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Abstract

Lesotho, like any other country of the world, is faced with the task of improving the

life of its inhabitants. The Government of Lesotho has taken steps to address this

issue by embarking on National Vision 2020 and Millennium Development Goals. To

facilitate this the government developed a poverty reduction strategy which recognised

the improvement of health as one of the priority areas. For this priority to be effectively

acted on, factors affecting health status of the people have to be identified. Thus, the

objective of this research is to identify factors that affect the health status of the people

of Lesotho and the direction of effect of these factors. To achieve this, generalized

linear models, generalized linear mixed models, and survey logistic regression models

are used. The data for this research come from 2002 Lesotho Core Welfare Indicators

Questionnaire Survey. The response variable, namely the health status, is measured by

the presence or absence of disease/injury. The first model fitted is the generalized linear

model which is selected using a stepwise procedure. The same model selected for the

generalized linear model is refitted using a generalized linear mixed model and a survey

logistic regression model which accounts for the complexity of the survey design. Using

the generalized linear model and generalized linear mixed model the following factors

were found to be significantly affecting the health status of the people of Lesotho:

district of residence, sex, marital status, age, ownership of dwelling, education, and the

interaction of effects; sex by marital status, age by marital status, ownership of dwelling

by marital status, education by ownership of dwelling and ownership of dwelling by

household size. The analysis using the survey logistic model also lead to the same

conclusions as the above two models as well as identified the following interaction effects

as important for health status: education by type of toilet, fuel used for cooking by

time taken to reach hospital/clinic, sex by household size, marital status by household

size, and type of toilet by household size.
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Chapter 1

Introduction

Health status is defined not only as absence of disease, but also as the complete

physical, mental, and social well-being of people (Huebner et al., 2004). Poor health

leads to reduced household saving, productivity and learning ability of people (World

Health Organization, www.who.int). Thus, reduction in saving, productivity, and

learning creates poverty in the households or worsens it if it already exists, and in

turn this perpetuates poor health even further. This becomes a problem for the well-

being of people globally, Lesotho included. Accordingly, the Government of Lesotho

has embarked on Millennium Development Goals (MDGs) and National Vision 2020

initiatives in response to this issue of the well-being of the Basotho people. These ini-

tiatives which are aimed at improving the lives of the Basotho, identify improved access

to health care and social welfare as constituting part in the top priority areas that need

immediate attention. This priority also forms part of Poverty Reduction Strategy de-

veloped to facilitate attainment of the MDGs and National Vision 2020 goals. The

electronic version of these documents is available on the Ministry of Finance website,

www.finance.gov.ls. It is vital to identify specific focal areas of intervention to speed
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up (or guide) the process.

There are a number of potential factors important for the health status of the people

of Lesotho. Lesotho is divided into ten administrative areas called districts (which will

also be referred to as locations). All the ten districts comprise rural and urban areas.

Inequality of socio-economic development among the districts and rural/urban areas

is inevitable. How this is related to the health status of people is not well known.

Intuitively, one would think that households heads in certain age groups are relatively

more responsible when it comes to the welfare of their households’ members. In that

sense, it is important to identify the category of the people who need assistance.

It is known that traditionally females have the obligation to look after their house-

hold members, whilst males on the other hand feel more responsible for resource pro-

vision. This phenomenon itself prompts health consciousness in females. However,

this does not exclude males from their responsibility for the well-being of their family

members. It is also of interest to find out if the relationship found between sex (es-

pecially males) and health status (Zullig, Valois, and Drane, 2005) holds in Lesotho.

Regarding marital status, Prior and Hayes (2001) claim that marriage provides some

kind of a shield against behaviour related health risks, such as drinking, unhealthy

diet, and promiscuous sex (which may lead to sexually transmitted diseases). They

add that it also offers a supportive relationship and enhanced economic benefits to the

households. How this shield and economic benefits impact on health status in Lesotho

is to be established in this study.

Though the large household in the African setting serves as a form of social security,

according to Howden-Chapman (2004) it leads to an increased risk of infectious diseases

due to overcrowding. Therefore, from the health viewpoint, it is necessary to see if this

security is worth having. The households that do not own their dwelling, especially

those that rent, have a limited control of the environment around the dwelling. For
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instance, a household may be occupying a dwelling with hazardous particulate matter

to human health from roofing materials such as asbestos (Howden-Chapman, 2004).

There may be other harmful particulate matter, such as nitrogen dioxide and carbon

monoxide, produced as the result of types of fuel used for cooking. According to

Howden-Chapman (2004) exposure to this particulate matter can cause diseases, such

as asthma. The fact that an owner-occupied dwelling gives some kind of financial

benefit to the households and that occupiers are likely to have a better life compared

to those who use rented dwellings (Howden-Chapman, 2004), is of interest to see if

this holds true in Lesotho. Therefore, in the present study the relationship between

health status and roofing material, type of fuel used for cooking and the ownership of

dwelling will be assessed.

A number of studies on the relationship between education and health status have

arrived at different conclusions. For instance, Hussain and Smith (1999) found that in

Bangladesh, children with mothers who have high school or higher education are less

likely to have diarrhea. Cooper and Kohlmann (2001) found that education has little

effect on elder Americans’ health status. On the other hand, Vingilis, Wade, and Adlaf

(1998) found that education has a significant effect on school going adolescents’ health.

Because of the uniqueness of each country, it is important to find how this relationship

works in Lesotho. Other potential factors that need to be investigated are the type of

toilet facility, source of drinking water, the time taken to reach the nearest supply of

drinking water, as well as the time taken to reach the nearest hospital/clinic.

Consequently, the objective of this study is to use statistical methods to identify

important factors affecting the health status of the people of Lesotho. The household

level data will be used to model health status. Since all the variables should be at the

household level, variables such as age, sex, marital status, and education pertain to

the household head.
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It is, at this stage, critical to state how the outcomes from the study will benefit

the inhabitants of Lesotho. Identification of important factors for health status and

their direction of effect will help all stakeholders (including policy framers and decision

makers, donors, individuals, etc.) know which areas need more attention or which

policies need to be fast-tracked in an endeavour to achieve better health for all. This

study will not only serve as a guide, but will also highlight areas of further research for

an in-depth understanding of the health status pattern in Lesotho. If all stakeholders,

including Government, act accordingly, improved health status will be realized, hence

a positive move will be made towards attainment of MDGs and National Vision 2020

goals.

The thesis is organized as follows. In Chapter 2 the theory of generalized linear

models is reviewed, as these models will also be used to model health status to achieve

the research objective. In Chapter 3 the data to be modelled are introduced. The

sampling method utilized for data collection, and the classification of the variables are

discussed. Data are analysed in Chapter 4 using generalized linear models where all

the factor effects are fixed. In Chapter 5 the random primary sampling units (PSUs)

effects are incorporated into the model selected in Chapter 4, leading to mixed models.

These models are referred to as generalized linear mixed models, which are extensions

to the generalized linear models. Survey logistic regression models designed specifi-

cally for survey data are discussed and fitted in Chapter 6. In Chapter 7 conclusions,

implications, and avenues for future research are presented.
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Chapter 2

Generalized Linear Models

Recall from Chapter 1 that the objective of the thesis is to identify factors that affect

the health status of the people of Lesotho. Health status is a binary response variable

(disease or no disease) with Bernoulli distribution (a member of the exponential family).

All the potential factors that affect health status will be assumed to have fixed effects

and hence generalized linear models will be fitted to the data. In the sections that

follow the theory of generalized linear models is reviewed.

2.1 General Linear Models

A general linear model for an n×1 response yn×1 = (y1, y2, . . . , yn)′ is given by

y = Xβ + ε (2.1)

where Xn×(p+1) is an n×(p+1) design matrix whose ith row (i=1,2,. . .,n) is (1,xi1, xi2, . . . , xip),

β(p+1)×1 = (β0, β1, . . . , βp)
′ is a (p+1) vector of parameters, and ε = (ε1, ε2, . . . , εn)′ ∼

Nn(0, σ2I)) is an n×1 vector of random errors.

The least-squares estimator β̂ of β, which is also the maximum likelihood estimator

5



(MLE) if the independent errors assumptions hold, is given by

β̂ = (X′X)−1X′y ∼ Np+1(β, σ2(X′X)−1) (2.2)

where (X′X)−1 is the inverse of X′X and if (X′X) is not of full rank this inverse is

replaced by a generalized inverse (X′X)−.

The sampling distribution of β̂ , Np+1(β, σ2(X′X)−1), is used to test the hypothesis

about β. In cases where the normal errors assumption and the central limit theorem

conditions are not satisfied, the general linear models are not applicable, so generalized

linear models are used instead to model the data.

2.2 Generalized Linear Models

The generalized linear models are used to model observations on a random variable

having a distribution belonging to the exponential family. In addition to the accom-

modation of non-normal responses, they also allow modelling of the functions of the

mean besides the mean itself (Agresti et al., 2000). The theory of these models is

discussed in Lindsey (1999); McCullagh and Nelder (1989); Dobson (1990); Meyer and

Laud (2002); Cantoni and Ronchetti (2001); and Schabenberger and Pierce (2002)

among others. The model for the responses y1, y2, . . . , yn is determined by specifying

(1) the distribution (belonging to the exponential family of distributions) of the re-

sponses

(2) the linear predictor (which is a constant linear combination of parameters and

covariates) and

(3) the link function (which links the mean response and the linear predictor).
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Responses y1, y2, . . . , yn are assumed to be independent with the same distribution

belonging to the exponential family of distributions. The canonical form of probability

density (mass) function of yi (i=1,2,. . .,n) is

f(yi; θi, φ) = exp

(
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

)
, i = 1, 2, . . . , n (2.3)

where ai(φ) = φ
wi

is called a dispersion parameter (where wi is the weight for the ith

observation), θi is a natural parameter, and b(θi) is a cumulant or normalizing function.

E(yi) and var(yi) are related to θi and ai(φ) in the following manner

E(yi) =
∂

∂θi

b(θi) = b′(θi) = µi , i = 1, 2, . . . , n (2.4)

var(yi) = b′′(θi)ai(φ) = V (µi)ai(φ) , i = 1, 2, . . . , n. (2.5)

where V(µi) = b′′(θi) is a variance function obtained by differentiating µi with respect

to θi. The linear predictor is given by

ηi = x′
iβ = (1, xi1, xi2, . . . , xip)β , i = 1, 2, . . . , n (2.6)

where x′
i is the ith row of the design matrix mentioned in Section 2.1.

The link function (denoted by g) is a monotonic and differentiable function which

links the mean response µi = E(yi) and the linear predictor ηi = x′
iβ as follows

ηi = g(µi) = x′
iβ , i = 1, 2, . . . , n. (2.7)

If θi equals ηi, the link function is called a canonical link function. Each member

of the exponential family of distributions has a unique canonical link function. For

example, the canonical link function for the Binomial (or Binary) data is the logit.

The generalized linear model with logit link is referred to as the logistic regression

model discussed in Section 2.5.
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2.3 Estimation of Parameters

The method of maximum likelihood is the theoretical basis for parameter estimation

in generalized linear models, where the mean response µ is related to linear predictors

by the link function g (i.e. g(µ) = Xβ). To specify the likelihood function, the

distributional form of the response needs to be assumed (Collett, 2003), and should

have the form given in (2.3) with the joint probability density (mass) function

f(y; θ) = L(θ;y) =
∏n

i=1 exp
(

yiθi−b(θi)
ai(φ)

+ c(yi, φ)
)

= exp
∑N

i=1

(
yiθi−b(θi)

ai(φ)
+ c(yi, φ)

) (2.8)

Algebraically, the probability density (mass) function f(y; θ) and likelihood function

L(θ;y) are the same. The only difference is the emphasis on the arguments: for the

density (mass) function emphasis is on the random vector y given the fixed parameter

vector θ; and for likelihood function emphasis is on the parameter vector θ given the

vector of observed values y. The log-likelihood function of (2.8) is given by

` = log L(θ;y) =
n∑
i

`i with `i =
yiθi − b(θi)

ai(φ)
+ c(yi, φ). (2.9)

The parameter estimates are obtained by differentiating the log-likelihood function

with respect to each βj, equating derivatives to zero, and then solving the system of

equations simultaneously for the βj. That is

∂`

∂βj

=
n∑

i=1

∂`i

∂βj

= 0 , j = 0, 1, 2, . . . , p. (2.10)

Using the chain rule of differentiation, ∂`i

∂βj
is obtained as

∂`i

∂βj

=
∂`i

∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

. (2.11)

From (2.9) it can be seen that

∂`i

∂θi

=
yi − b′(θi)

ai(φ)
=

yi − µi

ai(φ)
since µi = b′(θi) from (2.4)
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and

∂µi

∂θi

= b′′(θi) = V (µi) or
∂θi

∂µi

= [V (µi)]
−1 from (2.5).

Recall that the linear predictor (2.7) is ηi = g(µi) = x′
iβ = β0 +β1xi1 + . . .+βip. Then

∂ηi

∂µi

= g′(µi) or
∂µi

∂ηi

= [g′(µi)]
−1

and

∂ηi

∂βj

= xij.

Substituting for ∂`i

∂θi
, ∂θi

∂µi
, ∂µi

∂ηi
, and ∂ηi

∂βj
in (2.11) gives

∂`i

∂βj

=
yi − µi

ai(φ)
[V (µi)]

−1[g′(µi)]
−1xij

=
(yi − µi)xij

ai(φ)V (µi)g′(µi)

=
(yi − µi)xij

var(yi)g′(µi)
, since var(yi) = ai(φ)V (µi).

Therefore, the system of equations to be solved for the βj’s is

∂`

∂βj

=
n∑

i=1

(yi − µi)xij

var(yi)g′(µi)
= 0 , j = 0, 1, . . . , p. (2.12)

These equations are solved iteratively. That is, an initial solution of the equations

denoted by β̂
(0)

is guessed and then updated until the iterative algorithm converges

to the solution β̂, called the maximum likelihood estimate of β. Iterative algorithms

for solving (2.12) are available in most statistical packages, such as SAS, STATA,

GenStat etc. The two most popular and widely used algorithms for maximum likelihood

estimation are the Newton-Raphson and the Fisher’s scoring algorithms. The Fisher’s

scoring method is equivalent to the iterative reweighted least-squares (Schabenberger

and Pierce, 2002; and Kutner et al., 2005). The Newton-Raphson method solves

maximum likelihood estimates iteratively using the standard least-squares methods

(McCullagh and Nelder, 1989). Both methods basically give the same solutions.
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The Newton-Raphson procedure is, for r ≥ 1 until convergence

β̂
(r)

= β̂
(r−1) −H−1u(r−1) (2.13)

where H (the Hessian matrix) and u (the gradient) are given by

H = [hjp] =

[
∂2`

∂βj∂βp

]
β=β̂(r−1)

(2.14)

u = [uj] =

[
∂`

∂βj

]
β=β̂(r−1)

=
n∑

i=1

(yi − µi)xij

var(yi)g′(µi)
. (2.15)

The Hessian matrix, H, is also referred to as the observed information matrix.

The Fisher’s scoring method uses the expected information matrix referred to as

the Fisher’s information matrix (J ). The (j, p)th element of J is given by

−E

(
∂2`

∂βj∂βp

)
evaluated at β = β̂

(r−1)
. The Fisher’s information matrix, J at β, has the following

relationship with u at β

Jjp = E(ujup) = E

(
∂`

∂βj

∂`

∂βp

)
= −E

(
∂2`

∂βj∂βp

)
(2.16)

(Dobson, 1990). Therefore, Jjp is given by

Jjp = E(ujup) = E

(
n∑

i=1

(yi − µi)xij

var(yi)g′(µi)
.

n∑
i=1

(yi − µi)xip

var(yi)g′(µi)

)

= E

(
n∑

i=1

(yi − µi)
2xijxip

[var(yi)g′(µi)]2

)

=
n∑

i=1

E(yi − µi)
2xijxip

[var(yi)g′(µi)]2
.

Since E(yi − µi)
2 is var(yi), Jjp becomes

Jjp =
n∑

i=1

xijxip

var(yi)[g′(µi)]2
. (2.17)

Hence, the Fisher’s information matrix at β is

J = X′WX (2.18)
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where X is the design matrix in Section 2.1 and W evaluated at β = β̂
(r−1)

is a

diagonal weight matrix with ith diagonal element given by

wii =
1

var(yi)[g′(µi)]2
. (2.19)

Substituting J evaluated at β = β̂
(r−1)

for H in (2.13) gives for r ≥ 1 until convergence,

β̂
(r)

= β̂
(r−1)

+ J −1u(r−1). (2.20)

Parameter estimates β̂
(r)

in (2.20) are also given by, for r ≥ 1 until convergence,

β̂
(r)

= (X′WX)−1X′Wz (2.21)

evaluated at β = β̂
(r−1)

, where the ith element of z is given by

zi =

p∑
j

xijβ̂
(r−1)
j + (yi − µi)g

′(µi)

evaluated at β = β̂
(r−1)

. The asymptotic sampling distribution of β̂ is given by

β̂ ∼ N(β,J −1).

This distribution can be used to:

1) Test the significance of each parameter estimate β̂j using the test statistic
β̂j√
vjj

which has standard normal distribution leading to a Wald(z) test statistic
β̂2

j

vjj

(Vittinghoff et al., 2005), which has chi-square distribution with one degree of

freedom where the vjj are diagonal elements of J −1 evaluated at β = β̂
(r−1)

.

2) Calculate (1− α)100% confidence intervals for each parameter βj

β̂j ± z(1−α
2
)
√

vjj

where zp is the 100pth percentile of the standard normal distribution. An-

other candidate statistic that can be used, instead of the Wald statistic, is the
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likelihood-ratio based statistic (also known as profile likelihood statistic) for con-

structing confidence intervals of parameter estimates. Although these two are

almost the same for large samples, the likelihood-ratio based statistic is preferred

for generalized linear models because of its reliability (Vittinghoff et al., 2005).

3) Also examine correlation among parameter estimates (corr(β̂j, β̂p) =
vjp√
vjjvpp

),

where vjp(j 6= p) are off-diagonal elements of J −1 evaluated at β = β̂
(r−1)

.

2.4 Model Selection and Diagnostics

2.4.1 Model Selection

There can be a number of models in the family of generalized linear models that describe

a given data set. Therefore, it is indispensable to select the simplest reasonable model

that adequately describes given data (Lindsey, 1999). The selection of variables that

enter the model is done through three candidate procedures namely, forward, backward,

or stepwise selection. Forward selection starts with the null model (no explanatory

variables) and enters one explanatory variable at a time. Backward selection starts with

a saturated model (with all explanatory variables) and drops one explanatory variable

at a time. The stepwise selection procedure operates the same way as the forward

selection. But the advantage it has over the forward selection is that the variables

already in the model are considered for exclusion each time another variable enters the

model. So, when there are many variables under consideration the stepwise is mostly

preferred because it has an advantage of minimising the chances of keeping redundant

variables and leaving out important variables in the model. In all the procedures, a

variable that leads to a significant change in the deviance (measure of goodness-of-fit

described in Section 2.4.2) when added to or dropped from the model (i.e. which leads
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to p-value less than specified significance level) is retained, otherwise it is dropped.

The contribution of each variable to the deviance reduction is given by the type 1 and

type 3 analysis of effects. The type 1 analysis of effects depends on the sequence in

which variables enter the model, whilst type 3 analysis of effects considers the overall

model and assesses the contribution of each variable to deviance reduction irrespective

of the sequence in which variables enter the model. This method of model selection is

referred to as deviance analysis and is used to test the model for the goodness-of-fit.

2.4.2 Model Checking

Goodness-of-fit Test

The log-likelihood-ratio (deviance) and the Pearson’s chi-square statistics are the main

tools used for assessing the goodness-of-fit of the fitted generalized linear model (Jiang,

2001; and Kutner et al., 2005). They measure the discrepancy of fit between the

maximum log-likelihood achievable and the achieved log-likelihood by the fitted model.

One can illustrate the use of these measures with the most commonly used measure

(i.e. deviance), given by

D(y, µ̂) = 2{`(y;y)− `(µ̂;y)} (2.22)

where `(µ̂;y) is the log-likelihood under the current model and `(y;y) is the log-

likelihood under the maximum achievable (saturated) model. The aim is to minimize

D (abbreviation of D(y, µ̂)) by maximizing `(µ̂;y). This deviance is scaled by the

dispersion parameter φ. Let the scaled deviance be denoted by D∗ and its relationship

with D is given by

D∗ =
1

φ
D. (2.23)
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Sometimes φ is not known, so in that case it can be estimated by

φ̂ =
D

n− p
(2.24)

where n is the number of observations, and p the number of parameters. See Schaben-

berger and Pierce (2002) and Lindsey (1999) for more details on the handling of the

dispersion parameter. D (or D*) has an asymptotic chi-square distribution with n− p

degrees of freedom (i.e. D∼ χ2
n−p) (Jiang, 2001; McCullagh and Nelder, 1989; and

Der and Everitt, 2002). For this statistic to be used to test the goodness-of-fit of the

current model its asymptotic properties should hold (Schabenberger and Pierce, 2002).

The hypothesis about the goodness-of-fit of the model to the data is given by

H0: model is adequate

H1: model is not adequate

If the level of significance is α, the H0 will be rejected if D > χ2
n−p,α. Alternatively, if d

is the observed value of D and if P (χ2
n−p > d) = p− value < α, then H0 is rejected. A

simple rule of thumb that can be used is that the mean deviance (given by D divided by

n−p) should be approximately equal to one for a satisfactory current model, especially

if the distribution of the responses is Binomial or Poisson (Collett, 2003).

Outliers, Influential, and High-leverage points

An outlier is a datum point that differs from the general trend of the data and is not

necessarily always influential (Lindsey, 1999). By ’influential’ one means that a slight

change or omission of an observation leads to a substantial effect on parameter estimates

of the model. The magnitude of influence is measured by the leverage (denoted by hii),

which is the ith diagonal element of the hat-matrix (H) (Kutner et al., 2005; and
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Lindsey, 1999). For generalized linear models this matrix is given by

H = W− 1
2X(X′WX)X′W− 1

2 (2.25)

where X is the design matrix in (2.1) and W is the weight matrix in (2.18). The hat-

matrix is invariant under nonsingular linear transformation (Rousseeuw and Leroy,

2003). The leverage, hii, always lies between 0 and 1 (inclusive). The index plot of hii

(hii vs. observations) is usually used to detect influential data points. Observations

with hii greater than 2p/n (where p is the number of parameters and n is the number

of cases) are regarded as influential (Preisser and Garcia, 2005; Rousseeuw and Leroy,

2003; and Collett, 2003). Note that hii has the problem of masking effect (Krzanowski,

1998). This means that, the fact that it is based only on explanatory variables, it is

unlikely to detect the influence that may be due to response variable values. The other

commonly used measure, which is reliable for detection of observations with undue

influence, is the Cook’s distance measure (Williams, 1987) discussed below.

Cook’s Distance (Ci)

Cook’s Distance is used to measure the influence of the ith observation on the estimates

of the parameters (Kutner et al., 2005). This statistic, following the notation used in

the SAS GUIDE (version 9.1) is given by

Ci =
1

p a(φ̂)
(β̂ − β̂(i))

′(X′WX)(β̂ − β̂(i)) (2.26)

where X and W are as defined in (2.25), p is the number explanatory variables in the

model, a(φ) is a scale parameter, β̂ is the vector of parameter estimates from the full

data set, and β̂(i) is a vector of parameter estimates obtained when the model is fitted

without the ith observation. Ci is approximated by, in terms of hii,

Ci '
r2
pi
hii

(1− hii)2
=

r2
pis

hii

(1− hii)
(2.27)

15



where rpi
= (1 − hii)yi is called the Pearson residual, and rpis

=
rpi√
1−hii

is called the

standardized Pearson residual. A large Ci implies that the ith observation has undue

influence on the set of parameter estimates. The question is how large is a large Ci

value. Generally, there is no clearly defined cut-off rule. However, the most widely

used cut-off value is 1. But some authors examine just the index plot of Ci (Ci vs.

observation i)and consider the data points departing from the rest as being influential.

See Hammill and Preisser (2005); Rousseeuw and Leroy (2003); and Skovgaard and

Ritz (2007) for more details.

Link Function

The choice of link function is fundamental. If it is not appropriate the resultant esti-

mates will be wrong, and will lead to misleading conclusions. The appropriateness of

the link function can be tested by refitting the model with the linear predictor obtained

from the original model and the square of the linear predictor as explanatory variables

(Vittignhoff et al., 2005). If the link function is appropriate, then the linear predic-

tor will be statistically significant, and the squared linear predictor term insignificant.

This means that, prediction given by the linear predictor is not improved by adding

the squared linear predictor term which is basically used to evaluate the null hypoth-

esis that the model is adequate. Alternatively, the original model can be estimated

with an extra constructed variable, where for an adequate model the extra variable

will be statistically insignificant (Williams, 1987). In both cases, if the constructed

variables (squared linear predictor and extra variable) are significant, then either the

link function is not appropriate or important factor(s) have been omitted in the model.

The appropriateness of the link function can also be checked graphically by plotting

the residuals against the fitted values which for an appropriate link should not exhibit

any systematic pattern. This plot can also be used to check the form of the linear
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predictor (Collet, 2003).

2.5 Logistic Regression Model

The logistic regression model is a member of generalized linear models used to model

binary data. To illustrate, consider the ith individual (i=1,2,. . .,n) characterised by x′
i

a vector of appropriately coded values of the factors (explanatory variables) having 1

in the first column. That is, x′
i is the ith row of the design matrix Xn×(p+1). Let the

response yi be 1 if the outcome for the ith individual is a success, and 0 otherwise. Fur-

thermore, let πi = P(yi = 1) be the probability that the outcome for the ith individual

is a success. The logistic regression model when the canonical link function is used is

given by

logit(πi) = log

(
πi

1− πi

)
= x′

iβ , i = 1, 2, . . . , n (2.28)

where β is a vector of unknown parameters. The logit transformation ensures that the

probabilities (πi’s) lie within the interval (0,1) for any values of x′
iβ from -∞ to ∞.

Alternatively, the logistic regression model is given by

πi = (1 + exp(−x′
iβ))−1 , i = 1, 2, . . . , n. (2.29)

The other competing non-canonical link functions for the binary data, which also force

probabilities to fall within the range (0,1) for values of x′
iβ from -∞ to ∞, are the

probit and the complementary log-log functions. The probit regression model is given

by

probit(πi) = Φ−1(πi) = x′
iβ , i = 1, 2, . . . , n (2.30)

or, equivalently

πi = Φ(x′
iβ) , i = 1, 2, . . . , n (2.31)
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where Φ is the standard normal cumulative distribution function. The complementary

log-log regression model is given by

log(−log(1− πi)) = x′
iβ , i = 1, 2, . . . , n (2.32)

or, equivalently

πi = 1− exp(−exp(x′
iβ)) , i = 1, 2, . . . , n. (2.33)

To illustrate that probabilities are always between 0 and 1 for values of x′
iβ from -∞

to ∞, under the three link functions, one uses x = x′
iβ values with x ranging from

-6 to 6. Figure 2.1 displays the graphs of the probabilities π vs. x for the three link

functions. The figure shows that π −→ 0 and 1 as x −→ -∞ and ∞, respectively,

for the three models or link functions. Furthermore, the following characteristics are

observed for the three link functions:

1. They are monotonic increasing functions which map (-∞,∞) interval of x-values

onto (0,1) interval of probabilities.

2. The logit and the probit functions are symmetric about x = 0 (or π = 0.5).

3. For x � 0, the logit and the complementary log-log probabilities are approxi-

mately equal, and for x � 0 the complementary log-log and the probit probabil-

ities are approximately equal.

2.5.1 Estimation of Parameters

The probability mass function (p.m.f.) of the Binomial distribution is

mi!

yi!(mi − yi)!
πyi

i (1− πi)
mi−yi , yi = 0, 1, . . . ,mi , and i = 1, . . . , n.
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Figure 2.1: Comparison of link functions: probability (π) vs. x-value

The log-likelihood of πi’s or β is given by

`(µ; y) = ln
n∏

i=1

mi!

yi!(mi − yi)!
+

n∑
i=1

[
yiln

(
πi

1− πi

)
+ miln(1− πi)

]
=

n∑
i=1

`i (2.34)

and the parameter estimates are obtained by solving the equations

∂`

∂βj

=
n∑

i=1

∂`i

∂βj

= 0 , j = 1, 2, . . . , p (2.35)

(see (2.11) to (2.12)). Note that for mi = 1, var(yi) = πi(1 − πi), g′(µi) = 1
πi(1−πi)

,

ai(φ) = 1, and µi = πi. Substituting for these in (2.12) obtains

∂`

∂βj

=
n∑

i=1

(yi − πi)xij

πi(1− πi)
1

πi(1−πi)

=
n∑

i=1

(yi − πi)xij = 0. (2.36)

Recall that these equations are solved iteratively using either the Newton-Raphson

(2.13) and the Fisher’s scoring (2.21) methods. When using (2.21) the weight matrix

W = diag(πi(1− πi)) and the ith element of the constructed variable z is given by

zi =

p∑
j

xijβ
(r−1)
j +

yi − πi

πi(1− πi)
.

Inferences about β are made as described in Section 2.3.
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2.5.2 Model Selection and Diagnostics

The same procedures discussed in Section 2.4 for model selection apply here. But, for

ungrouped binary data, the deviance statistic D (or D∗) is used only to select variables

and not as a measure of goodness-of-fit. For the goodness-of-fit measure, the Hosmer-

Lemeshow goodness-of-fit test, proposed by Hosmer and Lemeshow (1989), discussed in

the next section is used instead. Also discussed in the section is the inappropriateness

of the deviance statistic as a measure of goodness-of-fit, and how the Hosmer-Lemeshow

goodness-of-fit test is performed.

2.5.3 Model Checking

Goodness-of-fit Test

Recall that the deviance is given by (2.22) as

D(y, µ̂) = 2{`(y;y)− `(µ̂;y)} (2.37)

where `(µ̂;y) is the log-likelihood under the current model and `(y;y) is the log-

likelihood under the maximum achievable (saturated) model. Suppose Yi ∼ BIN(mi, πi),

then E(Yi) = miπi = µi. The likelihood function is

n∏
i=1

f(yi; πi) =
n∏

i=1

mi!

yi!(mi − yi)!
πyi

i (1− πi)
mi−yi .

The log-likelihood is

`(µ;y) = ln
n∏

i=1

mi!

yi!(mi − yi)!
+

n∑
i=1

yiln(πi) +
n∑

i=1

(mi − yi)ln(1− πi)

= ln
n∏

i=1

mi!

yi!(mi − yi)!
+

n∑
i=1

yiln

(
miπi

mi

)
+

n∑
i=1

(mi − yi)ln

[
mi −miπi

mi

]
= ln

n∏
i=1

mi!

yi!(mi − yi)!
+

n∑
i=1

yiln

(
µi

mi

)
+

n∑
i=1

(mi − yi)ln

[
mi − µi

mi

]
.
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Therefore, the log-likelihood for the fitted model is

`(µ̂;y) = ln
n∏

i=1

mi!

yi!(mi − yi)!
+

n∑
i=1

yiln

(
µ̂i

mi

)
+

n∑
i=1

(mi − yi)ln

[
mi − µ̂i

mi

]
and that for the maximal (saturated) model (µ̂i = yi) is

`(y;y) = ln
n∏

i=1

mi!

yi!(mi − yi)!
+

n∑
i=1

yiln

(
yi

mi

)
+

n∑
i=1

(mi − yi)ln

[
mi − yi

mi

]
.

Substituting `(µ̂;y) and `(y;y) in (2.37) gives

D = −2

[
ln
∏n

i=1
mi!

yi!(mi−yi)!
+
∑n

i=1 yiln
(

µ̂i

mi

)
+
∑n

i=1(mi − yi)ln
(

mi−µ̂i

mi

)
−
{

ln
∏n

i=1
mi!

yi!(mi−yi)!
+
∑n

i=1 yiln
(

yi

mi

)
+
∑n

i=1(mi − yi)ln
(

mi−yi

mi

)} ]
.

After rearrangement of terms, D becomes

D = −2

[
n∑

i=1

yiln

[
µ̂i

mi

× mi

yi

]
+

n∑
i=1

(mi − yi)ln

[
mi − µ̂i

mi

× mi

mi − yi

]]

= −2
n∑

i=1

[
yiln

(
µ̂i

yi

)
+ (mi − yi)ln

(
mi − µ̂i

mi − yi

)]
= 2

n∑
i=1

[
yiln

(
yi

µ̂i

)
+ (mi − yi)ln

(
mi − yi

mi − µ̂i

)]
.

But, if mi = 1 , for all i, D becomes

D = −2
n∑

i=1

[
yiln

(
π̂i

yi

)
+ (1− yi)ln

(
1− π̂i

1− yi

)]
= −2

n∑
i=1

[yiln(π̂i) + (1− yi)ln(1− π̂i)],

since yi ln yi = 0 and (1−yi) ln(1−yi) = 0 if yi = 0 or 1. After rearrangement of terms,

D becomes

D = −2
n∑

i=1

[
yiln

(
π̂i

1− π̂i

)
+ ln(1− π̂i)

]
. (2.38)

Furthermore, since
∑n

i=1 yiln
(

π̂i

1−π̂i

)
=
∑n

i=1 π̂iln
(

π̂i

1−π̂i

)
, (2.38) becomes

D = −2
n∑

i=1

[
π̂iln

(
π̂i

1− π̂i

)
+ ln(1− π̂i)

]
(2.39)
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which is not informative about the relationship between π̂i and the observed yi values,

since it is only a function of the estimated probabilities. A detailed discussion about

this issue is given by Collett (2003). This discussion justifies that the deviance D

cannot be used as a measure of goodness-of-fit of the model for ungrouped binary data

(Krzanowski, 1998). However, it can still be used to identify important predictors

as discussed above. The appropriate test of goodness-of-fit in this situation is the

Hosmer-Lemeshow goodness-of-fit test (see Hosmer and Lemeshow, 1989).

Hosmer-Lemeshow Goodness-of-Fit Test

For this test, firstly the predicted probabilities (π̂i’s, i = 1, 2, . . ., n) obtained using

the current model being checked are used to form g groups with approximately n/g

subjects (households). One grouping strategy (percentile strategy discussed by Hosmer

and Lemeshow (1989)) is as follows:

(1) Group 1 subjects are approximately n/g subjects whose π̂i’s are less than or equal

to the 100
g

th percentile of all the π̂i’s.

(2) Group 10 subjects are approximately n/g subjects whose π̂i’s are more than(
1− 1

g

)
×100th percentile of all the π̂i’s.

(3) For j = 2, 3,. . ., g−1, group j subjects are approximately n/g subjects whose π̂i’s

are greater than the j−1
g
×100th percentile and less than or equal to the j

g
×100th

percentile of all the π̂i’s.

For large n (number of subjects/households) the frequently recommended g is 10 (see

Vittinghoff et al., 2005; Dobson, 2002; and Hosmer and Lemeshow, 1989) in order for

different analysts to get consistent conclusions.
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Secondly, for each group the observed and expected frequencies of the responses y

= 0 and y = 1 are determined as follows: For the j = 1, 2, . . ., g,

(1) The respective observed frequencies of the responses y = 1 and y = 0 are O1j =

number of subjects with responses y = 1 and O0j = n/g - O1j.

(2) The respective expected frequencies of the responses y = 1 and y = 0 are E1j =

n/g × average of π̂i’s in group j and E0j = n/g - E1j.

Finally, the Hosmer-Lemeshow statistic X2
HL for testing the goodness-of-fit of the

model is given by

X2
HL =

g∑
j=1

1∑
i=0

(Oij − Eij)
2

Eij

. (2.40)

The statistic χ2
HL has a chi-square distribution with g−2 degrees of freedom. Therefore,

the statistic χ2
HL is compared with the critical value of the chi-square distribution with

g − 2 degrees of freedom (χ2
(g−2,α)) for checking goodness-of-fit of the model. Thus, if

the χ2
HL statistic is statistically significant then it indicates lack-of-fit of the model,

whereas a non-significant one indicates goodness-of-fit of the model.

Outliers, Influential, and High-leverage points

Refer to Section 2.4 for the discussion on outliers, influential, and leverage points.

Recall that hat-matrix (H) is given by (2.25) as

H = W− 1
2X(X′WX)X′W− 1

2 (2.41)

and that its diagonal elements, hii, are used to measure the magnitude of the distance

the ith observation is from the rest. The data points with hii greater than 2p/n are con-

sidered as high leverage points and having potential influence on the model parameter

estimates. Although index plot of hii can sometimes be useful in detecting potential
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influential data points (Collett, 2003), it cannot detect influence due to response val-

ues. That is because hii is based only on explanatory variables. Therefore, Cook’s

distance statistic discussed in Section 2.4 is better for effective detection of influential

data points.

Link Function

The procedures discussed in Section 2.4.2 are employed here except the graphical one.

For ungrouped binary data, the graph of the residuals vs. the fitted values always

exhibits a systematic pattern even when the link is appropriate, hence is uninforma-

tive (Der and Everitt, 2002). Therefore, this approach cannot be used in the case of

ungrouped binary data.

Validation of Predicted Probabilities

It is imperative to see to what degree the predicted probabilities agree with the out-

comes. That is, one wants to have a reliable model that maximizes the chance and

sensitivity of identifying the individuals who need justified intervention. In other words,

one would like to reduce the proportion of the individuals that are incorrectly classified

as having outcome of failure y = 0 (1-specificity) and hence deny those individuals the

benefit of intervention. A cut-off value that minimizes the misclassification probabili-

ties of the individuals should be specified. Table 2.1 is an example of how classification

is done. In the table, yi is the response of the ith individual, and ŷi is the predicted

response of the ith individual.

Sensitivity (probability of correctly classifying an individual with the outcome of

success) is estimated as

Ss =
a

a + c
.
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Table 2.1: Classification table

Correct classification

y=1 y=0 Total

Predicted ŷ=1 a b a+b

classification ŷ=0 c d c+d

Total a+c b+d n

Specificity (probability of correctly classifying an individual with the outcome of

failure) is estimated as

Sp =
d

b + d
.

False positive rate (Fpr) (probability of incorrectly classifying an individual with

the outcome of failure) is estimated as

Fpr =
b

b + d
.

False negative rate (Fnr) (probability of incorrectly classifying an individual with

the outcome of success) is estimated as

Fnr =
c

a + c
.

The Receiver Operating Characteristic (ROC) curve can be used to graphically

display the predictive accuracy of the model (Vittinghoff et al., 2005). This graph

is given in Figure 2.2. This is a plot of sensitivity against 1-specificity (in other

words it is a plot of true positive rate against false positive rate) as shown in

Figure 2.2. A curve along the 450 line (where area under the curve is 0.5) shows

that classification is at random (Taylor and Krawchuk, 2005). The larger the

deviation of this curve is from the 450 line to the left, the better is the prediction
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Figure 2.2: Sensitivity against 1-specificity: ROC curve

accuracy of the model. This means the prediction accuracy of the model can be

measured by the total area under the ROC curve (AUC). The larger the AUC

the better the accuracy of the model. For example, AUC1 < AUC2 in Figure

2.2 implies that the model with AUC2 has the better prediction accuracy than

the model with AUC1. The AUC is also referred to as the probability that the

predicted probability assigned to the event (y = 1) is higher that the non-event

(y = 0) (Mason and Granam, 2002). From Taylor and Krawchuk (2005), the

prediction accuracy of 0.6-0.7 suggests moderate prediction (or discrimination);

of 0.7-0.8 suggests acceptable prediction; and of 0.8-0.9 suggests excellent predic-

tion. If this measure is less than 0.6, then the prediction accuracy of the model
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is poor.

2.6 Interpretation of Logistic Regression Model Co-

efficients

2.6.1 Logit Model

For illustrative purposes, let one assume that one has a prediction model with three

explanatory variables, x1, x2, and x3 given by

η̂i = log

(
π̂i

1− π̂i

)
= β̂0 + β̂1xi1 + β̂2xi2 + β̂3xi1xi2 + β̂4xi3 , i = 1, 2, . . . , n. (2.42)

The estimated coefficients are the log odds, where β̂0 is the estimate of the overall mean

of the logits of the probabilities, and the other estimated coefficients are the estimated

slopes associated with the respective variables of the model, controlling for others.

Since there is an x1x2 interaction, the main effects of x1 and x2 are not interpreted.

If x1 and x2 are categorical variables with two levels, β̂3 measures the change of the

log odds when x1 (or x2) changes from reference level to the other, given that x2 (or

x1) assumes a non-reference level controlling for x3. The coefficient of x3, measures

the amount of change of the log odds for a unit change in x3, controlling for x1 and

x2. The most preferred way of interpreting logit model coefficients is by odds ratios.

These are obtained by converting the log odds model to the odds model (i.e. taking

the anti-log of log
(

π̂i

1−π̂i

)
to get π̂i

1−π̂i
, given by

Ôi = exp(β̂0 + β̂1xi1 + β̂2xi2 + β̂3xi1xi2 + β̂4xi3).

Let one assume that all the variables are binary with values 0/1, where 0 is the reference

level. Then, the odds when x1 = 1 controlling for the other variables is given by

Ôi(1) = exp(β̂0 + β̂1 + β̂2xi2 + β̂3xi2 + β̂4xi3)
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and the odds when x1 = 0 is

Ôi(0) = exp(β̂0 + β̂2xi2 + β̂4xi3).

Then, the odds ratio for the two (x1 = 1 vs. x1 = 0) is given by

ÔR(1) =
Ôi(1)

Ôi(0)
= exp(β̂0 + β̂1 + β̂2xi2 + β̂3xi2 + β̂4xi3 − (β̂0 + β̂2xi2 + β̂4xi3))

= exp(β̂1 + β̂3xi2).

Notice that this odds ratio is a function of x2 which is interacted with x1. If x2 = 1

the ratio becomes exp(β̂1 + β̂3), and if x2 = 0 the ratio is exp(β̂1). Thus, the ratio of

the two gives exp(β̂3). This value is interpreted as the number of times the event yi

= 1 is more likely to occur when x2 = 1 compared to when x2 = 0, given that x1 = 1

controlling for x3, and vice versa. The odds ratio exp(β̂4) is interpreted as the number

of times the event yi = 1 is more likely to occur when x3 = 1 compared to when x3 =

0, controlling for x1 and x2.

Alternatively, the prediction model can be interpreted in terms of probabilities.

Recall (2.29) or (2.42) in which the estimated probabilities are given by

π̂i = (1 + exp(−η̂i))
−1.

Therefore, the probability that yi = 1, given that x1 = 1, x2 = 1, and x3 = 0, is given

by

P (yi = 1|xi1 = 1, xi2 = 1, xi3 = 0) = (1 + exp(−β̂0 − β̂1 − β̂2 − β̂3))
−1

and is interpreted as the probability that the event yi = 1 will occur when x1 = 1, x2

= 1, and x3 equals 0. For x1 = 0, x2 = 0, and x3 = 1 the conditional probability for

yi = 1 is

P (yi = 1|xi1 = 0, xi2 = 0, xi3 = 1) = (1 + exp(−β̂0 − β̂3))
−1

interpreted as the probability that the event yi = 1 will occur when x3 = 1 and x1 =

x2 = 0.
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2.6.2 Probit Model

For probit link (2.42) becomes

η̂i = Φ−1(π̂i) = β̂0 + β̂1xi1 + β̂2xi2 + β̂3xi1xi2 + β̂4xi3 , i = 1, 2, . . . , n. (2.43)

The coefficients are already in the Z score metric, hence can be interpreted directly.

The change of x3 from 0 to 1 increases the Z score (probit score) by β̂4. When x1

changes from 0 to 1 the Z score changes by β̂1 + β̂3xi2, given by

4η̂ = β̂0 + β̂1 + β̂2xi2 + β̂3xi2 + β̂4xi3 − (β̂0 + β̂2xi2 + β̂4xi3) = β̂1 + β̂3xi2. (2.44)

That means, when x2 = 0 (2.44) equals β̂1 and when x2 = 1 (2.44) equals β̂1 + β̂1.

Hence the Z score changes by β̂3 when x2 changes from 0 to 1 given that x1 changed

from 0 to 1.

The probit model can also be interpreted in terms of probabilities, which are widely

understood compared to the Z scores, given by π̂i = Φ(η̂i). The probability that an

event yi = 1 will occur when x1 = 1, x2 = 1, and x3 = 0 is

P (yi = 1|xi1 = 1, xi2 = 1, xi3 = 0) = Φ(β̂0 + β̂1 + β̂2 + β̂3)

and the probability that yi = 1 will occur when x1 = 0, x2 = 0, and x3 = 1 is

P (yi = 1|xi1 = 0, xi2 = 0, xi3 = 1) = Φ(β̂0 + β̂4).

2.6.3 Complementary Log-Log Model

Consider (2.42) with complementary log-log link,

η̂i = log(−log(1− π̂i)) = β̂0 + β̂1xi1 + β̂2xi2 + β̂3xi1xi2 + β̂4xi3 , i = 1, . . . , n. (2.45)

The estimate β̂4 is interpreted as the amount of increase of the complementary log-log

probability of yi = 1, when x3 changes from level 0 to level 1. When x1 changes from
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0 to 1 the complementary log-log probability of yi = 1 changes by β̂1 + β̂3xi2, which is

a function of x2. When x2 = 0, the change equals β̂1 and the change equals β̂1 + β̂3

when x2 = 1. This means the complementary log-log probability of yi = 1 will change

by β̂3 when x1 = 1, given that x2 = 1 or when x2 = 1, given that x1 = 1.

Similarly, a complementary log-log model can be interpreted in terms of probabili-

ties of yi = 1, which are given by

π̂i = 1− exp(−exp(η̂i)).

Considering the same examples, the probability that an event yi = 1 will occur when

x1 = 1, x2 = 1, and x3 = 0 is

P (yi = 1|xi1 = 1, xi2 = 1, xi3 = 0) = 1− exp(−exp(β̂0 + β̂1 + β̂2 + β̂3))

and when x1 = 0, x2 = 0, and x3 = 1 the probability is

P (yi = 1|xi1 = 0, xi2 = 0, xi3 = 1) = 1− exp(−exp(β̂0 + β̂4)).
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Chapter 3

The Data

The data used in this thesis are from the Lesotho Core Welfare Indicators Questionnaire

(CWIQ) Survey which was undertaken by the Bureau of Statistics, Lesotho. Because

of the challenges that data collection is faced with, such as limited financial resources,

this led to the development of a more complex survey design than the simple random

sampling (SRS). The advantage of complex surveys has gone beyond cost saving, i.e.

they obtain more reliable estimates compared to SRS which fail to take into account

features of population leading to results that are statistically unrepresentative of the

population. Consequently, employment of complex survey design such as stratified

random sampling and cluster sampling increases the accuracy of the population level

estimates, while keeping costs manageable (Villiant, Dorfman, and Royall, 2000; and

Levy and Lemeshow, 1991).

Therefore, the two-stage sample design was used where Enumeration Areas (EAs)

were the first-stage sampling units and the households were the second-stage sampling

units. At the first stage, 25 EAs were randomly selected from each of ten districts

in Lesotho, except for Maseru where an additional 10 EAs in the urban area were

selected. A total of 260 EAs were selected. From each EA a random sample of 20
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households was drawn, giving a total of 5200 households in the sample. The selected

sample was distributed in the ratio 2:1 of rural and urban areas in each district. The

overall response rate was 95.3%. See the final report of CWIQ survey prepared by the

Bureau of Statistics (Demographic, Labour and Social Statistics Division) for more

details.

The survey captured a vast range of variables. However, in this study the researcher

considered only 14 variables, namely those which, from the literature and the writer’s

intuitions, have potential significant effects on health status as measured by the pres-

ence or absence of disease/injury. The 14 independent variables are (1) Urban/Rural,

(2) District (or Location), (3) Age of household head, (4) Sex of household head, (5)

Marital status of household head, (6) Education of household head, (7) Household

size, (8) Ownership of dwelling, (9) Type of roofing material, (10) Type of source of

drinking water, (11) Type of toilet, (12) Fuel used for cooking, (13) Time taken to

reach the nearest supply of drinking water, and (14) Time taken to reach the nearest

hospital/clinic.

Variables are coded in such a way that the reference level has the number 0. Ur-

ban/Rural is coded 1 = Rural and 2 = Urban, whilst District is coded 01 = Butha-

Buthe, 02 = Leribe, 03 = Berea, 04 = Thaba-Tseka, 05 = Mafeteng, 06 = Mohale’s

Hoek, 07 = Quthing, 08 = Qacha’s Nek, 09 = Mokhotlong, and 10 = Maseru. Sex is

categorised into 1 = males and 2 = females. Marital status is categorised into 1 = not

married and 2 = married which is similar to ‘never married’ versus ‘ever married’ used

by Boniface et al. (2001), and ‘non-married’ versus ‘married’ used by Prior and Hayes

(2001). Hussain and Smith (1999) categorised education into ‘no education, primary,

and post-primary education’, whilst Boniface et al. (2001) categorised it into ‘no qual-

ification, GCSE, and A level+’. A similar three level classification is followed in this

study where 1 = No education (including some primary), 2 = completed primary, and
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3 = completed secondary.

Furthermore, two groups (1 = do not own dwelling, and 2 = own dwelling) follow

the classification by Walker and Becker (2005) who used ‘government or the private

sector dwelling’ and ‘owning or purchasing dwellings’. Age is categorised into 1 =

younger than 40 years, and 2 = 40 years or older. This follows the classification by

Ghosh et al. (1998) and the present writer’s own assumption that people reach the

level of health consciousness at the age of 40.

The survey categorised ‘time to reach the nearest source of drinking water and

hospital’ into 0-14, 15-29, 30-44, 45-59, 60-119, and 120+ minutes. The frequency

distribution of the data showed that about 79.2% of households took 0-14 minutes to

reach the nearest source of drinking water which is the first category. So the variable

was reclassified into two groups 1 = 15 minutes or more, and 2 = less than 15 minutes.

The cumulative frequency distribution of the time to reach the nearest clinic or hospital

was also constructed, and showed that about 48.6 percent of households took less than

60 minutes to reach the nearest health clinic or hospital. Therefore, this variable was

reclassified into 1 = 60 minutes or more, and 2 = less than 60 minutes.

The ‘source of drinking water’ is categorised into 1 = other (which includes unpro-

tected well, river, rain, etc. other than protected well and tap/borehole), 2 = protected

well, and 3 = tap/borehole. Since in Lesotho the average household consists of 5 peo-

ple, household size (size refers to the number of people in the household) is categorised

into 1 = more than 5 members, and 2 = less than or equal to 5 members. ‘Roofing

material, type of toilet, and fuel used for cooking’ have 3 categories. ‘Roofing’ has 1 =

other, 2 = thatch, and 3 = iron sheet categories; ‘toilet’ has 1 = none, 2 = other, and

3 = flush/pit latrine categories; and ‘fuel’ is categorised into 1 = firewood/charcoal, 2

= other, and 3 = kerosene/gas/electricity.
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3.1 Preliminary Analysis

In this section some explanatory analysis of the data is presented. Table 3.1 displays

the distribution of the number of households by each factor. Firstly, the distribution

of households by each factor is discussed. A ratio of 2:1 for the number of households

in rural to urban areas in the sample is in line with the ratio in the population in

Lesotho. About 78% of the households owned their dwelling. The remaining 22%

includes households who rented, used without paying rent, and used as temporary

shelter. As expected, most of the households were headed by males, and these consti-

tuted about 64% of the households. The predominantly used roofing materials for the

households’ shelter were thatch (about 66% of the households) and other (about 30%

of the households). Thatch is mainly used by rural poor households in Lesotho. About

65% of the households were headed by people who had some primary or no education,

followed by 25% of those who had completed primary, and 10% completed secondary

education. Again, 65% of the households were headed by people aged 40 years or older,

and 35% were headed by people with less than 40 years of age.

Regarding marital status, about 58% of the households were headed by unmarried

people. The majority of households had more than 5 members (68%). About 21% of

the households used piped or borehole water, 10% of them used protected wells, and

the rest (69%) used other sources of water. Most of the households (47%) used flush

or pit latrine toilets, followed by those that did not have toilets (40%), and the rest

(13%) used other types of toilets. About 96% of households in Lesotho used firewood,

charcoal, kerosene, gas, or electricity as a source of fuel for cooking: with those that

used firewood/charcoal constituting 56%, and those that used kerosene/gas/electricity

constituting 40%. Supply of drinking water seemed to be accessible to the majority of

households given by about 79% of the households that took less than 15 minutes to
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Table 3.1: Summary of the data - Distribution of the number of households

Characteristic n % No sick/injured %

All 4954 100 2795 56

Household size

6+ members 3392 68 1775 52

<6 members 1562 32 1020 65

Ownership of Dwelling

Yes 3873 78 2335 60

No 1081 22 460 43

Education level of household head

None and primary 3210 65 1970 61

Completed Primary 1236 25 608 49

Completed Secondary 508 10 217 43

Age of the household head

< 40 1716 35 793 46

40+ 3238 65 2002 62

Marital status of the household head

not married 2883 58 1671 58

married 2071 42 1124 54

Sex of the household head

Male 3151 64 1748 55

Female 1803 36 1047 58

District

Butha-Buthe 485 10 250 52

Leribe 499 10 327 66

Berea 475 10 270 57

Maseru 631 13 322 51

Mafeteng 496 10 280 56

Mohale’s Hoek 437 9 280 64

Quthing 482 10 298 62

Qacha’s Nek 461 9 300 65

Mokhotlong 499 10 253 51

Thaba-Tseka 489 10 215 44
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Table 3.1: Summary of the data (continues)

Characteristic n % No sick/injured %

All 4954 100 2795 56

Fuel used for cooking

Firewood/Charcoal 2761 56 1671 61

Kerosene/gas/parafin 1984 40 990 50

Other 209 4 134 64

Type of toilet

None 1977 40 1157 59

Flush/pit latrine 2353 47 1242 53

Other 624 13 396 63

Source of drinking water

Protected well 481 10 262 55

Piped/borehole 1041 21 648 62

Other 3432 69 1884 55

Roofing material of dwelling

Thatch 3265 66 1797 55

Iron sheets 213 4 119 56

Other 1476 30 879 60

Rural/Urban

Rural 3230 65 1936 60

Urban 1724 35 859 50

Time taken to source of water

< 15 minutes 3926 79 2178 55

15+ minutes 1028 21 617 60

Time take to hospital/clinic

< 60 minutes 2409 49 1257 52

60+ minutes 2545 51 1538 60
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reach the nearest supply of drinking water. This means, about 21% of the households

were still taking 15 minutes or more to reach the nearest source of drinking. For

accessibility of health services, the results show that about 51% of the households took

60 minutes or more to reach the nearest hospital/clinic. On average, each district

has about 10% of the households who participated in the survey: Maseru having the

highest with 13%, Mohale’s Hoek and Qacha’s Nek having the lowest with 9% each,

and the rest having 10%.

Secondly, proportion of households with sick/injured members is discussed. On

average, about 56% of the households had at least one sick/injured member. In the

urban areas the distribution is balanced, that is, about 50% of households experienced

illness/injury and 50% did not. A different distribution is observed in the rural areas

where about 60% of the households experienced illness/injury. A similar incidence rate

of illness/injury is observed for the households headed by males and females which stood

at 55% and 58%, respectively. For the household size, about 52% of the households

that had more than 5 members were unhealthy and about 65% of those with 5 or fewer

members experienced disease/injury. The following are the categories which had less

than 50% of unhealthy households: the households headed by people who completed

primary education (49%), secondary education (43%), aged below 40 (46%), did not

own dwelling (43%), and lived in Thaba-Tseka (44%). This basically means that over

50% of the households headed by people who completed primary education, completed

secondary education, and are less than 40 years old did not experience disease/injury

problems.

It is also observed in the categories that follow that more than 50% of the households

experienced illness/injury problems: the households headed by people who had no ed-

ucation or some primary education (61%); the households that owned their dwelling

(60%); the households headed by married (54%) and unmarried (58%) people; the

37



households headed by people aged 40 years or older (62%); the households in all dis-

tricts except those in Thaba-Tseka, with the households in Leribe having the highest

proportion (66%); the households that used firewood/charcoal (61%), and those that

used other type of fuel (64%); the households that had no toilet facilities (59%), used

flush/pit latrine toilets (53%), and used other types of toilets (64%); households that

used water from protected wells (55%), tap/borehole (62%), and other sources (55%);

the households that used thatch (55%), iron sheets (56%), and other (60%) roofing ma-

terial for households’ shelter; the households that took less than 15 minutes to reach

the nearest source of water (55%), and those that took 15 minutes or more (60%);

and the households that took less than 60 minutes to reach the nearest hospital/clinic

(52%), and those that took 60 minutes or more (60%).
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Chapter 4

Fitting the Generalized Linear

Model

Consider the ith household (i = 1,2,. . . ,4954) characterised by x′
i which is an ith row of

the design matrix discussed in Section 2.5. Let the response yi = 1 if disease/injury is

present in the ith household and be 0 otherwise. Again let πi = P (yi = 1|x′
i) i.e. be the

probability that disease/injury is present in the ith household. The model discussed in

Chapter 2 is fitted under the three link functions discussed in Section 2.5. For the logit

link function the model will be called the Logit Model; for the probit link function, the

model will be called the Probit Model; and for the complementary log-log link function

the model will be called the Complementary log-log Model. The 14 variables discussed

in Chapter 1 and Chapter 3 will be used together with their interaction terms as the

independent variables in the model of the health status of the people of Lesotho. The

health status measured by the presence or absence of disease/injury in the household

is the dependent variable.
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4.1 Logit Model

The logit model defined in (2.28) will be fitted to the data.

4.1.1 Model Selection

The stepwise selection procedure in SAS PROC LOGISTIC was used to select impor-

tant factors affecting the health status. The factors with p-values less than 0.1 are

given in Table 4.1 (see Section 2.4.1 for discussions on type 3 analysis of effects). All

other factors excluded in the table have insignificant effects at the 10% significance

level. Because of the disadvantage of dimensionality which saturated models suffer in

terms of convergence of the estimation algorithm (Huang, 1998) only three factor in-

teractions were allowed and the algorithm took more that 2 hours to converge. All the

three factor interaction effects were insignificant, so are excluded in Table 4.1. Both

Table 4.1: Type 3 analysis of effects for the logit model

Effect DF Wald Chi-square p-value

Location 9 90.7576 <.0001

Sex 1 8.4372 0.0037

Mstatus 1 5.4809 0.0192

Sex*Mstatus 1 17.8143 <.0001

Age 1 22.5970 <.0001

Mstatus*Age 1 10.8323 0.0010

Education 2 32.1698 <.0001

Dwelling 1 0.8186 0.3656

Mstatus*Dwelling 1 4.0541 0.0441

Education*Dwelling 2 14.3455 0.0008

HHsize 1 16.2029 <.0001

Dwelling*HHsize 1 4.5544 0.0328

first (which took 30 seconds to converge) and second order interaction models lead to

the same model given in Table 4.1.
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The distribution of probabilities predicted by the logistic model with three compet-

ing link functions (i.e. logit, probit, and complementary log-log link functions) show

that there are no extreme probability values (see Figure 4.1). Note that the comple-

mentary log-log model is preferred when there are many extreme values, and logit or

probit models are preferred when there are few (or no) extreme values (Collett, 2003).

Therefore, since there are no extreme values, the logit and the probit models were fitted

to the data.

4.1.2 Model Checking

Goodness-of-Fit

The goodness-of-fit of the model can be tested using the Hosmer-Lemeshow test de-

scribed in Section 2.5.3 and using 10 as the recommended number of groups. The

observed and expected frequencies are given in Table 4.2. The goodness-of-fit statistic

Table 4.2: Partition for the Hosmer-Lemeshow Goodness-of-Fit Test of the logit model

Group Total Event Non-event

Observed Expected Observed Expected

1 496 146 140.04 350 355.96

2 497 199 204.94 298 292.06

3 509 260 250.52 249 258.48

4 494 260 265.74 234 228.26

5 499 276 286.19 223 212.81

6 460 286 278.33 174 181.67

7 488 300 308.66 188 179.34

8 515 344 341.48 171 173.52

9 523 366 366.22 157 156.78

10 473 358 352.86 115 120.14

is 4.0195, with 8 degrees of freedom, and the corresponding p-value of 0.8554. The very
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(a)Logit

(b) Probit

(c) Complementary Log-log

Figure 4.1: Probability distribution of predicted probabilities

large p-value for this test shows that the model fits the data well (i.e. the predicted

probabilities agree with the observed values).
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Link Function

The test for the appropriateness of the link function discussed in Section 2.5.3 is used

here. The large p-value for the squared linear predictor and very small p-value for

linear predictor variables in Table 4.3 suggest that the link is appropriate, agreeing

with the goodness-of-fit test that the model fits the data well. The SAS procedure

used for this test is given in Appendix A.1.2.

Table 4.3: Logit link function tests

Effect DF Chi-square p-value

constant 1 0.06 0.7995

Linear predictor 1 330.02 <0.0001

Squared linear predictor 1 0.18 0.6673

Measure of Influence

As shown in Figure 4.2, none of the Cook’s distance values for the fitted model is

greater than 1, suggesting that there are no observations with undue influence on the

parameter estimates. To verify this, the three observations with the largest Cook’s

distances were investigated further by refitting the model without each of them one at

a time (referred to as single-case deletion). These observations are: number 3440 with

Cook’s distance = 0.002730291; number 3446 with Cook’s distance = 0.002287120; and

number 4250 with Cook’s distance = 0.002183644. When these numbers were deleted

(one at a time), the results were the same as those obtained from fitting the model to

the full data set, confirming that the three observations do not have undue influence

on the parameter estimates of the model.
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Figure 4.2: Index plot of Cook’s distance for logit model: cookd = Cook’s distance and obs

= observation number

4.1.3 Prediction Accuracy of the Logit Model

The logit model is validated by checking its predictive accuracy, that is, checking by

how often the model predicts unhealthy households as being unhealthy and healthy

ones as healthy. Figure 4.3 displays the ROC curve of the fitted model. The area

under the ROC curve is the proportion of the correctly predicted probabilities as was

mentioned in Section 2.5.3. In this case about 65.21% of probabilities are predicted

correctly, which is a moderate predictive accuracy (Taylor and Krawchuk, 2005). This

measure is larger than the one obtained when the main effects model was fitted.
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Figure 4.3: Sensitivity against 1-specificity of logit model with first order interaction

4.1.4 Interpretation of the Estimates of the Model Coeffi-

cients

Tables 4.5 and 4.6 contain the odds ratios of the incidence of disease/injury. The ta-

bles were constructed from the estimated model coefficients in Table 4.4. Note that

the effects of Butha-Buthe, Berea, Mafeteng and Mokhotlong are not significant, which

means that, controlling for other variables, the incidence of disease/injury is not differ-

ent from that of Maseru (the reference district). But for other districts the incidence

of disease/injury is significantly different from that of Maseru and the corresponding

odds ratios are given in Table 4.5. The households in Leribe are 1.672 (between 1.355

and 2.065) times more likely to be ill/injured compared to those of Maseru. The values

in brackets are 90% confidence limits of the parameters. The rate is slightly lower for

the households in Mohale’s Hoek, Quthing and Qacha’s Nek which are 1.418 (between
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Table 4.4: Parameter estimates under the logit model

Effect Parameter Estimates Std errors p-value 90% C. I.

Lower Upper

Constant β̂0 0.5978 0.3138 0.0568 0.0856 1.1197

Butha-Buthe β̂1 -0.1978 0.1262 0.1171 -0.4055 0.0098

Leribe β̂2 0.5140 0.1281 <.0001 0.3039 0.7253

Berea β̂3 -0.0057 0.1274 0.9641 -0.2152 0.2040

Thaba-Tseka β̂4 -0.4619 0.1264 0.0003 -0.6702 -0.2543

Mafeteng β̂5 0.0492 0.1257 0.6956 -0.1575 0.2562

Mohale’s Hoek β̂6 0.3494 0.1332 0.0087 0.1308 0.5692

Quthing β̂7 0.2922 0.1293 0.0238 0.0799 0.5055

Qacha’s Nek β̂8 0.3719 0.1313 0.0046 0.1565 0.5885

Mokhotlong β̂9 -0.1816 0.1248 0.1456 -0.3869 0.0236

Sex β̂10 -0.6770 0.1129 <.0001 -0.8634 -0.4917

Mstatus β̂11 -0.5843 0.2131 0.0061 -0.9354 -0.2342

Sex*Mstatus β̂12 0.8022 0.1901 <.0001 0.4894 1.1149

Age β̂13 -0.6166 0.1258 <.0001 -0.8242 -0.4101

Mstatus*Age β̂14 0.4932 0.1498 0.0010 0.2471 0.7401

Education1 β̂15 0.9009 0.1722 <.0001 0.6192 1.1860

Education2 β̂16 0.2449 0.1672 0.1430 -0.0290 0.5213

Dwelling β̂17 0.0606 0.3376 0.8577 -0.4993 0.6127

Mstatus*Dwelling β̂18 0.3365 0.1671 0.0441 0.0620 0.6119

Education1*Dwelling β̂19 -0.7925 0.2245 0.0004 -1.1632 -0.4246

Education2*Dwelling β̂20 -0.3578 0.2294 0.1187 -0.7363 0.0184

HHsize β̂21 -0.8305 0.2592 0.0014 -1.2654 -0.4105

Dwelling*HHsize β̂22 0.5717 0.2679 0.0328 0.1370 1.0203

1.140 and 1.767), 1.339 (between 1.083 and 1.658), and 1.45 (between 1.169 and 1.801)

times more likely to be ill/injured, respectively. The households in Thaba-Tseka are

0.63 (between 0.512 and 0.775) times more likely to be ill/injured than those of Maseru.

Table 4.6 displays odds ratios corresponding to interaction effects. The incidence

of disease/injury for the households headed by unmarried males is 2.23 (between 1.631

and 3.049) times that for the households headed by married males. Incidence of dis-

ease/injury of households headed by unmarried males is 2.23 (between 1.631 and 3.049)
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Table 4.5: Odds ratios and their confidence limits for the residential area effects

Contrast Odds ratios 90% CI of Odds ratios

LR vs MS 1.672 (1.355, 2.065)

MH vs MS 1.418 (1.140, 1.767)

QT vs MS 1.339 (1.083, 1.658)

QN vs MS 1.45 (1.169, 1.801)

TT vs MS 0.63 (0.512, 0.775)

Note: LR=Leribe, MS=Maseru, MH=Mohale’s Hoek,

QT=Quthing, QN=Qacha’s Nek, and TT=Thaba-Tseka

Table 4.6: Odds ratios and their confidence limits corresponding to interaction effects

Contrast Odds ratios 90% CI of Odds ratios

M=1 vs M=2 / S=1 2.230 (1.631, 3.049)

S=1 vs S=2 / M=1 2.230 (1.631, 3.049)

A=1 vs A=2 / M=1 1.638 (1.280, 2.096)

D=1 vs D=2 / M=1 1.400 (1.064, 1.844)

M=1 vs M=2 / A=1 1.638 (1.280, 2.096)

M=1 vs M=2 / D=1 1.400 (1.064, 1.844)

E=1 vs E=3 / D=1 0.453 (0.312, 0.654)

H=1 vs H=2 / D=1 1.771 (1.147, 2.774)

D=1 vs D=2 / E=1 0.453 (0.312, 0.654)

D=1 vs D=2 / H=1 1.771 (1.147, 2.774)

Note: S=Sex, A=Age, (E=1)=No education, H=HHsize,

D=Dwelling, and M=Mstatus

times the one for households headed by unmarried females. The incidence for the house-

holds headed by young (less than 40 years old) unmarried people is 1.6375 (between

1.280 and 2.096) times the one for households headed by older unmarried people. Fur-

thermore, households headed by unmarried people who do not own their dwellings are

1.4 (between 1.064 and 1.844) times more likely to be unhealthy than households of

unmarried people who own their dwelling.

Furthermore, the households headed by young unmarried people are 1.6375 times
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more likely to be unhealthy than those headed by young married people. For education,

one can interpret only coefficients associated with E=1 (have no education or have some

primary) since the ones associated with E=2 (completed primary) are not statistically

significant. The odds ratio of 0.4527 (between 0.312 and 0.654) corresponding to the

interaction effect of education and ownership of dwelling implies that the households

headed by people with no education (including some primary) who do not own their

dwelling are less likely to be unhealthy than those headed by their counterparts who

own their dwelling. That means, the incidence is higher for the households headed by

uneducated people who own their dwelling than for those headed by uneducated people

who do not own their dwelling.

The incidence of disease/injury for households headed by unmarried people who

do not own dwelling is 1.4 (between 1.064 and 1.844) times the one for those headed

by married people who do not own their dwelling. But the incidence for those headed

by uneducated people who do not own their dwelling is 0.4527 (between 0.312 and

0.654) times the one for their educated counterparts. Large households not owning

their dwelling are 1.7713 (between 1.147 and 2.774) times more likely to be unhealthy

than small households not owning their dwelling.

Moreover, the large households (with more than 5 members) who do not own their

dwelling are 1.7713 (between 1.147 and 2.774) times more likely to be unhealthy than

large households who own their dwelling.

4.2 Probit Model

The Probit model is given by

ηi = Φ−1(πi) = x′
iβ , i = 1, 2, . . . , 4954. (4.1)
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4.2.1 Model Selection

Type 3 analysis of effects as discussed in Section 2.4.1 is given in Table 4.7 for the

selected probit model. Note that this set of predictor variables is the same as the

one selected for the logit model. The insignificant effect of ownership of dwelling is

included because of the hierarchy principle of the models with interaction effects. But

before making any inferences about the factor effects, (a) the goodness-of-fit of the

model is tested, (b) the diagnostic test of the appropriateness of the link function

is performed, and (c) the presence/absence of influence of the observations on the

parameter estimates is checked.

Table 4.7: Type 3 analysis of effects for the probit model

Effect DF Wald Chi-square p-value

Location 9 91.5309 <.0001

Sex 1 8.4143 0.0037

Mstatus 1 5.5497 0.0185

Sex*Mstatus 1 18.1149 <.0001

Age 1 22.7689 <.0001

Mstatus*Age 1 11.1042 0.0009

Education 2 32.3403 <.0001

Dwelling 1 0.7928 0.3732

Mstatus*Dwelling 1 4.2331 0.0396

Education*Dwelling 2 14.3556 0.0008

HHsize 1 16.6989 <.0001

Dwelling*HHsize 1 4.7417 0.0294
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Table 4.8: Partition for the Hosmer-Lemeshow Goodness-of-Fit Test of the probit model

Group Total Event Non-event

Observed Expected Observed Expected

1 496 146 139.92 350 356.08

2 499 200 206.60 299 292.40

3 501 255 246.94 246 254.06

4 495 262 266.10 233 228.90

5 495 273 283.39 222 211.61

7 505 310 319.42 195 185.58

8 495 331 328.21 164 166.79

9 466 321 325.15 145 140.85

4.2.2 Model Checking

Goodness-of-Fit

Table 4.8 is used to perform the Hosmer-Lemeshow goodness-of-fit test for the probit

model. The test statistic is 4.6951, with 8 degrees of freedom, and a corresponding

p-value of 0.7896. The large p-value indicates that the probit model fits the data well.

Link Function

The test for the appropriateness of the link function discussed in Section 2.5.3 is used.

The large p-value for the squared linear predictor and the very small p-value for linear

predictor variables in Table 4.9 suggest that the probit link is appropriate. This con-

firms the theory that for moderate probability values πi’s, the logit and the probit link

functions lead to the same model fit to the data.
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Table 4.9: Probit link function test

Effect DF Chi-square p-value

Constant 1 0.09 0.7703

Linear predictor 1 350.53 <0.0001

Squared linear predictor 1 0.24 0.6269

Measure of Influence

Figure 4.4 shows that there are no Cook’s distance values greater than 1. This means

that all the observations do not have undue influence on the parameter estimates of

the model. This was confirmed by refitting the model without (one at a time) the three

observations with the largest Cook’s distance values. These were observation numbers:

3440 with Cook’s distance = 0.00459336, 3446 with Cook’s distance = 0.004248518,

and 4250 with Cook’s distance = 0.003768503. There was no change in the results of

the model when these observations were deleted, each at a time, from that obtained

from the model fitted to the full data set, indicating that there were no observations

with undue influence on the parameter estimates of the model.

4.2.3 Predictive Accuracy

The predictive accuracy of this model is similar to that of the Logit model, standing

at 65.2% as shown in Figure 4.5. Since the probit and logit models selected the same

model, either of the two can be chosen. Therefore, inference based on the logit model

will suffice.
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Figure 4.4: Index plot of Cook’s distance for the probit model

4.3 Discussion

Location (districts), ownership of dwelling, household size, sex, marital status, educa-

tion and age of the household head were found to be important factors affecting the

health status of the Basotho people. The results suggest that the incidence of disease

in the households is likely to reduced if households occupy their own dwelling, espe-

cially households with more than 5 members. Education is also correlated with good

health status of the people. This is evidenced by a high incidence of disease/injury

among the households headed by uneducated people, which could be associated with a

number of factors, such as poverty, lack of information about health issues, and others.

Poverty makes it hard for people to provide basic needs, such as food, medication, and

clothing, for their household members. The importance of education in health status

is also emphasized by Hussain and Smith (1999), who found that about 60% of the
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Figure 4.5: Sensitivity against 1-specificity for probit model

children whose mothers have secondary and higher education are less likely to have

diarrhea than children of those who have no education.

The households not owning their dwelling, with more that 5 members, are more

likely to be unhealthy compared to their counterparts who own their dwelling. Analo-

gously, for those who do not own their dwelling, the incidence of disease is higher for

large households than it is for small ones. This implies that small households (which

have less risk of infectious diseases due to crowding) and owner-occupied dwellings

(which leads to reduced environmental risk) are better off. This agrees with the find-

ings of Howden-Chapman (2004) and Dedman et al. (2001). For age of the household

heads, it is found that the incidence of diseases/injuries is higher for households headed

by younger (< 40 years) unmarried people compared to older (40+ years) unmarried

people. Households headed by young unmarried people are more likely to be unhealthy
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compared to their young married counterparts.

The incidence of diseases/injuries in Berea, Mafeteng, Butha-Buthe and Mokhot-

long is not significantly different from the one observed in Maseru. Thaba-Tseka is

the only district with a relatively lower significant incidence compared to Maseru. The

districts in the southern part of Lesotho namely, Mohale’s Hoek, Quthing, and Qacha’s

Nek and Leribe, which is in the north, have significantly higher incidence than that

prevailed in Maseru. An in-depth research into the cause of this difference is necessary.

It is suggested that attention should be focused on Leribe, Mohale’s Hoek, Quthing,

and Qacha’s Nek to address the problem of health status inequality that exists between

Maseru and these areas. Attention should be focused on these areas even more so to

improve existing socio-economic programmes such as education, health care, and social

welfare, or to develop new ones. This suggests the need to develop some kind of system

that can be utilized to foster owner-occupied dwellings, encourage a reasonable house-

hold size, and improve awareness campaigns on health issue to the entire community

(especially males) of all age groups. It is suggested that strategies are developed for

dealing effectively with the marriage issue that will encourage sustained marriages for

the benefits that marriage offers.

4.4 Shortcomings of the Generalized Linear Model

Recall that Core Welfare Indicators Questionnaire Survey (CWIQ) data do not come

from a simple random sample that generalized linear models assume. Thus, the gen-

eralized linear model employed above does not capture the structure induced by the

sampling design. It does not allow estimation of random effects which account for the

correlation of data resulting from homogeneity of outcomes within and heterogeneity

among clusters from which data are collected (Berlin et al., 1999). The failure of this
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model to incorporate this phenomenon into the analysis may lead to biased variances

of estimates and wrong inferences about those estimates (Zeger and Liang, 1986; Don-

ald and Donner, 1987; and Rabe-Hesketh and Skrondal, 2006), although estimates

themselves could be accurately calculated.

Since clusters, (PSUs), which are Enumeration areas were randomly selected, they

can be incorporated into the model in a number of ways. For example, they can be

incorporated in such a way that parameter estimates vary from cluster to cluster, lead-

ing to cluster-specific models. However, these models have a problem of size, i.e. they

increase with the number of clusters. If this model is fitted to the CWIQ data, where

there are 258 clusters, the resultant model will be very large. This problem of size

can be solved by assuming that these clusters are random samples from the underly-

ing population of clusters and by including clusters as a random effect in the model

(Pendergast et al., 1996). The models restricted to random effects corresponding to

clusters are referred to as random intercept models, where conditional independence

within the cluster is commonly assumed (Pendergast et al., 1996). Because of the flex-

ibility of these models they can also be fitted even when the assumption of conditional

independence is questionable (Pendergast et al., 1996). Standard errors (or variances)

of the parameter estimates for these models are calculated using re-sampling methods

such as sample replicates, balanced repeated replication samples, jacknife samples, and

Taylor series (expansion) methods.

According to Korn and Graubard (2002) parameters associated with simple marginal

models tend to be the ones of most scientific interest. For models with random ef-

fects, maximum likelihood estimation methods require optimization of the marginal

distribution of the data with respect to the fixed effects and the variance parameters

(Pendergast et al., 1996). Pendergast et al. (1996) add that, since there is no closed

form expression for the marginal distribution, numerical or Monte Carlo integration
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should be used to calculate the corresponding likelihood. When the response is binary,

maximum likelihood estimation cannot be used for a fully parametric model (Waclawiw

and Liang, 1993). Instead, the maximum pseudo-likelihood estimation method can be

used which leads to a generally asymptotically consistent, but not efficient estimators

(Pendergast et al., 1996; Christensen, Hobolth, and Jensen, 2005; Zhang, 2002; and

Rabe-Hesketh and Skrondal, 2006), which can be obtained under suitable regularity

conditions (Rabe-Hesketh and Skrondal, 2006). One of the conditions is the inclusion

of design variables in the model as explanatory variables (Pfeffermann, 1993).

A generalized linear mixed model which allows for both random and fixed effects,

especially the random intercept model, will be fitted to the data and discussed in Chap-

ter 5. A survey logistic regression model designed specifically for data from surveys,

will be fitted and shown in Chapter 6.
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Chapter 5

Generalized Linear Mixed Models

The generalized linear models discussed in Chapter 2 may not be appropriate for the

data discussed in Chapter 3 because they ignore the survey design in the sense that

the random PSUs effect on health status is ignored. When the random PSUs effect is

included in the analysis the models become generalized linear mixed models. In the

sections that follow the theory of these models is reviewed and the models are also

fitted to the data.

5.1 General Linear Mixed Models

To introduce generalized linear mixed models let one consider the situation where the

vector of response variable y is normally distributed, given the vector of random effects

u. This leads to the general linear mixed models which are extensions of general linear

models discussed in Section 2.1 by including the vector of random effects u. The general

linear mixed models have the form

y = Xβ + Zu + ε (5.1)

where
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y is an n×1 vector of responses

X is an n×(p+1) design matrix for fixed effects

β is a (p+1)×1 vector of unknown fixed effects parameters

Z is an n×q design matrix for random effects

u is a q×1 vector of unknown random effects parameters, assumed to have a

multivariate normal distribution with mean vector 0 and covariance matrix G,

i.e. u∼ Nq(0,G)

ε is an n×1 vector of error terms which have a multivariate normal distribution,

with mean vector 0 and covariance matrix R, i.e. ε ∼ Nn(0,R)

Analogous to general linear models, general linear mixed models require that responses

have normal distributions. Models that accommodate both normal and non-normal

data which belong to exponential family of distributions are called generalized linear

mixed models. The linear mixed models are special cases of the generalized linear

mixed models.

5.2 Generalized Linear Mixed Models (GLMMs)

The GLMMs have the same features as generalized linear models. Recall that the

linear predictor for the generalized linear models is η = Xβ. When the random effects

are included in the models one has GLMMs given by

η = Xβ + Zu (5.2)

where ηi = g(µi), g is a link function, and µ = E(y|u). Parameter estimates of

the model are obtained by partially differentiating (5.2) with respect to β and u,
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and iteratively solving the resulting estimating equations (Littell et al., 1996 & 2006).

These equations are given by X′WX X′WZ

Z′WX Z′WZ + G−1


 β

u

 =

 X′Wy∗

Z′Wy∗

 (5.3)

where

y∗ = η̂ + (y− µ̂)D−1 is referred to as the working dependent variate,

W = D′R−1D,

Dn×n = ∂µ
∂η

= [∂µi

∂ηj
] i = 1,2,. . .,n, j = 1,2,. . .,n,

R = var(y|u) = R1/2
µ AR1/2

µ , where R1/2
µ is a diagonal matrix of the square root

of Rµ whose ith diagonal element is the variance function of the ith response, and

A is the scale parameter matrix whose ith diagonal element is a(φi), and

G = var(u).

The expected value of the response vector, given the vector of random effect E(y|u) =

µ obtained from the rearrangement of terms in (5.2) is given by

µ = g−1(η) = g−1(Xβ + Zu) (5.4)

where g−1(.) is inverse link function.

Consider the application of GLMMs in the analysis of the CWIQ data where the

effects of the PSUs, which were randomly selected, enter the model as random effects.

The same variables selected in Chapter 4 will now be the fixed effects in the model. This

gives a mixed model. Recall that the aim of this study is to model the health status

of the people of Lesotho, where the response variable y is binary (1 = presence or 0 =

absence of disease/injury). The distribution of y belongs to the exponential family of

distributions required for generalized linear models (if the model has only fixed effects)
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and GLMMs (if both fixed and random effects are included in the model). This justifies

the fitting of GLMMs to the CWIQ data to achieve the objectives of this research.

Since there is only one random factor effect (i.e. PSU), a special and simplest form

of the GLMMs can be fitted (Pendergast et al., 1996). This model (called the random

intercept model) is given by

η = Xβ + u , u ∼ Nq(0, σ2
uI) (5.5)

where X and β are as discussed in (5.1) and u is a random vector of PSU effects

whose ith element represents the influence of the ith PSU on household observations

not captured by the observed covariates. This shows that even if the interest is in the

estimation of fixed effects, random effects which characterise the degree of heterogeneity

of the target population play an important role (Agresti et al., 2000). In the random

intercept model, the random effect adjusts the overall intercept β0 in the model (Littell

et al., 2006). Because β, u, and G are interrelated, their estimation must be carried

out in a coherent and systematic manner (Waclawiw and Liang, 1993).

5.2.1 Estimation of the Model Parameter

For the GLMMs, the calculations of the likelihood function for making statistical infer-

ences is sometimes not easy (Littell et al., 2006). According to the authors, obtaining

the marginal distribution is not easy if the conditional distribution of y, given u, is

not normal. Hence, one way of applying the linear mixed model is by using an approx-

imated model where the estimation is done repeatedly until convergence (referred to

as pseudo-likelihood (PL) approach) (Littell et al., 2006). Thus, since the likelihood

function is not easy to construct for GLMMs where data are non-normal, the PL or

the restricted pseudo-likelihood (REPL) proposed by Wolfinger and O’Connell (1993),

and the penalized quasi-likelihood (PQL) proposed by Breslow and Clayton (1993) are
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used. The REPL is based on the assumption that the dispersion parameter φ is un-

known, whilst for the PQL, φ is assumed to be fixed at 1 when modelling Binomial (or

Binary) or Poisson data. For further comparison of the likelihood, the quasi-likelihood

(QL) and the PL methods see Nelder and Lee (1992). The authors assert that these

three methods of estimation are equivalent in the case of normal data.

Rabe-Hesketh and Skrondal (2006) report that the full maximum pseudo-likelihood

estimation method is a better method for GLMMs than other competing methods. The

method involves maximization of the log pseudo-likelihood function using optimization

routines.

Recall that the estimating equations for GLMMs are solved iteratively to obtain

parameter estimates. For binary response GLMMs, the terms in (5.3) are:

y∗ = η̂ + (y− π̂)D−1 is referred to as a working (or pseudo) dependent variate

η̂ = Xβ̂ + Zû

W = D′R−1D

D = ∂µ
∂η

= diag[πi(1− πi)]

R = var(y|u) = R1/2
µ AR1/2

µ = R1/2
µ IR1/2

µ

Rµ = diag[πi(1− πi)]

A = I = identity matrix

G = var(u)=Iσ2
u.

The following features of the ungrouped binary conditional model are observed:

1. Conditional mean: µi = πi = 1/{1 + exp(−η)};

2. Natural parameter: θ(µi) = −log(π−1
i − 1);
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3. Variance function: V(µi) = πi(1− πi); and

4. Dispersion parameter: a(φi) = 1.

Numerical methods are used to obtain ûj, which should follow a normal distribution

with mean zero and variance σ̂2
u for a correctly fitted model (Collett, 2003). This pro-

cedure is available in statistical packages such as SAS. Collett (2003) reports that the

maximum likelihood estimation methods are not easy to use for calculating marginal

parameter estimates, especially if the random vector component has more than one

effect. That is, to obtain the marginal parameter estimates, the likelihood function has

to be integrated over each of the random components. Possible methods that can be

used include (among others) the QL, the PL or the Gibbs sampler based methods and

their extensions. In this study, the PL based methods (especially residual or restricted

PL) will be used which, according to Pendergast et al. (1996), leads to asymptotically

consistent estimators. These methods are implemented in SAS GLIMMIX Procedure

(see Littell et al. (1996 & 2006) and the SAS GLIMMIX Procedure Manual (2005) for

more details). Estimates from (5.3) can be simplified as follows:

Profiled parameter (Fixed effects) estimates are given by

β̂ = (X′V(θ)−1X)−X′V(θ)−1y∗

and the BLUP predictor of the random vector effect u is

û = ĜZ′V(θ)−1r̂

where r̂ = y∗ − (X′V(θ)−1X)−X′V(θ)−1y∗ for y∗ = η̂ + (y − π̂)D−1, θ is a q×1

vector of parameters containing all unknowns in G and R and V(θ) = ZGZ′ +

D−1R1/2
µ AR1/2

µ D−1, where D = (∂µ
∂η

)β̂,û. The parameter and random effect estimates

are used to update the pseudo-response and weights which are in turn used to update

parameter and random effect estimates. This process is continued until the convergence
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criterion is met: that is until the difference between parameters at two successive it-

erations is sufficiently small. When φ is different from 1, parameter estimates are also

profiled from the log PL. The parameter φ in the model is estimated by

φ̂ = r̂′V−1r̂/m (5.6)

where m = n (where n is the number of individuals used in the analysis) for MPL

and m = n − p (where p is the rank of X) for RPL. Since ungrouped binary data is

considered here, there is no problem of dispersion, so this issue is not discussed further.

According to Littell et al. (2006) the predictable functions, which are the primary

tools of inference for GLMMs, are tested using the Wald statistic or F-statistic if the

conditional variance R depends on a known or unkown scale parameter matrix A. This

is briefly discussed in Littell et al. (2006) and in more detail in the SAS GLIMMIX

procedure manual.

5.2.2 Interpretation of the Results in Terms of the Least-

squares Means Differences

Another form of inference about the parameters of the current fitted model is achieved

by using the least-squares means differences of the response measured at different factor

levels. This type of inference about parameters in the fitted model is more appropriate

for general linear models (see Hsu and Peruggia, 1994; and Hsu, 1996). Littell et al.

(2006) discussed this approach of inference in the context of generalized linear mixed

models with examples for Binomial and Poisson data. According to Littell et al. (2006)

least-squares means for factor levels are computed using estimable functions and they

refer to them as ‘least-squares means’ (which are on the link scale). The least-squares

means will be denoted by µ.

The factor least-squares means can be presented in tabular form or graphically.
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The pairwise comparison of factor level least-squares means (µi−µj, for all i 6= j) and

comparison of each factor level least-squares mean against the overall average of all

factor levels least-squares means (µi − µ̄, where µ̄ represents the overall least-squares

mean) will be implemented in this study. For the pairwise comparison, the mean-mean

scatter plot of least-squares means (see Hsu, 1996) called a ‘Diffogram’ in Littell et al.

(2006) will be used. According to the authors, the Tukey-Kramer method of adjustment

for multiplicity in the pairwise comparisons is preferable. For comparison of each factor

level least-squares means against the average factor least-squares mean (which will be

called ‘Analysis of Means’), the Nelson method of adjustment for multiplicity is used

(Littell et al., 2006; and Nelson, 1985 & 1993).

      line

 -1 slope lines

C.I. for

ji µµ ˆˆ −

kµ̂ jµ̂ iµ̂

iµ̂

jµ̂

kµ̂

( ) 2ˆˆ kj µµ −

045

ki µµ −

kj µµ ˆˆ −

Figure 5.1: Diffogram
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Figure 5.1 displays a Diffogram. The axes of Diffogram plot are the least-squares

means, i.e. y-axis = µ̂ and x-axis = µ̂. The 450 line from the origin is a reference

line which corresponds to the set of points satisfying µ̂i = µ̂j for all i and j. The

directional distance of any point from the 450 line is given by the difference of the two

corresponding least-squares means divided by the square root of 2. For example, the

directional distance of the point (µ̂j, µ̂k) from the 450 line is given by (µ̂j − µ̂k)/
√

2,

and of the point (µ̂i, µ̂j) from 450 line is given by (µ̂i − µ̂j)/
√

2. The Tukey-Kramer’s

confidence interval for the difference between two least-squares means is represented by

the length of the ‘-1 slope’ lines (or lines perpendicular to the 450 line). For example,

the Tukey-Kramer’s confidence interval for µ̂i − µ̂j is given by the length of the ‘-1

slope’ line centered at the intersection of µ̂i and µ̂j, and for µ̂i − µ̂k is given by the

length of the line centered at the intersection of µ̂i and µ̂k.

The longer the ‘-1 slope’ line the wider the confidence limits of the difference between

least-squares means. If the difference between two least-squares means is significant, the

corresponding line will not cross the 450 (reference) line, and vice versa. The difference

between µ̂j and µ̂k is significant, whilst that between µ̂i and µ̂j is not significant. It

should be noted that the ‘-1 slope’ lines are adjusted for rotation and multiplicity and

all the estimates are on the link scale. For more details on this discussion see Hsu and

Peruggia (1994), Hsu (1996), and Littell et al. (2006).

The graphical presentation of the ‘Analysis of Means’ (where least-squares means

for each factor level are compared against the average of all levels) has a different

representation to that of the Diffogram. The x-axis here represents factor levels and

the y-axis represents least-squares means (on the linked scale). The average of the least-

squares means is given by the horizontal line in the center of the graph. The vertical

lines from the horizontal line represent the magnitude of the difference of the factor

levels least-squares means from the average least-squares means. On both sides of the
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horizontal line there are dashed horizontal step plots representing the lower decision

limit (LDL) and upper decision limit (UDL). If the least-squares mean of the ith level

is significantly different from the average, the corresponding vertical line crosses one of

the decision limits, and vice versa. This analysis of means is discussed in more detail

in Nelson (1985 & 1993), and briefly in Littell et al. (2006), and the SAS GLIMMIX

procedure manual (2005).

5.3 SAS GLIMMIX Procedure

The SAS procedure PROC GLIMMIX that accommodates all features of GLMMs

was issued in November 2005. Before then, GLIMMIX MACRO had been used. This

procedure combines both PROC GENMOD and PROC MIXED procedures. With this

procedure subject-specific (conditional) and population-averaged (marginal) inferences

can be made. The estimation of the parameters using this procedure follows likelihood-

based techniques and the default is the pseudo-likelihood following the procedures of

Wolfinger and O’Connell (1993), and Breslow and Clayton (1993). For the construction

of Wald test statistics and confidence intervals for the estimates it relies on Taylor-series

expansion techniques. Wald-type tests and the estimated variance-covariance matrix

are used for hypotheses tests for the fixed effects. The following are the primary

assumptions for this procedure as outlined in the SAS GLIMMIX manual:

1. If the model contains random effects, the distribution of the responses conditional

on the random effects is known. The distribution can either be a member of the

exponential family of distributions or one of the supplementary distributions pro-

vided by the procedure itself. But for the fixed effects model, the unconditional

(marginal) distribution is assumed to be known for maximum likelihood estima-

tion, whilst in the case of quasi-likelihood estimation, the first two moments are
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known.

2. The conditional expected value of the response takes the form of a linear mixed

model after a monotonic transformation (link function) is applied.

3. The objective function for the optimization is a function of either the actual

log-likelihood, an approximation to the log-likelihood, or the log-likelihood of an

approximated model.

This procedure, like any other procedure, has strengths and weaknesses. The major

drawback from which it suffers is of having a doubly iterative fitting algorithm and the

absence of a true log-likelihood.

The conditional binary response model given the random PSU effects will be fitted

where the marginal covariance matrix is block-diagonal and the observations from the

same PSU form the blocks. The residual PL, a default estimation technique in SAS

PROC GLIMMIX for fitting GLMMs, will be used. Refer to Littell et al. (1996) for the

containment method which will be used to determine degrees of freedom. Furthermore,

the Dual Quasi-Newton method, the default optimization technique for GLMMs, will

be used where only covariance parameters will be participating in the optimization.

The objective function will be computed through the residual likelihood technique.

For more details on the methods and techniques discussed above see SAS GLIMMIX

procedure manual (2005).

5.4 Results

The type 3 test of fixed effects for the fitted model is given in Table 5.1. The F-

statistic, used for the significance test for the fixed effects, show that all the effects are

important in the fitted model when tested at the 10% level of significance. Only one
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effect (i.e. ownership of dwelling) is not significant which registered a p-value greater

than 0.1, but due to hierarchical principle for the model with interaction effects which

are significant, the main effect is retained in the model. The minus twice the residual

Table 5.1: Type 3 tests of fixed effects

Num Den

Effect DF DF F Value Pr > F

Location 9 4683 8.96 <.0001

Sex 1 4683 8.22 0.0042

Mstatus 1 4683 5.38 0.0204

Sex*Mstatus 1 4683 17.88 <.0001

Age 1 4683 22.41 <.0001

Mstatus*Age 1 4683 11.02 0.0009

Education 2 4683 15.72 <.0001

Dwelling 1 4683 0.77 0.3804

Mstatus*Dwelling 1 4683 4.19 0.0408

Education*Dwelling 2 4683 6.98 0.0009

HHsize 1 4683 15.94 <.0001

Dwelling*HHsize 1 4683 4.48 0.0344

log pseudo-likelihood of the fitted model is 21473.17, and the generalized chi-square

statistic is 4913.84. The ratio of the generalized chi-square statistic to its degrees of

freedom, which is a measure of the residual variability in the marginal distribution of

the data, is 4913.84
4683

= 1.05. This is because φ is 1. This measure can also be used

as a rule of thumb which asserts that the fitted model is satisfactory if the ratio is 1

(Collett, 2003). The variance of the random PSU effect on the logit scale is estimated

as σ̂2
u=0.02956 as given in Table 5.2. The same variance is obtained when the PSU is

nested within ‘location’ and ‘urban/rural’.

Table 5.3 gives solutions for the fixed effects. Note that standard errors, when

containment method for degrees of freedom is used, are the same as those for the

Satterthwaite-based method (refer to Tables 5.3 for containment method and C.2 for
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Table 5.2: Covariance parameter estimates

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept PSU 0.02956 0.02311

Intercept PSU(URBRUR*LOCATION) 0.02956 0.02311

Asymptotic Correlation Matrix of

Covariance Parameter Estimates

Cov Parm Subject CovP1

Intercept PSU 1.0000

the Satterthwaite-based method). When adjustment for uncertainty in estimating G

and R is made (see Table C.1), the standard errors are also not (significantly) different

from the two discussed above. Since the model fitted is a random intercept model,

and 0.6015 is the overall intercept of the model which is adjusted by a fairly small

random intercept estimate of 0.02956. Figures 5.2 to 5.13 summarize all pairwise

comparisons of the least-squares means analysis performing all pairwise differences

and an analysis of means with multiplicity adjustments. The Diffogram displays a line

for each comparison and the axes of the plot represent the scale of the least-squares

means. The confidence limit for the least-squares means difference is reflected by the

length of the line, which is adjusted for the rotation and also possibly for multiplicity.

The 450 line is referred to as reference line of the plot. The lines cross this line if two
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Table 5.3: Solutions for fixed effects

Standard

Effect Estimate Error t Value Pr > |t|

Constant 0.6015 0.3171 1.90 0.0590

Butha-Buthe -0.1966 0.1343 -1.46 0.1433

Leribe 0.5162 0.1359 3.80 0.0001

Berea -0.00446 0.1354 -0.03 0.9737

Thaba-Tseka -0.4606 0.1344 -3.43 0.0006

Mafeteng 0.05094 0.1338 0.38 0.7034

Mohale’s Hoek 0.3509 0.1410 2.49 0.0128

Quthing 0.2947 0.1372 2.15 0.0318

Qacha’s Nek 0.3741 0.1391 2.69 0.0072

Mokhotlong -0.1807 0.1329 -1.36 0.1738

Sex -0.6768 0.1133 -5.97 <.0001

Mstatus -0.5940 0.2140 -2.78 0.0055

Sex*Mstatus 0.8068 0.1908 4.23 <.0001

Age -0.6196 0.1263 -4.90 <.0001

Mstatus*Age 0.4991 0.1504 3.32 0.0009

Education1 0.8953 0.1735 5.16 <.0001

Education2 0.2429 0.1684 1.44 0.1493

Dwelling 0.05312 0.3395 0.16 0.8757

Mstatus*Dwelling 0.3432 0.1677 2.05 0.0408

Education1*Dwelling -0.7870 0.2258 -3.49 0.0005

Education2*Dwelling -0.3570 0.2306 -1.55 0.1217

HHsize -0.8275 0.2604 -3.18 0.0015

Dwelling*HHsize 0.5696 0.2691 2.12 0.0344

compared least-squares means are not significantly different.

Figure 5.11 displays a different test about least-squares means. Here factor levels are

compared against an overall average and not against each other. The dashed horizontal

step plots in the analysis of the means graph represent the upper and lower decision

limits determined at the 90th percentile (i.e. UDL, LDL). If the level is significantly

different from the average, then the corresponding vertical line crosses the decision

limit, either the lower or upper. See Littell et al. (2006) for more details on the
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least-squares means analysis.

5.4.1 Interpretation of the Results

Coefficients for the fixed effects are interpreted the same way as in the ordinary logistic

regression model, given in Section 4.1.4. Estimates in Table 5.3 are slightly lower than

those given in Table 4.4, Section 4.1.4, due to the shrinkage of estimates when random

effect of PSUs is accounted for. But the conclusions do not change, hence interpretation

of the model coefficients will not explicitly be done here. Instead, another form of

presentation based on least-squares means analysis is considered both tabularly and

graphically. See the syntax in Appendix C used to perform this analysis. All the

contrasts are on the logit scale log(π̂i/(1− π̂i)).

Figure 5.2: Diffogram for sex by marital status interaction effect: 11=unmarried males,

12=married males, 21=unmarried females, and 22=married females

Figure 5.2 illustrates adjusted comparison of sex by marital status interaction least-

squares means for multiplicity. The lines that represent the significant difference be-

tween the least-squares means of the levels of the sex by marital status interaction
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Figure 5.3: Analysis of means for sex by marital status interaction effect: 11=unmarried

males, 12=married males, 21=unmarried females, and 22=married females

effect are the ones centered at the intersections of the lines 12-married males and 21-

unmarried females, married males and 11-unmarried males, and lastly married males

and 22-married females. Notice that the least-squares means difference given by the

intersection of lines corresponding to married male and unmarried female heads has the

widest confidence limits. According to this figure the prevalence of disease/injury on

average for the households headed by married males is different from that which pre-

vailed for those headed by unmarried females, unmarried males and married females.

The lines that cross the 450 line show that the prevalence of disease/injury is not sig-

nificant between corresponding categories. That is given by the households headed by

unmarried females compared to those headed by unmarried males and married females

as well as the comparison of the households headed by unmarried males and those

headed by married females.

The average of sex by marital status interaction effect (on logit scale) is 0.15713 as

given by Figure 5.3. From this figure one can see that the differences of means of all
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levels except that of unmarried females are significantly different from the average given

by the vertical lines that cross the 90% LDL. This gives more insight into the reason

why the difference depicted in Figure 5.2 is significant between the households headed

by married males and those headed by other groups (i.e. unmarried females, unmarried

males, and married females). This is given by a negative difference of households headed

by married males effect from the average, whilst for other categories it is positive.

Figure 5.4: Diffogram for marital status by age interaction effect: 11=young unmarried,

12=older unmarried, 21=young married, and 22=older married

Moreover, Figure 5.4 shows that lines centered at the intersections 21-young mar-

ried heads and 11-young unmarried heads, young married heads and 12-older unmar-

ried heads, and older unmarried heads and 22-older married heads, represent significant

differences of least-squares means of the levels of marital status by age interaction ef-

fects. The above difference of means suggests that the prevalence of disease/injury

in the households headed by young married people is significantly different from that

in households headed by young unmarried people, older unmarried people, and older

married people. Recall that ‘young’ refers to people less that 40 years of age, and

73



Figure 5.5: Analysis of means for marital status by age interaction effect: 11=young unmar-

ried, 12=older unmarried, 21=young married, and 22=older married

‘older’ to people 40 years and above. The prevalence of disease/injury is not signifi-

cantly different in the following groups: young unmarried and older unmarried; young

unmarried and older married; and older unmarried and older married.

Furthermore, a clear significant difference of young married least-squares mean from

the average is depicted in Figure 5.5 and Table C.3. The least-squares mean for young

married people below the average and the least-squares means for the other levels

above the average show why significant differences between least-squares mean for the

young married people and least-squares means for other levels were observed in Figure

5.4. The values are given in Table C.3, where the least-squares mean estimate of young

married heads is -0.3381, and the estimate of its difference from average is -0.4349. The

difference of older unmarried heads least-squares mean from the average is significant.

For marital status and ownership of dwelling interaction effect, the observed signif-

icant difference of its levels is given by the line centered at the intersection 21-married

people who do not own dwelling and 11-unmarried people who do not own dwelling.
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Figure 5.6: Diffogram for marital status by ownership of dwelling interaction effect: 11=un-

married people who do not own dwelling, 12=unmarried people who own dwelling, 21=mar-

ried people who do not own dwelling, and 22=married people who own dwelling

Figure 5.7: Analysis of means for marital status by ownership of dwelling interaction effect:

11=unmarried people who do not own dwelling, 12=unmarried people who own dwelling,

21=married people who do not own dwelling, and 22=married people who own dwelling
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These are given in Figure 5.6 and Table C.4. The difference is not significant be-

tween all other levels i.e. 21-households headed by married people who do not own

dwelling and 22-those headed by married people who own dwelling; households headed

by married people who do not own dwelling and 12-those headed by unmarried people

who own dwelling; households headed by married people who own dwelling and those

headed by unmarried people who own dwelling; households headed by married people

who own dwelling and those headed by unmarried people who do not own dwelling;

households headed by unmarried people who own dwelling and those headed by unmar-

ried people who own dwelling. Since adjustment could not be completed for this effect,

decision limits were also not constructed. See the last column ‘adj P’ in Table C.4

which does not have values, and Figure 5.7 which does not have decision limits. But

when using unadjusted value for inference, it can be seen that differences of unmarried

people who do not own dwelling and married people who do not own dwelling levels

from the average are significant. Least-squares mean for unmarried people who do not

own dwelling is above the average and least-squares mean for married people who do

not own dwelling is the furthest below the average.

There are four significantly different pairwise comparisons of least-squares means

of levels of education by ownership of dwelling interaction effect on the health status

of the households, which are represented by the lines centered at the intersections

32-households headed by people who completed secondary and own dwelling and 11-

those who have some primary or no education and do not own dwelling; households

headed by people who completed secondary and own dwelling and 12-those who have

some primary or no education and own dwelling; 22-households headed by people who

completed primary and own dwelling and those who have some primary or no education

and own dwelling; as well as 21-households headed by people who completed primary

and do not own dwelling and those who have some primary or no education and own
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Figure 5.8: Diffogram for education by ownership of dwelling interaction effect: 11=no edu-

cation and do not own dwelling, 12=no education and own dwelling, 21=completed primary

and do not own dwelling, 22=completed primary and own dwelling, 31=completed secondary

and do not own dwelling, and 32=completed secondary and own dwelling

dwelling. This is given in Figure 5.8. It indicates that the prevalence of disease/injury

in the households owning dwelling and headed by educated (completed secondary)

people is on average significantly different from that in households that do not own

dwelling and are headed by uneducated (have some primary or no education) people.

This significance is also observed in the following comparison groups: the households

that own dwelling and are headed by people who completed secondary education and

those that own dwelling but are headed by uneducated people; the households that own

dwelling and are headed by uneducated people versus those that own dwelling and are

headed by people who completed primary education; and the households that own

dwelling and are headed by uneducated people versus those that do not own dwelling

and are headed by people who completed primary.

In addition, the three vertical lines in Figure 5.9 corresponding to household heads

77



Figure 5.9: Analysis of means for education by ownership of dwelling interaction effect:

11=no education and do not own dwelling, 12=no education and own dwelling, 21=completed

primary and do not own dwelling, 22=completed primary and own dwelling, 31=completed

secondary and do not own dwelling, and 32=completed secondary and own dwelling

who have no education and own dwelling; household heads who have no education and

do not own dwelling; and those who completed secondary and own dwelling, cross the

decision limits. Household heads who have no education and own dwelling, and those

who completed secondary and own dwelling are the most extreme, where one is above

the average and the other below average. The significant difference of least-squares

means of the two levels from the average is an indication of how important education

and ownership of dwelling are for the well-being of the people. This importance is

also stressed by Ulukanligil and Seyrek (2004) who assert that education should be the

first thing to be done in any health programme aimed at improving the socio-economic

development level of the community.

Two of the pairwise comparison of least-squares means of levels of ownership of

dwelling by households size interaction effect on health status of the households are not
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Figure 5.10: Diffogram for ownership of dwelling by household size interaction effect:

11=large household not owning dwelling, 12=small household not owning dwelling, 21=large

household owning dwelling, and 22=small household owning dwelling

Figure 5.11: Analysis of means for ownership of dwelling by household size interaction effect:

11=large household not owning dwelling, 12=small household not owning dwelling, 21=large

household owning dwelling, and 22=small household owning dwelling
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significantly different, which are represented by the lines centered at the intersections

11-large households that do not own dwelling and 22-small ones that own dwelling, as

well as 12-small households that do not own dwelling and small ones that own dwelling

given in Figure 5.10. The significant difference is observed in the following contrasts:

large households that own dwelling versus large ones that do not own dwelling; small

households that do not own dwelling and small ones that own dwelling; and large

households that do not own dwelling versus small ones that do not own dwelling.

Likewise, Figure 5.11 shows two extreme vertical lines that cross the decision limits

corresponding to 12-small households that do not own dwelling and 21-large households

that own dwelling. This also reflects how important ownership of dwelling and the

family size is for the well-being of people.

Figure 5.12: Diffogram for location effect: 01=Butha-Buthe, 02=Leribe, 03=Berea,

04=Thaba-Tseka, 05=Mafeteng, 06=Mohale’s Hoek, 07=Quthing, 08=Qacha’s Neck,

09=Mokhotlong, and 10=Maseru

Figure 5.12 portrays adjusted comparison of location least-squares means for multi-

plicity. Notice that lines centered at the intersections of locations 04-Thaba-Tseka and
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Figure 5.13: Analysis of means for location effect: 01=Butha-Buthe, 02=Leribe,

03=Berea, 04=Thaba-Tseka, 05=Mafeteng, 06=Mohale’s Hoek, 07=Quthing, 08=Qacha’s

Neck, 09=Mokhotlong, and 10=Maseru

10-Maseru, Thaba-Tseka and 03-Berea, Thaba-Tseka and 05-Mafeteng, Thaba-Tseka

and 07-Quthing, Thaba-Tseka and 06-Mohale’s Hoek, Thaba-Tseka and 08-Qacha’s

Nek, Thaba-Tseka and 02-Leribe, 01-Butha-Buthe and Quthing, 09-Mokhotlong and

Quthing, Butha-Buthe and Mohale’s Hoek, Butha-Buthe and Qacha’s Nek, Mokhot-

long and Mohale’s Hoek, Mokhotlong and Qacha’s Nek, Butha-Buthe and Leribe,

Mokhotlong and Leribe, Qacha’s Nek and Leribe, and Mafeteng and Leribe are signif-

icantly different. This means that the incidence of disease/injury in Thaba-Tseka was

significantly different from that in Maseru, Berea, Leribe, Mafeteng, Mohale’s Hoek,

Quthing, and Qacha’s Nek. It is not significantly different from that in Mokhotlong

and Butha-Buthe. The incidence experienced in Butha-Buthe was significantly differ-

ent from that experienced in only three districts, namely Leribe, Mohale’s Hoek, and

Quthing. The incidence in these three districts was also different from that observed

in Mokhotlong. In Mafeteng and Qacha’s Nek the incidence appeared to be different
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from that in Leribe. The pairwise comparison of other districts other than the ones

mentioned above do not have statistically significant differences.

The average location effect (on logit scale) is 0.08595, as given in Figure 5.13. No-

tice that vertical lines corresponding to Butha-Buthe, Leribe, Thaba-Tseka, Mohale’s

Hoek, Qacha’s Nek, and Mokhotlong cross the decision limits, implying that they are

significantly different from the average. The averages for Leribe and Thaba-Tseka are

the most extreme on the opposite sides of the average. That means the least-squares

mean for Leribe is greater than the average and the one for Thaba-Tseka is less than

the average.

Estimates of these least-squares means can also be presented in tabular form, given

in Tables C.3 to C.6 in the appendix.
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Chapter 6

Survey Logistic Regression Models

6.1 Introduction

Logistic regression models used to analyse data from the complex sampling designs will

be called survey logistic regression models in this study, to distinguish between them

and the ordinary logistic regression models discussed in Chapter 2. Survey logistic

regression models have the same theory as ordinary logistic regression models. The

exception is that they account for the complexity of survey designs. When data are

from simple random sampling, the survey logistic regression model and the ordinary

logistic regression model are identical. In the present situation, PSUs are sampled

in the first stage in each stratum (made up of districts and urban/rural). In the

second stage households are sampled. So one specifies the response variable as yijh (i

= 1,2,. . . , mhj; j = 1,2,. . . , nh; and h = 1,2,. . .,H) which equals 1 if disease/injury

is present in ith household within jth PSU nested within hth stratum, and 0 otherwise.

Let πijh = p(yijh = 1) be the probability that the disease/injury is present in the ith

household within jth PSU nested within hth stratum. Thus the log-likelihood function
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in this case is given by

`(β;y) =
H∑

h=1

nh∑
j=1

mhj∑
i=1

{
yijh log

(
πijh

1− πijh

)
− log

(
1

1− πijh

)}
(6.1)

and the survey logistic regression model is given by

logit(πijh) = x′
ijhβ , i = 1, 2, . . . ,mhj; j = 1, 2, . . . , nh; and h = 1, 2, . . . , H (6.2)

where xijh is the row of the design matrix corresponding to the characteristics of

the ith household in the jth PSU within hth stratum, and β is a vector of unknown

parameters of the model. If all design variables are included in the model as explanatory

variables, the inference about the effects of the factors in the fitted model will be reliable

(Pfeffermann, 1993).

6.2 Estimation of Parameters

Refer to Chapter 2 for discussion of method of maximum likelihood estimation used to

estimate parameters of the model. Calculation of the standard errors of the parameter

estimates, which are used to perform appropriate statistical tests on and construct

confidence intervals for the parameters, when data come from complex design is com-

plicated. The covariance matrix of parameter estimates is obtained through the Taylor

expansion approximation procedure (Vittinghoff et al., 2005). This technique estimates

variance from the variation among clusters and computes the overall variance estimate

by pooling stratum variance estimates together. The discussion of this approximation is

given in Chambless and Boyle (1983). There are other methods of variance estimation

for complex survey data other than the Taylor expansion approximation (also known

as linearisation method). These methods are called sample re-use methods. These are

jacknife, sample replication, balanced repeated replication (BRR), and the bootstrap

methods (see Vittinghoff, 2005); Lehtonen and Pahkinen, 1995; and Skinner, Holt, and
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Smith, 1989). The jacknife, BRR and bootstrap methods are illustrated with examples

in Lehtonen and Pahkinen (1995). But only the Taylor expansion approximation will

be used here.

The degrees of freedom for the t-test statistics used for testing the significance of

the parameters equals the number of clusters minus the number of strata in the sample

survey design. This statistic can then be used to construct confidence intervals for the

parameters, especially if n (the overall sample size) is small. When n is large, as is

the case for the CWIQ data, the sampling distribution of the parameter estimators are

approximated by a normal distribution. Hence, the Wald chi-square statistic can also

be used to test for the significance of the parameters and to construct their confidence

intervals (which are also called normal confidence intervals) given by

β̂j ± z1−α
2

√
vjj (6.3)

where z1−α
2

is the 100(1-α
2
)th percentile of the standard normal distribution, and vjj is

a variance of β̂j given by diagonal elements of variance-covariance matrix of β̂. Note

again that these intervals are on a logit scale, if the canonical link function is used.

Untransformed confidence intervals are given by

exp(βj ± z1−α
2

√
vjj). (6.4)

Fortunately, the trouble of calculating estimates and their variance has been cir-

cumvented by implementation of the procedures in statistical packages that appropri-

ately account for the complexity of survey designs. This procedure is implemented in

packages such as SAS 9.1 and is called PROC SURVEYLOGISTIC. It was developed

basically for fitting a linear logistic regression model for discrete response variables to

survey data. When the data are from the simple random sampling method, PROC

SURVEYLOGISTIC is identical to PROC LOGISTIC. PROC SURVEYLOGISTIC
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uses maximum likelihood estimation method and the Taylor expansion approxima-

tions mentioned above. This procedure will be used to fit the model (6.2). This

procedure requires that for any cluster to be included in the calculation there should

be at least two or more clusters in the stratum, otherwise the stratum will not make

any contribution.

6.3 Model Selection

The same selection procedure discussed in Section 2.5 applies for survey logistic regres-

sion models. However, the selection procedures (i.e. forward, backward, and stepwise)

are not yet included in PROC SURVEYLOGISTIC. The alternative is to start with the

saturated model and observe the contribution of each effect to deviance reduction given

by type 3 analysis of effects, then exclude one variable with insignificant effect (one at

a time) and observe the contribution of the remaining effects to deviance reduction.

Continue this process until the model has only significant effects.

Alternatively, the following criteria can be used to compare the goodness-of-fit of

two nested models: The Akaike’s information criterion (AIC) introduced by Akaike

(1974), and the Schwarz Criterion (SC) (also known as Bayesian Information criterion

(BIC)) introduced by Schwarz (1978). These methods are used to adjust (or impose

stiffer penalties on) the likelihood ratio statistic -2logL which measures the deviation

of the log-likelihood of the fitted model from the log-likelihood of the maximal possible

model (Vittinghoff et al., 2005). The adjustment is necessary because the -2logL will

always decrease as a new explanatory variable enters the model even if it is insignificant.

The AIC is given by

AIC = −2logL + 2p (6.5)

where p is the number of parameters in the model. This technique which tolerates
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violation of parametric model assumptions, can be used to compare multiple nested

models, and it does not rely entirely on p-values for determining significance of ex-

planatory variables (Alexander, Logan, and Paquet, 2006). Another criterion which

adjusts the -2logL statistic for the number of parameters is SC given by

SC = −2logL + p log(n) (6.6)

where p is as explained above and n is the overall sample size. The smaller the value

of the criteria, the better the goodness-of-fit of the model (Anderson, Burnham, and

White, 2006; Caley and Home, 2002; and Buckland, Burnham, and Augustin, 1997).

The model selected in Chapter 4 will be refitted accounting for the complexity of the

survey design and will be compared with the one that will be selected through the

cumbersome procedure proposed in this section.

6.4 Model Checking

6.4.1 Model Fit Test

The AIC and SC criteria will be used to test for the goodness-of-fit of the model.

Since the criteria involve -2logL which is only used for variable selection in the case

of ungrouped binary data, they are used as approximations. The Hosmer-Lemeshow

goodness-of-fit statistic is used in the case of ungrouped binary data, is not yet imple-

mented in the PROC SURVEYLOGISTIC.

6.4.2 Predictive Accuracy/Ability of the Model

The PROC SURVEYLOGISTIC, like other procedures used for fitting binary response

models to data, produces statistics on the prediction ability of the model, such as
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c, Sommer’s D (SD), Goodman-Kruskal Gamma (GKG), and Kendall’s Tau-a (KT).

Following the SAS notation, these statistics are given as

c = (nc + 0.5(t− nc − nd))t
−1

SD = (nc − nd)t
−1

GKG = (nc − nd)(nc + nd)
−1

KT = (nc − nd)(0.5N(N − 1))−1

where n is the total number of individuals in the data set, t is a total number of pairs

given by n(n − 1)/2, nc is a number of concordant pairs (a pair of observations is

concordant if a response y is 1 and the predicted probability is high), nd is a number

of discordant pairs (a pair of observations is discordant if the response y is 1 and the

predicted probability is low), and tied pairs are given by ‘t−nc−nd’. See Agresti (1984)

for more details. The widely employed statistic is c which is equal to area under the

receiver operating characteristic (ROC) curve in the case of binary response models.

Recall that the prediction accuracy is poor if c is between 0.5 and 0.6, moderate if

between 0.6 and 0.7, acceptable if between 0.7 and 0.8 and excellent if greater than

0.8.

6.5 Results

6.5.1 Introduction

To begin, the model selected by the PROC LOGISTIC was refitted using the PROC

SURVEYLOGISTIC to see if estimates would change when the complexity of the survey

design is accounted for. Another model was selected using the PROC SURVEYLOGIS-

TIC and compared to the former for goodness-of-fit. Table 6.3 compares estimates from

ordinary logistic regression model and survey logistic regression model with the logit
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link function. Notice that estimated coefficients are the same from both procedures,

but standard errors produced by PROC LOGISTIC are relatively small compared to

those from the PROC SURVEYLOGISTIC. That means, when complexity of the sur-

vey design is ignored by invoking the procedure that assumes SRS, the variances are

underestimated hence leading to inaccurate inferences. Again, not only the magnitude

of effect is the same in both models, but also the direction of effect is the same.

6.5.2 Model Selection

Table 6.3 is for comparing estimates of the same model fitted using the two logistic

procedures discussed above. Another candidate model supported by PROC SUR-

VEYLOGISTIC is investigated. The largest model with significant effects is given in

Tables 6.1 and was obtained through the PROC SURVEYLOGISTIC. This model has

the smallest deviance (-2logL) amongst all the nested models with the first order inter-

action effects. The model selected in Chapter 4 was refitted using this procedure and

is given in Table 6.3. Table 6.2 gives deviance analysis. The total deviance reduction

for the model in Table 6.3 is 375.3615, with 22 degrees of freedom, and for the one in

Table 6.1 is 421.8850, with 36 degrees of freedom which is very significant (with p-value

< 0.0001) in both models. The AIC for the model in Table 6.3 is 6456.465 which is

larger, by 18.524, than the one for the model in Table 6.1. On the other hand, the

SC for the model in Table 6.3 is 6606.147 which is small compared to 6678.735 for the

model in Table 6.1. Regarding suitability, the AIC suggests the model in Table 6.1,

whilst SC suggests the model in Table 6.3. If the interest is in the order of the model,

a model based SC is preferred; but if the interest is in consistent approximation and

model fit, a model based on AIC is preferred (Buckland et al., 1997). This means,

dimensionally, the model in Table 6.3 is the best, and when ignoring the order, the

model in Table 6.1 is chosen over the model in Table 6.3. Rust et al. (1995) recom-
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mend SC for model comparison, selection, and probability estimation because of its

simplicity and prediction accuracy which outperforms other criteria in terms of accu-

racy and consistency. The c statistic given in the same table suggests that both models

have moderate prediction ability. Intuitively, which model to choose is based upon the

research objectives and the most appealing model. Since the most parsimonious model

is preferred, the model in Table 6.3 advocated by SC which is recommended by Rust

et al. (1995) is chosen.

Table 6.1: Type 3 analysis of effects for model 2 using the PROC SURVEYLOGISTIC

Effect DF Wald Chi-Square p-value

Location 9 89.6662 <.0001

Sex 1 0.1459 0.7025

Mstatus 1 12.8318 0.0003

Sex*Mstatus 1 15.9878 <.0001

Age 1 19.1262 <.0001

Mstatus*Age 1 5.4434 0.0196

Education 2 15.4142 0.0004

Dwelling 1 1.9525 0.1623

Education*Dwelling 15 15.8088 0.0004

Toilet 2 6.5768 0.0373

Education*Toilet 4 10.8161 0.0287

Fuel 2 12.5931 0.0018

TClinic 1 7.8929 0.0050

Fuel*TClinic 2 7.6423 0.0219

HHsize 1 4.4999 0.0339

Sex*HHsize 1 12.4799 0.0004

Mstatus*HHsize 1 9.9477 0.0016

Dwelling*HHsize 1 2.7987 0.0943

Toilet*HHsize 2 7.3706 0.0251
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Table 6.2: Model fit statistics using the PROC SURVEYLOGISTIC

Criterion Intercept only Model 1† Model 2‡

-2LogL 6785.826 6410.465 6363.941

AIC 6787.826 6456.465 6437.941

SC 6794.334 6606.147 6678.735

c 0.652 0.665

Note: † is given in Table 6.3, and ‡ is given in Table 6.1

6.5.3 Interpretation of Parameters

Since point estimates produced by the PROC SURVEYLOGISTIC are the same as

those given by PROC LOGISTIC or PROC GENMOD, interpretation given in Section

4.1.4 applies here. The only difference is the confidence intervals for the coefficients,

which are narrow for the ordinary logistic regression model due to underestimated

standard errors of the coefficients in the ordinary logistic regression model.

It can be seen that the effects of Butha-Buthe, Berea, Mafeteng, and Mokhotlong

are not significant, which means that, controlling for other variables, the incidence of

disease/injury in these locations are not different from the one in Maseru (the reference

location). The parameter for Leribe indicates that households in Leribe are 1.672

(between 1.296 and 2.157) times more likely to be ill/injured compared to the ones

in Maseru. The rate is a little lower for the households in Mohales’ Hoek, Quthing,

and Qachas’ Nek which are 1.418 (between 1.158 and 1.738), 1.339 (between 1.071

and 1.679) and 1.450 (between 1.133 and 1.858) times more likely to be ill/injured,

respectively compared to the ones in Maseru. The households in Thaba-Tseka are 0.63

(between 0.510 and 0.779) times more likely to be ill/injured than those in Maseru (i.e.

people in Thaba-Tseka are 0.37 less likely).

Table 6.5 summarizes the coefficient of the interaction terms. The positive sign of

‘sex’ and ‘marital status’ interaction effect indicates that households headed by un-
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Table 6.3: Comparison of PROC LOGISTIC and PROC SURVEYLOGISTIC for fitting

model 1

Effect Proc logistic Proc surveylogistic

Estimate Std errors Estimate Std errors

Constant 0.5978*** 0.3138 0.5978*** 0.3273

Butha-Buthe -0.1978 0.1262 -0.1978 0.1461

Leribe 0.5140* 0.1281 0.5140* 0.1548

Berea -0.0057 0.1274 -0.0057 0.1413

Thaba-Tseka -0.4619* 0.1264 -0.4619* 0.1286

Mafeteng 0.0492 0.1257 0.0492 0.1428

Mohale’s Hoek 0.3494* 0.1332 0.3494* 0.1235

Quthing 0.2922** 0.1293 0.2922** 0.1362

Qachas’Nek 0.3719* 0.1313 0.3719** 0.1504

Mokhotlong -0.1816 0.1248 -0.1816 0.1423

Sex -0.6770* 0.1129 -0.6770* 0.1180

Mstatus -0.5843* 0.2131 -0.5843* 0.2199

Sex*Mstatus 0.8022* 0.1901 0.8022* 0.1861

Age -0.6166* 0.1258 -0.6166* 0.1151

Mstatus*Age 0.4932* 0.1498 0.4932* 0.1482

Education1 0.9009* 0.1722 0.9009* 0.1905

Education2 0.2449 0.1672 0.2449 0.1825

Dwelling 0.0606 0.3376 0.0606 0.3465

Mstatus*Dwelling 0.3365** 0.1671 0.3365** 0.1656

Education1*Dwelling -0.7924* 0.2245 -0.7924* 0.2453

Education2*Dwelling -0.3578 0.2294 -0.3578 0.2343

HHsize -0.8305* 0.2592 -0.8305* 0.2385

Dwelling*HHsize 0.5717** 0.2679 0.5717** 0.2490

Note: * denotes significance at 1%, ** at 5%, and *** at 10%

married males are more likely to be unhealthy compared to those headed by unmarried

females and that households headed by married males are less likely to be unhealthy

compared to their unmarried counterparts. This is given by the ratio of log odds ratio

of 0.8022 with the 90% confidence interval (between 0.496 and 1.108). The ratio of

odds ratios is 2.230 (between 1.642 and 3.029). The coefficient for ‘age’ and ‘marital

status’ interaction effect indicates that households headed by young unmarried people
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Table 6.4: Odds ratios for location

Effect Point Estimate 90% Confidence Interval

Lower Upper

Butha-Buthe 0.821 0.645 1.040

Leribe 1.672 1.296 2.157

Berea 0.994 0.788 1.255

Thaba-Tseka 0.630 0.510 0.779

Mafeteng 1.050 0.831 1.329

Mohale’s Hoek 1.418 1.158 1.738

Quthing 1.339 1.071 1.679

Qachas’Nek 1.450 1.133 1.858

Mokhotlong 0.834 0.660 1.054

Table 6.5: Odds ratios for interaction terms of sex, marital status, age, education, ownership

of dwelling and household size

Effect Ratio of log odds ratios 90% Confidence Interval Ratio of odds ratios 90% Confidence Interval

Lower Upper Lower Upper

S*M 0.8022 0.4961 1.1083 2.2304 1.6422 3.0293

M*A 0.4932 0.2494 0.7370 1.6375 1.2833 2.0896

M*D 0.3365 0.0641 0.6089 1.4000 1.0662 1.8384

E1*D -0.7924 -1.1959 -0.3889 0.4528 0.3024 0.6778

D*H 0.5717 0.1621 0.9813 1.7713 1.1760 2.6679

Note: S=sex, A=age, D=dwelling, E1=no education, H=hhsize, and M=mstatus

are 1.6375 (between 1.2833 and 2.0896) times more likely to be unhealthy than young

married ones. Similarly, households which do not own their dwelling and headed by

unmarried people are 1.4 times more likely to be unhealthy compared to their married

counterparts; and those who do not own their dwelling and are headed by unmarried

people are 1.4 (between 1.0662 and 1.8384) times more likely to be unhealthy than their

counterparts who own their dwelling. Furthermore, the households that do not own

their dwelling and are headed by people with some primary or no education are 0.4528

(between 0.3024 and 0.6778) times more likely to be unhealthy compared to the ones
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which do not own their dwelling and are headed by people who completed secondary

or have higher education. Similarly, 0.4528 suggests that households not owning their

dwelling and headed by people with some primary or no education are less likely to be

unhealthy compared to their counterparts who own their dwelling. Households without

their own dwelling and having more than 5 members are 1.7713 (between 1.1760 and

2.6679) times more likely to have unhealthy members compared to their counterparts

with 5 or fewer members and also more likely than their counterparts who own their

dwelling. The large households which do not own their dwelling are more likely to be

unhealthy compared to their counterparts in small households.

Recall that the model in Table 6.3 was chosen over the model in Table 6.1 on the

basis of criteria discussed in Section 6.5.2. However, it may be informative if results

of the model in Table 6.1 which identified more important factors for health status are

interpreted. Table 6.6 displays results of this model in terms of odds ratios. Since the

direction of effects of the factors identified by both models in Tables 6.3 and 6.6 are

the same, the effects of the factors that appear in Table 6.6 (below the line) but not

in Table 6.3 are interpreted. The odds ratios whose 90% C.I.s include 1 will not be

interpreted because they are not significantly different from 1 at 10% significance level.

The results show that the households headed by uneducated people who use other

types of toilets (other than flush or pit latrine) are 0.3286 (0.1518, 0.7113) times more

likely to be unhealthy than their uneducated counterparts who use flush or pit latrine

toilets, and more likely than those headed by educated people (who completed sec-

ondary education) who use other types of toilets. The incidence of disease/injury for

the households headed by people who completed primary education and use other form

of toilet (other than flush or pit latrine) is 0.2585 (0.1163, 0.5742) times that for the

households headed by people who completed primary education and use flush or pit

latrine toilets, and that for the households headed by people who completed secondary
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Table 6.6: Odds ratios for model 2 in Table 6.1

90% Confidence Interval

Effect Odds ratio Lower Upper

Constant 1.0535 0.4208 2.6377

Butha-Buthe 0.8406 0.6582 1.0738

Leribe 1.7255 1.3400 2.2218

Berea 1.0382 0.8168 1.3196

Thaba-Tseka 0.6590 0.5271 0.8240

Mafeteng 0.9847 0.7705 1.2583

Mohale’s Hoek 1.4366 1.1681 1.7670

Quthing 1.3742 1.0921 1.7293

Qachas’Nek 1.5200 1.1742 1.9676

Mokhotlong 0.8538 0.6666 1.0937

Sex 1.1034 0.7222 1.6859

Mstatus 0.4024 0.2650 0.6113

Sex*Mstatus 2.1088 1.5515 2.8662

Age 0.6241 0.5227 0.7452

Mstatus*Age 1.3720 1.0978 1.7146

Education1 6.6240 2.9651 14.7981

Education2 4.4584 1.9788 10.0442

Dwelling 1.5417 0.9262 2.5664

Education1*Dwelling 0.4041 0.2670 0.6115

Education2*Dwelling 0.6635 0.4487 0.9809

HHsize 0.5434 0.3386 0.8720

Dwelling*HHsize 1.5204 1.0071 2.2958

Toilet1 1.3115 0.4562 3.7708

Toilet2 2.8137 1.2607 6.2789

Education1*Toilet1 0.5689 0.2005 1.6145

Education1*Toilet2 0.3286 0.1518 0.7113

Education2*Toilet1 0.3549 0.1174 1.0722

Education2*Toilet2 0.2585 0.1163 0.5742

Fuel1 0.5358 0.3982 0.7210

Fuel2 0.6147 0.4423 0.8544

Tclinic 0.4408 0.2729 0.7121

Fuel1*Tclinic 2.2140 1.3370 3.6664

Fuel2*Tclinic 1.8285 1.0892 3.0695

Sex*HHsize 0.4109 0.2716 0.6218

Mstatus*HHsize 2.1717 1.4493 3.2544

Toilet1*HHsize 1.2394 0.8783 1.7489

Toilet2*HHsize 0.8061 0.5692 1.1417
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education and use other types of toilets.

In addition, the households which are far (which take 60 minutes or more to reach)

from the hospital/clinic and use firewood/charcoal for cooking are 2.214 (1.337, 3.666)

times more likely to be unhealthy than the households which are close (which less than

60 minutes to reach) to the hospital/clinic and use firewood/charcoal, and than the

households which are far from the hospital/clinic and use kerosene/gas/electricity for

cooking. But the households which are far from the hospital/clinic and use other type of

fuel for cooking (other than firewood, charcoal, kerosene, gas, or electricity) are 1.8285

(1.0892, 3.0695) times more likely to be unhealthy than the households which are close

to the hospital/clinic and use other type of fuel, and than the households which are far

from the hospital/clinic and use kerosene/gas/electricity for cooking. The incidence of

disease/injury for the large households headed by unmarried people is 2.1717 (1.4493,

3.2544) times that for the small households headed by unmarried people, and for large

households headed by married people. The incidence for large households headed by

males is 0.4109 (0.2716, 0.6218) times that for small households headed by females,

and for large households headed by males.

Recall that the interaction effect of Education2*Dwelling was not significant in

Table 6.3. But in Table 6.6 it is significant. Its odds ratio shows that households

headed by people who completed primary education and do not own their dwelling are

0.6635 (0.4487, 0.9809) times more likely to be unhealthy compared to the households

headed by their educated (completed secondary education) counterparts who own their

dwelling, and compared to those headed by people who completed primary education

and own their dwelling.
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6.6 Shortcomings of the SURVEYLOGISTIC Pro-

cedure

Recall that for ungrouped binary data the likelihood ratio statistics cannot be used as a

measure of goodness-of-fit, and hence the Hosmer-Lemeshow goodness-of-fit statistic is

used instead. However, this statistic is not yet implemented in the SURVEYLOGISTIC

procedure. Another drawback of this procedure is the absence of the ‘output’ option

statement which facilitates further analysis of data, such as testing for appropriateness

of the link function, outliers and influence detection. In the output about the model

fit statistics the procedure provides the three above mentioned statistics. Therefore,

the model is chosen through the use of the AIC and the SC criteria. Recall that

both AIC and SC are statistics which introduce a penalty for a model having too

many parameters. Since these statistics involve -2logL which is only used for variable

selection in the case of ungrouped binary data, they are used as approximation for

goodness-of-fit of the model.

97



Chapter 7

Conclusions

The objective of this study was to identify factors affecting the health status of the

people of Lesotho. The identified factors will be used to guide policy and decision

making to speed up the provision of a better life for all. Generalized linear models,

generalized linear mixed models, and survey logistic regression models were used to

identity these factors. To begin, a generalized linear model, called logistic regression

model, which assumes simple random sampling was used. The highest second order

interaction terms were allowed in the model. Due to the large number of variables, a

stepwise selection procedure was adopted. District and the interaction terms sex by

marital status, age by marital status, ownership of dwelling by marital status, education

level by ownership of dwelling, ownership of dwelling by household size, and the main

effects were significant except ownership of dwelling. However, due to the hierarchical

principle of the models with interaction terms, ownership of dwelling was retained in

the model. Model checks for goodness-of-fit, appropriateness of the link function, and

influence were done, and all failed to reject the selected model. The selected model was

refitted with the random PSUs effect incorporated which led to the generalized linear

mixed model called the random intercept model. The survey logistic regression model
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that accounts for complexity of the design was also used to refit the model. These two

models, which account for survey design, fitted the data well and the results from them

given in Table 5.3 for generalized linear mixed model and Table 6.3 for survey logistic

regression model lead to the same conclusions as the ones given by the generalized

linear model in Table 6.3.

The incidence of disease/injury for the households headed by unmarried people

who do not own their dwelling is higher than that for households headed by their

counterparts who own their dwelling. A similar effect is observed for large households

that do not own their dwelling versus those that own their dwelling. But for those

headed by uneducated people who do not own their dwelling the incidence is low

compared to their counterparts who own their dwelling. The disease/injury incidence

for the households headed by uneducated people who do not own their dwelling is

low compared to that of their educated counterparts. For the households headed by

unmarried people who do not own their dwelling, the disease/injury incidence is higher

than that for those headed by their married counterparts. A similar conclusion is

drawn for unmarried males versus married males. Again, the disease/injury incidence

is high for the large households that do not own their dwelling compared to the small

households.

Moreover, the incidence of disease/injury for the households headed by young un-

married people is higher than that for older unmarried heads. The incidence is also

found to be high for unmarried males compared to unmarried females. The districts

in the southern part of Lesotho namely Mohale’s Hoek, Quthing, and Qacha’s Nek,

and one in the northern part (i.e. Leribe) have a significantly higher incidence of

disease/injury than that observed in Maseru. Only one district, Thaba-Tseka, has

a significantly lower incidence compared to that observed in Maseru. The incidence

observed in the other 4 districts is not significantly different from that observed in
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Maseru.

The results in Table 6.6 suggest that the incidence of disease/injury for the house-

holds that do not own their dwelling and headed by people who completed primary

education is low compared to that for the households that do not own their dwelling

and headed by people who completed secondary education. The incidence is also low

for the households that do not own their dwelling and headed by people who completed

primary education compared to that for the households that own their dwelling and

headed by people who completed primary education. This is the opposite of what

one would expect, in the sense that the households headed by educated people who

own their dwelling the incidence would be expected to be lower than for those headed

by people with lower education level who do not own dwelling. The incidence of dis-

ease/injury for the households that use other types of toilets (other than flush/pit

latrine) is low for the households headed by both uneducated people and people who

completed primary education compared to that for the households headed by peo-

ple who completed secondary education. Similarly, the incidence for the households

headed by uneducated people and people who completed primary education is low for

the households that use other types of toilets compared to those that use flush or pit

latrine toilets.

The incidence of disease/injury for the households that use firewood/charcoal for

cooking is high for the households that are far from the hospital/clinic (60 minutes

or more walk away) compared to the households that are close (less than 60 minutes

walk away) to the hospital/clinic. The incidence for the households that are far from

the hospital/clinic is high for the households that use other type of fuel for cooking

compared to the households that use kerosene/gas/electricity. A low incidence of dis-

ease/injury is also observed for the large households headed by males compared to that

for large households headed by females. The results also show that the incidence of
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disease/injury is high for the large households headed by unmarried people compared

to that for the small households headed by unmarried people, and for large ones headed

by married people.

The findings of this study imply that the health status of the households is likely

to improve: if household heads are married, especially males and those aged less than

40 years as well as those who do not own dwelling; if households own their dwelling,

especially those that have more than 5 members, those headed by unmarried people,

and those headed by people who completed secondary education; if household is not

large so as to avoid problems of congestion and high dependency ratios i.e. households

should comprise less than 6 members, particularly the households that do not own

their dwelling; if households heads take good care of themselves so that they can be

available for their households at mature age i.e. 40 years of age or more; if inequality

in development that lead to unequal health facilities among districts is reduced by fast-

tracking development in Leribe, Mohale’s Hoek, Quthing, and Qachas Nek districts;

if households headed by people who have no education or have completed primary

education have basic toilet facilities (i.e. other form of toilet, other than flush/pit

latrine); if the households which are far from the hospital/clinic use kerosene, gas, or

electricity for cooking; if the hospitals or clinics are accessible to the households, more

so to the households that use other types of fuel for cooking (other than kerosene, gas,

or electricity); if large households are headed by males and also by married people; and

if the households headed by females are small (i.e. have less 6 members).

This improvement could be achieved by creating an enabling environment for (1)

the improvement of socio-economic development programmes, (2) the encouragement

of owner-occupied dwelling, (3) well controlled household size (i.e. having a maximum

of 5 members), (4) the improvement of awareness campaigns on health issues for the

entire community (especially males and young heads), (5) the promotion of sustained

101



marriage, (6) the improvement of hospitals/clinics accessibility to people, and (7) the

financial empowerment of households to afford either kerosene, gas, or electricity.

The major limitation of the study is the data which could not allow analysis at the

level of individual members of the household. The aggregated data do not capture all

characteristics of each member of the household, such as education level. Individual

member characteristics are likely to vary within and among households. Therefore,

analysis at the individual level might give more insight into the diseases/injuries pattern

than analysis at the aggregated (household) level.

There are avenues for further work on the subject. For instance, one could identity

what were the major diseases/injuries contributing to poor health of the Basotho, espe-

cially those associated with factors found to be important for health status in this study.

There are a number of ways in which this could be done. Each disease/injury (especially

those that are chronic, acute, or highly prevalent) could be considered independently

or separately and models for binary response analysis could be utilized. Alternatively,

methods that coherently and systematically consider specific diseases/injuries or clus-

ters of them in the analysis could be utilized. For example, multivariate models where a

response has more than one binary component, each corresponding to a disease/injury

category could be used (see Agresti and Liu, 1999). See also Knorr-Held and Best

(2001) for shared component models used for simultaneous analysis of the spatial vari-

ation in two diseases. If the interest is to curb the burden of diseases/injuries, the

focus could be on households with health problems that are chronic, acute, and widely

prevalent.
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Appendix A

Procedures for the Generalized

Linear Models

A.1 SAS Procedures

The SAS system was used to fit the logistic regression model discussed in Chapter 2

and fitted in Chapter 4. PROC LOGISTIC and PROC GENMOD were used to fit

the model. The stepwise procedure implemented in PROC LOGISTIC was used to

select the best model. The scale deviance was not specified because for ungrouped

binary data the problem of dispersion does not hold. The logit, the probit, and the

complementary log-log link functions were used.

A.1.1 Model Selection Using the PROC LOGISTIC

The following stepwise selection procedure was used:
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proc logistic data=sasuser.Recodeddw;

class U L S M A E D R SW T F TS TC H / param=reference;

model y = U|L|S|M|A|E|D|R|SW|T|F|TS|TC|H@3/ link=logit alpha=0.1 selection=stepwise

lackfit;

run;

where ‘Lackfit’ performs Hosmer-Lemeshow goodness-of-fit test for ungrouped binary

response data. U=urban/rural, L=location, S=sex, M=marital status, A=age, E=education,

D=dwelling, R=roofing, SW=source of drinking water, T=toilet, F=fuel, TS=time

taken to reach the nearest supply of drinking water, TC=time taken to reach the

nearest hospital/clinic, and H=household size.

A.1.2 Model Fitting Using the PROC GENMOD

Variables used here are selected using stepwise procedure in the PROC LOGISTIC.

proc genmod data=sasuser.Recodeddw;

class L S M A E D H;

model y = L S M S*M A M*A E D M*D D*E H D*H/ dist=binomial link=logit

apha=0.1 lrci type3;

run;

A.1.3 Plots Using the PROC LOGISTIC

The plots were done in the PROC LOGISTIC by including the following statements:
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proc logistic data=sasuser.Recodeddw;

class U L S M A E D R SW T F TS T H;

model y = U|L|S|M|A|E|D|R|SW|T|F|TS|TC|H@2/ link=logit alpha=0.1 selection=stepwise

lackfit;

output out=output p=pred c=c xbeta=logit resdev=resdev;

run;

data output;

set output;

obs= N ;

/* To approximate Cookd (=Cook’s distance), divide c by the total number of param-

eters in the model */

cookd=c/23;

run;

/*statements below perform plots for the fitted model*/

ods html;

ods graphics on;

proc gplot data=output;

plot cookd*obs;

plot resdev*logit;

plot resdev*obs;

run;

ods graphics off;

ods html close;
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where

cookd*obs; invokes index plot of Cook’s distance

resdev*logit; invokes plot of residual deviance against linear predictor

resdev*obs; invokes index plot of deviance residual

A.1.4 ROC Curve for the Selected Model

The following codes were used to graphically present the prediction accuracy of the

model:

ods html;

ods graphics on;

proc logistic data=Recodedd;

class L S M A E D H;

model y = L|S|M|A|E|D|H@2/ link=logit plcl outroc=roc1;

run;

ods graphics off;

ods html close;
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Appendix B

SAS PROC SURVEYLOGISTIC

This procedure was used to fit a survey logistic regression model discussed and fitted

in Chapter 6. The same variables selected by PROC LOGISTIC were used to fit the

survey logistic regression model. The other sub-model selected using the alternative

procedure discussed in Section 6.3 is given in Table 6.1.

PROC SURVEYLOGISTIC DATA = sasuser.Recodeddw;

STRATUM U L;

CLUSTER PSU;

CLASS U L S M A E D R SW T F TS T H / param=reference;

MODEL y=L S M S*M A A*M E D E*D M*D H D*H / LINK=LOGIT STB RSQ

alpha=0.1;

RUN;

where PSU is a primary sampling unit.
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Appendix C

SAS PROC GLIMMIX

PROC GLIMMIX was used to fit generalized linear mixed model (random intercept

model) discussed and fitted in Chapter 5. The same variables selected in Chapter 4

(for logistic regression model) were used to fit the random intercept model.

ods html;

ods graphics on;

proc glimmix data=sasuser.Recodeddw;

class PSU U L S M A E D R SW T F TS T H;

model y = L S M S*M A A*M E D E*D M*D H D*H / dist=binary solution alpha=0.1;

lsmeans L S*M A*M E*D M*D D*H / plot=diffplot adjust=turkey alpha=0.1;

lsmeans L S*M A*M E*D M*D D*H / plot=anomplot adjust=nelson alpha=0.1;

random int / subject=PSU;

run;

ods graphics off;

ods html close;
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The option ddfm=kenwardrover, which uses Satterthwaite-based degrees of freedom,

is included to account for uncertainty that may exist when estimating G and R in

the model i.e. accounting for underestimation of true sampling variability of [β̂
′
, û′]′,

(GLIMMIX Procedure manual, 2005). This option is put in the model statement after

solution. The results are given in Table C.1. Note that these results are not (signifi-

cantly) different from the ones in Tables 5.2 and 5.3 where adjustment for uncertainty

is not done, concurring with what the manual claims for well balanced data.

The Satterthwaite-based degrees of freedom can also be obtained without account-

ing for uncertainty in estimating G and R by replacing ddfm=kenwardroger option

with ddfm=satterth option in the model statement. The results are given in Table

C.2.
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Table C.1: Accounting for uncertainty in estimating G and R

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept PSU 0.02956 0.02311

Solutions for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Int 0.6015 0.3172 4931 1.90 0.0580

Butha-Buthe -0.1966 0.1343 245.9 -1.46 0.1445

Leribe 0.5162 0.1360 262.2 3.80 0.0002

Berea -0.00446 0.1354 252.8 -0.03 0.9737

Thaba-Tseka -0.4606 0.1345 248 -3.43 0.0007

Mafeteng 0.05094 0.1338 244.3 0.38 0.7037

Mohale’s Hoek 0.3509 0.1410 285.3 2.49 0.0134

Quthing 0.2947 0.1372 266.8 2.15 0.0326

Qacha’s Nek 0.3741 0.1391 281.3 2.69 0.0076

Mokhotlong -0.1807 0.1329 238.2 -1.36 0.1750

Sex -0.6768 0.1134 4931 -5.97 <.0001

Mstatus -0.5940 0.2140 4931 -2.78 0.0055

Sex*Mstatus 0.8068 0.1909 4931 4.23 <.0001

Age -0.6196 0.1264 4931 -4.90 <.0001

Mstatus*Age 0.4991 0.1504 4931 3.32 0.0009

Education1 0.8953 0.1736 4931 5.16 <.0001

Education2 0.2429 0.1685 4931 1.44 0.1496

Dwelling 0.05312 0.3396 4931 0.16 0.8757

Mstatus*Dwelling 0.3432 0.1678 4931 2.05 0.0409

Education1*Dwelling -0.7870 0.2259 4931 -3.48 0.0005

Education2*Dwelling -0.3570 0.2307 4931 -1.55 0.1219

HHsize -0.8275 0.2605 4931 -3.18 0.0015

Dwelling*HHsize 0.5696 0.2692 4931 2.12 0.0344
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Table C.2: Using Satterthwaite-based degrees of freedom without adjustment for uncertainty

for estimating G and R

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept PSU 0.02956 0.02311

Solutions for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr> |t|

Int 0.6015 0.3171 4931 1.90 0.0579

Butha-Buthe -0.1966 0.1343 245.9 -1.46 0.1445

Leribe 0.5162 0.1359 262.2 3.80 0.0002

Berea -0.00446 0.1354 252.8 -0.03 0.9737

Thaba-Tseka -0.4606 0.1344 248 -3.43 0.0007

Mafeteng 0.05094 0.1338 244.3 0.38 0.7037

Mohale’s Hoek 0.3509 0.1410 285.3 2.49 0.0134

Quthing 0.2947 0.1372 266.8 2.15 0.0326

Qacha’s Nek 0.3741 0.1391 281.3 2.69 0.0076

Mokhotlong -0.1807 0.1329 238.2 -1.36 0.1750

Sex -0.6768 0.1133 4931 -5.97 <.0001

Mstatus -0.5940 0.2140 4931 -2.78 0.0055

Sex*Mstatus 0.8068 0.1908 4931 4.23 <.0001

Age -0.6196 0.1263 4931 -4.90 <.0001

Mstatus*Age 0.4991 0.1504 4931 3.32 0.0009

Education1 0.8953 0.1735 4931 5.16 <.0001

Education2 0.2429 0.1684 4931 1.44 0.1493

Dwelling 0.05312 0.3395 4931 0.16 0.8757

Mstatus*Dwelling 0.3432 0.1677 4931 2.05 0.0408

Education1*Dwelling -0.7870 0.2258 4931 -3.49 0.0005

Education2*Dwelling -0.3570 0.2306 4931 -1.55 0.1217

HHsize -0.8275 0.2604 4931 -3.18 0.0015

Dwelling*HHsize 0.5696 0.2691 4931 2.12 0.0344
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Table C.3: Marital status by age interaction least-squares means

MSTATUS*AGE Least-Squares Means

Standard

MSTATUS AGE Estimate Error DF t Value Pr> |t|

1 1 0.1421 0.1083 4683 1.31 0.1897

1 2 0.2625 0.1076 4683 2.44 0.0148

2 1 -0.3381 0.1137 4683 -2.97 0.0030

2 2 0.2815 0.1074 4683 2.62 0.0088

Differences of MSTATUS*AGE Least-Squares Means

Standard

MSTATUS AGE MSTATUS AGE1 Estimate Error DF t Value Pr> |t| Adj P

1 1 1 2 -0.1204 0.08699 4683 -1.38 0.1663 0.5093

1 1 2 1 0.4801 0.1260 4683 3.81 0.0001 0.0008

1 1 2 2 -0.1394 0.1233 4683 -1.13 0.2584 0.6708

1 2 2 1 0.6006 0.1295 4683 4.64 <.0001 <.0001

1 2 2 2 -0.01900 0.1233 4683 -0.15 0.8775 0.9987

2 1 2 2 -0.6196 0.1263 4683 -4.90 <.0001 <.0001

Differences of MSTATUS*AGE Least-Squares Means

Standard

MSTATUS AGE MSTATUS AGE1 Estimate Error DF t Value Pr> |t| Adj P

1 1 Avg Avg 0.04526 0.06494 4683 0.70 0.4858 0.8792

1 2 Avg Avg 0.1657 0.06625 4683 2.50 0.0124 0.0456

2 1 Avg Avg -0.4349 0.08378 4683 -5.19 <.0001 <.0001

2 2 Avg Avg 0.1847 0.07766 4683 2.38 0.0174 0.0630
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Table C.4: Marital status by ownership of dwelling interaction least-squares means

MSTATUS*DWELLING Least-Squares Means

Standard

MSTATUS DWELLING Estimate Error DF t Value Pr> |t|

1 1 0.3522 0.09127 4683 3.86 0.0001

1 2 0.05237 0.1521 4683 0.34 0.7307

2 1 -0.05000 0.08909 4683 -0.56 0.5747

2 2 -0.00660 0.1581 4683 -0.04 0.9667

Differences of MSTATUS*DWELLING Least-Squares Means

Standard

MSTATUS DWELLING MSTATUS DWELLING Estimate Error DF t Value Pr> |t| Adj P

1 1 1 2 0.2998 0.1546 4683 1.94 0.0525 0.2116

1 1 2 1 0.4022 0.1111 4683 3.62 0.0003 0.0017

1 1 2 2 0.3588 0.1790 4683 2.00 0.0451 0.1864

1 2 2 1 0.1024 0.1745 4683 0.59 0.5574 0.9361

1 2 2 2 0.05897 0.1466 4683 0.40 0.6875 0.9780

2 1 2 2 -0.04340 0.1814 4683 -0.24 0.8109 0.9952

Differences of MSTATUS*DWELLING Least-Squares Means

Standard

MSTATUS DWELLING MSTATUS DWELLING Estimate Error DF t Value Pr> |t| Adj P

1 1 Avg Avg 0.2403 0.06524 4683 3.68 0.0002 .

1 2 Avg Avg -0.05947 0.1221 4683 -0.49 0.6262 .

2 1 Avg Avg -0.1618 0.07035 4683 -2.30 0.0215 .

2 2 Avg Avg -0.1184 0.1373 4683 -0.86 0.3882 .
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Table C.5: Education by ownership of dwelling interaction least-squares means

EDUCATION*DWELLING Least-Squares Means

Standard

Education Dwelling Estimate Error DF t Value Pr> |t|

1 1 0.2613 0.06501 4683 4.02 ¡.0001

1 2 0.5388 0.1606 4683 3.35 0.0008

2 1 0.03894 0.08468 4683 0.46 0.6456

2 2 -0.1136 0.1581 4683 -0.72 0.4725

3 1 0.1530 0.1473 4683 1.04 0.2990

3 2 -0.3565 0.1807 4683 -1.97 0.0485

Differences of EDUCATION*DWELLING Least-Squares Means

Standard

Education Dwelling Education Dwelling Estimate Error DF t Value Pr> |t| Adj P

1 1 1 2 -0.2774 0.1631 4683 -1.70 0.0891 0.5314

1 1 2 1 0.2224 0.08552 4683 2.60 0.0093 0.0973

1 1 2 2 0.3749 0.1672 4683 2.24 0.0250 0.2187

1 1 3 1 0.1083 0.1471 4683 0.74 0.4617 0.9775

1 1 3 2 0.6178 0.1872 4683 3.30 0.0010 0.0125

1 2 2 1 0.4998 0.1731 4683 2.89 0.0039 0.0450

1 2 2 2 0.6524 0.1534 4683 4.25 <.0001 0.0003

1 2 3 1 0.3857 0.2102 4683 1.83 0.0666 0.4433

1 2 3 2 0.8953 0.1735 4683 5.16 <.0001 <.0001

2 1 2 2 0.1525 0.1739 4683 0.88 0.3804 0.9520

2 1 3 1 -0.1141 0.1578 4683 -0.72 0.4699 0.9792

2 1 3 2 0.3955 0.1937 4683 2.04 0.0413 0.3190

2 2 3 1 -0.2666 0.2113 4683 -1.26 0.2072 0.8060

2 2 3 2 0.2429 0.1684 4683 1.44 0.1493 0.7011

3 1 3 2 0.5095 0.2277 4683 2.24 0.0253 0.2208

Differences of EDUCATION*DWELLING Least-Squares Means

Standard

Education Dwelling Education Dwelling Estimate Error DF t Value Pr> |t| Adj P

1 1 Avg Avg 0.1113 0.04472 4683 2.49 0.0129 0.0720

1 2 Avg Avg 0.3887 0.1372 4683 2.83 0.0046 0.0267

2 1 Avg Avg -0.1111 0.06541 4683 -1.70 0.0894 0.4019

2 2 Avg Avg -0.2637 0.1393 4683 -1.89 0.0584 0.2843

3 1 Avg Avg 0.002951 0.1343 4683 0.02 0.9825 1.0000

3 2 Avg Avg -0.5066 0.1612 4683 -3.14 0.0017 0.0099
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Table C.6: Ownership of dwelling by household size interaction least-squares means

DWELLING*HHSIZE1 Least-Squares Means

Standard

DWELLING HHSIZE Estimate Error DF t Value Pr> |t|

1 1 0.02216 0.07155 4683 0.31 0.7568

1 2 0.2800 0.08749 4683 3.20 0.0014

2 1 -0.3909 0.07896 4683 -4.95 <.0001

2 2 0.4366 0.2551 4683 1.71 0.0870

Differences of DWELLING*HHSIZE Least-Squares Means

Standard

DWELLING HHSIZE DWELLING HHSIZE Estimate Error DF t Value Pr> |t| Adj P

1 1 1 2 -0.2579 0.07321 4683 -3.52 0.0004 0.0024

1 1 2 1 0.4130 0.09784 4683 4.22 <.0001 0.0001

1 1 2 2 -0.4145 0.2597 4683 -1.60 0.1105 0.3808

1 2 2 1 0.6709 0.1107 4683 6.06 <.0001 <.0001

1 2 2 2 -0.1566 0.2634 4683 -0.59 0.5521 0.9337

2 1 2 2 -0.8275 0.2604 4683 -3.18 0.0015 0.0081

Differences of DWELLING*HHSIZE Least-Squares Means

Standard

DWELlING HHSIZE DWELLING HHSIZE Estimate Error DF t Value Pr> |t| Adj P

1 1 Avg Avg 0.05911 0.04306 4683 1.37 0.1699 0.4580

1 2 Avg Avg 0.3170 0.05885 4683 5.39 <.0001 <.0001

2 1 Avg Avg -0.3539 0.06345 4683 -5.58 <.0001 <.0001

2 2 Avg Avg 0.4736 0.2469 4683 1.92 0.0551 0.1771

125


