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Abstract

In this thesis we study spherically symmetric spacetimes related to the Einstein field

equations. We consider only neutral matter and apply the Einstein field equations with

isotropic pressures. Our object is to model relativistic stellar systems. We express the

Einstein field equations and the condition of pressure isotropy in terms of Schwarzschild

coordinates and isotropic coordinates. For Schwarzschild coordinates we consider the

transformations due to Buchdahl (1959), Durgapal and Bannerji (1983), Fodor (2000)

and Tewari and Pant (2010). The condition of pressure isotropy is integrated and

new exact solutions of the field equations are obtained utilizing the transformations

of Buchdahl (1959) and Tewari and Pant (2010). These exact solutions are given in

terms of elementary functions. For isotropic coordinates we can express the condition of

pressure isotropy as a Riccati equation or a linear equation. An algorithm is developed

that produces a new solution if a particular solution is known. The transformations

reduce to a nonlinear Bernoulli equation in most instances. There are fundamentally

three new classes of solutions to the condition of pressure isotropy.
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Chapter 1

Introduction

Currently, the theory of general relativity provides the best description of the behaviour

of the gravitational field. The predictions of general relativity have been shown to

be consistent with observational data in relativistic astrophysics and cosmology. In

general relativity the curvature of spacetime is described by the Riemann tensor. The

matter content is described by the symmetric energy momentum tensor; in this thesis

we consider only neutral perfect fluid matter. The Einstein field equations relate the

matter content to the curvature. In the presence of an electromagnetic field these

equations have to be supplemented with Maxwell’s equations which incorporate charge

and current. The Einstein tensor is crucial for the description of the gravitational

field. The Einstein field equations satisfy the conservation laws through the Bianchi

identity. Determining explicit solutions to the Einstein field equations is necessary for

astrophysical and cosmological applications.

Our aim in this thesis is to consider relativistic stellar models in static spherically

symmetric fields. We seek exact solutions to the Einstein field equations with isotropic
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pressures. Exact solutions to the Einstein field equations are essential because they

throw light on the qualitative features of the gravitational fields. The Einstein field

equations alleviate the investigation and the discussion of the physical properties of

relativistic stars (Schutz 1985, Shapiro and Teukolsky 1983). A physical analysis is

easier with an exact solution since in general it is difficult to study these features in

the general Einstein field equations. It is important to note that an exact solution is

only a first step in the modeling process. The criteria for physical acceptability must

also be satisfied which is valid only for a small class of exact solutions as pointed out

by Delgaty and Lake (1998).

For a relativistic stellar model additional physical constraints are required in the

integration of the field equations. Exact solutions of the field equations are crucial for

applications in cosmology and relativistic astrophysics. The following are some of the

fundamental exact solutions in general relativity for astrophysics:

(a) The Schwarzschild exterior solution: This solution describes the gravitational

field outside a spherically symmetric matter distribution. The Schwarzschild

exterior solution is used in analysing the bending of light, perihelion advance,

spectral shift and time delay for the classical tests of general relativity. It can

be demonstrated that every spherically symmetric asymptotically flat exterior

solution is static (which is given by the Schwarzschild exterior line element) even

for the case where the solution is nonstatic. This general result is referred to as

Birkoff’s theorem.

(b) The Schwarzschild interior solution: This solution describes the interior of the

gravitational field for a static spherical symmetric body. The Schwarzschild ex-
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terior and the Schwarzschild interior solutions match smoothly at the boundary

of the star. The Schwarzschild interior solution can be used to model relativis-

tic stars for which the fluctuations in the energy are small and is an effective

approximation for small stars in which the pressures are not large.

(c) The Reissner-Nordstrom solution: This solution describes the gravitational field

outside a static spherically charged body. The Reissner-Nordstrom solution re-

duces to the Schwarzschild exterior solution in the absence of charge. Astrophys-

ical bodies are uncharged and consequently the influence of the electromagnetic

field may be ignored in general. Nevertheless this solution is essential as a simple

example of an exact solution of the Einstein-Maxwell system of equations and

may be used as a first approximation in some physical situations.

(d) The Kerr solution: This solution is used to describe the exterior of a rotating

body. This rotating solution has a complex form with interesting physical fea-

tures. It is crucial to note that an interior solution that matches smoothly to

the exterior Kerr line element has not yet been found (Stephani 2004). The Kerr

solution reduces to the Schwarzschild solution in the appropriate limit.

Detailed information of the different known exact solutions is provided by Krasinski

(1997) and Stephani et al (2003).

This dissertation is organised as follows:

• Chapter 1: Introduction.

• Chapter 2: In this chapter we briefly discuss the concepts of general relativity essential

for this thesis. We briefly consider the spacetime geometry and the matter distribution
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that lead to the Einstein field equations. The formulation of the Einstein field equations

is introduced in this chapter. We highlight the crucial physical concepts that are

essential for the determination of a realistic relativistic stellar model.

• Chapter 3: In this chapter we derive the Einstein field equations for neutral perfect

fluids in static spherically symmetric spacetimes. We use new variables and transforma-

tions to write the Einstein field equations in equivalent forms. In particular we consider

the transformations of Buchdahl (1959), Durgapal and Bannerji (1983), Fodor (2000)

and Tewari and Pant (2010). We rewrite the condition of pressure isotropy in terms

of the new variables in order to generate new exact solutions in terms of elementary

functions. Particular new solutions to the field equations are found.

• Chapter 4: In this chapter we consider the relativistic stellar model in isotropic

coordinates. We generate the Einstein field equations and the condition of pressure

isotropy for the shear-free spacetime in isotropic coordinates. We use new variables

to transform these equations into equivalent forms that lead to the generation of new

exact solutions. The condition of pressure isotropy can be written as a Riccati equation

or a linear equation. We also generate an algorithm that enables us to find new exact

solutions to the Einstein field equations if a particular solution is specified.

• Chapter 5: Conclusion.
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Chapter 2

Differential geometry

2.1 Introduction

A variety of matter distributions arise in physical applications in relativistic astro-

physics in different scenarios as pointed out by Will (1981). Spherically symmetric

matter distributions are best described by Einstein’s theory of general relativity for

strong gravitational fields. In this chapter we briefly consider the background theory

that provides us with the structure to generate a model of a relativistic star. We give

a brief outline of the differential geometry and the matter distribution that lead to

the Einstein field equations. For more detailed information on differential manifolds

and tensor analysis the reader is referred to Bishop and Goldberg (1968), Misner et al

(1973) and Wald (1984). The metric tensor field and the metric connection coefficients

are introduced in §2.2. Then the Riemann tensor, the Ricci tensor, Ricci scalar and

the Einstein tensor are defined. In §2.3, we consider matter fields by introducing the

general energy momentum tensor and the special case for a perfect fluid. We also
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introduce the barotropic equation of state relating the pressure to the energy density.

The Einstein field equations are generated by relating the Einstein tensor to the en-

ergy momentum tensor. In §2.4 we provide the conditions necessary for the physical

acceptability of a relativistic stellar model.

2.2 Spacetime geometry

The local neighbourhood of a point in the spacetime manifold possesses the same

structure as the open neighbourhood of a point in <n. The global structure of the

spacetime manifold in general is different from <n. A pseudo-Riemannian manifold is

a manifold with an indefinite metric tensor field. In general relativity, we assume that

the spacetime M is a four-dimensional differentiable manifold endowed with a metric

tensor field g. The symmetric and nonsingular metric tensor field g has signature

(−+ ++). The metric tensor field g represents the gravitational potentials. Points in

the manifold are labelled by the real coordinates (xa) = (x0, x1, x2, x3), where x0 = ct

(where c is the speed of the light in vacuum) is the timelike coordinate, and x1, x2, x3

are spacelike coordinates. In this dissertation we use the convention that the speed of

light c = 1.

The line element is given by

ds2 = gabdx
adxb (2.1)

which measures the infinitesimal interval between neighbouring points on a curve. In

the line element (2.1), g represents the metric tensor field. We use the line element
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(2.1) to generate the metric connection coefficients

Γabc =
1

2
gad(gcd,b + gbd,c − gbc,d) (2.2)

where the commas denote partial differentiation. We use the definition of the connec-

tion coefficients in equation (2.2) to generate the Riemann curvature tensor R which

is given by

Ra
bcd = Γabd,c − Γabc,d + ΓaecΓ

e
bd − ΓaedΓ

e
bc (2.3)

which is nonvanishing in general since the covariant derivative is not commutative. We

contract the Riemann curvature (2.3) to get the Ricci tensor as follows

Rab = Rc
acb

= Γcab,c − Γcac,b + ΓcdcΓ
d
ab − ΓcdbΓ

d
ac (2.4)

A second contraction yields the Ricci scalar R. This has the form

R = Ra
a

= gabRab (2.5)

We use the Ricci tensor (2.4) and the Ricci scalar (2.5) to form the Einstein tensor G

which is given by
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Gab = Rab −
1

2
Rgab (2.6)

Note that the divergence of the Einstein tensor is zero, i.e.

Gab
;b = 0 (2.7)

This is sometimes called the Bianchi identity and generates the conservation laws via

the field equations.

2.3 Matter fields

The matter content is described by the energy momentum tensor T. The energy mo-

mentum tensor is given by

T ab = (ρ+ p)uaub + pgab + qaub + qbua + πab (2.8)

where ρ is the energy density, p is the isotropic pressure, q is the heat flux vector

(qau
a = 0), πab is the anisotropic stress tensor (πabu

a = 0 = πaa) and u is a timelike

four-velocity (uaua = −1). The terms for the heat flux and the anisotropic stress vanish

in perfect fluids (qa = 0, πab = 0). Then the energy momentum tensor for a perfect

fluid has the form

T ab = (ρ+ p)uaub + pgab (2.9)

For many applications it is required that the matter distribution satisfies the barotropic
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equation of state

p = p(ρ) (2.10)

A particular case is the equation of state

p = aρ+ b (2.11)

where a and b are constants. The above form is often assumed in cosmology and is

called the linear equation of state. The parameter a (with b = 0) has different values

which describe familiar matter distributions: dust (a = 0), radiation (a = 1
3
) and stiff

matter (a = 1). When a 6= 0 and b 6= 0 then the equation of state (2.11) includes matter

distributions for quark, strange and exotic configurations (Komathiraj and Maharaj

2007, Mak and Harko 2004, Sharma and Maharaj 2007). Another case is the polytropic

equation of state which has the form

p = kρ1+
1
n (2.12)

where k and n are constants. This equation of state is assumed in relativistic astro-

physics (Shapiro and Teukolsky 1983).

The Einstein field equations follow by relating (2.6) to (2.8) so that

9



Gab = Rab − 1

2
Rgab

= T ab (2.13)

where the coupling constant is set to unity. The field equations (2.13) govern the

interaction between the curvature of the spacetime and the matter distribution. From

(2.13) and (2.7) we have the result

T ab;b = 0 (2.14)

which is the conservation law for matter. In general the field equations (2.13) are a

highly nonlinear system of differential equations which are difficult to integrate with-

out making simplifying assumptions. For detailed information on general relativity

and the formulation of the Einstein field equations the reader is referred to de Felice

and Clark (1990), Narlikar (2002) and Stephani (2004). Exact solutions to the field

equations which are applicable in many physically relevant relativistic models are listed

in Krasinski (1997) and Stephani et al (2003).

2.4 Physical conditions

In this section we briefly consider the physical conditions relevant for a relativistic

stellar model. Any stellar interior solution should match to the appropriate exterior

spacetime. The spacetime surrounding the static spherically symmetric body is given

by

10



ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2)

where M is the mass of the stellar body measured by an observer at infinity which

is given by M = m(R), where R is the stellar radius. The above metric is famously

known as the Schwarzschild (1916a,1916b) exterior line element. The gravitational

field outside a static, charged spherically symmetric body has the form

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1
dr2 + r2(dθ2 + sin2 θdφ2)

where Q is a constant related to the total charge of the sphere. This is called the

Reissner-Nordstrom metric (Reissner 1916, Nordstrom 1918).

For isotropic matter the realistic stellar models are often assumed to satisfy:

(a) The energy density ρ and the pressure p should be positive and finite throughout

the interior of the star.

(b) The radial pressure should disappear at the boundary r = R:

0 < ρ <∞

0 < p <∞

p(R) = 0
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(c) The energy density ρ and the pressure p should be monotonically decreasing

functions from the centre to the boundary:

dρ

dr
≤ 0

dp

dr
≤ 0

(d) The gradients dρ
dr

and dp
dr

should be regular in the interior.

(e) The speed of light should be subluminal throughout the interior of the star so

that we have

0 ≤ dp

dρ
≤ 0

The above condition is essential to maintain causality.

(f) The metric functions e2ν and e2λ should be positive and nonsingular throughout

the interior of the star.

(g) At the boundary the interior metric functions should match to the exterior

Schwarzschild solution:

e2ν = e−2λ

= 1− 2M

r

12



(h) The solution should be stable with respect to radial perturbations.

It should be noted that not all exact solutions to the Einstein field equations

satisfy the above conditions. However it is important to compare the physical features

of individual stellar masses with the conditions listed above. A comprehensive list of

perfect fluid models for static spherically symmetric fields is provided by Delgaty and

Lake (1998) and Stephani et al (2003). Some other well known relativistic models are

given by Finch and Skea (1989), Gupta and Kumar (2005), Maharaj and Leach (1996),

Tikekar and Jotania (2005) and Yilmaz and Baysal (2005).
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Chapter 3

Schwarzschild coordinates

3.1 Introduction

In this chapter we consider the Einstein field equations in terms of Schwarzschild coordi-

nates which are comoving. The field equations are then expressed in several equivalent

forms which may be easier to integrate. In §3.2 we analyse the spacetime geometry

for static spherically symmetric gravitational fields by specifying the line element in a

form that was first introduced by Schwarzschild. The components of the connection

coefficients, the Ricci tensors, the Ricci scalar and the Einstein tensors are explicitly

generated in this section. In §3.3 we compute the Einstein field equations by relating

the components of the energy momentum tensor for the perfect fluid to the components

of the Einstein tensor. The condition of pressure isotropy is also found in this section.

It is possible to write the Einstein field equations in different forms by introducing

new variables. In this section we consider particular transformations that are relevant

to relativistic stellar models. These transformations were first introduced by Buch-
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dahl (1959), Durgapal and Bannerji (1983), Fodor (2000) and Tewari and Pant (2010).

The condition of pressure isotropy is also written in new variables using the relevant

transformations. Particular exact solutions are found in §3.4 in terms of elementary

functions for the condition of pressure isotropy. These functions are new solutions to

the field equations.

3.2 Spacetime geometry

We consider a spacetime which is static and spherically symmetric and define local

coordinates (xa) = (t, r, θ, φ). Then the line element in comoving coordinates can be

written as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (3.1)

where ν(r) and λ(r) are arbitrary functions representing the gravitational potentials.

This line element was first introduced by Schwarzschild (1916) and is often used to

describe relativistic compact objects such as neutron stars and superdense stars in

astrophysics (Komathiraj and Maharaj 2007, Sharma et al 2001, Thirukkanesh and

Maharaj 2008).

The line element (3.1) is essential for the determination of the connection coeffi-

cients Γabc which are defined in equation (2.2). The nonvanishing connection coefficients

for the metric (3.1) are

15



Γ0
01 = ν ′

Γ1
00 = ν ′e2(ν−λ)

Γ1
11 = λ′

Γ1
22 = −re−2λ

Γ1
33 = −re−2λ sin2 θ

Γ2
12 =

1

r

Γ2
33 = − sin θ cos θ

Γ3
13 =

1

r

Γ3
23 = cot θ

In the above equations, primes denote differentiation with respect to the radial coor-

dinate r.

On using the above connection coefficients we generate the nonvanishing Ricci

16



tensor components for the line element (3.1). Substituting the above connection co-

efficients in the definition of the Ricci tensor equation (2.4) we obtain the following

components

R00 = e2(ν−λ)
(
ν ′′ + ν

′2 − ν ′λ′ + 2
ν ′

r

)
(3.2a)

R11 = −
(
ν ′′ + ν

′2 − ν ′λ′ − 2
λ′

r

)
(3.2b)

R22 = 1− 1

e2λ
(1 + r(ν ′ − λ′)) (3.2c)

R33 = sin2 θ R22 (3.2d)

with Rab = 0 for a 6= b. We then compute the Ricci scalar which is given in (2.5) from

the nonvanishing Ricci tensor components in (3.2). The Ricci scalar has the form

R = 2

[
1

r2
− 1

e2λ

(
ν ′′ + ν ′2 − ν ′λ′ + 2

ν ′

r
− 2

λ′

r
+

1

r2

)]
(3.3)

for a static spherically symmetric metric.

We defined the Einstein tensor in equation (2.6). We now use equations (3.2) and

(3.3) to compute the components of the Einstein tensor. The relevant components are

given by

17



G00 =
1

r2
e2ν
[
r

(
1− 1

e2λ

)]′
(3.4a)

G11 = − 1

r2
(e2λ − 1) + 2

ν ′

r
(3.4b)

G22 =
r2

e2λ

(
ν ′′ + ν ′2 +

ν ′

r
− ν ′λ′ − λ′

r

)
(3.4c)

G33 = sin2 θG22 (3.4d)

with Gab = 0 for a 6= b.

3.3 Einstein field equations

Since the fluid four-velocity is comoving we have ua = e−νδa0 for the metric (3.1). The

nonvanishing components of the energy momentum tensor are given by

T00 = ρe2ν (3.5a)

T11 = pe2λ (3.5b)

T22 = pr2 (3.5c)

T33 = sin2 θT22 (3.5d)

18



with Tab = 0 for a 6= b. We use the Einstein tensor components from equation (3.4),

in conjunction with the energy momentum tensor components from equation (3.5), to

compute the Einstein field equations. These field equations take the form

1

r2

[
r

(
1− 1

e2λ

)]′
= ρ (3.6a)

− 1

r2

(
1− 1

e2λ

)
+ 2

ν ′

r

1

e2λ
= p (3.6b)

1

e2λ

(
ν ′′ + ν ′2 +

ν ′

r
− ν ′λ′ − λ′

r

)
= p (3.6c)

for the static spherically symmetric metric (3.1).

The conservation law for matter (2.14) can be written in the following form

dp

dr
= −(ρ+ p)

dν

dr
(3.7)

Equation (3.7) also follows directly from the field equations (3.6). Therefore equation

(3.7) can be used instead of one of the equations in (3.6). In the system of equa-

tions (3.6) we have four unknowns ρ, p, ν and λ, but we have only three independent

equations. Consequently we need to choose one of ρ, p, ν or λ to integrate the field

equations. Also on physical grounds we could impose a particular barotropic equation

of state (2.10) following the approach of Hansraj and Maharaj (2006).

On equating equation (3.6b) to (3.6c) we obtain the following equation

19



ν ′′ + ν ′2 − ν ′λ′ − (ν ′ + λ′)

r
+

(e2λ − 1)

r2
= 0 (3.8)

which is the condition of pressure isotropy. Note that (3.8) is the master equation

determining the behaviour of the model for static spherically symmetric gravitational

fields. The above equation (3.8) can be written in the more compact form as

d

dr

(
e−2λ − 1

r2

)
+

d

dr

(
e−2λν ′

r

)
+ e−2λ−2ν

d

dr

(
e2νν ′

r

)
= 0 (3.9)

which was first derived by Tolman (1939). In particular applications the form (3.9)

leads to solutions more easily.

It is possible to write equations (3.6) in several equivalent forms by introducing

new variables. The condition of pressure isotropy is also transformed by the new vari-

ables. The resultant forms generate different solutions to the Einstein field equations

corresponding to particular physical relativistic models. We present a number of dif-

ferent transformations that have been used by researchers over the years. This is not a

complete list of known transformations; we have focused on those transformations that

are well known and which have proved to be useful in generating physically reasonable

models for a relativistic stellar system.

3.3.1 Durgapal and Bannerji

Here we use the transformation
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x = Cr2 (3.10a)

Z(x) = e−2λ(r) (3.10b)

A2y2(x) = e2ν(r) (3.10c)

where A and C are constants. Therefore x is a new coordinate and y(x) and Z(x) are

new metric functions. We use the above transformation (3.10) to write equations (3.6)

as

1− Z
x
− 2Ż =

ρ

C
(3.11a)

4Z
ẏ

y
+
Z − 1

x
=

p

C
(3.11b)

4xZ
ÿ

y
+ 2(xŻ + 2Z)

ẏ

y
+ Ż =

p

C
(3.11c)

where the dots denote differentiation with respect to x. The condition of pressure

isotropy (3.8) becomes

4Zx2ÿ + 2Żx2ẏ + (Żx− Z + 1)y = 0 (3.12)

in terms of y and Z.
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The transformation (3.10) was first introduced by Durgapal and Bannerji (1983).

The above transformation has been used by Durgapal and Fuloria (1985), Finch and

Skea (1989), Maharaj and Komathiraj (2007), Maharaj and Thirukkanesh (2006, 2009)

and Thirukkanesh and Maharaj (2006) to generate new solutions. We note that equa-

tion (3.12) is first order and linear in variable Z. If we have an analytic form for y then

(3.12) can be integrated to generate Z. Then the unknowns ρ and p can be obtained

from equations (3.11a) and (3.11b) respectively. Alternatively, we can choose a form

for the potential Z and equation (3.12) becomes a second order and a linear equation in

the variable y. Both approaches lead to exact solutions of the Einstein field equations.

3.3.2 Buchdahl

In this case we utilise the transformation

x = r2 (3.13a)

Y = eν (3.13b)

1− 2xw = e−2λ (3.13c)

where we have set
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w = mr−3

m =
1

2

∫ r

ρr̃2dr̃

In the above transformation (3.13), x is the new coordinate and w and Y are the new

metric functions. We use the transformation (3.13) to transform the Einstein field

equations (3.6) to the new form

ρ = 6w + 4xwx (3.14a)

p = −2w + (4− 8xw)
Yx
Y

(3.14b)

p = 4x(1− 2xw)
Yxx
Y

+ 4(1− 3xw − x2wx)
Yx
Y
− 2(w + xwx) (3.14c)

where the subscript x represents differentiation with respect to the new coordinate x.

The condition of pressure isotropy (3.8) becomes

(1− 2xw)Yxx − (w + xwx)Yx −
1

2
wxY = 0 (3.15)

in terms of w and Y .

The transformation (3.13) was first introduced by Buchdahl (1959). This transfor-

mation has been helpful in studying models of stellar structures and black holes; some
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of these studies are contained in the recent works of de Avellar and Horvath (2010),

Lemos and Zanchin (2010), Rahaman et al (2010) and Yazadjiev (2011). Equation

(3.15) is first order and linear equation in the variable w if the quantity Y is a speci-

fied function. Equation (3.15) is a second order and a linear equation in the variable

Y if w is a specified function. Given w we can integrate to find Y and alternatively

given Y , we can integrate to find w. Particular solutions found using the transforma-

tion (3.13) have been used to model dark energy stars, anisotropic fluids and strange

matter configurations.

3.3.3 Fodor

In this case we introduce a new function α by defining

e2λ =
(1 + rν ′)2

α
(3.16)

The advantage of this transformation is that we can replace the metric function λ

by the new function α. We utilise (3.16) to rewrite the field equations (3.6) as the

equivalent system

ρ =
1

r2

(
r

[
(1 + rν ′)2 − α

(1 + rν ′)2

])′
(3.17a)

p =
1

r2

[
α(1 + 2rν ′)− (1 + rν ′)2

(1 + rν ′)2

]
(3.17b)

p =

[
ν ′′ + ν ′2 +

ν ′

r
−
(
ν ′ +

1

r

)(
ν ′ + rν ′′

1 + rν ′
− α′

2α

)][
α

(1 + rν ′)2

]
(3.17c)

24



where primes denote differentiation with respect to the radial coordinate r. The con-

dition of pressure isotropy equation (3.8) has the form

r(1 + rν ′)α′ + 2[(1− rν ′)2 − 2]α + 2(1 + rν ′)2 = 0 (3.18)

in terms of ν and α.

The transformation (3.16) was first introduced by Fodor (2000). The transforma-

tion (3.16) has been useful in analyses involving relativistic fluid spheres and compact

objects; a sample of the investigations are given by Boehmer (2008), Lake (2003), Ra-

haman et al (2010) and Rahman and Visser (2002). Equation (3.18) is a first order

and linear equation in the variable α if the quantity ν ′ is known. If α is a known

quantity then (3.18) becomes a quadratic equation in rν ′. The form of the condition

of pressure isotropy (3.18) helps in generating simple relativistic stellar models since

the integration process has been simplified.

3.3.4 Tewari and Pant

Another useful transformation involves the new variables

U = eν (3.19a)

V = e−2λ (3.19b)

We apply the transformation (3.19) to express the Einstein field equations (3.6) in the
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equivalent form as

− 1

r2
(rV ′ + V − 1) = ρ (3.20a)

1

r2

[(
2r
U ′

U
+ 1

)
V − 1

]
= p (3.20b)

1

2

(
U ′

U
+

1

r

)
V ′ +

(
U ′′

U
+

1

r

U ′

U

)
V = p (3.20c)

where primes denote differentiation with respect to the radial coordinate r. The con-

dition of pressure isotropy equation (3.8) becomes

(
U + rU ′

r2U

)
V ′ + 2

(
U ′′

rU
− U ′

r2U
− 1

r3

)
V = − 2

r3
(3.21)

in terms of U and V .

We can express the condition of pressure isotropy (3.21) in a simpler form. We

multiply equation (3.21) with the factor

r2U

U + rU ′

to eliminate the coefficient of V ′. Then we obtain the compact result

V ′ − 2

[
d

dr

(
log

(
r3

rU ′ + U

))
− 2rU

r2(rU ′ + U)

]
V = − 2U

r(rU ′ + U)
(3.22)

The advantage of equation (3.22) is that it is first order and a linear equation in the
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variable V . The transformation (3.19) was first applied by Tewari and Pant (2010).

The form (3.22), which is equivalent to (3.8) and (3.9), is often helpful in generating

solutions for given particular forms of U . The transformation (3.19) has proved to be

very useful in producing models of static fluid balls in general relativity and highly

compact spheres; some particular solutions for stellar interiors were found by Pant

(1994), Pant and Sah (1982, 1985) and Pant and Tewari (1990).

3.4 Exact solutions

In this section we provide some new classes of exact solutions to the Einstein field

equations using the transformations generated in §3.3.

3.4.1 New Buchdahl models

Firstly we let

ρ = A (3.23)

which corresponds to a constant density. Then (3.14a) can be integrated to give

w =
1

6
A+Kx−

3
2 (3.24)

where K is a constant. We substitute equation (3.24) into equation (3.15) to obtain

the following
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(
1− 1

3
Ax− 2Kx−

1
2

)
Yxx −

(
1

6
A− 1

2
Kx−

3
2

)
Yx +

(
3

4
Kx−

5
2

)
Y = 0 (3.25)

To avoid singularities in the gravitational potential w we set K = 0. Then equation

(3.25) simplifies to

(
1− 1

3
Ax

)
Yxx −

(
1

6
A

)
Yx = 0 (3.26)

which is a simple homogeneous linear equation in Y . We integrate equation (3.26) to

get

Y (x) = −α1

A

√
6− 2Ax+ α2 (3.27)

where α1 and α2 are arbitrary constants. The result (3.27) represents the known

constant density Schwarzschild interior solution (Schwarzschild 1916a, 1916b).

Secondly we let

ρ = A+Bx (3.28)

which corresponds to a linear density. Then (3.14a) can be solved to give

w =
1

6
A+

1

10
Bx+Kx−

3
2 (3.29)

Then the condition of pressure isotropy (3.15) becomes
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(
1− 1

3
Ax− 1

5
Bx2 − 2Kx−

1
2

)
Yxx

−
(

1

6
A+

1

5
Bx− 1

2
Kx−

3
2

)
Yx −

(
1

20
B − 3

4
Kx−

5
2

)
Y = 0 (3.30)

For a nonsingular metric function w we must set K = 0. This gives the reduced result

(
1− 1

3
Ax− 1

5
Bx2

)
Yxx −

(
1

6
A+

1

5
Bx

)
Yx −

(
1

20
B

)
Y = 0 (3.31)

We can integrate equation (3.31) to obtain

Y (x) = β1 cos

[
1

2
log
[
5A+ 6Bx+ 2

√
3B(−15 + 5Ax+ 3Bx2)

]]

+β2 sin

[
1

2
log
[
5A+ 6Bx+ 2

√
3B(−15 + 5Ax+ 3Bx2)

]]
(3.32)

where β1 and β2 are arbitrary constants. We believe that this result corresponds to a

new solution of the Einstein field equations.

We should point out that solutions to the Einstein field equations with a linear

equation of state have been found by Lobo (2006), Sharma and Maharaj (2007) and

Thirukkanesh and Maharaj (2008), amongst others. However note that in those cases

the pressures are anisotropic and field equations are easily satisfied. In our case the

pressure is isotropic and an additional differential equation, the condition of pressure

isotropy, must be integrated. We believe that our new result (3.32) is one of the few

regular exact models with a linear equation of state with isotropic pressures. The
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solutions considered by Krasinski (1997) and Stephani et al (2003) have a singularity

at the stellar centre with these properties.

Thirdly we let ρ take the form

ρ = A+Bx+ Cx2 (3.33)

which is quadratic in the density. Then the field equation (3.14a) can be integrated to

obtain

w =
1

6
A+

1

10
Bx+

1

14
Cx2 +Kx−

3
2 (3.34)

The condition of pressure isotropy (3.15) becomes

(
1− 1

3
Ax− 1

5
Bx2 − 1

7
Cx3 − 2Kx−

1
2

)
Yxx

−
(

1

6
A+

1

5
Bx+

3

14
Cx2 − 1

2
Kx−

3
2

)
Yx

−
(

1

20
B +

1

14
Cx− 3

4
Kx−

5
2

)
Y = 0 (3.35)

To avoid singularities in the gravitational potential w we set K = 0. We obtain the

reduced equation
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(
1− 1

3
Ax− 1

5
Bx2 − 1

7
Cx3

)
Yxx

−
(

1

6
A+

1

5
Bx+

3

14
Cx2

)
Yx −

(
1

20
B +

1

14
Cx

)
Y = 0 (3.36)

The above equation (3.36) is of second order and a linear equation in variable Y .

Equation (3.36) is difficult to solve in general as it does not fall into any of the

standard types listed in handbooks. Since the point x = 0 is a regular point, solutions

in terms of Taylor series exist which can be obtained by the method of Frobenius. This

is a topic of research that can be pursued in future work.

3.4.2 New Tewari and Pant models

Equation (3.22) is of first order and a linear equation in variable V . It can be integrated

in principle and we get the form

V = e−2λ

=
r6

(rU ′ + U)2

[
A− 2

∫
(rU ′ + U)Ue

∫
4U

r(rU′+U)
dr

r7
dr

]
e
−

∫
4U

r(rU′+U)
dr

(3.37)

where A is an arbitrary constant. We need to choose U so that the right hand side of

(3.37) can be integrated. In the next section we discuss two choices of U that lead to

solutions.
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Solution I

For this class of solution we take the choice

e
∫

4U
r(rU′+U)

dr
= rl(rU ′ + U)n (3.38)

where l and n are arbitrary constants. The above equation (3.38), can be transformed

into a second order homogeneous differential equation in U . In particular we obtain

nr2U ′′ + (l + 2n)rU ′ + (l − 4)U = 0 (3.39)

which can be solved since it is of second order and a linear equation in variable U . The

equation (3.39) is solved in terms of elementary functions, and the solution is of the

form

U = C1r
a+b−1 + C2r

a−b−1 (3.40)

where C1 and C2 are arbitrary constants and

a =
n− l
2n

(3.41a)

b =
1

2n

√
(n− l)2 + 16n (3.41b)

where n 6= 0. Then equation (3.37) is simplified and we get
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V = e−2λ

=
r8+n−l−(a−b)(n+2)[A− 2I]

[(a+ b)C1r2b + (a− b)C2]n+2
(3.42)

where

I ≡
∫
rl−n−9+(a−b)(n+2)[(a+ b)C1r

2b + (a− b)C2]
n+1[C1r

2b + C2]dr (3.43)

The integral I in equation (3.43) can be evaluated explicitly if the parameter n is

specified. For example if we choose n = 1 we get that

I =

∫
rl−10+3(a−b)[(a+ b)C1r

2b + (a− b)C2]
2[C1r

2b + C2]dr

=

∫
(a+ b)2C3

1r
l−10+3(a+b)dr +

∫
(3a− b)(a+ b)C2

1C2r
l−10+(3a+b)dr

+

∫
(3a+ b)(a− b)C1C

2
2r

l−10+(3a−b)dr +

∫
(a− b)2C3

2r
l−10+3(a−b)dr(3.44)

If we integrate equation (3.44) then we get

I =
(a+ b)2C3

1r
l−9+3(a+b)

l − 9 + 3(a+ b)
+

(3a− b)(a+ b)C2
1C2r

l−9+(3a+b)

l − 9 + (3a+ b)

+
(3a+ b)(a− b)C1C

2
2r

l−9+(3a−b)

l − 9 + (3a− b)
+

(a− b)2C3
2r

l−9+3(a−b)

l − 9 + 3(a− b)
+ C3 (3.45)
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where C1, C2 and C3 are constants.

Hence the potential V has the form

V = e−2λ

=
r8+n−l−(a−b)(n+2)[A− 2I]

[(a+ b)C1r2b + (a− b)C2]n+2

= A
rκ−3(a−b)

Ψ(r)
− 2(a+ b)2C3

1r
6b

[3(a+ b)− κ]Ψ(r)
− 2(3a− b)(a+ b)C2

1C2r
4b

[(3a+ b)− κ]Ψ(r)

−2(3a+ b)(a− b)C1C
2
2r

2b

[(3a− b)− κ]Ψ(r)
− 2(a− b)2C3

2

[3(a− b)− κ]Ψ(r)
− 2rκ−3(a−b)

Ψ(r)
C3 (3.46)

where we have set

κ = 9− l

Ψ(r) = [(a+ b)C1r
2b + (a− b)C2]

3

We believe that the expressions for U and V generate a new solution to the Einstein

field equations.

Solution II

For the second class of solution we take the choice
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U = ar + b (3.47)

where a and b are arbitrary constants. Then on substitution of U in the expression of

equation (3.37), we have the following

e
∫

4U
r(rU′+U)

dr
= e

∫ 4(ar+b)
r(2ar+b)

dr

Note that the right hand side of the above integral can be evaluated using partial

fractions. We have

4(ar + b)

r(2ar + b)
=
A

r
+

B

2ar + b
(3.48)

where A and B are constants. On evaluating the above fractions we get

A = 4

B = −4a

This gives

e
∫

4U
r(rU′+U)

dr
= e

∫
A
r
dr+

∫
B

2ar+b
dr

= rA(2ar + b)
B
2a (3.49)
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Hence we have

e
∫

4Udr
r(rU′+U) = r4(2ar + b)−2 (3.50)

We substitute the above equation (3.50) in equation (3.37) to get the following form

for V :

V = e−2λ

= r2
[
A− 2

∫
ar + b

r3(2ar + b)
dr

]
(3.51)

The integral above can be evaluated, if we write

ar + b

r3(2ar + b)
=

α

2ar + b
+
βr2 + ξr + η

r3

where α, β, ξ and η are arbitrary constants. On evaluating the above fractions we get

α = −4a
(a
b

)2

β = 2
(a
b

)2

ξ = −a
b

η = 1
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The quantity

ar + b

r3(2ar + b)

can be simplified by the above constants α, β, ξ and η to get

ar + b

r3(2ar + b)
= −4

(a
b

)2 a

(2ar + b)
+ 2

(a
b

)2 1

r
−
(a
b

) 1

r2
+

1

r3

Consequently the potential V in (3.37) is given by

V = e−2λ

= r2

[
A+

(
2a

b

)2

log

(
2ar + b

r

)
− 2

r

(
2ar − b

2br

)]
(3.52)

We point out that the expressions for U and V in this section generate another new

solution to the Einstein field equations.

An infinite family of exact solutions to the Einstein field equations maybe generated

utilising the transformation of Tewari and Pant (2010). This procedure depends on

evaluating the integral in equation (3.37) which may not be easy to complete in practice.
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Chapter 4

Isotropic coordinates

4.1 Introduction

In this chapter we consider the relativistic stellar model in isotropic coordinates. Partic-

ular solutions in isotropic coordinates have been found which are useful in astrophysical

applications (Stephani et al 2003). In §4.2, we consider the spacetime geometry of the

shear-free spacetime in isotropic coordinates. We generate the components of connec-

tion coefficients, the Ricci tensor, the Ricci scalar and the Einstein tensor. We consider

the energy momentum for the perfect fluid, and generate the Einstein field equations in

§4.3. The components of the energy momentum tensor are related to the components

of the Einstein tensor to generate the Einstein field equations. We deduce the condi-

tion of pressure isotropy from the Einstein field equations. The condition of pressure

isotropy is a second order differential equation with variable coefficients. In §4.4 we

analyse two sets of transformations that enable us to express the condition of pressure

isotropy in equivalent form. The first transformation leads to Riccati equations. The
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second transformation produces a linear equation. In §4.5 we develop an algorithm

that enables us to produce a new solution to the Einstein field equations if a particular

solution is specified. Several new classes of solutions are found.

4.2 Spacetime geometry

In this section we consider the isotropic line element which has the following form

ds2 = −A2(r)dt2 +B2(r)[dr2 + r2(dθ2 + sin2 θdφ)] (4.1)

where A(r) and B(r) are arbitrary functions. The line element is used to describe

relativistic compact objects such as neutron stars in astrophysics.

The line element (4.1) is important for the determination of the connection co-

efficients Γabc. We use equation (2.2) and the above isotropic line element (4.1) to

determine the nonvanishing connection coefficients:

Γ0
10 =

A′

A

Γ1
00 =

AA′

B2

Γ1
11 =

B′

B
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Γ1
22 = −r2

(
B′

B
+

1

r

)

Γ1
33 = −r2 sin2 θ

(
B′

B
+

1

r

)

Γ2
12 =

B′

B
+

1

r

Γ2
33 = − sin θ cos θ

Γ3
13 =

B′

B
+

1

r

Γ3
23 = cot θ

The primes denote differentiation with respect to the radial coordinate r.

By using the above connection coefficients we generate the Ricci tensor components

for the line element (4.1). We substitute the above connection coefficients in equation

(2.4) which is the general form for the Ricci tensor in order to obtain the following

nonvanishing components
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R00 =
A

B2

[
A′′ + A′

(
B′

B
+

2

r

)]
(4.2a)

R11 = −
(
A′′

A
− A′

A

B′

B

)
− 2

[
B′′

B
− B′

B

(
B′

B
− 1

r

)]
(4.2b)

R22 = −r2
(
A′

A

B′

B
+

1

r

A′

A

)
− r2

(
B′′

B
+

3

r

B′

B

)
(4.2c)

R33 = sin2 θR22 (4.2d)

with Rab = 0 for a 6= b.

We use the Ricci tensor components (4.2) and equation (2.5), which is the definition

of the Ricci scalar, to compute the value

R = − 2

B2

[
A′′

A
+
A′

A

(
B′

B
+

2

r

)]
− 2

B2

[
2
B′′

B
− B′

B

(
B′

B
− 4

r

)]
(4.3)

in terms of the potentials A and B.

In equation (2.6) we defined the Einstein tensor. For isotropic coordinates we use

the Ricci tensor components (4.2) and the Ricci scalar (4.3) to generate the nonvan-

ishing components of the Einstein tensor. These are given by the following:

41



G00 = −
(
A

B

)2 [
2
B′′

B
− B′

B

(
B′

B
− 4

r

)]
(4.4a)

G11 = 2
A′

A

(
B′

B
+

1

r

)
+
B′

B

(
B′

B
+

2

r

)
(4.4b)

G22 = r2
(
A′′

A
+

1

r

A′

A

)
+ r2

[
B′′

B
− B′

B

(
B′

B
− 1

r

)]
(4.4c)

G33 = sin2 θG22 (4.4d)

with Gab = 0 for a 6= b.

4.3 Einstein field equations

Since the fluid four velocity is comoving we have ua = 1
A
δa0 for the metric (4.1). The

nonvanishing energy momentum tensors are given by

T00 = ρA2 (4.5a)

T11 = pB2 (4.5b)

T22 = pB2r2 (4.5c)

T33 = sin2 θT22 (4.5d)
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with Tab = 0 for a 6= b.

We use the Einstein tensor components (4.4) in conjunction with the energy mo-

mentum tensor components (4.5) in isotropic coordinates to generate the Einstein field

equations. We thus obtain the following field equations

ρ = − 1

B2

[
2
B′′

B
− B′

B

(
B′

B
− 4

r

)]
(4.6a)

p = 2
A′

A

(
B′

B3
+

1

r

1

B2

)
+
B′

B3

(
B′

B
+

2

r

)
(4.6b)

p =
1

B2

(
A′′

A
+

1

r

A′

A

)
+

1

B2

[
B′′

B
− B′

B

(
B′

B
− 1

r

)]
(4.6c)

for isotropic coordinates.

Equating equation (4.6b) to (4.6c) gives the following equation

A′′

A

1

B2
+
B′′

B3
− 1

r

A′

A

1

B2
− 2

B′2

B4
− B′

B3

(
2
A′

A
+

1

r

)
= 0 (4.7)

which is the condition of pressure isotropy. The above equation (4.7) is the master

equation for the gravitating model in isotropic coordinates. The above equation (4.7)

can also be written in a more compact form as

A′′

A
+
B′′

B
=

(
A′

A
+
B′

B

)(
2
B′

B
+

1

r

)
(4.8)

in terms of the potentials A and B.
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4.4 Condition of pressure isotropy

Different transformations may be used to transform (4.8) into another equivalent form.

In this section we present two transformations that have proved to be helpful in rela-

tivistic stellar stars.

4.4.1 Riccati

Note that (4.8) can be treated as a first order Riccati equation. If we let

z =
A′

A

then (4.8) becomes

z′ −
(

1

r
+ 2

B′

B

)
z + z2 =

(
1

r
+ 2

B′

B

)(
B′

B

)
− B′′

B
(4.9)

which is a Riccati equation in z. If the gravitational potential B is specified then we

can integrate (4.9) in principle and obtain z.

Equivalently we can let

y =
B′

B

and (4.8) becomes

y′ −
(

1

r
+ 2

A′

A

)
y − y2 =

1

r

A′

A
− A′′

A
(4.10)
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which is a Riccati equation in y. If the metric function A is specified then we can

integrate equation (4.10) in principle and find y.

4.4.2 Kustaanheimo and Qvist

We now consider another familiar transformation which has been used by Kustaan-

heimo and Qvist (1948). The relevant quantities are

x ≡ r2 (4.11a)

L ≡ B−1 (4.11b)

G ≡ LA (4.11c)

With the assistance of the transformation (4.11), the field equations (4.6) become

ρ = 4[2xLLxx − 3(xLx − L)Lx] (4.12a)

p = 4L(L− 2xLx)
Gx

G
− 4(2L− 3xLx)Lx (4.12b)

p = 4xL2Gxx

G
+ 4L(L− 2xLx)

Gx

G
− 4(2L− 3xLx)Lx − 8xLLxx (4.12c)

where subscript x represents differentiation with respect to the coordinate x.
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From (4.12b) and (4.12c) we obtain the condition of pressure isotropy in the form

LGxx = 2GLxx (4.13)

which is very compact. This equation (4.13) is linear in both L and G, and solutions

may be found by prescribing one of these two functions appropriately.

4.5 Exact solutions: New Kustaanheimo and Qvist

models

In this section we provide some new classes of exact solutions to the Einstein field

equations using the transformations generated in §4.4.2.

Suppose that (L̄, Ḡ) is a known solution to (4.13). Then we have that

L̄Ḡxx = 2ḠL̄xx (4.14)

holds.

4.5.1 Algorithm I

We take a new solution (L,G) of the form
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L = L̄ (4.15a)

G = Ḡef(x) (4.15b)

where f(x) is an arbitrary function. Substituting (4.15) in (4.13) gives

L̄(Ḡxx + 2Ḡxfx + Ḡfxx + Ḡf 2
x) = 2ḠL̄xx

Since (4.14) holds the above equation simplifies to

Ḡfxx + 2Ḡxfx + Ḡf 2
x = 0 (4.16)

which is a second order nonlinear equation in f . It is convenient to let

fx = H

Then (4.16) becomes

Hx + 2

(
Ḡx

Ḡ

)
H +H2 = 0 (4.17)

which is a first order Bernoulli equation in H.

We can write (4.17) in the form

(
1

H

)
x

− 2

(
Ḡx

Ḡ

)(
1

H

)
= 1 (4.18)
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which is a linear equation in 1
H

. We can integrate (4.18) to get the solution

H =

[
Ḡ2

(∫
Ḡ−2dx+ c1

)]−1
Then the function f follows from integration of fx = H. We obtain the result

f(x) =

∫ [
Ḡ2

(∫
Ḡ−2dx+ c1

)]−1
dx+ c2 (4.19)

where c1 and c2 are constants.

Hence a new solution to (4.13) is given by

L = L̄ (4.20a)

G = Ḡ exp

(∫ [
Ḡ2

(∫
Ḡ−2dx+ c1

)]−1
dx+ c2

)
(4.20b)

We have shown that if a solution (L̄, Ḡ) to the field equations is given then a new

solution (L,G) is given by (4.20) provided the transformation (4.15) applies.

4.5.2 Algorithm II

Alternatively we can take a new solution (L,G) of the form
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G = Ḡ (4.21a)

L = L̄eg(x) (4.21b)

where g(x) is an arbitrary function. Substituting (4.21) in the condition of pressure

isotropy (4.13) we obtain

L̄Ḡxx = 2Ḡ(L̄xx + 2L̄xgx + L̄gxx + L̄g2x)

Since (4.14) holds then the above equation simplifies to

L̄gxx + 2L̄xgx + L̄g2x = 0 (4.22)

We note that equation (4.22) is second order and nonlinear equation in the variable g.

We let

gx = H

Then equation (4.22) becomes

Hx + 2

(
L̄x
L̄

)
H +H2 = 0 (4.23)

which is a first order Bernoulli equation in H.

We can rewrite (4.23) in an equivalent form as
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(
1

H

)
x

− 2

(
L̄x
L̄

)(
1

H

)
= 1 (4.24)

which is a linear equation in 1
H

. We integrate (4.24) to obtain the following

H =

[
L̄2

(∫
L̄−2dx+ c1

)]−1
(4.25)

Then since gx = H, we integrate the function of g to obtain

g(x) =

∫ [
L̄2

(∫
L̄−2dx+ c1

)]−1
dx+ c2 (4.26)

where c1 and c2 are constants.

Hence a new solution to (4.13) is given by

G = Ḡ (4.27a)

L = L̄ exp

(∫ [
L̄2

(∫
L̄−2dx+ c1

)]−1
dx+ c2

)
(4.27b)

Therefore we have determined that if a solution (L̄, Ḡ) to the field equations is known

then a new solution (L,G) is provided by (4.27) provided the transformation (4.21)

holds. This solution is different from that presented in §4.5.1.

4.5.3 Algorithm III

Thirdly we make a new solution (L,G) of the form
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L = L̄eg(x) (4.28a)

G = Ḡef(x) (4.28b)

where f(x) and g(x) are arbitrary functions. When substituting (4.28) into (4.13) we

obtain

(L̄Ḡxx − 2ḠL̄xx) + 2(L̄Ḡxfx − 2ḠL̄xgx) + L̄Ḡ(fxx − 2gxx) + L̄Ḡ(f 2
x − 2g2x) = 0

which is in terms of two arbitrary functions f(x) and g(x) unlike algorithms I and II.

We use equation (4.14) which holds for the above equation to obtain the reduced result

(fxx − 2gxx) + 2

(
Ḡx

Ḡ
fx − 2

L̄x
L̄
gx

)
+ (f 2

x − 2g2x) = 0 (4.29)

Since equation (4.29) is in terms of both f(x) and g(x) it is difficult to integrate in

general. We consider three cases for equation (4.29) for which we have been able to

complete the integration.

Case I: g(x) = f(x)

Firstly we let

g = f

in equation (4.29) to obtain
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fxx − 2

(
Ḡx

Ḡ
− 2

L̄x
L̄

)
fx + f 2

x = 0 (4.30)

It is convenient to let

fx = H

Then (4.30) simplifies to

Hx − 2

(
Ḡx

Ḡ
− 2

L̄x
L̄

)
H +H2 = 0 (4.31)

which is a first order Bernoulli equation in H.

The above equation (4.31) can be written in the form

(
1

H

)
x

+ 2

(
Ḡx

Ḡ
− 2

L̄x
L̄

)(
1

H

)
= 1 (4.32)

We note that (4.32) is a linear equation in 1
H

and we integrate to get the solution

H =
Ḡ2

L̄4

(∫
Ḡ2

L̄4
dx+ c1

)−1
Since fx = H, we integrate to obtain the function of f as

f(x) =

∫ [
Ḡ2

L̄4

(∫
Ḡ2

L̄4
dx+ c1

)−1]
dx+ c2 (4.33)

where c1 and c2 are constants.

Then the new solution to (4.13) has the form
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L = L̄ exp

(∫ [
Ḡ2

L̄4

(∫
Ḡ2

L̄4
dx+ c1

)−1]
dx+ c2

)
(4.34a)

G = Ḡ exp

(∫ [
Ḡ2

L̄4

(∫
Ḡ2

L̄4
dx+ c1

)−1]
dx+ c2

)
(4.34b)

Therefore we have shown that if a solution (L̄, Ḡ) to the field equations is known then

a new solution (L,G) is provided by (4.34) provided the transformation (4.28) holds.

Note that this algorithm provides a new solution different from §4.5.1 (using Algorithm

I) and §4.5.2 (using Algorithm II) since g = f and we cannot regain the transformations

(4.15) and (4.21) except trivially.

Case II: g(x) = αf(x)

(Note: case II includes case I as a special case)

Secondly we let

g(x) = αf(x)

where α is an arbitrary constant. On substituting the above equation in (4.29) we

obtain

fxx +
2

1− 2α

(
Ḡx

Ḡ
− 2α

L̄x
L̄

)
fx +

(
1− 2α2

1− 2α

)
f 2
x = 0 (4.35)

We let

fx = H
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in (4.35) to obtain the following

Hx +
2

1− 2α

(
Ḡx

Ḡ
− 2α

L̄x
L̄

)
H +

(
1− 2α2

1− 2α

)
H2 = 0 (4.36)

which is a first order Bernoulli equation in H.

We can write (4.36) in the form

(
1

H

)
x

− 2

1− 2α

(
Ḡx

Ḡ
− 2α

L̄x
L̄

)(
1

H

)
=

(1− 2α2)

(1− 2α)
(4.37)

which is linear in 1
H

. We integrate (4.37) to obtain the solution

H =

(
L̄2α

Ḡ

) 2
1−2α

[(
1− 2α2

1− 2α

)∫ (
L̄2α

Ḡ

) 2
1−2α

dx+ c1

]−1
(4.38)

We then integrate fx = H to obtain

f(x) =

∫ ( L̄2α

Ḡ

) 2
1−2α

[(
1− 2α2

1− 2α

)∫ (
L̄2α

Ḡ

) 2
1−2α

dx+ c1

]−1dx+ c2 (4.39)

where c1 and c2 are constants.

We now have the new solution to (4.13) as

L = L̄ expα

∫ ( L̄2α

Ḡ

) 2
1−2α

[
ζ

∫ (
L̄2α

Ḡ

) 2
1−2α

dx+ c1

]−1dx+ c2

(4.40a)

G = Ḡ exp

∫ ( L̄2α

Ḡ

) 2
1−2α

[
ζ

∫ (
L̄2α

Ḡ

) 2
1−2α

dx+ c1

]−1dx+ c2

 (4.40b)
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where we have set

ζ =

(
1− 2α2

1− 2α

)
Therefore we have demonstrated that if a solution (L̄, Ḡ) to the field equations is known

then a new solution (L,G) is provided by (4.40) provided that the transformation (4.28)

holds. If we set α = 1 then (4.40) becomes

L = L̄ exp

(∫ [
Ḡ2

L̄4

(∫
Ḡ2

L̄4
dx+ c1

)−1]
dx+ c2

)
(4.41a)

G = Ḡ exp

(∫ [
Ḡ2

L̄4

(∫
Ḡ2

L̄4
dx+ c1

)−1]
dx+ c2

)
(4.41b)

We observe that equation (4.41) is the same as (4.34). Hence the new class of solutions

found here are a generalisation of the result in Case I.

Case III: f 2
x = 2g2x

Thirdly we let

f 2
x = 2g2x

in equation (4.29). This eliminates the nonlinearity and we get

f = ±
√

2g + k

where k is a constant. Equation (4.29) becomes
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(1−
√

2)fxx = 2

(√
2
L̄x
L̄
− Ḡx

Ḡ

)
fx (4.42)

This is a simple homogeneous linear equation. We integrate (4.42) to obtain

f(x) = c1

∫ (
L̄
√
2

Ḡ

) 2
1−
√
2

dx+ c2 (4.43)

where c1 and c2 are constants.

Hence a new solution to (4.13) has the form

L = L̄ exp

k ± 1√
2

c1 ∫ ( L̄√2
Ḡ

) 2
1−
√
2

dx+ c2

 (4.44a)

G = Ḡ exp

c1 ∫ ( L̄√2
Ḡ

) 2
1−
√
2

dx+ c2

 (4.44b)

Therefore we have shown that if a solution (L̄, Ḡ) to the field equations is known then

a new solution (L,G) is provided by (4.44) provided the transformation (4.28) holds

with f = ±
√

2g + k. Note that if we set k = 0 in (4.44) and α = ± 1√
2

in (4.40) we

have the same result. Hence Case II and Case III are the same for these parameter

values; in general they have different functional forms.
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Chapter 5

Conclusion

Our aim in this thesis was to examine the static spherically symmetric spacetimes and

the Einstein field equations in relativistic astrophysics. Our main objective was to

generate new exact solutions of the Einstein field equations with isotropic pressures.

Since the Einstein field equations are highly nonlinear in general we used new variables

in order to transform the field equations to equivalent forms. We transformed the

condition of pressure isotropy by reducing it to less complicated second order differential

equations with variable coefficients. We obtained some several new exact solutions in

terms of elementary functions by choosing specific gravitational potentials in order to

solve the master equation. We generated a number of algorithms that produce a new

solution if a particular model is specified. The new exact solutions are useful in many

applications for general relativity and realistic stellar models.

We now provide a brief outline of the dissertation by giving the main results

achieved in our course of study:
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• In chapter 2, we briefly introduced the concepts of differential geometry and the

matter distribution that are essential for generating the Einstein field equations. We

formulated the Einstein field equations for neutral perfect fluid matter distributions.

We also briefly introduced the barotropic equation of state relating the pressure to the

energy density. We outlined the physical conditions that are relevant for a realistic

relativistic stellar model.

• In chapter 3, we generated the Einstein field equations in terms of Schwarzschild

coordinates for neutral perfect fluid matter distributions in static spherically symmetric

spacetimes. As a result of the high nonlinearity of the field equations we expressed

them in equivalent forms using the transformations of Buchdahl (1959), Durgapal and

Bannerji (1983), Fodor (2000) and Tewari and Pant (2010). We found particular new

classes of exact solutions to the Einstein field equations in terms of elementary functions

by integration of the condition of pressure isotropy. With the help of the Buchdahl

(1959) transformation we obtained the exact solution

Y (x) = β1 cos

[
1

2
log
[
5A+ 6Bx+ 2

√
3B(−15 + 5Ax+ 3Bx2)

]]

+β2 sin

[
1

2
log
[
5A+ 6Bx+ 2

√
3B(−15 + 5Ax+ 3Bx2)

]]

which we believe is a new solution of Einstein’s equations. This model is characterised

by a linear barotropic equation of state and is regular at the origin. With the assistance

of the Tewari and Pant (2010) transformation we obtained two exact solutions. The

first is given by
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V = e−2λ

= A
rκ−3(a−b)

Ψ(r)
− 2(a+ b)2C3

1r
6b

[3(a+ b)− κ]Ψ(r)
− 2(3a− b)(a+ b)C2

1C2r
4b

[(3a+ b)− κ]Ψ(r)

−2(3a+ b)(a− b)C1C
2
2r

2b

[(3a− b)− κ]Ψ(r)
− 2(a− b)2C3

2

[3(a− b)− κ]Ψ(r)
− 2rκ−3(a−b)

Ψ(r)
C3

where

κ = 9− l

Ψ(r) = [(a+ b)C1r
2b + (a− b)C2]

3

We also found the second exact solution

V = e−2λ

= r2

[
A+

(
2a

b

)2

log

(
2ar + b

r

)
− 2

r

(
2ar − b

2br

)]

The above two classes of exact models are new solutions to the Einstein field equations.

• In chapter 4, we considered the stellar model in isotropic coordinates. We generated

the Einstein field equations by using the energy momentum for the perfect fluid. From

the Einstein field equations we deduced the condition of pressure isotropy which is a

second order differential equation with variable coefficients. The condition of pressure
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isotropy was also expressed into two equivalent forms by using new variables. The result

of the first transformation leads to the Riccati equation. The second transformation

was first introduced by Kustaanheimo and Qvist (1948). Using this transformation we

generated an algorithm that enables us to produce three new classes of exact solutions

to the Einstein field equations. With the help of Algorithm I we showed if (L̄, Ḡ) is a

given solution to the condition of pressure isotropy then a new solution (L,G) can be

found subject to the consistency condition

Ḡfxx + 2Ḡxfx + Ḡf 2
x = 0

We integrated this equation in general. Similarly with Algorithm II we demonstrated

that a new solution can be found subject to integrating the consistency condition

L̄gxx + 2L̄xgx + L̄g2x = 0

We solved this differential equation in general. With Algorithm III new solutions are

possible subject to the integration of the consistency condition

(fxx − 2gxx) + 2

(
Ḡx

Ḡ
fx − 2

L̄x
L̄
gx

)
+ (f 2

x − 2g2x) = 0

It is not possible to integrate this equation in general. However we showed that for the

special cases
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g = f

g = αf

f 2
x = g2x

integration is possible and exact solutions are generated. It is remarkable that the

procedure developed in §4.5 produces infinite families of new exact solutions provided

a particular model (L̄, Ḡ) is known.
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