A STUDY OF STUDENT ACADEMIC PERFORMANCE AT THE UNIVERSITY OF NATAL

by

Robert Naidoo

Submitted in fulfilment of the requirements
 for the degree of Master of Science, in the Department of Mathematical Statistics, University of Natal

Abstract

In this dissertation a study will be made of university performance in the Science Faculty of the University of Natal, Durban. In particular, we will develop models that can be used to predict the success rate of a student based on his or her matriculation results. These models will prove useful for selecting students to universities. They may also be used to assist sponsors, bursars and donors in allocating funds to deserving students. In addition, these models may be used to identify students who might experience diffculties in their studies at university.

PREFACE

The study described in this dissertation was carried out in the Department of Mathematical Statistics, University of Natal, Durban, during the period January 1993 to December 1994. It was completed under the excellent supervision of Dr M. Murray.

This study represents original work by the author except where use of the work of others has been duly acknowledged in the text and it has not been submitted in any form to another university.

ACKNOWLEDGEMENTS

A special thanks to my beloved mother and to my family for their tremendous support and encouragement.

The author would like to sincerely thank the following for their courteous co-operation in contributing to the success of this dissertation:

- Dr M. Murray for his expert assistance with the computer programs and the writing of this thesis.
- All authors of books and articles, whether mentioned by name or not, whose ideas this thesis contains.
- The financial support of the University of Natal through a Graduate Assistantship, the Foundation of Research and Development the German Academic Exchange Service (DAAD).
- Mrs J. Sylaides for her patience and assistance in typing this thesis.
- Professor L. Troskie for the use of departmental facilities.
- The administrative assistance rendered by Mrs B. Becker, Faculty Officer, Faculty of Science.

CONTENTS

CHAPTER PAGE

1. INTRODUCTION 1
2. A GENERALIZED LINEAR MODELLING APPROACH 19
2.1 Introduction 19
2.2 Model Description 19
2.3 Parameter Estimation 21
2.4 Subset Selection 24
2.5 Application to Exam Data 26
2.6 Results 31
3. A MONTE CARLO SIMULATION APPROACH 39
3.1 Introduction 39
3.2 Model Assumptions 40
3.3 Parameter Estimation 41
3.4 Subset Selection 43
3.5 Results 46
4. A BAYESIAN APPROACH 52
4.1 The Gibbs Sampler 52
4.2 Results 55
5. CONCLUSION 71
APPENDIX A 74
APPENDIX B 83
B1 Rejection Sampling 83
APPENDIX C 89
C1 DSMA1SX1 (Mathematics) Data Set 89
C2 DSPH1SC1 (Physics 1) Data Set 92
C3 Combined DSMA1SX1 and DSPH1SC1 Data Set 94
APPENDIX D: PROGRAMS 96
D1 Discriminant Analysis 96
D2.1 Logit Link Function 98
D2.2 Probit Link Function 101
D3.1 A Cumulative Standard Normal Function 104
D3.2 Monte Carlo Algorithm 106
D4 Gibbs Sampling via Rejection Sampling 109
REFERENCES 115

CHAPTER ONE

INTRODUCTION

Due to an increasing number of student applications being made to universities in South Africa, the problem of selecting suitable students has become one of major concern to the university authorities. If it were possible to successfully identify those students who are most likely to succeed then one would be able to assist bursars, sponsors and donors in allocating funds to those "deserving" students. Furthermore, student advisers would be in a better position to offer guidance to students and academic support programmes could be adjusted so as to help these students with their course work.

In the United Kingdom students were, and still are, admitted to university solely on their school leaving results. Although interviews are also conducted by some universities, the most common entry requirement is that students obtain a sufficiently high number of "A" level results for a specific combination of subjects. In the United States of America, university applicants are required to write Standardized Achievement Tests (SATS) in English and Mathematics. A weighted average score for these tests is then used to determine which students should be admitted, with the weights differing from one university to the next.

In South Africa, due to the apartheid policies of the past the problem of student selection has become far more complex. Because the average pupil to teacher ratio, in schools for 1992, for the various population groups has been as follows:

African 40, $4: 1$; Coloureds 23, 7:1; Asians 21, $1: 1$ and Whites $18,1: 1$, combined with the fact that a large percentage of teachers in the African schools are without proper professional qualifications (approximately 14% in

[^0]primary and 8% in secondary schools) have prevented a significant proportion of the Department of Education and Training (DET) ${ }^{2}$ students from being able to obtain a matriculation exemption ${ }^{3}$ which is the minimum requirement necessary for entry into a South African university. This has resulted in a large number of DET students being deprived of a university education, where possibly with a little bit of extra academic support teaching they might in fact be able to obtain a university degree. This point of view has been strengthened by studies that have been conducted by Potter and Jamotte (1985) and Mitchell and Fridjohn (1987) who found that the DET matriculation performance has not been a reliable indicator of whether a student is likely to succeed at university or not. Mitchell and Fridjohn (1987) have also shown that some matriculation authorities tend to over-rate a student's ability to perform at university. Sochet (1986) found for most matriculation authorities that the success rate at university of students with a matriculation rating that was below a C aggregate was not significantly correlated with their matriculation record while at the top end of the scale a good ma-

[^1]| Symbol | H.G. | S.G. |
| :---: | :---: | :---: |
| A | 8 | 5 |
| B | 7 | 4 |
| C | 6 | 3 |
| D | 5 | 2 |
| E | 4 | 1 |
| F | 1 | 0 |
| G | 0 | 0 |

where H.G. respresents Higher Grade and S.G. represents Standard Grade. A MPC score is then obtained for each student by adding together the points awarded for each of the six matriculation subjects. Admission to a particular faculty is then based on the student obtaining a score that lies above a certain cut-off point.
triculation result did tend for most matriculation boards to suggest that a student would be successful at university.

Turning our attention to an examination of the various selection policies that are currently being used at South African universities, a two-tier selection procedure has been employed at the university of the Witwatersrand for accepting disadvantaged students into the Science faculty. In particular students with a sufficiently high set of matriculation results are automatically accepted while those students who are below the minimum entrance requirement are subjected to a battery of tests before gaining access to a four-year (instead of the usual three-year) curriculum. Rutherford and Watson (1990) have shown that the above battery of tests, combined with their matriculation results, do have a predictive ability when it comes to identifying those students who will do well in the four-year curriculum. In fact, it has become evident that the Wits academic support programme (ASP) has had a positive impact on the achievements of these students (Agar, 1992) ${ }^{4}$. At the University of Natal, Durban, a similar academic support programme is provided for helping disadvantaged students. In particular, disadvantaged students wanting to do a Bachelor of Commerce degree are offered an Economics and Management Extended Curriculum (EMEC) programme. This programme essentially spreads the three year degree over four years with the students in their first year being provided with an Educational Development Programme

[^2]which they take along with three credit bearing courses (instead of the usual five that the other first year students are required to take). Initial indication of the success of this programme has shown that (Flockemann et al. 1993)
(i) EMEC students with a high matriculation point count have tended to produce better results than EMEC students with a lower matriculation point count;
(ii) EMEC students who would not have gained entrance into the faculty based on the current faculty cut-off point of 32 points have produced better results than those students from the African Educational Departments that are not on the EMEC programme; and
(iii) as a group EMEC students have generally obtained pass rates, in the individual credit courses, that are comparable with those students from the Non-African Educational Departments.

In the Science faculty at the University of Natal, Durban, a special four-year curriculum is also offered to "disadvantaged" students. In particular an augmented first year curriculum is given where specific learning skills, language, communication and additional support is offered to students who are then only required to take two (instead of the usual four courses) in each semester. At this point in time we are unable to report on the "success" of this programme.

Turning our attention to an examination of some of the prediction models that have been developed for analysing student performance at universities in South Africa, Van Wyk and Crawford (1984) devised a method for predicting the probability of a student at the University of the Witswatersrand passing a single first year course that is based on the following matriculation system for each matriculation subject, namely

TABLE 1.1

Symbol	H.G.	S.G.
A	8	6
B	7	5
C	6	4
D	5	3
E	4	2
F	3	1

By doubling the number of points awarded for Mathematics and the best of Physical Science, Biology, Geography or Physiology and then adding the points obtained for each of the six matriculation subjects to obtain a total matriculation rating score which we will denote by x, Van Wyk and Crawford (1984) then proceeded to regress this score (for a given sample of students) against the marks obtained for a particular university subject thereby obtaining an estimate for the mean mark for that subject (which we will denote by μ) and for the variance for that subject (which we denote by σ^{2}). An estimate for the probability that a student with a matriculation rating score x will pass (assuming 48 to be the pass mark) the above university course can then be modelled using a function of the form

$$
p(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \int_{48}^{100} \exp \left\{-\frac{1}{2}\left[\frac{(y-\mu)}{\sigma}\right]^{2}\right\} d y
$$

This type of modelling approach will be explored further in chapter three.
Fresen and Fresen (1987) chose to adopt a logistic modelling approach to the above prediction problem. In particular, by associating a pass mark in a particular course with a Bernoulli random variable, a logistic link function of the form

$$
\ln \left(\frac{\pi}{1-\pi}\right)=\beta_{0}+\beta_{1} x
$$

was used to link the probability of a student passing this course with their matriculation rating score. This type of modelling approach will be explored further in chapter two.

Turning our attention now to the type of student performance problem that we will be attempting to analyse in this thesis, a study will be made of student performance in the Science faculty of the University of Natal (Durban). In particular the performance of students taking Mathematics 1 (DSMA1SX1), Physics 1 (DSPH1SC1) and then both DSMA1SX1 and DSPH1SC1 will be analysed as a function of the following variables ${ }^{5}$

$$
\begin{aligned}
X_{1} & =\text { English } \\
X_{2} & =\text { Afrikaans } \\
X_{3} & =\text { Mathematics } \\
X_{4} & =\text { Biology } \\
X_{5} & =\text { Physics }
\end{aligned}
$$

Because these results are given in the form of a symbol, and not the actual mark, the following method of coding these symbols was used, namely

Matriculation Symbol (H.G)	Coded Value
A	0
B	1
C	2
D	3
E	4
F	5

Collecting data for the period 1989 to 1992 the following summary statistics were obtained for a student in our sample:

[^3]

Figure 1.1: Graph representing the DSMA1SX1 result profile

Figure 1.2: Graph representing the DSPH1SC1 result profile

MATRICULATION AUTHORITY:	$\begin{aligned} & 8 \times 8 \text { HOD } \\ & \text { ZपIIIIIIM NED } \end{aligned}$	DIIIZA HOR

HOD:	House of Delegates	HOR:	House of Representatives
NED:	Natal Education Department	TED:	Transvaal Education Department

Figure 1.3

Figure 1.5

A B C D E F Figure 1.4

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.10

Figure 1.12

Figure 1.9

Figure 1.11

Figures 1.8 to 1.12 represent the matriculation result profles for the matriculation subjects English, Afrikaans, Mathematics, Biology and Physics respectively for students in our DSPH1SCl data set.

Figure 1.13: Graph illustrating the performance of students from the various matriculation authorities in the DSMA1SX1 course.

Figure 1.14: Graph illustrating the performance of students from the various matriculation authorities in the DSPH1SC1 course.

Figure 1.15: Graph illustrating the effect of the matriculation English symbol on the DSMA1SX1 course.

Figure 1.16: Graph illustrating the effect of the matriculation Afrikaans symbol on the DSMA1SX1 course.

Figure 1.17: Graph illustrating the effect of the matriculation Mathematics symbol on the DSMA1SX1 course.

MATRICULATION BIOLOGY SYMBOL

Figure 1.18: Graph illustrating the effect of the matriculation Biology symbol on the DSMA1SX1 course.

Figure 1.19: Graph illustrating the effect of the matriculation Physics symbol on the DSMA1SX1 course.

Figure 1.20: Graph illustrating the effect of the matriculation English symbol on the DSPH1SC1 course.

Figure 1.21: Graph illustrating the effect of the matriculation Afrikaans symbol on the DSPH1SC1 course.

Figure 1.22: Graph illustrating the effect of the matriculation Mathematics symbol on the DSPH1SC1 course.

$$
P=D S P H 1 S C 1
$$

Figure 1.23: Graph illustrating the effect of the matriculation Biology symbol on the DSPH1SC1 course.

Figure 1.24: Graph illustrating the effect of the matriculation Physics symbol on the DSPH1SC1 course.

Turning our attention to an analysis of the effect that the type of matriculation authority ${ }^{6}$ might have on the prediction process, since the majority of students in our sample were from the following matriculation authorities

- House of Delegates (HOD),
- Natal Education Department (NED),
- Transvaal Education Department (TED), and
- House of Representatives (HOR)
only the effect of these matriculation authorities will be considered in this dissertation. Due to the small number of students from the TED and HOR, these students will be grouped together in our analyses in the sense that the following two dummy variables will be used to model the effect of the matriculation authority, namely

$$
\begin{aligned}
D_{1} & =1 \text { if the student's matriculation authority is the HOD, } \\
& =0 \text { otherwise and } \\
D_{2} & =1 \text { if the student's matriculation authority is the NED, } \\
& =0 \text { otherwise. }
\end{aligned}
$$

As a preliminary tool for identifying students who are likely to pass DSMA1SX1, DSPH1SC1 and then both DSMA1SX1 and DSPH1SC1, the following discriminant analysis procedure (Johnson and Wichern, 1988) was performed where a student with a matriculation profile \mathbf{x} was allocated to the successful

[^4]group 7 if
$$
\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)^{\prime} S_{\mathrm{p}}^{-1} \mathbf{x}>\frac{1}{2}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)^{\prime} S_{\mathrm{p}}^{-1}\left(\overline{\mathbf{x}}_{1}+\overline{\mathbf{x}}_{2}\right)
$$
where $\overline{\mathbf{x}}_{1}$ and $\overline{\mathbf{x}}_{2}$ represent the mean vectors that are to be associated with the successful group and unsuccessful group, respectively, and S_{p} the pooled sample variance for both groups.

Performing the discriminant analysis routine ${ }^{8}$ on our DSMA1SX1 data set (given in Appendix C1) we obtained the following classification rule for identifying students who are likely to pass DSMA1SX1, ${ }^{9}$ namely:
Allocate a student with a matriculation profile $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, d_{1}, d_{2}\right)$ to the successful group (pass) if
$0.022 x_{1}+0.035 x_{2}+0.729 x_{3}+0.434 x_{4}+0.414 x_{5}-0.044 d_{1}-1.319 d_{2} \leq 1.415$
and to the unsuccessful group (fail) if
$0.022 x_{1}+0.035 x_{2}+0.729 x_{3}+0.434 x_{4}+0.414 x_{5}-0.044 d_{1}-1.319 d_{2}>1.415$
The small parameter estimates obtained for the English, Afrikaans and HOD authority variable suggests that these variables do not have an influence on the classification of a student to a particular group. Furthermore students writing the NED matriculation papers tend to perform much better than students coming from the other matriculation authorities.

Performing the discriminant analysis routine on the DSPH1SC1 data (given in Appendix C 2) the following results were obtained, namely:

[^5]Allocate a student to the successful (pass) group if
$-0.132 x_{1}-0.151 x_{2}+0.573 x_{3}+1.023 x_{4}+1.147 x_{5}-1.359 d_{1}-3.80 d_{2} \leq 0.754$
else allocate the student to the unsuccessful (fail) group. The parameter estimates obtained for English and Afrikaans when compared with the other variables seem to indicate that the matriculation English and Afrikaans marks do not drastically influence the classification of a student to a successful or unsuccessful group. Also the parameter estimate obtained for the NED matriculation authority variable seem to suggest that NED students have a much greater chance of passing than those students from any of the other matriculation authorities. Furthermore, students writing the HOD matriculation papers have a higher chance of passing DSPH1SC1 than students writing papers set by the House of Representatives or Transvaal Education Department. ${ }^{10}$

Finally, performing a discriminant analysis on our combined DSMA1SX1 and DSPH1SC1 data (given in Appendix C3) we obtained the following results, namely:

Allocate a student to the successful group (i.e., a student is termed successful if he passes both subjects; otherwise he is unsuccessful) if
$0.198 x_{1}-0.023 x_{2}+0.836 x_{3}+0.715 x_{4}+0.618 x_{5}-1.035 d_{1}-2.912 d_{2} \leq 0.655$
Once again the small parameter estimates obtained for English and Afrikaans seem to suggest that these variables have very little influence when identifying a successful or unsuccessful student. Furthermore, the parameter estimate obtained for the NED matriculation authority variable seem to suggest that NED students have a much better chance of passing both DSMA1SX1 and

[^6]DSPH1SC1 when compared with students from the other matriculation authorities. Similarly it appears that students coming from the HOD have a greater chance of passing both DSMA1SX1 and DSPH1SC1 when compared with students from the TED and HOR matriculation authorities.

CHAPTER TWO

A GENERALIZED LINEAR MODELLING APPROACH

2.1 INTRODUCTION

The main purpose of this chapter will be to develop a technique that can be used for modelling binary responses. In particular we will examine a special class of models, called generalized linear models, that can be used to model our exam data problem. In section 2.2, a formal definition of the generalized linear model will be given with section 2.3 being devoted to the derivation of a maximum likelihood estimation technique for obtaining parameter estimates in the generalized linear model. The problem of subset selection in the generalized linear model will be examined in section 2.4 with section 2.5 being devoted to showing how a generalized linear model can be applied to our exam data by using first a logit link function and then a probit link function. Finally, in section 2.6 a discussion of our results will be given.

2.2 MODEL DESCRIPTION

Adopting the notation of Dobson (1990), consider a random variable y_{i} that comes from the following family of exponential distributions

$$
\begin{equation*}
f\left(y_{i}, \theta_{i}\right)=\exp \left[y_{i} b\left(\theta_{i}\right)+c\left(\theta_{i}\right)+d\left(y_{i}\right)\right] \tag{2.2.1}
\end{equation*}
$$

where θ_{i} denotes a set of model parameters that are to be associated with the above distribution, and $b(\cdot), c(\cdot)$ and $d(\cdot)$ represent known functions of θ_{i} and y_{i} respectively. Letting μ_{i} denote the expected value of y_{i}, the generalized linear model specification is then completed by introducing a monotonic link function that links a function of μ_{i} to a set of explanatory variables ($x_{i 1}, \ldots, x_{i p}$) in the following way

$$
g\left(\mu_{i}\right)=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}
$$

Although a large number of choices for $g(\cdot)$ are possible one usually chooses $g\left(\mu_{i}\right)$ to be equal to $b\left(\theta_{i}\right)^{1}$ as this simplifies the parameter estimation problem in the above model structure. Introducing the notation

$$
\begin{equation*}
l\left(y_{i}, \theta_{i}\right)=y_{i} b\left(\theta_{i}\right)+c\left(\theta_{i}\right)+d\left(y_{i}\right) \tag{2.2.2}
\end{equation*}
$$

to denote the log-likelihood function, and differentiating (2.2.2) with respect to θ_{i} yields the score statistic

$$
u_{i}=\frac{d l}{d \theta_{i}}=y_{i} b^{\prime}\left(\theta_{i}\right)+c^{\prime}\left(\theta_{i}\right)
$$

The vector $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)^{\prime}$ is known to have (for a regular density) a zero mean and variance-covariance matrix equal to the inverse of the Fisher Information matrix. Because of this one can obtain the result that

$$
\mathcal{E}\left\{y_{i}\right\} b^{\prime}\left(\theta_{i}\right)+c^{\prime}\left(\theta_{i}\right)=0
$$

which implies that

$$
\begin{equation*}
\mu_{i} \triangleq \mathcal{E}\left\{y_{i}\right\}=-\frac{c^{\prime}\left(\theta_{i}\right)}{b^{\prime}\left(\theta_{i}\right)} \tag{2.2.3}
\end{equation*}
$$

Furthermore, an expression for the variance of y_{i} can also be obtained by noting that

$$
\mathcal{V}\left\{y_{i} b^{\prime}\left(\theta_{i}\right)+c^{\prime}\left(\theta_{i}\right)\right\}=\left[b^{\prime}\left(\theta_{i}\right)\right]^{2} \mathcal{V}\left\{y_{i}\right\}
$$

[^7]and that
\[

$$
\begin{aligned}
\mathcal{V}\left\{\frac{d l}{d \theta_{i}}\right\} & =\mathcal{E}\left\{\left(\frac{d l}{d \theta_{i}}\right)^{2}\right\} \\
& =-\mathcal{E}\left\{\frac{d^{2} l}{d \theta_{i}^{2}}\right\} \\
& =\mathcal{E}\left\{-y_{i} b^{\prime \prime}\left(\theta_{i}\right)-c^{\prime \prime}\left(\theta_{i}\right)\right\} \\
& =-b^{\prime \prime}\left(\theta_{i}\right) \mathcal{E}\left\{y_{i}\right\}-c^{\prime \prime}\left(\theta_{i}\right) \\
& =\frac{b^{\prime \prime}\left(\theta_{i}\right) c^{\prime}\left(\theta_{i}\right)}{b^{\prime}\left(\theta_{i}\right)}-c^{\prime \prime}\left(\theta_{i}\right) \cdots \text { by }(2.2 .3)
\end{aligned}
$$
\]

On equating the above two expressions one can then obtain the result that

$$
\begin{equation*}
\mathcal{V}\left\{y_{i}\right\}=\frac{\left[b^{\prime \prime}\left(\theta_{i}\right) c^{\prime}\left(\theta_{i}\right)-b^{\prime}\left(\theta_{i}\right) c^{\prime \prime}\left(\theta_{i}\right)\right]}{\left[b^{\prime}\left(\theta_{i}\right)\right]^{3}} \tag{2.2.4}
\end{equation*}
$$

2.3 PARAMETER ESTIMATION

Given a set of observations $\left\{y_{1}, \ldots, y_{n}\right\}$ that have been drawn from the above family of distributions, an expression for the log-likelihood function can be given by

$$
\begin{equation*}
l\left(\theta_{1}, \ldots, \theta_{n} ; y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n}\left[y_{i} b\left(\theta_{i}\right)+c\left(\theta_{i}\right)+d\left(y_{i}\right)\right] \tag{2.3.1}
\end{equation*}
$$

Letting

$$
\begin{equation*}
\eta_{i} \triangleq g\left(\mu_{i}\right)=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}=\mathbf{x}_{\boldsymbol{i}}^{\prime} \boldsymbol{\beta} \quad i=1, \ldots, n \tag{2.3.2}
\end{equation*}
$$

denote the link function that is to be associated with the i^{\prime} th observation, maximum likelihood estimates for $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p}\right)$ can be obtained by solv-
ing the following system of equations (see Appendix A1)

$$
u_{j} \triangleq \frac{\partial l}{\partial \beta_{j}}=\sum_{i=1}^{n} \frac{\left(y_{i}-\mu_{i}\right) x_{i j}}{\mathcal{V}\left\{y_{i}\right\}} \frac{\partial \mu_{i}}{\partial \eta_{i}}=0 \quad j=0, \ldots, p
$$

Due to the non-linear form of the above set of equations, an iterative solution can be obtained by employing the following Newton-Raphson method (Gallant, 1987) that updates the previous estimate of $\boldsymbol{\beta}$, which we will denote by $\mathbf{b}^{(m-1)}$, as follows

$$
\mathbf{b}^{(m)}=\mathbf{b}^{(m-1)}-\mathbf{H}^{(m-1)} \mathbf{u}^{(m-1)} \quad m=1,2, \ldots
$$

where

$$
\mathbf{H}^{(m-1)}=\left.\frac{\partial^{2} l}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}\right|_{\boldsymbol{\beta}=\mathbf{b}^{(m-1)}}
$$

denotes the value of the Hessian matrix that has been evaluated at the previous iteration point $\mathbf{b}^{(m-1)}$, and

$$
\mathbf{u}^{(m-1)}=\left.\left(\frac{\partial l}{\partial \beta_{0}}, \ldots, \frac{\partial l}{\partial \beta_{p}}\right)^{\prime}\right|_{\boldsymbol{\beta}=\mathbf{b}(m-1)}
$$

denotes the value of the score vector that has been evaluated at the previous iteration point $\mathbf{b}^{(m-1)}$. Alternatively, the Fisher method of scoring (Dobson, 1990) which replaces the Hessian matrix with its matrix of expected values can be used yielding the following iterative recursion formula

$$
\begin{equation*}
\mathbf{b}^{(m)}=\mathbf{b}^{(m-1)}+\left[\mathcal{I}^{(m-1)}\right]^{-1} \mathbf{u}^{(m-1)} \tag{2.3.3}
\end{equation*}
$$

where

$$
\mathcal{I}^{(m-1)}=-\left.\mathcal{E}\left\{\frac{\partial^{2} l}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}\right\}\right|_{\boldsymbol{\beta}=\mathbf{b}^{(m-1)}}=\left.\mathcal{E}\left\{\frac{\partial l}{\partial \boldsymbol{\beta}} \frac{\partial l}{\partial \boldsymbol{\beta}^{\prime}}\right\}\right|_{\boldsymbol{\beta}_{=\mathbf{b}^{(m-1)}}}
$$

denotes the value of the Information matrix evaluated at the previous iteration point $\mathbf{b}^{(m-1)}$. The above iterative routine can however be rewritten in the form of an iteratively re-weighted least squares procedure, if on letting

$$
\mathbf{X}=\left(\begin{array}{llll}
1 & x_{11} & \cdots & x_{1 p} \\
1 & x_{21} & \cdots & x_{2 p} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n 1} & \cdots & x_{n p}
\end{array}\right)
$$

and $\mathbf{W}^{(m-1)}$ denote a $n \times n$ diagonal matrix with i^{\prime} th element

$$
w_{i i}^{(m-1)}=\left.\frac{1}{\mathcal{V}\left\{y_{i}\right\}}\left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2}\right|_{\boldsymbol{\beta}=\mathrm{b}^{(m-1)}}
$$

one notes that (see Appendix A2)

$$
\mathcal{I}^{(m-1)}=\mathbf{X}^{\prime} \mathbf{W}^{(m-1)} \mathbf{X}
$$

and that

$$
\mathbf{u}^{(m-1)}=\mathbf{X}^{\prime} \mathbf{W}^{(m-1)} \mathbf{z}^{*(m-1)}
$$

where $\mathbf{z}^{*(m-1)}$ denotes a n dimensional vector with i^{\prime} th component

$$
z_{i}^{*(m-1)}=\left.\left(y_{i}-\mu_{i}\right)\left(\frac{\partial \eta_{i}}{\partial \mu_{i}}\right)\right|_{\boldsymbol{\beta}_{=\mathbf{b}(m-1)}}
$$

Then on pre-multiplying both sides of (2.3.3) by $\mathcal{I}^{(m-1)}$ one can obtain the result that

$$
\mathcal{I}^{(m-1)} \mathbf{b}^{(m)}=\mathcal{I}^{(m-1)} \mathbf{b}^{(m-1)}+\mathbf{u}^{(m-1)}
$$

and thus that

$$
\mathbf{X}^{\prime} \mathbf{W}^{(m-1)} \mathbf{X} \mathbf{b}^{(m)}=\mathbf{X}^{\prime} \mathbf{W}^{(m-1)} \mathbf{z}^{(m-1)}
$$

where $\mathbf{z}^{(m-1)}=\mathbf{X} \mathbf{b}^{(m-1)}+\mathbf{z}^{*(m-1)}$.

The above result then implies that the m^{\prime} th iteration of the Fisher method of scoring can be implemented by setting

$$
\begin{equation*}
\mathbf{b}^{(m)}=\left(\mathbf{X}^{\prime} \mathbf{W}^{(m-1)} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W}^{(\mathrm{m}-1)} \mathbf{z}^{(m-1)} \quad m=1,2, \ldots \tag{2.3.4}
\end{equation*}
$$

with the maximum likelihood estimate being obtained upon convergence of the above algorithm, that is

$$
\hat{\boldsymbol{\beta}}=\lim _{m \rightarrow \infty} \mathbf{b}^{(m)}
$$

Letting

$$
\hat{\mathbf{W}}=\lim _{m \rightarrow \infty} \mathbf{W}^{(m-1)}
$$

asymptotic distribution theory results then imply that

$$
\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \hat{\boldsymbol{I}}^{-1}\right)
$$

where

$$
\hat{\mathcal{I}}=\mathbf{X}^{\prime} \hat{\mathbf{W}} \mathbf{X}
$$

2.4 SUBSET SELECTION

To determine which matriculation subjects and authorities are important for predicting university results we need to develop a suitable subset selection procedure. In particular, given a matriculation profile vector containing $p+1$ variables we need to determine which variables are to be excluded from the link function of the generalized linear model. In order to do this,
let us partition our matrix of independent variables (and thus vector of link function parameters) as follows

$$
\mathbf{X}=\left(\begin{array}{lll}
\mathbf{X}_{\mathbf{1}} & \mathbf{X}_{\mathbf{2}} \tag{2.4.1}
\end{array}\right) \quad \boldsymbol{\beta}=\binom{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{2}}
$$

where $\mathbf{X}_{\mathbf{1}}$ denotes a $n \times(k+1)$ dimensional matrix of explanatory variables which we want to include in our model, and $\mathbf{X}_{\mathbf{2}}$ a $n \times(p-k)$ dimensional matrix of variables that we want to exclude from our model. To determine whether the set of independent variables \mathbf{X}_{2} can be left out of the generalized linear model we need then only derive a test procedure for testing

$$
H_{0}: \boldsymbol{\beta}_{2}=0 \quad \text { vs } \quad H_{1}: \quad \boldsymbol{\beta}_{2} \neq 0
$$

or alternatively

$$
H_{0}: \mathbf{R} \boldsymbol{\beta}=0 \quad \text { vs } \quad H_{1}: \mathbf{R} \boldsymbol{\beta} \neq 0
$$

where one has appropriately set $\mathbf{R}=(\mathbf{I}, \mathbf{0})$, with $\mathbf{0}$ representing a $(p-k) \times$ $(k+1)$ matrix of zeroes and \mathbf{I} a $(p-k) \times(p-k)$ identity matrix. Such a test can be taken using either a likelihood ratio, Wald or a Lagrange multiplier test statistic (Buse, 1982; Lawless and Singhal, 1978). Letting $\hat{\boldsymbol{\beta}}$ denote the unrestricted estimate of $\boldsymbol{\beta}$ that has been obtained using the Fisher scoring routine and

$$
\begin{aligned}
& \left.\left\{\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{W}^{(m-1)} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{W}^{(m-1)} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W}^{(m-1)} \mathbf{z}^{(m-1)}\right]
\end{aligned}
$$

the estimate of β that has been obtained subject to the restrictions that $\mathbf{R} \boldsymbol{\beta}=0$ (see Appendix A3), then the relevant test statistics can be given by:

$$
\begin{equation*}
D=2\{l(\hat{\boldsymbol{\beta}}, \mathbf{y})-l(\tilde{\boldsymbol{\beta}}, \mathbf{y})\} \tag{2.4.2}
\end{equation*}
$$

for the likelihood ratio test statistic ${ }^{2}$ which follows a chi-squared distribution with $v=p-k$ degrees of freedom when H_{0} is true; by

$$
\begin{equation*}
\mathbf{W} \mathbf{T}=(\mathbf{R} \hat{\boldsymbol{\beta}})^{\prime}\left\{\mathbf{R}\left(\mathbf{X}^{\prime} \hat{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R} \hat{\boldsymbol{\beta}}) \tag{2.4.3}
\end{equation*}
$$

for the Wald test statistic which follows asymptotically a chi-squared distribution with $v=p-k$ degrees of freedom when H_{0} is true, and by

$$
\begin{equation*}
\mathbf{L M} \triangleq \mathbf{u}(\tilde{\boldsymbol{\beta}})^{\prime} \mathcal{I}^{-1} \mathbf{u}(\tilde{\boldsymbol{\beta}}) \tag{2.4.4}
\end{equation*}
$$

for the Lagrange multiplier test statistic ${ }^{3}$ which also follows asymptotically a chi-squared distribution with $v=p-k$ degrees of freedom.

2.5 APPLICATION TO EXAM DATA

In order to model the success (or failure) of a student when taking a particular course at university and to associate this success (or failure) with the outcome of a Bernoulli random variable, we need to consider a student as

[^8]where
\[

\boldsymbol{I}=\left($$
\begin{array}{ll}
\mathcal{I}_{11} & \mathcal{I}_{12} \\
\boldsymbol{I}_{21} & \mathcal{I}_{22}
\end{array}
$$\right)
\]

denotes a partitioned form of the information matrix that is to be associated with the parameter vector $\boldsymbol{\beta}^{\prime}=\left(\boldsymbol{\beta}_{1}^{\prime} \boldsymbol{\beta}_{2}^{\prime}\right)$. Asymptotically D^{*} then also follows a chi-squared distribution with $v=p-k$ degrees of freedom if H_{0} is true.
${ }^{3}$ where

$$
\mathbf{u}(\tilde{\boldsymbol{\beta}})=\left.\left(\frac{\partial \boldsymbol{l}}{\partial \beta_{0}}, \ldots, \frac{\partial \boldsymbol{l}}{\partial \beta_{p}}\right)^{\prime}\right|_{\boldsymbol{\beta}=\overline{\boldsymbol{\beta}}}
$$

and

$$
\mathcal{I}=\left.\mathcal{E}\left\{\frac{\partial l}{\partial \boldsymbol{\beta}} \frac{\partial \boldsymbol{l}}{\partial \boldsymbol{\beta}^{\prime}}\right\}\right|_{\boldsymbol{\beta}=\tilde{\boldsymbol{\beta}}}
$$

being successful if they obtain a mark that lies within a certain prespecified interval that is of interest. For example, if one is intending to model the probability that a student will pass DSMA1SX1, then the interval of interest will be given by that student's mark lying in the following set, namely

$$
I_{M}=\{\text { DSMA1SX1 mark } \geq 48\}
$$

Clearly the above definition can be extended to account for more than one university subject if for each subject an appropriate mark interval is constructed with the student being classified as being successful if all of his or her university marks lie in these intervals. For example, suppose that we are interested in a student obtaining a first class pass for DSMA1SX1 and a second class pass for DSPH1SC1. By letting

$$
I_{M}=\{75 \leq \text { DSMA1SX1 mark } \leq 100\}
$$

and

$$
I_{P}=\{60 \leq \text { DSPH1SC1 mark } \leq 74\}
$$

denote the appropriate mark intervals of interest, then a student can be classified as being successful if their DSMA1SX1 mark lies in the interval set I_{M}, and their DSPH1SC1 mark in the interval I_{P}. Introducing a Bernoulli random variable to model the occurrence of this event with y_{i} being set equal to 1 if the i^{\prime} th student obtains the desired event and set equal to 0 if he or she does not, and letting

$$
\pi_{i}=P\left(y_{i}=1 \mid \mathbf{x}_{i}^{\prime}\right)
$$

denote the probability that this student will be successful, our approach will be to associate this probability value with the student's matriculation profile
vector $\mathbf{x}_{i}^{\prime} \mathbf{u s i n g}$ initially a logit link function defined by ${ }^{4}$

$$
\begin{equation*}
g\left(\mu_{i}\right)=g\left(\pi_{i}\right) \triangleq \log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}=\eta_{i} \tag{2.5.1}
\end{equation*}
$$

and then a probit link function of the form

$$
\begin{equation*}
g\left(\pi_{i}\right) \triangleq \Phi^{-1}\left(\pi_{i}\right)=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}=\eta_{i} \tag{2.5.2}
\end{equation*}
$$

where Φ denotes the cumulative standard normal distribution function. Because

$$
\begin{align*}
f\left(y_{i}, \pi_{i}\right) & =\pi_{i}^{y_{i}}\left(1-\pi_{i}\right)^{1-y_{i}} \\
& =\exp \left[y_{i} \log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)+\log \left(1-\pi_{i}\right)\right] \tag{2.5.3}
\end{align*}
$$

represents the probability density function of y_{i}, with a mean and a variance parameter given by π_{i} and $\pi_{i}\left(1-\pi_{i}\right)$ respectively, and on noting, for the logit link function, that

$$
\begin{aligned}
\frac{\partial \mu_{i}}{\partial \eta_{i}}=\frac{\partial \pi_{i}}{\partial \eta_{i}} & =\frac{\partial}{\partial \eta_{i}}\left(\frac{e^{\eta_{i}}}{1+e^{\eta_{i}}}\right) \\
& =\frac{\left(1+e^{\eta_{i}}\right) e^{\eta_{i}}-e^{2 \eta_{i}}}{\left(1+e^{\eta_{i}}\right)^{2}} \\
& =\frac{e^{\mathbf{x}_{i}^{\prime}} \boldsymbol{\beta}}{\left[1+e^{\mathbf{x}_{i}^{\prime}} \boldsymbol{\beta}^{2}\right.} \\
& =\pi_{i}\left(1-\pi_{i}\right)
\end{aligned}
$$

[^9]where
$$
\pi_{i}=\frac{e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}}
$$
one can obtain the following substitutions for the Fisher scoring routine defined in section 2.3 , namely
$$
w_{i i}^{(m-1)}=\left.\frac{1}{\operatorname{var}\left(y_{i}\right)}\left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2}\right|_{\boldsymbol{\beta}=\mathbf{b}^{(m-1)}}=\pi_{i}^{(m-1)}\left(1-\pi_{i}^{(m-1)}\right)
$$
and (for the i^{\prime} th element of $\mathbf{z}^{(m-1)}$),
$$
z_{i}^{(m-1)}=\mathbf{x}_{i}^{\prime} \mathbf{b}^{(m-1)}+\frac{\left(y_{i}-\pi_{i}^{(m-1)}\right)}{\pi_{i}^{(m-1)}\left(1-\pi_{i}^{(m-1)}\right)}
$$

Having obtained upon suitable convergence of the Fisher's scoring routine a maximum likelihood estimate for $\boldsymbol{\beta}$, which we will denote by $\hat{\boldsymbol{\beta}}$, this estimate can then be substituted into the following formula

$$
\begin{equation*}
\hat{\pi}_{i}=\frac{e^{\mathbf{x}_{\mathbf{i}}^{\prime} \hat{\boldsymbol{\beta}}}}{1+e^{\mathbf{x}_{\mathbf{i}} \hat{\boldsymbol{\beta}}}} \tag{2.5.4}
\end{equation*}
$$

to obtain an estimate for the success probability of a student with a matriculation profile \mathbf{x}_{i}^{\prime}. For large sample sizes a $(1-\alpha) 100 \%$ confidence interval for β_{i} can be defined by the expression

$$
\hat{\beta}_{i} \pm z_{1-\frac{\alpha}{2}} \sqrt{\hat{\mathcal{I}}_{i i}^{-1}}
$$

where z represents a standardized normal random variable and on defining $\hat{\boldsymbol{\sigma}}$ to be a vector with i^{\prime} th element

$$
\hat{\sigma}_{i}=\sqrt{\hat{\mathcal{I}}_{i i}^{-1}}
$$

a $(1-\alpha) 100 \%$ confidence interval for π_{i} can be given by (Hosmer et al. 1989)

$$
\begin{equation*}
\frac{\exp \left(\mathbf{x}_{i}^{\prime}\left[\hat{\boldsymbol{\beta}} \pm z_{1-\frac{\alpha}{2}} \hat{\boldsymbol{\sigma}}\right]\right)}{1+\exp \left(\mathbf{x}_{i}^{\prime}\left[\hat{\boldsymbol{\beta}} \pm \mathrm{z}_{1-\frac{\alpha}{2}} \hat{\boldsymbol{\sigma}}\right]\right)} \tag{2.5.5}
\end{equation*}
$$

Turning our attention to the Probit link function, one can obtain the result that

$$
\frac{\partial \mu_{i}}{\partial \eta_{i}}=\frac{\partial \pi_{i}}{\partial \eta_{i}}=\frac{\partial}{\partial \eta_{i}} \Phi\left(\eta_{i}\right)=\phi\left(\eta_{i}\right)=\phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)
$$

where ϕ represents the standard normal density function, and thus the Fisher scoring routine substitutions takes the form

$$
w_{i i}^{(m-1)}=\left.\frac{1}{\operatorname{var}\left(y_{i}\right)}\left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2}\right|_{\boldsymbol{\beta}=\mathbf{b}(m-1)}=\frac{\left[\phi\left(\mathbf{x}_{i}^{\prime} \mathbf{b}^{(m-1)}\right)\right]^{2}}{\pi_{i}^{(m-1)}\left(1-\pi_{i}^{(m-1)}\right)}
$$

and

$$
z_{i}^{(m-1)}=\mathbf{x}_{i}^{\prime} \mathbf{b}^{(m-1)}+\frac{y_{i}-\pi_{i}^{(m-1)}}{\phi\left(\mathbf{x}_{i}^{\prime} \mathbf{b}^{(m-1)}\right)}
$$

with an estimate for π_{i}, for a given set of independent variables x_{i}^{\prime}, being given by

$$
\begin{equation*}
\hat{\pi}_{i}=\Phi\left(\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}\right) \tag{2.5.6}
\end{equation*}
$$

and a ($1-\alpha) 100 \%$ confidence interval for π_{i} being given by the expression

$$
\begin{equation*}
\boldsymbol{\Phi}\left(\mathbf{x}_{i}^{\prime}\left[\hat{\boldsymbol{\beta}} \pm \mathrm{z}_{1-\frac{\alpha}{2}} \hat{\boldsymbol{\sigma}}\right]\right) \tag{2.5.7}
\end{equation*}
$$

2.6 RESULTS

Turning our attention once again to the three different problems that we analysed earlier in chapter one, namely the problem of associating the success probability of a student passing DSMA1SX1, DSPH1SC1 and then both DSMA1SX1 and DSPH1SC1, with their matriculation profile record, a generalized linear model with a logit ${ }^{5}$ link function was applied to our DSMA1SX1 data with the event of interest being that a student obtains a mark greater than or equal to 48 for that particular subject. Our analysis yielded the following results, namely

Table 2.6.1

Parameter	$\hat{\boldsymbol{\beta}}$	SE $^{* 1}$	WT $^{* 2}$	PROB $^{* 3}$	LB $^{* 4}$	UB $^{* 5}$
β_{0}	1.8168972	0.6670501	7.4189739	0.006454	0.5094791	3.1243153
β_{1}	-0.001621	0.1860349	0.000076	0.993046	-0.36625	0.3630071
β_{2}	-0.069744	0.1590199	0.1923588	0.6609606	-0.381423	0.2419349
β_{3}	-0.650262	0.1793891	13.139672	0.0002891	-1.001864	-0.298659
β_{4}	-0.430301	0.1772003	5.8967842	0.0151686	-0.777613	-0.082988
β_{5}	-0.376458	0.1889741	3.9685174	0.0463586	-0.746847	-0.006069
β_{6}	0.0136196	0.5624001	0.0005865	0.9806795	-1.088685	1.1159239
β_{7}	1.1969564	0.614631	3.7925191	0.0514821	-0.00772	2.4016332

A backward elimination type procedure with a variable exclusion probability level of 0.1 was then applied to our model with the following results being achieved, namely

[^10]Table 2.6.2

						LB
Parameter	$\hat{\boldsymbol{\beta}}$	SE	WT	PROB	UB	
β_{0}	1.731933	0.2623238	43.589974	$4.049 \mathrm{E}-11$	1.2177782	2.2460877
β_{3}	-0.64638	0.1783844	13.129916	0.0002906	-0.996013	-0.296747
β_{4}	-0.449118	0.1687949	7.0795033	0.0077971	-0.779956	-0.11828
β_{5}	-0.396369	0.1819488	4.7457053	0.0293715	-0.752989	-0.039749
β_{7}	1.1877764	0.3349495	12.575082	0.0003909	0.5312755	1.8442773

From the above table an estimate of the probability that can be associated with a student passing DSMA1SX1, for a specified matriculation profile $\mathbf{x}_{i}^{\prime}=\left(1 x_{i 3} x_{i 4} x_{i 5} d_{i 2}\right)$, can be given by

$$
\begin{aligned}
\hat{\pi}_{i} & =\frac{\exp \left(\hat{\beta}_{0}+\hat{\beta}_{3} x_{i 3}+\hat{\beta}_{4} x_{i 4}+\hat{\beta}_{5} x_{i 5}+\hat{\beta}_{7} d_{i 2}\right)}{1+\exp \left(\hat{\beta}_{0}+\hat{\beta}_{3} x_{i 3}+\hat{\beta}_{4} x_{i 4}+\hat{\beta}_{5} x_{i 5}+\hat{\beta}_{7} d_{i 2}\right)} \\
& =\frac{1}{1+\exp \left[-\left(\hat{\beta}_{0}+\hat{\beta}_{3} x_{i 3}+\hat{\beta}_{4} x_{i 4}+\hat{\beta}_{5} x_{i 5}+\hat{\beta}_{7} d_{i 2}\right)\right]}
\end{aligned}
$$

As would be expected, the negative parameter estimates obtained for Mathematics $\left(X_{3}\right)$, Biology $\left(X_{4}\right)$ and Physics (X_{5}) indicate that lower symbols for these matriculation subjects are associated with a lower probability of a student passing DSMA1SX1. Furthermore the magnitude of all the regression coefficients imply that a student's matriculation Mathematics symbol has the greatest influence on the probability of passing the DSMA1SX1 course. The significantly positive estimate obtained for the NED variable implies that students writing the Natal Education Department matriculation papers have a much greater probability of passing DSMA1SX1 when compared with students from any of the other matriculation authorities. ${ }^{6}$

[^11]In Table 2.6 .3 we have provided a brief summary of some of the estimated success probabilities, for passing DSMA1SX1, that can be associated with a certain type of matriculation profile result. ${ }^{7}$

Table 2.6.3

X_{3}	X_{4}	X_{5}	d_{2}	$\hat{\pi}$	$\mathrm{LB}(\hat{\pi})^{* 6}$	$\mathrm{UB}(\hat{\pi})^{* 7}$
0	0	0	0	0.8496595	0.7716723	0.9043125
1	0	0	0	0.7475434	0.5552151	0.8753748
0	1	0	0	0.7829285	0.6077399	0.8935767
0	0	1	0	0.7917595	0.6141498	0.9008173
0	0	0	1	0.9488122	0.8518334	0.9835423
1	0	0	1	0.906444	0.6798408	0.979817
0	1	0	1	0.9220543	0.7249395	0.981514
0	0	1	1	0.925762	0.7302842	0.9828863

Turning our attention to the DSPH1SC1 data a generalized linear model implementation with a logit link function produced the following results, namely

Table 2.6.4

						UB
Parameter	$\hat{\boldsymbol{\beta}}$	SE	WT	PROB	LB	UB
β_{0}	1.5416826	0.9428239	2.6737992	0.1020122	-0.306252	3.3896174
β_{1}	0.216685	0.2808714	0.5951725	0.4404259	-0.333823	0.7671929
β_{2}	0.1609419	0.2514019	0.4098277	0.522057	-0.331806	0.6536895
β_{3}	-0.537684	0.2577496	4.3516973	0.0369721	-1.042874	-0.032495
β_{4}	-1.1926	0.3289327	13.145444	0.0000882	-1.837308	-0.547892
β_{5}	-1.160835	0.3247551	12.77701	0.0003509	-1.797355	-0.524315
β_{6}	1.1429925	0.825125	1.9188776	0.1659804	-0.474252	2.7602375
β_{7}	4.8582069	1.1203755	18.802899	0.0000145	2.6622709	7.0541428

[^12]An application of the backward elimination routine, using a probability value of 0.1 , yielded the following results, namely

Table 2.6.5

						UB
Parameter	$\hat{\boldsymbol{\beta}}$	SE	WT	PROB	LB	UB
β_{0}	2.9552285	0.4270913	47.878523	$4.535 \mathrm{E}-12$	2.1181296	3.7923274
β_{3}	-0.542827	0.2478101	4.7982761	0.0284882	-1.028535	-0.057119
β_{4}	-1.009345	0.2971657	11.53671	0.0006824	-1.59179	-0.4269
β_{5}	-1.076835	0.2977927	13.075852	0.0002991	-1.660508	-0.493161
β_{7}	3.6106889	0.7464047	23.400836	$1.3152 \mathrm{E}-6$	2.1477356	5.0736422

Once again, we notice that lower matriculation symbols in Mathematics, Biology and Physics are associated with a lower probability of a student passing the DSPH1SC1 course. Also the large negative value associated with a student's matriculation Physics mark implies that this subject has the greatest influence on the probability of that student passing DSPH1SC1 when compared with his or her matriculation Biology and Mathematics marks. Furthermore, students writing the matriculation examination set by the Natal Education Department have a far greater probability of passing the DSPH1SC1 course when compared with students from the other matriculation departments. A few estimated probabilities, along with their associated matriculation profiles are summarised in Table 2.6.6.

Table 2.6.6

X_{3}	X_{4}	X_{5}	d_{2}	$\hat{\pi}$	$\mathrm{LB}(\hat{\pi})$	$\mathrm{UB}(\hat{\pi})$
0	0	0	0	0.95051	0.8926528	0.9779539
1	0	0	0	0.9177681	0.7483054	0.9766882
0	1	0	0	0.8749971	0.628629	0.9666064
0	0	1	0	0.8674265	0.6124498	0.9644002
0	0	0	1	0.9985944	0.9861547	0.9998589
1	0	0	1	0.9975837	0.9622152	0.9998506
0	1	0	1	0.9961529	0.9354794	0.9997838
0	0	1	1	0.9958854	0.9312056	0.999769

Turning our attention now to the final problem, namely that of determining the probability that a student will pass both DSMA1SX1 and DSPH1SC1, a generalized linear model implementation with a logit link function produced the following results, namely

Table 2.6.7

Parameter	0.745716	0.9055002	0.6782189	0.4102007	-1.029064	2.5204964
β_{0}	-0.096568	0.248199	0.1513802	0.6972199	-0.583038	0.3899018
β_{1}	-0.041521	0.2406129	0.029778	0.862995	-0.513122	0.4300803
β_{2}	-0.827465	0.26855	9.493996	0.0020615	-1.353823	-0.301107
β_{3}	-0.782912	0.2867977	7.4530238	0.0063365	-1.345035	-0.220788
β_{4}	-0.584166	0.6685855	4.7304982	0.0296323	-1.110593	-0.057738
β_{5}	1.1815894	0.8104127	2.1257919	0.1448379	-0.406819	2.7699982
β_{6}	3.4470168	0.9688301	12.658771	0.0003738	1.5481098	5.3459238
β_{7}						

Employing a backward elimination routine we then obtained the following results, namely

Table 2.6.8

						UB
Parameter	$\hat{\boldsymbol{\beta}}$	SE	WT	PROB	LB	UB
β_{0}	1.696732	0.3091204	30.128062	$4.044 \mathrm{E}-8$	1.090856	2.3026079
β_{3}	-0.801685	0.2652619	9.1339401	0.0025091	-1.321599	-0.281772
β_{4}	-0.817072	0.2657783	9.451085	0.0021102	-1.337997	-0.296147
β_{5}	-0.655945	0.2606012	6.3355243	0.0118343	-1.166724	-0.145167
β_{7}	2.4002477	0.568151	17.847792	0.0000239	1.2866716	3.5138237

The only surprising result here, was that a student's matriculation Biology mark now seems to have the greatest influence on the probability of passing both DSMA1SX1 and DSPH1SC1 when compared with his or her other matriculation subjects. In Table 2.6.9 a few estimated probabilities for passing both DSMA1SX1 and DSPH1SC1 are given along with their associated matriculation profile results.

Table 2.6.9

X_{3}	X_{4}	X_{5}	d_{2}	$\hat{\pi}$	$\mathrm{LB}(\hat{\pi})$	$\mathrm{UB}(\hat{\pi})$
0	0	0	0	0.8451074	0.7455429	0.9090928
1	0	0	0	0.7099305	0.4425689	0.8829674
0	1	0	0	0.7067518	0.4385273	0.8814738
0	0	1	0	0.7390017	0.4810421	0.8963621
0	0	0	1	0.983649	0.9150975	0.9970306
1	0	0	1	0.964267	0.7419118	0.996068
0	1	0	1	0.9637331	0.7387594	0.9960113
0	0	1	1	0.9689626	0.770441	0.9965683

Repeating the above analysis but now with a probit link function we obtained (after employing the backward elimination procedure) the following results for the DSMA1SX1 data, namely ${ }^{5}$

Table 2.6.10

Parameter	$\hat{\boldsymbol{\beta}}$	SE	WT	PROB	LB	UB
β_{0}	1.0436877	0.1495514	48.703466	$2.977 \mathrm{E}-12$	0.7505668	1.3368085
β_{3}	-0.381888	0.1057402	13.04343	0.0003044	-0.589139	-0.174637
β_{4}	-0.262307	0.0991141	6.9949223	0.0081741	-0.456524	-0.067891
β_{5}	-0.243779	0.0980707	5.088337	0.0240873	-0.455597	-0.03196
β_{7}	0.6805545	0.1910991	12.682609	0.0003691	0.3060003	1.0551088

The probability associated with a student passing DSMA1SX1, given a particular matriculation profile $\mathbf{x}_{i}^{\prime}=\left(1 x_{i 3} x_{i 4} x_{i 5} d_{i 2}\right)$, can then be estimated by

$$
\hat{\pi}_{i}=\Phi\left(\hat{\beta}_{0}+\hat{\beta}_{3} x_{i 3}+\hat{\beta}_{4} x_{i 4}+\hat{\beta}_{5} x_{i 5}+\hat{\beta}_{7} d_{i 2}\right)
$$

These results are very similar to those obtained when a logit link function was employed. In Table 2.6 .11 we have provided a brief summary of some of the estimated success probabilities that can be associated with a given matriculation result profile, namely

$$
\begin{aligned}
& { }^{5} \text { For these three problems the initial link function is defined by } \\
& g\left(\pi_{i}\right)=\Phi^{-1}\left(\pi_{i}\right)=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}+\beta_{5} x_{i 5}+\beta_{6} d_{i 1}+\beta_{7} d_{i 2}
\end{aligned}
$$

Table 2.6.11

X_{3}	X_{4}	X_{5}	d_{2}	$\hat{\pi}$	$\mathrm{LB}(\hat{\pi})$	$\mathrm{UB}(\hat{\pi})$
0	0	0	0	0.851685	0.7735433	0.9093574
1	0	0	0	0.7459501	0.5641218	0.877417
0	1	0	0	0.78274	0.6156375	0.8977648
0	0	1	0	0.7881182	0.6159914	0.9040277
0	0	0	1	0.9576679	0.8546454	0.9916197
1	0	0	1	0.9102594	0.6799032	0.986698
0	1	0	1	0.9281342	0.7257613	0.989938
0	0	1	1	0.9306252	0.7260699	0.9908615

An analysis of the DSPH1SC1 data (after employing the backward elimination procedure) yielded the following results, namely

Table 2.6.12

	$\hat{\boldsymbol{\beta}}$	SE	WT	PROB	LB	UB
Parameter	1.737115	0.2257253	59.223846	$1.41 \mathrm{E}-14$	1.2946934	2.1795366
β_{0}	-0.317817	0.1424659	4.9765785	0.0256927	-0.59705	-0.038583
β_{3}	-0.559217	0.1672549	11.179004	0.00008273	-0.887037	-0.231397
β_{4}	-0.650865	0.1689926	14.83359	0.0001174	-0.98209	-0.319639
β_{5}	2.0568496	0.4100291	25.163768	$5.2662 \mathrm{E}-7$	1.2531925	2.8605067
β_{7}						

In Table 2.6.13 a few estimated probabilities for passing DSPH1SC1, that can be associated with a specific set of matriculation profiles, are provided.

Table 2.6.13

				$\hat{\pi}$	$\mathrm{LB}(\hat{\pi})$	$\mathrm{UB}(\hat{\pi})$
X_{3}	X_{4}	$X_{\mathbf{5}}$	d_{2}	$\hat{\pi}$	0.988	0.902287
0	0	0	0	0.95853541		
1	0	0	0	0.922094	0.7572999	0.9838611
0	1	0	0	0.8805813	0.6582371	0.9743008
0	0	1	0	0.8613158	0.6227089	0.96855
0	0	0	1	0.9999259	0.9945811	0.9999998
1	0	0	1	0.9997547	0.9744617	0.9999997
0	1	0	1	0.9993912	0.9516281	0.9999992
0	0	1	1	0.9991642	0.9413018	0.9999988

Finally, turning our attention to the combined DSMA1SX1 and DSPH1SC1 data problem, a probit analysis (after the backward elimination procedure was employed) produced the following results, namely

Table 2.6.14

Parameter	$\hat{\boldsymbol{\beta}}$	SE	WT	PROB	LB	UB
β_{0}	0.9830133	0.1723893	32.516086	$1.1821 \mathrm{E}-8$	0.6451303	1.3208963
β_{3}	-0.448145	0.1504812	8.8689487	0.0029006	-0.743088	-0.153202
β_{4}	-0.458362	0.1517864	9.1190964	0.0025295	-0.755864	-0.160861
β_{5}	-0.377692	0.1507272	6.2790372	0.0122174	-0.673118	-0.082267
β_{7}	1.2965121	0.3026867	18.347057	0.0000184	0.7032461	1.8897781

In Table 2.6.15 a few estimated success probabilities for passing both DSMA1SX1 and DSPH1SC1, that can be associated with a specific set of matriculation profiles, are summarised.

Table 2.6.15

				$\hat{\pi}$	$\mathrm{LB}(\hat{\pi})$	$\mathrm{UB}(\hat{\pi})$
X_{3}	X_{4}	X_{5}	d_{2}	$\hat{\pi}$	0.871996	0.7405786
0	0	0	0	0.83796732		
1	0	0	0	0.7036296	0.460983	0.878535
0	1	0	0	0.7000871	0.4559139	0.8769828
0	0	1	0	0.7275171	0.4888361	0.8922586
0	0	0	1	0.9886821	0.9112313	0.9993379
1	0	0	1	0.9664781	0.7275063	0.9988839
0	1	0	1	0.965709	0.7232464	0.9988551
0	0	1	1	0.9714035	0.7502443	0.9991212

We notice that on employing the backward elimination procedure on both our probit and logit models the same variables were excluded based on the Wald test statistic procedure. Furthermore, the confidence intervals for the estimated probabilities obtained using both the probit and logit models were also of the same order. It can therefore be concluded that for our DSMA1SX1/DSPH1SC1 data problem both techniques lead to similar results.

CHAPTER THREE

A MONTE CARLO SIMULATION APPROACH

3.1 INTRODUCTION

The main purpose of this chapter will be to present an alternative method for relating the probability of success at university to a student's matriculation profile. In particular, letting $Y_{1}, Y_{2}, \ldots, Y_{p}$ denote a set of p university subject variables that are of interest, and

$$
A=\left\{c_{11} \leq Y_{1} \leq c_{12}\right\} \cup\left\{c_{21} \leq Y_{2} \leq c_{22}\right\} \cup \ldots \cup\left\{c_{p 1} \leq Y_{p} \leq c_{p 2}\right\}
$$

an event that we wish to model, a Monte Carlo simulation approach will be used to estimate the probability of a student being successful. For example, let Y_{1} denote the DSMA1SX1 mark and Y_{2} the DSPH1SC1 mark of a particular student, then an event of the form

$$
A=\left\{Y_{1} \geq 48\right\} \cup\left\{Y_{2} \geq 48\right\}
$$

will represent a pass mark for both DSMA1SX1 and DSPH1SC1 for that particular student. In section 3.2 we will begin by briefly discussing the assumptions that are necessary for our model, with section 3.3 being used to derive parameter estimates. In section 3.4, a seemingly unrelated regression modelling approach (Huang, 1970) will be developed with section 3.5 being devoted to a practical application of our model and a discussion of our results.

3.2 MODEL ASSUMPTIONS

Letting $\mathbf{y}_{i}^{\prime}=\left(y_{i 1} y_{i 2} \ldots y_{i p}\right)$ denote the set of marks obtained by student i for his or her p university subjects, and letting $\mathbf{x}_{i}^{\prime}=\left(1 x_{i 1} \ldots x_{i k}\right)$ denote the matriculation profile vector that is to be associated with this student, then the following assumptions will be made concerning our proposed model structure, namely that
i) the conditional density, $f\left(\mathbf{y}_{i} \mid \mathbf{x}_{i}\right)$ is Gaussian with a mean $\boldsymbol{\mu}_{i}^{\prime}=\mathbf{x}_{i}^{\prime} \boldsymbol{B}$ where $\boldsymbol{\beta}$ represents a matrix of regression coefficients of the form

$$
\mathbf{B}=\left(\begin{array}{llll}
\beta_{01} & \beta_{02} & \cdots & \beta_{0 p} \tag{3.2.1}\\
\beta_{11} & \beta_{12} & \cdots & \beta_{1 p} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{k 1} & \beta_{k 2} & \cdots & \beta_{k p}
\end{array}\right)
$$

and a variance-covariance matrix

$$
\boldsymbol{\Sigma}_{p}=\left(\begin{array}{llll}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 p} \tag{3.2.2}\\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{p 1} & \sigma_{p 2} & \cdots & \sigma_{p p}
\end{array}\right)
$$

that is independent of the predictor variables, and that
ii) the observations $\mathbf{y}_{1}^{\prime}, \mathbf{y}_{2}^{\prime}, \ldots, \mathbf{y}_{n}^{\prime}$ are independent of each other.

Conditional on a matriculation profile record \mathbf{x}_{i}, a probability density function of \mathbf{y}_{i} can therefore be given by the expression

$$
\begin{equation*}
f\left(\mathbf{y}_{i} \mid \boldsymbol{\beta}^{\prime} \mathbf{x}_{i}, \boldsymbol{\Sigma}_{p}\right)=(2 \pi)^{-p / 2}\left|\boldsymbol{\Sigma}_{p}\right|^{-1 / 2} \exp \left[-\frac{1}{2}\left(\mathbf{y}_{i}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}\right)^{\prime} \boldsymbol{\Sigma}_{p}^{-1}\left(\mathbf{y}_{i}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}\right)\right] \tag{3.2.3}
\end{equation*}
$$

Letting

$$
A=\left\{c_{11} \leq Y_{1} \leq c_{12}\right\} \cup\left\{c_{21} \leq Y_{2} \leq c_{22}\right\} \cup \ldots \cup\left\{c_{p 1} \leq Y_{p} \leq c_{p 2}\right\}
$$

denote the event of interest then providing parameter estimates are available for both $ß$ and $\boldsymbol{\Sigma}_{p}$, the probability of obtaining this event can then be given by

$$
\begin{align*}
\pi(\mathbf{x}) & =\int P[\mathbf{y} \in A \mid \mathbf{x}] \\
& =\int_{A} f(\mathbf{y} \mid \mathbf{x}) d \mathbf{y} \\
& =\int_{A}(2 \pi)^{-\frac{P}{2}}\left|\boldsymbol{\Sigma}_{p}\right|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}\left(\mathbf{y}-\boldsymbol{\beta}^{\prime} \mathbf{x}\right)^{\prime} \boldsymbol{\Sigma}_{p}^{-1}\left(\mathbf{y}-\boldsymbol{\beta}^{\prime} \mathbf{x}\right)\right] d \mathbf{y} \tag{3.2.4}
\end{align*}
$$

A method for evaluating this integral will be discussed in the following section.

3.3 PARAMETER ESTIMATION

Given a sample of n student marks and matriculation profile results and adopting the notation

$$
\begin{align*}
& \mathbf{Y}=\left(\begin{array}{l}
\mathbf{y}_{1}^{\prime} \\
\mathbf{y}_{2}^{\prime} \\
\vdots \\
\mathbf{y}_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
y_{11} & y_{12} & \cdots & y_{1 p} \\
y_{21} & y_{22} & \cdots & y_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n 1} & y_{n 2} & \cdots & y_{n p}
\end{array}\right) \tag{3.3.1}\\
& \mathbf{X}=\left(\begin{array}{l}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\vdots \\
\mathbf{x}_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
1 & x_{11} & \cdots & x_{1 k} \\
1 & x_{21} & \cdots & x_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & \cdots & x_{n k}
\end{array}\right) \tag{3.3.2}
\end{align*}
$$

and

$$
\mathbf{E}=\left(\begin{array}{l}
\mathbf{e}_{1}^{\prime} \tag{3.3.3}\\
\mathbf{e}_{2}^{\prime} \\
\vdots \\
\mathbf{e}_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
e_{11} & e_{12} & \cdots & e_{1 p} \\
e_{21} & e_{22} & \cdots & e_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
e_{n 1} & e_{n 2} & \cdots & e_{n p}
\end{array}\right)
$$

where \mathbf{E} represents a $n \times p$ matrix of random error terms, the model assumptions listed in the previous section imply that an appropriate statistical model (Graybill, 1976) for the n observations can be given by

$$
\begin{equation*}
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{E} \tag{3.3.4}
\end{equation*}
$$

where

$$
\mathbf{E} \sim N\left(\mathbf{0}, \mathbf{\Sigma}_{p} \otimes \mathbf{I}_{n}\right)
$$

Employing the method of maximum likelihood the following parameter estimates for $\mathbb{ß}$ and $\boldsymbol{\Sigma}_{p}$ can be obtained, namely

$$
\begin{equation*}
\mathbf{B}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \tag{3.3.5}
\end{equation*}
$$

and correcting for the bias

$$
\begin{equation*}
\mathbf{S}=\frac{(\mathbf{Y}-\mathbf{X B})^{\prime}(\mathbf{Y}-\mathbf{X B})}{n-(k+1)} \tag{3.3.6}
\end{equation*}
$$

By the invariance principle, a maximum likelihood estimator for $\pi(\mathbf{x})$ can then be given by

$$
\begin{equation*}
\hat{\pi}(\mathbf{x})=\int_{A}(2 \pi)^{-\frac{p}{2}}|\mathbf{S}|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}\left(\mathbf{y}-\mathbf{B}^{\prime} \mathbf{x}\right)^{\prime} \mathbf{S}^{-\mathbf{1}}\left(\mathbf{y}-\mathbf{B}^{\prime} \mathbf{x}\right)\right] d \mathbf{y} \tag{3.3.7}
\end{equation*}
$$

We need therefore only to develop a method for evaluating the p dimensional integral expression given in (3.3.7). Fresen and Fresen (1993) have suggested that one of the following methods be used for evaluating this integral, namely
i) a numerical quadrature method as described by Schervish, (1984);
ii) the use of a tetrachoric series as described by Harris et al, (1980) and
iii) a Monte Carlo simulation method which will now be developed.

In particular, the Monte Carlo simulation algorithm, to estimate $\pi(\mathbf{x})$, proceeds as follows:
a) For any given vector \mathbf{x} generate a large number, m say, of pseudorandom vectors from the multivariate Gaussian distribution, $\mathrm{N}\left(\mathbf{B}^{\prime} \mathbf{x}, \mathbf{S}\right)$. Denote these p dimensional vectors by $\mathbf{y}_{1}^{*}, \mathbf{y}_{2}^{*}, \ldots, \mathbf{y}_{m}^{*}$.
b) Estimate $\pi(\mathbf{x})$ by the proportion of pseudo-random vectors (generated in step a) that lie in the product set defined by an event A, that is

$$
\hat{\pi}(\mathbf{x}) \approx m^{-1} \sum_{i=1}^{m} I_{A}\left(\mathbf{y}_{i}^{*}\right)
$$

where $I_{A}(\cdot)$ represents the indicator function of set A . The accuracy of this approximation can be improved by generating a larger number of pseudo-random vectors.

3.4 SUBSET SELECTION

In order to determine which independent variables to exclude from the model, we will need to write the above multivariate regression model in the form of a seemingly unrelated regression model and then employ a backward elimination technique. In particular letting $\mathbf{y}_{[i]}$ to denote the i^{\prime} th column vector of the matrix \mathbf{Y} and $\boldsymbol{\beta}_{[i]}$ the i^{\prime} th column vector of $\boldsymbol{\beta}$, then the above multivariate regression model (given in 3.3.4) can be written in the following seemingly
unrelated regression form

$$
\left(\begin{array}{c}
\mathbf{y}_{[1]} \tag{3.4.1}\\
\mathbf{y}_{[2]} \\
\vdots \\
\mathbf{y}_{[p]}
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{X} & 0 & \cdots & 0 \\
0 & \mathbf{X} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & \mathbf{X}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{\beta}_{[1]} \\
\boldsymbol{\beta}_{[2]} \\
\vdots \\
\boldsymbol{\beta}_{[p]}
\end{array}\right)+\left(\begin{array}{c}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\vdots \\
\mathbf{e}_{p}
\end{array}\right)
$$

where

$$
\mathcal{E}\left\{\mathbf{e}_{i} \mathbf{e}_{j}^{\prime}\right\}=\sigma_{i j} \mathbf{I}_{n}
$$

Variable selection can then be implemented by employing a suitable backward elimination procedure to successively eliminate variables in the above model structure whose parameter coefficients are not significantly different from zero. Let us assume that at a particular stage in our backward elimination procedure we have a resulting seemingly unrelated regression model structure that takes the form

$$
\begin{align*}
& \left(\begin{array}{c}
\mathbf{y}_{[1]} \\
\mathbf{y}_{[2]} \\
\vdots \\
\mathbf{y}_{[p]}
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{X}_{1} & 0 & \cdots & 0 \\
0 & \mathbf{X}_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & \mathbf{X}_{p}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{\beta}_{1} \\
\boldsymbol{\beta}_{2} \\
\vdots \\
\boldsymbol{\beta}_{p}
\end{array}\right)+\left(\begin{array}{c}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\vdots \\
\mathbf{e}_{p}
\end{array}\right) \tag{3.4.2}\\
& \tilde{\mathbf{y}} \quad \tilde{\mathbf{X}} \\
& \tilde{\mathbf{X}} \\
& \tilde{\boldsymbol{\beta}} \quad \tilde{e}
\end{align*}
$$

where \mathbf{X}_{i} denotes the component matrix of \mathbf{X} that remains and $\boldsymbol{\beta}_{i}$ the parameter coefficient vector that remains after elimination of those parameter coefficients in $\boldsymbol{\beta}_{[i]}$ that are not significantly different from zero. Parameter estimation can then proceed by first employing an ordinary least squares estimation technique on each of the p regression model structures

$$
\mathbf{y}_{[i]}=\mathbf{X}_{i} \boldsymbol{\beta}_{i}+\mathbf{e}_{i} \quad i=1, \ldots, p
$$

to obtain the following consistent estimates for $\sigma_{i j}$, namely

$$
\begin{equation*}
\hat{\sigma}_{i j}=\frac{\hat{\mathbf{e}}_{i}^{\prime} \hat{\mathbf{e}}_{j}}{n}=\left(\mathbf{y}_{[i]}-\mathbf{X}_{i} \hat{\boldsymbol{\beta}}_{i}\right)^{\prime}\left(\mathbf{y}_{[j]}-\mathbf{X}_{j} \hat{\boldsymbol{\beta}}_{j}\right) / n \tag{3.4.3}
\end{equation*}
$$

where

$$
\hat{\boldsymbol{\beta}}_{i}=\left(\mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1} \mathbf{X}_{i}^{\prime} \mathbf{y}_{[i]}
$$

and then substituting these elements into $\boldsymbol{\Sigma}_{p}$ to yield the following feasible generalized least squares estimator for $\tilde{\boldsymbol{\beta}}$, namely

$$
\begin{equation*}
\hat{\tilde{\boldsymbol{\beta}}} \triangleq \tilde{\boldsymbol{\beta}}\left(\hat{\boldsymbol{\Sigma}}_{p}\right)=\left(\tilde{\mathbf{X}}^{\prime}\left(\hat{\boldsymbol{\Sigma}}_{p}^{-1} \otimes \mathbf{I}_{n}\right) \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\prime}\left(\hat{\boldsymbol{\Sigma}}_{p}^{-\mathbf{1}} \otimes \mathbf{I}_{n}\right) \tilde{\mathbf{y}} \tag{3.4.4}
\end{equation*}
$$

where

$$
\hat{\boldsymbol{\Sigma}}_{p}=\left(\begin{array}{cccc}
\hat{\sigma}_{11} & \hat{\sigma}_{12} & \cdots & \hat{\sigma}_{1 p} \\
\hat{\sigma}_{21} & \hat{\sigma}_{22} & \cdots & \hat{\sigma}_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{\sigma}_{p 1} & \hat{\sigma}_{p 2} & & \hat{\sigma}_{p p}
\end{array}\right)
$$

Since the variance-covariance matrix of the feasible generalized least squares estimator can be approximated by the following expression

$$
\begin{equation*}
\mathcal{V}\{\hat{\tilde{\boldsymbol{\beta}}}\}=\left[\tilde{\mathbf{X}}^{\prime}\left(\hat{\boldsymbol{\Sigma}}_{p}^{-1} \otimes \mathbf{I}_{n}\right) \tilde{\mathbf{X}}\right]^{-1} \tag{3.4.5}
\end{equation*}
$$

standard errors for the j^{\prime} th element of $\hat{\tilde{\boldsymbol{\beta}}}$ can be obtained by taking the square root of the j^{\prime} th diagonal element of (3.4.5) and thus a backward elimination model selection technique can proceed by calculating t-values ${ }^{1}$ for each component of $\tilde{\boldsymbol{\beta}}$ with variables being excluded from the seemingly unrelated regression model, using a 10% level of significance. Given a matriculation profile matrix of the form

$$
\tilde{\mathbf{x}}=\left(\begin{array}{cccc}
\mathbf{x}_{1}^{\prime} & 0 & \cdots & 0 \\
0 & \mathbf{x}_{2}^{\prime} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & \mathbf{x}_{p}^{\prime}
\end{array}\right)
$$

[^13]for a particular student where \mathbf{x}_{i}^{\prime} denotes the set of matriculation results that relate to the retained parameter coefficients $\boldsymbol{\beta}_{i}$ in (3.4.2), then the probability of success can be defined by
\[

$$
\begin{equation*}
\hat{\pi}(\tilde{\mathbf{x}})=\int_{A}(2 \pi)^{-p / 2}\left|\hat{\boldsymbol{\Sigma}}_{p}\right|^{-1 / 2} \exp \left[\frac{1}{2}(\mathbf{y}-\tilde{\mathbf{x}} \hat{\tilde{\boldsymbol{\beta}}})^{\prime} \hat{\boldsymbol{\Sigma}}_{p}^{-1}(\mathbf{y}-\tilde{\mathbf{x}} \hat{\tilde{\boldsymbol{\beta}}})\right] d \mathbf{y} \tag{3.4.6}
\end{equation*}
$$

\]

with the above integral being solved using the method of Monte Carlo ${ }^{2}$ described earlier in Section 3.3. Furthermore 95% lower and upper bounds for the confidence intervals of $\tilde{\boldsymbol{\beta}}$ can be given by $\hat{\tilde{\boldsymbol{\beta}}}-1.96 \hat{\boldsymbol{\sigma}}$ and $\hat{\tilde{\boldsymbol{\beta}}}+1.96 \hat{\boldsymbol{\sigma}}$ respectively, where $\hat{\boldsymbol{\sigma}}$ represents the vector of standard errors of $\hat{\tilde{\boldsymbol{\beta}}}$ (that are obtained by taking the square root of the diagonal elements of (3.4.5)), with the 95% confidence intervals for $\pi(\tilde{\mathbf{x}})$ being obtained by substituting the respective confidence intervals for $\tilde{\boldsymbol{\beta}}$ in (3.4.6).

3.5 RESULTS

We will now apply the results of the previous sections on our three problems, defined in chapter one, that is predicting the probability of a student passing firstly DSMA1SX1, secondly DSPH1SC1 and finally both DSMA1SX1 and DSPH1SC1 simultaneously. Now in order to determine the probability of a student, with a given matriculation profile x , passing ${ }^{3}$ a single university

[^14]course, (3.2.4) reduces to
\[

$$
\begin{align*}
\hat{\pi}(\mathbf{x}) & =\int_{48}^{\infty}\left(2 \pi s^{2}\right)^{-\left(\frac{1}{2}\right)} \exp \left[-\frac{1}{2}\left(\frac{y-\mathbf{x}^{\prime} \hat{\boldsymbol{\beta}}}{s}\right)^{2}\right] d y \\
& =1-\Phi\left(\frac{48-\mathbf{x}^{\prime} \hat{\boldsymbol{\beta}}}{s}\right) \\
& =\Phi\left(\frac{\mathbf{x}^{\prime} \hat{\boldsymbol{\beta}}-48}{s}\right) \tag{3.5.1}
\end{align*}
$$
\]

where Φ denotes the standard cumulative distribution function and

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

and

$$
s^{2}=\frac{(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\prime}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})}{n-(k+1)}
$$

Employing the following variables in our predictor matrix, namely English $\left(X_{1}\right)$, Afrikaans $\left(X_{2}\right)$, Mathematics $\left(X_{3}\right)$, Biology $\left(X_{4}\right)$, Physics $\left(X_{5}\right)$, NED matriculation authority $\left(d_{1}\right)$ and HOD matriculation authority $\left(d_{2}\right)$ and applying a backward elimination procedure on our DSMA1SX1 data set, the variables X_{2} and d_{2} were excluded from the model using a 10% level of significance and thus the following results were obtained (Table 3.5.1) for the
remaining variables, namely
Table 3.5.1

Parameter	$\hat{\boldsymbol{\beta}}$	$\mathrm{SE}^{* 1}$	$\mathrm{t}^{* 2}$	$\mathrm{LB}^{* 3}$	$\mathrm{UB}^{* 4}$	$\boldsymbol{s}^{2 \boldsymbol{}+5}$
β_{0}	69.238409	1.8365899	37.699439	65.638693	72.838125	225.51048
β_{1}	-2.643295	1.0766819	-2.455038	-4.753592	-0.532999	
β_{3}	-7.028165	1.1673725	-6.020499	-9.316215	-4.740115	
β_{4}	-2.228880	1.1134729	-2.001737	-4.411287	-0.046473	
β_{5}	-4.225204	1.2028948	-3.512530	-6.582878	-1.86753	
β_{7}	9.254687	1.9125960	4.838809	5.5059984	13.003375	

From Table 3.5.1, the estimated probability that can be associated with a student passing DSMA1SX1 for a specified matriculation profile $\mathbf{x}_{i}^{\prime}=\left(1 x_{i 1} x_{i 3} x_{i 4} x_{i 5} d_{i 2}\right)$, can be given by

$$
\hat{\pi}_{i}=\Phi\left(\frac{\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\hat{\beta}_{3} x_{i 3}+\hat{\beta}_{4} x_{i 4}+\hat{\beta}_{5} x_{i 5}+\hat{\beta}_{7} d_{i 2}-48}{s}\right)
$$

where Φ denotes the cumulative standard normal distribution function. The negative parameter coefficients of $\hat{\beta}_{1}, \hat{\beta}_{3}, \hat{\beta}_{4}$ and $\hat{\beta}_{5}$ indicate that higher marks (symbols) in English, Mathematics, Biology and Physics, at matriculation level, are associated with a higher probability of passing. Also, since the magnitude of $\hat{\beta}_{3}$ is the largest when compared with $\hat{\beta}_{1}, \hat{\beta}_{4}$ and $\hat{\beta}_{5}$, we infer that a matriculant's Mathematics mark has the most influence on the probability associated with a student passing DSMA1SX1. Furthermore, the large positive value of $\hat{\beta}_{7}$ indicates that Natal Education Department students have a higher probability of passing DSMA1SX1 compared to students from the other matriculation authorities (see also Table 3.5.2). In Table 3.5.2 we list a

[^15]few estimated probabilities associated with passing DSMA1SX1 for specific values of $X_{1}, X_{3}, X_{4}, X_{5}$ and d_{2}.

Table 3.5.2

X_{1}	$X_{\mathbf{3}}$	$X_{\mathbf{4}}$	$X_{\mathbf{5}}$	d_{2}	$\hat{\pi}$	$\mathrm{LB}(\hat{\pi})^{* 6}$	$\mathrm{UB}(\hat{\pi})^{* 7}$
0	0	0	0	0	0.9213617	0.8799188	0.9509362
1	0	0	0	0	0.8921921	0.8045631	0.9472233
0	1	0	0	0	0.8279963	0.7102802	0.9096088
0	0	1	0	0	0.8972196	0.8107946	0.950621
0	0	0	1	0	0.871378	0.7692015	0.9369469
0	0	0	0	1	0.9788507	0.9383698	0.9941308
1	0	0	0	1	0.9681698	0.889653	0.9935118
0	1	0	0	1	0.9409216	0.8214368	0.986247
0	0	1	0	1	0.970092	0.8938891	0.9940789
0	0	0	1	1	0.9598726	0.8649583	0.9917022

Turning our attention to the DSPH1SC1 data, and implementing a backward elimination routine (using a probability value of 0.1) the variables X_{1}, X_{2}, X_{3} and d_{1} were excluded from the model with the following results being obtained for the remaining variables, namely

Table 3.5.3

Parameter	$\hat{\boldsymbol{\beta}}$	SE	t	LB	UB	s^{2}
β_{0}	67.582542	1.3392143	50.464322	64.957682	70.207402	149.14551
β_{4}	-4.392492	1.1749480	-3.738457	-6.695390	-2.089594	
$\boldsymbol{\beta}_{5}$	-9.162855	1.0722381	-8.545541	-11.264440	-7.061268	
β_{7}	13.104750	1.9554894	6.701519	9.2719902	16.937509	

Table 3.5.3 suggests that a matriculant's Physics mark influences the probability associated with a student passing DSPH1SC1 more than his or her Biology mark since $\hat{\beta}_{5}$ is more negative than $\hat{\beta}_{4}$. Furthermore the large positive value of $\hat{\beta}_{7}$ implies that students from the Natal Education Department

[^16]have a greater probability of passing DSPH1SC1 compared to students from the other matriculation authorities. In Table 3.5 .4 we give a few estimated probabilities for passing DSPH1SC1 given specific values for X_{4}, X_{5} and d_{2}.

Table 3.5.4

			$\hat{\pi}$	$\mathrm{LB}(\hat{\pi})$	$\mathrm{UB}(\hat{\pi})$
X_{4}	$X_{\mathbf{5}}$	d_{2}	0.9455858	0.9175151	0.9654995
0	0	0	0.959		
1	0	0	0.8932153	0.7996326	0.9502529
0	1	0	0.8032251	0.679457	0.8925519
0	0	1	0.9962807	0.984134	0.9993254
1	0	1	0.9987446	0.9451485	0.9989742
0	1	1	0.9729638	0.889788	0.9956943

Finally turning our attention to the third problem that we have been considering in this thesis, namely that of determining the probability associated with a student passing both DSMA1SX1 and DSPH1SC1 and applying the seemingly unrelated regression model to this data set, the following results ${ }^{4}$ were obtained, namely

Table 3.5.5

Parameter $^{* 8}$	$\tilde{\tilde{\boldsymbol{\beta}}}$	SE	t	Prob
B01	69.647416	2.01102	34.63	0.0001
B11	-2.917197	1.05425	-2.77	0.0062
B31	-5.949945	1.25738	-4.73	0.0001
B41	-2.771966	1.62782	-1.70	0.0903
B51	-5.423292	1.57495	-3.44	0.0007
B71	11.317970	2.61120	4.33	0.0001
B02	67.594627	1.39130	48.58	0.0001
B42	-4.548053	1.25355	-3.63	0.0004
B52	-8.916156	1.16054	-7.68	0.0001
B72	13.103354	2.07635	6.31	0.0001

Letting $\mathbf{y}_{[1]}$ and $\mathbf{y}_{[2]}$ denote the DSMA1SX1 and DSPH1SC1 marks, respectively; the large positive values associated with the parameters B_{71} and B_{72}

[^17]imply that students writing matriculation papers set by the Natal Education Department perform better in DSMA1SX1 and DSPH1SC1 at university than students from the other matriculation authorities (see also Table 3.5.6). Based on the above model structure, with a covariance matrix of residuals that was given by
\[

\hat{\boldsymbol{\Sigma}}_{p}=\left($$
\begin{array}{ll}
240.3949 & 118.5459 \\
118.5459 & 154.7962
\end{array}
$$\right)
\]

the Monte Carlo algorithm (outlined in section 3.3) was used to obtain the probability estimates given in Table 3.5.6. ${ }^{5}$

Table 3.5.6

					\check{x}					$\hat{\pi}(\tilde{x})$	LB(${ }_{\text {a }}$)	$\mathrm{UB}(\hat{\pi})$
	$\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$	0	0		$\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}$		0	0	$\left.\begin{array}{l}0 \\ 1\end{array}\right)$	0.9812	0.9274	0.996
	$\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$	1	0		$\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}$	1	0	0	(0	0.959	0.8436	0.9931
	$\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$	0	0		$\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}$		1		$\left.\begin{array}{ll}0 \\ 0 \\ 0\end{array}\right)$	0.9669	0.845	0.9958
	$\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$	0	0		10		0		$\left.\begin{array}{ll}0 \\ 1 & 1\end{array}\right)$	0.9448	0.7848	0.9916
	$\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$	0	0		0			0	(1) $\left.\begin{array}{ll}0 \\ 0 & 0\end{array}\right)$	0.889	0.8312	0.9292
	$\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$	0	0		$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	- 1	0	0	$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	0.8163	0.7019	0.9012
	$\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$	0		0	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$			1	$\left.\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	0.8231	0.6746	0.916
	$\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$	0	0		$\begin{array}{ll}10 \\ 0 & 0\end{array}$		0	0	$\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$	0.7286	0.5734	0.8587

[^18]
CHAPTER FOUR

A BAYESIAN APPROACH

4.1 THE GIBBS SAMPLER

In this chapter we will consider a Bayesian approach for obtaining parameter estimates in the generalized linear model as opposed to the frequentist approaches that have been employed previously. In particular, consider the generalized linear model with logit link function discussed in chapter two. Suppose that we now specify a multivariate normal prior distribution for $\boldsymbol{\beta}$ with a mean vector, $\boldsymbol{\mu}_{0}$, and variance-covariance matrix, $\boldsymbol{\Sigma}_{0}$, then applying Bayes theorem (Zellner, 1970; Press, 1989) for a given set of observation $\mathbf{y}=\left\{y_{1}, \ldots, y_{n}\right\}$ we obtain the following expression for the posterior density of $\boldsymbol{\beta}$, namely ${ }^{1}$

$$
\begin{align*}
& P(\boldsymbol{\beta} \mid \mathbf{y})=\frac{P(\boldsymbol{\beta}) P(\mathbf{y} \mid \boldsymbol{\beta})}{\int \ldots \int P(\boldsymbol{\beta}) P(\mathbf{y} \mid \boldsymbol{\beta}) d \boldsymbol{\beta}} \\
& =\frac{\exp \left[-\frac{1}{2}\left(\boldsymbol{\beta}-\boldsymbol{\mu}_{0}\right)^{\prime} \boldsymbol{\Sigma}_{0}^{-1}\left(\boldsymbol{\beta}-\boldsymbol{\mu}_{0}\right)+\sum_{i=1}^{n} y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\sum_{i=1}^{n} \log \left(1+e^{\mathbf{x}_{\mathbf{i}} \boldsymbol{\beta}}\right)^{-1}\right]}{\int \ldots \int\left\{\exp \left[-\frac{1}{2}\left(\boldsymbol{\beta}-\boldsymbol{\mu}_{0}\right)^{\prime} \Sigma_{0}^{-1}\left(\boldsymbol{\beta}-\boldsymbol{\mu}_{0}\right)+\sum_{i=1}^{n} y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\sum_{i=1}^{n} \log \left(1+e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}\right)^{-1}\right]\right\} d \boldsymbol{\beta}} \tag{4.1.1}
\end{align*}
$$

${ }^{1}$ since the likelihood function of this model is given by

$$
P(\mathbf{y} \mid \boldsymbol{\beta})=\exp \left[\sum_{i=1}^{n} y_{i} \log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)+\sum_{i=1}^{n} \log \left(1-\pi_{i}\right)\right] \quad y_{i}=0,1
$$

where

$$
\pi_{i}=\frac{e^{\mathbf{x}_{\mathbf{i}}^{\prime} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{\mathbf{i}}^{\prime} \boldsymbol{\beta}}}
$$

Now in order to obtain an approximation of the above posterior density, several approaches can be adopted. One method, involves employing a Taylor series expansion of the log-posterior density about its posterior maximizer $\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}$ (Knuiman and Speed, 1988) yielding
$\log P(\boldsymbol{\beta} \mid \mathbf{y})=\log P(\hat{\boldsymbol{\beta}} \mid \mathbf{y})+(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \mathbf{u}(\hat{\boldsymbol{\beta}} \mid \mathbf{y})-\frac{1}{2}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \mathcal{I}^{-1}(\hat{\boldsymbol{\beta}} \mid \mathbf{y})(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})+r(\boldsymbol{\beta} \mid \mathbf{y})$
where $r(\boldsymbol{\beta} \mid \mathbf{y})$ represents a remainder term which we will assume is of negligible order,

$$
\mathbf{u}(\hat{\boldsymbol{\beta}} \mid \mathbf{y})=\left.\left[\frac{\partial}{\partial \boldsymbol{\beta}} \log P(\boldsymbol{\beta} \mid \mathbf{y})\right]\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}}
$$

denotes the score vector evaluated at the point $\hat{\boldsymbol{\beta}}$ and

$$
\mathcal{I}(\hat{\boldsymbol{\beta}} \mid \mathbf{y})=-\left.\left[\frac{\partial^{2} \log P(\boldsymbol{\beta} \mid \mathbf{y})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}\right]\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}}
$$

the Information matrix evaluated at the point $\hat{\boldsymbol{\beta}}$, then because $\mathbf{u}(\hat{\boldsymbol{\beta}} \mid \mathbf{y})=0$, the posterior density of $\boldsymbol{\beta}$ can now be approximated by a multivariate normal density with mean vector $\hat{\boldsymbol{\beta}}$ and variance-covariance matrix $\boldsymbol{\Sigma}=\boldsymbol{I}^{-1}(\hat{\boldsymbol{\beta}} \mid \mathbf{y})$.

An alternative approach is to make use of Monte Carlo Markov Chain methods to implement what has become known as the Gibbs sampler (Geman and Geman, 1984) to generate a set of observations $\left\{\beta^{(j)}, j=1 \cdots m\right\}$ from the posterior distribution ${ }^{2} P(\boldsymbol{\beta} \mid \mathbf{y})$. A sample based estimator for the posterior

[^19]distribution associated with the i^{\prime} th component of $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p}\right)^{\prime}$ can then be given by evaluating (Gelfand and Smith, 1990)
$$
\hat{P}\left(\beta_{i} \mid \mathbf{y}\right)=\frac{1}{m} \sum_{j=1}^{m} P\left(\beta_{i} \mid \beta_{0}^{(j)}, \ldots, \beta_{i-1}^{(j)}, \beta_{i+1}^{(j)}, \ldots, \beta_{p}^{(j)}, \mathbf{y}\right)
$$

Alternatively a Bayesian estimator for β_{i} can be developed by evaluating

$$
\hat{\beta}_{i}=\frac{1}{m} \sum_{j=1}^{m} \beta_{i}^{(j)}
$$

Turning our attention to the actual implementation of the Gibbs sampler and letting $P\left(\beta_{i} \mid \beta_{0}, \ldots, \beta_{i-1}, \beta_{i+1}, \ldots, \beta_{p}, \mathbf{y}\right)$ denote a full conditional density specification for β_{i}, the Gibbs sampling nature proceeds from an arbitrary set of starting values $\left(\beta_{0}^{(0)}, \beta_{1}^{(0)}, \ldots, \beta_{p}^{(0)}\right)$ to draw a value $\beta_{0}^{(1)}$ from the conditional density

$$
P\left(\beta_{0} \mid \beta_{1}^{(0)}, \beta_{2}^{(0)}, \ldots, \beta_{p}^{(0)}, \mathbf{y}\right)
$$

and then a value $\beta_{1}^{(1)}$ from the conditional density

$$
P\left(\beta_{1} \mid \beta_{0}^{(1)}, \beta_{2}^{(0)}, \ldots, \beta_{p}^{(0)}, \mathbf{y}\right)
$$

Proceeding in this manner until a value $\beta_{p}^{(1)}$ has been generated from the conditional density

$$
P\left(\beta_{p} \mid \beta_{0}^{(1)}, \beta_{1}^{(1)}, \ldots, \beta_{p-1}^{(1)}, \mathbf{y}\right)
$$

the algorithm then returns the first conditional density specification where a value $\beta_{0}^{(2)}$ is generated from

$$
P\left(\beta_{0} \mid \beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots, \beta_{p}^{(1)}, \mathbf{y}\right)
$$

Continuing with this procedure, and letting

$$
\boldsymbol{\beta}^{(t)}=\left(\beta_{0}^{(t)}, \beta_{1}^{(t)}, \ldots, \beta_{p}^{(t)}\right)
$$

denote the set of values that have been generated on completion of the t^{\prime} th iteration of the Gibbs sampler, Geman and Geman (1984) have shown that under fairly general conditions the distribution of $\beta_{i}^{(t)}$ converge to $P\left(\beta_{i} \mid \mathbf{y}\right)$ for t large enough, that is

$$
\beta_{i}^{(t)} \xrightarrow{d} \beta_{i} \sim P\left(\beta_{i} \mid \mathbf{y}\right)
$$

Letting L denote the number of iterations that are necessary for the convergence of $\beta_{i}^{(t)}$ so as to represent a sample from $P\left(\beta_{i} \mid \mathbf{y}\right), N$ independent replications of this entire process can then be implemented to obtain a collection of observations $\left\{\beta_{0 j}^{(L)}, \ldots, \beta_{p j}^{(L)}, j=1 \cdots N\right\}$ which can be used to estimate $P\left(\beta_{i} \mid \mathbf{y}\right)$ as follows

$$
\hat{P}\left(\beta_{i} \mid \mathbf{y}\right)=\frac{1}{N} \sum_{j=1}^{N} P\left(\beta_{i} \mid \boldsymbol{\beta}_{r j}^{(L)} \mathbf{y} r \neq i\right) \quad r=0,1, \ldots, p
$$

Furthermore an estimate of β_{i} can be obtained by averaging over the collection of N observations to yield

$$
\hat{\beta}_{i}=\frac{1}{N} \sum_{j=1}^{N} \beta_{i j}^{(L)} \quad i=0,1, \ldots, p
$$

4.2 RESULTS

Applying the Gibbs Sampling technique with the method of Rejection Sampling outlined in Appendix B on our DSMA1SX1, DSPH1SC1 and our combined DSMA1SX1 and DSPH1SC1 data, we obtained the following results, ${ }^{3}$ namely

[^20]
RESULTS OBTAINED USING THE DSMA1SX1 COURSE

Variable $=\beta_{0}$ (parameter associated with the intercept term)

Variable $=\beta_{3}$ (parameter associated with the matriculation Mathematics symbol)

Moments			
N	1000	Sum Wgts	1000
Mean	-0.65577	Sum	-655.769
Std Dev	0.155281	Variance	0.024112
Skewness	0.038356	Kurtosis	-0.60687
USS	454.121	CSS	24.08796
CV	-23.6792	Std Mean	0.00491
$T:$ Mean $=0$	-133.547	Pr $>\|T\|$	0.0000
Sgn Rank	-250250	$\operatorname{Pr}>=\|S\|$	0.0000
Num ${ }^{\text {a }}$ - 0	1000		
Quantiles (Def=5)			
100\% Max	-0.29607	99\%	-0.31431
75\% Q3	-0.54225	95\%	-0.39782
50\% Med	-0.65568	90\%	-0.44716
25\% Q1	-0.77468	10\%	-0.85978
0\% Min	-0.99569	5\%	-0.91408
		1\%	-0.97593
Range	0.699618		
Q3-Q1	0.232424		
Mode	-0.96926		

Variable $=\beta_{4}$ (parameter associated with the matriculation Biology symbol)

Variable $=\beta_{5}$ (parameter associated with the matriculation Physics symbol)

Variable $=\beta_{7}$ (parameter associated with the NED matriculation authority)

RESULTS OBTAINED USING THE DSPH1SC1 COURSE :

Variable $=\beta_{0}$ (parameter associated with the intercept term)

	Moments		
N	1000	Sum Wgts	1000
Mean	3.051592	Sum	3051.592
Std Dev	0.402061	Variance	0.161653
Skewness	-0.09305	Kurtosis	-0.47534
USS	9473.707	CSS	161.4915
CV	13.17545	StdMean	0.012714
T:Mean=0	240.0128	Pr $\rangle\|T\|$	0.0000
Sgn Rank	250250	Pr $\rangle=\|S\|$	0.0000
Num = $=0$	1000		

Quantiles(Def=5)			
100% Max	4.230289	99%	3.851138
75% Q3	3.346965	95%	3.669392
50% Med	3.092712	90%	3.550887
25% Q1	2.753876	10%	2.486824
0\% Min	2.095327	5%	2.389352
		1%	2.171735
Range	2.134962		
Q3-Q1	0.593089		
Mode	2.095327		

Lowest	Obs				Highest	Obs
$2.095327($	$732)$	$4.159806($	$360)$			
$2.102426($	$637)$	$4.165588($	$965)$			
$2.110648($	$339)$	$4.19506($	$10)$			
$2.120716($	$259)$	$4.197028($	$627)$			
$2.137425($	$722)$	$4.230289($	$123)$			

Variable $=\beta_{3}$ (parameter associated with the matriculation Mathematics symbol)

Variable $=\beta_{4}$ (parameter associated with the matriculation Biology symbol)

	Moments			
N	1000	Sum Wgts	1000	
Mean	-1.05139	Sum	-1051.39	
Std Dev	0.274389	Variance	0.075289	
Skewness	0.090284	Kurtosis	-0.89214	
USS	1180.631	CSS	75.21404	
CV	-26.0978	Std Mean	0.008677	
T:Mean=0	-121.17	Pr>\|T		0.0000
Sgn Rank	-250250	Pr $\rangle=\|S\|$	0.0000	
Num = $=0$	1000			

	Quantiles(Def=5)			
100\% Max	-0.42004	99%	-0.48433	
75% Q3	-0.82354	95%	-0.60795	
50% Med	-1.06017	90%	-0.68162	
25% Q1	-1.28141	10%	-1.4102	
0\% Min	-1.85883	5%	-1.4782	
		1%	-1.56341	
Range	1.43879			
Q3-Q1	0.457873			
Mode	-1.85883			

Extremes			
Lowest	Obs	Highest	Obs
$-1.85883($	$882)$	$-0.45543($	$384)$
$-1.68065($	$592)$	$-0.44474($	$618)$
$-1.59517($	$836)$	$-0.44364($	$736)$
$-1.58283($	$849)$	$-0.42574($	$197)$
$-1.58014($	$711)$	$-0.42004($	$453)$

Variable $=\beta_{5}($ parameter associated with the matriculation Physics symbol $)$

Moments			
N	1000	Sum Wgts	1000
Mean	-1.11271	Sum	-1112.71
Std Dev	0.268217	Variance	0.071941
Skewness	0.072181	Kurtosis	-0.66816
USS	1309.987	CSS	71.86863
CV	-24.1049	Std Mean	0.008482
T:Mean=0	-131.188	Pr $>\|T\|$	0.0000
Sgn Rank	-250250	Pr $>=\|S\|$	0.0000
Num = $=0$	1000		

	Quantiles (Def=5)		
100% Max	-0.48296	99%	-0.53376
75% Q3	-0.90125	95%	-0.68086
50% Med	-1.11965	90%	-0.75533
25% Q1	-1.32253	10%	-1.44423
0\% Min	-1.85942	5%	-1.56109
		1%	-1.64707

Range	1.376459
Q3-Q1	0.421284
Mode	-1.19156

Extremes			
Lowest	Obs	Highest	Obs
-1.85942	332)	-0.49356 (390)
-1.77563	369)	-0.49348	792)
-1.6775	204)	-0.48817	546)
-1.66499	491)	-0.48427	485)
-1.66395	616)	-0.48296 (389

Variable $=\beta_{7}($ parameter associated with the NED matriculation authority $)$

Moments			
N	1000	Sum Wgts	1000
Mean	3.775604	Sum	3775.604
Std Dev	0.704626	Variance	0.496497
Skewness	-0.21376	Kurtosis	-0.87435
USS	14751.18	CSS	496.0008
CV	18.6626	Std Mean	0.022282
T:Mean=0	169.4447	Pr $\rangle\|T\|$	0.0000
Sgn Rank	250250	Pr $\rangle=\|S\|$	0.0000
Num $=0$	1000		

Quantiles(Def=5)			
100\% Max	5.091719	99%	5.038965
75% Q3	4.323396	95%	4.847246
50% Med	3.809289	90%	4.678922
25\% Q1	3.204802	10%	2.795438
0\% Min	2.14336	5%	2.597703
		1%	2.263675
Range	2.948359		
Q3-Q1	1.118594		
Mode	2.14336		

Extremes			
Lowest	Obs	Highest	Obs
2.14336 (618)	5.074036 (975)
2.174244 (308)	5.082588 (27)
2.174814 (388)	5.08455 (392)
2.19366(740)	5.085465	302)
2.197419 (520)	$5.091719($	646

RESULTS OBTAINED FOR THE COMBINED DSMA1SX1 AND DSPH1SC1 DATA :
Variable $=\beta_{0}$ (parameter associated with the intercept term)

Variable $=\beta_{3}$ (parameter associated with the matriculation Mathematics symbol)

Variable $=\beta_{4}$ (parameter associated with the matriculation Biology symbol)

	Moments			
N	1000	Sum Wgts	1000	
Mean	-0.85044	Sum	-850.44	
Std Dev	0.247398	Variance	0.061206	
Skewness	0.113575	Kurtosis	-0.75207	
USS	784.3934	CSS	61.14477	
CV	-29.0906	Std Mean	0.007823	
T:Mean=0	-108.704	Pr>\|T		0.0000
Sgn Rank	-250250	Pr>=\|S		0.0000
Num = $=0$	1000			

Quantiles(Def=5)			
100% Max	-0.30056	99%	-0.3192
75% Q3	-0.65493	95%	-0.43123
50% Med	-0.86143	90%	-0.51624
25% Q1	-1.05005	10%	-1.17084
0% Min	-1.56938	5%	-1.23256
		1%	-1.32259

Range	1.268823
Q3-Q1	0.395122
Mode	-1.56938

Extremes			
Lowest	Obs	Highest	Obs
$-1.56938($	$918)$	$-0.30264($	$339)$
$-1.43914($	$692)$	$-0.30256($	$238)$
$-1.37399($	$670)$	$-0.30138($	$93)$
$-1.34793($	$102)$	$-0.30058($	$823)$
$-1.3433($	$972)$	$-0.30056($	$997)$

Variable $=\beta_{5}($ parameter associated with the matriculation Physics symbol $)$

	Moments		
N	1000	Sum Wgts	1000
Mean	-0.67188	Sum	-671.875
Std Dev	0.234368	Variance	0.054928
Skewness	-0.00165	Kurtosis	-0.7576
USS	506.2895	CSS	54.8733
CV	-34.8826	Std Mean	0.007411
T:Mean=0	-90.6548	Pr $>\|T\|$	0.0000
Sgn Rank	-250250	Pr $\rangle=\|S\|$	0.0000
Num = $=0$	1000		

Quantiles(Def=5)			
100\% Max	-0.14266	99%	-0.18225
75% Q3	-0.4905	95%	-0.29101
50% Med	-0.66841	90%	-0.367
25% Q1	-0.85487	10%	-0.98011
0\% Min	-1.17095	5%	-1.06815
		1%	-1.14812
Range	1.028289		
Q3-Q1	0.364368		
Mode	-1.17095		

Extremes			
Lowest	Obs	Highest	Obs
$-1.17095($	$427)$	$-0.15128($	$942)$
$-1.16777($	$266)$	$-0.14631($	$906)$
$-1.16657($	$396)$	$-0.14441($	$481)$
$-1.16428($	$606)$	$-0.14353($	$409)$
$-1.15984($	$88)$	$-0.14266($	$733)$

Variable $=\beta_{7}$ (parameter associated with the NED matriculation authority)

CHAPTER FIVE

CONCLUSION

Predicting the probability of a student being "successful" at university is an extremely difficult task since it depends on many external factors that are difficult to quantify. For example a student may not study hard enough or attend lectures on a regular basis. Furthermore, a student entering university may attempt a set of subjects that he or she is not capable of passing. This will then in turn cause them to produce poor results even though they may have obtained excellent matriculation results. Thus when attempting to model the probability of a student being successful at university other variables such as socio-economic background of a student, the time spent studying by a student, the time spent travelling to and from university, the age of a student etc., need also to be considered.

However, from the models developed in chapters two, three and four it is evident that it is possible to predict the probability of a student being successful in a particular subject or set of subjects at university, based on the students matriculation result profiles. A significant conclusion that can be drawn from the results in chapters two and three is that students from the NED matriculation authority perform better, in the DSMA1SX1 and DSPH1SC1 courses, than the students from the other matriculation authorities. Unfortunately, students who wrote the Department of Education and Training (DET) matriculation examinations were excluded from our analyses due to the small number of DET students attempting both the DSMA1SX1 course and the DSPH1SC1 course. However, given a sample of DET students attempting the DSMA1SX1 course and the DSPH1SC1 course, it is then a fairly simple exercise to compare the probability of them being successful with students from the other matriculation authorities.

One of the weaknesses of the generalized linear model is that useful information is lost when introducing a Bernoulli random variable in order to obtain the desired event. However, this drawback is overcome by the fact that these models are easy to implement and also very useful in determining the probability of a student being successful as illustrated in chapter two. An important feature of the model described in chapter three is that the exact university results are used to determine the probability of a student being successful and thus no information is lost when implementing this model. Now, comparing the results obtained in chapter two with those obtained in chapter three, we see that in general the confidence intervals for the estimated probabilities in chapter three are smaller than those obtained in chapter two. Thus, for predicting the probability of a student being successful at university, I would prefer to use the model discussed in chapter three than those discussed in chapter two. In chapter four we adopted a Bayesian approach. This approach is different to the frequentist approaches discussed in chapters two and three. The advantage of the Bayesian approach, over those models developed in chapters two and three is that it can incorporate past experiences or beliefs of the parameters.

I strongly disapprove of the point system which is currently being used for determining which students should be admitted to university. A better method for selecting students would be to use the models described in chapters two, three and four in collaboration with the point system. It is also evident that these models can be used to determine which students should receive bursaries and in aiding student advisers in helping students with their course selection.

One of the shortcomings of the models that were developed in chapters two, three and four is that we have had to discard the data corresponding to those students who had not attempted each and every one of the following matriculation subjects, namely English, Afrikaans, Mathematics, Biol-
ogy and Physics. In order to incorporate this data into our analysis Smyth et al. (1990) have developed an EM based technique which replaces any missing matriculation subject marks with an appropriately estimated value. The standard procedures given in chapters two, three and four can then be applied to this new augmented data set to determine the probability of a student being successful, no matter what matriculation subjects they have chosen.

APPENDIX A

APPENDIX A1

Letting the log-likelihood function, for the generalized linear model, be given by the expression

$$
l\left(\boldsymbol{\theta} ; y_{1}, y_{2}, \ldots y_{n}\right)=\sum_{i=1}^{n}\left[y_{i} b\left(\theta_{i}\right)+c\left(\theta_{i}\right)+d\left(y_{i}\right)\right]=\sum_{i=1}^{n} l_{i}
$$

then the score function associated with the parameter β_{j} is defined by

$$
u_{j}=\frac{\partial l(\boldsymbol{\theta} ; \mathbf{y})}{\partial \beta_{j}}=\sum_{i=1}^{n} \frac{\partial l_{i}}{\partial \beta_{j}}
$$

where $\boldsymbol{\theta}$ represents some function of $\boldsymbol{\beta}$. Noting that the partial derivative of l_{i} with respect to β_{j} is given by

$$
\frac{\partial l_{i}}{\partial \beta_{j}}=\frac{\partial l_{i}}{\partial \theta_{i}} \frac{\partial \theta_{i}}{\partial \mu_{i}} \frac{\partial \mu_{i}}{\partial \beta_{j}}
$$

one can on differentiating l_{i} with respect to θ_{i} and substituting (from (2.2.3)) $c^{\prime}\left(\theta_{i}\right)=-\mu_{i} b^{\prime}\left(\theta_{i}\right)$ obtain the result that

$$
\frac{\partial l_{i}}{\partial \theta_{i}}=y_{i} b^{\prime}\left(\theta_{i}\right)+c^{\prime}\left(\theta_{i}\right)=b^{\prime}\left(\theta_{i}\right)\left[y_{i}-\mu_{i}\right]
$$

Similarly differentiating μ_{i} with respect to θ_{i} and using (2.2.4) yields the result that

$$
\frac{\partial \mu_{i}}{\partial \theta_{i}}=-\frac{c^{\prime \prime}\left(\theta_{i}\right)}{b^{\prime}\left(\theta_{i}\right)}+\frac{c^{\prime}\left(\theta_{i}\right) b^{\prime \prime}\left(\theta_{i}\right)}{\left[b^{\prime}\left(\theta_{i}\right)\right]^{2}}=b^{\prime}\left(\theta_{i}\right) \mathcal{V}\left\{y_{i}\right\}
$$

and differentiating μ_{i} with respect to β_{j}, from (2.3.2), yields the result that

$$
\frac{\partial \mu_{i}}{\partial \beta_{j}}=\frac{\partial \mu_{i}}{\partial \eta_{i}} \frac{\partial \eta_{i}}{\partial \beta_{j}}=x_{i j} \frac{\partial \mu_{i}}{\partial \eta_{i}}
$$

Thus an expression for the derivative of l_{i} with respect to β_{j} can be given by

$$
\frac{\partial l_{i}}{\partial \beta_{j}}=\frac{\partial l_{i}}{\partial \theta_{i}} \frac{\partial \mu_{i}}{\partial \beta_{j}} / \frac{\partial \mu_{i}}{\partial \theta_{i}}=\frac{\left(y_{i}-\mu_{i}\right)}{\mathcal{V}\left\{y_{i}\right\}} x_{i j} \frac{\partial \mu_{i}}{\partial \eta_{i}}
$$

with

$$
u_{j}=\sum_{i=1}^{n} \frac{\partial l_{i}}{\partial \beta_{j}}=\sum_{i=1}^{n} \frac{y_{i}-\mu_{i}}{\mathcal{V}\left\{y_{i}\right\}} x_{i j} \frac{\partial \mu_{i}}{\partial \eta_{i}}
$$

APPENDIX A2

Using the results obtained in Appendix A1, the $j k^{\prime}$ th element of the Information matrix can be given by

$$
\begin{aligned}
\mathcal{I}_{j k} & =\mathcal{E}\left\{\frac{\partial l}{\partial \beta_{j}} \frac{\partial l}{\partial \beta_{k}}\right\} \\
& =\sum_{i=1}^{n} \mathcal{E}\left\{\frac{\partial l_{i}}{\partial \beta_{j}} \frac{\partial l_{i}}{\partial \beta_{k}}\right\} \\
& =\mathcal{E}\left\{\sum_{i=1}^{n} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\left(\mathcal{V}\left\{y_{i}\right\}\right)^{2}} x_{i j} x_{i k}\left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2}\right\} \\
& =\sum_{i=1}^{n} \frac{x_{i j} x_{i k}}{\mathcal{V}\left\{y_{i}\right\}}\left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2} \\
& =\sum_{i=1}^{n} x_{i j} x_{i k} w_{i i}
\end{aligned}
$$

and similarly the j^{\prime} th component of \mathbf{u} can be given by $u_{j}=\frac{\partial l}{\partial \beta_{j}}=\sum_{i=1}^{n} \frac{\left(y_{i}-\mu_{i}\right)}{\mathcal{V}\left\{y_{i}\right\}} x_{i j}\left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2} \frac{\partial \eta_{i}}{\partial \mu_{i}}=\sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right) x_{i j} w_{i i} \frac{\partial \eta_{i}}{\partial \mu_{i}}=\sum_{i=1}^{n} x_{i j} w_{i i} z_{i}^{*}$
where

$$
w_{i i}=\frac{1}{\mathcal{V}\left\{y_{i}\right\}}\left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2}
$$

and

$$
z_{i}^{*}=\left(y_{i}-\mu_{i}\right)\left(\frac{\partial \eta_{i}}{\partial \mu_{i}}\right)
$$

Thus, writing in matrix notation we obtain the following results, namely

$$
\mathcal{I}=\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}
$$

and

$$
\mathbf{u}=\mathbf{X}^{\prime} \mathbf{W}^{*}{ }^{*}
$$

APPENDIX A3

Here we will attempt to derive an estimate for $\boldsymbol{\beta}$ that maximizes the \log likelihood function,

$$
l(\mathbf{y}, \boldsymbol{\theta})=\sum_{i=1}^{n} y_{i} b\left(\theta_{i}\right)+\sum_{i=1}^{n} c\left(\theta_{i}\right)+\sum_{i=1}^{n} d\left(y_{i}\right)
$$

subject however to the restrictions $\mathbf{R} \boldsymbol{\beta}=\mathbf{r}$, where \mathbf{R} denotes a $(v \times p+1)$ matrix with j^{\prime} th row \mathbf{R}_{j}^{\prime} and \mathbf{r} a $(v \times 1)$ vector with j^{\prime} th element r_{j}. In particular, and as an alternative to the more used Lagrange multiplier approach, we will introduce a penalty function (Nyquist, 1991) of the form

$$
P(\boldsymbol{\beta}, \boldsymbol{\lambda})=\sum_{i=1}^{n} y_{i} b\left(\theta_{i}\right)+\sum_{i=1}^{n} c\left(\theta_{i}\right)+\sum_{i=1}^{n} d\left(y_{i}\right)-\frac{1}{2} \sum_{j=1}^{v} \lambda_{j}\left(r_{j}-\mathbf{R}_{j}^{\prime} \boldsymbol{\beta}\right)^{2}
$$

and attempt to obtain an estimate for $\boldsymbol{\beta}$ (that is dependent on the penalty function parameters $\left.\boldsymbol{\lambda}=\left(\lambda_{1} \ldots \lambda_{v}\right)\right)$ that maximizes $P(\boldsymbol{\beta}, \boldsymbol{\lambda})$. Letting the penalty function parameters λ_{i} tend to infinity a restricted estimate for $\boldsymbol{\beta}$
can then be realized. Differentiating $P(\boldsymbol{\beta}, \boldsymbol{\lambda})$ with respect to β_{j} yields the following system of equations

$$
\begin{aligned}
q_{j}(\boldsymbol{\beta}, \boldsymbol{\lambda}) \triangleq \frac{\partial P(\boldsymbol{\beta}, \boldsymbol{\lambda})}{\partial \beta_{j}} & =\sum_{i=1}^{n} \frac{\partial l_{i}}{\partial \beta_{j}}+\frac{\partial}{\partial \beta_{j}}\left[-\frac{1}{2} \sum_{k=1}^{v} \lambda_{k}\left(r_{k}-\mathbf{R}_{k}^{\prime} \boldsymbol{\beta}\right)^{2}\right] \\
& =\sum_{i=1}^{n} \frac{\left(y_{i}-\mu_{i}\right) x_{i j}}{\mathcal{V}\left\{y_{i}\right\}} \frac{\partial \mu_{i}}{\partial \eta_{i}}+\sum_{k=1}^{v} \lambda_{k} R_{k j}\left(r_{k}-\mathbf{R}_{k}^{\prime} \boldsymbol{\beta}\right) \\
& =\sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right) x_{i j} w_{i i} \frac{\partial \eta_{i}}{\partial \mu_{i}}+\sum_{k=1}^{v} \lambda_{k} R_{k j}\left(r_{k}-\mathbf{R}_{k}^{\prime} \boldsymbol{\beta}\right)
\end{aligned}
$$

for $j=0, \ldots, p$, which must then be set equal to zero in order to obtain an estimate for $\boldsymbol{\beta}$. Note that the estimate obtained for $\boldsymbol{\beta}$ will depend on the values of the penalty function vector $\boldsymbol{\lambda}$. As such we will use the notation $\mathbf{b}(\boldsymbol{\lambda})$ to denote the set of parameter values that solve the above set of penalized likelihood function equations. Due to the nonlinear form that these equations take, Fisher's method of scoring as outlined in section 2.3 can be applied with

$$
\mathbf{b}(\boldsymbol{\lambda})^{(m)}=\mathbf{b}(\boldsymbol{\lambda})^{(m-1)}+[\mathbf{S}(\boldsymbol{\beta}, \boldsymbol{\lambda})]^{-1} \mathbf{q}(\boldsymbol{\beta}, \boldsymbol{\lambda})
$$

with $\mathbf{S}(\boldsymbol{\beta}, \boldsymbol{\lambda})$ and $\mathbf{q}(\boldsymbol{\beta}, \boldsymbol{\lambda})$ being evaluated at $\boldsymbol{\beta}=\mathbf{b}(\boldsymbol{\lambda})^{(m-1)}$
where ${ }^{1}$

$$
\mathbf{S}(\boldsymbol{\beta}, \boldsymbol{\lambda})=-\mathcal{E}\left\{\frac{\partial^{2} P(\boldsymbol{\beta}, \boldsymbol{\lambda})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}\right\}=\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}+\mathbf{R}^{\prime} \Lambda \mathbf{R}
$$

and

$$
\mathbf{q}(\boldsymbol{\beta}, \boldsymbol{\lambda})=\mathbf{X}^{\prime} \mathbf{W} \mathbf{z}^{*}+\mathbf{R}^{\prime} \Lambda \mathbf{r}-\mathbf{R}^{\prime} \Lambda \mathbf{R} \boldsymbol{\beta}
$$

with \mathbf{z}^{*} denoting a n dimensional vector with i^{\prime} th element

$$
z_{i}^{*}=\left(y_{i}-\mu_{i}\right) \frac{\partial \eta_{i}}{\partial \mu_{i}}
$$

and Λ a $v \times v$ dimensional diagonal matrix with i^{\prime} th element λ_{i}. On making the appropriate substitutions we obtain the result
$\mathbf{b}(\boldsymbol{\lambda})^{(m)}=\mathbf{b}(\boldsymbol{\lambda})^{(m-1)}+\left[\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}+\mathbf{R}^{\prime} \Lambda \mathbf{R}\right]^{-1}\left[\mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}^{*}+\mathbf{R}^{\prime} \Lambda \mathbf{r}-\mathbf{R}^{\prime} \Lambda \mathbf{R b}(\boldsymbol{\lambda})^{(m-1)}\right]$

$$
\begin{aligned}
& { }^{1} \text { the } j k^{\prime} \text { th component of of } \mathbf{S}(\boldsymbol{\beta}, \boldsymbol{\lambda}) \text { is given by } \\
& \qquad \begin{aligned}
s_{j k}(\boldsymbol{\beta}, \boldsymbol{\lambda}) & =-\mathcal{E}\left\{\frac{\partial^{2} P(\boldsymbol{\beta}, \boldsymbol{\lambda})}{\partial \beta_{j} \partial \beta_{k}}\right\} \\
& =-\mathcal{E}\left\{\frac{\partial^{2} l}{\partial \beta_{j} \partial \beta_{k}}+\frac{\partial^{2}}{\partial \beta_{j} \partial \beta_{k}}\left(-\frac{1}{2} \sum_{i=1}^{v} \lambda_{i}\left(r_{i}-\mathbf{R}_{j}^{\prime} \boldsymbol{\beta}\right)^{2}\right)\right\} \\
& =-\mathcal{E}\left\{\frac{\partial^{2} l}{\partial \beta_{j} \partial \beta_{k}}\right\}+\mathcal{E}\left\{\frac{\partial^{2}}{\partial \beta_{j} \partial \beta_{k}}\left(\frac{1}{2} \sum_{i=1}^{v} \lambda_{i}\left(r_{i}-\mathbf{R}_{j}^{\prime} \boldsymbol{\beta}\right)^{2}\right)\right\} \\
& =\mathcal{I}_{j k}+\mathcal{E}\left\{\sum_{i=1}^{v} \lambda_{i} R_{i j} R_{i k}\right\} \\
& =\mathcal{I}_{j k}+\sum_{i=1}^{v} \lambda_{i} R_{i j} R_{i k} \\
& =\sum_{i=1}^{n} x_{i j} x_{i k} w_{i i}+\sum_{i=1}^{v} \lambda_{i} R_{i j} R_{i k}
\end{aligned}
\end{aligned}
$$

where $\tilde{\mathbf{W}}$ and $\tilde{\mathbf{z}}^{*}$ denote the value of \mathbf{W} and \mathbf{z}^{*} evaluated at the previous iteration point $\mathbf{b}(\boldsymbol{\lambda})^{(m-1)}$. Premultiplying the above equation by $\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}+\mathbf{R}^{\prime} \Lambda \mathbf{R}$ we obtain

$$
\begin{aligned}
& {\left[\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}+\mathbf{R}^{\prime} \Lambda \mathbf{R}\right] \mathbf{b}(\boldsymbol{\lambda})^{(m)}} \\
& =\left[\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}+\mathbf{R}^{\prime} \Lambda \mathbf{R}\right] \mathbf{b}(\boldsymbol{\lambda})^{(m-1)}+\mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}^{*}+\mathbf{R}^{\prime} \Lambda \mathbf{r}-\mathbf{R}^{\prime} \Lambda \mathbf{R b}(\boldsymbol{\lambda})^{(m-1)} \\
& =\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X b}(\boldsymbol{\lambda})^{(m-1)}+\mathbf{R}^{\prime} \Lambda \mathbf{R b}(\boldsymbol{\lambda})^{(m-1)}+\mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}^{*}+\mathbf{R}^{\prime} \Lambda \mathbf{r}-\mathbf{R}^{\prime} \Lambda \mathbf{R b}(\boldsymbol{\lambda})^{(m-1)} \\
& =\mathbf{X}^{\prime} \tilde{\mathbf{W}}\left[\mathbf{X b}(\boldsymbol{\lambda})^{(m-1)}+\tilde{\mathbf{z}}^{*}\right]+\mathbf{R}^{\prime} \Lambda \mathbf{r}
\end{aligned}
$$

Letting

$$
\tilde{\mathbf{z}}=\mathbf{X b}(\boldsymbol{\lambda})^{(m-1)}+\tilde{\mathbf{z}}^{*}
$$

and noting that (Rao, 1965)

$$
\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}+\mathbf{R}^{\prime} \Lambda \mathbf{R}\right)^{-1}
$$

$$
=\left[\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1}-\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1}\right]
$$

one can obtain the following iteratively weighted least squares formula for determining $\mathbf{b}(\boldsymbol{\lambda})^{(m)}$, namely

$$
\begin{aligned}
\mathbf{b}(\boldsymbol{\lambda})^{(m)}= & {\left[\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1}-\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-\mathbf{1}}\right] } \\
& {\left[\mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}+\mathbf{R}^{\prime} \Lambda \mathbf{r}\right] } \\
= & \left(\mathbf{X}^{\prime} \tilde{\mathbf{W} \mathbf{X}}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}+\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda \mathbf{r} \\
& \left.-\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda \mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{Z}} \\
& -\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda \mathbf{r}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}+\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-\mathbf{1}} \\
& \left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\} \mathbf{r} \\
& -\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}} \\
& -\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda \mathbf{r} \\
& =\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}+\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{r} \\
& -\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{Z}} \\
& -\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda \mathbf{r} \\
& +\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda \mathbf{r} \\
& =\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}+\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \Lambda\left\{\mathbf{I}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime} \Lambda\right\}^{-1} \\
& \left\{\mathbf{r}-\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} \tilde{\mathbf{z}}\right\} \\
& =\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}+\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left\{\Lambda^{-1}+\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right\}^{-1} \\
& \left\{\mathbf{r}-\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}\right\}
\end{aligned}
$$

Letting the penalty function parameters λ_{i} tend to infinity a restricted estimate for $\boldsymbol{\beta}$ can now be given by

$$
\begin{aligned}
\tilde{\boldsymbol{\beta}} & \lim _{m \rightarrow \infty}\left[\lim _{\lambda_{1}, \ldots, \lambda_{v} \rightarrow \infty} \mathbf{b}(\boldsymbol{\lambda})^{(m)}\right] \\
= & \lim _{m \rightarrow \infty}\left[\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}+\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left\{\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right\}^{-1}\right. \\
& \left.\left\{\mathbf{r}-\mathbf{R}\left(\mathbf{X}^{\prime} \tilde{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{W}} \tilde{\mathbf{z}}\right\}\right]
\end{aligned}
$$

APPENDIX A4

Since $\hat{\boldsymbol{\beta}}$ is asymptotically normally distributed with mean vector $\boldsymbol{\beta}$ and a variance-covariance matrix given by the inverse of the Information matrix, expanding $l(\boldsymbol{\beta})$ in a second order Taylor series around the point $\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}$ yields

$$
l(\boldsymbol{\beta}) \approx l(\hat{\boldsymbol{\beta}})-\frac{1}{2}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\prime} \mathcal{I}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})
$$

which implies that for parameter estimation purposes

$$
l(\boldsymbol{\beta}) \approx(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime} \mathcal{I}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})
$$

Now substituting our partitioned results (see footnote 2 in section 2.4) in the above expression we obtain the result

$$
l\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right) \approx\left(\hat{\boldsymbol{\beta}}_{1}^{\prime}-\boldsymbol{\beta}_{1}^{\prime} \hat{\boldsymbol{\beta}}_{2}^{\prime}-\boldsymbol{\beta}_{2}^{\prime}\right)\left(\begin{array}{ll}
\mathcal{I}_{11} & \mathcal{I}_{12} \\
\mathcal{I}_{21} & \mathcal{I}_{22}
\end{array}\right)\binom{\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}}{\hat{\boldsymbol{\beta}}_{2}-\boldsymbol{\beta}_{2}}
$$

Then substituting $\boldsymbol{\beta}_{2}=\mathbf{0}$, in the above expression yields

$$
\begin{aligned}
l\left(\boldsymbol{\beta}_{1}, \mathbf{0}\right) \approx & {\left[\left(\hat{\boldsymbol{\beta}}_{1}^{\prime}-\boldsymbol{\beta}_{1}^{\prime}\right) \mathcal{I}_{11}+\hat{\boldsymbol{\beta}}_{2}^{\prime} \mathcal{I}_{21}\left(\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}^{\prime}\right) \mathcal{I}_{12}+\hat{\boldsymbol{\beta}}_{2}^{\prime} \boldsymbol{\mathcal { I }}_{22}\right]\left[\begin{array}{c}
\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1} \\
\hat{\boldsymbol{\beta}}_{2}
\end{array}\right] } \\
\approx & \left(\hat{\boldsymbol{\beta}}_{1}^{\prime}-\boldsymbol{\beta}_{1}^{\prime}\right) \mathcal{I}_{11}\left(\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}\right)+\hat{\boldsymbol{\beta}}_{2}^{\prime} \mathcal{I}_{21}\left(\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}\right)+\left(\hat{\boldsymbol{\beta}}_{1}^{\prime}-\boldsymbol{\beta}_{1}^{\prime}\right) \mathcal{I}_{12} \hat{\boldsymbol{\beta}}_{2}+\hat{\boldsymbol{\beta}}_{2}^{\prime} \mathcal{I}_{22} \hat{\boldsymbol{\beta}}_{2} \\
\approx & \hat{\boldsymbol{\beta}}_{1}^{\prime} \boldsymbol{I}_{11} \hat{\boldsymbol{\beta}}_{1}-2 \boldsymbol{\beta}_{1}^{\prime} \mathcal{I}_{11} \hat{\boldsymbol{\beta}}_{1}+\boldsymbol{\beta}_{1}^{\prime} \mathcal{I}_{11} \boldsymbol{\beta}_{1}+\hat{\boldsymbol{\beta}}_{2}^{\prime} \mathcal{I}_{21} \hat{\boldsymbol{\beta}}_{1}-\hat{\boldsymbol{\beta}}_{2}^{\prime} \boldsymbol{I}_{21} \boldsymbol{\beta}_{1} \\
& +\hat{\boldsymbol{\beta}}_{1}^{\prime} \mathcal{I}_{12} \hat{\boldsymbol{\beta}}_{2}-\boldsymbol{\beta}_{1}^{\prime} \mathcal{I}_{12} \hat{\boldsymbol{\beta}}_{2}+\hat{\boldsymbol{\beta}}_{2}^{\prime} \boldsymbol{I}_{22} \hat{\boldsymbol{\beta}}_{2}
\end{aligned}
$$

Finally maximizing the \log-likelihood function, $l\left(\boldsymbol{\beta}_{1}, \mathbf{0}\right)$, with respect to $\boldsymbol{\beta}_{1}$ yields

$$
\frac{\partial l}{\partial \boldsymbol{\beta}_{1}} \approx-2 \mathcal{I}_{11} \hat{\boldsymbol{\beta}}_{1}+2 \mathcal{I}_{11} \tilde{\boldsymbol{\beta}}_{1}-2 \mathcal{I}_{12} \hat{\boldsymbol{\beta}}_{2} \stackrel{\text { set }}{=} 0
$$

which implies that

$$
\tilde{\boldsymbol{\beta}}_{1} \approx \hat{\boldsymbol{\beta}}_{1}+\mathcal{I}_{11}^{-1} \mathcal{I}_{12} \hat{\boldsymbol{\beta}}_{2}
$$

where $\tilde{\boldsymbol{\beta}}_{1}$ represents as estimate for $\boldsymbol{\beta}$ obtained under the restrictions that $\boldsymbol{\beta}_{2}=\mathbf{0}$. Thus, D^{*} is now obtained by substituting $\tilde{\boldsymbol{\beta}}=\binom{\tilde{\boldsymbol{\beta}}_{1}}{\mathbf{0}}$ in D , yielding

$$
D^{*}=2\left[l(\hat{\boldsymbol{\beta}})-l\left(\hat{\boldsymbol{\beta}}_{1}-\mathcal{I}_{11}^{-1} \mathcal{I}_{12} \hat{\boldsymbol{\beta}}_{2}, \boldsymbol{\beta}_{2}=\mathbf{0}\right)\right]
$$

APPENDIX B

REJECTION SAMPLING

Suppose that we want to obtain a sample of observations from a probability density function $f(x)$ whose form is known only up to a proportionality constant, that is $f(x)=M g(x)$ for some unknown value of M. Employing a rejection sampling technique Gilks and Wild (1992) have developed a technique that is based on using the function $g(\cdot)$, an envelope function $g_{u}(\cdot)$ and optionally a squeezing function $g_{l}(\cdot)$, such that $g_{l}(\cdot) \leq g(\cdot) \leq g_{u}(\cdot)$ for all x . By independently sampling a value x^{*} from the density function $s(x)=\frac{g_{u}(x)}{\int g_{u}(x) d x}$ and a value u from a $U(0,1)$ distribution, the following test procedure can then be employed to generate an observation from the desired probability density function $f(\cdot)$, namely if

$$
u \leq \frac{g_{l}\left(x^{*}\right)}{g_{u}\left(x^{*}\right)}
$$

then accept x^{*} as an observation from $f(\cdot)$, otherwise evaluate $g\left(x^{*}\right)$ and accept x^{*} as an observation from $f(\cdot)$ if

$$
u \leq \frac{g\left(x^{*}\right)}{g_{u}\left(x^{*}\right)}
$$

The above procedure is then repeated until the desired number of observations have been sampled. Now, in general, finding a suitable envelope function $g_{u}(x)$ can be difficult and usually involves locating the supremum of $g(x)$. However, if the function $g(x)$ is \log-concave ${ }^{1}$ then the functions

[^21]$g_{l}(x)$ and $g_{u}(x)$ can easily be obtained by noting that any concave function is bounded above and below by its tangents and chords respectively.

Figure B.1: Graph representing a concave function $h(x)$
In particular, letting $h(x)=\log g(x)$ and referring to the diagram given in Figure B.1, the envelope and squeezing functions for $g(x)$ can be obtained by setting

$$
g_{u}(x)=\exp \left[h_{u}(x)\right]
$$

and

$$
g_{l}(x)=\exp \left[h_{l}(x)\right]
$$

respectively where ${ }^{2}$

$$
\begin{align*}
h_{u}(x) & =h\left(x_{1}\right)+\left(x-x_{1}\right) h^{\prime}\left(x_{1}\right), \text { if } x<z_{1} \\
& =h\left(x_{2}\right)+\left(x-x_{2}\right) h^{\prime}\left(x_{2}\right), \text { if } z_{1} \leq x \leq z_{2} \tag{B1.1}\\
& =h\left(x_{3}\right)+\left(x-x_{3}\right) h^{\prime}\left(x_{3}\right), \text { if } x>z_{3}
\end{align*}
$$

denotes the tangents ${ }^{3}$ and

$$
\begin{align*}
h_{l}(x) & =\frac{h\left(x_{2}\right)-h\left(x_{1}\right)}{x_{2}-x_{1}} x+\frac{x_{2} h\left(x_{1}-x_{1} h\left(x_{2}\right)\right.}{x_{2}-x_{1}}, \text { if } x_{1} \leq x \leq x_{2} \\
& =\frac{h\left(x_{3}\right)-h\left(x_{2}\right)}{x_{3}-x_{2}} x+\frac{x_{3} h\left(x_{2}\right)-x_{2} h\left(x_{3}\right)}{x_{3}-x_{2}}, \text { if } x_{2}<x \leq x_{3} \tag{B1.2}\\
& =-\infty, \text { otherwise }
\end{align*}
$$

denotes the chords as shown in Figure B.1. Now in order to generate a value x^{*} from the exponentiated upper hull, we require an expression for the density

[^22]function that is associated with the exponentiated upper hull, namely ${ }^{4}$
\[

$$
\begin{align*}
s(x) & =\frac{\exp \left(h_{u}(x)\right)}{\int \exp \left(h_{u}(x)\right) d x} \\
& =\sum_{k=1}^{3} \frac{\exp \left[h\left(x_{k}\right)+h^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)\right] I_{\left(z_{k-1} ; z_{k}\right)}}{\int \exp \left(h_{u}(x)\right) d x} \tag{B1.3}
\end{align*}
$$
\]

Letting V_{1}, V_{2} and V_{3} denote the areas under the exponentiated curves bounded by the tangents and the points $\left\{-\infty, z_{1}\right\},\left\{z_{1}, z_{2}\right\}$ and $\left\{z_{2}, \infty\right\}$ respectively (refer to Figure B.1), then we obtain the result that

$$
c_{u}=\int \exp \left[h_{u}(x)\right] d x=V_{1}+V_{2}+V_{3}
$$

where ${ }^{5}$

$$
\begin{aligned}
V_{j}=\int_{z_{j-1}}^{z_{j}} \exp \left[h_{u}(x)\right] d x & =\int_{h_{u}\left(z_{j-1}\right)}^{h_{u}\left(z_{j}\right)} \exp \left[h_{u}(x)\right]\left|\frac{d x}{d h_{u}(x)}\right| d h_{u}(x) \\
& =\int_{h_{u}\left(z_{j-1}\right)}^{h_{u}\left(z_{j}\right)} \exp \left[h_{u}(x)\right] \frac{1}{h^{\prime}\left(x_{j}\right)} d h_{u}(x) \\
& =\left.\frac{\exp \left[h_{u}(x)\right]}{h^{\prime}\left(x_{j}\right)}\right|_{h_{u}\left(z_{j-1}\right)} ^{h_{u}\left(z_{j}\right)} \\
& =\frac{\exp \left[h_{u}\left(z_{j}\right)\right]-\exp \left[h_{u}\left(z_{j-1}\right)\right]}{h^{\prime}\left(x_{j}\right)} \quad \text { for } j=1,2,3
\end{aligned}
$$

and thus the following two stage method can be used to generate a value x^{*} from the piecewise exponential probability density function $s(x)$, namely

[^23]$$
\frac{d h_{u}(x)}{d x}=h^{\prime}\left(x_{j}\right)
$$
i) generate a discrete random variable y^{*} based on the probability density function
$$
P(y=k)=\frac{V_{k}}{V_{1}+V_{2}+V_{3}} \quad k=1,2,3
$$
ii) if $y^{*}=k$, then generate a value x^{*} from the density $s_{k}(x)$ defined by
\[

$$
\begin{aligned}
s_{k}(x) \triangleq \frac{\exp h_{u}(x)}{V_{k}} & =\frac{\exp \left[h\left(x_{k}\right)+h^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)\right]}{V_{k}} \\
& =\frac{h^{\prime}\left(x_{k}\right)}{\exp \left\{z_{k} h^{\prime}\left(x_{k}\right)\right\}-\exp \left\{z_{k-1} h^{\prime}\left(x_{k}\right)\right\}} \exp \left\{x h^{\prime}\left(x_{k}\right)\right\}
\end{aligned}
$$
\]

for $x \in\left(z_{k-1}, z_{k}\right)$ and $k=1,2,3$. In particular the random variable x^{*} can be generated by first generating a random variable u^{*} from a $U(0,1)$ distribution, and then setting ${ }^{6}$

$$
x^{*}=\frac{\log \left[u^{*} \exp \left\{z_{k} h^{\prime}\left(x_{k}\right)\right\}+\left(1-u^{*}\right) \exp \left\{z_{k-1} h^{\prime}\left(x_{k}\right)\right\}\right]}{h^{\prime}\left(x_{k}\right)}
$$

${ }^{6}$ Noting that the density function with respect to u^{*} is given by

$$
f_{U} \cdot\left(u^{*}\right)=1
$$

and letting

$$
\begin{equation*}
x=\frac{\log \left[u^{*} \exp \left\{z_{k} h^{\prime}\left(x_{k}\right)\right\}+\left(1-u^{*}\right) \exp \left\{z_{k-1} h^{\prime}\left(x_{k}\right)\right\}\right]}{h^{\prime}\left(x_{k}\right)} \tag{1}
\end{equation*}
$$

the density for x can then be given by

$$
f_{X}(x)=f_{U} \cdot\left(u^{*}\right)\left|\frac{d u^{*}}{d x}\right|=1\left|\frac{d u^{*}}{d x}\right|
$$

Now from (1) we obtain

$$
u^{*}=\frac{\exp \left\{x h^{\prime}\left(x_{k}\right)\right\}-\exp \left\{z_{k-1} h^{\prime}\left(x_{k}\right)\right\}}{\exp \left\{z_{k} h^{\prime}\left(x_{k}\right)\right\}-\exp \left\{z_{k-1} h^{\prime}\left(x_{k}\right)\right\}}
$$

which implies that

$$
\frac{d u^{*}}{d x}=\frac{h^{\prime}\left(x_{k}\right) \exp \left\{x h^{\prime}\left(x_{k}\right)\right\}}{\exp \left\{z_{k} h^{\prime}\left(x_{k}\right)\right\}-\exp \left\{z_{k-1} h^{\prime}\left(x_{k}\right)\right\}}
$$

which corresponds to the expression given for $s_{k}(x)$

We can thus implement the Gibbs sampler, using the above method of Rejection Sampling, until the desired number of sample points from each conditional density have been obtained.

APPENDIX C

C1 DSMA1SX1 DATA SET

$\mathrm{ZI}=$ DSMA1SK1 (MATHEMATICS1) MARK
Y1 = CODED UHIVERSTY MARX (IE. Y1 = 1 IF Z1 IS GREATER THA耳 OR EQUAL TO 48; ELSE Y1 = 0)
$X_{1}=$ hatriculatiol eyglish coded value
X2 = MATRICULATIOD AFRIKAAES CODED VALUE
x3 = Matriculation Mathematics coded value
X4 = MATRICULATIOE BIOLOGY CODED VALUE
X5 = MATRICULATIOE PHYSICS CODED VALUE
D1 (HOD) ATD D2 (HED) REPRESEHT THE DUHhY Variables that
accoult for the type of matriculation authority
HB. II Chapter 2 he use the coded mari y 1 and fot the actual mark 21.
aHd If Chapter 3 UE USE the actual mark 21 aEd mot the coded mark y1.
$\begin{array}{clllllllll}\text { OBS } & \mathrm{Z} 1 & \mathrm{X} 1 & \mathrm{X} 2 & \mathrm{X} 3 & \mathrm{X} 4 & \mathrm{X} 5 & \mathrm{D} 1 & \mathrm{D} 2 & \mathrm{Y} 1\end{array}$

[^24] 0
0
0 0
1
1 1
1
1 1
1

 NNOOOMNNNOONOOMNOOOOMNOOORNNHLOOMNONHNOHOONOMONOL

C2 DSPH1SC1 DATA SET

Z2 = DSPH1SC1 (PHYSICS1) HARK
Y2 $=$ CODED UEIVERSTY MARK (IE. Y2 = 1 IF Z2 IS GREATER THAE OR EQUAL TD 48; ELSE Y2 $=0$)

X1 $=$ HATRICULATIOX ERGLISH CODED VALUE
$\mathrm{X} 2=$ HATRICULATION AFRIKAAIS CODED VALUE
X3 $=$ MATRICULATIOF MATHEMATICS CDDED VALUE
X4 $=$ HATRICULATIOE BIOLOGY CODED VALUE
X5 = HATRICULATIOZ PHYSICS CODED VALUE
D1 (HOD) AMD D2 (IED) REPRESERT THE DUHMY VARIABLES THAT
ACCOUET FOR THE TYPE OF MATRICULATIOE AUTHORITY
EB. II CHAPTER 2 HE USE THE CODED MARK Y2 A.D HOT THE ACTUAL MARK Z2.
AED IH CHAPTER 3 UE USE THE ACTUAL MARK 22 AED HOT THE CODED MARK Y2.

OBS Z2 X1 X2 X3 X4 X5 $\begin{array}{lllllll}\mathrm{X} & \mathrm{X} & \mathrm{X} 2 & \mathrm{Y} 2\end{array}$

 0
0
0
3
0
0
0
0
1
1
0
3
1
1
0
0
2
1 ーローローロールトONOOOOルトOー
 $\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}$

END OF DATA SET

```
Z1 = DSMA1SX1 (RATHEMATICS1) MARK
Z2 = DSPH1SC1 (PHYSICS1) MARK
Y = CODED U#IVERSTY MARK (IE. Y = 1 IF Z1 AND Z2 IS GREATER THAG
OR EQUAL TO 48; ELSE Y = 0)
X1 = NATRICULATION EEGLISH CODED VaLUE
X2 = MATRICULATIOI AFRIRAAES CODED VALUE
x3 = MATRICULATIO甘 MATHEMATICS CODED VALUE
X4 = MATRICULATION BIOLOGY CODED VALUE
X5 = MATRICULATIOI PHYSICS CODED VALUE
D1 (HOD) AID D2 (IED) REPRESEIT THE DUMMY VARIABLES THAT
ACCOUET FOR THE TYPE OF MATRICULATION AUTHORITY
Mb. II GHAPTER 2 UE USE TKE CODED MARK y ard hot the actual markS 21 amd Z2.
AND II CHAPTER 3 HE USE THE ACTUAL MarkS 21 aHD Z2 aHD HOT THE CODED MARR Y.
```

$\begin{array}{lllllllllll}\text { OBS } & \mathrm{Z} 1 & \mathrm{Z} 2 & \mathrm{X} 1 & \mathrm{X} 2 & \mathrm{X} 3 & \mathrm{X} 4 & \mathrm{X} 5 & \mathrm{D} 1 & \mathrm{D} 2 & \mathrm{Y}\end{array}$

1	86	81	0	0	0	0	0	0	1	1	52	46	40	1	1	1	0	1	1	0	0
2	30	8	3	5	1	3	2	1	0	0	53	86	76	1	1	1	1	0	1	0	1
3	28	22	2	3	0	2	2	1	0	0	54	34	45	2	1	2	2	2	1	0	0
4	81	55	2	2	0	2	1	0	1	1	55	50	66	1	3	1	0	0	0	1	1
5	81	54	1	1	0	1	1	0	1	1	56	85	77	0	2	0	0	0	1	0	1
6	44	47	3	4	0	2	1	1	0	0	57	57	54	2	2	0	0	0	1	0	1
7	34	32	2	2	1	2	2	1	0	0	58	50	65	2	2	0	0	1	1	0	1
8	32	25	2	1	2	2	3	0	0	0	59	79	67	1	2	0	1	1	1	0	1
9	15	23	2	4	1	1	1	1	0	0	60	78	75	1	2	0	1	1	1	0	1
10	44	40	1	1	1	2	1	1	0	0	61	32	58	0	0	0	0	0	0	1	0
11	43	65	2	1	1	2	0	0	1	0	62	50	44	1	1	2	1	2	1	0	0
12	40	31	0	1	1	1	2	1	0	0	63	95	77	1	1	0	0	0	1	0	1
13	42	50	2	1	2	0	2	0	0	0	64	82	65	0	1	0	1	1	0	1	1
14	34	33	2	2	0	2	2	0	0	0	65	44	50	3	3	0	1	2	1	0	0
15	99	83	0	0	0	0	0	0	1	1	66	69	72	1	2	1	0	1	0	0	1
16	40	41	3	3	2	3	3	0	1	0	67	95	87	0	1	0	0	0	1	0	1
17	86	69	2	2	0	1	1	0	1	1	68	30	45	1	1	1	0	1	1	0	0
18	29	32	3	3	1	1	2	1	0	0	69	77	78	2	1	2	1	1	1	0	1
19	42	46	1	2	2	3	2	0	1	0	70	40	70	1	2	2	0	1	1	0	0
20	30	29	3	4	1	1	3	0	0	0	71	100	98	0	0	0	0	0	0	1	1
21	68	50	0	2	0	1	1	1	0	1	72	62	62	2	3	2	2	2	1	0	1
22	83	50	0	2	0	0	1	0	1	1	73	97	88	0	2	0	0	0	1	0	1
23	52	40	1	2	1	1	2	0	1	0	74	33	53	2	2	2	0	2	1	0	0
24	33	61	3	3	2	0	0	1	0	0	75	45	50	1	3	0	0	1	0	0	0
25	58	47	2	2	0	1	2	1	0	0	76	90	77	2	1	0	0	1	1	0	1
26	44	38	3	2	1	2	2	1	0	0	77	51	59	2	1	0	1	2	1	0	1
27	87	60	0	0	0	0	1	1	0	1	78	75	79	2	2	0	0	0	1	0	1
28	8	18	0	2	3	2	4	1	0	0	79	69	82	0	1	1	0	0	1	0	1
29	56	51	2	2	0	1	1	1	0	1	80	57	69	2	1	0	0	0	0	1	1
30	89	71	2	2	0	1	1	1	0	1	81	88	94	1	2	0	0	0	1	0	1
31	34	47	1	1	2	2	0	1	0	0	82	89	84	1	2	1	1	0	0	1	1
32	40	51	3	3	2	1	2	1	0	0	83	45	47	0	2	1	0	1	0	0	0
33	75	60	2	3	0	2	2	0	1	1	84	60	67	1	2	1	1	3	0	1	1
34	77	60	0	0	0	0	0	0	1	1	85	46	41	2	2	2	2	1	1	0	0
35	40	28	2	4	2	1	3	1	0	0	86	54	56	0	1	1	0	0	1	0	1
36	69	55	1	1	1	1	2	1	0	1	87	63	66	0	1	0	1	0	1	0	1
37	68	63	0	1	1	0	0	1	0	1	88	44	41	2	2	2	1	2	1	0	0
38	54	57	1	2	1	1	1	0	1	1	89	61	63	1	1	0	0	1	1	0	1
39	34	47	11	2	1	2	1	1	0	0	90	26	47	2	3	1	1	2	1	0	0
40	58	72	1	1	0	1	0	1	0	1	91	47	63	1	2	1	0	1	1	0	0
41	27	60	2	2	3	2	3	0	1	0	92	69	70	0	1	1	0	1	1	0	1
42	66	45	4	5	0	2	1	0	0	0	93	51	43	0	1	1	0	1	1	0	0
43	51	71	2	3	1	1	2	1	0	1	94	50	56	2	2	1	0	1	0	1	1
44	87	82	0	1	0	0	0	1	0	1	95	52	53	1	2	2	0	1	1	0	1
45	59	73	3	4	1	1	0	1	0	1	96	58	63	2	1	1	0	0	1	0	1
46	77	83	1	2	0	0	1	1	0	1	97	35	41	2	5	3	3	3	0	0	0
47	90	85	3	2	0	0	0	0	0	1	98	15	31	2	4	2	1	3	1	0	0
48	82	85	0	1	0	0	0	1	0	1	99	31	51	2	4	3	4	3	0	1	0
49	77	86	0	1	0	1	0	1	0	1	100	36	40	0	1	1	1	1	1	0	0
50	100	100	0	0	0	0	0	0	1	1	101	74	63	0	4	4	2	2	0	1	
51	91	83	0	1	0	0	0	1	0	1	102	87	71	0	1	0	0	0	1	0	

180	63	75	2	3	0	0	2	1	0	1
181	40	68	1	2	0	0	1	1	0	0
182	75	92	2	1	0	0	0	1	0	1
183	62	69	2	2	1	2	2	0	1	1
184	44	52	0	1	1	0	0	1	0	0
185	82	77	1	1	0	1	0	0	1	1
186	40	57	1	2	1	1	2	0	1	0
187	33	58	2	2	1	0	1	1	0	0
188	40	68	2	3	0	1	0	1	0	0
189	70	73	1	1	0	0	0	0	1	1
190	53	56	2	1	1	0	0	1	0	1
191	40	32	3	2	0	1	2	1	0	0

END OF DATA SET

APPENDIX D

PROGRAMS

D1 DISCRIMINANT ANALYSIS

PROGRAM USED TO OBTAIN THE DISCRIMINANT ANALYSIS RESULTS ON DUR DSMA1SX1 DATA. RESULTS DUTINED IN CHAPTER DNE. THIS PROGRAM WAS ALSO APPLIED TO OUR DSPH1SC1 DATA AND OUR COMBINED DSMA1SX1 AND DSPH1SC1 DATA.

```
libname in 'c:\robert';
data math1; /**CONTAINS ALL THOSE STUDENTS WHO FAILED DSMA1SX1**/
set in.mp2;
    if z1='0' then delete;
    if z1='.' then delete;
    if ma='4' then d1=1; else d1=0;
    if ma='6' then d2=1; else d2=0;
    if z1 ge 48 then y1=1; else y1=0;
    if y1=1 then delete;
run;
data math2; /**CONTAINS ALL THOSE STUDENTS WHO PASSED DSMA1SX1**/
set in.mp2;
    if z1='0' then delete;
    if z1='.' then delete;
    if ma='4' then d1=1; else d1=0;
    if ma='6' then d2=1; else d2=0;
    if z1 ge 48 then y1=1; else y1=0;
    if y1=0 then delete;
run;
proc iml;
reset noprint;
use math1; /**UNSUCCESSFUL GROUP**/
read all var{x1 x2 x3 x4 x5 d1 d2};
x=x1||x2||x3||x4||x5||d1||d2;
n1=nrow(x);
v=ncol(x);
one=j(n1,1,1);
xbar1=1/n1 * one'*x;
xb1=one*xbar1;
s1=1/(n1-1) * (x-xb1)'*(x-xb1);
```

```
print xbar1 s1;
/**xbar1 = mean vector for the successful(pass) group**/
/**s1 = variance-covariance matrix for the successful group**/
use math2; /**SUCCESSFUL GROUP**/
read all var{x1 x2 x3 x4 x5 d1 d2};
x=x1||x2||x3||x4|x5||d1||d2;
n2=nrow(x);
one=j(n2,1,1);
xbar2=1/n2 * one'*x;
xb2=one*xbar2;
s2=1/(n2-1) * (x-xb2)'*(x-xb2);
print xbar2 s2;
/**xbar2= mean vector for the unsuccessful(fail) group**/
/**s2 = variance-covariance matrix for the unsuccessful group**/
spool=((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2);
/**spool = pooled variance-covariance matrix**/
k=(xbar1-xbar2)*inv(spool);
c=(1/2)*(xbar1-xbar2)*inv(spool)*(xbar1+xbar2)';
print spool k c;
print n1 n2 ;
/*n1 - no. of failures n2 - no. of successes */
/**END OF PROGRAM**/
```


D2.1 LOGIT LINK FUNCTION

GENERALIZED LINEAR MODEL WITH LOGIT LINK FUNCTION

```
PROGRAM USED TO OBTAIN THE PARAMETER ESTIMATES, STANDARD ERROR
OF THESE ESTIMATES, WALD TEST STATISTIC VALUES, PROBAILITY VALUES
ASSOCIATED WITH THE WALD TEST STATISTIC AND 95 % LOWER AND UPPER
CONFIDENCE INTERVALS FOR THE PARAMETER ESTIMATES FOR OUR DSMA1SX1
DATA (RESULTS GIVEN IN TABLE 2.6.2). THIS PROGRAM WAS ALSO USED
TO OBTAIN THE ESTIMATED PROBABILITY (TOGETHER WITH ITS CONFIDENCE
INTERVALS) ASSOCIATED WITH A STUDENT PASSING DSMA1SX1 FOR A GIVEN
SET OF MATRICULATION PROFILE RESULTS (RESULTS GIVEN IN TABLE 2.6.3).
THIS PROGRAM WAS ALSO APPLIED ON OUR DSPH1SC1 DATA AND OUR COMBINED
DSMA1SX1 AND DSPH1SC1 DATA.**/
```

/**ORGANISING OUR DSMA1SX1 DATA SET **/
libname in 'c:\robert';
data math ;
set in.mp2;
if ma='4' then d1=1; else d1=0;
if ma='6' then $d 2=1$; else $d 2=0$;
if $z 1=$ '0' then delete;
if $z 1=$ '.' then delete;
if $z 1$ ge 48 then $\mathrm{y} 1=1$; else $\mathrm{y} 1=0$;
run;
/** THE ACTUAL PROGRAM**/
proc iml worksize=100;
reset noprint;
use math;
read all var\{x1 x2 x3 x4 x5 d1 d2 y1\};
n=nrow (x3);
$\mathrm{X}=\mathrm{j}(\mathrm{n}, 1,1)| | \mathrm{x} 3| | \mathrm{x} 4| | \mathrm{x} 5| | \mathrm{d} 2 ; / * *$ MATRIX OF PREDICTOR VARIABLES**/
/** THE FISHER SCORING ROUTINE USING A CONVERGENCE
CRITERION OF 0.0001**/

```
p=ncol(x);
b=j(p,1,0);
z=j(n,1,0);
w=j(n,n,0);
oldb=b+j(p,1,1);
```

```
do iter =1 to 60 while(max(abs(b-oldb))> 0.0001);
    oldb=b;
    do i=1 to n;
        yi=y1[i];
        xit=x[i, ];xi=xit';
        pi=exp(xi`*b)/(1+exp(xi`*b));
        wii=pi*(1-pi);
        zi=xi`*b + (yi - pi)`*inv(pi*(1-pi));
        w[i,i]=wii;
        z[i]=zi;
    end;
    detw=det( ('**W*x);
    b=inv(x'*W*x)*x'*W*z;
    end;
/** END OF THE FISHER SCORING ROUTINE (SEE EQUATION (2.3.10)**/
    covb=inv(x'*W*x);
/**LB = LOWER BOUND FOR THE CONFIDENCE INTERVAL OF THE PARAMETER ESTIMATE **/
LB=j(p,1,0);
    do j=1 to p;
        LCBj=b[j]-1.96*sqrt(covb[j,j]);
        LB[j]=LCBj;
    end;
/**UB = UPPER BOUND FOR THE CONFIDENCE INTERVAL OF THE PARAMETER ESTIMATE **/
UB=j(p,1,0);
    do j=1 to p;
        UCBj=b[j]+1.96*sqrt(covb[j,j]);
        UB[j]=UCBj;
    end;
/**SEB = STANDARD ERROR OT THE PARAMETER ESTIMATES **/
SEB=j(p,1,0);
    do j=1 to p;
        sebj=sqrt(covb[j,j]);
        seb[j]=sebj;
    end;
m=nrow(b);
/**WT = WALD TEST STATISTIC**/
WT=j(m,1,0); prob=j(m,1,0);
R=j(1,m,0);
```

```
    do i=1 to m;
    R[i]=1;
    WTi=(R*b)`*inv(R*inv(x'*W*x)*R`)*(R*b);
    WT[i]=WTi;
    q=nrow(R); probi=1-probchi(WTi,q);
    prob[i]=probi ;
    R[i]=0;
    end;
q=8 ;
/**PHAT = ESTIMATED PROBABILITY **/
/**LBPHAT AND UBPHAT = LOWER AND UPPER BOUNDS FOR THE
    CONFIDENCE INTERVALS ASSOCIATED WITH PHAT**/
```

```
PHAT=j(q,1,0); LBPHAT=j(q,1,0); UBPHAT=j(q,1,0);
```

PHAT=j(q,1,0); LBPHAT=j(q,1,0); UBPHAT=j(q,1,0);
x={1 0000, 11000, 10100, 10010, 10001,
x={1 0000, 11000, 10100, 10010, 10001,
11001, 10101, 10011};
11001, 10101, 10011};
do i=1 to q;
do i=1 to q;
phati=exp(x[i,]*b)*inv(1+exp(x[i,]*b));
phati=exp(x[i,]*b)*inv(1+exp(x[i,]*b));
phat[i]=phati;
phat[i]=phati;
lbphati=exp(x[i,]*LB)*inv(1+exp(x[i,]*LB));
lbphati=exp(x[i,]*LB)*inv(1+exp(x[i,]*LB));
ubphati=exp(x[i,]*UB)*inv(1+exp(x[i,]*UB));
ubphati=exp(x[i,]*UB)*inv(1+exp(x[i,]*UB));
lbphat[i]=lbphati;
lbphat[i]=lbphati;
ubphat[i]=ubphati;
ubphat[i]=ubphati;
end;
end;
print b seb WT prob LB UB;
print b seb WT prob LB UB;
print X phat lbphat ubphat;
print X phat lbphat ubphat;
/**END OF PROGRAM**/

```

\section*{D2.2 PROBIT LINK FUNCTION}
```

GENERALIZED LINEAR MODEL WITH PROBIT LINK FUNCTION
PROGRAM USED TO DBTAIN THE PARAMETER ESTIMATES, STANDARD ERROR
OF THESE ESTIMATES, WALD TEST STATISTIC VALUES, PROBAILITY VALUES
ASSOCIATED WITH THE WALD TEST STATISTIC AND 95 % LOWER AND UPPER
CONFIDENCE INTERVALS FOR THE PARAMETER ESTIMATES FOR OUR DSMA1SX1
DATA (RESULTS GIVEN IN TABLE 2.6.10). THIS PROGRAM WAS ALSO USED
TO OBTAIN THE ESTIMATED PROBABILITY (TOGETHER WITH ITS CONFIDENCE
INTERVALS) ASSOCIATED WITH A STUDENT PASSING DSMA1SX1 FOR A GIVEN
SET OF MATRICULATION PROFILE RESULTS (RESULTS GIVEN IN TABLE 2.6.11).
THIS PROGRAM WAS ALSO APPLIED ON OUR DSPH1SC1 DATA AND OUR COMBINED
DSMA1SX1 AND DSPH1SC1 DATA.**/
libname in 'c:\robert';
data math ;
set in.mp2;
if ma='4' then d1=1; else d1=0;
if ma='6' then d2=1; else d2=0;
if z1='0' then delete;
if z1='.' then delete;
if z1 ge 48 then y1=1; else y1=0;
proc sort data=math;
by ma;
run;
proc iml worksize=100;
reset noprint;
use math;
read all var{x1 x2 x3 x4 x5 d1 d2 y1};
n=nrow(x3);
X=j(n,1,1)||x3||x4||x5||d2;
/**FISHERS SCORING ROUTINE**/
p=ncol(x);
b=j(p,1,0);
z=j(n,1,0);
w=j(n,n,0);
oldb=b+j(p,1,1);
do iter =1 to 60 while(max (abs(b-oldb))> 0.0001);
oldb=b;
do i=1 to n;
yi=y1[i];

```
```

 xit=x[i,];xi=xit';
 pi=probnorm(xi'*b);
 vi=xi'*b;
 I=1/(sqrt(2)*gamma(0.5));
 phi=l*exp((-1/2)*vi*vi);
 wii=(phi*phi)/(pi*(1-pi));
 zi=xi`*b + (yi - pi)*inv(phi);
 w[i,i]=wii;
 z[i]=zi;
 end;
 detw=det(x'*W*x);
 b=inv(x'*W*x)*x'*w*z;
 end;
/**END OF FISHERS SCORING ROUTINE**/
covb=inv(x'*w*x);
LB=j(p,1,0);
do j=1 to p;
LCBj=b[j]-1.96*sqrt(covb[j,j]);
LB[j]=LCBj;
end;
UB=j(p,1,0);
do j=1 to p;
UCBj=b[j]+1.96*sqrt (covb[j,j]);
UB[j]=UCBj;
end;
seb=j(p,1,0);
do j=1 to p;
sebj=sqrt(covb[j,j]);
seb[j]=sebj;
end;
m=nrow(b);
WT=j(m,1,0); prob=j(m,1,0);
R=j(1,m,0);
do i=1 to m;
R[i]=1;
WTi=(R*b)'*inv(R*inv(x'*w*x)*R')*(R*b);
WT[i]=WTi;
q=nrow(R); probi=1-probchi(wTi,q);
prob[i]=probi ;
R[i]=0;
end;

```
```

q=8 ;
phat=j(q,1,0); lbphat=j(q,1,0); ubphat=j(q,1,0);
x={10000 , 11 1000, 10100, 10010, 10001,
11001, 10101, 10011};
do i=1 to q;
phati=probnorm(x[i,]*b);
phat[i]=phati;
lbphati=probnorm(x[i,]*LB);
ubphati=probnorm(x[i,]*UB);
lbphat[i]=lbphati;
ubphat[i]=ubphati;
end;
print b seb WT prob LB UB;
print X phat lbphat ubphat;
/**END OF PROGRAM**/

```

\begin{abstract}
D3.1 A CUMULATIVE STANDARD NORMAL FUNCTION PROGRAM USED TO OBTAIN THE REGRESSION PARAMETER ESTIMATES, STANDARD ERROR FOR THE PARAMETER ESTIMATES, T-VALUES, UPPER AND LOWER BOUNDS FOR THE CONFIDENCE INTERVALS OF THE PARAMETER ESTIMATES AND THE MEAN SQUARE ERROR (FOR THE PROBLEM DISCUSSED IN CHAPTER THREE) FOR OUR DSMA1SX1 COURSE (RESULTS GIVEN IN TABLE (3.5.1). THIS PROGRAM ALSO GIVES THE ESTIMATED PROBABILITY (TOGETHER WITH ITS CONFIDENCE INTERVAL) ASSOCIATED WITH A STUDENT PASSING THE DSMA1SX1 COURSE FOR A GIVEN MATRICULATION RESULT PROFILE (RESULTS GIVEN IN TABLE 3.5.2). THIS PROGAM WAS ALSO APPLIED ON OUR DSPH1SC1 COURSE.
\end{abstract}
```

libname perm 'c:\robert';
data math; /**DSMA1SX1 DATA**/
set perm.mp2;
if z1 = '0' then delete;
if z1 = '.' then delete;
if ma=4 then d1=1; else d1=0;
if ma=6 then d2=1; else d2=0;

```
proc iml worksize=100;
reset noprint;
    use math;
read all var\{z1 x1 x2 x3 x4 x5 d1 d2\};
n=nrow ( \(\mathrm{z1}\) ) ;
\(x 0=j(n, 1,1)\);
\(\mathrm{x}=\mathrm{x} 0| | \mathrm{x} 1\) || x3 || x4 || x5 || d2;
\(\mathrm{p}=\mathrm{ncol}\) ( x );
beta=inv(x'*x)*x'*z1;
sse=z1'*z1-beta'*x'*z1;
mse=sse/ ( \(\mathrm{n}-\mathrm{p}\) );
covb=inv(x'*x)*mse;
seb=j( \(\mathrm{p}, 1,0\) );
do \(j=1\) to \(p\);
sebj=sqrt(covb[j,j]);
seb[j]=sebj;
end;
\(t=j(p, 1,0)\);
do \(j=1\) to \(p\);
\(\mathrm{tj}=\mathrm{beta}[\mathrm{j}] / \mathrm{seb}[\mathrm{j}]\);
\(t[j]=t j\);
end;
lb=beta-1.96*seb; ub=beta+1.96*seb;

```

 1000001, 1 1 0 0 0 1, 1 0 1 0 0 1, 1000110 1, 1 0 0 0 1 1};
 zhat=x*beta; zhatlb=x*lb; zhatub=x*ub;
sx=(zhat-48)/sqrt(mse);
sxlb=(zhatlb-48)/sqrt(mse);
sxub=(zhatub-48)/sqrt(mse);
phat=probnorm(sx);
phatlb=probnorm(sxIb);
phatub=probnorm(sxub);
print beta seb t lb ub mse;
print X phat phatlb phatub;
/**END OF PROGRAM**/

```

\section*{D3.2 MONTE CARLO ALGORITHM}

PROGRAM USED TO OBTAIN THE ESTIMATED PROBABILITY (TOGETHER WITH ITS CONFIDENCE INTERVALS) ASSDCIATED WITH A STUDENT PASSING BOTH DSMA1SX1 AND DSPH1SC1 FOR A GIVEN SET OF MATRICULATION PROFILES (RESULTS GIVEN IN TABLE 3.5.6). THIS PROBLEM IS DISCUSSED IN CHAPTER THREE.
```

libname in 'c:\robert';
data maph;
set in.mp2;
if ma='4' then d1=1; else d1=0;
if ma='6' then d2=1; else d2=0;
if z1='0' then delete;
if z1='.' then delete;
if z2='0' then delete;
if z2='.' then delete;
run;
proc iml worksize=100;
reset noprint;
use maph;
read all var{z1 z2 x1 x2 x3 x4 x5 d1 d2};
n=nrow(z1);
x0=j(n,1,1);
x= x0 || x1 || x2 || x3 || x4 || x5 || d1 || d2 ;
y=z1 || z2;
p=ncol(y);
/** ROUTINE TO GENERATE OBSERVATIONS FROM A MULTIVARIATE NORMAL DENSTIY**/
start multnor(ystar,ystarlb,ystarub,mu,mulb,muub, sigma,p);
seed = 456 ;
z=j(p,1,0);
sigma=(sigma' + sigma)/2;
u=root(sigma);
t=u';
do i=1 to p;
z[i]=rannor(seed);
end;
ystar=t*z + mu;
ystarlb=t*z + mulb;
ystarub=t*z + muub;
finish ;
/**END OF ROUTINE**/

```
```

x={100 0 0 0 1 0 0 0 0,0 0 0 0 0 0 1 0 0 1,
1010010000,0000001001,
1001010000,00000011101,
1000100000,0000001011,
1000000000,0000001000,
1010000000,0000001000,
1001000000,00000011 00,
1000100000,0000001010};

```
/*b1 and b2 obtained from the sur model*/
```

b1={69.647416,-2.917197,-5.949945, -2.771966,-5.423292,11.317970};
b2={67.594627,-4.548053,-8.916156,13.103354};
bet=b1//b2;
q=8;
prob=j(q,1,0); problb=j(q,1,0); probub=j(q,1,0);
do }k=1\mathrm{ to q;
mu=(x[2*k-1,]//x[2*k,])*bet;
/* sigma2 obtained from the sur model*/
sigma={240.3949 118.5459, 118.5459 154.7962};
/*stder obtained from the sur model*/
stder={2.01102 , 1.05425 , 1.25738 , 1.62782 , 1.57495 , 2.61120 ,
1.39130 , 1.25355 , 1.16054, 2.07635};
1beta=bet-1.96*stder;
ubeta=bet+1.96*stder;
mulb=(x[2*k-1,]//x[2*k,])*lbeta;
muub=(x[2*k-1,]//x[2*k,])*ubeta;
/* For a given mu and sigma , a set of m p-dimensional N(mu,sigma)
random vectors are generated. If the generated vector ystar
lies in the region }A={y[1]>=c1,···,y[p]>=cp} where the
cutoff points cp are given in the vector c, then a count
variable is updated by one. cf. Y.L.Tong- Monte Carlo
integration method in 'THE MULTIVARITE NORMAL DISTRIBUTION'
pp 185-189) */

```
/** GENERATING 100000 OBSERVATIONS**/
```

m=100000;
c=j(p,1,48);
count=0; countlb=0; countub=0;
do r=1 to m;
run multnor(ystar,ystarlb,ystarub,mu,mulb,muub,sigma,p);
if all(ystar>=c) then count=count+1;
if all(ystarlb>=c) then countlb=countlb+1;
if all(ystarub>=c) then countub=countub+1;
end;
prob[k] = count/m;
problb[k]=countlb/m;
probub[k]=countub/m;
end; /* k loop */
print x;
print prob problb probub;
/**END OF PROGRAM**/

```

\section*{D4 GIBBS SAMPLING VIA REJECTION SAMPLING}

THIS PROGRAM USES THE METHOD OF REJECTION SAMPLING WITH SQUEEZING TO INVOKE THE GIBBS SAMPLER THAT WAS IMPLEMENTED ON OUR DSMA1SX1 DATA. THE VARIABLES THAT WERE FOUND TO BE IMPORTANT IN CHAPTER TWO WERE USED HERE, NAMELY MATHEMATICS (X3), BIOLOGY (X4), PHYSICS X(5) AND THE \(\operatorname{IRED}\) (d2) VARIABLE (INCLUDING AN INTERCEPT TERM)
```

libname in 'c:\robert';
data math;
set in.mp2;
if z1='.' then delete;
if z1= '0' then delete;
if z1 ge 48 then y=1;
else y=0;
if ma=4 then d1=1;
else d1 = 0;
if ma=6 then d2=1;
else d2 = 0;
keep y x1 x2 x3 x4 x5 d1 d2;
/* Non-adaptive Rejection sampling program with squeezing */
/* Assume density function f(x) from which we want to draw
an observation is log-concave; i.e
h(x)=ln}g(x)\mathrm{ propto ln }f(x
is concave. This assumption then ensures that the support
of x is in a finite interval [xlb,xub] */

```
proc iml worksize=1000;
    reset noprint;
/* This function routine computes \(h(x)\) for a fixed value of \(x * /\)
start hx(s) global(beta, \(x, y, n, j, p)\);
    sum=0;
    beta \([j]=s ;\)
    betao \(=j(p, 1,0)\);
    sigmao=10000*i(p) ;
        do \(i=1\) to \(n\);
            \(\operatorname{sum}=\operatorname{sum}+y[i] * x[i]\),\(* beta -\log (1+\exp (x[i] * b e t a)\),
            end;
    val \(=-0.5 *(\) beta-betao \()\) '*inv(sigmao) \(*(\) beta-betao \()+\) sum;
    return(val);
finish hx;
```

/* This function routine computes h'(x) for a fixed value of x */
start hpx(s) global(beta, x,y,n,j,p);
sum1=0;
IP=I(p);
e=IP[,j];
beta[j]=s;
betao= j(p,1,0) ;
sigma0= 10000*i(p) ;
do i=1 to n;
sum1=sum1+y[i]*x[i,]*e-inv(1+exp(x[i,]*beta))*\operatorname{exp}(x[i,]*beta)*x[i,j];
end;
val=-er*inv(sigma0)*(beta-betao) + sum1;
return(val);
finish hpx;

```
/* MAIN PROGRAM */
use math;
read all var\{y x1 x2 x3 x4 x5 d1 d2\};
n=nrow (y) ;
    \(x=j(n, 1,1)| | x 3| | x 4| | x 5| | d 2 ;\)
    \(\mathrm{p}=\mathrm{ncol}(\mathrm{x})\);
    /**ทe used the parameter estimates obtained in chapter 2
    for the starting values of beta **/
    beta \(=\{1.73,-0.64,-0.44,-0.39,1.18\} ;\)
    \(\mathrm{m}=10 ; \mathrm{G}=1000\);
    do nobs=1 to \(G\);
    do count \(=1\) to m ;
    /** Implement Gibbs sampler m times to obtain one observation**/
        do \(j=1\) to 5 ;
    /** Initialization step: Specify xstart and compute s1 and s3 **/
    /** for xubd and xlbd we used the parameter estimates obtained
        in chapter 2 plus or minus 4 standard deviations **/
        \(x l b d=\{0.68,-1.35,-1.12,-1.12,-0.15\} ;\)
```

xubd={2.78,0.067,0.22,0.33, 2.52};
xlb=xlbd[j] ; xub=xubd[j];
xstart=(xlb+xub)/2;
s=j(3,1,0); u=j(2,1,0); v=j(3,1,0);
h=hx(xstart); hp=hpx(xstart);
if hp=0 then do until (hp>0);
xstart=(xstart + xlb)/2;
hp=hpx(xstart);
end;
if hp > 0 then do;
s[1]=xstart;
do while (hp>=0);
xstart=(xstart + xub)/2;
hp=hpx(xstart);
end;
s[3]=xstart;
end;
else if hp < O then do;
s[3]=xstart;
do while (hp<=0);
xstart=(xstart + xlb)/2;
hp=hpx(xstart);
end;
s[1]=xstart;
end;
/* Compute tangential point s2 and chord-intersection points u1 and u2 */
hs1=hx(s[1]) ; hs3=hx(s[3]); hps1=hpx(s[1]); hps3=hpx(s[3]);
s[2]=(hs3-hs1-s[3]*hps3 +s[1]*hps1)/ (hps1-hps3);
hs2=hx(s[2]);
hps2=hpx(s[2]);
u[1]=(hs2-hs1-s[2]*hps2+s[1]*hps1)/(hps1-hps2);
u[2]=(hs3-hs2-s[3]*hps3+s[2]*hps2)/(hps2-hps3);
d1=hs1-s[1]*hps1; d2=u[1]*hps1; d3=xlb*hps1;
v[1]=exp(d1)*(exp(d2)-\operatorname{exp}(d3))/hps1;

```
```

 d1=hs2-s[2]*hps2; d2=u[2]*hps2; d3=u[1]*hps2;
 v[2]=exp(d1)*(exp(d2)-\operatorname{exp}(d3))/hps2;
 d1=hs3-s[3]*hps3; d2=xub*hps3; d3=u[2]*hps3;
 v[3]=exp(d1)*(exp(d2)-exp(d3))/hps3;
 /* Repeat until an observation has been generated or a maximum
number of iterations have been completed */
output='none';
max=1000;
iter=0; seed=0;
do while ((output='none') \& (iter< max));
/* generate discrete variable z=1,2 or 3 */
uran=ranuni(seed);
d1=v[1]/sum(v);
d2=(v[1]+ v[2])/sum(v);
if uran<=d1 then z=1;
if uran>d1 \& uran<=d2 then z=2;
if uran>d2 then z=3;
/* generate sample value (obs) from envelope function */
ustar=ranuni(seed);
if z=1 then do;
d1=u[1]*hps1; d2=xlb*hps1;
d3=ustar*exp(d1)+(1-ustar)*exp(d2);
obs=log(d3)/hps1;
end;
if z=2 then do;
d1=u[2]*hps2;
d2=u[1]*hps2;
d3=ustar*exp(d1)+(1-ustar)*exp(d2);
obs=log(d3)/hps2;
end;
if z=3 then do;
d1=xub*hps3; d2=u[2]*hps3;
d3=ustar*exp(d1)+(1-ustar)*exp(d2);
obs=log(d3)/hps3;
end;

```
```

/* Define envelope function co-ordinates for
acceptance-rejection step of generated observation s */
infty=100000;
if obs< u[1] then
huobs=hs1+hps1*(obs-s[1]);
if obs>=u[1] \& obs<=u[2] then
huobs=hs2+hps2*(obs-s[2]);
if obs>u[2] then
huobs=hs3+hps3*(obs-s[3]);
/* Define squeezing function co-ordinates for
acceptance-rejection step of generated observation s */
if obs< s[1] then
hlobs=-infty;
if obs>=s[1] \& obs<=s[2] then
hlobs=obs*(hs2-hs1)/(s[2]-s[1]) + (s[2]*hs1-s[1]*hs2)/(s[2]-s[1]);
if obs>s[2] \& obs<=s[3] then
hlobs=obs*(hs3-hs2)/(s[3]-s[2]) + (s[3]*hs2-s[2]*hs3)/(s[3]-s[2]);
if obs> s[3] then
hlobs=-infty;
/* generate a uniform random variable w~U(0,1) and perform two-stage
acceptance-rejection test */
d1=hlobs-huobs;
w=ranuni(seed);
if w<=exp(d1) then do; /* Accept s as an observation from f(x) */
b=obs;
output='yes';
end;
if W> exp(d1) then do;
hobs=hx(obs); /* Compute h(x) at the point obs */
d2=hobs-huobs;

```
```

 if w<=exp(d2) then do;
 b=obs;
 output='yes';
 end;
 output='none';
 end;
 iter=iter+1;
 end;
 beta[j]=b;
 end; /* j loop */
 betap=beta';
if count=1 then betall=betap;
else betall=betall//betap;
end; /*count */
/* output last observation as coming from true density */
if nobs=1 then betamat=betap;
else betamat=betamat//betap;
end; /*nobs*/
print betamat;
/**betamat is a 1000 x 5 dimensional matrix**/
/**END OF PROGRAM**/

```

\section*{REFERENCES}

Agar, D. 1992. Evaluating Academic Support Programmes - what have we learnt in the last six years? South African Journal of Education 12: (2) 93-100.

Buse, A. 1982. The Likelihood Ratio, Wald and Lagrange Multiplier Tests: An Expository Note. Journal of the American Statistical Association 36: (3) Part 1 153-157.

Dobson, A.J. 1990. An Introduction to Generalized Linear Models. London: Chapman \& Hall.

Flockemann, J., Frame, J. \& Kernick, G. 1993. Assessment of Academic Potential for Selection into Emec Programme. A working paper.

Fresen, J.L. \& Fresen, J.N. 1987. Correlation between Matric Symbols and First Year University Results: Business Statistics at the University of the Western Cape as an example. South African Journal of Science 83: 492-494.
-_ 1993. The Probability of Success at University: A Methodology. Draft Documents.

Gallant, A.R. 1987. Nonlinear Statistical Models. New York: Wiley.
Gelfand, A.E. \& Smith, A.F.M. 1990. Sampling-Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association 85: 398-409.

Geman, S. \& Geman, D. 1984. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. Transactions on Pattern Analysis and Machine Intelligence. PAMI 6: (6) 721-744.

Gilks, W.R. \& Wild, P. 1992. Adaptive Rejection Sampling for Gibbs Sampling. Applied Statistics 41: (2) 337-348.

Graybill, 1976. Theory and Application of the Linear Model. Massachusetts: Duxbury Press.

Harris, B. \& Soms, A.P. 1980. The use of the Tetrachoric Series for Evaluating Multivariate Normal Probabilities. Journal of Multivariate Analysis 10: 252-267.

Hosmer, D.W. Jr \& Lemeshow, S. 1989. Applied Logistic Regression. New York: Wiley.

Huang, D.S. 1970. Regression and Econometric Methods. New York: Wiley.

Johnson, R.A. and Wichern, D.W. 1988. Applied Multivariate Statistical Analysis. 2nd edition. London: Prentice-Hall International.

Knuiman, M.V. \& Speed, T.P. 1988. Incorporating Prior Information into the Analysis of Contingency Tables. Biometrics 44: 1061-1071.

Lawless, J.F. \& Singhal, K. 1978. Efficient Screening of Non-normal Regression Models. Biometrics 34: 318-327.

Mitchell, G. \& Fridjohn, P. 1987. Matriculation Examinations and University Performance. South African Journal of Science 18: 555-559.

Nyquist, H. 1991. Restricted Estimation of Generalized Linear Models. Applied Statistics 40: (1) 133-141.

Potter, L.S. \& Jamotte, A.N. 1985. African Matric Results: Dubious Indicators of Academic Merit. Indicator South Africa 3: (1) 10-13.

Press, S.J. 1989. Bayesian Statistics Principles, Models and Applications. New York: Wiley.

Rao, C.R. 1965. Linear Statistical Inference and its Applications. 2nd edition. New York: Wiley.

Rutherford, M. \& Watson, P. 1990. Selection of Students for Science Courses. South African Journal of Education 10: (4) 353-359.

Schervish, M.J. 1984. Multivariate Normal Probabilities with Error Bounds. Applied Statistics 33: 81-87.

Smyth, G.K., Knuiman, M.W., Thornett, M.L. \& Kiiveri, H. 1990. Using the EM Algorithm to Predict First Year University Performance. Australian Journal of Education 34: (2) 204-224.

Sochet, I. 1986. Manifest and Potential Performance in Advantaged and Disadvantaged Studies. Unpublished Ph.D. Thesis. Johannesburg: University of the Witwatersrand.

Tong, Y.L. 1990. The Multivariate Normal Distribution. London: SpringerVerlag.

Van Wyk, J.A. \& Crawford, J.L. 1984. Correlation between Matric Symbols and Marks Obtained in a first-year Ancillary Physics Course at the University of the Witwatersrand. South African Journal of Science 80: 8-9.

Zellner, A. 1970. Introduction to Bayesian Inference in Econometrics. New York: Wiley.```


[^0]:    ${ }^{1}$ School pupils, in the United Kingdom, wrote exams at two levels, namely "O" (lower level) and "A"(higher level).

[^1]:    ${ }^{2}$ DET represents the matriculation examining body of the majority of the "African" students in South Africa.
    ${ }^{3}$ Matriculants are presently admitted to South African universities on the basis of a matriculation point count (MPC) in which points are awarded for each particular symbol obtained in their six matriculation subjects. The point scales applicable to the University of Natal are as follows

[^2]:    ${ }^{4}$ Other findings of Agar (1992) were that
    (i) Non-academic problems tended to influence ASP students' academic progress the most;
    (ii) ASP students in residence tended to perform better than ASP students not in residence, provided that these students had few or no financial worries;
    (iii) students in residence who had full financial support were more successful at university than those in residence who had limited financial support; and
    (iv) ASP students whose home language was English performed better than those whose home language was one of the African languages.

[^3]:    ${ }^{5}$ Only Higher Grade (H.G) matriculation subjects were considered as we found that almost all of the the students who attempted Mathematics 1 and Physics 1 at university had attempted matriculation English, Afrikaans, Mathematics, Biology and Physics on the Higher Grade. Note that students in South Africa may attempt matriculation subjects on the Higher Grade, Standard Grade or Lower Grade, however Lower Grade students are usually automatically denied entrance to university.

[^4]:    ${ }^{6}$ Figures 1.13 and 1.14 suggest a possible need for a matriculation authority variable due to the large proportion of students from the HOD failing. Also the large number of students with a matriculation A symbol and a university mark in the interval $\{48,64\}$ suggests an anomoly which could possibly be due to the matriculation authority.

[^5]:    ${ }^{7}$ For our analyses the successful group will represent students who pass and the unsuccessful group those who fail.
    ${ }^{8}$ A program for performing discriminant analysis is given in Appendix D1.
    ${ }^{9}$ A student passed if he or she obtained 48 marks or more as we assumed that the external examiner would pass those students with 48 marks or more.

[^6]:    ${ }^{10}$ When trying to determine whether students from the HOR or TED are successful we should exercise caution as they represent only a small portion of the whole data set.

[^7]:    ${ }^{1}$ If $g\left(\mu_{i}\right)=b\left(\theta_{i}\right)$ then $g\left(\mu_{i}\right)$ is called the canonical link function.

[^8]:    ${ }^{2}$ Alternatively an approximation, derived in Appendix A4, for the likelihood ratio test statistic can be given by

    $$
    D^{*}=2\left[l\left(\hat{\boldsymbol{\beta}_{1}}, \hat{\boldsymbol{\beta}_{2}}\right)-l\left(\hat{\boldsymbol{\beta}_{1}}+\mathcal{I}_{11}^{-1} \mathcal{I}_{12} \hat{\boldsymbol{\beta}_{2}}, \boldsymbol{\beta}_{2}=\mathbf{0}\right)\right]
    $$

[^9]:    ${ }^{4}$ Manipulating (2.5.1) the following expression for $\pi_{i}$ can be obtained, namely

    $$
    \pi_{i}=\frac{e^{\mathbf{x}_{!}^{\prime} \beta}}{1+e^{\mathbf{x}_{\mathbf{i}}^{\prime} \beta \boldsymbol{\beta}}}
    $$

[^10]:    ${ }^{5}$ The initial link function is given by
    $g\left(\pi_{i}\right)=\log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}+\beta_{5} x_{i 5}+\beta_{6} d_{i 1}+\beta_{7} d_{i 2}$
    where $X_{1}, X_{2}, X_{3}, X_{4}$ and $X_{5}$ are defined on page 5 and $d_{1}$ and $d_{2}$ on page 15.
    ${ }^{* 1}$ standard error of the parameter estimate
    ${ }^{* 2}$ the Wald Test Statistic
    ${ }^{* 3}$ Probability that the Wald Test Statistic is greater than $\chi_{1}^{2}$
    ${ }^{* 4}$ lower bound for the $95 \%$ confidence interval of $\beta$
    ${ }^{* 5}$ upper bound for the $95 \%$ confidence interval of $\beta$

[^11]:    ${ }^{6}$ Analyzing student results from the Transvaal Education Department and the House of Representatives should be handled with caution as these students only represent a small percentage of the total number of students in our data set.

[^12]:    ${ }^{7}$ From chapter one 0 represents an $\mathbf{A}$ symbol for a particular subject and 1 represents a B symbol. As an example the fifth row in Table 2.6 .3 refers to an NED student with A's in matriculation Mathematics, Biology and Physics.
    ${ }^{*}$ 6lower bound for the $95 \%$ confidence interval of the success probability
    ${ }^{* 7}$ upper bound for the $95 \%$ confidence interval of the success probability

[^13]:    ${ }^{1}$ the $t$-values corresponding to each $\tilde{\beta}_{j}$ is given by $\frac{\hat{\tilde{\beta}_{j}}}{\sigma_{\hat{\beta_{j}}}}$ where $\sigma_{\hat{\beta}_{j}}$ represents the standard error of $\hat{\tilde{\beta}}_{j}$.

[^14]:    ${ }^{2}$ We replace $N\left(\mathbf{B}^{\prime} \mathbf{x}, \mathbf{S}\right)$ in the Monte Carlo algorithm by $N\left(\tilde{\mathbf{x}} \tilde{\boldsymbol{\beta}}, \hat{\mathbf{\Sigma}}_{p}\right)$.
    ${ }^{3} 48$ is defined to be the pass mark as in chapters 1 and 2.

[^15]:    ${ }^{* 1}$ standard error of the parameter estimate
    *2 t -values associated with the parameter estimates
    ${ }^{* 3}$ lower bound for the $95 \%$ confidence interval of the parameter estimates
    ${ }^{* 4}$ upper bound for the $95 \%$ confidence interval of the parameter estimates
    ${ }^{* 5}$ mean square error

[^16]:    *6 lower bound for the $95 \%$ confidence interval of the success probability
    *7 upper bound for the $95 \%$ confidence interval of the success probability

[^17]:    ${ }^{4}$ Note that a $10 \%$ level of significance was used. Also these results were obtained using the model procedure in SAS.
    ${ }^{* 8} B_{i 1}$ represents the regression coefficients associated with the DSMA1SX1 course and $B_{i 2}$ those regression coefficients associated with the DSPH1SC1 course.

[^18]:    ${ }^{5}$ A program for obtaining these probabilities using the Monte Carlo algorithm is given in Appendix D3.2 and is based on generating $1000002 \times 1$ dimensional vectors $\mathbf{y}^{*}$. As an example the first row in $\tilde{x}=\left(\begin{array}{cccccccccc}1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$ refers to an NED student with A's in English, Mathematics, Biology and Physics.

[^19]:    ${ }^{2}$ Functional forms for the $(p+1)$ univariate full conditional densities $P\left(\beta_{i} \mid \boldsymbol{\beta}_{j \neq i} \mathbf{y}\right)$ can be easily obtained, at least up to a proportionality constant, from the given joint posterior density $P(\beta \mid y)$ by regarding the joint density as a as a function of $\beta_{i}$ for fixed values of the other parameters $\boldsymbol{\beta}_{j \neq i}$. In particular, rewriting the joint posterior density in the form

    $$
    P\left(\beta_{0}, \ldots, \beta_{p} \mid \mathbf{y}\right)=P\left(\beta_{0} \mid \beta_{1}, \ldots, \beta_{p}, \mathbf{y}\right) \cdot P\left(\beta_{1} \mid \beta_{2}, \ldots, \beta_{p}, \mathbf{y}\right) \cdots P\left(\beta_{p} \mid \mathbf{y}\right)
    $$

    and fixing the values for $\beta_{1}, \ldots, \beta_{p}$ implies that

    $$
    P\left(\beta_{0}, \ldots, \beta_{p} \mid \mathbf{y}\right) \propto P\left(\beta_{0} \mid \beta_{1}, \ldots, \beta_{p}, \mathbf{y}\right)
    $$

    and thus we may obtain an observation from $P\left(\beta_{i} \mid \boldsymbol{\beta}_{j \neq i} \mathbf{y}\right)$ by employing a suitable rejection algorithm on the density function given in (4.1.1) (see Appendix B).

[^20]:    ${ }^{3}$ We used $L=10$ and $N=1000$. A program implementing the Gibbs Sampler is given in Appendix D4.

[^21]:    ${ }^{1}$ Any positive function $g$ on an open convex set $D$ in $\mathbb{R}^{n}$ is called $\log$-concave if $\log g$ is a twice continuously differentiable real-valued function on $D$ and its Hessian matrix, $H_{i j}(x)=\left[\frac{\partial^{2} \log g\left(x_{1} \ldots x_{n}\right)}{\partial x_{i} \partial x_{j}}\right]$, is negative semidefinite for every $x \in D$. If the Hessian matrix is negative definite, then the function $g$ is said to be strictly log-concave.

[^22]:    ${ }^{2}$ Note that in order to reduce the number of points that are likely to be rejected, $x_{1}$ and $x_{3}$ should be chosen so that $h^{\prime}\left(x_{1}\right)>0$ and $h^{\prime}\left(x_{3}\right)<0$ where $h^{\prime}\left(x_{1}\right)$ and $h^{\prime}\left(x_{3}\right)$ represents the derivative of the function $h(x)$ evaluated at the points $x_{1}$ and $x_{3}$ respectively. For our applications we also choose

    $$
    x_{2}=\frac{\left[h\left(x_{3}\right)-h\left(x_{1}\right)-x_{3} h^{\prime}\left(x_{3}\right)+x_{1} h^{\prime}\left(x_{1}\right)\right]}{\left[h^{\prime}\left(x_{1}\right)-h^{\prime}\left(x_{3}\right)\right]}
    $$

    which further reduces the rejection envelope.
    ${ }^{3}$ where the tangents intersect at the following points, namely

    $$
    z_{k}=\frac{h\left(x_{k+1}\right)-h\left(x_{k}\right)-x_{k+1} h^{\prime}\left(x_{k+1}\right)+x_{k} h^{\prime}\left(x_{k}\right)}{h^{\prime}\left(x_{k}\right)-h^{\prime}\left(x_{k+1}\right)} ; k=1,2
    $$

[^23]:    ${ }^{4}$ where $z_{0}=-\infty$ and $z_{3}=\infty$.
    ${ }^{5}$ note that

[^24]:    1
    0

