defined over 

the whole domain, it can be used only for domains of relatively simple geometric 

shape. In the finite element method the same geometric limitations exist, but 

only for the elements. Due to the fact that elements with simple shapes can be 
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assembled to represent quite complex geometries, the finite element is far more 

versatile and flexi ble than the Ritz method. 

Generalising the definition of an element 

The mathematical interpretation of the finite element requires the generalisation 

of the definition of an element which is in less physical terms. The elements are 

interconnected only at imaginary node points at the boundaries or surfaces of the 

elements. For the solid mechanics problems, in general, elements do not deform 

or change shape. They are defined as regions of space where a displacement field 

exists. The nodes of an element are located in space where the displacement and 

possibility of its derivatives are known or sought. The mathematical interpre­

tation of a finite element mesh is that it is a spatial subdivision rather than a 

material subdivision [74]. 

Orice the element mesh for the solution domain has been decided, the be­

haviour of the unknown field variable over each element is approximated by con­

tinuous functions expressed in terms of the nodal values of its derivatives up to 

a certain degree. The functions defined over each finite element are called in­

terpolation junctions, shape junctions, or field variable models. The collection of 

the interpolation functions for the whole solution domain provides a piecewise 

approximation to the field variable. 
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Element Equations from the Variational Principle 

The finite element solution to the problem involves determining the nodal values 

of <p so as to make the functional 1 ( <p) stationary. To make 1 (<p) stationary with 

respect to the nodal values of cjJ, it is required that 

(1.4 ) 

where n is the total number of discrete values of cjJ assigned to the solution domain. 

Since the OcjJi'S are independent , equation (1.4) can be satisfied only if 

al o . 
acjJi= ,z=l,2, ... ,n (1.5 ) 

The functional l(cjJ) may be written as a sum of individual functionals defined 

for all elements of the assemblage, that is, 

M 

J(cjJ) = L J(e)(cjJ(e)) (1.6) 
e=l 

where M is the total number of elements and the superscript (e) denotes an 

element. From equation (1.6) , it follows that 

M 

01 = LoJ(e) = 0 (1. 7) 
e=l 

where the variation of J(e) is taken only with respect to the nodal values associated 
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with the element (e). Equation (1.7) implies that 

81(e) 81 . 
{-} = - = 0, J = 1,2, ... ,r 

8</Y 8</Yj 
(1.8 ) 

where r is the number of nodes assigned to element (e). Equation (1.8) comprises 

a system of r equations that characterize the behavior of element (e). Equation 

(1.8) for element (e) can always be written as [75J 

(1.9) 

where [I<J(e) is a square matrix of constant stiffness coefficients, {</Y }(e) is the 

column vector of nodal values and {F} is the vector of resultant nodal actions. 

Symbolically, the complete set of equations can be written as 

or 

81 M 81(e) 
8J... = L 8"" . = 0, i, 1,2, ... , n 

'fit e=l 'fit 

81 
{-} = {O} 

8</Y 

(1.10) 

(1.11) 

The problem is solved when the set of n equations (2.8) is solved simultane-

ously for the n nodal values of </Y. If there are Q nodes in the solution domain 

where </Y is specified by boundary conditions, there will be n - q equations to be 

solved for the n - q unknowns. 

29 



Requirements for Interpolation Functions 

Approximate solutions converge to the correct solution where an increasing num­

ber of elements are used, that is, when the element mesh is refined. Mathematical 

proofs of convergence assume that the process of mesh refinement occurs in a reg­

ular fashion, defined by three conditions [76]. 

1. the elements must be made smaller in such a way that every point of the 

solution domain can always be within an element, regardless of how small 

the element may be; 

2. all previous meshes must be contained in the refined meshes; 

3. the form of interpolation functions must remain unchanged during the pro­

cess of mesh refinement. 

These three conditions are shown in Figure 2. 

y~-x ~ 
(a) (b) 

(e) 

Figure 2. An example of successive mesh refinements. 

a). Original solution domain b). Discretization with four triangular elements 

c). Discretization with sixteen triangular elements 
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To guarantee monotonic convergence in the sense just described and to make 

the assembly of the individual equations meaningful, it is required that the in­

terpolation functions N(e) in the expressions 

(1.12) 

where IN(e) j is the row vector of interpolation functions that are functions of 

the coordinates of the nodes and {¢ }(e) is the column vector. Equation (3.1) is 

chosen so as to satisfy the following general requirements: 

1. At element interfaces (boundaries) the field variable ¢ and any of its partial 

derivatives up to one order less than the highest order derivative appearing 

in I (¢) must be continuous. 

2. All uniform states of ¢ and its partial derivatives up to one order less than 

the highest order derivative appearing in I (¢) should have representation 

in ¢(e) when, in the limit, the element size shrinks to zero. 

These requirements were given by Felippa & Clough [76] and justified by 

Oliveira [77]. The first one is known as the compatibility requirement, and the 

second as the completeness requirement. Elements whose interpolation functions 

satisfy the first requirement are called compatible elements, those satisfying the 

second requirement, complete elements. 
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In addition to satisfying these requirements , it is also required that the field 

variable representation within an element and hence the polynomial expansion for 

the element remain unchanged under a linear transformation from one Cartesian 

coordinate system to another. Polynomials that exhibit this invariance property 

are said to posses geometric isotropy. 

Domain Discretization 

The first task in a finite element solution consists of discretizing the continuum 

by dividing it into a series of elements. The type of element that should be 

used depends on the problem being considered. Often only one type of element is 

used to represent the continuum, unless the circumstances dictate otherwise. It is 

easy to imagine the problem for which several different types of elements would be 

necessary. An example from solid mechanics would be an elastic body supported 

by pin connected bars. In this case the elastic body would be represented by three 

dimensional solid elements such as bricks, and the bars would be approximated 

by one dimensional elements. The most popular and versatile elements, because 

of the ease with which they can be assembled to fit complex geometries, are 

triangular elements in two dimensions. 

A uniform element mesh is easy to construct, but it may not always provide a 

good representation of the continuum. More elements should be used in regions 

where the boundary is irregular than in regions where it is smooth . 

The ratio of elements smallest dimension to its largest dimension should be 
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near unity. Long narrow elements should be avoided because they lead to a 

solution with direction bias that may lead to inaccurate results. 

When solving a particular type of problem for the first time, it is good practice 

to obtain several solutions with different numbers of element. By comparing 

the results, it is possible to see whether enough elements are being used in the 

solution. This is known as convergence testing. 

1.2.5 Derivation of Finite Element Equations uSIng the 

Method of Weighted Residuals 

The method of weighted residuals is a technique for obtaining approximate so­

lutions to linear and non-linear partial differential equations. The method offers 

another means of formulating the finite element equations. 

Applying the method of weighted re"siduals involves basically two steps. The 

first is to assume the general functional behavior of the dependent field vari­

able to approximately satisfy the given differential equation and boundary con­

ditions. Substitution of this approximation into the original differential equation 

and boundary conditions then results in some error called a residual. This resid­

ual is required to vanish in some average sense over the entire solution domain. 

The second step is to solve the equations resulting from the first step and 

specialize the general function form to a particular function, which then becomes 

the approximate solution sought. 
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A typical example given below is to find an approximate functional represen-

tation for a field variable <f; governed by the differential equation 

L(<f;)-j=O (1.13) 

in the domain D bounded by the surface E. The function j is a known function 

of the independent variables and it is assumed that proper boundary conditions 

are prescribed on E. 

First the unknown exact solution <f; is approximated by 1> where either the 

functional behavior of 1> is completely specified in terms of unknown parameters, 

or the functional dependence on all but one of the independent variables is spec-

ified while the functional dependence on the remaining independent variables is 

left unspecified. Thus the dependent variable is approximated by 

m 

<f; ';::;:, 1> = L NiCi (1.14) 
;=1 

where Ni are the assumed functions and the Ci are either the unknown parameters 

or unknown functions of one of the independent variables. The upper limit on the 

summation, m, is the number of unknowns, C;. The m functions Ni are usually 

chosen to satisfy the global boundary conditions. 
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When J is substituted in equation (3.2), viz. 

L(J)-f=R (1.15) 

where R is the residual or error that results from approximating <p by <p. The 

method of weighted residuals seeks to determine the m unknowns Ci in such a 

way that error R over the entire solution domain is small. This is accomplished 

by forming a weighted average of the error and specifying that the weighted aver-

age vanishes over the solution domain. Hence m linearly independent weighting 

functions Wi are chosen and the weighted average is computed as 

iD[L(J) - flWidD = iD RWidD = 0, i = 1,2, ... , m (1.16) 

In this case R = O. 

The form of the error distribution principle expressed In equations (1.16) 

depends on the choice of the weighting functions. Once the weighting functions 

are specified, equations (1.16) represent a set of m equations, other algebraic 

or ordinary differential equations to be solved for the coefficients of Ci . The 

second step is to solve equations (1.16) for Ci and hence obtain an approximate 

representation of the unknown field variable <p via equations (1.14). 

There is a variety of weighted residual techniques available because of the 

broad choice of weighting functions or error distribution functions that can be 
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used. The error distribution principle most often used to derive finite element 

equation is known as the GaLerkin criterion. According to the Bubnow-GaLerkin 

method, the weighting functions are chosen to be the same as the approximating 

functions used to represent ¢, that is Wi = Ni for i = 1,2, ... , m. Thus Galerkin's 

method requires that 

(1.17) 

where the superscript (e) restricts the range to one element, ¢(e) = IN(e)j {¢}(e), 

j(e) is a forcing function defined over the element (e) and r is a number of unknown 

parameters assigned to the elements. 

Elements and Interpolation Functions 

A standard definition and notation to express the degree of continuity of a field 

variable at element interfaces are given next. If the field variable is continuous 

at element interfaces it is said that there is Co continuity. If the field variable 

is continuous for the first derivatives there is Cl continuity; if second derivatives 

are also continuous there is C2 continuity and so on. 

The functions appearing under the integrals in the element equations contain 

derivatives up to (r + 1 )th order. Following requirements must be satisfied to 

have assurance of convergence as element size decreases. 

Compatibility requirements: At element interfaces there must be CT continuity. 
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Completeness requirements: Within an element there must be cr+l continuity. 

These requirements hold whether the element equations were derived using 

the variational method, the Galerkin method or some other method. 

Basis Element Shapes 

The continuum or solution domain of arbitrary shape can be accurately modeled 

by an assemblage of simple shapes. Most finite elements are geometrically simple. 

For one-dimensional problems with only one independent variable, the ele-

ments are line segments (Figure 3). 

~ • ~x 
2 

a:- • ~x 

3 2 

~ • " x 
3 4 2 

~~x 
1 35m -1 m 4 2 

Figure 3. A family of one-dimensional line elements 

The number of nodes assigned to a particular element depends on the type of 

nodal variables, the type of interpolation function and the degree of continuity 

required. For some one-dimensional problems the finite element method is the 

most rational approach, foe example, frame analysis in solid mechanics and flow 

network analysis in fluid mechanics. In elasticity problems where spars are used as 
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stiffeners one-dimensional elements can represent the spars while being connected , 

to other two- or three-dimensional elements that represent the rest of the elastic 

solid. 

Common two-dimensional element shapes are shown in Figure 4. 

y/> .v !> 
~ ~. ~. (c) 

la\ 

lP. '(> L-:. 
(b) Id) 

Figure 4. Examples of two dimensional elements 

a). Three node triangle b). Rectangle c). Triangles with six and ten nodes d). 

General quadrilateral 

The three-node flat triangular element (Figure 4a) is the simplest two-dimensional 

element and it enjoys the distinction of being the first and most often used ba-

sic finite element. The reason is that an assemblage of triangles can always 

represent a two-dimensional domain of any shape. A simple but less useful two-

dimensional element is the four node rectangle (Figure 4b) whose sides are parallel 

to the global coordinate system. This type of element is easy to construct au-

tomatically by computer because of its regular shape, but is not well suited for 

approximating curved boundaries. 

In addition to the simplest triangle and the rectangle, other common two-
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dimensional elements are six-node triangle (Figure 4c), and the general quadri-

lateral (Figure 4d). Quadrilateral elements may be formed directly or developed 

by combining two or four basic triangle elements as shown in Figure 5. 

Figure 5. The quadrilateral element formed by combining triangles 

Other types of elements that are actually three-dimensional but described by 

only one or two independent variables are axisymmetric or ring-type elements 

(Figure 6). These elements are useful when treating problems that possess axial 

symmetry in cylindrical coordinates. 
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(a) 

z 

(b ) 

Figure 6. Examples of axisymmetric ring elements 

a). One-dimensional ring element b). Two-dimensional triangular ring element 

The four-node tetrahedron element 1ll three-dimensions (Figure 7a) is the 

simplest and the most useful element in three-dimensional problems. Another 

simple three-dimensional element is the right hand prism shown in Figure 7b. A 

general hexahedron (Figure 7c) may be constructed from five tetrahedra. Ele-

ments which are constructed with curved boundaries are known as isoparametric 

elements . These, some examples of which are shown in Figure 8 are most useful 

when it is desirable to approximate curved boundaries with only a few elements. 

They have been useful in the solution of three-dimensional problems, where it is 

necessary to reduce the computations by using fewer elements. 
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(e) 

Figure 7. Three dimensional elements 

a). Tetrahedron b). Right prism c). General hexahedron 

y 
y 

4------_x -+---------1- X 

(a) (b) 

y 

I~ 
• x I .. x 

(e) (d) 

Figure 8. Common isoparametric elements 

a). Triangle b). Quadrilateral c). Tetrahedron d). Hexahedron 
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Basic Element Shape Functions 

Interpolation Functions - Polynomials 

Although it is conceivable that many types of functions could serve as inter-

polation functions, only polynomials have received widespread use. They can be 

integrated or differentiated without difficulty. 

One independent variabLe 

In one dimension a general complete nth-order polynomial may be written as 

T~l) 

Pn(X) = L QiXi 
i=O 

(l.18) 

where the number of terms in the polynomial is T~1) = n + l. For n = 1, TP) = 2 

on. 

Two independent variables 

In two dimensions a complete nth-order polynomial may be written as 

T~2) 

Pn(x ,y) = L Qkxiyj" i + j S; n (l.19) 
k=O 

where the number of terms in the polynomial is TJ2) = (n + 1)(n + 2)/2. For 

n = 1, T1(2) = 3 and P1 (x,y) = Q1 + Q2X + Q3Y; for n = 2, TP) = 6 and 

array of terms in a complete polynomial in two-dimensions. 
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name no.of terms 

constant 

x linear 

2 I 2 quadratic 6 x xy y 

3 2 ! 2 3 cubic 10 x x y xy y 

4 3 22 3 4 . quartic 15 
x x y x y xy y 

4 3 2 I 23 4 5 
quintic 21 

x5 x y x y i x y xy y 

42 3 3 24 5 6 . 
28 5 x y 

x[ 

x y xy y --hexadlc 
x y 

6 5 2 43 3 4 2 5 6 7 r 36 1 xy Y - sep IC 
X X Y X Y X Y X Y X Y 

Figure 9. Array of terms in a complete polynomial in two dimensions 

Three independent variables 

In three dimensions a complete nth-order polynomial may be written as 

T~3) 

~ i j k Pn(x, y, z) = ~ a/x y z , i + j + k ~ n (1. 20) 
/=0 

where the number of terms in the polynomial is 

T(3) = (n + l)(n + 2)(n + 3) 
n 6 (1.21) 

and so on. The array of terms in a complete polynomial in three dimensions is 
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shown in Figure 10. 

name no. of terms 

---------constant 

-------linear 4 

-----quadratic 10 

---cubic 20 

34 

Figure 10 . Array of terms in a complete polynomial in three dimensions 

Two-Dimensional Problems 

Elements for CO problems 

The number of elements capable of satisfying Co continuity is infinite since 

nodes and degrees of freedom may be added to the elements to form ever in-

creasing higher-order elements. In general, as the complexity of the elements is 

increased by adding more nodes and more degrees of freedom and using higher-

order polynomials, the number of elements and total number of degrees of freedom 

needed to achieve a given accuracy in a given problem are less than would be 

required if simpler elements were used. None the less, this does not suggest that 
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higher-order elements always be used in preference to lower order elements. 

There is no general guideline for choosing the optimum element for a given 

problem, because the type of element that yields good accuracy with low comput­

ing time is problem dependent. For Co problems, elements that require polyno­

mials of order greater than three are rarely used, since little additional accuracy 

is gained for the extra effort expended. If a complicated boundary is to be mod­

eled, it is more advantageous to use a large number of simple elements than a 

few complex elements. 

Triangular elements 

Figure 11 shows a portion of the family of higher-order elements obtained by 

assigning additional external and interior nodes to triangles. Each element in 

this series has a sufficient number of nodes to specify a complete polynomial of 

the order necessary to give Co continuity. The compatibility, completeness and 

geometric isotropy requirements are satisfied. 

For the three-node triangular element, the linear variation of <I> is written as 

<I>(x,y) = 0'1 + 0'2X + 0'3Y = [1 x y]{O'} = [P]{O'} (1.22) 

and by evaluating this expression at each node, we obtain 

{<I>} = [G]{O'} (1.23) 
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According to the procedure of deriving interpolation functions, this can be 

written as 

cP = [P][G]-l {a} = [N]{ cP} 

[N] = [P][G]-l 
(1.24 ) 

where the elements of [N], Ni = Li are the area coordinates for the triangle. 

y 

y 

Figure 11. Linear and higher order triangular elements with cP specified at nodes 

(the nodes along any line are equally spaced) 

Rectangular elements 

Interpolation functions for rectangular elements with sides parallel to the 

global axes are easily developed using Lagrangian interpolation concepts. For 

example, the four interpolation functions for the four node rectangle are derived 
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In Figure 12. After the local coordinates are defined In Figure 12, it can be 

written as 

(1.25) 

where 

(1. 26) 

etc 

and the Li are the Lagrange polynomials. Interpo lation functions formed as 

products in this way satisfy the requirements of possessing unit value at the node 

for which they are defined and zero at the other nodes. 

( 1 1) - (1 1) 

.L- 0 
.4 3 

a --t---+ 
h 

I-----X, : .. 
1 
h 

1 i 2 

(-I. - J) (1. -1 

Y, 
E = (x - x , )/0 

l) = (Y - )~ )/b 

~--------------~----------+x 

Figure 12. Rectangular element showing the relation between local and global 

coordinates 
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Elements for C1 Problems 

Constructing two-dimensional elements that can be used for problems requir-

ing continuity of the field variable <p as well as its normal derivative ~ along 

element boundaries is far more complicated than constructing elements for Co 

continuity alone. The field variable <p and ~ are uniquely specified along the 

element boundaries by the degrees of freedom assigned to the nodes along a par-

ticular boundary. According to Felippa & Clough [76], the difficulties arise from 

the following principles: 

1. The interpolation functions must contain at least some cubic terms, because 

the three nodal values <p, * and ~ must be specified at each corner of the 

element. 

2. For non rectangular elements C1 continuity requues the specification of 

1 h · d 1 1 aA. aA. a2 A. a2 A. a2 A. at east t e SIX no a va ues, <p, Fx' ~, ~, 7iift and ~. at the corner 

nodes. For a rectangular element with sides parallel to the global axes it is 

. . 2 

necessary to specify at the corner nodes only 4>, *, ~ and ;xty · 

Three Dimensional Elements 

Elements for CO problems 

Constructing three-dimensional elements to give Co continuity at element 

interfaces follows immediately from a natural extension of the corresponding el-

ements in two dimensions. Instead of requiring continuity of the field variable 
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along the edge of the element, continuity is required on the faces of the elements. 

Hexahedral elements 

The concept of Lagrange and Hermite interpolation for two-dimensional el­

ements extend also to hexahedral elements in three dimension. The first three 

members of the Lagrange hexahedral family (right prisms) are shown in Figure 

13 . Interpolation functions for this family of elements may be written as the prod­

uct of the Lagrange polynomials in all of the orthogonal coordinate directions ~, 

TJ, (, (origin at the centroid of the element). Hence for node k 

(1.27) 

where it is understood that each function Lk is properly formed to account for 

number of subdi visions (nodes) in the particular coordinate direction: Zienkiewicz 

et al [71] generated the series of such elements shown in Figure 14. The inter­

polation functions for these serendipity elements are incomplete polynomials and 

are derived by inspection. 
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(a) 

(b) 

( c) 

.; spec ified at 
the nodes 

Figure 13. Some hexahedral elements of the Lagrange family 

50 



8 ncxles 
( linear ) 

20 nodes 
( Q uadr atic ) 

32 ncxles 
( cubic) 

Figure 14. Hexahedral elements of the serendipity family containing only 

exterior nodes 
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Linear element 

Equation 8-node linear element shown in Figure 14 is written as 

(1.28) 

Higher-order elements of this family are seldom considered because interior 

nodes must be introduced to continue the construction of the interpolation func-

tions. 

Triangular prisms 

Modeling complex-shape, three-dimensional solution domains with hexahe-

dral elements can cause some difficulties because these brick-shaped elements 

may not fit the boundary. Rather than using a large number of small bricks, 

it is advantageous to mix hexahedra and triangular prisms to obtain a good fit. 

Lagrange hexahedra or serendipity hexahedra are shown in Figure 15. 

For the quadratic prism of the serendipity type (Figure 15b); 

Corner nodes: 

(1.29) 

Midsides of triangles 

(1.30) 
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Midsides of rectangles 

(1.31 ) 

(aJ 

Figure 15. Families of triangular prism elements. 

a) . One member of the Lagrange b) . Two members of the serendipity family. 

1.2.6 Elasticity Problems 

An Introduction to Elasticity Problems 

Most applications of the finite element method to solid mechanics problems use a 

variational principle to derive the necessary element properties or equations. The 

three most commonly used variational principles are the principle of minimum 

potential energy, the principle of complementary energy and Reissner's principle. 
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Along Unknown 

Variational Inside Interclemcnt in final 

Model principle each clement bounoary <.:qua ti ons 

Minimum Continuous Displac<.:l1lcnt Noda l 

Compatible potential displaceml!nts co l1lpat ibil i ty d i,plac<.:m<':lll, 

energy 

Minimum Continuous and Equilibrium Strl!ss 

Equilibrium complementary equilibrating boundary paramctcrs 

energy stresses tractions 

Gen~ralizcd nodal 
d Isp laccmen ts 

Modified Continuous and Assuml!d Noda l 

Hybrid I complementary equ ilibrating com patibk d isplaccl1lc n ts 

energy stresses d isplaccl1l<.:n ts 

Modified Continuous Assuillcd Displacement 

Hybrid 2 potential displacements equilibrating param<.:tcrs allo 

energy boundary tractions bo undary rorces 

Modified Continuous Assumed boundary 

Hybrid 3 potential displaccl~nents tractions ror each Noda l 

energy element and assumcd o isplacemen ts 
boundary displacl!lllcnts 

Reissner 's Continuolls Combinations Combination 

Mixed principle stresses and or bounoary di splace- or bOll ndary d i,-

(Plate-bending displacements ments and tractions placements and 
problcms) tra<.:ti ons 

. --- - ---- ---- -- -.- - - --

Table 1. Classification of finite element methods in elasticity. 

When the potential energy principle is used, the form of the displacement field 

within each element must be assumed, This is sometimes called the displacement 

method or the compatibility method in the finite element analysis, When the 

complementary energy method is used, the form of the stress field IS assumed 
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and this is called the force method or equilibrium method. Pian and Tong [78] 

tabulated (Table 1) these and other variational bases of the finite element method 

in solid mechanics. For particular problems, one principle may be more suitable 

than another, but for a large class of problems the displacement method is the 

simplest to apply and the most widely used. 

General Formulation for Two-dimensional Problems 

The variational principle 

The potential energy of a two-dimensional elastic body acted upon by surface 

and body forces and in equilibrium can be written as: 

II(u,v) = t I IA[l8J [B]T[C]{8} - 2l8J [B]T[C]{E~}]tdA 
- I IA l8 J tdA - Ie! [T*]{ 8}dS 

where t = t(x, y) is the thickness of the body, 

(1.32) 

{8} = {~~::~n : column matrix of the components of the displacement field 

measured from some datum, 

a/ax 0 

[B]= o a / ay is the matrix relating strains and displacements, 

a/ax a/ay 

[C] is the material stiffness which takes different forms according to the prob-

lem considered, 

{E~} is the column vector of initial strains which may be due to nonuniform 
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temperature distributions, shrink fits etc. 

IF* J = l X*, Y* J are the body force components due to gravity, centrifugal 

action, and the like, 

l T* J = l T;, T; J are the boundary traction components acting on portion C1 

of the boundary; these are defined per unit length for a unit thickness. 

The asterisk superscript denotes known quantities. At equilibrium the dis-

placement field (u, v) in the body is such that the total system potential energy 

assumes a minimum value. 

After using a suitable variational principle, general finite element equations for 

the elastic continuum may be developed. First the continuum will be subdivided 

into elements of some shape, then the form of displacement function is assumed 

over each element. For the general formulation, it is not needed to specify the 

type of element nor the particular displacement function. Firstly the equations 

for the general case can be developed. Subsequently they are specialised for 

particular cases. 

Requirements for the Displacement Interpolation Functions 

It is assumed that the area A (Figure 16) is divided into M discrete elements. 

The potential energy of the elements is the sum of the potential energies of all 

elements provided that the interpolation functions expressing the variation of 

the displacement within each element satisfy the compatibility and completeness 
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requirements. In other words to write 

M 

II(u,v) = LII(e)(u,v) (1.33) 
e= l 

and to be assured of convergence as element mesh size decreases, the interpolation 

must satisfy the compatibility and completeness requirements. 

y. u «z. yl : thic,"e~~ 01 body 

r" = ~ l:rf a : e trac t.ens 

A'E a A 

~ F" = b:>dy forces 

r" Clo V CI /,= C) 
L-________________________ --+I U 

Figure 16. Arbitrary two-dimensional elastic body experiencing surface 

tractions and body forces. 

For plane stress and plane strain as well as three-dimensional elasticity prob-

lems polynomial interpolations satisfy the compatibility and completeness re-

quirements when the polynomials contain at least a constant and linear terms. 

To express II(e)(u, v), which is the potential energy function for one element, 

in terms of discrete values of displacement components, it is assumed that within 

each element having T nodes, the displacement field is approximately related 
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to its nodal values by r interpolating functions N;(x, y). Thus the distributed 

displacement field can be expressed as 

{8}(e) = {U(X,y)}(e) = {L:~=1 Ni(X,y)Ui} = {LNJ {U}}(e) = [N]{8}(e) (l.34) 
v(x,y) L:i=lNi(x,Y)Vi LNJ {v} 

where {8}(e) denotes the element nodal displacements. 

Element Stiffness Equations 

Since the displacement field for the element has been expressed in terms of known 

interpolation functions and unknown displacements, the potential energy func-

tional will be similarly expressed. Thus for element (e), the discretised functional 

IS 

or more explicitly 

II(e)( {8}(e)) = ~ I IA(e) [L8J (e) [BjT(e)[C](e)[B](e){ 8}(e) 

-2 L 8J (e) [B]T(e)[C](e){ to}(e)]t(e)dA(e) 

- I IA(e) L F* J (e) {8} (e)t(e) dA (e) 

- Ie(e) LT*J(e) {8}(e)ds(e) 
1 

(l.35) 

(l.36) 

At equilibrium, the potential energy of the system assumes a minimum value 
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when the first variation of the functional vanishes, that is 

M 

8II(u,v) = I: 8II(e)(u, v) = 0 (1.37) 
e=l 

where 

(1.38) 

But the 8Ui and the 8Vi are independent variations and equation (1.38) is 

satisfied only if 

8II(e) 8II(e) 
-c- = -c- = 0, i = 1,2, ... ,r 

VUi VVi 
(1.39) 

for every element (e) of the system. 
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Equation (1.39) expresses the condition we use to find the element equations. 

A typical equation in submatrix form is 

l[k]Ql[k]Q2 ... [k]Qp ... [k]qr J = {F}\ q = 1,2, ... ,; (1.40 ) 

where p = 1,2, ... ,; and; is the number of element nodes. A typical 2 x 2 

submatrix [k]Qp denotes the stiffness relationship between nodes q and p and 
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{FP is the resultant external load vector at node q. 

o~~;) /o~~:) = {O} = f fA(dB]~(e)[c](e)[B]~e){8}qt( e)dA(e) 

- f fAte) [B]~(e)[c](e){ toHe)t(e)dA(e) (1.41) 

- f fAte) Nq{F*He)t(e)dA(e) - fc~e) Nq{T*He)ds~e) 

where 

{oJ' = {::} (1.42) 

is the column vector of the two displacement components at node q. 

8Nq/8x 0 

o 8Nq/8y q=l,2, .. . ,T (1.43 ) 

The definition of [B]~e) in equation (1.43), for a two-dimensional elastic follows 

from the definitions of the three nonzero strain components [x, [y, and IXY ' Since 

the traction vector {T*} is a boundary effect, the last term of equation (1.41) 

applies only if element (e) lies on the boundary where traction is specified. 

Equation (1.41) is the force-displacement relation for node q. In matrix no-

tation it can be written as 

(1.44) 
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where 

(1.45 ) 

is the initial force vector at node q, 

( 1.46) 

is the nodal body force vector and 

{FTP = J L(e) Nq(x , y){T* }~e)ds~e ) 
1 

(1.4 7) 

is the nodal force vector due to surface loading (present only for boundary ele-

ments) . 

{F}q = resultant external load vector at node q ( 1.48) 

Equation (1.43) expresses the stiffness submatrices associated with a typical 

node, but since each element has r nodes , the complete stiffness for the element 
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is a 2r x 2r matrix of the form 

[J(](e) = 

[kp 1 [kP2 

[kJ21 [k]22 

(1.49) 

The arrangement of terms in the element stiffness matrix implies that the 

column matrix of discrete nodal displacements for the elements has the form 

Ul 

Vl 

{8F 
U2 

{8}(e)= 
{8P 

V2 (1.50) 

thus the force-displacement equations for the element take the standard form 

(1.51) 
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where 

{FP 

{F}(e) = (1.52) 

It is important to note that {8} (e), defined by equation (1.50), is the col-

umn vector of discrete nodal displacements for element (e), whereas {8} (e) is the 

column vector of the continuous displacement field within the element. 

The System Equations 

Equation (1.49) with its components given by equation (1.11) is the general form 

of the element stiffness matrix for two-dimensional elasticity problems. The sys-

tem equations have the same form as the element equations except that they are 

expanded in dimension to include all nodes. Hence, when the discretised system 

has m nodes, the system equations become 

(2m x 2m) (2m x 1) 
[I<] {8} 

(2m X 1) 
{F} (1.53) 

where {8} is a column vector of nodal displacement components for the entire 

system and {F} is the column vector of the resultant nodal forces. 

64 



For the displacement formulation either force or displacement is known in 

every node of the system. If body forces and initial strains are absent, the vector 

{F} has zero components except for the components corresponding to nodes 

where concentrated external forces or displacements are specified. 

For steady-state problems, once the system equations are solved for the nodal 

displacements, the basic relations between stress and strain, and strain and dis­

placement, may be defined to find the stress at any point in any of the elements. 

A general equation for the stress components, including stresses due to displace­

ments and initial strains, can be written as 

(1.54) 

If any initial stresses are present, these must also be added. 

1.2.7 Bending of Thin Plates: A C1- Continuity Prob­

lem 

In the classic theory of plates, certain approximations are introduced initially to 

simplify the problem to two dimensions. These assumptions concern the linear 

variation of strains and stresses on lines normal to the plane of the plate. 50-

called exact solutions of plate theory are only true if these assumptions are valid. 

This is so when the plates are thin and the deflections small. In the following, 

the starting point will be based on the classical plate theory assumptions. 
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The state of deformation of a plate can be described by one quantity. This 

is the lateral displacement w of the midplane of the plate. Continuity condit ions 

between elements have to be imposed not only on this quantity, but also its 

derivative, in order to ensure that the plate remains continuous, and does not 

'kink'. If kinking occurs, the second derivative or curvature becomes infinite and 

certain infinite terms occur in the energy expression. At each node, therefore, 

three conditions of and continuity will usually be imposed . 

Determination of suitable interpolation functions is thus a more complex task. 

It is, however, possible to find interpolation functions which, while preserving 

continuity of w, may violate its slope continuity between elements, although not 

at the node where such continuity is imposed. If such chosen functions satisfy the 

constant strain criterion, and in addition pass the patch test, then convergence 

will still be found. These are termed n01J,-conforming interpolation functions [75]. 

The simplest type of element shape is thus the rectangle. The problem of 

thin plates, where the potential energy function contains second derivatives of 

unknown functions, is characteristic of a large class of physical problems associ­

ated with fourth order differential equations. 

Displacement Formulation of the Plate Problem 

The displacement of a plate, under the usual thin plate theory is uniquely specified 

once the deflection, w, is known at all points. 
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In general 

w = Na(e) (1.55 ) 

in which the interpolation functions are dependant on Cartesian coordinates x, 

y, and a(e) list the element (nodal) parameters. 

By defining the strain and stress carefully, the product of the two will corre-

spond to the internal work requirements. Thus, the strain is defined as 

_82w 
ax2 

E= a2w (1.56) - ay2 

282w 
8xy 

The corresponding stresses are the bending and twisting moments per unit lengths 

in the x and y directions: 

a= (1.57) 

Since the true strains and stresses vary linearly across the plate thickness, 

these can be found from such expressions as: 

12Mx 
a = --z etc 

t3 ' 
(1.58) 

where z is measured from the plate midplane, and t is the thickness of the plate. 
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As the strains are defined by second derivatives, the continuity criterion requires 

that the interpolation functions be such that both wand its slope normal to the 

interface between elements be continuous. 

The criterion of constant strain requires that any constant arbitrary value of 

second derivative should be reproducible within the element. To ensure at least 

an approximate satisfaction of slope continuity, three displacement components 

are considered as nodal parameters: the first the actual displacement Wn in the 

z direction, the second a rotation about the x axis (Bx)n, and the third about 

the y axis (By)n. Figure 17 shows these rotations with their positive directions 

determined by the right-hand screw rule. 

r-------~x 

z 

Forces and corresronding 
disrlacemcnlS 

Figure 17. A rectangular plate element 
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It is obvious that the slopes of wand the rotation are identical (except for 

the sign), and thus 

Wi Wi 

ai = Bxi - (~;) i (l.59) 

Byi (~;)i 

The nodal 'forces' corresponding to theses displacements can be interpreted 

as a direct force and two couples 

Jwi 

Ii = JOxi (l.60) 

JOyi 

as shown in Figure 17. 

It follows immediately that 

(l.61 ) 

2L N · Bxy t 

The elasticity matrix D is given by 

a = M = D(c - co) + ao (l.62) 
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For an isotropic plate 

1 v 0 

D = 12(1 _ V 2 ) V 1 o (1.63) 

o 0 (1 - v)/2 

and for an orthotropic slab with principal directions of orthotropy coinciding with 

the x and y axes, four constants are needed to define the behavior: 

(1.64 ) 

o 0 Dxy 

Clearly, for a most complete case of anisotropy, six constants at most will 

need to define D since the matrix has to be symmetric. 

Rectangular Elements with Corner Nodes 

Interpolation functions 

Consider a rectangular element of a plate ij kl coinciding with the x - y plane 

as shown in Figure 17. At each node, displacements an are introduced. These 

have three components: the first a displacement in the z direction, W n , the second 

a rotation about the x axis (Ox)n, the third a rotation about the y axis (Oy)n . 

The nodal displacements are defined by equation (1.59) while the element 
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displacement will, as usual, be given by the listing of the nodal displacements: 

a · , 

a · J 
(1.65 ) 

A polynomial expression is conveniently used to define interpolation functions 

in terms of the twelve parameters. Certain terms must be omitted for a complete 

fourth order polynomial. Expressing 

(1.66) 

has some advantages. In particular; along any x = const or y = const line, 

the displacement w will vary as a cubic. The element boundaries or interfaces are 

composed of such lines. As a cubic is uniquely defined by four constants, the two 

end values of slopes displacements at the ends of the boundaries will therefore 

define the displacements along this boundary uniquely. As such end values are 

common to adjacent elements, continuity of w will be imposed all along any 

interface. This function can be shown to be non-conforming. 
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The constants Ql to Ql2 can be evaluated. For instance 

(1.67) 

etc. 

In matrix form 

(1.68) 

where C is a 12 x 12 matrix depending on the nodal coordinates and Q is a vector 

of the twelve unknown constants. Thus 

(1.69) 

It is now possible to write the expression for the displacement in the standard 

form as 

(1. 70) 

where 

p _ (1 2 2 3 2 2 3 3 3) - ,X,Y,X ,XY,Y ,x , x y,XY ,y ,x y,xy (1.71) 
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For any node, in terms of normalised coordinates 

with 

Ni = H(o + 1](170 + 1)(2 + ~o + 170 - e -17
2
), 

a~i(~O + 1)2(~0 - 1)(170 + I), 

b17i(~O + 1)(170 + 1)2(~0 - 1)] 

~=(x-xc )/a 

~=(Y-Yc)/b 

eo = e·ei 

170 = 17·17i 

(1. 72) 

(1.73) 

The form of B is obtained directly from equations (1.66) or (1.70) using 

equation (1.61) . Thus 

- 2a4 -6a 7 x - 2agy -6allxy 

c= - 2a6 -2agx - 6alOY -6a12Y (1.74) 

2as 4agx 4agY 6allX2 6a12y2 

and 

c = Qa = QC-1a(e) (1.75) 

and thus 

B = QC- 1 (1. 76) 
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in which 

o 0 0 -2 0 0 -6x -2y 0 o -6xy o 

Q = 0 0 0 0 0 -2 0 o -2x -6y o -6xy (1. 77) 

o 0 0 0 2 0 o 4x 4y o 

Note that the displacement function chosen permits a state of constant strain 

(curvature) to exist. This satisfies one of the criteria of convergence. 

Stiffness and Load Matrices 

The stiffness matrix relating the nodal forces (given by a lateral force and two 

moments at each node) to the corresponding nodal displacement is 

f{( e) = J 1 BT DBdxdy 
vee) 

(1. 78) 

Substituting equation (1.76) and taking t as constant within the element, 

(1. 79) 

An explicit expression for the stiffness matrix f{ has been evaluated for the 

case of an orthotropic material and the result is given in Table 2. 
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......... -~ 

I 
K = Wab L{DxK , +D,.K2+ D ,K]+Dx,.K.}L 

with 

m-{~} 
60 b2 
0 0 -2 

30 0 20 
P = ~ 

30 0 15 60 Symmetrical 

0 0 0 0 0 

K, = p-2 15 0 10 30 0 20 
-60 0 -30 -30 o - 15 60 

0 0 0 0 0 0 0 0 
30 0 10 15 0 5 - 30 0 20 

-30 o -15 -60 0 -30 30 0 -15 60 
0 0 0 0 0 0 0 0 0 0 0 

15 0 5 30 0 10 - 15 0 10 -30 0 20 

60 a2 

-30 20 p2 = b2 
0 0 0 Symmetrical 

-60 30 0 60 
-30 10 0 30 20 

K, = p' 
0 0 0 0 0 0 

30 - 15 0 - 30 - 15 0 60 
-15 10 0 15 5 0 - 30 20 

0 0 0 0 0 0 0 0 0 
- 30 15 0 30 15 0 - 60 30 0 60 
- IS 5 0 15 10 0 - 30 10 0 30 20 

0 0 0 0 0 0 0 0 0 0 0 0 

30 
- 15 0 

15 -IS 0 Symmetrical 
-30 o -15 30 

0 0 0 15 0 

K, = -15 0 0 15 15 0 
-30 IS 0 30 0 0 30 

IS 0 0 0 0 0 - 15 0 
0 0 0 0 0 0 -15 15 0 

30 0 0 -30 -15 0 - 30 0 15 30 
0 0 0 -15 0 0 0 0 0 15 0 
0 0 0 0 0 0 15 0 0 -IS -IS 0 

Table 2. Stiffness matrix for a Rectangular element 

The corresponding stress matrix for the internal moments of all the nodes is 

given in Table 3. 
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6p - ' Ds 
- SaD, ShDs -6pD, -4aD, 0 - 6p - ' Ds 0 4bDs 0 0 0 

+6pD, 

6pD, 
- SaD, ShD, - 6pD, -40D, 0 -6p - 'D, 0 4hD, 0 0 0 

+6p-' D, 

- 2Ds)' 4bDs, -40Ds). 2Ds, 0 4aDs, 2Ds, - 4bD" 0 - 2Ds, 0 0 

-6pD, 4aD, 0 6p-' Ds 
SaD, SbDs 0 0 0 -6p - ' Ds 0 4bDs + 6pD, 

- opD, 40D, 0 
6pD, 

SaD). SbD, 0 0 0 -6p-' D, 0 4bD, 
+ 6p - ' D, 

- 2D s, 0 - 4aDs). 2 DsJ. 4bD" 4aD" 2D" 0 0 -2D" - 4bD" 0 

-6p - ' D, 0 - 4bD, 0 0 0 +6p - 'D, - S D 
6pD, a, -SbD, -6pD, -4aD, 0 

-6p - ' D, 0 -4bD, 0 0 0 
6pD, 

+ 6p - ' D, -SaD, -SbD, -6pD, -4aD, 0 

- 2DS )' 4hD,.. 0 2Ds, 0 0 2D" - 4bD" -4aDs, -2D, 0 4aDs, 

0 0 0 -6p - ' D, 0 - 4bD, - 6pD, 4aD, 0 + 6p - ' Ds 
6pD, SaD, -SbDs 

0 0 0 -6p - ' D, 0 -4bD, -6pD, 4aD, 0 
6pD, 

SaD, -SbD, + 6 - 'D P , 

-2D" 0 0 2D" 4bD" 0 2Ds, 0 -4aD" -2D" -4bD" 4aD" 

Table 3. Rectangular element of Figure 17. 

If a distributed load q acts per unit area on an element in the direction of w 

then the contribution of these forces to each of the nodes is 

Ji = - J J NT qdxdy (1.80) 

or by equation (1.70) 

Ji = _C-IT J J pT qdxdy (1.81 ) 
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Quadrilateral and Parallelogram Elements 

The rectangular element is not easily generalised into the quadrilateral shape . 

Transformation of coordinates can be performed, but generally results in the vio­

lation of the constant curvature criterion . Thus such elements behave badly, but 

convergence may still occur providing the patch test is passed in the curvilinear 

coordinates. 

Only for the case of the parallelogram is it possible to achieve constant cur­

vature exclusively using functions of ~ and "1. For a parallelogram the local co­

ordinates (Figure 18) can be related to the global coordinates by an explicit 

expressIOn 

~ = (x - y cot 0.) / a 

"1 = csco./b 
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)' 

Figure 18. Parallelogram element and skew coordinates 

1.3 Buckling of Structures 

1.3.1 Introduction 

In certain instances, like when subjected to in-plane loads, a structure may have 

induced within it critical compressive stresses which lead to the development of 

large distortions. Such structures are said to buckle, or become unstable, at these 
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critical loads. 

The mathematical formulation of such problems are termed eigenvalue prob-

lems, as the following example illustrates. 

1.3.2 The Mathematical Formulation of a Typical Buck-

ling Problem - Pin Ended-Struts 

Consider a pin-ended strut subject to an axial thrust P as shown Figure 19. 

p p 

ct c -- - ~ y r-: -~y x 

-i, L 
EI I f l 

zt v 

L 
z 

I 

. I 

p 
p 

Figure 19. Flexural buckling of a pin ended strut under axial thrust. 

Suppose L is the length of the bar and El, its uniform flexural stiffness for 

bending in the y - z plane. The bending moment at any section of the bar is 

then [79] 

M=Pv (1.83) 
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where v is the deflection. The moment-curvature relation for the beam at any 

section is also given by 

(1.84 ) 

provided the deflection v is small. Thus 

(1.85 ) 

Consequently 

(1.86) 

Thus 

(1.87) 

which is the Euler-Bernoulli eigenvalue equation, with the eigenvalue ,\ = P. 

1.3.3 Solution of the Eigenvalue Problem 

The eigenvalue problem can typically be expressed in the general form: 

(A - >'I)X = 0 (1.88) 
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where I the identity matrix, and X the eigenvector. This can be solved for A by 

determining the non-trivial values of A for 

IA - All = 0 (1.89) 

1.4 Composite Materials 

1.4.1 Introduction 

Composites are produced when two or more materials are joined to give a combi­

nation of properties that cannot be attained in the original materials. Composite 

materials may be selected to give unusual combinations of stiffness, strength, 

weight, corrosion resistance, hardness or conductivity. 

Fiber reinforced composites incorporate strong, stiff and brittle fibers into a 

softer, ductile matrix. The matrix material transmits the force to the fibers, which 

carry most of the load. The reinforcing fibers may be introduced into the matrix 

in a number of orientations. Short, randomly orientated fibers with small aspect 

ratios are easily introduced into the matrix, and result in relatively isotropic com­

posite behaviour. Unidirectional arrangement of long fibers produces anisotropic 

behaviour, with particularly good strength and stiffness parallel to the fibers. 

One of the unique characteristics of fiber-reinforced composites is that their 

properties can be tailored to meet different loading conditions. Long continuous 
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fibers can be introduced in several directions within the matrix, and this is the 

basis for laminated composite structures. Such laminates are composed of layer 

upon layer, within each of which the fibers are arranged at a particular discrete 

orientation. The resulting mechanical properties can be extremely advantageous, 

and indeed, laminated composite materialsa:~e used with increasing frequency in 

various technical applications, particularly in the fields of automotive, aerospace 

and marine engineering. This is primarily due to the high specific strength and 

stiffness values that these materials offer. 

1.4.2 General Theory of Composite Materials 

Unidirectional Composites 

The fundamental stress-strain relationships, as for isotropic materials, are [80]: 

(l.90) 

where Ex and Ey are the strains in the x and y directions due to a stress in the 

x direction ax; Ex is the longitudinal Young's modulus and Vx the longitudinal 

Poisson's ratio. The shear strain is given by 

(l.91) 
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where Es is the longitudinal shear modulus and O"s, the shear stress. By applying 

the principle of superposition, the following is obtained: 

- ~ _-L 
Ey - E:r 0" x Ey 0" y 

(1.92) 

Solving for the stresses in terms of the strain results in: 

(1. 93) 

where m = [1- VXVyj-l. Components of modulus Qjj are introduced in order to 

simplify the notation: 

O"x Qxx Qxy 0 Ex 

O"y QyX Qyy 0 Ey (1.94 ) 

o"s 0 0 Qss Es 

where 

Qxx = mEx Qyy = mEy Qyx = mVxEy 

(1.95) 
Qxy = mVyEx Qss = Es 
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Symmetric Laminates 

Inplane stiffness 

Multidirectional laminates consisting of plies with arbitrary orientations may 

also be described by components of modulus. A multidirectional laminate is 

symmetric if there is symmetry around its midplane, or z = 0 plane, where z 

is the dimension through the thickness of the laminate. The upper half of the 

stacking of layers is thus the same as the lower half, except that the sequence is 

reversed. This condition is may be written as 

O( z ) = O( -z ) (1.96) 

The derivation of the stress-strain relation for multidirectional laminates also 

requires the following assumption: 

(1.97) 

that is, the ply material modulus must also be symmetric with respect to the 

midplane of the laminate. In addition, the strain across the laminate thickness is 
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taken to remain constant. The assumed strain components are then denoted by: 

(1.98) 

Since the modulus for different layers varies, the actual stress across the laminate 

is not constant. An average stress is thus defined across the laminate, as 

- - 1 Jh/2 d 
(Jl - h -h/2 (Jl Z 

- - 1 Jh/2 d 
(J2 - h -h/2 (J2 Z (1.99) 

- - 1 Jh/2 d 
(J6 - h -h/2 (J6 Z 

Substituting the stress-strain relation for any layer, gives: 

(1.100) 

and using the constant strain assumption 

(1.101) 
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where, for symmetric laminates 

-4Q ss COS2 () sin 2 
() 

This can be written as 

(1.102) 

and similarly 

(1.103) 

where 

All = J Qlldz 

(1.104 ) 
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and 

Al2 = A2l 

Al6 = A6l 

A 26 = A62 

(1.105) 

where the bending stiffness Aij is the equivalent inplane modulus for a multidi-

rectionallaminate. Defining a stress resultant Ni in terms of the average stresses 

which may be written as 

Nl = hih 

N2 = hif2 

N6 = hif6 

Nl = All E~ + Al2E~ + A l6Eg 

N2 = A2l E~ + A22E~ + A 26 Eg 

N6 = A6l E~ + A62E~ + A66 Eg 

These stress-strain relations are valid for inplane deformations. 

Flexural stiffness 

(1.106) 

(1.107) 

The flexural stiffness for the laminate may be derived by using the moment­

curvature relation which describes the flexural behaviour. To take the place of 

the stress resultant, a moment is defined as follows 

(1.108) 
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In terms of the components of modulus, this becomes 

(1.109) 

It can be shown that the strain can be written in terms of the curvature k, that 

IS 

and equation (1.109) becomes 

These curvatures are independent of z thus 

and 

M2 = D21kl + D22k2 + D2Sks 

Ms = DSlkl + DS2k2 + Dssks 
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(1.111) 

(1.112) 

(1.113) 



where the flexural stiffnesses are given as 

and 

Coupling modulus 

Dll = J Qllz2dz D22 = J Q22z2dz 

D12 = J Q12Z2dz D66 = J Q66Z2dz 

D I6 = J Q16Z2dz D26 = J Q26Z2dz 

D12 = D21 

D16 = D6I 

D26 = D62 

(1.114) 

(1.115) 

General laminates are usually unsymmetric, and their key feature is the pres­

ence of an additional degree of coupling. The basic behaviour of this class of 

laminates is governed by the strain distribution across the thickness of the lam­

inate. Combining the previously assumed strain for both in-plane and flexural 

deformation, the following is obtained: 

El(Z) = E~ + Zkl 

E2(Z) = E~ + Zk2 

E6 ( z) = E~ + Z k6 
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Substituting this into the definition of the stress resultant: 

NI = I(Qll[c? + zkll + QI2[Cg + Zk2l + QI6[C~ + Zk6])dz 

= I Qlldzt? + I Q12dztg + I Ql6dzt~ 

Similarly 

+ I Qllzdzkl + I Ql2Zdzk2 + I Ql6Zdzk6 

= AllC~ + Al2 cg + A16C~ + Bllkl + Bl2k2 + B16 k6 

N2 = A21 c? + A22 cg + A26C~ + B21 kl + B22k2 + B26k6 

N6 = A6I C? + A62 cg + A66C~ + B61 kl + B62k2 + B66k6 

and the components of the new coupling modulus are 

The Bij are also called the 'torsional stiffnesses'. 
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1.5 Buckling of Laminated Rectangular Plates 

1.5.1 Governing equations and boundary conditions 

Consider a laminated rectangular plate of length a, width b and t hickness H 

laying in the x, y, z plane, as shown in Figure 20 . 

z 

Figure 20. Geometry and loading of the laminated plate 

It is constructed of an arbitrary number I< of orthotropic layers of thickness 

Hk and fiber orientation (h where k = 1,2, ... , I<. An analysis based on the linear 

stability theory theory and the initial equilibrium position can be used to deter-
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mine the buckling load. The equations governing the linear buckling of laminated 

plates under in-plane loads N x , Ny and N xy is given by [81]: 

(1.120) 

-BllW,xxx - 3B16w,xxy - (B12 + 2B66 )W,xyy - B 26W,yyy = 0 

(1.121) 

- B 16W,xxx - (B12 + 2B66 )W,xxy - 3B26 W ,xyy + B 22 w,yyy = 0 

Dll W,xxxx + 4D16 w,xxxy + 2(D12 + 2D66 )W,xxyy + 4D26W,xyyy + D 22W,yyyy 

(1.122) 

where 

(1.123) 

are the bending, torsional and flexural stiifnesses, as defined in eqns. (1.104), 

(1.119) and (1.114), and u, v and ware the displacements of the middle plane 

in the x, y and z directions, respectively, and (Qij)k is the plane stress reduced 

stiffness components of the k - th layer. 

Equations (1.120) - (1.122) give the displacement formulation of the buck-

ling equations and their solution as an eigenvalue problem subject to specified 
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boundary conditions determines the buckling load. 

The boundary conditions can be obtained from consideration of the variational 

formulation of the problem and involve one member of each pair of the following 

four quantities along a boundary: 

where nand s denote the normal and tangential directions to the plate edge. 

In equation (3.16), NT and MT are stress and moment resultants obtained by 

integrating the stresses and their moments across the laminate thickness with 

respect to z. For rectangular plates n = x or s = y or x corresponding to edges 

parallel to the y or x axis, respectively. 

Symmetric cross-ply laminates 

In the case of the symmetrically laminated cross-ply plate, the axes of orthotropy 

are aligned with the x - y coordinates of the plate so that (h is either 00 or 900 • 

Due to symmetry, the coupling stiffnesses. Bij are zero. Since Q16 and Q26 

are zero for () = 00 and 900, the stiffnesses A 16 , A 26 , D16 and D 26 also vanish. 

The equations (l.120) and (l.121) are uncoupled from eqn. (l.122) which now 
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becomes 

Dll W,xxxx + 2(D12 + 2D66 )W,xxyy + D22W,yyyy + Nxw,xx 
(1.125) 

For simply supported plates, 

w = 0, M~ (1.126) 

on each boundary. These boundary conditions can be exactly satisfied by a 

displacement function of the form 

M N 

W(X, y) = L L Wmn sin(m7fx/ a) sin( mry / b) (1.127) 
m n 

The solution (1.127) represents M ' x N possible modes of buckling and a 

truncated series can be used to obtain the solution of eqn. (1.125). In particular, 

under biaxial compression with Nx = >'IN, Ny = )..2N with N xy = 0, the buckling 

load for the half-wave numbers (m, n) is given by 

(1.128) 

where Q m = m7fx/a and (3n = n7fy/b. The critical buckling load Ncr(Hk,Ok) and 

the corresponding mode shape are determined by minimising Nmn over m and n. 
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Symmetric angle-ply laminates without bending-twisting coupling 

In the case of angle-ply laminates, the fiber orientation of the k - th layer is 

between 0° and 90°, and consequently the bending stiffnesses DI6 and D 26 are 

non-zero, giving rise to bending-twisting coupling. This effect can be neglected by 

assuming DI6 and D 26 to be zero. In this case the differential equation governing 

the buckling of symmetric angle-ply laminates is given by eqn. (1.125) and the 

buckling load Nmn by eqn. (3.35), except that the values of Dij are functions of 

rh. The values of DI6 and D 26 are largest for three-layered symmetric laminates 

(() j -() j ()) and decreases in value for laminates with a stacking sequence of (() j­

()j ... )sym as the number of layers increases [70]. For laminates with several layers , 

DI6 and D26 can be small in comparison to the other Dij . However, neglecting 

even small values of DI6 and D 26 may lead to erroneous results [70J. 

Symmetric angle-ply laminates with bending-twisting coupling 

The influence of bending-twisting coupling stiffnesses DI6 and D 26 on the buck­

ling of symmetric angle-ply laminates has been investigated by Noor et al [82], 

Nemeth [83J and Whitney [81], [84]. A study by Grenestedt [85], carried out us­

ing a perturbation approach for a combination of simply supported and clamped 

boundary conditions shows that when DI6 and D 26 are included in the formu­

lation, the axial buckling load decreases . A parametric study of infinitely long 

laminates by Nemeth [86] indicated that the buckling resistance can be increased 
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by tailoring the laminate construction so as to increase the twisting stiffness pa­

rameter (D 16 and D26 )/(Dll D22)1/2 . Moreover , the importance of anisotropy 

generally diminishes as this parameter increases. A detailed discussion of the 

effect of DI6 and D26 on the axial and shear buckling loads was given by Rohwer 

[87] where the influence of boundary conditions , the number of layers and ply 

angles was studied. It was observed that the buckling load reduction under axial 

loads is the highest for small number of layers and for ply angles around 45° for 

a combination of simply-supported and clamped edges. Comparison of laminates 

with and without bending-twisting coupling were given by Sherbourne & Pandey 

[88] for various boundary conditions and linearly varying uniaxial compressive 

loads. 

1.5.2 Optimal buckling design of symmetric laminates 

using the layer fiber angle as the design variable: 

An Overview 

Lay-up optimisation of laminates under buckling loads involves the maximisation 

of the buckling load by determining the optimum values of the layer ply angles 

[89]. 
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Cross ply laminates 

Earlier work carried out on the lay-up optimisation of symmetric cross-ply lami­

nates subject to in-plane buckling loads includes that by Chen & Bert [90], and 

Bert & Chen [91]. In these studies, the layer thicknesses are taken as constant and 

various combinations of ply angles for four layer simply supported plates are in­

vestigated. For laminates with an aspect ratio aj b = 3, subject to a uniaxial load 

Nx, the stacking sequence in order of increasing buckling load are (90° /900)sym, 

(0° jOO)sym ,(90° jOO)sym and (0° j900)sym for glass/epoxy and graphite/epoxy ma­

terials. When the same laminates are subject to biaxial compression Nyj Nx = 0.5 

and 1.0, the stacking sequence in order of increasing buckling load are (0° /OO)sym, 

materials. 

Symmetric laminates with D16 and D26 neglected 

Studies by Bert & Chen [90], [91] showed that optimum, ply fiber angles are 

functions of the load ratio Nyj Nx and the material properties. Further studies 

by Hirano [92], [93], and Joshi & Iyengar [94], [95] gave the optimum ply angle 

as 45° for a/ b = I, 2 under uniaxial buckling loads. The optimal ply angle is 

found to be 0° for aspect ratios of 0.5, 38° for a/ b = 0.8, and 50.5° for a/ b = 1.25. 

Similar results were obtained by Nagagiri & Takabatake [96]. Muc [97] using a 

general theory but assuming Q16 and Q26 = 0 showed that symmetric laminates 
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give the highest buckling load for simply supported boundaries. 

The results for maximum buckling load under shear only were obtained by 

Hirano [98] without assuming symmetry a priori but taking Q16 and Q26 = o. 

Optimum designs produced symmetric layups with optimum ply angles of 45°, 

55° and 60° for aspect ratios a/ b = 1, 1.5 and 3, respectively, which validates 

the results obtained by Housner & Stein [99]. These results were confirmed by 

Grenestedt [100] using lamination parameters to compute the optimum ply angles 

which were observed to be similar for a simply supported and clamped boundary 

conditions in the interval a/ b = 1 to a/ b = 3. 

Optimum ply angles of symmetric laminates under axial buckling loads Nx 

and inplane shear Ny were given by Chao et at [101] for glass/epoxy materials 

and it was observed that Bopt tends to 90° as the aspect ratio increases, which 

confirmed the results obtained by Crouzet-Pascal [102] for uniaxially compressed 

plates of the same material. In the study by Chao et at [101] the critical aspect 

ratios are determined such that the laminate fails by buckling at aspect ratios 

higher than the critical one and by yielding at the lower ones. 

Optimisation of symmetrically laminated plates was studied by Tang [103], 

[104], [105], Pedersen [106], [107], Grenestadt [100], [108], [109], and Cheng & 

Tang [110] with emphasis on the qualitative aspects of the optimal design. Tang 

[103], [104] showed that symmetric laminates give the highest buckling load and 

determined the optimal ply angles under unimodal and bimodal buckling. Tang 

also established that for these problems the optimisation can be reduced to a 
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single variable design problem. Pedersen [106], [107] pointed out the importance 

of the functional 

(1.129) 

in the optimal design of symmetric laminates wi th buckling, vi bration and / or 

deflection objectives and highlighted its character in terms of the node parameter 

TJmn = mb/na for the computation of optimum ply angles. Grenestedt [100], [108] 

confirmed the results of Tang [103], [104] by showing the sufficiency of one pa­

rameter to characterise the optimum configurations of symmetrically laminated 

plates. Convexity of the feasible region of the lamination parameters was inves­

tigated for the most general lay-ups in the study by Grenestedt [109] and the 

feasible regions were determined for some special cases. Cheng & Tang [110] 

determined the expressions for optimum ply angles and the intervals where these 

angles are valid in terms of the mode parameter TJmn for symmetric laminates 

undergoing unimodal or bimodal buckling after establishing that a symmetric 

laminate gives the highest buckling load. 

Symmetric laminate with bending-twisting coupling 

Optimum ply angles were determined by Housner & Stein [99] for clamped and 

simply supported laminates. In the case of simply supported plates under axial 

loads, Bopt shifts from 0° to 45° as the aspect ratio increases from 1 to 00, while the 
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shift is from 45° to about 60° in the cast of shear loading. For simply supported 

plates, Bopt is approximately equal to 45° for all values of the plate aspect ratio, 

under uniaxial loading, and Bopt is approximately equal to 45° to 60° for al b = 

1 - 00, under shear loading which is similar to the clamped case. A concise 

outline of these results is given by Leissa [111], [112]. The behaviour of optimum 

ply angles with respect to the aspect ratio was investigated for clamped and 

simply supported boundary conditions by Kassimaly et al [113] for the uniaxial 

loading case. The optimum ply angles for maximum shear load with and without 

D16 and D26 differ only marginally for simply supported and clamped laminates, 

for the aspect ratios alb = 1 - 3, as shown by Grenestedt [100]. However, the 

maximum shear load may be higher or lower than that of an orthotropic laminate 

depending on the direction of the shear load [100]. 

The effects of the number of layers .I< and the bending-twisting coupling on 

the optimum ply angles and the buckling load were investigated by Sawyer [114] . 

For simply supported laminates of aspect ratios of 1 and la, and under uniaxial 

compression, Bopt is 45° for the stacking sequence (B I -B j. .. )sym with the effect of 

D16 and D26 becoming negligible for f{ ~ 8. Qian et al [115] determined the 

optimum ply angles of symmetric laminates with bending-twisting coupling for 

a combination of simply supported and clamped boundary conditions. In the 

study by Qian, directional design derivatives were used to derive the optimality 

condition 

(Lw)T[8D](Lw) = 0 

100 

(1.130) 



where (Lwf = (w,xx W,yy 2w,xy) and [8D] represents the matrix of which the 

elements are given by 

(1.131) 

with Mh denoting the independant design changes. 

In eqn. (1.131), the buckling modes w(x, y) and w(x , y) are equal in the case of 

unimodal buckling, and are orthonormal in the case of bimodal buckling. Explicit 

expressions of optimality can be derived for both cases using eqns. (1.130) and 

(1.131) . The problem is solved by an iterative technique in which the designs 

are updated until convergence is achieved, and the optimality condition (1.130) 

is satisfied. In the study by Qian [115], numerical results were given by eight 

ply laminates with a stacking sequence given by (()d -()21 ()d -()dsym. It was found 

that the optimum ply angles vary around ±45° for various boundary conditions , 

and aspect ratios when the load is uniaxial , except when the unloaded edges are 

clamped, and alb = 1, in which case ()lopt = ()20pt = 0°. Under biaxial compression 

with Nyl Nx = 1, ()lopt and ()20pt vary around 65° and -70° respectively, for simply 

supported and around 55° and -60° for clamped plates when alb 2 1.4. 

Poisson's effect on the optimal design 

Buckling analysis of uniaxially compressed plates is generally based on the as-

sumption that the unloaded edges of the plate are free to translate, and thus Pois-

son's effect can be neglected. This assumption can be expressed by the boundary 
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conditions Nn = Nns = 0 imposed on the unloaded edges. When these edges are 

restrained , and thus cannot translate freely, the buckling behavior of the laminate 

changes as the compression becomes biaxial owing to the effect of Poisson's ratio 

[116J. The inclusion of this effect in the analysis leads to lower buckling loads 

and considerable difference in the optimum ply angles as compared to the cases 

where these effects are neglected. As such, the classic optimisation results for 

uniaxially compressed laminated plates become inapplicable in the presence of 

restrained unloaded edges, as shown in a study by Sherbourne & Pandey [117J. 

A formulation of the problem may be given as follows. Let uniaxial com­

pression Nx be applied in the x direction, and the unloaded edges y = 0, b be 

restrained from translating in the y direction by setting the in-plane displace­

ment to zero. Then two types of boundary conditions on the unloaded edges are 

defined with Nxy = 0 on y = 0, b,corresponding to free shear deformation, and 

IXY = 0 on y = 0, b corresponding to zero shear deformation. In the first case, 

Ny is given by 

(1.132) 

In the latter case (,xy = 0 on y = 0, b), Ny and Nxy are given by 

(1.133) 
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In the study by Sherboune & Pandey [117], the problem was solved by ap­

proximating the displacement w( x, y) by a series of orthogonal polynomials gen­

erated by a Gran-Schmidt process [118] and by computing the buckling load using 

the Rayleigh-Ritz method. In the case of simply supported square plates with 

Nx y = 0, on y = 0, b, Bopt is 0° if Poisson's effect is included as apposed to 45° if it 

is neglected. The variation of the buckling load with B is similar to that described 

by Obraztsov & Vasil'ev [116] . For clamped plates, Bopt is 0° for a/ b = 1 and 2 

with Poisson's effect included in the analysis, and 0° and 45°, respectively, with­

out this effect . The maximum buckling load decreases when the free edges are 

restrained with the decrease being substantial when the loaded edges are simply 

supported and relatively small when these edges are clamped. 

The study of Sherbourne & Pandey [117] also gives results for bidirectional 

laminates with a stacking sequence ('-30°, ,+300 )sym where, denotes the twist 

angle. Bidirectional laminates differ from laminates with a stacking sequence of 

(B / -B)sym in that the maximum buckling loads when Poisson's effect is included 

can be higher than those for the classical case. The optimum twist angle is found 

to be around 45° for aspect ratios a/ b = 1 and 2 irrespective of the boundary 

conditions. This seems to be due to the fact that Poisson's ratio vxy is negative 

for , ranging from 35° to 55° which induces a tensile force in the transverse 

direction, thereby increasing the buckling load and producing the optimum, in 

this range. 
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The effect of cut-outs 

The presence of cut-outs significantly affects the buckling behavior and optimum 

design of laminated plates. Results obtained by Srivatsa & Krishna Murty [119] 

for symmetric laminates under uniaxial compression indicate that the optimum 

ply angle depends on the size of the cut-out to a large extent. For simply sup­

ported plates square laminates made of graphite/ epoxy, ()opt changed from 45° to 

60° as d/ a increases from 0 to 0.6 where d is the diameter of the central hole. 

For clamped plates this change is between 0° and 600 . In the case of clamped 

loaded edges and simply supported unloaded edges, ()opt varies from 0° to 45° as 

d/ a varies from 0 to 0.5. 

Parametric studies by Nemeth [120] investigate the relations between the uni­

axial buckling load, ply angle and the hole size for symmetrically laminated plates. 

A variable fiber angle was propos~d by Hyer & Lee [121] to increase the 

buckling resistance of composite plates with holes. The problem is solved by 

the finite element method and element fiber orientations are employed as design 

variables. A sensitivity study indicates the regions which are most affective in 

improving the buckling resistance. The results obtained using s gradient-search 

technique show the buckling load can be increased by 2.96 times as compared to 

a baseline design taken as (±45° /OO)sym. 
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Postbuckling of rectangular laminated plates 

Frauenthal [122] reported in a study that isotropic structures optimised with re-

spect to buckling strength may exhibit low postbuckling resistance. Consequently, 

optimisation in the post buckling rang becomes an important design consideration 

for laminates which may be exposed to compressive loads higher than the buck-

ling load. Results reported by Obraztsov & Vasil'ev [116] indicate that optimum 

ply angles for the maximisation of the ultimate load carrying capacity of symmet-

ric angle-ply laminates coincides with the fiber orientations providing maximum 

strength in the pre-buckled state. Effects of designing for maximum buckling load 

on the postbuckling behavior as well as optimal designs for maximum postbuck-

ling stiffness were studied by Pandey & Sherbourne [123] for simply supported 

symmetric laminates. In this study, the initial post buckling stiffness was used as 

a measure of the post buckling strength. a non-linear analysis based on a large 

deflection theory gives the postbuckling stiffness I<p as 

I<p = a22 + J.L-:nn an 

2anan(1 + '\J.L~n) + (a22 + J.L~nan)(an + '\a12) 
(1.134) 

where I-lmn = f3n/ am = na/mb, ,\ = N y / Nx and aij are the in-plane flexibil-

ity coefficients given by aij = A;;t. Eqn. (1.134) is evaluated at critical wave-

numbers m and n corresponding to the linear buckling load of the laminate. An 

examination of eqns. (3.35) and (1.134) shows that the buckling load and the 

post buckling stiffness are described by functions of different nature as reflected 
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by Dij and Aij repetitively, in these expressions. Optimisation based on bending 

stiffnesses only leads to designs with weal postbuckling performance. In the study 

by Pandey & Sherbourne [123], optimisation results were obtained for specially 

orthotropic laminates with a stacking sequence of [(()d-()d()2/-()2)sym/(-()d()d­

()2/()2)sym] for which A16 = A26 = D16 = D26 = O. For uniaxially compressed 

laminates, optimum ply angles for maximum postbuckling stiffness are given by 

(()10Pt, ()20pt) = (0°, 0°) for alb = 1 and 2. The corresponding ply angles for 

maximum buckling load are (45°, 45°). Under a biaxial load with A = 1, the cor­

responding ply angles are (15°, 5°) and (0°, 90°) for maximum Kp as compared 

to (45°, 45°) and (70°, 70°) for maximum Ncr. The values of Kp and Ncr at these 

ply angles indicate that a laminate designed with 

respect to one criterion will perform quite poorly with respect to another. 

Designs can be improved with respect to both criteria by noting that the 

post buckling stiffness often reaches its maximum value around 0° or 90° ply angles 

and the values of Aij are independent of the stacking sequence. By introducing 

0° and/or 90° plies in the core region of the laminates, improved designs can 

be obtained which have slightly lower buckling loads, but substantially higher 

post buckling stiffness. 
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Chapter 2 

Optimal Design P roblems 

2.1 Introduction 

Composite structures often c~>ntain components which may be modelled as rect­

angular plates. A common type of composite plate is the symmetrically lami­

nated angle ply configuration which avoids bending-stretching effects by virtue 

of mid-plane symmetry. An important failure mode for these plates is buckling 

under in-plane loading. The buckling resistance of fiber composite plates can 

be improved by using the ply angle as a design variable, and determining the 

optimal angles to maximise the buckling load. 

The following sections detail five studies, dealing with the optimal design of 

symmetric rectangular laminated composite plates for maximum buckling load 

or post buckling stiffness. The layer fiber angle is used as the optimising variable 

in all the cases, and either numerical methods, or analytical methods were used 

to carry out the analysis, in conjunction with the Golden Section method [124], 

which was used to determine the optimal fiber orientations . 
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2.2 Part 1: Optimal Design of Symmetric Lami­

nates for Maximum Buckling Load Including 

the Effects of Bending-Twisting Coupling 

One phenomenon associated with symmetric angle-ply configurations is the oc­

currence of bending-twisting coupling which may cause significantly different 

results as compared to cases in which this coupling is exactly zero [125]. The 

effect of bending-twisting coupling becomes even more pronounced for lami­

nates with few layers. Due to this coupling, closed-form solutions cannot be 

obtained for any of the boundary conditions and this situation led to neglect­

ing bending-twisting coupling in several studies involving the optimisation of 

symmetric laminates under buckling loads . In actual fact, closed-form solutions 

for symmetric laminates are not available even for the simplified models where 

this coupling is neglected except if the boundary conditions are simply sup­

ported all around. Results obtained using different approaches can be found in 

the literature. Authors mostly dealt with either simply supported or clamped 

plate edges, neglecting the effect of bending-twisting coupling. However, the 

effects of boundary conditions and of bending-twisting coupling on the optimal 

designs remain mostly unknown. Thus, in general, as there is little reported 

on the optimal design of laminates with bending-twisting accounted for, and 

with different boundary conditions, the following optimal design problem was 

form ulated. 
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2.2.1 Optimal Design Problem 

Consider a symmetrically laminated rectangular plate of length a, width b 

and thickness h which consists of n orthotropic layers with fiber angles (h, 

k = 1,2, ... , K, as shown in Figure 21. The plate is defined in the Cartesian 

coordinates x, y and z with axes x and y lying on the middle surface of the 

plate. The plate is subjected to biaxial compressive forces Nx and Ny in the x 

and y directions, respectively. 

z v 

Figure 21. Geometry and loading of the symmetrically laminated plate 

subject to biaxial loads 
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The objective of the design problem is to maximise the buckling loads Nx 

and Ny for a given thickness h by optimally determining the fiber orientations 

given by (h = (_1)k+ 10 for k ~ 1(/2 and Ok = (_l)kO for k ~ 1(/2+ 1. Let 

Nx = N and Ny = AN where O~ A ~ 1 is the proportionality constant. The 

buckling load N(O) is given by 

N(O) = minm ,n [Nmn(m, n, 0)] (2.1 ) 

where Nmn is the buckling load corresponding to the half-wave numbers m and 

n in the x and y directions, respectively. The design objective is to maximise 

N (0) with respect to 0, viz . 

Nmax ~ max [N(O)], 0° ~ 0 ~ 90° 
() 

(2 .2) 

where N(O) is determined from the finite element solution of the eigenvalue 

problem given by equation (2.1) . The optimisation procedure involves the 

stages of evaluating the buckling load N(O) for a given 0 and improving the 

fiber orientation to maximise N. Thus, the computational solution necessitates 

successive stages of analysis and optimisation until a convergence is obtained 

and the optimal angle Oopt is determined within a specified accuracy. The plate 

may be subjected to any combination of free, simply supported and clamped 

boundary conditions along the four edges, and may be composed of four layers, 

such that the bending-twisting effect is not negligible. 

110 



2.3 Part 2: Optimal Design of Symmetric Angle­

ply Laminates Subject to Nonuniform Buckling 

Loads and In-plane Restraints 

Poisson's effect manifests itself as in-plane loads if the unloaded edges of a 

uniaxially loaded laminate are restrained from translating freely. This in turn 

transforms a uniaxial buckling problem into a biaxial one and causes a reduc­

tion in the buckling load, as compared to the classic case, where the unloaded 

are free from restraint. Moreover, the optimal values of design variables change 

as compared to the classic case. In many practical situations, transverse move­

ment of unloaded edges is restricted by adjacent panels, supports or stiffeners, 

inducing a transverse in-plane compressive force. In these cases, the buckling 

of uniaxially compressed rectangular plates is affected by the so-called Pois­

son Plate Instability phenomenon [126}. Moreover, it is often the case that the 

buckling loads are not uniformly distributed along the edges . The use of classic 

design data for the design of plates subjected to in-plane restraints leads to 

non-optimal buckling loads, just as an approximation of nonuniform loads by 

uniform ones also leads to inaccurate buckling loads and non-optimal ply angles. 

The question of just how much the optimal design of laminated plates subjected 

to in-plane restraints and non-uniform loads differed from classic designs led to 

the formulation of the second design problem. 
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2.3.1 Optimal Design Problem 

Consider a symmetrically laminated rectangular plate of length a and width b 

(Figure 22). The plate is constructed of equal thickness orthotropic layers with 

fiber angles (h and k = 1,2, ... , K where K denotes the total number of layers. 

The plate is defined in the Cartesian coordinates x, y and z with axes x and y 

lying on the middle surface of the plate, and it is subject to uniaxial compression 

Nx in the x direction. The unloaded edges y = 0, y = a are restrained from 

translating in the y direction giving rise to Poisson's effect, and resulting in 

compressive forces in this direction. This phenomena leads to a loss of stability 

under biaxial compressive forces even though the applied load is uniaxial. 

The objective of the second design problem is to maximise the buckling 

load Nx for a given laminate thickness h by optimally determining the fiber 

orientations given by (h = (-1)k+ 10 for k ~ K/2 and Ok = (_l)kO for k ?: 

K /2 + 1. The buckling load N x( 0) is g'i ven by 

(2.3) 

where Nmn is the buckling load corresponding to the half-wave numbers m and 

n in the x and y directions, respectively. The design objective is to maximise 

Nx(O) with respect to 0, viz. 

(2.4) 

where N x( 0) is determined from the finite element solution of the eigenvalue 
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problem given by equation (2.3). 

z y 

® 

~------------ a------------~~~ 

CD 

Figure 22. Geometry and loading of the symmetrically laminated plate 

subject to uniaxjalloads and in-plane restraints 

The optimisation procedure involves the stages of evaluating the buckling 

load NAB) for a given B and improving the fiber orientation to maximise Nx . 

Thus, as before, the computational solution necessitates successive stages of 

analysis and optimisation until a convergence is obtained and the optimal an­

gle Bopt is determined within a specified accuracy. The plate may be subjected 

to any combination of free, simply supported and clamped boundary conditions 

along the four edges, and may be composed of four layers, such that the bending-
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twisting effect is not negligible. Furthermore, the loading Nx may be nonuni ­

form. 

2.4 Part 3: Optimal Design of Symmetric Lami­

nates with Central Circular Cut-outs for Max­

imum Buckling Load 

The presence of holes in laminated plates subjected to in-plane compressive 

forces results in decreased buckling load values [127]. Although some work has 

been reported in the literature, these results deal mostly with the effect of the 

cut-out on the buckling load, and as such, very little has appeared dealing with 

the optimal design of such plates. This lead to the formulation of the third 

optimal design problem. 

2.4.1 Optimal Design Problem 

Consider a symmetrically laminated rectangular plate of length a, width b, 

central hole diameter d and thickness h which consists of n orthotropic layers 

with fiber angles (h, k = 1,2, ... , K, as shown in Figure 23. The plate is defined 

in the Cartesian coordinates x, y and z with axes x and y lying on the middle 

surface of the plate. The plate is subjected to biaxial compressive forces N x 

and Ny in the x and y directions, respectively. 

As in the first design problem, the objective of the third design problem is 

to maximise the buckling loads Nx and Ny for a given thickness h by optimally 

determining the fiber orientations given by (h = (-1 )k+l() for k ~ K /2 and 
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(h = (_l)kO for k 2: K/2+ 1. Let Nx = N and Ny = >"N where 0::; >"::;1 is the 

proportionality constant. The buckling load N(O) is given by 

N(O) = minm,n [Nmn(m,n,O)] (2.5) 

where Nmn is the buckling load corresponding to the half-wave numbers m and 

n in the x and y directions, respectively. The design objective is to maximise 

N(O) with respect to 0, viz. 

z v 

Figure 23. Geometry and loading of the symmetrically laminated plate with 

central circular cut-out 

115 



N 6. [N (B)] 0° <_ B <_ 90° max:= max , 
B 

(2.6) 

where N(B) is determined from the finite element solution of the eigenvalue 

problem given by equation (2.5). 

The optimisation procedure involves the stages of evaluating the buckling 

load N(B) for a given B and improving the fiber orientation to maximise N. 

Thus, as before, the computational solution necessitates successive stages of 

analysis and optimisation until a convergence is obtained and the optimal angle 

Bopt is determined within a specified accuracy. The plate may be subjected 

to any combination of free, simply supported and clamped boundary conditions 

along the four edges, and may be composed of four layers, such that the bending-

twisting effect is not negligible. 

2.5 Part 4: Optimal Laminate Configurations with 

Symmetric Lay-ups for Maximum Post buckling 

Stiffness 

Quite often, composite structures are required to carry loads beyond their buck-

ling limit. In these cases, the post buckling stiffness has to be maximised to 

improve the load carrying capability beyond the critical buckling load. Few 

studies exist on the optimal designs of laminated plates for maximum post buck-

ling stiffness and the subject remains largely unexplored. In this regard, the 
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fourth optimal design problem was formulated, and addresses the post buckling 

maximisation of symmetrically laminated plates under biaxial compression. In 

this problem, a method is proposed to determine the optimal fiber orientation 

and stacking sequence of rectangular laminates by considering the initial post­

buckling stiffnesses in both the x and y directions [128]. Design optimisation 

involves the comparison of the post buckling performance of several laminate 

configurations with optimal ply angles. 

2.5.1 Optimal Design Problem 

Consider a laminated rectangular plate of length a, width b and height h laying 

in the Cartesian x - y plane as shown in Figure 21. The plate is constructed of 

equal thickness orthotropic layers with fiber angles of (h, k = 1,2, ... , f(, where 

f( denotes the total number of layers. The coordinate system x y z is located 

in the mid-plane, and the plate is subject to compressive forces Nx in the x 

direction, and Ny in the y direction with the load ratio defined as ). = Nyl N x . 

The plate is symmetrically laminated with respect to the mid-plane and simply 

supported at all edges. Let the initial post buckling stiffness in the x-direction 

be denoted by Px and that in the y-direction by Py . 

The objective of the design optimisation problem is to maximise the ini­

tial post buckling stiffnesses for a given laminate thickness h, and load ratio 

). = Nxl Ny, by optimally determining the fiber orientations with the laminate 

configurations given by a combination of 0, 0° and 90° ply angles. Post buckling 

stiffnesses are different in the x and y directions, and the optimal design prob­

lem has to be formulated with this situation in mind. A basic requirement is 
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imposed on the design stipulates that the postbuckling stiffness offered in one 

direction should be approximately proportional to the load applied in that di-

rection. In this way stiffnesses in both directions will be at an acceptable level, 

and provide resistance in proportion to the in-plane loads applied in respective 

directions. It is necessary to maximise the post buckling stiffness in the higher 

load direction subject to the requirement that the stiffness in the other direction 

will be sufficiently large to resist the load in that direction. These considera-

tions are now quantified and used to formulate the optimal design problem in 

a rigorous manner. 

For A ~ 1, the in-plane force Nx in the x-direction is larger than that in the 

y-direction . For this case, the post buckling stiffness Px is maximised subject 

to the requirement that the post buckling stiffness Py in the y-direction will not 

be less than APx to ensure that enough post buckling stiffness exists in the y-

direction, noting that Ny = ANx . Thus for A ~ 1, the optimal design problem 

can be stated as 

(2.7) 

Similarly for A 2': 1 , Ny 2': N x and Py is maximised subject to the requirement 

that Px 2': Py I A to ensure enough post-buckling stiffness in the x-direction, 

noting again that Nx = Nyl A. Thus for A 2': 1, the optimal design problem can 

be stated as 

max Py(B) subject to APx 2': Py 
(} 

The maximum values of the stiffnesses are denoted by P; and P;. 

(2.8) 

These design formulations apply to a given laminate configuration and as 
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such constitute only a part of the design problem. Due to the specific na-

ture of this problem, several laminate configurations with a combination of 

ply angles of 0, 0° and 90° are considered as candidate designs. More specif-

icaliy, the configurations of the candidate designs are taken in the form of 

(0/ - 0;'.';0°;' .. /90°;' .. /0°/ ... )sym. The best design, chosen from among the 

candidate designs, is that which gives the highest postbuckling stiffness, lead-

ing to the optimal laminate configuration. 

Next, the optimal configuration problem is formulated. Let Pt denote the 

maximum postbuckling stiffness of the i-th laminate where Pt = P;i for A ::; 1, 

and Pt = P;i for A 2: 1. The best design is given by the laminate configuration 

corresponding to the highest Pt which is obtained from 

P* = max Pt (2.9) 

with i = 1,2, ... , I where I denotes the number of candidate laminates. Thus 

the complete design optimisation involves the solution of the problem 

max (max P(i), i = 1,2, ... , I 
() 

(2.10) 

where ( = x, ~ = y and s = -1 for A ::; 1, and ( = y, ~ = x and s 1 for 

For a given laminate configuration, the optimisation procedure involves the 

stages of evaluating the initial postbuckling stiffnesses Px(O) and Py(O) for a 
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given () and improving the fiber orientation iteratively to maximise either of the 

quantities, depending on the value of ,x, subject to the corresponding constraint. 

Thus, the computational solution consists of successive stages of analysis and 

optimisation until a convergence is obtained and the optimal ply angle (}opt 

is determined within a specified accuracy. This procedure is applied to every 

laminate configuration. Once the design optimisation for each laminate is com­

pleted, the best configuration is chosen from amongst the candidate laminates 

so as to obtain the one with the highest postbuckling stiffness. 

2.6 Part 5: Multiobjective Design of Laminated 

Plates Subject to In-plane Restraints for a Max­

imum Combination of Prebuckling and Post­

buckling Stiffness and Buckling Load 

In some instances, when structures are to subjected to loads beyond their buck­

ling limit, they are required to be both strong and stiff before buckling occurs, 

and stiff after buckling has occurred, in order that catastrophic failure is de­

layed. The design maximisation of more than a single parameter at a time is 

termed multiobjective design , and can lead to designs which are better in all cri­

teria than the single criteria designs. With this in mind, the last design problem 

was formulated, with the aim of maximising the prebuckling and post buckling 

stiffness, and uniaxial buckling load of symmetrically laminated simply sup­

ported plates. In addition, the problem is complicated if the unloaded edges 
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are subjected to in-plane restraints, such that Poisson's effect becomes an im­

portant consideration. 

2.6.1 Optimal Design Problem 

Consider a symmetrically laminated rectangular plate of length a and width b, 

as shown in Figure 22. As before, the plate is constructed of equal thickness 

orthotropic layers with fiber angles (h and k = 1,2, ... , J( where J( denotes 

the total number of layers. The plate is defined in the Cartesian coordinates 

x, y and z with axes x and y lying on the middle surface of the plate, and it 

is subject to uniaxial compression Nx in the x direction. The unloaded edges 

y = 0, y = a are restrained from translating in the y direction giving rise to 

Poisson's effect, and resulting in compressive forces in this direction. 

The objective of the design optimisation problem is to maximise the weighted 

sum of the initial postbuckling stiffness P, the prebuckling stiffness J( and the 

critical buckling load N for a given laminate thickness h, by optimally de­

termining the fiber orientations with the laminate configurations given by a 

combination of e, 00 and 900 ply angles. 

The design index to be optimised is thus given as 

(2.11) 

with /-ll + /-l2 + /-l3 = 1, and the * denoting non-dimensionalised values. 

This design formulation applies to a given laminate configuration and as 

such constitutes only a part of the design problem. Due to the specific na-
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ture of this problem, several laminate configurations with a combination of 

ply angles of 0, 0° and 90° are considered as candidate designs. More specif-

ically, the configurations of the candidate designs are taken in the form of 

(0/ - 0/. . ./00 /. . ./90°/. . ./00
/. •. )sym. The best design, chosen from among the 

candidate designs, is that which gives the highest design index DI, leading to 

the optimal laminate configuration. 

Next, the optimal configuration problem is formulated. Let D1i designate 

the maximum design index for laminate i. The best design is given by the 

laminate configuration corresponding to the highest DI which is obtained from 

Dr = maxDli (2.12) 
t 

with i = 1,2, ... , I where I denotes the number of candidate laminates. Thus 

the complete design optimisation involves the solution of the problem 

max (max DId, i = 1,2, ... ,1 
t () 

(2.13) 

For a given laminate configuration, the optimisation procedure involves the 

stages of evaluating DI( 0) for a given 0 and improving the fiber orientation 

iteratively to maximise this quantity. Thus, as in the previous optimal design 

problems, the computational solution consists of successive stages of analysis 

and optimisation until a convergence is obtained and the optimal ply angle Oopt 

is determined to within a specified accuracy. This procedure is applied to every 

laminate configuration. Once the design optimisation for each laminate is com-
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pleted, the best configuration is chosen from amongst the candidate laminates 

so as to obtain the one with the highest design index. 
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Chapter 3 

Results and Discussion 

3.1 Part 1: Optimal Design of Symmetric Lami­

nates for Maximum Buckling Load Including 

the Effects of Bending-Twisting Coupling 

The biaxially loaded laminates for which optimal designs were sought have dif­

ferent combinations of free (F), simply supported (S) and clamped (C) bound­

ary conditions implemented at the four edges . They are also composed of four 

symmetric layers, and thus the effects of bending-twisting coupling cannot be 

neglected. These effects rule out the possi bility of an analytical solution and 

thus the finite element method is used to solve the optimal design problem. The 

FEM formulation presented is based on Mindlin type theory for thin laminated 

composite plates and shells. 
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3.1.1 Finite Element Formulation 

With reference to Figure 21, and eqns. (1.120) - (1.122), consider the finite 

element formulation of the problem [129] . Let the region S of the plate be 

divided into n sub-regions Sr (Sr E S; r = 1,2, ... , n) such that 

n 

II(u) = L IISr(u) (3.1 ) 
r=l 

where II and II Sr are potential energies of the plate and the element, respec-

ti vely, and u is the displacement vector. Using the same shape functions as-

sociated with node i (i = 1,2, ... ,n), Si(X,y), for interpolating the variables in 

each element, we can write 

n 

U = L Si(X, Y)Ui (3.2) 
i=l 

where Ui is the value of the displacement vector corresponding to node i, and 

is given by 

u = {u(i) v(i) w(i) . I.(i) .1.(i)}T ° , 0 , 0' 'l-'x ,'I-'y (3.3) 

where uo , Vo and Wo are the displacements of the reference surface in the x, 

y and z direction, respectively, and V;x, V;y are the rotations of the transverse 

normal about the x and y axes . 

The static buckling problem reduces to a generalised eigenvalue problem of 

the conventional form, viz. 

([K] + ).[KG]) {u} = 0 (3.4) 
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where [K] is the stiffness matrix and [KG] is the initial stress matrix. The 

lowest eigenvalue of the homogeneous system (3.4) yields the buckling load. 

3.1.2 Results 

Verification 

In order to verify the finite element formulation described above, some solutions 

are compared with those available in the literature. A single-layered simply 

supported square plate was modeled with () = 30° , A = 0 (uniaxial compression) 

and material properties El = 60.7 GPa, E2 = 24.8 GPa, G12 = 12 GPa and V12 

= 0.23 . The analytical solution for this problem is available in [130]. Table 4 

illustrates the effect of the number of finite elements on the non-dimensionalised 

buckling load Nb where 

The plate thickness ratio is specified as hi b = 0.01. The use of 256 elements for a 

square plate resulted in an error ofless than 0.08% as compared to the analytical 

solutions [131] . This mesh density was accepted as providing sufficient accuracy. 

Consequently, in the present study, a square plate is meshed with 256 elements. 

Plates of aspect ratios other than 1 are meshed with a corresponding proportion · 

of 256 elements. 
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Number of Elements Nb 

10 x 10 25.57 

13x13 25.33 

16 x 16 25.22 

20 x 20 25.14 

Exact [Ref. 132] 25.20 

Table 4. Effect of the number of elements on the buckling load 

Numerical Results 

Numerical results are given for a typical T300/5208 graphite/epoxy material 

with E1 = 181 GPa, E2 = 10.3 GPa, G12 = 7.17 GPa and V12 = 0.28. The 

symmetric plate is constructed of four equal thickness layers with 81 = -82 = 

-83 = 84 = 8 and as before, the thickness ratio is specified as h/b = 0.01. Dif­

ferent combinations of free (F) , simply supported (S) and clamped (C) bound­

ary conditions are implemented at the four edges of the plate. In particular, 

five different combinations are studied, namely, (F,S,F,S), (F,S,C,S) , (S,S,S,S), 

(C,S,C,S) and (C,C,C,C), where the first letter refers to the first plate edge, 

and the others follow in the anti-clockwise direction, as shown in Figure 21. 

For each of the boundary conditions, three in-plane load cases are consid­

ered, namely, uniaxial compression (Ny = 0), biaxial compression with Ny/Nx 

= 0.5, and biaxial compression with N y / Nx = 1. 

The results presented in this section were obtained for rectangular plates 
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with aspect ratios varying between 0.5 and 2. The non-dimensionalised buckling 

parameter N b is defined as 

(3.5) 

where N is the critical buckling load, and Eo is a reference value having the 

dimension of Young's modulus and is taken as Eo = 1GPa. 

The dependence of the buckling load Nb on the fiber angle is investigated 

for the five cases of boundary conditions in Figure 24 for alb = r = 0.5, and 

in Figure 25 for r = 1. With r = 0.5 the maximum buckling load occurs at 0° 

for all the boundary cases, but this is not so with r = 1. It is clear that the 

maximum buckling load for a given boundary condition and aspect ratio occurs 

at a specific value of the fiber angle (referred to as the optimal fiber angle), 

and this value can be several times higher than the buckling load at other fiber 

angles. This fact emphasises the importance of carrying out optimisation in 

design work of this nature to obtain the best performance of fiber composite 

plates. 

Figure 26 shows the effect of the plate aspect ratio r = alb on ()opt for the 

five cases of boundary conditions for plates under uniaxial loading. In the case 

of (F,S,F,S), the optimal fiber angle is 0° for 0.5::; r ::; 2. The case (F,S,C,S) is 

interesting because the optimal angle remains 0° between r = 0.5 and 1. 79 at 

which point ()opt jumps to 47.5°. For the case (S,S,S,S), the jump in the optimal 

ply angle occurs at r = 0.8. With (C,S,C,S), ()opt displays several jumps which 

occur at r = 0.67, 1.27 and 1.88. Finally, for (C,C,C,C), ()opt is non-zero for r 

2: 1.2 after which the optimal ply angle fluctuates between 29.50 and 470 • 
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It is noted that the discontinuities that occur in (Jopt as the aspect ratio 

increases from 0.5 to 2 are due to changes in the buckling modes [132]. 

The values of the maximum buckling load Nb corresponding to the optimal 

ply angles given in Figure 26 are shown in Figure 27. As expe(:ted, the clamped 

plate gives the highest buckling loads. 

The results for biaxial loading with Ny / Nx = 0.5 are given in Figure 28. In 

this case, an interesting situation occurs with discontinuities for all the bound­

ary conditions. For (F,S,F,S), the relationship between rand (Jopt is worth 

noting. At r = 1.33, (Jopt displays a discontinuity jump to 23°, whereupon it 

remains flat up to r = 2. The trends for the cases (C,S,C,S) and (C,C,C,C) 

show similarities to those shown in Figure 26, although the number of jumps for 

the case (C,C,C,C) increases. Figure 29 shows the values of Nb corresponding 

to (Jopt shown in Figure 28. 

The results for the second biaxial loading case with N y / Nx = 1 are presented 

in Figure 30. The case (F,S,F,S) does not display any discontinuity, and (Jopt 

remains between 20° and 31°. The cases (C,S,C,S) and (C,C,C,C) show similar 

trends to those illustrated in Figures 26 and 28. The plates with (F,S,C,S) has 

an approximate (Jopt value of 27° between r = 0.5 and r = 1.43 at which point 

the optimal ply angle jumps to 46°, and then increases to (Jopt = 75°. Figure 

31 gives the values of Nb corresponding to (Jopt shown in Figure 30. The trends 

are similar to those of the other loading cases shown in Figures 27 and 29, but 

as expected, the values for Nb are less than before due to increased loading. 

Finally, Figure 32 compares the optimal ply angles of simply supported 

laminates with and without bending-twisting coupling. In essence, neglecting 
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the effect of bending-twisting coupling corresponds to having an infinite number 

of layers. Figure 32 indicates that this effect is substantial (particularly around 

r = 0.75 and r = 1.30) in the case of four-layered plates and its neglect may 

lead to incorrect optimal fiber orientations, resulting in substantially reduced 

buckling loads. 
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Figure 24. Buckling load plotted against the ply angle for rectangular 
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Figure 29. Maximum buckling load plotted against the aspect ratio with 
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Figure 30. Optimal ply angle plotted against the aspect ratio with>' = 1.0, 

(biaxial load) 
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Figure 32. Effect of bending-twisting coupling on the optimal ply angle 
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3.2 Part 2: Optimal Design of Symmetric Angle­

ply Laminates Subject to Nonuniform Buckling 

Loads and In-plane Restraints 

The plates for which optimal designs were sought are uniaxially loaded in the x­

axis, as shown in Figure 22, and the unloaded edges y = 0, y = 1 are restrained 

from translating in the y-direction . Also, the plates have different combinations 

of free (F), simply supported (S) and clamped (C) boundary conditions imple­

mented at the four edges, and the loading Nx is not necessarily uniform. As 

before, they are also composed of four symmetric layers, and thus the effects 

of bending-twisting coupling cannot be neglected. These effects rule out the 

possibility of an analytical solution and thus the finite element method is again 

used to solve the problem. The FEM formulation used for the followi.ng results 

is the same as that given above. 

3.2.1 Results 

The results which follow were obtained for non-uniformly distributed in-plane 

loads . In particular, point loads (Figure 33a), partial uniform loads (Figure 33b) 

and non-uniform loads (Figure 33c) are considered in addition to a full uniform 

load. Numerical results are given for the same T300/5208 graphite/epoxy ma­

terial, with E1 = 181 GPa, E2 = 10.3 GPa, G12 = 7.17 GPa and V12 = 0.28 . 

Also, the plate thickness to length ratio is specified as h/b = 0.01, and is con­

structed of four equal thickness layers with 01 = -02 = -03 = 04 = O. The 

unloaded edges 1 and 3 are restrained from translation in the y direction. As 
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mentioned previously, these restraints give rise to Poisson's effect when edges 2 

and 4 undergo uniaxial compression (Figures 22 and 33) . 

z y 

L-~------------------~----__ X 

(0) 
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L-i-________________ ~ _____ x 

(b) 

z y 

(c) 

Figure 33 . Nonuniformly distributed buckling loads. 

a). Concentrated load b). partial uniform load 

c). non uniformly distributed load (Note: x = 0.0323) 
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The results presented were obtained for plates with aspect ratios varying 

from 0.5 to 2. The non-dimensionalised buckling parameter Nb is defined in 

eqn. (3.5). 

First, comparative results are given for various loads for laminates with and 

without in-plane restraints. Tables 5 - 8 show the values of the optimal ply 

angles and the corresponding maximum buckling loads for simply supported 

laminates where the subscripts 'c' and 'p' denote the classical (Poisson's effect 

neglected) and the present (Poisson's effect included) cases respectively [133] . 

It is observed that as the aspect ratio increases, so the discrepancy between the 

classic and present results increases. This phenomenon can be clearly seen by 

checking the ratio Nfnaxl Nfnax which drops to less than half as r reaches 2 . The 

optimal ply angles also show distinct differences. It is observed that (}~Pt for r 

2': 1 and this difference is even higher for r = 0.5 and 0.75. Another interesting 

fact is that Nfnax fluctuates as r increases while Nfnax decreases steadily. This is 

due to the biaxial nature of buckling loads in the presence of in-plane restraints. 

It is seen that the maximum buckling loads are the lowest for point loads and 

highest for uniformly distributed loads. In fact the buckling loads increase as 

the compressive forces become more uniformly distributed [134] . 
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r Be N\(Be"",) Bp Npb(B· "",) NpJN\ ... ... 
0.50 28.6" 212.8 26.0· 205.6 0.97 

0.75 54.4" 210.0 38.9" 146.1 0.70 

l.00 46.0° 209.4 38.9° 129.8 0.62 

l.25 42.0° 202.7 36.6- 117.9 0.58 

l.50 44.6- 198.6 35.1- 108.4 0.55 

l.75 48.5- 193.7 33.4- 100.6 0.52 

2.00 47 .7- 189.5 32.2- 94 .7 0.50 

Table 5. Optimisation results for laminates under a point in-plane load 

(Figure 33a) 

r Be N\(8'op) Bp NPb(8pop<) NpJN\ op "'" 
0 .50 0- 324.1 0- 323 .0 0.99 

0.75 53.4- 259 .2 0- 165 .0 0.64 

l.00 47.5- 228.3 36.7- 137 .6 0.60 

1.25 39 .6- 222.5 35.3- 123 .1 0.55 

l.50 43.4- 214.2 33.6° 112.2 0.52 

1.75 48.4- 213 .8 32.0- 103 .5 0.48 

2.00 47.5- 211.3 30.5- 97 .1 0.46 

Table 6. Optimisation results for laminates under a uniformly distributed 

partial in-plane load (Figure 33b) 
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r ae N\(ae
opl) 

ap Np.(ap ... ) NpJNc
b ... opl 

0.50 O· 471.9 O· 470.3 0 .99 

0.75 41.0· 271 .9 o· 227 .7 0 .84 

1.00 51.1· 260.3 31.0· 154.9 0 .60 

1.25 42.2· 252.9 31 .7· 132.2 0 .52 

1.50 38.9· 238.7 30.5· 119.2 0 .50 

1.75 44.7· 230.8 29 .2· 109.0 0.47 

2.00 48.4· 225.7 27 .4· 101.8 0.45 

Table 7. Optimisation resul ts for laminates under non uniformly dis t ri bu ted 

in-plane load (Figure 33c) 

r ae N\(8<..J ap Np.(ap•p,) NpJN\ ... ... 
0.50 Qo 644 .5 O· 644 .3 1 

0 .75 O· 300.7 o· 300.6 1 

l.00 45 .7· 248.3 O· 186.3 0.75 

1.25 48 .3· 238.4 24.5· 145 .6 0 .56 

1.50 41.2· 225 .2 26 .5· 128.9 0 .50 

1.75 33 .8· 220.5 24.5· 117.4 0 .48 

2.00 44 .0· 214.7 23 .5· 108.3 0.45 

Table 8. Optimisation results for laminates under a uniformly distributed 

in-plane load (Figure 22) 
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r 8' Np(8'"",)/N\(8'"",) 8p N \(8p"",)/N \(8'"",) Np.(8p "",)/Np(8'"",) 
"'" OJ" 

0.5 0- 1 O· 1 1 

0.8 O· 1 O· 1 1 

1.0 45.7· 0.57 I O· 0.75 1.31 

1.3 48.3· 0.43 24.5· 0.56 1.32 

1.5 41.2· 0.43 26.5· 0.50 1.15 

1.8 33.8· 0.42 24 .5· 0.48 1.05 

2.0 44.0· 0.36 23.5· 0.45 1.23 

Table 9. Comparison of O~Pt and buckling loads for laminates with and 

without Poisson's effect 
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Next, the effect of boundary conditions is studied by considering five com­

binations of free (F), simply supported (S) and clamped (C) boundary condi­

tions. In particular, and as before, the following cases are studied: (F,S,F,S), 

(F,S,C,S), (S,S,S,S), (C,S,C,S) and (C,C,C,C) where the first letter refers to 

the first plate edge, and the others follow in anti-clockwise order (Figure 22). 

Figure 34 shows the curves of Bopt plotted against the aspect ratio r = alb 

for the five boundary conditions with the plates subject to in-plane restraints. 

For three of the cases, viz. (F,S,F,S) , (F,S,C,S) and (C,C,C,C), the optimal 

fiber angle is 0° for all values of r. For (S,S,S,S), the relationship between rand 

Bopt is interesting. The optimal angle is 0° between r = 0.5 and r = 1, where a 

jump discontinuity in the value of Bopt occurs. From r = 1 to r = 2, the graph 

is smooth, with a peak at r = 1.5 of 2r. The value of the optimal fiber angle at 

r = 2 is 23.5°. For the boundary condition (C,S,C,S), the relationship between 

Bopt and r is similar with the discontinuity occurring at r = 0.92. A peak is 

reached at r = 1.6 where Bopt is 42.5°. At r = 2, the optimal fiber angle is 37.5°. 

For comparative purposes, the Bopt values for plates where Poisson's effect is 

neglected are shown in Figure 35, which is the same as Figure 26. A comparison 

of Figures 34 and 35 indicates that the Bopt values differ substantially for the 

cases including and excluding Poisson's effect. Figure 36 shows the maximum 

buckling load Nb corresponding to the Bopt values shown in Figure 34. Corre­

sponding results for plates with Poisson's effect neglected are shown in Figure 

37, which is the same as Figure 27. It is evident from Figures 36 and 37 that 

plates subject to Poisson's effect will exhibit premature instability, indicating 

the need to ascertain the presence or absence of restrained edges for design 
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purposes. The discontinuities in the relationships between T and Bopt shown in 

Figure 34 are due to changes in the buckling modes [135] . 

Next, the consequences of neglecting Poisson's effect are studied by com­

paring the buckling loads at different ply angles, for laminates under uniformly 

distributed buckling loads. Table 9 clearly illustrates the benefit of taking into 

account the Poisson effect in the optimisation of laminates which are subject to 

in-plane restraints by giving a quantitative comparison of present and classical 

solutions for simply supported (S,S,S ,S) laminates. The third column shows the 

ratio of the buckling loads for laminates with in-plane restraints at the 'classic' 

optimal fiber angle to the maximum buckling load for classic laminates. As the 

aspect ratio increases, this ratio decreases, indicating the growing importance of 

Poisson's effect. The fifth column shows the result of using the classical optimal 

ply angle instead of the correct optimal ply angle for laminates with in-plane 

restraints. It is observed that using the classical optimal ply angles may lead 

to buckling loads which are up to 30% less than the maximum for some aspect 

ratios [136]. 
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3.3 Part 3: Optimal Design of Symmetric Lami­

nates with Central Circular Cut-outs for Max­

imum Buckling Load 

The biaxially loaded laminates for which optimal designs were sought have cen­

tral circular holes, and the ratio d/b is prescribed. As before, different combina­

tions of free (F), simply supported (S) and clamped (C) boundary conditions are 

implemented at the four edges. The plates are also composed of four symmetric 

layers, and thus the effects of bending-twisting coupling cannot be neglected. 

These effects rule out the possibility of an analytical solution and thus the same 

finite element method is once again used to solve the problem. 

3.3. 1 Results 

Numerical results are also given for the T300/5208 graphite/epoxy material. 

The symmetric plate is constructed of four equal thickness layers with ()l = 

-()2 = -03 = ()4 = () and the thickness ratio is specified as h/b = 0.01. Also, 

d/b = 0.5. The same five cases, viz . (F,S,F,S), (F,S,C,S), (S ,S,S,S) , (C,S,C,S) 

and (C,C,C,C) are implemented along the four edges. The loading is given by 

Ny/Nx = 1. 

The results presented in this section are obtained for rectangular plates 

with aspect ratios varying between 1 and 3. The non-dimensionalised buckling 

parameter Nb is used as before, and defined in eqn. (3.5) . 

Figure 38 shows the dependence of the optimal fiber angle on the lami­

nate aspect ratio, for the five different boundary condition cases. The graphs 
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for (C,S,C,S) and (C,C ,C,C) show discontinuities, for alb between 1 and 2. 

The trends show that the effect of the hole is greater when the aspect ratio 

is small, and diminishes as alb becomes larger. The jump discontinuities are 

due to changes in the buckling modes. The remaining three curves show no 

discontinuities, with that for (S,S,S,S) almost linear and flat . 

Figure 39 shows the values of Nb corresponding to Bopt in Figure 38. As 

before, the curves for (C,S,C,S) and (C ,C,C,C) are most interesting, and are 

not monotonic as are the remaining three cases. For (C ,C,C,C), choosing alb 

to be approximately 1.3 when dlb = 0.5 gives the highest buckling load if the 

optimal fiber angle is used in the laminate lay-up. As mentioned before , when 

the aspect ratio is smaller, the effect of the hole is great. When the aspect ratio 

is large, the laminate becomes weak, offering less buckling resistance, and the 

effect of the hole is of less importance [138J. 

For comparative purposes, optimal design curves for laminates subject to 

similar loads but without central holes are given in Figures 40 and 41 (which 

are the same as Figures 30 and 31). It should be noted that in these graphs, the 

aspect ratio varies from 0.5 to 2. None the less, for the values of alb comm~n 

to all the figures, it is easily seen that central cut-outs give the laminates very 

different buckling characteristics, and thus different optimal fiber angles. It is 

also apparent that the holes reduce the buckling load capacity of the plates . 
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3.4 Part 4: Optimal Laminate Configurations with 

Symmetric Lay-ups for Maximum Post buckling 

Stiffness 

In order to solve the fourth design optimisation problem , the post buckling stiff-

nesses must be derived . Consider the plate subjected to biaxial loading in Figure 

21, with.>. designating the load ratio Ny/Nx as before. The non-linear differ-

ential equations of equilibrium and compatibility in terms of a stress function 

F(x, y) and the deflection w(x , y) are given by [137] 

L 1w = F,yyw,xx - 2F,xy w ,xy + F ,xxw ,yy 
(3.6) 

where the differential operators L1 and L2 are defined as 

(3.7) 

In equation (3.7), aij are the in-plane flexibility coefficients obtained as aij 

Aij1, with Aij and Dij denoting the in-plane and bending stiffnesses. The 

non-linear midplane strains are related to the displacements u, v and W by the 

following relations: 

(3.8) 

fXY = U,y + W ,xW,y 
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The in-plane boundary conditions for uniform boundary displacements and zero 

applied shear can be expressed as 

u = 0 (x = 0), ~~ = 0 (x = a) 

v = 0 (y = 0), ~~ = 0 (y = b) 

N xy = 0 (x = 0, y = b) 

The plate satisfies the simply supported boundary conditions 

W = 0, Duwxx + D l2 W xy = 0, X = O,a 

(3.9) 

(3 .10) 

The solution ofthe governing equations subject to boundary conditions (3.9) 

and (3.10) can be obtained by choosing a force function of the form 

F 0 5(N 2 N 2) B?nn (a?nn. 2m7rx 1 2n7rY) (3.11) =. xy + yX + -- -- cos -- + cos --
32 a22 a a?nn all b 

where amn = na/mb is a mode parameter and Bmn is an unknown coefficient. 

The deflection is chosen as 

( ) 
,., . m7rX . n7rX 

W x, y = Gmn SIn --SIll--
a b 

(3.12) 

which satisfies the boundary conditions (3.10). 

Force resultants can be written in terms of the stress function as 

(3.13) 
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The principle of virtual displacement, with a virtual displacement of the form 

given by equation (3.12) can be expressed in the form 

(3.14) 

x sin m;x sin !!::!f!-dxdy = 0 

Substituting the assumed forms of wand F and using a Taylor series expansion 

in the vicinity of the critical point enables Nx to be expressed in terms of the 

amplitude of the buckling mode C mn as 

C2 ( ) Fmn 
mn = - Nx - NCT -C 

mn 
(3.15) 

Since the in-plane strain Ex is also given by the expression 

(3.16) 

and using (3.8) and (3.12), an expression for u,x is obtained, bearing in mind 

that in the axial direction 

Ex = ~ = .! fa U xdx 
a a 10 ' (3.17) 

which can be simplified to 

N ( \) C~n ( m7r)2 Ex = x all + lIa12 - -- --
8 a 

(3 .18) 
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Then by substituting equation (3.15) into equation (3.18), the expression for Ex 

becomes 

(3.19) 

After substituting for Fmn and Gmn and simplifying, an expression for the 

initial post buckling stiffness in the x-direction can be obtained as 

dNx a22 + a~'mall 
dEx = 2alla22(1 + Aa~n) + (a22 + a~nall)(all + Aa12) 

(3.20) 

where A = N y / Nx [123]. 

Similarly, it can be shown that the initial post buckling stiffness in the y-

direction is 

dN y all + a~n a22 

dEy 2a22all(1 + Aa~n) + (all + a~na22)(a22 + Aa12) 
(3.21 ) 

The critical wave numbers m and n appearing in these expressions are computed 

by minimising the expression for the critical buckling load given by 

(3.22) 

over m and n. These values of m and n are used in equations (3.20) and (3.21) 

to compute the initial post buckling stiffnesses. 

In the present study, five laminate configurations with eight layers each 

were considered as candidate designs . These configurations are specified as 

{O, -0,0, -O}sym, {O, -0,90, O}sym, {O, -0,0, O}sym, {O, -0,0, 90}sym and 
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{O -0 90 90} and referred to as Laminate 1, 2, 3, 4 and 5, respectively. The , , , sym 

results are given for a T300/5208 graphite/epoxy material. The plate thickness 

is specified as h/b = 0.01, and all the results are given for square plates. The 

following non-dimensionalised quantities are defined for postbuckling stiffnesses: 

(3.23) 

3.4.1 Results 

First the behavior of the postbuckling stiffnesses with respect to the fiber orien-

tation is investigated. Figure 42 shows the curves of Px and Py plotted against 

o for a type 2 laminate with A = 0.75 , and A = 1.75. This figure may be 

used to illustrate the method of solution described above. For A = 0.75, the 

intersection of the curves for Px and Py / A occurs at 23°, and the constraint 

PylA ~ Px is satisfied for 0 E[23°, 900 l. Thus the feasible region for this case 

is given by [23°, 90°] . Maximising Px on this interval gives the optimal angle 

Oopt = 23°. Similarly, for A = 1.75, the intersection of the curves for APx and 

Py occurs at 81°, and APx ~ Py for 0 E[O°, 81°] . Maximising Py on the interval 

[0°, 81 0] gives the optimal angle Oopt = 81°. Occasionally, the maximum occurs 

at an angle which is not given by the intersection of the stiffness curves. As 

an example, consider Figure 43 which shows the relationships between Px and 

Py for a type 5 laminate for A = 1.25 and 2. The intersection of the curves 

for A = 1.25 occurs at 35°, and APx ~ Py for [0°, 35°]. Maximising Py on the 

interval [0°, 35°] gives the optimal angle at Oopt = 0°. Actually Oopt = 0° with 

this laminate for 0 ~ A ~ 1.76, whereupon the optimal fiber orientation jumps 
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to 48°, as seen from the curves for>. = 2 in Figure 43 [139]. 

Figure 44 shows the optimal values of the fiber orientations plotted against 

>. for the five laminate configurations, with O~ >. ~ 4. The discontinuities in 

the curves (particularly evident for laminate 5) are due to the optimal fiber 

orientation jumps, as described above. The curve for laminate 4 is interesting 

in that Bopt reaches 90° before>. = 1. Also, the curves for laminates 2 and 4 

are identical for >. ~ 1.3, and they separate for>. > 1.3. 

Figure 45 shows the values of P;;, i = 1,2, ... ,5, corresponding to the optimal 

ply angles Bopt shown in Figure 44, for >. ~ 1, noting that Px is maximised for 

>. ~ 1. For this range of values, the design solution is given by the uppermost 

curve formed by the intersection of all five curves. Thus, laminate 1 is the best 

for 0 ~ >. ~ 0.09, whereupon laminate 3 becomes the best until >. ~ 0.20 etc. 

Similarly, Figure 46 shows the values of P;;, i = 1,2, ... , 5 corresponding to 

Bopt shown in Figure 44, for 1 ~ >. ~ . 4 . In this case, unlike for >. ~ 1, not 

all five laminates are optimal at one stage or another, and the optimal designs 

are given by type 1, 2 or 5 laminates. Figures 45 and 46 clearly demonstrate 

the necessity of considering several candidate designs to determine the optimal 

laminate configuration. 

Table 10 shows the optimal laminate configurations for 0 ~ >. ~ 4, the cor­

responding Bopt and the post buckling stiffnesses. Laminates 2 and 5 dominate 

the list for 0.8 ~ >. ~ 2.5, while laminate 1 dominates for >. ~ 3.0. It is observed 

that as >. increases, the post buckling stiffnesses, in general, decrease . 

Finally, the postbuckling performance of two fourteen-layer laminates, re­

ferred to as laminates 6 and 7, are studied in Tables 11 and 12 for 0 ~ >. ~ 
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4. These plates also have a thickness ratio of h/b = 0.01, are symmetrically 

laminated and square. The stacking sequence of each laminate is shown in the 

corresponding table. For these configurations, Al6 = A 26 = Dl2 = D26 are zero 

and as such no in-plane or bending-twisting coupling exists [140]. The results 

in Table 11 show that for laminate 6, Bopt = 00 at >. = O. Bopt increases rapidly 

to 900 as >. increases, and remains at this value for>. 2: 0.6. Bopt for laminate 

7 (Table 12) reaches 900 only at >. = 3.0. Postbuckling stiffness in the higher 

load direction decreases as >. increases for laminate 6, while it fluctuates for 

laminate 7 . 
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A Optimal 8.",. P*. PIA 
Laminate 

0 1 & 3 0 623409 infinity 

0.2 2&4 0 507484 1594860 

0.4 2&4 0 460451 749322 

06 2&4 0 421396 471125 

0.8 5 0 344523 430653 

1.0 5 0 323078 323078 

A Optimal 8.",. AP. p. , 
Laminate 

1.2 5 0 362738 302282 

1.4 2 77.5 394532 375554 

1.6 2 79.7 388761 371257 

Us 2 81.4 378402 365868 

2.0 2 83.3 403721 359314 

2.5 5 59.1 267542 267098 

3.0 1 68.2 286530 272233 

3.5 1 90 251919 211277 

4.0 1 & 5 90 278936 193045 

Table 10. Optimal ply angles and laminate configurations for 0 ~ A ~ 4 
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A 8.,.. 
p. . PIA 

0 0 623409 infiruty 

0.2 0 497808 1045220 

0.4 86.2 376739 1045220 

0.6 90 350608 645670 

0.8 90 327344 448994 

1.0 90 306975 334817 

A 8.,.. AP. P*,. 

1.2 90 346790 313538 

1.4 90 382200 294802 

1.6 90 413896 278178 

1.8 90 442432 263330 

2.0 90 468262 249986 

2.5 90 523245 221878 

3.0 90 567684 199452 

3.5 90 604345 181143 

4.0 90 635108 165913 

Table 11. Optimal ply angles for the laminate wi th the stacking sequence 

(()/-()/OO/-()/02/())sym (laminate 6) 
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).. 8.",. P*. P/).. 

0 0 623409 infinity 

0.2 16.5 482740 482840 

0.4 30.6 284951 285444 

0.6 37.6 218092 219243 

0.8 70.8 207048 437435 

1.0 73 .2 200830 341346 

).. 8 .. , )"P, p. , 

1.2 56.6 221678 214402 

1.4 63 .3 250969 250824 

1.6 74.0 289536 289354 

1.8 80.5 519675 419518 

2.0 82.1 426784 412713 

2.5 86.3 404326 392338 

3.0 90 434226 214385 

3.5 90 472633 193760 

4.0 90 506212 176755 

Table 12. Optimal ply angles for the laminate with the stacking sequence 
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3.5 Part 5: Multiobjective Design of Laminated 

Plates Subject to In-plane Restraints for a Max-

imum Combination of Prebuckling and Post-

buckling Stiffness and Buckling Load 

For the laminated plate which is subjected to axial buckling loads and elastic 

in-plane restraints along the unloaded edges (as shown in Figure 22), 

(3.24) 

where Ny is the resulting force due to Poisson's effect, k is the elastic constant 

of the in-plane restraints , and v xy is Poisson's ratio. 

Since 

(3.25) 

and for specially orthotropic laminates A13 = A23 = 0, eqn. (3.25) becomes 

(3.26) 

and since A = N y / Nx , substituting from eqn. (3.24) gives 

(3.27) 
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Finally, from (3.26), 

Also, from eqn. (1.107) 

= 

o 

and [Aj-l = [a], thus 

101 

102 

1012 

Thus, for example 

A = k A12 

All 

o o A66 

all a12 0 

al2 a22 0 

0 0 a66 

101 = aU N I + a12 N2 

Nl 

N2 

0 

But for our plate, Nl = N x = N, and N2 = Ny = AN, thus 

Since 

(J = EE 

then 
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(3.28) 

(3.29) 

(3 .30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 



is the prebuckling stiffness. 

The buckling load and postbuckling stiffness have been detailed in eqns. 

(3.20) and (3.22). In order to account for the in-plane restraints, eqn. (3.28) is 

substituted into these expressions. 

Lastly, the following non-dimensionalised quantities are defined: 

(3.35) 

In the present study, as in the previous, five laminate configurations with eight 

layers each were considered as candidate designs. These configurations are spec-

ified as {O,-O,O,-O}sym, {0,-0,90,0}sym, {O,-O,O,O}sym, {0,-0,0,90}sym 

and {O, -0,90, 90}sym and referred to as Laminate 1,2,3,4 and 5, respectively. 

3.5.1 Results 

The results are also given for a T300/5208 graphite/epoxy material, and again, 

the plate thickness is specified as h/b = 0.01. 

Figure 47 shows the dependence of K*, N* and P*, as well as D I on the 

fiber orientation ° for a type 2 laminate with an aspect ratio of alb = 1, and 

k = 1. For this example, /-Ll = 0.25, /-L2 = 0.5 and /-L3 = 0.25. Both P* and K* 

have Bopt = 0°, while that for N* is around 35° and 25° for DI. It is interesting 

to note that the curve for P* is discontinues in two places, between ° = 54° 

and ° = 60°. 

Similarly, Figure 48 shows the same curves for a type 1 laminate, with 

alb = 1.5, and k = 1. As before, the curve of N* has the highest values, but 
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unlike before, that for DI becomes the lowest in value for fiber orientations 

greater than 48°. These two figures illustrate the importance of optimal design. 

The dependence of DI on the fiber angle for all 5 laminate types is shown in 

Figure 49, for a plate aspect ratio of 1 and k = 1. In this case, the best laminate 

is always type 2, except at () = 0° when a type 5 laminate is also best. It is 

interesting to note that laminate types 1 and 3 share similar D I characteristics 

for 0° S; () S; 55°, whereupon type 3 becomes the better of the two. This trend 

also occurs with laminates 4 and 5, although only when () ~ 77° . Prior to this 

fiber orientation, laminate 5 is the better of the two for values of () ranging 

between 0° and 47°, whereupon type 4 becomes better [141] . 

Similar curves are plotted in Figure 50, with alb = 1.5, and k = 1. In this 

case, laminate 1 is optimal for 0° S; () S; 24°, whereafter laminate 2 becomes 

best. From Figures 49 and 50 it is obvious that the laminate which gives the 

highest design index D I in both cases is laminate 2, with ()opt = 27° for al b = 1 

and ()opt = 49° for al b = 1. 

The effect of k on the optimal fiber orientation are shown in Table 13, for 

different plate aspect ratios, with DI = 0.25K* + 0.5N* + 0.25P*. The choice 

of J.Ll and J.L2 here gives greater weighting to the buckling load N*, and would 

be used where this factor is twice as important as the prebuckling and post­

buckling stiffnesses, design wise. When the plate is narrow (alb S; 0.8), ()opt 

is 0°, and in these cases, the optimal laminate is either types 1 or 3. When 

alb = 0.8, the optimal fiber orientation becomes nonzero, with the value in­

creasing as the plate aspect ratio increases to alb = 1.25. The value of ()opt 

then tapers off slightly as a I b increases to 3. The corresponding values of 
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K*/Kmax, N*/Nmax and P*/Pmax are listed in columns 4, 5 and 6 of Table 13, 

respectively. It is intersecting to note that for low aspect ratios, these three 

values are approximately/exactly 1. Generally, as alb increases, so the values 

for K* / Kmaxand P* / Pmax decrease, while that for N* / Nmax remains approxi­

mately 1. This trend is followed until alb = 1.25, where, as for (}opt, the values 

for the prebuckling and post buckling stiffnesses increase slightly. The last three 

columns of this column show the ratios of values of the individual optimal pre­

and post buckling stiffnesses, as well as the buckling load to the collective max­

imum found using the multiobjective scheme. This demonstrates the amount 

of stiffness/load lost as a result of using multiobjective design. The ideal would 

be to have the results in columns 3 - 6 all as high as possible, but obviously 

this is not the case. Table 14 illustrates similar results for k = O. 

In order to demonstrate the effect of varying values for /-Ll, /-L2 , and /-L3 on 

the design index, trade-off curves are given for four cases. In the first two cases, 

/-Ll + /-L2 = 1, with the influence of P" neglected. Figure 51 shows the trade­

off for k = 0 and alb = 1. With /-L2 = 0, J(* is approximately 1.7 whereas 

with /-Ll = 0, N* is approximately 1.0. Figure 52 likewise is the trade-off curve 

for /-Ll + /-L2 = 1 with k = 1 and alb = 1. In this case when /-L2 = 0, J(* 

is approximately 1.37 in value. Thus the effect of increasing value of k is to 

decrease that of J(*. The value of N* when /-Ll = 0 is the same as that for when 

k = O. 

Trade-off curves with the effect of P* neglected are shown in Figures 53 and 

54. As before the effect of increasing k is to depress the value of P* whereas as 

before, that for N* remains almost constant. 
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~-.-:-.- .,..,-. .. -,,---:----- _. __ .,-- ... - - _. ---_.-... --------_.- --_ .... _-_._--

alb Lam Bop, K·/Km• N·lNm", p·/pm", K(B"opJ/Km", N(B" op,)lNm", PCB" opJ/P m .. 

No 

0.2 1&3 0 1 1 1 1 1 1 

0.4 1&3 0 1 0.985 1 0.846 0.985 0.846 

0.6 1&3 0 1 0.841 1 0.650 0.841 0.655 

0.8 3 20.1 0.848 0.860 0.852 0.600 0.729 0.625 

\.0 3 42.6 0.587 0.997 0.651 0.575 0.622 0.649 

1.25 3 44 .6 0 .577 1 0.723 0.577 0.5 19 0.723 

\. 50 3 38.5 0.614 0.999 0.777 0.609 0.48 1 0.540 

1.75 3 33.3 0.663 0.965 0.820 0.590 0.467 0.493 

2 3 43 .61 0.581 0.999 0.459 0.575 0.458 0.459 

3 3 43.4 0.582 0.999 0.573 0.575 0.491 0.573 

Table 13. Optimal laminate configurations with 

DI = 0.251(* + 0.5N* + 0.25P*, k = 0 

181 



alb Lam S"", K'!Km• N'!Nmu P'fP mu K(S" "",)/Kmax N(S"op,)fN max P(S" opl)fP max 
No 

0.2 1&3 0 1 1 1 1 1 1 

0.4 1&3 0 1 0.994 1 0.929 0.994 0.903 

0.6 1&3 0 1 0.896 1 0.783 0.896 0.697 

0.8 3 17.6 0.921 0.892 0.884 0.727 0.800 0.637 

1.0 3 27.6 0.826 0.938 0.742 0.685 0.726 0.622 

1.25 3 56 .9 0.578 1 0.730 0.578 0.647 0.730 

1.50 3 54 .2 0.592 0.999 0.797 0.592 0.574 0.495 

1.75 3 52.4 0.603 1 0.834 0.603 0.538 0.834 

2 3 51.1 0.6 11 1 0.838 0.611 0.523 0.838 

3 3 48 .1 0.632 0.971 0.729 0.602 0.554 0.298 

Table 14. Optimal laminate configurations with 

DI = O.25K* + O.5N* + O.25P*, k = 1 

182 



1 .8 

/L2 =O 
1 .7 

1 .6 

K* 1 .5 

1.4 

1 .3 

1 .2 

1 .1 

01 = 0 
1 .0 ~--~~----~--~~--~~--~~--~~--~----~ 

0.2 0.3 . 0.4 0.5 0.6 0.7 0.8 0.9 1 .0 

N* 

Figure 51. Trade-off curve for J.Ll + J.L2 = 1, with k = 0 and a / b = 1 

183 



1 .40 

1 .35 

1 .30 

K* 
1 .2 5 

1 .20 

1 .1 5 

1. 10 

1 .0 5 

111 = 0 
1 .00 

0.70 0 .75 0.80 085 0.90 0.95 1 .00 

N* 

Figure 52. Trade-off curve for /-LI + /-L2 = 1, with k = 1 and alb = 1 

184 



fL3 = 0 
1 . 0 '--_---l.-..,.-_---L... __ -L-__ -L-__ L-_----1 __ --L __ ~ 

0.2 0.3 0 .4 0.5 0.6 0.7 0.8 0.9 1 .0 

N* 
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Chapter 4 

Conclusions 

Five problems dealing with the optimal design of rectangular symmetrically 

laminated plates were investigated. In all cases, the layer fiber angle was the 

optimising variable, and the objective was the maximisation of either the buck­

ling load (design problems 1 - 3), the postbuckling stiffnesses (problem 4) or 

a weighted combination of the prebuckling and post buckling stiffness, and the 

buckling load (problem 5). Their relevance in practical design situations are 

emphesized, and important findings in each case are discussed. 

For the first three problems, the finite element method was used in con­

junction with an optimising routine to determine the optimal designs, since the 

complexity of the problems investigated ruled out the use of analytical meth­

ods. This formulation was based on Mindlin-type laminated thin plate and shell 

theory. The fourth and fifth problems allowed the use of analytical methods for 

analysis and optimisation purposes. 
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4.1 Part 1: Optimal Design of Symmetric Lami-

nates for Maximum Buckling Load Including 

the Effects of Bending-Twisting Coupling 

The effect of optimisation on the buckling load was investigated by plotting 

the buckling load against the design variable (Figures 24 and 25). The results 

show that the difference in the buckling loads of optimal and non-optimal plates 

could be quite substantial, emphasising the importance of optimisation for fiber 

composite structures. 

It is observed that optimal fiber angles display several jump discontinuities 

when plotted against the aspect ratio. The present study shows that the number 

and location of these discontinuities caused by the changes in the buckling mode 

depend on the specific boundary conditions and the biaxial loading ratio N y / Nx . 

In most cases the optimal fiber angle is "quite sensitive to the value of the aspect 

ratio with (F,S,F,S) plates exhibiting the least sensitivity, and (C,S,C,S) plates 

exhibiting the most sensitivity. 

A comparison of optimal fiber angles with and without bending-twisting 

coupling (Figure 32) showed that this effect cannot be neglected at certain 

aspect ratios. It is noted that the effect can be minimised by using a large 

number of layers in the laminate construction. 
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4.2 Part 2: Optimal Design of Symmetric Angle­

ply Laminates Subject to Nonuniform Buckling 

Loads and In-plane Restraints 

In this section, a comparative study is undertaken to investigate the effects of 

in-plane restraints and nonuniformity of load distributions . 

In-plane restraints give rise to Poisson 's effect and lead to buckling under 

biaxial compression for a uniaxially loaded plate, causing premature instability. 

The results show that the reduction in the buckling load depends on the aspect 

ratio and can be substantial for higher aspect ratios . In all cases of buckling 

loads, this reduction is more than 50% for an aspect ratio of 2. It is found 

that the differences in the optimal values of the ply angles are also considerable 

and increase as the aspect ratio becomes larger. These results clearl~ illustrate 

the extent of error which will be introduced into the analysis and design of 

composite laminates in the presence of in-plane restraints if Poisson 's effect is 

not accounted for. 

An interesting outcome of the study is the results pertaining to the effects 

of distributions of in-plane compressive loads on the optimal designs. Tables 5 -

8 indicate that, in general, Oopt becomes smaller and the buckling load larger as 

the in-plane loads become more evenly distributed . Moreover , the differences 

in the Oopt values of classical and present cases, in general, also increase as the 

compressive loads become more uniform. However, the ratio N: / Ng does not 

show a clear trend. 
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Results are presented for combinations of simply-supported, clamped and 

free boundary conditions. Significant differences in the optimal fiber orienta­

tions and buckling loads are obs~rved for the cases with and without Poisson's 

effect. Similarly, if the compressive loads are nonuniform, a uniform approxi­

mation will lead to non conservative estimates of the buckling load . 

4.3 Part 3: Optimal Design of Symmetric Lami­

nates with Central Circular Cut-outs for Max­

imum Buckling Load 

Optimal designs for laminated plates with central circular holes are presented, 

and compared to results found for plates without holes. The plates are subjected 

to biaxial loads, and combinations of boundary conditions at the edges. The 

effect of the cut-outs is greatest when the aspect ratio of the plate is small. In 

all cases, the buckling load capacity of the laminates containing holes is lower 

than those without holes, and the optimal fiber angles differ when holes are 

present. When the aspect ratio is large, the laminate becomes weak, offering 

less buckling resistance, and the effect of the hole is of less importance. The 

use of values determined in optimal design studies of laminated plates without 

holes can thus lead to non-optimal results for laminates containing holes. 
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4.4 Part 4: Optimal Laminate Configurations with 

Symmetric Lay-ups for Maximum Post buckling 

Stiffness 

A method is given for the optimal post buckling design of symmetrically lami­

nated angle-ply plates. The design objective is specified as the maximisation of 

the initial postbuckling stiffness in the higher load direction subject to a stiffness 

constraint in the other direction . This formulation ensures sufficient stiffness 

in both directions. Due to the special nature of the problem the optimal de­

sign is chosen from among several candidate configurations with angle-ply and 

cross-ply layers. It is shown that the optimal configuration depends on the 

ratio of the in-plane loads in the x and y directions. The postbuckling stiff­

nesses may fluctuate as the load ratio increases, but the general tendency is to 

decrease with increasing load ratio. Re·sults are given for two additional config­

urations in which no in-plane or bending-twisting coupling occurs by virtue of 

the special choice of the stacking sequences. These configurations exhibit lower 

postbuckling stiffnesses as compared to the optimal designs chosen from among 

candidate designs. 
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4.5 Part 5: Multiobjective Design of Laminated 

Plates Subject to In-plane Restraints for a Max­

imum Combination of Prebuckling and Post­

buckling Stiffness and Buckling Load 

A multiobjective design study is carried out with the objective being the max­

imisation of the weighted sum of the prebuckling and post buckling stiffnesses , 

and the buckling load , for uniaxially loaded plates with in-plane restraints along 

the unloaded edges . The optimal design process presented is applied to five can­

didate laminate configurations, and the best is chosen under the gi ven biaxial 

loading and geometric parameters . 

In general, it is usually the case that the buckling load is the most important 

design criteria, wi th the prebuckling and the post buckling stiffnesses playing 

lesser roles . Thus, the study concentrates on a weighting scheme that gives twice 

as much prominence to the non-dimensionalised buckling load than the non­

dimensionalised prebuckling and post buckling stiffnesses. In this case, when 

the plate aspect ration is small (alb ~ 0.8), the multiobjective design gives 

individual stiffnesses and buckling loads which are almost as high as in cases 

that would be obtained in single objective designs, but as the aspect ratio 

increases, these individual values decrease. Nonetheless, the multiobjective 

design shows that laminate types 1 and 3 are the best choices for cases where 

high prebuckling and post buckling stiffness and buckling load are required. 
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Chapter 5 

Suggestions and Further 

Research 

The literature reflects that although much investigation has been carried out 

concerning the buckling of laminated plates and the optimal design of such 

plates, there still remains much to be done. Five optimal design problems 

were tackled here, but they actually create more avenues for research than they 

close. As composite materials become more popular in more applications, and 

correspondingly, as they become economically viable for these applications, so 

more funds will become available for research into their applicabilty. Slowly 

but surely, a greater reserve of knowledge of composites will be developed. 

From the work that was carried out here , the following research problems 

spring to mind, and some of them have been tackled: 

1. Optimal design of laminated plates subjected to varying thermal loads 

and combinations of boundary conditions . This type of problem is termed 
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coupled, since the first part involves solving for the heat distribution, and 

the second the determination of the optimal design in order to maximise 

the buckling temperature . This investigation is almost finished. 

2. Optimal design of laminated plates subjected to varying in-plane and 

thermal loads and combinations of boundary conditions. This problem 

is more complicated than that described above, since the there is now a 

combination of temperature loading and pressure loading along the edges. 

None the less, the problem will be tackled in the near future, and should 

prove interesting. 

3. Optimal design of biaxially laminated plates subjected to a weighted com­

bination of the prebuckling and post buckling stiffness, and buckling load. 

Since this problem , unlike the problem solved in Part 4 of this thesis, 

includes biaxial loads, the post buckling stiffnesses Px and Py in both di­

rections will have to be accounted for. 

4. Optimal design of laminated plates with central circular cut-outs sub­

jected to thermal loads and combinations of boundary conditions. 
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