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Abstract 

Dynamic Matrix Control (DMC) has proven to be a powerful tool for optimal regulation of 

chemical processes under constrained conditions. The internal model of th is predictive 

controller is based on step response measurements at an average operating point. As the process 

moves away from this point, however, control becomes sub-optimal due to process 

non-linearity. IfDMC is made adaptive, it can be expected to perform well even in the presence 

of uncertainties, non-linearities and time-vary ing process parameters. 

This project examines modelling and control issues for a complex muhivariable industria l 

operator training plant, and deve lops and app lies a method for adapti ng the controller on-line to 

account for non- li nearity. A two-inputltwo-output sub-system of the Training Plant was 

considered. A special tech niq~e had to be developed to dea l with the integrating nature of this 

system - that is, its production of ramp outputs for step inputs. 

The project included the commissioning of the process equipment and the addition of 

instrumentation and interfacing to a SCADA system which has been deve loped in the School of 

Chemical Engineering. 
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Chapter 1 

Introduction 

1.1 Background to the work prese nted 

Dynamic Matrix Control is one of the most successful model predictive schemes and quite 

popular within the process industry. Control design methods based on the Model Pred ictive 

Control concept have found wide acceptance in industrial applications because of the ir ability to 

handle process interact ions, their handl ing of unusual dynamic responses and because they do 

not necessarily demand a rigorous model derived from first principles. 

Dyna mic Matrix Contro l is based on a linearised step response model ca lled the convolution 

lIIodel. This dynamic model with its assoc iated uncertainties is used to predict and optimise 

process performance. However, as the system dynamics change with time, a large mismatch can 

deve lop between the model and the process and it no longer reflects the actua l system. Under 

these conditions the controller performance deteriorates, which may even destabilise the 

process. In these s ituat ions it becomes necessary to re-evaluate the process mode l. One way of 

doing this is to include an adaptive algorithm within the Dynamic Matrix Control algorithm. 

This strategy can allow adjustment of controller settings with changes in the operating point and 

better performance is expected even in the presence of time-varying process ga in and process 

nonlinearity. Thus, the development of a method for closed-loop on line identification for 

updating the dynamic matrix is proposed in this work. 

Despite Dynamic Matrix Control presenting several novel features and advantages, it is not 

designed to deal with processes with an integrat ing nature. These are processes that produce a 

ramp change in the output for a step change in the input. The Training Plant currently under 

study exhibits this be haviour, and is also non- li near, multivariable and highly interact ive. Thus, 

an approach for using Dynamic Matrix Control to control integrating processes was also 

cons idered. In th is method the slope of the predicted response is determined from the slope of 

the output trajectory between the current and the previous contro l instants. 
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Chapter! Introduction 

However, because of the complexity of the Train ing Plant, with th is work be ing the first 

investigation with regard to it, only a 2-input 12-output sub-system of the plant was studied in 

the present project. Thus, the proposed algorithm was applied only to this sub-system. For a 

better understanding of the software, preliminary simulat ion was in some cases done on a 

second pilot plant, a 2- input I 2-01ltput , Pump-tank system, also availab le in the School of 

Chemical Engineering. 

1.2 Thesis Layout 

As an introduction, Chapter 1 is devoted to provide an overv iew of the thesis and aims of the 

present work. 

Chapter 2 is designed to fam iliarise the reader with the Training Plant under study. With thi s 

goal in mind, attent ion has been given to a description of the system and presentation of the 

contro l problem emanating from this process. 

Chapter 3 dea ls with the theoretical process model and provides a more comprehensive 

understanding of the Training Plant behaviour described by a non-linear system of mixed 

differential and algebraic equations. State-space step responses obtained from estimated data 

when running the extended Ka lman filter simulation program written in Matlab1
, are also 

presented in this chapter. 

The Dynamic Matrix Control techn ique and its applications are considered 111 Chapter 4. 

Adaptive Control principles are covered in Chapter 5. 

Chapters 6 and 7 deal with the Adapt ive Dynamic Matrix Control scheme with part icular 

attention to an integrating system in Chapter 7. Results obtained from off-line tests, as well as 

actua l application of the Integrati ng ADMC controller in the 2-input I 2-output sub-system of 

the Training Plant are also included. 
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Chapter I Introduction 

J.3 T he aim of the project 

The aim of this study was to investigate different aspects of control of a Training Plant available 

in the School of Chemical Engineering laboratory at University of Natal. Th is multivariable 

system presents eight manipulated input variables and sixteen output variables of interest from 

the point of view of process control. A mathematical mode l derived from first principles 

revealed complex behaviour of the system with high order, non-linearity and a high level of 

interaction between variables. To overcome these difficulties, possibilities of applying a Model 

Predictive Contro l technique in thi s Trai ning Plant had to be considered. 

To fu lfil the objective of this work, general tasks were proposed as follows: 

• Recommiss ioning of the equipment, 

• Addition of digital control to already existing analogue instrumentation, 

• Interfacing of the system to a computer SCADA system, comprising software for real-time 

simulation and data acqu isition developed in the School of Chemical Engineering, 

• Development of the contro l algorithm 

• Application of the control algorithm on the equipment 

, Matlab is a registered trademark of The MathWorks,lnc. 
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Chapter 2 

The Training Plant 

2.1 Introduction 

The Training Plant currently under study is a complex multi variab le, non-linear and highly 

interactive industrial teaching facility comprising fu ll-sca le equ ipment. It is very useful for a 

d ivers ity of studies in the field of mass and heat transfer as well as process control. As will be 

seen, a model will be developed for the enti re plant, but only a sub-system of three tanks will be 

used in the app lication of the proposed adaptive control algorithm. 

This Training Plant allows d igital control of variab les such as temperature, level, flow and 

pressure, s ince the o ld analogue inSlfllmentat ion of the equipment was converted to a digital 

format in the course of this study. by introduc ing ollologue-lO·digital (AID) and digital-to· 

analogue (D/A) converters. Thus, with digital processing the computer is able to receive the 

measurements d irectly from the process and based on the control law, resident in its memory, 

calculate the values of the manipulated variables. The decisions are then directly implemented 

in the process by the computer via the final control element. 

Some advantages of digital controllers over their analogue are that high-speed digital systems 

have prov ided the means to produce low cost and accurate controllers. More complex 

algorithms can be implemented using digita l controllers, and with greater accuracy than the 

corresponding analogue systems. Furthermore, there is greater flexibility in digita l system s ince 

alterations to the contro l algorithm can be performed in software rather than through changing 

or tuning d iscrete components which are prone to dr ift. 

The Training Plant is part of the ava ilable equipment in the Chemical Engineering Laboratory at 

the University of Natal and some pictures of it are presented in Figure 2.1 . 
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Chapter 2 The Training Plant 

Figure 2.1 Parts of the Training Plant rig 
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Chapter 2 The Training Plant 

To fulfil some of the objectives presented in Chapter I, tasks such as re-Iabeling, calibration, 

add ition and repair of the equipment and control instrumentation, including improvement of 

piping I tubing were a lso taken into account. In a number of cases, new sensors were installed in 

parallel to the existing sensors (e .g. leve l transmitters and temperature transmitters). 

A description of the equipment is presented in this chapter in Sect ion 2.2. Section 2.3 prov ides 

information about data acqu isition and control. The control problem emanating from thi s 

process is presented in section 2.4. Finally, a 2-input 1 2-output sub-system from the Training 

Plant was considered in the present study; is presented in section 2.5. 

2.2 System description 

The experimental setup is schemat ically presented in Figure 2.2. The system can be divided in 

two parts involv ing mass and heat ba lanc ing as shown below. However, it is important to 

not ice that sub-systems can be defined and simulated accordingly with fewer variables of 

in terest, by manipu lating limited manual and I or pneumatic control valves in the pipes 

connecting the equipment. 

Mass balancing 

In this part, the Training Plant consists ofa mixing tank, Tank TI02 (a lso called Tank 2), from 

which warm water is pumped by centrifugal pump, K2, to four different parts of the system as 

fo llows: 

• Tank I, Tl 0 I, with its base at ground level, the same level as Tank 2. A butterfly pneumatic 

control valve, CVO I, connects both tanks. The out let stream from th is tank is pumped by 

small centrifugal pump, Kt and returned to Tank TI02 through pneumatic control valve 

eVIl. 

• Counter-current gas I liquid absorption column, C lOS, 0.5 m in diameter and 2.5 m in 

he ight at overhead level, filled with ceramic raschig rings. The column bottom is 2.7 m 

above the ground floor and is connected to Tank TI02 by pneumatic control va lve CV05. 

The output flow from the column is returned to Tank 2 by grav ity. 

• Upper storage Tank 3, TI03, with base at 4.75 m above the ground floor. This stream is 

controll ed by pneumatic control valve CV03, while pneumatic control valve CV 13 controls 

the outlet stream from Tank TI03 to Tank 2 which, is also returned by grav ity. 
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Chapter 2 The Training Plant 

• The flow is finally pumped to a co-current heat exchanger, HI , where it is heated and 

returned to Tank Tl02 through pneumatic control valve CV02. 

Figure 2.2 The Training Plant diagram 
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Chapter 2 The Training Plant 

Heat balancing 

Hot water is pumped by small centrifugal pump, K4, from Tank T104, and used in the above­

mentioned co-current Heat Exchanger, HI, to heat the incoming flow from Tank T102. 

However,just before HI, the hot stream is by-passed, passing through pneumatic control valve 

CV 1 0, and then mixed with the output flow from the heat exchanger, continuing then to a 

counter-current cooler, H2, where the temperature is dropped. Part of the outlet stream from the 

cooler enters the gas heaters, H3 and H4 where it is heated and then mixed with the by-passed 

cooler output flow and returned to Tank 4, TI04, just after pneumatic contro l valve, CV04. 

Because the resistance of the piping through H3 and H4 is quite high, closing CV04 has the 

effect of increasing flow through H3 and H4 from virtually very low to full flow. Since the 

heater capacities are much larger than the cooler, shutt ing CV04 has the effect of passing from a 

net cooling mode to a net heating mode. 

2.3 Data acquisition and Control 

The rig is interfaced to a local PC via Eagle® PC30 comprising analogue-ta-digital (AID), and 

digital-to-analogue (D/A), input I output boards, with 16 12-bit inputs, 4 outputs and 24 

programmable digital 1/0. The experimental as well as simulation stud ies were carried out using 

a flexible Supervisory Control and Data Acquisition System (SCADA). Extensive configurat ion 

options are provided in this software, including Linear Dynamic Matrix Control (LDMC), 

constraints and tuning parameters, PID loop settings, measurement filtering, alarm levels and 

logging se lections which may be changed on-line. In addition, an on-board convolution model l 

may be used to test algorithms. A version of th is program with real-time graphing and plant 

mimic features current ly ex ists in Microsoft® Visual C++ and was written for Windows 95. 

Previous research students, including Prosser [1998] , have developed this software. 

The evolution of this software has been fairly organic, comprising many modifications by 

various researchers as the need arose. Modifications were also made in the present work since 

an integrating adaptive algorithm was added to the existing Dynamic Matrix Control algorithm 

to overcome the problem of non-linearity and the integrating nature of the Training Plant (see 

Append ix E). Results of off-l ine and real-time simulations using a step-response model applied 

to an Integrat ing Adaptive Dynamic Matrix Control for a 2-input 1 2-output sub-system defined 

on the Training Plant are presented in Chapter 7. 

lThe convolution model is a model based on linear combination of time-domain step response 
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Chapter 2 The Training Plant 

2.4 The Cont rol Problem 

As already mentioned, this system is mu hivariable w ith a high leve l of interaction. A 

lIIu/livariab/e process is one w ith multiple inputs, UI , U2, ... , Urn. and / or multip le outputs. XI. Xl • 

... , Xn, where m is not necessarily equal to n. 

One of the consequences of having several input and output variables is that sllch a control 

system can be con figured in several different ways using traditiona l SISO (single input / single 

output) control loops depending on which in put variab le is used to control which output 

var iable. This is referred to as the input I output pairing prob lem. 

In order to be able to control the output variables arbitrarily. we need at least an equal number 

of input variab les. and the choice of the best pairing to minimize the interaction and provide 

optimum control is vcI)' important. Th is does not mean that the control is "perfect" or even 

very good; it s imp ly means that it is the best it can be in such a SISO format. 

For non-square systems that is, a multi variable systems with unequal number of input and 

output variab les, thc most obvious problem is that after input I output pairing, there will always 

be a residual of unpaired input or output variables, depend ing on which of these are in excess. 

For under-defined systems (with fewer input than output variables), not all the outputs can be 

controlled, since we do not have enough input variables. T he strategy for loop pairing of such 

systems, is to choose a sq uare sub-system by dropping off the excess number of output 

variables on the basis of economic importance [Ogunna ike and Ray, 1994]. As illustrated in 

Figure 2.3, the present Training Plant is an under-defined system from the point of view of 

contro l, with e ight manipulated input variables (pneumatic control valves) and sixteen output 

variab les of interest. The figu re shows the anticipated ma in influences of the inputs on the 

outputs. 
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Figure 2.3 
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The Training Plant 

The real challenge in deciding on loop pairing for non-square systems is presented by over­

defined systems (with more inputs than output variables), where arbitrary control of the fewer 

output variables can be achieved in more than one way. The Relative Gain Array (RGA) the 

most discussed index of loop interaction that suggests input I output pairings for which the 

interaction effects are minimized, can in this case also be used to define the best square sub­

system. Further information about this issue can be found in Luyben, (1990} (pgs. 576 - 579) 

and Ogunnaike and Ray. [1994J (pg,. 728 -758). 

According to Johnson, [1993] , optimum control (control quality) can be defined in terms of the 

three effects resulting from a load or set point change as fo llows: 

• Stabi lity, 

• M inimum deviat ion from set point and 

• M inimum duration (time necessary to control) 

2-7 



Chapter 2 The Training Plant 

In the present work the intention is to fonnulate a control strategy for the process viewed as a 

lumped multivari able system, in this way avoid ing the pairing issue and allowing coordinated 

action to achieve control object ives within defined constraints. Thus, only a sub-system 

(described in the following section) with two inputs (CVOl, CV03) and two outputs (LI , L2), 

will be cons idered. 

2.5 The sub-system under study in the present work 

As mentioned above in section 2.2, the Training Plant presented in Figure 2.2 allows the 

defin ition of the slIb-system of interest, by manipulating some control valves in the equipment. 

Thus, to understand some aspects of the control of this system, a 2-input 1 2-output sub-system 

was configured as follows: 

Controlled variables were chosen as the levels in the tanks T10l and Tl02 while manipulated 

var iubles were valves CVO l (inflow from Tl02 to TIOI) and CV03 (inflow from TI02 to 

T I 03). Constant posit ions as percentage open were set for valves CV I I (inflow from T I 0 I to 

TI02) and CV 13 (inflow from T I 03 to TI 02). A simplified diagram is shown in Figure 2.4 

.. 0 1 

'" eV03 
evoI '"' 

eVil 

eV il 

8 
T102 

Kl 

Figure 2.4 Sub-system of Training Plant for experiments 
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To understand thi s sub-system behavior, a 2x2 off-line step responses of it, were derived from 

the estimated outputs using the extended Kalman filte r sofhvare appl ied to a state-space mode l 

discussed (Chapter 3). For process control purpose, the step responses were experimentally 

obtained and actually applied in the Dynamic Matrix Controller for off-line simulation as well 

as for real-time tests as presented in Chapter 7. 

It is important to emphasize that, a second 2-input I 2-output Pump-tank system, described in 

section 4.4 and shown in Figure 4.4, was also used in the present work for on-line test ing of 

Linear Dynamic Matrix Contro l and Adaptive Dynamic Matrix Control in Chapters 4 and 5 

respective ly. 
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Chapter 3 

The Process Model 

3.1 Introduction 

A proper understanding of process dynamics sign ificantly facilitates the design of effective 

controllers. This understand ing has usually been shown to be dependent on the ava ilabi lity of a 

process mode l. A mathematical model representing a process consists of a system of equations. 

wh ich represent the relationships between process variables, which purport to describe the 

behaviour of the physica l system. The main lIse of the mode l is usually the possibility to 

investigate the system response under various input conditions rapidly. and inexpensively, 

without necessa ri ly tampering with the actual physical entity. 

With the exception of the most trivial process, it is impossib le for a mathematical model to 

represent exactly all aspects of process behaviour (Ogunnaike and Ray, 1994]. This fact 

notwithstanding, however, the usefulness of the mathematical model shou ld not be 

underestimated. We just need to keep its limitations in proper perspective. The effectiveness of 

any contro l system des igned on the basis of a process model will, of course, depend on the 

integrity of such a model in representing the process. 

To investigate the process behaviour of the present Training Plant, two process models based on 

different principles were developed. A state-space mode l formulated from first principles and a 

step-response model based on the experimental data from the equipment. 

An extended Kalman filter method was used for state estimation of the non- li near system 

descri bed by a class of differential-algebraic equations this was used to develop a state-space 

model fo r the entire system shown in section 2.2. In addition, a step response convolution 

model was obta ined us ing process measurements. 
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The present chapter is structured as follows. Literature review is presented in section 3.2. 

Section 3.3 describes the Training Plant behaviour predicted using a state-space mode l. This 

section includes issues such as the theoretica l mode l, applied technique for solution of the 

differential and algebraic equations describing the system, and finally, the step response 

resulting from the mode l s imulation using a Matlab program. 

3.2 L iterature review of differenti al and algebraic equations systems 

Differential-algebraic equations (DAEs) arise frequently in chemical engineering and may 

occur directly from the use of first principles to model a physical phenomenon. The differential 

equations represent the dynamics of the system and the algebraic equations lIsually describe the 

constraints among variables. These constraints may be linear or non-linear. 

The OAEs have been studied by a number of investigators and are widely used for the dynamic 

modelling of chem ical processes. Several approaches have been proposed to estimate a solution 

of OAEs. Cheng, Mongkhonsi and Kershenbaum [1997], employed the minimum least squares 

criterion, i.e., the minimisation of the integral of the we ighted square residual errors in the 

process model and the measuring device, to develop a sequential algorithm for non-linear 

differential and algebraic systems with the use of variational calculus. 

8yrne and Ponzi [1988] review the underly ing methods in some differential-algebraic systems 

(DAS), software. A Newton-type method in which the computation of the Jacobian matrix is 

not performed during each iteration is described. Rather, it is computed at some point and 

retained until the convergence is deemed to be too slow. 

Becerra, Roberts and Griffths [2001] , explore the application of an extended Kalman filter 

(EKF), to systems described by non-linear DAE's. A time-varying linearisation has been 

derived for a DAE model and a simplified square root EKF algorithm has been described. They 

showed how the EKF can be used for noise filtering and estimation of unmeasured states. 

includ ing algebraic states of a system described by a semi-explicit index one DAE, i.e. , with 

s imilar behaviour to sets of ord inary differentia l equat ions (ODE), that can be solved using 

similar solution methods. Notice that the EKF technique has been traditionally applied to state 

and parameter estimation using models described by ordinary differential equations. 
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DASs solvers can play a significant role in chemical engineering since, the simultaneous 

treatment of both differential and algebraic equations in a mixed system eliminates the need for 

attaching together separate methods and software for ODEs and algebraic equations. 

An extended Kalman filter was employed in the present work for state estimation of the system 

under study, since it provided a means to drive the solution towards convergence, and avoided 

problems of singularity in under or over~specification. 

3.3 Modelling the Training Plant 

3.3.1 The state-space model 

The initial modelling approach of the ex isting Training Plant was based on a state-space model 

which, as described in section A.3.1 (Appendix A), is formulated from first principles. 

Fundamental laws including mass and energy balances were appl ied over the equipment and 

junction points and pressure drops over the pumps, pipes, and pneumatic control valves were 

also considered. 

The main simplifying assumptions that were taken to derive this model were: 

• The mixing is perfect 

• Heat losses are negligible 

• The valves have linear characteristics (but installed characteristics will be non~ linear due to 

pressure variation) 

• No mass transfer occurs in the absorption column 

• The pump characteristics are described by quadratic functions 

• Since only water is used in the system, the specific heats are omitted from energy balances. 

The modelling revea led a complex non~linear, multivariable, and high order system with forty­

seven equations. Nine were Ordinary Differential Equations (ODEs), describing the state 

variables and thirty-eight were algebraic equations representing the system constraints as shown 

below. The system has a total of nine states, ten inputs and thirty-eight associated variab les. 

The equations below should be viewed in conjunction with Figure 2.2. 
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• Model differential equations 

Vo lume balances in tanks and co lumn 

dh'2 = -F;z + F02 + ~I + F;3 + ~3 
dl A, 

dhi3 -F;3 + Frn --= 
dl A, 

dhl4 

dl 

dhl3 -F;s + Fos - - = 
dl A, 

=0 

Energy balances in tanks 

(level in Tank 4 is constant) 

d~,_ -F;,~,+Fo,r;2 - (-F;,+Fo, ) r;, 
dt A,hll 

The Process Model 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

d~2 _ -;;27;2 + F;,~, + F;)r;) + F;sT;s + Fa2Toz - (-F;2 + Fa2 + F;, + F;3 + F;5)7;2 
(3.8) 

dl A2h12 

dTi3 _ -F;)T;) + FO)TI2 -(-Fu + Fa3 )T.3 
dt A)hll 

(3.9) 

dT;4 F;4 (T04 - 7;4 ) 
dl A,iI, 

(3.10) 

dT,s _ -F;sr.s +Fasr.2- (-F;s + Fas )r.$ 
dl A,h" 

(3.11) 

• Model algebraic eq uations 

Overall energy ba lance in Heat Exchanger, HI 

0= - F", (To, - T,, ) + (1\, - 1\, )(T" - T,, ) (3.12) 

Heat balance at j unction hPl9 

0= - F;4T20 + ( 1';4 - 1';0 )1~9 + F;07;4 (3.13) 
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Heat transfer in Heat Exchanger HI 

0= -qHI + UA'f! ((7;, - To, )-(7;, -7;, )) IIn ((7;, - To, )/(7;, -7;, )) 

Heat to output stream from the heat exchanger HI 

O=-qHI +pCp (To,-7;, )Fo, 

Heat balance in gas heaters 

Heat balance in cooling coil 

0= -q H' + UA H , (( TlO - Tom. ) - (T" - Tom. )) IIn ((TlO - Tom' ) 1 (T,o - Tom. )) 

Heat to output stream from coo ling coi l F l4 

Geyzer temperature setting 

o = - T:u /."C}::cr + 7; 1 

Heat ba lance at junct ion hP04 

0= F'o47;o + r;17;1 - F,,4T().j 

Mass balance at split hP 12 

0= - F;2 + FOl + 012 + Pc)) + F'os 

Mass balance at geyzer bypass hP)o 

O=-r;I+F;4 - F~ 

Pressure rise over the pumps 
, 

O=-IiPK1 +QKl 1;1 +bK1 F;I +CK1 

, 
O=-!lPK2+ QK2 F',,2 + b K2 F;2+ CK2 

, 
0= -IiPK4 + Q K4 1;4 + bK4 1;4 + CK4 
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(3. 14) 

(3.15) 

(3. 16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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Pressure drop over the va lves 

O=-XOI~llPcvOI +P
2

PoI 
C CVOI 

.J p' F" O=-Xos llPcvos +--
Ccvo~ 

Pressure drop over the pipes 

0= -k41 FOl2 +fb + pg (hPI2 -hol)-Mcvol 

0= -kLo2 F"eJ2
2 
+ ~2 + pg (h~2 -ho2)-llPcvo2 

0= -kLoJ Fa) 2 + ~2 + pg (hP12 - 1103) - fiPCVOJ 

0= -kL", 1';: + P" + pg (hP .. - h,.) 

0= -kL" F,,' + P" + pg (hp" - 11,,) - M CV05 

0= -kL" 1';,' + (p" - p,,) + pg (hp" - hp,, ) - Mcv" 

0= -kL" 1';,' - P" + pg(h" - hp,, ) +MK2 

0= -kL" 1';,' + pg(h" - 11,,) - M cV13 

O= - kL, , 1';,'+pg(h,,-h,,) 
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(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 
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0= -kL" (F" - F,o)' +(P,o -p,, )+ pg (hP,o - hp,, ) 

o = -kL,o F,.' + (p" - PlO ) + pg (hp" - h?,o ) 

O= -kL" F",'+ P",+pg(hPOl-h,,) 

0= - kL" F,,' + (?'o - Po. ) + pg (h?,o - hp", ) 

0= -kL" F,,' + (PlO - p,, ) + pg (hP" - hP,, ) - Mcv" 

where: 

Ai tan k area, [m2
} 

aKi pump coefficient, [h2/m] 

bKi pump coefficient, (h] 

CKi pump coeffic ient, [m] 

Cp heat capacity at constant pressure, [kw/(kg °C)] 

CCvij Control valve ij size coeffic ient 

Fij vol umetric fl ow rate of stream ij , [mlfh] 

hli tank level, [m] 

hOi height level above floor, [m] 

hPij junction height above floor to the Pij pressure point, [m1 

kLij pipe ij resistance, [m water] 

qHi heat transfer rate for heater Hi , [kw/h] 

qHiHj heat transfer rate for heaters Hi and Hj , [kwfhJ 

T jj temperature, [0C] 

T amb ambient temperature, rC] 

t time [h1 

X0 1 valve stem position (fraction of wide open) 

The Process Model 

(3.45) 

(3.46) 

(3.4 7) 

(3.48) 

(3.49) 

U Alii overall heat transfer coefficient x heat transfer area for heater Hi [kw/ (m2 °C)][m2] 

p density, (kg Im'J 
LlPKi pressure drop over the pump, [m water] 

.1PCVij pressure drop over the valve ij . [m water] 

Numerical treatment of this 47 x 47 system of coupled differential and algebraic equat ions was 

a complicated task due to the high dimension and non-l inearity. Therefore, for solution of thi s 

system, an extended Kalman filter algorithm for systems described by non-linear differential­

algebraic equat ions developed by Mulholland [2001] (personal communicat ion), was applied . A 

perturbation method is used in this technique for local linearisation, i.e ., a fixed 'small fracti on 
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(eg. 0.00 I) of the defined range for each va ri able is ~Ised as the perturbation. By avoiding the 

use of analytical derivatives, possible model I derivative mismatches in this large system were 

prevented. Admittedly, thi s risk could be reduced somewhat by using a symbolic mathematics 

package like Mathemat;ca or Maple. 

3.3.2 Comments on the extented Kalman filter 

The Kalman filter is a stochastic filter that allows the estimation of the states of the system 

based on a linear state space model. The extended Kalman filter (EKF) uses local linearisation 

to extend the scope of the Kalman filter to systems described by non·Jinear ordinary differential 

equations, [Maybeck, 1982 in Becerra et aI., 2001]. Thus, this scheme has been traditionally 

appl ied to state and parameter estimation using models described by ODEs. 

As mentioned above, fo r state estimation of the Training Plant under study using the state·space 

model , an EKF technique was applied. A detailed description of this method is presented in the 

Appendix B. 

Lincarisation of DAEs 

By app lying a Taylor series expansions truncated after the first order tenn, the process model is 

Iinearised taking into account the DAE nature of the system, described by the following 

equation: 

;; =f(y,z) 
(3.50) 

0= g (y,Z) 

where y is a vector of state variables, and z a vector of algebraic variables. 

The Jacobian is calculated assuming that f and g functions are suffic iently differentiable in their 

argu ments so that all needed differentiations are possible. Notice that for local linearisation a 

perturbation method is used in the EKF algorithm. The functions and the Jacobian matrices are 

re·evaluated at every iteration by perturbing each variable in tum, thus the va lues of the 

elements of the matrices change slowly as the process moves to a new operating point. 

Perturbation techniques find their most fru itful application in the class of non·linear systems 

[Rice and Do, 1995]. It can be applied to algebraic equations as well as differential equat ions. 

Analytical solutions requi ring explicit formulas for the lacobian terms are prone to error. 

3·8 



Chapter 3 The Process Model 

A good approximation of the init ial operat ing point data is required to acce lerate the 

convergence. The developed EKF algorithm, technique in thi s work has the advantage of 

reducing the problem of singularity since both excess equations and excess variables may be 

specified. The solution simply achieves the best least squares fit to thi s specificat ion. Where 

there is no reason to change an excess variable, it is simply left at its original va lue. 

The linear model obta ined has the form given by equation (8.6) (see extended Kalman filter 

formulation in the Appendix B) as 

(3 .5 1) 

T he di screte model 

As ment ioned in sect ion A.3.1, state-space models are most usefu l for Obtaining real-time 

behaviour of process systems, since they appear in continuous time. However, when the output 

variables are sampled , the control action is implemented only at discrete points in time. Because 

discrete-time formulations are most especially suited to computer simulation of process 

behaviour, a discrete-time model of the process based on the li near model and the re lationship 

of model states to the measurements W, are respective ly given by equations (B. 1 0) and (8.11) as 

follows 

A,x, + H, II, (3.52) 

CtXt = HIt (3.53) 

K almnn filter 

With equations (3.52) and (3.53), the transient responses of the state-space model can thus be 

founded using the Kalman filter (sec equations (B.12) to (8.14», taking into account the 

expected error covariances Q and R matrices for the model and the measurements respectively 

as desc ribed by equations (3.54) to (3.57). Note that the Kalman Filter has not been used to 

provide state estimates, but rather as a means to seek agreement between the differentia l and 

algebraic equations arising in this DAE model structure. Elements of the Q and R matrices were 

merely chosen to give satisfactory performance in thi s task. This technique proved useful to 

obtain the necessary convergence. For more details on the Kalman fi lter interpretation see 

section 5.5.2.1. 
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T[ T J-' K, = M, Cl C,M,C, + R (3.54) 

(3.55) 

M'+df = A, [I ~ K, C, ] M, A; + Q (3.57) 

Notice that for DAEs system the observation matrix and observation vector are defined as C. 

and <VI respectively. 

3.3.3 Matlab software and res ults 

The EKF algorithm was written in Matlab and is presented in Appendix C. The original Matlab 

version of the extended Kalman filter software was written by Professor M. Mulholland [2001] 

"Personal communication". 

Using the model described by a set of equat ions (3.2) to (3 .50), excluding equation (3.5) which 

is not relevant, it was possible to establish the open-loop performance. The variables were 

constrained in terms of physical reality. For example, the algorithm can handle emptying of 

tanks with pump pressures responding correctly and fl ow being lost. 

The above theoretical model showed process complexity derived from being multi variable, non­

linear, with a high level of interaction between the variables and complex model equations. 

Tuning of the EKF predictor to find good parameters of the expected observation error 

covariance, R and the expected prediction error, Q that gives satisfactory performance, was a 

very difficult task taking into account the large number of variables to deal with, and the little 

ava ilable information about the plant. 

Reca ll that the EKF scheme has been traditionally applied to state and parameter estimation 

using models described by ODEs. Thus, the software was tested in order to infer the model, 

based on the estimated outputs for input step changes for the 2-input / 2-output sub-system 

defined on the Training Plant (see section 2.5). Notice that the output variables under study in 

the present work, are the levels in tanks TIOI and n02, while the inputs are valves CVOI 

(inflow to TI 0 I from TI 02) and CV03 (inflow to Tl 02 from Tl 03). 
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The state·space step responses obtained from the model are shown in Figure 3.1. These 

responses are equiva lent to the step responses derived from experimental data, presented in 

Figure 7.2. Resu lting responses showed similar integrat ing behaviour to the experimental data 

and same trend although slower. It took approx imately ten minutes for all responses to become 

steady ramps. Thus, considering a steady state horizon, M = 5 steps, a time interval, L1t was 

defined to be two minutes (see section 4.3 for detai ls of parameters). 
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Model·predicted unit step responses for the 2· input 1 2·output sub·system of the 

Training Plant (M = 5) 

Taking into account that little infonnation about physical coefficients was ava ilable, many 

parameters describing the equipment were guessed, (e.g. pipe friction coefficients) and wi ll be 

erroneous. However, the results are promis ing considering that the proposed EKF technique can 

sati sfactorily estimate the state variab les describing thi s system. Further investigat ion to find 

actua l process parameters is required to improve the model perfonnance. 
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To overcome the difficulties presented by this theoretical model regarding its complexity and 

lack of infonnat ion, an empirical model approach was further adopted (see sect ion A.3.2 in 

Appendix A). Thus, the process model of the sub-system under study was built using 

experimental data and then app lied to the Linear Dynamic Matrix Contro ller. Empirical models 

have the advantage that they are simply based on the arbitrary input functions u(t), and do not 

require any complex mathematical manipulations or any state transfonnatiolls, on ly requiring a 

data record from well-designed experiments. This issue is discussed in the following chapters. 
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Chapter 4 

Linear Dynamic Matrix Control 

4.1 In t roduction 

The control of the existing Training Plant presents a d ifficult problem due to a number of 

factors described in Chapter 3. Among them are the multivariable, interactive nature of the 

system and the fact that the process is highly non-linear and constrained. 

Since Model Predictive Control (MPC), is able to handle most of the difficulties mentioned 

above fo r the Training Plant, this technique was applied to design a controller fo r it, us ing 

Linear Dynamic Matrix Contro l (LDMC), one of the most popular applications of MPC based 

on the step response. In section 4.2 , the general principles of MPC are presented. The des ign 

parameters of DMC are discussed in sect ion 4.3 while a case study of DMC appl ication is 

presented in section 4.4. 

4.2 General Principles 

Model Predictive Control refe rs to a class of control algorithms in wh ich a dynamic model with 

its associated uncertainties is used to predict and optimise process perfonnance. Control design 

methods based on the MPC concept have found wide acceptance in industrial applications 

because of their abil ity to handle process interactions and unusual dynamic responses, and 

because it does not necessarily demand a rigorous mode l derived from first principles. An 

explic it dynamic model of the plant is used to optimise the future actions of the manipulated 

variables on the output over a longer time period. This flexibi lity is helpfu l in modelling 

unusual process behaviour. On the other hand, MPC provides the only methodo logy ab le to 

handle constraints in a systematic way during the design and implementation of the control 

[Garcia, Prett and Morari, 1989]. These authors present a reviewed MPC methodology wh ile de 

Vaal [ 1999] presents an overv iew of ad vanced control techniques. 
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Successful applications of DMC have been reported in the literature. Robertson, Waners, 

Desphande, Assef and Alatiqi [1996] compared a DMC method with standard PI control on 

reverse osmosis (RO) desalination processes to produce a constant quantity of product water 

with an acceptable purity. They reported that much more flexibility in the operation of an RO 

plant is available with DMC control. Linear Dynamic Matrix Control (LDMC), based on a 

linear programming solution for the optimal path to the control horizon has been developed by 

Mulholland and Prosser [1997] following the methods of Chang and Seborg [1983], as well as 

Morshedi eJ al (1985]. The combinat ion of linear programming and DMC allows for the 

handling of explicit constraints on top of the standard DMC structure . The algorithm was 

applied to control the top and bottom temperature of a semi-industrial distillation column. 

Mulholland and Narotam [1996] and Prosser [1998] also considered multivariable control using 

LDMC. 

Qualitative models based on fuzzy sets have also become a powerful too l for representing nOI\­

linear systems. Demircan, Camurdan and Postlethwaite, [1999] demonstrated that besides 

quantitative fundamental and empirical models, a qualitative Fuzzy Relational Model (FRM). 

can also be lIsed when implementing DMC. 

Some design techniques emanating from MPC are Dynamic Matrix Control, discussed in the 

present chapter, Model Algorithmic Control (MAC) and Model Reference Adaptive Control 

(M RAC). The last one is discussed briefly in section 5.3.2. The fundamental framework of 

MPC cons ists of four elements shared in common by all schemes. What differentiates one 

spec ific scheme from the other is the strategy and philosophy underly ing how each element is 

actually implemented. These elements (illustrated in Figure 4.1) may be defined as follows 

(Dgunnaike and Ray. 1994]: 

1. Reference trajectory specification 

Desired target trajectory for the process output, xCi). This can simply be a step to the 

new set point value or more commonly, it can be a desired trajectory that is less abrupt 

than a step. 

2. Process output prediction 

The appropriate model is used to predict the process output over a predetemlined, 

extended time horizon (with the current time as the prediction origin) in the absence of 

further control action ("open-loop" response). 
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3. Control action sequence computation 

The same model is used to calculate a sequence of future control moves of the 

manipulated variables that wi ll satisfy some specified optimisation objective such as: 

• Minimising the predicted deviation of the process output from target over the 

prediction horizon, 

• Minimising the expenditure of control effort in driving the process output to target, 

subject to prespecified operating constraints. Only the first calculated move is used, 

since the optimisation is repeated at each sampling time based on updated informat ion 

(measurements) from the plant. 

Figure 4.1 

Past Future 

x Rer<i-2) 

xPREO< i-2) ,Q/ 

x:.w .... s(i-2) (:// 

"-
, xPREO<i) 

XM""'S(i) -.. 

1 i+l 1+2 I+M-I I+P 
I , 

H orizon 

Example of elements in model predictive control:.6. - .6. : reference 

trajectory, 0 - 0 : predicted output, 0 - 0 : measured output 

The DMC algorithm is currently one of the most popular and widely used MPC algorithms, 

because it is simple, intuitive and allows the formulation of the prediction vector in a natural 

way. It is based on a linearised step response model called the cOl/volution model (Figure 4.2) to 

predict the effect of possible control actions. Such a strategy enables the model-based control to 

ant icipate where the process is heading. 

The elements of the step response represent the changes observed in the process output at M, 

consecutive equally spaced, discrete-time instants after implementing a unit change in the input 

variable. 
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Figure 4.2 Typical output response to a unit step input 

Step responses data can be represented in the convolution model for future outputs as 

, B 0 0 0 0 0 6", , , , 

, B B 0 0 0 0 6m , , , • 
, B B B 0 0 0 6m • • • , • 

o o B B .. M_, B , 6 ", .. (4.1) 

B B • • B •• B o , ,., tun ... , 

, B B B B B B 6m • • • • " ... , , • 

or 

x =Bdm (4.2) 

To implement the predictive algorithm in accordance with the MPC configuration illustrated in 

Figure 4.3. it will be seen that other matrices are defined from the step response coefficients. Bo 

is the Offset matrix of the coefficients and BOL a matrix of the Open Loop response coefficients. 

An approach fo r on-line ident ification of the step response coefficients, in Bo matrix which. are 

used to fill BOL and B matrices applied in the DMC algorithm, is illustrated in th is study and is 

discussed in chapter 6. 
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F ig ul'c 4,3 Model Predictive COll lrol configuration [Mulholland and Prosser, 1997J 

Thus, the step responses of an m.input / n·output system can be represented by a series of 

matri ces B I • B1• BJ, ..... , Bp. The position (iJ) in each matri x B, is a point on the trajectory at 

time 1 for the (i th) output as it responds to the j th input. Now consider the following 

construction in which Liml is the vector of input moves (changes) made at time I, and XI is the 

vector of outputs at time I, A moving frame of reference for time is lI sed in which 1=0 

represents the present time. 
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X0/'RED B. 8"., B .. , B. , B, B, 0 0 0 0 0 0 

X OPRFJ) B. B. , B. , B .. B, B, 0 0 0 0 0 0 

X OPRED B. 8 ... , B ... , 8 ... , B, B, 0 0 0 0 0 0 

X,"""" B. 8"., B,,_, B ., B, B, 0 0 0 0 0 0 

XO PRJ.:D B. 8"., B"., 8"., B, B, 0 0 0 0 0 0 

(X~"RfD )_ , ... _. ,"-' .. 
x, B. B. 8"., B" B, B, B, 0 0 0 0 0 

' '( PRIill 
B, B. B. B .. _, B. B, B, B, 0 0 0 0 x, 

xM B. B B B, B 8" .• : Bu _, B"., B, 0 0 , • • 
XU+I B. B. B. B. B. B. · B ., B,,_, B, B, 0 

X P B, B, B, B, B, B, B, B. B. B, B" .• B. 

(4.3) 

The vector of vectors X OPRED = Bo 6 m pAST in equation (4.3) contains P ident ical predictions of 

the output vector at the present time 1=0. The vector XPRf:O contains pred ictions of the output 

vector at P points on the future trajectory, as contributed to by the past M control moves 

[6m pAST = (6tn.M+1 ..... , 6m.o)T], and a future P control moves. \Ve choose Mto be large enough 

to ensure that all step responses are at steady state at this point (BM)' Then we expect that our 

predictions of -"'OPRED and -"'PRED will only be in error by steady-state offsets emanating from 

earlier than M steps before the present time. 

We make P copies of this offset error by comparison with a vector X O.lIEAS conta ining P copies 

of the present output measurement 

X Q.l/EAS 

(4.4) 

X fJ}.f£AS 

and lIse them to correct our future predictions as fo llows 

(4 .5) 
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The matrices B o. B OL and B are clearly top-left, bottom-left and bottom-right respect ively in 

the structure given by equation (4.3). h~ DMC we solve on each step for a limited sequence ofN 

moves (om·) to be optimised (N :s; P). Actually, on ly one or two future moves are normally 

solved, allowing a reduction to one or two co lumns in B, resu lting in the matrix B* (non-square 

P x N matrix). Although only the first move is ever used, a solution for a second move allows 

stronger action on the first move, because the solut ion plans a correction with the second move. 

In thi s way higher gains are obtained. 

A quadratic objective functi on J, dependent only on 6 m* can be defined as: 

J(6 m *) = (eed T W (eCL) + (6 m*)TA (6 111 *) 

= (XoL - xsp +B*6m *)T \V(xoL -xsp+ B*6m *) + (6 m*)TA (6m*) (4.6) 

where Xsp is the process variable set point trajectory, while the closed loop error, ea, is de fined 

as: 

eCL = eOl. + B 611l* (4.7) 

and the "open-loop" response, XOL, corrected for present model offset, is given by 

(4.8) 

Thus, an optimal sequence of control moves, o m·, for minimum control move effort which 

achieves minimum deviation from the set point trajectory up to the time horizon P, is found by 

minimis ing J with respect to om*. This optimisation problem is solved lI sing a least squares 

technique (see Section 5.5.2.2). The LDMC approach then finds the "closest" 6 m* to this po int 

which satisfies the input and output constra ints (see below). 

A we ighting factor matrix, W, and a move suppress ion matrix, A, generally diagonal, 

(discussed in the next section), are incorporated to determine the extent to wh ich deviations 

from setpoint, or control moves, are di scouraged. 

Th is model predictive control (MPC) format lends itself to deal ing with constraints in both the 

input and output variab les. The present work uses a combination of quadratic and linear 

objective functions in which linear programming (LP) is used to obtain a final so lution w ith in 

constra ints (LOMC). This solution has the benefits of QDMC without being as computationally 

demanding (Chang and Seborg, 1983; Morshedi et aI, 1985). It is based on the idea of obtaining 

the closest approach to the least squares optimum, should it lie outside of the constra ints. 
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4.3 Design parameters for DMC 

As mentioned above, within the DMC algorithm, the process dynamics are represented by a set 

of numerical coeffic ients determined from a process step response. While an extens ive review 

of the DMC algorithm is not discussed in the above section (the interested reader should consult 

references [Ogunnaike and Ray, 1994; Mulholl and and Prosser, 1997] for a detail ed 

description), it is useful to discuss several design parameters which can be adjusted to give the 

desired response as well as an appropriate amount of controller effort. Bearing in mind that only 

the first N control moves of the possible P need be opti mised (the rest can remain zero), the 

parameters include: 

• sampling time, .1 t 

• steady state horizon, M 

• optimisation horizon, P 

• number of future control moves, N 

• process variab le we ight, W 

• move suppression, A 

At discrete sampling instants, .1/, the step response coefficients may be determined from the 

step response model. The steady state horizon, M, is the time for the open-loop step response to 

reach e.g. 99 % completion. The choices of the sampling time and the steady state horizon are 

interrelated as the steady state corresponds to the settling lime of the system expressed as a 

mu ltip le of the sampling interva l. The se lection of these parameters should insure that no 

truncat ion problems arise in calculating the predicted values for the COl/volution model. The 

sampling time se lected must be small enough to accurately represent the process dynamics. 

However, if chosen too sma ll , it wi ll requ ire an extraordinarily large steady state horizon. Smal1 

values of M, with subsequent large values of .1/, are desired so as to reduce the computational 

requirement. In cases where a dead time is to be accounted for the sampling time must 

obviously be smaller than thi s delay. 

Parameter P is defined as the optimisat ion horizon. It is equal to the number of predicted 

controll ed variab le response times that are used in the opt imisation calculations. 
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N is used to ind icate to the controller, the number of future control moves that are calculated in 

the opt imisat ion step to reduce the predicted errors [Seborg, Edgar and Mellichamp, 1989]. The 

computational effort increases as N increases and a small va lue of N leads to a robust controller 

that is relatively insensitive to model errors. Thus, as the value of N is increased. more degrees 

of freedom are availab le for the controller optimisation step. This will result in tighter control, 

at least as far as minimising the objective funct ion is concerned. Wh ile increasing N can result 

in better control system perfonnance. the manipulated variable movements become larger and 

there is a reduction in the controller's robustness. 

However, it has been noted that if a particularly fast response is necessary. and the reduced 

robustness can be tolerated, a controller with higher va lue of N can be more finely tuned using 

the cont inuous adjustment of A as opposed to discrete values of P or N [Proso;er, 1998). 

In practical situations, it is usually necessary to suppress the movement of the manipulated 

variables. This is achieved by incorporating move suppression values, A, into such variables. 

Increasing the A values will slow down the controller's closed- loop response and reduce the 

size of the changes that are generated. In addition, it is possib le to achieve tighter control of 

some variab les relative to others, by multiplying the controlled variables set point deviations 

(squared) by different weighting values, W, in the objective funct ion (equation (4.6». 

The selection of such we ight parameters for the controlled variables is generally a relative 

matter, depending on the need to control some outputs tighter than others. It is important to note 

that whi le the se lection of individual weight parameters does indicate a designer's desire to 

control one output tighter than another, a comparison of the absolute values of the weighting 

parameters does not indicate the degree to which one variable is controlled relative to others 

[Robertson et aI., 1996). This comes about because variab les may have different units, and 

some units, such as those of temperature and flow rate, cannot be directly compared. 

4.4 Application of LDMC to a Pump-tank system - case study 

The on-line testing of LDMC was done using a second plant considered in this research and 

mentioned in Section 1.1. This was the 2-input 12-output pump-tank system used for simulation 

and laboratory tests in the School of Chemical Engineering at the Univers ity of Natal, 

represented in the Figure 4.4. 

4-9 



Chapler 4 Dynamic Malrix Conlro\ 

The system consists of a pair of interacting tanks receiving water from a reservo ir by means of a 

centri fuga l pump. The two input variables are control va lves: valve I is on the return line to the 

reservoir and valve 2 connects the two tanks; the output variables are levels I and 2. At the 

bottom of each tank is a small pipe connecting the tanks to a shared line, wh ich returns to the 

reservoi r. The va lves on these pipes remain at some fixed open position and allow water to flow 

out the tanks and back to the reservoir cont inually. VI , V2 indicate valve position as percentage 

open, and Ll, L2 indicate tank level as percentage full. 

The Pump-tank system was operated to get the open-loop step responses presented in Figure 

(4.5). These responses show stable process behaviour, i.e., "self-regulatory" (see section A.2 in 

Appendix A). The time taken for the system to reach a steady-state in all step responses after 

di sturbances was approximate ly 10 minutes. Note that the response of L2 to V2 achieves the 

steady-state on the last point. A time interva l, t11, was chosen to be 60 seconds and giving a 

steady-state horizon, M of 10 steps. 

VI 

V2 

F igure 4.4 2-input 12-output Pump-tank system for simulation and laboratory tests 
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Figure 4.5 The unit step responses fo r the Pump-tank system (M = 10) 

To ill ustrate some properties of LDMC, the controller design and the effect of constra ints were 

considered. The data acqu isition and control action implementat ion tasks were performed with 

the optimisation hori zon, P = 10, the same as the steady state horizon, M. The move 

suppression factor, A = 1 and weight factor, IV "" 100 were tuned on-line givi ng sat isfactory 

performance with two optimised control moves as illustrated in Figures 4.6 and 4.7, fo r step 

changes in the set point made at 340 and 640 seconds for outputs 1 and 2 respectively. Note, as 

mentioned before, a controller update interval of60 seconds was used in all of these tests. 
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Figure 4.6 Unconstrained closed loop step response for N = 2, A = I and W = 100 

In the unconstrai ned run (Figure 4.6), the control was efficient in reducing set point deviations, 

while at the same time being severe in terms of control movements since the second opti mised 

move makes a correction to the first move, which can therefore be an "overshoot" move. 

The Linear Dynamic Matrix Control was also observed to take logical actions accounting for 

the system coupl ing and allowing for constrai nts as ill ustrated by Figure 4.7. In this case, upper 

constraints of 60 % for input I and 50 % for input 2 were imposed. As a result, an offset can be 

seen in the level 1 in the period where the constraints are active. Th is is as wou ld be expected 

from reducing the degrees of freedom of the man ipulated variab les. However, Ievel 2 presents a 

smooth response and attempts to obtain the best fi t. 
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Closed loop step response for N = 2, A = 1 and W = 100 with upper constra ints 

V I: 60 % and V2: 50 % 

Notice that a large number of tuning parameters, including move suppression, set point 

deviation weighting factor and different numbers of contro l moves were tested for this system, 

subjected to a step change in the set point, and the LOMC algorithm gave acceptable 

performance for a wide range of these condit ions. When the weighting factors are held constant, 

decreases in the move suppression values for each manipulated variable resulted in 

progress ively faster responses. If the move suppression is held and the weighting factor 

increased, faster responses were again noted. 
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Adaptive Control Principles 

5.1 General 

Traditionally, chemical process control has focused almost entirely on the analysis and control 

of linear systems. Therefore, most exist ing control systems design and analysis techniques are 

suitable only for linear systems. This is because many processes are in fact only mildly 11011-

linear, and even strongly non-linear processes take on approximately linear behaviour as they 

approach steady state. 

Nevertheless, for those non-linear process whose non-linearities are strong, linear controller 

design techniques often prove inadequate as the process moves further away from steady state 

and more effective alternatives must be considered. An adaptive control system is one of the 

advanced control strategies that can, in some cases, provide significant ly improved process 

control beyond that wh ich can be obtained with conventional controllers. 

Despite DMC presenting several features and advantages as descri bed in Chapter 4, being linear 

it introduces some limitations when it is applied to non-linear systems. To deal with the non­

linearity nature of the present process (see section 3.3), an adaptive control scheme with 

recursive parameter estimation was proposed and implemented in the DMC algorithm. A 

deta iled discuss ion about adapt ive DMC is presented in Chapter 6. 

Basic concepts of adaptive control and model parameter est imation using a recursive least 

squares technique are introduced in thi s chapter. An overview of adaptive control is given in the 

section 5.2, while severa l schemes of adaptive control are discussed in section 5.3. In section 

5.4 suggestions of how to proceed in order to decide what type of controller to lI se are given 

and some aspects of the identificat ion and parameter estimation are discussed in section 5.5. 
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5.2 Adaptive control overview 

Modern industrial processes are getting more and more complex, and are inherently non-linear, 

respond slowly, and have large time-delays and so on. The quest for improvement in the 

performance of process plants and the avai labi lity of fast computing power has given rise to the 

development of a new generation of advanced control algorithms. These algorithms can identify 

the current optimal operating point of a process and effect the transition of the process to a new 

optimal point in an acceptable and safe manner. 

According to Astrom and Witternmark [1995], adaplive control is a technique that 

automatically adjusts the controller settings with process moves from one operating point to 

another, to accommodate cIlanges in the process to be controlled or its environment. 

An adaptive control system can be thought of as having two loops. One loop is a normal 

feedback with the process and the controller; the other loop is the parameter adjustment loop 

and this is often slower than the normal feedback. The general strategy for designing adaptive 

control systems is to estimate the model parameters on-line and then adjust the controller 

settings based on the current parameter estimates. 

Adaptive control schemes provide systematic, flexible approaches for dealing with 

uncertainties, non-linearities, and time-varying process parameters. Consequently. adaptive 

contro l systems offer s ignificant potential benefits for difficult process contro l problems such as 

non-l inearity and / or high-order, where the process is poorly understood and / or changes in 

unpredictable ways. This control technique has been applied in chemical processes. Several 

theoretical and experimental studies have appeared in chemical engineering literature, [Seborg, 

Edgar and Shah , 1986; Astrom and Witternmark. 19951, while the number of industrial adaptive 

control techniques availab le increases continuously. Most of the adaptive contro l 'systems 

require extensive computations for parameter estimation and optimal adjustment of controller 

settings. 

Seborg et al [1 986] have reviewed the adaptive contro l strategies from a process control 

perspective and describe teading design techniques. This survey paper is a good reference to get 

detailed information about this issue. 
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5.3 Adaptive schemes 

Two general categories of adaptive control problems can be distinguished, differing mainly in 

the way the controller parameters are adjusted. The first category consists of problems where 

the process changes cannot be directly measured or anticipated. The most popular are mode l 

reference adaptive control and self-tuning adaptive control. The second category consists of 

control problems where process changes can be anticipated or inferred from process 

measurements. In these situations, if the process is reasonably well understood, it is feasible to 

adj ust the controller seuings in a predetermi ned manner as process conditions change, and this 

contro l strategy is referred to as gain scheduling. Most adapt ive control literature has 

emphasised the fi rst category [Maiti, Kapoor and Saraf, 1994; Maiti and Saraf, 1995a &1995b; 

Aitchison and Mulholland, 1997; Demircan, <;amurdan and Postlethwaite, 1999]. A brief 

description of these schemes is follows: 

5.3.1 Scheduled Ada ptive Control 

As mentioned above, in some cases it is possib le to fi nd measurable variables that correlate well 

with changes in process dynamics. Such variables can then be used to change the controller 

parameters by monitoring the operating conditions of the process, to reduce the effects of 

parameter variations. This scheme is referred to as gain scheduling and is commonly used in 

industry to overcome the ga in mismatch. A block diagram of thi s scheme is shown in the Figure 

5.1. 

A good knowledge of the process is required to apply th is method and a great advantage of this 

scheme is that the controller adapts quickly to changing conditions. Since no estimation 

parameter occurs, the limiting factor depends on how quick ly the auxi liary measurements 

respond to process changes. 

Gain scheduling has been used in special cases, such as combustion control, pH control and 

other well-known control problems that present difficulties due to large variations in process 

dynam ics (Ogunnaike and Ray, 1994]. 
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F igure 5.1 
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5.3.2 Model Reference Adaptive Control 

The key component of the Model Reference Adapti ve Control scheme (M RAC), is the 

reference model that cons ists of a reasonable closed-loop mode l of how the process should 

respond to a set point change. The reference model output is compared with the actual process 

output and the observed error eM is used to drive some adaptation scheme to cause the controller 

parameters to reduce eM to zero. The adaptation scheme could be some control parameter 

opt imisatioll algorithm that reduces the integral squared va lue of eM, or some other procedure. 

This scheme is illustrated in the Figure 5.2. 
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Figure 5.2 Mode l reference adaptive contro l structure 
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5.3.3 Self-tuning Adaptive Control 

Self-tun ing adaptive controllers differ from the model reference adaptive controller in basic 

principle. The self-tuning control configuration in Figure 5.3 is flexible enough to accommodate 

a wide variety of parameter estimation techniques and controller des ign strategies. It makes use 

of the process input and output to estimate recursively, on-line, the parameters of an 

approx imate process model. Thus, as the actual non-l inear process changes operating region or 

changes with time, an approximate model is continuously updated with new parameters. The 

updated model is then used in prespecified control system design procedures to generate 

updated controller parameters. The controller could be a PlO controller or more complex 

control system structures such as a cascade controller, DMC, etc. 

Since the est imated model detennines the effectiveness of the controller, the most essentia l 

feature of the sel f-tuning controller is rel iability and robust model identification. In the present 

work, a se lf-tun ing adaptive control scheme is implemented in the Linear Dynamic Matrix 

Control algorithm, where the coefficients of the step response are updated recursively (Chapter 

6). 

x 
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Control 
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Parameters 

Controller I 

Figure 5.3 

I 
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5.4 Procedure to decide what type of controller to use 

--
x 

Outpu 

An adapt ive controller, be ing inherently non-linear, is more complicated than a fi xed gam 

controller. Before attempting to use adaptive control, it is therefore important to investigate 

whether the control problem might be so lved by constant·gain feedback. Figure 5.4 shows how 

to decide what type of contro ller to use [Ast rom and Wittlermark, 1995]. 
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Figure 5.4 Procedure to decide what type of controller to lIse 

S.S Identification and parameter estimation 

As mentioned above, on·line determinat ion of the process parameters is a key element in 

adapt ive control. A recursive parameter estimator appears explicitly as a component of a self· 

tuning regulator (see Figure 5.3). Parameter estimation also occurs implicitly in model reference 

adapti ve control (see Figure 5.2). Since system identification is executed automatically in 

adaptive systems. some aspects of it are discllssed in thi s section. 

S.S.1 Comments on identification and parameter estimation 

The non·linear and non·stationary nature of a typical chemical process leads to a change in its 

dynamic characteristics during operation. To cope with this situation, a controller should be 

able to adjust its parameters in an "optimum" manner. However, the complexity of these 

processes makes them difficult to understand, model, interpret and control. As a consequence 

engineers often try to develop empirical dynamic process models for these systems, directly 

from input I output data rather than attempting to develop time consuming, expensive 

fundamental, analytical models [Bamard and Aldrich, 2000]. 

System identification deals with the problem of bui ld ing mathematical models of dynamica l 

systems based on observed data from the system. This activity can be carried out in an off-line 

or oil-line manner. In the off-line situat ion, the process data is first stored and later transferred to 

a computer and analysed. For this "batch" processing technique, a whole data set is evaluated at 
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once. In the on-line techniques, the identificat ion is performed in on-line operation with the 

process and, two ways of processing data can be distingui shed: real-time processing and batch 

process ing. In real-time processing the data is evaluated immediately at each sample instant, 

while in batch processing, the data is evaluated periodically after periods of measurements have 

been made. Rea l-time process ing in general needs no storage of data since each new point is 

used to update the model parameters. 

Table 5.1 Some examples for the relati onships between different final goals and some 

specifications of process identification [Isemmnn, 19801 

Final goal of 

mode l application 

Verification 

theoretical 

models 

controller 

parameter tuning 

computer aided 

design of digital 

control discrete time 

self-adaptive 

digital control 

process parameter 

monitoring 

and failure detection 

Type of Required accuracy 

process model of model 

I i near/continuous- mediumlhigh 

time non-parametric! 

parametric 

linear, non-parametric, low for 

continuous-time input/output 

linear, medium for 

parametric input/output 

(non-parametric) beha\liour estimation 

linear, medium for 

parametric, input/output 

discrete-time behaviour 

linear, high for 

non-linear, process 

continuous-time parameters 

Identification 

method 

off-line step response of 

frequency parameter-

estimation 

off- line 

step response 

on-line 

off-line 

parameter algorithms 

on-line parameter 

estimation 

in closed loop 

on-line 

parameter 

estimation 

It is thus important to regard first the final goal for the application of the process mode l, since 

this determines the type of the model and its accuracy requirements and the identification 

method. Prior knowledge of the process is required. Table 5.1 shows some of the relationsh ips 

between different fina l goals and some specifications of process identification [Isermann, 

1980]. The key elements of system identification are the selection of model structure, 
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experiment design, parameter estimation and val idat ion . The se lection of model structure and 

parameterisation are fundamental issues. 

A general procedure of process identification is illustrated in the Figure 5.5 and shows how the 

identification is an iterative procedure. Isermann [1980], presents a good description of pract ical 

aspects of process identification while Lj ung [1999] descri bes a theory of system identification 

that has direct consequences for the understanding and practica l use of avai lable techniques. 

T~k 

Economy 

p rocess 

A prior 
Physical laws 

Final - Premensurements 
goal 

knowledge Operating condition 

\.. I 
-. Design of 

experiments 

~ 
Signal generation, 

mensurements 

and data storage 

.J. ~ 

r- Application of Assumption of 
identification method model structure 

-+ 
Process model 

I- Non-
- parametric 

~ 
Model structure 

parametric detcrmination 

l 
Modcl No 

verification 

.J. '" 

I Final I model 

Figure 5.5 Genera l procedure of process identification 

, 

Because system identificat ion has been suffic ient ly formalised for li near systems, but not for the 

empirical identi fication of non·linear dynamic systems, many researchers have studied th is 

problem. A method for estab lishing second order plus dead time model par~mete rs under 

c losed-loop PI contro l is proposed by Suganda, Krishnaswamy and Rangaiah [19981. The 
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advantage of this · technique is that the required closed-closed loop response data can be 

obtained while the process is in normal operation since many industrial controllers are of the PI­

type. 

Barnard and Aldrich [2000] propose a formal methodologica l framework for the empirical 

modelling of a non-linear dynamic system that can be parameterised as a state space system. 

The methodology invo lves classification of a time se ri es and associat ing a suitable mode l with 

the prediction of the time series. 

Some aspects of the real time parameter esti mation are di scussed below, followed by an on·line 

ident ification example using batch processing. A real·time process ing example is presented in 

Chapter 6. 

5.5.2 Recursive le~lSt square estimation of model parameters 

In adapt ive control, rea l-t ime (or sequentia l) updating of the model parameters is more 

appropriate than batchwise (non sequenti al) process ing of the input·output data. Algorithms that 

are suited to real· time usage and are based on successive updating of the model parameters are 

called recursive. There are a large number of recursive identification algorithms described in 

the literature. Treatments of these techniques are given in many textbooks, and Ogunnaike and 

Ray [1994J; Astrom and Winenmark [1995] and Ljung [1999] may be mentioned as su itable 

references for further study. The most popular technique is Recursive Least Squares (RLS). 

di scussed in this section. It is assumed in thi s technique that the order and the form of the 

system are known. We start thus by giving an overview of Kalman filtering since it is used 10 

eslimate the parameters of the mode l rectlrsively by us ing the least squares technique. 

5.5.2 .1 Kalman filte r interpretation 

Cons ider linear, discrete time dyna mic systems where pred ict ions and observations are 

subjected to random errors to account for the uncertainties: 

(5.1 ) 

and for the measurement : 
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y / =G/x,+ J.l, (5.2) 

where x is the state vector, u the input vector of independent variables, i represents the time 

and y the system output. G is an observation matrix while A and B are matrices of appropriate 

dimensions (11 x 11 and 11 x 111, respectively, for an n-dimensional state and an m-dimensional 

input). These matrices (A and B) typically correspond to unknown values of physical 

coefficients, property constants and .the like. a and J.I are process and measurement noise 

contribut ions respective ly acting on the states . They resu lt from both measurement 

imperfections and disturbances affect ing the process. They are considered to be random 

variables with zero means, and with known covariances: 

(5.3) 

and for uncorrelated a and J.I 

E{SJi ' } = [0] (SA) 

Linear, discrete·time models are preferred for adaptive control because they lead to algorithms 

Ihat are readily implemented on a digital computer. 

In a real time identification situation (Figure 5.6), X'+ h x" and U j are observed on- line and the 

elements inside A and B matrices that give a good description of the input I output behaviour of 

the system need to be found. The on-l ine computation of the model must be done in such a way 

that the processing of the measurements from one sample can, with certainty, be completed 

during one sampling interval. Otherwise the model building cannot keep lip with the 

infonnation flow. 

U;+l Real I-X~ Real 
pnxoess word -- .. _------- ---

Figure 5.6 

- ---- --------------------. __ .----_ . 
~. , 

-4 RLS 
Z·l ' Ident . 

= of 
Z"~ model -

A 

B 

On-line identification configuration 
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The Ku lman interpretation of th is system, taking in to account the expected errors, is that the 

filter gain K, is yielded on each time·step for adjusting x as follows: 

(5.5) 

(5.6) 

M,., = A, [1- K, G,jM, A,T + Q (5.7) 

where Mi is the filter covariance matrix (diagonal and initially small to promote fast adjustment 

at the start), R the expected observation error covariance (usua lly diagonal) and Q, the expected 

prediction error covariance (usually diagonal). Higher prediction errors Q relative to 

observation errors R, force the filter to follow observations more closely, whilst specifying 

higher observation errors R makes the model less sensitive to observations. 

The initial conditions can be set so that Xo is what we guess the parameter vector to be before 

we have seen the data, and Mo is the initial covariance matrix, which renects the confidence in 

thi s guess. 

Equat ion 5.6 shows that the estimate X i+! is obtained by adding a correction to the prediction of 

X i->- I based on X i accord ing to the model. The correction term for the model parameter vector is 

thus proportional to the prediction error (difference between the measured value of Yi and the 

prediction of Yi) based on the prev ious estimate. The components of the Kalman fi lter gain 

matri x, Ki are we ighting factors that introduce an optimal correction inro the integration cycle. 

Notice that this form (equations (5.5) to (5.7)), allows A and B to vary in time. This provides a 

way to hand le non· linearities, since, as the process moves to a new operating point, elements of 

these matrices will change. Recall that these equations were also applied in Chapter 3 for state 

estimation of the state·space model of the Training Plant, using an extended Kalman filter. 

5.5.2.2 Least squares parameter estimation 

Parameter estimat ion is concerned with the detennination from experimental data of the best set 

of values for unknown parameters in a process of known form. The least squares estimation 

approach (also ca lled linear regression) is a basic technique for parameter estimation. The 

method is particularly s imple if the model has the property of being linear ;n 'he parameters. 
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Based on Ogunnaike and Ray [19941, Astrom and Wittenmark [1995] , we present some basic 

principles fo r parameter estimat ion. Consider a mathematical model subjected to an 

unavoidable measurement error, as well as the inaccuracies that can be written in the form: 

; i = 1, 2, . . . , t (5.8) 

where y is the observed va riable, p are parameters of the model to be determi ned, g is a known 

funct ion that may depend on other known variables and is called the regression variable or the 

regressor and eM jlhe vector of errors between the model pred iction and the actlLa l data, 

The parameter estimation is now involved with finding a specific set of parameter 

va lues such that some scalar function J of the vecto r P. known as the objective function 

and usually represented as J (p) , since it depends on the parameter values, is minimised. 

Typically we use the quadratic form : 

/. / T 

J(p)= ~]eM ,] [eM ,] (5 .9) ,., 

or from equation (5.8) 

i., T 

J(p) = Dy, - f (g" p)] [y, - f (g;. p)] (5.10) 
i. l 

where the summation is over all of the data points. Somet imes it might be necessary to assign 

more weight to more precise measurements, and less weight to others. Thi s is accomplished by 

introducing weighting coefficients as follows: 

i., 
J(p) = L:[y, -f(g" p)j' w, [y, - f(g" p)] (5 . 11 ) ,., 

The coefficients IV/ reflect the relati ve precision of the measurements (for more details about 

weight factors see section 4.3). 
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It can be seen from equat ion (5.10) that th is parameter estimat ion IS really a quadratic 

optim isation problem. Its object ive is to estimate the parameters in p that minimise the model 

error. 

Remember that this technique is also applied in the constrained Dynamic Matrix Control 

algori thm (Chapter 4) where J is a defined quadratic function depending on a limited sequence 

ofN moves (6m*) to be optimised. 

Iff(g;, p) is linear in the parameters p, equation (5.8) can be represented by equation (5.2) as: 

y~G p + CM , (5.12) 

whe re G is the complete matrix of independent variables compi led for each set; y is the entire 

co llection of the experimentally obtained data; and C,\ I; contains the prediction errors, and we 

wish to find a vector p ofslIitable parameters. IrG were square and non-singu lar, we could get 

the constant coefficients p directly from 

(5.13) 

However, in genera l, G will not be square and the linear (least squares) parameter estimation 

problem is now to find the vector p for which the squared deviation of the data set y from the 

~lodel Gp is minimised. The funct ion is minimal for parameters p such that: 

(5.14) 

If the matrix GTG is non-singular, then the minimum is un ique and given by: 

p =(GTGr'GTy (5.15) 

5.5.2.3 T he recursive least squa re parameter estimat ion 

In the adaptive controllers, the observations are obta ined sequentially in real time. It is then 

desirable to make the computation recursive to save computation time. Computation of least 

square estimates can be arranged in such a way that the results obta ined at time i can be used to 

get the estimates at i+ 1. We can rewrite the solut ion of equation (5.15) in the recursive form by 
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using the Kalman filter. We also asslIme that in the equation (5.1), the matrix A is an ident ity 

matrix and, that matrix B is the null matrix : 

(5.16) 

Thus, following the Kalman filter interpretation (equations 5.5 to 5.7), the RLS fit is given on­

line by: 

(5.17) 

PH' =I p,+ K,[i'-G,p,] (5.18) 

(5.19) 

Least square parameter estimation can also be applied to certain non-linear models. The 

essent ial restri ction is that the models be li near in the parameters so that they can be written as 

linear regression models [Astrom and Wittenmark, 1995]. Notice that the regressors do not need 

to be linear in the inputs and outputs. 

5.5.3 Application of the recursive least sq uares parameter estimation technique to a 

Pump-tank system - case study 

The open loop on-line identification by recurs ive least squares parameter estimat ion technique 

is illustrated in this example using batch processing for step input changes, on a 2-input I 2-

output Pump-tank system for simulat ion and laboratory tests presented in Figure 4.4. The model 

parameter est imation was constructed from observed data. 

To eva luate the disturbance in fl uence, a ra ndom-number generator was used to produce a 

sequence of input changes during the identification time that could be considered as a 

representation of wh ite noise. 

Determining the model from the data set 

From the collected data for parameter estimation, a "best" set of the converged va lues of the 

parameters (F igure 5.7) was used to estimate the elements of A and B matrices of the model, by 

tak ing the average of that set. The resu ltant model fo r .6.t = 200 seconds, is represented by 

equation (5 .20). 
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Figure 5.7 Data set fo r parameter estimation 

[
0.914 

Xi+ l = 0.089 
0.034] [- 0.030 - 0.062] x.+ u. 
0.935' 0.000 0. 11 7 ' 

Model validation 

(5.20) 

The actual s iruation is that a certain model structure to predict future outputs, was selected and 

therefore, a test to evaluate the model abi lity to describe the observed data is needed. A "good" 

model is one that is good at predicting that is, one that produces small prediction errors when 

compared to the observed data. Note that there is considerable flexibi lity in se lecting various 

pred ictor functions, and th is gives a corresponding freedom in defining "good" models in terms 

of prediction performance. 

In the present case, the val idation was based on integration using the dynamic matrix as in 

equations (5.21). The model initial va lue was attached to the measured sequence at the starting 

point of the sequence. 

(5.21) 
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Where: aJk and bjk are the parameters of A and B matrices 

K,. output j at time i 

~ 
0 
> 
0 
~ 

u" inputj at time i 

Kjop outputj at operating point 

Ujop input j at operating point 

100 

80 

6<l 

40 

20 

o - - ;r-""Y<--_--_-----.''--V-
1000 2000 3000 4000 6000 7 -20 L-____________________ ---' 

Time [sI 

i--L1 pred L2pred ........ L1 meas ____ .L2meas l 

Figure 5.8 Comparison of measured and predicted outputs 

Figure 5.8 shows how the predicted outputs track the observations in some cases, while in 

others we have an expected offset. This is because of the measurement errors, inaccuracies in 

the model formulation and the non-linearity. Recall that it is assumed that the process is linear 

in the parameters. However, it can be seen that the fit is acceptable. 
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Chapter 6 

Adaptive Dynamic M atrix Control 

6.1 Int roduction 

In this chapter, the implementation of the combined processes of Dynamic Matrix Control and 

Adaptive Control discussed in Chapters 4 and 5 respect ive ly is presented. The performance of 

the resulting Adaptive Dynamic Matrix Control (ADMC) controller is expected to be 

significantly better than the conventional DMC. Because of the advantages of overcom ing non­

linearity problems and the avoidance of a rigorous model, its application in designing a 

controller for the Training Plant in this study was considered. 

A Literature rev iew of ADMC is presented in section 6.2. Formulation of the AOMC technique 

is shown in section 6.3. A regulari sation approac h to account for extensive computations 

required for parameter estimation when dealing with a high dimension system is considered in 

sect ion 6.4. Finally, it is presented in sect ion 6.S a case study of ADMC algorithm 

imple mentation. 

6.2 Literatu re review 

As described in Chapter 4, Dynamic Matrix Control is a highly successful model predictive 

contro l scheme based on a step response model. However, being based on a linear mode l its 

performance begins to deteriorate as the process moves away from the nominal operat ing point. 

Thus, several researchers modified the original DMC algorithm making it adapt ive to account 

for the various problems mentioned in prev ious chapters, since ADMC is expected to perform 

well even in the presence of time-varying process gain and process non-linearity. Successful 

app lications of Adaptive DMC have been reported in the literature. 
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Maiti et al [1994] developed a closed-loop on-line scheme for identificat ion of a process in 

terms of pseudo impulse response coefficients for a commonly encountered non-linear problem 

in the process industry, the control of pH. The model was subsequently used to update the 

dynamic matrix, making the DMC algorithm adaptive, and thus overcoming that difficulty. 

Distillation is one of the most widely used separation processes in the Chemical ! Petrochemical 

industry and its control is economically important. However, most of the industrial1y important 

distillation processes exhibit a large degree of non-linearity and the control system designed at 

one operat ing point may not perform well at another operating point. Thus updating of the 

process model is an important issue in distillat ion column contro l. Maiti and Saraf (1995a & 

1995b] applied DMC adaptively to control the top product composit ion of a distillation column 

for both servo and regulatory problems. They also discussed the application of an adaptive 

DMC scheme to start-up and control of a distillation column, following a closed-loop on-line 

identification technique for single-input, single-output systems developed by Maiti ct al [1994] , 

to update the DMC contro ller model to accommodate process-model mismatch, and extended it 

for a multivariable system. 

Zhu and Huang [1995] present an approach for self-tuning of DMC by on- line identification of 

the impulse model of the process based on the unit step set point change made for the closed­

loop system. The proposed algorithm differs from that usually encountered in the ADMC 

literature since it is not implemented in the DMC algorithm. However, it has the advantage of 

being simple and requires little computing, and if added to conventional DMC algorithm, the 

resulting DMC algorithm is expected to find wider applicat ion in industry to control 

complicated high order processes with large time delays or varying dead time. 

Aitchison and Mulholand [1997] appl ied an adaptive MPC to regu late the peak temperature in a 

heat exchanger. The system is highly d istributed and conditions vary with both position and 

time, so control moves needed to account for the previolls sequence of moves, and MPC 's are 

well suited to these applications. Adaptation of the controller with flow changes, which have a 

severe effect on the system behaviour, showed some improvement in the controller performance 

when compared with a non-adapted contro ller. 

As mentioned in the earlier chapters, the control of the present Training Plant is difficult 

because of its non-linearity, interactive nature, being multi variable and difficult to model. 

A self-tuning adaptive contro l scheme described in section 5.3.3 was applied in paralle l to DMC 

to generate updated controller parameters as the process moves from one operating point to 

anothe r. This was done by adapting the internal model in the MPC structure (Figure 4.3), using 
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recursive identification of the step response coeffici ents following the technique developed by 

Deghaye, Guiamba and MulhoJland [2000]. The implementation of the proposed adaptive 

control technique in the existing LDMC algorithm was done within a flexible SCADA system 

at the School of Chemical Engineering at this Un iversity, as developed by Mull~ol1and and 

Prosse r [1997]. This internal model control (I MC) design method is based on an assumed linear 

discrete process model and relates the contro ller settings to the model parameters in a 

stra ightforward manner. An advantage of this approach is that the initial model is eas ily 

specified, and deviations from it as the adaptation progresses have a sign ificance, wh ich any 

user is able to assess. A special technique to deal with the integrat ing nature of the process 

under study is also considered and is discussed in Chapter 7. 

6.3 Formulation of an Adaptive DMC Algorithm 

We desire to estimate in real -time by using a recursive least squares parameter estimation 

technique, the coefficients of the open loop step response, Bh B2, B3, ••• , BM to be lIsed to 

construct the matrices: Open loop Motrix, BOl, Offsel Malrix, Bo and Dynamic Molrix B 

described in Chapter 4. The updated mat rices are then applied in the DMC algorithm to 

compensate fo r non- linearity and changes in system behaviour. 

Cons ider the process at a certain instant M steps be/ore Ihe presenl, where the contribution of 

the M past inputs prior 10 Ihal, .t.m*PAST and M subsequent control input steps, .t.m pAST up to 

present time will be considered as illustrated in Figure 6.1. 

Control Horizon , 

-M p 

Figure 6.1 Predicted response from 2M past moves up to present time 

A corrected prediction of the future traj ectory from the present time up to P horizon is given by 

equation (4.5) as: 
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(6.1 ) 

In thi s formulation it is taken that P = M For predictions of the outputs about the time -M, 

matrices Bo, BOL and B are defined from equat ion (4.3), with the bottom matrix-row of each of 

these a s fo llows: 

B' • ~ [B" BioI-! B"'_2 B
M

_
1 B, B,] 

Bol. = [BM B" B" BM BM BM] (6.2) 

B' ~ [B" B
M

_
1 BAI_~ B

M
_

l B, B,] = B' 0 

Moving the datum back to -M, ignoring the recent M moves, the predicted output at this time 

should be given by: 

(6.3) 

So, it is now possible to predict the corrected output at present time as defined by equat ion 

(6.1), taking into account the most recent M input steps: 

(6.4) 

Using B'o = B' the predicted change of the state over the recent M steps is thus defined frolll 

equation (6 .4) as: 

(6.5) 

The measured change is 

(6.6) 

where X-MMEAS is the measured outputs M steps ago. 

Recall from the di scussion of DMC in Section 4.2 that the model error CM is gIven by the 

differe nce between the measured changes at present time and the predicted output changes, that 

IS: 

(6.7) 
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Substituting above equation In the equat ion (6,5) and rearranging the measured changes are 

given by: 

{~~lmEAS - [ B;Jf, - B; ] ilm;A,IT } = e,lI + B; ilJ1lpAsr (6.8) 

The left hand side of equation (6.8) defines corrected measured changes by [a'OL - B'o] 

ilm ' PAST. which is a correcting vector for the steady state and remaining transient at time M and 

it is expected that the true model error eM will average O. Since the correction term does not 

contribute strongly here. we simplify the ident ification by usi ng past values of 8,. Eh EJ , .... . BM 

to construct B 'o and B'OL on the left hand side, Thus the entire left-hand-side can be treated as a 

known " measurement", 

Let us define the observations as: 

(6.9) 

thus. equat ion (6.8) becomes 

(6.10) 

where the matrix of matrices B'o for III inputs. 11 outputs and M-step horizon is given by: 

(6.11) 

The n b i vectors are defined as: 

b, = [bAl,'I. "" b~f.lm' bM_',"'·" .bM_"I",, '· '.b"",·' ,.b,.,mf 
(6. 12) 

Then, the observation vector (equation (6,10)) can be written as: 
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e 1.f1 

e 1.f2 

1 0 0 0 !J,. n ,r I'AST 0" 0' 0' 
• 0 0 0 OT AlnT PA.\7 0" OT e M" 

y= 
OT OT !J,.11{ I'AST 0" 

b, (6. 13) 

b, 
OT 0" 0' 

,. 
0 0 0 !J,.m PAS]' 

b,,_1 

b. 

o r 

y Gp (6. 14) 

where 

0 0 0 
,. 

!J,.m I'A."'/' OT 0" 0 '1' 

0 0 0 0' ,. 0" 0' !J,.m I 'AS'/' 
G = 

0" 0" !J,.m T"AS1' 0" 

0 0 0 0" 0" 0" !J,. m T I'AST 

and 

[ 
l' T T l' T T T JT p = C MI , c ~f2 , ... , C M/! , b l , b 2 , ... , b,,_1 , b" 

G is an augmented matrix combining an identity matrix related to vector of model errors, e,,1o 

and a diagonal matrix with past input contribution, 6 m pAST in the recursive identification of the 

B'o matrix coefficients. 

To estimate the contents of the parameter vector p, the Kalman filter is set up as (see sect ion 

5.5.2) 

P,., = A p, + K, [y - G, p,] (6.15) 
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It is desired to force the offset errors CMi back to zero over a period, by adjusting the bkiJ terms, 

but its must be allowed to move from zero temporarily whilst this happens. Thus A will be an 

iden tity matrix except that the first n elements on the diagonal will be zero, to give the C/Ioli a 

zero base, Le. 

00000 0 

0000000 

A = 0 0 0 

000 

1 0 

o 
o 0 

o 0 

000000 

When plant var iations slap, there will be no more changes in the p vector. 

(6.16) 

For safety, the plant should be allowed to drift back slowly 10 the original measured step 

responses. The follow ing model is used 

P,., = A p, + Bp. + K,[y-G,p,j (6.17) 

where Po is the initially proposed p vector and matrices A and B are defined as: 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A = 0 0 0 a 0 0 0 B = 0 0 0 (I-a) 0 0 0 (6 18) 

0 0 0 0 a 0 0 0 0 0 0 (I -a) 0 0 

0 0 0 0 0 0 a 0 0 0 0 0 0 (I -a) 

with 0 ~ a ~ 1 and we generally expect a to be close to I to find "constant" step response 

coefficients, but force the eMi toward zero by virtue of the first 11 diagonal elements being zero. 

Shou ld the plant become quiescent, Yi and G i move to 0 and the existing p may lose relevance. 

Then the B matrix slowly draws predictions towards the initial step-response Po. 
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The required recursion for the optimal Kalman gain K j is thus given by equations (5.5 to 5.7) 

as: 

T [ T ] -' K,= M;G; G,M;G, + R 

P .. , = A,p, + B,p, + K, [y -G,p,l 

M,., = A,[l - K,G,lM,A,T + Q 

(6. 19) 

As defined in Chapter 5, M j is the fil ter covariance matrix (initia lly small and diagona l), R the 

expected observation error covariance (usually d iagonal), Q the expected prediction error 

covariance (usua lly diagonal). For the present recursion, the first n elements on the diagonal 

matrix Q. if small, will cause the errors eM, to red uce quickly with more rapid adjustment of the 

bkij parameters. 

At each sam pling inslant, the coeffic ients of the step response BI> Bh B3 , ••• , Bn are updated , and 

then used to update B'OL, B'o and B' . In this way, the DMC controller continues to be 

constructed from a good local representation of the process. 

6.4 Regularisation approach 

If the p vector conta ins many parameters, the problem of minimising the error may be ill 

condit ioned. Regu larisation is really a general technique to so lve ill -posed problems. It is of 

particular importance for non- linear black-box models, where many parameters are often used 

and it may not be possib le to estimate several of them accurately [Ljung, 1999]. 

The identification problem as described above is of a high dimension (A1 x III x n parameters). 

This will usually cause difficulty if the process vari ations are not rich in information. Thus an 

option for regularisat ion has also been provided. This is based on a weighted combination of the 

original step-response (x \VI), and the same response delayed one step in time (x w}) (Figure 

6.2). This reduces the search to 2 x III x n parameters. 
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Basic funct ions for regu larisation 

The weight lV, allows scal ing of the original response, wh ilst the proportions of WJ and WJ g ive 

some ability to shift the step response in time. The original shape of the measured response is 

reta ined but moved in s ize and time by the proportions of w, and WJ. The adapted response thus 

becomes defined by on ly two parameters, rather than individual new values for every point on 

the response. The regularisati on is eas ily hand led in the above fonnulation by noting that 

P = F Pr (6.20) 

where PT is the reduced parameter vector, so that we only have to replace G with GF in the 

fonnulat ion. The construct ion of F is most easi ly illustrated using a 2·input 12·output process: 

eMI 

eMI 1 0 0 0 0 0 0 0 0 eMZ 

eM> 0 1 0 0 0 0 0 0 0 Will 

b~1I1 0 0 b1'11 
b OSH/fT 

Mn 0 0 ... 0 0 0 WZ11 

b"'12 0 0 0 0 b!m 
bOSlf/~T 

Mll 0 0 0 Will 
(6.21) 

= 
b M • 1,11 0 0 b!H.lI bOSH/FT 

U · I,II 0 0 0 0 0 WIn 

bM_I,I~ 0 0 0 0 b:,wl,ll bOSH/FT 
A/-1.12 0 0 0 Will 

w211 

b m 0 0 0 0 0 0 0 0 ~~~ ~OSHIFT 

" win 

wl21 

6·9 



Chapter 6 Adaptive Dynamic Matrix Control 

6.5 Application of ADMC on P ump-tank system - case study 

The simulation study was carried out on the 2-input 12-output Pump-tank system described in 

Chapter 4 and shown in Figure 4.4. The conventional DMC and the ADMC algorithm were 

applied to control the leve ls Ll and L2 manipUlating va lves VI and V2. Notice that the 

conventional DMC is referred to as LDMC. 

6.S.1 Off-line simulat ion 

The data acquisition and control action implementation tasks were performed with the on-board 

convolution model, loaded with the true measured step responses illustrated in the Figure 4.5 , 

and the DMC algorithm with "faulty" initial step responses in which, the diagonal responses 

were both twice their correct magnitudes (see Table 0.1 in the Appendix D). An initial 

operating point lying at 50 % for both manipulated variables and controlled variables was 

considered. 

The control1er design parameters M = 10, P = 10, and N = 2, were used for LDMC I ADMC 

algor ithms. The move suppress ion, A and weight factors W were tuned and a value of I for both 

parameters proved acceptable. The performance of the DMC algorithm was compared for the 

case where the initial step-responses were not adapted, versus the case with adaptation. The 

identification rapidly converged to the true step responses through a wide range of Q and R 

tuning. 

Offset 

0.046231 

·0 .32995 

Figure 6.3 

............ Adapted Non adapted , , • CV1 MV2! 1 1 CV1 MV1 , 
J-";'. , , , , 

. ~'r ~· 
, ., • '--., ., , · I ., · • • · 

R., 0 .580 -0.015 R., 1.011 0 .009 

• · , · 
CV2 MV1 CV2 MV2 , 

1'-.. , , , , · 
/- + 

........... 
• · . ............... '-r , , , , , 
, I , 

R .. 1.001 0 .005 R., 0 .718 -0 .163 

True step responses ide ntified by regularised model 6 minutes and 49 seconds 
from the start of the run 
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Offset 
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·f' 1~ • · ~ ................ .... 
• 

'\ '\ • · , 
• I , . 
Ro, 1.001 0 .001 Ro, 0 .983 -0 .014 

Attempt to find true step responses using unregularised model at same time as 
in Figure 6.3 

In the tests considered here, the coefficient a. (rate of going back to initial parameters vector, Po. 

discussed in sect ion 6.3), was set at 0.9999, the model error, cM terms at 1.0, and the expected 

observation error covariance, R, diagonal terms set at 1.0. Note that a. = 0.9999 suggests an 

extrcmcly slow movement towards the assumed starting forms of the responses. In practice this 

effect was faster than expected, possibly due to the structure of equation (6.17) used in the 

Kalman filter. Further, an identity matrix used for R was possible because of the similar input 

and output unit ranges (%). In Figure 6.3 the dark curve is the initial "faulty" step-response. The 

light dashed is the regulari sed result at a particular time. The equiva lent result provided by the 

unregularised model , fo r the same tuning, at the same point in time (6'49" from sta rt), is g iven 

in Figure 6.4. Because each point of the response is solved for individually, considerably more 

variabil ity is encountered. 

In Figure 6.5 a compari son is performed between the control performance in the non-adapted 

case (conventional DMC) (a), and the recursively adapted case (b) using the regularised model 

for changes in the set points. Although ADMC yie lded improved performance over LDMC, 

LDMC was not totally unsatisfactory. In the adapted case there is a small overshoot and the 

process attains its new steady state quickly and smoothly. Thus, the controller performance is 

tighter and quite sat isfactory with the va lves working much harder. This is to be expected 

because the specified diagonal responses for the DMC were twice their correct sizes. Therefore 

control moves in the non-adapted case will be ha lf what they shou ld have been, giving a 

somewhat detuned contro l response in the top diagram. 

6-1 1 



Chapter 6 

100.0 

90.0 

800 

70.0 

00.0 

(a) so.o 
40.0 

30.0 

20.0 

10.0 

~3S.S1 

100.0 

90.0 

00.0 

70.0 

00.0 
(b) 

" .0 

" .0 

30.0 

20.0 

"0 

,&104.S1 

F igure 6.5 

Adaptive Dynamic Matrix Control 

Ll so El I Ll I 
I f fi I I I ,. 

I 4V! : ~ .~ 

L2 ~ - . Uso \. 

:-1' f II ".1. I I!/ 
\ " -----L_M ~ 1£ 1.:""'.' .. ;----
~, ..... ......... , • I ' , , -.- 2:;.:::;.:.::.::.:.:;····· .. 

V' I ' ......... -- ; 

----- , 
\, ............ 

V2 

09.36.S1 09.37.S1 09.38.S1 09.39.S1 09:40.S1 09.41 .51 09.42.51 09:43.51 09.44.51 0945.51 

Time 

10.05.51 10.06.51 10.07.51 10.08.51 10.09.51 10.10.51 ' O." .S' 10.12.51 10.13.S1 10.14.51 

Time 

Closed loop DMC level response to set point variat ion for non-adapted (a) and 

adapted (b) cases (simulation model) 

6.5.2 On-line application 

So far, in Section 6.5.1 we have only considered app lication of the algorithm off-line, to a linear 

convolution model based on the measured process step responses. The real-time control study 

for the same in put change sequence and same parameters as applied in the off-line simulation. 

was run with and without adaptation. with regularisation effective. on the Pump-tank system in 

the laboratory using a sampling interval of 60 seconds. However, a set point start and end of 

(50,30) was used instead. since the system shown in Figure 4.4 attests that (50,50) is not 

feasible! 

Figures 6.6 and 6.7 shows the output responses to input step changes with the non-adaptation 

and adaptation cases respectively. The difference is not great, but careful inspect ion reveals the 

use of higher gain in the adapted case, as we would expect, because the DMC receives the 

updated smaller true step responses from the identifier. 
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Closed loop on-line ADMC level responses to set point variat ion in the Pump­
tank Plant 

Since differences behveen the response curves cannot be easily distinguished in these figures, 

Quadratic Performance Ind ices (QPI) of the controlled variables, levels LI and L2, were 

ca lculated from the logged data. These consist of the sum of the squares of the errors 

(difference behveen set point and process variable), and results are given in Table 6.1. As 

expected, the ADMC controller has a better performance for both levels when compared with 

the LDMC controller, since it presents smaller QPI values i.e . 9.24 and 6.07 for leve ls LI and 

L2 respectively. Clearly this is only an approximate comparison, because the behaviour of each 

contro ller is determined by the definition of its objective function, which includes the control 

move penalisation. Thus if either of the adapted liS unadapted cases demanded a greater degree 

of movement, it wou ld apportion terms differently with regard to the objecti ve function. 
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Table 6.1 On- line LDMC and ADMC quad ratic performance indices 

Conventional DMC Adapted DMC 

QPl- Ll 10.92 9.24 

QPI- L2 6.28 6.07 

Note that the identified responses in Figures 6.8 and 6.9 move towards the true measured 

diagonal responses (non-adapted responses are 2x the init ial responses) set in the DMC. Some 

spurious effect introduced by the plant causes a significant change to be registered in an off­

diagonal term. This can be protected in practice by increasing the response time of tile identified 

responses by lowering the prediction error, Q in the Ka lman filter and r.y constraining the 

allowed range of variation. 

Offset 
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Figure 6.8 
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Chapter 7 

Integrating Adaptive Dynamic Matrix Control 

7.1 Introduction 

The Adaptive DMC controller discussed in the above chapter proved adeqtla~e for muhivariable 

and non-linear systems. However, when the LOMC algorithm is lIsed for control of processes 

containing integrating process units, steady-state offsets occur for sustained changes. This offset 

it is not acceptable for most applications. 

To overcome the problem of the integrating nature of tile present Training Plant, an integrating 

ADMC approach was deve loped and is disclIssed in thi s chapter. A literature review covering 

integrating processes is presented in the section 7.2. Section 7.3 shows the formulation of 

integrating DMC wh ile, Integrating AOMC is discussed in the sect ion 7.4. Finally, application 

results of Integrating ADMC on the 2-input 1 2-output sub-system defined on the Training Plant 

which include off-line and on-line simulation, are presented in section 7.S. 

7.2 Integ rating processes overview 

Integrating processes are those that produce a ramp change in the output for a step change in the 

input (Figure 7.1). This resuhs from the process unit's material or energy imbalance [Gupta, 

1998), and they are commonly present in chemical industry. '"Non-se lf regulatory" level 

processes are typical examples of integrating process units. 

7·1 



Chapter 7 Integrating Adaptive Dynamic Matrix: Control 
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Figure 7.1 Typical integrating output response to a unit step input 

Integrating processes produce a steady-state offset when controlled by a standard DMC 

algorithm, which assumes responses reach steady-state on the final point. For applications 

where the performance objective of the process control is to ensure that the controlled variables 

remain very close to their set points, these steady-state offsets are not acceptable. The control of 

the outputs of integrating process units needs to be considered along with the control of other 

process outputs and in the case of constrained variables, all of the constraints need to be 

considered simultaneously. This allows the determination of the true optimum of the 

optimis8t ion problem that needs to be solved at every control instant. 

Integrating process studies have appeared in the literature. Lee, Morari and Garcia [1994] 

describe a MPC technique based on step response parameters for systems of stable and / or 

integrating dynamics, developed using state-space estimation techniques. The standard step 

response model is extended, in tbis technique, so that integrat ing systems can be treated within 

the same framework. A ramp disturbance is eliminated by introducing a double integrator in the 

controller.They showed that the optimal observer can be calcu lated by solv ing a Riccati 

equation of significantly lower dimension. 

Gupta [1998] presents an alternative approach to eliminate the steady-state offsets that are 

encountered when dealing with integrating process units. The proposed approach does not 

require the formulation of the MPC problem in the state-space fonn and because of thi s 

advantage, it can be implemented directly in the step response fannu lation of the DMC 

algorithm. This scheme takes advantage of the fact that the predicted response due to past inpuls 

is a straight line passing through the output at the current control instant. Thus, the slope of the 

predicted response is determined from the slope of the output trajectory between the current and 

the previolls contro l instants. Note that this slope includes the effect of unmeasured 

disturbances and any model mismatch that may be present. This approa~h allows the 

considerat ion of all inputs, outputs and constraints in the one optimisation problem. 
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As me ntioned above. the Train ing Plant under study has integrat ing behaviour. Pred icted 

responses of level due to past input steps resulted in ramp changes. Thus, to control this system, 

we follow the deve lopment made by Gupta [1998], fo r control of an integrat ing process us ing 

DMC by implementing the changes directly in the step response in the DMC algorithm, and this 

is descri bed below. 

7.3 Integrating LDMC formulation 

As d iscllssed in the Chapter 4, the step responses of an m-input I ll-output system can be 

represented by a series of matrices BJ, Bl • B), ..... , Bp (sca led for a un it input step). The pos ition 

(iJ) in each matrix B, is a point on the trajectory at time t for the i th output as it responds to the 

j tll input. It is possible to indicate an integrating re lat ionship by unequal corresponding 

elements in the final two mat rices, B I, and Br .l , and cons ider that th is finat grad ient continues 

indefinitely from th is point onwards as a result of the integration. Define 

(7. 1 ) 

Now let ilm, be the vector of input moves (changes) made at time t, with X, the vector of outputs 

at time t. \Ve a lso make use of a mov ing frame of reference for time in which (=0 represents the 

present time. Thus, fo r integrating processes equation (4.3) can be written as equation (7.2). 

Recall that the vector of vectors X OPRED contains P identical predictions of the output vector at 

the present time /=0. The vector XpRED contains pred ictions of the output vector at P points on 

the future trajectory, as contributed to by the past M control moves, and the future P control 

moves. 
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P copies of this offset error are made by comparison of XOPRHD with a vector X O.IfEAS containing P 

copies of the present output measurement, and are used to correct our future predictions as 

defined by equation (4.4) as follows: 

(7.3) 

-AI 

where Am"A.~T IS considered to include the summat ion term L .6.m, which accumulates all 
,. -00 

moves older than M steps back from the present time. The matrices BD ,BOL and B are clearly 

top-left, bottom-left and bottom-right in the above structure. Usually we choose M to be large 

enough to ensure that all step responses are at steady state at this point, but of course this is not 

poss ible for an integrating system, which gives a non-zero M . For such a system we choose M 

where all s lopes have become constant. The terms in the first column will be non-zero for an 

integrating system, and act on a non-zero absolute di splacement of the control action (sum of all 

moves), to add a steady ramp to all integrating outputs of the system (see equation (7.2». 

It is assumed that our predictions of XDPRF.D and XPRI::D will on ly be in error by steady-state 

offsets emanating from earlier than M steps before the present time (see Figure 6.1). This is not 

really the case for integrating systems, where integration of an unobserved control action may 

have begun somewhat earlier, and may not be included in the compensatory term 

Moreover, any accumulated compensation will not be exact. These factors mean that an 

unaccounted ramp may already be in effect on the outputs. This has the potential to cause 

steady-state offset in the control. Thus the following teChnique has been deve loped to dea l with 

this situation. It is based 011 a long-term identification of a cons istent gradient error between 

predictions and observations. This gradient is then superimposed on the open-loop predictions. 

Note that the prediction of changes in the output over the last M steps is defined in the Chapter 

6 by equation (6.5) as: 

(7.4) 

The equiva lent measurement is 

(7 .5) 
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A simple filter then seeks a consistent error eM 

(c,, ), = P(!,.." .. " - /I<PRED ), +(1- P) (c" t, (7.6) 

and P=O.05 has proved adequate in this case. Construct a "gradient" correction vector for the 

future P predictions lip to the horizon as foll ows 

= 

-I, (e,,), 
-b(CA/ )o 
+,(eu)o 

lit (e",)o 
ft( eu)o 

Then the corrected predicti on of the future output up to the horizon P becomes 

In DMC, the opt ima l set of future moves.1.m is so lved on each step. 

7.4 Integrating Adaptive DMC formulation 

(7.7) 

(7.8) 

A scheme for adapting the internal convo lution model of a LDMC, by closed-loop recursive 

identification of the step response coefficients in real-time by following the methodology 

presented in the Chapter 6 is developed in this section for the integrating case. 

Recall that in LDMC the optimal control move at any step is computed as dependent on the 

matrices BOL . Bo and B. Moreover, these are constructed from the basic step-response matrices 

BIo Bl • BJo ..... BM, which are thus the target of our real-time identification. 

For an integrating process, the defined bottom matrix-row of each of the matrices BOL . B() and 

B which are analogous to equation (6.2) are obtained from the structure in equation (7.2) are: 

B ' 
0 = [ 0 BM B

M
_
1 

B
M

_
2 BM_} B, 

B ~,. = [ MM BM + M6.B BM +(M-I)68 BM + (M - 2)6B BM + (M - 3)6B BM + 6.B 

B ' =[ 0 BM BM_1 8 M_
2 BM_) B, 

(7.9) 
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Moving the datum back to -M, the corrected prediction o f the present state following equation 

(6.4) is thus given by 

(7.10) 

where [B'ol.. - B·o J.6.m"PAST is a correction for the steady-state offset and the remaining transient 

at - M 

Notice that both .1"' ·I'AS7' and .6.m I'AST have the extra summat ion term shown in equat ion 7.2. In 

the case of llm " '.04.'>1' thi s term will clearly only sum moves until time - 2M Using B~ = B ' , the 

predicted change of the state over the recent M steps is thus 

(7.11) 

The measured change is ll..'(OMEAS = XOM£AS - X . MM£AS where X _M AIIiAS is the measured 

output M steps ago. The model error is eM = WOM£AS - WOf'RED so 

ll,'CO.l/f:AS = eM + [B~L - B~ ] .6.m· PA.\T + B~ .6.m fA.'iT (7.12) 

Any steady gradient error is not included in thi s " model error" for parameter estimation 

purposes, so we strip off the filtered version of e ,l! 

(7.13) 

A non-zero (e,., )o term when the system is otherwise near steady-state (average condition) is 

the clearest indication ofa steady gradient error due to unaccounted integration - ie. an error in 

-M 
the accumu lation term L 6.m; . 

• =-"" 

The matrix of matri ces B'o for m inputs,lI outputs and an M-step horizon is given by (s imilar to 

equations (6.11) and (6.12): 
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we define 

Then, 

e~1I 

e~n 

0 0 0 T OT OT 8 m pAST 

0 0 0 OT T OT eM~ 
8 m rAST 

CM + B~ 8 11\ rA.IT = b, 
(7.14) 

OT OT T b, 
0 0 0 8mp~ST 

h ••• 

b. 

= C. (8m ,AST) p 

where 

eA/I 

e"f) 

eMn 
(7.15) 

p = b, 
b, 

h •. , 

b . 

Similarly other terms in (7.12) are rearranged to obtain 

(7.16) 

and 
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(7.17) 

Then (7.13) can be written as 

(7.18) 

where G is the observat ion matrix. Equation (7.18) shows that for integrat ing processes, G is a 

funct ion of all past moves from -2M up to present time, 8 ntPAST as well as 6 m'PAST which takes 

into account all accumulated moves o lder than -2M. For non-integrating processes G is onl y a 

function of the past moves from -M up to present time, 8 m pAST (see equat ion 6.13) . Thus 

G (6 m rAsT ' 6m~AST ) = G I (6nt rAsT )-Gl (6m~AST ) + G) (6 m;'AST) (7.19) 

For implementation of the Kalman filter interpretation, consider the A and B matrices defined 

by equation (6.18) and the parameter vector P is thus given by 

(7.20) 

sllch that, as defined in that chapter. 0 ~ ex :s; 1. and ex is set close to I to find "constan!" 

step-response coefficients, but force the eM; toward zero by vi rtue of the fi rst n diagonal 

elements being zero. Should the plant become quiescent, (6.xOAlf;As - (eM )0)1 and G; move 

to 0 and the existing p may lose relevance. Then the B matrix slowly draws predictions towards 

the initial step-responses Po. 

Not ice that for integrating processes the vector of known measurements is defined by: 

(7.21 ) 

The required recursion, including so lution for the optimal Kalman ga in K I, is given by equation 

(6. 19) and the regularisation approach described in section 6.4 is also app lied to reduce the 

problem dimension. 
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Finally, since the identified B'o matrix contains all of the fundamental step-response matrices, 

the various matrices used in the DMC can be updated in real-time - i.e., it is an adaptive 

control. Extracts of the Integrat ing ADMC algorithm from the SCADA system are presented in 

Appendix E. 

7.5 I ntcgl'l.lting ADMC application to a 2-input 1 2-output sub-system of the Training 

Plant - case study 

Appl ication of the proposed Integrating LDMC I ADMC was carried out on the Training Plant 

described in Chapter 2 and schematically presented in Figure 2.2. However as mentioned in 

section 2.5, only a 2-input 12-output sub-system of the Trai ning Plant shown in Figure 2.4 was 

simulated. 

Taking in to account that Dynamic Matrix Control is based on the step response, the Training 

Plant was operated to get the open- loop step responses fo r the proposed 2-input I 2-output 

system in order to apply them in DMC algorithm. The time taken for the system to reach 

constant slopes in all step responses after disturbances was approximately 50 seconds. It was 

decided to lI se a time interval , .11, of 10 seconds and thus have a steady-state horizon of 5 steps. 

The step responses that were used for the experiments are illustrated in Figure 7.2, which shows 

the integrating nature of thi s system since the responses become steady ramps. 
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figure 7 .2 Unit step responses for the 2-input / 2-output sub-system of the Training Plant 

(M ~5) 

Each control ler test was run for the same defined sequence of set point changes. In off-line tests 

DMC was run with the true model in some cases and with "faulty" initial step responses in 

others. The " fau lty" responses were set with diagonal response (1,1) at 2 times the correct 

responses, and (2,2) at Y2 the correct response (see Table 0.2 in the Appendix D). All tests on 

the plant were with an initial mismatched model in the DMC. 

For the tests the following controller parameters were used: smooth ing coefficient in gradient 

Feedback, p = 0.05 (see equation (7.6»), optimisation horizon, P = 5 and control moves, N = 2. 

The observat ion error covariance, R and predicted error covariance Q were equal to one, while 

for the B; diagonal in equation (6.18), a was set to 0.9999. Tuned move suppression and weight 

factors that gave satisfactory controller performance, were .1= I and TV = 100 for both off-line 

and on-line simulations. Notice that all runs either off- line or on-line were with regularised 

identified responses (see section 6.4). 
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7.5.1 Off-line s imulation 

In preparation for the on-line controller software commissioning and to experiment with tuning 

parameters, an off-line test was designed for use with the on-board model of the Scad95 

program that implemented the controller software. The program was written for Windows 95 

lI sing Microsoft ' s Visual C++ and is designed to work with on-line systems, but it also accepts 

inputs and outputs from the off- line models th at are coded into the program. The!';e are 

convo lution models based on the step responses, with a fine-step integration (e .g. 1110 DMC 

step) [Mulholand et ai, 2001]. 

With the same parameters in both algorithms, LDMC and ADMC controlle r performances were 

compared taking into account the effect of several factors as follows, with initial and end 

operating points lying at (50,50). 

Integ rating compensation 

As described in the above sect ions, the integrating compensation was included in the DMC 

software since convent ional DMC it is not designed for dealing with integrating processes and 

as wc know the present Training Plant presents such behaviour, beyond being non-l inear. Recall 

that the integrat ing compensation inc ludes factors like: gradient f eedback, accumulated moves 

from past inpu ts earl ier then M steps before present time, and extended slopes (see section 7.3). 

So, with the parameter values above, the integrating effect on the LDMC as we ll as Adaptive 

DMC were tested considering two distinct cases: 

a) Simulation without integrating compensation and 

b) Simulation w ith integrating compensation 

We discuss each case as fol1ows: 

Case a: Simulation without integrating compensation 

Figure 7.3 shows the control of the true integrating model using LDMC and ADMC controll ers 

without integrating compensation. As expected, LDMC controller performance was bad, and 

led to excessive valve work and osci llat ions in the output responses due to the unaccounted 

integrati ng nature of the process (Figure 7.3 (a». However, relatively better behaviour was 

shown by Adapted DMC, although the controller req ui red lengthy periods to reduce osc illations 

apparently arising from the integrating nature of the process. This was reflected in the output 

responses as illll strated in Figure 7.3 (b). 
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Closed loop LDMC (a) and ADMC (b) using true process model without 

integrating compensation, N = 2, A = J, W = 100 

Simulation with integrating compensation 

The need for spec ial DMC design when dealing with integrating processes is shown in this case, 

by running both algorithms with integrating compensation. Thus, runs with the true model in 

the DMC and ADMC under the influence of integrating compensation showed improved 

controller perfonnances. Figure 7.4 shows the responses obtained by standard DMC. Clearly 

the integration in the process has been effective ly dealt with. 
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The robustness of the DMC controller was further tested by incorporating an error factor in two 

of the four partitioned matrices of the system dynamic matrix, that is, diagonal terms were set 

with, the first one tw ice and the second half their correct va lues. The LDMC contro ller 

performance deteriorated as can be seen in Figure 7.5 (a), while the ADMC controller showed 

good behaviour (Figure 7.5 (b)). This can be explained as fo llows: with small or zero process 

model mismatches unadapted LDMC perfonns well as shown by Figure 7.4. When big process 

mode l errors occur, the unadapted linear controller becomes inadequate (Figure 7.5 (a) and 

updated parameters are necessary with changes in the operating point (compare 7.5 (b)). 
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Figure 7.5 Closed loop LDMC (a) and ADMC (b) with integrating compensation and 

process-model mismatch. N = 2, If = I , W = 100 

The identified responses in the ADMC run moved towards the true diagonal responses set in the 

model as ill ustrated in Figure 7.6 (dotted li nes on the diagonal are closed to the true response 

curves). 
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Gradient feedback and accumulated moves compensation 

The influence of different factors used in the integrat ing compensation was a lso considered for 

both algorithms. It was found that runs with gradient feedback applied to extended slopes 

w ithout accumulated moves resulted in the process instability, w ith severe osc illations resulting 

from the approach to bang-bang control in the movement of the valves. Recall that the 

accumulated moves represent the contribution of all moves o lder than M steps back from the 

present time as shown in equation (7.2). So, the unstable behaviour may be caused by an 

unobserved control action that may have begun somewhat earlier and may not be included in 

the aCClImulated moves term (see section 7.3). 

However, runs with accumulated moves also app lied to extended slopes without gradient 

feedback, showed di stinct results with robust controller behaviour, s ince the lack of gradielll 

feedback was not refl ected in the contro ll er performance. This was not ex pected s ince LDMC 

usually produces an o ffset error when applied to integrating processes (see on-line results in 

Figure 7.11). The addit ional compensat ion achieved by gradiem feedback (equation (7.7», d id 

110t seem s ign ificant in these tests, possibly because thi s system was steady at the start. 

Move SuppreSSion 

The m ove suppression parameter, A , suppresses manipulated variable movements (see section 

4 .3) . Its effect was tested holding constant set point deviati on we ight variables, Wand changing 

A values. Reducing move suppression to va lues as sma ll as 0.01 made little difference on 

controller performance, whil e increasing it to 100 led to a s low response and decreased 

performance. 

Output Variable Weightings 

As mentioned in section 4.3, these set point deviation-weighting parameters are used to set the 

relative ranges of variation of the outputs about set points. They have a direct effect on the 

dynamics of the closed loop system and thus can affect stability. 

When holding the move suppression constant, decreas ing the va lues of the weighting factor to I 

showed a slight effect on the output responses. On other s ide, it was found that increases in the 

weight factors are not reflected in the controller performance. These reslllts as well as those 

found above in the move suppression tests, show that this controller is quite robust. 
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Constrain ts handling 

Notice that the hand ling of constraints is the conventional LDMC feature and the proposed 

integrating modification only affects the prediction part of the algorithm. The optimisation part 

rema ins the same. 

As would be expected. the presence of any active constraint reduces the available degrees of 

freedom and thus the controller perfonnance. Figure 7.7 illustrates the handling of input 

constraints when va lve CVO I is constrained between 45 - 55 % and CV03 between 30 - 70 %, 

values above and below the minimum and maximum levels reached by the unconstrained 

scenario (F igu re 7.5 (b)). The effect of the constraints can be seen in the much slower set po in t 

tracking where the constraints are active, reducing the controller performance. When severe 

constraints are added, the control deteriorated and steady-state offsets were introduced. 
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C losed loop Integrating ADMC with input constraints: CVO I: 45 - 55 % and 

CV03: 30-70 %. N ~ 2,,1 ~ I, W ~ 100 

7.5.2 Real-time application 

As mentioned above, real-time tests were perfonned on the Training Plant illustrated in the 

Figure 2.2. However only a 2-input 12-output sub-system was s imulated (Figure 2.4). 

Difficulties were experienced in obtaining accurate step responses due to integration, non­

linearity. and the high level of interaction and noise in the system. These factors led to process­

model mismatch and consequently a difficult contro l problem. Several tuning parameters 

resulted in outputs oscillat ing arou nd set po ints even after a long time period. 
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On-l ine simulation was carried out with the same parameters used in the off- line simulations for 

p (0 .05), predicted error, Q (1), observed error, R (I), move suppress ion, A (I), set point 

deviation weight factor, W (100) and also with a set to 0.9999. A sampling interva l of 10 

seconds and set point start and end of (40,40) were considered. 

The same set point sequence change was app lied, although on-line runs needed a Jong time fo r 

the contro ller to achieve the target. The appl ied results obtained fo r step changes in set points in 

LDMC and ADMC runs with integrating compensation are shown in Figures 7.8 and 7.9 

respectively. 
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Figure 7.8 Closed loop on-line Integrating LDMC, N = 2, A = 1, W = 100 

Bad performance, consisting of constant osci llation on the outputs with a bang-bang behav iour 

of the manipulated variables was showed by the LDMC controller (F igure 7.8). In contrast the 

ADMC contro ller showed better than the LDMC algorithm, and good tracking of set points was 

observed in the levels, although with slight osci llation in the second output (F igure 7.9). 
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The adaptation plots presented in Figure 7.10 shows the effort of the Adaptive Dynamic Matrix 

Controller to identify correctly the coefficients of the step responses, although with noise and 

other disturbances affecting the process as can be seem in the off diagonal elements. 
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Gradient feedback effect 

The algorithms were also tested with all parameters set at the same values as above except for 

gradient feedback. which was not app lied. Simulations resulted in deteriorated controller 

performance with steady-state offset in the LDMC run as illustrated in Figure 7.11 (compare 

with integrating LDMC in Figure 7.8). That was because, as mentioned in section 7.3 , an 

unaccounted ramp may already be in effect on the outputs in the moves older than M steps back 

from the present time, which has the potential to cause steady-state offset in the contro l. 
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Although with relative improvement compared to Figure 7. 11 algorithm with adapted 

parameters also showed decreased performance, with oscillations and offset in some cases, 

when gradient feedback was not applied as illustrated in Figure 7. 12 (compare with the 

integrating ADMC in Figure 7.9). As also seen in the off-line simulation (section 7.5 .1 ), with 

adaptation of the model parameters the output error is reduced. However due to the integrating 

nature of the process, the error is not completely eliminated and a slight offset is observed when 

integrating compensation is not applied. 
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Thus the gradient feedback has proven effective in compensat ing for unknown ramp responses, 

perhaps from contro l moves not included in the summation tenns (equation (7.2)). This is 

contrary to the s imulation on-board model in sect ion 7.S.I , where there presumably was little 

initial gradient error. 
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Conclusions and Recommendations 

One of the purposes of thi s study was to recommlSSlon the Training Plant, including the 

addition of digital control to the already ex ist ing analogue instrumentat ion . Other aspects 

rel ated to software deve lopment, interfacing of the system to a computer SCADA system and 

application of novel algorithms to the equipment. 

A major objective was to investigate different aspects of control of th e multivariable, non-linear 

and high ly interactive Training Plant. A 2-input I 2-olltput sub-system of the Training Plant 

was, defined as a case study. 

Two di fferent approaches were adopted for system investigation: a mathematical model derived 

from first principles, and a step response model based on experimental data. 

The mathematical mode l revea led complex behaviour of the system described by the mixed 

non· linear differential and algebraic equations represented by a (47 x 47) Jacob ian matrix . The 

system was so lved through the application of an extended Kalman filter (EKF) technique. The 

algorithm written in Matlab was used for state estimat ion, and based on the estimated data, step 

responses for the 2·input 1 2.output sub-system of the Training Plant were pred icted. Promis ing 

results were obta ined. Although the state-space step responses showed similar integrating 

behaviour to the step responses result ing from the experimental data, further investigation is 

required in order to find improved plant phys ical coefficients that give better description of the 

process since little information about the process is available. A trial and error method is 

suggested. 

It was dec ided to use Dynamic Matrix Control (DMC), one of the most popular techniques of 

Model Predictive Control (MPC), to control the Train ing Plant. DMC is based on the linear 

cOl/volution model, and therefore does not require a rigorous mode l derived from first princ iples 

as above. A fi xed dynamic model is lIsed to predict and optimise process performance for a 
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nominal operating point. However, as the process moves away from this point, control becomes 

sub-optimal due to process non-linearity. To deal with this problem, the use of a self-tuning 

adaptive DMC was proposed, since Adaptive Dynamic Matrix Control (ADMC) can be 

expected to perform well even in the presence of uncertainties, non-linearities and time-varying 

process parameters. 

The conventional self-tuning regulator can be subdivided into two di stinct steps: identificat ion 

and control. The first is mainly concerned with updat ing an approximate process model so as to 

guarantee mOre reliable predictions of the system behaviour. It involves some form of on- line 

recursive parameter estimation, which also provides estimates of the system states. In the 

second step, i.e. , in the contro l stage, it is usually necessary to recalculate the coefficients of the 

controller so that appropriate control action can be derived. However, the dctennination of new 

values for such parameters involves the solution of a set of recursive matrix equations. For a 

muitivariable, system thi s becomes a very time-consuming procedure, and the problem of 

minimising the error may be ill conditioned if the process variations are not rich in information 

Therefore, some improvement is high ly des irable, particularly when real-time contro l is to be 

applied. 

One of the most attract ive features of the ADMC control scheme developed in thi s work is that 

it does not require the solution of such complex matrix equations. Instead, by providing an 

option for a regularisation approach for a closed-loop configuration, it was poss ible to reduce 

the problem dimensions, thereby substant ial1y reducing the computational burden characteristi c 

of the optimal self-tuning regulator when applied to multivariab le systems. 

The algorithm was tested on the 2- input I 2-ouput Pump·tank system for simulation and 

laboratory tests. The real-time identification of step responses and adaptation of the DMC on 

thi s basis proved quite robust, particularly when the degrees of freedom of the identified 

responses were limited by regularisation. The off.1ine tests showed reliable identification over a 

wide range of RLS identifier tuning. As the changes became implemented in the DMC, 

expected changes were observed in the quality of control. In the on·line testing of this algorithm 

on the Pump-tank system, the results were not completely consistent, but nevertheless 

promising. Quadrat ic performance indices however showed better controller performance when 

the process parameters were updated with changes in the operating point. The errors introduced 

into the step responses supp lied to the DMC were correctly identified most of the time, but 

occas ionally a spurious variation would be introduced by the plant data. The best protection 

against this in practice will be to increase the response time of the identificat ion, (lower Q 

values in the Kalman filter). and to constrain the allowed range of variation. 
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Despite Dynamic Matrix Control presenting several novel features and advantages, it is not 

designed to deal with processes with an integrating nature. These are processes that produce a 

ramp change in the output for a step change in the input, behaviour presented by the Training 

Plant currently under study. When a Linear Dynamic Matrix Controller is applied to processes 

with an integrating natu re, a steady state offset is expected. This is caused by a ramp that may 

be in the effect on the outputs. Thus, an integrating compensation consisting of factors like 

gradient feedback, accumulated moves and extended slopes was included into the LDMC 

algorithm. Gradient feedback is a "gradient" correction vector for the P predictions up to the 

horizon. Accumulated moves represents a compensat ion that accumulates all moves older than 

M steps back from the present time, and ex/elided slopes extends the integrating step response 

so that integrat ing processes can be treated with in the same framework as "self-regulatory" 

processes. 

The resulting Integrating Adapt ive Dynam ic Matrix Control algorithm was finally applied to the 

2-input I 2-output sub-system of the Training Plant. In preparation for the on-line controller 

software commission ing, and to experiment with the tuning of parameters, preliminary closed 

loop off- line tests were designed to determine robustness and controller performance lIsing a 

cOl/vollltiol/ model representation of the plant. Integrating DMC showed good behaviour as long 

as the process model mismatch was small. For large a mismatch, however, DMC was not 

satisfactory and model updating was required. The Integrating ADMC could successfully 

handle this problem, and was able to accurately control the outputs to their set points indicating 

that the algorithm is quite robust. Unexpected results were obta ined when simulating off- line, 

using the DMC without gradient feedback. Good performance was noted instead of an offset. 

The absence of gradient feedback correction was not reflected in the controller possibly because 

the system was steady at the start. 

in the rea l time tests, however, the gradient feedback compensation played a significant role, 

since as expected, steady state offset was observed when gradient-feedback was not applied in 

the controller, and integrating compensat ion was shown to be an effective tool in eliminating 

th is steady state offset. Integrating ADMC showed better performance re lative to Integrating 

DMC, with the outputs following the setpoint although with s light oscillations in the second 

output. 

It is concluded that the tuning of a controller for this highly interacting and non-linear system is 

a very difficult task. Very slow or osc illating responses were often found when changing 

parameters. Therefore, many unexplored tuning values need to be tested in order to improve the 
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Chapter 8 Conclusions and Recommendations 

controller behaviour. The present work may be regarded as the fi rst of many future studies 

related to th is complex Training Plant, offeri ng a diversity of poss ible fie lds of study, and since 

there are many unresolved research issues re lated to this system, further investigation is 

recommended. 
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Appendix A 

General Concepts about Process Models 

This appendix presents the theory related to process models. It includes issues such as process 

var iab le definit ion, process characteristics and process models, as well as different forms of 

process model. Thus, the appendix structure is: 

Page 

A.I Variables ora process A-2 

A.2 Process characteristics and process models A-2 

A.3 The process mode l forms A-4 

A.3.1 The state-space model A-4 

A.3.2 Impulse I step response mode ls A-5 

A- I 



Appendix A General Concepts about Process models 

A. I Variables ora process 

The process model represents the relationship between process variables. Those variables can 

be classified as state, input and output variables. 

Input variables are those that independently stimulate the system and can thereby induce 

change in the internal condition of the process. It is possible to classify these variables as 

manipulated (or control) variables and disturbance variables. Manipulated variables are those 

input variables, which are at our disposal to manipulate freely as we choose, and disturballce 

variables are those over which we have no control. 

Output variables are those by which one obtains information about the internal state of the 

process. State variables are generally recognised as that minimum set of variables essential for 

completely describing the internal condition of a process, and can be used to predict future 

states provided future inputs are known. The state variables are, therefore, the true indicator of 

the internal state of the system. The actual manifestation of these internal states by 

measurement is what yields an output . 

Some process variables (outputs as well as input variables), are directly available for 

measurement while some are not. Those process variables whose values are made available by 

direct on-line measurement are classified as measured variables; the others are call ed 

unmeasured variables. 

Although output variables are defined as measurements, it is possible that some outputs are not 

measured on-line (no instrument is installed) on the process but require infrequent samples 10 be 

taken to the laboratory for analysis. Thus for control system design these are usua lly considered 

unmeasured outputs in the sense that the measurements are not available frequently enough for 

control purposes. 

A.2 Process characteristics a nd process models 

Chemica l processes can be classified according to nature of the models used to describe their 

dynamics in several ways: 
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Appendix A General Concepts about Process models 

• Linearity - linear or non-linear 

Thus a process described by linear equations ( i.e., equations containing only linear 

functions) is classified as linear, wh ile the non-linear process is the one described by non­

linear equations. A linear system satisfies the properties of superposit ion and homogeneity, 

while a non-linear system does not exhibit any of these properties. 

• Number of independent variables -lumped or distributed 

A lumped parameter process (which may be linea r or non-linear) is one in which the time is 

the only independent variable. It is described by ordinary differential equati ons. The 

process variables of a distributed parameter process on the other hand change with spatial 

as well as with time. 

• Stabili ty - stable or unstable 

The process is defined as stable if "self-regulatory", that is, the process va riables converge 

to some steady state when di sturbed and /Instable if variables go to infinity 

(mathematically). Most processes are open-loop stable. However, the exothermic 

irreversible chemical reactor is a notab le example of a process that can be open loop 

unstabl e. All real processes can be made closed-loop unstab le (with a feedback controll er in 

se rvice), and therefore one of the principal object ives in feedback control1er design is to 

avo id closed-loop instabi lity. 

• Order 

If a system is described by one ord inary di fferential equation with derivati ves of order N , as 

shown in the bellow equation, the system is called the Nth order. 

where aj are constants and f(t) is the forcing funct ion or disturbance. 

As we shall see in the next sections, we can classify the present Training Plant system as 

lumped, non-linear and high order. 
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A.3 T he process model forms 

According to [Ogunnaike and Ray, 1994], it is usual to cast the mathematical model for any 

particular process in one of four ways: 

I. The state-space (different ial equation) form 

2. The transform-domain (Lap lace or Z-transforms) form 

3. The frequency-response (or complex variable) form 

4. The impulse / step-response (or convolution) form. 

The last three forms are called input / output models as the mathematical models strictly relate 

only the input and output variables entirely excluding the state variables. In general , input / 

output models occur as a result of appropriate transfo rmations of the state-space form, but they 

can also be obtained directly from input / output data correl ation. Because these model types are 

obviously interrelated, it is poss ible to convert from one form to another. 

Recall that in attempt to control the Training Plant currently under study, a state-space model 

was deve loped (see Chapter 3). The system transpired to be multivariab le, non-linear, of high 

order, described by a mixed ordinary differentia l and algebraic equations (DASs). On other 

hand, little information about the process parameters was available. Thus, to overcome this 

complexity, an experimental step response model was then obtained and used for process 

control (see Chapter 7). 

The state-space and impulse / step-response forms are briefly described as follows 

A.3 .l The s tate-space model 

When the process model is formulated from first principles, it often naturally occurs in the 

state-space form in the time domain. The state variables occur explicitly along with the input 

and output variab les. Since the modell ing equations are fo rmulated with time as an independent 

variab le, state-space models are most useful for obtaining real-time behaviour of process 

systems. Discrete-time formulations are especially well suited to computer simulation of 

process behaviour. These models are also used, almost exclusively, for analysis of non-linear 

system behav iour, because most of the other mode l fo rms can represent only linear dynamic 

behaviour. 
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A.3.2 Im pulse I step response models 

It is typ ical to adopt the theoretica l mode ll ing approach when the underly ing mechanisms by 

which a process operates are reasonably well understood. When the process is too complicated 

for the theoret ica l approach (usually because very little informat ion about the fundamental 

nature of the process is ava ilab le, or the theoret ica l mode l equations are enormously complex) 

the empirica l approach i~ the ~ppropriate choice. 

Impu lse I step-response models find thei r main appl icat ion in dynamic analys is problems 

inVO lving arbi trary input functions u(t). In build ing process models from experimenta l data 

sampled at an interval 6t, discrete impulse I step-response mode ls are most useful because the 

model requires only a data record from well-des igned experiments. The particular functional 

form that the input takes is immaterial. Observe that a very simple experi ment of sending an 

im pu lse (or a un it step) function as input to the physical system wi ll give th is required impu lse 

(or a uni t step) response data record. This may then be used for dynamic analysis througb the 

convolution model. A step function is easier to implement on a physical system than an 

impulse. 

One app li cation of impu lse I step-response models outs ide of process dynamics and control is in 

study of residence time distributions in chem ical reactors [Ogunnaike and Ray, 1994}. In the 

present work, convolution mode ls of two processes with different behaviour, "self-regulatory" 

and integrating nature were obta ined from the experimental data (see Figures 4.5 and 7.2) and 

the n used in Dynamic Matr ix Control algorithm for contro ller design. 
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Appendix B 

Extended Kalman Filter Formulation 

Presented in tbis append ix, is the extended Kalman filter formulation [Mulholand, 2001] for 

solution of differential and algebraic equation systems. The first step provides a linearisation of 

the system using a Tay lor series expansion, and then the Kalman filter is used for state 

estimation. 

Consider the system of first order differentia l and algebraic equati ons 

dy 
f (y,z) 

dl (B. 1) 

0 = g(y,z) 

where y is a vector of state variables and z a vector of algebraic variables. 

Defining the lacobians: 

5tL if. -'"- 5tL 5tL -'"-
"" "', "', "" "', iJ:~f 

5tL !h.. !h.. 5tL 5tL -'"-
A=Jfy = "" "" iJYN 

B = J" = "', ", fr..(I 

'f., iJ/.,. ~,. iJ/.,' i!f.,' ", 
"" "" "', "" "" U:M 

(B.2) 

."l<J. ,", ."l<J. "", ."l<J. la "', "', {ty.~ "', "" iJ:J[ 

."l<J. ,", la la ."l<J. la 
C=J = "" "', Cy.\' D=J = ", ", C:M 

'" '" 
ag ,.,. ag ... ag ,. cl!:',. "" .. ~ -.;;- -.;;- ay,\, 0;1 ", U:M 
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lincarise the right hand sides about (Yo. Zo) to obtain the augmented system 

where 

(~-) (
I (yo. z, ) - Ay, - Bz,) 
g(:;;;~z;y:::: Cy;:::: D~;-

(B.3) 

(BA) 

To allow for the possibility that some of the z elements might be free. overspecify the behaviour 

by suggesting that z will move towards some observed va lue Zo 

i = f (z, -z) 

so that equation (8.3) becomes 

with H o = ; Zo 

E = _1 [ 
• 

an additional requirement is also defined from equation (8.3) as 

- G, 

(B.S) 

(B.6) 

(B.7) 

To handle the possib ility that the states y may also be observed, augment the above equation as 

follows 
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(B.8) 

. (Y) [A i B] (F' ) Lettmg X = .~. , 4> = "tT""rE and " 0 = ii~" . integrate from 0 to / keeping Uo fixed: 

x , eo, 
x , 

The same integration can be app lied to the interval / _ I + Llt giving 

with A = e<l>!:J/ , 
B, = [ e<l>!:J/ - I ] fP-I 

and setting C, = [ ~···I··%] ,IV, = (!d:) , with L select ing observed states, it is also 

required 

(8.9) 

(8.10) 

(8.11) 

Representing the equivalent set of measurements by iv, . the Kalman filter is configured as 

follows 

K, = M t C; [ c, M, C; + R JI 
x'~JJ' = A, x, + B, Elf + K, [IV, - e, X,] 

M'~JJ' = A, [1 - K, Ct ] M, A; + Q 

where the covariance matrix is initialised with Mo small and Q and R the expected error 

covariance matrices for the model and the measurements respectively" 
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Appendix C 

Matlab Extended Kalman Filter Algorithm 

The propose of this appendi x is to prov ide the Matlab algorithm appl ied in Chapter 3, for stale 

estimation of the theoretica l process model of the Training Plant, using a extended Kalman 

fi lter. The main program was developed by Mulholland [2001]. All contributions are gratefully 

acknowledged. 
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Appendix D 

Pump-tank and 

Training Plant Step Responses 

True and mismatched unit step responses, obtained using experimental data from the Pump-tank 

system (Appendix 0 .1) and the 2-input 1 2-output sub-system of the Training Plant (Appendix 

0.2) are provided. These step responses were used for off-line simulation and real time 

appl ications in Chapters 6 and 7 respectively. 
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Pump-tank step responses 

2-input 1 2-output subsystem of the Training Plant step responses 
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Appendix D Pump-tank and Training Plant step responses 

Append ix 0.1 Dynamic matrix coefficients of the true and mismatched process models for the 

2-input 1 2-output Pump-tank system (M = 10) 

True model Mismatched model 

Vari ables VI V2 VI V2 

Lt -0.186 -0.036 -0.372 -0.036 

-0.3 17 -0.059 -0.634 -0.059 

-0.416 -0.074 -0.832 -0.074 

-0.470 -0.081 -0.940 -0.081 

-0502 -0.086 -1.004 -0.086 

-0.516 -0.088 -1.032 -0.088 

-0.523 -0.090 -1.046 -0.090 

-0.525 -0.092 -1.050 -0.092 

-0526 -0.092 -1.052 -0.092 

-0526 -0.092 - 1.052 -0.092 

L2 -0.026 0.157 -0.026 0.316 

-0.044 0.256 -0.044 0.532 

-0.056 0.366 -0.056 0.732 

-0.067 0.450 -0.067 0.900 

-0.078 0.519 -0.078 1.040 

-0.086 0.569 -0.086 1.140 

-0.093 0.614 -0.093 1.223 

-0.098 0.660 -0.098 1.320 

-0.101 0.694 -0.101 1.388 

-0.101 0.718 -0.101 1.436 

The diagonal responses of the mismatched process model are both twice their correct 

magnitudes. 
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Appendix D Pump·tank and Training Plant step responses 

Appendix 0.2 Dynamic matrix coefficients of the true and mismatched process models for the 

2 inputs 12 outputs system from the Plant Simulator (M :::: 5) 

True model M ismatched model 

Variables CVOl CV03 CVOl CV03 

0.131 0.003 0.261 0.003 

0.261 0.006 0.523 0.006 

Ll 0.392 0.009 0.784 0.009 

0.523 0.012 1.046 0.012 

0.654 0.015 1.307 0.015 

-0.127 -0.073 -0.127 -0.036 

-0.254 -0. 145 -0.254 -0.073 

L2 -0.382 -0.218 -0.382 -0.109 

-0.509 -0.290 -0.509 -0.145 

-0.636 -0.363 -0.636 -0.182 

The diagona l responses of the mismatched process model are, the first one 2 times and the 

second Yz of their correct magnitudes. 
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Appendix E 

Extracts of the Integrating Adaptive Dynamic 

Matrix Control Algorithm from the SCADA 

System 

The Integrat ing Adapt ive Dynamic Matrix Control technique, developed in the present work, 

was imp lemented in the existing Linear Dynamic Matrix Control (LDMC) algorithm developed 

by Mulholand and Prosser [1997], within a flexible SCADA system at the School of Chemical 

Engineering. The contributions, updates and programming expertise of Professor Mulholland 

mllst be fu lly acknowledged at this point. This program would never have been completed 

without his valuable input. 
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Appendix E Extracts of the inlegrating ADMC Algorithm from the SCADA System 

E. ! DMCObject 

=:~ 

.­-~ drI .. evoaar. 
..... CUntO<Proo<.m: 

-• COMCOIoioa ..... 

............ 'IOSItoom,h' 
_ "DMCPIoIWnoIN 

--,~. 
_~h­__ h' 

_ ..... CDIgDIoICOIIjOa 

__ ..... CDMCSIrOO/f\; -- ..... ~ 
1/ pm .......... tIer ., •• tIIoo ..,.. ... . 

CDMCI'Io('MocIII\.J'IOIWnd. C""""'·m...pDynU_ M .... ~ ........ 

• 

~.~$oI. ..... lo<seI~ ....... 
CNoIrt.''''~'''"'' 
CM_' o"IIJIOIIHIMOI.IIo; 
C",.IIbo· mJOC)po<ll.oopM.trbUlel. 
CM""'" mJlOllSOlMOlllo...Sol 
a.o_·m~""'1Ia: 
CIoI*\I.' m~SuI>M"'" 
~'fI\..Pl.o ... ~ 
CJ.aoW.'~~ 
CV ....... "'..PI' ... OuIP"ICI>angn: 
DWOI'IO "'_"""', ... r .... ; II IaSI "1><101'''''' [)MC 
ClWORO m_"""" .. TlmoMojOl: " .... _. ___ 

_ ~at • __ 

DWORO"'-.... T ... lII)fI4Ota:~'S 

"_"M"~'" CSIrIng ",-cSl.I>Iit_FiIo:" Ne """'airWIg "'P to __ .. 
m .............. 
W 
W 
W 
W 
W 

m)Sl .... ,stMoHoIIlon: It '" .......-- .N 
~.p --­~-: IIOOL m_l>I.ogToF"". 11 ~ ...., 10< _"",11 .. " ....,..,ling 

coo.o.-. ",_OMCS!tOarno: Cli1rIfIOAmoy ... _ ........ __ " ........ "' __ ..... 

COCWto, "'___ . poiIoIotI ........ _ 
~ m_rs.q,oIru: M_MIpOIra COWOI'<IAII"O, m~ M __ ... _ 

CrYN-., ",-"",""", ... t: " __ 00_ 
C~, m~uop"O_"'''': "_ .... _ 

~"'_coQuI ... sn_ ._"' __ coo.o.-. m~_ ._oos .. __ 
COWOI'<IAII"O, "'_ .... ~ ._~_..,._ 

COWonIAnoy m_~1nI: N __ ... _ 

COWO<d"".Y n'I.}Oo.oIp.,.\LO .. ., • • _ ......... "'" COW""""'., "'_~ .... ig/IIS ... o.rI ... _ . CDWordAmo, .... ~. '''''"''OfIb~ __ 
~ ",-__ a>En: M~""~ __ . ~ --, CrYN.......,.., 
N 10<1_. 

"'-~ .. ~ .. ~-. 
"'_~"'cn: NI ......... nje<lorypoirOl 
",-1Tlfnt, ... _ : . ........ .... ...... poIiticonoon .... 

._.'''1.Il00.,,., ....... , .......... 
CL.IM __ '",~. 

C_ "\JII'I ...... 
CV ...... ~Fn: 
Cv....... "'...POo . .... uao; 
Cv.a.... mJ>Pno~ 

~ rruon....,: 
!lOCI. "'_"""""_ 
!lOCI. m_"""""_ ........ : 
!lOCI. "'_~_ ....... ............. _LP ...... ., .. 

N • • 0C>UIIng 
1nl m.}J'er.or: 

. _ .... _OOC_IG 

~ .... JIIIOo<I. 
CMoIrh·........,eol.Io: 
CM_·"'~OI. .. JN'TfO: 
CM_·m..P8aod_ .. ',,, 
CMoItlo· m...p8OI.orI_ otIQ: 
a.o_' mJl8Ol...WTfG_otIQ: 
CVeaor' .. ~...o.c~. 
~m...po"" 
CV ....... "'..J>Poc.,. MPfoMnI 
Cv.a .... "'..Pl .... : . ..... 
Cv ..... • "'...PS"''''; "0 .. 1("" ..... )._ 
Cv ...... "'.;>0><0011: 
CV ....... "'....PPo<I: 
ev ................... _otIQ: 
C_·~. 
C~·"'...soQ.od'. 
CM_·m...soQ.odZ: 

E-2 

cu ...... • fl'lJ'GO<I~, 
c ... ut.· mJlClO<l: 
CMalIt». "'.,JIR ... . 
~ ........... . 
~ .......... 
c-.·"'....oKo<I 
CMalIt»'",-""",. 
c .. _·",~ ... 
cv ...... ~ 
cV_""""-_O!IiI: 
~ .... ....IIG-. 
CJ.IaI/I:I: .... JICl-. 
~. "'JI'-. 
c ...... ·~ 
C""""·m...J>l(adw; 
cu_''''~ 
CUatri<'~ 
~ . .....,.,-. 
~.~, 

!lOCI. ",-~ftO ...... ; 

!lOO\. ... _tlflla_lPI. 
800l "'-bUM ...... .,.: 
!lOO\. ... _tlUw ...... P\..1uI. 
!lOCI. ,"-IIR~ 

800L "'-DE.oISIoIoo _tot. 
800L "'_-_1nl: IIOOL "' ____ .... 

_ .... f(l , .. smootII,., ... 

dootllo ..... fO .... 
-",~. 

cv.a ... "'JIP<o t, ..o..P~ 
cv-..-nu>f',aol' ooOo.~, 

CVtd ... ~ 
C_''''''pTost; 
cv.a ... AI;CII"IOIUI"'UOYOINTI':GCORA . 
cv ...... AC<:urJUo! .......... INT£~ ... , 
1I0OI. ~~G ... 

M~. __ _ ...... 
.aid S-o'N ..... (CSlrIng UN ..... ); 
..... COICOMCPot~ .... (WiII): 

-~~~-~_.rr-.u _ ....... ""..0 _lQod) 

ClII..fOorI • IQ"'J _ ....... ~(_IARodJ 
Cm_.AB .... 1Aaod.! 

_ ~SI.pRo~iIt (CStmg~_.."iotl 

\O\.~iIt· <SIopR ___ "J 
_"'Slc~O<oIISIoMySl""""Oftj. 
_~!lnI~. 
_~ ... !lnI~). 
_h1~(8OOI.I>I.OgT_): 

_IOU ....... S1toomN_ (COO'>ICS\MGAn'" _Slt_lm .. ). 
-~(-~. I5OtpOO'Ib); _ ............... c-~._, 

_, ...... ·w_C-~.~): ----...... (-~,.-~ ........ : _ SOIOUfouI ...... __ • (_C5~I _PIrI$miImN .... ,). 
_ MIM .. CI\¥IiIU (""" .. CI)W!:wdAtra,I lM..ch __ l, 
_~(_CClWonlAn-"I~): 
"",~",,(-~.~: 
_S~V."",,( _~&~ 

..,... ~& 1Ad00000/IModfJr. 

...... COWCltllAlTl')'& 1AcI.Pl'MC-. 

_~&~""-osEnl. 
_~ ... cn""",~'~_ . 
-~.~: 
_ """"",_" (WiII). _ SItt_. (l000i_ ._IV_~ 

CStmg SlttornG<:lVoI 0<01 _>l: 

..... UneIlPfcQnmTlotoorl t>oood).: .. .... DWORD __ TIoto __ ~·pTNll 

(((COMCODjea1PTNo)o>I..irIoarPfognmTlnorl 0: ....... OJ 

"po.-__ !I>nctIont -_ ....... (CAtdWoI 11): 

--(~.~. _ ~.(DWCIItD""""""I: 

..... SooIEJIKM (8001. 1OE/>MIIo<I): 
_~(8001.~. 

..... s.tvsoAcapI: (8OOL IIliHMIpI): 

..... 8otRoouIori> ....... .,. (8001. lIRoguloltz ....... pO, 

..., iMIfx!SIOs>04'" (8OOL tlEl:lSIooo_InIl: ____ ... (8001.~..., 

_~"'(8OOI.~1OO:): ___ "'~-.....r. 

, -
-" OWORtlIModSTlmoT1lUp:l"OIYOOI) C_ ",-""" ... B\Ip<Iot.:) 
900L ,"' .. _ (Will) (to! ........ bEnoobIo<I.\ -



Appendix E Extracts of the Integrating ADMC Algorithm from the SCADA System 
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