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ABSTRACT

In this dissertation a study will be made of university performance in the

Science Faculty of the University of Natal, Durban. In particular, we will

develop models that can be used to predict the success rate of a student

based on his or her matriculation results. These models will prove useful for

selecting students to universities. They may also be used to assist sponsors,

bursars and donors in allocating funds to deserving students. In addition,

these models may be used to identify students who might experience diffi

culties in their studies at university.
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The study described in this dissertation was carried out in the Department

of Mathematical Statistics, University of Natal, Durban, during the period

January 1993 to December 1994. It was completed under the excellent su

pervision of Dr M. Murray.

This study represents original work by the author except where use of the

work of others has been duly acknowledged in the text and it has not been
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11



ACKNOWLEDGEMENTS

A special thanks to my beloved mother and to my family for their tremen

dous support and encouragement.

The author would like to sincerely thank the following for their courteous

co-operation in contributing to the success of this dissertation:

• Dr M. Murray for his expert assistance with the computer programs

and the writing of this thesis.

• All authors of books and articles, whether mentioned by name or not,

whose ideas this thesis contains.

• The financial support of the University of Natal through a Graduate

Assistantship, the Foundation of Research and Development the Ger

man Academic Exchange Service (DAAD).

• Mrs J. Sylaides for her patience and assistance in typing this thesis.

• Professor 1. Troskie for the use of departmental facilities.

• The administrative assistance rendered by Mrs B. Becker, Faculty Of

ficer, Faculty of Science.

111



CHAPTER

1. INTRODUCTION

CONTENTS

PAGE

1

2. A GENERALIZED LINEAR MODELLING APPROACH 19
2.1 Introduction 19
2.2 Model Description 19

2.3 Parameter Estimation 21
2.4 Subset Selection 24
2.5 Application to Exam Data 26

2.6 Results 31

3. A MONTE CARLO SIMULATION APPROACH 39
3.1 Introduction 39
3.2 Model Assumptions 40

3.3 Parameter Estimation 41
3.4 Subset Selection 43
3.5 Results 46

4. A BAYESIAN APPROACH 52
4.1 The Gibbs Sampler 52

4.2 Results 55

5. CONCLUSION 71

APPENDIX A 74

APPENDIX B 83
B1 Rejection Sampling 83

APPENDIX C 89
Cl DSMA1SX1 (Mathematics) Data Set 89

C2 DSPH1SC1 (Physics 1) Data Set 92

C3 Combined DSMA1SX1 and DSPH1SC1 Data Set 94

IV



APPENDIX D: PROGRAMS
D1 Discriminant Analysis

D2.1 Logit Link Function

D2.2 Probit Link Function
D3.1 A Cumulative Standard Normal Function
D3.2 Monte Carlo Algorithm

D4 Gibbs Sampling via Rejection Sampling

REFERENCES

v

96
96

98

101
104
106

109

115



CHAPTER ONE
INTRODUCTION

Due to an increasing number of student applications being made to univer

sities in South Africa, the problem of selecting suitable students has become

one of major concern to the university authorities. If it were possible to

successfully identify those students who are most likely to succeed then one

would be able to assist bursars, sponsors and donors in allocating funds to

those "deserving" students. Furthermore, student advisers would be in a bet

ter position to offer guidance to students and academic support programmes

could be adjusted so as to help these students with their course work.

In the United Kingdom students were, ~nd still are, admitted to university

solely on their school leaving results. Although interviews are also conducted

by some universities, the most common entry requirement is that students

obtain a sufficiently high number of "A"l level results for a specific combina

tion of subjects. In the United States of America, university applicants are

required to write Standardized Achievement Tests (SATS) in English and

Mathematics. A weighted average score for these tests is then used to de

termine which students should be admitted, with the weights differing from

one university to the next.

In South Africa, due to the apartheid policies of the past the problem of

student selection has become far more complex. Because the average pupil

to teacher ratio, in schools for 1992, for the various population groups has

been as follows:

African 40,4 : 1 ; Coloureds 23,7: 1 ; Asians 21,1 : 1 and Whites 18,1 : 1,

combined with the fact that a large percentage of teachers in the African

schools are without proper professional qualifications (approximately 14% in

lSchool pupils, in the United Kingdom, wrote exams at two levels, namely "0" (lower
level) and "A" (higher level).
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primary and 8% in secondary schools) have prevented a significant proportion

of the Department of Education and Training (DET)2 students from being

able to obtain a matriculation exemption3 which is the minimum require

ment necessary for entry into a South African university. This has resulted

in a large number of DET students being deprived of a university education,

where possibly with a little bit of extra academic support teaching they might

in fact be able to obtain a university degree. This point of view has been

strengthened by studies that have been conducted by Potter and Jamotte

(1985) and Mitchell and Fridjohn (1987) who found that the DET matric

ulation performance has not been a reliable indicator of whether a student

is likely to succeed at university or not. Mitchell and Fridjohn (1987) have

also shown that some matriculation authorities tend to over-rate a student's

ability to perform at university. Sochet (1986) found for most matriculation

authorities that the success rate at university of students with a matricu

lation rating that was below a C aggregate was not significantly correlated

with their matriculation record while at the top end of the scale a good ma-

2DET represents the matriculation examining body of the majority of the "African"
students in South Africa.

3Matriculants are presently admitted to South African universities on the basis of a
matriculation point count (MPC) in which points are awarded for each particular symbol
obtained in their six matriculation subjects. The point scales applicable to the University
of Natal are as follows

Symbol H.G. S.G.
A 8 5
B 7 4
C 6 3
D 5 2
E 4 1
F 1 0
G 0 0

where H.G. respresents Higher Grade and S.G. represents Standard Grade. A MPC score
is then obtained for each student by adding together the points awarded for each of the
six matriculation subjects. Admission to a particular faculty is then based on the student
obtaining a score that lies above a certain cut-off point.
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triculation result did tend for most matriculation boards to suggest that a

student would be successful at university.

Turning our attention to an examination of the varIOUS selection policies

that are currently being used at South African universities, a two-tier selec

tion procedure has been employed at the university of the Witwatersrand for

accepting disadvantaged students into the Science faculty. In particular stu

dents with a sufficiently high set of matriculation results are automatically

accepted while those students who are below the minimum entrance require

ment are subjected to a battery of tests before gaining access to a four-year

(instead of the usual three-year) curriculum. Rutherford and Watson (1990)

have shown that the above battery of tests, combined with their matricula

tion results, do have a predictive ability when it comes to identifying those

students who will do well in the four-year curriculum. In fact, it has become

evident that the Wits academic support programme (ASP) has had a positive

impact on the achievements of these students (Agar, 1992)4. At the Univer

sity of Natal, Durban, a similar academic support programme is provided

for helping disadvantaged students. In particular, disadvantaged students

wanting to do a Bachelor of Commerce degree are offered an Economics and

Management Extended Curriculum (EMEC) programme. This programme

essentially spreads the three year degree over four years with the students in

their first year being provided with an Educational Development Programme

40ther findings of Agar (1992) were that

(i) Non-academic problems tended to influence ASP students' academic progress the
most;

(ii) ASP students in residence tended to perform better than ASP students not in
residence, provided that these students had few or no financial worries;

(iii) students in residence who had full financial support were more successful at univer
sity than those in residence who had limited financial support; and

(iv) ASP students whose home language was English performed better than those whose
home language was one of the African languages.
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which they take along with three credit bearing courses (instead of the usual

five that the other first year students are required to take). Initial indication

of the success of this programme has shown that (Flockemann et al. 1993)

(i) EMEC students with a high matriculation point count have tended to

produce better results than EMEC students with a lower matriculation

point count;

(ii) EMEC students who would not have gained entrance into the faculty

based on the current faculty cut-off point of 32 points have produced

better results than those students from the African Educational De
partments that are not on the EMEC programme; and

(iii) as a group EMEC students have generally obtained pass rates, in the

individual credit courses, that are comparable with those students from

the Non-African Educational Departments.

In the Science faculty at the University of Natal, Durban, a special four-year

curriculum is also offered to "disadvantaged" students. In particular an aug

mented first year curriculum is given where specific learning skills, language,

communication and additional support is offered to students who are then

only required to take two (instead of the usual four courses) in each semester.

At this point in time we are unable to report on the "success" of this pro
gramme.

Turning our attention to an examination of some of the prediction models

that have been developed for analysing student performance at universities

in South Africa, Van Wyk and Crawford (1984) devised a method for pre

dicting the probability of a student at the University of the Witswatersrand

passing a single first year course that is based on the following matriculation

system for each matriculation subject, namely
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TABLE 1.1

Symbol H.G. S.G.
A 8 6
B 7 5
C 6 4

D 5 3
E 4 2
F 3 1

By doubling the number of points awarded for Mathematics and the best

of Physical Science, Biology, Geography or Physiology and then adding the

points obtained for each of the six matriculation subjects to obtain a total

matriculation rating score which we will denote by x, Van Wyk and Crawford

(1984) then proceeded to regress this score (for a given sample of students)

against the marks obtained for a particular university subject thereby obtain

ing an estimate for the mean mark for that subject (which we will denote

by /1) and for the variance for that subject (which we denote by (12). An

estimate for the probability that a student with a matriculation rating score

x will pass (assuming 48 to be the pass mark) the above university course

can then be modelled using a function of the form

This type of modelling approach will be explored further in chapter three.

Fresen and Fresen (1987) chose to adopt a logistic modelling approach to

the above prediction problem. In particular, by associating a pass mark in

a particular course with a Bernoulli random variable, a logistic link function

of the form
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was used to link the probability of a student passing this course with their

matriculation rating score. This type of modelling approach will be explored

further in chapter two.

Turning our attention now to the type of student performance problem that

we will be attempting to analyse in this thesis, a study will be made of student

performance in the Science faculty of the University of Natal (Durban). In

particular the performance of students taking Mathematics 1 (DSMAlSXl),

Physics 1 (DSPH1SCl) and then both DSMA1SXl and DSPHlSCl will be

analysed as a function of the following variabless

Xl English
X 2 Afrikaans
X 3 Mathematics
X 4 Biology
X s Physics

Because these results are given in the form of a symbol, and not the actual

mark, the following method of coding these symbols was used, namely

Matriculation Symbol (H.G)
A
B
C
D
E
F

Coded Value
o
1
2
3
4
5

Collecting data for the period 1989 to 1992 the following summary statistics

were obtained for a student in our sample:

SOnly Higher Grade (H.G) matriculation subjects were considered as we found that
almost all of the th~ stud~nts wh~ attempted Mathematics. 1 an~ Physics 1 at university
h~d attempted matrICUlatIOn Engh~h, Afnkaans, Mathematics, BIOlogy and Physics on the
HIgher Grade. Note that students III South Africa may attempt matriculation subjects on
the Higher Grade, Standard Grade or Lower Grade, however Lower Grade students are
usually automatically denied entrance to university.
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Figure 1.1: Graph representing the DSMA1SXl result profile
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Figure 1.2: Graph representing the DSPH1SCl result profile
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HOD: House of Delegates liaR: House of Representatives
NED: Natal Education Department TED: Transvaal Education Department
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Figures 1.3 to 1.7 represent the matriculation result profiles for the matriculation sub
jects English, Afrikaans, Mathematics, Biology and Physics respectively for the students
in our DSMAISXI data set.
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Figures 1.8 to 1.12 represent the matriculation result profiles for the matriculation
subjects English, Afrikaans, Mathematics, Biology and Physics respectively for students
in our DSPHlSCl data set.
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Figure 1.14: Graph illustrating the performance of students from the
various matriculation authorities in the DSPHlSCl
course.
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Figure 1.15: Graph illustrating the effect of the matriculation
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Figure 1.16: Graph illustrating the effect of the matriculation
Afrikaans symbol on the DSMAlSXl course.

60
50
40
30
20
10
o

M < 48

M =DSMA1SX1
A

o

MATRICULATION MATHS SYMBOL

Figure 1.17: Graph illustrating the effect of the matriculation
Mathematics symbol on the DSMAlSXl course.
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Figure 1.18: Graph illustrating the effect of the matriculation
Biology symbol on the DSMAlSXl course.
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Figure 1.19: Graph illustrating the effect of the matriculation
Physics symbol on the DSMA1SXl course.

12



P =DSPH1SC1
A MATRICULATION ENGLISH SYMBOL

Figure 1.20: Graph illustrating the effect of the matriculation
English symbol on the DSPH1SC1 course.
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Figure 1.21: Graph illustrating the effect of the matriculation
Afrikaans symbol on the DSPH1SC1 course.
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Figure 1.22: Graph illustrating the effect of the matriculation
Mathematics symbol on the DSPH1SC1 course.
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Figure 1.23: Graph illustrating the effect of the matriculation
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Figure 1.24: Graph illustrating the effect of the matriculation
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Turning our attention to an analysis of the effect that the type of matricu

lation authority6 might have on the prediction process, since the majority of

students in our sample were from the following matriculation authorities

• House of Delegates (HOD),

• Natal Education Department (NED),

• Transvaal Education Department (TED), and

• House of Representatives (HOR)

only the effect of these matriculation authorities will be considered in this

dissertation. Due to the small number of students from the TED and HOR,

these students will be grouped together in our analyses in the sense that

the following two dummy variables will be used to model the effect of the

matriculation authority, namely

D1 1 if the student's matriculation authority is the HOD,
o otherwise and

D 2 1 if the student's matriculation authority is the NED,
o otherwise.

As a preliminary tool for identifying students who are likely to pass DSMAlSXl,

DSPHlSCl and then both DSMAlSXl and DSPHlSCl, the following dis

criminant analysis procedure (Johnson and Wichern, 1988) was performed

where a student with a matriculation profile x was allocated to the successful

6Figures 1.13 and 1.14 suggest a possible need for a matriculation authority variable
due to the large proportion of students from the HOD failing. Also the large number of
students with a matriculation A symbol and a university mark in the interval {48, 64}
suggests an anomoly which could possibly be due to the matriculation authority.
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group7 if

where Xl and X2 represent the mean vectors that are to be associated with

the successful group and unsuccessful group, respectively, and Bp the pooled

sample variance for both groups.

Performing the discriminant analysis routine8 on our DSMA1SXl data set

(given in Appendix Cl) we obtained the following classification rule for iden

tifying students who are likely to pass DSMA1SXl,9 namely:

Allocate a student with a matriculation profile x = (Xl, X2, X3, X4, Xs, dl, d2 )

to the successful group (pass) if

0.022 Xl +0.035 X2 +0.729 X3 +0.434 X4 +0.414 Xs - 0.044 dl - 1.319 d2 ~ 1.415

and to the unsuccessful group (fail) if

0.022 Xl +0.035 X2 +0.729 X3 +0.434 X4 +0.414 Xs - 0.044 dl - 1.319 d2 > 1.415

The small parameter estimates obtained for the English, Afrikaans and HOD

authority variable suggests that these variables do not have an influence on

the classification of a student to a particular group. Furthermore students

writing the NED matriculation papers tend to perform much better than

students coming from the other matriculation authorities.

Performing the discriminant analysis routine on the DSPH1SCl data (given

in Appendix C2) the following results were obtained, namely:

7For our analyses the successful group will represent students who pass and the unsuc
cessful group those who fail.

8 A program for performing discriminant analysis is given in Appendix Dl.
9A student passed if he or she obtained 48 marks or more as we assumed that the

external examiner would pass those students with 48 marks or more.
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Allocate a student to the successful (pass) group if

-0.132 Xl - 0.151 X2 +0.573 X3 +1.023 X4 +1.147 Xs - 1.359 dl - 3.80 d2 ~ 0.754

else allocate the student to the unsuccessful (fail) group. The parameter esti

mates obtained for English and Afrikaans when compared with the other vari

ables seem to indicate that the matriculation English and Afrikaans marks

do not drastically influence the classification of a student to a successful

or unsuccessful group. Also the parameter estimate obtained for the NED

matriculation authority variable seem to suggest that NED students have a

much greater chance of passing than those students from any of the other

matriculation authorities. Furthermore, students writing the HOD matric

ulation papers have a higher chance of passing DSPH1SC1 than students

writing papers set by the House of Representatives or Transvaal Education

Department .10

Finally, performing a discriminant analysis on our combined DSMA1SX1

and DSPH1SC1 data (given in Appendix C3) we obtained the following re

sults, namely:

Allocate a student to the successful group (i.e., a student is termed successful

if he passes both subjects; otherwise he is unsuccessful) if

0.198 Xl - 0.023 X2 +0.836 X3 +0.715 X4 +0.618 Xs - 1.035 dl - 2.912 d2 ~ 0.655

Once again the small parameter estimates obtained for English and Afrikaans

seem to suggest that these variables have very little influence when identifying

a successful or unsuccessful student. Furthermore, the parameter estimate

obtained for the NED matriculation authority variable seem to suggest that

NED students have a much better chance of passing both DSMA1SX1 and

lOWhen trying to determine whether students from the HOR or TED are successful
we should exercise caution as they represent only a small portion of the whole data
set.
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DSPHlSCl when compared with students from the other matriculation au

thorities. Similarly it appears that students coming from the HOD have a

greater chance of passing both DSMAlSXl and DSPHlSCl when compared

with students from the TED and HOR matriculation authorities.
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CHAPTER TWO

A GENERALIZED LINEAR MODELLING
APPROACH

2.1 INTRODUCTION

The main purpose of this chapter will be to develop a technique that can

be used for modelling binary responses. In particular we will examine a

special class of models, called generalized linear models, that can be used

to model our exam data problem. In section 2.2, a formal definition of the

generalized linear model will be given with section 2.3 being devoted to the

derivation of a maximum likelihood estimation technique for obtaining pa

rameter estimates in the generalized linear model. The problem of subset

selection in the generalized linear model will be examined in section 2.4 with

section 2.5 being devoted to showing how a generalized linear model can be

applied to our exam data by using first a logit link function and then a probit

link function. Finally, in section 2.6 a discussion of our results will be given.

2.2 MODEL DESCRIPTION

Adopting the notation of Dobson (1990), consider a random variable Yi that

comes from the following family of exponential distributions

(2.2.1)

where ()i denotes a set of model parameters that are to be associated with

the above distribution, and b(·), c(·) and d(.) represent known functions

of ()i and Yi respectively. Letting Jii denote the expected value of Yi, the

generalized linear model specification is then completed by introducing a

monotonic link function that links a function of Jii to a set of explanatory

variables (XiI" .• , Xip) in the following way
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Although a large number of choices for g(.) are possible one usually chooses

g(Jli) to be equal to b((}i)l as this simplifies the parameter estimation problem

in the above model structure. Introducing the notation

(2.2.2)

to denote the log-likelihood function, and differentiating (2.2.2) with respect

to ()i yields the score statistic

The vector u = (Ut, ... ,un)' is known to have (for a regular density) a

zero mean and variance-covariance matrix equal to the inverse of the Fisher

Information matrix. Because of this one can obtain the result that

which implies that

(2.2.3)

Furthermore, an expression for the variance of Yi can also be obtained by

noting that

Ilf g(J-l;) = b(Bj ) then g(J-l;) is called the canonical link function.
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and that

-£{~:}

£ {-Yib"(Oi) - C"(Oin

-b"(Oi)£{Yd - c"(Oi)

_ b"(Oi)C'(Oi) _ c"(O.) ... by (223)
b'(Oi) t ••

On equating the above two expressions one can then obtain the result that

2.3 PARAMETER ESTIMATION

(2.2.4)

Given a set of observations {Yl,"" Yn} that have been drawn from the above

family of distributions, an expression for the log-likelihood function can be

given by

Letting

n

l(01 , ... ,On; Yl, ... ,Yn) = 2:[Yib(Od +c(Oi) +d(Yi)]
i=l

(2.3.1)

(2.3.2)

denote the link function that is to be associated with the i'th observation,

maximum likelihood estimates for j3 = (/30, ... , /3p) tan be obtained by solv-
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ing the following system of equations (see Appendix AI)

Due to the non-linear form of the above set of equations, an iterative solution

can be obtained by employing the following Newton-Raphson method (Gal

lant, 1987) that updates the previous estimate of {3, which we will denote

by b(m-l), as follows

b(m) = b(m-l) _ H(m-l) u(m-l) m = 1,2, ...

where

denotes the value of the Hessian matrix that has been evaluated at the pre

vious iteration point b(m-l), and

(m-I) _ (~ ~) f

U - 8(30' ... , 8(3p {3=b(m-l)

denotes the value of the score vector that has been evaluated at the previous

iteration point b(m-l). Alternatively, the Fisher method of scoring (Dobson,

1990) which replaces the Hessian matrix with its matrix of expected values

can be used yielding the following iterative recursion formula

(2.3.3)

where
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denotes the value of the Information matrix evaluated at the previous itera

tion point b(m-I). The above iterative routine can however be rewritten in

the form of an iteratively re-weighted least squares procedure, if on letting

(

1 Xn •.. XIp 1
1 X21 ••• X2

X= .. . . p
'O'O • •

'O'O .. •

1 Xnl ••• x np

and w(m-I) denote a n X n diagonal matrix with i'th element

( )

2
(m-I) _ 1 8J-ti

Wii - V{yd 8'T/i j3=b(m-l)

one notes that (see Appendix A2)

and that

u(m-I) = X'W(m-l)z*(m-l)

where z*(m-I) denotes a n dimensional vector with i'th component

Then on pre-multiplying both sides of (2.3.3) by z(m-I) one can obtain the

result that

and thus that

X'w(m-I)Xb(m) = X'W(m-l)z(m-l)

where z(m-I) = Xb(m-I) + z*(m-I).
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The above result then implies that the m'th iteration of the Fisher method

of scoring can be implemented by setting

(2.3.4)

with the maximum likelihood estimate being obtained upon convergence of

the above algorithm, that is

i3 = lim b(m)
m-HX)

Letting

w = lim w(m-l)
m-l-<X>

asymptotic distribution theory results then imply that

where

I=X'WX

2.4 SUBSET SELECTION

To determine which matriculation subjects and authorities are important

for predicting university results we need to develop a suitable subset selec

tion procedure. In particular, given a matriculation profile vector containing

p +1 variables we need to determine which variables are to be excluded from

the link function of the generalized linear model. In order to do this,
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let us partition our matrix of independent variables (and thus vector of link

function parameters) as follows

(2.4.1)

where Xl denotes a n X (k +1) dimensional matrix of explanatory variables

which we want to include in our model, and X2 a n X (p - k) dimensional

matrix of variables that we want to exclude from our model. To determine
whether the set of independent variables X 2 can be left out of the generalized

linear model we need then only derive a test procedure for testing

or alternatively

Ho: R,B = 0 vs H l : R,B =f. 0

where one has appropriately set R = (1,0), with 0 representing a (p - k) x

(k +1) matrix of zeroes and 1 a (p - k) x (p - k) identity matrix. Such a test

can be taken using either a likelihood ratio, Wald or a Lagrange multiplier

test statistic (Buse, 1982; Lawless and Singhal, 1978). Letting 13 denote the

unrestricted estimate of ,B that has been obtained using the Fisher scoring

routine and

,B = lim [(x,w(m-l)xtlX'W(m-l)z(m-l) - (x,w(m-l)X)-l R'
m .....00

the estimate of ,B that has been obtained subject to the restrictions that

R,B = 0 (see Appendix A3), then the relevant test statistics can be given by:

D = 2{1(13,y) -l(,B,y)}
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for the likelihood ratio test statistic2 which follows a chi-squared distribution

with v = p - k degrees of freedom when Ho is true; by

(2.4.3)

for the Wald test statistic which follows asymptotically a chi-squared distri

bution with v = p - k degrees of freedom when Ho is true, and by

(2.4.4)

for the Lagrange multiplier test statistic3 which also follows asymptotically

a chi-squared distribution with v = p - k degrees of freedom.

2.5 APPLICATION TO EXAM DATA

In order to model the success (or failure) of a student when taking a partic

ular course at university and to associate this success (or failure) with the

outcome of a Bernoulli random variable, we need to consider a student as

2Alternatively an approximation, derived in Appendix A4, for the likelihood ratio test
statistic can be given by

where

I= (In I12)
I 21 I 22

denotes a partitioned form of the information matrix that is to be associated with the
parameter vector 13' = (f3~ 13;). Asymptotically D* then also follows a chi-squared distri
bution with v = p - k degrees of freedom if Ho is true.

3 where

- ( at at )'1u(f3) = 8{Jo ' ... , 8{Jp f3=/:J

and

I=£{~~}I
8~ 813' -

fJ f3=f3
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being successful if they obtain a mark that lies within a certain prespecified

interval that is of interest. For example, if one is intending to model the

probability that a student will pass DSMAISXI, then the interval of interest

will be given by that student's mark lying in the following set, namely

I M = {DSMAISXI mark ~ 48}

Clearly the above definition can be extended to account for more than one

university subject if for each subject an appropriate mark interval is con

structed with the student being classified as being successful if all of his or

her university marks lie in these intervals. For example, suppose that we

are interested in a student obtaining a first class pass for DSMAISXI and a

second class pass for DSPHISCl. By letting

IM = {75 ::; DSMAISXI mark::; lOO}

and

Jp = {60 ::; DSPHISCI mark::; 74}

denote the appropriate mark intervals of interest, then a student can be

classified as being successful if their DSMAISXI mark lies in the interval set

JM , and their DSPHISCI mark in the interval Jp. Introducing a Bernoulli

random variable to model the occurrence of this event with Yi being set equal

to I if the i'th student obtains the desired event and set equal to 0 if he or

she does not, and letting

denote the probability that this student will be successful, our approach will

be to associate this probability value with the student's matriculation profile
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vector x~ using initially a logit link function defined by4

and then a probit link function of the form

(2.5.1)

(2.5.2)

where <I> denotes the cumulative standard normal distribution function. Be
cause

(2.5.3)

represents the probability density function of Yi, with a mean and a variance

parameter given by 7ri and 7ri(l-7ri) respectively, and on noting, for the logit

link function, that

8/li 87ri

8'T/i 8'T/i

(1 + e?Ji )e?Ji _ e2?Ji

(1 + e?Ji)2

X'·{3e •

[1 + eX'i{3p

7ri(l - 7ri)

4Manipulating (2.5.1) the following expression for 71'; can be obtained, namely
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where

7f'i =

one can obtain the following substitutions for the Fisher scoring routine de

fined in section 2.3, namely

and (for the i'th element of z(m-l)),

(
(m-l))

(m-l) _ 'b(m-l) + Yi - 7f'i
z· -x·

t t (m-l)(l (m-l))
7f'i - 7f'i

Having obtained upon suitable convergence of the Fisher's scoring routine a

maximum likelihood estimate for {3, which we will denote by {3, this estimate

can then be substituted into the following formula

7f'i = ---,,--
1 + ex :/3

(2.5.4)

to obtain an estimate for the success probability of a student with a matric

ulation profile x~. For large sample sizes a (1 - a)100% confidence interval

for (3i can be defined by the expression

A ~
(3i ± Zl-Sf VI ii -

where z represents a standardized normal random variable and on defining

iT to be a vector with i'th element

A VIA -
l

(Ji = ii
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a (1- a)100% confidence interval for 1ri can be given by (Hosmer et al. 1989)

exp (x~ [~± Zl_~U])

1 +exp (x~ [~± Zl_~U])
(2.5.5)

Turning our attention to the Probit link function, one can obtain the result

that

where <p represents the standard normal density function, and thus the Fisher

scoring routine substitutions takes the form

and

with an estimate for 1ri, for a given set of independent variables x~, being

given by

(2.5.6)

and a (1 - a)100% confidence interval for 1ri being given by the expression

(2.5.7)
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2.6 RESULTS

Turning our attention once again to the three different problems that we

analysed earlier in chapter one, namely the problem of associating the suc

cess probability of a student passing DSMA1SX1, DSPH1SC1 and then both

DSMA1SX1 and DSPH1SC1, with their matriculation profile record, a gener

alized linear model with a logit5 link function was applied to our DSMA1SX1

data with the event of interest being that a student obtains a mark greater

than or equal to 48 for that particular subject. Our analysis yielded the

following results, namely

Table 2.6.1

Parameter (3 SE*l WT*2 PROB*3 LB*4 UB*5

/30 1.8168972 0.6670501 7.4189739 0.006454 0.5094791 3.1243153
/31 -0.001621 0.1860349 0.000076 0.993046 -0.36625 0.3630071
/32 -0.069744 0.1590199 0.1923588 0.6609606 -0.381423 0.2419349
/33 -0.650262 0.1793891 13.139672 0.0002891 -1.001864 -0.298659
/34 -0.430301 0.1772003 5.8967842 0.0151686 -0.777613 -0.082988
/35 -0.376458 0.1889741 3.9685174 0.0463586 -0.746847 -0.006069
/36 0.0136196 0.5624001 0.0005865 0.9806795 -1.088685 1.1159239
/37 1.1969564 0.614631 3.7925191 0.0514821 -0.00772 2.4016332

A backward elimination type procedure with a variable exclusion probability

level of 0.1 was then applied to our model with the following results being

achieved, namely

5The initial link function is given by

where Xl, X 2 , X 3 , X4 and Xs are defined on page 5 and d1 and d2 on page 15.
*lstandard error of the parameter estimate
*2the Wald Test Statistic
*3Probability that the Wald Test Statistic is greater than xi
*4lower bound for the 95% confidence interval of /3
*supper bound for the 95% confidence interval of /3
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Table 2.6.2

Parameter ~ SE WT PROB LB UB

f30 1.731933 0.2623238 43.589974 4.049E-11 1.2177782 2.2460877
f33 -0.64638 0.1783844 13.129916 0.0002906 -0.996013 -0.296747
f34 -0.449118 0.1687949 7.0795033 0.0077971 -0.779956 -0.11828
f35 -0.396369 0.1819488 4.7457053 0.0293715 -0.752989 -0.039749
f37 1.1877764 0.3349495 12.575082 0.0003909 0.5312755 1.8442773

From the above table an estimate of the probability that can be associated

with a student passing DSMA1SX1, for a specified matriculation profile

x~ = (1 XiS Xi4 XiS d i2 ), can be given by

exp(,So + 's3 X iS + 's4 X i4 + 'sSXiS + 's7d i2)

1 + exp(,So + 'sSXiS + 's4 X i4 + 'sSXiS + 's7di2 )

1

As would be expected, the negative parameter estimates obtained for Math

ematics (Xs), Biology (X4 ) and Physics (Xs) indicate that lower symbols for

these matriculation subjects are associated with a lower probability of a stu

dent passing DSMA1SXl. Furthermore the magnitude of all the regression

coefficients imply that a student's matriculation Mathematics symbol has

the greatest influence on the probability of passing the DSMA1SX1 course.

The significantly positive estimate obtained for the NED variable implies

that students writing the Natal Education Department matriculation papers

have a much greater probability of passing DSMA1SX1 when compared with

students from any of the other matriculation authorities. 6

6 Analyzing student results from the Transvaal Education Department and the House
of Representatives should be handled with caution as these students only represent a small
percentage of the total number of students in our data set.
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In Table 2.6.3 we have provided a brief summary of some of the estimated

success probabilities, for passing DSMAlSXl, that can be associated with a

certain type of matriculation profile result. 7

Table 2.6.3

X3 X4 X5 d2 1i" LB(1i")*6 UB(1i")*7

0 0 0 0 0.8496595 0.7716723 0.9043125
1 0 0 0 0.7475434 0.5552151 0.8753748
0 1 0 0 0.7829285 0.6077399 0.8935767
0 0 1 0 0.7917595 0.6141498 0.9008173
0 0 0 1 0.9488122 0.8518334 0.9835423
1 0 0 1 0.906644 0.6798408 0.9779817
0 1 0 1 0.9220543 0.7249395 0.981514
0 0 1 1 0.925762 0.7302842 0.9828863

Turning our attention to the DSPHlSCl data a generalized linear model

implementation with a logit link function produced the following results,

namely

Table 2.6.4

Parameter j3 SE WT PROB LB UB
(30 1.5416826 0.9428239 2.6737992 0.1020122 -0.306252 3.3896174
(31 0.216685 0.2808714 0.5951725 0.4404259 -0.333823 0.7671929
(32 0.1609419 0.2514019 0.4098277 0.522057 -0.331806 0.6536895
(33 -0.537684 0.2577496 4.3516973 0.0369721 -1.042874 -0.032495
(34 -1.1926 0.3289327 13.145444 0.0002882 -1.837308 -0.547892
(35 -1.160835 0.3247551 12.77701 0.0003509 -1.797355 -0.524315
(36 1.1429925 0.825125 1.9188776 0.1659804 -0.474252 2.7602375
(37 4.8582069 1.1203755 18.802899 0.0000145 2.6622709 7.0541428

7From chapter one 0 represents an A symbol for a particular subject and 1 represents
a B symbol. As an example the fifth row in Table 2.6.3 refers to an NED student with
A's in matriculation Mathematics, Biology and Physics.

•6lower bound for the 95% confidence interval of the success probability
.7upper bound for the 95% confidence interval of the success probability
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An application of the backward elimination routine, using a probability value

of 0.1, yielded the following results, namely

Table 2.6.5

Parameter i3 SE WT PROB LB UB
{3o 2.9552285 0.4270913 47.878523 4.535E-12 2.1181296 3.7923274
{33 -0.542827 0.2478101 4.7982761 0.0284882 -1.028535 -0.057119
{34 -1.009345 0.2971657 11.53671 0.0006824 -1.59179 -0.4269
{3s -1.076835 0.2977927 13.075852 0.0002991 -1.660508 -0.493161
{37 3.6106889 0.7464047 23.400836 1.3152E-6 2.1477356 5.0736422

Once again, we notice that lower matriculation symbols in Mathematics, Bi

ology and Physics are associated with a lower probability of a student pass

ing the DSPH1SC1 course. Also the large negative value associated with a

student's matriculation Physics mark implies that this subject has the great

est influence on the probability of that student passing DSPH1SC1 when

compared with his or her matriculation Biology and Mathematics marks.

Furthermore, students writing the matriculation examination set by the

Natal Education Department have a far greater probability of passing the

DSPH1SC1 course when compared with students from the other matricula

tion departments. A few estimated probabilities, along with their associated

matriculation profiles are summarised in Table 2.6.6.

Table 2.6.6

X3 X4 Xs d2 i LB(i) UB(i)
0 0 0 0 0.95051 0.8926528 0.9779539
1 0 0 0 0.9177681 0.7483054 0.9766882
0 1 0 0 0.8749971 0.628629 0.9666064
0 0 1 0 0.8674265 0.6124498 0.9644002
0 0 0 1 0.9985944 0.9861547 0.9998589
1 0 0 1 0.9975837 0.9622152 0.9998506
0 1 0 1 0.9961529 0.9354794 0.9997838
0 0 1 1 0.9958854 0.9312056 0.999769
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Turning our attention now to the final problem, namely that of determining

the probability that a student will pass both DSMA1SXl and DSPH1SC1, a

generalized linear model implementation with a logit link function produced

the following results, namely

Table 2.6.7

Parameter f3 SE WT PROB LB DB

f30 0.745716 0.9055002 0.6782189 0.4102007 -1.029064 2.5204964

f3i -0.096568 0.248199 0.1513802 0.6972199 -0.583038 0.3899018

f32 -0.041521 0.2406129 0.029778 0.862995 -0.513122 0.4300803

f33 -0.827465 0.26855 9.493996 0.0020615 -1.353823 -0.301107

f34 -0.782912 0.2867977 7.4520238 0.0063365 -1.345035 -0.220788

f3s -0.584166 0.2685855 4.7304982 0.0296323 -1.110593 -0.057738

f3G 1.1815894 0.8104127 2.1257919 0.1448379 -0.406819 2.7699982

f37 3.4470168 0.9688301 12.658771 0.0003738 1.5481098 5.3459238

Employing a backward elimination routine we then obtained the following

results, namely

Table 2.6.8

Parameter f3 SE WT PROB LB DB
f30 1.696732 0.3091204 30.128062 4.044E-8 1.090856 2.3026079
f33 -0.801685 0.2652619 9.1339401 0.0025091 -1.321599 -0.281772
f34 -0.817072 0.2657783 9.451085 0.0021102 -1.337997 -0.296147
f3s -0.655945 0.2606012 6.3355243 0.0118343 -1.166724 -0.145167
f37 2.4002477 0.568151 17.847792 0.0000239 1.2866716 3.5138237

The only surprising result here, was that a student's matriculation Biology

mark now seems to have the greatest influence on the probability of pass

ing both DSMA1SX1· and DSPHlSCl when compared with his or her other

matriculation subjects. In Table 2.6.9 a few estimated probabilities for pass

ing both DSMA1SXl and DSPH1SCl are given along with their associated

matriculation profile results.
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Table 2.6.9

Xa X 4 X s d2 1r LB(1r) UB(1r)

0 0 0 0 0.8451074 0.7485429 0.9090928
1 0 0 0 0.7099305 0.4425689 0.8829674
0 1 0 0 0.7067518 0.4385273 0.8814738
0 0 1 0 0.7390017 0.4810421 0.8963621
0 0 0 1 0.983649 0.9150975 0.9970306
1 0 0 1 0.964267 0.7419118 0.996068
0 1 0 1 0.9637331 0.7387594 0.9960113
0 0 1 1 0.9689626 0.770441 0.9965683

Repeating the above analysis but now with a probit link function we obtained

(after employing the backward elimination procedure) the following results

for the DSMA1SXl data, namely5

Table 2.6.10

Parameter iJ SE WT PROB LB UB
(30 1.0436877 0.1495514 48.703466 2.977E-12 0.7505668 1.3368085
(3a -0.381888 0.1057402 13.04343 0.0003044 -0.589139 -0.174637
(34 -0.262207 0.099141 6.9949223 0.0081741 -0.456524 -0.067891
(3s -0.243779 0.1080707 5.088337 0.0240873 -0.455597 -0.03196
(37 0.6805545 0.1910991 12.682609 0.0003691 0.3060003 1.0551088

The probability associated with a student passing DSMA1SX1, given a par

ticular matriculation profile x~ (1 Xi3 Xi4 Xi5 di2 ), can then be estimated

by

These results are very similar to those obtained when a logit link function

was employed. In Table 2.6.11 we have provided a brief summary of some

of the estimated success probabilities that can be associated with a given

matriculation result profile, namely

sFor these three problems the initial link function is defined by

9(7ri) = ~-l(7ri) = (30 + (31xil + (32 x i2 + (3a xia + (34xi4 + (3sxis + (36dil + (37di2
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Table 2.6.11

X3 X4 X5 d2 * LB(*) UB(*)
0 0 0 0 0.851685 0.7735433 0.9093574
1 0 0 0 0.7459501 0.5641218 0.877417
0 1 0 0 0.78274 0.6156375 0.8977648
0 0 1 0 0.7881182 0.6159914 0.9040277
0 0 0 1 0.9576679 0.8546454 0.9916197
1 0 0 1 0.9102594 0.6799032 0.986698
0 1 0 1 0.9281342 0.7257613 0.989938
0 0 1 1 0.9306252 0.7260699 0.9908615

An analysis of the DSPH1SC1 data (after employing the backward elimina

tion procedure) yielded the following results, namely

Table 2.6.12

Parameter ~ SE WT PROB LB UB
130 1.737115 0.2257253 59.223846 1.41E-14 1.2946934 2.1795366

133 -0.317817 0.1424659 4.9765785 0.0256927 -0.59705 -0.038583

134 -0.559217 0.1672549 11.179004 0.0008273 -0.887037 -0.231397
135 -0.650865 0.1689926 14.83359 0.0001174 -0.98209 -0.319639
137 2.0568496 0.4100291 25.163768 5.2662E-7 1.2531925 2.8605067

In Table 2.6.13 a few estimated probabilities for passing DSPH1SC1, that

can be associated with a specific set of matriculation profiles, are provided.

Table 2.6.13

X3 X4 X5 d2 * LB(*) UB(*)
0 0 0 0 0.958816 0.902287 0.9853541
1 0 0 0 0.922094 0.7572999 0.9838611
0 1 0 0 0.8805813 0.6582371 0.9743008
0 0 1 0 0.8613158 0.6227089 0.96855
0 0 0 1 0.9999259 0.9945811 0.9999998
1 0 0 1 0.9997547 0.9744617 0.9999997
0 1 0 1 0.9993912 0.9516281 0.9999992
0 0 1 1 0.9991642 0.9413018 0.9999988
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Finally, turning our attention to the combined DSMA1SX1 and DSPH1SC1

data problem, a probit analysis (after the backward elimination procedure

was employed) produced the following results, namely

Table 2.6.14

Parameter i3 SE WT PROB LB UB
/30 0.9830133 0.1723893 32.516086 1.1821E-8 0.6451303 1.3208963

/33 -0.448145 0.1504812 8.8689487 0.0029006 -0.743088 -0.153202

/34 -0.458362 0.1517864 9.1190964 0.0025295 -0.755864 -0.160861
/3s -0.377692 0.1507272 6.2790372 0.0122174 -0.673118 -0.082267
/37 1.2965121 0.3026867 18.347057 0.0000184 0.7032461 1.8897781

In Table 2.6.15 a few estimated success probabilities for passing both DSMAlSX1

and DSPH1SC1, that can be associated with a specific set of matriculation

profiles, are summarised.

Table 2.6.15

X3 X4 Xs d2 1i" LB(1i") UB(1i")
0 0 0 0 0.8371996 0.7405786 0.906732
1 0 0 0 0.7036296 0.460983 0.878535
0 1 0 0 0.7000871 0.4559139 0.8769828
0 0 1 0 0.7275171 0.4888361 0.8922586
0 0 0 1 0.9886821 0.9112313 0.9993379
1 0 0 1 0.9664781 0.7275063 0.9988839
0 1 0 1 0.965709 0.7232464 0.9988551
0 0 1 1 0.9714035 0.7502443 0.9991212

We notice that on employing the backward elimination procedure on both

our probit and logit models the same variables were excluded based on the

Wald test statistic procedure. Furthermore, the confidence intervals for

the estimated probabilities obtained using both the probit and logit mod

els were also of the same order. It can therefore be concluded that for our

DSMA1SX1jDSPH1SC1 data problem both techniques lead to similar re

sults.
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CHAPTER THREE

A MONTE CARLO SIMULATION APPROACH

3.1 INTRODUCTION

The main purpose of this chapter will be to present an alternative method

for relating the probability of success at university to a student's matricula

tion profile. In particular, letting Y'i, Y2, . .. ,~ denote a set of p university

subject variables that are of interest, and

an event that we wish to model, a Monte Carlo simulation approach will be

used to estimate the probability of a student being successful. For exam

ple, let Yi denote the DSMA1SX1 mark and Y2 the DSPH1SC1 mark of a

particular student, then an event of the form

A = {Yi ~ 48} U {Y2 ~ 48}

will represent a pass mark for both DSMA1SX1 and DSPH1SC1 for that

particular student. In section 3.2 we will begin by briefly discussing the as

sumptions that are necessary for our model, with section 3.3 being used to

derive parameter estimates. In section 3.4, a seemingly unrelated regression

modelling approach (Huang, 1970) will be developed with section 3.5 being

devoted to a practical application of our model and a discussion of our results.
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3.2 MODEL ASSUMPTIONS

Letting yi = (Yi1 Yi2 ••• Yip) denote the set of marks obtained by student

i for his or her p university subjects, and letting x~ = (1 XiI • •• Xik) denote

the matriculation profile vector that is to be associated with this student,

then the following assumptions will be made concerning our proposed model

structure, namely that

i) the conditional density, f(Yilxi) is Gaussian with a mean pi = xi6

where 6 represents a matrix of regression coefficients of the form

and a variance-covariance matrix

(

0"11 0"12

0"21 0"22
~p = . .

O"p1 O"p2

••• O"lp 1
•.• 0"2p

O"pp

(3.2.1)

(3.2.2)

that is independent of the predictor variables, and that

ii) the observations y~, y~, ... ,y~ are independent of each other.

Conditional on a matriculation profile record Xi, a probability density func

tion of Yi can therefore be given by the expression

f(yd 6'xi, ~p) = (21r)-P/21~pl-1/2 exp [-~(Yi - 6'xd~;1(Yi - 6'Xi)]

(3.2.3)
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Letting

denote the event of interest then providing parameter estimates are available

for both 8 and ~p, the probability of obtaining this event can then be given

by

71" (x) f P[y E A Ix]

fA f(ylx)dy

(3.2.4)

A method for evaluating this integral will be discussed in the following sec

tion.

3.3 PARAMETER ESTIMATION

Given a sample of n student marks and matriculation profile results and

adopting the notation

( 'l (
Yl Yn Y12

... Ylp 1
y= y~ = ~21 Y22 •.. Y2p

. .. .
Yn Ynl Yn2 .•. Ynp

x=(t)=(i
Xn

Xlk 1X21 X2k

Xnl Xnk

and

(3.3.1)

(3.3.2)
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(3.3.3)

where E represents a n x p matrix of random error terms, the model as

sumptions listed in the previous section imply that an appropriate statistical

model (Graybill, 1976) for the n observations can be given by

where

Y = XB +E (3.3.4)

Employing the method of maximum likelihood the following parameter esti

mates for Band :Ep can be obtained, namely

and correcting for the bias

s = (Y - XB)'(Y - XB)
n-(k+l)

(3.3.5)

(3.3.6)

By the invariance principle, a maximum likelihood estimator for 1r(x) can

then be given by

(3.3.7)

We need therefore only to develop a method for evaluating the p dimensional

integral expression given in (3.3.7). Fresen and Fresen (1993) have suggested

that one of the following methods be used for evaluating this integral, namely
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i) a numerical quadrature method as described by Schervish, (1984);

ii) the use of a tetrachoric series as described by Harris et al, (1980) and

iii) a Monte Carlo simulation method which will now be developed.

In particular, the Monte Carlo simulation algorithm, to estimate 1r(x), pro

ceeds as follows:

a) For any given vector x generate a large number, m say, of pseudo

random vectors from the multivariate Gaussian distribution, N(B'x, S).

Denote these p dimensional vectors by y~, y;, ... ,y~.

b) Estimate 1r(x) by the proportion of pseudo-random vectors (generated

in step a) that lie in the product set defined by an event A, that is

m

?i-(x) ~ m-I 'L:1A(yn
i=I

where I A (-) represents the indicator function of set A. The accuracy of

this approximation can be improved by generating a larger number of

pseudo-random vectors.

3.4 SUBSET SELECTION

In order to determine which independent variables to exclude from the model,

we will need to write the above multivariate regression model in the form of a

seemingly unrelated regression model and then employ a backward elimina

tion technique. In particular letting Y[i) to denote the i'th column vector of

the matrix Y and ,8[i) the i'th column vector of 6, then the above multivariate

regression model (given in 3.3.4) can be written in the following seemingly
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unrelated regression form

( Y[l] ] (!
0

iJ ( ~[l] 1+UJY[2] X ,8[2]
(3.4.1)

Y[p) 0 ,8[p)

where

t' {ei ej} = (Jijln

Variable selection can then be implemented by employing a suitable backward

elimination procedure to successively eliminate variables in the above model

structure whose parameter coefficients are not significantly different from

zero. Let us assume that at a particular stage in our backward elimination

procedure we have a resulting seemingly unrelated regression model structure

that takes the form

(

Y[l) 1 (XlY[2) 0
· .· .· .

Y[p) 0 o (3.4.2)

Y X ,8 e

where Xi denotes the component matrix of X that remains and ,8i the pa

rameter coefficient vector that remains after elimination of those parameter

coefficients in ,8[i) that are not significantly different from zero. Parameter

estimation can then proceed by first employing an ordinary least squares

estimation technique on each of the p regression model structures

i = 1, ... ,p

to obtain the following consistent estimates for (Jij, namely

(3.4.3)

44



where

J3i = (X~XitlX~Y[il

and then substituting these elements into ~p to yield the following feasible

generalized least squares estimator for 13, namely

(3.4.4)

where

... ~lP]
••• U2p

.
upp

Since the variance-covariance matrix of the feasible generalized least squares

estimator can be approximated by the following expression

(3.4.5)

standard errors for the j'th element of 13 can be obtained by taking the square

root of the j'th diagonal element of (3.4.5) and thus a backward elimina

tion model selection technique can proceed by calculating t-values 1 for each

component of 13 with variables being excluded from the seemingly unrelated

regression model, using a 10% level of significance. Given a matriculation

profile matrix of the form

Ithe t-values corresponding to each fij is given by fij where (j. represents the standard
(j. {Jj

{Jj

error of fij.

45



for a particular student where x~ denotes the set of matriculation results that

relate to the retained parameter coefficients f3i in (3.4.2), then the probability

of success can be defined by

7l-(X) = j(27rtP/21"Epl-l/2exp [~(y - X~)'"E;l(y - X~)] dy
A

(3.4.6)

with the above integral being solved using the method of Monte Carlo2 de

scribed earlier in Section 3.3. Furthermore 95% lower and upper bounds for
A A

the confidence intervals of /3 can be given by /3 - 1.960- and /3 + 1.960-

respectively, where 0- represents the vector of standard errors of /3 (that are

obtained by taking the square root of the diagonal elements of (3.4.5)), with

the 95% confidence intervals for 7r(x) being obtained by substituting the re-

spective confidence intervals for /3 in (3.4.6).

3.5 RESULTS

We will now apply the results of the previous sections on our three problems,

defined in chapter one, that is predicting the probability of a student passing

firstly DSMAlSXl , secondly DSPHlSCl and finally both DSMAlSXl and

DSPHlSCl simultaneously. Now in order to determine the probability of

a student, with a given matriculation profile x, passing3 a single university

2We replace N(B'x, S) in the Monte Carlo algorithm by N(i~, :Ep ).

348 is defined to be the pass mark as in chapters 1 and 2.
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course, (3.2.4) reduces to

,r(x)

(3.5.1)

where <I> denotes the standard cumulative distribution function and

and

2 (y - x/3)'(y - x/3)
s = ~--~----'-

n-(k+1)

Employing the following variables in our predictor matrix, namely English

(Xl)' Afrikaans (X2 ), Mathematics (X3 ), Biology (X4 ), Physics (Xs), NED

matriculation authority (dI) and HOD matriculation authority (d2 ) and ap

plying a backward elimination procedure on our DSMAlSXl data set, the

variables X 2 and d2 were excluded from the model using a 10% level of sig

nificance and thus the following results were obtained (Table 3.5.1) for the
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remaining variables, namely

Table 3.5.1

Parameter i3 SE*1 t*2 LB*3 UB*4 82 *5

(30 69.238409 1.8365899 37.699439 65.638693 72.838125 225.51048
(31 -2.643295 1.0766819 -2.455038 -4.753592 -0.532999
(33 -7.028165 1.1673725 -6.020499 -9.316215 -4.740115
(34 -2.228880 1.1134729 -2.001737 -4.411287 -0.046473
(35 -4.225204 1.2028948 -3.512530 -6.582878 -1.86753
(37 9.254687 1.9125960 4.838809 5.5059984 13.003375

From Table 3.5.1, the estimated probability that can be associated with a

student passing DSMA1SX1 for a specified matriculation profile

xi = (1 XiI Xi3 Xi4 Xi5 di2 ), can be given by

where <[> denotes the cumulative standard normal distribution function. The

negative parameter coefficients of ~l, ~3' ~4 and ~5 indicate that higher marks

(symbols) in English, Mathematics, Biology and Physics, at matriculation

level, are associated with a higher probability of passing. Also, since the

magnitude of ~3 is the largest when compared with ~I' ~4 and ~5' we infer

that a matriculant's Mathematics mark has the most influence on the proba

bility associated with a student passing DSMAlSXl. Furthermore, the large

positive value of /37 indicates that Natal Education Department students have

a higher probability of passing DSMA1SX1 compared to students from the

other matriculation authorities (see also Table 3.5.2). In Table 3.5.2 we list a

*lstandard error of the parameter estimate
*2t-values associated with the parameter estimates
*31ower bound for the 95% confidence interval of the parameter estimates
*4upper bound for the 95% confidence interval of the parameter estimates
*5mean square error
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few estimated probabilities associated with passing DSMAlSXl for specific

values of XI, X 3 , X 4 , Xs and d2 •

Table 3.5.2

Xl X3 X4 Xs d2 ir LB{ir)*6 UB{ir)*7
0 0 0 0 0 0.9213617 0.8799188 0.9509362
1 0 0 0 0 0.8921921 0.8045631 0.9472233

0 1 0 0 0 0.8279963 0.7102802 0.9096088
0 0 1 0 0 0.8972196 0.8107946 0.950621
0 0 0 1 0 0.871378 0.7692015 0.9369469
0 0 0 0 1 0.9788507 0.9383698 0.9941308
1 0 0 0 1 0.9681698 0.889653 0.9935118

0 1 0 0 1 0.9409216 0.8214368 0.986247
0 0 1 0 1 0.970092 0.8938891 0.9940789
0 0 0 1 1 0.9598726 0.8649583 0.9917022

Turning our attention to the DSPHlSCl data, and implementing a backward

elimination routine (using a probability value of 0.1) the variables XI, X 2 , X 3

and d1 were excluded from the model with the following results being ob

tained for the remaining variables, namely

Table 3.5.3

Parameter f3 SE t LB UB S2

Po 67.582542 1.3392143 50.464322 64.957682 70.207402 149.14551
{34 -4.392492 1.1749480 -3.738457 -6.695390 -2.089594
{3s -9.162855 1.0722381 -8.545541 -11.264440 -7.061268
{37 13.104750 1.9554894 6.701519 9.2719902 16.937509

Table 3.5.3 suggests that a matriculant's Physics mark influences the prob

ability associated with a student passing DSPHlSCl more than his or her

Biology mark since ~s is more negative than ~4' Furthermore the large posi

tive value of ~7 implies that students from the Natal Education Department

*6 lower bound for the 95% confidence interval of the success probability
*7 upper bound for the 95% confidence interval of the success probability
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have a greater probability of passing DSPHlSCl compared to students from

the other matriculation authorities. In Table 3.5.4 we give a few estimated

probabilities for passing DSPHlSCl given specific values for X 4 , Xs and d2 •

Table 3.5.4

X4 Xs d2 1i- LB(1i-) UB(1i-)
0 0 0 0.9455858 0.9175151 0.9654995
1 0 0 0.8932153 0.7996326 0.9502529
0 1 0 0.8032251 0.679457 0.8925519
0 0 1 0.9962807 0.984134 0.9993254
1 0 1 0.9897446 0.9451485 0.9987942
0 1 1 0.9729638 0.889788 0.9956943

Finally turning our attention to the third problem that we have been con

sidering in this thesis, namely that of determining the probability associated

with a student passing both DSMAlSXl and DSPHlSCl and applying the

seemingly unrelated regression model to this data set, the following results4

were obtained, namely

Table 3.5.5

Parameter*8 ~ SE t Prob
BOl 69.647416 2.01102 34.63 0.0001
B11 -2.917197 1.05425 -2.77 0.0062
B31 -5.949945 1.25738 -4.73 0.0001
B41 -2.771966 1.62782 -1.70 0.0903
B51 -5.423292 1.57495 -3.44 0.0007
B71 11.317970 2.61120 4.33 0.0001
B02 67.594627 1.39130 48.58 0.0001
B42 -4.548053 1.25355 -3.63 0.0004
B52 -8.916156 1.16054 -7.68 0.0001
B72 13.103354 2.07635 6.31 0.0001

Letting Y[l) and Y[2) denote the DSMAlSXl and DSPHlSCl marks, respec

tively; the large positive values associated with the parameters En and En

4Note that a 10% level of significance was used. Also these results were obtained using
the model procedure in SAS. .

*8 Bit represents the regression coefficients associated with the DSMAlSXl course
and B i2 those regression coefficients associated with the DSPHlSCl course.
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imply that students writing matriculation papers set by the Natal Education

Department perform better in DSMAlSXl and DSPHlSCl at university

than students from the other matriculation authorities (see also Table 3.5.6).

Based on the above model structure, with a covariance matrix of residuals

that was given by

t = (240.3949 118.5459)
p 118.5459 154.7962

the Monte Carlo algorithm (outlined in section 3.3) was used to obtain the

probability estimates given in Table 3.5.6.5

Table 3.5.6

x *(x) LB(*) UB(*)

( ~
0 0 0 0 1 0 0 0

~ ) 0.9812 0.9274 0.9960 0 0 0 0 1 0 0

(~
0 1 0 0 1 0 0 0

~ ) 0.959 0.8436 0.9931
0 0 0 0 0 1 0 0

( ~
0 0 1 0 1 0 0 0

~ ) 0.9669 0.845 0.99580 0 0 0 0 1 1 0

(~
0 0 0 1 0 0 0 0

~ ) 0.9448 0.7848 0.99160 0 0 0 0 1 0 1

(~
0 0 0 0 0 0 0 0

~ ) 0.889 0.83120 0 0 0 0 1 0 0 0.9292

(~
0 1 0 0 0 0 0 0

~ ) 0.8163 0.70190 0 0 0 0 1 0 0 0.9012

( ~
0 0 1 0 0 0 0 0

~ ) 0.8231 0.67460 0 0 0 0 1 1 0
0.916

(~
0 0 0 1 0 0 0 0

~ ) 0.72860 0 0 0 0 1 0 1 0.5734 0.8587

. 5A pro~ram for obt?-ining these probab~lities using the Monte Carlo algorithm is given
m AppendIX D3.2 and IS based on generatmg 100000 2 x 1 dimensional vectors y*. As

. - (1000010000)an example the first row m x = 0 0 0 0 0 0 1 0 0 1 refers to an NED

student with A's in English, Mathematics, Biology and Physics.
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CHAPTER FOUR

A BAYESIAN APPROACH

4.1 THE GIBBS SAMPLER

In this chapter we will consider a Bayesian approach for obtaining parame

ter estimates in the generalized linear model as opposed to the frequentist

approaches that have been employed previously. In particular, consider the

generalized linear model with logit link function discussed in chapter two.

Suppose that we now specify a multivariate normal prior distribution for f3
with a mean vector, ILo, and variance-covariance matrix, :Eo, then applying

Bayes theorem (Zellner, 1970; Press, 1989) for a given set of observation

Y = {Yb' .. ,Yn} we obtain the following expression for the posterior density

of f3, namely1

P(f3ly) = P(f3)P(YIf3)
J... JP(f3)P(ylf3)df3

_ exp [- ~(.B - J-LO)'~01(13 - J-Lo) +i~ Yix~13 +i~ log (1 +ex:13) -1]
-J...J{exp [-~(13 - J-LO)'L,01(13 - J-Lo) +i~ Yix~13 +i~ log (1 +eX

: 13 ) -1]} dl3

(4.1.1)

Isince the likelihood function of this model is given by

Yi=O,l

where
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Now in order to obtain an approximation of the above posterior density,

several approaches can be adopted. One method, involves employing a Taylor

series expansion of the log-posterior density about its posterior maximizer

13 = /3 (Knuiman and Speed, 1988) yielding

A A A 1 A 1'" A

log P(f3ly) = log P(f3\y)+(f3- f3)u(f3\y)- 2(13 -f3)Z- (f3ly)(f3- f3)+r(f3IY)

where r(f3ly) represents a remainder term which we will assume is of negli

gible order,

denotes the score vector evaluated at the point /3 and

Z(f3A I ) = _ [82
log P(f3ly )]

y 813813' .13=13

the Information matrix evaluated at the point /3, then because u(/3IY) = 0,

the posterior density of 13 can now be approximated by a multivariate normal

density with mean vector /3 and variance-covariance matrix ~ = Z-l(/3!y).

An alternative approach is to make use of Monte Carlo Markov Chain meth

ods to implement what has become known as the Gibbs sampler (Geman and

Geman, 1984) to generate a set of observations {,8(j) , j = 1 ... m} from the

posterior distribution2 P(f3ly). A sample based estimator for the posterior

2Functional forms for the (p + 1) univariate full conditional densities P(l3df3#i y) can
be easily obtained, at least up to a proportionality constant, from the given joint posterior
density P(.t3ly) by regarding the joint density as a as a function of l3i for fixed values of
the other parameters f3#i. In particular, rewriting the joint posterior density in the form

and fixing the values for 131, ... ,l3p implies that

P(l3o, ... ,l3p Iy) ex: P(1301131' ... ,l3p , y)

and thus we may obtain an observation from P(l3i lf3j ti y) by employing a suitable rejection
algorithm on the density function given in (4.1.1) (see Appendix B).
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distribution associated with the i'th component of f3 = ({Jo, ... ,(Jp)' can then

be given by evaluating (Gelfand and Smith, 1990)

Alternatively a Bayesian estimator for {Ji can be developed by evaluating

Turning our attention to the actual implementation of the Gibbs sampler

and letting P({Jil{Jo, . .. , {Ji-b {Ji+b' .. ,(Jp, y) denote a full conditional density

specification for {Ji, the Gibbs sampling nature proceeds from an arbitrary set

of starting values ((J~O), (Ji
O

) , ... ,(J~O») to draw a value (J~I) from the conditional

density

P( a Ia(O) a(O) a(O»)fJO fJI 'fJ2 , ... , fJp ,y

and then a value (JP) from the conditional density

P( ~ I~(1) ~(O) ~(O»)
fJI fJO 'fJ2 , ••. , fJp ,Y

Proceeding in this manner until a value (J~I) has been generated from the

conditional density

P( ~ I~(1) ~(I) ~(I»)fJp fJO ,fJI , .•. , fJp-l, Y

the algorithm then returns the first conditional density specification where a

value (J~2) is generated from

P( ~ Ia(1) a(1) ~(1»)fJO fJI 'fJ2 , ... , fJp ,Y
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r=O,l, ... ,p

Continuing with this procedure, and letting

denote the set of values that have been generated on completion of the t'th

iteration of the Gibbs sampler, Geman and Geman (1984) have shown that

under fairly general conditions the distribution of 13ft ) converge to P(fJily)
for t large enough, that is

Letting L denote the number of iterations that are necessary for the con

vergence of 13ft ) so as to represent a sample from P(fJily), N independent

replications of this entire process can then be implemented to obtain a col-

lection of observations {fJ~7), ... ,fJ~7), j = 1··· N} which can be used to

estimate P(fJi Iy) as follows

A 1 N (L)
P(j3ily) = N?= P(fJilf3rj y r -1= i)

;=1

Furthermore an estimate of fJi can be obtained by averaging over the collec

tion of N observations to yield

4.2 RESULTS

a. =~ ~ (.l~L)
fJ~ N L.J fJ~;

j=1

i = O,l, ... ,p

Applying the Gibbs Sampling technique with the method of Rejection Sam

pling outlined in Appendix B on our DSMA1SX1, DSPH1SC1 and our com

bined DSMA1SXl and DSPH1SCl data, we obtained the following results,3
namely

3We used L = 10 and N = 1000. A program implementing the Gibbs Sampler is given
in Appendix D4.
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RESULTS OBTAINED USING THE DSMAISXl COURSE

Variable = f30 (parameter associated with the intercept term)

Moments

N

Mean

Std Dev

Skewness

USS

CV

T:Mean=O

Sgn Rank
Num ~= 0

100%Max

75% Q3

50% Hed

25% Q1

0% Min

Range

Q3-Q1

Mode

1000 Sum Wgts

1.754678 Sum

0.225494 Variance

-0.21164 Kurtosis

3129.693 CSS

12.85104 Std Mean

246.0717 Pr>ITI

250250 Pr>=ISI

1000

Quantiles(Def=5)

2.243731 99%

1.928956 95%

1.765661 90%

1.584861 10%

0.767955 5%

1%

1.475776

0.344095

1.248647

1000

1754.678

0.050848

-0.41659

50.79688

0.007131

0.0000

0.0000

2.206173

2.102733

2.034419

1.448443

1. 388413

1.257246

Extremes

Lowest Obs Highest Obs

0.767955( 876) 2.218708( 617)

1. 19778( 829) 2.230577( 160)

1. 217521( 636) 2.235834( 124)

1. 236478( 523) 2.238787( 28)

1.237835( 672) 2.243731( 64)

17.5

15.0

p 12.5
e
r 10.0
c
e 7.5
n
t

5.0

2.5

0.0

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Po
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Variable = f33 (parameter associated with the matriculation Mathematics symbol)

Moments

N 1000 Sum Wgts 1000

Mean -0.65577 Sum -655.769

Std Dev 0.155281 Variance 0.024112

Skewness 0.038356 Kurtosis -0.60687

USS 454.121 CSS 24.08796

CV -23.6792 Std Mean 0.00491

T:Mean=O -133.547 Pr>ITI 0.0000

Sgn Rank -250250 Pr>=ISI 0.0000

Num ~= 0 1000

Quantiles(Def=5)

100% Max -0.29607 99% -0.31431

75% Q3 -0.54225 95% -0.39782

50% Med -0.65568 90% -0.44716

25% Ql -0.77468 10% -0.85978

0% Min -0.99569 5% -0.91408

1% -0.97593

Range 0.699618

Q3-Ql 0.232424

Mode -0.96926

Extremes

Lowest Obs Highest Obs

-0.99569( 664) -0.30546( 462)

-0.99259( 70) -0.29986( 300)

-0.9905( 530) -0.29971( 92)

-0.98967( 906) -0.29814( 988)

-0.98803( 118) -0.29607( 662)

14

12

P 10
e
r 8
c
e 6
n
t

4

2

0

-1. 00 -0.85 -0.70 -0.55
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Variable = /34 (parameter associated with the matriculation Biology symbol)

Moments

N 1000 Sum Wgts 1000

Mean -0.45776 Sum -457.759
Std Dev 0.149837 Variance 0.022451

Skewness 0.0038 Kurtosis -0.70135
USS 231. 972 CSS 22.42882
CV -32.7328 Std Mean 0.004738
T:Mean=O -96.6087 Pr>ITI 0.0000
Sgn Rank -250250 Pr>=ISI 0.0000
Num -= 0 1000

Quantiles(Def=5)

100y' Max -0.11683 99Y. -0.15274
75Y. Q3 -0.34124 95Y. -0.21251
50y' Med -0.46387 90y' -0.25354
25Y. Ql -0.57312 10y' -0.64441

oy. Min -0.87909 5Y. -0.69982

lY. -0.77097
Range 0.762265

Q3-Ql 0.231882

Mode -0.77888

Extremes

Lowest Obs Highest Obs

-0.87909( 563) -0.13809( 647)
-0.82977( 135) -0.1235( 927)
-0.82619( 391) -0.12015( 232)
-0.78284( 393) -0.12015( 453)
-0.7827( 986) -0. 11683( 815)

12

10

P
e B

r
c 6
e
n
t 4 -

2 -

0

-0.925 -0.725 -0.525
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Variable = (35 (parameter associated with the matriculation Physics symbol)

Moments

N 1000 Sum Wgts 1000

Mean -0.40883 Sum -408.828

Std Dev 0.16171 Variance 0.02615

Skevness -0.0131 Kurtosis -0.82018

USS 193.2645 CSS 26.12383

CV -39.5544 Std Mean 0.005114

T:Mean=O -79.9476 Pr>ITI 0.0000

Sgn Rank -250250 Pr>=ISI 0.0000
Num -= 0 1000

Quantiles(Def=5)

100% Max -0.03422 99% -0.06422

75% Q3 -0.27589 95% -0.16043

50% Med -0.40157 90% -0.20035

25% Q1 -0.54452 10% -0.62003
0% Min -0.85399 5% -0.67071

1% -0.7296
Range 0.819774

Q3-Q1 0.268629

Mode -0.71671

Extremes

Lovest Obs Highest Obs

-0.85399( 540) -0.04108( 845)
-0.75634( 88) -0.03931( 623)
-0.74908( 590) -0.03729( 402)
-0.74713( 543) -0.03598( 611)
-0.7433( 410) -0.03422( 274)

14

12

P 10
e
r 8
c
e 6
n
t

4

2

0

-0.90 -0.72 -0.54
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Variable = rh (parameter associated with the NED matriculation authority)

Moments

N 1000 Sum Wgts 1000
Mean 1.231384 Sum 1231.384
Std Dev 0.285401 Variance 0.081454
Skewness -0.16053 Kurtosis -0.53547
USS 1597.678 CSS 81. 37211
CV 23.17724 Std Mean 0.009025
T:Mean=O 136.4389 Pr>ITI 0.0000
Sgn Rank 250250 Pr>=ISI 0.0000
Num -= 0 1000

Quantiles(Def=5)

100% Max 1.850272 99% 1.814409
75% Q3 1.434285 95% 1. 702133
50% Med 1.254945 90% 1.602976
25% Q1 1.023714 10% 0.832471

0% Min 0.523482 5% 0.748677

1% 0.58753
Range 1.32679

Q3-Q1 0.41057

Mode 0.523482

Extremes

Lowest Obs Highest Obs

0.523482( 707) 1.834431( 230)
0.523482( 193) 1. 834431( 451)
0.531307( 292) 1.850144( 582)

0.54079( 63) 1.850272( 265)
0.545394( 899) 1.850272( 486)

15.0

12.5

p
e
r
c
e
n
t 5.0

2.5

0.0

0.45 0.75 1.05
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RESULTS OBTAINED USING THE DSPHISCl COURSE:
Variable = (30 (parameter associated with the intercept term)

Moments

N 1000 Sum Wgts 1000

Mean 3.051592 Sum 3051.592

Std Dev 0.402061 Variance 0.161653

Skewness -0.09305 Kurtosis -0.47534

USS 9473.707 CSS 161.4915

CV 13.17545 Std Mean 0.012714

T:Mean=O 240.0128 Pr>ITI 0.0000

Sgn Rank 250250 Pr>=ISI 0.0000

Num -= 0 1000

Quantiles(Def=5)

100% Max 4.230289 99% 3.851138

75% Q3 3.346965 95% 3.669392

50% Med 3.092712 90% 3.550887

25% Ql 2.753876 10% 2.486824

0% Min 2.095327 5% 2.389352

1% 2.171735

Range 2.134962

Q3-Ql 0.593089

Mode 2.095327

Extremes

Lowest Obs Highest Obs

2.095327( 732) 4.159806( 360)

2.102426( 637) 4. 165588( 965)

2.110648( 339) 4.19506( 10)

2.120716( 259) 4.197028( 627)

2.137425( 722) 4.230289( 123)
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c
e 7.5
n
t

5.0

2.5

0.0

2.10 2.55 3.00 3.45 3.90 4.35

f30

61



Variable = /33 (parameter associated with the matriculation Mathematics symbol)

Moments

H 1000 Sum Wgts 1000

Mean -0.55717 Sum -557.173

Std Dev 0.216912 Variance 0.047051

Skewness 0.036099 Kurtosis -0.68264

USS 357.4454 CSS 47.00365

CV -38.9308 Std Mean 0.006859

T:Mean=O -81.2282 Pr>ITI 0.0000

Sgn Rank -250250 Pr>=ISI 0.0000
Hum -= 0 1000

Quantiles(Def=5)

100% Max -0.0711 99% -0.09464

75% Q3 -0.40233 95% -0.19363

50% Med -0.55774 90% -0.25565

25% Ql -0.72384 10% -0.84167

0% Min -1.19806 5% -0.90428

1% -1.00352

Range 1.126953

Q3-Q1 0.321512

Mode -1.19806

Extremes

Lowest Obs Highest Obs
-1. 19806( 490) -0.08462( 806)
-1.03416( 854) -0.08445( 568)
-1.0232( 643) -0.0804( 688)

-1.02306( 90) -0.07627( 722)
-1. 01971( 16) -0.0711 ( 456)
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Variable = {34 (parameter associated with the matriculation Biology symbol)

Moments

N 1000 Sum Wgts 1000
Mean -1. 05139 Sum -1051.39
Std Dev 0.274389 Variance 0.075289
Skewness 0.090284 Kurtosis -0.89214
USS 1180.631 CSS 75.21404
CV -26.0978 Std Mean 0.008677
T:Mean=O -121. 17 Pr>ITI 0.0000
Sgn Rank -250250 Pr>=ISI 0.0000
Num ~= 0 1000

Quantiles(Def=5)
100% Max -0.42004 99% -0.48433

75% Q3 -0.82354 95% -0.60795
50% Med -1. 06017 90% -0.68162
25% Ql -1.28141 10% -1.4102

0% Min -1.85883 5% -1. 4782

1% -1.56341
Range 1.43879

Q3-Ql 0.457873

Mode -1.85883

Extremes

Lowest Obs Highest Obs
-1. 85883( 882) -0.45543( 384)
-1. 68065( 592) -0.44474( 618)
-1.59517( 836) -O.44364( 736)
-1. 58283( 849) -0.42574( 197)
-1. 58014( 711) -O.42004( 453)
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Variable = Ps (parameter associated with the matriculation Physics symbol)

Moments

N 1000 Sum Wgts 1000
Mean -1.11271 Sum -1112.71
Std Dev 0.268217 Variance 0.071941
Skewness 0.072181 Kurtosis -0.66816
USS 1309.987 CSS 71.86863
CV -24.1049 Std Mean 0.008482
T:Mean=O -131. 188 Pr>ITI 0.0000
Sgn Rank -250250 Pr>=ISI 0.0000
Num -= 0 1000

Quantiles(Def=5)

100% Max -0.48296 99% -0.53376
75% Q3 -0.90125 95% -0.68086
50% Med -1.11965 90% -0.75533
25% Q1 -1.32253 10% -1.44423

0% Min -1.85942 5% -1. 56109

1% -1.64707
Range 1.376459

Q3-Q1 0.421284

Mode -1.19156

Extremes

Lowest Obs Highest Obs
-1.85942( 332) -0.49356( 390)
-1. 77563( 369) -0.49348( 792)
-1. 6775 ( 204) -0.48817( 546)

-1.66499( 491) -0.48427( 485)
-1. 66395( 616) -0.48296( 389)

15.0

12.5
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Variable = fh (parameter associated with the NED matriculation authority)

Moments

N 1000 Sum Wgts 1000

Mean 3.775604 Sum 3775.604

Std Dev 0.704626 Variance 0.496497

Skevness -0.21376 Kurtosis -0.87435

USS 14751.18 CSS 496.0008

CV 18.6626 Std Mean 0.022282

T:Kean=O 169.4447 Pr>ITI 0.0000

Sgn Rank 250250 Pr>=ISI 0.0000

Num -= 0 1000

Quantiles (Def=5)

100y' Max 5.091719 99Y. 5.038965

75Y. Q3 4.323396 95Y. 4.847246

50y' Hed 3.809289 90y' 4.678922

25Y. Ql 3.204802 10% 2.795438

Oy. Kin 2.14336 5Y. 2.597703

lY. 2.263675

Range 2.948359

Q3-Ql 1.118594

Mode 2.14336

Extremes

Lovest Obs Highest Obs

2.14336( 618) 5.074036( 975)

2. 174244 ( 308) 5.082588( 27)

2.174814( 388) 5.08455( 392)

2.19366( 740) 5.085465( 302)

2.197419( 520) 5.091719( 646)
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RESULTS OBTAINED FOR THE COMBINED DSMAlSXl AND DSPHlSCl DATA:

Variable = /30 (parameter associated with the intercept term)

Moments

N 1000 Sum Wgts 1000

Mean 1. 748324 Sum 1748.324

Std Dev 0.271513 Variance 0.07372

Skewness -0.20394 Kurtosis -0.67963

USS 3130.282 CSS 73.64584

CV 15.52993 Std Mean 0.008586

T:Mean=O 203.6247 Pr>ITI 0.0000

Sgn Rank 250250 Pr>=ISI 0.0000

Num -= 0 1000

Quantiles(Def=5)

100% Max 2.365231 99% 2.281661

75% Q3 1.958854 95% 2.15688

~O% Med 1.763682 90% 2.095101

25% Ql 1.547375 10% 1. 369156

0% Min 1.078589 5% 1. 292157

1% 1.1155

Range 1.286642

Q3-Q1 0.411479

Mode 1.078589

Extremes

Lowest Obs Highest Obs

1.078589( 137) 2.298518( 95)

1.080434( 160) 2.299173( 178)

1.080603( 843) 2.309204( 992)

1.08488( 541) 2.310389( 282)

1.095208( 92) 2.365231( 655)
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Variable = {33 (parameter associated with the matriculation Mathematics symbol)

Moments

N

Mean

Std Dev

Skewness

USS

CV

T:Mean=O

Sgn Rank

Num -= 0

100% Max

75% Q3

50% Med

25% Ql

0% Min

Range

Q3-Ql

Mode

1000 Sum Wgts

-0.82959 Sum

0.24181 Variance

0.116416 Kurtosis

746.6309 CSS

-29.1482 Std Mean

-108.489 Pr>ITI

-250250 Pr>=ISI

1000

Quantiles(Def=5)

-0.28491 99%

-0.64199 95%

-0.8402 90%

-1.01903 10%

-1.33205 5%

1%

1.047139

0.377039

-0.93924

Extremes

1000

-829.588

0.058472

-0.80627

58.41382

0.007647

0.0000

0.0000

-0.31498

-0.43362

-0.49678

-1.13802

-1.21927

-1.30565

14

12

P 10
e
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o
-1. 40
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-1. 33205(

-1.32962(

-1. 32862 (

-1.32236(

-1. 32071(
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-0.92
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-0.29636(

-0.2908(

-0.28987(

-0.28893(

-0.28491(

-0.68
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Variable = [34 (parameter associated with the matriculation Biology symbol)

Moments

N 1000 Sum Wgts 1000

Mean -0.85044 Sum -850.44

Std Dev 0.247398 Variance 0.061206

Skewness 0.113575 Kurtosis -0.75207

USS 784.3934 CSS 61.14477

CV -29.0906 Std Mean 0.007823

T:Mean::::O -108.704 Pr>ITI 0.0000

Sgn Rank -250250 Pr>=ISI 0.0000

Hum ~:::: 0 1000

Quantiles(Def=5)

100% Max -0.30056 99% -0.3192

75% Q3 -0.65493 95% -0.43123

50% Med -0.86143 90% -0.51624

25% Ql -1.05005 10% -1.17084

0% Min -1.56938 5% -1.23256

1% -1.32259

Range 1.268823

Q3-Ql 0.395122

Mode -1.56938

Extremes

Lowest Obs Highest Obs

-1. 56938( 918) -0.30264( 339)

-1.43914( 692) -0.30256( 238)

-1.37399( 670) -0.30138( 93)

-1. 34793( 102) -0.30058( 823)

-1.3433( 972) -0.30056( 997)
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Variable = /35 (parameter associated with the matriculation Physics symbol)

Moments

N 1000 Sum Wgts 1000

Mean -0.67188 Sum -671. 875

Std Oev 0.234368 Variance 0.054928

Skewness -0.00165 Kurtosis -0.7576

USS 506.2895 CSS 54.8733

CV -34.8826 Std Mean 0.007411

T:Mean=O -90.6548 Pr>ITI 0.0000

Sgn Rank -250250 Pr>=\SI 0.0000

Num -= 0 1000

Quantiles (Oef=5)

100% Max -0.14266 99% -0.18225

75% Q3 -0.4905 95% -0.29101

50% Med -0.66841 90% -0.367

25% Q1 -0.85487 10% -0.98011

0% Min -1.17095 5% -1.06815

1% -1.14812

Range 1.028289

Q3-Q1 0.364368

Mode -1.17095

Extremes

Lowest Obs Highest Obs

-1. 17095( 427) -0.15128( 942)

-1. 16777( 266) -0.14631 ( 906)

-1. 16657( 396) -0.14441 ( 481)

-1.16428( 606) -0. 14353( 409)

-1.15984( 88) -0.14266( 733)

10

8

P
e
r 6

c
e
n 4
t

2

0

-1. 41 -1.17 -0.93 -0.69 -0.45 -0.21 0.03

/35

69



Variable = rh (parameter associated with the NED matriculation authority)

Moments

N 1000 Sum Wgts 1000

Mean 2.495623 Sum 2495.623

Std Dev 0.533757 Variance 0.284896

Skewness -0.17959 Kurtosis -0.70854

USS 6512.748 CSS 284.6115

CV 21.38772 Std Mean 0.016879

T:Mean=O 147.8549 Pr>ITI 0.0000

Sgn Rank 250250 Pr>=ISI 0.0000

Num -= 0 1000

Quantiles(Def=5)

100% Max 3.527636 99% 3.479743

75% Q3 2.922849 95% 3.352245

50% Med 2.507981 90% 3.187007

25% Ql 2.137842 10% 1.728642

0% Min 1.260725 5% 1.57857

1% 1. 340471

Range 2.266911

Q3-Q1 0.785007

Mode 1.260725

Extremes

Lowest Obs Highest Obs

1.260725( 543) 3.507784( 919)

1.269875( 561) 3.509482( 769)

1. 271796 ( 279) 3.514332( 897)

1.280208( 353) 3.516201( 160)

1.282781( 651) 3.527636( 153)
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CHAPTER FIVE

CONCLUSION

Predicting the probability of a student being "successful" at university is an

extremely difficult task since it depends on many external factors that are

difficult to quantify. For example a student may not study hard enough or

attend lectures on a regular basis. Furthermore, a student entering univer

sity may attempt a set of subjects that he or she is not capable of passing.

This will then in turn cause them to produce poor results even though they

may have obtained excellent matriculation results. Thus when attempting

to model the probability of a student being successful at university other

variables such as socio-economic background of a student, the time spent

studying by a student, the time spent travelling to and from university, the

age of a student etc., need also to be considered.

However, from the models developed in chapters two, three and four it is evi

dent that it is possible to predict the probability of a student being successful

in a particular subject or set of subjects at university, based on the students

matriculation result profiles. A significant conclusion that can be drawn from

the results in chapters two and three is that students from the NED matricu

lation authority perform better, in the DSMAlSXl and DSPHlSCl courses,

than the students from the other matriculation authorities. Unfortunately,

students who wrote the Department of Education and Training (DET) ma

triculation examinations were excluded from our analyses due to the small

number of DET students attempting both the DSMAlSXl course and the

DSPHlSCl course. However, given a sample of DET students attempting

the DSMAlSXl course and the DSPHlSCl course, it is then a fairly simple

exercise to compare the probability of them being successful with students

from the other matriculation authorities.
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One of the weaknesses of the generalized linear model is that useful informa

tion is lost when introducing a Bernoulli random variable in order to obtain

the desired event. However, this drawback is overcome by the fact that

these models are easy to implement and also very useful in determining the

probability of a student being successful as illustrated in chapter two. An

important feature of the model described in chapter three is that the exact

university results are used to determine the probability of a student being

successful and thus no information is lost when implementing this model.

Now, comparing the results obtained in chapter two with those obtained in

chapter three, we see that in general the confidence intervals for the estimated

probabilities in chapter three are smaller than those obtained in chapter two.

Thus, for predicting the probability of a student being successful at univer

sity, I would prefer to use the model discussed in chapter three than those

discussed in chapter two. In chapter four we adopted a Bayesian approach.

This approach is different to the frequentist approaches discussed in chapters

two and three. The advantage of the Bayesian approach, over those models

developed in chapters two and three is that it can incorporate past experi

ences or beliefs of the parameters.

I strongly disapprove of the point system which is currently being used for de

termining which students should be admitted to university. A better method

for selecting students would be to use the models described in chapters two,

three and four in collaboration with the point system. It is also evident that

these models can be used to determine which students should receive bur
saries and in aiding student advisers in helping students with their course
selection.

One of the shortcomings of the models that were developed in chapters two,

three and four is that we have had to discard the data corresponding to

those students who had not attempted each and everyone of the follow

ing matriculation subjects, namely English, Afrikaans, Mathematics, Biol-
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ogy and Physics. In order to incorporate this data into our analysis Smyth

et al. (1990) have developed an EM based technique which replaces any

missing matriculation subject marks with an appropriately estimated value.

The standard procedures given in chapters two, three and four can then be

applied to this new augmented data set to determine the probability of a

student being successful, no matter what matriculation subjects they have

chosen.
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APPENDIX A
APPENDIX Al

Letting the log-likelihood function, for the generalized linear model, be given

by the expression

n n

1(9jYI,Y2,'.' Yn) = I:[Yib(Oi) +C(Oi) +d(Yi)] = I:1i
i=l i=l

then the score function associated with the parameter f3j is defined by

Uj = 8l(9iY) =t~
af3j i=l af3j

where 9 represents some function of /3. Noting that the partial derivative of

li with respect to f3j is given by

8li aOi a/1i
---
aOi a/1i af3j

one can on differentiating li with respect to Oi and substituting (from (2.2.3))

C'(Oi) = -/1ib'(Oi) obtain the result that

Similarly differentiating /1i with respect to Oi and using (2.2.4) yields the

result that

and differentiating /1i with respect to f3j, from (2.3.2), yields the result that
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Thus an expression for the derivative of li with respect to ;3j can be given by

with

APPENDIX A2

Using the results obtained in Appendix AI, the jk'th element of the In

formation matrix can be given by

n

~X··X·kW··L..J ZJ Z n
i=l

and similarly the j'th component of u can be given by
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where

( )

2
1 alii

Wii = V {Yi} aT/i

and

Thus, writing in matrix notation we obtain the following results, namely

I=X'WX

and
u = X'Wz*

APPENDIX A3

Here we will attempt to derive an estimate for f3 that maximizes the log

likelihood function,

n n n

l(y,(J) = LYib(Bi) + Lc(Bi) + Ld(Yi)
i=l i=l i=l

subject however to the restrictions Rf3 = r, where R denotes a

(v x p +1) matrix with j'th row Rj and r a (v xl) vector with j'th element

rj. In particular, and as an alternative to the more used Lagrange multiplier

approach, we will introduce a penalty function (Nyquist, 1991) of the form

n n n 1 v

P(f3,>t) = LYib(Bi) + Lc(Bi) + Ld(Yi) - 2"LAj(rj - Rjf3)2
i=l i=l i=l j=l

and attempt to obtain an estimate for f3(that is dependent on the penalty

function parameters >t = (Al'" Av)) that maximizes P(f3, >t). Letting the

penalty function parameters Ai tend to infinity a restricted estimate for f3

76



can then be realized. Differentiating P({3, >.) with respect to {3j yields the

following system of equations

for j = 0, ... ,p, which must then be set equal to zero in order to obtain an

estimate for {3. Note that the estimate obtained for {3 will depend on the

values of the penalty function vector >.. As such we will use the notation b(>.)

to denote the set of parameter values that solve the above set of penalized

likelihood function equations. Due to the nonlinear form that these equations

take, Fisher's method of scoring as outlined in section 2.3 can be applied with

b(>.)(m) = b(>.)(m-l) + [S({3, >.)r1 q({3, >.)

with S({3, >.) and q({3, >.) being evaluated at {3 = b(>.)(m-l)
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where!

S({3 .\) = -£ {8
2
P({3, .\)} = X'WX +R'AR

, 8{38{3'

and

q({3,.\) = X'Wz* +R'Ar - R'AR{3

with z* denoting a n dimensional vector with i'th element

and A a v X v dimensional diagonal matrix with i'th element Ai. On making

the appropriate substitutions we obtain the result

1 the jk'th component of of S(j3,OX) is given by

Sjk(j3, oX) = _£ {(P P(j3, oX)}
8{3j 8{3k

= -E {8~~13' + 813:;13, Ht,~,(r, -Rji3)') }

= -E {8:~13J H{813:;13' Ut,~,(r, -Rji3)')}

= Ijk +£ {t,\;RijR;k }

v

= Ijk + LAiRijRik
i=1

n v

= LXijXikWii + LAiR;jRik
;=1 ;=1
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where Wand z* denote the value of Wand z* evaluated at the previous itera-- ,
tion point b(~)(m-1). Premultiplying the above equation by X'WX + R AR

we obtain

[X'WX + R'AR]b(~)(m)

[X'WX + R'AR]b(~)(m-1) +X'Wz* +R'Ar - R'ARb(~)(m-1)

X'WXb(~)(m-1) +R'ARb(~)(m-1)+X'Wz* +R'Ar - R'ARb(~)(m-1)

X'W[Xb(~)(m-1)+ z*] +R'Ar

Letting

z = Xb(~)(m-1) + z*

and noting that (Rao, 1965)

(X'WX +R'ARt1

= [(X'WX)-l - (X'WX)-lR'A{I +R(X'WX)-lR'A} -lR(X'WX)-l]

one can obtain the following iteratively weighted least squares formula for

determining b (~) (m), namely

b(~)(m) = [(X'WX)-l - (X'WXt1R'A{I +R(X'WXt 1R'A}-lR(X'WXt1]
[X'Wz + R'Ar]

- (X'WX)-lX'Wz + (X'WX)-lR'Ar
-(X'wxt1R'A{I + R(X'WXt1R'A} -1R(X'WX)-lX'WZ
-(X'WXt1R'A{I +R(X'WXt1R'A} -1R(X'WXt1R'Ar
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(X'WXt 1X'Wz + (X'WXt 1R'A{I+ R(X'WXt 1R'A}-1
{I+ R(X'WX)-lR'A}r
-(X'WX)-lR'A{I + R(X'WX)-lR'A} -1R(X'WX)-lX'WZ
-(X'WX)-lR'A{I + R(X'WX)-lR'A}-lR(X'WX)-lR'Ar

(X'wxt 1X'WZ + (X'WX)-lR'A{I + R(X'WX)-lR'A}-lr
-(X'WXt1R'A{I + R(X'WXt1R'A} -1R(X'WXt1X'WZ
-(X'WXt1R'A{I + R(X'WXt1R'A}-1R(X'WXt1R'Ar
+(X'WXt1R'A{I + R(X'WXt1R'A} -1R(X'WXt1R'Ar

(X'WXt1X'WZ + (X'WXt1R'A{I + R(X'WXt 1R'A}-1
{r - R(X'WXt1X'WZ}

(X'WXt1X'WZ + (X'WX)-lR'{A-1 + R(X'WXt 1R'}-1
{r - R(X'WXt1X'WZ}

Letting the penalty function parameters \ tend to infinity a restricted esti

mate for f3 can now be given by

/3 ~ l~ [Al' ..~~~--->oo b(A)(m)]

l~[(X'WX)-lX'WZ + (X'WXt1R'{R(X'WXt1R'}-1
{r - R(X'WXt1X'Wz}]
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APPENDIX A4

Since /3 is asymptotically normally distributed with mean vector 13 and a

variance-covariance matrix given by the inverse of the Information matrix,

expanding 1(13) in a second order Taylor series around the point f3 = /3 yields

1(13) ~ 1(/3) - ~(f3 - /3)'I(f3 - /3)
2

which implies that for parameter estimation purposes

1(13) ~ (/3 - f3)'I(/3 - 13)

Now substituting our partitioned results (see footnote 2 in section 2.4) in the

above expression we obtain the result

Then substituting 132 = 0, in the above expression yields

Finally maximizing the log-likelihood function, 1(131 ,0), with respect to 13
1

yields
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which implies that

where (31 represents as estimate for f3 obtained under the restrictions that

{3, = o. Thus, D' is now obtained by substituting 13 = (~l) in D, yielding
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APPENDIX B

REJECTION SAMPLING

Suppose that we want to obtain a sample of observations from a probabil

ity density function f(x) whose form is known only up to a proportionality

constant, that is f(x) = Mg(x) for some unknown value of M. Employ

ing a rejection sampling technique Gilks and Wild (1992) have developed

a technique that is based on using the function g('), an envelope function

gu(') and optionally a squeezing function gl('), such that gl(-) :::; g(.) :::; gu(')

for all x. By independently sampling a value x* from the density function

s(x) = J gu/
xl and a value u from a U(O, 1) distribution, the following test

gu x dx

procedure can then be employed to generate an observation from the desired

probability density function f('), namely if

then accept x* as an observation from f('), otherwise evaluate g(x*) and

accept x* as an observation from f(·) if

The above procedure is then repeated until the desired number of obser

vations have been sampled. Now, in general, finding a suitable envelope

function gu (x) can be difficult and usually involves locating the supremum

of g(x). However, if the function g(x) is log-concave l then the functions

. 1Anr positi~e function. g on ~n open convex set D i!1 IRn is called .log-concave if log g
IS a tWIce contmuously dIfferentiable real-valued functIOn on D and ItS Hessian matrix

[

2 'o logg(Xl .. . x n ). .
H;j(x) = OX;OXj ], IS negative semidefinite for every x E D. If the Hessian

matrix is negative definite, then the function g is said to be strictly log-concave.
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gl(x) and gu(x) can easily be obtained by noting that any concave function

is bounded above and below by its tangents and chords respectively.

-
............

h(x);

hu(x) upper hull (tangents);

hi (x) lower hull (chords)

Figure B.t: Graph representing a concave function h(x)

In particular, letting h(x) = logg(x) and referring to the diagram given in

Figure B.I, the envelope and squeezing functions for g(x) can be obtained
by setting

gu(x) = exp[hu(x)]

and

gl(x) = exp[hl(x)]
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respectively where 2

denotes the tangents3 and

(Bl.I)

-00, otherwise

denotes the chords as shown in Figure B.l. Now in order to generate a value

x* from the exponentiated upper hull, we require an expression for the density

2Note that in order to reduce the number of points that are likely to be rejected, Xl and
X3 should be chosen so that h'(XI) > 0 and h'(X3) < 0 where h'(XI) and h'(X3) represents
the derivative of the function h(x) evaluated at the points Xl and X3 respectively. For our
applications we also choose

which further reduces the rejection envelope.
3 where the tangents intersect at the following points, namely
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function that is associated with the exponentiated upper hull, namely4

exp (hu(x))
s(x) = Jexp (hu(x)) dx

(B1.3)

Letting Vi, V2 and V3 denote the areas under the exponentiated curves

bounded by the tangents and the points {-oo, zd, {ZI, Z2} and {Z2, oo}

respectively (refer to Figure B.1), then we obtain the result that

eu = Jexp [hu ( x )] dx = Vi + V2 + V3

where 5

exp[hu(Zj)] - exp[hu(Zj_d]
h'(xj)

for j = 1,2,3

and thus the following two stage method can be used to generate a value x*

from the piecewise exponential probability density function s(x), namely

4 where Zo = -00 and Z3 = 00.

5note that
dhu(x) = h'(x o )

dx J
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i) generate a discrete random variable y* based on the probability density

function

k = 1,2,3

ii) if y* = k, then generate a value x* from the density Sk(X) defined by

exp[h(Xk) + h'(Xk)(X - Xk)]

Vk

for x E (Zk-ll Zk) and k = 1,2,3. In particular the random variable

x* can be generated by first generating a random variable u* from a

U(O, 1) distribution, and then setting 6

6Noting that the density function with respect to u* is given by

fu- (u*) = 1

and letting
x = log[u* exp{zkh'(Xk)} +(1- u*) exp{zk_lh'(Xk)}]

. h'(Xk)

the density for x can then be given by

IdU* I IdU* Ifx(x) = fu-(u*) dx = 1 dx

Now from (1) we obtain

u* = exp{xh'(Xk)} - exp{zk_lh'(Xk)}
exp{zkh'(Xk)} - exp{zk_lh'(Xk)}

which implies that
du* = h'(Xk) exp{xh'(Xk)}
dx exp{zkh'(Xk)} - exp{zk_lh'(Xk)}

which corresponds to the expression given for Sk (x)
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We can thus implement the Gibbs sampler, using the above method of Re

jection Sampling, until the desired number of sample points from each con

ditional density have been obtained.
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APPENDIX C

Cl DSMAISXI DATA SET

Zl DSMAISXl (MATHEMATICS1) MARK
Yl CODED UIIVERSTY MARK (lE. Yl = 1 IF Zl IS GREATER THAI

OR EQUAL TO 48; ELSE Yl = 0)
Xl MATRlCULATIOI EIGLISH CODED VALUE
X2 MATRICULATIOI AFRIKAAIS CODED VALUE
X3 = MATRlCULATIOI MATHEMATICS CODED VALUE
X4 MATRICULATIOI BIOLOGY CODED VALUE
15 MATRlCULATIOI PHYSICS CODED VALUE
Dl (HOD) AID D2 (lED) REPRESElT THE DUMMY VARIABLES THAT
ACCOUIT FOR THE TYPE OF MATRlCULATIOI AUTHORITY
lB. II CHAPTER 2 WE USE THE CODED MARK Yl AID lOT THE ACTUAL MARK Zl.
AID II CHAPTER 3 WE USE THE ACTUAL MARK Zl AID lOT THE CODED MARK Yl.

OBS Zl Xl X2 X3 X4 X5 Dl D2 Y1

1 50 2 1 1 2 2 1 0 1 52 41 2 3 1 1 2 1 0 0
2 86 0 0 0 0 0 0 1 1 53 68 0 2 0 1 1 1 0 1
3 30 3 5 1 3 2 1 0 0 54 83 0 2 0 0 1 0 1 1
4 28 2 3 0 2 2 1 0 0 55 52 1 2 1 1 2 0 1 1
5 50 2 3 2 1 2 1 0 1 56 33 3 3 2 0 0 1 0 0
6 81 2 2 0 2 1 0 1 1 57 52 0 4 1 2 1 0 1 1
7 22 3 3 2 3 1 1 0 0 58 44 1 2 0 0 1 0 1 0
8 40 2 4 2 3 2 0 1 0 59 58 2 2 0 1 2 1 0 1
9 40 0 1 1 0 1 1 0 0 60 44 3 2 1 2 2 1 0 0

10 81 1 1 0 1 1 0 1 1 61 52 2 3 2 0 3 0 0 1
11 44 3 4 0 2 1 1 0 0 62 62 2 3 2 2 2 0 1 1
12 34 2 2 1 2 2 1 0 0 63 87 0 0 0 0 1 1 0 1
13 50 2 2 2 3 2 0 0 1 64 8 0 2 3 2 4 1 0 0
14 40 1 1 1 2 2 1 0 0 65 56 2 2 0 1 1 1 0 1
15 34 1 2 2 3 3 1 0 0 66 58 1 2 0 1 1 1 0 1
16 43 0 4 0 2 1 0 0 0 67 89 2 2 0 1 1 1 0 1
17 85 1 0 0 0 0 0 1 1 68 50 2 3 0 2 2 0 0 1
18 46 1 3 0 1 2 1 0 0 69 34 1 1 2 2 0 1 0 0
19 25 2 2 2 3 2 1 0 0 70 40 3 3 2 1 2 1 0 0
20 65 2 3 0 2 2 1 0 1 71 75 2 3 0 2 2 0 1 1
21 32 2 1 2 2 3 0 0 0 72 16 3 5 3 2 1 1 0 0
22 15 2 4 1 1 1 1 0 0 73 77 0 0 0 0 0 0 1 1
23 44 1 1 1 2 1 1 0 0 74 40 2 4 2 1 3 1 0 0
24 43 2 1 1 2 0 0 1 0 75 65 2 2 0 3 0 0 1 1
25 40 0 1 1 1 2 1 0 0 76 74 1 0 0 0 1 0 1 1
26 70 1 1 0 0 1 1 0 1 77 44 3 4 1 1 3 1 0 0
27 55 1 3 2 1 2 1 0 1 78 40 2 2 0 2 3 1 0 0
28 51 1 2 0 0 1 1 0 1 79 69 1 1 1 1 2 1 0 1
29 42 2 1 2 0 2 0 0 0 80 55 2 3 2 1 3 0 1 1
30 56 2 2 2 0 1 1 0 1 81 53 2 2 1 2 2 0 1 1
31 92 0 0 0 0 0 0 1 1 82 42 1 2 3 1 2 1 0 0
32 44 1 0 0 1 1 0 1 0 83 76 2 2 0 1 0 0 1 1
33 50 1 2 0 0 0 0 1 1 84 31 1 2 2 0 1 1 0 0
34 51 3 2 3 4 3 0 1 1 85 68 0 1 1 0 0 1 0 1
35 57 2 2 1 2 1 0 1 1 86 36 2 3 0 3 1 0 1 0
36 53 2 0 0 1 1 0 1 1 87 54 1 2 1 1 1 0 1 1
37 34 2 2 0 2 2 0 0 0 88 34 1 2 1 2 1 1 0 0
38 77 1 2 1 1 1 0 1 1 89 50 1 1 2 1 2 1 0 1
39 58 1 3 1 1 2 1 0 1 90 58 1 1 0 1 0 1 0 1
40 56 1 2 0 0 1 1 0 1 91 27 2 2 3 2 3 0 1 0
41 99 0 0 0 0 0 0 1 1 92 42 2 3 1 1 1 0 1 0
42 40 3 3 2 3 3 0 1 0 93 50 3 4 1 0 3 0 0 1
43 86 2 2 0 1 1 0 1 1 94 45 2 3 1 1 1 0 1 0
44 29 3 3 1 1 2 1 0 0 95 74 2 3 0 3 1 0 1 1
45 65 3 4 0 2 2 1 0 1 96 66 4 5 0 2 1 0 0 1
46 40 2 4 2 4 3 1 0 0 97 51 2 3 1 1 2 1 0 1
47 42 1 2 2 3 2 0 1 0 98 44 2 2 1 3 1 1 0 0
48 28 2 2 2 2 3 1 0 0 99 87 0 1 0 0 0 1 0 1
49 88 2 1 0 1 0 1 0 1 100 57 2 2 1 0 2 1 0 1
50 50 2 2 2 1 2 0 1 1 101 56 2 2 1 1 2 1 0 1
51 30 3 4 1 1 3 0 0 0 102 40 0 1 2 1 2 1 0 0
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103 59 3 4 1 1 0 1 0 1 180 58 2 1 1 0 0 1 0 1

104 25 2 2 1 1 2 1 0 0 181 35 2 5 3 3 3 0 0 0

105 32 1 2 3 1 2 1 0 0 182 15 2 4 2 1 3 1 0 0

106 77 1 2 0 0 1 1 0 1 183 32 0 0 2 1 2 1 0 0

107 90 3 2 0 0 0 0 0 1 184 31 2 4 3 4 3 0 1 0

108 36 2 2 2 2 2 0 1 0 185 36 0 1 1 1 1 1 0 0

109 82 0 1 0 0 0 1 0 1 186 74 0 4 4 2 2 0 1 1

110 77 0 1 0 1 0 1 0 1 187 87 0 1 0 0 0 1 0 1

111 51 2 1 1 1 1 1 0 1 188 46 2 0 3 1 2 1 0 0

112 100 0 0 0 0 0 0 1 1 189 50 2 3 3 1 3 1 0 1

113 91 0 1 0 0 0 1 0 1 190 64 1 2 1 1 2 0 1 1

114 91 0 2 0 1 1 1 0 1 191 70 1 2 0 0 0 1 0 1

115 70 0 2 0 1 1 1 0 1 192 48 2 3 1 0 1 1 0 1
116 46 1 1 1 0 1 1 0 0 193 40 2 2 1 2 2 0 1 0
117 86 1 1 1 1 0 1 0 1 194 50 2 1 2 1 1 1 0 1
118 34 2 1 2 2 2 1 0 0 195 52 3 0 2 3 3 0 1 1
119 50 1 1 2 2 2 1 0 1 196 30 1 3 0 1 2 1 0 0
120 80 1 0 0 0 0 1 0 1 197 48 2 2 1 1 0 1 0 1
121 50 1 3 1 0 0 0 1 1 198 59 0 1 0 0 1 1 0 1
122 85 0 2 0 0 0 1 0 1 199 51 0 2 1 2 1 1 0 1
123 57 2 2 0 0 0 1 0 1 200 50 2 1 0 0 0 1 0 1
124 50 2 2 0 0 1 1 0 1 201 40 3 2 0 1 0 1 0 0
125 79 1 2 0 1 1 1 0 1 202 91 1 2 0 0 1 0 1 1
126 78 1 2 0 1 1 1 0 1 203 100 0 1 0 0 0 0 1 1
127 32 0 0 0 0 0 0 1 0 204 40 2 1 2 2 2 1 0 0
128 50 1 1 2 1 2 1 0 1 205 44 2 0 0 1 0 1 0 0
129 95 1 1 0 0 0 1 0 1 206 78 2 2 1 2 1 0 1 1
130 82 0 1 0 1 1 0 1 1 207 81 0 0 0 0 0 0 1 1
131 42 2 3 1 2 3 1 0 0 208 21 2 3 1 3 4 1 0 0
132 44 3 3 0 1 2 1 0 0 209 53 1 1 0 0 1 1 0 1
133 69 1 2 1 0 1 0 0 1 210 61 2 2 1 1 1 1 0 1
134 72 0 1 0 1 1 0 1 1 211 51 0 1 0 1 1 1 0 1
135 95 0 1 0 0 0 1 0 1 212 80 2 2 2 1 2 0 1 1
136 43 2 1 0 1 2 1 0 0 213 50 2 3 0 2 2 1 0 1
137 23 3 2 2 3 3 0 1 0 214 90 2 3 1 0 1 0 1 1
138 61 2 1 1 2 2 1 0 1 215 57 2 1 2 2 1 0 1 1
139 30 1 1 1 0 1 1 0 0 216 55 1 1 0 0 1 1 0 1
HO 33 1 3 2 1 1 1 0 0 217 30 2 2 1 1 2 1 0 0
141 70 3 2 1 3 2 1 0 1 218 76 1 2 0 0 0 0 1 1
142 77 2 1 2 1 1 1 0 1 219 61 0 2 0 0 0 1 0 1
143 40 1 2 2 0 1 1 0 0 220 53 0 0 2 0 2 0 1 1
144 100 0 0 0 0 0 0 1 1 221 47 0 2 1 2 1 0 1 0
145 62 2 3 2 2 2 1 0 1 222 50 3 3 0 0 0 0 0 1
146 97 0 2 0 0 0 1 0 1 223 55 0 1 0 1 1 0 0 1
147 64 2 2 1 1 2 1 0 1 224 75 1 2 0 0 0 1 0 1
148 33 2 2 2 0 2 1 0 0 225 71 0 0 0 0 0 1 0 1
149 29 2 3 1 2 3 1 0 0 226 89 1 1 0 1 0 1 0 1
150 81 2 2 1 1 2 1 0 1 227 33 0 1 0 1 1 1 0 0
151 45 1 3 0 0 1 0 0 0 228 99 0 0 0 0 0 1 0 1
152 63 2 2 1 1 1 1 0 1 229 54 2 2 1 0 1 1 0 1
153 90 2 1 0 0 1 1 0 1 230 94 2 4 0 1 0 0 1 1
154 51 2 1 0 1 2 1 0 1 231 40 2 2 2 1 2 0 0 0
155 75 2 2 0 0 0 1 0 1 232 84 1 1 0 0 0 1 0 1
156 69 0 1 1 0 0 1 0 1 233 40 2 2 2 1 2 1 0 0
157 57 2 1 0 0 0 0 1 1 234 65 2 2 2 1 2 0 1 1
158 88 1 2 0 0 0 1 0 1 235 26 1 1 2 0 1 0 1 0
159 68 2 3 0 0 2 1 0 1 236 80 1 1 0 1 0 1 0 1
160 89 1 2 1 1 0 0 1 1 237 88 0 0 0 0 0 0 1 1
161 45 0 2 1 0 1 0 0 0 238 63 2 3 1 0 0 0 1 1
162 60 1 2 1 1 3 0 1 1 239 42 2 1 1 3 2 0 1 0
163 40 1 2 2 1 2 0 1 0 240 55 2 3 1 3 1 0 1 1
164 46 2 2 2 2 1 1 0 0 241 63 2 1 0 0 0 1 0 1
165 54 0 1 1 0 0 1 0 1 242 50 2 2 0 1 0 0 1 1
166 63 0 1 0 1 0 1 0 1 243 24 2 3 3 1 2 0 0 0
167 40 2 1 2 2 3 1 0 0 244 50 2 2 1 3 1 0 1 1
168 44 2 2 2 1 2 1 0 0 245 61 1 0 0 0 0 1 0 1
169 61 1 1 0 0 1 1 0 1 246 40 0 0 0 0 1 1 0 0
170 26 2 3 1 1 2 1 0 0 247 24 1 2 2 1 3 1 0 0
171 21 2 2 2 0 2 1 0 0 248 60 2 3 0 1 0 0 1 1
172 47 1 2 1 0 1 1 0 0 249 79 0 0 0 0 0 0 1 1
173 69 0 1 1 0 1 1 0 1 250 88 0 1 1 0 0 1 0 1
174 51 0 1 1 0 1 1 0 1 251 50 0 1 0 0 0 1 0 1
175 75 1 1 1 0 2 0 1 1 252 59 1 1 0 0 0 1 0 1
176 50 2 2 1 0 1 0 1 1 253 57 1 2 2 0 0 0 1 1
177 94 2 1 0 0 0 0 1 1 254 59 1 0 0 0 1 1 0 1
178 44 2 1 2 1 1 1 0 0 255 34 1 2 2 1 1 1 0 0
179 52 1 2 2 0 1 1 0 1 256 71 1 3 0 1 0 0 1 1
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257 66 1 1 0 2 1 1 0 1

258 to 2 2 1 1 0 1 0 0

259 33 2 3 1 1 2 0 1 0

260 78 1 1 0 0 0 1 0 1

261 t7 1 2 2 0 1 1 0 0

262 50 0 0 1 0 0 1 0 1

263 50 2 3 2 1 2 0 1 1

26t 63 2 2 0 2 0 1 0 1
265 to 2 3 1 1 0 0 1 0
266 23 3 t 1 2 1 1 0 0
267 50 2 2 0 0 0 1 0 1
268 75 1 1 0 1 2 0 1 1

269 t5 0 0 0 0 1 1 0 0

270 36 2 3 2 t 2 1 0 0
271 6t 1 3 0 0 0 0 1 1
272 68 2 3 0 1 2 1 0 1
273 71 2 t 0 2 1 0 1 1
27t t7 1 1 0 0 0 1 0 0
275 70 1 2 0 0 0 0 1 1
276 53 1 2 1 0 1 1 0 1
277 29 1 1 2 1 1 1 0 0

278 t2 3 2 2 0 2 1 0 0
279 27 1 2 2 2 2 1 0 0
280 50 1 2 0 0 1 0 1 1
281 67 1 0 0 0 0 1 0 1
282 57 1 2 1 0 0 1 0 1
283 58 1 1 0 0 0 1 0 1
28t t2 1 1 2 0 2 1 0 0
285 to 2 1 1 1 1 1 0 0
286 6t 0 2 0 1 0 0 1 1
287 62 1 1 0 0 0 1 0 1
288 it 1 1 0 1 0 1 0 0
289 65 1 3 0 0 0 0 1 1
290 63 2 3 0 0 2 1 0 1
291 to 1 2 0 0 1 1 0 0
292 52 2 3 1 1 0 1 0 1
293 75 2 1 0 0 0 1 0 1
29t 62 2 2 1 2 2 0 1 1
295 it 0 1 1 0 0 1 0 0
296 82 1 1 0 1 0 0 1 1
297 52 1 2 2 1 2 1 0 1
298 21 2 2 2 2 2 1 0 0
299 40 1 2 1 1 2 0 1 0
300 33 2 2 1 0 1 1 0 0
301 40 2 3 0 1 0 1 0 0
302 70 1 1 0 0 0 0 1 1
303 53 2 1 1 0 0 1 0 1
304 48 2 2 2 2 2 1 0 1
305 40 3 2 0 1 2 1 0 0

END OF DATA SET
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C2 DSPHISCl DATA SET

Z2 DSPH1SC1 (PHYSICS1) MARK
Y2 CODED UIIVERSTY MARK (lE. Y2 = 1 IF Z2 IS GREATER THAI

OR EQUAL TO 48; ELSE Y2 =0)

Xi MATRICULATIOI EIGLISH CODED VALUE
X2 MATRICULATIOI AFRIKAAIS CODED VALUE

X3 MATRlCULATIOI MATHEMATICS CODED VALUE
X4 MATRICULATIOI BIOLOGY CODED VALUE
XS MATRICULATIOI PHYSICS CODED VALUE
01 (HOD) AID 02 (lED) REPRESEIT THE DUMMY VARIABLES THAT
ACCOUIT FOR THE TYPE OF MATRICULATIOI AUTHORITY
lB. 11 CHAPTER 2 WE USE THE CODED MARK Y2 AID lOT THE ACTUAL MARK Z2.
AID 11 CHAPTER 3 WE USE THE ACTUAL MARK Z2 AID lOT THE CODED MARK Y2.

OBS Z2 Xl X2 X3 X4 X5 D1 D2 Y2

1 81 0 0 0 0 0 0 1 1 55 76 1 1 1 1 0 1 0 1

2 8 3 5 1 3 2 1 0 0 56 45 2 1 2 2 2 1 0 0

3 22 2 3 0 2 2 1 0 0 57 66 1 3 1 0 0 0 1 1

4 55 2 2 0 2 1 0 1 1 58 77 0 2 0 0 0 1 0 1

5 54 1 1 0 1 1 0 1 1 59 54 2 2 0 0 0 1 0 1

6 47 3 4 0 2 1 1 0 0 60 65 2 2 0 0 1 1 0 1
7 32 2 2 1 2 2 1 0 0 61 67 1 2 0 1 1 1 0 1

8 25 2 1 2 2 3 0 0 0 62 75 1 2 0 1 1 1 0 1
9 23 2 4 1 1 1 1 0 0 63 58 0 0 0 0 0 0 1 1

10 40 1 1 1 2 1 1 0 0 64 44 1 1 2 1 2 1 0 0
11 65 2 1 1 2 0 0 1 1 65 77 1 1 0 0 0 1 0 1
12 31 0 1 1 1 2 1 0 0 66 65 0 1 0 1 1 0 1 1
13 50 2 1 2 0 2 0 0 1 67 50 3 3 0 1 2 1 0 1
14 20 2 1 3 2 3 0 0 0 68 72 1 2 1 0 1 0 0 1
15 33 2 2 0 2 2 0 0 0 69 38 1 1 3 2 2 1 0 0
16 83 0 0 0 0 0 0 1 1 70 56 2 2 3 2 2 0 1 1
17 41 3 3 2 3 3 0 1 0 71 87 0 1 0 0 0 1 0 1
18 69 2 2 0 1 1 0 1 1 72 45 1 1 1 0 1 1 0 0
19 32 3 3 1 1 2 1 0 0 73 78 2 1 2 1 1 1 0 1
20 46 1 2 2 3 2 0 1 0 74 70 1 2 2 0 1 1 0 1
21 29 3 4 1 1 3 0 0 0 75 98 0 0 0 0 0 0 1 1
22 50 0 2 0 1 1 1 0 1 76 62 2 3 2 2 2 1 0 1
23 50 0 2 0 0 1 0 1 1 77 88 0 2 0 0 0 1 0 1
24 40 1 2 1 1 2 0 1 0 78 53 2 2 2 0 2 1 0 1
25 61 3 3 2 0 0 1 0 1 79 50 1 3 0 0 1 0 0 1
26 47 2 2 0 1 2 1 0 0 80 77 2 1 0 0 1 1 0 1
27 38 3 2 1 2 2 1 0 0 81 59 2 1 0 1 2 1 0 1
28 58 2 2 1 1 2 1 0 1 82 79 2 2 0 0 0 1 0 1
29 60 0 0 0 0 1 1 0 1 83 82 0 1 1 0 0 1 0 1
30 18 0 2 3 2 4 1 0 0 84 69 2 1 0 0 0 0 1 1
31 51 2 2 0 1 1 1 0 1 85 94 1 2 0 0 0 1 0 1
32 71 2 2 0 1 1 1 0 1 86 84 1 2 1 1 0 0 1 1
33 47 1 1 2 2 0 1 0 0 87 47 0 2 1 0 1 0 0 0
34 51 3 3 2 1 2 1 0 1 88 67 1 2 1 1 3 0 1 1
35 60 2 3 0 2 2 0 1 1 89 41 2 2 2 2 1 1 0 0
36 60 0 0 0 0 0 0 1 1 90 56 0 1 1 0 0 1 0 1
37 28 2 4 2 1 3 1 0 0 91 66 0 1 0 1 0 1 0 1
38 55 1 1 1 1 2 1 0 1 92 41 2 2 2 1 2 1 0 0
39 63 0 1 1 0 0 1 0 1 93 63 1 1 0 0 1 1 0 1
40 57 1 2 1 1 1 0 1 1 94 47 2 3 1 1 2 1 0 0
41 47 1 2 1 2 1 1 0 0 95 63 1 2 1 0 1 1 0 1
42 72 1 1 0 1 0 1 0 1 96 70 0 1 1 0 1 1 0 1
43 60 2 2 3 2 3 0 1 1 97 43 0 1 1 0 1 1 0 0
44 45 4 5 0 2 1 0 0 0 98 56 2 2 1 0 1 0 1 1
45 71 2 3 1 1 2 1 0 1 99 53 1 2 2 0 1 1 0 1
46 82 0 1 0 0 0 1 0 1 100 33 2 2 3 3 2 1 0 0
47 73 3 4 1 1 0 1 0 1 101 63 2 1 1 0 0 1 0 1
48 83 1 2 0 0 1 1 0 1 102 41 2 5 3 3 3 0 0 0
49 85 3 2 0 0 0 0 0 1 103 31 2 4 2 1 3 1 0 0
50 85 0 1 0 0 0 1 0 1 104 51 2 4 3 4 3 0 1 1
51 86 0 1 0 1 0 1 0 1 105 40 0 1 1 1 1 1 0 0
52 100 0 0 0 0 0 0 1 1 106 63 0 4 4 2 2 0 1 1
53 83 0 1 0 0 0 1 0 1 107 71 0 1 0 0 0 1 0 1
54 40 1 1 1 0 1 1 0 0 108 42 2 0 3 1 2 1 0 0
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109 56 1 2 0 0 0 1 0 1 186 86 0 2 0 1 0 0 1 1

110 46 2 3 1 0 1 1 0 0 187 79 1 1 0 0 0 1 0 1

111 44 2 2 1 2 2 0 1 0 188 50 1 1 0 1 0 1 0 1

112 32 2 1 4 1 2 0 0 0 189 47 3 4 3 4 3 0 1 0

113 61 2 1 2 1 1 1 0 1 190 78 1 3 0 0 0 0 1 1

114 55 3 0 2 3 3 0 1 1 191 75 2 3 0 0 2 1 0 1

115 40 2 2 1 1 0 1 0 0 192 68 1 2 0 0 1 1 0 1

116 53 0 1 0 0 1 1 0 1 193 92 2 1 0 0 0 1 0 1

117 57 2 1 0 0 0 1 0 1 194 69 2 2 1 2 2 0 1 1

118 55 3 2 0 1 0 1 0 1 195 52 0 1 1 0 0 1 0 1

119 96 0 1 0 0 0 0 1 1 196 77 1 1 0 1 0 0 1 1

120 42 2 1 2 2 2 1 0 0 197 41 1 2 3 1 3 1 0 0

121 44 2 0 0 1 0 1 0 0 198 57 1 2 1 1 2 0 1 1

122 63 2 2 1 2 1 0 1 1 199 58 2 2 1 0 1 1 0 1

123 65 0 0 0 0 0 0 1 1 200 68 2 3 0 1 0 1 0 1

124 48 1 1 0 0 1 1 0 1 201 73 1 1 0 0 0 0 1 1
125 42 2 2 1 1 1 1 0 0 202 41 1 1 2 1 3 0 1 0
126 62 0 1 0 1 1 1 0 1 203 56 2 1 1 0 0 1 0 1
127 36 2 3 0 2 2 1 0 0 204 32 3 2 0 1 2 1 0 0
128 86 2 3 1 0 1 0 1 1

129 65 2 1 2 2 1 0 1 1 END OF DATA SET
130 55 1 1 0 0 1 1 0 1

131 52 0 2 0 0 0 1 0 1

132 66 0 0 2 0 2 0 1 1
133 72 0 2 1 2 1 0 1 1
134 60 3 3 0 0 0 0 0 1
135 H 0 1 0 1 1 0 0 0
136 57 1 2 0 0 0 1 0 1
137 69 0 0 0 0 0 1 0 1
138 69 1 1 0 1 0 1 0 1
139 45 0 1 0 1 1 1 0 0
HO 80 0 0 0 0 0 1 0 1
141 93 2 4 0 1 0 0 1 1
142 77 1 1 0 0 0 1 0 1
143 68 2 2 2 1 2 0 1 1
144 90 1 1 0 1 0 1 0 1
145 59 0 0 0 0 0 0 1 1
146 54 2 1 1 3 2 0 1 1
147 61 2 3 1 3 1 0 1 1
148 76 2 1 0 0 0 1 0 1
149 70 2 2 0 1 0 0 1 1
150 25 2 3 3 1 2 0 0 0
151 62 2 2 1 3 1 0 1 1
152 58 1 0 0 0 0 1 0 1
153 57 0 0 0 0 1 1 0 1
154 62 2 3 0 1 0 0 1 1
155 87 0 0 0 0 0 0 1 1
156 87 0 1 1 0 0 1 0 1
157 66 0 1 0 0 0 1 0 1
158 43 2 3 2 2 2 0 1 0
159 67 1 1 0 0 0 1 0 1
160 77 1 2 2 0 0 0 1 1
161 53 1 0 0 0 1 1 0 1
162 50 1 2 2 1 1 1 0 1
163 81 1 3 0 1 0 0 1 1
164 53 2 2 1 1 0 1 0 1
165 59 1 1 0 0 0 1 0 1
166 47 0 0 1 0 0 1 0 0
167 60 2 2 0 2 0 1 0 1
168 72 2 3 1 1 0 0 1 1
169 50 3 4 1 2 1 1 0 1
170 66 2 2 0 0 0 1 0 1
171 50 2 3 0 1 2 1 0 1
172 43 2 3 4 2 3 0 1 0
173 68 2 4 0 2 1 0 1 1
174 66 1 1 0 0 0 1 0 1
175 56 3 3 2 2 2 0 1 1
176 67 1 2 1 0 1 1 0 1
177 38 2 2 3 1 2 1 0 0
178 29 1 1 2 1 1 1 0 0
179 36 3 2 2 0 2 1 0 0
180 75 1 2 0 0 1 0 1 1
181 67 1 0 0 0 0 1 0 1
182 75 1 2 1 0 0 1 0 1
183 70 1 1 0 0 0 1 0 1
184 47 1 1 2 0 2 1 0 0
185 40 2 1 1 1 1 1 0 0
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C3 DSMAlSXl AND DSPHlSCl DATA SET

Zl =DSMA1SXl (MATHEMATICS1) MARK
Z2 DSPH1SCl (PHYSICS1) MARK
Y CODED UIIVERSTY MARK (lE. Y 1 IF Zl AID Z2 IS GREATER THAI

OR EQUAL TO 48; ELSE Y =0)
Xl MATRICULATIOI EIGLISH CODED VALUE
X2 MATRICULATIOI AFRIKAAIS CODED VALUE
X3 MATRICULATIOI MATHEMATICS CODED VALUE
X4 MATRICULATIOI BIOLOGY CODED VALUE
XS MATRICULATIOI PHYSICS CODED VALUE
Dl (HOD) AID D2 (lED) REPRESEIT THE DUMMY VARIABLES THAT
ACCOUlT FOR THE TYPE OF MATRICULATIOI AUTHORITY
lB. 11 CHAPTER 2 WE USE THE CODED MARK Y AID lOT THE ACTUAL MARKS Zl AID Z2.
AID 11 CHAPTER 3 WE USE THE ACTUAL MARKS Zl AID Z2 AID lOT THE CODED MARK Y.

aBS Zl Z2 Xl X2 X3 X4 X5 D1 D2 y il>

1 86 81 0 0 0 0 0 0 1 1 52 46 40 1 1 1 0 1 1 0 0
2 30 8 3 5 1 3 2 1 0 0 53 86 76 1 1 1 1 0 1 0 1
3 28 22 2 3 0 2 2 1 0 0 54 34 45 2 1 2 2 2 1 0 0
4 81 55 2 2 0 2 1 0 1 1 55 50 66 1 3 1 0 0 0 1 1
5 81 54 1 1 0 1 1 0 1 1 56 85 77 0 2 0 0 0 1 0 1
6 U 47 3 4 0 2 1 1 0 0 57 57 54 2 2 0 0 0 1 0 1
7 34 32 2 2 1 2 2 1 0 0 58 50 65 2 2 0 0 1 1 0 1
8 32 25 2 1 2 2 3 0 0 0 59 79 67 1 2 0 1 1 1 0 1
9 15 23 2 4 1 1 1 1 0 0 60 78 75 1 2 0 1 1 1 0 1

10 U 40 1 1 1 2 1 1 0 0 61 32 58 0 0 0 0 0 0 1 0
11 43 65 2 1 1 2 0 0 1 0 62 50 U 1 1 2 1 2 1 0 0
12 40 31 0 1 1 1 2 1 0 0 63 95 77 1 1 0 0 0 1 0 1
13 42 50 2 1 2 0 2 0 0 0 64 82 65 0 1 0 1 1 0 1 1
14 34 33 2 2 0 2 2 0 0 0 65 U 50 3 3 0 1 2 1 0 0
15 99 83 0 0 0 0 0 0 1 1 66 69 72 1 2 1 0 1 0 0 1
16 40 41 3 3 2 3 3 0 1 0 67 95 87 0 1 0 0 0 1 0 1
17 86 69 2 2 0 1 1 0 1 1 68 30 45 1 1 1 0 1 1 0 0
18 29 32 3 3 1 1 2 1 0 0 69 77 78 2 1 2 1 1 1 0 1
19 42 46 1 2 2 3 2 0 1 0 70 40 70 1 2 2 0 1 1 0 0
20 30 29 3 4 1 1 3 0 0 0 71 100 98 0 0 0 0 0 0 1 1
21 68 50 0 2 0 1 1 1 0 1 72 62 62 2 3 2 2 2 1 0 1
22 83 50 0 2 0 0 1 0 1 1 73 97 88 0 2 0 0 0 1 0 1
23 52 40 1 2 1 1 2 0 1 0 74 33 53 2 2 2 0 2 1 0 0
24 33 61 3 3 2 0 0 1 0 0 75 45 50 1 3 0 0 1 0 0 0
25 58 47 2 2 0 1 2 1 0 0 76 90 77 2 1 0 0 1 1 0 1
26 U 38 3 2 1 2 2 1 0 0 77 51 59 2 1 0 1 2 1 0 1
27 87 60 0 0 0 0 1 1 0 1 78 75 79 2 2 0 0 0 1 0 1
28 8 18 0 2 3 2 4 1 0 0 79 69 82 0 1 1 0 0 1 0 1
29 56 51 2 2 0 1 1 1 0 1 80 57 69 2 1 0 0 0 0 1 1
30 89 71 2 2 0 1 1 1 0 1 81 88 94 1 2 0 0 0 1 0 1
31 34 47 1 1 2 2 0 1 0 0 82 89 84 1 2 1 1 0 0 1 1
32 40 51 3 3 2 1 2 1 0 0 83 45 47 0 2 1 0 1 0 0 0
33 75 60 2 3 0 2 2 0 1 1 84 60 67 1 2 1 1 3 0 1 1
34 77 60 0 0 0 0 0 0 1 1 85 46 41 2 2 2 2 1 1 0 0
35 40 28 2 4 2 1 3 1 0 0 86 54 56 0 1 1 0 0 1 0 1
36 69 55 1 1 1 1 2 1 0 1 87 63 66 0 1 0 1 0 1 0 1
37 68 63 0 1 1 0 0 1 0 1 88 U 41 2 2 2 1 2 1 0 0
38 54 57 1 2 1 1 1 0 1 1 89 61 63 1 1 0 0 1 1 0 1
39 34 47 1\ 2 1 2 1 1 0 0 90 26 47 2 3 1 1 2 1 0 0
40 58 72 1 1 0 1 0 1 0 1 91 47 63 1 2 1 0 1 1 0 0
41 27 60 2 2 3 2 3 0 1 0 92 69 70 0 1 1 0 1 1 0 1
42 66 45 4 5 0 2 1 0 0 0 93 51 43 0 1 1 0 1 1 0 0
43 51 71 2 3 1 1 2 1 0 1 94 50 56 2 2 1 0 1 0 1 1
U 87 82 0 1 0 0 0 1 0 1 95 52 53 1 2 2 0 1 1 0 1
45 59 73 3 4 1 1 0 1 0 1 96 58 63 2 1 1 0 0 1 0 1
46 77 83 1 2 0 0 1 1 0 1 97 35 41 2 5 3 3 3 0 0 0
47 90 85 3 2 0 0 0 0 0 1 98 15 31 2 4 2 1 3 1 0 0
48 82 85 0 1 0 0 0 1 0 1 99 31 51 2 4 3 4 3 0 1 0
49 77 86 0 1 0 1 0 1 0 1 100 36 40 0 1 1 1 1 1 0 0
50 100 100 0 0 0 0 0 0 1 1 101 74 63 0 4 4 2 2 0 1 1
51 91 83 0 1 0 0 0 1 0 1 102 87 71 0 1 0 0 0 1 0 1
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103 46 42 2 0 3 1 2 1 0 0 180 63 75 2 3 0 0 2 1 0 1

104 70 56 1 2 0 0 0 1 0 1 181 40 68 1 2 0 0 1 1 0 0

105 48 46 2 3 1 0 1 1 0 0 182 75 92 2 1 0 0 0 1 0 1

106 40 44 2 2 1 2 2 0 1 0 183 62 69 2 2 1 2 2 0 1 1

107 50 61 2 1 2 1 1 1 0 1 184 44 52 0 1 1 0 0 1 0 0

108 52 55 3 0 2 3 3 0 1 1 185 82 77 1 1 0 1 0 0 1 1

109 48 40 2 2 1 1 0 1 0 0 186 40 57 1 2 1 1 2 0 1 0

110 59 53 0 1 0 0 1 1 0 1 187 33 58 2 2 1 0 1 1 0 0

111 50 57 2 1 0 0 0 1 0 1 188 40 68 2 3 0 1 0 1 0 0

112 40 55 3 2 0 1 0 1 0 0 189 70 73 1 1 0 0 0 0 1 1

113 100 96 0 1 0 0 0 0 1 1 190 53 56 2 1 1 0 0 1 0 1

114 40 42 2 1 2 2 2 1 0 0 191 40 32 3 2 0 1 2 1 0 0

115 44 44 2 0 0 1 0 1 0 0

116 78 63 2 2 1 2 1 0 1 1 END OF DATA SET

117 81 65 0 0 0 0 0 0 1 1

118 53 48 1 1 0 0 1 1 0 1

119 61 42 2 2 1 1 1 1 0 0

120 51 62 0 1 0 1 1 1 0 1

121 50 36 2 3 0 2 2 1 0 0

122 90 86 2 3 1 0 1 0 1 1

123 57 65 2 1 2 2 1 0 1 1

124 55 55 1 1 0 0 1 1 0 1
125 61 52 0 2 0 0 0 1 0 1
126 53 66 0 0 2 0 2 0 1 1
127 47 72 0 2 1 2 1 0 1 0
128 50 60 3 3 0 0 0 0 0 1
129 55 44 0 1 0 1 1 0 0 0
130 75 57 1 2 0 0 0 1 0 1
131 71 69 0 0 0 0 0 1 0 1
132 89 69 1 1 0 1 0 1 0 1
133 33 45 0 1 0 1 1 1 0 0
134 99 80 0 0 0 0 0 1 0 1
135 94 93 2 4 0 1 0 0 1 1
136 84 77 1 1 0 0 0 1 0 1
137 65 68 2 2 2 1 2 0 1 1
138 80 90 1 1 0 1 0 1 0 1
139 88 59 0 0 0 0 0 0 1 1
140 42 54 2 1 1 3 2 0 1 0
141 55 61 2 3 1 3 1 0 1 1
142 63 76 2 1 0 0 0 1 0 1
143 50 70 2 2 0 1 0 0 1 1
144 24 25 2 3 3 1 2 0 0 0
145 50 62 2 2 1 3 1 0 1 1
146 61 58 1 0 0 0 0 1 0 1
147 40 57 0 0 0 0 1 1 0 0
148 60 62 2 3 0 1 0 0 1 1
149 79 87 0 0 0 0 0 0 1 1
150 88 87 0 1 1 0 0 1 0 1
151 50 66 0 1 0 0 0 1 0 1
152 59 67 1 1 0 0 0 1 0 1
153 57 77 1 2 2 0 0 0 1 1
154 59 53 1 0 0 0 1 1 0 1
155 34 50 1 2 2 1 1 1 0 0
156 71 81 1 3 0 1 0 0 1 1
157 40 53 2 2 1 1 0 1 0 0
158 78 59 1 1 0 0 0 1 0 1
159 50 47 0 0 1 0 0 1 0 0
160 63 60 2 2 0 2 0 1 0 1
161 40 72 2 3 1 1 0 0 1 0
162 23 50 3 4 1 2 1 1 0 0
163 50 66 2 2 0 0 0 1 0 1
164 68 50 2 3 0 1 2 1 0 1
165 71 68 2 4 0 2 1 0 1 1
166 47 66 1 1 0 0 0 1 0 0
167 53 67 1 2 1 0 1 1 0 1
168 29 29 1 1 2 1 1 1 0 0
169 42 36 3 2 2 0 2 1 0 0
170 50 75 1 2 0 0 1 0 1 1
171 67 67 1 0 0 0 0 1 0 1
172 57 75 1 2 1 0 0 1 0 1
173 58 70 1 1 0 0 0 1 0 1
174 42 47 1 1 2 0 2 1 0 0
175 40 40 2 1 1 1 1 1 0 0
176 64 86 0 2 0 1 0 0 1 1
177 62 79 1 1 0 0 0 1 0 1
178 44 50 1 1 0 1 0 1 0 0
179 65 78 1 3 0 0 0 0 1 1
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APPENDIX D

PROGRAMS

Dl DISCRIMINANT ANALYSIS

PROGRAM USED TO OBTAIN THE DISCRIMINANT ANALYSIS RESULTS ON
OUR DSMA1SX1 DATA. RESULTS OUTINED IN CHAPTER ONE. THIS

PROGRAM WAS ALSO APPLIED TO OUR DSPH1SC1 DATA AND OUR COMBINED

DSMA1SX1 AND DSPH1SC1 DATA.

libname in 'c:\robert';

data math1; I**CONTAINS ALL THOSE STUDENTS WHO FAILED DSMA1SX1**1

set in.mp2;

if zl='O' then delete;

if zl='.' then delete;

if ma='4' then d1=1; else d1=0;

if ma='6' then d2=1; else d2=0;
if zl ge 48 then y1=1; else y1=0;

if y1=1 then delete;
run;

data math2; I**CONTAINS ALL THOSE STUDENTS WHO PASSED DSMA1SX1**1
set in.mp2;

if zl='O' then delete;

if zl='.' then delete;

if ma='4' then d1=1; else d1=0;

if ma='6' then d2=1; else d2=0;

if zl ge 48 then y1=1; else y1=0;

if y1=0 then delete;
run;

proc iml;

reset noprint;

use math1; I**UNSUCCESSFUL GRoup**1
read all var{x1 x2 x3 x4 x5 d1 d2};

x=x11Ix21Ix31Ix41Ix51Id11Id2;
n1=nrow(x);
v=ncol(x) ;

one=j(n1,l,l);

xbar1=1/n1 * one'*x;
xb1=one*xbar1 ;

sl=1/(n1-1) * (x-xb1)'*(x-xb1);
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print xbar1 si;
1**xbar1 = mean vector for the successful(pass) group**1
1**s1 = variance-covariance matrix for the successful group**1

use math2; I**SUCCESSFUL GRouP**1

read all var{x1 x2 x3 x4 x5 d1 d2};

x=x1llx21Ix31Ix41Ix51Id1lld2;

n2=nrow(x);
one=j(n2,1,1);

xbar2=1/n2 * one'*x;

xb2=one*xbar2;
s2=1/(n2-1) * (x-xb2)'*(x-xb2);
print xbar2 s2;

1**xbar2= mean vector for the unsuccessful(fail) group**1

1**s2 = variance-covariance matrix for the unsuccessful group**1

spool=«n1-1)*s1 + (n2-1)*s2)/(n1+n2-2);

I**spool = pooled variance-covariance matrix**1

k=(xbar1-xbar2)*inv(spool);
c=(1/2)*(xbar1-xbar2)*inv(spool)*(xbar1+xbar2)';
print spool k c;

print n1 n2 ;

l*n1 - no. of failures n2 - no. of successes *1

I**END OF PROGRAM**I
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D2.1 LOGIT LINK FUNCTION

GENERALIZED LINEAR MODEL WITH LOGIT LINK FUNCTION

PROGRAM USED TO OBTAIN THE PARAMETER ESTIMATES, STANDARD ERROR

OF THESE ESTIMATES, WALD TEST STATISTIC VALUES, PROBAILITY VALUES
ASSOCIATED WITH THE WALD TEST STATISTIC AND 95 % LOWER AND UPPER
CONFIDENCE INTERVALS FOR THE PARAMETER ESTIMATES FOR OUR DSMA1SX1
DATA (RESULTS GIVEN IN TABLE 2.6.2). THIS PROGRAM WAS ALSO USED
TO OBTAIN THE ESTIMATED PROBABILITY (TOGETHER WITH ITS CONFIDENCE
INTERVALS) ASSOCIATED WITH A STUDENT PASSING DSMA1SX1 FOR A GIVEN
SET OF MATRICULATION PROFILE RESULTS (RESULTS GIVEN IN TABLE 2.6.3).
THIS PROGRAM WAS ALSO APPLIED ON OUR DSPH1SC1 DATA AND OUR COMBINED
DSMA1SX1 AND DSPH1SC1 DATA.**!

!**ORGANISING OUR DSMA1SX1 DATA SET **!

libname in 'c:\robert';
data math ;
set in.mp2;

if ma='4' then d1=1; else d1=0;
if ma='6' then d2=1; else d2=0;
if z1='0' then delete;
if z1='. ' then delete;
if z1 ge 48 then y1=1; else y1=0;
run;

!** THE ACTUAL PROGRAM**!

proc iml worksize=100;
reset noprint;
use math;

read all var{x1 x2 x3 x4 x5 d1 d2 y1};
n=nrow(x3) ;

X=j(n,1,1)1 Ix31 Ix41 IxSI Id2; !**MATRIX OF PREDICTOR VARIABLES**!

!** THE FISHER SCORING ROUTINE USING A CONVERGENCE
CRITERION OF 0.0001**!

p=ncol(x);
b=j(p,1,O);
z=j(n,1,0);
w=j(n,n,O);
oldb=b+j(p,l,1);
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do iter =1 to 60 while(max(abs(b-oldb))> 0.0001);

oldb=b;
do i=1 to n;

yi=y1 [i] ;
xit=x[i, ];xi=xit';
pi=exp(xi'*b)/(1+exp(xi'*b));

wii=pi*(1-pi) ;
zi=xi'*b + (yi - pi)'*inv(pi*(1-pi));

w[i,i]=wii;

z[i]=zi;

end;
detw=det(x'*w*x);
b=inv(x'*w*x)*x'*w*z;

end;

/** END OF THE FISHER SCORING ROUTINE (SEE EQUATION (2.3.10)**/

covb=inv(x'*w*x);

/**LB = LOWER BOUND FOR THE CONFIDENCE INTERVAL OF THE PARAMETER ESTIMATE **/
LB=j(p,1,O);

do j=1 to p;
LCBj=b[j]-1.96*sqrt(covb[j,j]);
LB [j] =LCBj ;

end;

/**UB = UPPER BOUND FOR THE CONFIDENCE INTERVAL OF THE PARAMETER ESTIMATE **/
UB=j(p,1,O);

do j=1 to p;
UCBj=b[j]+1.96*sqrt(covb[j,j]);
UB[j]=UCBj;

end;

/**SEB = STANDARD ERROR OT THE PARAMETER ESTIMATES **/
SEB=j(p,1,O);

do j=1 to p;
sebj=sqrt(covb[j,j]);
seb [j] =sebj ;

end;

m=nrow(b) ;

/**WT = WALD TEST STATISTIC**/
WT=j(m,1,O); prob=j(m,1,O);
R= j ( 1,m , 0) ;
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do i=l to m;

R[i]=l ;
WTi=(R*b)'*inv(R*inv(x'*w*x)*R')*(R*b);

WT[i]=WTi;
q=nrow(R); probi=l-probchi(WTi,q);
prob[i]=probi
R[i] =0;

end;
q=8 ;

/**PHAT = ESTIMATED PROBABILITY **/
/**LBPHAT AND UBPHAT = LOWER AND UPPER BOUNDS FOR THE

CONFIDENCE INTERVALS ASSOCIATED WITH PHAT**/

PHAT=j(q,l,O); LBPHAT=j(q,l,O); UBPHAT=j(q,l,O);
x={l 0 0 0 0 1 1 0 0 0 , 1 0 1 0 0 , 1 0 0 1 0 , 1 0 0 0 1 ,

1 1 0 0 1 , 1 0 1 0 1 , 1 0 0 1 1};

do i=1 to q;

phati=exp(x[i, ]*b)*inv(1+exp(x[i, ]*b»;
phat [i] =phati;

Ibphati=exp(x[i, ]*LB)*inv(1+exp(x[i, ]*LB»;

ubphati=exp(x[i, ]*UB)*inv(1+exp(x[i, ]*UB»;

Ibphat[i]=lbphati;
ubphat[i]=ubphati;

end;
print b seb WT prob LB UB;
print X phat Ibphat ubphat;

/**END OF PROGRAM**/
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D2.2 PROBIT LINK FUNCTION

GENERALIZED LINEAR MODEL WITH PROBIT LINK FUNCTION

PROGRAM USED TO OBTAIN THE PARAMETER ESTIMATES, STANDARD ERROR
OF THESE ESTIMATES, WALD TEST STATISTIC VALUES, PROBAILITY VALUES
ASSOCIATED WITH THE WALD TEST STATISTIC AND 95 % LOWER AND UPPER
CONFIDENCE INTERVALS FOR THE PARAMETER ESTIMATES FOR OUR DSMA1SX1
DATA (RESULTS GIVEN IN TABLE 2.6.10). THIS PROGRAM WAS ALSO USED
TO OBTAIN THE ESTIMATED PROBABILITY (TOGETHER WITH ITS CONFIDENCE
INTERVALS) ASSOCIATED WITH A STUDENT PASSING DSMA1SX1 FOR A GIVEN
SET OF MATRICULATION PROFILE RESULTS (RESULTS GIVEN IN TABLE 2.6.11).
THIS PROGRAM WAS ALSO APPLIED ON OUR DSPH1SC1 DATA AND OUR COMBINED
DSMA1SXl AND DSPH1SC1 DATA.**/

libname in 'c:\robert';
data math
set in.mp2;

if ma='4' then d1=1; else dl=O;
if ma='6' then d2=1; else d2=0;

if zl='O' then delete;
if zl='. I then delete;
if zl ge 48 then y1=1; else yl=O;
proc sort data=math;
by ma;
run;

proc iml worksize=100;
reset noprint;
use math;
read all var{x1 x2 x3 x4 x5 dl d2 y1};
n=nrow(x3);

X=j(n,l,l) Ilx311x411x511d2;

/**FISHERS SCORING ROUTINE**/
p=ncol(x) ;
b= j (p, 1,0) ;
z=j(n,l,O);
w=j(n,n,O);
oldb=b+j(p,l,l);

do iter =1 to 60 while(max(abs(b-oldb))> 0.0001);
oldb=b;
do i=l to n;

yi=yl [i] ;
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xit=x[i, ];xi=xit';
pi=probnorm(xi'*b);
vi=xi'*b;
1=1/(sqrt(2)*gamma(O.5»;

phi=1*exp«-1/2)*vi*vi);
wii=(phi*phi)/(pi*(1-pi»;
zi=xi'*b + (yi - pi)*inv(phi);
w[i , i] =wii ;

zU]=zi;

end;
detw=det(x'*w*x);
b=inv(x'*w*x)*x'*w*z;

end;
/**END OF FISHERS SCORING ROUTINE**/

covb=inv(x'*w*x);
LB=j(p,1,O);

do j=1 to p;
LCBj=b[j]-1.96*sqrt(covb[j,j]);
LB [j] =LCBj ;

end;

UB=j(p,1,O);
do j=1 to p;

UCBj=b[j]+1.96*sqrt(covb[j,j]);
UB[j]=UCBj;

end;

seb=j(p,1,O);
do j=1 to p;

sebj=sqrt(covb[j,j]);

seb [j] =sebj ;
end;

m=nrow(b) ;
WT=j(m,1,O); prob=j(m,1,O);
R=j (1,m,O);

do i=1 to m;
REi]=1 ;

WTi=(R*b)'*inv(R*inv(x'*w*x)*R')*(R*b);

WT[i]=WTi;

q=nrow(R); probi=1-probchi(WTi,q);
prob[i]=probi
R[i]=O;

end;
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q=8 ;
phat=j(q,l,O); Ibphat=j(q,l,O); ubphat=j(q,l,O);
x={l 0 0 0 0 , 1 1 0 0 0 , 1 0 1 0 0 , 1 0 0 1 0 , 1 0 0 0 1 ,

1 1 0 0 1 , 1 0 1 0 1 , 1 0 0 1 1};

do i=l to q;

phati=probnorm(x[i, ]*b);

phat[i]=phati;

Ibphati=probnorm(x[i, ]*LB);

ubphati=probnorm(x[i, ]*UB);

Ibphat[i]=lbphati;

ubphat[i]=ubphati;
end;

print b seb WT prob LB UB;

print X phat Ibphat ubphat;

/**END OF PROGRAM**/
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D3.1 A CUMULATIVE STANDARD NORMAL FUNCTION

PROGRAM USED TO OBTAIN THE REGRESSION PARAMETER ESTIMATES, STANDARD
ERROR FOR THE PARAMETER ESTIMATES, T-VALUES, UPPER AND LOWER BOUNDS
FOR THE CONFIDENCE INTERVALS OF THE PARAMETER ESTIMATES AND THE MEAN
SQUARE ERROR (FOR THE PROBLEM DISCUSSED IN CHAPTER THREE) FOR OUR
DSMA1SXl COURSE (RESULTS GIVEN IN TABLE (3.5.1). THIS PROGRAM ALSO
GIVES THE ESTIMATED PROBABILITY (TOGETHER WITH ITS CONFIDENCE INTERVAL)
ASSOCIATED WITH A STUDENT PASSING THE DSMA1SXl COURSE FOR A GIVEN
MATRICULATION RESULT PROFILE (RESULTS GIVEN IN TABLE 3.5.2). THIS PROGAM
WAS ALSO APPLIED ON OUR DSPH1SCl COURSE.

libname perm 'e:\robert';
data math; /**DSMA1SXl DATA**/
set perm.mp2;
if zl = '0' then delete;
if zl = '.' then delete;
if ma=4 then dl=l; else dl=O;
if ma=6 then d2=1; else d2=0;

proe iml worksize=100;
reset noprint;
use math;

read all var{zl xl x2 x3 x4 x5 dl d2};
n=nrow(zl) ;
xO=j(n,l,1);
x=xO I I x1 I I x3 I I x4 I I x5 I I d2;
p=neol(x);

beta=inv(x'*x)*x'*zl;
sse=zl'*zl-beta'*x'*zl;
mse=sse/ (n-p);
eovb=inv(x'*x)*mse;
seb=j(p,l,O);
do j=l to p;
sebj=sqrt(covb[j,j]);
seb[j]=sebj;
end;

t=j(p,l,O);
do j=lto p;
tj=beta[j]/seb[j];
t [j] =tj;
end;

lb=beta-l.96*seb; ub=beta+l.96*seb;
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x={1 0 0 0 0 0 , 1 1 0 0 0 0 ,1 0 1 0 0 0 ,1 0 0 1 0 0 ,1 0 0 0 1 0,

1 0 0 0 0 1 , 1 1 0 0 0 1 ,1 0 1 0 0 1 ,1 0 0 1 0 1 ,1 0 0 0 1 1};

zhat=x*beta; zhatlb=x*lb;
sx=(zhat-48)/sqrt(mse);
sxlb=(zhatlb-48)/sqrt(mse);

sxub=(zhatub-48)/sqrt(mse);

phat=probnorm(sx);

phatlb=probnorm(sxlb);

phatub=probnorm(sxub);

print beta seb t lb ub mse;

print X phat phatlb phatub;

/**END OF PROGRAM**/

zhatub=x*ub;
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D3.2 MONTE CARLO ALGORITHM

PROGRAM USED TO OBTAIN THE ESTIMATED PROBABILITY (TOGETHER WITH ITS
CONFIDENCE INTERVALS) ASSOCIATED WITH A STUDENT PASSING BOTH DSMA1SXl
AND DSPH1SCl FOR A GIVEN SET OF MATRICULATION PROFILES (RESULTS GIVEN
IN TABLE 3.5.6). THIS PROBLEM IS DISCUSSED IN CHAPTER THREE.

libname in 'c:\robert';
data maph;

set in.mp2;

if ma='4' then dl=l; else dl=O;
if ma='6' then d2=1; else d2=O;

if zl='O' then delete;
if zl='. ' then delete;
if z2='O' then delete;
if z2='. ' then delete;
run;

proc iml worksize=100;
reset noprint;
use maph;

read all var{zl z2 xl x2 x3 x4 x5 dl d2};
n=nrow(zl);
xO=j(n,l,l);

x= xO 11 xlii x2 11 x3 11 x4 11 x5 11 dl 11 d2
y=zl 11 z2;
p=ncol(y);

/** ROUTINE TO GENERATE OBSERVATIONS FROM A MULTIVARIATE NORMAL DENSTIY**/
start mUltnor(ystar,ystarlb,ystarub,mu,mulb,muub,sigma,p);
seed = 456 ;

z= j (p , 1,0) ;
sigma=(sigma' + sigma)/2;
u=root(sigma);
t=u' ;

do i=l to p;
z[i]=rannor(seed);

end;
ystar=t*z + mu;
ystarlb=t*z + mulb;
ystarub=t*z + muub;
finish ;

/**END OF ROUTINE**/
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x={l 0 0 0 0 1 0 0 0 0,0 0 0 0 0 0 1 0 0 1,

1 0 1 0 0 1 0 0 0 0,0 0 0 0 0 0 1 0 0 1,

1 0 0 1 0 1 0 0 0 0,0 0 0 0 0 0 1 1 0 1,

1 0 0 0 1 0 0 0 0 0,0 0 0 0 0 0 1 0 1 1,

1 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 1 0 0 0,

1 0 1 0 0 0 0 0 0 0,0 0 0 0 0 0 1 0 0 0,

1 0 0 1 0 0 0 0 0 0,0 0 0 0 0 0 1 1 0 0,

1 0 0 0 1 0 0 0 0 0,0 0 0 0 0 0 1 0 1 a};

/*b1 and b2 obtained from the sur model*/

b1={69.647416,-2.917197,-5.949945, -2.771966,-5.423292,11.317970};

b2={67.594627,-4.548053,-8.916156,13.103354};

bet=b1//b2;

q=8;
prob=j(q,l,O); problb=j(q,l,O); probub=j(q,l,O);

do k=l to q;

mu=(x[2*k-1,]//x[2*k,])*bet;

/* sigma2 obtained from the sur model*/

sigma={240.3949 118.5459, 118.5459 154.7962};

/*stder obtained from the sur model*/

stder={2.01102 , 1.05425 , 1.25738 , 1.62782 , 1.57495 , 2.61120 ,

1.39130 , 1.25355 , 1.16054 , 2.07635};

lbeta=bet-1.96*stder;

ubeta=bet+1.96*stder;

mulb=(x[2*k-1,]//x[2*k,])*lbeta;

muub=(x[2*k-1,]//x[2*k,])*ubeta;

/* For a given mu and sigma , a set of mp-dimensional N(mu,sigma)

random vectors are generated. If the generated vector ystar

lies in the region A={y[1]>=c1, ... ,y[p]>=cp} where the

cutoff points cp are given in the vector c, then a count

variable is updated by one. cf. Y.L.Tong- Monte Carlo

integration method in 'THE MULTIVARITE NORMAL DISTRIBUTION'

pp 185-189) */

/** GENERATING 100000 OBSERVATIONS**/
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m=100000;

c=j(p,1,48);

count=O; countlb=O; countub=O;

do r=1 to m;

run mUltnor(ystar,ystarlb,ystarub,mu,mulb,muub,sigma,p);

if all(ystar>=c) then count=count+1;

if all(ystarlb>=c) then countlb=countlb+1;

if all(ystarub>=c) then countub=countub+1;

end;

prob[k] = count/m;

problb[k]=countlb/m;

probub[k]=countub/m;

end; 1* k loop *1
print x;

print prob problb probub;

I**END OF PROGRAM**/
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D4 GIBBS SAMPLING VIA REJECTION SAMPLING

THIS PROGRAM USES THE METHOD OF REJECTION SAMPLING WITH SQUEEZING
TO INVOKE THE GIBBS SAMPLER THAT WAS IMPLEMENTED ON OUR DSMA1SX1

DATA. THE VARIABLES THAT WERE FOUND TO BE IMPORTANT IN CHAPTER

TWO WERE USED HERE, NAMELY MATHEMATICS (X3), BIOLOGY (X4), PHYSICS X(5)

AND THE NED (d2) VARIABLE (INCLUDING AN INTERCEPT TERM)

libname in 'c:\robert';
data math;

set in.mp2;

if z1= '.' then delete;
if z1= '0' then delete;
if z1 ge 48 then y=1;
else y=O;

if ma=4 then d1=1;

else d1 = 0;

if ma=6 then d2=1;

else d2 = 0;

keep y xi x2 x3 x4 x5 d1 d2;

1* Non-adaptive Rejection sampling program with squeezing *1

1* Assume density function f(x) from which we want to draw
an observation is log-concave; i.e

h(x)=ln g(x) propto In f(x)

is concave. This assumption then ensures that the support

of x is in a finite interval [xlb,xub] */

proc iml worksize=1000;
reset noprint;

1* This function routine computes hex) for a fixed value of x */

start hx(s) global(beta,x,y,n,j,p);
sum=O;
beta[j]=s;
betao= j(p,1,O)
sigmao=10000*i(p)

do i=1 to n;

sum = sum + y[i]*x[i, ]*beta - log(1 + exp(x[i, ]*beta»;
end;

val=-0.5*(beta-betao)'*inv(sigmao)*(beta-betao) + sum;
return(val) ;

finish hx;
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/* This function routine computes h'(x) for a fixed value of x */

start hpx(s) global(beta,x,y,n,j,p);

sum1=O;

IP=I(p);

e=IP[ ,j];

beta[j]=s;

betao= j (p, 1 ,0)

sigmaO= 10000*i(p)

do i=1 to n;
sum1=sum1+y[i]*x[i,]*e-inv(1+exp(x[i,]*beta))*exp(x[i,]*beta)*x[i,j];

end;
val=-e'*inv(sigmaO)*(beta-betao) + sum1;

return(val);

finish hpx;

/* MAIN PROGRAM */

use math;

read all var{y xi x2 x3 x4 x5 d1 d2};

n=nrow(y) ;

x=j(n,1,1) 11 x3 11 x4 11 x5 11 d2;

p=ncol(x) ;

/**we used the parameter estimates obtained in chapter 2

for the starting values of beta **/

beta={1.73, -0.64 , -0.44 , -0.39 , 1.18};

m=10; G=1000;

do nobs=1 to G;

do count =1 to mj

/** Implement Gibbs sampler m times to obtain one observation**/

do j=1 to S;

/** Initialization step: Specify xstart and compute si and s3 **/

/** for xubd and xlbd we used the parameter estimates obtained

in Chapter 2 plUS or minus 4 standard deviations **/

xlbd={O.68 , -1.35 , -1.12 , -1.12 , -O.1S} ;
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xubd={2.78 , 0.067 , 0.22 , 0.33 , 2.52};

xlb=xlbd[j] ; xub=xubd[j];

xstart=(xlb+xub)/2;
s=j(3,1,0); u=j(2,1,0); v=j(3,1,0);

h=hx(xstart); hp=hpx(xstart);

if hp=O then do until (hp>O);

xstart=(xstart + xlb)/2;

hp=hpx(xstart) ;

end;

if hp > 0 then do;

s [1] =xstart;

do while (hp>=O);

xstart=(xstart + xub)/2;

hp=hpx(xstart) ;

end;
s [3] =xstart ;

end;

else if hp < 0 then do;

s [3] =xstart ;

do while (hp<=O);
xstart=(xstart + xlb)/2;

hp=hpx(xstart) ;

end;
s [1] =xstart;

end;

/* Compute tangential point s2 and chord-intersection points u1

and u2 */

hs1=hx(s[1]) ; hs3=hx(s[3]); hps1=hpx(s[1]); hps3=hpx(s[3]);

s[2]= (hs3-hs1-s[3]*hps3 +s[1]*hps1)/ (hps1-hps3);

hs2=hx(s [2]);
hps2=hpx(s [2]) ;

u[1]=(hs2-hs1-s[2]*hps2+s[1]*hps1)/(hps1-hps2);

u[2]=(hs3-hs2-s[3]*hps3+s[2]*hps2)/(hps2-hps3);

d1=hs1-s[1]*hps1; d2=u[1]*hps1; d3=xlb*hps1;

v[1]=exp(d1)*(exp(d2)-exp(d3»)/hps1;
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dl=hs2-s [2] *hps2; d2=u[2]*hps2; d3=u[1]*hps2;

v[2]=exp(dl)*(exp(d2)-exp(d3»/hps2;

dl=hs3-s[3]*hps3; d2=xub*hps3; d3=u[2]*hps3;

v[3]=exp(dl)*(exp(d2)-exp(d3»/hps3;

/* Repeat until an observation has been generated or a maximum

number of iterations have been completed */

output= ' none' ;

max=1000;

iter=O; seed=O;

do while «output='none') t (iter< max) );

/* generate discrete variable z=1,2 or 3 */

uran=ranuni(seed);

dl=v[l]/sum(v) ;

d2=(v[1]+ v[2])/sum(v);

if uran<=d1 then z=l;

if uran>d1 t uran<=d2 then z=2;

if uran>d2 then z=3;

/* generate sample value (obs) from envelope function */

ustar=ranuni(seed);

if z=l then do;

dl=u[1]*hps1; d2=xlb*hps1;

d3=ustar*exp(d1)+(1-ustar)*exp(d2);

obs=log(d3)/hps1;

end;

if z=2 then do;

dl=u[2]*hps2;

d2=u[i] *hps2;

d3=ustar*exp(d1)+(1-ustar)*exp(d2);

obs=log(d3)/hps2;
end;

if z=3 then do;

dl=xub*hps3; d2=u[2]*hps3;

d3=ustar*exp(dl)+(1-ustar)*exp(d2);
obs=log(d3)/hps3;

end;
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/* Define envelope function co-ordinates for

acceptance-rejection step of generated observation s */

infty=100000;

if obs< u[1] then

huobs=hs1+hps1*(obs-s[1]);

if obs>=u[1] t obs<=u[2] then

huobs=hs2+hps2*(obs-s[2]);

if obs>u[2] then

huobs=hs3+hps3*(obs-s[3]);

/* Define squeezing function co-ordinates for

acceptance-rejection step of generated observation s */

if obs< s[1] then

hlobs=-infty;

if obs>=s[1] t obs<=s[2] then

hlobs=obs*(hs2-hs1)/(s[2]-s[1]) + (s[2]*hs1-s[1]*hs2)/(s[2]-s[1]);

if obs>s[2] t obs<=s[3] then

hlobs=obs*(hs3-hs2)/(s[3]-s[2]) + (s[3]*hs2-s[2]*hs3)/(s[3]-s[2]);

if obs> s[3] then

hlobs=-infty;

/* generate a uniform random variable w·U(O,1) and perform two-stage
acceptance-rejection test */

d1=hlobs-huobs;

w=ranuni(seed) ;

if w<=exp(d1) then do;

b=obs;

output= 'yes' ;
end;

if w> exp(d1) then do;

hobs=hx(obs);

d2=hobs-huobs;

1* Accept s as an observation from f(x) */

/* Compute hex) at the point obs */
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if w<=exp(d2) then do;

b=obs;

output= 'yes' ;

end;

output= I none I ;

end;

iter=iter+1 ;

end;

beta[j]=b;

end;

betap=beta' ;

/* j loop */

if count=1 then betall=betap;

else betall=betall//betap;

end; /*count */

/* output last observation as coming from true density */

if nobs=1 then betamat=betap;

else betamat=betamat//betap;

end; /*nobs*/

print betamat;

/**betamat is a 1000 x 5 dimensional matrix**/

/**END OF PROGRAM**/
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