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ABSTRACT

Black wattle (Acacia meamsii) is one of South Africa's leading commercial exotic

species comprising nearly seven percent of South African forestry plantations. The

planting of black wattle has become increasingly popular, initially for its high­

quality tannin content and in more recent times, for its wood and wood products.

The industry also provides jobs for more than 36 000 people. Despite the

commercial value of black wattle, if left unmanaged, it is one of South Africa's top

invader species that aggressively colonise and rapidly out-competes indigenous

vegetation. Thus, both plant breeders and environmentalists alike are faced with

an interesting paradox of balancing the commercial significance of black wattle on

the one hand with increasing environmental concern on the other.

At the Institute for Commercial Forestry Research (ICFR), black wattle breeding

programmes are being designed and implemented in order to reduce invasiveness

whilst still maintaining product quality. One way of minimising invasiveness is to

decrease fertility through the introduction of semi-sterility; while at the same time

leaving product yield and quality unaffected. A method of achieving semi-sterility is

by the induction of autopolyploidy that results in unviable gametes. Autopolyploidy,

tetraploidy, is induced chemically through doubling of the chromosomes of

diploids. These induced tetraploids may then be crossed with diploids to produce

triploids. Thus, an effective method to identify polyploids at the seedling stage

would greatly facilitate the success of the abovementioned breeding programmes

in the black wattle industry.

Polyploidy in plants is often associated with physiological and biochemical

changes that become apparent as gigantism of organs which include fruits, flowers

and leaves. Polyploidy is also associated with an increase in the number of

organelles such as the number of stomatal chloroplasts and nucleoli, as well as an

increased production of some proteins and pigments such as chlorophyll. These

ploidy-related manifestations are often utilised in breeding programmes to

increase the size and quality of plant products as well as a tool to discriminate

between polyploids and diploids.
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Two putative diagnostic procedures to differentiate between diploid and tetraploid

black wattle were developed in this investigation. The study focused on the

discriminating power of stomatal chloroplast numbers and arrangements as well

as the chlorophyll content in the two different ploids. A number of associated

experiments were initially conducted to establish the optimal conditions for

chlorophyll content analyses such as the type of leaf material and storage

conditions.

Stomatal chloroplast frequencies were determined in diploid and tetraploid black

wattle and comprised three lines per ploidy level with five plants per line. A thin

epidermal layer from the abaxial surface of a pinnule was stripped, stained,

mounted and 15 stomatal guard cells per plant were viewed at 40X magnification.

The mean number of chloroplasts per cell in diploids (9.89 ± 0.222) was found to

be statistically different (p < 0.001) to that of tetraploids (22.43 ± 0.222) with no

overlapping of the mean chloroplast values between the two ploidy levels. The

ratio of diploid and tetraploid stomatal chloroplast numbers was roughly 1:2. An

analysis of the least significant difference (LSD) was performed and indicated

significant differences between plants within lines, between lines of different ploids

(LSD =0.6266), as well as between the different ploids (LSD =0.2802).

Furthermore, stomatal chloroplasts spatial arrangements were distinctly different in

diploids and tetraploids. In diploids, chloroplasts were clustered into two regions,

each towards the extreme ends of the kidney shaped stomatal cells. In the

tetraploids, no clustering of chloroplasts could be identified, with an even

distribution around the convex curvature/perimeter of the cells.

There are a number of factors that influence chlorophyll content and degradation,

which are either environmental or genetic in nature. Environmental factors that

were considered are sample age and sample storage conditions. Genetic factors

include genetic composition and, specifically, the number of sets of chromosomes,

that is, the ploidy.
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Chlorophyll content was investigated by chemically extracting chlorophyll from leaf

material and obtaining absorbance spectra with a PerkinElmer UV/vis

spectrometer for wavelengths from 400 nm to 700 nm. Chlorophyll absorbance

spectra were generated in terms of leaves stored prior to chlorophyll extraction,

leaves of different ages, trees of different ages and ploidy.

The effects of storage of leaves on chlorophyll content were determined in five

non-identical two year-old nursery diploid black wattle genotypes. Fifteen leaf

samples from each genotype were either oven dried and then stored for one week

or one month at room temperature, or frozen for one week or one month at -4 DC,

before chlorophyll was extracted and absorbance spectra determined. Chlorophyll

absorbance values of chlorophyll extracted from leaf material on the day of

collection (day-O) was used as the control. An analysis of variance (ANOVA)

revealed that the chlorophyll absorbance values of the different storage treatments

were all significantly lower than the chlorophyll absorbance values of the control

(p < 0.001).

Assessment of the mean chlorophyll absorbance (TA), sum of the three peak

absorbance values at three wavelengths, namely, 433 nm, 456 nm and 663 nm,

revealed significant differences (p < 0.001) from the control (TA = 1.275) for all

treatments. Dried leaves that were stored for seven days (TA = 1.132) resulted in

the least amount of chlorophyll degradation followed by 28 day ice storage

(TA = 1.114), seven day ice storage (TA = 1.103) and lastly 28 day dried storage

(TA = 1.093). An analysis of least significant differences (LSD) revealed that

chlorophyll absorbance values within lines and between wavelengths were

significantly different (LSD = 0.005). Furthermore, LSD analysis revealed

significant differences between all treatments (LSD =0.003) which also supported

the ANOVA findings.

Chlorophyll absorbance values within dried and frozen treatments were compared

with respect to storage time periods of one week and one month. It was noted that

whilst all treatments decreased from the control (day-O), dried samples responded

differently to storage periods as compared to frozen samples. Chlorophyll

absorbance values of dried material decreased steadily over time from control to
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seven-day storage to one-month storage, whereas, in the case of frozen material,

a similar trend could not be identified. A greater decrease from the control to

seven day ice storage was recorded than for the decrease from the control to 28

day ice storage.

The effects of tree and leaf ages of diploid black wattle on chlorophyll content were

determined. Two types of leaf flushes namely, old and new flush, were examined

in relation to different tree ages; two, four, six, eight and nine year-old; in order to

assess whether the choice of material impacts on chlorophyll absorbance values.

Five leaf samples from each tree were collected, bagged and chlorophyll extracted

within two hours of collection. These chlorophyll absorbance values were

compared to young diploid seedling material as a base-value and as a control

value.

An analysis of variance (ANOVA), revealed significant differences between tree

ages and between leaf ages (p < 0.001). An analysis of least significant

differences (LSD) revealed that new flush of all tree age groups were significantly

different from the control (LSD = 0.006). This was mostly true for old flush, except

that of six year-old old flush which was not significantly different from the control

(LSD =0.006).

The chlorophyll absorbance values of both old and new flush of different age

groups produced spectral graphs for which no specific trends could be

ascertained. Therefore, the data from the two flush types were pooled and

revealed a marked increase in chlorophyll absorbance as trees became older.

Moreover, this increase was more apparent in new flush than in old flush.

Interestingly, juvenile characteristics were identified in two year-old black wattle

trees, where a marked increase in chlorophyll content was noted.

The effects of the number of chromosome sets on chlorophyll content were

assessed for diploid and tetraploid black wattle. Seedlings, bagged juveniles as

well as two year-old field trees were analysed. Three genetic lines per ploidy level

comprising of ten plants per line were used in the analysis. An analysis of variance

(ANOVA) revealed significant increases of chlorophyll absorbance values
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(p < 0.001) for diploid seedlings (TA =1.1086) to bagged trees (TA =1.149) to

field trees (TA = 1.224). Similar significant increases were recorded for the

tetraploid seedlings (TA = 1.886) to bagged trees (TA = 1.931) to field trees

(TA =2.059). There were distinct differences in chlorophyll absorbance between

the two levels of ploidy (LSD =0.002). Furthermore, chlorophyll absorbance within

lines, between wavelengths were found not to be significant (p =0.984), which

was supported by an analysis of least significant differences (LSD = 0.004).

Moreover, the ratio of diploid to tetraploid chlorophyll absorbance was roughly 2:3.

Additionally, the increase of chlorophyll content from seedlings to bagged juveniles

to field material of both diploid and tetraploid black wattle further supported the

findings in the previous age study that there was an increase in chlorophyll content

as the tree matures.

Stomatal chloroplast frequencies and chlorophyll content have been identified as

two methods that are able to effectively, and with ease, discern between diploid

and tetraploid black wattle.
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1 CHAPTER ONE

INTRODUCTION

· 1·

1.1 INTRODUCTION

Trees are of fundamental importance to sustaining life on earth and constitute a

significant portion of global land cover. Figure 1.1 provides an indication of global

tree coverage as reported by a recent satellite survey (DeFries, et al., 2000). This

tree population sustains both local communities and wildlife in providing food,

shelter and fuel. In addition, forests help to maintain the delicate environmental

balance by curbing soil erosion and enhancing soil properties. Trees also play a

critical role in the reduction of atmospheric carbon dioxide thereby reducing

damages caused by the Greenhouse Effect. Global forests consist of indigenous

forests, which comprise naturally occurring tree species that exist through no human

influence; and plantation forests, which have been developed for commercial

purposes such as the production of timber and timber products.

Figure 1.1 Global tree distribution (adapted from DeFries et al., 2000)
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Indigenous tree-coverage form a significant part of global forestry practices. Today

indigenous forests consist of several habitat-specific species that have evolved over

many centuries (FAO, 1997; CIDA, 1992). Many of these species are felled, to

maintain the fuel, food and shelter needs of neighbouring populations. The world's

indigenous forests are being depleted at an alarming rate with annual global tree­

loss estimated at 17 million hectares (CIDA, 1992, FAO, 2000). It is therefore of

great importance that countries manage their natural forests in a sustainable

manner.

Commercial forestry is a significant global industry generating a considerable

amount of employment and foreign exchange. The industry has grown considerably

after World War 11 as the demands for wood and wood products increased (Tewari,

2000). Thirty percent of the world's land is under forest (FAO, 2000) with forestry

land distribution percentages indicated in Table 1.1.

Table 1.1 Percentage of global land utilised for forestry practices

(adapted from FAO, 2000).

Country

Japan

Russian Federation

Canada

U.S.A

European Union

R.S.A

Zimbabwe

% Land utilisation

67.0

46.0

39.0

30.0

29.0

1.1

0.3

South African natural forests cover a very small area of the total geographical

region; about 0.1 %, predominantly concentrated towards the eastern coast (Tewari,

2000). Indigenous species include yellow- and stinkwood varieties. South African

foresters recognize that the utilization of natural forests as a source of wood and

wood products is limited mostly due to slower growth rates of the natural species

(Tewari,2000).
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Species utilized for commercial purposes require attributes that make them suitable

for forestry practices. Characteristics of importance include physiological fitness;

disease and pest resistance; sustainability and adaptability to a variety of habitats;

and most importantly, fast growth with high quality wood (Richardson, 1998). The

demand for wood in South Africa is expected to double by 2005 (Tewari 2000),

however, South African indigenous species generally do not display many of the

abovementioned attributes, whereas exotic species are far more suitable for

commercial exploitation. Since their introduction, exotic species have formed the

basis of all commercial forests within South Africa (Richardson, 1998).

Exotic species planted in South Africa have mostly been obtained from Australia

and California and consist of many species of hard- and softwood (Richardson,

1998; Tewari, 2000). These include species of Pinus (pines), Eucalyptus (eucalypts)

and Acacia (wattles). Pines and other softwood species comprise 53 % of our

country's plantation land, whilst hardwood species like eucalypts and wattle occupy

47 % (DWAF, 2000). In recent years the wattle species have attracted the interest of

South African commercial foresters and the number of wattle plantations has since

shown a steady increase (Dunlop and MacLennan, 2002).

1.2 SOUTH AFRICAN BLACK WATTLE INDUSTRY

1.2.1 Introduction

Acacia mearnsii (de Wild.), commonly called black wattle, is an exotic species that

was introduced to South Africa from Australia (Sherry, 1971). Seeds from south

eastern Australia were introduced to Camperdown in KwaZulu-Natal by John van

der Plank in 1864 (Jarmain and L10yd Jones, 1982). Black wattle was initially

planted to provide shade for livestock, fuel and shelterbelts. It was soon discovered

that these trees contain high quality tannins, a quality that initiated the wattle

industry in South Africa (Figure 1.2) (Heiberg-Iurgensen, 1967; Sherry, 1971).
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Black wattle plantations

Figure 1.2 Distribution of black wattle plantations in South Africa. (adapted from

Dunlop and MacLennan, 2002)

Today, the commercial significance of the black wattle forestry industry within South

Africa is enormous. Black wattle comprises nearly seven percent of South African

forestry plantations and provides jobs for more than 36 000 people (Dunlop and

MacLennan, 2002). Black wattle was estimated to have fetched up to R 826 million

per annum on the international market (Dobson, 1998). By the year 2000, black

wattle was the most commonly planted species used for afforestation (46.9 %)

(FSA, 2000). Black wattle's increasing value as a commercial tree is catapulting the

South African black wattle industry to the forefront of a competitive global industry.

The significant commercial value of black wattle has led to extensive research

aimed at promoting the use and profitability of black wattle in South Africa (Sherry,

1971). This research became the pinnacle task of the South African forestry industry

in order to compete with international markets. Wattle research began in the early

1900s (Osborn, 1931) and continued at the Wattle Research Institute (WRI) upon its

founding in 1947. The WRI was formed as a three-way partnership comprising
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wattle growers, the South African government and the University of Natal; the

purpose of the institute being to spearhead solely wattle research programmes¥

(Dunlop and MacLennan, 2002).

In the 1940s the WRI initiated several wattle breeding programmes. The initial aims

of these programmes were to increase the production of bark yields for the valuable

tannin content as well as to increase resistance to gummosis (Dunlop and

MacLennan, 2002). Many hybridisation experiments and progeny testing between

black and green wattle were undertaken and by the 1960s South Africa was

renowned for having the most advanced wattle breeding programme in the world

(WRI, 1949; Nixon, 1992). Extensive research was underway in fields such as

silviculture, genetics, chemistry and entomology (WRI, 1948; Dunlop and

MacLennan, 2002).

In 1984 the WRI became the Institute for Commercial Forestry Research (ICFR),

and expanded the scope of their research to include other commercial species such

as eucalypts and pines, although wattle was retained as its primary focus.

Furthermore, the change in market demands from tannin to wood caused a shift in

the drive of black wattle breeding programmes (Dunlop and MacLennan, 2002). The

aims have moved from the exclusive improvement of bark to the improvement of

timber yield and quality whilst maintaining an acceptable bark quality. Improvements

in yields are achieved through ongoing progeny tests and the successive selection

of superior trees. The programme has lead to the establishment of Production

Seedling Orchards (PSOs) that supply industries with improved seed. With the

current increase in black wattle timber in the pulp industry, interests in black wattle

timber production has grown extensively and so too has the research in that field

(Dunlop and MacLennan, 2002).

The black wattle industry has faced many challenges over the years, the most

pertinent of which, is the invasive nature of the species. The management of the

Acacia mearnsii species is difficult due to its tendency to invade native woodlands

and cultivated areas. The invasion of native woodlands by black wattle has various

¥ Research programmes include many ways of improving tree physiology by breeding for certain traits. Hence, in

this dissertation, the terms 'breeding programme' and 'improvement programme' are used interchangeably.
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environmental consequences, which affect several parts of South Africa (Van

Wilgen et al., 1996). The consequences include clogged waterways and increased

soil erosion as a result of its high water consumption (Versfeld et al., 1998).

Furthermore, some natural vegetation is being out-competed to the point of

extinction thereby irreversibly altering the immediate environment (Cowling, 1992).

The ICFR has taken a pro-active approach to addressing the invasiveness of black

wattle by investigating various methods of control, such as felling, burning, chemical

treatments, biological control and the introduction of genetic control mechanisms

(Dunlop and MacLennan, 2002).

Black wattle research over the past 50 years has lead to important tree

improvements. These improvements include an increase in the variety of black

wattle and available provenances; an increase in the number of sites for

establishment of plantations; a decrease in the incidence of gummosis and an

increase in productivity due to tree improvement (Dunlop and MacLennan, 2002).

These tree improvements coupled with the versatility of the species has enabled

wattle growers to maintain their successful position in a thriving global industry.

1.2.2 Black wattle characteristics and growth habitat

Black wattle trees have a number of distinctive growth and physiological features.

The tree may be described as a legume and is a member of the pea family

(Fabaceae: Mimosoideae). It has seed-containing pods and nitrogen-fixing root

nodules that enrich the soil. Furthermore, the thick roots also assist with the

prevention of soil erosion. Trees grow to heights of between six and twenty meters

with dense, deep green foliage that often serve as windbreaks and shelter. The

inflorescence form fragrant pale yellow clusters that develop into grey dehiscing

pods that contain smooth, black, elliptical seeds (Figure 1.3). Seeds can lie dormant

for years and retain much of their moisture to grow when conditions turn favourable

(Sherry. 1971; J0ker, 2000)
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Figure 1.3 Illustration of a typical black wattle leaf, seed and pod composition

These trees are robust and grow in a variety of soil types, are frost resistant and can

tolerate temperatures from 0 QC up to 28 QC, as well as a range of altitudes and

rainfall. In tropical areas, black wattles favours highland areas with altitudes of

1500 m - 2500 m and with an average rainfall of about 900 mm - 1600 mm per

year. These characteristics have promoted its extensive exploitation in the South

African commercial forestry industry (Sherry, 1971; J0ker, 2000).

1.2.3 Uses of black wattle

Historically, black wattle's commercial purpose was its high grade export-quality

tannin (Sherry, 1971). The highest concentration of tannin is localised in the bark,

and when dried, 35 % of the bark's dry weight is tannin (Beard, 1957). Black wattle

tannin is preferred for tanning leathers as it is fast absorbing and does not stain the

leather, whereas other tannins often leave a red colouration and residue (Heiberg­

lurgensen, 1967). With the exception of mangrove species, black wattle produces

more tannin per hectare than most other tanninferous plants. One ton of black wattle

bark contains enough tannin to tan 2 530 hides (Sherry, 1971)
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Currently black wattle trees are planted as much for their timber as for their bark

(Stubbings and Schbnau, 1983). Many new uses for its timber have gained

prominence, shifting timber production to more than 75 % of total South African

timber production, having at one stage only comprised about 50 %. The timber is of

high quality and is utilised for mining, burnt for fuel, charcoal, and used in

manufacturing paper (Table 1.2). It is also used in the making of parquet blocks and

hardboard. The cellulose is used for the production of rayon (DWAF, 1998). It is also

used for the production of adhesives and flocculants (Duke, 1981).

Black wattle timber has become a popular source of fibre for the pulp and paper

industry. The density and pulp yield of black wattle make it an attractive alternative

to other species such as Eucalyptus globule (Dunlop and MacLennan, 2002). It is

believed to have bleaching and mechanical pulp properties that are almost on par

with E. grandis (Nicholson, 1991). Furthermore, the mechanical pulp and bleach

properties are thought to be equivalent to Eucalyptus grandis whereas pulp yield

was found to be higher in black wattle (Muneri, 1997).

Table 1.2 Production of black wattle products (adapted from DWAF, 1998).

Product

Paper

Wood chips

Pulpwood

Firewood
Mining timber

Charcoal
Other by-products

Amount in Tonnes

416098

242561

123 104

81 692
42856
27778
21 926

Black wattle is a versatile species, which has been extensively utilized by the rural

community in South Africa. Farmers use black wattle mostly for firewood and

building material. Its ability to grow on poor soil also provides a crop for farmers

living in such regions and thus an additional income to these farmers. Black wattle

companion crop farming (agroforestry) is gaining popularity since it can be grown

with other crops such as maize and beans due to its soil enriching abilities and

coverage of foliage it provides (Dunlop and MacLennan, 2002).
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1.2.4 Black wattle tree improvement programmes

Market demands and breeding problems have very often directed the focus of black

wattle improvement programmes. Historically, black wattle improvement

programmes were devised to improve bark yields for the tannin content and to

breed for frost and disease resistance. This was due to the fact that black wattle

bark was the major product of the industry during the initial years of its

establishment in South Africa. Additionally, black wattle was found to be highly

susceptible to frost and fungal diseases (Sherry, 1971; Jarmain and L10yd Jones,

1982).

Today, the market demands of black wattle have shifted, and new breeding

problems have arisen thus directing current improvement programmes towards

addressing these issues. The black wattle market demands have diversified and

now especially include new uses of timber and timber products (Nicholson, 1991;

Muneri, 1997). Thus the focus of black wattle breeding programmes has expanded

to include the improvement of timber quantity and quality whilst still maintaining an

acceptable standard of bark yields (Dunlop and MacLennan, 2002). The

improvement programmes also include the identification of other commercially

useful Acacia species for progeny testing and hybridisation (Dunlop and

MacLennan, 2002). Furthermore, black wattle has been flagged as one of South

Africa's top invader species, the planting of which has raised many environmental

concerns (Richardson, 1998). Currently, a major focus of black wattle breeding

programmes is the introduction of an improved germplasm that would provide good

quality black wattle products without exacerbating the invasive problem (Dunlop and

MacLennan, 2002).

Previous research into improving germplasm started as an extensive study into the

reproductive mechanisms of black wattle. Researchers investigated every facet of

black wattle reproduction from pollination mechanisms and agents to seed

properties and cytogenetics (WRI, 1950; Dunlop and MacLennan, 2002). However,

perhaps the most noteworthy research at the time was in the area of seed

improvement and cytogenetics. Moffett and Nixon (1960) explored polyploidy as a



·10·

method to improve seed and reported the first colchicine-induced tetraploids in black

wattle. According to Blakesley et al., (2002) it is the only report of chromosome

doubling in the tribe Acacieae. Thus, cytology and induced tetraploids became key

areas of research in black wattle improvement programmes (WRI, 1949; WRI, 1950;

WRI, 1951; WRI, 1952).

Seed improvement is currently regarded as a critical aspect that requires ample

research in black wattle tree improvement programmes. This is principally due to the

prolific seeding ability which forms the crux of a serious black wattle invasion

problem. This aggressive colonising ability is largely due to the high frequency and

viability of black wattle seeds. Thus, various research projects are focussed in

finding effective ways of reducing seed viability and seed production. The production

of sterile or seedless black wattle varieties for distribution to the various farming

sectors would greatly reduce the invasive problem. Two approaches to produce

sterile seeds are being assessed at the ICFR; gamma irradiation of seeds and

seedlings and the production of triploid trees. The production of triploid trees

involves firstly, the production of artificial tetraploids which are then crossed with

diploids to produce sterile triploids. If triploid production is successful, the

distribution of sterile trees will rely upon the ability to clone individuals and to verify

the level of ploidy before distribution (Dunlop and MacLennan, 2002).

1.3 POLYPLOIDY

1.3.1 Introduction

Polyploidy is a mutational phenomenon whereby the number of chromosomes in a

cell increases (Stebbins, 1950). This increase is usually in multiples of the basic

chromosome number, which is a characteristic of the genus to which that cell

belongs and is typically because of some or other failure in the cell division cycle

(Stebbins, 1950; Lewis, 1979). Whilst polyploidy is a relatively rare occurrence in

animals (Vandel, 1938; Frankhauser, 1941), it is more common in the plant kingdom

(Grant, 1981) and is often the mechanism whereby new plants evolve (Lewis, 1979).
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Interest in polyploidy began in the early 1900s when some of the earliest natural

polyploidy findings were observed in angiosperms. Inconsistencies in the basic

chromosome number were first observed in various genera of Liliaceae (Jackson

and Hauber, 1983) and thereafter in several species of Chrysanthemum (Tahara,

1915). DeVries' Oenothera lamarickiana is perhaps the most comprehensively

documented example of a natural polyploid (Lutz, 1907; Gates, 1909). Winkler

(1916) first employed the term polyploidy to describe the occurrence of duplicated

chromosome sets that he found in Solanum nigrum. Subsequently, several

examples of both natural and cultivated polyploids were reported in various species,

thereby challenging what was known at that time about the constancy of

chromosomes numbers and the evolution of higher plants (Winge, 1917; Stebbins,

1950; Jackson and Hauber, 1983; Soltis and Soltis, 1995).

Whilst polyploidy is widely distributed amongst some groups in the plant kingdom, it

is often rare or absent in others (Federov, 1969; Lewis, 1979, Soltis et al., 2003).

Stebbins (1950) estimated that 30 - 35 % of angiosperm species were polyploid.

Masterson (1994) estimated that 47 - 70 % of all angiosperm have experienced

chromosome doubling at some stage of their evolutionary history, a figure that was

later supported by Wendel (2000). A large proportion of polyploid angiosperms are

found amongst the perennial herbs with the smallest concentration in the woody

angiosperms (Stebbins, 1938; Leitch and Bennetl, 1997). Some of the oldest known

plants such pteridophytes and bryophytes as well as some common grass species

have incredibly high levels of polyploidization (Manton, 1950; Burnham, 1962;

Grant, 1981; Kellogg, 2001; Levy and Feldman, 2002). On the other hand,

polyploidy is known to be rare or totally lacking in certain fungi and gymnosperm

species, (Grant, 1981). Fewer than 5 % of gymnosperm species such as sequoia,

juniper and conifers are polyploid whereas polyploidy is totally absent in cycads and

ginkgo species (Stebbins, 1950; Lewis, 1979).

In general, polyploidy results as a failure in cell division which may occur in either

somatic or gametic cells (White, 1942; Pierce, 2002). Generally the cell division

failure occurs when the chromosomes divide (karyokinesis) without the subsequent

cell division (cytokinesis). This is usually the case when the microtubules that
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polarise the chromosomes are defective in some way having one of three outcomes:

C-mitosis, endomitosis and endoreduplication (McDermott, 1975) (Figure 1.4).

Cell division failure in either somatic or gametic cells

Karyokinesis without follow-up cytokinesis

C-mitosis I Endomitosis I Endo-redupi ication

Polyploidization

Figure 1.4 Occurrences of polyploidization.

Somatic and gametic cells that undergo polyploidization need to be differentiated

from each other. Somatic cells usually have twice the basic chromosome number

(2x) and are referred to as diploid. These somatic diploid cells may fail to divide after

mitotic chromosome duplication thereby resulting in the cell having twice as many

chromosomes as before (4x) which is referred to as tetraploid (White, 1942). This

may also occur in gametic cells where a polyploid individual may result from the

fusion of two unreduced gametes. Hence it is important to distinguish whether

polyploidy arises from a somatic cell with duplicated chromosomes (2n) such as in

tetraploid black wattle leaf tissue where 2n =4x = 52 or whether it arises from

unreduced gametic chromosomes (n) such as tetraploid black wattle pollen where

n =4x =52 (Stebbins, 1950/; Beck et al., 2003a).

The origin of natural polyploids is less well understood (Jones, 1970; Stebbins,

1971, Lewis, 1979). The two generally accepted modes of polyploid origin are that

of somatic chromosome doubling and the fusion of unreduced (2n) gametes (Figure

1.5). (Harlan and de Wet, 1975; Vorsa and Bingham, 1979). Spontaneous

chromosome doubling in natural polyploids is a rare event (Lewis, 1979; McCoy,

1982) which may occur either through meristematic chromosome doubling as

reported in Primula kewensis (Digby, 1912; Newton and Pellow, 1929); or through

zygotic chromosome doubling which was documented in several hybrids of

Nicotiana (Clausen and Goodspeed, 1925; Clausen, 1941). The fusion of unreduced

/ In several texts the terminology regarding x and n is reversed (Elliott, 1958). For the purposes of

this dissertation, the format set out by Stebbins (1950) was followed.
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gametes, on the other hand, is a more common mode of polyploid-formation in

nature. Franke (1975) lists several examples of polyploidy originating by this mode.

Unreduced gametes occur either as a failure in karyokinesis or more commonly as a

failure in cytokinesis (Lewis, 1979).

Modes of formation of polyploidy

In somatic cells In gametic cells

Through Through Unreduced gamete Unreduced gamete

meristematic zygotic chromosome formation through formation through

chromosome doubling doubling cytokinesis karyokinesis

Figure 1.5 Origins of polyploidy

The agricultural significance of polyploidy has been of longstanding interest to plant

breeders. This interest arises from the associated physiological and morphological

changes exhibited by the polyploid plant such as enlarged fruits, leaves and flowers

(Darrow, 1952; Kehr, 1996;) and increased variation due to the presence of multiple

alleles, leading to hybrid vigour (Stebbins, 1950; Moore and Janick, 1983; Bonjean

and Angus; 2001). Polyploidy is also used in the production of sterile cultivars

(Darrow, 1952), and exploited in the fruit breeding industry to produce seedless

fruits such as watermelon, citrus, kiwi, bananas and pawpaw (Stebbins, 1950;

Pierce, 2002; McCuistion and Wehner, 2004).

1.3.2 Classification of polyploids

Several types of polyploidy exist. However, due to their cytogenetic complexity, the

classification of these types has been long debated (Stebbins, 1947; 1950; Elliott,

1958). The system of classification proposed by Stebbins (1947; 1950) is the most

widely accepted approach and was modified from Clausen et al. (1945). Figure 1.6

reveals that polyploidy is one facet of heteroploidy, where heteroploidy refers to any

deviation from the normal chromosome number in a cell, tissue or organism

(Jackson, 1971; 1976). Heteroploidy is subdivided into those cells that differ by

individual chromosomes or part thereof (aneuploidy) or those cells that differ by
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whole sets of chromosomes, which is referred to as euploidy and is of interest to this

study (Burnham, 1962). Euploidy is segregated according to the number of

chromosome sets that the cell contains (Stebbins, 1950). Haploidy, diploidy and

polyploidy contain one, two and more than two chromosome sets, respectively.

Polyploidy can be further divided into allopolyploidy and autopolyploidy, depending

on the source of their genomes. Allopolyploidy, occurs from the union of unreduced

gametes of two distantly related species and have dissimilar or non-homologous

chromosomes. Autopolyploidy occurs from the union of unreduced gametes of two

closely related species and have similar or homologous chromosomes. Auto- and

allopolyploidy represent two extremes of homology between which exist a series of

intermediate individuals with varying degrees of homology (homoeologous) and are

termed 'segmental allopolyploids' (Stebbins, 1947). Autopolyploidy, as classified by

Stebbins (1950), is of significance to this work (Figure 1.6).

Heteroploidy

(any change in normal chromosome number)

Euploidy Aneuploidy

(change in whole chromosome sets) (changes in single chromosomes or part thereof

Meroaneuploidy

Haploidy Diploidy
Polyploidy HoIaneuploidy (changes in parts

(2n = 3x. 4x, 5x ... ) (changes in whole chromosomes) of a single

chromosome)

n=x 2n = 2x Autopolyploidy I Allopolyploidy

Typical of Typical of
Segmental aJlopolyploidy

Monosomy Trisomy Nullosomy Centric fusion

gametic somatic

cells (n) cells (2n)
(intermediate)

Figure 1.6

Autopolyploids

Classification of polyploidy

An autopolyploid essentially has three or more identical copies of the original

parental genomes from the same species. The autopolyploid usually arises from

spontaneous doubling of chromosomes in a shoot (somatically) or from the union of
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unreduced gametes of closely related species (gametically). Autopolyploids are

considerably less complex than allopolyploids and are designated the notation

'AAAA' to illustrate the identical genomes. In contrast to allopolyploids,

autopolyploids have homologous or identical genomes that exhibit multivalent

chromosomal pairing and polysomic inheritance patterns. These duplications of

genomes may either occur spontaneously in nature or are induced artificially for

agricultural exploitation.

Natural autopolyploids were thought to be less common in nature than

allopolyploids. However, recent studies have shown that they are frequently

misclassified and are perhaps more common than initially estimated (Muntzing,

1956; Soltis and Soltis, 2000). The most frequently occurring type of autopolyploid is

the autotetraploids. Some of the earliest autopolyploid observations include

Liliceace (Strasburger 1910), Drosera (Rosenberg, 1909), bananas (Tischler, 1910),

Chrysanthemums (Tahara, 1915) and DeVries' much publicised tetraploid gigas

mutant, Oenothera lamarickiana (Lutz, 1907; Gates, 1909). Since then, several

natural autopolyploids were identified and interest in artificial autopolyploid induction

has grown considerably.

Autopolyploids can also be artificially induced. One of the earliest reports of

autopolyploidy induction was identified for mosses (Burnham, 1962). Perhaps the

most well documented study on initial autopolyploid induction in higher plants was

by Winkler (1916) when he produced tetraploid Solanum nigrum by the formation of

calluses. The discovery of colchicine now provides a means to rapidly and

effectively induce autopolyploidy. Today, several important crops are autopolyploid

such as banana, coffee and alfalfa (Elliott, 1958).

Autoploidyploids have several conspicuous characteristics such as larger organs,

increased production of certain enzymes; higher heterozygosity compared to

diploids and most importantly, decreased fertility. The increased sterility is often

exploited in the fruit breeding industries where the production of seedless fruits is

economically desirable. It is important to note that these characteristics, particularly

sterility, depend largely on the genotype of the diploid parents as well as the species

of the plant.
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Autopolyploids mayor may not be fertile due to possible chromosome pairing

difficulties during meiosis. Autopolyploids have multiple occurrences of a set of

chromosomes; an autotetraploid (2n = 4x) has four copies of each homologous

chromosome and an autotriploid (2n =3x) has three copies. These multiple copies

tend to form multivalents during meiosis, resulting in unequal segregation of

chromosomes during anaphase 1 and the formation of unbalanced gametes.

Unbalanced gametes are often not viable, thereby causing semi-sterility for the

autopolyploid. Autotriploids may form trivalents, bivalents and monovalents during

meiosis. Chromosome segregation in the following anaphase 1 will result uneven

and incomplete chromosome distribution to the poles (aneuploidy) nearly always

resulting in an imbalance of the chromosomes composition leading to lethality and

thus extreme semi-sterility or even sterility. Autopolyploids having an odd number of

chromosomes sets tend to be more sterile than those having an even number of

chromosomes sets. The latter often form bivalents or tetravalents that display

balanced segregation at anaphase 1. The poles thereby receive a diploid number of

chromosomes (2x), resulting in high fertility (Stebbins, 1950).

Allopolyploids

Allopolyploidy refers to the hybridization of two or more genomes from different

species and is designated 'AABB' to illustrate the different parental genomes.

Stebbins (1950) defines allopolyploidy as 'the hybridization between two or more

distantly related species, of which the chromosomes are so different that they are

unable to pair in the diploid hybrid or form only a small number of loosely associated

bivalents.' The allopolyploid usually arises from spontaneous doubling of

chromosomes in a shoot (somatically) or from the union of unreduced gametes of

different species (gametically). In practice, natural and cultivated allopolyploids are

characterised by their non-homologous genomes, exhibition of bivalent pairing and

disomic inheritance patterns, high fertility and hybrid vigour.

Naturally occurring allopolyploids are common and the most stable form being

allotetraploid. Allopolyploidy may occur between two different species within the

same genera for example, Digby's (1912) fertile Primula kewensis from P.
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verticil/ata X floribunda; or between two different species between different genera

the classic example being Karpechenko's (1927) sterile Raphanobrassica which

was as a result of crossing a cabbage (Brassica oleracea) with a radish (Raphanus

sativus). In nature, the production of allopolyploids is often the mechanism whereby

new species evolve for example Galeopsis tetrahit (MOntzing,1930), Rubus

maximus (Rozanova, 1934) and Nicotiana rustica (Goodspeed, 1934).

Scientists have sought to emulate natural speciation by creating new species under

human observation. Clausen and Goodspeed (1925) were the first to synthesise a

new partially fertile species by crossing Nicotiana glutinosa x N. tabacum var

purpurea and called it N. digluta. It is interesting to note that whilst natural

allopolyploids tend to be stable phenotypically and genotypically, synthetic

allopolyploids are often unstable and tend to be sterile. This suggests that natural

allopolyploids have evolved some mechanism whereby they are able to stabilize the

effects of their multiple chromosomes sets (Henikoff and Comai, 1998; Comai,

2000; Comai et al., 2000)

Allopolyploids have some striking characteristics that make them of prime interest to

plant breeders. These include increased fertility and their ability to restore fertility to

sterile diploid hybrids and increased heterozygosity. They are usually fertile because

the parental genotypes arise from distinctly different genomes allowing for

successful bivalent formations and pairing associations during meiosis and thus

balanced, viable gametes (Stebbins, 1950). Furthermore, these different genomes

usually introduce large degrees of heterozygosity, which is believed to be the crucial

factor in growth, performance and adaptability, that is, in hybrid vigour (heterosis).

True allopolyploids are isolated from and, as a rule, morphologically discontinuous

from their close relatives. Agriculturally important allopolyploids include tobacco,

Nicotiana tabacum, cotton, Gossypium hirsutum and strawberry (Fragaria

grandifJora) (Stebbins, 1950; Elliot, 1958)

Segmental aJlopolyploids

Stebbins (1947) defines segmental allopolyploids as 'a polyploid containing two

pairs of genomes which have a considerable number of homologous chromosomal
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segments or even whole chromosomes in common, but differ from each other in

respect to a sufficiently large number of genes or chromosome segments, so that

their different genomes produce sterility when present together at the diploid leveL'

Natural segmental allopolyploids are difficult to identify without appropriate

hybridization experiments and many have been erroneously classified as

autopolyploids for example Galax aphylla (Baldwin, 1941), Sedum tematum

(Baldwin, 1942) and Fritillaria camschatceusis (Matsuura, 1935). The fertility of

segmental allopolyploids varies and the occurrence of this type of polyploidy is

almost exclusively confined to segmental allotriploid or segmental allotetraploids.

Stebbins (1950) has listed several artificially produced examples of these

allopolyploids, many of which were so sterile that they would not have survived

naturally, for example Crepis foetida-rubra and Layia pentachaeta-platylossa. On

the other hand, Tradescantia canaliculata-humilis and Nicotiana glauca-Iangsdorffii

have been regarded as highly fertile.

1.3.3 Effects of polyploidy

Increased gene dosage often has several dramatic consequences that affect the

biological functioning of both natural and cultivated polyploids. These consequences

include changes in heterozygosity, cell size and sterility (Stebbins, 1950) (Figure

1.7). Many morphological and physiological implications have arisen as a result of

these consequences, several of which have been of longstanding interest to plant

breeders (Lewis, 1979). The consequence and implications of polyploidy were

thoroughly examined in artificially induced polyploid species (Blakeslee, 1939;

Straub, 1940; Randolph, 1941; Larsen, 1943 and Noggle, 1946). However, the only

biological generalisation that can be made about these consequences is that they

are greatly dependant on the genotype of the original diploid parents as well as the

species of the plant and type of polyploid (Stebbins, 1950).

Polyploids display a range of specific characteristics and are described as follows

(Stebbins, 1950; Elliott, 1958; Thompson and Lumaret, 1992):
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• Polyploids display a higher level of heterozygosity than diploids due to the

presence of multiple alleles. This enhanced vigour and fertility is particularly

true in the case of allopolyploids with their dissimilar genomes, whereas

allopolyploid having similar genomes display a reduced vigour and a more

inbred-type effect.

• Increased cell size to accommodate the extra chromosomes which eventually

leads to enlargement of certain organs such as fruits and leaves. This

increase in size is not proportional to ploidy level but rather passes through

an optimum which is usually tetraploidy. Higher levels of ploidy tend to be

marked with stunted growth and extensive chromosomal abnormalities.

• Increased water content of the cell due to the cell's increased size. This often

leads to watery fruit and increased frost susceptibility.

• Increased frequency of certain organelles for maintaining efficiency of the

enlarged cell. These organelles include stomatal chloroplasts and nucleoli.

• Slower growth rates are observed particularly in very high levels of ploidy

since more energy is expended in the maintenance of larger fruits and

flowers. This often leads to decreased metabolism and later flowering which

can be to the detriment of the plant's reproduction if it depends on seasonal

pollination agents such as insects and birds.

• Increased production of certain biochemicals as well as the production of new

hybrid enzymes commonly observed in allopolyploids (enzyme multiplicity).

• Reduced fertility due to multivalent pairing associations and abnormal

segregation at meiosis which leads to unbalanced gametes and ultimately

less viable seeds. This is a characteristic of autopolyploids and commonly

leads to a reduction in the number of viable seeds and pollen.

• Polyploids often have evolved alternative reproduction mechanisms such as

the ability to undergo diploidization of the genome, to reproduce asexually as

well as the ability to be more self-fertile than diploids. This is largely due to

their reduced fertility and the fact that they are in constant competition over

habitat with their diploid ancestors.

• Polyploids can hybridise with each other but usually not with their diploid

parent-types which immediately sets up a 'reproductive barrier' between

diploid parent-types, and polyploid progeny-types. This barrier creates a

driving force towards speciation to ensure survival of the polyploid.
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1.3.4 Agricultural significance of polyploidy

Plant breeders have shown considerable interest in the consequences and

implications of polyploidy for crop improvement (Figure 1.7). Polyploidy has lead to

the improvement of several agriculturally useful crops such as wheat, oats, potatoes

and tomatoes (Pierce, 2002).

Hybrid vigour

Heterozygosity

Enzyme

multiplicity

Stress and
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Figure 1.7 Consequences of polyploidy.

Polyploids maintain a higher level of heterozygosity than normal diploids. This

increased heterozygosity allows polyploids to maintain a certain amount of adaptive

and evolutionary advantage over their diploid progenitors such as enhanced vigour

and adaptability, improved fertility, enzyme multiplicity as well as improved stress

and pest resistance (Hagerup, 1932; Tischler, 1934; Manton, 1934; Roose and

Gottlieb, 1976; Soltis and Soltis, 1993). It is for this increased heterozygosity and

vigorous progeny that plant breeders often exploit polyploidization in plant

improvement programmes.

Variation in cell size is another agriculturally exploitable consequence of

polyploidization (Stebbins, 1950). Cellular enlargements often lead to eventual

organ enlargements such as fruits, flowers and leaves, which is beneficial to certain

plant breeding industries. For instance, larger cells often incorporate more water

which tends to make fruits less intense in taste (Schlosser, 1944; Darrow, 1952)

whereas this is of particular interest to the ornamental flower industry where the

larger, fleshy petals have a longer shelf-life as reported in snapdragons, Antirrhinum
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majus (Emsweller and Ruttle, 1941; Burnham, 1962; Levin, 1983; Kehr, 1996).

Increase in cell size causes a species-specific increase in the frequency and

dimensions of some organelles, namely stomatal chloroplasts which are often used

as an indicator of ploidy level (Mochizuki and Sueoka, 1955). Certain polyploid

crops produce higher concentrations of desirable chemicals such as alkaloids for

drug development, valuable proteins, vitamins, pigments, cellulose, auxins and

carbohydrates (Ruttle and Nebel, 1939; Burnham, 1962).

The increased sterility in polyploids is of major agricultural importance in the fruit

and forestry industries. Fruit breeders utilise triploidy for the production of seedless

fruits that are also larger than diploids such as bananas, watermelon, certain

citruses and seedless grapes (see autopolyploidy; section 1.3.2). Sterile cultivars

are also utilised in the forestry industry where the protection of indigenous species

against invasive species is paramount. Development of sterile forms of important

nursery crops is an ideal method of addressing this problem. In doing so, plants can

be grown and used for landscaping while virtually eliminating any possibility that

these plants could sexually reproduce and become invasive. The induction of

polyploidy is perhaps one of the most rapid and cost effective approaches of

inducing sterility. With the exception of reproductive biology, particularly meiosis,

these plants function normally in most cases.

Polyploidy can also be used to enhance fertility in certain sterile diploid hybrids

(Figure 1.8). For example in Triticale which results from the cross of wheat (Triticum

aestivum) and rye (Secale cereale) (MOntzing, 1939). This type of crossing is

ultimately dependant on the fertility of the diploid parents and may not always result

in fertile offspring for example in millet (Setaria) hybrids (Li et al., 1945).

AB ~ AABB

Sterile diploid hybrid genotype Polyploidization Fertile allotetraploid genotype

Figure 1.8 Schematic representation of fertility restoration through allopolyploidization.

Polyploids have evolved with outstanding colonising abilities as they are in constant

competition over shared habitat with their diploid ancestors (Lewis, 1979). These

abilities include high seed production and offspring adaptability; the ability to
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undergo genome diploidization, asexual reproduction and they are more self-fertile

than diploids (Gillie, 1912; Nygren, 1967; Dudley and Alexander, 1969; Pojar, 1973;

deWet and Stalker, 1974; Dobzhansky et al., 1977). These abilities cater for their

minority disadvantages and polyploidy is often utilised in plant improvement

programmes in areas that have stressful environments and with species that have

low fertilization frequencies. (Briggs and Waiters, 1997).

1.3.5 Induction of polyploidy

The doubling of chromosomes in cells is a common occurrence in both natural and

cultivated species (Blakeslee and Avery, 1937). Polyploidy, generally occurs as a

result of some failure in the cell division cycle. Several factors may induce cell

division failure in natural plants (Figure 1.9). These factors are often studied and

simulated under artificial conditions for the induction and implementation of

polyploidy in plant improvement programmes (Figure 1.9). Factors that induce

polyploidy may be classified as either environmental or genetic in nature.

Environmental factors that induce polyploidy in nature include temperature shock,

dehydration, UV radiation as well as certain mechanical injury caused by pests and

bacteria. Genetic factors that induce natural polyploids may include the rare

presence of a recessive gene that disrupts cell division or the even rarer presence

of twinning.

Natural polyploids

Sudden changes in the environment have often been associated with the meiotic

irregularities leading to the formation of natural polyploids. Changes in temperature,

moisture and UV radiation due to ozone depletion have been correlated with diploid

pollen formation, microtubule irregularities and chromosome segregation failures.

Many natural polyploids are found in regions of extreme temperatures such as

Tradescantia and Solanum phureja (Sax, 1937; McHale, 1983). Furthermore,

polyploids tend to be more frequent in some seasons than in others (Blakeslee and

Avery, 1937). Dehydration and an increase in environmental UV radiation have

been associated with gross physiological disturbances in the cells resulting in



·23·

disruptions of normal cell division cycles (Giles, 1939; Darlington and La Cour,

1960).

Other environmental agents of natural polyploid induction such as mechanical injury

due to pest infections have been observed (Sax, 1937). Many researchers have

reported polyploid cells in galls that formed as a result of infections of bacteria,

nematodes or chemically-induced tumours (Kostoff, 1930; Kostoff and Kendall,

1933; Burnham, 1962; Winge, 1927). Wipf and Cooper (1938) reported a common

occurrence of tetraploid nodules in red clover as a result of bacterial infections.

These pests disrupt the synchronization of normal nuclear and cellular division by

inhibiting spindle formations or inhibiting normal segregation of chromosomes.

Genetic agents of polyploid induction are relatively rare and species-specific.

Genetic agents that influence the formation of unreduced gametes such as genetic

control by recessive genes, twinning and gene silencing (Pikaard, 2001) is a lesser

understood topic and observed in only a few species (Mok and Peloquin, 1975

Veilleux et al., 1982; McCoy, 1982; Qu and Vorsa, 1999). Some recessive genes

exist that affect the harmonious functioning of cell division by causing asynapsis of

chromosomes at meiosis resulting in the formation of polyploid gametes (Beadle,

1933). These have been observed in only a handful of species such as Datura

cotton, wheat and corn (Burnham, 1962). The frequency and presence of twinning is

another genetic agent of polyploidy induction and is often influenced by temperature

and by the presence of certain genes (Burnham, 1962). Triploid and tetraploid twin

seedlings are rare and usually only found in colder seasons (Burnham, 1962).
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Figure 1.9 Methods of inducing polyploidy.
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Artificia/ po/yp/oids

It was often noticed that natural polyploid plants were larger and more vigorous

than diploid plants of the same species. As a result, plant breeders became more

interested in the induction of polyploidy for the utilisation in plant improvement

programmes (Elliott, 1958). However, several natural methods of induction were

explored with little success. The induction of polyploidy in cultivated crops using

the methods known at the time proved to be unpredictable and unstable or

produced polyploids in too low a frequency (Elliott, 1958; Burnham, 1962).

Methods of artificial induction of polyploidy may be classified in two ways, those

methods that cause disruption in cell division cycles and those that allow for actual

manipulations of the cell and its contents. Methods of polyploid induction that

occur due to a disruption in cell division include temperature shock, mechanical

damage, irradiation and microtubule poisons, the latter being the most popular and

effective method. Cellular manipulation methods include various tissue culture

treatments and protoplast fusions. Often these methods are not used in isolation

but rather in combination for optimal effect in a particular species.

Taking their lead from nature, Blakeslee and Belling (1924) explored temperature

shock as a method of polyploid induction in plants. They found tetraploid branches

in Datura as a result of cold treatments; however this treatment delivered

inconsistent results. Randolph (1932) succeeded in obtaining polyploid cells by

using electrical heat pads in early maize cells. High temperatures also produced

polyploidy in barley, rye and rice (Burnham, 1962) and several others (Dorsey,

1936; Atwood, 1936; Peto, 1936; Sax, 1936; Lutkov, 1937). Specialized heating

techniques were later described by Brink (1936) and Peto, (1936). However,

temperature shock requires careful control of the experimental conditions and is

not recommended as the primary method of polyploid induction (Blakeslee and

Avery, 1937).

The induction of polyploidy by mechanical damage is perhaps a lesser-understood

method. Kostoff (1935) attempted to disrupt cell division cycles in Nicotiana by

centrifugation. He reported changes in chromosome numbers although they were
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inconsistent in most cases. Attempts to apply the same technique in other species,

such as barley and rye, were unsuccessful (Burnham, 1962).

Various types of radiation disrupt cell division cycles and may be utilised in the

production of polyploid cells. These forms of radiation may be classified as ionising

or non-ionising (Sharma and Sharma, 1965). Ionising radiation is commonly used

in polyploidization and includes X-rays, gamma-rays, alpha-rays, beta-rays and

fast neutrons whilst non-ionising radiation include UV-rays and IR-rays (Darlington

and La Cour, 1960). Overall effects of radiation usage have been extensively

reviewed by Gustafsson (1954). Ultimately, the type of radiation, treatment

methods and dosage of radiation depend on the species and type of plant material

used (Darlington and La Cour, 1960). This method often requires specialised

equipment and radiation sources. Moreover, the extent of chromosomal damage

cannot be controlled or predicted (Gustafsson, 1960). Radiation is attempted for

induction of polyploidy and sterility in some species such as in Datura (Blakeslee

and Avery, 1937) and in black wattle (Dunlop and McLennan, 2002).

Microtubule poisons have been perhaps the most significant finding in the field of

artificial polyploidy induction. Nemec's classical polyploidization experiments in

1904 with chemicals such as chloral hydrate and other narcotics lead to the

identification of several other microtubule-disrupting chemicals including oryzalin,

amiprophos-methyl, N20 gas and most significantly, colchicine (Blakeslee and

Avery, 1937; Taylor et al., 1976; van Tuyl et al., 1992; Bouvier et al., 1994)

Induced polyploidy from colchicine treatments are very reproducible and occur in

high frequencies (Blakeslee and Avery, 1937).

Colchicine is sourced from meadow saffron (Colchicum autumnale) and is a

microtubule poison. The main biological action of colchicine is its ability to disrupt

or inhibit! microtubule or spindle fibre formations, which are the key structures

responsible for the polarisation of doubled chromosomes in the dividing cell.

Colchicine causes the doubled chromosomes to arrest at the metaphase plate

instead of being moved towards the poles of the existing cell to form a new cell

Y The terms 'disruption' and 'inhibition' can be used interchangeably in this context.
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(anaphase). Colchicine is remarkable in that it is strongly water-soluble and is very

reactive even in small quantities (Sharma and Sharma, 1965). It is suggested that

colchicine catalyses a reaction that brings about a change in the colloidal state of

the cytoplasm. This altered cytoplasm is then so fluid that it disturbs the formation

of spindle fibres (Sharma and Sharma, 1965). Another interesting property of

colchicine is its ability to fluoresce, thereby allowing researchers to trace its

movement through the plant (Burnham, 1962).

Several features have become evident since the use of colchicine was initiated.

Colchicine appears to affect only rapidly dividing cells making its utilisation

effective only in meristematic tissue such as root tips. The optimal dosage and

length of treatment needs to be identified for a particular species since not all cells

divide at the same time or at the same rate. The method of application also varies

depending on the type of tissue available and is usually determined by trial and

error. The chemical needs to be fully removed from the cells before fixing because

it inhibits staining and thus visibility. Woody plants such as black wattle require

stronger solutions over longer time periods for effective polyploidization.

Successful polyploidy has been induced in plants such as Carica papaya (Hofmeyr

and van Elden, 1942), Sequoia gigantea (Jensen and Levan, 1941) and apples

(Dermen, 1952).

The production of polyploids via the tissue culture technique allows for the

cultivation of polyploid cells in vitro in natural or as close to natural media as

possible (Sharma and Sharma, 1965). Polyploid cells can be produced from

various types of cell cultures such as callus-formations that undergo somaclonal

variation (Winkler, 1916); pollen cultures (Chen, 1985); endosperm cultures which

are already polyploid (Wang and Chang, 1978) as well as from protoplast cultures

(Vardi, 1981; 1977). However, this procedure is technically difficult with varying

levels of success, particularly since plants have cell walls and this cannot be

exactly reproduced in vitro (Sharma and Sharma, 1965). Moreover, continued

investigations have been conducted to refine culture media and to broaden the

range of species and plant material that can be used to yield successful polyploids

by this technique (Hidaka et al., 1981)
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Protoplast fusion is perhaps the more intriguing alternative to tissue culture. The

technology involves the extraction of whole protoplasts and subsequent cellular

fusion. This method has been used to produce several polyploid plants such as

Citrus and related genera (Bravo and Evans, 1985; Grosser, 1986; Galun and

Vardi, 1986). Typically, protoplasts are isolated from embryogenic tissue by the

enzymatic breakdown of the cell wall. After protoplast isolation, cell fusion is

induced by electric stimulation or by treating cells with polyethyleneglycol (PEG)

and calcium (Grosser and Gmitter, 1990). Protoplast fusion has not gained much

prominence because it is technologically demanding and requires skilled

personnel. Furthermore, it is not guaranteed that the protoplasts of hybrid cells will

combine once the cell has reformed, instead they could remain as two distinct

protoplasts (Kao et al., 1974). Several problems have arisen from the use of

protoplast culture thereby yielding inconsistent results, many of which are not

completely understood (Jones et al., 1989; Peschke and Phillips, 1992; Burza and

Malepszy, 1995)

1.3.6 Identification of polyploidy

The success of polyploidy in plant improvement programmes hinges on the fast

and reliable techniques developed for the verification of ploidy levels. Historically,

ploidy levels were identified by directly counting the number of chromosomes in

the plant by slide preparations (Darlington and La Cour, 1960). Whilst this

technique is very effective in some species, it is impractical in others. Several

alternative techniques are being developed for the rapid discernment of ploidy

levels in plant improvement programmes. Ultimately the breeder has to choose the

appropriate ploidy detection technique that is best suited to the project concerned,

based on the reason for ploidy quantification as well as on certain project

limitations. These limitations include type and abundance of available material, the

original basic number of the species used, the level of accuracy required, the

amount of time available, cost factors, levels of expertise required and available

equipment (Darlington and La Cour, 1960; Sharma and Sharma, 1965). The
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technique of choice usually requires a degree of optimisation depending on the

species and samples used in a particular project.

The techniques of quantification of ploidy level are numerous and are constantly

evolving. For the purposes of this dissertation, detection techniques have been

grouped into direct- , intermediate and indirect methods. For example, a direct

method of ploidy quantification involves the counting of actual chromosomes using

the metaphase smear technique whereas an indirect method infers the level of

ploidy by counting some other visible ploidy marker such as the chloroplasts in the

stomatal chloroplast technique. An intermediate method would imply the

quantification of a more pronounced chromosome-related structure such as the

nucleoli by the silver-staining technique (Table 1.3).



Method

Table 1.3

Principle

Summary of ploidy identification methods

Process Technology Advantages

·30·

Disadvantages

Direct Actual counting of
the chromosomes

• Obtain rapidly dividing
cells

• Fix cells in metaphase
• Stain cells
• View cells

Slide
preparations

Block
preparations

Metaphase smear preparation1

Paraffin preparation 1

• 2 days preparation time
• cheap
• reliable
• suitable for low levels of

ploidy
• directly assesses ploidy
• can tell the type of

ploidy

• Good for very small
organs

• Excellent visualisation
• Sample does not have

to be living

• use of hazardous chemicals eg
colchicine

• not suitable for high levels of ploidy
typical of plants

• cell walls digestion required
• availability of rapidly dividing cells
• not suitable for short, fat

chromosomes eg in trees

• time consuming
• laborious
• expensive equipment required
• hazardous chemicals

Intermediate Quantification of
DNA content and
some chromosome
related structure

• Obtain living cells
• Monodisperse cells
• Stain
• Pass through laser

Chromosome-related Nucleoli staining1

structure
quantification

• Clearly visible structures
• Relatively quick.

• the number of nucleoli is species­
specific.

• Specialised chemicals and
techniques required.

Indirect Establishment of a
relationship
between some
morphological
characteristic and
ploidy level

• Identify a stable
characteristic

• Quantify and compare
with different ploidy
levels of the same
species

DNA quantification

Macromorphological
markers

Micromorphological
markers

Flow cytometry"

Characterising various aspects of leaf, flower
and fruit physiologl
• size

• colour
• shape
• trichome frequency

Measuring pollen size and germpore
frequency3

Measuring stomatal guard cell5

• length
• frequency

Measuring guard cell chloroplasts6

• frequency
• size
• arrangement

Measuring chlorophyll content4

• Fast
• Material does not have

to be fixed
• Reliable

• Fast and reliable once
tested for that species

• Low technical expertise
required

• Low cost

• Rapid
• Reliable
• Low cost
• Low technical expertise

required
• Does not require

expensive equipment
• Useful for screening

large populations

• Requires expensive equipment
• Requires technical expertise
• Quantifies DNA. Increased DNA

may not always be due to polyploidy

• Technique needs to be tested for a
particular species

• Samples may not always be
available

• Not actually quantifying number of
chromosomes

• Cannot tell the type of ploidy

• Material may be seasonal such as
pollen.

• May be influenced by environmental
factors such as light and moisture.

• Is a species-specific tool therefore
the tool needs to be tested for a
particular species first.

'Darlington and La Cour, 1960; 2Shapiro, 2003 3Evans, 1955; 4Warner and Edwards, 1993; 5 Beck et al.,2000a; bBeck, Fossey and Mathura, 2003b.
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Direct identification methods

Direct methods of ploidy identification involve the manual calculation of

chromosomes in a particular sample and comparing this number to the basic

number of chromosomes for that species. This is typically achieved by two distinct

techniques; metaphase smears and paraffin wax embedding (Darlington and La

Cour, 1960) (Table 1.3). Both these techniques share the same methodology but

have distinctly different preparations. Several variations of these techniques exist

depending on the type of material available (for example living or non-living

material) and have been well-documented by Darlington and La Cour (1960).

Both metaphase smears and paraffin wax embedding techniques follow the same

methodology (Darlington and La Cour, 1960). They both require samples to be

fixed, stained and mounted before viewing and quantifying the chromosomes in

these samples. Metaphase smears are relatively simple to perform with a

reasonable level of accuracy. Rapidly dividing cells such as root tip cells are fixed

with acetic acid and a microtubule poison such as colchicine (Beek, 1955). Cells

are then stained with DNA-specific stains such as Feulgen stain or fluorescent

stains such as Hoechst stain (Sharma and Sharma, 1965; Van't Hof, 1999). These

cells are then mounted on a slide and viewed with a microscope (Darlington and La

Cour, 1960). Paraffin wax embedding on the other hand requires the cells to

undergo a series of preparatory steps such as stepwise dehydration, chemical

fixing (osmium tetroxide) and subsequent embedding into wax before sectioning the

sample using a microtome. These sections are then stained and mounted onto a

grid, and finally viewed with an electron microscope (Rawlins and Takahashi, 1947;

Foster and Gifford, 1947).

Metaphase smears and paraffin wax preparations have several advantages and

disadvantages. Metaphase smears requires a relatively low level of skill as

compared to paraffin wax embedding which are considerably more specialised

particularly in terms of sectioning (Darlington and La Cour, 1960). The paraffin wax

embedding technique requires expensive equipment such as electron microscopes

and microtomes. Whilst metaphase smears require anything from a few hours to

two days to prepare cells, paraffin preparation takes at least a week (Darlington and
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La Cour, 1960). Both utilise hazardous chemicals such as colchicine and osmium

tetroxide. However, once a sample has been fixed in the paraffin preparation, it has

a longer shelf life than metaphase smears that deteriorate rapidly (Serra, 1947).

Paraffin wax embedding is suitable for obtaining cells, either living or non-living,

from small organs and for good quality visualisations with electron microscopy.

Metaphase smears are suitable for rapid analysis of living cells where merely the

level of ploidy is required (Sharma and Sharma, 1965). Visibility may easily be

retarded in both techniques, depending on the staining technique that is employed.

Direct methods of quantifying ploidy level are very effective when utilised

appropriately. The determination of actual chromosome numbers of a sample is

more reliable and less time consuming than having to infer the level of ploidy by a

phenotypic relationship. However, direct methods are not always practical and their

utilisation requires some knowledge of the sample's cytogenetics. Forestry

cytogenetics reveals that tree samples typically have high levels of ploidy with very

small chromosomes, making good visibility and accurate chromosome

quantification nearly impossible (Lesin, 1954). This difficulty was encountered in

black wattle (WRI, 1950). Moreover, Li (1954) suggested that the high tannin

content of trees such as black wattle may affect cytological handling and visibility.

Furthermore, cell wall residues reduce visibility causing erroneous results (Lesins,

1954). The techniques mentioned here usually require actively dividing cells such

as root tips, which are difficult to obtain from a fully grown tree. These cells need to

be fixed at a certain phase in the cell cycle for maximum visibility and pinpointing

the occurrence of this phase can depend on any number of factors (Sharma and

Sharma, 1965). Where non-living cells are utilised, significant sample preparation

time is required and screening a large number of progeny becomes tedious (Santen

and Casler, 1986). Ample consideration should be given to each of these factors

since they could make the utilisation of direct chromosome quantification

techniques time-consuming and costly.

Intermediate identification methods

Intermediate methods of ploidy identification involve the quantification of some

distinct chromosome-related structure as opposed to the actual chromosomes in
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direct methods or a morphological marker not related to the chromosomes in

indirect methods. In principle, there exists a correlation between the quantified

chromosome-related structures including the amount of DNA, with the ploidy level

for a particular species (Price, et al., 1973; Vilhar et al., 2002). The quantification of

nucleoli by the silver-staining technique (Miller and Beatty, 1969) and the DNA

quantification by the flow cytometry technique (Melamed et al., 1990) are commonly

used (Table 1.3). Both these techniques share the same methodology but are

separate in terms of preparations. Several variations of these techniques exist, and

have been extensively documented by Popescu et al., (2000) and Shapiro (2003).

Both nucleoli silver-staining and flow cytometry share the same basic methodology.

That is, if there are more chromosomes, as is the case with polyploidy, there should

be more chromosome-related structures and DNA. A nucleolus (pI. nucleoli) is a

ribosomal RNA-containing organelle found within the nucleus and produced by the

nucleolar organiser region of the chromosomes (Darlington and La Cour, 1960;

Vilhar et al., 2002). These nucleoli may be quantified by the silver-staining method

(Harrell and Heukelem, 1998). The amount of DNA may be quantified using flow

cytometry which is swiftly becoming a popular ploidy diagnostic tool with several

species (Carr and Shearer, 1998; Johnson et al., 1998; Brummer et al., 1999;

Voglmayr, 2000; Collier, 2000; Bonos et al., 2002; Wilhelm et al., 2003). This

technique is rapid and can quantify the amount of DNA in each stained cell of the

sample within a few seconds by measuring the optical fluorescence intensities at

several wavelengths (Shapiro, 2003). Perhaps the primary disadvantage of this

technique is the expense and technical expertise associated with the sophisticated

equipment, such as laser optics and electronic detectors. Moreover, cells must be

mono-dispersed in suspension since individual cells are required to pass through

the laser during a measurement.

The validity of intermediate methods depends on the existence of an accurate and

reliable relationship between chromosome-related structures and level of ploidy.

Whilst the ploidy level may be intuitively related to the amount of DNA, the reverse

may not always be valid since an increase in DNA does not always imply polyploidy

(McClintock, 1934; Poggio et al., 1988; Dolezel et al., 1998). Furthermore, Whilst

correlations exist for this relationship in some species, these techniques still require
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testing for applicability in other species before being put into practise with

confidence (Harrell and Heukelem, 1998).

Indirect identification methods

Polyploidy is often associated with various physiological and biochemical changes

that manifest on the polyploid plant, many of which could be used as morphological

markers for the indirect identification of ploidy level (Warner and Edwards, 1993).

The underlying methodology is that the chosen marker is quantified by various

preparations suitable to the sample and then correlated with the level of ploidy for

that sample in order to ascertain any possible relationship. Morphological markers

in polyploids are numerous, so for the purposes of this dissertation they may be

classified into two distinct groups; macromorphological markers that are large

enough to see with the naked eye such as fruits and leaves; and

micromorphological markers that are less visible to the naked-eye such as stomatal

guard cells (Vilhar et al., 2002) (Table 1.3).

Macromorphological markers such as leaves, fruits and flowers are sometimes

utilised in the identification of ploidy level (Hitchcock, 1971). However, in many

instances, these traits are found to be variable in frequency and size and cannot be

utilised to definitively discern ploidy levels (Bonos, et al., 2002).

Micromorphological markers such as pollen, stomatal guard cells, stomatal

chloroplasts as well as certain pigments such as chlorophyll are utilised in ploidy

identification. The determination of pollen size and pollen germpore frequency is

often correlated to ploidy level and involves the collection, staining and

quantification of pollen size and germpores using a microscope (Evans, 1954;

Vilhar et al., 2002). Pollen size and germpores tend to increase with an increase in

ploidy level although this relationship is species-specific (Blakeslee and Avery,

1937; Evans, 1954; Gould, 1957). Whilst this is a rapid technique, it depends upon

the availability of pollen and can therefore only be utilised seasonally.

The frequency and dimensions of stomatal guard cells have often been used as

morphological markers for identifying ploidy level in many plant species (Sax and
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Sax, 1937; Mishkin and Rasmussen, 1970; Sapra et al., 1975; Mishra, 1997).

Stomatal guard cells are stained and viewed, similar to that of pollen quantification

techniques (Evans, 1954). The length is measured using a micrometer eyepiece

attached to the microscope (Evans, 1954). Typically stomatal guard cell dimensions

increase with an increase in ploidy level whilst the frequency is found to decrease

per unit leaf area (Mishra, 1997). This was found to be particularly true in the Coffea

genus where different levels of ploidy were assessed and revealed the same trend

(Franco, 1939; Mishra et al., 1991). This trend is also present in black wattle where

a positive correlation was discerned between stomatal guard cell length and ploidy

level. At the same time an inverse relationship was found between stomatal guard

cell frequency and ploidy level (Beck et al., 2003a)

The quantification of the number and frequency of stomatal guard cells is a

relatively rapid procedure and may be executed with ease. Certain lesser­

understood hereditary and environmental factors may exist that could affect results

such as the effect of neighbouring cells and growth conditions (Fernandez and

Muzica, 1973). These factors need to be considered and compensated for when

optimising this procedure for a particular species (Mishka, 1997). This technique

has been successfully utilized in discerning ploidy levels in species such as alfalfa,

Medicago sativa (Bingham, 1968), orchard grass, Dactylis (Santen and Casler,

1986), various species of rye grass (Speckman et al., 1965), brome grass Bromus

inermis (Tan and Dun, 1973) and most recently, and in this work, in black wattle,

Acacia mearnsii (Beck et al., 2003a)

Stomatal chloroplast frequency as a ploidy discerning tool has been of scientific

interest since the beginning of the last century (Sakisaka, 1929; Mochizuki and

Sueoka, 1955). Chloroplasts in stomatal guard cells are comparatively easy to

study in epidermal tissue of plants. The technique involves stripping the lower

epidermis of young leaves, staining the epidermis and then viewing the stained

sample with an optical microscope (Chaudhari and Barrow, 1975). Young leaves

are preferred since they are more supple and easier to handle.

The frequency of stomatal chloroplasts tends to change with a change in the

number of chromosome sets present in a particular species. In 1930, Hamada and
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Baba were the first to show that stomatal chloroplast number has a tendency of

increasing with increasing levels of ploidy within the same species (Hamada and

Baba, 1930). This relationship was thereafter observed in several species such as

sugar beets (Mochizuki and Sueoka, 1955; Dudley, 1958) and in various clover

species (Najcevska and Speckmann, 1968; Butterfass, 1973).

Attempts have often been made to fit a model to the distribution of stomatal

chloroplasts in young leaves of different ploidy levels. Mochizuki and Sueoke (1955)

identified a geometric relationship of stomatal chloroplasts and ploidy level in sugar

beets. This relationship was disputed by Yudanova et al. (2002) who found a

binomial relationship between stomatal chloroplasts and ploidy of the same

species. Less complex relationships have been observed in other species. In black

wattle, the frequency relationship between diploid stomatal chloroplast frequency

and tetraploid stomatal chloroplast frequency was found to be 1:2 (Beck, Fossey

and Mathura, 2003b). This type of relationship was also observed in watermelon

cultivars (McCuiston and Wehner, 2004) and cotton plants (Chaudhari and Barrow,

1975). However, higher ratios were reported in species such as clover (Najcevka

and Speckmann, 1968), potato (Hermsen and De Boer, 1971) and turnips

(Speckmann et al., 1967).

Whilst a relationship is often noted between stomatal chloroplast frequency and

ploidy level, this is however, not a universal rule (Chaudhari and Barrow, 1975).

Striking examples of plants that show no change in stomatal chloroplast frequency

with an increase in ploidy level include Bryum casepitium, Funaria hygrometrica,

Physcomitrium piriforme and Dumortiera hirsute. It is therefore strongly advised that

the plant breeder tests the applicability of the stomatal chloroplast technique with

the species in question.

The stomatal chloroplast frequency technique is rapidly becoming a popular means

of discerning ploidy levels in various species. Plant breeders favour this technique

because it is a rapid and reliable method by which to screen several samples

efficiently. Minimal skill is required and the technique tends to be highly repeatable,

displaying different stomatal chloroplast frequencies for each ploidy level. In
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general, this technique is not confined to any particular type of leaf material

although young leaf material is preferred.

Mochizuki and Sueoka (1955) have done extensive work on the various factors that

may affect stomatal chloroplast frequencies in sugar beets. They discovered that

the technique was not very effective in old or dead sugar beet leaf material.

Moreover, this increase in plastids in relation to ploidy level was little affected by the

type and position of leaf sample that was used (Mochizuki and Sueoka, 1955).

Athough this technique is effective when dealing with autopolyploids, it may require

some optimisation when dealing with chimeras or mixaploids (Chaudhari and

Barrow, 1975). Moreover, this technique is only effective once the nature of the

relationship between stomatal chloroplast frequency and ploidy level is established

for that particular species. The success of this technique has already been

established in species such as alfalfa, Medicago sativa (Bingham, 1968), mulberry,

Morus spp. (Hamada and Baba, 1930), potato, So/anum tuberisum (Hermsen and

De Boer, 1971), turnips, Brassica rapa (Speckmann, Dijkstra and Ten Kate, 1967)

and in trees species such as black wattle (Beck, Fossey and Mathura, 2003b).

Polyploidy can also be associated with physiological and biochemical changes that

affect the content and types of certain proteins in higher plants (Stebbins, 1950,

Burnham, 1962). These changes tend to affect biochemical processes such as the

rate of photosynthesis and the production of chlorophyll. The increased frequency

of chloroplasts in polyploid cells may also lead to an associated increase in

chlorophyll content (Joseph et a/., 1981; Meyers et a/., 1982; Warner and Edwards,

1993).

Research to establish relationships between chlorophyll content and ploidy level

has been undertaken in a limited number of species. In Medicago sativa the activity

and amount of proteins such chlorophyll and ribulose-1 ,5-bisphosphate carboxylase

(RuBPC) were shown to almost double from diploid to tetraploid plants (Molin et a/.,

1982). Warner et al., (1987) reported a significant increase in chlorophyll content

from tetraploid to octaploid. In tall fescue plants chlorophyll concentration increased

significantly as a quadratic function from tetraploid to decaploid with the mean for

octaploid genotypes representing the maximal chlorophyll concentration (Joseph
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and Randall, 1981). A similar result was observed in C4 grass Panicum virgatum

where chlorophyll content and other soluble proteins increased from tetraploid to

octaploid by 40 - 50 % (Warner et al., 1987). Nitrogen and chlorophyll content was

found to increase by 25 % per cell in diploid and tetraploid citrus, Citrus sinensis

(Romero-Aranda et al., 1997).

Interestingly, an increase in chlorophyll content is not always apparent. Warner and

Edwards (1989) also showed that chlorophyll content remained constant in many

levels of ploidy in Atriplex confertifolia, from diploid to decaploid, whereas other

proteins were found to have increased. Similar evidence was found for the castor

bean, Ricinus communis, where the relative distribution of chlorophyll content was

found to be similar in haploid, diploid and tetraploid plants (Timko and Vasconcelos,

1981 ).

The utilisation of chlorophyll content as a ploidy indicator is a relatively new field of

expertise thus requiring further research as to its usefulness as a diagnostic tool. It

is important to predetermine the nature of the relationship between chlorophyll

content and ploidy level, since not all species display a proportional increase in

chlorophyll content (Mol in et al., 1982). Furthermore, environmental factors that

affect chlorophyll degradation need to be assessed for a particular species before

this technology can be utilised with confidence. Should chlorophyll content be

correlated to ploidy level in a particular species, it would be of great value in the

initial stages of plant improvement programmes since a large number of species of

virtually any age could be assessed.

The crux of indirect methods of ploidy identification hinges on the establishment of

a correlation between the quantification of some distinguishable morphological

marker on the sample and the number of chromosome sets in that sample.

Ultimately, the selection of an appropriate ploidy discernment method, whether

direct, indirect or intermediate, depends greatly on factors such as species,

genotype, time, resources, accuracy, and type of cells available. Furthermore, the

various techniques often need to be optimised for that particular species.
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1.4 AIMS OF RESEARCH PROJECT

Black wattle is of prime commercial significance to the South African forestry

industry. The exceptional utility of this exotic tree has created an overwhelming

demand on both a local and global front thereby increasing revenue into the country

as well as promoting job-creation initiatives. Thus, cutting-edge forestry research

and tree improvement programmes are critical for the South African commercial

forestry industry to remain competitive.

There are several facets to the South African black wattle tree improvement

programme. The initiative that is relevant to this work is the reduction of viable

seeds in order to decrease the colonizing ability of black wattle. Black wattle is one

of South Africa's top invader species and wild black wattle is creating environmental

difficulties that, in turn, impact negatively on the commercial industry. Thus,

breeding for sterility has become an important focus in black wattle improvement

programmes.

One of the simplest and most cost effective methods of producing sterile seeds is

through the induction of autopolyploidy. The increased number of homologous

chromosome sets cause multivalent associations during meiosis resulting in

unbalanced chromosomal segregation during anaphase 1. Subsequently, the poles

receive unbalanced chromosome sets, leading to lethality of the gametes thereby

reducing the fertility of the seeds and minimising invasive potential of black wattle.

In black wattle, the intention is to induce autotetraploidy and backcross these

tetraploids with diploids to produce sterile triploids. Breeders require an effective

diagnostic tool to verify the level of ploidy before mass cultivations. Crossing two

trees of incorrect ploidy level could be deleterious to the success of this

programme. Hence, it is critical to have rapid and reliable ploidy diagnostic tools to

discern between the different levels of ploidy in black wattle. In black wattle,

however, the identification of an autotetraploid through chromosome counts is

laborious and inaccurate, since the chromosomes are small and superimposed in
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squash preparations. Furthermore, other methods of ploidy identification discussed

previously require additional expertise and expensive apparatus. It has therefore

become necessary to devise alternative methods to identify autotetraploids in black

wattle so that they can be selected for subsequent crosses.

Many findings have suggested that the frequency of stomatal chloroplasts increase

with an increase in ploidy. It is anticipated that this would be the case in black wattle

as well. Also, it is hoped that the concentration of chlorophyll would increase with

increasing numbers of chloroplasts.

To this end, two indirect methods of ploidy assessment were investigated, firstly,

the quantification of stomatal chloroplasts and secondly the quantification of

chlorophyll content, as follows:

• A comparative investigation of stomatal chloroplast frequency in diploid and

tetraploid black wattle through light microscopy was undertaken, and

• A comparative analysis of the chlorophyll content in diploid and tetraploid

black wattle through chlorophyll absorbance spectroscopy was undertaken.

A number of factors influence chlorophyll content and degradation. These factors

are either genetic or environmental in nature. Environmental factors include sample

age and sample storage conditions. It was therefore imperative to investigate how

these factors affect the stability of the chlorophyll absorbance whilst sampling.

Consequently, a supplementary study of chlorophyll content was undertaken in the

form of two preliminary investigations:

• An investigation of the effect of storage conditions on chlorophyll content in

diploid black wattle material that was either dried or frozen, and

• An investigation of the effect of tree and leaf age on chlorophyll content of

two-year; four-year; six-year; eight-year and nine-year old trees as well as

old and new leaf flushes in diploid black wattle.
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2.1 INTRODUCTION

Polyploidization has been recognised as a valuable tool in plant breeding and is

currently being investigated in black wattle breeding programmes to increase

product yields and quality (Elliott, 1958). It can also be used to a large extent to

contain the spread of black wattle trees outside plantation boundaries by limiting

the number of viable seed. The utilisation of polyploidization in breeding is

dependant on the accurate assessment of the level of ploidy as early as possible

in the life of a growing tree in order to facilitate early selection of polyploids. In the

black wattle industry autotetraploid production is the first of the polyploids that are

produced. It has therefore become necessary to distinguish between diploid and

tetraploid seedlings and trees.

The direct method to assess the ploidy of a plant is through chromosome

quantification (Darlington and La Cour, 1960). This however, is not always

accurate, as in the case of black wattle, where the chromosomes are small and

tend to lie on top of one another in squash preparations. Therefore, two indirect

methods were identified and explored in this project. Attempts were made to

establish the relationship between stomatal chloroplast frequencies and

chlorophyll content on the one hand, and the level of ploidy on the other hand.

There are however, a number of factors that influence chlorophyll content and

degradation which are either genetic or environmental in nature. Genetic factors

include genotype and number of chromosomes, whilst relevant environmental

factors identified for this investigation are the age of leaves and trees as well as

leaf storage conditions. It was therefore imperative to investigate how these

factors affect stability of chlorophyll and hence the quantification of diploid and

tetraploid black wattle. Chlorophyll absorbance was used as a measure for

chlorophyll content on the basis of Beer's Law (Harwood and Moody, 1989).

Consequently two additional investigations were undertaken.
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This research project was undertaken in the following manner and illustrated

accordingly (Figure 2.1):

Investigation 1

Quantitative assessment of stomatal chloroplast number in black wattle,

which included a comparative analysis of the chloroplast number in

stomatal guard cells of diploid (2n =2x =26) and tetraploid (2n =4x =52)

black wattle, and

Investigation 2

Quantitative assessment of chlorophyll content in black wattle, which

included a comparative analysis of the chlorophyll content in diploid (2n =

2x =26) and tetraploid (2n =4x =52) black wattle.

This research was executed as three separate investigations:

Investigation 2.1

An analysis of the effect of storage conditions on chlorophyll content in

diploid black wattle,

Investigation 2.2

An analysis of the effects of aging of leaves and trees on chlorophyll

content in diploid black wattle, and

Investigation 2.3

An analysis of the effects of chromosome dosage on chlorophyll

content in diploid (2n =2x =26) and tetraploid (2n =4x =52) black

wattle.
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Diploid and tetraploid Stomatal chloroplast
I--

evaluation counts

Indirect ploidy
Storage conditions f-+

--- identification
evaluation

Age and material Chlorophyll content
I--

evaluation analyses

Diploid and tetraploid ---evaluation

Figure 2.1 Flow diagram of the different analyses undertaken in this

investigation.

2.2 QUANTIFICATION OF STOMATAL CHLOROPLASTS

2.2.1 Materials

The material required for the investigation of the relationship between stomatal

chloroplast frequency and ploidy included diploid and tetraploid black wattle

obtained from the Institute for Commercial Forestry Research (ICFR). Diploid and

colchicine-induced tetraploid seeds from six different genetic black wattle lines,

three lines per ploidy level and five trees per line were obtained and germinated

under nursery conditions (Table 2.1). The tetraploids originated from colchicine­

induced experiments conducted during the late 1940s by the Wattle Research

Institute (WRI), and were confirmed at that time through root tip squashes (WRI,

1950).
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Diploid and tetraploid black wattle lines used to quantify stomatal

chloroplasts.

Ploidy level Genetic line No. of trees per line Origin

117 5 Bloemendal, KwaZulu-Natal
Diploid

272 5 Bloemendal, KwaZulu-Natal
(2n = 26)

283 5 Bloemendal, KwaZulu-Natal

C 19/48/19 5 Colchicine-induced, WRI
Tetraploid

C 19/48/20 5 Colchicine-induced, WRI(2n = 52)

C 25/48/05 5 Colchicine-induced, WRI

2.2.2 Methods

Sample preparation

The diploid and tetraploid seeds obtained from the ICFR were germinated under

nursery conditions. Fifty seeds per line were chipped using a sharp scalpel to

promote germination of seeds. Thereafter, these chipped seeds were washed with

a mild soap solution to reduce any fungal growth that may occur. Petrie dishes

were prepared for the seeds by half-filling dishes with vermiculite (growth media)

and covering with a single sheet of filter paper. No more than ten seeds were

placed on the filter paper in each prepared petrie dish. Subsequently, petrie dishes

containing seeds were moistened with distilled water, labelled with the date,

genetic line and ploidy level. Thereafter, the petrie dishes were incubated for three

to eight days, or until seeds were germinated in the dark at 25 QC. Once the seeds

had germinated, the young seedlings were transferred into black plastic growth

bags containing standard black wattle growing media and kept in the ICFR nursery

for roughly eight months.
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Large leaves from the healthy eight month-old seedlings were selected and

temporarily stored in polytop vials that contained cooled distilled water. Slides

were prepared within the hour of leaf collection by removing the thin epidermal

layer of the abaxial surface of the pinnule. The epidermal layer was stripped gently

with a very sharp razor blade, removed with a pair of fine tweezers or forceps and

placed on top of a prepared slide with a drop of iodine-containing stain. The iodine

stain was prepared by mixing 1 g of iodine and 3 g of potassium iodide in 100 ml

of distilled water and with stirring until the contents had dissolved. The prepared

stain was then poured into a dark bottle that was wrapped in tin foil, and stored in

a dark cupboard to prevent oxidation. The material on the slide was covered with a

clean cover slip, and viewed with an Olympus SZH Zoom microscope. The

preparation was left for approximately five minutes to absorb stain and the slide

viewed within the hour under 40 X magnification since stomatal guard cells shrank

rapidly from the heat of the microscope lamp. The chloroplasts of 15 stomatal

guard cells were counted and recorded on prepared datasheets and transferred to

electronic spreadsheets using Microsoft® Excel 2002 spreadsheet software.

2.3 QUANTIFICATION OF CHLOROPHYLL CONTENT

2.3.1 Materials

Investigation 2.1: Storage conditions

Plant material is often transported from the field to the laboratory at which time

chlorophyll degradation may occur. It was therefore necessary to investigate the

most appropriate procedure of containment of the collected leaf material. Two

classical preservation methods were selected namely drying and freezing.

Chlorophyll content was investigated in leaf material that was dried overnight at

84°C and stored at room temperature for either seven days or 28 days, or frozen

for either seven days or 28 days. Chlorophyll of leaf material that was extracted on

the day of collection was used as the control. Five non-identical two year-old



· 46 .

diploid trees from the ICFR nursery were selected with fifteen leaf samples per

tree for each of the four storage treatments (Table 2.2).

Table 2.2 Materials used of the four different storage treatments.

Storage method Storage time (days) No. of trees Samples per tree

Control 0 5 15

7 5 15
Dried 28 5 15

7 5 15
Frozen 28 5 15

Investigation 2.2: Leaf and tree age

The effect of age on chlorophyll content was investigated in terms of two different

factors, namely tree age and leaf age. Firstly, trees of different ages were

compared and secondly, leaf material of different ages on the same tree was

compared. The material utilised in this investigation consisted of old and new

flushes of leaf material of two, four, six, eight and nine year-old trees (Table 2.3).

Initially, 20 trees per age group (that is, 100 trees in total) from the Bloemendal

plantations in KwaZulu-Natal were selected and tagged. Old flush leaf samples

were collected from all 100 trees. However, at the time of new flush sample

collection it was found that some of the tags were lost, or some trees had been

felled, and hence the number of new flush samples was only 90. Five leaf samples

from old flush and subsequently from new flush were collected from each tree,

placed in a black plastic bag and stored on ice whilst in transit from the collection

site to the laboratory.



· 47 .

Table 2.3 Tree material used in chlorophyll quantification of diploid black

wattle trees of different age groups.

Tree material Age (years) No. of trees per age

2 20

4 20
Old flush

6 20

8 20

9 20

2 20

4 18

New flush 6 16

8 16

9 20

Investigation 2.3: Ploidy level

The effects of an increase in the number of chromosome sets on chlorophyll

content were determined in diploid and tetraploid black wattle. In this investigation

the only previously identified tetraploid material that was available was also

included (WRI, 1950). These were seedlings of approximately eight months of

age, bagged juveniles of approximately one year of age and two year-old field

material. Equivalent diploid material was also selected. Seedling and bag

materials were kept under nursery conditions at the ICFR, whilst the field material

was obtained from the Bloemendal black wattle plantation in KwaZulu-Natal.

Many seeds (- 50) of three genetic lines per ploidy level were germinated to

ensure that sufficient material was available for this experiment since tetraploid

seeds germinated with difficulty. Leaf samples from ten germinated seedlings per

line from each black wattle repeat were collected and stored temporarily in black

plastic bags that were kept on ice whilst in transit from the nursery or the field to

the laboratory (Table 2.4).
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Tree material used in chlorophyll analysis of diploid and tetraploid

black wattle.

Plant material Ploidy levels No. of lines No. of plants

2x 3 10
Seedlings

4x 3 10

2x 3 10
Bags

4x 3 10

2x 3 10
Field

3 104x

2.3.2 Methods

Chlorophyll was extracted from all leaf samples collected for each of the different

investigations involving the quantification of chlorophyll content and thereafter, the

chlorophyll absorbance was determined.

Chlorophyll extraction

Chlorophyll was extracted from leaf samples obtained from the various leaf

material as follows (method modified from Vernon and Seely, 1966)

1. Leaves were washed with distilled water to remove impurities.

2. Approximately 1 g of green leaf material was homogenized in liquid nitrogen to

reduce degradation, using a pestle and mortar.

3. Subsequently, 1 g of this powdery homogenate was weighed out using a

4 decimal-place electronic mass balance.

4. Working in reduced light, this sample was re-homogenized in 5 ml of 90 %

acetone.

5. The chlorophyll-containing solution (CCS) was then siphoned off using a

Pasteur pipette and placed into a polytop vial covered with tin foil.

6. Steps 4 and 5 were repeated two more times.
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7. At the end of the third extraction, the total of 15 ml of the CCS was used to

make a standard solution and was poured into a 25 ml volumetric flask and

made up to the 25 ml-mark with 90 % acetone.

8. The volumetric flask, now containing the standard solution, was then covered

with tin foil, placed on ice and absorbance spectrum determined within 15

minutes by chlorophyll absorbance spectroscopy.*

Chlorophyll absorbance spectroscopy

Chlorophyll absorbance spectra were recorded by placing 1 ml of the standard

solution into a 3 ml quartz cuvette, filled to the graduation mark on the cuvette with

90 % acetone. A second quartz cuvette was filled with 90 % acetone and was

utilised to standardise chlorophyll absorbance measurements to compensate for

any absorbance that the acetone may introduce. Both cuvettes were placed in a

PerkinElmer Lambda 45 UV/vis spectrometer. Light ranging in wavelength from

400 nm to 700 nm (visible light) was passed through the sample in the cuvette.

This light was absorbed to produce a chlorophyll absorbance spectrum for each

sample. These spectra were recorded as ASCII files and analysed statistically.

2.4 STATISTICAL ANALYSES

All the data in this research project was recorded in Microsoft® Excel 2002

spreadsheets. Statistical analyses were undertaken with the statistical package

GenStat® 7.1 (Lane and Payne, 2003).

The following statistical analyses were conducted:

1. The means, ranges and standard deviations were calculated.

2. Analysis of variance (ANOVA) was performed to assess the variation present in

the different investigations.

3. Least significant differences (LSD) was performed to interpret the variation.

* Although the extraction process may have allowed for the extraction of other pigments and chlorophyll
degradation products, these were difficult to separate out and were identified as consistent standard additions
throughout the several chlorophyll experiments and did not affect the overall trends established.
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2.5 SUMMARY OF MATERIALS UTILISED IN THIS RESEARCH PROJECT

Table 2.5 provides a summary of all the materials, their sample sizes and repeats

utilised in the investigation of stomatal chloroplast frequency and chlorophyll

content in relation to the discernment of diploid and tetraploid black wattle.

Table 2.5 Materials, sample sizes and number of repeats utilised in this

research project.

Experiment Investigation Parameters Materials No. of No. of trees

lines per line

Stomatal Diploid 2x 3 5

Stomatal frequency Tetraploid 4x 3 5
chloroplast

analyses
Stomatal Diploid 2x 3 5

arrangement Tetraploid 4x 3 5

Control odays 5 15

Storage
Ice 7 days 5 15

pre-assessment
treatment 28 days 5 15

Dry 7 days 5 15

treatment 28 days 5 15

Leaf Old flush 100

Chlorophyll Age New flush 90

content Age

pre-assessment
2 years 20

analyses
4 years 20

Tree

Age
6 years 20

8 years 20

9 years 20

Seeds 3 10

Diploid
Bags 3 10

Ploidy 2x

comparative
Field 3 10

analysis Seeds 3 10

Tetraploid
Bags 3 10

4x
Field 3 10
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This investigation focused on the discriminating power of two putative diagnostic

procedures to differentiate between diploid and tetraploid black wattle. The

stomatal chloroplast arrangements and number were compared as well as

chlorophyll content in the different ploids. A number of associated experiments

were undertaken to establish the best materials and storage conditions for the

chlorophyll content analyses.

3.2 STOMATAL CHLOROPLAST ANALYSES

Stomatal chloroplasts were investigated in terms of the following:

• A comparative investigation of stomatal chloroplast frequency in diploid

and tetraploid black wattle. This included a comparison of variation

between plants within the same line, between lines within the same ploidy

level as well as between ploids (Figure 3.1).

• A comparative investigation of chloroplast arrangement in stomatal cells in

diploid and tetraploid black wattle.
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Figure 3.1 Flow diagram exhibiting expected levels of variation in stomatal

chloroplast frequency experiments.

3.2.1 Stomatal chloroplast frequency

Stomatal chloroplast frequencies were determined in diploid and tetraploid black

wattle. Three genetic lines per ploidy level with five plants per line were used for

this experiment. Stomatal chloroplasts of 15 cells per plant were counted using an

optical microscope at 40 X magnification. Chloroplast frequency data were

captured in Microsoft Excel® 2002 and analyzed using GenStat® 7.1 (Lane and

Payne, 2003).

The number of chloroplasts per cell was determined. These data indicated that the

mean number of chloroplasts in diploids was distinctly different to that of the

tetraploids, with no overlap of numbers between the different ploids (Table 3.1).

The mean number of chloroplasts in the diploid lines was in the order of 10 per cell

(9.89 ± 0.222), ranging, on average, from 7.5 to 11.7 per cell. In the tetraploids, on

the other hand, the mean number of chloroplasts per cell was in the order of 22

(22.43 ± 0.222), ranging, on average, from 16.7 to 26.1.
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Mean stomatal chloroplast numbers of diploid and tetraploid black

wattle seedlings.

Mean number Range of mean Mean number Range of mean
Ploidy Genetic of number of of chloroplasts number of
level line chloroplasts chloroplasts within ploidy chloroplasts

within line within line level within ploidy level

117 09.093 07.533 - 10.600 09.989 07.533 - 12.067

Diploid 272 10.507 08.867 - 12.067

283 10.080 08.667 - 11.733

C19/48/19 23.307 16.867 - 26.067 22.427 16.867 - 26.067

Tetraploid C19/48/20 22.347 18.267 - 25.733

C25/48/05 21.627 18.867 - 25.000

Figure 3.2 provides a graphical representation showing the differences between

mean number of stomatal chloroplasts within lines and between lines of diploid

and tetraploid black wattle. The graphical representation clearly shows that the

number of chloroplasts in the diploids do not overlap with that of the tetraploids.

The ratio (of -1 :2) between the number of chloroplasts in the diploids and

tetraploids is also clear.
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Figure 3.2 Mean number of stomatal chloroplasts in the different diploid

(117, 272, 283) and tetraploids (C19/48/19, C19/48/20, C25/48/05)

lines.

3.2.2 Stomatal chloroplast arrangement

An interesting finding was that stomatal chloroplasts in diploid cells displayed a

distinctly different spatial arrangement when compared to the arrangement in

tetraploids cells (Figure 3.3). In diploids, the chloroplasts were clustered into two

regions, each towards the extreme ends of the kidney shaped stomatal cells. In

the case of the tetraploids, no clustering of chloroplasts could be identified,

however, the chloroplasts showed a more ordered, even distribution around the

convex curvature/perimeter of the cells. These distinct chloroplast arrangements

could be used to distinguish between diploid and tetraploid black wattle without

quantifying chromosomal or stomatal chloroplast numbers.
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Figure 3.3 Chloroplast arrangement in A: diploid and B: tetraploid black wattle.

Statistical analysis of stomatal chloroplast frequencies

Stomatal chloroplast frequencies were compared between diploid and tetraploid

black wattle. Six genetic lines; three per ploidy level, with five plant repeats per

genetic line were included in this comparison. An analysis of variance (ANQVA)

was conducted in order to investigate the sources of variation in stomatal

chloroplast numbers. Table 3.2 presents the sources of variation within both

diploids and tetraploids collectively. Significant differences in stomatal chloroplast

numbers were identified between the different plants within each genetic line,

between each genetic line within diploids, as well as within tetraploids (p < 0.001).
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Summary of analysis of variance of stomatal chloroplast numbers

between genetic lines, within diploid and tetraploid black wattle.

Source of variation df ss ms vr F.pr

Line 5 17857.3867 3571.4773 4685.61 < 0.001

Plant 4 1511.7467 377.9367 495.84 < 0.001

Line.Plant 20 477.2133 23.8607 31.30 < 0.001

Residual 420 320.1333 0.7622

Total 449 20166.4822

df = degrees of freedom; ss = sum of squares; ms = mean square; vr = variance ratio; F.pr = F-statistic.

An ANOVA was also conducted to compare the variation in stomatal chloroplast

numbers between all diploid and tetraploid measurements. Table 3.3 illustrates

that the number of stomatal chloroplasts in diploid black wattle was significantly

different from the number in tetraploids (p < 0.001).

Table 3.3 Summary of analysis of variance of stomatal chloroplast numbers

between diploid and tetraploid black wattle.

Source of variation

Ploidy

Residual

Total

df

1

448

449

ss

17672.000

2494.480

20166.480

ms

17672.000

5.568

vr F.pr

3173.83 < 0.001

df = degrees of freedom; ss = sum of squares; ms = mean square; vr = variance ratio; F.pr = F-statistic.

An analysis of the least significant differences (LSD) was conducted to interpret

the variation of stomatal chloroplast numbers at the level of ploidy, genetic line and

plant repeat (Table 3.4). The LSD revealed significant differences between the
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different plants within each genetic line; between each genetic line within diploids,

between each genetic line within tetraploids, and lastly, between diploids and

tetraploids. These differences suggest that trees of different genotypes should be

sampled to establish whether the range of chloroplasts numbers lie within the

currently known range.

Table 3.4 LSD analysis of the mean stomatal chloroplast numbers in diploid

and tetraploid in black wattle.

Ploidy
level

Genetic
line

2

Plants within lines

3 4 5

Mean
number of

chloroplasts
within line

Mean number
of chloroplasts
within ploidy

Diploid 117

272

07.533 a 08.400 b 09.000 b 09.933 c 10.600 d 09.093 a

08.867 a 10.000 b 10.333 b 11.267 c 12.067 d 10.507 c 09.989 A

283 08.667a 09.400b 10.000bc 10.600c 11.733d 10.080b

Tetraploid C19/48/19 16.867 a 23.667 b 24.933 c 25.000 c 26.067 d 23.307 f

C19/48/20 18.267a 21.000b 22.267c 24.467d 25.733e 22.347e

C25/48/05 18.867 a 20.000 b 20.733 c 23.533 d 25.000 e 21.627 d

22.427 B

Treatments denoted by different letters (within each line) are significantly different (P < 0.001);

(LSD = 0.6266). Treatments denoted by different capital letters (between grand means for each line) are

significantly different (P<0.001); (LSD = 0.2802).

This investigation demonstrated that the assessment of chloroplast numbers has

the potential to be utilized as a rapid and reliable means to distinguish between

diploid and tetraploid black wattle.
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3.3 CHLOROPHYLL CONTENT ANALYSES

There are a number of factors that influence chlorophyll content and degradation.

These factors are either genetic or environmental in nature. Genetic factors

include the variation in genetic composition, the genotype, and the level of ploidy.

Environmental factors on the other hand, include sample age and sample storage

conditions. It was therefore imperative to investigate how these factors affect the

stability of the chlorophyll absorbance whilst sampling. Consequently, chlorophyll

content was investigated in terms of the following:

• An investigation of the effect of storage conditions on chlorophyll content in

diploid black wattle was conducted. Storage conditions included the

storage of dried leaf material kept at room temperature as well as frozen

leaf material; both stored for either a period of seven days or a period of 28

days, before chlorophyll was extracted.

• An investigation of the effect of tree age on chlorophyll content in diploid

black wattle. Tree material from two-year; four-year; six-year; eight-year

and nine-year old trees was used.

• An investigation of the effect of leaf age of the same tree on chlorophyll

content was conducted. Leaf material included new flush and old flush.

• A comparative analysis of the chlorophyll content in diploid and tetraploid

black wattle was undertaken.

A summary of the different factors that may affect chlorophyll content in black

wattle as well as the methods of investigation is presented in Figure 3.4.
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BLACK WATTLE CHLOROPHYLL

ENVIRONMENTAL GENETIC

Storage conditions Age differences Polyploidy
Genotypic
variation

Control Dry Ice Leafage Tree age Diploid Tetraploid A variety of
different

days flush years containment genotypes

o(control) 7 28 Old New 2 4 6 8 9 Seed Bag Field

Figure 3.4 Factors that may affect chlorophyll content as well as methods of

investigation.

3.3.1 Effects of storage on chlorophyll content

Storage effects on chlorophyll content as an indicator of possible degradation were

determined for five non-identical two-year-old nursery diploid black wattle

genotypes. Fifteen leaf samples from each genotype were exposed to a number of

storage treatments before the chlorophyll was chemically extracted. Two classical

methods of sample-preservation were selected, namely drying and freezing.

Samples were either oven dried overnight at 84 QC and kept at room temperature,

or frozen at - 4 QC. Two storage periods were applied; a seven-day period or a

28-day period. Therefore, four different storage treatments were tested in this

investigation; dried for seven days, dried for 28 days, frozen for seven days and

frozen for 28 days. Thereafter, chlorophyll was extracted from the various leaf

samples and absorbance measured between 400 nm to 700 nm (visible light) in a

standard UV/vis absorbance spectrometer. The absorbance of light by the

chlorophyll over this wavelength range resulted in characteristic peaks at

wavelengths of 433 nm, 456 nm and 663 nm. The amplitude of these peaks was

used as an indicator of chlorophyll content in each sample (Beer's Law, See

Harwood and Moody, 1989). Subsequently, chlorophyll absorbance values and

absorbance spectra were recorded for each stored sample using Microsoft® Excel
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2002 and statistically analysed with the software package GenStat® 7.1 (Lane and

Payne, 2003).

The effects of storage treatments on chlorophyll absorbance were determined in

terms of the following (see figure 3.5 for schematic representation):

1. Chlorophyll absorbance values were holistically compared in order to

identify any trends,

2. Comparative analyses between chlorophyll absorbance values within

each of the four storage treatment was undertaken, and

3. Comparative analysis of chlorophyll absorbance values between

each of the four storage treatments and the control was undertaken.

Leaf samples with no
storage (control).

Compared and contrasted within and
between all storage treatments.

Dried leaf samples
stored for one week.

Dried leaf samples
stored for one month.

Frozen leaf samples
stored for one week.

Frozen leaf samples
stored for one month.

( Analysis within
storage treatment.

Analysis within
storage treatment.

Analysis within
storage treatment.

Analysis within
storage treatment.

\

Dried leaf
samples.

Frozen leaf
samples.

Analysis
between
storage

treatments

Figure 3.5 Flow diagram exhibiting the comparative analyses of the effects of

storage on chlorophyll content undertaken in this investigation.
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Trends in chlorophyll absorbance spectra

Chlorophyll absorbance spectral charts for the four different storage treatments

were compared to identify possible trends (Figure 3.6). In general, chlorophyll

absorbance profiles for all four storage treatments were distinctly lower than that of

the control (0 days of storage), whilst still maintaining a similar profile with peaks at

wavelengths of 433 nm, 456 nm (shoulder) and 663 nm.

0.60

Comparison of chlorophyll absorbance of the four
storage treatments with control
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Dry 7 days Ice 7days - Dry 28 days -Ice 28 days
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400

Figure 3.6 Chlorophyll absorbance of dried and frozen leaf material for 0 days,

7 days and 28 days.
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Comparison of chlorophyll absorbance values

A detailed analysis was undertaken of the chlorophyll absorbance values for all

four storage treatments (Table 3.5). The mean chlorophyll absorbance values (A)

for the different storage treatments at each of the three wavelengths 433 nm, 456

nm and 663 nm were compared. The A values of all the treatments at each

wavelength were lower than that of the control. The order of the decrease in A of

the four storage treatments differed for each of the wavelengths; therefore the total

mean absorbance (TA) value was determined as the sum of the A at 433 nm,

456 nm and 663 nm. The assessment of TA for the four different storage

treatments revealed that dried leaves for seven days (TA =1.132) resulted in the

least amount of chlorophyll degradation when compared to the control (TA =
1.275), followed by 28 day ice storage (TA =1.114), seven day ice storage (TA =
1.103) and lastly 28 day dried storage (TA = 1.093).

The magnitude of the decrease of the A values of each of the four storage

treatments from the control was determined; the total deviation from the control

(To). The To for dried material was 11.2 % for material dried for seven days while

for material dried for 28 days it was 14.3 %. On the other hand, in the case of

frozen material, the To was 13.5 % for material frozen for seven days but was only

12.6 % for material frozen for 28 days. These data indicated that material dried

and stored for seven days displayed the least amount of deviation from the control.

On the other hand, material dried for a period of 28 days displayed the greatest

deviation from the control.



Table 3.5 Mean chlorophyll absorbance for the four different storage treatments.

Mean Total mean Deviation Total
Treatment Storage N1 Reps 2

Wavelength Absorbance
absorbance 4absorbance from deviation from

Type (days) (nm) range
(A) (%) 3 (TA) (%) 3 control (6) 5 (%) 3 control (T6) (%) 3

5 15 433 0.5614 - 0.5421 0.5523

0 5 15 456 0.4107 - 0.3914 0.4016
Control

5 15 663 0.3310 - 0.3117 0.3219 1.2758 (100.0)

5 15 433 0.4978 - 0.4722 0.4874 0.0649 (11.8)

7 5 15 456 0.3662 - 0.3414 0.3563 0.0453 (11.3)

5 15 663 0.2986 - 0.2742 0.2890 1.1327 (88. 7) 0.0329 (10.2) 0.1431 (11.2)
Dry

5 15 433 0.5100 - 0.4430 0.4746 0.0777 (14.0)

28 5 15 456 0.3778 - 0.3208 0.3443 0.0573 (14.3)

5 15 663 0.3070 - 0.2563 0.2741 1.0930 (85.6) 0.0478 (14.8) 0.1828 (14.3)

5 15 433 0.5778 - 0.4388 0.4849 0.0674 (12.2)

7 5 15 456 0.4125 - 0.3080 0.3451 0.0565 (14.0)

5 15 663 0.3276 - 0.2408 0.2733 1.1033 (86.4) 0.0486 (15.1) 0.1725 (13.5)
Ice

5 15 433 0.5821 - 0.4422 0.4885 0.0639 (11.5)

28 5 15 456 0.4168 - 0.3114 0.3487 0.0529 (13.1)

5 15 663 0.3319 - 0.2442 0.2769 1.1141 (87.3) 0.0450 (13.9) 0.1617 (12.6)

i N = number of samples.

2 Reps = number of repeats or replicates per sample.

3Percentage of the control where the control is 100 %.

4 Total mean absorbance = mean absorbance433nm + mean absorbance456nm + mean absorbance 663nm = TA = ~33 nm + ~56 nm + ~63 nm.

5 Percentage difference from control that is, how different that value is from the control (0%) expressed as a percentage.
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A graphical representation of the data showed the general trends displayed by the

four storage treatments with greater clarity (Figure 3.7). Chlorophyll absorbance

values within dried and frozen treatments were compared with respect to storage

time periods of one week and one month. It was noted that whilst all treatments

decreased from the control (day-D), dried samples responded differently to storage

periods compared to frozen samples. Chlorophyll absorbance values of dried

material decreased steadily over time from the control to seven-day storage to

one-month storage, whereas, in the case of frozen material, a similar trend could

not be identified. A greater decrease from the control to seven-day ice storage was

recorded than for the decrease from the control to 28 day ice storage. This could

be indicative of a type of 'chlorophyll recovery system' in response to cold

temperatures over long periods over time (see for example Strand and Lundmark,

1987).

Total mean absorbance over time
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Figure 3.7 Comparison of total mean chlorophyll absorbance trends of the

different storage treatments against the control.
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Statistical analysis of chlorophyll absorbance

Chlorophyll absorbance for all four storage treatments were compared in five non­

identical two year-old diploid black wattle genotypes (trees) in the nursery. Fifteen

leaf samples (repeats) per storage treatment, per tree, were included in this

comparison. An analysis of variance (ANOVA) was conducted in order to

investigate the sources of variation in the different storage treatments (Table 3.5).

Significant differences in chlorophyll absorbance values were identified between

the different trees utilized, between each storage treatment within a tree as well as

between the different wavelengths within a treatment (p < 0.001).

Table 3.6 Summary of analysis of variance for chlorophyll absorbance and

storage treatments.

Source of variation df ss ms vr F.pr

Tree 4 0.0870 0.0217 71.76 < 0.001

Tree. storage treatment 4 0.5655 0.1413 466.21 < 0.001

Wavelength 2 8.5814 4.2907 14150.00 < 0.001

Storage treatment. wavelength 8 0.0251 0.0031 10.35

Residual 1106 0.3354 0.0003

Total 1124 9.5946

df - degrees of freedom; ss =sum of squares; ms =mean square; vr =variance ratio; F.pr =F-statistic.

An analysis of least significant differences (LSD) was calculated to interpret the

variation in chlorophyll absorbance values for each of the four storage treatments

at the three wavelengths that were examined (Table 3.7). The LSD revealed that

chlorophyll absorbance for all treatments were significantly different from the

control within each wavelength. However, it was interesting to note that within the
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different storage treatments at a particular wavelength, not all treatments differed

significantly from one another (as denoted by the same letter in table 3.7). The

mean chlorophyll absorbance between the different storage treatments and the

control was also significantly different (p < 0.001).

Table 3.7 LSD analysis of the mean chlorophyll content in diploid black wattle

with various storage treatments.

Wavelengths (nm)

Treatments 433 456 663 Mean

Control 0 days 0.55226 c 0.40155 d 0.32185 g 0.42522 E

Dry one week 0.48740 b 0.35633 e 0.28900 h 0.377570

Dry one month 0.47459 a 0.34429 f 0.27411 i 0.36433 A

Ice one week 0.48486 b 0.34507 f 0.27326 i 0.36773 B

Ice one month 0.48849 b 0.34871 f 0.27690 i 0.37137 C

Treatments denoted by different lower case letters are significantly different from each other (p <

0.005); (LSD = 0.00558). Treatments denoted by different capital letters are significantly different

from each other (p < 0.005); (LSD = 0.00322).

This investigation into the effects of storage of leaf material on the chlorophyll

content indicated distinct degradation of chlorophyll, thereby reducing the amount

of chlorophyll absorbance. Therefore, chlorophyll extractions should ideally be

executed on the day of collection. However, if circumstances do not permit

immediate extraction and spectral analysis, then storage of material is suggested.

The application of the type of storage depends on the length of time required to

store the material. Drying of the material is advised should storage time be for a

week or less. However, it is advisable that if material is frozen, if a longer period of

storage is required.
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3.3.2 Effects of age on chlorophyll content

The effect of age on chlorophyll content was investigated in terms of two different

features, namely tree age and leaf age. Firstly, trees of different ages were

compared and secondly, leaf material of different ages on the same tree was

compared. The material utilized in this investigation consisted of old and new

flushes of leaf material in two, four, six, eight and nine year-old trees. Initially, a

total of 100 trees of different ages with 20 trees per age group were selected and

tagged. However, at the time of sample collection, it was found that some of the

tags were lost or some trees had been felled, thereby decreasing the effective

sample number to 90 in the new flush study. Five leaf samples from each tree

were collected, placed in a black plastic bag and stored whilst in transit from the

collection site to the laboratory. Chlorophyll was subsequently extracted from the

various leaf samples and exposed to a wavelength range of 400 nm to 700 nm

(visible light) in a standard UV/vis absorbance spectrometer. Thereafter, the

chlorophyll absorbance data were recorded and analyzed in the same manner as

that of the storage investigation (see section 3.3.1).

The effects of tree and leaf age on chlorophyll absorbance were determined in

terms of the following (see figure 3.8 for schematic representation):

1. Chlorophyll absorbance values were holistically compared in order to

identify any obvious trends,

2. Comparative analyses of chlorophyll absorbance values of trees of different

ages were undertaken.

3. Comparative analyses of chlorophyll absorbance values of leaf material

from the same tree of different ages were undertaken, and

4. Comparative analyses of all tree ages, as well as leaf ages were

undertaken.
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Figure 3.8 Flow diagram of the comparative analyses undertaken to study the

effects of age on chlorophyll content.

Trends in chlorophyll absorbance spectra

Chlorophyll absorbance spectral charts for the different tree and leaf age groups

were examined to identify typical trends. These spectral charts were compared to

a control value, which was the chlorophyll absorbance of young diploid seedlings,

that was chosen as an initial estimate of chlorophyll content since seedlings have,

in essence only one type of flush (Figure 3.9). In general, chlorophyll absorbance

profiles for all age groups and flush treatments maintained the expected graphical

profile with peaks at wavelengths of 433 nm, 456 nm (shoulder) and 663 nm. The

chlorophyll absorbance values of both old and new flush of different age groups

produced spectral graphs for which no specific trends could be ascertained.
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Figure 3.9 Chlorophyll absorbance of different leaf treatments at two, four, six,

eight and nine year-old tree age: A: old flush and B: new flush.
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The identification of old and new flush was based solely upon a visual selection

process that may not have accurately distinguished between the two flush types.

Therefore, the data of old flush and new flush were pooled.

Chlorophyll absorbance spectral charts for the combined flush over all ages were

compared to identify possible trends (see figure 3.10). In general, chlorophyll

absorbance profiles of all tree ages were distinctly greater than that of the control,

whilst still maintaining the expected spectral profile, peaking at the wavelengths of

433 nm, 456 nm (shoulder) and 663 nm.

Effects of tree age on chlorophyll content
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Figure 3.10 Chlorophyll absorbance of combined flush treatments over all tree

ages.
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Comparison of chlorophyll absorbance values

A detailed analysis was undertaken of the chlorophyll absorbance values for all

age treatments (Table 3.8). The mean chlorophyll absorbance values (A) for each

of the different age treatments at the three wavelengths 433 nm, 456 nm and

663 nm were compared. The total mean absorbance values for tree age within

flush type (TTA), sum of the A values at 433 nm, 456 nm and 663 nm, were

determined. The TTA values of the different age groups within the old flush as well

as within new flush did not reveal any distinct patterns. However, it was noted that

the TTA values for the older trees in old flush (eight year-old TTA = 1.34, nine

year-old

TTA = 1.33) as well as in new flush (six year-old TTA = 1.36, eight year-old

TTA = 1.35, nine year-old TTA = 1.42) were distinctly higher than that of the

control and young trees.

A total mean absorbance (LTA) of all ages within old flush as well as within new

flush was determined. The LTA of old flush (LTA = 1.22) was found to be

marginally less than that of new flush (LTA = 1.24).
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Table 3.8 Mean chlorophyll absorbance for different age treatments.

Mean Total mean Total mean
Treatment Age Wavelength Absorbance absorbance absorbance for tree absorbance for

type (years) (nm) range (A) age (ITA) leaf age (LTA)

433.0 0.5182 - 0.4799 0.4994

Control 2/3 456.0 0.3849 - 0.3492 0.3683

663.0 0.3098 - 0.2756 0.2931 1.1608

433.0 0.7131 - 0.4415 0.5664
2

456.0 0.5624 - 0.2845 0.4086

663.0 0.4827 - 0.1998 0.3233 1.2983

433.0 0.5082 - 0.4423 0.4812
4

456.0 0.3677 - 0.3115 0.3438

663.0 0.2954 - 0.2443 0.2732 1.0982

Old 433.0 0.5163 - 0.4982 0.5108
flush 6

456.0 0.3758 - 0.3555 0.3703

663.0 0.3035 - 0.2564 0.2980 1.1792

433.0 0.6038 - 0.5279 0.5836
8

456.0 0.4405 - 0.3908 0.4222

663.0 0.3508 - 0.2925 0.3315 1.3372

433.0 0.5931 - 0.5423 0.5767
9

456.0 0.4361 - 0.3658 0.4197

663.0 0.3514 - 0.3098 0.3350 1.3314 1.22136

433.0 0.5815 - 0.4422 0.4935
2

456.0 0.4182-0.3114 0.3589

663.0 0.3285 - 0.2442 0.2830 1.1354

433.0 0.5751 - 0.5453 0.5514
4

456.0 0.4181 - 0.3327 0.3944

663.0 0.3334 - 0.2922 0.3097 1.2555
New
flush 433.0 0.5984 - 0.5799 0.5868

6
456.0 0.4414 - 0.4277 0.4298

663.0 0.3567 - 0.3388 0.3451 1.3616

433.0 0.5974 - 0.5614 0.5838
8

456.0 0.4404 - 0.4055 0.4268

663.0 0.3557 - 0.3525 0.3421 1.3527

433.0 0.6294 - 0.5926 0.6116
9

456.0 0.4661 - 0.4235 0.4502

663.0 0.3764 - 0.3365 0.3606 1.4224 1.2493
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A graphical representation of the data illustrates with greater clarity the general

trends displayed by old flush and new flush in relationship to the control (seedling

flush). The seedling flush was used as an initial estimate of chlorophyll content in

young material (Figure 3.11). Chlorophyll absorbance in four year-old and older

trees of both flushes displayed a tendency to increase with tree age, indicating an

increase in chlorophyll content as the trees became more established. In these,

trees the absorbance of the new flush was higher than that of the old flush

indicating diminishing chlorophyll content as flush aged. It was interesting to note

that the chlorophyll content in two year-old trees was much greater in the old flush

than in the new flush, a pattern that was not continued in older trees. This

increased chlorophyll content in the older flush of the two year-old trees is

probably an indication of the growth stage of the tree. Black wattle trees undergo a

transition period from seedling to adult known as the juvenile phase, which is

associated with physiological and anatomical changes. Anatomical changes

include various changes such as variation in leaf structure (James et al., 1999),

whilst physiological changes include increases in rates of photosynthesis and

respiration (Huang et al., 2003). These changes therefore increase the demand for

many housekeeping functions; one of which was identified in this investigation as

a marked increase in the chlorophyll content of old flush that is often associated

with an increase in the photosynthetic rate.

Control

- -Old flush Combined chlorophyll absorbances
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0.6 year-old 2 year-old 4 year-old 6 year-old 8 year-old 9 year-old

Figure 3.11 Mean chlorophyll absorbance of old and new flush in all tree ages.



· 74 .

Statistical analysis of chlorophyll absorbance

Chlorophyll absorbance for all leaf and tree age treatments was compared in non­

identical diploid black wattle genotypes (that is, different trees) from the field. Five

age groups with 20 trees per age group were included in this comparison. An

analysis of variance (ANOVA) was conducted in order to investigate the sources of

variation in the different leaf and tree age treatments (Table 3.9). Significant

differences in chlorophyll absorbance values were identified between the different

trees utilized, between the different age groups and leaf types, as well as between

the different wavelengths within leaf and tree age treatments (p < 0.001 ).

Table 3.9 Summary of analysis of variance of chlorophyll absorbance and age

treatments.

Source of variation df ss ms vr F.pr

Tree 19 0.03807 0.00200 5.44

Tree. age 12 1.02435 0.08536 231.63 < 0.001

Wavelength 2 7.59635 3.79817 10310.00 < 0.001

Age. wavelength 24 0.35446 0.01476 40.08 < 0.001

Residual 602 (120) 0.22185 0.00036

Total 659 (120) 8.05542

df =degrees of freedom; ss =sum of squares; ms =mean square; vr =variance ratio; F.pr = F-statistic.

An analysis of the least significant differences (LSD) was calculated to interpret

the variation in chlorophyll absorbance values for all leaf and tree age treatments

at the three wavelengths examined (Table 3.10). The LSD revealed that the

chlorophyll absorbance data for all treatments were significantly different from the

control (seedling data) within each wavelength, with the exception of six year-old

old flush. Interestingly, not all age treatments were statistically different from one

another (Table 3.10). Letters have been used to distinguish statistical

differentiation with the chlorophyll absorbance ranked from lowest (a) to highest

(f).
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The LSD indicated in most cases that chlorophyll absorbance values of old flush

and new flush at a particular age did not differ significantly. However, those of two

year-aids were significantly different as indicated by the distance in LSD ranking

between two year-old new flush and old flush.

Table 3.10 LSD analysis of the mean chlorophyll content in diploid black wattle

with various age treatments.

Treatments
Mean chlorophyll

absorbance

Control 0.38674 c

New flush 2 years 0.37847 b

New flush 4 years 0.36929 a

New flush 6 years 0.4518ge

New flush 8 years 0.45046 e

New flush 9 years 0.47412 f

Old flush 2 years 0.43683 d

Old flush 4 years 0.36606 a

Old flush 6 years 0.39310 c

Old flush 8 years 0.44575 e

Old flush 9 years 0.44383 e

Treatments denoted by different letters are significantly different from each

other (p < 0.005); (LSD = 0.006883).

This investigation into the effects of leaf and tree age on the chlorophyll content

indicated a marked increase in chlorophyll absorbance as trees became older.

Moreover, this increase in chlorophyll content was more apparent in new flush

than in old flush. However, juvenile characteristics have been identified in two

year-old black wattle trees, one of which was a marked increase in chlorophyll

content. This distinctly higher level of chlorophyll in two year-aids was supported

by statistical findings and was likely due to a biological accommodation for the

increased physiological activities associated with this growth stage.
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3.3.3 Comparative analysis of ploidy on chlorophyll content

The effects of increased number of chromosome sets on chlorophyll content were

determined in diploid and tetraploid black wattle. For this investigation the only

previously identified tetraploid material that was available included seedlings,

bagged juveniles and two year-old trees, which was compared to equivalent

diploid material.

Three genetic lines per ploidy level with ten plants per line (repeats) were used for

this experiment. The repeats were cloned material and regarded as genetically

identical. Leaf samples from each plant were collected and stored temporarily.

Chlorophyll was subsequently extracted from the various leaf samples and

absorbance measured from 400 nm and 700 nm (visible light) in a standard UV/vis

absorbance spectrometer. Thereafter, the chlorophyll absorbance data were

recorded and analyzed in the same manner as that of the storage investigation

(see section 3.3.1).

The effects of ploidy on chlorophyll absorbance were determined in terms of the

following (see figure 3.12 for a schematic representation):

1. Chlorophyll absorbance values were holistically compared in order to

identify any obvious trends between ploidy levels,

2. Comparative analyses of chlorophyll absorbance values within diploid and

tetraploid black wattle were undertaken, and

3. Comparative analyses of chlorophyll absorbance values between diploids

and tetraploid black wattle were undertaken.



· 77 .

10 plant repeats per line 3 different genetic lines

10 plant repeats per line 3 different genetic lines

10 plant repeats per line 3 different genetic lines

Gene
dosage or

ploidy levels

10 plant repeats per line 3 different genetic lines

10 plant repeats per line 3 different genetic lines

10 plant repeats per line 3 different genetic lines

Figure 3.12 Flow diagram of the comparative analyses undertaken to study the

effects of chromosome dosage on chlorophyll content.

Trends in chlorophyll absorbance spectra

Chlorophyll absorbance spectra of diploid and tetraploid black wattle were

compared to identify possible trends. In general, chlorophyll absorbance profiles

for both levels of ploidy maintained the expected profile, with peaks at 433 nm,

456 nm (shoulder) and 663 nm (Figure 3.13).

In diploids, chlorophyll absorbance values of seedling material was distinctly lower

than that of bagged and field material, with field material displaying the highest

chlorophyll absorbance values at all wavelengths (Figure 3.13A). Similar trends

were identified in tetraploid black wattle (Figure 3.138).

Different chlorophyll absorbance values of the three different sample types for both

diploids and tetraploids were pooled in order to obtain an improved understanding

of the chlorophyll absorbance trends between the two ploidy levels (Figure 3.13C).

The pooled chlorophyll absorbance values of diploids were distinctly lower than

those of the tetraploids.
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Figure 3.13 Chlorophyll absorbance of seedling, bagged and field material of

dfferent ploids: A: diploids and B: tetraploids and, C: overall

comparison of diploids vs tetraploids.
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Comparison of chlorophyll absorbance values

A detailed analysis was undertaken of the chlorophyll absorbance values obtained

for both diploid and tetraploid black wattle (Table 3.11). When the mean

chlorophyll absorbance (A) for each of the different ploidy levels at the three

wavelengths 433 nm, 456 nm and 663 nm were compared, it was found that the A

values of the tetraploids were roughly 40 % greater than that of the diploids. Not

surprisingly, this trend was also reflected by the total mean chlorophyll absorbance

(TA), calculated as the sum of the absorbance values at 433 nm, 456 nm and 663

nm.

The total mean absorbance within a ploidy level (PTA), calculated as the mean of

TA of all the genetic lines within the level, showed a distinct difference of 40 %

between the diploid and tetraploid groups.
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Mean chlorophyll absorbance of diploids and tetraploids from

different sources.

Mean total
Ploidy Source of Wavelength Range of mean Mean Total mean mean
level materials 1 (nm) absorbance absorbance absorbance absorbance

(A) (TA) within ploidy
(PTA)

433 0.4778 - 0.4810 0.4797
seedling

456 0.3504 - 0.3535 0.3523

663 0.2748 - 0.2777 0.2766 1.1086

433 0.4871 - 0.5089 0.4948

Diploid
bags

456 0.3564 - 0.3782 0.3641

663 0.2828 - 0.3046 0.2905 1.1494

433 0.5184 - 0.5268 0.5235
field

456 0.3841 - 0.3910 0.3885

663 0.3084 - 0.3145 0.3123 1.2243 1.1607

433 0.8095 - 0.8184 0.8151
seedling

456 0.5921 - 0.5996 0.5969

663 0.4697 - 0.4746 0.4740 1.8860

433 0.8185 - 0.8400 0.8314

Tetraploid
bag

456 0.6005 - 0.6163 0.6119

663 0.4778 - 0.4954 0.4883 1.9316

433 0.8696 - 0.8800 0.8762
field

456 0.6514 - 0.6572 0.6548

663 0.5239 - 0.5317 0.5287 2.0597 1.9591

i Materials sourced consisted of three genotypes, each containing ten clones (repeats).

A graphical representation of the data illustrates the general trends displayed by

diploids and tetraploids with respect to chlorophyll absorbance, (Figure 3.14).

Chlorophyll absorbance values clearly displayed the difference in chlorophyll

absorbance between the different genetic lines of the diploids and tetraploids at

each of the three wavelengths.
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Comparison of diploid and tetraploid chlorophyll absorbance at
wavelengths 433 nm, 456 nm and 663 nm.
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Figure 3.14 Comparison of mean chlorophyll absorbance trends at wavelengths

433 nm, 456 nm and 663 nm of diploids and tetraploids.

Statistical analysis of chlorophyll absorbance

Chlorophyll absorbance values were compared in diploid and tetraploid black

wattle. Three genetic lines per ploidy level with ten plants per line (repeats) were

included in this comparison. An analysis of variance (ANOVA) was conducted in

order to investigate the sources of variation in the different ploidy levels (Table

3.12). Significant differences in chlorophyll absorbance values were identified

between all sources of variation (p < 0.001), except for chlorophyll absorbance

between lines at a particular wavelength within the same ploidy level (p = 0.984),

and for chlorophyll absorbance between sample types within lines at a particular

wavelength within the same ploidy level (p =1.000).
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Table 3.12 Summary of analysis of variance for chlorophyll absorbance at

different ploidy levels.

Source of variation df ss ms Vr F.pr

Repeats 9 0.785 E-02 0.873E-03 9.94

Repeats. sample type 5 1.077E+01 2.154E+00 2.454E+04 < 0.001

Wavelength 2 7.965E+00 3.982E+00 4.536E+04 < 0.001

Line 2 0.722E-02 0.361 E-02 41.12 < 0.001

Sample type. wavelength 10 0.436E+00 0.436E-01 496.24 < 0.001

Sample type. line 10 0.118E-01 0.118E-02 13.45 < 0.001

Wavelength. line 4 0.333E-04 0.833E-05 0.09 0.984

Sample type. wavelength. line 20 0.114E-03 0.571 E-05 0.06 1.000

Residual 447 0.419E-01 0.878E-04

Total 539 1.924E+01

df =degrees of freedom; ss =sum of squares; ms =mean square; vr =variance ratio; F.pr =F-statistic.

An analysis of the least significant differences (LSD) was calculated to interpret

the variation in chlorophyll absorbance values for each of the two ploidy levels at

the three wavelengths examined (Table 3.13). The LSD revealed that chlorophyll

absorbance values for seedlings, bagged material and field material (sample

types) were all significantly different within the diploids as well as within the

tetraploids.
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Table 3.13 LSD analysis of the mean chlorophyll content in diploid and

tetraploid black wattle.

Sample Wavelengths (nm)
Ploidy Mean

types 433 456 663 Mean

2x seed 0.48776 b 0.35535 g 0.28079 m 0.37463 s

2xbag 0.49462 a 0.36390 h 0.17047n 0.34300 t
3.4821 A

2x field 0.52360 c 0.38857 i 0.312300 0.40816 u

4x seed 0.81523 e 0.59700 j 0.47411 P 0.62878 v

4x bag 0.83162f 0.61213k 0.48854 q 0.64410 w
5.8773 B

4x field 0.87597 d 0.65469 I 0.52855 r 0.68640 x

Treatments denoted by different lower case letters are significantly different from each other (p < 0.005);

(LSD = 0.004754). Treatments denoted by different capital letters are significantly different from

each other (p < 0.005); (LSD =0.002745).

This investigation into the effects of chromosome dosage on chlorophyll content

identified a distinct difference between the two levels of ploidy, thereby indicating

the potential to employ chlorophyll absorbance assessments as a means to

identify and differentiate between diploid and tetraploid black wattle trees.

Additionally, the increase in chlorophyll content from seedlings to bagged juveniles

to field material of both diploid and tetraploid black wattle lends further to the

findings of the previous age studies (Section 3.3.2) where chlorophyll content was

shown to increase as the tree matured.
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3.4 SYNOPSIS OF COMPARATIVE CHLOROPHYLL CONTENT ANALYSES

The aim of this research project was to find rapid and reliable technologies to

discern between diploid and tetraploid black wattle. The two technologies that

were investigated in this research project were the quantification of stomatal

chloroplasts and chlorophyll content in relation to ploidy level. Whilst chloroplast

quantification could be undertaken without preliminary experimentation, the

chlorophyll content quantification, required initial assessments regarding

chlorophyll degradation (Sartory and Grobbelaar, 1984). The tendency of

chlorophyll to degrade within black wattle needed to be assessed before the ploidy

discriminating power of the technology could be investigated.

There are several factors that affect chlorophyll degradation. The two factors that

were identified and assessed in this research project were that of storage

conditions and the ages of leaves and trees. These factors were only assessed in

diploid material due to a lack of equivalent tetraploid material. However, to

facilitate comparative assessments, tetraploid data generated by the comparative

ploidy assessment studies (Section 3.3.3) were included. Chlorophyll absorbance

values for these tetraploid samples were introduced into comparative analyses

with the diploid storage data, as well as with the diploid age data. These

comparisons could provide valuable insights about how tetraploid chlorophyll

absorbance would react under different storage treatments and different age

groups.

3.4.1 Comparative overview between diploid and tetraploid chlorophyll

absorbance

Diploid chlorophyll absorbance values of stored material were compared to mean

tetraploid chlorophyll absorbance values of fresh material. It was found that all

absorbance values of the three different methods of storage did not overlap with

that of the tetraploid spectral graph (Figure 3.15). When the differences in



· 85 .

chlorophyll absorbance values of the different storage treatments of the diploids

were superimposed on the tetraploid spectral graph, there was no overlap. This

implies that if tetraploid material requires storage, chlorophyll absorbance values

will still be distinctly different to any diploid absorbance values.

Comparison of chlorophyll absorbance across the
storage conditions with control and averaged

tetraploid absorbance
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Figure 3.15 Chlorophyll absorbance of the various diploid storage treatments as

compared to mean tetraploid chlorophyll absorbance.

Diploid chlorophyll absorbance values of material of different leaf and tree ages

were compared to mean tetraploid chlorophyll absorbance values of fresh

material. The chlorophyll absorbance spectra obtained from combined flush trees

of different ages were clearly distinct from those of the tetraploid absorbance

spectra (Figure 3.16). When the chlorophyll absorbance of the differently aged

material of the diploids was superimposed on the tetraploid spectral graph, there

was no overlap. Thus, chlorophyll absorbance values of tetraploid material of any

tree age or leaf type would still be distinctly different to any diploid absorbance

values.
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Figure 3.16 Chlorophyll absorbance of the various types of diploid material as

compared to mean tetraploid absorbance.

3.4.2 Comparative summary between diploid and tetraploid diagnostic tools

Three different diagnostic tools namely, quantification of chloroplasts, chloroplast

arrangements and quantification of chlorophyll content were investigated. All these

procedures displayed high discriminatory power between diploid and tetraploid

black wattle, were non-overlapping and easy to perform at low cost (Table 3.14). A

possible limitation was that of material type, where the quantification of stomatal

chloroplasts and stomatal chloroplast arrangements required the use of only

young, fresh leaves. The quantification of chlorophyll content, on the other hand,

could utilize fresh leaf material of any age as well as leaf material preserved for a

limited period of time.
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Comparative assessment of the various diagnostic methods in

black wattle.

Diagnostic Discriminating Non Difficulty Preparation Cost Age of

tool ability overlap rating Time factor material required

Stomatal

chloroplast Yes Yes Very low 15 minutes
Very

Young, fresh leaves

arrangements
inexpensive

Stomatal

chloroplast Yes Yes Low 30 minutes
Very

Young, fresh leaves

frequency
inexpensive

Chlorophyll
Yes Yes Intermediate 1 hour Intermediate Any tree and leaf age *

absorbance

* fresh preferred
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CHAPTER 4

DISCUSSION AND CONCLUDING REMARKS

INTRODUCTION

The effects of polyploidy on plant physiology have been of longstanding interest to

plant-breeders worldwide. This interest in polyploidy arises from the associated

physiological and biochemical changes that the polyploid plant exhibits.

Physiological changes often manifest on the plant as gigantism of organs which

include fruits, flowers and leaves. It is also associated with an increase in the

number of organelles such as the number of stomatal chloroplasts and nucleoli.

Also, the number of structures such as stomata is often increased (Warner and

Edwards, 1993). Furthermore, these physiological changes typically have

biochemical implications such as an increased production of some proteins and

pigments as well as increased rates of enzyme-related activities, for instance

respiration and photosynthesis (Warner and Edwards, 1993). These ploidy-related

manifestations are often utilised in breeding programmes to increase the size and

quality of plant products as well as a tool to discriminate between polyploids and

diploids.

4.2 POLYPLOIDY AND STOMATAL CHLOROPLASTS

Cellular volumes are correlated to the amount of nuclear DNA in both diploid and

polyploid plants (Price et al., 1973). Typically, cell size increases with an increase

in DNA material since more space is usually required to house the additional

chromosomes. The optimization of physiological efficiency in larger cells is

required to accommodate the increased cell size. This is usually accomplished by

increasing the number of organelles, such as nucleoli and chloroplasts within the

cell for more efficient cellular management (Butterfass, 1973; Warner and

Edwards, 1993).
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An important anatomical consideration of polyploidy is the effect of genome size

on the size and number of stomatal chloroplasts (Butterfass, 1973). There is a

strong correlation between the amount of nuclear DNA and the number of

chloroplasts in stomatal guard cells in many polyploids; however, the actual nature

of this relationship may vary (Butterfass, 1973). Ellis and Leech (1985) suggested

that the increase in nuclear material results in an accompanying increase in cell

size. In the same way the number of chloroplasts also increases thereby

compensating for the increased cell size. The increase in the number of stomatal

chloroplasts is however, not universal; stomatal chloroplasts may increase in

proportion to ploidy level, or, the increase may be random depending on the

species (Pyke and Leech, 1987). These relationships are useful in discerning

levels of polyploidy in various species. It is however a requirement that the nature

of the relationship is established prior to its utilization.

Stomatal chloroplast number, an indirect method of discerning polyploidy, has

been of scientific interest since the beginning of the previous century (Mochizuki

and Sueoka, 1955). Chloroplasts in stomatal guard cells are comparatively easy to

study in epidermal tissue of plants. In 1930, Hamada and Baba were the first to

show that stomatal chloroplast number has a tendency to increase with an

increase in ploidy. Furthermore, in 1955, Mochizuki and Sueoka showed that the

tendency of chloroplast number to increase with an increase in ploidy was little

affected by the type and position of leaf sample used. Since these early

experiments, the quantification of stomatal chloroplast numbers has become a

popular technique in discerning ploidy levels with success in several species such

as alfalfa, Medicago sativa (Bingham, 1968), mulberry, Morus spp. (Hamada and

Baba, 1930), potato, Solanum tuberosum (Hermsen and De Boer, 1971), red

clover, Trifolium pratense (Nuesch, 1966), white clover, T. repens (Najcevska and

Speckmann, 1968), sugar beet, Beta vulgaris (Mochizuki and Sueoka, 1955), and

turnips, Brassica rapa (Speckmann, et al., 1967).

In black wattle, the number of stomatal chloroplasts was found to be highly

correlated to the level of ploidy. In diploid and tetraploid guard cells the mean

number of stomatal chloroplasts was significantly different (p < 0.01);
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approximately 9.89 ± 0.170 in diploids and 22.75 ± 0.170 in tetraploids (Beck,

Fossey and Mathura, 2003b). It was interesting to note that the mean number of

chloroplasts in tetraploids was more or less twice that of the diploids, displaying

little variation between the different guard cells of a black wattle plant. However,

between plants of the same line, significant differences in the number of

chloroplasts were noted (p < 0.01). This suggests that trees of different genotypes

should be sampled to establish whether the range of chloroplast numbers lies

within the currently known range. However, whilst the range of measurements of

the different plants within a ploidy level showed significant differences (p < 0.01),

the range of chloroplast numbers of the diploids did not overlap with the range of

chloroplast numbers of the tetraploids, and were thus found to be significantly

different from each other. An analysis of least significant differences (LSD) was

performed and supported the findings of significant differences between plants

within lines (LSD =0.6266), between lines of different ploids (LSD =0.6266), as

well as between different ploids (LSD =0.2802).

In general, attempts have been made to fit a model to the distribution of stomatal

chloroplasts with varying levels of complexity. Mochizuki and Sueoke (1955)

suggested that in sugar beets the relationship between the number of stomatal

chloroplasts and the level of ploidy was more geometric in nature than arithmetic

whilst on the other hand, Yudanova et al. (2002) suggested that stomatal

chloroplasts in sugar beets has a binomial relationship.

In black wattle the nature of the relationship between the number of chloroplast in

the stomatal guard cells and ploidy level was found to be less complex. This

investigation revealed that the ratio of the mean number of chloroplasts in diploids

to that of tetraploids was approximately 1:2, which is supported by findings in other

species such as alfalfa, Medicago sativa (Skinner, 1994), watermelon, Citrullus

lanatus (McCuiston and Wehner, 1994) and cotton, Gossypium spp. (Chaudhari

and Barrow, 1975), where the ratio of the number of chloroplasts in diploids to

tetraploids was also 1:2. On the other hand, the ratio of diploid and tetraploid

stomatal chloroplasts was found to be slightly higher in species such as clover,

Trifolium spp. (Najcevska and Speckmann, 1968), potato, Solanum spp. (Hermsen

and De Boer, 1971), and turnip, Brassica spp. (Speckmann, et al., 1967). It is
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important to note that whilst many species such as wheat and maize show positive

correlations between genome size and stomatal chloroplast numbers, this is not

always true, as was shown with Bryum casepitium, Funaria hygrometrica,

Physcomitrium piriforme and Dumortiera hirsuta where the number of chloroplasts

was found to be constant with increasing levels of ploidy (Mochizuki and Sueoka,

1955)

An important finding adding to the success of the utilization of chloroplasts in the

indirect identification of polyploidy was the differential arrangements of the

chloroplasts in the black wattle guard cells. Stomatal chloroplasts displayed

distinct and regular arrangement configurations in diploids that contrasted with

tetraploids. In diploid guard cells, the chloroplasts were significantly less than

tetraploids and were polarized towards the ends of the kidney shaped cells.

However, in the tetraploids, no such polarization was observed; instead, the

chloroplasts were evenly distributed along the periphery of the cells. Due to the

paucity of available literature, the only comparative finding was by Bingham (1968)

in alfalfa, where the polarization of chloroplasts was observed in photographs of

stomatal chloroplasts of diploid, triploid, tetraploid and hexaploid. Stomatal

chloroplast arrangements may prove to be a valuable method to perform

preliminary identifications of either diploid or tetraploid black wattle.

Other methods of ploidy assessment in black wattle have been attempted with

varying levels of success. These methods include the determination of the

stomatal frequency, stomatal guard cell length measurements as well as

chromosome counting by root tip squashes. In black wattle, stomatal guard cell

lengths and frequency were found to change in relation to ploidy level and was

thus established as a reliable method of discerning between diploids and

tetraploids (Beck et al., 2003a). Whilst this finding is supported by similar results

found in other species such as red clover Trifolium pratens, ploidy level often

needs to be verified by chromosome number determination (Nuesch, 1966). In the

case of black wattle, chromosome number determination through root tip

squashes is problematic. Whilst Moffett and Nixon (1960) were able to quantify

black wattle chromosome numbers in this manner, it was later found to be difficult

to reproduce. Black wattle chromosomes display insufficient spreading as a result
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of stickiness and clumping, thereby reducing visibility and the accuracy of the

assessment. This problem has often been encountered (Chaudhair and Barrow,

1975), thus emphasizing the need for indirect methods of ploidy discernment.

The results of this investigation indicate that stomatal chloroplast frequencies may

be used to accurately discern between diploid and tetraploid black wattle trees of

different ages, which is of great significance in black wattle breeding programmes

since it is relatively quick and inexpensive to execute. That is, provided that the

leaves that are used are alive, fresh and young at the time of examination. The

benefit of this technology lies in its ability to identify tetraploids at the seedling

stage without any laborious cytogenetic analyses.

4.3 POLYPLOIDY AND CHLOROPHYll CONTENT

Polyploidy usually results in physiological changes often with biochemical

implications. These changes tend to affect biochemical processes such as

physical diffusion rates of CO2, biochemical and metabolic functioning such as

protein activity and protein production in, for example, the rate of photosynthesis.

Cellular photosynthetic rates are often correlated with the amount of DNA in a cell.

Therefore, changes in anatomical structure as a result of an increase in

chromosome number often influence the biochemistry of the entire plant (Warner

and Edwards, 1993).

Increased ploidy is known to affect the content and types of proteins in higher

plants. Evidence suggests that an increase in genome size could influence some

of the photosynthetic pathways of the cell, thus affecting the production and

concentration of various biochemical constituents and organelles within the cell

(Warner and Edwards, 1993). Biochemical constituents may include

photosynthetic enzymes such as ribulose-1,5-bisphosphate carboxylase (RuBPC)

or photosynthetic pigments such as chlorophyll. Hence, an increase in gene

dosage may result in an increase in protein production, together with an increase

in enzyme activities in a cell. However, this is not always the case, and therefore



· 93 .

requires suitable investigation to verify such occurrences. In Saccharomyces

cerevisiae , for example, the increased gene dosage was associated with an

increased amount of ethanol produced by a cell (Ciferri et al., 1969; Dilorio et al.,

1987). Similarly, polyploid maize displayed increased concentrations of chlorophyll

and increased photosynthetic enzyme activities due to increased gene dosage

(Baer and Shrader, 1985). In alfalfa, Medicago sativa the activity and amount of

RuBPC as well as the amount of chlorophyll doubled with ploidy level (Warner and

Edwards, 1993).

The effects of an increase in the number of nuclear genomes on chlorophyll

content have been evaluated in diploid and tetraploid black wattle. It was shown in

black wattle that the number of chlorophyll-containing chloroplasts increased from

diploids to tetraploids (this work, and in Beck, Fossey and Mathura, 2003b). It was

therefore anticipated that the chlorophyll concentration would increase as well, as

was found by various authors for a number of other species (Joseph et al., 1981;

Meyers et al., 1982; Leech et al., 1985; Warner and Edwards, 1993). In this

investigation chlorophyll absorbance was utilised as a tool to quantify increased

concentration of chlorophyll on the basis of Beer's Law (Harwood and Moody,

1989), thus providing a possible means to identify polyploids. The data revealed

that the overall chlorophyll content in the diploids was 40 % less than that of

tetraploids. This separation in chlorophyll content between the two ploidy levels

differed significantly (p < 0.01) thereby providing an accurate measure of ploidy

level in black wattle. Interestingly, in alfalfa, chlorophyll content and other proteins

were shown to almost double from diploid to tetraploid plants (Molin et al., 1982),

whilst in tall fescue plants chlorophyll concentration increased significantly

according to a quadratic function from tetraploid to hexaploid to octaploid to

decaploid, with the maximal chlorophyll content in the octaploids (Joseph et al.,

1981). A similar result was observed in C4 grass Panicum virgatum where

chlorophyll content and other soluble proteins increased from tetraploid to

octaploid by 40 - 50 % (Warner et al., 1987). However, in citrus, Citrus sinensis,

cellular nitrogen and chlorophyll contents were found to increase by only 25 %

from diploid to tetraploid citrus (Romero-Aranda et al., 1997).
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Interestingly, this tendency of chlorophyll content to increase with an increase in

ploidy level is not always apparent. Ploidy determination on the basis of a change

in chlorophyll content might be misleading if the nature of that change has not

been predetermined. This change in chlorophyll content needs to be identified in

relation to ploidy level since not all species display a proportional increase in

chlorophyll content with increasing ploidy level. For instance, Warner and Edwards

(1989) showed that chlorophyll content remained constant in various levels of

ploidy in Atriplex confertifolia; diploid, tetraploid, hexaploid, octaploid and

decaploid, whereas other proteins were found to increase. Similar evidence was

presented for the castor bean, Ricinus communis, where the relative chlorophyll

content was found to be similar in haploid, diploid and tetraploid plants (Timko and

Vasconcelos, 1981).

Another noteworthy tendency of chlorophyll is its propensity for degradation. It was

found that the chlorophyll in leaf samples become highly susceptible to

degradation as the cells begin to die and decompose, moreover, they become

increasingly light and temperature labile (Chabot and Chabot, 1977; Sartory and

Grobbelaar, 1984). Thus the factors that exacerbate chlorophyll degradation need

to be identified and assessed prior to using chlorophyll absorbance as a diagnostic

tool (Herve and Heinonen, 1982). In black wattle, the distance of the collection site

from the laboratory and the large variety of trees available were identified as two

potential factors that could assist the chlorophyll degradation process in this

research. Hence, appropriate leaf storage methods and types of leaf material were

examined in black wattle in order to ascertain how best to reduce chlorophyll

degradation.

Firstly, the effects of storage methods on chlorophyll content were determined in

diploid black wattle. Two generally utilised methods of preservation were

investigated, namely that of drying and storage at room temperature as well as

freezing of the leaf material. Chlorophyll was extracted from these samples after

either one week of storage or one month of storage. In black wattle, absorbance

values of chlorophyll extracted from leaf material on the day of collection (day-D)

was used as the control. An analysis of variance (ANOVA) revealed that the

chlorophyll absorbance values of the different storage treatments were all
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significantly lower than the chlorophyll absorbance values of the control

(p < 0.001). Leaves that were dried for seven days resulted in the least amount of

chlorophyll degradation followed by 28 day ice storage, seven day ice storage and

lastly 28 day dried storage. These findings were in agreement with that of Jones

and Lee (1982) in studies involving several isolated algae-containing water

samples whereas Lenz and Fritsche (1980) reported that no significant

degradation of chlorophyll occurred in similar water studies even after six months

of cold storage. Although freezing is an easy and often effective means of

preservation, its success is largely dependant on the species and the type of

materials utilised.

Chlorophyll absorbance values within dried and frozen treatments were compared

with respect to storage time periods of one week and one month. It was noted that

whilst all treatments decreased from the control (day-O), dried samples responded

differently to storage periods as compared to frozen samples (LSD = 0.003).

Chlorophyll absorbance values of dried material decreased steadily over time from

control to seven-day storage to one-month storage, whereas, in the case of frozen

material, a similar trend could not be identified. A greater decrease from the

control to seven day ice storage was recorded than for the decrease from the

control to 28 day ice storage, which indicated a type of 'chlorophyll recovery

system' (Strand and Lundmark, 1987).

Secondly, the effect of tree and leaf ages in diploid black wattle was determined.

Two types of leaf flushes, old and new flush, were examined in relation to different

tree ages; two, four, six, eight and nine year-old; in order to assess whether the

choice of material impacts on chlorophyll absorbance values. These chlorophyll

absorbance values were compared to young diploid seedling material as a base­

value as well as a control. Chlorophyll absorbance of seedling material was used

as a base or starting absorbance value since seedlings were the youngest leaf

material available. Furthermore, this control absorbance was chosen since

seedlings have, in essence, only one type of flush. An analysis of variance

(ANOVA), revealed significant differences between tree ages and between leaf

ages (p < 0.001). An analysis of least significant differences revealed that new

flush of all tree age groups were significantly different from the control
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(LSD =0.006). This was mostly true for old flush, except for six year-old old flush

which was not significantly different from the control (LSD =0.006).

The chlorophyll absorbance values of both old and new flush of different age

groups produced spectra for which no specific trends could be ascertained. This

was probably due to the fact that the identification of old and new flush was based

solely upon a visual selection process which, may not have accurately

distinguished between the two flush types. Therefore, the data from the two flush

types were pooled and revealed a marked increase in chlorophyll absorbance as

trees became older. Moreover, this increase was more apparent in new flush than

in old flush. However, juvenile characteristics were identified in two year-old black

wattle trees, where a marked increase in chlorophyll content was noted, likely to

accommodate the increased physiological activities associated with this growth

stage. Thus, in black wattle plant material two years and younger would be

expected to have a characteristic variable chlorophyll absorbance value. This

trend of an increase in chlorophyll content with an increase in tree age was also

supported by the ploidy data where chlorophyll content was shown to increase

from seedlings to bagged juveniles to field material in both diploid and tetraploid

black wattle.

A comparison of the effect of storage and type of leaf material on chlorophyll

absorbance of diploid black wattle was compared to that of available data of

tetraploid black wattle. Chlorophyll absorbance values revealed that there was no

overlapping of absorbance values between diploids and tetraploids for both the

storage method-types as well as the types of leaves utilised.

The data generated from this investigation revealed that chlorophyll extraction

from black wattle leaves and assessments of chlorophyll absorbance is a potential

method to distinguish between diploid and tetraploid black wattle trees of any age

group. An advantage of this technology is that it is rapid, reliable, cost effective

and accurate and could be of great value to the black wattle industry.
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4.4 CONCLUDING REMARKS

In this investigation techniques were developed that allowed for the discernment of

diploid and tetraploid black wattle. This investigation revealed that stomatal

chloroplast numbers and chlorophyll content increased with an increase in

chromosome number from diploid to tetraploid. The difference in stomatal

chloroplast frequency was distinct and non-overlapping making it possible to use

chloroplast counts and chloroplast arrangement in stomatal guard cells as a

diagnostic measure of ploidy in young seedlings.

In the same way, chlorophyll concentration may also be used to distinguish

between different ploids. The data revealed that the method of leaf storage, the

type of leaf, as well as the age of tree did not influence the discriminating power of

this technology.

The discerning power of this technology is of great value to the future research in

black wattle breeding programmes. The ploidy level of adult material can now be

accurately identified, both easily and cost effectively, making it possible to employ

these newly developed techniques in any black wattle breeding programme where

different ploids are utilised.

Guidelines for the introduction of these detection techniques into black wattle

breeding programmes are as follows (see following page):
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GUIDELINES FOR THE APPLICATION OF THESE INDIRECT POLYPLOIDY DETECTION

TECHNOLOGIES

• Technology has been established for diploids and tetraploids, therefore when applied to

triploids; comparative pilot investigation is suggested for all the detection procedures.

• If this technology is to be transferred to other species, extensive prior analyses will be

required to establish whether or not readings overlap between the different ploids.

Chloroplast numbers and chloroplast arrangements

• Leaf material selected for chloroplast number determination should be fresh, alive and

viewed within two hours of slide preparation.

Chlorophyll content

• Storage considerations need to be taken into account if material is transported over long

distances. This study showed that the length of storage dictated the medium of storage.

Should material be stored for over a week, then freezing of samples is preferred, whereas

drying of samples is adequate if samples need to be stored for less than a week. In either

event, it should be noted that chlorophyll integrity will be compromised if extraction is not

immediate, albeit only marginally in black wattle.

A number of questions that require further investigation have been revealed by this

research. There are questions such as:

•

•

•

•

•

•

•

Chlorophyll contains magnesium as a core metal holding the structure of the

molecule together. Therefore, will demetallation and quantification of this ion by

means of atomic absorption spectroscopy be a more effective ploidy discerning

tool?

To what extent will different genotypes influence the different discriminating

procedures?

To what extent can the content of other pigments be used to discriminate between

different ploids?

To what extent does light intensity influence chlorophyll content?

Does this technology have relevance in evaluating ploidy levels in mixaploids?

Is this technology relevant in evaluating ploidy levels in allopolyploids?

How effective will flow cytometry be in discriminating between different ploids?
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SYNOPSIS

The arrangements of chloroplasts and numbers within the stoma were examined as a rapid indirect
technique for the identification ofploidy level in black wattle (Acacia mearnsii de Wild). Chloroplast counts
were made from stomatal guard cells from leaves of known diploid (2n=2x=26) and tetraploid (2n=4x=52)
plants grown under nursery conditions. Three-month-old plant material was used and five plants were
chosen at random across six lines (3 diploids, 3 tetraploids). For diploids the mean number ofchloroplasts
per stoma was 9,89 ± 0,170 and 22,75 ± 0,170 for tetraploids. Chloroplasts in diploid guard cells were
polarized into the corners, while evenly distributed in the tetraploids. These differences notedbetween the
ploidy levels were significant (P<O,Ol), The analysis of stomatal chloroplast number and arrangement
have proven to be an accurate indirect technique to distinguish between diploid and tetraploid black
wattle.

Key\yords : black wattle, chloroplasts, ploidy, stoma

INTRODUCTION

Black wattle (Acacia meamsii de Wild), which
originated from Australia, was introduced into South
Africa in 1864 (Beard, 1957). Following early
plantation success, black wattle established its
significance in the commercial forestry industry as a
high quality tannin, pulp, firewood and charcoal
producer. Albeit the usefulness and economic boosting
potential ofA. m.eamsii in South Africa (in the absence
of its natural competitors) it is also an aggressive
colonizer and has been classified as one of the top
alien invader species of indigenous vegetation. This
species produces between 65 000 to 90000 seeds per
kilogram, which are capable of remaining viable for
many years and still maintain 50-80St- germination
rate and thereby suppre;:sin;;- natLll'al vcgC:t<1tion
(Her-der"J",. 1959 ; 19~12; 1905; J Ob':i', 2000; SChUI1I~ln 11

and Little. 1995; Turnbul! et Cll., 1998). It i" \\'ell
known tklt inv<l.ding alien plants ha\'o significn:lt
impi1cts on the economy (Kunwr and Singh, 1998 I.

The i,,\'as;oT1 ofn::i~i';c \....oocJiand,; by A. IIlE'CI/'llsii i.3 a
serious problem. Various rccommend,ltions to combat
wnttle have been discussed, such as physical (hand
clearing, burning). chemical (xenobiotics, herbicide::;)
and biological (seed-feed ing insects) mechanisms wi th
mini mal economic ;,:tl',l: n (a nd prod L1ct 10ss)(Dol111CI Iy,
19:36; Fcclt's and Little, 199;3; Eay, 199,!; 1\10ll i1Ilc1

Southern Africali Forcst,y JOllI"IIClI-No. 198, July 2003

Trincler, 1992; Pieterse and Boucher, 1997).
Another method of limiting the spread of wattle

outside plantation boundaries might be to cultivate
polyploids. The increased number of genomes in
autoploidy gives rise to abnormal variable meiosis
dLle to many different possible chromosome pairing
associations. This results in unbalanced chromosome
numbers in the gametes and subsequent semi-sterility
or even complete sterility, thus restricting the
contribution ofseeds to the existing seed bank (Anon,
1974; Chaudhari and Barrow, 1975; Ramsey and
Schem~ke, 1998). The polyploidization technique to
prod LIce triploids oflow fertility has been exploited by
the frLlic plant breeding industry for years to produce
seed le,;;) frui t including banann (Ortiz and Vuylsteke,
1998), C, Citrus hybrid (Cavalcante et cd., 2000) and
meli)ll I Ezura ct cd., 1993). Autotetraploids are
f;,e;~l'l'.::Y prGducec1 by use of spindle inhibitors
(comr.-.,jnly colchicine) that prevent microtubule
fonnati,jn and chromosome migration at anaphase
(Blake,;;!eyct al., 2002). Colchicine-induced tetraploidy
in the Acacia species has orlly been reported for A.
meClrllsii (i\foffett and Nixon, 1960). Triploids are
usually prod uced by crossing diploids wi th tetraploids
and should also prcsent rcduced fertility duc to
abnormal, variable meiosis and the formation of
unbnlaocecl gam€'tes (Anon, 1974; Chaudhari and
BCdTO·.':, 197:5; Rams;:'y a"cl Schcmskc, 1995).
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Given the various ploidy levcls and self­
incompatibility in the Acacia genus, an cffcctive
chromosome counting method is paramount if
polyploidization is to be used in the breeding
programme (Bennett and Leitch, 1995; Kenrick and
Knox, 1989). Traditional ploidy diagnostic methods
such as chromosomes counts of Feulgen stained root
tip squashes have been u:oed but due to the s:>1al1
sized chromosomes and lack of efficient spreading,
t.he results are unreliable and inaccurate and labour
intensive (Mukherjee and Sha1'ma, 1993; \VRI, 1951/
52). It is therefore necessary to !i;1CI other inclirc'ct,
rapid and reliable procedures for ploidy determi nation
in A. mearl1sii.

Pollen grains, stomata length and frequency <15
well as numbel' of chloroplasts have provcn to be
reliable indirect estimates ofploicly (Bingh<1m, 19G8;
Butterfass, 1960; Najcevska <1nd Speckmann, 19G3;
Tan and Dunn, 1973). Stomatal lengths have been
used previously and reliably in Trifolium pratellse
(Evans, 1955), J1edicago satil'a (Chaudl1<1ri and
Barrow, 1975; Speckmann et al.,1965), Lolium
l7l11ltiflora, L .perelllle, BroJlllls illemlis (Tan and
Dunn, 1973), A. mearnsii (Beck et al., 2003), alfalfa,
mulberrY,111oru s spp, pota to and SolCUll/m tu beroslIm
(Chaudhari and Barrow, 1975).

A more accurate, direct techniquc such as Do\',­
cytometry enables deoxyribonuclcic acid (D:\A)
amounts to be estimated from leaf tissue. It is a rapid
technique commonly used, hO\\'c\'cr, morc cmpirical
research is required before this can be applicd to A.
mearnsii (Dolezel et al., 1992). In this invcstigation
stomatal chloroplast counts wcre ".;se.-=sed as <1 rcli<1ble
and rapid indirect method for detecting ploidy IC\'cls
in A. mearl1sii.

MATERIALS Al';'D METHODS

Plant Material

Seeds from six different lines of A. n;ecIIIsii \\'cre
collected and germinated undcr nursery condition;::.

The lines consisted of three diploids 017, 272,283)
und thrICe colchicine-induced tetraploids (C19/4SI19,
C19/4S/20, C25148/05). The latter was obtained from
experiments done em'lier at the Wattle Research
Institute (WRI) and confirmed via root tip squashes
(WRI, 1950). Fi vc plants from each line \vere randomly
selected for experimentation.

Stomatal Chloroplast Counts

A razor blade was used to strip a thin layer from the
ab<.1xial surface oftlw pinnulc and placed on a gla%
slide and mounted with a drop of stain 0: 3 Iodine:
Potassium in 100ml of distilled water). Cover slips
were placed on slides and viewed immediately as
slides degrade with in 2 hours and visibili ty is retarded.
Fifteen stomatal cells per plant were observed for
chloroplast nnalysis using n light microscopc at X40
magni fication.

Statistical Analysis

Data was nnalysed llSing GEN'STAT® version 4,2
(Lnne and Pnyne, 1996). A one- and two-way analysis
of variance (AKOVA) was conducted to determine
the \'ariation in chloroplnst numbers between plants
\\'ithin each line, beh\'ccn lines \vithin each ploidy
IC\'el and {inn]]y beh\ecn different levels of ploidy.

RESULTS AND DISCUSSION

The average number of chloroplasts in the cells of all
the diploids and all the tetraploids were significantly
different (P<O,Ol). For the diploids the average of
9,89 ± 0,222 \\'ns clearly half that of the tetraploids,
which was 22,43 ± 0,222 (Tablc 1).

The num bel' of chloroplasts in the different guard
ce]]s of a plant showed little variation (P<O,Ol),
ho\\,e\'e1' between plants of the same line, significant
differcnces \\'ere noted (Tablc 1). This suggests
genotypes not tested previously should be sampled to
check if the rnnge of chloroplast numbers lie within

TABLE 1: Al'crage stomatal clzlomplast counts for dip/aiel olld tetraploid A. mcoTllsii seedlings. Treatments
denotcd by t1ze SClme letters (lcitli in cacli I i lie) are I' at significa Il tly difFerent (P<O, 001) (LSD = 0,6266).
Treatments denoted by tlie same letters (bctlcccn (,)'e!!d mecns for each line) are not signiFicantly differe!!t
(P<O,OOl) (LSD = 0,2802).

P](\!1L: \'.ithin lines

I
-

Ploidy Line·s 1 2 3 4 5 Grand mean

Diploid 117 7,:):3:3n S"WO b 9,000 h 9,933 c 10,600 cl 9,093 a

·-r·) 8,867 it 10,000 b ~0,33.3 !J 11.267 c 12,067 d 10,507 c_1-

283 8 .. 6G7 <1 9,'100 b 10,000 bc 10,600 c 11,733 d 10,080 b

Tetraploids C19/4S/19 ] 6,867 (l 23,6G7 b 24,933 c 25,000 c 26,067 d 23,307 f

C19/4S/20 18,267 a 21,000 b 22,267 c 24,467 d 25,733 e 22,347 e

C25148105 18,867 a 20,000 b 20,733 c 23,533 d 25,000 e 21,627 d

so Southern Afri.can Forestry Journal - No. 198, July 2003



the particular ploidy range.
Although the range of measureinents of tiie

different plants within a ploidy level did show some
significant differences (P<O,Ol) the range ofcounts of
diploids did not overlap with the counts made for the
tetraploids, thus providing a procedure to distinguish
between these levels of ploidy.

An important finding was the differential
arrangements of the chloroplasts in the guard cells.
In the diploids, with significantly less chloroplasts
than the tetraploids, the chloroplasts were pobrized
towards the corners ofthe cells, while in the tetraploid:;
no polarization was observed with the chloroplasts
more or less evenly distributed throughout the cell
(Figure 1.).

These findings concur with the literature where
this technique has been successfully applied to BroJll is
inermis (Tan and Dunn, 1973), alfalfa Wingham,
1968), cotton (Chaudhari and Barrow, 1975) and
clOHr (Najcevska and Speckmann, 1968).

CONCLUSIONS

As far as can be ascertained the results from this
study, with respect to the use of the discussed
technique, are the first for any tree species. The
results show that chloroplast counts together with
the differential chloroplast arrangemen tin the gua rcl
cells are able to distinguish between black wattle
diploids and tetraploids. The results obtained by
Beck et al. (2003) for A. meamsii, where stomatal
length and frequency measurements were sho\\'n to
be reliable indirect techniques for ploidy identi fication,

A

";::'

in combi:lation with results obtained from this study,
proviJc a rapid, easy ,lnd reliable procedures to
distinguish between these two levels of ploidy.
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APPENDIX

There are two sets of experiments in this thesis, that of stomatal-chloroplast

analysis and that of chlorophyll content analysis. All supporting information for

each of these experiments has been categorized as follows:

A. SOlution recipes

This section includes all possible reagents and stains used.

B. Raw data

This section includes raw data sheets for all experiments in this thesis.

C. Datasheets

This section includes examples of raw data as well as statistical tables and

programming options.



A SOLUTION RECIPES

1. SOLUTIONS USED IN STOMATAL CHLOROPLAST PREPARATION

1.1 Washing Solution

100 ml distilled water

5 drops Tween-20

5 drops household bleach

Place reagents in 200 ml beaker and stir with spatula.

1.2 Petrie dish preparation

Vermiculite

Filter paper with Petrie dish dimensions

50 ml distilled water

Line Petrie dish with vermiculite and cover with filter paper. Place seeds

individually on filter paper and moisten slightly with distilled water. Seal with lid,

label and incubate until germinated.

1.3 Staining Solution

100 ml distilled water

1 9 iodine crystals

1 9 potassium iodide

Place reagents in 200 ml beaker and stir using stirring bar for approximately 15

minutes or until reagents have dissolved. Keep container sealed, foiled and

cooled.



2. SOLUTIONS USED IN CHLOROPHYLL EXTRACTION PREPARATION

2.1 Solvent

90 mllaboratory grade acetone

10 ml distilled water

Place reagents in 200 ml beaker and stir with spatula. Cover when not in use.

Make fresh samples for each day as acetone is a volatile solvent and readily

evaporates thereby altering the solvent-ratios.

2.2 Standard Solution

25 ml volumetric flask

15 ml chlorophyll extract

-10 ml solvent (90% acetone)

Place chlorophyll extract into volumetric flask and fill with solvent to the graduation

mark. Homogenize solution by inverting three times. Standard solution should then

be kept in the dark on ice until spectroscopy is done (within 15 minutes).

2.3 Cuvette Solution

1 ml standard solution

2 ml solvent (90% acetone)

Place standardized chlorophyll solution into quartz cuvette and fill with solvent to

graduation mark using Pasteur pipette. Run spectroscopic analysis immediately

with solvent background (blank).



B RAW DATA

1. STOMATAL CHLOROPLAST RAW DATA SHEET.

Diploid lines

117a 272b 283c
6 8 10
6 8 8
6 8 8
7 8 8

8 8 8
8 8 8
8 9 8
8 9 9
8 9 9
8 9 9
8 9 9
8 10 9

8 10 9
8 10 9
8 10 9
8 10 9
8 10 9
8 10 9
8 10 9
8 10 9

8 10 9
8 10 9

8 10 9
8 10 9
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 10 10
9 11 10

Tetraploid lines
19/19 19/20 25/5

13 16 18
14 16 18
14 17 18
14 17 18
15 18 18
15 18 18
15 18 18
16 18 19
16 18 19
16 18 19
20 20 20
20 20 20
20 20 20
22 20 20
23 20 20
23 20 20
23 20 20
23 20 20
23 20 20
23 20 20
24 20 20
24 20 20
24 21 20
24 22 20
24 22 20
24 22 20
24 22 20
24 22 20
24 22 20
24 22 20
24 22 20
25 22 20
25 22 20
25 22 20
25 22 21
25 22 21
25 22 21
25 22 21
25 22 21
25 22 21
25 22 21



Diploid lines Tetraploid lines

117a 272b 283c 19/19 19/20 25/5
9 11 10 25 23 21
9 11 10 25 23 21
9 11 10 25 23 21
9 11 10 25 23 21
9 11 10 25 23 21
10 11 10 25 24 21
10 11 10 25 24 23
10 11 10 25 24 23
10 11 10 25 24 23
10 11 10 25 24 24
10 11 11 25 24 24
10 11 11 25 25 24
10 11 11 25 25 24
10 11 11 25 25 24
10 11 11 25 25 24
10 12 11 25 25 24
10 12 11 25 25 24
10 12 11 25 25 25
10 12 11 25 25 25
10 12 11 25 25 25
10 12 11 25 25 25
10 12 11 25 25 25
10 12 11 25 25 25
10 12 12 25 25 25
10 12 12 26 25 25
11 12 12 26 25 25
11 12 12 26 25 25
11 12 12 26 25 25
11 12 12 26 25 25
11 12 12 27 26 25

11 12 12 27 26 25
11 12 12 27 28 25
11 12 12 27 28 25

11 13 12 28 28 25

L = 682 788 756 1748 1676 1622
'"IN = 9.093333 10.50667 10.08 23.30667 22.34667 21.62667



2. CHLOROPHYLL STORAGE RAW DATA SHEET.

Example of storage raw data set for 2-year diploid dried and extracted after 1­

month

Plant repeat 1

Plant
A 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15

433 0.4799 0.4810 0.4805 0.4430 0.4960 0.4655 0.4682 0.4732 0.4682 0.4766 0.4689 0.4698 0.4705 0.4714 0.4721

456 0.3492 0.3500 0.3496 0.3208 0.3555 0.3375 0.3401 0.3420 0.3379 0.3444 0.3399 0.3400 0.3410 0.3412 0.3422

663 0.2756 0.2762 0.2759 0.2563 0.2832 0.2680 0.2695 0.2718 0.2692 0.2736 0.2698 0.2702 0.2707 0.2711 0.2716

Plant repeat 2

A 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15

433 0.4730 0.4707 0.4451 0.4981 0.4677 0.4734 0.4725 0.4706 0.4701 0.4738 0.4700 0.4708 0.4761 0.4679 0.4706

456 0.3423 0.3411 0.3229 0.3576 0.3396 0.3432 0.3422 0.3405 0.3397 0.3425 0.3402 0.3408 0.3447 0.3389 0.3401

663 0.2720 0.2706 0.2584 0.2853 0.2701 0.2721 0.2716 0.2706 0.2702 0.2721 0.2703 0.2707 0.2734 0.2692 0.2705

Plant repeat 3

A 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15

433 0.4740 0.4697 0.4712 0.4706 0.4717 0.4719 0.4673 0.4713 0.4989 0.4604 0.4962 0.4895 0.5100 0.4887 0.4684

456 0.3424 0.3401 0.3412 0.3406 0.3413 0.3417 0.3385 0.3410 0.3709 0.3340 0.3557 0.3614 0.3778 0.3539 0.3381

663 0.2722 0.2701 0.2709 0.2706 0.2712 0.2713 0.2691 0.2713 0.3014 0.2673 0.2834 0.2908 0.3070 0.2809 0.2694

Plant repeat 4

A 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15

433 0.4902 0.5048 0.4714 0.4711 0.4722 0.4717 0.4711 0.4719 0.4716 0.4707 0.4712 0.4714 0.4716 0.4842 0.4701

456 0.3612 0.3746 0.3410 0.3407 0.3416 0.3414 0.3409 0.3414 0.3412 0.3405 0.3409 0.3411 0.3413 0.3520 0.3411

663 0.2911 0.3045 0.2710 0.2708 0.2713 0.2711 0.2708 0.2712 0.2711 0.2706 0.2709 0.2710 0.2726 0.2812 0.2710

Plant repeat 5

A 51 5253545556575859510511512513514515

433 0.4732 0.4782 0.4726 0.4755 0.4757 0.4742 0.4749 0.4752 0.4747 0.4750 0.4750 0.4748 0.4749 0.4749 0.4749

456 0.3434 0.3487 0.3424 0.3456 0.3455 0.3444 0.3450 0.3453 0.3447 0.3451 0.3450 0.3449 0.3450 0.3450 0.3449

663 0.2736 0.2783 0.2723 0.2750 0.2752 0.2742 0.2748 0.2750 0.2744 0.2748 0.2747 0.2746 0.2747 0.2747 0.2747



3. CHLOROPHYLL AGE RAW DATA SHEET.

(see following page)



OLD FLUSH

WaveL

433.0

456.0

663.0

WaveL

433.0

456.0

663.0

WaveL

433.0

456.0

663.0

WaveL

433.0

456.0

663.0

WaveL

433.0

456.0

663.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MEAN

0.56380.5421 0.58150.54440.5851 0.58260.60150.71310.56350.56140.59150.57570.5492 0.5860 0.6007 0.4415 0.5223 0.5203 0.5532 0.5490 0.5664

0.40680.39140.41820.39370.4281 0.41930.43820.56240.40650.40440.42820.41870.39220.4227 0.4437 0.2845 0.36530.36330.39300.3920 0.4086

0.3221 0.31170.32850.31400.34340.32960.34850.48270.3218 0.3197 0.3385 0.3340 0.3075 0.3330 0.3590 0.1998 0.2806 0.2786 0.3058 0.3073 0.3233

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.4971 0.44430.44230.47070.48390.48270.49920.49820.49870.4635 0.4985 0.5082 0.4703 0.4850 0.4847 0.4635 0.4858 0.4775 0.4920 0.4777 0.4812

0.35660.31350.31150.33510.34580.34460.35870.3577 0.3582 0.32910.35800.3677 0.3346 0.3469 0.3467 0.32910.34840.34060.35270.3409 0.3438

0.28430.24630.24430.26530.27480.27360.28640.2854 0.2859 0.2599 0.2857 0.2954 0.2649 0.2759 0.2756 0.2600 0.2777 0.2703 0.2810 0.2705 0.2732

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.49820.51270.51040.50430.51350.5131 0.50740.51630.51490.51280.51390.50730.5132 0.5140 0.5144 0.5108 0.5145 0.5057 0.5093 0.5106 0.5108

0.3577 0.3722 0.3699 0.3638 0.3730 0.3726 0.3669 0.3758 0.3744 0.3723 0.3734 0.3668 0.3727 0.3735 0.3739 0.3703 0.3740 0.3652 0.3688 0.3701 0.3703

0.2854 0.2999 0.2976 0.2915 0.3007 0.3003 0.2946 0.3035 0.3021 0.30000.3011 0.29450.3004 0.3012 0.3016 0.2980 0.3017 0.2929 0.2965 0.2978 0.2980

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.59260.59370.58150.58030.57880.58700.5809 0.5279 0.5883 0.5960 0.6015 0.5791 0.58300.59150.58370.59040.59030.58740.6038 0.5541 0.5836

0.42930.43040.41820.41700.41550.42370.41760.40280.4250 0.4327 0.4382 0.4158 0.4197 0.4282 0.4204 0.42710.42700.42410.44050.3908 0.4222

0.33960.34070.32850.32730.32580.33400.3279 0.2925 0.3353 0.3430 0.3485 0.32610.33000.33850.33070.33740.33730.3344 0.3508 0.3011 0.3315

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.58600.58590.58360.55150.58020.55490.5859 0.5894 0.5532 0.5830 0.5641 0.57760.56750.57940.59190.5931 0.58140.58870.5801 0.5571 0.5767

0.42900.42890.42660.39450.42320.39790.42890.43240.3962 0.4260 0.4071 0.42060.41050.42240.43490.4361 0.42440.43170.42310.4001 0.4197

0.34430.34420.34190.30980.33850.31320.34420.3477 0.3115 0.3413 0.3224 0.3359 0.3258 0.3377 0.3502 0.3514 0.3397 0.3470 0.3384 0.3154 0.3350



NEW FLUSH

Wavel

433.0

455.0

663.0

1 2

0.4799 0.5421

0.3515 0.3941

0.2756 0.3117

3

0.5815

0.4208

0.3285

4 5 6 7 8 9 10 11 12 13 14 15

0.44300.49600.44220.48200.55410.46950.46210.5181 0.51100.47580.53610.4658

0.32300.35780.31380.35360.40610.34040.33370.3799 0.3728 0.3470 0.3930 0.3371

0.25630.28320.24420.27770.32370.26980.26100.3007 0.29370.27370.31220.2654

16 17 18 19 20

0.47080.4801 0.52350.46150.4755

0.34200.3468 0.3829 0.3373 0.3444

0.26950.27250.30290.26600.2710

MEAN
0.4935

0.3589

0.2830

Wavel

433.0

456.0

663.0

1

0.5611

0.4041

0.3194

2

0.5599

0.4029

0.3182

3

0.5456

0.3886

0.3039

4 5 6 7 8 9 10 11 13 14 16 17

0.55270.55340.56540.54120.54340.54730.5495 0.5339 0.5386 0.5542 0.5486 0.5406

0.39570.39640.40840.38420.38640.39030.39250.3769 0.3816 0.3972 0.3916 0.3836

0.31100.31170.32370.29950.30170.30560.3078 0.2922 0.2969 0.3125 0.3069 0.2989

18 19 20

0.5751 0.55660.5587

0.4181 0.39960.4017

0.33340.31490.3170

0.5514

0.3944

0.3097

Wavel

433.0

456.0

663.0

Wavel

433.0

456.0

663.0

Wavel

433.0

456.0

663.0

1 2

0.5863 0.5828

0.4293 0.4258

0.3446 0.3411

1 2

0.5848 0.5871

0.4278 0.4301

0.3431 0.3454

1 2

0.5926 0.6160

0.4293 0.4527

0.3396 0.3630

3

0.5834

0.4264

0.3417

3

0.5837

0.4267

0.3420

3

0.6147

0.4514

0.3617

4 5 6 7 8 9 10 11 12 14 15 18

0.58470.59840.5846 0.5848 0.5868 0.5916 0.5841 0.58820.58990.58050.59690.5843

0.42770.44140.42760.42780.42980.43460.4271 0.43120.43290.42350.43990.4273

0.34300.35670.34290.3431 0.3451 0.34990.34240.34650.34820.33880.35520.3426

4 5 6 7 9 10 11 12 13 14 15 16

0.58280.58600.5871 0.5877 0.5974 0.5899 0.5665 0.5848 0.5614 0.5843 0.5865 0.5848

0.42580.42900.4301 0.43070.44040.43290.40950.42780.40440.42730.42950.4278

0.34110.34430.34540.34600.35570.34820.3248 0.34310.31970.34260.34480.3431

4 5 6 7 8 9 10 11 12 13 14 15

0.60480.61490.61810.60540.61640.61710.6155 0.6159 0.6170 0.6294 0.6183 0.6159

0.44150.45160.45740.44470.45570.45640.45480.45520.4563 0.4687 0.4576 0.4552

0.35180.36190.36780.3551 0.3661 0.36680.36520.36560.36670.3791 0.36800.3656

20

0.5812

0.4242

0.3395

17

0.5857

0.4287

0.3440

16 17 18 19 20

0.61690.60240.60420.60270.5931

0.4562 0.4417 0.4435 0.4420 0.4324

0.3666 0.3521 0.3539 0.3524 0.3428

0.5868

0.4298

0.3451

0.5838

0.4268

0.3421

0.6116

0.4502

0.3606



4. CHLOROPHYLL PLOIDY RAW DATA SHEET.

DIPLOID DATA

132

Seedlings Bags Field

seedlings seedlings seedlings Seedling bags bags bags bags field field field field
A Line a Line b Line c Total Aye Line a Line b Line c Total Aye Line a Line b Line c Total Aye

433 0.4778 0.4810 0.4805 0.4797 0.4871 0.5089 0.4878 0.4948 0.5184 0.5268 0.5256 0.5235

456 0.3504 0.3535 0.3531 0.3523 0.3564 0.3782 0.3570 0.3641 0.3841 0.3910 0.3906 0.3885

663 0.2748 0.2777 0.2774 0.2766 0.2828 0.3046 0.2834 0.2905 0.3084 0.3145 0.3139 0.3123

TETRAPLOID DATA

Seedlings Bags Field
Seedling Seedling Seedling Seedling Bags Bags Bags Bags Field Field Field Field

A Line a Line b Line c Total Aye Line a Line b Line c Total Aye Line a Line b Line c Total Aye

433 0.8095 0.8177 0.8184 0.8151 0.8185 0.8364 0.8400 0.8314 0.8800 0.8783 0.8696 0.8762

456 0.5921 0.5992 0.5996 0.5969 0.6005 0.6163 0.6196 0.6119 0.6572 0.6555 0.6514 0.6548

663 0.4697 0.4762 0.4764 0.4740 0.4778 0.4924 0.4954 0.4883 0.5317 0.5300 0.5239 0.5287
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C DATASHEETS

1. EXAMPLE OF MICROSOFT® EXCEL SPREADSHEETS USED FOR

RECORDING RAW DATA SETS.

..:.KH

.&l4J x
• _ dI x

11 1I'~,.m $" '" _.~.A.' •

G

... 10 • B I

Ill.

E

look IloU _ ~

" 1: • tl ~.""" . G) ~ """

c 0
Stomatal Chlgroplast Counts

A B
1
2
3
• Ploidy Level Genetic line Plant Number Cell Number Humber of Olloroplasts
5 2. 117 1 1 15
6 2. 117 1 2 22
7 2)( '17 1 3 13
B 2x 117 1 4 10
9 2x 117 1 5 11
10 2. 117 1 6 11
11 2. 117 1 7 15
12 2, 117 1 B 15
13 2, 117 1 9 16
14 2x ,,7 1 '0 15
15 2. 117 1 11
16 2. 117 1 12
17 2. 117 1 13
18 21( 117 1 1.4
19 2. 117 1 15
20 2, 117 2 1
21 2, 117 2 2
22 2, 117 2 3
23 2. 117 2 4
2.4 211 117 2 5
25 2)( "7 2 6
26 2)( 117 2 7
27 2. 117 2 8
2B 2x t 17 2 9
29 2)( 117 2 10
XI 2)( 117 2 11
31 2)( 117 2 12
32 2. 117 2 13
33 2. 117 2 14

M~ .1oI~1~/ -.:; ,'\

",... ~ _. "DOIilJ"OII:IO:I ~.,J:..

Q!)!Jo ~ ~ t-t .......

D~"'!1 B~~ ~
E16 ,.

2. EXAMPLE OF GENSTAT® STATISTICAL TABLES AND

PROGRAMMING USED ON RAW DATA.

FIe Ba s..m RlIl DIU Spr..t Graphics SUb: 0ptiDnl wndow Help

~~gB f'I !2 -' ~ ,.t; u.C!:l
11 I!!I ". I .... '" ioIi F I; I; !xl ••• ": d I: . Sf

~ ~$l~'6' D ~ t
~* ~:;SO -

Ident1tier 1I1nimum
C1. 7.533

!lean Jlaximum Vl!lue:5 Ilis~1nQ'

16.16 Z6.0? 30 0

1.
19 "General inalysis of Variance."
20 BLOCK "No Blockino"
21 TJU:J.TlItNTS
22 COVJ.RIJ.T! "No Covariat~"

23 JNOVJ. [PRINT-llOVtable, in1'ormation, mearus, re~idul5l:!l,\cv; P' J.CT-32; P'PROB-y~~; P:U-di1' 1', ,
24 lsd, means; LSDL!V!L-S] C4

••••• .lnaly~i:!l 01' variance

Vl5riate: C4

Source 01' variation
Re:!lidual
Total

d.1'.
2.
2.

:!I.S.

IJ23.10
IJ23.10

45.62
f pr.

r···· Table~ 01' re:!Jldual:!J

Varlate: C4

·Units W reslduals ~. ~. 6. 61 r~p. 1

Varlate: C1

Grand me:an 16.2

••••• Stratum standard errors and coetticients 01' variation •••••

Var111t~: e4

d.1'.
2. 6.75

cv.
i1.6

ser...Raady. ln20,CoI2 C:~.-.dS.tt"9\Stud...UJ02\MyDoamerts INS
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3. EXAMPLES OF CHLOROPHYLL ABSORBANCE SPECTRA RECORDED

FROM SPECTROMETER AND REPRODUCED IN MICROSOFr<ID EXCEL

Chlorophyll absorbance of Plant1 (repeat one)

0.5000

0.4500

0.4000

..
~ 0.3500..
D
(;
'"D

~ 0.3000
>.
.<:
c.
o

~ 02500
u

02000

0.1500

700650600550

Wavelength (nm)

500450
0.1000+----~---~---___r---___,----~--__,

400

Chlorophyll absorbance (lce_28 days)

0.7000 Peak 433 nm

0.6000

0.5000

'"u
<:..
D

0.4000g
D..
>.
.<:
c. 0.30000

~
.<:
U

0.2000

0.1000

0.0000
400 450 500 550 600

Wavelength (nm)

-Chlorophyil absorbance

Peak 663 nm

650 700
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4. EXAMPLE OF CHLOROPHYLL ABSORBANCE DATASHEET

RECORDED FROM SPECTRA

Fgrmot 1oo1s ~al. \!I.Rlow tjoIp

~ ..," ... 1: - t~ 10 lOO'k - l'i) = AM

MK

_ 10

HGEoCA B

I!l Elo ~ \'jow Insert

D~r;jJ'!j SC9.~

11 fi,

1
2

-3 Plantl 1 1_2 1 3 1_4 1_5 1_6 lJ 1_8 1_9 1_10 1_11 1_12 1 13 U4
-4 03821 0.3830 03825 0.3484 0:Bl9 0.3879 0.3713 0.3726 0.3877 0.3754 0.37ffi 0.3705 03719 0.3718 0_

5
-

0.3846 0.3855 0.3850 0.3513 03893 0.37ffi 03739 0.3753 0.3705 0.3780 0.3733 0.3732 0.3745 0.3745 O.
6. 0.3875 03884 0.3879 0.3543 0.3927 0.3735 0.3769 0.3783 0.3735 0.3810 0.3762 0.3762 0.3775 0.3775 O.
7i 0.m4 0.3913 0.3903 0.3573 O.m:J 0.3765 0.3798 0.3814 0.3766 0.3841 0.3792 0.3793 0.3805 0.3800 O.

8' 0.3931 0.3940 0.3938 0.3602 0.3991 0.3793 0.3826 0.3843 0.3795 0.3870 0.3821 0.3821 0.3834 0.3834 O.
9 0.3957 0.3966 0.3962 03630 0.4021 0.3821 0.3853 0.3871 0.3824 0.3898 03848 0.3849 0.3861 0.3862 O.
10' 03982 0.3991 03987 0.3655 04D50 0.3846 0.3878 0.3897 0.3850 0.3925 0.3874 0.3875 0.3887 0.3888 o.

11 0.4D05 0.4014 0.4010 0.3678 0.4078 0.3870 0.3901 0.3922 0.3875 0.3949 0.3897 0.3899 0.3911 0.3913 0
12 0.4027 0.4D38 0.4D32 0.3699 0.4104 0.3892 0.3922 0.3945 0.3898 0.3973 0.3920 0.3922 03933 0.3935 o.
13 0.4044 0.4D53 0.4049 0.3717 0.4127 0.3910 0.3940 0.3964 0.3918 0.3992 0.3938 0.3841 0.3951 0.3954 O.
14 04057 0.4066 0.4002 0.3732 0.4145 0.3924 0.3953 0.3980 0.3934 0.4008 0.3952 0.3956 0.3966 03969 O.
15 0.4066 0.4077 0.4073 0.3743 0.4158 0.3938 0.3964 0.3991 0.3946 0.4019 0.3964 0.3967 0.3977 0.3981 O.

16j 0.4074 0.4D83 0.4079 0.3747 0.4167 0.3841 0.3970 0.3998 0.3952 0.4026 0.3969 0.3973 0.3983 03986 O.
17 04000 0.4D89 04035 0.3752 0.4175 03847 0.3975 0.4004 03958 0.4032 0.3975 0.3979 03989 0.3993 0
18 . 0.4087 0.40S\S 0.4092 0.3758 0.4181 0.3953 03982 0.4010 0.3964 0.4039 0.3982 0.3985 0.3995 0.3999 O.

19
1

04093 0.4102 0.4098 0.3764 0.4187 0.3959 03988 0.4016 0.3970 0.4045 0.39138 0.3991 0.4001 0.4D05 O.
20 0.4103 0.4112 0.4108 0.3775 0.4198 0.3970 0.3998 0.4027 0.3981 0.4055 0.3998 04002 0.4012 0.4016 o.:m 0.4119 0.4128 0.4124 0.3789 0.4215 03985 0.4014 0.4043 0.3996 0.4071 0.4014 0.4018 0.4027 0.4031 O.
22, 04144 0.4154 0.4149 0.3811 0.4239 0.4009 0.4038 0.4066 0.= 0.4095 0.4D38 0.4041 0.4051 0.4055 O.

~ 0.4176 0.4186 04181 0.3841 0.4274 0.4040 0.4069 0.4099 0.4052 0.4128 0.4ffi9 0.4073 0.4083 0.4087 O.
24 04220 0.4230 0.4225 0.3883 0.4320 0.4D83 0.4113 0.4143 0.4095 0.4172 0.4113 0.4117 0.4127 0.4131 O.
25 0.4273 0.4283 0.4278 0.3935 0.4378 0.4137 0.4165 0.4197 0.4150 0.4227 0.4166 0.4171 0.4180 0.4185 O.
26 0.4338 0.4348 0.4343 0.3994 0.4447 04199 0.4228 0.4261 0.4213 0.4292 0.4230 0.4234 0.4244 0.4249 O.
27 0.4410 0.4420 0.4415 0.4062 0.4527 0.4271 0.4299 0.4335 0.4287 0.4366 0.4301 0.4307 0.4316 0.4321 O.
~ 0.4467 0.4497 0.4492 0.4135 0.4612 0.4347 0.4375 0.4413 0.4385 0.4445 0.4378 0.4384 04393 04399 O.
29 0.4568 0.4579 0.4573 0.4211 0.4700 0.4426 0.4454 0.4495 0.4446 0.4527 0.4458 0.4465 0.4474 0.4480 O.
30 0.4646 0.4657 0.4651 0.4288 0.4786 0.4505 0.4532 0.4575 0.4526 0.4608 0.4537 0.4544 0.4553 0.4580 O.
31 0.4721 0.4732 0.4726 0.4357 0.4867 0.4578 0.4605 0.4650 0.4601 0.4683 0.4611 0.4619 0.4627 0.4634 O.

32 0.4786 0.4797 0.4792 0.4417 0.4938 0.4641 0.4669 0.4716 0.4665 0.4749 0.4675 0.4683 0.4691 0.4699 O.

~j
0.4B:E 0.4847 0.4842 0.4462 0.4992 0.4690 0.4717 0.4765 0.4715 0.4799 0.4724 0.4732 0.4740 0.4746 O.
~~ n 4BZR (L~ n 4.<lqJ] J. Q.'IDR. Q47t Il.~~. Q474~~~"'L n .<l7RL~7" l.Jl77A n ~

" .- • Clwtl Exemplo~x !iho~ Sl-eet2 J. Chort3 ~ Ch¥t4 t4 J. 0wt5 Sheet ,t6 Q!!"Qi. Ch¥tB Sheet6 .• -tr-
ot"'" i:l A!l'o"'-," " " 0 0 IilJ 41 l:l ['il1.I.lI ~"~"~"==;§e

5. EXAMPLE OF CHLOROPHYLL ABSORBANCE CONDENSED

DATASHEET EXTRACTED FROM SPECTRAL DATA SETS

I!l Elo ~dl _ Insert F"'mal 1oo1s ~... \!I.Rlow tjoIp

D ~ r;jJ '!j C!i C9. ~ ~ _1. '1\ 1: " t ~ 10 lOO"k "~» A,..,

Pll fi,

!A,B,C,DIE G H K

" 10

M N o P a R S T-1.

10 11 12 13 14 15 16 17 18 19
0.56140.59150.5757 0.5492 0.5860 0.6007 0.4415 0.5223 05203 0.5532 [
0.41660.4398 0.4309 0.4044 0.4343 0.4559 0.2967 0.3775 0.3755 04049 [
0.31970.3385 0.3340 0.3075 0.3330 0.3590 01998 0.2806 0.2786 0.3056 [

10 11 12 13 14 15 16 17 18 19
0.46350.4985 0.S082 0.4703 0.48SO 0.4847 0.4635 0.4858 0.4775 0.4920 [
0.3291 0.3580 0.3677 0.3346 0.3469 0.3467 0.3291 0.3484 0.3400 0.3527 [
0.25990.2857 0.2954 0.2649 0.2759 0.2756 0.2600 0.2777 0.2703 0.2810 [

10 11 12 13 14q 16 17 18 19
0.51280.5139 0.5073 0.5132 0.5140 0.5144 0.5108 0.5145 0.5057 0.5093 [
0.3723 0.3734 03868 0.3727 0.3735 0.3739 0.3703 0.3740 0.3652 0.3888 [
0.30000.3011 0.2945 0.3004 0.3012 0.3016 0.2980 0.3017 0.2929 0.2965 [

10 11 12 13 14 15 16 17 18 19
0.5960 06015 0.5791 0.5830 0.5915 0.5837 0.5904 0.5903 0.5874 0.6038 [
0.43270.43820.4158 0.4197 0.4282 0.4204 0.4271 0.4270 0.4241 0 4405 [
0.3430 0.3485 0.3261 0.3300 0.3385 0.3307 0.3374 0.3373 0.3344 0.35OB [

10 11 12 13 14 15 16 17 18 19 _
05830 0.5641 0.5776 0.5675 0.5794 0.5919 0.5931 0.5814 0.5887 05801 [
0.42600.4071 0.4206 0.4105 0.4224 0.4349 0.4361 0.4244 0.4317 0.4231 [
0.19160.17270.1862 0.1761 0.1880 0.2005 0.201701900 0.1973 01887 [

10 11 12 13 14 15 16 17 18 19
0.4621 05181 0.5110 0.4758 05361 0.4658 0.4708 0.4801 05235 04615 [
0.33140.3774 0.3703 0.3447 0.3904 0.3348 0.3397 0.3444 0.3803 0.3350 [
0.13820.16940.1624 0.1515 0.1752 0.1417 0.1466 0.1439 0.1688 0.1479 [

10 11 13 14 16 17 18 19 20
0.5495 05339 0.5386 05542 0.5486 0.5406 0.5751 0.5566 0.5587
n '=jq?; n ':m::;q n1A11; n ~7?~n3q1 h_O TI'::l n.i1A1 n~ n <1111 ~

.!Jr-• •

9
0.5635
0.4187
0.3218

9
0.5149
0.3744
0.3021

9
0.4987
0.3582
0.2859

9
0.5883
0.4250
0.3353

9
0.5532
0.3962
0.1616

9
0.4695
0.3382
0.1452

7 8
0.4992 04982
0.3587 0.3577
0.2864 0.2854

7 8
0.6015 0.7131
0.4498 0.5752
0.3485 0.4827

7 8
05859 0.5894
0.4289 0.4324
0.1945 0.1900

7 8
0.5809 0.5279
0.4176 0.4028
0.3279 0.2925

7 8
0.S074 0.5163
0.3869 0.3758
0.2946 0.3035

7 8
0.4620 0.5541
0.3513 0.4034
0.1579 0.1809

4 5 6
0.5444 0.5851 0.5826
0.4ffi5 0.4403 0.4309
0.3140 0.3434 0.3296

4 5 6
0.50430.5135 0.5131
0.3638 0.3730 0.3726
0.2915 0.3007 0.3003

4 5 6
05803 0.5788 0.5870
0.41700.4155 0.4237
0.3273 0.3258 0.3340

4 5 6
04707 0.4839 0.4827
0.3351 0.3458 0.3446
0.2653 0.2746 0.2736

3
0.5815
0.4298
0.3285

3 4 5 6
0.5836 0.55150.5802 0.5549
0.4266 0.3945 0.4232 0.3979
0.1922 0.160101888 0.1635

3
05815
0.4182
0.3285

1 2 3
0.4971 0.4443 0.4423
0.3566 03135 0.3115
0.2843 0.2463 0.2443

1 2 3
0.4982 0.5127 0.5104
0.3577 0.3722 03699
0.2854 0.2999 0.2976

1 2
05860 0.5859
0.4290 0.4289
0.1946 0.1945

1 2
0.5638 0.5421
0.4190 0.4042
0.3221 0.3117

1 2
0.5926 0.5937
04293 0.4304
0.3396 0.3407

1 2 3 4 5 6
04799 0.5421 05815 0.4430 0.4960 04422
0.3492 0.3914 0.4182 0.3208 0.3555 0.3114
0.1558 0.1689 0.1719 0.1399 0.1504 0.1184

1
2 lflIIDlll
3 1433 .0

t::~:~
6'
y-, lflIIDlll
8 433.0
,L,456.0
10 663.0
11

&~~~Oel
14 456.0
~663.0

17'~
18 433.0
19456.0
20 ,663.0

~~
23 433.0
24 456.0
25 633.0
26:
27 WaveL
~433.0

~:~~:~
~
32 .'II'IDllll. 1 2 3 4 5 6 7 8 9
33 433.0 0.5611 0.5599 0.5456 0.5527 0.5534 0.5654 0.5412 0.5434 0.5473
3A'.l'i1i~ . nAl).<ll n42?t< n3'flR_n1qt;7.JJ.3Clfil n4f'A,l.Q1A47.0=4 n1<lQ1

• -.~ Clwt5.~,(~,(~~~

otaw- i:l A\ltoShapes-" "0 0 ~ 41 Cl ill [;ii ~ - .!" ~"== ;§ e



6. CHLOROPHYLL ABSORBANCE GENSTAT® ANALYSES FOR

STORAGE DATA, AGE DATA and PLOIDY DATA

STORAGE DATA GENSTAT OUTPUT

136

641
642 "General Analysis of Variance."
643 BLOCK plant
644 TREATMENTS treatment*wavelength
645 COVARIATE "No Covariate"
646 ANOVA [PRINT=aovtable, information, means, %CVi FACT=32i FPROB=yesi

PSE=diff,lsdi LSDLEVEL=5]\
647 absorbance

***** Analysis of variance

variate: absorbance

*****

Source of variation d. f. s. s. m.s. v.r. F pr.

plant stratum 4 0.0870574 0.0217643 71.76

plant.*Units* stratum
treatment 4 0.5655926 0.1413982 466.21 <.001
wavelength 2 8.5814867 4.2907433 1.415E+04<.001
treatment.wavelength 8 0.0251203 0.0031400 10.35 <.001
Residual 1106 0.3354410 0.0003033

Total 1124 9.5946980

* MESSAGE: the following units have large residuals.

plant 2 *units* 102 0.06248 s.e. 0.01727
plant 2 *units* 103 0.06398 s.e. 0.01727
plant 2 *units* 104 0.08158 s.e. 0.01727
plant 2 *units* 105 0.08308 s.e. 0.01727
plant 2 *units* 120 0.05756 s.e. 0.01727
plant 2 *units* 147 0.06191 s.e. 0.01727
plant 2 *units* 148 0.06341 s .e. 0.01727
plant 2 *units* 149 0.08091 s.e. 0.01727
plant 2 *units* 150 0.08241 s.e. 0.01727

***** Tables of means *****

variate: absorbance

Grand mean 0.38124

treatment control dry_month dry_week ice month ice week
0.42522 0.36433 0.37757 0.37137 0.36773

wavelength 433.00 456.00 663.00
0.49752 0.35919 0.28702

treatment wavelength 433.00 456.00 663.00



control 0.55226 0.40155 0.32185

dry_month 0.47459 0.34429 0.27411

dry_week 0.48740 0.35633 0.28900
ice month 0.48849 0.34871 0.27690
ice week 0.48486 0.34507 0.27326

*** Standard errors of differences of means ***

Table treatment wavelength treatment
wavelength

rep. 225 375 75
d. f. 1106 1106 1106
s.e.d. 0.001642 0.001272 0.002844

*** Least significant differences of means (5% level) ***

Table treatment wavelength treatment
wavelength

rep. 225 375 75
d. f. 1106 1106 1106
1. s .d. 0.003222 0.002495 0.005580

***** Stratum standard errors and coefficients of variation *****

variate: absorbance

137

Stratum

plant
plant.*Units*

d.f.

4
1106

s.e.

0.009835
0.017415

cv%

2.6
4.6



AGE DATA GENSTAT OUTPUT

FLUSH DATA - INCLUDING A DIPLOID CONTROL

138

605
606 "General Analysis of Variance."
607 BLOCK rep
608 TREATMENTS age*waveL
609 COVARIATE "No Covariate"
610 ANOVA [PRINT=aovtable,information,means,%cvi FACT=32i FPROB=yesi

PSE=diff,lsdi LSDLEVEL=5]\
611 chloro

***** Analysis of variance

variate: chloro

*****

Source of variation d.f.(m.v.) s.s. m.s. v.r. F pr.

rep stratum 19 0.0380775 0.0020041 5.44

rep.*Units* stratum
age 12 1.0243534 0.0853628 231.63 <.001
waveL 2 7.5963554 3.7981777 1.031E+04<.001
age.waveL 24 0.3544664 0.0147694 40.08 <.001
Residual 602(120) 0.2218588 0.0003685

Total 659(120) 8.0554234

* MESSAGE: the following units have large residuals.

rep 8 0.01667 s.e. 0.00699
rep 16 -0.01654 s.e. 0.00699

rep 3 *units* 16 0.08437 s.e. 0.01687
rep 3 *units* 17 0.05830 s.e. 0.01687
rep 8 *units* 1 0.13001 s.e. 0.01687
rep 8 *units* 2 0.13778 s.e. 0.01687
rep 8 *units* 3 0.14273 s.e. 0.01687
rep 8 *units* 10 -0.07236 s.e. 0.01687
rep 8 *units* 12 -0.05564 s.e. 0.01687
rep 16 *units* 1 -0.10838 s.e. 0.01687
rep 16 *units* 2 -0.10751 s.e. 0.01687
rep 16 *units* 3 -0.10696 s.e. 0.01687

***** Tables of means *****

Variate: chloro

Grand mean 0.41308

age diploid_a diploid_b diploid_c NF_2year NF_4year NF_6year
NF_8year

0.38211
0.45046

age NF_9year
0.47412

0.39278

OF_2year
0.43683

0.38535

OF_4year
0.36606

0.37847

OF_6year
0.39310

0.36929

OF_8year
0.44575

0.45189

OF_9year
0.44383



waveL 433.00 456.00 663.00
0.54189 0.39520 0.30215

age waveL 433.00 456.00 663.00
diploid_a 0.49525 0.36283 0.28825
diploid_b 0.50640 0.37342 0.29853
diploid_c 0.49878 0.36611 0.29115

NF_2year 0.49353 0.35890 0.28297
NF_4year 0.55209 0.39509 0.16069
NF_6year 0.58479 0.42779 0.34309
NF_8year 0.58336 0.42636 0.34166
NF_9year 0.61157 0.45021 0.36059
OF_2year 0.56642 0.42076 0.32331
OF_4year 0.48119 0.34382 0.27316
OF_6year 0.51087 0.37037 0.29807
OF_8year 0.58359 0.42220 0.33147
OF_9year 0.57673 0.41973 0.33503

*** Standard errors of differences of means ***

Table age waveL age
waveL

rep. 60 260 20
d. f. 602 602 602
s.e.d. 0.003505 0.001684 0.006071

(Not adjusted for missing values)

*** Least significant differences of means (5% level) ***

Table age waveL age
waveL

rep. 60 260 20
d. f. 602 602 602
1. s .d. 0.006883 0.003307 0.011922

(Not adjusted for missing values)

***** Stratum standard errors and coefficients of variation *****

Variate: chloro

139

Stratum

rep
rep. *Units*

d. f.

19
602

s.e.

0.007168
0.019197

cv%

1.7
4.6



PLOIDY / CHLOROPHYLL ANALYSIS DATA
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201 "General Analysis of Variance."
202 BLOCK rep
203 TREATMENTS Treatment*wavelength*line
204 COVARIATE "No Covariate"
205 ANOVA [PRINT=aovtable, information, means , %CVi FACT=32i FPROB=yesi

PSE=diff,lsdi LSDLEVEL=5]\
206 absorbance

***** Analysis of variance

variate: absorbance

*****

Source of variation d. f. s. s. m.s. v.r. F pr.

rep stratum 9 0.785E-02 0.873E-03 9.94

rep. *Uni ts * stratum
Treatment 5 1.077E+01 2.154E+00 2.454E+04<.001
wavelength 2 7.965E+00 3.982E+00 4.536E+04<.001
line 2 0.722E-02 0.361E-02 41.12 <.001
Treatment.wavelength 10 0.436E+00 0.436E-01 496.24 <.001
Treatment. line 10 o .1l8E-01 0.1l8E-02 13.45 <.001
wavelength. line 4 0.333E-04 0.833E-05 0.09 0.984
Treatment.wavelength.line

Residual
20

477
0.1l4E-03
0.419E-01

0.571E-05
0.878E-04

0.06 1.000

Total 539 1.924E+01

* MESSAGE: the following units have large residuals.

rep 1 -0.00772 s.e. 0.00381

rep 1 *units* 19 -0.03069 s.e. 0.00881
rep 6 *units* 46 0.02822 s.e. 0.00881
rep 6 *units* 49 0.02822 s.e. 0.00881
rep 6 *units* 52 0.02822 s.e. 0.00881
rep 10 *units* 39 0.05573 s.e. 0.00881
rep 10 *units* 42 0.05824 s.e. 0.00881
rep 10 *units* 45 0.05965 s.e. 0.00881

***** Tables of means *****

Variate: absorbance

Grand mean 0.51418

Treatment 2x_bag 2x field 2x seed 4x_bag 4x field 4x seed
0.34300 0.40816 0.37463 0.64410 0.68640 0.62878

wavelength 433.00 456.00 663.00
0.67147 0.49527 0.37579

line a b c
0.50960 0.51854 0.51440

Treatment wavelength 433.00 456.00 663.00



2x_bag
2x field

2x seed
4x_bag

4x field
4x seed

0.49462
0.52360
0.48776
0.83162
0.87597
0.81523

0.36390
0.38857
0.35535
0.61213
0.65469
0.59700

0.17047
0.31230
0.28079
0.48854
0.52855
0.47411
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line b
0.35734
0.41076
0.37579
0.64838
0.68794
0.63105

Treatment
2x_bag

2x field
2x seed

4x_bag
4x field

4x seed

a
0.33551
0.40365
0.37272
0.63224
0.68964
0.62380

c
0.33614
0.41007
0.37538
0.65167
0.68163
0.63150

wavelength
433.00
456.00
663.00

line a
0.66656
0.49063
0.37160

b
0.67619
0.49946
0.37998

c
0.67165
0.49573
0.37581

Treatment
2x_bag

2x field

2x seed

4x field

4x seed

wavelength
433.00
456.00
663.00
433.00
456.00
663.00
433.00
456.00
663.00
433.00
456.00
663.00
433.00
456.00
663.00
433.00
456.00
663.00

line a
0.48715
0.35642
0.16297
0.51842
0.38409
0.30844
0.48575
0.35346
0.27896
0.81846
0.60050
0.47776
0.88003
0.65719
0.53171
0.80952
0.59214
0.46974

b
0.50894
0.37824
0.18484
0.52678
0.39099
0.31452
0.48903
0.35649
0.28186
0.83635
0.61634
0.49245
0.87832
0.65548
0.53000
0.81774
0.59922
0.47617

c
0.48778
0.35705
0.16360
0.52561
0.39064
0.31394
0.48851
0.35610
0.28154
0.84003
0.61956
0.49541
0.86956
0.65139
0.52393
0.81843
0.59963
0.47643

*** Standard errors of differences of means ***

Table

rep.
d.f.
s.e.d.

Table

rep.
d. f.
s.e.d.

Treatment

90
477

0.001397

Treatment
line

30
477

0.002419

wavelength

180
477

0.000988

wavelength
line

60
477

0.001711

line

180
477

0.000988

Treatment
wavelength

line
10

477
0.004190

Treatment
wavelength

30
477

0.002419

*** Least significant differences of means (5% level) ***

Table

rep.

Treatment wavelength

90 180

line Treatment
wavelength

180 30
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d. f. 477 477 477 477
1. s .d. 0.002745 0.001941 0.001941 0.004754

Table Treatment wavelength Treatment
line line wavelength

line
rep. 30 60 10
d. f. 477 477 477
1. s .d. 0.004754 0.003361 0.008234

***** Stratum standard errors and coefficients of variation *****

Variate: absorbance

Stratum

rep
rep.*Units*

d. f.

9
477

s.e.

0.004020
0.009370

cv%

0.8
1.8
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