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Abstract

Dynamic Matrix Contro) (DMC) has proven to be a powerful tool for optimal regulation of
chemical processes under constrained conditions. The internal model of this predictive
controller is based on step response measurements at an average operating point. As the process
moves away from this point, however, control becomes sub-optimal due to process
non-linearity. If DMC is made adaptive, it can be expected to perform well even in the presence

of uncertainties, non-linearities and time-varying process parameters.

This project examines modelling and control issues for a complex multivariable industrial
operator training plant, and develops and applies a method for adapting the controller on-line to
account for non-linearity. A two-input/two-output sub-system of the Training Plant was
considered. A special technique had to be developed to deal with the integrating nature of this

system - that is, its production of ramp outputs for step inputs.

The project included the commissioning of the process equipment and the addition of
instrumentation and interfacing to a SCADA system which has been developed in the Schoo) of

Chemical Engineering.
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Chapter 1

Introduction

1.1 Background to the work presented

Dynamic Matrix Control is one of the most successful model predictive schemes and quite
popular within the process industry. Control design methods based on the Model Predictive
Control concept have found wide acceptance in industrial apphcations because of their ability to
handle process interactions, their handling of unusual dynamic responses and because they do

not necessarily demand a rigorous model derived from first principles.

Dynamic Matrix Control is based on a linearised step response model called the convolution
modlel. This dynamic model with its associated uncertainties is used to predict and optimise
process performance. However, as the system dynamics change with time, a large mismatch can
develop between the model and the process and it no longer reflects the actual system. Under
these conditions the controller performance deteriorates, which may even destabilise the
process. In these sjtuations it becomes necessary to re-evaluate the process model. One way of
doing this is to include an adaptive algorithm within the Dynamic Matrix Control algorithm.
This strategy can allow adjustment of controller settings with changes in the operating point and
better performance is expected even in the presence of time-varying process gain and process
nonlinearity, Thus, the development of a method for closed-loop online identification for

updating the dynamic matnix is proposed in this work.

Despite Dynamic Matrix Control presenting several novel features and advantages, it is not
designed to deal with processes with an integrating nature. These are processes that produce a
ramp change in the output for a step change in the input. The Training Plant currentty under
study exhibits this behaviour, and is also non-linear, multivariable and highly interactive. Thus,
an approach for using Dynamic Matrix Control to contro! integrating processes was also
considered. In this method the slope of the predicted response is determined from the slope of

the output trajectory between the current and the previous control instants.



Chanpter | Introduction

However, because of the complexity of the Training Plant, with this work being the first
investigation with regard to it, only a 2-input / 2-output sub-system of the plant was studied in
the present project. Thus, the proposed algorithm was applied only to this sub-system. For a
better understanding of the software, preliminary simulation was in some cases done on a
second pilot plant, a 2-input / 2-output, Pump-tank system, also available in the School of

Chemical Engineering,.

1.2 Thesis Layout

As an introduction, Chapter 1 is devated to provide an overview of the thesis and aims of the

present work.

Chapter 2 is designed to familiarise the reader with the Training Plant under study. With this
goal in mind, attention has been given to a description of the system and presentation of the

control problem emanating from this process.

Chapter 3 deals with the theoretical process model and provides a more comprehensive
understanding of the Training Plant behaviour described by a non-linear system of mixed
differential and algebraic equations. State-space step responses obtained from estimated data
when running the extended Kalman filter simulation program written in Matlab', are also

presented in this chapter.

The Dynamic Matrix Control technique and its applications are considered in Chapter 4.

Adaptive Control principles are covered in Chapter 5.

Chapters 6 and 7 deal with the Adaptive Dynamic Matrix Control scheme with particular
attention to an integrating system in Chapter 7. Results obtained from off-line tests, as well as
actual application of the Integrating ADMC controller in the 2-input / 2-output sub-system of

the Training Plant are also included.



Chapter 1 Introduction

1.3 The aim of the project

The aim of this study was to investigate different aspects of control of a Training Plant available
in the Schoo! of Chemical Engineering laboratory at University of Natal. This multivariable
system presents eight manipulated input variables and sixteen output variables of interest from
the point of view of process control. A mathematical model derived from first principles
revealed complex behaviour of the system with bigh order, non-linearity and a high level of
interaction between variables. To overcome these difficulties, possibilities of applying a Model

Predictive Contro} technique in this Training Plant bad to be considered.
To fulfil the objective of this work, general tasks were proposed as follows:

e Recommissioning of the equipment,

e Addition of digital control to already existing analogue instrumentation,

e Interfacing of the system to a computer SCADA system, comprising software for real-time
simulation and data acquisition developed in the Schoo! of Chemical Engineering,

o Development of the contro} algorithm

e Application of the contro) algorithm on the equipment

! Matlab is a registered trademark of The MathWorks, Inc.



Chapter 2

The Training Plant

2.1 Introduction

The Training Plant currently under study is a complex multivariable, non-linear and highly
inferactive industrial teaching facility comprising full-scale equipment. It is very useful for a
diversity of studies in the field of mass and heat transfer as well as process control. As will be
seen, a model will be developed for the entire plant, but only a sub-system of three tanks will be

used in the application of the proposed adaptive control algorithm.

This Training Plant allows digital control of variables such as temperature, level, flow and
pressure, since the old analogue instrumentation of the equipment was converted to a digital
format in the course of this study, by introducing analogue-ro-digital (A/D) and digital-1o-
analogue (D/A) converters. Thus, with digital processing the computer is able to receive the
measurements directly from the process and based on the control law, resident in its memory,
caleulate the values of the manipulated variables. The decisions are then directly implemented

in the process by the computer via the final controf element.

Some advantages of digital controllers over their analogue are that high-speed digital systems
have provided the means to produce low cost and accurate controllers. More complex
algorithms can be implemented using digital controllers, and with greater accuracy than the
corresponding analogue systems. Furthermore, there is greater flexibility in digital system since
alterations to the contro) algorithm can be performed in software rather than through changing

or tuning discrete components which are prone to drift.

The Training Plant is part of the available equipment in the Chemical Engineering Laboratory at

the University of Natal and some pictures of it are presented in Figure 2.1,

2-1



Chapter 2 The Training Plant

Tank |
(T101)

Pump Tank 4
K4 (T104)

Manual
Control
Valyes

Figure 2.1 Parts of the Training Plant rig
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Chapter 2 ' The Training Plant

To fulfil some of the objectives presented in Chapter 1, tasks such as re-labeling, calibration,
addition and repair of the equipment and control instrumentation, including improvement of
piping / tubing were also taken into account. In a number of cases, new sensors were installed in

parallel to the existing sensors (e.g. level transmitters and temperature transmitters).

A description of the equipment is presented in this chapter in Section 2.2. Section 2.3 provides
information about data acquisition and control. The control problem emanating from this
process is presented in section 2.4. Finally, a 2-input / 2-output sub-system from the Training

Plant was considered in the present study; is presented in section 2.5.

2.2 System description

The experimental setup 15 schematically presented in Figure 2.2. The system can be divided in
rwo parts involving mass and heat balancing as shown below. However, it is important 1o
notice that sub-systems can be defined and simulated accordingly with fewer variables of
interest, by manipulating limited manual and / or pneumatic control valves in the pipes

connecting the equipment.

Mass balancing
In this part, the Training Plant consists of a mixing tank, Tank T102 (also called Tank 2), from

which warm water is pumped by centrifugal pump, K2, to four different parts of the system as

follows:

e Tank 1, T101, with its base at ground level, the same level as Tank 2. A butterfly pneumatic
control valve, CVO0l, connects both tanks. The outlet stream from this tank is pumped by

smal} centrifugal pump, K1 and returned to Tank T102 through pneumatic control valve
CVI.

e Counter-current gas / liquid absorption column, C105, 0.5 m in diameter and 2.5 m in
height at overhead level, filled with ceramic raschig rings. The column bottom is 2.7 m
above the ground floor and is connected to Tank T102 by pneumatic control valve CV05.

The output flow from the column is returned to Tank 2 by gravity.
o Upper storage Tank 3, T103, with base at 4.75 m above the ground floor. This stream is
controlled by pneumatic control valve CV03, while pneumnatic control valve CV13 controls

the outlet stream from Tank T103 to Tank 2 which, is also returned by gravity.

23



Chapter 2 The Training Plant

s The flow is finally pumped to a co-current heat exchanger, Hl, where it is heated and

returned to Tank T102 through pneumatic control valve CV02.

LOI
L |
FO) Fos Los A
3
v CV03
cvor XB cvos .
hs hg 03
M 1103
Cl10s
vy - —_@
X cvi3
' Ty L
TIS LlS FI5 F '_\,\-
13 [
L, hos ¢ N y

K2
V23 Lz

—_—
¢ 7T hPs Loy T
e, Lo * Tl N
R CE: Pis Qi T
H2 l:)IJ
La Pio % a
-— hPJ’I Llo Pm
Ha svos | svoz S| H3 CVvIo P
S S
Qo
e Ana Ty 2
ﬁ 1) hpy,
hy Loeow T,
Fou CV04 hu = Fis T
13

Figure 2.2 The Training Plant diagram
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Chapter 2 The Trainine Plant

Heat balancing

Hot water is pumped by small centrifugal pump, K4, from Tank T104, and used in the above-
mentioned co-current Heat Exchanger, HJ, to heat the incoming flow from Tank TI102.
However, just before H1, the hot stream is by-passed, passing through pneumatic control valve
CV 10, and then mixed with the output flow from the heat exchanger, continuing then to a
counter-current cooler, H2, where the temperature is dropped. Part of the outlet stream from the
cooler enters the gas heaters, H3 and H4 where it is heated and then mixed with the by-passed
cooler output flow and returned to Tank 4, T104, just after pneumatic control valve, CV04.
Because the resistance of the piping through H3 and H4 is quite high, closing CV04 has the
effect of increasing flow through H3 and H4 from virtually very low to full flow. Since the
heater capacities are much larger than the cooler, shutting CV04 has the effect of passing from u

net cooling mode to a net heating mode.

2.3 Data acquisition and Control

The rig is interfaced to a local PC via Eagle® PC30 comprising analogue-to-digital (A/D), and
digital-to-analogue (D/A), input / output boards, with 16 12-bit inputs, 4 outputs and 24
programmable digital I/O. The experimental as well as simulation studies were carried out using
a flexible Supervisory Control and Data Acquisition System (SCADA). Extensive configuration
options are provided in this software, including Linear Dynamic Matrix Control (LDMC),
constraints and tuning parameters, PID loop settings, measurement filtering, alarm Jevels and
logging selections which may be changed on-line. In addition, an on-board convolution model'
may be used to test algorithms. A version of this program with real-time graphing and plant
mimic features currently exists in Microsoft® Visual C++ and was written for Windows 95.

Previous research students, including Prosser [1998], have developed this software.

The evolution of this software has been fairly organic, comprising many modifications by
various researchers as the need arose. Modifications were also made in the present work since
an integrating adaptive algorithm was added to the existing Dynamic Matrix Control algorithm
to overcome the problem of non-linearity and the integrating nature of the Training Plant (see
Appendix E). Results of off-line and real-time simulations using a step-response model applied
to an Integrating Adaptive Dynamic Matrix Control for a 2-input / 2-output sub-system defined

on the Training Plant are presented in Chapter 7.

'"The convolution model is a mode) based on linear combination of time-domain step response

2-5



Chapter 2 The Trainina Plant

2.4 The Control Problem

As already mentioned, this system is multivariable with a high level of interaction. A
multivariable process is one with multiple inputs, u,, u,, ..., Uy, and / or multiple outputs, Xy, Xa,

..., Xn, Where m 15 not necessarily equal to n.

One of the consequences of having several input and output variables is that such a control
systemn can be configured in several different ways using traditional SISO (single input / single
output) control loops depending on which input variable is used to contro! which output

variable. This is referred to as the input / output pairing problem.

In order to be able to control the output variables arbitrarily, we need at least an equal number
of input variables, and the choice of the best pairing to minimize the interaction and provide
optimum control is very important. This does not mean that the control is “perfect” or even

very good; it simply means that it is the best it can be in such a SISO format.

For non-square systems that is, a multivariable systems with unequal number of input and
output variables, the most obvious problem is that after input / output pairing, there will always

be a residual of unpaired input or output variables, depending on which of these are in excess.

For under-defined systems (with fewer input than output variables), not all the outputs can be
controlled, since we do not have enough input variables. The strategy for loop pairing of such
systems, is to choose a square sub-system by dropping off the excess number of output
variables on the basis of economic importance [Ogunnatke and Ray, 1994]. As illustrated in
Figure 2.3, the present Training Plant is an under-defined system from the point of view of
control, with eight manipulated input variables (pneumatic control valves) and sixteen output

variables of interest. The figure shows the anticipated main influences of the inputs on the

outputs.



Chapter 2 The Training Plant

Possible

influence

lnputs

CVvol
CVo2
cvo3
CVo4
CV05
CcVio
cvl
CVi3

Process Fus

Figure 2.3 The Training Plant control problem structure

The real challenge in deciding on loop pairing for non-square systems is presented by over-
defined systems (with more inputs than output variables), where arbitrary control of the fewer
output variables can be achieved in more than one way. The Relative Gain Array (RGA) the
most discussed index of loop interaction that suggests input / output pairings for which the
interaction effects are minimized, can in this case also be used to define the best square sub-
system. Further information about this issue can be found in Luyben, {1990] (pgs. 576 — 579)
and Ogunnaike and Ray, [1994] (pgs. 728 —-758).

According to Johnson, [1993], optimum control (control quality) can be defined in terms of the

three effects resulting from a load or set point change as follows:
e Stability,

»  Minimum deviation from set point and

e  Minimum duration (time necessary to contro!)

2-7



Chapter 2 The Trainine Plant

In the present work the intention is to formulate a control strategy for the process viewed as a
lumped multivariable system, in this way avoiding the pairing issue and allowing coordinated
action to achieve control objectives within defined constraints. Thus, only a sub-system
(described in the following section) with two inputs (CV01, CV03) and two outputs (L1, L2),

will be considered.

2.5 The sub-system under study in the present work

As mentioned above in section 2.2, the Training Plant presented in Figure 2.2 allows the
definttion of the sub-system of interest, by manipulating some control valves in the equipment.
Thus, to understand some aspects of the control of this system, a 2-input / 2-output sub-system

was configured as follows:

Controlled variables were chosen as the levels in the tanks T101 and T102 while manipulated
variables were valves CV01 (inflow from T102 to TI01) and CVO03 (inflow from T102 to
T103). Constant positions as percentage open were set for valves CV11 (inflow from T101 to

T102) and CV 13 (inflow from T103 to T102). A simplified diagram is shown in Figure 2.4

FOI =

cvo3l

o

CVal Y

3 Fo3

T103

CvI3

O o Cai L 9N

Figure 2.4 Sub-system of Training Plant for experiments
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Chapter 2 The Training Plant

To understand this sub-system behavior, a 2x2 off-line step responses of it, were derived from
the estimated outputs using the extended Kalman filter software applied to a state-space model
discussed (Chapter 3). For process control purpose, the step responses were experimentally
obtained and actually applied in the Dynamic Matrix Controller for off-line simulation as well

as for real-time tests as presented in Chapter 7.

it is important to emphasize that, a second 2-input / 2-output Pump-tank system, described in
section 4.4 and shown in Figure 4.4, was also vsed in the present work for on-line testing of
Linear Dynamic Matrix Contro} and Adaptive Dynamic Matrix Control in Chapters 4 and 5

respectively.
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Chapter 3

The Process Model

3.1 Introduction

A proper understanding of process dynamics significantly facilitates the design of effective
controllers. This understanding has usually been shown to be dependent on the availabjlity of a
process model. A mathematical model representing a process consists of a system of equations,
which represent the relationships between process variables, which purport to describe the
behaviour of the physical system. The main use of the model is usually the possibility to
investigate the system response under various input conditions rapidly, and inexpensively,

without neccssarily tampering with the actual physical entity.

With the exception of the most trivial process, it is impossible for a mathematical model to
represent exactly all aspects of process behaviour [Ogunnaike and Ray, 1994]. This fact
nofwithstanding, however, the usefulness of the mathematical model should not be
underestimated. We just need to keep its limitations in proper perspective. The effectiveness of
any contro! system designed on the basis of a process model will, of course, depend on the

integriry of such a model in representing the process.

To investigate the process behaviour of the present Training Plant, fvo process models based on
different principles were developed. A state-space model formulated from first principles and a

step-response model based on the experimental data from the equipment.

An extended Kalman filter method was used for state estimation of the non-linear system
described by a class of differential-algebraic equations this was used to develop a state-space
model for the entire system shown in section 2.2. In addition, a step response convolution

model was obtained using process measurements.
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Chapter 3 The Process Model

The present chapter is structured as follows. Literature review is presented in section 3.2.
Section 3.3 describes the Training Plant behaviour predicted using a state-space model. This
section includes issues such as the theoretical model, applied technique for solution of the
differential and algebraic equations describing the system, and finally, the step response

resulting from the model simulation using a Matlab program.

3.2 Literature review of differential and algebraic equations systems

Differential-algebraic equations (DAEs) arise frequently in chemical engineering and may
occur directly from the use of first principles to model a physical phenomenon. The differential
equations represent the dynamics of the system and the algebraic equations usually describe the

constraints among variables. These constraints may be linear or non-linear.

The DAEs have been studied by a number of investigators and are widely used for the dynamic
modelting of chemical processes. Several approaches have been proposed to estimate a solution
of DAEs. Cheng, Mongkhonsi and Kershenbaum [1997], employed the minimum least squares
criterion, i.e., the minimisation of the integral of the weighted square residual errors in the
process model and the measuring device, to develop a sequential algorithm for non-linear

differential and algebraic systems with the use of variational calculus.

Byrne and Ponzi [1988] review the underlying methods in some differential-algebraic systems
(DAS), software. A Newton-type method in which the computation of the Jacobian matrix is
not performed during each iteration is described. Rather, 1t is computed at some point and

retained until the convergence is deemed to be too slow.

Becerra, Roberts and Griffths [2001], explore the application of an extended Kalman filter
(EKF), to systems described by non-linear DAE’s. A time-varying linearisation has been
derived for a DAE model and a simplified square root EKF algorithm has been described. They
showed how the EKF can be used for noise filtering and estimation of unmeasured states.
including algebraic states of a system described by a semi-explicit index one DAE, i.e., with
similar behaviour to sets of ordinary differential equations (ODE), that can be solved using
similar solution methods. Notice that the EKF technique has been traditionally applied to state

and parameter estimation using models described by ordinary differential equations.
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DASs solvers can play a significant role in chemical engineering since, the simultaneous
treatment of both differential and algebraic equations in a mixed system eliminates the need for

attaching together separate methods and software for ODEs and algebraic equations.

An extended Kalman filter was employed in the present work for state estimation of the system
under study, since it provided a means to drive the solution towards convergence, and avoided

problems of singularity in under or over-specification.

3.3 Modelling the Training Plant

3.3.1 The state-space model

The initial modelling approach of the existing Training Plant was based on a state-space model
which, as described in section A.3.1 (Appendix A), is formulated from first principles.
Fundamental laws including mass and energy balances were applied over the equipment and

junction points and pressure drops over the pumps, pipes, and pneumatic control valves were

also considered.
The main simplifying assumptions that were taken to derive this model were:

e The mixing is perfect

s Heat losses are negligible

e The valves have linear characteristics (but installed characteristics will be non-linear due to
pressure variation)

e No mass transfer occurs in the absorption column

s The pump characteristics are described by quadratic functions

» Since only water is used in the system, the specific heats are omitied from energy balances.

The modelling revealed a complex non-linear, multivariable, and high order system with forty-
seven equations. Nine were Ordinary Differential Equations (ODEs), describing the state
variables and thirty-eight were algebraic equations representing the system constraints as shown
below. The system has a total of nine states, ten inputs and thirty-eight associated variables.

The equations below should be viewed in conjunction with Figure 2.2.
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e Model differential eguations

Volume balances in tanks and column

dhn =_F;| +F<')| (3.2)
dr A,

dhy, =_E3+F02+F1|+F|3+F15 (3.3)
dt A,

dhnz_ oy (3.4)
al A,

dhs = —hu+ B =0 (level in Tank 4 is constant) (3.5)
dt A,

dhs _ —Fs+ Fy (3.6)
dr As

Energy balances in tanks

dT;, =_]:|17]|+F017]2'(_F]1+FD|)7;| (3.7)
dr Ahy,

dT, _ —FoT + By + BT+ BT+ FoTy = (=R + P + Ryt B+ AT, (1.8)
dt Ah,

dar,, _ —FuTy +HEyT, _(_Fu "‘E).x)rxz

= 3.9)

dt Ak,

dT” =E4 (7:214_7;4) (3.10)
dt Ah,

dTls _ _Esﬂs + Fosle _(_Fw + Fos)T\s

= (3.11)

dt Ashy

e Model algebraic equations

Overall energy balance in Heat Exchanger, Hi

0:_‘:;)2(]-'02_7—;2)+(F;-\_E0)(T;4_7;9) (3.12)

Heat balance at junction hP)s

0=-F.Ty +(Fy = Fo) Ty + FioTs (3.13)
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Heat transfer in Heat Exchanger H1

0=—gy +UA,, ((TI-I _7;)2)_(7—1'9 _7—;2))”“((7.!4 _TOZ)/(TV) _7}2)) G.14)

Heat to output stream from the heat exchanger H)

0=~qy,+pCp(To, - T,,) Fy (3.15)

Heat balance in gas heaters

0=_‘]H3H4+PCP(7}|_EO)E§| (3.16)

Heat balance in cooling coil

0 = _qH2+ UAH2 ((7;0 - Tamh) _(Y;O - Tnmb))/l‘n ((T20 - Tnmh)/(T}iO - ‘Tamb)) (3 )7)

Heat to output stream from cooling coil Fy4

0==gy,+pep(To~Ty) Fy (3.18)

Geyzer temperature setting

0=-T,

M peyzer

T, (3.19)

Heat balance at junction hPgs

0= Fo, 7o + F3 T3y — F14 T (3.20)

Mass balance at split hP;,

0=—Fy + Fy + Foy + Ly + Fy (3.21)

Mass balance at geyzer bypass hPs
O=-Fy+ Fy— Fy (3.22)

Pressure rise over the pumps

0=_APKI+aKIElz+bKI F +eg, (3.23)
0=—APy, +a,, F,} +byy By +C4s (3.24)
0= -AP¢, +ay, By +beg oty (3.25)

3-5



Chapter 3

The Process Model

Pressure drop over the valves

2
0=-X APCI-’OI + g En_

Ccrol

2
0=_Xo2 APcvoz +,0 En

Ccro2

2
F,
0=_Xos A—Pcvos + £ Tu

Cyol

0= _X04 AP(:VO-t + p-FM

Cv o4

. P F
0=_Xos APCVOS + o
chos

2
0==X\ sy ALy +p Fio

Crio

p A

O=_Xn APcun"‘ =
CVI1

’F

0=_X|3 APCVIJ+p =
v

Pressure drop over the pipes

0=—kLy Fy’ +By+ pg(hBy—hy )= Doy,
0=—kL,, Fozz + P, +pg (th _haz)_APcvoz
0=—kLy, By’ + P+ pg(hB, — by )~ APy
0=—kL,, Fm2 + Py +pg(hP04 _ho4)

0= —kLy; Fo:‘.2 + P, + Pg(h—Pn _hos)_APCVOS

0= kL, Fg" +(Ry— P )+ pg(hPo—hPy)~ APy
0=—kL, Fy\* + pg (M —ho)= APey, + AP,
0=—kL,, F," = By + pg(h,—hB, )+ APy,
0=-kL, Fuz +08 (his ‘hoz)“APCVIB

0=kl F,' = By + pg(hy—hPy )+ AP,

0=-kL; Fisz +pg(h1, _hoz)
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(3.26)

3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
(3.35)
(3.36)
(3.37)
(3.38)
(3.39)
(3.40)
(3.41)
(3.42)
(3.43)

(3.44)
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2
0= ~klyy (Fu=Foo) +(Po = Po)+ pg (hPy ~ i) (3.45)
0=—kl, sz T (Plo - on)"' pg(hP,g - }"Rzo) (3.46)
0= KLy, Fyy” + Py + pg (hBy —hy) (3.47)
0=—kL, F;,z+(P30—PN)+pg(hPm—hPM) (3.48)
0=—kLy, Fo' +(Po = Po )+ pg(hPy = hPo )= APy, (3.49)
where:
A; tank area, [m’]
A pump coefficient, [h2 /m]
by pump coefficient, [h)]
Cxi pump coefficient, [m)

Cp heat capacity at constant pressure, [kw/(kg °C)]

Ccvij  Control valve ij size coefficient

F volumetric flow rate of stream ij, [m’/h)

hy; tank level, [m]

hoi height level above floor, [m]

hP; junction height above floor to the Pij pressure point, [m]

kL;j  pipejj resistance, [m water]

gn heat transfer rate for heater Hi, (kw/h]

qrwy  heat transfer rate for heaters Hi and Hj, [kw/h]

Ty temperature, ["C]

T.ms  ambient temperature, [*C]

t time [h]

Xos valve stem position (fraction of wide open)

U A); overall heat transfer coefficient x heat transfer area for heater Hi [kw/ (m? °C))[(m?}
p density, [kg /m"]

APy,  pressure drop over the pump, [m water]

APcy;;  pressure drop over the valve ij, {m water]

Numerical treatment of this 47 x 47 system of coupled differential and algebrajc equations was
a complicated task due to the high dimension and non-linearity. Therefore, for solution of this
system, an extended Kalman filter algorithm for systems described by non-linear differential-
algebraic equations developed by Mulholland [2001] (personal communication), was applied. A

perturbation method s used in this technique for local linearisation, i.e., a fixed small fraction

37
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(eg. 0.001) of the defined range for each variable is used as the perturbation. By avoiding the
use of analytical derivatives, possible model / derivative mismatches in this large system were
prevented. Admittedly, this risk could be reduced somewhat by using a symbolic mathematics

package like Mathemaiica or Maple.

3.3.2 Comments on the extented Kalman filter

The Kalman filter is a stochastic filter that allows the estimation of the states of the system
based on a linear state space model. The extended Kalman fiiter (EKF) uses local linearisation
to extend the scope of the Kalman filter to systems described by non-linear ordinary differential
equations, [Maybeck, 1982 in Becerra et al,, 2001]. Thus, this scheme has been traditionally

applied to state and parameter estimation using models described by ODEs.

As mentioned above, for state estimation of the Training Plant under study vsing the state-space
mode!, an EKF technique was applied. A detailed description of this method s presented in the

Appendix B.

Linearisation of DAEs
By applying a Taylor series expansions truncated after the first order term, the process model is
linearised taking into account the DAE nature of the system, described by the following

equation:

dy
dr =/ (»2) (3.50)

0=g(y17)
where y is a vector of state variables, and z a vector of algebraic variables.

The Jacobian is calculated assuming that f and g functions are sufficiently differentiable in their
arguments so that all needed differentiations are possible. Notice that for local linearisation a
perturbation method is used in the EKF algorithm. The functions and the Jacobian matrices are
. re-evaluated at every iteration by perturbing each variable in tumn, thus the values of the
elements of the matrices change slowly as the process moves to a new operating point.
Perturbation techniques find their most fruitful application in the class of non-linear systems
[Rice and Do, 1995]. It can be applied 10 algebraic equations as well as differential equations.

Analytical solutions requiring explicit formulas for the Jacobian terms are prone to error.
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A good approximation of the initial operating point data is required to accelerate the
convergence. The developed EKF algorithm, technique in this work has the advantage of
reducing the problem of singulanity since both excess equations and excess variables may be
specified. The solution simply achieves the best least squares fit to this specification. Where

there 1s no reason to change an excess vartable, it is simply left at its original value.

The linear model obtained has the form given by equation (B.6) (see extended Kalman filter

formulation in the Appendix B) as

7T\l 0| G50

The discrete model

As mentioned in section A.3.1, state-space models are most useful for obtaining real-time
behaviour of process systems, since they appear in continuous time. However, when the output
variables are sampled, the control action is implemented only at discrete points in time. Because
discrete-time formulations are most especially suited to computer simulation of process
behaviour, a discrete-time model of the process based on the linear model and the relationship

of model states to the measurements yw, are respectively given by equations (B.10) and (B.11) as

follows
Xy = Ax, + B u, (3.52)
Cx, =w, (3.53)

Kalman filter

With equations (3.52) and (3.53), the transient responses of the state-space model can thus be
founded using the Kalman filter (see equations (B.12) to (B.14)), taking into account the
expected error covariances Q and R matrices for the model and the measurements respectively
as described by equations (3.54) to (3.57). Note that the Kalman Filter has not been used 1o
provide state estimates, but rather as a means to seek agreement between the differential and
algebraic equations arising in this DAE model structure. Elements of the Q and R matrices were
merely chosen to give satisfactory performance in this task. This technique proved useful to
obtain the necessary convergence. For more details on the Kalman fiiter interpretation see

section 5.5.2.1.
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K, =M, cI[c,MC]+R] (3.54)
Xesar = AI X, BI u, + Kl[ﬁ": - CI x:] (3.35)
M y=A41-KCIMA +Q (3.57)

Notice that for DAEs system the observation matrix and observation vector are defined as C,

and W, respectively.

3.3.3 Matlab software and results

The EKF algorithm was written in Mattab and is presented in Appendix C. The original Matlab
version of the extended Kalman filter software was written by Professor M. Mulholland [200]]

“Personal communication”.

Using the model described by a set of equations (3.2) to (3.50), excluding equation (3.5) which
is not relevant, it was possible to establish the open-loop performance. The variables were
constrained in terms of physical reality. For example, the algorithm can handle emptying of

tanks with pump pressures responding correctly and flow being lost.

The above theoretical model showed process complexity derived from being multivariable, non-
linear, with a high level of interaction between the variables and complex model equations.
Tuning of the EKF predictor to find good parameters of the expected observation error
covariance, R and the expected prediction error, Q that gives satisfactory performance, was a
very difficult task taking into account the large number of variables to deal with, and the little

available information about the plant.

Recall that the EKF scheme has been traditionally applied to state and parameter estimation
using models described by ODEs. Thus, the software was tested in order to infer the model,
based on the estimated outputs for input step changes for the 2-input / 2-output sub-system
defined on the Training Plant (see section 2.5). Notice that the output variables under study in
the present work, are the levels in tanks T10) and T102, while the inputs are valves CV0I
(inflow to T101 from T102) and CVO03 (inflow to T102 from T103).
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The state-space step responses obtained from the model are shown in Figure 3.). These
responses are equivalent to the step responses derived from experimental data, presented in
Figure 7.2, Resulting responses showed similar integrating behaviour to the experimental data
and same trend although slower. [t took approximately ten minutes for all responses to become
steady ramps. Thus, considering a steady state horizon, M = § steps, a time interval, 4/ was

defined to be two minutes (see section 4.3 for details of parameters).

—~ 00400 | . ~ 0.0008 :
%3 | b 1% |
Pl | <
< 0.0300 | ey . ‘ L
o , & 0.0004 — L =
—_- < i —_— ‘
£ 5 00200 - £5
oy | - a
-3 - 2 |
5 . % 0.0002 - <! o
T 00100 —— >~ : g
8 ' 8 i
= 00000 - : : ' = 0.0000
0 1 2 3 4 £ 0 1 2 3 4 5
Steps Steps
~ 00000 - 0.0000
,(° l { | 1 )g
£ o050 B £ -0.0050 |—3 | |
& | 2‘ |
— & —_ € | |
T & 00100 - —‘ . _l ES -0.0100 |- T— ‘ St  S—
3 & o150 {— - dg 00150 {————— > g—
z | | z ' |
§ 00200 4——oi— ’ § -0.0200 —
K3 5
-0.0250 = .0.0250 :
0 1 2 3 4 5 0 1 2 3 A 5
Steps Steps
Figure 3.1 Model-predicted unit step responses for the 2-input / 2-output sub-system of the

Traintng Plant (M = 5)

Taking into account that little information about physical coefficients was available, many
parameters describing the equipment were guessed, (e.g. pipe friction coefficients) and will be
erroncous. However, the results are promising considering that the proposed EKF technique can
satisfactorily estimate the state variables describing this system. Further investigation to find

actual process parameters is required to improve the model performance.
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To overcome the difficulties presented by this theoretical model regarding its complexity and
lack of information, an empirical model approach was further adopted (see section A.3.2 in
Appendix A). Thus, the process model of the sub-system under study was built using
experimental data and then applied to the Linear Dynamic Matrix Controller. Empirical models
have the advantage that they are simply based on the arbitrary input functions u(t), and do not
require any complex mathematical manipulations or any state transformations, only requiring a

data record from well-designed experiments. This issue is discussed in the following chapters.



Chapter 4

Linear Dynamic Matrix Control

4.1 Introduction

The control of the existing Training Plant presents a difficult problem due te a number of
factors described in Chapter 3. Among them are the multivariable, interactive nature of the

system and the fact that the process is highly non-linear and constrained.

Since Model Predictive Control (MPC), is able to handle most of the difficulties mentioned
above for the Training Plant, this technique was applied to design a controller for it, using
Linear Dynamic Matrix Contro} (LDMC), one of the most popular applications of MPC bascd
on the step response. In section 4.2, the general principles of MPC are presented. The design
parameters of DMC are discussed in section 4.3 while a case study of DMC application is

presented in section 4.4,

4.2 General Principles

Model Predictive Control refers to a class of control algorithms in which a dynamic model with
its associated uncertainties is used to predict and optimise process performance. Control design
methods based on the MPC concept have found wide acceptance in industrial applications
because of their ability to handle process interactions and unusual dynamic responses, and
because it does not necessarily demand a rigorous model derived from first principles. An
explicit dynamic model of the plant is used to optimise the future actions of the manipulated
variables on the output over a longer time period. This flexibility is helpful in modelling
unusual process behaviour. On the other hand, MPC provides the only methodology able to
handle constraints in a systematic way during the design and implementation of the control
[Garcia, Prett and Morari, 1989]. These authors present a reviewed MPC methodology while de

Vaal {1999] presents an overview of advanced control techniques.
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Successful applications of DMC have been reported in the literature. Robertson, Watters,
Desphande, Assef and Alatiqi [1996]) compared a DMC method with standard Pl control on
reverse osmosis (RO) desalination processes to produce a constant quantity of product water
with an acceptable purity. They reported that much more flexibility in the operation of an RO
plant s available with DMC control. Linear Dynamic Matrix Control (LDMC), based on a
linear programming solution for the optimal path to the control horizon has been developed by
Mulholland and Prosser [1997] following the methods of Chang and Seborg [1983], as well as
Morshedi er al [1985]. The combination of linear programming and DMC allows for the
handling of explicit constraints on top of the standard DMC structure. The algorithm was
applied to conitrol the top and bottom temperature of a semi-industrial distillation column.

Mulholland and Narotam [1996] and Prosser [1998] also considered multivariable control using
LDMC.

Qualitative models based on fuzzy sets have also become a powerful too! for representing non-
linear systems. Demircan, Camurdan and Postlethwaite, [1999] demonstrated that besides
quantitative fundamental and empirical models, a qualitative Fuzzy Relational Mode] (FRM),

can also be used when implementing DMC.

Some design techniques emanating from MPC are Dynamic Matrix Control, discussed in the
present chapter, Model Algorithmic Control (MAC) and Model Reference Adaptive Control
(MRAC). The last one is discussed briefly in section 5.3.2. The fundamental framework of
MPC consists of four elements shared in common by all schemes. What differentiates one
specific scheme from the other is the strategy and philosophy underlying how each element is
actually implemented. These elements (illustrated in Figure 4.1) may be defined as follows
[Ogunnaike and Ray, 1994]:

1. Reference trajectory specification

Desired target trajectory for the process output, x(i). This can simply be a step to the
new set point value or more commonly, it can be a desired trajectory that is less abrupt
than a step.

2. Process output prediction

The appropriate model is used to predict the process output over a predetermined,

extended time horizon (with the current time as the prediction origin) in the absence of

further control action (“open-loop” response).
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3. Control action sequence computation

The same model is used to calculate a sequence of future control moves of the

manipulated variables that will satisfy some specified optimisation objective such as:

e Minimising the predicted deviation of the process output from target over the

prediction horizon,

e Minimising the expenditure of control effort in driving the process output to target,

subject to prespecified operating constraints. Only the first calculated move is used,
since the optimisation is repeated at each sampling time based on updated information

(measurements) from the plant.

Past Future
«—
F - =g --
e ~ [ —o
.\]{uj(” \ KR¢‘<l+l)
Npefi-2), Xpppenl1)
x S(-2) ) XMEAS() _I_L.U.(_LMJ_)_
PREI . M-
1 o
Xyras(i=2) ;—'__Ii
L A ] \
L} L} h) 0]
- i 1+}  1+2 i+M-) i+P
[ B
I L
Horzon

Figure4.1  Example of elements in model predictive control: o - p : reference

trajectory, O - o : predicted output, ¢ - & : measured output

The DMC algorithm is currently one of the most popular and widely used MPC algorithms,
because it is simple, intuitive and allows the formulation of the prediction vector in a natural
way. It is based on a linearised step response model called the convolution model (Figure 4.2) to
predict the effect of possible control actions. Such a strategy enables the model-based control to

antictpate where the process is heading.

The elements of the step response represent the changes observed in the process output at M,
consecutive equally spaced, discrete-time instants after implementing a unit change in the input

variable.
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Figure 4.2 Typical output response to a unit step input

Step responses data can be represented in the convolution model for future outputs as

x, Y [B 0 0 0 0 .. 07](am
X, B B 0 0} 0 0 am
X, B, B B 0 0 0} Am
‘“ B” B.\VI aaa BI 0 -y - D Am“ (4'|)
xt\ 1 Bu B\l Bu ) BI 0 Amu-n
\x,. / —Bn Bu Bu B\I BM-I e Bl - \Ar“‘_
or
XxX=BAm (4.2)

To implement the predictive algorithm in accordance with the MPC configuration illustrated in
Figure 4.3, it will be seen that other matrices are defined from the step response coefficients. By

is the Qffset man-ix of the coefficients and Boy a man-ix of the Open Loop response coefficients.

An approach for on-line identification of the step response coefficients, in By matrix which, are

used to fill B, and B matrices applied in the DMC algorithm, is illustrated in this study and is

discussed in chapter 6.
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Figurc 4.3 Model Predictive Control conliguration [Mulholland and Prosser, 1997]

Thus, the step responses of an m-input / n-output system can be represented by a series of
matrices B, By B, ...... Bp. The position (i) in each matrix B, is a point on the trajectory at
time 7 for the (i th) output as it responds to the ;j th input. Now consider the following
construction in which 4m, is the vector of input moves (changes) made at time 4, and x, is the
vector of outputs at time r. A moving frame of reference for time is used in which =0

represents the present time.
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The vector of vectors Xopgrp = Bo AMpasy in equation (4.3) contains P identical predictions of
the output vector at the present time r=0. The vector xpzep contains predictions of the output
vector at P points on the future trajectory, as contributed to by the past M control moves
[Ampast = (Ampeg ..., Am_o)T], and a future P control moves. We choose M to be large enough
to ensure that all step responses are at steady state at this point (By). Then we expect that our
predictions of xppeep and xprep will only be in error by steady-state offsets emanatir{g from

earlier than M steps before the present time.

We make P copies of this offset error by comparison with a vector xgy/e5s containing P copies

of the present output measurement

Ve

Xovras
Xorsras
XorrEas

Xovzas =| (4.4)
XovEas

XOMEASJ
and use them to correct our furure predictions as follows

Xer, = Xougas +[BoL = Bo | Ampir + BAm (4.5)
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The matrices By, By, and B are clearly top-left, bottom-left and bottom-right respectively in
the structure given by equation (4.3). In. DMC we solve on each step for a limited sequence of N
moves (Am*) to be optimised (N < P). Actually, only one or two future moves are normally
solved, allowing a reduction to one or two columns in B, resulting in the matrix B* (non-square
P x N matrix). Although only the first move is ever used, a solution for a second move allows
stronger action on the first move, because the solution plans a correction with the second move.

In this way higher gains are obtained.
A quadratic objective function J, dependent only on Am* can be defined as:

Am*) =(ec,) "W (ect) + (Am*) N\ (Am*)
= (XoL = Xsp+ B* Am*)T W (xgL — xsp+ B*Am*) + (Am*)"A (Am*) (4.6)

where xgp 15 the process variable set point trajectory, while the closed loop error, ecy, is defined
as:

ect= e+t B Am* (4.7)
and the “open-loop” response, Xg,, corrected for present mode) offset, 15 given by

XoL = Xomeas T [Bor — Bo] Ampast (4.8)

Thus, an optimal sequence of control moves, Am*, for minimum control move effort which
achieves minimum deviation from the set point trajectory up to the time horizon P, is found by
minimising J with respect to Am*. This opumisation problem is solved using a least squares
techmque (see Section 5.5.2.2). The LDMC approach then finds the “closest™ Am* to this point

which satisfies the input and output constraints (see below).

A weighting factor matrix, W, and a move suppression matrix, A, generally diagonal,
(discussed in the next section), are incorporated to determine the extent to which deviations

from setpoint, or contro) moves, are discouraged.

This model predictive control (MPC) format lends itself to dealing with constraints in both the
input and output variables. The present work uses a combination of quadratic and linear
objective functions in which linear programming (LP) is used to obtain a final solution within
constraints (LDMC). This solution has the benefits of QDMC without being as computationally
demanding (Chang and Seborg, 1983; Morshedi es al, 1985). It is based on the idea of obtaining

the closest approach to the least squares optimum, should it lie outside of the constraints.
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4.3 Design parameters for DMC

As mentioned above, within the DMC algorithm, the process dynamics are represented by a set
of numerical coefficients determined from a process step response. While an extensive review
of the DMC algorithm is not discussed in the above section (the interested reader should consult
references [Ogunnaike and Ray, 1994; Mulholland and Prosser, 1997] for a detailed
description), it is useful to discuss several design parameters which can be adjusted to give the
desired response as well as an appropriate amount of controller effort. Bearing in mind that only
the first N control moves of the possible P need be optimised (the rest can remain zero), the

parameters include:

e sampling time, 4t

e steady state horizon, M

e optimisation horizon, P

e npumber of future control moves, N
» process variable weight, ¥/

* move suppression, A

At discrete sampling instants, 4r, the step response coefficients may be determined from the
step response model. The steady state horizon, M, is the time for the open-loop step response 1o
reach e.g. 99 % completion. The choices of the sampling time and the steady state horizon are
interrelated as the steady state corresponds to the settling time of the system expressed as a
multiple of the sampling interval. The selection of these parameters should insure that no
truncation problems arise in calculating the predicted values for the convolurion model. The
sampling time selected must be small enough to accurately represent the process dynamics.
However, if chosen too small, it will require an extraordinarily large steady state horizon. Small
values of M, with subsequent large values of 4t, are desired so as to reduce the computational
requirement. In cases where a dead time is 1o be accounted for the sampling time must

obviously be smaller than this delay.

Parameter P is defined as the optimisation horizon. It is equal to the number of predicted

controlled variable response times that are used in the optimisation calculations.
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N is used to indicate to the controller, the number of future control moves that are calculated in
the optimisation step to reduce the predicted errors [Seborg, Edgar and Mellichamp, 1989]. The
computational effort increases as NV increases and a small value of N leads to a robust controller
that 1s relatively insensitive to model errors. Thus, as the value of N is increased, more degrees
of freedom are available for the controller optimisation step. This will result in tighter conirol,
at least as far as minimising the objective function is concerned. While increasing N can result
in befter control system performance, the manipulated variable movements become larger and

there is a reduction in the controller’s robusmess.

However, it has been noted that if a particularly fast response is necessary, and the reduced
robustness can be tolerated, a controlier with higher value of V can be more finely tuned using

the continuous adjustment of A as opposed to discrete values of P or ¥ [Prosser, 1998].

In practical situations, it is usually necessary to suppress the movement of the manipulated
variables. This is achieved by incorporating move suppression values, A, into such variables.
Increasing the A values will slow down the contraller’s closed-loop response and reduce the
size of the changes that are generated. In addition, it is possible to achieve tighter contro} of
some variables relative to others, by multiplying the controlled variables set point deviations

(squared) by different weighting values, H, in the objective function (equation (4.6)).

The selection of such weight parameters for the controlled variables is generally a relative
matter, depending on the need to control some outputs tighter than others. It is important to note
that while the selection of individual weight parameters does indicate a designer's desire to
control one output tighter than another, a comparison of the absolute values of the weighting
parameters does not indicate the degree to which one variable is confrolled relative to others
[(Robertson et al., 1996]. This comes about because variables may have different units, and

some units, such as those of temperature and flow rate, cannot be directly compared.

4.4 Application of LDMC to 2 Pump-tank system — case study

The on-line testing of LDMC was dore using a second plant considered in this research and
mentioned in Section 1.1. This was the 2-input / 2-output pump-tank system used for simulation

and laboratory tests in the School of Chemical Engineering at the University of Natal,

represented in the Figure 4.4.
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The system consists of a pair of interacting tanks receiving water from a reservoir by means of a
centrifugal pump. The two input variables are control valves: valve | is on the return line to the
reservoir and valve 2 connects the two tanks; the output variables are levels | and 2. At the
bottom of each tank is a small pipe connecting the tanks to a shared line, which returns to the
reservoir. The valves on these pipes remain at some fixed open position and altow water to flow
out the tanks and back to the reservoir continually. V1, V2 indicate valve position as percentage

open, and L1, L2 indicate tank level as percentage full.

The Pump-tank system was operated to get the open-loop step responses presented in Figure
(4.5). These responses show stable process behaviour, i.e., “self-regulatory” (see section A.2 in
Appendix A). The time taken for the system to reach a steady-state in all step responses afier
disturbances was approximately 10 minutes. Note that the response of L2 10 V2 achieves the
steady-state on the last point. A time interval, 41, was chosen to be 60 seconds and giving a

steady-state horizon, M of 10 steps.

\,r‘
A

Vi

V2

2 5

Figure 4.4 2-input / 2-output Pump-tank system for simulation and laboratory tests
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Figure 4.5 The unit step responses for the Pump-tank system (M = 10)

To illustrate some properties of LDMC, the controller design and the effect of constraints were
considered. The data acquisition and control action implementation tasks were performed with
the optimisation horizon, P = 10, the same as the steady state horizon, M. The move
suppression factor, 4 = | and weight factor, # = 100 were tuned on-line giving satisfactory
performance with two optimised contro} moves as illustrated in Figures 4.6 and 4.7, for step
changes in the set point made at 340 and 640 seconds for outputs 1 and 2 respectively. Note, as

mentioned before, a controller update interval of 60 seconds was used in all of these tests.
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Figure 4.6 Unconstrained closed Joop step response for N =2, 4 =1 and W =100

In the unconstrained run (Figure 4.6), the control was efficient in reducing set point deviations,
while at the same time being severe in terms of control movements since the second optimised

move makes a correction to the first move, which can therefore be an “overshoot” move.

The Linear Dynamic Matrix Control was also observed to take logical actions accounting for
the system coupling and allowing for constraints as illustrated by Figure 4.7. In this case, upper
constraints of 60 % for input 1 and 50 % for input 2 were imposed. As a result, an offset can be
seen in the level | in the period where the constraints are active. This is as would be expected
from reducing the degrees of freedom of the manipulated variables. However, level 2 presents a

smooth response and attempts to obtain the best fit.
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Notice that a large number of tuning parameters, including move suppression, set point

deviation weighting factor and different numbers of control moves were tested for this system,

subjected to a step change in the set point, and the LDMC algorithm gave acceptable

performance for a wide range of these conditions. When the weighting factors are held constant,

decreases in the move suppression values for each manipulated variable resulted in

progressively faster responses. If the move suppression is held and the weighting factor

increased, faster responses \vere again noted.



Chapter 5

Adaptive Control Principles

5.1 General

Traditionally, chemical process control has focused almost entirely on the analysis and control
of linear systems. Therefore, most existing control systems design and analysis techniques are
suitable only for linear systems. This is because many processes are in fact only mildly non-
linear, and even strongly non-linear processes take on approximately linear behaviour as they

approach steady state.

Nevertheless, for those non-linear process whose non-linearities are strong, linear controller
design technigues often prove inadequate as the process moves further away from steady state
and more effective alternatives must be considered. An adaptive control system is one of the
advanced control strategies that can, in some cases, provide significantly improved process

control beyond that which can be obtained with conventional controllers.

Despite DMC presenting severa) features and advantages as described in Chapter 4, being linear
tt infroduces some limitations when it is applied to non-linear systems. To deal with the non-
linearity nature of the present process (see section 3.3), an adaptive control scheme with
recursive parameter estimation was proposed and implemented in the DMC algorithm. A

detailed discussion about adaptive DMC is presented in Chapter 6.

Basic concepts of adaptive control and model parameter estimation using a recursive least
squares technique are introduced in this chapter. An overview of adaptive control is given in the
section 3.2, while several schemes of adaptive control are discussed in section 5.3. In section
5.4 suggestions of how to proceed in order to decide what type of controller to use are given

and some aspects of the identification and parameter estimation are discussed in section 5.5.
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5.2 Adaptive control overview

Modern industrial processes are getting more and more complex, and are inherently non-linear,
respond slowly, and have large time-delays and so on. The quest for improvement in the
performance of process plants and the availability of fast computing power has given rise to the
development of a new generation of advanced control algorithms. These algorithms can identify
the current optimal operating point of a process and effect the transition of the process to a new

optimal point in an acceptable and safe manner.

According to Astrém and Witternmark [1995], adaptive confrol is a technique that
automatically adjusts the controller settings with process moves from cne operating point to

another, to accommodate changes in the process to be controlled or its environment.

An adaptive control system can be thought of as having two loops. One loop is a normal
feedback with the process and the controller; the other loop is the parameter adjustment loop
and this is often slower than the normal feedback. The general strategy for designing adaptive
control systems is to estimate the mode! parameters on-line and then adjust the controller

settings based on the current parameter estimates.

Adaptive control schemes provide systematic, flexible approaches for dealing with
uncertainties, non-linearities, and time-varying process parameters. Consequently, adaptive
control systems offer significant potential benefits for difficult process control problems such as
non-linearity and / or high-order, where the process is poorly understood and / or changes in
unpredictable ways. This control technique has been applied in chemical processes. Several
theoretical and experimental studies have appeared in chemical engineering literature, {Seborg,
Edgar and Shah, 1986; Astrdm and Witternmark, 1995], while the number of industrial adaptive
control techniques available increases continuously. Most of the adaptive control systems
require extensive computations for parameter estimation and optimal adjustment of controller

seftings.

Seborg et al [1986] have reviewed the adaptive contro} strategies from a process control
perspective and describe leading design techniques. This survey paper is a good reference to get

detailed information about this issue.
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53 Adaptive schemes

Two general categories of adaptive control problems can be distinguished, differing mainly in
the way the controller parameters are adjusted. The first category consists of problems where
the process changes cannot be directly measured or anticipated. The most popular are mode!
reference adaptive conirol and self-tuning adaptive control. The second category consists of
confrol problems where process changes can be anticipated or inferred from process
measurements. In these situations, if the process is reasonably well understood, it is feasible to
adjust the controller settings in a predetermined manner as process conditions change, and this
control strategy is referred to as gain scheduling. Most adaptive control literature has
emphasised the first category [Maiti, Kapoor and Saraf, 1994; Maiti and Saraf, 1995a &1995b;
Aitchison and Mulholland, 1997; Demircan, Camurdan and Postlethwaite, 1999]. A brief

description of these schemes is follows:

5.3.1 Scheduled Adaptive Control

As mentioned above, in some cases it is possible to find measurable variables that correlate well
with changes in process dynamics., Such vanables can then be used to change the controller
parameters by monitoring the operating conditions of the process, to reduce the effects of
parameter variations. This scheme is referred to as gain scheduling and is commonly used in

industry to overcome the gain mismatch. A block diagram of this scheme is shown in the Figure
5.1,

A good knowledge of the process is required to apply this method and a great advantage of this
scheme is that the confroller adapts guickly to changing conditions. Since no estimation
parameter occurs, the Jimiting factor depends on how quickly the auxiliary measurements

respond to process changes.

Gain scheduling has been used in special cases, such as combustion control, pH control and
other well-known control problems that present difficulties due to large variations in process

dynamics [Ogunnaike and Ray, 1994].
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Figure 5.1 Block diagram of a system in which the influences of parameter variations are

reduced by gain scheduling

5.3.2 Model Reference Adaptive Control

The key component of the Mode) Reference Adaptive Contro] scheme (MRAC), is the
reference model that consists of a reasonable closed-loop mode! of how the process should
respond to a set point change. The reference model output is compared with the actual process
output and the observed error ey is used to drive some adaptation scheme to cause the controller
parameters 10 reduce ey to zero. The adaptation scheme could be some control parameter
optimisation algorithm that reduces the integral squared value of ey, or some other procedure.

This scheme is illustrated in the Figure 5.2.

N Reference Model Qutpul
> Model

Ca

v -

Controller

Updated Parameter

Controller Adjustment

Parameters
v
X ¥, I I ) Process X
L . ontroller » : >
Set-point . g_ kpat Output ~
Figure 5.2 Mode! reference adaptive control structure
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5.3.3  Self-tuning Adaptive Control

Self-tuning adaptive controllers differ from the model reference adaptive controller in basic
principle. The self-tuning control configuration in Figure 5.3 js flexible enough to accommodate
a wide variety of parameter estimation techniques and controller design strategies. It makes use
of the process input and output to estimate recursively, on-line, the parameters of an
approximate process model. Thus, as the actoal non-linear process changes operating region or
changes with time, an approximate model is continuously updated with new parameters. The
updated model is then used in prespecified control system design procedures to generate
updated controller parameters. The controller could be a PID controller or more complex

control system structures such as a cascade controller, DMC, etc.

Since the estimated model determines the effectiveness of the controller, the most essential
feature of the self-tuning controller is reliability and robust model identification. In the present
work, a self-tuning adaptive control scheme is implemented in the Linear Dynamic Matrix

Control algorithm, where the coefficients of the step response are updated recursively (Chapter
6).

A
Control Parameter
design estimation
Updated
Controller
Parameters
X
- u .
Set-;an’ Controller I B Process L
npul »
7 3 Output
Figure 5.3 Self-tuning control system
5.4 Procedure to decide what type of controller to use

An adaptive controller, being inherently non-linear, is more complicated than a fixed gain
controller. Before attempting to use adaptive control, it is therefore important to investigate
whether the control problem might be solved by constant-gain feedback. Figure 5.4 shows how

to decide what type of controller to use [Astrom and Wittlermark, 1995].
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Figure 5.4 Procedure to decide what type of controller to use
5.5 Identification and parameter estimation

As mentioned above, on-line determination of the process parameters is a key element in
adaptive control. A recursive parameter estimator appears explicitly as a component of a self-
tuning regulator (see Figure 5.3). Parameter estimation also oceurs implicitly in model reference
adaptive control (see Figure 5.2). Since system identification is executed automatically in

adaptive systems, some aspects of it are discussed in this section.

5.,5.1 Comments on identification and parameter estimation

The non-linear and non-stationary nature of a typical chemical process leads to a change in its
dynamic characteristics during operation. To cope with this situation, a controller should be
able to adjust its parameters in an “optimum” manner. However, the complexity of these
processes makes them difficult to understand, model, interpret and control. As a consequence
engineers often try to develop empirical dynamic process models for these systems, directly
from input / output data rather than atternpting to develop time consuming, expensive

fundamental, analytical models [Barard and Aldrich, 2000].

Svstem identification deals with the problem of building mathematical models of dynamical
systems based on observed data from the system. This activity can be carried out in an off-line
or on-line manner. In the off-line situation, the process data is first stored and later transferred to

a computer and analysed. For this “batch” processing technique, a whole data set is evaluated at
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once. In the on-line techniques, the identification is performed in on-line operation with the
process and, two ways of processing data can be distinguished: real-time processing and batch
processing. In real-time processing the data is evaluated immediately at each sample instant,
wlhile in batch processing, the data is evaluated periodically afier periods of measurements have

been ymade. Real-time processing in general needs no storage of data since each new point is

used to update the model parameters.

Table 5.1

specifications of process identification [Isermann, 1980}

Some examples for the relationships between different final goals and some

Final goal of

model application

Type of

process model

Required accuracy

of model

Identification

method

Verification
theoretical

models

concroller

parameter tuning

computer aided
design of digital

control discrete time

linear/continuous-
time non-parametric/

parametric

tinear, non-parametric,

continuous-time

linear,
parametric

(non-parametric)

medium/high

low for

input/output

medium for
input/outpul

behaviour estimation

off-line step response of
frequency parameter-

eslimation

off-line

Step response

on-line
off-line

parameter algorithms

self-adaptive linear, medium for on-line parameter

digital control parametric, input/oufput estimation
discrete-time behaviour in closed loop

process parameter linear, high for on-line

maonitoring non-linear, process parameter

and failure detection conlinuous-time parameters estimation

it is thus important to regard first the final goal for the application of the process model, since
this determines the type of the model and its accuracy requirements and the identification
method. Prior knowledge of the process is required. Table 5.1 shows some of the relationships
between different final goals and some specifications of process identification [Isermann,

1980]. The key elements of system identification are the selection of model structure,

5-7



Chapter 5 The Adaptive Control Principles

experiment design, parameter estimation and validation. The selection of model structure and

parameterisation are fundamental issues,

A general procedure of process identification is illustrated in the Figure 5.5 and shows how the
identification is an iterative procedure. Isermann [1980], presents a good description of practical
aspects of process identification while Ljung [1999] describes a theory of system identification

that has direct consequences for the understanding and practical use of available techniques.

Process
FMk - Physical laws
fconony . : :
o Final knAmpJfgégc - gremugsunmcn_u_:
goal peraling condilions
_ Dusign of <
- cxperiments -
Signal generation,
measurenienls
and data siorage
y
> . ApFEzca(Alon of Assumption of
identification micthod model structure
Process model
Non- paramctric ~ Model stnuctuse
parametric determination
A h 4
. Model No
- verification
ycs
Final
model
Figure 5.5 General procedure of process identification
)

Because system identification has been sufficiently formalised for linear systems, but not for the
empirical identification of non-linear dynamic systems, many researchers have studied this
problem. A method for establishing second order plus dead time model parameters under

closed-loop PI control is proposed by Suganda, Krishnaswamy and Rangaiah [1998]. The
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advantage of this:technique is that the required closed-closed loop response data can be
obtained while the process is in normal operation since many industrial controllers are of the Pi-

type.

Barnard and Aldrich [2000] propose a formal methodological framework for the empirical
modeclling of a non-linear dynamic system that can be parameterised as a state space system.
The methodology involves classification of a time series and associating a suitable model with

the prediction of the time series.

Some aspects of the real time parameter estimation are discussed below, followed by an on-linc
identification example using batch processing. A real-time processing example is presented in

Chapter 6.

5.5.2 Recursive least square estimation of model parameters

In adaptive control, real-time (or sequential) updating of the model parameters is more
appropriate than batchwise (nonsequential) processing of the input-output data. Algorithms that
are suited to real-time usage and are based on successive updating of the model parameters are
called recursive. There are a large number of recursive identification algorithms described in
the literature. Treatments of these techniques are given in many textbooks, and Ogunnaike and
Ray [1994]; Astrém and Wittenmark [1995] and Ljung [1999] may be mentioned as suitable
references for further study. The most popular technique is Recursive Least Squares (RLS),
discussed in this section. It is assumed in this technique that the order and the form of the
system are known. We start thus by giving an overview of Kalman filtering since it is used to

estimate the parameters of the model recursively by using the least squares technique.

5.5.2.1 Kalman filter interpretation

Consider linear, discrete time dynamic systems where predictions and observations are

subjected to random errors to account for the uncertainties:

xHI =Axt+Bul+8HI (51)

and for the measurement:
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Y, =Gx, +g, (5.2)

where x is the state vector, u the input vector of independent variables, i represents the time
and y the system output. G is an observation matrix while A and B are matrices of appropriate
dimensions (1 x 1 and rn x m, respectively, for an »-dimensional state and an ;z-dimensional
input). These matrices (A and B) typically correspond to unknown values of physical
cocflicients, property constants and the like. 8 and p are process and measurement noise
cantributions respectively acting on the states. They result from both measurement
imperfections and disturbances affecting the process. They are considered to be random

variables with zero means, and with known covariances:

E{557} =R
(5.3)
E{;z ,u"'} =Q
and for uncorrelated 8 and p
E{5T "} =[0] (5.4)

Linear, discrete-time models are preferred for adaptive control because they lead to algorithms

that are readily implemented on a digital computer.

In a real time identification situation (Figure 5.6), X;.), X;, and u; are observed on-line and the
elements inside A and B matrices that give a good description of the input / output behaviour of
the system need to be found. The on-line computation of the mode! must be done in such a way
that the processing of the measurements from one sample can, with certainty, be completed
during one sampling interval. Otherwise the model building cannot keep up with the

information flow.

Ll| | Rea] YI*'
Real
process word
Xi+1
——_’\_ RLS
1 e Ident .
z' > n A
mt of B
z > model
Figure 5.6 On-line identification configuration
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The Kalman interpretation of this system, taking into account the expected errors, is that the

filter gain K, is vielded on each time-step for adjusting x as follows:

K,=M,G [ 6,M,G/ +R]" (5.5)
X,y =A,x,+ B, l’l"'K:[;'/_Gaxi] (5.6)
Mm:Ai[]_KJG/]IWJAiT"'Q (5.7)

where M; is the filter covariance matrix (diagonal and initially small to promote fast adjustment
at the start), R the expected observation error covariance (usually diagonal) and Q, the expected
prediction error covariance (usually diagonal). Higher prediction errors Q relative 1o
observation errors R, force the filter to follow observations more closely, whilst specifying

higher observation errors R makes the mode! less sensitive to observations.

The initial conditions can be set so that xo is what we guess the parameter vector to be before
we have seen the data, and M, is the initial covariance matrix, which reflects the confidence in

this guess.

Equation 5.6 shows that the estimate x;:, is obtained by adding a correction to the prediction of
X;+1 based on x; according to the model. The correction term for the mode! parameter vector is
thus proportional to the prediction error (difference between the measured value of y; and the
prediction of y;) based on the previous estimate. The components of (he Kahnan filter gain

matrix, K; are weighting factors that introduce an optimal correction into the integration cycle.

Notice that this form (equations (5.5) to (5.7)), allows A and B to vary in time. This provides a
way 10 handle non-linearities, since, as the process moves to a new operating point, elements of
these matrices will change. Recall that these equations were also applied in Chapter 3 for state

estimation of the state-space model of the Training Plant, using an extended Kalman filter.

3.5.2.2 Least squares parameter estimation

Parameter estimation is concemed with the determination from experimental data of the best set
of values for unknown parameters in a process of known form. The least squares estimation
approach (also called linear regression) is a basic technique for parameter estimation. The

method is particularly simple if the model has the property of being linear in the parameters.
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Based on Ogunnaike and Ray [1994], Astrdm and Wittenmark {1995}, we present some basic
principles for parameter estimation. Consider a mathematical model subjected to an

unavoidable measurement error, as well as the inaccuracies that can be written in the form:
y,=f(g,,p)+eMl i=1,2, ., (5.8)

where y is the observed variable, p are parameters of the model to be determined, g is a known
function that may depend on other known variables and is called the regression variable or the

regressor and e, ;the vector of errors between the model prediction and the actual data.

The parameter estimation is now involved with finding a specific set of parameter
values such that some scalar function J of the vector p, known as the objective function
and usually represented as J (p), since it depends on the parameter values, 1s minimised.

Typically we use the quadratic form:

7

J(p)= i[eM N [e, /] (5.9)
1=)

or from equation (5.8)

13l

J)= [y, ~f&.m] [y, -1(,.0)] (5.10)

where the summation is over all of the data points. Sometimes it might be necessary to assign
more weight to more precise measurements, and less weight to others. This is accomplished by

introducing weighting coefficients as follows:
Iz T

J()Y=> [y, - £(g.p)] W, [y.-f(g.p)] (.10
i=|

The coefTicients W, reflect the relative precision of the measurements (for more details about

weight factors see section 4.3).
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It can be seen from equation (5.10) that this parameter estimation is really a quadratic
optimisation problem. Its objective is to estimate the parameters in p that minimise the model

€rror.

Remember that this techmque is also applied in the constrained Dynamic Matrix Control
algorithm (Chapter 4) where J is a defined quadratic function depending on a limited sequence

of N moves (Am*) to be optimised.
If f (g;,p) is linear in the parameters p, equation (5.8) can be represented by equation (5.2) as:

y=Gp+e, (5.12)

where G is the complete matnix of independent variables compiled for each set; y is the entire
collection of the experimentally obtained data; and eay; contains the prediction errors, and we
wish to find a vector p of suitable parameters. If G were square and non-singular, we could get

the constant coefficients p directly from

p=G’'y (5.13)
However, in general, G will not be square and the linear (least squares) parameier estimation
problem is now to find the vector p for which the squared deviation of the data set y from the

model Gp is minimised. The function is minimal for parameters p such that:
G ' Gp=G'y (5.14)
If the matrix G'G is non-singular, then the minimum is unique and given by:

p=(GTG)"GTy (5.15)

3.5.2.3 The recursive least square parameter estimation

in the adaptive controllers, the observations are obtained sequentially in real time. It is then
desirable to make the computation recursive to save computation time. Computation of least
square estimates can be arranged in such a way that the results obtained at time i can be used to

get the estimates at i+/. We can rewrite the solution of equation (5.15) in the recursive form by

5-13
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using the Kalman filter. We also assume that in the equation (5.1), the matrix A is an identity

matrix and, that matrix B is the null matrix:
prﬂ =]pl+eM, (516)

Thus, following the Kalman filter interpretation (equations 5.5 to 5.7), the RLS fit is given on-

line by:

r T -1
K, =M, G, [GIM:GI +R] (5.17)
P.=1p,+K,[y-G,p,] (5.18)
M, =[T-K,G M, +Q (5.19)

Least square parameter estimation can also be applied to certain non-linear models. The
¢ssential restriction is that the models be linear in the parameters so that they can be written as
_linear regression models [Astrém and Wittenmark, 1995]. Notice that the regressors do not need

to be linear in the inputs and outputs.

5.5.3 Application of the recursive Jeast squares parameter estimation technique to a

Pump-tank system - case study

The open loop on-line identification by recursive least squares parameter estimation technique
is illustrated in this example using batch processing for step input changes, on a 2-input / 2-
output Pump-tank system for simulation and laboratory tests presented in Figure 4.4. The mode!

parameter estimation was constructed from observed data.

To evaluate the disturbance influence, a random-number generator was used to produce a
sequence of input changes during the identification time that could be considered as a

representation of white noise.

Determining the model from the data set

From the collected data for parameter estimation, a “best™ set of the converged values of the
parameters (Figure 5.7) was used to estimate the elements of A and B matrices of the model, by
taking the average of that set. The resuitant mode! for At = 200 seconds, is represented by

equation (5.20).
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Figure 5.7 Data set for parameter estimation

Ll =

(5.20)

0914 0.034 N —-0.030 -0.062
X U
0.089 0.935]|" 0.000 0.117]"

Mode) validation

The actual situation is that a certain model structure to predict future outputs, was selected and
therefore, a test to evaluate the model ability to describe the observed data is needed. A “good”
model is one that is good at predicting that is, one that produces small prediction errors when
compared to the observed data. Note that there is considerable flexibility in selecting various
predictor functions, and thjs gives a corresponding freedom in defining “good” models in terms

of prediction performance.

In the present case, the validation was based on integration vsing the dynamic matrix as in
equations (5.21). The model initial value was attached to the measured sequence at the starting

point of the sequence.

X 1= Gy *(x] i—x10p)+a,2 *(le _[Qop)+b|| *(ul i_Z’lqp)““blz >‘(uz, —% q1)+x] o

(5.21)
xj ,-4.!:a2| *(x]'. _'xr op)+aﬁ x(xz i_x2op)+bzl *(ul '—le ap)+b22 *(u?.i_u? op)+Xqu
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Where:  ay and by are the parameters of A and B matrices
X;i outputjattime i
wi  input) attime i
Xop OuUtput ) at operating point
Ujep  IMput) at operating point
100
=
)
>
=]
|
1000 2000 3000 4000 5000 8000 7000
=20
Time [s]
Lipred 2pred ---vve-t Limeas — — ——- Lz;neas
Figure 5.8 Comparison of measured and predicted outputs

Figure 5.8 shows how the predicted outputs track the observations in some cases, while in
others we have an expected offset. This is because of the measurement errors, inaccuracies in

the model formujation and the non-linearity. Recall that it is assumed that the process is linear

in the parameters. However, it can be seen that the fit is acceptable.
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Chapter 6

Adaptive Dynamic Matrix Control

6.1 Introduction

I this chapter, the implementation of the combined processes of Dynamic Matrix Control and
Adaptive Control discussed in Chapters 4 and 5 respectively is presented. The performarnce of
the resulting Adaptive Dynamic Matrix Control (ADMC) controller is expected to be
significantly better than the conventional DMC. Because of the advantages of overcoming non-
linearity problems and the avoidance of a rigorous model, its application in designing a

controller for the Training Plant in this study was considered.

A Literature review of ADMC is presented in section 6.2. Formulation of the ADMC technique
is shown in section 6.3. A regularisation approach to account for extensive computations
required for parameter estimation when dealing with a high dimension system is considered in
section 6.4. Finally, it is presented in section 6.5 a case study of ADMC algorithm

implementation.

6.2 Literature review

As described in Chapter 4, Dynamic Matrix Control is a highly successful model predictive
control scheme based on a step response model. However, being based on a tinear model! its
performance begins to deteriorate as the process moves away from the nominal operating point.
Thus, several researchers modified the original DMC algorithm making it adaptive to account
for the various problems mentioned in previous chapters, since ADMC is expected to perform
well even in the presence of time-varying process gain and process non-linearity. Successful

applications of Adaptive DMC have been reported in the literature.
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Maiti et al [1994) developed a closed-loop on-line scheme for identification of a process in
terms of pseudo impulse response coefficients for a commonly encountered non-linear problem
in the process industry, the control of pH. The model was subsequently used to update the

dynamic matrix, making the DMC algorithm adaptive, and thus overcoming that difficulty.

Distillation is one of the most widely used separation processes in the Chemical / Petrochemical
industry and its control is economically important. However, most of the industrially important
distillation processes exhibit a large degree of non-linearity and the control system designed at
one operating point may not perform well at another operating point. Thus updating of the
process model is an important issue in distillation column control. Maiti and Saraf [1995a &
1995b] applied DMC adaptively to control the top product composition of a distillation column
for both servo and regulatory problems. They also discussed the application of an adaptive
DMC scheme to start-up and control of a distillation column, following a closed-loop on-line
identification technique for single-input, single-output systems developed by Maiti ct al [1994],
to update the DMC controller model to accommodate process-model mismateh, and extended it

for a multivariable system.

Zn and Huang [1995] present an approach for self-tuning of DMC by on-line identification of
the impulse model of the process based on the unit step set point change made for the closed-
loop system. The proposed algorithm differs from that vsually encountered in the ADMC
literature since it is not implemented in the DMC algorithm. However, it has the advantage of
being simple and requires little computing, and if added to conventional DMC algorithm, the
resulting DMC  algorithm 1s expected to find wider application in industry to controf

complicated high order processes with large time delays or varying dead time.

Aitchison and Mulholand [1997] applied an adaptive MPC to regulate the peak temperature in a
heat exchanger. The system is highly distributed and conditions vary with both position and
time, so control moves needed to account for the previous sequence of moves, and MPC’s are
well suited to these applications. Adaptation of the controller with flow changes, which have a
severe effect on the system behaviour, showed some improvement in the controller performance

when compared with a non-adapted controller.

As mentioned in the earlier chapters, the control of the present Training Plant is difficult
because of its non-linearity, interactive nature, being multivariable and difficult to model.

A self-tuning adaptive control scheme described in section 5.3.3 was applied in parallel to DMC
to generate updated controller parameters as the process moves from one operating point 1o

another. This was done by adapting the internal model in the MPC structure (Figure 4.3), using
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recursive identification of the step response coefficients following the technique developed by
Deghaye, Guiamba and Mulholland [2000]. The implementation of the proposed adaptive
control technique in the existing LDMC algorithm was done within a flexible SCADA system
at the School of Chemical Engineering at this University, as developed by Mulholland and
Prosser [1997]. This internal mode! control (IMC) design method is based on an assumed linear
discrete process model and relates the controller setlings to the model parameters in a
straightforward manner. An advantage of this approach is that the initial model is easily
specified, and deviations from it as the adapration progresses have a significance, which any
user is able to assess. A special technique to deal with the integrating nature of the process

under study is also considered and is discussed in Chapter 7.

6.3 Formulation of an Adaptive DMC Algorithm

We desire to estimate in real-time by using a recursive least squares parameter estimation
technique, the coefficients of the open loop step response, B,, B,, Bi, ..., By to be used to
construct the matrices: Open loop Matrix, Boy, Offset Matrix, By and Dynamic Matrix B
described in Chapter 4. The updated matrices are then applied in the DMC algorithin to

compensate for non-linearity and changes in system behaviour.

Consider the process at a certain instant M steps before the present, where the contribution of
the M past inputs prior lo that, Am*past and M subsequent control input steps, Ampagr up to

present time will be considered as illustrated in Figure 6.1.

X, ang Noag Xorizas
} ! 1
! : ) .
) e ] ! ‘
] / ) ( (
[ [ s o'
@ L Ll B g
\ Moves ) Moves A Control Horizon 1

Am® s Ay

-2 PAST A iasT P

g
k¢

0

Prescnt Tune

Figure 6.1 Predicted response from 2M past moves up to present time

A corrected prediction of the future trajectory from the present time up to P horizon is given by

equation (4.5) as:
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X=X st [BOL - Bo]Ammsr +BAm 6.1)

In this formulation it is taken that P = M For predictions of the outputs about the time -M,
matrices By, Bop and B are defined from equation (4.3), with the bottom matrix-row of each of

these as follows:

B:; = [B,*..' By Bus By - Bz Bl]
By, = [BM B,, B,, B,, e By, BM] (6.2)
8 = [BM By By By. - By B,] = B,

Moving the datum back to -M, ignoring the recent M moves, the predicted output at this time

should be given by:
X_ptriern = Xoatasias + [B:)L - B:)]Am-/m“r (6-3)

So, it is now possible to predict the corrected output at present time as defined by equation

(6.1), taking into account the most recent M input steps:
Nyppip = Xoaramas T [B(,JI_ = B,',] Am;u_w + By Ay (6.4)

Using By = B' the predicted change of the state over the recent M steps is thus defined from

equation (6.4) as:
Byopiy = Xyprep — Xopogan = [Btlu _B:)]Am;’,:.w + B, Amy, o (6.5)

The measured change is

Bxpriras = Xompas — Xosparas (6.6)

where X.yumeas is the measured outputs M steps ago.
Recall fram the discussion of DMC in Section 4.2 that the model error ey is given by the
difference between the measured changes at present time and the predicted output changes, that

i5:

€y = Axo,*.f.r-_y.a‘ — AXpppen (6.7)
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Substituting above equation in the equation (6.5) and rearranging the measured changes are

given by:
4 ’ ’ " .
(M iy = [BOI. - Bt)]A’nPA.W'} = ey + By Amy, (6.8)

The left hand side of equation (6.8) defines corrected measured changes by [BoL ~ B'g)
Am past, Which is a correcting vector for the steady state and remaining transient at time M and
it is expected that the true model error ey will average 0. Since the correction term does not
contribute strongly here, we simplify the identification by using past values of By, B, Bs,...., By
to construct By and B p; on the left hand side. Thus the entire lefi-hand-side can be treated as a

known ‘“‘measurement’.

Let us define the observations as:

P o= By = (Bl = BylAm, | (6.9)
thus, equation (6.8) becomes

y=e, +BAm, (6.10)

where the matrix of matrices B’g for nr inputs, » outputs and A-step horizon is given by:

b;.f.u"‘bu_m bu-:.u"'b

M-11m

by bim
B, =||: : : : INE : (6.11)

b;‘-l.n! i b)'!,nnl b.'.l-LnI T b,lvl-l‘n/u bl‘nl T bl,nrn |

The 5 b; vectors are defined as:

Y m

,
b, = [bMJI"”‘bA-/.Im’bLI-l_ll"“’b)«l—l,lm"“‘bl.ll"” b ]
. (6.12)

7
bn = [h.'-,'_m s bh/,nms bM—l.nl DR b.l/-l_nm: T bl,;u\ T bz,m]

Then, the observation vector (equation (6.10)) can be written as:
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1 0 0 0 Am i
- 01 0 0
y=. . . .

|0 0 0 1
or
y =Gp
where

1 0 0 0

0t 0 O
G = o

0 0 0 1
and

0"
oT
0"

0‘/‘
AINTP,J,x_?

0"

0"

; .
Am pasr 07

0"
07
OT

7 r 7
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(6.13)

(6.14)

G is an augmented matrix combining an identity matrix related to vector of model errors, ey,

and a diagonal matrix with past input contribution, Ampagr in the recursive identification of the

B's matnx coefficients.

To estimate the contents of the parameter vector p, the Kalman filter is set up as (see section

5.5.2)

p.=Ap+K [y-G p]

6-6
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[t is desired to force the offset errors ey); back to zero over a period, by adjusting the by; terms,
but its must be allowed to move from zero temporarily whilst this happens. Thus A will be an
identity matrix except that the first » elements on the diagonal will be zero, 10 give the ey a

zero base, 1.e.

[0 00 0 0 -0

00 0000
A={0 0 0 1 0 00 (6.16)

00 0100

[0 00 00 01}

When plant variations stop, there will be no more changes in the p vector.

For safety, the plant should be allowed to drift back slowly to the original measured step

responses. The following model is used
pl&)=A‘p)+Bp0+Kl[}A}_G1pl] (6’17)

where po is the initially proposed p vector and matrices A and B are defined as:

(000 00 0 0] [0 0 0 0 0 0 ]
000 0 00 O 0 0 0 0 o 0 0
A=|0 0 0 a 00 O0f B=[0 0 0 (-0 0 0 0 | (618
000 0a 0O 000 0 (l-a) 0 O
000 0 0 O0a 0 00 0 0 0 (I-a)]

with 0 <@ < 1 and we generally expect o to be close to 1 to find “constant” step response
coefficients, but force the ey toward zero by virtue of the first » diagonal elements being zero.
Should the plant become quiescent, ¥; and G; move 10 0 and the existing p may lose relevance.

Then the B matrix slowly draws predictions towards the initial step-response po,

6-7
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The required recursion for the optimal Kalman gain K; is thus given by equations (5.5 to 5.7)

as:

K,=MG,[GMG/ +R]

p“] = Alpl +Bpp0 +Kl [9 _G:pl] (6 l9)
MHI = A; [I _KIGJ]MIAIT +Q

As defined in Chapter 5, M; is the filter covariance matrix (initially small and diagonal), R the
expected observation error covariance (usually diagonal), Q the expected prediction error
covariance (usually diagonal). For the present recursion, the first » elements on the diagonal

matrix Q, if small, will cause the errors ey, to reduce quickly with more rapid adjustment of the

byjj parameters.

At each sampling instant, the coefficients of the step response By, B,, Ba. ..., B, are updated, and
then used to update B'qg. B'e and B'. In this way, the DMC controller continues to be

constructed from a good local representation of the process.

6.4 Regularisation approach

If the p vector contains many parameters, the problem of minimising the error may be ill
conditioned. Regularisation is really a general technique to solve ill-posed problems. It is of
particular importance for non-linear black-box models, where many parameters are often used

and it may not be possible to estimate several of them accurately [Ljung, 1999].

The identification problem as described above is of a high dimension (M x m x » parameters).
This will usually cause difficulty if the process variations are not rich in information. Thus an
option for regularisation has also been provided. This is based on a weighted combination of the
original step-response (x w;), and the same response delayed one step in time (x w,) (Figure

6.2). This reduces the search to 2 x m x n parameters.
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Figure 6.2: Basic functions for regularisation

The weight w, allows scaling of the original response, whilst the proportions of w; and w; give
some ability to shift the step response in time. The original shape of the measured response is
rctained but moved in size and time by the proportions of w, and w,. The adapted response thus
becomes defined by only two parameters, rather than individual new values for every poiat on

the response. The regularisation is easily handled in the above formulation by noting that

p=Fp, (6.20)

where p, is the reduced parameter vector, so that we only have to replace G with GF in the

formulation. The construction of F is most easily illustrated using a 2-input / 2-output process:

fen)
(e, 1 0 0 0 0 0 - 0 0 0 1|e,
€rsn 0 1 0 0 0 0 0 O 0 W,
by 0 0 o beier 0 0 0 0 0 Wy,

by | |00 0 0 Bl BT .0 0 0 ||wy (6.21)
briany 00 bf,,_\_,, n:ﬁ”)?- 0 0 0 0 0 Waz |
b”"m? O 0 0 0 b:l—l.lz bltffllg 0 0 0 Wy
: P : : : : SR : : Waa,
by, [0 0O 0 0 0 0 0 0 b, b 1| Wiz
szzJ
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6.5 Application of ADMC on Pump-tank system - case study

The simulation study was carried out on the 2-input / 2-output Pump-tank system described in
Chapter 4 and shown in Figure 4.4. The conventional DMC and the ADMC algorithm were
applied to control the levels L1 and L2 manipulating valves V1 and V2. Notice that (he
conventional DMC is referred to as LDMC,

6.5.1 Ofi-line simulation

The data acquisition and control action implementation tasks were performed with the on-board
convoiution model, loaded with the true measured step responses illustrated in the Figure 4.5,
and the DMC algorithm with “faulty” initial step responses in which, the diagonal responses
were both twice their correct magnitudes (see Table D.l1 in the Appendix D). An initial
operating point lying at S0 % for both manpulated variables and controlled variables was

considered.

The controller design parameters A/ = 10, P = 10, and N = 2, were used for LDMC / ADMC
algorithms. The move suppression, A and weight factors W were tuned and a value of 1 for both
parameters proved acceptable. The performance of the DMC algorithm was compared for the
case where the initial step-responses were not adapted, versus the case with adaptation. The

identification rapidly converged to the true step responses through a wide range of Q and R

tuning.
............ Adapled Non-adapted
Sevees e b — —
Offset || Tcvi mv °re
] 1
0.46231 "
L2
Reg 0.580 -0.015 Reg 1.011 0 008
bs | 2 :
CV2 MV1 I CV2 MV2
o g+t ++—++T++++ | |
] W 2} o | — —
-0.32005 [P ° | 1| | | '
) e
10 ~|— | | i 4 1\1.‘ 2 33
5 -l — S - § = |
Reg 1.001 0.00S Reg 0.718 -0.163
Figure 6.3 True step responses identified by regularised model 6 minutes and 49 seconds

froni the start of the run
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............ Adapted Non-adapted
Offset ||" Tcvim R T Tevamvz -
0.16335
-0.54513
Reg 1.001 0.001% Reg 0.883 -0.014
Figure 6.4 Attempt to find true step responses using unregularised model at same time as
in Figure 6.3

In the tests considered here, the coefficient ¢ (rate of going back to initial parameters vector. po,

discussed in section 6.3), was set at 0.9999, the model error, eps terms at 1.0, and the expected

observation error covariance, R, diagonal terms set at 1.0. Note that « = 0.9999 suggests an
extremely slow movement towards the assumed starting forms of the responses. In practice this
effect was faster than expected, possibly due to the structure of equation (6.17) used in the
Kalman filter. Further, an identity matrix used for R was possible because of the similar input
and output unit ranges (%). In Figure 6.3 the dark curve is the initial “faulty” step-response. The
light dashed is the regularised result at a particular time. The equivalent result provided by the
unregularised model, for the same tuning, at the same point in time (6°49” from start), is given
in Figure 6.4. Because each point of the response is solved for individually, considerably more

variability is encountered.

In Figure 6.5 a comparison is performed between the control performance in the non-adapted
case (conventional DMC) (a), and the recursively adapted case (b) using the regularised model
for changes in the set points. Although ADMC yielded improved performance over LDMC,
LDMC was not totally unsatisfactory. In the adapted case there is a small overshoot and the
process attains its new steady state quickly and smoothly. Thus, the controller performance is
tighter and quite satisfactory with the valves working much harder. This is to be expected
because the specified diagonal responses for the DMC were twice their correct sizes. Therefore
control moves in the non-adapted case will be half what they should have been, giving a

somewhat detuned control response in the top diagram.
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Figure 6.5 Closed loop DMC level response to set point variation for non-adapted (a) and

adapted (b) cases (simulation model)

6.5.2 On-line application

So far, in Section 6.5.1 we have only considered application of the algorithm off-/ine, to a linear
convolution model based on the measured process step responses. The real-time control study
for the same input change sequence and same parameters as applied in the off-line simulation,
was run with and without adaptation, with regularisation effective, on the Pump-tank system in
the laboratory using a sampling interval of 60 seconds. However, a set point start and end of
(50,30) was used instead. since the system shown in Figure 4.4 attests that (50,50) is not

feasible!

Figures 6.6 and 6.7 shows the ourput responses to input step changes with the non-adaptation
and adaptation cases respectively. The difference is not great, but careful inspection reveals the
use of higher gain in the adapted case, as we would expect, because the DMC receives the

updated smaller true step responses from the identifier.
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Figure 6.7 Closed loop on-line ADMC level responses to set point variation in the Pump-
tank Plant

Since differences between the response curves cannot be easity distinguished in these figures,
Quadratic Performance Indices (QPI) of the controlled variables, levels L1 and 1.2, were
calculated from the logged data. These consist of the sum of the squares of the errors
(difference between set point and process variable), and results are given in Table 6.1. As
expected, the ADMC controller has a better performance for both levels when compared with
the LDMC controller, since it presents smaller QPI values i.e. 9.24 and 6.07 for levels L1 and
L2 respectively. Clearly this is only an approximate comparison, because the behaviour of each
controller is determined by the definition of its objective function, which includes the control
move penalisation. Thus if either of the adapted vs unadapted cases demanded a greater degree

of movement, it would apportion terms differently with regard to the objective function.
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Table 6.1

On-line LDMC and ADMC quadratic performance indices

Conventional DMC Adapted DMC |
QPI-L1 10.92 9.24
QPI-L2 6.28 6.07

Note that the identified responses in Figures 6.8 and 6.9 move towards the true measured

diagonal responses (non-adapted responses are 2x the initial responses) set in the DMC. Some

spurious effect introduced by the plant causes a significant change to be registered in an off-

diagonal term. This can be protected in practice by increasing the response time of the identified

responses by lowering the prediction error, Q in the Kalman filter and by constraining the

allowed range of variation.

......... - Adapted Non-adapted

! oy ——— |ops — T —

Offset CV1 MV1 ' V1 MV2
R R N I | B N e e s AR A naa s
(2 I e LI N BN T [ S S 7] 400 &00 800
S A [T — b S
-011773 -1 - = . —
oho —

2 - — oh5 - _

Reg 0.798 0.170 Reg 0.983 -0.016

ps - T

CV2 MiV1
VB 0 ot 2 2 2
h 200 4Q0 600 800

L il
2.06097

o -]

15 —A——

Reg 1.064 0.059 Reg 0.647 -0.291

Figure 6.8 Identified step responses using regularised model in the Pump-tank Plant, |

hour from the start of the run
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Figure 6.9 Identified step responses using regularised model in the Pump-tank Plant, 2

hours 37 minutes and 30 seconds from the start of the run
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Chapter 7

Integrating Adaptive Dynamic Matrix Control

7.1 Introduction

The Adaptive DMC controller discussed in the above chapter proved adequate for multivariable
and non-linear systems. However, when the LDMC algorithm is used for control of processes
containing integrating process units, steady-state offsets occur for sustained changes. This offset

it is not acceptable for most applications.

To overcome the problem of the integrating nature of the present Training Planl, an integrating
ADMC approach was developed and is discussed in this chapter. A literature review covering
integrating processes is presented in the section 7.2. Section 7.3 shows the formulation of
integrating DMC while, Integrating ADMC is discussed in the section 7.4. Finally, application
resalts of Integrating ADMC on the 2-input / 2-output sub-system defined on the Training Plant

which include off-line and on-line simulation, are presented in section 7.5.

7.2 Integrating processes overview

Integrating processes are those that produce a ramp change in the output for a step change in the
input (Figure 7.1). This results from the process unit's material or energy imbalance {Gupta,

1998], and they are commonly present in chemical industry. ‘“Non-self regulatory” level

processes are typical examples of integrating process units.

7-1
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Figure 7.1 Typical integrating output response to a unit step input

Integrating processes produce a steady-state offset when controlled by a standard DMC
algorithm, which assumes responses reach steady-state on the final point. For applications
where (he performance objective of the process control is to ensure that the controlled variables
remain very close to their set points, these steady-state offsets are not acceptable. The control of
the outputs of integrating process units needs to be considered along with the control of other
process outputs and in the case of constrained variables, all of the constraints need to be
considered simultaneously. This allows the determination of the true optimum of the

optimisation problem that needs to be solved at every control instant.

Integrating process studies have appeared i the literature. Lee, Morari and Garcia [1994]
describe a MPC technique based on step response parameters for systems of stable and / or
integrating dynamics, developed using state-space estimation techniques. The standard step
response model is extended, in this technique, so that integrating systems can be treated within
the same framework. A ramp disturbance is eliminated by introducing a double integrator in the
controller. They showed that the optimal observer can be calculated by solving a Riccati

equation of significantly lower dimension.

Gupta [1998] presents an alternative approach to eliminate the steady-state offsets that are
encountered when dealing with integrating process units. The proposed approach does not
require the formulation of the MPC problem in the state-space form and because of this
advantage, it can be implemented directly in the step response formulation of the DMC
algorithm. This scheme takes advantage of the fact that the predicted response due to past inputs
15 a straight line passing through the output at the current control instant. Thus, the slope of the
predicted response is determined from the slope of the output trajectory between the current and
the previous contro! instants. Note that this slope includes the effect of unmeasured
disturbances and any model mismatch that may be present. This approach allows the

consideration of all inputs, outputs and constraints in the one optimisation probtem.
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As mentioned above, the Training Plant under study has integrating behaviour. Predicted
responses of level due to past input steps resulted in ramp changes. Thus, to control this system.
we follow the development made by Gupta [1998], for control of an integrating process using

DMC by implementing the changes directly in the step response in the DMC algorithm, and this

1s described below.

7.3 Integrating LDMC formulation

As discussed in the Chapter 4, the step responses of an m-input / n-output system can be
represented by a series of matrices By, By, B;, ... Bp (scaled for a unit input step). The position
(i.j) in each matrix B, is a point on the trajectory at time / for the i th output as it responds to the
J th input. It is possible to indicate an integrating relationship by unequal corresponding
elements in the final two matrices, By and B,.;, and consider that this final gradient continues

indefinitely from this point onwards as a result of the integration. Define
AB = Bp',Bp.l (7”

Now tet 4m, be the vector of input moves (changes) made at time 1, with x, the vector of outputs
at time /. We also make use of a moving frame of reference for time in which =0 represents the

present time. Thus, for integrating processes equation (4.3) can be written as equation (7.2).

Recall that the vector of vectors x,prep contains P 1dentical predictions of the output vector at
the present time r=0. The vector xpggep contains predictions of the output vector at P points on
the future trajectory, as contributed to by the past M control moves, and the future P control

Mmoves.
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P copies of this offset error are made by comparison of xpprep With a vector Xpyess coOntaining P
copies of the present output measurement, and are used to correct our future predictions as

defined by equation (4.4) as follows:
Xer = Xpneas + [BDL - Bo]Ammsr +BAm (7.3)

-
where Ampusr 15 considered to include the summation term ZAm, which accumulates all

1= o
moves older than M steps back from the present time. The matrices By, Bp, and B are clearly
top-left, bottom-left and bottom-right in the above structure. Usually we choose M to be large
enough to cnsure that all step responses are at steady state at this point, but of course this 1s not
possible for an integrating system, which gives a non-zero AB. For such a system wve choose M
where all slopes have become constant, The terms in the first column will be non-zero for an
integrating system, and act on a non-zero absolute displacement of the control action (sum of all

moves), to add a steady ramp to all integrating outputs of the system (see equation (7.2)).

[t is assumed that our predictions of xpppep and xpgep will only be in crror by steady-state
offsets emanating from earlier than M steps before the present time (see Figure 6.1). This is not
really the case for integrating systems, where integration of an unobserved control action may

have begun somewhat earlier, and may not be included in the compensatory term

Z Am,

4 = =

Moreover, any accumulated compensation will not be exact. These factors mean that an
unaccounted ramp may already be in effect on the outputs. This has the potential to cause
steady-state offset in the control. Thus the following technique has been developed to deal with
this situation. [t is based on a long-term identification of a consistent gradient error between
predictions and observations. This gradient is then superimposed on the open-loop predictions.
Note that the prediction of chianges in the output over the last M steps is defined in the Chapter

6 by equation (6.5) as:
DX iy = [Boy, = By]Am'er + B Am gy (7.4)
The equivalent measurement is

AKM;,L\' = Xommts — XoarMmEAs . (7.5)
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A simple filter then seeks a consistent error ey,
(ey )o = B(AX g - Ax!‘h’f{n)o +(1-08) (e, )-. (7.6)

and =0.05 has proved adequate in this case. Construct a “gradient” correction vector for the

future £ predictions up to the horizon as follows

AX gy = (7.7)

Then the corrected prediction of the future output up to the horizon P becomes

X = Xyvean T [BOL - BO]A'”PA.TT +AXg ., + BAM (7.8)

In DMC, thie optima) set of future moves Am is solved on each step.

7.4 Integrating Adaptive DMC formulation

A scheme for adapting the internal convolution model of a LDMC, by closed-loop recursive
identification of the step response coefficients in real-time by following the methodology

presented in the Chapter 6 is developed in this section for the integrating case.

Recall that in LDMC the optimal control move at any step is computed as dependent on the
matrices Bg, . Bpand B. Moreover, these are constructed from the basic step-response matrices

B, By, Bay,...., By, which are thus the target of our real-time identification.

For an integrating process, the defined bottom matrix-row of each of the matrices By, , By and

B which are analogous to equation (6.2) are obtained from the structure in equation (7.2) are:

B, = [ 0 B, By By By, B, 8,

B,, =[MAB B, +MAB B, +(M-1)AB B, +(M-2)AB B, +(M-3)AB " B,+AB B,]

B’ =[ 0 By By Bya By B, B, =B,
(7.9)

7-6
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Moving the datum back to -M, the corrected prediction of the present state following equation

(6.4) is thus given by

Xopren = % a8 +[B0L ~B0]Am rur +Bodmy, o (7.10)

where [B'gL - Bo ]JAmpast is a correction for the steady-state offset and the remaining transient
at =L

Notice that both 4nt'y,¢; and Anip sy have the extra summation term shown in equation 7.2. In
the case of Am e this term will clearly only sum moves until time —2M. Using B, = B’ the

predicted change of the state over the recent M steps is thus

o _ ] - ’ a N )
AXopprp = Xopren =X armeas = [BOL BO]Am per + Bodm o @10
The measured change is  AX,upee = Xoneas — Xonssress Where Xoy suus 15 the measured

output M steps ago. The model erroris €, = AX,y,p00 — AXgppp SO

AXgis = Cy +[B’0L—B;,]Am'mr+B; Am, o (7.12)

\

Any steady gradient error is not included in this “model crror” for paramcter estimation

purposes, so we strip off the filtered version of ey,

AX, gy _(eM )0 =Cy "'[B'o:. _BB]A"’"’/'W +BoAm o (7.13)

A non-zero (eM )O term when the system is otherwise near steady-state (average condition) is

the clearest indication of a steady gradient error due to uraccounted integration — ie. an error in

-M
the accumulation term z Am, .

1 ==0

The matrix of matrices B’y for m inputs, » outputs and an M-step horizon is given by (similar to

equations (6.11) and (6.12):
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bA-l.ll‘ ’ 'bMA\m bM—I.H”.bM—I.lm] bi.n"'bl.m
B =||: i T N
bhl.nl ks b.!f,nm b.‘u’-"_’.‘l ‘e b“—l,nrnJ bl.nl e b

1.0

we define

i
b, :[b.-.r.n-"'-bf,-f.nm-b/\/‘mv'"'bu—umr"'-bulr'“ b ]

’
b, = [b.u_;.-:"' Dyt e Batcim -"'-bu—l.m-“"h|_nn-”'-bt_m]

Then,
-el.ll-
ebl
1 0 0 Amy, 07 0" e‘

0100 07 Amie - 0" A 7.14
¢y +BaAm, o= | S : :IAST . . b, ( )
SIS ) .T ) b,

0001 0 0 sl |
bn—]
-b“-
=G1(Ammsr)p
where
(e,'”-
eAIJ
o (7.15)
p= bx
bl
bn—!
L ba
Similarly other terms in (7.12) are rearranged to obtain
B,Am’y,, = G,(Am" ) p (7.16)

and

~I
1
[>¢]
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B, Am. i = G, (am} ) p (7.17)

Then (7.13) can be written as
(Axmu;‘,‘m - (e)l/ )0) = G(AmPART’ Am’ st )D (7.18)

where G is the observation matrix. Equation (7.18) shows that for integrating processes, G is a
function of all past moves from —2M up 1o present time, Ampasy as well as Am’pasr which takes
into account all accumulated moves older than —2A4. For non-integrating processes G is only a

function of the past moves from -M up to present time, Amp,sst(see equation 6.13). Thus
G(Am PAST » Am;us-r] =G, (A“’PAST)_Gz (Am.msr)"'c) (Am;n\s-r] (7.19)

For implementation of the Kalman filter interpretation, consider the A and B matrices defined

by equation (6.18) and the parameter vector P is thus given by
Pt = AD, +B Dy + K, (8% (€1 ),), - G.p, | (7.20)

such that, as defined in thar chapter, 0 < a <, and « is set close to | to find “constam™

step-response coefficients, but force the ey , toward zero by virtue of the first » diagonal

elements being zero. Should the plant become quiescent, (A.x‘o}_’,‘,._,_,f‘\. - (e-\t)o). and G, move

to 0 and the existing p may lose relevance, Then the B matrix slowly draws predictions towards

the Initial step-responses p, .

Notice that for integrating processes the vector of known measurements is defined by:

y= (Axﬂ,‘.lf:'.-é.\' — (e )o ), (7.21)

The required recursion, including solution for the optimal Kalman gain K, is given by equation
(6.19) and the regularisation approach described in section 6.4 is also applied to reduce the

problem dimension.
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Finally, since the identified B', matrix contains all of the fundamental step-response matrices,
the various matrices used in the DMC can be updated in real-time — i.e,, it is an adaptive
control. Extracts of the Integrating ADMC algorithm from the SCADA system are presented in

Appendix E.

7.5 Integrating ADMC application to a 2-input / 2-output sub-system of the Training

Plant — case stody

Application of the proposed Integrating LDMC / ADMC was carried out on the Training Plant
described in Chapter 2 and schematically presented in Figure 2.2. However as mentioned in
section 2.5, only a 2-input / 2-output sub-system of the Training Plant shown in Figure 2.4 \as

simulated.

Taking into account that Dynamic Matrix Control is based on the step response, the Training
Plant was operated to get the open-loop step responses for the proposed 2-input / 2-output
system in order to apply them in DMC algorithm. The time taken for the system to reach
constant slopes in all step responses after disturbances was approximately 50 seconds. It was
decided to use a time interval, At, of 10 seconds and thus have a steady-state horizon of 5 steps.
The step responses that were used for the experiments are illustrated in Figure 7.2, which shows

the integrating nature of this system since the responses become steady ramps.
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Figure 7.2 Unit step responses for the 2-input / 2-output sub-system of the Training Plant
(M=15)

Each controlier test was run for the same defined sequence of set point changes. In off-line tests
DMC was run with the true model in some cases and with “faulty” initial step responses in
others. The “faulty” responses were set with diagonal response (!,1) at 2 times the correct
responses, and (2,2) at Y4 the correct response (see Table D.2 in the Appendix D). All tests on

the plant were wvith an initial mismatched model in the DMC.

For the tests the following controller parameters were used: smoothing coefficient in gradient
Feedback, f = 0.05 (see equation (7.6)), optimisation horizon, P = 5 and control moves, N = 2.
The observation error covariance, R and predicted error covariance @ were equal to one, while
for the B, diagonal in equation (6.18), o was set to 0.9999. Tuned move suppression and \veight
factors that gave satisfactory controller performance, were A= | and W = 100 for both off-line
and on-line simulations. Notice that all runs either off-line or on-line were with regularised

identified responses (see section 6.4).
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7.5.1 Off-line simulation

[n preparation for the on-line controller software commissioning and to experiment with tuning
parameters, an off-line test was designed for use with the on-board model of the Scad95
program that implemented the controller software, The program was wrinten for Windows 95
using Microsoft’s Visual C++ and is designed to work with on-line systems, but it also accepts
inputs and outputs from the off-line models that are coded into the program. These are
convolution models based on the step responses, with a fine-step integration (e.g. 1/10 DMC
step) [Mulholand et al, 2001].

With the same parameters in both algorithms, LDMC and ADMC controller performances were
compared taking into account the effect of several factors as follows, with initial and end

operating points lying at (50,50).

Integrating compensation

As described in the above sections, the integrating compensation was included in the DMC
software since conventional DMC it is not designed for dealing with integrating processes and
as we know the present Training Plant presents such behaviour, beyond being non-linear. Recall
that the integrating compensation includes factors like: gradient feedback, accumulated moves
from past inputs earlier then M steps before present time, and extended slopes (see section 7.3).
So, with the parameter values above, the integrating effect on the LDMC as well as Adaptive

DMC were tested considering two distinct cases:

a) Simulation without integrating compensation and
b) Simulation with integrating compensation

We discuss cach case as follows:

Case a: Simulation without integrating compensation

Figure 7.3 shows the control of the true integrating model using LDMC and ADMC controllers
without integrating compensation. As expected, LDMC controller performance was bad, and
led to excessive valve work and oscillations in the output responses due to the unaccounted
integrating nature of the process (Figure 7.3 (a)). However, relatively better behaviour was
shown by Adapted DMC, although the controller required lengthy periods to reduce oscillations
apparently arising from the integrating nature of the process. This was reflected in the output

responses as tllustrated in Figure 7.3 (b).
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Figure 7.3 Closed loop LDMC (a) and ADMC (b) using true process model without

integrating compensation, N=2, 4 =1, & =100

Case b: Simulation with integrating compensation

The need for special DMC design when dealing with integrating processes is shown in this case,

by running both algorithms with integrating compensation. Thus, runs with the true model in

the DMC and ADMC under the influence of integrating compensation showed improved

controller performances. Figure 7.4 shows the responses obtained by standard DMC. Clearly

the integration in the process has been effectively dealt with.
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Figure 7.4 Closed Joop LDMC using true process model with integrating compensation, N
=2,A=1, W =100

The robustness of the DMC controller was further tested by incorporating an error factor in two
of the four partitioned matrices of the system dynamic matrix, that is, diagonal terms were set
with, the first one twice and the second balf their correct values. The LDMC controller
performance deteriorated as can be seen in Figure 7.5 (a), while the ADMC controller showed
good behaviour (Figure 7.5 (b)). This can be explained as follows: with small or zero process
model mismatches unadapted LDMC performs wel] as shown by Figure 7.4. When big process
model errors occur, the unadapted linear controller becomes inadequate (Figure 7.5 (a) and

updated parameters are necessary with changes in the operating point (compare 7.5 (b)).
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Figure 7.5 Closed loop LDMC (a) and ADMC (b) with integrating compensation and

process-model mismatch. N=2, 4 =1, W =100

The identified responses in the ADMC run moved towards the true diagonal responses set in the

model

as illustrated in Figure 7.6 (dotted lines on the diagonal are closed to the true response

curves).

.......... - Adapted — Non-adapted

Offset || {cvaimvi | [] {ovaimvz .

0.0

j_CV{MV?

....................

0.57761 0

DHo - — = 1 S

1.053 0.050

{cvamvz

-0.10033

Req 0.803 0064 Req 1232 0.153

Figure 7.6 ldentified step responses using simulation model, 7 minutes and 10 seconds

from the start of the run
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Gradient feedback and accumulated moves compensation

The influence of different factors used in the integrating compensation was also considered for
both algorithms. It was found that runs with gradient feedback applied to extended slopes
without accumulated moves resulted in the process instability, with severe oscillations resulting
from the approach to bang-bang coniro] in the movement of the valves. Recall that the
accumulated moves represent the contribution of all moves older than M steps back from the
present time as shown in equation (7.2). So, the unstable behaviour may be caused by an
unobserved control action that may have begun somewhat earlier and may not be included in

the accumlated moves term (see section 7.3).

However, runs with accumulated moves also applied to extended slopes without gradient
feedback, showed distinct results with robust controller behaviour, since the lack of gradient
Jeedback was not reflected in the controller performance. This was not expected since LDMC
usually produces an offset error when applied to integrating processes (see on-line results in
Figure 7.11). The additional compensation achicved by gradient feedback (equation (7.7)), did

not seem significant in these tests, possibly because this system was steady at the start.

Move Suppression

The move suppression parameter, A, suppresses manipulated variable movements (see section
4.3). lts effect was tested holding constant set point deviation weight variables, ¥ and changing
A values. Reducing move suppression to values as small as 0.01 made little difference on
controller performance, while increasing it to 100 led to a slow response and decreased

performance.

Output Variable Weightings
As mentioned in section 4.3, these set point deviation-weighting parameters are used to set the
relative ranges of variation of the outputs about set points. They have a direct effect on the

dynamics of the closed loop system and thus can affect stability.

When holding the move suppression constant, decreasing the values of the weighting factor to |
showed a slight effect on the output responses. On other side, it was found that increases in the
weight factors are not reflected in the controller performance. These results as well as those

found above in the move suppression tests, show that this controller is quite robust.
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Constraints handling
Notice that the handling of constraints is the conventional LDMC feature and the proposed
integrating modification only affects the prediction par of the algorithm. The optimisation part

remains the same.

As would be expected, the presence of any active constraint reduces the available degrees of
freedom and thus the controller performance. Figure 7.7 jllustrates the handling of input
constraints when valve CV01 is constrained between 45 - 55 % and CVO03 between 30 - 70 %,
values above and below the minimum and maximum levels reached by the unconstrained
scenario (Figure 7.5 (b)). The effect of the constraints can be seen in the much slower set point
tracking where the constraints are active, reducing the controller performance. When severe

constraints arc added, the control deteriorated and steady-state offsets were introduced.

100.0 ] 1 I [ .
0.0

80.0

700
£0.0

500

400

300

200

10.0

| L T [ NP US| | IRy, e e 2 |
2&55.32 21:01:50 21:05:08 21:08:26 21:11%: 21:15:02 21:18:20 21:21:38  21:24:56 21:28:.14 21:31:32

Time
Figure 7.7 Closed loop Integrating ADMC with input constraints: CV01: 45 — 55 % and
CV03:30-70%,N=2, 4=, W =100

7.5.2 Real-time application

As mentioned above, real-time tests were performed on the Training Plant jllustrated in the

Figure 2.2. However only a 2-input / 2-output sub-system was simulated (Figure 2.4).

Difficulties were experienced in obtaining accurate step responses due to integration, non-
linearity, and the high level of interaction and noise in the system. These factors led to process-
model mismatch and consequently a difficult controi problem. Several tuning parameters

resulted in outputs oscillating around set points even after a long time period.
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On-line simulation was carried out with the same parameters used in the off-line simulations for
B (0.05), predicted error, Q (1), observed error, R (1), move suppression, A4 (1), set point
deviation weight factor, W (100) and also with a set to 0.9999. A sampling interval of 10

seconds and set point start and end of (40,40) were considered.

The same set point sequence change was applied, although on-line runs needed a long time for
the controller to achieve the target. The applied results obtained for step changes in set points in

LDMC and ADMC runs with integrating compensation are shown in Figures 7.8 and 7.9
respectively,
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Fignre 7.8 Closed loop on-line Integrating LDMC, N=2, 4= 1, W= 100

Bad performance, consisting of constant oscillation on the outputs with a bang-bang behaviour
of the manipulated variables was showed by the LDMC controller (Figure 7.8). In contrast the
ADMC controller showed better than the LDMC algorithm, and good tracking of set points was

observed in the levels, although with slight oscillation in the second output (Figure 7.9).
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Figure 7.9 Closed loop on-line Integrating ADMC, N=2, 4= 1, W =100

The adaptation plots presented in Figure 7.10 shows the effort of the Adaptive Dynamic Matrix
Controller to identify correctly the coefficients of the step responses, although with noise and

other disturbances affecting the process as can be seem in the off diagonal elements.
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Figure 7.10 Identified responses in the Training Plant 43 minutes from the start of the run

Gradient feedback effect

The algorithms were also tested with all parameters set at the same values as above except for
gradient feedback, which was not applied. Simulations resulted in deteriorated controller
performance with steady-state offset in the LDMC run as illustrated in Figure 7.11 (compare
with integrating LDMC in Figure 7.8). That was because, as mentioned in section 7.3, an
unaccounted ramp may already be in effect on the outputs in the moves older than M steps back

from the present time, which has the potential to cause steady-state offset in the control.
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Figure 7.11  Closed loop on-line non-integrating LDMC, N=2, 4 =1, W =100, =0

Although with relative improvement compared to Figure 7.1] algorithm with adapted
parameters also showed decreased performance, with oscillations and offset in some cases,
when gradient feedback was not applied as illustrated in Figure 7.12 (compare with the
integrating ADMC in Figure 7.9). As also seen in the off-line simulation (section 7.5.1), with
adaptation of the mode] parameters the output error is reduced. However due to the integrating
nature of the process, the error is not completely eliminated and a slight offset is observed when

integrating compensation is not applied.
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Thus the gradient feedback has proven effective in compensating for unknown ramp responses,
perhaps from control moves not included in the summation terms (equation (7.2)). This is
contrary to the simulation on-board model in section 7.5.1, where there presumably was little

initial gradient error.
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Conclusions and Recommendations

One of the purposes of this study was to recommission the Training Plant, including the
addition of digital control to the already existing analogue instrumentation. Other aspects
related to software development, interfacing of the system to a computer SCADA system and

application of novel algorithms to the equipment.

A major objective was 1o investigate different aspects of control of the multivariable, non-linear
and highly interactive Training Plant. A 2-input / 2-output sub-system of the Training Plant

was, defined as a case study.

Two different approaches were adopted for system investigation: a mathematical model derived

from first principles, and a step response model based on experimental data.

The mathematical model revealed complex behaviour of the system described by the mixed
non-linear differential and algebraic equations represented by a (47 x 47) Jacobian matrix. The
system was solved through the application of an extended Kalman filter (EKF) technigue. The
algorithm written in Matlab was used for state estimation, and based on the estimated data, step
responses for the 2-input / 2-output sub-system of the Training Plant were predicted. Promising
results were obtained. Although the state-space step responses showed similar integrating
behaviour to the step responses resulting from the experimental data, further investigation is
required in order to find improved plant physical coefficients that give better description of the
process since linle information about the process is available. A trial and error method is

suggested.

It was decided to use Dynamic Matrix Control (DMC), one of the most popular techniques of
Model Predictive Control (MPC), to control the Training Plant. DMC is based on the linear
convolution model, and therefore does not require a rigorous mode! derived from first principles

as above. A fixed dynamic model is used to predict and optimise process performance for a
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nominal operating point. However, as the process moves away from this point, control becomes
sub-optimal due to process non-linearity. To deal with this problem, the use of a self-tuning
adaptive DMC was proposed, since Adaptive Dynamic Matrix Control (ADMC) can be
expected to perform well even in the presence of uncertainties, non-linearities and time-varying

process parameters.

The conventional self-tuning regulator can be subdivided into two distinct steps: identification
and control. The first is mainly concerned with updating an approximate process model so as to
guarantee more reliable predictions of the system behaviour. [t involves some form of on-line
recursive parameter estimation, which also provides estimates of the system states. In the
second step, i.e., in the control stage, it is usually necessary to recalculate the coefficients of the
controller so that appropriate controf action can be derived. However, the determination of new
values for such parameters involves the solution of a set of recursive matrix equations. For a
multivariable, system this becomes a very time-consuming procedure, and the problem of
minimising the error may be ill conditioned if the process variations are not rich in information
Therefore, some improvement is highly desirable, particularly when real-time control is to be

applied.

One of the most attractive features of the ADMC control scheme developed in this work is that
it does not require the solution of such complex matrix equations. Instead, by providing an
option for a regularisation approach for a closed-loop configuration, it was possible to reduce
the problem dimensions, thereby substantially reducing the computational burden characteristic

of the optimal self-tuning regulator when applied to multivariable systems.

The algorithm was tested on the 2-input / 2-ouput Pump-tank system for simulation and
laboratory tests. The real-time identification of step responses and adaptation of the DMC on
this basis proved quite robust, particularly when the degrees of freedom of the identified
responses were limited by regularisation. The off-line tests showed reliable identification over a
wide range of RLS identifier tuning. As the changes became implemented in the DMC,
expected changes were observed in the quality of control. In the on-line testing of this algoritihim
on the Pump-tank system, the results were not completely consistent, but nevertheless
promising. Quadratic performance indices however showed better controller performance when
the process parameters were updated with changes in the operating point. The errors introduced
into the step responses supplied to the DMC were correctly identified most of the time, but
occasionally a spurious variation would be introduced by the plant data. The best protection
against this in practice will be to increase the response time of the identification, (lower Q

values in the Kalman filter), and to constrain the allowed range of variation.
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Despite Dynamic Matrix Control presenting several novel features and advantages, it is not
designed to deal with processes with an integrating nature. These are processes that produce a
ramp change in the output for a step change in the input, behaviour presented by the Training
Plant currently under study. When a Lirear Dynamic Matrix Controlter is applied to processes
with an integrating nature, a steady state offset is expected. This is caused by a ramp that may
be in the effect on the outputs. Thus, an integrating compensation consisting of factors like
gradient feedback, accumulared moves and extended slopes was included into the LDMC
algorithm. Gradient feedback is a “gradient” correction vector for the P predictions up to the
horizon. Accundated moves represents a compensation that accumulates all moves older than
M steps back from the present time, and extended slopes extends the integrating step response
so that integrating processes can be treated within the same framework as “self-regulatory™

processcs.

The resulting Integrating Adaptive Dynamic Matrix Contro} algorithm was finally applied to the
2-input / 2-output sub-system of the Training Plant. In preparation for the on-line controller
software commissioning, and to experiment with the tuning of parameters, preliminary closed
loop off-line tests were designed to deterimine robustness and controller performance using a
convolution model representation of the plant. Integrating DMC showed good behaviour as long
as the process model mismatch was small. For large a mismatch, however, DMC was not
satisfactory and model updating was required. The Integrating ADMC could successfully
handle this problem, and was able to accurately control the outputs to their set points indicating
that the algorithm is quite robust. Unexpected results were obtained when simulating off-line,
using the DMC without gradient feedback. Good performance was noted instead of an offset.
The absence of gradient feedback correction was not reflected in the controller possibly because

the system was steady at the start.

In the real time tests, however, the gradient feedback compensation played a significant role,
since as expected, steady state offset was observed when gradient-feedback was not applied in
the controfler, and integrating compensation was shown to be an effective tool in eliminating
this steady state offset. Integrating ADMC showed better performance relative to lntegrating
DMC, with the outputs following the setpoint although with slight oscillations in the second

output.

It is concluded that the tuning of a controller for this highly interacting and non-linear system is
a very difficult task. Very slow or oscillating responses were often found when changing

parameters. Therefore, many unexplored tuning values need to be tested in order to improve the
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controller behaviour. The present work may be regarded as the first of many future studies
related to this complex Training Plant, offering a diversity of possible fields of study, and since
there are many unresolved research issues related to this system, further investigation is

recommended.

84



REFERENCES

Aitchison, S. and Mulholland, M., “Adaptive Model Predictive Control of the Peak
Temperature in a Heat Interchange”, S4 /nst. Chem. Eng. 8" Nat. Meeting, Cape Town,
April 16-18, 1997.

Astrém K. J. and Wittenmark B., “Adaptive Control” (2nd edition). Addison-Wesley Publishing
Company, Inc, 1995.

Barnard, J. P. and Aldrich C., “Recent Advances in the Parametric Identification of Non-linear
Dynamics Systems”, SA Inst. Chem. Eng. 9th Nat. Meeting, Secunda, Mpumalanga,
October 9-12, 2000.

Becerra, V. M., Roberts, P. D. and Griffiths, G. W., “Applying the Extended Kalman Filter to
Systems Described by Non-linear Differential-algebraic Equations”, Confrol Engineering
Practice, 9, p267-281, 2001

Byme, G. D. and Ponzi, P. R,, “Differential — Algebraic Systems, Their Applications and
Solutions”, Computers and Chemical Engineering, 12 (5), p377-382, 1998.

Chang T. S. and Seborg, D. E., “A Linear Programming Approach for Multivariable Feedback
Control With Inequality Constraints”, /nt. J. Comrol, 37, p583-597. 1983.

Cheng, Y. S, Mongkhonsi, T. and Kershenbaum, L. S., “Sequential Estimator For Non-linear
Differential and Algebraic Systems — theoretical development and application”,

Computers and Chemical Engineering, 21 (9), p1051-1067, 1997.

Cutler, C. R. and Ramaker, B. L., “Dynamic Matrix Control — a Computer Control Algorithm”,

Proceedings of the Joint Automatic Control Conference, WP5-b, 1980,

Deghaye, S. W., Guiamba, I. and Mulholland, M., “Enhancements of Dynamic Matrix Control
Applied to a Liquid-liquid Extractor”, S4 Inst. Chem. Eng. 9th Nat. Meeting, Secunda,
Mpumalanga, October 9-12, 2000.



References

de Vaal, P. L, “An Overview of Advanced Control Techniques”, Chemical Technology.
Sept/Oct 1999, p13-19.

Dharaskar, K. P. and Gupta, Y. P., “Predictive Control of Non-linear Processes Using

Interpolated Models”, Inst. of Chem. Eng., Trans IchemE, 78, Part A, p573-580, 2000.

Garcia C., Prett, D. and Morari, M., “Model Predictive Control: Theory and Practice — a
Survey”, Automatica, 25 (3), p335-348, 1989.

Gupta, Y. P., “Control of Integrating Processes Using Dynamic Matrix Control”, Inst. of Chem.
Eng., Trans IchemE, 76, Part A, p465-470, 1998.

Henson, M, A,, “Non-linear Model Predictive Control: current status and future directions™,

Computers and Chemical Engineering, 23, p187-202, 1998.

Huang, D. and Zhu, X., “Auto-tuning of Dynamic Matrix Control” Advances in Modelling &
Analysis, C. AMSE Press, 46 (1), p43-46. 1995.

Isermann, R., “Practical Aspects of Process Identification”, Automatica, 16, pS75-587, 1980.

Johnson, C., “Process Control Instrumentation Technology”, Prentice-Hall International, Inc,
1982.

Lee, J. H.,, Morari, M. and Garcia, C. E., “State Space Interpretation of Model Predictive
Control”, Automatica, 30 (4), p707-717, 1994.

Ljung, L., “System Identification. Theory for the User” (2™ edition), Prentice Hall Inc, 1999.

Luyben, W. L., “Process Modelling, Simulation and Control for Chemical Engineers” (™
edition), McGrenv-Hill, Inc, 1990.

Maiti, S. N., Kapoor N., and Saraf, N. D., “Adaptive Dynamic Matrix Control of pH”, Ind. Eng.
Chem, Res. 33, p641-646, 1994.

Maiti, S. N. and Saraf, N. D., “Adaptive DMC of Distillation Column With Closed-loop On-
line Identification”, J. Proc. Cont., S, p315-327, 1995a.



References

Maiti, S. N. and Saraf, N. D., “Start-up and Control of a Distillation Column Using Adaptive
Dynamic Matrix Control: an experimental study”, Process Control and Quality, 7, p143-
156, 1995b.

Mulholland M. and Narotam, N. K., “Constrained Predictive Control of a Counter-current
Extractor”, Systemy Modelling and Optimisation, edited by J. Dolezal & J. Fidler, ISBN 0
412 718804, Chapman & Hall, p251-258, 1996.

Mulholland, M., “Personal communication™, 2001.

Mualholland, M., Le Lann, M. V., Chouai, A. and Prosser, J., “Visualisation of Constrained
Predictive Control of a Liquid-liquid Extractor”, in print, Control Engineering Praciice,
2001.

Mulholland M. and Prosser, J. A., “Constrained Linear Dynamic Matnx Control of a
Distillation Cotumn™, S4 Inst Ch. Eng. 8th Nat. Meeting, Cape Town, South Africa, 16-
18 April, 1997.

Morshedi A. M., Cutler, C. R. and Skrovanek, T. A., “Optimal Solution of Dynamic Matrix
Control with Linear Programming Techniques (LDMC)”, Proc. Am. Control Conf.
Boston, Massachusetts, 199-208, 1985.

Ogunnaike B. A. and Ray W. H., “Process Dynamics, Modelling and control”, Oxford
University Press, New York, 1994,

Patwardhan, S. C. and Madhavan, K. P., “Non-linear model predictive control using second-

order model approximation”, nd. Eng. Chem. Res. 32, p334-344, 1993,

Prosser, J. A., “Variations of Linear Dynamic Matrix Control and its Applications”, M.Sc. Eng.

Dissertation, University of Natal, Durban, 1998.

Rice, R. G. and Do, D. D., “Applied Mathematics and Modelling for Chemical Engineers " John
Wiley & Sons, INC, 1995.

Robertson, M. W., Watters, J. C., Desphande, P. B., Assef, J. Z. and Alatigi, . M., “Model

Based Control for Reverse Osmosis Desalination Processes”, Desalination, 104, p59-68,

1996.

R-ii



References

Suganda P., Krishnaswamy P. R. & Rangaiall G. P., “On-line Process dentification from
Closed-loop Tests Under PI Control”, Instituition of Chemical Engineers Trans IchemkE.
76 (part A). 1998.

Seborg, D. E,, Edgar, T. F. & Shah S. L., “Adaptive Control Strategies for Process Control: a
survey” AIChE Journal, 32, (6), p881-913, 1986.



Appendiz A

General Concepts about Process Models

This appendix presents the theory related to process models. It includes issues such as process
variable definition, process characteristics and process models, as well as different forms of

process model. Thus, the appendix structure is:

Page

Al Variables of a process A-2
A2 Process characteristics and process models A-2
A3 The process mode! forms A-4
A3l The state-space model A-4
A3.2 Impulse / step response models A-5



Appendix A General Concepts about Process models

A.l Variables of a process

The process model represents the relationship between process variables. Those variables can

be classified as state, input and output variables.

Input variables are those that independently stimulate the system and can thereby induce
change in the internal condition of the process. It is possible to classify these variables as
manipulated (or control) variables and disturbance variables. Manipulated variables are those
input variables, which are at our disposal to manipulate freely as we choose, and disturbance

variables are those over which we have no control.

Ouwipnt variables are those by which one obtains information about the internal state of the
process. Stare variables are generally recognised as that minimum set of variables essential for
completely describing the internal condition of a process, and can be used to predict future
states provided future inputs are known. The state variables are, therefore, the true indicator of
the internal state of the system. The actval manifestation of these internal states by

measurement is what yields an output.

Some process variables (outputs as well as input variables), are directly available for
measurement while some are not. Those process variables whose values are made available by
direct on-line measurement are classified as measured variables; the others are called

unmeasured variables.

Although output variables are defined as measurements, it is possible that some outputs are not
measured on-line (no instrument is installed) on the process but require infrequent samples 1o be
taken to the laboratory for analysis. Thus for control system design these arc usually considered
unmeasured outputs in the sense that the measurements are not available frequently enough for

contro! purposes.

A2 Process characteristics and process models

Chemical processes can be classified according to nature of the models used to describe their

dynamics in several ways:
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s Linearity — linear or non-linear
Thus a process described by linear equations (i.e., equations containing only linear
functions) is classified as linear, while the non-linear process is the one described by non-
linear equations. A linear system satisfies the properties of superposition and homogeneity,

while a non-linear system does not exhibit any of these properties.

»  Number of independent variables — lumped or distributed
A lumped parameter process (which may be linear or non-linear) is one in which the time is
the only independent variable. It is described by ordinary differential equations. The
process variables of a distributed parameter process on the other hand change with spatial

as well as with time.

» Stability — stable or unstable
The process is defined as stable if “self-regulatory”, thar is, the process variables converge
to some steady state when disturbed and wnstable if variables go to infinity
(mathematically). Most processes are open-loop stable. However, the exothermic
irreversible chemical reactor is a notable example of a process that can be open loop
unstablie. All real processes can be made closed-loop unstable (with a feedback controller in
service), and therefore one of the principal objectives in feedback controller design is to

avoid closed-loop instability.

e  Order
If a system is described by one ordinary differential equation with derivatives of order N, as

shown in the bellow equation, the system is called the Nth order.

d"x dV'x

a, ———+a _—
N N N-l ~e
e N

+ta, %+aox = f({n)

where a; are constants and f(t) is the forcing function or disturbance.

As we shall see in the next sections, we can classify the present Training Plant system as

lumped, non-linear and high order.
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A3 The process model forms

According to [Ogunnaike and Ray, 1994], it is usual to cast the mathematical model for any

particular process in one of four ways:

1. The state-space (differential equation) form

2. The transform-domain (Laplace or Z-transforms) form

(V%]

The frequency-response (or complex variable) form

4. The impulse / step-response {or convolution) form.

The last three forms are called input / output models as the mathematical models strictly relate
only the input and output variables entirely excluding the state variables. In general, input /
output models occur as a result of appropriate transformations of the state-space form, but they
can also be obtained directly from input / output data correlation. Because these model types are

obviously interrelated, it is possible to convert from one form to another.

Recall that in attempt to control the Training Plant currently under study, a state-space model
was developed (see Chapter 3). The system transpired to be multivariable, non-linear, of high
order, described by a mixed ordinary differential and algebraic equations (DASs). On other
hand, little information about the process parameters was available. Thus, to overcome this
complexity, an experimental step response model was then obtained and used for process

control (see Chapter 7).

The state-space and impulse / step-response forms are briefly described as follows

A.3.1 The state-space model

When the process model is formulated from first principles, it often naturally occurs in the
state-space form in the time domain. The state variables occur explicitly along with the input
and output variables. Since the modelling equations are formulated with time as an independent
variable, state-space models are most useful for obtaining real-time behaviour of process
systems. Discrete-time formulations are especially well suited to computer simulation of
process behaviour. These models are also used, almost exclusively, for analysis of non-linear
system behaviour, because most of the other model forms can represent only linear dynamic

behaviour.

A4
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A3.2 Impulse/step response models

It is typical to adopt the theoretical modelling approach when the underlying mechanisms by
which a process operates are reasonably well understood. When the process is too complicated
for the theoretical approach (usually because very little information about the fundamental
nature of the process is available, or the theoretical model equations are enormously complex)

the empirical approach is the appropriate choice.

Impulse / step-response models find their main application in dynamic analysis problems
involving arbitrary input functions u(t). In building process models from experimental data
sampled at an interval At, discrete impulse / step-response models are most useful because the
model requires only a dala record from well-designed experiments. The particular functional
form that the input takes is immaterial. Observe that a very simple experiment of sending an
impulse (or a unit step) function as input to the physical system will give this required impulse
(or a unit step) response data record. This may then be used for dynamic analysis through the
convolution model. A step function is easier to implement on a physical system than an

impulse.

One application of impulse / step-respanse models outside of process dynamics and control is in
study of residence time distributions in chemical reactors [Ogunnaike and Ray, 1994]. In the
present work, convolution models of two processes with different behaviour, “self-regulatory”
and integrating nature were obtained from the experimental data (see Figures 4.5 and 7.2) and

then used in Dynamic Matrix Control algorithm for controller design.
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Appendix B

Extended Kalman Filter Formulation

Presented in this appendix, is the extended Kalman filter formulation {Mulholand, 2001) for
solution of differential and algebraic equation systems. The first step provides a linearisation of
the system using a Taylor series expansion, and then the Kalman filter is used for stac

estimation,

Consider the system of first order differential and algebraic equations

4y _ 1y
di s (92) (B.1)

0 = g(y.2)

where y is a vector of state variables and z a vector of algebraic variables.

Defining the Jacobians;
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linearise the right hand sides about (y,, 2o) to obtain the augmented system

[y] _ [f(y)] X [f‘ | B} (- %)
0 g(yo*zo) C ; D (Z_ZO)

i (B.3)
_ (5 AiB|(y
G, " C : D 7
where
Fo) (£ (30:%) = Ay~ Bz, -
G, g(ym Zo) —-Cy, — Dz, .

To allow for the possibility that some of the z elements might be free, overspecify the behaviour

by suggesting that z will move towards some observed value z,
¢="%(z,~2) &)

so that equation (B.3) becomes

SR GRGHIE

with H, = 1z,
E =-41

r

an additional requirement is also defined from equation (B.3) as

[CiD {:] = -G, (B.7)

To handle the possibility that the states y may also be observed, augmenr the above equation as

follows
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_ |2

. y A B F,
Letting x =) = |, ®D=|-i-x and u, = | - , integrate from 0 to 1 keeping u,g fixed:

x, = ¢e"x, + [e“” - ]] &' u, (B.9)

The same integration can be applied to the interval r — f + At giving

Xy = AX, +Bun, (B.10)

with A, = e®¥

!

L 0 Y
and setting C, = |iCD:| , W, = [_GO,—] , with L selecting observed states, it is also

required

C,x, =w, (B.11)

Representing the equivalent set of measurements by v, , the Kalman filter is configured as

follows

x, =M, c[c,mc] +R]
Xy = A x, +Bu + K,[)D{ - C, x,] (B.12)

Ml+_4l =A4 [I _KIC(]MIAIT + Q

where the covariance matrix is initialised with M, small and Q and R the expected error

covariance matrices for the model and the measurements respectively.
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Appendiz C

Matlab Extended Kalman Filter Algorithm

The propose of this appendix is to provide the Matlab algorithm applied in Chapter 3, for state
estimation of the theoretical process model of the Training Plant, using a extended Kalman
filter. The main program \vas developed by Mutholland {2001]. All contributions are gratefuily

acknowledged.



% Differential A E - Kaiman Filler Sobver (DAE-EXF)
% FOR AECI Training Flant Simulal

% M. Mulhoiland 20010510 vers 1) : unfs 1o mAh m kW
% B. Loveday 2001.04.02
% J-R Vosloo 2001.04.02
% N. gu Preex 2001.04.02
% |. Guiamba 2001.05.02

% The model s multhvardable and nonlinear with o midure ¢f differential and
% algebrale equations, with stale varable oulpuls, Inputs, associated variables and
physizal %paramelers

5% INPUT: initlal approximation of ihe States, lapuls, associated vanables ang physical
parameters
% Any of the above as measurements in real lime

% OUTPUT: Fitted estimates (n real lime for Hates, inputs, assacialed variables and
physical parametars

% NOTATION:

“ my © total number of variables (incluging states, inputs, associated variabies snd
physical paramelers)

% ns : number of states (first n3 of the ny)

% nf ; number of equations (first n3 are the appropriate DE's for the ns stales)

% Malrix dimensions

close al;
claar all;

%

TO 8E SET BY USER BELOW————rrorer

% Time Interval
V=0

Ifinal= \.5: %h
@=0002. WA

% ————————TOBE SET BY USER ABCVE

% Maximum possibia sizes
nimax =100, % No of equations
nymax =200; % No of variables
1= zeroa{ntmax, 1);
1 = reros{nfmax 3};
y=zefos(nymax,1);
y_last=zeros(nymax, 1)
yy=zeros{nymax.6);
yo = zeros{nymax, 1)
ylimfiag = zeros{nymax,2): % Nags (Llowsr, 2:upper Lo Indicate limalng: Jitimi
valug)
for i= 1 :nymbx

ylimflagd. t3=l; = macker
and

pomove_lof=5; % max percentago maove [of any one vadable before reevaluation of
Jazobians

minrange=0.001; % minimum allowed ranging for automaltic Q & R setting

lol = 1e-20; % Tolerance for malrix exponential convergence

SM» 1e-10; % Small value o prolect against div-by-zer0, eic

SMM = 12-10; % Smail value 10 weed matrix M| and matrix K

Hint = &; % No. of steps between re-gvaluation of Kaiman K

Kcomp =10, % No.eof sisory initial sluations of Kalman K
last_response_factor=0.5;

Tau = fas(_response_factor cl;

% PLOTTING INFORMATION
diplot = 1°dt;
pefioon_finaifdtglot);
pezerosip, V).

Hastplot=0:

lplot=0:

% Main time loap
INIT = 1, % Initialise on First Pass
niint=0;
nkecomp=0;
while 1<1_final

=t
% e TO BE SET 8Y USER BELOW—— e
"% Set present obsarvelions on each xep

HINT

% plofting amays
hi{Pazeros{p.1); hi2P=7erox(p.1). M IP=zeros(p, 1) h15P=zeros(p, 1§;

T1iP=2eros{p.1): T12P=zeros(p.1).

T13P=2eras(p.1); T14Pezerosip,1); T15P=zeros(p, 1) FOVP=reaccs(p. 1}
Fo2P=zeros{p.1); FOIP=£oros(p. ).

Fo4P=geros(p. 1); FOSP=zerosip.\); F10P=zaras(p. ); F 1 1P=zermsip.1);
F12P=zeros{p 1); F13P=geros(p, 1);

F14P=zeros(p,1}; F15P 3(p. 1), aFRY (p. 1), dFIC2P=zerosip, 1)
APKAP=zeros(p.1): APCVT1P=zems(p,1);

APCVOZP=zerosip, 1); AFCVOIP=zeros(p, 1) dPCVIMP=2ems(p, 1)
dPCVESP=2er035(p.1); dPCYI0P=zerms(p, 1)

APTV1 1P=szerosip, 1); dPCYV13P=zeronp, 1); POIP=zeros(p, 1), PO4P=zeros(p. i)
PO5P=zaros(p,1): P10P=zerosip, 1)

P12Pazeros(p.1): P19P=zeros(p. 1) PI0P=2eros(p. 1), TO2Pszares(p 1)
YOdP=roros(p.1): T1@P=reroa(p,1);

T20P=zercs/p, 1), T3OP=1er03(p.1): T31P=T0r03{p A} QHYP=zcros(p.1):
qF2f=zaros(p.1); aHIH4Pxzaros{p 1)

XOVP=zeras(p. 1): X02P=2a08(p. 1); XOIPo1or08(D, )} XOLP=zerus(p, i};
XO4P=zetaslp. 1) X10P=zoros(p. 1},
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X11P=rerosip 1), X13Puzaros{p.1). wid_cbs_emuzeros(p. 1).

wAd_dary_er=zemnsip 1)
end

% Constanls
hSMALL = 0.05;
balances In lanks.
LORheel= 0.01;
LORMaw= 0.0001:

" smail lavet (o protedt demvatives for hest

% heol of waler leR In lank
% low fow for Neat exehangers

LORSMALL = 0.00001; % loss af static and pump heads for empty lines

Tamb = 20;
Titgeyzer = 80;

% ambient temperature [C)
% waler lemparature supplled by gayzer

reg =4; % aensitF x grvilational constani % All prossures inm ot

waler
rocp = 418673800
(0C"(m3 water / h)

% densitF x speciFic heat % Powerin [l

hFO3 =8 % Junctions height above Floor [m)]

hPod = 1.2;
nPOS = §;
hPI0=1;

hFi2m g

hPi9 = 1;

hP30 = §;

hO1 =15

hoz = 2.8;

K3} = 8!

hOISOT = hiid- 1.8;
ho4 =1,

hos =6,
rOSBOT = pDS - 47

% funing constants
A= 0y
A2= 0.3;
Ad= 04
Ad= 0.4
AS= 0.1;
aK1 =0,
b1 = 2030
ey = &
aK2 =@
BK2 = 30730,
X2 = 15;
8K4 = 0,
BR4 = 20730
cKd =8,
giphad’ = 30730,
8lphal2 = 2030;
alphadl = 20/3%;
alphald = 10/30;
aAlphads = 20730,
wiphato = 10/30;
aiphatl = 20720;
aiphal3 = 20730,
*LOT = 400030730},
¥L02 = S500/(30730).
L0 = £00/(20730);
XLO4 = S00/030730);
KOS = 700/(30%30);
XL 10 = S0/(30°30):
AL1S = S00/(30%30);
¥L12 = S0430730);
%113 = 500/(30720);
LL14 = 100/(30+30);
XL15 = 4D0/(30730);
excessively
KL19 = 300/(30730);
Instead of h15-ho2
K20 = SQ/(30)0):
L31 = 4000/(3070Y:
kL40 = 1/(30+30);
UAHT = 1;
\ranzler arca)

% Set Initial values
hite=1;
niZo=y;
hide=T;
hiSe=2.1;
Tivo=25
Ti20=25;
T13e=25;
Ti4o=80;
T150=25,
FOvo=Y;
F020=);
Fodomd;
FO4omy 5
Fo5a=1.5:
F10o=1.5;
Flig=y;
Fl12a=3;
F130=3;
Fl4o=1.5;
F180=0.3:
dPr1e=T;
aPK2e=12:
dPRéo=T;
dPCV010=8;
dPCVQ20s8;
dPCWI3o=5;
APCVi4oas;
dPCVOEe=S;
dPCV10o=5;
dPCVito=4;
dPCVidaas;
PO40~3;
Fion3:
Pi20m8:
Pidons:
Paldoas;
T020a50;
TOdo=70;
T150260;

% lifik with A diltum above Qround

% Lank with A gatum acove geourd

% Tanks area [m2]

% Pumps coeflicen!

% valves constants

% pipes constants

% lower 1his f the level bulids up in the column

% could dmva aut column wsing hi5-h1580T,

% (overall heat Iransler caefficient neay

% Tanl 4 level {constant)
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T200=71;

T30o=g4;

T310=80;

qHlo=40;

qHZo=40;

qHIH40=ED;

X010=0.4; i 0.9 XQ10=0.55; and| if 1»1.0 X010=0.5 . eng
X020=0;

X030=D.4, U 0 4 X03a®0.); cnd; [(1>0.7 X0Jo=0.55, end
X0da=i,

Xa5o0=0;

X100=0;

X110=0.5:

X130=0.5

Filo=3;

% Check percant of ranges moved since [as! step o tell if must re-evaluate Jacobiant
o INIT
REEVALUATE=T,
eise
REEVALUATE=D:
for j=1ny
pomaye=100"abs{(y [-y_lastOMyy (L8 yy Q. 50
if pamove>pamove_tol

y_lastl=y:
REEVALUATE=1; % i any one move grealer than tolerance
brealk;
end
end

and

% TO BE SET BY UBER ABOVE-
penft = 0.001;

n_avais = 1sREEVALUATE 'nymnax; % brosks out of keep at {enys

% EVALUATE FUNCTIONS & their JACOSIAN
for ne=1n_evaly

o (nex1)

% perturd

L=ne-1;

dyil = pertfr Oy (yE).6)-yy Ly AN

YOy @iy @ dvil

ond

% —

TO BE SET AY USER BELOW—

n=o;
%% Selection of Variatles 8 Obsarvations, Setling of Observatlan &rors and Ranges
% [Observation Errors are as Standard Daviation (we=absolule; «ve=% of Intial)]
% STATES 30 e min max nit
a=ns 4 0 INIT yy(n=[ Y 101 0.0 Z7n110 ) y{nj=n11o; end. hil
=yin}; yo(nj=h110; % [m]
n=n 1 INIT yy(noi=] 2 10 1 0.0 2°M120 | y{nj=n120; end. h12
=yin); ye{n}=sh12o; % [m]
m=ne Y 8INIT yy(n,J=] 3 1 0 ¥ h03BOT hOIBOT+2 | yinj=h13o: end;
h1d  =yin) yo(ni=hide: % [m)
nEneT; IINIT yy(n, ] 4 11 1 hO3BOT ROSB8OT+3 k: y{r)=n150. et
NS =y(n); yo(n}=n150; % [m)

n=ne 1 INIT yy(n 3] 514 1 18 85 | yini=TV10; end; T11
yo{ny=T11e; % [C]

=010 ONT yy(nod=[ 613 1 88 BS ) y(n)aTi20; ond: T12 =y{n):
yoln)=T120; % [C]

n=ns 1, INIT yyp(n,J=[ 713§ $5 BS | y(m}=T130; end, T13 wy(ny,
yo(m=T13o; % |C]

a=ne N yy(n,J=| 811 1 (583 ] y(n]=T140: &g, T1d =y{n):
yom»T140: % (C)

nans £ 4CRAT yy(no)={ 0 13 1 1588 | yin}=T155; end: 71§ my(n):
yo(n)=T150: % 1C)

ns=n; % No of stales

y(ny.

% OTHER VARIABLES

n=ne i INIT yy(n)=[10 Y 0 1 2.8 2°F010 ) yin)=Filo; end; KOV
=y{n): yo{n}=FO010; % [mih]

n=ne 4 i INIT yy(n,)=[11 1 0 1 0.0 2°FD20 & yin)=F020; end; FO2
®y(n). yo{n}=F02o: % |mdMh)

a=n=1: M INIT yy(n,j={12 1 0 1 0.0 27F 030 | y{n)=F030; end; FD3
=yin). yo[n}=F030; % [mdm]

n=net: it INIT yy(n.)a[13 10 10.0 Z7F040 }; yin)=F0do: end: FO4
=y(n). yo{n}=F04o; % [mdh

n=nA i INIT yyln,)=[14 £ 0 4 0.0 2'F054 ). yin)=F0So; end: FDS
uy(n). yo(nj=F050: % [m3nN]

nans i INIT yy(n,)={15 10 10.0 Z7F100 ): yla)=F 100; end; F10
ay(n). yo(n)=F 100; % (m3m]

n=n+1; i INIT yy{n,}s[16 1 0 4 0.0 °F {10 ). ytn)=F115; end: F11
=y{n). yo(n)=F110; % {m3m]

s 1 HINIT yy(n,)={17 1 ¢ 10.0 2°F 120 |: y(n)aF120; end; F12
=y{n). yolny=F120; % [min]

nEne 1 I INIT yy(n.)=[18 1 0 ) 0.0 2°F 130 |: y(n)=F120: end: F13
=y(n}. yo{n)=F (30; % [mam]

o=ns 1 HINIT yyin, J=(17 10 00 2°F14a | yinj=F140; end: Fi4
=y(n); yoln}=F140) % [man|

n=ne 10 W INT py(n,)={20 10 1 0.0 2°F150 ) yin)=F150; end; F18
=yin): yo(ry=F15¢. % [mim]

m=e 10 i INIT yy(n, =21 10 1 0.0 2°dPK1o | y(n)=dPK1o; end; dPK1  =y(a).
yo{n)=dPK1o; % [m]

n=n+1; TINIT yy(n=[22 1 0 10D 2°gPK20 | yin)=ePK2o; erad; dPK2  =yin);
ya[n}=dPK20; % [m]

=1 INIT yy(ne)=(Z3 10 10.0 2°5PKdo | y(n)stPKda; end; aPKE  =y(A).
yo(n)=dPKdo: % [m|

n=ne Y; [ INIT yy(n,:}a[24 1 0 1 0.0 2°dPCVDY0 | y(n)=oPCVO0l0: and:
GPCVOT sy(n): yo(np=dPCV010: % |m]

nane 1 if INIT yy(n.)2[25 1@ 1 0.0 2°4PCVO20 ); y(W)=aPCVOZ0: end:
dPCVO2 =y(n): yo(r}=dPTVO20. % (m|

nanet; i INIT yy(n,)={28 1 0 } 0.0 °aPC\V0J0 | y(n}=oPCV020; ena:
APCVOL =y(ny. yo(n)=dPCVO30. % {m)

n=net1; i INIT yy(n)=(27 10 § 00 22dPCV046 | y(mmaPCvDds: and:
WPCVCL my(n): ya(n)=dPCV040, % [m)
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n=net; i INIT yy(n,)={28 10 100 ZdPCVDSa | yinj=dPCVO5s, end,
GPCVOS =yin). yotn)=dPCVTS0; % [m}

n=n+1; i INIT yy(n,)=[29 1 0 1 0.0 7dPCV10o | y(n)=dPCVI0o; end.
CPCVI0 =y(n): yoinj=dPCV108; % |m)

n=nat; f INIT yy(n,}=(30 1 0 100 2°¢PCV110 }; y(n)=dPCV1 10 end.
APV =yin): yo{n)=<PCV10: % |m)

n=n=1, of INIT yy(n,)=[31 1 0 { 60 Z'dPCV130 k& y(nj=dPCV130; end,
aPCVI3 =y(n): yoln)y=0PCV120: % |m)

nafel HINIT yp(a_)={33 1 0 10.0 2°P04o | y{n)aPOLa; and: POK =y(n};
ya(ny=P0do: % (m)

neEns§ NI yy{n:32{35 £ 0 § 0.0 2°P1Ca | yin]=P10o end: P13 =y(n).
yoln}=P100; % [m}

nEnet i INIT wy(n,)=][28 18 10.0 2°P120 ), y(n}=P120; end; P12 =y{n};
yo{n}=P12o; % [m}

e 17 i INIT yy(n,)={37 10 1 0.0 2°P 100 | y(n}=P1%0; end: P19 =y{n):
yo(nj=P18a; % [mj

nenet; i INIT yy(n, J=[38 10 10,0 27100 | y{n}=P200; and; P30 =yin},
ye(nj=P3Co, % [m]

a1 INIT yyin3=[{39 1 0 0.3 15 85 | y{n}=TO20; end; TO2 =y{n);
yo{n)=T0Zs, % [C]

n=ne 1 WINCT yyln,)=[40 10 115 85 | y(n)}=T04a; end; T4 =y{n);
yo{rj=Too: % [C]
n=n=1; INIT yy{n.j={41 10 115 B85 | yin}=T 100, end; T19 =y(n},
yo(ayaT190, % (C]

n=ne3; W INVT yy(n.7)m]42 1 ¢ 115 85 | y(n)=T200; end. T20 =y(n);
yo(n)=T200: % [C
nane1; i INIT yy(n.)al4d 10 118 85 |; y(n}=T300: ang: Y3C =y(n).
§o(n)=T30e, % (8}
nEas 1 INIT yyln. )al4d 10 1 14353 | y{n}=T 3o, end; T3V =y(n},
yo{n)sT3leo. % [C]

nmas 1 i INIT yy{p. po{<8 3§ 0 1 -2°qHTa 2°qHio [ ylni=qHte, end gH1
=yink yo{nj=qHlo. % ]

a=net; i INIT yy(n =48 10 100
syin) yoinj=gHZo; % [A]

n=ce 1, @ INIT yy(n. }=[42 10 100
=yi{n) yo{nj=qHiHio] % [WW]

% Valves

nEae ;i INIT yy(n.)=]48 1 1 1 0.0 1.0 | yinj=X010; end; X01 =yin) yo(nj=X010;
¥ [fraction open)

nEns1; B INIT yy{n.)=[49 1 1 1 0.0 1.0 yinj=X020; end; X02 =y{n). yoln}=X02a
% [fraction opent

n=ne T I INIT yy(n, 5=[50 1 1 1 0.0 1,0 [ y(n}=X030: and; XO3 =y{n). yo(n}=X03s,
% |fraction open)

n=Ene 1 I INIT yyda, J=[59 1 1 1 0.0 1.0} y(n)>X040: énd; X04 =y(n), yo(n)}=X04do!
% [fraction open)

nane ;i INIT yy(0,)=[52 10 1 0.0 1.0]: y(n}=X050. end; X05 =y(n}); yo(n}=X052;
% {fraction open}

mEne ] HINIT yy{n)=[S3 1 ¢ 1 0.0 1.0 | y{nisX100: end, X1D =y(n}. yo(a)=X10o,
% |traction open]

nEnet: i INIT pyln ds{S8 £ 1 100 0.0 | yin)=Xe10; end: X11 =ylnk yo(np=X11o:
% |Iraction open|

n=ne1; B INIT yy(n,:)={55 1 ¢ 1 0010 [ yin)=X130; end; X13 =y(n}: ye(nl=X13o:
' [fraction open|

2°qH20 | yinj=qHlo: end,qHZ

2°gHIH40 | y{n)=qHaH4e; end. gHIMHA

‘= New vanables
n=ne Y, @ INIT yy(n, J=[56 10 1 0.0 Z°FMo ). y{n)=Fl1o; end: F31
=yln) yo{n}=F1o; % [mam)

% STORE COUNT
ay=n; % No of varables

% Common Emor Faciors for Tuning
yo_emr_factor = 0.1; % mulipliez by rtlathoe “y0” errors above la get obsarvation
efrors for sserved variables only
yu_erm_factor= V; % mufiplies by relalive y* arrors abavo 1o set unknown 'z’
model emors
1_om_tader = 0.%: % multiplios by rolative "7 emurs below o pet equation emmm

% lira overrides “LOR" n 0 for empty lanks. ¢ise 1
if i1 1==LORheel
LOR1=LORSMALL:
else
LCR1=1:
end
if h12<=LORheel
LORZ=LORSMALL:
eise
LoR2=1;
end
i hi3<=(h0IBOT+LORNe el
LORI=LORSMALL:
eise
LOR3=1:
end
I h15<=MO580T+ LORNeEN
LORS=LORSMALL:
elsg
LORS=1;

Bht1

*h12

%hiy

%his

end

o FOZe=LORMow
LORH1=LORSMALL,
eise
LORHM1=1;

end

Y Fre=LORNow
LORHZ=LORSMALL;
)
LORMZ=A;
end

% Fi4

% Seledion of Fi
% sel o rel

Setling of F

% YOLUME BALANCES
nems S 0R0S] 4 ) 1), (00 = - FA3 e FOMWAN:
% byY Tank 1 .
neas 1 mncpe( 1 1 2] ()= (- F52 ¢ F02 5 Fi1 o F() » F15YA2:
% nt2 Tank 2
naget fMn 3= 1 1 I (n) = (- F1 « FQAYAD:
% ™I Tank 3
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nune 1 A(n. = 1 3 4], f{n) = - F15 ¢ FOS)AS
% h15 column

% HEAT BALANCES
aene 4 Mn)=f 1 1 BL f(n) = (F107TU1 » FOTTTIZUEAL N L o ASMALLY) -,
(T1UMT1+hSMALLY'(- F11 » FOUNAL,
% Y14 Tank 1
nened;i{n)=[ 1 1 O [y = (FI27TI2+ FIT T s FI3TTA3 6
F15°T15 ¢ FOZ°TOZ)/(A2"(N12*hSMALLY) -
(TI2h12+NSMALLY"(- F12 ¢ FO2 4 F1l & Fia s Fisyaz:
% 712 Tank 2
n=Ened; Mind=l 1 1 T Knd = (F137T43 » FOIT12V(AZ M RDABO T+ hEMALLY)

(THUMI-MOIBOT+RSMALLY"(- F13 « FOIWAI,
% T13 Tank 3

reEns i fiins)=[ 1 1 &) fin) = F14°(T04-T14)/(A4" Y4 =hSMALLY)
% Ti4 Tank 2
aunel; M=) 1 1 8] ((n) = (F1S-T1S 3 FOS-T129/(AS(h15-N0SBOT shSMALLY)

{T15/(N15-n05BOT *NSMALLY (- F1S & FO5V/AS;
% T15 Column

neast: Mny=] 1 10°F1do B} Kn) = FIAF10(T14- T15) - FOX(TO2-T1Z.
*% overal balance on H1

nens1: fin3=] 1 1°F 140 Bl f[n) = (F14-F10)"T1G » F107T14 - F14°T20,
% han! balance af junclion P19

o7 = T14-T02:
aTZ = TIi%TIZ
i {aT1dT2 <= 0)
g=0;
clse
HaTi-=4T2
q = LORM"UAMI *{dT 1-dT2MogidT1dTN
% will allow reverse hes! Row oo
eise
g = LORH1UAH1* gT1;
end
ond
a=Ene ) fMi{ncy=( € 10 45) [(n) = qH1 » q.
nwne 1 finc =l 1 10 455 f(n) = -qH1 « (TO2 - T12) rocp™FO2.
% heat lo FO2 (0N
n=nel; MR] 11 AT I(n) = qHAHE « (T3 - TA0 rocp F3L;
% gas heaters (K
aT1 = Y20-Tamb,
dT2 = T30-Tamb;
U (ST1aT2 <= 0§
q=0
alse
P gT1==dT2
4 = LORH2"UAH2[dT 1-dT2)l0g{a Ty /aT2),
% will allre reverse hoat fNow 100
else

Q= LORHZ"UAHZ* dT
end

end
nEne 1 fin,g=] 1 48] tin) = qH2 e Q:
aens §; Mins=] 11 4] 1(n) = -qH2 ¢ (T20-T30)yutp F 4,

% Cooling coll

n=ns 1, fins)=0 11 44] I(n) = -T31geyzer - T

% geyzer lemperalure seiting
a=ne1, Min =] 1 17F 140 40). 1n} = -F147TC4 » FO4'TI0 « FV' TV

% hes! balance al junction RPO4

% MASS BALANCE AT SPLIT P12
nenet Mnj=] 11 17) I(n) = -F12 « FO1 « FO2 « FO) « FOS5:
% tank 2 aulput fMow

%% VAASS BALANCE nt peyror bypass hP30
nape ) Mn:)={ 1 1 58] 1n) = F31 e Frd-Fod:

% FRESEURE CROP OVER THE PUMPS
e Miask=l 1 1 250 fin) = -oPX1 = LORTaKIF11°2 » DKYFI1 o K1)
% Pump K1 (from lank 1)
neEnet; Minsy=] 1 1 22] fn) = OPK2 « LORZ(aK2"FI2%2 & BRIF12 » cill);
"% Pump X2 (from tank 2)
nenet; May=(1 1 23] I(n) » -dPK4 + aK4'F 142 » DKA'F 14 » cK4;
% Pump K4 {from ink 4)

% PRESSURE DROP OVER THE VALVES

% K01, X02, X0J, XO4, XO5, X10, X11 and X13 are the fraction of Ihe telal fiow

% of the 01, 02, 03, 04, 05, 10, 11 and 13 valves respoctiveily (inputs)

% Tha aiphal constant is equal 1o {ra2/Cvl), where 1o Is a density and Cvi tha
valva

% slra acefficiont

mEne 1 TN, J=l 1 3 28] I(n) = -2ar(dPCVOS)*X01 + slphali*FOs:
% Input (o tanik 1
nEne Y fMind=l 1 3 25) {{n) = -5qr(dPCVO2)"X02Z « alphal2'FO2Z
% Ingut 1o tank 2
nEne 1 Min =] § 3 28% In) = -aqr{dPCVOY) XD » alphaliFod:
% input o tank 3
nenst; fMin={ 1 1 27 fin) = -sqA(@PCWVOL)™X0L » aiphald o4,
% Input to lank 4
n=ned; find=] 1 1 28) {{n) = -5Qr{dPCVOS)™XOS « alphads FOS:
% Input to the column
nane 1 tinye] 1 1 28] Hn) = -sqr{dPCV10)"X10 « alphai10°F 10:
% Heater exchange H1
nenel; Mnsi=] 1 130) f(n) = SQA@PCVII)X)) « alphat 1"FIL
% ouput from tank 1
nensl: fMinod=( 1 1 ML o) » -sg{E@PCVIZIXND ¢ alphai3TFi3:
% output from tank 3

% PRZSS5URE DROP OVER THE PIPES
asne L= 1 M) () = - KLO1TFO1A2 .
(P12-0 )+ g MP1I2 - hO1 )'LOR2 - dPCVOL;

nEne 1; M(noy=[ 1 1 38) {(n) = - WLOZFO2*2 s (P42-0 ) »coq'(MPi2-
h2 JLOR2 - aPCVOZ:

nenet; Moyl VY 32) 1) = - ALQATFO3A2 y(P12-0 ) » to3" (P12 -
N3 JLORZ -~ cPCVDY

pEne , MAS] Y Y Q3L 1) = - KRLOATFI4'2 » (PO - D ) = rog (P04 -
o4y

nens 8 Mincl={ 1 1 ML Hin) = - kLOSFOL2 v (P12-0 ) * rog"(MPI2 -
hOS YLOR2 - ¢PCVDS:

nane1; fiin)=] § 1:51 I[n)- KL10"F 1572 ¢ (PY0O - P1S) v rog*(hF10 -
nP18) - dPEV10

amae 1 M(n)=[ 1 1 30L f{n) = - KLIVTF1172 >0 -0 )~ rog*(hlt - NO2
YLOR{ -dPCVIL » dPK1;

e IMn 23] 1 \351, ﬂn]- SRLITFIZ2 (@ - P12) * rog'(ni2 -
hPIZLORZ

nupet] Mincje] 11 31 fin) = - kL13°F13°2 #{0 -0 =gt - h02
Y'LOR3 - gPCVI3:

n=ns Y M(n)=] 3 1 Q8] Kny e - RL14TI4%2 40 -P10) + mgrhig -
hP10) » dPKA;

manel Hin=( 1 1 38L fin) = - WL15F18%2 «
«0 ) e rogihis - hO2)LORS;

{0
neEne ] fMin =] 1 1 38 I(n] = - WASF 14-F 10)~2
s (P10~ P19) » rog™(hP10 - hP15);

nepel; D=L 1 1 37) () = - AL20°F 1472 © (P10 - P30) o rog(hP 10 -
hP30);

nenel, =] 1 8 38) () = - ALIVFIIN2 « (P30 - PC4) » 1og"(hP20 -
LN

annel; tn)=] 1 ) 38 I(n) = - WLEDFO4*2 » (P30 - PO4) » reg"(hP30 -
hPO4) - GPCVO4;
Yy weeemneee———TO BE SET BY USER ABOVE.

% STORE COUNT

nt=n, % No of equations
% UA defaT_LM (W)
INT

INIT = 0

* Selections (o be incduded in solution
nfs = sumM{1nf, 1)) "a Number ol sefected functiont
nys = sum(yy(1 ny.2).
% Numpber of selacied variabies
nss = 2umiyy(1:08.2)). % Number of selecied stales only
It nf>ns
nos = sumiTiinss1:nl1)); % Will Indode all sslecled equations plus srades i
abserved
eise
nos=0;
end
noss = 07
fori=t:ns % VA demaT_LM
If tlyy(.2)==1) & (yy0,3)==1))
nos =nos 1] % Number of selected & obsarved
vadables
noss = nose s \; % Number of absanad sl
end
end

R=sparse{nos.nos)
Qesparse(nys.nys).
Jy=sparse{nys,nys);

I noss>0
Li=sparse(noss,.nss);
% Selection matrix for observed stales
end % flow through geyzers
ME=0.01speye{nys.nys), % intiaksa fler covanance matrix (sparse)
MO=sparse{nys,nys): % zers
Ke=sparse{mys.nos); % Sel up Katman gain malrix
us=zerot{nys, 1),

%% make lookup lables
fy=zoros(nys,1);
I=0:
tot j=1my
o yy.Z==1
I=ie1;
=i
omd
wrd
F=zaros{nls, 1}
i=0;
for j=1:nt
JIR e
=)
L0
end
and
% lookup table for yy parameters
luyy=zeros{ny.4,8).
llast=0r
for j=1:ny
Imyy )
if Hagt~=i
llast=i;
koounter=1;
alse
Icounter=icounters 12

end
Tuyyfiicounter, Juyy({,);
ond
% R Matax
[=0;
for j=1:ns -
L {MG.Z)"!}&MM“!))
o yyd.ape=0

C-4



Appendix C

Matlab Extended Kalman Filter Algorithm

RAN3(yyll4) yo_ea_lcon‘z;
wisa
R(1D= (yy{.4)"yo_e_lacter maxiyyd.&)-yyQ 5). minranga)/ 100342,
end
e
end
if nfens
Rilasing,
tor jrase1nd
i 1. 1)mst
=it
=M 3 % b wides
if k-=kklast
kklasi=ki;
icounters1;
olse
lcountar=icountare 1;
Lhk]
if 1.2)>0
R(,0= (I_em_factor (.2 max(uyyCu esunter, &)
uwtttmm 5),minrange) 100" Z;

au = (_erm_facterti.2))2:

zrv.!
end
end

T 0 MAnlre
I=0;
kifast=d;
for [=1ns
M . 1)==1
e,

kk={10.3); % Wokup woes
o h~sliclast
Iasteic;
icounlera1;
elie
ounter=icounters ¥;
end
i 1(,2)>0
Qi = {t_wrr, lmoc‘m:; max(iuyy(kk cdunter, 8
lyy(ek lcaunter, 5),minrange}/ 1002,
nise

Qili= (_err_lactor {20
end
e
end
W ny*n3
for jense1:ny
 yyllZ)==1
iy 3==1 % observed ?
factorsyo_err_factor;
(L]
fadtor=yu_err_factor,
nnd
i=jel;
T € Mt
i yyll.41<=0
Ci.)=(yy(.4) factory 2
#154

&
CL= lyy (.4 tfactormax(yy(L.0)-yy(5).minrange) 1005 2.
erid
end
end

end

T ek

If -anys

pntain ears ERROR #2222 Musl Seloct Same Equathons s States ! n'a),

halr;
e

s = zerosinte, 1);
y3 = zeros{nys. 1), ™ selecied vanabies
w3 = reroa(ngs, i), = selocted L observed vivialibes
03 = peros{nys-nss. 1) % partly oteorved, panly previens vakes

 selectod lunchon valses

end

i nows|
fo=r,

elsn
for [=1:nfs
Ar=0AHD)-100fM):
J‘!‘ﬂ Ml=avdyj.

rﬂ'iﬂ:r) Y@y oy
erd
if ne==(ivnys)
break; % boonk put of the n_avals loap
end
end
=10, % back 1o onginal posiion
e bomt 1% seleciion from ¢
for i=1:nfs
s =1G40);
end

= Fll gl yo voctor
for s 1y
# {yy(.3)-=3)
yoll=y(l.
wnd
end

% SOLVE

% Gel rosys and fiss] pad of ws
io=0;
for =} nsy
ys{=yQy(0).
i yyQy().2)==1
lo=igey;

wafoy=yoly())
Liflo, =1 % Sotection Matrir
end
nd
if nys>nss
for Ensse1nys
zo3{nas)*yoQy):
end
end

f REEVALUATE
AA = Jy(1ings, inss);
BB = Jy(1.ngs,nsse 1nys);
CC = Jy{nss+1.nfy,1:nss);,
D0 = Jy{nss+ 1:nfs nsse 1:nys),

El = «spoye(nys-nes.nys-nes)/Tau:
P = sparse(nys.nysk
P1:nas,1:n3s) = AAD
P{1:nss,nsse1:nys) = BE;
P{nase\nys.nase tnys) = Et

% lor singular Pute Sedes to find “esps
change=89;
expmPdl_ldnP=ar'speye(nys. nya):
changemal=di“speya(nys.nys},
Pdt=Par

n=1;
whilg change>tot
nepsl;

Pl e

Fan/n,

T makes 8 1-by-n vactor wih Ihe sum pf the columrs as i3 itnes
|_ldhPmeapmPal_ldn# e changemat,
end,

e How intograle usng mair expanonhil
Al=expmPdl_ldhvP P espeye{nys.nys).
BlecxpmPotl_ldvP,

% Observation Matrs
Cl=sparse(nos.fys).
it ppax=0
CH{1:noss,1inas)aly,
el

Ci{nosse1nos. 1:nss)=CC;
Ctingss+ 1:n0s, nas+ 1nys)j=D0;
end;

% Working Vedtnrs

Ft = fs{1:n33) - AA*ys[}n5s) » BB ys(nss+ } nys),

Gl = f5ingzs 1'nfs) - OC*y%{1.n8s) - DD*ys{nsse Uniys),
HL= rosTau,

B Acgmenied System
us(1:ns8) = FL;
us{nsses inys) = M

% Lood resd of Observatmn Vecton ws (fist part loaded alsowe)
for imnosss 1nes

ws(f=-Gi{-noss);
end

e HALMAN FILTER
nikint=nKinis 1,

nKcomp=nKcomps 1,
It {niCint>Kint)| (nKoompe=Kcamp)
nKint=1;
end
raKint=ay % re-ovaluale Kalman ¥ every ‘W sleps only
K= MeCrtiowCrNeCyY s R)
CMCR=Ct"MI'C's RC
CM=C1"M1,
K={CMCRICMY,
Mt = Al{speye(nys.nys) - K"COMUAr » G
MP=AE-SMM Ipanes ()]
MP= LMPY, " chop off low posdves
MN=MEe SMM 3 pones (M)
MN=min{MN.MO), % chop off smal segatives
MraMPe MM,
end
= Aclunlly apetato (e fec

ys = Al'ys + Bl'us » K~(ws-Clys);

% clipping
for j=1inys
It ys(@<yyly(D.5)
ys@=yyy @50 % low cip
yimfag(y(.23=
yhmflag(y (@, 3=y (y(.5)
e
W ys(Dryy(y(@.8)
yaEyyly@.6): % tugh clip
ylimflag(y(D.2)=2,
urllrnﬂaul @ H=rydy®.6).
ol
ylimflag{ly([.2y=0;
ylimflag(y(D,3)=-9%,
end
end
end
em2=0;
errz_dertenl,
ntotvar=g;
nioiderhv=0;
=0;
for j=1:n33
i Mh'(ﬂ-l}“'

Wﬂ = a2 s {(ys(@-yoQy(Dyo_em_acton VRO,
% observed 1tates
ntatvar=ntotvisre 1
ond
end
for frnas+f.ays

* JoagariFe



Appendix C Matlab Extended Kalman Filter Algorithm

o yyGy() 3y==t
en2 = el o ((ys([D-yoQy i tyo_em_hactory* 20 . Qr
= erfofs in observed PlL(R().FOIP(), 7 () FOZP(). 9 1p().FOIR() B,
ntatvar=niotvars {; Tp(:),FO4P(; ’\f"ip( ).FOSPL), e 1pl) FI0P(), ',
and tp() FUPC)L E pE)LF 2P0 g () FI3P)L
end 1pCIF 1P Y Ip()FISPL e )
=noss: legend(FOY, FOZ FOX, FO4,FOS FI0,FIT, P12, F 13, P14 FI5),
=0 axis(0 tp{iplol) 0 &)
far =inf
if je=ns fgure(4);
WHO =81 % selecied equation / siae PRl )L APKIPL ) TP, PP, g 100 ). OPKAP (). D)
li=ite 1; legendrdPK 1 dPKE dPKAY:
errz2_derlv @ a2_deriv + (™_err_{acton DO, *: deimatiaes axis([0 p(iplot) 0 12]);
rotderhventatderive £
end figure(s):
elsa ot (tp{).aPCVOIRP(). T 1p() dPCVOIZP (). T (). dPCVOIP(LTY,
WHL A=t % sadecied equaten (). APCYOAP (] Y (L EPCVOSP). ¢ Jp(LOPCVIORL), T,
j=iey; 1p().APCVIIP(), i), GPCVIZR(). 0 ).
er? = e = (ID_em_factor 2R0.0: legend(dPCY01,'GPCVOZ, aPCVIT, aPCYoL aPCVOS APCVID 'gPCV1 1 aPCVI3Y
% coanpensate lor the foctar in RA nods {10 tpdiplel) 0 V200
nlolvarsmgtyars 1;
e Ture(s);
end PRt RpCLPO4PL ) T IRCLPIOPL ), g ipl ). PIZP (L) T
end tp{) P I9P(, 1), CIp() PIOP(. 1), ')
Kgend{PI4 P10, PIZ P19 PI0Y,
wi_ob_er = sgrifer2iniotvar). %5 10 Sew how wel 2 ix doing (irayCo shoukl axis{{0 tpgiplon 0 12]:
e (mijofvar-1} )
wi_derru_er = di*sqri(err2_dervintotderiy), s 10 4ee howy uninlesdy e process figure(T),
snenikd bo campared with gotual PlalpGyaHIPE ) T pl).aHRPC 1.0 Ip().QHIRAP 1)),
QM1 'qHT" 'gHIHEY.
axis{10 \pfipiot) -0.8 80D;

% load bk 19 full wecior
for l=1inys figure(8):
yly(r=ysi plOl(pd ) X0 P, T Ap()X02P (). 5 Ip( ). X03PL), T -
ond 1p0) X04P(), Y Ip()XO5P(), S tp(). X 10P (), ',
1CIXNPEY R ap().X13P0) e )
% stare lor plolting legend( X0, X0, X0, X0L, X5, X 10, X1 1, K13
It -uastplot)>= (0.9 diplol) axis(]0 tp(iplat) 0 1))

iplat=iplate1;

1p(iplof}=1-dt; % NOTE these are one Ztep oul, Ihus & subliaced fqura{s);

Uastpiol = 1. piot(p{)wid_obs_em(). r ip()wid_deriv_erm{). B}
nP(iplot)=niy; legend{wid-obha-en” wit-Sermeerr);
h12P(iplety=h12:

NMAP{plal=h 1 3-h03BOT: it rmesecmmnecanaree: T0 BE SET BY USER ABOWE ——eisimererrestarmrmrreees

R18P(iplat}=h15-h0sB0OT.

TUP(iploly=T11;

T12P(iplal)j=T {2

T1IP(ipiot)=T13;

T14P(ipiot}=T14,

T18P(iplot)uT15;

FOIP(ipict)=Fa1;

FOZP(iplot)=Fa2:

FO3P(iplot)=F O3

FC4P{iplal)=F04;

FOSP(iplot)=Fas;

F10P(iplaysF 10,

Fi{P(plofi=F11;

F12P(iplotyeF 12

F13P(iplot)=F13;

F14P(iplol)=F 14;

F15P(iplaly=F 15:

dPKAP(iplol)=dPK1;

PP (iplol) »dPR2;

APKAP (iplol)=dPid.

aPCVO1P(iplat}=aPCVO1;

APCVUZP(iplol)=dPTVO2!

EPCVOIP(iplel)=dPCWDS;

GPCVO4P(iplot=dPTV04;

APCVOSP (iplat)=dPCVE5,

dPCVIOP(iplot)=dPCV10;

dPCVI 1P (iploty=dPCV1 T,

dPCV13P (lplol}=dPCV1d:

PO4P(iploly=PO4;

P10P{iplol)=P10;

P12Piptol)=P12:

PABP(iploty=P 185,

PP (iploty=P20;

TO2P(iplot)=T02;

TO4P(Iplal)=Ta4:

T18P(iplal)=T19;

T20P(plal)=T20;

TP (plol)=T30;

T3 P(iplol)=T31;

qH1P{iploty=qH1;

QH2P(iploty=qH2;

QHIH4P(Ipiot)sqH3H4A!

XO1P(plol=X01;

XO2P (iploty=X02:

X0IP(plal=X0):

XOAP(iplot)=X04:

XO5P(iplen=X05:

X10P (iplaty=X10:

X11P{iplat)=x11;

X13P(ipiol)=X13;

wid_oba_erm(iplol)=wi_ob_er,

wid_desdv_erm(iploti=wi_deriv_sr,

end

nd

= weteeeTO BE SET BY USER BELOW———

5 Do grapns

figure(1};

PletQpCLA T IPE) TR NIZPEL G AU LM IPE)L Y LR ISP0). YY)
legend (™1 1P, N1ZF N3P hisP),

ads {0 tp(iplat) 0 2.57);

Bguro(2),
PRUtp(:).TA2P ). ' 1p(), TOLP (). ' Ip(:). THIP()Y,
(). TA2P{), m dpl), T3P0, g p(L T14P (), &' e
o) T15P(). D Ap(). TI9PC) " 1p0). T2OP() g,
1pC)TI0PE) B Ip() TIIPE), Y )
legend(TOZ. TO4, TIV, TIZ. T3 T4 TI15,T1g, 720,730, TN Y:
ods({0 tpfiplot) 15 85
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Appendiz D

Pump-tank and
Training Plant Step Responses

True and mismatched unit step responses, obtained using experimental data from the Pump-tank
system (Appendix D.1) and the 2-input / 2-output sub-systemn of the Training Plant (Appendix
D.2) are provided. These step responses were used for off-line simulation and real rime

applications in Chapters 6 and 7 respectively.

Page
D.1 Pump-tank step responses D-2
D.2 2-input / 2-output subsystem of the Training Plant step responses D-3



Appendix D

Pump-tank and Training Plant step responses

Appendix D.1 Dynamic martrix coefficients of the true and mismatched process models for the

2-input / 2-output Pump-tank system (M = 10)

True model Mismatched model
Variables Vi V2 Vi V2
1.1 -0.186 -0.036 -0.372 -0.036
-0.317 -0.059 -0.634 -0.059
-0.416 -0.074 -0.832 -0.074
-0.470 -0.081 -0.940 -0.081
-0.502 -0.086 -1.004 -0.086
-0.516 -0.088 -1.032 -0.088
-0.523 -0.090 -1.046 -0.090
-0.525 -0.092 -1.050 -0.092
-0526 -0.092 -1.052 -0.092
-0.526 -0.092 -1.052 -0.092
L2 -0.026 0.157 -0.026 0.316
-0.044 0.256 -0.044 0.532
-0.056 0.366 -0.056 0.732
-0.067 0.450 -0.067 0.900
-0.078 0.519 -0.078 1.040
-0.086 0.569 -0.086 1.140
-0.093 0.614 -0.093 1.223
-0.098 0.660 -0.098 1.320
-0.101 0.694 -0.101 1.388
-0.10] 0.718 -0.10) 1.436

The diagonal responses of the mismatched process model are both twice their correct

magnitudes.



Appendix D Pump-tank and Training Plant step responses

Appendix D.2 Dynamic matrix coefficients of the true and mismatched process models for the

2 inputs / 2 outputs system from the Plant Simulator (M = 5)

True model Mismatched model
Variables Cvol Cvo3 CVvol CVv03
0.131 0.003 0.261 0.003
0.261] 0.006 0.523 0.006
L1 0.392 0.009 0.784 0.009
0.523 0.012 1.046 0.012
0.654 0.015 1.307 0.015
-0.127 -0.073 -0.127 -0.036
-0.254 -0.145 -0.254 -0.073
L2 -0.382 -0.218 -0.382 -0.109
-0.509 -0.290 -0.509 -0.145
-0.636 -0.363 -0.636 -0.182

The diagonal responses of the mismatched process model are, the first one 2 times and the

second Y of their correct magnitudes.



Appendiz E

Extracts of the Integrating Adaptive Dynamic
Matrix Control Algorithm from the SCADA
System

The Integrating Adaptive Dynamic Matrix Control technique, developed in the present work,
was impiemented in the existing Linear Dynamic Matrix Control (LDMC) algorithm developed
by Mulholand and Prosser [1997), within a flexible SCADA system at the School of Chemical
Engineering. The contributions, updates and programming expertise of Professor Mulholland
must be fully acknowledged at this point. This program would never have been completed

without his valuable input.

Page
E.l Extracts of DMCObject.h E-2
Original authors : T. Brazier & M. Karodia
E.2 Extracts from DMCStream.cpp E-3

Original authors : T. Brazier & M. Karodia



Appendix E Extracts of the Integrating ADMC Algorithm from the SCADA System

E.1 DMCObject

sifndel _DMCOBjact_h_
ttafing _DMCOtiect_t_

I COMCObjecth ; headar file
o

& 20010097 Rev, 28; CASE 1 (same as grevious oda)

o prototypes

class Chatrbe

clazs CVector,

class ClinearPrograrm,

I
1 COMCObject dass.

#inciude "IOSUeam, h”
EBinclude "DMCPlotWnd b
#include “vectar h”

ginclude “IODeviceModel h™
Einclude "math.h®

class COMCOtject | pubiic CScadObjoct
{
DECLARE_SERIAL [COMCOBject)

friend class COIGOMCObjed;
friend class COMCStream; '
friend class CIODeviceModel,

 privale member vasables
private;
COMCPIalWnd m_PlotWind.
CMatrix* m_pOynhatrbc
CMairoc m_pDynMatrix_Set.
CMalnz" m_pOpenLocpMatrie
CMalix” m_pOfisattaln;
CMalrix® m_gOpenLoophalric_Set;
CMatrix" m_pOifsetMatriz_Sey
Chintrix® m_phdeighting bMalx;
Chlalia® m_phiove Suphatric,
CMatrix® m_pleastSqrinvMatroc
CMatrix™ m_pLower TriiDMatrx,
Cvedor m_pPasiOutpulChanges,
OWORD  m_dwPrevTime, i Last update pme DMC
OWORD  m_twPrevTimeAdapt: H last update time Adapler

# the dynamic matric
I Hore for et dynamic malnx

doubie m_Timelnterval, # uprdate interval
DWORD m_cwTimeTillUpdale: iessSD0008Y S

# timg 18 next update

C3ling m_cSlepResponseFile;  / file containing stop respoase
measuroments

Int m_{SteadyStateHorizan, I M

int m_iNumberControlMowes. i/ N

inl m_iOptimisatioaHorizon; # P

(] INuminputs;

Irit iNumQulputs,

BOOL m_blegToFile,  only used for serialisalion and editing
CObAmay  m_OMCSireams:

CStringAmray m, ulw&:mNm il names of inpul streams
CObdsray m I p to input

COWordAmay m I'S&Lpnlrlb. # cantrol-loop seipoints

COWordAmay m_lnpulMins; 1 lewer limit on input
COWordArray  m_finpulMaxs; # upper lim® on lnpul
CDWordAray m_fMoveSuppressionFactors; Jf lambda values

i namaes of input stresms

CObAmay m 4 ¥ pointers o
COWordduray m_MaxChanges; I madmum chango allowed eg, vaive
COWordAmay m_fOutputhiing: Hawer limit on oulput

COWardArmray  m_{OulputMincs;
COWordAmray m_fOutputiVeights;
cOWordAmay m_tAdaptyViModEm,
COWordAmay m_tAdaptiWaMeasErm;
# errors

COWorddray m_tAdapi¥aCurve, # welghts adaplation curves.
COoWordAamay — m_{TimoFactors; # lactors on Urajeciory points
COWardArray  m_fTimeFactorPasit o o factor p

il fectortes

A upper fimit on oulput
If weights an output var.
# weights adaptation model errors.
1 weights adaptation measurement

on {ra

it for Linear Prog 9
CLinearProgram® m_plLProg;
CVecior m_pResull,
C\Vector m_pObjoctiveFn;
CVector* m_pDallaMuQoO!
CWoclor m_pPresemOulput,
E m_hThread;

m_blLPThreadFinished:,

m_bLPThreadRunning,

m_bignerelPThreadResult; # for changes whits UP thread Is

hraad

BOOL
BOOL
BOOL

I execuling
Int m_ILPErer,

N vadables for Adapinve OMC - IS
CMatrix® m_pBlad,

CMatrx* m_pS3Ciad,

CMatrx* m_pBOL_INTEG;
CMatrx" m_pB0ad_orig;
CMa=" m_pBOLad_orig:
CMatrix® m_pBOL_INTEG orig:
CVector* m_gD Cutput:
CVeclor* m_pead,;

CVactor m_pPead, # Present
Cvector m_pLead: 4 Last
CVector” m_p&Poad, Jf Delta (change) - smoothed
CVector* m_pOx0ad,;

CVector* m_ppad,

CVediar” m_ppad_oiig:

CMatrix* m_pGad,

CMatrix" m_pGad\,

CMalix® m_gGad2;
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CMatnx® en_pGadld:
CMaiix* m_pQad;
CMatrbx* m_pRad;
CMatrix® m_plad,
CMalrix® m_phisd;
CMatrix® rm_phad:
CMatrix" m_pAsd,
CMatrix® m_pSad,
CVecier m_ppadw;
CVector m_ppasw_ory:
CMalrb® m_pGadv,
CMalrtx® m_pQacw;
Chairix® m_piacs:,
CMatix® m_pMadw;
CMalrix® m_pKadw.
CMalnx" m_pAacdw,
CMalris® m_pBadw;
Chlairtx® m_pFac,
ChMatrix® m_pxStackad,
BOOL m_bRestariad;

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

m_bEnableAdagt,
m_bUseAdapt;
quMapl la_u,

.E.
i

i

- Int:
m_bGmdFback_lnt;

double m_{GradSmcolh_int,

double m_{Qad:

double m ULBM..

CVector® m_pPreviousQuiput;

CVector m_pPrevicusOutputChange,
CVector” m_pPreviousinput

CMatrix® m_pTest:

CVector® AccumulatadMoveINTEGCORR,
CVecior AccumulatedMovelNTEGCORRA,

800l

m_bSuppressiNTEGad,

1 pubiis member vanabies

public
CString
Int
int
im
doubde

eStepResponseFile; Jf Vanabies for I0DewnceModel
nl,
nd;
nS;

I peivale member funciona

privale:

vold SetName (CSiring esMName),
void CalcDMCParameters (vald);

woid SelTh

Interval {double fMimatnteryal)

{m_Mimelntecval = Mimeinierval)
void SetAdaplerD (doutie 1Qad)
(m_fQad = tQad)
void SetAdaptecAB (double ABad)
(m_fABad = IABad,)

woid

ponseFile (CSiing R File)

pF
{m_cStepResp File = pRep

r File:}

voad
woid Seth

yStateHoazon (ot

farizon).

Controid ind &

Cantroiloves)
h

void SelOp

Horizon (in iOp forizon),

vold SMLmIf\g {BOCOL M.ogYoFde}.
void SelinputStreamNames {const CStingArays csinpulSireamNames);
ISeipoints);

void SotSelpoints (const COWordArrays
voiu" tinpuihng (const COWY ATy
i {const CI Astayd finpuiMaxs),

mn.‘l-

actors {const COW

Faclors):

void SetCulputStreamNames (const CSiringAmays nQulpmSImarnNames)
void SeiMaxCnanges {const COWordArays faxChanges),
void Se10ulputMing (const COWordAmay& fOutputMins);

cons! COWordAmay& (AdaplyAModEm,
const COWomAmays fAdapiWiCurve,
& tAdaptMMeasEm).

const
vola SelTimeFactors (cons! cmmn,a MmeFadon):

void StreamiWrite (nt lindex. double Malue),
CString StreamGetVal (ind lindex).

void LinearProgramThread (void),
static DVWORD __stdcall ThreadFunclion (vosd” pThis)
{((COMCOLjectpThisk>LinearProgram Thread () relurn 0:)

#f constructor and destrucior

public
COMCObject ).
COMCObject O:

ff public member functions

public:

void Sertalize {CArchived ary;

void SetAcch Int (BODL bAcchiaves_int)
void SetGradFback_int (BOOL bGradFback_in)
void It (double ¥
(R28SDOCOB1T
OWORD WhalisTime Tillpdate (void) {return m_gwTimeTillpdate:)
BOOL IsEnatied {void) (retum m_bEnabled,)
liwss
).
il



Appendix E
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E.2 DMCSiream

i DMCSIream.cpp : imgtemantation File
"

#include "stdafx h*
#include <math.h>
#include “resource
Finclude "DMCObject n°

#include "DMCStream.h”
#include "Matrix.h*

#include “LinearProgram h*
Sinclude I0DeviceModel h°
Einclude “Converter h*
ginclude “sidio k"

IMPLEMENT_SERIAL (COMCObjed, CSeadOtjed, 1)
COMCObject-COMCObect

@_pCrynhtatroe = NULL,
m_pOrynMatrix_Sel = NULL:
m_pOpenLoophalrie s NULL,
m_pOffselMatrix = NULL,
m_pOpenLoophatrix_Set = NULL:
m_pOftsetMatrio_Set = NULL:

m_pleastSgrinvilatie s NULL:
m_pLowerTrilDMatrix = NULL:
m_pPastOutputChanges = NULL;

NegRS0D000815
m_dwPrevTime = GelTickCount (),
m_cwTimeTdlUpdate s GetTickCounlt(),
imen

H DMC_IGadapt
rn_pGOad-NU‘LL.
=MULL:
m_paq. INTEG = NULL;
m_pBJad_orig = NULL,
m_pBOLad_orig = NULL,
m_pBOL_INTEG _orlg = NULL,
m_pead = NULL |
m_pPead = NULL |
m_plead = NULL ;
m_pSPead = NULL ;
m_pDx0ad = NULL ,
m_ppad = NULL ;
m_ppad_orig = NULL !
m_pGad = NULL :
m_pGad] = NULL ;
m_pGad2 = NULL :

m_pPreviousOutput = NULL:
m_wm«mmahmue =NULL:

OulputChang = NULL:
mmm = NULL:
m_pTest = NULL ;
Amdalem'\:TNTEGCORR = NULL:

INTEGCORRad = NULL:
rn‘__b‘.‘]umnsslNTEGld = FALSE; N ema MMC01002 Yo Suppress adapation in
Imegraling Systerns

m_dwirevTime = GelTickCoum (),
m_dwPrevTimeAdapt = GelTickCounl ),

#indialise DMC thread flags
Ti

m cSIwResponstFu = TR M mmaau as gional nay et yat
SellODeviceModelData O;

/1 Global Inttalisations for Adsptive DMC - 1G.
m_bRestarad = TRUE:

m_LEnableAdapt = FALSE:

m_blseAdapt = FALSE:

m_bUseAdapt_last = FALSE,
m_bRegularizeAdapl = FALSE:
m_bExiSigpe_jnt = TRUE,
m_bAccMoves_lnl = TRUE:
m_bOraaFback_lnl = TRUE;
m_{GradSmaoth_Int w 0.2;

m_10ad = 1.0; # Q dagonal value for model confidence
m_{ABad = {.0; i diagonal valua for Offset model confidence
}
COMCObject ~COMCOBject O
{I' (m_pDy delote m_pl:

# (m_pDynMatrix_Set) delete m_pDynbdaiix_Sof,

it (m_pOpenLoopMatrix) delete m_pOpenLoopMsirix:

H [m_pOfsetMatnx) delote m_pOfse(Malrix,
(m_pOpenLocpMalrte_Set) delete m_gQpenLoopMatrix_Set.

I {rn_pCitsetMatrix_Sel) delets m_pOffsethiatrix_Set:

# (m_phveightingMatrix) delete m_pvieightingMalrog

I (m_pMove SupMatrix) delele m_phtoveSupMatric:

it (m_pLeastSq ) delete m_pli

Y {m_pLowerTrIDMatrx) delets m_p«.mnmwm

W (m_pPastOutputChanges) ane m_pPasiOulputChanges:

if {m_pBOL_INTEG) delete m _pBOl.._IH‘I‘EG.
i (m_pB0ad_orig) delete m_pBOad_ong.

It (m_pBOLad_orig) delete m _pBOLa!d

I (m_pBOL_INTEG_orig) delete m_pBOL JNTEG _org!
if (m_pead) delele m_pead;

if (m_pPead) delets m_pPead;

i {m_plLead] delete m_plLead.

it (m_pSPead) delete m_pSPead;

#f (m_pDx0ad) delete m_pDxdad,

# (m_ppad) delete m_ppad,

M {m_ppad_orig) delsta m_ppad_orig,

it (m_pGad) delete m_pGad,

if (m_pGad1) delote m_pGad1;

if (m_plad) delete m_plad;
if {m_pQod) delele m_pQaa;
if (m_pMad) delete m_phlad;
it {m_ppacw) defele m_ppadw,
i (M_ppadw_orig) delels m_ppadw_ong:
o {m_pGadw) delele m_pGadw,
It {m_piadw) delete m_pKadw:
it {(m_pladw) delele m_pladw;
if {m_pQadw) delete m_pOadw,
H (m_pMadw) delele m_pMach:
o (m_pFadw) delete m_pFadw,
i {m_pPreviousOulput) delete m_pPreviousOutput:
il {m_pPrevicusCulputChange) delete m_pPreviousCutpulChange,
It {m_pOoublePastQutputChangesan) delelae m_pOoubloPastOuiputChangesad
It {m_pPrevieusingut) delele m_pPreviousinput;
. i {m_pTes!) delste m_pTest
if {AccumulatedMavelNTEGCORR) delele AzcumulaledMovelNTEGCORR,
f {AccumutatedMovelNTEGCORRA) delete AccumulaledMovelNTEGCORR

A 11LP thread is running, wait (or A 10 st2p and delete lemp vadables
it {m_bLPThreadRunning)

{
for (;im_bLPThreadFinished.),
delele m_plProg.
delele m_pResull;
delele m_pObjectiveFn,
delete m_pDeltabiuQdy,
dalate m_pPresentOutput:

)
void COMCObject-Serlalize (CArchived an
(

CScadObject:Seralize (ar);

It (ar.135torng ()

{

ar << m_{Timelnterval,
ar <= m_jSteadySiatoHorzon;
ar << m_iNumberControiMoves,
ar << m_iCptimisationHorizon:
Bf << m_blogToFile,
ar << m_cSiepResponseFie;
ar << m_IQad;
ur << m_[ABaa;
ar << m_bEnabieAdapl,
ar << m_bUseAdapl;
ur << m_oRegularzeadapt;
at << m_bExSlope_int.
ar << m_bAccMoves_Iny,
ar << m_bGadFback_int;
af << m_{GradSmosath_inl:
)
eizn
{
ar »>» m_{Timelntarsal;
ar »> m_StaadyStaleHonzon,
ar >> m_iNumberControiMaves:
&1 33> m_iCplimisationHorizon,
ot => m_bLogToFie;
ar>» m_cSlepResponseFile;
ar>> m_load:
ot >> m_tABad,
ar >» m_bEnableAdapt:
ar>> m_bliseAdapt;
ar>> m_pRegularizeAdapt,
ar >> m_bExSlope_int;
ar >> m_bAccMoves_Int;
ar >5 mn_bGradFback_lnt;
ar >> m_GradSmaooth_int;

)
o bu‘hn uruhnim for CArray denved tasses

& (ar),
m mwu Serialize (ar),
m_finputMins. Serialize {ar);
m_fNnputMaxs. Seralize (ar);
) e e i

m_MtaxChanges. Seriakze (as);

m_Outputhing Seralize {ar)

m_fOutputhaxs. Senakze (ar);
m_MMaveSuppressionFaclors Serakze (ar);
m_tOutputweights. Serlallze (an;
m_{TimeFactors. Serlalizo (ar); R
m_tAdapiaiMedErmr Senalize {ar).
m_IAdaptWiMeasEm Sertalize {ar);
m_{AdaplWiCurve Serdalize (ar):
m_IMimeFadtorPoshions Senalize {ar).

{ar),

(34
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woid COMCODject: Inlaise (CScadDot" pScadDoc)
(
CScadOpjact:Indialise (pSeadCos):

# resize input podnier and DMC stream amays
m_pinpul Sireams. SetSixe (m_csinpuiStreamiames. GetSize (), 10),
m_DMCStreams SetSize (m_csinpulStreamNames. GelSize ), 10);

i sel pointers ta input streams (using names array to get them)
for nt | = 0; | < m_cslnpuiStreamilames. GetSize (); i=+)

ter (int | = &, | « m_pScadDoc->m_DocObjectAmay GetSize (1. pre)
(
clost G = (C10 ym_pScadfoc->m_DocObjectamraylj],
i (pIOSiream->GetName () == m_csinpuiStreamNames{)
m_pinputSireams(i] = plOSiream;
)
}

M cannect 10 new input sireams and fndicreats DME streame
for (i = 0; | < m_pinputStreams. GotSize () iov)

{
It (m_tEnabled)
(wio “m_pinp

{in->Canneet (m_csN
CSinng caTemp = m_t ! St
Jf search for DMC stroam
int {index = - 12
for (int | = O; | < m_pScadDoc->»m_DocObjactArray GetSize (); Jos)
If {{{CScadObject*)m_pScadDoc->m_DocOtjectAmay(j)->GetName ) == csTemp)
lindex = |

s*.em

it found, setm_pDMCOG]ea In DMC stream, otheswiso czente
if (index 1= -1)

{
m_DMCStreamafi] = m_pScadDoc->m_DocObjectArmaylilndex).
({{COMCStreamT)m_DMCSireamsfil)->SetOMCObject (this, i)

]

elsa

t
m_DMCStreamns(i] = new COMCSiream (ihis, &csTemp, i),
m_pScadDoc->m_DooCbjectAmay. Add (m_DMCStreams[il):
1
# set logaing
{COMCSream ym_DMCStreams(ii->Sellogging (m_blLogToFde).
}

/i tesize oulput poinler array
m_pl SolSize (m_cal

GotSize (). 10);

ﬂmmeﬂlommm:(ﬁmnmmﬂteqﬂ\m
for (i = 0; | € m_csOulp 1han [ bee)

(
for (int | = 0: ] < m_pScadBoc->m_DocObjectiuray.GelSize O 4es)

ClOStream” mosx-mm (C]OStmm?nﬁm:m DocObjectAsmayll
A

# {pie 0 == m_csOn
m_poulﬂ.ﬁs!ream[ﬂ ptOStream;

)
/f connect 10 new oulpul Streams
i {m_bEnabied)
far (i=0; I‘m_p&nm&!mm GelSize (), led)
[{iadl0] yen_pOulp fif->Connect (m_csk
N calc DMC paramelers

CaicDMCParamolers (),
)

wvoid COMCORject - SelName (C5inng csNamae)
(
¥ eheck for change
I (caNama == m_caName)
retum;

I 5ol name in conlroliod streams
it {m_bEnabied)

(
far (inl | = 0; ) ¢ m_pinputSireams GetSize (: 12 +)

{
((CHOStream m_pinputStreams{i}->DisConnect (m_csName);
((ClOoStream™ym_pinputStreams{il->Connect (csName);

1
far (i = 0; 1 < m_pOulputStreams.GetSize (1. ke s)
(

(I Jrm_pOhul IM->DisConnedct {m_csName):
[(Crb&m?n_p&ﬁpnﬂ&remﬂ]}e:onmu (csName),
}
)

i change names of DMC streams

for (int | = 0; | < m_DMCStreams GelSize §; is+)

{
CSting csTemp = ¢35t s e m_csl S5 MNamox([i].
((COMCSireamn )m_DMCStreams{i[->SetName (csTemp),

3

# call base class
CScadObject:SeiName (cslwna),
)

void COMCODjed ¥ {orizon (il iSteady Horizen)
¢
it gm_J ¥ farizen 1= {arizon)
{
m_| jortzon = i51 Horron;
mnnmnad-‘mua I Force | i) of Adaplive DME <16
ColcDMCParametars 0
)
)
mrnum‘.i." rerC (it Iy :
t
it {m_iNumberC I8 1= INumberControlM )

E4

1
fr_Nurm - bt
CalcODMCParameters (),
!
)

void COMCODjea-Set0

{anzon (int 10p

{onzon)
{
I [m_iCplimisatienHarizon 1= OptimbianonHordzon)

m_iOptmisationHodzon = iOpbmaaticnHarizron;
CalcDMCParameters (:
)
}

I crudo bul effective
void COMCObjece-SetinpuiStreamNames {const CStingAmayd csinpuiStreamMNames)
{

" to see if any changes have

It (m_csinputSireamNames.GelSize () == csinputSlreamNames GelSizes ()

{
BOCL bidentical = TRUE,
for (int i = 0, | < m_cslnpuiStreamMames. GetSizo (] l--]
if (m_esinp James]] 1= csl {
bldentical = FALSE:

il # no changes, exit {our job i3 done)

if (midentical)
return;
}
ni nurnbor of inpul has ged, recsic
if {m_cslnp Size § 1= csinp Getsze 0)

{
m_bRestartad = TRUE. / Force complete re-initiafisation of Adaptive DMC - IG
CalcDMCParameters (;

}
1o inl(m O, | € m_pinpuiStiesms. GetSiza {, tes)

{
Ji disconnect from all inputs and detete all DMC stroams
# {(m_bEnabled)

((CICSIream=im_pinputStreams{ili->DisConnect (m_caName),

# find OMC siream lo CScadDaa and remove 1, (hen detele siream

Int lindex = -1:

fet (ird | = 0; | < m_pScadDosc->m_DocObiecthuray.GetSize (). [+)
if (m_pSeadDoc->m_DecObjectdrray(l] == m_DMCStreamsii])

ndox = |;
ASSERT (iindex = -1}, # should have found it
m_pScadDoe->m,

| y Remavel (index);
delete (COMCStreamm_DMCStreamsii].
)

# resize input name, poimer and DMC sleeam arrays
m_, p 15 SelSize (csinp .Ga1Size (), 10)

5 i SetSire (3 es.GelSize (. 101
ﬂ'l _DMCStreams. SetSize tmnp‘ﬂu!mm GeiSize 0. 10}

I copy RaMes across
Jor {i = 0; | < csinputStreamNames.GetSaze (. *+)
o o 1

it st pointers 10 inpul streams (using names array 1o get them)
tor (i = 0; | < m_esinpuiStreamNames.GetSize [ i*+)

{
for (int | = 0; j < m_pScadDoc-»m_DecOtfectAmay. GetSize (); j+=)
{

ClOSiream” pOSIream = (CIOSieam ym_pScadDoc>m,_DocOrjectimay[f:
it (p10 Name ( == m_
m_pinpuiStreams[i] = plOStream,
}
}

I connect 1o Aew input sireams and oreale OMC streams
for (i = 0, | < m_pinpuiStreams. GeiSire () is4)
{

if {m_bEnabled)
({CIOStream™)m_p

il Connedt {m_ ).

CString caTemp = m_csh e m_ i 13
m_DMCSireams{l] » new COMCStieam ﬁm &ﬁT«np)
m_pScadDec->m_DocObisctAmay Add (m_DMCStreamafill
}
)

woid COMCObject:SeiLogging (BOOL bLogToFile)

{
# set logging for each of the DMC streams
for (inLl = 0, i <m_DMCStreams.GatSize () le 4}
({COMCStream®)m_DMC Streams]i->SetLogging (OLegTefile):

& make & record of value for seriaisation snd editing
m_blogToFie = tLogToFie:
3

void COMCObjec:SelSelpaints (consl COWenlAmays ISetpoints)
(d sel sire
m_fGelpoinis. SetSize (ISetpoints GetSue 0. 101
o sl values
for (int i = 0: | < fSetpoints GetSize (). i»+)
m_fSetpaints(i] = ISefpoinis{i):
}

void COMCObBled SeflnputMing (oonst COWordArnay4 finpuiMians)
{

A ol size

m_fnputding SelSize (nputMine GelSize 0. 10).

¥ 3ot values

tor {int | = 0; | < NinpuiMins GelSlze (:ls+)

m_finpulMins{i] = Anputhinsfi]:

}

void COMCOBject:SetinputMaxs (const COVvordAmays MMprAMExS)
{

i s sz
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m_fnputMaxs SetSire (NoputMaocs. GetSize . 10}
if 521 values
fas {int | = 0, 1 < MnputMacs GetSize ) kv
m_{inpulMassll] = Anputhancs]i);
)

wos COMCODsect SeiMove SuppressionFactors (const COWordAmays

MoveSuppressionFactors)

{

I set size

m_MMoveSuppressionFaciors SetSize (ThMoveSupp Factors G 0. 199
7 52l values

for (int | = 0, i < M F 0: 1+4)

m MovoSupms.loanws m = MoveSuppressionFactors (1),

i recalculate DMC params
CalcDMCPaameters (.
}

void COMCOTent. SelOulpulWeights {  cons! COWordAmay& RulputWeights,
consl Cmdﬁnw.l [AdaptAAMOdE T,
const £ (Adapthac
cans! COWordAmay& MMMN&EH‘)

(
// set wc

ights. SeiSize (tO Mk GeotSize 0. 10}
m MWMH SelSize {fAdapPMModEr GetSize (. 10).
SelSize "‘ 0 m
m_ﬂdnpl\\'lt:unre SelSize ﬂ'anwCuM G'u:‘lshe 0. 100):
4 sel volues
far (int | ® 0, | < {OutpulWeights GetSae (; les)
m_tOutpulieights [i] = ICutputWeights il

for (i = 0; 1 € tAdaplWIModEa.GalSize (); Be)
m_{AdaptiktodEr [i] = tAdapiWiModEr i

for (i » 0, i < {AdaptWiMessErm. GetSize 0o iee)
m_tAdaptiMeasErm [i] = (AdapfiMeasEm [i],

for (i = Q: | < IAdapWiCurve.GetSize (); ko e)
m_{AdaptMCurve [i] = tAdapftiCurve [i.

# recalculate DMC params

CalcOMCParametars () .
)
void COMEObea - SetTimeFactors (const COVWordAmays TimeF aciors)
{

# set size
m_fTimeFaciors. SetSize (MimeFactors GetSize (0, 10):
m_(TimeFacerPositions SetSize (TimeFactors GetSaee (), 10),
# sel values
for (int | = 0; | < fMimeFactors. GetSae (). I=2)

m_fTimeFacors [i] = MimeFactors [i};

i recalculate OMC params
CakDMCParamelers (.

# crude but effective
wvoid COMCObject:SelOr
csOulputSireamMames)
{
7 compare to see if any chnngu nave osourmid
it (m_cs0 0 == esOuIputSt " Getsize ()
(
BOOL bidentical = TRUE:;
for(inti=0.i<m nOu!m.aS‘ltumNam GetSize 0 lasy
It {m_csOutp Namesli} {= 2sOulp: amas]il)
bidantical = FALSE.

(const CSAngArmyS

11 i no changes, ext (cur job is done)
it (bldentical)
retum,
)

# i number of output has recalc
it (m_csOulputSireamNames. GelSize § 1= uomsmmum GeSize )
{
m_bRestartad = TRUE: ¥ Force compl initiatisation of Adaptls
CalcDMCFarametors ().
)

DMC -10

¢ discunmnect from all oulputs
if {m_bEnatied)
for (ind | = ¢ | < m_pOutputSireams. GetSize (; i)
((CloSream m_pOutputSireams{i-+DisConnect {m_csName).

i m.{xu oulput name and polnter arrays
BelSize (c3On B GetSize 0, 10).
SetSize (csOutp GotSt

mn-u-

0. 105

i copy names across
for (inl | = ©; | < csOuiputSireamMames GelSizo 0' Iu)
m_esOutpt exfi] = esCup:

i sel pointers 1o outpul Streams (usng names armay to gel them)
tor (i = 0 | < m_csOutpuiStreamNames GetSize (. ise)

{
far (int | = 0, ] « m_pScadDoc-»m_0ocOtjectimay GelSize (i |=+)
{
CIOStream” piQSiream = {C10Stream )m_pScadDoc-»m_DocObjectAmay(il

I (OS5 0 == m_csO: aames])
rn_rM" P m- oo
)
)

# connect 1o new oulput sreams
i (m_bEnabied)
for (| = 0; | < m_pOutputStreams GoiSize (): 1+#)
[{{e20s "y _po {l)->Connect (m_casName};
)

vola COMCDYjed SetMaxCrangss (const COWordAmayd MoxChanges)
{

i set sire
m_pAaxChanges SetSize (MaxChanges. GetSize O, 100
1 set values
for (int | = 0 1 < MaxChanges.GelSize ). 1++)
) m_MaxChangesli] » MaxChanges{i]

void COMCObject: SetCutpuiMing (const COWerdAmay& 1OulputMing)
{

N sel sizo
m_fOutputMing SetSze (TOutp GetSize (. 10).
I set wvalues
for (it | = 0; i < 1Ouputhins GeiSize (: le+)
m_to 1] = 10

¥

void COMCObject - SetOutpulMaxs (const COWeomAmays tOulputiday)
{

i sef sizn

m_fCulputhaxs SetSizg (IOutpulMaxs GetSize 0, 10).

i sel valuos

for (it | = 0, § < iOulpulMaxs GelSite 0 <)

m_tOutputhaxs]i] = iOutputhaxs]i];

)

csmg COMCOBect-SireamGetVal (int iindex)

CSlcmg csTem|
esTemp. Forrnat (‘!ﬂ Alr, a{m_tSatpolnis]lindex]):
refum c3Temp.

)
void COMCOBjea::CaleDMCParamntors {vokd)
{

# if LP inread Is running, s10p it and delete temp variables
i {m_bLP ThreadRunning)
m_bignoreLPThreadResull = TRUE

/1 dedete old values for matrizes

# (m_pDynMalrix) delete m_pOy

it (m_pDynMatrix_Set) delete m_pDynMatrx_Set.

If (m_pOpenLoopilatrix] delete m_pOpenloophiatng

1f {m_pOfsetMatrix) delete m_pOffseiMatrix;

i (m_pOpenLoopMatrix_Set) delele m_pOpenloopMatix_Sel.
it [m_pmwm 5ot} delate m_pOfisetMatite_Sel;

i (m_piiveighting! delete m_pWeightingh
o (m_p A ) delete m_pMove Suphl
i {m_pl Antrix) delote m_pl Matri

i rm_oLawTrﬂr)Matm deieie m, meniomlm

# note tnat inputsfoutputs 1o the DMC conlrolier are oufputefinguls,
# resp. 1o Ine DMC controller's comvolution modal!
iNuminputs = m_csinputStreamMNames GetBize (), #f N8B! inputs to DMCObea
INumOutputs = m_csOutputStreamMNames. GetGize (), & NB! oulputs from
DMCOxet

i create aray of Slep reiponsa Matnoes
CDI:Ma'_.' StepR:

B Anta

y.SolSize {r;u_' dyStateH 1)

ir create slep response matnoes
for Giot | = 0; | < m_iSteadyStateHonzon; i)
StepRespMatasray, SotAl (i, new CMatrx (Numinputs, INumQuiputs)),

# open slep response Filo
it (m_cSiepResponseFile == _T())
m_ Flie = _Y('resp ST
M$WMsmFﬂ {m_cSlepResponscFile);
FILE* StapResponsoFilo = fopen {m_cStepResponseFile, “n7;

 read step response cata
Tot (it ilnput = 1: nput <= INuminputs; Bnputs)
for (int iTime = 0; iTime < m_{StoadySisleHonizon, iTimess) 4 MMS90429 read
order changed |
fer (int {Oulput = 1, (Oulput <= INUmOuipuls. [Oulputes)

{
double® pfTemp = &{({{CMatnxmStepRespMatAmayiiTime])jitnpul fOutpul]):
fscant (StepResponseFile, "%if", pfTemp):

# dose siep response File
Idose {StepResponsaFils);

# MMBE0422 Bt e size of m_pDynMatrix after wirpping rows with Z0RO
TimeFactor

m_OptimisationHonzon=0;

for (i = 0; | < m_jSteadySiateHortzon, t»+)

it (d(m_MimeFactors(i]) > 2e-50)
{

m_iOp!miuthnl-lorhonu .f.iln non-18r0

m_{TimeF actorP \Hortzen-1] @ e

)
H
i create dynamic matrx
m_pCrynhatrix = new CMatrix § “m_iO, Honzon,
“m WMM"WF

INumOutputs
n_pDynMatrix_Set = new CMatrix ( puts * m_lOp i
INumOuIputs * m, IanberComrorMm)

o
iorzan,

#inkiakse dynamic malnx values

for (nt [Time = 1; Mima <= m_iSteadyStateHonzon; Time+s)
if (d¢m_fTimeFadore|iTima-1]) > 2e-50) I la, nol zero or M feast one
{
Joo:

for (int k = {; k <= m_iNumberCaontrolMovess kee)
{

# gel step responsa number and bmil & to m_lSteadyStateHornizon

Int iStepResp = [Time « k ; If on 0 1o ‘m_|5SleadyStateHodzon - 1° scale
iStepResp = min (iSlepResp, m_iSteadyStateHodson - 1);
('W“P =0

/7 gal step response matix
Chlalr® pResphal & (CAtatria®) 51, A Resp]
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far darlinput = 1_finput <= JNuminputs; \tnputs »)
(

int 5= (-1} iNuminputs « iinput,
for (int jOutput = 1; JOuput <= INumOUipUts: jOutputs-s)
{
snt fj= (K1) INumOUtputs + [Owriphit,
i 21 value foril, jj
"m_pOynhatrx)(il] = (StepRespMat)inputlOutput].
m_pOynMatrx_Seffilfi] = CStepRespMa)EnputlfOutput];
ftAls0 Store it

for (int Unput = 1, Anput <= Numinputs; linpute«)

int ii= {-1)"iNuminputs « lInput,
for ntf = 1;] <= INuUmOUtpuls; [++)
{

int fi= (k-1)"iNumOutputs + |
{"m_pOynitatrix){E](§) = 0.0;
(“m_pDynMatrx_Setj[dil] = 0.0,
)
)

m_PlolWnd SetAMatrix (m_pOynMatrx, m_iQptimi forizon, iNuminputs)
r

T esting code *”

FILE" File = fopen (TestA erur' ‘wt'}

forfi=1,i<n| m_iOF ionHorizon; 1+4)

{
for (int | = 1, j ©= INumOulputs * m_iNumberControlMoves; [++)

I § = iNumOutputs * m_{NumberControlMoves)
fpcinet (File, 3%8.31 *, (*m_pDynMatnfiji:

clse
{paintf (File, "%8.3100°, (*m_pDynhiatro)fiffif

)

tpant! (File. "a7);

fpatmtt {File, "),

Iclase (File);

Ji mnd of testing code =
“f

¥ creatle open logp rmatrix
m_pOpenLoophatrix = new CMalrix ((Numinpuls * m_iOptimisationHonzon,
INumOulputs * msludysrateHnman}.
m_pOpenLocpMatrix_Set = new Chlatrix () *m_
INumQuipuls " m mom:!eﬂm:un}

# inlualise open loop Malnx values
CMatrix® StepRespMatLastiNTEG =
(CMatrix")StepRespMatirray(m_iSteadyStateHarizon - 1],
CMW smpﬂosp“-u&ed..nmm’EG =

(cm ) forizon - 2§
CMalrix StepR upMaiDeiulm EG = ("SiepRespMatLaslINTEG] -
("StepRespMatSecLastiINTEG),
leg;

far {ITime = ¥, ITime <= m_iScadyStateHonzon, iTimes+)
if {3(rm_{TieneF actors{iTime-1]) > 2e-£0} I le. noa-zera
(
|se

for (int k = 1, k<sm_iSieadyStateMonzon; kee)
t

Int IStepResp = [Time « (m_iSteadyStateNanzon - k ) F stads at 0

Int ISlepRespINTEG = iStepResp;

IStepResp = min (StepResp, m_iSteadySI

it get step response malrx

Chdatrix* StepRespMat = (CMatrbe) Steps JatAsvaylS1apResn];
far (int ilnput = ¥; lInput <= INuminputs: lingute «)

onron - 1)

tor (irf JOulpul = 1; JOulput <= iNumCulputs; Kuiputes)
{

17 2ot value for i, §

int iE=(i-1)"Numinputs + Jinput;

Int f=(k-1)"INumOulputs » [Outpul:

it (iStapRespINTEG == iSlepResp)
(
(*m_pOpenLoopMatr) i) = ["Stepft i JGCutput]
('m_pOgpanLoophalree_Seffill =
{“StepRaspMaly[iinput]JOutput):
eize
(H",.'..Mpaim: Integration (
)
m_pOpanLoopMatibdlilll =

SlepRespMatlastiINTEGHiInput[fOutput] «

[double}m_bExiSiope_tnt * (double}iStepRespiNTES -
iStepRasp) * SlepRespMatDeRaiNTEGinpul [[Output].

(*m_pOpe atrix_Set)fillt} =
("StepRespMalLastiNTEG)[IinpulfiOutput] +

Jm_ pe_lnt * {d o RespINTEG -
IStepResg) * StepResphlalDellaiNTEG iInput [ Output].
)

}
)
)

W create offsel matrix

m_pOffseiMatrix = new CMatrix ( = m_iOpti
INumCulputs * m_iSteadyStateHorizan),

m_pOftseiMalrix_Set = now CMatrbe (Numinpuls * m_lOptimisationHorzon,
INumOCuiputs * m_iSteady StateHorzon),

forizon,

W intialise offsgl mstrix values
=0,
for (iTime = 1. IYime <= m_[SeadyStatcHonzon, iTimas+)

I ta(m_fTimeFactorsiiTime- 1]} > 2e-80) ¥ e nea-zero
{

ine:

for (ind K = 1, k<= m_iSleadyStateHorizon; kee)
{

int [3tepResp = {m_|SleadyStalaHorizon - & ). [ starts a1 O

 gol step response maltrx

Chatria® StepResphal = (CM: P "
!a:[anlt[nmi=1 W:-Nuninm Inpv; ]

1
{4 ee

Kt (int @Output ® 1; JOutput <= iNumOutputs; jOulpudes)

{
U sel vaiue for i,
it B=(-1) iNumlnputs « Goput;
bnt f= (k- 1} NumOutputs » jCutput,
("m_pOftseiMatix)[F] = ("StepRespMal)(iinput]fOutpat),

Cm_pOtisetMaine_Set[i)fi] = (*StepRespMal){iinput]jOutput],

1 treste g matrix
m_pWeghtinghtatrix = mcum {m_ owmatmmum INuminpuls,
m_jOptimisationHorzon * iNuminputs);
i Intlalize woighling matrix
for (i = 1 § <= m_p\WeightingMalrbe-»Helght (: b++)
Ior fintj=1;) %= m_mmmwnm-wmn 0:i»*)
*m_p\Weightingh =00
i m_wvcmmh&m :o!mmly (. ol initialisation

I 30t weightlag malrx
g,
for (iTime = 1. (Time <= m_iSeadySiataHonzon. iTime+s)
¢
¢ (d(m_ITimeF aciorsfiTume-1]) > 2e-50) & i¢ non-zem
{

foe;
for (int npul = 1; iinput <= Huminguts; finputee)
{

int index = (-1} * iNuminputs « dnput,
Cm_pAeghlinghiatix){indexfindex] =
o(m_foutputWeightsfiinput- 1] * a{m_fTimeF aclors{iTime- 1]}

)
)

If ereale move Suppression matrix
m_preSunMnldx = new CMulrtx im_i mmnor(:mwms INUmChdputs,
* Numc
J:hgu&semwmhm«m o put this?
for i = 1:1 <= m_phMoveSuphMatrix->Height (), j++)
for (int | = 1, | o= m_pMoveSupMatne->Widith (), je+)
{"m_pMoveSupMatrb)[[] = 0.0;

far [i = 1: Fe= iNurnQutpats; |+ #)
tor (int iTime = O; Mme < m_iNumberControlloves; iTmes«)

{
imiodex= | I"I'm -anomm

(rm_pMe lindex]index] = d(m_MoveS -1

; Pe

If create leas! squares imverse matrix
m_pleastSqrimMatnix = new CMatrx (m_iNumberControfMoves * iNumOutpauls
m_iOptimisationHorizon * iNuminputs);

# m least squares imverse rnntm:

“m_pl = {m_pDy Transp 0 * 'm_pWel Aatrie
*m_pOynddatrix +
*m_phioveSupMati) Inverse (0 * m_pDynMatrbe->Transposed 0
“m_pWWelghtinghMatrix

m_pLowerTrilDhalrix = new CMalrix (NumQulputs * m_iNumberCantralMoves,
iNumOutputs * m_iNumberControlMoves);
far (i = 1: i <= m_iNumberControlboves T iNumOulputs; i++)

{
for (int ] = 1, | <= m_INumberControlMoves ® iINumOulputs; f» ¢}
{
rg>n
{'m_plowerTniDMatex)([l[] = 0.0 & zero in upper trangle
else f ((-]) % INumOulputs == )
m_plLowsTAIDMatmf) = 1.0;
else
{*m_pLewearTrlOMatb[ijj} = 0.0;

]
!

# Intinlisatlans for Adaptive DMC - |G ="
m_pScadDac->Sel DM ISec (m_{Timel 1
I (tm_bRestariad)

1f Only Update the Diagonals of Qad, Aad, Bad and Rad ...
# Transfer Qad matrix woightings to the cormoct positions
Tor §=1; i==iNuminguts; |=+)
{
Cm_pCadi{ij[] = dim_fAdaprdtiodEnt-1]);
rm_pQadw){il[] = d{m_tAdaptModEn(i-1D:
far Gt ju 1; fe=iNumOuipuls; fr+)

Tor (int kick=(; khjuen 1; Kicke o) J/ difect & delayed curves
[

it k= fNuminputs ¢ R INuminpulsiNemOupals « -1 INumCuputs
o

Cm_pOacw)fkkllik] = m_103d * dyn_LAdeptWiCurve(d -
1)5NumOuiputs o | - 1) /# NB Product

"m_pAacw)[i]fik] = m_tadad,

"m_pBacw){ui(] = § 0-m_{ABad;

)
for (nt [T=1; [T<=m_iSieadySiatoMonzan; iTe )
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Int ke = INumlnputs » §-1)°m_ISteadyStataHerzoen iNumOulpuls
+ (m_|SteadyStateHorzon-IT) “iNumOulputss]:
{"m_pQagkie] = m_tQad = dim_tadaptWiCurve](l - 1) iNumOulputs « 4

= 1]). i N8B Product

}

(*m_pAad)[k](k} = m_{ABad,
(*m_pBad){k]ih] = 1 0-m_fABad

)
]
for (=1 lesiNuminpes; jes)

"m_pRad)[i)li] = dom_tadaptWiMeaasEndi-1]); / Meas Err WA

else

{
# Only do n complate Rastan if i Is not a esntinuation

.‘J’ store data for pletting Adapled curves In ScadDoc

> SetDMCNumOut (NumOutputs):
m _pSmDowSﬂDMCden {INuminputs);
m_pScadDoc-+SetDMCHurnIn (INuminputs),
m_pSeadDoc->SeiDMCSinadyStateHarizon (m_iSteadyStateMorizon):

M re-indiakse past output changes vectors

il {m_pPasutOutputChanges) delete m_pPastOutpulChanges,

m_pPastCulputChanges = new CVector (NumOutputs * m_iSteadyStatoHorzon):

if {m_pDx d CulpulC delete m_pD PastOutputChangoesad;
m_pDoublePastOutpulC! 4 = new CVector (INumOutpuls *

m_iSteadySiataHorizon);

for (i = 121 <2 iNumOutpuls * m_iSteadyStateHonzon, ++)
t
Cm_pPastOutpuiCnanges)i| = 0.0,
{'m_pDoubloPasiCutputChangesad)[i] = 0,0, # a fuahof block backwards In Ume
)

/7 defete okd matrix structuies
it {m_pBOad) delete m_pB0ad |
It (m_pBOLad) delete m_pBOLad,
if {m_pBOL_INTEG) delete m_pBOL INTEG
it (m_pB0ad_orig) delete m_pBOad_orig
i (m_pBQiad_crig) delele m _peoud
# (m_pBOL_INTEG, ongjmem_mol__lNTEG orig
i {m_pead) defete m_pead |
If {m_pPead) dolete m_pPead ;
If {m_pLead) delete m_plLead |
i {m_pSPead) defete m_pSPoad ;
it {m_pDx0ad) delete m_pDxDad ;
it (m_ppad) delele m_ppad ;
if {m_ppad_orig) delete m_ppad_arnig ;
It {m_pGad) delete m_pGad |
if (m_pGad1) defete m_pGad1 ;
It (m_pGad2) delele m_pGad2 :
it {m_pGaa3) delete m_pGadd .
it {m_pQiad) delete m_pQad ;
if (m_pFad) delele m_pRad ;
1 {m_pKad) delete m_p¥ad |
it {m_pAad) delele m_pasd |
if (m_pBad) delete m_pBad |
¥ (m_pxSlatkad) delete m_peStackad |
it (m_plad) delete m_piad ;|

it {m_ppadw) delete m_ppadw |

if (M_ppacw_orig) delete m_ppadw_org :
it {m_pGadw) delele m_pGadw |

i (m_pQadw) delete m_pQadw :

if (m_pKadw) delele m_pKadw |

if (m_phadw) delete m_pAndw |

if {m_pBadw) delete m_pBadw :

i (m_placw) deléle m_plodw ;

It (m_pF adw] deltte m_pFadw ;

It (m_pPreviousCuipul) delele m_pPreviousOutput |
I :m_pPrmmnpu‘lChumaj dzle!e m, _pPrwbusOutMcmme

I {m_pP put) delete m_pP) put;
# (m_pTes!) delete m_pTes! :
¥ {AccumulsiedMoveINTEGCORR] delele AccumuiaiedMave:

INTEGCORR |
if thccumulaledMoveINTEGCORRad) deleto AccumulatodMavelNTEGCORRa ©

m_pB0ad = new CMalrx (Numinputs, INumOutputs * m_iSteadyStateHorlzon),
m_pBOLad = new CMatrix Huminputs, iINumOutputs * m_iSteadyStatoHarizon);
m_pBOL_INTEG = new CMalrix (INuminputs, iINumOutputs),

m_pB0ad_org = new ChMatrix (Numinputs, iNumGuiputs *

m_iSteadyStateHorizon);

ad_org = new CMalrix (INuminpuls, INumOulpus =

n_pBOL
m_iSteadyStateHorizony:

m_pBOL_INTEG_orig = new CMatrix (INuminputs, iINumOutputs):
m_pead = now CVectior ((Numinputs),
m_pPead = new CVector (INuminputa),
m_plead = new CVector (INumlinputs);
m_pSPend = new CVector (iINuminputs),
m_pOxlad = new CVector (Numinpuls):
m_ppad = new CVactor (Numinputs »

m_ppad_rxln = ruw (:\qu ﬂmm -
Ay m_iS
rn_pGnd - now cmm nmnpm

m_| o izan))

m_»cw1 = new CMatrix (Numinputs,

forizon).

uony

m_me - Mw CMIW (lerunpms

tarzon):

i m_iS
m_pRad = new c«!m {Numinputs, wwnlnp-.is}.
m_pHKad = now Chlatrix

NumOutp Pra— *m_iSteady

m_pAad = new CMalrix

Tikdisnl
u

puts iNumMOuipals m_IS1eadySiataHarizon,
Hunrnwuoﬂmlwswm‘m_memmﬂummm):

m_pBad = new Chiatix

onzon,
m_ISt

puts iINumOutputsm_| ¥

I ¥ {onzon)

E-7

m_plad = new Chlatrix

aads -8
L L

NumOulputs™m_[SteadySt
m_pQad = new CMatrix
(Numinguls+iNuminputs iNumCulputs m_iSieadyStateHonzon,
iNuminputss [Numinpuls*iMumOuiputs*m_iSteady SiateMartzon)
m_phiad = new CMalrix

puts iNumOutputs *m_tS! ySialeHorizon,
Muminputyeiduminputs INumQuUputs m_iSteadyStateHortzon),

m_ppadw 3 ntw CYectar (INuminpuls + rnNmr!Oumts'lenInpms)
m_ppadw_orig = new Clector (iN

m_pGaow = new Chlatrx ((Numinpul: _r'" I nput: wr.-rmm “iNuminputs).
m_pKadw & new CMatrix (Numinputs+ 2 NumCutp 1P .
m, Mm-mcwm"' I 7 e sumOutputs

m_pBadw = new CMI'er Mmuﬂs*? ﬂNum#npl.ds wwu.
10l

HumChaputs,
INumOutpuls),

m_pQadw = nerw Chlaldx UNwranp?Numinptﬂ'iNurrﬂulm
mmlnmﬂmumlnmrwmnm

m_phMadw = now CMatrix (i INuMOutputs,
Nuﬂh\pll!tz‘ﬂmlkm “MumOulputs);

m_pFadw = new Chatrix (iNuminputs «

iNumnOulputs“iNuminputs*m_iSteadyStateHorizon,

iNum|inputs+* 2 Numinputs iNumOul puts);

m_plaaw-mCJJm‘ 2"

m_pxStackad = new CMairix { y foris
m_pFrtmmm = new cv«:cr wm
m, = new CVector (NumOutputs).
m nput = new CVictor (INumingats):
m_pTest = new CMatrbe (Numinputs, iNuminputs);
AccumulaledMavelNTEGCORR = naw CVactor (INumOulpuls):
AccumulaledMovelNTEGCORRAd = new CVactor (NumOulpuls);

100).,

# Set up infial values for “previous input” and the delay stack for Oulpuls
i I necessary, lemporarily "Enabled” the DMCObject o pet @ Name
BCOOL m_bTempEnabled;
If ({m_bEnabled)
{
m_bTempEnabled = TRUE:
SetEnable (TRUE),
}

olsa

m_bYempEnabled = FALSE,
)
I custpans
for (i = 1: | <= INUmOulputs: l++)

("m_pPreviousOutput}fi] = ({CIORream n_pOulpuiStreams]i-1]->Read
(m_esName).

rﬂ_PPrwbﬁOmmcmrqn){q =00

)
il inputs
for (1= 11 <a INuminputs, le+)

{
i s#1 provious stale vecior 1o current stale vecior
("m_pPreviousinpui] = ({CIOSweam m_pinputStreams{i-1)->Read

{m_csName]),

double x_Stackadi = {((CIOSiream”m_pinpuiSireams|i- 3 D->Read ¢n_csNama),
1 Till the whole stack with present state vector
for (ot iTime = 1; Mime <= m_ISteadyStateHorlzon+0; iTime++}

(*m_gxStackad)[ifiTime] = x_Stackadi,
)

)
it {m_bTempEnatied) Se(Enable(FALSE),

i initiat values for openicop INTEGRAL ERROR CORRECTIONS (f last two
on step-resp ]
for i = 1; | <= iNumCutputs; ir+)

{
TEGCORR){i] = 0.0;
AccumulatedMovelNTEGCORRadN] » 0.0:
)

i Set up Initial estimate of BO as the valuss set lo the Dynamic Matsx
for (int iT = 1;IT <= m_|SieadySiateHodzon; iTe+)
{

CMairx® GlepRespMat = (ChiatnxjSep

for (int | = 1; | <= INuminputs; f=e)

TayliT-1}; #f slartz 210

for fint | = 1. j o umOulputs: jo +)
{

Iﬂ-l] = (m_iSteadyStateHorizon-T) iNumOutputas)
toutie BOadig = ("StepResphlalil L
{"m_pBCad)|i|(i] = Boadij.
(*'m_pBlad_odg)flli] = BOadij.
m_pScadboc->SelDMCBOinitady |, j. BOadig),
m_pScadDoc->SeiDMCBOad( L §. Boadi):
)
}
)

4 Set up Initial estimate of BOLad by exrapolating the final two values in B0ag
for §T = 1; T <= m_iSteadySiateHonzon, [Tee)

for (int i ® 1: | <= iNuminputs: i++)
(or (int } = 1; | €= iNurnOulputs: jes)
{
Int (T,
¥ ((m_bSuppressiNTEGad)|Im_bExiSiope_lnll) # Suppress adaplation
for Integrating System 7
{
ITT=1; 7 Unlferm matrix
)
eisa
ITT=IT: #/ Ramplng mulrix

)
int || = (rm_iSteadyStateHorzon-T) INumOUputs |,
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(m_pBOLadj(jly] = (double}aTTs ¢} " (*m_pBOad){iif] -
{doubla}iTT * ("m_pBoad)[iljsiNumOutputs].
("m_pBCLad_ong) [l = Cm_pBOLa{il :
) JE ing in casa of integ:
)

)
for (int | = 4 | <= iNumninpuls; i)
far (int | = 1, ) <= iINumOutputs: j+)
("m_pBOL_INTEGI(I|[] » (dounl'n)rn_nAa:MO‘d’B!_lnl '
{*m_pBOad|ijiM d

wnDu!nn‘.sD
"m_pBOL_INTEG_origh{ijil = {"m_pBOL_INTEGNi{}
} I*A differentia} lerm for the tai slope lor integrating syslems controf

b

¢/ Set up initial estlimate of IMC emor
for (i = 1:1 <= Numinputs: (s+)
{
Cm_pead)fi] = 0.0,
¢m_pPead)|i] = 0.0;
Ccm_plead)(i] = 0.0
'm_pSPead){i] = 0.0.
m_pScadDoc->SeiDMCesal |, 0.0)
]

2 Set up Imhal eslimate of pardmetar vecior xbar ana ariginal
fer (=1, iesiNuminputs; [+ ¢}
{
m_ppadifi] = ("m_pead){i].
(m_ppad_ongifil = {'m_pead){l.
Cm_ppadwili] =
Cm_ppadw_orig){i] = ("m_pead)(i):
for (int = 1; fe=iNumOuipuls; ffe¢)

(
{*m_p {i- 1} im0y fi = 1.0; i on-time weight
("m_p'pm or\g}{lenm-{-\) iNumOutputs+f] = 1.0
mOutpuls)s (1) INumOuputss ] = 6.0, #

delayed welth
(m_ppadw_sng)[itNuminputs {1 »iNumOuiputs) s - ) INumOutputs« ] = 0.0;
)
tor (imt [= 1 j<=m_iSteadySiateHodzon "iNumOulpuls, j=+)
{
(“m_ppadiiNuminpitss @ 1) iNumOulpuls m_iSteadyStateHoazon ) =
{*m_pBOad)[ijuk " e
("m_ppad_orig)[iNumlnpuls » {i-1) "NumOulputs m_| ¥
("m_pB0an{ijl].
}

Honzonsj =

it Tri Matrix F for
tor i=1; je=id .

G ~m_ it adyStateHonzan: i+s)
for (il = 1; j<=iNuminputss 2 INuminpuls INumOutpuls; joe)

Cm_pFadwililill = 8 0; /st 2010 the whale thing

for (=1 e=iNuminpuls, ++)
("m_pFadw)lfiij = 1.0, #ha “¢” erar pad

I direct curse scaling
far (i=1: i<=iNuminputs; b+ ¢}
(
(or {inf j=1. fe=iNumOupnls; [» «)

for (int k=1, k<=m_|SteadyStateHorlzon, k++)

{ # pluck out the ones required
rm_me){Mnm-(rijwm‘m iSteadyStateHorizon-

Outputs +jliNuminputss{-

3O INUMOUtpuls +{];

l)‘uNumOutM.p{lM i
(*m_pBoad)[if{(m_L y

)
)
i delayed curve scaling for lime-shiff
for (=1 lesiNuminputs; 1+ +)

for it J=1; j<=iNurnOutputs; }+»)
(

for (int k=1; ke=m_iSteadyStateHodzon: kee)
{ /1 pluck cut the ones required from lime-shifted curve
Ini kk = k-1
It {kk > 0)
{
{"'m_pF adw)[iNuminputs+ (-
Vi iNumOutpua®m, i&eﬂdf&t.ﬁeﬂaﬂmﬂt
¥ forizon-K) i
puts*(1 »iNumth { 1)1Numompu.s il
= (*m_p80ad)[{(m_iSteadySiateHorzon-kk) iNumOutptass J1:

olse

Cm_pF adw)[iNuminputss -
1) INumOUIputs*m_ISteadyStaleHarizons
{m_iSteadyStateHorizan-k)iNumOulpulss|]
[INumInputs®(1 «NumCulputsh* - 1) NumOutputs+ ] = 0.0;
)
)

}
)

il Aad, Bad, 1ad, Mad and Qad

for intj=  1: j<miNuminputss Numinputs iNumOutpuls"'m_iSieady StaleHodzon;
].‘)
for {int k= 4:
o tputs | 'y forizon; ke=)
Wik

¢m_pAad)Jfik] < 0.0

(*m_pBad)jx] = 0.0,
Cm_phtad)jiik] = 0.0;
m_pi =00,
"'m_pQadi{jijx] = 0.0,

)

e

{
("m_pMad)[ii] = 0.0001;
{*m_plad)[in] = 1.0;
it (>iNuminpuls)

m_pAad)[lik] = m_taBad,
Cm_pBadijie] = 1 C-m_tABad,
If See Qad diagonal set below

elsg

("m_pAadiiik] = 0.0; I to force the aMilo zaro
(*m_pSad]fifk] = 0.0:
It See Ond diagonal 21 below

)]
)
)

if Transfer Gad matrbc weightings 10 the comed positions
for (i=1; ke=iNuminpuls; j+e)

em_pQad}{ili] = dim_lAdaptWarodErni-1]):
for §nt iT=1; IT<=m_iSteadyStateHarizon; iT+*)
(

tor (int j=1, fe=iNumOutputs, f+2)

a1k = N puta ¢ (-1)"m_i5 StateHonzon iNumOutpurs
+ {m_iSleadyStateHonzon- m‘anOmpuls-l
("m_pQadjlkj(k] =
m_fCad " dim_{adaptyACunvelli - 1} iNumOutputs « | - 1) /NS

1f Aadw, Badw, ladw, Madw and Cacw
for = 1, fesing » 2%t

Oulpuls; fes)
for fint ka1, ke=iNuminputes 2% iNeminputaINumOuIputs. kee)

nQt=ky
{
“m_pAacw)[ilk] ¥ 0,0,
(m_pBadw)[jilk] = 0.0;
m_pMadwfjljk] = 0.0:
*m_pladwili[] = 0.0
¢m_placwi[ik] = 0.0;

olse
{
m_phtacwi(flk] = 0.0001,
(*'m_placwiffi[n] = 1.0;
¥ (FFiNuminputs)
(
rm_pradwi{][k] = m_tABad,
("m_pBadwljjfk] = 1.0-m_{ABad.
& Sea Qad diagonal set below

clse

("m_pAadwlllik] =
m_pBadwi[[|{k] =
i See below Qad diagonal set below

0.0; /10 forc Ihe eM| to ero

)
)
]
}

I Transter Qadw malrx weightings 10 the comeet positions
for (=1; lemiNumingeas; iv+)
(
i p2aow ] = d(m_tAdsptMModEn(i-1]
far grt j=1: je=INuMOulpuls; [+ 4)

int & = iINuminpits s (i-1) "NernCutputs » J;
Cm_pQadw)[kik] =
m_fQad * ¢{m_{AdapfMCurve|(i - 1) HumOutpuls » ] - 1)L # N8

Product
Int ki = IMuminpuls*{1»iNumOUputs) ¢« (-1)INUMCulpuls + |
{rm_pQadwilkk]kK] =
m_{Qad * d{m_tAadaptttCurve(( - 1) TNumCutputs « |- 11 F N3
Product
)
'
I Rad

for (j= 1;) <= iINuminputs, Jre)
for (Iot k = 1; k <= iNuminputs; kee)
wreK
(*m_pRadjfj[k} = 0.0;
elsa
("mi_pRad}fj}ix] = dim_tAdaptWdaasEn{l-1[); # l4cas Eq Wi
}

)
# MUST YOGGLE Rstartad OFF now 1nal re-intialisalion has peen dona
m_tRestartad = FALSE.

# deleto slep rusponses
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farfi=di<m iSIumslattmm =)
if {{CMatrix")SlepResp ylipaed

}

viid COMCObect -TimarUpdate ([DWORD gwTlme)
{

(CMatix")SlepRospMatAmay(i),

¥ puts = m_ Size () # loputs 1o DMCObjed FV's)

INumCutpuls = m_csOulput S: Size (5. # oulputs from DMCObject
(MV's)

JepeSD000B1 S

m_cwTimeTillUpdate = DWORD({m_{Timealnterval*1000) - (dwTime -
m_gdwPrevTima);
ez

M Uze the adaplation timer 10 tdgger nommal past-oulput-update for
I both adaptation & DMC

double DellaTimeAdapt = (double}{inl)dwTime - (infym_dwPrevTimeAdapt) [
1000.0;

it (DeraTimeAdapt >= m_{Timeinterval)

m_owProvTimeAdapt += (ntym_{Timelnterval = 1000;

# accusnulate the last of ine double-delayed block (Mo the adaptation
INTEGRAL ACCUMULATOR

if ('m_bSuppressiNTEGad)
§

far (int § = 1; | <= [NumOutpuls, l--}('AwummmenMmecORRaa][n]
(double)m_bAccMaves_Im = (("m_pD CulputCh
(" AccumulatedMoveINTEGCORRad)ID:
)

If cascade m_pDoubloPasiOutputChangesnd
for (nt i = § i <= INumOutpuls; les)
for (int iTime = 0, Time < {(m_iSteadyStateHoazon - 1); iTimes )
("m_pDoubloPastOutpuiChangesad](i « iTime * INumOutputs) =
("m_pDoublePasiOutputChangesad)]i + (iTime+1) ~
NumOul puts];

I pop \he last of the next block inlo the end before it s overwritten below
for (i = 1, | <= iNumOutputs: ir+)

(“m_pD PastOulputc . {m_)
["m__pPaleldMChlr\Ql‘!][lL
I alsn sccumulate the last of the next block into the INTEGRAL

ACCUMULATOR for DMC control
for (i = 1,1 «= iNumOulpuls; ks +)
{

forizon - 1]

("AccumulatedMovelNTEGCORR)] =
{doublejm_bAccMoves_inl * [(("m_pPasiOulpuiChanges){i] »
AccumulatedMovelNTEGCORRYT).
)

# eascade m_pPastOulputChanges
for §i = 1; | <= NumOutputs: is+)
tor fint iTime = 0; Mime < {m_iSteadyStateHadzon « 1); Mimer )
(*m_pPasiOulputChangesifi + iTime * INumOutpuls) =
{"m_pPasiOulputChanges){i « (Timee 1) * iNumQuiputs):

I cascade past Inpul stale vectors through slack {could just move pointer?)
for (inl ITime = 1, iTime < {m_iSieadyStaloHorzon+0), ITime++)
(

for (i # 1:1 <= INuminputs; t++)

(

)

("m_px NiTme] = {"m,

lTime= 1)

)

i rily *E
BOOL m, hTempénnbleo

i 'm_bEnable)

{

bled® the DMCODJoat (o get a Name

m_bTempEnabled = TRUE,
SolEnable (TRUE);

eise
m_bTempEnabled = FALSE,
il present Ouputs
for (i = \; | <= iNumOulputs; [++)
m_pPasiOulputChanges)(l » (m_iSieagyStateHorzon - 1) * INumOuiputs]
((CloStreamjm_pOulputStreams[i-1[->Read (m_csMama) -
{*m_pPreviousOutput)(il,

Hm_pPrevieusQuiputChange)(il. & DeltabA[i] one lime step old
)il =

fie1->Read (m_cshame) «
rmmmm #f Deltald(i] new
Cm_pPrevicusOutpul)[l] = ((CIOStraam jm_pOutpiutStraamsi-1]j->Resd
{m_caMName);
1

# sare provicus and find current siata vedar
for (Il = 1] <= INuminpulss [+ &)
{

L i = |_ISteadyStateHonzonQ],
aachd][l]m lS:uﬁyStateHorlzon»D}c
((Gloslfeam‘]m_p!npuw'rmwusnd}} >Reoad(m_csName);
)

2 Upaate Obsgrvatlon Matrix Gad

11 Gad lor BOad ® PastOulputChanges
for (i=1, l<= iNuminputs; j=)
{
for (int =1,
Je=iNuminputs + INumOutputs INuminputs *m_iSteadySiateHarizon; j«+)

m_pGod){i]l] = 8.0;
)
Cm_pGad)[ifli] = 1.0:

1
lor (=1 i<= INuminputs; (++)
for (int j= 1; jfe=iNumQuiputs 'm_iSteadyStateHonzon, j=+)
(*m_pGadijijiNuminputs « (= 1) NumOul puts m_iSlesdySlateHarzons ||
) Cm_pPasiCulputChanges)[f],
)

if Gad1 for BOsd * DoublePasiCulputChanges
for (=1 i<= [Numinputs; =)

for (int f=1;
ijlee=iNuml Numl N 3"m_ISteadyStateHorizon; k=)
'm_pGad1)[fik] = O
for (in j= 1, je=iNumOutputs"m_ISteadySisteHonizon; J+»)

(‘m_pGadﬂ[']jwunlnpm n-

fortzonsi] =

13 iNumO:

{*m_pDoublePastOutputChangesad)l)]:
}
)

£ Gad? lor BOLad * DoublePastOutpulChanges
tar (i=1; <= INuminputs; [++)

for(d qh.ﬂ'

=

FiNumOutputs m_iSleady StateHonzon, jker)
('m_p-Gm’)[l][lfk.] =0,
fot gnt [=1; je=iNumOutpuls; j» )

for [ind =1, k<=m_iSleadySiateHonzon, ke)
{
Cm_pGnd2){il[INuminputss Q-
1) iNumOutputs"m_iSteadyStateHorizons]] =
("m_pGadDjifiNuminputs={-
1 iINumOutputs m, ﬂuaﬂys{ml-hdxon-ﬂ

) {m_ISteadyStateH
KM {"m_pD: PasiOutpulCh [ 'I}'ihtumoma.n_c .
("m_pGad2)[ijNuminputse -
1 NumOulputs*m_SieadyStateHorzons s iNumOutputs] =
(*m_pGad2){iiNeminputss (-

Ay iMumOuputs*m, lsnadysulnﬂnﬁmn'i‘ll‘hmotwuﬂl
forizomnse1-

‘Hp 1) iNumOutpute o],

OutputC

K)(m_p
)

)

1 Gad3 for BOL_INTEG * AccumulstedMaveINTEGCORRad
for (i=1; I iNuminpuls; i}

{
for (int =1,
7.3 n\.lwod‘pld'l'm_"' dyStateHorizon; fes)
('m_pGadJJ{J:p;k} =0
Jor Gint j=1; je=iNumOCutpuls, J+»)
("m_pGad3)filiNuminputs{-
1) iNumS ™m_i 5 jl =
(double) _iSteadySiateHorizon *
('A.:cwmuummwmﬁucoamm
(*m_pGad3){iliNuminputy= {-
1) INumOutputs"m_ mmwmtrmmmﬂ-

mmm.mlmcoumm.
)]
)
M Make combined abservation matitx Gad
Com_pGad) = ('m_plad) - (m_pGadi) » ('m_pGad?) » (‘m_pGadd)

/1 Ged has bean led above

M Measured change of slate
CVecior m_pOmeas{iNuminputs);
for {i=1; le=iNuminputs; I+#)

m_pOmeas{i] = {{CIOStream™m_pinputSireamsfi-1]->Read (m_csName)
"m_peStackadfii1].
¥

It ot in prediction of change over Last time-step
if {m_bUseAdapt)

“m_pPoad > m_pDmeas - Cm_pGad} " ("m_ppody,
else
*m_pPead = m_pOmeas - (w_pGad) * ("m_ppad_ongl

1RE22MO10103 Test Outpul
I chat Values{100],
# speinti(Values, "e1=%0.61 02=%0.01 amnd1=%9 .8 amad2=%D5.8t
amecor =3%9.61
SmcorZ=%9.6r" \Cm_pPead)|1].Cm_pPead{z].C Accumulatediovel NTEGCORRad)( 1], :

TEGCK M)A NTEGCORR)1].(A
atedMovelNTEGCORR)[2])
(e AL GetMainWnd 03> SetStatusBarTaxt (Values):
SRS
# smoolh it

for §f = 1; 1 <= INuminputs. (++)
_pSPead)(i] = (doutie) m_bGredFrack_Int * {m_fGracSmaoth_int *

m,
Cm_pPeany] +
(V. 0-mUGradSmonii_Iny * ("m_pSPead)ii)).
}
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{m_bEnabieAdapt)

! YimerUpdate for Agaptalion of Moge!

“m_pKad = ("m_pMlad) " m_pGad-> Transposed() *
{'m_pGad) * Cm_pMad) * m_pGad->Transpeaed() »
(*m_pRaa)) Inverse().

i Effoc covartance matiix
*m_pMad = ("m_pAad) " (Cm_plad) - ("m_pKad) * {"m_pGad)) *
{"m_pMad) = m_pAad->Transposed() » "'m_pQad).

i Predicted output
"m_ppad = (*m_pAsd] " ("m_ppad) * (*m_pBad) * ("m_ppad_orig) «
(*m_pKady * (m_pDmeas - ('m_pSPead) - ("'m_pGad) * ('m_ppad)),
1 idenitying Fiter 1|
I NE : ("m_pSPead) : smooined sfondy gradient {rom imegralion af
unknown moves siripped out - MM010103

/t REGULARISED SOLUTION QFTION

'm_pGadw = (‘m_pGad) « ('m_pFadw). I transfomn
m_piadw = 'm * m_pGadw->Transposed *
((*m_pGacw) * Cm_pMadw) © m_gGadws> Transposed() »
Cm_pRad)) Inverse();

# Errer covariance miatrix
m_phiadw = ("m_pAadw) * (('m_pisdw) - ("m_pKadw) * m_pGadw)) *
("m_phizdw) * m_pAacw>Transposed() ¢ ("m_pOadw);

/i Predicted oulpul
“m_ppadw = ("m_pAadw) * ("m_ppadw) ¢ Cm_pBadw) " ("m_ppadw_cng)

'm_pKadw) * (m_pDmeas - Cm_pSPead) - (m_pGadw) "
'm_ppadw)): / Identitying Filler {1
# NB : {*m_pSPead) : smocthed stoady gradient from infegration of
unknown moves sinpped out - MMA10103

# Load back 1o anginal armays
It (im_pRegulanzeAdapd)
{
for (=1, =iNuminpuls; fes)

Cm_pead)fi] = ("m_ppad[i] .

m_pScadDoc->SelDMCead( ), ("m_pead)|i);
for {ind =1, je=iNumOutputs: j» +)
{

for Gnl Y=\, kesm_iSlondyStateHonzon, k=)
l
Int jj = (k= 1)"INumCulpuls o |7
double BCadif = {*m_ppad)[INuminpulse (x
1) iNumOutputs™m_iSteadyStateHorzonf].
('m_pBoad)[iij] = Boady.
m_pScadDoc->SeiDMCBOad( |, §. BOadi),
}
)

}
for (in 7 = 1; T <= m_iSteadySiateHonzon, (Tee)
for {int | = 13 | <= INuminpuls; 1e+)
for (int | = 11| <= INumOulputs: [+)
{
int ITT.
I ({m_bSuppressiNTEGad)|(Im_bExiSlapa_int)) # Suppress
adaptatian for Inlegrating System 3
iTT=1; J/ Uniform matrix
else
[TT=iT; # Ramping matrix
)
'mtj = (m_iSteadyStaleHorizon-T) iNumOutpuls s,
[ifi] = (double}((TT+1) " Cm_pBOad){)[} -

(doulin}m < (*m_pBOad){ill+ INumOut puts],
) g In case of integ

)
)

elsa

# for regularised solution, must apply factors o get curves
for (i=1; lemiNuminpets:; fe-s)
{
(*m_pead)(i] = [*m_ppadw)(i] :
m_pScadDoc->SelDMCead( |, Pm_paad)(l).
for (int j=1; fesiNumOutpuls; f++)
{
il gend reguiarisation factors for printing on graph
double regswij = ("m_ppadw][iINuminputs + (-1} NumOuputs

m_pScadDoc->SelDMCregsw( L. regswi): & scaling factor
double regtwl] = ("m_p {3 =iNumD: {F

N

T iNumCutpuls «];
m_pScadDoe->SetDMCregtw] 1), reghwil); A time-shini factor
tor (int k=1; k<=m_iStaadyStateHanzan; ke+)
{
int kk = k-1;
double BOadijk = ("m_ppad_ong)
nNumIanﬂs'ﬂ-ithwa _IStendyStateHorzon

{m_ISteadyStateHorizon-k) NumOulpuls »f]
double BOadilic:
I (k> y

Edndijkk = Cm_ppad_origh
(INuminputss (-1 iNGmOupula"m_iStesdy Stase

{m_!SteadyStateHongon-kiNumCulpus +];

else

E-10

(

}

double BOadreyg = regewi*BOadijx + regiwiBoadijix:
("m_pBoadyfillim_iSteadyStatetonzan-k} NumOulpus +f =

m_pEcadboc-> SetDMCEDad( 1,(m_iSteadySiateHonzon-
k) iNumCutouts «f, BOadreg):
)

1

BOadijk = 0 0:

Blladreg

)

{f aiso reset ine double delay prediction matnx
for (int IT = 1,iT <a m_|SteadyStataMHorizon: iTes)

Jor (ind | = 1; | <= iNuminputs: bve)

for {int ) = 1, | == INumOutpuls, js+)

{
InsiTT;

if {{m_bSuppressINTEGad)iIm_bExiSiape_in1) # Suppress
sdaptation for Integrating System 7

{TT=1; # Underm matnx
e

{TT=iT, i Ramping matric
Liﬂ = {m_IS5i H Ty iNumOutpul
l.m_pBOLlﬂrl’!El- (double}TT=1) __(:\1:‘1_9501&35]"‘1'

{ T " (m_p il * it
g In caso of g

) e

)
)

1 Natify R‘I'Curmeph vin ScadDoc via RTCurvePage
m_pSendD d (TRUE),
ir 16

}
i (m_bTempEnabiad) SatEnabie(FALSE).

# DMC update code
double DeltaTime = {daudle}({intydwTime - {Inf)ndeP:eleme) ! mﬂn 0.
it {DehaTime »= m_fTimelnferval L& m_tLFTE g &5 m_bEnab
{

/i notify user of problem

((CMainWndTAlxGeiMainWnd ()->Sets: BarText ("OMC cales take longér thar
updale interval);
MessageBeep (MB_ICONASTERISK):
# adjust previous time

m_owPrevTime = GetTickCount § - 1000 ° (infj(m_{Temelnierval - 1)
)

o {DoltaTime »= m_{Timeinlersal &4 'm_bLEFThreadRunning &4 m_bEnabled)
{

& updale me

m_awPrevTime »= (inm_fTimaelnterval = 1000,
4 updale main malrices If necessary .. NBI
AdapitAatrices (),

# calcudate InputhIN, Inputhal, M
N waclors
CVecior Mﬂmmd]npuu thurrlInpu!s m Dpthdnuoﬂ!-icm:m!.
CVactor | Selp * m_iCptimis
Cilector lnpmM:N mmnpd.l m Wm&on!-%nn]
CVecion INputMAX (| {orizon);

for(int | = ¥; i e [Numinputs; [++)
for (ind iTime = 0; iTime < m_lOptimisatonHonron; Times»)

dlnput and InpulSetpol

{

H ROTE: DMC model input = DMC obyect oulpul and vice vérsa

Measuredinputsl « ITime * iNuminputs] = ((CIOSTream jm_plnputStreams(i- 1]}
»Read (m_csName):
Fuls * {Time * i puts] = d{m_t intsf-1])

. « iTame " i § = am_n. Minsfi-1
1rwm»q1 IMime * INuminputs] = dim_t finputhaxsli-1]);

)

# Integration of moves thal *fell off the back® #es® MMOD1001 for INTEGRATING
systems

N _. and delected gradient comection

CVecior OpenleopOulpaALcumINTEG ((Numing

Cveclor OulpulAccumiNTEGNuminputs);

OulpulAccumINTEG = ("m_pBOL_INTES) * ("AccumuistedMoveINTEGCORR),

s * m_Opt Honzany,

CVector GragComection (iNumi m_iCrplirni
for (int j=1; }r‘nL,lOplkm!JonHoﬂxon Jve)

oriron);

1ot (1= 1 Fe=iNuminputss be-+)
{

double OulpulAccumiNTEG interp = OutputAccumiNTEG]] *
({{double)m_{TimeFactorPostionslj- 1]} /

(double) IE
Lm&nnuumrmscmuqmgnpm =
(GNH»)M_MM_ CuiputACCumINTEG_|
16-1¥ L i} = ({doubie) m_bGradFback_int) *
m_pSPead)[i]

{({doublem_MmaFactoPosaionsl-1]) /

)

}

f calculate open loop emar vedlor
CVectar OpenLoopOutput |
CVector OpenLoopErmor (j *m_io

= Mozsuredinputs + {m_pOpenLoophatrix - *m_pOfselhateb) *
*m_pPasiOulpuiChanges) * OpenloopOulputAccumINTEG » GradComection,
f

1 The GradCarrection [s a feedback conection tased on obsarved gulpul, whilst the

*m_kos i torizan)




Appendix E Extracts of the Integrating ADMC Algorithm from the SCADA Svstem

i OpenLoopSulputAecumiNTES s a I based oo

moves
CpanLoopErer = CpanLoopOulpul « InpulSetpoints;
m_PlofWind SetOpenl.oopOutpul (0penloopOutput);

/r lculse une i A optimal for deltam®
_pOelaMUQO = new CVedlor (iINumOutputs * m_iNomberControfoves);
'm _pDenaMUQO = «{*m_plLeastSqrimAdatrix) * OpenloopError,

I calculate OulputMIN, Output MAX, PrasentOutput and MAXOutpuiChange

if vectors

CWectar QuIputMIN (INumOutputs * m_iNumberControlMoves);

CVector OutputMAX (INumOutputs * m_INumberCantroiMaves),
m_pPresemtOuput ® new CVector (NumOutputs * m_INumberControlMoves),
CVecior MAX.OutpulC hange (NumOutpuls " m_iINumberControlMoves),

for (i = 1; | <= INumOulpuls; 1+ +)
for (inl iTime = O; iTime < m_iINumberControlMoves: (Times+)
{

#/ NOTE: DMC model input = DMC objedt oulput and vice varsa

int index = |« lTIrno * INumnOutputs;

On AINfindex] = d{m_tOutpulhins]i-1]):

o " = &m_10 .

MAKOu1pu!Chmun[indexi = ﬁ(m mmcr\nngun-!h

(*m_pPresentOuipul]{index] = ((CIOSIream m_pOutputSireams(i-1]->Read
{m_calame),

)

¥ create Inear program objed!
m_pLProg = new ClinearProgram (iNumOutputs * m_iNumberCantraiMoves ® 2),

# add output limil constraints

ChMatrtx OLConstraints (NumOutpats * m_iNumberControlMaves.
HumOutpuls * m_iNumberControlMoves * 2):

CVector OLValues (INumOmpu!s m_iNumterControltaves):

for (1 = 1; | <3 INumOulpuls = m_iNumberControlMoves; f=+)
ftor imj = 1; | <= iNumOutpuls * m_iNumberConlroiMoves, fse)
{

OLConstraint=fiJf2 - 1) = ("m_pLower TrIDMatt{ITL
OLConstraints{i[*2] = -('m_pLower TrIDMatrix)fil[]:
)

OLValues = QuiputMiN - (*m_pPresentOulput) - ("m_pLower TrlDMatrix) *
m_pDekaMUQO):

for (1 = 1; i <= iINumCulputs ™ m_iNumberControlMoyes; bes)
m_plProg->AdeTonst raint (CConstraint [OLConstraints]i), GreaterThan,
OLVaiwes{iD);

ClLValues = OutpulMAX - *m_pPresentOutput) - (“m_pLowerTniDhuatrx) *
(*m_pDelaMUCO),

forfi=1;l<= lNl.u'r\Out;mls mJNunmrcommmmr. i*+)
m_pLProg: ce (oLe: 1. LessThan,
CLValues[T)):

i mdd input ramp mil constraints

CMatrix ORLCensiraints ((NumQuiputs * m_iNumberContro
INumCtputs * m_INumberControiMaves * 2);

CVactor OR Values (INumCitpuls * m_INumberControlMaves):

for {i = 1; 1 <= INumOutputs * m_iNumberConiroiMaves; ies)
for {im ) = 4;) <= iNumOulputs * m_iNumtorConticlMoves. [+ )
{
ORLConstrainisfil)"2 - 1] = l==f;
ORLConstraintsfii{*2] = ~G==jj:
)

ORLVaiues = MAXCulputChange - “m_pDeitaMUQO;
forgi=1;i<= INLI'HO‘LI‘I'D'.I‘JS m LanbarContmles o)
m_pLP {ORLC L. GreaterThan,
ORLVIN:Q.S[‘D}

ORLValugs & MAXQuiputChanga - *m_pDellaMUCO,

for (i = 1,1 <= iINumOulputs * m_iNumberControlMaves: i=+)
m_pLProg->AddConstraim (CConstrainl (ORLConsiraints{i], LesaThon,
ORLValuss]ih},

f nad input limit constrainls

CMalrix It Constraints (Numinputs * m_iOptimisationHarizon,
INumCutputs * m_iNumbe i

CVectcr ILValues *m_iOp {orizon);

for (I = 1: | <= [Numinputs * m_iOptimisationHaorizon, i++)
for {int j = 1; ] <= NumOulputs * m_iNumberControlboves: j+-+)
{
ILConstralats[iIi=2 - 1] = Cm_pOynMatrOg]l);
ILConstralnt[lij=2] = ~Cm_pOynMatrbg i
}

ILValuos & InputMIN - OpenloopOuipul - {'m_gDynMalrx) * ("m_pCeltaiuQo).

forfi=1 <= " oni_i0) tortzon; bes)
" > AddC int (€C int QL 5[i]. GreaterThan,
W\ alues{iD):
WWalues = InputMAX, - OpenLoopOutput - (*m_pDynMatrix) * ("m_pOeltaMUQO);
for (i = 1;) <= iNuminputs * m_lO {orizon; =)
m_pLProg->AdIG int (CC fiLe: intsfi]. LessThan, ILValves{D)
 oplimise

m_pObjectiveFn = new CVecior (NumOutputs * m_NumberControibioves * 2);

# new weighting
CVector vTemps (m_pDyoMalrin-> Trangpoaag § ° *m_pWolahting Malrx *
oopErmor);

Cpenl 3
for (I = 1; | <= m_pObjectrveFn->Siza ; le v)
("m_pObjactiveFn|i] = fabs (vTemp3{§s1) 7 2]:

1 old weighting

E-11

A for fi= 11 <n NuemGutputs * m_iNumberControiMoves © 2, tvs)
7 m_pObjeciveFm[] = 1.0;

m_pHescit = new Clector (NumOutputs * m_iNumberControlMoves * 2}

1 start LP \hread

m_bLPThreadRunning = TRUE;

CWWORD ThreadiD;

m_hThread = CreateThread (NULL, 0. ThreacFunction, this, NULL, 2 TheadiD),
i

it ('m_bLPThreadRunning L& Im_bEnatied)
[{

# adjust previous time

m_dwPrevTime = GeTickCount () - 1000 * {int}(m_(Timeintecval - 1),
)

if (m_bLPThreadFinished && m_bignorel PThreadRezul()

m_blLPThreadRunning = FALSE.
m_bLPThreadFinished = FALSE:
m_bignareLPThreadResull = FALSE;
delale m_plPreg;
delete m_pResult;
delete m_pOblectiveFn;
delele m_pDellabuQO,
delete m_pPresentOulpul;

}

if {m_BLPThreadFinished &4 Im_bignorelLPTiveadResull)

(
m_bLPThreadRunning = FALSE;
m_bLPThreadFinished = FALSE;

i (M_ILPEror == SIMPLEX_NOFEASISLESOLUTION)

i notify user of problem
VAL i 4 () SuatusBarTed No solution n LP
canstraints™);
MessageBeep (MB_ICONASTERISK),
)

If (m_ILPEor == §IMPLEX_OBJECTIVEUNBOUNDED)
{

N nolity user of

((EManWnd ARG etMainWnd 0)->SelStatusBarText (LP obj Niresion
unboundedT);

MessageBeap JAB_ICONASTERISK),

}
if {m_ILPEmor == SIMPLEX_NOERROR) I ssax MM0O0I920

# get number of oulputs
Int iINymCuiputs = m_eaQuipul StreamNames GelSize (; # outputs from
OMCObjea

I calcudate defta oulputs

CVector DeltaM ("m_pDeltaMUOO):

for (ind [ = 1 i <= iNumDutputs * m_[NumberContrelMoves, [e+)
DeitaM[] »= ("m_pResult)["2-1] - ('m_pResutyi"2].

m_PlotwWnd Plot (80shal):

it st outputs of DMCObjest
Tor {i # 1;1 <= INumOutpuls, o+

double m_{Output = {'m_pPresentOutputlji] » DelaM{i}:
m_iOutput = max {d{m_tOutputhinafi- 1) . m_fOutput); I Clip In case wan!

m_Output = min (d(m_tOutputMaxsfi-1]) , m_Cutput);
{{CiOStreamJm_pOutpul Sireamafi-1D->YWrite (m_csName, m_Output);

delete m_pLProg:
delele m_pResult:
delete m_pObjectiveFn;
delete m_pDchatdUQO,
delote m_pPresentOulpul;
}
)

void COMCObjvet LinearProgramThread (vokd)
l
double Minimur,
m_ILPEmer = m_plLProg->Minimiza (*m_pOtjectiveFn, *m_pResult Minimumy),
m, u.Panude.shed- TRUE,
}

veid COMCOUject: $+iEnabls (BOOL
0

=10
1( (BEnabled &4 im_bEnabled)
{

il scan to sea whether any coatolied streams have besn usurped while
iF this object was disabled

BOOL bTemp = TRUE;
Tor {int i = 0; | < m_pinputStreams.GetSlze (; l++)
I {{(cic Jm_pinp {iD->Gel 0 1= "User)
vTemp = FALSE:
forisBii< me&m&ﬁufsﬁu Qileey
i (({CIOS ream")m_pl vamns{i->GetControler () = "User?)
pTemp = FALSE;
d (oTemp)
{

o {One or more controfied gireams are being
controlied by something else.”,
“Error),
retum;

) E
# connect to controlied sireams

for (| = 9; | < m_pinputSireams GetSize Q. I++)
{(CrOStreamTm_pinputStreams{il->Connect (m_tsNarne);
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Appendix E Extracts of the Integrating ADMC Alsorithm from the SCADA Svstem

)
i {(m_tUseAdagy) | (m_bUseAdapt_last))
{

I 5ot leayt squares inverse matiix
"m_pleanSarionddatrixy =
{m_pOynMatioe» Transpoded () * "m_pWeighungMatne = “m_pOynMatne
*m_pMaoveSupMatrod) Inverse () = m_pOynhalre> Transposad () *
“m_pWeightinghatrie
)

i Updala
m_bUseAdapl_last = m_bUseAdapl.

fi Tes: sasks
N CVedor Test(iNumlinpuls), /essssss
i Test = ("m_pBOLAad_orig) " "'m_pDoublePautOutputChangesad), //mssssas

# for {im 1 k<= iNumInputs; [s+)

T

it m_pSadiffi] = 0.0:

n

il #ax"m_pPaad) = m_pPead) - m_pDmaas + (("m_pGadd) + (‘m_pGad?) +
'm_pGady) - ("m_gGad}) * ("m_ppad);

i ("m_pPead) = Tes! - {"m_pGad2) * ("m_poad_srig):

It for (n1; ke= iNuminpuls; is =)

ny

2 Cm_pGanil] = 1.0

iy

JuE2EMNO01216 Test Output
/) char Values{100];
1 Test = ("m_pBOL_INTEG) * ("AccumulatedMovelNTEGCCORRad),
I speintti(Values, “Tsl1=%9.8! Ts2=%9,6! FEX1=%9.8/ FBR2=%0.8! OM=%3 &/
g?;z;ns.er‘ruu:l].rmp}.rm _pSPead)|1).{'m_pSPead)[2] ('m_pPead][\].0'm_pPea
’ # sprinti(Values, "edif1=%9 Bf ediff2=%9.8r" (*m_pPead){1](*m_pPead){2]).
I ({CMainWnd JALGetMainiWnd O)->SetStatusBarTest (Values),

b




