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Abstract  

 
Interest in planting Jatropha curcas L. for the production of biodiesel is growing 

exponentially. The properties of the crop and its oil have persuaded investors to 

consider J. curcas oil as a substitute for fossil fuels. However, this plant is still 

undomesticated, basic agronomic properties are not thoroughly understood and the 

environmental effects on growth have not been investigated. This thesis investigated 

different approaches that may contribute to improving the productivity of this plant.  

 

 

Seed germination and methods of propagation are usually the first consideration in any 

plant development programme. The effects of aerosol smoke, smoke water, potassium 

nitrate, naphthalene acetic acid and indole-3-butyric acid on germination and seedling 

growth of J. curcas were investigated. Seed coat removal accelerated water imbibition 

and germination occurred within 48 h. Seeds exposed to aerosol smoke failed to 

germinate over the whole study period of three months. There were no significant 

differences in total germination between the treatments and the untreated control (intact- 

and shelled-seed). However, shelled-seeds had a shorter mean germination time. The 

seedlings were subsequently sown in trays under shade house conditions and different 

seedling growth traits measured after three months. Smoke water, potassium nitrate and 

naphthalene acetic acid produced significantly heavier seedlings with longer stems and 

roots, wider stems and a higher vigour index compared to the control treatments. Smoke 

water, potassium nitrate and naphthalene acetic acid stimulated seedling growth and 

vigour of J. curcas. This opens the possibility of applying these treatments to produce 

quality seedlings for large scale planting and accelerated plant establishment in 

production orchards. 

 

 

Effective pollination is a prerequisite for many crops to increase seed-set and fruit 

production. Experiments were conducted to determine factors that could influence seed 

production in this potential biofuel seed crop. Controlled pollination experiments showed 

that plants required pollinator visits for seed production and were genetically self-



x 
 

compatible. Pollen-supplementation did not lead to increased fruit set, suggesting that 

seed production in the study population was not pollen-limited. Both male and female 

flowers produced nectar and were highly attractive to honeybees. These insects were 

effective pollinators of J. curcas, as shown by experiments in which flowers exposed to 

single or multiple visits by honeybees set significantly more fruit than those from which 

visits were precluded. Pollinator-mediated self-pollination led to marginally lower levels 

of seed production relative to cross-pollination. Progeny from selfed plants had 

significantly shorter roots than progeny of outcrossed plants. However, in general, there 

was little evidence of inbreeding depression. The present results provide empirical 

evidence that honeybees are effective pollinators of J. curcas. Fruit arising from self-

pollination were almost as numerous and as large as those arising from cross-

pollination, suggesting that promotion of cross-pollination does not have to be a priority 

in orchard management for fruit yield. 

 

 

Manipulation of pollen development and function is of vital importance for crop 

development and improvement. Experiments were conducted to investigate pollen 

viability, in vitro pollen germination and in vivo pollen tube growth in J. curcas. Light and 

fluorescence microscopy were employed to examine the different developmental 

stages. It was possible to determine pollen viability and distinguish between fresh and 

dead pollen using 2,3,5-triphenyltetrazolium chloride (TTC). Pollen germination was 

significantly higher in an agar-based medium composed of sucrose, boric acid and 

calcium nitrate compared with the control treatment (distilled water). Supplementation of 

IAA to the different media significantly increased pollen germination and pollen length 

compared with the control treatment. Pollen from hermaphrodite flowers had a lower 

viability, lower germination rates and shorter pollen tubes, with abnormal shapes, 

compared to the pollen from male flowers. Pollen tubes from both self- and cross-

pollinated flowers entered the ovary within 8 hours after pollination (HAP). However, at 

6 HAP, the pollen tube length and growth rate were significantly higher in cross- 

compared to self-pollinated pollen. Our results suggest that TTC is a reliable test for 

pollen viability; boric acid, calcium nitrate, sucrose and addition of IAA are essential and 

beneficial for pollen germination in this plant. Pollen germination and pollen tube growth 
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were not inhibited, nor interfered with, as a result of self-pollination treatments. During, 

both types of pollination, fertility is maintained as evidenced by ovule penetration by 

pollen tubes. This suggests that type of pollination has no influence on the success of 

fertilization in J. curcas. 

 

Manual pruning is one of the major management practices in commercial plantations of 

J. curcas, resulting in production of more branches and thus increased potential for 

more inflorescences leading to a higher seed yield. Experiments were conducted to 

determine the response of J. curcas plants to manual pruning under summer and winter 

conditions. The results showed that manual pruning under both conditions significantly 

increased the number of branches per plant. However, there were no significant 

differences in number of branches between winter and summer manual pruning. Winter 

pruning, however, had a significantly wider crown diameter compared to the control and 

summer pruning. Both treatments produced significantly less fruits/per plant in the 

subsequent season compared to the un-pruned control. This study revealed that winter 

and summer manual pruning may be suitable practice to promote branching.  

 

Manual pruning, however, is time consuming, labour intensive and expensive. A study 

was conducted to determine the potential of different plant growth regulators (PGRs) to 

increase the number of lateral branches of J. curcas plants. A single foliar application of 

BA (benzyladenine) at 12 mmol l-1 significantly increased branches in both the pot (4) 

and field (13.2) trials compared to manual pruning (MP) (1.8 and 5.7 respectively) and 

control (no new branches) plants. In the field, treatment with TIBA (2,3,5-triiodobenzoic 

acid) (1 mmol l-1) significantly increased the number of branches (15.9) after seven 

months from application. Of all the PGRs examined, DK (Dikegulac) (2,3:4,6-di-O-

isopropylidene-2-keto-L-gulonic acid)  at 2 mmol l-1 produced the maximum number of 

branches (18) in the field seven months after application. Concentrations of 2 and 3 

mmol I-1 of MH (Maleic hydrazide) (1,2-dihydro-3,6-pyridazinedione, coline salt) 

significantly increased the number of branches, four and seven months after spraying in 

both the pot trial in the shade house and field respectively. Under field conditions J. 

curcas plants responded better to all the PGRs (DK < TIBA < BA < MH) when treated 
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once, with insignificant variations of other growth parameters. This study indicates that 

a single foliar application of PGRs under field conditions can be an alternative method 

to MP for increasing the number of lateral branches of J. curcas plants. 

 

 

The field chemical pruning experiment was continued to determine the potential 

subsequent effects of the different PGRs on seed production. In the subsequent year 

following the single foliar application, the parameters of flowering, fruit set, fruit 

characteristics, total oil content and free fatty acid (FFA) content were evaluated. 

Number of flowers per plant and number of fruits per bunch were significantly affected 

by the different treatments. However, there were no variations in the degree of fruit set. 

A single foliar application of BA (6-benzylaminopurine) produced more flowers per 

plant, more fruits per bunch, heavier and bigger fruits and seeds with more oil 

compared to MP (manual pruning). TIBA (2,3,5-Triiodobenzoic acid) produced 

significantly more flowers per plant and heavier fruits compared to the control and MP 

treatments. However, it produced significantly bigger fruits with more seeds and a 

higher oil content than MP. DK (Dikegulac) (2,3:4,6-di-O-isopropylidene-2-keto-L-

gulonic acid) produced more flowers per plant and seeds with high oil content 

compared to the control and MP. However, it produced more fruit per bunch and more 

seeds per fruit compared to MP. MH (Maleic hydrazide) produced more flowers per 

plant, heavier and bigger fruits with numerous, heavier and oil rich seeds compared to 

the control and MP. This study indicates that foliar application of PGRs can be used in 

J. curcas to increase seed production and improve fruit quality. 
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1            Introduction 

 

1.1     JATROPHA CURCAS – A POTENTIAL SEED OIL CROP FOR 

BIODIESEL 

 The rapid rise in crude oil prices and the geopotential uncertainty associated with 

ensuring uninterupted supplies have compelled researchers, economists and politicians 

to look for renewable substitutes. Liquid biofuels are widely recognized to be technically 

feasible alternatives. However, the jury is out to determine the environmental footprint of 

biofuels and the surrounding frenzy has often led to the announcement of unsustainable 

support prices for feedstock and nonviable procurement prices for the finished product 

(SRINIVASAN, 2009). Interest in using Jatropha curcas L. as a feedstock for the 

production of bio-diesel is rapidly growing. The properties of the crop and its oil have 

persuaded investors, policy makers and clean development mechanism (CDM) project 

developers to consider J. curcas as a substitute for fossil fuels to reduce greenhouse 

gas emissions. However, J. curcas is still an undomesticated plant in which many basic 

agronomic properties are not thoroughly understood and the environmental effects on 

cultivation have not been investigated yet (ACHTEN et al., 2008).  

 

Jatropha curcas is a multipurpose plant with many desirable attributes and considerable 

potential. It is a tropical plant that can be grown in low to high rainfall areas and can be 

used to reclaim land, as a hedge and/or as a commercial crop (OPENSHAW, 2000). 

Jatropha curcas is attractive for many reasons: it is a renewable energy source; 

balances CO2 in environment; produce less harmful emissions than fossil fuel; the fuel 

production technology  is simple; it is a non-edible oil source; is a perennial crop having 

a 30 year long life span; high oil content in seeds comparative to other biodiesel 

sources; is a disease-resistant plant; is not over-sensitive to climatic change; can be 

grown in arid areas; and due to its dormancy characteristics, it survives in various 

weather conditions (DANGE et al., 2006). However, there are also many problems with 

this plant: lack of good quality seeds and planting material; most of the information is 
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based on assumptions; non-availability of genuine and authentic data and information; 

no tried and tested cultivation experience; variable output; variable oil content; long 

gestation period of crop; no model available for effective use of by-products; and it 

currently has no economic viability as a mono-crop (DANGE et al., 2006). This is 

expected to change as fossil fuels become scarce and thus more expensive.  

 

1.1.1 Common names, taxonomy and botanical descript ion 

There are many names for J. curcas, such as: Physic nut (HELLER, 1996; ACHTEN et 

al., 2008; GRESSEL, 2008); Black vomit nut (MAKKAR et al., 1998; GRESSEL, 2008); 

Purging nut or Purge nut (SIRISOMBOON, 2007; GRESSEL, 2008); Habb-EL-Meluk 

(MAKKAR et al., 1998); Barbados purging nut (MAKKAR et al., 1998). 

Physic nut, Jatropha curcas L. (Euphorbiaceae), is a tropical plant native to Mexico and 

Central America (HELLER, 1996). The genus Jatropha L. is a morphologically diverse 

genus of 160 – 175 species of trees, shrubs, rhizomatous sub-shrubs or geophytes 

having a narrow geographic range in seasonally dry tropical regions (DEHGAN, 1984). 

Jatropha curcas was placed in Jatropha subgenus Curcas (Adans.) Pax, section. Curcas 

(Aans.) Griseb. Subgenus Jatropha includes all African (except two species), Indian 

(except one species), South American, Antillean, and two relict North American taxa. 

Subgenus Curcas included all of the Mexican, one Costa Rican, two African and one 

Indian species (DEHGAN, 1984). DEHGAN (1980, 1982); DEHGAN and CRAIG (1978); 

DEHGAN and WEBSTER (1979) considered J. curcas the most primitive member of the 

genus because it has palmately lobed leaves, an arborrescent growth habit, and 

occasional hermaphroditic flowers. Evolution was thought to have proceeded toward 

specialization in vegetative structures, culminating in a facultatively annual growth habit 

in section Jatropha in a rhizomatous-shrub habit concomitant with polyploidy (2n = 4x = 

44) in section Mozinna (Subgenus Curcas). In subgenus. Curcas the inflorescence was 

drastically reduced to a few or solitary terminal or lateral flowers together with a gradual 

change from monoecy to dioecy. The evolution of flowers in subgenus Jatropha resulted 

in reduction and arrangement of stamens (from ten to eight, uni- or bi-seriate, 

monodelphus or free) without change in the number of locules of the fruit, while in 
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subgenus Curcas (except section Curcas) the number and arrangement of stamens 

remained unchanged, but the locules of the fruit and stigma lobes were progressively 

reduced from three to one (DEHGAN and WEBSTER 1979). These reductions and 

modifications coincided with South to North latitude and increasing aridity (DEHGAN, 

1982). 

Jatropha curcas is cultivated in many Latin American, Asian and African countries as a 

hedge. It is a small tree or large shrub, which can reach a height of up to 5 m (HELLER, 

1996; GÜBITZ et al., 1999; MARTÍNEZ-HERRERA et al., 2006). The bark is smoothly 

gray and excudes a whitish coloured water latex when cut (SINGH et al., 2006). Leaves 

are smooth, heart shaped, 4-6 lobed and 10-15 cm in length and width, initially light 

violet later on yellowish green and at maturity they become dark green, arranged 

alternately, and leaf fall occurs in the winter (GOUR, 2006). The plant is monecious and 

flowers are unisexual; occasionally hermaphrodite flowers occur (DEHGAN and 

WEBSTER, 1979). Plants flower during the wet season and two flowering peaks are 

often seen. However, in humid regions flowering occurs throughout the year (SINGH et 

al., 2006). Inflorescences are formed terminally on branches and are complex, 

possessing main and co-inflorescences. Normally, the inflorescences produce a central 

female flower surrounded by a group of male flowers. In a few, the places where female 

flowers are expected are substituted by male flowers (RAJU and EZRADANAM, 2002). 

The average male to female flower ratio is 29: 1. In a previous study CHANG-WEI et al. 

(2007) reported that the male flowers opened first and a few flowers bloomed each day 

in each raceme. A large number of female flowers opened from day-3 to day-5 after the 

male flowers opened. Male flowers are small and salver-shaped. Sepals and petals are 

five each, free; the latter are connivent at the flower base, forming a short tube (RAJU et 

al., 2002). There are five roots: one taproot and four lateral roots (HELLER, 1996).  After 

pollination, the inflorescences form a bunch of green ellipsoidal fruits which produce 

grey-brown capsules, 4 cm long and generally tri-halved, each comprised of one seed. 

Seeds are black, about two cm long and one cm thick. The seeds mature three months 

after flowering (SINGH et al., 2006). 
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1.1.2 Distribution 

Jatropha curcas is native to Central America and Mexico where it occurs naturally in the 

forests of coastal regions. It is cultivated in Africa and Asia (BENGE, 2006). It is thought 

to have been distributed from the Caribbean by Portuguese seafarers via the Cape 

Verde Islands and Guinea Bissau to other countries in Africa and Asia (HELLER, 1996). 

However, J. curcas is almost pantropical now, and although toxic, it is widely planted as 

a medicinal plant. A non-toxic variety is reported to exist in Mexico and Central America 

(HENNING, 2000). It was reported that J. mahafalensis which is endemic to Madagascar 

has equal energetic promise. In many parts of Africa J. curcas is widely planted as a 

hedge or living fence to protect field crops since the foliage is toxic to animals (BENGE, 

2006). 

 

1.1.3 Ecology 

Jatropha curcas is able to thrive in a number of climatic zones with rainfall 250–1200 

mm. It is well adapted to arid and semi-arid conditions and has low soil fertility and 

moisture demands (KATWAL and SONI, 2003). Jatropha curcas is not self-propagating, 

it has to be planted (HENNING, 2000). The current distribution shows that introduction 

has been most successful in drier regions of the tropics with an average annual rainfall 

between 300 and 1000 mm. The plant occurs mainly at lower altitudes (0-500 m). It is 

not sensitive to day length. Jatropha curcas can withstand only a very light frost that 

causes it to lose all of its leaves, and the seed yield will probably sharply decline 

(BENGE, 2006). 

 

1.1.3.1 Soils and soil fertility  

Jatropha curcas grows best on well-drained soils with good aeration but is well adapted 

to marginal soils with low nutrient content; although in heavy soils root formation is 

reduced (BENGE, 2006). It can also grow on moderately sodic and saline, degraded 

and eroded soil (KATWAL and SONI, 2003). Jatropha curcas can grow in clay soils if 
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water logging or saturation occurs due to climatic conditions. In general heavy clay soil 

that swell and shrink (Montmorillonite) are not suitable because root system 

development is impaired. Sandy loamy soils seem to be best (OUWENS et al., 2007). 

Acid (PH < 6) or alkaline (pH > 8.0) soils are not suitable for J. curcas.  Jatropha curcas 

can be well established on marginal soils and can reach reasonable production, if proper 

care is given to boost plant growth in the initial growth phases and it will maintain 

production with additional inputs (CHAUDHARRY et al., 2007; PATOLIA et al., 2007a; 

PATOLIA et al., 2007b, OGUNWOLE et al., 2007). As a perennial crop, J. curcas invests 

a decreasing fraction of its carbohydrates into the woody standing biomass over time. If 

properly pruned, the seasonal requirements for nutrients are only needed for the 

seasonal formation of branches, leaves, flowers, fruits and seeds. If senescent plant 

material, like leaves, flowers and pruned branches are left in the field or incorporated in 

the soil as mulch, they are slowly decomposed, resulting in the release of the nutrients 

back into the soil where they are available again for crop uptake. The toxic components 

(phorbol esters) of J. curcas decompose quickly as they are very sensitive to elevated 

temperatures, light and atmospheric oxygen (NIH, 2007). 

 

1.1.3.2 Rainfall and humidity  

Ranging from tropical very dry to moist through subtropical thorn to wet forest life zones, 

J. curcas grows well with more than 600 mm of rainfall per year and it withstands long 

drought periods. However, when rainfall is less than 600 mm it cannot grow except in 

special conditions like on Cape Verde Islands, where the rainfall is only 250 mm, but the 

humidity of the air is very high (rain harvesting) (BENGE, 2006). Jatropha curcas can 

survive precipitation as low as 300 mm/year by shedding its leaves, but it does not 

produce well under such conditions. The minimum rainfall to produce fruits is 600 

mm/year and the optimal rainfall is 1000 – 1500 mm/year . Rainfall induces flowering as 

well as drought. A short period of drought might induce flowering. The cycle of flowering 

can thus be influenced using irrigation. High humidity or high rainfall can result in more 

fungal attacks to which the plant is sensitive (JONGSCHAAP et al., 2007). 
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1.1.3.3 Light and photoperiod 

Jatropha curcas is not sensitive to day length (BENGE, 2006). Adult leaves of J. curcas 

are well adapted to high radiation intensities (BAUMGART, 2007). 

 

1.1.3.4 Water use efficiency 

To produce a mol of J. curcas oil, 57 mol CO2 are needed in the photosynthesis process 

(JONGSCHAAP et al., 2007). 

 

12 H2O + 6 CO2 + light          C6H12O6 + 6 O2 = 6 H2O. 

 

For the photochemical production process J. curcas oil needs 57 C (≈12 g mol-1), 107 H 

(≈1 g mol-1) and 6 O (≈16 g mol-1). A mmol of J. curcas oil therefore, weight about 0.888 

g. at a water use efficiency of about 3 mmol CO2 per mmol H2O, about 57/3 = 19 mmol 

H2O ( 0.342 g H2O) is needed to produce 0.888 g of oil. This is equivalent to 0.342/0.888 

= 0.385 g water. g-1 oil, or 0.385 liter water kg-1 of oil, or 385 g water kg-1 oil, or is (at 

density of about 0.92 kg l-1) equivalent to 0.345 liter water liter oil-1.  This value does not 

reflect the real water requirements and water use efficiency of J. curcas, as transpiration 

for plant cooling and other processes, such as transport functions, requires water as well 

(JONGSCHAAP et al., 2007). 

 

1.1.4 General uses 

All parts of J. curcas can be used for a wide range of purposes. Exploitation of J. curcas 

was described by GÜBITZ et al. (1999); OPENSHAW (2000); AUGUSTUS et al. (2002); 

and WOOD (2005). 
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1.1.4.1 The whole plant 

The plant is widely cultivated in the tropics as a living fence in fields and settlements. 

This is mainly because it can easily be propagated by cuttings, can be densely planted 

for this purpose, the species is not browsed by cattle and it has a long life span 

(HELLER, 1996; SIRISOMBOON, 2007). Because of its drought tolerance and its lateral 

roots near the surface J. curcas is often used for anti-erosion measures, either in the 

form of a plantation together with other species, or in the form of hedges to reduce wind 

speed and protect small earth dams or stone walls against runoff water (HELLER, 

1996). 

 

1.1.4.2 The fruits and seeds                                                     

Fruit hulls have no significant value as fodder, so it is best to use them as mulch or 

compost. They can also be burnt in fuel-efficient cooking stoves. The seeds can be 

processed (oil, press cake) or sold directly as seed or for industrial use. The seeds 

contain 32 to 35 % oil (HELLER, 1996).  

 

1.1.4.3 The pressed cake                                                         

With mechanic oil expellers, up to 75 - 80 % of the oil can be extracted. The press cake 

constitutes some 70 - 80 percent of the total mass of the seeds, depending on the 

extraction rate. The press cake cannot be used in animal feed because of its toxic 

properties. Because of its nitrogen (6 % N2), phosphorous (2.75 % P2O5) and potassium 

(0.94 % K2O) content, which is similar to that of chicken manure, it is valuable as organic 

manure. In practical terms, an application of 1 t of J. curcas press cake is equivalent to 

200 kg of mineral fertiliser per hectare ("bulkblend" 12:24:12). Due to its residual oil 

content, the J. curcas press cake also has insecticidal properties, and reduces the 

number of nematodes in the soil (HELLER, 1996). 
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1.1.4.4 Medicinal uses 

All parts of the plant, including seeds, leaves and bark, fresh or as a decoction, are used 

in traditional medicine and for veterinary purposes. The oil has a strong purgative action 

and is also widely used for skin diseases and to soothe pain such as that caused by 

rheumatism (1996). The sap (latex) has antimicrobial properties against Staphylococcus 

and Streptococcus spp. Latex from the stem is used to arrest bleeding of wounds 

(HELLER, 1996; SIRISOMBOON, 2007). Some of the medicinal uses according to 

HELLER 1996 are: 

 

• A decoction of leaves is used against cough and as an antiseptic after birth; 

• Branches are used as chewing sticks in Nigeria; 

• The sap flowing from the stem is used to arrest bleeding of wounds. This is due to  

wound-healing properties of curcain, a proteolytic enzyme isolated from latex; 

• Latex has antimicrobial properties against Staphylococcus aureus, Escherichia 

coli, Klebsiella pneumoniae, Streptococcus pyogenes and Candida albicans; 

•  It has coagulating effects on blood plasma;  

•  Extracts from physic nut fruits showed pregnancy-terminating effects in rats. 

However, there was uncertaininty whether the embryotoxic effect is due to a 

specific action or a result of general toxicity;  

• A methanol extract of physic nut leaves afforded moderate protection for cultured 

human lymphoblastoid cells against the cytopathic effects of human immuno 

deficiency virus; and 

• Extract of the leaves showed potent cardiovascular action in guinea pigs and 

might be a possible source of beta-blocker. 
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1.1.4.5 Plant protection and insecticides  

Aqueous extracts from the leaves were effective in controlling Sclerotium sp., an Azolla 

fungal pathogen. Ground seeds showed molluscicidal activity against the host of liver 

fluke (Lymnaea auricularia rubiginosa), a disease which is widely distributed in the 

Philippines and also against the hosts of Fasciola gigantea and Schistosomia in 

Senegal. Extracts from crushed whole seeds showed molluscicidal activity against 

several schistosome vector snails. Phorbol esters are probably the active agents in the 

different extracts used (Heller, 1996). 

 

1.1.4.6 Oil 

The oil can be used in soap production giving a very good foaming. The white soap has 

a positive effect on the skin, partly due to the glycerin content. Research has been 

conducted into developing cookers that would run on plant oil, but no practical results 

have yet been achieved. Well-refined oil is a good basic material for cosmetics, but it is 

not yet used on a large scale. Jatropha curcas oil and press cake has been used to 

produce biocides (insecticide, molluscicide, fungicide and nematicide) (HELLER, 1996). 

The active components are phorbol esters, which gives the J. curcas press cake and oil 

its toxic property (HELLER, 1996). The oil can be directly used in older diesel engines or 

new big motors running at constant speed (pumps, generators). Blending with fossil 

diesel and/or other fossil fuels are other options. The oil can also be transesterified into 

J. curcas (m)ethyl esters that can be used in conventional diesel engines or diesel 

engines with adapted parameters (ACHTEN, 2008).  
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1.1.5 Cultivation and cultural practices 

1.1.5.1 Propagation, sowing method and spacing 

1.1.5.1.1 Propagation by seeds 

Germination is fast and under favourable conditions it is completed in 10 days. Seeds 

are sown in the nursery beds in lines at an interval of 15 cm with a seed depth of 4 cm. 

Seed to seed distance in a line is kept at 5 cm. However, it was reported that the 

overnight soaking of seeds in water improves the germination percentage. Germination 

starts after 5-6 days and continues for 10-15 days. Dry seeds can also be sown but the 

germination processes are delayed (SINGH et al., 2006).  

 

1.1.5.1.2 Propagation by cuttings 

Cuttings can be taken from one-year-old shoots. The best cuttings are taken from the 

middle of the branch.Thick strong shoots of 20-25 cm long with 4-5 buds are preferable 

as they give nearly 80-90% rooting. The cuttings are planted in raised beds 3-5 m long 

and 1.5 m wide. The soil is mixed with powdered and well rotten farm yard manure. The 

cuttings are planted closely with a spacing of 15-20 cm. The beds are watered regularly. 

For the quick establishment of hedges and plantations for erosion control, planting 

cuttings directly is recommended, whereas for long-lived plantations and vegetable oil 

production, plants propagated by seeds are better. The seeds germinate within a week 

and become ready for transplanting in 45 days. Plants grown from seed develop a 

typical tap root and four lateral roots (SINGH et al., 2006). 

 

1.1.5.2 Fertilization 

Fertilization by organic or inorganic fertilizer increased seed yield by 100% (PATOLIA et 

al., 2007a; PATOLIA et al., 2007b). Fertilization experiments on marginal land in India 

showed that fertilization with nitrogen and phosphorus significantly increased plant 
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height, leaf area index (LAI), total above ground dry matter, seed yield and oil content in 

the second year (PATOLIA et al., 2007a). Fertilization with J. curcas seed cake 

increased seed yield (GOSH, et al., 2007). Inoculation with mycorrhiza significantly 

increased the uptake of phosphorous and microelements from ash (SHARMA, 2007b).  

 

1.1.5.3 Irrigation 

Irrigation is required for seedlings, especially during the first 2-3 months after planting. 

The requirement for water is contingent upon local soil and climatic conditions. During 

the dry period, life-saving irrigation may be given at time intervals depending on the 

requirement. Drip irrigation is not ideal as it induces too much vegetative growth. The 

critical stages of irrigation are: at transplanting, dry spells during summer in the first year 

of plantation for survival in rain-fed areas, and at flowering (to control sex switching and 

promote anther dehiscence). Frequency of irrigation needs to be calculated according to 

economics and water availability. Soon after planting, irrigation followed by laying of 

newspaper around plants have been found very effective for the initial establishment of 

saplings. Any material available as mulch will help to conserve moisture for 

establishment of saplings (GOUR, 2006). 

 

1.1.5.4 Pruning 

Crop architecture plays an important role in J. curcas. Proper pruning helps to produce 

more branches and healthy inflorescences to enhance good fruit set and ultimately 

improve yield. The pruning of terminals is essential in six-month-old plants to induce 

lateral branch formation. However, pruning at 30 cm height is ideal to manage. Likewise 

the secondary and tertiary branches are to be pruned at the end of the first year to 

induce a minimum of 25 branches and 35-40 branches at the end of the second year. 

Periodical pruning can be carried out depending upon the vegetative growth of the 

plants (GOUR, 2006). However, the pruning should be done when the tree sheds leaves 

and enters into a period of dormancy, preferably during the winter season. The trees are 
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kept short to better manage them during flowering and fruiting. This, also provides ease 

of movement during harvesting. Canopy management is advisable in trees with terminal 

bearing. Plant types with a branch in every leaf axil should not be pruned vigorously. 

The entire plant has to be cut to ground level leaving a 45 cm stump, once in 10 years. 

Re-growth is quick and yielding starts again in about a year (GOUR, 2006). 

 

1.1.5.5 Harvesting 

For oil purposes the seeds are harvested at maturity. The capsules are harvested when 

they turn yellow. The pods are collected manually and seeds are separated 

mechanically or manually. Seeds for planting purposes are dried in sheds, while for oil 

purposes they should be dried in the sun for four days (6-10% moisture level) before 

packing (GOUR, 2006).  

 

1.1.5.6 Post-harvest processes 

Seeds stored in ambient conditions can maintain their viability for 7-8 months. Longer 

storage affects seed viability. Therefore, seeds being used for plantation purposes need 

to be kept at low temperatures to protect them against loosing viability and for effective 

emergence. The oil industry requires a continuous supply of raw material for oil 

extraction and esterification. Seeds must be properly stored and prepared for extraction, 

to maintain a high quality in the final oil product. Long storage of seed is reported to 

affect oil quality and quantity hence long storage should be avoided. Drying of seeds to 

4% moisture content enhances storage life (GOUR, 2006). 

 

1.1.6 Pests and diseases 

The occurrence of diseases and pests are highly region specific. Jatropha curcas has no 

serious pest or disease problem at present. However, this may change when it is grown 

in commercial plantations with regular irrigation and fertilization (GOUR, 2006). The toxic 
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characteristics of J. curcas, caused by constituents in leaves, stems, fruits and seeds 

may suppress damaging effects from some predators. However, in plantations 

especially under humid conditions, serious problems have been reported with fungi, 

viruses and attack by insects (SHARMA and SARRAF, 2007a).  

 

1.1.6.1 Diseases 

Collar rot may be a problem at the start of cultivation. This can be controlled with 0.2% 

copper oxy chloride (COC) or 1% Bordeaux drenching. Rot may become a serious 

problem in some areas during monoculture under irrigated conditions. It is caused by 

Macrophomina phaseolina or Rhizoctonia bataticola. Rotting at the adult stage has been 

observed in soils saturated with moisture for a long period of time. Cercospora 

jatrophae-curcas leaf spots are reported to be associated with this species. The rot can 

be controlled by application of 1 % Bordeaux drenching. Minor diseases such as root rot 

(Fusarium moniliforme), damping off (Phytopthora spp.) and leaf spots are reported to 

be caused by Helminthosporium tetramera and Pestalotiopsis sp. (GOUR, 2006). 

 

1.1.6.2 Pests  

According to GOUR (2006) the major pests affecting the plant are: Beetles, hoppers and 

leaf minor, blue bug, locust, green stink bug bark eater, capsule borer; and mites.  

 These pets can be controlled by: 

• Mixtures of vitex, neem, aloe, Calatropis or Rogor at 2 ml l-1 of water; 

• Endosulfan at 3 ml per litre of water; and 

•  Wettable sulfur against mite.  
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1.1.7 Yield and economics 

Reliable yield predictions still forms a major problem as there are no reliable field data 

on dry J. curcas seed yield ha−1 yr−1 in a given set of conditions and at a certain level of 

input. In order to tackle this knowledge gap, it is necessary to systematically monitor the 

year-to-year seed yield in operational plantation conditions along with the influencing 

factors (ACHTIN, 2008).  

 According to OUWENS et al. (2007) yields of J. curcas range from extremely low to 

high. These variations may be explained by differences in the following growth and 

production related factors: 

• Age, yields increase with age. It is therefore important to indicate at which age 

yields have been measured;  

•  Soil conditions, waterlogged soils and frost susceptible areas are not suitable for 

J. curcas which seems to be very sensitive to limited oxygen supply to roots;  

•  Water availability, differences in rainfall, length of the dry season and irrigation 

practices; 

•  Nutrient availability, due to different soil fertility levels; 

•  Pests and diseases, in different degrees of incidence and length, according to 

the ecological conditions; and 

• Genetic factors, This is a common feature; a strict selection of seeds or cuttings 

leads to more uniformity in offspring and higher yields per plant. 

However, ACHTIN (2008) highlighted the following points regarding J. curcas yield: 

• The earlier reported figures of Jatropha curcas seed yield exhibited a very wide 

range (0.4–12 t ha−1 yr−1) and are not coherent mainly because of incorrect 

extrapolation of annual yields of individual trees to ha−1 yr−1 yields;  

• The effect of spacing, canopy management and crown form on the yield is not 

known; 
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• There are positive trends in the influence of both average annual rainfall and age 

on seed yield. Mainly the upper boundary of the yield as a function of the rainfall 

is interesting and shows a clear difference between low rainfall and high rainfall 

regimes; 

• Jatropha curcas has not yet undergone a careful breeding programme with 

systematic selection and improvement of suitable germplasm. This is why it can 

still be considered a wild plant that exhibits great variability in productivity 

between individuals; 

• Where good sites (good soil and average annual rainfall of 900–1200 mm) and 

optimal management practices are used, 5 t dry seed ha−1 yr−1 can be achieved; 

• Jatropha curcas is a hardy and highly adaptable plant that can grow in marginal 

soils from an average annual rainfall of 250 mm. As such J. curcas is acceptable 

to reclaim wasteland. However, there is uncertainty about its ability to produce 

ecologically and socio-economically viable amounts of energy in these harsh 

situations; and 

• Average shell:kernel ratio on mass basis of J. curcas seeds is approximately 

37:63. The kernel mainly contains crude fat and protein and has an average 

calorific value of 30.4 MJ kg−1. The shell is mainly composed of fibre and has a 

calorific value of 19.4 MJ kg−1. Based on these figures the average oil content of 

dry seed on mass basis is 34.4%. 

Table 2.1  represents published data on J. curcas yield. Variations in yield and plantation 

condtitions are recorded. 
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Table 2.1 Data yield of Jatropha curcas seeds (t/ha) from different countries, patterns, a ge and growing conditions. 

Yield (t/ ha) Country Pattern Age Condition Reference: 

0.8 – 1.0 Mali Hedge ─ ─ HENNING, 1998 

> 1  Crop 1 – 2 year 500 – 600 mm y-1 EULER and GORRIZ, 2004 

3.2 – 4.1 India Crop 1st year Rain fed marginal lands LAL et al., 2004 

0.335 Brazil Crop 12 months Drip irrigation, spacing 4x3 m, density 

833 plant ha-1 

MATTANA SATURNINO et al., 2005 

0.19 Brazil Crop 9 months Drip irrigation, spacing 8x2 m, density 

625 plant ha-1 

MATTANA SATURNINO et al., 2005 

0.056 Brazil Crop 7 months Drip irrigation, spacing 8x2 m, density 

625 plant ha-1 

MATTANA SATURNINO et al., 2005                

0.6 India Crop 2.5 year Marginal solis, density 833 plant ha-1 GOSH et al., 2007 

1.45 India Crop 2.5 year Marginal solis, density 1677 plant ha-1 GOSH et al., 2007 

3.0 Indonesia  Plantation  1st year ─ MANURUNG, 2007 

1.25 Guatemala Plantation  1st year Spacing 2.5 x 2.5 m, Fertilizer and 

800 mm irrigation during the 6 dary 

months and 6 months of rain fall 4000 

mm. in-1  

OUWENS et al., 2007 

4.5  Nicaragua  Plantation  4 years Best field condtion  OUWENS et al., 2007 
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1.1.8 Research and development programmes for Jatropha curcas 

yield improvement 

The productivity of Jatropha curcas has been reported to be less economically beneficial 

to farmers due to lower productivity and non-availability of protocols. Therefore, efforts 

have been made to enhance the productivity and development of location specific 

protocols. In India a network on Jatropha has been initiated with major objectives of: 

selection of superior planting material; standardization of propagation techniques (micro- 

and macro-propagation); standardizing agricultural techniques; establishment of model 

plantations; tree improvement; detoxification of seed meal; development of pre-

processing; and processing equipment (KUREEL, 2006). Advance lines of Jatropha 

curcas with high oil content; high yield; a more drought tolerante character; resistance to 

insect-pests; and diseases have been identified. These traits were transferred by 

crossing with specific characters in order to develop high yielding varieties through 

hybridization. To develop quality planting material, techniques for mass multiplication of 

superior quality planting material were developed (KUREEL, 2006).  

 

1.2    BIOFUELS AND BIODIESEL 

1.2.1 Introduction 

Petroleum-based fuel reserves are limited and on the verge of reaching their peak 

production (DEMIRBAS, 2009). The amount of greenhouse gases in the atmosphere is 

rising as a consequence of human activity. These anthropogenic emissions are resulting 

in increased global atmospheric temperatures, so by the end of the Century the planet’s 

average temperature could increase by 6.4 degrees Celsius. Bio-fuels are generally 

considered as offering many advantages, including sustainability, reduction of 

greenhouse gas emissions, regional development, social structure and agriculture, 

security of supply (REIJNDERS, 2006). These factors make renewable energy 

resources very attractive (OZCIMEN, 2004; FERNANDO et al., 2006; JEFFERSON, 

2006; DEMIRBAS, 2007, 2009). Therefore there is a growing trend towards employing 
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modern technologies and efficient bio-energy conversion using a range of biofuels, 

which are becoming, cost-wise, competitive with fossil fuels (PUHAN et al., 2005).  

 

Biodiesel (Greek, bio, life + diesel from Rudolf Diesel) refers to a diesel equivalent, 

processed fuel derived from biological sources (DEMIRBAS, 2009). Biodiesel is an 

alternative fuel for diesel engines. It is produced by chemically reacting a triglyceride 

(vegetable oil or animal fat) with a short-chain alcohol such as methanol or ethanol. The 

transesterification reaction requires a catalyst, usually a strong base, such as sodium or 

potassium hydroxide (SARIN et al., 2007, HANHA et al., 2009).  

 

1.2.2 Biodiesel sources and main biodiesel crops 

Biodiesel can be produced commercially from a variety of oils and fats:  

• Animal fats: tallow, lard, grease, poultry fats and fish oils; and 

• Vegetable oils. 

There are more than 350 oil-bearing crops that have been identified (GOERING et al., 

1982). Biodiesel is made from a variety of natural oils such as rapeseed oil and soybean 

oil. Rapeseed oil dominates the growing biodiesel industry in Europe. In the United 

States, biodiesel is made from soybean. There are many other feedstock candidates, 

including other oilseed crops (SHEEHAN et al., 1998a). DEMIRBAS (2009) categorized 

oil species for biodiesel production as follows: 

(a) Major oils, Coconut (copra), corn (maize), cottonseed, canola (a variety of 

rapeseed), olive, peanut (groundnut), safflower, sesame, soybean, and 

sunflower; 

(b) Nut oils, Almond, cashew, hazelnut, macadamia, pecan, pistachio and walnut; 

(c) Edible oils, Amaranth, apricot, argan, artichoke, avocado, bay laurel, beech nut, 

ben, Borneo tallow nut, carob pod (algaroba), cohune, coriander seed, false flax, 
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grape seed, hemp, kapok seed, lallemantia, lemon seed, macauba fruit 

(Acrocomia sclerocarpa), meadowfoam seed, mustard, okra seed (hibiscus 

seed), perilla seed, pequi, (Caryocar brasiliensis seed), pine nut, poppy seed, 

prune kernel, quinoa, ramtil (Guizotia abyssinica seed or Niger pea), rice bran, 

tallow, tea (camellia), thistle (Silybum marianum seed), wheat germ; and  

(d) Inedible oils, Algae, babassu tree, copaiba, honge, jatropha, jojoba, karanja or 

honge, mahua, milk bush, nagchampa, neem, petroleum nut, rubber seedtree, 

silk cotton tree, tall, castor, radish, and tung.   

 

From the list above, algae emerged as a promising candidate for biodiesel production. 

SHEEHAN et al. (1998a) and GRESSEL (2008) stated that algae can grow practically in 

every place where there is enough sunshine. Some algae can grow in saline water. The 

most significant difference of algal oil is in the yield and hence its biodiesel yield. 

According to some estimates, the yield (per ha) of oil from algae is over 200 times the 

yield from the best-performing plant/vegetable (Table 2.2 ).  

 

Table 2.2 Biodiesel sources and main biodiesel crop s (adapted from GRESSEL, 2008). 

Crop Oil yield 

(l/ha) 

Land area needed 

(million ha) 

Maize 172 462 

Soybean 446 178 

 Oilseed rape 1190 67 

Jatropha curcas 1892 42 

Oil palm 5950 13 

Algae Cyanobacteriaa 59000 1.3 

Algae Cyanobacteriab 137000 0.6 

aContaining 30% oil; bContaining 70% oil.  
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1.2.3 Advantages and disadvantages of biodiesel 

1.2.3.1 Advantages of biodiesel 

Biodiesel is environmentally friendly compared with gasoline and petroleum diesel. The 

advantages of biodiesel as a diesel fuel are its portability, ready availability, renewability, 

higher combustion efficiency, lower sulfur and aromatic content, higher cetane number, 

and higher biodegradability (DEMIRBAS, 2009).  

 

The following advantages are summarized from DEMIRBAS (2009): 

(1) Availability and renewability of biodiesel: 

• Biodiesel can be made from domestically produced, renewable oilseed crops 

such as soybean, rapeseed, and sunflower;  

• The risks of handling, transporting, and storing biodiesel are much lower than 

those associated with petrodiesel;  

• Biodiesel is the only alternative fuel in which low-concentration biodiesel–diesel 

blends run on conventional unmodified engines. It can be stored anywhere that 

petroleum diesel fuel is stored; and 

• Biodiesel is safe to handle and transport because it is as biodegradable as sugar 

and has a high flash point compared to petroleum diesel fuel. Biodiesel can be 

used alone or mixed in any ratio with petroleum diesel fuel. 

 

(2) Lower emissions from biodiesel 

In cities across the globe, the personal automobile is the single greatest polluter, as 

emissions from millions of vehicles on the road contribute to a worldwide problem. The 

biodiesel impacts on exhaust emissions vary depending on the type of biodiesel and on 

the type of conventional diesel. The commercial biodiesel fuel significantly reduced 
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particulate matter (PM) exhaust emissions (75–83%) compared to the petrodiesel base 

fuel. However, nitrogen oxide (NOx) exhaust emissions increased slightly with 

commercial biodiesel compared with the base fuel. The chain length of the compounds 

had little effect on NOx and PM exhaust emissions, while the influence was greater on 

hydrocarbon and CO, the latter being reduced with decreasing chain length. Non-

saturation in the fatty compounds causes an increase in NOx exhaust emissions 

(DEMIRBAS, 2009). 

 

(3) Biodegradability of biodiesel 

Biodegradability of biodiesel has been proposed as a solution for the waste problem. 

Biodegradable fuels such as biodiesels have an expanding range of potential 

applications and they are environmentally friendly. Therefore there is growing interest in 

degradable diesel fuels that degrade more rapidly than conventional disposable fuels. 

Biodiesel is non-toxic and degrades about four times faster than petrodiesel. Its oxygen 

content improves the biodegradation process, leading to a decreased level of quick 

biodegradation (DEMIRBAS, 2009). 

 

(4) Higher lubricity  

Biodiesel methyl esters improve the lubrication properties of the diesel fuel blend. Fuel 

injectors and some types of fuel pumps rely on fuel for lubrication. Biodiesel reduced 

long term engine wear in test diesel engines to less than half of what was observed in 

engines running on current low sulfur diesel fuel. Lubricity properties of fuel are 

important for reducing friction wear in engine components normally lubricated by the fuel 

rather than crankcase oil (DEMIRBAS, 2009). 

 

(5) Engine performance evaluation using biodiesel 



 

 22 

Biodiesels are mono-alkyl esters containing approximately 10% oxygen by weight. The 

oxygen improves the efficiency of combustion, but it takes up space in the blend and 

therefore slightly increases the apparent fuel consumption rate observed while operating 

an engine with biodiesel. The high combustion temperature at high engine speed 

becomes the dominant factor, making both heated and unheated fuel to acquire the 

same temperature before fuel injection. Various methods of using vegetable oil 

(Jatropha oil) and methanol such as blending, transesterification and dual fuel operation 

were studied experimentally. Brake thermal efficiency was better in the dual fuel 

operation and with the methyl ester of Jatropha oil as compared with the blend. It 

increased from 27.4% with neat Jatropha oil to a maximum of 29% with the methyl ester 

and 28.7% in the dual fuel operation (DEMIRBAS, 2009). 

 

1.2.3.2 Disadvantages of biodiesel as diesel fuel  

According to DEMIRBAS (2009) the disadvantages of biodiesel are: 

• The major disadvantages of biodiesel are its higher viscosity, lower energy 

content, higher cloud point and pour point, higher nitrogen oxide (NOx) emission, 

lower engine speed and power, injector coking, engine compatibility, and high 

price; 

• The biodiesels on the average decrease power by 5% compared to that of diesel 

at rated load. The maximum torque values are about 21.0 Nm at 1500 RPM for 

diesel fuel, and 19.7 Nm at 1500 RPM for biodiesel. The torque values of 

commercial diesel fuel are greater than those of biodiesel. Peak torque applies 

less to biodiesel fuels than it does to No. 2 diesel fuel but occurs at lower engine 

speed and generally its torque curves are flatter; 

• The specific fuel consumption values of biodiesel are greater than those of 

commercial diesel fuel;  

• The effective efficiency and effective pressure values of commercial diesel fuel 

are greater than those of biodiesel; 
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• Important operating disadvantages of biodiesel in comparison with petrodiesel 

are cold start problems, the lower energy content, higher copper strip corrosion 

and fuel pumping difficulty from higher viscosity; and  

• Fuel consumption at full load condition and low speeds generally is high. Fuel 

consumption first decreases and then increases with increasing speed. The 

reason is that, the produced power at low speeds is low and the main part of fuel 

is consumed to overcome engine friction. 

 

1.2.4 Biodiesel vs. petroleum diesel 

Biodiesel is technically competitive with, or offers technical advantages compared with 

conventional petroleum diesel fuel. The vegetable oils can be converted to their methyl 

esters via a transesterification process in the presence of a catalyst. The bio-diesel 

esters are characterized for their physical and fuel properties including density, viscosity, 

iodine value, acid value, cloud point, pour point, gross heat of combustion and volatility. 

The biodiesel fuels produced slightly lower power and torque, and higher fuel 

consumption than diesel fuel. Biodiesel is better than diesel fuel in terms of sulphur 

content, flash point, aromatic content and biodegradability (MA and HANNA, 1999). The 

cost of biodiesels varies depending on the base stock, geographic area, variability in 

crop production from season to season, the price of crude petroleum. Biodiesel has over 

double the price of petroleum diesel. The high price of biodiesel is in a large part due to 

the high price of the feedstock (ACHTEN, 2008).  

 

1.2.5 Oil properties of Jatropha curcas  

The composition and characteristics of crude J. curcas oil are given in Tables 2.3 and 

2.4. The oil quality is dependent on the interaction of environment and genetics. As for 

seed size, seed weight and oil content also for the oil quality, it is beleaved that the 

environmental conditions have a larger impact than the genetics (ACHTEN, 2008). 

Jatropha curcas oil (Figure 2.1 ) contains about 14% free fatty acids (FFA), which is 
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beyond the limit of 1% FFA level that can be converted into biodiesel by trans-

esterification using an alkaline catalyst (TIWARI et al., 2007). The fatty acid profile of J. 

curcas is given in (Table 2.5 ). Jatropha curcas oil contains more than 75% unsaturated 

fatty acid, which is reflected in the pour and cloud point of the oil. The fatty acid 

composition of J. curcas oil is dominated by oleic acid and linoleic acid. The maturity 

stage of the fruits at the moment of collection is reported to influence the fatty acid 

composition of the oil (ACHTEN, 2008). 

                   O 

                   ║ 

H2 C – O – C – (CH2)16 – CH3  

               

                   O 

                   ║ 

 H  C – O – C – (CH2)7 CH=CH (CH2)7 CH3 

               

                   O 

                   ║ 

 H2 C – O – C – (CH2)7 CH=CHCH2 CH=CH (CH2)4CH3 

 

Figure 2.1 Organic structure of Jatropha curcas oil (JONGSCHAAP et al., 2007). 
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Table 2.3 Proximate composition (%) of Jatropha curcas seed flour (AKINTAYO, 2004). 

Assay Value (%) 

Crude fat   47.3 

Crude fibre 12.0 

Moisture  5.5 

Ash  27.2 

Carbohydrate (by difference) 8.0 

 

 

 

Table 2.4 Physico-chemical characteristics of  Jatropha curcas seed oil (adapted from AKINTAYO, 

2004 and DEMIRBAS, 2009). 

Parameter Value 

Colour  Light yellow 

Free fatty acid (mg/g)  1.76 

Acid value (mg KOH/g) 5 

Saponification value (mg KOH/g) 198.8 

Iodine value (mg iodine/g Wijs) 105 

Mean molecular mass   281.6 

Unsaponifiable matter (%) 10.8 

Refractive index (25 °C) 1.5 

Specific gravity (25 °C) 0.9 

Hydroxyl value  2.15 

Acetyl value 16 

Viscosity (30 °C) cSt 17.1 
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Table 2.5 Fatty acid composition of Jatropha curcas oil.  (ADEBOWALE and ADEDIRE, 2006). 

Fatty acid Systemic name Formula Structure a Weight (%) 

Palmitic  Hexadecanoic  C16H32O2 16:0 11.3 

Stearic Octadecanoic  C18H36O2 18:0 17.0 

Arachidic Ecosanoic  C20H40O2 20:0 4.7 

Oleic  cis-9-Octadecenoic C18H34O2 18:1 12.8 

Linoleic  cis-9,cis-12-Octadecadienoic C18H32O2 18:2 47.3 

aCarbons in the chain: number of double bonds 

 

1.2.6 Oil extraction 

The choice of extraction method is dependent on the intended scale of the activity. The 

two extraction procedures, mechanical and chemical, are quite well established, 

although there is still scope for further research. Both of them have their advantages and 

disadvantages with respect to scale suitability, centralization, extraction efficiency and 

environmental and health risks. Further research should investigate efficiency, 

improvement of mechanical oil extraction, the applicability of alternative solvents such as 

supercritical CO2, bio-ethanol and isopropyl alcohol and their economic viability 

(ACHTEN, 2008).  

 

1.2.7 Biodiesel production process from Jatropha curcas 

Biodiesel is manufactured by the transeterification of oils with methanol in the presence 

of a catalyst, such as alkalis (KOH, NaOH) or their corresponding alkoxides (MA and 

HANNA, 1999).  However, Jatropha curcas oil has an high content of FFA (Table 2.5) 

therefore cannot be directly used with an alkali catalyzed by homogeneous acids, such 

as sulphuric acid, phosphoric acid, sulfonic acid (LU et al., 2008). Glycerol is an 

important by-product. It can be burned for heat or be used as feedstock in the cosmetic 

industry (ACHTEN, 2008). Although the transesterification process is quite straight 

forward, the genetic and environmental background of the produced oil might require 
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modification of the input ratios of the alcohol reagent and reaction catalyst as well as 

alterations to reaction temperature and time, in order to reach optimal bio-diesel 

production (ACHTEN, 2008). The fuel properties of J. curcas-oil, -biodiesel and 

conventional diesel are given in (Table 2.6 ). 
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Table 2.6 Fuel properties of Jatropha curcas-oil, -biodiesel and conventional diesel. (TIWARI et al. 2007; VYAS et al. 2008).  

Property Unit J. curcas 

oil 

J. curcas biodiesel Diesel Biodiesel standards 

ASTM D 6751-02           DIN EN 14214 

Density at 15 °C Kg m -3 940 880 850 - 860 – 900 

Viscosity at 15 °C Mm2 s -1 24.5 4.80 2.60 1.9 – 0.6 3.5 – 5.0 

Flash point °C 225 135 68 > 130 > 120 

Specific gravity at 15°C Kg/l  0.912 0.862 0.846   

Cloud point  °C 20 8 -8 -3 - 12 - 

Fire point  °C 136 123 63 - - 

Pour point °C 4 2 -20 - - 

Aniline point °C 135 135 68 - - 

Water content °C 1.4 0.025 0.02 < 0.03 < 0.05 

Ash content % 0.8 0.012 0.01 < 0.02 <0.02 

Carbon residue % 1.0 0.20 0.17 - <0.30 

Acid value Mg KOH g-1 28.0 0.40 ─ < 0.80 < 0.50 

Cetane number  57 57 50 48-65  

Calorific value MJ kg-1 38.65 39.23 42 - ─ 

 

 



 

 
 

29

1.3 THE STUDY SITE  

1.3.1 Location, planting dates, and plant density 

The present experiments were conducted in a monoculture plantation at the 

University of KwaZulu-Natal Agricultural Research Station (Ukulinga) 

Pietermaritzburg, South Africa, (30° 41' E, 29° 67'  S and 781 m asl). This plantation 

was established with the overall aim of building capacity for small-scale farmers and 

poor communities to implement agroforestry systems that enable them to increase 

production while simultaneously rehabilitating and improving the land resources 

(EVERSON and EVERSON, 2006). The plantation was established from seeds. The 

seeds were obtained from collections made by the Department of Agriculture at the 

Owen Sitole College of Agriculture. The original seeds came from Malawi. Four 

thousand five hundred seeds were planted directly into small plastics bags in a 

nursery with an automatic watering system. Three seeds were planted in bags in 

order to obtain the required 2500 J. curcas seedlings. By the end of January 2005 

the seedlings had developed to a stage where they could be moved out of the 

greenhouse to allow them to harden before planting. The plants were planted in two 

different dates Feburuary 2005 and May 2007. The total area of the trail is 2.9 ha 

(265 m long x 110 m wide); the spacing between plants is 3 x 3 m giving a plant 

population of 1111 trees ha-1 (EVERSON and EVERSON, 2006).  

 

 

1.3.2 Meteorological data during the study period 

Figure 2.2  represents meteorological data recorded from the Weather Station at the 

University of Kwazulu-Natal Research Station, Pietermaritzburg, South Africa. The 

data were recorded during 2007 when the experiments for this thesis were 

undertaken. The data are monthly means of solar radiation, total rain, average air 

temperature, relative humidity and wind speed. 
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Figure 2.2 Meteorological data during the study per iod at Ukulinga Agricultural Research 

Station, University of Kwazulu-Natal, Pietermaritzb urg, South Africa, (30° 41' E, 29° 67' S and 

781 m asl). (A) Solar radiation; (B) Total rain; (C ) Average air temperature; (D) Relative 

humidity; and (E) Average wind speed. Source (Weath er Station of the Agricultural Research 

Station Ukulinga, University of Kwazulu-Natal, Piet ermaritzburg, South Africa. 
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1.3.3 Irrigation, weeding and mulching 

The trial had an irrigation system installed to ensure survival of the trees during the 

early establishment period. Shortly after planting, the trial was invaded by weeds 

which were controlled by a broad-spectrum herbicide (Round Up) to clear all the 

unwanted vegetation. In these plots care was taken to first cover the trees with 

buckets before spraying, to avoid drift of the herbicide onto the trees. Mulches helped 

to keep the soil well aerated by reducing soil compaction when raindrops hit the soil. 

They help maintain a more uniform soil temperature and promote the growth of soil 

micro-organisms and earth worms. Mulches eliminate mowing around trees and 

provide a physical barrier that prevents damage from mowers. Following periods of 

mowing in order to control weeds at the trial site, it was found that there was an 

abundance of mulch (grass and weed cuttings). The mulch was applied to the base 

of the trees to reduce weed regrowth and conserve moisture (EVERSON and 

EVERSON, 2006). 

 

2.3.4 Pests and diseases 

In the early stage, ten months from planting, insect damage was detected on the 

trees. The initial indications of the problem were loss of condition in the trees through 

wilting and defoliation. Holes in the leaves were detected, and upon closer inspection 

it was found that the defoliation was being caused by insect damage. Samples of the 

insects were collected and sent for analysis, and were found to be a species of flea 

beetle. The specimen was identified as a member of the Chrysomelidae, Alticinae 

family, and was recognized as an Aphtona species. These beetles are known to 

preferentially feed on Euphorbiaceae. Specialist advice on controlling the insect was 

sought and the solution was found to be a combination of PREV-AM and 

CYPERFOS 500 EC insecticides (EVERSON AND EVERSON, 2006). A further 

symptom of insect damage was blackened tips to the branches, appearing as if the 

trees had been scorched by fire. At this stage the trees had suffered complete 

defoliation with not a single leaf evident. Even the emerging buds were eaten off by 

the insects before being able to emerge. However, after spraying with the above 

insecticides, there was a very rapid positive response. Within 48 hours of spraying 

the insects had disappeared and the emergence of buds and new leaves was noted. 
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Weekly follow-up spraying is recommended until there is no sign of the insects 

(EVERSON AND EVERSON, 2006). 

 
 

1.4 PROBLEM STATEMENT 

Declining availability of fossil fuels is driving a search for alternative sources of 

energy. Biofuels offer promise, but are controversial because of the large land area 

required for production, potential for competition with food production, and their 

marginal economic viability in the absence of subsidies (PARFIT, 2004; GRESSEL, 

2008). These potential negative impacts could be reduced and profitability increased 

if production could be made more efficient. Jatropha curcas L. is a crop with a high 

potential for biodiesel production in semi-arid and arid conditions. It is a drought-

resistant perennial plant that can grow on marginal lands, thus it does not compete 

with food crops (HELLER, 1996; AUGUSTUS et al., 2002; AZAM et al., 2005; 

SHARMA, 2006). In recent years, the production of J. curcas has been widely 

promoted by private enterprises as one of the most viable candidates for biodiesel 

production in Africa. However, farmers will not invest if they do not have a minimum 

guaranteed market (TOMOMATSU and SWALLOW, 2007). On the other hand, 

Industry will not invest if there is no reliable and secure feedstock supply. The 

challenge, however, is whether sufficient yield can be produced to make the 

enterprise commercially viable. In South Africa the government has put a moratorium 

on all J. curcas cultivation outside research areas (GUSH, 2006). This is largely due 

to insufficient knowledge relating to this species, such as its invasive potential, water 

use, production potential and maintenance requirements (OPENSHAW, 2000; 

AGUSTUS et al., 2002; GUSH 2006). 

 

In late 2006, Verus Farming and Investments (Pty) Ltd., which, is an agribusiness 

company planning to grow J. curcas on a large scale in plantations in the southern 

African region, approached the Research Centre for Plant Growth and Development, 

University of KwaZulu-Natal, Pietermaritzburg, South Africa. This was to initiate 

research and development to improve J. curcas seed production. There were several 
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potential avenues for the research to be directed towards increased seed production. 

However, the general areas of the research were outlined as: 

• Hormonal regulation of vegetative and reproductive growth; 

• Pollination improvement; 

• Agronomic improvement; and 

• An intensive breeding programme. 

This PhD study reports on hormonal regulation of growth and pollination. 

 

1.5 AIMS AND OBJECTIVES 

The overall aim of this study was to develop approaches to improve seed production 

of J. curcas L. to become commercially viable. Thus, the specific objectives of this 

study were: 

• To investigate the effects of plant growth regulators, smoke applications and 

nitrogen salts on germination and seedling growth;  

• To report in detail on the pollination system, test for inbreeding depression, 

observe the flower visitors and investigate their contribution to fruit set and 

yield; 

• To investigate pollen viability, in vitro pollen germination and pollen tube 

growth, the influence of type of pollination on the success of fertilization 

through in vivo studies; 

• To investigate the response of J. curcas to winter and summer manual 

pruning;  

• To investigate the influence of plant growth regulators in promotion of lateral 

branching; and  

• To investigate the influence of plant growth regulators on flowering, fruit set, 

seed oil content and oil quality. 
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1.6 GENERAL OVERVIEW  

Chapter 2 

• Provides a background for the strategies used in the study to assist in 

understanding and interpreting the results;  

• Provides a general background on plant pollination and its potential role in 

crop improvement. In this regards it covers the role of insects and specifically 

bees; 

• Covers the aspects of pollen biology and pollen biotechnology and its potential 

role in crop development;  

• Reviews some of the work done on different crops as result of pollination 

management and pollen biotechnology application; 

• Since this study includes the usage of a range of PGRs for different purposes 

(germination, seedling vigour, pollen germination, promotion of branching, 

flowering, fruit set, seed oil content and oil quality), this Chapter was intended 

to provide a full background about PGRs, their nature and biosynthesis, with 

emphasis on their agricultural use. Some of the PGRs in this review were not 

used in the experiments but, as the PGRs interact together, they were 

included to give a complete picture; and 

• Reviews on smoke application (aerosol smoke and smoke water) in 

germination, seedling vigour and their potential role in agricultural and 

horticultural crop improvement. 

    

Chapter 3 reports on the response of J. curcas to summer and winter manual 

pruning. The results showed that manual pruning under both conditions increased 

significantly the number of branches per plant. However, there were no significant 

differences in number of branches between winter and summer pruning. Winter 

pruning, however, produced significantly wider crown diameters compared with the 
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control and summer pruning. Both treatments produced significantly less fruits/per 

plant in the subsequent season. 

 

Chapter 4 investigated the effect of foliar application of PGRs on branching of J. 

curcas as possible substitution to manual pruning. The results indicated that a single 

foliar application of PGRs under field conditions can be an alternative method to MP 

for increasing the number of lateral branches.  

 

Chapter 5 details the pollination system in J. curcas by addressing four basic 

questions: (1) What is the relative importance of cross- and self-pollination for fruit 

set?, (2) Do honeybees contribute effectively to fruit set?, (3) Is J. curcas pollen-

limited by pollen availability?, and (4) Do self-fertilized progeny of J. curcas 

experience inbreeding depression? The results provided empirical evidence that 

honeybees are effective pollinators of J. curcas. There are strong suggestions that 

promotion of cross-pollination does not have to be a top priority in orchard 

management for fruit yield.  

 

Chapter 6 compares different stains to test for pollen viability in J. curcas. Tests for 

in vitro pollen germination and pollen tube growth in J. curcas. The comparison is for 

pollen grains from the different types of flowers in this plant, in response to different 

germination media. Tests for pollen-pistil interaction by comparing in vivo pollen 

germination and pollen tube growth following self- and cross-pollination. The results 

showed that hermaphrodite flower pollen was less viable compared to that of male 

flowers. There was strong evidence to suggest that type of pollination has no 

influence on the success of fertilization in J. curcas.  

 

Chapter 7 is an evaluation of the subsequent influences of foliar application of 

different PGRs used as chemical pruning agents on flowering, fruit set, seed oil 

content and oil quality. The results indicated that foliar application of PGRs can be 

used in J. curcas to increase seed production and seed oil content.  
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 Chapter 8 is an investigation on germination, seedling growth and vigour in J. 

curcas in response to aerosol smoke, smoke water, potassium nitrate, naphthalene 

acetic acid and indole 3-butyric acid. The findings from this investigation suggested 

the possibility of applying these treatments to produce quality seedlings and a good 

crop.  

 

Chapter 9 provides a general conclusion and recommendations. 

 

Chapter 10 lists the cited references. 
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2            Literature review 

 

2.1 POLLINATION  

2.1.1 Introduction 

Pollination is the transfer of pollen grains from the anther to the stigma. In seed 

plants pollination is a prerequisite for fruit and seed development and is the basis of 

genetic exchange between plants and recombination within plants. Pollination is a 

critical factor for sustainable agriculture and for commercial production of hybrid 

seeds. The various aspects of pollination biology have been reviewed by FAEGRI 

and VAN DER PIJL (1979), REAL (1983), RICHARDS (1986), BAWA et al. (1993), 

FREE, (1993) and ROUBIK (1995). The techniques of pollination biology have been 

covered comprehensively by JONES and LITTLE (1983), DAFNI (1992), KEARNS 

and INOUYE (1993), DAFNI and FIRMAGE (2000). 

 

2.1.2 Types of pollen transfer 

• Autogamy: Is the transfer of pollen grains from the anther to the stigma of the 

same flower. 

• Geitonogamy: Is the transfer of pollen grains from the anther to the stigma of 

another flower of the same plant or another plant of the same clone. 

• Xenogamy: Is the transfer of pollen grains from the anther to the stigma of a 

different plant. 

• Allogamy: Is the transfer of pollen grains from the anther to the stigma of 

another flower of the same or another plant (include both geitonogamy and 

xenogamy).  

 

The major advantage of self pollination is reproductive assurance. However, 

continued self pollination over many generations results in inbreeding depression. 

For effective self pollination (autogamy), the flowers have to be bisexual, anther 
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dehiscence and stigma receptivity have to be synchronous, and the position of the 

stigma and anthers should be close to one another so that pollen grains readily come 

into contact with the stigma soon after anther dehiscence (SHIVANNA, 2003). In 

most crop species the flowers open and sex organs in the flower become visible; 

such flowers are called chasmogamous.  In some plants, a proportion of flowers 

remains closed, such flowers are termed cleistogamous (LORD, 1981). Many species 

produce both chasmogamous and cleistogamous flowers depending on the 

environmental conditions, especially temperature and light duration. In cleistogamous 

flowers, self-pollination is the norm, whereas chasmogamous flowers may be 

predominantly self-pollinated or cross-pollinated. Some species bearing 

chasmogamous flowers, such as Utriculata (KHOSLA et al., 2000), also show 

obligate self-pollination. Pollen grains germinate in situ inside the anthers before 

dehiscence. Because of the physical contact between the stigma and the anthers, 

dehiscence of anthers results in deposition of in situ germinated pollen mass of the 

stigma before opening of the flower. This is often referred to as pre-anthesis 

cleistogamy (LORD, 1981). A unique method of self-fertilization, termed internal 

geitonogamy has been reported in some members of Malpighiaceae (ANDERSON, 

1980) and Callitrichaceae (PHILBRICK and ANDERSON, 1992). Cross pollination 

results in genetic heterogeneity and thus cross-pollinated species show wider 

adaptations. Cross pollination involves considerable wastage of resources because 

of its uncertainty and thus cross pollinated species have to produce much more 

pollen to compensate for the wastage (SHIVANNA, 2003). 

 

2.1.3 Breeding system 

A breeding system is defined as all aspects of sex expression that affect the relative 

genetic contributions to the next generation of individuals within a species (WYATT, 

1983). The system includes pollination mechanism and pollen movements. 

Traditionally, breeding systems have been treated in relation to the mechanism(s) 

which promote(s) or reduce(s) outcrossing (DAFNI, 1992). Fruit- and seed-set are 

especially dependant on successful pollination when the species under consideration 

cannot or must not be automatically selfed (WESTERKAMP and GOTTSBERGER, 

2000). The proportion of outcrossing and selfing in a population depends, in part, on 

self-incompatibility mechanisms, floral development, and pollinator behaviour 
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(WYATT, 1983). However, if pollen is proximal to the stigma and the stigma is 

receptive when the pollen is viable, then autonomous selfing may occur frequently 

(LLOYD and SCHOEN, 1992). Additionally, facilitated selfing may be high in plants 

with many inflorescences and where both female and male phases are mature 

because pollinators may forage longer among flowers of the same plant (HARDER 

and BARRETT, 1995). Because high levels of selfing in a xenogamous species could 

lead to inbreeding depression, any floral trait that maintains outcrossing is likely to be 

advantageous (LANDE and SCHEMSKE, 1985).  

 

2.1.3 1 Outbreeding sytems 

• Dichogamy: In dichogamous species, anther dehiscence and stigma 

receptivity are temporarily separated. The anther and the stigma mature at 

different periods; the time gap between the two may vary from one day to 

many days. In some species, the anthers dehisce before the stigma becomes 

receptive (protandry) and thus autogamy is prevented. In certain other 

species, the stigma becomes receptive before the anthers dehisce (protogyny) 

(LLOYD and WEBB, 1986; BERTIN and NEWMAN, 1993). 

• Herkogamy: herkogamous species show spatial separation of the anthers and 

the stigma. Their relative position is such that autogamy cannot occur (WEBB 

and LLOYD, 1988). The stigma often projects beyond the level of the anthers, 

and therefore the pollen level of the anthers, and therefore the pollen of the 

same flower cannot land on the stigma.  

• Self-incompatibility: In many species, self pollination does not result in 

fertilization. This is because pollen germination on the stigma or the growth of 

pollen tubes in the stigma or style is inhibited. For effective fertilization, pollen 

has to come from another plant. Self incompatibility (SI) is genetically 

controlled and widespread in flowering plants (DE NETTANCOURT, 1977).  

• Dicliny: In diclinous species, the flowers are unisexual. In some species such 

as Cucurbita, male and female flowers are borne on the same plant 

(monoecious), in others, such as papaya and cannabis, male and female 

flowers are borne on different plants (dioecious). 
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Only the dioecious form of dicliny prevents both autogamy and geitonogamy.  In most 

of the species which bear bisexual flowers, generally a combination of self- and 

cross-pollinations occurs to different degrees; often species can be predominantly an 

inbreeder or outbreeder (RICHARDS, 1986; KOUL et al., 1993). Some species 

exhibit more than one outbreeding device, such as Anthocercis gracilis which shows 

protogyny as well as self-incompatibility (STACE, 1995). 

 

2.1.3.2 Pollen:ovule ratio 

The number of pollen grains produced for each ovule of a flower has been reported 

to reflect the breeding system of the species (CRUDEN, 1977). The pollen:ovule ratio 

gives an estimate of the outcrossing level. 

 

2.1.4 Mode of pollination 

Pollination agents are: biotic (many species of animals) and abiotic (wind and water) 

(REAL, 1983; DAFNI, 1992). Insects are considered the original pollinators of early 

flowering plants. Those species which use non-insect pollinators, are believed to be 

derived (ENDRESS, 1994). 

 

2.1.4.1 Anemophily 

Wind is the major of the two abiotic pollinating agents (WHITEHEAD, 1983). Wind 

pollination, termed anemophily, is prevalent in dry environment open grasslands, 

savannahs and semiarid areas. According to KEVAN, 1997; SHIVANNA, 2003 

anemophilous flowers and plants have the following characteristics: 

• Flowers are generally small, inconspicuous, emit no scent and do not produce 

nectar;  

• Pollen producing flowers are often clustered as catkins in anemophilous 

species;  
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• Generally have well-exposed stamens; the anthers are generally suspended 

from long filaments and hang freely from the flowers;  

• The stigmas are generally dry, have a large surface, and are often feathery; 

and 

• The plants produce an enormous amount of pollen; this is achieved by an 

increase in the size of anthers or in number of stamens per flower. The 

distance which the pollen has to travel to reach a stigma depends on pollen 

longevity and prevailing wind currents. 

 

2.1.4.2 Zoophily  

The number of species pollinated by animals far exceeds that pollinated by wind and 

water and the adaptations that zoophilous plants show are also very diverse 

(ROUBIK, 1995). Zoophilous species develop effective floral devices to attract 

pollinating agents. Floral attractants, rewards and flower modification largely 

determine the class of animal species able to visit the flowers, and the degree of 

species specificity (FAEGRI and VAN DER PIJL, 1979). Among the animals, insects 

are the most important pollinators (entomophily); of these the most common insects 

are bees (melittophily), beetles (cantharophily), moths (phalaenophily) and butterflies 

(psychophily). In many instances pollinators transport pollen on particular parts of 

their body; they are basically of three types: nototribic (on their back), sternotribic (on 

the underside), and pleurotribic (on the flanks) (SHIVANNA, 2003). Bees are the 

prime pollinators; they are involved in pollination of most field and orchard crops. 

Social bees are especially versatile as they are able to exploit a broad range of 

different flower forms. Bees live on nectar; they collect pollen also to feed their 

larvae. Bees are good at recognizing colours, scents and contours. Bees can 

perceive ultraviolet light, but they cannot visualize shades of red, which appear black 

to them. Bee-pollinated flowers are showy, brightly coloured (mostly yellow) and 

often exhibit distinctive markings on the petals (honey guides); honey guides help the 

bees reach the source of nectar easily. Both nectar and pollen serve as rewards for 

the bees. The nectary in bee-pollinated flowers is usually situated at the base of the 

corolla tube and is therefore accessible only to those bee species with a tongue of 
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the right length. Pollen adheres to the bristles of the bees or the bees pack it in 

special baskets on their legs (SHIVANNA, 2003). 

 

2.1.5 Floral attractants and rewards 

Zoophilous plants have to fulfill the following requirements to attract pollinators: 

• Advertise the presence of a reward; 

• Supply some reward; and 

• Position the anthers and stigmas so that they come into contact with the body 

of the pollinator to facilitate transfer of pollen. 

The attractants/advertisements are largely visual and olfactory. Visual 

advertisements include flower colour, size and shape. Colour differences between 

flowers allow pollinators to discriminate between species and varieties. Flowers of 

many species show a colour pattern (nectar guides) in the UV range which directs 

the pollinators to the floral reward in such a way that pollination is assured 

(SHIVANNA, 2003). The colour of many flowers in many species changes in 

response to pollination (MATHUR and MOHAN RAM, 1978). Such changes are 

used as cues by pollinators in deciding whether to visit or ignore the flower. In 

Lantana, thrips (MATHUR and MOHAN RAM, 1986) and butterflies (WEISS, 

1991) forage on yellow flowers but not on red ones devoid of nectar. Fragrance is 

the other most important floral attractant. Flower scents are largely volatile 

derivatives of alcohols, esters, aldehydes and ketones. Some floral scents are 

distinctive and some are mimetic with smells of dung or mammal musk or insect 

pheromones. Many studies have clearly shown that pollen grains emit odours that 

differ from those of other flower parts and the pollen of other species. Pollenkitt is 

the main source of volatile substances and plays a role in guiding pollen-foraging 

insects to flowers (DOBSON, 1988). Insects are able to discriminate between 

odours of different pollen. Pollen odour is used by pollen-foraging insects not only 

to discriminate between plant species, but also to assess availability of pollen 

between individual flowers, this allows the pollinator to restrict its visit to the 

rewarding flower (DOBSON et al., 1996).  
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Floral rewards cater to an essential need of the pollinator to ensure repeated 

visitation. Pollen and nectar are the main nutritive rewards. Pollen is highly 

nutritious with around 25% carbohydrates, 25% proteins, 10% amino acids and 

5% lipids. It is also rich in vitamins and minerals (SCHMIDT and BUCHMANN, 

1992). Pollen grains of zoophilous species are generally ornamented with an oily 

coating. In some species they are held in clumps by viscin threads. Starch and oil 

are the major calorific reserves of pollen; smaller pollen tends to have oil and 

larger pollen starch. Pollen rich in starch tends to have a lower lipid content and is 

of lesser value for insects as a food source (BAKER and BAKER, 1979). Plants 

which offer pollen as the main or only source of energy tend to have oil-rich 

pollen. Bees gather pollen in special parts on their bodies, the pollen baskets. The 

pollen baskets of honey bees and bumble bees are on the hind legs, but on leaf 

cutting bees are under the abdomen. The insects carry the harvested pollen to 

their nests (SHIVANNA, 2003). 

Nectar is largely a sugary solution and includes a minor proportion of amino 

acids, organic acids and minerals. Nectar is the main fuel for movement of 

anthophilous animals. Sucrose, glucose and fructose are the major sugars of 

nectar. The volume of nectar and concentration of sugars, sugar ratio and amino 

acid content are relevant for pollinators. The rewards are not confined only to 

nutrients. Non-nutritive rewards include nest materials, shelter and warm resting 

places, sexual attractants, mating and ovipositing sites (PATEL et al., 1993; 

KATHURIA et al, 1995).  

 

2.1.6 Pollination postulates 

To confirm the role of a vector in pollination, the following given postulates need 

to be demonstrated (COX and KNOX, 1988): 

• Pollen transfer from anther to vector; 

• Pollen transport by vector; 

• Pollen transfer from vector to stigma; 

• Fertilization from vector-deposited pollen; 
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• Flower advertisements perceived and used by pollinators; 

• Flower reward consumed/used by vector as an integral part of the 

pollination process; 

• Relative contribution of pollen and ovules to the next generation as a result 

of pollination; and 

• Interrelationships between different vectors involved in pollination. 

Effective techniques for demonstrating the above postulates are detailed in DAFNI 

(1992) and KEARNS and INOUYE (1993). 

 

2.1.7 Pollen limitation and supplemental hand polli nation 

The production of seeds is frequently limited by pollen quantity or quality. When 

plants are not pollen limited, seed and fruit production are commonly limited by 

resource availability (PRIMACK and HALL, 1990; CALVO, 1993; EHRLÉN and 

ERIKSSON, 1995). Hence, most populations probably shift between reproductive 

effort being limited by pollen and resource availability over time. Inadequate pollinator 

service would favor the evolution of autonomous seed production by natural selection 

(DARWIN, 1876). Investigations have been done to examine the effects of natural 

variation in pollinator availability on pollen limitation of seed set (HERRERA et al., 

2001; MOELLER and GEBER, 2005). Empirical attempts to test pollinator limitation 

must demonstrate either that (1) patterns of reduced pollinator visitation correlate with 

selection for self-fertilization in nature (FAUSTO et al., 2001); or (2) individuals 

lacking the ability to autonomously self-fertilize produce fewer seeds (KLIPS and 

SNOW, 1997; DAVIS and DELPH, 2005).  

 

2.1.8 Pollination efficiency and pollinator effecti veness 

The term pollination efficiency has been used ambiguously by pollination biologist 

(DAFNI, 1992; INOUYE et al., 1994; DAVIS, 1997). Understanding of each pollinator 

taxon’s effectiveness, visitation rate and variation in visitation rate over time is 
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essential to understand plant reproduction and floral evolution in generalist plant 

species. Pollination biologists have long recognized the need to estimate a relative 

value for each visiting taxon (JOHNSON and STEINER, 2000). Many studies 

evaluate pollination efficiency on the basis of quantitative aspects of pollination 

events, such as number of pollen grains deposted per stigma as a fraction of the 

number of pollen grains removed (SNOW and ROUBIK, 1987), and proportion of 

stigmas touched per insect visit (ROBINSON, 1979). Many other studies consider 

pollination efficiency on the basis of percent fruit- and seed-set as a consequence of 

pollination. KANDORI, (2002) defined pollinator importance as the total number of 

seed set by each pollinating taxon relative to the total number of seeds produced. 

Pollinator effectiveness can be estimated by many different methods such as the 

amount of removal and/or deposition of pollen (HERRERA, 1987; IVEY et al., 2003), 

the pollen load on pollinators (TALAVERA et al., 2001; MOELLER and GEBER, 

2005), and the probability of contacting stigma and anthers (LINDSEY, 1984). 

Combining estimates of pollen removal with pollen deposition effectiveness (or with 

seed set) can provide an estimate of pollinator efficiency, defined as the number of 

pollen grains deposited or set per pollen grain removed (YOUNG and STANTON, 

1990).  

 

2.1.9 Inbreeding depression  

Inbreeding depression is the reduction in fitness of inbred versus outcrossed progeny 

caused by the expression of deleterious recessive alleles or the loss of heterozygote 

advantage (CHARLESWORTH and CHARLESWORTH, 1987). Understanding 

inbreeding depression and its fitness consequences remains an important and 

challenging topic in evolutionary biology because of its potential importance in the 

evolution of mating systems, life history traits, and its implications for conservation 

and plant breeding (MUSTAJÄRVI, 2005). Inbreeding depression may be caused by 

the expression of deleterious recessive alleles or over dominant loci, or both of these 

factors in combination (JOHNSTON and SCHOEN, 1995; CARR and DUDASH, 

2003). In a population going through generations of inbreeding, deleterious recessive 

alleles responsible for inbreeding depression are exposed to selection as 

homozygotes and, therefore, may be purged (LANDE and SCHEMSKE, 1985). 

Inbred and outbred species may differ in the timing of inbreeding depression 



 

 
 

46

(HUSBAND and SCHEMSKE, 1996). Outcrossers have strong inbreeding depression 

during early stages of their life-cycle, while selfers have milder inbreeding depression 

in later life stages. (HUSBAND and SCHEMSKE, 1996). Traits expressed in later life 

stages are often under polygenic control, and inbreeding depression in these traits is 

largely caused by mildly deleterious alleles. Several authors have reported reduction 

in inbreeding depression in inbred populations (BARRETT and CHARLESWORTH, 

1991; DOLE and RITLAND, 1993; JOHNSTON and SCHOEN, 1996) or species 

(HUSBAND and SCHEMSKE, 1996; GOODWILLIE, 2000). The negative effects of 

inbreeding have since been observed in both outcrossing and selfing species for a 

variety of traits with consequences for offspring fitness (CHARLESWORTH and 

CHARLESWORTH 1987; KELLER and WALLER 2002). Examples of traits shown to 

be subjects to inbreeding depression include pollen quantity, number of ovules, 

amount of seed, germination rate, growth rate and competitive ability (KELLER and 

WALLER 2002). 

 

2.1.10 Honey bees as pollinators 

Honey bees (Apis mellifera, family Apidae), a social species native to Europe, the 

Middle East, and Africa, are the most important pollinating bee in the temperate 

developed world. They form large perennial colonies in hollow trees or other cavities, 

and they readily accept artificial hives. Man has cultured honey bees for thousands of 

years, and currently bee keeping practices are well known. Altogether, there are an 

estimated 60 million hives of A. mellifera managed by beekeepers around the world 

(DELAPLANE and MAYER, 2000). Honey bees are generalists that visit a wide 

assortment of blooming plants during a season. They are manageable, movable, 

well-known and effective pollinators for many crops, hence they are the standard 

against which all other bee pollinators are measured. However, because they are 

generalists, honey bees are not the best pollinator for every crop. Unlike some 

solitary bees whose life cycles and behaviours are perfectly matched for a particular 

crop, honey bees play the field for the richest reward. Thus, they are sometimes 

inefficient pollinators or essentially lured away if competing flowers are more 

attractive than the crop of interest (DELAPLANE and MAYER, 2000). Nevertheless, 

however, honey bees are not in the native range of J. curcas.  
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2.1.11 The potential role of pollination in crop im provement 

Crop pollination is perhaps the most interdisciplinary field of study in all the 

agricultural sciences. It involves botany, entomology, plant breeding, horticulture, 

agronomy, genetics, bee breeding, ecology, agricultural economics, and pheromone 

biology. For many crops there is still paucity of information with which one can make 

good management decisions (DELAPLANE and MAYER, 2000). Fruits and seeds 

are the economic products of most crop plants. Effective pollination is a prerequisite 

for fruit- and seed-set. Therefore, successful pollination is of vital importance to 

realize optimal yield. In self-incompatible species, pollination is largely dependent on 

adequate cross-pollination. Even in self-compatible species, pollination is largely 

dependent on pollinating agents as automatic selfing seldom occurs or is insufficient 

in most of the self-compatible species. The majority of the crop plants, except 

cereals, are pollinated by insects, particularly bees. Adequate pollination is often a 

major constraint in many crop species due one or more of the following reasons 

(SHIVANNA, 2003): 

• Drastic reduction in native pollinator populations because of the steady 

disappearance of natural habitats of insects, a marked increase in levels of 

pollutants and extensive use of environment-unfriendly chemicals, in particular 

herbicides and pesticides; 

• Lack of a sufficient number of native pollinators due to the enormous increase 

in area covered by the same crop species (monoculture cropping); and 

• Absence of natural pollinators for crops introduced from other regions.  

 

Production in many of the fruit, seed and nut crops could be increased substantially 

by careful management of pollination (ROUBIK, 1995). Increased pollination 

efficiency can lead to an increase in crop value by increasing crop yield, uniformity, 

quality and decreasing the time of crop maturity. FREE (1993) and CURRIE (1997) 

reported several effective approaches to overcome pollination constraints. Some of 

these approaches are:  
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2.1.11.1 Habitat management 

Increasing local populations of native pollinator species through habitat management. 

This is particularly useful when availability of nest sites is a limiting factor. Habitat 

management can be achieved by maintaining uncultivated strips along field margins 

and providing permanent nest boxes (POMEROY, 1981). Such strategies should 

also ensure availability of forage sources when the target crop is not in bloom. This 

approach also requires management of cropping practices in such way that the 

flowering period of the target crop coincides with the peak populations of the 

pollinator (FREE, 1993). However, management of habitat is more expensive, 

particularly in areas of intensive agronomic practices (TORCHIO, 1990). 

 

2.1.11.2 Use of commercially managed pollinators 

The most economically viable and effective approach to overcome pollination 

constraints has been use of commercially managed pollinators, in particular 

honeybees (Apis spp), for pollination services. Honeybees are the most effective 

pollinators in a range of crop species (ROBINSON, 1979). Management of honey 

bees is convenient because of their large foraging populations, year-round availability 

and easy transportation (FREE, 1993). Increasing pollination efficiency through 

management of pollinators is warranted only when crops are pollen-limited and the 

cost involved is lower than the value realized through increases in crop production 

(CURRIE, 1997). 

 

2.1.11.3 Spraying pollinator attractants on target crop 

A number of studies have shown the potential of sprays with various substance on 

the target crop to attract pollinators. Sprays with dilute solutions of pheromones have 

shown considerable potential. Secretions from the Nasnov gland located on the 

dorsal side of the abdomen of worker bees consist of seven terenoids. Of these, 

geraniol and citral increase honey-bee foraging activity. Similarly, the queen honey-

bee secretes a five component pheromone from its madibular glands. Sprays of 
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synthetic mandibular pheromones do increase honey-bee foraging activity and crop 

yield under a wide range of conditions (CURRIE et al., 1992; WINSTON and 

SLESSOR, 1993). Application of pheromones seems to be particularly effective on 

crops with flowers relatively unattractive to bees or during inclement weather 

conditions (SHIVANNA, 2003). Apart from pheromones, sprays of synthetic plant 

volatiles isolated from nectar or pollen are also effective in attracting honey-bees 

(DOBSON, 1994). Sprays containg food supplement such as Beeline® have also 

been reported to act as bee attractant in some crop species (MARGALITH et al., 

1984). 

 

2.1.11.4 Introduction of pollinators 

Introduction of pollinators is one of effective approaches when crops are grown in 

areas where natural pollinators are absent, as often happens when a crop is 

introduced from one country to another. This approach involves detailed studies on 

the biology of the pollinator and monitoring its establishment in the new area 

(SHIVANNA, 2003). Oil palm (Elaeis guineesis) is native to Africa and Central South 

America. It was introduced to Malaysia and Indonesia and is grown extensively. In its 

native habitat, oil palm is pollinated by wind as well as many insects, in particular 

weevils. In many parts of Malaysia, where pollinating insects are absent, natural 

pollination was inadequate. Introduction of the weevil Elaeidobius kamerunicus, an 

important pollinator of oil palm from Cameroon is a successful example of such an 

approach. Introduction of the weevils has markedly increased the yield. Over the first 

seven months after weevil introduction, oil yield increased 20-53% (SYED, 1979). 

 

2.1.11.5 Supplementary pollination 

Assisted/supplementary pollination through pollen sprays or other methods such as 

manual hand pollination is the most effective technique for sustaining crop yield 

(WILLIAMS and LEGGE, 1979; HOPPING and JERRAM, 1980b). This is routinely 

carried out for small-scale production of a few crops, such as passion-fruit (ROUBIK, 

1995). In high value plantation crops such as oil palm, pollination is a major 

constraint even in the presence of weevils, especially in younger plantations. 
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Although oil palm is monoecious, the male and female phases alternate, each 

extending for many months, thus at any given time the plant will be either male or 

female phase dominated. Insufficient number of plants in the male phase in the 

plantation and unfavourable weather conditions reduce pollination efficiency. 

Assisted pollination is a common practice in oil-palm plantations particularly in 

younger plantations. Assisted pollination has been reported to increase yield 20-

150%, depending on age of the plants and weather conditions (SHIVANNA, 2003). 

Assisted pollination requires standardization of protocols for pollen collection. 

Different methods have been assayed for assisting pollination in oil palm. Hand 

pollination is regularly practiced for the Vanilla orchid. This plant is a native of 

southern Mexico and Central America where it is pollinated by the euglossine bee 

Eulaema (ROUBIK, 1995). Vanilla is grown extensively in many parts of tropical Asia 

where the pollinator is absent, hand pollination is routinely carried out to induce fruit-

set (SHIVANNA, 2003). 

 

Floral biology and pollination ecology of J. curcas were studied by RAJU and 

EZRADANAM (2002); BHATTACHARYA et al. (2005); CHANG-WEI et al. (2007). 

However, these studies did not cover the implementation of pollination management 

for yield improvement in this plant. Therefore, Table 2.8  summarieze some 

pollination improvement done on other crop species.   
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Table 2.8 Improvement done on different crop specie s by pollination management. 

Crop Aspects Reference 

Avocado (Persea americana) Pollinators; pollination requirements pollinator behaviour; 

and self- and cross-pollination 

VITHANAGE (1990); ISH-AM et al. (1999); 

 DELAPLANE and MAYER (2000);  

DEGANI et al. (2003). 

Apple (Malus domestica) Pollinators and pollination requirements DELAPLANE and MAYER (2000). 

Almond (Prunus dulcis) Pollinators and pollination requirements DELAPLANE and MAYER (2000). 

Cotton (Gossipium hirsutum) Pollinators and pollination requirements DELAPLANE and MAYER (2000). 

Cranberry (Vaccinium macrocarpon) Pollinators and pollination requirements DELAPLANE and MAYER (2000). 

Kiwifruit (Actinidia deliciosa) Pollinators and pollination requirements; influence of 

honey bee on pollination and fruit quality 

DELAPLANE and MAYER (2000);  

HOWPAGE and SPOONER-HART (2001). 

Peach and nectarine (Prunus persica) Pollinators and pollination requirements DELAPLANE and MAYER (2000) 

Pear (Pyrus communis) Pollinators and pollination requirements DELAPLANE and MAYER (2000) 

Plum and prune (Prunus domestica) Pollinators and pollination requirements DELAPLANE and MAYER (2000) 

Raspberry (Rubus idaeus Pollinators and pollination requirements DELAPLANE and MAYER (2000) 

Guava (Psidium guajava L.) Visitation effectiveness by honey bees FREITAS and ALVES (2008)  

Mango (Mangifera indica) Pollinators  DAG and GAZIT (2000) 

Coffee (Coffea canephora) Pollinator effectiveness ROUBIK (2002); KLEIN et al. (2003). 

Sunflower (Helianthus annuus) Pollinators effectivness and pollination requirements DELAPLANE and MAYER (2000); NDERITU et al. 

(2008). 
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2.2 POLLEN BIOLOGY 

Pollen grains embody the male partners in sexual reproduction. They are generally 

shed in a desiccated condition and their moisture level is less than 20%. At the time 

of shedding, pollen grains are either two-celled – a large vegetative cell enclosing a 

generative cell; or three-celled – a vegetative cell and two sperm cells formed by the 

division of the generative cell. There is considerable variation in the shape and size 

of pollen grains (SHIVANNA and SAWHNEY, 1997). The wall of the pollen grain is 

made up of two layers: an outer, acetolysis-resistant exine composed of 

sporopollenin and an inner pectocellulosic intine. One of the conspicuous structural 

features of pollen grains is the ornamentation of the wall formed by the outer part of 

the exine (CRESTI et al., 1992). Pollen biology involves a comprehensive 

understanding of the structural and functional aspects of pollen grains. The main 

function of the pollen is to discharge male gamets in the embryo sac for fertilization 

and for subsequent seed development. This function depends on the successful 

completion of a number of sequential events. The following are considered the major 

events in pollen biology (SHIVANNA and SAWHNEY, 1997). 

• Pollen development; 

• Free dispersed phase; 

• Pollination; and 

• Fertilization. 

 

2.2.1 Pollen development 

Pollen grains develope inside the anther and are dispersed by dehiscence of the 

anther. After dispersal, pollen grains remain as independent functional units and are 

exposed to the prevailing environmental conditions for varying periods. Depending on 

the period and severity of the environment, the quality of the pollen grains, 

particularly their viability and vigour, may be affected during this pollination phase. 

Eventually pollen grains are deposited on the stigma (pollination) through biotic or 

abiotic agents (SHIVANNA and SAWHNEY, 1997). Structural details of pollen 
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development are quite uniform in most of the species studied. The main structural 

events associated with pollen development are: 

(i) The formation of a syncytium of microspore mother cells (MMCs), 

also referred to as pollen mother cells (PMCs) or meiocytes, in each 

anther locule, followed by the isolation of each MMC and the 

resulting microspores encased in a callose wall; 

(ii)  Cytoplasmic reorganization resulting in the breakdown of most of 

the RNA  and ribosomes of MMCs, and differentiation of plastids 

and mitochondria; 

(iii) Release of miocrospores by the activation of callase; 

(iv)  Development of microspores by the synthesis and build up of RNA, 

ribosomes, and proteins, and redifferentiation of plastids and 

mitochondria; 

(v) Asymmetric division of the microspore; and 

(vi) Desiccation and dispersal of pollen grains.  

 

2.2.2 Structure of the pistil 

2.2.2.1 The stigma 

Based on the presence or the absence of stigmatic exudates on its surface at the 

time of pollination the stigma can be one of two types: (1) a wet stigma or (2) a dry 

stigma. Each of these types is further divided on the basis of the presence or 

absence of papillae on the receptive surface and anatomical details. Irrespective of 

the morphology, the stigma invariability contains extracellular components of the 

receptive surface (HESLOP-HARRISON and SHIVANNA, 1977). These components 

are highly heterogenous and include lipids, proteins, and glycoproteins, different 

carbohydrates, amino acids, and phenols. A range of enzymes have also been 

localized; the non-specific esterases are the predominant ones, cytochemical 

demonstration of non-specific esterases has become a standard method of 
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localization of the receptive surface of the stigma (SHIVANNA and SAWHNEY, 

1997).   

 

2.2.2.2 The style 

There are two types of style: (1) the solid or (2) the hollow (SHIVANNA and 

SAWHNEY, 1997). In the solid style, a core of transmitting tissue, starting from the 

secretory tissue of the stigma, traverses the whole length of the style. The transmiting 

tissue is made up of elongated cells connected end to end through the 

plasmodesmata (SANDERS and LORD, 1992). The intercellular substance is 

composed predominantly of pectin but it also contains proteins, glycoproteins, and 

often lipids; it also respond to many enzymes, such as esterases, acid phosphatase 

and peroxidases. A number of transmitting tissue-specific, proline-rich proteins have 

been localized in the intercellular matrix (WANG et al., 1993). The cells of the 

transmitting tissue exhibit normal ultrastructural profiles with numerous mitochondria, 

active dictyosomes, rough endoplasmic reticulum (RER), plastids, and ribosomes. 

Endoplasmic reticulum (ER) and Golgi vesicles have been implicated in the secretion 

of an intercellular matrix (KRISTEN et al., 1979). Irrespective of the structural 

diversity of the stigma and style, the surface of the stigma and the path of pollen tube 

growth in the pistil invariably contain extracellular components, which come into 

direct contact with the pollen grain and pollen tube (MIKI-HIROSIGE et al., 1987). 

 

2.2.2.3 Ovary and ovule 

The transmitting tissue/canal cells of the style continue into the ovary as the 

placenta. The ovule, the seat of female gametophyte (embryo sac), develops on the 

placenta. Extensive studies have been carried out on the structural details of the 

ovule and embryo sac (CRESTI et al., 1992; GASSER and ROBINSON-BEERS, 

1993; RUSSELL, 1993).  
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2.2.3 Pollen-pistil interaction 

Pollen grains are deposited on the stigma either by close proximity of the anthers or 

by biotic/abiotic agents. Successful pollination initiates as a number of sequential 

events that culminate in the discharge of male gametes into the embryo sac. All 

these events, from pollination to the release of male gametes in the embryo sac, are 

included in pollen-pistil interaction (SHIVANNA and SAWHNEY, 1997). Pollen-pistil 

interaction involves a series of “dialogues” between the male gametophyte and 

sporophytic tissues of the stigma and style. These interactions result in generation of 

appropriate signals which elicit the required responses in the pollen and/or pistil. 

Successful completion of pollen-pistil interaction is an essential requirement for 

fertilization and seed-set. Any deviation of these sequential events prevents 

fertilization and consequently fruit- and seed-set. Recently, there has been an 

increasing realization of the need for understanding the details of pollen-pistil 

interaction for effective manipulation in crop production and crop improvement 

(SHIVANNA, 2003). This realization has resulted in extensive studies on the 

structural and functional aspects of pollen-pistil interaction. Pollen-pistil interaction 

has been covered by many reviews (KNOX et al., 1986; CRESTI et al., 1992; 

SHIVANNA and SAWHNEY, 1997; DE GRAAF et al., 2001). The ability of the 

gamete to establish recognition so as to facilitate fusion of only the right type of 

gametes is the prerequisite for sexual reproduction in any organism. In seed plants 

pollen grains act as vehicles for gamete transmission. In gymnosperms pollen grains 

are deposited in the pollen chamber and a short pollen tube is produced before the 

male gametes are released (OWENS et al., 1998). In zooidogamous gymnosperms 

(Cycads and Ginkgo) pollen tubes are not directly involved in the transfer of sperm to 

the egg; they function as haustorial organs to acquire nutrition from the surrounding 

sporophytic tissues of the ovule (JOHRI, 1992). 

 

2.2.4 Pollen viability 

Pollen viability refers to the ability of the pollen to perform its function of delivering 

male gametes to the embryo sac. The period for which pollen grains remain viable 

varies greatly from species to species. On the basis of their longevity pollen grains of 
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different species can be grouped into three categories (BARNABAS and KOVACS, 

1997).  

• Short-lived pollen: pollen grains lose their viability within a few days 

(Cyperaceae, Juncaceae). In some species viability is lost in less than an hour 

(sorghum, wheat) (LANSAC et al., 1994); 

• Pollen with medium life span: pollen of majority of families, such as 

Solanaceae, Liliaceae and Amaryliaceae, fall within these extremes; they 

maintain viability for 1-3 months; and 

• Long-lived pollen: pollen of many Gymnosperms (Pinaceae and Gingkoaceae) 

and members of several angiosperm families, such as Leguminaceae, 

Rosaceae and Arecaceae, maintain viability for over 6 months. 

 

2.2.4.1 Tests for viability 

Assessment of pollen viability is important for studies on pollen storage, reproductive 

biology and hybridization (DAFNI and FIRMAGE, 2000).  

2.2.4.1.1 Fruit- and seed-set 

As viability refers to the ability of pollen to deliver functional gametes to the embryo 

sac, the most authentic test for viability would be to assess the fertilization capacity of 

the pollen sample as measured by fruit- and seed-set following controlled pollination 

(SHIVANNA, 2003). However, this test has many limitations for use as a routine test: 

(i) it is laborious and time-consuming; (ii) many other factors such as stigma 

receptivity and incompatibility have to be taken into consideration to perform this test; 

(iii) seed-set is not an inevitable outcome of fertilization as many post-fertilization 

factors associated with seed development may influence seed-set; (iv) this test 

cannot be used in apomictic species; (v) it can be used only during the flowering 

period of the species; (vi) it can be used more as a qualitative than quantitative test, 

particulary in systems with fewer ovules, as germination of a limited number of pollen 

is enough to induce full seed-set. Therefore, assessment of pollen viability through 

fruit- and seed-set is not practicable as a routine test, although it can be used to 

confirm the results of other tests (SHIVANNA, 2003). 
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2.2.4.1.2 Pollen germination and pollen tube growth  in the pistil 

Some attempts have been made to assess pollen viability by studying pollen 

germination and pollen tube growth in the pistil following controlled pollination. In 

Brassica oleraceae, for example, pollen samples which produce about 70 pollen 

tubes in the style are considered fully viable (OCKENDON, 1974). Although this 

method markedly reduces the time taken compared to the fruit- and seed-set 

method, it has the most of the other limitations associated with fruit- and seed-set. 

Also, it is not always feasible to quantify the number of pollen tubes growing in the 

style. 

 

2.2.4.1.3 Non – vital stains and other tests of lim ited use 

Many alternative methods which are simple, convenient and rapid have been 

developed. Many of the staining tests using non-vital stains such as iodine in 

potassium iodide, alanine blue in lactophenol, acetocarmine, acid fuchsin and 

Alexander’s stain (ALEXANDER, 1980), essentially assess the presence of contents 

in the pollen. They are satisfactory in assessing pollen sterility but are not 

dependable for testing viability (HESLOP-HARRISON et al., 1984). Some non-

permeating satains, such as Evans blue and phenosafranin (WIDHOLM, 1972) which 

do not enter plasma membranes of living cells but stain the cytoplasm of dead cells 

are reportedly suitable for assessing pollen viability. Inorganic acid tests based on 

bursting of viable pollen in inorganic acids and formation of instant pollen tubes from 

hydrated pollen, although very simple and rapid, are largely not used because data 

for establishing their correlation with true viability are lacking. A cytochemical test, 

termed the benaidine test, which is based on the oxidation of benzidine by 

peroxidase in the presence of hydrogen peroxide, has been used for assessing 

viability of pollen of many species. This test, however, is not often used because of 

benzidine toxicity and also the availability of better and more effective tests 

(SHIVANNA, 2003). 
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2.2.4.1.4 Tetrazolium test  

This test is based on reduction of soluble colourless tetrazolium salt to reddish 

insoluble formazan in the presence of dehydrogenase. Following incubation of pollen 

grains in tetrazolium solution for 30-60 min, pollen grains which take a reddish colour 

are scored as viable. The most commonly used salt is TTC (2,3,5-triphenyl 

tetrazolium chloride). Satisfactory results were reported when using this test in 

assessing pollen viability in several species (COLLINS et al., 1973). Another 

tetrazolium salt is 2,5-diphenyl tetrazolium bromide (MTT or thiazolyl blue). This test 

detects the presence of dehydrogenase. The test solution consists of a 1% 

concentration of the substrate MTT or thiazolyl blue (2,5-diphenyl tetrazolium 

bromide) in 5% sucrose. The pollen grain is considered viable if it turns deep pink or 

if it presented no colour but showed irregular black lines over its surface (KHATUN 

and FLOWERS 1995, DAFNI and FIRMAGE, 2000) . Often, results of the tetrazolium 

test did not correlate with seed-set data (BARROW, 1983) or the in vitro germination 

test (HESLOP-HARRISON et al., 1984). Another limitation is that correlation of 

responding pollen shows a gradation from very light to dark red with the result that 

the cut-off point for scoring viable pollen becomes subjective. 

 

2.2.4.1.5 In vitro germination test 

This test is the most commonly used and acceptable for assessing pollen viability. It 

is rapid, simple and the results of in vitro germination generally correlate with seed 

set data (JANSSEN and HERMSEN, 1980).  However, this correlation depends on 

optimization of the medium and other cultural conditions to induce germinability in 

most of the viable pollen. In a suboptimal medium, this test gives negative results. 

Furthermore, many of the stored pollen samples which fail to germinate in vitro are 

often found to be capable of inducing fruit- and seed-set following pollination. A major 

limitation of this test is lack of optimal germination medium for pollen of many 

species, particularly the 3-celled pollen ones (SHIVANNA, 2003). 
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2.2.4.1.6 Aniline blue in lactophenol 

Aniline blue in lactophenol stains callose, and provides (at best) only rough estimates 

of viability (STANLEY and LINSKENS, 1974; HESLOP-HARRISON et al., 1984). 

Aniline blue in lactophenol stains non-abortive pollen but not abortive pollen. MAYER 

(1991) used this stain to evaluate male fertility of Wikstroemia (Thymelaeaceae) 

hybrids by scoring a minimum of 300 grains per sample. Darkly stained grains were 

considered viable. The accuracy of this method was confirmed with a nitro blue 

tetrazolium stain for dehydrogenase activity. 

 

2.2.4.1.7 Fluorescein diacetate test (FDA) 

The flurescein diacetate (FDA) test, often referred to as the fluorochromatic reaction 

(FCR) test, was introduced by HESLOP-HARRISON and HESLOP-HARRISON (1970) 

as a test for pollen viability. The FDA assesses two properties of the pollen: (i) 

integrity of the plasmamembrane of the vegetative cell and (ii) presence of active 

esterases in the pollen cytoplasm. Non-polar, non-fluorescing FDA passes freely 

through the pollen membrane and enters the pollen cytoplasm. Hydrolysis of FDA by 

the activity of esterases results in fluorescein which is fluorescent. Since the 

fluorescein does not pass through the intact plasmamembranes as readily as FDA, it 

accumulates in the pollen cytoplasm. Such pollen grains show bright fluorescence 

under a microscope. Pollen grains that do not have intact plasmamembrane allow 

fluorescein to move out readily and thus result in uniform background fluorescence. 

Likewise, if there are no active esterases in the pollen cytoplasm, fluorescein is not 

formed and hence pollen grains do not show fluorescence (SHIVANNA, 2003). The 

FDA test has proven satisfactory in assessing pollen viability in a number of species 

(SEDGLEY and HARBARD, 1993). It reportedly has wider applicability and better 

resolution than other prevailing tests for assessing pollen viability of cotton 

(SHIVANNA, 2003). In species in which the medium used for in vitro germination of 

pollen is optimal, a close correlation exists between the FDA test and the in vitro 

germination test (HESLOP-HARRISON et al., 1984). In the absence of optimal 

medium, the FDA test gives a better index of viability than in vitro germination 

(SHIVANNA et al., 1991a).  
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2.2.5 Pollen vigour 

Pollen vigour refers to the speed of germination and the rate of pollen tube growth. It 

differs from viability since viable pollen samples may show differences in vigour 

(SHIVANNA, 2003). As seeds and pollen grains are very similar in many 

physiological manifestations, it was suggested that pollen grains also exhibit 

reduction in vigour before loss of viability (SHIVANNA and CRESTI, 1989; 

SHIVANNA et al., 1991a). It was reported that ageing, and many environmental 

stresses, in particular desiccation, temperature and humidity affect pollen vigour 

before affecting viability (SHIVANNA et al., 1991a,b). 

 

2.2.5.1 Tests for vigour 

2.2.5.1.1 In vitro germination 

Apart from its use in assessing pollen viability in vitro germination can also be used 

to assess pollen vigour (SHIVANNA and CRESTI, 1989). In viability tests using in 

vitro germination, the capacity of pollen to germinate is assessed without 

consideration of the time factor; the cultures are generally scored after maintaining 

them for a much longer period than that required for germination. To assess the 

vigour, however, germination is scored at intervals over a period of time and 

compared with the values obtained for control pollen (fresh pollen). Pollen grains with 

reduced vigour took a longer time to attain maximum germinability than did fresh 

pollen. 

 

2.2.5.1.2 Semivivo technique 

In the semivivo technique, the pollen sample to be tested is used to carry out 

controlled pollination. The pistil used for pollination can either be maintained on the 

plant or be excised and maintained in the laboratory (SHIVANNA, 2003). Pollinated 

pistils are maintained (for 3-6 h) until pollen grains germinate on the stigma and 

pollen tubes grow down for some length in the style. After a suitable time of 

incubation, the style is cut ahead of the growing pollen tubes and the cut end of the 

style is implanted in the agar medium containing the components of the pollen 

germination medium. The pollen tubes continue their growth and enter the agar 



 

 
 

61

medium through the cut end of the style (SHIVANNA et al., 1991a). The number of 

pollen tubes that emerge into the medium are counted and their length measured 

either in situ or after pulling out the implant and observing under a microscope. The 

semivivo technique requires some preliminary studies on pollen germination and 

pollen tube growth in vivo. Pollen vigour is assessed on the basis of the time taken 

for pollen tube emergence into the medium and the number of emerged pollen tubes. 

 

2.2.5.1.3 In vivo pollen germination and pollen tube growth 

Pollen vigour can be assessed by studying pollen germination and pollen tube growth 

at regular intervals in pistils pollinated with pollen samples. Comparison of the extent 

of pollen germination and pollen tube growth in pistils pollinated with the test pollen 

sample and those with fresh pollen indicate the vigour of the pollen sample. Another 

simple method for assessing pollen vigour is to excise the stigma and a part of the 

style at different intervals after pollination (SHIVANNA, 2003). Pollen tubes, which 

grow through the excision zone before excision, continue to grow and affect 

fertilization (JAUH and LORD, 1995). Thus more vigorous tubes would grow through 

the excision zone earlier and result in seed-set while less vigorous pollen tubes may 

not grow or only a few may grow through the excision zone and this would result in 

no seed-set or reduced seed-set. 

 

2.2.6 In vitro pollen germination and pollen tube growth 

Germination of pollen is the first morphogenetic event in fulfilling its function of 

transport and discharge of sperm cells into the embryo sac. In vivo studies on pollen 

germination are difficult to perform due to involvement of pistillate tissue. Since pollen 

grains of a large number of species readily germinate in vitro on a simple medium, in 

vitro germination has been extensively used in studies on structural and physiological 

details of germination and tube growth. Two-celled pollen grains in general are more 

amenable to in vitro germination compared with three-celled pollen. Details of the 

processes involved in pollen germination and pollen tube growth are discussed in 

many reviews (HESLOP-HARRISON, 1988; STEER and STEER, 1989; 

MASCARENHAS, 1993; DERKSEN, 1996).  
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2.2.6.1 Germination requirements 

2.2.6.1.1 Hydration  

As pollen grains are shed under desiccated conditions, hydration is a basic 

prerequisite for germination. In liquid medium hydration is rapid and completed within 

a few minutes. In semi-solid medium, it is slower and rate of hydration depends on 

moisture level of the medium. Many studies have shown that the rate of hydration is 

critical for optimal germination, particularly for desiccated pollen (SHIVANNA, 2003). 

Controlled hydration seems to provide better conditions for restoration of membrane 

integrity and thus prevents leakage of metabolites when transferred to the culture 

medium (SHIVANNA and HESLOP-HARRISON, 1981). GILLISSEN (1977) reported 

that in Petunia controlled hydration affects rigidity of the pollen wall. Pollen grains 

exposed to controlled hydration before culture showed a 3-fold increase in volume 

after culture compared to direct culture which showed only a 2-fold increase. 

 

2.2.6.1.2 Carbohydrate source 

A suitable carbohydrate source in the medium is required for adequate pollen 

germination and tube growth. A carbohydrate source serves two functions: (i) It 

maintains the required osmotic potential of the medium, and (ii) serves as substrate 

for pollen metabolism (NYGAARD, 1977). The former is perhaps more important than 

the latter. In short-term cultures pollen grains contain sufficient endogenous sugars 

for germination and early tube growth. In long-term cultures, exogenous 

carbohydrates are needed for continued tube growth. Sucrose has been the most 

commonly used carbohydrate source. In some species other sugars such as glucose, 

fructose and raffinose also support pollen germination and tube growth. In general, 2-

celled pollen require a lower sucrose level (10-15%), while 3-celled pollen require 

higher levels (>20%). 
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2.2.6.1.3 Boron  

Boron is a regular component of all pollen germination media. Boric acid is generally 

used as the boron source. In the absence of boron, pollen grains generally show 

poor germination and a high degree of bursting. Pollen grains are believed to be 

deficient in boron which is compensated by high levels of boron in the stigma 

(SHIVANNA, 2003). Boron seems to affect various pathways of carbohydrate 

metabolism. A major metabolic activity of germinated pollen is the synthesis of pollen 

wall components to cope with the requirement for long pollen tubes needed to grow 

through the length of the style to reach the embryo sac. It is suggested that boron 

stimulates conversion of myo-inositol, to wall polysaccharides, thus enabling the 

enzyme to bind to inositol or inositol derivatives (MAITI and LOEWUS, 1978). Boron 

also seems to affect the avilabilty of substrates for other pathways of carbohydrate 

metabolism (BIRNBAUM et al., 1977).  

 

2.2.6.1.4 Calcium 

Calcium is another important inorganic requirement for pollen germination and pollen 

tube growth. The amount of calcium present in the pollen is generally far less than 

that present in the vegetative parts and seeds (MCLELLAN, 1977). In some species 

calcium is not required for pollen germination and this is explained on the basis that 

pollen grains of such species contain higher levels of endogenous calcium. Many 

functions have been attributed to calcium. It has been suggested that calcium gives 

rigidity to the pollen tube wall by binding pectic carboxyl groups (KWACK, 1967).  

Calcium also has a role in controlling permeability of the pollen membrane. The most 

important role of calcium has been shown to be in regulating tip growth of the pollen 

tube. 
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2.2.7 Phases of germination and tube growth 

2.2.7.1 Lag phase 

The time between pollen hydration and pollen tube emergence is termed the lag 

phase and varies from species to species. In some species it is limited to a few 

minutes, while in others it extends from about 30 min to a few hours (SHIVANNA et 

al., 1991a). A close correlation exists between duration of the lag phase and level of 

mitochondrial differentiation in the pollen at the time of dispersal. The differences in 

the lag phase correlates with differences in their requirements for protein synthesis 

for germination. Pollen grains with short lag phases do not require protein synthesis 

for germination, while those with a long lag phase do. 

 

2.2.7.2 Pollen tube emergence 

Pollen tubes emerge from the germ pores. In species with more than one pore, 

generally a single pollen tube emerges through one of them. Occasionally more than 

one tube arises from a pollen grain but only that one among them which receives the 

nuclei will continue growth; the other will abort. Germ pores are generally free from 

exine and thus do not offer much resistance to the emerging tubes (SHIVANNA, 

2003).  Following pollen tube emergence, a clear zonation is established at the 

growing tip (CRESTI et al., 1977).  

 

2.2.7.3 Pollen tube growth 

Pollen tube structure and mode of growth at the stigma is very similar to pollen tube 

growth in vitro (HERRERO and DICKINSON, 1979) since during this phase the 

pollen tubes grow autotrophically at the expense of the pollen grain reserves 

(HERRERO and DICKINSON, 1981). When the pollen tubes enter the style there is 

an acceleration of growth (HERRERO and DICKINSON, 1980) that is accompanied 

by a change from autotrophic to heterotrophic metabolism (HERRERO and 

DICKINSON, 1981). The style contains abundant starch reserves which disappear as 

the pollen tubes grow through the stylar tissue (HERRERO and DICKINSON, 1979). 
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When the pollen tubes reach the base of the style and enter the ovary they meet the 

obturator which is a placental protuberance connecting the style with the ovule 

micropyle. A histochemical study of this structure (ARBELOA and HERRERO, 

1987a) reveals that when the pollen tubes arrive at the obturator they stop growing 

and growth is not resumed until five days later. On the arrival of the pollen tubes the 

obturator cells are full of starch reserves but five days later starch disappears from 

these cells and a secretion that stains for carbohydrates and proteins is produced. 

Concomitant with the production of this secretion growth of the pollen tubes is 

resumed on the obturator. The fact that pollen tubes appear to require this secretion 

to grow reinforces the idea that pollen tube growth along the pistil is heterotrophic 

(HERRERO and DICKINSON, 1979). However, a major difference exists between 

growth in the style and on the obturator. While in the transmitting tissue starch 

digestion is triggered by pollination and only occurs in compatible matings 

(HERRERO and DICKINSON, 1979). On the obturator this process is independent of 

pollination and appears to be a maturative stage of the pistil for it takes place in a 

similar way in pollinated and unpollinated flowers (ARBELOA and HERRERO, 

1987a). Once the pollen tubes have passed along the obturator, callose starts to 

accumulate on this structure. This mechanism confers the obturator a critical role in 

controlling pollen tube penetration into the ovary since it acts as a bridge either 

connecting or isolating the ovary to the style. Thus, pollen tube growth is not possible 

before the secretion phase, neither is it possible later once the obturator 

degenerates. This mechanism, apart from having a role in pollen tube growth control, 

may play a significant part in preventing infection. 

 

2.2.8 The role of pollen biotechnology in crop impr ovement 

Pollen biotechnology is the management or manipulation of pollen grains for crop 

production and improvement. Pollen grains can be manipulated during all phases of 

pollen biology-development, free-dispersed phase, pollination, pollen pistil-interaction 

and fertilization. Integration of pollen biotechnology into the traditional breeding 

programme offers effective approaches in a number of areas of production and 

improvement of crops. Pollen biotechnology decreases the time and cost of crop 

improvement and increases its efficiency.  SHIVANNA, (2003) demonstrated two of 

the potential areas of pollen biotechnology for effective application, which are:  
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(1) overcoming pollination constraints; and 

(2) overcoming crossability barriers and many other constraints to transfer genes 

across species barriers.  

 

2.3 PLANT HORMONES 

2.3.1 Introduction 

Plant hormones are a group of naturally occurring, organic substances which 

influence physiological processes at low concentrations. The processes influenced 

are mainly those of growth, differentiation and development. The effects produced by 

each hormone have been elucidated largely from exogenous applications. Plant 

hormones do not act alone but in conjunction, or in opposition, to each other such 

that the final condition of growth or development represents the net effect of a 

hormonal balance (DAVIES, 2004). Plant growth regulators (PGRs) are organic 

compounds other than nutrients (supplying either energy or mineral elements) that, in 

small amounts, promote, inhibit, or otherwise modify any physiological process in a 

plant. The term PGRs include both, naturally occurring plant growth substances, or 

phytohormones, as well as synthetic compounds or chemical analogs (BASARA, 

2000). Plant growth regulators PGRs have been an important component in 

agricultural production even prior to the identification of plant hormones. PGRs are 

used on millions of hectares worldwide on a diversity of crops. Most of these 

applications are, however, confined to high-value horticultural crops rather than field 

crops, although there are significant exceptions. Significant opportunities exist for the 

development of plant growth regulators to increase yield in the major crops. PGRs 

are useful because they can in some way modify plant development. This may occur 

by interfering with biosynthesis, metabolism, or translocation of plant hormones, or 

the PGRs may replace or supplement the plant hormones when their endogenous 

levels are below that needed to change the course of plant development 

(GIANFAGNA, 1995). There are five well-established categories of classical 

phytohormones, namely, auxin, gibberellins, cytokinins, abscisic acid and ethylene. 

More recently several other compounds that can regulate various facets of plant 
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growth and development have been described, such as, oligosaccharins, 

brassinosteroids, jasmonates, salicylates, and polyamines (BASARA, 2000). 

 

2.3.2 Auxin 

2.3.2.1 Nature, site of biosynthesis and transport 

 Indole-3-acetic acid (IAA) is the main auxin in most plants. “Compounds which serve 

as IAA precursors may also have auxin activity, such as indoleacetaldehyde. Some 

plants contain other compounds that display weak auxin activity, such as 

phenylacetic acid (WIGHTMAN and LIGHTY, 1982). IAA may also be present as 

various conjugates, such as indole-3-acetyl-L-aspartate (IAAsp) (PARK and PARK, 

1987)”. Several synthetic auxins are used in commercial applications (GIANFAGNA, 

1995). IAA is synthesized from tryptophan, primarily in leaf primordia and young 

leaves, and in developing seeds. IAA transport is cell to cell. Transport to the root 

probably also involves the phloem (DAVIES, 1995). 

 

2.3.2.2 Effects of auxins:  

According to DAVIES, (1995) the general effects of auxins on the plants are: 

• Stimulation of cell enlargement and stem growth; 

•  Stimulation of cell division in the cambium and, in combination with cytokinin, 

in tissue culture; 

•  Stimulation of differentiation of phloem and xylem; 

• Stimulation of root initiation on stem cuttings, and also the development of 

branch roots and the differentiation of roots in tissue culture; 

• Mediation of the tropic (bending) response of shoots and roots to gravity and 

light; 

• Represses the growth of lateral buds when supplied to the apical bud;  
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• Delays leaf senescence and may inhibit or promote (via ethylene) leaf and fruit 

abscission depending on the timing and position of the source;  

• Assimilate movement is enhanced towards an auxin source, possibly by an 

effect on phloem transport; 

•  Delays ripening; 

•  Promotes flowering in Bromeliads;  

• Stimulates growth of flower parts; and 

• Promotes femaleness in dioecious flowers (via ethylene). 

 

2.3.2.3 Commercial uses of auxins in agriculture 

Indole acetic acid (IAA) is not in itself useful in agriculture because it is rapidly broken 

down to inactive products by light and microorganisms. Nevertheless, a number of 

synthetic compounds were found to act similarly to IAA in the auxin bioassay tests. 

Indole-3-butyric acid (IBA) and naphthalene acetic acid (NAA) were found to increase 

root development in the propagation of stem cuttings. NAA and naphthalene 

acetamide (NAAm) are used to reduce the number of fruit that have set in apple, 

whereas 4-chlorophenoxyacetic acid (4-CPA) is used to increase fruit set in tomato. 

The auxin 2,4,5-trichlorophenoxpropionic acid (2,4,5-T) and the dichlorophenoxy 

analog (2,4-D) are used to prevent abscission of mature fruit in apple (DAVIES, 

1995). 

 

2.3.2.3.1 Propagation 

Rooting of stem cuttings was one of the first uses of auxins. The most common 

compounds used are IBA, NAA and 2,4-D. The auxin stimulates root development by 

inducing root initials that differenciate from cells of young secondary phloem, 

cambium, and pith tissue (DAVIES, 1995). 
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2.3.2.3.2 Stimulation of fruit set 

One of the first recorded effects of auxins was the stimulation of fruit set in 

unpollinated ovaries of Solanaceous plants. Pollen is a rich source of auxin, and in 

some species pollination alone is all that is required for fruit set to occur. In tomato, 

chemical stimulation of fruit set is all that is needed for fruit growth to take place. The 

compounds that block the transport of auxin from the ovary to the pedicel of the 

flower also stimulate fruit set. It seems likely, therefore, that under environmental 

conditions somewhat inhibitory to fruit set, application of auxin to flowers could 

promote this process (DAVIES, 1995).  

 

2.3.2.3.3 Prevention of fruit drop and chemical thi nning 

Frequently, the mature fruit of apple, pear, lemon and grape fruit will abscise prior to 

the time of commercial harvest. This obviously reduces the potential crop yield, and 

may result in the tendency to begin harvesting the crop earlier than is desirable, 

resulting in lower quality fruit. Under natural conditions, there seems to be an inverse 

relationship between auxin content of the fruit, and the tendency toward abscission 

(LUCKWILL, 1953). In order to improve flower bud production and fruit size in apple, 

thinning should take place within 30 days from full bloom. The two auxin-type 

compounds used in chemical thinning of apple and pear are NAA and NAAm. 

LUCKWILL (1953) proposed that fruit abscission occurs because NAA and NAAm 

induce embryo abortion. Without seed growth, fruit senescence takes place 

prematurely. While the number of viable seeds is often correlated with fruit 

abscission, this is not always the case, suggesting that embryo abortion may not be a 

primary factor resulting in abscission. NAA does cause increased ethylene evolution 

from apple fruit within one day after application (WALSH et al., 1979). Ethylene is 

known to reduce auxin transport from leaf blade to petiole (BEYER, 1973), and to 

induce the synthesis of enzymes that degrade the abscission zone (ABELES et al., 

1971).  
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2.3.3 Cytokinins (CKs) 

2.3.3.1 Nature, site of biosynthesis and transport 

CKs are adenine derivatives characterized by an ability to induce cell division in 

tissue culture. The most common cytokinin base in plants is zeatin. Cytokinins also 

occur as ribosides and ribotides. CK biosynthesis is through the biochemical 

modification of adenine. It occurs in root tips and developing seeds. CK transport is 

largely via the xylem from roots to shoots (MCGAW, 1995). 

 

2.3.3.2 Effects of cytokinins 

According to DAVIES, (1995) the general effects of cytokinins on plants are: 

• Exogenous applications induce cell division in tissue culture in the presence of 

auxin;  

• Promote shoot initiation in tissue culture and crown gall;  

• Induce bud formation in moss;  

• Applications, or the increase in its levels in transgenic plants with genes for 

enhanced CK synthesis, can cause the release of lateral buds from apical 

dominance;  

• Leaf expansion resulting solely from cell enlargement. This is probably the 

mechanism by which the total leaf area is adjusted to compensate for the 

extent of root growth, as the amount of CKs reaching the shoot will reflect the 

extent of the root system;  

• Delay leaf senescence;  

• May enhance stomatal opening in some species; and 

• The application leads to an accumulation of chlorophyll and promotes the 

conversion of etioplasts into chloroplasts. 

 

2.3.3.3 Commercial uses of cytokinins in agricultur e 

Benzyladenine is used on white pine to increase lateral bud formation and 

subsequent growth and branching. Tetrapyranylbenzyladenine (Accel) is registered 
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for use on carnations and roses for increasing lateral branching. Promalin, a mixture 

of benzyleadenine and GA4/7 is used to control fruit shape in ‘Delicious’ apple. 

Pomalin applied at bloom will increase the length to diameter ratio of the fruit 

(WILLIAMS and STAHLY, 1969). Promalin is used to increase lateral branching in 

non-bearing apple trees. Young trees have a strong, vigorously growing central 

leader with a few upright growing branches. For fruit production it is an undesirable 

tree shape and mechanical devices are used to force the lateral branches to grow 

more horizontally. Promalin stimulates branching and increase the branch angle, as 

well as increase shoot elongation, all of which aid in the development of a scaffold 

branching system more suitable for fruit production (DAVIES, 1995). 

 

2.3.4 Growth retardants  

2.3.4.1 Nature and effects of growth retardants 

Growth retardants are a diverse group of synthetic compounds that reduce stem 

elongation and generally increase the green colour of leaves. These compounds 

inhibit cell division in the subapical meristem of the shoot, but generally have little 

effect on the production of leaves or on root growth. The physiological effects of 

growth retardants can be reversed by application of gibberellins (DAVIES, 1995).  

 

2.3.4.2 Commercial uses of growth retardants 

2.3.4.2.1 Pinching agents 

Some growth-retardant chemicals prevent growth of axillary branches. This includes 

maleic hydrazide and oxathiins. The chemicals dikegulac and chlorflurenol are potent 

inhibitors of tree growth, and also fall into this class of chemical pinching agents. The 

primary mode of action of these chemicals is to prevent cell development, disrupt 

differentiation of the meristem, and repress apical dominance (ARZEE et al., 1977). 
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2.3.4.2.2 Controlling of stem elongation in greenho use crops 

The application of growth retardants to potted plants results in shorter, more rigid 

stems and darker green foliage, characteristics that increase the value of the crop. In 

chrysanthemums, daminozide is effective as foliar spray and ancymidol may be used 

as both a foliar spray or a soil drench (LARSON and KIMMINS, 1971). In poinsettia, 

chlormequat chloride is used extensively for height control since it is less expensive 

than ancymidol. In Easter lily, ancymidol is used because it is the most effective 

compound for reducing stem height in this plant. Paclobutrazol (1-(4 

chlorophenyl)4,4-dimethyl-2(1,2,4-triazol-1-yl)pentan-3-ol) and triazole fungicide 

triademefon will also control height, but higher concentrations are required in 

comparison to ancymidol (WULSTER et al., 1987).  

 

2.3.4.2.3 Controlling vegetative growth  

In a crop such as cotton and under certain conditions of high fertility and favourable 

environmental conditions, excessive vegetative growth results. Mepiquat chloride 

(1,1,dimethylpiperidinium chloride) applied at the time of flowering can reduce growth 

by 20-30%. Early yield of cotton is often increased by this treatment presumably due 

to greater light penetration into the canopy, thus allowing fruit set to take place in 

flowers produced on the lower nodes of the plant. Reduced vegetative growth also 

allows greater coverage of insecticides, fungicides and defoliants (HEILMAN, 1981). 

 

2.3.4.2.4 Increasing fruit set  

Application of chlormequat chloride to grapes before bloom increases fruit set of 

seeded berries (COOMBE, 1965). Cluster fresh weight is increased as a result of 

treatment. In addition to increasing cluster yield, vine growth is reduced by growth 

retardant treatment. It is not clear whether the increase in fruit set is due to a direct 

effect on this process by decreasing GA levels (GA is used for berry thinning) or an 

indirect effect resulting from decreased vegetative growth. Exceedingly vigorous 

shoot growth is often associated with poor fruit set in the field. Moreover, if shoot tips 
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are removed, fruit set in grape can be increased, and the growth retardants are not 

capable of further fruit set in detopped plants (DAVIES, 1995).  

 

2.3.4.2.5 Induction of flower bud formation 

Flowering can be stimulated in young apple trees by daminozide application and in 

pear trees by chlormequat chloride treatment. The growth retardants decrease shoot 

elongation in fruit trees, and perhaps by inhibiting vegetative growth, flower bud 

initiation is promoted (DAVIES, 1995). 

 

2.3.4.2.6 Controlling tree size 

Paclobutrazol and other triazole analogs are probably the most effective compounds 

for controlling shoot elongation in fruit trees (STEFFINS, 1988). Controlling tree size 

with these compounds will be an effective way of maintaining tree height for 

maximum spraying and harvesting efficiency in conjuction with modern pruning 

practices such as summer mowing of the tree canopy. Growth of woody landscape 

plants may also be effectively controlled by using the triazole, paclobutrazol and 

uniconazole (KEEVER et al., 1990).  

 

2.4 SMOKE TECHNOLOGY 

2.4.1 The role of smoke in horticulture 

The effects of smoke and aqueous smoke extracts in the regulation of seed 

germination have been extensively examined (BROWN and VAN STADEN 1997; 

VAN STADEN et al., 2000; LIGHT and VAN STADEN, 2004). Seeds can be pre-

treated with smoke for use in horticulture, agriculture and in ecological rehabilitation. 

Smoke technology was used to promote the germination of many fynbos species for 

garden use and sale to the public. Lists of the fynbos species which have seeds that 

exhibit a good germination response to smoke were published by BROWN and 

BOTHA (2002). Prior to the use of smoke for promoting seed germination, many of 
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these species were difficult or impossible to propagate from seed. However, many of 

these species responded well to smoke treatments and are now available more 

readily for horticultural use (BROWN et al. 1994). The retention of the germination 

cue, once seeds have been exposed to smoke, allows for the pre-treatment and 

subsequent storage of seeds prior to sowing (BAXTER and VAN, STADEN 1994; 

BROWN and VAN STADEN, 1999). The germination enhancement of Australian 

species by smoke has been reported in more than 170 species from 37 families 

(ROCHE et al., 1997a). A commercial product from smoke was developed and is 

marketed as ‘Seed Starter’, which is a concentrated smoke solution which is used in 

a diluted form (LIGHT and VAN STADEN, 2004). 

 

2.4.1 The role of smoke in agriculture 

Some vegetable crops, such as lettuce and celery (DREWES et al., 1995; THOMAS 

and VAN STADEN 1995), have shown enhanced germination with smoke. Smoke 

treatments could possibly be used to promote synchronous germination of seeds, 

and to increase the rate of germination of certain agricultural crops. Seeds can be 

successfully pre-treated with smoke (LIGHT and VAN STADEN, 2004). Traditionally, 

rural subsistence farmers store their maize cobs over a fireplace in a hut. This 

indigenous method of maize storage thus causes the seeds to come into contact with 

large quantities of smoke. MODI (2002), using two traditional maize landraces, 

showed that the seeds exposed to smoke had a higher germination rate and final 

germination than untreated seeds. Furthermore, smoke-treated seeds produced 

significantly more vigorous seedlings than untreated seeds. 
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3           Response of  Jatropha curcas plants to summer and 

winter manual pruning 

 

3.1 INTRODUCTION  

Judicious manipulation of growth and production cycles in fruit trees requires an 

understanding of the developmental and phenological features of the trees (NING et 

al., 2004). Bud outgrowth is regulated by the interaction of environmental and 

endogenous signals, such as plant hormones. These interacting factors have a major 

influence on shoot system architecture. Understanding the origin of growth metamers 

and the relationship between preformation and final shoot morphology, is particularly 

important to understand the tree canopy (SPANN et al., 2008). 

 

Crop architecture plays an important role in J. curcas, whereby proper pruning helps 

in producing more branches and healthy inflorescences to enhance good fruit set and 

ultimately yield (GOUR, 2006). The pruning of terminals is essential at six months to 

induce lateral branch formation (GOUR, 2006; KUREEL, 2006). Pruning at 30 cm 

height is ideal to manage. Likewise the secondary and tertiary branches are to be 

pruned at the end of first year to induce a minimum of 25 branches and 35-40 

branches at the end of the second year. During the second year each side branch 

should be pruned retaining 1/3rd of the branch on the plant. Periodic pruning can be 

carried out depending upon the vegetative growth of the plants (GOUR, 2006). 

However, the pruning should be done when the tree sheds leaves and enters into a 

period of dormancy, preferably during the winter season. The trees are kept short to 

be manageable during flowering and fruiting and to provide ease of movement during 

harvesting. Canopy management is advisable in trees with a terminal bearing. Plant 

types with a branch in every leaf axil should not be pruned vigorously. The entire 

plant has to be cut to ground level leaving only a 45 cm stump once in 10 years. The 

re-growth is quick and the pruned plants starts yielding in about a year. This 

procedure induces new growth and helps to stabilize yield (GOUR, 2006). 
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In this study, manual pruning was performed on two-year-old J. curcas plants under 

summer and winter conditions. The aim was to determine which pruning time would 

most likely improve branching, shape and yield. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Study site  

The experiments were conducted on J. curcas L. plants growing at the University of 

KwaZulu-Natal Agricultural Research Station (Ukulinga), Pietermaritzburg, South 

Africa (30˚41' E, 29˚67' S; and 781 m asl).  

 

3.2.2 The experiments 

The experiments were performed on two-year-old plants of J. curcas established 

from seeds. Plants were of the same variety and similar in height. For both summer- 

and winter-pruning experiments, manual pruning (MP) was performed using a 

lopping shear by cutting the plant’s leading middle stalk near ground level and the 

remaining of the branches 45- 50 cm above ground level. The cut was made about 1 

cm above an active bud to prevent dieback of the stem and to encourage a new 

branch to develop (Figure 3.1 D ). The manual pruning was assigned to 16 plants in 

each of three plots which gives a total of 48 plants (n = 48) for each of the two 

experiments (Table 3.1 ). On each plot, 16 plants were left un-pruned, representing 

the control, giving a total of 48 plants (n = 48) for each experiment (Table 3.1 ). 

Summer pruning was performed on six consecutive days between 22 – 28 March 

2007. Winter pruning was performed on four consecutive days between 20 – 24 

August 2007.  
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Table 3.1 Summary of the design of the manual pruni ng experiment. 

Plot Distance 

from plot I 

(M) 

No. of plants 

Summer pruning Winter  pruning 

control pruned control pruned 

I 0 16 16 16 16 

II 300 16 16 16 16 

II 600 16 16 16 16 

Total 48 48 48 48 

Grand total 96 96 

 

 

Three parameters were used to compare the differences between the two types of 

pruning:  

(i) Branching which was determined as the increase in the branch number over the 

initial number of branches before pruning. Data were collected between 10-16 

January 2008;  

(ii) Plant crown diameter, which was determined as the increase over the initially 

measured crown diameter of the plants before pruning. The crown diameter was 

determined by measuring the width of the plant shoot using a metal ruler; and  

(ii) Number of fruit per plant which was determined by counting the number of fruits 

harvested from each plant. Fruit harvesting for both experiments was done between 

19 February – 23 April 2008. 

 

3.2.3 Statistical analysis 

Branching and crown diameter was considered as the increase in the number of 

branch and crown width over the initial readings. SPSS® release 15 statistical 

software was used for data analysis using one-way ANOVA. Tukey’s test was used 

to determine the differences between treatments (SPSS Inc., Chicago, USA). 
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3.3 RESULTS  

Summer- and winter-pruning produced plants with more branches compared to the 

un-pruned control (Figure 3.2A) . However, no significant differences were found in 

branching between summer- and winter-pruning (Figure 3.2A). Winter-pruning 

produced plants with wider crowns compared to the summer-pruning and to the un-

pruned control plants (Figure 3.2B) . The control plants, however, produced more fruit 

per plants compared to the summer- and winter-pruned plants (Figure 3.2C) . No 

significant differences in number of fruit per plants were detected between winter- 

and summer-pruning. However, summer-pruned plants mainained a production level 

slightly higher than winter-pruned plants (Figure 3.2C) . 
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Figure 3.1 Response of Jatropha curcas plants to summer- and winter-manual pruning. Contr ol 

of un-pruned plants shade leaves in winter (A and B ); Sprouting of new branches after pruning 

(C and D); Plant shape in summer-pruned plants (E);  Plant shape in winter-pruned plants (F).  
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Figure 3.2 Branching, crown diameter and number of fruit per plant in two-year-old plants of  

Jatropha curcas in the subsequent season following summer- and wint er-manual pruning, C ≡ 

control, SMP ≡ Summer-manual pruning, WMP ≡ winter-manual pruning. S.E bars with the 

same letters are not significantly different to eac h other according to Tukey’s test at P < 0.05. 
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3.4 DISCUSSION 

Shoot branching is the process by which auxiliary buds, located on the axil of a leaf 

develop and form new flowers or branches. The process by which a dormant bud 

activates and becomes an actively growing branch is complex and very finely tuned. 

Bud outgrowth is regulated by the interaction of environmental signals and 

endogenous ones, such as plant hormones. These interacting factors have a major 

influence on shoot system architecture. Shoot growth of woody plants may be either 

(1) preformed where, the metamers composing a shoot are differentiated in dormant 

bud, or (2) neoformed where, the metamers are not entirely differentiated in the 

dormant bud and a portion of vegetative growth is differentiated during the growing 

season. Understanding the origin of growth metamers and the relationship between 

preformation and final shoot morphology, is particulary important to understand the 

tree canopy (SPANN et al., 2008).  

 

It has been reported that manual pruning of J. curcas plants is preferable and 

efficient during the dormant stage of growth (GOUR, 2006). This study, however, was 

motivated by: (1) the needs to compare the performance of J. curcas plants during 

the late summer and late winter under the study site weather conditions; (2) the need 

for obtaining comparable information about the manual pruning performance in a 

bigger sample size simultaneously with the other experiments testing for the effect of 

chemical pruning (Chapter 4 ).  

 

The results show that summer- and winter-pruning produced plants with more 

branches compared to the un-pruned control plants (Figure 3.2A) . However, no 

differences were found in branching between summer- and winter-pruning (Figure 

3.2A). Stimulation of shoot growth by pruning is well documented for most of the 

orchard and fruit trees. It was reported that for most deciduous trees, pruning at the 

distal end of shoots releases more proximal lateral vegetative buds from apical 

control, allowing more shoots to grow. However, according to pruning dogma, during 

the first year following pruning, individual shoots are invigorated, but intra-shoot 

competition due to the stimulation of lateral bud growth may limit the total growth 

(HARRIS et al., 1983; SPAAN et al., 2008). Therefore, SPANN (2008) hypothesised 
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that in Pistacia vera total shoot growth would be greatest in the first year following 

pruning, that individual shoots would be vigorous and competition would be 

negligible. That would then be followed, in the next year, by a decrease in total 

growth as neoformation decreased and a higher percentage of the total growth was 

preformed. 

  

The study showed that winter-pruning had a wider crown diameter compared to 

summer-pruning and un-pruned control plants (Figure 3.2B ). Increased vegetative 

growth, however, is not necessarily a benefit in mature tree crops, as it may not be 

correlated specifically with increased yield (JOHNSON and HANDLEY, 2000; SPANN 

et al. 2008). Indeed, the results show that no variations in number of fruit per plants 

were detected between summer- and winter-pruning and that yield of pruned plants 

was significantly lower than that of control plants (Figure 3.2C) . 

 

The control plants produced more fruit per plant compared to both summer- and 

winter-pruned plants (Figure 3.2C) . The explanation of these results is that the 

reduction of yield in both pruning treatments may be due to the change in the tree 

size and structure after pruning. Further, the movement of carbohydrates and their 

accumulation in different parts of plants are affected by environmental conditions and 

plant treatments. Thus shoot light penetration and distribution within the canopy are 

affected by pruning (CALATAYUD et al., 2008). Furthermore, LI et al.  (2003) stated 

that in pruned plants canopy size might result in less light interception and 

decreasing canopy photosynthetic efficiency and consequently decreased yield. 

These results are also in line with KÜDEN and SON (2000) who found that in apricot 

the unpruned contol plants were higher in carbohydrate content compared to the 

pruned plants in the first year. 
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4           Promoting branching of Jatropha curcas by foliar 

application of plant growth regulators 

 

4.1 INTRODUCTION 

Declining availability of fossil fuels is driving the current search for alternative sources 

of energy. Biofuels offer promise, but are controversial because of the large land 

area required for production, potential for competition with food production, and their 

marginal economic viability in the absence of subsidies (GRESSEL, 2008). These 

potential negative impacts could be reduced and profitability increased if production 

could be made more efficient. A crop with potential for biofuel production in arid and 

semi-arid regions is the physic nut, Jatropha curcas L. (HELLER, 1996; SHARMA, 

2006). It was suggested that the oil yield from J. curcas nuts can be improved if the 

number of seed bearing branches could be increased. The pruning of apical buds of 

the main stem of one-year-old plants can increase the number of main and 

secondary branches (KUREEL, 2006). Proper pruning of J. curcas helps in producing 

more branches with healthy inflorescences. This enhances flowering and fruit set that 

ultimately increases yield (GOUR, 2006). However, the cost, convenience and 

efficiency of manual pruning in large-scale plantations still remains a major concern.  

 

A number of plant growth regulators (PGRs) can serve as powerful tools for 

manipulating tree growth and yield (LOVAT, 2006). The cytokinin BA (6-

benzyladenine) is known to release apical dominance and promote new lateral 

branches (SVENSON, 1991) by altering the auxin to cytokinin ratio in shoot tips 

(CLINE, 1988). The auxin transport inhibitor TIBA (2,3,5-triiodobenzoic acid) 

promotes the activation of auxiliary buds under a wide range of experimental and 

field conditions (MOREY et al., 1975). Dikegulac (DK) (2,3:4,6-di-O-isopropylidene-2-

keto-L-gulonic acid) is used to overcome apical dominance and increase axillary 

shoot production (BANKO and STEFANI, 1996). Maleic hydrazide (MH) (1,2-dihydro-

3,6-pyridazinedione, coline salt) acts as an anti-auxin or a regulator of auxin 

metabolism (HOFFMAN and PARUPS, 1964), suggesting the possibility that it may 

increase cytokinin levels in lateral buds and stimulate shoot elongation (ITO et al., 
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2000). This study was undertaken to evaluate the effect of these proven and widely 

used PGRs on branching of J. curcas plants as a possible substitution to manual 

pruning.  

 

4.2 MATERIALS AND METHODS 

4.2.1 Shade house experiment 

This experiment was conducted on five-month-old J. curcas plants in a shade house 

of the University of KwaZulu-Natal Botanical Garden, Pietermaritzburg, South Africa. 

The mean solar radiation at mid-day in the shade house was 331 µmol m-2s-1. The 

soil mixture in each plastic pot (20 cm) was compost: bark (chipped and decomposed 

pine): LAN (limestone ammonium nitrate): 2:3:2 NPK (nitrogen, phosphorus, 

potassium) (4:1:0.1:0.1). The plants used in this experiment were all of the same 

variety with similar height and stem diameter. The foliar treatments consisted of BA 

(3, 6, 9, 12 and 15 mmol l-1), TIBA (0.5, 1.0, 1.5 and 2 mmol l-1), DK (2, 4, 6 and 8 

mmol l-1) and MH (2, 3 and 4 mmol l-1). A small volume of sodium hydroxide (0.1 M) 

was used to solubilize the PGRs before adding water. Plants sprayed with distilled 

water + an equivalent amount of 0.1 M NaOH served as control. A few drops of 

Tween® 20 (Merck) were added as surfactant. Plant growth regulators BA, TIBA and 

DK were purchased from Sigma-Aldrich Ltd., South Africa, and MH was obtained 

from Koch-Light Laboratories Ltd., U.K. The plants were treated once on 20 October 

2007 (foliar application of 50 ml of test solution per seedling) using a new plastic 

sprayer (500 ml) for each plant growth regulator. Manual pruning was done on the 

same day as the foliar treatments. Each treatment consisted of sixteen plants 

considering a single plant as one replicate, arranged randomly. The distance 

between any two pots was 45 cm. Plant height, shoot length, number of lateral 

branches and leaves were recorded before and after treating (one and four months) 

the plants. Growth of a lateral branch was considered when it had elongated more 

than 3 cm.  
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4.2.2 Field experiment 

The treatments were the same as described above for one-year-old field-grown J. 

curcas plants. The experiment was conducted at the University of KwaZulu-Natal 

Agricultural Research Station (Ukulinga), Pietermaritzburg, South Africa (Latitude 

30˚41' E, Longitude 29˚67' S and Altitude 781 m asl). Each plant received 200 ml of 

respective test solution on 20 May 2007. Manual pruning was done on the same day 

as that of the foliar treatment. Each treatment consisted of twelve plants, considering 

a single plant as one replicate, selected randomly. The distance between the plants 

was 2.5 m. Plant height, plant crown diameter, number of lateral branches and stem 

diameter at the base were recorded before and after treatments (three and seven 

months).  

 

4.2.3 Data analysis 

Data were analyzed using SPSS® version 15 (SPSS Inc., Chicago, USA) statistical 

software. Effect of treatments on plant growth was analyzed using one-way analysis 

of variance (ANOVA). Tukey’s test was used in order to compare the significance of 

differences among treatments. 

 

4.3 RESULTS 

4.3.1 Shade house experiment 

Foliar applications of BA significantly increased the number of branches after one 

and four months in comparison to the control where no new branches developed 

(Figure 4.1C and Figure 4.3A ). The number of leaves produced by plants treated 

with BA at 15 mmol l-1 was significantly higher than the control after one month 

(Table 4.1 ). Of all the concentrations of TIBA tested, only 1.5 mmol l-1 led to a 

significant increase in the number of branches (1.6) compared to the control, with no 

branching after four months. On the other hand, manual pruning produced 

significantly more branches (1.8) than the control and other concentrations of TIBA 

applied (Figure 4.1D and Figure 4.3B ). After one and four months, TIBA application 
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did not significantly improve plant height, shoot length and number of leaves 

compared to the control plants (Table 4.2 ). Spraying of plants with DK (6 mmol l-1) 

and MH (2 mmol l-1) resulted in a significantly greater number of branches (4.7 and 

2.8 respectively) compared to control plants after four months (Figure 4.1E and 

Figure 4.3C ). A high concentration of DK (8 mmol l-1) and MH (4 mmol l-1) 

significantly decreased plant height, shoot length and number of leaves in 

comparison to the untreated plants after four months (Table 4.3  and Table 4.4  

respectively). There were some growth abnormalities such as short yellowish leaves 

and stunted plants in DK treatments of higher concentration. 

 

Figure 4.1 Influence of foliar application of plant  growth regulators on lateral branching of 

Jatropha curcas plants (five-month-old) under shade house conditio ns four months after 

treatment. (A) Control; (B) Manual Pruning; (C) BA 12 mmol l -1; (D) TIBA 1.5 mmol l -1; (E) DK 6 

mmol l -1; (F) MH 2 mmol l -1. Bar scale = 5 cm. 
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Figure 4.2 Influence of foliar application of plant  growth regulators on lateral branching of 

Jatropha curcas plants (one-year-old) under field conditions seven  months after treatment. (A) 

Control; (B) TIBA 1.5 mmol l -1; (C) Manual Pruning; (D) BA 12 mmol l -1; (E) DK 6 mmol l -1; (F) MH 

2 mmol l -1. Bar scale = 5 cm. 

 



 

 
 

88

4.3.2 Field experiment  

One-year-old plants treated with BA at 12 mmol l-1 produced a significantly higher 

number of branches after three and seven months (5.5 and 13 .2 respectively) than 

the untreated plants (1.2 and 3.8 respectively) (Figure 4.2C and Figure 4.4A ). 

Manual pruning showed no significant increase in the number of branches compared 

to this BA concentration after seven months (Figure 4.4A ). Although some 

concentrations of BA tested increased plant height, crown- and stem diameter, these 

results were not significantly different from those obtained for the control (Table 4.1 ). 

A foliar application of TIBA at 1 and 2 mmol l-1 produced a significantly greater 

number of branches (15.9 and 15 respectively) compared to the control (3.8) and 

manually pruned (5.7) plants after seven months (Figure 4.2D and Figure 4.4B ). 

Plant height, crown- and stem diameter were not significantly higher than the control 

with the application of TIBA (Table 4.2 ). A concentration of 2 mmol l-1 of DK 

produced more branches (18.1) compared to the control (3.8) and manual pruning 

(5.7) seven months after foliar application (Figure 4.2E and Figure 4.4C ). Maleic 

hydrazide at 3 mmol l-1 produced a significantly greater number of branches (11.7) 

compared to the control (3.8) and manual pruning (5.7) after seven months of foliar 

application (Figure 4.2F  and Figure 4.4.4D ). However, plant height, crown- and 

stem diameter did not significantly increase when compared to the control plants 

(Table 4.4 ). 
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Table 4.1 Effects of a single foliar application of  benzyladenine (BA) and manual pruning (MP) on diff erent growth parameters of Jatropha curcas. 

Mean values ± S.E. with no letters are not signific antly different. Mean values ± S.E. with different letter(s) are significantly different at P < 0.05 

(Tukey’s test).  

Treatment 

BA (mmol l-1) 

Five-month-old plants (shade house conditions)   Twelve-month-old plants (field conditions) 

Plant height 

(cm) 

Shoot length 

(cm) 

Leaves  

(no.) 
 

Plant height 

(cm) 

Crown diameter 

(cm) 

Stem diameter 

(cm) 
 One month after spraying   Three months after spraying  

0 19.2 ± 8.8ab 2.9 ± 0.8  9.7 ± 2.4b  5.5 ±  1.6  18.4 ± 6.9ab 3.3 ± 1.0  

3 25.0 ± 5.7a 3.3 ± 0.6  15.5 ± 2.1b  7.0 ± 1.6  14.3 ± 5.3ab 1.9 ± 0.5  

6 9.5 ± 2.2ab 1.7 ± 0.2  12.9 ± 2.3b  3.3 ± 0.6  17.9 ± 8.1ab 2.8 ± 0.8  

9 3.1 ± 1.1b 0.7 ± 0.5  10.6 ± 2.3b  6.0 ±  1.8  28.7 ± 11a 3.5 ± 0.7  

12 3.4 ± 0.5b 1.24 ± 0.8  13.8 ± 2.4b  9.2 ± 2.4  16.6 ± 4.6ab 3.0 ± 0.6  

15 3.5 ± 2.9b 4.2 ± 0.3  26.2 ± 3.2a  ---- --- --- 

MP 10.0 ± 3.7ab 1.6 ± 0.5  9.9 ± 1.5b  4.0 ±  1.2 a 5.1 ± 0.6b 2.1 ± 0.6  

 Four months after spraying   Seven months after spraying  

0 32.8 ± 2.2a 24.4 ± 1.8a 32.8 ± 2.2a  54.5 ± 9.8a 220 ± 22  2.6 ± 0.3ab 

3 34.5 ± 2.5a 27.5 ± 2.1a 18.8 ±2.5b  52.6 ± 7.8a 231 ± 22  1.9 ± 0.2ab 

6 16.7 ± 5.2b 11.0 ± 3.7bc 13.8 ± 1.6bc  61.2 ± 6.1a 241 ± 18  2.3 ± 0.1ab 

9 10.2 ± 2.4b 9.6 ± 1.9bc 17.5 ± 1.5b  63.4 ± 4.2a 244 ± 22  2.9 ± 0.3a 

12 16.6 ±1.6b 12.6 ± 1.9bc 13.8 ± 3.2b  75.4 ± 5.7a 235 ± 19  2.9 ± 0.1a 

15 14.9 ± 3.4b 20.1 ± 2.2ab 17.4 ± 3.8b  --- --- --- 

MP 3.7 ± 3.9b 2.3 ± 1.8c 3.7 ± 3.3c  16.6 ± 13.6b 142 ± 40  1.6 ± 0.3b 
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Table 4.2 Effects of a single foliar application of  2,3,5-triiodobenzoic acid (TIBA) and manual prunin g (MP) on different growth parameters of 

Jatropha curcas. Mean values ± S.E. with no letters are not signif icantly different. Mean values ± S.E. with differen t letter(s) are significantly 

different at P < 0.05 (Tukey’s test).  

Treatment  

TIBA (mmol l-1) 

Five-month-old plants (shade house conditions)  Twelve-month-old plants (field conditions) 

Plant height 

(cm) 

Shoot length 

(cm) 

Leaves  

(no.) 
 

Plant height 

(cm) 

Crown diameter 

(cm) 

Stem diameter 

(cm) 

 One month after spraying   Three months after spraying  

0 19.2 ± 8.8 2.9 ± 0.8  9.7 ± 2.4  5.5 ±  1.6  18.4 ± 6.9a 3.3 ± 1.0 

0.5 21.5 ± 6.9 2.1  ± 0.5  7.4  ± 2.0  6.3 ± 1.5  17.3 ± 6.0a 3.5 ± 0.9  

1.0 32.7 ± 10.7  2.5 ± 0.9  5.9 ± 2.5  9.0 ± 2.4  26.2 ± 8.5a 3.7 ± 0.6  

1.5 16.2 ± 5.0  3.6 ± 1.0  7.5 ± 2.2  5.0 ±  1.1  39.9 ± 13.4a 3.4 ± 0.7  

2.0 15.8 ± 4.8  3.5 ± 1.0  7.2 ± 1.3  6.5 ± 0.9  24.5 ± 9.3a 2.2 ± 0.6  

MP 10.0 ± 3.7  1.6  ± 0.5  9.9 ± 1.5  4.0 ±  1.2  5.1 ± 0.6b 2.1 ± 0.6  

 Four months after spraying   Seven months after spraying  

0 32.8 ± 2.2a 24.4 ± 1.8a 32.8 ± 2.2a  54.5 ± 9.8  220 ± 22  2.6 ± 0.3 

0.5 27.2 ± 2.5ab 22.4 ± 2.1ab 22.4 ± 2.5a  39.4 ± 8.6  228 ± 35  1.6 ± 0.3 

1.0 15.8 ± 3.5b 10.3 ± 2.9b 8.7 ± 3.7b  52.0 ± 3.8  236 ± 23  1.7 ± 0.5  

1.5 16.4 ± 4.2b 15.6 ± 3.8ab 20.6 ± 2.8a  53.0 ± 5.0  258 ± 18  2.7 ± 0.2  

2.0 21.1 ± 2.7ab 22.2 ± 2.9ab 15.4 ± 3.7b  27.0 ± 14.6  251 ± 25  2.4 ± 0.2  

MP 3.7 ± 2.5c 2.3 ± 2.1c 3.7 ± 3.3c  16.6 ± 13.6  142 ± 40  1.6 ± 0.3  
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Table 4.3 Effects of a single foliar application of  2,3:4,6-di-oisopropylidene-2-keto-L-gulonic acid s odium salt (Dikegulac) (DK) and manual pruning 

(MP) on different growth parameters of Jatropha curcas. Mean values ± S.E. with no letters are not signif icantly different. Mean values ± S.E. with 

different letter(s) are significantly different at P < 0.05 (Tukey’s test). 

Treatment  

DK (mmol l-1) 

Five-month-old plants (shade house conditions)  Twelve-month-old plants (field conditions) 

Plant height 

(cm) 

Shoot length 

(cm) 

Leaves  

(no.) 
 

Plant height 

(cm) 

Crown diameter 

(cm) 

Stem diameter 

(cm) 

 One month after spraying   Three months after spraying  

0 19.2 ± 8.8ab 2.9 ± 0.8a 9.7 ± 2.4a   5.5 ±  1.6  18.4 ± 6.9ab 3.3 ± 1.0  

2 31.3 ± 7.5a 0.83 ± 0.4b 6.3 ± 1.6ab  6.2 ± 1.4  18.0 ± 4.38ab 2.1 ± 0.5  

4 10.1 ± 4.1b 1.9 ± 0.8a 10.7 ± 3.5a   5.3 ± 1.4 19.9 ± 8.4a 3.3.8 ± 0.8  

6 10.9 ± 3.2ab 1.2 ± 0.5ab 8.4 ± 4.2a   2.58 ±  0.6  7.53 ± 1.66ab 2.7 ± 0.7  

8 3.4 ± 1.5c 0.66 ± 0.2b 4.8 ± 2.4b   2.75 ± 0.7 6.96 ± 1.13ab 2.8 ± 0.6  

MP 10.0 ± 3.7b 1.6  ± 0.5ab 9.9 ± 1.5a   4.0 ±  1.2  5.1 ± 0.6b  2.1 ± 0.6  

 Four months after spraying   Seven months after spraying  

0 32.8 ± 2.2ab 24.4 ± 1.8a 32.8 ± 2.2a  54.5 ± 9.8ab 220 ± 22ab 2.6 ± 0.3ab 

2 29.5 ± 2.5ab 22.8 ± 2.1ab 10.4 ± 2.5c  74.7 ± 33.9a 283 ± 37a 4.0 ± 0.4a 

4 14.6 ± 2.6b 11.3 ± 3.7b 21.8 ± 1.5b  26.7 ± 47.3b 223 ± 17ab 2.4 ± 0.4b 

6 18.5 ± 2.4ab 17.0 ± 1.9ab 18.0 ± 2.8bc  47.7 ± 32.3ab 245 ± 28ab 2.1 ± 0.3b 

8 2.2 ± 4.3c 1.2 ± 2.3c 6.0 ± 5.5cd  54.4 ± 44.1ab 239 ± 26ab 2.5 ± 0.3ab 

MP 3.7 ± 2.0c 2.3 ± 2.1c 3.7 ± 3.3d  16.6 ± 13.6b 142 ± 40b 1.6 ± 0.3b 
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Table 4.4 Effects of a single foliar application of  maleic hydrazide (MH) and manual pruning (MP) on d ifferent growth parameters of Jatropha 

curcas. Mean values ± S.E. with no letters are not signif icantly different. Mean values ± S.E. with differen t letter(s) are significantly different at P < 

0.05 (Tukey’s test). 

Treatment  

MH (mmol l-1) 

Five-month-old plants (shade house conditions)  Twelve-month-old plants (field conditions) 

Plant height 

(cm) 

Shoot length 

(cm) 

Leaves  

(no.) 
 

Plant height 

(cm) 

Crown diameter 

(cm) 

Stem diameter 

(cm) 

 One month after spraying   Three months after spraying  

0 19.2 ± 8.8a 2.9 ± 0.8a  9.7 ± 2.4a   5.5 ±  1.6  18.4 ± 6.9ab 3.3 ± 1.0  

2 5.24 ± 1.6b 1.2 ± 0.3ab  3.1 ± 0.96b   5.8 ± 2.3  19.77 ± 5.3a 2.9 ± 0.9  

3 8.41 ± 3.2ab 0.25 ± 0.1b  0.3 ± 0.21c   5.1 ±1.4  5.33 ± 8.1ab 2.8 ± 0.6  

4 16.68 ± 1.1a 0.55 ± 0.3b  0.3 ± 0.5c   2.8 ±  0.6  4.75 ± 0.7b 3.1 ± 0.4 

MP 10.0 ± 3.7ab 1.6  ± 0.5ab  9.9 ± 1.5a   4.0 ±  1.2  5.1 ± 0.6b 2.1 ± 0.6  

 Four months after spraying   Seven months after spraying  

0 32.8 ± 2.2a 24.4 ± 1.8a 32.8 ± 2.2a  54.5 ± 9.8ab 220 ± 22 2.6 ± 0.3  

2 25.4 ± 2.5a 17.7 ± 2.1ab 20.6 ± 2.5b  57.5 ± 5.5a 239 ± 33  2.1 ± 0.3  

3 13.7 ± 3.1b 11.9 ± 1.9bc 18.2 ± 2.1b  43.0 ± 6.6ab 215 ± 24  2.4 ± 0.4  

4 10.9 ± 2.3b 13.2 ± 3.5bc 20.5 ± 2.7b  45.4 ± 4.9ab 217 ± 17  2.3 ± 0.2  

MP 3.7 ± 2.0b 2.3 ± 2.1c 3.7 ± 3.3c  16.6 ± 13.6b 142 ± 40  1.6 ± 0.3  
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Figure 4.3 Influence of foliar application of plant  growth regulators on lateral branching of Jatropha curcas plants (five-month-old) under shade 

house conditions. MP ≡ manual pruning and 0 ≡ control. Standard error (±) bars with different le tter(s) are significantly different to each other 

according to Tukey’s test ( P < 0.05). 
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Figure 4.4 Influence of foliar application of plant  growth regulators on lateral branching of Jatropha curcas plants (twelve-month-old) under field 

conditions. MP ≡ manual pruning and 0 ≡ control. Standard error (±) bars with different le tter(s) are significantly different to each other a ccording 

to Tukey’s test ( P < 0.05).  
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4.4 DISCUSSION 

Apical dominance can be interrupted in several ways. One way is to reduce the 

internal ratio of auxin to cytokinin by applying external cytokinins. A second way is to 

apply a chemical that inhibits auxin production or transport. A third way is to kill the 

apical meristem which halts auxin production (BANGERTH et al., 2000). 

In the shade house, foliar application of BA (12 mmol l-1) to five-month-old plants of J. 

curcas was very effective in producing a maximum number of lateral branches 

(Figures 4.1C and 4.3A ). Similarly, SANSBERRO et al. (2006) showed an increase 

in number of branches of llex paraguariensis St. Hil. seedlings treated with foliar 

applications of BA. At most of the concentrations tested, BA decreased the plant 

height and shoot length of J. curcas grown under shade house conditions. These 

results are similar to the findings of HENNY (1986) who reported that BA increased 

lateral branches and decreased plant height of Peperomia obtusifolia L., resulting in 

shorter and more compact plants. Exogenous applications of BA had positive effects 

on the shoot growth of Welkeri dieffenbachia (WILSON and NELL, 1983) and Pinus 

species (BOE, 1990). Under field conditions, after seven months following BA 

treatment (12 mmol l-1) there was a significant improvement in number of branches in 

J. curcas (Figures 4.2D and 4.4A ). However, unlike the results of the shade house 

experiment, there was a non-significant increase in plant height and crown diameter 

with most concentrations of BA applied. This result suggests that the growth of J. 

curcas plants when treated with BA may differ under shade house and field 

conditions. 

 

Foliar application of TIBA to J. curcas plants at 1.5 mmol l-1 under shade house 

conditions (after four months) and 1 mmol l-1 under field conditions (after seven 

months) yielded more branches than the control (Figure 4.3B and Figure 4.4B 

respectively). With both these growth conditions this effect was not immediate as the 

number of branches did not improve at early growth stages. Similarly, primary shoot 

development was delayed in I. paraguariensis with TIBA treatment (SANSBERRO et 

al., 2006). In the shade house, after four months from treatment, some 

concentrations of TIBA inhibited height, shoot length and number of leaves of J. 

curcas plants. However, under field conditions there was no significant effect. 
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In comparison to the shade house-treated plants, J. curcas plants that were treated 

in the field with DK (2 mmol l-1) yielded a maximum number of branches after seven 

months (Figure 4.3C and Figure, 4.4B ). This indicates that under field conditions J. 

curcas plants responded much better to a lower concentration of DK (2 mmol l-1) than 

at an higher concentration (6 mmol l-1) in the shade house for enhancing the number 

of lateral branches. This positive effect of a low concentration of DK in the field may 

be associated with the age and maturity of J. curcas plants. Increasing 

concentrations of DK decreased plant height, shoot length and number of leaves 

when compared to untreated plants in the shade house after four months. Similar 

results were reported for Lonicerax heckrotti Rehd. (BRUNER et al., 2000) and Hedra 

helix (AL-JUBOORY and WILLIAMS, 1991) where DK increased the number of 

shoots and decreased shoot length. This effect was not consistent in field-treated 

plants. The observation of abnormal growth of J. curcas plants in pots (shade house) 

caused by high concentration of DK supports the findings of SANSBERRO et al. 

(2006) that phytotoxicity was concentration dependent in Ilex paraguariensis. Similar 

observations were also reported by BANKO and STEFANI (1996) who noticed slight 

chlorosis and leaf deformity in Salvia farinacea with foliar application of DK. In this 

study, foliar application of a low concentration of DK (2 mmol l-1) did not show any 

growth abnormalities in the field suggesting, that low concentrations of DK can be 

safely used in the field to promote branching of J. curcas plants. 

 

Maleic hydrazide increased the number of lateral branches when compared to 

manual pruning and control plants after four and seven months under shade house 

(2 mmol l-1) and field conditions (3 mmol l-1) respectively (Figure 4.3D and Figure, 

4.4D). These results indicate that the positive effect of MH on branching is only 

observed after a longer period, as in both cases there were no improvement at early 

growth stages. In the shade house after four months, MH (4 mmol l-1) suppressed 

plant height and number of leaves with some growth abnormalities. Studies have 

revealed that MH-treated plants lose or show impaired apical dominance (NAYLOR 

and DAVIS, 1950). On the other hand, no significant effect was noticed in the field 

grown plants which exhibited normal growth. 
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5        Pollinator effectiveness, breeding system,  and tests 

for inbreeding depression in Jatropha curcas 

 

5.1 INTRODUCTION  

Jatropha curcas L. is a monoecious crop with potential for biofuel production in arid 

and semi-arid regions (HELLER, 1996). Jatrpha curcas oil contains about 14% free 

fatty acid (FFA), which is well beyond the limit of 1% FFA level that can be converted 

into biodiesel by trans-esterification using an alkaline catalyst (TIWARI et al., 2007). 

The fatty acid methyl ester of its oil was found suitable for use as biodiesel as it 

meets the specifications of the International Biodiesel Standards (AZAM et al., 2005). 

However, its use is controversial because of the large land area required as yields 

(0.6 – 3 t/ha) are not yet economically viable.  

 

Augmentation of agricultural pollination is a possible solution to increase profit by 

increasing seed yield. In many crops, the number of bee visits to receptive flowers 

can be a limiting step in obtaining optimal yields (ROLDÁN-SERRANO and 

GUERRA-SANZ, 2005). This is particularly true for crops that are not capable of 

autonomous selfing, or apomixis. Crops with unisexual flowers would be expected to 

be highly reliant on specific pollinators (WESTERKAMP and GOTTSBERGER, 

2000). In commercial plantations of avocado (Persea americana Mill.), honeybees 

have been used successfully, and almost exclusively, for pollination. There was a 

strong positive correlation between honeybee activity in an avocado orchard, fruit set, 

and yield (VITHANAGE, 1990; ISH-AM et al., 1999). In Coffea canephora, fruit set 

depended on cross-pollination by bees, and increased with their frequent visit to 

flowers (KLEIN et al., 2003). In sunflower (Helianthus annuus L.), honeybees were 

the most frequent visitors and had the highest pollination efficiency index (Nderitu et 

al., 2008). 

 

This study reports on the pollination system in J. curcas. The objectives of this work 

were to resolve the following questions: (i) what is the relative importance of cross- 
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and self-pollination for fruit set; (ii) do honeybees contribute effectively to fruit set; (iii) 

is J. curcas pollen-limited tautology; and (iv) do self-fertilised progeny of J. curcas 

display inbreeding depression? 

 

5.2 MATERIALS AND METHODS 

5.2.1 Study area 

Experiments were conducted in a mono-culture plantation at the University of 

KwaZulu-Natal Agricultural Research Station (Ukulinga) Pietermaritzburg, South 

Africa (30˚ 41' E, 29˚ 67' S; 781 m a.s.l). Pot experiments were conducted in a shade-

house in the Botanical Garden of the University of KwaZulu-Natal, Pietermaritzburg, 

with average light photosynthetic photon flow density of 331 µmol m-2 s-1 at mid-day. 

 

5.2.2 Study species 

Physic nut, Jatropha curcas L. (Euphorbiaceae), is a small tropical tree or large shrub 

native to Mexico and Central America (HELLER, 1996). The plant is monoecious 

displaying protandry, and the flowers are unisexual. Occasionally, hermaphrodite 

flowers (Figure 5.1A ) are present (DEHGAN and WEBSTER, 1979). In a previous 

study CHANG-WEI et al. (2007) reported that the male flowers (Figure 5.1C ) opened 

first and a few flowers bloomed each day in each raceme (Figure 5.1E ). A large 

number of female flowers (Figure 5.1B ) opened from day-3 to day-5 after the male 

flower opened. In our study population, the mean number of male and female flowers 

per inflorescence (± S.E), calculated from 20 inflorescences, was 101.33 ± 4.49 and 

6.44 ± 0.48, respectively. Thus, the male:female ratio was 16:1. 

 

5.2.3 Breeding system 

 To examine the reproductive system of J. curcas, four pollination experiments were 

conducted on 38 plants between 18 December 2006 - 28 January 2007. Pollinators 

were excluded from all flowers by bagging the inflorescences with nylon mosquito-net 

bags (0.5 mm mesh) before anthesis. The treatments were: (i) Bagged flowers, 375 
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female flowers on 102 inflorescences were bagged and left without manipulation to 

develop inside the bags; (ii) Open-pollination, 302 female flowers on 98 

inflorescences were left without bagging, offered to foraging insects and bagged after 

72 h to avoid losses; (iii) Hand-self-pollination, 253 female flowers on 93 

inflorescences were hand-pollinated using pollen from other inflorescences on the 

same plant; and (iv) Hand-cross-pollination, 306 female flowers on 104 

inflorescences were cross-pollinated using pollen from other J. curcas plants. 

Flowers in the last two groups were bagged immediately after handling to avoid 

pollen contamination by insects. 

 

5.2.4 Pollen limitation 

To determine the extent of pollen limitation, four supplementary hand-pollination 

treatments were carried out, (i) Control-1, flowers were left open to determine seed 

production under natural conditions on the same plants; (ii) Control-2, flowers were 

left open to determine seed production under natural conditions on separate plants 

isolated distantly at least 10 m from the Control-1 plants; (iii) Outcrossing, flowers 

were extensively hand-pollinated with pollen collected from flowers of other plants to 

determine the potential for seed production through additional outcrossing; and (iv) 

Selfing, flowers were hand-pollinated with self-pollen (from male flowers in the same 

inflorescence or another on the same plant) to determine potential seed production 

through additional selfing. Flowers were bagged with mosquito-net bags before 

anthesis, and bagged again 5 d after treatment to avoid losses. Control-1, 

outcrossing and selfing treatments were applied to 20 plants each, selected at 

random in a 0.2 ha plot, while control-2 was applied to a further 20 plants in the same 

plot. Pollen limitation index (L) was calculated as:  

L = 1- (Po/Ps), where, 

Po was the average percentage fruit set in open-pollinated controls (Control-1 and 

Control-2), Ps was the percentage fruit set by plants that received additional cross-

pollen. A value of L = 0 indicates no pollen limitation in the population under study 

(LARSON and BARRETT, 2000). 
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Fruit-set, -weight, -size, the number of seeds per fruit, and seed weight were 

evaluated. Fruit set was considered to be the percentage of flowers per plant that set 

fruit and was normalised by using angular transformation. SPSS® release 15 

statistical software was used for data analysis (SPSS Inc., Chicago, USA). In the 

breeding system experiment, we deployed pair-sample t-tests to compare 

reproductive success in bagged vs. open-pollinated flowers, and in self- vs. cross-

pollinated flowers. For the results of the pollen limitation experiment, one-way 

ANOVA was used and significant differences were assessed using Tukey’s multiple 

comparisons at P < 0.05. 

 

5.2.5 Pollinator effectiveness 

Flower visiting-insects in the study were observed during January 2007, when the 

peak of flowering occurred. The visiting-insects observed in the study site were 

honeybees (Apis mellifera), wasps (Bembecinus tridens), and houseflies (Musca 

domestica). Honeybees were the most abundant visitors, while other insects were 

rare. Therefore only the honeybee data were considered in this study. Honeybee 

visits were observed for 30 min between 08.00 – 15.00 h each day for five sunny 

days. To test the effectiveness of honeybee visits for fruit set and fruit quality in J. 

curcas, visitation experiments were conducted involving three treatments on ten 

plants. (i) Single-visit, 90 female flowers in 20 inflorescences on ten plants were 

bagged at bud stage. When the flowers opened, the bags were removed and the 

flowers were exposed to a single visit by a honeybee, then bagged again to avoid 

further visits. (ii) Multiple-visits, 85 virgin female flowers in another 20 inflorescences 

on ten plants were left without bagging and offered to multiple visits by honeybees.  

(iii) Control (no visit), 65 virgin female flowers on a further 20 inflorescences on ten 

plants were bagged and left without exposure to any visits by honeybees. 

 

Fruit-set, -weight, -size, the number of seeds per fruit, and seed weights were 

evaluated. For statistical analysis of the data we used one-way ANOVA and Tukey’s 

post hoc tests (P < 0.05) to compare differences between treatments. 
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5.2.5 Inbreeding depression 

To determine whether there was any evidence for inbreeding depression in J. curcas 

hand-pollination experiments were conducted in which flowers were either cross- or 

self-pollinated. Cross-pollination was performed using outcross pollen from other 

plants within the same plot. Self-pollination was conducted using pollen from different 

inflorescences on the same plant. After pollination, all flowers were bagged and left 

to develop until fruit maturity, then harvested. Fruits were stored at 20°C in brown 

paper bags for later examination. After 7 months, (February 2008), the seed coats 

were removed and each seed sowed in an individual pot containing sterile potting 

soil. The soil mixture in each plastic pot (20 cm) was compost: bark (chipped and 

decomposed Pine): LAN (limestone ammonium nitrate): 2:3:2 NPK (nitrogen, 

phosphorus, potassium) (4:1:0.1:0.1). After 2 d germination was recorded which was 

rapid (> 80% complete in 2 d). Thus variations in germination times were not 

analysed. The germination rate was determined as the percentage of seedlings 

produced from the total number of seeds from each maternal plant sown. In March 

2008, 1 month after emergence, seedling weight, -length, stem width, the number of 

leaves, and root lengths in the selfed- and outcrossed-progeny were measured. The 

proportions of fruit set and seedling germination were angular transformed. The t-test 

was used to analyse the effect of type of cross on seedling characteristics. 

Inbreeding depression (δ) was calculated as outlined by HUSBAND and SCHEMSKE 

(1995).  

δ = 1 - (ws/wo), where, 

ws was the mean fitness of selfed progeny, and wo was the mean fitness of 

outcrossed progeny. Inbreeding depression was calculated as (ws/wo) -1 when trait 

values of the selfed plants exceeded those of outcrossed individuals (BUSH, 2005). 

 

5.3 RESULTS 

5.3.1 Breeding system 
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The average number of seeds per fruit produced by open-pollinated flowers was 

more than ten times higher than those of treatment-(i) (auto-bagged) (P < 0.001, 

Figure 5.2D ). Open-pollinated flowers produced significantly larger and heavier 

fruits, more seed per fruit and heavier seeds when compared to the bagged flowers 

(Figure 5.2B-E ). Cross-pollinated flowers produced significantly more fruit than 

manually self-pollinated flowers (Figure 5.2A ). There were no significant differences 

between cross- and self-pollinated flowers in terms of fruit size, fruit weight, the 

number of seeds per fruit, and seed weight (Figure 5.2B-E ). 

 

Figure 5.1 Flowers, floral organs and fruits of Jatropha curcas. (A) hermaphrodite flower; (B) 

female flower; (C) male flower; (D) anthers; (E) bi sexual inflorescence; (F) fruits. Bar scale = 1 

mm (A-D), 5 mm, (E) and 10 mm (F). 
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Figure 5.2 Breeding system experiment, comparison o f fruit set percentage and fruit quality 

characteristics in auto-bagged (pollen excluded), o pen-pollinated (natural) and bagged (self-

pollinated and cross-pollinated) flowers of Jatropha curcas. (A) fruit set, (B) fruit size, (C) fruit 

weight, (D) number of seeds per fruit, and ( E) see d weight. Bars represent ± S.E. Sample size 

(number of plants) is given below each mean symbol.  
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5.3. 2 Pollen limitation 

Supplemental hand-pollination did not significantly increase fruit set, fruit size, fruit 

weight, number of seeds per fruit, and seed weight relative to the control groups 

(Figure 5.3 ). The pollen limitation index was 0.03. 

 

Figure 5.3 Pollen limitation experiment, fruit set and fruit quality measurements in Jatropha 

curcas flowers exposed to: natural pollination on the sam e plant Control (C1); natural 

pollination on different plants Control (C2); suppl ementary self-hand-pollination (S-H-P); or 

supplementary cross-hand-pollination (C-H-P). Bars represent ± S.E. Sample size (number of 

inflorescence) is given below each mean symbol. 
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5.2.3 Pollinator effectiveness 

There were no significant differences in the durations of visits by honeybees on male 

or female flowers (means = 4.3 ± 0.25 s and 4.2 ± 0.26 s, respectively). The 

proportion of fruit produced by J. curcas flowers exposed to multiple or single visits 

by honeybees were significantly (P < 0.001) higher than those produced by flowers 

that received no visit (Figure 5.4A ). Flowers exposed to multiple or single visits 

produced significantly larger and heavier fruits with many and heavier seeds than 

those produced by flowers from which honeybees were excluded. However, there 

were no significant differences between flowers exposed to a single or multiple visits 

by honeybees (Figure 5C; Figure 5B-E ). 

 

5.3.4 Inbreeding depression 

Outcrossed flowers produced significantly more fruits than selfed-flowers (Figure 

5.5A). Selfed-progeny had a significantly shorter root length compared to the 

outcross progeny (Figure 5.5G ). However, there were no significant differences in 

mean fitnesses for selfed and outcross progeny for germination, seedling weight, 

stem length, stem width, and the number of leaves per seedling (Figure 5.5C-F ). 
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Figure 5.4 Pollinator effectiveness experiment, fru it set and fruit quality measurements in 

Jatropha curcas flowers that were bagged and/or exposed to a singl e or multiple honeybee 

visits. Bars represent ± S.E. Values with different  letters are significantly different to each other 

according to Tukey’s multiple range test at P < 0. 05. Sample size (number of flowers) is given 

below each mean symbol. 
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Figure 5.5 Inbreeding depression experiment, (A-G) mean fitness values for outcrossed- and 

selfed-progeny. (A) fruit set, (B) germination perc entage, (C) seedling weight, (D) seedling 

length, (E) stem width, (F) number of leaves per se edling, and (G) root length. Inbreeding 

depression values ( δ) were 1 – [ ws/wo] when selfed-offspring had lower trait values than  

outcrossed-progeny, and [ wo/ws] - 1 when trait values of selfed plants exceeded t hose of 

outcrossed individuals. Bars represent ± S.E. Sampl e size [number of seeds (A-B); number of 

seedlings (C-G)] is given below each mean symbol. 
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5.4 DISCUSSION 

The breeding system results indicate that J. curcas is self-compatible, potentially 

reproducing through a mixture of self- and outcross-pollination, and rarely sets fruit 

as a result of autonomous selfing. However, 4% fruit set was obtained in the bagged 

flowers (Figure 5.2A ). This could be due to wind pollination of the hermaphrodite 

flowers through the bag. Alternatively it could have arisen from low levels of apomixis 

in the female flowers (CHANG-WEI et al., 2007). Average seed production by open-

pollinated flowers was higher than those of bagged flowers. Moreover, open-

pollinated flowers produced significantly larger and heavier fruits with numerous and 

heavier seeds compared to the bagged flowers (Figure 5.2B-E ). These findings are 

in line with those of DAG and GAZIT (2000) who reported that in mango (Mangifera 

indica) yield of small caged mango trees was miniscule (1 kg-1 tree), whereas open-

pollinated trees carried a good crop (61 kg-1 tree). SHI and STÖSSER (2005) 

reported that in Chinese chestnut (Castanea mollissima) hand- and open-pollination 

resulted in fruit set levels of aproximately 90%.  

 

In a previous study, honeybees foraged on both male and female flowers, making 

64% of their total visits to male ones (RAJU and EZRADANAM, 2002). In another 

study, BHATTACHARYA et al. (2005) found that male flowers produced 

approximately 1617 viable pollen grains per flower, the pollen:ovule ratio was 539:1, 

and female flowers produce about 5 µl nectar, while male flowers produced 

approximately 2 µl nectar, the apomixis rate was 32%, and the seed:ovule ratio was 

2:3. This nectar production by both types of flower was highly attractive to the 

honeybees. The results from this study showed that cross- and self- supplementary-

hand-pollinated flowers did not significantly differ in fruit set and fruit quality 

characteristics compared to natural pollination in the two control treatments (Figure 

5.3A-E). These results clearly indicate that J. curcas is not pollen-limited under the 

site conditions and during the specific time of year our experiments were conducted. 

Our explanation for these results is that the study site was a monoculture with a high 

density population that attracted a large number of bees. Plants occurring at low 

densities may suffer from insufficient pollen quantity by attracting fewer pollinators or 

receive fewer conspecific pollen grains per pollinator visit (FEINSINGER et al., 1986; 

KLINKHAMER and DE JONG, 1990). However, pollen limitation is often highly 
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variable among populations of a single species (DUDASH and FENSTER, 1997; 

BAKER et al., 2000; GOODWILLIE, 2001) and the possibility that other populations 

of J. curcas experience pollen limitation for fruit set cannot be excluded.  

 

The results showed that flowers exposed to single or multiple visits by honeybees set 

a significantly (P < 0.001) higher proportion of fruit that were larger and heavier and 

with more numerous and heavier seeds than those which received no honeybee 

visits, indicating that honeybees were effective pollinators (Figure 5.2 and Figure 

5.4). Similar results were reported for guava (Psidium guajava) by FREITAS and 

ALVES (2008) where a single honeybee visit to a flower produced significantly more 

fruit than non-visited flowers. Also, HOWPAGE and SPOONER-HART (2001) found 

that kiwifruit (Actinidia deliciosa) vines, which had no access to honeybees, had a 

significantly lower percentage fruit set (24%) compared to vines accessed by 

honeybees (91%). In oil seed rape (Brassica campestris), plants in plots visited by 

bees produced 58% more seeds and 46% larger seeds than those in plots from 

which bees were excluded (LANGRIDGE and GOODMAN, 1975). The results are 

similar to those of NDERITU et al. (2008) who found that sunflower (Helianthus 

annuus) plants in plots where insect visitors had access, produced on average, 53% 

more seed compared to plants in plots in which insect visitors were excluded. In 

Coffea arabica, visits by bees resulted in a 25% increase in fruit retention and seeds 

in these fruits were more than 25% heavier and developed faster (ROUBIK, 2002). In 

blueberries (Vaccinium corymbosum), honey-bee-mediated cross-pollination 

increased the mean number of fully developed seeds per fruit by 27.5% (LANG, 

1991). 

 

Differences in seed set between outcrossed and self-fertilized flowers can indicate 

inbreeding depression if fewer seeds are produced through self-fertilization (WASER 

and PRICE, 1983). The results showed that selfed flowers of the maternal plants 

produced significantly fewer fruits than the outcrossed flowers. Moreover, the selfed 

progeny had significantly shorter roots than the outcrossed progeny. However, there 

were no significant differences between selfed- and outcrossed progeny in the other 

traits scored for evidence of inbreeding depression. Similar results were reported for 

avocado (Persea americana) where flowering behaviour enhanced the opportunity 
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for cross- and self-pollination. Fruit from self pollination had a higher rate of 

abscission compared to those from cross pollination (DEGANI et al., 2003). The 

survival advantage of outcrossed fruit is probably related to the fact that selfed 

progeny have less vigorous embryos than outcrossed progeny due to inbreeding 

depression (DEGANI et al., 2003). In general, the present results provide little 

evidence of reduced yield through pollinator-mediated self-fertilization or inbreeding 

depression in selfed progeny in J. curcas. Furthermore, in another in vivo study test 

of pollen-pistil interactions following self- and cross-pollination, neither pollen 

germination nor pollen tube growth were inhibited or interfered with as a result of self-

pollination treatments (Chapter 6 ). Therefore, type of pollination has no influence on 

the success of fertilization in this plant However, the expression of inbreeding 

depression is known to vary throughout the life cycle (CRNOKRAK and ROFF, 1999; 

KOELEWINJ et al., 1999), thus measurements over the whole life span are needed 

for a reliable indication of the degree of inbreeding depression (CHARLESWORTH 

and CHARLESWORTH, 1987). 
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6            Pollen viability, pollen germination a nd pollen tube 

growth in Jatropha curcas 

 

6.1 INTRODUCTION  

Seed production in angiosperms depends upon a sequence of steps, including pollen 

transfer to the stigma, pollen germination, pollen tube growth, ovule fertilization, seed 

development and finally seed maturation (CRUZAN, 1989). Effective pollination is a 

prerequisite for fruit- and seed-set and of vital importance to realize optimal yield. A 

thorough knowledge of pollen biology and its manipulation are required for any 

rational approach to increase crop productivity (SHIVANNA, 2003). The viability and 

morphological homogeneity related to pollen quality are useful for plant breeders, 

geneticists and growers (BOLAT and PIRLAK, 1999). Pollen viability has been 

evaluated by:  (1) staining techniques; (2) in vitro and in vivo germination tests; or (3) 

analyzing final seed set. The choice of method depended on the crop or species 

(DAFNI and FIRMAGE, 2000; DAFNI et al., 2005). In many species pollen 

germination is dependent on the addition of key substrates such as calcium nitrate to 

the germination media (STEER and STEER, 1989). Pollen tube growth is one of the 

most essential phenomena in the life cycle of flowering plants (HEPLER et al., 2001). 

Opportunities for self pollen to compete with cross pollen for access to stigma 

surfaces, stylar tissues, or ovules are influenced by a variety of floral traits including 

dichogamy and floral display size (RAMSEY and VAUGHTON, 2000). In some 

plants, direct measurements of pollen tubes indicate that they grow slower or have 

higher rates of attrition following self- rather than cross-pollination (AIZEN et al., 

1990). In J. curcas self-pollination resulted in significantly lower seed set than cross-

pollination (Chapter 5 ). However, there is very limited information about pollen 

biology and post self- and cross-pollination processes in J. curcas. 

 

In this study, pollen viability, pollen germination and pollen tube growth following 

cross- and self-pollination were investigated in J. curcas flowers. Five basic questions 

were addressed: (1) What is the viability level of pollen from male and hermaphrodite 

flowers?; (2) Which staining technique is reliable in testing J. curcas pollen viability?; 

(3) What is the optimum medium for in vitro pollen germination and pollen tube 
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growth?; (4) Does exogenous IAA play a role in enhancing pollen germination and 

pollen tube growth in this plant; and (5) Does self pollination inhibit or interfere with 

fertilization in J. curcas? 

 

6.2 MATERIALS AND METHODS 

6.2.1 Study species 

Jatropha curcas is a perennial, deciduous shrub which produces flowers in racemose 

inflorescences (Figure 6.1G ). Male and female flowers (Figure 6.1F, 6.1E , 

respectively) are produced in the same inflorescence and occasionally 

hermaphrodite flowers (Figure 6.1D ) are present (DEHGAN and WEBSTER, 1979). 

The average male to female flower ratio in the study site was 16:1 (Chapter 5 ).  Male 

flowers are salver-shaped, sepals and petals are five each, stamens are ten, 

diadelphous, arranged in two tiers of five each.  The anthers (Figure 6.1B ) are 

yellow, oval-shaped, five in number and are present at the villose flower base (RAJU 

and EZARDANAM, 2002; CHANG-WEI et al., 2007). The pollen grains (Figure 6.1A ) 

are yellow, globular, inaperturate; the exine is semitectate and verrucate. Female 

flowers are relatively larger, the styles and stigmas (Figure 6.1C ) are three each, and 

the latter are bifid. The ovary (Figure 6.1C, H ) has three carpels, each with a single 

locule producing one ovule (Figure 6.1I ). The floral base is villose and contains five 

yellow elliptical glands under the ovary.  
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Figure 6.1 Pollen, floral organs, flowers, inflores cence, fruit and seeds of  Jatropha curcas, (A) 

pollen; (B) anthers; (C) stigma and ovary; (D) herm aphrodite flower; (E) female flower (F); male 

flower; G) racemose inflorescence; (H) longitudinal  and cross sections of ovary five days after 

pollination (DAP); (I) Fruit with two seeds. Bar sc ale = 1 mm (A-H) and = 1 cm (I). 
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6.2.2 Study site and plant materials 

Branches with several inflorescences were collected from 50–60 trees in a 

monoculture plantation at the University of KwaZulu-Natal Agricultural Research 

Station (Ukulinga), (Latitude 30˚ 41' E, Longitude 29˚ 67' S and Altitude 781 m above 

sea level), Pietermaritzburg, South Africa. The branches with inflorescences were 

taken to the laboratory and maintained at room temperature (25 ± 5˚C) and irradiance 

of 16 ± 2 µmol m-2s-1. They were placed in jars filled with tap water for three to four 

weeks until flowers opened and pollen grains were released.  

 

6.2.3 Pollen viability tests 

A number of staining methods were assessed for fresh and dead pollen.  Pollen was 

killed by spreading a small amount of the pollen mixture into a 70 % ethanol droplet 

on a glass microscope slide, which was then heated with a flame and repeated two to 

three times (SHEFFIELD et al., 2005).  

 

For testing for the presence of dehydrogenase, the test solution consisted of a 1% 

concentration of the substrate 2,3,5-triphenyl tetrazolium chloride (TTC) or 2,5-

diphenyl monotetrazolium bromide (MTT) in 5% sucrose (KEARNS and INOUYE, 

1993; KHATUN and FLOWERS, 1995; RODRIGUEZ-RIANO and DAFNI, 2000; 

ZENG-YU et al., 2004). The pollen grain was considered viable if it turned red in TTC 

and violet-purple in MTT (ZENG-YU et al., 2004; SHEFFIELD et al., 2005). 

 

 Aniline blue was used to detect callose in pollen walls and pollen tubes and the 

pollen grain was considered viable if it turned blue (KEARNS and INOUYE, 1993; 

KHATUN and FLOWERS, 1995; ZENG-YU et al., 2004). The aniline blue–

lactophenol staining solution was prepared by adding 5 ml of  1%  (w/v) aqueous 

aniline blue to a medium of 20 ml phenol, 20 ml lactic acid , 40 ml glycerol, and 20 ml 

distilled water (KEARNS and INOUYE, 1993).  
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For detecting starch content iodine and potassium iodide was used. Black-stained 

pollen was considered viable (KEARNS and INOUYE, 1993). For the fluorochromatic 

reaction (FCR) test for esterase activity and intactness of cell membranes, 

fluorescein diacetate was dissolved in acetone (2 mg/ml) and used at 10-6 mol l-1 in 

0.8 mol l-1 sucrose (KEARNS and INOUYE, 1993; KHATUN and FLOWERS, 1995; 

ZENG-YU et al., 2004).   

 

Pollen was viewed under Olympus AX70 Light- and Fluorescence-Microscopes. The 

total viable and non-viable pollen grains were counted in each field of view for a total 

count of at least 300 pollen grains. Staining percentage was determined by dividing 

the number of stained pollen grains per field of view by the total number of non-

stained pollen per field of view and expressed as percentage after being normalized 

by using angular transformation. Non-viable pollen grains, which stay light coloured, 

were distinguished from viable ones. Data were analyzed using SPSS® version 15 

(SPSS Inc., Chicago, USA) statistical software. Effects of treatments were analyzed 

using one-way analysis of variance (ANOVA). Tukey’s test was used in order to 

compare the significance of differences among treatments. 

 

6.2.4 In vitro pollen germination 

Bulk fresh pollen grains were collected 2 days after anthesis, scattered uniformly into 

different liquid media, and incubated at 25˚C in darkness for 4 h. The different liquid 

media were: (1) control (distilled water); (2) control + [4 mg l-1 IAA]; (3) basal 

medium-1 comprised of 0.8 mmol l-1 sucrose + 0.7 mmol l-1 H3BO3 + 1.3 mmol l-1 

Ca(NO3)2 
. 4H2O + 1% agar , hereafter referred to as M1, modified from ZENG-YU et 

al., (2004); (4) M1 + [4 mg l-1 IAA]; (5) basal medium-2 composed of 80 mg l-1 

NH4NO3, 125 mg l-1 KNO3, 125 mg l-1 MgSO4 
. 7H2O, 125 mg l-1 KH2PO4, 50 mg l-1 

Ca(NO3)2 
. 4H2O, 10 mg l-1 H3BO3, 3 mg l-1 MnSO4 

. 4H2O, 0.5 mg l-1 ZnSO4 
. 7H2O, 

0.025 mg l-1 CuSO4 
.  5H2O, 0.025 mg l-1 Na2MoO4 

. 2H2O, 50,000 mg l-1 sucrose, 

and 500 mg l-1 casein, hereafter referred to as M2, modified from JUANZI et al., 

(2008); and  (6) M2 + [4 mg l-1 IAA].  
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Pollen grains were considered germinated when the pollen tube length was greater 

than the diameter of the pollen grain (TUINSTRA and WEDEL, 2000).  A drop (2 µl) 

of a mixture of media and pollen were placed on a glass slide and covered with a 

cover slip. Germination percentage was determined by dividing the number of 

germinated pollen grains per field of view by the total number of pollen per field of 

view and expressed as percentage and normalized by using the angular 

transformation (KEARNS and INOUYE, 1993). Mean pollen tube length was 

calculated as the average length of 10 pollen tubes measured from each slide. For 

statistical analysis of data we used one way ANOVA analysis and Tukey’s tests (P < 

0.05) in order to compare differences between treatments. 

 

6.2.5 In vivo pollen germination and pollen tube growth 

To determine in vivo pollen tube growth, pollinations were conducted on the first day 

of flowering. Self-pollinations were made by brushing pollen from 2-4 anthers, taken 

from different flowers of the same inflorescence and plant, on the stigma. Cross-

pollinations were similarly done by using pollen from other inflorescences from 

different plants. Hand pollinated flowers were collected at 2, 4, 6, 8, 24, 48, 72 and 

96 HAP, longitudinally sliced and fixed in ethanol-acetic acid (3:1 v/v) for 24 h. After 

rinsing with water two to three times, pistils were cleared in 16% NaOH at room 

temperature for 3 days, or until most tissues became transparent. They were then 

rinsed in water and stained with 0.1% aniline blue in 0.1% K2HPO4 as outlined by 

KEARNS and INOUYE, (1993); TANGMITCHAROEN and OWENS, (1997).  

 

Each half pistil was placed on a microscope slide with 10% glycerol and squashed 

under a glass cover slip. The number of pollen tubes and the rate of pollen tube 

growth in the style were examined using fluorescence microscopy. The differences in 

pollen tube length between self- and cross-pollinated flowers were compared by t 

test.  
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6.3 RESULTS 

6.3.1 Pollen viability test 

Tetrazolium salt (TTC) stained fresh pollen with a bright red colour (Figure 6.2A ) and 

significantly (P < 0.05) distinguished between fresh and dead pollen compared to the 

other tests (Table 6.1 ). 2,5-diphenyl monotetrazolium bromide (MTT) however, did 

not differentiate between them (Table 6.1 ) and stained fresh and dead pollen deep 

violet-purple and orange-brown (Figure 6.2B ). In the fluorchromatic test both fresh 

and dead pollen fluoresced, however, there were variations in the degree of 

fluorescence. Some pollen fluoresced very brightly, others less and others were non-

fluorescent (Figure 6.2E; Table 6.1 ). Analine blue-lactophenol and IKI stained fresh 

and dead pollen with a dark blue and black colour respectively, thus, both tests did 

not adequately distinguish between fresh and dead pollen (Figures 6.2C and 6.2D; 

Table 6.1 ). 

 

Figure 6.2 Response of Jatropha curcas fresh- and dead-pollen (left and right, repectivel y) to 

different staining tests, (A) TTC; (B) MTT; (C) IKI ; (D) Analine blue-lactophenol; and (E) FDA.   
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Table 6.1 Percentage of stained fresh and dead poll en treated with TTC, MTT, IKI FDA or aniline 

blue. Data means ± S.E of five slides with two fiel ds of view each represent a replicate (N = 10). 

A total of 300-400 pollen grains were counted per e ach field.  

 Percentage of stained pollen (%)  

 

Test  

 

Fresh  Dead 

TTC 

 

95.4 ±1.1ab 22.3±3.8d 

MTT 

 

92.1.8 ±2.3b 91.3±1.49b 

FDA 

 

76.4 ±1.8 c 71.0±6.4c 

IKI 

 

97.0 ±1.5a 97.8±1.6a 

Aniline blue-lactophenol 

 

93.9 ±1.2b 79.0±2.7c 

Mean ± S.E followed by the same letter(s) are not s ignificantly different to each other at P < 

0.005 according to Tukey’s test. 

 

 

6.3.2 In vitro pollen germination and pollen tube growth 

6.3.2.1 Pollen germination 

 Pollen from male flowers germinated significantly (P < 0.05) better in M1 compared 

to the control and the other media (Figure 6.4A ). However, supplementation of IAA 

to M1 and M2 significantly (P < 0.05) increased pollen germination compared to the 

control and control-plus-IAA treatments (Figure 6.4A ). Pollen from hermaphrodite 

flowers had a lower germination rate compared to the male flowers and there were 

no significant differences in germination between all treatments (Figure 6.4B ).  
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Figure 6.3 In vitro pollen germination and pollen tube growth of Jatropha curcas. (A) 

Hermaphrodite flower pollen: (A1) Non-germinated po llen grain; (A2 and A3) Pollen grains 

bursting as first sign of germination; (A4-A8) Abno rmal pollen germination in response to 

different medium. (B) Male flower pollen: (B1-B2) P ollen tube from control treatment (distilled 

water); (B3-B4) Pollen tube growth in response to M 2; (B5-B6) Pollen tube growth in response 

to M1+; (B7-B8) Pollen tube growth in response to M 1.  
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6.3.2.2 Pollen tube growth 

 Pollen tube length from M1 and M1+ was significantly (P < 0.05) longer compared to 

all other treatments (Figures 6.3B5 and 6.4C ). However, M2 produced significantly 

(P < 0.05) longer tubes compared to the control, control+ and M2+ treatments 

(Figure 6.4C ). There were no significant differences between M2+ and C+. However, 

they were both significantly (P < 0.05) different from the control treatment (Figure 

6.4C). Pollen from hermaphrodite flowers had shorter pollen tubes when compared to 

those from male flowers. There were no significant differences in pollen tube length 

between treatments (Figure, 6.3D and 6.4A ).  

 

Figure 6.4: Mean in vitro germination percentage of Jatropha curcas (A) pollen from male 

flowers (B) pollen from hermaphrodite flowers in re sponse to: C control, C+ (IAA + distilled 

water), M1 (basal medium-1), M1+ (basal medium-1 + IAA), M2 (basal medium-2),  M2+ (basal 

medium-2  + IAA). Standard error (±) bars with diff erent letter(s) are significantly different to 

each other according to Tukey’s test (P < 0.05). 
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6.3.3 In vivo pollen germination and pollen tube growth 

In both the self- and cross-pollination treatments a large number of pollen germinated 

on the stigmatic exudates. The pollen tubes formed callose plugs and elongated in 

the exudate in random directions (Figures 6.5A1-2 and 6.5B1-2 ). The number of 

pollen tubes reaching the base of the style was often substantially less than the 

number in the stigma (Figures 6.5A3 and 6.5B3 ). However, the average number of 

pollen tubes in the style was slightly higher in the cross- than in the self-pollination 

treatments (Figure 6.6C ).  

 

The average length of J. curcas styles in the study sample was 1300 ± 46.8 µm 

(Figure, 6.1C ). Following self- and cross-pollination it took about 4 h for the pollen 

tubes tips to reach the middle of the styles, 6 h to teach the base of the style and 

they entered the ovary at about 8 h (Figure 6.6A ). At 6 HAP the average pollen tube 

length and growth rate were significantly higher in the cross- compared with the self-

pollinated flowers, 1380.5 ± 151.4 µm, 230.1 ± 25.2 µm h-1, and 1137.8 ± 148.3 µm, 

189.6 ± 25.3 µm h-1 respectively, (Figure 6.6A and Figure6.6B ). There were no 

significant differences between 4 and 8 HAP. Nevertheless, cross- pollination pollen 

tubes attained greater length and a faster growth rate (Figure 6.6A and 5.6B ). 
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Figure 6.5 Fluorescence microscopy of in vivo pollen germination and pollen tube growth from 

(A) self-pollinated and (B) cross-pollinated Jatropha curcas flowers. In both A and B (Phases 1-

5) are developmental stages within 0 ─8 h after pollination (HAP), (Phase1) pollen germin ation 

on the stigma, (Phases 2 ─3) a large number of pollen germinated on the stigm a papillae and 

produced pollen tube that grew into the stylar cana l (arrows), (Phase 4) pollen tube had entered 

the ovary, (Phase 5) pollen tube had penetrated the  embryo, (Phase 6) developing embryo 72 

HAP. Bar scale as shown in each panel. 
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Figure 6.6 In vivo pollen tube growth following self- and cross-polli nation of Jatropha curcas 

flowers, (A) pollen tube length 2, 4, 6 and 8 hours  after pollination; (B) pollen tube growth rate 

2, 4, 6 and 8 hours after pollination; (C) number o f pollen tubes in tip, middle and base of the 

style and ovary. A ─C values are means ± S.E (n = 10).  
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6.4 DISCUSSION 

RODRIGUEZ-RIANO, and DAFNI (2000) recommended the use of heat-killed pollen 

as a control to check the potential of the dye for testing pollen viability. The study 

showed that tetrazolium salt TTC differentiated between fresh and dead pollen, thus 

the staining percentage of the fresh pollen (95% , Table 6.1 ) can be considered as 

the pollen viability percentage in the study sample (Table 6.1; Figure 6.2A ). This is 

in line with HUANG et al., (2004) who reported that in (Leymus chinensis) no colour 

reaction was observed with dead pollen treated with TTC. However, MTT, FDA, IKI 

and blue aniline-lactophenol did not differentiate between fresh and dead pollen and 

therefore the staining percentage of the fresh pollen cannot be relied upon to 

determine pollen viability (Figures 6.2B-E; Table 6.1 ).  These results,  apart from 

those for TTC, agreed with ZENG-YU et al. (2004) who reported that in Tall fescue 

(Festuca arundinacea) TTC, MTT, FCR and aniline blue did not distinguish between 

fresh and dead pollen. Similar results were reported by PARFITT and GANESHAN, 

(1989) who found that in some Prunus species heat-killed pollen was intensely 

stained by MTT and HUANG et al., (2004) who found that in Leymus chinensis IKI 

stained the dead pollen in the same manner as fresh pollen. 

 

Our results show that pollen from male flowers germinated well in M1 and M2 

compared to the control (Figure 6.4A ).  These results are in line with TUINSTRA and 

WEDEL, (2000) who found that in Sorghum (Sorgum bicolour) germination was high 

in medium containing sucrose, boric acid and calcium nitrate. Furthermore, 

supplementation of IAA to M1 and M2 increased pollen germination compared to the 

control and control-plus-IAA treatments (Figure 6.4A ). These results are in 

accordance with CHAUHAN and KATIYAR (1998) who found that IAA stimulated 

pollen tube growth in Pinus kesiya. Pollen tube length from M1 and M1-plus-IAA was 

longer compared to all treatments (Figures 6.3B5 and 6.4C ). This is in line with 

JUANZI et al, (2008) who reported a distinct effect of exogenous IAA in Torenia 

fournieri L. which resulted in straighter and more slender pollen tubes compared with 

the controls. However, M2 produced longer tube length compared to the control, 

control-plus-IAA and M2-plus-IAA treatments (Figure 6.4C ). There were no 

differences between M2-plus-IAA and control-plus-IAA in pollen tube length; 

however, pollen tube from both treatments was longer than the control one (Figure 
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6.4C). However, pollen from hermaphrodite flowers had a lower germination rate and 

shorter pollen tube length compared with that from male flowers and there were no 

differences in germination between all treatments (Figures 6.3A and 6.4B, 6.4D ).  

 

Our study shows that in both the self- and cross-pollination treatments, a large 

number of pollen grains germinated on the stigmatic exudates and formed callose 

plugs, indicating good growth of pollen tubes (Figure 6.5A2 and 6.5-B2 ). However, 

few of the pollen tubes were observed to elongate from the stigmatic exudates to the 

style. Similarly, FUSS and SEDGLEY (1991) found that in Scarlet Banksia (Banksia 

coccinea) pollen grains germinated on the stigma but very low numbers of pollen 

tubes grew down the style towards the ovary.  

 

The average numbers of pollen tubes in the style was only slightly higher in the 

cross- than in the self-pollination treatments, indicating that there was no defect in the 

elongation of the pollen tube in the style (Figure 6.6C ). These results are in line with 

OCKENDON and GATES (1975) who found that in Brassica oleracea the pattern of 

pollen tube growth was very much the same in the self- as in the cross-pollinated 

style. Similar results have been reported by SARR et al, (1983); HESSING, (1986); 

FENSTER and SORK, (1988). However, at 6 HAP, the average pollen tube length 

and growth rate was higher in the cross- compared to the self-pollinated flowers 

(Figure 6.6A and 6.6B ). This finding is supported by AIZEN (1990) who found that in 

Dianthus chinensis average pollen tube length following self-pollination was shorter 

than the average pollen tube length following cross-pollination. However, he stated 

that higher growth rate of cross-pollen than self-pollen could not be explained by 

differences in pollination intensity or number of pollen grains germinated because the 

number of pollen tubes present in the selfed and crossed styles was similar. Also, 

CRUZAN, (1989); WELLER and ORNDUFF, (1989); LI et al., (2008) reported that in 

some plants, direct measurements indicate that pollen tubes grow slower or have 

higher rates of attrition following self- rather than cross-pollination.  

 

Generally our study shows that neither pollen germination nor pollen tube growth 

were inhibited or interfered with self-pollination treatments. Both types of pollination 
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maintained their fertility as measured by penetration of an ovule by a pollen tube 

(Figure 6.5-A5 and 6.5-B5 ). This is also supported by the findings from Chapter 5  

on the breeding system of this plant that fruits arising from self-pollination are almost 

as numerous and large as those arising from cross-pollination. 
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7          Influence of plant growth regulators on flowering, 

fruiting, seed oil content, and oil quality of Jatropha curcas   

 

7.1 INTRODUCTION 

Knowledge of the influence of PGR-application on the flowering is of interest for both 

internal mechanisms regulating flowering and practical usefulness of controlling the 

time and degree of flowering (TOMPSEET, 1977). Abundant data indicate that use of 

PGRs may increase the yield of product per unit of time and land (MORGAN, 1980). 

In cottonseed, PGR application was reported to increase seed protein content, oil 

and protein yield ha-1, seed oil refractive index, unsaponifiable matter and total 

unsaturated fatty acid content (oleic and linoleic acids) (SAWAN et al., 2001). 

Jatropha curcas oil contains about 14% free fatty acid (FFA), way beyond the limit of 

1% FFA level that can be converted into biodiesel by trans-esterification using an 

alkaline catalyst (TIWARI et al., 2007). The fatty acid content reported in J. curcas oil 

by ADEBOWALE and ADEDIRE (2006) was 11.3% palmitic acid, 17% stearic acid, 

4.7% arachidic acid, 12.8% oleic acid, and 47.3% linoleic acid. A significant increase 

in the seed hydrocarbon content in response to the application of PGRs in J. curcas 

was reported in a study by AGUSTUS et al. (2002). A means of obtaining improved 

flowering and fruiting in J. curcas would be of enormous commercial benefit. PGRs 

may eventually provide the means of bringing about such growth responses. 

However, the fruiting behaviour of J. curcas is bearing fruit bunches only at the apex 

of the branches. Therefore, limited branching is considered one of the major factors 

limiting yield in J. curcas. Traditionally MP (manual pruning) (Chapter 3 ) is practiced 

to promote branching in this plant. However, cost, convenience and efficiency of MP 

in large-scale plantations still remains a major concern. As mentioned in (Chapter 4 ) 

the following PGRs were used in this study as chemical pruners: BA (6-

benzyladenine); TIBA (2,3,5-triiodobenzoic acid); Dikegulac (DK) (2,3:4,6-di-O-

isopropylidene-2-keto-L-gulonic acid); MH (Maleic hydrazide) (1,2-dihydro-3,6-

pyridazinedione, coline salt). The results from (Chapter 4 ) have clearly established 

that J. curcas branching is very responsive to exogenous application of these PGRs.  
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It was suggested that the application of PGRs is often more consistently successful 

in enhancing flowering than cultural treatments (PHILIPSON, 1990). However, it is 

important to define the age of plants used in PGRs experiments, since the results 

can be influenced strongly by the stage of development at the time of treatment 

(ROSS, 1976). This study reports on the subsequent effects, after one year, following 

foliar application of these PGRs and MP on flowering, fruit set, fruit characteristics, 

seed total oil content, and FFA (free fatty acid content) in two-year-old plants of J. 

curcas.  

 

7.2 MATERIALS AND METHODS  

7.2.1 Study site and the experiment design 

The experiment was conducted on one-year-old plants, at the University of KwaZulu-

Natal Agricultural Research Station (Ukulinga), Pietermaritzburg, South Africa (30˚41' 

E, 29˚67' S; and 781 m a.s.l). The plants were sprayed once in May 2007 and each 

plant received 200 ml of respective test solution. Manual pruning was done on the 

same day as that of the foliar treatment. The plants used in this experiment were all 

of the same variety with similar height and stem diameter. The foliar treatments 

consisted of BA (3, 6, 9, 12 and 15 mmol l-1), TIBA (0.5, 1.0, 1.5 and 2 mmol l-1), DK 

(2, 4, 6 and 8 mmol l-1) and MH (2, 3 and 4 mmol l-1). A small volume of sodium 

hydroxide (0.1 M) was used to solubilize PGRs before adding water. Plants sprayed 

with distilled water + an equivalent amount of 0.1 M NaOH served as control. A few 

drops of Tween® 20 (Merck) were added as surfactant. Each treatment consisted of 

twelve plants considering a single plant as one replicate selected randomly. In the 

subsequent year following the foliar spray (May 2008), data of the number of flowers 

per plant, fruit set percentage and the number of fruits per bunch were collected. In 

August 2008 fruits were harvested and fruit characteristics: number of fruits per plant, 

number of fruits per bunch, fruit- weight, -size, number of seeds per fruit and seed 

weight were measured. Fruit set was considered the percentage of flowers that set 

fruit per plant and was normalized by using angular transformation. SPSS® release 

15 statistical software was used and one-way ANOVA was used for the data analysis 

(SPSS Inc., Chicago, USA). 

 



 

 129

7.2.2 Extraction of oil 

The same seed samples used to determine the fruit characteristics were ground 

using an A11 BASIC analytical mill. Distilled n-hexane was used as solvent to extract 

the oil, in a Soxhlet apparatus (Figure 7.1A) . Three samples (3 g each) of the seed 

meal from each treatment were placed in Whatman single-thickness cellulose 

extraction thimbles. Empty round-base glass flasks were recorded for initial weight.  

Solvent (150 ml) was transferred to each flask and then placed on the Soxhlet plate. 

The Soxhlet system was connected firmly and ran for 2 h. The solvent was then 

removed from the extract using a Rotary Evaporator (Büchi) (Figure 7.1B) . The 

percentage of the extracted seed oil was determined using the equation: 

 

Oil content = W2 – W1     X 100  

                              W0                                                                     

Where, W0 = the weight of the seed meal, W1 = the weight of empty flask, W2 = the 

weight of the flask with the oil extract. 
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Figure 7.1 Oil extraction process, (A) Soxhlet appa ratus; (B) Rotary Evaporator (Büchi-K4R) 

apparatus. 

 

7.2.3 Oil analysis 

Oil was analysed at the Department of Medicinal Chemistry, Faculty of 

Pharmaceutical Science University of Copenhagen, Denmark, as follows:  

Oil (5 µl), 1000 µl MeOH (HPLC-grade), 200 µl (trimethylsily) diazomethane (Aldrich); 

were mixed and shaken for 15 min. 

Glacial acetic acid (250 µl), 2.5 ml heptane (HPLC-grade), 3 ml saturated NaCl 

solution; were added, shaken for 30 min, and 1 ml of the heptane fraction was 

transferred into a GC-MS vial. The sample (1 µl) was injected into the GC-MS. 

GC-MS 

An Agilent 6890N Network GC system coupled to a 5973 Network Mass Selective 

Detector was used. GC conditions: injector temperature: 250 °C; temperature 
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programme: start 70 °C hold for 4 min, 40 °C/min to  160 °C, 3 °C/min to 270 °C; 

column: HP5MS. Carrier gas: He. 

 

7.3 RESULTS 

7.3.1 Benzyladenine  

Foliar application of BA at 3 mmol l-1 significantly (P < 0.05) increased the number of 

flowers per plant compared to the control and MP (manual pruning) (Table 7.1 ). BA 

at 12 mmol l-1 produced significantly (P < 0.05) more fruits per bunch compared to 

the control and MP. However, there were no significant differences in fruit set 

percentage (Table 7.1 ). BA at 9 mmol l-1 produced significantly (P < 0.05) heavier 

and bigger fruits compared to MP (Figure 7.4A and B ). No significant differences 

were detected between treatments with respect to the number of seeds per fruit and 

seed weight (Figure 7.4C and D) .  However, BA at 9 mmol l-1 produced a 

significantly (P < 0.05) higher seed oil content compared to MP. 

 

7.3.2 Triiodobenzoic acid  

TIBA at 1.5 and 2 mmol l-1 produced significantly more flowers per plant and more 

fruit per bunch respectively, compared to the control and manual pruning (Table 7.2) . 

However, no significant variations in fruit set percentage were found between 

treatments (Table 7.2 ). Foliar application of TIBA at all concentrations produced 

significantly (P ≤ 0.007) heavier fruits compared to the control and MP treatments 

(Figure 7.6A ). TIBA at all concentrations produced significantly (P < 0.05) fruits of 

bigger size and with more seeds per fruit compared to the MP treatments (Figure 

7.6B and C ). However, seed weight was not influenced by the different treatments 

(Figure 7.6D ). TIBA at 1.5 and 2 mmol l-1 significantly produced seeds with higher oil 

content (Figure 7.6E ). No significant differences in seed oil content were found 

between TIBA at higher concentrations (1.5 and 2 mmol l-1) and the control 

treatment. However, TIBA at lower concentrations (0.5 and 1 mmol l-1) reduced the 

seed oil content significantly compared to the control treatment (Figure 7.6E ). 
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7.3.3 Dikegulac  

DK at 2 mmol l-1 significantly increased the number of flowers per plant and the 

number of fruit per bunch compared to the control and MP treatments (Table 7.3 ). 

However, there were no differences between treatments in fruit set percentage 

(Table 7.3 ). Foliar application of DK at 2, 4, and 6 mmol l-1 produced significantly 

more seeds per fruit compared to the MP (Figure 7.8D ). However, there were no 

significant differences between treatments in fruit weight, size and seed weight 

(Figure 7.8 A, B and D ). DK at lower concentration (4 mmol l-1) significantly 

produced higher seed oil content compared to the control and MP treatments (Figure 

7.8E). At higher concentration (8 mmol l-1), however, DK significantly reduced the 

seed oil content compared to the control (Figure 7.8E ). 

 

7.3.4 Maleic hydrazide  

The number of flowers per plant was significantly increased by 1 mmol l-1 MH 

compared to the control treatment and MP (Table 7.4 ). MH at 2 mmol l-1 significantly 

(P < 0.001) produced heavier fruit compared to the control, MP and MH at higher 

concentration (4 mmol l-1) (Figure 7.10A ). Foliar application of MH at 1 and 2 mmol l-

1 produced fruits significantly bigger in size, more seeds per fruit and heavier seeds 

compared to the control, MP and MH at higher concentration (4 mmol l-1) (Figure 

7.10B, C and D ). MH at 2 mmol l-1 produced seeds with significantly higher oil 

content (Figure 7.10A ).  

 

7.3.5 Oil analysis 

There were no variations in the FFA (free fatty acid contents) between the PGRs , 

MP and control treatments (Table 7.5 ). The average FAA content for the bulk sample 

were palmitic acid 18.2%, linoleic acid 41.7%, oleic acid 33.9% and stearic acid 

6.1%. The highest FAA content for the different treatments were: 21.3% palmitic acid 

recorded for DK at 2 mmol l-1, 48% linoleic  acid  recorded for TIBA at 0.5  mmol l-1, 

36.9% oleic acid recorded for BA at 3  mmol l-1 and 8.12% stearic recorded for MH at 

2  mmol l-1 (Table 7.5 ). 
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Figure 7.2 Jatropha curcas fruits and seeds. (A) variation in fruit maturity; (B) variation in fruit 

size; (C) variation in number of seeds per fruit. B ar scale = 1 cm for (A-B), 0.5 cm for (C).  
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Table 7.1 Effects of BA, one year after foliar appl ication, and MP (manual pruning), on the 

number of flowers/plant, fruit set percentage and t he number of fruit per bunch in two-year-old 

plants of Jatropha curcas.  

Concentration 

BA (mmol l-1) 

No. of flowers/plant 

 

Fruit set  

(%) 

No. of fruit/bunch 

0.00 53.7 ± 7.3b 86.7 ± 2.8 4.6 ± 0.7b 

3.0 72.8 ± 4.7a 88.8 ± 5.4  2.7 ± 0.3c 

6.0 30.0 ± 7.0c 81.6 ± 4.1 2.8 ± 0.4c 

9.0 38.6 ± 6.3c 80.9 ± 2.9 4.0 ± 0.4bc 

12.0 45.0 ± 9.2bc 80.5 ± 2.9 5.2 ± 0.7a 

    

MP 38.8 ± 8.5b 84.6 ± 4.6 3.3 ± 2.7b 

Means ± (S.E) followed by the same letter(s) are no t significantly different to each other 

according to Tukey’s test at P < 0.05. 

 

 

 

Figure 7.3 Seed weight and seed total oil content o f two-year-old Jatropha curcas plants, one 

year after foliar application of BA and MP (manual pruning). N.S ≡ not significant according to 

Tukey’s test at P < 0.05. 
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Figure 7.4 Effect of BA, one year after foliar appl ication and MP (manual pruning), on fruit 

characteristics  of two-year-old plants of Jatropha curcas. (A) fruit weight; (B); fruit size; (C) 

number of seeds per fruit; (D) seed weight; and (E)  seed total oil content (%). S.E. bars sharing 

the same letter(s) are not significantly different to each other according to Tukey’s test at P < 

0.05. 
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Table 7.2 Effects of TIBA, one year after foliar ap plication, and MP (manual pruning), on the 

number of flowers/plant, fruit set percentage and t he number of fruit per bunch in two-year-old 

plants of Jatropha curcas.  

Concentration 

TIBA (mmol l-1) 

No. of flowers/plant 

 

Fruit set  

(%) 

No. of fruit/bunch 

0.00 53.7 ± 7.3b 86.7 ± 2.8 4.6 ± 0.7b 

0.5 42.1 ± 6.3bc 77.4 ± 3.4 3.3 ± 0.7b 

1.0 46.1 ± 5.3b 78.3 ± 3.2 3.3 ± 0.6b 

1.5 69.6 ± 9.3a 78.2 ± 3.1 3.7 ± 0.5b 

2.0 60.86 ± 5.1ab 77.9 ± 2.7 5.5 ± 0.9a 

    

MP 38.8 ± 8.5b 84.6 ± 4.6 3.3 ± 2.7b 

Means ± S.E. followed the same letter(s) are not si gnificantly different to each other according 

to Tukey’s test at P < 0.05. 

 

 

Figure 7.5 Seed weight and seed total oil content o f two-year-old Jatropha curcas plants, one 

year after foliar application of TIBA and MP (manua l pruning). N.S ≡ not significant according 

to Tukey’s test at P < 0.05. 
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Figure 7.6 Effects of TIBA, one year after foliar a pplication and MP (manual pruning), on fruit 

characteristics  of two-year-old plants of Jatropha curcas. (A) fruit weight; (B); fruit size; (C) 

number of seeds per fruit; (D) seed weight; and (E)  seed total oil content (%). S.E. bars sharing 

the same letter(s) are not significantly different to each other according to Tukey’s test at P < 

0.05. 
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Table 7.3 Effects of Dikegulac one year after folia r application, and MP (manual pruning), on the 

number of flowers/plant, fruit set percentage and t he number of fruit per bunch in two-year-old 

plants of Jatropha curcas. 

Concentration 

DK (mmol l-1) 

No. of flowers/plant 

 

Fruit set  

(%) 

No. of fruit/bunch 

0.00 53.7 ± 7.3b 86.7 ± 2.8 4.6 ± 0.7b 

2.0 71.25 ± 6.6a 76.4 ± 3.1 5.4 ± 0.6a 

4.0 58.7 ± 4.9b 79.4 ± 4.6 3.1 ± 0.5b 

6.0 51.4 ± 5.3b 71.3 ± 3.1 3.7 ± 0.9b 

8.0 53.7 ± 8.2b 74.5 ± 7.6 4.0 ± 0.3b 

    

MP 38.8 ± 8.5b 84.6 ± 4.6 3.3 ± 2.7 

Means ± (S.E) followed by the same letter(s) are no t significantly different to each other 

according to Tukey’s test at P < 0.05. 

 

 

 

Figure 7.7 Seed weight and seed total oil content o f two-year-old Jatropha curcas plants, one 

year after foliar application of Dikegulac and MP ( manual pruning). * ≡ significant,  N.S ≡ not 

significant according to Tukey’s test at P < 0.05. 
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Figure 7.8 Effect of Dikegulac, one year after foli ar application and MP (manual pruning), on 

fruit characteristics  of two-year-old plants of Jatropha curcas. (A) fruit weight; (B); fruit size; 

(C) number of seeds per fruit; (D) seed weight; and  (E) seed total oil content (%). S.E. Bars 

sharing the same letter(s) are not significantly di fferent from each other according to Tukey’s 

test at P < 0.05. 
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Table, 7.4 Effect of MH (Maleic hydrazide), one yea r after foliar application, and MP (manual 

pruning), on the number of flowers/plant, fruit set  percentage and the number of fruit per 

bunch in two-year-old plants of Jatropha curcas. 

Concentration 

MH (mmol l-1) 

No. of flowers/plant 

 

Fruit set  

(%) 

No. of fruit/bunch 

0.00 53.7 ± 7.3b 86.7 ± 2.8 4.6 ± 0.7 

1.0 59.9 ± 10.2a 80.5 ± 3.5 2.9 ± 0.4 

2.0 44.6 ± 4.9b 81.3 ± 4.2 3.6 ± 0.5 

4.0 34.5 ± 3.9b 83.5 ± 3.9 4.8 ± 1.0 

    

MP 38.8 ± 8.5b 84.6 ± 4.6 3.3 ± 2.7 

Means ±(S.E) followed by the same letter(s) are not  significantly different to each other 

according to Tukey’s test at P < 0.05. 

 

 

 

 

Figure 7.9 Seed weight and seed total oil content o f two-year-old Jatropha curcas plants, 

following one year after foliar application of MH ( Maleic hydrazide) and MP (manual pruning). * 
≡ significant according to Tukey’s test at P < 0.05. 
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Figure 7.10 Effect of MH (Maleic hydrazide), one ye ar after foliar application and MP (manual 

pruning), on fruit characteristics  of two-year-old plants of Jatropha curcas. (A) fruit weight; (B); 

fruit size; (C) number of seeds per fruit; (D) seed  weight; and (E) seed total oil content (%). S.E. 

bars sharing the same letter(s) are not significant ly different from each other according to 

Tukey’s test at P < 0.05. 
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Table 7.5 Effects of PGRs one year after foliar app lication on free fatty acid content of two-year-

old plants of Jatropha curcas. 

 Free Fatty Acid Content 

(%) 

Treatment Palmitic Linoleic Oleic Stearic 

Control 18.8 40.0 34.5 6.4 

MP 17.3 43.3 32.9 6.4 

     

BA (mmol l-1)     

3.0 19.5 37.7 36.1 6.8 

6.0 12.3 43.9 33.7 6.9 

9.0 18.1 40.1 34.3 6.7 

12.0 17.5 43.6 33.1 5.8 

     

TIBA (mmol l-1)     

0.5 16.8 48.1 30.0 5.2 

1.0 20.8 39.0 32.7 7.5 

1.5 17.7 44.2 32.8 5.4 

2.0 17.8 43.3 32.9 6.1 

     

DK (mmol l-1)     

2.0 21.3 40.4 37.3 6.05 

4.0 19.4 39.2 34.8 6.6 

6.0 20.1 37.7 35.3 6.9 

8.0 19.7 38.6 35.0 6.7 

     

MH (mmol l-1)     

1.0 16.8 45.9 32.3 5.0 

2.0 19.6 37.0 35.3 8.1 

4.0 17.3 44.1 33.1 5.6 
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Table 7.6 Estimated cost (ZAR/ha) of PGRs applicati on, assuming 6-month-old plants of 

Jatropha curcas with average height of 50 cm, spray rate of 1 l of solution per 50 plants, using 

compressed air sprayer and plant density of 2500 pl ant/ha. 

PGR Molecular weight 

(g) 

Spray rate Cost 

(ZAR/ha) (g/l)  (g/ha) 

BA 225.5 2.7 135.1 11,356.4 

TIBA 292.29 1.04 52.5 4,001.50 

DK 499.81 2.37 118.5 509.00 

MH 112.1 0.45 22.5 105.10 

Cost was based on latest pricing of these products by Sigma-Aldrich.  

(www.sigma-aldrich.com ) 

 

 

7.4 DISCUSSION  

Fruit development is dependent on the interaction of five major classes of plant 

hormones, each of these include active structures which can have practical 

applications in fruit production (ZHANG et al., 2008). Crop yields are often increased 

indirectly by preventing losses, hastening the production cycle, or facilitating 

mechanical harvest operations. In a few crops, PGRs actually increase plant growth 

or divert photosynthate to the harvested product so that the actual productivity is 

increased. There are a variety of reasons to anticipate a significant increase in the 

commercial use of PGRs and many approaches to discovering and developing these 

uses (MORGAN, 1980). The effect of PGRs on promotion of branching in J. curcas 

was previously discussed in (Chapter 4 ).  The objective of this part of the study was 

to evaluate the subsequent effect following foliar application of these PGRs and MP 

on the flowering, fruit set, fruit characteristics and seed total oil content in two-year-

old plants of J. curcas. 

 

The results showed a significant (P < 0.05) increase in the number of flowers per 

plant and the number of fruit per bunch by foliar application of BA compared to the 

untreated control and MP (Table 7.1 ). Several studies have shown that application
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of exogenous cytokinins increase the number of flower buds in apple (MCLAUGHLIN 

and GREENE, 1991) and pear trees (ITO et al., 2000). Similar effects have been 

reported for jojoba Simmondsia chinensis (Link) Schneider. by PRAT, et al. (2008), 

who found that seventeen months after application of 100 mg l-1 of BA, a significant 

increase in the number of flowers per branch was observed when compared to the 

control treatment. He speculated that the significant increase in the number of 

clusters caused by BA application as being the results of cytokinin action on the 

axillary meristems, reflected in an enlargement of the axillary meristematic zone. This 

growth would allow the differentiation of more than one flower per axillary bud, 

resulting in an increase in total number of flowers produced. Also WERNER et al. 

(2001) found that cytokinins had an important regulatory effect on Nicotiana tabacum 

meristem morphogenesis, enlarging the meristem, which gave a greater probability 

for the development of flower meristems. TOMPSEET (1977) reported that BA 

enhanced promotion of flowering in Picea sitchensis by a mixture of gibberellins 

alone or in combination with NAA.  In contrast, some studies reported negative 

effects with synthetic cytokinins as they exhibited inhibitory effects on flowering in 

apples (SANYL and BENGERTH, 1998) and in Chenopodium rubrum (VONDRÁKOVÁ 

et al., 1998). In this study BA produced heavier and bigger fruits when compared to 

the MP treatment. However, it was not significantly different to the controls (Figure 

7.4A and B ). Also no significant differences were found between treatments with 

respect to the number of seeds per fruit and seed weight (Figure 7.4C and D ). These 

results agree with PRAT et al. (2008), who reported no significant differences in the 

total weight of seeds per plant between the BA treatments and the control in jojoba. 

 

The results demonstrated that foliar application of TIBA produced significantly more 

flowers per plant and more fruit per bunch compared to the control and MP (Table 

7.2). However, there were no variations in fruit set percentage (%) between 

treatments (Table 7.2 ). Further, TIBA at all concentrations produced significantly 

heavier fruits compared to the control and MP treatments (Figure 7.6A ). Several 

studies reported on the promotive effect of TIBA on flowering and fruiting. A 

significant increase in flowering in response to TIBA application was reported in 

sweet cherry Prunus avium ‘Lutovoka’ by GROCHOWSKA et al. (2004). In another 

study with soybean NOODÉN and NOODÉN (1985) found that foliar application of 
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TIBA increased the number of pods per node. GENG et al. (2005) found that, in tulip 

bulbs, application of TIBA in combination with GA enhanced early flowering and 

higher flowering rates. Similar results on the effects of TIBA on fruiting was reported 

in maiden plum Prunus divaricata, sour cherry Prunus avium ‘Lutovoka’ and sweet 

cherry Prunus avium ‘Rivan’ trees (GROCHOWSKA et al., 2004). He found that a 

single foliar application of TIBA increased fruit productivity in all of these species as 

well as fruit masses in maiden plum Prunus divaricata. On average, the increase was 

about 24% higher than that of the controls. GROCHOWSKA et al. (2004) explained 

his results by the fact that the most characteristic action of TIBA is the inhibition of 

the polar transport of auxin and, thus, it is categorized as a growth retardant 

contributing to reduced auxin levels. Therefore, he suggested that the endogenous 

auxin is a dominant participant in the processes of growth, flowering and fruiting of 

these three stone-fruit species.  

 

The results showed that no significant differences in fruit size, the number of seeds 

per fruit and seed weight between TIBA and the control treatments were recorded. 

However, TIBA at all concentrations produced fruits with significantly (P < 0.05) 

bigger size and with more seeds per fruit compared to the MP treatments (Figure 

7.6B and C ). TIBA was reported to decrease the number of seeds per capsule and 

seed weight in sesame (DAY, 1999). TIBA at 1.5 and 2 mmol l-1 produced physic nut 

seeds with higher oil content compared to MP (Figure 7.6E ). No significant 

differences were found between TIBA at higher concentrations (1.5 and 2 mmol l-1) 

and the control treatment. However, TIBA at lower concentrations (0.5 and 1 mmol l-

1) significantly reduced the seed oil content compared to the control treatment 

(Figure 7.6E ). 

 

The results of this study demonstrated that DK at 2 mmol l-1 significantly increased 

the number of flowers per plant and the number of fruit per bunch compared to the 

control and MP treatments (Table 7.3 ). No significant differences in fruit set 

percentage between treatments were found (Table 7.3 ). Nevertheless, DK was 

reported to accelerate floral abscission in citrus (POZO et al., 2004). Foliar 

application of DK at 2, 4, and 6 mmol l-1 produced significantly more seeds per fruit 
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compared to MP (Figure 7.8C ). However, there were no significant differences 

between treatments in fruit weight, fruit size and seed weight (Figure 7.8A, B and D ). 

These findings agree with those reported for citrus by POZO et al. (2004) that no 

significant differences in fruit quality were found in response to application of DK.  

Also RUGINIE and PANELLI (1993) reported for olives that no significant differences 

were found in fruit weight between DK and the control treatments. However, DK at 

lower concentration (4 mmol l-1) produced significantly higher seed oil content 

compared with the control and MP treatments (Figure 7.8E ). DK at higher 

concentration (8 mmol l-1), however, reduced the seed oil content significantly 

compared to the control (Figure 7.8E ). In contrast, for olives (Olea europaea L.) 

RUGINIE and PANELLI (1993) reported no significant differences in oil content 

between DK and control treatments. 

 

The results demonstrated that the number of flowers per plant was significantly 

increased by 1 mmol l-1 MH compared to the control treatment and MP (Table 7.4 ). 

These results agree with those of ITO et al. (2000) who found that in Japanese pear 

foliar application of MH increased the number of laterally-borne flower buds on the 

shoots. They suggested that MH may increase cytokinin levels in lateral buds and 

thus as a result increase the number of flower buds. In this study MH at 2 mmol l-1 

produced significantly (P < 0.001) heavier fruit compared to the control, MP and MH 

at higher concentration (4 mmol l-1) (Figure 7.10A ). Foliar application of MH at 1 and 

2 mmol l-1 produced fruits significantly bigger, more seeds with heavier seed weight 

compared to the control, MP and MH at higher concentration (4 mmol l-1) (Figure 

7.10B, C and D ). MH at 2 mmol l-1 produced seeds with a significantly higher oil 

content (Figure 7.10E ).  

 

The results showed that only four Free Fatty Acids (FFA) were found in the study 

sample and the dominant FFA was linoleic acid followed by oleic acid, palmitic acid 

and stearic acid (Table 7.5 ). There was no variation detected in the FFA content 

between treatments (Table 7.5 ). These results do not agree with those of 

ADEBOWALE and ADEDIRE (2006) who, in addition to the four FFA detected 

around 4.7% of arachidic acid with a dominant component of stearic acid, which 
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ranked the lowest in our study sample. These discrepancies could be due to 

differences among cultivars of J. curcas or to the methodology used to extract and 

analyse fatty acids.   

 

Quantitative data on yield increases resulting from growth regulator applications are 

most commonly available at the time a substance is being cleared for use (proof of 

efficacy). Well established products are maintained in use by grower experience 

rather than by newly published data. In the hands of producers, growth regulators 

must prove themselves as the bottom line of a financial balance sheet (MORGAN, 

1980). In this respect, Figures 7.3, 7.5, 7.7 and 7.9 compare seed weight and seed 

oil content which are the major economic yield components for J. curcas; Table 7.6 

compares the application cost (ZAR/ha) of the PGRs used in this study. The results 

revealed that MH was the only PGR that gave significant increase in yield component 

and simultaneously was the least expensive PGR. Therefore, the results from this 

Chapter  in combination with the results from Chapter 4  suggests further thorough 

investigation into MH interactions in this plant in order to be registered as an efficient 

chemical pruning agent, yield promoter and cost effective PGR for J. curcas seed 

production improvement. 
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8          Promotion of seed germination and seedli ng growth 

of Jatropha curcas           

                      

8.1 INTRODUCTION 

There are many agronomic and biological constraints limiting Jatropha curcas L. 

seed yield, making the crop not ready for commercial oil production. Some of the 

inherent problems associated with J. curcas seeds are low germination ability and 

loss of seed viability if not carefully stored. The seed deteriorates with storage 

resulting in poor germination and weak seedling growth (SWARUP, 2006; 

PARAMATHMA and SRIMATHI, 2006; SWAMY and SINGH, 2006). Effective 

propagation of healthy plants is a prerequisite for the introduction of a new plant into 

a market, for development by breeders, and propagation for production by growers. 

High seedling vigour is a prerequisite for plant establishment (VAN STADEN et al., 

2006). Numerous studies show that application of bio-stimulants and PGRs may 

increase the germination ability of seeds and play an important role in seedling 

establishment (RUSSO and BERLYN, 1990; CRUNKILTON et al., 1994; 

SWAMINATHAAN and SRINIVASAN 1996; VAN STADEN et al., 2006). Moreover, 

smoke technology has the potential to be used in the horticultural and agricultural 

industry for the production of healthier and more vigorous crops (LIGHT and VAN 

STADEN, 2004).  

 

In this study, the viability, moisture content and imbibition of J. curcas seeds were 

investigated. The effect of smoke (aerosol smoke and smoke water), IBA, NAA and 

KNO3 on seed germination and seedling growth of J. curcas were tested. 
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8.2 MATERIALS AND METHODS 

8.2.1 Seed source 

Fruits were collected in May 2007 from a two-year-old monoculture crop of J. curcas 

established from seeds at the University of KwaZulu-Natal Research Station 

Ukulinga, Pietermaritzburg, South Africa (30˚41' E, 29˚67' S; 781 m a.s.l). Seeds 

were stored under laboratory conditions at 20 °C an d kept in brown paper bags until 

used in these experiments in November 2007 (6-month-storage). 

 

8.2.2 Viability test 

Seed viability was determined from three replicates of 30 seeds each using TTC 

solution. The seeds were shelled and imbibed for 24 h in water. After cutting 

longitudinally, to expose the embryo, they were soaked in 1% solution of TTC for 24 

h at 25 ± 0.5 °C in the dark. Seeds with red-staine d embryos were recorded as being 

viable (ISTA, 1999). Viability percentage was calculated as the number of red-stained 

embryos to the total number of embryos. 

 

8.2.3 Moisture content  

The moisture content of the seeds was determined by drying seeds (three replicates 

of 30 seeds each) at 110 ˚C for 48 h to constant weight. The moisture content was 

expressed as a percentage of fresh weight (KULKARNI et al., 2007).   

 

8.2.4 Imbibition 

 Four replicates of 15 seeds each were placed in 9 cm Petri dishes on two layers of 

filter paper (Whatman No. 1) moistened with 15 ml distilled water and allowed to 

imbibe at room temperature (25 ˚C). The increase in seed weight was determined 

after 2, 4, 8, 12, 24, 36, 48, 72 and 96 h. Seeds were blotted dry before weighing and 
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thereafter returned to the wet filter paper. The amount of water imbibed by the seeds 

was graphically represented as the percentage increase over the initial seed weight. 

8.2.5 Germination tests 

8.2.5.1 Aerosol smoke 

Intact and shelled seeds with four replicates of 15 seeds each were placed 

separately in sieves and exposed to cool aerosol smoke for 0, 30, 60 and 90 min 

(SPARG et al., 2006). This was achieved by placing the sieves inside a chimney, 150 

cm above slow-burning smouldering semi-dry and dry grass, leaves and branches 

collected from the University of KwaZulu-Natal Botanical Garden. After exposure to 

smoke, seeds were washed with distilled water and placed on a roll of paper towel 

moistened with distilled water. These rolls were placed inside plastic bags and 

incubated at 25 C° under 16-h photoperiod provided by Osram® 75 W cool white 

fluorescence tubes providing an irradiance of 16 µmol m-2 s-1 at shelf level.  

 

8.2.5.2 Smoke solution, nitrogen salts and plant gr owth regulators 

The smoke solutions used were obtained from the dilution of an aqueous smoke 

extract produced from burnt Themeda triandra material as outlined by BAXTER et al. 

(1994). KNO3, NAA and IBA solutions were prepared in the laboratory. Seeds were 

decontaminated by immersing them in 0.1% mercuric chloride for 2 min and then 

rinsing with distilled water. Three replicates of 30 seeds each were soaked for 24 h in 

either: (1) distilled water using intact-seeds representing, Control-1 treatment and 

referred to hereafter, as C1, (2) distilled water using shelled-seeds, representing 

Control-2 treatment and referred to hereafter, as C2, (3) SW (1:500, 1:1000 and 

1:1500), (4) KNO3 (10-5, 10-6 and 10-7 M), (5) IBA (10-5, 10-6 and 10-7 M), and (6) NAA 

(10-5 and 10-6 M). The treated seeds were then placed on paper towels, wetted with 

distilled water inside plastic bags and kept moist for five days. Germination was 

recorded daily and was considered complete once the radicle had protruded about 2 

mm in length. The experiment was continued for five days when all treatments 

reached full germination. However, for the aerosol smoke treatments, observation 

continued for 21 days. Germination percentage was calculated as the number of 



 
    

 

 151

seeds germinated to the total number of seeds placed for germination. The 

germination data were arcsine transformed for statistical analysis (DEZFULI et al., 

2008). Mean germination time (MTG) was calculated using the equation: MGT = Σ 

nxd/N where, where n is the number of seeds germinated between observation 

intervals, d the incubation period in days after time of observation and N the total 

number of seeds in the sample that germinated in the treatment (BALESTRI and 

BERTINI, 2003).  

 

8.2.6 Seedling growth 

After germination the seedlings were planted in plastic trays (Figure 8.1 ) (20x15x5 

cm3) in a shade house in the Botanical Garden of the University of KwaZulu-Natal, 

Pietermaritzburg, with an average light photosynthetic photon flow density of 331 

µmol m-2 s-1 at mid-day. The soil mixture in each plastic tray was compost: bark 

(chipped and decomposed pine): LAN (limestone ammonium nitrate): [2:3:2 NPK 

(nitrogen, phosphorus, potassium)] (4:1:0.1:0.1). Each tray represented a replicate 

containing ten seedlings, and were placed randomly and watered twice-a-week with 

tap water. 

 

Figure 8.1 Seedlings of Jatropha curcas grown in trays in a shade house. 
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After three months, seedling growth parameters such as mass, the number of leaves, 

stem width, stem length, root length, leaf area (LA) and vigour index (VI) were 

measured. Vigour index (VI) was calculated as: percentage germination x (stem 

length + root length) (DHINDWAL et al., 1991). However, the number of roots was 

not considered for the growth trait measurements because the plant has a constant 

number of roots (one taproot with four lateral roots) (HELLER, 1996). 

 

8.2.7 Data analysis 

Data were subjected to one-way analysis of variance (ANOVA) using SPSS® (SPSS 

nc., Chicago, USA) release 15 statistical software. The post hoc Tukey’s test was 

carried out and a significance level of P < 0.05 was used for all statistical tests. 

 

8.3 RESULTS 

8.3.1 Seed viability, moisture content and imbibiti on 

The mean viability and moisture content percentages of the fresh seeds were 90% 

and 11.72%, respectively. The imbibition curve for the shelled-seeds was steep at 

the beginning, however, within 24 h, the net water uptake reached a plateau and 

germination occurred within 48 h (Figure 8.2 ).  The imbibition curve for the intact-

seeds remained steep up to 96 h and germination occurred at 105 h (Figure 8.2 ).  
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Figure 8.2 Imbibition curve for Jatropha curcas seeds at 25 °C. 

 

 

8.3.2 Germination  

Seeds exposed to AS (aerosol smoke) failed to germinate over the whole period of 

the study (three months). There were no significant differences in germination 

between the control treatments (C1, C2) and the other treatments where the seeds 

were soaked for 24 h in either distilled water, SW, KNO3, IBA, or NAA (Table 8.1 ). 

However, the control treatment C2 (shelled-seeds) had a lower MGT compared to the 

control treatment C1 (intact-seeds) and the other treatments (Table 8.1 ). 

 

 

 



 
    

 

 154

Table 8.1 Effects of SW (smoke water), KNO 3, IBA, and NAA on seed germination of Jatropha 

curcas. All germination occurred within nine days. 

Treatment Germination (%) MGT (days) 

C1 (control of intact-seeds) 93.7 ± 0.48 5 

C2 (control of shelled-seeds) 95.0 ± 0.48 2 

SW 1:500 95 ± 0.57 3 

SW 1:1000 98.3 ± 0.25 3 

SW 1:1500 100 ± 00 3 

KNO3 10-5 M 98.3 ± 0.25 3 

KNO3 10-6 M 100 ± 00 3 

KNO3 10-7 M 100 ± 00 3 

IBA 10-5 M 96.7 ± 0.5 3 

IBA 10-6 M 98.3 ± 0.25 3 

IBA 10-7 M 98.3 ± 0.25 3 

NAA 10-5 M 96.7 ± 0.5 3 

NAA 10-6 M 100 ± 00 3 

Means ± S.E values showed no significant difference s between the treatments. 

 

8.3.3 Seedling growth and vigour 

8.3.3.1 Smoke water (SW) 

Smoke water at a dilution of 1:500 produced significantly heavier seedlings with more 

leaves, wider and longer stems, longer roots, and a higher vigour index (VI) 

compared to the control treatments (C1 and C2) (Figure 8.3A and Figure 8.4A-E) . 

However, other than leaf area, there were no significant differences between the 

three dilutions of SW for all parameters measured (Figure 8.4A-G ).  
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Figure 8.3 Three-month-old Jatropha curcas seedlings as influenced by 24 h pre-sowing seed-

soaking treatments of SW (smoke water), KNO 3 and NAA. (A) C1 (control of intact-seeds), C2 

(control of shelled-seeds), SW, KNO 3 and NAA; (B) Root length of control of intact-seed s (C1) 

and KNO 3 treatments. 
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Figure 8.4 Influence of SW (smoke water) (1:500, 1: 1000, and 1:1500 V/V) on seedling growth of 

Jatropha curcas under shade house conditions. Values are means ± s tandard error. Bars with 

different letter(s) are significantly different to each other according to Tukey’s test ( P < 0.05). 
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8.3.3.2 Potassium nitrate  

Potassium nitrate at a concentration of 10-5 M produced significantly heavier 

seedlings with wider stems, longer roots and a higher vigour index compared to 

untreated control treatments of intact- and shelled-seeds, respectively (Figure 8.5A, 

D, E and G ). However, with the exception of leaf area, there were no significant 

differences between the three concentrations of KNO3 used (Figure 8.5A-G ). 

 

Figure 8.5 Influence of KNO 3 (10-5, 10-6, and 10 -7 M) on seedling growth of Jatropha curcas 

under shade house conditions. Values are means ± st andard error. Bars with different letter(s) 

are significantly different to each other according  to Tukey’s test ( P < 0.05). 
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8.3.3.3 Indole-3-butyric acid  

Indole-3-butyric acid at all concentrations used produced significantly thicker stems 

than the untreated control treatments of intact- and shelled-seeds, respectively 

(Figure 8.6D ). At 10-7 M, significantly longer roots were produced than in the control 

of untreated shelled-seeds (Figure 8.6E ).  

 

Figure 8.6 Influence of IBA (10 -5, 10-6, and 10 -7 M) on seedling growth traits of Jatropha curcas 

under shade house conditions. Values are means ± st andard error. Bars with different letter(s) 

are significantly different to each other according  to Tukey’s test ( P < 0.05). 
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8.3.3.4 Naphthalene acetic acid  

Naphthalene acetic acid at 10-5 and 10-6 M produced significantly heavier seedlings 

with longer stems, wider stems, longer roots and had a higher vigour index compared 

to untreated control treatments of intact- and shelled-seeds, respectively (Figure 8.7 

A, B, D, E and G ).  

 

Figure 8.7 Influence of NAA (10 -5 and 10 -6 M) on seedling growth traits of Jatropha curcas under 

shade house conditions. Values are means ± standard  error. Bars with different letter(s) are 

significantly different to each other according to Tukey’s test (P < 0.05). 
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8.4 DISCUSSION  

The first process that occurs in germination is water uptake, involving mainly 

imbibition. As the water content rises, the imbibitional force rapidly decreases, so that 

the rate of water uptake slows down, and osmotic forces become relatively more 

important and determine the final water content reached in the hydration phase. 

During this phase, the seed coat is frequently the limiting factor and in such cases 

removal or puncturing of the seed coat significantly speed up the rate of water uptake 

(STREET and ÖPIK, 1970). In agreement, the results from this study show that the 

removal of the seed coat accelerated the imbibition and shortened the germination 

time (2 days) for the shelled-seeds compared to the water soaked intact-seeds (5 

days) (Table 8.1 ).  

 

Seeds exposed to aerosol smoke failed to germinate over the whole study period 

(three months). In this case the negative results can be due to some physical 

conditions from the smoking treatment. However, the contrasting effects of smoke on 

germination and its inhibitory impact were suggested to be due to presence of ranges 

of germination inhibitors for which there are species-specific responses (DREWES et 

al., 1995). Also DAWS et al. (2007) reported that while smoke stimulated germination 

in a number of species it also had negative impacts on other species.  

The results show that SW, KNO3, NAA and IBA had no influence on seed 

germination of J. curcas. However, they influenced the subsequent developmental 

stages of the seedlings. SW at a dilution of 1:500 produced heavier seedlings with 

more numerous leaves, wider stems, longer stems and roots, and had a higher 

vigour index (VI) compared to the control treatments (Figures 8.3; 8.4A-E ;8.4G ). 

These results are in line with VAN STADEN et al., (2006) who reported that smoke 

water at a dilution of 1:500 significantly increased seedling mass and vigour index of 

okra (Abelmoschus esculentus L. Moench), tomato (Solanum lycopersicum L.) and 

maize (Zea mays L.) compared to the untreated controls. Similar results had been 

reported (KULKARNI et al., 2006 and KULKARNI et al., 2007) in rice (Oryza sativa 

L.) and Dioscorea (Dioscorea dregeana Kunth Dur. and Schinz). Furthermore, in a 

study by TAYLOR and VAN STADEN (1996), they had shown that a smoke extract 
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stimulated root formation in mung bean (Vigna radiata (L.) Wilczek.), indicating that 

smoke constituents may play a significant role in promoting rooting. 

 

 The results show that KNO3 at a concentration of 10-5 M produced seedlings 

significantly heavier with wider stems, longer roots and a higher vigour index (Figure 

8.5A, D, E and G) . This is in line with KATTIMANI et al. (1999) who found that in 

ashwagandha (Withania somnifera Daunal.) seeds soaked in 1% KNO3 solution for 

24 h produced more vigorous seedlings, had higher dry matter accumulation and 

longer root length compared to water soaked seeds. Similar results have been 

reported in Angelica gluaca by BUTOLA and BADOLA (2004) who reported that plant 

height and root length were positively elongated by KNO3. 

 

The study showed that the three IBA concentrations used produced significantly 

thicker stems than the control treatments (Figure 8.6D ). NAA at 10-5 and 10-6 M 

resulted in significantly heavier seedlings with longer stems, wider stems, longer 

roots and a higher vigour index compared to the control treatments (Figure 8.7A, B, 

D, E and G ). These results are in line with BALESTRI and BERTINI, (2003) who 

found that in Posidonia oceanica treatments of the seed with NAA and IBA initiated 

roots faster than untreated controls. Further, they reported that after five months, the 

roots of seedlings exposed to NAA and IBA were significantly longer compared to the 

controls. Likewise, REED et al., (1988) found that a single application of a 

commercially-available product containing both NAA and IBA increased root 

development in the surfgrass Phyllospadix torrey S. Watson.  
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9          General conclusions and recommendations 

 

9.1 RESEARCH HIGHLIGHTS  

The overall aim of this PhD study was to develop measures to expedite research 

and development on improving seed production of J. curcas L. to become 

commercially viable. The two strategies identified to achieve this aim were 

manipulation of pollination and regulation of vegetative growth. 

 

9.2 GENERAL CONCLUSIONS  

The general conclusions derived from this study are:  

• Seed coat removal can accelerate imbibition thereby lead to faster 

germination of J. curcas seeds; 

•  SW, NAA and KNO3 proved to be very effective in improving seedling growth 

and vigour in this plant;  

• Jatropha curcas is self-compatible and reproduces through a mixture of self- 

and outcross-pollination; 

• Pollination by insects was essential for producing a large quantity of seed of 

good quality;  

• Honeybees were effective pollinators;  

•  Fruit arising from self-pollination were almost as numerous and as large as 

those arising from cross-pollination;  

• The absence of detectable inbreeding depression for most measured traits 

suggests that open-pollinated seed (which would include some self-fertilised 

seed) is probably of high enough quality for planting orchards of J. curcas; 
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• Pollen viability, in vitro and in vivo pollen germination and pollen tube growth 

of J. curcas were detailed in this study; 

• TTC salt is a reliable stain for pollen viability tests in this plant;  

• Pollen from hermaphrodite flowers is less viable and has poor in vitro 

germination and is thus not reliable for fertilization; 

•  Boric acid, calcium nitrate and sucrose are essential requirements for in vitro 

pollen germination; 

• Exogenous hormones IAA can play an important role for in vitro studies; 

• Winter- and summer- pruning can improve branching compared to un-pruned 

plants. However improvement on fruit bearing is expected only on the 

subsequent seasons; PGRs tested in this study were effective in promoting 

branching of J. curcas. However, their influence was much more pronounced 

in the field, achieving significantly greater numbers of branches than manual 

pruning and untreated plants; 

• Therefore, PGRs can become a valuable tool for promoting J. curcas 

branching under field conditions; 

• DK and MH can be applied to achieve good branching and higher oil content 

at lower cost compared with BA and TIBA; 

• The four PGRs used in this study have no influence on the Free Fatty Acid 

content of J. curcas oil; and 

• There was strong suggestion for further thorough investigation into MH 

interactions in this plant as it may provide an efficient chemical pruning agent, 

yield promoter and cost effective PGR for J. curcas seed production 

improvement. 
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9.3 RECOMMENDATIONS 

• For rapid germination, seed coat removal is recommended; 

• For obtaining vigorous seedlings and consequently, good crop establishment 

and yield, pre-sowing treatments of seeds with SW, NAA or KNO3 is 

recommended; 

• For obtaining higher fruit set and good quality seed, it is recommended to 

provide beehives for large mono-culture plantations; 

• For orchard management for fruit yield in J. curcas promotion of cross-

pollination does not have to be a priority; and 

• For obtaining good branching, better seed quality and quantity and more oil, 

foliar application of DK or MH is recommended. 

 

9.4 FUTURE PROSPECTS 

• Much work still remains to be done to maximize the overall productivity of J. 

curcas. The bulk of this work is probably best done on the area of genetic 

improvement taking advantages of plant biotechnology. Specifically, future 

efforts should focus on modifying J. curcas genes to increase the number of 

fruit/plant;  

• Meanwhile, however, it is important to continue a certain amount of work in the 

area of growth regulation and pollination to resolve many questions raised 

during this PhD study. Specifically some work to overcome the male sterility in 

the hermaphrodite flower and to improve the male:female flower ratio; 

• It is beneficial to undertake studies to determine the actual contribution of 

beehive supplementation to an orchard. This was not possible to cover in this 

study due to the limited area of the study site; 

• This study covered the breeding system through bagging experiments 

followed by confirmation through an in vivo investigation. This shows that 
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seeds are potentially produced through pollinator-mediation. However, it would 

be good to confirm that the plant has a mixed mating system and to determine 

the exact outcrossing rate using molecular markers;  

• It may be worthwhile to try the other PGRs that were not used in this study 

such as GA, paclobutrazol, meta-topolin, zeatin or any other potential PGRs; 

• Since the plant hormones act antagonistically it might be useful to combine 

two or three PGRs together to achieve a balanced growth that would satisfy 

the commercial properties. For example in this study some of the PGRs 

caused a dramatically horizontal branch growth which might negatively affect 

the performance of many cultural practices;  

• A lot of improvements need to be made on the flowering and fruit set of this 

plant. Some of this improvements should be in the area of shortening the 

harvest season to reduce the cost of the harvest; 

• Classical breeding and selection methods could be implemented for 

improvement of yield. This would entail initiating a collection of diverse J. 

curcas germplasm, screening of these plants for high yielding genotypes, and 

selecting those with favourable characteristics such as seed and oil yield;  

• Further, it has been reported that hybridization between J. curcas and J. 

intigerrima resulted in F2 progeny that produced mostly bisexual flowers. This 

would be highly desirable, but these progeny would have to be assessed for 

growth characteristics and oil content to ascertain if they would be suitable; 

•  In several monoecious plants, perfect hermaphrodite flowers are initiated at 

the time of floral morphogenesis, but one sex organ fails to develop. As in J. 

curcas, this results in separate male and female flowers on the same plant. 

Application of IAA (or ethylene) at the bisexual stage may result in female 

flowers being produced; However, it would also be necessary to ensure that 

sufficient male flowers exist in the population to ensure fertilization of female 

flowers. 
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•  Moreover, it may be possible to manipulate the identity of flowers by altering 

the expression patterns of specific genes. This could potentially lead to many 

more hermaphrodite and/or pistilate flowers being produced. 
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