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ABSTRACT  

 
Fusaric acid is a divalent chelator with moderate toxicity in plant and animals. However, studies lack 

on its effect on human models and the immune system. This study investigated the immunotoxicity of 

FA on PBMCs and Thp-1 cells. Cell viability was determined using the WST-1 assay and the mode of 

cell death by flow cytometry using the annexin V-FITC stain. Caspase 8, 9 and 3/7 activities were 

determined using Caspase-Glo assay®. TNF-α levels were measured using the TNF-α ELISA kit. 

Oxidative damage (MDA) was determined using the TBARS assay. Flow cytometry was performed to 

determine mitochondrial function using the JC-1 stain. ATP levels were measured using the ATP 

CellTitre Glo reagent. Western blotting was performed to determine protein expressions of Bax, p-

Bcl-2, p-Akt, p-ERK, p-JNK and p38. The immunotoxicity of FA was confirmed by the decreased 

cell viability of PBMCs and Thp-1 cells and was validated by the externalization of 

phosphatidylserine on both PBMCs (p<0.005) and Thp-1 cells (p<0.0001). In PBMCs, FA induced 

paraptosis, evidenced by the decreased caspase 8 (p<0.005), 9 (p<0.05) and 3/7 (p<0.005) activities. 

Whilst in Thp-1 cells, FA induced intrinsic apoptosis supported by a decrease in caspase 8 activity 

(p<0.05) and an increase in caspase 9 (p<0.05) and 3/7 (p<0.005) activities; corresponding with 

unchanged TNF-α levels in both PBMCs (p=0.3015) and Thp-1 cells (p=0.4540). In PBMCs, FA 

significantly decreased Bax (pro-apoptotic) protein expression (p<0.05) and increased p-Bcl-2 (anti-

apoptotic) protein expression (p<0.05) thereby maintaining mitochondrial membrane potential 

(p=0.5643). In Thp-1 cells, FA had no effect on the protein expression of Bax (p=0.6130) but 

significantly decreased the protein expression of p-Bcl-2 (p<0.005) with a corresponding increase in 

mitochondrial depolarization (p<0.005). In addition, FA increased oxidative stress (MDA levels) in 

both PBMCs (p<0.005) and Thp-1 cells (p<0.005) contributing to cellular damage and cellular 

signaling; and substantially decreased ATP levels in both PBMCs (p<0.005) and Thp-1 cells 

(p<0.005). Additionally, FA significantly increased phosphorylation of p-ERK (42kDa - p<0.05; 

44kDa - p<0.005), p-JNK (46kDa - p<0.005; 54kDa - p<0.05) and p38 (p<0.05); and slightly 

increased the phosphorylation of p-Akt (p=0.1640) in PBMCs treated with FA. In Thp-1 cells, FA 

significantly up-regulated p-Akt (p<0.05) and p-ERK (42kDa - p<0.0001; 44kDa - p<0.005) 

expressions and significantly decreased p-JNK (46kDa - p<0.05; 54kDa - p<0.005) expression but 

had no effect on the expression of p38 (p=0.8446). This suggests the involvement of MAPK signaling 

in the induction of cell death in PBMCs and Thp-1 cells treated with FA. This study found that FA is 

immunotoxic to healthy human PBMCs and Thp-1 cells. 
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CHAPTER 1 

 

1. INTRODUCTION 

 
The mycotoxin, Fusaric Acid (FA), is a natural contaminant of maize and other cereal grains infected 

with Fusarium species (Bacon et al., 1996). The toxicity of FA is due to its ability to chelate divalent 

ions important for cellular function (Amin et al., 2001; Bochner et al., 1980) and has being 

exemplified in various plant and animal species.  

 

Numerous studies in plants documented the induction of apoptosis upon exposure to FA. Apoptotic 

cell death is commonly distinguished by molecular markers such as caspase activation and the 

externalisation of phosphatidylserine on plasma membranes in cells (Auffray et al., 2009). Apoptosis 

transpires via the intrinsic or extrinsic apoptotic pathway (Auffray et al., 2009). The intrinsic 

apoptotic pathway occurs via the mitochondria (Hemmati et al., 2002; Wan et al., 2008). Bcl-2 

stabilises the mitochondrial membrane potential by maintaining membrane integrity (Wan et al., 

2008; Adati et al., 2009). Whilst, Bax antagonises the actions of Bcl-2 compromising the 

mitochondrial membrane integrity resulting in the release of cytochrome c and the subsequent 

activation of caspases and the induction of intrinsic apoptosis (Marchi et al., 2011; Barrera, 2012; 

Morrison, 2012). The extrinsic apoptotic pathway is stimulated in response to binding of ligands 

(Morrison, 2012). Activation of the receptor results in the formation of a death domain that associates 

with the receptor (Eimon et al., 2006; Morrison, 2012). The death domain recruits initiator caspases 

forming a death inducing signalling complex (Elmore, 2007; Adati et al., 2009). The formation of this 

complex results in the activation of caspases and the induction of extrinsic apoptosis (Elmore, 2007; 

Adati et al., 2009). 

 

Intracellular stimuli such as reactive oxygen species (ROS) tend to regulate mitogen-activated protein 

kinase (MAPK) and protein kinase B (Akt) signalling (Kim et al., 2014). The mitochondrial electron 

transport chain (ETC) is a major contributor in the production of ROS (Gutterman, 2005; Dayem et 

al., 2010). The ETC synthesizes ATP and generates ROS as a by-product (Harper et al., 2004). Under 

normal conditions, levels of ROS are maintained by antioxidant proteins; however, when these levels 

exceed the capacity of anti-oxidant proteins it results in oxidative stress (Harper et al., 2004) and 

damage to macromolecules such as proteins, DNA and lipids (Son et al., 2011; Barrera, 2012).  

 

The MAPK family comprises of three universal serine/threonine protein kinases; these include the 

extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (Dhillon 

et al., 2007; Son et al., 2011). Each group of MAPK is activated via a series of phosphorylation 
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events (Son et al., 2011). The first event involves the phosphorylation and activation of a MAPK 

kinase kinase (MAPKKK), which in turn, phosphorylates and activates a MAPK kinase (MAPKK). 

MAPKKs activate MAPKs through dual phosphorylation on both threonine and tyrosine residues 

located within the tri-peptide motif of the MAPK (Boldt et al., 2002; Dhillon et al., 2007; Roux and 

Blenis, 2004; Cuenda and Rousseau, 2007). Once activated, MAPKs phosphorylate several 

transcription factors at serine and threonine residues, thereby regulating gene expression and cellular 

functions ranging from cell survival to cell death (Roux and Blenis, 2004; Morrison, 2012). Akt, 

another serine/threonine kinase, is a central mediator of cellular responses such as metabolism, cell 

survival and death, differentiation and mitosis (Wang et al., 2015); and its signaling pathway is 

regularly activated simultaneously with ERK MAPK (Mertlikova-Kaiserova et al., 2012; Mendoza et 

al., 2011). Studies have shown that ROS act as second messengers in the activation of MAPK and Akt 

signaling pathways (Son et al., 2011).  

 

Preliminary research established the biological effect of FA in several plant and animal species. 

However, to date, no study has investigated the molecular toxicity of FA on human models, especially 

its effect on the immune system. Thus, this study aimed to assess the immunotoxicity of FA and the 

molecular events leading to the immunotoxicity in healthy human peripheral blood mononuclear cells 

(PBMCs) and Thp-1 cells. The objectives of the study were to determine the effect of FA on both 

PBMC and Thp-1 cell viability and the mode of cell death induced. Additionally, the study 

determined the effect of FA on specific cell death markers, oxidative stress, expression of apoptotic 

markers and the expression of MAPK and Akt kinases in both cell lines. It was hypothesized that FA 

is immunotoxic to PBMCs and Thp-1 cells via MAPK and Akt signalling. 
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2. LITERATURE REVIEW 

 

2.1.  Fusaric Acid (FA) 

 

Endophytic fungi produce several secondary metabolites which behave as mycotoxins (Murphy et al., 

2006). Fusaric acid, also known as 5-butylpicolinic acid, is a picolinic acid (PA) derivative produced 

by several strains of Fusarium species such as Fusarium moniliforme, F. heterosporum, F. 

oxysporum, F. solani, and F. proliferatum (Amin et al., 2001; Harper et al. 2004). Universally, these 

strains are known to parasitize maize and other cereal grains (Figure 1.1) (Wang and Ng, 1999). 

 

 
 

Figure 1.1: Maize infected with Fusarium Gibberella fujikuroi. Pinkish-red discolouration is a 

characteristic of Fusarium infected tissue. (Dragich and Nelson, 2014). 

 

2.1.1. Chemical structure of Fusaric Acid 

 

The chemical structure of FA resembles its parent compound in that both contain a pyridine ring and a 

carboxylic acid substituent. The addition of the butyl group on the pyridine ring enables FA to 

permeate membranes much easier than PA (Figure 1.2A and 1.2B) (Kim et al., 2014). 
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Figure 1.2: Chemical structure of Fusaric Acid (A) and Picolinic Acid (B). (Prepared by author). 

 

2.1.2. Toxicity of Fusaric acid 

 

The toxicity of FA is due to its ability to chelate divalent ions such as magnesium, calcium, zinc and 

iron (Amin et al., 2001; Kuznetsov et al., 2011). The nitrogen present in the pyridine ring and the 

deprotonated, negatively charged oxygen on the carboxylic acid group are responsible for FA’s 

divalent chelating ability (Figure 1.2A) (Gutterman, 2005; Kwiatkowski et al., 1989). 

 

2.1.3. Pharmacology of Fusaric Acid 

 

2.1.3.1. In plants 

 

Studies have shown that FA is phytotoxic to plants. Universally, FA causes wilt disease in numerous 

plants and has been reported to alter the permeability of membranes, increase electrolyte leakage, alter 

membrane potential and inhibit ATP synthesis (D'Alton and Etherton, 1984; Pavlovkin et al., 2004). 

Many studies have reported toxic effects of FA, such as decreased cell viability and decreased ROS 

production, at concentrations greater than 10-5 M (Bharathiraja et al., 2010). In support of this, 

another study done on the effect of FA on corn roots showed inhibition of the electron flux between 
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the succinate dehydrogenase and coenzyme Q, and inhibition of ATP synthase activity in the electron 

transport chain in isolated mitochondria (Diniz and Oliveira, 2009). In addition, FA caused lipid 

peroxidation in watermelon leaves and damaged the defense system in watermelon seedlings (Diniz 

and Oliveira, 2009). 

 

2.1.3.2. In animals 

 

In animals, FA inhibits the activity of the enzyme dopamine-β-hydroxylase and the synthesis of 

nucleic acids (Bharathiraja et al., 2010). Due to FA’s divalent chelating ability, this mycotoxin affects 

proteins that encompass divalent ions such as zinc finger proteins involved in DNA repair. FA has 

also been reported to impair protein synthesis (Bharathiraja et al., 2010). Furthermore, an in vivo 

study reported tumouricidal activity of FA on head and neck squamous cancer cells following daily 

intra-lesional administration for a period of one month (Bharathiraja et al,. 2010). In young swines, 

FA showed moderate toxicity and induced vomiting and increased brain concentration levels of 

tryptophan and serotonin (Smith, 1992). Impaired regulation of serotonin synthesis caused elevated 

levels of this neurotransmitter; consequently, amplifying behaviours distinctive of the firing of 

serotonergic neurons such as loss of appetite and lethargy (Smith, 1992). In addition, FA decreased 

norepinephrine levels in the brain, heart, spleen and adrenal gland of rats (Terasawa and Kameyama, 

1971). 

 

2.1.3.3. In humans 

 

In patients, FA was administered as a hypotensive agent but was discontinued due to noticeable 

hepatotoxicity (Wang and Ng, 1999). Recent preliminary studies showed cytotoxic effects of FA on 

WI-38 cells (fibroblastic cell line), LoVo cells (colorectal adenocarcinoma cell line) and MDA-468 

cells (human breast adenocarcinoma cell line). FA inhibited the growth of WI-38 and LoVo cells at a 

concentration of 500 µM in a time and dose dependent manner (Fernandez-Pol, 1998). Following the 

removal of FA, 125 hours after treatment, growth of WI-38 and LoVo cells had resumed, suggesting 

that the majority of cells were arrested in G1 (Go) phase of the cell cycle. However, it was noted that 

after removal of FA approximately 95% of WI-38 cells had survived whilst there was almost an 80% 

decline in LoVo cells. This indicates a greater sensitivity of LoVo cells to FA compared to WI-38 

cells. FA rapidly decreased MDA-468 cell numbers when treated with the same conditions as WI-38 

and LoVo cells. After a 48 hour exposure, approximately 10% of the MDA-468 cells survived and 

continued to decline at greater exposure lengths (Fernandez-Pol, 1998). In addition, preliminary 
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findings showed the anti-viral potential of FA and had documented the reduction of retroviral mRNA 

expression levels (Fernandez-Pol, 1998). 

 

2.2. The immune system 

 

The immune system is one of the most vital systems of the body and is responsible for eliminating 

pathogens and dead and cancerous cells (Zarzycki and Tuszyńska, 2013). The immune system 

contains a diverse population of cells that remain in a dormant or inactive state (Pearce E.L and 

Pearce E.J, 2013). However, upon infection, inflammation or other perturbations, these cells become 

activated and rapidly respond to the site of infection (Pearce E.L and Pearce E.J, 2013). In order to 

perform its functions properly, these responses are regulated by specific cell types that activate or 

inhibit receptors that are responsive to pathogen-derived or intrinsic signals (Pearce E.L and Pearce 

E.J, 2013).  

 

The immune system can be divided into two distinct, yet integrated systems. These include the innate 

and adaptive immune systems (Pearce E.L and Pearce E.J, 2013). The innate immune system is 

activated in response to pathogen entry, or upon recognition of injured or cancerous cells (Pearce E.L 

and Pearce E.J, 2013); and its defense mechanisms are characterized by a generic response with no 

long-term memory (Zarzycki and Tuszyńska, 2013). The adaptive immune system is highly specific 

and requires antigen presentation to distinguish between self and non-self (Zarzycki and Tuszyńska, 

2013). The efficacy of the adaptive immune system is due to its immunological memory (Zarzycki 

and Tuszyńska, 2013). 

 

These immune cell types of the innate and adaptive immune systems are derived from the thymus or 

bone marrow (Zarzycki and Tuszyńska, 2013). The thymus is responsible for the maturation of T 

lymphocytes and the cells developed from here are referred to as the lymphoid lineage (Zarzycki and 

Tuszyńska, 2013). The bone marrow gives rise to the myeloid lineage and includes erythrocytes, 

platelets, granulocytes, B lymphocytes, monocytes, and macrophages (Figure 1.3) (Zarzycki and 

Tuszyńska, 2013). 
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Figure 1.3: Immune cells involved in innate and adaptive immunity. (Zarzycki and Tuszyńska, 

2013). 

 

2.2.1. Peripheral Blood Mononuclear Cells  

 

Peripheral Blood Mononuclear Cells (PBMCs) are a population of immune cells in blood that include 

lymphocytes (T cells- 45-70%; B cells-5-20%, NK cells-5-20%), monocytes (10-30%) and dendritic 

cells (1-2%) (Sanguine Biosciences, Inc., 2013). T cells can be classified as CD4 T cells and CD8 T 

cells (Figure 1.3).  These types of T cells can exist as naïve, antigen experienced central memory or 

effector memory in dormant or activated states. CD4 T cells, also known as helper T (Th) cells can be 

further subdivided into regulatory T cells (Treg), Th1, Th2, and Th17. Th1 cells are activated mainly 

in response to intracellular pathogens, whereas, Th2 and Th17 counter host defense and bacteria, 

respectively (Sanguine Biosciences, Inc., 2013). 

 

2.2.2. Thp-1 cell line 

 

The Thp-1 cell line is a human acute monocytic leukaemia cell line, derived from a 1-year old male 

patient with acute monocytic leukaemia (Adati et al., 2009). Monocytes represent a large proportion 

of leukocytes and are central players in the development and homeostasis of all organ systems in the 

body (Auffray et al., 2009). They are structured with a group of receptors that identify and remove 
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toxic compounds, microorganisms and apoptotic cells (Auffray et al., 2009). The Thp-1 cell line 

appear as large round cells in suspension (Adati et al., 2009). Additionally, monocytes belong to the 

myeloid lineage and thus, have the ability to differentiate into macrophages, playing an important role 

in innate immunity (Auffray et al., 2009). Thp-1 cells also have the ability to differentiate into 

macrophages upon stimulation with phorbol 12-myristate 13-acetate (PMA) (Adati et al., 2009). Once 

differentiated, they resemble and behave like inborn monocyte derived macrophages (Adati et al., 

2009). Due to these characteristics, the Thp-1 cell line is not only used as a model for acute myeloid 

leukaemia, but also as a scientific model for immune response and macrophage differentiation (Adati 

et al., 2009). 

 

2.3. Cell death 

 

Cell death can occur actively and passively (Auffray et al., 2009). Active cell death, also known as 

programmed cell death (PCD), is important during development and tissue homeostasis and has been 

grouped into three types; namely, apoptosis (type I PCD), autophagy (type II PCD) and paraptosis 

(type III PCD) (Auffray et al., 2009). Necrosis is a passive cell death affecting a large fraction of cells 

and is usually uncontrolled (Elmore, 2007). 

 

2.3.1. Necrosis 

 

Necrotic cell death is an energy-independent form of death and occurs upon a decrease in the energy 

supply of the cell and injury to cellular membranes (Elmore, 2007). Necrotic cells are distinguished 

by morphological features such as cell swelling, formation of cytoplasmic vacuoles and blebs, 

swollen endoplasmic reticulum; condensed, swollen or ruptured mitochondria, separation of 

ribosomes, damaged organelle membranes, swollen and ruptured lysosomes; and ultimately, injury of 

the cell membrane (Elmore, 2007). Alteration of cellular integrity results in the rupture of the cell 

membrane and the release of cytoplasmic contents. This induces chemotactic signals leading to the 

recruitment of inflammatory cells and the stimulation of an inflammatory response (Elmore, 2007). 

This form of cell death defers from apoptosis in that apoptotic cells do not release their cellular 

contents into the surrounding interstitial space and are engulfed by phagocytes preventing an 

inflammatory reaction (Elmore, 2007). 

 

2.3.2. Apoptosis 

 

Apoptosis is the best characterized type of PCD and is distinguished by distinct morphological 

features such as cell shrinkage, chromatin condensation, membrane blebbing, DNA fragmentation and 

other markers such as the externalization of phosphatidylserine on plasma membranes and the 
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activation of cysteine aspartate proteases (caspases) (Kaushik et al., 2003; Auffray et al., 2009). The 

externalization of phosphatidylserine acts as a cell surface marker for phagocytic cells to recognize 

and distinguish apoptotic cells from neighboring healthy cells, resulting in the clearance of apoptotic 

cells with minimum destruction of surrounding tissue and avoiding an inflammatory response 

(Elmore, 2007). Caspases are proteolytic enzymes that cleave aspartic acid residues on proteins 

(Elmore, 2007). Mammalian caspases can be grouped into initiator (caspases 2, 8, 9, 10) and effecter 

(caspases 3, 4, 6, 7, 11, 12, 13) caspases and their activation is a key event in the induction of 

apoptosis ( Kaushik et al., 2003). The biochemical activation of apoptosis occurs through two main 

pathways, the intrinsic apoptotic pathway and the extrinsic apoptotic pathway (Auffray et al., 2009). 

 

2.3.2.1. Intrinsic apoptotic pathway 

 

The intrinsic apoptotic pathway is activated in response to several non-receptor mediated factors such 

as radiation, toxins, hypoxia, hyperthermia, viral infections, and free radicals (Elmore, 2007; Adati et 

al., 2009). The execution of intrinsic apoptosis occurs via the mitochondrion which is tightly 

regulated by Bcl-2 family proteins (Hemmati et al., 2002; Wan et al., 2008). The Bcl-2 family entails 

both pro- and anti- apoptotic proteins which control the permeability and integrity of the 

mitochondrial membrane (Wan et al., 2008; Adati et al., 2009). Pro-apoptotic proteins (BH3-only 

subfamily) include Bax, Bak, Bid, Bad, Bim, Noxa and Puma and anti-apoptotic proteins	Bcl-2, Bcl-

x, Bcl-XL, Bcl-XS (Wan et al., 2008; Adati et al., 2009). Upon apoptotic insults, one or more pro-

apoptotic proteins are transcribed in the nucleus where they then translocate and bind to anti-apoptotic 

proteins located on the outer mitochondrial membrane (Wan et al., 2008). This binding inhibits the 

activity of the anti-apoptotic protein leading to the opening of mitochondrial permeability transition 

pores (mPTP), alteration of the mitochondrial membrane potential and the release of pro-apoptotic 

proteins cytochrome c and Smac/DIABLO (Elmore, 2007). In turn, cytochrome c forms a complex 

with Apaf-1 and pro-caspase 9, known as the apoptosome (Elmore, 2007; Lui et al., 2000). The 

formation of the apoptosome activates caspase 9 which subsequently activates executioner caspases 

leading to the induction of apoptosis (Hemmati et al., 2002; Lui et al., 2000) (Figure 1.4). The release 

of Smac/DIABLO inhibits the activity of inhibitor of apoptosis proteins (IAP) thereby amplifying 

apoptotic signaling (Elmore, 2007). 

 

2.3.2.2. Extrinsic apoptotic pathway 

 

The extrinsic apoptotic pathway initiates apoptosis in response to transmembrane receptor-mediated 

responses (Elmore, 2007). These receptors include FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/ 

DR4 and Apo2L/DR5 (Elmore, 2007). The tumor necrosis factor-α/tumor necrosis factor receptor 1 

(TNF-α/TNFR1) is one of the best characterized receptors and is a key player in the transduction of 
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death signals from the cell surface to intracellular signaling pathways (Elmore, 2007). Upon binding 

of the ligand (TNF-α) to the receptor (TNFR1), a cytoplasmic adapter protein, TNF-α receptor 

associated death domain (TRADD), is recruited and binds to the receptor along with the recruitment 

of Fas-associated death domain (FADD) and the receptor-interacting serine/threonine kinase (RIP) 

(Elmore, 2007; Adati et al., 2009). The receptor utilizes the adaptor molecules for the recruitment of 

initiator caspases (Adati et al., 2009). FADD associates with pro-caspase 8 via dimerization, resulting 

in the formation of a death inducing signaling complex (DISC) where the pro-caspase is activated 

upon auto-catalytic cleavage (Elmore, 2007; Adati et al., 2009) Activated caspase 8 then cleaves and 

activates effector caspases 3/7 leading to the execution of apoptosis (Elmore, 2007; Adati et al., 2009; 

Lui et al., 2000) (Figure 1.4). 

 

 
 

Figure 1.4: Intrinsic and Extrinsic apoptotic pathway. (Dawn, 2012). 
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2.3.3. Paraptosis 

 

Paraptosis is a form of cell death distinct from necrosis and apoptosis. It is morphologically 

distinguished by cytoplasmic vacuolation, mitochondrial swelling, phosphatidylserine externalization, 

caspase independence and the absence of apoptotic features such as membrane blebbing, DNA 

fragmentation and apoptotic bodies (Auffray et al., 2009; Marchi et al., 2011; Sperandio et al., 2004). 

A study conducted by Sperandio and co-workers (2000) showed that activation of the insulin-like 

growth factor I receptor (IGFIR) induced paraptosis in human embryonic kidney (293T) cells and 

Apaf-1 null mouse embryonic fibroblasts following treatment with actinomycin D and cycloheximide. 

The authors alliterated morphological features and caspase independence seen in paraptosis. Although 

the biochemical activation of paraptosis remains relatively unknown, a study reported the 

involvement of tyrosine kinase and MAPKs in the induction of paraptosis by IGFIR and hesperidin, 

respectively, suggesting the association of signaling cascades in the initiation of paraptosis (Auffray et 

al., 2009; Sperandio et al., 2004; Yumnam et al., 2014). 

 

2.4. Oxidative stress 

 

Oxidative stress is defined as an imbalance in the equilibrium between free radicals and ROS 

produced in a cell and the ability of anti-oxidant systems to detoxify the reactive species (Dayem et 

al., 2010; Son et al., 2011). ROS are continuously produced by several cellular processes, with a 

significant amount generated as a by-product of aerobic respiration (Son et al., 2011; Barrera, 2012). 

In addition, ROS can be produced by other sources such as the	endoplasmic reticulum (ER) and 

lysosomes (Son et al., 2011) (Figure 1.5). A substantial amount of ROS can also be generated by	
inflammatory processes, ionizing radiation, and chemotherapeutic agents (Son et al., 2011). ROS 

include superoxide anion (O2−•), perhydroxyl radical (HO2
•), hydroxyl radical (•OH), nitric oxide 

(NO), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and peroxynitrite (ONOO−) (Barrera, 

2012). Excessive intracellular ROS levels can alter cellular functioning through oxidative damage of 

macromolecules such as DNA, proteins and lipids, which can cause certain human pathologies and 

cell death (Son et al., 2011; Barrera, 2012). 
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Figure 1.5: Sources of ROS in a cell. (Holmström and Finkel, 2014). 

 

2.4.1. Mitochondrial production of ROS 

 

The mitochondrion is a central player in aerobic respiration, an important biochemical process 

required for normal cellular function (Kuznetsov et al., 2011). Mitochondria also participate in other 

cellular functions such as the induction of the intrinsic apoptotic pathway and maintaining cellular 

calcium and redox homeostasis (Kuznetsov et al., 2011). Significant amounts of cellular ROS are 

generated by the mitochondria as a result of oxidative phosphorylation in the electron transport chain 

(ETC) (Gutterman, 2005; Dayem et al., 2010). The ETC, located in the inner mitochondrial 

membrane, is responsible for ATP synthesis (Harper et al., 2004). It entails the transfer of electrons 

through the chain of complexes from electron carries (Marchi et al., 2011). These electron carriers are 

the reducing equivalents NADH and FADH2 generated from the Krebs cycle (Marchi et al., 2011). 

NADH enters at complex I and donates its electrons to the complex via oxidation to NAD+. This 

reaction is catalyzed by the enzyme NADH dehydrogenase (Marchi et al., 2011). At complex II, 

succinate dehydrogenase oxidizes FADH2 to FAD (Marchi et al., 2011). The electrons donated by 

NADH and FADH2 at complexes I and II respectively, are transferred to complex III by the coenzyme 

ubiquinone (Marchi et al., 2011). Cytochrome c oxidoreductase, the functional enzyme at complex 

III, transfers the electrons from ubiquinone to cytochrome c (Marchi et al., 2011). Cytochrome c then 

travels to complex IV and attaches itself to a subunit in the complex (Marchi et al., 2011). Thereafter, 

cytochrome oxidase reduces one oxygen molecule with two hydrogen ions producing one water 
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molecule (Marchi et al., 2011). The resultant electron flux through the complexes, hyperpolarizes the 

inner mitochondrial membrane by the movement of hydrogen ions across each complex (Gutterman,  

2005). This proton motive force drives the activity of adenine nucleotide transporter (ANT - complex 

V), in which ATP synthase phosphorylates adenosine diphosphate (ADP) to ATP (Harper et al., 

2004) (Figure 1.6).  

 

Majority of ROS generated in the mitochondria occurs during the reduction of oxygen (molecular 

oxygen à superoxide anion à hydrogen peroxide à hydroxyl radical à water ) (Marchi et al., 

2011). Superoxide anion acts as a precursor of most ROS and is generated both enzymatically by 

NADPH oxidase, cytochrome P450 oxygenases and xanthine oxidase and, non-enzymatically by the 

transfer of an electron to molecular oxygen (Marchi et al., 2011). Additionally, superoxide anion 

reacts with other free radicals such as nitric oxide forming reactive nitrogen species (RNS) (Marchi et 

al., 2011). The spontaneous or enzymatic (by superoxide dismutases - SODs) dismutation of 

superoxide anion results in the formation of hydrogen peroxide (Marchi et al., 2011). Hydrogen 

peroxide is membrane permeable and can therefore diffuse into the cytosol where it can be removed 

by cytosolic or mitochondrial anti-oxidant systems (Marchi et al., 2011). Superoxide anion can 

dissociate into hydroxyl radicals catalyzed by metal ions generated by the Fenton reaction (Marchi et 

al., 2011). The free radical is highly reactive and acts as an oxidizing agent causing damage to cellular 

organelles (Marchi et al., 2011). Complex I and III of the ETC are the two main sites responsible for 

the production of superoxide anions (Harper et al., 2004). However, the degree of superoxide 

production is significantly accelerated by a decrease in oxygen consumption, a high proton gradient 

and a reduction in the ETC activity (Harper et al., 2004).  
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Figure 1.6: Sources of ROS production and targets in the mitochondria. (Marchi et al., 2011). 

 

2.4.2. Lipid peroxidation 

 

The initiation of lipid peroxidation occurs when reactive species, generated during oxidative stress, 

oxidize polyunsaturated fatty acids (PUFA) present in membranes (Marchi et al., 2011). PUFA are 

highly susceptible to hydroxyl radicals and result in the formation of a lipoperoxyl radical (Barrera, 

2012). Subsequently, this radical reacts with a lipid producing a new lipid radical and an unstable 

hydroperoxide (Barrera, 2012). In turn, hydroperoxides yield highly reactive unsaturated aldehydes 

such as 4-hydroxy 2-nonenal (4-HNE), malondialdehyde (MDA) and acrolein (Marchi et al., 2011). 

Additionally, the production of lipid radicals may initiate a chain reaction resulting the in the 

formation of new lipid radicals intensifying the peroxidation of lipids (Marchi et al., 2011). Lipid 

peroxidation of the inner mitochondrial membrane increases the permeability to protons and the 

uncoupling of oxidative phosphorylation (Marchi et al., 2011). Cardiolipin, an abundant unsaturated 

fatty acid present in the mitochondrial membrane, affects the functioning of cytochrome c oxidase 

(complex IV) and ANT thereby decreasing ATP production (Harper et al., 2004). Furthermore, lipid 
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radicals can easily diffuse into the mitochondrial membrane and covalently bind to proteins resulting 

in membrane depolarization and an impaired mitochondrial function (Harper et al., 2004; Marchi et 

al., 2011). However, oxidative stress not only affects the mitochondria, but also extra-mitochondrial 

components such as DNA, proteins and membrane lipids, dramatically altering cellular integrity 

leading to cell death (Harper et al., 2004; Dayem et al., 2010). 

 

2.4.3. ROS as a second messenger 

 

The advancement that mitochondrial function expands further than ATP synthesis and that ROS is not 

only injurious to cells but may also mediate cell signaling pathways has unlocked new research 

outlooks in biology (Gutterman, 2005). The amount of intracellular ROS has a significant influence 

on many signaling pathways such as the MAPK and Akt cascades (Kim et al., 2014). For example, 

mitochondrial-derived hydrogen peroxide, can act as a second messenger in the cytosol mediating 

processes such as stress response, metabolism, cell cycle regulation and redox homeostasis (Marchi et 

al., 2011; Kim et al., 2014). 

 

2.5. Mitogen Activated Protein Kinases (MAPKs) 

 

Mitogen-activated protein kinases (MAPKs) are a family of proline-directed, serine/threonine kinases 

important in regulating cellular processes such as proliferation, differentiation, metabolism, cell death, 

cell-to-cell interaction, inflammatory responses and gene expression (Dhillon et al., 2007; Cuenda and 

Rousseau, 2007; Son et al., 2011). The transduction of extra- and intra-cellular signals to the nucleus 

occurs via sequential phosphorylation of MAPKs (Kondoh et al., 2005). In mammalian cells, there are 

three well-characterized groups of MAPKs: the extracellular signal-regulated kinase (ERK), c-Jun N-

terminal kinase (JNK), and p38 kinase (Dhillon et al., 2007; Zhang and Liu, 2002). Essential for 

MAPK activation, are a three-tiered kinase module composed of a MAPK kinase kinase (MAPKKK), 

a MAPK kinase (MAPKK) and a MAPK (Boldt et al., 2002; Cuenda and Rousseau, 2007; Dhillon et 

al., 2007). The first component activated in the MAPK module is the MAPKKKs. In response to 

stimuli, MAPKKKs interact with small GTP-binding proteins of the Ras/Rho family and undergo 

phosphorylation thereby activating the kinase (Zhang and Liu, 2002). MAPKKKs have specific 

motifs in their sequences that determines the selectively of phosphorylation and activation of 

MAPKKs in response to different stimuli (Cuenda and Rousseau, 2007). In turn, MAPKKs activate 

MAPKs through dual phosphorylation on both	threonine and tyrosine residues located within the 

activation loop of the kinase subdomain VIII (Zhang and Liu, 2002). Activation of specific MAPKs is 

due to the interaction between the N-terminal region located on the MAPKK and the docking site 

located on the MAPK, as well as the phosphorylation motif located in the activation loop of the 

MAPK (Cuenda and Rousseau, 2007). The docking site entails the threonine-X-tyrosine sequence, 
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where X represents an amino acid specific to MAPKKs (Cuenda and Rousseau, 2007). Activated 

MAPKs phosphorylate several substrates on serine or threonine residues, followed by a proline, that 

regulates the activity of transcription factors, phospholipases, cytoskeletal proteins and other kinases 

such as the mitogen-and-stress-activated kinase (MSK), the MAPK-interacting kinase (MNK) and the 

MAPK-activated protein kinase-2, -3 and -5 (MK-2, -3 and -5) (Zhang and Liu, 2002). The specificity 

of substrate activation is dependent on the interaction between the MAPK and the motifs present on 

the substrate (Zhang and Liu, 2002). 

 

Two isoforms of ERK MAPK have been studied in detail. These include ERK1 and ERK2. The ERK 

signaling pathway is generally activated by MAP/ERK Kinase (MEK), which is activated by the 

MAPKKK, Raf (Son et al., 2011; Zhang and Liu, 2002). The activation of MAPKKK occurs upon 

ligation and phosphorylation of stimuli on growth factor receptors (Dhillon et al., 2007; Son et al., 

2011). Recent studies demonstrated that the phosphorylation and activation of growth factor receptors 

was mediated by hydrogen peroxide thereby indicating ligand-independent activation of ERK activity 

(Son et al., 2011) (Figure 1.7). 

 

The JNK MAPK, also known as stress activated protein kinase (SAPK), includes isoforms JNK1, 

JNK2 and JNK3 and is activated in response to extracellular signals such as the ligation of cytokines 

on several receptors, and intracellular signals such as ROS generation, DNA damage, protein 

degradation and numerous other stress signals (Dhillon et al., 2007; Son et al., 2011) . The MAPKKs 

involved in the activation of JNK include MKK4 and MKK7 (Dhillon et al., 2007; Son et al., 2011). 

Additionally, MKK4 can activate the MAPKKs (MKK3 and MKK6) implicated in p38 signaling (Son 

et al., 2011) (Figure 1.7). 

 

The p38 MAPK consists of p38-α, p38-β, p38-γ, and p38-δ isoforms (Dhillon et al., 2007; Son et al., 

2011; Zarubin and Jiahuai, 2005). p38 signaling is generally activated in response to inflammatory 

cytokines, in addition to other stimuli such as osmotic stress, UV radiation, DNA damage and 

oxidative stress (Dhillon et al., 2007; Son et al., 2011; Zarubin and Jiahuai, 2005). The MAPKKs 

involved in the activation of p38 signaling are highly specific for p38 (Son et al., 2011). These 

include MKK3 and MKK6. MKK6 is able to phosphorylate all isoforms of the p38 family. However, 

MKK3 is only able to phosphorylate p38-α, p38-γ, and p38-δ but not p38-β (Dhillon et al., 2007; Son 

et al., 2011). Several MAPKKKs such as MEKK1, -2, -3 and -4, mixed-lineage kinase (MLK), 

apoptosis signal-regulating kinase 1 (ASK1) and transforming growth factor β-activated kinase 1 

(TAK1) can phosphorylate and activate both JNK and p38 MAPKKs (Son et al., 2011) (Figure 1.7).  
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Figure 1.7: Summary of the conventional MAPK signaling cascade. (Zhang and Liu, 2002).  

 

2.6. Protein Kinase B (Akt) 

 

The serine/threonine protein kinase B (Akt) is a 56 kDa protein that was initially classified as a 

retroviral oncogene (Martelli et al., 2012). The kinase is a key player in regulating energy metabolism 

and promoting survival signals (Los et al., 2009; Zhang et al., 2013). In addition, Akt signaling 

influences apoptotic cell death and tumor-related diseases via activation of downstream signaling 

molecules (Los et al., 2009; Zhang et al., 2013). The structure of the protein is composed of a 

catalytic domain, a C-terminus	regulatory domain and an N-terminus pleckstrin homology (PH) 

domain (Martelli et al., 2012). Activation of Akt occurs downstream of the kinase 

phosphatidylinositol 3-kinase (PI3K) (Los et al., 2009). Upon extracellular stimuli, such as growth 
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factors and cytokines, PI3K synthesizes phosphatidylinositol 3,4,5- triphosphate (PIP3) leading to the 

recruitment and binding of Akt to PIP3 via the N-terminus PH domain (Martelli et al., 2012). The 

resultant binding phosphorylates Akt at threonine 308 (pAKTThr308) and serine 473 (pAKTSer473) 

residues activating the kinase (Nogueira et al., 2008). Once activated, Akt translocates to the nucleus 

or other organelles including the mitochondria and endoplasmic reticulum where it phosphorylates or 

interacts with other cellular components (Martelli et al., 2012). In contrast to Akt’s survival signaling 

properties, hyperactivation of the kinase increases ROS production and thus oxidative stress (Cuenda 

and Rousseau, 2007). One of the substrates targeted by Akt is the Forkhead (FOXO) family 

transcription factors. FOXO transcription factors up-regulate the expression of antioxidant proteins 

and thus protect the cell from oxidative damage (Cuenda and Rousseau, 2007). Inhibition of FOXO 

transcription factors, following phosphorylation by Akt, renders the cell susceptible to oxidative-

induced cell death (Cuenda and Rousseau, 2007). Thus, Akt has a role in regulating both cell survival 

and cell death (Nogueira et al., 2008). 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 
2.1.  Materials  

 

Cell culture reagents for PBMC maintenance were purchased from Sigma Aldrich. The Thp-1 cells 

and media were purchased from ATCC (University Boulevard Manassas, USA) and Scientific group 

(Johannesburg, SA), respectively. FA (Gibberella fujikuroi) was purchased from Sigma Aldrich. 

 

2.2. Isolation and maintenance of Peripheral Blood Mononuclear Cells  

 

PBMCs were isolated from whole blood from young healthy Asian males following institutional 

ethical approval (BE057/15) and written informed consent. An equal volume of blood was layered 

onto 5 ml Histopaque 1077 (Sigma) in 15 ml sterilin tubes. The sterilin tubes were then centrifuged 

(400 xg, 30 minutes (min), 24 ºC). Afterwards, the serum was aspirated and discarded. The buffy coat 

containing PBMCs was aspirated and washed once in 0.1 M phosphate buffer saline (PBS) (Figure 

2.1). The PBMCs were re-suspended in RPMI 1640 medium supplemented with 10% foetal calf 

serum (FCS), 1% L-glutamine and 1% pencillin-streptomycin. The cells were maintained in 75 cm3 

ventilated flasks [(37 ºC with 5% carbon dioxide (CO2)]. Viability of cells was assessed using trypan 

blue exclusion. 

 

 
 
Figure 2.1: Isolation of PBMCs from whole blood using gradient centrifugation. (Prepared by 

author). 
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2.3. Thp-1 cell culture 

 

The Thp-1 cells were cultured in RPMI 1640 medium supplemented with 10% FCS, 1% L-glutamine, 

1% pencillin-streptomycin, 1 mM sodium pyruvate and 0.05 mM β-mecaptoethanol. The cells were 

maintained at 3 x105 cells/ml in 75 cm3 ventilated flasks at (37 ºC, 5% CO2) and were split at a cell 

count of 8 x105 cells/ml. Viability of cells was assessed using trypan blue exclusion. 

 

2.4. Cell viability 

 

2.4.1. WST-1 assay 

 

The water soluble tetrazolium-1 (WST-1) assay was used to determine the immunotoxicity of FA on 

healthy PBMCs and Thp-1cells. The WST-1 reagent is a stable tetrazolium salt reduced by viable 

cells into a soluble formazan product. This reduction is dependent on the glycolytic production of 

NADPH in which the enzyme NADPH oxidoreductase, present in the cytosol, reduces NADH to 

NAD+. Therefore, the intensity of the formazan dye formed is directly proportional to the number of 

metabolically active cells in the culture. The WST-1 reagent, however, carries a net negative charge 

and is therefore membrane-impermeable. Hence, the reduction of the anion occurs at the plasma 

membrane via trans-plasma membrane electron transport (Figure 2.2).  

 

 
 

Figure 2.2: Reduction of WST-1 salt to a yellow formazan by a viable cell. (3D Biomatrix, 2015). 
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For the WST-1 assay, PBMCs and Thp-1 cells (20000 cells/ 100 µl well) were seeded into a 96-well 

microtitre plate. Varying treatment concentrations (25-300 µg/ml) were added to the cell suspension in 

triplicate (100 µl/well) and was incubated for 24 hours (hrs) (37 ºC, 5% CO2) including a positive 

control of cells with RPMI only. Following incubation, the plate was centrifuged (24 0C, 400 xg, 10 

min) and thereafter the supernatant was aspirated. Afterwards, 110 µl/well of a RPMI/WST-1 reagent 

solution (1:10) was added and incubated for 3 hrs (37 0C, 5% CO2). A negative control with 

RPMI/WST-1 reagent solution was utilised. The optical density of the colorimetric reaction was 

measured at a wavelength of 450 nm and reference wavelength of 620 nm using a spectrophotometer 

(Bio-Tek uQuant). The results were expressed as percentage cell viability versus log FA concentration 

from which a half maximum inhibition (IC50) was extrapolated using GraphPad Prism v5.0 software. 

The percentage cell viability was calculated as follows: 

 

% cell viability = 	"#$%	$&'()&$%*#	(+	,)#$,"#%,"#$%	$&'()&$%*#	(+	*(%,)(-  x 100 

 

2.4.2. ATP levels 

 

Adenosine triphosphate (ATP), a complex molecule, is the prime energy source in viable cells and is 

required for many cellular functions such as the transport of substances across membranes, heart and 

skeletal muscle contraction for blood circulation and body movement, macromolecule synthesis and 

the regulation of cell signaling. 

 

Luminometry was performed to assess ATP levels using the ATP CellTitre Glo reagent (Promega). 

The ATP CellTitre Glo reagent is based on the firefly luciferase reaction in which beetle luciferin is 

mono-oxygenated to oxyluciferin. This reaction is catalysed by luciferase in the presence of ATP, 

magnesium and oxygen. Oxyluciferin releases energy in the form of light. The light emitted is 

detected by the luminometer and its intensity is related to the amount of ATP present in cells (Figure 

2.3). 
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Figure 2.3: Principle of the CellTitre Glo ATP assay. (Promega Corporation, 2015). 

 

Following treatment, 20 000 cells/well were seeded into a 96-well opaque polystyrene microtitre plate 

in triplicate. The ATP CellTitre Glo reagent (100 µl/well) was added to each sample and incubated in 

the dark for 30 min (RT). Thereafter, the luminescence was measured on a Modulus™ microplate 

luminometer. The data was expressed as relative light units (RLU). 

 

2.5. Analysis of cell death parameters  

 

2.5.1. Annexin V-FITC staining 

 

In viable cells, the negatively charged phospholipid, phosphatidylserine, is located on the inner leaflet 

of the plasma membrane. Upon the induction of cell death, phosphatidylserine becomes externalised 

on the outer leaflet of the plasma membrane to allow for the removal of dying cells by phagocytic 

cells. This event is an early feature of apoptotic cell death. Annexin V is a 35 kDa protein with a high 

binding affinity for phosphatidylserine, in the presence of calcium. Annexin V can be conjugated with 

fluorochromes while maintaining its affinity for phosphatidylserine. Thus, this characteristic serves as 

an ideal probe for flow cytometric analysis of apoptotic cells. Annexin V can also be conjugated to 
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other dyes such as propidium iodide (PI). PI is membrane-impermeable and thus cells with intact 

membranes stain negative for PI. Loss of membrane integrity is a key feature of necrotic cell death 

and thus aids in distinguishing the mode of cell (Figure 2.4). 

 

 
 

Figure 2.4: Principle of Annexin V-FITC and propidium iodide staining in the detection of 

apoptotic and necrotic cells. (BD Biosciences, 2011). 

 

Flow cytometry was performed to determine the externalisation of phosphatidylserine. Following 

treatment, 100 µl of an Annexin V-FITC Fluos solution [1:1:50; annexin V-FITC: PI: staining buffer 

(Roche)] was added to each sample (200 000 cells in 100 µl PBS) and incubated in the dark (15 min, 

RT). Thereafter, the samples were analysed on the AccuriTM C6 flow cytometer. A total of 20 000 

events were analysed for apoptotic, necrotic and viable cells. The cells were gated to exclude cellular 

debris using the AccuriTM C6 flow cytometer Fl-1 channel (525 nm) (Becton Dickinson). The results 

were expressed as a percentage. 

 

2.5.2. Caspase activity 

 

Caspase activation is a key event in the induction of apoptosis. The Caspase-Glo assay kit allows for 

easy detection of caspase activity using luminescence. Caspases contain a tetra-peptide sequence. This 

sequence is cleaved and acts as a substrate along with ATP, magnesium and oxygen for the luciferase 
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reaction. The amount of light emitted by the reaction is directly proportional to the caspase activity 

(Figure 2.5). 

 

 
 

Figure 2.5: Principle for the detection of caspase activity. (Promega Corporation, 2015). 

 

Luminometry was performed to assess caspase activities 8, 9 and 3/7. Approximately 20 000 

cells/well (in 50 µl) were seeded into a 96-well opaque polystyrene microtitre plate in triplicate. 

Subsequently, 50 µl/well of the reagent [Caspase-Glo® 3/7, Caspase-Glo® 8 and Caspase-Glo® 9 

Assays (Promega)] was added to each sample and incubated in the dark (30 min, RT). Thereafter, the 

luminescence was measured on a Modulus™ microplate luminometer. The data was expressed as 

relative light units (RLU). 

 

2.5.3. Tumour necrosis factor-α 

 

The enzyme-linked immunosorbent assay (ELISA) is based on antigen quantification between two 

layers of antibodies (i.e. capture and detection antibody). Proteins in a sample can competitively bind 

lowering the quantity of immobilized antigen. Therefore, the first layer consists of a capture antibody. 

The capture antibody is a specific antibody used to attach the antigen to the surface of the micotitre 

plate thereby increasing the specificity of the assay. Once the plate is coated with the capture 

antibody, the plate is blocked to reduce non-specific binding and is coated with the samples. 

Thereafter, the plate is coated with a substrate solution that is composed of an enzyme-linked 
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secondary antibody, such as horseradish peroxidase (HRP) that binds to the Fc region of the antigen. 

The conjugated enzyme produces a colorimetric reaction that is stopped by the addition of a stop 

solution containing sulphuric acid (H2SO4). The intensity of the reaction is directly proportional to the 

amount of the antigen of interest and is quantified using a spectrophotometer (Figure 2.6). 

 

 
 

Figure 2.6: Sandwhich ELISA principle used to measure TNF-α levels. (R&D Systems, Inc., 

2015). 

 

To determine the effect of FA on TNF-α levels, the TNF-α ELISA kit (555212, BD Biosciences) was 

used. Microwells (96-well plate) were coated with 100 µl/well capture antibody and were incubated 

overnight at 4°C. Following incubation, the plate was washed three times with a 1X wash buffer (300 

µl/well) and blocked with 200 µl/well assay diluent (1 h, RT). The plate was then washed three times 

with wash buffer (300 µl/well). Subsequently, 100 µl/well of each standard (eight standards of TNF-α 

were prepared as per manufactures instructions) and samples were aliquoted and incubated for 2 hrs 

(RT). Afterwards, the plate was washed five times with wash buffer (300 µl/well) and incubated with 

100 µl/well working detector (prepared as per manufactures instructions) (1 hr, RT). After incubation, 

the plate was washed seven times with wash buffer (300 µl/well) and 100 µl/well of substrate solution 

was added and incubated in the dark (30 min, RT). Thereafter, 50 µl/well of a stop solution was 

aliquoted. The optical density was measured on a spectrophotometer (Bio Tek uQuant) at 450nm with 
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reference wavelength of 570nm. TNF-α concentration levels were extrapolated from the standard 

curve. 

 

2.6. Oxidative stress 

 

2.6.1 Lipid peroxidation 

 

Peroxidation of lipids occur upon excessive amounts of reactive species produced by the electron 

transport chain in the mitochondrion. These free radicals oxidize PUFA due to the double hydrogen 

bonds present between adjacent carbon atoms resulting in a free radical chain reaction. This chain 

reaction yields lipid peroxides such as MDA and 4-HNE (Figure 2.7). The Thiobarbituric acid 

reactive substances assay (TBARS) measures the amount of MDA in a sample and thus is used as a 

marker of oxidative stress. The TBARS assay is based on the condensation of two molecules of the 

chromogenic reagent, 2-thiobarbituric acid, with one molecule of MDA. This reaction yields a 

chromophore (MDA-TBA adduct) that is detected at an absorbance wavelength of 532nm. 

 

 
 

Figure 2.7: Principle of the TBARS assay. (Sochr et al., 2014). 

 

Briefly, 400 µl supernatant from each sample was transferred to a set of test tubes. Thereafter, 200 µl 

of 2% H3PO4, 400 µl of 7% H3PO4 and 400 µl of TBA/BHT solution were added to each sample. A 

positive control containing MDA (1 µl) and a negative control containing 3 mM HCl were prepared. 

All samples were vortexed and 200 µl of a 1 M HCl solution was added to each sample. Thereafter, 

the samples were heated in a water bath (100°C, 15 min) and allowed to cool (RT). After cooling, 1.5 
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ml butanol was added to each sample, vortexed and allowed to separate into distinct phases. 

Thereafter, 100 µl of the upper butanol phase from each sample was aliquoted into a 96-well 

microtitre plate in triplicate. The optical density was measured on a spectrophotometer (Bio Tek 

uQuant) at 532nm with reference wavelength of 600nm.The mean optical density for each sample was 

calculated and divided by the absorption coefficient (156 mM-1). The results were expressed in µM. 

 

2.6.2. Mitochondrial membrane potential  

 

The mitochondrion plays an important role in the production of ATP, ROS and the induction of 

intrinsic apoptosis. Disruption of mitochondrial function is a key feature of programmed cell death. 

These modifications include alterations of mitochondrial membrane potential and the redox status of 

the mitochondria. The JC-1 stain is a positively charged monomer that is highly selective to the 

mitochondria. The stain can freely cross cell membranes and aggregate in the electronegative regions 

within the mitochondria due to a high affinity to lipophilic components and negative charges within 

the mitochondrial membrane. The electron gradient created during oxidative phosphorylation 

maintains the mitochondrial membrane potential at a polarized state. During this state, the dye 

aggregates in the mitochondrial membrane and emits a red fluorescence (Figure 2.8). Disruption of 

the electron gradient causes a collapse in the membrane potential and results in depolarization. At a 

depolarized state the dye remains in the cytoplasm and emits a green fluorescence (Figure 2.8).  

 

 
 

Figure 2.8: Spectral shift seen during mitochondrial polarization and depolarization using the 

JC-1 stain. (BioTek Instruments, Inc., 2015). 

 

Flow cytometry was performed to determine mitochondrial membrane potential using the JC-1 

Mitoscreen kit (BD Biosciences). Briefly, 100 µl of a JC-1 working solution was added to each 

sample (200 000 cells in 100 µl PBS) and incubated in the dark (30 min, RT). Following incubation, 

100 µl flow cytometry sheath fluid was added to each sample and were analysed on the AccuriTM C6 
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flow cytometer. A total of 20 000 events were gated using AccuriTM C6 flow cytometer Fl-1 channel 

(525 nm) (Becton Dickinson). The results were expressed as a percentage. 

 

2.7. Western blotting 

 

Western blots were performed to analyse the protein expressions of p-Akt, p-ERK, p-JNK, p38, Bax 

and p-Bcl-2. 

 

2.7.1. Protein isolation 

 

Total protein was isolated using CytobusterTM reagent (Novagen). Cells were re-suspended in 150 µl 

Cytobuster and incubated on ice (30 min). Following incubation, the cells were centrifuged (10 min, 

180 xg, 4°C). The supernatant was aspirated and transferred into 1.5 ml eppendorfs and kept on ice 

until further use.   

 

2.7.2. Protein quantification and standardisation  

 

Proteins are composed of amino acids that are linked together by peptide bonds. The bicinchoninic 

acid (BCA) assay is based on the Biuret reaction in which copper ions (Cu2+) react with the peptide 

bonds present in proteins and are reduced to cuprous ions (Cu+). The formation of Cu+ forms a 

complex with two BCA molecules producing a purple colour under alkaline conditions (Figure 2.9). 

The intensity of the colour is directly proportional to the quantity of protein in a sample. 

 

 
 

Figure 2.9: Principle of the BCA assay. (Microamaze, 2015). 

 

Protein samples were quantified by the bicinchoninic acid assay and standardised to 0.2 mg/ml 

(PBMCs) and 1.0 mg/ml (Thp-1). The samples were then boiled (100 0C) in Laemmli Sample buffer 

(dH20, 0.5M Tris-HCl (pH 6.8), glycerol, 10% SDS, β-mercaptoethanol, 1% bromophenol blue) for 5 

min (100 0C), to allow proteins to unfold (Figure 2.10). Thereafter, the samples were stored at -20 0C 

until further use.  
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2.7.3. SDS-PAGE gel electrophoresis  

 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) is a technique commonly 

used for the separation of protein based on the molecular weight and charge of the protein. SDS is an 

anion detergent that disrupts the tertiary structure of proteins by breaking down the protein-protein 

disulphide bonds resulting in a linear structured protein. Additionally, SDS coats the protein with a 

uniform negative charge. This masks the intrinsic charges on the R-groups. The net negative charge 

surrounded around the protein causes the migration of the protein towards the positive anode. The rate 

of migration of proteins is dependent on the molecular weight of the protein. Lower molecular weight 

proteins migrate faster through the pores of the gel than higher molecular weight proteins (Figure 

2.11). 

 

 
 

Figure 2.10: Unfolding of proteins coated with SDS. (Prepared by author). 
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Figure 2.11: Migration of SDS coated proteins along a polyacrylamide gel. (Biochemistry 

laboratory manual, 2015). 

 

Following protein standardisation, the samples (25 µl- Thp-1; 40 µl-PBMC) were electrophoresed in 

SDS-PAGE gels (4 % stacking gel, 7.5 % resolving gel) for 1.5 hrs at 150 V (Bio-Rad compact power 

supply). 

 

2.7.4. Electro-transfer  

 

The electro-transfer procedure is based on the conduction of current from the cathode to the anode. 

This current is created by the transfer buffer and allows for the transfer of proteins from the gel to the 

membrane (Figure 2.12).  
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Figure 2.12: Layout used for electro-transfer. (Bio-Rad Laboratories, Inc., 2015). 

 

The separated proteins were electro-transferred onto nitrocellulose membranes for 30 min (400 mA) 

using the Trans-Blot Turbo Transfer system (Bio-Rad). 

 

2.7.5. Immuno-blotting 

 

In western blotting, it is important to block unbound sites on the membrane to reduce the amount of 

non-specific binding of proteins. Subsequent to blocking, the membrane is incubated with a primary 

antibody specific to the target protein. Once the primary antibody binds to target protein, the 

membrane is washed to remove unbound primary antibody. Thereafter, the membrane is incubated 

with a secondary antibody conjugated with an enzyme e.g. HRP, that binds to the primary antibody. 

HRP oxidizes the luminescent substrate, luminol in the presence of H2O2 to produce a luminescent 

light. This light is intensified a 1000-fold increase by enhancers present in the substrate and is 

detected on a photographic film (Figure 2.13). 
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Figure 2.13: Antibody-antigen complex used for the detection of proteins. (Leinco Technologies, 

Inc., 2015). 

 

Following electro-transfer of proteins, the membranes were blocked for 1 h (RT) with 5% bovine 

serum albumin (BSA) in Tris Buffer Saline with tween 20 (TTBS- NaCl, KCl, Tris, dH2O, 0.5% 

tween 20, pH 7.5) or 5% Non-Fat Dry Milk (NFDM) in TTBS for phospho- and non-phospho- 

antibodies, respectively. Thereafter, the membranes were incubated with primary antibody [rabbit 

anti-p-Akt (13038), mouse anti-p-ERK (9106), mouse anti-p-JNK (9255), rabbit anti-p38 (14451), 

rabbit anti-Bax (5023), rabbit anti-p-Bcl-2 (2827), Cell Signalling, 1: 1000; β-actin (A3854), Sigma 

Aldrich, 1: 5000] for 1 h (RT) and then overnight at 40C. The membranes were washed five times 

with TTBS (10 min intervals) and incubated (RT) with horseradish peroxidase (HRP)- conjugated 

secondary antibody [goat anti-rabbit (ab6112), anti-mouse (ab97046), 1: 5000] (1 h- Thp-1 protein 

expressions; 2 hrs- PBMC protein expressions). Once more, the membranes were washed 5 times with 

TTBS (10 min intervals). Protein band images were detected using Clarity Western ECL Substrate 

and captured using Alliance 2.7 Image documentation system (UViTech). The expression of protein 

bands were analysed using UViBand Advanced Image Analysis software v12.14 (UViTech). The data 

was expressed as relative band intensity (RBI). 

 

2.8. Statistical analysis 

 

Statistical analyses were performed using GraphPad Prism v5.0 software. GraphPad Prism Software 

was used for the unpaired t-test with Welch’s correction to assess the differences between samples. 

Level of significance (p) was established at a p<0.05. 
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CHAPTER 3 

 

RESULTS 

 
3.1 Cell viability 

 
3.1.1 WST-1 assay 

 

The WST-1 assay was used to determine the immunotoxicity of FA on healthy PBMCs and Thp-1 

cells. At a concentration range of 30-300 µg/ml, FA decreased cell viability in both PBMCs and Thp-

1 cells over a 24 h incubation period. An IC50 of 240.8 µg/ml (Figure 3.1A) and 107.7 µg/ml (Figure 

3.1B) was extrapolated from the dose response curve for PBMCs and Thp-1 cells respectively; and 

was used in all subsequent assays. 

 

A                                                                                B 

      
 

Figure 3.1: Effect of FA on healthy PBMC (A) and Thp-1 (B) cell viability. 

 

3.2 Analysis of cell death parameters  

 

3.2.1 Annexin V-FITC staining 

 

Flow cytometry was performed using Annexin V-FITC and PI staining to determine the mode of cell 

death induced by FA on PBMCs and Thp-1 cells. FA significantly induced the externalization of 

phosphatidylserine in PBMCs and Thp-1 cells by 1.42 (18.43 + 0.006% vs. 26.16 + 0.003%; p=0.0003) 

and 2.27 (8.03 + 0.004% vs.18.19 + 0.002%; p<0.0001) fold, respectively (Figure 3.2A and 3.2B).  
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A                                                                              B 

      
 

Figure 3.2: Effect of FA on the externalization of phosphatidylserine in healthy PBMCs (A) and 

Thp-1 cells (B). **p<0.005; ***p<0.0001. 

 

3.2.2 Caspase activity 

 

To confirm the induction of cell death and to elucidate the induced PCD pathway, caspase activities 

of 8, 9 and 3/7 were measured using luminomnetry. In PBMCs, FA substantially decreased caspase 8 

activity by 0.81 fold (1.09 + 0.001x104 RLU vs. 0.88 + 0.042x104 RLU; p=0.0022), caspase 9 by 0.73 

fold (10.89 + 0.609x104 RLU vs. 7.92 + 0.241x104 RLU; p=0.0070) and caspase 3/7 activities by 0.10 

fold (1.19 + 0.258x104 RLU vs. 0.12 + 0.026x104 RLU; p=0.0035), relative to the control (Table 1). 

In Thp-1 cells, FA decreased caspase 8 activity by 0.74 fold (4.52 + 0.306x104 RLU vs. 3.3265 + 

0.021x104 RLU; p=0.0211) and greatly increased caspase 9 activity by 1.43 fold (62.67 + 3.701x104 

RLU vs. 89.37 + 0.590x104 RLU; p=0.0065) and caspase 3/7 activity by 5.33 fold (0.82 + 0.482x104 

RLU vs. 4.38 + 0.604x104 RLU; p=0.0041) when compared to the control (Table 2).  
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Table 1: Effect of FA on caspase (8, 9, 3/7) activity in healthy PBMCs 

 

 Mean + SD (RLU x104) Fold change p value 

PBMC 

Control FA 

Caspase 8 1.0918 + 0.0007 0.8831 + 0.0419 

 

0.81 <0.005** 

Caspase 9 10.8855 + 0.6094 

 

7.9185 + 0.2409 0.73 <0.05* 

Caspase 3/7 1.1858 + 0.2581 

 

0.1218 + 0.0261 0.10 <0.005** 

SD: standard deviation; RLU: relative light units; *p<0.05; **p<0.005. 

 

Table 2: Effect of FA on caspase (8, 9, 3/7) activity in Thp-1 cells 

 

 Mean + SD (RLU x104) Fold change p value 

Thp-1 

Control FA 

Caspase 8 4.5235 + 0.3055 3.3265 + 0.0206 

 

0.74 <0.05* 

Caspase 9 62,6683 + 3.7013 

 

89.3652 + 0.5900 1.43 <0.05* 

Caspase 3/7 0.8210 + 0.4816 

 

4.3758 + 0.6041 5.33 <0.005** 

SD: standard deviation; RLU: relative light units; *p<0.05; **p<0.005. 

 

3.2.3 Tumour necrosis factor-α 

 

To confirm caspase 8 and 3/7 activities, TNF-α levels were measured using ELISA. FA had no 

significant effect on TNF-α levels in both PBMCs (0.96 fold change; 172.92 + 6.455 pg/ml vs. 165.42 

+ 10.887 pg/ml; p=0.3015) and Thp-1 cells (0.97 fold change; 162.92 + 8.660 pg/ml vs. 157.92 + 

8.767 pg/ml; p=0.4540) relative to the controls (Figure 3.3A and 3.3B).  
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A                                                                             B 

      
 

Figure 3.3: TNF-α concentration in healthy PBMCs (A) and Thp-1 cells (B). 

 

3.3 Oxidative stress 

 

3.3.1 Lipid peroxidation 

 

To determine the induction of cell death by a stress response the lipid peroxide, MDA was quantified 

using the TBARS assay. Lipid peroxidation occurs following an increase in ROS and thus serves as 

an indicator of oxidative stress. MDA levels were increased by 7.59 and 1.59 fold in PBMCs (0.02 + 

0.010 µM vs. 0.16 + 0.016 µM; p=0.0006) and Thp-1 treated cells (0.18 + 0.020 µM vs. 0.28 + 0.010 

µM; p=0.0039) respectively (Figure 3.4A and 3.4B).  

 

A                                                                              B 

      
 

Figure 3.4: MDA concentration levels (µM) in healthy PBMCs (A) and Thp-1 cells (B) treated 

with FA. **p<0.005. 
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3.3.2 Mitochondrial membrane potential 

 

To confirm the production of ROS, flow cytometric analysis using the JC-1 stain was performed. FA 

had no effect on the mitochondrial membrane potential in PBMCs (1.04 fold change; 40.97 + 4.210% 

vs. 42.64 + 0.240%; p=0.5643) but significantly increased the mitochondrial membrane potential in 

Thp-1 cells by 1.95 fold (33.58 + 1.425% vs. 65.48 + 0.329%; p=0.0007) when compared to the 

controls (Figure 3.5A and 3.5B).  

 

A                                                                               B 

      
 

Figure 3.5: Mitochondrial depolarization in healthy PBMCs (A) and Thp-1 cells (B) treated 

with FA. **p<0.005.  

 

3.3.3    ATP levels 

 

To confirm the toxicity of FA on PBMCs and Thp-1 cells, ATP levels were measured using the ATP 

CellTitre Glo reagent. FA significantly decreased ATP levels in PBMCs by 0.16 fold (38.97 + 

1.183x104 RLU vs. 6.11 + 0.266x104 RLU; p=0.0002) and by 0.52 fold in Thp-1 cells (225.21 + 

8.014x104 RLU vs. 117.26 + 10.017x104 RLU; p=0.0007) in comparison to the relative controls 

(Figure 3.6A and 3.6B). 
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A                                                                                 B 

      
 

Figure 3.6: ATP levels in healthy PBMCs (A) and Thp-1 cells (B) treated with FA. RLU: Relative 

light units; **p<0.005. 

 

3.4 Western blotting 

 
To confirm caspase-dependent and –independent cell death, protein expressions of Bax and p-Bcl-2 

were determined using western blotting. In PBMCs, FA significantly decreased Bax protein 

expression by 0.71 fold (0.07 + 0.007 RBI vs. 0.05 + 0.005 RBI; p=0.0201) and increased p-Bcl-2 

protein expression by 1.81 fold (0.13 + 0.008 RBI vs. 0.15 + 0.004 RBI; p=0.0455) when compared to 

the control (Figure 3.7A and 3.8A). In Thp-1 cells, FA had no effect on the protein expression of Bax 

(0.98 fold; 0.04 + 0.002 RBI vs. 0.03 + 0.001 RBI; p=0.6130) but significantly decreased the protein 

expression of p-Bcl-2 by 0.78 fold (0.07 + 0.001 RBI vs. 0.05 + 0.002 RBI; p=0.0007) when 

compared to the control (Figure 3.7B and 3.8B). 

 

A                                                                         B 

      
 

Figure 3.7: Relative band intensities of Bax protein expression in healthy PBMCs (A) and Thp-1 

cells (B). *p<0.05. 
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A                                                                B 

      
 

Figure 3.8: Relative band intensities of p-Bcl-2 protein expression in healthy PBMCs (A) and 

Thp-1 cells (B). *p<0.05. 

 

To determine the molecular events in the immunotoxicity of FA, the involvement of MAPK and p-

Akt protein expressions using western blotting was investigated. 

 

In PBMCs, FA had no significant effect on p-Akt protein expression (1.08 fold; 0.19 + 0.005 vs. 0.21 

+ 0.016 RBI; p=0.1640) (Figure 3.9A). However, FA significantly increased p-Akt protein expression 

by 1.76 fold (0.03 + 0.001 vs. 0.06 + 0.014; p=0.0412) in Thp-1 cells (Figure 3.9B).  

 

A                                                                         B 

      
 

Figure 3.9: Relative band intensities of p-Akt protein expression in healthy PBMCs (A) and 

Thp-1 cells (B). *p<0.05. 

 

Protein expression of p-ERK 42 kDa fragment and 44 kDa fragment were significantly increased by 

FA by 1.94 (0.09 + 0.005 RBI vs. 0.18 + 0.025 RBI; p=0.0271) and 1.38 (0.08 + 0.001 RBI vs. 0.10 + 
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0.004 RBI; p=0.0006) fold in PBMCs, respectively (Figure 3.10A). In Thp-1 cells, FA significantly 

increased p-ERK 42 kDa and 44 kDa fragments by 1.56 (0.04 + 0.001 RBI vs. 0.60 + 0.001 RBI; 

p<0.0001) and 2.04 (0.22 + 0.017 RBI vs. 0.45 + 0.030 RBI; p=0.0002) fold, respectively (Figure 

3.10B).  

 

A 

 
 

B 

  
 

Figure 3.10: Relative band intensities of p-ERK protein expression in healthy PBMCs (A) and 

Thp-1 cells (B). *p<0.05; **p<0.005; ***p<0.0001. 

 

Protein expression of p-JNK 46 kDa fragment and 54 kDa fragment were significantly increased by 

FA by 1.42 fold (0.05 + 0.005 RBI vs. 0.07 + 0.0004 RBI; p=0.0035) and 1.08 (0.06 + 0.008 RBI vs. 

0.07 + 0.002 RBI; p=0.0454) fold in PBMCs, respectively (Figure 3.11A). In Thp-1 cells, FA 

significantly decreased p-JNK 46 kDa and 54 kDa fragments by 0.70 (0.28 + 0.071 RBI vs. 0.26 + 

0.021 RBI; p=0.0461) and 0.91 (0.28 + 0.006 RBI vs. 0.20 + 0.012 RBI; p=0.0055) fold, respectively 

(Figure 3.11B). 
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A 

 
 

B 

 
 

Figure 3.11: Relative band intensities of p-JNK protein expression in healthy PBMCs (A) and 

Thp-1 cells (B). *p<0.05; **p<0.005. 

 

Furthermore, FA significantly increased the protein expression of p38 in PBMCs by 1.16 fold (0.43 + 

0.011 RBI vs. 0.50 + 0.034 RBI; p=0.0428) and had no significant effect on p38 protein expression in 

Thp-1 cells (0.62 fold; 0.50 + 0.027 RBI vs. 0.49 + 0.019 RBI; p=0.8446) (Figure 3.12A and 3.12B 

respectively) 
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A                                                                      B 

      
 

Figure 3.12: Relative band intensities of p38 protein expression in healthy PBMCs (A) and Thp-

1 cells (B). *p<0.05. 
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CHAPTER 4 

 

DISCUSSION 

 

FA is potent divalent ion chelator with high toxicity to plants and animals (Bochner et al., 1980). To 

date, no study has investigated the molecular toxicity of FA on human models and its effect on the 

immune system. Thus, in this study, we assessed the immunotoxicity of FA on healthy PBMCs and 

Thp-1 cells, and its effects on the expression of MAPKs and Akt. 

 

This study showed that FA was immunotoxic to both PBMCs and Thp-1 cells as evidenced by their 

decreased cell viabilities (WST-1 assay) (Figure 3.1A and 3.1B). FA immunotoxicity (increased 

apoptosis) on PBMCs and Thp-1 cells was assessed using flow cytometry. Phosphatidylserine, a 

phospholipid present on the inner (cytosolic) plasma membrane, becomes exposed on the outer 

plasma membrane upon induction of PCD (Zitvogel et al., 2010). The results showed that FA 

significantly increased the externalization of phosphatidylserine in both PBMCs and Thp-1 cells by 

26.16% and 18.19%, respectively (Figure 3.2A and 3.2B). This result is consistent with the decreased 

cell viability (WST-1 assay) triggered by exposure to FA.  

 

Given that the externalization of phosphatidylserine occurs during apoptotic and paraptotic cell death, 

activities of caspases 8, 9 and 3/7 were assessed using luminometry to determine the type of PCD 

induced by FA in PBMCs and Thp-1 cells (apoptosis requires caspase activation and paraptosis is 

independent of caspase activity). In Thp-1 cells, caspase 8 activity was decreased, while caspase 9 and 

3/7 activities were significantly increased (Table 2). This result suggests that FA induced intrinsic 

apoptosis in Thp-1 cells as no change in TNF-α levels were observed when compared to the control 

(Figure 3.3B). Unchanged TNF-α levels prevent activation of caspase 8 and thus, the extrinsic 

apoptotic pathway. In PBMCs treated with FA, a substantial decrease in caspase 8, 9 and 3/7 activities 

were observed (Table 1). This suggests that FA induced paraptosis in PBMCs as evidenced by the 

externalization of phosphatidylserine independent of caspase activation. Additionally, TNF-α levels in 

PBMCs remained unchanged following treatment with FA (Figure 3.3A). This again, may prevent the 

activation of caspase 8 and subsequent extrinsic cell death.  

 

To confirm caspase-dependent and –independent cell death, protein expressions of the pro-apoptotic 

protein Bax and anti-apoptotic protein p-Bcl-2 were determined using western blotting. Bcl-2 family 
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proteins are central in regulating the mitochondrial apoptotic death pathway  (Hemmati et al., 2002). 

Bcl-2 prevents apoptosis by forming a complex with pro-apoptotic proteins such as Bax, thereby 

inhibiting the function of Bax (Hemmati et al., 2002; Wan et al., 2008). Phosphorylation of Bcl-2 

compromises its protein stability and affects its ability to dimerize with pro-apoptotic proteins (Huang 

and Cidlowski, 2002). Thus, dissociation from the complex at the mitochondrial membrane leads to 

the formation of mPTP and subsequent caspase activation (Zhou et al., 2011). In agreement with the 

increased caspase 9 and 3/7 activities in Thp-1 cells, FA notably decreased p-Bcl-2 expression 

resulting in apoptotic cell death (Figure 3.8B). However, FA had no significant effect on the 

expression of Bax in Thp-1 cells (Figure 3.7B). This may be due to the deletion of the p53 gene in the 

Thp-1 cell line; p53 acts as a transcription factor for Bax expression and recruitment to the 

mitochondrial membrane. In PBMCs, FA increased p-Bcl-2 expression (Figure 3.8A) and decreased 

Bax expression (Figure 3.7A), corresponding with the decreased caspase 8, 9 and 3/7 activities. An 

increase in p-Bcl-2 expression will maintain the mitochondrial membrane integrity and subsequent 

mitochondrial membrane potential by preventing the release of cytochrome c, activation of caspase 9 

and the initiation of intrinsic apoptosis, further validating the induction of paraptosis in PBMCs by 

FA. 

 

The free radicals, generated during oxidative phosphorylation causes oxidative damage to proteins, 

DNA and phospholipids (Son et al., 2011). Oxidative degradation of lipids results in the formation of 

lipid peroxides such as MDA and 4-hydroxynonenal (HNE) (Barrera, 2012). The TBARS assay 

measures levels of MDA and is a good indicator of oxidative stress. There was a substantial increase 

of MDA levels in both PBMCs and Thp-1 cells treated with FA (Figure 3.4A and 3.4B), indicative of 

increased oxidative stress. To further confirm FA-induced oxidative stress, flow cytometric analysis 

of mitochondrial membrane potential showed that mitochondrial depolarisation was notably increased 

in Thp-1 cells (Figure 3.5B). This could be due to the weak acidic nature of FA as weak acids act as 

proton carriers across lipid membranes disrupting the proton gradient along the ETC. Additionally, 

ROS targets the mPTP resulting in the release of cytochrome c and the subsequent activation of the 

intrinsic apoptotic program (Marchi et al., 2011), correlating with the results obtained for Thp-1 cells. 

However, in PBMCs, FA had no significant effect on the mitochondrial membrane potential (Figure 

3.5B); this may be due to the decreased expression of the pro-apoptotic protein Bax and the increased 

expression of the anti-apoptotic protein Bcl-2 as a decreased Bax expression promotes the anti-

apoptotic activity of Bcl-2 thereby maintaining mitochondrial membrane potential. 

 

To confirm FA depletion of energy levels in PBMCs and Thp-1 cells, ATP levels were measured 
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using luminometry. Reducing equivalents generated by the Kreb’s cycle are channeled through the 

ETC creating a proton gradient by pumping protons across the mitochondrial membrane space 

(Harper et al., 2004). The resultant proton-motive force directs the activity of ATP synthase and 

hence ATP levels (Harper et al., 2004). The ATP levels in both PBMCs and Thp-1 cells were 

significantly decreased by FA treatment (Figure 3.6A and 3.6B) and this is substantiated by the 

decreased cell viability and increased mitochondrial membrane depolarisation in Thp-1 cells. 

Additionally, the activation of ATP dependent caspases -9 and -3/7 may further explain the reduction 

of ATP levels. However, in PBMCs, the decreased ATP level may be attributed to ATP dependent 

protein kinases. 

 

Intracellular ROS not only alters cellular integrity but is also important to MAPK and Akt signaling 

cascades (Kim et al., 2014). Studies suggest that prolonged activation of MAPK and Akt signaling 

may induce cell death and that ROS acts as a second messenger in the activation of MAPK and Akt 

signaling pathways (Son et al., 2011). FA increased ROS generation and up-regulated protein 

expressions of ERK and Akt in Thp-1 cells when compared to the control (Figure 3.10B and 3.9B). 

Although ERK and Akt signaling pathways are well known for their role in promoting cell survival, 

recent studies demonstrated their ability in potentiating apoptosis (Park, 2014). Prolonged activation 

of ERK may be due to the inhibition of tyrosine phosphatases (Harper et al., 2004). Tyrosine 

phosphatases are a group of enzymes responsible for the removal of phosphate groups on 

phosphorylated tyrosine residues, hence inactivating the protein (Harper et al., 2004). However, these 

enzymes are sensitive to ROS and become oxidized, thereby inhibiting its activity and prolonging 

ERK activation (Harper et al., 2004). Additionally, ERK activity up-regulates the pro-apoptotic 

protein Bax (Harper et al., 2004). Accordingly, increased ERK activity corresponds with increased 

Bax expression, activation of caspase 9 and 3/7 and the induction of cell death in Thp-1 treated cells. 

Furthermore, a study by Nogueira et al., (2008) showed that Akt activation had sensitized cells to 

ROS-induced apoptosis by increasing levels of intracellular ROS via increased	oxygen consumption 

and the inhibition of ROS scavengers. Moreover, sustained Akt activation leads to the inhibition of 

FOXO transcription factors, which are associated with the up-regulation of anti-oxidant protein 

expressions (Los et al., 2009). An impaired anti-oxidant system, increases the cells susceptibility to 

oxidative damage and cell death. Therefore, increased Akt activity correlates with the induction of 

lipid peroxidation and cell death in Thp-1 cells. 

 

JNK and p38 MAPK signaling pathways are generally directed towards initiating cell death upon 

activation by stress signals. Recently, however, these signaling pathways have been associated in both 
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cell death and survival signaling (Zhang and Liu, 2002). FA significantly decreased JNK activation 

and had no effect of p38 protein expression (Figure 3.11B and 3.12B). A study by Pedram and 

colleagues (1998) documented the cross-talk between the ERK and JNK MAPKs. These authors 

reported the activation of JNK by ERK MAPK, following the activation of ERK by vascular 

endothelial growth factor (VEGF). In turn, JNK had stimulated ERKs proliferative signaling. Thus, a 

decrease in JNK activity hinders the cross-talk between JNK and ERK MAPKs, preventing survival 

signaling by ERK. Additionally, JNK signaling regulates the expression of Bcl-2 and is up-regulated 

in response to JNK activation. This substantiates the activation of ERK death signaling, the decrease 

in p-Bcl-2 expression and the induction of cell death in Thp-1 cells exposed to FA. 

 

Although the molecular activation of paraptosis is unknown, studies have suggested the involvement 

of MAPK signaling in the induction of cell death. In PBMCs, FA greatly increased the expression of 

ERK, JNK and p38 MAPKs, and slightly increased Akt activity (Figure 3.9A, 3.10A, 3.11A and 

3.12A). However, Akt activation was not significant. Sperandio et al., (2000) reported the 

participation of ERK and JNK activity in mediating paraptosis stimulated by IGFIR, and that 

inhibition of these MAPKs prevented the induction of paraptosis in 293T cells. Another study by 

Yumnam et al., (2014) showed the involvement of ERK MAPK in hesperidin-induced paraptosis of 

human hepatocellular carcinoma (HepG2) cells. Sugimori and colleagues (2015) also reported the 

activation of JNK in paraptosis induction in HL-60 and NB4 human promyelocytic leukaemic cell 

lines and in bone marrow blasts treated with benfotiamine. Contrary to Sperandio et al., (2000) and 

Yumnam et al., (2014) benfotiamine had inhibited the activity of ERK in bone marrow blasts and had 

no effect on ERK activity in HL-60 and NB4 cell lines. This suggests that the involvement of MAPK 

in the induction of paraptosis may be dependent on the cell type and type of activation. Additionally, 

caspase 9 had been reported to be a direct target of ERK MAPK, and that phosphorylation at 

threonine 125 on caspase 9 inhibits its pro-apoptotic activity (Sperandio et al., 2000). These findings 

support the activation of MAPK signaling pathways in the induction of paraptosis in PBMCs treated 

with FA. 
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CHAPTER 5 

 

CONCLUSION 

 

The toxicity of FA has been documented in several plant and animal species. In contrast, recent 

preliminary studies, show the potential of FA as an anti-viral agent due to its ability to chelate 

divalent ions. This highlights the importance in determining the toxicity of FA before employing it as 

a therapeutic agent. Therefore, this study was conducted to determine the immunotoxic potential of 

FA on normal healthy PBMCs and Thp-1 cells. 

 

FA was immunotoxic to both healthy human PBMCs and Thp-1 cells. FA induced paraptosis in 

PBMCs mediated by MAPK activity. In Thp-1 cells, FA initiated intrinsic apoptosis as evidenced by 

an impaired mitochondrial function and activation of caspases 9 and 3/7; and the up-regulation of Akt 

and ERK activity suggesting their involvement in the immunotoxicity of FA in Thp-1 cells. 

 

While this study shows the immunotoxicity of FA in both normal PBMCs and Thp-1 cells, it should 

be noted that the concentration used to induce toxicity in Thp-1 cells was significantly less than that 

of PBMCs, suggesting that Thp-1 cells are more susceptible to FA toxicity than PBMCs. The Thp-1 

cell line is a cancerous cell line and suggests the potential of FA as a therapeutic agent. 

 

Further research on the toxicity of FA on other cell lines and its potency during a chronic treatment 

are required. In addition, the immunotoxicity of FA on an in vivo model presents future research 

opportunities.  
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APPENDICES 

 

APPENDIX 1 

	

Raw data used to determine the IC50 of PBMC and Thp-1 cell viability following a 24 hour 

exposure to varying FA concentrations. 

 

Table 1: Cell viability of PBMCs treated with FA for 24 hours. 

 

FA concentration 

(µg/ml) 

Log [FA] 

concentration 

Average optical 

density (OD) 

Cell viability (%) 

0  0,340 100 

30 1,477121255 0,274 80,41 

35 1,544068044 0,252 74,05 

40 1,602059991 0,250 73,36 

50 1,698970004 0,262 76,89 

10 2 0,210 61,80 

200 2,301029996 0,221 64,94 

300 2,477121255 0,218 63,96 

 

 

Table 2: Cell viability of Thp-1 cells treated with FA for 24 hours. 

 

FA concentration 

(µg/ml) 

Log [FA] 

concentration 

Average optical 

density (OD) 

Cell viability (%) 

0  2,492 100 

30 1,477121255 2,1223 85,19 

35 1,544068044 2,082 83,57 

40 1,602059991 2,099 84,23 

50 1,698970004 2,010 80,68 

10 2 1,294 51,93 

200 2,301029996 0,140 5,63 

300 2,477121255 0,120 4,83 
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APPENDIX 2 

	

Flow cytometric analysis of Annexin V-FITC and Propidium iodide staining in PBMCs and 

Thp-1 cells treated with FA for 24 hours. 

 

A 

 

 
 

B 

 

 
 

Figure 1: Dot plot with gate illustrating toxicity of FA in PBMC control (A) and FA treated (B) 

population stained with Annexin V-FITC and Propidium iodide. 
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A 

 

 
 

B 

 

 
 

Figure 2: Dot plot with gate illustrating toxicity of FA in Thp-1 control (A) and FA treated (B) 

population with Annexin V-FITC and Propidium iodide. 

 

A                                                                                B 

      
 

Figure 3: Effect of FA on necrotic cell death in PBMCs (A) and Thp-1 cells (B). **p<0.005. 
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APPENDIX 3 

	

Detection of initiator (8, 9) and effector (3/7) caspase activities in PBMCs and Thp-1 cells 

treated with FA. 

 

A                                                                                 B 

      
 

Figure 1: Caspase 8 activity in PBMCs (A) and Thp-1 cells (B) treated with FA. *p<0.05; 

**0.005. 

 

A                                                                                 B 

      
 

Figure 2: Caspase 9 activity in PBMCs (A) and Thp-1 cells (B) treated with FA. *p<0.05. 
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A                                                                                B 

      
 

Figure 3: Caspase 3/7 activity in PBMCs (A) and Thp-1 cells (B) treated with FA. **p<0.005. 
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APPENDIX 4 

 
Analysis of TNF-α cytokine levels in healthy PBMCs and Thp-1 cells treated with FA. 

 

Table 1: Raw data used to construct the standard curve for TNF-α cytokine levels in PBMCs 

and Thp-1 cells exposed to FA for 24 hours. 

 

Standards Average OD (450nm) Average OD – average 

negative control 

0 0,093 -0,104583333 

7,8 0,095 -0,102333333 

15,6 0,099 -0,098083333 

31,3 0,092 -0,105833333 

62,5 0,120 -0,077083333 

125 0,155 -0,042333333 

250 0,237 0,039916667 

500 0,396 0,198666667 

Negative control 0,197  

	

 

 
 

Figure 1: Standard curve used to determine TNF-α concentration levels in PBMCs and Thp-1 

cells treated with FA using known TNF-α concentrations. 
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The equation y = 0.006x – 0.113 was used to calculate TNF-α concentrations in PBMC treated and 

untreated samples and Thp-1 treated and untreated samples.   
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APPENDIX 5 

	

Calculation of MDA levels in PBMCs and Thp-1 cells  

 

Table 1: MDA concentration levels in PBMCs and Thp-1 cells treated with FA for 24 hours. 

 

Sample Average OD MDA concentration 

(mM) (µM) 

PBMC C 0,006 0,000021 0,021 

PBMC FA 0,028 0,000162 0,162 

Thp-1 C 0,031 0,000179 0,179 

T hp-1 FA 0,047 0,000284 0,284 

Negative control 0,003   
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APPENDIX 6 

 
Flow cytometric analysis of JC-1 staining in PBMCs and Thp-1 cells treated with FA for 24 

hours. 

 

A 

 

 
 

B 

 

 
 

Figure 1: Dot plot with gate illustrating the effect of FA on mitochondrial membrane potential 

in PBMC control (A) and FA treated (B) cells stained with JC-1. 
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A 

 

 
 

B 

 

 
 

Figure 2: Dot plot with gate illustrating the effect of FA on mitochondrial membrane potential 

in PBMC control (A) and FA treated (B) cells stained with JC-1. 
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APPENDIX 7 
	

Protein quantification and standardization of protein samples isolated from PBMC and Thp-1 

cells treated with FA. 

 

Table 1: Raw data used to construct the standard curve of BSA concentrations to determine 

protein quantity in PBMCs and Thp-1 cells exposed to FA for 24 hours. 

 

Standards (mg/ml) OD1 OD2 Average OD 

0 0.165 0.131 0.148 

0.2 0.315 0.371 0.343 

0.4 0.614 0.542 0.578 

0.6 0.835 0.704 0.770 

0.8 0.949 0.867 0.908 

1.0 1.196 1.194 1.195 

 

 
 

Figure 1: Standard curve used to determine the quantity of protein in PBMCs and Thp-1 cells 

treated with FA using known BSA concentrations. 

 

The equation y = 1.0174x + 0.1482 was used to determine the concentration of protein in PBMC 

treated and untreated samples and Thp-1 treated and untreated samples. 
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Table 2: Protein quantification of PBMC and Thp-1 treated and untreated samples. 

 

 OD1 OD2 Average OD Concentration 

(mg/ml) 

PBMC C 0.382 0.410 0.396 0.243 

PBMC FA 0.558 0.508 0.533 0.378 

Thp-1 C 1.936 1.968 1.952 1.773 

Thp-1 FA 2.462 2.364 2.413 2.226 

 

Table 3: Protein standardization of PBMC and Thp-1 samples. 

 

Sample Initial 

concentration 

(mg/ml) 

Initial volume 

(µl) 

Final 

concentration 

(mg/ml) 

Final volume 

(µl) 

PBMC C 0.243 98.765 0.200 120 

PBMC FA 0.378 63.492 0.200 120 

Thp-1 C 1.773 67.681 1.000 120 

Thp-1 FA 2.226 53.908 1.000 120 

 

 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


